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ABSTRACT 

Background: Network analysis (NA) conceptualizes psychiatric disorders as complex dynamic 

systems of mutually interacting symptoms. Major depressive disorder (MDD) is a heterogeneous clinical 

condition, and very few studies to date have assessed putative changes in its psychopathological network 

structure in response to antidepressant treatment. 

Methods: In this randomized trial with adult depressed outpatients (n = 151), we estimated 

Gaussian Graphical Models among nine core MDD symptom-domains before and after 8 weeks of 

treatment with either escitalopram or desvenlafaxine. Networks were examined with measures of cross-

sectional and longitudinal structure and connectivity, centrality and predictability as well as stability and 

accuracy. 

Results: At baseline, the most connected MDD symptom-domain were fatigue─cognitive 

disturbance, whereas at week 8 they were depressed mood─suicidality. Overall, the most central MDD 

symptom-domain at baseline and week 8 were, respectively, fatigue and depressed mood; in contrast, the 

most peripheral symptom-domains across both timepoints was appetite/weight disturbance. Furthermore, 

the psychopathological network at week 8 was significantly more interconnected than at baseline, and 

they were also structurally dissimilar.  

 Conclusion:  Our findings highlight the utility of focusing on the dynamic interaction between 

depressive symptoms to better understand how the treatment with antidepressants unfolds over time. In 

addition, depressed mood, fatigue, and cognitive/psychomotor disturbance seem to be central MDD 

symptoms that may be viable targets for novel, focused therapeutic interventions. 
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Major depressive disorder (MDD) is a highly prevalent psychiatric condition that is associated 

with substantial morbidity and mortality as well as with enormous social and economic costs (Malhi and 

Mann, 2018). Its 12-month prevalence is of approximately 6% overall (Kessler and Bromet, 2013), and 

many depressed individuals fail to achieve an adequate and/or sustained improvement following 

treatment with antidepressants (ADs), and thus remain significantly disabled (Berlim and Turecki, 2007). 

Indeed, the landmark STAR*D trial has found that over 60% of individuals with MDD failed to clinically 

remit after a 3-month course with the AD citalopram (Rush et al., 2006b), and that the majority of those 

who achieved remission during its four consecutive treatment steps ultimately relapsed or dropped out 

from follow-up (Pigott et al., 2010).  

It is thereby crucial to better understand the clinical mechanisms and targets of ADs in order to 

hopefully enhance their overall efficacy and acceptability in MDD. In this context, a recently developed 

approach called “network analysis” (NA) may provide a unique framework for investigating the impact 

of ADs on the dynamic relationship among depressive symptoms. Briefly, NA conceptualizes mental 

disorders as complex networks of co-occurring symptoms that mutually/reciprocally (and often causally) 

interact with each other to produce self-sustained syndromic constellations (Borsboom, 2017). Hence, 

NA does not assume that the observable depressive symptoms passively originate from a “common 

cause” (i.e., MDD), but focuses instead on their differential multivariate patterns and/or mechanisms of 

association (e.g., insomnia may cause fatigue which, in turn, may worsen cognitive deficits) (Cramer et 

al., 2010). Consequently, proponents of NA have been often critical of the widespread use of sum-scores 

derived from rating scales to monitor both illness course and treatment outcome as this practice, when 

used in isolation, may obfuscate putative differences in the dynamic interplay between individual 

symptoms (Fried and Nesse, 2015). 

In a typical psychopathological network, each symptom is graphically represented as a “node” 

that is connected to other symptoms through “edges” that display the strength of their statistical 

association (Epskamp et al., 2018b). Furthermore, the position of nodes within a network directly reflects 
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how interconnected they are (i.e., highly and poorly connected ones are placed, respectively, more 

centrally and peripherally in the graphs rendered with force-directed layouts). Central nodes, in 

particular, are theorized to play a more prominent role in the onset and/or maintenance of psychiatric 

disorders and, accordingly, could be seen as potentially relevant therapeutic targets because their levels 

of (in)activation might directly affect the likelihood that other intimately connected nodes will also be 

(in)activated (Borsboom and Cramer, 2013). Furthermore, nodes can be influenced not only by their 

adjacent neighbors, but also by external factors such as, e.g., adverse life events or comorbid 

psychiatric/medical conditions (Borsboom, 2017). 

Recent NA studies have provided initial insight into the complex symptom dynamics underlying 

MDD (Contreras et al., 2019). For instance, acutely depressed individuals have been shown to display 

“denser” cross-sectional symptom networks compared to those in clinical remission (van Borkulo et al., 

2015a) and to healthy controls (Pe et al., 2014). Interestingly, an opposite pattern has been reported by 

longitudinal investigations (Fried et al., 2016b), i.e., increased network connectivity coupled with 

reduced depressive symptomatology following AD treatment with either paroxetine (n = 178) (Bos et 

al., 2018) or citalopram (n = 2,862) (Madhoo and Levine, 2016). However, a relatively small trial (n = 

49) showed that the AD imipramine did not significantly impact the dynamic associations between mood 

states despite its overall clinical efficacy for MDD (Snippe et al., 2017). Lastly, a growing number of 

studies has highlighted the centrality of both depressed mood and fatigue within the MDD network 

(Belvederi Murri et al., 2018, Bos et al., 2018, Fried et al., 2016a, Madhoo and Levine, 2016), and has 

also suggested that depressive symptoms with higher connectivity at baseline are strong predictors of the 

onset of a full-blown depressive episode (Boschloo et al., 2016). 

Despite its remarkable recent expansion, NA has not yet been systematically applied to examine 

how depressive symptoms dynamically unfold in relation to each other in response to distinct ADs. 

Therefore, the present randomized trial aimed to compare, among adult depressed outpatients, the 
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network structure of core MDD symptom-domains at baseline and following 8 weeks of treatment with 

the ADs escitalopram and desvenlafaxine.  

 

METHODS 

 

Participants 

Participants in the current study were part of a larger randomized trial aimed at identifying genetic 

biomarkers of AD response in MDD. 

Briefly, individuals aged 18–65 years were recruited, from January 2012 to August 2016, among 

those referred to the Depressive Disorders Program of the Douglas Institute in Montreal, Canada (see 

Figure 1 for the CONSORT Flow Diagram (Moher et al., 2010)). They were all medication-free for at 

least 2 weeks (or 4 weeks in the case of previous use of fluoxetine) and had a primary diagnosis of MDD, 

as assessed by the Structured Clinical Interview for the DSM-IV-TR (American Psychiatric Association, 

2000)), of at least moderate intensity (i.e., a 21-item Hamilton Depression Rating Scale (Hamilton, 1960) 

score ≥  20).  

Individuals were not included in the study if they presented with a lifetime history of 

schizophrenia, bipolar disorder, severe head trauma and/or neurological disease or with a substance-

related disorder within the past 6 months. Lastly, the study was approved by the Douglas Institute 

Research Ethics Board, and all enrolled participants provided written informed consent. 

=================== 

INSERT FIGURE 1 

=================== 

Prospective AD Treatment 
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Enrolled outpatients were randomized to receive, in an open label manner, either the selective 

serotonin reuptake inhibitor escitalopram (10-20 mg/day; n [completers] = 77) or the serotonin and 

noradrenalin reuptake inhibitor desvenlafaxine (50-100 mg/day; n [completers] = 74) for 8 weeks.  

All participants met with the study psychiatrist (S.R.D.) at baseline and at week 8, and these 

sessions consisted of basic clinical management (e.g., general psychoeducation, assessment of overall 

functioning, limited supportive counseling (Fawcett et al., 1987)). They also met with a research assistant 

at baseline and then every two weeks until the end of the study, and these visits consisted of standardized 

psychopathological assessments as well as a review of medication compliance/tolerability. Lastly, the 

implementation of specific psychotherapy interventions was not permitted during the study. 

 

Assessment of Core Depressive Symptom-Domains and Treatment Outcome 

We used the 16-item Quick Inventory of Depressive Symptomatology – Self-Report (QIDS-SR) 

(Rush et al., 2003) to assess core MDD psychopathology as well as treatment outcome. Briefly, for each 

QIDS-SR item, participants were asked to select, among four statements ranging in severity from 0 to 3, 

the one that best described how they felt over the past week. We derived the 9 DSM-IV-TR symptom 

criterion domains following the QIDS-SR’s standard scoring system (Rush et al., 2003): depressed mood 

(score on item 5), anhedonia (score on item 13), composite appetite/weight disturbance (i.e., the highest 

score among items 6 to 9), composite sleeping disturbance (i.e., the highest score among items 1 to 4), 

composite psychomotor disturbance (i.e., the highest score among items 15 and 16), fatigue (score on 

item 14), worthlessness/guilt (score on item 11), cognitive disturbance (score on item 10), and suicidality 

(score on item 12) (Rush et al., 2003). The internal consistency of the QIDS-SR, as quantified by 

Cronbach's alpha, was poor at baseline (i.e., α = 0.52) and acceptable at week 8 (i.e., α = 0.78) (Tavakol 

and Dennick, 2011). Of note, these relatively low internal consistency estimates indicated that the 

individual items of the QIDS-SR were likely non-redundant and, consequently, participant responses 
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could be examined at the item-level (Abacioglu et al., 2019). Lastly, we defined clinical remission at 

study end as a QIDS-SR score ≤ 5 (Rush et al., 2006a). 

	

Statistical Analyses 

 We used IBM SPSS (v. 24) for data management and for all non-network-related statistical 

analyses. Baseline demographic/clinical characteristics between study completers and non-completers 

were compared using Chi-square and Mann-Whitney U tests (whenever applicable), and all correlations 

were computed using Spearman’s coefficients (rs). Moreover, the overall longitudinal change and the 

differential impact of ADs on the core MDD psychopathology were examined using repeated measures 

ANOVA with time (i.e., baseline, week 8) as the independent within-subjects variable, AD (i.e., 

desvenlafaxine, escitalopram) as the independent between-subjects variable, and the difference in pre-post 

scores on the 9 MDD symptom-domains as the dependent variables. If the omnibus test for the 

AD*timepoint interaction was statistically significant, then planned comparisons (using the LSD) were 

employed to examine the nature of the differences. Moreover, the pre-post treatment effect sizes were 

calculated using Vargha and Delaney’s A (Vargha and Delaney, 2000). We also used R (v. 3.5.1 (R 

Development Core Team, 2008), in the RStudio environment [v. 1.2.1335]) to perform all the network-

related analyses. More specifically, qgraph (v. 1.6.3) (Epskamp et al., 2012), and EstimateGroupNetwork 

(v. 0.1.2) (Danaher et al., 2014) were used for estimating and visualizing the networks and for computing 

centrality measures, bootnet (v. 1.2.4) (Epskamp et al., 2018a) was used for assessing network stability 

and accuracy, NetworkComparisonTest (v. 2.2.1) (van Borkulo et al., Submitted) was used for evaluating 

differential network structure and connectivity between baseline and week 8, NetworkToolbox (v. 1.4.0) 

was used to estimate network connectivity measures, and mgm (v. 1.2–7) (Haslbeck and Waldorp, 2018) 

was used for computing nodewise predictability. Lastly, the significance level for all analyses was set at 

a = 0.05. 
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Network estimation 

We estimated undirected MDD symptom-domain networks at baseline and week 8 using 

Gaussian Graphical Models (GGMs) (Epskamp and Fried, 2018). In these GGMs, the MDD symptom-

domains are represented as nodes, whereas their pairwise partial polychoric correlations (pr) are 

displayed by weighted edges whose length corresponds to the inverse of their absolute value. 

Accordingly, if two nodes are connected via an edge in the resulting graph, they are statistically correlated 

while controlling for all other nodes in the network; conversely, if they are unconnected, they are 

conditionally independent (Costantini et al., 2019). Therefore, the generated networks can be seen as 

causal skeletons encompassing the existence of putative causal/predictive relationships between the 

connected nodes (Isvoranu et al., 2017). 

To compute networks that are more balanced in terms of sparseness and goodness-of-fit and also 

to minimize multiple statistical testing, we regularized the GGMs using the Graphical Least Absolute 

Shrinkage and Selection Operator (GLASSO) algorithm combined with an Extended Bayesian 

Information Criterion (EBIC) model selection (Costantini et al., 2015). Briefly, the GLASSO algorithm 

“shrinks” many partial correlations in the network and sets trivially small ones to exactly zero, thus 

minimizing the retention of spurious edges (Foygel and Drton, 2010, Friedman et al., 2008), and also 

selects the network model associated with the lowest EBIC value (Chen and Chen, 2008, Epskamp et al., 

2018b). The EBIC, in turn, computes sparser or denser networks based on the graphical tuning 

hyperparameter γ which we set at 0.5 (erring on the side of parsimony) for our primary analyses and at 

0 (erring on the side of discovery) for our secondary analyses (Epskamp and Fried, 2018). 

 

Network visualization 

To visualize the GGM networks we used Fruchterman and Reingold’s algorithm (Fruchterman 

and Reingold, 1991) which displays nodes with stronger connections closer together and more centrally 

located in the rendered graph. The resulting layout simultaneously depicts the strength of the association 
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between different nodes (which is proportional to the thickness and saturation of the individual edges) as 

well as the direction of the underlying partial correlations (i.e., positive and negative estimates are shown, 

respectively, by the colors blue and red) (Epskamp and Fried, 2018). Lastly, we averaged the layouts of 

the comparison networks (e.g., baseline vs. week 8) to facilitate their visual interpretation.  

 

Node centrality 

To investigate the relative importance of individual MDD symptom-domains within the networks 

at baseline and week 8 we computed a centrality measure called expected influence (EI) (Opsahl et al., 

2010, Robinaugh et al., 2016). Briefly, EI assesses a given node’s influence on its immediate neighbours 

by summing the values of all the edges connected to it (both positive and negative) (Robinaugh et al., 

2016). To facilitate the interpretation of EI, we standardized it to a normal Z distribution with a mean of 

0 and a standard deviation (SD) of 1 (Epskamp et al., 2018a). We did not compute additional centrality 

metrics because they are usually highly correlated with EI (e.g., strength), and are often unstable unless 

estimated in very large samples (e.g., betweenness, closeness) (Epskamp et al., 2018a). Lastly, to address 

the concern that differential variability might distort inferences about node centrality (Terluin et al., 

2016), we correlated the EI estimates of each MDD symptom-domain with its respective SD at both 

baseline and week 8 (Heeren et al., 2018). 

 

Nodewise predictability 

We computed the percentage of variance (R2) of each MDD symptom-domain that is explained 

by its neighbors within the networks at baseline and week 8 (Fried et al., 2018). This measure, called 

predictability, provides an estimate of how much influence one can have on a particular node by 

intervening on all of its adjoining nodes, and it ranges from 0 to 1 (i.e., a node is, respectively, not 

predicted or fully predicted by its neighbours) (Haslbeck and Waldorp, 2018).  
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Network structure and connectivity 

We calculated the density of the psychopatological networks by summing the absolute values of 

all of their edge weights (i.e., total connectivity), and by dividing the latter by the respective total number 

of edges (i.e., mean connectivity). We also examined the structure and connectivity of the MDD 

symptom-domain networks at baseline and week 8 with a two-tailed permutation procedure that 

randomly and repeatedly reorganizes participants from the original samples into multiple smaller 

subgroups (n permutations = 5,000) (van Borkulo et al., Submitted). The resulting distribution under the 

null hypothesis is then used to test for differences between these subgroups (expressed as p-values) in 

terms of three main statistics: “global strength invariance” (which assesses differential overall 

connectivity), “network structure invariance” (which compares the differential distribution of edge 

weights), and “edge strength invariance” (which examines Holm-Bonferroni-corrected differences in 

individual edge weights). 

 

Network accuracy and stability 

We computed the stability of EI centrality at baseline and week 8 by using a case-dropping subset 

bootstrapping procedure (n boots = 5,000) in which the correlations between the estimates in the original 

sample and in subgroups with progressively fewer participants are repeatedly compared. If these 

correlations decline substantially as participants are removed from the analyses, then the EI centrality 

estimates are considered “unstable” (Epskamp et al., 2018a). Additionally, we calculated the correlation 

stability coefficient (CS-coefficient) which indicates the maximum proportion of participants that can be 

dropped from a network while maintaining a 95% probability that the correlation of EI centrality and 

predictability between the original sample and the bootstrapped subgroups is ≥ 0.70 (Costantini et al., 

2015, Papageorgiou et al., 2019). Overall, CS-coefficients ³ 0.25 and ³ 0.5 imply, respectively, moderate 

and strong stability (Santos et al., 2018).  
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Furthermore, we estimated the accuracy of the edge weights within the networks at baseline and 

week 8 via non-parametric bootstrapped 95% confidence intervals (CIs) around the original edge values 

(n boots = 5,000); generally, smaller 95% CIs indicate higher edge accuracy. Finally, we used the 

bootstrapped difference test to examine whether specific pairs of edge weights and EI centrality estimates 

significantly differed from each other at both timepoints (n boots = 5,000; uncontrolled for multiple 

comparisons) (Epskamp et al., 2018a). 

 

RESULTS 

 

Participants 

Of the 189 outpatients who were initially enrolled, 151 (79.90%) completed the final clinical 

evaluation at week 8. Therefore, to ensure that the networks were homogeneous, we excluded the 

participants who dropped out prior to the study end from the analyses. Of note, there were no significant 

differences between completers and non-completers in terms of key baseline sociodemographic and 

clinical characteristics (i.e., gender: p = 0.39, ethnicity: p = 0.59, marital status: p = 0.33, education: p = 

0.73, mean QIDS-SR score: p = 0.09, age at MDD onset: p = 0.09, number of previous depressive 

episodes: p = 0.40), with the exception of age (i.e., non-completers were younger overall [i.e., 35.00 vs. 

40.18 years], p = 0.03). Moreover, at baseline, all included participants had a score > 5 on the QIDS-SR 

(i.e., they were not in remission). 

Baseline demographic and clinical characteristics of the 151 participants are presented in Table 

1. Briefly, 58.30% (n = 88) of them were women, 80.80% (n = 122) were Caucasian, and their mean age 

was 40.18 ± 12.17 years (range = 18-68 years). Additionally, 48.30% (n = 73) of them had a partner, 

67.50% (n = 102) were currently employed, and 56.90% (n = 86) had a professional- or university-level 

education. Moreover, 27 (17.90%) participants had a comorbid anxiety disorder. Lastly, we found no 

significant differences between participants who received desvenlafaxine (n = 74) or escitalopram (n = 
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77) in terms of key baseline sociodemographic and clinical variables (i.e., age: p = 0.91; gender: p = 

0.48, ethnicity: p = 0.30, marital status: p = 0.97, education: p = 0.44, mean QIDS-SR score: p = 0.77, 

age at MDD onset: p = 0.99, number of previous depressive episodes: p = 0.23). 

=============== 

INSERT TABLE 1 

=============== 

Prospective AD Treatment 

 The mean QIDS-SR score decreased significantly from baseline to week 8 (i.e., 16.00 ± 3.39 vs. 

10.28 ± 5.24, respectively; Wilks’ λ = 0.41, F(1) = 217.83, p < 0.0001) and, at study end, 22.5% (n = 34) 

of the participants were considered remitters. Likewise, scores on all MDD symptom-domains (with the 

exception of anhedonia, which has been previously shown to be usually less responsive to typical somatic 

treatments (Cao et al., 2019)) also decreased significantly over time (Table 2); overall, depressed mood 

and anhedonia were associated, respectively, with the largest (i.e., A = 0.78) and smallest (i.e., A = 0.52) 

improvements.  

=============== 

INSERT TABLE 2 

=============== 

 Additionally, no significant AD*timepoint interaction was found for the nine MDD symptom-

domains (Wilks’ λ = 0.96, F(9) = 0.63, p = 0.77) after controlling for the main effect of time (Wilks’ λ = 

0.33, F(9) = 32.01, p < 0.0001), thus suggesting that desvenlafaxine and escitalopram were equally 

effective overall. Moreover, there was a statistical trend towards higher remission rates at week 8 among 

participants who received escitalopram (22/77 [28.50%]) vs. desvenlafaxine (12/74 [16.2%]) (χ2 = 3.30, 

p = 0.07). 
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 Finally, nearly identical efficacy results were obtained when we analyzed the outcome data from 

all originally enrolled participants (n = 189) using the last observation carried forward (LOCF) approach 

(Woolley et al., 2009) (see the appendix for additional information). 

 

Network Analyses 

Network visualization  

Figure 2 displays the averaged Fruchterman and Reingold’s configuration layouts of the MDD 

symptom-domain networks at baseline and week 8 (γ = 0.5).  

=================== 

INSERT FIGURE 2 

=================== 

At baseline, the MDD symptom-domains with partial correlations > 0.25 were fatigue─cognitive 

disturbance (pr = 0.40) as well as depressed mood─suicidality (pr = 0.26). Puzzling findings were the 

negative associations between anhedonia─depressed mood (pr = -0.20) and anhedonia─cognitive 

disturbance (pr = -0.14), which might be explained, at least in part, by a potential conditioning on a 

“common effect” and/or by a low overall endorsement rate on the respective QIDS-SR item (i.e., 51.70% 

of the participants reported no anhedonia at baseline; Figure 4S in the appendix) (Epskamp and Fried, 

2018). Moreover, at week 8, the MDD symptom-domains with partial correlations > 0.25 were depressed 

mood─suicidality (pr = 0.43), fatigue─cognitive disturbance (pr = 0.27), and depressed mood─cognitive 

disturbance (pr = 0.26). 

Figures 3 and 4 display, respectively, averaged Fruchterman and Reingold’s configuration 

layouts of the exploratory MDD symptom-domain networks at baseline and at week 8 (γ = 0) for 

participants who received desvenlafaxine or escitalopram. Briefly, at week 8 the MDD symptom-

domains with partial correlations > 0.25 in the escitalopram network were depressed mood─suicidality 

(pr = 0.53), and fatigue─psychomotor disturbance (pr = 0.32), whereas in the desvenlafaxine network 
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they were depressed mood─suicidality (pr = 0.35), psychomotor disturbance─appetite/weight 

disturbance (pr = 0.31), suicidality─worthlessness/guilt (pr = 0.30), fatigue─worthlessness/guilt (pr = 

0.28), and sleep disturbance─cognitive disturbance (pr = 0.28).  

=================== 

INSERT FIGURES 3 AND 4 

=================== 

Node centrality 

 Figure 5 shows the EI centrality of the MDD symptom-domains at baseline and week 8 (γ = 0.5). 

Briefly, the most and least central nodes at baseline were, respectively, fatigue and anhedonia; in contrast, 

at week 8 they were, respectively, depressed mood and appetite/weight disturbance.  

======================= 

INSERT FIGURE 5 

======================= 

 In terms of the exploratory analyses at week 8 (γ = 0), depressed mood had the highest EI 

centrality in both AD networks, whereas appetite/weight disturbance and anhedonia were, respectively, 

the least central nodes in the escitalopram and desvenlafaxine networks (Figures 6 and 7). Lastly, the 

SDs of the MDD symptom-domains (n = 151) did not significantly correlate with their EI estimates (i.e., 

baseline: rs = -0.43, p = 0.25; week 8: rs = -0.13, p = 0.74), thus suggesting that differential node 

variability did not “drive” centrality. 

======================= 

INSERT FIGURES 6 AND 7 

======================= 

Nodewise predictability 

The mean predictability of the MDD symptom-domains increased significantly from baseline 

to week 8 (i.e., 0.16 vs. 0.33, respectively; p = 0.008; γ = 0.5) (Figure 2 and Table 3). Overall, the most 
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predictable nodes at baseline were fatigue (R2 = 0.33) and cognitive disturbance (R2 = 0.32), whereas at 

week 8 they were depressed mood (R2 = 0.52) and cognitive disturbance (R2 = 0.50). In contrast, 

appetite/weight disturbance at baseline (R2 = 0) and anhedonia at week 8 (R2 = 0.05) were the least 

predictable nodes, thus suggesting, e.g., that some potentially key (although unidentified) variable(s) of 

interest were not included in the analyses. Lastly, the predictability of the MDD symptom-domains 

following 8 weeks of AD treatment also increased significantly over time (i.e., escitalopram: R2 = 0.19 

to 0.36 [p = 0.04]; desvenlafaxine: 0.17 to 0.34 [p = 0.008]; γ = 0) (Figures 3 and 4 as well as Table 3). 

==================== 

INSERT TABLE 3 

==================== 

Network structure and connectivity  

Network connectivity measures for all of the reported psychopathological networks are presented 

in Table 4. 

=================== 

INSERT TABLE 4 

=================== 

The MDD symptom-domains network at week 8 (γ = 0.5) was significantly more connected than 

at baseline (i.e., S = 2.93, p = < 0.0001; Figure 5S, top section, in the appendix), and they were also 

structurally dissimilar across the two timepoints (i.e., M = 0.36, p = 0.001; Figure 5S, bottom section, in 

the appendix). Furthermore, depressed mood─cognitive disturbance and depressed mood─suicidality 

were significantly more connected at week 8 compared to baseline (i.e., p = 0.02 and < 0.0001, 

respectively).  

In terms of the exploratory analyses (γ = 0), although the MDD symptom-domain networks 

associated with desvenlafaxine and escitalopram did not significantly differ from each other in terms of 

connectivity (i.e., baseline: S = 0.05, p = 0.97; week 8: S = 0.63, p = 0.25, or structure (i.e., baseline: M 
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= 0.30, p = 0.18, γ = 0; week 8: M = 0.25, p = 0.75), they were both significantly more connected at week 

8 compared to baseline (i.e., desvenlafaxine: S = 2.46, p = 0.004; escitalopram: S = 3.07, p <0.0001).  

 

Network accuracy and stability 

 The CS-coefficients for EI were 0.25 at baseline and 0.60 at week 8 (i.e., moderate to strong 

stability, respectively), thus indicating that centrality estimates can be likely interpreted meaningfully 

(Epskamp et al., 2018a) (Figures 6S and 7S in the appendix). Also, the bootstrapped difference test 

showed that, at baseline, fatigue, depressed mood and cognitive disturbance had significantly higher EI 

centrality compared to some of the other MDD symptom-domains (e.g., appetite/weight disturbance, 

worthlessness/guilt, sleep disturbance) (Figure 8S in the appendix) and that, at week 8, these putative 

differences became less prominent (Figure 9S in the appendix). Additionally, the bootstrapped 95% CIs 

around the estimated edge weights at baseline and week 8 indicated that most of them were not 

significantly different from each other (Figures 10S and 11S in the appendix). Finally, the bootstrapped 

difference test between the non-zero edge weights mainly indicated that cognitive disturbance─fatigue 

at baseline and depressed mood─suicidality at week 8 were significantly different from the remaining 

edges (Figures 12S and 13S in the appendix). 

 

DISCUSSION 

To our knowledge, this is the first study examining the network structure of core MDD symptom-

domains prior to and following 8 weeks of treatment with two distinct ADs, namely desvenlafaxine and 

escitalopram. Our main finding was that, over time and irrespective of the AD used, the MDD symptom-

domains network became more densely connected and predictable while the overall depressive severity 

significantly decreased. This is highly consistent with two recent studies in which depressed individuals 

were treated for several weeks with the ADs paroxetine (Bos et al., 2018) and citalopram (Madhoo and 

Levine, 2016) as well as with cognitive-behavioral therapy (Blanken et al., 2019). However, our results 
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contrast with those from van Borkulo and colleagues (van Borkulo et al., 2015b), who showed that a 

more densely connected depressive symptoms network at baseline was associated with decreased rates 

of eventual recovery from a MDD. A possible explanation for this discrepancy might be methodological 

as we employed a within-subject design, whereas van Borkulo and colleagues (van Borkulo et al., 2015b) 

employed a between-subjects design (Charness et al., 2012). Indeed, although cross-sectional NA studies 

are predicated on the assumption that greater connectivity at the group level reflects greater connectivity 

at the intra-individual level, there is not yet conclusive evidence supporting this (Robinaugh et al., 2019). 

Therefore, one has to be careful not to inappropriately generalize inferences about network characteristics 

derived from groups (and cross-sectional data) to individuals (and longitudinal data) (Fisher et al., 2018). 

An intuitive example of such a conundrum is observed in the correlation between typing speed and typos: 

at the group level, this correlation is negative, as experienced typists are both faster and more proficient; 

however, within individuals, this correlation is positive as the faster a given individual types, the greater 

the number of mistakes that he/she makes (Hamaker, 2012)   

We also observed, across both timepoints, two relatively distinct groups of MDD symptom-

domains, the first encompassing depressed mood, suicidality and worthlessness/guilt, and the second 

encompassing fatigue and cognitive/psychomotor/sleep disturbance. It is likely that covariations within 

these putative symptomatologic groups might have been generated by partially distinctive etiological 

processes. For instance, the connections in the first and second groups might result, respectively, from 

cognitive and physiological/homeostatic mechanisms (Cramer et al., 2012) and, accordingly, each might 

differentially respond to alternative therapeutic interventions (e.g., cognitive restructuring vs. sleep 

hygiene, respectively). Of relevance, similar patterns of covariation among MDD symptom-domains 

were reported by Montazeri and colleagues (Montazeri et al., in press) in a sample of over 2,000 

adolescents from the general population. 

Our finding that anhedonia─depressed mood and anhedonia─cognitive disturbance were 

negatively associated at baseline was unexpected and could be explained, at least in part, by the so-called 
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“Berkson’s bias”. Briefly, this type of bias usually arises when a selection rule (e.g., having depressive 

symptoms of moderate intensity based on the sum-score of a rating scale) is equivalent to conditioning 

on a “collider” (de Ron et al., 2019). More specifically, in a collider structure, two variables, “A” (e.g., 

anhedonia) and “B” (e.g., cognitive disturbance), both cause a third variable, “C” (e.g., “MDD status”). 

Thus, conditioning anhedonia and cognitive disturbance on the common effect “MDD status” might 

make them falsely dependent by biasing their covariance structure and inducing spurious negative 

correlations. Consequently, a possible way to overcome “Berkson’s bias” might be to select participants 

based on an independent criterion that is correlated with class membership (i.e., “MDD status”) but is 

not itself a function of the depressive symptoms (e.g., genetic and environmental risk factors for MDD) 

(de Ron et al., 2019). 

Another aim of the current investigation was to examine the centrality of the MDD symptom-

domains prior to and following 8 weeks of AD treatment. Briefly, our results were largely in agreement 

with those of previous investigations (Bos et al., 2018, Boschloo et al., 2016, Bringmann et al., 2015, 

Fried et al., 2016a, Madhoo and Levine, 2016), and suggested that depressed mood, fatigue, and 

cognitive/psychomotor disturbances are part of a central hub within the network structure of MDD which 

could be potentially targeted by “focused” interventions aimed at generating “spreading” improvements 

among the adjoining depressive symptoms (Borsboom, 2017). Conversely, the “activation” of these key 

nodes within the “dormant” psychopathological network of predisposed asymptomatic individuals might 

possibly increase the risk of a full-blown depressive episode (Cramer et al., 2012). Moreover, our 

investigation indicated, in agreement with Kendler and colleagues (Kendler et al., 2018), that 

appetite/weight disturbance and anhedonia seem to be more peripherally located within the MDD 

symptom-domains network. We also identified marked differences in the predictability of MDD 

symptom-domains, ranging from 0% (i.e., appetite/weight disturbance at baseline) to 53% (i.e., depressed 

mood at week 8). Lastly, we have shown, in agreement with Bos and colleagues (Bos et al., 2018), that 

average nodewise predictability significantly increased following AD treatment (i.e., from 16% to 33%), 
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and one possibility is that it might reflect a decrease in the relative impact of unmeasured (or latent) 

variables; a second possibility is that the AD treatment might have “shrunk” the potential score variability 

among the MDD symptom-domains by significantly reducing their intensitity “across-the-board” (i.e., 

by making them more “homogeneous”) and, consequently, increasing their overall 

correlation/predictability as well as the overall connectivity within the underlying networks; indeed, the 

inter-item correlation analyses among the MDD symptom-domains indicated that this might actually 

have been the case (i.e., baseline: mean = 0.11, range = 0.78, variance = 0.03; week 8: mean = 0.31, 

range = 0.54, variance = 0.02). 

Taken together, our findings suggest that a promising clinical application of NA might involve 

its use as an empirical guide for treatment selection in MDD. For instance, highly central/predictable 

symptoms (with bidirectional associations within the network) could be selectively targeted by novel 

psychopharmacological, psychosocial and/or neuromodulatory interventions because of their potential 

widespread impact on the depressive syndrome as a whole (Belvederi Murri et al., 2018). On the other 

hand, directing therapeutic efforts to more peripheral MDD symptom-domains might prove to be a less 

optimal clinical strategy (Fried et al., 2017). For instance, it is plausible, based on our results, that an 

intervention focusing, e.g., on depressed mood at week 8 (which had a predictability of 53%) may have 

a considerable direct impact on several other interconnected symptom-domains (e.g., suicidality, 

cognitive disturbance, worthlessness/guilt) (Figure 14S in the appendix). Furthermore, even a generally 

efficacious treatment for the broader depressive syndrome might be of questionable clinical utility vis-à-

vis appetite/weight disturbance at baseline as its adjacent nodes explain none of its variance; hence, to 

indirectly affect the latter one might have, e.g., to search for other relevant variables outside of the core 

MDD symptom-domains network (Fonseca-Pedrero, 2017). It is also possible that significant 

correlations between appetite/weight disturbance and its adjacent nodes might have only been detected, 

e.g., by employing a more intensive longitudinal design; that is, the potential “cause” (e.g., 
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appetite/weight disturbance) would have to be measured at T1 and the potential “effect” (e.g., fatigue) 

would have to be measured at T2. 

Lastly, our findings also tentatively suggest that specific MDD symptom-domains (in addition to 

depressed mood) might be differentially targeted following an unsatisfactory response to escitalopram or 

desvenlafaxine (e.g., psychomotor disturbance and cognitive disturbance, respectively). Nevertheless, 

future studies are needed to examine this intriguing hypothesis.  

It is important to note that cross-sectional psychopathological networks may only reveal the co-

occurrence of depressive symptoms, and not the causality/directionality of their associations (Bos et al., 

2017). Therefore, we cannot conclude whether a given MDD symptom-domain “causes” or is “caused” 

by other symptom-domains connected to it. Also, because of the well-known heterogeneity of MDD 

(Fried et al., 2014), it is unclear whether the correlations and the centrality/predictability estimates 

derived from group-level networks can be generalized to a particular individual (Bringmann et al., 2015, 

Fried et al., 2016a, van Borkulo et al., 2014). To address these issues, future studies should examine the 

temporal dynamics of symptom interrelations using, e.g., the so-called “experience sampling method” 

(ESM) (Wichers, 2014), which measures variables repeatedly in daily life in order to derive information 

from both intra- (i.e., momentary) and inter-individual levels (Telford et al., 2012). In this context, an 

automated algorithm has been recently developed to generate personalized recommendations regarding 

the optimal sequence of treatment for mood and anxiety disorders (Rubel et al., 2018). Briefly, this 

algorithm uses cross-sectional and temporal symptom networks to derive strength centrality estimates 

that are then used to rank therapeutic modules (e.g., applied relaxation, cognitive restructuring) based on 

their potential clinical utility for a particular individual.  

Relevant strengths of our investigation include the use of state-of-the-art NA techniques, as well 

as the comparison of two pharmacologically distinct ADs in terms of their longitudinal impact on the 

underlying MDD symptom-domains network. However, we should also consider some of its potential 

limitations: first, as network models estimate a very large set of parameters (Forbes et al., 2017), it is 



 22 

fundamental to replicate our findings across larger datasets before definitive clinical inferences can be 

made. Nonetheless, we believe that our investigation had acceptable statistical power as demonstrated, 

e.g., by the relatively robust degree of overall network accuracy and stability (Fried and Cramer, 2017). 

Second, and as mentioned above, some of the associations between the MDD symptom-domains might 

have been causal whereas others might have been due to an underlying “common cause” yet to be 

identified. Likewise, central nodes, especially those derived from cross-sectional data, may represent the 

“common effect” of other peripheral nodes or may be just epiphenomena with no actual causal 

connection(s) within the network. Third, the specific characteristics of our depressed sample (e.g., mostly 

Caucasians with moderate to severe recurrent MDD) and study design (e.g., lack of a placebo group, 

exclusion of non-completers) might limit the generalizability of our findings to other populations and/or 

clinical contexts. Fourth, we investigated a limited range of all possible depressive symptoms and have 

only used a self-reported measure of MDD severity; hence, even though the QIDS-SR has been shown 

to be strongly correlated with other standardized clinician ratings (e.g., the Hamilton Depression Rating 

Scale) (Rush et al., 2003), future studies should also employ the latter when estimating 

psychopathological networks. Fifth, further studies are needed to investigate whether R² is indeed the 

best indicator of predictability when categorical variables are employed. Sixth, our setting of the 

hyperparameter “γ” to “0” might have led to some potential false positive findings in our secondary 

analyses. Seventh, the lack of differential effects of antidepressant type on the underlying MDD network 

structure might have resulted from insufficient statistical power. Lastly, NA represents a relatively novel 

data analytic approach (Borsboom and Cramer, 2013), and therefore key metrics (e.g., model fit, 

reliability and replicability, clinically relevant centrality indices) (Forbes et al., 2019, Fried and Cramer, 

2017) as well as optimal regularization techniques (Williams et al., 2019) have yet to be definitively 

established.  

Nonetheless, we believe that the systematic application of NA in psychiatry may not only lead to 

novel insights into the impact of therapeutic interventions on the causal symptomatic pathways driving 
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the etiology and persistence of major mental disorders, but also provide a data-driven “syndrome 

reduction” strategy for further neurobiological investigations (Belvederi Murri et al., 2018). Ultimately, 

we hope that NA will help foster the development of more streamlined/effective personalized care for 

individuals suffering from disabling medical conditions such as MDD. 
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Figure 2. EBICglasso MDD symptom-domain networks at baseline and week 8 (n = 151). Solid and dashed lines represent, respectively, positive and negative partial correlations, and 
the thickness of each edge indicates the strength of the association. The gray ring around each MDD symptom-domain represents its predictability. The network layouts were averaged 
to facilitate visual comparisons. 

 



Figure 3. EBICglasso MDD symptom-domain networks at baseline and following 8 weeks of treatment with desvenlafaxine (n = 74). Solid and dashed lines represent, respectively, 
positive and negative partial correlations, and the thickness of an edge indicates the strength of the association. The gray ring around each MDD symptom-domain represents its 
predictability. The network layouts were averaged to facilitate visual comparisons. 

 



Figure 4. EBICglasso MDD symptom-domain networks at baseline and following 8 weeks of treatment with escitalopram (n = 77). Solid and dashed lines represent, respectively, positive 
and negative partial correlations, and the thickness of an edge indicates the strength of the association. The gray ring around each MDD symptom-domain represents its predictability. 
The network layouts were averaged to facilitate visual comparisons. 

 



Figure 5. Standardized expected influence (EI) within the MDD symptom-domain networks at baseline (top) and week 8 (bottom) (n 
= 151). MDD symptom-domains with values located farther to the right of the figure have greater EI centrality. 

 

 



Figure 6. Standardized expected influence (EI) within the MDD symptom-domain networks at baseline (top) and following 8 weeks of 
treatment (bottom) with desvenlafaxine (n = 74). MDD symptom-domains with values located farther to the right of the figure have 
greater EI centrality. 

 

 

 

 



Figure 7. Standardized expected influence (EI) within the MDD symptom-domain networks at baseline (top) and following 8 weeks of 
treatment (bottom) with escitalopram (n = 77). MDD symptom-domains with values located farther to the right of the figure have greater 
EI centrality. 
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