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Abstract 
Identifying and characterizing the gene expression profiles of cell types in normal and disease 

tissues is crucial for understanding biological processes and disease mechanisms. Single-cell 

RNA sequencing (scRNA-seq) provides cellular-resolution gene expression profiles, allowing for 

the annotation of cell populations based on these profiles. Traditionally, cell type annotation was 

performed by assessing canonical marker genes. Recently, various machine learning-based 

annotation tools have been developed to automatically infer cell type identities in new samples 

from large-scale labeled scRNA-seq datasets. However, the accuracy and limitations of these 

tools have yet to be thoroughly evaluated, particularly in complex scenarios such as annotation 

of cell types present during development, annotation of cells from one species using a reference 

from a different species, and annotation of cancer cells. Potential limitations of machine learning 

classifiers in these scenarios include difficulty handling complex biological variability and 

heterogeneity, which can result in poor performance and incorrect cell type annotations. This 

thesis aims to provide a comprehensive benchmark of cell type annotation tools in complex 

scRNA-seq scenarios, including developmental datasets, cross-species annotations, and cancer 

datasets. First, we assessed 17 scRNA-seq datasets from adult and embryonic tissues with 

complexity metrics to quantify traits of the datasets, including cell type continuity, redundancy, 

and hierarchical structure. Our comparison of the performance of 18 cell type annotation tools 

using cross-validation in these datasets showed decreased performance in prenatal 

developmental datasets. Next, we applied a subset of cell type prediction tools for cross-species 

prediction on the mouse and human datasets. This analysis demonstrated that individual tools 

had low cell type annotation accuracy in complex datasets, but a consensus of multiple tools 

improved accuracy. Lastly, we annotated cell types in brain tumor samples using scRNA-seq 

references of normal brain tissue and found that a consensus of three tools effectively labeled 

tumor cells. Overall, machine learning-based tools performed well in normal adult samples. In 

contrast, a consensus of tools with distinct algorithms improved prediction accuracy for cross-

species and cancer datasets. We implemented our consensus annotation workflow into a 

modular, reproducible pipeline that can easily be extended to new tools. The results of this study 

offer insights into the performance of cell type annotation tools for complex datasets common in 

biological and biomedical research and guide the selection of appropriate cell type annotation 

tools and workflows for these applications.  
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Résumé 
L'identification et la caractérisation des profils d'expression génétique des types de cellules dans 

les tissus normaux et pathologiques sont cruciales pour comprendre les processus biologiques 

et les mécanismes pathologiques. Le séquençage de l'ARN à l'échelle d'une cellule (scRNA-seq) 

fournit des profils d'expression génétique à résolution cellulaire, ce qui permet d'annoter les 

populations cellulaires en fonction de ces profils. Traditionnellement, l'annotation du type de 

cellule était effectuée en évaluant l'expression de gènes marqueurs canoniques. Récemment, 

divers outils d'annotation basés sur l'apprentissage automatique ont été développés pour déduire 

automatiquement les identités de type cellulaire dans de nouveaux échantillons à partir 

d'ensembles de données scRNA-seq marquées à grande échelle. Toutefois, la précision et les 

limites de ces outils doivent encore être évaluées de manière approfondie, en particulier dans 

des scénarios complexes tels que l'annotation des types de cellules présents au cours du 

développement, l'annotation de cellules d'une espèce à l'aide d'une référence d'une espèce 

différente et l'annotation de cellules cancéreuses. Les limites potentielles des classificateurs par 

apprentissage automatique dans ces scénarios incluent la difficulté à gérer la variabilité et 

l'hétérogénéité biologiques complexes, ce qui peut entraîner de mauvaises performances et des 

annotations de types cellulaires incorrectes. Cette thèse a pour but de fournir une analyse 

comparative complète des outils d'annotation de type cellulaire dans des scénarios scRNAseq 

complexes, y compris des ensembles de données sur le développement, des annotations inter-

espèces et des ensembles de données sur le cancer. Tout d'abord, nous avons évalué 17 

ensembles de données scRNA-seq provenant de tissus adultes et embryonnaires à l'aide de 

mesures de complexité supervisées afin de quantifier les caractéristiques des ensembles de 

données, notamment la continuité des types cellulaires, la redondance et la structure 

hiérarchique. Notre comparaison des performances de 17 outils d'annotation de type cellulaire 

par validation croisée dans ces ensembles de données a montré une diminution des 

performances dans les ensembles de données sur le développement prénatal. Ensuite, nous 

avons appliqué un sous-ensemble d'outils de prédiction de type cellulaire pour la prédiction inter-

espèces sur les ensembles de données de la souris et de l'homme. Cette analyse a démontré 

que les outils individuels avaient une faible précision d'annotation des types cellulaires, mais 

qu'un consensus de plusieurs outils améliorait la précision. Enfin, nous avons annoté les types 

de cellules dans des échantillons de tumeurs cérébrales en utilisant des références scRNA-seq 

de tissus cérébraux normaux et nous avons constaté qu'un consensus de trois outils marquait 

efficacement les cellules tumorales. Dans l'ensemble, les outils basés sur l'apprentissage 

automatique ont donné de bons résultats seuls dans les échantillons adultes normaux. En 
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revanche, un consensus d'outils avec des algorithmes distincts a amélioré la précision de la 

prédiction pour des ensembles de données inter-espèces et cancéreux. Nous avons mis en 

œuvre notre flux de travail d'annotation par consensus dans un pipeline modulaire et 

reproductible, qui peut facilement être étendu à de nouveaux outils. Les résultats de cette étude 

offrent des informations précieuses sur les performances des outils d'annotation des types de 

cellules pour les ensembles de données complexes courants dans la recherche biologique et 

biomédicale et guident la sélection d'outils d'annotation des types de cellules et de flux de travail 

appropriés pour ces applications. 
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1. Chapter I: Introduction 
Single-cell RNA sequencing (scRNA-seq) is being rapidly adopted in biological research 

and has produced compelling discoveries of expression changes in disease. This section 

will briefly introduce theoretical concepts of scRNA-seq and several key features for 

analyzing scRNA-seq data. Cell type annotation, the primary focus of the work presented 

herewithin, is a critical step in any single cell study. Previously, annotating cell types in 

scRNA-seq data has relied on time-consuming, cluster-level labeling through prior 

knowledge of the expected cell types. However, with the availability of annotated 

reference datasets, machine learning approaches have become practical methods of 

reproducible and objective cell type annotation performed at the individual cell level. 

Furthermore, using reference-based automated approaches can reduce inconsistencies 

of cell type annotations across single cell studies. This chapter will provide a literature 

review on current machine learning-based annotation approaches and summarize 

previous benchmarking studies. Finally, we will discuss the complexities of specific 

datasets and annotation scenarios that have yet to be addressed. 

 
1.1. Single-cell transcriptomic sequencing (scRNA-seq) 
scRNA-seq is a technology capable of detecting mRNA molecules in single cells across 

populations spanning thousands of cells1. It allows for a quantitative measurement of 

gene expression in each cell, using next-generation sequencing, providing a high-

resolution image of the cellular transcriptome. The single-cell resolution makes scRNA-

seq an adequate tool for defining cell types, states, and functions within heterogeneous 

tissues. 

 

The use of scRNA-seq technology has been growing exponentially for the past decade. 

The number of papers containing scRNA-seq data and the size and quality of published 

datasets have increased substantially in recent years2,3. New technological advances, 

including physical and biochemical innovations reported in the last decade, have led to 

the widespread application of scRNA-seq methodology in the field of biology4. The 

concept of single-cell transcriptomic sequencing was first pioneered by Jim Eberwine et 

al. 5 and Iscove et al. 6, who expanded complementary DNA (cDNA) of single cells by 
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linear amplification via in vitro transcription and PCR, respectively. Jim Eberwine first 

used this technology to show that morphologically similar hippocampus cells display 

marked differences in RNA expression5.  These pioneering technologies were later 

applied to commercially available DNA microarray chips5–7. 

 

Subsequent developments in sequencing technologies continued to guide parallel 

developments in scRNA-seq. The first scRNA-seq study performed using next-generation 

sequencing (NGS) was published in 2009 by Tang et al.8, one year after the first bulk 

RNA-seq experiment9. This method was first used to study the murine blastomere. Tang 

et al. demonstrated that this technology could detect 75% more genes than previous 

microarray techniques. Moreover, since the blastomere is a fast-developing stage of 

growth in an embryo, using single-cell to detect which genes are expressed allowed for 

fate-mapping and other types of analyses that bulk RNA-seq cannot provide8. 

Nevertheless, these first experiments could only sequence a few cells and required 

manual manipulation of cells. Advances in microfluidics technologies10,11, the 

development of droplet-based cell encapsulation methods12, and laser capture 

microdissection13 have made it possible to increase throughput and sequence tens of 

thousands of cells in one experiment. These novel methods have driven the development 

of new advanced scRNA-seq protocols, such as CEL-seq214, Drop-Seq15, Smart Seq216, 

and MULTI-seq17. 

 

The rapid technological advancement described above has resulted in the emergence of 

international consortia projects to map single-cell gene expression across tissues and 

ages to establish a baseline reference for comparison against disease conditions. One of 

these projects is the Human Cell Atlas (HCA), which aims to characterize all cell types 

across all organs of the human body18. This project is expected to ultimately generate 

data for billions of cells. In addition, the HCA project aims to generate data for disease 

states at a single-cell resolution19. In addition, several projects of narrower scope have 

also sought to profile organs or specific tissue types in detail at the single-cell level. For 

instance, LungMAP: The Molecular Atlas of Lung Development Program is a consortium 

funded by the National Institute of Health (NIH) to integrate single-cell transcriptomics 
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with other data types to improve our understanding of the lung’s cellular ontology 20. Other 

examples include the BRAIN initiative21 and the Human and Mouse Allen Brain Atlases, 

which aim to characterize neural cells at the single-cell resolution and to understand the 

regulatory networks behind development, evolution, and neuropsychiatric disorders22. 

These consortia and international efforts have yielded large datasets that can be used to 

study cell physiology and dynamics of a population of cells, to discover rare cell types in 

normal healthy tissues23–31, and to provide a novel view on disease states at high 

resolution28–34.  

 

Single-cell expression profiling has also increased our understanding of cellular 

developmental trajectories through spatiotemporal and pseudo-time analyses35. scRNA-

seq provides the expression measurements of genes and transcription factors controlling 

cell states. These measurements can infer how cells differentiate from one state or cell 

type to another and order them on differentiation trajectories36.  This in silico 

reconstruction allows for the detection of transient intermediate populations, which can 

be validated experimentally. This type of reconstruction also allows for the detection of 

gene changes and biomarkers as cells transition from one state to another. In a recent 

study, pseudo-time analysis was used to uncover potential biomarkers for the transition 

of liver cirrhosis to hepatocellular carcinoma, illustrating one application of this method of 

analysis37. Regulatory networks that control cellular activities in normal and disease 

phenotypes can also be inferred from scRNA-seq data. These analyses leveraging 

scRNA-seq data have furthered our understanding of tumor biology. Rare cell populations 

within a tumor, such as tumor stem cells that are associated with aggressive disease and 

relapse, can be identified through scRNA-seq analyses38. Furthermore,  scRNA-seq can 

be used to identify new interactions between cancer cells and immune cells within the 

tumor microenvironment, which has implications in predicting the success of  

immunotherapy and other new treatment methodologies39. These limited examples 

demonstrate the vast and diverse information that can be garnered from scRNA-seq 

experiments.  
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1.2. Common scRNA-seq analysis workflow 
A typical scRNA-seq experiment entails several steps: Single-cell barcoding, scRNA-seq 

library preparation and sequencing, preprocessing scRNA-seq data, and downstream 

analysis40–44. Regardless of the capture and sequencing protocol, the first two steps 

usually generate sequencing reads that are first demultiplexed, aligned, and mapped. 

Data that contains unique molecular identifiers (UMIs) or barcodes then needs to be 

collapsed and counted, often by means of read processing software (such as 

CellRanger), to generate a gene expression matrix (N (cells) x M (genes))45. Finally, the 

raw expression matrix must undergo quality control (QC) and corrections before further 

analysis.  

 

QC is an essential step of any scRNA-seq analysis workflow40–42,46. Batch effects, 

inefficient dissociation, RNA leakage and degradation, dropouts due to low expression of 

mRNA, and many other factors can lead to technical artifacts that can influence 

downstream analyses42,46,47. QC metrics such as the number of counts per barcode, 

fraction of mitochondrial genes per barcode, and cell cycle scores, a score based on the 

expression of  G2/M and S-phase markers, can be used to filter out low-quality 

cells48. Following quality control, scRNA-seq data is normalized to remove unwanted 

sources of variation in the data related to technical variability. This normalization can help 

prevent highly expressed genes from affecting analyses43. scRNA-seq datasets may also 

undergo data correction and imputation to adjust for batch effects and dropouts40–44.  

 

The following steps in a conventional analysis workflow are feature selection, 

dimensionality reduction, and clustering. scRNA-seq suffers from the curse of 

dimensionality, where the number of genes detected is significantly higher than the 

number of cells sequenced49. The high number of features increases the computational 

intensity and noise of the data. Moreover, only a handful of genes are required for a 

meaningful biological inference, and most information required to analyze the data can 

be summarized in a few dimensions50. The first step of dimensionality reduction is feature 

selection. Highly variable genes (HVGs) are often selected as they retain most of the 

information in the dataset51.  Dimensionality reduction can then be performed using linear 
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methods such as Principle Component Analysis (PCA)52 or non-linear techniques such 

as t-distributed Stochastic Neighbor Embedding (t-SNE)53, or Uniform Manifold 

Approximation, and Projection (UMAP)54. Following dimensionality reduction, a 

ubiquitous downstream involves defining discrete cell populations. For this, cells are 

clustered into groups of similar gene expression profiles. This can be done using graph-

based methods such as Leiden or Louvain, hierarchical clustering, K-nearest neighbors 

(KNN), and others55. The resulting clusters require proper annotations to identify the 

biologically relevant subpopulations in the dataset (Cell type annotation)56,57. This step is 

crucial as the properly annotated clusters serve as input for downstream analyses such 

as differential gene expression (DGE) analysis, identifying marker genes, and modeling 

gene dynamics across the cell populations. 

 

1.3. Cell Type Annotation 
Cell type annotation or classification is the process by which clusters of cells or individual 

cells are annotated with a specific label that is associated to a particular biological 

function, group or property. Cell annotation is an active area of research as it is often a 

critical step for scRNA-seq experiments across various applications. Consistent cell 

classification allows to compare similar cells found in different body parts or distinct 

species58,59. Furthermore, several downstream analyses require the proper clustering 

followed by the identification of cell types to identify marker genes, model cell population 

dynamics, gene dynamics, and many other analyses. Correct annotation is essential for 

the biological interpretation of the results from these analyses. The presence of poorly  

annotated cells can negatively affect a single cell workflow by adding bias and noise to 

the analysis60. Accurate annotation allows the derivation of specific cell type signatures 

to help identify and characterize rare cell types in tissues that bulk RNA-seq misses61.  

 

Cell type annotation has previously been performed using canonical marker genes56,57. 

The cell clusters can then be annotated based on their expression of cell type-specific 

marker genes or canonical markers found in previous studies56,57,62. Annotation using 

marker genes assumes that cell types can be distinguished based on the expression of 

cell type-specific genes that are lowly expressed or absent in other cell types. An example 
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of this would be the use of CD3 to distinguish T lymphocytes from other leukocytes63. 

Researchers have used this gene to annotate many leukocyte scRNA-seq datasets 

published64–67. However, this methodology is time-consuming and highly dependent on 

the available literature. Clustering also plays a significant role, as the same dataset can 

have a different number of clusters depending on the choice of algorithm, and the 

parameters used can often lead to under-clustering of data68. In addition, this technique 

may miss rare and new cell types due to a lack of available well-studied markers. 

Therefore, curation using marker genes makes it difficult to generate reproducible, 

objective, and scalable annotations for the growing scRNA-seq datasets69. This technique 

can result in different studies having conflicting annotation outputs due to the subjectivity 

of manual curation. 

 

1.4. Reference-based cell type annotation 
An alternate approach to cell type annotation consists of training machine learning models 

on pre-annotated scRNA-seq references, i.e., supervised learning. To exploit the 

abundance of published data, much research has focused on developing automated, fast, 

and scalable tools that can decipher cellular compositions of single-cell experiments and 

identify individual cell types. Furthermore, these tools do not depend on clustering to 

annotate cells but instead perform the classification at the individual cell level. Therefore, 

this approach also offers an objective methodology for cell type annotation, which has the 

potential to reduce annotation inconsistencies across single cell studies. 

  

There are several classes of methods for automated cell type prediction70. Recent 

publications include supervised learning tools (e.g., ACTINN71, SciBet72, scPred73, 

LAmbDA74, CaSTLe75, singleCellNet76, SVM77). There are also correlation-based tools 

such as SingleR78, scmap-cell, and scmap-cluster79. Correlation-based tools can 

annotate cells by labeling cells as the closest cell type in the training reference using 

similarity scores, such as Pearson correlation. In addition, we also have automated 

marker-based tools (Garnett80, SCINA81, DigitalCellSorter82) that retrieve prior knowledge 

from marker databases such as PangaloDB57 and then annotate cells or clusters based 

on the expression of marker genes. Lastly, there are hierarchical tools that predict cell 
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types given a hierarchical clustering constraint of cell types (scHPL83, CellO84, 

scClassify85, CHETAH86). The list of automated cell type prediction tools is expanding, 

with many tools published in the past year alone. Currently, there are more than 140 tools 

reported for cell type classification87. 

 

The aforementioned types of cell type prediction tools can be further stratified. Supervised 

learning tools can be further stratified into discriminative learning tools such as scPred73, 

which uses support vector machines (SVM), and generative modeling approaches such 

as SciBet 72 which uses multinomial distribution models. Discriminative modeling uses the 

conditional probability and the borders between classes in a feature space to classify a 

cell. In contrast, generative models use Bayesian approaches and multinomial models 

based on joint probabilities and maximum likelihood to classify cells88. Moreover, we can 

also segregate discriminative learning tools into neural network approaches and non-

neural network approaches. For example, NeuCA89 uses neural networks with multiple 

hidden layers to learn a model that can then be used to predict cell types. ACTINN is also 

another neural network approach that uses only one hidden layer.  

 

Several deep-learning approaches have also been presented for cell type annotation. 

Deep learning approaches utilize artificial networks with representation or feature 

learning90. This learning can be performed in a supervised, semi-supervised, or 

unsupervised manner. Examples of these tools include KPNN91, which utilizes graph 

convolutional networks to extract features from gene interaction networks that can aid in 

classifying cells. Moreover, there are autoencoder methods and unsupervised learning 

techniques that leverage neural networks with bottlenecks to learn features and ignore 

the noise in the data. One tool, scIAE, has been shown to perform well for feature 

extraction, cell type annotation, and predicting disease status92.  

 

Finally, it is essential to mention that hierarchical cell type annotation tools can use any 

mathematical approach. Still, the constraints imposed on training and prediction 

distinguish them and merit them their own class.  
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1.5. Limitations of ML based cell type annotation 
While ML-based cell type annotation has the potential to increase labeling objectivity and 

consistency, limitations to these methods exist and need to be considered prior to their 

incorporation into an analysis workflow. Several factors can reduce the performance of 

cell type classifiers on unseen datasets93. ML issues that may arise can be classified into 

two main categories: data-related limitations and algorithm-related limitations. 

 

One main limitation of ML-based cell type annotation is the dependence on reference 

quality and balance. Single-cell experiments profile heterogeneous cell populations that 

are not equally represented in the datasets. Due to this, some cell populations, such as 

rare ones, are often under-represented in the datasets. Class imbalance is problematic 

as many ML algorithms assume that the data is evenly distributed among the classes. 

Class imbalance can result in a strong bias towards the classes with the highest 

prevalence. Another problem affecting ML-based cell type annotation is reference quality 

and how well it matches the query datasets94,95. Single cell experiments often suffer from 

dropouts and technical noise (batch effects) that can result in poor performance.  

 

In addition, most ML-based classifiers have assumptions potentially violated with scRNA-

seq datasets. For example, cell types in these datasets are often highly similar and 

dependent, which can affect model performance96. This is particularly relevant for single-

cell studies profiling overlapping cell types, such as the ones tracking developmental 

lineages. As a result, many classifiers may underperform in these scenarios. 

 

Moreover, most classifiers might underperform in scRNA-seq datasets due to the curse 

of dimensionality, where the number of features is larger than the number of data 

points97,98. The curse of dimensionality often leads to overfitting the training data, resulting 

in models that cannot be generalized to testing scenarios. Lastly, neural network 

approaches are not interpretable (Blackbox approaches) and require large amounts of 

data, in the tens of thousands to millions of data points, to outperform traditional ML 

approaches such as Naïve Bayes and tree-based approaches99. All these factors can 

potentially make ML-based cell type annotation less effective in specific scenarios. 
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1.6. Cell type classifier benchmarking  
More than 140 tools have been developed for cell type annotation. To date, five studies 

have been reported to benchmark the performance of these tools on different single-cell 

datasets and testing scenarios100–104. Abdelaal et al.100 benchmarked 32 different 

automated cell type prediction tools on 11 datasets of varying size, complexity, and 

annotation level using cross-validation for intra-dataset testing. They employed an inter-

dataset assessment where the classifiers were trained on a reference dataset and then 

used to annotate external datasets. This assessment allowed the authors to evaluate 

prediction performance across different technologies. The authors also assessed 

datasets based on inter-correlation between cell types as a complexity measure. Their 

principal findings indicate that performance varies significantly between classifiers 

depending on the number of genes, number of cells, annotation level, and dataset 

complexity. This data highlights the importance of choosing the suitable classifier for a 

given scenario. Furthermore, their findings suggest that a linear SVM with a rejection 

option for cells classified with low confidence outperforms other tools in most scenarios.  

Another study that benchmarked nine tools showed that cell type similarity, dataset 

unbalance, and size play a significant role in performance104. In this study, Seurat, 

SingleR, and CASTLE performed the best.  It was also stated that using a simple majority 

vote (consensus) between tools outperformed individual predictions by the classifiers. 

 

A more recent benchmarking study101 found that combining multiple references improves 

performance by reducing overfitting. The authors recommend using multilayered 

perceptron (MLP) as the classifier and F-test as a feature selection protocol for selecting 

genes to include in training101. Equally important, a study in 2021 benchmarked 10 R-

based cell type annotation tools on six publicly available datasets, including peripheral 

blood mononuclear cells (PBMCs) and Tabula Muris, an atlas of mouse cell types across 

many organs, in addition to simulated datasets with varying differential expression scales 

using Splatter102. They reported that tools perform well in intra-dataset cell type 

annotation but struggle to generalize for inter-dataset annotation. They also found that 

SingleR and Seurat performed the best across the different scenarios. Moreover, they 
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reported that tool performance suffers in cases of high cell type similarity. Lastly, Xie et 

al. assessed thirty-two tools classified into three categories (eager or discriminative, lazy 

or generative, and marker-based) on four primary datasets103. Their findings suggest that 

top performers from each category perform similarly across the different datasets. 

However, eager and lazy methods (reference-based approaches) are recommended due 

to speed and accuracy when pre-annotated references are available. Moreover, it was 

noted that the performance of marker-based approaches depends on the quality of prior 

information and the number of cell types, which is consistent with previous conclusions 

from Abdelal et al. Perhaps, the most important takeaway was that embryonic and tumor 

datasets pose a challenge for classification tools. Embryonic and developmental datasets 

may include granular and highly similar cell types, which can decrease classification 

performance. We should note that the recent benchmarking studies were mainly 

performed on standard datasets and datasets with a small number of very distinct cell 

types, such as PBMCs45 (datasets profiling well-defined peripheral blood mononuclear 

cells) and datasets profiling a low number of discrete cell types (Baron105 and Muraro106 

pancreatic datasets). Notably, the datasets used in these studies differ significantly from 

many scRNA-seq datasets that span tens to hundreds of cell types. 

 

1.7. Specific datasets and scenarios that may pose challenges of ML-

based cell type annotation  
While previous benchmarking studies of cell type annotation tools offered valuable 

insights into the performance of cell type annotation tools, most of these studies, used 

gold-standard benchmarking datasets such as PBMCs and pancreatic datasets and 

focused on biologically simple scenarios (using a reference that ideally matches the 

query) where annotation of most cells is successful. These studies did not thoroughly 

assess the classifiers with samples collected throughout different developmental time 

points, from different species, or from tumor samples. Here, we will highlight some key 

characteristics of these applications and how we suspect this might affect the 

performance of classifiers. We will also present the rationale for the work undertaken in 

this thesis. 
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A primary limitation in benchmarking studies is the lack of comprehensive datasets 

representing a high diversity of cell types. These benchmarking experiments utilized 

datasets published in past years, such as CellBench107 (5 distinct lung adenocarcinoma 

cell lines), Baron105 (discrete cell types in the adult murine and human pancreases), 

Zheng45 (PBMCs), and others. However, current references cover more cell types, 

include more cells, and capture more genes because of improved sequencing 

techniques18,20,22.  In particular, an important focus of research relevant to several fields 

(development, cancer, developmental and neurological disease, among others) relies on 

prenatal or embryonic datasets that characterize organ and tissue development from the 

zygote to birth in humans and other species. These datasets may be more difficult to label 

due to their inherent characteristics arising from the biology of these tissues. 

Three main characteristics are present in prenatal datasets that may pose challenges for 

cell annotation methods: gene expression redundancy across cell types, cell type or state 

continuity, and high similarity between cell types along a common hierarchy or lineage.  

 

First, prenatal datasets have high redundancy of cell types and gene expression across 

the cell types. Expression redundancy means a specific gene can have similar expression 

values across multiple cells and cell types108. This is a characteristic of embryonic 

datasets because cells profiled during development often express various programs 

necessary for differentiation109. These programs often overlap between cell types, leading 

to expression redundancy. In differentiated tissues, most cells are fully committed to one 

cell type and can be distinguished from others in the same tissue. These differentiated 

cell types often express distinct signatures with a relatively lower overlap of gene 

expression profiles. This feature might impact machine learning-based cell type prediction 

because features with similar values between classes have low predictive power and are 

often removed during feature selection to enhance performance. Moreover, these 

features tend to overfit the models, leading to decreased performance in query 

datasets110. 
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Second, many experiments generating prenatal data often use discrete timepoints to 

track developmental processes that cells undergo. This sampling is problematic because 

cells continuously evolve between these time points and at different rates. Gene 

expression profiles are not binary in these cases and often represent a spectrum of 

continuous states111–113. Defining cell types and cell states is not an easy task114. For 

example, progenitor cells often have transient intermediate states in the developmental 

lineage where cells express highly similar expression profiles forming a spectrum115. The 

spectrum of differentiating cells in these datasets includes many transient or intermediate 

cell types that are difficult to characterize and annotate adequately due to a lack of 

discriminating markers. As a result, researchers label these cells with discrete classes 

when biologically, these cells form a continuous spectrum of states rather than discrete 

states along the trajectory116,117.  This labeling results in cells often being annotated as 

the closest cell type to them when they are expressing intermediate profiles between two 

cell types. We suspect this will cause problems for cell type annotation tools that assume 

that label classes (here, cell types) are discrete and independent. Furthermore, due to 

the high degree of expression profile similarity between cell types, cell type prediction 

tools show high rates of unlabeled cells100,102. For these cases of continuous cell states, 

pseudo-time analysis has proven to be an adequate model for the transition between 

states or types30,131. 

Third, prenatal datasets often show a hierarchical structure in which we have a progenitor 

to differentiated cell type relationships with intermediate states that might not be captured 

due to the discrete timepoint sampling118. For example, in the developing brain, 

neuroectodermal cells are comprised of two main hierarchical lineages; neuronal and 

glial119,120.  Many well-performing tools assume cell types are independent and discrete 

rather than a continuous spectrum. This assumption is unfounded in datasets from cells 

undergoing differentiation, which often exhibit gene expression redundancy with other 

cells in the same lineage. However, some tools consider hierarchical constraints on the 

labels included in the training. Recent algorithms, including CHETAH86, CellO84, 

scClassify85, and scHPL83 consider these hierarchical constraints and classify cells into 

intermediate states or nodes if the cell cannot be accurately classified into a cell type. In 



 27 

theory, this hierarchical consideration of cell types should mitigate the inability to label 

cells in cases where intermediate cell types are present 120. It is imperative to mention 

that the three abovementioned characteristics are not mutually exclusive and can be 

related. 

While we have described specific characteristics of prenatal datasets, we also note the 

lack of assessments of automatic classifiers for cancer cell type projection or prediction. 

A common practice for cell type annotation in cancer research is to use developmental 

scRNA-seq references to interrogate cell type programs in tumor cells33,34,121–123. This is 

done by annotating cancer cells as their most similar cell type in a healthy reference. We 

use here the term projection since this classification is done by projecting these cells to 

cell types of a specific cell population in an atlas. This information, related to the cell type 

of origin, can guide experimental studies and therapeutic targeting in these cancers. 

However, this projection method generates additional challenges as cancer cells have 

aberrant gene expression patterns that confound annotation124. Tumor cells have copy 

number variations and epigenetic changes, further distinguishing them from the 

transcriptional states found in a normal developmental gene atlas. A cancer cell may also 

express genes specific to other cell types to have a survival advantage. One example of 

this phenomenon is the immune checkpoint ligand PD-L1 expression that is typically 

expressed on various immune cells125.  These genetic alterations can complicate tumor 

cell type projection using ML approaches, as multiple cell type programs may be 

expressed. 

Despite these challenges, ML-based cell type classification approaches have been used 

in cancer transcriptomics. Early studies used machine learning classifiers to identify tumor 

cells from normal cells using scRNA-seq data126,127. However, this classification used only 

two classes (normal vs. tumor) without considering tumor cell types. Machine learning  

was also used to identify signatures that could be used to trace back the tissue of origin 

of metastatic tumors128. Importantly, this study only provided insight into the tissue of 

origin but did not give any information as to the cell type of origin of the tumor. Lastly, 

some classifiers have the potential to annotate cancer cell types but require annotated 

cancer references and have not been tested using normal references129. A major 
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limitation of this approach is the lack of well-annotated cancer references in most tumor 

types. The studies above illustrate the need for a robust and accurate cancer cell type 

projection method using normal scRNA-seq references. 

In addition, many studies in developmental and cancer biology rely on scRNA-seq data 

generated from animal models, such as the mouse or zebrafish. Importantly, cell 

annotation has yet to be extensively evaluated in cross-species predictions.  Human and 

mouse single-cell data differ due to practical, ethical, and technical considerations. Mouse 

data is abundant, and sampling is more accessible, especially for developmental data. In 

contrast, ethical restraints make the same not feasible for human tissues, especially 

during fetal development. Ideally, high-resolution mouse reference datasets could be 

generated and used to annotate human datasets. These datasets would allow 

researchers to overcome some of the constraints encountered when accessing human 

tissues. Currently, some tools perform cross-species cell type annotation, such as 

SingleCellNet and SciBet72,76. However, these tools have not been adequately 

benchmarked against other tools not designed for this task.  

The challenging characteristics of developmental (prenatal) datasets and the limitations 

to annotating cancer and cross-species datasets highlight the need for careful evaluation 

of cell type annotation tools used in these scenarios. In this thesis, we undertake a 

systematic benchmarking assessment of cell type identification tools that consider the 

abovementioned characteristics, including control of dataset complexity and 

quantification of these characteristics. We will then assess tool classes in different 

annotation scenarios that vary in complexity. Our hypotheses and specific aims are 

discussed in the following section. 

1.8. Hypotheses and Aims:  
We hypothesize that intrinsic features of particular datasets, such as prenatal or cancer 

datasets, may variably impact the performance of different machine-learning approaches 

for cell type annotation. These features may be quantified with complexity metrics 

regarding continuity, redundancy, and hierarchical structure. 
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In this thesis, we aim first to compare the performance of cell type annotation tools in a 

prenatal vs. postnatal context using cross-validation approaches. Then, using dataset 

complexity metrics, we will relate the performance of different tools to a set of defined 

dataset characteristics. The findings are presented in Chapter III. 

 

Second, we aim to assess the performance of cell type annotation tools for two specific 

tasks: cross-species predictions and identification of predominant cell-lineage programs 

in cancer datasets. We present our results in Chapter IV. 
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2. Chapter II: Methodology: 

2.1. Cell type classification methods 
18 cell type annotation tools were included in this study (Table 1). We installed all R-

based tools with R version 4.0.5 except for NeuCA, which was used with R version 4.1.2 

due to its unavailability in previous R versions. Python-based tools were installed with 

Python version 3.6.5. The classifiers were run with their default settings, including 

hyperparameters and parameters. In the cases where default parameters were missing, 

we utilized the values provided in the vignettes or the accompanying studies (Table 2). 

We provided each tool with gene counts per cell as input. We also performed log 

normalization for specific tools (SVM, SVM Rejection, and SciBet) when it was required 

to run them. Eight classifiers included an option to reject cells with low classification 

probability (Rejection). In these cases, we used the default rejection thresholds set by the 

original authors (Table 2). 

 

Table 1. Automated cell type classifiers used in this thesis. Neural Net: Neural Network 
approaches; DGE: differential gene expression; KNN: k- Nearest Neighbors. 
 

Name Type  Language Underlying Method  Year Version Rejection 
option of low 
probability 
predictions 

Support 
Vector 
Machine 
(SVM)130 

Discriminative python Linear SVM classifier using the 
scikit-learn package 

1992 0.23.2 no 

SVM 
Rejection130 

Discriminative python Linear SVM classifier with 
rejection option set at 0.7 

1992 0.23.2  yes 

SingleCellNet7

6  
Discriminative R Random forest classifier on 

genes selected with DGE 
analysis 

2019 0.1.0  no 

scPred73 Discriminative R Radial kernel SVM with 
dimensionality reduction 
projection of query to 
reference 

2019 1.9.2 yes 

scLearn131 Generative R Discriminative component 
analysis to learn models based 
on similarity then predict query 
cells 

2020 1.0 yes 
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SciBet72 Generative R Multinomial generative models 
with maximum likelihood 
estimations 

2020 1.0 
 

no 

ACTINN71 Discriminative/
Neural Net 

python Three layered neural net with 1 
hidden layer 

2020 GitHub 
version: 
563bcc1 
  

no 

NeuCA  
Large89  

Discriminative/
Neural Net 

R Five layered neural net with 3 
hidden layers 

2022 1.0.0 no 

NeuCA 
Medium 89  

Discriminative/
Neural Net 

R  Four layered neural net with 2 
hidden layers 

2022 1.00 
 

no 

NeuCA  
Small89  

Discriminative/
Neural Net 

R Three layered neural net with 1 
hidden layer 

2022 1.0.0 
 

no 

scIAE92 Discriminative/
Neural Net 

R Integrative autoencoders 
ensemble methods to extract 
features in presence of noise 

2022 Github 
Commit: 
Fdac0fa 
 

no 

scClassify132 Hierarchical  R Hierarchical ordered 
partitioning and collapsing 
hybrid (HOPACH), train 
weighted KNN classifiers at 
each node in the tree 

2020 1.2.0 
 

yes 

scHPL83 Hierarchical  python Classification tree using one 
class SVM at each node 
except root on the most 
informative pc variables 

2021 0.0.2 yes 

CHETAH86 Hierarchical R Correlation similarity under the 
constraint of respecting tree 
topology 

2019   1.6.0 yes 

SingleR78 Correlation R Spearman correlation in the 
variable gene expression 
feature space to annotate 
query cells 

2019 1.4.1 no 

Spearman 
Correlation 

Correlation R Maximum spearman 
correlation scores between a 
query cell and a training 
reference 

____ No version no 

Scmap cell79 Correlation/ 
Discriminative 

R KNN classifier that uses 
Spearman-cosine- and 
Pearson similarity measures to 
annotate cells 

2018 1.12.0 yes 

Scmap 
cluster79 

Correlation/ 
Discriminative 

R Nearest median classifier that 
uses Spearman-cosine- and 
Pearson similarity measures to 
annotate cells 

2018 1.12.0 yes 
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Table 2. Parameters used for the selected Classifiers 

2.2. Cross validation 
Ten-fold cross-validation was performed to assess the performance of annotation tools. 

For this, each dataset was divided into ten partitions (folds): nine were used for training 

and one for testing133. This partitioning was done in a stratified manner (for each cell type, 

cells were selected randomly for each fold, maintaining the cell proportions of the original 

dataset) to ensure that all cell types in each fold were represented as the same proportion 

Name Mode of usage and parameters selected 

Support Vector 
Machine (SVM) 

Run with a linear kernel using the scikit-learn package.  

SVM Rejection  Run with a linear kernel using scikit-learn.  Cells with 0.7 or less classification probability were 
rejected, 

SingleCellNet  Run with default parameters. A random forest of 500 trees was trained using top 25 cell type-
specific genes identified by the classifier.   

scPred  Run with default parameters using scPred package; No parameters were provided to the functions. 
Default rejection threshold of low probability classifications was set at 0.6. 

scLearn  Run using default parameters: Training was performed with 10 bootstrap repeats and default 
rejection threshold set at 0.6 

SciBet Run with default parameters: number of training genes selected by the classifiers was 1000.  

ACTINN Run using default parameters: number of training epochs was 50, minibatch size was 128 cells, and 
learning rate was 0.0001 

NeuCA Large Run with three hidden layers (parameter model.size = ‘large’ ) using NeuCA package. 

NeuCA Medium  Run with two hidden layers (parameter model.size = ‘medium ) using NeuCA package. 

NeuCA Small Run with one hidden layers (parameter model.size = ‘small ) using NeuCA package. 

scIAE Run using scIAE package with no parameters provided to the function 

scClassify Run with default parameters: algorithm detailed in table 1. Cells assigned by the classifier as ‘node’ 
were rejected and labeled as ‘unsure’. 

scHPL Run with default parameters.  SVM was used as the underlying classifier and cells with a node label 
were rejected and labeled as ‘unsure’. 

CHETAH Run using default parameters: Spearman correlation was calculated using top 200 genes selected 
by the classifier.  

SingleR Run with default parameters using SingleR package. 

Spearman 
Correlation 

Run using Spearman correlation of gene expression between reference and query. 

Scmap cell Run using default parameters. 500 genes were selected for training and rejection threshold was set 
0.7 
 

Scmap cluster Run using default parameters. 500 genes were selected for training and rejection threshold was set 
at 0.7. 
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in the original dataset. The training and testing folds were defined once and kept constant 

for all classifiers. 

 

2.3. Performance evaluation metrics for cross-validation 

2.3.1. F1-score 
The F1-score was used as a performance metric for cross-validation as in previous 

benchmarking studies100,101. F1 is defined as the harmonic mean of precision and recall. 

Precision (Equation 4) quantifies the proportion of true positive predictions out of all 

positive predictions: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠    (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4) 

 
In turn, recall quantifies the proportion of true positive predictions made out of all positive 

examples in a dataset: 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠   (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5) 

 
F1 aggregates both metrics into one score: 

 

𝐹1 = 2 .
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .  𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙   (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6) 

 
Here, we reported F1 per cell type and we used the median F1 score across all cell types 

as the measure of performance.  

 

 

2.3.2. Rejection Rate 
Eight cell type classifiers (Table 1) can reject cell labels with low classification probability 

according to set rejection thresholds (Table 2). Rejected cells were excluded from the F1 



 34 

calculations and were reported as the rejection rate as a complementary measure of 

classifier performance (Equation 7).  
 

𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑙𝑒𝑓𝑡 𝑢𝑛𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠   (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7) 

 

2.4. Dataset complexity metrics 
We calculated three metrics to measure complexity of scRNA-seq datasets: Fraction of 

borderline cells (N1) 134,135, volume of the overlapping region (F2) 134,135, and proportion 

of clusters belonging to a hierarchical structure (H1) (see below, sections 2.4.1-3). N1 

and F2 were adapted from Valvidia, 2019 on GitHub 

(https://github.com/jcelias98/Complexity-Measures), with code optimization for increased 

computational efficiency. The optimization included parallelizing the code to run faster on 

large datasets. 

 

2.4.1. Fraction of borderline cells (N1 metric)  
We used the Fraction of Borderline Points Between Classes134,135 to quantify cell type 

separability. This metric is a neighborhood approach that calculates the proportion of cells 

lying in the boundaries between cell types. For computing N1, a minimum spanning tree 

(MST) is built using the top 2000 variable genes and the Euclidean distance between 

each pair of cells in the dataset. N1 is then defined as the percentage of cells connected 

to cells from other cell types in the MST: 

 

𝑁1 =  1
𝑁

∑ ((𝑥𝑖, 𝑥𝑗)  ∈ 𝑀𝑆𝑇   Λ  𝑦𝑖 ≠ 𝑦𝑗)   𝑛
𝑖=1 , (Equation 8) 

 

Where 𝑁 is the total number of cells, 𝑥𝑖  is the current cell, 𝑥𝑗   is the neighbor of 𝑥𝑖  in 

the MST, 𝑦𝑖 is the cell type of the current cell, and 𝑦𝑗 is the cell type of the neighboring 

cell. 
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This metric is bounded between [0,1], with higher values indicating more complex 

boundaries between cell types, showing the overlap and continuity between the classes 

and poor separability.  

 

2.4.2. Volume of overlapping region (F2 metric)  
F2 computes the overlap in the expression of genes among the cell types present134,135. 

This metric, designed for binary classification problems, can be adapted for multi-class 

problems using one-vs-one (OVO) decomposition, in which the overlap is calculated 

between each possible pair of cell types in the dataset. This overlap is then averaged 

across all possible cell type pairs. Higher values of F2 indicate a higher redundancy and 

overlapping of gene expression programs between cell types. To compute this metric, we 

first performed principal component analysis (PCA) on the gene expression matrix and 

retained the first 50 principal components as features. F2 is defined as: 

 

𝐹2 =  ∏ 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑓𝑖)
𝑅𝑎𝑛𝑔𝑒(𝑓𝑖)

=  ∏ max {0,𝑚𝑖𝑛𝑚𝑎𝑥(𝑓𝑖)−𝑚𝑎𝑥𝑚𝑖𝑛(𝑓𝑖)
𝑚𝑎𝑥𝑚𝑎𝑥(𝑓𝑖)− 𝑚𝑖𝑛𝑚𝑖𝑛(𝑓𝑖)

𝑚
1

𝑚
1 , (Equation 9) 

Where: 

𝑚𝑖𝑛𝑚𝑎𝑥(𝑓𝑖) = min(max(𝑓𝑖
𝑐1) , max(𝑓𝑖

𝑐2)) 

𝑚𝑎𝑥𝑚𝑖𝑛(𝑓𝑖) = max(min(𝑓𝑖
𝑐1) , min(𝑓𝑖

𝑐2)) 

𝑚𝑎𝑥𝑚𝑎𝑥(𝑓𝑖) = max(max(𝑓𝑖
𝑐1) , max(𝑓𝑖

𝑐2)) 

𝑚𝑖𝑛𝑚𝑖𝑛(𝑓𝑖) = min(min(𝑓𝑖
𝑐1) , min(𝑓𝑖

𝑐2)) 

 

𝑚  is the number of features, and 𝑓𝑖 is the current feature. The volume returned by F2 is 

bounded between 0 and 1. 

 

2.4.3. The proportion of cell types belonging to a hierarchical structure (H1 
metric) 
To quantify the inherent hierarchy of a dataset, we calculated H1, which quantifies the 

fraction of cell populations within a dataset that belong to robustly inferred hierarchical 

groups (i.e. whether a large proportion of the dataset presented hierarchical structure). 
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For this, we first applied bootstrapped hierarchical clustering to the entire dataset 

(pvclust)136 with 100 bootstrap iterations. Next, for every leaf node c, we asked whether 

it belonged to a subtree with at least three robustly inferred ancestor nodes (bootstrap 

value > 80%); if so, this leaf is labeled as ch. Finally, H1 is defined as: 

 

                                          𝐻1 =  𝑁𝑐ℎ
𝑁

 , (Equation 10) 

where 𝑁𝑐ℎ is the number of 𝑐ℎ clusters, and 𝑁 is the total number of clusters in the 

dataset. Higher values of H1 indicate that a larger fraction of datasets belong to a 

robustly inferred hierarchical structure. 

 

2.5. SNAKEMAKE benchmarking and annotation pipelines 
Snakemake is a workflow engine and management tool that provides a Python 

interpretable framework for executing pipelines based on user-defined rules137. We 

implemented two Snakemake pipelines: one for the benchmarking experiments and one 

for annotation of samples using a reference. 

 

2.5.1. Classifier benchmarking pipeline  
This is a benchmarking pipeline, adapted from a workflow written by Abdelaal et al., 

2019100,  but modified with added scripts to: include more cell type prediction tools not 

available at the time of the paper publication (NeuCA, correlation, scIAE, and scClassify), 

include quantitative metrics of dataset complexity metrics (section 2.4), and output 

UMAP plots. The scripts used to implement this pipeline can be found at 

https://github.com/HusseinLakkis01/scCoAnnotate/tree/main/Benchmarking 

 

2.5.2. scCoAnnotate: a consensus-based annotation of query datasets  
This pipeline trains user-selected cell type classifiers on an annotated training reference, 

then uses these trained classifiers to annotate new query datasets. This pipeline 

produces an output of consensus predictions for which individual annotations are used to 

choose a label using a majority vote (the predicted target label of the ensemble is the 
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mode of the distribution of individually predicted labels). In cases where two or more 

predictions are tied, scCoAnnotate outputs a ‘no consensus’ label. From the 18 classifiers 

described in Section 2.1, only 12 were selected for this pipeline based on benchmarking 

results: ACTINN, SingleR, SciBet, SVM, SVM rejection, scPred, Correlation, scmap-cell, 

scmap-cluster, SingleCellNet, scHPL, CHETAH. scCoAnnotate can be found at 

https://github.com/HusseinLakkis01/scCoAnnotate. 

 

2.6. Datasets: 
We compiled a set of 23 scRNA-seq datasets (Table 3) spanning different tissues, 

developmental ages, species, number of cells, and number of cell type populations to 

assess ML tools. We downloaded pancreatic datasets from https://hemberg-

lab.github.io/scRNA.seq.datasets (Baron Human: GSE84133, Baron Mouse: GSE84133, 

Muraro: GSE85241). Brain datasets can be found in the Gene Expression Omnibus 

(GEO) (Jessa 2019: GSE133531, Jessa 2022: GSE188625, Vladoiu: GSE118068, 

Human Fetal Atlas) or are downloaded from external sources as follows. The Allen Brain 

datasets were downloaded from the Allen Institute Brain portal https://portal.brain-

map.org/atlases-and-data/rnaseq (The primary visual cortex (V1 & ALM): GSE115746, 

adult human cortex, adult mouse cortex: GSE185862).  The Anderson (GSE125290), 

Dong (GSE137804), and Mizrak (GSE134918) datasets were downloaded from the GEO. 

For the organism-spanning atlases, we downloaded the Tabula Muris from https://tabula-

muris.ds.czbiohub.org (GSE109774) and the Pijuan-Sala from 

https://github.com/MarioniLab/EmbryoTimecourse2018. For the cancer datasets, we 

downloaded the CellBench dataset (GSM3618014) and used high-grade glioma tumor 

data (HGG Dataset) available at the European Genome-phenome Archive (EGA) under 

accession number EGAS00001005773. 

We used the counts matrices of these datasets as they were processed by the original 

authors. However, we down-sampled the Tabula Muris, the adult human and mouse 

cortical datasets, Jessa 2022, and the human fetal brain due to computational restrictions 

(resulting sizes highlighted in table 3). We performed down-sampling in a stratified 

manner where we kept 50% of each cell type population. The Jessa 2019 mouse brain 

https://github.com/HusseinLakkis01/scCoAnnotate
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atlas contains different levels of labels varying in granularity (from time point level labels 

such as “E18 pontine astrocytes” to general cell class labels such as “astrocytes”). We 

used different subsets of this dataset (pons and cortex) as independent datasets. In all 

cases in this thesis, cell type annotations, as provided by the authors, were used as a 

ground truth. 

 
 

Table 3.      Summary of the datasets used with the metadata and the chapters it was used in. Dataset 
type indicates whether the dataset profiles strictly prenatal tissues, postnatal tissues, or both 
(Mixed). E corresponds to embryonic day and P corresponds to postnatal day. Number of cells 
highlighted in bold are the final sizes for the down-sampled datasets. 

Dataset Species Organ Type No of 
cells 

No of labels 

(cell types) 

Protocol Chapter Used 

Anderson138 Mouse Brain Striatum 
 

Mixed 14466 
 

40 10X Chapter III 

Jessa 2019 
Pons 33 

Mouse Pons Mixed  25978 
 

92 10X Chromium Chapter III 

Jessa 2019 33 Mouse Brain Mixed 58153 
 

14 10X Chromium Chapter III 

Jessa 202234 Mouse Brain Mixed 63936 290 10X Chromium Chapter IV 

Vladoiu 121 Mouse Cerebellum Mixed 62040 34 10X Chromium Chapter III 

Jessa 202234 
 

Mouse Cortex E10 Prenatal 3934 
 

14 10X Chromium Chapter III 

Jessa 2019 33  Mouse Cortex E12 Prenatal 8578  
 

14 10X Chromium Chapter III 

Jessa 2019 33  Mouse Cortex E16 Prenatal 7183 
 

21 10X Chromium Chapter III 

Jessa 2019 33 Mouse Cortex P0 Postnatal 4689 
 

20 10X Chromium Chapter III 

Jessa 201933 Mouse Cortex P6 Postnatal 3886 
 

13 10X Chromium Chapter III 

Allen Mouse 
Brain 2018139 

Mouse Primary Visual 
Cortex 

Postnatal 12832 
 

16 SMART-Seq 
v4 

Chapter III 

Baron 105 Human Pancreas Postnatal 8569 
 

14 inDrop Chapter III/IV 

Baron 105 Mouse Pancreas Postnatal 1887 13 inDrop Chapter IV 
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Tabula Muris 
105 

Mouse 20 organs Postnatal 54865 
 

55 SMART-Seq2 
 

Chapter III 

CellBench 107 Human Adenocarcinoma Postnatal 3803 5 10X Chromium Chapter III 

Muraro 106 Human Pancreas Postnatal 2122  
 

8 Cel-seq2 Chapter III 

Mizrak 140 Mouse Brain Postnatal 28407 
 

11 SCOPE-seq Chapter III 

Dong 141 Mouse Brain Prenatal 14229 15 GemCode Chapter III 

Pijuan-Sala 142 Mouse Whole Organism Prenatal 18140 37 10X Chromium Chapter III 

Human Fetal 
Brain 143,144 

Human Brain Thalamus Prenatal 43821 213 10X Chromium Chapter IV 

HGG34 Human Brain Postnatal 176934 - 10X Chromium Chapter IV 

Allen Human 
Brain 2019 145 

Human Cortex Postnatal  23714 9 SMART-Seq2 Chapter IV 

Allen Mouse 
Brain 2019146 

Mouse Cortex and 
Hippocampus 

Postnatal 37484 8 SMART-Seq2 Chapter IV 
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3. Chapter III: Classifier benchmarking using cross-validation  
 
Single-cell RNA sequencing (scRNA-seq) has been a proven tool for identifying and 

characterizing cell types in various biological systems. However, the accuracy of cell type 

classification remains a critical issue, particularly in prenatal and developmental scRNA-

seq datasets, where the cell type information is often limited or unknown. In this chapter, 

we present a benchmarking of cell type classifiers using cross-validation and dataset 

complexity metrics (figure 1). Our goal is to evaluate the performance of different tools 

and understand the impact of dataset complexity on their performance.  

 

We use cross-validation, a widely used technique to evaluate and compare the 

performance of different classifiers, to benchmark the performance of several state-of-

the-art cell type classifiers. Additionally, we quantify the complexity of each scRNA-seq 

dataset using metrics that capture various aspects of dataset complexity, including cell 

type continuity, gene expression redundancy, and hierarchical cell type relationships. We 

aim to provide a comprehensive understanding of the relationship between dataset 

complexity and classifier performance and to identify the classifier that performs best in 

the presence of high levels of dataset complexity. 

 

This chapter will provide insights into the challenges and limitations of cell type 

classification in the context of developmental studies, aiming to inform the choice of 

classifier for future studies. By combining cross-validation and dataset complexity metrics, 

we objectively and systematically evaluate cell type classifiers. Hopefully, this will aid in 

advancing our understanding of the underlying biological mechanisms that drive cellular 

heterogeneity in developmental research. 
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3.1. Validation of complexity metrics 
To evaluate whether prenatal datasets possess specific characteristics that hamper 

automated cell type annotation tasks, we implemented three complexity metrics to 

quantify redundancy, continuity, and hierarchical structure (sections II-2.4). Next, we 

performed a validation study of these metrics in a simulated setting to confirm if they could 

capture the observed biological complexity.  

 

To begin these analyses, we created four synthetic datasets from the Jessa 2019 mouse 

brain dataset33 (Figure 2). Each dataset contains clusters of cells with defined 

transcriptional overlap that we intend to measure.  Dataset a, independent cell types, is 

comprised of five different cell types: astrocytes, microglia, oligodendrocyte precursor 

cells (OPCs), ependymal cells, and neuro-progenitors. These cell types are 

transcriptionally distinct and have different biological functions. Dataset b, progenitors and 

differentiating cells, includes 16 different glial and neuronal progenitor cell types. These 

cell types are related to each other and have some common transcriptional programs. 

Dataset c, astrocytes, contains 16 astrocyte cell types from different brain regions (pons 

and cortex) collected at three postnatal time points (at birth (P0) and postnatal days 3 

(P3) and 6 (P6)). These clusters contain only mature cells. They have highly overlapping 

Figure 1 Overview of the benchmarking experiments done to evaluate classifiers in sections 3.3, 
3,4, and 3.5. 
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gene programs but express distinct signatures that allow them to be classified as separate 

cell types. Lastly, dataset d, oligodendrocyte lineage, is comprised of 14 cell types from 

one defined lineage. These cell types range from early OPCs to mature oligodendrocytes. 

OPCs and oligodendrocytes from both the pons and cortex collected at P0, P3 or P6 were 

included. These cell types are redundant in their gene expression programs but less so 

than dataset c, which contains only mature cell types.  Using these synthetic datasets, 

we assessed the ability of the metrics N1, F2, and H1 (Section II: Equations 8-10) to 

detect cell type separability, gene expression redundancy, and hierarchical structures, 

respectively (Figure 3).  

 

The first measure, N1, calculates the proportion of cells lying in the boundaries between 

cell types (cell type separability). As the value for N1 increases, the cell types are less 

separated. N1 was calculated for each of the generated synthetic datasets (Figure 3a). 

Dataset a (independent cell types) showed the lowest N1 value (2.9%), In contrast, 

dataset d (oligodendrocyte lineages) had a much higher N1 value (63%). As expected, 

the more closely related cell types exhibited a decrease in class separability (N1). This 

effect is a direct result of the cell types being more transcriptionally similar. Dataset a 

contains disjointed and discrete cell types which do not have complex cell type borders 

with other cells. Dataset b shows a higher N1 value (28%) than dataset a due to the 

inclusion of progenitors from multiple lineages expressing similar gene programs. These 

progenitors are also related which decreases cell type separability, thus increasing N1. 

On the other hand, dataset d depicts a full differentiation lineage where multiple cell types 

are differentiating into other mature cell types, forming a continuum of gene expression 

profiles and increasing the border complexity. Interestingly, dataset c, which contains 

gene expression profiles from mature astrocytes, displays a lower N1 value than dataset 

d. While the mature astrocytes contain many redundant gene expression profiles, the 

borders between distinct clusters are more defined than cells within one lineage.  

 
The F2 metric computes the overlap in the expression of genes among the cell types. 

Similar to N1, the F2 metric shows distinct differences across the four synthetic datasets 

(Figure 3b). As expected, the dataset with the least similar gene expression programs, 
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dataset a, had the lowest value for the F2 metric (1.3 x 10-10). Dataset b showed a higher 

F2 value (9 x 10-8) than dataset a due to the inclusion of different progenitors with 

similarities in gene expression programs. In contrast, dataset c, containing mature 

astrocytes had a much higher F2 value (7.6 x 10-7). Comparison of these two metrics 

demonstrates their distinct uses for describing datasets. While dataset c (mature 

astrocytes) contains redundant gene expression programs, the gene expression profiles 

targeting the cells for distinct clusters allow for the establishment of clear boundaries 

between different cell types. In contrast dataset d, which contains cells at various stages 

of differentiation, the boundaries between cells are less defined despite a lower 

redundancy in gene expression.  

 

We designed the H1 metric to detect cell type hierarchical structure in scRNA-seq 

datasets comprised of differentiation lineages. However, we did not detect large 

differences in the calculated H1 values across our datasets. Dataset a and c (independent 

cell types and mature astrocytes, respectively) should have a low H1 value when 

compared to lineage datasets b and d. We observed an H1 value of 0.2 in dataset a and 

0.1 in dataset c. Datasets b and d, both displayed H1 values of 0.25 (Figure 3c). These 

similar H1 scores across datasets could be due to the poor clustering of highly similar cell 

types belonging to the same lineage, which can result in poor hierarchical clustering in 

datasets b and d. Nevertheless, H1 detects a larger hierarchical structure in datasets with 

progenitors (b and d) compared to other datasets. 

 

Altogether, these results demonstrate that dataset complexity can be measured using 

quantitative metrics such as N1 and F2. These metrics increase as cell type separability 

decreases and gene expression redundancy increases, as expected. Furthermore, our 

data demonstrates the distinct manner that N1 and F2 capture and quantify complexity in 

datasets. N1 captures the cellular continuity that occurs as differentiating cells take on 

intermediate phenotypes that reside at the border of a particular cell type. In contrast, F2 

captures expression redundancy where cells undergoing development express similar 

programs and cannot be classified as a distinct class.  Lastly, H1 did not strongly 
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represent cellular hierarchy in our initial analyses. However, it could still detect some 

hierarchical structure present in the synthetic datasets.  
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a.  Independent cell types  b. Progenitors and related cell types 

d. Oligodendrocyte lineage  c. Astrocytes  

Figure 2 Four synthetic datasets generated from the Jessa 2019 mouse brain data. Independent cell 
types (a) progenitors and related cell types (b), mature astrocytes (c), cells of the oligodendrocyte 
lineage (d). 
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Figure 3 Bar plots showing the N1 (a), F2 (b), and H1 (c) in the four synthetic datasets. Each 
bar in the plots corresponds to a dataset depicted in Figure 2. 
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3.2. Quantitative assessment of dataset complexity in different 

developmental contexts 
Following the validation of the three-complexity metrics in synthetic datasets, we 

expanded our assessment of dataset complexity by calculating N1, F2 and H1 for each 

dataset described in Table 3 (section II-2.6). These datasets include prenatal datasets 

containing only cells from embryonic stages, postnatal datasets containing cells from 

postnatal tissues, and mixed datasets which contain data from both prenatal and 

postnatal tissues. 

 

We first measured cell separability by calculating N1 for each dataset (Figure 4). We 

observed an increased proportion of borderline cells (>0.2 or more than 20% of cells in 

the dataset) in all prenatal and mixed datasets, with the exception of one dataset (Jessa 

Broad Labels). In contrast to other prenatal and mixed datasets, the Jessa Broad dataset 

contains diverse clusters from different samples that are grouped together into cell 

classes. This under-clustering leads to poor labeling which may influence the value of the 

N1 measure. In contrast, postnatal datasets showed low N1 values (on average less than 

10%) than prenatal and mixed datasets. Jessa P0 and Jessa P6 show higher N1 values 

than other postnatal datasets.  Importantly, these datasets were sampled on the day of 

birth (P0) and six days after birth (P6). At these time points, multiple cell types in the 

mouse brain are still actively undergoing differentiation. These cells in transient states are 

less likely to be separated into particular cell types and as such may lead to an increase 

of N1 for these datasets. All other postnatal datasets were collected after P9. We also 

observed that the CellBench dataset, which we included as a control, had the lowest N1 

value of 0.1%. This dataset contains five disjoint lung cancer cell lines that do not share 

common cell types and gene expression profiles. In this case, we would expect cells to 

cluster into distinct values and N1 to be very low. Overall, the N1 metric performed as we 

expected with a decrease in N1 value as the cells move through development and adopt 

mature cell fates  

 

Next, we examined the genetic redundancy of our datasets by calculating F2 values. 

These values were log transformed to facilitate the scaling and visualization of results 
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(Figure 5). Similar to N1, prenatal and mixed datasets generated higher F2 values 

(average of 14.1 across datasets) than postnatal datasets (average of 7.25). However, 

one postnatal dataset, Mizrak, deviated from this average (13.1 vs 7.25 on average). This 

deviation was expected as this dataset represents postnatal neurogenesis and thus 

contains various cell types undergoing differentiation. As these cells can be found in 

intermediate states, they also exhibit redundancy in their gene expression profiles. We 

would expect these factors to inflate F2 values. We also observed that the CellBench 

dataset shows null F2 scores, as expected.  

 

Finally, we attempted to evaluate the hierarchal structures among datasets by calculating 

H1 in real datasets that contain multiple lineages (Figure 6). Unlike N1 and F2, H1 did not 

show any specific trend across prenatal, postnatal and mixed datasets. H1 scores ranged 

from 0 to 0.72. We first noticed that the postnatal Jessa cortical dataset displayed the 

highest proportion of hierarchical lineages (H1=0.72). The Jessa cortical dataset is 

derived from mouse brain at P0. Three datasets showed no hierarchical structure at all 

as per H1 calculation (H1=0). While this result may be expected in the unrelated cell types 

of the CellBench dataset, it was not anticipated in the Mizrak dataset (postnatal 

neurogenesis). We expected H1 to detect a hierarchical structure in the Mizrak dataset 

which profiles neuronal lineages in the brain. One explanation for this discrepancy is that 

the conditions we used to generate H1 scores were stringent conditions (>80 bootstrap 

p-value). Under these conditions, some hierarchical structures may have been 

inadvertently excluded.   
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Figure 4 Bar plot showing the fraction of borderline 
cells (N1) in datasets included in benchmarking 

Figure 5 Bar plot showing the volume of overlapping 
regions (F2) on datasets included in benchmarking 
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3.3. Timepoint benchmarking of classifiers on mouse cortical 

datasets 
After determining the complexity of our datasets, we sought to evaluate the performance 

of classifiers in a setting where cross-validation performance can be examined as a 

function of the developmental stage of the data. We evaluated 17 classifiers (Section II – 

Table 1) using five datasets that profile the murine cortex at three embryonic time points 

(E10, E12, and E16) and two postnatal time points (P0 and P6), as described in Table 3 

(Section II). We reported the performance of each classifier using F1 scores and rejection 

rates (Section II-2.3). The F1 score is a measure of precision and recall, while the 

rejection rate reflects the inability of a classifier to annotate a cell.  

 

F1 scores for each classifier across the five datasets are presented in a heatmap and a 

line graph format (Figures 7 and 8). A high F1 score indicates a well-performing classifier. 

All classifiers had lower F1 scores in prenatal datasets than the postnatal time points. 

Specifically, all classifiers except scmap, ACTINN, and scLearn show their lowest F1 

scores in the earliest time point (E10). In all cases, each classifier displayed its highest 

performance score when analyzing the dataset with the latest timepoint at P6 (Figure 7). 

However, we observed that.NeuCA_small and scmapcell showed near 0 F1 scores in two 

prenatal timepoints (0.05 for scmapcell at E12 and 0.04 for NeuCA_small at E16). This 

indicates that these classifiers failed in these datasets. Overall, we saw that discriminative 

models outperform all other classes across the different timepoints; SVM rejection 

achieved perfect accuracy (F1 = 1) at P6. On the other hand, we see that NeuCA 

performed poorly in these experiments. This is perhaps due to the large dataset required 

for properly optimizing neural network classifiers. Other tools, such as CHETAH and 

SingleR, were unsuitable for annotating prenatal datasets.  

 

While the F1 metric measures the precision with which a classifier annotates, the rejection 

rate examines the inability of a classifier to annotate a particular cell in a dataset. A low 

rejection rate indicates a better performance by the classifier as it signifies that more cells 

in the dataset are being annotated. Rejection rates for most classifiers were higher in 

prenatal than postnatal datasets (Figure 9). Intriguingly, as we observed with the F1 
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score, scmap performed differently from the other classifiers. Although scmap cell shows 

good F1 scores at E10 and E16, the rejection rate is higher than 40%. This shows us that 

scmapcell refrains from annotating most prenatal cells, which indicates a lack of 

confidence in these predictions. This poor performance might be because scmapcell 

assumes a linear relationship between gene expression values and cell type which might 

not hold true in complex systems such as prenatal datasets. Additionally, specific tools 

(SVM_rejection and scHPL) show a linear decrease in rejection rates. These results 

highlight the higher uncertainty classifiers have for calling a prediction in datasets where 

cells are highly similar and undifferentiated. This uncertainty decreases as cell types 

become more separate and distinct. We also note that discriminative and hierarchical 

classifiers show the lowest rejection rates compared to other classes.  

 

In summary, we measured the performance of 18 classifiers using F1 scores and rejection 

rates. Our data indicate that all classifiers perform worse when annotating prenatal 

datasets. Cell populations become more discrete and distinct as they undergo 

differentiation and maturation. Consequently, cell type classifiers perform better in these 

cases as it is easier to distinguish one cell type from another. This ability of the classifiers 

is reflected by the higher F1 scores and lower rejection rates obtained when tested in 

postnatal tissues. We also conclude that discriminative classifiers perform best in prenatal 

single-cell data due to their ability to model the differences between classes based on 

their distinct features. This is particularly useful in prenatal single-cell data where the data 

is highly variable, and the class structure needs to be better defined. Furthermore, 

discriminative classifiers can incorporate prior knowledge and utilize regularization 

techniques to overcome the challenge of limited sample size and high noise levels. These 

properties make discriminative classifiers well-suited to prenatal single-cell data and 

explain why they often outperform other classifiers in these applications. 
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Figure 9  Rejection Rates of classifiers analyzing mouse cortex datasets from five sequential 
timepoints (E10: embryonic day 10 to P6: Postnatal day 6). Heatmap of proportion of rejected cells 
across all cell populations per classifier (rows) per dataset (column). Datasets segregated into the two 
classes (prenatal and postnatal). 
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3.4. Performance within a single dataset depends on the cell type 

and ongoing differentiation 
`Our previous data suggests that different cells along the differentiation spectrum have 

distinct complexity characteristics (Section 3.2). To evaluate whether the performance of 

classifiers varies according to the inherent cell properties found in progenitor, 

intermediate and differentiated cell populations, we measured the performance of 

classifiers within one dataset that contains multiple cell populations. The Anderson 

dataset is derived from the mouse brain striatum (Section II – Table 3) and is comprised 

primarily of differentiated cell types. However, this dataset also contains a proportion of 

progenitor cells and intermediate cells that are undergoing differentiation (Figure 11a).  

 

We calculated the F1 score of for each cell that was annotated by one of 13 classifiers 

(Section II – Table 1). The F1 scores were plotted as a UMAP to visualize the performance 

across cell type for each tool (Figure 11b). We observed significantly divergent F1 scores 

(ranging from 0 to 1) across cell type and across classifiers. Endothelial, interneurons, 

and committed cell types such as spiny projection neurons (SPNs) show relatively F1 
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populations per tool (plot) on the four-time series cortical datasets 
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scores (between 0.8 and 1) across most classifiers. In contrast, Neurogenic progenitors, 

OPCs, and cells with high differentiation potential show lower F1 scores across all 

classifiers. We also observed that discriminative and generative cell type classifiers such 

as SVM_rejection, SVM, SciBet, scLearn, and scPred performed well on the various cell 

types (>0.8 F1), However, hierarchical and correlation-based classifiers performed poorly 

(<0.1 F1 for some cell types).  In both cases, the cells that have higher complexity, such 

as progenitor cells, are correlated with a lower performance by cell type prediction tools 

compared to fully differentiated cell types.  

 

Altogether, these results indicate that the cell annotation of mature cells with distinct 

expression profiles that are delineated, such as endothelial and fully differentiated 

neurons, are more easily classified by the 13 classifiers we assessed. Within the same 

dataset, using automated cell type annotation we determined that cells with higher 

complexity and differentiation potential, such as progenitor cells, cannot be classified as 

accurately by the automated classifiers. These cell types are often encountered in 

prenatal datasets, where cells are actively differentiating to form a continuum of cell types 

and states. We suggest that these features of dataset complexity drive the poor F1 scores 

and prediction accuracy for these cell types.  
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Figure 11  Figure showing classifier performance across cell types in the Anderson 
dataset.  A. UMAP of the Anderson dataset (14,466 cells) colored by cell type. B. 
UMAPs showing F1 score per cell type per tool. Lighter shades indicate higher 
performance. Figure generate by Samantha Worme. 

 



 60 

3.5. Cell type prediction tool evaluation 

3.5.1. Developmental and mixed datasets show decreased performance 
across classifiers 

We next assessed classifier performance on all 17 benchmarking datasets (Section II – 

Table 3) with cross-validation, as in section III-3.3, reporting F1 scores and rejection rates 

per dataset and classifier. We also calculated the Pearson correlation of F1 scores and 

rejection rates with the validated complexity metrics N1 and F2 (section II-2.4). 

 

First, F1 scores showed a variation in performance between classifiers across the dataset 

types, as shown in the F1 heatmap (Figure 12). All classifiers, except for Spearman 

correlation and NeuCA, generally performed well in all postnatal datasets (>0.9 F1-score). 

On the other hand, most classifiers showed a significant drop in performance when 

annotating prenatal and mixed datasets. Correlation-based tools and NeuCA showed the 

worst performance when tasked with annotating prenatal datasets. CHETAH also showed 

a decreased performance in these datasets. Scmap performed significantly worse in the 

prenatal setting than in the postnatal setting. Discriminative tools showed the best 

performance overall and were the least affected class. SVM rejection showed the most 

consistent F1 scores (more than 0.96 F1-score) across all datasets regardless of type. 

Generative tools such as SciBet and scLearn also performed well. However, scLearn 

needed to be more computationally efficient and could only be run on some datasets. 

 

 A further interesting finding was the poor performance of neural network-based 

classifiers compared to other discriminative tools when tasked with annotating the 

prenatal and mixed datasets. This low-quality performance could be due to a need for a 

large number of cells to properly optimize the parameters, given the complexity of 

prenatal datasets.  Our prenatal and mixed datasets included less than 70,000 cells. 

Given the number of genes detected in these datasets (> 20000), we think we need larger 

datasets to reach optimal accuracy. Moreover, scPred, scLearn, and scClassify failed to 

run within a reasonable time due to their time complexity on several occasions, 

highlighted in the figures with NA. NeuCA also encountered runtime errors due to the 

model not converging on some datasets. This occurred exclusively with prenatal and 
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mixed datasets. Lastly, the correlation classifier exhibited inconsistent behavior in which 

it performed well on specific datasets such as the CellBench dataset, composed of 5 lung 

adenocarcinoma cell lines, but failed on other datasets such as the Mizrak postnatal 

neurogenesis dataset. This behavior is likely due to a technical problem where the 

classifier annotates all cells as one cell type. It is important to note that all classifiers 

performed well (F1=1.00) with the Cell Bench dataset, as we expected for this control 

dataset. 

 

Next, we calculated the rejection rate of the 8 classifiers with a rejection option (Figure 

13). All classifiers have a significantly lower rejection rate (less than 10%) in postnatal 

datasets (except for scmap-cell) with values close to zero. On the other hand, rejection 

rates were significantly higher in prenatal and mixed datasets (up to 91% of cells for 

scmap). Overall, scmap-cell, scmap-cluster, and scLearn show the highest rejection rate 

out of all classifiers. SVM rejection and scHPL show significantly higher rejection rates 

(on average 20%) in developmental and mixed datasets than postnatal datasets (average 

of 4%), but not to the same extent as the previously mentioned classifiers. Poor cell type 

separation in prenatal tissues may lead to lower prediction confidence when annotating. 

In these cases, classifiers reject giving a label instead of outputting a likely false label. 

 

These results confirm the hypothesis of lower classifier performance in prenatal datasets. 

We observed that classifiers perform well in postnatal datasets (>0.9 F1 score) but suffer 

from a performance drop in prenatal tissues. Moreover, many classifiers resort to rejecting 

labels due to the higher complexity of cell types in prenatal tissues. This limitation of the 

classifiers, in turn, means a large proportion of the dataset needs to be evaluated 

manually. Similar to what was reported by Abdelaal et al100, we also observed high 

performance by SVM classifiers. SVM outperformed neural network classifiers, which 

may suffer from a lack of sufficient data to properly train. Lastly, we observed a superior 
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performance of discriminative models, which performed well across prenatal, postnatal 

and mixed dataset types compared to the other classes. 
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populations per classifier (rows) per dataset (column). NA indicates the classifier could not be trained on 
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3.5.2. Performance of classifiers is correlated with complexity of 

datasets (N1 and F2) 
To systematically assess whether classifier performance worsens with increasing dataset 

complexity, we calculated the Pearson correlation (R2) between classifier performance 

scores, median F1 score and rejection rate, and complexity metrics, N1 and F2. We also 

fitted regression lines with 95% confidence intervals. We present these results in the 

scatterplots, where each dot represents a dataset. 
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Figure 13 Performance of classifiers on benchmarking datasets. Heatmap of proportion of rejected cells 
across all cell populations per classifier (rows) per dataset (column). NA indicates the classifier could not 
be trained on the corresponding dataset. Datasets segregated into the three classes (prenatal, mixed 
(prenatal and postnatal), and postnatal. 
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First, we calculated the Pearson correlation between the F1 performance score and the 

two-complexity metrics (Figure 14 and Figure 15). Several tools such as NeuCA big, 

NeuCA medium, and scClassify, display a high negative correlation (R2 ≥ 0.6) between 

performance (F1) and cell separability (N1). NeuCA big performance was most strongly 

correlated to N1 complexity (R2=0.89). Other tools also show some correlation with N1 

but to a less extent. All classifiers displayed lower correlations between their performance 

and the F2 score for genetic redundancy (Figure 15). Nevertheless, some tools, such as 

SVM, singleCellNet, scPred, and scHPL, showed a moderate correlation (R2 ≥ 0.4). The 

Correlation classifier seems to be an outlier with no relationship between the F1 

performance score and complexity measures, N1 and F2 (R2=0.04 and R2=0.018, 

respectively). This effect is likely due to its inconsistent behavior across the different 

datasets used.  

 

We also investigated the correlation between rejection rates and N1. Here, we can see a 

significant correlation (R2 ≥ 0.64) between rejection rate and N1 for most tools, such as 

SVM rejection, scLearn, and scClassify (Figure 16). This data confirms our hypothesis 

that poorly separated cells, as measured by N1, may lead to higher rejection rates in 

some classifiers. This result suggests that, in some cases, poor confidence in a cell type 

label may lead a classifier to reject a cell rather than provide a false label. 
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4. Chapter IV: Applications in cross-species predictions and 
cancer 

This chapter will explore cell type annotation tools in the context of two applications of 

single-cell RNA-seq. First, we will assess their performance for cross-species prediction, 

where cells of one species are annotated using references from a different species. Given 

the widespread use of animal models in biomedical research, cross-species annotation 

has become a common task. There now exists an abundance of well-annotated murine 

datasets. Furthermore, there are fewer challenges in generating murine datasets for 

human datasets, given ethical constraints for research with human specimens. Exploiting 

the abundance of data from one species to annotate data from other species would 

simplify annotation tasks. The second application of cell type annotation that we will 

examine involves using cell type classifiers to identify cell types of origin implicated in 

cancer development. Identifying cell types of origin can strengthen our understanding of 

the biology of tumors and guide the medical community in both the diagnosis and 

treatment of certain tumors subtypes. Annotation of tumor datasets is often called 

“projection”, since we are projecting cancer cells onto specific normal cell types from 

normal tissue reference datasets. For these two applications, we use the computationally 

efficient cell type classifiers implemented in scCoAnnotate (section II-2.5.2). This method 

involves training and testing classifiers using both mouse and human datasets (Figure 

17). 

 

 

 

 
 
 
 
 
 
 

Figure 17 Workflow of the cross-species cell type prediction experiments. 
For each human-mouse pair, two experiments were performed. 
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4.1.  Assessment of cell type annotation tools for cross-species 
predictions 

We assessed 12 cell type annotation tools and their consensus, implemented in 

scCoAnnotate, on two pairs of mouse and human datasets (section II – Table 3). The 

tools selected were ACTINN, CHETAH, correlation, SciBet, scHPL, scmap-cell, scmap-

cluster, scPred, SingleR, SingleCellNet, SVM, and SVM rejection. Some tools, such as 

scLearn and scClassify, were excluded for computational reasons (failure of the tool, high 

runtime requirement). Moreover, NeuCA failed to converge in these experiments. We first 

assessed these tools on the Baron pancreatic datasets105 and then applied the same 

tools to the Allen Brain datasets145,146. These datasets are well suited for this task as they 

profile the same tissues in mice and humans. In addition, these datasets profile similar 

cell types across the two species with few inconsistencies in labeling, such that most cell 

types present in the mouse dataset can also be found in the human dataset. For our 

analysis, we maintained the inconsistent labels when encountered to assess if classifiers 

can annotate these cells as similar cell types present in the training reference. 

 

4.1.1. Cross-species prediction assessment using Baron pancreatic 

datasets 
We first trained the classifiers on the human Baron pancreatic reference, which contains 

14 distinct cell types. With only 13 cell types, the Baron mouse pancreatic dataset 

contains fewer cell types than the human reference. Moreover, not all cell types are the 

same as the human reference. For example, the mouse dataset contains B cells and 

immune_other labels, which are absent from the human reference. On the other hand, 

the human reference contains mast cells, epsilon cells, and acinar cells, which are not 

present in the mouse dataset. The inconsistent labels were maintained in the training and 

query datasets to assess the performance of classifiers when they encountered a cell 

type missing from the reference. We used the trained classifiers to annotate the mouse 

pancreatic dataset. We then visualized the predictions using a confusion matrix (Figure 



 70 

18), which shows the proportion of each mouse cell type (rows in the heatmap denoted 

as ground truth) projected to human cell types in the reference (columns).  

 

As expected, the performance of cell type annotation tools displayed high variance across 

the different cell types (Figure 18). SciBet and SVM were the best performers, performing 

well on the cell types common between the reference and query datasets. Moreover, for 

the mouse cell types that were not present in the reference, such as B-cells and 

immune_other, SciBet predicted the corresponding cells as immune cells present in the 

reference and not as random cell types. On the other hand, SVM had the most correct 

predictions in the cell types common between the reference and query but had worse 

performance than SciBet in the cell types absent from the reference. For example, B-cells 

were projected as Beta cells.  

 

Conversely, most other tools performed poorly in this experiment. For example, tools such 

as scPred, CHETAH, scmap-cell, and scmap-cluster could not project most mouse cells 

into a cell type present in the human reference and therefore did not assign any labels. 

Other tools, such as SingleCellNet and correlation, performed well on certain cell types, 

such as endothelial cells and macrophages. Still, they could accurately project other cell 

types, such as Alpha and Delta cells. Not only did we observe a high variance in 

performance between tools, but the performance of a particular tool in predicting different 

cell types was also highly variable. This data suggests that some cell types are easier to 

classify due to their distinct gene expression profiles. 

 

Next, we repeated the same experiment with the reference and query dataset reversed. 

In this experiment, we trained classifiers on the mouse dataset and then annotated the 

human dataset (Figure 19). Here, we observed similar performance trends as the 

previous experiment, although the performance of classifiers was lower than when we 

used a human reference to annotate mouse data. The proportions of certain cell types 

were higher in the mouse than in the human datasets, which may play a role in the poorer 

performance observed in this experiment. Specifically, the mouse dataset contained 

mostly alpha and beta cells, with fewer ductal cells than its human counterpart.  
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Similar to previous results, SVM and SciBet demonstrated the best overall performance 

across all cell types. Correlation also performed relatively well in this experiment. On the 

other hand, all other tools perform poorly, particularly the ones with a rejection option. 

scHPL, scmap-cell, scmap-cluster, and scPred did not annotate most of the query 

dataset. These results demonstrate that, in many occasions, classifiers could assign a 

high-confidence label when annotating 
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Figure 18 Confusion matrices comparing projected cell types in a mouse pancreatic dataset based on 
human pancreatic reference. For each heatmap, proportions were computed row-wise and represent the 
fraction of cells from each mouse pancreatic cell type which were assigned to each human pancreatic 
label. Each heatmap represents the predictions from one single-cell annotation method. 
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Beta

Delta

Gamma
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0.01 0.00 0.00 0.72 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20

0.27 0.00 0.00 0.33 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29

0.09 0.00 0.00 0.56 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23

0.00 0.00 0.00 0.84 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13

0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.03

0.00 0.00 0.00 0.00 0.02 0.24 0.00 0.24 0.08 0.00 0.00 0.00 0.00 0.42

0.00 0.00 0.00 0.01 0.09 0.00 0.01 0.65 0.02 0.00 0.00 0.00 0.00 0.23

0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.81 0.00 0.00 0.00 0.00 0.00 0.14

0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.08 0.46 0.00 0.00 0.00 0.00 0.38

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.98

0.00 0.00 0.00 0.00 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12

0.00 0.00 0.00 0.00 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43

0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.56 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33

CHETAH

ground truth

Alpha

Beta

Delta

Gamma

Ductal

Endothelial

Quiescent_stellate
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0.99 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.95 0.01 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.44 0.00 0.45 0.09 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.33 0.00 0.01 0.65 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.01 0.00 0.00 0.38 0.61 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.99 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.92 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.91 0.02 0.02 0.05 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.76 0.24 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.71 0.00 0.00

0.00 0.00 0.00 0.00 0.88 0.00 0.00 0.01 0.00 0.00 0.00 0.11 0.00 0.00

0.61 0.00 0.11 0.22 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SciBet

ground truth

Alpha

Beta

Delta

Gamma
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Endothelial
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0.95 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.30 0.66 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.42 0.12 0.44 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.74 0.03 0.16 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.97 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.03 0.00 0.00 0.00 0.01 0.00 0.66 0.29 0.01 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.06 0.92 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.04 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.00 0.12 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.57 0.29 0.00 0.00

0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.56 0.00 0.39 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Correlation

ground truth

Alpha

Beta

Delta

Gamma

Ductal

Endothelial
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0.78 0.00 0.05 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12

0.00 0.22 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.76

0.00 0.01 0.86 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05

0.01 0.00 0.04 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.85

0.01 0.00 0.01 0.00 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.64

0.00 0.00 0.00 0.00 0.00 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16

0.02 0.00 0.01 0.00 0.00 0.00 0.01 0.08 0.00 0.00 0.00 0.00 0.00 0.88

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.88

0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.02 0.00 0.65

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.92

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.14 0.00 0.71

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99

0.00 0.00 0.11 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.78

scHPL

ground truth

Alpha

Beta

Delta

Gamma
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0.16 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.75

0.00 0.53 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44

0.00 0.07 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80

0.01 0.06 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.81

0.00 0.01 0.00 0.00 0.20 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.77

0.00 0.00 0.00 0.00 0.00 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16

0.00 0.00 0.00 0.00 0.00 0.02 0.20 0.01 0.00 0.00 0.00 0.00 0.00 0.77

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.00 0.00 0.00 0.54

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.80

0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.76 0.00 0.20

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.14 0.00 0.29

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

scPred

ground truth

Alpha

Beta

Delta

Gamma

Ductal

Endothelial

Quiescent_stellate
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0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51

0.01 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88

0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98

0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95

0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.52

0.00 0.00 0.00 0.00 0.00 0.37 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.62

0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.13 0.01 0.00 0.00 0.00 0.00 0.83

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.14 0.00 0.00 0.00 0.00 0.36

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.00 0.77

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.00 0.02 0.00 0.36

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.43 0.00 0.43

0.00 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.08 0.00 0.00 0.02 0.00 0.56

0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.94

scmapcluster

ground truth

Alpha

Beta

Delta

Gamma

Ductal

Endothelial
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0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04

0.19 0.16 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63

0.05 0.00 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43

0.07 0.00 0.15 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.75

0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04

0.00 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09

0.02 0.00 0.00 0.00 0.01 0.00 0.28 0.02 0.00 0.00 0.00 0.00 0.00 0.67

0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.07 0.01 0.00 0.00 0.00 0.00 0.87

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.85 0.00 0.00 0.00 0.15

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.96

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.00 0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15

0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56

scmapcell

ground truth

Alpha

Beta

Delta

Gamma

Ductal

Endothelial

Quiescent_stellate
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0.98 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.57 0.29 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12

0.32 0.01 0.53 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12

0.81 0.11 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05

0.01 0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05

0.01 0.00 0.00 0.00 0.00 0.94 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.04

0.04 0.00 0.00 0.00 0.02 0.00 0.35 0.35 0.00 0.00 0.00 0.00 0.00 0.24

0.03 0.00 0.00 0.00 0.04 0.01 0.20 0.62 0.00 0.00 0.00 0.00 0.00 0.10

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.85 0.00 0.00 0.02 0.11

0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96

0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86

0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03

0.78 0.00 0.11 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06

SingleCellNet

ground truth

Alpha

Beta

Delta

Gamma

Ductal

Endothelial

Quiescent_stellate

Activated_stellate

Schwann

Macrophage

Mast
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0.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00

0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00

0.82 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00

0.91 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.56 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.02 0.85 0.00 0.00 0.00 0.00 0.00

0.02 0.00 0.00 0.00 0.00 0.00 0.04 0.28 0.65 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.43 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.75 0.00 0.00 0.04 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.00 0.00 0.12 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.71 0.00 0.00 0.29 0.00 0.00

0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00

0.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.00
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Alpha

Beta

Delta

Gamma

Ductal

Endothelial

Quiescent_stellate

Activated_stellate

Schwann

Macrophage

Mast

T_cell

Acinar

Epsilon

Al
ph

a
Be

ta
De

lta
G

am
m

a
D

uc
ta

l
En

do
th

el
ia

l
Q

ui
es

ce
nt

_s
te

lla
te

Ac
tiv

at
ed

_s
te

lla
te

Sc
hw

an
n

M
ac

ro
ph

ag
e

T_
ce

ll
B_

ce
ll

Im
m

un
e_

ot
he

r
U

na
ss

ig
ne

d

proportion

0

0.5

1

0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

0.01 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24

0.00 0.00 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10

0.01 0.00 0.00 0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44

0.01 0.00 0.00 0.00 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06

0.01 0.00 0.00 0.00 0.00 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15

0.03 0.01 0.01 0.00 0.01 0.00 0.08 0.04 0.00 0.00 0.00 0.00 0.00 0.82

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.76 0.00 0.00 0.00 0.00 0.00 0.23

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.75 0.00 0.00 0.00 0.18

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.00 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14

0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.83

SVM__Rejection

ground truth

Alpha

Beta

Delta

Gamma

Ductal

Endothelial

Quiescent_stellate

Activated_stellate

Schwann

Macrophage

Mast

T_cell

Acinar

Epsilon

Al
ph

a
Be

ta
D

el
ta

G
am

m
a

D
uc

ta
l

En
do

th
el

ia
l

Q
ui

es
ce

nt
_s

te
lla

te
Ac

tiv
at

ed
_s

te
lla

te
Sc

hw
an

n
M

ac
ro

ph
ag

e
T_

ce
ll

B_
ce

ll
Im

m
un

e_
ot

he
r

U
na

ss
ig

ne
d

proportion

0

0.5

1

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.06 0.93 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.03 0.01 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.07 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.01 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.01 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.03 0.02 0.01 0.00 0.02 0.00 0.54 0.37 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.96 0.00 0.00 0.00 0.00 0.00 0.00

0.08 0.00 0.00 0.00 0.46 0.00 0.08 0.31 0.08 0.00 0.00 0.00 0.00 0.00

0.07 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.02 0.02 0.00

0.00 0.04 0.00 0.04 0.64 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00 0.00

0.14 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.57 0.00 0.00

0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.67 0.00 0.28 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SVM

ground truth

Alpha

Beta

Delta

Gamma

Ductal

Endothelial

Quiescent_stellate

Activated_stellate

Schwann

Macrophage

Mast

T_cell

Acinar

Epsilon

Al
ph

a
Be

ta
D

el
ta

G
am

m
a

D
uc

ta
l

En
do

th
el

ia
l

Q
ui

es
ce

nt
_s

te
lla

te
Ac

tiv
at

ed
_s

te
lla

te
Sc

hw
an

n
M

ac
ro

ph
ag

e
T_

ce
ll

B_
ce

ll
Im

m
un

e_
ot

he
r

U
na

ss
ig

ne
d

proportion

0

0.5

1

Figure 19 Confusion matrices comparing projected cell types in a human pancreatic dataset based on 
mouse pancreatic reference. For each heatmap, proportions were computed row-wise and represent the 
fraction of cells from each human pancreatic cell type which were assigned to each mouse pancreatic label. 
Each heatmap represents the predictions from one single-cell annotation method. 



 74 

4.1.2.  Assessment using the Allen brain datasets 
To ensure the reproducibility and generalizability of results, we repeated the previous 

experiments using the Allen brain datasets originating from the adult mouse and adult 

human cortices (Section I-Table 3). First, we trained the classifiers on human brain data 

and used the trained models to annotate mouse brain data. Most cell types were common 

to both datasets. However, specific cell types were present in one dataset and absent in 

the other. For example, macrophages were present in the human dataset, whereas the 

mouse dataset contained microglia but no macrophages. Other distinct cell types include 

oligodendrocytes progenitor cells (OPCs) and pericytes, found exclusively in the mouse 

dataset, and smooth muscle cells (SMC), found only in the human dataset. 

 

First, we noted that SciBet had the best performance overall across all the cell types 

(Figure 20). However, we observed poor performance of scHPL, CHETAH, scPred, 

scmap-cell, and scmap-cluster. These tools refrained from annotating all cells and left 

them unassigned. Most of the classifiers successfully identified astrocytes, glutamatergic, 

and GABAergic neurons (but showed decreased performance in other cell types). 

Moreover, we also noticed that most tools classified some of the oligodendrocytes as 

OPCs. OPCs are progenitors of the oligodendrocyte cell population and likely have 

transcriptional similarities. As such, it is expected that this projection is not random or 

incorrect. We also noted that most classifiers projected microglia as macrophages, the 

closest cell type found in the reference. 

 

Next, we trained the classifiers on the mouse reference and annotated the human 

reference (Figure 21). As expected, the same tools with a rejection option failed to 

annotate cells. Unexpectedly, SVM rejection also performed poorly in this experiment. 

However, we observed that some tools successfully annotated human cells, such as 

correlation and SingleR. SciBet and ACTINN also performed well, but SciBet had poorer 

performance on glutamatergic neurons. As expected, tools that performed well overall 

labeled OPCs (not present in the reference) as oligodendrocytes and microglia as 

macrophages. This prediction is biologically relevant because of their respective 

transcriptional similarities. Moreover, classifiers mostly predicted pericytes as vascular, 
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endothelial, or smooth muscle cells. Together, these cell types form the brain vasculature. 

Lastly, we observed a decreased performance of classifiers in brain datasets compared 

to pancreatic datasets. This may be due to the higher cell type similarity in brain cell 

tissues to the pancreas, which could cause incorrect annotations. 
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Figure 20  Confusion matrices comparing projected cell types in a mouse brain dataset based on human 
brain reference. For each heatmap, proportions were computed row-wise and represent the fraction of cells 
from each mouse brain cell type which were assigned to each human brain label. Each heatmap represents 
the predictions from one single-cell annotation method. 
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Figure 21 Confusion matrices comparing projected cell types in a human brain dataset based on mouse 
brain reference. For each heatmap, proportions were computed row-wise and represent the fraction of cells 
from each human brain cell type which were assigned to each mouse brain label. Each heatmap represents 
the predictions from one single-cell annotation method. 
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4.1.3 The consensus approach outperforms any classifier and yields 

relevant predictions 
We next sought to investigate the applicability of an ensemble consensus prediction in 

the cross-species setting. The use of consensus prediction in machine learning (ML) 

classifiers for cell type annotation has several benefits. First, combining the predictions 

of multiple classifiers can reduce the variance and improve the overall accuracy of the 

cell type annotation. Second, it can also address the limitations of individual classifiers, 

such as overfitting or limited performance on specific subpopulations. Third, consensus 

prediction can also provide a more robust and reliable classification, as it accounts for the 

inherent noise and variability in the data. By combining multiple classifiers' strengths, a 

consensus approach can improve performance and confidence in cell type annotation in 

scRNA-seq datasets. Here, we utilized the consensus approach implemented by our 

pipeline scCoAnnotate. The consensus approach uses a simple majority vote of 12 

classifiers (Section II – 2.5.2) to call a prediction. In cases where the vote on a label is 

tied, the result would be an "unsure" label. We tested our pipeline using the same datasets 

from the previous two sections.  

 

First, using the Baron pancreatic datasets, the consensus prediction of mouse cells when 

using a human pancreatic reference correctly predicted most cell types (Figure 22a). 

Since the human reference did not contain B cells, so mouse B cells were annotated as 

T cells. In addition, Immune_other cells were predicted as macrophages. This is valuable 

because the absent cells were classified as the next biologically similar cell type. 

However, some predictions, such as a proportion of B and T cells, were annotated as 

beta and gamma cells. Overall, the consensus predictions for this dataset yielded high 

concordance with the actual labels compared to any individual tool (Figure 18). 

 

On the other hand, the consensus approach yielded less accurate predictions when we 

used the mouse pancreatic reference to annotate the human reference, particularly for 

Beta and Gamma cells. From Figure 22b, we observe that the consensus prediction in 

this dataset still outperformed any single tool (Figure 19), with most inconsistencies 

occurring between highly similar cell types, which we expected. For example, human 
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quiescent stellate cells were predicted as a mix of activated and quiescent mouse cells. 

Moreover, T cells were predicted to be a mix of T and B cells. All human acinar cells were 

annotated as ductal cells (the most similar cell type), and most epsilon cells were 

annotated as alpha and delta cells which are also endocrine cells. 

 

The consensus approach yielded high prediction concordance when annotating the 

mouse Allen brain dataset using the human cortex reference (Figure 22c). We can 

observe that most cells were annotated as relevant cell types found in the reference. For 

example, mouse Oligodendrocytes were partially annotated as OPC, and mouse 

macrophages were annotated as human microglia. However, we noticed that vascular 

and leptomeningeal cells (VLMCs) were annotated as human pericytes instead of human 

VLMCs. These cell types, in addition to SMCs, are from the same lineage. 

 

Lastly, we used the consensus approach to annotate the human cortex cells using a 

mouse cortex reference. This experiment yielded the most accurate predictions (Figure 
22d). Almost all human cell types were assigned correctly to their murine analog. 

However, only human glutamatergic neurons had a low concordance (58%), with the 

remaining cells in that cluster having no consensus. The lower concordance for these 

neurons may be due to the higher complexity of human neuronal cells. The added 

complexity could make assigning these cells to simpler murine neuronal cell types more 

challenging.  

 

 

In conclusion, cross-species cell type classification in scRNA-seq datasets can pose 

significant challenges due to reference-query inconsistencies. Moreover, differences in 

gene expression patterns and cellular characteristics between species can pose unique 

challenges for cell annotation tools. In such cases, it is common for some machine 

learning tools to fail while others provide accurate results. A consensus approach could 

help address these challenges by combining the predictions of multiple tools and 

leveraging their strengths to produce a more robust and precise classification. However, 

the choice of consensus approach and the specific methods used must be carefully 
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considered and modified to account for the specific requirements of the project and the 

limitations of each tool. 
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Figure 22  Consensus predictions for a. using a human pancreatic reference to 
annotate mouse pancreatic cells; b. Using a mouse pancreatic reference to 
annotate human pancreatic data; c. Using a human cortex reference to 
annotate mouse cortex cells; d. Using a mouse cortex reference to annotate 
human cortex cells. Consensus labels are the majority prediction of the 12 
classifiers, cells with no majority prediction as left unassigned 
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4.2. Identification of the closest normal cell type for high grade 

gliomas using automated approaches 

Cell type identification is crucial for understanding the underlying biology and developing 

effective treatments for many types of cancer, including pediatric brain tumors. Pediatric 

brain tumors are a heterogeneous group of diseases, and survival varies widely with the 

tumor subtype147–149. High-grade gliomas, a subset of tumors presumed to originate in 

glial cell types, represent the greatest cause of cancer-related childhood mortality 150,151. 

These tumors are characterized by their aggressiveness, resistance to therapy, and fast 

progression. Histone-mutant gliomas are a subset of these cancers that are caused by 

mutations in the genes encoding Histone 3 proteins, which play a crucial role in regulating 

gene expression. For these tumors, the context of the cell type of origin is critical to 

understanding tumorigenesis. Histone-mutant pediatric gliomas are thought to arise from 

cells that have stalled differentiation152. Moreover, different histone mutations that occur 

in distinct brain regions and involve different cell types can lead to distinct tumor types. 

For example, Histone 3.1, 3.2, and 3.3 K27M high-grade mutant gliomas are thought to 

arise from OPC-like cells, whereas ependymomas arise from ependymal-like 

cells33,34,153,154. Understanding cell-of-origin and cellular hierarchies within tumors is 

critical for studying tumor biology. An accurate projection of cell types within these tumors 

can provide valuable insights into their molecular and functional diversity.  

This section will discuss the application of cell type annotation tools to identify cell types 

of origin in pediatric high-grade glioma scRNA-seq datasets of various tumor types. First, 

we will present the projections obtained using a consensus of classifiers trained on the 

developing mouse brain using scCoAnnotate (section II-2.5.2). Second, we present the 

validation of these projections by assessing the agreement between mouse projections 

and projections obtained using a human thalamic fetal atlas as a reference. We performed 

this process on a thalamic subset of the samples for which the relevant normal human 

brain data were available. The process is depicted in the flowchart below (Figure 23). 
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4.2.1. Cell type projections of high-grade glioma samples using a 

developmental mouse atlas 
We used scCoAnnotate to annotate 47 sc/snRNA-seq datasets obtained from 43 patients 

using 10X Genomics technologies34 (Section II - Table 3). Three classifiers (SVM, 

Spearman Correlation, and SciBet) were trained on the mouse developmental atlas and 

used to identify cell types in 176,934 cells. These classifiers were chosen because of their 

computational performance and suitability for tasks where there is large reference-query 

mismatch (i.e. annotation of cancer cells using normal cells). We annotated cells when 

the correlation method agreed with at least one of the two other classifiers. In addition, 

we excluded cells with no consensus label from downstream analyses. The results are 

summarized below (Figure 24). 

 

Figure 23 Workflow for identifying cell types in high grade gliomas using the mouse 
developmental atlas. Verification of predictions was performed on a subset (thalamic 
samples) using a human fetal thalamic atlas 
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As expected, H3.3K27M mutant gliomas consisted of OPC and oligodendrocyte-like cells, 

consistent with previous studies33,34,149,150. In contrast, PFA-EP tumors showed a clear 

ependymal-like state. In addition, H3.1/2K27M mutant tumors showed a unique profile of 

cell type predictions (Figure 24a). A subset of samples showed a robust ependymal-like 

signal later enriched in specific genes conferring the ependymal status (Figure 24b). 

Moreover, projections of H3.1/2K27M gliomas also showed strong astrocytic signals, 

confirming the unsupervised analysis of the samples performed by other authors34. 
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Figure 24 .      a. UMAP for tumor malignant cells per tumor type colored by projected cell type obtained using 
the consensus approach:  HGG: high grade glioma, PFA posterior fossa ependymoma. Cells with no 
consensus and with high G2/M cell cycle scores were colored in orange. Cells with no consensus but low 
G2/M scores are colored in light gray.  b. Same UMAPs as figure 24.a, after removing cells with no cell type 
consensus. c. Number of malignant cells per sample per tumor class as in a and b. d. Stacked bar plots 
showing the cell type projection composition of each sample per tumor class. 
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4.2.2. Verification of mouse projections using a human thalamic atlas 
To verify the cross-species projections obtained using a mouse reference, we annotated 

a subset of thalamic HGG tumor samples using the consensus classifiers trained on either 

a human prenatal thalamic reference (12 donors) or the Jessa 2022 Mouse 

Developmental Atlas34,143,144. We defined the human consensus label in the same manner 

as the mouse consensus label, requiring that the Correlation prediction agreed with at 

least one other method, SVM or SciBet, to produce a consensus label. Otherwise, the 

cell type was labeled as uncertain. We then generated UMAPs to visualize the projections 

of malignant cells using the mouse and human atlases (Figures 25 and 26). 

 

UMAPs of mouse and human projections (Figure 25) show similar annotations of clusters 

with predominant OPC and oligodendrocyte projections. However, we noticed that using 

the mouse atlas tended to project more cells as astrocytes (Figure 25b). Moreover, mouse 

projections had significantly more uncertainty, represented by a larger number of 

unlabeled cells (Figure 26). With both the human and mouse atlas training sets, the most 

frequent projections are OPCs and oligodendrocytes with some astrocytes and glial 

progenitors (Figure 26). Mouse-based projections had double the uncertain cells 

compared to human-based projections. Species-specific gene signatures may make it 

more difficult to identify cell types. This effect may be particularly striking in malignant 

cells where aberrant expression profiles with gene copy number variation are more 

frequent. 

 

Finally, we sought to quantify the concordance between the two consensus projections 

per cell type. We used the human consensus projections as ground truth and compared 

them to the mouse consensus projections. For the most prevalent cell types (OPCs and 

oligodendrocytes), the agreement between the projections obtained using the mouse 

reference and the projections obtained using the human fetal reference is high (>90%, 

Figure 27). The remaining cells account for a low percentage of total cells. We calculated 

the F1 scores per cell type to examine the performance of the classifiers (Figure 28). 

Median F1 was 93% which is significantly higher than what was obtained using only the 

correlation method (78%). Moreover, for the abundant cell types that are found in this 
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class of tumors, cell type F1 scores were high (>94% for OPC and oligodendrocytes). 

The cell types that are the least abundant had lower F1 scores, but this effect was 

negligible on the overall performance. The lowest F1 scores represent cell known to 

present biologically challenging situations for cell type annotation, such as differentiating 

cell types and progenitors. In this case, the radial glial cells (RGCs) are plastic and thus 

transcriptionally variable, the vascular and other clusters have high heterogeneity, and 

the proliferating OPCs have a cell cycle signal affecting their gene expression. 

 

In conclusion, we developed and validated a consensus method using multiple ML 

classifiers for cross-species annotation of high-grade glioma datasets. We demonstrated 

that the annotation performance of the consensus method was more accurate than using 

one individual method. Moreover, we identified difficulties encountered by the classifiers 

when annotating human datasets from a mouse reference. Understanding these 

obstacles to cross-species annotation is critical, as human tissues are often limited and 

less accessible due to ethical constraints.   

 

Cancer cell type annotation or projection is critical in analyzing tumor single-cell data. It 

allows researchers to understand the composition and diversity of cancer populations in 

cell type dependent tumors such as pediatric brain tumors. Machine learning (ML) 

algorithms are widely used for this task due to their ability to identify complex patterns in 

large datasets accurately. However, inconsistencies in cell type annotations arise when 

comparing individual annotation tools. To address this issue, consensus approaches can 

be used to integrate the predictions of multiple ML models. This method produces more 

robust and accurate cell type annotations. The improved accuracy and robustness of cell 

type predictions demonstrate the feasibility and importance of consensus approaches in 

cancer cell type annotation. Ultimately, increasing the precision of cell type annotation 

may lead to a more comprehensive understanding of cancer heterogeneity and its 

implications for diagnosing and treating cancer. 
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Figure 25 a. left: UMAP of malignant cells colored by consensus mouse projections 
including cells with no consensus. right: UMAP of malignant cells’ mouse projections 
excluding cells with no consensus. b. left: UMAP of malignant cells colored by consensus 
human fetal projections including cells with no consensus. right: UMAP of malignant cells’ 
human fetal projections excluding cells with no consensus 
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Figure 27 Confusion matrices comparing consensus projection labels obtained using a mouse 
prenatal reference and a human fetal atlas on H3.3K27M thalamic HGG.  Proportions were 
computed row-wise and represent the fraction of cells from each mouse label which were 
assigned to each human label. 

Figure 28 F1 scores per cell type when using human 
labels as ground truth and mouse labels as predictions. 
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5. Chapter V: Discussion 
Single cell RNA sequencing has led to new discoveries in the field of genomics 25,27,32–

34,61,156,157. With the advent of increasingly large data sets and accessibility of sequencing, 

novel methods are required to analyze the data. In particular, the task of inferring cell type 

identity through the transcriptome of thousands of single cells lends itself to machine 

learning based approaches70.  Machine learning-based cell type annotation became 

necessary in single cell genomics as the technology and amount of data continues to 

grow exponentially. Computational biologists are releasing new packages and algorithms 

to exploit abundant scRNA-seq data. As of 2023, more than 140 cell type annotation tools 

have been published or submitted to journals as per scRNA tools87. While these tools 

have shown some potential in individual studies, there are limited studies assessing the 

these tools on multiple, complex datasets containing tens of thousands of cells100,103.  No 

studies in this field have systematically examined these tools using complex datasets, 

such as prenatal datasets, which pose significant challenges for annotation. Furthermore, 

most published studies did not explore how ML-classifier tools annotate in when reference 

and query datasets are derived from different species or tumors. These tasks are 

essential in the cancer biology field where animal models are frequently used, and human 

tissues may be limited.  

 

Here, I present my work investigating how several published cell type annotation tools 

perform with complex datasets and their related challenges. First, I implemented several 

metrics to measure the complexity of a datasets according to three pre-defined 

characteristics (Chapter 3). When applying these metrics to prenatal and postnatal 

datasets, we observed that prenatal and mixed (containing both prenatal and postnatal 

data) datasets indeed show higher complexity than postnatal datasets. Next, I compared 

the performance of cell type annotation tools using datasets of varying complexity. We 

observed that classifiers performed less well when analyzing the more complex prenatal 

and mixed datasets. To address the limitations of individual classifiers, I designed a 

consensus-based cell type annotation pipeline (scCoAnnotate). We used this pipeline to 

efficiently classify cell types and study the performance of cell type annotation tools for 

cross-species cell type annotation (Chapter 4). Cross-species cell type annotation can 
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have a tremendous impact on our ability to leverage existing references, especially in 

fields that are reliant on animal models. Here, we demonstrated that most cell type 

annotation tools we analyzed performed poorly for cross-species predictions. We 

conclude that any single annotation method does not perform uniformly well across 

datasets of high complexity, such as prenatal datasets, or when annotating across 

species. 

 

However, despite the poor performance of individual tools, our data indicates that using 

a consensus agreement between different tools can improve cell type annotation 

performance. To this end, we used scCoAnnotate to identify cell types in patient-derived 

high-grade glioma (HGG) data bearing H3.1 and H3.3 K27M histone mutations (Chapter 

4). Cell type projections using a mouse reference dataset showed distinct oligodendroglial 

populations in this group of cancers 33,34,153,154. These predictions were validated against 

a human fetal atlas. Overall, we find that most cell type annotation methods do not 

perform uniformly well across biologically distinct datasets. In the following sections I will 

discuss the challenges of complex prenatal data sets, cross-species annotations and 

cancer cell type annotation.  

 

5.1. Intrinsic properties of prenatal datasets increase data complexity 
Limited work has been done to objectively study dataset complexity in scRNA-seq for the 

task of annotation. Currently used metrics were not highly discriminant across datasets 

such as the inter-cluster similarity correlation metric which displayed similar values across 

datasets of various complexity 100. Here, we aimed to describe the complexity of prenatal 

datasets in a supervised manner and according to pre-defined characteristics. We applied 

two metrics, N1 and F2, to quantify dataset complexity. N1 and F2 have previously been 

used as measures of dataset complexity in machine learning. For example, previous 

studies used these complexity metrics to optimize the complexity of synthetic datasets 

created for efficient classifier evaluation and parameterization158. Moreover, researchers 

also used N1 and F2 to increase the effectiveness of feature selection. In this case, 

including only features shown to decrease dataset complexity would theoretically lead to 

better classifier performance159. Some studies suggest changing classifiers based on 
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data complexity measures such as N1. High N1 values indicate complex class 

boundaries, which might necessitate nonlinear methods160. Using these metrics, we 

demonstrated that datasets derived from cells of prenatal tissues possess complex 

features, such as increased redundancy of cell types and gene expression programs 

across cell types, and a continuity of cell type and state. Using synthetic datasets, we saw 

that complexity metrics adapted to single-cell data capture their complexity and quantify 

both prenatal, postnatal and mixed datasets containing tissues from both pre- and 

postnatal tissues (Figure 3). We also examined the metric H1, a measure of lineage 

hierarchy; however, we not able to validate H1 using our synthetic datasets (Figure 3). 

 

We measured the complexity of 5 prenatal, 4 mixed and 8 postnatal mouse and human 

datasets using the three metrics (Figures 4-6). Our results indicate that prenatal datasets 

possess significantly higher complexity than their postnatal counterparts. Cells in 

developing organs often exhibit plastic intermediate states in which they are continuously 

transitioning from one cell type to another. The existence of transient intermediate cell 

states presents a challenge for cell type annotation classifiers. All tools considered in this 

thesis must assign a discrete label to each cell. This limitation to the classifiers may lead 

to different labels for intermediate transitioning cells that express gene signatures from 

two cell types in a lineage. In turn, the discrete labeling of intermediate cells would lead 

to complex class boundaries and thus higher N1 values. Furthermore, differentiating cells, 

abundantly present in prenatal tissues, often express numerous genes that are common 

to multiple cell types. The co-expression of overlapping cell type specific gene signatures, 

measured by F2, further complicates classifier annotation. In the datasets we examined, 

the H1 metric, used to assesses the hierarchy, did not capture any significant hierarchical 

structure in prenatal or postnatal datasets. This result was surprising given it is well 

established that hierarchical lineages exist throughout brain development 161. One 

possibility for the lack of detectable structures might be the stringent conditions we 

imposed in the H1 metric calculation. Hierarchical structures can be present in any 

dataset, and it is unclear if their presence is indicative of a true biological lineage.  
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Importantly, there are limitations to these dataset complexity metrics. Many factors can 

lead to an overestimation103 or underestimation of the true dataset complexity. An 

example of a factor that may lead to overestimation of complexity is the sensitivity of N1 

to label noise. In this case, it would be capture weak labeling instead of true biological 

complexity. Many of the datasets we have used in our benchmarking effort have some 

annotation limitations. One example is the cerebellum dataset121 that had the 

identification and annotation of clusters performed jointly over all samples instead of on 

a per-sample basis. This method may lead to coarser labeling and hence more label 

noise, ultimately, affecting the complexity metrics. Nevertheless, these complexity metrics 

can still serve as a useful diagnostic measure to identify label noise and quality. Future 

investigation into dataset complexity assessment should tackle unsupervised metrics that 

are insensitive to external factors such as label quality, a common problem in scRNA-seq 

datasets that are labelled manually.  

 

5.2. Cell type annotation tools show significant decreased 

performance when annotating prenatal datasets 
Although some studies have assessed the performance of cell type annotation tools on 

scRNA-seq datasets100,101,103, these studies did not include systematic benchmarking of 

cell type prediction tools using prenatal datasets. We showed that prenatal datasets are 

quantifiably more complex and hypothesized that cell type annotation tools will exhibit 

decreased performance when annotating these complex datasets. The median F1 

scores, a measure of classifier performance, decreased significantly for classifiers such 

as scmap, correlation, and CHETAH, when annotating prenatal datasets (Figure 12). In 

contrast, other tools such as SVM and scPred perform relatively well on both pre- and 

postnatal dataset (Figure 12). Hierarchical tools such as scHPL and scClassify also 

performed well across the datasets but were slower than SVM. Generally, correlation and 

marker-based methods had a poor performance in the developmental setting. All 

classifiers were unable to accurately label certain prenatal datasets that were noted to 

have inadequate labeling (such as Cerebellum)121. The performance discrepancy 

between prenatal and postnatal datasets was further highlighted when we investigated 

mouse cortical data from development to maturity (E10 to P6). Neural network methods 
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failed in some instances could not outperform more straightforward approaches such as 

SciBet and SVM. This data is supported by a recent study that found that deep learning 

tools such as neural networks do not outperform classical ML tools for cell type 

annotation99. Overfitting of these neural networks on a relatively small number of training 

data or 'data greediness', in which neural networks require more data to generate proper 

models, may be responsible for this effect. In agreement with this hypothesis, we 

observed that NeuCA failed to converge in several datasets. Neural networks also need 

to be trained on a more significant number of parameters compared to a few kernel 

methods such as SVM. This requirement may also contribute to the lower performance 

of these tools when annotating prenatal datasets. Regardless, neural networks remain a 

promising tool for the task of cell type prediction. With the generation of larger training 

references, the training size bottleneck may become less of a problem and these tools 

will be able to be further exploited. 

 

These findings confirm previous studies100 where linear SVM with rejection was found to 

be the most consistent classifier across various scenarios. Although SVM rejection can 

refrain from labeling a proportion of the dataset (rejection), the proportion of rejected cells 

was not as high as other classifiers (such as scmap). Rejection, in many cases, can be a 

beneficial strategy to flag potentially false annotations and manually inspect them.  

Furthermore, SVM rejection showed the highest performance and confidence in the cells 

it annotated (>0.96 F1 score). An additional study further reinforced these findings by 

recommending linear SVM and logistic regression as the classifiers with the best 

performance and lowest run time when tested against nine other baseline 

classifiers162. SVMs are generally versatile classifiers that apply kernel functions to 

transform the data and then establish decision boundary hyperplanes that can be used 

to separate classes. Their ability to adapt to complex class borders with hyperparameter 

tuning makes them less likely to overfit. This is perhaps one of the reasons why in our 

study, SVM was the highest-performing tool for cell type annotation across a variety of 

dataset types including prenatal datasets which have not been used in prior 

benchmarking studies (Figures 12-13). 
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We also studied the effect of dataset complexity on performance (F1 scores and rejection 

rates). We found a significant correlation between complexity metrics and F1 scores for 

several classifiers such as NeuCA, scHPL, and scPred (Figures 14 and 15). Moreover, 

we found that rejection rates of classifiers also have a significant correlation with the N1 

metric, which measures the fraction of borderline cells (Figure 16). This correlation may 

be due to the relationship between class or decision boundary complexity and model 

accuracy. Several studies have reported this positive correlation of boundary complexity 

with performance163. One survey of microarray data found that complexity measures, 

such as N1 that capture dataset complexity are correlated with classifier performance164. 

This study used feature-based complexity metrics such as F2. However, F2 was non-

representative as it suffered from an underflow (0 value in all cases). This underflow was 

due to using all features in the metric calculations. Nevertheless, the authors 

recommended to use complexity metrics to analyze datasets before selecting a classifier. 

In our study, we used top 50 PCs, which has helped us avoid this underflow. We 

concluded that N1 and F2 captured substantial complexity that contributed to the 

decreased performance of cell type prediction tools when tasked with annotating prenatal 

datasets. These findings support our hypothesis that prenatal dataset characteristics can 

complicate annotation and hamper automated cell type annotation tools when they are 

trained on prenatal references.  

 

While our work highlights the significant difference in performance between cell type 

annotation tools across prenatal and postnatal scRNA-seq dataset types, this 

benchmarking study has certain limitations. We used many prenatal and mixed datasets 

that our lab annotated. In some instances, using these datasets prevented external biases 

and confounders and allowed us to observe the effect of developmental age on 

performance. However, one caveat to this method is that we reduced the diversity of our 

data by generating different subsets from the same dataset (Jessa 2019). Limiting 

ourselves to a subset of one dataset, may limit the generalization of our benchmarking 

analysis to different tissues and time points. Using several prenatal datasets from different 

organs and sources should increase the generalizability and statistical significance of our 

findings. Another limitation of our study is the variance in the number of tools across 
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classifier classes. Certain classes of cell type annotation tools, such as the neural network 

methods, have been underrepresented. We included scIAE for the cortical time course 

assessment. While this classifier showed potential, we refrained from adding new tools 

to all of our analyses due to computational limitations and runtime errors. Using tools such 

as scIAE, scDeepSort, and other classifiers that incorporate prior knowledge such as 

gene regulatory networks will help us to better assess the performance of this class of 

classifiers. Our Snakemake-based pipeline ensures that addition of new tools can be 

easily incorporated for future studies.  

 

Altogether, we found that cell type annotation tools perform exceptionally well in well-

separated postnatal scRNA-seq datasets for which they were designed and tested. 

Nevertheless, we report that prenatal and mixed datasets possess complexity 

characteristics that hamper the performance of classifiers. We reaffirm previous works' 

findings that SVM outperforms other types of classifiers across different datasets. This 

result is interesting because the base linear SVM classifier outperforms tools that use 

SVM as scHPL and scPred.  In the following sections, we will assess these classifiers in 

data-driven scenarios. 

 

5.3. Cross species projections remain a challenge for automated cell 

type annotation 
Cross-species cell type annotation is a promising application of automated cell type 

classifiers. The abundance of sequencing data from multiple species offers a unique 

opportunity to train classifiers on a larger number of high-quality references from multiple 

species. This application may be particularly important in fields where significant efforts 

are made to generate mouse models due to a lack of available human tissues. Human 

data is often more challenging to acquire due to both technical and ethical concerns. We 

are often limited by the size and number of samples we can obtain, a major obstacle to 

generating high quality data. 

 

In contrast, mouse data is much more abundant, easier to sample and manipulate, and 

does not have as many ethical restrictions. The abundance of data generated by mouse 
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models would allow for finer annotations and the identification of new cell types, which 

can be used to annotate and interpret human data through cross-species annotation. 

Currently, some cell type annotation tools, such as SingleCellNet, promise good cross-

species performance76. However, a systematic assessment of this application of cell type 

annotation has, to our knowledge, not been done. In our work, we aimed to assess the 

feasibility of cross-species annotation by testing 12 cell type annotation tools on paired 

mouse-human datasets from the adult pancreas and the adult cortex. 

 

Our experimental data indicates that most classifiers have poor performance when 

annotating scRNA-seq data of one species using an scRNA-seq reference of another 

species (Figures 18-21). Although some tools, such as SciBet, SVM, and SinglR, 

performed relatively well, most tools did not correctly identify similar cell types. For 

example, CHETAH annotated human pancreatic immune cells as gamma cells. This 

annotation is not biologically relevant as these two cell types are distinct and not related 

through any known lineage. We suspect SciBet works well because it uses a feature 

selection technique to keep only cell type discriminant genes. This might have led to less 

overfitted models (i.e. with fewer features), which can adjust for significant reference-

query differences165. However, most cell type annotation tools with a rejection option left 

the majority of cells unannotated in all four experiments. scPred, scmap-cell, scmap-

cluster, and SVM rejection all performed poorly (Figure 20). This result is significant and 

shows that these tools have low confidence in their predictions and thus cannot assign a 

definitive cell type. Lastly, we utilized the consensus approach to obtain a majority vote 

on the cell type in each of the four experiments to annotate cells. We noticed significant 

high concordance with ground truth labels for cell types common between the reference 

and the query. As for the cell types that were not common, predictions were biologically 

relevant. For example, in the Allen brain datasets, human OPCs and microglia were 

annotated as mouse oligodendrocytes and macrophages, respectively. In this case, the 

consensus was to label the cells as the most similar available cell type. We observed that 

this consensus approach (Figure 22) outperformed any individual tool in almost all 

scenarios (Figures 18 to 21). We also noticed that many cell types such as microglia, 

macrophages, and OPCs were consistently well-annotated regardless of the classifier 
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(Figure 22). This effect might be due to the conserved transcriptomic gene expression 

controlling the identity of these cell types. In evolution, many cell types conserve vital 

features due to a conserved function166,167.  

 

There are several reasons that may explain the poor performance of cell type annotation 

tools for cross-species predictions. Firstly, many biological and experimental factors such 

as different experimental protocols, different sequencing depths, and different coverage 

can negatively affect the performance of a classifier and increase prediction uncertainty. 

For example, classifiers are usually trained only on the common features between a 

reference and a query dataset.  Some of these factors can be adjusted for, such as batch 

effects, but certain factors, such as coverage and dropouts, remain a challenge. 

Secondly, cross-species cell type annotation is based on the orthologous genes between 

the species. Most tools utilize the one-to-one gene homolog between species, which 

might lead to the loss of critical cell type identity information conveyed by the one-to-many 

or many-to-one homolog that might have appeared during evolution due to gene 

duplications168,169. Thus, although homologous cells of different species often have 

conserved marker genes, they can still express necessary cell type-specific signatures 

that are lost when keeping only one-to-one homologous genes. In addition, cell type 

annotation tools often rely on quantifying the similarity of gene expression profiles which 

is sensitive to normalization and gene selection protocols170. Lastly, cell type divergence 

between species often occurs due to transcriptional changes of gene modules controlled 

by transcription factors which can have widespread effects on gene expression170,171. 

 

The consensus approach performed well in the cross-species setting. Consensus 

learning or vote is similar to ensemble methods that combine multiple base classifiers 

using bagging or boosting to produce one optimal solution. Random forests and boosted 

trees are one example of ensemble methods that perform well on multiple kinds of 

data172,173. The consensus approach is, however, different in that it uses independent and 

different types of classifiers to predict compared to the ensemble methods that use a 

collection of weak classifiers174–176. The consensus approach focuses on using 

heterogeneous classifiers to detect gene-cell type relationships. Rather than focus on one 
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representation of the data, we utilize classifiers that represent the data differently (neural 

networks, kernel methods, random forests) which should, in theory, explore the solution 

space more efficiently. If all classifiers agree on a prediction, this agreement should 

increase the confidence that the prediction is accurate. A consensus of different tools 

consistently outperforms a single classifier as it will average the solution and reduce the 

risk of choosing the wrong label. Moreover, most classifiers work by performing a local 

search for a solution and risk getting stuck in a local optimum. This limitation is avoided 

by having multiple starting points for the different classifiers177. This consensus approach 

has been used extensively in bioinformatics, particularly proteomics. For example, a 

consensus of Naïve Baye, random forests, and KNN was used to identify ligand binding 

to androgen receptors178. In addition, a consensus of SVM, random forests, and neural 

networks were used to predict protein-linked adverse drug reactions accurately179. The 

consensus approach was also used for non-bioinformatics applications such as tweet 

classification and had promising results174. 

 

Although our results show significant complexity in choosing a suitable classifier for cross-

species annotation, we acknowledge there are some limitations to our experimental 

design. First, we used only four non-fully matching datasets for this experiment. It is 

difficult to attain statistical significance with this low number of datasets. Future studies 

focusing on incorporating more datasets from more species will be necessary to validate 

our findings. Human and mouse cell types are more divergent than human and primate 

ones180. As this divergence might also have a significant role in cross-species 

annotation170, the inclusion of primate dataset may clarify some discrepancies that we 

observed in our experiments. Moreover, we only used 12 classifiers in this assessment 

due to computational restrictions. Some of the newer tools such as scGCN promise good 

cross-species performance using label transfer techniques181. Including these recent 

tools in our pipeline may also improve accuracy when annotating across species. Lastly, 

we only used one-to-one homologous genes in our training of the classifiers. This process 

potentially removes cell type-specific information, which can decrease classifiers' 

performance. 
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Altogether, our results support a consensus model for cell type annotation between 

species using scRNA-seq data. We find that most classifiers have difficulty identifying cell 

types between species, which is expected given the evolutionary barrier. Various factors 

may contribute to this problem. However, with the current expansion of cell type 

annotation tools, some tools are improving cross-species projections by using new 

techniques from deep learning. Future work identifying the strengths and weakness of 

these tools will help to move forward the technique of cross-species annotation. 

 

5.4. Cell type identification in high grade gliomas using a consensus 

approach of automated classifiers 
Histone mutant pediatric brain tumors are diseases of development thought to arise from 

cells that are stalled during development 33,34,153,154. Identifying the cell types of origin in 

these cancers can help researchers to understand the underlying oncogenic 

mechanisms. This information would, in turn, help oncologists to exploit the weaknesses 

of these tumors using targeted therapy. Traditionally, cell types in cancer were identified 

using cell type markers and surface proteins182,183. However, with the advent of single-

cell transcriptomics and the growth of single-cell references, automated approaches to 

identify cell types without manual curation became necessary. Here, we present an 

automated approach to identifying cell types in pediatric high-grade gliomas.  

 

We used a consensus approach of three classifiers to project cell types in histone mutant 

high-grade gliomas and posterior fossa ependymomas (PFA-EP). As expected, the 

consensus projections identified ependymal-like cell types in PFA-EP, whereas 

H3.3K27M mutant HGGs showed oligodendroglial cell types (Figure 24), including OPC-

like, oligodendrocyte-like, and astrocyte-like cell states33,34,153,154. The cell types identified 

for each tumor type are in agreement with published data. Interestingly, the H3.1K27M 

mutant showed a more divergent phenotype, with some samples showing ependymal-

like states while others showed oligodendrocytic and astrocytic-like states. These findings 

were validated with other data analyses, including unsupervised data analysis and 

scATAC-seq data34. Importantly, our approach allowed for fast and objective cell type 

projections in cancer datasets. 
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We then sought to verify our cross-species mouse projections by comparing them to the 

projections obtained using a human fetal thalamic reference143,144. We performed this 

analysis on the thalamic subset of high-grade gliomas. Our findings showed significant 

concordance between the consensus labels obtained using a mouse reference and the 

labels obtained using the human fetal reference (>90% agreement, Figure 28). However, 

we saw a higher uncertainty rate (cells with no consensus cell type) using the mouse 

reference (2x the number of uncertain cells). This high percentage of unlabeled cells 

could be explained by the cross-species differences and the fact that these cells are 

malignant. Cell type annotation tools, as discussed above, encounter several challenges 

in the cross-species setting. In addition, malignant cells have aberrant expression of 

genes that can further distinguish them from the reference dataset.  

 

The consensus approach implemented with scCoAnnotate delivered biologically relevant 

predictions validated using prenatal reference datasets. Although we only used three 

classifiers for cancer projections, the consensus approach outperformed the correlation 

method when used alone. Using cross-species references to annotate malignant cells 

may yield a high percentage of cells labeled as uncertain. However, we expect that 

expanding the consensus approach and choosing non-overfitting classifiers can help 

mitigate these drawbacks to yield accurate annotations of cancer datasets. 
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6. Chapter VI: Conclusions and future implications 

6.1.  Conclusions 
scRNA-seq is a valuable tool that has revolutionized biomedical research. In single cell 

studies, identifying cell types in a sample is a primary objective that can be challenging. 

Traditional methods for cell type annotation using manual curation with marker genes 

found in the literature are exhausting and can lead to inconsistency in cell type labels 

across studies. Automated cell type annotation tools that implement machine-learning 

algorithms have been developed to address these challenges. However, automated cell 

type annotation tools have limitations in complex scenarios such as prenatal datasets, 

cross-species annotation, and cell type projection of malignant cells. In this thesis, we 

found that prenatal datasets are more complex than postnatal datasets, and cell type 

annotation tools had lower F1 scores and higher rejection rates for prenatal datasets. We 

also found that almost all cell type annotation tools perform poorly for cross-species 

annotation, and the consensus approach provided accurate cross-species annotations. 

Lastly, we used scCoAnnotate to project cell types in high-grade glioma cancer samples, 

and the consensus approach yielded accurate projections consistent with the known 

biology of these tumors. Overall, the thesis highlights the potential and limitations of 

automated cell type annotation in various complex scenarios and suggests that further 

development and improvements are necessary for accurate cell type annotation.  

 

6.2. Future Directions 
6.2.1. Applying unsupervised complexity measures 
Our work sheds light on the complexity of prenatal and postnatal datasets and the impact 

of dataset complexity on the performance of cell type annotation tools. In this study, the 

method we used to score datasets for complexity involved supervised metrics that depend 

on the quality of labels. This dependency on label quality can lead to over- or under-

estimation of complexity. This effect occurs, for example, with N1 when label noise is 

present. Therefore, for the purposes of our study, we assumed that the provided labels 

were the ground truth. However, this assumption might not be valid in all cases. To 

overcome this assumption, a future study could be designed using unsupervised 
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complexity metrics based on graph theory or unsupervised dimensionality reduction 

techniques, such as the average density of a graph. These unsupervised metrics may 

better capture the intrinsic properties of the dataset. 

 

6.2.2.  Diversifying prenatal datasets 
In this thesis, I presented various analyses using all or a portion of 17 scRNA-seq 

datasets. These datasets were derived from different organs, different time points and 

different species. However, one caveat to our compilation of datasets is that the diversity 

of the data was higher for postnatal datasets as compared to the prenatal datasets. The 

postnatal datasets came from different studies, used different sequencing techniques and 

implemented various annotation schemes. In contrast, both the prenatal and mixed 

datasets were derived largely from the brain and were annotated using similar strategies 

by our lab members and collaborators. Moreover, we generated synthetic datasets from 

one dataset to be treated as distinct datasets. While this practice is helpful for our 

analyses, it may reduce our ability to generalize the findings. Although obtaining prenatal 

datasets is difficult, further studies incorporating a higher diversity of prenatal datasets 

from different organs with multiple annotation techniques, may increase the significance 

and build upon the findings of our study.  

 

6.2.3.  Incorporating more deep learning methods in the cross-validation and 

cross-species experiments 
In our assessment, we included multiple classes of annotation tools and demonstrated 

that some classes of tools perform better than others in certain tasks. However, not all 

classes of tools were fully represented. Both computational restrictions and the need to 

input prior knowledge such as gene regulatory networks limited tool selection. We 

included only two distinct classifiers in the neural network class. This underrepresentation 

limits our conclusions about neural network performance for cell annotation. In our study, 

neural network classifiers did not perform well when analyzing complex datasets. 

However, these deep learning techniques are in early stages of development and are 

beginning to be applied and tested more frequently to analyze scRNA-seq data. Recent 

studies use both adversarial and recursive neural networks for cell type annotation. 
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Studies using these recent tools demonstrate that they have good cross-species 

performance and label transfer but require large training datasets and prior knowledge 

that can aid the annotation process181,184. Given their performance in cross-species 

annotation, expanding our analysis and pipeline to include these tools, even if it requires 

extracting prior knowledge from the literature, would improve upon our study. Deep 

learning approaches can drive scientific discoveries in biology, as illustrated by 

Alphafold2, an artificial intelligence-based tool that predicts protein structure185. Given 

their potential, a systematic assessment of deep learning cell annotation tools is essential. 

 

6.2.4.  Updating and improving the scCoAnnotate pipeline 

In this thesis, we designed a parallelized and automated cell type annotation pipeline that 

offers flexibility, speed, and ease of use for bioinformaticians. This pipeline was used 

extensively in this study and has demonstrated the ability to deliver accurate annotations 

of large datasets using minimal resources and requiring little user intervention. Going 

forward, this pipeline can be updated by incorporating additional tools as they become 

available. Furthermore, adding custom consensus protocols that includes or excludes 

particular tools based on the task being performed may improve the accuracy of 

annotations. Moreover, adding plotting and post-analysis modules that can output the 

predictions and perform validity analysis can streamline the cell type annotation, 

ultimately making this process more objective and systematic. 
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