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ABSTRACT

In this thesis, we study the stochastic multi-armed bandit problem with

dependent reward processes for each bandit machine, generated by an unknown

probability measure. It is assumed that for each machine there is a finite family of

probability measures indexed by a (finite) number of alternative parameter values,

including the true probability measure which governs the reward process of each

machine.

In this framework, an index type allocation rule is proposed that employs

consistent estimators and achieves a o(T 1+δ) regret, for some δ > 0.

In particular, an instance of consistent estimators in finite parameter sets is

investigated, as well as the properties of the proposed allocation rule under the

aforementioned estimator. Conditions under which the estimates lock-on to the

true parameter are also investigated.
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ABRÉGÉ

Dans cette thèse, nous étudions le problème stochastique de la machine à sous

à multibras avec des processus dépendants de récompense pour chaque machine.

Les processus sont générés par une mesure de probabilité inconnue. Nous assumons

que pour chacune des machines, il y a une famille finie de mesures de probabilités

indexées par un nombre (fini) de paramètres de substitution. Cette famille doit

inclure la vraie mesure de probabilité qui génère le processus de récompense de

chaque machine.

Dans ce cadre, nous proposons une politique d’allocation de type index qui

utilise un estimateur convergent avec un regret super-linéaire.

En particulier, une instance d’estimateurs convergents pour des ensembles de

paramètres finis est étudiée. Les propriétés de la politique d’allocation découlant

des estimateurs proposés sont également examinées. Les conditions sous lesquelles

les estimations reflètent la vraie valeur du paramètre en temps fini sont également

considérées.
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CHAPTER 1
Introduction

1.1 The Multi-armed bandit problem

The multi-armed bandit (MAB) problems refer to a class of sequential

allocation problems in which at each instant, a unit resource is allocated to one

of several competing alternative actions/projects/treatments and a reward is

obtained. The goal is to maximize the total reward obtained in a sequence of

allocations.

The name bandit derives from an imagined slot machine with J ≥ 2 arms.

In a casino, a player/gambler experiences a sequential allocation problem. That

is, he is facing many slot machines at once and he has to repeatedly decide which

machine to choose to insert his coin chip.

Consider a measurable space (Ω,A) and J independent R1-valued reward

processes

{
yjn; j ∈ {1, . . . , J}

}∞
n=1

(1.1)

defined in (Ω,A), one for each bandit machine. The probability law on {yjn;n ∈

Z>0} is Pjϑ∗j , where ϑ∗j ∈ Θj is an unknown parameter and Θj is a known parameter

set . Furthermore, An , σ(yj1, . . . , y
j
n) denotes the Borel σ-field generated by n

observations from the j-th reward process.
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Let µj(ϑj) denote the mean under the measure Pjϑj . It is assumed that

µj(ϑj) <∞ for all ϑj ∈ Θj, and all j ∈ {1, . . . , J}.

An allocation rule φ is a sequence of measurable functions ϕ1, ϕ2, . . ., where

ϕT : RT−1 −→ {1, . . . , J}.

At stage T , ϕT indicates which reward process to observe on the basis of the past

observations Y1, . . . , YT−1. This selection procedure is described in more detail as

follows:

Let (n1
1, n

2
1, . . . , n

J
1 ) = (0, 0, . . . , 0) denote the local time of each machine at

stage one. At stage T observe the reward process corresponding to machine jT ,

specified by

jT , ϕT (Y1, . . . , YT−1)

and set the local time of machine j ∈ {1, . . . , J} as

njT ,

 njT−1 + 1 , if j = jT

njT−1 , if j 6= jT

Then the observation YT at stage T takes the value of yjT
n
jT
T

. The local time njT of

machine j ∈ {1, . . . , J} counts the number of times that machine j had been used

in T total plays. For that reason, T is called the global time of the system and

satisfies T = n1
T + . . .+ nJT .

Let j∗ = argmin
j∈{1,...,J}

{µj(ϑ∗j)} denote the machine with the highest reward process

mean. In the sequel, machine j∗ will also be referred as “the best” machine. The

2



regret at stage T is a random variable defined as

RT (ω, φ) =
T∑
t=1

(
µj
∗
(ϑ∗j∗)− Yt

)
and the expected regret at stage T is then given by

E(RT (ω, φ)) = Tµj∗(ϑ∗j∗)−
T∑
t=1

(EYt) . (1.2)

Notice that
T∑
t=1

Yt =
J∑
j=1

njT∑
i=1

yji . Thus

T∑
t=1

(EYt) = E

(
J∑
j=1

njT∑
i=1

yji

)

= E

{
E

(
J∑
j=1

njT∑
i=1

yji |njT
)}

= E

(
J∑
j=1

njTE(yji )

)
=

J∑
j=1

µj(ϑ∗j)E
(
njT
)
.

(1.3)

In addition,

Tµj
∗
(ϑ∗j∗) =

T∑
t=1

E
(
yj
∗)

= E

{
E

(
J∑
j=1

njT∑
i=1

yj
∗|njT

)}

= E

(
J∑
j=1

njTE(yj
∗
)

)
=

J∑
j=1

µj
∗
(ϑ∗j∗)E

(
njT
)
.

(1.4)
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Substituting (1.3) and (1.4) into (1.2), the expected regret at time T can be

restated as

E(RT (ω, φ)) =
J∑
j=1

(
µj∗(ϑ∗j∗)− µj(ϑ∗j)

)
E(njT ). (1.5)

Equation (1.5) reveals that the expected regret at time T is proportional to the

expected local time of each machine j ∈ {1, . . . , J} up to time T , with a constant

depending on the difference between the reward mean of the best machine and the

reward mean of the j-th machine.

The MAB problem is to minimize the rate of growth of E(RT (ω;φ)) as T →

∞, or equivalently to find functions fL(T ) and fU(T ) (e.g. finite,logarithmic,linear,

etc.) such that there are constants CL, CU > 0, for which

CLfL(T ) ≤ E{RT (ω;φ)} ≤ CUfU(T ).

If fL = fU = f , then we say that the regret is of order f .

Multi-armed bandit problems are paradigms of allocation problems in which

the decision maker experiences the exploration versus exploitation dilemma.

Precisely, the decision maker must balance the exploitation of actions that did well

in the past and the exploration of actions that might give higher rewards in the

future.

In the casino example mentioned earlier, the information about the system

available for the player is limited. Thus his/her “winning” strategy necessarily

involves a balance between exploring the unknown system to find profitable
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machines while pulling the empirically best machine as often as possible. Such

problems arise in a variety of branches of engineering and sciences.

Some other examples (among several) of the MAB problem are in advertise-

ment (Ad) placement, in source routing and in cognitive radio communications.

In advertisement placement [15] the MAB problem arises in terms of deciding

which advertisement to show to the next visitor of some web-page, among a finite

set of advertisements. The total reward in this case is associated to the number of

click-outs that the advertisement received.

In source routing [7] the MAB problem arises in terms of choosing a path

between a source and a destination, among several alternatives, to transmit a

packet at each transition instant. The reward in this case is associated to the

transmission time or the transmission cost of the packet.

In cognitive radio communications [9], the MAB problem arises in terms of

choosing which channel a cognitive user should attempt to use in different time

slots. The reward in this case is associated to the number of bits that the cognitive

user is able to send at each time slot.

There are three fundamental formulations of the MAB problem depending on

the nature of the reward process, and subsequently on the performance criterion of

each formulation: the stochastic, the adversarial and the Markovian. This thesis is

entirely focused on the stochastic formulation. Information about the adversarial

formulation can be found in [3] and for the Markovian in [8].
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1.2 Literature Review on MAB problems

The stochastic MAB problem was initially introduced by Robbins in [12]. The

original motivation for studying MAB problems goes back to the 1930’s in resource

allocation problems that arise in clinical trials [13]. The MAB problem in clinical

trials arises when different treatments are available for a disease and the decision

maker must decide which treatment to use on the next patient.

Many years later Lai and Robbins in their seminal work [10], [11], considering

a class of uniformly good allocation rules and specific families of IID reward

distributions (including the exponential families), provided an asymptotic lower

bound on the regret of O(log T ) with constant that depends on the Kullback-

Leibler number. This result is given in the following theorem.

Theorem 1 (Asymptotic lower bound on the regret). [10, Theorem 5]

Let φ by any uniformly good policy, i.e. its regret satisfies

E(RT (ω, φ)) = o(Tα), 0 < α < 1.

Then,

lim sup
T→∞

E{RT (ω, φ)}
log T

≥
∑
k<j∗

(µj∗(ϑ∗j∗)− µj(ϑ∗j)
D(Pϑ∗j ||Pϑ∗j∗ )

,

where D(Pϑ∗j ||Pϑ∗j∗ ) ,
∫

log
Pϑ∗
j

Pϑ∗
j∗

dPϑ∗j is the Kullback-Leibler number between the

measure Pϑ∗j of the reward process of any suboptimal machine and the measure Pϑ∗
j∗

of the reward process of the best machine. �

Thereafter, they introduced the technique of upper confidence bound (of the

mean) for the construction of index policies which are asymptotically efficient, i.e.

policies whose regret achieve the lower bound described by Theorem 1.
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Definition 1. Index policy

Let g = {gT,n : Rn → R; T = 1, 2, . . . ; n = 1, . . . , T} be a set of Borel-

measurable functions, called indexes. An index policy φg is a policy which is

specified by the collection of functions g, such that:

1. In the first J stages, it chooses each machine once.

2. Based on the rewards yj1, . . . , y
j

njT
yielded from machine j up to time T for

T > J , it computes an index gT,njT
and uses the machine with the highest

index at T + 1.

�

Definition 2. Upper Confidence Bound (UCB) policy

For each machine j ∈ {1, . . . , J}, the upper confidence bound (UCB) index, at

instant T , is a Borel-measurable function

gT,n : Rn → R (T = 1, 2, . . . ; 1 ≤ n ≤ T ),

satisfying

A1. gT,n is non-decreasing in T ≥ n, for each fixed n ∈ Z>0 .

A2. Let yj1, y
j
2, . . . , y

j
n be a sequence of observations from machine j. Then, for any

z < µj(ϑ∗j),

Pϑ∗j
{
gT,n

(
yj1, . . . , y

j
n

)
< z, for some n ≤ T

}
= o(T−1) (1.6)

Any index policy φg whose index functions g satisfy A1-A2, is called upper

confidence bound (UCB) policy. �
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The notation used in the right hand side of (1.6) is the little-o notation where

for any two functions f and g defined in R, f(T ) = o(g(T )) means

lim
T→∞

f(T )

g(T )
= 0.

Lai and Robbins’s UCB policy. Let hn(y1, . . . , yn) , 1
n

n∑
i=1

yi denote the

sample mean of some R1-valued reward process {yn;n ∈ Z>0}. For each machine

j ∈ {1, . . . , J} define

µj
njT

, hnjT
(yj1, . . . , y

j

njT
)

U j

njT
, gT,njT

(yj1, . . . , y
j

njT
)

(1.7)

where U j

njT
is an upper confidence bound of the mean µj

njT
of the reward process of

machine j. Let also 0 < δ < J , where J denotes the number of bandit machines in

the system. Then,

For T ≤ J: Sample each machine once.

For T > J: Let j∗ , argmax{µj
njT

: njT > δT}. Take an observation from some

machine j 6= j∗ only if µj
∗

nj
∗
T

≤ U j
T and sample from j∗ otherwise. N

In other words, Lai and Robbins’s policy samples from machine j if the cor-

responding upper confidence bound U j

njT
of its mean does not fall below the

estimated mean of machine j∗; otherwise it samples from machine j∗. Thus, Lai

and Robbins’s policy is an index policy, with index functions as described by (1.7).

During the years following Lai and Robbins’s work, construction of UCB

policies received considerable attention by researchers mostly because of the
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simplicity of the principal idea behind them which is usually referred in the

literature as optimism in face of uncertainty.

Optimism in face of uncertainty is described in [3] as follows: First, a set

of plausible environments which are consistent with the data is constructed (i.e.

index functions). Then, the most favourable environment is identified in this set.

The decision which is optimal in this most favourable and plausible environment

should be made.

However, Lai and Robbins’s policies suffered from two drawbacks. They had

been designed for specific families of probability distributions. Second, their upper

confidence bounds were in general complicated and mostly relied on the entire

sequence of rewards which could raise computational issues.

About a decade later, Agrawal in [1] in an attempt to address the drawbacks

of Lai and Robbins’s policies, constructed simple UCB policies that depend on

the rewards obtained from a machine only through their sample mean, and yet

achieve a O(log(T )) regret. These policies were applicable in a more general class

of distributions including the one-parameter exponential families and members of

the one-parameter shifted families.

Agrawal’s UCB policy. Let g = {gT,n;T = 1, 2, . . . ;n = 1, . . . , T} be a

collection of Borel-measurable functions satisfying Definition 2. Then,

For T ≤ J: Sample each machine once.

For T > J: Sample the machine satisfying j∗ , argmax{gj
njT

; j ∈ {1, . . . , J}}. N

In other words, Agrawal’s policy compares only the upper confidence bounds

indexes of each machine, and chooses to sample the machine with the highest

9



index. Agrawal also proved the following upper bound for the regret achieved by

his policies.

Theorem 2 (Asymptotic upper bound on the regret). [1, Theorem 2.2]

Let φg be any UCB policy. Then, the local-time of each machine j ∈

{1, . . . , J} satisfies

njT = 1 + sup{1 ≤ n ≤ T : gjT,n(yj1, . . . , y
j
n) ≥ µj∗(ϑ∗j∗)− ε}

+
T∑
k=1

1{gj
∗

k,n(yj
∗

1 , . . . , y
j∗
n ) < µj∗(ϑ∗j∗)− ε for some 1 ≤ n ≤ T}.

(1.8)

where 1{•} denotes the indicator function.

Moreover, its regret satisfies

lim sup
T→∞

E{RT (ω, φg)}
log T

=
∑
k<j∗

(µj∗(ϑ∗j∗)− µj(ϑ∗j)
K(Pkϑ∗k , µ

j∗(ϑ∗j∗))
, (1.9)

where, for all k < j∗

1

K(Pkϑ∗k , µ
j∗(ϑ∗j∗))

, inf
ε>0

lim sup
T→∞

Eϑ∗k
{

sup{1 ≤ nkT ≤ T : gk(yk1 , . . . , y
k
nkT

) ≥ µj∗(ϑ∗∗)− ε}
}

log T

(1.10)

�

A drawback of Agrawal’s policies is that although they achieve an expected

regret with logarithmic rate of growth, they may not have the best constant which

is the price for getting computationally easier allocation rules.

More recently, Auer, Casa-Bianchi and Fisher [2] strengthened Agawal’s

results by constructing UCB policies that achieve logarithmic regret uniformly in

10



time rather than only asymptotically, for arbitrary classes of reward distributions

with bounded support.

The work of Auer, Casa-Bainchi and Fisher has spurred a large literature

on different variations of the basic setup. We efer the reader to [3] for a detailed

overview of the recent results.

A central result in their work is the construction of so-called UCB1 algorithm

which is simple to implement and computationally efficient. The set of index

functions employed by UCB1 is defined as

g =

gjT,njT (yj1, . . . , yjnjT) =
1

njT

njT∑
i=1

yji +

√
2 log T

njT
; T, njT ∈ Z>0, j ∈ {1, . . . , J}


The index functions of UCB1 are the sum of two terms:

The first term is the sample mean of the rewards associated with machine

j. Assuming that each machine is played infinitely often, then the sample mean

of machine j will eventually converge to the true mean µj(ϑ∗j). An important

remark on this is that since the reward of each machine is a real number, the mean

estimation takes place in R.

The second term of the index functions defined in [2] is related to the size of

the one-sided confidence interval for the average reward (according to Chernoff-

Hoeffding bounds) within which the true reward mean of each machine falls with

overwhelming probability.

1.3 Contribution of the thesis

In this thesis, we study the stochastic multi-armed bandit problem with finite

parameter set for each machine.

11



In chapter 2 we propose an index policy Φg which, in general, is not uniformly

good. Φg is constructed by modifying UCB1 to include consistent estimators of

the unknown parameter of each machine, and under certain assumptions on the

convergence rate of the unknown parameter estimates, Φg is shown to be a UCB

policy. This modification allows the application of the proposed policy Φg in a

more general class of MAB problems, including those with dependent reward

processes across time, which is the main contribution of this chapter.

In chapter 3, we discuss about the maximum likelihood estimator (MLE)

which is a paradigm of a parameter estimator extensively used in statistics and

information sciences. We present existing results in the literature about the strong

consistency of the MLE for parameter estimation in finite sets. To this end, we

introduce the so-called switch wrong and corrected (SWAC) condition which is a

sufficient condition for the existence of finite moments up to order 2 + α, for some

α > 0, of the lock on time of the ML estimates to the true parameter, which is the

main contribution of this chapter.

In chapter 4, we investigate the behaviour of the regret achieved by Φg in a

linear and Gaussian scenario. We also present some illustrative simulation results.

12



CHAPTER 2
The proposed allocation rule Φg

As mentioned earlier, an important attribute of the allocation rule proposed

in this thesis is that it employs consistent estimators of the true parameter ϑ∗j

for the measure Pϑ∗j generating the reward process {yj1, . . . , y
j

njT
} of each machine

j ∈ {1, . . . , J}.

Before introducing the proposed policy, it is worthwhile to briefly discuss

about consistency of estimates.

2.1 Consistency of estimates

Consider a reward process yj1, . . . , y
j
n generated by Pjϑ∗ where ϑ∗j ∈ Θj (|Θj|<

∞), for some machine j ∈ {1, . . . , J}. Any mapping ϑ̂jn = θ̂j(y1, . . . , yn) on Ω into

Θj which is An measurable is called an estimator.

Consider now the MAB problem as formulated in chapter 1, and let{
ϑ̂jn; j ∈ {1, . . . , J}

}∞
n=1

= ϑ̂j1, ϑ̂
j
2, . . . be a sequence of estimates of the unknown

parameter, corresponding to the j-th machine. The estimator θ̂j is called strongly

consistent if ϑ̂jn 6= ϑ∗j infinitely often with Pϑ∗j probability 0.

In the sequel, it is assumed that for each machine j ∈ {1, . . . , J}, θ̂j is strongly

consistent, and Nj(ω) is defined as its (random) lock-on time to the true parameter

ϑ∗j . A more precise definition for the lock-on time is given as follows.

Definition 3. Lock-on time

13



For each machine j ∈ {1, . . . , J} there is Ωj
o ⊂ Ω with Pϑ∗j (Ω

j
o) = 1, such that,

for all ω ∈ Ωj
o the lock-on time is the least Nj(ω) for which for all n > Nj(ω),

ϑ̂jn = ϑ∗j .

�

2.2 The allocation rule Φg

Motivated by the work of Auer et al.[2], we propose an index type policy,

denoted by Φg, which at each stage T defines an index for each machine, and

based on that it chooses to play the machine with the highest index in the next

stage T + 1. The set of index functions g employed by Φg is defined as

g =

{
gj
T,njT

(
yj1, . . . , y

j

njT

)
= µj

(
ϑ̂j
njT

)
+
T/C

njT
; T, njT ∈ Z>0, C ∈ R, j ∈ {1, . . . , J}

}
(2.1)

The index functions employed by Φg, instead of estimating the reward mean

in the set of real numbers, they estimate the true parameter of the unknown

reward measure of each process.

This type of mean value estimation takes advantage of the finiteness of the

parameter space of each machine, since instead of estimating the true mean in the

set of real numbers, the estimation of the unknown parameters takes place in the

finite parameter sets Θj. That idea is illustrated in figure 2–1.

The second term, motivated by UCB1 in [2], defines a switching rule, pre-

venting the player from locking on sampling a specific (possibly wrong) machine

14



Observations Space

Finite Parameter Space

R

R

Figure 2–1: UCB1 proposed in [2] employs the sample mean of the (IID) obser-
vations which needs infinitely many samples to converge to their true mean. The
policy Φg proposed in this thesis, is estimating the true mean of the, in general
dependent, observations by performing parameter estimation in a finite parameter
space.

indefinitely, while ignoring the others. Specifically, for the machines which had

been sampled many times, this term has relatively small value compared to its

value for machines that had been sampled less times.

Thus, the second term is used to increase the index value of the rarely

sampled machines forcing the allocation rule to choose them at some instant in the

future instead of ignoring them.
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2.3 Properties of the adaptive allocation rule Φg

Lemma 1. For each machine j ∈ {1, 2, . . . , J},

lim
T→∞

njT =∞ a.s.

�

Proof. (By contradiction) Assume there is ω ∈ Ω and a subset L ⊂ J = {1, . . . , J}

of machines which are chosen finitely many times, while machines in J \ L are

chosen infinitely many times. That means

∀j ∈ L, ∃qj > 0 s.t. lim
T→∞

njT = qj <∞ (2.2)

and

∀k ∈ J \ L, lim
T→∞

nkT =∞ (2.3)

By the assumption that each machine j ∈ L had been played finitely many

times, it is implied that for all j ∈ L there exists T > 1 such that for all T > T

µj
(
ϑ̂j
njT

)
+ T/C

njT
≤ max

k∈J\L

{
µk
(
ϑ̂k
nkT

)
+ T/C

nkT

}
=⇒ min

Θj

{
µj
(
ϑ̂j
njT

)}
+ T/C

njT
≤ max

k∈J\L

{
max

Θk

{
µk
(
ϑ̂k
nkT

)}
+ T/C

nkT

}
=⇒ γ−Γ

T/C
+ 1

njT
≤ max

k∈J\L

{
1
nkT

}
where γ = min

Θj

{
µj
(
ϑ̂j
njT

)}
and Γ = max

k∈J\L

{
max

Θk

{
µk
(
ϑ̂k
nkT

)}}
.
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But

lim
T→∞
{γ−Γ
T/C

+ 1

njT
} ≤ lim

T→∞
max
k∈J\L

{
1
nkT

}
=⇒ 1

qj
≤ 0

which leads to a contradiction since qj was assumed to be a finite positive.

Assume the following conditions: For all j ∈ {1, . . . , J}

A3. The estimator ϑ̂j of the unknown parameter ϑ∗j is strongly consistent.

A4. For the lock-on time Nj(ω),

E(Nj(ω)2+α) <∞, for some α > 0

A sufficient condition for A3 is given by Theorem 6 and a sufficient condition

for A4 is the summable wrong and corrected (SWAC) condition, which are both

discussed in Chapter 3.

Theorem 3. Assume that A3 holds.

1. Then for each j ∈ {1, . . . , J}, the index function gj given in (2.1) is an Upper

Confidence Bound (UCB).

2. If in addition, A4 also holds, then the regret of Φg satisfies E{RT (ω,Φg)} =

o(T 1+δ) for some δ > 0.

�

Proof. To prove part (1) we need to show that A1 and A2 hold (see Definition 2) .

Consider the index function gj described in (2.1), for some j ∈ {1, . . . , J}. For any

fixed n ≤ T , the estimate µj(ϑjn) is constant, which means that (2.1) is a function

17



depending only on T . Thus for any fixed n ≤ T , the index gj is increasing in T for

all j ∈ {1, . . . , J} which shows that A1 holds.

Moreover, for every j ∈ {1, 2, . . . , J}, by Lemma 1 and A3, we have that for

all ω ∈
⋂J
j=1 Ωj

o ⊆ Ω, where Ωj
o is such that Pϑ∗j (Ω

j
o) = 1, and for all n > Nj(ω)

ϑ̂jn = ϑ∗j (2.4)

where Nj(ω) denotes the (random) lock-on time of the j-th estimate to the true

parameter ϑ∗j ∈ Θj. In addition, define

Bj
n , {ω : Nj(ω) < n} ,

AjT,n ,
{
ω : gjT,n(yj1(ω), . . . , yjn(ω)) < z

}
for any z < µj(ϑ∗j), and

AjT ,
{
ω : gjT,n(yj1(ω), . . . , yjn(ω)) < z for some n ≤ T

}
=

T⋃
n=1

AjT,n.

Then,

Pθ∗j
(
AjT,n | Bj

n

)
= 0 (2.5)

In addition, let T ∗j =

 T

C

(
µ∗(ϑ∗

j∗ )− min
ϑj∈Θj

µ(ϑj)

)
 where b•c denotes the entier function.

Then

Pθ∗j
(
AjT,n

)
= 0, ∀n < T ∗j . (2.6)

.
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Thereafter, consider

TP(AjT ) = TP
(

T⋃
i=1

AjT,i

)
≤ T

T∑
i=1

P(AjT,i) (by the union bound)

≤ T
T∑

i=T ∗+1

P(AjT,i) (by (2.6))

(2.7)

Using the law of total probability we have

T
T∑

i=T ∗+1

P(AjT,i) ≤ T
T∑

i=T ∗+1

P(AjT,i|Bj
i )P(Bj

i ) + P(AjT,i|Bj
i

{
)P(Bj

i

{
)

= T
T∑

i=T ∗+1

P(AjT,i|Bj
i

{
)P(Bj

i

{
) (by (2.5))

(2.8)

Substituting (2.8) into (2.7) we have

TP(AjT ) ≤ T
T∑

i=T ∗+1

P(AjT,i|Bj
i

{
)P(Bj

i

{
)

≤ T
T∑

i=T ∗+1

P(Bj
i

{
)

≤ T
T∑

i=T ∗+1

E(Nj(ω)2+α)

n2+α (by Markov in.)

≤ TE(Nj(ω)2+α)

T∫
i=T ∗+1

1
n2+αdn

=
TE(Nj(ω)2+α)

1+α
((T ∗ + 1)−(1+α) − T−(1+α)), for some α > 0.

(2.9)

Taking the limit as T →∞ and under A4 we have

lim
T→∞

[
TE(Nj(ω)2+α)

1 + α

(
(T ∗ + 1)−(1+α) − T−(1+α)

)]
= 0 (2.10)

which shows that A2 (see chapter 1) holds, and completes the proof for part (1).
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For part (2) consider the upper bound of the local time of each machine

j ∈ {1, . . . , J} given in Theorem 2, which can be re-expressed as follows:

njT ≤ 1 + sup{1 ≤ n ≤ T : gT,n(yj1, . . . , y
j
n ≥ µj

∗
(θ∗j )− ε)}+

T∑
t=1

1Ant (2.11)

Then,

njT ≤ 1 + sup{1 ≤ n ≤ T : gT,n(yj1, . . . , y
j
n ≥ µj

∗
(θ∗j )− ε)}+

T∑
t=1

1Ant

=⇒ E{njT} ≤ E{1 + sup{1 ≤ n ≤ T : gT,n(yj1, . . . , y
j
n ≥ µj

∗
(θ∗j )− ε)}+

T∑
t=1

1Ant }

=⇒ E{njT }
T 1+δ ≤

E{1}+E{sup{1≤n≤T :gT,n(yj1,...,y
j
n≥µj∗ (θ∗j )−ε)}}+E{

T∑
t=1

1Ant
}}

T 1+δ

Taking the lim sup as T →∞ and the infimum over ε > 0 in both sides, we end up

with

lim sup
T→∞

E{njT }
T 1+δ ≤ lim sup

T→∞

E{1}+E{sup{1≤n≤T :gT,n(yj1,...,y
j
n≥µj∗ (θ∗j )−ε)}}+E{

T∑
t=1

1Ant
}}

T 1+δ

=⇒ lim sup
T→∞

E{njT }
T 1+δ ≤ lim sup

T→∞

E{sup{1≤n≤T :gT,n(yj1,...,y
j
n≥µj∗ (θ∗j )−ε)}}

T 1+δ (by A2)

=⇒ lim sup
T→∞

E{njT }
T 1+δ ≤ inf

ε>0
lim sup
T→∞

E{sup{1≤n≤T :gT,n(yj1,...,y
j
n≥µj∗ (θ∗j )−ε)}}

T 1+δ .

In light of (1.2), an expression involving the expected regret is then given by

lim sup
T→∞

E{RT (ω,Φg)}
T 1+δ

=
∑
k<j∗

(µj
∗
(ϑ∗j∗)− µk(ϑ∗k))

K(Pkϑ∗k , µ
j∗(ϑ∗j∗))

, ∀δ > 0. (2.12)

where, for all k < j∗

1

K(Pkϑ∗k , µ
j∗(ϑ∗j∗))

, inf
ε>0

lim sup
T→∞

Eϑ∗k
{

sup{1 ≤ nkT ≤ T : gk(yk1 , . . . , y
k
nkT

) ≥ µj
∗
(ϑ∗j∗))− ε}

}
T 1+δ

(2.13)
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Evaluating this result for the proposed index policy Φg, we have that

1
K(Pk

ϑ∗
k
,µj∗ (ϑ∗

j∗ ))
= inf

ε>0
lim sup
T→∞

Eϑ∗
k

{
sup{1≤nkT≤T : µ(ϑ̂k

nk
T

)+
T/C

nk
T

≥µj∗ (ϑ∗
j∗ ))−ε}

}
T 1+δ

≤
���

���
���:

0
inf
ε>0

lim sup
T→∞

T

T 1+δ

= 0 ∀δ > 0.

But this means

lim sup
T→∞

E{RT (ω,Φg)}
T 1+δ

= 0 (2.14)

which is equivalent to E{RT (ω,Φg)} ∈ o(T 1+δ).

Theorem 3 shows that Φg is a UCB policy with super-linear regret which is

suboptimal compared to the O(log T ) regret achieved by the class of uniformly

good policies designed for IID reward processes in [12]. Furthermore, (2.14) implies

that Φg is not uniformly good in the sense described in Theorem 1.

It is noted that for the case of dependent multi-armed bandits, the asymptotic

lower bound of the regret function is not known. Therefore there is not any known

optimality criterion for the evaluation of the asymptotic behaviour of the proposed

policy under dependent reward processes.

In the following chapter we study the maximum likelihood estimator which is

a particular instant of a consistent estimator under dependent observations, and

is widely used in statistics and information sciences. We firstly present existing

results for the consistency of the maximum likelihood estimates in finite parameter

spaces. Thereafter, we investigate sufficient conditions to satisfy A4.
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CHAPTER 3
Maximum Likelihood estimation

Consider a measurable space (Ω,A) and a finite set Θ = {ϑ1, . . . , ϑK}

of parameters of cardinality |Θ|= K < ∞. Let {Pϑk ;ϑk ∈ Θ} be a family

of probability measures defined on A. It is assumed that for every ϑk ∈ Θ,

{yn;n ∈ Z>0} is a R1 process defined on (Ω,A,Pϑk)

Assume that (Ω,A) is the Cartesian product
∞∏
i=1

(R,B), where B denotes the

one-dimensional Borel field in R1 and Pϑk is the probability measure induced in A

by a set of probability distributions {p(ϑk,n);n ∈ Z>0} on
n∏
i=1

(R,B) according to the

Kolmogorov’s extension theorem. Then Pϑk,n is the restriction of the probability

measure Pϑk to the σ-field An = B(y1, . . . , yn);n ∈ Z>0.

In the sequel, ϑ∗ denotes the true parameter in the set Θ; in other words, the

process {yn;n ∈ Z>0} is generated according to the set of measures {Pϑ∗,n;n ∈

Z>0}. The aforementioned set of measures will be the only family of measures that

governs the observed process {yn;n ∈ Z>0}.

3.1 The likelihood function

The likelihood function fϑk is defined as the Radon-Nikodym derivative of Pϑk

with respect to some reference measure ν as

fϑk(y1, . . . , yn) =
dPϑk,n
dν

.
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Usually, the reference measure is the Lebesgue measure in the case of contin-

uous random variables and the counting measure for the case of discrete random

variables.

3.2 The maximum likelihood estimate

Definition 4 (Maximum-likelihood estimate (MLE)).

MLE is called the estimate which satisfies

fϑ̂n(y1, . . . , yn) ≥ max
ϑk∈Θ
{fϑk(y1, . . . , yn)}

where y1, . . . , yn is a sequence of observations. �

3.3 The maximum likelihood ratio

Before starting the discussion on maximum-likelihood ratios we first adopt the

following assumption on the probability measures.

Assumption A5 For each n ∈ Z>0 the members of the family {Pϑ,n(•);ϑ ∈ Θ}

are each mutually absolutely continuous with respect to the true probability measure

Pϑ∗,n(•). �

As a consequence, outside Pϑ∗,n null sets, we can have the following definition

for the maximum-likelihood ratio (MLR)

Definition 5 (Maximum-likelihood ratio (MLR)).

MLR, denoted by xn, is the ratio of the maximum likelihood function over the true

likelihood function fϑ∗(y1, . . . , yn). That is,

xn(y1, . . . , yn) =
fϑ̂n(y1, . . . , yn)

fϑ∗(y1, . . . , yn)
(3.1)

�
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The maximum-likelihood ratio in (3.1) would be abbreviated to xn(yn) or xn when

no confusion is likely to occur.

An important property of the maximum likelihood ratio process, is that it

forms a positive submartingale.

The submartingale property of the maximum likelihood ratio process, and

subsequently its convergence property [6], along with a variation of Wald’s

technique suggested in [14] are crucial in the proof of the strong convergence of the

MLE in the literature.

Theorem 4 ([5], pp. 327-328). Under A5, maximum likelihood ratio processes are

positive submartingales. �

Proof. Define hϑk(yn|yn−1) ,
f
ϑk

(yn|yn−1)

fϑ∗ (yn|yn−1)
. By definition of the maximum likelihood

function we have:

0 ≤ hϑ̂n−1
(yn−1|yn−1)xn−1 ≤ xn = hϑ̂n(yn|yn−1)

fϑ̂n(yn−1)

fϑ∗(yn−1)
≤ hϑ̂n(yn|yn−1)xn−1 (3.2)

Let Eϑ∗ denote expectation with respect to the measure Pϑ∗ . Then by the

positivity of the likelihood functions it is clear that xn ≥ 0;n ∈ Z>0 and

Eϑ∗{xn|An−1} ≥ Eϑ∗{hϑ̂n−1
(yn|yn−1)xn−1|An−1}

= xn−1Eϑ∗{hϑ̂n−1
(yn|yn−1)|An−1} a.s.Pϑ∗

= xn−1Eϑ∗{
fϑ̂n−1

(yn|yn−1)

fϑ∗ (yn|yn−1)
|An−1} a.s.Pϑ∗

= xn−1
fϑ∗ (yn−1)
fϑ̂n−1

(yn−1)
Eϑ∗{

fϑ̂n−1
(yn)

fϑ∗ (yn)
|An−1} a.s.Pϑ∗

(3.3)

Next, for

I(yn−1) , Eϑ∗{
fϑ̂n−1

(yn)

fϑ∗(yn)
|An−1} and Ak , {ω; ϑ̂n−1(ω) = ϑk}, ∀ϑk ∈ Θ
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one has

I(yn−1) =
∑

Θ

1{Ak}Eϑ∗{
fk(y

n)

fϑ∗(yn)
|An−1}

But

Eϑ∗{ fk(yn)
fϑ∗ (yn)

|An−1} = Eϑ∗{ fk(yn|yn−1)
fϑ∗ (yn|yn−1)

fk(yn−1)
fϑ∗ (yn−1)

|An−1}

= fk(yn−1)
fϑ∗ (yn−1)

Eϑ∗{ fk(yn|yn−1)
fϑ∗ (yn|yn−1)

|An−1} a.s.Pϑ∗

= fk(yn−1)
fϑ∗ (yn−1)

Eϑ∗{fϑ∗ (yn−1)
fk(yn−1)

fk(yn)
fϑ∗ (yn)

|An−1}

=
���

���
���

��:1
fk(y

n−1)

fϑ∗(yn−1)

fϑ∗(y
n−1)

fk(yn−1)
Eϑ∗{ fk(yn)

fϑ∗ (yn)
|An−1}

= fk(yn−1)
fϑ∗ (yn−1)

a.s.Pϑ∗ , ∀ϑk ∈ Θ

Then

I(yn−1) =
∑
Θ

1{Ak}
fk(yn−1)
fϑ∗ (yn−1)

a.s.Pϑ∗

=
fϑ̂n−1

(yn−1)

fϑ∗ (yn−1)

and the desired result follows from (3.3).

3.4 The strong consistency of the maximum likelihood estimate
process

The sequence of ML estimates {ϑ̂n;n ∈ Z>0} is called strongly consistent if

ϑ̂n 6= ϑ∗ infinitely often with Pϑ∗ probability 0, i.e. Pϑ∗
(
∞⋂
n=0

∞⋃
k=n

ϑ̂k 6= ϑ∗
)

= 0, or

equivalently, ϑ̂n 6= ϑ∗ finitely often with Pϑ∗ probability 1, i.e. Pϑ∗
(
∞⋂
n=0

∞⋃
k=n

ϑ̂k = ϑ∗
)

=

1.

As it has already been mentioned, the family {Pϑ∗,n;n ∈ Z>0} will be the only

family of measures that governs the observed process {yn;n ∈ Z>0}. The extent
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to which we require the measures {Pϑk,n;n ∈ Z>0} to differ from the true family

{Pϑ∗,n;n ∈ Z>0} is given by the following assumption.

Assumption A6 For any ε > 0, there exists α(ε) > 1,

Pϑ∗
{

0 ≤ hϑ̂n−1
(yn|yn−1) ≤ α, for all n > K

}
< ε,

where ϑ̂n ∈ Θ and K = |Θ|. �

Theorem 5 ([4]). Under A5 and A6 the maximum likelihood estimates are

strongly consistent.

Proof. [5, pp. 328-329]

3.5 Application to the multi-armed bandit problem and the summable
wrong and corrected (SWAC) condition

The generality of the maximum likelihood estimation as described in the

previous sections makes this method applicable in parameter estimation problems

which arise in multi-armed bandit problems with dependent reward processes. In

such problems it is assumed that there is one ML estimator for each machine, and

that A5 and A6 are satisfied for all machines. This implies that each ML estimator

is consistent, by virtue of Theorem 5.

At this point, we introduce the so-called summable wrong and corrected

condition (SWAC). In the sequel, it will be shown that for any machine j ∈

{1, . . . , J} with reward process satisfying this condition, the estimate process ϑ̂jn

has a lock-on time Nj(ω) satisfying A4.

26



Assumption A7. (SWAC) For all machines j ∈ {1, . . . , J}, the estimate

processes ϑ̂jn satisfies the following condition:

Pϑ̂∗j (ϑ̂n−1 6= ϑ∗j , ϑ̂n = ϑ∗j) <
C

n3+β
, (3.4)

for some C ∈ R>0, β ∈ Z>0 and for all n ∈ Z>0. �

Note that SWAC does not imply strong consistency. In addition, since a

necessary condition for lock-on to the true parameter ϑ̂∗j at instant n is that

ϑ̂n−1 6= ϑ∗ and ϑ̂n = ϑ∗, SWAC is consistent with the existence of some non-zero

probability under which lock-on to the true parameter may never occur.

However, having strong consistency in force, SWAC implies the 2 + α moment,

and hence the first and second moments, of the random lock-on instant N(ω) are

finite for 0 < α < β, where β appears in the definition of SAWC condition.

Theorem 6. Assume that for all machines j ∈ {1, . . . , J} conditions A5-A7 are

satisfied. Then, the (random) lock-on time Nj(ω) of the ML estimate {ϑ̂jn} satisfies

ENj(ω)2+α <∞, ∀j ∈ {1, . . . , J}, 0 < α < β, (3.5)

where β appears in the definition of SWAC condition in (3.4). �

Note that Theorem 6 shows that SWAC condition implies the 2 + α moment

property which appears in A4 in Section 2.

Proof. For every j ∈ {1, . . . , J}, under A5 and A6, the sequence of the ML

estimates {ϑ̂jn;n ∈ Z>0} is strongly consistent, by virtue of Theorem, 5. In addition

under A7, we have that for all ω ∈
⋂J
j=1 Ωj

o ⊆ Ω, where for all j ∈ {1, . . . , J}, Ωj
o is
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such that Pϑ∗j (Ω
j
o) = 1,

ENj(ω)2+α =
∞∑
n=1

n2+αP(Nj(ω) = n)

≤
∞∑
n=1

n2+αP(ϑ̂jn−1 6= ϑ∗j , ϑ̂
j
n ≤ ϑ∗j) (by A7)

≤
∞∑
n=1

n2+α C
n3+β <∞, 0 < α < β.

(3.6)
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CHAPTER 4
Maximum Likelihood Estimation in Gaussian ARMA systems

Consider the stationary reward process given by the following system:

S :
xn+1 = ϑxn + wn

yn = xn

∀n ∈ Z≥0 (4.1)

where xn, yn, wn ∈ R1 for n ∈ Z≥0, and where w is I.I.D. N (0, σ2) noise process.

Evidently the system is in ARMA form. Assume that |ϑ|< 1. Consider also

the following assumptions:

INP1: The process ω defined on (Ω,A),P is a non-zero, stationary process with

E(ωk, ω
T
j ) = Σδk,j, for all k, j ∈ Z, with Σ ∈ P where P denotes the set of all

(p× p) strictly positive, symmetric matrices.

INP2: The initial conditions for (4.1) and the (full rank) orthogonal process

{ωn;n ≥ Z≥0} are jointly Gaussian, mutually orthogonal, and have zero

mean.

Under the aforementioned assumptions, INP1 and INP2, the (negative) logarithmic

likelihood function can be decomposed in terms of the prediction error process

yi − E(yi|yi−i) = yi − yi|i−1 as follows [4, chapter 7]:

− log f(yn;ϑ) =
n

2
log 2π +

1

2
log (

σ2n

1− ϑ2
) +

1

2
y2

1(
σ2

1− ϑ2
)−1 +

1

2

n∑
i=2

(yi − yi|i−1)2σ−2

(4.2)
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where yn , y1, . . . , yn. Equation (4.2) is parametrized by both ϑ and σ.

In the sequel, we assume an ARMA process generated by (4.1), whose defining

parameters are not known. However, it is known that they lie in a finite parameter

set Θ. For simplicity, we assume that the parameter space Θ contains only two

alternatives; θ∗ , (ϑ∗, σ∗) and θ , (ϑ, σ) (|ϑ∗|, |ϑ|< 1), where (•)∗ denotes the true

parameter under which the observations process {yn;n ∈ Z≥0} is generated.

Thereafter, we construct two likelihood function candidates, one for each

parameter in Θ to investigate the (strong) consistency of the ML estimates of the

unknown parameter. To do this, we employ observations {yn;n ∈ Z≥0} from the

system, as well as the decomposition property (in terms of the prediction error

process) of the likelihood function candidates.

We finally present a simulation result for a simple MAB problem with

(dependent) reward processes generated by (4.1), showing the behaviour of the

regret under the proposed policy Φg.

4.1 Properties of the MLE in Gaussian ARMA system

Consider a set of ARMA processes generated by (4.1) when parametrized by

Θ = {θ∗, θ}.

The prediction error process under the true parameter θ∗ is:

νn = yn − E{yn|yn−1}

= yn − ϑ∗yn−1 + E{wn−1}

= ϑ∗yn−1 + wn−1 − ϑ∗yn−1

= wn−1 ∼ N (0, σ∗2) (I.I.D.)
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Similarly, the prediction error process under the wrong parameter θ is:

en = yn − E{yn|yn−1}

= yn − ϑyn−1 + E{wn−1}

= ϑ∗yn−1 + wn−1 − ϑyn−1

= (ϑ∗ − ϑ)yn−1 + wn−1.

Furthermore,

en = (ϑ∗ − ϑ)yn−1 + wn−1

= wn−1 + (ϑ∗ − ϑ)
n∑
j=1

ϑ∗j−1wn−1−j

= νn + (ϑ∗ − ϑ)
n∑
j=1

ϑ∗j−1νn−j

(4.3)

The prediction error process of the system under the true parameter θ∗ is IID and

is called innovations process. On the other hand, the prediction error process of

the system under the wrong parameter θ is in general a dependent process, and for

that reason it is called pseudo-innovations process. The pseudo-innovations process

is a regression on all past true innovations.

To claim that the estimate θ̂n is consistent one needs to verify conditions A5

and A6.

4.1.1 Verification of A5

Assuming that θ∗ 6= θ, then A5 immediately holds.

4.1.2 Verification of A6

To verify A6, one needs to show that for all ε > 0, there is α(ε) > 1,

P
{

0 ≤ f(yn|yn−1; θ)

f(yn|yn−1; θ∗)
< α(ε),∀n > |Θ|

}
< ε. (4.4)
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But

f(yn|yn−1;θ)
f(yn|yn−1;θ∗)

< α

⇒ 1√
2πσ

exp (−1
2
e2n
σ2 ) < α 1√

2πσ∗
exp (−1

2
ν2
n

σ∗2
).

(4.5)

Taking the logarithm in both sides of (4.5) one has

− log σ2 − 1
2
e2n
σ2 < logα− log σ∗2 − 1

2
ν2
n

σ∗2

⇒ log σ∗2

σ2 − logα < 1
2
( e

2
n

σ2 − ν2
n

σ∗2
)

⇒ log σ∗2

σ2 − logα < 1
2
(

(νn+(ϑ∗−ϑ)
n∑
j=1

ϑ∗j−1νn−j)2

σ2 − ν2
n

σ∗2
) (by (4.3)).

Returning to (4.4) we have

P

log
σ∗2

σ2
− logα <

1

2
(

(νn + (ϑ∗ − ϑ)
n∑
j=1

ϑ∗j−1νn−j)
2

σ2
− ν2

n

σ∗2
),∀n > |Θ|

 < ε

(4.6)

The event inside the probability measure in (4.6) is in general hard to be

evaluated since it involves summation of squares of the past innovations, which are

Gaussian random variables. Thus this summation follows some generalized form of

χ2-distribution whose close form expression is not known. This leads us to impose

the following conjecture.

Conjecture 1. For the set of likelihood functions specified by the parameter set Θ,

condition A6 is satisfied. �

With conditions A5 and A6 being verified (with the support of Conjecture

1), we have that the maximum likelihood estimate θ̂n of the true parameter θ∗
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is strongly consistent by virtue of Theorem 5. This in turn implies that A3 (see

chapter 2) also holds.

Next, we investigate whether A4 holds (i.e. E (N2+α(ω)) < ∞, for some

α > 0). Since we know that the ML estimate is consistent, it is sufficient to verify

A7 (SWAC), by virtue of Theorem 6.

4.1.3 Verification of A7

Firstly, consider the event {θ̂n 6= θ∗} for which we have

{θ̂n 6= θ∗} = {f(yn; θ) > f(yn; θ∗)}

= {− log f(yn; θ) < − log f(yn; θ∗)}
(4.7)

Using the decomposition property of the likelihood function in terms of the

innovations process we have

{θ̂n 6= θ∗} = {log( σ2n

1−ϑ2 ) + y2
1( σ2

1−ϑ2 )−1 +
n∑
i=2

e2i
σ2 < log( σ∗2n

1−ϑ∗2 ) + y2
1( σ∗2

1−ϑ∗2 )−1 +
n∑
i=2

ν2
i

σ∗2
}

= {n log( σ2

σ∗2
) + log (1−ϑ∗2

1−ϑ2 ) + y2
1( σ2

1−ϑ2 )−1 − y2
1( σ∗2

1−ϑ∗2 )−1 +
n∑
i=2

e2i
σ2 <

n∑
i=2

ν2
i

σ∗2
}

(4.8)

Thereafter, consider the event {θ̂n+1 = θ∗} for which, similarly to (4.8) we

have

(4.9)

{
θ̂n+1 = θ∗

}
=

{
(n+ 1) log(

σ2

σ∗2
) + log (

1− ϑ∗2

1− ϑ2
) + y2

1(
σ2

1− ϑ2
)−1

− y2
1(

σ∗2

1− ϑ∗2
)−1 +

n∑
i=2

e2
i

σ2
+
e2
n+1

σ2
>

n∑
i=2

ν2
i

σ∗2
+
ν2
n+1

σ∗2

}
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To construct the joint event {θ̂n 6= θ∗, θ̂n+1 = θ∗}, we substitute (4.8) into (4.9) to

get

{θ̂n 6= θ∗, θ̂n+1 = θ∗} = { e
2
n+1

σ2 −
ν2
n+1

σ∗2
> log σ∗2

σ2 ∩ {θ̂n 6= θ∗}}

= { e
2
n+1

σ2 −
ν2
n+1

σ∗2
> log σ∗2

σ2 ∩ f(yn; θ) > f(yn; θ∗)}

=
{
{ e

2
n+1

σ2 −
ν2
n+1

σ∗2
> log σ∗2

σ2

⋂
{n log(σ

∗2

σ2 ) + log ( 1−ϑ2

1−ϑ∗2 )− y2
1( σ2

1−ϑ2 )−1 + y2
1( σ∗2

1−ϑ∗2 )−1 +
n∑
i=2

(
ν2
i

σ∗2
− e2i

σ2

)
> 0}

}
(4.10)

where the event in the right hand side of the intersection is (4.8) properly rear-

ranged.

As for the event inside the probability measure in (4.6), the event described

by (4.10) involves a linear combination of χ2 random variables whose probability

density function is not known. This leads us to impose the following conjecture.

Conjecture 2. Let

Mn(ω) ,

{
n log(

σ∗2

σ2
) + log (

1− ϑ2

1− ϑ∗2
)− y2

1(
σ2

1− ϑ2
)−1 + y2

1(
σ∗2

1− ϑ∗2
)−1 +

n∑
i=2

(
ν2
i

σ∗2
− e2

i

σ2

)
> 0

}
(4.11)

Then,

P
{
e2
n+1

σ2
−
ν2
n+1

σ∗2
> log

σ∗2

σ2
∩Mn(ω)

}
<

C

n3+β
, (4.12)

for some C ∈ Z>0, β ∈ R>0 and for all n ∈ Z>0. �

The conjecture is supported by the fact that the event Mn(ω) is expected

to be decreasing as n increases. This is because the summation of the pseudo-

innovations appears with a negative sign on the left hand side of (4.11). Thus the
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probability of any intersection with that event will also be decreasing. In addition,

since χ2 distribution is exponential, it is plausible to assume that the rate of

decrease of the probability in (4.12) is faster than C
n3+β , for some C ∈ Z>0 and

β ∈ R>0.

4.2 Simulations

Consider a 2-bandit system whose observations processes are generated by

ARMA systems described by (4.1) with parameter spaces Θj = {θij}; θij = (ϑij, σ
i
j),

where j ∈ {1, 2} denotes the machine index, and i ∈ {a, b} denotes the parameter

of machine j. With no loss of generality, assume that θ∗1 = θa1 and θ∗2 = θb2, where

θ∗j denotes the true parameter of machine j.

Consider also the following scenario: at each step T the player chooses

to observe a sample from machine j ∈ {1, 2} and receives a cost equal to the

minimum one step prediction error of the next observation yj
njT

given the past

observations yj1, . . . , y
j

njT−1
, where njT denotes the local time of machine j.

For linear and Gaussian systems, the minimum one step prediction error

process is equal to the (true) innovations process. This allows us to define the

regret at time T as follows.

RT (ω, φ) =
T∑
i=1

−(minj∈{1,2} E(νj
2
)− νji

n
ji
T

2
)

=
T∑
i=1

−(minj∈{1,2} σ
∗
j

2 − νji
n
ji
T

2
)

(4.13)

where νji
n
ji
T

2
is the squared innovations process of machine ji ∈ {1, 2} played at

instant i and σ∗j
2 denotes the innovations process variance of machine j ∈ {1, 2}.
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The goal of the player is to minimize the rate of growth of the expected regret

E{RT (ω, φ} as T → ∞. This corresponds to fairly realistic cases where while one

wants to “learn” the unknown system in terms of identifying the true parameter

of each machine, he/she wants to hit a target (physical or financial etc) with the

greatest accuracy based on his/her so far knowledge about the system.

In light of (1.5), the expected total regret at time T is given by

E{RT (ω, φ)} =
2∑
j=1

−( min
j∈{1,2}

σ∗j
2 − σ∗j

2)E(njT ) (4.14)

where σ∗j
2 = E{νj2}. Equation (4.14) reveals that the expected regret is propor-

tional to the difference between the innovations process variance of each machine j

and the innovations process variance of the best machine j∗.

The index functions in this case can be defined as

gj
T,njT

=
2

σ̂j
+

T

CnjT
, j ∈ {1, 2} (4.15)

where σ̂j is the ML estimate of the innovations process variance of machine j.

This implies that the first term in the summation of (4.17) will be bigger for the

machine j∗ with the smallest one step prediction error variance compared to the

same term of other machines. This in turn implies that machine j∗ will be chosen

more often than other machines, as long as the estimate σ̂j∗ is close to the true

value σ∗j∗ .
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For the computation of σ̂jT at stage T , we proceed as follows. Firstly, we

compute the maximized likelihood ratio (MLR) given by

xj(T ) =
fθ(y

j
1, . . . , y

j
n)

fθ∗(y
j
1, . . . , y

j
n)
. (4.16)

Then, the ML estimate σ̂jT is given by

σ̂jT =

 σj, if xT ≥ 1

σ∗j , if xT < 1
(4.17)

Remark 1. We note that the MAB model considered for the simulations does not

fit with the model described in chapter 1. This is because in the MAB model defined

in chapter 1, the reward yielded from machine j ∈ {1, . . . , J} at instant T depends

only on the observation yj
njT

made at the same instant, while in the MAB model

considered for the simulations, the reward yielded from machine j (νj
njT

) depends on

the past observations yj1, . . . , y
j

njT−1
as well.

However, we can make the later model fit with the former model by using

a simple transformation of the observations. Specifically, we can assume that

whenever the player plays machine j, he/she observes a vector
(
yj
njT
, νj
njT

)T
. By

using this transformation, the scenario described earlier remains valid in terms of

estimation. This is because νj
njT

is a function of the past and present observation(
yj1, . . . , y

j

njT

)
, and thus employing νj

njT
does not improve the parameter estimation

of machine j. I

In the sequel, we initially investigate the validity of A6 (and thus of Con-

jecture 1) under the adopted scenario described above. A simulation of 10000
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(independent) experiments had been carried out in which θ∗ = (0.145, 8), and

θ = (0.09, 10).

Figure 4–1: The values of P

log σ∗2

σ2 − logα < 1
2

(

(νn+(ϑ∗−ϑ)
n∑

j=1
ϑ∗j−1νn−j)2

σ2 − ν2n
σ∗2 ), ∀n > |Θ|


(vertical axis) over a range of values for α > 1 (horizontal axis).

In figure 4–1 the vertical axis represents the values of P
{

log σ∗2

σ2 − logα <

1
2
(

(νn+(ϑ∗−ϑ)
n∑
j=1

ϑ∗j−1νn−j)2

σ2 − ν2
n

σ∗2
),∀n > |Θ|

, and the horizontal axis a range of

possible values for α > 1. Evidently, for any value ε > 0 we can always find a some

α > 1 such that the identifiability condition holds.

Thereafter, we investigate the lock-on time of θ̂j to θ∗j .
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Figure 4–2: Histogram of the a.s. lock-on time N(ω) of the parameter estimate to
the true parameter, for a sample of 10000 independent random experiments. The
figure suggests that the probability that of lock-on decreases exponentially in time.

In figure 4–2 the horizontal axis represents the range of the lock-on time, and

the vertical distribution of the lock-on time among the 10000 independent random

experiments. We observe that in most of the experiments, the lock-on time occurs

quite early. This simulation result supports Conjecture 2 since it suggests that the

distribution of the lock-on time drops of exponentially in time.

Finally, we investigate the behaviour of the expected regret achieved by

the proposed policy Φg introduced in section 2.2, considering the MAB problem

described by (4.12).The constant C employed by the index functions gj was

arbitrarily set to 1000 for all arms j ∈ {1, 2}. A simulation of 100 (independent)

random experiments had been carried out. The horizon was set to T = 10000 for

all random experiments.
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The parameter values considered for the simulation are as follows:

Machine 1 : θ1
1 = (0.145, 8), θ2

1 = (0.09, 10)

Machine 2 : θ1
2 = (0.2, 5), θ2

2 = (0.19, 15)

According to these values, the best bandit machine in the system, is machine 1,

since σ∗1 = 8 < σ∗2 = 15. From equation (1.5), it is implied that the regret is

proportional to E{n2
T}, with constant equal to (σ∗2 − σ∗1) = 3.

Figure 4–3: Simulation of 100 random experiments, where T = 10000 (vertical axis
length). n1

T : the local time of machine 1, n2
T : the local time of machine 2.
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The sample mean of the local time of each machine are shown in figure 4–3. The

blue plot represents the sample mean of the local time of machine 1, n̄1
t , and the

red plot represent the sample mean of the local time of machine 2, n̄2
t , where

n̄jt =
1

100

100∑
i=1

njt

In figure 4–3 we observe that the local time of machine 2, i.e. n̄2
t , is increasing

uniformly linearly in time. This is a property of the proposed allocation rule Φg,

inherited by UCB1. It suggests that E{n2
T} ∈ O(T ) as T → ∞, or equivalently

that E{RT (ω,Φg)} ∈ O(T ) as T → ∞. This result was expected, since the index

function g2, for fixed n2
T , is increasing linearly in T , forcing the allocation rule Φg

to choose it in a linear rate.

Furthermore, E(RT (ω,Φg)) ∈ O(T ) implies that E(RT (ω,Φg)) ∈ o(T 1+β), for

some β > 0. That means

limT →∞E(RT (ω,Φg))

T 1+β
= 0, β > 0,

which verifies the result of Theorem 3(b).
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CHAPTER 5
Conclusion

5.1 Summary

In this thesis, we consider the stochastic multi-armed bandit (MAB) problem

in finite parameter sets. That is, for each machine there is an unknown parameter

which lies in a known and finite, albeit arbitrarily large, parameter set.

We propose an index-type policy Φg, whose index functions are modified ver-

sions of the indexes employed by UCB1 in [2]. In particular, the index function of

each machine, employs a strongly consistent estimator of the unknown parameter

corresponding to that machine.

To this end, we consider the maximum likelihood estimator which had been

shown in the literature to be strongly consistent for parameter estimation in

finite sets. In addition, we introduce the summable wrong and corrected (SWAC)

condition which implies the 2 + α moment, and hence the first and second

moments, of the random lock-on instant N(ω) are finite for 0 < α < β, where β

appears in the definition of SAWC condition.

Under this framework, we show that Φg is UCB-index type, and achieves a

super-linear regret. While the regret of Φg does not achieve the optimal lower

bound of the regret of uniformly good policies which was given in [12], it is

attractive because of its generality, since it can be applied in MAB problems with

dependent reward processes across time.
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5.2 Open Problems and Future Research

As it had already been mentioned, the regret achieved by the proposed policy

Φg, which is not necessarily considered as uniformly good, is suboptimal compared

to the regret achieved by the class of uniformly good policies described in [12].

A considerable improvement of the proposed policy Φg in future work, will

be to re-design the switching rule employed by the index functions g taking into

consideration the finite, although not uniform, lock-on time of the consistent

parameter estimate to the true parameter value for each arm.

This modification would provide us with an improved version of Φg which

locks-on choosing the best machine in finite time and hence achieves finite ex-

pected regret.
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Abbreviations

IID Independent and identically distributed

MAB Malti-armed Bandit

MLE Maximum-likelihood estimate

MLR Maximum-likelihood ratio

SWAC Summable Wrong and Corrected Condition

46


