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ABSTRACT

This thesis is an exposition of the various forms of Multivariate Gamma Distributions
available in the literature. We begin by discussing the univariate gamma distributions and
some of their most important properties. These distributions are then extended to the
vector variate and matrix variate cases. Derivations, applications and properties are given
for gamma distributions in these two categories. Further generalizations associated with

several matrix variate gamma variables are also included.

RESUME

Cette thése est un exposé sur les differentes formes existantes de distributions gamma
multidimensionnelles. Nous discutons d’abord la loi gamma et ses propriétés les plus impor-
tantes. Puis nous présentons ses extensions a argument vectoriel et a argument matriciel.
Les dérivations, applications et propriétés des distributions gamma appartenant a ces ‘eux
catégories sont analysées. Quelques généralisations dépendant de plusieurs variables gamma

a argument matriciel sont également considérées.
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CHAPTER 1

MATHEMATICAL PRELIMINARIES

INTRODUCTION.

There is a vast literature on the various forms of univariate, multivariate and matrix-
variate gamma distributions. The goal of this thesis is to present various existing forms of
multivariate gamma distributions, together with some of their properties and applications.

In chapter 1, we give some mathematical preliminaries that will be used throughout the
whole thesis.

The univariate gamma and generalized gamma distributions are introduced in chapter 2.
Functions of independent variables having the above densities, as well as, some applications
are also considered. The purpose of this chapter is to provide the necessary background to
understand the chapters that follow.

In chapter 3, we study the vector variate gamma distributions. In particular, we con-
sider the multivariate exponential, the multivariate chi-square and the multivariate gamma
distributions. Some of their applications are also pointed out.

Chapter 4 consists of matrix variate gamma and other densities such as matrix variate
beta and matrix variate Dirichlet. Some generalizations associated with several matrix
variate gamma variables are also discussed.

In the end, some results are given in the Appendix, followed by a large number of

1eferences.




1.1 GAMMA FUNCTION.
The gamma function I'(«) can be defined by one of the following expressions:

Definition 1:

[(a)

il

[ov]
/ ettt
o

1
/ (log(1/t))* tdt, (rin
0

for Re(a) > 0, where Re(.) means the real part of (.).

Definition 2:

. n'n®
lim
n—co a(a+1)...(a+ n)

=3
D)

N’
Il

= nl_i_'rgo n%a(l 4+ a)(1+ a/2)...(1 + a/n)]™}

= o ' TT(1+ 1/n)°(0 + a/n)7']. (1.12)
n=1
Definition 3:
1/T(a) = ae™ J]I(1 + a/n)e™/"], (113)
n=1

where v is the Euler’s constant,

v = lim (3 (1/n) = logm)
n=1

0.5772156649. .. (1.1

The following properties hold for the gamma function, provided that the various gammas

are defined.

I'(a) = l e Y°dt = lI‘(l-’r—oz). (1.15)
w Jo a



o+ n)

]

C()/T(x—n) = (a-1)(a=-2)...(x—n)
= (=1)"'I'(~a+n+1)/T(-a+1).

(-)'a(a-1)...(a-n+1)

tl

M—a+n)/T{-a)

= (-1)"I'(a+ 1)/T(e-n+1).

it

1‘(0)[‘(—(1) _0—2 ﬁ(l _ 02/712)“1
n=1

(a)(a+1)(a+2)...(a+n - 1)[{a).

(1.1.6)

(1.1.7)

(1.1.8)

(1.1.9)

To prove that (1.1.1), (1.1.2) and (1.1.3) refer to the same function and for more properties

of the gamma function, refer to Erdélyi et al. (1981, p. 2).

The Gauss-Legendre multiplication formula for gamma functions is given as

m--1
[(ma) = (27)1=m)/2mma=(1/2) H Ia+ ;{1—) form = 2.3,...
1=0

That 15, when m=2 we have the duplication formula,

['(2a) = 2212~ (a)l(a + %)

Some derivatives of the logarithm of I'(«) are the following.

(1) The digamma function or the psi function

1
|
R
=3
2

p(e)

(2) The tngamma function

(1.1.10)

(1.1.11)

(1.1.12)

(1.1.13)
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1.2 LAPLACE AND INVERSE LAPLACE TRANSFORNMS.

The Laplace transform of a function f(t) 1s defined as

L{f}(s) )

F(s
= /r:o f(t)e " dt (r2n
0

This integral will converge to an analytic furction of F(s) for a sufficienthy Targe value of
the real part of s if f(t) does not become infimte toc rapidly as t — o~ 'he boundan
of the region of convergence of (1.2 1) is the line Re(s) = o and o s called the abscissa ol
convergence of the Laplace tiansform

The inverse Laplace transform of F/s)is

c+100

- ._L st s BT
£(1) = m/C €% F(5)ds. (12

100

Tables for both Laplace transforms and inverse Laplace transforms can be obtamed from
Erdélyi et al (1954, pp. 129-301).
1.3 THE FOURIER TRANSFORM.

If f(z)is a function of a real variable .Y, 1ts Fourier transform F( f(r)) s delined as

[>0]

F(f(r)) =/ e'*” f(z)dr, (1:31)

~o0
where : = /—1 and t is a real variable. More specifically, if f(r)1s defined and single valued

almost everywhere on the range —oc < r < o0, and is such that the integral

[ i@



converges for some real value k. then Fy{ f(z)) is the Fourier transform of f(z). It is
usually referred to by statisticians as the characteristic function of f(z), when f(z) is
a density function and €' is called the kernel. Conversely, if the Fourier transform is
absolutely integrable over the real line —oo <t < oo, or is analytic in some horizontal
stiip —e < it < /J of the complex plane, then f(z) is uniquely determined by the inversion
mtegral, (often referred to as the inverse Fourier transform),

f(z) = %/: e~ Fy( f(=))dt. (1.3.2)

tt1s worthwhile noting that if f(z) is a probability density function, its characteristic func-

tion alwavs exists and determines the distribution function Fx (z) uniquely. In particular,

oo _ p—uz
Fe(s) = FO+5 [ LR, (1.3.3)

We may note that many of the simple properties of Laplace transforms have ana-
logues with Fourier transforms One may refer to Titchmarsh(1937), and Campbell and
Foster(1918) for the properties and applications of Fourier transforms. Erdélyi et al.
(1954, pp 117-125) have provided tables for Founer transforms.

1.4 THE CALCULUS OF RESIDUES.

We consider some techniques of calculating the residues of integrands involving products

of eamma functions

(a) By definition, at & = —v the residue of I'(@) is

R, lin_l (a+v)I'(a)

lim Hotv+l)
a—-v(a+v—1)a+v-2)...(a)

5



(—1)
= — (1 1.1)

(b) To obtain the residue of the product I'(a)l'(a + m), m = 0,1,....we first find the poles

of I'(a) and I'(e + m). These are given by the equations

a = ~-r,v=012,...and

a = —-v,v=mm-+1,... (1 12)

That is, for v = 0,1,2,...,m — 1 the poles are of order one and for v = m,m + 1, the

poles are of order two. We obtain the residues,

R, = lim (a+v)I'(a)(a+ m)
a——v
1\
= ( 1‘) I(-v+m),r=01.. ,m-1I (13
v!

and

R, = a&n_lua—aa—(a+u)2l’(a)r‘(a+m)

- 2 Ia+v+1)
T a=—via(a+v-1)2(a+v—22...(a+m)P(at+m—1) . ()

= Aoao
— =y 1 1 1 1
- 1/!(1/—m)![2¢(1)+2(1+ 9 oot nl—ll)+(l/—7n—- p ottt V),(l 1.1)

forv = m,m+ 1,.... Using the simplification of ¥ function given by ¥(n +1) = 1+ % +

et ;’; — 4, where v is given in (1.1.4), we obtain

R, = (=1) '[¢(u+1)+¢(u—1n+1)],1/=7n,m+],. . (115)

vi(y — m)



where

Ay = (9% log[(a + »)T'(a)T(a + m)], at a = —v (1.4.6)

and

a0 = (a+ )T (a)l(a + m), at @ = —v. (14.7)

(¢) Suppose that A is a gamma product with a pole of order n at a = b, we find the residue

of Ax™® at @ = b. From the calculus of residues,

1 an—l

(n (n—=1)! dan- s orl(a — 0" AzTe]. (1.4.8)

We can easily verify that

n—1

[(a=b)"82] = [ +(~ logz)]" (a ~ b)"A

30"—1

n—-1 9"
= gz @ _ n—-l-r
- Z ( lOg IL‘) aar

r=0

(o — b)"A.(1.4.9)

Now,
-1 )
= 3a’ 1{[(0‘ —b)" A][— log(a — b)"Al}
r1— -1 _
= {Z ( )Ar—l—rl Z (rl )Arl-l—r‘z ---}B, (1'4.10)
™ =0 1"2:0 T2
where

(1) A= £ log B,
(2) B = (a - b)"A,

(3) A° denotes the s-th partial derivative of A with respect to a.



Evaluating (1.4.9) and (1.4.10) at a = b, we obtain

.’E_b n-1 _
R = T 3 (n ] 1)(—logz)"_“r

T r=0
r—1 ri~1
r—1 —1— =1\ o
X{Z( )A{,‘ ”Z(‘ )AU‘ =r2 Y By, (1411
— T1 - r2
1‘1—-0 T2—0

where (1) Bo = (a - b)*A,at a = b,
(2) A} = £ [log(a — b)"A], at o = b.
1.5 MELLIN AND INVERSE MELLIN TRANSFORMS.

The Mellin transform of f(z) is defined as

#(s) = /Ooo 2’ f(z)dz. (£5.1)

More specifically, if f(z) is a real function that is defined and singled-valued almost every
where for z > 0, and is absolutely integrable over the range (0,00), the Mellin tiansiorm
(1.5.1) exists.

If the Mellin transform exists and is an analytic function of the complex variable (o1

c1 £ Re(s) € ¢, where ¢; and ¢; are real, then the inverse Mellin tiansform of ¢(s) is

1 w4100
f(z) = Zr?/ 275 (s)ds. (152)

w—100
If f(z) is a probability density function, the Mellin transform evaluated at s = k gives the
(k - 1)st moment of f(z) about the origin, £ =1,2,....

In order to find the inverse Mellin transform, the method of residues (sec | 4) 15 partic
ularly useful. Other recursion formulae and algorithms that are involved in evaluatig the

inverse Mellin transform can be obtained from Springer(1979, pp. 109-112).
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CHAPTER 2

UNIVARIATE GAMMA AND GENERALIZED
GAMMA DISTRIBUTIONS

2.1 INTRODUCTION

The generalized gamma distributions were discussed by Amoroso (1925) and D’addoric
(1932), who fitted such a distribution to data on income rates. Further properties and
statistical problems associated with the distribution have been dealt with by authors such
as Stacy (1962), Bain and Weeks (1965), Roslonek (1968), Malik (1969), Jakuszenkow
(1974) and Gajek (1983). Special cases of the generalized gamma distribution include the
Weibull, gamma, Rayleigh, exponential and chi-square distributions. Another special case
has been derived by Lienhard (1964) on a statistical-mechanical basis to describe rainfall
run-off from a watershed.

In this chapter, we shall study the generalized univariate gamma including some of
its special cases such as gamma, Weibull etc. Then, we shall consider the functions of
independent univariate generalized gamma variables and finally we shall give some of the
applications of the generalized gamma density.

2.2 GENERALIZED UNIVARIATE GAMMA

The generalized gamma distribution has various expressions. Stacy (1962) gave the expres-

sion as
rg(d(«;:)zd-le—(z/a)" y2>0,d>0,a>0,p>0
f(z;a,d,p) = (222
0 otherwise.

b4




Stacy and Mihram (1965) extended (2.2.1) to

a—,;.,l%ime‘(’/“)’zp"" y2>0,v>0,a>0.p#0
f(z;a,u,p): (:) ) 2)
0, otherwise.

Taguchi (1980) suggested yet another expression with two shape parameters, as

azr®—} ~poh
F—;T——l—e ,2>0,a>0h >0
f(ziahy = T (2.2.0)
0, otherwise,

Other expressions can be found in Amoroso (1925) and Johnson and Kotz (1970,p.197)

Lienhard and Meyer (1967) have described a physical model generating generalized
gamma distributions. Let us consider the situation where the occurrence of an event such
as the failure of a component or system, depends on some variable such as the stress to
which the part has been subjected to, or the time during which it has been subjected to a
given level of stress or use. Let the variable be denoted by ¢ and the number of occuriences
of the event during the interval [t,_;,1,] be designated by N, where t, —t,_; = At and 1y 15
the arbitrary origin.

The requirements that are imposed upon the N,’s are the following:

(1) the total number of occurrences of the event is fixed,
(oo}
> N.=N. (22)
1=1

The N,’s and N are assumed to be large numbers.

(2) for each choice of 8, the following sum is a positive constant



(3) the number of distinguishable ways, g,, in which the event can occur in the interval

[t.-1,] is proportional to a specified power of ¢, . Thus,
o= At (2.2.6)

Moreover,a > 0,8 >0and k> 0 .

We derive the distribution of the number of events by determining the most probable
distribution satisfying the above requirements. Let us designate as w, the number of ways in
which N distinguishable occurrences of the event can take place. If N, of these occurrences
must take place in [t,—y,¢,] and if the number of ways the event can occur in this interval

15 given by g,, it can be shown (Sommerfeld (1956)) that

oo _N,

gl -
W= N! 16 (2.2.7)

Suppose that N, are those values of N,’s which maximize W, subject to requirements (1),
(2) and (3) above. Then it can be shown that:
(a) the explicit expression for N,'s is given by

- _ At o~/ By _ﬂz :
N,/N_F(—&/—ﬂ—jﬂ(ﬁk/a) Ara—lezp( ﬂk). (2.2.3).

(b) the maximum value of w is very much larger than the value of w corresponding to
N,’s that are sigmficantly different from the N,’s, provided the N,’s and N are large. Refer

to Somumerfeld (1956) for proof.

We may suppose that the %’s represent the discrete probability distribution associated

with the random variable T, where T is the time or stress at which the first occurrence of

11



the event under consideration takes place. Accordingly:

m,

P(tl—ls'j‘<tl)= N’

(2.2.9)

where i = 1,2,.... We now approximate the discrete distribution in (2.2.9) with a continu-
ous probability density function, f, as below
N,

3= t: f(t)dt. (2.2.10)

Using the mean value theorem, the integral (2.2.10) becomes At f(£) where (¢,—At) < £ < ¢,.

Hence, letting At — 0 and using (2.2.8), we obtain

rim (Bk/@)o/Piete= @R > 0,05 0,8 > 0,k >0
f(z) = (2.2.11)

0, otherwise.
Introducing a = &/Bk/a in equation (2.2.11) gives (2.2.1).
2.2.1 Properties.
Let X ~ f denote f as the density function of a random var..ble X. Then (2.2.2) and the
expression X ~ f(z;a,v,p) jointly define X.

We can easily show that
kX ~ f(z;ka,v,p) where k >0, (2.2.12)
and
X™ ~ f(y;a™,v,p/fm) where m #£ 0. (2.2.13)

The sth moment of X, (s = 1,2,...), is

((vpts)/pla® ) . (2.2.14)

E(x%)=1 -

12
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The distribution function is

Lu(v)/T(v) ifp>0
F(z)= (2.2.15)
1 - (Pu(v)/T(v)) ifp<0,

where w = (z/a)” and

i

Lo(v) =/0 2 le=%d,

A number of familiar distributions can be obtained as special cases of (2.2.1).

Case | - Setting d = pin (2.2.1), we obtain the Weibull distribution.

fg.z:d“e“(’/“)d ,2>0,a>0,d>0
f(z;a,d) = (2.2.16)

0, otherwise.
This distribution is named after Waloddi Weibull (1939), a Swedish Physicist, who used it
to represent the distiibution of the breaking strength of materials. A bibliography about
the distribution is given by Werbull (1951). The Weibull distribution being often suitable
whete the condition of “strict randomness” of the exponential does not hold, has many
applications. Examples of applications can be found in papers by Berretoni (1964), Plait
(1962) and so on.

Johnson and Kotz (1970, pp. 250-271) provide a good general review of the Weibull
distribution, including historical development, genesis, properties, characterizations, order
statistics, estimation, tables , graphs and its applications.

Setting d = p = 2 in (2.2.1), we obtain the Rayleigh distribution which is a special case
ol the Weibull distribution. It was originally derived by Lord Rayleigh in a problem in

acoustics. It is a very common distribution which occurs in works on radar , the detection

13



of signals in the presence of noise etc. Archer (1967) and Siddiqu {1962) have given a uselul
summary of the properties of the Rayleigh distribution,
Case 2 : Setting p=1 in (2.2.1), we obtain the gamma distribution.

rd=1,-1/a

() , 2 >0,a>0,d>0

flzia,d,1) =!_

l 0, otherwise.

(2 217)

The gamma distribution is Type 3 of Pearson’s system of distributions Many of its bawie
properties and 1esults are given by Johnson and Kotz (1970, pp. 166-206). \ different
generalization of this distribution called the Lagrangian gamma was developed by Nelson
and Consul (1974), as the distribution of the time between occurrences of a generalized
Poisson process.

If welet d = n/2 and a = 2, we obtain the chi-square distribution with n degrees ol
freedom. A general review of this distribution, including properties, characterizations wid
so on can be found in Johnson and Kotz (1970, pp. 136-206).

We obtain the exponential distribution when d = p = 1. This has widespread use
statistical procedures and its general review can also be obtained from Johnson and Kotz
(1970, pp. 207-208).

2.2.2 Characterizations.

(a) Suppose that we have 3 independent positive random vanables .Y, .X,, .Y and a pair
of quotients (Y;,Y:2), where Y, = X1/ X, and Y2 = X,/.X3. Mabk(1969) has shown that
the necessary and sufficient condition for Xx to be generalized gamma distiibuted with

parameters d and p, (p and a common, k& = 1,2,3) is that the joint distribution of (Y;,Y,)

14



’g“:a

Sy
-~

is the bivariate distribution, given by the density

I'(dy/p+da/p+ds/P) 2 4,21 dy—1 p py1—(d1/p+da /p+ds/p)
, - 1+ Y + (y 1/praz/pras/p .

where ¥;,y2 > 0

0, otherwise. (2.2.18)

i

The above characterization has been generalized by Jakuszenkow (1974). She proved that
4 necessary and sufficient condition in order that independent random variables XXy, ...,
Xn, (n > 2), have the generalized gamma distribution (2.2.1) is that the n-dimensional

random variable (Y;, ...,Y,) defined as follows:
Yi = ¥ (X1/Xoi...; Xn/Xo), (k=1,...,n), (2.2.19)

has a generalized Dirichlet distribution with the density below.

F(l(En—oPJ)) i -1
kys---vyn = _':_"J—:‘_— 4] g Yiyee oy Un
( ' ) n]=0r(pJ/a l II;Inz ( ! y )
X1+ S n (g, gl 0P g (2.2.20)
1

where p,a >0, (¥1,...,yn) € 2,7 =0,1,...,n and k(y1,...,yn) = 0, otherwise.

Here € is the image of { X | zx > 0,k = 0,1,...,n} under transformation (2.2.19). This
transformation is assumed to be one-to-one with respect to the variables Z, = X;/Xo,
k=1,...,2 for X; > 0. The functions Zy = i(y1,...,¥n) are inverse to the functions

(2.2.19) and are of class Cy. J is the jacobian of the transformation

Zy = Xi/Xo

nk(yl""’yn)9 (2.2.21)

15




where £k =1,2,...,nand J #£0 for (y1,...,yn) € §2.
(b) Roy (1984) proved another characterization which is as follows:

If X, Y are two independent nonnegative random variables, then X and Y have the
generalized gamma distribution f(z;a1,81,7) and f{y; az, 3;,7) respectively, if and only if
the conditional distribution of X | (Z = X/Y) is the generalized gamma distribution. In
this case, the distribution has parameters a = ay + a2, § = (513227)/(B) + $227) and 7.
2.3 FUNCTIONS OF INDEPENDENT UNIVARIATE GENERALIZED
GAMMA VARIABLES.

Let Xi,X2,...,X, be an independent set of random variables, X,, having the general-

ized gamma distribution,

@it anb) = w2a®P e apl—aal],

[(a,/B) " '

where z,,a,a,3 > 0,fort=1,...,n

= 0, elsewhere. (2.3.1)

Stacy (1962) gave an expression for the distribution of the sum of Xy, X,,..., X, and he
pointed out that his results are more general than the results obtained by Robbins(1918),
who studied the distribution of a definite quadratic form. Malk (1967) gave the exact
distribution of the quotient of independent generalized gamina variates. In this section,
we will find the distribution of a linear combination of independent generalized gamma
random variables using the techniques given by Mathai and Saxena (1973). We will also
derive the distribution for the products and ratios of independent generalized univariate

gamma variates using the method given by Mathai (1972).

16
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2.3.1 Distribution of the sum of independent univariate generalized gamma

variates

Let Y = "%, X,, where the X,’s are defined as above. Now, the density (2.3.1) can be

written as an H-function, (Appendix Al),
f(xo;ananﬂa) = cm'—lH(l):‘i)[a'z?. lal/ﬂully
when z, > 0,0, > 0,a, > 0,5, > 0,i=1,...,n

0,elsewhere. (2.3.2)

Here

¢, = m%af°'"ﬁ3 1B (2.3.3)

The moment generating function of X, can be obtained as,

o0
M) = / c,zfle"'Ha:g[a,x"I-Oﬁ,l]dx,
0 {
1a a
= Hulg 1(1,8),(35 D) (2.3.4)

Since X,,..., X, are assumed to be independent, we obtain a moment generating function

®(t) for Y as,

®(2)

[TM@®)

= [TeHiiE (LA

=1

ay

1l (2.3.5)

Using the series expansion for the H-function given by Braaksma(1964), we obtain (2.3.5)

in a series form,

_ - g I'(—v)I(1 - /B, + (1 +u))T(B(1 +w))
20 = Jl«I12 T(1F m /B =1 — 1)

1=l 1=1.,,=0

17




(-1 a(”"’-)

XU A

(2.3.6)

for the case when the poles of the integrand are simple. Collecting the terms containing the

powers of t, we obtain the quantity

t~ Z:;l[ﬁ.(l'ﬂ'.)]_

(2.3.7)

The density of Y can now be obtained by taking the inverse Laplace Transform of ¢(t) in

(2.3.6). The inverse Laplace transform of (2.3.6) can be seen to be

yz:-":;[ﬁ-(Hu.)]_l
F(Z;n:l[ﬁt(l + v, )])'

After multiplying and summing up, we get the density h{y) of Y as

M) = ([]e)
1=1

ﬁ i [(=w)I(1 = o /B + (1 + v ))T(B(1 + 1))

1=1 v, =0 F(I+V')r(al/ﬂt_l_L'u)

(-1)~ yZI‘=,{a.(1+u,)l_l
X (Y, 81+ 1))

fory > 0,a, > 0,6, >0,¢, >0,

= 0, otherwise,

(2.3.8)

1
X af )

(2.3.9)

where ¢, is defined in (2.3.3). In order to find the distribution of general linear combinations

of variables Xy,..., X, one may refer to Mathai and Saxena(1973).

2.3.2 Distribution of products and ratios of independent generalized gamma

variates.
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et random variables X, .. ,.X4 be independently distributed according to (2.3.1) and

lest,

Xi...Xnm

Y = ————.
‘Xm+l o ..Yk

(2.3.10)

If the density g(y) of Y exists, then the hth moment of Y about the origin, is given by

[3
[T Etz;™

1=m+l

Ll(a, + h)/B5) -nss, I{(a, - h)/5,] o
a7 }Jgﬂ{ [(e,/8,) )

s
o

E(Yh) =

<
1]
—

=

]:
"~ Dla, /8, +h/By) {7 Dlay/B, = h/B,) .
= C[[—2 /f/a, 2 11 _’hm; 2, (2.3.11)
J=1 a, 7=m+1 a,
where
C':-——-—l— (2.3.12)

[T3=1 Dy /6;)

Whenever the various gammas exist, from the theory of Mellin transforms (2.3.11) uniquely

determunes g(y). Using the inverse Mellin transform of (2.3.11), we find that

y-l Cc+100

oy = = E(y")y~"dh
2T Je—100
-1 ctico M k T - h
_ C_'y / F(ay/ﬂil-;h/ﬂ:) II (O‘J/ﬂ_lh/ﬂ /ﬂJ)y-"dh,(Q.B.lB)
27” c—100 =1 aJ 7 1=m+1 a] ’

where

()1 = =1,
(b) C s given by (2.3.12).
From Braaksma(1964), (2.3.13) can be written as an H-function. So, we obtain

myun —am m+1,1/Bm41) (1- )
gly) = YT o oo tamgmiriw ), 0<y < oo

0, otherwise.

(2.3.14)
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where
(a)n=k-m,
(®) o= a,
(€) o =Tlnn a;/ﬁ’ and
g(y) in (2.3.14) exists if
(1) Za1/B) = Tiamin 1/8, >0,

(2) By(ey/By+v) # Bu(~an/Bn — 1),

where v,7 =0,1,...;7=1,...,m;h=m+1,...,k.

A representation of (2.3.14) in computable form is available from Mathai (1972) or Mathai
and Saxena (1978).
Case 1 :

] =@ =...= 0 = Q.

]

Br=Pr=...= P =P
a=a=...=k=a,

The integral in (2.3.13) can be simplified using a simple transformation, to obtain

B ¢’ 4100 I‘m(a/ﬂ+ h)F"(a/ﬂ— h)[am—nyﬂ]—hdh

~1
9(y) pyet) oo

- - n m-— 1- » .l_ ﬁ [ I r
CBalm=m/By=tGrnfgmnyf (200 omeld) (2.3.15)

where y > 0, > 0,0 > 0,8 > 0. G(.) is a G-function which is a special case of an H-
function (Appendix Al). For a definition of the Meijer’s G-function, sec Braaksma(1964).

The function (2.3.15) is available as the sum of the residues at the poles of I'*(b + h) where

20
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b=/ The polesof " (b+ h) can be obtained from the equation,
b+h+v=0,v=20,1,... (2.3.16)
and each one is of order m. lence density g(y) can be written as,
m-—n ad
g(y)=cBa” 7 y" 'Y R, y>0,m > n. (2.3.17)

v=0

where R, is the residue of I™(b+h)[™(b—h)[a™ "yP]~* at b = —(b+v). Using the calculus
of residnes (sec 1.4), we obtain

. 1 am—l mpm
W T =1y ghmT O R )T (b4 )

XI™(b - h)(a™ ")~

Zb+u a " i
T s T b+ A )

xI™(b+ h)T™(b - h), at h = —(b+v), where z = a™ "yP.  (2.3.18)

Ru =

Simplifying (2.3.18), we can write

e A Y
_- . m=—1-v
R, = o) ;} ( . )( log z) X

r-1 . r1—=1 ro—
[Z (7 N 1) Au(r ~1- 7'1) Z ( 11.2 1) Au(rl -1~ TQ)...]B,, (2319)

ry=0 ra=0
where (1)
B, = (b+h+v)" T™b+ hI"(b—-h),at h =-(b+v)
(_I)nw n
= Ok (26 + v). (2.3.20)
(1)
A () = ah logl(b + h+ )" T™(b+ B)T™(b — B, at b = —(b + v). (2.3.21)
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(a) When m = 2, n = 0, we obtain the density of X;.X; as

00 _b4v
Cle—l/.B Z {V')2[— IOgZ + 21,0(1/ + 1)]

v=0

9(y)

= CBz~YP2: Ky(2V/7) (2.3 22)

[From Erdélyi et al. (1981, p. 9).] where,

(i) Kn(z) is a modified Bessel function of integer order (See 0.3.4),
(ii) 2 = amny?,

(iii) b = o/,

(iv) ¥(z) = £ logT(z) = —7 + (2 = ) LoZol(n+ L)m + 27"

(b) Whenm =2,n=1

@) CRz"A 2, E1(2‘,”_,%’-1:”“"[— logz+2U(v+ 1)+ w(2b+v)] ,y>0
9\y)=

0, otherwise.
(2.3 23)
Case 2:
Br=p0=...=0 =P8

In this case (2.3.14) can be written as,

C',B?/—IGnm'"[yﬁ—"‘"—m—a =4 |(1_ajm)']=m+l" "k], 0<y<oo,m>n

m Ami4l.- Bk (a,/ﬁ),;:l ..... m

9(y) =
0, otherwise

(2.3 24)

(2.3.24) can be put into a computable form by using the results from Mathai(1970), after

identifying the polesin [}, [(a,/8 + k).

Case 3:

22



=

fi = B2 =.. = P are rational,

In this case, there exists a # such that
1/8, = my/B, 7 =1,...,k (2.3.25)

where my,...,m; are positive integers since fi,...,0; are positive. Then,

I(a,/B, +h/B,) =T(m,a,/8 + m,h/B). (2.3.26)

Expanding (2.3.26) by using Gauss-Legendre multiplication formula (1.1.10), we obtain

m

k
D(a, /B, +h{B;) H Fay/B,- k/B)=

1=1 j=m+l

m my—l1 k m,—1
H M(a,/B + r/m; + h[B) H H Ia,/B +r/m; — h/B). (2.3.27)
=1 r=0 1=m+1 r=0

So, (2.3.14) reduces to the form

_ ' n! (1-a,/B-r/m,) =m+1,.. kr=0,1,...m,~1
CBy lG:t',r:f[yﬁt |(a,/5+r/m,),;=1,.. m,r=01,. m;—1 L 0<y<oo

gly) =
0, otherwise,
(2.3.28)
where
(W t=TI17% a;"’/ I'[;‘=m+1 a;"’,

(i) m’ = X, my,
(i) n' = Loy mym’, 7' >0.
Agamn, we can put (2.3.28) into computable forms by using the results in Mathai(1970) .
2.4 APPLICATIONS.

(a) Generalized gamma distribution in reliability.
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Special cases of the generalized gamma distribution such as gamma, Weibull, exponential
and so on, are of great interest in reliability theory.

Let X be the age to first failure of a piece of equipment. We assume that X has a density
function f(z)and a distribution function F(z). We define the reliability of the equipment

at age r as

R(z) = prob. (X > )

1 - F(z) (2.4.1)

and the failure rate, Z(z) at age ¢ as

Z(z) = f(z)/R(z). (2.4.2)

The exponential failure density function is characterized by a constant failure rate. That
is, the reliability for a given operating interval is the same, no matter from what portion of
the useful life of a device the interval is taken.

The Rayleigh failure density function is characterized by a linearly increasing failure
rate. That is, we have an intense aging of the equipment taking place and failures do not
satisfy the conditions of stationary random process. So, as time increases the probability
of failure-free operation decreases at a much higher rate than in the case of the exponential
law.

The gamma distribution represents satisfactorily the distribution of the times of the
occurrence of failures of redundant systems when the redundancies are connected according,

to the method of replacement and under the condition that the flows of failures of the main
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system and of all the redundancies are simple.(Refer to Polovko (1968).) This distribution
can also be a characteristic of the times of occurrence of failures of complex electromechan-
ical systems if the components fail instantaneously during the initial stage of operation and
during the wearout period of the system.

The Weibull distribution, just like the gamma distribution, can be used as a character-
istic of the reliability of equipment dunng its burn-in period. This distribution is observed
in the case of some mechanical parts and, in particular, it is used in the study of the relia-
bility of ball bearings. Polovko(1968, pp. 73-95) has discussed more about the above failure
density functions.

(b) The generalized gamma distribution is employed as a radial distribution in Engineering.
It is associated with two dimensional kill probability, target evacuation and distribution of

populations. McNolty(1968) assumed that the distribution of the distance from a typical

impact point to a point target, is given by

Q
g(s)ds = (j;_)l e VAT NI (vs)ds, (2.4.3)

where Ig_(x) is the modified Bessel function of order @ - 1, A,Q > U and here @ is not
necessarily an integer.

As a radial density function, expression (2.4.3) includes many useful special cases - the
Rayleigh distribution, the non-central chi-square distribution with two degrees of freedom
etc. Using the above distribution, the probability density functions for the random phase
angle and the x, y components can be derived.

(¢) Generalized gamma distribution in demography.
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The growth of the urban component of a nation and the shift in population from ru-
ral to urban areas in the course of industrial development are processes that show both
regularity and predictability. Consequently, it is possible to describe the concentration of
population in terms of population density and area by comparatively simple expressions.
Sherratt(1960) has shown that the distribution of urban populations can be a gencralized
gamma distribution. This is very useful to the complex of urban arcas in the initial planning
for services such as protection of population and industry against possible attack, as well
as the logistic problems of supplying food, communications, housing, transportation and so

on.
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CHAPTER 3

VECTOR VARIATE GAMMA
DISTRIBUTIONS

INTRODUCTION

The vector variate gamma distributions can be considered to be generalizations of the
univariate gamma distributions to the vector variable cases such that all the marginals
are again gamma. They are commonly known as the multivariate gamma distributions in
the literature. In this chapter, we shall review some of the most popular generalizations
such as multivariate exponential distributions which involve the exponential, multivariate
chi-square distributions which involve the chi-square, and multivariate gamma distributions.
3.1 MULTIVARIATE EXPONENTIAL DISTRIBUTIONS.

These are distributions for which all the marginal distributions are exponential. There
are a number of different bivariate exponential distributions and their extensions available
in the literature.

Gumbel(1960) gives several bivariate exponential distributions which he derives from
different types of bivariate distribution functions. By studying the joint distribution func-

tion,

F(z,y)=1-€eT —eV4e V5 2>0,y>0, (3.1.1)
where the parameter § satisfies the inequalities
0<6<1, (3.1.2)
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he obtains the joint density function of X and Y as

e+ =U[(1 4 62} (14 6y)— 6] ,z2>0,y>0
f(z,y) = (3.1.3)
0, otherwise.
The marginal distributions of X and Y can be shown to be standard exponential and when
6 =0,X and Y are independent.

The second system of Gumbel’s bivariate exponential is obtained by applying the general

formula for a bivariate distribution function,
F(z,y) = Fi(2)F(y)[1 + a(1 = Fi(z))(1 - F2(y))]} where —1< a < 1, (3.1.4)

and the bivariate density function is given by
f(z,y) = A(2)f2(y)} + o(2Fi(z) — 1)(2F2(y) - 1)) (3.1.5)

Letting Fj(z) and F3(y) be exponential functions, we obtain

F(z,y)= (1-e")1-e¥)1+ae ¥,z 0;y>0, (31.6)
and
e V(14 a(2e7" - 1)(2e7Y - 1)] ,z>0,y>0
flz,y) = (3.1.7)
0, otherwise.

Once again the marginal distributions of X and Y are exponentials. If @ = 0, then the two
variables are independent.

The above models satisfy all the criteria for bivariate exponential distributions. Some
authors remark tiiat they do not appear to be appropriate models to particular physical

situations.
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Moran (1967) gives a bivariate distribution as the joint distribution of

X =X+ X2
and
Y = X2 + X},

where X, X3 are jointly normally distributed with zero means and variances 1/2 and cor-
relation ¢ (0 < a < 1) and X2 and X4 are independent of (X;,X3) but have the same

distribution. By considering the joint characteristic function of X and Y which is given by

. e (=a’ity)"
{(1-it)(1-aty) + ’itg)} ' = n%% {(1- itl)(ll- ity)}rtt’ (3.1.8)

he shows that the joint density can be expanded in the form

f(z,y) Zaz"fn(z,y) (3.1.9)

n=0

Here f.(z,y) has the Fourier transform

(-—illg)" 1 { - ttl)}n - itz)}n
A== - (1-::,)(1—n2) (1-u) (1-::)

n 1)k
Z (n) —————(1 it & Z ( ) 5 _(_ 1t2))’°+1 (3.3.10)

It then follows that

n n\ (- k

Downton (1970) derives a bivariate exponential distribution by using a simple failure

model. He shows that the joint density function of the component lifetimes is given by
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ipdy —(p1ty + pota)
t,t =
f(t,t2) l_pe-’cp{ pa—
2 typato)Y/?
XIO{ (pﬂl fat 2) }’tlat2 > 010 S P s 1-/1'1,/1.'3 > 0. (3] 12)

1—
g, is the mean interval between shocks of component i1 = 1,2. [ 15 the modified Bessel
function of the first kind of order zero, (see Appendix A3). This model 15 a special case of
the bivaiiate gainma distribution given by Kibble (1941), see section 3.3. "

We shall now present Freund’s and Marshall and Otkin’s famous bivanate exponential
densities and therr extensions. We will also give some of their properties.
3.1a Freund’s bivariate exponential distribution and extension.

This bivariate extension of the exponential distribution, is designed. in particulag, for the
life testing of two-component systems, which can function even after one of the components
has failed. It might, thus, apply to the study of engine fatlures in two-engine planes, to
the wear of two pens on an executive's desk, or to the performance of a person’s eyes, cars,
kidneys, or other paired organs.

The model can be introduced by considering two random variables X and Y which
represent the lifetimes of two components A and B in a two-component systemn  let X*
represent the lifetime of component A if component B is replaced with a component of the
same kind each time it fails (if necessary more than once). Let Y™ represent the hifetime
of component B if component A is replaced with a component of the same kind each time

it fails (if necessary more than once). .X* and Y* are assumed to be independent random
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variables having exponential distributions.

ae 2" >0,a>0

f(z") = (3.1.13)

0, otherwise.

Be™v" Ly >0,6>0
I(y) = (3.1.14)

0, otherwise.

From the above assumption, we obtain the element of probability that the first failure of

an A component occurs in the neighborhood of z* and that the B component has not yet

failed as

o0
(ae2"dz") [ eV dy = e O+ (3.1.15)
I.

Similarly, the element of probability that the first failure of a B component occurs in the

neighborhood of y* and that the A component has not yet failed is

Be~v @Bl gy~ (3.1.16)

We now consider the case when the components are not replaced. The element of probability

that component A fails in the neighborhood of z and that B has not yet failed is

ae~*(+B) gz, (3.1.17)

analogous to (3.1.15).

The element of probability that component B fails in the neighborhood of ¥ and that A has

not yet failed is

Bev(xtB gy (3.1.18)
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analogous to (3.1.16).

We also suppose that, the probability density of X given that Y=y is

a'e=o'(==v) , T > y,a' >0
(3.1.19)

0, otherwise,

and that the probability density of Y given that X=x is

ﬂle_ﬂl(y—Z) 3 y > x’ﬂ > 0
(3.1.20)

0, otherwise.

It follows from the above assumptions that the joint density of X and Y is

J aB'ezp{~By-(a+p~ B2} ,0<z<y,

f(z,y) = (3.1.21)

pa'ezp{—ad'z — (a+p - ')y}, O0<y<uz.
(i) Properties.

(a) The marginal densities are

el (rale) 4 ofmel 2 s0

f(z) = (3.1.22)

0, otherwise,

provided a+ 8 — o' # 0, and

(B=8')(c+B)exp{ ~(B+a)y} + af'ezp{~p'y} ,y>0

atf-3 at+f-06' (3.1.23)

fly) =

0, otherwise,
provided a 4+ — ' # 0. It can be observed that the marginal distributions are exponential
only in the special case @’ = ' = a + 3, and in this case
ae®T >0

f(z) = (3.1.24)

0, otherwise,
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Befv Ly>0
fly) = (3.1.25)
0, otherwise.

(b) The moment generating function of (3.1.21) is

atp 8 o
1-((t1 + t2)/(a +ﬂ)]{1 -t/ + 1_t2/ﬂ/}' (3.1.26)

E(ehﬂrt:y) -

Using (3.1.26), we obtain

E(X) = ﬁ%;
E(Y) = /;,%;%—) (3.1.27)
o = e
Var(Y) = ﬂ;f( i"fﬁ;‘);’z (3.1.28)
i Cov(X,Y) = a—z%%?); (3.1.29)

Corr(X,Y) = (a'8' - aB){(a?+2aB + B*)(B + 208 + *)} V2. (3.1.30)

(¢) The conditional density function of Y, given X (if a + 8 # o), can be shown to be

o (a+B-a')erp{B' y—(B+o—3')z} y>z
—cy! - ' —_—ey! b -
(a—a")(a+B)exp{-(B+a)z}+a’Bexp{-a'z} (3.1.31)

fly] r)=
a'fla+B8—a’)ezp{—(a+f-a’)y—(c')z}
(a—a'){a+B)ezp{~(B+a)z)+aPezp(-az] 0S¥ < Z.

Using (3.1.31), it is straightforward to show that

EY|X=2) = {(af N atB-a)1+2)-'Blat B —a))

(14 (a+ 8- a')z)(e” P+ L o' B(a + B — o) le™>'7)}

(e - a')(a + B)e™P*e)z 4 o/ge="r}, (3.1.32)
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Now if o' — oo, that is, if A has not failed prior to B, then we have a lincar regression of

Y on X. That is

44 ‘ g
EY | X=z2)=z+ m, (3.1.33)

and the linear correlation coeflicient becomes

p= &

(3.1.34)

Similarly if 8’ — oo, then

B

E(X|Y=y)=y+m—),

(3.1.35)

and the linear correlation coefficient becomes

al

= Ve 2aB + B2

It can be noted that in general —1/3 < p < 1. The linear correlation coeflicient approaches

(3.1.36)

+1 when o’ — oo and ' — oo, which corresponds to the case where the two-component sys-
tem cannot function if either component fails. The linear correlation coefficient approaches
-1/3 when a = 3, ¢’ — 0 and 8’ — 0, which corresponds to the case where cither compo-
nent becomes "almost infaillible” as soon as the other one fails. Since this would not be a
very realistic situation, the two limiting cases p = +1 and p = -1/3 are exduded under the
assumptions of the model.
(ii) Extension.

Weinman (1966) has extended distribution (3.1.21) to a multivariate exponential distri-

bution, by considering a system of m identical components with times to failure X, X, . .,
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X,.. Each of the failure times is supposed to have the exponential distribution

a(}'le"'/‘“ , x> 0,09 >0
flz)= (3.1.37)

0, otherwise.
Moteover, it 1s supposed that if k£ components have failed (and not replaced), the conditional
joint distribution of the lifetimes of the remaining (1n— k) components is that of independent

random vatiables, each having the distribution,

a,:'e"”/“" , 2> 0,0, >0
f(z)= (3.1.38)

0, otherwise.

It can be shown that the joint density of X1, Xy,..., Xy is
f(Z1,22,...yZm) = l_I[a'l ~(m-s)ay (z"”—z’)], (3.1.39)

where 20 = 0and z; < z2 < ... £ z, arethe z,’s arranged in increasing order of magnitude.

The moment generating function of (3.1.39) is

Elexp( Z‘ X,)] = (mH™? Z H[1-a, ‘Z o)/ (m = 7Y, (3.1.40)

1=J+1
where {tyu),.-.,tym)} is one of the m! possible permutations of {t,...,¢m} and 3"+

denotes summation over all such permutations. The distribution is clearly symmetrical in

X1, X, .., X Foreach j (=1,2,...,m),

m~1
E(X,) = m ') a, (3.1.41)
=0
m-1
Var(X,) = 7n'2[Z(m + 7)(m - j)‘laf +
1=0
23" 3 j(m - f)aya,). (3.1.42)

<y’
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-2 m-1

_ m m+j, 2
CO’U(‘XJ,XJI) = — I[Z(nz — ;’—l-———; a; -
=0
2y Y s(m = peyap). (31 13)
<y’

The joint moment generating function of the ordered variables X; < X} < ... < X/ can
be found to have the form,

m~-1 m

[Mir=(e 3 t)m=-2"1"1, (3.1.41)

=0 1=7+1

and the joint density of X{,X5...X], is m!x density in (3.1.39).
3.1b Marshall and Olkin’s bivariate exponential distribution and extension.
First, we suppose that the components of a two-component system die alter receving
a shock which is always fatal. The occurrences of shocks are assumed to be governed by
independent poisson processes with parameters Ay, A2, A1z according to whether the shock
applies to component 1 only, component 2 only or both components.
Thus if X; and .X; denote the lifelength of the first and second components respectively,

then

flz,22) = elmA1z1=daz2—Mamuz(z) ,22))

’

for z; > 0,z2 > 0. (3145)

Next, we consider a two component and three independent Poisson processes Z(4:4;),
Z2(t;82), Zy2(t; 812) governing the occurrence of shocks just like above, except that the
shocks received need not be fatal. We describe the state of the system by the ordered

pairs (0,0), (0,1), (1,0), (1,1), where a 1 in the first (second) place indicates that, the first
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i (second) component is operating and a 0 indicates that it is not. Suppose that events in
process Z,(t;6;), are shocks to first component causing a transition from (1,1) to (0,1) with

probability p; and fiom (1,1) to (1,1) with probability 1 — p;. Similarly, events in Z,(t; 62)

are transitions from (1,1) to (1,0) or (1,1) with probability p; and 1~ p, respectively. Events

in Zyy(t; 812) are shocks to both components which cause a transition from state (1,1) to

states (0,0), (0,1), (1,0), (1,1) with respective probabilities poo, po1, P10, p11. Furthermore, we

assume that each shock to a component represents an independent opportunity for failure.

Let X; and X; denote the life length of the first and second components. Since Zy(t;é;),

Zo(t; 62), Z12(t;612) are independent and have independent increments, we have

P((Xy > 21), (X2 > z2)]

= {i e=51n (___61:!1)k(1 }{Z —byz, \0222) (621’2) 2222 (1 - ) }

=0

f(z1,22)

{3 S e 22Ty

n=0m=0

x[e —617(r2~$1)(6l2(z-27-l.—i-)-)“(l7u + por)"™ 1}

= ezp{—z1[61p1 + b12(p10)] — T2lb2p2 + 612(1 — p11 — pr0)]},

for o 22, > 0. (3.1.46)
By symmetry, for zy 2 222> 0
f(z1,22) = el-maloptha(i=pu-pio)l-zalfopa+iapicl), (3.1.47)
Consequently, by combining (3.1.46) and (3.1.47), we obtain

f(z1,22) = el~h1m=2azz=damazzizal] g5 0 2, > 0, (3.1.48)
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(ii) A2 = 82p2 + 12103

(iii) A1z = 612p00.
It should be noted that when p; = p; = 1, poo = 1, we have the specialized fatal model.
(i) Properties.
(a) The function (3.1.48) can be shown to have an absolutely continuous and a singular
part.

A+ A A
f(z1,22) = l/\ 2fa(:cl,xz»)+—ffa(a:n,:cz), (3.1.49)

where f,(z1,25) = el-*maz(z122)] j¢ the singular part and

A
A+ A2

_ A12 e[--,\maz(z‘l--"-'?)],
A1+ Az

el-Mz1=2222-Aamaz(z),12)]

fa(zls 152) =

is absolutely continuous. For a detailed proof, one may refer to Marshall and Olkin (1967).
The presence of a singular part in the distribution function is a reflection of the fact that if
X, and X have bivariate exponential distribution, then X} = X, with positive probability,
whereas the line £; = z, has two-dimensional Lebesgue measure zcro.

(b) The moment generating function for the bivariate exponential distribution is given by:

o0 o o]
/ / e~ T ~Tad P (g, 1,)
1] 0

// e t‘zl"tzzz/\g(/\] + Al?)f(zl’zZ)dzldzz
T1>T2

V(ty,12)

+// 5 e™hF1=RT2 ) (Ay + 2) f(24, 22)deydxy
Ty< T3

o0
+ /0 e~ T2\ b [, (21, 21 )dz).
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Evaluation of these integrals yield the result

(A 4+t + 22)(M + A12)(A2 + Aiz) + itz iz A et
= A12. (3.1.
A+t +22)M+ Az +t)(A2+ Az + 1)’ where 1+ A2+ Ar2. (3.1.50)

\]’(tl )t2) =

From (3.1.50), we obtain

Ex) = A1 :/\12'
B(Xz) = A2—+1A'S (3.1.51)
Var(X,) = m
Var(X3) = m (3.1.52)
Cou(X),X2) = E(X1X2)- E(X1)E(X>)
- 1\1_1(/\1-:/\12+/\2-:/\12)_(/\1-:1\12)(/\2-:/\12)
T X+ /\1:;:'\2 +A12) (3.1.53)
The correlation is
(X1, X2) = ’\T‘I"l (3.1.54)

(c) If X is an exponential random variable, then it is known that aX is exponential for all
a > 0. However, if (X, X3) is bivariate exponential then (aX;,bX?3) is bivariate exponential
of the type we considered only if @ = b > 0. The density function of (aX1,bX;) for a,b > 0

is easily seen to be of the form
9(z1,x2) = exp[—A1z1 — Aezg ~ maz(Aszy — M\q22)], 21 > 0,22 > 0. (3.1.55)

This distribution has exponential marginals and includes the bivariate exponential distri-
bution as the special case A3 = Aq4.
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Another change of variables in the bivariate exponential distribution which may be ol

interest is (Xllm,le/"). This has a bivariate Weibull distribution, namely,
f(z1,22) = ezp[-Azf — X%z} - APmaz(2],3])), 21 > 0,22 > 0 (3 1.56)

(d) A characterization of the bivariate exponential distribution is the following:

(X1,X2) has a bivariate exponential distribution if and only if there exist independent
exponential random variables U, V and W such that X| = mun(U, W) and X; = mun(V,1V)
The above is an immediate consequence of the fatal shock model discussed at the beginning,
of this section.

Marshall and Olkin (1967) have also introduced a generalized bivaiiate exponential
distribution derived from shock models. They derive the moment generating function and
give some other properties of the distribution. Saw (1969) has peneralized (3.1 18) by
replacing max (z,z2) by an increasing function of max (xy,z,) . This can be interpieted
as arising from a situation in which the joint failure rate can vary with time The maiginal

distributions are still exponential. Saw suggested the function
maz(r1,r7)
/\/ t(y + t)"ldt = Mmaz(zy, z2) — ylog(y + mar(zy,22)], (3157)
0
for which

/\—ye[—/\lr, ~Aarg~Amar(ry,xz)}
1

flzy,z2) = (7 + maz(zy,22)

for z; > 0,29 > 0. (3154
(ii) Extension.
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Marshall and Olkin (1967) have generalized their bivariate exponential distribution in
the following way. In a system of m components the distribution of times between “fatal
shocks” to the combination {ay,...,a,} of components is supposed to have an exponential
distiibution with expected value ,\{‘a‘h oy The 2m=1 _ 1 different distributions of this

kind ate supposed to be a mutually independent set. The joint density function of lifetimes

Xy, Ya.... X, of the components is obtained as

h(Il,IQ ....’Em) =

exp[— Z/\J:I:J - Z Z AnpMaz(Ty,25,) — ZZ Z [(Ains

)=l n<n Nn<32<3
maz(z;,, Ty, Z;5) = ... — A2.mnMaz(T1,...,Tnm)). (3.1.59)
It 15 observed that (3.1.59) is a mixed distribution.
(a) Method of parameter estimation.
Arnold (1968) has pointed out that it is not simple to estimate the A’s by standard
maximum likelihood or method of moments. Instead, he has suggested the following method

of estimation which exploits the singular nature of the distribution.

We define

1 if Xg=Xa=... =X < X,
Za‘,,. 1y — (3.1.60)

0, otherwise,

whete j # ay,...,as. Given n independent sets X, = (Xy;,..., Xm;) each having the joint
distiibution (3.1.59), the estimator of Agg 4.} can be obtained as,

n

(7Y Z annli(n =17 Y min(Xy,,. . X)) (3.1.61)

J=1 =1
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The numerator and denominator of (3.1.61) are mutually independent. For each s € 5,
Zay,.as(;) €an be shown to have a binomial distribution with parameters (A,,, ,.,/\),
where A = sum of Ay, . o,}’s over all possible sets {ar,...,a,}. ALY, = mun(Xy,,.. ,\ my)
(7 =1,...,n), are i.i.d exponential random variables with common mean 1/A. So, it follows
that —15 5", U, has a scaled gamma distribution with parameters n and [(n - 1)A]7".

Using the above and the independence of the numerator and denominator of (3.1.61), it can

be easily shown that the estimator is unbiased. The variance of the estitnator is
[n(n = 2)]"M A, wl(m= DA+ A, o) (3 162)

Note that if n is not large, many of the estimators (3.1.61) will have the value zero. In [act
for each Y;, only one Z (at most) will not be zero, so there must be at least (2 -1 — n)
estimators with zero values.

Before concluding this section.it is worthwhile mentioning other authors such as Bloch
and Basu (1974), Block (1975) and Friday and Patil (1977) who have also discussed hivatiate
exponential distributions and bivariate exponential extensions.

3.2 MULTIVARIATE CHI-SQUARE DISTRIBUTIONS.

Multivariate distributions with chi-square marginals will be considered here. Kiishnaah,
Hagis and Steinberg (1963) refer to them as multivariate chi-square distributions and Mille
et al. (1958) refer to them as generalized Rayleigh distributions. Various expressions have
been derived for both the central and non-central multivariate chi-square distributions  We
shall discuss only the central multivaiiate chi-square distributions but the results can bhe

e.ctended to the non-central cases.
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Consider a random sample of size n, represented by n independent vectors (X1, X,2,...,
X)), (i =1,...,n), drawn from a given multivariate normal distribution with covariance
matrix £ > 0 and having each diagonal element equal to 1. Let §, = 31, (X,, - X ,)?%,
(7 =12,...,m), X_J = it Xy /n

In this section, we shall consider two ways of deriving the multivariate chi-square dis-
tribution:

(i) as the joint distribution of S,, j = 1,...,m, which is defined above, using the conditional
distribution method;

(ii) as the joint distribution of quadratic forms and of traces of Wishart matrices, using the
characteristic function method.

(3.2a) Multivariate chi-square distribution as the joint distribution of §,’s.
Case (1): m = 2.

Expressions for the bivariate chi-square distribution, using the joint distribution of
§,,J = 1,2 have been obtained by Bose (1935), Johnson(1962) and Vere-Jones(1967).

Let )7,1 = (X11... Xm), )712 = (X12...Xn2), where X, ... Xy, j = 1,2, are indepen-
dent and X, = (X,1X,2)' ~ N2(0, %) with

1 p

p 1

The conditional density of X,; given X,z is normal with mean pX,; and variance (1 - p?).
Consequently, given X,, we can represent X, as pX,2+ /1 — p*U,, where U,,i = 1,2,...,n
are independent and U, ~ N(0,1). Thus the conditional density of 17“ given }712 is that of

n independent random variables with expected values pYi; and common variance (1-p%).
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Now, if §, = ¥, (X;, — X,)? for j = 1,2, then given Y,2, §) is distributed as

Ylo( Xz = X2) + /1 = p2(U, - D)1, (3.2.1)
=1

that is, as (1 — p?)x (noncentral x? with (n — 1) degrees of freedom and noncentrality
parameter p°Sy(1 — p?)~1). This was proved by Johnson(1962).

The conditional density function of S; given §; is given by

p S2 J {n-142;)
2

f(s1]s82) = exp{- 2({) 822)}2:]'[2(1

St

(n— 14 2j),_, oy in=ltas)
F————— 1- £ ! —_——
for sy > 0,
= 0, otherwise. (3.2.2)

Using f(sy | s2) and the density function of S, which is chi-square with n — 1 degrees of

freedom, we obtain the joint density of S, and S, as

a(s1,82) = ZCJ[F (n— 14 25)/2]2[sy(1 = p?)~ |- 142)/2= ‘ezp{M}

=0 2(1-p%)
[s2(1 = p*)™1] P -1g-(n-1422) g0 81 >0,52>0

= 0, otherwise, 2.
0, otherwi (3.2.3)

where

I\]ﬂ—12+21)(1 _ p2)(n-l)/2p2]

- (3.2.4)

¢, =

The expression for a general bivariate chi-square distribution can be obtained by considering
the variables S = SJU_?. Moreover, we can replace (n — 1) by » > 0 but not necessarily

an integer. From (3.2.3), we note that the joint distribution of 5; and 57 is a mixture of
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joint distributions, with weights c,, 3°3° ¢, = 1, in which $; and §; each have independent

x3(n - 1+ 2j).

Bose(1935) shows that the density of G = % can be written as,

_a2w/2 k-t 2
(1-p?) g? (1- 4p°g 2)—%(uﬂ),g > o, (3.2.5)

where B(3,3v) = T(3)[(3v)/T(3L).

Krishnaiah et al.(1963) give the joint density of U = +/5; and V = /5 as

f(wv) = 4(1-p) 21%?5212)

2'(11.1))""'2' —1-(v?+v%)/(2(1-p%))
X [2n/2+t (n/2 + 2)(1 _ 2)n/2+t]2’u >0,v>0.

(3.2.6)

They call the joint density as the bivariate chi distribution and study its various properties.
Case (2): m > 2.

Derivation of the joint distribution of 5;,...,S,, is more difficult and we will consider
special cases only. Using the above method for m = 2, it can be shown that the conditional
distribution of S given (X12,...,Xn2) (X13,...,Xn3)... (X1ms -y Xnm) is that of (1 —

P323..,m) ") X (noncentral x? with (n — 1) degrees of freedom and noncentralicy parameter

m m m
(1- pf.ZS...m)—l[Ea_?SJ + Z Z a,ak Pil,
1=2 1<k k=2
where A = P1.2..0~-1)(341).. m PJk = ?:l(Xt] - —J)(Xsk = Xk) and p¥.23..m’ is the
multiple correlation of X; on Xj,...,X,,. Moreover, the joint distribution of Sa,...5,

Py3,..., Pyn-1,m, can be shown to be Wishart distribution W,,,_y(n - 1; Vi1), where Vy; is

the cofactor of the first diagonal element of T, the covariance matrix (Anderson (1984)).
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Thus we can obtain the joint distribution of 51,52,...5m, Pa3, ..., Pou—1.m, but 1t is very

difficult to eliminate tie P’s. When

L= , (321

\pp...l)

Johnson(1962) suggests the approximate formula

lin=1=-23}/2]-1,~¢t/2

00 mo e
f(s1,82,..58m) = E)CJE,[, 2n=1-)/2[(n ~ | — 2])/2]{“’ for s > 0{328)

where : = 1,...,m and ¢,’s are as in (3.2.4) and f(sy,...,5n) = 0, otherwise It seems that
(3.2.8) gives reasonably accurate values for m = 2 or 4, but that the accuracy decreases
with increasing m.

(i) Properties.

(a) The joint characteristic function of §y,52,...5n is
E(¢ Lm1 45y = [~ 2T D, |12, (329)

where D; = diag(ly,...,tm). For proof of (3.2.9) see for example, Krishinamoorthy and
Parthasarathy (1951).

(b) If p,, = p for all i, j the joint distribution of 5y, S, ... 85, 15 infinitely divisible (that
is, forany a > 0, | [ - 22ZD, |~ is a characteristic function ), see Moran and Vere-Jones
(1969).

(3.2b.1) Bivariate chi-square distribution as the joint distribution of quadratic

forms, using characteristic function method.
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Let X' = ()ff”,.ff.‘,)) where )-('(,) and X(g) are (rx1) and (sx 1) respectively with r < s.

Suppose X’ has a multinormal distribution with zero mean and non-singular covariance

matrix
En Xp

L= , (3.2.10)
La L2
where X;; is the covariance matrix of )-('.(1) and X, is the covariance matrix of X.(Q), then

the quadratic forms

Y,=X'T71X,, j=1,2, (3.2.11)
can be shown to have x? distributions with r and s degrees of freedom. The joint distribution
of ¥} and Y5 is thus a form of bivariate chi-square distribution. Following Jensen(1970), we
obtain an expression for the joint density of Y7 and Y;. He points out that the distribution

is the same as that of

r S
1= zzlz_p Y, = ZZ22],
=1

=1

where (Z1,,22;) (j = 1,...,7) are independent and have standardized bivariate normal
distributions with correlations pj,p;,...,p, (the canonical correlations between X'(l) and
X@2)-

The joint characteristic function of Y; and Y, can be shown to be

— —4t,t
1— 2it))""3(1 - 2ity) /2 ey Pr 12 ’ 2.
(1= 2ity)™"2(1 = 2ity)™** Y " C,(p1,p2,-- 1P )[(1_2“1)(1 _2“2)] . (3.2.12)

=0

where
(i) CJ(plvPZv v vpr) = Jlg,;_%::_, aJl(pl) . 'aJr(pr)9
(i) ay(p) = piT(G + 1/2)[VaT(3 + 1)),
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(iii) py = corr(Zn, Z13).

Now Gurland (1955) has shown that the inverse Fourier exponential transform of the func-

tion w(t; g,h) = (1 — iz)-g[“'_’,,,]h is

L /°° e~ u(t; g, h)dt = hID(g) LS~ (m)——il—ei- (3.2.13)
27 oo 9 ' T(g)T(g + h)’

where L;”l(z) is the Laguerre polynomial

- _ (Q)F(0+J) (=" (7).
LJ 1(-’lf) = [ ]1/22F(0+h)(h)m"

Applying the inversion formula (3.2.13) to the terms in (3.2.12), we obtain the joint density
of Y; and Yz, k(y1,92) as

[y;/i’ “1o-n/2 ygﬂ-le-ym]
2r/2r(r/2) /2T (s/2)

()T (r/2)I(s/2) 2e1, e af2e ‘
X Z[F(r/2+])Is(s/2+])]CJ(P1502,-..,pr)LJ (yl/z)LJ l(y2/2)

1 > 0,y2> 0,T(a) > 0. (3.2.14)

k{y1,v2)

We can renormalize the Laguerre polynomials and write (3.2.14) in the standard form

rf2-1 e~v1/2 y;/z_‘e—y2/2

N
k(w1
wev2) = Cormrgray o)
o0
X Y M,LIL",y0 > 0,y2 > 0. (3.2.15)
J=0

Where L} and L;* are Laguerre polynomials of degree 7 which are orthonormal with respect

to the weight functions [¥ 2,,;”7;;2] and [y2,7:[,'; ;22),2] and
: }
M, = !__LE(LBE_L{LQL_%_C s pr)-
= e 2k (24 ) {p1yeapr)
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It can be shown that the series (3.2.15) is absolutely convergent almost everywhere. Using
the same procedure Jensen (1970) also obtains expressions as Laguerrian series for a gen-
cral trivariate chi-square distribution and a multivariate chi-square distribution when the
covariance matrices of Y;’s are each of Jacobi form, that is, all the elements are zero except
those on the principal and its two adjacent diagonals.

(3.2b.2) Multivariate chi-square distribution as the joint distribution of traces

of Wishart matrices.

Let W(p x p) be a central Wishart matrix having v degrees of freedom, positive definite
parameter matrix Z(p X p) and rank min(p,v). Block partitions of W and ¥ are W, and
Yk, respectively, both (p, x pi), where 1 < j,k < qand py +...+ p, = p.

Consider scalars v, = trW,,EJ"J],l < j £ ¢. It can be easily shown that each v, has a

chi-square distribution with vp, degrees of freedom. The characteristic function of W is
dw(T) =| I, - 2¢TE |2, (3.2.16)

where T is real, symmetricand T = (9y,t,;) with v, = 1fori=1,...,p,7, = 1/2 for

i # 3. Using (3.2.16), we obtain the characteristic function of ¥ = (vy,...,v,), as
(i) =| I, - 2iH* (DT |13, (3.2.17)

where H*(f) = dz'ag(t;L‘]']l,..., th,;]‘) is a block diagonal matrix. Let u, = %v,,l <j<gq
Since X, is symmetric and positive definite, we write £,, = E;J/Z 2111/2. Using (3.2.17), we

obtain the characteristic function of @ = (uy,...,u,), as

®q(f) =| I - iH{E)R |17, (3.2.18)

49



Fan s

where now H(f) = diag(tily,,...,t,I,,) and R is a block partitioned matrix with elements

R,, = I,and

Ry = £Psu3} for1< 3k <y (3.2.19)

Letting Z, = it, /(1 — it;),1 < j < q in (3.2.18) and factoring terms out of the determinant,

we write
: 2
Sz = [J(- i) ¥ g, 2)] 7, (3.2.20)
=1

where g(zl’ R vzq) =' IP - A(z) ,s

(o

a2 ... 2Ry,
22R21 0 ZQRQQ
A(2) = (3.2.21)

and R, is of order (p, X p), p1 +...+ py =p. Now,

loen 712 = (1= B

> T(v/24+m)

ToTam? B™%), (3.2.22)

m=0
where, by the multinomial expansion, Bm(z”) is the finite sum

m m
B™Z) = Y ...3 Az, (3.2.23)
- a1 =0 ae=0

(a1,...,a;) are non-negative integers and unless at least two of them are positive, the

corresponding coefficient A, of such first order terms vanishes. We now write
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Y = 50 o+ - Lz Where (m1') = (m,...,m).
Combining (3.2.20) to (3.2.23) and replacing 2§ ... 247 by I_1lit,/(1 — at,)]*, we obtain

the characteristic function as

1

I'(v/2+m)
E I'(v/2)m!

6'

' m=0

(m1) 9

x 3 A [[let,/(1 = 12,)]%(1 - it,) =712, (3.2.24)
a =1

Using the inverse Fourier transform of (3.2.24), we obtain the joint probability density

function of u; = %trWHE;J] 1< j < q,in the form of a series given by

(m)
f(u) = Z FI(«I(//?;;,Z: )S™ Ao fuliinj20p), (3.2.25)
(a)
where
"P/2‘1e—u1

'r(4 PR
i) fa(i1/208) = Ty 15,475 e La(@vil2).

(i) L(@wp[2) = ool =1 (32 am/m!.
(iii) The coeflicients A, depend on the matrix ¥ through R, = £, 1/22 2-1/2 1< 5,k<qg.
Now the joint probability density function of V = (vy,... ,¥g) can be obtained by a simple
change of scale. Some properties and approximations of the joint distribution function can
be seen from Jensen(1970). Note that special cases of (3.2.25) are given when p=q by
Kibble (1941) and more generally by Krishnamoorthy and Parthasarathy(1951).

We remark that the expressions for the multivariate chi-square obtained in this section
are generally complicated, thus requiring considerable calculations in order to become ex-
plicit and useful. In the next section, we will consider Mathai and Moschopoulos models

(1990, 1990a), which include multivariate chi-square density as a particular case and give
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relatively simple expressions in computable forms.
3.3 MULTIVARIATE GAMMA DISTRIBUTIONS.

A random vector Z = (Z1y...+2Zm) is said to have a multivariate gamma distribution if
it has gamma marginals. Different methods have been used by authors to construct various
forms of bivariate and multivariate gamma distributions.

Kibble(1941) has introduced a bivariate gamma distribution function having linear re-
gression under all conditions, as a series which is bilinear in Laguerre polynomials. le

shows that a bivariate distribution function in which each of the variates Z,, i=1,2 has the

density
=1 e
+—[(-§§—’ ifp>0,2>0
g(z) = (3.3.1)
0, otherwise,

may be represented by

2
9(z1)9(22)[1 + %Ll(zlap)Ll('??vl’)
p
—_— Ly( =z, oo 3.32
+2!p(p+l) 2(21,p)La(22,p) + .. ] (3.32)
where | p |[< 1 and L,(2,p), p > 0 is the generalized Laguerre polynomial of degiee r.
Krishnamoorthy and Parthasarathy (1951) extended Kibble’s result to n variables by using
the moment generating function for the distribution of the sums of squares in a sample of
size m from a n-variate normal distribution.

Dussauchoy and Berland (1974) define a multivariate gamma random vector 7 =

(Z1,...,Zpn ) as having a characteristic function

Vz(ur,.oum) = [J(¥2,(,+ Y Buwi))

1=1 k=341
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0,3 Brus)) (3.3.3)

k=341

where :

(i) ¥z,(u,) = (1 - iu;a,)™% for all j = 1,...,m, is the characteristic function of the
component Z,, e.g Z, is a gamma random variable with parameters (a,,e€;).
(1) Bk 20; @y > Py; ae >0forall j<k=1,2,....mand0<e; <e;<... < e
They obtain explicit form for the bivariate density only.

Gaver (1670) generates multivariate gamma distribution with gamma marginals through
the mixture of gamma variables with negative binomial weights. He does not give an explicit

form of the density but instead gives the Laplace transform of the density of a multivariate

gamma vector Z = (Zy,...,2m)" as

(24
Lz(s1,...,8m) = kfork > 0,a > 0. 3.3.4
2Crem) = g aesy -1 rE> 0020 099

Becker and Roux (1981) have introduced a bivariate gamma model by considering the
lifetimes of components of operating systems when the components are subjected to shocks.
Their model appears to be the only bivar.ate gamma density which includes Freund’s bi-
variate exponential distribution mentioned in section (3.1), as a special case.

Without doubt the most popular method of developing multivariate gamma densities
has been from linear combinations of independent gamma variables. Various forms of bivari-
ate gamma have thus been votained by Moran(1967, 1969), Kibble (1941), Ghirtis (1967)
and Eagleson (1964). In their simplest form, the multivariate gamma distributions are

constructed as follows:
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Let Xo,X1,...,Xm be independent random variables with X, having a standard gamma

distribution with density function

[I‘(a_,)]“x;"_le"J if z; > 0,R(a,) > 0,
f,(zJ) = (3.3.5)
0, otherwise,

where j = 0,1,2,...,m. We now consider the random variables Z, = Xy + X,, j =

1,2,...,m. Since the joint density of Xo, X1,..., X is

[Tir(e) '~ =,
=0

it can be easily seen that th~ joint density of X, Z1,...,Zn is given by
m m

9(10’ 2100 0y20) = [H[F(a])]—l]zgo—l H[ZJ - xo]a,-—l
=0 1=1

xerp{(m — 1)zg — Zz]}

J=1
forz; 22020;7=1,...,m,R(a,) > 0. (3.3.6)

In order to find the marginal densities of Z,...,Z,,, we need to evaluate

z m
/ z5° " ][z, — 2]~ el N0 day, (3.3.7)
(1]

. o
where z = min(zy,...,2m ). In the general case (3.3.7) leads to very complicated expressions.
(i) The distribution for the bivariate case is obtained by Cheriyan(1941) and that of the

trivariate case is obtained by Ramabhadran(1951).

(iY)fag=az =... =amy =1, then

[F(ao)] texp(— LI, 2))h(z1a0) if 2, > 0, R(ag) > 0,
fzr...2m) = (4.3.8)

0, otherwise,
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where h(z;a0) = [ 200" e(m-1zodz,

More parameters can be introduced in the multivariate gamma distribution by consid-
ering the joint distribution of A, (Xo + X,) (j = 1,2,...,m). The case m = 2 is called
the double gamma distribution. Some of its characteristics and the method of fitting the
parameters a;,az, g, Aj, A2 by using sample moments can be found in Ghirtis(1967).

We shall now present some methods of constructions of multivariate gamma distributions
with three parameter gamma marginals and we shall also discuss some of their properties.
3.3a Multivariate gamma distributions with three parameter gamma marginals.
Let Vy, Vi,....V;n be mutually independent random variables with V), having a gamma

distribution with location, scale and shape parameters 7,, 3,,, respectively. The density

function of V, is given by
(v, —9,)™!
v = Tt -\, - ﬂ
f(vy) ﬂJ’F(aJ) p{—(v, = 7,)/ 5}

if (IJ > O,ﬂJ > O,vJ > 7]’

0,otherwise. (3.3.9)

We denote the above statement by V, ~ I'(a,,f,,7,). Kowalczyk and Tyrcha (1989)
define a random vector 7 = (Z14...,2y) to have a multivariate gamma distribution,
if Z, = [o,(Vo+V, - q,)/\/a;] + u,, where V5 = TI'(15,1,0), V, = I(a, — 1,1,0),
0 £ v £ mm(ag,...,an), 0, > 0 and y, is a real number, 7 = 1,...,m. They study
various properties of the distribution but they do not give an explicit form of the multivari-
ate density.

On the other hand, Mathai and Moschopoulos (1990,1990a) who start with V, ~
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I'(a,,,, 7,) provide explicit forms of two multivariate gamma densities which include
several existing forms of bivariate and multivariate gamma di~tributions a. special cases,
together with the properties. Since their two multivariate gamma models belong to different
categories, we will look at both of them.

3.3b Mathai-Moschopoulos multivariate gamma model-1.

(i) Mathai and Moschopoulos (1990) have introduced a multivariate gamma, as the density
of the vector 7' = (Zy,..., Zm) where

Z, = &v0+ Vi,i=1,...,m, (3.3.10)
0

Vi ~T(ay,0i,1),t = 0,1,...,m and the V’s are mutually independent. Considering the

transformations (3.3.10) and Z,,41 = Vp, the joint density of (Zy,...,Zm41) i

Sfm+1(21,.0 0 2m41) = C(3m+1—70)°°—lezp{-£2%:—m}

X ﬁ(’ b, 170!
z, Zm
1=1 ﬂO

xeap{—(z - 2 2ms1 = 1,)16), (a.11)
Bo

where C = [63°T(ao) [T}z ﬂ;”[‘(a])]“.
Letting v = 241 — 70, 4 = g‘}(z] -v)-7 J=12,...,min (3.3.11), we obtain

B

fra1(uryeos Umyu) = CH(ﬂ“)a"'u""'leIP{—u/ﬁo}
;=1 70
X ﬁ(uJ - u)""‘czp{—(—u—J-ﬂ——Q}, (3.3.12)
0

[
n
—

where 0 < u < min(uy,...,um). Integrating out u in (3.3.12), we obtain
"Hn(ul, --vum)
0
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skt

) iy

X :ﬁ(uJ - u)"'"‘exp{——(—u—’—ﬁi—u—)-}du, (3.3.13)

=1

L I4] -1
where Cy = C 7% ().
We observe that the above density is of different form for each of m! orderings of uy,..., u,,.

Consider ) < ug < ... < Uy, the part of the density in this region is then

gm (w1, ooy Um)

uy
= Cl/ u°’°"le'“/ﬂ°(u1 —-u) (U - u)m=1
0

xexp{—{(u1 - u) + ... + (um — u)]/fo}du

M a,~-1 bt ap—1,—u/Bo u a;-1
C',[H u,’ ") u® e (1~ u_)
1=1 0 1

(1= )"""‘exp{—/—il;[ux(l - %H vt um(l - i)l}d"-

m

After simplifying, we obtain

e aJ—l o0 1 ap~1 _ny ay—1

gm(ulv"'»um) = Cl[HuJ lul /y € ﬂo(l_y)l

’ =1 0
x(1 — 2Ly)er=l (1 —Ly)m ——(u(1 -
(=29 (1-2-9) ezp{ ﬁo["‘(l Y)

tua(1 = =g+t um(L= L))y, (3.3.14)

We expand the exponentials in series forms to get

m o — o o0 [os] o0 — To [ _ 1
gt um) = G e 55 30 sae ";{?0)
=1 ’ )

ro=0r1=0 rm=0

("uvn/ﬁ())rm /l ag+ro—1 ay+ry~—1 Uy -
L % otro-l¢1 _ =1y az+rz—1
Y (1-9) (1-29

P!

. (1 - :_1y)am+ru!"ldy.
m
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Since u < 3—;‘ <lj=1,...,m,

_ [nJ-l( )] o Y
gm(ulv--,nm) = [nj=oﬂa,r.( J)][H

J—l

X0 Z Z E ul/ﬁo) (—uy1/Bo)" “.('—um/ﬁu)r"'

!
ro=0r;=0 Ty =0 ! Tm:

T(ao + ro)l(ay + 11)
X
I(ao + ro+ a3 + 1)

XFp(ao + 1o;a2 + T2;...;am + Tmj a0 + 1o + @y + 715 uy /uy,
-1/ Um), (3.3.15)
where Fp is the Lauricella function, see Mathai and Saxena (1978). Thus for each permu-

tation (y,12,...,im) of the integers (1,2,...,m) such that u,, < ... < u,,,, that part of the

density has the form

_ (I ( Do )a’_l] a,-l
R 12 v

Xu:llo Z Z Z ( “:1/ﬂo ( 1‘-11/,30)l “(—uam/ﬂo)r"‘

1‘\. T'm!

ro=0r;=0 Tm=0
I'(ao + o)1 + 1)
T(ao+ 1o+ oy +71)

XFp(ao + rojon2 + T2;.. . 0um + Tmiao + 1o + aup + 715 U fuz,

S RYA T B (3.3.16)

The Lauricella function Fip has a convergent series representation for | %1t |< 1,7= L,
and R(ag) > 0, R(a,;) > 0. These conditions are satisfied since u,; < u,2 < ... < %, and
ag,a1,...,0a, are parameters of the gamma densities.

3.3b.1 Properties.

(a) Moment generating function.
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Let £ = (1,...,tn)', then we have

Using

we obtain,

My(?)

Mx(t)

M (i)

E(ezp{(tizi + ... + tmzm)})

E(ezp{ﬁl;(ﬁ,tl oot Bmtm)Vo))

xE(ezp{tyV1})... E(ezp{tmVim })- (3.3.17)

E(et:t)
%) — ~)o-1 -
/Y (l'r(a';)ﬂa C(L‘p{— z IB Y }et:z:dz

T _fm)a, (3.3.18)

exp{R(Bit1 +...Bmtn)}
[1—(Bts +...+ Bmtn]oo
ezp{(timi + ... + Tmtm)}
(1= pitr)™ ... (1 ~ Bty Jom
ezp{(3 + (10/B0)b)T) (33.19)
(1 = ¥t)eo [Ty (1 - Bit)

where § = (Biy- e sBn)s = (T1aeeestm)s £ = (t1yeestm)s | Bty < 1, for all i and

| 8T'}< 1. Using the moment generating function, we see that

(') Zl ~ F(OO + anﬂn %%ﬂt + 71)-

(il) E(Zl) = (00 + a:)ﬂn + g%ﬁ: + Y-

(iii) Var(Z,) = (ao+ a,)B?.

(iv) COV(ZUZJ) = Ooﬁu@pi £J

From (d), we observe that Z, and Z,,(z # j) are positively correlated.
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(v) Reproductive properties: The class of multivariate gamma is closed under

(1) transformations of the form W = 7 + d, where d = (dys...ydp)s

(2) convolutions Z, + Zg where Z],Zg are independent, Z; is multivariate gamma
with parameters o, ,f, ,7, and Zz is multivariate gamma with parameters a; B 4],
t=0,1,...,m.
For proofs refer to Mathai and Moschopoulos (1990).
(b) Moments and Cumulants.

The moments of the form E(Z?) and product moments E(Z}Z]) can be evaluated using
the moments E(V,*). Using (3.3.18), we obtain

St = o () (L- Byl e,
Letting t = 0,

M = EWv)

s

Z (:l>ax(al+1) (al_*_k’ _ 1)'34.; s=hy

k] =0

Z( )(a,) By h, (3 3.20)

k1 =0

i

where (a)s = a(a+1)...(a+a-1),(a) = 1.
Using (3.3.20), it can be shown that
E(Z}) = E(B/BcVo +V,
) (s) (8,160 ViV,
> ( Jsr 3 (7 ) taohasioni

r=0 ko =0
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‘i Xy (s; r)(a,)k.ﬂ.’"v,’""". (3.3.21)

ky=0

From (3.3.20), we can also derive the product moments,

E[(B:/BoVo + V1) (B,/BoVo + V;)"]

5: En: (f) (7) (B./B0)"(B,/Bo) MG+ M ™" M, (3.3.22)

r=01t=0

E(2,27)

it

where M,(’) for:=1,...,m are available from (3.3.20). From (3.3.19), the logarithm of the

moment generating function is

In Mz(t') = —apln(l — iﬂ.t, - ia. In(1- 8;t,) +

=1 =1
i[(*ro/ﬂo)ﬂ. + 1)t (3.3.23)

1=1

For s, > 2, the cumulants of Z are

5

K, = 5 In(M3(1)) lz=o
_ ag(s, — 1)!16 a,(s, - 1)! f'] I
- (1 - ﬂltl — .. ﬁmtm)s' (1 - ﬂ't.)a. t=0
= (s, — 1)!IB"(ag + o). (3.3.24)
The joint cumulants are
. 6s.+3_,
K,s, = Wln(MZ(i)) li=o
= oao(s, +s, = 1)15"6). (3.3.25)

In addition, the authors derive expressions for conditional densities and conditional

moments. They also give asymptotic results and methods for parameter estimations.
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3.3c Mathai-Moschopoulos multivariate gamma model-2.

Mathai and Moschopoulos (1990a) give another multivariate gamma, which has a rela-
tively simple form, as the joint distribution of 7= (Z3,...,Zn), where

Zy =W,

Z2 =Vl+ V21

o =Vi+Vat... 4+ Vn.

Vi ~ Ny, B,7),t = 1,...,m and V,...,V;, are mutually independent. The joint

distribution of Z = (2y,...,2n) is

ah (Zl _,71)01]—1 . o ay-—
VO pay (27 T

7m)am—1 x el/Blzm={n+. +vn))

f(zl""’zm)

x(zm"'zm-—l -
for a3y > 0,8 > 0,7, real,z, < oo,
NM<apz-at+n<zn,t=1,2,...,m,

= 0, otherwise. (3 3.206)

3.3c.1 Properties.
(a) Moment generating function.

Using (3.3.18), the moment generating function of Z is

M) = Mp(try... tm) = E(eltrat Ftmzm))
enftit. +tm) en(tat +tm)
(l - ﬂ(tl +.o..4+ tm)ml (1 —’ﬂ(t2 + .ot )22
e')rltm

e —————, 3.3.27
(= ptm)yom (9:3.27)

62



which exists if | ¢, + ty41 + ... + tm [< 1/B for i = 1,2,...,m. Using the m.g.f, we obtain
the properties below:

(i) The marginal distribution of Z, is gamma,

Z ~T(a By )yi=1,...,m, (3.3.28)

wherea; =a;+...a,7 =114+ ... + T

(ii) The mean and variance of Z, are respectively

E(Z,) = Beo7+7,

Var(Z,) B2a:. (3.3.29)

(iii) Z, and Z, are correlated. For 1 < 3,
Cov(Z,,2,) = Cov(Z,,Z, + Vi + ...+ V)) = Var(Z,) = f*al.

p = Corr(2,,2,) = 9—;. (3.3.30)
%

i

It is obvious that the correlation is always positive. For details about the covariance matrix
of Z, see Mathai and Moschopoulos (1990a).
(iv) Reproductive property.

Suppose that Z; and Z, have a multivariate gamma distribution with parameters
a,,3,%,] = 1,...,m, and a;,ﬁ,'y_;,] = 1,...,m, respectively and that they are indepen-
dently distributed. Using the m.g.fin (3.3.27), it is seen that Z; + Z; is also distributed

as a multivariate gamma with parameters a, + ag,ﬁ, v + 7J’,j =1,...,m.
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(b) Moments and Cumulants.

The logarithm of the m.g.{ in (3.3.27) gives the cumulant generating function of 7 as

m

]\—Z(F) = N E L+ 72 Z ty+ ...+ Yt
|_2

m

—ajIn(1 —ﬂ}:t )—agln(l—ﬂZt - ay In(1 = 3t,,).

1=1 =2

So, the nth cumulant of Z, is

. "
]\n = m]n Af;(t-‘) 't 0
= 7 +8a;. ifun=1

= (n-1)1"], ifn> 2

The (ny,n2)th product cumulant of Z, and Z, is given by

ny+n2

1\.7“ ny = W ln( Alz( T)) li‘=0

(g + ny — 1)1 ¥"2a’ whete 7 = min(e,))

The moments of Z; can be obtained from the moments of V, by

dn M, (t)

=T = Theo (IR (1 - 807 (e )

Letting t = 0, in the above equation the n-th moment of V7 is

M™M= BV

n

Z (Z )Q (o, +1}). (o + k- l)’f“‘—-" A
1

k=0

- n hy n—Aj
> (k.)‘“"‘l" ,

ky =0
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!M"x.

where (), = afa 4+ 1) . (a+a-1),(a)o= 1. So,

E(Z") = EWi+...+ V)"

e | U

k(ry, oron) ! =1
= S H(M{'), (3.3.35)
k(r1, o) | -t

where Af[ s given i (3.3.34) and k(ry,...,75,n) = {(r1,...,7;) €E N |+ ...+ 1, =n}
and Ny 1s the set of non-negative integers.
3.3¢.2 Marginal Densities.

From the defimtion of the Z,, 1t is clear that subsets of (Zy,...,Z,,) should have the
same form of densities. We will show that this is in fact true,

The jomnt density of (Zy,...,Zm-1) is obtained by integrating out Z,, from (3.3.26),

that s

o 1
f(:h c aime1) = / (zm — Zm-1 — 7m)am_lexp["5(:m - (71 + ---7m)]d:ma

Sm—1+Ym
('1 —n)n! _
*3 =TI, Tl (22 -2 = 72)77!
Az = e — A/m)am_l'

Letting u = 2, = z,5—1 — Y and integrating out, we dbtain

1
f(:lw Gmot) = gom r(am)ex‘v[_ﬁ(zm—l - (71 + »--7m—l)]

(:1 - 71)01—1 (
gom [I2) T(e)

. (:rn —Sm-1=- 7111)0'"—1, (3.3-36)

X oy i T 72)“2"1

which s the same torm as i (3.3 26).
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We can also obtain the joint density of Zy,...,2,21. Z,41,. ., Z, by integrating out /,,

that is we have the the integral

241~
'+ 1 - o -~ - a—1¢., - "‘“—'ld*
(~t Z1—1 7:) (~l+l - 71+1) bt
z|-—l+‘/l

EITS i (B BT Rls -1 .
- - - LN i
/ U T (541 = Ykl = S = = ) N
0

[(a)l(e+1)
Cloy + oy41)

(341 = Yop1 = Ty = y) ! (4 337)
Since the location parameter of 2,41 — 2,1 is ¥, + 741 and the shape parameter s a, +a, .
the above density 1s also of the same form as the density of 7Z,,.... 7%,

Several other results concerning conditional densities and densities of tatios of the 7/«
can be obtained from Mathai and Moschopoulos (1990a).

3.4 APPLICATIONS.

The need to evaluate the different forms of the multivanate gamma distithutions and
to study their properties. arises in diverse areas of investigation. In this section, we shall
point out several such situations.

(a) Multivariate exponential distribution in competing risks and life lengths

The analysis of human mortality for large populations fiequently mvolves data on cane
of death derived from death certificates. Sometimes, the examination of data contannne
information on all the conditions repotted on the death certificates show that multiple
conditions have been reported as causing death and that little mformation 1~ wvanlable on
the certificate to ascertain the underlying cause of death from among conditions listed

In order to analyse the multiple cause of death data, Marshall and Olkin’s (1967 minln

variate exponential distribution has been used by David (1974) to descrhe humnan mortahity

(=2
<
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In this “fatal shock model”, individuals are represented as a multiple - component system
and a “risk” process 1s defined for every possible configuration of component failure. Thus,
for a k component system, one would define 2¥ vectors of dimension k, each composed of
a configuration of zeros and ones - a one coded if a specific component had been observed
to contrbute to system failure and a zero if it had not. Each of the 2 vectors defined
a “pattern” of component failures which was assumed to be generated by independently
operating “fatal” shocks This model has the attractive property that it can represent any
level of mteraction among the failing components.

{(h) Muluvariate chi-square distnbutions occur naturally as the joint distributions of statis-
tics useful for simultaneous tests of hypotheses in a variety of cases.

(i) In the context of multivariate linear models, Jensen (1970) has shown that the joint
distribution of the large sample form of the Lawley- Hotelling statistic in simultaneous tests
mvolving subsets of the responses. as well as subsets of the factors, is a multivariate chi-
sqiiare.

(1) Kushnaiah (1965) has used the multivariate chi-square, in the finite intersection tests
procedure for the multiple comparisons of mean vectors where the underlying distributions
ate multivanate normal with a common known covariance matrix.

{¢} In tain-making experiments 1t is a common occurrence that one measures the rainfall X
ma target atea, and uses the ramnfall Y in a control area as a controlling variate to increase
the preasion of the required test. In many rain-making experiments 1t has been shown that

mdividual distribution of X and Y are well fitted by gamma distribution and usually such



that their probability densities are monotonically decreasing  Moran (1969) gave a bivanate
gamma distribution on which the tests on the rain-making experiments are based

(d) In stochastic processes, suppose that Vi,t = 1,...,m, are the times between siccessive
occurrences of a phenomenon, for example arnivals o1 time delays of an airplane at several
airports, and they are identically distributed Let Z, = Z,_, + V. fo1 1= 1.. .m and
Zo = 0, then Z, is the total time required for ith occurrence ot the total delay i the (th
airport. In this case, the process Z,, ¢t € NV, can be called a renewal process and the tymes
V, can be called renewal times. Mathai and Moschopoulos (1990a) have shown that the
joint distribution of Z = (Zy,...,Zy,)" is a multivariate gamma, under some assumptions
on the V,’s.

(e) In reliability analysis. an item is installed at time Zy = 0 and when 1t fals, 1t s teplaced
by an identical (or different) item. Then, when the new item fails 1t 15 1eplaced agam by
another itemn and the process continues. In this case Z, = Z,_y + V}, whete ¥oas the time
of operation of the ith part and Z, 1s the time at which the ith replacement s necded  'he
joint distribution of 7 = (Zy,...,2,) has been shown to be a multivariate gamma by

Mathai and Moschopoulos (1990a), under some assumptions ou the 177
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CHAPTER 4

MATRIX VARIATE GAMMA
DISTRIBUTIONS

INTRODUCTION

In this chapter, we extend the vector variate gamma distributions dealt with in chapter
3, to the matrix variate case. The matrix variate gamma and other densities such as matrix
variate beta and Dirichlet which are related to it, appear in the distributions of various
test statistics in multivariate analysis and in distributions connected with the concepts of
generalized variance, canonical correlation matrices and so on. We shall give a concise
presentation of the various properties and distribut‘ons connected with the central matrix
variate gamma distribution. In addition we shall consider some special functions associated
with several matrix-variate gamma variables.

The following notations will be used throughout the chapter:

A transpose of matrix A.

| A determinant of matrix A.

A=A">0 A is a positive definite symmetric matrix.

Jasol )dA integral over A such that A is symmetric and positive definite.
trad trace of A.

He )l normof ( . ).

R(.) real part of (. ).

A~f(L) A is distributed as f( . ).
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4.1 Matrix variate gamma density .
Let A be a (p x p) positive definite symmetric matrix. A is said to have a matrix variate

gamma density with parameters (a, B), if its density 1s of the form:

| A|o-(pt1)/2

A =] Y,
hH(A4) = TB° Ty(a) exp(—trB~ A)for A = A" > 0,

B=B'>0,Ra)> (p-1)/2

= 0 otherwise, (1.1.1)

\Vhere Fp(a) iS the mult«i\rariate gamma function deﬁned by,
( ) = lpl I‘( 12( l)) 112
'f{a)= 7" (4} —{? . . .2
g =] : ( )

Letting C = B‘%AB‘%’, from Deemer and Olkin (1951) we have dC' =| I |‘L3“‘ dA. The
density function of C obtained from (4.1.1) is known as the standard matrix variate gamma

density, and is of the form

| C Ia—(p+l)/2

- - - D)
T exp(—trC), C=C">0,R(a)>(p-1)/2,

J2(C)

= 0 otherwise, (1123)

(1) Properties.

Property 1: If welet C = TT' in (4.1.3) where T = (&,,) with t,, =0 for 1 <7, ¢, >0V,
then the ¢,,’s are independently distributed with the ¢2’s having univariate gamma densities
with parameters (a — '—;—', 1).

Proof:

C =TT and t, > 0Vi. Then 0 < ¢, < oo Viand - < t,, < for ¢ # j such that

TT' > 0. Using the results from Deemer and Olkin (1951), we have
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dC = 2P [T, 2+ T,
Moreove- | C |= 2 and

t+(th +t§2)+---+(t§1 +"'+t§p)

Sy,

=1 =1

tr(TT")

i

Hence fromn (4.1.3), we obtain

[(C)dC = F2(p l'It”“"H(‘ Jo= 2 e ap(— ZZ: )dT
P

1= l]:l

{Hz(z" o/ “p(_ ) HIT —F=% ezp yar. (4.1.4)

=1
) |>J
From {4.1.4), we see that the joint density function of the t,,’s factors. This implies that

the t,;’s are independently distributed. If we let U, = t?, then U, has a univariate gamma

density given by

fa(uw) = 4 e _egi)—u.) 0 < u < 0o.

Property 2: The moment generating function of matrix A having the density (4.1.1) is
defined by

My(T) = E(ezp(trT X)),
where T = (y,,t,,) with y, = 1 for i = 1,...,p, 7, = 1/2 for i # j and T is symmetric.

Henee,

Ma(T) = A= eap(—tr(B~! — T)X)dX for (B-'=T) >0,

1
BT o
|1 - BT |™® where || BT ||< 1. (4.1.5)
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Property 3: Reproductive property.

Suppose that C and D are two independent matrices having matrix variate gamma
densities with parameters (a;, B) and (a3, B) respectively. Then the matrix C + P also has
a matrix variate gamma density with parameters (o1 + ag, B).

Proof:
Mcip(T) = |I-BT|™|1- BT |-

= |I-BT|"™+e2) | BT ||< 1, (4.1.6)

which is the m.g.f of a matrix variate gamma ((ay + a3), B).

Ay Aq2 By By,
Property 4: In (4.1.1), let A = and B = such that

Az Ap B2y By,

Ay and By are (r x 7) matrices, Ay and Bs, are ((p—-7) x(p—=r)) matrices. Then the
marginal densities of A,; and Ay, are matrix variate gamma with paramecters (a, 3);) and
(a, Bgg) respectively.

Proof:

Ty, 0
Let Tp =

Ma,(Th) = Ma(To)=|1- BTy |~

-0

I, 0 BnTy 0

{11 = BuTy || -+ |}™°

i

it

II,- - B“T” I—Q, “ B”T“ ”< 1. (4.].7)

From the uniqueness of the moment generating function, Ay is distributed as matrix vanate
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gamma (a, Byy). Similarly, we can show that A,; is distributed as matrix variate gamma
(a, Byy).
Property 5: Given that matrix A has density (4.1.1), we shall derive the density of

U = trA. Several methods have been used to derive the density of U and we shall give the
one which expresses it in terms of a zonal polynomial.
The moment generating function of U is given by

My(t) = E(e''™)

= 1 | A |°'P'2ﬁ' exp(—tr(B~ — tI)A)dA.

| B o Tp(a) Jaso

Without any loss of generality we may assume that (B! —tJ) > 0. Consequently, we have

My(t) = B~ -t || B|™®
14
= |I-tB|™ = [](1-1tx,)7¢,
=1
1 .
|t]< T T e (4.1.8)

J

where Ay, ..., A, are the eigenvalues of matrix B and A >0,5=1,...,p.

For any & > 0, we can write

[1-tB|™ = |I-B/§+B(1-61)/6|°

= | B[ "1 - 6t)P | I = (I - 6B~1)/(1- 1) |-°

P o0 ¢
I8 3% @kluh‘cxu— 6B71)(1-60)~0e*, (4.1.9)
k=0 K ‘

=1

where k = (ky,kg,.. .,ky) denotes a partition of the nonnegative integer &k into not more
than pparts ky > ky > ... > kp 20,k =k +k2+...4+kp, Ck denotes the zonal polynomial
of order p and
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() = [Ty (@~ (i - 1)/2)k,, K = (ki kayono kp).
The above expansion is valid when || (1 —=§B~1)/(1 - 6t) [|< 1. A sufficient condition mug ht
be having the absolute value of the largest eigenvalue less than unity and it can always be
met by adjusting the value of the arbitrary quantity § and choosing t  Thus the density

function of U is the following.

) uan 1 _
= AT >oP> —_— 6 s
9(u) [II ] kzozh“, w Okl = 8B e
14 o P
= ([I4 ]( e.z'p u/J)ZZ(a)ka(l §B! )
=1 T(pex i=0 K
=kl (pa)i] for U >0,
= 0, elsewhere. (11

The variable U is connected to various problems in different fields such as random division
of intervals and distribution of spacings, see Dwass(1961), to test statisties and traces ol
Wishart matrices, see Mathai(1980), Mathai and Pillai(1982) and to time series problems,
see MacNeill (1974).

Property 6: Suppose that matrix C has density (4.1 3) then the density of V' =[ ¢"| can

be derived by first finding the (s — 1)-th moment of V.

' C ’(s—l)+a—(p+l)/2
/ erp(—trCH)dC
C>0

[p(a)
p--

Ia+s-1)
—_—— e TR, ] . ——
Foa) where R(a + s ) > 3

[lat+s-1-1- )
II Mo - 2)

=1
= E(X;7HE(X3T).LE(XTY, (4111

E(V*)

where X1i,...,X, are independent scalar gamma variables with parameters (o)1), (0
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1/2,1),...,(a = (p — 1)/2,1). Now the density of V is uniquely determined by E(V*-!)

through the inverse Mellin transform. Mathai(1971) obtains the density of V in the form:

Gp'o(vl a-1l,a~3/2,...,a-1-(p-1)/2), (4.1.12)

Ja(v)

P
where C = H L_) and
1=1 2

Gz;)(v'a 1’0—3/2 7a_]-(p—l)/2) 21n chlgnler(a+s_l_%l)v—sds
with0 < v < ooand i =+-1.
4.2 Densities related to matrix variate gamma density .

(4.2a) Wishart density.

A matrix Wyy,, where W = W’ > 0, has a central Wishart density, denoted by
Wp(N, X), if its density is of the form (4.1.1) with o = N/2 and B = 2%X. That is, the
density is given by

W | W [M7e-tee )2 rS-1W)/2) for W = W' > 0
gl( ) = 2NP/2 I E lN/g FP(N/Q)exp(‘( r )/ ) or - > [

=¥ >0,N/2> (p-1)/2,

= 0 otherwise. (4.2.1)

The Wishart density is a p-dimensional generalization of the chi-square density. Both
the central and non-central Wishart densities have been discussed in detail in the literature.
For the derivations of the central Wishart density, see for example Wishart(1928), Hsu(1939)

and Fisher(1939). For the non-central case one can consult James(1955) and Constantine

(1963).
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Anderson(1984) and Muirhead(1982) give a comprehensive discussion of the properties.
(4.2b) Matrix variate beta densities.

Let A; and A; be two independent (p X p) symmetric positive definite matrices having
gamma densities with parameters (a;,I) and (ag, ) respectively. We will show that the
density of Uy = (A1 + A2)"Y2A4;(A; + A2)~ V2 is a type-1 matrix variate beta density with
parameters (a@;,a2) and denoted by f1(a;,az).

Since A; and A; are independently distributed, their joint density is given by

IAI la:—(p+l)/2
Fp(an)lp(az)
for Ay = A1 >0, A, = A, >0, R(ay) > (p-1)/2,

f(A1,Az)dAdA, | Az |22~ P12 eqp(—12( A, + A2)) dA1d A,

R(az) > (p-1)/2. (4.2.2)

Letting V] = A; + A, for fixed A, we have dV; = dA,.
Letting Uy = V;"/24;V,7/? for fixed V;, we obtain dd, =| V; |P+1/2 qu,.

Thus, we obtain the joint density of U; and Vi as

f2(Uy,V1)dU,dVy
- Ir(f(cl:)—r(:::/; | Vi |2 Vi = VT P v R e )2 cap ey ) i,
| Vé,,l(at)r;((:)m | Uy [o0= P02 [ — 4y |22~ P40I2 egp(—1rVy )dU AV,
forVi>0, U1 >0, (I -U1)>0. (4.2.3)

Integrating out Vi in (4.2.3) gives the marginal density of U; as

f3(Uh) = L’Lwl | Uy Iax—(p+l)/2| 1-U, |a2-(,,+1)/21

pla1)Tplaz)
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for 0 < Uy < I, Rle,)>(p—-1)/2, 1=1,2,

= {, otherwise, (4.2.4)

which is 31 (g, ag). Similarly, we can obtain a type-2 matrix variate beta density with
. ~-1/2 ~1/2

parameters (m, a,), denoted by Ba{ay, @), as the density of A = A5 /“A,A7 /7, where A,

and 1, are independently distributed matrix variate gammas with parameters (ay,/) and

(llz, I)

The jomtdensity of Ay and Ag is given by (4.2 2). Using the transformation 4; = Ar},,“AA;/2

for fixed A, = dA, =] A, ,(p+1)/2 dA. Consequently, the joint density of A and Aj is given

by

g( A, Ao)dAddy =
I rl-l,/:':l.»l.l,/z |1 —(pH1)/2

Fp(on)I'p(az)
| 4, '01+L'2—(P+1)/'2

Lplan)ly(aa)

| Ag |02~ (P 2o+ 12 oy yr( A2 A AY? 4 A2)) dA dA,

I A |Ql"(’)+1)/2 ezp(—trAg(A + 1)) dA dAQ. (4-2-5)

Integrating out Ay in (4.2.5), we obtain the marginal density of A as

I‘p(ﬂ’l + a'a‘) - -
) = BTl g e (et p g leates)
ql( 1) [‘p(al)rp(Q'Z) l I | I )

A=4">0, Rla,)>(p-1)/2, i=1,2,

= 0, otherwise, (4.2.6)

Remark:

The densities of Uy and A are matrix-variate generalizations of the following results: If X
and ¥ are independently distributed gamma random variables, then (i) % has a type-1
beta density and (ii) T\' has a type-2 beta density.

77



Expressions for the central matrix variate beta densities have been derived by Kha
tri(1959, 1970), Olkin and Rubin(1964) and Mitra(1970) and those for the non-central case
by Kshirsagar(1960) and De Waal(1970). Tan (1969) shows that if I’} ~ (e}, a,) then

A = UL~ Up)"Uf ~ Baln, ),

and if A ~ f2(0y, az) then

Ur = A3(I+ A) A ~ By(ay, a2).

Property 1: Decomposit.on of the matrix-variate beta density.

Tan(1969) shows that if the (p x p) matrix A, ~ Bi(a;.ay), then A can be decomposed
as a product of 2p — 1 independent random variables, p of which are univanate type-1
beta variables, fi(a;,az2),f1(ar — 1/2,a2),...,Bilay = (p — 1)/2,a3), while the others ate
Dirichlet variables, D(1/2,a; — 1/2),D(1/2,1/2,b = 1),..., D{1/2, . [ 1/2,b— (p— 1}[2)
Property 2: Mitra(1970) proved that if matrix Ay ~ 1 (ay, «2), then for ecach fixed non-
null vector @, (@A @)/(d'@) has a univariate type-1 beta density with parameters (ay,a,).
This implies in particular that the diagonal elements of A; are distributed as unvanate
type-1 beta random variables with parameters (o1, az).

He also showed that if the (p x p) matrix A; ~ Bi(a;, ), then for every fixed non-null
vector &, (('L"('L‘)/(&"Al_l&') has a univariate type-1 beta density with parameters (¢ - (p -
1)/2), az). Extensions of the above results can be seen from Khatri(1970). Other properties
have been discussed by Tan(1969), and Roux(1971).

(4.2¢c) Matrix variate Dirichlet density.

Matrix variate Dirichlet densities are generalizations of type-1 and type-2 matrix variate
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beta densities. We shall use the same proceedure as Olkin and Rubin (1964) to derive these

generalized densities.
Let Ag, Ay, ..., Ag be (p X p) symmetric, positive definite and independently distributed

matrix variate gamma variables with parameters (o, J),j = 0,...,k. We have to find the

jomnt density of
k k
W, = (LA (CA)TA g =1,k (4.2.7)
=0 1=0
The joint density function of Ao, Ay,..., Ak is given by
5 |°’J'(P+l)/2
Ip(ey)
for 4, = A) > 0,R(a;) > (p—~1)/2,j = 0,...,k. (4.2.8)

k
h(A()vAlv"',Ak) = H IA e.’z:p(—trA_,)
=0

Let A = Yhy A, for fixed Agand W, = A=124,AY2% j =1,.. k.
= dAy...dA, = | A|KE+I2 444w, | . dW,.

(lonsequently, the joint density of A, W;,..., W is

i

k k
[1/ JITp(an)] | A = AY2 Y W, A2 o= (p+1)/2) 4 |(kip+1))/2
1=0 1=1
x | AI/ZW,AI“ |a1—(P+1)/2 . Al/2VVkA]/2 Iak—(p+])/2 etrA

(AW, ... W)

k 7
- {H | W, la;—(p+1)/2} |1~ ZWJ ,ao—-(p+l)/2 e trA | A [oot ok

k
+[Tplao)... Tpleg)l, 0<W, <1,0< Y W, <1,

=1

R(o,)>(p-1)/2, 5 =1,...,k. (4.2.9)
Integrating out A, we obtain the joint density of Wy, ..., W, in the form

k k
ho(Wih,..., W) = C{H | W, I°J’P¥} | ]_ZW/] Iao—¥’
J=1

1=1
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A
W, >0, 1-Y W,>0, =1

N (4.2.10)
J=1
where C is defined by M The above density is known as type-1 matria vatate
J 0

Dirichlet density. Similarly, we obtain type-2 (or inverted) matrix variate Dirichlet density

as a generalization of type-2 matrix variate beta density by considering the joint density of

-1 -1
Vio= Ag?A; A%, 3= 1.k, (4.2 11)

where Ag,...,A; have been defined above. Making the transformation (4.2.12) in (1.29),

. . . kKpt1) . .. . . ,
with the Jacobian being | Ag | 2, we obtain the joint density of Ay, V... ,V} as

. =t g 2L
hy(Ags Viy. o Vi) = Hk T {H | A 2V, A 9972} Ag o2
=0

X | Ag | s exp{—trAg(I + Vi +.. + V})} whete Ay = A} > 0,

V, = V!> 0,R(a,) >0, 3= 1,...,k (1.2.12)

Integrating out Ag in (4.2.13), we obtain the joint density of Vi,..., V) given by

Tp(eo+... 4o oy L S aot
ha(Visoo Vi) = p(ﬂg = "{Hw oy L Sy [leot ),
=0 P

=1

-1
V,=V/>0,5=1,...,k R(a,)> 7-’7—3 =0,...,k  (4.2.13)

which 1s a type-2 matrix variate Dirichlet density. Other derivations of matrix vatiate

Dirichlet density can be seen from Tan(1969), Mitra(1970) and Roux(1971) who gives his

expressions in terms of generalized hypergeometric functions
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(4.3) Further generalizations associated with several matrix-variate gamma vari-
ables.

In this section, we shall look at some generalizations associated with several-variate
gamma variables Most of these generalizations can be obtained by using Lauricella func-
tions which appear in many problems connected with geometric probabilities, time series
situations, queueing situations and engineering problems. Various types of scalar Lauricella
functions have been studied by Exton(1976) and Mathai and Saxena (1987). In this section,

-
we shall consider the generahizations of scalar Lauricella functions of type A, B and D,
to Lauricella functions of many matrix variables, which have been given by Mathai(1989).
These functions will be defined by using integral representations and some of their properties
will be studied.
(4.3.1) Lauricella function F4 of many matrix variates.
The Lauricella function F4 of many matrix variates, denoted by Fa(a,by,...,bnjc1,...,Cn;

Xi,...,X,) analogous to the corresponding scalar case (Mathai and Saxena (1978)) is

defined by the following integral representation.

I'h(avbh”-sbu;ch---scn;Xl’--"-’\’n) =

iz Tple)] s R ba- BEL
(IT=s Fp(b:)lfp(cr - b)) /0 ' ”./0 RSy | Un |

141 1 L 1 1 1
X | 1= Uy [0~ 1= Uy | =3 T~ XFULXE — ...~ XEUXZ |~°

U, ....dU,, (4.3.1)

for R(bi),..., R(bs), R(ct = b1)ye-o Rlcn = b)) > B4 Xy = X! >0, U, = U/, i =
Looon, X1l + ...+ | Xa]l < L.
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Using definition (4.3.1), we shall give some results on Fjy.

Result (1):

FA(avbh .. 'abn;cls -"»Cn;-xl»'-’w\'n)

1 ) a—m 5 | '1" '1
= 7 @ /r 0!7| T erp(—tr TYHF(byieyy XFTN])
P >
S |
o Fy(bnien; X2TX2)dT, (132)

where T is again a (p X p) symmetric positive definite matrix and | Fy is a hypergeometne
function of matrix argument.

Proof:

vl 3 . . . o3 .
Let X;? be the symmetric square root of the symmetric positive definite matnx \X,, + =
Now, S, X2 U, X1 is positive definite and 0 < T, XU, X7 < Tas 0 < U
1,...,n. Now, 370, XU, X is positive definiteand 0 < 3L, XU X! < TasO0< U, <1,
1 1

U=U,X,=X]>0,i=1,...,0,0 < Y, X, < . Since [ =30, X2U, X2 > 0, we

can write its determinant as an integral (see Mathai and Saxena (1978)) and it is given by

n l l
[1-> X UX2|™
1=1

—/ T )(—tr(I-—iX%U )T (4.5 3)
Ts0 rp(a) ‘] ~ ] 1%, L] .

for R(a) > L;l We replace the last factor in (4.3.1) by the equivalent integral in (4 3.3),
then interchange the integrals and integiate out U,, the steps being valid The integral
is evaluated by noting that trX,% U,X,%T = trTJz'X,% U./\'l%T% and then using the 1esult
(5.2.18) of Mathai and Saxena (1978) (see appendix A4). Consequently, we obtain the

following
I b, — 211 [ 2 1 'l \
/ | U, (52 T = U, [5~5F eap(trX 10U X2T)dU,
0
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Fp(bt)rp(cl - bt)
Ip(ei)

1 1
1 Fi(bye X2TX?), i=1,...,n. (4.3.4)

The result is easily obtained by using (4.3.3) and (4.3.4).
Result (2):

For | X1fl + ... + | Xl < 1, R(a), R(d-a) > B,

l'jA(a’bh ”"bn;cl""vcn;X]"--’xn)

Tp(d)

1 Bl 4 -gopil
= e Ul I-vUj| "% F, dyb "")b;
Fp(a)rp(d-—a)/o l l I ' A( 1 n

e e US XU LU XU, (4.3.5)

Proof:

Using (4.3.1), we write F4 on the L.H.S of (4.3.5) as a multiple integral which is given by

Fatdybyy. .\ beiery oy eni USXUS L USX,UT)

11 Tole)] I I n CEL L e
(M- Fp(bl.)lfp(c‘- b,)]/o /0 ['1;11 | U 2= | 1= U, |25

n 1 1 n
x | 1= U xFU, x50t |74 [[[dU.). (4.3.6)

1=1 1=1

Substituting (4.3.6) 1 (4.3.5) and integrating out U by using the Euler integral (5.2.25) of

Mathai and Saxena(1978), we obtain

1 n 1 L
/ |U =5 1 - v = 1 - S udxFux v 1 qu
0

1=1
- LS| 1
——“*I‘p(a)rp(_d a) 2Fl(a,d; d; EX} U"X’f)’ (437)
Fp(d) =1

1 1
for || 021 X7 U, X2 || < 1. Note that the condition for convergence is satisfied because
1 1 1 1
INF UK+ 4 KR Un X2 < X 0+ 4 Xl Ul S Xl 4 Xl < 1
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since {|U,]| < 1 for i = 1,...,n. Moreover we can permute the matrices in the determinant
when they are symmetric positive definite. Tha is

|I-~AB|=|1-AiBAi =|I-B5AB}|= |~ BA|.
From (4.3.7), one upy.er parameter is equal to one lower parameter in o/} hence 1t reduces

to a 1 Fp which is a binomial series. That is

n 1 1 n
2F\(a,d; d;ZX,’b,kl’), = 1Fo(a,—;z.\'f UxX?)
=1 =1
1 1 LI 1
[ 1= XPUNXP|™ for || SO N2UXZ| < 1. (1.3 8)
=1 1=1

Using the above fact in (4.3.6) and interpreting the resulting integral as an Fy, result (2)
follows.

Result (3):

n 1 I n 41 141

1 1 1 1
XFp(a.dy,..oydnicrs. o eas XEULXE L X3 UGN 4]

s [I}(_dl)rl“ c;. —d, ]/ / [H | U, [&= 5 1 = v, o B

Fa(@byy . buidyse o dm; XEUXE, .. X2 U,J’,%)[H AU, (13.9)

for R(d, — b) > B34, R(c, — d,) > B, R(d) > B2, R(b) > 254 Rie) > 25, |1Y| <

Proof:
On L.H.S of (4.3.9), we substitute F4 as a multiple integral in a set of n new variibles

Vi,...,Vn toobtain a 2n-fold integral in Uy,...,U, aud Vi, ..., V. We denote this integral
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by T and it is of the form

T [n:‘=1 rp(Cc)] 1 rn b,_l.’.‘!z'_‘
= T e a0 [T

X | 1= U, |#=8= 5y, (=B oy, e B

| 1= S XEVIUVEXE | [[]dv.avi). (4.3.10)

1=1 1=1

Result (3) follows by interpreting the U-integrals in (4.3.10) as an Fjy.
Result (4):
Each side of (4.3.9) is an Fa(a,by,...,bp;¢1,.. 0603 X1y, X3).
Proof:

In (4.3.10), consider a transformation of U, going to W, through

VIUVE = W, Wi, =|V, |5 dU, = dW, Vi,

0< W, <V,and U, = VIW,V 1, V.

Thus T" now becomes

T - —2tl _p_Bil
cm_/"'(Qn)"'/z<w,<v,[HlW‘Ib' 7|V, - W, ld. bi-5= %

o<V, <l 1=l

1 1 1 1 "
|1 =V, om =B | T = XFWAXT - ... = XEWR X2 | [[] dW.dVi), (4.3.11)

1=1
where C' is the constant representing the gamma products. Let 7 -V, = (I - W,)%Z,(I -

, Vi then dV, = | - W, |** dZ, and

[

)
[Vi= W= |(U-W)=(I-V)|=|I-W,|[I-2], 0< Z< Vi

Making the above substitutions in 7", we obtain
I In i1 b ptl
T:C/"‘/[lel,b'-zII—WIIC‘—.-2]
0 0 1=1
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n

! i »!
X [ 1= X{WAXE - = XEWLXE |7 ([T aw]

=1
I I n
x/ / [H | Z, l""d'“%ﬂ I-72Z, |d"”-‘ﬁ§" dz,) (131
0 0 ;=
Since
! r 1 Uy r d, - t
/ EA Gt d P AL S S CEL I CST D (13 1)
0 [ple, — b))

Substituting (4.3.13) in (4.3.12) we have,
T = FA(a,bl,...,bn;cl,...,cn;Xl,...,Xn),
(4.3.2) Lauricella function Fp of several matrix variates.

Fg of symmetric positive definite matrices X7y,..., Xn is defined as follows

Fg(ay,...,a,:by,... 6010 X, ... »Xn)

- e // | e
{Hzn=1 I‘p(a,)}r‘p(c —a)=...—0n) °<§i'.<‘j‘<’
n ﬁ_‘_ n 1 L
X | 1= U = w0 = XFUXF |~ au)), (1311
=1 t=1
for X, =X] > 0,0< X, <, R(a,) > p’—z_l’ t=1,...,n, R(c) > P_:‘z.l‘ R(e—ay - ) e
p;—l. Moreover
1 1 L L
|1~ X2UX2 | =|1-X,U,| =|I-UX,| = |I- U2 X U2
Result (5):
For R(a,) > p—;—l, 1=1,...,n, R(c) > P—-;—I, Rle—ay—...—ay,) > ’L.;—i,

Fp(ay,...,a5: by, ..., 0 X0, .0, X0)

L by - b2t , Loopt)
= ‘e exp{ —tr(T + ...Tn T 1 I Iv“ thy, !
Lp(b1) ... Tp(bn) A‘po /1'",,>o P ,( : NI Y

1 1 L 1
X@a(a1, ... an;c; XETVX? ... XIT, X2)dT) ... dT,, (4315)
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where

¢2(ah"‘7“71;0;},17"-,},11)

e co—ay) //()( o<U, <1 [fI | U, la'_l’%i]
el

" M= T(e)Tp(e o =, S r i1

X[ I=U—...= Uy |7 7072

1 1 1
xexp(tr(UIYiUF + ...+ U2Y,Ud)dUy...dU,, (4.3.16)

the Y,,i = 1,...,n are symmetric positive definite matrices.

Proof:

1 3
For (I - X2U,X?) > 0, we can write

1 1
1= XFUXF = Eb oo T P=*F exp(~tr(1 ~ X UX)T)dT,,  (4.3.17)
p\U) JT,>0

for R(b,) > ’—';—‘, t=1,...,n. Substituting (4.3.17) in (4.3.15) and interchanging the inte-

grals, the step being valid, we obtan

Ip(c)
Tp(ay)...Tp(an)lp(c — ay — ... — an)Tp(b1) ... Tp(by)

X —/T >0.“.//7‘ oo | Ty !b"%l T |"""E'2u ezp(—tr(Ty + ...T,))
1 n

~Btl _ptt
X[,/,/ 0<U, <! N N /% L

n
O<Zl=l U<t

_ n L 1
[T = Uy = o= Uy [0 5 eap(tn(S (X2 T X2)U,)

1=1

Fg =

xdU, ...dUy, |dT\ ...dT,. (4.3.18)

The result follows by interpreting the inner integral as a ¢s.

(4.3.3) Lauricella function Fp of several matrix variates.
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R 4

Lauricella function Fp of matrices .X, such that X, = X/ > 0, |X)| < L. - 1. |a,

is defined by

Fp(a,by,...,bnic; Xyq,....X0)

= FP(C) ! a—2tl c—u—Eg“]‘ Ty -y
_Fp(a)rp(c—a) o ‘U‘ 2‘1 Ul ll_("\ll

!

D — | oop
5 R(c—a) -

| [ - UXn | dU,for R(c) > -’-’%1—, R(a) > l (1319)
Result (6):

Fp(a,bi,...,00;¢;.X1,...,.Xy)

— I‘p(dl)-nx‘p(dn) /1 /1 I 1% |b‘—11§»'-
Fp(bl)-”[‘p(bn)rp(dl—bl)---rp(dn—bn) 0 C o] !
X | Un o= B0 L= 0y 07058 T U |27 By,
L L L L
UZXUR .. .U X UF)dU, ... dU, (1 320)

Proof:
The proof is similar to the one used in result (2), that is we first replace Fyp on the I 1S of
(4.3.20) using definition (4.3.19). Then we integrate out Uy, .,U, We have the joilowiy,

integrals,

1
/ (U =5 T = U, %= T - Ui XUt | v,
0

Pp(dy = b,)Ip(b:)

1 1
Filb,d;d; Ui X Uz?), 1 =1, ., {32
Fp(d,) 2 F1{ 2 2}, 2 n (13210)

The integrals are evaluated by the Euler’s integrals (vathai and Saxena (1978, (5 2 25)))
Since there is one common parameter in 2 /], it reduces to a binomial sum  That s
Lo prl L 1
2F1(b:,dy;d; Uz X UZ) = 1Fo(b; U2 X U?)
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Py

o Pl

Il

| [-UTXU% |~

= | I-UX, ™, for JUX)| <1, i=1,...... , n(4.3.22)

The result follows by sustituting back in (4.3.20).
Result (7):
For R(b) > B4 Xl <1,1=1,...,n
Pplby) . . Tp(ba)Fpla,by, ... by X1yeo s X))
= [F1>0 ..[I‘Ooezp(—tr(Tl + ...+ 1) | T Ib"%_l e

i
2

x T ,bn'—E{-‘- Fi(a; ¢ Y%T Yzl 3 ‘
| In 1£10a; ¢ . 1 £1-14 + ...+.1Yn,Tn4 n) dTl...dTn- (4.3.23)

Proof:

Since for all 1, (1 = UX,) > 0 we can replace | (/ — UX,) | in (4.3.19) by

1 1
L =UX) e / | T, =% cap(—tr(1 - XTUXT) dT,,  (43.24)
Fp(bx) T.>0

for R(b) > L;‘-, t=1,...,n. We substitute (4.3.24) in Fp and after collecting the factors

containing U we integrate 1t out using the result from appendix A4. Thus we have

ool 1
U =5 1 = U % enp(tr(S° X2T, X2 )U)AU
U0 ! ! '

=1
Al - 1 1 L 1
- ._____W)FF 2(3 %) \Fi(a ¢ XITLXF +... + X3TL X3) (43.29)
pAC

Substituting the abeve equation in the L.1.S of (4.3.23) yields the result.

The next 1esult will be stated without proof and later it will be used to establish the

tentaining results.
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Result (8):

Fp(a,by,...,bn;¢; X1,...,X5)

— FP(C) bl_&§L
= I‘,,(bl)...I‘,,(b,,)I‘p(c—h—...—bn)/"'/w"
P+l

X lUn Ib"l—u’;—lII—Ul—_.'_Un It’.‘*b]—,.—b"_ 3
VI=XFULXE — ...~ X2URX3) |72 dUy ... dU,. (1320)

Note that the integralisover 0 < U, < [, i = 1,...,nand 0 < 1., U/, < [ The conditions
ate the same as the ones in (4.3.19).

Result (9):

1
Fp(a,by,... b5c;X,...,Xn) = / {T|""uzlexp(-lr TYgpa(hy,
Fp(a) T>0
1 1 L 1
by ¢ XPTXE,..., X3TXE) dT, (1327)
for R(a) > p;—l, the other conditions are the same as the ones in (:1.3.19) and the ¢, tunction

is defined in (4.3.16).
Proof:
We substitute for ¢, and integrate out 7" to obtain

1 1 1 1 1
/ | T 125 exp(=tr(l = XZU,X? — .. =~ X2UX2)T) dT'
Typ(a) JT>0

1

1 1 L 1
= L= XFU XE ~ . = XRULNG | (g

—

We now substitute the above equation on the R.IL.S of (4.3.27) and interpret 1t by wany,

(4.3.26) and the result follows.
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Result (10):

Fp(aby,... 00;¢;X1,...,.X0)
- Tp(c) d-2l c—d—BH
Tp(d)T( c-—d)/'Ul Al
xFD(a,bl,...,bn;d;X{UXf, ee s nUX )dU,

for R(c) > 254, R(d) > 5, R(c-d)> B, LX)l <1, i=1,...,n

Proof:

( 1.3.29)

Let W represent the R.H.S of equation (4.3.29), thus using {(1.3.19), we can tewrite ¥’

as

xFD(a,bh...,bn;d;XfU.\’,’,...,X,EUXE)dU,
— I'p(c) d—etl c-d— BXL
T T(d)I, c-al)/w| Flr-v|
« ['y(d)
Tp(a)Tp(d
T = TXIUXE [t dT dU

— rP(d) ! a—Etl d-o— 2L
= Eohasa ), [T T

1 L 11
xFp(d,b,...,0n;¢; X7 TXE, ..., X3TXZ )dT.

a-2tl v idma— EEL 1 2 by
_a)/(Tl B f - o TN |

(4.3 30)

We now replace the R.H.S of (4.3.30) by the multiple integral representation in (4.3.26) and

integrate out 7. As it was shown earlier, the 7- integral leads to a 2/} wiuch reduces 1o 0

1Fo. Thus interpreting the R.H.S of (4.3.30) by using the multiple integral representation

of (4.3.26), the result follows.

91




ot =

*

(4.3.4) Mixed Results.

We shall consider a result invoiving Fp and Fp of many matrix variates, similar results
involving Fy and Fp can be seen from Mathai(1989).
Result (11):

For B(b) > 2574, Xl < 1, i=1,...,n, R(d) > B5%, R(d - by —... — by) > B5L,

Fg(by, ... bnyay, ... a0, Xy,...,X5)

_ Ip(d)
T Tp(by) ... Tp(ba)Tp(d — by — ... = by)

o LY e PR T oV O R A

1 1 1 1
XFp(dyar,... an; ¢ XZU\X?,...,X3UnX?)dUy . ..dU,. (4.3.31)

Proof:
Using (4.3.19), we replace Fp by the single integral representation and substitute it in
(4.3.31). Then we make the transformation of U, going to W, = U%U,U%, i=1,...,n If

we denote the R.H.S of (4.3.31) by Y, we have

To= Fp(c) Y
b T [‘P(b‘)"'[‘;'(bn)[‘p(d“51—...—bn)[‘p(c-—d)/wx "'/‘"/Ulwll

1 1 1 1
I W B L= XEWXE |7 | T — XIWa XE o

n
XL = U5 U = Wy~ = W, [h o= 5 ([[dWJdU.  (4.3.32)

1=1

We note that
UmWimoim Wy = (I=Wy—...= Wp) = (I = U)
= ([ =Wi= .= Wo)T(I = Z)I =Wy — ... - W,)3,
whete (I =U) = (I-Wy —...—= Wa)32(I = W, — ...~ W)5.
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Using these substitutions and the matrix variate beta integral the Z-integral reduces to the

following;:

I
c—d- b=l _ d~by - _bn_tld - I‘,,(c—d)I‘,,(d—-b‘—-...——b,,)
/O'Z' FIr-2z : 4z Tp(c—by— .. by

Thus we obtain,

_ Iyp(e) - Bl
Y = r,,(b,)...r,,(bn)r:(c-b,-...-bn)/“'/'W‘ ]

- 1 1
s I Wn lbn-l’%‘ I - W1 ~ . — Wn Ic"bl""‘"b"-afl| I — ‘Xf ”)l‘x'ln I—an
1 1
v | T = X2 W, X2 7% dW, ... dW,

= Fg(by,...,bn; ar,...,ap; 6 X1,... Xp). (4.3.33)
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APPENDIX

(A1) H-FUNCTION.
The H-function is applicable in many problems arising in physical sciences, engineerin,,
and statistics. It is the most generalized special function and it is studied in some detail

in Braaksma (1964). An H-function is defined in terms of a Mellin-Barnes type integral as

follows:
A
Hp (2) = Hplz lgvas))
_ , (a1,41 )yeen{ap,Ap)
= Hp(z |(b:.B:). ..,(b:,a;)]
1 3
= Zr‘zr/LX(S)Z ds, (0.1.1)
where

i = (=12, 240,
2* = exp[slog|z] + targ(z)],
in which log|z| represents the natural logarithm of |z| and argz is not necessarily the

principal value. An empty product is interpreted as unity. Here, we have

I1=: T(b, — B,s) 1=1T(1—a; + A)s)

x(s) = , 0.1.2
”g:m.ﬂ I'(} - b, + B;s) ﬂ§=n+1 I{a, — A,s) ( )

where m,n,p and ¢ are nonnegative integers such that 0 < n < p, 1 < m < ¢;A4,(J =
1,...,p), By(j = 1,...,q) are positive numbers; a,(j = 1,...,p), b,() = 1,...,q) are

complex numbers such that

Ay(bn+v) # Bi(a;~2-1) (0.1.3)
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forv,A = 0,1,... ; h=1,...,m; j=1,...,n Lis a contour separating the points
bytv .
s = -451—", (G=1,...,m; v=0,1,...)

which are the poles of I'(b, — B,s),(j = 1,...,m,) from the points
s = 3‘-};—_—1, F=1,....,n; v=0,1,...),
which are the poles of I'(1 — a, + A,s), j = 1,...,n. The contour L exists on account
of (0.1.3). The H-function is an analytic function of z and makes sense if the following
existence conditious are satisfied.
Case 1 : For all z # 0 with u > 0.
Case 2: For 0 < |2} < 87! with u=0.
Here p = ¥ 7., B, - 3P, A, and

B = Il Afj IT= BJ—BJ'

Remark: When we have A; = ... = A, = By = ... = By = 1 in the H-function, we
obtain the Meijer’s G-function.

(A2) HYPERGEOMETRIC SERIES.

A hypergeometric function with p + ¢ parameters is defined as follows

(@) (ap)n "
(by)n (bg)n n!

pFolay,. .. ,apib1, ..., 0g2) = Z (0.21)
n=0

for p< qor p=gq+1 and |z| < 1, where for example (a)g = 1 and (a), = a(a+ 1) .. (a4

n—1) = -Fili—‘(—*T"l n=12,...
Here (0.2.1) diverges for all z # 0 if p > ¢+ 1. Assume that none of the by, ..,b, is ze10

or a negative integer and if any of the a;,...,a, is a negative integer the series terminates.

ai,...,ap are often known as the upper parameters and by,...,b, are called the lowe
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parameters.

A particular case of the hypergeometric function is Gauss’ hypergeometric function  F3(.)
which is given by
o Fi(a,bic;z) = F(a,bje;z2)

(a)n(b)n 2"
Z . A (0.2.2)

n=0

The Euler’s integral representation for the Gauss’ hypergeometric function is

F(a,b;c;2) = I‘_(Ej%c—_gj/ b - t)c_b 1(1-—t y~dt
for R(c) > R(b) > 0. (0.2.3)

(A3) BESSEL FUNCTION.

The different Bessel functions listed below are solutions of Bessei differential equation.

S (<1 (/2™ [T (m + v+ 1)]

m=0

(2/2)" oFy(v+1; —2%/4)/T(v + 1). (0.3.1)

Ju(z)

1}

(0.3.1) is called a Bessel function of the first kind where z is the variable and v is the order.

The Bessel function of the second kind or Neumann’s function is given by
Yo(z) = (sinvm)~1[J,(2)cos(vm) — J_o(2))] (0.3.2)

The modified Bessel function of the first kind is given by

i (/2™ /[m!T(m + v + 1)]

m=0

= F((%/%)-‘l)—) 0F1(U+ l; 22/4)

= ———F((z/i)l)e“z 1Aa(v +1/2; 20+ 1; 22). (0.3.3)

I,(z2)
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The modified Bessel function of integer order is given by

n—1 m
I\'n(Z) = (_1)"+1[n(2)10g(2/2) + Z (2:3’ (n—m- l)!(2/2)2m_”
m=0 :
= ! I h 1
+(-1)"/2 Z(:/fz)"*?m[d('l * 7:;,:(” 1:7:/)57" + )], (0 3.1)

m=0

for n =1,2,... where 9(.) is defined ia (1.1.12).
(A4) CONFLUENT HYPERGEOMETRIC FUNCTIONS OF MATRIX AR-

GUMENT.

['m(6) / ,
(2m)mim+1)/2 R(A)= X0 exptr(A))

XTI = ZA~Y A~ BdA,

14°e;3;2) =

for Xo > R(Z),R(B) > m,

- Fm(ﬂ) ! 7 a—{m+1)/2
= Fm(a)Fm(ﬂ~a)./o exp(tr(AZ))|A|

[ — A==+ DI24A for R(a) >

m+ ] |

m+l—]andR(ﬁ—a)>m:_;-1

R(B) > - 1. (0 1.1)
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