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ABSTRACT

Numerical experiments were carried out to determine tube geometries for more
efficient thermal storage. A finite element simulation code developed earlier, which
solves the two dimensional governing conservation equations was employed to examine
the thermal performance of horizontal annuli of the following configurations:

(a) Square external tube with a circular tube inside - Annulus Type A
(b) Circular external tube with a square tube inside - Annulus Type B
Effects of the Rayleigh number as well as heating of the inside, outside or both walls at a
temperature above the melting point of the material were studied. Flow and temperature
patterns within the melt, local heat flux distributions at the heating surface and the

cumulative energy charged as a function of time are presented and discussed.

To enhance the heat transfer rate during melting in horizontal annular containers
various innovative passive methods were examined. Eccentric annular configurations are
identified as superior to concentric tubular geometries due to the vertically upward
orientation of the buoyancy force in the melt phase at higher Rayleigh numbers. In
addition to this the effect of flipping the container at pre-selected times after initiation of
melting as a measure to increase the heat transfer rate during the last stage of the melting

process is also examined and discussed.



RESUME

Des expériences numeériques ont été réalisées dans I’optique de déterminer des formes
optimales de tubes pour le stockage thermique. Un programme de simulation basé sur les
éléments finis développé antérieurement résout les équations de conservation a deux
dimensions. Cette technique est utilisée pour examiner les performances thermiques des
anneaux horizontaux des configurations suivantes :

(a) Tube de section extérieure carrée avec une section interne circulaire- Anneau de type A
(b) Tube de section extérieure circulaire avec une section intérieure carrée- Anneau de type B
Les effets de la constante de Rayleigh comme I'échauffement de I'intérieur, de I’extérieur ou
des deux surfaces a une température supérieure au point de fusion du matériau ont été étudiés.
L’évolution du flux et de la température dans la phase de fusion, les distributions du flux de
chaleur sur la surface chauffée et I’énergie thermique cumulée emmagasinée sont présentés et

commentes en fonction du temps.

Pour améliorer le rendement du transfert de chaleur, pendant la fusion dans des
récipients horizontaux et annulaires, différentes méthodes innovatrices et passives ont été
examinées. Des modeles d’anneaux excentrés ont obtenu de meilleures performances que des
formes tubulaires concentriques. Ceci est principalement du a [orientation ascendante
verticale des forces de poussée dans la phase de fusion pour des nombres de Rayleigh élevés.
De plus le récipient est retourné a des temps prédéfinis aprés le début de la fusion, pour
augmenter le taux de transfert thermique pendant la derniére étape du procédé de fusion.

L’effet sur le systéme est examiné et commenté.

ii
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! Chapter 1 I

Introduction

1.1 GENERAL INTRODUCTION

Heat transfer during melting and/or freezing of a phase change material has
attracted considerable attention over the past several decades due to its relevance to many
technological applications such as latent-heat energy storage systems, casting and crystal-
growth processes, latent-heat thermal storage devices, to name a few. Literally several
thousand papers have examined various aspects of melting and freezing phenomena both
from the fundamental as well as applications point of view. The non-linearity of the
governing energy equation and a wide variety of geometric and thermal boundary
conditions provide a fertile ground for challenging basic research problems. Also,
numerous industrial applications in diverse industnies provide the necessary incentive for
engineering research and development. Time-dependant boundary conditions, under

some conditions can lead to interesting and unique multiple moving boundaries as well.

Although a number of experimental and numerical studies have been devoted to
convection dominated melting of a phase change material (PCM) for various geometric
configurations, particular attention is given to melting in a horizontal annulus as a model
for thermal energy storage system A number of numerical/analytical studies [1-3] have
been performed in an attempt to model the melting phenomenon based on the Boussinesq
approximation. Rieger ¢f al. [4] and Ho and Viskanta [5] investigated experimentally the
evolution of the solid-liquid interface during melting of a PCM contained in a horizontal
cylinder. They also presented results of a numerical simulation of the melting process

using a finite difference numerical method. In addition to this, recently Ng er al. [6]
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studied the free convective melting of a phase change material in a horizontal cylindrical
annulus heated isothermally from the inside wall and their results indicate that an
increase in Rayleigh number promotes the heat transfer rate. However no prior work

exists on the problem of melting in a horizontal annulus of arbitrary cross-section.

The present investigation is motivated by both a fundamental heat transfer
problem and the need to identify container geometries and thermal boundary conditions
that may lead to enhanced thermal energy storage as heat of fusion in a phase change
material. PCM thermal storage devices compete with sensible heat and chemical heat
storage devices as possible alternatives to store heat during the melt cycle and discharge
it during the freezing cycle. PCM stores provide the key advantages of high energy
density, small floor space, stable temperature of discharged heat etc. Gong [7] has

discussed this aspect of PCM stores in considerable detail.

1.2 OBJECTIVES

The main objectives of this study are as follows:
1. To simulate using a mathematical model the free convection-dominated melting heat

transfer charactenistics of a PCM contained in arbitrary-shaped annular geometry, and

(28]

To identify and numerically examine simple ways of enhancing such heat transfer

rates

The model used in this work is an extension of the one developed by Gong([7]. The
computational code is based on a finite element discretization of the governing
conservation equations [7] This work is confined to melting heat transfer when effects of
temperature dependant melt density leads to buoyancy forces driving the free convective

motion in the melt zone
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1.3 OUTLINE OF THE THESIS

This thesis is divided into five chapters with introduction as the first chapter.

Chapter 2 presents a brief review of the literature associated with melting heat transfer of

a PCM with heating along horizontal wall, vertical wall in annulus of different cross-

section. In Chapter 3, the finite element model used to simulate melting of a PCM

including free convection in the liquid phase is described. Results of the simulations for

melting in horizontal annulus of arbitrary cross-section and passive innovative ways to

enhance the heat transfer rate are presented in Chapter 4. The conclusions based on the

results are enumerated in Chapter 5.
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’ Chapter 2 jl

Literature Review

Free convective heat transfer studies, both experimental and analytical, have been
reported in the literature very extensively in view of their industrial significance in many
processes. This review is confined to sub-areas of free convection which are directly
relevant to the theme of this thesis viz. melting heat transfer for a pure phase change
material in horizontal containers of various geometries under conditions such that a two
dimensional free convective flow develops in the melt zone due to the temperature-
induced density variations leading to buoyancy forces. The aspect ratio of the container is
such that three dimensional effects are not considered. Gong [E21] provides an extensive

listing of relevant literature published prior to 1997.

2.1 CONVECTION-CONTROLLED MELTING

2.1.1 Melting along a Horizontal and Vertical Wall

The heat transfer from a vertical heated wall to a PCM contained in a rectangular
enclosure has received considerable research attention due to its simple geometry as well
as fundamental importance in several technological applications. A number of
experimental studies in this area [A1-A6] have demonstrated the enhancement effects of
natural convection on the melting heat transfer along a vertical wall in rectangular
cavities. Also several numerical/analytical studies [A7-A17] have also been published
over the last decade based on the Boussinesq assumption. Only a selected few are cited
here due to space limitations.

Hale and Viskanta [A1] studied experimentally the melting of n-octadecane from

a heated vertical wall of a rectangular test cell. The melt shapes, the temperature histories
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and the local heat transfer coefficients at the solid-liquid interface demonstrated the
dominant role played by natural convection during melting from a vertical heat source.
The experiments of Bareiss and Beer [A2] clearly showed that the local enhancement in
melting at the top of the wall overrides the decrease occurring near the bottom, and that

the melt volume increases linearly with time.

Benard, Gobin and Martinez [A3] observed the development of a thermal
boundary layer along the heated wall and solid liquid interface with a central stratified
zone in between, once the melt zone is sufficiently large. According to Ho and Viskanta
[A4] sub-cooling of the solid is found to significantly impede the melting process
because of the required sensible heating of the solid and the delay in the occurrence of the
convection stage which the reduced melt zone causes. The role of natural convection on
the shape and motion of the phase change interface of gallium and tin from a vertical wall
were investigated by Gau and Viskanta [A5] and Wolff and Viskanta [A6], respectively.
Their results indicate that the meiting of the solid from the top of the PCM could be
greatly accelerated and near the bottom region could be significantly retarded or even
terminated by buoyancy driven convection in the liquid phase.

Gadgil and Gobin [A7] numerically simulated the two dimensional melting of a
solid phase change material in a rectangular enclosure heated from one side. They
divided the process into a large number of quasi-static steps and for each quasi-static step
natural convection in the liquid phase was calculated by directly solving the governing
equations with a finite difference technique. Webb and Viskanta [A8] developed a
numerical model to predict the melting of a pure metal from an isothermal vertical wall.
They used a control volume based discretization scheme adapted for irregular geometries.
The moving boundary was immobilized by employing the quasi-steady assumption with
an algebraically generated gnd.

Lacroix [A9] employed a vorticity-velocity formulation with body-fitted co-
ordinates to model a similar problem to that modeled by Webb and Viskanta [A8] and
obtained similar results Costa er al. [A10] carried out a fixed grid finite difference
analysis of melting in rectangular cavities using the SIMPLEC algorithm. Usmani er a/

[A11] performed a fixed grid finite element analysis of melting in rectangular enclosures.
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Rady and Mohanty [A12] employed an enthalpy-porosity fixed grid method for

simulating the natural convection during melting of pure metal in a rectangular cavity.

Keller and Bergman [A13] modeled numerically the steady state melting and
freezing in an open rectangular cavity including both buoyancy and surface tension forces
in the liquid phase. They found that surface tension induced flow could affect the solid
geometry and, ultimately the melting and freezing rates. Liu ef al. [A14] modeled both
numerically and experimentally the melting and solidification of a pure metal in an open
cavity with liquid phase buoyancy and surface tension forces and their numerical results
were verified by comparing them with experimental data. Ho and Chu [AlS, Al6]
simulated conduction-convection controlled melting of n-octadecane in a vertical square
enclosure imposed with a time-dependant sinusoidal oscillatory wall temperature. Ho and
Chu [A17] also simulated coupled melting and free convection heat transfer in two
vertical rectangular composite cells one of which is filled with a PCM and the other is an
air layer.

Sasaguchi er al. [A18] numerically studied the utilization of melting of a phase
change material for cooling of a surface heated at a constant rate. Two orientations of the
heated surface, i.e., at the bottom and at the side of the cavity, were examined. In
addition, they studied the effects of uniform and discrete heating conditions on the
cooling of the heated surface. They observed that the discrete arrangement of the heated
portions strongly affected the cooling rate of the surface. They found that if the uniformly
heated surface is located at the side of the cavity, the maximum temperature becomes
much larger than that for the heated surface located at the bottom. They concluded that, if
possible the heat-generating surfaces should be located at the bottom of the cavity for

effective cooling.

Little prior work exists on the problem of melting of a PCM heated by a
horizontal wall. Benard [A19] was the first to observe the convective instabilities, which
develop during the melting of a horizontal layer of a PCM heated from below. An
experimental investigation was carried out by Yen et al. [A20, A21] and Seki ez al. [A22]

on the melting of a horizontal ice slab heated from below. Seki [A22] et al
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experimentally determined the Rayleigh number marking the onset of free convection,
when the heat transfer mode changed from conduction to convection from the fact that
the temperature distribution in the melted water layer started to deviate from its linear
profile. Hale and Viskanta [A23] carried out experiments for melting from below and
solidification from the top of a n-octadecane slab in a rectangular cavity. However, in
their paper they did not present flow patterns and phase change interface shapes. Gau ef
al. [A24] presented flow visualization results for melting from below of an n-octadecane
slab in a rectangular cavity. Diaz and Viskanta [A25] extended the experiments of Gau ef
al. [A24] to the observation of the morphology of the liquid/solid interface. Lacroix and
Benmadda [A26] did a numerical study of melting from a horizontal heated wall with
vertically oriented fins embedded in the phase change material. Their results show that
melting is enhanced with a bottom finned heated wall and increasing Rayleigh number.
Later Lacroix and Binet [A27] carried out a numerical study for natural convection
dominated melting inside uniformly and discretely heated rectangular cavities using the
computational methodology based on the enthalpy method for the phase change. Gong
and Mujumdar {A28] have simulated the melting of a pure PCM in a rectangular
container heated from below using the streamline Upwind/ Petrov Galerkin finite element
method. They obtained several complex and time-dependant flow patterns at different
Rayleigh numbers, which are quantitatively consistent with published results.

For more information on melting problems the reader is referred to the reviews by
Yao and Prusa [A29]. Viskanta [A30-A32] . Samarskii et al. [A33 ], Fukusako and
Yamada [A34].

2.1.2 Melting inside a Horizontal Cylinder

One important geometnic arrangement in view of technical applications
particularly in phase change thermal storage is the phase change process occurring inside
horizontal enclosures of various geometries. There are two possible cases: solid-
constrained melting and close contact melting. Both of these cases have received
considerable research attention in the past several years and are summarized in Table 2.1

in the interest of brevity



Table 2.1 Summary of Literature for Melting inside a Horizontal Cylinder

Author(s) Configuration Conclusions
Rieger, H. et al. (1983) |B1]
Bareiss, M. & Beer, H. (1984) [B2]
Ho, C. J. & Viskanta, R. (1984a) [B3) * Experimental
Sparrow, E. M. & Geiga, G. T. (1986) [B4) Studies e Melting inside a
Hirata, T. and Nishida, K. (1989) [BS] Horizontal Period of heat conduction is quite short, but
cylinder dependant on Rayleigh number

Pannu, J. et al. (1980) |86}

Saitoh, T & Hirose, K (1982) [B7)

Ho, C. J. & Viskanta, R. (1984) {B3]
Sparrow, E. M. & Geiger, G. T. (1986) [B4)
Prasad, A. & Sengupta, S. (1987) (D8]
Prasad, A. & Sengupta, S. (1988) B9}
Park, C. E. & Chang, E. P. (1992) [B10]
Ro, S. T. & Kim, C-J. (1994) [B1! ]

¢ Solid PCM was

maintained al

a fixed position
Theoretical / inside the heated
Numerical horizontal
Studics cylinder

For smaller Rayleigh numbers, a streamlined
shape for the solid occurs.
For larger Rayleigh numbers (210°) three
dimensional, unsteady roll cell appears at the
bottom of the solid, resulting in an inverted,
pear-shaped, solid region.

Nicholas, D. and Bayazitoglu, Y.(1980)[B12 ]
Bareiss, M. & Beer, H. (1984) [B13]
Sparrow, E. M. & Geiger, G. T. (1986) [B4]
Saitoh, T ct al. (1992) [BI5)

Saitoh, T & Kato, K. (1993) [B14)

Chen, W. Z. ct al. (1998) [BI16)

Investigated Heat transfer during melting
of an unfixed solid phase change in a

horizontal cylindrical enclosure

If solid phase has higher density, the solid
sinks to the boitom of the cylinder, giving
rise to a region of close-contact melting

Close-contact melting is the dominant mode
of heat transfer when stefan number is small
and contribution to free convection becomes

significant as Stefan number increases

MOLAYY amieIN]
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Pannu er al [B6] modeled the melting of a PCM inside a horizontal cylinder over
the Rayleigh number range of 1.0 x 10° and 2.0 x 10° and for a Prandt! number of 145.
For the case of Rayleigh number of 1.0 x 10° they observed secondary flow at the top of
the melted annular zone. Saitoh and Hirose [B7] simulated the problem of Pannu ef al.
using the Landau transformation and an explicit finite difference method. Over a wide
range of Rayleigh numbers, they predicted two vortex circulation cells at the bottom part
of the melt annular which was different from that obtained by Pannu ef al. [B6]. Rieger
et al. [B1] studied inward melting of n-octadecane in a horizontal cylinder using a co-
ordinate transformation technique and obtained experimental and numerical results for
Rayleigh numbers in the range 10° < Ra < 10°. They observed three-dimensional Benard
convection in the bottom region of the melt layer, which was unsteady in their time wise
behavior. Their simulations using the body-fitted curvilinear co-ordinate approach also
predicted the three vortex circulation zones observed in experiments.

Melting inside a horizontal cylinder was also investigated both experimentally
and numerically by Ho and Viskanta [B3]; they reported the presence of secondary
vortices induced by thermal instability in the bottom of the melt region for larger
Rayleigh numbers, but failed to predict numerically the existence of the vortices. This
may be due to the relatively coarse computational grid they used in their simulation. Park
and Chang [B10] studied numerically the same problem and found that at low Rayleigh
number (1.0 x 10°%) the natural convection flow in the melt region was unicellular. For a
higher Rayleigh number (8.0 x 10°) they obtained both flow patterns reported by both
Saitoh and Hirose [B7] and Rieger ef al. [B1] by applying a small perturbation to the
vorticity field during the initial stage of the melting. However they did not observe
secondary flows at the top of the melted annular as did Pannu er al. [B6]. They concluded
that there existed a bifurcation phenomenon in certain Rayleigh number range of the
melting process. Prasad and Sengupta {B8, B9] investigated the effects of variation in the
Rayleigh, Stefan and Prandtl numbers on melting inside a horizontal cylinder using a

numerical model and obtained useful correlations for the meit time and Nusselt number.
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Nicholas and Bayazitoglu [B12] studied numerically the melting of an
unrestrained solid in a horizontal cylinder Moreover an extensive investigation
concerning melting of an unfixed solid in a horizontal cylinder was performed by Bareiss
and Beer [B13] . Sparrow and Geiger [B4] provided a definitive comparison between
melting in a horizontal tube in which the solid is either constrained to be stationary or
may freely fall to the bottom of the tube due to its higher density than the melt phase.
They observed that the amount of mass melted in the unconstrained mode exceeds that
melted in the constrained mode by 50 to 100% , depending on the operating conditions.
Their numerical solutions also showed that about 90% of the melting in an unconstrained
mode occurs at the lower portion of the solid, which is in quite close proximity to the
lower portion of the tube wall. Recently Chen ef al. [B16] obtained theoretical formulae
of the melting rate, thickness of the liquid layer, elapsed time of solid PCM and Nusseit

number during the close-contact melting of a PCM inside a horizontal cylinder.

2.1.3 Melting around a Horizontal Cylinder

Melting characteristics around (i.e. external to) a horizontal heated cylinder
immersed in a PCM provide some of the most fundamental information concerning the
latent heat-of-fusion thermal energy storage systems. This configuration was extensively
studied both experimentally and theoretically; a comprehensive review is available in

Yao and Prusa [A29]

It has been established both experimentally and theoretically that free convection
during melting around a honizontal cylinder proceeds as follows. Conduction heat transfer
predominates only during an initial brief period after which free convection becomes the
dominant mode of heat transfer. Recirculation of the melt produces a “pear- shaped”
solid-liquid surface. Moreover, melt volume against time can be well correlated as a

function of Rayleigh and Stefan numbers both experimentally and theoretically.
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Table 2.2 Summary of Literature for Melting around a Horizontal Cylinder

Author(s) Configuration

Goldstein. R. J. & Ramsey. J. W. (1978) [C3]
Sparrow, E. M. et al. (1978) [C1]

Bathelt. A. G. er al. (1979)(C2}
Abdel-Wahed. R. M. ez al (1979) [C4]
Bathelt, A G. & Viskanta, R. (1980) [CS5}
White. D. A_ et al. (1986) [C6]

e Experimental investigation of natural
convection in the melting of PCM around
heated horizontal cylinder.

Sparrow. E. M. et al. (1978) [C1]
Ricger, H.er al. (1982) [CT]
Prusa. J. & Yao. L. S. (1984) Part1and I1 [C8, C9)

e Theoretical / Numerical study of the melting
around a heated horizontal cylinder

embedded in a PCM.
Ho. C. J. and Chen. S. (1986) [C10]
Ramsey. J. W. et al. (1979) [Cl 1]
Bathelt. A. G. er al. (1979[C15 .

» (C15] s  Experimental e Convection —
Sasaguchi. K. & Viskanta. R. (1989) [C12] Study dominated melting
Sasaguchi. K ef al. (1994) {C13] and freezing around

multiple horizontal
. cvlinders.
Lacroix. M (1993) [C16] e Numerical )
Analysis

Sasaguchi. K & Kusano. K. (1995) [C14]

Sparrow er al. [C1] carned out experiments to investigate the role of natural
convection in the melting of a PCM around a horizontal cylinder. Bathelt er al. [C2]
visualized the solid-liquid interface photographically and measured the local heat transfer
coefficients using a shadowgraph technique for the experimental investigation of melting
around a heated honzontal cylinder Their experimental results provided conclusive
evidence of the impontant role played by natural convection in meiting of a solid due to
an embedded cylindrical heat source. Goldstein and Ramsey [C3] did a similar
experiment to that of Bathelt ef al. [C2] and found that the shape of the melt region could
vary considerably, being symmetrical about the vertical plane, pear- shaped or even

keyhole-shaped depending on the conditions as the plume begins to develop.
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Melting around a heated horizontal horizontal cylinder embedded in a PCM was
first modeled by Rieger ef al [C7] using a body-fitted co-ordinate transformation
technique. Numerical solutions were obtained for Rayleigh number up to 1.5 x 10°,
Stefan number in the range 0.005 < St < 0.08 and Prandtl number of SO. Prusa and Yao
[C8, C9] developed a numerical model to investigate melting around a horizontal
cylinder with constant heat flux and constant temperature boundary conditions using a
co-ordinate transformation technique. Ho and Chen [C10] simulated the melting of ice
around a horizontal isothermal cylinder and found that the melting process was strongly
affected by altering the re-circulation flow developed in the molten area due to the
density anomaly. It was also found that the melt shape and the predicted flow pattemn

were in good agreement with the experimental results of White ef al. [C6].

Additional research results on convection—dominated melting around multiple
horizontal cylinders can be found in [Cl1, C13-C16]. Most of this work deals with two
dimensional configurations and restrained solid (unmelted) zones, as is the case in the

present work.

2.1.4 Melting in a Horizontal Concentric Annulus

Melting of a PCM in a honzontal concentric annulus is not only a basic thermal
engineering problem but also of potential interest to many practical applications. This
configuration has been extensively adopted for heat exchanger in refrigeration systems
and low-temperature storage systems utilizing PCM. No work has been reported for

melting of PCMs in vertical or inclined annuli.

Betzel & Beer [DI-D3] studied experimentally and theoretically the melting
process of an unconstrained PCM between two horizontal concentric cylinders. They
reported an interesting process that owing to gravitational forces the solid moves
downward to contact with the lower part of the outer tube as well as with the upper part

of the inner tube, and pointed out that in this process thin liquid films form between the
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solid and the walls and conduction heat transfer is the dominating mechanism during

melting.

Heat transfer characteristics during melting of a PCM in an concentric annulus
with fins has been extensively determined by Sasaguchi ez al., (1986) [D4];Sasaguchi &
Sakamoto, 1990 [DS]; Sasaguchi, (1990) [D6]; Sasaguchi ef al., (1990) [D7]; Sasaguchi,
(1992) [D8]. Sasaguchi et al. (1986) [D4] observed the melting behavior from a heated
inner tube in a concentric annulus and found that the heat flux for the finned tube is
markedly greater than that for the bare tube, and that the melt fraction is a function of

Biot number and Stefan number as well as the number of transfer units.

Ng, Devahastin and Mujumdar [D9] studied the free convective melting of a
phase change material in a horizontal cylindrical annulus. They employed the same finite
element method as employed in this work to simulate the free convection-dominated
melting of a pure paraffin wax in a cylindrical annulus heated isothermally from the
inside wall. A muitiple cellular pattern was observed at high Rayleigh numbers (>10%).
Their results reveal that an increase in the Rayleigh number promotes the heat transfer
rate. However no numerical simulation has been carried out for melting of a phase

change material in honzontal annuli of arbitrary cross-section.

2.2 NUMERICAL METHODS FOR PHASE CHANGE PROBLEMS

A simulation of the phase change phenomenon requires the solution of the
conservation equations accounting for the convection and conduction in the fluid zone
and the conduction in the solid zone. In addition an interface equation to couple both
phases is needed. The analytical approach is only possible for very limited cases when
several restrictive assumptions can be assumed. On the other hand, parametric studies of
experimental designs covering real situations are usually prohibitively expensive.
Therefore, the numerical techniques are recognized as a convenient way of obtaining

accurate solutions and identifying configurations of practical interest
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Two classes of solution methods have been developed to handle phase change
problems numerically: front-tracking and fixed grid methods to allow for the moving

interface.

In the front tracking methods, the discrete phase change front is tracked
continuously and the latent heat release is treated as a moving boundary condition. This
requires either deforming meshes [E1-ES], or transformation of variables or coordinate
[E6-E10], or using changing time step (for one-dimensional problem) so that the interface
coincides with the grid nodes. The front-tracking methods are not suitable for problems in
which phase change takes place over a temperature interval although they are accurate for
isothermal phase change problems. Also, for problems involving complex geometry
and/or large geometry change in the molten zone, the implementation of these methods is
extremely difficult, sometimes is impossible, e.g. for multi-dimensional problems with

multi-interface in the phase change processes.

Fixed grid methods removes the need to explicitly satisfy interface boundary
conditions at the phase front and therefore are able to utilize standard solution procedures
for the fluid flow and energy equations, without resorting to mathematical manipulations
and transformations. They are amenable to physical interpretation and easy to implement,
especially for multi-dimensional problems and for multi-interface problems.

Three methods have been developed for fixed grid methods. They are the
effective heat capacity method, the enthalpy method, and the source-based method. The
enthalpy method and the source-based method are outlined briefly in the following

section.

2.2.1 Enthalpy Method

Shamsundar and Sparrow [E11] in 1975 first proposed the enthalpy method which

includes both enthalpy and temperature as the dependant variables in the field equation.
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Therefore, the final discrete algebraic equation system requires non-simultaneous
iterative solvers. The enthalpy model has been widely used in the finite difference
techniques since finite difference is always associated with non-simultaneous iterative
solvers. On the other hand the enthalpy method has seldom been implemented in the
finite element technique. This is because of the feature of the enthalpy model which
requires non-simultaneous iterative solver makes the solution procedure of the finite
element method both inefficient and difficult to implement due to the fact that the
existing finite element programs are always equipped with direct solvers. Recently Gong
and Mujumdar [E12] developed a simultaneous iterative procedure for the finite element
analysis of the enthalpy model. Gong and Mujumdar [E13] also developed a non-iterative
procedure in the context of the finite element method for conduction phase change
problems. This makes the implementation of the enthalpy method very easy and

straightforward in the finite element method.

2.2.2 Source-Based Method

A source based method was proposed by Rolphe and Bathe [E14] which is
completely conservative However, it appears to be inefficient computationally. To
improve the computational efficiency, new schemes were developed by Voller {E15] and
Swaminathan and Voller {[E16]. The improved versions are effective in solving a wide
range of phase change problems including conduction-convection controlled phase

change problems.

2.2.3 Fixed Grid Methods for Convection-Controlled Melting

The examples of fixed grid solutions of convection-diffusion phase change can be
found in Morgan[E 18). Gartling[E17] and Voller ef a/.{E19].

A major problem with fixed grids is in accounting for the zero velocity condition
as the liquid region turns to solid. Two methods were developed for modeling the

development of free convection during the melting and freezing processes. One is the
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viscosity approach proposed by Gartling [E17] and Morgan [E18] and the other is the
enthalpy-porosity approach proposed by Voller and Prakash [E19] and Brent ez al. [E20].
Morgan [E18] employed a simple approach of fixing the velocities to zero n a
computational cell whenever the mean latent heat content reaches some predetermined
value between O and A, where A is the latent heat of phase change. Gartling [E17]
employed a more subtle approach in making the viscosity a function of AH such that as
AH decreases from A to O the value of the viscosity increases to a large value thus
simulating the liquid-solid phase change.

Voller and Prakash [E19] investigated various ways of dealing with the zero solid
velocities in fixed grid enthalpy solutions of freezing in a thermal cavity. They proposed
a pseudo porous medium model with the porosity decreasing from 1 to 0 as AH decreases
from A to O. In this way, on prescribing a “Darcy” source term, velocities arising from the
solution of the momentum equations are inhibited, reaching values close to zero on

complete solid formation.
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Numerical Model

3.1 INTRODUCTION

While a major effort has been devoted to the numerical solution of conduction-
controlled phase change problems over the last three decades focus has now shifted to
convection-dominated problems involving melting of PCMs in containers. The finite
element method has been widely applied to solve conduction-controlled phase change
problems, and it is now making inroads in problems involving convection-dominated
meliting and solidification of PCMs, especially in view of the complex flow geometries
encountered in such problems.

Gartling [1] was apparently the first to model convection-dominated melting and
solidification problems with the standard Galerkin finite element technique. He employed
the Boussinesq assumption and effective heat capacity method to solve the Navier-Stokes
and energy equations. To account for the zero velocity condition as the liquid turns to solid
or the solid becomes liquid he developed an approach which makes the viscosity a function
of AH where AH is the cumulative energy of latent heat of a computational cell. When AH
decreases from A (where A is the latent heat of the phase change) to 0 the value of viscosity
increases to a large value thus simulating the liquid-solid phase change. Morgan [2]
presented an explicit finite element algonithm for the solution of convection-dominated
melting and solidification problems In his model he employed an enhanced heat capacity
to treat the latent heat effect. To account for the velocity evolution at the phase change
interface he used a simple approach which fixes the velocities to zero in a computational
cell whenever the cumulative energy of latent heat of a cell reaches some predetermined
value between 0 and A. Usmani et al. [3] reported an implicit finite element model based on

effective heat capacity approach in combination with the standard Galerkin finite element
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method with a primitive variable formulation. They also employed the varying viscosity
approach to model the velocity evolution at the phase change interface.

In the context of the finite volume method Voller and Prakash [4] and Brent et al. [5]
investigated various ways of dealing with zero solid velocities in fixed grid enthalpy
solutions of freezing in a thermal cavity. They assumed the mushy region to be a pseudo
porous medium with the porosity decreasing from 1 to 0 as AH decreases from A to 0. In
this way, on prescribing a “Darcy” source term the velocity value arising from the solution
of the momentum equations are inhibited, reaching values close to zero on complete solid
formation. The enthalpy-porosity model has proved to be effective in solving both

isothermal and non-isothermal phase change problems.

In this thesis a Streamline Upwind/Petrov Galerkin finite element model in
combination with primitive variables is employed for solving convection dominated
melting and solidification problems. The computational code used is that based on
Gong’s [18] early work. The Boussinesq assumption is invoked and two-dimensionality is
assumed. The enthalpy-porosity approach is utilized to model the velocity evolution at the
phase change interface. A Penalty formulation is employed to treat the incompressibility
constraint in the momentum equations. Simulations are carried out for the melting of a
phase change material (n-octadecane) in a horizontal annulus of arbitrary cross-section.
Gong [18] has verified the validity of the computational model used in this study by
extensive numerical experiments including comparison with analytical solutions,

comparison with numerical and experimental results of others etc.

3.2 MATHEMATICAL FORMULATION

3.2.1 Goveming Equations

For the mathematical description of the melting process the following assumptions are
made: (1) heat transfer in the PCM is conduction/convection controlled, and the melt is

Newtonian and incompressible; (2) the flow in the melt is laminar and viscous dissipation
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is negligible; (3) the densities of the solid and liquid are equal; (4) the Boussinesq .
assumption is valid for free convection, i.e. density variations are considered only insofar
as they contribute to buoyancy, but are otherwise neglected; (5) the solid PCM is fixed to
the container wall during the melting process. The following follows closely the discussion

given by Gong [18].

Based on the above assumptions, the governing equations in tensor form are

Solid region:

ch
po, =T, +4. (1)
Liquid Melt Region:
Continuity equation
u,=0 (2)
Momentum equation
cu
A+ ) =-p, +uu,, +u, )], - g AT -To) (3 '
Energy equation
ch
p(E-+uJ7;)=(k,TJ)J+q, )

The initial and boundary conditions are
initial conditions
T(x,0)=T°(x)

S
u,(x.0)=u’(x) )
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boundary conditions
u = l—l,(S,t) onl,
t,=o,n(s)= l:(s,i) onT,
T= i’(s,l) onl
q =—(kT )n (s)=q,(s,1) +q.(s)+q,(s) onl,

3.2.2 Enthalpy-Porosity Model
Two methods are available to account for the physics of the evolution of the flow at the

solid/liquid phase change interface in fixed-grid methods namely the enthalpy-porosity
model [4, 5] and the visccsity model [1, 3]. The enthalpy-porosity is employed in this study.

The enthalpy-porosity model treats the mushy region as a porous medium. The flow in
the mush is governed by Darcy’s law. According to the enthalpy-porosity model [4, 5] Egs.

(1) through (4) can be rewritten as follows:

cu,
d +tuu )=_p_1+[y(ul,j+uj,l)lj -/g:ﬂ(T_Tz))*Au:

Et i

ch
M +uT) =), +q,

In Eq. (8)

A=-C(A-A)y /(X +b)
in which & is a small constant introduced to avoid division by zero and C is a constant
accounting for the morphology of the mushy region. In general b is assigned a value of

0.001. For isothermal phase change C is assigned a value of 1.6x10°.

(6)

(7)

(8)

C))

(10)
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3.2.3 The Penalty Formulation
To treat the incompressibility constraint in the momentum equation two models can be

used, one is the penalty formulation [6, 7] and the other is the so-called slightly
compressible formulation [7, 8]. In this study the penalty formulation is employed to treat
the incompressibility constraint.

In the penalty formulation, the continuity equation is replaced by

1
u,=-— ; p

where v is the penalty parameter which is generally assigned a value of 1.0x10°.

As a result of the utilization of the penalty approximation, the pressure term and the
mass conservation equation are eliminated from the system of equations (Eqs. (7) through

(9)). The governing equations (Egs. (7)-(9)) then become

ou, |
G, tu,)= ?(u,‘, ), +lu(u, , +u, )}, —pgB(T - Ty) + Au,

ch
p(g" +ul )=(kT))  +q,

Once the velocity and temperature fields are known, the pressure variable is calculated
a posteriori if desired at any step by solving the Poisson equation [9]
=(p,)), =0y, ), +pB(g,T,)
subject to homogeneous Neumann conditions along the boundary I i.e.
np, =0
In order to obtain a unique pressure field it is necessary to set the pressure at one point in

the domain equal to a reference pressure.

(1n)

(12) .

(14)

(15)
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3.2.4 Finite Element Model

Following the work of Brooks and Hughes [7] and Argyris [10] the streamline
upwind/Petrov-Galerkin method was selected by Gong[19] for the convection and source
terms of the momentum and energy equations. After spacewise discretization of Egs. (12)
and (13) in two dimensions subject to above mentioned boundary conditions we obtain the

following semi-discrete equation as described by Gong et al. [19].

~

M 0 0| (% K, +K., K, B, u,

0O M 0| qu. - K, K, 6 +K,, B, u, o+

0 0 N]J|r 0 0 L, +L,||T

-A,(u)+A:(v) 0 0 u, B, R, O0f|u,
0 A(u)+ A.(v) 0 u, r+ P P, Ofu t+

i 0 0 Dwy+D,(v)| |T 0 oNnrT

(4 0 olfu] [F

0 A ORu,p=+F

0 0 o7 G

Typical elements in these matrices are
M= IQ WT dQ
N =[,pc, 897dQ

, &
K, =, u (pfdﬂ

928
o keSS

- O
AW,) = [y pou, 22dQ

- 89
D(U,)= fopc,SuC_de

(16)

(17
(18)

(19)

(20)

1)

(22)
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_; 19 dp
£ = fa y ox, Ox,

B ={, pgPpd7ds2

F =[, 10dl+[,pgBT,0 d2
G=1,r(q9.+9.+4.)8dlr+{,9,8dQ

in which
p=p+kugp,
9=9+ k; u8,
Following Heinrich and Yu [9]
i =2d
" 2

in which [lu]|is the magnitude of the local velocity u,
ldl = w,  (sum)
and / is an average element length whose definition is given in [9]. The parameters E, are

given by

1
=cothl ——
€, =coth(, c

1

el
u/p

C.=Prg

It should be noted that the numerical integration of the pressure term (Eq. (23)) must be

-

one order lower than that of the velocity terms.

(23)

(29)

(25)

(26)

27)

(28)

(29)

(30)
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Using the aforementioned numerical scheme the instantaneous temperature
distributions in the PCM are obtained and the magnitude of the cumulative energy charged
per unit length Q, is calculated as a function of time. The calculation is made by computing
the enthalpy of the PCM at each time increment using the solid PCM at its fusion
temperature as the reference state and subtracting the enthalpy of the PCM at the beginning
of the melting process. The value of Q is zero at the beginning and increases over the
melting process toward Qr, the cumulative energy charged for a melting process.

The maximum amount of energy which can be charged during the melting process is

Ov = pAx [ for (To) - fr: (T) ]
In this work, bilinear quadrilateral elements are used to perform all computations.
Grid-dependence experiments indicated that the maximum difference of the temperature

at an identical location is within 0.16 % between using 20x20 elements and 30x30

elements with dimensionless time step of 4.32x10~ .

0.0 01 0.2 0.3 0.4 0.5 0.6
osSr —= 40 by 80 elements J 0.5
ceemene 30 by 30 elements
104
=
C
= 10.3
o
10.2
10.1
00 4 + - - . 0.0
00 01 02 03 0.4 0.5 0.6

Fourier number
Fig. 3.1 Comparison of Dimensionless Cumulative Energy Charge as a function of the

Fourier number for 30 by 30 elements and 40 by 80 elements
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Fig. 3.1 compares the results obtained in this work for the dimensionless cumulative
energy charged for heating from outside in a horizontal annulus of type A (square
external tube with a circular tube inside) for 30x30 elements and 40x80 elements. There
is hardly any difference in the results obtained for both the grids. But, in order to achieve
a higher resolution of the flow patterns, 40x80 elements are employed in this work. The
domain is discretized into 40 elements in the radial direction and 80 elements in the ¢
direction. A source-based scheme [11, 12] is used to treat the phase change effects. A

backward Euler scheme is employed to accomplish the time discretization of Eq. (16).
3.2.5 Dimensionless Form of the Governing Equations in two dimensions
For convection-dominated two-dimensional melting or freezing problems subjected to

the Dinchlet boundary condition (first kind boundary condition) the dimensionless

governing equations are:

Solid region:
5H_£,_S’e(aze+_a’_e) 34
cFo ko T (34)
Liquid region:
cU &v )

ox or =P %)

e U cU U eP U U .
gib+UgX+V(6},=—§+Pr(axz+6Y2)+RaPrsinm+AU (36)

v 2 S 3V oV .
aFo-«»Uz_‘X+Vi_‘Y:—%}7+Pr(gxz+ayz)+RaPrcosm+AV G7)

GH  6H  oH 3% 0%

+U +V = Ste( X2 + W) (38)

¢ Fo cX oY

in which
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c
H=—c—'-Ste0, <0
1
H = Stef +1 >0
and
u L ul T-T h-c.T pL
= Xy V—— Yooy 0= m - 5 m’ P= \:,
U al ’ al ' TW—TR’ Ah l.
AL
x=2, v=2 -T2 R=Tr pe=9E
Ly Ly pa, Ly k,
ra DCEBLT-T) o c(T.-T.)

ik, ’ Ah
It is clear that melting and freezing phase change heat transfer including free
convection is determined by the following five dimensionless parameters, Rayleigh number
(Ra), Prandtl number (Pr), Stefan number (Ste), the ratio of solid/liquid specific heat (c,/c;),
as well as the ratio of solid/liquid heat conductivity (k/k;). These are defined for our

configuration as follows:

_T-T, _ _CH
B—T,—T_’ Fo= 7 Pr= k
‘c,gfd’ (T, - T, T -

R‘j:p lgﬂ ( )' S’ezcl( w Tm)
bk, Ah

3.3 TEST OF THE NUMERICAL MODEL

The above-mentioned numerical model as obtained by Gong [18] is verified by
comparison with the experimental results of Gau and Viskanta [13] and the implicit finite
difference results of Lacroix [14] for the melting of a pure metal (gallium) inside a two-
dimensional rectangular cavity (height L,=0.0445 m; width L,=0.089 m). The gallium is
assumed to be initially at its fusion temperature. The top and bottom boundaries are
adiabatic. At time =0, the temperature of the left vertical wall is suddenly raised to a
prescribed temperature above the melting point. The values of the governing

dimensionless numbers and aspect ratio are listed in Table 3.1 for the test problem.

(39)

(40)
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Table 3.1 Parameters Used in the Accuracy Test Runs

R Aspect ratio L,/Lx 0.5
Ra Rayleigh number 2.2x10°
Pr Prandtl number 0.021
Ste Stefan Number 0.042
cyc Ratio of solid/liquid specific heat 1

kK, Ratio of solid/liquid heat conductivity /
1,0 :lerTTTIYIIl TTITIII’UIITITT1YTIT:
08 A/12 min =
T 06F 3
> - .
;’ 04 F —— present model
- ® experiemtnal data .
0.2 2 4 Lacroix's model B
00°C : -

00 02 04 06 08 10 1.2 14 16 18 20
X (x/H)

Fig. 3.2 Companison of the Predicted Phase Front with Experimental Data

Fig. 3.2 compares the predicted phase front by Gong [18] with both the experimental
resuits of Gau and Viskanta [13] and the finite difference prediction of Lacroix [14]. It is
seen from this figure that the present model is in good agreement with the results of the
above mentioned references. Experimental uncertainty values are not available. It is
believed that the computer code is sufficiently accurate for the work presented here.

The discrepancy between the predicted phase front of the present model and the
experimental results is due to two possible reasons. First, in the experiment, the solid
showed an initial subcooling of approximately 2 °C. This degree of subcooling is

significant in the light of the fact the heated wall was at only 8 °C higher than the melting
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temperature of gallium. The second reason is that it is difficult to impulsively heat the

vertical wall to a desired temperature in reality due to its finite thermal inertia. The

discrepancy of predicted phase front between the present model and Lacroix’s model is due

to the difference of the numerical methods used. Lacroix used a front-tracking method

while this model uses a fixed-grid enthalpy-porosity approach to model the phase change

effects.

REFERENCES

9

W

Gartling, D.K. 1980, “Finite Element Analysis of Convective Heat Transfer Problems
with Change of Phase,” in Computer Methods in Fluids, K. Morgan, C. Taylor and
C.A. Brebbia (eds.), Pentech, London, pp. 257-284.

Morgan, K, 1981, “Numerical Analysis of Freezing and Melting with Convection,”
Comp. Meth. Appl. Mech. Eng., Vol. 28, pp. 275-284.

Usmani, A.S,, Lewis, R W. and Seetharamu, K.N., 1992, “Finite Element Modeling of
Natural-Convection-Controlled Change of Phase” Int. J Num. Meth. Eng., Vo.14, pp.
1019-1036.

Voller, V.R,, Prakash, C., 1987, “A Fixed Grid Numerical Modelling Methodology for
Convection-Diffusion Mushy Region Phase-Change Problems, " Int. J Heat Mass
Transfer, Vol. 30, pp 1709-1719.

Brent, AD, Voller, V.R and Reid, K.J, 1988, “Enthalpy-Porosity Technique for
Modelling Convection-Diffusion Phase Change: Application to the Melting of a Pure
Metal.” Numerical Heat Transfer. Vol. 13, pp. 297-318.

Hughes, TJ R, Liu, W.K. and Brooks, A, 1979, “Review of Finite Element Analysis
of Incompressible Viscous Flows by the Penalty Function Formulation,” Journal of
Compnuational Physics, Vol. 30, pp 1-60.

Brooks, A.N. and Hughes. TJR. 1982, *Streamline Upwind/Petrov-Galerkin
Formulations for Convection Dominated Flows with Particular Emphasis on the
Incompressible Navier-Stokes Equations™ Comp. Meth. Appl. Mech. Eng., Vol. 32, pp.
199-259.



38

Numerical Model

10.

11

14,

17

18

19.

Dyne, B.R. and Heinrich, J.C., 1993, “Physically Correct Penalty-like Formulations for
Accurate Pressure Calculation in Finite Element Algorithms of the Navier-Stokes
Equations,” Int. J. Num. Meth. Eng., Vol. 36, pp. 3883-3902.

Heinrich, J.C. and Yu C.C., 1988, “Finite Element Simulation of Buoyancy-Driven
Flows with Emphasis on Natural Convection in a Horizontal Circular Cylinder,” Comp.
Meth. Appl. Mech. Eng., Vol. 69, pp. 1-27.

Argyris, J., 1992, “ Petrov-Galerkin Finite Element Approach to Coupled Heat and
Fluid Flow,” Comp. Meth. Appl. Mech. Eng., Vol. 94, pp. 181-200.

Voller, V.R., 1990, “Fast Implicit Finite-Difference Method for the Analysis of Phase
Change Problems,” Num. Heat Transfer, Vol. 17, pp. 155-169.

. Swaminathan, C.R. and Voller, V.R_, 1993, “On the Enthalpy Method,” /nr. Num. Meth.

Hear Fluid Fiow, Vol. 3, 233-244.

-Gau, C. and Viskanta, R, 1986, “Melting and Solidification of a Pure Metal on a

Verticat Wall.,” J. Heat Transfer, Vol. 174, pp. 174-181.

Lacroix. M., 1992, “Predictions of Natural-Convection-Dominated Phase-Change
Problems by the Vorticity-Velocity Formulation of the Navier-Stokes Equations,”
Numerical Hear Transfer, Part B, Vol. 22_ pp. 79-93.

. Benard, H. 1990, “Tourbillions Cellulaires dan une Nappe Liquid,” Revue Generale des

Sciences Pures et Appligees, Vol. 11, pp. 1309-1328, 1900.

. Hale, N.W., Viskanta, R, 1980, “Solid-Liquid Phase Change Heat Transfer and

Interface Motion in Matenals Cooled or Heated from Above or Below,” /nt., J. Heat
Mass Transfer, Vol 23, pp. 283-292

Gau, C, Viskanta. R and Ho. C J, 1983, “Flow Visulization during Solid-Liquid Phase
Change Heat Transfer [I. Melting in a Rectangular Cavity,” Int. Comm. Heat Mass
Transfer, Vol 10, pp 183-190.

Gong. Z. X., 1997, “Time-dependant Melting and Freezing Heat Transfer in Multiple
Phase Change Matenals,” Ph.D Thesis, Department of Chemical Eng., McGill
University, Canada

Gong, Z. X. and Mujumdar, A S, 1998, “Flow and Heat Transfer in Convection-
Dominated Melting in a Rectangular Cavity Heated from Below,” /nt. J. Heat Mass
Transfer, Vol. 41, No 17, pp. 2573-2580.



39

Numencal Model

NOMENCLATURE

A  porosity function for the momentum equation
A" dimensionless form of 4

Ay area of a computational domain

b a small constant

c specific heat

d diameter of the inner cylinder

C constant

Jfu enthalpy-temperature function

la,
Fo Fourier number, Fo=-—-

L2

g gravitational force vector

h  enthalpy
dimensionless enthalpy

k  heat conductivity

l; antificial diffusion coefficient

[ average element length

L. length of rectangular enclosure in x direction
L, length of rectangular enclosure in y direction
n, surface unit normal vector

p  fluid pressure

P dimensionless fluid pressure

Pr Prandtl number, Pr = Ell(_”
I

q heat flux
q. prescnbed heat flux

q. convective heat flux
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radiative heat flux

qdr

qgs heat source

Q instantaneous energy charged
Or total energy charged

Oy maximum energy charged

r  radial co-ordinate

r.  radius of inner cylinder

ry radius of outer cylinder

plcgfLT, - T,)
k,

Ra Rayleigh number, Ra =

s boundary surface coordinate
cl(Tw - Tn)

Ste Stefan number, Sre =
¢ Ah

! time

T temperature

T, reference temperature

T, melting point of PCM

7. isothermal wall temperature

u, velocity component

u; velocity in x direction

u, velocity in y direction

U dimensionless velocity of x direction
I”  dimensionless velocity of ) direction
x, 3 coordinate

X.Y dimensionless coodinate

Greek symbols:
a diffusivity

£ expansion coefficient

6 dimensionless temperature, g - ?‘7;__.?'_

Al latent heat

Al time step
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A porosity of a mush zone

@ shape function of velocity

(}) weighting function for momentum equation
9 shape function of temperature

S weighting function for energy equation
7  penalty parameter

I boundary

M viscosity

£ integration domain

p density

@ the angle horizontal direction to x axis
o, stresstensor

Superscript:

- over bar, boundary value of the variable
0 initial value

Subscripts:

[ liquid

n  th time step

s solid

x  component of x direction
» component of v direction




42

; Chapter 4 l

Results and Discussion

Numerical experiments were carried out to examine effects of PCM container
geometry for more efficient thermal energy storage. Using the numerical model described
in Chapter 3., simulations were carried out for the melting of a PCM (n-octadecane (99%
pure)) in horizontal annuli of the following configurations:

(a) Square external tube with a circular tube inside - Annulus Type A
(b) Circular external tube with a square tube inside - Annulus Type B
Innovative passive methods for enhancement of the melting heat transfer rate such as
flipping and introducing eccentricity for the internal tube for the horizontal annuli were

identified — a principal objective of this thesis.

4.1 MELTING HEAT TRANSFER IN TYPE A ANNULUS
4.1.1 Effect of Heating inside wall, outside wall and both walls

For heating from inside, the inner wall of the tube is maintained at a constant
temperature higher than the melting point of the PCM. The outer wall is adiabatic. The
thermo-physical properties of the PCM used i.e n-octadecane (99% pure) are enumerated
in Table 4.1. The parameters for the computed problem are listed in Table 4.2. A

schematic diagram of the physical model simulated is shown in Fig. 4.1.
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TABLE 4.1
Thermo-physical properties of n-octadecane (99% pure)
Property Solid Phase Liquid Phase
Density (p) kg/m’ 768 768
Thermal Conductivity (K) W/mK 0.358 0.148
Specific Heat (c) Jkg K 2150 2230
Viscosity kg/m s 3.06 x 107
Coefficient of thermal 0.0008
Expansion (B) 1/K
Latent Heat (L) J/kg 243500

The vanous dimensionless numbers used are defined as follows:

_TI-T7, _q, U
qu.—T,' Fo—d:, Pr= P
2 ) (D
0’ c,gfd (T, -T,) Ste = c(T,-T.,)
1k, ' Ah

The Rayleigh and Prandtl number are based on the inside diameter of the annulus.

TABLE 42
Parameters used in the Simulation Runs
Pr Prandtl number 46.1
Ste Stefan Number 0.138
CsCy Ratio of solid/liquid specific heat 0.964
k, ki Ratio of solid/liquid heat conductivity 2.419
6 Initial dimensionless temperature -0.0256
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Fig. 4.1 Schematic diagram of the physical model for type A annulus

Fig. 4.2 shows the predicted distribution of isotherms (left) and streamlines (right)
at various Fourier numbers for Ra=2.844x10°. At this Rayleigh number, in the early stage
of melting (Fo<0.043) no flow is detected in the melt region with only one convection
cell formed in the melt zone. The heat transfer rate is controlled by conduction at short
times. The single convection cell splits into two cells at Fo=0.043. The size of the second
convection cell formed along the top of the heated cylinder increases with elapsed time.
The direction of the flow of the second convection cell is anti-clockwise while the
original cell flows in the clockwise direction. The melt is heated up to the highest
temperature at the junction of the two cells and then floats up due to its lower density.
The two cells recombine at a later stage for Fo > 0.26 and thereafter remain unicellular

for the rest of the melt period.

The local dimensionless heat flux along the heated wall is given as 0/cR, where

6= T-T, o .
“T-r is dimensionless temperature, and @)
R= r-r normalized polar angle ® =4/ 7

r,—r
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Fig. 4.2 Streamlines(right) and isotherms(left) in the melt zone with Ra=2.844x 10° for

heating from inside

Fig. 4.3 displays the dimensionless heat flux distribution ¢8/6R, corresponding to
the flow pattern given in Fig 4.2. Moving from the bottom to the top of the inner cylinder
the heat flux decreases smoothly except for the troughs at the junction of the two
convection cells. This is due to the fact that the melt has the lowest temperature at the

bottom of the cylinder. Since the inner cylinder wall is isothermal, the larger temperature
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difference between the meit and the heating surface results in a higher heat flux. As the
melt front moves upward along the inner cylinder, the melt is being heated up. Hence the
temperature difference between the melt and the heating surface is reduced and so is the
heat flux. Now the melt at the junction between the two cells is at the highest
temperature. Hence the temperature difference is lowest at the junction of the two cells
which results in a sudden drop for the heat flux. Moreover the position of the trough is
time-dependant. This is a result of the changing size of the second convection cell with
time. It can be seen from the dimensionless heat flux distribution curve (Fig. 4.3) that at
Fo=0.302, the two convection cells coalesce into a singe cell. Thermal stratification is
observed in the upper part of the liquid melt region. The temperature gradient decreases
significantly in this region. This results in the predicted smaller heat flux in the upper haif

of the melt region.
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Fig. 4.3 Local Dimensionless heat flux distribution along the heated surface
(Ra=2.844x10%)
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Fig. 4.4 presents the variations of the dimensionless cumulative energy charged
with the dimensionless time (Fourier number). The value of Q i.e, the cumulative energy
charged per unit length is zero at the beginning and increases over the melting process
toward Qr, the cumulative energy charged in the melting process.

The maximum amount of energy which can be charged during the melting process is

Orr = pAs [ frr (TW) - fu (T) ] 3)

This figure shows that the dimensionless cumulative energy charged increases linearly
during the first half of the melting process. But, later on the charge rate begins to slow
down. This can be attributed to the thermal stratification mentioned earlier. At the last
stage of the melting process only a small part of the solid remains at the bottom of the
container. Thermal stratification occurs and significantly decreases the temperature
gradient at the phase change interface, and therefore the phase change heat transfer rate.
Note that in the present model we have assumed that the solid zone is constrained i.e. not

free to move.
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Fourier number
Fig. 4.4 Dimensionless energy charge curve for heating inside wall
(Ra=2.844x10%)
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phase change interface

phase change interface

t phase {. phase
[~ change interface — change interface

(a3) Fo=0 3024 (a4) Fo=0.432
Fig. 4.5 Streamlines(right) and isotherms(left) in the melt zone with Ra=2.844x 10 for

heating from inside

Fig. 4.5 presents the predicted distribution of isotherms and streamlines at
different Fourier numbers for Ra=2.844x10°. The convection cells form much earlier as
compared to the earlier case of heating from inside in annulus type A for Ra=2.844x10°.
At an early stage, Fo=0 022, four convection cells are formed. The duration of the four

convection cells is short. However the evolution of streamlines and isotherms is similar to
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the case of Ra=2.844x10°. As melting progresses, the cells at the top of the inner .
cylinder combine together. Bicellular flow is observed in the intermediate stage for

Fo < 0.238 and thereafter the two cells combine and the flow in the melt remains

unicellular throughout the rest of the process. Another important observation that can be

made is that the shapes of the cells are quite irregular. No physical explanation can be

offered for this observation, however.
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Fig. 4.6 Local Dimensionless heat flux distribution along the heated surface
(Ra=2.844x10")

Fig. 4.6 displays the local dimensionless heat flux distribution corresponding to
the flow pattern given in Fig. 4.5 As stated earlier, the troughs in the curves correspond
to the junctions of the convection cells. The single trough in the curve for Fo=0.1296 is a
result of bicellular melt flow during this period. For Fo=0.302 the low heat flux in the

upper part of the cylinder is due to thermal stratification i.e. high temperature fluid rises

to the upper region.
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Fig. 4.7 Comparison of dimensionless cumulative energy charge curve for heating from

inside

Fig. 4.7 shows a comparison between the dimensionless cumulative energy
charged in type A horizontal annulus for heating from inside for two Rayleigh numbers.
As in the early stage heat transfer is mainly due to conduction, the cumulative energy
charged is identical in both cases Now as the Rayleigh number increases natural
convection develops earlier and increases the melting rate due to increased heat charge.
This is due to the free convective flow in high Rayleigh number case being much

stronger than the one in the low Rayleigh number case.

A comparison of the fraction melted as a function of time for the two Rayleigh
numbers is presented in Fig. 4.8. The rate of energy charged to the system is enhanced by

the convective flow in the melt which is dominant for high Rayleigh number. Hence the
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fraction melted is more for higher Rayleigh number as compared to the lower Rayleigh .
number.
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Fig. 4.8 Comparison of melt fraction as a function of Fourier number for type A

annulus for heating inside wall

The melting of a PCM in a type A annulus when heated from outside was studied
using the numerical model described in Chapter 3. The inside wall of the tube is assumed
to be adiabatic. The parameters used for the simulated problem are identical to those in

Table 4.1.

For two dimensional melting of a PCM in a rectangular container heated from
below, it is known from experiments that three-dimensional convection cells develop and
last for a short period of time during the early stage{1]. In this study three-dimensional
effects on melting are not considered since a two-dimensional model is employed.
However, the duration of the three-dimensional convection is very short [1,2] compared

with the whole melting process so that the two dimensional results are believed to be
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. close to reality for long aspect ratio containers. No experimental data are available for

direct validation of the predicted results at this time.
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Fig 4.9 Streamlines(right) and isotherms(left) in the melt zone with Ra=2.844x10° for

heating from outside
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Fig. 4.9 displays the predicted streamlines and isotherms at different Fo values for
the computed problem (Ra=2.844x10°). It can be seen that at Fo=0.0432 a total of nine
convection cells develop. The predicted phenomena are consistent with the results
obtained by Devahastin et a/ [3] for heating from two adjacent walls in a rectangular
enclosure. With the increase in the melt depth, the size of the convection cells increases
and the number of cells decreases. The rightmost cell in Fig.4.9 has a large portion at the
top of the cavity as the hot melt drifts up resulting in faster melting rate near the top.
Moreover, the circulation along the vertical wall intensifies and embraces larger part of
the melt zone as time progresses on. This results in the appearance of an upward melting
pattern. The size and number of cells is a function of time and as melting proceeds, the

cells merge with the neighboring ones and grow in size.

The isotherm contours reveal a concave curvature at the junction of the cells
which can be explained as follows. At Fo=0.129, the circulation of the leftmost cell with
a clockwise motion and its neighboring cell with an anti-clockwise direction deliver the
hot melt to the interface resulting in the formation of high temperature zone near the
bottom of the junction. On the other hand, since the third cell is clockwise and the second
cell is anti-clockwise, a low temperature junction is observed at the junction of the

second and third cells from the right.

Corresponding to the flow patterns and isotherms in Fig. 4.9, Fig 4. 10 and Fig.
4.11 illustrates the local dimensionless heat flux 88/6X, d0/3Y along the heated isothermal
vertical wall and the bottom wall. respectively. The occurrence of each trough and crest
corresponds to the junctions of the cells in Fig.4.9. The first crest represents the junction
of the leftmost cell and its neighbors Since the first cell is clockwise and the second one
is anti-clockwise a low temperature zone is found near the bottom. A high temperature

gradient leads to a high heat flux
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Fig. 4.10 Dimensionless heat flux ¢6/5Y along the heated bottom wall at different

dimensionless times
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Fig. 4.11 Dimensionless heat Flux d8/6X, along the heated vertical wall at different

. dimensionless times
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(a3) Fo=0 3024 (a4) Fo=0.432

Fig. 4.12 Streamlines(right) and isotherms(left) in the melt zone with Ra=2.844x10° for

heating from both walls

[n addition to heating the inside wall and outside wall numerical simulations were
carried out to study the effect of heating both inner and outer walls in a type A annulus.
Both the walls of the tube are maintained at a temperature higher than the melting point

of the PCM. The parameters are identical to those listed in Table 4.1.
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Displayed in Fig. 4.12 are the predicted distributions of isotherms(left) and
streamlines(right) at various Fourier numbers for Ra=2.844x10°. For Fourier number less
than or equal to 0.13 it is observed that the distribution of the streamlines and isotherms
is similar to that for heating inside wall and outside wall separately. However for
Fo=0.173, only a small triangular solid region exists and for the rest there is flow in the
melt zone due to convection currents. As time progresses the remaining part of the solid

PCM also melts. The dominant role played by convection is clearly noticeable for whole

of the melting process.
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Fig. 4 13 Local Dimensionless heat flux distribution along the heated inside wall

Displayed in Fig 4 13 is the local dimensionless heat flux along the inside wall
corresponding to the flow pattern in Fig 4.13. Also Fig. 4.14 and Fig. 4.15 illustrates the

local dimensionless heat flux 88/¢Y. d6/XY along the heated isothermal vertical wall and

bottom wall respectively

(Ra=2.844>10%



57

Results and Discussion

0.2

03 0.4 05 0.6 0.7 0.8 09 1.0

Y

dimensionless Heat Flux

Y T v v T Y

— F0=0.0432
Fo=0.432

-------- Fo0=0.1296
Fo=0.1728

50

40

30

20

Fig. 4.14 Dimensionless heat flux d8/8Y along the heated bottom wall at different

0.0 0.1 02

dimensionless times

03 04 05 0.6 0.7 0.8 0.9 1.0

40 g -

dimensionless Heat Flux

- . v . v . 40

A i i i

0.0 01 02

03 O04 0S5 06 07 08 09 10
Y

Fig. 4.15 Dimensionless heat Flux c8/8X. along the heated vertical wall at different

dimensionless times




58

Results and Discussion

With the same explanation stated earlier, the occurrence of each trough and crest

corresponds to the junctions of the cells in Fig.4.12.

From the results of the numerical experiments, it is observed that the effect of
heating both walls on the cumulative heat stored is same as the sum of heating inside wall
and outside wall separately until there is interaction between the two melt zones. This can
be easily deduced by observing the streamline and isotherm contours in Figures 4.2, 4.9
and 4.12 for either of the cases during the first stage of the melting before the interaction
begins of the melt zones, formed by heating inside wall and outside wall. Also it is found
that an increase in the Rayleigh number results in an earlier onset of convection thereby
expediting the melting process. Moreover, another observation that the melting is most
inefficient in the bottom of the enclosure when heating inside wall. While thermal
stratification is attained at the top part of the cavity, PCM at the bottom part remains in
solid state for heating the inside wall of type A horizontal annulus. Thermal stratification
can be eliminated in type A annulus by heating the outside wall, which results in faster
melting. Thus there is merit in heating outside wall and of course heating both walls gives

rise to faster melting and the energy charged to the solid PCM also increases.

4.1.1 Effect of Eccentricity on the Enhancement of Heat Transfer Rate

Fig. 4.2 shows that heating the inside wall of the horizontal type B annulus causes
thermal stratification at Fo=0 432 which results in lower heat flux and hence reduced
melting. To mitigate this problem and to enhance the heat transfer rate an eccentric
annulus is identified as a better alternative to the concentric one and simulations were
carried out to investigate how much the heat transfer rate can be enhanced and what
parameters influence the enhancement of heat transfer rate, if any. Due to limitations of
the computing resources no attempt is made to perform a complete parametric study.
Only the effect of Rayleigh number (Ra) is investigated. However the trends are expected
to hold even for other geometric parameter values. Note that the axis of the inner

container is below (not above) that of the outer one.
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Fig. 4.16 Concentric and Eccentric annuli

Fig. 4.16 Shows the geometric representation of eccentricity in type A annulus.
Displayed in Fig. 4.17 are the predicted streamlines and isotherms at different
dimensionless times (Fo numbers) for a Rayleigh number of 2.844x10° in an eccentric
annulus, when heated from inside. At an early stage the evolution of the streamlines and
isotherms is similar to that observed for the concentric annulus in Fig. 4.5 For Fo >
0.0432 two convection cells are formed in the melt zone. The size of the convection cells
increases as time progresses for each case and the flow is bicellular. But at Fo > 0.302 for
the concentric annulus the two cells merge and become unicellular for the rest of the
melting, unlike for the eccentric annuli where the two convection cells persist. The
convection cells merge for the eccentric annulus at Fo = 0.454 and thereafter remain

unicellular.

Fig. 4.18 presents the local dimensionless heat flux distribution corresponding to
the flow pattern shown in Fig 4 17 As mentioned earlier the trough in the heat flux
distribution corresponds to the junction of the two convection cells. The single trough in
the curves for Fo=0 1296, Fo=0.3024 and Fo=0 432 is a result of bicellular melt flow

during this period.
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Fig. 4.19 shows a comparison between the dimensionless cumulative energy

charged in the system for both concentric as well as eccentric annuli. The cumulative
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Fig 4.17 Streamlines(right) and isotherms(left) in the melt zone with Ra=2.844x 10° for

heating from inside ( S = Solid phase )

energy charged to the system 1s identical for both concentric and eccentric annulus until
Fo <0.302. But later on the energy charged to the system is more for eccentric annulus as

compared to the concentric annulus. This may be attributed to the fact that a bicellular
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flow pattern persists for eccentric annuli which results in enhancement of energy charged .

into the system.
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Fig. 4.18 Local Dimensionless Heat Flux Distribution along the Heated Surface
(Ra=2.844x10°%)
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A comparison of the fraction melted as a function of time for eccentric and
concentric annuli is presented in Fig. 4.20. It can be seen that more melting is achieved
with eccentric annulus rather than that with concentric annulus at longer elapsed times. In
addition to this, no obvious thermal stratification occurs at the last stage of the melting
process for the eccentric annulus. Hence the role played by free convection continues and

is not reduced during the last stage of the melting process.
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Fig 4 20 Melt Fraction as a function of Fourier Number
(Ra=2.844x10°

Fig. 421 presents the predicted distribution of isotherms and streamlines at
different Fourier numbers for Ra=2 84410 in type A eccentric annulus. The convection
cells form much earlier as compared to the earlier case of heating from inside in eccentric
annulus type A for Ra=2 844x10°. However the evolution of streamlines and isotherms is
similar to the case of Ra=2.844<10° As melting progresses, the cells at the top of the

inner cylinder combine together. Bicellular flow is observed in the intermediate stage,
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thereafter the two cells combine and the flow in the melt remains unicellular throughout

the rest of the process. Moreover the shapes of the cells are quite irregular.
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Fig. 4.21 Streamlines(right) and isotherms(left) in the melt zone with Ra=2.844x 10’ for

heating from inside

Fig. 4.22 displays the local dimensionless heat flux distribution corresponding to

the flow pattern given in Fig. 4.5. As stated earlier, the troughs in the curves correspond ’

to the junction of the convection cells. The single trough in the curve for Fo=0.1296 is a



64

Results and Discussion

result of bicellular melt flow during this period. Lower heat flux at higher Fourier number

results due to thermal stratification which is clearly visible in Fig.4.21 for Fo=0.432.
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Fig. 4.22 Local Dimensionless Heat Flux Distribution along the Heated Surface
(Ra=2.844x10")

Fig. 4.23 shows a comparison between the dimensionless cumulative energy
charged in the system for both concentric as well as eccentric annuli at the same Rayleigh
number of 2.844<10". The cumulative energy charged to the system is identical for both
concentric and eccentric annuli only during the initial stage. The energy charged to the
system is higher for eccentric annulus as compared to the concentric annulus for Fo>0.05
as can be seen in Fig. 4.23. This is due to the fact that more melting occurs in the
eccentric annulus as convection continues to play a very important role as opposed to that

in concentric annulus.
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Fig. 4.23 Dimensionless Cumulative Energy Charge as a function of the Fourier number

for eccentric and concentric annulus at Ra=2.844x10’
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A comparison of the fraction melted as a function of time for eccentric and
concentric annuli is presented in Fig. 4.24. More melting is achieved with eccentnc

annulus rather than that with the concentric annulus.
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Fig. 4.25 Dimensionless cumulative energy charge curve

Fig. 4.25 shows a comparison between the dimensionless cumulative energy
charged in type A horizontal annulus for heating from inside for two Rayleigh numbers.
In the early stage heat transfer is mainly due to conduction and the cumulative energy
charged is identical in both cases for a short period. Now as the Rayleigh number
increases natural convection develops earlier and increases melting due to increased heat
charge. This can be attnibuted to the fact that free convective flow in high Rayleigh

number case is much more than the one in the low Rayleigh number case.
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A comparison of the fraction melted as a function of time for the two Rayleigh
numbers is presented in Fig. 4.26. The rate of energy charged to system is enhanced by
the convective flow in the melt which is dominant for high Rayleigh number. Hence the

fraction melted is more for higher Rayleigh number as compared to the lower Rayleigh

number.
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Fig. 4.26 Comparison of melt fraction as a function of Fourier number

From the numerical experiments it can be deduced that eccentric geometry is
superior to the concentric one (all other parameters being held constant) due to the
vertically upward orientation of the buoyancy force ir the melt phase at high Rayleigh
numbers. This follows directly from the comparison of the cumulative energy charged
and melt fraction (Fig 4 19, 4.20 for Ra=2.844x10° and Fig.4.23, 4.24 for Ra=2.844x10")
for both eccentric and concentric horizontal annuli of type A. An increase in the
Rayleigh number results in earlier onset of natural convection adding to the benefit of
eccentricity of the annulus increasing the rate of melting. Note that the centerline of the

inner container must be below (not above) the axis of the outer cylinder.
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4.1.2 Effect of Flipping on the Enhancement of Heat Transfer Rate

Flipping of the PCM container in the type A horizontal annulus is identified as a
potential passive means of enhancing the heat transfer rate during the latter stages of the
melting process. A schematic representing this idea is represented in Fig.4.27. Numerical
experiments were carried out to determine how much the heat transfer rate can be

enhanced using this simple procedure.

It is assumed that the liquid phase is well mixed and the melt is stationary after
the PCM container is flipped or inverted. However, numerical simulations indicated that
as the initial conditions after the PCM container is inverted whether the liquid phase is
well mixed and stationary (at pre-flipping conditions) or not has little effect on the heat
transfer rates. Therefore, in the subsequent situations the temperature and velocity fields
were not modified to the adiabatic mixing cup temperature after the horizontal annulus
container is inverted. The solid phase is fixed spatially and not allowed to move as the

container is inverted(or flipped).

melt region

isothermal

isothermal
surface

melt region

change nterface solid region

(a) (b)
Fig. 4.27 Schematic of the physical system for annulus type A



69

Results and Discussion

Consider the case of heating the inside wall of type A horizontal annulus. The .

PCM container is flipped at Fo = 0.216 and held in that position for subsequent heating.
The effect of flipping on the melting and the heat transfer rate is studied numerically

(al) Fo=0.259 (bl) Fo=0.302

(a2) Fo=0 259 (b2) Fo=0.302
Fig. 4.28x Streamlines(right) and isotherms(left) in the melt zone with Ra=2.844x10° for
unflipped and flipped horizontal annuli of type A
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(a3) Fo=0.346

(a4) Fo=0.432 (b4) Fo=0.432
Fig 4.28y Streamlines(right) and isotherms(left) in the melt zone with Ra=2.844x10° for

unflipped and flipped honzontal annuli of type A

Fig. 4.28x and 4.28y presents the predicted streamlines and isotherm contours at
different dimensionless times ( Fourier numbers ) for the second period in the case of the
flipped horizontal annulus (type A) for a Rayleigh number of 2.84x10°. No thermal

stratification occurs in the flipped container and convection continues to play a
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significant role; it does not decrease during the last stage of the melting process. This '

explains why the energy charge rate is enhanced by flipping the horizontal annulus of

type A.

Fig. 4.29 displays the local dimensioniess heat flux distribution corresponding to
the flow pattern shown in Fig.4.28 The crest and the trough in the heat flux distribution
curve correspond to the junction of the convection cell. At Fo=0.346 and Fo=0.432 the

single trough is a result of bicellular melt flow during this period.
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Fig. 4.29 Local Dimensionless Heat Flux Distribution along the Heated Surface
(Ra=2.844=10°

Fig. 4.30 Shows a comparison between the dimensionless cumulative energy
charged in the system for both unflipped as well as flipped annuli. As the PCM container

is flipped at Fo > 0.216 Fig. 4.31 reveals that the cumulative energy charged for the .
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flipped case is higher than that for the unflipped case. This can be attributed to the fact

that for the flipped horizontal annulus bicellular flow continues and hence keeping the
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Fig. 4.30 Comparison of Dimensionless Cumulative Energy Charge as a function of the

Fourier number(Ra=2.844x10%)
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Fig 4 31 Amplification of Fig.4.30 (Ra=2.844x10°)
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convection flow active thereby increasing the heat transfer rate. But for the unflipped

case it is clearly observed in Fig. 4.2 that thermal stratification occurs and reduces the

heat transfer rate.
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Fig. 4.32 Melt Fraction as a function of Fourier Number (Ra=2.844x10°)
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A comparison of the fraction melted for both the flipped and unflipped horizontal
annulus of type A is presented in Fig.4.32. From the figure it is obvious that there is
enhancement in the melting rate with the flipped container relative to the conventional

unflipped case at long elapsed times.

It should be noted that the concept of flipping at an appropriate time during the
melt cycle (storage or charge cycle) may not be feasible for all design configuration of
PCM storage type heat exchangers. Also, the beneficial effect of flipping appears only
during the late stages of melting. Again, these results assume that the unmelted portion of

the PCM is fixed i.e not free toc move during melting or upon flipping.
4.2 MELTING HEAT TRANSFER IN TYPE B ANNULUS
4.2.1 Effect of Heating inside wall, outside wall and both walls

For type B annulus, a schematic diagram of the physical model simulated is
shown in Fig.4.34. To study the effect of heating only inside wall, the inner wall of the
tube is maintained at a constant temperature higher than the melting point of the PCM.
The outer wall is adiabatic. The PCM used for the numerical experiments is n-octadecane
(99% pure) and the parameters for the computed problem are the same as listed in Table
4.2

The various dimensionless numbers used are defined as follows:

T-T. ‘c,gBd* (T, -T, -
SULELT By . pr=St pa-? 884 ( )’ o= ST =To)

T.-T.° d k, yik, Ah

6

The Rayleigh and Prandtl number are based on the inside diameter of the annulus.

The local dimensionless heat flux along the heated wall is given as 3/6R, where

r-T.
T.-T.

is dimensionless temperature, and
r—r

R= : normalized polar angle ®=¢/
r,-r

6=

4)

)
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y “f:xll

$=-n/2
v
Fig.4.34 Schematic diagram of the physical model for type B annulus

Fig. 4.34 displays the predicted distributions of isotherms (left) and streamlines
(right) at various Fourier numbers for Ra=2.844x 10%. It is seen that at Fo=0.0432 a total
of six convection cells develop. The predicted phenomena are similar to those obtained
by Gong et al. [4] for melting in a rectangular cavity heated from below. The size of the
convection cells increases and the number of cells decreases with increase in the melt
depth. The increase in the melt depth further results in the formation of a single
convection cell at the top heated surface of the inner tube. At Fo=0.26 it is found that a
bicellular flow exists and that only a small portion of the PCM at the bottom remains to

be melted.

Figs. 436, 437 and 4 38 display the dimensionless heat flux distributions 38/8Y,
d8/8X. d8/cY along the heated bottom wall, vertical wall and top wall, respectively
corresponding to the flow patterns shown in Fig. 4.35. Moving from left to the right along
the bottom heated wall the heat flux is almost constant except for the troughs at the
junction of the convection cells as displayed in Fig. 4.36. Along the heated vertical wall
the heat flux decreases smoothly The melt has the highest temperature difference at the
bottom of the inner tube which results in higher heat flux. The dimensionless heat flux
distribution along the inner heated top wall is wave like for Fo=0.0432 and 0.086

corresponding to the multiple convection cells. There are 3 crests and 2 troughs on the
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Fig. 4.35 Streamlines (nght) and isotherms (left) in the melt zone with Ra=2 844 x 10° for

heating from inside

dimensionless heat flux curve of Fo=0.0432 displayed in Fig. 4.38. These crests and

. troughs correspond to the five junctions of the six convection cells visible in the
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streamline contours in Fig.4.35(al). The first crest from left corresponds to the junction
of the first and second convection cells. The flow direction of the first circulation is
clockwise and the second circulation is anti-clockwise. The liquid layers from the two
circulation cells are cooled after passing the phase change interface and then reach the
junction of the two circulation zones at the bottom. This causes a low temperature zone to
appear near the junction at the bottom of the inner surface of the container. As the bottom
surface of the inner wall is isothermal, a low temperature near the bottom isothermal
surface means a large temperature difference for heat transfer. This results in a higher
heat flux. Similarly the first trough from left corresponds to the junction of the second
and third convection cells in Fig. 4.35(al). At the junction of the two cells a high
temperature zone is developed which results in lower temperature difference between the

wall and the melt and hence a lower heat flux.
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Fig. 4.39 presents the variation of the dimensionless cumulative energy
charged with the dimensionless time (Fourier number). The value of Q) i.e, the cumulative
energy charged per unit length is zero at the beginning and increases over the melting
process toward Qr, the cumulative energy charged in the melting process.

The maximum amount of energy which can be charged during the melting process is

Our = pAg [fu (1) - fr (T) ] (6)
The dimensionless cumulative energy charged increases linearly during the first half of
the melting process. Afterwards, the charge rate begins to slow down. This occurs due to
thermal stratification during the terminal stage of the melting process leading to a lower

heat transfer rate at large Fourier numbers.
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Fig 4.39 Dimensionless energy charge curve

Numerical experiments were carried out to study the effect of heating outside wall
of type B annulus. The inside wall is assumed to be adiabatic for this case.
Fig. 4.40 presents the predicted streamlines and isotherms at different Fo values

for the computed problem (Ra=2.844x10°). During the initial stages the heat transfer is
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controlled mainly by conduction. As time progresses convection cells develop and at
Fo=0.0864 four cells are observed. Later on these cells merge to form two large cells and
the flow continues to remain bicellular until the whole PCM solid melts. No thermal
stratification is observed even at the late stages of melting as good mixing appears to take

place, until full melting of the PCM solid occurs.
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Fig. 4.40 Streamlines(right) and isotherms(left) in the melt zone with Ra=2.844x 10° for

heating from inside



Results and Discussion

Displayed in Fig. 4.41 are the local dimensionless heat flux, 88/0R, distributions
along the heated outer wall corresponding to the flow patterns presented in Fig. 4.40.
With the same explanation as noted earlier, the troughs in the curves correspond to the
junction of the adjacent convection cells. At Fo=0.086, the two crests and one trough
correspond to the junction of the four convection cells shown in Fig4.40 (a2). For
Fo=0.3024, the lower heat flux is due to the fact that at this time most of the solid is
melted and the difference in temperature between the outer wall and melt is not very
high.
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Fig. 4.41 Local Dimensionless heat flux distribution along the heated surface
(Ra=2.844<10°

Fig.4.42 presents the variation of the dimensionless cumulative energy charged as
a function of the Fourier number. As can observed from this figure the energy charge rate
increases nearly linearly initially and at the final stage of the melting it is almost constant.
Near the outer wall of the tube most of the solid is melted and hence there is no further

increase in the energy charge.
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Fig. 4.42 Dimensionless energy charge curve (Ra=2.844x10°%)

To study the effect of heating the inside wall and outside wall simultaneously
numerical simulations were carried out using the numerical model described in Chapter
3. Both walls of the tube are maintained at a temperature higher than the melting point of

the PCM. The parameters are identical to those listed in table 4.1.

Displayed in Fig. 4.43 are the predicted distributions of isotherms (left) and
streamlines (right) at various dimensionless times for Ra=2.844x10° At Fo=0.0432 it is
observed that the distribution of streamlines and isotherms is the same as the one
obtained for heating the inside wall and outside walls separately. This is due to the fact
that there is no interaction between the melt zones formed by heating the inside wall and
outside wall. However as time progresses interaction between the melt zones leads to
more melting and hence at Fo=0.0864 only a small portion of the PCM solid remains.

Later on, the entire solid melts. Depending on the location a number of convection cells
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are observed of different sizes. This increased melting is a result of the dominant effect of

convection.

(al) Fo=0.0432 (a2) Fo=0.0864

Fig. 4 43 Streamlines(right) and isotherms(left) in the melt zone with Ra=2.844x 10°

when both the inside and outside walls are heated

Figures 4.44,4.45 and 4 .46 present the local dimensionless heat flux distributions
8/CY, 8/EX. 88/8Y along the heated isothermal bottom wall, vertical wall and top wall of
the inner tube, respectively corresponding to the flow patterns shown in Fig. 4.43.
Moreover, Fig. 4.47 displays the local dimensionless heat flux ¢8/6R along the heated
outer wall. As shown in Fig.4 44 it is observed that the heat flux is almost uniform except
for the troughs at the junction of the convection cells. Similarly along the heated vertical
wall of the inner tube the heat flux drops gradually. Moving along the heated top wall of
the inner tube it is seen that a wave like pattern is observed which corresponds to the
multiple convection cells as displayed in Fig 4 46. With the same explanation applicable
here the troughs and crests correspond to the junctions of the convection cells. Fig. 4.47
shows the occurrence of three troughs which represent the four convection cells as

observed in Fig. 4.43(a2) at Fo=0 0864




84

Results and Discussion
00 01 02 03 04 05 06 07 08 09 1.0
30 | ’ ' - " ' 30
28 Fo=0.0864 g:
26 —— Fo0=0.0432
x 24f 24
2 22} 1 22
T 20} 20
[+}]
£ 18} ;118
@ 18f i]1e
e 14 14
o 12f 12
& 10k 110
(0)]
E 2 P Y S 8
© 6t 6
af 4

00 01 02 03 04 05 06 07 08 09 10
X

Fig. 4.44 Dimensionless heat flux 89/5Y along the heated bottom wall at different

dimensionless times (Ra=2.844x10°)
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Fig.4.48 presents the dimensionless cumulative energy charged as a function of
the Fourier number when both walls of the annulus are heated. It can be seen that the
energy charged remains almost linear until the final stage of the melting when it remains
constant. This can be attributed to the fact that in the final stage almost all the PCM has

melted giving rise to lower temperature difference and hence reduced rate of energy

charge.
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Fig 4 48 Dimensionless energy charge curve (Ra=2.844x10°)

Thus, from the aforementioned results it can be deduced that the effect of heating
both walls on the streamlines and isotherms is similar to heating inside wall and the
outside wall separately in type B horizontal annulus at lower dimensionless times when
no interaction between the two melt takes place. This is clearly visible for Fo=0.0432 in
Figures 4.35,4.40 and 4 43 for heating the inside wall, outside wall and both walls

respectively. No thermal stratification is observed for heating outside and both walls of
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type B horizontal annulus although it is predominant for higher Rayleigh numbers when

heated from inside wall.

4.2.2 Effect of Flipping on the Enhancement of Heat Transfer Rate

To enhance the heat transfer rate during the latter stages of the melting process,
Flipping or inverting of the PCM container in the type B horizontal annulus at the
appropriate elapsed time after melting begins is proposed as a innovative passive method.
A schematic representing the idea is shown in Fig.4.49. Numerical experiments were
carried out to determine to what extent the heat transfer rate can be enhanced using this
simple procedure. Moreover it is reasonable to assume that the liquid (melt) phase is
well-mixed and the melt is stationary after the PCM container is flipped or inverted and
melting proceeds without interruption. Numerical simulations indicated that as the initial
condition after the PCM container is inverted whether the liquid phase is well mixed and
stationary with original temperature distribution or not has little effect on the heat transfer
rate. Therefore, in subsequent simulations the temperature and velocity fields were not

modified after the container is inverted

isothermal
surface

melt region

phase
change interface )

Fig 4 49 Schematic of the physical system for annulus type B

Consider the case of heating only the inside wall of type B horizontal annulus.

The PCM container is flipped at Fo = 0.13 and held in that position for subsequent
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heating. The effect of flipping on the melting and the heat transfer rate is studied

numerically

(a) Fo=0.1296

(a2) Fo=0.1728 (b2) Fo=0.1728
Fig. 4.50x Streamlines(right) and isotherms(left) in the melt zone with Ra=2.844x10° for

heating from inside in case of unflipped and flipped annuli of type B
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(b3) Fo=0.216

=

(a4) Fo=0.259 (b4) Fo=0.259
Fig. 4.50y Streamlines(right) and isotherms(left) in the melt zone with Ra=2.844x10° for
heating from inside in case of unflipped and flipped annuli of type B

As can be seen from the isotherms plotted in Fig. 4.35(a4) thermal

stratification occurs during the last stage of the melting process at Fo=0.259. Hence for '
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heating from inside in a type B horizontal annulus the PCM container is inverted at
Fo=0.1296. Fig. 4.50x and Fig.4.50y present the predicted streamlines and isotherm
contours at different dimensionless times (Fourier numbers) for the unflipped annulus
(type B) and for the second period in the case of the flipped horizontal annulus (type B)
for a Rayleigh number of 2.84x10°. In Fig. 4.50x (a) since the container is inverted at Fo
> 0.1296, the streamline and isotherm distribution are similar to those for the unflipped
annulus case. No thermal stratification occurs in the flipped container at Fo=0.259 when
compared to that of unflipped annulus (Fig.4.50y (a4)) and free convection continues to
play a significant role as can be seen in Fig.4.50y (b4). In fact the inversion of the
container gives rise to a higher melting rate. This explains why the energy charge rate is

enhanced by flipping the horizontal annulus of type B.
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Fig. 4.53 Dimensionless heat flux 88/5Y along the heated top wall at different

X

dimensionless times
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Figures 4.51, 4.52 and 4.53 display the dimensionless heat flux distributions
00/8Y, 08/0X, 0/8Y along the heated bottom wall, vertical wall and top wall for the
flipped annulus type B respectively, corresponding to the flow patterns shown in Figures
4.50x and 4.50y. Along the heated bottom wall of the inner tube the heat flux obtained
for Fo=0.13 is the same as obtained for unflipped annulus of type B. However, after
inversion of the container the heat flux, moving from left to right of the bottom heated
wall, at various Fourier numbers is found to decrease steadily. In fact, at Fo=0.173 a
trough and a crest is observed which basically corresponds to the junctions of the
convection cells in Fig.4.50x(b2). For the inverted container the dimensionless heat flux
along the heated vertical wall increases from the bottom to the top. Also the heat flux
distribution along the heated top wall of the inner tube from left to right appears to be the

same after inversion as can be seen from Fig.4.53.
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Fig. 4.54 Comparison of Dimensionless Cumulative Energy Charge as a function of the
Fourier number(Ra=2.844x10°)
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Fig. 430 shows a comparison between the dimensionless cumulative
energy charged in the system for both unflipped as well as flipped annuli. In Fig. 4.54 the
energy charge curves with and without inverting the container are identical prior to Fo=
0.1296. This is because the flipping action takes place after Fo=0.1296. Fig. 4.31 reveals
that the cumulative energy charged for the flipped case is higher than that for the
unflipped case. Thus there is no obvious slow-down in the energy charge curve for the

case of inverting the PCM container during the final stage of the melting process.
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Fig. 4.55 Melt Fraction as a function of Fourier Number (Ra=2.844x 106)

A comparison of the fraction melted for both the flipped and unflipped horizontal
annulus of type B when only the inside wall is heated is presented in Fig.4.32. This figure
reveals that there is a enhancement in the melting rate with the flipped container relative
to the conventional unflipped case at long elapsed times. It can be deduced that the

beneficial effects of flipping towards increase in the heat transfer rate is helpful only
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during the late stages of the melting process. Of course the magnitude of such
enhancement will depend on the PCM used, the container geometry, boundary conditions

as well as the time when the flipping occurs.

4.3 CONCLUDING REMARKS

Melting of a pure phase change material in tube geometries of two different
configuration i.e type A horizontal annulus and type B horizontal annulus were studied
numerically. Numerical experiments were carried out for each of the configurations for
heating the inside wall, the outside wall and both walls simultaneously to determine

which one is more effective for more rapid thermal storage.

Fig.4.56 displays a comparison of the dimensionless thermal energy charged for
both horizontal annuli of type A and B for heating from inside as a function of the
Fourier number. Although for type B annulus the energy charged is greater than that for
the type A annulus during the first stage of the melting process, later on the rate of energy
charged is more rapid for the type A annulus. Moreover there is an almost linear increase
in the cumulative energy charged As can be seen in Fig. 4.57 the melt fraction for the

type A annulus is lower than that of the type B annulus.

Fig 4.58 presents a comparison between the cumulative energy charged for
heating from outside in both horizontal annuli of type A and B. Type A annulus has a
higher cumulative energy charge rate rather than that of annulus type B. However a
comparison of the corresponding melt fraction versus Fourier number curves shown in
Fig. 4.59 shows that the melting rate is higher for type B annulus than type A annulus.
This apparent anomaly is due to the fact that the melt fraction considers only the latent
heat storage while the cumulative energy stored includes both sensible and latent heat

components.
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Fig. 4. 56 Comparison of dimensionless cumulative energy charge curve for heating the

inside wall (Ra=2.844x10°%)
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Fig. 4.58 Comparison of dimensionless cumulative energy charge curve for heating the
outside wall (Ra=2.844x10%)
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Fig. 4.61 Comparison of melt fraction as a function of Fourier number for heating
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Fig. 4.60 displays a comparison between the cumulative energy charged in
horizontal annulus of type A and B when heated from both inside and outside wall,
respectively. The energy charged in case of annulus type A is higher than that of annulus
type B. Fig. 4.61 shows a comparison of the melt fraction as a function of Fourier
number where annulus of type B melts at a faster rate thereby melting the entire solid

PCM.

For both horizontal annuli of type A and B it is observed that the effect of heating
both walis is the same as heating inside wall and outside wall separately until there is
interaction between the two melt zones. However, during the late stages melting appears
to occur at a faster rate due to good mixing between the melt zones formed by heating
both the inside and the outside walls. This suppresses thermal stratification, which occurs
in both horizontal annulus of type A and B for heating the inside wall. The thermal
stratification is attained in the upper part of the cavity while the PCM at the bottom
portion remains solid. This is due to the fact that the energy charged to the system is
mainly carried upward by the free convective flow in the melt. Thus energy is used to
raise the temperature of melt instead of melting the PCM. In other words energy storage

in the system is in the form of sensible heat and not latent heat.

To counteract the problem of stratification for heating of the inside wall in type A
annulus, introduction of eccentricity is proposed as a viable solution. This is supported by
the numerical results obtained in this study. This is mainly attributed to the vertically
oriented buoyancy force in the melt phase at high Rayleigh numbers, which facilitates
melting. The extent of eccentricity determines the increase in melting as compared to the
concentric case. The melting rate below the heated inner wall is controlled by conduction

and hence is lower than that on the sides and top wall.

Another interesting yet simple approach to take care of stratification in both
horizontal annulus of type A and B for heating the inside wall is flipping or inverting the

container at pre-selected times after initiation of melting. The present numerical study



99

Results and Discussion

reveals a good improvement in the melting rate, which indirectly reduces the melting

time as compared to the conventional (unflipped) PCM container.

The numerical evaluation of heating the outside wall of both type A and B
horizontal annuli of reveals that there is merit to heating the outer external bottom wall. It
also eliminates the interference of thermal stratification as observed when heating only

the inside wall.
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NOMENCLATURE

d Diameter of the inncr ¢y inder
Ju  cnthalpy-tcmperature function
g  gravitational force vector

h  enthalpy

k  heat conductivity

O instantaneous encrgy charged
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QOr total energy charged

Oxr maximum energy charged
r. radius of inner cylinder

r,  radius of outer cylinder

r  radial co-ordinate (see Fig. 1)
t time

T  temperature

Tp reference temperature

T, melting point of PCM

T. isothermal wall temperature
u, velocity component

u, velocity in x direction

u,  velocity in y direction

x. ¥ coordinate

Greek symbols :

a diffusivity

£  expansion coefficient
4h  latent heat

¢ polar angle (see Fig. 1)
M Vviscosity

L density

Subscripts :

[ hqud

s solid

x  component of x dircction

v componcnt of v direction

Dimensionless groups :

. la
Fo Fourier number Fo = .,'
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Pr Prandtl number Pr= %’(ﬁ
{
. - - r - rs
R Nommalized radial co-ordinate R = .
r b
p'cigBd(T,, - T,,)
Ra Rayleigh number Ra =
k)
Ste Stefan number Ste = M
Ah
T-T
¢ dimensionless temperature 6 = 7.——7_4

m

® normalized polar angle ®= ¢/n
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Conclusions

Using a mathematical model the free convection-dominated melting heat transfer
characteristics of a phase change material (PCM) ( n-octadecane (99% pure)) are
determined for horizontal annuli of the following configurations:

(a) Square external tube with a circular tube inside - Annulus Type A

(b) Circular external tube with a square tube inside - Annulus Type B

Numerical experiments were carried out for each of the configurations for the following
three cases: heating the inside wall, heating the outside wall and heating both walls
simultaneously to a temperature above the melting point of the PCM. Additionally,
various innovative passive methods such are introducing eccentricity to the annulus and
inverting (or flipping) the assembly are proposed and examined as possible means of
enhancing the melting heat transfer rates. The following conclusions are made based on

this investigation subject to assumptions made in the model:

e Type A annulus appears to be more effective than type B annulus because the
cumulative energy charged is more effective for all of the cases examined i.e heating
the inside wall, the outside wall and both walls simultaneously. Although the melting
rate appears to be better for annulus type B, it should be noted that melt fraction
considers only the latent heat storage while the cumulative energy charged includes
both sensible and latent heat components.

o Heating the inside wall in both configurations display that thermal stratification

occurs in the upper part of the cavity while the PCM in the bottom portion remains
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solid at longer dimensionless times (Fourier number), i.e in the late stages of melting.
This happens due to the fact that the energy charged to system is mainly carried
upward by the free convective flow in the melt. An increase in the Rayleigh number
results in an earlier onset of convection thereby increasing the melting rate.

For the case of heating the outside wall in both configurations it was observed that
thermal stratification does not occur. This increases the melting rate to a considerable
extent. Moreover, it can be inferred that the effect of heating both walls in horizontal
annuli of type A and B is the same as the sum of heating inside wall and outside wall
separately until there is interaction between the two melit zones.

In horizontal annulus of type A, as a measure to suppress the thermal stratification on
heating the inside wall, eccentricity is introduced. The numerical results indicate that
the eccentric geometry with the inner cylinder moved lower is superior to the
concentric one (all other parameters being held constant) due to the vertically upward
orientation of the buoyancy force in the melt phase in free convection-dominated
flows.

Flipping or inverting the partially melted container at pre-selected times after
initiation of melting was studied in horizontal annuli of type A and B. It is deduced
that there is enhancement in the melting rate with the flipped container relative to the

conventional unflipped one at long elapsed times.



