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Abstract

This thesis presents a convolutional neural network (CNN) based approach for detection and

segmentation of Multiple Sclerosis lesions in brain magnetic resonance imaging (MRI). Au-

tomated pathology segmentation was presented in literature, starting from the early 1990s,

and although reported to be a challenging task, could be highly beneficial for clinical trials

labeling where large amounts of images are at hand. Robust detection of such pathology

is still an open problem, and is prone to variabilities in: image non-uniformity, intensity

distributions, acquisition artifacts, brain-structures, patients, scanners, configurations and

sites. A CNN-based approach is proposed due to its recently reported high quality and gen-

eralization properties for computer vision tasks, providing a high degree of invariance and

taking spatial correlation within the image structure into account. In order to address the

task using both local and context-related information, a multi-scale approach is suggested,

integrating the accuracy of several CNNs within a hierarchical framework for pathology seg-

mentation. The presented model is general, and could be used for other pathology detection

and segmentation contexts that require object delineation and classification in 3D magnetic

resonance imaging. Several different architectures and experiments are presented throughout

the document, while providing benchmarks and qualitative views over their results. Addi-

tional contributions of this thesis include: (a) learning CNN-based brain-features, evaluating

their discriminative power, and observe appearance and constancy, (b) develop a general

approach for MRI segmentation, while naturally incorporating the full 3D neighbourhood

information rather than using 2D or augmented-2D with consecutive slices information. A

comprehensive set of experiments is provided throughout this thesis, and performed over

two different multi-site large scale proprietary clinical trials that were made available for

this research. First, the method was configured and tested over the first clinical trial only.

Once the hyper-parameters were set, no further tuning was allowed and the architecture was

tested over the second clinical trial, which is much larger, and showed similar performance.

The results of the method over this data yielded sensitivity values of up to 0.68, and Dice
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scores up to 0.59. The method achieved even higher metric scores of 0.86-1.00 true-positive

rates when considering only larger lesions. The experiments performed show comparable

performance to previously reported results from the literature over the same dataset. The

data-driven features are presented, and shown to capture brain structures that lead to MS

lesion discrimination both qualitatively and quantitatively.
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Résumé

Cette thèse présente une approche basée sur les réseaux de neurones à convolution (RNC)

servant à la détection et à la segmentation de lésions cérébrales liées à la sclérose en plaques

(SEP) en utilisant l’imagerie par résonance magnétique (IRM). La segmentation automa-

tique de la pathologie est présente dans la littérature depuis le début des années 1990. Cette

procédure, bien qu’elle soit difficile à appliquer, pourrait être bénéfique dans les essais clin-

iques lorsqu’une grande quantité d’images sont disponibles. La détection de cette pathologie

demeure un problème et est sujette à des variabilités : non-uniformité des images, distribution

d’intensité, artéfacts d’acquisition, structures cérébrales, patients, appareils, configurations

et sites. L’approche proposée dans cette thèse est basée sur les réseaux de neurones à convolu-

tion (RNC) qui ont récemment démontré des propriétés de haute qualité et de généralisation

pour des tâches de vision par ordinateur en offrant un degré élevé d’invariance et en prenant

des corrélations spatiales au sein de la structure de l’image. Afin d’exécuter la tâche en

utilisant des informations à la fois locales et liées au contexte, une approche multi-échelle est

suggérée, en intégrant l’exactitude de plusieurs réseaux de neurones à convolution (RNC) dans

un cadre hiérarchique pour la segmentation de pathologie. Le modèle présenté est général et

pourrait être utilisé dans d’autres contextes de détection et de segmentation qui nécessitent

la délimitation des objets ou de la pathologie dans l’imagerie par résonance magnétique 3D.

Plusieurs architectures et expériences différentes sont présentées dans ce document, tout en

fournissant des repères et des points de vue qualitatifs sur leurs résultats. De plus, cette thèse

comprend des contributions supplémentaires telles que (a) l’extraction de caractéristiques

basée sur les réseaux de neurones à convolution (RNC), l’évaluation de leur pouvoir dis-

criminant et l’observation de leur apparence et leur constance, (b) le développement d’une

approche générale pour la segmentation de l’IRM, tout en intégrant naturellement des infor-

mations de voisinage 3D plutôt qu’en utilisant des images 2D qui incluent des informations

sur les tranches consécutives. Cette thèse inclut des expérimentations sur deux essais clin-

iques privés multi-sites à grande échelle qui ont été mis à la disposition pour cette recherche.
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D’abord, la méthode a été configurée et testée sur le premier essai clinique seulement. Une

fois que les hyper-paramètres ont été définis, aucun ajustement supplémentaire n’a été ef-

fectué. L’architecture a été testée au cours du deuxième essai clinique, qui est beaucoup

plus grand, et qui a montré des performances similaires. Les résultats obtenus ont donné

des valeurs de sensibilité allant jusqu’à 0,68 et des scores Dice jusqu’à 0,59. Lorsque l’on

considère seulement les lésions plus importantes, la méthode atteint des taux vrais positifs

entre 0,86 et 1,00. Les expériences réalisées démontrent des performances comparables aux

résultats récemment rapportés dans la littérature sur un même ensemble de données. Les

caractéristiques obtenues par les données sont présentées de façon qualitative et quantitative.

Elles permettent de capturer les structures du cerveau qui conduisent à la discrimination des

lésions causées par la sclérose en plaque (SEP).
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Chapter 1

Introduction

The research presented in this thesis addresses the challenge of Multiple Sclerosis lesion

segmentation in brain MR images. Current clinical protocol involves manual labelling, a

process that is expensive, time-consuming and subject to intra- and inter-rater variability.

In order to improve this process, several automatic techniques have been introduced in the

literature [10, 32, 44, 45, 49, 60, 72, 78–80, 90, 92, 93], many using statistical models that learn

to characterize healthy tissues and/or pathology. Spatial information has been integrated

into some models [32, 80] using graphical models or hand-crafted features that further model

the relationship between adjacent tissues, and therefore consider local correlations between

classes. In previous work, Gabor and other handcrafted features were used to capture texture,

context and appearance, while reporting accuracy improvement based on the given metrics

for the task [32, 80]. The weakness of such techniques is that the set of input features

is pre-set subjectively at design time, and therefore cannot adapt to the actual data. As

a consequence, the art of manually handcrafting these features is left to the authors, and

introduces bias towards their personal preferences, intuition or competency. The method

presented in this thesis overcomes this issue by using machine learning techniques named deep

learning, that are designed to learn the features from the data instead of manually selecting

them. Convolutional neural networks, which are a deep learning technique, have recently

gained popularity due to their unbeatable performance on large-scale object recognition tasks

[68]. In this thesis we employ CNNs for the lesion segmentation task, and adapt them to

the context of MR image segmentation. In the next section, we start by presenting Multiple

Sclerosis in general, and follow with an overview of the proposed framework.
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1.1 Multiple Sclerosis

Multiple Sclerosis (MS) is a chronic neurological disorder, attacking the central nervous sys-

tem (CNS). MS can affect vision, hearing, memory, balance, mobility, and coordination,

often in a pattern of relapses and remissions [3, 5, 6]. The effects of the disease can be phys-

ical, emotional and financial [5]. In 2011, the Canadian Community Health Survey (CCHS)

reported that 93,535 Canadians are living with MS [2], and the MS Society estimates approx-

imately 1,000 new cases of MS to be diagnosed every year in Canada [5]. In colder climates,

the incidence of MS is higher [4]. There are 2.5 million estimated MS cases worldwide, while

rates are higher farther from the equator. The rate of MS in southern US is estimated 57-78

cases per 100,000 people, while the rate in northern states reaches 110-140 per 100,000. The

highest risk of having MS is among the population of Northern Europe, and in lowest risk

are Native Americans, Africans and Asians. See Figure 1.1 for the global median prevalence

of Multiple Sclerosis. [4]

Figure 1.1 Median Prevalence of Multiple Sclerosis, courtesy of [4].

In the context of MS, the immune system attacks the myelin layer that surrounds the

axons or nerve fibers and provides insulation. This phenomena is known as demyelination,

and appears in multiple sites of the brain and spinal cord comprising the central nervous

system. Unfortunately, this process could also affect the ability of the brain to repair by

damaging the cells that produce myelin [3]. Figure 1.2 [28] illustrates the demyelination of
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axons. The multi-site scarring caused by demyelination disrupts the communication signals

used for transferring messages between the brain and other body-parts through the spinal

cord. Furthermore, direct damage to the axons resulting from the inflammation could cause

a permanent loss of function. An intuitive analogy could be given by depicting an electrical

communication wire. Multiple sclerosis attacks the insulation, resulting in fraying and short-

circuiting that prevents the correct signal from reaching its destination. [3]

Important criteria for the quantification of multiple sclerosis in clinical trials rely on

expert-labeling of the lesions over several different magnetic resonance imaging modalities.

The labeling is used for disease diagnosis, progress tracking, or drug influence analysis in

clinical trials. Current clinical protocol involves manual labelling, a process that is expen-

sive, time-consuming and subject to intra- and inter-rater variability. Since the definition of

Multiple Sclerosis lesion in MRI is imprecise, and generally refers to 3 different categories of

lesions (T2-lesion, enhancing-lesion and black-hole), the task of automatic classification and

segmentation of such pathology involves experience, or data-driven techniques. Supervised

semi- and automatic techniques learn the definition of MS lesion from given expert-labeled

examples rather than by using a concise definition of the pathology. The literature covers a

broad selection of different techniques, from the early 90s until today, which are driven by

machine learning, feature extraction and statistics [29]. Unsupervised techniques, which are

the other class of MS lesion segmentation methods, are mainly based on clustering and out-

lier detectors [10, 30, 74, 78, 87]. Several different MS lesions are shown in Figure 1.3, along

with their segmentations. The segmentation task becomes challenging due to the extreme

variability in the properties of lesions, such as their size, shape and textures, as well as the

overlap of their intensity distributions with those of healthy tissues. Furthermore, lesions can

be extremely small, spanning at most a few voxels.

Many of the previous techniques consider the voxel-intensity of the MR modalities as their

major features for classification, and build a statistical model that learns the characteristics

of healthy tissues versus pathology [36, 44, 45, 49, 60, 90, 92–94]. Other techniques focus

on learning only the distributions of healthy tissues, and consider outliers as pathology [10,

29, 30, 74, 78, 87]. Spatial information was also integrated into these models using graphical

models, such as Markov Random Fields, or hand-crafted features that further model the

relationship between adjacent tissues, and therefore consider local correlations between classes

[32, 80]. Context-aware models that learn more than the local properties at the voxel-level

reported higher results over public challenges [10, 49, 60, 72, 78, 79, 93].

Many techniques use higher level features for segmentation [32, 80]. For example, previous
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Figure 1.2 Demyelination of axons, courtesy of [28]. (a) An illustration of
demyelination in the central nervous system. Once demyelination appears, the
sheaths could be recovered in a process called remyelination. This recovery,
however, results in thinner sheaths as shown in the left-hand side of the figure.
When remyelination fails, such as in multiple sclerosis, the axons remain vulner-
able, resulting in degeneration as shown on the right-hand side of the figure. (b)
Transverse sections of cerebellar white matter. From left to right: (i) normal
axons, (ii) demyelinated axons, and (iii) remyelinated axons.

work [80] used Gabor filters over the MR images in order to capture discriminative features,

such as texture and context and use them as features for a more informed model, and their

reported results show that these kind of features improve the classification accuracy. Other
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Figure 1.3 Multiple Sclerosis Lesion Segmentation for Three Different Pa-
tients, courtesy of [81]. In this figure, we see several kinds of MS lesions and
their segmentations (in red). The segmentation task becomes challenging due
to the different characteristics of these lesions such as texture, size, intensity
and shape. From left to right: (a) high peri-ventricular lesion load, (b) supra-
ventricaular lesions, and (c) juxta-cortical lesions.

work [32] used a large amount of different handcrafted context features and a random forest

to select them, and also reported improvement in accuracy based on the given metrics for the

task. The main weakness of such techniques is that the set of input features is decided at the

design time, and therefore cannot be adjusted according to the actual data. As a consequence,

the challenge of manually handcrafting these features is left to the authors of the methods, and

introduces bias towards their personal preferences, intuition, or competencies. For example,

these methods could obtain different results for two different choices of features.

Deep learning approaches in general, and particularly convolutional neural networks

(CNNs) learn the features of the input data, whereas classical approaches require manual

selection and hand-crafting of features. Manual feature selection is expensive, time consum-

ing and introduces bias. In the field of computer vision, approaches based on deep learning

have been obtaining unrivaled results for the task of image classification [38, 39, 48] over

recent years, but has not been widely explored for the context of pathology detection and

segmentation in medical images (e.g. MS lesion segmentation). An interesting result of ap-

plying deep learning for the lesion segmentation task is its custom features set. Since the

features are extracted in a fully automatic manner, and without manually designing them,

they are expected to become highly adapted to the task and data. The part of the model

that generates these features, once trained, could be further used for visualization or better

understanding of the structures that lead to the final decision. Another advantage of the

proposed approach is that the notion of neighbourhood information rather than local voxel

intensity will also be learned from the data. The spatial characteristics of lesions will be
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learned from their labeling given a convolutional neural network, that has the capacity to

model extremely complex context-aware relationships between different voxels, over different

modalities, and learn a data-driven notion of context. This notion of context have been

explored in the past by Geremia et al. [32] using a set of context-rich features that com-

pare the voxel of interest to distant regions, measuring symmetry and other neighbourhoods.

Another way that was widely used for context-aware methods is through Markov Random

Fields (MRFs) [36, 44, 80, 93, 93] to assure local smoothness and neighbourhood awareness

by adding spatial connectivity between the voxel classes. In this thesis, I will connect between

these two domains, which are machine-learning and medical image analysis, and present a

method that uses deep learning for MS lesion segmentation.

1.2 Outline of Framework

In this thesis I will address the task of labeling lesions in multi-modal MR images, such

as fluid-attenuated inversion recovery (FLAIR), proton density (PD), T1- and T2-weighted.

The output image is typically binary, in which there are two classes: (a) lesion, and (b) non-

lesion. The objective is the detection of the lesions in the input images and delineating their

boundaries. The objectives of this thesis is to develop a framework for the context of analysis

of clinical trials, that is one that is robust to variability stemming from patient brain images

acquired from different scanners, centers, and trials worldwide, and for patients at different

disease stages, while retaining accuracy, particularly at detection of very small lesions. The

method is required to be accurate for large datasets acquiring during different clinical trials.

A high-level view of the proposed method is shown in Figure 1.4.

For the first component, a multi-scale approach is proposed in order to model the input

image and obtain features that describe different characteristics of each voxel. This compo-

nent is based on 3 different convolutional neural networks in order to represent the input data.

The framework builds a local voxel-intensity model using the first CNN, while also providing

it with spatially local neighbourhood information to promote robustness to noise. The voxel

intensity model is designed to not carry any notion of context or neighbourhood information,

and is intended to learn only how lesions would appear through a small aperture. The second

component, also based on a CNN, is a higher-scale component of the close-neighbourhood

information, which was designed to describe how nearby voxels appear and gain more con-

textual information rather than intensity. The last scale component in the model is designed

to characterise a very-large neighbourhood, and mostly provide context information rather
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Deep Learning

Data-Driven
Representation

Lesion
Segmentation

Input
Labeled
Lesions

Statistical Model

Figure 1.4 High-Level Method Flowchart. The input data is transformed into
a deep data-driven feature representation by using 3 Convolutional Neural Net-
works (CNNs) for creating a multiscale representation of the MR image. Several
approaches are used for the statistical model for the joint distribution, including
Artificial Neural Networks (ANNs), Random Forests (RFs) and Convolutional
Neural Networks (CNNs). The output of these models is the final segmentation
result.

than local information. This multi-scale approach creates a separation between the different

scales and reduce co-adaptation of their data-driven features. As will be discussed in details

throughout the results section, this parts of the architecture extract useful features for the

next stages, where the final lesion segmentation is performed.

At the second stage, features from the first stage are combined using a statistical model

and combine into a single rich representation of the data that is aware of local, global and

context properties for each voxel from the original input. Several approaches were tested

and compared at this processing stage, in which the joint distribution by 4 different overall

architectures, including Artificial Neural Networks (ANNs), Random Forests (RFs) and Con-

volutional Neural Networks (CNNs). This stage will be shown to yield better classification

performance than the first stage, and also to obtain a set of feature maps, from which one

could learn more about relevant structures in the brain by reverse-engineering.

MS lesion classification over MRI varies over different schools. While this renders the

challenge more difficult, it also opens the opportunity to reveal some of the hidden ingredients

that lead to the ground-truth labeling. Deep learning approach will be advantageous in terms

of:

� Visualization of these hidden considerations;

� Examination of their consistency between patients;

� Quantification of their discriminative power;
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In this thesis, I will present a large amount of deep learning experiments over the clinical

trials data, while benchmarking their performance, and presenting qualitative results. The

results will be comparable to existing lesion segmentation methods that were trained over

the same dataset. As mentioned above, obtaining comparable scores would be interesting

not only in terms of classification, but also for further exploring the deep-learned features.

The contributions of this research are described in the next section.

1.3 Contributions

The work presented in this thesis claims to contribute to the field of lesion detection in

magnetic resonance imaging as follows:

1. A general deep learning framework for the detection and segmentation of

MS lesions in brain MRI. Most lesion segmentation frameworks to date include

hand-crafted features. The proposed architecture uses the CNN framework where fea-

tures extraction is automatically inferred from the system. Although these types of

methods are popular in computer vision, their integration into pathology detection and

segmentation tasks in the context of medical imaging is still wide open. The proposed

architecture was validated for robustness over two large clinical trials, containing 1,175

different patients, and acquired in multiple sites worldwide using different scanners.

This proposed method could be generalized and used for other brain lesion segmenta-

tion tasks, such as stroke lesions segmentation or brain tumor segmentation.

2. Automatic inference of CNN brain-features in the presence of pathology..

These features were automatically inferred from a large amount of data in the presence

of pathology, and could be applied to different medical image analysis context. The

experiments show intra- and inter-patient consistency over these features and could

replace traditional atlases in the context of medical image segmentation.

1.4 Thesis outline

This thesis presents a deep learning approach for MS lesion segmentation using convolutional

neural networks.

Chapter 2 presents the literature review, discusses the notion of an MS lesion within the

MRI domain, and introduces the reader to fully automated techniques in the context of MS



1.4 Thesis outline 9

lesion segmentation. The challenge along with commonly used components for the lesion seg-

mentation pipeline are explained, and related work is summarized and compared. I present

an overview on the different approaches used in the literature to address the task, their main

differences, such as classification, clustering and outlier-detection, along with their validity

that could be inferred from the extent of the data on which the techniques were validated.

This chapter will continue with a literature review of convolutional neural networks, showing

applications in the computer vision domain, along with their recent results in the field of

object recognition. The review continues to medical imaging application of CNNs, present-

ing several recent publications along with their performance and comparison to previously

available methods. Lastly, several recent papers in which pathology classification using deep

learning techniques are presented and discussed. This part of the chapter motivates the usage

of CNNs for MS lesion segmentation by presenting very similar tasks for which CNN-based

methods were successfully applied.

Chapter 3 presents the theory behind artificial neural networks (ANN), activation func-

tions, multi-layer perceptron (MLP), convolutional neural networks (CNN), capacity, back-

propagation and prediction. It discusses the advantages of CNN for computer vision tasks

from the theoretical point of view, and explains different hyperparameters used for the train-

ing.

Chapter 4 presents the proposed architectures, the reasoning behind their design, and the

models used for each component. The design considerations are introduced, along with the

expectations from each of the different components, while taking the effects of dataset quality

into account. Three different architectures were proposed, each comprised of 4-5 models as

its building blocks.

Chapter 5 contains the experimental results. In this chapter, the framework is applied

to 2 large, multi-center, multi-scanner clinical trials, comprising a total of 1,175 patients.

First, the method was configured and tested over the first clinical trial only. Once the hyper-

parameters were set, no further tuning was allowed and the architecture was tested over the

second clinical trial, which is much larger, and showed similar performance. The results of

the method over this data yielded sensitivity values of up to 0.68, and Dice scores up to 0.59

when tested over both of the large trials. The method achieved even higher metric scores

of 0.86-1.00 true-positive rates when considering only larger lesions. The results from more

than 30 different experimental configurations will be compared. The design choices behind

the configuration will be exposed, starting from the sampling of the input data. Sampling is

an important element for the technique, and therefore the considerations are presented and
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discussed in this chapter. The evaluation metrics used for obtaining the qualitative results are

described in detail, including voxel-connectivity models and lesion-wise metrics. The chapter

then continues to present the results from each of the classifiers, both qualitatively and

quantitatively, while exposing a large amount of results over many experimental architectures

for each component. This chapter includes a discussion regarding the inclusion of atlas priors

in the classification scheme. Lastly, the chapter presents the hidden features extracted by

the convolutional neural networks, and examines their discriminative power, consistency and

general appearance, along with their results over an additional dataset.

Chapter 6 presents the conclusions, and explains the major contributions of this thesis.

It contains a discussion about the experimental results of the proposed methods over the

clinical trials data, and connects them to the original design considerations. It also discusses

the features that were automatically inferred by the convolutional neural networks and their

inter-patient consistency. Lastly, ideas and improvements for future research are presented,

while suggesting additional tasks for which the method could be applied.



Chapter 2

Background and Literature Review

In this chapter, I will discuss the topic of automatic Multiple Sclerosis lesion segmentation,

presenting the main challenges and characterization of MS lesions. I will continue by present-

ing previous approaches for the task, which are divided into two categories of methods: (a)

supervised, and (b) unsupervised. The common flow of lesion segmentation techniques will

be discussed, followed by an extensive literature review of published MS lesion segmentation

methods that will motivate the need for convolutional neural networks. The last section will

present a literature review of recent convolutional neural networks applications, starting at

the computer vision domain and continuing to medical image analysis and pathology de-

tection. The purpose of this chapter is to motivate the reader and prepare the ground for

the proposed architecture that applies deep learning to the challenging task of MS lesion

segmentation.

2.1 Automatic Lesion Segmentation

At the time of writing this thesis, a widely consistent set of manually designed features

that define white-matter Multiple Sclerosis lesions in magnetic resonance imaging does not

exist [29]. The development of supervised automatic methods for MS lesions classification

and segmentation is mostly dependent on labeled data examples, rather than applying an

algorithm that correlates them to pre-defined criteria. Guidelines suggest that MS lesions

are in general brighter than their surroundings within the white matter when reading proton

density (PD) or T2-weighted images, however, in fluid-attenuated inversion recovery (FLAIR)

images these lesions are either brighter or darker, depending on their nature and severity. In

terms of location, lesions are usually found centered about small blood vessels, and frequently
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occur in the juxtacortical and infratentorial regions [29] [26]. The spatial distribution of MS

lesions, modeled by Rohit et al. [11] over a database of 84 subjects is shown in Table 2.1.

Different Multiple Sclerosis lesions are shown in Figure 2.1.

In general, MS lesions are categorized into 3 major classes: (a) T2w lesions, (b) Gadolin-

ium enhanced lesions, and (c) black holes. Comparing to white matter, T2w lesions may be

either hyper or isointense in T1w, and hyperintense in FLAIR, PD- and T2-weighted images.

Gadolinium enhanced lesions increase their T1w intensities after the patient was injected

with the contrast agent, and observed as hyperintensities in FLAIR, PD- and T2-weighted

images. Black holes are hypointensities in T1w-weighted images that do not enhance af-

ter a gadolinium injection, they appear as hyperintensities in FLAIR, PD- and T2-weighted

images. [29]

Full automatic lesion segmentation techniques often share a common processing structure,

which is generally referred to as the segmentation pipeline [29]. The pipeline is comprised of

several stages, beginning with the original images as inputs and ending with the segmentation

masks. First, the images are spatially aligned to the same image space, such as Talairach

[20]. This process is named registration, and employs methods that are mainly landmark-,

segmentation- or voxel-based, where landmarks could be either anatomical or geometrical,

segmentation could be using rigid models, such as surfaces, curves and points, or deformable

models like snakes or nets [59]. The second stage is the skull-stripping, or brain extraction, in

which the brain is delineated and a brain-mask is generated, providing the next stages with

the ability to strictly process the brain region. The next stage corrects the effect of spatial

inhomogeneity of voxel-intensities, caused by the inhomogeneity of the magnetic fields of

the scanner used for the image acquisition. The fourth stage is an overall reduction in the

noise over the image, in which spatial information is generally used. The last stage before

the segmentation itself is an inter-patient normalization of the voxel intensities, resulting in

similarly appearing images, even though acquired with different parameters and/or scanners

in different sites. The pipeline is shown in Figure 2.2. Although segmentation methods do not

all share the exact same pipeline, the stages described above are used as modular building

blocks for their distinct processing. It is important to keep in mind that the sequence of

these building blocks is only a general guideline, and frequently altered and adapted to the

segmentation technique at hand by reordering, removal or addition of new types of building

blocks. [29]

Knowing the common components, we are now ready to continue and explore different

MS segmentation methods and their details through the literature review presented in the
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Figure 2.1 Multiple Sclerosis Lesions, courtesy of [11]. Each row is a different
patient. Left to right: T1-weighted, T2-weighted and FLAIR images. In the
first row we observe MS lesions in the FLAIR image, however, not all are visible
in the T2-weighted and the some (arrows on A) appear darker in the T1 image.
In the second row we can observe a large 12-millimeter cortical-subcortical lesion
over all three modalities. In the third row we can hardly observe the 8-millimeter
lesion (marked with an arrow on C) on the T1 and T2 images, but could clearly
detect it on the FLAIR image. In the last row, the marked lesion (arrow on C),
that extends from the superior temporal cortex to the subcortical white matter
is clearly seen in the FLAIR, but not using the T1 or T2 modalities.



14 Background and Literature Review

Table 2.1 Spatial Distribution of Multiple Sclerosis Lesions, courtesy of [11].

following section. First, we will explore the types of lesion segmentation techniques and

discuss the conceptual differences between them. Second, we will review related work in the

field of MS lesion segmentation and motivate the need for context-aware methods. Following,

we will present a literature review of Convolutional Neural Networks (CNNs) and their recent

applications in order to motivate the concept of automatically extracted features, which will

later be used by the proposed method of this thesis. The main objective is to provide the

reader with background regarding the two disciplines that meet through this research: (a)

medical imaging, and (b) machine learning.
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Figure 2.2 Image Segmentation Pipeline. The raw input images typically
pass through these stages to obtain the final lesion labels, however, the presented
sequence of building blocks is only a general guideline, and frequently adapted
to the segmentation technique at hand.

2.2 Related Work on MS Lesion Segmentation

Multiple Sclerosis lesion classification could be divided to two main groups of methods: su-

pervised and unsupervised. Unsupervised approaches are based on a known a priori method-

ology used by labeling experts, which is then simplified and modeled as an algorithm that

operates on the input images [29]. Unfortunately, the assumptions that are made are often

subjective and require extensive verification if they are to be used in real clinical practice.

On the other hand, supervised machine learning methods learn the model and the task from

available data. In the case of MS lesions, lesion labels are provided manually. A large number

of reliably labeled databases are not publicly available, and several of the following papers

have used private images or proprietary clinical trials instead, a fact that leads to difficulty

comparing competing methods. [29]

The heart of most supervised methods relies in the process of feature-selection for the

classification task, followed by the training of a classifier over their values for a given set of

labeled examples. Some methods use the voxels intensities directly, and therefore we could

generalize and consider these intensities as the actual features used by the classifier.
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2.2.1 Supervised Methods

In 1995, Kamber et al. [45] suggested employing a model for healthy brain tissue probabil-

ities, and by doing so reduced the rate of false-positive MS lesion classification by 50-80%.

The classifiers used in their model were decision trees, minimum distance [88] and Bayesian

[24] over the intensities of the voxels. They concluded that the annotation of brain tissues was

useful for the automatic segmentation of the lesions. In 1996, Johnston et al. [44] published

a voxel-wise stochastic relaxation method for fully- and semi-supervised lesion segmentation.

They reported that the task of segmenting small MS lesions was challenging, and addressed it

by adding inhomogeneity corrections. In 1999, Vinitski et al. [90] implemented a supervised

k-NN algorithm to classify tissues into approximately 10 types, including white matter, gray

matter, deep gray matter nuclei, cerebrospinal fluid, blood, cyst and subgroups of Multiple

Sclerosis plaque. Warfield et al. [92] suggested an algorithm that uses healthy subject tem-

plates, often referred to as atlases, then performs a feedback loop between k-NN classification

and nonlinear registration, named Adaptive Template Moderated Spatially Varying Classifi-

cation (ATM SVC). The authors reported that their improved localization of grey matter, by

using elastic template registration, allowed them to further penalize false-positive detections

and obtain better discrimination between MS lesions and gray matter. The authors also

mentioned that their algorithm may fail to distinguish between voxels for which all channels,

intensities and spatial priors, share similar intensities. Neither the dataset, the amount of

subjects, the resolution or the strength of the magnetic field used by the MR scanner were de-

scribed in this paper. In 2006, Wu et al. [94] published a paper about automatic classification

of MS lesions into 3 types: (a) T2 hyperintense lesions, (b) T1 black holes, and (c) enhanc-

ing lesions. They used a k-NN classifier, combined with template-driven segmentation of

brain tissues and lesion types. The method employed inhomogeneity correction, followed by

a semi-automatic intracranial cavity masking and an additional inhomogenity corection only

over the brain-masked portion. The classifier used for the task was statistical intensity-based

k-nearest neighbours, followed by template-driven segmentation and partial volume artifact

correction. The authors reported that T1 black holes achieved the lowest segmentation sen-

sitivity, while Gadolinium-enhancing lesions were detected with the best sensitivity. At the

same year, Harmouche et al. [36] presented a fully automatic method, based on a Bayesian

approach, for segmenting lesions and normal tissues. They used a Markov Random Field

(MRF) in order to assure local smoothness, and introduced a probabilistic measure for the

classification confidence. The authors reported significant improvement in the results when

spatial information was integrated into the feature-set used for the segmentation. As for the
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preprocessing, the authors applied bias field correction, extraction of brain parenchyma and

intensity normalization.

Morra et al. [60] proposed a framework that learned a unified appearance and context

model from the data. They used a pool of more than 18,000 features for describing position,

intensity, tissue prior and neighborhood-wise properties, such as standard deviation, mean,

curvature, gradients and wavelet decomposition coefficients. The data was downsampled

and bias field corrected in the preprocessing stage, and the features were classified using

AdaBoost with decision stumps over the image and probability maps. Wels et al. [93]

published a fully automated approach that is based on probabilistic boosting trees over

an overcomplete set of Haar-like features. Their technique learned a set of discriminative

features for obtaining posterior probabilities using the ensemble boosting, then the results

were refined using a standard level set segmentation after applying a stochastic relaxation

stage, while modeling the data in a Markov Random Field. Kroon et al. [49] implemented

a method that uses a Principle Component Analysis (PCA) model, feature vectors and atlas

registration for the MS lesion segmentation challenge 2008. The features used in their model

are voxel intensities, neighbouring voxels, local histograms, normalized location and atlas

based prior probabilities. For preprocessing, they proposed a genetic bias field correction in

addition to an atlas based correction and edge preserving filtering. However, they reported

that their bias correction methods introduced artifacts that lead to false-positive detections,

and therefore the model performed better using the original images. Scully et al. [72]

published a non-parametric approach that uses KMeans segmentation followed by a Naive

Bayes classification for the challenge. Their model learned the joint intensity histograms

over FLAIR, T1- and T2-weighted images for each tissue class, along with neighbouring

voxels and location information. The authors reported that their approach could have been

improved by additional intensity standardization, or by adding a Markov Random Field over

the class labels to incorporate spatial information. The authors also indicated that there was

a possibility that the labeling of the dataset was inconsistent and inaccurate, along with a

number of artifacts in the scans such as motion and noise. In 2009, Subbanna et al. [80]

presented a fully automated MRF-based method that embedded neighbourhood information

along with local variations into their tissue model. Their method classifies voxels into six

classes: (a) background, (b) white matter, (c) grey matter, (d) cerebrospinal fluid, (e) T1-

hypointense lesions, and (f) T2-hyperintense lesions. The healthy tissues and lesions were

modeled as multivariate Gaussians over the intensity channels, and the method was applied

after bias-field correction, brain extraction and intensity normalization as preprocessing steps.
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The authors suggested that their results could have been improved by incorporating different

models for different regions in the brain, or by fully integrating the classification scheme and

smoothing function to obtain less lesion over-estimations. Akselrod-Ballin et al. [8] proposed

a method that detects abnormal brain structures, using a multiscale approach, by combining

classification and segmentation. Their method performs hierarchical decomposition of the

MR images in order to produce features that describe the location, shape, intensity and

neighbourhood of the voxel, followed by a decision forest tissue classification. The authors

concluded that their experiments could have been improved by using higher resolution of

3mm instead of 5mm for the thickness of the slices.

Yamamoto et al. [96] suggested a scheme for reducing false positive detections, which

relies on rule-based, level set method and Support Vector Machine (SVM). Their method

used FLAIR, T1-, and T2-weighted MR images and enhanced them, based on background

subtraction, followed by initial identification of lesion candidates using linear discriminate

analysis over the T1 voxel intensity. The candidates were selected according to a set of

heuristics described in the paper, then segmented using a region-growing technique based

on their geometry. Their next stage was the extraction of gray-level intensity features used

to train a support vector machine, followed by reduction of false positive outliers using a

rule-based and a level set method. A year after, Geremia et al. [32] published a paper about

automatic lesion segmentation using a discriminative random decision forest using FLAIR,

T1- , and T2-weighted MR images along with spatial priors. They introduced context-

rich features that compare the voxel of interest to distant regions, measuring symmetry

and other neighbourhoods. The authors reported that the normalization was an important

preprocessing step for obtaining their results, and used the MICCAI 2008 challenge database

for evaluation.

The supervised techniques use features in order to classify MS lesion. These features are

Gabor decompositions in Subbanna et al. [80], location/shape/intensity in Akselrod-Ballin et

al. [8], context-rich features in Geremia et al. [32] and more. These features are handcrafted

and manually selected.

We will now continue reviewing the unsupervised methods, which are mostly based on

outlier detection.

2.2.2 Unsupervised Methods

In 2001, Van Leemput et al. [87] published a fully automatic unsupervised atlas-based

method for lesion segmentation. The method detected MS lesions as outliers, while modeling
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healthy brain tissues using a Markov Random Field. The method is an iterative Expectation-

Maximization (EM) algorithm that classifies data into healthy tissue classes, followed by

outlier detection based on neighbouring voxels, and repeated until convergence. Anbeek

et al. [10] proposed a fully automated method, based on a k-NN classifier over the T1-

weighted and FLAIR modalities. Their method used both spatial information and voxel

intensities as features and provided probabilistic segmented images, which are then passed

through a certain threshold value to obtain the final results. The authors generated brain

masks at their preprocessing stage, and reported that tissues like skull and skin disturbed

their classifier. They also suggested that having a probabilistic output for tissue classes was

advantageous due to the flexibility it could provide to further processing stages. Souplet

et al. [78] used the FLAIR, T1-, and T2-weighted modalities for the MICCAI 2008 MS

lesion segmentation challenge. Their method used the T1w and T2w images to segment the

brain into compartments, followed by intensity thresholding over the FLAIR image. This

method required intensity normalization at the preprocessing stage, that allows using an EM

algorithm over the intensities to segment tissues into 10 different gaussian-modeled classes,

where outliers according to a certain Mahalanobis distance threshold are considered as lesions.

In 2010, Shiee et al. [74] developed a method for lesion delineation using a topological and

statistical atlases. The method is a generalization of their healthy tissue segmentation method

named Topology-preserving Anatomical Segmentation (TOADS) [12], by considering lesions

and other topological outliers as topology-preserving when grouped with underlying tissues

[74]. Their method addresses lesions by adding an additional class to the model and adjusting

the tissue weights accordingly. The authors suggested that another class should have been

added in order to accommodate the two lesion subtypes: T1 black holes and T2 hyperintense.

Garcia-Lorenzo et al. [30] developed a method using normal appearing tissue intensities and a

trimmed likelihood estimator . The authors preprocess the data for intensity inhomogeneties

and skull-stripping using the T1-weighted image, followed by estimation of the trimmed

likelihood model for normal appearing brain tissues. The outliers from the previous stage,

based on the Mahalanobis distance, are then marked as lesion candidates that are eliminated

using a priori heuristic rules based on intensity, size and neighbour information. The authors

concluded that outliers included lesions, however, other kinds of voxels such as vessels, skull

tissues or acquisition artifacts were considered outliers as well and labeled during the outlier

detection process.
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2.2.3 Neural Network Based Methods

The last category to be discussed is methods that employ artificial neural networks, which

belong to the category of supervised techniques. This techniques are presented separately

due to their relevance to the topic of the research presented in this thesis.

In 1994, Zijdenbos et al. [98] developed a semi-automatic approach for lesion segmen-

tation based on an artificial neural network classifier, while adding noise filtering at the

preprocessing stage and surface-fitting method for correcting the variations of spatial inten-

sity. They reported the cardinality of the pre- and post-processing routines, like heuristically

eliminating lesions measuring less than 8 square millimeters, to achieve comparable results

to the inter- and intra- rater of manual expert segmentations. Goldberg-Zimring et al. [33]

developed an automatic method for delineation of MS lesions that is based on detection of

voxel hyperintensities, followed by removal of false-positives by features such as anatomical

location, shape and size using an artificial neural network classifier. The reported that the

shape-index feature used to quantify the shape of lesion candidates was useful for the task,

and was defined as the ratio between the area and the squared perimeter of the object. On

the other hand, the authors noted a known limitation of the algorithm for cases in which

there is poor contrast between lesions and other brain tissues. In 2002, Zijdenbos et al. [99]

proposed an automatic pipeline, including intensity normalization, noise reduction, inten-

sity nonuniformity correction, registration, resampling, and brain-masking for preprocessing,

followed by artificial neural network based tissue classification. Hadjiprocopis et al. [35] de-

veloped a method that uses an ensemble of artificial neural networks over proton density and

T2-weighted magnetic resonance images, while each neural network was trained on a differ-

ent subset of the multiple sclerosis subjects training data. The authors suggested that their

results could have been significantly improved by adding a post-processing stage with a priori

knowledge about the brain anatomy. In 2007, Younis et al. [97] applied an artificial neural

network based approach, using BrainWeb [18] simulated T1- and T2-weighted MR images

as inputs. They used noise filtering for preprocessing, followed by a preliminary T1 image

segmentation into classes of white matter, gray matter, cerebrospinal fluid and Multiple Scle-

rosis lesions, while incorporating intensity information from the six nearest neighbours for

each voxel. Once the image was segmented over the T1 modality, the T2 image is segmented

using an additional artificial neural network that operated only on the non-CSF classes from

the previous stage, in order to not confuse them with lesions. Worth mentioning is that

the authors used a only a single simulated image for training, and 5 simulated images for

testing. In 2012, Cerasa et al. [16] presented a cellular neural network, which is based on
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genetic algorithms, for automatic lesion segmentation over FLAIR images. Their approach

takes spatial interaction between neighbouring voxels into account during the segmentation

process, and satisfactory results were reported by the authors, however, the research was

conducted over a dataset of only 11 patients, in which very poor results were reported for

one of the testing subjects and were attributed to the MR image intensity range. Also, the

approach was applied on a single modality, rather than over a multichannel MRI.

The methods above use different kinds of neural networks as their classifiers. However,

none of them uses convolutional neural network, which is an architecture that recently gained

popularity in the field of computer vision for object classification tasks. The input features

used for the methods above were manually selected, and an advantage that convolutional

neural networks could provide would be to make this process automatic, and therefore less

subjective.

The next section presents a literature review containing applications of convolutional

neural networks in recent literature. The review will start by presenting applications from

the field of computer vision and object recognition and will continue with their applications

in the field of medical image analysis and pathology detection. As will be shown, these

architectures have recently gained popularity mostly due to their unbeatable performance

on large-scale object recognition tasks such as the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) [68].
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Zijdenbos et al.(1994) [98] ANN 6 36 1.5T 0.91 0.91 3./5 3 7 3 7 3 7 7 7 7

Kamber et al.(1995) [45] DT1, Statistical Classifiers2 12 12 1.5T - - 2 3 7 3 7 3 7 7 7 7

Johnston et al.(1996) [44] MRF 5 5 1.5T 0.78 0.78 5 3 7 7 7 3 7 7 7 7

Goldberg-Zimring et al.(1998) [33] ANN 14 45 - - - - 7 3 7 3 3 7 7 7 7

Vinitski et al.(1999) [90] k-NN 12 12 1.5T - - 3 3 7 3 3 3 3 7 7 7

Warfield et al.(2000) [92] k-NN + Nonlinear Registration Feedback - - - - - - 3 7 7 3 3 7 3 7 7

Van Leemput et al.(2001) [87] Expectation Maximization 50 300 1.5T 0.9 0.9 2.4/5 3 7 3 7 3 7 7 7 7

Zijdenbos et al.(2002) [99] ANN 600 1000+ - - - 3 3 7 3 7 3 7 7 7 7

Hadjiprocopis et al.(2003) [35] ANN 20 1.5T 0.93 0.93 3 3 7 7 7 3 7 7 7 7

Wu et al.(2006) [94] k-NN 6 12 1.5T 0.97 0.97 3 3 7 7 3 3 7 7 7 7

Harmouche et al.(2006) [36] GMM + MRF 10 10 - - - - 3 7 3 7 3 7 7 7 7

Younis et al.(2007) [97] ANN 1* 5* - - - 1 7 7 3 7 3 7 7 7 7

Anbeek et al.(2008) [10] k-NN 45 45 3T 0.5 0.5 1 7 3 3 7 7 7 7 7 7

Morra et al.(2008) [60] AdaBoost 45 45 3T 0.5 0.5 1 7 3 3 7 3 7 7 3 3

Wels et al.(2008) [93] PBT3 + MRF 6 6 - - - - 7 3 3 3 7 7 7 7 7

Kroon et al.(2008) [49] PCA 45 45 3T 0.5 0.5 1 7 3 3 7 3 7 7 7 7

Scully et al.(2008) [72] KMeans + Nave Bayes 45 45 3T 0.5 0.5 1 7 3 3 7 3 7 7 7 7

Souplet et al.(2008) [78] GMM + EM 45 45 3T 0.5 0.5 1 7 3 3 7 3 7 7 7 7

Subbanna et al.(2009) [80] GMM + MRF 24 24 1.5T - - 3 3 3 3 7 3 7 7 7 7

Akselrod-Ballin et al.(2009) [8] Decision Forest 25 25 1.5T .83/.98 .83/.98 5 3 3 3 7 3 7 7 7 7

Shiee et al.(2010) [74] Fuzzy C-Means Clustering 10 10 3T 0.83 0.83 2.2 7 3 3 7 7 7 7 7 7

Yamamoto et al.(2010) [96] SVM + LSM4 3 6 3T 1 1 5 7 3 3 7 3 7 7 7 7

Geremia et al.(2010) [32] Random Forest 45 45 3T 0.5 0.5 1 7 3 3 7 3 7 7 7 7

Garcia-Lorenzo et al.(2011) [30] TLE5 10 10 1.5T 0.97 0.97 3 3 7 3 7 3 7 7 7 7

Cerasa et al.(2012) [16] Cellular Neural Network 11 11 1.5T 0.94 0.94 5 7 3 7 7 7 7 7 7 7

Table 2.2 Multiple Sclerosis Lesions Segmentation Methods. Based on the methods presented in [29].

1Decision Tree
2Minimum distance[88] and Bayesian[24]
3Probabilistic Boosting Trees
4Level Set Method
5Trimmed Likelihood Estimator
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2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) were introduced by LeCun et. al [52] in 1989, pro-

viding an approach to address the challenge of handwritten digits recognition. Even though

based on the standard neural network architecture, this new technique has several significant

improvements over that make it more suitable for computer vision tasks than traditional

ANNs. At 1998, LeCun et al. reached 0.7% [53] misclassification rate over his digits dataset

[54], while concurrent CNNs achieved 0.21% [91] error rate, which corresponds to a total of

21 misclassifications over 10,000 test images. The appealing results of convolutional neu-

ral networks over this relatively simple classification challenge, and the advances in parallel

computation technologies and Graphical Processing Units (GPUs) enabled generating and

training considerably larger architectures. In 2014, the ILSVC challenge has introduced a

1,000-classes classification problem over 1,200,000 training images, 50,000 for validation and

100,000 for testing. All the 3 top scoring teams reached error rates between 6.67-7.35% using

CNN-based approaches [39, 75, 85]. As of 2015, He et. al. [38] had reported the first solution

that surpasses human-level performance (5.1%)[69] for the recognition challenge, achieving

4.94% test error rate.

The major advantage of CNNs lies in the fact that the model learns the optimal set of

task-related features from the data, rather than selecting them from a set of predetermined

or hand-crafted features. For this reason, CNNs were applied to many challenges from dif-

ferent domains over the several last years. CNNs have been employed for human action

recognition [43] in real-world environments, considering time as a third dimension, by using

3D convolutional networks over videos rather than 2D architectures over images. Sermanet

et. al. [73] reported 94.85% accuracy and 45.2% improvement comparing to other methods

when using convolutional neural networks for the task of house numbers digit classification.

Karpathy et. al. [46] used CNNs to achieve a significant improvement, comparing to feature-

based baselines, on a large-scale video classification of over 1 million YouTube videos into 487

classes. Sun et al. [82] employed CNNs for facial keypoints detection and reported success-

fully avoiding spatial local minimas, while being robust to occlusions. These authors reported

state-of-the-art results in both detection accuracy and reliability. Toshev and Szegedy [86]

used CNNs for human pose estimation, achieving state-of-the-art performance on real-world

images. Sun et. al. [83] used CNNs for face representation over 10,000 classes, and achieved

97.45% verification accuracy with weakly aligned faces. Li et. al. [56] employed CNNs for

re-identification of pedestrians in disjoint camera views over 1,360 different persons. Samples
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from these papers are shown in Figure 2.3.

The applications above address tasks from the fields of computer vision and object recog-

nition. Convolutional neural network is a generic machine learning framework, and have

begun to be applied to other domains such as medical image analysis. A literature review of

their applications in the medical imaging domain is presented in the following section.

2.4 Convolutional Neural Networks for Medical Image Analysis

In the field of medical image analysis, there were a series of contexts where CNNs were

successfully deployed. Convolutional neural networks were used by Curesan et al. [17] for

segmentation of neuronal membranes in electron microscopy images, outperforming compet-

ing techniques by significant margins. Habibzadeh et al. [34] addressed the challenge of

white blood cell differential counts using a CNN, and comparing to the more traditionally

used Support Vector Machine (SVM) with Principal Components Analysis (PCA) dimen-

sionality reduction, the authors concluded that the experimental results show that the CNN

is more accurate, even in the presence of poor quality samples. In 2013, Prasoon et al. [66]

used CNNs for knee cartilage segmentation in MRI scans and achieved an accuracy rate of

99.93%, sensitivity 81.92% and specificity 99.97%. Li et al. [55] published a CNN-based

method for completing a missing modality based on available images. The implemented a

3D convolutional architecture for predicting missing Positron Emission Tomography (PET)

data from MRI input images, and reported notably outperforming other methods. In 2014,

Xu et al. [95] reported that previously developed features like SIFT and Haar were unable

to comprehensively represent objects like cells, which are characterized by significant clinical

features, and were outperformed by learned-from-data features for the task of cancer cell

detection in histopathology images.

Convolutional neural networks were used in 2006 by Ge et al. [31] for computer-aided

detection of microcalcifications lesions in mammography. The authors reported cluster-based

sensitivity rates of 70, 80 and 90% at respective rates of 0.21, 0.61 and 1.49 false-positives

per image. Roth et al. [67] addressed the task of lymph node detection using random sets

of deep convolutional neural network observations, achieving sensitivity of 83% at 3 false-

positives per volume rate. Cruz-Roa et al. [22] used a deep learning architecture in 2013 for

automated basal-cell carcinoma cancer detection. They evaluated different image representa-

tions strategies such as bag of features, discrete cosine transform and Haar wavelet transform

to learning the features using convolutional auto-encoders and obtaining from-data repre-
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Figure 2.3 Examples of Application Contexts of Convolutional Neural Net-
works, images are courtesy of [22, 47, 56, 57, 66, 73, 82, 83, 86, 95]. Top to
bottom, left to right: (a) house number dataset and classification [61], (b) facial
point detection and labels, (c) body pose, (d) face representation, (e) person
re-identification dataset and classification, (f) knee MRI and labeling, (g) can-
cer histopathology images and labels, (h) prostate images and segmentation
labels, (i) hippocampus images and segmentation labels, and (j) colon images
and cancer classification.
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sentations. They concluded that features learned from data had the best task performance

of 89.4% in F-measure and 91.3% in balanced accuracy, improving 3% and 7% over bag of

features and canonical representations, respectively. Other unsupervised deep learning based

approaches were used in recent years for medical imaging. Liao et al. [57] shown that the

most effective features for the task of automatic prostate segmentation in MRI were designed

in a learning-based manner, rather than hand-crafted without the guidance of the dataset,

such as histogram of oriented gradients and Haar wavelets. They used stacked Indepen-

dent Subspace Analysis (ISA) [51], which applies very similar concepts to the ones employed

in convolutional neural networks, achieving state-of-the-art segmentation results. Kim et al.

[47] used a two-layer stacked convolutional ISA network and reported promising hippocampus

segmentation results, integrating it with multi-atlases based framework and replacing previ-

ous hand-crafted features. Lio et al. [58] shown an accuracy improvement when using stacked

auto-encoders for computer-aided diagnosis of Alzheimers disease. Brosch et al. [15] used

deep belief networks to learn the manifold of brain MRIs, rather than predefining a similarity

measure. They reported that the manifold coordinates captured variations between images

that correlate with clinical and demographic parameters, such as age and gender. Examples

from these publications are shown in Figure 2.3. Recently, convolutional neural networks

were applied by Vaidya et al. [70] for longitudinal Multiple Sclerosis lesion segmentation,

and achieved comparable scores to the inter-rater variability after a post-processing stage

that rejects lesions outside the atlas-registered white matter region. It is worth mentioning

that these are the challenge results, and not an official publication.

2.5 Motivation for CNN

The previous section discussed convolutional neural networks and their success in computer

vision applications. Medical image segmentation deals with a very large dimensionality of

inputs. Most of the MR images used for this research, which are from real clinical trials,

are in the orders of 3.9 million voxels per each of the five input modalities, resulting in

total input dimensionality of 19.7 million voxels per image. Convolutional neural networks

could exploit the 3D structure of the input and also allow some degree of invariance. This is

performed using their local-connectivity, constrained sharing of parameters and hierarchical

pooling layers. These properties, along with their recent success in the computer vision field,

and considering the fact that they produce data-driven features rather than require hand-

crafted ones as inputs makes them attractive for experimenting with Multiple Sclerosis lesion
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segmentation.

The next chapter will introduce the theoretical background of convolutional neural net-

works in order to provide the reader with the background required for understanding the

proposed method and experimental configurations in the following chapters. The concept

of artificial neural networks will be explained thoroughly, starting from the neuron model

up to the full CNN model, layer definitions and optimization methods. Also, this chapter

will discuss the advantages of convolutional neural networks over traditional fully-connected

neural networks within the computer vision domain. By the end of this chapter, the reader

should be familiar with both the model and the common training and inference procedures.



Chapter 3

Convolutional Neural Networks

Overview

Convolutional Neural Networks (CNN) are part of a larger field referred to as deep learning.

Deep learning is a subfield of machine learning, in which multiple levels of representation

and abstraction are built based on the data. For example, it presents strategies for rep-

resenting highly varying functions using only a few parameters through the composition of

several non-linearities [14]. These collections of several non-linearities are referred to as deep

architectures, which are different from shallow architectures which contain only few levels

of data dependent computational elements [1, 14, 23]. For example, a neural network with

a single hidden layer is a shallow architecture, while multi-layer and convolutional neural

networks are deep architectures. Other examples of deep learning are: deep belief nets [40],

deep Boltzmann machines [71], stacked denoising autoencoders [89] and deep recurrent neural

networks [64]. Convolutional Neural Networks are a machine learning technique that recently

gained popularity in the field of computer vision, mainly for the task of object classification.

It is inspired by the biological vision system, and is built upon the artificial neural network

model. The objective of the CNN is to classify the input image, while taking its spatial

structure into account using mechanisms such as receptive fields from the human visual sys-

tem, and providing invariance to translations and other vision-related transformations. The

main advantage of CNNs over traditional methods is that they learn features from the data

instead of using hand-crafted features. In this chapter, artificial neurons are presented, fol-

lowed by their usage as the building blocks for neural networks models, and ending with the

full convolutional neural network model and training procedures.
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3.1 Artificial Neural Networks (ANN)

Artificial neurons are the building blocks of artificial neural networks. The neuron unit

receives an input in a form of a vector x (which could be a feature vector or an input signal

for a classification task), performs a dot product of the input with a predefined weights vector

w (could represent the features importance), added to a predefined bias b (used to shift the

decision boundary from the origin) and passes the result through an activation function

g, that could be used to add non-linearity to the output. This process is defined as h(x)

in Equation (3.2), where a is the pre-activation function defined in Equation (3.1), before

applying g on the result. The input vector x and the weights vector w are both of dimension

n, while the bias b is a scalar. The artificial neuron model is shown in Figure 3.1. A list

of commonly-used neuron activation functions g(a) and their corresponding derivatives g′(a)

are shown in Table 3.1 and visualized in Figure 3.2. In terms of capacity, a single neuron

could only linearly separate between classes as shown for the case of w ∈ IR2 in Figure 3.3.

Equations (3.2)-(3.15) are adapted from [50].

a(x) ≡ wTx + b (3.1)

h(x) ≡ g(a(x)) = g(wTx + b) (3.2)

x,w ∈ IRn, b ∈ IR1 (3.3)

Activation Function Name Symbol Expression Derivative

Linear a 1
Sigmoid sigm(a) 1

1+e−a sigm(a) (1− sigm(a))

Hyperbolic Tangent tanh(a) ea−e−a

ea+e−a 1− (tanh(a))2

Rectified Linear Unit relu(a) max{0, a}

{
0 if x < 0

1 if x > 0

Softplus softplus(a) log(1 + ea) sigm(a)

Table 3.1 Common activation functions for artificial neurons.

A single neuron can only linearly separate data, and therefore data that is not linearly

separable could not be correctly classified using such model. This limitation in terms of

capacity had led to the development of a multilevel representation technique called Multi-

Layer Neural Network, or Multi-Layer Perceptron (MLP).
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Figure 3.1 Artificial Neuron Model. The input signal x passes through the
pre-activation stage on the left hand side of the figure, then continues to the
activation function, yielding h as the output signal. The free parameters of the
neuron are the wights vector w and the bias b.
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Figure 3.2 Common Activation Functions.
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Linearly Separable Not Linearly Separable

Figure 3.3 The Capacity of a Single Neuron. A single neuron can only linearly
separate data. On the left hand side, we show two examples of linearly separable
two-dimensional data that a single artificial neuron could classify correctly. On
the right hand side are two non linearly separable scenarios for which a single
neuron could not correctly classify all the data points.

3.2 Multi-Layer Perceptron (MLP)

MLPs generate a new representation of the input-space that converts the data to a linearly

separable set, which for the computer vision task maps to a features vector that was extracted

from an input image. This representation is formed by adding an additional layer of neurons

between the input and the output as shown in Figure 3.4. This process is defined by the pre-

activation function of the k th hidden layer in Equation 3.4. The values of the hidden layer

are then calculated by applying the activation over the units in Equation 3.5 for every layer

according to 3.7. The output values y are determined by the output function o, which could

be used to constrain the sum of the output neurons to be one in the case of classification,

for example. Note that each layer k could contain a different amount of artificial neurons

Nk. In terms of capacity, and the universal approximation theorem, a standard MLP with

only a single hidden layer is capable of approximating any continuous function to any desired

degree of accuracy when providing a sufficient amount of hidden units [41].

a(k)(h(k−1)) = W(k)h(k−1) + b(k) (3.4)

h(k)(h(k−1)) = g(W(k)h(k−1) + b(k)) (3.5)
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y(x) = o(W(H+1)h(H) + b(H+1)) (3.6)

1 ≤ k ≤ H;h(0) ≡ x (3.7)

ℎ1
(1)

ℎ𝑁1
(1)

ℎ𝑗
(1)

𝑥𝑖

𝑥1

𝑥𝑁

Input Hidden (#1)
Representation

ℎ1
(𝐻)

ℎ𝑁𝐻
(𝐻)

ℎ𝑗
(𝐻)

𝐲

OutputHidden (#H)
Representation

Figure 3.4 Multi-Layer Perceptron. The input data x ∈ IRN is being repre-
sented as h ∈ IRH in each of the hidden layers, then classified as y at the output
stage.

The limitation of MLP in the context of computer vision is that they do not model the

spatial relationships between the pixels, which makes them sensitive to image transformations

such as translation and scaling. Convolutional Neural Networks (CNNs) address these issues

by using three mechanisms that provide invariance to such transformations.

3.3 Convolutional Neural Networks (CNN)

Convolutional neural networks are based on the multilevel perceptron model, yet with several

characteristics that make them more appropriate for computer vision related tasks. Vision

problems, in which the inputs are images, introduce a very large input dimensionality. For

example, using a standard camera to take pictures of sizes between 1280x960 and 3264x2448

pixels will produce input images of 1.2 to 7.9 million dimensions. In order to build invariance

and exploit the known image topology, convolutional neural networks introduce the following

three main differences for performance improvement:

1. Shared weights;

2. Local connectivity (receptive fields);
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3. Pooling layers (image size reduction by sub-sampling);

The inspiration for local connectivity in neural networks comes from Hubel and Wiesel’s paper

in 1962 [42], in which they published their discovery of local receptive fields in the visual

system of cats. The local connectivity enables the network to extract locally meaningful

features such as corners, edges, orientations etc. The artificial model that imitates this

behavior comes in the form of convolutions of small kernels of weights with the image, which

is equivalent to having a fully connected layer that shares the weights between every local

set of connection and has zero weights outside of this neighbourhood. The results of this

operation are called feature maps, and the biologically-inspired property of receptive fields

is obtained by the limited size of the kernels used for the convolution. The network extracts

several features at each location, which is defined by the amount of kernels used to generate

them. Note that a shift in the input space will only result in a shift of the output, conserving

the same values. Moreover, smaller amounts of training data are needed due to the sharing

of weights that reduces the capacity of the model. This also makes the model more robust to

distortion. The next stage is subsampling, or pooling, in which the spatial dimensionality of

the feature maps is significantly reduced. This could be done by many different subsampling

techniques, but the most commonly used are either max-pooling or average-pooling. The first

technique propagates the highest activation value within the neighbourhood to the next level

in the hierarchy, and the second one propagates the average activation value. This operation

builds higher-level representations by combining lower level features and increasing the size

of the receptive fields [53]. The architecture of a standard convolutional neural network is

shown in Figure 3.5.

3.4 Learning the Parameters

Given a model for an artificial neural network, we now seek to learn the optimal set of

parameters W and b for each layer. In order to frame the learning task as an optimization

problem we use the definition of empirical risk minimization in Equation 3.8, where Θ is the

set of all free parameters of all layers, T are the training examples, l is the loss function, f

is the output of the neural network for input x(t) given the parameters, y(t) are the training

labels and Ω is a regularizer function over the parameters, weighted by the coefficient λ.

Θ = argminΘ
1

|T |
∑
t∈T

l
(
f(x(t); Θ), y(t)

)
+ λΩ(Θ) (3.8)
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OutputFully Connected LayersConvolution Pooling

Convolutional Neural Network (CNN) Multilayer Perceptron (MLP)

Repeat

Input
Image

Feature 
Maps

(Convolution)

Feature 
Maps

(Subsampling)

Hidden
Features

Output
Classes

Figure 3.5 Convolutional Neural Network. The input image is convolved
with the kernels of the convolutional neural network to obtain the feature maps.
These maps are then subsampled at the pooling stage, and the process is re-
peated, alternating between convolution and pooling. At the end, the results
are provided as inputs to a standard multilayer neural network that provides
the final classification.

For classification problems, we minimize the negative log-likelihood:

l(f(x(t)), y(t)) = −
∑
c∈C

δ(y, c)log
[
f(x(t))c

]
(3.9)

The output class is noted as c, and the collection of all possible outputs is noted as C.

δ(x1, x2) ≡



1 if x1 = x2

0 if x1 �= x2

(3.10)

Where C is the collection of all possible classes, δ is the identity function defined in

Equation 3.10 and f(x(t))c is the notation for taking the cth element of the vector f(x(t)). In

order to minimize this function, it is common to use the framework of Stochastic Gradient

Descent (SGD), and define the term epoch as single iteration over the whole training set. The

main reason for using the stochastic version of gradient descent rather than the standard one is

technical. Large training sets cannot be fully stored in memory at once, especially when using

graphical processing units for parallel computation. A tradeoff between gradient descent and

stochastic gradient descent is offered by the batch gradient descent algorithm. This algorithm

is exactly the same as SGD, except that it loops over the whole training set and accumulates

the changes over the free parameters Θ. For example, having a dataset of 1000 examples and
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input : Labeled training examples (x(t), y(t)) and a loss function l(x, y; Θ)
output: Optimization over Θ

Initialize Θ0;
for N iterations (epochs) do

for each training example t ∈ T do
calculate gradient ∇Θl ≡ ∇Θl(x

(t), y(t); Θ)|Θ=Θi

update parameters Θi+1 = Θi − α∇Θl
i← i+ 1

end

end

Algorithm 1: Stochastic Gradient Descent (SGD).

splitting it into 100 batches of 10 samples each would be considered batch gradient descent.

Once done, all the free parameters are updated and the process repeats for the next epoch

over the whole training set.

When using the loss function in Equation 3.9 and the batch gradient descent algorithm,

the optimization process only requires the calculation for the gradients ∇Θl. The gradients

are obtained using the back-propagation algorithm, which is the result of applying the chain-

rule starting from the output y all the way back to the input x. First, the forward pass is

calculated by forward-propagation of the input signal x, as described in Equations 3.4-3.6.

The output gradient is shown as:

∂

∂f(x)c
[−log [f(x)y]] =

−δ(y, c)
f(x)y

(3.11)

A common choice for the output in the context of classification is the Softmax layer. This

layer is defined as an output neuron for which the activation function is the softmax function

in Equation 3.12, where a is the pre-activation, y is the output class and c′ is an index over

all the possible output classes. For example, for model with two possible outputs y ∈ {0, 1}.

softmax(a)y ≡
eay∑
c′ e

ac′
(3.12)

The softmax layer pre-activation partial derivative is shown as:

∂

∂a(H+1)(x)c
[−log [f(x)y]] = −(δ(y, c)− f(x)c) (3.13)
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The gradient calculation of the hidden layers and their pre-activations are is shown in equa-

tions 3.14-3.15, when � denotes element-wise product. The partial derivatives g′(a) for

common activation functions g(a) are shown in Table 3.1.

∇h(k)(x) [−log [f(x)y]] = W (k+1)T (∇a(k+1)(x) [−log [f(x)y]]) (3.14)

∇a(k)(x) [−log [f(x)y]] = (∇h(k)(x) [−log [f(x)y]])�
(
g′(a(k)(x)1), ..., g′(a(k)(x)j), ..., g

′(a(k)(x)Nk
)
)

(3.15)

In order to accelerate learning, a physically inspired momentum term [65] is added to

the gradient updates. This additional hyperparameter µ could be considered as the mass of

the optimization process who tends to continue going towards the same direction due to its

momentum. When using momentum, the update rule becomes a two-step process; first we

update the velocity vt using the learning rate ε, as in Equation 3.16, then we update the

parameters Θt in Equation 3.17 [84].

vt+1 = µvt − ε∇f(Θ)|Θt (3.16)

Θt+1 = Θt + vt+1 (3.17)

Another option is to use the Nesterov Momentum [84] update, which first propagates the

parameters and only then modifies the velocity:

vnesterovt+1 = µvt − ε∇f(Θ)|Θt+µvt (3.18)

The difference between classical momentum and Nesterov momentum is shown in Figure 3.6.

In order to train large neural networks with high model capacities (which is common

terminology for describing that it can model many different functions accurately) and still

obtain low-variance optimization solution that does not overfit the training data, we use

a regularization technique called early stopping. The training data is split into three sets;

(a) training, (b) validation, and (c) testing set. The training set is used directly for the

optimization process, while measuring the negative log-likelihood and error-rate over both

the training and the validation sets. While the optimization algorithm is running, we always

keep a copy of the parameters that achieved the highest accuracy over the validation set,

hoping that it reliably represents the expected results over yet unseen data from the testing

set. In this regularization technique we take the set of model parameters that obtained the

best performance over the validation set during the optimization process, and it is named
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Figure 3.6 Classical versus Nesterov Momuntum, courtesy of [84]. On the
top, we see the classical momentum update, calculating the gradient at the cur-
rent location in parameter-space. At the bottom, Nesterov momentum is shown
a measurement of the gradient g only after taking a step of µvt in parameter-
space.
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early stopping because this is equivalent to stopping the optimization process when the

best performance over the validation set was achieved. Early stopping is probably the most

commonly regularization method in deep learning, and is popular due to its simplicity and

effectiveness [13]. It is simple to implement when tracking the model performance during the

training process, and it is effective due to nature of cross-validation on which it relies. Early

stopping could be proven to be equivalent to L2 regularization over the weights in the case

of a simple linear model with a quadratic error function when using gradient descent [13] as

shown in figure 3.7.

Figure 3.7 L2 Regularization versus Early Stopping, courtesy of [13]. The
ellipses represent the cost function that is being optimized on the right, and
both the cost function and the regularization term on the left hand side. w1

and w2 are the parameters that are optimized with respect to the objective
function. w∗ is the optimal configuration without regularization, and wτ and w̃
are the solutions when optimising using early stopping and L2 regularization,
respectively. On the left hand side we see the behaviour of L2 regularization
over the weights w1 and w2, on the right hand side we see the optimization
process as the curve starting at the origin using Early Stopping achieving an
identical result.

This chapter discussed the mathematical background of convolutional neural networks,

and this framework will be used in the next chapters to design a model for Multiple Sclerosis

lesion segmentation. The building blocks of the proposed method of this thesis are mainly

convolutional neural networks. They are designed using different configurations of layers

and activation functions, and trained using the algorithms, while exploring different settings

for their hyperparameters that were discussed along this chapter. The next chapters will

present the details of the proposed technique and CNNs, and will be followed by the different
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experimental configurations and their results.



Chapter 4

Deep Learning for MS Lesion

Segmentation

The method presented in this thesis is designed to detect and delineate Multiple Sclerosis

lesions in brain MR images. These input images are multi-modal MRI, and therefore com-

posed of several different modalities each (e.g. FLAIR, T1p, T2w, etc.). This task is mainly

a detection task, in which the lesions are detected, but also a delineation task for defining

their boundaries. It is challenging because a well-established set of manually designed fea-

tures that capture MS lesions does not currently exist. For this reason, the proposed method

is designed to automatically and objectively extract such features by using deep learning

techniques. In order to embed context information within the framework, the method uses a

multi-scale, hierarchical segmentation approach that employs convolutional neural networks

(CNN) and multi-layer perceptron (MLP) models as feature extractors, voxel-level classifiers

and full lesion detectors.

First, the input MRI modalities are fed into a set of parallel local voxel classifiers, ana-

lyzing different neighbourhood resolutions. The purpose of this layer is to extract features

and characterize lesion in terms of local intensities, and embed context using local and larger

neighbourhood information. The results of the first level are then augmented using prior

spatial information regarding healthy tissues and pathology, and followed by a second level

of classification. The purpose of the second level is to make a more informed decision, which

is based on the results of the three Level-1 classifiers jointly. This multi-scale approach was

designed in order to use the decisions from the first level and further model them as an

ensemble. For example, if the local voxel intensity appears to correspond to a lesion, but

the larger-neighbourhood context seem to be of a healthy tissue, this classifier is designed to
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model the correct output classification. The inputs to the second level are the results from

the first level and the spatial priors that were registered to the T1-weighted image of each

subject, and provide additional contextual information for the decision. Three different ar-

chitectures were designed to address the task from this stage until the final output, including

an artificial neural network and two random forests.

The first architecture models the joint distribution using an ANN. The second architecture

further processes the results using a third level of lesion-wise classification. The purpose of

this additional level is to eliminate false positive detections of lesions from the previous stage

by reconsidering the fully segmented lesions on a per-lesion basis. The classifier is designed

to learn how to detect false positives of the previous level. The first and second architectures

are shown in Figure 4.1.

The third and fourth architectures model the joint distribution using RFs. The reason

to design and test such classifiers is their success in the field of MS lesion segmentation [32].

This success was obtained, however, using hand-crafted features, and it would be interesting

to explore if this concept works when using features that were automatically learned by the

CNNs of the first level. These architectures are shown in Figures 4.2 and 4.4.

The neighbourhoods used for all classifiers presented in this thesis are three-dimensional,

and therefore include information from adjacent brain slices in order to reach more informed

decisions between lesion and non-lesion voxels. The different neighbourhoods used for Level-1

classifiers are illustrated in Figure 4.3.

4.1 Level-1

The purpose of the first level of classifiers is to learn and model several lesion characteristics:

� Voxel intensity

� Close-neighbourhood information

� Larger-neighbourhood model

The first classifier, CNN1-1, is designed to model the intensity of lesion voxels using a

neural network classifier. In order to maintain a higher degree of robustness to local noise and

acquisition-related artifacts, the classifier learns to discriminate lesions while augmenting the

information provided by voxel intensities with information from its immediate neighbours over

all input modalities. For example, a single hyper-intense voxel within a strictly hypo-intense
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CNN1-1
3x3x3

CNN1-2
9x9x9

CNN1-3
23x23x23

Input Level 1 Level 2 Level 3 Output

Voxel-Wise Classification Lesion-Wise Classification

TISSUES
ATLAS
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Architecture 1 
Output

Architecture 2 
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Figure 4.1 Architectures 1 and 2 Illustration. The method assumes to get a
series of multi-contrast images (e.g. FLAIR, T1-, T2-weighted, PD and T1 post-
contrast) as input modalities, augmented with healthy-tissue and lesion atlas
priors. At level 1, the MR images are classified using 3 scales of 3D convolutional
neural networks of neighbourhood sizes 3x3x3, 9x9x9 and 23x23x23. The results
are then concatenated to the atlas and lesion spatial priors in order to form the
input for level 2, in which a trained ANN classifies the multi-scale augmented
feature vectors. At level 3, the voxels are segmented to create 3D lesions, then
each candidate lesion is classified to form the final output. Notice that Common
Block A is also used in Architectures 3 and 4.
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RF2-1
OR
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CNN1-1
3x3x3

CNN1-2
9x9x9

CNN1-3
23x23x23
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ATLAS

LESIONS
ATLAS

Common Block A

Figure 4.2 Architectures 3 and 4 Illustration. The method assumes to get a
series of multi-contrast images (e.g. FLAIR, T1-, T2-weighted, PD and T1 post-
contrast) as input modalities, augmented with healthy-tissue and lesion atlas
priors. At level 1, the MR images are classified using 3 scales of 3D convolutional
neural networks of neighbourhood sizes 3x3x3, 9x9x9 and 23x23x23. The results
are then concatenated to the atlas and lesion spatial priors in order to form the
input for level 2, in which a trained RF classifies the multi-scale augmented
feature vectors. Notice that Common Block A is also used in Architectures 1
and 2.
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neighbourhood might indicate either a lesion, or an artifact. This model has the capacity

that enables it to automatically learn to differentiate these two cases from the training data,

and model the local noise in order to achieve rather informed resolutions.

In the framework, the design of the voxel-intensity classifier is not intended to model

the complete neighbourhood of the voxel. It is designated to consider only the underlying

intensity, and extract features that describe it without modeling the surroundings of the

voxel. Considering the two additional first-level classifiers, this will prevent an undesirable

coadaptation (learning the same features in different classifiers) of the extracted features, and

enable a second-level classifier to learn more robust joint distributions over the multi-scale

ensemble.

The second first-level classifier, CNN1-2 represents a medium-range neighbourhood model.

At this range, delineation of lesions is expected to become a slightly harder task, and the

determination of the exact lesion boundaries would rely more on the context of the close

neighbourhood than its underlying intensity model from CNN1-1. This classifier is introduced

to a larger input size, but not too large, in order to prevent coadaptation with the third first-

layer classifier.

The last first-layer convolutional neural network, CNN1-3 is designed to model a large/long-

range local neighbourhood around the voxel. The purpose is to extract contextual information

into features that will help discriminate the lesions based primarily on the context rather than

its own appearance. Modeling large neighbourhoods of voxels could aide detecting lesions

based on their shapes, high-level appearance, location, anatomical structure, inter-lesion

statistics and more. Learning these relationships from the training data is expected to have

a positive effect on the quality of the results in terms of false-positive detections of structures

that exhibit lesion-like characteristics from close, but are located in either anatomically-

impossible locations for lesions or form a shape that do not comply with the model for the

shapes formed by MS lesions.

4.2 Level-2

The next level of the method, Level-2, is using the predictions from Level-1 and aug-

ments them with registered spatial priors for tissues such as white-matter, gray-matter,

cerebrospinal-fluid, and lesions. In order to combine Level-1 predictions and obtain the

final segmentation, two different approaches were proposed:

� Artificial Neural Network (ANN), used in architectures 1 and 2.
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Large-Neighborhood
Model

Close-Neighborhood
Model

Voxel-Intensity
Model

Figure 4.3 Level-1 Neighbourhood Models. This figure illustrates the multi-
scale approach used in Level-1 of the method. Three different sizes neigh-
bourhood models are trained from the data in order to learn discriminative
features of multiple sclerosis lesions, based on: (a) voxel-intensity, (b) close-
neighbourhood, and (c) large-neighbourhood. We can see the context informa-
tion in the large-neighbourhood patches (yellow), the local information in the
close-neighbourhood aperture in red, and local intensities in green. All the mod-
els in this thesis use 3D neighbourhoods, and are shown in 2D for illustrational
purposes only.
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� Random Forest (RF), used in architectures 3 and 4.

The first and second architecture use an ANN to combine the prediction-information and

spatial priors (see Figure 4.1). The purpose is to build a joint distribution over them and

learn it from the training set. In order to compare the performance to an additional type

of classifier, the third and fourth proposed architectures are using Random Forests (RFs)

to model the same joint distribution instead of an artificial neural network (see Figure 4.2).

Since the data will contain a small amount of features at this stage, it is expected to obtain

comparable results to the ANN, principally due to the fact that this classifier operates on a

bag of voxels, for which the neighbourhood-context was already extracted and presented as

features by the three CNNs in Level-1.

4.3 Level-3

Architecture 2 defines an additional convolutional neural network, which is named CNN3

in Figure 4.1, and is designed to reduce the false-positive rate directly by eliminating lesion

candidates from Level-2. This structure ensures that the decisions will be made based on a

the characteristics of the Level-2 classifier, and therefore will be customized to the types of

false- and true-positives that are typically introduced by the trained Level-2 ANN. This last

level could be overseen as a postprocessing stage that involve decisions that are made at the

lesion-level rather than voxel-level.

Given the fact that a weighted average over the last hidden layer activations of CNN1-1,

CNN1-2 and CNN1-3 forms the final classification, it could be interesting to visualize these

features. As shown in Equation 3.6, and considering the usage of a Softmax unit for output

layer activations as described in Equation 3.12 above, the inputs are a multiplication of the

weights matrix and the last hidden layer activations, which in the binary case reduces to vector

element-wise multiplication. Therefore, one can examine the weights based on their norm

value, in which large positive values should indicate highly discriminative features towards the

lesion class, while negative values could pinpoint feature-maps that negate possible presence

of lesions.

This chapter described the four proposed architectures for automatic detection of MS

lesions using CNNs, ANNs and RFs. In the next chapter, we will present the experimental

setup and different configurations for each of the processing levels. Also, the performance

of the different architectures will be compared, and the features learned by the first level of

convolutional neural networks will be shown. The chapter will start by describing the data
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Figure 4.4 Random-Forest Joint Distribution Model for Architectures 3 and
4. The three Level-1 CNN classifiers output their predictions at their last Soft-
max layer. These predictions are used as input features for a random forest
RF2-1 that models a multi-scale joint distribution. Their last hidden layer ac-
tivations, which were only used internally, are exposed and used as features for
RF2-2. All the models in this thesis use 3D neighbourhoods, and are shown in
2D for illustrational purposes only.
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used for the experiments, preprocessing procedure and balancing technique, and continue

with the evaluation metrics and the results.



Chapter 5

Experiments

This chapter presents the experimental setup and the results of the proposed architectures

over the data, addressing the challenge of Multiple Sclerosis lesion segmentation using deep

learning techniques. In this chapter, the data used for the experiments, taken from large

clinical trials, will be described in detail, followed by its pre-processing. The challenge of

sampling data for training the proposed architectures using these large clinical datasets will

be presented, followed by the evaluation metrics in the contexts of detection and segmen-

tation. Once the ground is set, the results from each of the stages of the architecture will

be presented over several different configurations for their internal parameters over Dataset

A. These configuration will then be tested over an additional and much larger clinical trial,

Dataset B. Also, the features extracted automatically using the convolutional neural net-

works will be explored and presented to the reader both as vectors and images that will be

discussed in details.

5.1 Data

The data used to train and test the proposed method is based on two proprietary multi-

national and multicenter real clinical trials. The dataset that was used for most of the

reported experiments, Dataset A, contains 112 different Multiple Sclerosis patients with T1-,

T2-weighted, T1-post-contrast, proton-density (PD) and fluid-attenuated inversion recovery

(FLAIR) modalities for each. The trial was randomized, and conducted over 37 sites. The

”ground truth” manual labeling was performed in a semi-automatic manner by trained ex-

perts. First, the images were automatically classified using a Bayesian method [27] that

considers three out of the five available modalities. The resulting labeling is passed through
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a post-processing stage, in which certain pre-defined heuristics are automatically applied in

order to remove certain false-positive detections. These results are then delivered to MRI

readers that are trained to follow a strict industrial labeling protocol in which they manually

validate the output, while maintaining minimal human variability. The human raters are

only allowed to completely remove a lesion object in the case of false detections, and are not

allowed to modify the delineation of the objects or to add undetected pathology.

The proposed architecture and its hyper-parameters were optimized over Dataset A only,

and a second dataset was used to test if it generalized to a different, and much larger, clinical

trial dataset. The second proprietary clinical trial, Dataset B, was conducted over a 24-

months period on a population of 1063 Multiple Sclerosis patients from 171 sites. The lesion

labeling followed the same protocol described above for Dataset A, and provided the same

five modalities: T1-, T2-weighted, T1-post-contrast, PD and FLAIR.

5.2 Pre-processing

The data used for the experiments was registered to a common-space, corrected for non-

uniformity bias field, intensity-normalized [62] and skull-stripped. First, the images are

registered into the stereotaxic space, followed by an ICBM152 healthy-brain atlas registra-

tion. The atlas was built using 152 manually labeled healthy subjects and registered using

ANIMAL [19][21], and provides the pipeline with spatial priors for: (a) white matter, (b)

gray-matter, and (c) cerebrospinal fluid. Lesion priors were generated by non-linearly reg-

istering automatically-segmented, expert-corrected annotations over a different clinical trial

that contains 3714 relapsing-remitting MS subjects [25]. Additionally, the images were pro-

cessed for intensity normalization and bias correction using the N3 algorithm [76]. The

skull-stripping was done using the Brain Extraction Tool (BET) [77].

5.3 Sampling to Balance the Classes

Voxels labeled as Multiple Sclerosis lesions constitute only a small fraction of the overall data.

In order to train a convolutional neural network that successfully classifies them without

becoming overwhelmed by the non-lesion training data, the dataset must be balanced. The

technique for balancing the dataset was designed while taking the following considerations

into account:

Overall Balance The dataset should be kept balanced as a whole.
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Location-Wise Balancing High degree of balancing should be maintained for every loca-

tion within the brain image. For example, a specific location for which 90% of the

patients are positively labeled as a lesion should be provided with sufficient amount of

counter-examples that will prevent the CNN from always classifying this location as

MS lesion.

Preserving Positively-Labeled Samples Since positive samples are rare, we should avoid

dropping them as much as possible during the balancing procedure.

Strictly-Negative Locations The technique should sample from locations in which MS

lesions do not exist at all in the dataset. This will train the network to classify them

correctly, even at the cost of violating the location-wise balance described above.

To provide the classifiers with balanced representations from each label, the brain images

were first divided into three different sections, according to the empirical lesion appearance

over all regions: (a) positive-only, (b) mixed, and (c) negative-only, where positive/negative

refer to the type of labels that occur within each region. The empirical lesion frequency

over the training set is shown in Figure 5.1. Once the brain was divided into regions, the

sampling algorithm generates a spatial sampling map that is based on balancing the mixed

regions, while also sampling from the negative- and positive-only regions. The balancing of

the mixed regions is aimed to prevent classifying regions with high lesion empirical frequency,

for example, around the ventricles, from being learned as lesions and resulting in false-positive

classifications. On the other hand, regions with low frequency would to suffer from the inverse

phenomena, being classified as non-lesion, which is prevented using this sampling mechanism.

Another important characteristic of the sampling framework is that it also balances between

negative-only regions, which contain only non-lesion examples in the training set. Sampling

neighbourhoods from this region will help the classifier learn them as negative samples instead

of unknowns, and therefore the learned lesions-manifold will take them into consideration as

it forms during the training process.
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Figure 5.1 Empirical Lesion Frequency. High spatial frequency of lesion samples over Dataset A is
shown in red. In order to balance the dataset, this spatial imbalance between positive and negative
examples is handled within the sampling framework. The slices shown left-to-right, top-to-bottom are
14, 16, 18, 20, 22, 24, 26, 29, 31, 33, 35, 37, 39, 41 and 44.
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5.4 Evaluation Metrics

The evaluation of lesion segmentation methods is based on metrics that quantify its similarity

to the ground truth labels. There exist several different methods to measure such similarities,

and in general they are divided into two major classes:

� Voxel-Wise Metrics

� Lesion-Wise Metrics

Voxel-wise metrics measure the correlation between classified voxels in the segmentation

results and the ground truth labels on a per-voxel basis. This way, the label of every voxel

in the image is compared between the two, graded according to a pair-wise similarity metric,

and finally aggregated to obtain an overall labeling similarity score. In order to understand

these scores, it is essential to examine all the possible scenarios between two labeled images

A and B, as shown in Figure 5.2. In the case that a voxel is predicted as positive while the

truth labeling is negative we consider it as False-Positive (FP). The inverse, when a voxel is

predicted as negative while the truth labeling is positive is considered a False-Negative (FN).

True-Negative (TN) is the case in which both labeling are negative, and True-Positive (TP) is

when both are positive. We are now ready to define true- and false-positive rates (TPR/FPR),

as shown in Equations 5.1-5.2. True-Positive Rate is also referred to as sensitivity. The Dice

score for similarity between sets is shown in Equation 5.3, and is a normalized measurement

for the positive-label overlaps between two sets. The Positive Predictive Value (PPV) is the

rate between true positives to total positives, and is defined in Equation 5.4.

TPR =
TP

TP + FN
(5.1)

FPR =
FP

FP + TN
(5.2)

DICE =
2TP

(TP + FP ) + (TP + FN)
=

2TP

2TP + FP + FN
(5.3)

PPV =
TP

TP + FP
(5.4)

Voxel-wise metrics are widely used in the literature [87][7][9] for measuring the perfor-

mance of healthy tissue (and some pathology) segmentation methods. Nonetheless, our pri-

mary goal is detecting all the lesions, even the small ones, and in this context voxel-wise
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Figure 5.2 Voxel-Wise Confusion Matrix. Two binary labeled images A and
B, who correspond to the prediction and the ground-truth labeling are voxel-
wise tested for correspondences between the voxels. True-Negative (TN) is the
case in which both labeling are negative, True-Positive (TP) is when both are
positive. If the predicted label is positive and the truth label is negative, it is
considered False-Positive (FP). If the predicted label is negative but the truth
label is positive, it is called a False-Negative (FN).
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metrics do not correctly penalize errors due to missed small lesions. When segmenting le-

sions, the output is the delineation of binary objects (BLOBs). A BLOB-, or lesion-wise score

metric would ideally penalize on a per-lesion basis, and has the advantage of considering all

lesions equally for the similarity grading process. For example, missing a very small lesion

would hardly be penalized on a per-voxel metric, but would be equally penalized to a large

lesion when using such a lesion-wise metric. In order to obtain an additional set of detection

metrics, to be used besides the voxel-wise metrics, we generalize the previously shown metrics

from Equations 5.1-5.4 to lesion-wise segmentation, and use the following definitions:

Lesion BLOB Definition Lesions BLOBs are defined as a set of adjacent neighbouring

voxels, while adjacency is defined using the 18-connectivity neighbourhood as shown in

Figure 5.3.

Lesion Overlap Criteria A lesion BLOB from segmentation A overlaps with segmentation

B if and only if: (a) three or more of the BLOB voxels are labeled positive in segmen-

tation B, or (b) at least 50% of the BLOB voxels are labeled positive in segmentation

B. This criteria is based on clinical trial protocol.

Lesion-wise True-Positives (LTP) Count of the ground-truth lesion BLOBs that overlap

with the lesions defined by the segmentation results.

Lesion-wise False-Positives (LFP) Count of the segmentation results lesion BLOBs that

do not overlap with the ground-truth labels. This term is also referred to as False

Discovery Rate (FDR).

Figure 5.3 Voxel Connectivity Models. From left to right: (a) 6-neighbours-,
(b) 18-neighbours-, and (c) 26-neighbours-connectivity models with respect to
the central voxel.

Using the definitions above, the Lesion-wise True Positive Rate (LTPR), Lesion-wise

False Positive Rate (LFPR) and Lesion-wise Positive Predictive Value (LPPV) are defined

in Equations 5.5-5.7.
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LTPR =
LTP

Total ground truth lesion count
(5.5)

LFPR =
LFP

LFP+LTP
(5.6)

LPPV =
LTP

LFP+LTP
(5.7)

Both voxel-wise and lesion-wise metrics are important for the task. The lesion-wise metrics

will quantify the performance of the detection task, while the voxel-wise metrics will measure

the quality of the delineation of lesion.

The last metric used for evaluation of the classifiers is their misclassification rate. Mis-

classification rate is the rate of incorrect classifications, as defined in Equation 5.8.

Misclassification Rate =
TP+FP

TP+FP+TN+FN
(5.8)

5.5 Level-1 Results

Dataset A was divided to a training set of 60 images, a validation set of 24 images, and a

testing set of 28 images which were used only for the final testing. The input MRI modalities

are sampled for neighbourhood patches of sizes defined by the 3D CNN classifiers of the first

layer. Each patch is then learned as a positive neighbourhood example of the central voxel if

and only if it is labeled as lesion in the training target images. An ensemble of CNN classifiers

of the following sizes were trained for the task:

� 3x3x3 Voxels

� 9x9x9 Voxels

� 23x23x23 Voxels

Examples of the middle axial slice from the training dataset for neighbourhoods of dimen-

sionality 23x23x23 are shown in Figure 5.4.

The 3 different classifiers were cross-validated for several different CNN architectures and

optimization hyper-parameters, while the architecture used for the 9x9x9 neighbourhood

yielded the best misclassification results of 4.94% over the balanced validation data, using the

following layers: (a) convolution using 128 kernels of size 4x4x4, (b) max-pooling over 2x2x2
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Figure 5.4 Layer-1 Neighbourhood Examples. The images are the middle ax-
ial slice of the MRI examples used to train the first level of convolutional neural
network classifiers over Dataset A. The patches shown are of neighbourhood
size 23x23x23 voxels, negative examples (non-lesions) on the left-hand side and
positive examples (lesions) on the right-hand side. The image shown depicts
40 different examples for both positive and negative examples, grouped from
top to bottom: FLAIR, T1-weighted, T2-weighted, PD and T1-post-contrast
examples.
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regions, (c) drop-out, keeping 70% of the original output and multiplicative augmentation

factor of 1.5 (d) convolution using 128 kernels of size 2x2x2, (e) max-pooling over 2x2x2

regions, (f) drop-out, keeping 50% of the original output and multiplicative augmentation

factor of 2.0, (g) ReLU layer with 2048 neurons, (h) drop-out, keeping 50% of the original

output and multiplicative augmentation factor of 2.0, (i) ReLU layer with 2048 neurons, (j)

drop-out, keeping 50% of the original output and multiplicative augmentation factor of 2.0,

and (k) softmax layer with 2 output neurons. The optimization technique used was batch

gradient descent with learning rate of 0.001 and momentum of 0.1 as hyper-parameters.

The best found architecture for the 23x23x23 neighbourhoods, yielding 5.76% misclassi-

fication rate over the balanced training set, was as follows: (a) convolution using 128 kernels

of size 3x3x3, (b) max-pooling over 3x3x3 regions, (c) convolution using 128 kernels of size

2x2x2, (d) max-pooling over 2x2x2 regions, (e) drop-out, keeping 50% of the original out-

put and multiplicative augmentation factor of 2.0, (f) ReLU layer with 1024 neurons, (g)

drop-out, keeping 50% of the original output and multiplicative augmentation factor of 2.0,

(h) ReLU layer with 1024 neurons, (i) drop-out, keeping 50% of the original output and

multiplicative augmentation factor of 2.0, and (j) softmax layer with 2 output neurons.

As for the 3x3x3 neighbourhoods, the best found architecture, achieving 6.69% misclassi-

fication rate was: (a) ReLU layer with 1024 neurons, (b) ReLU layer with 1024 neurons, and

(c) ReLU layer with 1024 neurons.

The number of examples used for training/validating the 3x3x3, 9x9x9 and 23x23x23

architectures were 1,352,024/95,222, 1,348,780/95,222 and 159,876/11,686, respectively. The

results for 17 selected experimental architectures are shown in Table 5.1. As we see, the

9x9x9 neighbourhood-based CNN classifiers yielded the best misclassification rates, and these

results could be attributed to two main factors. First, comparing to the 3x3x3 CNNs, the

9x9x9 could learn significantly more discriminative features as a result of observing a 27 times

larger neighbourhood of 729 voxels. Second, due to memory limitations and storage drive

space constraints, larger amounts of training examples were used for training the 3x3x3 and

9x9x9 architectures comparing to the amount used for training the 27x27x27.

As for the 3x3x3 patches, we can see that the misclassification rates obtained using convo-

lutional neural networks are comparable to those obtained by using only multilevel perceptron

models. This is for the obvious reason that weight sharing and convolution over 3x3x3 patches

using 2x2x2 kernels is almost equivalent to a fully connected 3x3x3 kernel because it does not

introduce a large amount of additional parameters to the model (see Figure 5.5), this would

have not been the case for a larger input image size. In order to clearly see this similarity, it
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Table 5.1 Layer-1 Training Performance Benchmark. The results reflect the
misclassification rate for each of the architectures over balanced datasets that
were used in the experiments for testing and validation. Exp. = ExperimentID
(the naming convention is pXcY, where X is the size and Y is the experiment
number) , Lx = Layer x, LR = Learning Rate, Mom. = Momentum, Mis. =
Misclassification Rate.
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was chosen to visualize only a single dimension rather than all the three-dimensional connec-

tions between the units. Connections that share the same color represent the weight sharing

and missing connections stand for the 2x2x2 size of the receptive field. We can observe that

in the one-dimensional case, we have 2 less connections, and 2 pairs of shared parameters,

resulting in a total of 2 free parameters in a CNN versus 6 in a MLP model.

ℎ1
(1)

ℎ2
(1)

𝑥2

𝑥1

𝑥3

Input 2x2 Convolution

ℎ1
(1)

ℎ2
(1)

𝑥2

𝑥1

𝑥3

Input Fully Connected

Figure 5.5 CNN vs MLP in a 3x3x3 Neighbourhood. On the left-hand side:
A convolutional layer of size 2, given a size-3 input. Shared colors represent
weight-sharing, and missing connections illustrate the size of the receptive field.
On the right-hand side: A fully-connected layer of size 2, given an input size
of 3. The figure is shown in 1D for clarity, and generalizes to the 3D model
used for the experiments when x represents the input image and h its hidden
representation in the neural network.

An additional experiment was performed in order to fully explore the impact of integrat-

ing the spatial ICBM152 atlas priors at the Level-1 stage of the full architecture. Prior-

augmented versus non-prior-augmented models were trained simultaneously over an identical

set of neighbourhood-patches (from Dataset A training and validation folds), based on sev-

eral top performing architectures from Table 5.1 in terms of misclassification rate over the

validation set. The training results for this experiment are shown in Figure 5.6. As we can

see, the prior-augmented features misclassification rates are comparable to the rates without

using the priors. As a result, it was chosen not to increase the model complexity at Level-1,

and use the spatial priors only at the second stage of the classification process (Level-2) since

no measurable justification was found in any of these experiments.

The qualitative and quantitative results for Level-1 are shown in figures 5.7 and 5.8-5.13

respectively for different operating thresholds, which are the thresholds over the probabilistic
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(a) p23c6 (b) p9c1

(c) p3c5 (d) p3c5a

Figure 5.6 Priors Augmentation for Level-1. This figure shows a comparison
of the training and validation misclassification rate along the training process,
with and without spatial ICBM152 healthy tissue atlas priors. The sets of two
classifiers were trained simultaneously over identical inputs in order to main-
tain fair correspondences along the training process. The different architectures
shown are: (a) 23x23x23 neighbourhood - experimental architecture #p23c6,
(b) 9x9x9 neighbourhood - experimental architecture #p9c1, (c) 3x3x3 neigh-
bourhood - experimental architecture #p3c5, and (d) 3x3x3 neighbourhood -
experimental architecture #p3c5a. The architectures are fully described in Ta-
ble 5.1. The misclassification rates are for the predictions of the classifier over
the training and validation sets.
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output values of the CNNs from which a positive decision is taken. For example, for an

operating threshold of 0.3, an output of 0.45 will be considered as a lesion and an output of

0.25 will be considered as a healthy tissue. The major issue with the classifiers at this level

is their high false positive rate measured in both lesion- and voxel-wise metrics. A voxel-wise

comparison between the 3x3x3 and the 9x9x9 classifiers in Figures 5.8 and 5.9 shows that

the false positive rates are lower in the larger neighbourhood model. However, a careful look

shows that 3 out of the 28 testing subjects were hardly affected in terms of false positive

rates, and 2 others were only marginally improved. The lesion-wise comparison between the

two classifiers, using Figures 5.11 and 5.12, shows a larger improvement in both the LFPR

and LTPR comparing to FPR and TPR, respectively. A lesion wise comparison between

the 23x23x23 and the 9x9x9 classifiers shows that when operating at very high confidence

threshold (larger than 90%), the larger neighbourhood CNN achieves higher LTPR than

the smaller one (0.79, 0.77, 0.68 vs. 0.71, 0.65, 0.48 for operating at 0.95, 0.97 and 0.99

respectively) at the cost of higher LFPR (0.73, 0.66, 0.51 vs. 0.80, 0.75, 0.60 for operating

at 0.95, 0.97 and 0.99 respectively).

At this point, we can clearly see from the results that at Level-1 we obtained a trained

ensemble of classifiers with distinctive properties. This relationship could be further modeled

in a consecutive stage that utilizes their different predictions and takes advantage of their

diversity. Also, it is important to notice that averaged metric results over the 28 testing

subjects do not fully represent the performance of the classifier due to the very high variance

between the subjects over each of the metrics as seen in Figures 5.8-5.13.

5.6 Level-2 Results

The second level of the architecture learns a joint model over the results from the previ-

ous level, while combining it with pre-registered spatial prior information regarding healthy

tissues and pathology. The augmented data vector used for the first architecture consists

of: (a) CNN1-1 (3x3x3) probabilistic predictions, (b) CNN1-2 (9x9x9) probabilistic predic-

tions, (c) CNN1-3 (23x23x23) probabilistic predictions, (d) white-matter prior probabilities,

(e) gray-matter prior probabilities, (f) cerebrospinal fluid prior probabilities, and (g) lesion

prior probabilities. The output has two possible classes: (a) lesion, and (b) non-lesion. Data

examples are shown in Figure 5.14.

The first architecture uses an artificial neural network, ANN2 in Figure 4.1, to model the

joint distribution of lesions as a function of the input vectors. Recall that the the second level
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Figure 5.7 Qualitative Level-1 Classification Results. This image shows the
FLAIR images of 7 different subjects from the Dataset A testing set from top to
bottom. Left-to-right: (a) original FLAIR image, (b) manually labeled lesions,
(c) results from the 3x3x3 neighbourhood classifier using architecture #p3c5a,
(d) results from the 9x9x9 neighbourhood classifier using architecture #p9c1,
and (e) results from the 23x23x23 neighbourhood classifier using architecture
#p23c6. The colors green, red and blue represent TP, FP and FN respectively.
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Figure 5.8 3x3x3 Voxel-Wise Level-1 Classification Performance. Each sub-
ject is shown using a different color-code in order to show the variability over
the 28 testing subjects. Top-to-bottom: (a) TPR, (b) FPR, (c) PPV, and (d)
Dice score. The operating threshold is the probabilistic confidence level of the
neural network that was taken as the positive decision threshold. The mean
metric value is annotated for each operating threshold.
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Figure 5.9 9x9x9 Voxel-Wise Level-1 Classification Performance. Each sub-
ject is shown using a different color-code in order to show the variability over
the 28 testing subjects. Top-to-bottom: (a) TPR, (b) FPR, (c) PPV, and (d)
Dice score. The operating threshold is the probabilistic confidence level of the
neural network that was taken as the positive decision threshold. The mean
metric value is annotated for each operating threshold.
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Figure 5.10 23x23x23 Voxel-Wise Level-1 Classification Performance. Each
subject is shown using a different color-code in order to show the variability
over the 28 testing subjects. Top-to-bottom: (a) TPR, (b) FPR, (c) PPV, and
(d) Dice score. The operating threshold is the probabilistic confidence level of
the neural network that was taken as the positive decision threshold. The mean
metric value is annotated for each operating threshold.
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Figure 5.11 3x3x3 Lesion-Wise Level-1 Classification Performance. Each
subject is shown using a different color-code in order to show the variability
over the 28 testing subjects. Top-to-bottom: (a) LTPR, (b) LFPR, and (c)
LPPV. The operating threshold is the probabilistic confidence level of the neu-
ral network that was taken as the positive decision threshold. The mean metric
value is annotated for each operating threshold.



68 Experiments

Figure 5.12 9x9x9 Lesion-Wise Level-1 Classification Performance. Each
subject is shown using a different color-code in order to show the variability
over the 28 testing subjects. Top-to-bottom: (a) LTPR, (b) LFPR, and (c)
LPPV. The operating threshold is the probabilistic confidence level of the neu-
ral network that was taken as the positive decision threshold. The mean metric
value is annotated for each operating threshold.
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Figure 5.13 23x23x23 Lesion-Wise Level-1 Classification Performance. Each
subject is shown using a different color-code in order to show the variability
over the 28 testing subjects. Top-to-bottom: (a) LTPR, (b) LFPR, and (c)
LPPV. The operating threshold is the probabilistic confidence level of the neural
network that was taken as the positive decision threshold. The mean metric
value is annotated for each operating threshold.
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Figure 5.14 Level-2 Inputs. This image shows the Level-2 inputs and ground-
truth for 5 different subjects from left to right. Top-to-bottom: binary ground-
truth expert labels, probabilistic results from the 27x27x27 CNN in Level-1,
probabilistic results from the 9x9x9 CNN in Level-1, probabilistic results from
the 3x3x3 classifier in Level-1, probabilistic lesion atlas priors, probabilistic
white-matter spatial prior, probabilistic gray-matter spatial prior and proba-
bilistic cerebrospinal fluid spatial prior. The contour of the brain-mask is shown
in yellow for convenience.
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is designed to make a more informed decision at this stage, which is based on the results of all

the three Level-1 classifiers. Several sets of ANN models and training hyperparameters have

been used for the experiments, and a selection of 8 configurations along with their results

results are shown in Table 5.2. The differences between the configurations are the amounts

and types of layers, the learning rate, momentum and batch size while trained using the same

framework that was implemented for Level-1.

l2ann8 

95222 

ReLU 

1024 N 

Dropout 

0.5 

ReLU 

1024 N 

Dropout 

0.5 

Softmax 

2 N 

0.001 

0.1 

4.34% 

l2ann7 

95222 

ReLU 

1024 N 

Dropout 

0.5 

ReLU 

1024 N 

Dropout 

0.5 

Softmax 

2 N 

0.01 

0.1 

4.02% 

l2ann6 

95222 

ReLU 

1024 N 

Dropout 

0.5 

ReLU 

1024 N 

Dropout 

0.5 
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2 N 

0.01 

0.9 

4.01% 

l2ann5 

9522 

ReLU 
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Dropout 

0.5 

ReLU 

1024 N 

Dropout 
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2 N 
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4.01% 

l2ann4 
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2 N 

0.01 
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4.25% 

l2ann3 

64 

ReLU 
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l2ann2 

64 
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l2ann1 

64 

ReLU 
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1024 N 

Softmax 
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0.01 

0.9 

4.25% 

Exp. 

Batch 

L1 
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L5 

LR 
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Table 5.2 Level-2 Training Performance Benchmark. The results reflect the
misclassification rate for each of the architectures over balanced datasets that
were used for validation in the experiments. Exp. = Experiment ID, Batch
= examples per training batch, Lx = Layer x, LR = Learning Rate, Mom. =
Momentum, Mis. = Misclassification Rate.

The best performing architectures used large amounts of hidden neurons, however, their

results are comparable to those obtained using a significantly smaller model capacity in archi-

tecture #l2ann2 to obtain 4.08% misclassification rate. Comparing architectures #l2ann2,

#l2ann1 and #l2ann3 with 7, 1024 and 8192 neurons per each of their two hidden layers

respectively, the better performance was obtained by the model with the smaller capacity of 7

neurons. On the other hand, adding Dropout layers with 50% probabilities reduced the mis-

classification rate of 1024 neurons per layer from 4.25% to 4.01%. Another important factor

that affected the final training performance is the amount of samples used per batch during

the gradient descent. The best results were obtained using example amounts in the orders

of 10,000 and 100,000 per batch in architectures #l2ann5 and #l2ann6 respectively. The

validation results at this level improved from 4.89%, 4.37% and 4.56% misclassification rates
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of the three individual Level-1 models to 4.01% for the balanced validation misclassification

rate of Level-2, as shown in Table 5.3.

Level Model Misclass. Rate

L1
CNN1-1 (3x3x3) 4.89%
CNN1-2 (9x9x9) 4.37%

CNN1-3 (23x23x23) 4.56%

L2 ANN2 4.01%

Table 5.3 Level-2 Validation Performance. The results reflect the misclassifi-
cation rate for each of the architectures over balanced datasets that were used
for validation in the experiments.

5.7 Level-3 Results

The last level of the method, Level-3, is intended to eliminate false-positive lesion detec-

tions from the previous layer, and consequentially, its training database was generated using

predictions from the trained Level-2 classifier. This is the first time that the binary classifi-

cation results form lesions, and are classified as such. In the previous stages, every voxel was

considered separately, and in Level-3, these voxels are merged into full lesion based on the

adjacency model described in Section 5.4. The training data was balanced in an lesion-wise

manner, which means that 50% of the samples are true-positive lesions detections, and the

other 50% are false-positives. At this stage, it is not expected to recover a higher sensitivity

score, however, it was expected that given high-quality ground-truth labeling the CNN will

learn to distinguish between false-positives and true-positive on an object-basis rather than

at the voxel-level. Example inputs to Level-3 are shown in Figure 5.15.

The data for this stage set was generated using 60 patients for training, 24 for validation

and 20 for testing from Dataset A, and the total amounts of samples used for the training

of the CNNs were 5750 and 1000 for the balanced training and validation sets, respectively.

Several different architectures were experimented with for the false-positive elimination task,

and their results are shown in Table 5.4. The lowest balanced-dataset misclassification rate

of 13.0% was obtained by architecture #l3c2, yet, a comparable rate of 13.1% was obtained

by model #l3c4 with less neurons-capacity. The first model uses two convolutional layers

of 128 neurons each, while the second one uses only 32, in addition to two fully-connected

ReLU layers with 1024 units that were replaced with 64 units each. The deepest model,

#l3c3, reached only 17.7% misclassification rate, but due to the dropout it is possible that
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Figure 5.15 Layer-3 Examples. The images are the middle axial slice of the
MRI examples used to train the first level of convolutional neural network classi-
fiers. The patches shown are of Level-2 false-positive examples (non-lesions) on
the left-hand side and true-positive examples (lesions) on the right-hand side.
The image shown different 60 different examples from each class, grouped from
top to bottom: FLAIR, T1-weighted, T2-weighted, PD, and T1-post-contrast
examples.
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longer, time-consuming training could have been beneficial to its final score. Architecture

#l3c5 experimented with an increased convolutional kernel size for the first layer of the CNN,

followed by a smaller kernel in the consequent layer and yielded 14.0% misclassification rate,

which could be attributed to the structure of the model in this case. The reason is the previous

model with similar layers, but different kernel sizes obtained a lower misclassification rate

using the same optimization method. As we can see from configuration #l3c6, a shallower

model containing only a single convolutional layer achieved a lower score of 15.1%.
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Table 5.4 Level-3 Training Performance Benchmark. The results reflect the
misclassification rate for each of the architectures over balanced datasets that
were used for validation in the experiments. Exp. = Experiment ID, Batch
= examples per training batch, Lx = Layer x, LR = Learning Rate, Mom. =
Momentum, Mis. = Misclassification Rate.
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5.8 Combining Features in a Random Forest Classifier

The second level of the method is designed to model the joint distribution over the first level

classifiers and the spatial priors in order to yield more informed lesion predictions. The first

approach used an artificial neural network for that purpose. In this section, a probabilistic

random forest classifier, RF2-1 in Figure 4.4, was trained to model the same function. Using

only the final classifications from the first level could be limiting in terms of discriminative

power. The reason is that given the large sets of features that led each of the classifiers to

yield their final decision is much more informative than just a single value between 0 and 1,

and when considering several different classifiers, this is similar to combining their complete

reasoning process rather than only their final classifications. Therefore, the next logical step

was to further combine the last-layer features from the 3 Level-1 classifiers, rather than only

using their final predictions. The second approach is to train the random forest classifier,

RF2-2 in Figure 4.4, over these features.

The ROC curves for the results of the two approaches are shown in Figure 5.16. For

completeness, the ROC curves for all other proposed architectures throughout this thesis are

also presented, and were obtained using the identical training, validation and testing sets.

The mean ROC curves for the results from all methods are compared in Figure 5.17 and

their corresponding Area Under Curves (AUCs) are shown in Table 5.5. As we see in Table

5.5, the area under the curve was the largest for the random forest classifiers, both over

predictions (RF2-1) and over CNN features (RF2-2), but they were very close and it is hard

to pick a real winner. However, the AUC values are very close between CNN1-2, ANN2,

RF2-1 and RF2-2, which indicate that there is no improvement in this measure between

the best Level-1 classifier and the final results of Level-2 and Level-3. Another interesting

result is the confirmation that a small 3x3x3 neighbourhood was the least discriminative in

terms of classification using this metric, yielding lower score of 0.9857, and high subject-wise

variability could be observed in Figure 5.16.

Estimating the total lesion load for a particular patient is important for clinical assessment

of disease activity. Therefore, we choose to evaluate the suitability of the proposed method

for estimating total lesion load. The total lesion load in cubic centimeters is calculated by

multiplying the amount of lesion labeled voxels by the physical dimensions of a single voxel,

which are 1x1x3 millimeters for both Dataset A and B. A comparison between the ground-

truth and its predictions is shown in Figure 5.18. We can that a simple linear regression

between the classifier and the labeling yielded fit coefficients of y = 0.951x + 0.001 when
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Figure 5.16 Receiver Operating Characteristic. The ROC curves were drawn
for all the patients in the testing set, each represented by a different color. The
curves were drawn for each of the building blocks of the proposed architectures:
CNN1-1, CNN1-2, CNN1-3, ANN2, CNN3, RF2-1 and RF2-2.
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Figure 5.17 Mean Receiver Operating Characteristic. This Figure shows the
mean ROC, averaged over all testing patients, in order to compare between the
different classifiers at each stage of the method.
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Model AUC Description

CNN1-1 0.9857 Level-1 Voxel-Intensity Model
CNN1-2 0.9935 Level-1 Close-Neighbourhood Model
CNN1-3 0.9923 Level-1 Larger-Neighbourhood Model
ANN2 0.9937 Level-2 Artificial Neural Network Model
RF2-1 0.9943 Level-2 Random Forest using Level-1 Outputs
RF2-2 0.9937 Level-2 Random Forest using Level-1 Features
CNN3 0.9907 Level-3 False-Positive Elimination

Table 5.5 Area Under the ROC Curves (AUC). The results reflect the mean
area under the ROC curve for each of the models used in the method, averaged
over all testing patients.

minimizing the mean square error (MSE).

5.9 Deep-Learned Features

Prediction using the hidden CNN features directly, using a random forest, was shown to be

comparable in accuracy to the other proposed approaches in Tables 5.5 and 5.6. It would

be interesting to further explore the extracted features and better understand them. These

features were shown to provide discriminative information about lesion labels at each voxel,

and were learned in 3 different scales in architectures CNN1-1, CNN1-2 and CNN1-3. In

order to further explore this idea, one can visualize these features over a randomly selected

set of patients assess their viability. Figure 5.19 presents 111 out of the 4096 available CNN-

learned features, along with the original image. For convenience, the features were overlayed

on the original FLAIR modality, while showing them only in regions that carry a non-zero

activation value. Features seem to carry information that could be useful for other tasks

in addition to lesion-segmentation, such as brain tumor and stroke lesion segmentation, and

therefore open the opportunity to apply either transfer learning [63], or use other classifiers,

such as Bayesian approaches, while employing the results of the CNNs only as features.
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Figure 5.18 Total Lesion Load Comparison. The purpose of this comparison
is to evaluate whether the total volume of the segmented lesions correspond
to the total volume of ground truth lesions. Each of the testing subjects is
presented as a point over the graph of ground-truth total lesion load versus
total predicted lesion volume in cubic centimeters (cc). The total lesion load is
calculated by multiplying the amount of lesion labeled voxels by the physical
dimensions of a single voxel, which are 1x1x3 millimeters. For convenience,
the equivalence y = x was also added as a dashed line over the scattering. A
linear fit over the curve, minimizing the mean square error (MSE) yielded fit
coefficients of y = 0.951x+ 0.001.
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Figure 5.19 CNN Features 1. This figure shows examples of activation levels of a sample set of features
from the 4096 features extracted by the last hidden layer activations of the three Level-1 convolutional
neural networks. Top-left is the original FLAIR image with lesion labeling in green, followed by 111 of
its CNN features overlayed over the FLAIR modality. Blue and red signify the strength of the hidden
activation from low to high, respectively.
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In Figure 5.20, the degree to which the features are consistent of a set of different patient

images is examined. The original FLAIR images are shown at the top along with their

ground-truth labeling, and the response from the same 7 feature descriptors are shown below

each of them for 14 different patient images. These features seem to carry information that

qualitatively correspond to similar regions in different images, and are obtaining comparable

values. For example, the fourth row corresponds to a feature that captures the circumference

of the brain, within the brain-mask, and maintains a similar response over all images. The

second row corresponds to a feature that activates at the white matter, but not in the presence

of a lesion. Those observations are qualitative only, since those features are learned from the

data and not hand-crafted, and it is unfeasible to predict their response to new examples,

however, these features are trained to the perform the task of providing a linear separation

between lesion and non-lesions as shown in Equation 3.6.

The next step was to examine the ability to separate between classes given the CNN

features. Since visualizing 4,096 features-maps over the each slice would not be human-

interpretable or readable, a different approach was suggested. A balanced set of 10,000

examples were taken from the database, while 5,000 are labeled as lesions and the other 5,000

are non-lesion examples. In Figure 5.21, the 4,096 features for each example were flattened

into a column vector and drawn as a vertical line. The left-hand side of the image was filled

by the 5,000 lesion examples, and the right-hand side was filled by the other 5,000 non-lesion

vertical lines. We can see two forms of descriptors that resemble a bar-code for lesions on

the left, and a bar-code for non-lesion on the right. Recalling that those are the features

that are used by the classifier to distinguish between lesions and non-lesion, qualitatively, it

appears that the task is well-defined by the presented features for most examples. Another

interesting discovery is that the top quarter (first 1,024 of 4,096 features) in the figure is

taken from the 3x3x3 classifier, in which we can see that its features are prone to more noise

than the ones obtained by the more stable 9x9x9 and 23x23x23 neighbourhood classifiers.

These also explain why the predictions provided by the 3x3x3 yielded lower scores and smaller

area under the ROC curve. The respective average variance values for the 3x3x3, 9x9x9 and

23x23x23 features are: 0.03663 ± 0.00195, 0.00347 ± 0.00005 and 0.00718 ± 0.00020. The

average entropy values for the same set of classifiers are: 10.75 ± 0.80, 11.06 ± 4.55 and

11.34±1.80 respectively. This shows that the average entropies are all within the same order

of magnitude, and the average variance of the 3x3x3 features is one order of magnitude higher

than the 9x9x9 and 23x23x23 features. This supports the qualitative observation that there

is noise in the features obtained by the 3x3x3 CNN.
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In order to provide the reader with practical understanding of how the internal feature-

extraction process takes place within the convolutional neural networks used in this thesis,

the first convolutional layer kernels from CNN1-2 are shown in Figure 5.22. These kernels are

used as filters and convolved with the input image to extract the first level of internal hidden

representations, which are the feature maps, and are further convolved with the next layer of

kernels up to the last layer of the CNN. Although it is hard to gain additional insight about

the features by visual inspection of these kernels, we can still see that the low-level features

capture edges in several directions and fine textures. Hierarchical pooling of decompositions

of the 5 MRI modalities using these kernels yield the final classification results reported

throughout this thesis, and they are presented here for completeness.
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Figure 5.20 CNN Features 2. A selection of 7 CNN features are shown over 14 different patients from
the dataset. The top row is the original FLAIR image with lesion labeling in green, followed by the
corresponding CNN features overlayed over the FLAIR modality. Blue and red signify the strength of
the hidden activation from low to high, respectively. Notice that the same features (rows) correspond
to similarly appearing structures for different patients (columns). Some features seem to describe very
distinct structures in the brains such as healthy white matter structures in the second row, CSF that
was not filtered out in the brain extraction in the fourth row, gray matter in the last row, etc. Recall
that these features were learned automatically by the CNN.
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Figure 5.21 Lesions vs. Non-Lesions. This image shows the flattened hidden feature vectors of lesion-
and non-lesion samples from the dataset. Each vertical line corresponds to the flattened vector of CNN
features for a single example, of length 4096 features. The left-hand side of the figure corresponds to
lesion examples, and the right-hand side corresponds to non-lesions. The top quarter corresponds to the
1024 features from CNN1-1, the bottom quarter to the 1024 features from CNN1-3, and the middle to
the 2048 features from CNN1-2. Notice that the features of lesion examples on the left-hand side appear
similar to each others, and very different from non-lesion examples on the right-hand side. A careful
observation at the features reveals another interesting result: the features extracted by the smallest
neighbourhood model 3x3x3 at the top quarter appears to be more prone to noise than those produced
by the larger neighbourhood models below. The respective average variance values for the 3x3x3, 9x9x9
and 23x23x23 classifiers are: 0.03663± 0.00195, 0.00347± 0.00005 and 0.00718± 0.00020. The average
entropy values for the same set of classifiers are: 10.75± 0.80, 11.06± 4.55 and 11.34± 1.80 respectively.
This shows that the average entropies are all within the same order of magnitude, and the average
variance of the 3x3x3 features is one order of magnitude higher than the 9x9x9 and 23x23x23 features.
This supports the qualitative observation that there is noise in the features obtained by the 3x3x3 CNN.
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Figure 5.22 First Layer Convolution Kernels. The middle axial slices from
the 128 kernels used by the first convolutional layer of CNN1-2 are shown in this
figure. These kernels are used as filters and convolved with the input image to
extract the first level of internal hidden representations, which are the feature
maps, and are further convolved with the next layer of kernels up to the last layer
of the CNN. We can see that these low-level features capture edges in several
directions and fine textures. Left-to-right: FLAIR, T1-weighted, T2-weighted,
PD, and T1-post-contrast kernels.

5.10 Results on Dataset B

In this section, we explore the working of the method on a completely different, and much

larger clinical trial dataset. The selected architectures were carried over from the first dataset,

including their layers and optimization hyperparameters, and were completely retrained using

Dataset B only. The dataset contains a total of 1,063 patients, from which 835 were used for

training, 200 for validation and 28 for testing.

The performance of the method over Dataset A and Dataset B were evaluated and cal-

culated over their respective testing sets. For Dataset A, all the different architectures pre-

sented in the previous section were trained and evaluated, and for Dataset B Level-1 classifiers

CNN1-1, CNN1-2 and CNN1-3 were trained as feature extractors for the random forest RF2-

2. In order to fairly compare the results to other recent methods from the literature, a

method that uses both local and regional information was selected. The method, published

by Harmouche et al.[37] in 2015, is a fully automatic MS segmentation technique that builds

regional likelihood models for tissues and incorporates neighbourhood information using a

Markov Random Field (MRF). Also, a re-implementation of their code was available for my

lab, and therefore could be tested while using identical training and testing folds over the
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proprietary Dataset A. The results are shown in Table 5.6, along with the results obtained

using the re-implementation of Harmouche et al.[37].

As we can see, for both datasets A and B, the Dice score was higher at the second level

using RF2-2 that models the joint distribution of the first level classifiers. For Dataset A,

the Dice score resulting from the additional processing stage reached 0.54, and started from

scores of 0.38, 0.48 and 0.48 in the previous level as inputs. For Dataset B, the Dice score

of the second level (RF2-2) was 0.59, while the previous level scored 0.36, 0.52 and 0.55 for

CNN1-1, CNN1-2 and CNN1-3, respectively. The highest LPPV of 0.76 was obtained using

architecture RF2-1 over Dataset A, however, the LTPR of this architecture was lower (0.53)

than 2 of the 3 first level classifiers over the same dataset that scored 0.49, 0.68 and 0.66 for

CNN1-1, CNN1-2 and CNN1-3, respectively. Recall the LTPR refers to the ratio between

true positives and total ground truth lesion count, which means that a lower score in this

criteria is an indicator for missing lesion detections. Comparing the results to Harmouche

et al.[37] over Dataset A, the Random Forest architecture RF2-2, obtained respective higher

Dice scores of 0.54, comparing to 0.51. This architecture also obtained higher LTPR of 0.64

comparing to 0.56, which means that the ratio between true positive lesion detections to total

ground-truth lesions count was higher, but lower LPPV.

Dataset Model Dice LTPR LPPV

A Harmouche et al.[37] 0.51 0.56 0.63

A

CNN1-1 0.38 0.49 0.49
CNN1-2 0.48 0.68 0.52
CNN1-3 0.48 0.66 0.48
ANN2 0.45 0.51 0.61
CNN3 0.48 0.51 0.69
RF2-1 0.52 0.53 0.76
RF2-2 0.54 0.64 0.59

B

CNN1-1 0.36 0.56 0.38
CNN1-2 0.52 0.55 0.61
CNN1-3 0.55 0.63 0.56
RF2-2 0.59 0.64 0.53

Table 5.6 Models Performance. The proposed models results are shown both
as lesion-wise metrics and Dice scores.

In order to better understand the quality and characteristics of the predictions, the lesion-

wise metrics were grouped into lesion volume groups of 0-10, 11-50 and 50+ voxels. It is

important to divide the results in terms of size, as it is much easier to detect larger lesions
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than small ones, and many frameworks can achieve similarly high accuracy for large lesion

segmentation. The results are shown in Table 5.7. As we can see, the method performs better

over the larger lesions of 11 and up, obtaining lesion true-positive rates (LTPR) of more than

0.86.

Dataset Lesion Volumes LTPR LPPV

A
0-10 0.34 0.59
11-50 0.86 0.68
50+ 0.98 0.76

B
0-10 0.36 0.3
11-50 0.87 0.65
50+ 1.00 1.00

Table 5.7 Performance by Lesion Volumes. The lesion-wise metrics, LTPR
and LPPV, are grouped by lesion volumes in voxels.

The qualitative results, based on the extracted CNN features are shown in Figure 5.23. In

order to get further assessment of the quality of the delineation itself, Figure 5.24 compares

between the ground-truth and the result of the proposed method.

5.11 Discussion and Conclusions

Throughout this chapter, 32 different model configurations for 4 different architectures were

presented and compared to the re-implementation results of a recently published method [37].

The architectures were configured and the favourable models were selected using Dataset A

only. Once they were set, they were used as is for Dataset B, learning only their parameters

without any additional dataset-aware fine tuning. The reason for this process was to assure

that the proposed method does not overfit to the dataset used to configure it. We have

tested 17 different layer- and optimization-hyperparameters configurations for the first level,

which was common to all the 4 proposed architectures, and as shown in the results in Table

5.1, conclude that different configurations obtain different scores. This shows the importance

of the trial and error process over the layer-structure and optimization of the convolutional

neural networks in order to get higher correct classification rates. Interestingly, the two

architectures that used Random Forests, RF2-1 and RF2-2, obtained higher Dice scores

(0.52 and 0.54) and LTPR (0.53 and 0.64) than the architectures that used the artificial

neural network ANN2 (Dice 0.45, LTPR 0.51) or false positive rejection layer CNN3 (Dice

0.48, LTPR 0.51). However, due to the known nature of the manually-labeled datasets used
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Figure 5.23 Dataset B Qualitative Results. This image shows the FLAIR
images of 6 different subjects from the testing set from top to bottom. Left-
to-right: (a) original FLAIR image, (b) manually labeled lesions, (c) results
from RF2-2, based on the deep-learned features. The colors green, red and blue
represent TP, FP and FN respectively.
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Figure 5.24 Lesion Delineation. This image shows close-ups of lesion true-
positive (LTP) delineation over 6 different subjects from top to bottom, com-
paring ground-truth and the proposed method. Left-to-right: (a) full FLAIR
image, close-up regions are marked as white rectangles , (b) ground-truth close
up, and (c) proposed method results, based on the deep-learned features. The
green contours are the lesion boundaries.
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for the experiments, in which lesions objects were occasionally missed from the ground-

truth labeling, this false-positive rejection layer could consequentially learn to reject these

missed true-positives and, depending on the quality of the labeling, could degrade the overall

performance of the CNN3 without any quantitative indicator for this phenomena.

We have also explored the automatically extracted features that were learned by each of

the three Level-1 convolutional neural networks, instead of only using their final probabilistic

predictions. We have shown that the features for lesion examples appeared similar to each

others, and very different from other non-lesion examples. Also, we observed that the features

extracted by the smallest neighbourhood model of 3x3x3 appeared to be more prone to noise

than those produced by the larger neighbourhoods of 9x9x9 and 27x27x27. Another interest-

ing discovery was that the feature activations corresponded to similarly appearing structures

and appeared consistent over different patients. Some of this features seemed to repeatedly

describe very distinct structures in the brains such as healthy white matter structures, CSF,

gray matter, etc. Exploring these features through the results demonstrated the power of

automatic feature extraction using CNNs, and helped to understand the components that

are taken into account for generating their outputs for the task.

In the next chapter, I will present the conclusions from this research, the methods that

were used and the different proposed architectures. Also, I will further discuss the challenges

introduced throughout this research by the Multiple Sclerosis lesion segmentation task, and

the methods used to address them. This chapter will continue with further discussion of the

outcome of this research and conclude with suggestions for future work.
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Conclusions

This thesis presented a deep-learning approach for MS lesion segmentation, using convolu-

tional neural networks. The main contribution is a new novel adaptation of popular CNN-

based deep learning frameworks to the challenging context of MS lesion detection and seg-

mentation, where it is shown to perform well on large multi-center clinical trial datasets,

without requiring subjectively defined features. During this work, not only that comparable

results to previously published methods were obtain, but also a new set of brain descriptors

that could be: (a) generalized and used as features for other tasks, and (b) further investi-

gated to better understand the considerations that lead expert radiologists to their manual

labeling protocols. Two major challenges were addressed, the first pertains to the model-

parameters selection, which is the key component in optimizing the quality of the results.

Many experiments were performed for tuning model parameters such, but not limited to:

layers size, amount of layers, convolutions kernels properties, dropout layers, pooling layers

size, fully-connected layers and several optimization hyper-parameters. Reporting these re-

sults over the diversity of experiments could serve as a guide for future research to avoid

re-experimenting with the least successful configurations, and obtain a better starting point.

The major challenge was to design the overall architecture, while using convolutional neural

networks and other statistical models as its building block, and trying to obtain deep-learned

data representations. Several architectures were proposed and compared rigorously over two

different large clinical trials proprietary datasets that were made available for this research.

It was demonstrated that even a single convolutional neural network model with the

appropriate neighbourhood size and internal parameters could yield comparable results to a

previously reported method, while trained and tested over the same data. By adding multi-

scale approach, where the components are CNNs, the results were shown to improve in terms
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of classification accuracy, lesion-metrics and voxel-wise metrics. Once trained, the model

could perform a fully-automated MS lesion segmentation over unseen brain images, taken

from different patients, and in other multiple sites. The results from the experiments over

the different CNN configurations had shown that there exists a large range of parameters

choices that lead to comparable results, rather than just a single optimal configuration, and

this could imply that this method could be generalized for other tasks in the future without

extensive tweaking of the hyper-parameters.

The task of lesion segmentation was addressed using 3 different high-level architectures,

from which several conclusions could be drawn. The first important conclusion is that the

extracted hidden CNN features at the last layer could be used by other types of classifiers to

obtain comparable results to ones obtained using a neural network. The random forest over

the vast amount of features were compared to the ones obtained by each model separately

and show similar results. The second conclusion is that the multi-scale approach used for all

the proposed architectures improved the overall performance, and yielded better results from

each individual scale separately. The third conclusion is that the proposed false-positive

elimination CNN (Level-3) degraded the overall performance of the method. This results

could be attributed to the quality of the dataset itself, since that architecture was designed

to learn how to correct false-positive detections using the trials data, in which many lesions

were missed in the ground-truth, and therefore actually learned to eliminate true-positive

detections instead. Indeed, a very accurate ground-truth labeling is required for such a post-

processing stage, and although it was not beneficial to the results in this thesis, it could be

used in the future when higher quality datasets will be available.

Observing the flattened CNN feature vectors for lesion vs. non-lesion examples have been

qualitatively and quantitatively shown to provide the classifier with interesting feature de-

scriptors. These features were visually examined and overlayed over a set of brain images,

and shown consistency in capturing deep-learned structures within the brain. The feature

activations corresponded to similarly appearing structures and appeared consistent over dif-

ferent patients. Some of these features seemed to repeatedly describe very distinct structures

in the brains such as healthy white matter structures, CSF, gray matter, etc. Given the

fact that these structures provided the reported degree of separation between the lesion and

non-lesion classes, it was interesting to overlook and see the components that lead the clas-

sifier to obtain its decisions. It was also informative to learn that features obtained from the

smallest neighbourhood model were more prone to noise in feature-space, comparing to the

larger neighbourhood models, and only a slightly lower level of accuracy was measured in
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this case. Furthermore, the total lesion load per patient, which is a useful metric for clinical

trials, was evaluated over the proposed architecture and shown a high correlation with the

manually-labeled results.

Examples of negative and positive examples from the dataset were presented in to provide

the reader with further insight regarding the difficulty of the MS lesion segmentation task.

Also, the empirical distributions of lesions over the dataset were plotted in order to show

the need for context-information rather than only local-intensity information, and motivate

the multi-scale approaches used for the 3 proposed architectures. Interestingly, the method

extracted features that do describe some high-level structures of the brain that were presented

as the CNN-features. These features could be integrated into different statistical models

in future work, such as MRFs that were widely used in the literature. Additionally, it

would be interesting to further explore the generalization of these architectures for different

classification tasks.

Future work should definitely include expert opinions and analysis regarding the extracted

features, or even retraining with a larger amount of input classes, such as brain structures,

rather than only pathology detection. This could provide even a richer set of CNN features

that could be integrated into many classification or segmentation models, such as brain tumor

or stroke lesion segmentation. Hopefully, the work presented in this thesis will open the door

and motivate further deep learning research for the task of MS lesion detection in particular,

and brain imaging in general.
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