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Abstract

We construct a cyclic order on the edge set of a directed tree whose vertices have cyclically

ordered links. We use this construction to show that a graph of groups with left-cyclically

ordered vertex groups and convex left-ordered edge groups is left-cyclically orderable.
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Abrégé

Nous construisons un ordre cyclique sur l'ensemble de sommets d'un arbre orienté dont

les n÷uds ont des liens ordonnés cycliquement. Avec cette construction, nous montrons que

lorsqu'un graphe de groupes dont les groupes de n÷uds sont ordonnés cycliquement à gauche

et dont les groupes de sommets sont ordonnés à gauche et convexes, le group fondamental

est ordonné cycliquement à gauche.
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1 Introduction

W.Dicks and Z.Sunic gave an elegant way of totally ordering the vertex set of a directed

tree [Dv20]. They applied this to give a simple proof of Vinogradov's 1949 result that free

groups, and more generally, free products of left-orderable groups are left-orderable. The

purpose of this text is to describe a cyclically ordered counterpart.

Our basic observation is that:

Lemma 1.1. Let T = (V,E) be a tree. Suppose there is a cyclic order on link(v) for each

v ∈ V . Then there is an induced cyclic order on the directed edges of T .

Using this natural cyclic order, we examine graphs of groups and obtain:

Theorem 1.2. Let G split as a graph of groups with left-cyclically ordered vertex groups and

convex left-ordered edge groups. Then G is left-cyclically ordered in a manner compatible

with its vertex and edge groups.

This generalizes the result of H.Baik and E.Samperton that free products of left-cyclically

ordered groups are left-cyclically ordered [BS18]. A recent study in this direction, probing

more deeply than our own, was given by A.Clay and T.Ghaswala who characterized when

an amalgam of cyclically ordered groups is cyclically ordered [CG19].

Our work is most closely related to Dicks-Sunic in spirit and Baik-Samperton/Clay-

Ghaswala in practice. Recently, there has been increased activity in the area of cyclically

ordered groups. An amusing characterization declares that G is left-ordered if and only if

G×Zn is left cyclically-ordered for each n [BCG20]. Finally, we refer to [Ghy01] and [Cal04]

for surveys on cyclically ordered groups.
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2 Cyclic Orders

De�nition 2.1. (Cyclic Order) A cyclic order on a set A is a function Γ : A × A × A →

{−1, 0, 1} with the following conditions:

� Nondegeneracy: Γ(x, y, z) = ±1 if x, y, z are pairwise distinct

� Cyclicity: if Γ(x, y, z) = 1, then Γ(z, x, y) = 1

� Asymmetry: Γ(x, y, z) = −Γ(y, x, z)

� Transitivity: if Γ(x, y, z) = 1 and Γ(x, z, w) = 1, then Γ(x, y, w) = 1

We write [x, y, z] whenever Γ(x, y, z) = 1.

Remark 2.2. For a totally ordered set (A,�), there is an associated strict total order (A,≺).

It is often convenient to consider strict total orders while moving between cyclic orders and

total orders. Where notation is clear, we will omit the term �strict�.

De�nition 2.3. A strict total order is a binary relation ≺ on a set X which satis�es the

following conditions for all x, y, z ∈ X:

� Irre�exivity: not x ≺ x for all x ∈ X

� Comparability: if x 6= y then x ≺ y or y ≺ x

� Transitivity: if x ≺ y and y ≺ z then x ≺ z.

Remark 2.4. For a totally ordered set (A,≺), de�ne an associated cyclic order on A, via

[a, b, c] provided a ≺ b ≺ c or b ≺ c ≺ a or c ≺ a ≺ b.

Example 2.5. Consider [0, 2π) with the usual total order. Identifying [0, 2π) with S1 using

θ 7→ eθi, and applying Remark 2.4 provides a cyclic order on S1.
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Figure 1: A clockwise boundary path induces a cyclic order on the directed edges.

Remark 2.6. Suppose A ⊂ S is such that (A,≺) is a total order and x ∈ S with x /∈ A.

We can cyclically order A ∪ {x} through the rule [a1, a2, x] for all a1 ≺ a2.

3 Cyclic Orders on Trees

The purpose of this section is to create a cyclic order on the set of directed edges of a tree.

Note that an edge with vertices u, v is associated to two directed edges: (u, v) and (v, u).

Lemma 3.1. Let T be a �nite tree embedded in the plane. The directed edges of T are

cyclically ordered.

Proof. Regarding T as a disc diagram, the boundary path ∂p(T ) provides an embedding of

the directed edges into S1, hence inducing a cyclic order by Remark 2.4.

De�nition 3.2. A tree T = (V,E) is a c-tree if there is a cyclic order on link(v) for each

vertex v ∈ V . Equivalently, there is a cyclic order on the edges adjacent to each vertex.

De�nition 3.3. An embedding T → R2 of a locally �nite c-tree is coordinated if for each

vertex v with adjacent edges e1 ≺ e2 ≺ · · · ≺ en ≺ e1, their images ē1 ≺ ē2 ≺ · · · ≺ ēn ≺ ē1

are in the same clockwise order about v̄ ∈ R2.

Lemma 3.4. Let T be a locally �nite c-tree. There is a coordinated embedding T → R2.
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Figure 2: Handlebody decomposition of a tree in R2

For edges e1, . . . , en about v, we regard them as cyclically ordered using the clockwise

orientation of R2.

Proof. We produce a �thickening� of T into 0-handles and 1-handles to obtain a disk as

follows. Embed a valence n-vertex v with cyclically ordered edges e1, . . . , en in a unit disk,

by identifying v with 0 and identifying each edge with the segment joining 0 and e
2π
n
i. Join

disks for adjacent vertices along neighborhoods (so that orientations cancel) to form a surface

S homeomorphic to the unit disk. See Figure 2.

Remark 3.5. The embedding of Lemma 3.4 is essentially unique (i.e. up to ambient isotopy).

Hence for any �nite subtrees Ta ⊂ Tb, a coordinated embedding of Ta is essentially the

same as an embedding of Ta induced by a coordinated embedding of Tb. Indeed, the way

Lemma 3.4 embeds Tb induces the way it embeds Ta simply by �forgetting� Tb − Ta.

For any two �nite subtrees, their embeddings agree with a coordinated embedding of a

larger �nite tree containing them.

Theorem 3.6. Let T be a c-tree. There is an induced cyclic order on the set of directed

edges of T . It is uniquely determined by the cyclic order on links of T .

Proof. For a c-tree, take a coordinated embedding of a �nite subtree T ′. The clockwise
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boundary path of T ′ yields a cyclic order of the directed edges of T ′. This cyclic order is

consistent for T ′ ⊂ T ′′, and hence induces a cyclic order on all directed edges of T .

Uniqueness holds since the cyclic order on links is determined by the cyclic ordering on

the outgoing edges at a vertex.

Remark 3.7. The condition of a �nite tree T being a c-tree is equivalent to having a

boundary path ∂p(T ). Note that via Lemma 3.4 we obtain a coordinated embedding of T

into the plane, and we can recover a boundary path of T . Similarly, for any ∂p(T ) we could

de�ne an embedding T → R2 such that the image of ∂p(T ) is homeomorphic to a circle.

Tracing the boundary path will induce a cyclic order on the link of each vertex, and we

recover local cyclic orders that make T a c-tree.

Lemma 3.8 (G-invariance). Suppose G acts on a c-tree T so that cyclic orders on vertex

links are G-invariant. Then the induced cyclic order on directed edges of T is G-invariant.

Proof. This holds by Theorem 3.6 since the induced cyclic order on directed edges of T is

determined by the cyclic orderings on vertex links.

4 Cyclic Orders and Tree Augmentation

We provide an alternate method to obtain that the directed edges of a c-tree can be cyclically

ordered. This approach constructs a correspondence between directed edges and spurs.

De�nition 4.1. For vertices of a tree x, y, z ∈ V , the median m(x, y, z) is the vertex equal

to the intersection of geodesics xy ∩ yz ∩ zx.

Lemma 4.2. Let T = (V,E) be a c-tree, there is a cyclic order on the set L ⊆ V of leaves

of T .
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Figure 3: This explains transitivity for Lemma 4.2

Proof. When x, y, z ∈ L are distinct, the median m = m(x, y, z) has three distinct edges

adjacent tom pointing to x, y, and z. These edges ex, ey, and ez are cyclically ordered around

m. Declare a cyclic order on L via:

[x, y, z] in L ⇐⇒ [ex, ey, ez] in link(m).

Nondegeneracy, cyclicity, and asymmetry all follow immediately as the link of the median

is cyclically ordered. For leaves x, y, z, w ∈ L, transitivity follows if m(x, y, z) = m(x, z, w).

Otherwise, let S be the smallest subtree containing {x, y, z, w}. S takes the form of an �H�

with two leaves at m1 = m(x, y, z) and two leaves at m2 = m(x, z, w). Via Lemma 3.4,

we can embed S into the plane so that links of vertices are cyclically ordered clockwise. If

[x, y, z] and [x, z, w] hold, then [x, y, w] also holds, see Figure 3.

De�nition 4.3. (Augmented Tree) Let T be a directed c-tree, the augmented tree T is

obtained by adding an augmented edge eaug at the barycenter of each directed edge e, see

Figure 4.

More precisely, for each edge e ∈ E, let be be its barycenter and cut e into two half

edges, eout and ein. Orient the half edges so that ein and eout are incoming and outgoing at
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Figure 4: The direction of e determines the position of the spur.

be. Under this construction links of vertices in the original tree T are unchanged, and the

link of each barycenter vertex be is {ein, eout, eaug}. Cyclically order the link of each be using

the rule [ein, eout, eaug]. Direct augmented edges away from barycenters, and note that the

augmented tree T is now a directed c-tree.

Theorem 4.4. There is an induced cyclic order on the set of directed edges of a c-tree T .

Proof. Construct the augmented tree T and note that each directed edge of T is associated

to a spur of T . Apply Lemma 4.2 to cyclically order these spurs.

Remark 4.5. The cyclic orders from Theorem 3.6 and Theorem 4.4 are identical. For any

�nite directed c-tree, a coordinated embedding gives rise to a boundary path inducing a

cyclic order on the edges. In Theorem 4.4 we merely �augment� each edge to acquire a cyclic

order on the leaves. The augmented tree T has a boundary path induced by the coordinated

embedding of T , and the cyclic order corresponding to this boundary path restricts to the

cyclic order on T .

5 Ordered and Cyclically Ordered Groups

De�nition 5.1 (Left-Ordered Group). A group G is left-ordered if there is a total order

(G,≺) such that for all x, y, g ∈ G we have:
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x ≺ y =⇒ gx ≺ gy.

G is left-ordered if and only if G = P t {1G} t N with PP ⊂ P and NN ⊂ N where

P = {g ∈ G : 1G ≺ g} and N = {g ∈ G : g ≺ 1G}. Then g ≺ h ⇐⇒ g−1h ∈ P

De�nition 5.2 (Left-Cyclically Ordered Group). A group G is left-cyclically ordered if there

is a cyclic order on G that is left-invariant in the sense that:

[a, b, c] =⇒ [ga, gb, gc].

Remark 5.3. Let G act freely on a cyclically ordered set X. We cyclically order G via:

[a, b, c] in G ⇐⇒ [ax, bx, cx] in X.

Lemma 5.4. Let G act faithfully and order-preservingly on an ordered set (X,<). Then G

has an induced left-order.

Proof. Choose a well-ordering ≺w on X. For g 6= h ∈ G, let p be ≺w-minimal with gp 6= hp.

Declare g ≺ h if gp < hp.

This relation is irre�exive as gp ≮ gp. Since G acts faithfully on X, for g 6= h ∈ G

there exists x ∈ X with gx 6= hx, so comparability holds. G-invariance holds since kgp <

khp ⇐⇒ gp < hp. Let p1 and p2 be ≺w-minimal with xp1 6= yp1 and yp2 6= zp2. If p1 = p2

we are done. If p1 ≺w p2 then yp1 = zp1 and xp1 < zp1. If p2 ≺w p1 then xp2 = yp2 and

xp2 < zp2. Thus transitivity holds for (G,≺).

Theorem 5.5. Let G act faithfully and order-preservingly on a cyclically ordered set X.

Then G has an induced left-cyclic order.

Proof. Let p ∈ X and Ẋ = X − {p}. Observe that Ẋ is totally ordered and H = stab(p)

acts faithfully on Ẋ. Via Lemma 5.4, H is left-ordered. There is a total order (gH,≺) for
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each left coset, by declaring gα ≺ gβ ⇐⇒ α ≺ β. This is independent of the choice g of

representative, since (H,≺) is left H-invariant.

Let {gi} be a choice of coset representatives for H in G. Our orderings on cosets provides

a partial ordering on tigiH. This partial ordering is G-invariant by de�nition. Finally, this

partial ordering on G extends to a G-invariant cyclic ordering by cyclically ordering the left

cosets using their bijection with Gp. Speci�cally [a, b, c] holds if either:

1. a ≺ b ≺ c and a, b, c lie in the same coset,

2. a ≺ b with ap = bp 6= cp, or b ≺ c with bp = cp 6= ap, or c ≺ a with cp = ap 6= bp,

3. [ap, bp, cp] in X.

6 Ordering Collections of Cosets

De�nition 6.1. A subgroup H of a left-ordered group (G,≺) is convex if for all h1, h2 ∈ H

and g ∈ G, if h1 ≺ g ≺ h2 then g ∈ H.

De�nition 6.2 (Convex Subgroup). Let G be a left-cyclically ordered group and H ⊂ G a

proper subgroup. We say H is convex in G if for every g ∈ G−H and f ∈ G and h1, h2 ∈ H,

if [h1, f, h2] and [h1, h2, g] then f ∈ H.

There is an alternate de�nition for a convex subgroup of a left-cyclically ordered group

that requires the following preliminary notion. The two de�nitions of convexity are shown

to be equivalent in [CG19, after Lem. 5.2].

De�nition 6.3. Let G be a left-cyclically ordered group. A subgroup H ⊂ G is left-ordered

by restriction if [h−1g−1, 1G, gh] holds whenever [h−1, 1G, h] and [g−1, 1G, g] for g, h ∈ H.
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When H ⊂ G is left-ordered by restriction, de�ne the left-order by restriction on H using

the positive cone:

P = {h ∈ H : [h−1, 1G, h] in G}.

De�nition 6.4 (Convex Subgroup). Let G be a left-cyclically ordered group. A subgroup

H ⊂ G is convex if H is left-ordered by restriction and whenever h1, h2 ∈ H and g ∈ G, if

[h1, 1G, h2] and [h1, g, h2] then g ∈ H.

For subsets U, V of an ordered set (X,≺), declare U � V if there exists v ∈ V with u ≺ v

for all u ∈ U . Note that within a left-ordered group (G,≺) we have U � V ⇐⇒ gU � gV

for all g ∈ G.

Lemma 6.5. Let (G,≺) be an ordered group and H a convex subgroup. The relation �

restricts to a G-invariant total order on the collection G/H of left-cosets.

Proof. Comparability of (G/H,�) holds as cosets are disjoint and H is a convex subgroup.

Transitivity follows given that (G,≺) is left-ordered. If there exists U ∈ G/H with U � U ,

then there exists v ∈ U with u ≺ v for all u ∈ U , so v ≺ v which is impossible.

Lemma 6.6. Let G be a left-cyclically ordered group. Let H ⊂ K ( G be convex subgroups.

(K,≺) is left-ordered by restriction. If H 6� K, then H = K.

Proof. Consider a coset kH 6= H. If H 6� K, then ∀k ∈ K, there exists h ∈ H such

that k ≺ h. By Lemma 6.5, k′ ≺ h′ for all k′ ∈ kH and h′ ∈ H. In particular, k ≺ 1.

Left multiplying gives 1 ≺ k−1. Since H 6� K, we have k−1 ≺ h′ for some h′ ∈ H. Finally,

1 ≺ k−1 ≺ h′ shows that k−1 ∈ H by convexity, a contradiction as k /∈ H. Hence H = K.

Lemma 6.7. Suppose H and K are convex subgroups of the left-cyclically ordered group G.

Either H ⊂ K or K ⊂ H.
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Proof. By Lemma 6.6, if H ∩ K 6� H or H ∩ K 6� K, then H ∩ K is equal to H or K

respectively. Else, H ∩K � H and H ∩K � K. Thus for all α ∈ H ∩K we can �nd h ∈ H

and k ∈ K such that α ≺ h and α ≺ k. Without loss of generality, assume α ≺ h ≺ k and

by convexity, h ∈ K. Thus H ∩K = H and H ⊂ K.

Corollary 6.8. Suppose K and H are convex subgroups of a left-cyclically ordered group G.

Let xK and yH be left cosets of K and H respectively.

If xK ∩ yH 6= ∅ then either xH ⊂ yK or yK ⊂ xH

Proof. This follows directly from Lemma 6.7.

De�nition 6.9. It will be convenient to consider indexed collections of subsets {Hi}i∈I
allowing �repeats� in the sense that Hi = Hj though i 6= j.

Lemma 6.10. Let (G,≺) be a left-ordered group and {Hi}i∈I an indexed collection of convex

subgroups. Choose a total order ≺I on I. There is a G-invariant total order on the indexed

collection of left cosets {gHi : g ∈ G, i ∈ I}.

Proof. Let �∗ denote the relation de�ned by:

g1Hi �∗ g2Hj ⇐⇒

g1Hi 6= g2Hj and g1Hi � g2Hj

g1Hi = g2Hj and i ≺I j

Transitivity, and comparability of �∗ follow given that (G,≺) and (I,≺I) are total orders.

It is impossible for g1Hi �∗ g1Hi, as this would imply i ≺I i. Thus �∗ is irre�exive, and

therefore a total order.

Let g1Hi �∗ g2Hj. If g1Hi 6= g2Hj, then G-invariance of (G,≺) guarantees αg1Hi �∗
αg2Hj for all α ∈ G. If g1Hi = g2Hj, the order depends only on (I,≺I), and αg1Hi �∗ αg2Hj

for all α ∈ G. Thus, �∗ is G-invariant.

The following is proven in [CMR18]:
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Lemma 6.11. If G is a left-cyclically ordered group and H is a convex subgroup, the cosets

G/H inherit a G-invariant cyclic order de�ned as follows for distinct cosets g1H, g2H, g3H.

[g1H, g2H, g3H] ⇐⇒ [g1, g2, g3] (1)

Proof. It su�ces to prove that for all h ∈ H and for all distinct triples (g1, g2, g3) ∈ G3 such

that giH 6= gjH for i 6= j, if [g1, g2h, g3] then [g1, g2, g3].

Without loss of generality, let h ∈ H and g1, g2, g3 ∈ G such that [h−1, 1G, h] and

[g1, g2, g3]. Suppose that [g3, g2h, g1], equivalently [g−12 g3, h, g
−1
2 g1]. Cyclically permute [g1, g2, g3]

and left multiply by g−12 to obtain [g2−1g3, g
−1
2 g1, 1G]. By transitivity [g−12 g3, h, 1G], so

g−12 g3 ≺ h ≺ 1G. Thus g−12 g3 ∈ H by convexity. This contradicts that g2H 6= g3H.

Theorem 6.12. Let G be a left-cyclically ordered group and let {Hi}i∈I be an indexed col-

lection of convex subgroups. Choose a total order ≺I on I. There is a G-invariant cyclic

order on the indexed collection of left-cosets {gHi : g ∈ G, i ∈ I}.

Proof. For any �nite set of convex subgroups {Hj}j∈J ⊆ {Hi}i∈I , by Lemma 6.7 there is a

chain of inclusions

G = H0 ⊃ H1 ⊇ · · · ⊇ Hn.

This chain of inclusions determines a graph of groups, whose underlying graph is a length-

n subdivided interval. Direct all edges away from the root vertex v0, whose vertex group is

G. The edge ei terminates at the vertex vi, and Gei = Gvi = Hi. As this graph of groups is

telescopic its fundamental group is G.

Let T = (V,E) be the Bass-Serre tree corresponding to this graph of groups. The vertex

set V = tni=0{gHi : g ∈ G} consists of the indexed collection of left-cosets of vertex groups,

likewise the edge set.
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Figure 5: Part of a �nite coset tree.

There is a directed edge from g1Hk to g2Hk+1 when g1Hk ⊃ g2Hk+1. Under this con-

struction, each left-coset gHj for j > 0 is represented by a directed edge.

We turn T into a directed c-tree. For the root vertex G, note that link(G) = G/H1. We

can cyclically order link(G) via Lemma 6.11. For any other vertex gHk, there is one incoming

parent edge of link(gHk), and outgoing edges representing containment of left-subcosets of

Hk+1. By Lemma 6.5, (Hk,�) induces a total order on included left-subcosets of Hk+1.

Translating by g provides a total order on left-subcosets of gHk. Cyclically order link(gHk)

via Remark 2.6, i.e. [g1Hk+1, g2Hk+1, gHk] if g1Hk+1 ≺ g2Hk+1.

As T is now a directed c-tree and each left-coset is represented by a directed edge,

Theorem 3.6 provides a cyclic order on all left-cosets of {Hj}j∈J . This holds for any �nite

collection of convex subgroups. The cyclic order is consistent for graphs of groups G ′ ⊂ G ′′ as

de�ned above. Hence, this induces a cyclic order on all left-cosets in {gHi : g ∈ G, i ∈ I}.

As G is the fundamental group of this graph of groups, the cyclic order on the link of each

vertex is G-invariant. Via Lemma 3.8, the cyclic order on left-cosets is G-invariant. See

Figure 5.
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7 Groups Acting on Trees

7.1 Action on tree

De�nition 7.1. An inclusion H → K of a left-ordered group into a left-cyclically ordered

group is order-preserving if

a ≺ b ≺ c in H =⇒ [a, b, c] in K.

De�nition 7.2. An action Gy S of a left-cyclically ordered group G on a cyclically ordered

set S is consistent if [α, β, γ] ⇐⇒ [gα, gβ, gγ] for all g ∈ G.

Theorem 7.3. Let G act without inversions on a tree T = (V,E). Suppose:

1. The stabilizer Gv is left-cyclically ordered for each vertex v ∈ V .

2. The stabilizer Ge is left-ordered for each edge e ∈ E.

3. The inclusion Ge ⊂ Gv is convex whenever v is a vertex of e.

Then there is a c-tree T̃ = (Ṽ , Ẽ) such that:

1. For each e ∈ E, the order on Ge is induced by the action of Ge on T̃ .

2. For each v ∈ V , the cyclic order on Gv is induced by the action of Gv on T̃ .

3. There exists a spur ẽ ∈ Ẽ such that Gẽ is a free orbit.

4. There is a G-invariant cyclic order on the orbit Gẽ that induces a cyclic order on G.

Proof. Let T̃ be obtained from T as follows. For each v ∈ V add a spur to v for each element

of the stabilizer Gv. These spurs are in correspondence with cosets of the trivial subgroup
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of Gv which is a convex subgroup. Ge ⊂ Gv for every other edge is convex by hypothesis.

Hence we can cyclically order link(v) via Theorem 6.12 for each v ∈ V , and T̃ is a c-tree.

Let ẽ be an added spur. Cyclically order the leaf-edges and hence Gẽ by Theorem 4.4.

By Lemma 3.8, the cyclic order on Gẽ is G-invariant. Finally, since G acts freely on Gẽ,

Remark 5.3 provides a left-cyclic order on G.

7.2 Graph of groups statement

Corollary 7.4. Let G split as a graph Γ of groups. Suppose each vertex group Gv is left-

cyclically ordered, and each edge group Ge is left-ordered. Suppose each inclusion Ge ↪→ Gv

of an edge group is convex. Then G has a left-cyclic order that restricts to the cyclic order

of each vertex group Gv.

Proof. Let T = (V,E) be the Bass-Serre tree over Γ, which we assume to be directed. V

consists of all left-cosets of vertex groups of Γ in G, and E consists of left-cosets of edge

groups of Γ in G. That is, allowing for repeats (of edge or vertex groups):

V = {gGv : g ∈ G, v ∈ Vertices(Γ)}

E = {gGe : g ∈ G, e ∈ Edges(Γ)}.

Varying g ∈ G, there is an edge gGe directed from gGu to gGv in T precisely when e is

directed from u to v in Γ.

The stabilizer of a vertex gGv equals gGvg
−1, and similarly the stabilizer of an edge gGe

equals gGeg
−1. Conjugation preserves the cyclic orders on Gv for each vertex, and similarly

preserves the orderings on Ge for each edge, thus vertex and edge stabilizers are cyclically

ordered. The conditions of Theorem 7.3 are satis�ed, and the rest of this proof collects the

conclusions of the theorem.
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Let T̃ be the tree obtained from T by adding a spur at each vertex for each element of

the stabilizer. Via Theorem 6.12, cyclically order the link of each vertex of T̃ , so that T̃ is a

c-tree by Theorem 3.6. For an added spur ẽ, the orbit Gẽ is free and so Remark 5.3 provides

a cyclic order on G.

Lemma 7.5. Let G be a left-cyclically ordered group. Let H be a subgroup with |G : H| ≥ 3.

Then H ⊂ G is convex if and only if the left cosets G/H have an induced cyclic order as in

Equation (1) of Lemma 6.11.

Proof. The forward direction is shown in Lemma 6.11, while the converse is proven in [CG19,

Lem 5.1].

Lemma 7.6. Let G act faithfully on a cyclically ordered set X. Let Y ( X be convex.

Then stab(Y ) is a convex subgroup of G, with respect to the cyclic order on G induced by

the action.

Proof. Observe that H = stab(Y ) acts faithfully on X − Y . Following the proof of The-

orem 5.4, H is left-ordered and each coset gH inherits a total order. Note that the set

of cosets {gH}g∈G is cyclically ordered by choosing representatives for each left-coset and

restricting the cyclic order of X. Thus, in the induced cyclic order on G, the left-cosets of H

are cyclically ordered. Thus H is convex by Lemma 7.5.

Remark 7.7. Every group acting faithfully without inversions on a c-tree arises as in Corol-

lary 7.4. The edge stabilizers are convex subgroups of the vertex stabilizers. Indeed, for each

edge e at a vertex v, the left-cosets of stab(e) in Gv correspond Gv-equivariantly to the edges

in the Gv-orbit of e. The Gv-invariant cyclic order on the edges yields a Gv-invariant cyclic

ordering on the cosets. Thus they are convex via Lemma 7.5. Finally, every action on a tree

arises as the Bass-Serre tree of a graph of groups.
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