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ABSTRACT 

Background: Chest radiography has been widely used for tuberculosis (TB) detection in 

developed countries for over a century (1) but uptake of chest x-rays (CXR) in high TB burden, 

resource-constrained countries has been limited (2, 3). Obstacles to greater CXR usage in such 

settings include the high costs of radiographic films and the paucity of professionals to interpret 

images (4). Artificial intelligence (AI) - based software for identification of radiologic 

abnormalities (computer-aided detection, or CAD) on CXRs could address these problems and 

potentially facilitate broader use of CXR for the detection of PTB.  

Methods:  We undertook a systematic review of the diagnostic accuracy of using CAD to detect 

abnormalities compatibles with pulmonary TB (PTB) on CXR. We searched four databases for 

articles published between January 2005-November 2017. We summarized data on CAD type, 

study design, and measures of diagnostic accuracy. We assessed risk of bias with the QUADAS-2 

method. Meta-analyses were not performed due to differences in study design. To summarize 

the literature, we divided the included reports into development studies and clinical studies.  

Results: We included 43 of the 3978 articles reviewed, 11 clinical studies, and 32 development 

studies. Development studies were more likely to use CXR databases that had greater potential 

for bias as compared to clinical studies. Areas under the receiver operating characteristic curve 

(AUC) were significantly higher: in development studies (AUC: 0.87 [0.81-0.90]) versus clinical 

studies (0.68 [0.65-0.75]; p-value 0.004); and with programs using deep learning versus (0.93 

[0.90-0.97]) vs machine-learning (0.81 [0.69-0.88]; p=0.001) software. The sensitivity of clinical 

studies was higher when using nucleic acid amplification testing as the microbiologic reference 

standard compared to culture.  

Conclusion: We conclude that AI-based CAD programs are promising, but much of the work 

thus far is in the development rather than the clinical phase. This review provides concrete 

suggestions on what study design elements should be improved.  
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RESUMÉ 
 

Contexte : Depuis plus d'un siècle, la radiographie pulmonaire (RXP) est largement utilisée pour 

diagnostiquer la tuberculose (TB) dans les pays développés. Cependant, les pays à forte charge 

de tuberculose sont limités dans l’utilisation de la RXP et l’accès aux ressources est restreint. Le 

coût élevé des films radiographiques et le manque de professionnels pour interpréter les 

radiographies constituent des obstacles à une plus grande utilisation de la RXP dans de tels 

contextes. -Un logiciel basé sur l'intelligence artificielle (IA) qui détecte des anomalies 

radiologiques (la détection assistée par ordinateur ou DAO) et qui est adapté à la tuberculose 

pulmonaire aux RXP - pourrait résoudre ces problèmes et peut-être faciliter une utilisation plus 

vaste de la RXP dans le diagnostic de la tuberculose pulmonaire (TP).  

 

Méthodes:  Nous avons entrepris une revue systématique de l’exactitude du diagnostic effectué 

par les logiciels basés sur l’IA afin de détecter les anomalies radiologiques (DAO) qui sont 

compatibles avec la TP par les RXP. Nous avons sondé quatre bases de données pour trouver 

des articles publiés entre janvier 2005 et novembre 2017. Nous avons résumé les données sur 

le type de DAO, l'étude clinique et les mesures de l'exactitude du diagnostic. Nous avons évalué 

le risque de biais avec la méthode QUADAS-2. Aucune méta-analyse n'a été effectuée en raison 

de différences entre les études cliniques. En résumé, nous avons divisé les rapports inclus en 

études de développement et en études cliniques.  

 

Résultats: Nous avons inclus 43 des 3978 articles examinés, 11 études cliniques sur la 

tuberculose CAD4TB et 32 études de développement. Les études de développement étaient 

plus susceptibles d'utiliser des bases de données provenant de la RXP qui présentaient un plus 

grand risque de biais que les études cliniques. Les résultats des aires sous la courbe (AUC) de 

ROC (caractéristique de fonctionnement du récepteur) étaient significativement plus élevés 

dans les études de développement (AUC : 0,87 [0,81 – 0,90]) que dans les études cliniques (0,68 

[0,65 – 0,75]; p= 0,004), ainsi que dans les logiciels qui fonctionnent avec l’apprentissage 

automatique (0,93 [0,90 – 0,97]) comparativement à ceux qui fonctionnent avec l’apprentissage 
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approfondi (0,81 [0,69 – 0,88]; p=0,001). L’utilisation d’amplification des acides nucléiques 

comme référence microbiologique dans les études cliniques est une méthode plus sensible 

comparativement à celles des cultures. 

 

Conclusion : Les programmes de DAO basés sur l'IA sont prometteurs, mais une grande partie 

du travail effectué jusqu'à présent se situe dans la phase de développement plutôt que dans la 

phase clinique. Cet examen de la littérature fournit des suggestions réelles sur les éléments de 

conception des études qui devraient être améliorés.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

 

7 

PREFACE  

This thesis aims to systematically review and critically evaluate the literature on computer 

aided detection (CAD) for PTB on CXRs. This is a manuscript-based thesis written in compliance 

with the guidelines and specifications detailed by the Faculty of Graduate and Postdoctoral 

Studies of McGill University.  

Chapter 1 reviews the pathophysiology of TB, current epidemiology, and the role of CXR in 

pulmonary TB diagnosis. Chapter 2 provides an overview of the history of CAD technology, how 

CAD programs are developed, and how CAD is more specifically applied to CXR reading and PTB 

identification. Chapter 3 summarizes the aims of the thesis and rational for the selected 

methodology. Chapter 4 is the manuscript that has been developed and submitted and is 

currently under review at PLOS One. There may appear to be some repetition in the contents of 

the manuscript, but that is because it was derived from this thesis. Chapter 5 provides 

additional details around the limitations and issues with the existing literature. These details 

required a stand-alone chapter as they could not be succinctly incorporated into a publishable 

manuscript.  Chapter 6 summarizes the findings, reviews the implications of the results, and 

how they relate to future research avenues.   

 

 

 

 

 

 

 

 

 



 

 

 

8 

CONTRIBUTION OF AUTHORS  

Miriam Harris (Thesis candidate): 

I was responsible for collaborating on the development of the thesis topic and acquiring ethics 

approval. I was also responsible for the article selection, data collection, data analysis, and 

writing of this thesis document.  

Dr. Faiz Ahmad Khan (Co-Supervisor): 

Dr. Ahmad Khan generated the original thesis topic idea and provided insight into the study 

design, methodology, and statistical plan. Dr. Ahmad Khan acted as a reviewer for article 

selection, data extraction, and quality review of the included articles. Dr. Ahmad Khan reviewed 

the thesis document and manuscript.  

Dr. Richard Menzies (Supervisor): 

Dr. Menzies provided guidance for the thesis approach, writing, and submission. Dr. Menzies 

reviewed the thesis document and edited the manuscript.  

Dr. Amy Qi (Resident): 

Dr. Amy Qi acted as a reviewer for article selection and data extraction.  

 

 

 

 

 

 

 



 

 

 

9 

ACKNOWLEDGMENTS 

I would like to begin by thanking the members of my thesis committee: my supervisors, Dr. Faiz 

Ahmad Khan and Richard Menzies.  

I am extremely grateful to Dr. James Johnston for putting me in touch with Dr. Faiz Ahmad Khan 

when I came to McGill from the University of British Columbia for my fellowship in General 

Internal Medicine. Dr. Ahmad Khan’s mentoring and academic support has been invaluable to 

me during my time at McGill. He has taken time not only to discuss our work together, but also 

to offer personal career guidance, clinical expertise, and encouragement during times of need. 

His positive attitude, incredible work ethic, and collegiality represent an inspiring model of a 

burgeoning clinician-scientist, and I hope I will someday be able to establish a similar career 

path. This thesis would not have been possible without Dr. Richard Menzies. His great expertise 

in the study of tuberculosis, and years of academic experience at McGill grounded this thesis 

work. I am honored to have had the opportunity to work with such a prolific researcher.  

I would also like to thank the members of the Respiratory Epidemiology and Clinical Research 

Unit for creating such a welcoming work environment. In particular, I would like to thank Alix 

Zerbo and Saeedeh Moayedi Nia for orienting me to the department, and for their help with 

this thesis work.   

I am very grateful to my division of General Internal Medicine for supporting my academic work 

during my final year residency, and providing funding for my thesis project. 

Lastly, I would like to thank my personal supports. I am endlessly appreciative of my parents, 

Drs. Beth Henning and Stewart Harris, for their love and support throughout my life. My mother 

is my constant source of inspiration, validation, and encouragement. I consider my father to be 

my overall academic supervisor, as he is the one I turn to first with questions, as a source of 

motivation, and for help in my career.  

 



 

 

 

10 

LIST OF TABLES 

 

Table 1. Definition and calculation of statistical measures used to express diagnostic test 

utility……………………………………………………………………………………………………………………………………….30 

Table 2. Methods of studies included in the descriptive analysis…..……………………………………45-46 

Table 3. Accuracy measures reported by development studies…………………………………………..47-48 

Table 4. Demographics of CAD4TB studies with microbiologic reference standard………………….49 

Table 5. Quality assessment of Datasets used to test and train CAD software of 

Development……………………………………………………………………………………………………………………………50 

Table 6. Quality assessment (QUADAS 2) graph of Development Studies…………………………………51  

Table 7. Quality assessment (QUADAS 2) graph of clinical studies…………………………………………..51 

Table 8. Selection, enrolment of CAD4TB studies with microbiologic reference standard………..52 

Table 9. Development and Use of CAD4TB threshold score……………………………………………………..61 

Table 10. Summary of CAD4TB human readers.……………………………………………………………………….62 

 

 

 

 

 

 

 

 



 

 

 

11 

LIST OF FIGURES 

 

Figure 1. Venn Diagram representation of the hierarchy of terms of artificial intelligence, 

machine learning and deep learning…………………………………………………………………………………..……21 

Figure 2. Schematic representation of a deep learning algorithm..……………………………..…………..22 

Figure 3. Schematic of representation of CAD development and clinical testing of CXR analysis 

for TB detection……………………………………………………………………………………………………………………….23 

Figure 4. Study flow diagram……………………………………………………………………………………………………44 

Figure 5. Forest plots of accuracy measures of development and CAD4TB studies………………….53 

Figure 6. Boxplots of the AUC of studies stratified by software design, CXR usage, reference 

standard, and degree of patient selection, index test, and reference standard bias…………………54 

 

 

 

 

 

 

 

 

 



 

 

 

12 

LIST OF ABBERVIATIONS/DEFINITIONS  
 
AIDS: acquired immune deficiency syndrome 
AFB: acid-fast bacilli 
CAD: computer aided detection  
CAD4TB: a proprietary software for computer aided detection program, owned by Delft Inc 
(Veenendaal, Netherlands) 
CXR: chest x-ray 
EPOC: Effective Practice Organization of Care  
HIV: human immunodeficiency virus  
IQR: interquartile range 
MTB: mycobacterium tuberculosis  
NAAT: nucleic acid amplification test 
PICO: population, intervention, comparator, outcome 
PTB: pulmonary tuberculosis  
TB: tuberculosis 
QUADAS: Quality Assessment of Diagnostic Accuracy Studies 
WHO: World Health Organization 
 
Culture: cultivation of Mycobacterium tuberculosis in a growth medium. It is the gold standard 
for TB diagnosis. Both liquid media and solid media are used. Solid medium requires 4-8 weeks 
for growth, whereas liquid media is significantly faster (between 10 and 14 days) and may 
increase the case yield by 10% over solid media (5).  
 
Smear: sputa examined under microscopy for the identification of Mycobacterium tuberculosis 
with either fluorescence microscopy (auramine-rhodamine staining) or Ziehl-Neelsen staining 
(5). It is inexpensive and identifies the most infectious TB cases; however, it has lower sensitivity to 
detect TB, especially among people living with HIV. 

Xpert MTB/RIF: it is a nucleic acid amplification test (NAAT) for for rapid diagnosis of active TB, as well 
as resistance to rifampicin (6).   

Bacteriologically confirmed active TB: TB disease in which a biological specimen tests positive for M. 
Tuberculosis  by demonstration of the organism’s DNA via PCR, or of acid-fast bacilli by sputum smear 
microscopy (acid-fast staining), or by mycobacterial culture (7).  

Clinically diagnosed active TB: TB disease diagnosed based on clinical findings (e.g. symptoms and 
abnormalities seen on CXR) but not fulfilling criteria for bacteriologically confirmed active TB.  

Screening use-case: the use of CXRs in the assessment of people belonging to a target group considered 
at high risk for TB. It does not include use of CXR for evaluation of individuals who seek medical care for 
respiratory symptoms (see below, Triage use-case) (7).  

Triage use-case: use of CXRs to evaluate patients who have sought care with symptoms or signs 
suggestive of TB (7).  

https://en.wikipedia.org/wiki/Fluorescence_microscopy
https://en.wikipedia.org/wiki/Auramine-rhodamine_stain
https://en.wikipedia.org/wiki/Ziehl-Neelsen_stain
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Development study: a CAD study that primarily focused on reporting methods for creating a CAD 
program for PTB as Development studies. These were often published in engineering, computer science, 

medical imaging journals, or proceedings from engineering or medical imaging conferences. 

Clinical study: a CAD study that primarily focused on the assessment of the accuracy of an already-
developed CAD software as clinical studies. 

Artificial intelligence: Computer technology with the ability to automate intellectual tasks. 
 
Machine learning: A type of artificial intelligence that relies less on human specification (i.e. 
defining a set of variables to be included) and instead allows algorithms to decide what 
variables are important (8). 
 
Deep Learning: is a type of artificial intelligence which attempts to model brain architecture.(9) 
It uses neural networks, or overlaying models, that emphasize learning increasingly meaningful 
representations of the data (9).



CHAPTER 1: Introduction 
 
 
 
Tuberculosis: pathophysiology & epidemiology  

 

Tuberculosis (TB) remains a major global health problem. It is an infectious disease caused by 

the bacteria known as Mycobacterium tuberculosis (MTB) (10). In humans, TB is clinically 

dichotomized into two forms: latent and active TB; the former occurs after infection when the 

body’s immune system contains the disease, and M. tuberculosis bacilli remain in a dormant 

(slowly replicating) state that is not associated with progressive tissue destruction . Individuals 

with latent TB remain asymptomatic but are at risk of developing active TB disease in the 

future. Active TB is a state of disease, where M. tuberculosis bacilli are replicating and eliciting 

an immune reaction that together are resulting in tissue destruction (11). It most commonly 

affects the pulmonary system, but can involve extrapulmonary sites throughout the body (11). 

This thesis will focus on the most prevalent type of active TB, pulmonary TB (PTB). 

 

TB transmission occurs when someone with active respiratory TB (including the lungs, larynx 

and upper airways) expels organisms into the air, typically  by coughing, and others inhale 

droplets containing the expelled bacteria (10). Most individuals infected with TB do not develop 

symptoms. In fact, only about 5-15% of the estimated 1.7 billion people infected with MTB 

develop active TB during their lifetime (10). However, individuals with other co-morbid immune 

modulating disease, such as human immune deficiency virus (HIV), undernutrition, cancer, and 

chronic diseases like diabetes or kidney diseases are at much higher risk of developing active TB 

(10).  

 

Patients are typically diagnosed when they present to health care settings with symptoms 

suggestive of PTB or through screening programs that target high-risk populations. 

Confirmatory diagnostic tests for PTB include polymerase chain reaction (PCR) based rapid 

molecular tests (nucleic acid amplification testing (NAAT)) such as the Xpert MTB/RIF assay 
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(Cepheid, USA); sputum smear microscopy (acid-fast staining), or mycobacterial culture (10). 

However, a large portion of TB cases reported to the World Health Organization (WHO) remain 

clinically diagnosed rather than microbiologically; for instance in 2016, 57% of reported 

pulmonary cases were diagnosed clinically (10).  

 

The mortality from TB without treatment is very high. Studies predating the availability of 

effective treatment found that 70% of sputum smear-positive individuals, and 20% of culture-

positive/smear-negative individuals died within 10 years of diagnosis (10).  Effective 

medications for the treatment of TB were first developed in the 1940s, but despite access to 

these, TB remains in the top ten causes of death worldwide, and is the leading cause from a 

single infectious etiology ahead of HIV/AIDS (10). In 2016, there were an estimated 1.67 million 

deaths, and only 6.3 million or 61% out of the estimated 10.4 million new cases were reported 

to national TB programmes (10). Although this is an improvement from 2015, where 6.1 million 

or 59% of TB cases were diagnosed, TB identification still remains a major cause of the ongoing 

morbidity and mortality associated with TB infection today (10). 

 

Low and middle income countries (LMIC) suffer from the highest rates of TB, and 

simultaneously, have the fewest resources for detection and treatment.  In countries with the 

greatest TB burden, radiology, for example, is mainly limited to district level referral centers. 

Three resource-limited countries account for 76% of the total gap between TB incidence and 

reported cases, with the top three being India (25%), Indonesia (16%), and Nigeria (8%) (10). 

The gap between the reported number of new cases compared to the estimated number is due 

to a combination of factors including underdiagnoses. Closing this gap will require easier access 

to currently available diagnostic tools and novel diagnostics methods.  

 

Chest x-ray in PTB diagnosis  

Chest x-ray (CXR) is a rapid imaging tool that allows lung abnormalities to be visualized. CXR is 

broadly used to identify conditions of the thoracic cavity, including the lungs, ribs, airways, 

diaphragm, and heart (12). The role of CXR in TB diagnosis is to identify persons that should 



 

 

 

16 

undergo microbiologic testing for TB (12, 13). There are two broad contexts, or use-cases, in 

which CXR are used for detecting TB.  The triage use-case refers to a circumstance where CXRs 

are being used as part of the diagnostic pathway of someone with symptoms suggestive of PTB 

(also called "passive case-finding"). The screening use-case refers to the use of CXR in active 

case finding, when high-risk populations are systematically screened to identify those with 

active TB (also called “active case-finding). In this use-case patients may not have sought care, 

and are often asymptomatic. 

According to the most recent WHO handbook for National Tuberculosis Control Programme and  

the International Standards for Tuberculosis Care 2014 guidelines, in the triage scenario, CXR 

can be used prior microbiologic testing (7). It may be used as a triage tool to aid in deciding 

which patients should receive microbiologic investigations (7). Importantly, the WHO 

emphasized the use of CXR alone to diagnose TB is not recommended given its low specificity, 

high interobserver variability, poor access to high-quality radiography equipment, lack of expert 

access for interpretation, and wide-spread use of low-quality radiography (7). However, in 

resource-constrained settings, the WHO has suggested that CXR along with clinical assessment 

can be used to triage patients who should be tested with PCR-based rapid molecular tests as a 

cost reducing strategy (12). 

According to the WHO and Canadian guidelines, CXR can be used as a screening tool when 

available (12, 13). Although CXR is estimated to have only a sensitivity of 70% to 80%, and 

specificity of 60% to 70%, it is still more sensitive than symptom screen alone, and thus remains 

useful in the screening setting (13). CXR is particularly useful when used in a screening program 

that is based in a health care setting or mobile CXR unit (7). While CXR is superior to symptom 

screen alone, the WHO notes that it can be expensive and logistically challenging to use. Chest 

radiography has been widely used for TB clinical care and screening in developed countries for 

over a century (1), but uptake of CXR in high TB burden countries, particularly in resource-

constrained settings, has been limited (2, 3). 
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Two obstacles for greater use of CXR in such settings are the high costs of radiographic films 

and the paucity of professionals to interpret images (4). The greater affordability of digital 

radiography technology, and the recent development of computer programs capable of 

analyzing CXR images to identify PTB compatible abnormalities (computer-aided detection, or 

CAD), could address these barriers and allow for increased uptake of CXR and improved PTB 

diagnosis. However, CAD is a new technology and the WHO has called for greater evidence 

before endorsing its use in TB diagnostic and screening pathways (7).  
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CHAPTER 2: Computer aided technology for tuberculosis diagnosis  

 

 

Computer technology has developed the ability to automate intellectual tasks, also known as 

artificial intelligence (AI). AI has been applied to the analysis of radiologic images to identify 

abnormalities—referred to as computer-aided detection, or CAD. CAD technologies in 

radiology, where digital medical images are analyzed quantitatively by computers, date back to 

the 1960s (14). The term CAD has been operationalized in the literature to mean either that 

computer analysis is used as a tool to assist human radiologists in decision making, or as a 

means to replace the human reader altogether. This review will focus on this latter definition of 

CAD as it applies to CXR reading to detect PTB. The attraction of AI-based CAD for PTB detection 

highlights the opportunity for CXR utilization in places that currently lack human personnel for 

image interpretation, thereby addressing the TB detection gap in resource constrained settings.  

 

Two forms of AI have currently been used in image analysis: Machine learning (ML) and Deep 

learning (DL) (Figure 1). ML is a type of AI analysis that relies less on human specification (i.e. 

defining a set of variables to be included) and instead allows algorithms to decide what 

variables are important (8, 9). ML algorithms often involve techniques such as decision trees 

and association rule learning (8). ML focuses on prediction and classification and can be more 

amenable than traditional statistical analysis to non-linear, complex, or skewed data (8). Deep 

learning (DL) is a subset of ML which attempts to model brain architecture. It uses neural 

networks, or overlaying model layers, that puts an emphasis on learning increasingly 

meaningful representations of the data (9). DL uses a loss of function to measure the quality of 

the networks output. It then uses this loss of function data as feedback in order to find the 

optimally set weights to further optimize the input and achieve a more precise output (Figure 

2).  
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 ML or DL software applied to CXR reading are usually trained on a series of images and work by 

employing serial computational procedures, such as image preprocessing, boundary 

segmentation, feature extraction, and feature classification to input information into 

classification algorithms (15, 16). The training is typically completed on a set of CXRs in which 

abnormal features were identified by human readers. Presented with an unlabeled CXR, the 

program analyzes the image characteristics and, using the distributions developed with the 

training datasets determines if PTB is likely or unlikely. This software can then be tested in the 

clinical setting (Figure 3). A growing body of research on the development and assessment of 

these new CAD technologies for PTB diagnosis is underway, but their clinical utility is still 

unclear.  

 

An important question when evaluating CAD software, is whether diagnostic accuracy should 

be assessed using a set of CXR images that are separate from the training set (i.e. avoid testing 

accuracy with CXRs that were used for training, or CXRs that were not used for training but that 

originate from the same subset/study as those with which the program was trained). It is 

known that using the same set of CXRs for the evaluation will likely lead to an  overestimate of 

the diagnostic accuracy, and thus will have limited generalizability (17). It is also important to 

consider how the database used for evaluation was designed, in order to know whether the 

selection of images and the reference standard used could affect the internal and external 

validity of the assessment of diagnostic accuracy (18, 19). However, such an assessment of the 

databases that are commonly used to develop and evaluate CAD has never been reported. 

 

Another consideration is that, for clinical-decision making, clinicians use information from CXRs 

in a categorical manner—that either the image is compatible with PTB or it is not. This 

information is then used to either test further, for example complete a microbiologic test, or to 

initiate treatment of PTB.  As such, CAD programs should provide an output that can easily be 

operationalized for categorical decision making, with an established and reproducible level of 

diagnostic accuracy. A “threshold score” is the abnormality score below which PTB is 

considered ruled out. 
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For example, CAD4TB is the only commercially available CAD software developed by Diagnostic 

Image Analysis Group at Radboud University Medical Center, Nijmegen, The Netherlands. It 

originally underwent field testing in 2010 (20). It is a machine learning software and the analysis 

process can be broken down into four steps: (1) the radiographs are processed to standardize 

the grey scale, resolution, and other features; (2) the software demarcated the anatomical 

structures such as the lungs, clavicles, ribs, and defined the anatomical orientation of the 

image; (3) the defined lung fields are then analysed for local texture, shape, and global 

symmetry; (4) lastly, a global correlation with a typical normal CXR is completed (20). A score 

from each step is combined to produce an overall score for the image, known as an abnormality 

score.  This score, between 0-100, determines the likelihood of active PTB with higher scores 

indicating a greater likelihood (20).   

 

This threshold score is currently not preselected by the test developers, in contrast, the test 

developers advise the user to select the score based on the use-case applied and the 

population tested. Hence, for CAD programs that report output as a continuous result in the 

form of a number or score,  developers are advised to identify a cut-off, or threshold scores, at 

which the image can be interpreted as consistent with PTB, and below which PTB can be 

confidently excluded (16).   

 

Furthermore, when assessing the accuracy of CAD, the context in which the CXR was performed 

must be considered. The pre-test probability of TB, and the expected prevalence of more 

advanced or extensive disease, will differ between the two previously described use-cases 

(triage and screening), thereby affecting the sensitivity of CXR and hence the accuracy of CAD. A 

study of CAD for PTB identification in the triage use-case may not be generalizable to the 

identification of PTB in the screening use-case and vice versa. 
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Chapter 2 Tables and Figures 

 

 

 

 

 

     

 

 

Figure 1. Venn Diagram representation of the hierarchy of terms of artificial 
intelligence, machine learning and deep learning. 
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Figure 2. Schematic representation of a deep learning algorithm. 
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Figure 3. Schematic of representation of CAD development and clinical testing of 
CXR analysis for TB detection 
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CHAPTER 3: Thesis approach 

 

 

In the era of evidence-based medicine, whereby scientific evidence is combined with 

practitioner expertise to make decisions regarding patient care, systematic reviews are tools 

used by clinicians and the academic community to identify evidence for a specific research 

question (21). A systematic review has been defined by the Cochrane Collaboration as “a review 

of a clearly formulated question that uses systematic and explicit methods to identify, select, 

and critically appraise relevant research, and to collect and analyze data from the studies that 

are included in the review” (22).   

 

In response to the growing body of literature and interest in CAD for PTB diagnosis, this thesis 

aims to provide a comprehensive summary of the literature on CAD for PTB utilizing a 

systematic review. A prior systematic review was conducted on the only commercial available 

CAD software at that time (23). This previous review focused only on CAD4TB. The literature 

search, conducted in November 2015, identified 5 studies eligible for inclusion. The authors 

identified a number of limitations that could have resulted in a biased assessment of the 

diagnostic accuracy and limited the generalizability of the findings. However, because this prior 

review focused on CAD4TB studies, and did not address non-commercially available studies 

reporting on the development of CAD programs, the majority of CAD studies were excluded.  

Our review also includes non-commercially available CAD studies that focused predominantly 

on reporting the development methods for CAD programs. Since the publication of the previous 

review, additional studies of CAD4TB have also been published, and the WHO issued a call for 

further information (7). This systematic review addresses the following two aims.  

AIM 1: To answer the following PICO question:  

What is the diagnostic accuracy and clinical utility of CXRs analyzed by CAD for the detection of 

PTB in the screening and triage scenario? 
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AIM 2: Which study-level factors affect the reported diagnostic accuracies? 

AIM 1 

For Aim 1, we completed a systematic review of the literature and addressed diagnostic utility 

as described by Price et al by looking at 4 aspects: analytical validity, clinical validity, clinical 

usefulness, and the social context (24). The analytical validity refers to whether the test 

measures what it is claimed to measure. This is evaluated by the accuracy of the test, and 

whether it was estimated in a valid manner. 

According to Sackett & Haynes, a valid assessment of a diagnostic test includes the following 

features: an independent, blind comparison of the index test result with a reference standard, 

assessment within a consecutively enrolled group of individuals, inclusion of missing and 

indeterminate results, and replication of the studies in other settings (25). To assess the validity 

of CAD software studies, we applied the widely used ‘Quality Assessment of Diagnostic 

Accuracy Studies-2 (QUADAS-2)’, which includes the features outline by Sackett & Haynes (26).  

We additionally assessed the validity of the databases used. Because many of the studies used 

the same databases to test and train their software, we summarized the quality by database 

rather than by CAD study. We adapted the QUADAS-2 approach, as our interest was to assess 

the databases used for testing CAD performance.  Hence, we focused on patient selection and 

the reference standard used. 

The utility of a diagnostic test determines how well the test discriminates between two 

conditions of interest; for example, disease versus health, two stages of a particular disease, or 

between two different diseases (27). Diagnostic test outcomes can be dichotomous, ordinal, or 

continuous. The discriminability of binary tests is quantified by the following measures: 

accuracy, sensitivity, specificity, positive and negative predictive value, likelihood ratios, area 

under the receiver operator curve (ROC) (AUC) (27) (Table 1). To assess the accuracy of CAD, we 

extracted diagnostic accuracy measures when reported from included studies.  
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The clinical validity addresses whether the test answers the clinical questions being asked. This 

focuses on how the test should be used i.e. as a screening tool, triage tool, prognostic tool, or 

for monitoring (24). To assess the clinical validity of CAD software studies, it was important to 

determine if the database used to test the software was representative of either the triage or 

screening scenario, as the sensitivity and specificity of test depends on disease prevalence. 

Clinical studies were analyzed according to their use-case as either screening or triage.  

The clinical usefulness, refers to whether the test leads to better outcomes (22). Part of this 

assessments includes how a test can conceivably be used. Therefore, for CAD, we assessed how 

the software results were reported and how authors suggested these results be then applied in 

the clinical context. For clinical decision making, clinicians use information from CXRs in a 

categorical manner; either the image is compatible with PTB or it is not. As such, we assessed 

whether CAD programs provided an output that can easily be operationalized for categorical 

decision making, with an established and reproducible level of diagnostic accuracy. Hence for 

CAD programs that output used a continuous result in the form of a number or score, we 

assessed whether developers identified a cut-off, or threshold score, at which the image was 

interpreted as consistent with PTB, and below which PTB was confidently excluded (16).   

Additionally, to assess if CAD leads to better outcomes, we further focused our evaluation on 

the reference standard authors used to label participants as either having PTB or not. 

Ultimately, for CAD to be used to diagnosis PTB, microbiologic reference, as the gold standard 

for diagnosis, should be utilized. This is important because human interpretation of CXR is only 

moderately specific for PTB, has variable sensitivity, is marked by limited inter-reader reliability, 

and the reproducibility is limited (7, 28). Therefore, the use of a radiologist as the reference 

standard represents a potential source of information bias. 

Lastly, an evaluation of a diagnostic test should also encompass a consideration of the social 

context in which the test is meant to be used. This includes ethical considerations, legal issues, 

and economic costs and benefits (22). This evaluation remains out of the scope of this thesis, 

but highlights a critical area that requires further research. The WHO’s strategic plan for the use 
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of CXRs in TB care highlights the importance of determining existing infrastructure, availability 

of human resources, and assessing if local stakeholders are interested in using CXRs before 

recommending widespread uptake and use (12). 

Meta-analysis  

A quantitative systematic review, or meta-analysis, is often incorporated within systematic 

review whereby statistical methods are used to combine the results of two or more studies 

(21). Meta-analysis results are generally more precise, but conducting a meta-analysis is not 

always appropriate. According to Cochrane, it is inappropriate to conduct a meta-analysis under 

the following conditions: (a) there is a large degree of missing information; (b) there is 

unexplained heterogeneity between studies that make an average effect difficult to interpret; 

(c) there are large differences in populations, interventions, comparisons, or methods used in 

the studies making an average effect across studies meaningless (29).  

Appropriately, a meta-analysis was not conducted in the previous review of CAD4TB (23). One 

overarching concerning was that several CAD4TB versions have been studied-- 1.08, 3.07, 4.1, 

5, but because abnormality scores were not equivalent across the versions, the evidence-base 

for each was quite small. Another major limitation of CAD4TB is that it is unclear what 

threshold score should be used to optimize diagnostic accuracy. In the majority of studies, 

investigators either (i) reported the diagnostic accuracy across a range of threshold scores, or 

(ii) selected a threshold score post-hoc to match the accuracy of the study’s human readers, or 

(iii) chose a training set of CXRs from the larger validation set to determine which threshold 

score to use. Other methodologic concerns included the potential for selection bias due to the 

inappropriate exclusion of participants; limited generalizability due to the evaluation of CAD4TB 

using CXR from a dataset that also contributed to training the software; and the involvement of 

the software's developers in the publications. We aimed to conduct a meta-analysis in our 

review only if the above the methodological concerns could be addressed.  
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AIM 2 

Research has shown that study design features will affect the reported diagnostic test accuracy 

in studies evaluating new diagnostic techniques (30-32).  Methodology features known to affect 

diagnostic accuracy include, but are not limited to the following:  selection bias, whether data 

was collected retrospectively or prospectively,  sampling procedures, non-blinded 

interpretation of the index test, and post analysis definition of a cut-off scores (31).  In an effort 

to improve the quality of reporting of new diagnostic tests, guidelines have been developed. 

The Standards for Reporting of Diagnostic Accuracy (STARD) statement provides a reporting 

checklist to allow clinicians and researchers to more easily assess the quality of the studies and 

their results and improve methodology (33). However, despite these guidelines, the quality of 

reporting has remained similar to the pre-STARD standards era, which dates back to 2003 (32).  

Therefore, we sought to asses and quantify how methodologic factors specially affected 

reported CAD accuracy results based on the degree of patient selection, index test used, and 

reference standard bias. Over optimism of new diagnostic tools has also been shown to effect 

accuracy measures (34). Therefore, we also compared clinical studies to development studies 

reported accuracies. Clinical studies primarily focused on the assessment of the accuracy of an 

already-developed CAD software. Development studies, primarily focused on the early methods 

for creating a CAD and an assessment of diagnostic accuracy.  

Additionally, CAD for TB detection has unique study features which may impact its accuracy. 

These include the type of AI software used, how the AI software was trained and tested, and 

the refence standard employed. As described above, AI procedures are evolving, and now 

include ML and DL techniques. While similar, they have important computational differences 

and therefore may have different accuracy results. Furthermore, it is important to know how 

these AI tools were trained and tested. ML and DL require data sets to train their prediction 

models, which then need to be tested or validated. Ideally, different data should be used for 

training and testing, IE. different CXRs, as the ultimate goal is to generalize the predictive 
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capacity. Estimating the accuracy (sensitivity, specificity, AUC) on data which the model was 

fitted (trained) will lead to an overestimation of the predictive power.  

Lastly, the reference standard use for TB diagnosis will also impact the reported accuracy. As 

previously described, CXR alone should not be used for PTB diagnosis. Microbiologic testing of 

sputum remains the gold standard for PTB identification. Studies that used human 

interpretation of CXR as the reference standard are susceptible to information bias. Therefore, 

we compared accuracies of studies that used microbiology vs human interpretation of CXR 

reference standards. 
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Chapter 3: Figures and Tables 

 

 

Statistical measures of diagnostic test utility 
 
Statistical measure Definition 

 
Calculation 

Accuracy The proportion of people correctly 
identified as either having or not having 
the disease  

(TP + TN) / (TP + FP + 
FN + TN) 

Sensitivity The proportion of people who have the 
disease who test positive 

TP / (TP + FN) 

Specificity The proportion of people who do not 
have the disease who test negative 

TN / (FP + TN) 

Positive predictive value The proportion of people who test 
positive and who have the disease  

TP / (TP + FP) 

Negative predictive value The proportion of people who test 
negative and who do not have the disease  

TN / (FN + TN) 

Positive likelihood ratio How likely a positive test result is in 
people who have the disease as compared 
to how likely it is in those who do not 
have the disease 

Sensitivity/(1-
specificity) 

Negative likelihood ratio How likely a negative test result is in 
people who have the disease as compared 
to how likely it is in those who do not 
have the disease  

(1-
sensitivity)/specificity 

Table 1. Definition and calculation of statistical measures used to express 
diagnostic test utility 
TP, true positive; TN, true negative; FP, false positive; FN, false negative 
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Connecting text 
 
 

To answer our PICO question from Aim 1,  we completed a systematic review, however, the 

above noted methodological concerns identified in the previous systemic review still applied 

and therefore a meta-analysis was not pursued. We synthesized the data according to the 

Cochrane Effective Practice Organization of Care (EPOC) recommendations for “synthesizing 

results when it does not make sense to do a meta-analysis". We reported standardized 

outcome measures of sensitivity and specificity, calculated the interquartile ranges (IQR) of 

these measures, and included plain language summaries of the accuracy results. We 

categorized the accuracy measures by the type of CAD study (clinical vs. development) and by 

screening or triage use-case. 
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CHAPTER 4: A systematic review of the diagnostic accuracy of artificial 
intelligence-based computer programs to analyze chest x-rays for 
pulmonary tuberculosis 
 
Miriam Harris, Amy Qi, Nazi Torabi, Dick Menzies, Alexei Korobitsyn, Madhukar Pai, Ruvandhi R. 
Nathavitharana, Faiz Ahmad Khan 
 
 
 
 
 
Introduction 

The need to improve tuberculosis (TB) diagnostic and screening services in high-burden 

countries is clear. In 2016, active TB was the leading cause of death due to an infectious agent, 

and only 69% of the  10.4 million people that developed this disease were detected by or 

notified to national TB programmes (10). In the absence of a rapid, cheap, accurate and ideally 

non-sputum based TB diagnostic test, the World Health Organization (WHO) and other 

stakeholders have identified the need for a triage test to determine which people should 

undergo confirmatory TB diagnostic testing. In developed countries, chest x-rays (CXRs) have 

been used for the evaluation of persons presenting with symptoms of possible active TB 

(triage), and for screening of asymptomatic individuals in high risk groups, for several decades 

(1). However, their uptake in high TB burden countries, particularly in resource-constrained 

settings, has been limited (2, 3). 

 

In recent years, there has been increasing interest in expanding access to chest radiography in 

order to improve TB case detection in high-burden areas (7). However, one of the challenges is 

the paucity of professionals to interpret radiographic images in resource-constrained settings 

(4). Computer technology has developed the ability to automate intellectual tasks, also known 

as artificial intelligence (AI). Recently, AI has been applied to the analysis of CXR images to 

identify abnormalities—referred to as computer-aided detection, or CAD— and represents one 

potential solution the personnel shortage. CAD uses two types of AI for CXR reading: Machine 

learning (ML) and Deep Learning (DL). ML is a type of AI analysis that relies less on human 
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specification (i.e. defining a set of variables to be included) and instead allows algorithms to 

decide what variables are important (8, 9). DL is a subset of ML which attempts to model brain 

architecture (9). It uses neural networks, or overlaying models, that emphasize learning 

increasingly meaningful representations of the data (9). The World Health Organization (WHO) 

has called for greater evidence before endorsing the use of CAD in TB diagnostic and screening 

pathways (7).  

 

To date, only one systematic review has been undertaken of CAD for TB (35), and was limited to 

reviewing the only commercially available software at the time of publication. Amongst the 5 

included studies, the reviewers identified a number of methodological limitations that could 

have resulted in potential bias in estimating diagnostic accuracy, limited the generalizability, 

and this prevented pooling of results. Because the prior review was limited to studies of the 

single commercially available software, it excluded the vast majority of studies of CAD for 

detecting PTB. Hence, in order to provide a more comprehensive and expansive summary of 

the CAD literature we undertook an updated systematic review which included non-

commercially available CAD studies. Our primary objectives were to evaluate the evidence base 

with regards to the estimation of the diagnostic accuracy of CAD, including assessing potential 

for bias, and if appropriate, to calculate pooled estimates of area under the receiver operating 

characteristic curves (AUC), sensitivity, and specificity. Secondary objectives were to evaluate 

study-level factors associated with diagnostic accuracy; including those related to the design of 

the study, and the type of software used (ML versus DL).  

 

Methods 

Design  

This systematic review followed the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses guidelines (Appendix) (36). The International Prospective Register of Systematic 

Reviews (PROSPERO) registration number of this protocol is CRD42018073016. 

 

Date source and search strategy 
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A search strategy was developed in consultation with an academic librarian (NT) to identify 

published articles in MEDLINE (Ovid), EMBASE (Ovid), PubMed, and Scopus (Appendix). The 

search strategies included subject headings (where applicable) and text words for the concepts 

of pulmonary TB (PTB), computer aided diagnosis, and diagnostic accuracy. As CAD is a modern 

technology the search period was limited to papers published after January 1, 2005, and 

included articles published up to November 28th, 2017. Studies were limited to English and 

French.  

 

Study Selection 

We included all published studies that used any form of computer software to analyze CXR in 

place of human readers, for PTB detection purposes. Studies were excluded if they reported 

CAD for diagnostic imaging other than CXR, or if CAD was used for diseases other than PTB. 

Studies reported only in conference abstracts were excluded. Two independent reviewers 

selected studies for inclusion (MH, AQ). Conflicts were reviewed by a third reviewer (FAK). 

 

Data extraction 

Data were extracted using a standardized extraction form (Appendix). Two reviewers 

performed the extraction, with one reviewer (MH) verifying all data forms completed by the 

second reviewer (AQ). Data collected included year of enrollment; funding sources and conflicts 

of interest; software name and version number; country where study was completed; CXR site 

and number on which the software was trained; model of CXR machine, and digitization 

methods; study design and patient selection methods; inclusion and exclusion criteria; 

microbiologic tests collected; scoring of software tools and methods of scoring selection; 

patient characteristics including HIV status, age, and history of TB; and diagnostic accuracy 

measures including sensitivity, specificity, AUC for microbiologic and radiologic references.  
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Descriptive analysis 

We classified studies as either Development or Clinical. Development studies primarily focused 

on reporting methods for creating a CAD program for PTB, and some included an assessment of 

diagnostic accuracy—the latter being the focus of our systematic review. Development studies 

were often published in engineering, computer science, medical imaging journals, or 

proceedings from engineering or medical imaging conferences. The development studies were 

further subdivided based on the type of AI technology used (ML versus DL).  

 

Clinical studies primarily focused on the assessment of the accuracy of an already-developed 

CAD software. We further classified clinical studies based on the context in which the CXR was 

used, using WHO terminology for categorizing usage of x-ray as either for Triage or for 

Screening.(7) In Triage studies, CXRs were used in a healthcare setting—hospital, or clinic—as 

part of the diagnostic pathway of someone with PTB symptoms. In Screening studies, CXRs 

were used for active case finding or prevalence surveys, where populations are screened to 

identify those with active TB often regardless of symptoms. The distinction was made because 

the prevalence of more advanced or extensive disease will be higher in the Triage setting, 

thereby affecting the sensitivity of CXR and hence the accuracy of CAD.  

 

Quality assessment with respect to the evaluation of diagnostic accuracy 

The data sources used for evaluating diagnostic accuracy of CAD were databases consisting of 

CXRs, with each image linked to a reference standard result classifying PTB as present or 

absent. Some of these data sources had been used by more than one Development study. We 

evaluated these data sources for potential risk of bias by applying a modified Quality 

Assessment of Diagnostic Accuracy Studies (QUADAS)-2 approach (18). As our interest was to 

assess the composition of the database itself including how PTB cases were defined, we 

restricted our approach to the domains of patient selection and the reference test. Because 

development studies often did not provide sampling or reference details about the data 

sources, we sought additional information from citations that described the data sources (37-

40).  



 

 

 

36 

 

We applied QUADAS-2 to all the CAD studies, assessing each study across the four domains 

(patient selection, the performance of the index test, performance of the reference test, and 

flow and timing).   In all quality assessments, when the reference standard used for determining 

a CAD program’s diagnostic accuracy was image interpretation by a human reader instead of 

microbiologic testing of sputum, we judged this as a potential source of bias. This is because 

human interpretation of CXR is moderately specific for PTB, has variable sensitivity, is marked 

by limited inter-reader reliability, and the reproducibility is limited (7, 28). 

 

Statistical analysis  

Diagnostic accuracy measures (sensitivity, specificity, AUC) were reported when available. For 

the studies that reported sensitivities and specificities, if two by two tables were not available, 

we back calculated counts based on reported accuracy measures to build forest plots. A meta-

analysis was not undertaken given that different software programs were used, and for most 

studies the raw data necessary to meta-analyze diagnostic accuracy measures were 

unavailable. For studies of the most commonly reported software, CAD4TB, a meta-analysis was 

also not pursued due to the variability of the methods and versions tested. 

 

The following study-level factors were evaluated as potential determinants of the reported 

AUC: type of CAD study (Development vs Clinical); the method of AI software (ML versus DL); 

whether the same CXRs used for evaluating diagnostic accuracy were the same CXRs that had 

been used to train the software; the type of reference standard for PTB (microbiologically 

confirmed vs human interpretation of CXR image); and the degree of patient selection, index 

test, and reference standard bias. While the data were insufficient for a traditional meta-

analysis, to identify associations between these factors and reported AUC, we compared the 

pooled distribution of the reported AUCs between groups defined by these study-level factors 

using Kruskal-Wallis tests. This assessment was done for the AUC but not for Sensitivity or 

Specificity, as the latter two were reported in too few studies to undertake a meaningful 

comparison of distributions.  



 

 

 

37 

 

For all clinical studies and development studies which reported sensitivity, specificity, and true 

positives, forest plots were used to visually assess heterogeneity of diagnostic accuracies. 

 

Results 

Study selection 

We identified 2697 unique citations (Figure 4), of which 2349 studies were excluded at the title 

and abstract phase. Of the remaining 348, 306 were excluded after full-text review. Amongst 

the 42 included articles, 32 were classified as development studies and 10 were classified as 

Clinical (Table 2). The software developers were either authors or funded the research in 7/10 

(70%) of the clinical studies (20, 41-46), and in 100% (32/32) of the Development studies.  

 

Overview of studies 

Within the Development studies, 4/32 (13%) employed DL methods while the remaining 28/32 

(87%) used ML approaches (Table 2) (15, 16, 47-76). An important consideration when 

evaluating the accuracy of a CAD software, is that it should be tested using a set of CXR images 

that are separate from the training set (i.e. avoid testing accuracy with CXRs that were used for 

training, or CXRs that were not used for training but that originate from the same subset/study 

as those with which the program was trained). Otherwise, the evaluation is likely to 

overestimate the diagnostic accuracy, and will also have limited generalizability (17). Within the 

development studies that reported accuracy measures, 3/25 (12%) did not report the database 

used to train and test their software. The majority, 22/25 (88%), used the same databases to 

train and test their software (Table 3). For the majority of development studies demographic 

data were not reported or  

found.  

 

All clinical studies used the CAD4TB software, which is a ML-based program. Within the triage 

use-case studies, 5/7 (71%) used a microbiologic reference standard on all participants (20, 42, 

45, 77, 78). Within the screening studies, 2/3 (67%) used a microbiologic reference (43, 79). In 
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two clinical studies CAD4TB itself was used to select which participants underwent 

microbiologic testing, hence the software’s diagnostic accuracy could not be assessed (41, 79). 

Demographically speaking, the study populations of all the triage studies with microbiologic 

references were quite similar (Table 4). Notably, the estimated HIV and TB prevalence in the 

Triage studies were quite high, ranging from 33% to 68%, and 18% and 33% respectively. The 

screening studies had lower TB prevalence, as expected (Table 4). 

 

Quality assessment development studies  

We first assessed the databases that were used as sources of CXR images and reference 

standards in development studies (Table 5). Risk of selection bias was high in 2/16 (12%) of the 

databases. One dataset did not include PTB cases, and the other only included patients with 

“typical TB” images (38, 70). Selection bias was unclear in 6/16 (38%), and low in 8/16 (50%) 

where consecutive enrollment either prospectively or retrospectively was used. The reference 

standard risk of bias was high in 9/16 (56%) studies as a human reader was used, unclear in 

3/16 (19%), and low in 4/16 (25%) where a microbiologic reference was used. 

 

The quality of the development Studies with respect to the assessment of diagnostic accuracy is 

reported in Table 6. Selection biased was largely determined by which databases were used 

(Table 5). There was a high degree of selection bias in 7/25 (28%) studies (54, 58, 68, 70, 80, 

81), it was unclear in 13/25 (52%) studies, and was low in 6/25 (24%) studies. There was a high 

risk of bias in 100% of the studies in the assessment of the index test, as no CAD programs had 

pre-specified threshold scores and these were set after the analysis. Additionally, 23/25 (92%) 

of the studies were considered to have a high degree of bias and low degree of applicability 

with regards to the reference test utilized due to use of a human reader’s interpretation of 

CXRs. The flow and timing had low bias in 13/25 (52%) studies, in 11/25 (44%) it was unclear, 

and in 1/25 (4%) it was high.  
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Quality assessment of clinical studies 

Table 7 summarizes the QUADAS-2 assessment of the clinical studies. All triage studies used a 

consecutive enrollment strategy, with 3/7 (43%) being prospective, 4/7 (57%) retrospective 

(Table 8). There were methodological concerns that likely resulted in a high degree of selection 

bias in 4/10 (40%) of the studies (20, 44, 46, 78). This was secondary to case-control design (44), 

and inappropriate exclusion of patients in the analysis (20, 46, 78). CAD4TB cut off score was 

pre-specified in only 4/10 (40%) of the studies (41, 42, 45, 82). The remainder of the studies 

developed threshold scores post analysis using the receiver operator curves (ROC), therefore 

were determined to have a high risk of bias (20, 43, 44, 46, 78, 83). The majority of studies, 

7/10 (70%) had low bias with regards to the use and performance of the reference standard 

(20, 42, 43, 45, 46, 83). In two studies, the reference standard was pre-selected to be done by 

CAD4TB, and therefore were determined to have a high degree of bias (41, 82). In another 

study, the reference standard was human reading of the CXR which was deemed to have a high 

risk of bias (44). The flow and timing had a high risk of bias in 2/10 (20%) of the studies due to 

CAD4TB selection of the reference standard,(41, 82) was unclear in 3/10 (30%), and low in 5/10 

(50%).   

 

Diagnostic accuracy reported in Development Studies 

We found 25/32 (78%) of the development studies reported measures of accuracy for index 

tests.  Of the 25 references that did include accuracy assessments, the AUC ranged from 0.86 to 

0.99, sensitivity from 0.56 to 0.97, and specificity from 0.36 to 0.95 (Table 3). The forest plots 

graphically display the diagnostic heterogeneity of the sensitivity and specificity of the 

development studies that published sensitivity, specificity, and the number of true positive TB 

cases (Figure 5).  

 

Diagnostic accuracy reported in clinical Studies 

The forest plots graphically display the diagnostic heterogeneity of the sensitivity and specificity 

of the triage CAD4TB studies that used a microbiologic reference (Figure 5). In the triage 

studies, the sensitivity ranged from 0.85 to 1.00, and specificity ranged from 0.23 to 0.69. There 
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was only one screening study that used microbiologic reference and it had a sensitivity 0.53 and 

specificity of 0.98 (43). The other screening study (44) compared CAD4TB to a radiologic 

reference interpreted by a human reader and demonstrated a sensitivity of 0.59 and specificity 

of 0.78. Notably, the sensitivity of CAD4TB was higher when using NAAT as the microbiologic 

reference standard compared to culture. Given the methodological heterogeneity, the lack of a 

standardized cut off scores, and the variability of software versions used, a meta-analysis was 

not completed.  

 

Assessment of study-level factors associated with reported AUC 

Figure 6 shows the distribution of reported AUCs with studies stratified by study level 

characteristics. Reported AUCs were higher in:  development studies (median [IQR] AUC: 0.87 

[0.81-0.90]) versus clinical studies (0.68 [0.65-0.75]; p-value 0.004); and with programs created 

using DL (0.93 [0.90-0.97]) versus ML (0.81 [0.69-0.88]; p=0.001). While not statistically 

significant, we found that the mean AUC of studies using  human readers as the reference 

standard were higher than those studies using a microbiologic reference standard of 0.87 [0.81-

0.90] versus 0.75 [0.65-0.83] respectively (p=value of 0.067). There was no significant difference 

in AUCs of studies that used the same CXRs as the source for software development and 

evaluation of diagnostic accuracy, or of the AUCs by the degree of patient selection, index test, 

or reference standard bias (Figure 6).  

 

Discussion 

In this systematic review, we sought to determine the diagnostic accuracy of CAD software 

programs for detecting PTB on CXRs, but due to study heterogeneity, we were unable to meta-

analyze the data. We identified a number of methodological limitations in the existing evidence 

base that limits the use of this technology in clinical settings. Moreover, we identified a number 

of study-level factors associated with the reported accuracy, which should be taken into 

consideration when evaluating future CAD studies. 
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The majority of the CAD evidence base for PTB detection consists of development studies. 

While many reported some measure of diagnostic accuracy, this was done without reporting 

the potential risk of bias. Applying a widely accepted standardized tool—QUADAS-2— for 

evaluating the quality of diagnostic studies we found that the potential risk of bias was 

common in these databases, or could not be assessed. We suggest future development studies 

apply the QUADAS-2 tool to assess for bias of the databases (Box 1).  

 

The clinical studies evaluated the only currently commercially available software, CAD4TB. As 

noted above,  meta-analysis was not completed due to the methodological heterogeneity, the 

lack of standardized cut off scores, and the variability of software versions used. While the 

software achieved high sensitivities (0.85-1.0), there was a large degree of variability in the 

reported specificities (0.23-0.69). Furthermore, the analysis in some studies was performed on 

CXRs from datasets or sites that may have also contributed to training the software, likely 

resulting in an overestimation of the predictive power.  Lastly, because the populations studied 

had very high HIV and TB prevalence, the results have limited  generalizability to other 

populations.  

 

We identified a number of study-level factors that were associated with the reported AUC. 

These included the type of technology used to classify images, and whether it was a 

Development or Clinical study. The accuracy of DL vs ML studies was higher (mean AUC DL vs 

ML p-value 0.001), suggesting superior diagnostic accuracy of DL technology. The mean AUC of 

development studies was higher than clinical studies (p-value 0.002). This likely because of the 

greater risk of bias due to the lack of pre-specified cut off scores, the use of the same databases 

for training and testing, and the use of a human reader as the reference standard. We found a 

signal that studies which used a human reference standard compared to a microbiologic had a 

higher mean AUC (p-value 0.067). Human interpretation of CXR should not be used as the sole 

diagnostic test for PTB due to its poor accuracy, and therefore studies which used a human 

reader reference standard likely systematically overestimated the diagnostic utility of their 

software. We did not find a significant difference in AUCs from studies that used the same CXRs 
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for training and testing. However, we can extrapolate from other studies that using the 

same databases for training and testing will results in the systematic overestimations of 

reported predative value (84).  

 

We suggest that future studies ensure that software being tested in a valid fashion that will 

allow for clinical applicability. This includes a description of how CXRs were selected for training 

and testing. Furthermore, we suggest that different CXRs from separate databases be used for 

training and testing. Studies should also clearly describe how a true positive TB case is defined, 

and ideally this should be done using a microbiologic reference standard. Lastly, if the software 

has a continuous output, a cut-off or threshold score to define a positive or negative case 

should be reported along with how this was determined (Box 1). The US Food and Drug 

Administration (FDA) requires all of these standards be met and additionally necessitates clear 

instructions for clinical use in order to become approved according to their guidelines of CAD 

applied to radiology devices (17).  

 

One potential weakness of this review is that we only included studies from the published 

literature, which could increase the risk that publication bias affected our reported results. 

Additionally, we restricted our search to English and French studies only. Furthermore, we were 

unable to complete a meta-analysis of the clinical studies due to the potential bias and 

heterogeneity in the references. Therefore, we are unable to comment on the pooled accuracy 

of CAD.  

 

This systematic review highlights the need for additional research of CAD CXR reading for PTB 

identification. To strengthen the evidence-base using existing data, an individual patient data 

(IPD) meta-analysis, conducted independently of CAD4TB’s developers, could be used to assess 

the diagnostic accuracy of CAD4TB. To our knowledge, this is the first study to analyze the 

quality of current CXR databases that have been used to train and test multiple CAD software 

tools. While CAD4TB achieved high sensitivities, with variable specificities, methodological 

limitations within the existing literature limits our ability to comment on the clinical utility. We 
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conclude that AI based CAD programs are promising, but more clinical studies are needed that 

minimize sources of potential bias to ensure validity of the findings outside of the study setting. 
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Figure 4. Study flow diagram  
Computer aided detection (CAD) 
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(n = 2697) 

Records excluded 
(n = 2349) 

 

Full-text articles assessed 
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(n = 348) 

Records identified through database searching 
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Medline (OVID) (n = 1412)   EMBASE (OVID) (n = 1321) 
PubMed (n= 1103)   Scopus (n = 141) 

 
 

Full-text articles excluded 
(n = 306) 

Did not evaluate CAD (n = 242) 
Technical study only (n = 28) 

CAD used for non PTB diagnosis (n = 22) 
Review article (n = 14) 

 
 

Studies included in descriptive analysis  
(n =  42) 

Clinical studies (n= 10) 
Development studies (n=32) 

Records after duplicates 
removed 
(n = 2697) 
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Author and year  Country where 
CXR completed 

Databases used  Computer 
software 

Reference  
standard 

Accuracy 
measures  

Development Studies 

Deep learning  

Lakhani et al, 2017 USA, China MC, Shenzhen, TJH, 
Belarus 

AlexNet and 
GoogLeNet 

Human reader AUC, Sn, 
Sp 

Lopes et al, 2017 USA, China MC, Shenzhen Not named Human reader AUC 

Santosh et al, 2016 USA, China MC, Shenzhen Not named Human reader AUC 

Hwang et al, 2016 South Korea, 
USA, China 

KIT, MC, Shenzhen Alexnet Human reader AUC 

Machine learning 

Fatima et al, 2017 USA MC Not named Human reader Sn, Sp 

Udayakumar et al. 
2017 

USA, China  MC, Shenzhen SVM and CBC 
techniques 

Human reader AUC 

Ding et al, 2017 China, India, 
Kenya 

Kenya dataset, New Delhi 
dataset, Shenzhen 

Not named Human reader NR 

Hogeweg, et al, 2017 Japan, Sub-
Saharan Africa 

JSRT, Sub-Saharan Africa Not named Human reader AUC 

Maduskar et al, 2016 Zambia Large Zambian dataset Not named Human reader AUC 

Poornimadevi et al, 
2016 

Japan, USA JSRT, MC Not named Human reader Sn, Sp 

Karargyris et al, 2016 China, Japan JSRT, Shenzhen Not named Human reader AUC 

Melendez et al, 2016 Zambia Zambian dataset  Not named Human reader AUC 

Melendez et al, 2015 Zambia, 
Tanzania, Gambia 

Zambian dataset, 
Tanzania dataset, 
Gambian dataset 

Not named Human reader NR 

Hogeweg et al, 2015 UK, South Africa F&T, TB-NEAT Not named Human reader, 
Liquid culture, 
composite 
reference standard 
** 

AUC, Sn, 
Sp 

Giacomini et al, 2015 Brazil Prospective, study-
specific†   

Not named Liquid culture+ NR 

Jaeger et al, 2015 China Shenzhen Not named Human reader NR 

Requena-Mendez et 
al, 2015 

Peru CXR from DOT study in 
Peru 

Not named Human reader NR 

Jaeger et al, 2014 China, USA, 
Japan 

JSRT, MC, Shenzhen Not named Human reader AUC, Sn, 
Sp 

Melendez et al, 2014 Zambia, South 
Africa 

Zambian dataset TB-Xpredict Human reader AUC 

Chauhan et al, 2014 India New Delhi dataset Not named Human reader NR 

Seixas et al, 2013 Brazil Clinical data set from 
another study* 

Artificial 
Neural 
Network  

Composite 
reference** 

NR 

Sundaram et al, 
2013 

Not specified Not specified Not named Human reader NR 

Jaeger et al, 2012 USA, Japan JSRT, MC Not named Human reader AUC 

Xu et al, 2011 Japan, Canada JSRT, Calgary dataset Andrews' 
curve  

Human reader TP, FP, 
FPR 

Noor et al, 2011 Malaysia Retrospective non-clinical 
study specific radiological 
dataset 

Not named Human reader Sn, Sp 

Shen et al, 2010 Canada JSRT, Calgary dataset Not named Human reader TP, FPR 
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Mouton et al, 2010 South Africa Clinical dataset from 
previous study not 
specific to PTB 

Not named Human reader AUC 

Hogeweg et al, 2010 Sub-Saharan 
Africa 

Sub-Saharan Africa CAD with rib 
suppression 

Human reader AUC 

Hogeweg et al, 2010 Not specified Not specified Not named Human reader NR 

Lieberman et al, 
2009 

China Prospective, study-
specific†   

Not named Human reader NR 

Arzhaeva et al, 2009 Netherlands F&T Not named Human reader AUC 

Noor et al, 2005 China, USA MC, Shenzhen Andrews' 
curve 

Composite 
reference** 

NR 

Clinical studies 

Machine learning 

Rahman et al, 2017  Bangladesh Prospective, study-
specific† 

CAD4TB  
(v 3.07) 

NAAT AUC, Sn, 
Sp 

Melendez et al, 2017 Zambia Zambia National TB 
Prevalence Survey 

CAD4TB  
(v 5.0) 

Human reader 
CXR-, Liquid 
culture/NAAT for 
CXR+ 

AUC, Sn, 
Sp 

Muyoyeta et al, 
2017 

Zambia Prospective, study-
specific† 

CAD4TB  
(v 1.08) 

NAAT for CXR+, 
AFB Smear for 
CXR- 

NR 

Melendez et al, 2016 South Africa TB-NEAT collaborative 
study 

CAD4TB  
(v 3.07) 

Liquid culture AUC, Sn, 
Sp 

Philipsen et al, 2015 South Africa TB-NEAT collaborative 
study 

CAD4TB  
(v 3.07) 

NAAT, liquid 
culture 

AUC, Sn, 
Sp 

Steiner et al, 2015 Tanzania TB REACH project CAD4TB  
(v 3.07) 

Human reader AUC, Sn, 
Sp 

Muyoyeta et al, 
2015 

Zambia Prospective, study-
specific† 

CAD4TB  
(v 1.08) 

NAAT, AFB Smear 
for CXR-  

AUC, Sn, 
Sp 

Breuninger et al, 
2014 

Tanzania TB Cohort and TB CHILD 
study 

CAD4TB  
(v 3.07) 

Liquid culture, AFB 
smear 

AUC, Sn, 
Sp 

Muyoyeta et al, 
2014 

Zambia Prospective, study-
specific† 

CAD4TB  
(v 1.08) 

NAAT  AUC, Sn, 
Sp 

Maduskar et al, 2013 Zambia Prospective, study-
specific† 

CAD4TB  
(v 1.08) 

Liquid culture, AFB 
smear 

AUC, Sn, 
Sp 

Table 2. Methods of studies included in the descriptive analysis  
CXR, chest x-ray; USA, United States of America; UK, United Kingdom; AI, artificial intelligence; MC, Montgomery County; TJH, Thomas Jefferson 
Hospital dataset; JSRT, Japanese Society of Radiology; KIT, Korean Institute of Tuberculosis; F&T, Find and Treat; SVM, Support vector machines; 
CBC, clustering based classification; CAD, computer aided detection; NAAT, nucleic acid amplification test; AFB, acid fast bacilli; ‘+’, positive; ‘-‘, 
negative; AUC, area under the receiver operating curve; Sn, sensitivity; Sp, specificity; NR, not reported; TP, true positives; FP, false positives; 
FPR, false positive rate 
* Trajman et al. Pleural fuid ADA, IgA-ELISA and NAAT sensitivities for the diagnosis of pleural tuberculosis Study 
**Composite reference: positive culture/NAAT and/or initiation of TB treatment 
†In these studies the study database was developed prospectively for the specific study 
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Author and 
year   

Database(s
) used for 
training of 
CAD 

Number 
of CXRs 
used for 
training 

Database(s) 
used for 
testing CAD 

Number 
of CXRs 
used for 
testing 

Number 
of TB 
positive 
CXR 

AUC (95% 
CI) 

Thres-
hold 
score  

Sn 
(95% 
CI) 

Sp 
(95% 
CI) 

Deep 
learning  

                  

Lakhani et al, 
2017 

MC, 
Shenzhen, 
TJH, 
Belarus 

857 MC, 
Shenzhen, TJ, 
Belarus 

150 75 0.99 (0.96-
1.00) 

NR 0.97  
(0.90
-1.0) 

0.95  
(0.87-
0.98) 

Lopes et al, 
2017 

NR NR Shenzhen 
MC,CI,NR 

1031 550 0.834 
(Shenzhen)  
0.926  
(MC)*  

NR NR NR 

Santosh et 
al, 2016 

NR NR Shenzhen 
MC,CI,NR 

878 400 0.93 
(Shenzhen) 
& 0.88 
(MC)*  

NR NR NR 

Hwang et al, 
2016 

KIT 9221 KIT, MC, 
Shenzhen 

2427 NR 0.96*+ NR NR NR 

Machine 
learning  

                  

Fatima et al, 
2017 

MC 138 MC 138 58 NR NR 0.83* 0.78* 

Udayakumar 
et al. 

MC, 
Shenzhen 

NR MC, Shenzhen NR NR 0.87* NR 0.81* 0.74* 

Hogeweg, et 
al, 2017 

JSRT,  Sub-
Saharan 
Africa 

NR Sub-Saharan 
Africa 

348 174 0.891* NR NR NR 

Ding et al, 
2017 

NR NR Kenya 
dataset, New 
Delhi dataset, 
Shenzhen 

NR NR 0.949 
(China),  
0.982 
(India),  
0.76 
(Kenya)* 

NR NR NR 

Maduskar et 
al, 2016 

Large 
Zambian 
dataset 

629 Large 
Zambian 
dataset 

638 NR 0.9* NR 0.83* 0.70* 

Poornimade
vi et al, 2016 

JSRT 247 JSRT 247 NA NR NR 0.56* 0.36* 

Karargyris et 
al, 2016 

Shenzhen 43 JSRT, 
Shenzhen 

NR NR 0.93*  NR NR NR 

Melendez et 
al, 2016 

Zambian 
dataset  

461 Zambian 
dataset  

456 248 0.87*  0.45 NR NR 

Melendez et 
al, 2015 

Zambian 
dataset, 
Tanzania 
dataset, 
Gambian 
dataset 

Zambia 
(461) 
Tanzani
a (435)  
Gambia 
(427) 

Zambian 
dataset, 
Tanzania 
dataset, 
Gambian 
dataset 

Zambia 
(456) 
Tanzani
a (434) 
Gambia 
(423) 

Zambia 
(248) 
Tanzani
a (226) 
Gambia 
(197) 

0.86 
Zambia, 
0.88 
Tanzania, 
0.91 
Gambia* 

NR NR NR 

Hogeweg et 
al, 2015 

F&T, TB-
Neat 

F&T 
(200), 
TB-Neat 
(200) 

F&T, TB-Neat F&T 
(200), 
TB-Neat 
(200) 

F&T 
(87), TB-
Neat 
(66) 

F&T micro 
0.87 (0.81-
0.92), RD 
0.85 (0.79-
0.91), TB-
Neat RD 
0.90 (0.85-
0.94) (0.69-

NR NR NR 
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0.83) micro 
0.74*# 

Jaeger et al, 
2014 

MC, 
Shenzhen, 
JSRT 

1000 MC, Shenzhen 753 333 0.87* NR 0.78 
(0.70
-
0.85) 

0.81 
(0.71-
0.89) 

Melendez et 
al, 2014 

Zambian 
dataset 

461 Zambian 
dataset 

456 NR 0.88* NR NR NR 

Chauhan et 
al, 2014 

New Delhi 
dataset 

204 New Delhi 
dataset 

102 153 Gist 0.96 
(0.86-0.99) 
DA, Gist 
0.89 (0.77-
0.96) DB## 

NR 0.96 
DA, 
0.88 
DB* 

0. 92 
DA, 
0.84 
DB*& 

Sundaram et 
al, 2013 

NR 95 NR 95 52 NR NR 0.75* 0.90* 

Jaeger et al, 
2012 

JSRT 247 MC 138 NR 0.83* NR NR NR 

Xu et al, 
2011 

JSRT, 
Calgary 
dataset 

60 JSRT,  Calgary 
dataset 

60 NR NR NR 0.68* 0.68* 

Noor et al, 
2011 

Retrospecti
ve non-
clinical 
study 
specific 
radiological 
dataset 

90 Retrospective 
non-clinical 
study specific 
radiological 
dataset 

213 208 NR NR 0.88* 0.84* 

Shen et al, 
2010 

JSRT, 
Calgary 
dataset 

18 JSRT, Calgary 
dataset 

131 19 NR NR 0.82* NR 

Mouton et 
al, 2010 

Clinical 
dataset 
from 
previous 
study not 
specific to 
PTB 

119 Clinical 
dataset from 
previous 
study not 
specific to PTB 

119 NR NR 0.78* NR NR 

Hogeweg, et 
al, 2017 

CRASS 
database 

348 CRASS 
database, 
JSRT 

498 NR 0.75* NR NR NR 

Arzhaeva et 
al, 2009 

F&T 217 F&T 217*++  37 NR 0.83 TB 
suspect 
TB, 0.74 
micro 
TB*### 

NR NR 

Table 3. Accuracy measures reported by development studies 
CAD, Computer aided detection; MC, Montgomery County; TJH, Thomas Jefferson Hospital dataset; NR, not reported; KIT, Korean Institute of 
Tuberculosis; JSRT, Japanese Society of Radiology; F&T, Find and Treat; AUC, area under the receiver operating curve; 95% CI, 95 percent 
confidence interval; NR, not reported; DA, dataset A; DB, dataset B; Sn, sensitivity; Sp, specificity;; TP, true positives; FP, false positives; FPR, 
false positive rate;  
* No 95% CI reported   +Average AUC from KIT, MC, Shenzhen 
++ 128 of the normal images were the same CXRS used in the training 
# An external and radiological reference standard were used. The external reference for tuberculosis was set by an independent test not 
associated with the CXR; the result of a sputum culture testing for the TB-NEAT database and a combination of sputum culture testing and 
clinical diagnosis for the Find & Treat database
## Two CXR digital image datasets, dataset A and B, were obtained from two different X-ray machines available at the National Institute of 
Tuberculosis and Respiratory Diseases, New Delh 
### The database was split between TB suspect cases were re-read by a third radiologist, and if classified differently were excluded. The database 
contained 256 normal radiographs, 178 TB suspect radiographs, and 37 microbiologically diagnosed TB CXRs. 
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Reference All Gender Age Previous TB HIV Estimated 
TB 
prevalence 
(%)  

    Male 
(%) 

Female 
(%) 

< 15 yrs 
(%) 

≥ 15 yrs 
(%) 

average 
age 

Yes 
(%) 

No 
(%) 

+ve 
(%) 

-ve 
(%) 

  

CAD4TB Triage 

Rahman et 
al, 2017  

17066 11368 
(67) 

5698 
(33) 

0 (0) 17066 
(100) 

NR NR NR NR NR 27.7% 

Melendez 
et al, 2016 

392 240 
(61) 

152 (39) 0 (0) 392 
(100) 

40 NR NR 130 
(33) 

262 
(67) 

23.3% 

Breuninger 
et al, 2014 

861 433 
(50) 

428 (50) 0 (0) 861 
(100) 

42 144 
(17) 

717 
(83) 

379 
(44) 

482 
(46) 

18.6% 

Muyoyeta 
et al, 2014 

350 215     
(61)    

135 (38) NR NR 36.5 78 
(22) 

272 
(78) 

190 
(54) 

166 
(57) 

33.3% 

Maduskar 
et al, 2013 

161 119 
(74) 

42 (26) 0 (0) 161 
(100) 

35.8 NR NR 110 
(68) 

51 
(32) 

18.3% 

CAD4TB Screening 

Melendez 
et al, 2017 

23838 10440 
(44) 

13398 
(56) 

0 (0) 23838 36 NR NR NR NR 106 (2.9) 

Muyoyeta 
et al, 2017 

919 370 
(40) 

549 (60) NR NR 15 57 
(6) 

862 
(94) 

138 
(15) 

781 
(85) 

19 (2) 

Table 4. Demographics of CAD4TB studies with microbiologic reference standard 
CAD, computer aided diagnosis; yrs, years; NR, not reported; TB, tuberculosis; HIV, human immunodeficiency virus 
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Table 5. Quality assessment of Datasets used to test and train CAD software of 
Development Studies: risk of bias and applicability concerns 
MC, Montgomery County; JSRT, Japanese Society of Radiology; F&T, Find and Treat; TJH, Thomas Jefferson Hospital dataset; KIT, Korean 
Institute of Tuberculosis; U, unclear; H, high; NA, not applicable; L, low 
* JSRT data set does not include PTB cases, but rather comprises images with single pulmonary nodules, confirmed by computed tomography 
and histology as either benign or pathologic 
** Calgary dataset included preselected “typical PTB” images 

 

CXR image 
dataset used for 
evaluating CAD Risk of Bias 

  
Patient 
Selection Reference Test 

MC U H 
Shenzhen  U H 
JSRT* H H 
Sub-Saharan 
Africa  

L H 

Kenyan dataset U U 
New Delhi 
dataset 

U U 

Large Zambian 
dataset 

L H 

Zambian dataset L H 
Gambian dataset  L H 
Tanzania dataset L H 
F&T L L 
TB-NEAT L L 
TJH U L 
Belarus U L 
Calgary dataset** H H 
KIT dataset U U 
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Table 6. Quality assessment (QUADAS 2)       Table 7. Quality assessment  
graph of development Studies                          (QUADAS 2) graph of clinical Studies 
 
 
 
 
 
 
 



 

 

 

52 

 
 
 
 
 
 
 
 

Reference Eligible, 
N 

Enrolled, N 
(% of 
eligible) 

Reported for 
assessment of 
CAD4TB, N (% of 
enrolled) 

Smear 
positive, N  
(% of 
reported) 

Culture or 
NAAT 
positive N  
(% of 
reported) 

CAD4TB TRIAGE 

Rahman et al, 2017  18036 17134 (95%) 17066 (99%)  NR 2623 people 
(15%) 

Melendez et al, 2016 NR 392 392 (100%) NR 73 (19%) 

Philipsen et al, 2015 758 419 (55%) 388 (93%) NR 133 (34%) 

Muyoyeta et al, 2015 10618 9509 (90%) 9482 (99%) 8 (<1%) *  2090 (22%) *  

Breuninger et al, 
2014 

894 861 (96%) 566 (66%) 146 (17%)  194 (23%) 

Muyoyeta et al, 2014 458 391 (85%) 350 (90%) 52 (13%) 96 (35%) 

Maduskar et al, 2013 NR 161 161 (100%) 69 (43%) 97 (60%) 

CAD4TB SCREENING  

Melendez et al, 2017 46099 25805 (56%) 23838 (92%) NR 106 * * 

Muyoyeta et al, 2017 919 865 (94%) 865 (100%) 0 * 19 *  

Steiner et al, 2015 516 511 (99%) 511 (100%) NR NR 

Table 8. Selection, enrolment of CAD4TB studies with microbiologic reference 
standard 
NR, not reported; CAD, computer aided diagnosis; NAAT, nucleic acid amplification test 
* Patients with a normal CXR by CAD received an AFB smear, while patients with an abnormal CXR as per CAD received NAAT 
** Patients with a abnormal CXR as per radiologist reading, or presumptive TB based on TB symptoms received culture/NAAT 
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Figure 5. Forest plots of accuracy measures of development and CAD4TB studies 
TP, true positive; FP, false positive; FN, false negative; TN, true negative; NAAT, nucleic acid amplification test; CI, confidence interval 
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Figure 6. Boxplots of the AUC of studies stratified by software design, CXR usage, 
reference standard, and degree of patient selection, index test, and reference 
standard bias 
AUC, area under the cure; Vs, versus; CXR, chest x-ray 
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Recommendations for studies assessing CAD accuracy   

• Describe the setting in which CXR were completed: triage vs screening scenario 

• Apply QUADAS-2 to assess the quality of the databases used 

• Describe how CXRs were selected for training and testing 

• Use different CXRs from separate databases for training and testing 

• Clearly describe how a true positive TB case are defined 

• Use a microbiologic reference standard 

• Report and preferably pre-specify a cut-off or threshold score to define a positive or 
negative if the software has a continuous output  

• Report how the cut-off or threshold score was determined if reported 

• State whether pre-training/verification of CAD with local CXRs is required prior to use 
in each setting 

• Define in which setting the CAD tool should be used: triage vs screening scenario 

Box 1. Recommendations for CAD accuracy study design elements 
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CHAPTER 5: Additional details and limitations of existing literature 

 

This chapter provides an additional detailed review on the development study databases and 

their limitations. It also describes CAD4TB in greater detail, the quality of the clinical studies, 

and highlights the variability of human reading of CXRs for PTB identification. These details 

could not be succinctly incorporated into a publishable manuscript and are therefore reported 

here separately.  

CAD Databases  

As stated previously, to assess the validity of CAD software studies it is important to assess the 

quality of the databases used to train and test the CAD software and to determine if they were 

representative of either the triage or screening use-case. The two CXR databases most 

frequently used in the development studies were the MC and the Shenzhen CXR. The CXR from 

the former were collected as part of the Montgomery County's Tuberculosis screening program 

(Maryland, USA) and contains 80 normal cases and 58 abnormal cases with TB manifestations 

(37). The enrolment strategy is not well described and the use-case (i.e. triage or screening) is 

unclear. The classification of PTB was made by radiologist reading defined by an abnormality 

seen in lung consistent with PTB, and were reported as either normal or abnormal (37). The 

Shenzhen database consists of CXRs from the Shenzhen No.3 People’s Hospital (Shenzhen, 

China), that were taken as part of the daily hospital routine care in September 2012, with 

consecutive enrolment (37). This dataset set contains 662 frontal CXRS for adult and pediatric 

patients. Of these, 326 are normal cases and 336 are abnormal with manifestations of PTB (37). 

These CXRs are also defined as either normal or abnormal, by a human reader (37). However, it 

was unclear if the patients included had symptoms of TB or had CXRs completed for other 

purposes.  
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The other commonly used publicly available data set, the JSRT, was developed from 13 medical 

centers in Japan and one from the United States (38, 80). This data set does not include PTB 

cases, but rather is comprised of images with single pulmonary nodules, confirmed by 

computed tomography and histology. There are 247 CXRs, 154 images with, and 93 images 

without a pulmonary nodule. Of the 154 CXRs with a pulmonary nodule, 100 were classified as 

malignant and the remaining 54 classified as benign (38, 80).  Another similarly constructed 

database is the Calgary dataset (68). These datasets have little clinical validity for PTB 

identification.  

 

The database from two sites in Sub-Saharan Africa collected 945 consecutive digital CXRs for 

PTB detection purposes (triage use-case) (45, 46) (60, 85). The reference standard used was 

radiological, with 514 abnormal and 431 normal images. The chest radiograph reading and 

recording system (CRRS ) was used to classify the images. The datasets from Lusaka, Zambia  

also used CRRS guided human reading as the reference standard and has 917 CXRs (60, 85). The 

large Zambian dataset, contains 1600 CXRs from consecutively enrolled patients enrolled 

patients reporting TB symptoms, i.e. representative of the triage scenario (85). The large 

Zambian data set used a radiologic reference standard. The smaller Zambian data set has 645 

CXRS (60), form consecutively enrolled patients enrolled patients also from in the triage use- 

case setting. The Tanzania and Gambia datasets are other similar clinical databases, with less 

information available, but the images in the Gambian dataset come from a TB prevalence 

survey (between December 2011 and January 2013), and therefore represent a screening 

population (61). The Korean Institute of Tuberculosis (KIT)(86), New Delhi, India dataset (66), 

and Kenya (87) are not well described.  

 

Four other clinical datasets that were used also had microbiologic reference standards available 

in addition to radiologic data. These include the Find & Treat dataset, and TB-NEAT database, 

The Belarus Tuberculosis portal dataset, and the Thomas Jefferson Hospital dataset (TJH)  (15, 

62, 88).  The Find & Treat database is comprised of a screening cohort of high-risk homeless 

participants, prisoners, and drug users from the United Kingdom. TB cases were based on a 
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clinical decision to treat TB, and in most cases, this was based on a positive sputum culture (62). 

The TB-NEAT study evaluated patients from Cape-Town presenting with presumptive TB. For all 

cases sputum culture results were available (62). The Belarus Tuberculosis portal dataset, and 

the Thomas Jefferson Hospital dataset (TJH) both had microbiologically confirmed PTB cases, 

but it was unclear from the papers how the patients in both data sets were included (e.g. 

consecutively vs case control), and the use-case (triage vs screening) was not specified (15). 

CAD4TB Usage 

Table 9 summarizes the models of x-ray machines that took the CXRs in each study and the 

thresholds above which the CXRs were determined to be positive.  In the triage use-case the 

threshold score was pre-specified in 3/6 (50%) of the studies. Of these, one used a pilot study 

where CXRs from their site were analyzed by CAD4TB to generate a ROC curve which was used 

to identify a threshold score that optimized sensitivity and specificity which was then 

prospectively studied. In the screening use-case a pre-specified threshold score was used in 

only 1/3 (33%) of the studies. 

Selection and Enrollment 

All triage studies used a consecutive enrollment strategy, with 3/7 (43%) being prospective, 4/7 

(57%) retrospective. Breuninger et al (20) completed the analysis on only 66% of cases enrolled. 

They excluded those lost to follow up (n=270), those with extra-pulmonary TB (n=5), and those 

diagnosed with symptoms alone with negative cultures and smears (n=134). The remainder of 

the studies completed their analysis on greater than 90% of those enrolled.  

In the screening studies, Melendez et al (43) used data from the Zambia National Tuberculosis 

Prevalence Survey, which employed a random cluster survey methodology (Table 8). Melendez 

et al included patients from the Find &Treat study and enrolled 99% of eligible participants. 

Melendez et al (43) included only those participants from the original TB prevalence survey 

with complete data, including CXR, clinical, and CAD4TB results, and therefore only 56% of 

eligible patients were enrolled. 92% of enrolled participants were included in the final analysis 
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(43). This likely resulted in non-differential selection bias. Muyoyeta et al (82) used data where 

participants were prospectively consecutively enrolled and Steiner et al (44) conducted a case-

control retrospective study (see Chapter 4 Table 8).  Demographically speaking, the study 

populations of all the triage and screening studies with microbiologic references were quite 

similar in terms of age, HIV prevalence, and TB prevalence (see Chapter 4 Table 4).  

 

CXR reading 

 

As stated previously stated, current WHO guidelines emphasize that CXR alone should not be 

used for TB diagnosis (7). This is in part due to poor access to expert interpretation, and even 

when expert interpretation is available there still remains significant interobserver variation (7). 

This is relevant in CAD studies as many use the specificity or sensitivity of human readers to 

determine a threshold score for the software. This was true for 5/9 of the CAD4TB studies. 

Therefore, we examined the type of human readers used in these studies and the reported 

sensitivities and specificities of the human readers (Table 10).  

 

In the triage use-case 4/6 (67 %) of the studies used human readers, and of these all had at 

least one expert reader (chest physician, or radiologist). Most only reported expert sensitivity 

and specificity. However, one study reported accuracies for both non-expert and expert readers 

and exemplifies the large variability that exists within human interpretation (20). Using liquid 

culture and/or AFB smear as the reference standard the sensitivity of the non-expert readers 

was 0.97, while the expert was 0.84, and the specificity of the non-experts was 0.18 while the 

expert 0.72.  Additionally, classification (continuous scores versus categories of abnormalities) 

and educational qualifications varied across studies.  

 

Within the screening studies 2/3 (67%) used human readers, and of these all had expert readers 

(radiologists).  One study also reported non-expert and expert accuracies (43). A large degree of 

variation was found: the sensitivity of non-experts was 0.70 while experts had 0.53, and the 

specificity of non-experts was 0.93 while experts had 1.0 (43). The reference standard used for 
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these calculations was liquid culture. However, only participants with abnormal (not necessarily 

suggestive of TB) underwent a culture.  
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Chapter 5: Figures and Tables 

Reference Model of X-ray 
machine 

CAD threshold 
score pre-
specified 

How was CAD threshold score 
chosen 

CAD 
threshold 
score used 

CAD4TB TRIAGE  

Rahman et al, 
2017 

Delft EZ DR X-
ray system 

No ROC curve was used to identify 
threshold score that achieved 
same specificity as field officer 

> 62 

Melendez et 
al, 2016 

Odelca-DR, 
Delft Imaging 
Systems 

Yes Using previous collected CXR 
data of population to generate 
ROC curve 

> 60 

Muyoyeta et 
al, 2015 

Odelca-DR, 
Delft Imaging 
Systems 

Yes Using previous collected CXR 
data of population to generate 
ROC curve 

> 60 

Breuninger et 
al, 2014 

Philips Cosmos 
BS 
radiography 
system 

No ROC curve was used to identify 
threshold score that achieved 
comparable specificity as field 
officer 

> 55 

Muyoyeta et 
al, 2014 

Odelca-DR, 
Delft Imaging 
Systems 

Yes Using previous collected CXR 
data of population to generate 
ROC curve 

> 60 

Maduskar et 
al, 2013 

Odelca-DR, 
Delft Imaging 
Systems 

No ROC was used to identify a 
threshold score that achieved 
comparable sensitivity and 
specificity to clinical officer 
score of > 50 (abnormal CXR 
consistent with TB) 

> 50 

CAD4TB SCREENING  

Melendez et 
al, 2017 

Easy DR X-ray 
system; Delft 
Imaging 
Systems 

No ROC curve was used to identify 
threshold score that achieved 
same specificity as field officer 

> 62 

Muyoyeta et 
al, 2017 

NR Yes Using previous collected CXR 
data of population to generate 
ROC curve 

> 60 

Steiner et al, 
2015 

Odelca-DR, 
Delft Imaging 
Systems 

No ROC curve was used to identify 
threshold score that achieved 
same specificity as field officer 

> 70 

Table 9. Development and Use of CAD4TB threshold score 
CAD, computer aided diagnosis; ROC, receiver operator curve; CXR, chest x-ray; TB, tuberculosis 
* Patients with a normal CXR by CAD received an AFB smear, while patients with an abnormal CXR as per CAD received NAAT 
** Patients with a abnormal CXR as per radiologist reading, or presumptive TB based on TB symptoms received culture/NAAT 
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Reference # and 
type of 
readers  

Expert 
reader 

Non expert 
readers 

Reading x-rays Ref-
erence 
standard 

Non-
exper
t Sn  
(95% 
CI) 

Non-
exper
t Sp  
(95% 
CI) 

Exper
t Sn 
(95% 
CI) 

Exper
t Sp 
(95% 
CI) 

  
 

Qual-
ifications (# 
yrs)  

Qual-
ifications 

Mea
n # of 
years  

Blinde
d to 
micro 

Blinded 
to 
CAD4T
B  

          

Triage (passive case finding) 

Rahman 
et al, 2017  

1 
expert 

Radio-
logist (> 
10 years) 

NA NA Yes Yes NAAT NA NA 0.91 
(0.89-
0.92) 

0.58 
(0.57-
0.59)  

Melendez 
et al, 2016 

NR NA NA NA NA NA Liquid 
culture 

NR NR NR NR 

 
Muyoyeta 
et al, 2015 

None NA NA NA NA NA NAAT, 
AFB  

NA NA NA NA 

Breuninge
r et al, 
2014 

1 
expert 
1 non-
expert 

Chest 
physician 
(NR) 

Clinical 
officer  

NR Yes Yes Liquid 
culture 
&/or AFB  

0.97 
(0.94-
0.99)  

0.18 
(0.13-
0.24)  

0.84 
(0.78-
0.89)  

0.72 
(0.65-
0.77)   

Muyoyeta 
et al, 2014 

None NA NA NA NA NA NAAT NA NA NA NA 

Maduskar 
et al, 2013 

1 
expert, 
4 non-
experts 

Chest 
radio-
logist (NR) 

3 year 
medical 
diploma 

NR Yes Yes Liquid 
culture 
&/or AFB  

0.83 
(0.75
–
0.91) 

0.48 
(CI 
NR) 

NA NA 

CAD4TB SCREENING active case finding)  

Melendez 
et al, 2017 

4 
experts
, # 
numbe
r of 
non-
experts 
NR 

Radiologis
t (> 10 
years) 

General 
practitione
r 

> 2 
year
s 

Yes Yes Liquid 
culture † 

0.70 
(0.60
–
0.78) 

0.93 
(0.92
–
0.93) 

0.53 
(0.43
–
0.63) 
*  

1.0 
(0.99
–1.0) 

Muyoyeta 
et al, 2017 

None NA NA NA NA NA NAAT, 
AFB* 

NA NA NA NA 

Steiner et 
al, 2015 

2 
experts
, 5 non-
experts 

Radiologis
t (2 years) 

3 Clinical 
officers, 1 
assistant 
medical 
officer, 1 
less jr 
Radiologist  

NR Yes Yes Radiolog
y 

0.63 
(CI 
NR) 

0.75 
(CI 
NR) 

NA NA 

Table 10. Summary of CAD4TB human readers 
#, number; Sn, sensitivity; Sp, specificity; CI, confidence interval; NR, no reported; NA, not applicable; NATT, nucleic acid amplification test; AFB, 
acid fast bacilli 
*NAAT for CAD4TB abnormal, AFB for CAD4TB normal 
**Composite reference: positive culture/NAAT and/or initiation of TB treatment 
† Only participants with an abnormal CXR as per the non-expert readers underwent culture 

 
 
 
 
 



 

 

 

63 

CHAPTER 6: Discussion  
 
 
 
This review summarized CAD tools in development and those tested clinically for the detection 

of PTB with CXRs. In assessing the clinical validity of the development studies, we found that 

the most commonly used datasets, the MC, Shenzhen, and JSRT had either a high degree of 

patient selection bias, or patient enrollment was unclear. We could not determine if these 

datasets were representative of either the triage or screening cases. Furthermore, most 

development studies used the same database for training and testing purposes. This limits the 

validity of the results.  

In terms of clinical usefulness of CAD, none of the development studies, and only 6/10 (60%) of 

the clinical studies reported pre-specified cut-off scores. Studies that did not use a pre-specified 

score additionally did not recommend how the results could be applied in the clinical context. 

Ultimately, CAD will be used to diagnosis PTB. Therefore, microbiologic reference, as the gold 

standard for diagnosis, should be utilized. The majority of the development studies employed a 

human reader as their reference standard. As demonstrated in our review, studies that used a 

human reader as the reference standard reported higher AUC than those that used a 

microbiologic reference (p-value 0.067).  These studies likely systematically overestimate the 

diagnostic utility of their software by using a human reader, rather than microbiologic 

reference standard. 

The clinical studies evaluated the only currently commercially available software, CAD4TB. The 

CAD4TB triage studies were demographically quite homogenous. The populations studied had 

very high HIV and TB prevalence. This limits the generalizability to other patient populations 

even in high burden areas. Furthermore, while the software achieved high sensitivities with 

variable specificities for both use-cases across versions, CAD4TB was evaluated using CXRs from 

datasets that may have also contributed to training the software thereby overestimating the 

predicative accuracy. Lastly, the software's developers were authors in over half of the 

published studies introducing potential bias.   
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This systematic review highlights the need for additional research of CAD CXR reading for PTB 

identification. Box 1 outlines our recommendations for study design elements for future CAD 

studies to employ to improve the methodological validity and clinical applicability. Further 

research that considers the broader health systems in which the test is meant to be used in also 

needed. The WHO’s strategic plan for the use of CXRs in TB care highlights the importance of 

evaluating existing infrastructure, availability of human resources, and assessing if local 

stakeholders are interested in using CXRs and CXR based technologies like CAD before 

recommending widespread uptake and use (12). We conclude that AI based CAD programs are 

promising, but more clinical studies are needed that minimize sources of potential bias to 

ensure the validity of the findings.   
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