
A Method of Real Space Spin

Density Functional Theory

Chenyi Zhou
Centre for the Physics of Materials

Department of Physics
McGill University
Montréal, Québec

Canada
2016

A Thesis submitted to the
Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of
Master of Science

c⃝ Chenyi Zhou, 2016





Contents

Abstract vii

Résumé viii

Statement of Originality ix

Acknowledgments x

1 Introduction 1

2 Theories of Electronic Structure Calculations 4

2.1 First Principles Theories . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Basics of the Interacting Many-Body Problem . . . . . . . . . 4

2.1.2 Hartree-Fock Approximation . . . . . . . . . . . . . . . . . . . 8

2.1.3 Kohn-Sham DFT Formalism . . . . . . . . . . . . . . . . . . . 10

2.2 Exchange-Correlation Functionals . . . . . . . . . . . . . . . . . . . . 15

2.2.1 XC Potentials for Collinear Spin . . . . . . . . . . . . . . . . . 16

2.2.2 XC Potentials for Non-Collinear Spin . . . . . . . . . . . . . . 18

2.3 Mixing Techniques - Achieving Self-Consistency . . . . . . . . . . . . 20

2.4 Pseudopotential Method . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Construction of l -Dependent Pseudopotentials . . . . . . . . . 25

2.4.2 Construction of j -Dependent Relativistic Pseudopotentials . . 31

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Numerical Methods 37

3.1 Real-space Representation of Kohn-Sham Equation . . . . . . . . . . 37

iii



iv Contents

3.1.1 Finite-Difference Method . . . . . . . . . . . . . . . . . . . . . 38

3.1.2 Ionic Potential . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.3 Hartree Potential . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Eigensolvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Power Method and Inverse Iteration . . . . . . . . . . . . . . . 46

3.2.2 Chebyshev-Filtered Subspace Iteration . . . . . . . . . . . . . 49

4 Tests and Applications 52

4.1 Collinear-spin Calculations: Ni and Fe . . . . . . . . . . . . . . . . . 52

4.2 Noncollinear-spin Calculations: Fe5 and Cr3 clusters . . . . . . . . . . 55

4.3 Spin-orbit Coupling Calculations: SnTe and TaAs . . . . . . . . . . . 56

5 Conclusions 60

A Spin-Orbit Coupling with LCAO Basis 62

B Lanczos Algorithm 65

References 67



List of Figures

4.1 Bandstructure of Ni (FCC) calculated with our real-space method. . . . . . . . 53

4.2 Bandstructure of Fe (BCC) calculated with our real-space method. . . . . . . . 54

4.3 FBZs of FCC and BCC lattices. . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Non-collinear spin texture of Cr3 (a) and Fe5 (b) clusters. . . . . . . . . . . . 55

4.5 The conventional cell and the corresponding first Brillouin zone of SnTe. . . . . 57

4.6 Body-centered tetragonal structure of TaAs and its first Brillouin zone. Figure
from Ref.[1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 Bandstructure of SnTe calculated with our real-space method and with PAW. . . 58

4.8 Bandstructure of TaAs calculated with our real-space method and with PAW. . 58

v



List of Tables

4.1 Magnetic moment per atom Mat(µB) from experiment and calculated
by different DFT methods. . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 The calculated and previously reported atomic magnetic moment (Mat, θ)
of each atom in the Fe5 pentamer. The numbers are ordered according
to atom 1-5 (Fig.4.4b) . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vi



Abstract

Phenomena related to the spin degree of freedom of electrons are an important aspect
in material physics. They can play significant roles in both magnetic and nonmagnetic
materials. It is thus desirable to have a material simulation tool that is capable of
computing spin related quantities from first principles.

In this thesis we report our implementation of spin related calculations in the
RESCU real-space DFT code[2], including collinear and noncollinear spin-polarized
calculations, and spin-orbit coupling (SOC) calculation. The main eigensolver of RES-
CU is based on the Chebyshev-filtered subspace iteration method proposed in Ref.[3].
In this work the filter operator is extended as the Kohn-Sham effective Hamiltoni-
an is spanned in the spin-space. As the inclusion of SOC makes spin no longer a
good quantum number, it is implemented within the noncollinear spin framework.
To account for SOC we follow the relativistic pseudopotential scheme proposed in
Ref.[4], where the SOC term is explicitly separated from the scalar term. As usual
the resulting pseudopotential is of the fully separable form and hence is favorable for
numerical implementations.

To test our spin-polarized implementation, we have performed simulations on Fe
and Ni bulks, and Fe5 and Cr3 clusters. We have compared our results with those
reported before and found good agreements. To validate our SOC implementation we
calculate the bandstructures of SnTe and TaAs and again we find good agreements
with results obtained with a state-of-art package VASP[5].
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Résumé

Phénomènes liés au degré de spin d’électrons sont un aspect important en la physique
des matriaux. Ils peuvent jouer un rôle important dans les deux matériaux magné-
tiques et non magnétiques. Il est donc souhaitable de disposer d’un outil de simulation
matériau qui est capable de calculer les quantités de spin liées à partir des lois fon-
damentales de la physique.

Dans cette thèse, nous rapportons notre implémentation des spin calculs connexes
dans le code RESCUE[2], incluant le collinear et le noncollinear spin polarisés calculs,
et le couplage spin-orbite (SOC) calcul. La eigensolver principale est basé sur le
“Chebyshev-filtered subspace iteration” méthode premièrement proposeé dans Ref.[3].
Dans ce travail, l’opérateur de filtre est prolonge en fait que l’Hamiltonien effectif du
Kohn-Sham est enjambée dans l’espace de spin. Comme l’inclusion de SOC fait le
spin non pas plus un bon nombre quantique, il est implémenté dans le cadre de
spin noncollinear. Pour considérer le SOC nous suivons le pseudopotential schéma
relativiste, où le terme du SOC est explicitement séparé du terme scalaire. Comme
d’habitude le pseudopotentiel résultant est de la forme entièrement séparable et est
favorable à la mise en oeuvre numérique donc.

Pour tester notre implémentation polarisé en spin, nous avons effectué des sim-
ulations sur Fe et Ni vracs, et les grappes Fe5 et Cr3. Nous avons comparé nos
résultats avec ceux rapportés avant et trouvé de bons accords. Pour valider notre
implémentation du SOC, nous calculons les structures de la bande de SnTe et TaAs
et encore, nous trouvons de bons accords avec les résultats obtenus avec un package
state-of-art[5].
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Statement of Originality

The work of this thesis consists in the implementation of spin polarized density func-
tional theory, based on the recently developed real-space DFT code RESCU[2]. My
contributions include:

• The implementation of collinear-spin, noncollinear-spin, and spin-orbit coupling
calculations within the RESCU framework. The implementation is done both
with the LCAO basis set and directly on the real-space grid.

• A post-analysis code (based on the output of the NANOBASE software) for
generating the j-dependent pseudopotentials to be used in spin-orbit coupling
calculations.

• Routines for operating complex matrices are added to the MATLAB-ScaLAPACK
interface used by RESCU.

• Applications and tests of the written code that show good agreement with
results reported before.
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1
Introduction

With the highly advanced performances of today’s computation technologies, we are

in a good position to compute various properties of materials from first-principles,

that is, based on the fundamental physics at the atomistic level without resorting

to any free parameters. This ambitious goal could not be achieved without the help

of the density functional theory (DFT)[6, 7], which casts the intractable interacting

many-electron problem into an effective noninteracting problem while without much

loss of accuracy and generality.

In a conventional DFT method, one expands the Kohn-Sham Hamiltonian in terms

of a chosen basis set such as planewaves or atomic centered orbitals, and the Kohn-

Sham equation is thus transformed into a matrix eigenpair problem within the sub-

space spanned by the basis functions. The existent state-of-art DFT simulation pack-

ages are mostly planewave based, but the planewave basis is often unfavorable for

simulating finite systems such as clusters or big polymers, because the planewave ap-

proach imposes the periodic boundary condition on the simulation box, that is, any

system is artificially extended in each dimension periodically. For the same reason,

one often has a hard time using the planewave basis to simulate charged systems,

where a compensating background charge is demanded in order to prevent the to-

tal energy divergence. From the numerical implementation point of view, planewave

DFT often requires massive global communications among processors due to the Fast

Fourier Transform operations.

1



2 1 Introduction

As pointed out by Chelikowsky et. al., all the aforementioned disadvantages about

planewave DFT can be circumvented if one chooses to solve the Kohn-Sham equa-

tion directly on a real-space grid using some high order finite-difference method[8].

Such kind of real-space DFT method has received successive interests during the

past decade. Recently an efficient real-space eigensolver has been proposed based

on the Chebyshev polynomial-filtering method[3] and further improvements (in both

algorithm and coding aspects) have been achieved to make this method particular-

ly suitable for simulating large scale systems[2]. Successful numerical simulations of

supercells containing more than 5,000 atoms have been reported[2] and therein the

algorithm shows a promising overall scaling.

Among all the applications of DFT, one finds it very useful for studying the mag-

netism related phenomena. The spontaneous magnetization is a true quantum many-

body effect: in some systems electrons can lower their total energy by getting localized

and forming spin alignments or anti-alignments; this occurs when the resulting quan-

tum exchange effect due to Pauli’s exclusion principle overplays the localization effect

which leads to the increase of kinetic energy due to Heisenberg’s uncertainty principle

(c.f. Eq.2.11). Therefore DFT becomes a powerful tool for this kind of issue since it

well accounts for the underlying many-body effects. The tendency toward magnetism

is considerably enhanced in lower-dimensional systems such as metallic surfaces and

interfaces, films, wires, and clusters. These magnetic systems have received consider-

able experimental and theoretical attention in recent years and have been extensively

studied by spin-polarized DFT calculations. One of the major tasks of this work is

to implement the spin-polarized calculation within the recently developed real-space

DFT framework[2].

Another topic we are interested in is the material properties associated with the

spin-orbit coupling (SOC) effect. SOC is a relativistic effect which tends to be stronger

as the atomic number increases. The SOC related physics has become a hotspot in

today’s material science, especially in novel optoelectronic materials[9], thermoelec-
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tric materials[10], and topological insulators or semimetals[11, 12]. SOC effects are

also of great importance in regular magnetic systems. For example, the favorable

magnetization direction or spin configuration of a magnetic material is determined

by the SOC part of the total energy of such configuration.

At the first glance it might be not so obvious how to describe SOC within DFT

since the standard Kohn-Sham equations are nonrelativistic. However, as relativistic

effects mainly enter the picture through the high velocity core electrons, they can

be taken care of by the ionic pseudopotentials which Kohn-Sham equations are often

implemented in conjunction with[13]. It is also worth mentioning that once SOC is

taken into account, spin is no longer a good quantum number; therefore the SOC

calculation should be implemented within the noncollinear spin framework.

The thesis is organized as follows. Chapter 2 contains a very brief review of

the fundamental many-body physics and then the Kohn-Sham density functional

theory is introduced. The remaining of chapter 2 is devoted to completing the Kohn-

Sham DFT numerical scheme, including the method for approximating the exchange

and correlation functionals, the mixing methods, and the pseudopotential methods.

In chapter 3 we demonstrate how to discretize Kohn-Sham equations in the real-

space. The eigensolver numerical recipe is also presented thereafter. A few tests and

applications of our implementation of spin-polarized DFT are presented in chapter 4.



2
Theories of Electronic Structure Calculations

2.1 First Principles Theories

In what follows we first introduce the basic language (Green functions) of the many-

body physics based on the most fundamental quantum mechanics. This makes clear

what are the main tasks in solving a many-body problem and how difficulties arise.

Then we derive the Hartree-Fock method using the Green functions, which makes us

aware of the two different many-body effects, i.e. exchange and correlation, and why

both of them are important in describing electrons in solid-state systems. Finally

we present the Density Functional Theory (DFT) which takes a different track of

formulating the many-body problem. The connection between DFT and the Green

function method is discussed briefly.

2.1.1 Basics of the Interacting Many-Body Problem

The basic interacting many-electron Hamiltonian that we are trying to address reads[14,

15] (h̄ = e = me = 1)

H =H0 + Vee

H0 =− 1

2

∑
σ

∫
d3rd3r′ Ψ̂†

σ(r)∇2Ψ̂σ(r
′) +

∑
σ

∫
d3r (VH(r) + Vext(r))Ψ̂

†
σ(r)Ψ̂σ(r)

4



2.1 First Principles Theories 5

Vee =
1

2

∑
σ1,σ2

∫
d3r1d

3r2 Ψ̂
†
σ1
(r1)Ψ̂

†
σ2
(r2)v(r2 − r1)Ψ̂σ2

(r2)Ψ̂σ1
(r1)

−
∑
σ

∫
d3r VH(r)Ψ̂

†
σ(r)Ψ̂σ(r)

VH(r) =

∫
d3r′ v(r− r′)

∑
σ

ρσ(r
′) , v(r− r′) ≡ 1

|r− r′|
,

where ρ denotes electron density, and Ψ̂†
σ(r) (Ψ̂σ(r)) creates (annihilates) an electron

with spin σ at real-space point r. The unperturbed Hamiltonian H0 is composed of

the kinetic energy and the Hartree term. The perturbation Vee is due to the two-body

coulomb interaction (with the Hartree contribution deducted). We place the Hartree

interaction Ψ̂†
σ(r)VH(r)Ψ̂σ(r) in H0 instead of Vee because it only gives a static mean-

field contribution and is easy to handle. The external potential Vext(r) comes from

the nuclei in the system. In this section we do not include the relativistic effects,

and the Zeeman-like transverse interaction is out of the scope of usual many-electron

problems[14]. Therefore, there is no spin flipping mechanism in H.

As we are interested in the ground state properties of the system, it is suitable to

work in the zero-temperature formalism[16] and the central quantity to compute is

the Green function

G(x, x′) =

 −i ⟨N | Ψ̂(x)Ψ̂†(x′) |N⟩ for t > t′

i ⟨N | Ψ̂†(x′)Ψ̂(x) |N⟩ for t < t′
(2.1)

where Ψ̂†
σ(x) and Ψ̂σ(x) are operators in the Heisenberg picture, and x ≡ (r, t, σ)

for notation brevity. Here |N⟩ represents the exact N-electron ground state of the

full Hamiltonian H. The physical meaning of the Green function is clear: for t′ > t

it is the probability that a hole created at x will propagate to x′ and for t > t′ it

is the probability that an electron added at x′ will propagate to x. Therefore, a

lot of information can be extracted from the Green function, such as the one-electron

excitation spectrum, particle density distribution, and ground state energy ⟨N |H |N⟩

[14, 16, 15]. Since spin is a good quantum number here, in what follows we will assign
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a spin index to the spin related quantities.

As one of the standard procedures to set up equations for Green functions, one

calculates the time derivative i ∂
∂t
Gσ(x, x

′). This is done in a brute force way using the

definition Eq.(2.1) and the Heisenberg equation of motion i ∂
∂t
Ψ̂ = [Ψ̂, H] repeatedly.

This procedure leads to the equation of motion of Green functions:[15, 17]

i
∂

∂t
Gσ(x, x

′) = δ(x− x′) +

∫
d3x′′ [H0(x, x

′′) + Σσ(x, x
′′)]Gσ(x

′′, x′). (2.2)

Here the self-energy function Σσ(x, x
′′) is introduced. We don’t wish to delve in the

formal derivation of Eq.(2.2) and how to calculate Σσ(x, x
′′); here we only want to

introduce the mathematical structure of Eq.(2.2) (and subsequently Eq.2.5) and to

compare it with the Hartree-Fock and Kohn-Sham equations which we shall talk later.

As our system is in equilibrium, the time variable should bear translational symmetry.

We can thus Fourier transform Eq.(2.2) with respect to (t− t′), which yields

∫
d3r′′ [ωδ(r− r′′)−H0(r, r

′′)− Σσ(r, r
′′, ω)]Gσ(r

′′, r′, ω) = δ(r− r′). (2.3)

Trivially, if Σσ(r, r
′, ω) is known the Green function can be solved exactly from the

following spectral representation

Gσ(r, r
′, ω) =

∑
j

ψj,σ(r, ω)ψ
†
j,σ(r

′, ω)

ω − Ej,σ(ω)
, (2.4)

where ψj,σ(r, ω)’s are solutions to the quasiparticle equation

[
−1

2
∇2 + VH(r) + Vext(r)

]
︸ ︷︷ ︸

Ĥ0

ψj,σ(r, ω)+

∫
d3r′ Σσ(r, r

′, ω)ψj,σ(r
′, ω) = Ej,σ(ω)ψj,σ(r, ω).

(2.5)

At each given ω this equation resembles the usual one-particle Schrödinger equation,

except that in Eq.(2.5) the effective Hamiltonian (H0+Σσ(ω)) is frequency dependent

and is in general not Hermitian. Because of the latter fact, the eigenvalue Ej,σ(ω)
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can be complex and hence ψj,σ does not mean any real electron state.

The significance of Eq.(2.5) is that it shows how a many-body interacting prob-

lem can be formally transformed into a set of one-particle Schrodinger-like equations,

providing the self-energy Σσ(r, r
′, ω) is known beforehand. However, the reality is

that there is no way to get the exact self-energy because of its enormous complex-

ity. Therefore, many of the first-principles theories amount to using some simpler

functions (functionals) to approximate the self-energy[18].

Another useful theorem (for finite systems only) is the Lehmann representation of

the Green function:[17]

Gσ(r, r
′, ω) =

∑
i

hi,σ(r)h
∗
i,σ(r

′)

ω − µ+ e(N − 1, i)− i0+
+
∑
i

p∗i,σ(r)pi,σ(r
′)

ω − µ− e(N + 1, i) + i0+
(2.6)

Gσ(r, t; r
′, t′) =iθ(t′ − t)

∑
i

hi,σ(r)h
∗
i,σ(r

′)ei[µ−e(N−1,i)](t′−t)

− iθ(t− t′)
∑
i

p∗i,σ(r)pi,σ(r
′)e−i[µ+e(N+1,i)](t−t′) (2.7)

in frequency and time domain respectively, where

hi,σ(r) = ⟨N − 1, i| Ψ̂σ(r, t = 0) |N⟩ , pi,σ(r) = ⟨N + 1, i| Ψ̂†
σ(r, t = 0) |N⟩ (2.8)

|N ± 1, i⟩ is the ith eigenstate of the N ±1 electron system with an excitation energy

e(N ± 1, i) = E(N ± 1, i)−E(N ± 1), which is positive and E(N ± 1) is the ground

state energy of the N ± 1 electron system. µ is the chemical potential µ = E(N +

1) − E(N) = E(N) − E(N − 1) + O(1/N). From Eq.(2.6) we see that the poles

of the Green function equal the exact (one-particle) excitation energies. Besides,

from Eq.(2.7) we find a suggestive expression for the charge density, in terms of the
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quasi-particle orbitals:

ρσ(r) ≡ −iGσ(r, t; r, t
+) =

∑
i

|hi,σ(r)|2 (2.9)

as if hi,σ(r)’s were occupied one-particle states.

All the theories and equations presented so far are exact. Eqs.(2.5), (2.6), and

(2.9) are the key points of this subsection.

2.1.2 Hartree-Fock Approximation

The Hartree-Fock method can be viewed as a precursor before the DFT emerged.

This method can be derived in several different yet equivalent ways, for example,

starting with a mean-field effective Hamiltonian[19] or assuming the ground-state

wavefunction to be a single Slater-determinant[20]. Here we choose to derive the

Hartree-Fock equation under the Green function formalism.

The Hartree-Fock approximation consists in approximating the self-energy Σσ(r, r
′, ω)

by its lowest order term[15]

ΣHF
σ (r, r′, ω) = i

∫
dω′

2π
GHF

σ (r, r′, ω′)v(r− r′)eiω
′0+

= −
∑
i

hi,σ(r)h
∗
i,σ(r

′)

|r− r′|
, (2.10)

where the second equality comes from the Lehmann representation Eq.(2.7). Since

ΣHF
σ is Hermitian and frequency independent (static mean-field), Eq.(2.5) reduces to

a Schrödinger equation and hence Eq.(2.4) should coincide with Eq.(2.6). We thus

plug Eq.(2.10) in Eq.(2.5):

[
−1

2
∇2 + VH(r) + Vext(r)

]
hj,σ(r) +

∫
d3r′ ΣHF

σ (r, r′)hj,σ(r
′) = Ej,σhj,σ(r)
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and then arrive at the quasi-particle Schrödinger equation:

[
−1

2
∇2 + Vext(r)

]
hj,σ(r)+

∫
d3r′

∑
σ′

N∑
i

|hi,σ′(r′)|2

|r− r′|
hj,σ(r)

−
∫

d3r′
N∑
i

h∗i,σ(r
′)hi,σ(r)

|r− r′|
hj,σ(r

′) = Ej,σhj,σ(r). (2.11)

This is the well-known Hartree-Fock equation. Upon knowing the orbital number N ,

this equation can be solved iteratively starting from an initial guess for each hi,σ(r);

apparently N is just the particle number because hi,σ(r)’s are orthonormalized and

satisfy Eq.(2.9).

The last term on L.H.S of Eq.(2.11) is of great importance: it is termed as the ex-

change interaction in that it reflects the Pauli’s exclusion principle[20], which reduces

the possibility of spin-aligned electrons getting too close. Therefore the exchange ef-

fect results in a deduction from the bare coulomb interaction. This effect also implies

that electrons might be able to lower the total energy by aligning their spins, which

is important for understanding the magnetic phenomena.

The spatially nonlocal feature of the exchange interaction manifests its quantum

nature. However, as ΣHF
σ is frequency independent, the Hartree-Fock approximation

completely discards the interaction effects that are nonlocal in time, usually referred

as correlation effects in addition to the exchange effect. One important correlation

effect is the so-called “dynamical screening” effect: even in an equilibrium system

there are electron density fluctuations taking place from time to time, which modu-

lates the electron-electron interaction as if the bare coulomb potential were somewhat

“screened” to become short-ranged[15]. This effect turns out to be very important

in large-scale systems where the long-range feature of the coulomb interaction plays

out. This is partly why the Hartree-Fock method often fails for periodic solid-state

systems.

For practical reasons what we need is a first-principles method that can take corre-
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lation effects into account while keeping the computational cost affordable. However,

going beyond Hartree-Fock in the Green function formalism, though systematic, yet

is known to be very difficult and computationally demanding[17].

2.1.3 Kohn-Sham DFT Formalism

Now let us turn into another route to solving the many-body problem. Instead of

manipulating the Green functions, DFT starts with investigating the formally ex-

act ground-state many-body wavefunction, which is the solution to the many-body

Schrödinger equation. One then obtains the cornerstone of the entire DFT theory

– Hohenberg-Kohn Theorem[21] (the derivation can be found in any DFT textbook

such as Ref.[22]). The Hohenberg-Kohn Theorem is essentially a variational principle,

which states that

For a system of interacting electrons in an external potential Vext(r) , the total

energy ET in the ground state is a universal functional of the ground state

particle density ρ(r). Besides, this energy functional ET[ρ] approaches its global

minimum value varying the density ρ(r) towards the true ground-state density.

Though the Hohenberg-Kohn theorem is theoretically exact, one might find it useless

since it says nothing about how to construct the density functional ET[ρ], which

however appears to be the heart of this theory.

From our basic knowledge we know that the total energy must consist of four

parts. Namely, the kinetic energy, exchange-correlation (XC) energy, Hartree energy,

and the energy induced by the external electrical field. Among these four, the density

functionals for the first two are yet unknown, but the last two are just electrostatic

energies which can be formulated exactly:

EH[ρ] =
1

2

∫
d3r

∫
d3r′

ρ(r)ρ(r′)

|r− r′|
(2.12)
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Eext[ρ]=

∫
d3r ρ(r) · Vext(r) (2.13)

Thus the difficulty of expressing ET[ρ] consists in finding the density functionals

for the kinetic and XC energies. To proceed one resorts to the Kohn-Sham (KS)

Ansatz[6].

The ansatz consists in assuming that the total particle density can still be expressed

in the general form (c.f. Eq.2.9)

ρ(r) =
occ∑
i

|ψi(r)|2 (2.14)

with some quasiparticle orbitals ψi(r)’s to be determined. As part of the ansatz the

ψi(r)’s are required to be orthonormalized: ⟨ψi | ψj⟩ = δij. Then the Kohn-Sham

kinetic energy is introduced:

TKS[ρ] =
∑
i

⟨ψi| −
1

2
∇2 |ψi⟩ , (2.15)

which is of course different from the true kinetic energy, but this difference can be

absorbed into the XC functional Exc[ρ] since we do not know the exact expression

of the latter anyway. This process might seem rather irresponsible, but as we shall

see later in section 2.2 there exist well developed methods to approximate Exc[ρ] and

these methods can work sufficiently well for lots of real problems.

The partition of ET[ρ] within the Kohn-Sham formalism is summarized as

ET = TKS + Eext + EH + Exc.

The genius of this partition is that by explicitly separating out the long-range electro-

static terms and the kinetic energy term which bears an independent-particle form,

the remaining Exc can reasonably be approximated as a local or nearly local density
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functional[22], which can be expressed in the form

Exc[ρ] =

∫
d3r εxc[ρ](r) · ρ(r), (2.16)

where the functional εxc[ρ] is often called the XC energy density. For clarity we write

down the full expression of ET[ρ]:

ET =TKS + Eext + EH + Exc

=
∑
i

⟨ψi| −
1

2
∇2 |ψi⟩+

∫
d3r ρ(r) · Vext(r)

+
1

2

∫
d3r

∫
d3r′

ρ(r)ρ(r′)

|r− r′|
+

∫
d3r εxc[ρ](r) · ρ(r) (2.17)

So far we still have not obtained any practical scheme to actually calculate some-

thing. To proceed we shall utilize the variational principle proposed in the Hohenberg-

Kohn theorem: δET[ρ]/δρ|ρ=ρ0 = 0. With the help of Kohn-Sham ansatz, variations

of ET[ρ] with respect to ρ(r) can now be carried out with respect to ψi(r)’s instead,

under the constraint ⟨ψi | ψj⟩ = δij. Thus we have

δ

{
ET[ρ]−

∑
i

εi · [⟨ψi | ψi⟩ − 1]

}/
δ ⟨ψi| = 0 (2.18)

Here the Lagrange multiplier εi is introduced. (Strictly speaking, the multipliers

should form a matrix εij rather than just a vector εi, but one can always diagonalize

εij at the end, which is equivalent to performing a unitary transformation about |ψi⟩’s

[20].) Eq.(2.18) immediately leads to the Kohn-Sham equation

(
−1

2
∇2 + Vext +

∫
d3r′

ρ(r′)

|r− r′|
+ Vxc[ρ]

)
|ψi⟩ = εi |ψi⟩ (2.19)

where the local XC potential Vxc[ρ] is defined as Vxc[ρ](r) = δExc[ρ(r)]/δρ(r). This

equation resembles Eq.(2.5) again and the interpretation is similar. The Kohn-Sham

equation can be easily generalized for spin-polarized systems by using a spin-density
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dependent XC functional Exc[ρ
↑, ρ↓] (see Eq.2.23 below); here we continue suppressing

the spin indices for demonstration convenience. It is worth stressing that the density

functional Vxc[ρ] is still unknown at this point.

Since we assume in DFT that the density calculated from

ρ(r) ≡
N∑
i=1

|ψi(r)|2 = −iGKS(r, t; r, t
+)

equals the true groundstate density ρ0(r) ≡ −iG(r, t; r, t+), by using Eqs.(2.3), (2.4),

and (2.19), the relation between Vxc[ρ] and the self-energy is found to be[18]:

∫
d3r′Vxc(r

′)

∫
dω

2π
GKS(r, r

′, ω)G(r′, r, ω)

=

∫
d3r1

∫
d3r2

∫
dω

2π
GKS(r, r1, ω)Σ(r1, r2, ω)G(r2, r, ω), (2.20)

whereG denotes the exact Green function andGKS is defined using Eq.(2.4) with exact

Kohn-Sham orbitals ψi(r)’s. From Eq.(2.20) it becomes clear that Vxc is definitely not

just a simple static local potential because it should incorporate complicated many-

body effects contained in the exact self-energy, which is nonlocal in both real-space

and time domain. Approximate expressions for Vxc will be discussed later in section

2.2.

Now we see that the Kohn-Sham scheme maps the interacting many-body system

down to an effective noninteracting system, where we only need to solve Eq.(2.19)

which is just a single-particle Schrödinger equation with the effective Hamiltonian

Heff = −1

2
∇2 + Veff(r)

Veff = Vext + VH + Vxc.

Once Eq.(2.19) is solved the density can be readily calculated from Eq.(2.14). Howev-

er, in this approach one tricky thing is that before knowing the ground-state density
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ρ0(r) the correct Heff remains unknown because Vxc and VH explicitly depend on ρ0(r),

while ρ0(r) is in turn related to the eigen-wavefunctions of Heff via Eq.(2.14). Thus

an iteration scheme is required in order to obtain the correct ρ0(r) and Heff simul-

taneously, which is usually referred as the self-consistency iteration. Remarkably, in

each iteration only the density ρ(r) needs to be updated. This makes the numerical

implementation a lot easier, compared to other first principles methods such as the

Hartree-Fock method, where all quasiparticle orbitals need to be updated at each

iteration.

Before entering into the next section, let us discuss what is the proper interpreta-

tion for the solutions to the Kohn-Sham equation. The first thing is the Kohn-Sham

orbitals ψi(r)’s. Although they are commonly used to depict the probability dis-

tribution of single electrons in the system, strictly speaking there is no such direct

relation: ψi(r)’s are just some variables introduced in the DFT variational procedure

from mathematical point of view, or just some quasi-particle orbitals in the spectral

representation of Green functions. The second thing is the eigenvalues εi’s. Again,

in practice they are commonly accepted to represent the electronic structure of the

system. However, generally speaking, εi cannot be interpreted as the energy to add

(affiliation) or subtract (ionization) an electron to/from the interacting many-body

system; there is only one exception though[23]: if the system is finite, the eigen-energy

of the highest occupied state should equal the ionization energy (up to a minus sign).

Another way to investigate the meanings of εi’s is to compare them with the total

energy. To this end we apply ⟨ψi| on both sides of Eq.(2.19) and then sum them up:

N∑
i=1

εi =
∑
i

⟨ψi| −
1

2
∇2 |ψi⟩+

∫
d3r Vext(r)ρ(r)

+

∫
d3r

∫
d3r′

ρ(r′)

|r− r′|
ρ(r) +

∫
d3r Vxc(r)ρ(r) (2.21)
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By comparing Eq.(2.21) to Eq.(2.17) we find

ET =
N∑
i=1

εi −
1

2

∫
d3r

∫
d3r′

ρ(r)ρ(r′)

|r− r′|
+

∫
d3r ρ(r) · [εxc(r)− Vxc(r)] (2.22)

As can be seen there is no direct relation between ET and εi either. In fact the

correct relation between ET and εi is given by the Slater-Janak theorem[24, 7] in-

stead: ∂ET/∂ni = εi, where ni is the occupation number (fractional) of the ith state.

As a byproduct, one often finds Eq.(2.22) a convenient formula for calculating the

groundstate total energy.

2.2 Exchange-Correlation Functionals

Now the only barrier we are faced with toward solving the Kohn-Sham equation is the

unknown functional Vxc[ρ]. Although the existence of such functional is definite, get-

ting its exact form means the full solution to the groundstate many-electron problem,

which is still impossible at the present stage. One thus has to resort to various ap-

proximations in order to make DFT a numerically practical scheme for real material

simulations.

In this work we are confined to the level of local spin density approximation (LS-

DA) and the generalized gradient approximation (GGA) for the XC functional. In

LSDA or GGA the exchange effect along with the correlation effect is calculated only

approximately, which could in principle be done accurately as in the Hartree-Fock

method, but for solid state systems LSDA and GGA actually work much better than

Hartree-Fock. It seems that the inclusion of the correlation effect, though “coarsely”

approximated, is much more important than just calculating the exchange effect.
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2.2.1 XC Potentials for Collinear Spin

The term “collinear spin” refers to the situation where the axis of the spin quantization

is the same at all points in space. In this case spin remains a good quantum number

and the Kohn-Sham equations can thus be separated into two uncoupled sets:

(
−1

2
∇2 + Vext +

∫
d3r′

ρ(r′)

|r− r′|
+ V σ

xc

)
|ψσ

i ⟩ = εσi |ψσ
i ⟩ , (2.23)

where σ =↑, ↓. As can be seen the only factor to distinguish the spin-up part from

the down part is the spin dependence in the XC potential V σ
xc, which is obtained from

varying the XC energy functional with respect to the corresponding spin-resolved

charge density: V σ
xc(r) = δExc/δρ

σ(r).

On the LSDA level the XC energy functional is simply formulated as an integral

over all space with the XC energy density at each point assumed to be the same as

in a homogeneous electron gas with that density:

ELSDA
xc [ρ↑, ρ↓] =

∫
d3rρ(r)εhomxc [ρ↑(r), ρ↓(r)].

The expression of the XC potential V σ
xc is thus

V σ
xc(r) = εhomxc + ρ

∂εhomxc

∂ρσ
. (2.24)

The homogeneous XC energy density εhomxc can be split into two parts, εhomxc = εhomx +

εhomc , where the exchange term εhomx [ρσ] simply scales as (ρσ)−1/3. Because of this, it

follows that the exchange part of V σ
xc is particularly simple:

V σ
x (r) =

4

3
εhomx [ρσ(r)],

while the correlation part depends on the specific form to be assumed. In fact, no

analytical expression is available for the exact correlation energy of a homogeneous

electron gas. However it can be calculated from stochastic methods[25] based on
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exact expressions for the low and high density asymptotic behaviors of the uniform

electron gas[26]. Other approaches consist in using analytic expressions that give the

correct limiting behaviors in agreement with the data interpolation[27, 28, 29].

The success of LSDA has led to the development of various generalized-gradient

approximations (GGAs) with marked improvements over LSDA for many cases. The

first step to go beyond local approximations is to include the magnitude of the density

gradient |∇ρσ| as another argument of the XC functional. A spin-polarized GGA

functional has the generalized form:[30]

EGGA
xc [ρ↑, ρ↓] =

∫
d3rρ(r)εxc

[
ρ↑, ρ↓,

∣∣∇ρ↑∣∣ , ∣∣∇ρ↓∣∣]
=

∫
d3rρ(r)εhomx [ρ]Fxc

[
ρ↑, ρ↓,

∣∣∇ρ↑∣∣ , ∣∣∇ρ↓∣∣],
where Fxc is a dimensionless function and εhomx is the exchange energy per particle in

the unpolarized homogeneous electron gas. In GGA one can derive the XC potential

by finding the change δEGGA
xc to linear order in δρσ:

δEGGA
xc =

∑
σ

∫
d3r

[
εxc + ρ(r)

∂εxc
∂ρσ

+ ρ(r)
∂εxc
∂∇ρσ

∇
]
· δρσ(r)

The term in square brackets might thus be identified as the XC potential; however,

it does not have the form of a local potential because of the last term, which is a

differential operator. One approach to dealing with the last term is to perform a

partial integration. This yields[22, 31]

V σ
xc(r) = εxc + ρ(r)

∂εxc
∂ρσ

−∇
(
ρ(r)

∂εxc
∂∇ρσ

)
.

This is the form most commonly used.

In this thesis we do not delve into the details of constructing XC functionals. In

the RESCU code the Libxc library[32] with a great number of functionals built inside

can be called whenever the XC potential is to be calculated.
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Lastly, for collinear-spin the total energy should be calculated as

ET =
N∑
i=1

εi −
1

2

∫
d3r
(
ρ↑ + ρ↓

)
VH +

∑
σ=↑,↓

∫
d3r ρσ · [εσxc − V σ

xc] (2.25)

2.2.2 XC Potentials for Non-Collinear Spin

In the collinear spin case, there are only two spin-resolved densities [ρ↑, ρ↓] and ac-

cordingly two potentials [V ↑
xc, V

↓
xc]. This is, however, not the most general case since

the spin axis can vary in space (non-collinear spin configuration). When spin is no

longer a good quantum number, any electronic state |ψ⟩ should be expressed as a two

component spinor, a direct product of the real-space and the spin wavefunctions:

|ψ⟩ =
∣∣φ↑(r)

⟩
⊗ |↑⟩+

∣∣φ↓(r)
⟩
⊗ |↓⟩ .

Accordingly, the effective one-particle potential V̂ αβ to act on such a spinor should

be expressed as

V̂ αβ |ψ⟩ =

 V̂ ↑↑ V̂ ↑↓

V̂ ↓↑ V̂ ↓↓

 φ↑

φ↓

 .

Note that here V̂ αβ has nonzero off-diagonal elements, unlike in the collinear spin

case where V̂ αβ is diagonal in the spin space. There are two sources for these off-

diagonal elements. One is the off-diagonal terms from the non-collinear XC potential

and the other is the j-dependent pseudopotentials if the spin-orbit coupling effect is

considered [see Eq.(2.45)]. In this subsection we focus on the former.

To get the non-collinear spin XC potential, one first defines a local spin density

matrix

ραβ(r) =
occ∑
ν

fνφ
α
ν (r)φ

β
ν (r)

∗ →

 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

 , (2.26)

where fν is the occupation number of the νth eigen-state φν . To get a geometric pic-

ture of the local spin configuration, one can cast the density matrix into the following
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form[33]:

ραβ(r) =
1

2
N · σ0 +

1

2
−→m · −→σ

with
N = ρ↑↑ + ρ↓↓

mx = 2Re
[
ρ↑↓
]

my = −2Im[ρ↑↓]

mz = ρ↑↑ − ρ↓↓

(2.27)

and σ0 being the 2 by 2 unity matrix, −→σ = [σx, σy, σz] being the Pauli matrices.

The vector −→m(r) defined above represents the local magnetization and the quantity

N is just the local electron density. The direction of −→m(r) can be represented by the

Euler angle (θ, ϕ) specified at each point. Using the Euler angle we can define a local

unitary transformation matrix[34, 35]

U =

 eiϕ/2 cos(θ/2) e−iϕ/2 sin(θ/2)

−eiϕ/2 sin(θ/2) e−iϕ/2 cos(θ/2)

 ,

which can be shown to diagonalize ραβ(r):

U

 ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

U † =

 ρ
′↑ 0

0 ρ
′↓

 ,

where ρ′↑,↓ = 1
2
(N ± |m|) are local spin-up and spin-down densities. Note that under

this definition the local spin-up component is always greater than the spin-down com-

ponent, which should have no problem within LSDA but will cause some ambiguity

in GGA; I will discuss this later. Now we turn to demonstrate how the XC potential

should be generated after ρ′↑,↓(r) is obtained.

In LSDA it is simply assumed that

V αβ
xc =

 Vxc
↑↑ Vxc

↑↓

Vxc
↓↑ Vxc

↓↓

 = U †

 V
′↑
xc 0

0 V
′↓
xc

U, (2.28)
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where V ′σ
xc is obtained using Eq.(2.24) with εhomxc [ρ

′σ(r)] defined in the collinear spin

case. Note that in the LSDA case, as generating the XC potential is done locally, it

doesn’t matter which of the 1
2
(N ± |m|) is viewed to be of spin-up and the other to

be of spin-down; either way results in a same V αβ
xc as long as the U-matrix is defined

consistently.

In the GGA case we could also follow the above procedure to generate V αβ
xc by

utilizing the GGA collinear spin functionals (this is exactly what we decide to do

in this work). However, there is one subtle thing hidden behind. In GGA, spin

density gradients are always calculated separately for spin up and down components.

Therefore we need to specify on each real-space point which of the 1
2
(N ± |m|) is

spin-up, which is spin-down, without ambiguity. But in the non-collinear case there

is no global spin axis and hence the “up” or “down” direction is not well defined per se.

Therefore we adopt the convention that the greater component 1
2
(N + |m|) is always

taken as spin-up at all points, which is apparently not always true (just think of an

antiferromagnetic spin configuration).

Lastly, similar to Eq.(2.25), the formula for calculating the total energy in the

non-collinear spin case is

ET =
N∑
i=1

εi −
1

2

∫
d3r
(
ρ

′↑ + ρ
′↓
)
VH +

∑
σ=↑,↓

∫
d3r ρ

′σ ·
[
ε
′σ
xc − V

′σ
xc

]
.

2.3 Mixing Techniques - Achieving Self-Consistency

Now that we have clarified how to compute Vxc[ρ] in different situations, we are ready

to make up a scheme for solving the Kohn-Sham equation. The scheme is sketched

as follows:

1. Starting from a prediction of the density ρ
(αβ)
in (r) as an input, calculate the

corresponding effective potential Veff [ρ
(αβ)
in ].
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2. Plug Veff [ρ
(αβ)
in ] in Kohn-Sham equation and solve it on a chosen basis set.

3. Determine the Fermi energy and compute the new density ρ(αβ)out (r) using Eq.(2.14)

or (2.26).

4. If the difference between ρ
(αβ)
in and ρ

(αβ)
out is within some prescribed tolerance,

then stop; if not, make a new prediction (update) for ρ(αβ)in and go back to

step1.

As the Kohn-Sham equation can only be solved self-consistently, a key problem is

how to make predictions for the input density ρ
(αβ)
in . When carrying out the Kohn-

Sham self-consistency calculation, one should bear in mind that there is no guarantee

the new ρ
(αβ)
out calculated at the end of the last loop would be closer to the true solution

than the ones calculated before. Therefore some algorithms are wanted to improve

the convergence performance. Developing such algorithms is not only a mathematical

problem but should also involve our understandings of material physics, because they

are required to be adaptive and transferable for many different materials.

The most well developed method for speeding up convergence in electronic struc-

ture calculations is the “mixer” algorithm, which generates a new input density ρ(αβ)in

for the next loop by mixing the newly calculated ρ
(αβ)
out with the ones calculated in

previous iterations. The better the mixer quality, the faster the convergence will be

achieved. In the remaining of this section we demonstrate the basic ideas of the mixer

machinery; we suppress the spin indices because different spin components are treated

similarly in a mixer.

Suppose at the beginning of a certain iteration our input ρin is already quite close

to the self-consistent density ρsc, then the deviation in the output density ρout to

linear order in the deviation in ρin is given by

ρout − ρsc =
δρout
δVin

δVin
δρin

(ρin − ρsc) . (2.29)
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If we denote

J ≡ 1− δρout
δVin

δVin
δρin

then it is easy to show that Eq.(2.29) can be rearranged into

ρsc = ρin + J−1 (ρout − ρin) .

Therefore, suppose we are at the end of the mth iteration loop, then the optimized

input density for the (m+ 1)th iteration would be

ρm+1
in = ρmin + J−1 (ρmout − ρmin) .

If ρmin is already very close to ρsc and assuming we are able to evaluate J−1 accurately,

then we would immediately have ρm+1
in ≈ ρsc (problem solved). But unfortunately the

calculation of J−1 is rather complicated, because physically speaking J is actually the

dielectric matrix[22, 36] of the system which should be calculated as

J(r1, r2) = δ (r1, r2)−
∫
dr′3χ(r1, r

′)K(r′, r2)

with

K (r, r′) =
1

|r− r′|
+

δ2Exc[ρ]

δρ(r)δρ(r′)
,

χ(r, r′) = 2
occ∑
i=1

empty∑
j

ψ∗
i (r)ψj(r)ψ

∗
j (r

′)ψi(r
′)

εi − εj
,

where ψ’s are eigen-wavefunctions of the Kohn-Sham equation. As directly calculating

J is nearly unrealistic, every mixing algorithm amounts to finding an appropriate

approximation for J−1.

A simple but efficient mixing scheme for bulk systems was proposed by Kerker[37],

where the dielectric matrix of simple metallic systems is utilized to approximate J in

the momentum space:

J−1 ≈ G1
q = A

q2

q2 + q20
.



2.3 Mixing Techniques - Achieving Self-Consistency 23

Considering the most general case Eq.(2.27), the quantity to be mixed can have

as many as four components, namely N,mx,my,mz, then the parameters A and q0

should be defined separately for each component.

The Kerker mixing scheme bears the feature that for large wave vectors it reduces

to a simple linear mixing with the linear mixing parameter A, i.e.

ρm+1
in (q) = ρmin(q) + A [ρmout(q)− ρmin(q)] for large q,

while for small q the function behaves like Aq2/q20 and thus mixes only a small amount

of ρmout(q) into ρmin(q). This last feature is essential because it helps to suppress the

notorious “charge-sloshing” effect that could largely lower the convergence speed for

metallic systems. The “charge-sloshing” problem occurs because the change in Hartree

potential is much more sensitive to small q components than to the large ones. Be-

cause the Hartree potential is a major part in Veff , if we don’t damp the change in

the small q components, the new Veff generated by ρm+1
in might change noticeably,

which is against getting convergence. An even worse thing that could happen is that

{ρmout, ρm+1
out , ρ

m+2
out ...} keep oscillating around ρsc and just don’t converge to it.

Another widely used algorithm is the Pulay mixer[5, 36, 38], which is more ad-

vanced and robust than the Kerker’s scheme. In Pulay scheme the Gq matrix is

updated in each iteration:

J−1 ≈ Gm = G1 −
m−1∑
k,n=1

Ā−1
kn

(
G1 |∆Rn⟩+ |∆ρn⟩

) ⟨
∆Rk

∣∣
with

G1
q = A

q2

q2 + q20

∆ρn = ρn+1
in − ρnin,

Ākn =
⟨
∆Rn

∣∣ ∆Rk
⟩
,
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∆Rn =
(
ρn+1
out − ρn+1

in

)
− (ρnout − ρnin) .

The inner product is defined as

⟨A | B⟩ =
∑
q

fqA
∗
qBq (2.30)

with

fq =
q2 + q21
q2

.

The inclusion of the weighting factor fq turns out to be very important for suppressing

the “charge-sloshing” effect: in calculating Eq.(2.30) more weight is put on the small

q components to force the mixing algorithm to first converge the components with

long-range oscillations[5, 36].

2.4 Pseudopotential Method

In solving the Schrödinger equation for condensed aggregates of atoms, space can

be divided into two regions with quite different properties. The region near the

nuclei, the core region, is composed primarily of tightly bound core electrons which

respond very little to the presence of neighboring atoms. The remaining volume, the

interstitial region, contains valence electrons which are involved in chemical bonds. It

is apparently very redundant to carry along the core electron states in all calculations.

Based on this observation, pseudopotentials are introduced to construct an effective

ion potential to describe the interaction between valence-electrons and core-electrons.

Another common difficulty in electronic structure calculations is that due to the

requirement of orthogonalization the valence-electron wavefunctions usually bear a

high-frequency oscillation feature in the core region, which is rather unfavorable for

numerical calculations. To get over this problem, the pseudopotential is also devised

to smoothen the (pesudo)valence-electron wavefunctions as well as the effective atomic

potential in the core region.
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In this section we will go over the basic pseudopotential theory and demonstrate

the procedures to generate l - and j -dependent pseudopotentials. The latter is relevant

to our implementation of spin-orbit coupling (SOC) calculations.

2.4.1 Construction of l-Dependent Pseudopotentials

Pseudopotentials are constructed element by element. The procedure always starts

with an “all-electron (AE)” (involving every single electron in the system) DFT cal-

culation on a single atom at a given reference electronic state. Note that the atomic

reference state does not always have to be the ground state; in some situations excited

states or even ionized states are more favorable[39].

In the absence of SOC, the angular momentum number l remains to be a good

quantum number. The Kohn-Sham equation thus reduces to a set of radial Schrödinger

equations as follows:

[
−1

2

d2

dr2
+
l(l + 1)

2r2
+ V AE

eff [α(r)]

]
rRAE

nl (r) = εnlrR
AE
nl (r), (2.31)

where n is the principle quantum number, R is the radial part of the Kohn-Sham

orbital, V AE is the DFT effective potential, and α is the radial density distribution

α(r) =

∫
ρ(r) r2dϕ d cos θ =

∑
nlm

f(nlm) ·
∣∣rRAE

nl (r)
∣∣2, (2.32)

where f represents the occupation number which can be fractional. Here the total

density ρ is assumed to be isotropic[40]. Note that when generating pseudopotentials

it is important to use the same XC functional Vxc[ρ] as the one to be used in later

simulations.

As mentioned above, the wavefunctions RAE
nl (r) solved from Eq.(2.31) usually oscil-

late strongly in the core region, which is unfavorable for numerical calculations. One

thus wishes to replace RAE
nl (r) with a much smoother pseudo-wavefunction RPS

nl (r)
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and meanwhile V AE
eff (r) by a flatter pseudopotential V PS

eff (r). It is easy to see that

the pseudopotential V PS
eff (r) should be l -dependent as well and is related to RPS

nl (r)

through

V PS
scr,l(r) = εl −

l(l + 1)

2r2
+

1

2rRPS
l (r)

d2

dr2
[rRPS

l (r)]. (2.33)

Here the n quantum number has been omitted since we are only interested in the pseu-

dopotentials for valence-electrons. Also we have added a subscript “scr” (screened)

in V PS
scr,l to indicate that this pseudopotential does not really represent the effective

potential from a bare ion but still contains the effect of valence-electrons interacting

with themselves; as will be seen later, to obtain a transferable pseudopotential the

V PS
scr,l(r) is subject to an “unscreening” process.

The philosophy underlying the pseudopotential method is that one hopes the so-

lution to the Kohn-Sham equation of the many-atom system with pseudopotential

inserted agrees with the all-electron calculation. So far what we have done is just

rearranging the radial Schrödinger equation, but how can this make things work? It

turns out that this really works if the following requirements are met[41]:

1. All-electron and pseudo valence eigenvalues agree for the chosen atomic refer-

ence configuration.

2. All-electron and pseudo valence wavefunctions exactly agree beyond a chosen

core radius rc.

3. The logarithmic derivatives of the all-electron and pseudo wavefunctions agree

at rc.

4. The integrated charge inside rc for each wavefunction agrees (norm-conservation

condition).

The first two requirements are a must so that the same scattering properties are held

by pseudo-electrons. The third requirement follows from the fact that the wavefunc-

tion and its first derivative must be continuous at any point for a smooth potential.
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Point 4 requires that the integrated charge within the core region

Ql =

∫ rc

0

dr r2
∣∣RPS

l (r)
∣∣2 = ∫ rc

0

dr r2
∣∣RAE

l (r)
∣∣2

is the same for RPS
l (r) as for the all-electron counterpart RAE

l (r). Because of this

last requirement, pseudopotentials determined by these four criteria are often called

norm-conserving pseudopotentials (NCPP). The norm conservation ensures the cor-

rect total charge. It also implies that the first energy derivative of the logarithmic

derivatives of the all-electron and pseudo wavefunctions agree at rc, which guarantees

the preservation of low energy scattering properties as well as the transferability of

the pseudopotential[22].

The cutoff radius rc is a crucial parameter in generating the pseudopotential. The

smaller rc the better transferability but resulting in a less flat pseudo wavefunction

or potential, and vice versa. When setting rc one should always consider the balance

between the transferability of the pseudopotential and the computational cost of the

following material simulations.

Although throughout this work we only use the NCPP scheme, it is worth men-

tioning that in some modern pseudopotential methods[22, 42, 43, 44], the norm-

conservation requirement (point 4) can be removed so as to make the pseudo wave-

functions even smoother. What’s more, in the widely used PAW method (projector

augmented wave)[43, 44, 45] multipole moments of the core all-electron density are

taken into account when calculating the electrostatic potential, while in our NCPP

approach the core charge density is assumed to be spherically symmetric.

As can be seen from above, the central task of generating a pseudopotential is to

choose a proper function to define the pseudo wavefunction within the cutoff radius

rc. There are various ways to accomplish this[46, 47]. In this work we adopt the

NCPP generation scheme proposed by Troullier and Martins in Ref.[46], which has

been implemented in the NanoBase code[48]. In the Troullier-Martins approach the
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pseudo wavefunction is defined as follows[46]:

RPS
l (r) =

 RAE
l (r) if r ≥ rc

rl exp[p(r)] if r ≤ rc,

where p(r) is a polynomial:

p(r) = c0 + c2r
2 + c4r

4 + c6r
6 + c8r

8 + c10r
10 + c12r

12.

In this series, the c1 term is removed in order to avoid a singularity of the screened

pseudopotential V PS
scr,l(r) at r = 0. The seven coefficients in the polynomial are then

determined from the four NCPP requirements plus three extra restrictions: the con-

tinuity of the third and fourth derivatives of the pseudo wavefunction and the zero

curvature of the screened pseudopotential at origin i.e. V ′′

scr,l(0) = 0. Once RPS
l (r) is

determined, the screened pseudopotential V PS
scr,l(r) is obtained from Eq.(2.33), which

can be explicitly written as[46]

V PS
scr, l(r) =

 V AE
l (r) if r ≥ rc

εnl +
l+1
r
p′(r) + p′′(r)+[p′(r)]2

2
if r ≤ rc.

To unscreen V PS
scr,l(r) and get the bare ion pseudopotential, i.e. to exclude the self-

interaction between valence-electrons themselves, we need to subtract their XC and

Hartree contributions from V PS
scr,l(r):

V PS
ion,l(r) = V PS

scr,l(r)− VH([ρ
PS], r)− Vxc([ρ

PS], r) (2.34)

This gives an l-dependent ionic pseudopotential which represents the effective po-

tential that the lth component of a propagating electron will “see” from the local

ion.

Readers might have found questionable the subtraction done in Eq.(2.34) in terms

of the XC part. Indeed, unlike the Hartree potential, in the XC potential it is impos-
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sible to separate apart the valence electron contribution, because the XC potential is

not a linear function of density. If we simply use the V PS
ion,l generated from Eq.(2.34)

for following material simulations, problems would arise when updating the XC po-

tential in each self-consistency iteration. This problem can be remedied by adding

a “nonlinear core correction” to the pseudo electron density, together as the input

for the XC functional[22]. This correction is particularly important for transition

metals where the inner 3p states strongly interact with the outer 3d states. Here we

won’t discuss this effect any further; readers with interest in this topic are referred to

Refs.[22, 49, 50].

Since the ionic pseudopotential V PS
ion, l decays as Z/r when r → ∞, Z being the

positive charge carried by the ion, we usually choose to partition Vion, l into its long-

and short-range components separately:

V̂ PS
ion =

∑
lm

|lm⟩V PS
ion, l(r) ⟨lm|

= V PS
ion, local(r) +

∑
lm

|lm⟩ VNL,l(r) ⟨lm| , (2.35)

where V PS
ion, local(r) is the local potential which decays as Z/r at long-range and,

VNL,l(r) = V PS
ion, l(r)− V PS

ion, local(r)

is the radial part of the nonlocal (NL) or more precisely the semilocal potential for

the l component. Note that according to its definition VNL, l(r) should vanish beyond

rc. The local potential V PS
ion,local(r) can, in principle, be arbitrarily chosen, and it

is widely adopted to make this local potential equal to the potential created by a

positive charge distribution of the form[51]

ρ(r) ∝ exp
[
−(sinh(abr)/sinh(b))2

]
,

where a and b are chosen to provide simultaneously optimal real-space localization
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and reciprocal-space convergence[52]. Besides, because the long range feature of

V PS
ion,local(r) will make it difficult to calculate the Madelung energy (ion-ion interac-

tion), it is often desired to screen V PS
ion,local(r) by an electron cloud with the same

amount of charge as the ion has, and as a compensation the same amount of charge

will be deducted from valence-electrons when calculating the Hartree potential. The

resulting “neutral-atom” (NA) potential is thus short ranged. To be concrete, now

let δρ be the difference between the screening cloud density and the valence-electron

density ρ, and let δVH be the electrostatic potential generated by δρ. Then the total

Hamiltonian can be rewritten as

H = T + VNL + VNA + δVH + Vxc. (2.36)

Now we turn to look at the second part of the pseudopotential operator [Eq.(2.35)],∑
lm

|lm⟩ VNL, l(r) ⟨lm|, which is often termed to be “semilocal” in that its radial part is

local while its angular part is not. Consider |lm⟩VNL, l(r) ⟨lm| acting on an arbitrary

wavefunction φ(r):

⟨r⃗ (r, θ, ϕ) | lm⟩VNL,l(r) ⟨lm | φ⟩ = Y m
l (θ, ϕ)·VNL,l(r)·

{∫
dΩ′[Y m

l (θ′, ϕ′)]
∗
φ (r, θ′, ϕ′)

}
,

where one needs to carry out the angular integral in the curly bracket at each r.

This is apparently cumbersome for numerical calculations. To simplify calculations

Kleinman and Bylander (KB)[53] came up with a fully nonlocal (or separable) form

of the pseudopotential projector, which reads:

V̂ KB
NL,lm =

∣∣VNL, l(r)R
PS
l (r)Y m

l (θ, ϕ)
⟩ ⟨
VNL, l(r)R

PS
l (r)Y m

l (θ, ϕ)
∣∣

⟨rRPS
l (r)|VNL, l(r) |rRPS

l (r)⟩
, (2.37)

where the pseudo wavefunctions are also utilized. The radial part VNL, l(r)R
PS
l (r) is

often called the KB-orbital. One can justify this approximation simply by considering
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V̂ KB
NL,lm acting on its corresponding pseudo wavefunction:

V̂ KB
NL,lm

[
RPS

l (r)Y m
l (θ, ϕ)

]
=

∣∣VNL, l(r)R
PS
l (r)Y m

l (θ, ϕ)
⟩

⟨rRPS
l (r)|VNL, l(r) |rRPS

l (r)⟩

∫
dr r2 VNL, l(r)

∣∣RPS
l (r)

∣∣2
= VNL, l(r)R

PS
l (r)Y m

l (θ, ϕ).

As can be readily checked, this result is identical to that obtained from |lm⟩VNL, l(r) ⟨lm|

acting on the same wavefunction. Substantial savings in both computation time and

storage can be achieved using this separable expression[53]. However, one notorious

drawback of the KB approximation is the possible existence of “ghost states”. This is

because under this approximation the bound states of the radial Schrödinger equation

are not necessarily ordered in energy by their number of nodes; spurious bound states

with more nodes can appear below or between the zero- and one-node states. There-

fore, careful examinations are necessary in generating the separable pseudopotentials

(see discussions in Refs.[54, 55]).

2.4.2 Construction of j-Dependent Relativistic Pseudopotentials

Relativistic effects contain two parts, the scalar-relativistic effects and the spin-orbit

coupling (SOC) effect. The former consists of the kinematic relativistic effects (mass-

velocity and Darwin term) and does not mix different spin components. Consequently

it does not cause any relativistic splittings in the resulting band structures. For cases

where relativistic band splittings are supposed to exist and play a major role, it is

mandatory to include SOC explicitly. For periodic systems the spin-orbit interaction

is appropriately written in the form[56]

HSO =
h̄

4m2
0c

2
(∇V × p⃗) · σ⃗,

where V is the electrostatic potential and σ⃗ is the Pauli matrix. SOC is strongest

close to the ion cores where ∇V is largest. However, this is the region covered by

the pseudopotentials. Thus it is impossible to add the SOC effect a posteriori to the
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scalar-relativistic pseudopotential results; instead the pseudopotentials themselves

must account for SOC.

The pseudopotential generating procedure again starts with an all-electron DFT

calculation on a single atomic configuration. But to fully include the relativistic

effects it is the Dirac equation that needs to be solved[39, 48, 13]:

dGnlj

dr
+
κ

r
Gnlj − α

[
2

α2
+ εnlj − V (r)

]
Fnlj = 0 (2.38)

dFnlj

dr
− κ

r
Fnlj + α [εnlj − V (r)]Gnlj = 0, (2.39)

where α = 1/137.036 is the fine structure constant and ε = E − α−2, E being the

relativistic energy. G and F are the majority and minority components of the radial

wavefunction. κ = l for j = l − 1/2 and κ = −l − 1 for j = l + 1/2. The Dirac

equations are solved for a chosen atomic reference state[39] and the output is a set

of one-electron eigenvalues (for the valence states) and radial wavefunctions (G and

F ) as well as the self-consistent effective potential V (r). To get a formula favorable

for pseudopotential constructions, we follow Kleinman’s argument[13]: for valence

electrons (usually with small ε and feel small V ) Eq.(2.39) can be used to replace F

by

Fnlj =
α

2

[
dGnlj

dr
+
κ

r
Gnlj

]
(2.40)

Substituting Eq.(2.40) into Eq.(2.38) we arrive at

[
−1

2

d2

dr2
+
κ(κ+ 1)

2r2
+ V (r)

]
Gnlj(r) = εnljGnlj(r), (2.41)

which is exactly of the same form as in Eq.(2.31). Thus the regular Troullier-Martins

scheme can be applied to generate pseudopotentials for each pair of l and j indepen-

dently. Note that in some of the modern DFT codes the Kleinman’s approximation

Eq.(2.40) is not adopted and consequently a much more complicated differential e-

quation is to be solved[35, 57]; the Kleinman’s approximation is correct up to terms

of order α2.
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In the relativistic case the ionic pseudopotential operator should be written in the

following general form (corresponding to the first line of Eq.(2.35)):

V̂ PS
ion =

∑
ljM

|ljM⟩ V̂ PS
lj ⟨ljM |

=
∑
l,M

|l + 1/2,M⟩ V̂ PS
l,l+1/2 ⟨l + 1/2,M | (2.42)

+
∑
l,M ′

|l − 1/2,M ′⟩ V̂ PS
l,l−1/2 ⟨l − 1/2,M ′| ,

where for j = l + 1/2,M = m+ 1/2

|l + 1/2,M ⟩ =
(
l +m+ 1

2l + 1

)1/2

Y m
l |↑⟩+

(
l −m

2l + 1

)1/2

Y m+1
l |↓⟩

and for j = l − 1/2,M
′
= m− 1/2

∣∣∣l − 1/2,M
′
⟩
=

(
l −m+ 1

2l + 1

)1/2

Y m−1
l |↑⟩ −

(
l +m

2l + 1

)1/2

Y m
l |↓⟩

and V PS
l,l±1/2(r) is the radial part of the pseudopotential generated from the Troullier-

Martins scheme. Here I would like to point out that the Dirac equation solver has

already been built in the NanoBase code[48] and in its output file both the screened

and the unscreened version of V PS
l,l±1/2(r) can be found; this is the starting point of

our SOC implementation.

Next, we look to transform the semi-local pseudopotentials in Eq.(2.42) into the

separable KB form. This can be done in a number of different ways[35, 4, 58, 59, 60].

For implementation convenience we choose to follow the approach proposed in Ref.[4].
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First, Eq.(2.42) is rewritten as (we indicate pseudopotentials with an overline)

V̂ PS
ion =

∑
lm

|lm⟩ V̄ SC
l ⟨lm|

+
∑
l,M

∣∣∣∣l + 1

2
,M

⟩
l

2
V̄ SO
l

⟨
l +

1

2
,M

∣∣∣∣ (2.43)

−
∑
l,M ′

∣∣∣∣l − 1

2
,M ′

⟩
l + 1

2
V̄ SO
l

⟨
l − 1

2
,M ′

∣∣∣∣
by introducing

V̄ SC
l (r) =

1

2l + 1

[
lV PS

l,l−1/2 + (l + 1)V PS
l,l+1/2

]
V̄ SO
l (r) =

2

2l + 1

[
V PS
l,l+1/2 − V PS

l,l−1/2

]
(2.44)

The last two terms in Eq.(2.43), the SOC terms, mix up different spin components of

the wavefunction, and it is these two terms that account for the relativistic energy-

level splitting. In contrast, the first term, often called the scalar (SC) term, is l -

dependent only and thus acts on both spin components in the same manner. In fact,

in most modern DFT codes the scalar term is the pseudopotential to be used even

when the relativistic effects are not important. The major advantage of the partition

performed in Eq.(2.43) is that we can still utilize the original code for the scalar term

and the original code will not be changed much when implementing SOC calculations.

Since the long range tails are canceled out in V̄ SO
l (r) (see Eq.2.44), we can apply

the KB procedure to SOC terms directly. The resulting separable pseudopotential

reads[4]:

V̂ SO
PS =

∑
l

l

2
El+1/2

l+1/2∑
M=−l−1/2

∣∣χSO
l+1/2,M

⟩ ⟨
χSO
l+1/2,M

∣∣
−
∑
l

l + 1

2
El−1/2

l−1/2∑
M=−l+1/2

∣∣χSO
l−1/2,M

⟩ ⟨
χSO
l−1/2,M

∣∣ (2.45)
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with, to be explicit,

χSO
l+1/2,M(r⃗) =

RPS
l+1/2(r) V̄

SO
l (r)⟨

rRPS
l+1/2V̄

SO
l

∣∣∣ rRPS
l+1/2V̄

SO
l

⟩1/2
×

[(
l +m+ 1

2l + 1

)1/2

Y m
l |↑⟩+

(
l −m

2l + 1

)1/2

Y m+1
l |↓⟩

]
(2.46)

χSO
l−1/2,M(r⃗) =

RPS
l−1/2(r) V̄

SO
l (r)⟨

rRPS
l−1/2V̄

SO
l

∣∣∣ rRPS
l−1/2V̄

SO
l

⟩1/2
×

[(
l −m+ 1

2l + 1

)1/2

Y m−1
l |↑⟩ −

(
l +m

2l + 1

)1/2

Y m
l |↓⟩

]
(2.47)

El±1/2 =

⟨
rRPS

l±1/2V̄
SO
l

∣∣∣ rRPS
l±1/2V̄

SO
l

⟩
⟨
rRPS

l±1/2

∣∣∣ V̄ SO
l

∣∣∣rRPS
l±1/2

⟩ =

∫
dr r2

∣∣∣RPS
l±1/2(r) V̄

SO
l (r)

∣∣∣2∫
dr r2V̄ SO

l (r)
∣∣∣RPS

l±1/2(r)
∣∣∣2 , (2.48)

where the radial part RPS
l±1/2(r) of the pseudo wavefunction generated from Eq.(2.41)

is used in constructing KB-orbitals.

Once V PS
l,l±1/2(r) (the screened one) is read out from the NanoBase output, RPS

l±1/2(r)

can be reproduced by solving Eq.(2.41). Another noticeable thing is that in contrast to

the angular part in the scalar relativistic term where the real spherical harmonics can

be used thanks to their completeness in the (l,m) subspace, here for SOC terms there

seems to be no clear way how to transform the complex spherical harmonics into their

real counterparts. Usually the real spherical harmonics are preferred under efficiency

and memory concerns, but in the real-space formalism, since it is the wavefunctions

that occupy the majority of the memories and they are complex anyway when spin

is not a good quantum number, we will just use the complex spherical harmonics for

SOC terms.

Lastly, since the RESCU code also performs LCAO calculations, for completeness
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SOC calculations have also been implemented with the LCAO basis. For this part we

follow the scheme proposed in Ref.[61] where SOC is assumed to be a purely on-site

effect (see Appendix A for details).

2.5 Summary

We began with presenting the basic formula of the many-electron problem in the

Green function formalism. We then derived the Hartree-Fock equation and made

concrete the concepts of the basic quantum many-body effects in the problem. We

then introduced the DFT and Kohn-Sham scheme which casts the original problem

down to a set of single-particle Schrodinger equations. The basics of the LSDA and G-

GA XC-functionals were introduced, which are required by all DFT implementations.

We also demonstrated how to generalize these functionals for the non-collinear spin

configuration, which requires the manipulation of local density matrices. To get rid of

the computational efforts in the nuclei core region, DFT is often implemented in con-

junction with the pseudopotential method. We walked through the basic procedures

of generating a qualified pseudopotential and realized that the atomic Dirac equation

needs to be solved in order for us to incorporate relativistic effects such as SOC. This

leads to a nonlocal pseudopotential projector with each component depending on the

j angular-momentum number.
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Numerical Methods

In the last chapter we have demonstrated how DFT reduces the intractable many-

electron problem down to a static mean-field problem and how to set up the Kohn-

Sham effective Hamiltonian, including pseudopotentials. This chapter is devoted to

demonstrating how to implement these theories into a practical numerical scheme.

3.1 Real-space Representation of Kohn-Sham Equation

We write down the most general form (with non-collinear spin and SOC) of the

Kohn-Sham equation explicitly as follows
−∇2

2
+ VNA + δVH

+V̂ SC
ps + V̂ SO,↑↑

ps + V ↑↑
xc

V̂ SO,↑↓
ps + V ↑↓

xc

V̂ SO,↓↑
ps + V ↓↑

xc

−∇2

2
+ VNA + δVH

+V̂ SC
ps + V̂ SO,↓↓

ps + V ↓↓
xc


 φ↑

ν

φ↓
ν

 = εν

 φ↑
ν

φ↓
ν

 (3.1)

For collinear spin the off-diagonal entries vanish and the Kohn-Sham equations for

different spin components are decoupled.

As the Kohn-Sham equations are Schrodinger-like differential equations, to effi-

ciently solve them one always needs a numerical basis set to represent the Hamilto-

nian and wavefunctions. This way the original differential equations are transformed

into a matrix diagonalization problem, and then by finding eigenpairs of the Hamil-

37
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tonian matrix we obtain the projection coefficients of the eigen-wavefunctions onto

the chosen basis set as well as the corresponding eigenvalues. There are many choices

for such basis sets, but no matter what basis one chooses, a real-space grid is in-

dispensible anyway because the XC potential is calculated in real-space. Therefore,

a question arises naturally: why don’t we just express everything on the real-space

grid?

In fact the major concern about the real-space method is that if we do so, con-

sidering the number of grid points we will need, the resulting Hamiltonian will have

such a huge size that diagonalizing it will be almost impossible . However, as will be

seen later, in most cases we don’t really need to diagonalize the Hamiltonian com-

pletely because we are interested in only a small part of its spectrum. Besides, the

Hamiltonian matrix does not need to be written down explicitly; in fact only the op-

eration function Ĥψ is needed (view ψ as the input), which is particularly simple to

be formulated in real-space. What’s more, if we want to improve our simulation accu-

racy we just increase our real-space mesh density, which is quite convenient compared

to the orbital based basis sets such as LCAO[22]. Therefore the real-space method

is definitely a practical DFT implementation. In what follows we demonstrate how

Eq.(3.1) is realized in the real-space DFT formalism.

3.1.1 Finite-Difference Method

The first term one encounters in expressing the Hamiltonian operator is the Laplacian

−1
2
∇2. The gradient of the wavefunction ∇ψ is also wanted if the periodic boundary

condition is imposed on the simulation box[22]. In addition, the gradient of the density

∇ρ is needed when we compute GGA functionals. Therefore an efficient technique is

wanted in order for us to accurately calculate the derivatives of quantities expressed

in real-space. This can be achieved by the high order finite-difference method, which

was introduced to real-space DFT by Chelikowsky et al.[8, 62, 63] for the first time.

For clarity in what follows we illustrate this method in 1D.
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In the finite-difference method the kth derivative of a 1D function ∂ku(x)/∂xk at

a certain point xj can be approximated by a linear combination of the function values

at neighboring points:
∂ku

∂xk
(xj) =

∑
i

αiu(xi). (3.2)

By using Taylor theorem

u(x) = u(x0) + ux(x0)(x− x0) +
1

2!
uxx(x0)(x− x0)

2 +
1

3!
uxxx(x0)(x− x0)

3 + · · · ,

we get

∑
i

αiu(xi) =u(xj)
∑
i

αi + ux(xj)
∑
i

αi(xi − xj) +
1

2!
uxx(xj)

∑
i

αi(xi − xj)
2

+
1

3!
uxxx(xj)

∑
i

αi(xi − xj)
3 + · · ·

To approximate ∂ku(x)/∂xk using Eq.(3.2) we simply solve the following set of linear

equations for the appropriate coefficients αi’s:

n∑
i

αi = 0

n∑
i

αi(xi − xj) = 0

1
2!

n∑
i

αi(xi − xj)
2 = 0

...
1
k!

n∑
i

αi(xi − xj)
k = 1

...
1

(n−1)!

n∑
i

αi(xi − xj)
n−1 = 0

The αi’s are found by solving a Vandermonde system of equations where the right

hand side is a vector of zeros except for the kth entry which is equal to k!. The

resulting approximation for ∂ku(x)/∂xk is accurate up to the order of o(hn) at least,
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h being the grid spacing. As an example, to compute the αi’s for ∂2u(x)/∂x2 we solve



1 1 1 1 1

(−2h) (−h) 0 h (2h)

(−2h)2 (−h)2 0 h2 (2h)2

(−2h)3 (−h)3 0 h3 (2h)3

(−2h)4 (−h)4 0 h4 (2h)4





αk−2

αk−1

αk

αk+1

αk+2


=



0

0

2

0

0


which yields

(
αk−2 αk−1 αk αk+1 αk+2

)
=

1

12h2

(
−1 16 −30 16 −1

)
We can thus calculate ∂2u(x)/∂x2 at xj as

uxx(xj) =
−u(xj−2) + 16u(xj−1)− 30u(xj) + 16u(xj+1)− u(xj+2)

12h2
+ o(h6)

with an error of the order o(h6). To make things concrete we demonstrate as follows

the representation of −1
2
∇2

xu at n = 3:

−1

2
∇2

xu ≈ −1

2



c0 c1 0 · · · 0 c1e
−ikxLx

c1 c0 c1 0 · · · 0

0
. . . . . . . . . 0

...
... . . . c1 c0 c1

...
... . . . . . . . . . . . . 0

0 c1 c0 c1

c1e
ikxLx 0 · · · 0 0 c1 c0





u(hx)

u(2hx)

...

u(Nhx − hx)

u(Nhx)


,

(3.3)

where c0 = −2/h2x, c1 = 1/h2x and the periodic boundary condition is imposed, kx

being the Bloch wave number and Lx the length of the simulation box. For a finite

system such as an isolated molecule or a cluster we can impose the open boundary

condition (wavefunctions vanish outside), then in Eq.(3.3) the upper right and the
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lower left elements should vanish.

The finite-difference method can be generalized to 3D straightforwardly if an or-

thogonal grid is used. In this case the operation −1
2
∇2u(x, y, z) takes the following

form[64]

−1

2
∇2u(x, y, z) =− 1

2h2

M∑
k,l,m=−M

[cku(x+ kh, y, z) + clu(x, y + lh, z)

+cmu(x, y, z +mh)] ,

where the coefficients cm depend only on the choice of the expansion order, 2M

(usually M = 6 is sufficient for most problems[8, 65]). However, unlike in Eq.(3.3),

it is difficult to express the 3D Laplacian operator in a matrix form. In fact, in

RESCU the multi-dimensional Laplacians are obtained from the 1D Laplacian by

using the Kronecker tensor product recursively[2, 65]: suppose that ∇2
n is a Laplacian

in n dimension, then the Laplacian in n + 1 dimension is obtained from ∇2
n+1 =

∇2
n ⊗ I1 + In ⊗ ∇2

1, where I is the identity matrix; the differential operators never

show up as matrices throughout the code.

For a general nonorthogonal real-space grid we should define another coordinate

system: say û, v̂ and ŵ are unit vectors along the nonorthogonal axes and êi’s are

unit vectors along the canonical orthogonal axes, then the same vector R can be

expressed as R = xê1 + yê2 + zê3 or = uû + vv̂ + wŵ. Using matrix notation we

have the following relation between the two sets of coordinates: Rxyz = ARuvw and

Ruvw = BRxyz, where A ≡ [û, v̂, ŵ] and B ≡ A−1. The transformation for the

gradient operator is thus ∇xyz = BT∇uvw and hence for Laplacian we have ∇2 =

∇T
xyz∇xyz = ∇T

uvwBBT∇uvw[66].
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3.1.2 Ionic Potential

In the previous chapter, we demonstrated the ionic pseudopotential generation pro-

cedure. As discussed above, the ionic potential consists of two parts, one local part

(VNA) and one nonlocal part (the KB projectors). We now discuss how to implement

these in real-space.

In real-space local potentials take the form of a real diagonal matrix. VNA is

isotropic for a single atom and hence we can write VNA(r) = VNA(r), that is VNA only

depends on the magnitude of r. We thus compute the distance r from each grid point

to the center of the atomic nucleus and evaluate VNA(r). From the NanoBase output

the function VNA(r) is expressed on a radial grid; therefore an interpolation procedure

is needed when generating VNA(r) on the real-space grid[65].

Preparing for the nonlocal KB projectors is the most time consuming part in the

Hamiltonian generation. With the presence of V̂ SO
ps the pseudopotential takes the

general form
∑

α,m1,m2

∑
I

|χm1
αI ⟩ ⟨χ

m2
αI | (c.f. Eq.2.45), where α ≡ (l, j), m1 and m2 denote

different magnetic quantum numbers (m1 = m2 if without SOC), and I represents

image atoms if the periodic boundary condition is imposed, i.e. χm
αI(r) = χm

α (r−RI).

In a periodic system the Blöch wavefunction ψk(r) extends in the entire real-space;

therefore, it is not so obvious how to calculate
∑
I

|χm1
αI ⟩ ⟨χ

m2
αI | ψk⟩. To overcome this

difficulty we can show that if we define

ηmα (r) =
∑
I

eik·RIχm
α (r−RI)

then
∑
I

|χm1
αI ⟩ ⟨χ

m2
αI | ψk⟩ can be computed as

∑
I

|χm1
αI ⟩ ⟨χ

m2
αI | ψk⟩ =

∫
0<x,y,z<L

d3r ηm1
α (r)

[
e−ik·rηm2

α (r)
]∗
uk(r), (3.4)

where uk(r) is the periodic part of the Bloch wavefunction [uk(r) = ψk(r)e
−ik·r]. Here
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notice that the integral domain in Eq.(3.4) is confined to one single supercell only.

In practice when setting up the Hamiltonian we calculate each ηmα (r) and store

them in a matrix[2]

Γ = [ηm1,1
α1

, ηm1,2
α1

, ηm1,3
α1

, · · · , ηm2,1
α2

, ηm2,2
α2

, · · · , ηm3,1
α3

, ηm3,2
α3

, · · · ],

which is usually quite sparse. Then the operation V̂ps |ψ⟩ is accomplished by the

matrix product

V̂ps |ψ⟩ = Γava,bΓb†Ψ,

where v is a diagonal matrix storing all KB-energies (Eq.2.48) and the superscript a

or b indicates that Γa,b (va,b) may be just part of Γ (v), c.f. Eq.(2.45); when there is

no SOC we simply have Γa,b = Γ and va,b = v.

3.1.3 Hartree Potential

In the previous chapter we have defined the Hartree potential as

VH(r) =

∫
d3r′

ρ(r′)

|r− r′|
. (3.5)

But since we have screened the ionic potential by an artificial neutral atomic density

(Eq.2.36), it is then

δVH(r) =

∫
d3r′

δρ(r′)

|r− r′|

that needs to be calculated instead of VH(r). δVH can be obtained by solving the

Poisson equation

∇2δVH(r) = −4πδρ(r). (3.6)

If the periodic boundary condition is imposed, the Poisson equation can be solved

by the Fourier transform method. One first transforms δρ(r) into the reciprocal

space, then solves for δVH(K), and finally revert δVH back to real-space. The Fourier
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transforms can be performed efficiently by the Fast Fourier Transform (FFT) method.

The Fourier transform of the Poisson equation reads

−K2δVH(K) = −4πδρ(K) (3.7)

with the transform convention

f(K) = v0
−1

∫
d3r e−iK·rf(r)

f(r) =
∑
K

f(K)eiK·r

where K is the reciprocal lattice vector and v0 is the supercell volume. For K ̸= 0

Eq.(3.7) can be readily solved, but δVH(K) is not well defined for K = 0; this reflects

the fact that the electrostatic potential is defined always up to an arbitrary constant

shift. For convenience we can set δVH(K = 0) = 0.

When a nonperiodic (isolated) boundary condition is imposed, we need to solve

Eq.(3.6) directly. In the finite difference representation, Eq.(3.6) is transformed into

an equivalent algebraic system Ax = b, where b is the electron density, A is the

matrix representing the Laplacian operator, and x is the potential to be sought. This

linear system can be solved using a number of methods, direct (e.g. performing an

LU decomposition) or iterative (e.g. conjugate gradient)[67]. Under the nonperi-

odic boundary condition, one thing nontrivial is that the potential at the boundary

should be calculated accurately before solving Ax = b. The most straightforward ap-

proach to obtaining these boundary values is to perform numerical integrations using

Eq.(3.5), but the computational cost is proportioned to the 5/3 power of the model

size[68]. To solve this problem Chelikowsky et al.[8, 62, 69] proposed a procedure

where a multipole expansion is used to express the potential at the boundaries, and

it is then calculated term by term until convergence is achieved.
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3.2 Eigensolvers

The bottleneck of the self-consistency loop consists in finding the eigenpairs of the

Hamiltonian [c.f. Eq.(3.1)]. As mentioned before it is unrealistic to write down the

entire Hamiltonian in real-space representation and diagonalize it exactly during each

self-consistency iteration. Actually the algorithm can be much simplified based on two

observations. The first observation is that we only need those eigenpairs below the

Fermi energy because the unoccupied states do not contribute to the density, which

is the only quantity relevant to our convergence criterion. The second observation is

that before the final self-consistency is achieved, it makes no sense to compute very

accurately every eigenpair of an interim Hamiltonian which differs from the converged

one for sure. Any efficient DFT algorithm should be aware of these two observations.

In our work the Chebyshev-filtered subspace iteration (CFSI) method is used as

the main eigensolver[2], which was devised for real-space DFT by Zhou et al.[3] for

the first time. Remarkably, in CFSI the explicit matrix form of the Hamiltonian never

shows up, only the operation Ĥ |ψ⟩ being needed, and during each self-consistency

iteration we use the filtering method to refine the occupied subspace only, which is

much smaller than the entire eigen-space. In the filtering process the accuracy can be

controlled by the Chebyshev-filter degree, that is, the eigenpairs are calculated only

approximately. Therefore, starting with an initial guess for the occupied subspace

and then iterating the self-consistency loop, the subspace gradually approaches the

true occupied subspace of the converged Hamiltonian.

To illustrate the basic working principle of CFSI, in what follows we first present

the power method and the inverse iteration method, and then we present the complete

algorithm of CFSI.
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3.2.1 Power Method and Inverse Iteration

Since the eigenvectors of a Hermitian matrix A form a complete orthonormal basis

[v1, ..., vn], we can thus express a given vector as

y =
∑
i

aivi.

If we apply the operator Ak to y we obtain

y =
∑
i

λki aivi = λkn
∑
i

(
λi
λn

)k

aivi

where | λi |<| λi+1 | are the eigenvalues. From this expression, it is obvious that the

eigenvector with the largest absolute eigenvalue will eventually dominate and y will

become parallel to vn. The algorithm goes as follows:[70]

Algorithm 1 Power Method

generate an initial random guess for the eigenvector y = y0

while 1 do

v = y/∥y∥

y = Av

θ = v′y

if ∥y − θv∥ ≤ ε

break

end if

end while, set λ = θ and x = v

Using the numerical power method we obtain the largest eigenpair {λn, xn} in the

end.

The rate of convergence of this algorithm is derived from the following observation.

The largest eigenvector vn eventually wins, but it has to dwarf the second largest one
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vn−1 and hence the convergence rate is λn−1/λn.

Though the power method is efficient, it only gives the eigenpair at the top of

the spectrum. If we are interested in the eigenpair around a certain number σ,

we can perform the following inverse iteration algorithm[70], which is based on the

observation that

Ax = λx =⇒ (A− σI)−1x = (λ− σI)−1x

in the case where (A− σI) is invertible.

Algorithm 2 Inverse Iteration

generate an initial random guess for the eigenvector y = y0

while 1 do

v = y/∥y∥

y = (A− σI)−1v

θ = v′y

if ∥y − θv∥ ≤ ε

break

end if

end while, set λ = σ + 1/θ and x = v

Following the analysis of the power method, the convergence rate is found to be

(λk − σ)/(λl − σ) where λk and λl are the closest and second closest eigenvalues to σ

respectively.

What we have learnt from the inverse iteration and the power method is that

suppose we are interested in an eigenpair of A close to some number σ then we

simply build a function p(A) which has a particularly large magnitude at σ while

suppressing other part of the eigenspectrum of A. By applying p(A) to any vector

x iteratively, only the wanted eigenvector will finally survive and its corresponding

eigenvalue is then simply computed from λ = v†Av.
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The above two algorithms focus on computing only one eigenpair of interest, but

in the electronic structure problem all the eigenpairs below Fermi energy are wanted.

Naively one may try computing these eigenpairs one by one using the inverse iteration

method to sweep the spectrum below Fermi energy. This is apparently inefficient.

Moreover, in real electronic structure problems there are always some degenerate

eigenpairs, which are unlikely to be distinguished in this way. A better way to do is

to use the block method together with orthogonality constraints. We illustrate this

method along with the power method as follows (same thing applies to the inverse

iteration):[70]

Algorithm 3 Orthogonal Iteration

generate an initial random guess for the orthonormal block vector V

while 1 do

Y = AV

Θ = V ′Y

if ∥y − θv∥ ≤ ε

break

end if

orthonormalize Y

end while, set Λ = Θ and X = V

Note that the orthonormalization step is essential in this algorithm. If there were

no such constraint, every vector in the block would eventually fall into the one with

the largest eigenvalue (absolute value). With this constraint imposed, the vectors

are constantly “pushed away” from each other so that no two vectors would fall into

the same “pit”; this ensures that these vectors will finally span out the desired eigen-

subspace. The orthonormality can be maintained using any algorithm. For example,

dividing Y by the Cholesky factor of Y †Y is one efficient way.
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3.2.2 Chebyshev-Filtered Subspace Iteration

Now we are in a good position to see how CFSI works. The Chebyshev-filter is

nothing but a carefully designed matrix function p(A) suitable for electronic structure

calculations, plus a Rayleigh-Ritz step which is only a little bit more advanced than

the orthogonalization procedure.

The well-known Chebyshev polynomial of the first kind is defined as[3, 71, 72]

Cm(t) =

 cos(mcos−1(t)), −1 ≤ t ≤ 1

cosh(mcosh−1(t)), |t| > 1

Note that C0(t) = 1, C1(t) = t. The following recurrence relation is easy to derive

from properties of cos(t) and cosh(t),

Cm+1(t) = 2tCm(t)− Cm−1(t). (3.8)

The general property is depicted in Fig. . The Chebyshev polynomial grows rapidly

outside the region [-1,1]; the higher the polynomial degree m, the more rapidly it

grows. Therefore, we can utilize this feature of Chebyshev polynomial to calculate

the wanted eigenpairs if we can map the “useless” part of the Hamiltonian spectrum

(the unoccupied states) into [-1,1] and the lower end of the spectrum (the occupied

states) into [−∞,−1). This can be accomplished by a simple linear mapping:

l(t) :=
t− c

e
c =

a+ b

2
, e =

b− a

2
,

where a is an energy value slightly above the Fermi energy and b is an upper bound

of the entire Hamiltonian spectrum. Note that it is important to make sure that b

is greater than the largest eigenvalue of Hamiltonian and that a is greater than the

highest occupied energy level. The estimation of b can be done using the Lanczos

algorithm (see details in Appendix B) and a can be set equal to the largest Ritz value

(see Algorithm 5 below) obtained from the last self-consistency iteration. a and b are
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updated in each self-consistency iteration.

With this mapping l(t) < −1 for t < a and −1 < l(t) < 1 for a < t < b. Then,

just like what we did in Algorithms 1-3, we simply compute

Y = pm(H)X, where pm(t) = Cm

(
t− c

e

)
.

In practice, this is actually accomplished by the following algorithm (notice the re-

currence relation Eq.3.8):[2, 3]

Algorithm 4 Y= Chebyshev_filter(H,X,m, a, b)

e = (b− a)/2 , c = (b+ a)/2

ψ1 = (HX − cX)/e

for i = 2, ...,m do

ψ2 = 2(Hψ1 − cψ1)/e−X

X = ψ1, ψ1 = ψ2

end for

Y = ψ2

To avoid all the eigenpairs falling into the bottom of the spectrum, an orthogonaliza-

tion step is needed following the Chebyshev-filter. Instead of direct orthogonalization,

in fact the Rayleigh-Ritz method is more preferred, because it not only orthonormal-

izes the vectors but also serves to refine the subspace[3, 5]. The complete CFSI

algorithm in one self-consistency iteration is presented in Algorithm 5.

The Rayleigh-Ritz method has been widely used in a number of DFT codes based

on different subspace iteration methods and it has been shown to improve both the

stability and the convergence rate[2, 5, 73, 74]. The basic mechanism in the Rayleigh-

Ritz method is that if the block vector Φ spans an eigen-subspace of the Hamiltonian,

then the Ritz values D are equal to the corresponding true eigenvalues and after
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subspace rotation the block vector ΦQ will be the true eigenvectors.

Algorithm 5 Chebyshev − filtered subspace iteration (CFSI) method

1. Get the lower bound a from previous Ritz values (largest one)

2. Use Lanczos to get an upper bound b of the spectrum of the current H

3. Chebyshev − filter the subspace block vector Φ which contains the current

trial wavefunctions Ψi(r), i = 1, ..., s: Φ = Chebyshev_filter(H,Φ,m, a, b)

(4. Orthonormalize Φ)

5. Perform Rayleigh− Ritz step :

(a) Compute H̃ = ΦTHΦ, S̃ = ΦTΦ

(b) Solve H̃Q = S̃QD, where D contains the Ritz values of H

(c) Subspace rotation Φ := ΦQ

As can be seen the central task of CFSI is to refine the subspace Φ iteratively. But

how do we get an initial guess for Φ at the beginning? It has been shown that the

quality of the initial guess strongly affects the overall efficiency of the algorithm[2,

3, 75]. In practice, to construct the initial Φ we first fill the blockvector with single-

or double-zeta atomic orbitals originally designed for LCAO calculations, and then

we perform a Rayleigh-Ritz refinement with respect to the initial Hamiltonian to get

the initial subspace[2]. Alternatively, one can start with a full LCAO calculation and

use the LCAO solution as the initial subspace for the following real-space calculation.

For spin polarized calculations this latter procedure is recommended.



4
Tests and Applications

To test our code as well as to verify the real-space method for spin-polarized DFT

calculations, the numerical scheme demonstrated above is applied to perform simu-

lations on several systems. As the GGA functional is known to tend to stabilize a

magnetic state over the nonmagnetic state[76], in what follows we use GGA for all of

our simulations.

4.1 Collinear-spin Calculations: Ni and Fe

As the first part of our application, we have used our code to investigate the mag-

netization of bulk Ni and Fe, which are the most typical magnetic metals with a

collinear-spin configuration. Ni has an FCC lattice with a = 3.52Å and Fe has a

BCC lattice with a = 5.42Å.

In the self-consistency calculations we use an orthogonal real-space mesh with the

resolution of ∼ 6points/Å, for both systems. A convergence criterion of 10−5Hartree

for the total energy difference has been used in self-consistency calculations. As Ni and

Fe are metallic bulk systems, we have found that the use of the metric Eq.(2.30) in our

charge mixers is crucial for suppressing the charge-sloshing effect and for improving

the convergence performance. The calculated magnetic moment per Ni/Fe atom is

shown in Table 4.1. We notice that our result for Ni agrees very well with the

experimental value, but our result for Fe shows a noticeable overestimation. The

52
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Table 4.1: Magnetic moment per atom Mat(µB) from experiment and calculated by different DFT
methods.

Method Ni Fe
LAPW-NCPP[77] 0.64 2.32

Real-space-NCPP (ours) 0.61 2.55
Exp.[78] 0.61 2.22

Figure 4.1: Bandstructure of Ni (FCC) calculated with our real-space method.

reason for this overestimation can be multiple and is not clear yet; this will be the

next stage of our work.

We have also calculated the spin-resolved bandstructures of Ni and Fe, see Fig.4.1

and Fig.4.2 respectively. The first Brillouin zones (FBZ) are shown in Fig.4.3.
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Figure 4.2: Bandstructure of Fe (BCC) calculated with our real-space method.

Figure 4.3: FBZs of FCC and BCC lattices.
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Figure 4.4: Non-collinear spin texture of Cr3 (a) and Fe5 (b) clusters.

4.2 Noncollinear-spin Calculations: Fe5 and Cr3 clusters

The Cr3 trimer (Fig.4.4a) and the Fe5 bipyramidal pentamer (Fig.4.4b) are mag-

netic clusters that are known to have a noncollinear-spin texture in one of their

stable states[76, 79]. We thus use these two systems as the benchmark tests for

our noncollinear-spin implementation. A dense real-space mesh with the resolution

of ∼ 10points/Å has been used for both systems. Vacuum buffer layers are added

around the clusters in order to confine the wavefunctions within the simulation box,

the size of which is set to be 11Å in each dimension.

In our calculation of the Cr3 trimer we adopt the geometric constant from Ref.[76]:

the bond-lengths are equally taken to be 2.51Å, at which the trimer is known to have

a spiral noncollinear-spin ground-state[76]. We set the initial magnetic moment direc-

tion of each Cr atom to be ±15◦ off the correct value. After convergence is reached

in our DFT calculation, we see the magnetization be relaxed to the correct spiral

distribution with a 3-fold symmetry (Fig.4.4a) with each atomic magnetic moment

equal to 3.89µB (to be compared with the previously reported value 4.11µB obtained
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Table 4.2: The calculated and previously reported atomic magnetic moment (Mat, θ) of each atom
in the Fe5 pentamer. The numbers are ordered according to atom 1-5 (Fig.4.4b)

Mat(µB) θ

PAW[76] 3.04,3.04,3.04,3.06,3.06 0◦, 0◦, 0◦, 31.3◦, 31.3◦

ours 3.13,3.13,3.13,3.18,3.18 0◦, 0◦, 0◦, 27.8◦, 27.8◦

with the projector augmented wave method (PAW)[76]).

The Fe5 pentamer is known to have a noncollinear-spin ground-state with the

bond-lengths l12 = l32 = l13 = 2.38Å and the rest equal to 2.33Å[76]. Thus this set

of geometric constants is used in our calculation. The initial guess for the magnetic

moments of the two apical atoms is again set to be ±15◦ off the final solution. Af-

ter full relaxation these two magnetic moments eventually rotate to a stable angle

θ4 = θ5 = 27.8◦ in opposite directions but still stay coplanar (Fig.4.4b). The mag-

netic moments of the other three atoms in the middle are aligned parallel, in a way

similar to ferromagnetism. These results mean that our real-space noncollinear-spin

method is capable of capturing both the antiferromagnetic-like exchange between the

apical atoms and the ferromagnetic exchange among the central atoms. To make a

comparison we list our result for the Fe5 pentamer in table 4.2, together with the

PAW result reported in Ref.[76].

4.3 Spin-orbit Coupling Calculations: SnTe and TaAs

The band splitting effect due to spin-orbit coupling (SOC) is most significant in

materials containing heavy atoms. In this section we present our calculation results

of the bandstructures of tin telluride (SnTe) and titanium arsenide (TaAs), both

of which are well-known topological materials: SnTe is known to be a topological

crystalline insulator[80] and TaAs is a newly discovered Weyl semimetal[1].

As a fully self-consistent noncollinear-spin calculation is often hard to get con-
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Figure 4.5: The conventional cell and the corresponding first Brillouin zone of SnTe.

Figure 4.6: Body-centered tetragonal structure of TaAs and its first Brillouin zone. Figure from
Ref.[1].

verged, here we treat the SOC effect as a perturbation when calculating the band-

structures. Namely, we first perform a self-consistent calculation to get the converged

effective potential without SOC taken into account, and then j -dependent pseudopo-

tential terms are added when calculating the bandstructures. This two-step procedure

is justified because SOC has a very small effect on the effective potential considering

its order of magnitude. The unit cell and the corresponding first Brillouin zone of

SnTe (TaAs) used in the simulation are shown in Fig.4.5 (Fig.4.6). SnTe has a simple

rocksalt crystal structure with the lattice constant 6.403Å. In order to avoid real-space

interpolations when calculating the bandstructure, the simple cubic conventional cel-

l is used as the unit cell in our simulation. TaAs has a body-centered tetragonal

crystal structure of the space group I41md with lattice constants a = 3.437Å and

c = 11.656Å.
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Figure 4.7: Bandstructure of SnTe calculated with our real-space method and with PAW.

Figure 4.8: Bandstructure of TaAs calculated with our real-space method and with PAW.
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The calculated bandstructure is shown in Fig.4.7 (Fig.4.8), where the compari-

son to the standard bandstructure obtained with PAW (implemented in the VASP

package[45]) is also provided. As for TaAs, from the comparison we see that there

is a bit deviation from the standard PAW result. There could be two possible ori-

gins for this deviation. One is the error induced when we interpolate the effective

potential expressed on the orthogonal real-pace grid onto the nonorthogonal grid of

the TaAs primitive cell. The other possible origin is that our norm-conserving pseu-

dopotentials is unable to handle the d-electrons in Ta and As as well as the PAW

pseudopotentials[43].



5
Conclusions

This thesis is devoted to presenting an implementation of the various spin-involved

first-principles calculations, including collinear, noncollinear, and SOC calculations,

within the real-space DFT framework.

We started by reviewing the basic quantum many-body formulation of a gener-

al many-electron problem and we lay our emphasis on the fundamental difficulty in

solving the problem. We then reviewed the Hartree-Fock method, where the concepts

of exchange and correlation were clarified. Moving to the Density Functional Theo-

ry, we demonstrated how a many-electron problem can be formally cast down to a

single-body problem with an opaquely defined XC-potential as the price. To proceed

we resort to the L(S)DA or the GGA scheme for approximating the XC-functional. In

particular we demonstrated the extension of collinear-spin XC-functionals to the non-

collinear case. Besides XC-functionals the accuracy of a DFT method also depends on

how the atomic core electrons are treated therein. Here a real-space pseudopotential

method has been employed to describe the ions. As relativistic effects mainly reside

in the core region of an atom, the SOC effect can be incorporated by generating the

Kleinman-Bylander orbitals from solving the atomic Dirac equation.

Next, we demonstrated the implementation of each of the Hamiltonian operators

on a uniformly meshed real-space grid. Our eigensolver is based on the polynomial-

filtering method. From a theoretical point of view, the advantages of using the

polynomial-filtering method are that the full real-space representation of the Hamil-
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tonian is not necessary and that it allows one to only focus on a relatively small

eigen-subspace. The machinery of the polynomial-filtering method was exposed and

the complete eigensolver algorithm was then presented.

To verify our method we have applied it onto several systems most representative

within the topic. We compared our results with previously reported results or with

those calculated from other DFT softwares and good agreements have been found.

We have shown that our scheme for the noncollinear-spin XC-functionals is capable

of capturing the exchange effects in the noncollinear-spin configuration and that our

norm-conserving j-dependent pseudopotential method leads to a correct description

of the SOC induced band-splitting phenomenon.

Even though all the numerical tests of this work were performed on simple systems

only, we have already observed the drastically increased convergence difficulties after

the spin degree of freedom is included. As the overall convergence performance largely

depends on the mixer and the mixer is highly associated with the specific basis set

that has been chosen, needless to say a better real-space mixer is urgently demanded

at this point.



A
Spin-Orbit Coupling with LCAO Basis

In this appendix we sketch the scheme how SOC computation is implemented within

the LCAO formalism.

We start with Eq.(2.43). By utilizing the general identity

L̂ · Ŝ |j,M⟩ =

 l
2

∣∣l + 1
2
,M
⟩

for j = l + 1/2

− l+1
2

∣∣l − 1
2
,M
⟩

for j = l − 1/2

Eq.(2.43) can be transformed into

V̂ PS
ion =

∑
lm

|lm⟩ V̄ SC
l ⟨lm|+

∑
l

V̄ SO
l (r)L̂ · Ŝ(∑

M

∣∣∣∣l + 1

2
,M

⟩⟨
l +

1

2
,M

∣∣∣∣+∑
M ′

∣∣∣∣l − 1

2
,M ′

⟩⟨
l − 1

2
,M ′

∣∣∣∣
)

=
∑
lm

(
V̄ SC
l + V̄ SO

l (r)L̂ · Ŝ
)
|lm⟩ ⟨lm| (A.1)

In getting the last equality we have used the completeness relation

∑
M

∣∣∣∣l + 1

2
,M

⟩⟨
l +

1

2
,M

∣∣∣∣+∑
M ′

∣∣∣∣l − 1

2
,M ′

⟩⟨
l − 1

2
,M ′

∣∣∣∣ =∑
m

|lm⟩ ⟨lm| ⊗ Ispin.

Now we identify the SOC part of the total pseudopotential as

V̂ SO =
∑
R

V̂ SO(R) =
∑
Rlm

V̄ SO
l (r−R)L̂ · Ŝ |lm(R)⟩ ⟨lm(R)|.

62



63

In the LCAO method the matrix elements of V̂ SO under the atomic orbital basis are

wanted, that is we need to calculate ⟨ϕiσ| V̂ SO |ϕjσ′⟩, where i represents a combination

of indices i ≡ (Ri, ni, li,mi) with Ri being the center of ϕiσ(r). Note that atomic

orbitals on the same site with different n values are not necessarily orthogonal.

The calculation of ⟨ϕiσ| V̂ SO |ϕjσ′⟩ can be largely simplified based on the following

observation[61]: as V̄ SO
l (r −R) is very short-ranged and localized around its center

R, ⟨ϕiσ| V̂ SO(R) |ϕjσ′⟩ becomes nonzero only if R = Ri = Rj. Thus the SOC term

only adds an on-site (block diagonal) contribution to the total Hamiltonian. For the

block of Ri (Rj) site we have

⟨ϕiσ| V̂ SO(Ri) |ϕjσ′⟩ ≈δRi,Rj

∑
lm

⟨ϕi| V̄ SO
l (r −Ri)L̂σσ′ |lm(Ri)⟩ ⟨lm(Ri) | ϕj⟩

=δRi,Rj
δli,lj

∫
dr r2Rni,li(r)V̄

SO
li

(r)Rnj ,lj(r)

· ⟨limi(Ri)| L̂σσ′ |ljmj(Rj)⟩ , (A.2)

where we have used the notation

L̂σσ′ = L̂ · Ŝ =
1

2

 L̂z L̂−

L̂+ −L̂z


L̂+ |l,m⟩ =

√
(l −m)(l +m+ 1) |l,m+ 1⟩

L̂− |l,m⟩ =
√
(l +m)(l −m+ 1) |l,m− 1⟩ .

In LCAO method usually the real spherical harmonics are used instead of their

complex counterparts. The transformation convention that we adopt is

Ȳl,m =


1√
2
[Yl,−m + (−1)mYl,m] if m > 0

i√
2

[
Yl,−|m| − (−1)mYl,|m|

]
if m < 0

Yl,0 if m = 0
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where Ȳl,m is the real spherical harmonic. This transformation should be noticed

when calculating L̂σσ′ |lm⟩.



B
Lanczos Algorithm

The Lanczos algorithm automatically generates an orthogonal basis in which the

given HamiltonianH is tridiagonal. It is especially powerful for generating the highest

eigenpairs of large matrices, which can be utilized in our real-space method to estimate

an upper bound of the electronic spectrum[2, 3, 65]. The algorithm proceeds as

follows[22]: starting with a normalized trial vector v1, form a second vector v2 =

C2[Hv1 − T11v1], where T11 = v†1Hv1 and C2 is chosen so that v2 is normalized. Note

that v2 is orthogonal to v1. Subsequent vectors of the basis are generated recursively

by

vn+1 = Cn+1[Hvn − Tnnvn − Tn,n−1vn−1], (B.1)

where Tij = v†iHvj. The matrix T is tridiagonal since Eq.(B.1) shows that H operat-

ing on vn yields only terms proportional to vn, vn−1, and vn+1. Furthermore, it can

be shown that each vector vn is orthogonal to all other vectors[22]. Going to step M

yields a tridiagonal matrix

T =



α1 β1

β1 α2

. . . . . .

. . . αM−1 βM−1

βM−1 αM


where α and β are determined via Eq.(B.1). The wanted upper bound u for our

problem is then estimated by diagonalizing T and finding its highest eigenvalue.
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A few iterations M is usually enough for a good estimation[3, 65]. The complete

algorithm used in the program is sketched as follows[65]:

Algorithm 6 Lanczos Algorithm

generate an initial guess for smallest eigenvector v = r

set β0= ∥r∥

for j = 1 : niter do

vj = r/βj−1

r = Hvj

r = r − vj−1βj−1

αj = v†jr

r = r − vjαj

βj = ∥r∥

diagonalize T = SΘS†

test convergence

end for

set u= max(Θ)
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