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Abstract

The subject of this thesis is the attenuation of disturbances by feedback in the
presence of large plant uncertainty in MIMO systems. Some relevant optimizations
zre formulated in an A setting, and arc shown to reduce to a ‘two-disc’ mixed
sensitivity problem. Despite its basic nature, the two-disc problem has not previously
been solved, although approximations to it have been proposed. It is shown, by means
of examples, that such approximations may involve large errors, highlighting the need
for an accurate theory.

An accurate theory of the two-disc problem is achieved by expressing the two-
disc problem as a distance minimization in a certain Banach space, and then applying
Banach space duality methods to characterize the solutions. Dual and predual spaces
are identified and equivalent maximizations formulated therein. Alignment conditions
are obtained, which yield the conclusion that the optimal solution is ‘allpass’ in general
and unique in the SISO case. The duality description of the problem leads naturally
to a solution based on convex programming. _ o

In an extension of the theory to time-varying discrete-time systems, optimal
robust disturbance rejection is shown to reduce to an operator form of the two-disc
problem in the /*-induced norm topology. A predual description is obtained, and an
existence result for optimal feedback is proved. In the case of time-invariant nominal
plants subject to time-varying uncertainty, at least one optimal controller is shown
to be time-invariant.

Finally, complexity based notions of uncertainty are considered. The ability of
feedback to reduce metric complexity is examined when applied either prior to, or

after identification.



Résumé

Dans cette these, on étudie Patténuation des perturbations par feedback en
présence de grande incertitude dans des systémes & entrées et sorties multiples.
Dans le contexte d- Ia,_;héorie H*, des approches appropriées d'optimisation ont
¢été proposces. Ces appxbches ont démontré que le probléeme étudié se réduit alors au
probleme & deux disques 2 sensiblilité mixte. Malgré sa nature simple, ce probleme
4 deux disques n’avait pas été résolu auparavant. Seules des approximations avaient
¢1é proposces. Par des exemples, on a pu montrer que ces approximations engendrent
de grandes erreurs et prouver la nécessité d’une théorie plus exacte.

Une théorie exacte du probleme a deux disques est réalisée en exprimant ce
probléeme sous forme de minimisation dune distance dans un espace Banach et en lui
appliquant les méthodes de dualité dans I'espace Banach pour caractériser les solu-
tions. Les espaces duel et préduel sont identifiés, et des maximisations équivalentes
sont dérivées. Les conditions d’alignement sont obtenues; ces conditions nous
permettent de conclure que la solution est un ‘passe-tout’ en général et que cette
solution est unique dans le cas d’un systéme a entrée et sortie uniques. La dualité du
probléme nous a permis de considérer une programmation convexe.

Dans une extension de la théorie des systemes variables et discrets, il est démontré
que le rejet optimal et robuste de perturbations se réduit & une forme operateur du
probléme & deux disques dans la norme L?. Une description préduelle est obtenue,
et 'existence d’un feedback optimal est prouvée. Dans le cas des systémes constants,
sujets a des perturbations variant avec le temps, on a démontré qu'il existe au moins
un controleur optimal qui n’est pas fonction du temps. )

Finalement, les notions d’incertitude basées sur la complexité sont considérées.

La capacité du feedback 2 réduire la complexité métrique lorsqu’il est appliqué avant

ii



ou apres identification est examinée .
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Claim of Originality

For MIMO systems the problem of optimaly rejecting disturbances in the pros-
ence of large plant uncertainty (ORDAP) is shown to reduce to a fixed point

problem expressed in terms of a MIMO extension of the two- disc problem.

It is shown that in general the optimal robust robust disturbance attenuation
may be infinitely sensitive to inaccuracies in evaluating the related two-disc

problems.

Solutions to SISO and MIMO versions of the two-disc problem are characterized
using Banach space duality. Dual and predual descriptions of the problem are

derived.

Duality theory is used to prove a ‘flatness’ and approximate ‘flatness’ result for

the two-disc optimization.

Various other properties of the ORDAP and two-disc problems are derived
including: A uniqueness result for the optimum, a strict monotonicity property,

and well posedness w.r.t the uncertainty description.

A numerical solution to the ORDAP and two-disc problems is derived, based

on a combination of convex programming methods with duality theory.

Explicit results are presented for the case where the weightings describing the

sets of disturbances and plants are ‘almost’ complementary.



o The ORDAP for time-varying plants and feedback is reduced to a time-varying
version of the two-disc problem. For time-invariant plants subject to time-

varying perturbations, at least one of the control laws which optimaly reject I

disturbances is shown to be time-invariant.

e Quantifications of the effect of feedback on a measure of metric complexity

(Kolmogerov e-dimension) are deduced.
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Notation

IR,C denote the fields of real and complex numbers respectively. If x € € then
T denotes the complex conjugate of x.

L% denoted the L? space of n x n matrix valued functions on the unit disc.

Hisn, 1 € p € oo denotes the usual Hardy space of n x n matrix functions
defined on the unit disc, viewed as a subspace of L?,, of the unit disc.

(H})nxn denotes the subspace of H},, given by {F € H},, : [&" F(e")dd = 0}

=500

H_ .., and (H:))nxn are the subspaces obtained by taking complex conjugates of
all functions in HZ, . and (Hg)axn respectively.

R denotes the field of rational function;;

RHZ, and RLY,, denote the restriction of the spaces HS, and L3, to ra-
tional functions.

STrA denotes Trace(AA)=.

| - | denotes one of the following, depending on the context. For an n x n matrix
A, [A] is the largest singular value. For an n—vector {, || is the Euclidean norm.
For a matrix or vector valued function F' on the unit circle, |F| is the real-valued
function on the circle satisfying |F|(e*) = |F(e')].

C denotes the space of continuous functions on the unit circle.

l2,15 denote the Hilbert spaces of infinite and semi-infinite sciua.re summable
sequences.

IF. denotes extended .

I;,v denotes the Banach space of N-tuples under the p norm.
l.a.e. is the label used for ‘Lebesgue almost everywhere’.

xi



D and T are the unit disc and circle of the complex plane respectively.

Oemin(:) 20d Omez(+) are used to denote the minimum and maximum singular
values of a matrix.

int(-) denotes the smallest integer greater than or equal to an argument.

* denotes cither the complex conjugate transpose of a vector in C" or the adjoint

of an operator, depending on the context.
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Chapter 1

Introduction

1.1 Overview

This thesis is concerned with the effects of feedback on plant uncertainty. The
first part of it is devoted to two related basic feedback problems which in a sense
provide the raison d’etre for the H*° theory, but which have remained unsolved despite
the explosive growth of the subject since the mid 1980’s.

The first of these problems (Fig 1) involves the optimization of a feedback con-
troller for a plant P subject to disturbances and sensor noise, described by the weight-
ing functions of frequency W{iw) and V(iw) under a ‘worst case’ criterion. This

problem, which is to be described in greater detail shortly, will be referred to as the

two-disc problem. !. It is well known that the ‘two block’ problem of H* theory
provides an approximate solution to the two-disc problem. That approximation is off
by at most v/2, but an accurate solution has so far not been given.

The second, closely related but somewhat harder problem, is that of optimal dis-
turbance rejection when there is plant uncertainty AP or a set of plant perturbations
(Fig. 2). We will refer to this as the problem of optimal robust disturbance atten-
uation (ORDAP). It is well known for the SISO case [20] that the ORDAP can be

reduced to a parametric version of the two-disc problem. It has therefore been widely

150 called because a certain level of performance is equivalent to the non-overlapping of two discs
(22] '
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Figure 1: Control loop with known plant dynamics and two sources of disturbance

assumed that a corresponding parametric version of the two-block H* problem would
provide an approximate solution to the ORDAP as well.

We will show that in fact the approximations obtained in this way can be in-
finitely poor, even though the H* approximations to the two-disc problem in the
nonparametric case are never off by more than a /2 factor. It would seem therefore
that the current H* theory may be inadequate for dealing with even the simplest
feedback problems when there is significant plant uncertainty, and that there is a
corresponding need for an accurate theory of the two-disc and ORDAP problems.
We will proceed to give such a theory, which will lead to a precise characterization of
the solutions as well as a numerical computation.

The second part of the thesis (Chapter 7) will be devoted to the related but
somewhat different question of how feedback affects metric complexity.

2
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Figure 2: Control loop with uncertain plant and unknown output disturbance

1.2 The Two-Disc and ORDAP problems

The two-disc problem involves a feedback loop (Figure 1) in which there are

disturbances added to both the plant output and the controller input (e.g. sensor
noise), and the plant Py is assumed to be known exactly. The objective is to find
a feedback law which optimally suppresses the effects of these disturbances on the
system output. For this case, we assume that dy, d; are filtered versions of signals u,

and ug, i.e.
dl. = W‘u.l, dg = Vug (1)

where u; and u; have a common upper bound u, i.e., |u;(iw)] < [u(iw)|, |u2(iw)] <
[(#w)|, and = has unit energy (i.e. unit L; norm). We seek to optimize the feedback

control law C, so as to stabilize the plant F,, and minimize the maximum energy

3
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produced at the output over all admissible disturbances dy,d» satisfying (1). This

reduces solving an optimization taking the form

Q3L MW (1 = Q)+ 1V RoQllls @

which will be taken to be the defining equation for the two-disc problem in the SISO
case.

In the ORDAP problem (see Fig. 2) an uncertain plant is subjected to distur-

bances at the output. The objective is to find a feedback control law which provides
the best possible uniform attenuation of output disturbances in spite of uncertainty
in the plant model. In particular, suppose that the disturbance can be any signal
in the set of outputs produced by a filter with a stable transfer function W, driven
by an arbitrary input of unit energy. Suppose also that the plant frequency response
P(iw) is uncertain and lies in a weighted sphere in the frequency-domain, described

by the inequality
|P(iw) — Poliw)| < |V(iw)Po(w)]  Vw € [0,00), (3)

where F, is some nominal frequency response representing the ‘center’ of the frequency
band. We seek to optimize the feedback control law C, so as to stabilize all systems
whose frequency responses are described by (3), and minimize the worst case output
energy produced in response to any admissible disturbance d acting at the output of
any admissible 2 plant P . The infimal worst case transmitted disturbance energy g

for the set of plants described by (3) can be expressed,

. W(l - RQ)
= nf —_—l. 4
£ e et P T-XVEQ] (4)
WVFPQlleo S1

2This problem is stated more formally and in more generality in Chapter 2.

4



What distinguishes this problem from more typical H* optimizations is that it is non-
convex in the parameter @Q, at least when the uncertainty in the plant is not assumed
to be small. (When the uncertainty is assumed to be limitingly small, (1) reduces
to the well-known optimal weighted sensitivity problem of H® control.) (-) can be
substantially simplified, at the cost of expressing the problem in implicit form, by
showing that it is equivalent to finding the smallest positive fixed-point of a [unction.
The values of this function are defined by a family of convex, unconstrained and

explicit two-disc H* optimizations. For the SISO case this function is described by;
x:[0,00) = [0,00),  x(r):= inf [IW(1 = RQ)} + |V FuQllle (5)

(The MIMO case is slightly different see (27)). Thus, for each value of the parameter
r, the ORDAP yields the same non-standard ‘sum of absolute values’ minimization
as the two disturbance problem for a known plant (2).

The absence of an exact theory for problems (2) and (4) has limited their analysis
in the literature to approximation of (2) and (5) by a standard ‘sum of squares’ mixed

sensitivity problem i.e., for any value of the parameter r, the optimization
o MW - Po@)i* + 72|V PoQ| o (6)

for which exact solutions are available. However if plant uncertainty is not small,
implicit dependence of the optimal disturbance attenuation on r can make accu-
rate approximation of x(-) critical even for crude estimation of the overall perfor-
mance. To justify this statement consider the case Fy(s) = ﬁm, W(s) =

0.17 (34-'1'_*'-,_';—23)3 , V(s) =022 (9—‘11:5_-2,‘3)2 3. The function x{-) is shown in Fig. 3 and

its fixed-point is the intersection with the line of unit slope. (The curve of Fig. 3 is

3This involves a lowpass nominal plant, and ‘complementary’ weightings W, V', whose graph is
shown in Fig. 10 of page 80.
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Figure 3: Plots of estimates of x(r) vs r obtained from the algorithm described in Chapter 4

produced by the algorithm detailed in Chapter 4 and based on the theory of Chapter
3). It is apparent from Fig. 3, that for small r the location of the fixed-point would
be highly sensitive to errors in the approximation of x. Indeed, at the end of Chapter
2 it will be shown that in some cases the fixed-point may be infinitely sensitive to
estimation errors in x. These examples illustrate the fact that methods based on
approximating x by standard mixed sensitivity problems, with their attendant factor
of /2 relative errors, will not in general yield even approximate estimates for (4) (c.f.
Sect. 1.4). The conclusion, then, is that to solve disturbance attenuation problems
in the presence of significant plant uncertainty, an exact theory for two-disc problems

of the form (2) is needed. This motivates the first six chapters of the thesis.



1.3 Problem Statement and Outline of Results

1.3.1. Feedback and Unstructured Uncertainty

Broadly stated, the objectives of this work are to investigate the ability of feed-
back to reduce uncertainty, by analyzing the relevant optimizations. On a more
philosophical level our objective is to understand the trade-offs that exist between
open-loop uncertainty and the resulting closed-loop uncertainty scts. Since the case
of limitingly small plant uncertainty is already well understood, our focus will be on
situations where uncertainty may be large.

In Chapter 2 we introduce two such optimizations for MIMO systems. The first
is a MIMO version of the ORDAP and the second is a similar problem which captures
the potential of feedback to contract the radius of the set of plant uncertainty (c.f.
Fig. 4). The ORDAP for the MIMO case is then shown to be equivalent to an
implicit form of an extended two-disc optimization of (2). Chapter 2 ends with a
motivating example illustrating the sensitivity of this fixed-point to inaccuracies of
approximation.

A common feature in the treatments of the standard ‘sum of squares’ two-block
problem (e.g. (6)) by [49], [18], [59] and [33] is the reduction to a minimax optimiza-
tion for a maximum singular value. It is readily seen that both (5) and (2) do not
fall into this category, ruling out the use of the standard H* methods for a direct
solution to (5). In Chapter 3 we take a completely different approach to these prob-
lems. The development there begins by recognizing that the nonstandard two-block
problems obtained in Chapter 2 can be expressed geometrically, as the minimization

of the distance between a vector [ UOW ] (where U™ is the involution of the inner



factor of P) and a subspace S := [ ?; ] H*, in an appropriately defined Banach
space B. Duality theory is then applied to find this minimal distance. (The main
steps involved in applying the duality theory are: The predual and dual spaces of
B, and of the restriction of B to continuous functions are identified, as are the cor-
responding pre-orthogonal complement and orthogonal complement of the subspace
S. Dual and predual optimizations are formulated in the respective Banach spaces.
Alignment conditions are then derived relating the minimal solution of the distance
minimization (equivalently the optimal @ of (2)), and the maxi:ual solution of the
dual problem.)

The results obtained in this way are applied to make various qualitative de-
ductions about the effect of feedback on uncertainty. Some of the more important

conclusions are:

¢ A feedback which optimally reduces uncertainty arising from either output dis-
turbances or plant perturbations, (i.e. optimal for the ORDAP), exists and is

unique in the SISO case under quite general conditions.

e The smallest achievable closed-loop plant uncertainty and plant output distur-
bance transmission are strict monotone increasing functions of open-loop plant
uncertainty; i.e., increases in the size of the open-loop uncertainty set over any
frequency range strictly degrade the ability of feedback to further attenuate

disturbances at all other frequencies.

o The weighted sensitivity under the above optimal feedback is ‘allpass’. I the

feedback is ‘almost’ optimal then an approximate allpass condition holds.



e Feedback which produces maximal contraction of a given set of plant uncertainty

in a certain sense occupies all the ‘space’ in the H® sphere of optimal radius.

o Unlike the one-block weighted sensitivity minimization [16], the ORDAP is well-
posed with respect to the problem data. Thus small uncertainties in the data

cannot produce arbitrarily large computation errors.

The duality theory of Chapter 3 leads naturally to a numerical method of solution
for the ORDAP. In Chapter 4 this theory is used to devclop algorithms to solve the
ORDAP by approximately reducing each of the the two-disc problems of (5) to a
pair of finite variable convex optimizations. The Ellipsoid algorithm of Shor, Yudin
and Nemirovsky [43] as presented in Boyd [5] is then applied to these problems to
obtain polynomial-time, non-hueristic programs which find ‘ncarly’ optimal control
laws. These algorithms have been implemented numerically, and were applied to
produce the curves plotted in Fig. 3 and Fig. 4 for the example of Sect. 1.2. Fig.
4 is a graph of the ability of feedback to reduce plant uncertainty versus open-loop
plant uncertainty radius for the above example.

In Chapter 5 an asymptotic case of the ORDAP is examined where plant uncer-
tainty and output disturbances occur at almost entirely different frequencies. This
is motivated in part by the above observation that uncertainty over one frequency
range effects the uncertainty attenuation over all other frequency ranges. This cou-
pling between uncertainty on one frequency range and performance on another plays a
role, for instance, in situations where high frequency uncertainty occurs at frequencies
beyond the bandwidth of exogenous disturbances (e.g. neglected flexible mode dy-
namics of a robot arm). Under these conditions a more explicit approximate analysis

of the ORDAP is possible. This is achieved by demonstrating that, for a limiting case,

9
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Figure 4: Optimal relative reduction of uncertainty by a single feedback control law for the example

" cited in Sect. 1.2

the ORDAP approximately reduces to a fixed-point problem for a function defined
by a family of Hankel norms. The Hankel norms can then be found by established
methods, for example as in (58], [19] and [61].

Chapters 6 and 7 are extensions of the material of Chapters 2-5. In Chapter 6 the
ORDAP is formulated for time varying feedbacks and plants, and shown to reduce to
a fixed-point problem based on a generalized operator version of the two-disc problem.
An equivalent predual optimization is derived. Under certain conditions, time-varying
discrete-time control laws which optimally reject a class of disturbances are shown
to exist for sets of time-varying linear plants. For time-invariant nominal plants
admitting possibly time-verying causal linear perturbations, the results of Chapter
6 reveal that at least one of the optimal feedback control laws is time-invariant. In

such situations, time-varying feedback offers no advantage in reducing uncertainty

10



over time-invariant feedback, so proving a conjecture of [29].
1.3.2 Feedback and Metric Complexity

The notion that feedback can reduce plant uncertainty leads naturally to the
view that feedback and identification can be thought of as parts of the same pro-
cess, namely that of reducing the amount of information that must be acquired to
adequately control a system. If we ask the question, ‘How much information about
the input-output behavior of a system is needed to achieve some desired level of con-
trol tolerance?’ then we have a basis for the quantification of the relative merits of
feedback and identification. This question was posed in [56] where it was recognized
that answers would depend on an information-based notion of plant uncertainty, such
as Kolmogorov e-dimension. Accordingly, in Chapter 7 some of the results of the
preceding chapters are applied to the problem of gauging the effect of feedback on in-
formation based measures of uncertainty. Estimates are obtained for the e-dimension
of certain sets of plant uncertainty defined by a time-domain characteristic rather

than the more usual frequency-domain specifications.
1.4 Classical Origins and Literature Review

The concept of feedback as an agent for reducing plant uncertainty goes back to
the early days of classical control. In 1927, H.S. Black in his U.S patenjt application
suggested that the use of high gain negative feedback could improve the accuracy
of amplifier circuits in the presence of distortion. However many of the schemes
that Black proposed resulted in the instability of the closed-loop system [11]. He
had inadvertently encountered one of the fundamcntal trade-offs that lic at the heart
of the ORDAP, namely that which exists between sensitivity reduction on the one

hand, and the requirement of closed-loop stability on the other. The notion that

11



there were limits to the improvement in closed-loop accuracy that could be obtained
using feedback was brought into sharp focus in 1932 by Nyquist’s graphical theory,
which demonstrated that there were absolute constraints on the loop gain imposed
by the need for stability. Horowitz [28] used the integral theorem of Bode to show
that the sensitivity of a strictly proper plant could not be reduced at all frequencies;
any reduction in one band would be offset by an increase elsewhere.

For the purposes of quantifying the effect of feedback on uncertainty, what was
missing from the classical viewpoint was a well-founded input-output based definition
of plant uncertainty. This gap was filled by the emergence of H* theory [57] which
captured the above trade-offs in the form of optimizations similar to those described
in Sect. 1.2. In the key paper [57] Zames revitalized the subject of frequency-domain
feedback design, previously based on classical rules of thumb, by proposing a coherent
mathematical framework. This involved the use of the Banach algebra H* to repre-
sent the space of causal time-invariant stable linear systems, and the minimization of
weighted sensitivity as an objective function for feedback design. The H* framework
has several important properties, most notably that system interconnections can be
represented by the simple algebraic operations of addition and multiplication. Of par-
ticular importance for this thesis, and for the representation of system uncertainty
are two main points:

1. the H* norm is the essential supremum of the frequency response.

2. there is an isometric isomorphism between H* and the algebra of bounded,
linear, time-invariant operators from the Hilbert space of finite energy inputs to finite
energy outputs, where the norm is the induced norm. Practically, this means that

two systems are close in the H* metric if and only if they have similar input-output

12



behavior. This is not true, for example, of the state space description where very
small changes in input-output behavior can radically alter both the dimeunsions and
the entries of the state matrices.

It is the second point (2.) which makes H* a natural {framework in which to
represent unstructured uncertainty for stable LTI systems. A sphere of uncertainty
in H* contains all the stable, linear, time-invariant systems whose input-output
behavior is within the specified tolerance, and so is a good model of unstructured
uncertainty. The ficst point (1.) allows this uncertainty to be represented in terms
of a tolerance on the system frequency response i.e. the familiar band of uncertainty
often sketched on Nyquist or Bode plots.

These observations allowed the classical idea of representing system uncertainty
in terms of the frequency response, to be pinned down in an input-output framework.
The representation of “unstructured’ plant uncertainty that resulted, enabled Zames
to initially pose the ORDAP in [57). For the case of limitingly small plant uncertainty
he showed it to be equivalent to the problem of optimal weighted sensitivity [57],
which has received a2 vast amount of attention in the last ten years. The initial
solution appeared in [57] and [58] and has subsequently been considered in many
other situations by other authors, for example [3] and [19].

Solutions to ‘sum of squares’ two-block problems of the form (6) were obtained
in the work of Verma and Jonkheere [49], Kwakernaak (33}, Foo and Postlethwaite
[18], and Zames and Mitter [59] (for the infinite dimensional case).

In 1986 the ORDAP was examined in some detail by Francis and Bird in [20]
and [4] for situations where the plant uncertainty was not assumed to be small. It

was assumed that output disturbance signals were restricted to lie in the W-weighted
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sphere in H* described in 1.2, and the uncertain plant belonged to an additive V-
weighted sphere in £, whose center is the nominal system F, (€ H*). Under these
conditions it was shown in [20] that the optimal robust disturbance attenuation was

bounded below and above by the positive fixed-points of the following two functions:

4

wibe =0 wo= | Y0E2] @
Y21 [0,00) = [0,00)  ta(r) == V2ii(r) (8)

While these methods provide a means of synthesising controllers which guarantee a
certain level of performance, the level of disturbance attenuation can be far from
optimal as noted previously (c.f. Sect. 1.1).

It should be noted that O’Young and Francis [41] obtained more accurate esti-
mates for the simpler but related problem of minimizing the sensitivity of an exactly
known system on a frequency interval, subject to a robust stability constraint on the
complementary interval.

Feedback in the presence of large plant uncertainty has also been considered by
other authors in different topologies, for example the gap metric work of Georgiou
and Smith [24]. -

There have been various attempts in the literature to generalize ideas about H*
uncertainty reduction to time-varying systems. Feintuch and Francis [15] studied both
the optimal weighted sensitivity minimization problem and the two-block problem of
[49], [33] and [18] in the time-varying case. They obtained abstract solutions to these
problems and demonstrated that for time-invariant plants, time-varying control laws

offered no advantage over time-invariant controllers. In [52] and [54] more concrete

4similar results for MIMO systems were also obtained
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results were obtained for the case where the dependence of control laws on plant
dynamics was taken to be causal (to allow the possibility of adaptation) for situations
where the plants were ‘slowly time-varying’. Khammash and Pearson [30] considered
both the sensitivity minimization problem in the presence of plant uncertainty, and
robust stability in the presence of diagonal structured perturbations, for time-varying
systems in the {® induced norm topology. However their methods could not be
extended to the case of systems operating in the framework of {* signals.
Information-based notions of plant uncertainty were introduced into control in
[56], partly motivated by the objective of a theory of identification and organization.
Plant uncertainty was quantified by the metric complexity of sets of uncertainty, as
measured by Kolmogorov ¢-dimension and Kolmogorov e-entropy. Such estimates of
complexity provided a measure for the common objective of feedback and identifica-
tion, i.e., the objective of reducing the acquisition of information needed to adequately
control a system. More recent work dealing with the effects of feedback on measures
of metric complexity has been reported in [37] and [51], while in [25] ideas of metric
complexity were used in the context of worst-case identification. Use has been made

of estimates of Kolmogorov e-entropy and dimension in [50], [47], {48].
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Chapter 2

The Optimal Robust Disturbance Attenuation Problem
(ORDAP)

In this chapter we pose the ORDAP in the MIMO case where it takes the fol-
lowing form (see Fig 2). Let £ be an uncertain plant, lying in a set of uncertainty

described by the expression

B(Po, V) :={I+VX)PR : X € HZ,, [ Xllwo <1} (9)
where Py € HS, ., V¥ € H

nxn1 nxns
Output disturbances d lie in a set
D = {Wu:ueH, |ul<1} (10)
where W € Hy5,, is outer
We seek to optimize the feedback control law C so as to stabilize all plants in B(Fp, V)

and suppress the Wi-weighted L, norm of the resulting output uniformly over plant

and disturbance sets. This problem is expressed in the form,

inf sup WAl = BQYI + VX PQ) " Wl|eo (11)
QEHN.,, XeHS.,. lIX|w<t
1PaQVileo €1

One of the purposes of this chapter will be to show that the quantity (11) is equal to

the smallest fixed point of the following function of a parameter r,

inf ess sup sup (|W1(I —PoQ)W(e'.g)C[+r|PoQV(e‘9)CI). (12)
QEHSn  oefo2m) ¢al™ KIS
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Note that (12) represents a MIMO extension of the two-disc problem. At the end
of the chapter a special case of the ORDAP is analyzed, in which the optimal per-
formance for the ORDAP is shown to be infinitely sensitive to inaccuracies in the
computation of (12), illustrating the need for a precise theory for problems of this
type.

Assumption. Throughout this chapter, either the control law or the plant is always
assumed to be in the (radical of the algebra of causal operators, which consist of}
strictly causal operators, [57] [16]. This assumption guarantees the well-posedness of
all the feedback loops discussed, and ensures existence of all the operator expressions
mentioned, at least in the algebra of causal time-invariant linear operators from l5. . —
B.or L. — L3, Herel3 and L7 denote the extended spaces of finite encrgy
discrete and continuous-time signals respectively. Where an operator has an HZ,,

representation no distinction is made between that representation and the associated

operator, in order to simplify the presentation.

2.1 Attenuation of Output Disturbances in the Presence of Plant Uncer-

tainty

The ORDAP is stated formally as follows:
Problem 1. We seek to minimize the largest (W) weighted H® norm of the output
stgnal which results from any admissible disturbance d € D to the output of any plant
P in the uncertainty set B(Py, V), over all robustly stabilizing feedbacks for B(Fo, V).

That is, the optimal robust disturbance attenuation is defined to be
Fopt i= inf sup  sup {|Wyll2 (13)

C stabilizing PEB(FPo,V) deD
all P € B(Fo,V)

where W,W; € H.3,, and are outer

17



A first step towards simplifying optimizations of the type (13) is to express
both the constraint and the quantity to be optimized, in terms of the same single
unconstrained parameter. For (13) we chose the parameter to be Q := C{J + FC)~1,
since stabilizing control laws for the nominal plant P, are in one-to-one correspondence
with Q@ € H, [57]. The constraint that a control law must stabilize a set of the
type B(Fy, V) is shown to be equivalent to a norm bound on the parameter @ in the
following lemma.

Lemma2.1 Let B := {Py+ AXB : X € HS,, | X[loo <1} where Po € H,., B €
H®., A¥ € HS .. Then

C robustly stabilizes B < [|BQA|x <1 (Q :=C{ + RC)™)
Proof. C robustly stabilizes B

& C(I+PCYY, (I+PC)'eHS, VPEB

& QUI+APQR),(I-RQ)I+APQ) € HY,, VPEB

& (I+AXBQ)™" € H:, VX € HZ,, | Xllo <1 and Q € HS,
S A+ XBQA AT e HS, VX E€HS,, IXllo<1 and Q€ HS,

& (I+XBQA) 1 e HS VX €HS,, | Xllw<1 and Q€ HS,,  (14)

nxn n

Clearly || BQA|loo < 1 is a sufficient condition for (14) to hold. We will prove the
necessity of this condition by showing that | BQA|.. > 1 leads to a contradiction. If
so, there exists a zp € D such that |BQA(20)| 2 1 + § for some § > 0. Let BQA(z)

have a singular value decomposition UZV. Let X := —paim—sV"U* (ie. X € HS,
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is a constant unitary matrix multiplied by a scalar belonging to the interval (0. 1))

1
|BQA(=0)]

Hence (14) cannot hold, and ||BQA|lec < 1 is a necessary and sufficient condition for

(I + XBQA)(zo) = V(I ~ SV = Omin(] + XBQA)(20) =0  (15)

robust stability.
|

The quantity to be optimized in (13), supgep [[Why||2, is also expressed in terms
of Q as follows. If C is a robustly stabilizing control law for B{ P, V), it can be shown

[57} that the output disturbance d and plant output y are related by
y=(I—-FQ)(I+APQ)™\d AP:=P-PF,

for each P € B(F,, V). Lemma 2.1 can then be used to express g, in the form

Hopt = inf sup |Wi(I — PQ)(I + VXPQ) "Wl  (16)
Q € H'?;"‘ XGH:‘:".' “x"‘”<l
1PQVileo €1

A further simplification for (16} will be discussed in Sect. 2.4. However we will first
consider the role of feedback in modifying the radius of the set of plant uncertainty,

and show that this leads to an optimization having the same form as (16).
2.2 Attenuation of Plant Uncertainty

Zames posed the following fundamental question {57] regarding the ability of
feedback to reduce plant uncertainty: if a plant lies in some set of uncertainty {e.g.
B(Py,V)), what is the smallest radius of any set of closed-loop uncertainty that can
be achieved with a single feedback control law? In order to avoid the trivial answer
to this question that zero closed-loop uncertainty can be achieved by disconnecting

the system from the input, so recognizing that reduction of plant uncertainty is never
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the sole objective of feedback design, some constraint must be placed on admissible
feedback structures. Such a constraint was described in [57] where it was termed
a ‘nominal plant invariant normalization’. It consists of limiting the two degree of
freedom control law (Fig. 35), such that upon closure of the loop the action of the
feedback effectively maps the nominal open-loop plant onto itself. Note that there
are other normalizations which rule out disconnection of the plant input as a means
of optimally reducing closed loop plant uncertainty, but nominal plant invariance has
the following three advantages:

i) The normalized feedback acts only on the difference between the true system
and the nominal system (i.e. the ‘error’ dynamics), thereby isolating contraction of
plant uncertainty from other aspects of performance.

ii) The assumption of nominal plant invariance provides an immediate nominal
closed-loop plant model, i.e. Fo.

ili) Plant invariant controllers retain one complete degree of freedom [57].

The formal statement of plant invariance for the feedback scheme represented in Fig.
5 is stated in terms of the elements of the equivalent flowgraph shown in Fig. 6 as
follows [57),

(I+CR)W=1I (17)

In this context, the meaning of the term ‘equivalent’ is that the input-output behavior
between the nodes shown in Figs. 5 and 6 is identical. Zames [57), showed that for
plant invariant feedbacks where By € HS, .., stability of the loop represented by Fig.
5 for P = B, is the same as the statement C(I + B,C)~! € HZ,, for the equivalent
loop of Fig.6. It also follows from [57] that if this condition holds, the stability of
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the loop of Fig.5 for a general P € HS},, is cquivalent to C(J + PC)~' € HS,.* If

C(I+PC)™! € HE,,, the closed-loop map K belongs to HS3,, and can be expressed
(Theorem 7 [57])

K—P, = (I-PQ)YI+APQ)" AP where Q:=C(I+PC)™". (18

AnPo (19)
Om € HE, represents the closed — loop multiplicative plant perturbation

The potential of feedback to attenuate plant uncertainty can now be formally quan-
tified.
Problem 2. We seek to minimize the ‘worst case’ W,-weighled closed-loop mulli-
plicative uncertainty radius, suppep(p,.v) |[W1lmlles, over all robustly stabilizing (for
B(Fs,V)) nominal plent invariant control laws.

Using Lemma 2.1 and the expression (18), Problem 2 can be stated in the form

of the following optimization,

Lopt = inf sup (Wil — RQ)(I + VXPoQ)“VXIIoo (20)
QERR, XeHS . |Xllo<l
1PQVlleo €1

In Lemma 2.2 we show that the last X term in (20) can be removed without effecting
the supremum in (20). This establishes that the problem of optimal attenuation of
plant uncertainty (20) under a nominal plant invariant normalization is equivalent to

a special case of the MIMO form of the ORDAP represented in (16).

Lemma 2.2 If || PoQV||le £ 1 and V= € HY, | then
sup W1 = RBoQ)(I + VX PoQ) WX
XeH n X [lo<1
= sup [WA(I = PaQ)(I+ VXPQ) ' V]eo (21)

XeH®R, ., X<l

5The feedback loop of Fig. 6 is required to be stable in the sense that it is equivalent to the
stable loop of Fig. 5. U and C may in general be unstable.
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Figure 5: A two degree of freedom feedback loop.

u - v — y
L ——r U —C P

T

Figure 6: An cquivalent representation for the loop of Fig. 5

Proof. Define A := supyepo | |xXjlct [Wi(I=PoQ)(I+VX Q)™ V|- Fix § > 0.
There exists 2 X € HS,,, | X|lo < 1,20 € D,{ € C*,|¢] < 1 such that

[WalI — PoQ)I + VXPoQ) WV (z0)¢| > A =6 (22)

Let 7 = (I + VXPQ)™"V(z0)¢ & (V(20)™! + X PoQ(20)) 7 =¢

& V(zo) 'n + XPyQV(2)V(20)"'7 = (. First note that PoQV(z0)V(z0)"In(=
PyQ(20)n) is a vector of smaller Euclidean norm than V{zp) 5 since Omez(PoQV (20)) <
1. There exists a unitary matrix &, such that $PyQ(z0)n is parallel to —V(z)"17,
and this vector represents the closest point to —V/(z)~'n on a sphere center zero

radius |PoQ(z0)n|. Hence there is a scalar « in the interval (1 — §,1) such that
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V(z0)"'n + a®PoQn =: {’ has Euclidean norm < 1. This follows from the fact that
|V (20)"*n+PPoQ(=0)n| must be less than or equal to |V ()~ '+ X PoQ(z0)} by con-
struction of . Note that n = (J + aVOPQ)"'V(2)(’. Since |Wi(1 — PoQ){ z0)y] >
A= § from (22), it follows that |Wi (] — PoQ)(I + aVOPQ) 'V (20)¢'] > A — 8, which

in turn implies,
W = BQ)I + aVePQ) 'Vad|e > a{A — 6) (23)

where in (23) @ is taken to be the H3

o » function assuming the matrix @ as its constant

value. (23) has established the stated equality since § 1s arbitrary.

a
Thus we have established that the optimal plant disturbance attenuation is
b= _inf sup Wil ~ RQYI + VXRQ) WViw  (20)
QEHR, XeHZ .lXlle<
1PQVleo €1

2.3 Robust Performance: Weighted Sensitivity Minimization

Both problems 1 and 2 are in fact robust performance problems. In problem 1,
the performance measure is the worst case output disturbance transmission, while in
problem 2 it is the worst case deviation of the closed-loop system from the closed-loop

nominal in the H*

2 » norm. This point can be emphasized by considering an explicit

form of the H® robust performance problem, obtained by minimizing the weighted
sensitivity norm in the presence of plant uncertainty. This problem is represented on
the left in (25). The arguments of Sects. 2.1 and 2.2 can be used to show that for
B={PeHS, : P={I+XV)P, X € H3.., | X[« <1}, the optimal robust
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performance takes the form

inf W + PC) e

C stabilizing

el PeB
= inf sup IW(I = PoQ)(J + XV PQ) oo (25)
QEeH,, XeHZ. lIXllx<l
IV PoQlloo €1

Thus Problem 1, Problem 2 and the explicit robust performance problem of (25),
are all special cases of a generic minimization represented by (16). Therefore, the
definition of the acronym ORDAF can be extended to include all three cases, in
recognition of the fact that the disturbance can be taken either in the context of

plants or signals.
2.4 Conversion of ORDAP to a Fixed-Point Problem

Under the assumptions of Theorem 2.1 below, the non-convex constrained opti-
mizations of (16),(24) and (25) are equivalent to a fixed-point problem expressed in
terms of a function taking values equal to the optima of the MIMO extension of the
two-disc minimization of (2). Before stating this theorem, the following definition is
required.

Definition 2.1 W,V € H®

n aTe said to be commensurate if

W=w,A, V=yv,A (26)

where w,,v, are scalar valued H® functions and A€ HS,.,.

Note that in the SISO case all pairs of H*™ functions are commensurate.
Theorem 2.1
1.} If W and V are commensurate, W,V** € HZ., and P, is not invertible in H,

nxn’

then i. and ii. are equivalent.
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i. C is a robustly stabilizing controller for the set of stable systems described
by the set B(Fp, V), and
suprHm [1X]leo<1 |1W1(I—POQ)(I+V.¥P0Q)—l‘f"'|IN S r (Q - C(I+P0L‘T)_l).

i. ess SUPge[0,27) SUP¢at™,|¢]<1 (|W1(I — PQ)W (e*)¢| + f‘lpoQV(Cie)Cl) <r

2.) Under the assumptions of 1.), if en optimal Q € HZ,,, ezists in (27) for r cqual
to the smallest fized-point of x ® and x(0) > O, then ihe optimal robust disturbance
attenuation piq,: of (16) is equal to the smallest positive fized-point of the function

x(r)= inf ess sup sup (|W1(I - BQYW ()| + r]PoQV(e"f’)Cl) (27)
QEHR deo,2x) (™, [|<1

Remarks

1) The existence condition of Theorem 2.1 2.) is shown to be satisfied under very
general conditions in Theorem 3.8 of Sect. 3.6. For example, the two conditions
V*l € H, and the outer part of P, invertible in H%  are sufficient.

2) The weights W and V are always commensurate when ORDAP originates from
the optimal plant disturbance attenuation problem of Sect. 2.2 (c.f (24)), or W,V
and Py are scalar valued.

3) Theorem 2.1 can also be proven for the left weighted robust performance problem

of (25) by the same argument [60].

Proof of Theorem 2.1 . 1.) The fact that W,V are commensurate, and W, V*! €

H.. implies the existence of a scalar H* function X such that A(z)] = V(z)"'W(=z).

Sexistence of the smallest fixed-point is proven in Appendix A

25
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To prove i. = ii. we note that if i. holds iff,

[Wi(1 = RoQ)(I + VX PoQ) "W (z)¢| < rl¢]
VX € H2 ., | Xlle <1, Vz€ D, ¥ €C*
and ||PoQV |l £ 1 (from Lemma 2.1)
& Wil = BQ)V(I + XRQV)'VTIW(z)([ < ri{]
VX e HS,, | Xllo <1, V=€ D, ¥V(eC"
and || @Vl £ 1
& AW = RQ)V ()l < 7l + X RQV(2))n] (28)
VXeHS,, IXllw <1, Vz€ D, Vel
and ||Po@Vl|lee £1 (29)
& [Wi(I - RQ)W(z)1] < rln + XRQV(2)1] (30)
VXeHS,, IXlw<1, Vz2€D, Vpel™, In|=1
and [|BoQVlo < 1 (31)
Now fix 0 € D, 7o € C", |n0| = 1. There exists a constant unitary matrix U such that
U PoQV (z0)n0 is parallel to —ng in C*. Chose the HS3 function X to be constant, and
equal to the matrix (1 — §)U for some arbitrary § € (0,1). Since [Po@V(z0)70[ < [n0]s
(30) implies that

[Wi(I = PoQ)W (zo)m0| < 7| — (1 — 8)r| PoQV (20) 0] (32)
Since (32) does not include X, and zo,8, and 7, were chosen arbitrarily, (32) implies
“%hat
sup sup |Wi(l — R@)W(z)(|+r|PRQV(z)([ < (33)
e
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Invoking the lemma of Appendix E to show that no change in (33) is incurred by
taking the essential supremum over the boundary of the disk instead of the interior,
1i. is shown to hold.

To prove ii. = 1., first note that 1i. implies the following is true {(after applying

the lemma of Appendix E as above),

W11 — PQ)W ()] < v (In] = [PoQV(2)n]) and [PQV(s)n]| <1  (34)

Ynel® |p|£1,vVzeD

(Note that we have made use of the fact that the assumptions ensure that r is not

zero.) Which in turn implies that (30} and (31) are satisfied for all HS

nxn Strict

contractions X and for all z € D, n € C", |5} £ 1. As shown this is equivalent to i.
Hence 1. is proven.

2.) A smallest positive fixed-point of x exists as a consequence of the lemma of
Appendix A. Let this fixed-point be ro, and let the optimal Q € H3S,,, for (27) when
r = ry be Qo (which exists by assumption). From 1.) of this theorem it follows that
To 2 Hopt- 1O prove this inequality in the other direction, fix § > 0. From 1.) of
this theorem there exists a Q € HS, such that the statement of 1 ii. holds with

T = fopt + 6. Hence poy + 6 is an upper bound for at least one fixed-point of x, since

x(*) is continuous (lemma of Appendix A) and x(0) > 0. Thus ro < pope
a

The optimization represented by x in (27) can be simplified for commensurate
weights. Since W and V are commensurate, the scalar dependence of W on V can
be taken over to the left side of the first term of (27). Thus, under the assumptions
of Theorem 2.1 (27) takes the following form

inf ess sup sup (IWz(I ~ PoQ)V(e*)(| + 1R OQV(CW)CD (35)
QEH, pefo,2x) ¢eT™,[¢I<1
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for some Wo € HSS

nxn*

Since by assumption V' € HS ., the V term can be ‘absorbed’
into the free parameter Q. If P has an inner-outer factorization over H3 . [26] given
by BHy, and W2 B has an inner-outer factorization given by U Wa, then (35) can be
written

Qi ess sup. sup (I(UWaV — WaHoQ)C + rlHoQX) (36)
The optimization (36) is included in the following form, where W, W,V € HS,, are

general outer functions, and U € HSS,, is an inner function.
inf ess sup  sup (i(U'W—WQ)(‘|+r|I7QC]) (37)
QEHZn  sefo.2m) CaO™ (IS
Remark. The results of this chapter are substantially simpler to establish in the
SISO case where the order of system cascade is not important. In this case x(+) can

be expressed in the form,

X(r) = g, [W(1 = Rl + IV PeQlle (38)

2.5 A Motivating Example Based on a ‘Two Arc’ Result

Before beginning a general analysis, we will examine the ORDAP for an illus-
trative special case of SISO systems. This example is reminiscent of the ‘Two Arc’
theorem of complex analysis, in that it relates extremal values of the sensitivity func-
tion on one arc of the circle subject to 2 constraint on the complementary arc. Two
purposes are served:

i. a significant limitation of the existing approach [20] is pointed out and the
need for an ezact theory of the ORDAP is highlighted.
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il. in dealing with the more general cases in later chapters, an illustration of a

limiting behavior of the ORDAP is provided.
For this example we will be able to obtain precise cstimates of the sensitivity of the
ORDAP to errors in x(r), and to show that a quadratic norm ‘two block’ approxi-
mation for x(r) [20], with its attendant V2 ratio of upper and lower bounds, could
result in arbitrarily poor estimation of ORDAP.

In Lemma 2.3 we derive estimates of x(r) for pairs of cuter H™ weights W,V
and W,,,V,,, n = 1,2, ..., whose magnitudes are illustrated in Figs. T and 8, and for
nominal plants which can be approximately ‘absorbed’ into the free paramecter Q.
Note that uniform Lipschitz continuity of log|Wy,(e®)| and log|V..(e*?)| implies that
the boundary values of W,,, V, are uniformly Lipschitz continuous, and so conform
to assumption A2 of Chapter 3. The continuity of boundary values of W, and V,
follows from Sect. E, Chapter V of [32].

Lemma 2.3. If W,V,W,,, V.. are outer H* weightings with magnitudes as shown in
Figs. 7 and 8 then the following hold:

. A . A
. - <=
LT S IWA - QN+ VRl < 5 +6 (39)
A
i hminfon i (1 — Q) V.0l >
. liminfoco o [1Wa(l - Q)+ VaQlll 2 777 (40)
A
; : - <« =
lim supn—co JIof_[[Wa(l = Q)+ [VaQlllew < 35 +4 (41)

Proof.

i. The upper bound in (39) is validated by selecting Q to be the constant 3.

To establish the lower bound, suppose there exists an ¢ > 0 such that for some
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Figure 7: Magnitudes of weightings W,V in Lemma 2.1

Q€ H™

W1 -Q)l+1VQllle < € (42)

A —
X+l

Then it follows that

ReQ(e®) > 5Tt forfe [0,¢]
RQM) < -5 for0€ (4,7

Thus limy—o _f'9_¢]>¢. %ﬂdﬂ = +oo which implies, in the light of the Hilbert trans-
form for conjugate harmonic functions, that lim.n|ImQ(re™®)| = oc {c.f. [21] Exam-
ple 1.5, Chapter 4). This contradicts the assertion that Q@ € H*, with the result that
(42) cannot hold and i. is proven.

ii. (41) can be established simply by chosing Q to be the constant %_H
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v 1

L]

é=1n ¢ 4+ T

Frequency on the unit circle

Figure 8: Magnitudes of weightings Wy, V;, in Lemma 2.1

To establish (40) suppose the contrary, i.e. there exists an ¢ > 0 and a uniformly

bounded sequence @, € H* such that

U i fameoo || [Wa(l = @n)] + [VaQnllloo < e where W,V,Q € H®

A+l

By a normal family argument we may select a subsequence of the integers {n.}2,

such that
Wo =W, Vo=V, Qn — Q (where W,V,Q € H®)

and the convergence is on compact subsets of the open unit disc. Thus for each
z €D, [W(1=0)(=)|+VO()| £ pix—c. This implies that [[W(1-0)|+ Vil <

727 ~ € which violates (39), and so (40) must hold.

u
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Now consider the ORDAP for the case of continuous weightings W,,,V, as in
Fig. 8, with A set nominally equal to 1. By Lemma 2.3, for arbitrary ¢ > 0, there
exist nominal plants Py (possibly not outer) and integer n for which the optimization

represented by x(r) satisfies,

—e<x(r) € —

- +e+46
r+1 r+41

The slope of 7 as a function of r is equal to unity at the origin and tapers off to

L at r = 1. Thus for sufficiently small ¢ and §, and large enough n, the smallest

a
fixed-point of x can be expected to be arbitrarily sensitive to inaccurate estimation
of x(r). Indeed for sufficiently small ¢ and 6, and large enough n, the fixed-point
obtained by solving x(r) = r, representing the true solution to ORDAP, has an
upper bound approaching v/e+é. On the other hand, the best achievable upper

bound by quadratic norm approximation is obtained from the solution of v2x(r) = r,

which approaches 3%1 = 0.2979. Thus for sufficiently small ¢ + é, the quadratic

Z
norm approximation overestimates the possible solutions to the ORDAP by a factor
approaching %, which becomes arbitrarily large as (¢ + &) — 0.

Remarks. The point here is that in situations where the fixed-point is sensitive to
correct estimation of x(r), a more exact optimization theory is required than that
provided by the quadratic two-block problem. The duality theory developed in this

thesis and the related convex optimization do provide exact estimates of x(r}. These

can be used to obtain accurate solutions to ORDAP.
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Chapter 3

Two Key Mixed Sensitivity Problems

Here we will consider the following pair of two-block optimizations, both of which

are MIMO extensions of the two-disc problem of (2).

po = int | W — WQ| + [VQllle (43)
= inf s su Uw-w +|V 44
M= L ess sw swp (I( QX1+ 1V Qcl) (44)

As noted in the introduction these can not be handled by established methods, forcing
us to find an alternative approach. This approach is the main subject of the present
chapter.

In sections 3.1-3.3 Banach space duality theory will be used to characterize the
solutions of (43) and (44). The former will be shown to be allpass in general and
unique in the SISO case. ‘Nearly’ optimal control laws will be shown to satisfy an
approximate allpass condition. The theory derived here will form the basis of a
qualitative analysis of feedback and uncertainty discussed in Sect. 3.5, and will lead
to a numerical solution method (in Chapter 4) involving 2 combination of duality and
conve.-.. optimization.

The first optimization (43) is simpler than the second (44). In general (43) is
clearly an upper bound for (44), and the two are identical in the SISO case. It will

follow that by optimizing the function ¥(r) i.e. replacing x(r) in (27) of Chapter 2
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X(r) = o dnf, |l U"W - WQ| +rVQlll (45)

we shall obtain upper bounds for the MIMO optimal robust disturbance attenuation
(which are exact in the SISO case). Henceforth we shall confine our attention to (45),

except in Sect. 3.6.
3.1 A Distance Problem Equivalent to (43).

The following assumption will be made initially:

(A1) there exists ¢ > 0 such that (W"W + V*V)(e®) > ¢ for all 8 € [0,2%).
Assumption (Al) initially excludes strictly proper plants P, if (43) is derived from
either the ORDAP or the two-disturbance problem in the manner described at the
end of Sect 2.4. However, in Sect. 3.4, (Al) will be relaxed in order to allow strict
propriety of the nominal system Fp.

(43) is equivalent to finding the shortest distance from a vector to a Banach
subspace, defined as follows. Let B be the Banach space L2, X L3

on % Ly consisting of

pairs of matrix-valued functions on the unit circle, under the norm
i9 i0 K
1K1l = esssupucoan (a(e)) + e, K= | 32
Then (43) is equivalent to
(46)

= inf
Ho QR

v =[5

OW ] to the subspace S := [ Ig ] (HZ,) of B. As-

sumption (Al) ensures that S is a closed subspace. Note that (46) differs from the

B

(46) is the distance from [ u

standard two-block problem of, for example, [49].

34



x H®  be the

nxn nxt

S also has an equivalent description: Let R = [ g‘ ] € HS

outer isometry (see [26], Lecture vii, p66) “'ho§e range coincides with the range of
{ Ig ] More explicitly R has the form R = [ lgi\__: ] where A is the outer spectral
factor of W*W + V*V. Then § = R(H:,). Our notation should not be confused
with that for rational functions in H3,.

Let us evaluate {46) by duality.
3.2 Existence of a Predual and an Optimal Controller

A" denotes the dual space of any Banach space A. If Ap is a subspace of A
then (Ag)* is the subspace of A" which annihilates Ag, (Ag)t :={f € A" : f(z) =
0 for all z € Ap}. Isometric isomorphism between Banach spaces will be denoted by

A. is a Predual of A if (A.)* =~ A, and a subspace Aq. of A. is a preannihilator
of a subspace Ag of A if, under the preceding isomorphism, (AoL)* =~ Ao. A standard
result of Banach space duality theory asserts ([35], Ch. 5.8, Theorem 2) that when a
predual and preannihilator exist as above and for K € B, the identity

Zin [[K —Qlla = e I |$(K)| (47)
holds. Let us establish the existence of a predual and determine the form of the
preannihilator, for our problem, i.e. when A := B and Aq:= S.

Introduce the notation, for any matrix A, STr(A) = Tr({AA}f) = n,oi(A),
where T'r denotes the trace of A and ;(A) are the singular values of A.

Let B. be the Banach space L}, , x L., under the norm

nixn
IClls. == jn " { Maa(STrG1, STrG)}(e")d0 (48)
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Let §; be the subspace of B.,

Sy = (I = RR)(LAyq X Lixa) @ R(Ho)nxn (49)

1

where (Tf:,),.,m denotes the subspace of L.,

consisting of integrable functions whose
positive Fourier coefficients are equal to zero. Note that @ denotes a direct sum of
two subshaces.

Before identifying the dual of B, and the annihilator of S, , let us establish
some facts concerning bounded linear functionals on B.. Every such functional ¢
must have the representation

#(G) = _Zn:l fo " (GriFris + GaiiKos)(€)d (50)

Q=
for some K, ;; € L™, wherer = 1,2 and 2,7 = 1,2, ...n. Indeed, by the Riesz theorem
the representation (50) is certainly valid when ¢ is restricted to the 1 dimensional
subspace of B. spanned by G, ; for a fixed index r,7, j, and the general representation

follows by linearity. (50) can be expressed more compactly in terms of the bilinear

forms [-|-] on B. x B,

2r .
[G|K] = jo (TrK;Gy + TrK;Ga}(e)d8 (51)
_ | &} [ K] _ G = |Gl
where K - [Kz] = [[Kz."’] € B, G - G2 = [Gz."a] € B-- EaCh
functional ¢ on B. can be expressed as ¢(G) = [G|K] for some K € L%, x L%,,.

The inequality
GIK]| < esssupsefozn (|Ka(e?)] + [Ka(e?)]) -
2T . .
jo Mez(STr(Gy(")), STr(Go(e™))) b

|s.-lI K[l (52)

Il

G
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will be needed, and can be deduced from lemma of Appendix C.
Theorem 3.1.¢) (B.)" ~ B
b) (S.)* = S under the isomorphism of part a).

Proof. a) It has been stated that every bounded linear [unctional ¢(.) on B. has
the form (51). Conversely, for any K € B, the functional ¢(G) = [G|A] is bounded
on B. and satisfies ||¢|| < ||K||s by (52). To prove that ||@}| = || K]|s, observe that
by definition of the essential supremum, there must exist a sequence of Lebesgue sets
{0}, of strictly positive Lebesgue measure m(£), such that for 8 € Qu, |K1(e¥)|+
|K2(e®)| > || K|la—1. By the lemma of Appendix C, it is possible to define G*) sa that
for each 8§ € U, TrGW (K, )" = |K.| T, 0:(G®) for r = 1,2, and T, 0;(GH) =
m—(}m; and for each 6 € i, G* = 0. Hence |Glls. = 1 and |¥(G)] 2 [|IK||s - 3,
which implies that ||@]| = || K||z. If 2 is taken to be the isomorphism between K € B
and functionals [-|K] on B., Theorem 3.1 a} is proven.

b) If § € (B.)", then ¢ has the form [-|K] for some K € B, and we have the

following equivalences.

fﬁG(S_L)'L & [GIK]=0VGe S,

& j:" TrK; K3 (R.Xo + (I~ RR") [ ﬁ; D (e*)d8 =0

VXo € (Hg)nxn, ¥X1, Xz € L}

nxn
2T . —
& jo (TrK; K3)RXo)(€%)d8 = 0 VX € (Hg)mxn,
2m . . X i

and jo (Tr[Kl K;](I - RR") [ X: ]) (e')d8 = 0

V-){'h){? € L:IX‘H.
o [K] K3]R € Hoy, and [K{ KJ(I — RR™)(e¥) =0 a.e(0)
& KeRH®:, «¢eS(S=(5)4)
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a

The following theorem is a corollary to Theorem 3.1, by the duality theorem
cited at the beginning of Sect 3.2.

Theorem 3.2. Under assumption Al of Sect. 3.1 there exists at least one Qopt €

HOD

o n Which satisfies

NU™W ~ W Qepel + |V Qepelllee =  imf, NIU"W - WQI+[VQllls  (53)

nxn

Remark. If (43) is derived from the MIMO two-disc problem described by

Ho = Qég'%n | (Wh{I = R@Q)W| + |FoQVY |lee (54)

in the manner related at the end of Sect. 2.4, then the conclusion of Theorem 3.2 can

be expressed

Il 1WA = PoQopt)W| + |PoQept V| [loo = odgl | WA(J = RQ)W| + | FeQV] [|e(55)

nxn

The Qope of (55) and Qope of (53) are related by the equality Gope = Qope V1.
3.3 Allpass Property of the Optimum: Alignment in the Dual

In this section we assume that

(A2) U*W, W, V, UW are continuous, as is the outer spectral factor of W=W +
v-v.
Continuity of U*W and UW means that W and W zero out the essential singular-
ities of U (taking into consideration that these singularities may effect only some

components of IJ).
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Let C denote the set of continuous functions on the circle, and for any space -t
let A. denote the subspace A N C. We seek the dual space (B.)* of B.. It will be
shown that (B.)" is isometrically isomorphic to a space B™, consisting of BV, x
BV,.xr under a special norm, where BV, x, denotes the space of functions of bounded
variation on the unit circle which are assumed continuous from the right.

Accordingly, let B~ be the space of pairs ¥ = (1, 12) € BVayxn X BV,ixa, and

introduce the bilinear form on B~ x B,

<vlK >= j[o_m Tr(K;don(6)) + j[m) Tr(K;dowa(0)), K1 Kz € Cuxn  (56)

This form has the following equivalent representation: Let w, be the sum of the total
variations on [0, 8) of all entries of »; and »,. If we denote these by w,, ,, (0), w.,,,(0),
then
w,(8) = Z Wy, ,, (6) + wvz.-‘.,‘(a)a 0 e [01 2x). (57)
1,1=1,2,n
By the Radon Nykodym theorem, there exist G, € L}, .(w.), r = 1,2, in terms of

which the pair of integrals (56) can be reduced to 2 single integral
< VK >= /m__) {Tr(K;Gua) + Tr(K3G.a) Yo, () (58)
The norm on B™ is now defined to be

I#lls~ == f[ 02m) Moz (STTGp.l (€°), STrG.,,z(c"a)) dyw,(e*)

Note that the fact that (59) defines a norm on B™, and that the metric space B~ is

complete, will follow from the isometric isomorphism between B~ and the dual space

of B, that will be established in Theorem 3.3.
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By reasoning analogous to that used in (52), the inequality
| <v|K >| < [Klis [Iv]ls~ (59)

is obtained.

(S.)* will be identified with a subspace S~ of B™, defined as follows:

s~ :={veB~: o) = -[ro e RR")dv'(6:) + RGdby, v € B~, G & (Ho)nxn }(60)

The following lemma establishes that the distance from [ v OW ] € B.to 5. .
is the same as to 5. Note that assumption A2 implies that R is continuous on the
closed unit disc,

Lemma 3.1. Under assumptions Al and A2,

(Rl 1| R RS RUR

0 B

B

Proof. This is a generalization of the proof of Lemma 1.6 of [21]. Let the subscript
r > 0 denote the scaling of the complex disc, Fi(z) = F(rz). Given any € > 0, it will
be shown that there exists r < 1 for which

(R

Since this is true for all ¢, and as R(Q.pe), is in SN C because R and (Q,pe) are

B

-

continuous, the lemma is true.
. 154 UR, oo o . .
Write X := o | Y = R |’ Then X,Y € HS,, x HS,,. are continuous in

the closed unit disc by hypothesis (A2) and
= [ X =Y (Qepe)-lin

[%2)-ne
B
SIX = YQop)rllz + IX — Xl + Y — Y[ 8]/ Qopello (63)
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I(X = YQcpe)ells is bounded above by [|X — YQ,.|ls because for A € HI, x
HZ .., |K:]|s is an increasing function of » € [0,1]. To show this suppose on the
contrary that there exists K = [K; Ka] € HS, x HZ . and 20 in the open unit disc

and an ¢ > 0 such that
¢ + [Ki(e®)] + | Ka(e®)| < [Ka(=0)] + | K2(z0)| VO € [0,27) (64)
There exist constant unit vectors in C", uy,us, vy, va such that
€ + lu Ky ()0 | + [u2Ka(e)v2| < |1 Ki(20)vs] + JuaKa(zo)ve] (65)

Denote the outer parts of the scalar H* functions u; K (€' )vy, uaKa(e)vs by by, ha.
Then (65) implies ‘

€ + |ha(e”)] + [ho(e®)] < [ha(20)] + |h2(z0)] (66)

The magnitude of an outer H* function is a positive bounded subharmonic function
on the unit disc, therefore |hy(e)] + |hz(e*)| also falls into this category. Such
functions satisfy a maximum modulus principle which contradicts (66). Therefore
(64) cannot hold and the assertion is proven.

Given € > 0, there exists r for which the remaining two terms on the RHS of
(63) are < £ each, because the continuity of X and Y implies that || X — X, [[zg — 0

and ||Y — Y;|lz — 0 as r — 1. Therefore (61) is true.
a

Theorem 3.3. (¢) (B.)" =~ B~
(b) (Se)* = 5~

where > denotes the isometric isomorphism between v € B~ and functionals < -|v >

(which equals < v|- >).
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Proof. (a) Clearly < v|- > defines a linear functional on B., which is bounded by
(59). Conversely, if ¢ is a bounded linear functional on B, then we can use the Riesz
representation theorem for ¢ acting on each component of B, to get ¢(.) = < v|- >
for some v € BV, xn X BV, xn, or using the Radon-Nykodym theorem, the equivalent
representation {58). Thus the set B~ is isomorphic to B~, and [[g|| £ ||v[la~ by
(59). That upper bound will be shown to be a supremum, which will mean that
l1éll = l|¥]|s~, i.e, the isomorphism is isometric and (a) is true.

The integral form (58) for ¢ gives a linear extension ¢ of ¢ whose domain is

L3 (wy) x L

en(wo)s (L3, (w,)} denotes functions essentially bounded w.r.t the w,

measure. )

First, the existence of K = (K1, Ka) € L. (w,) x L, (w,) will be demon-
strated with the property that |¢(K)| = ||v||z~||K||z. In the representation (58), let
Gur, = 1,2 have the singular value decomposition G, (e} = U.(e) D, (e¥)V,(e¥),
where Uy, V; are unitary and D, is diagonal. On the set
Q:={0 € [0,27) : [STrG,.1(e%)] > [STrG. 2(e)|} define K (%) = Vi (e®)Us (%)
and K3(e®) = 0. On the complement of Q define K3(e®) by interchanging subsecripts
1,2 in the previous definition, and set K(e®®) = 0. Then TrK;G,; = STrG,, on
Q and TrK;G.; = STrG. 2 on ¥, and therefore Tr&;G,1(e®) + TrK;G,2(e%) =
Maz(STrG. (e®), STrG, (")) and

|#(K) = Maz(STrG,;,5TrG,2)dw,(8)

[0,27)

= [vlle~ = Ivlls~IIKle (67)

since |Ky(e™)| + | K2(e%)] = 1 = || K||s by construction.

Next, given any ¢ > 0, [K1, K3 will be approximated by a pair of continuous
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functions {Ki, Ka] with the property that ||[A}, A3)||p < 1 and
|6(K1, Kz) — (K1, Ka)| < e (68)

from which, together with (67), it can be concluded that ||4]| 2 ||v||s~ — €. As e was
arbitrary ||¢|| = ||v|la~ as claimed.

The approximation is based on Lusin’s theorem, which implies that there exist
continuous functions Kj, K} € L%, N C and a Borel subset © of the unit circle such

that [K(e®), Ki(e®)] = [K1(e®), Ka(e®)] V8 € ©, and on the complement ©° of ©,

'[e _Maa(STrG,,5TrG..a)du,(0) < (69)

[T E L)

where the last integral represents a weighted Borel measure of that complement. Now

let K, = grombtorerss, v = 1,2. Then K, is continuous, |K1(e”)| + |Ka(e?)| < 1,
and (68) follows from (69).

(b). By (a), ¢ € B" can be represented by < |- >. Then

$€(S)t & [{m Tr(QR;di () + Tr(Q"Rydun(8)) = 0
YQe H:.NC
& R dv(6) = Gdf for some G € (Hy)nxn
& dv(6) = (I — RR")d/'(6) + RGdo (70)

(since dv = (I — RR")dv + RR"dv and RR"R = R)
and (b) is proven.

By the Banach space duality theorem asserting that

infgess 1K — QIl = maxeus, oji,<1 [$(K)| for any K € A and subspace Ao C A4,

it follows from Lemmas 3.1 and Theorem 3.3 that g, is attained by some extremal
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¢ ([ uvw D‘ and on combining this with the

functional, po = MaXge (s, ||l pe <1 0

results of Theorem 3.1 we get

Corollary. Under the assumptions Al and A2,

7]

min
0

() o

Let Xope = RQope and ¢ope be the extremal elements which exist by the Corollary,

5 se(Sa)+, éllpe <1

where B =~ B~ and (S;)t =~ S~.

and let

izt (U = WQL+ 17 lls (72)

Poo—Q

i.e., when the open unit dis¢ analyticity constraint is removed. In the scalar case
(n =1), poo = || min({W(e”)], [V(e®)]) lloo-
Theorem 3.4.Under assumptions Al and A2, if po > poo then,

i. Any optimal Qop: in (53) satisfies the flatness (“ allpass’) condition
II(U™W = WQapt)(e°)] + [VQupe(€”)] = o, Lebesgue a.e (73)

it. If Qn is any sequence in HSS, . such that im, .o [||U"W — WQxl+|VQallleo = po,
then

Lithin oo (|(U"W = WQL) ()| + [V Qn(e®)]) = pro. (74)

The condition pg > poo is sharp for both conclusions in the sense that if uo = poo
then there exist W, V, P for which (73) and (74) are false.
Remark. If (43) is derived from the MIMO two-disc problem

T QeH®

po= ol || [Wi(l — FoQ)W|+|FoQV] |l (75)
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in the manner elaborated at the end of Sect. 2.4, then the statements (73) and (74)

can be replaced by

Wil = PoQup )W ()] + |PoQope V(™) = mo lLae (76)
and Limn_e ((WA(I = PoQu)W(e®)] + [PoQuV(e®)]) = o (77)

where Qopt = Qoptvm1 and Qn = an—l-

Proof of Theorem 3.4. i. Let @, have the integral representation ¢,p = < v >

L2, (w) x L2, _(w) (defined by the integral (58)), which satisfies ¢ope(S) = 0. Then

(175" ]-7em)

where dy(0) = Gdw(#) and write X0 = X. Let q-So,,g be the extension of ¢,p to

= uw
= = |Popt - X
- [ ("]
S | foo, FrOW = K76 + TG )t0)
S oo IUW = XISTHG) + | XalSTr(Ga)} (@) (78)
S o MUTW = Xl + Xl )u(0) (79)
S UW = Xl +1Xel o [ d(6) = o (50)

where diy(8) 1= Maz (STr(Q,),STr(Q))dg_u_(G) satisfies fip 2y dt(8) = || upells+ = 1.
We will show that the Borel measure induced by di(8) on the unit circle is such that

Borel sets of 1 measure zero have Lebesgue measure zero. The flatness condition then

follows from (79-80).

The extremal functional has the equivalent representations
BonlK) = [ Tr(K-G)du(0)

j[m) Tr{K"(I - RR")d/'(0)}

+[ TrK-RGado (81)

[0,2)

Il
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for some G € (Hy)nxn. Suppose that y(8) (defined as in (80)) has zero increase on
some Borel subset {2 of the circle of nonzero Lebesgue measure. Let M be an arbitrary
constant matrix. For an arbitrary Borel set E of £, consider the L%, (w) x L2, (w)
function, K~(e®) := MR" for § € E, K*(¢%) := 0 for 8 in the complement of E w.r.t.
the circle. Then ¢ope(K) = 0 = Jg Tr(MGa(e¥®))dd which implies that Ga(e¥) = 0
Lebesgue a.e for 8 € 2 since M is chosen arbitrarily. But as £ has strictly positive

Lebesgue measure and G3 € (-E:))nxn) G3 must be identically zero. Therefore the

maximum in (71) remains po if (Se)*((Se)* =~ S™) is restricted to (=~ Sg’) where,
~ . ~ . = _ -\ 1 trg ' ~ 9
Sy :={veB~: v fmu RR)/(®), v € BY} (82)

But under the isomorphism of Theorem 3.3, Sg” = (RCrxn)* , by the reasoning used

in Theorem 3.3b. Therefore, again using the Banach space duality theorem following

(D

which contradicts the hypothesis and 1. is proven.

ii. Define X := R %" .
ii. Define = RQp = Xgﬂ)-. en,

(g e

< j{m (1UW — X STr(Gy) + X8| - STr(Gy)) due

Ha

= max
éG(RCn xn)‘Lv "6"3'51

s _ (™ (n)
S Joan (U7W = X4 1X07]) ag
< MUW = X1+ X llo(— bo as = — 0) (83)
Thus, |
B o (=IO = X)) - X)) =0 (8)
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Since |||U*W - X{")l + IX-E“)H[«, — pp as n — 09, (8§1) holds with the integrand re-
placed by its absolute value. Therefore, Ra(e%) := |(U*W =W Q,)()|+]|V Qu(e?)| —
o as n — 00, in Ly(dy). It follows that R, converges in ¥ measure to the constant
to. In the proof of i. it was established that Lebesgue measure is absolutely contin-

uous w.r.t. ¥ when pg > poo. Hence for arbitrary ¢ > 0

nl‘i_r&':[;{G €[0,27) : |Ra(€®) ~pol > €} =0

= lim m{6 € [0,2r) : |Ra(e®) — po] > ¢} =0 (85)

Therefore R, converges to uo in Lebesgue measure. Since R, € L®[0,27) we have
R, — po in L[0,27).

If the hypothesis pg > poo is violated then the optimum is not necessarily flat, e.x.,
chose W = -;—(l —z), V =U =1, in which case possibilities for Qop: include Qop: = 1

and Q,p¢ = 0. In the case of Q,p: = 0 the conclusions of Theorem 3.4 fail.
]

Remark. (On the uniqueness of the optimal Q.) For the SISO case, if o > oo and
W is not constant, then it can be deduced from the proof of Theorem 3.4 that the

optimal Q for (73) is unique Lebesgue a.e. To show this, notice that (78) implies that

arg(U” — RiQope) = arg(Gy) and  arg(RaQope) = arg(Go) (86)
a.e.(w) on the set {8: [Gi(e®)| #0 end |G,(e?)] # 0}

Define the Borel set F := {8 : Gy(e) = Gy(¢) = 0}. From the construction of
¥ we have ¥(F) = 0 which implies m(F) = 0. Borel sets of w measure zero have 1
measure zero and so have Lebesgue measure zero. Hence (79) implies that |G} = |G|
Lebesgue a.e. if Q,,; is non-zero Lebesgue a.e. The last statement is true because

if Q.pe Were zero on a set of non-zero Lebesgue measure, it would be zero Lebesgue
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a.e., which would give a non-flat solution for non-constant W. Since |G,| and |G|
are equal Lebesgue a.c. and both zero only on 2 set of Lebesgue measure zero, {86)
must hold Lebesgue a.c. This demonstrates uniqueness of Q.pc Lebesgue a.e. because
(86) determines Q. uniquely at each e where it holds: the second equality in (86)
determines arg(Q.p:), and then the first equality determines |Qope|. po > oo is also a
sharp condition for uniqueness of the optimal @ in the sense of Theorem 3.4, by the

example in the proof at the end that theorem.

The statement of Theorem 3.4i could possibly be derived using the very different
approach of Helton’s general flatness theory [27]. However the duality-based approach

taken here is quite different.
3.4 Strictly Proper Nominal Plants.

Here we shall restrict our attention to the SISO case, partly in order to simplify
the presentation and partly because there there is no conceptual difference between
the treatment of the SISO and MIMO cases. Recall that in the SISO case, the two-
disc problems arising from the ORDAP (5), and from the two-disturbance problem

(2), assumed the form

S, W = @) + VPRIl = #o (87)

Assumption (A1) excludes the case of strictly proper nominal plants F, from the
analysis of Sects. 3.1-3.3. In this section, we consider the following modification of
assumption (Al) to allow strict propriety. -

(AY') The outer factor of Py takes the form HY , where H is an invertible function

in H® andY is a strictly proper rational outer function whose zeros on the unit circle
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are constrained to lie at the point {—1}. In addition, there exists an ¢g > O such that
the weights W and V of (87) satisfy |[W(e®)? + |[V(e®)? > & V0 € [0,27).
Assumption (Al’) can be further extended to allow any finite number of zeros on
the unit circle and all the following theorems and proofs can be modified accordingly.
However, the simpler case is considered here for clarity.
In the following lemma we note that it is possible, under a mild condition, to
‘absorb’ the outer factor HY into the free parameter Q in (87)
Lemma 3.2 If o = infgen= ||[W(1 = RoQ)| + [V FPoQllleo, #0 = infgen~ [||[W(1 -
BQ)| + [VQilleo then under assumptions (Al') end (A2),

go 2 [W(e™)| & po = o

Proof of Lemma 3.2 (<). Suppose {Q,} is a sequence in H* such that

[[W(1 = Fo@n)| + [V FoQnlllec — o (88)

Given ¢ > 0 there exists an integer M such that for any n > M there is a sequence

of neighborhoods N,, C [0,27) containing = for which
IW(L — Po@n)(e”)| + IV AQn(e”)] > [W(e™)| ¢ VOEN, (89)

Thus jfig > |W(e'")], since ¢ is arbitrary. Hence o = o = o > [W(e™)).
(=). Fix € > 0. First we establish that there exists an integer n such that Q=
(EF)%QO where Qo is the optimal solution to infgewm= J||W(B~ — Q)| + [V@Qlces

satisfies

[IW(1 - BQ)| +VBQllles < po + . (90)
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+

oy L . .
Since (=) " Qou(e") — Qo(e'®) on compact subsets of [0,27) — {#} we have
2
1+ eiﬂ) 'r‘;'

Xole®) = Iw (1—3%@“’)(“‘;‘8)*) vaue) (15

—  |W(1 ~ BQo)(e"®)] + [VQo(e™®)| on compact subsets of [0,27) — {x}

Thus to prove (90) it is sufficient to show that X,(e*) is uniformly bounded above
by o + ¢ for sufficiently large n in some neighborhood containing #. Since WB, W,V
are continuous at —1 there exists a neighborhood NV containing = such that § € N

implies
W(e®) = W(=1)] + (IV(e9) = V(=1)| + W B(*) = WB(=1)]) [Qolleo < z¢ (91)

Thus [W(-1) — WB(-1)Qo{e”)| + [V(—1)Qo(e®)| < & + po for 8 € N.

Define the following convex function
$:C—C, (z)=W(=1)— WB(=1)z| + |[V(-1)z|

Hwe{zeC : ) |W(-1)|}thenr €[0,]] 3> rwe {ze€C : ¢z) <
|W(—1)|} since rw is a convex combination of 0 and w. Otherwise ¢(w) > |W(-1)|,
implying both 0 and w lie in the set {z € € : ¢(z) £ ¢(w)}, from which we
conclude that convex combinations of 0 and w must lie in the set i.e., ¢(rw) < @(w)
for r € [0,1). Thus, multiplication of Qo(e') by r € [0,1] retains go + § as an
upper bound for [W(—1) — WB(~1)Qo(e!®)r| + |V(—1)Qo(e)r| for § € N. Since
arg (H‘;—')% — 0 uniformly for all 8 € [0,2x), there exists an ry € [0,1] for each
8 such that (#)* ~rg} <

7] uniformly in 8 for n sufficiently

SMax(||WQolleo ||V Qollos)

large. It follows that for 6 € N, po + 3¢ is 2 uniform upper bound for |W(-1) —
. v L : g i
WB(-1)Qo(e”) (7)™ | + [V(~1)Qo(e™) (14£2)™ | for large enough n. From (91)
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we arrive at the desired uniform bound for X,(e), and (90) must hold for Q of the

stated form.

Now define Q,, := Q2 where Pa(2) := [(—H_—(:)‘:':'—:%):]", k is the order of the zero

of Y at e'". Using the same argument as that used in [58] we can show that

imsupaco[W(1 = PoQu)l + IV PoQulllco < st + € (92)

Since ¢ is arbitrary we have established that o < po. Inequality in the other direction

follows from the fact that HY BH*® C BH®.
o

Remark. The assumption that go > |W(e™)| will certainly be satisfied when high
frequency plant uncertainty is more pronounced than high frequency disturbances
(i.e. |W(e™)] < [V(e™)]). This follows because if |V{e™)} = |W(e'™)|, then po >
[Min(IW], [V])lleo = [W(e™)I.

For an important class of circumstances, strict propriety of the nominal plant
P, rules out the existence of an optimal control law for both the ORDAP and the
two-disc problem (87), as shown in Theorem 3.5 below. This contrasts with the case
of nonstrictly proper plants (Al).
Theorem 3.5 Under the assumptions of Theorem 8.4 with (Al') replacing (A1), if

po > |W{(e™)| then there does not ezist an optimal Q for the optimization

Qienf;w IW(1 = Fo@){ + |V FoQlllee := fo

Proof. Suppose on the contrary that there exists a Qop € H* for which

I”W(l - BHYQOM)I + |VBHYQW¢”[«» = jig = Ho (93)
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and go > |W(e'™)|. Then for arbitrary ¢ > 0 there exists 2 neighborhood N of = such

that forf € N
|[W(1 — BHYQO,,,)(e‘a)I + IVBHYQO,,,(c"e)] < |W(e"")] +¢ (94)

But Theorem 3.4 part (b) t.e., the flatness property of the optimum, and the continuity
of WB and V, po < |W(e'™)|+¢, and since ¢ is arbitrary, o < |W(e'™)| contradicting

the assumption.
o

When an optimal control law does not exist, obviously one cannot draw any con-
clusions about ¢he optimal behavior along the lines of Theorems 3.2 and 3.4. However,
in these situations it is meaningful to analyze the properties of ‘nearly’ optimal solu-
tions, where the performance is very close to the optimum. Accordingly, in Theorem
3.41i it was shown that the optimal flatness result of Theorem 3.4i. holds in a lim-
iting sense for ‘nearly’ optimal control laws, enabling us to deduce-an ‘approximate
flatness’ result for strictly proper nominal plants satisfying go > |W(e*)|.

In summary then, if the high frequency uncertainty is more pronounced than the
high frequency disturbé;ﬁtéé_s: (see above Remark), then the value of the optimal robust
disturbance attenuation for a strictly proper nominal plant is the same as that of a
non-strictly proper counterpart with the same inner factor. However, strict propriety

rules out the existence of an optimal control law and its attendant properties.
3.5 Qualitative Implications for Feedback

In the following subsections the duality theory as discussed in Sects. 3.1-3.3
is used to examine the ORDAP for SISO plants, with particular emphasis on the
qualitative aspects. The application of this theory to the synthesis of ‘nearly’ optimal

control laws is deferred to Chapter 4.
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3.5.1 Properties of the Optimal Behavior of the ORDAP

As shown in Chapter 2, the ORDAP for SISO systems reduces to a fixed-point
problem involving a two-disc optimization of the form (38) (also sce [20]). Here, the
theory of Sects. 3.1-3.4 for these two-disc optimizations (43) is applied to gain insight
into the ORDAP for the SISO case. It should be noted that in order to apply the
ideas of Sect 3.1-3.3 to situations where V is scaled by a parameter r, assumption A2
must be strengthened to:

(A3) B*W,W,V, BW are continuous on T, as is the outer spectral factor of
|W|2 +r2|V{? for any real r, and the outer factor of the plant Py is invertible in H*.

Recalling the representation of the ORDAP in the MIMO case (16), the repre-

sentation of the ORDAP in the SISO case assumes the form

. W(l - RQ)
= of su AR SR L 1 95
Hopt Q e B XGH"',H?{“»(I 1+ XVPQ|,, (95)
IVPQllos €1

In the following theorem, optimal feedback laws for (95) are shown to exist, uniqueness
of the optimal feedback is proven, and an expression is obtained for the magnitude
of the sensitivity function under optimality.

Theorem 3.6 a) If the outer factor of Py is invertible in H®, |W()|>+ |V (e?)]? is
uniformly bounded below, and pop: > 0, there exists at least one control law stabilizing

every system in B(Fo, V) such that

W1 - Q)
1+ XVERQ

sup

= Hopt (96)
XeH* || X{le<

o0

b) If, in addition, assumption A8 holds and pe, > ||Min(|W(e”)], topt|V{€))lcos
then there exists one, and only one controller Cy which stabilizes every system in

“ B(P,,V) and achieves equality in (96). For this optimal case, the magnitude of the

3.
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sensitivity function for the nominal plant Py satisfies

_ VPOCO ( 18)
= Hopt = Hopt 1+POCQ e

Lebesgue a.e (97)

W W0
h+&@“)

Remark. The last equality (97) points to a trade-off in the optimal case, between the
performance of the nominal system as represented by the sensitivity, and the stability
margin as represented by the reciprocal of [V P,Q(e®®)| at each frequency §. Note
that the reciprocal of |V P,Q(e')| at each 6 represents the largest allowable weighted
multiplicative plant perturbation at frequency & for which closed-loop stability can
be guaranteed. For the nominal plant under optimal feedback, (97) suggests that at
those frequencies where nominal sensitivity is relatively small, |V PoQ(e*)| is close
to unity, and the stability margin is close to the minimum specified in the problem
formulation.

Proof of Theorem 3.6 a) Under assumptions stated in a), it follows from Theorem
3.2 that for each r there exists an optimal Q € H*™ for optimizations represented by
x(r) in (38) for the SISO case. From Theorem 2.1 g, is the smallest fixed-point of

x(-). Hence if Q¢ is the minimal Q € H* for the optimization x(g,p:) then,

I W = PoQupe)| + toptl V PoQept] lloo = X(t0pt) = propt (98)

= [VPoQoptllec 1 (since pope > 0) and (99)

W (1= PoQuse)(€°)] < el + (P = Po)Qre(®)| VP € B(Po, V) VB € [0,27)

| W(l - POQopt)
1 + (P - Po)_Qopt

The above fractional term is in H™ since |[(P—Fo)Qopt]|oo < [|[ XV PoQoptllen < 1 (since

<kt VP EB(P,V)

-]

I Xllo <1 for all admissible P). An optimal controller is given by Copt = 525
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b) Rewriting (98)

X(#opt) = trope = oin [[IW(1 = FoQ)| + ptopt|V PoQllles (100)

= |]|W(1 - POQON)I + POP:IVPOQopt“loo (101)

Theorem 3.4 can now be applied to the optimization (100). Assumption A3 guar-
antees that A2 holds for the weights W and rV, with the result that all the con-
ditions for the application Theorem 3.4 to this optimization are met. The hypoth-
esis po > poo in the statement of this theorem, for the case (100) becomes pop >

| Min (] W(e"), p,,,,lV(e“e)l) [leos Thus, the Qop which satisfies (101) is unique, and
IW(1 — PaQopt)(e”)] + ttopt]V PoQopt(€”)| = prope  Lave. (102)

proving both statements of b).
B

3.5.2 Growth of Optimal Robust Disturbance Attenuation with Plant Un-
certainty

The flatness condition (73) of Theorem 3.4 has significant implications for the
growth of the disturbance transmission with plant uncertainty. I the size of the set
of open-loop plant uncertainty is strictly increased, i.e. V is replaced by V' where
[V'(e®)] = [V(e®)] La.e and |V'(e?)] > |V(e?)| on a set of nonzero measure, then
robust performance for the ORDAP is strictly increased from u to p', when the
assumptions of Theorem 3.4 apply for W,V and P,, and [W(e®%)| is not identically
constant. To prove this, suppose on the contrary that 4 = x' for the situation
described in the previous sentence. By assumpf;ion, we have p > [|[Min (W], ziVI])l..-
Thus there exists Qp € H*® (see Theorem 3.6 } such that

IW(1—BQo)| +plVQol=p lLae. (103)
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Since g = u' we also have for some @, € H* (from Theorem 2.1 and Theorem 3.6a)
IW(I - BQ1)| -+ #IV’QI! S H la.e. (104)

The uniqueness of optimal solutions of Theorem 3.4i. implies that (103) and (104)
can only both be true if Qo = @y l.a.e.. Subtracting (103) from (104) then gives

(V| = VD) IQol =0 La.e. : (105)

which in turn implies that Qo must be zero on a set of positive Lebesgue measure,
and so must be identically zero since it is an element of H%. In the light of (103) this
would imply that |W| = g, l.a.e., which is ruled out by the assumption that |W|
is not identically constant. QED. A conceptually identical argument yields the same

_conclusion for the case where the weighting W is replaced by a larger weighting which
is strictly larger on 2 set of strictly positive Lebesgue measure, under the assumption
that [V] is not identically constant.

When the conclusion of Lemma 3.2 holds, the same strict monotonicity property
applies for strictly proper nominal plants (i.e. when (Al) is replaced by (Al")).

The above conclusions on the ORDAP will now be applied specifically to the
SISO case of the plant disturbance attenuation problem of Section 2.2, in which W of
(95) takes the form W = WAV for W and V as in (24). The result is that under the
assumptions of Theorem 3.6b, the closed-loop uncertainty set completely ‘fills out’ a
Wi weighted sphere in H* of radius pop. In this context, the term ‘fills out’ refers
to the situation where the a posteriori plant uncertainty set cannot be contained in
a smaller weighted sphere in H*. This result is proven by showing that its negation
would contradict the above strict monotonicity property. Accordingly, suppose there

exists a smaller sphere of containment. That is, there exists 2 weighting W] such that
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(Wil 2 |Wi| lLa.e., which is strictly larger on a set of positive Lebesgue measure,
and for which the optimal robust disturbance attenuation (95) remains unchanged
when W = WiV is replaced by W]V. However, this possibility is ruled out by the
strict monotonicity of the optimal robust disturbance w.r.t W mentioned above. The
conclusion is, therefore, that a feedback which optimally contracts A* unstructured
plant uncertainty uses all the ‘space’ in the sphere of optimal closed-loop radius. In
practical terms, this means that if certain frequencies are deemphasized, i.e. lightly
weighted in the ORDAP, the resulting optimal closed-loop uncertainty set will have

proportionately greater radius in those frequency ranges.

3.5.3 Well-Posedness of the ORDAP and Uniqueness of the Fixed-Point
of x

In this subsection we investigate the well-posedness of the ORDAP w.r.t problem
data. In this context, well-posedness refers to the property that optimal performance
depends continuously on the problem data [46]. If the ORDAP is to provide a basis
for robust control synthesis, at the very least the optimal performance must depend
continuously on the problem data, otherwise the slightest inaccuracies in a priori
information could give rise to large errors. Moreover, from a more abstract point
of:‘:icw, any ill-posedness would sugg;st that some latent physical constraint in the
problem had been neglected [46].

Smith’s paper [46] motivated the analysis of this subsection with the observation
that well-posedness and robustness were distinct concepts, in the sense that robust
synthesis problems such as ORDAP could still be ill-posed in the problem data.
This point was illustrated in [46] with an example (Example 4) in which the optimal

performance in the ORDAP was a discontinuous function of the open-loop uncertainty
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radius. This suggested that the ORDAP could be ill-posed w.r.t. this quantity, at
least for some cases. Accordingly, in this subsection we use the theory of Sects. 3.1-3.4
to examine the dependence of optimal robust disturbance attenuation on the radius
of the a priori uncertainty. We show that Example 4 of [46] is really a special case,
and that for quite general situations the ORDAP is well-posed for perturbations to
the radius of a priori uncertainty.

In contrast to the behavior exhibited in Example 4 of [46], Smith showed that
the ORDAP was well-posed w.r.t. perturbations to the nominal plant P, for additive
descriptions of plant uncertainty. Hence, in those situations where the ORDAP is well-
posed w.r.t uncertainty radius, we can conclude well-posedness w.r.t. the complete
additive uncertainty description.

Note that well-posedness of the ORDAP with respect to the weighting function
W € H* follows directly from the representation (95).

Henceforth, we define the function Xo : [0, 00) — [0, o0)
xo(r) = [|Min (W], r|V]) [ie (106)

The following theorem identifies the conditions under which the optimal robust
disturbance attenuation depends continuously on the uncertainty radius. We normal-
ize W such that ||W|, = 1.

Theorem 3.7 For SISO systems where the nominal plant is not purely outer, where
its ouler factor is invertible in H*®, and where |W(e'®)|? + |V(e¥)[? is assumed to be
uniformly bounded below by a strictly positive quantity, the following is true:

1) a) and b) are equivalent conditions,

a) There is no subinterval I of [0,1] with non-zero length such that
X =x)=r  foralirel (10)
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b) There ezists one and one only positive fired-point of x(-).
2) The optimal robust disturbance attenuation

Wl - AQ)

inf 00 108
Qehe xR I3 — T XVRQ I (108)
hrVFoQlloo €1

is a continuous function of r at r = z if and only if the conditions of 1) are satisfied
for the nominal plant Py and the weights W, zV.
Proof.

1) Suppose x(-) has more than one fixed-point. Then there exists ry,r; € (0,1] such

that r, < r; and

x(n)=n x(r2} =r: (109)

Under this condition we shall establish the following two claims, which will prove the
implication a} = b).
Claim 1: x(p) = p for all p € [ry, 73]
Claim 2: x(p) = xo(p) for 2ll p € (r1,72]
To prove claim 1 we note that x(r,) = r;, which implies (Theorem 3.2) that there
exists a 1 € H* such that

[W(1 = BQ)(%)] +m|V@i(e®) £ n la.e. (110)
From (110) we have that |V Q1| < 1 (since r; > 0 because the nominal plant is not
purely outer). Hence it follows that

W1 - BQ1)(®)| +plVQu(e?)| < p  for La.e 8 and for all p € [r1,75] (111)

Thus x(p) < p for p € [r1,72]. To prove that x(p) = p Vp € [r1,72] suppose on the
contrary x(p) < p for some p € (ry,72). Then there exists a § € H* such that

[W(1 = BQ)e")|+plVQ(e?)] < p—& lae forsomeé&>0 (112)
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= |W(1 = BQ)(e®)| +2|VO(e®)] < r =6 lae. (113)

However (113) is impossible since x(r2) = ra. Hence the assertion x(p) < p is false,
and we must have x(p) = p Vp € [r1, 72}, proving claim 1.

To prove claim 2, we suppose that x(p) > xofp) for some p € (r;,r2) and show
that is leads to a contradiction. This assertion implies, invoking Theorem 3.6 and

using the fact that x(p) = p from claim 1, that there exists a Q3 € H™ such that
IW(1 = BQs)(e®)| + 2V Qs(e”)| = p Lae. (114)
and that the set
A= {Q € H™ : [W(1-BQ)e")+pVQ(e") <o Lae}  (115)
is the singleton {Q3}. From (111), Q; must also lie in A,, thus we conclude that
Q1(e?) = Qa(e®?) lLa.e. (116)

Subtracting (110) from (114) in the light of (116) implies that (p — )|V Qa(e'?)| >
p—r1 la.e. which in turn implies that |V Q3(e*®)] > 1 la.e.. From (114) this gives,
|[W(1-BQ)(e"®)] =0 la.e. This last conclusion is ruled out by the assumption that
the nominal plant is not purely outer. Thus the initial assertion that x{p) > xo(p) is
false, claim 2 must be valid, and a) = b).

The implication b) = a) is established by showing the that negation of 2) =
negation of b), which follows from the definition of fixed-point.

2) From Theorem 2.1 and 3.2 the quantity in (108) is the smallest fixed-point of

xz(r) = Qg}fw NIW(Q1 — Po@)| + |2V PoQ|llec as & function of r. (117)
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If this fixed-point is unique for a particular z, then its position must be continuous
w.r.t perturbations to z, since x:(:) is a continuous, non-decreasing function. This
follows from the fact that if a real continuous function taking positive and negative
values on a compact interval of IR possesses a unique root, then the location of the
smallest root is continuous w.r.t. perturbations to the function in the uniform metric.
If, on the other hand, the positive fixed-point of x: is not unique then, following the

proof of 1), positive fixed-points must constitute an interval {ry,72]. If § > 0 then

. é .
Xets(r) = Jinf_ IW(1 = BQ)|+ =2 2r[VQllls (118)
= $+8r for $+6r€[r1,r2] (119)

x T

It follows th#t fixed-points of x..s are excluded from [:’-31-1, ;—::5.'1'2]. In addition,
fixed-points of x..s must be bounded below by r;, or r; could not be the smallest

fixed-point of x.. Since é is arbitrary and r; > r, the smallest fixed-point of x(-) is

not continuous at z.
a

Statement la) of Theorem 3.7 is actually very weak, and almost always holds in
non-pathological situations. For example, in any of the following cases 1a) must be a
true statement:

i. W,V € C[0,27), and |V(e¥)] = 1 for at most one single & € [0,7) at which
[V(e®)| does not achieve a maximum.

i, [[V]eo <1

ill. ||WV]|e is bounded above by the optimal robust disturbance attenuation.

Note that none of these conditions apply in Example 4 of [46).
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3.6 ORDAP for MIMO Systems: An Exact Characterization.

In this section, we will deal directly with x, in order to obtain an exact description
of the ORDAP for MIMO systems in a predual space. The development will be similar
to that of Sect. 3.1 with a modified matrix norm, and will enable the implementation
of the same convex optimization based numerical techniques as in Chapter 4, for
MIMO systems.

Define B to be the Banach space L%, x L3, consisting of pairs of n x n matrix-

valued functions defined on the unit circle under the norm,

IK|lg:=ess sup sup (|Ka(e®)C| + [ Ka(e®)C]) (120)
6€[0,2x) ¢aT™,|¢|<1
] K
x=| %]

From Theorem 2.1, the optimal robust disturbance attenuation problem for the

MIMO case reduces to an optimization of the form
[ U-0 w ] _ RQ
B

The rest of this section is devoted to obtaining a description of the optimization

Ho (121)

= _1
QEH N

(121) in the predual space.
We define X, to be the Euclidean space €™ with the Euclidean inner product,
and Y, to be the Banach space €™ x €™ under the norm defined by

7] = ez tet i) (122
Yn
From Lemma 6.1 we have that
Xi X, XX, (123)
Yy~ Z,, Yot (124)
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where Z, is the Banach space €" x €™ under a norm defined by

H

The Banach space of bounded linear operators from X — Y,” under the induced

=z + vl (125
Z

[

operator norm (denoted by B(X},Y)) is isometrically isomorphic to the Banach

n*en

space of matrix pairs in £**" x C**" under the norm defined by

%]

The following definition of the nuclear norm for pairs of matrices is a special case of

= sup (14| + [A2(]) (126)
~ st

the more general definition given in Chapter 6, Definition 6.1.
1s defined lo be

A
A2 nuc

the infimum of all sums ¥ zi| x.. - |lvellv., =« €C", yi € Y., such that

Definition 3.1 If A;, A2 € C**" then the nuclear norm

[ ﬁ; ] u= Z(:r.{u)yk Yuefg® (127)
k

Lemma 3.3 If T, ®, A, B e {™" then

ITrT"A+Trd"B| < sup (|AC|+|BC|)-||[$} (128)

(el (<1

In addition for every A, B there is @ choice of T,® which makes (128) an equalily.

Proof. Consider the space of linear operators from X, — Y, equipped with the
nuclear norm of Definition 6.1. This is a Banach space after [22] and [8], and following
the notation of the latter reference it is denoted by N(X,,Y,). As in the case of
B(X:,Y.) above, there is an isometric isomorphism between N(X,,Y;) and a Banach
space of matrices £™*™ x €"*" under the nuclear norm of definition 3.1. It follows

n!''n

from Theorem 2.10 of [8] that the dual of N(X,,Y,) is identified with B(X},Y).
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Evaluation of linear functionals can be expressed in terms of the respective matrix
representations of the argument and functional in the following manner. If ¢ is
a bounded linear functional on N(X,,Y;) then the action of ¢ on an element of

N(X.,Y.) possessing a matrix representation [ g ] € C™*" x C"*" can be expressed
TrTA™+TréB". (129)

[ ; ] € C"*" x C™*" is the matrix representation (under the isomorphism defined
prior to (126)) of the unique element in the dual space B(X, ¥,7) corresponding to the
functional ¢. The statement of the isometric isometry between the dual of N(X,,Y,)
and B(X.,Y."), when expressed in terms of the respective matrix representations,
establishes both (128) and the fact that (128) can be made arbitrarily close to equality
by appropriate choice of T,® € €"*". Exact equality for some choice of T and &,
then follows from the compactness of closed bounded subsets of £™*™ x C™*" in the

nuclear norm.

u|
Now define the Banach space B. to be L} x Ll under the norm
o 29 Gl(eie)
1616, = || S || a0 (130

where the subscript .. denotes the matrix nuclear norm of definition 3.1.

Remark. To establish that B, is indeed a Banach space, the only non-trivial step
is to demonstrate that it is complete as a metric space (other properties follow from
the fact that || - ||nue is 2 matrix norm). Both the norm of B. and the norm of B.
are defined in terms of an integral over [0,27) of 2 matrix norm on £™*® x C™*".
In the former case, that matrix norm takes the form Maz (Str(G:), STr(G:)) while

in the latter case it takes the form II[ gl ]
2

for pairs of C**" matrices Gy and

nug¢
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(G2. However, since 2ll norms are equivalent on €"** x C"*", we conclude that the
norms of B* and B. must also be equivalent. Since the Banach space B. is complete
(Appendix A), we conclude that B. must also be complete. Thus B. is a Banach
space.

Define the subspace of 5y of B. as in (49). The following theorem identifies the
predual of B. and the preorthogonal complement of 5.
Theorem 3.8

i (B

R

(131)

B
#. (8.)* =~ 8§ under the isomorphism of i. (132)

Remark. A corollary to Theorem 3.8 establishes the existence of an optimal Q €
HZ,. for the optimization described by

nxn

inf ess sup  sup ([Wi(I — RQ)W(e“)(] +|RQV(e“)]) (133)
QEHZ..  sef0,27) ¢TI

when assumption (A1) applies to the weights W and V derived from W, Wy, V, Py in
(133) in the manner described in Sect. 2.4 (c.f. remark following Theorem 3.2).
Proof of Theorem 3.8. i. As in the proof of Theorem 3.1, ¢ is a bounded linear

functional on B. iff it has the representation,

4(G) = [GIK] (134)

I ¢}

where [-]-] is 2 bilinear form on B.xB taking the form of (51), K = [ K
2

]eé,G:

[ g: ] € B.. Exactly as in the proof of Theorem 3.1, we can establish that the K
of (134) is uniquely specified by ¢, and so the required isomorphism is established.

Next we prove that the isomorphism is isometric. From Lemma 3.3,

e < [7 su (IK:(e‘°)CI+IKz(6"")CI)-’l[%z((ifa)] & (135)

RUC

¢armic|<t
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1Kllg - ICs. (136)

Thus the bilincar form [-|K] defines a bounded linear functional on B. with induced
norm bounded above by ||K||5. To prove that this upper bound is in fact equal to
the induced operator norm, we mimic the argument used in the proof of Theorem 3.1.
From the definition of the essential supremum there exists a sequence of Lebesgue

sets {Q% )52, of strictly positive Lebesgue measure m () such that for 8 € Q;

sup  (1Ka(e*)C] + 1l e)Cl) 2 1K )5 - 1 (137)
¢erm (151

From Lemma 3.3, it is possible to define G € B, for k = 1,2 such that,

for 0 € Q) TrGH K;(e®) + TrG¥ K ()

: ; G(k) i
= (1K) + 1 Ka(e®)C]) - ||[ G(k)(c‘g;] n(138)
Gm(e“’) 1
and [Gi”(e"")] = ()
for 8¢ Q. GV =GP (e®) =0 (139)

Hence [|Gl|z, = 1 and |[G|K]} > ||K||3 — . Since k is arbitrary, we have deduced
that the induced norm of ¢ is indeed equal to ||K||z.
il. (132) follows directly from the proof of Theorem 3.1b, since this argument does

not exploit any topological properties of the space B..
u]
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Chapter 4

Summary of the Numerical Solution to ORDAP based on

Convex Programming

In this chapter we will briefly summarize the arguments that allow couvex pro-

gramming techniques to be used in conjunction with duality theory to produce a
numerical solution to the two-disc optimization of (2).

4.1 General Remarks

The results of Chapter 3 included predual and dual representations of the two-
disc problem of (43). These comprise maximizations or suprema, in contrast to the
infimum of the original form (43). Thus, the results of Chapter 3 lecad naturally
to a dual pair of numerical solutions, which approach the optimal po from opposite
directions, and have the virtue of producing estimates of pp together with tolerances
on these estimates. The numerical solutions, which are based on convex programming
methods (see Boyd [5]), will be briefly summarized here for the SISO case and used
to compute the example cited in Chapter 1. For convenience, W is normalized such
that ||[Wle < 1.

The first of these solutions, which will be referred to as the ‘primary’, exploits
the fact that |||W(J — PoQ)| + |V Po@Ql||le is @ convex function of Q. The problem
(2) is infinite-dimensional in the sense that there is no finite limit to the number

of parameters generally required to specify . However, (2) can be approximated
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by a finite variable convex optimization in the following manner: restrict Q to lie
in the space P,, consisting of degree m analytic trigonometric polynomials of the
form ag + @12 + ... + anz™ with real coefficients, and then discretize the unit circle
sufficiently finely w.r.t. m. 7 This yields a convex problem in the variables ag, ..., am.
For any fixed m, these convex problems generate upper bounds for o and suboptimal
control laws, since @ is restricted to a proper subspace of H*. Such problems are then
standard applications of convex programming techniques. The technique that will be
employed here is the Ellipsoid algorithm of Shor, Yudin and Nemirovski [45]. This
algorithm is chosen primarily for its non-hueristic stopping criterion [5]. That is, for a
prespecified tolerance e the Ellipsoid algorithm will terminate only when the estimate
of the optimum is guaranteed to be within ¢ of the true minimum. This algorithm has
the advantages of simplicity, robustness, and polynomial execution time. However it
can be slower than other methods such as the method of analytic centers.

The second or ‘dual’ solution exploits the representation of (2) in the predual,

as follows. po can be expressed in terms of the following minimization,

([ D= s ([ 75))-

uw
0
is a subspace. The dual solution is therefore —1 times the convex minimization

Ho = sup
€5, ||4]|p. <1

(140) holds, since for fixed U"W, ¢ ([ ]) is a linear function of ¢ and S,

shown on the right of (140). For the purposes of simplifying this minimization, the

preorthogonal complement S, described in (49) can be shown to take the form

SL={W_W ([_‘;,]X+[?;}Y) : XGL‘,YGE‘,}. (141)

the meaning of the term ‘sufficiently finely’ is discussed in 4.2
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X isthen restricted to liein the subspace of L' consisting of trigonometric polynomials
of the form a_;;_::"?" +...+ap+aiz+..+ a.zw_-:’?‘ denoted by Gp. Y is restricted to the
subspace of -H—:, comprising m-dimensional anti-analytic trigonometric polynomials of
the form a_y=7' + ... + a_.=~™ denoted by H,. (m is assumed to be even). After
sufficiently fine discretization of the unit circle, the resulting finite variable constrained
convex optimization yields upper bounds for the infimum in (140) and lower bounds
for the optimization represented by po. It can be shown that as m — oo, the upper
and lower bounds obtained by this procedure converge. This follows from the fact that
any continuous A function on the unit circle can be approximated uniformly by H<
polynomials, and any integrable H} function on the unit circle can be approximated
in the mean by H} polynomials. Thus, both finite dimensional convex minimizations
approach the infinite-dimensional minimum.

It should be noted that the dual formulations of (47) are critical to the im-
plementation of this method. While convex programs based on the finite variable
approximation to the primary problem produce upper bounds for uo, they give no
indication of how far these estimates are from the optimum, and so by themselves are
of limited utility. The lower bounds obtained from the dual problem, though, enable

such estimates of uo to be expressed to a known tolerance.
4.2 Approximate Representation by Euclidear Convex Optimizations

4.2.1 The Primary Problem

To establish a Euclidean vector problem which approximates the primary opti-

mization (2) we use the following representation
Uw | _| WA Q
0 VA-?
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If Q is then restricted to lie in the subspace Pp,, the resulting optimum is defined to

be

(143)

- e

If ]Wl|leo < 1, then ,uf,"') < 1. Thus @ can further be restricted to those elements of

B

P which satisfy the inequality (144) below, without effecting the infimum in (143).
| IU*W = WATIQ[+[VAT'Q] [l £ 1 (144)

If (144) holds then we have that

|W1? i - INE
WETTVEC )+ |(AU” - Q)(e")|
IV|2 1 2
+m(e°)-m(ea)l < 1 lae (145)
= Min (J(AU™ = Q)(¢*),|Q®)]) < 1 Lae (146)
=2 Qlle £ 14 |Allee (147)

Since Q is a degree m trigonometric polynomial in P,, which satisfies (147), then by
Bernstein's theorem (see for example [42]) we conclude that [|Q'[le < m(1 + ]|A|])
Thus, we have established that pf,'") can be found by searching over the subset of Pp,
defined by (147). Moreover the derivatives of all such @ are uniformly bounded above
by m(1+|{A||). This second point is a key issue because the uniform boundedness of
this derivative, coupled with the assumption that W, V, U"W are uniformly Lipschitz,
allows us to compute (143) based on inspection of a sufficiently fine partition of
discrete frequencies. In particular, for each Q € P,, which satisfies (147), the function

of 8 described by

(U"W - WATIQ)(e")| + AT VRN (148)
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is uniformly Lipschitz in 8, with Lipschitz constant bounded above by
. irre . W .V
Lip(U"W) + (1 + [|Alles) - {LIP(T) + Lipl) + 2m} = L. (149)

The function Lip(-) denotes the Lu.b of all uniform Lipschitz constants associated
with its argument. Define, for a fixed ¢, N, := int (-’52%‘), and 0, := 5‘,\-,-’:- for integers
k € (1, N,]. From the uniform Lipschitz continuity of (148), all @ € P,, which satisfy
(147), also satisfy (150).

|| |UW — WA™'Q| + |VA~'Q| ||m

—Maz, g,y ((U"W = WATIQ)(e™)| + VAT Q(e™)]) € [—c,¢] (150)

It should be noted that the uniform partition of the unit circle may be conserva-
tive, in the sense that non-uniform partitions with fewer elements may be found, for
which (150) is also satisfied. From the point of view of actual computation this would
mean great savings in memory and speed of the resulting programs. The uniiorm
case is considered here for the clarity of presentation.

The optimization represented by the quantity ,uf,'“’ can now be reduced to a
Euclidean vector convex problem, incurring an error smaller than ¢ in the following
manner. Define z € R™*? to be the vector of coefficients of @ € P, in ascending
powers. Let S, C R™! denote the convex set consisting of all coefficients z of those
Q@ € P which satisfy (147). Throughout this chapter, for cases where P, W and
V have real Fourier coefficients, the polynomials of P, G and H,, can be taken to
have real coefficients without effecting any of the optima cited. The computation of

,ug"‘) is, to accuracy €, approximately equivalent to

ziensfm Mazkeﬂnllﬂ'] ( ‘U- W(eiﬂk) - WA—I(et'ok) z x’.el'fok

r=0
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+ VA—I (clﬁj,) Z zrcirek

r=0

) =t &g (151)

(151) can then be expressed in the following Euclidean vector form.
g = iensf llabs(b — Az) + abs(Cz)}|,x (152)

where abs(-) denotes the Euclidean vector obtained by taking the magnitudes of each
element of the argument vector, b is the N, dimensional column vector defined by
(b = U*W(e™), Ais the N, x (m+1) matrix defined by [A],,, = WA~1(e"r)eil=1)6r
and C is the N, x (m + 1) matrix defined by [C],,, = VA~I(e¥")eil—16"

4.2.2 The Dual case

The first step in obtaining an approximately equivalent Euclidean vector opti-
mization for the dual problem (140), is to obtain representations for Sy (49) and the

bilinear forms of {51) in terms of W and V. The two terms in (49) that must be

expanded are (I — RR*)(L! x L') and RH,. Since R = A~ [ ‘g ] , (I = RE") can
be manipulated into the form
_ oy _ 1 Ve -
(I = RR*){") = WELTT [ _we ] (v -w] (153)
V-

Thus (I — RR*)(L! x L') = IWIW

_w- ] L' from assumption Al RHp =

A~ [ Il‘lli// ] —g‘l’ = IWI’:-IVI’ [ ?/f ] A-ﬁ;- Since A. is an invertible element of H

(from assumption Al), we obtain RH, ; = T [ ‘:// ] F;. Thus,

SL={W([_‘{;.]X+[‘$]Y) : XeL‘,YeTﬁ,} (154)
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Using this representation, the constraint that G € §, must satisfy ||G||s, < 1, can

e (- [+ [V ])

and the bilinear forms of (51), for K = [ U;)W ] and G € S, can be expressed,

[G|K]=%A2”ITV~|£I-_~W[UW- o]([ _Vv;._]x+[?;]}’)dt (156)

The second step towards attaining the desired representation mirrors the argument of

be expressed

<1 (155)
B.

4.2.1. X and Y in (154) are respectively restricted to G,, and H,, with the result that
lower bounds for the optimization of (140) are obtained. For X € G,, and Y € H,,,
we will show that the constraint that the B. norm of each element of S in (154) be
less than or equal to unity (155), implies that the derivatives of X and Y on the unit
circle are uniformly bounded. The assumption of Lipschitz continuity of W and V,
enables the integral of (156) and the integral implicit in (155), to be approximated
by certain weighted sums. Each integral represents the evaluation of the functional
represented by K, and the norm restriction in (155) respectively.

If an element of S, has representation (1754) and has a norm bounded by unity

i.e. (159) holds, then

. ]

”Wl—ziw(_w-x+w)” <1 (158)
i

Multiplying the term inside the norm symbols in (157) by V, then multiplying the
corresponding term in (158) by W and subtracting, followed by the application of

the triangle inequality gives || X|[; £ 1 + ||Vl A similar argument yields || X[, <
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1+ {|V]|eo. It follows that cach of the Fourier coefficients of X and Y are bounded by
14+ V]leo- Thusif X € Gm,Y € Hy, then | X||oo € (m+1)(1+][[V]ieo)s Yo € m(1+
IVlle) and the derivatives w.r.t 8 of X(e®) and Y (') are such that || X'(e")]lec <
R 1+ [ Vlleo) [1Y/(€°)leo < ZFE(L+ ||V l|oo)- Thus for X € Gin, ¥ € Hin each

clement of $) in (154) has uniform Lipschitz constant bounded above by

(1+ V]l {(m +1) [Lip (ﬁ) +Lip (|W|=Z 1v|=)] }

The integrand of (156) has uniform Lipschitz constant bounded above by

. U-wv . UW)? 5 , 3
(14 [IV]|eo) {(m + 1)Lip (|W12 n |V|2) +mLip (|W|2 n le) +gm +om
= Lz

If ;. are chosen as in 4 7.1 with N, = intﬂ-"fg“—'b"—l then the norm in (155) is within
€ of
1 N
R, 2 WP 7T H
Maz ([V"X (™) + WY (%), | - W* X (%) + VY (e™)]) (159)

:8*) .

and the integral of (156) is within ¢ of

N, -

If z € R™!, y € R™ are respectively chosen to be the coefficients of X and Y in

ascending order, then (159) can be written,

Mazfas| 80 50 ]| % | ass e con ][ ]} (161)

I,
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and (160) can be written,

A GEH)

T

(162)

where wy, is an N,-dimensional row vector, whose entries are all 1, Max denotes the

vector formed by taking the element-by-element maximum of its two arguments, and

WV o ezt (gt
(4% = e e AP =
| i g (r—"2-
BV = ey €T, (B, =
W Y 10, (v D=
(ke = mwEr R T (0 =

UW

(cio,, )c-ink:’

N([W? + V]
w
N(IW[? + V%)
Vv
N(IW|* + V)

(cl:ak )c—iaok

(cl'oﬁ )c—l'.'lok

where k is an integer between 1 and N, r is an integer between 1 and m + 1, and

is an integer between 1 and m. Thus the Euclidean vector convex optimization,

-inf{Re(w{,_[Am A(=)][I])+2e: ["]ew'"“,
y y
Maa:{abs[Bm Bm][;],abs[cm c“’][:]}l‘m Sl}(163)

is a lower bound for pq (43).

4.3 The Ellipsoid Algorithm of Shor, Yudin and Nemirovsky

Both optimizations of the type (152) and (163) are fairly standard applications
of numerical convex programming tzchniques [5]. Outlined here is the Ellipsoid ai.
gorithm of Shor, Yudin and Nemirovski [45], whose implementation is diSCussed'.in
detail in [5]. The only non-standard feature of (152} is that the convex set Sm has no
simple description in coefficient space IR™*!. This problem is dea.ltl'wit.h by taking
the starting ellipsoid in the Ellipsoid algorithm to contain S, and then treating (152)

as an unconstrained optimization. This is justifiable so long as the final z obtained
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;
s

for {152) does indeed lie in the set S,,. Although this is not guaranteed a priori, the
condition that x correspond to a @ € S, can be tested for upon termination of the
algorithm. We have found it to hold in the numerical implementations that have been
tried. If the final z does not correspond to a Q € S, then an alternative to the devel-
opment of 4.2.1 must be used in which the set S,, is replaced by a Euclidean sphere
in coefficient space, and new derivative bounds established for @ as in the argument
of 4.2.2. This would result in larger derivative upper bounds for @, and necessitate
a finer partition {6;}. This could have been done at the outset, thereby eliminating
any potential problem, at the cost of slower algorithm execution and more memory
usage.

Coding the Ellipsoid Algorithm is merely a matter of substituting the above de-
scriptions of the matrices A, b, [ A AQ) ] ,[ Bt} B@ } , [ cw c@ ] into the
standard forms given in pages 326-328 of [5]. Implementation of the Ellipsoid Algo-
rithm requires the computation of subgradients of the objective convex functionals
(152) and (162), and of the constraint functional for the dual problem (161).

Let us briefly summarize the derivation of the appropriate subgradients. In
order to find the subgradient associated with the functional represented by the un-
constrained form of (152), let 1 be the convex functional on R™*! defined by

ba() := lef (Az - b)] = MazsepanRe (e (Az — b)) (164)

The subgradient set for ¥ at Z (where ¥(Z) # 0) contains the subgradient set of

the convex functional defined by

z — Re (e‘a““"ef(Az - b)) (165)

where efactive — el (Az — b)

ICAVERE]
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Thus, a subgradient of the functional ¢; at z =z, ¥4{2) # 0 is

T(AZ— b
Re (;ﬁ%gﬂﬂek) (166)

On the other hand, if ¥(z) = 0 then Z is a global minimum for ¥4, and 0 is a sub-
gradient. A similar argument shows that the subgradient sct of the convex functional

represented by

Yu(z) = lef Cz| (167)
includes the element
TC" .
Re (IZE” c;|CT°") if Pi(3) #0. (168)

If ;Bk(i) = 0 then I is a global minimum of ¥, and 0 is a subgradient. Thus, the
subgradient set at Z for the functional obtained by taking the maximum of #; + P
over all integers k between 1 and N, (i.e. the expression (152)), contains the clement

T (Ax B PV rar)
er,(AZ —b) o e, CT 1
Re (_——'_Ie}fo(AE — b)IA €k + le£C£lC €kp (169}

where ko := argmazicigcn,ef [abs(b— Az) + abs(Cz)]. Note that the first term is
taken as zero if ¥, (Z) = 0, and the second term is taken as zero if e, (%) = 0. Thus,
(169) represents a subgradient of the convex functional defined in (152).

Define a convex functional ¢ on R*™*! by
d(w) := Re (uf, [ AV 4@ |w) (170)
The subgradient set for ¢ comprises the element
AT
Re A(g)T wy, (171)
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Thus (171) gives a subgradient for the functional defined by (162).
In order to obtain a subgradient for the coustraint functional of (161}, define the

convex functionals ¢»}:) , d;g") on R*™+1
¢5c1)(w) = ]c{ [ B p@ ] w[ = Mazgejpar) e (e‘.ae{ [ B} p®@ ] w)
60 (w) = lc{ [ ct c@ ] w[ = Mazggejo.2n)Re (c;ae{ [ c R ] w)

The subgradient set for ¢{") at & € R*™*! which satisfies ¢{"(&) # 0 contains the

vector

ey | B BG) | Bm- _
e\ e g el | oo | ) =0 )

The subgradient wet for ¢£2) at & such that ¢{(&) # 0 contains gi(2), which is defined
as for gx(1) but with B and C interchanged. If ¢>f)(d':) = { or qb}f’(u':) = 0 then the
respective subgradient sets contain 0, and the respective g term is defined to be zero.

Thus, a subgradient of the constraint functional defined by (161) is

N,
2 9 (argmaz,=12[¢{(w))) (173)

4.4 An Example.

In this subsection the methods of this chapter are used to estimate x(r) for a
case where the location of the fixed point is highly sensitive to inaccuracies in the
estimates of x(r). The results of this computation were used to plot the curve of Fig.
3 in the introduction. _

We plot estimates of x(r) (c.f. (152)) aﬁd its related predual problem as a
function of r € [0, 1), in order to estimate the optimal robust disturbance attenuation.
The weights W,V are 0. 17( 184025 02’) and 0. 22( SLttls ) respectively. The nominal

plant Py is ﬁ%ﬁ, as stated in the introduction.
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Figure 9: Plots of estimates of x{(r) vs r based on convex optimization

The lower curve in fig. 9 is generated by a convex program for the finite variable
problem (m = 6) resulting from the infimumin (163). The upper curveis produced by
a convex program for the finite variable problem {m = 6), resulting from (152). The
curves are generated by an ellipsoid algorithm for the finite variable approximations
to the primary and dual problems. The parameter r takes on the values of successive
multiples of 0.01, from 0.02 to 0.43 i.e., a total of 42 numerical optimizations, each of

which is computed to an accuracy better than £0.002.
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Figure 10: Magnitudes of the weights W and V vs frequency
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Chapter 5

The Asymptotic Case of Almost Complementary
Weightings

In this chapter we investigate the ORDAP for the case where the infinity norm
of the product of the weightings W and V is small compared with the optimal ro-
bust performance. Under this condition we label the weightings W and V ‘almost’
complementary. For almost-complementary weightings, approximate solutions of the
two-disc problems are obtained, which are expressed in terms of Hankel norms that
can be computed by standard means. When combined with a bound on the slope of
the function x(-) in the vicinity of the fixed-point, these approximations yield approx-
imates solutions to the QRDAP which are accurate in the limit of small |W"V|.
Also, explicit tolerance limits are derived and shown to be proportional to {|W*V||.
Finally, bounds are obtained on the growth of optimal robust performance vs the ra-
dius of the sphere of uncertainty B(F,, V). The bounds are independent of any plant
or weighting characteristics and strengthen the continuity result of Theorem 3.7.

One of the qualitative deductions of Chapter 3 was that increases in the plant
uncertainty on one frequency range produce a strict reduction in the potential for
disturbance rejection over all other_{frequency ranges (see Sect. 3.5.2). Part of the
objective of this chapter is to gain greater insight into this phenomenon by explic-
itly asking; what is the coupling between sensitivity on one frequency interval and

uncertainty on another? In particular, if frequency response information is available

81



over a limited frequency range, what are the characteristics which limit or enhance
the ability of feedback to reject disturbances on that range? Implicit in this question
is form of the ORDAP, since there is uncertainty outside the range where frequency
information is available. Although the material of the last four chapters has itlumi-
nated the ORDAP in both qualitative and quantitative settings, it lacks the explicit
nature of a closed form solution and so cannot be used directly to gain an intu-
ition for these questions. By contrast the approximate results of this chapter, which
apply where disturbances and plant uncertainty occur over predominantly different
frequency ranges, are more explicit. They enable us to isolate the factors aflecting
the coupling between uncertainty and perinrmance.

The following assumption, which includes the notion that W and V are almost
complementary will be needed throughout this chapter.

A4 W and V are commensurate (see definition 2.1) and {|W"V || = e << 1.

5.1 Mixed Norm Problems and the Hankel/Toeplitz Approximates

For this section, we shall assume that the ORDAP takes the form of (16) of

Chapter 2, with W; = I and W and V commensurate. The resulting mixed norm

two-disc problem takes the form

inf
QEHS

[ S ;gg)w] , =p (174)

The initial objective is to approximate (174} by a standard H* ‘two-block’ op-

timization. This will then be minimized by Hankel methods to give upper and lower
bounds for g, which should should be accurate in the limit as ||W°V||, — 0. For

this purpose introduce the cost functions,
J(@,6,¢) = {I(1 = X)W(| + [XV{¢[}(¥)
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Je(Q.0,0) = {7 = XYW +1XVEEY (e

where PpQ is denoted by X. Then,

= QEI;}ED esssup{J(Q,0,(): 0 € [0,27),( € C*,|¢| = 1}

We start with the identity

JHQ,0,¢) = J5y(@.6,¢) = 2{|(7 = X)W(LIX V| He") (179)

from which we will get an approximation of the form

JHQ,0,0) = J%(Q,8,0) +2{|(J = X)W(LIXV([HeY)

Where Jf_)(Q, 6,¢) is a nominal cost consisting of terms which are quadratic in X or
do not involve X, and A is a residual term.

Since W and V are assumed commensurate they can be expressed in the form
W =w,A, V = v,A where w,,v, € H® and A€ H%,,, |A(¢?)| =1 La.e..

Since W,V € HZ,, [loglW|df > —co, [log(|W| + |V]|)d§ > —oo, which
implies that [W| and (|W|+ |V|) admit spectral factorizations

W] = (IWD-(IW])+ (Wl + V) = (W] + [VD-(IW]+V])+

where (.}+,(.)- denote functions which are outer, or have outer adjoint, respectively.
The functions (1 -Ilwli).i. and (1 + [Wl) are defined by the identity, (1 + i‘j?li) =

%’nﬂl‘. Define M to be the unimodular scalar function which satisfies M~ =

L+ ) 1+ ),
Let I' 4 denote the Hankel operator with symbol A. The first result is an estimate
for u°.
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Theorem 5.1 For commensurate weights W and V',

§e = Qeifr}];’ esssup{J*(Q,0,{)}: 0 €[0,27),C€C (] =1}

nxn

satisfies,
. . BM"W — H,Q |I° I Ly
W= odk [ WLV, A HL” where = W Vlleo < 82 3IW Vil

(177)
which impites that p* = |Cy-p-wl|* +8' where 0 <6 < |WV]w
(178)

A function Q € HZ%, whose cost J(Q,8,() satisfies (177) can be found as «
solution to the Hankel Toeplitz problem determined in (182) of the following.

Proof. (175) assumes the form

{17 — X)W¢LIX V¢ He?)
=2{|w, .o |(Z = X)ACLIXACIHE®)  (as fwyl = W], fus| = V)
= {IWLIVLIU = X)ACP + X ACPE — (I - X)A¢| — IX ACY He™)

Now, (|( = X)AC| —|XAC)He?) < |AL(e®)|* < 1.  Therefore,
2{|( - X)WCLXV(I}(e®) (179)
- = (‘{|W|.|V|.[A'(I - XY(I-X)A+AX"XA- %A‘A]}(c“’)( + A(0,0)
where A(8,¢) == {|W|.[V|.[4|ACI? — (J(T = X)AC| — | X AC|)*]} which satisfies

—SIWLIVLIACRE®) < A0,0) < S(WLIVIIACF)E®)

0 —3IW Ve < AO00S W Vi
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It follows from (175) and (179) that J can be approximated by a quadratic function

Jiey,
where,

J2,(Q,0,¢) = ¢{a (- Xy (WP + WLV - X)A

FAX(VE + [WLIV)XA = SIWLIVIA"AYe)

C{AX (W] +VIPXA - A X (WE + [WLV])A
1 - AV (o
—(IW[* + WLIVDA XA + (IW] + S|WL V) A"A}e®)C
Upon completing the square, get
” _ 2
J2@.6,0) = | WIWI+IVIEXA = (IW]+ V(W] + [VDIWIAL |
1 -4 18
+5{IWLIVIC A AC} (") (181)
Recall that X = FyQ, P = BH,. Define the modified weighting function Wo = (|W]+
|V|)2 A. Observe that in (181) we can equate the factor (|W|+|V|)22(|W]+{V])|W]|A
to the ratio of Nevanlinna class functions introduced above, (1+ .llp_";ii) :1 (1+ %’,JI) +W =
MW (since (|W1])3 A = W). Then (181) takes the form,
- - 1 i
J8(@:0,0) = {| (HoQWo— B"M W) "+ SIWLIVLIACPHE®)  (182)

The minimization of esssup{JZ,)(Q,6,¢) : 8 € [0,2r),¢ € €*|(| = 1} is now 2

standard Hankel-Toeplitz (‘two block’) problem, whose solution gives (177).
B

Remark. In the limit as ||W*"V||c — 0, x approaches |T'g-pr-w|| which is a solution
to 2 ‘one block’ problem (i.e with V = 0) but with symbol changed from B*W to-
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B=M*W. The effect of the non-zero V is captured by the unimodular multiplicand
M=. In general M" does not approach the identity as ||W*V||, — 0. The motivating

example of Sect. 2.5 of Chapter 2 is an instance of this phenomenon.

5.2 Computability of the Hankel /Hankel Toeplitz Approximation to \

If we are to exploit these ‘sum of squares’ two block estimates in the approximate
solution of the OQRDAP, either they must be explicitly computable or there must
be some method of approximating them by numerically accessible quantities. The
question arises because, even for rational W and V, M* may be irrational (in general
it is), and so the estimates cannot always be found directly. Note that [61] provided-a
means of finding ||Tas-w || for non-rational inner functions M and rational W € H*,
however in this case the M is not necessarily in H*, so these methods cannot be
applied.

Lemma 5.1 gives a necessary and sufficient condition for M" to be a rational
function, which however can be quite restrictive. Lemma 5.2 exhibits a sufficient
condition for the weaker conclusion that WM™ is continuous on [0, 2x), allowing it

to be approximated by rational functions. B*W continuous on the unit circle is a

- . . MBW —
sufficient condition for both ||Ca-g-w| and infoens [ 715 (]WHVU? A ]l to be

approximated to arbitrary accuracy by standard H* optimization problems for finite

‘dimensional systems.

Lemma 5.1 If W,V*! € HS, and W and V are commensurate then M* is rational
if and only if W = v®V for seme rational H*® function v.
Lemma 5.2 If in addition to the assumptions of Lemma 5.1 , W(e?) and V(¢¥?) are

uniformly Lipschitz on [0,27) then there exists an ezplicitly computable sequence of
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rational functions Ry such that R;, — WM* uniformly on the unit circle.

Proof of Lemma 5.1 Let A be the H* function defined by the identity AJ = V-1W.

|V|)

M eRL® & [1++4) er 183

( W), (183)
& 1+ eRe A eR (184)

Hence, since ™ log|A(e®)|df > —oo (because A € H®), there exists a unique outer

rational H*° function v which satisfies the equation ([7]),
lv(e®)]? = |A(€®)] for almost all 8 € [0,27) (185)

Thus [v?| = |A| a.e. Because both k? and v are outer functions (185) is equivalent to

X = v? and the lemma is proven.
a

Proof of Lemma 5.2 If we can show that WM*" € C[0,2x) then the lemma will
be proven. This follows because partial Cesaro sums of Fourier series of continuous

functions converge uniformly on the unit circle.

- 1+5), . (Al +1), (1A)
ar (e} = agrg—m—"t e’e = ar * =

= 2arg (|]Al +1), — 2arg (1A)),. = 2arg (]\| +1),. — argA(e”),

if W(e*) # 0. From the assumptions of uniform Lipschitz continuity, commensurate
weights and V! € HS . it follows that A(e™) is continuous on [0, 27). Define the set
C:={0€[0,27) : [W(e®)| > 0}. If we can show arg (]A[), (-) and arg (jA] + 1), (-)
are in C[0,27) then M"(e?) would be continuous on €. WM=(e) is forced to be
continuous on the set [0,27) —C, since W is continuous and zero on this set, and M'

is allpass. Since (|/\|)i = ), we need only show that arg (jA| + 1), (-) is continuous
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on C, and the lemma will be proven.

arg (1N + 1), (¢¥) = % ]E K(0,t)log(JA] + 1)(e")dt (187)

Since V™! € HZ,, and V(e*®) € LIP, (where LIP denotes the class of uniformly
Lipschitz continuous functions on [0,27)), we have V(¢?)~' € LIP. Heuce \ €
LIP = |A\|+1 € LIP. This implies that log(|A] + 1) € LIP. Thus from Koosis
[32] Chapter V, Sect. E pp. 140, the integral expression on the RHS of (187), as a
function of 8, is uniformly continuous on [0,2x). Hence we have continuity of WAM*"

on the unit circle and the lemma is proven.
a

Remarks.
1. ITs-r,|| can be found by standard methods (e.g. [58], [19], [61]), and ||[I's-g, || —
ITaz5-wi-

2. The assumption of Lipschitz continuity in Lemma 5.2 is satisfied by any H3

nxXmn

rational functions W and V.
5.3 Estimates of the Slope of x(-).

In this subsection we derive an estimate for the slope of the function x(.),
under assumption A5. This estimate, given in Lemma 5.3, applies for e sufficiently
small in the statement of A4. It bounds the slope of chords joining (rg, x(rg)) to
(ro + z,x(ro + z)) for £ > 0 to be strictly less than a constant which is strictly
less than unity. This estimate will enable us to conclude, in section 5.4, that the

approximations to x derived in Sect 5.1 will yield approximations to the fixed-point(s)

of x.
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Lemma 5.3 Under assumptions Al and 44, if € < ;3(; where ro is any {ized-point of

X, then for all z > 0,

i+ '2“) (188)

o+ ) = x(ro) €2 (2
Remark. The quantity % is close to unity for small ro, resulting in cruder
tolerances for the estimates of the optimal robust disturbance attenuation which
are based on approximations of x. In the absence of any additional assumptions
this is unavoidable, since in the motivating example of Cha.pter 2, Sect. 2.5, a
function x(-)} was exhibited, satisfying the assumptions of Lemma 5.3, for which
x{ro+ z} — x{ro) =~ (1 — 2r¢) for small ro.
Proof of Lemma 5.3. Fix § > 0. If x(ro) = ro there exists Qe HZ,, such that
ess sup sup (1 - BOW ()] + ol BQV(e¥)XC]) S 7o +6  (189)
Define Q := 222} where z > 0 and some A € (0,1) which will be defined below.

To+T

(188) will be proven by exhibiting an upper bound for

ess sup sup (17 = UQW ()¢ + (ro + 2)IUQV(e?))) (190)
for an appropriately chosen constant A. This is in turn an upper bound for x(ro+ z).
Define ¢(e*) := supgm, <1 (17 = UQ)W(e°)C| + (ro + o) UQV(€?)]).
The upper bound is derived by applying two sets of inequalities for ¢ to the following

two disjoint sets of the unit circle.

A:={fe[0,2r) : w < %} (191)
B:={0¢[0,27) : V()| < 3—:} N A° (192)
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Since W and V are commensurate and || |W]: |V| loo € € we have AU B = [0,2x).

Since § = Btz

ro+z

o) < swp (BEZZL7 = BOW(E) + (ro + 0 BOVIE)CI)

¢ea™, K<t " To+

+(1 - A)xlw(e.‘e)cl) for a.e 6 € [0,2r)

(193)
Tot+T
B (ro 4 54 2lBAV(E]) + W) Lae (194
From (189) we have |[BQV ()| < 28 Vo € [0,27). If 0 € A, |[W(c™)] < L. In the
light of these two inequalities (194) gives,
9€A=>¢>(e'e)<rg+:cl+ +6(1+—)Iac (195)
We may also write,
$(e’) < sup (|(I - BQW(£*)C| + rol BQV (e“)(|
¢am, KL
-
C=2 gwieocl + 2elBQVe))  (96)
< s (n+s+ S22 Bowen HaiBovc “X1) a0
¢el™, KI<1

where each inequality holds lL.a.e in 8. From (189) we have

sup  (|1BOW(e*)([ + 7| BQV(e¥)]) S o+ 1+
{ern, (<1

= (IW(e?)] + rolV(€))IBOA(®)| < ro+1+6

(since W and V are commensurate)
G
)| + [W(e?)|

= [BOV(e®)| < (ro+ 1+ 8) W

Thus for 6 € B, |BQV(e”)] < 4elntitl),
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(197) and (200) taken together give for § € B

z{rg+ 1+ §) + 4edz(ro+1+8)

0y < -2 2
e’y <rg+6+(1 ) . " (201)
Since ¢ < ?—Z, A can be chosen as 4:'_0 to obtain
$(e®) < ro+z s foraeebeR (202)
- 4+ To

. 142 Az
#e") < rot+zx ( = +6(1 + —)) foreefe A (203)

\4 +To To

Because x(ro + z) < supsefo2n) ¢(e®) (202) and (203) hold with x(ro + z) in place of

¢. Since é is arbitrary the lemma is proven.
8]

5.4 An Approximation for the Optimal Robust Disturbance Attenuation

In this section we examine the relationship between the proximity of the function
x and an approximate ¥, and their corresponding smallest fixed-points. ¥ is defined
by x : [0,00) = [0,00), X(r) := |[TmeBw| + ||W"V{ e, where M; is defined
as for M" but with V replaced by rV. Theorem 5.1 allows us to conclude that
Ix(r) = x(7)] € |[W"V||e for r € [0,1]. Lemma 5.4 below demonstrates the existence

of fixed-points for x and ¥ and establishes the continuity of x and x.

Lemma 5.4 If W is normalized such that [W)|c = 1,

1.) x is a continuous, non-decreasing function on {0,00) for which there ezists a
smallest fixed-point, which lies in the interval [x(0), x(1)]-

2.) If W(e®) and V(e®) are commensurate and uniformly Lipschitz for 6 € [0,2x),
and A1 holds, then X(r) := |[Tazpwl + [|[W*V|leo is a continuous function of r on
[0,00), for which there ezists a smallest fized-point.

g1
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Proof. 1.} Continuity, the non-decrcasing property of \(-). and the existence of a
smallest fixed-point all follow from Appendix A.

Let r; be any fixed-point of x. Since \(r;) € [0.1] and x(ry) = vy it follows that ry ¢
[0,1]. The non-decreasing property of x, therefore, implies that = = () < \(1)
and ry = x(ry) 2 x(0).

2.) In order to show that X{-} is continuous, it is sufficient to show that W ALY is
continuous as a function of r in the metric of L*[0,27). Fix > § > 0 and define

(e, e, z) == (1 + o plim(e)” (1 +oppidm(e).
(WM, — WAL (™)

< |W(e") f K(0,t)log (1 + xiﬁ,—‘%‘—/—l(c“)) dtl (204)

= |W()| ]£ K(6,t)logd(e®, ¢*, z)dt (205)
< 0 W 1] dt
SIWEN [ oy K (O DI0g (e %, 2)
16 ! LT 1] dt 9
HWENf KO tlogh(e”, ¢ ) (206)

The first integral term of (206) converges to zero uniformly for 0 € [0,27) as = — 0,
since the integrand converges to zero uniformly for ¢ and # in W, := {(0,!) € T x
T : 16—t{> 6§} K(0,t) has the property that |K(6,1)] < i for ft = 0] < %,
hence the secénd integral term of (206) is bounded above by Czé]W(e")|, for some
constant C which is finite and depends on the Lipschitz constants of W and V. Thus
the second Tniegral term of (206) converges to zero uniformly for 0 € [0,27) as z — 0.
Thus the continuity of MW as an L* valued function of r is proven. Existence of a
smallest fixed point for y(-) follows from an identical argument to that used to prove

the lemma of Appendix A.
0
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The following theorem combines the estimate of the slope of x of Lemma 3.3 with
the approximations of 5.1, to obtain an implicit estimate for ugpe, based on finding

the smallest fixed-point of x.

Theorem 5.2 Under assumptions Al and A4, if ||[W*V||w < %2 then the optimal

robust disturbance attenuation for B(FPo, V) satisfies,
.10 . -
Fg — 1.:_"W V"oo S Hopt S To (20’)
0

where 7y is the smallest fized-point of ||Tarep-w|| + ||W™V||ee as a function of r.

Proof.

Upper bound. From Theorem 5.1, |[Fare5-w| £ X(7) £ [Tazp-wll+||W Ve = x(r).

fopt is the smallest fixed-point of y from Theorem 2.1. Because 7 is the smallest

fixed-point of x, r < piope = Xx(r) > r = X(r) > r. Thus 7o 2 pope.

Lower bound. From Lemma 5.3, since ||[W"V o < “—Egi and Ty 2 popt,
4+ “—;L)

4+ popt

X('FO) = X(Papt) 'S (7:0 - F-apc) ( (208)

But x(fo) 2 ||FM;° gwl|l = o — [W"V||e (since 7 is a fixed-point of ¥). Combining

this observation with (208) gives,

Hope
Fo — € — pope < (fo — popt) (4 T ) (209)
- 4+ popt
Rearranging this gives go > 7o — 22€
|

5.5 An Upper Bound for the Growth of Optimal Robust Disturbance At-

tenuation with A Priori Uncertainty.

In this section we investizate the effect of the:radius of priori plant un;:eéta.inty

ey

e -
on the ability of feedback to reject uncertainty in a weigited ball. Here we can

% ST
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derive explicit estimates, in contrast to the general statement of Theorem 3.7 of Sect.
3.5.3, by making use of assumption A4 and Lemma 5.3. To this end, we introduce a
scaling of the multiplicative ball of uncertainty B(FP, V) by a parameter A such that
it becomes B(F,, AV). The behaviour of the optimal robust disturbance attenuation
for B(F,, AV), represented by pon(A), as a function of the uncertainty radius A is then
examined.

Theorem 5.3 Under the assumptions Al and A4 where A||W*V |, < "“l‘(—f——‘(-;\ﬁ and

Adope (M
z< Btpope{A}’
opt(A ]
F’Opl(A + I) - ﬂopt(/\) < ('T‘u:"‘_ f;‘( !)) b (210)
Spopr) T
Remark.

The condition on z ensures that the term (-,@‘})—) is always finite and pos-
51‘#»;-
itive. For small z (i.e. local estimation of the slope of piop:(:) this term is bounded

above by 2).
Proof of Theorem 5.3 From Theorem 2.1, pope(}) is the smallest fixed-point of

inf ess sup sup  (|(I - RQ)W(e”)C] + ArjPoQV(e”)C]) (211)
QEAZ..  seloz2r) (™, KI<1

= xa(r) (212)
. 4+M z(")
as a function of 7. Define S := T Letz>0, y>0.
Xoaiz (Bopt(A) +9) = x1(Mttope(A) + Ay + Tpope(A) + Ty) (213)
A
= (p,,,(,\) Fy+ ﬁ"ﬁ‘(—) + %) (214)
Tpopt() | Ty
< pop(A)+S|y+ E— + 5y (215)
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The last incquality follows since A||W"V|l,, < ﬂ’*‘;’éﬂ by assumption and pepe(A) is

the smallest fixed-point of x», so Lemma 5.3 is applicable. Suppose

THopt (A)

Sy + )

+3) <y (216)

for ail ¥y > yo > 0. (215) then would imply that yo + pope(A) must be an upper
bound to the smallest fixed-point of xa4z, or equivalently po, (A + z). Simply by
rearrangement we can show that if z < A (% - 1) then (216) is satisfied for any y
greater than %ﬂ}")i%); Hence the Theorem is proven. q
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Chapter 6

The ORDAP for Time-Varying Linear Systems

In this chapter the ORDAP is posed in the more general setting of time-varying
linear systems. The statement of the ORDAP is the same as that for the linear time-
invariant case, except the set of plants is a sphere of bounded linear causal operators
rather than a sphere in H*°, and moreover feedback control laws are allowed to be
time-varying. Under certain conditions, the time-varying version of the ORDAP is
reduced to an implicit form of an operator-based two-disc problem taking the form

0c aif(‘é ) cer e (W = RQ)Clz2 + rllV FoQ(|l2) (217)
The two-disc optimization is then shown to be expressible as a distance minimization
in a Banach space of bounded linear operators, and an equivalent predual maximiza-
tion is derived. A corollary of this result establishes, under certain conditions, the
existence of an optimal control law for the ORDAP in the time-varying case. In Sect.
6.5, this theory is applied to a comparison of the effectiveness of linear time-varying
and linear time-invariant control laws for cases where the nominal plant F, is time-
invariant. As hypothesised in [29), it is shown that time-varying feedback offers no
advantage over time-invariant feedback for [? disturbance rejection in the presence of

time-varying plant uncertainty in the [? induced norm.

96



6.1 Definitions and Notation for Chapter 6

It is necessary to introduce some additional notation solely for Chapter 6 in order
to handle more general spaces of linear operators (some of this notation is borrowed
from [8]). The analysis in this chapter makes use of operator theory rather than the
analytic function theory used previously because there is no isometric isomorphism
between spaces of such systems and the space H*.

B(L,, L2) denotes the Banach space of bounded linear operators from a Banach
space L; to a Banach space L., where the norm is the operator norm.

I3 denotes the usual Hilbert space of forward one-sided sequences

[? denotes the Hilbert space of two sided sequences.

S, for some integer k denotes the shift k steps ahead. If % is negative then
there may be an implicit truncation. Note that the domain and co-domain of S are
intentionally left unspecified, and will depend on the context.

P, for some integer k denotes the forward truncation operator which sets all
outputs after time k to zero. Again the domain and co-domain depend on the context.

Causal operators ® € B(L;, L;) are defined to be those which satisfy P.®(I —
- P,) = 0 for all positive integers n, where L, and L. are Hilbert resolution spaces [16].

Strictly causal operators ¢ € B(L1, L) are those which satisfy Po4q ®(I—F,) =0
for all positive integers n, where L; and L, are Hilbert resolution spaces.

The subscripts ,. and . denote the restriction of a subspace of operators to its
intersection with causal and strictly causal operators respectively.

< -,- > denotes either the inner product in I or the binary operation of functional

evaluation, depending on the context.
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6.2 Formulation of the Problem.

The statement of the ORDAP we use for time-varying systems follows. Let

Po € B.(1*,I?) be a nominal, stable plant (possibly time-varying) and denote the set

of plant uncertainty by
C(Po,V):={P e B, 1*) : P=XVPy+ Py, X € B.(2, ), X]i < 1}

where V is a causal, linear, time-invariant weighting function, and £ is assumed to
be strictly causal in order that the feedback loop is well-posed. The optimal robust
disturbance attenuation problem (ORDAP) comprises finding the smallest weighted
& induced norm of the sensitivity operator achievable by a single causal feedback

control law for all plants in C(Fp,V). In mathematical language, the equivalent

statement is:

pi=  inf sup [W(I+ PCo)Y| 218)
Ca stabilizing pec(p,V)
YP e C{P. V)

From [57] we can express (218) in the form

pe=inf{ sup |W(I-PQ)I+APQ)™| :
PeC(FPa.V)

Q € B(I%, 1) such that (I + (P — P)Q)™ € B(3,12) VP eC(P,V)},

where AP denotes P — Py and W is a linear time-invariant weighting function.
If a particular robustly stabilizing feedback control law C achieves a ‘worst case’

weighted sensitivity induced norm from li —» [2 which is less than v then,
W = Pe@Q)I +APQ)Y Y| <yand (I+(P-F)Q) " € B.(£,£)(219)
VP € C(R,V)
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(219) is equivalent to,

IW(I = PoQ)U + APQ)Y (I < 7li¢ll2 and (I + APQ)™ € B(IL, 13)

V(e 3, YPeC(R,V) (220)
Since (I + APQ) has a bounded inverse in B(2,13), we obtain

IW({I = PoQ)nll2 < )l + APQ)nl2 and (I+APQ)™ € B.(I3,15)
Ve, VP eC(P,V) (221)

which is equivalent to (220). Certainly (221) is implied by (Sect.4 Chapter 5 of [16])

IW(I = PoQ)llz < 7lICllz = ¥IIVRQCN2 Ve (222)

(222) is equivalent to
IW({I = PQ)Xll: +7lIVRQCl: <7 V(el, li¢lz<1 (223)

Therefore we conclude that, under the existence assumption of Theorem 6.1, the
optimal robust disturbance attenuation u is bounded above by the smallest positive
fixed-point of

x(r):= inf sup  (|[W(I = RoQ¥llz + [V FQ(]l2)) (224)

= 1
QeB(3.11) ¢l JIClla1

on the interval [0,1]. The existence of a smallest fixed-point follows from the fact
that the function x(-) in (224) is a continuous, positive, non-decreasing function on
[0,1). This is proven by the same argument as that used in [20]. This reasoning has

proven b) of Theorem 6.1
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Theorem 6.11f there exists an optimal Q € B.({3,12) for each value of r € (0,1] in

the optimizations (226) below, then the following hold:
a) if Py is time-invariant and

pi= inf{ sup {IW(I = P@)(I +APQ)Y| : Q€ B3, )
PeC(Po,V)

such that (I + (P — Po)Q)™" € B, 13) VP € C( Py, V)}, (225)
then p is the smallest positive fized-point of

in{ su W(I-F +r||\VE 296
aehth ) ceroB, o, WU = QU + IV RQCl:) (226)

x(r) =
b) if Py is time-varying then p is bounded above by the smallest positive fized-point of

X-

Remarks.

1) As in Theorem 2.1, the existence of an optimal @ for the optimization of (226) will
be established under quite general conditions in Theorem 6.2.

2) Theorem 6.1 implies that the ORDAP for time-invariant nominal plants with
possibly time-varying perturbations and control laws, reduces to evaluation of the

following type of optimization

= inf su W(I - P, + VP 997
K= et o) eioh o (WU = BoQ)Cll + IV ARG (227)

Where W, V, P, are linear causal and time-invariant.

Proof of Theorem 6.1a). Let Q € B(2,12) be such that
IW(I — BQYI + XVPQ) | < ' and (I + XVFPQ)™ € B3, 13)
VX € B.(I3,5), IXI 1 (228)
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where g’ > pu.
We divide the proof of part (a) of this theorem into two claims.

Claim L: imamwsup ¢epp  [VPQSaCl2 <1

Klz<1 °
To prove claim 1 suppose that, on the contrary, there exists an ¢ > 0 such that

sup ||VPo@Salll2>1+¢ for all positive integers n > 0 (229)
celd
i<l €1

Fix § > 0. Consider the following construction of a vector 5 € 2.

step 1. Define an integer ng := 0. Select § € &2, |[¢1]lz £ 1 which has only finitely
mary non-zero elements and satisfies (229) for { = (; and n = 0. Since VRQ¢ € '

there exists an integer n, such that
(I = Pa)VPeQG|lz < 6 and ny > length(Gi). (230)

step k. Select (. € I3 with only finitely many non-zero elements such that ||(i|l2 £
1, Pl = 0, (i satisfies (229) for { = {x and n = 0. Define n; to be an integer

such that
(T = P.)VPQC|2 <6 and ni > length(() (231)

Note that length(-) denotes the smallest integer such that all entries of the argument

are zero at positions with greater index.

Define 7 := &3, (¢. If § is chosen to be sufficiently small w.r.t. the quantities
IV P,Q|| and ¢ we obtain

€

IV PGllz > 1+ 5

(232)
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Define X € B.(I%,13) to be the following strictly contractive, causal. compact, lincar

operator from I3 — I3,

N-1
Xu:i= D" A < viyu > (g, (233}
k=1
(Pry=Poy_y YV PoQin i 1
where ;. : ]](P..k-Pn:_ :)V T and A := m <= +¢ Note that X maps the
Py =Py WP Q| .
vector (P, — ,,,._I)VPOQ(;: [[V.PoQCk": (ip1 for 1 < k< N -1, cnabling
the deduction of inequality (235).
- XVPF N X'VP -1
" (I _ XVPOQ)’T"Z S ICI ll OQCN Z OQCk (‘)31
2 k=2
< LEIVRQL o (235)

N

Thus, if § was chosen sufficiently small, for large enough NV, (235) contradicts (232)
and so claim 1 is proven.
claim 2:
limp—.e sSup (I|W(I — PoQ)SaCll2 + F'“VPOQSnC"?) Sk
ce Jicll<1

We will also prove claim 2 by contradiction. Suppose, on the contrary, that claim 2
is false, then there exists an € > 0 such that

2 (W (I = Po@)Scllz + KIIVRQSCll2) > ' + ¢ (236)
for all positive integers n. If (236) holds then we follow a very similar procedure to
that used to construct the vector 5 in the proof of claim 1. Note that all the variables

are reset.

-step 1. Define no = 0. Select a {; € &, G2 <

1 with finitely many non-zero

elements such that (236) is satisfied for ¢ = (1, » = 0 and |[VPQG]2 < 1+ 6
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(c.f. claim 1). There exists an integer n, such that ||(J = Pa, )W(I — PoQ)G|l2 £ 6,
(I = P )VPoQ]2 < 6, and ny > length((y).

step k. Sclecta i € &3, ||¢kll2 £ 1, Pa,_,$x = 0 with finitely many non-zero elements
such that (236) is satisfied for ¢ = (i, n = 0, and ||V Po@Cll2 < 1 + 8. The existence
of such a vector follows from (236) and claim 1. There exists an integer nx such that

NI = Pa )W (I = Po@)Cill2 < 6, I(Z = Pa, )V PoQCkll2 < 6 and ny > length(Gr).
Chose n = 2 "1 (k. For sufficiently small § we obtain

W (I = PoQ)nllz + &V PQall2 2 ' + (237)

LTS

Define X € B.({%,?) to be the following causal, compact, strictly contractive linear

operator

z

;
+3

-1 (Pn - ‘ﬂ )VPOQC’:
< Vi, > where v 1= - =
% Ces1 k l(Prx = Pruy )V PoQCkll2

In the event that the denominator and numerator of the expression for v are both

Xu:=

g

zero, vy is set equal to zero. Note that X maps (Pn, — Pa,_, )V PoQC: — H_%“(Pnk -
Pn,,_,)VPoQCkllg(kH forl <k <N -1. Hence

G — XVPQGm

X(Pnk-x - Pﬂk-:)VPOQ-Ck—l
N

X VPoQCN

(I = XVPQ)ll2 < [I =2 + 1

< 6+ +le I (238)

Each summand in (238) is bounded above by
¥ (1 — I(Pan_y = Pawa )V PoQCkl2 + 35) since |VPoQCie1llz < 1 + 8. For suffi-
ciently small 4, sufficiently large N,

(I - XVP:Q)nll2 < + 1—|[VP:@nllz
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Thus {|W (I = RoQ)7ll2 < #/(1 + ) = ¢V RQnljx from (221). This contradicts (237)
and so claim 2 must be true.
Claim 2 implies that (239) holds below.

> liMp—ae  SUp W = PoS_n@8.)C ]2 + p' NV PoS_nQ8.Cll: < 1
CEE;.-"C"?SI

stnce Py, W,V are time invarient and causal (239)

= _inf sup (W = RoQ)¢llz + IV PoQCllz) < & (210)

i
QEBLR ) ¢eld Micl

since S_.QS, is causal.

The rest of the proof is conceptually identical to the proof of Theorem 2.1 b), and so

will not be repeated in this case.
a

Remark. The proof of Theorem 6.1 also shows that the conclusion of a) holds [or

time-varying nominal plants P, which satisfy the following condition.

QeBiilf:',,.!?,,) cs:% (IW (I = Po@Q)Salllz + |V PoQSx(|l2)

Kliz £1
is independent of n for all r € [0, 1]. (241)

(241) is satisfied, for example, by any periodically time-varying nominal system /.
6.3 A Distance Problem in Banach Space

Here we show that (227) can be expressed as a distance minimization in a Banach

space of linear operators. To this end let Z be the Banach space i3 x [3 under the

norm defined by
z
)

= lzllz + llyllzy =y €l
z
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Since W(I — Po0) and V FQ are bounded operators from 12 — I3, [ W({/}_DOSOQ) ]

represents a bounded operator from I3 — Z. The induced operator norm is

W(I—POQ)] = s [W(I—POQ)] ou
”[ VAQ L cet?,.s.llcpllzsl VAQ ¢ z (242)
= sup (W = PQ)llz + IV AQ(]l)
el liliast

where the subscript L denotes the induced operator norm of B(I%, Z). Thus we can

express go in the form

nf

po= 1
QEB(i2.12)

][V ]=e

As in Chapter 3, we assume that

(A1) W(e®) 2+ V(e 2 e >0 v € [0,2x)
Under this condition there exists a function A € H®, invertible in H*, such that
IA(®)]2 = [W(e®)]* + [V (®)]2. Next we assume (c.f. [15])

(A5) APy as an operator in B.(I?,I*) has e factorization UH where H*! ¢
B(*,[*) and U is a causal unitary operator from I> — 2. &
(Al) and (A5) allow us to express g as a distance problem in the space of Z-valued
operators on I3,

Ho = inf

(243)
QEB(12,12)

HE=

L

where R := [ ?// ] AL

8The restriction of U to {2 results in the more familiar partial isometry.
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6.4 Formulation in the Predual

Throughout the rest of this chapter, we define X to be the Hilbert space l}r and
Y to be the Banach space 5 x I3 under the norm

H

= Maz ||zl lyll2), =yl
Y

Lemma 6.1

i XTm B, Xt

i Y ~Z YU~y

Remark. If we take finite spaces of n-tuples rather than the spaces of infinite se-
quences considered here, then the same relations can be obtained with a conceptually
identical proof.

Proof. i. is standard, since X is a Hilbert space.

il. ¢ is a2 bounded linear functional on Y iff ¢ has the representation,

6(|7]) =401+ e

where ¢, ¢2 are bounded linear functionals on the Hilbert space [2. Thus ¢ ([ ; ] ) =<

@,z >g + < B,y >p forsome e, § € z.

6([Z])| = tatle- et b8t
< (llellz + 18l2) Maz (]|zll2, [l¥]]2) (244)
Equelity in (244) can be achieved by chosing z = 2, y = ﬁ, ifa#0, B#0,
z=0ifa=0andy=0 f 8 =0. Thus ||4]| = [lall> + ||l where the former norm

is the induced norm of th;‘functiona.l ¢. Thus we have established the first isometric
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isomorphistn of ii. In a similar manner, if ¢ is a bounded linear functional on Y, and

[ ; ] € Y~ with [ ; ] as its equivalent in Z,
é ([ : ]) = ¢1(Z) +62(7) where 1,2 are bounded linear functionals on I}
= <v,i>z +<8,§>
where v,0 € I3 represent the functionals ¢;, ¢2. Thus
z
+(3)
8

Equality is achieved in (245) by setting either £ = ﬁ,g =0,0rz=0,5= TR

depending on whether |jv]]z > {|9]|2 or ||[v]l2 < ||f]]2- Thus the isometric isomorphism

< (1212 + l19ll2) Maz (||v]l2, |18]]2) (245)

for the second relation of ii. is established.
[m;

Definition 6.1 (c.f. [8]) N(By,B:) is defined to be the Banach space of nuclear
operators mapping the Banach space By to the Banach space B, under the nuclear

norm. ® An operator @ : By — B, is said to be nuclear if it has the rezresentation

Pb=>" < b,,b>w,, wherew, € B, b, € B} (246)

and 3" [62]1 - ol < o0 (247)
The nuclear norm ||®||ny. is defined to be the infimum over all sums in (247) corre-
sponding to representations (246).

Definition 6.2 (c.f. [8]) T (the trace) is defined to be the following linear functional
on N (Bl, B‘l)

Trd =) <bj,w.> (248)

?N(Bi, Bz) was shown to be a Banach space in [22]
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for ® as in (246) (N.B. B, = B:). Note that (248) is well defined since the quantity
on the right of (248} is independent of the particular representation chosen for @,
Lemma 6.1 ii. has established that the L norm defined in (242) is the induced op-
erator norm of the Banach space B(X*,Y™). Therefore B(X", ¥") is the appropriate
Banach space in which to represent the distance problem (243).
The following key lemma applies to the Banach spaces X and Y.

Lemma 6.2 (Diestel and Uhl [10] also see {8])

B(X",Y")~ N(X,Y)
The isometric isomorphism =~ is generated by the representation
é(T)=< B, T >=TrT"B=TrBT", whereT € N(X,Y), Be B(X",Y")

possessed by any bounded linear functional ¢ on N(X,Y).

If we are to represent (243) as a maximal problem in the predual space (N(X,Y})
following Chapter 3, we need to identify a subspace 5% of N(X,Y) such that {§%)* ~
RUB.(X*, X"), where =~ is the isomorphism of Lemma 6.2. To this end, in lemma
6.3 below, the causal operators in B.(I?,1?) are characterized as the annihilators of
the adjoints of a space of strictly causal operators.

Lemma 6.3 If & € B(I%,I?) the following are equivalent,

i TrT®=0 VT € Ny(l2, 1) (249)

i ®eB(PP) (250)
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Proof. (i. = #i.) Define, for any integer M > 0, Ry € N(I%,17) to be the operator
(I = Prp)OPy, where © is an arbitrary operator in N({?,?). From the projection

property of Py, we conclude that Ry is strictly causal. From (249) we have,

Trd(I — Py)OPy = 0 VO ¢& N(B, 1)
= TrPuy®(l - Py)® = 0 VO e N(Z 1)
= Pyd(I—Py) = 0

Since M is arbitrary, ® € B.(I%, ).
(#i. = 1.) It is necessary only to show that if & € B.(I?,1?) and T € N,.({,I?) then
TrT® = 0. Under the conditions of ii ®T' € N,.(, #?) (c.f. property 2.5 [§]). Thus,
since ®T is nuclear, for v € 2, ®Tv = T, < z3",v > z, for some z* € I and
z; € [*. Hence, we can write

(BT el = 3 (zn el ) (251)
where ¢, is the k-th standard basis vector of {* and (-); denotes the k-th component

of a vector in I°. From the strict causality of T, (®Tei)r = 0. Thus, we can express

Tro&T

S <ana >—Z§(‘zﬂ(z;)k

= 3 }: e(z ) (by Fubini's theorem and the nuclearity of T')
k=1 n

= Z(‘I’Tek)k =0

k=1

|
Note that in what follows, we shall suppress the distinction between isometrically

isomorphic Banach spaces in order to simplify the presentation.
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Define the following subspace of N(Y™=, X*),
So:={P(I(I = RR")+ KU R )|y» : N € N(Z..F),K € N.(F.IF)}

where P : I* — I3 denotes the canonical projection, and Z. is the Banach space
[2 % I? under the Z norm. Note that (/— RR"), R" are multiplication opcrators and *

denotes the involution operation. Define S° to be the following subspace of N(X,Y)
§°:={T e N(X,Y) : T € 5}

Lemma 6.4 proves that (5%t =~ RUB.(X",X") which establishes S® as the desired
pre-orthogonal complement.

Lemma 6.4 If ® € B(X*,Y™") then
<®,T>=0 for allT € 5° & & € RUB(X",X") (252)

Proof. The reflexivity of the Banach spaces X and ¥ (Lemma 6.1} and the repre-
sentation of linear functionals in terms of inner products on {2 imply that any element
of N(Y*,X") is the adjoint of some element of N(X,Y). Thus the LHS of (252) is
equivalent to

Tr (PI(I — RR")jy+® + PKU R ly-3) =0 VIL € N(Z..%), K € Noo(3, 1?)
& (I = RR")|y-3P = 0 and UR'|y-3P € B(?,2) (from Lemma 6.3)

& (I = RR")|y-&P = 0 and RR"|y-®P € RUB.(1%, 2)

& & € RUB.(X", X")
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The characterization of the predual of B{X",Y") and the pre-orthogonal complement
of RUB.(X*,X") has demonstrated the following resuit.
Theorem 6.2 Under assumption (A1),

2]-me

= sup

Mingeg2.2)
Uiy L TGSO,HT“N(X.Y)SI

0

TrT" [ " ” (253)

Remarks. Implicit in the statement of Theorem 6.2 is the existence of a linear time-
varying control law for the optimization (243). Theorem 6.2 also establishes that
under assumption (A5) optimal feedback laws exist both for the optimizations (224)
in general, and for the time-varying ORDAP, when F, is time-invariant or satisfies

(241).
6.5 Linear Time-Varying vs Linear Time-Invariant Control Laws

In this section, we use the theory of Sect. 6.4 to compare linear time-invariant
and linear time-varying control laws for the ORDAP, when the nominal plant Fy
is constrained to be time-invariant. Under this condition, the operator U in (243)
becomes a muiltiplication operator with a symbol equal to an inner function in H*.

If the controllers are restricted to being linear and time-invariant, then (243) becomes
w
K ] ~ RUQ

where B(I2, I?) is the subspace of time invariant operators in B, ({2, [?).

i _
g =

(254)

inf
QEBE(R2) L

Lemma 6.5 If Py is linear, time-invariant and causal, and if assumption (A1) holds,

then
Ho = py
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Moreover at least one of the optimal feedback laws must be time-invariant
Proof. (Applying an idea of Shamma and Dahleh [44]). Let Q € B.(I*, ) be any
minimal @ in (253). Define

Qn = Z S-+QSk

n+1

From the definition of the shift and the L norm, coupled with the fact that RU is

|
< ko (255)
L

time-invariant and causal we get

> s, ([ e ] - RLZ.") Si

w
HE

As in [44] we bave [|Qu[| £ 1|Q]l Vn where || - || is the operator norm of B{X*", X*).

[ ‘g’ ] — RUS_.QS:

L
=

Thus ||RUQ.||¢ is uniformly bounded. Since B(X*®,Y™) has a separable predual i.c.

N(X,Y) (see [8]), there exists a subsequence of the integers {ni} such that
RUQ,.,‘ J (€ B(X*,Y")). (256)

This follows from Alaoglu’s theorem which asserts the wk® compactness of the unit

ball in such a Banach space. (256) implies { ‘gf ] —RUQn, 7. [ W

0 ] — J from which

we conclude that

o =2 lim mf

2|17 ],

the first inequality follows from (255), the second from Alaoglu’s Theorem. Next we

w
HES

L

(257)

claim that J has the form J = RUG where G € B.({3,2). To prove this, suppose T

is an arbitrary element of S°. From Lemma 6.4 we have < RUQ,,,,T >=0, and hence
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from (256) we obtain < J,T >= 0. Thus from Lermnma 6.4, J has the conjectured
form.
The lemma will be proven if we can show that RUG is time-invariant. Let T be an

arbitrary operator in N(X,Y'), then

< SRUQ.,,T> = TrT"SRUQn, = Tr(S_1T)"RUQ.,

< RUQpy,S1T >—+< RUG, S, T > as k — o
but < RUG,S.T> = TrT"SRUG =< SRUG,T > o

Thus, SRUQ., w:' SRUG since T € N(X,Y) was arbitrary (258)

S—; denotes the backward shift with truncation, mapping Y — Y. A similar argument

shows that
9
RU Q,.,,S m RUGS (..59)

From [44], ||S@n, — @u.S|| = 0 as k — oo, from which we deduce [|SRUQ,, —
RUQ, S|lL — 0 as k — oo, since RU is time-invariant. Thus, for arbitrary T €

N(X,Y)
| < f,SRUQ,_, >—=<T,RUQ,S>|—0 ask—o0
Since T € N(X,Y) is arbitrary, we conclude from (258) and (259) that
SRUG = RUGS
It follows that J = RUG is a time-invariant linear causal element of B(X",Y™),

thereby in light of (257) the lemma is proven.
m|
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Lemma 6.5 shows that for the ORDAP where the nominal plant F, is time-invariant,
there is no loss of performance inherent in the restriction to time-invariant feedback.

Theorem 6.3 is a corollary to Theorems 6.1, 6.2 and Lemma 6.5.

Theorem 6.3 If £y is time-invariant and assumptions (A!l) and (A5) hold then,

p o= inf{ sup [W(-PRQUI+APQ)| : (260)
PeC(F,V)
Q € B3, 13) and (I + (P - R)Q)™ € B(i}, ) VP € (R, V)}
= 0c Bi?{& 2) Peg}lgiv)llw(f - RQ)YI +APQ)Y| (261)
IVRQI <1

Moreover an optimal time-invariant feedback exists for the optimizations described by
(260) and (261).

Concluding Remark. Theorem 6.3 provides a justification for the restriction to
time-invariant linear feedback in chapters 2,3,4 and 5, since it suggests that for SISO
discrete time systems at least, no advantage can be gained in performance by widening

the class of linear control laws to include those varying in time.
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Chapter 7

Information-Based Notions of Uncertainty

In this chapter system uncertainty will be quantified using a measure of metric
complexity known as Kolmogorov e-dimension. Initially, estimates are obtained for
the e-dimension of a class of H* discrete-time systems which satisfy an exponential
bound on the impulse response. Subsequently, the ability of feedback to the reduce
the e-dimension of sets of plant uncertainty is investigated for SISO discrete-time
systems. Various cases are considered, including situations where feedback is applied
both before and after identification. For certain open-loop sets of multiplicative plant
uncertainty, feedback is shown to reduce asymptotically (i.e. € small) the complexity
of identification in cases where the a posteriori objective tolerance is defined by a2 W-
weighted H* sphere, and the identification is constrained to produce an unweighted
H® tolerance a posteriori. Large-¢ (i.e. non-asymptotic) results are obtained for
the simpler case of quantifying the effect of feedback on the e-dimension of a set of
additive output disturbances. We show that for this case the ability of feedback to
reduce the ¢ dimension is a decreasing function of ¢, and that the reduction is only

significant when ¢ is not small in a certain sense.
7.1 Measures of Metric Complexity

The notions of e-dimension and ¢-entropy were introduced into feedback theory
in [56], [55] where they were proposed as measures of the complexity of identification

and the effectiveness of feedback in reducing identification costs.
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In identification experiments we start with some a priori information about the
uncertain plant. This is expressed here by assuming that it belongs to a subset § of
possible plants in a Banach space. For purposes of this chapter assume the Banach
space to be H*°, and the subset to be a sphere (although the main ideas carry over to
more general Banach spaces and subsets). The objective is to identify the plant to a
tolerance e. The e-dimension of S, denoted by Ng(e) is the dimension of the smallest
subspace of H* whose distance from S does not exceed ¢ (for more details sce [56)
or {34] Chapter 9). Ng(¢) can be viewed as a measure of the intrinsic complexity of
identification by linear schemes. A measure which does not depend on linearity is
e-entropy, Ig(¢), defined to be log, of the smallest number of e-balls in H “‘Inecded
to cover § (see [56] or [34] Chapter 10). There has recently been renewed interest in
such measures, (see, e.g. [51], [25]).

The starting point for the discrete case in Sect. 3 of [56] were the well known
results of Tichomirov {48] p93 and Vitushkin [50] p36, Theorem 1, giving Ng(c) and
Ig(¢€) respectively for H* functions analytic and bounded in an enlarged disc. Let
us summerize these results. Let HS® denote H*® of the unit disc of radius €%, a > 0.
For any C > 0, a > 0, let b(C, a) denote the ball {K € H*® : K € H® and [k(z)} <

C for |z] £ e*}. Then, for S =b(C,a),a > 0 and ¢ measured in the H* norm, the

estimates
1 C int
Ngle) = [Ezn?] (262)
27 int =
Tg(e) = [% (ln-f—)] +O(ln%ln In-f—) (263)

hold. O(z) signifies a function satisfying |O(z)| < Const. |z|. The formula (263)
is asymptotically accurate in the sense that the second term on the RHS of (263)
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becomes negligible with respect to the first. With a few notable exceptions such as

(262), complexity theory provides only asymptotic formulas which here take the form

Ng(e) ~ %m% (264)
2
Ig(e) ~ -}:(In%) (265)

where the notation f(¢) ~ g(¢) means that f(¢) = g(€)[l + O(¢)]. Another exception
to the generalization of (262) by Taikov [47], which concerns the set b, (C,a) = {K €
H* : K™ g b(C,a)}, where K™ denotes the m-th derivative, m = 0,1,...; we

shall only use the case m = 1, a = 0, for which

Maccoye) = [%] " (266)

We note that the a priori information in (262)-( 265) involves analyticity in the
frequency domain, whereas in identification problems a priori information usually
pertains to the time-domain, even where a posteriori tolerances ave specified in H™.
Accordingly, the idea here is to obtain formulas similar to (262) and (263) for plants

whose impulse responses satisfy an exponential bound. Let

h(C,a):= {K € H® : |k(n)| < Ce™"}
where k(-) denotes the discrete Fourier inverse transform of K.
7.2 e-Dimension of h(C, a)

Theorem 7.1 If Myc,q)(€) is the € dimension of the set h{C, a) in the Banach space
H®* then,

int

1, C1™ 1, C
[zzn?] +Ci S Me©)  [2 2 4G (267)
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where C) is a constant which satisfies (—=—=]int < C1 < [ 1 ] - Ca =
in

2{eir=1) - —_ 2(;_,-.‘-.)

Angt= and [Jine denotes rounding to the nearest lower integer.

Proof. Lower Bound. Let Ball(H*,¢) denote the H™ ball of radius ¢, and M a
k-dimensional subspace of H*. We will employ the following Lemma: If S contains
a set of the form Sg := M N Bell(H*,¢'), € > ¢, then Ns(e) > k. The lemmais a
corollary to a theorem on n-th width ([34] Theorem 2, Sect. 9.3), which states that
in any Banach space , the intersection of the e-ball with a k-dimensional subspace
has € as its k — 1 width. By that theorem, the k — 1 width of S is ¢'; therefore there
does not exist a k — 1 dimensional subspace of H™ whose distance from S 15 ¢, as
€ < €; consequently .N'So(c) > k—1,ie,Ng 2k, which implies the Lemma.

Here § = h(C,a). We will now construct a subspace M = span{®y,..., 0}
determined by basis vectors ®; € SN Bell( H*°, ¢'}, whose inverse z-transforms ¢; have
nonoverlapping finite supports in the intégers, and consequently are orthogonal in H2.
The ®; will be normalized, ||¢|lgmz = ¢, i =1,...,k. Then any P € M N Ball(H*, ¢')
must have the form of 2 linear combination P = 7%, o;®;, where %, |o:[?-||®i][3: <
€% and consequently |o;] € 1, i =1, ..., k: But since the §; € § are chosen so that ¢;
have nonoverlapping supports in {2, such linear combinations must also belong to S,
and therefore M N Ball(H*, €'} is 2 subset of h(C, @), establishing the lower bound &.

Let us construct the {®;}5,. Let k; be the urique integer satisfying Ce—*% >
€ > Ceottl) je K = [%ln%]im — 1, where [Jine ([]™) denotes rounding to the
nearest smaller (larger) integer and let ¢ satisfy Ce™®" > ¢’ > ¢ > Ceatatl), Let
1 denote the exponential function ¥(n) = Ce™", n =0,...; I;, 1 = 1,... denote the
consecutive intervals of integers, I; = [n;-1,n;); and ; € [? denote the functions with

support on I; and coinciding with 1 there, ;(n) = ¥(n) for n € I;. The end points of
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the intervals can be selected to satisfy ||| = € and ||¢i|]; = {n;}||r < €, where the
last restriction of ¥; is obtained by eliminating the end point {n;} of the i-th interval

for i = 1,.., k, k being the maximum number of such intervals. Let &; € L2 N H™ be

I

the function &; 1= ¢ II_WTIII:__:!’

(where ¥; is the z transform of ;) normalized to have
norm ¢’ in L?. By construction |¢;(n)| < [¥i(n)| for all positive integers n, and so
®; € SN Ball(H>,¢'). The first &y + 1 of the functions {¢;} will have support on
an interval containing a single integer, I; = {i — 1}. The remaining k, functions,
{¢:}rr, 42 (k2 = k — &y — 1) will have support on an interval which contains two or
more consecutive integers in [k2 + 1,00). It follows that & is bounded below by the

number of times the sum %2, ,; C?¢™%%" can be subdivided into consecutive partial

sums each exceeding €7 in magnitude. This is, in turn, bounded below by

1 & 2 ocaer| _ [1C%%m 1 .
[26’2 2, Cle ]_M‘ [2 ¢ -1, (268)

r=ky+1
Since C2e~28%1 > ¢2 5 (C2e~2lhi+l) by definition of ¢, the lower bound for k; lies
in the stated range for C) in the statement of the theorem. The lower bound for
Miic.q){€) then follows by observing that k =k + k; + 1.
Upper Bound. In order to conclude that Ng(e) < k, it is enough to exhibit a
k-dimensional subspace of H*, N = span{ly,...,[+} such that
:lelg gl <€ (269)

Define k to be the smallest integer such that

2 eCe™ <e¢ e k= [%ln% +2int ]m. Then the subspace N = span{z°,z}, ..., 251}

1—g=o
can be shown to have the required property (269), by simply chosing f(z) = T52 @r2”

where ¢, is the rth Fourier coefficient of g.
a
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(264) is now a corollary to the Theorem and the fact that the constants (. (%2
are independent of ¢. (The proof of (265) is similar to the proof of (263} in [34]
Chapter 10).

7.3 Reduction of Metric Complexity by Feedback.

It was pointed out in [53], [56] that feedback can reduce the metric dimension and
entropy associated with identification, i.e., identification and feedback can each be
used to shrink balls of plant uncertainty, and the more effective the latter is, the less
complex the former. We would like to detail this in the present context. However let
us first consider a simpler case which can serve as a prototype for our theory, namely
how identification and feedback reduce the complexity of additive disturbances at the
plant output {6].

Here P and W will denote a plant and weighting in H°°(disc), and
W : P(—o00,00) — ?(—00,00) the convolution operator with frequency response
W acting in the Hilbert space I*(~c0,00). Suppose that the a priori information
places disturbances in the set §:= {Wd : d € I*[0,n — 1], [|d]l, £ 1}, consisting
of the image under W of sequences of length n in the unit ball of /2. Denote by
n(W,¢€) the Lebesgue measure of the set {§ € [0,27) : |W(e"¥)| > ¢}. It can
be deduced from Szego’s theory that the metric complexity of S relative to the set
{d € *)[0,n = 1] : {|d||2 < 1}, as measured by the relative Kolmogorov ¢-dimension,

is
(W, €) + A(n)

where limp—. %ﬂ = 0, which can be interpreted as the complexity of identification

without feedback. Denote the restriction of W to 12[0,n — 1] by W ). The operator
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Wi W ) is Toeplitz in Euclidean n-space, and has normalized eigenvectors (; and
cigenvalues A?, i = 1,...,n. The set S is now an n-dimensional polytope in [° with

sides {A\iW(,(G)},. The e-dimension of this set is (see [42] Chapter 4)

k(W ny,€} = Number of singular values of the matriz Wi,

which are greater than ¢

The limit of 2k(W,),€) as n — 0 can be shown to be equal to 7(W,¢), by applying
Szego’s theorem on Toeplitz forms [53](Corollary 1, pp 205, and Theorem 6, pp 202).
Feedback multiplies the disturbance frequency responses by a factor (1 — PQ) € H*™.
The relative reduction in ¢-dimension produced by feedback in the limit as n — oo is

therefore

_(W(Q - PQ).¢)
7(W,¢)

1 (270)

If the optimal weighted sensitivity is infgege [|[W(1 — PQ)}loo =: p and € > g, then
the relative reduction in dimension is 1, l.e., no identification is needed to shrink
disturbances at the plant output to a tolerance . However, for smaller values of ¢
the reduction is smaller and, for strictly causal systems for example (P(0) = 0) it
approaches 0 as ¢ = 0. When W =1 i.e. the disturbances are unweighted, (270) is
a non-increasing function of €.

Let us now return to the more interesting case of uncertainty in the plant. Let A
be a Banach subspace of H*, and the set S of uncertain plants be a ball in A centered
at Pp € A and of radius C, denoted by S(F.C) :={P € A : ||P— Rlla < C}.
We will consider identification schemes which are constrained to replace S(F,C) by
some smaller sphere S( P, €), with new center P, somewhere in $(Fp, C). Note that

feedback is employed in the nominal plant invariant form outlined in Chapter 2 and
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is constrained such that C(J + PC)"! =: Q € A. For such a feedback, the open-loop

to closed-loop map P — Kq(P) has the parameterization (sce [57] for details).
Eqo(P)=P(I+QAP)™', AP:=P-P,,
and closed-loop perturbations satisfy (see Chapter 72)
AEq(P) = Eq(P) - Kq(P) = (I - RQ)(I + APQ)™'AP (271)

For a weighting W such that W*! € A, |W|la < 1, assumed fixed throughoat, if such
a feedback is used to shrink weighted perturbations in a ball $(F, C), the optimal
shrinkage is

W(PoC) = jaf sup IWAKe(P)la (272)
< LW - RQ)I1 - ClQI)"™

the last inequality following from (271). (For stable plants) u(Po,C) < 1 always.
When A = H® then (272) is equivalent to the ORDAP. The objective now is to
shrink an a priori ball of uncertainty S(F,C) to achieve a W-weighted tolerance
€ > 0, relying on feedback to achieve as much of the shrinkage as possible, and on
identification for the rest. It is assumed that the identification process starts with an
unweighted ball of uncertainty and shrinks its (unweighted) radius. There are two
main possibilities.

Case 1. An example in which feedback is applied prior to identification. Let A

be the Banach space H®® where the norm is taken as the infinity norm on the circle
radius e®. Suppose for case 1 that the complexity of the of the closed-loop set of
uncertainty is taken to be the Kolmogorov ¢-dimension of the smallest H* sphere

of containment in A with center P,. If the assumptions of Theorem 3.4 of Chapter
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3 hold for the ORDAP (with H* replaced by HS°) represented by (272), then the
smallest such sphere containing the set WKq,, (S — Po) is #(F£o,C)(S — Fo). Thus,
recalling that the control tolerance is measured in the W- weighted H* metric, we
obtain that the relative reduction of Kolmogorov e-dimension due to the optimal

fecdback of (272) is

NwS-r)(6) = Ny(p 0yS-p)(€)
N, W(S_po)(‘—)

where p = p(Fy,C) (273)

(273) follows, since it can be shown that from the point of view of e-dimension it is
irrelevant whether the weighting W acts on the norm or on the set. If W is bounded
away from zero on the unit circle the quotient (273) converges to zero as € — 0.

Case 2. Feedback is applied after identification. If feedback is capable of improving

tolerances after identification, say from ¢, to € (& > ¢), then it is enough to identify to
the larger tolerance, with an attendant gain in dimension of Ng(e) — Ng(¢}, where
the a priori ball is 8 := §(F,C) C Ag C H*™. The feedback action is possible

whenever each plant P in S is sufficiently invertible, satisfying e;u(FPo, 1) < €.
7.4 A Case of Multiplicative Uncertainty.

A variant of Case 2 involves multiplicative plant uncertainty for which identifi-
cation tolerances are expressed logarithmically. This will involve plants with factor-
izations P = VU, where U € H* is a fixed known inner function, and V € H® is an

uncertain outer function. A priori InV is assumed to be in the set (see (266)).
Vo={lnV € H? : InV —InVp €b,(C,a)}

for some fixed a > 0 and integer m; i.e, if m = 0, V is a logarithmic sphere with

center at InVp. The function to be identified here is InV/, and after identification it
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lies in the shrunken logarithmic sphere,
Vi(P,$8) :={InV € H® : InV —InV) € Ball(H™,§)}

The center of such an identified sphere can be shifted back to Inl} without affecting
the radius §, by multiplying W4 by V , thus keeping the center invariant under iden-

tification. Assume the objective of the combination of identification and feedback
is to achieve a weighted fractional tolerance || =7— WAV e £ ¢, AV := V = V;, where
W e H®, ||W| g~ = 1. In the absence of feedback, if identification is constrained to
produce a ball i (F, §), then the ball needs to conform to the unweighted tolerance

||° e < ¢, which establishes the relation § = ¢~(¢) where
e =sup{lz| : |In(l+2)| <6 =z €C} = ¢(d)
which has the property that ¢~'(¢) — ¢ as ¢ — 0.
A larger identification tolerance &; := ¢~!(&;) (8, = ) is sufficient if feedback
can shrink ¢ to € (& > €). Suppose that feedback minimizes sensitivity for the

nominal plant Py, let u(Fo) := infgen= |W(1 — PoQ)||e, 2and

WAKqr)(P)
Ko (p)(Fo)

AP

ll—};—lluw < C:}

ta(Po, &) = Qlenf sup{ p

F(Po)
(1 — &l Po@pyll =)

Feedback reduces the e-dimension of identification from N{(€) := M.ic.a){($71(€)) to

HW

N(&1) := Mon(c.a)(¢72(€1)- Let us compute this advantage.
Case 2a. a > 0, m = (. This involves an a priori bound on {nV on the enlarged

disc, but no explicit constraint on its derivative. Here

N =-Na) = [2ing7@)] - [tmea)]

> [llnp] ~1 for e small enough
a int
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Here feedback is asymptotically insignificant as M(e;) ~ M(¢). Of course, it
may be significant for large values of ¢.
Case 2b. a = 0, m = 1, i.e. there is an a priori bound on the derivative
£(InV)(e?) on the unit disc. By Taikov’s theorem (266),
c int
Ne) _[E7
N(E) [g]mt
<

i:p(Po) ase—0
3]

Remark. Under the assumption of a derivative bound on the log frequency response,
feedback reduces the complexity by a factor approaching u(Fp) as ¢ — 0, which is
asymptotically significant provided u(Fo) < 1. A comparison of cases 2a, 2b, suggests
that (for at least the constrained identification problem defined here) feedback is
asymptotically significant where the Fourier coefficients of the transfer function to be
identified, here lﬁo(n), decrease linearly as n — oo, but is not significant where they

decrease exponentially.
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Chapter 8

Concluding Remarks
8.1 Synopsis

The main subject of Chapters 1-6 of the thesis was an analysis of the ORDAP
and two-disc problems, first in the time-invariant and then the time-varying cases.
The fundamental nature of these problems, coupled with the fact that they were in-
tractable by established methods (even approximately in the case of the ORDAP)
provided the motivation for the re-examination undertaken in the first six chapters.
We began by showing, for both MIMO time-invariant and SISO time-varying systems,
that the ORDAP could be reduced to an implicit form of a two-disc type problem.
The recognition that these two-disc problems were in fact distance minimizations in
a certain non-standard Banach space of linear systems, enabled predual and dual
representations to be obtained. These representations allowed the following two in-
sights into the problem. Convex programming methods, in the form of the ellipsoid
algorithm of Shor, Yudin and Nemirovsky [45], were used to derive non-hueristic al-
gorithms for numerically solving the ORDAP. On a more abstract level, alignment
conditions relating the closest element in the in the distance minimization to the max-
. imal element in the dual optimization were obtained. This provided a geometrical
framework for the ORDAP and two-disc problems which revealed various qualitative
properties of the optimal solution, and shed light on how the potential of feedback to

reject disturbances depends on the radius of the open-loop plant uncertainty. Some

126



examples of the conclusions obtained in this manner included the following observa-
tions: A ‘flatness’ property of optimal solutions of the ORDAP; strict monotonicity
of the dependence of optimal robust performance on open-loop uncertainty radius at
all frequencies; existence and uniqueness (for the SISO case) of optimal control laws
for the ORDAP.

The last chapter of the thesis was concerned with information-based measures
of plant uncertainty i.e. metric complexity. The objective was to understand when
and by how much feedback could reduce the quantity of information necessary to
control an uncertain system to some desired tolerance. It was shown that for certain
open-loop multiplicative spheres of uncertainty, feedback could asymptotically reduce
the measure of metric complexity known as Kolmogorov e-dimension, when applied
after constrained (in a certain sense) identification. The action of feedback on the
metric complexity of a class of additive disturbances was also considered fo: the non-
asymptotic case. The conclusion in this case was that feedback could reduce the

e-dimension if and only if ¢ was not small.
8.2 Directions for Further Research

Among the more immediate goals of further research are the development of a
robust control synthesis software package for both the SISO and MIMO cases of the
ORDAF, based on the numerical solution articulated in the algorithms of Chapter 4.
Other objectives include an analysis of the ORDAP for time-varying continuous-time

systems, extending the discrete-time results of Chapter 6, and an extension of the
duality methods of Chapter 3 to handle convex constraints representing other feedback
objectives.

Longer-term goals of future research stemming from this work include:
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1) The development of a systematic means of extracting nominal models from raw
frequency response data, justifying the ‘nominal plant plus weighted uncertainty’
descriptions used in this thesis and elsewhere.

2) Establishing a more complete theory of the effect of feedback ot complexity, unify-
ing the objectives of feedback and identification in form of the single goal of complexity

reduction.
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Appendices

Appendix A: Properties of x(-)

Lemma. x : [0,00) — [0,00) defined in (27), is @ continuous, non-decreasing func-
tion for which there exists ¢ smallest positive fized-point

Proof. Continuity of x follows form the argument used in [20] for a similar quantity.
The non-decreasing nature of x is a consequence of the fact that the term inside the
brackets in (27) is an increasing function of r.

Let s(r) := x(r) — r. s(:) is a continuous function for which

s(0) = odiL IWi(I = PoQ)W|leo > 0 and s{||[WiW (e +1) <0 (274)

The last inequality is a consequence of the fact that x(r) < ||WiW||eo ¥r > 0. Because
continuous functions map connected sets to connected sets there must exist at least
one 7 € [0, 1+ ]|[WiW|w] such that s(#) = 0. The continuity of x also implies that the
set {r € [0,00) : s(r) =0} is closed in the topology of the reals, and thus there must
exist a minimum element (since it is non-empty). Hence x has a minimum fixed-point

in (0, 00).
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Appendix B: Proof That B. is 2 Banach Space

Lemma B. is a Banach space

Proof. The integrand of {48) represents a norm on the linear space €**" x L™,
Thus (48) defines a norm on the linear space B.. To prove the completencss of B.
suppose that Gy =[G G, G¥ GW e L1 is a Cauchy sequence in the metric
defined by the norm (48). It follows from the definition of STr that the L! sequence
resulting from the reétriction of Gi. to a single entry, is Cauchy in the Banach space
L. Hence there is element-by-element convergence in the L! topology of Gy to some

G € B.. Denote G by [G, G.]. The following inequality proves that Gy — G in the

B. metric.
27
jo Maz (STr(GH), STHG)) a8

Snj:"(

—=0 as n— o0

i,j=1 1,j=1

LIN)

S 1GH — Gl + S UGE —6)|] @0 @)
> >
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Appendix C: Matrix Trace Inequalities.

Lemma.
i. If X,Y are two n x n matrices then,
ITrXY| < 1X] 3 oY) (276)
i=1
ti. If X has singular value decomposition X = VDU equality in (276) is achieved for
Y = U"D\ V" where D, is the dicgonal matrir with diagonal {1, 0, ..., 0}.
Proof. i. Let Y = UDV be the singular value decomposition of Y. Then,

[TrXY| £ |TrXUDV| = |TrVXUD|

Since for square matrices the trace is merely the sum of the diagonal elements,
TrVXUD = T8 ,(VXU)iid; where {d;}1, are the positive diagonal entries of D.
Thus,

|TrVXUD| £ 3 [(VXU)aldi € Mazizmy,. o|(VXU)iil - TrD

=1
Since the magnitude of each element of VXU is bounded above by |V XU|
[TrVXUD| < [X|-|TrD| = |X]|>_ei(Y)
=1

ii. Follows by substitution.
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Appendix D: The Gain-Phase Relationship.

The Bode gain-phase relationships for 2 minimum phase system were originally
derived from the Hilbert transform formula for analytic functions. In this appendix
we summerize the Hilbert transform form of the gain-phase relationship, and state
some of the salient properties.

For a normalized outer H® scalar values function, we have the following rela-

tionship between phase and gain on the unit circle {32],

argh(e®) = 2%_ ]ﬁzw cot ( 5 9) log|h(e™)|dt (277)

For H* functions with real Fourier coefficients (corresponding to real life systems)
[R(e®)] = [h{e™*®)| Vit € [0,27). (277) becomes,

argh(e?) = { K(6, t)log|h(e™)|dt (278)
where K(6,t) = —2%_ (cot(?)-{-cot(gzi)) (279)
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Appendix E: A Maximum Modulus Principle

For H* functions the maximum modulus theorem states that the supremum of
the function over the interior of the unit disc is the same as the essential supremum
over the unit circle. The same property can be exhibited for the norm defined by the

two suprema of (44) for pairs of A}, functions i.e., the norm of the Banach space

nxn

B.

Lemma. If XY € H% _ then

nxn

sup sup |X(z)¢|+[Y(2)(|=ess sup sup |X(e¥)C]+[Y(e¥)¢] (280)
€D lcc Ieg'; a<o,2x) ICC IEg:

Proof. The inequality,

sup sup |X(z)C|+|Y(2)(| > ess sup sup [X(e”)C[+IY(e®)¢|  (281)
€D I(ﬂeg: ae0,2x) l(qeg"
< <1

follows from the fact that X(e¥) and Y (') are the non-tangential limits of X and
Y in D for almost every @ € [0,27).

Suppose the inequality in (281) is strict, i.e.,

sup sup |X(z)¢|+|¥(2)] >ess sup sup |X(e®)¢|+|Y(eF)¢|  (282)
€D [C]Egn 6€[0,2x) [c;gg"
<l<1 <1

Then there must exist constant unit vectors 9,72, {; € C" such that,
sup (X ()G + Y (a1} > ess sup [miX(e)Gl+ Y (€G]} (280)
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Define the scalar valued H* functions x,y by, z(2) := ;X (2)(, y(2) =Y (2)G = €
D. Thus (283) becormes,

sup (jz(z)] + |y(2)]) > ess_sup (|z(e®)| + ly(e®)) + 6 (284)
=D fefo.2x)

for some é > 0. From the definition of the supremum, there exisis 5o € D such that

[2(z0)] + Iy(z0)] > supsep (12(=)] + [y(=)]) — & Thus,
sup (=) + ¢y(3) 2 ess sup (|=(e®)] +y(c?)]) + 2 (255)
€D 8€lo,2r) 2

where e is the unit magnitude constant for which |z(=0)|+|y(=0)| = |z(=0)+€™y(z0)|.
But (285) violates the maximum modulus principle for the scalar valued H* function

T+ ¢y. Hence (282) cannot hold and (281) must be an equality, proving the lemma.

u}
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