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Abstract

Diffusion-reaction-deformation phenomena are ubiquitous in materials processing and

manufacturing, and govern the performance and reliability of several key modern

technologies. While diffusion, reaction, and deformation have been studied in their uncoupled

form for more than 200 years, modeling their interactions is an active area of research

spanning several fields, making it both a classical and a modern topic. Nevertheless, a close

survey of the literature reveals several aspects of diffusion-reaction-deformation that remain

to be investigated theoretically.

In this thesis, a consolidated theoretical approach is investigated to address the gaps in

knowledge with respect to the modeling of diffusion-reaction-deformation. It is shown

that the classical growth kinetics of two model systems, namely, a core-shell spherical

particle, and a thin-film bilayer can be derived using a combination of Larché-Cahn (L-

C) thermostatics and kinetics. Previously, these equations have been derived solely from

kinetic considerations using fitting parameters; to extend the models to incorporate the

effects of stress, ad hoc models are generally used. To gain a better understanding of the

effects of coupling, the thesis uses a thermodynamic-kinetic approach. Subsequently, several

diverse yet universal phenomena are predicted, which have been observed experimentally in

various material systems, including lithium-ion batteries. These coupled phenomena include

enhanced diffusion, reaction block, and hysteresis; reaction block entails the slowing down

and eventual arrest of the phase transformation front.

xi



The intrinsic nature of thermodynamic hysteresis, which continues to persist with vanishing

kinetics, is deduced and explored using a new graphical analysis based on stability

considerations. The palladium-hydrogen system proves to be a suitable candidate to compare

these deductions qualitatively. It is noted that thermodynamic hysteresis is ubiquitous in

several phase transforming systems including lithium-ion batteries and metal hydrides. The

origin of hysteresis in palladium hydrides has been under debate since the 1960s. This

material system continues to be studied experimentally; recently, single particle and atomistic

experiments have also been undertaken. The hysteresis analyses presented in this thesis

complement the observations of these experiments as well as the key results of the Schwarz-

Khachaturyan (S-K) thermodynamic theory.

Kinetics of mass transfer are also pertinent in polymeric, biological, and pharmaceutical

applications. The mechanics of viscoelasticity is of key interest in such systems. A transient

diffusion problem is formulated in the presence of a general semi-permeable phase interface,

and a viscoelastic thin film is considered. The interface model is identified with a modified

Kedem-Katchalsky (K-K) equation, which is well-known in membrane transport literature.

To solve for the composition field and viscoelastic stresses, a protocol is devised using

an extended separation of variables technique, and the correspondence principle between

elasticity and viscoelasticity.

The exploration of diffusion-reaction-deformation undertaken in this work is summarized

with key modeling insights using a chemical kinetics perspective. The phenomenon of stress-

enhanced diffusion is revisited in the presence of strong coupling to extend the model and

present a reasoned connection between the reaction block phenomenon and the waiting time

solution of nonlinear degenerate diffusion.
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Résumé

Les phénomènes de diffusion-réaction-déformation sont omniprésents dans le traitement

et la fabrication des matériaux, et régissent les performances et la fiabilité de plusieurs

technologies modernes clés. Bien que la diffusion, la réaction et la déformation soient étudiées

indépendamment depuis plus de 200 ans, la modélisation de leurs interactions est une filière

de recherche active couvrant plusieurs domaines, ce qui en fait à la fois un sujet classique

et un sujet moderne. Néanmoins, une étude approfondie de la littérature révèle plusieurs

aspects du phénomène diffusion-réaction-déformation qui restent à étudier théoriquement.

Dans cette thèse, une approche théorique consolidée est formulée pour combler les lacunes

dans la modélisation du phénomène de diffusion-réaction-déformation. Il est démontré que la

cinétique de croissance classique de deux systèmes modèles: une particule sphérique noyau-

coquille, et un ‘bilayer’ à couche mince peut être dérivé en utilisant une combinaison de

la théorie thermodynamique et cinétique. Précédemment, ces équations étaient dérivées

uniquement avec une approche cinétique en utilisant des paramètres d’ajustement; pour

inclure les effets du stress, des modèles ‘ad hoc’ sont généralement utilisés. Ici, une approche

thermodynamique-cinétique est utilisée pour étudier les effets du couplage; par la suite,

plusieurs phénomènes divers mais universels sont prédits. Ces phénomènes sont aussi

observés expérimentalement dans différents systèmes, y compris les batteries lithium-ion.

Ces effets du couplage incluent une augmentation de diffusion, un ralentissement de réaction,

et l’hystérésis.
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La nature intrinsèque de l’hystérésis thermodynamique est étudiée à l’aide d’une nouvelle

analyse graphique basée sur des considérations de stabilité. Le système de palladium-

hydrogène est un candidat approprié pour comparer ces analyses qualitativement. Il est

à noter que l’hystérésis thermodynamique, qui persiste avec la disparition de la cinétique,

est omniprésente dans plusieurs systèmes de transformation de phase, y compris les batteries

lithium-ion et les hydrures métalliques. L’origine de l’hystérésis dans les hydrures de

palladium est en discussion depuis les années 1960. Ce système matériel continue d’être

étudié expérimentalement; récemment, des expériences à particule unique et atomistique

ont également été entreprises. Les analyses d’hystérésis présentées dans cette thèse sont

complémentaires aux observations de ces expériences ainsi que la théorie de Schwarz-

Khachaturyan (S-K).

La cinétique du transfert de masse est pertinente dans les systèmes biologiques et

pharmaceutiques; la mécanique de la viscoélasticité est d’un intérêt clé dans ces systèmes.

Un problème de diffusion transitoire en présence d’une interface de phase semi-perméable

générale et de viscoélasticité dans les ‘bilayers’ à couche mince est formulé. Le modèle

d’interface est identifié avec une équation modifiée de Kedem-Katchalsky (K-K), bien connue

dans la littérature sur le transport membranaire. Pour résoudre le champ de composition et

les contraintes viscoélastiques, une approche impliquant la technique ‘extended separation

of variables’ et le ‘elastic-viscoelastic correspondence principle’ est conçue.

L’exploration de la diffusion-réaction-déformation entreprise dans cette étude est résumée

par des modélisations clés d’une perspective cinétique chimique. Le phénomène de diffusion

accentuée par le stress est revisité en présence d’un couplage fort pour étendre le modèle et

présenter une connexion entre le phénomène de ralentissement de réaction et la solution de

‘waiting time’ de diffusion dégénérée non linéaire.
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Chapter 1

Introduction

1.1. Introduction to diffusion-reaction-deformation phenomena

Diffusion-reaction-deformation phenomena are ubiquitous in materials processing,

manufacturing, and solid-state technologies. Diffusion comprises the transport of multiple

species (neutral atoms, ions, charges, radicals) through a solid with complex microstructure

(containing defects, grain boundaries, porosity). Solid-state reactions encompass phase

transformations (including amorphization, crystallization) and the formation of solid

solutions, intermetallics, and compounds (silicides, oxides, salts, and amorphous alloys).

Mechanical deformation includes the effects of elasticity, plasticity, inelasticity, anelasticity,

viscoelasticity, fracture, creep, and fatigue.

Diffusion, reactions, and deformation have been studied in their uncoupled form for more

than 200 years, dating back to the work of Fick [1], Gibbs [2], and Hooke [3]. Diffusion

through an isotropic solid is described by relating J , the flux of the diffusing chemical

component, to the gradient of C, the concentration of the component via Fick’s first law:

J = −D∇C, where D is diffusivity. This model is based on the empirical observation

that as the sample becomes homogeneous, the flux vanishes, and equilibrium is attained.

Reactions are studied in terms of Gibbs energy, G = H − TS, which accounts for the

contributions of enthalpy, H, and entropy, S, at temperature T ; a minimum in the Gibbs
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energy characterizes the equilibrium under conditions of constant temperature, pressure, and

composition. Finally, to describe the deformation in a linearly elastic material, Hooke’s law,

given by σ = Eϵ, relates the stresses, σ, and strains, ϵ, via E, the elastic modulus.

There aren’t many studies of the interactions between these three phenomena; most are

primarily limited to pairs of phenomena, such as the effect of stress on diffusion, the effect

of reaction on stress, and similar binary couplings [4–12]. Nevertheless, diffusion-reaction-

deformation phenomena — coupled at multiple spatial and temporal scales — govern the

performance and reliability of several key modern technologies. Additional factors, such

as the geometry of the system, structural dynamics, and operating temperature further

modulate this tertiary coupling. Consequently, modeling these coupled phenomena is of key

interest in applications of diffusion, which range from energy storage to drug delivery, where

diffusion often sustains the accompanying chemical reactions.

1.2. Illustrative example from energy storage technologies

Energy storage solutions involving lithium-ion batteries (LIBs) and hydrogen storage in metal

hydrides are under intense study, where the goal is to maximize and maintain high capacity

during device operation [13–16].

This section considers diffusion-reaction-deformation in the context of LIBs. During the

charging of these batteries, lithium-ions travel to the anode, through the electrolyte. The

interactions between the anode and lithium-ions during charging (lithiation) and discharging

(delithiation) generate swelling, phase transformations, and stresses in the electrode.
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Phenomena

Diffusion

Solid state reaction

Deformation (anelastic,

plastic flow)

Effects

Swelling

Amorphization

Recrystallization

Stresses

Property changes

Morphology changes

Porosity

Cracks

Fracture

Fatigue

Reduced output voltage

Figure 1.1: Schematic illustration of a silicon anode using a spherical particle as

the representative microstructure. During the charging of a LIB, key governing phenomena

include transport of lithium ions to the silicon anode and their reaction, which is accompanied

by deformation of the anode (left table). The solid-state chemical reaction creates an

interface between the original silicon anode and the newly formed lithiated phase (grey),

called the phase boundary or reaction interface (dashed circle). This phase boundary

propagates inwards as further silicon is consumed by the reaction. These diffusion-

reaction-deformation phenomena generate numerous effects that degrade the electrochemical

performance of LIBs (right table).

When the anode is made of silicon, it undergoes volumetric changes up to 300% accompanied

by solid-state amorphization. This constrained swelling generates large elastic-plastic

deformation and stress in the anode, which can lead to cracks, and subsequent fracture. As

a result, silicon anodes — which in theory offer high capacity for LIBs than the conventional
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graphite anodes — cannot sustain multiple charge-discharge cycles and fracture within a few

(∼10) cycles. The effects of these coupled diffusion-reaction-deformation phenomena (Fig.

1.1) have been observed by several experiments using ex-situ and in-situ techniques such

as transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic

force microscopy (AFM), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and

many others; their combined effects on morphology, crack formation, material properties,

and electrochemical performance (output voltage, efficiency of the battery) have also been

measured for crystalline and amorphous silicon anodes ( [14, 17–22] and the references

therein). For example, observing particles of amorphous active materials directly via in-

situ optical and atomic force microscopy has revealed isotropic expansion of the particles

when lithium is inserted [20]. Subsequently, the kinetics and fracture response of amorphous

silicon is favorable compared to crystalline silicon, as revealed by in-situ TEM, which has

shown that nanospheres of amorphous silicon can withstand fracture up to a diameter of

870 nm, as opposed to crystalline silicon spheres, which exhibit a critical diameter of 150

nm [21]. Additionally, the atomically sharp (thickness of ∼1 nm) crystalline-amorphous

phase boundary has been observed via high-resolution TEM [20].

There is ongoing research to develop models of lithium-ion batteries that capture

these coupled diffusion-reaction-deformation phenomena as well as predict their effect on

electrochemical performance ( [14,16,23] and the references therein).

These citations do not form an exhaustive list as references pertaining to both experiments

and models continue to grow with various topics of emphasis within these broad fields.

Of particular interest is the investigation of coupled phenomena in nanoparticles and thin

films; using nanostructures as battery electrodes has been shown to lower stresses, improve

capacity retention and resilience against mechanical degradation [16,17]. This trend towards

nanostructuring has prompted several modeling attempts to include the effects of surface

mechanics, determine the critical particle sizes below which cracks do not nucleate, as well
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as predict, or at least describe, anomalous behaviors [14, 16, 24]. In several models, the

coupling is invoked via effective parameters, and restricted to partial and binary couplings.

For example, Bhandakkar and Gao [25] predict the critical conditions for crack nucleation

in an isotropic elastic thin strip electrode by applying a cohesive zone model of fracture;

however, their model does not consider the full coupling between stress and diffusion. In

[24], Haftbaradaran et al. couple internal stresses and activation energy for diffusion via

an effective stress-dependent diffusivity, ignoring the phase transformation reaction. Many

anomalous phenomena observed in experiments have also motivated fundamental inquiries,

which are expounded in the next chapter.

In summary, as modern technologies and devices for energy conversion and storage

evolve and use multifunctional materials with complex micro- and nanostructures, several

concurrent physical phenomena govern their behavior at various length- and time-scales. For

example, batteries, solid oxide fuel cells (SOFCs), polymer electrolyte membrane fuel cells

(PEMFC), and processing of microsystems use multilayered thin films, which experience

electromagnetic, electrostatic, thermal, piezoelectric, inertial, viscous, and elastic-plastic

effects. The multiple couplings between these phenomena cannot be ignored. Thus, efficient

and reliable models are required to capture the kinetics of the system under the combined

action of the various phenomena.

To model these systems, it is valuable to formulate a multiphysics continuum framework

of the coupled phenomena of transport processes, deformation, reaction, and their induced

effects. Constructing such a framework is the first step towards developing predictive models

for estimating the performance; analyzing the behavior; controlling the solid-state processing

and synthesis; and guiding the design of solid state systems.

To this end, we consider two model systems, withholding any context-specific complexity at

present. These systems are analyzed subsequently within a continuum framework.
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1.3. System geometries and material properties

Two binary systems are investigated. The spherical particle under consideration has a core-

shell structure, comprising a spherical core encapsulated in a spherical shell. The bilayer

under consideration consists of a thin film attached to a substrate. Both solids are isolated

systems.

The constituents of each system, i.e. core and shell, and film and substrate, are binary

solid solutions with different phase equilibria. Under isothermal conditions at absolute

temperature T0, the equilibrium phases are denoted β and α for the shell and core respectively

in the spherical case, and the film and substrate respectively in the planar case, as shown in

Fig. 1.2.

Each phase consists of two chemical species denoted A and B. The number of moles of the

atoms is n, and X is the mole fraction of the chemical constituents. Both n and X are

denoted with a subscript for the type of atom, and a superscript for the phase. For example,

nα
A represents the number of moles of A-atoms in the α-phase, and Xα

B represents the mole

fraction of B -atoms in the α-phase. The mole fraction of the B -atoms is given by

Xα
B =

nα
B

nα
A + nα

B

,

Xβ
B =

nβ
B

nβ
A + nβ

B

.

(1.1)

The B-atoms are present in dilute amounts compared to A-atoms in both phases;

subsequently, Eq. (1.1)a can be simplified as

Xα
B ≈ nα

B

nα
A

, (1.2)

which, in terms of concentrations, is given by

Xα
B =

nα
B/V

α
A

nα
A/V

α
A

=
Cα

B

CA

, (1.3)
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where V α
A is the volume of A-atoms in the α-phase, Cα

B is the molar concentration (mol/m3)

of the B -atoms in the α-phase and CA is the molar density (mol/m3) of the A-atoms. It is

assumed that Cα
A = Cβ

A = CA; the molar volume of the A-atoms remains the same in the

two phases.

Similarly, Xβ
B = Cβ

B/CA. The composition of the system is characterized using Cα
B and Cβ

B,

the concentration of the B -atoms in the two phases.

⍺

β

Core

Shell r
θ

ɸ

(a)

Substrate

⍺

βThin film

Interface

yx

z

Substrate

(b)

Figure 1.2: Schematic cross-section of a (a) core-shell particle and a (b) bilayer.

1.3.1 Diffusion-reaction-deformation in binary systems

At T0, the mobility of A-atoms is assumed to be negligible compared to the B-atoms. Thus,

the A-atoms constitute a lattice. The B-atoms diffuse with respect to the A-lattice, which

undergoes small strains leading to elastic deformation.

During phase transition, the region occupied by the β-phase grows at the expense of the

region occupied by the α-phase via the migration of the α/β interface along its normal.

The interface is assumed to be sharp (negligible thickness), and coherent (perfect continuity

between the two A-lattices at the interface), as shown in Fig. 1.3 for Cartesian coordinates.

The energy of the interface is assumed negligible.
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Figure 1.3: Schematic of a coherent interface separating two phases of the same structure

that differ in their chemical composition in the (a) undeformed state and (b) elastically

strained state [10]. The lattice constant is denoted a.

The thermodynamic description of sharp interfaces assumes that both phases are

homogeneous up to the interface, and the interface is homogeneous in each direction that

is perpendicular to its normal [26]. To describe variations of an extensive property, Q, for

phases that are not homogeneous close to the interface, Gibbs introduced interfacial excess

quantities such that Q = qαV α + qβV β + QI , where q is the density of Q, and QI is the

interfacial excess, which can be normalized by the interface area to obtain the interfacial

excess density, qI , a property of the sharp interface. In this work, the excess fields associated

with the interface are ignored.

In the absence of deformation of the A-lattice, the phase change is expressed using the vector

Nδz, where N is the unit normal perpendicular to the interface, and δz is the displacement

of the interface along the normal.1 In the presence of deformation of the A-lattice, the elastic

1It is noted that the variation is δr in the spherical case. The equilibrium conditions and subsequent
analyses do not feature this term, which is why we are using δz in the derivation to avoid extraneous notation.
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deformation must be accounted for in the phase change, and is given by (I + ϵ) · Nδz in

the deformed state, where ϵ is the small strain tensor, and I is the identity matrix. The

derivation in presented in Appendix A.

1.3.2 Objectives

The overarching goal is to predict the key diffusion-reaction-deformation phenomena in

binary two-phase solids, particularly in thin-films. This goal entails solving for the

concentration field and stress fields in the two phases, and the location and velocity of the

α/β interface, taking into account the full diffusion-reaction-deformation coupling. These

objectives are achieved by solving the following problems.

The first problem derives the governing equations for the mechanics and thermodynamics of

the systems under consideration.

The second problem analyzes two uncoupled models involving diffusion and phase

transformation. Deformation is ignored.

The third problem analyzes two fully coupled diffusion-reaction-deformation models for

steady state diffusion. The deformation is linear elastic.

The fourth problem analyzes a partially coupled model for unsteady (transient) diffusion.

The deformation is viscoelastic. Phase transformation is ignored.

1.4. Organization of the thesis

Chapter 2 presents a survey of the literature, focusing on the growth kinetics as well as the

effects induced by elasticity that modify this kinetic behavior. The rigorous thermodynamic

framework of Larché and Cahn, which extends the classical Gibbsian thermodynamics

to include nonhydrostatic stresses, is selected as the starting point. The equilibrium
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(thermostatics) equations are derived by applying the Larché-Cahn (L-C) theory to two-

phase binary solids.

Chapter 3 presents the moving boundary problems for a core-shell particle and a thin-film

bilayer assuming small deviations from equilibrium. The L-C thermodynamic framework is

extended to include diffusion and phase growth. The corresponding kinetic equations use

thermodynamic driving forces for diffusion and phase transformation, which are identified

from the results of Chapter 2. The Legendre transformation procedure enables the

representation of these driving forces, containing elastically-coupled contributions, in terms

of the densities of Gibbs energy and grand canonical energy.

Chapters 4 and 5 apply the moving boundary formulations of Chapter 3 to investigate

the uncoupled (no deformation) and elastically-coupled quasi-steady state models

respectively. Subsequently, closed-form approximate analytical solutions are obtained for

the concentration field, stress fields, and the location and velocity of the interface. The

uncoupled growth kinetics are compared to the classical growth kinetics equations in Chapter

4. The thermodynamic effects predicted by the elastically-coupled analyses are compared to

the experimental observations of several material systems in Chapter 5.

Chapter 6 investigates coherent equilibrium in a thin-film bilayer model using a free energy

formulation as the starting point. Qualitative graphical analyses are presented to query the

stability of the phases in the presence of elastic stresses. The results of these analyses are

compared qualitatively to single-particle experiments and the Schwarz-Khachaturyan (S-K)

theory in the context of the palladium-hydrogen system.

Chapter 7 undertakes a transient diffusion analysis of the thin-film bilayer using an

extended separation of variables technique. Assuming the thin film is viscoelastic, a stress

analysis is undertaken using the elastic-viscoelastic correspondence, a continuum mechanics

concept. Together, the formulation presents a partially-coupled model for diffusion-induced
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viscoelastic stresses in the presence of a stationary interface model that is derived from

chemical kinetics considerations. The general nature of this interface is demonstrated.

Chapter 8 reflects and extends key diffusion-reaction-deformation modeling insights using a

kinetics perspective. The examples considered in this chapter offer further understanding of

model formulations and findings of Chapters 3-5, and 7. These sample problems illustrate

the salient points of bounds, errors, estimates, and diffusion-reaction relations, which are

pertinent to experimental modeling. Subsequently, the results of Chapter 5 are revisited to

draw a conspicuous connection with the framework of nonlinear degenerate diffusion and

motivate topics within this realm for future research.

Finally, Chapter 9 presents the main contributions of the thesis, ending with a summary of

the key conclusions, implications, and future work.
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Chapter 2

Literature Survey

Diffusion is analyzed using classical continuum mechanics and classical discrete mechanics.

The former applies when continuum hypothesis holds, i.e. when the Knudsen number,

Kn = Λ/Lchar ≪ 1, where Λ is the mean free path of the diffusing species, and Lchar is

a characteristic length scale of the system.

Fick’s first law is a continuum approximation that applies when Kn < 0.1 [27]; its literature

is reviewed in Section 2.1. Subsequently, Section 2.2 presents the equilibrium conditions

for binary two-phase systems, and Section 2.3 discusses the literature pertinent to growth

kinetics and its modeling in the presence of deformation.

2.1. Continuum models for diffusion-reaction-deformation

In 1885, Adolf E. Fick [1] described the diffusive transport of matter in a single-phase

material by drawing an analogy between Fourier’s law of thermal conduction and diffusion;

deformation and reactions were ignored. His phenomenological 1-D continuum model for

isotropic diffusion, Fick’s first law, assumed a linear relationship between the local flux and

the local concentration gradient via a diffusion parameter, called the diffusivity, that is scalar

and constant. This purely linear diffusional theory cannot capture all the processes involved

in Fig. 1.1, for example, the heterogeneous reactions occurring at the moving interface.
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Several physical phenomena in nature are described by a discontinuous first-order solid

state transformation where the change of state occurs by a rearrangement of the atoms.

These changes may be accompanied by changes in shape, volume, and chemical composition

and is actively studied in the field of physical chemistry since Gibbs’ seminal work on the

equilibrium of heterogeneous substances [2].

To include the effects of such chemical reactions as well as additional considerations

(anisotropy, external fields), an effective diffusivity is typically defined that is dependent

on concentration, stress, and ionic species. For example, phase transformations can

be modeled by introducing a concentration-dependent diffusivity [28]. Such heuristic

additions are frequently used to model coupled phenomena. For instance, stress dependence

is incorporated phenomenologically in rates of diffusion and rates of reactions. In

these models, the diffusion-reaction-deformation coupling is not well-defined; instead, the

phenomenological equations are justified by comparing them to experimental data and

evaluating the fitting parameters, if any.

Li, in 1966, and Larché and Cahn, in 1973, undertook a systematic study of the interactions

between diffusion and stress. Their research was one of the first attempts to develop a

consistent theory that includes the combined effects of stress and concentration gradients

on thermodynamic equilibrium in stressed solids [29–35]. These solids included one or more

mobile components that move freely within an immobile matrix, for example, atoms which

occupy interstitial spaces in a solid.

The L-C theory, which has been the basis for several diffusion-reaction-deformation theories

since the 1970s, is based on a variational problem: minimization of the free energy of the

system subjected to constraints that are incorporated using Lagrange multipliers. Using

this foundation, the L-C formulation extended the definition of the chemical potential — the

work required to add or remove a mole of the mobile component — to stressed solids [31–35].
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The L-C stress-dependent chemical potential describes diffusion in elastic crystalline solids.

Since then, the effects of strain energy have been incorporated and it has also been shown

that, in general, chemical potential is a tensor [36–38]. The L-C framework has also been

extended to solids undergoing finite strains, plastic deformation, chemical reactions, and to

solids containing multiple charged species [23, 39–42].

To model reactions involving phase transformations, the phase boundary is described using

a sharp (negligible thickness) interface or a diffuse interface (non-zero thickness). The sharp

interface approach leads to a free boundary problem which is solved to obtain the stresses

and concentration distributions within the particle [23,28,43–45]. Phase field models (PFM)

use diffuse interfaces and are generally applied to materials with complex geometries or

anisotropy. General PFM formalisms based on Cahn-Hilliard theory that couple diffusion,

stress, and elastic-plastic deformation have been developed [46,47]. Models of stress-assisted

reactions that use tensors to describe the chemical potential and the kinetics of the reaction

have also been developed [38,45,48,49].

Theories that model the full tertiary coupling in diffusion-reaction-deformation phenomena

are still evolving. This thesis uses the L-C framework. The original publications present a

general formulation involving multiple phases and components, which makes the derivation

lengthy and difficult to follow; the next section applies this framework to the two systems of

Fig. 1.2.
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2.2. Equilibrium thermostatics

“Where shall I begin, please your

Majesty?” he asked.

“Begin at the beginning”

Alice in Wonderland

Lewis Carroll

Gibbs stated the criterion of equilibrium in systems using energy and entropy. The varying

values of these two functions characterize the effects generated by the system as it passes

from one state to another [2]. The condition for equilibrium can be expressed in two ways:

1. At equilibrium, the total internal energy of an isentropic system (constant entropy) is

minimized, which is given by

Min U at constant S, (2.1)

where U is the total internal energy, and S is the total entropy of the system.

2. At equilibrium, the total entropy of an isolated system (constant internal energy) is

maximized, which is given by

Max S at constant U (2.2)

The above conditions for equilibrium are equivalent; the second condition is the second

law of thermodynamics. Depending on the system under consideration, the system may be

subjected to additional constraints related to the total number of moles, interface, etc.

In 1878, Gibbs applied this thermodynamic treatment to solids in his classic treatise on

thermodynamics, Equilibrium of heterogeneous substances [2]. Solid state diffusion was

prohibited as it was not known at the time. Thus, for solids, Gibbs did not define

chemical potentials, which are prescribed for the chemical species that can undergo internal
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rearrangements. Since then, several frameworks have been developed for treating solid-solid

equilibrium [29, 31–33, 35, 50–53]. The starting point for all of them is the first and second

law of thermodynamics. The problems in Chapters 4 and 5 will be solved by applying and

extending the framework by Larché and Cahn [32].

2.2.1 Thermochemical equilibrium of a stressed two-phase solid

The equations for thermal, mechanical, chemical, and interfacial equilibrium can be

derived using a variational formulation approach based on the postulates of equilibrium

thermostatics.

Specifically, we will minimize the total internal energy of the isentropic system, subjected

to the internal constraints of the system, including constant total entropy. This condition is

written mathematically as

δU = 0, (2.3)

where Eq. (2.3) is subjected to the constraints, and infinitesimals of higher orders of U are

neglected. Furthermore, as the internal energy is an extensive quantity, it is additive over

its constituent phases. Thus, the total internal energy of the systems in Fig. 1.2 is given by

U = Uα + Uβ, (2.4)

where Uα and Uβ represent the internal energy of the α-phase and β-phase respectively.

Internal constraints

The internal constraints of the system are related to the total entropy, total number of moles

of B -atoms, and the interface.
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The total entropy of an isentropic system is constant. It is assumed that the total entropy

is additive over its two phases. Thus, the first variation of entropy is expressed as

δS = δSα + δSβ = 0, (2.5)

where Sα and Sβ represent the entropy of the two phases.

The total number of moles of the B-component is conserved:

δnB = δnα
B + δnβ

B = 0. (2.6)

To express the interface constraint, consider the net displacement of the interface, denoted

as δd, which entails the deformation of the A-lattice and the local phase change caused by

an infinitesimal change in location of the interface. The overall displacement of the interface

is given by

δd = δu+ (I + ϵ) ·Nδz, (2.7)

where δu is the elastic displacement of the A-matrix and the term, (I + ϵ) ·Nδz represents

the displacement due to phase change, presented in Section 1.3.1.

Variational procedure for deriving equations of equilibrium

The total internal energy of the system is minimized, as per Eq. (2.3). The constraints

given by Eqs. (2.5) and (2.6) are incorporated using Lagrange multipliers. The interface

constraint will be incorporated explicitly within the subsequent equations.

Thus, the first variation of the total internal energy of the system, subjected to its internal

constraints, is given by

δU − TδS − µBδnB = 0, (2.8)
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where T and µB are Lagrange multipliers corresponding to the entropy constraint, and

conservation of the B -atoms respectively.2

The internal energy and entropy are expressed as volume integrals in terms of their densities;

the internal energy density is denoted u and the entropy density is denoted s . For example,

the entropy is given by

S =

∫
V α

s dV +

∫
V β

s dV, (2.9)

where V α and V β are the volumes of the α-phase and β-phase respectively. Similarly, the

number of moles of the B -atoms are expressed as volume integrals in terms of CB.

Variation of each quantity generates volume integrals and surface integrals. The surface

terms appear because of the movement of the interface. For example, the first variation of

each integrand in Eq. (2.9) is given by

δ(s dV ) = δs dV + s δ(dV ), (2.10)

where the changes in the volume element can be represented as δ(dV ) = δ(zdS) = δzdS,

where dS is a surface element.

Thus, the first variation of the entropy is given by

δS =

∫
V α

δs dV +

∫
V β

δs dV +

∫
Σ

s αδzαdS +

∫
Σ

s βδzβdS, (2.11)

where Σ denotes the interface boundary. The last two terms denote the variation in entropy

because of phase changes in the α-phase and β-phase respectively. The superscripts on the

variables in the surface integrals indicate the appropriate side of the interface.

2In our model systems, we assume the B -atoms occupy interstitial sites; subsequently the two phases
are interstitial solid solutions. In binary substitutional solid solutions, both A- and B -atoms occupy
substitutional sites; Eq. (2.8) will then include another term: −µAδnA. This scenario also requires a
network constraint, namely, the conservation of the total number of atomic sites.
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Expanded forms of δU , δS, and δnB have similar forms to Eq. (2.11); these are substituted

in the variation equation, Eq. (2.8). The volume integrals of δU contain δu , which is further

expanded as the internal energy density is a function of the strain, entropy density, and

concentration, u = u (ϵ, s , CB). The variation of u is given by

δu =
∂u
∂ϵ

: δϵ+
∂u
∂s δs +

∂u
∂CB

δCB, (2.12)

where : denotes the inner product in the space of second order tensors. This operation is

a double contraction containing two repeated indices; it is analogous to the dot product in

vector spaces. Using the definition of :, the first term of Eq. (2.12) is given by

σ : δϵ = tr(σT δϵ) = σijδϵij, (2.13)

where ∂u /∂ϵ is identified as the Cauchy stress tensor, which is denoted by σ.

To simplify Eq. (2.13), consider the product identity for a tensor field T , and a vector field

a given by3

div(T Ta) = T : grada+ a · divT , (2.14)

where div and grad denote the divergence (∇·) and gradient (∇) operators respectively.

Using the classical divergence theorem,4 we obtain∫
V

div(T Ta) dV =

∫
Σ

(T Ta) ·N dS, (2.15)

where T Ta represents a vector field. Thus, using Eqs. (2.14)-(2.15), we obtain∫
V

T : grada dV =

∫
Σ

(T Ta) ·N dS −
∫
V

a · divT dV. (2.16)

3Equation (3.20) in [6].
4Equation (4.1) in [6].
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Using a = δu implies grada = δϵ as ϵ = gradu and the operators grad and δ commute. The

tensor field is set as T ≡ ∂u /∂ϵ. Substituting these definitions in Eq. (2.16) leads to the

following equation:∫
V

σ : δϵ dV = −
∫
V

(∇ · σ) · δu dV +

∫
Σ

N · (σT · δu) dS, (2.17)

where the divergence is expressed in terms of the nabla operator (∇·).

Thus, the variation equation is transformed into a sum of three integrals: a volume integral

in the α-phase, IntVα, a volume integral in the β-phase, IntVβ, and a surface integral, IntS;

hence, Eq. (2.8) can be expressed as

IntVα + IntVβ + IntS = 0. (2.18)

The volume integral in the α-phase is given by

IntVα =

∫
V α

[(∂u
∂s − T

)
δs −∇ · σ · δu+

( ∂u
∂CB

− µB

)
δCB

]
dV, (2.19)

where the inner product of Eq. (2.12) was transformed using Eq. (2.17). The volume integral

for β-phase has the same form as Eq. (2.19). The surface integral is given by

IntS =

∫
Σ

[
ωαδzα + ωβδzβ +Nα · σαT · δuα +Nβ · σβT · δuβ

]
dS, (2.20)

where ω is given by

ω ≡ u − T s − µBCB. (2.21)

This ω free energy density can be interpreted as the density of the grand canonical potential.

The superscript denotes the side of the interface. For example, ωα = u α − T s α − µCα
B, and

its superscript implies ω is calculated on the α-side of the interface.
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The variations in Eq. (2.20) are not independent of each other. To express IntS in terms of

two independent variations, for example, δuβ and δzα, we use the following conditions which

characterize the coherent interface:

δdα = δdβ,

Nβ = −Nα,

δzαNα = δzβNβ,

(2.22)

where Eq. (2.22)a expresses the fact that there is no gap nor any sliding between the two

phases. Equation (2.22)c is also a consequence of the coherent constraint, as the β-phase

grows at the expense of the α-phase and vice versa. These equations along with Eq. (2.7)

imply the following relations:

δuα = δuβ + (ϵβ − ϵα) ·Nαδzα,

δzα = −δzβ.

(2.23)

Thus, Eq. (2.20) is transformed and given by

IntS =

∫
Σ

[
(ωα−ωβ+Nα ·σαT ·(ϵβ−ϵα) ·Nα)δzα+(Nα ·σαT +Nβ ·σβT ) ·δuβ

]
dS. (2.24)

Substituting Eq. (2.19) for the volume integrals, and Eq. (2.24) for the surface integral, in

Eq. (2.18), we obtain∫
V α

[(∂u
∂s − T

)
δs −∇ · ∂u

∂ϵ
· δu+

( ∂u
∂CB

− µB

)
δCB

]
dV+∫

V β

[(∂u
∂s − T

)
δs −∇ · ∂u

∂ϵ
· δu+

( ∂u
∂CB

− µB

)
δCB

]
dV+∫

Σ

[
(ωα − ωβ + (ϵβ − ϵα) · σα)δzα + (Nα · σαT +Nβ · σβT ) · δuβ

]
dS = 0.

(2.25)

This equation contains variations of the independent variables in each integral.5

5Spherical systems use r instead of z in Eq. (2.25)c.
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Equilibrium conditions

For Eq. (2.25) to hold, each of the three integrals must be 0. Thus, the interior of the

α-phase satisfies IntVα = 0, the interior of the β-phase satisfies IntVβ = 0, and the interface

satisfies IntS = 0. For arbitrary variations of the independent variables, the corresponding

coefficients must vanish; the subsequent equations provide the conditions for equilibrium.

First, IntVα = 0 is considered. The coefficient of δs set to 0 is given by

T =
∂u
∂s (thermal equilibrium), (2.26)

where T is identified as temperature, and is constant as it is a Lagrange multiplier. Equation

(2.26) represents the condition for thermal equilibrium.

The coefficient of δu set to 0 is given by

∇ ·
(∂u
∂ϵ

)
= ∇ · σ = 0 (mechanical equilibrium), (2.27)

and represents the condition for mechanical equilibrium.

The coefficient of δCB set to 0 is given by

µB = µeq =
∂u
∂CB

(chemical equilibrium), (2.28)

where µB is identified as the equilibrium chemical potential of the B -species, µeq, and is

constant as it is a Lagrange multiplier. Equation (2.28) represents the condition for chemical

equilibrium.6

The same procedure is followed for IntVβ = 0. Thus, Eqs. (2.26)-(2.28) describe the internal

equilibrium of the α-phase and β-phase. Furthermore, the temperature, and the chemical

potential of the B -component are uniform across the two phases.

6In binary substitutional solid solutions, chemical equilibrium corresponds to a constant diffusion
potential, which is identified with the Lagrange multiplier difference, given by µB − µA [35].
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For IntS = 0, setting the coefficients of δuβ and δzα to 0 provides the conditions for

equilibrium along the coherent interface:

Nα · σαT +Nβ · σβT = 0,
(coherent interfacial equilibrium)

ωβ − ωα − (ϵβ − ϵα) · σα = 0.

(2.29)

Equation (2.29)a describes the mechanical equilibrium at the interface and reflects the

continuity of the normal tractions across the interface, which can also be expressed in the

component form as

σα
ijN

α
j = −σβ

ijN
β
j . (2.30)

Thus, the stress is balanced along the coherent interface. Equation (2.29)b represents the

condition for phase stability and specifies the jump in the grand canonical free energy across

the interface.

In summary, the volume of each phase exhibits thermal, mechanical, and chemical

equilibrium, collectively known as internal or bulk equilibrium. The α/β interface entails

mechanical equilibrium and interfacial equilibrium. Together, these conditions describe the

thermochemical equilibrium of a stressed system, which is also known as thermomechanical

equilibrium.
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2.3. Kinetics

Kinetics of chemical processes drive the applications of materials by instigating changes in

their composition, shape, size, and microstructures. Describing the progress of these changes

in time and space as well as their rates is the realm of chemical kinetics; in the solid state,

structural constraints must also be accounted for [4, 54].

Fick’s law describes the nonequilibrium process of diffusion in terms of the gradient of

concentration. However, the state variable corresponding to chemical equilibrium was found

to be the chemical potential of B -atoms, as shown by Eq. (2.28). Modified Fick’s law

describes diffusion in terms of the gradient of the chemical potential, and is used in Chapter

3.

The models of Fig. 1.2 are phase-transforming systems. The interfacial chemical

reaction consumes the diffusing species locally, thereby affecting the local concentration.

Subsequently, this kinetic process occurs in a narrow region of space, and the interface is

idealized to a sharp moving front which marks a discontinuous change in the concentration

and material properties. These moving boundaries characterize the growth kinetics of such

phase-transforming systems, and are typically described using empirical models.

2.3.1 Classical models of growth kinetics

Classical rate models in the literature include the Ginstling-Brounshtein (G-B) model for

diffusive reaction in spherical particles [55], Deal-Grove (D-G) model for planar silicon

oxidation [56], and the Higuchi equation for rate of drug release from ointment films, which

is of key interest within the pharmaceutical sciences [57].

The G-B equation (1950) is a well known ‘shrinking core model’ in chemical engineering

literature [55]. Shrinking core models describe the rate of retreat of the surface of a partially

reacted spherical solid particle. The rate-controlling step is the diffusion of reactants through
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a product layer to an interface at which an instantaneous reaction takes place; the product

layer directly replaces the space filled by the initial reactant particle with no change in

volume. Such models are also known as Shell and Core models or Unreacted Core models,

and have contributions from both diffusion and geometric controls [58]. For the spherical

system in Fig. 1.2, the G-B kinetic equation is given by�
�

�
�3− 2ξ − 3(1− ξ)2/3 =

kt

b2
, (2.31)

where ξ = 1 −
(a
b

)3

, which is a fractional degree of reaction or extent of reaction, a and

b are the inner and outer radii respectively, and k is a rate constant that depends on the

diffusivity [58].

The D-G equation (1965) is a well-known linear-parabolic model from silicon oxidation

literature and is given by Eq. (11) of [56]:

�
�

�

x2

0 + ADGx0 = BDGt+ x2
i + ADGxi, (2.32)

where x0 is the total oxide thickness and xi is the initial layer of oxide; ADG and BDG

are parameters that depend on the effective diffusivity of the mobile oxidant species, rate

constants associated with the outer surface and interface, and equilibrium concentration of

the oxidant in the oxide.

The Higuchi equation is well known in pharmaceutical literature for quantifying the release

of solid drugs suspended in thin films [57]. This equation demonstrates a square root of time

type release kinetics, which is given by [59]

Mt

Af

=
√
2CiDCst, (2.33)
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where Mt denotes the cumulative amount of drug that is released at time t from the film,

Af denotes the surface area of the film, Ci is the initial concentration of the drug, and Cs

denotes the solubility of the drug.

2.3.2 Effects of diffusion-reaction-deformation

The effects of diffusion-reaction-deformation have been observed experimentally thanks to

an astounding progress in in-situ techniques. Internal stresses have been observed to slow

down and inhibit phase transformation reactions in silicon structures, thereby affecting the

growth kinetics; some studies attribute this stalling to stress-reaction coupling, while others

postulate that it is governed by stress-diffusion coupling [60–69].

In niobium hydrogen thin films, Wagner et al. [70] observed that plastic deformation was

suppressed below a critical film thickness, and the elastic stress state altered the chemical

potential of hydrogen, phase stability, and critical temperature. Such manifestations of

coupling affect the system’s utility. Thus, fundamental understanding of diffusion-reaction-

deformation is required to advance system miniaturization, which can make devices less

susceptible to mechanical damage. Several single particle studies [71–74] have investigated

the absorption and desorption of hydrogen in individual palladium nanoparticles with

nanometer to atomic scale spatial resolution and millisecond time resolution. It has been

observed that single-crystalline nanocubes do not exhibit thermodynamic phase coexistence

[71], nanocrystals over a substantial size and shape range exhibit distinct and wide hysteresis

between absorption and desorption [74], and in general, phase coexistence occurs above a

critical size and is accompanied by defects [72,73].

Hysteresis, a dissipative phenomena that lowers the efficiency of any device operating under

cyclic conditions, is observed in both lithium-ion batteries and metal hydrides, and continues

to persist with vanishing kinetics; in electrochemical systems, the subsequent residual voltage

is called a zero-current offset [20, 71, 74–76]. Schwarz and Khachaturyan attribute the
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ubiquitous hysteresis in palladium hydrides to an intrinsic thermodynamic phenomena that

maintains the coherency of the interface, and is accompanied by an elastic strain energy

that generates a nucleation energy barrier [77–80]. Freidin and Eremeyev developed a

model to explain the phenomena of hysteresis in stress-induced phase transformations [81].

They also considered the effects of energy barriers due to nucleation and metastability;

the latter leads to hysteresis even in quasi-equilibrium. In phase-transforming electrodes

of lithium-ion batteries, Dreyer et al. attributed the inherent thermodynamic hysteresis

to the sequential charging and discharging of particles in an electrode comprising multiple

particles and predicted the existence of multiple equilibria [75, 82]. Subsequently, zero-

current hysteresis was predicted even for a single particle via the pinning of the phase front

by heterogeneities [83]. These references do not form an exhaustive list; for example, the

interpretation of hysteresis in metal hydrides has a long history during which the underlying

cause remained an open question [84–87].

2.3.3 Modeling of diffusion-reaction-deformation phenomena

Kinetic models are most useful to technology. However, many coupled kinetic models are

developed using an ad hoc approach for a specific problem at hand, namely, by modifying

or extending classical models of diffusion and phase growth to improve their fit with

experimental observations of a given material system.

The classical models of growth kinetics in Section 2.3.1 do not include the effects of

deformation and the subsequent coupled effects. They are derived using Fick’s law of

diffusion, which implies an instantaneous response of the flux to a change in the driving force.

To include the effects of deformation in the stress-free (SF) classical rate models, the constant

material and kinetic parameters are often replaced with their effective values varying with

concentration, stresses, temperature, as well as time when considering viscoelastic and stress

relaxation effects. For example, in the D-G silicon oxidation model, stress-dependent effective

diffusivities and reaction rate constants are used; the nature of these equations is based on
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intuition, using the concept of activation volumes and fitting parameters [60,61,88–93]. The

D-G model is also used as the basis for studying the experimental data of other material

systems, including hydrides and silicides [94–97], where modifications and extensions are

incorporated to fit the data. This theoretical approach is commonly adopted by coupled

models; while these models may describe the experimental observations, they do not have

any predictive capabilities. In the next chapter, we formulate uncoupled and elastically-

coupled models using a thermodynamic-kinetic approach to model the phase growth as well

as predict the effects of elasticity on diffusion and reaction.
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Chapter 3

Moving boundary problems

This chapter formulates the kinetic models that are used subsequently in the uncoupled and

elastically-coupled analyses for the two geometries.

3.1. Kinetic processes

When the system is driven away from equilibrium, thermal, mechanical, chemical, and

interfacial processes kick in to drive the system to equilibrium. The rates of the physical

processes are generally described using the theory of irreversible thermodynamics. In this

work, the simplest descriptions are used to model the kinetics of the irreversible processes,

assuming small deviations of the system from its equilibrium state.

3.2. Local equilibrium

The quasi-steady state analysis requires the assumption of local equilibrium. In addition,

it assumes that thermal and mechanical equilibria are rapidly established compared to the

time required to establish compositional and phase equilibria.
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3.3. Coupling

The coupling between the diffusion-reaction-deformation phenomena can be explicitly seen

in the chemical potential and the grand canonical free energy.

Differences in the chemical potential of the B -species drive the diffusion of B -atoms. From

Eq. (2.28), the chemical potential of the B -atoms is given by

µB =
∂u (ϵ, s , CB)

∂CB

, (3.1)

where the internal energy density depends on the composition and strain, and hence, reaction

and deformation respectively.

Equation (2.29)b represents phase change, and can be expressed using Eq. (2.21) as

JωK − JϵK · σα = Ju K − T Js K − µBJCBK − JϵK · σα = 0, (3.2)

where JK denotes the jump across the interface, for example, JωK = ωβ − ωα.

When JωK−JϵK ·σα ̸= 0, it drives the interface motion, with ω coupling phase transformation

to deformation, reaction, and diffusion, via the internal energy density, the chemical

potential, and composition.

3.4. Diffusion

When a phase is not in chemical equilibrium, its chemical potential is not a constant. Instead,

there is a gradient in the potential, which is assumed to generate and drive diffusion fluxes.

To describe the diffusive transport of the B -atoms, an empirical relationship is identified

for the local diffusion flux and the local diffusion force using the principles of irreversible

thermodynamics, specifically, the rate of local production of entropy. The driving force is

interpreted as the negative gradient of the chemical potential. This phenomenological model
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for diffusion is expressed as [4, 7]

Jη
B = −Cη

BM
η
B · ∇µη

B,
η = α, β∂Cη

B

∂t
= −∇ · Jη

B,

(3.3)

where Jη
B, Mη

B, ∇µη
B respectively describe the flux, mobility, and the gradient of the chemical

potential of the B-atoms in the phase under consideration, and t is time. The flux is

measured with respect to the A-lattice, which provides a reference frame. The mobility is

a function of concentration and stress at a given temperature.7 Equation (3.3)b represents

the conservation of the B -atoms in the differential form. Equation (3.3)a is called Modified

Fick’s force-flux (empirical) law [4].

We assume both systems exhibit isotropic mobility. Furthermore, as only the B -atoms are

mobile, we drop the subscript B for the subsequent sections.

For the spherical system, one-dimensional diffusion is assumed to occur along the r direction,

i.e. only the r-component of flux is non-zero. Thus, the equations for the flux and the

conservation of B -atoms are given by

Jη = −MηCη ∂µ
η

∂r
,

η = α, β∂Cη

∂t
= −∇rJr,

= −∂Jη

∂r
− 2

r
Jr,

(3.4)

where ∇r =
∂

∂r
+

2

r
, and is the only contributing term.8

7For ideal dilute solutions undergoing small deviations from equilibrium, Mη is related to the diffusivity
of the B -atoms in the phase under consideration, Dη, and is given by Mη = Dη/RT , where R is the gas
constant; the derivation is shown in Appendix B.

8Divergence of a vector field (in spherical coordinates), F (r, ϕ, θ), is given by ∇ · F =
∂Fr

∂r
+

2

r
Fr +

1

r

∂Fϕ

∂ϕ
+

cotϕ

r
Fϕ +

1

r sinϕ

∂Fθ

∂θ
, where F = Fr(r, θ, ϕ)r̂ + Fθ(r, θ, ϕ)θ̂ + Fϕ(r, θ, ϕ)ϕ̂ [98].
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For the planar system, one-dimensional diffusion is assumed to occur along the z direction.

Thus, the diffusion equations are given by

Jη = −MηCη ∂µ
η

∂z
,

η = α, β
∂Cη

∂t
= −∂Jη

∂z
.

(3.5)

3.5. Phase transformation

When the two phases are not in equilibrium, there is a driving force, denoted by Φ, that

generates and drives the motion of the interface until it reaches equilibrium. To describe

this driving force, Eq. (3.2) is modified and expressed as

Φ = JωK − JϵK · σα = Ju K − T Js K − µJCK − JϵK · σα. (3.6)

3.5.1 Velocity of the interface

Models of interface motion usually express the normal velocity of the interface as a function

of Φ. When the system is close to equilibrium, the velocity of the interface is assumed to be

linearly proportional to the driving force, and characterizes the kinetics of the interface [23].

We use the following kinetic model:

vI = − V0

CART
Φ, (3.7)

where V0 is a characteristic velocity and vI is the velocity of the interface; the model is

derived in Appendix C.
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3.5.2 Mass balance at the interface

The mass balance at the interface is given by

vI = −JJrK
JCK

(spherical),

vI =
JJzK
JCK

(planar),
(3.8)

where the speed of the interface is related to the flux of the B -atoms crossing the boundary.

3.5.3 Chemical equilibrium at the interface

The interface is assumed to be at local chemical equilibrium. Consequently, at the phase

boundary, the chemical potentials of the two phases are equal:

µα
I = µβ

I ≡ µI , (3.9)

where µη
I is the chemical potential at the interface on the η-side of the interface.

3.6. Local entropy production

It is noted that the phenomenological diffusion and reaction models satisfy the

thermodynamic restriction of local entropy imbalance, or the Clausius-Duhem inequality

because −J · ∇µ > 0 and −vI · Φ > 0.

3.7. Legendre transformation for small strains

The general relationships for the chemical potential and grand canonical potential density

are determined formally from the first two laws of thermodynamics, which yield

du = Tds + σijdϵij + µdC. (3.10)
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The above equation follows directly from Eq. (2.12) once equilibrium has been assumed

and the constraints on the variation of the B -atoms have been accounted for [99]. The

independent variables are s , ϵij, and C.

To obtain a change in variable, we define a new function, g , Gibbs energy density for

nonhydrostatic stresses.9 For small strains, g is given by

g = u − T s − σ : ϵ. (3.11)

Gibbs energy density is a state function whose value depends on the current thermodynamic

state and is independent of the path taken to reach this state. The total differential of Gibbs

energy density is given by

dg = du − Tds − s dT − σijdϵij − ϵijdσij,

= Tds + σijdϵij + µdC − Tds − s dT − σijdϵij − ϵijdσij,

= −s dT + µdC − ϵijdσij,

(3.12)

where Eq. (3.10) was used. Thus, g can be considered a function of T, σij, and C. Since g

is a state function of these variables, dg is an exact differential, and is given by

dg =
(∂g
∂T

)
dT +

(∂g
∂C

)
dC +

( ∂g
∂σij

)
dσij. (3.13)

Comparing Eqs. (3.12) and (3.13), we obtain

∂g
∂T

= −s,

∂g
∂C

= µ,

∂g
∂σij

= −ϵij.

(3.14)

9The Gibbs energy density used here is analogous to the classical Gibbs energy; the latter is an appropriate
function to use under conditions of constant temperature, composition, and hydrostatic pressure.
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For an exact differential, the order of differentiation can be exchanged. Thus, we obtain

∂

∂C

( ∂g
∂σij

)
=

∂

∂σij

(∂g
∂C

)
. (3.15)

Substituting Eqs. (3.14)b and (3.14)c in Eq. (3.15) gives the following Maxwell’s relation:

−
(∂ϵij
∂C

)∣∣∣
T,σij

=
( ∂µ

∂σij

)∣∣∣
T,C,σkl̸=ij

. (3.16)

Equation (3.16) requires a constitutive law connecting the stress and the strain. As the

temperature is assumed constant, stresses are induced when the material is deformed or a

compositional change occurs, and are given by

σij = Cijkl

(
ϵkl − ϵckl

)
, (3.17)

where ϵcij is a stress-free strain, and Cijkl is the elastic stiffness tensor. Solving Eq. (3.17)

for strain leads to

ϵij = ϵcij + Sijklσkl, (3.18)

where Sijkl is the elastic compliance tensor. Equation (3.18) can also be interpreted as an

additive decomposition of the total strain, ϵij = ϵcij + ϵeij, where ϵeij is the elastic strain, which

is related to stress using Hooke’s law.

Integrating Eq. (3.16) from zero stress to σij gives µ(σ,C), the stress-dependent chemical

potential:

µ(C, σ) = µ(C, 0)−
(∂ϵcij
∂C

σij +
∂Sijkl

∂C
σijσkl

)
, (3.19)

where µ(C, 0) is the stress-free chemical potential, given by Eq. (3.14)b in terms of Gibbs

energy density. Assuming the material properties are constants, the chemical potential for

35



the stressed system is given by

µ(C, σ) = µ(C, 0)−
∂ϵcij
∂C

σij,

=
∂g
∂C

∣∣∣
(C,0)

−
∂ϵcij
∂C

σij.

(3.20)

At uniform composition and temperature, the total differential of the Gibbs energy density,

Eq. (3.13), simplifies to

dg = −ϵeijdσij, (3.21)

where the only contribution to strain is the elastic strain. Integrating from zero stress to σij,

we obtain g for a linearly elastic solid, which is given by

g (T,C,σ) = g (T,C, 0)− ϕ, (3.22)

where the strain energy of the solid, ϕ = σijϵ
e
ij/2, and the Gibbs energy density at zero

stress, g (T,C, 0) = ω + µC, using Eqs. (2.21) and (3.11).

Equation (3.22) is simplified to

g (T,C,σ) = ω + µC − ϕ. (3.23)

Thus, the jump in the grand canonical potential density can be written as

JωK = Jg K − µIJCK + JϕK, (3.24)

where µI is the chemical potential at the interface.

The driving force for phase boundary migration is expressed using Eqs. (3.6) and (3.24):

Φ = Jg K − µIJCK + JϕK − JϵijKσα
ij, (3.25)

where the last contribution represents the interface work term.
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Equations (3.20) and (3.25) are the transformed equations corresponding to Eqs. (3.1) and

(3.2) respectively; they assume small strains, and exhibit the diffusion-reaction-deformation

coupling.

3.8. Research methodology and model summary

To study the systems shown in Fig. 1.2, we use concepts from Equilibrium Thermostatics and

Kinetics. The former included a variational formulation based on the laws of equilibrium

thermostatics to obtain the equations for thermal, chemical, mechanical, and interfacial

equilibrium in the two phases as well as at the interface. In this chapter, the chemical and

phase equilibrium assumptions were relaxed to introduce kinetics into the problem. The

framework is summarized in Table 3.1.

Thermodynamics - first and second laws Laws
- equations for thermal, mechanical
equilibrium

Interface - coherent Choice
- other possibilities: incoherent,
semicoherent

Kinetics - close to equilibrium Assumptions
- local chemical equilibrium at the
interface
- local entropy production

Table 3.1: Framework summary

The quantities to be computed include the composition of the two phases away from the

interface (Cα and Cβ), the interfacial compositions in the two phases (Cα
I and Cβ

I ), and the

stresses (σα and σβ) and strains (ϵα and ϵβ) in the two phases. Furthermore, as the phase

boundary moves with time, location of the interface, a and zI , and velocity of the moving

interface, vI , are not known in advance and must be determined as part of the solution.

This characteristic of computing part of the domain, makes the problem at hand a moving
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boundary problem. When the boundary is stationary, the problem is known as a free boundary

problem [100].

Moving boundary problems are often called Stefan problems, after Josef Stefan who

formulated the problem in the context of heat conduction. A Stefan condition is required

to describe the conservation of mass at the interface; this mass balance equation is given

by Eq. (3.8); it is a nonlinear equation as the interfacial concentrations and the velocity of

the interface are unknown. The kinetic equations also exhibit nonlinearities, as seen in Eqs.

(3.4) and (3.5).

To study the behavior of the two systems, we undertake two analyses for each system: a

stress-free (SF) uncoupled analysis and an elastically coupled analysis. The starting point

for each problem is the SF system at equilibrium.

3.9. Stress-free system at equilibrium

Initially, the α and β phases are assumed to be at equilibrium with concentrations Cα
eq and

Cβ
eq respectively, as shown in Fig. 3.1(a,b). Such a SF equilibrium state is also known as

thermochemical equilibrium.

Chemical equilibrium implies µα = µβ = µeq, which includes chemical equilibrium at

the interface: µα
I = µβ

I = µeq, where µeq corresponds to Eq. (2.28) of the framework.

Subsequently, there is no diffusion, and the B -atoms do not move. Interfacial equilibrium

implies the driving force for the phase transformation reaction is zero, i.e., Φ = 0;

subsequently, the velocity of the interface is 0 and the interface does not move.

From Eq. (3.25), chemical and interfacial equilibria in a SF system imply

Jg K − µeqJCK = 0, (3.26)
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Figure 3.1: Schematic cross-section of a spherical core-shell particle and a planar

bilayer at T0. At equilibrium, the concentration is Ceq and the interfaces are at (a) r = a0

and (b) z = z0I . The prescribed flux, J∗, drives the systems away from equilibrium. The

kinetics of the systems include diffusion and phase transformation, accompanied by stresses,

σ. The position and velocity of the interface are denoted respectively as (a′) a(t), vI = −da
dt

;

(b′) zI(t), vI = dzI
dt

.

where the terms related to deformation were ignored. Expanding this equation, we obtain

g (Cβ
eq)− g (Cα

eq)− µeq(C
β
eq − Cα

eq) = 0, (3.27)

which expresses the equilibrium condition using a common tangent construction, which is

shown graphically in Fig. 3.2.
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Figure 3.2: Schematic of the variation in Gibbs energy density with respect

to composition in the absence of stress. The equilibrium compositions exhibit a common

tangent.

3.10. System undergoing diffusion and phase transformation

At time, t = 0, a flux, J∗, is applied to the spherical system at r = b and to the planar

system at z = 0, as shown in Fig. 3.1(a’,b’). The transport of the B -atoms induces diffusion

and reaction, which modify the stress and concentration distributions, and move the α/β

interface. To analyze these effects on the two systems, the following assumptions are used:

(A1) The two phases undergo small deviations from equilibrium. The concentrations of the

B -atoms in the two phases are given by

Cα = Cα
eq + δCα,

Cβ = Cβ
eq + δCβ,

(3.28)

where it is assumed that the concentration change, δC ≪ Ceq; consequently, terms

containing higher orders of δC will be ignored. Furthermore, we are able to write
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linearized Taylor expressions for the chemical potential, and Gibbs energy density,

which are given by

µα = µeq + δµα,

µβ = µeq + δµβ,

(3.29)

g α = g (Cα
eq) + µeqδC

α,

g β = g (Cβ
eq) + µeqδC

β,

(3.30)

where δµ is the change in the chemical potential; in the absence of stress, it is simplified

to

δµα = καδCα,
(uncoupled)

δµβ = κβδCβ,

(3.31)

where κα and κβ denote the curvatures of g : κα =
d2g α

dC2

∣∣∣
Cα

eq

and κβ =
d2g β

dC2

∣∣∣
Cβ

eq

.

(A2) The interface is at chemical equilibrium as per Eq. (3.9), which can be simplified using

Eq. (3.29) to

δµα
I = δµβ

I , (3.32)

where δµα
I and δµβ

I are the chemical potential deviations just adjacent to the phase

boundary in the α- and β-phases respectively.

(A3) The system is undergoing steady state diffusion, i.e.
∂Cη

∂t
= 0 as per Eq. (3.3)b.

(A4) The two phases have constant material properties. Furthermore, the material

properties are the same in both phases.

41



(A4) (planar case) We assume the two phases of the planar system exhibit an equibiaxial

state of stresses and strains:

σα
xx = σα

yy = σα,

σβ
xx = σβ

yy = σβ,

σα
zz = σβ

zz = 0,

ϵxx = ϵyy = ϵ,

(3.33)

where ϵ is the total strain of the bilayer.

3.10.1 Mechanical equilibrium

The kinetics under consideration assume mechanical equilibrium, as highlighted in Section

3.2. Therefore, the elastic stresses must satisfy the mechanical equilibrium conditions in the

bulk and at the interface, which are given by Eqs. (2.27) and (2.29)a respectively. For the

spherical system, these two conditions simplify to

∇ · σ =
∂σrr

∂r
+

2

r

(
σrr − σθθ

)
= 0 (in the bulk),

Nα · σαT +Nβ · σβT = σα
rr − σβ

rr = 0 (at the interface).

(3.34)

In the planar case, the condition for mechanical equilibrium at the interface is satisfied

trivially for the assumed equibiaxial stresses and strains because the interfacial stresses, ση
I

(η = α, β) are not functions of z and σzz = 0. We will revisit the bulk mechanical equilibrium

condition in Chapter 5.

3.10.2 Interface conditions

The general expression for the driving force for the migration of the phase boundary or

interface is given by Eq. (3.25), where Jg K − µIJCK can be further simplified using Eqs.
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(3.28) to (3.30) as follows:

Jg K − µIJCK = g (Cβ
eq) + µeqδC

β
I − (g (Cα

eq) + µeqδC
α
I )− µI(C

β
eq + δCβ

I − Cα
eq − δCα

I ),

= g (Cβ
eq)− g (Cα

eq) + µeq(δC
β
I − δCα

I )− µI(C
β
eq − Cα

eq)− µI(δC
β
I − δCα

I ),

= g (Cβ
eq)− g (Cα

eq) + µeq(δC
β
I − δCα

I )− (µeq + δµβ
I )(C

β
eq − Cα

eq)

− (µeq + δµβ
I )(δC

β
I − δCα

I ).

(3.35)

Equation (3.35) is further simplified using the common tangent condition at equilibrium, Eq.

(3.27), and ignoring the terms containing (δC)2:

Jg K − µIJCK = −δµβ
I (C

β
eq − Cα

eq) (coupled),

= −κβδCβ
I (C

β
eq − Cα

eq) (uncoupled),

(3.36)

where Eq. (3.31) is used for the uncoupled case. Thus, Eq. (3.25) is expanded and written

as

Φ = −δµβ
I (C

β
eq − Cα

eq) + JϕK − JϵijKσα
ij. (3.37)

Equation 3.37 shows that the driving force for the interface motion entails three key

interfacial terms involving the stressed chemical potential, strain energy, and interface work.

The interface kinetics and mass balance condition, Eqs. (3.7) and (3.8), involve the velocity

of the interface, vI , which is given by

vI = −da

dt
(spherical),

vI =
dzI
dt

(planar).

(3.38)
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The jumps in the fluxes and concentrations are given by [23]

JJrK = lim
ε→0

(
Jr(a+ ε)− Jr(a− ε)

)
,

(spherical)
JCK = lim

ε→0

(
C(a+ ε)− C(a− ε)

)
,

JJzK = lim
ε→0

(
Jz(zI − ε)− Jz(zI + ε)

)
,

(planar)
JCK = lim

ε→0

(
C(zI − ε)− C(zI + ε)

)
.

(3.39)

Fig. 3.1 shows that a + ε and zI − ε refer to the β-side of the interface; a − ε and zI + ε

refer to the α-side of the interface. For small deviations from equilibrium, the jump in the

concentration for both systems is given by

JCK = Cβ
eq + δCβ

I − (Cα
eq + δCα

I ) = Cβ
eq − Cα

eq + δCβ
I − δCα

I , (3.40)

where δCα
I and δCβ

I are the concentration deviations just adjacent to the phase boundary in

the α- and β-phases respectively. The jump in flux, JJK = Jβ
I − Jα

I , is simplified using Eq.

(3.5)a:

JJzK = lim
ϵ→0

{
−MβCβ

I

∂µβ

∂z

∣∣∣
zI−ϵ

+MαCα
I

∂µα

∂z

∣∣∣
zI+ϵ

}
,

= lim
ϵ→0

{
−MβCβ

I

∂δµβ
I

∂z

∣∣∣
zI−ϵ

+MαCα
I

∂δµα
I

∂z

∣∣∣
zI+ϵ

}
, (coupled)

= lim
ϵ→0

{
−Mβ(Cβ

eq + δCβ
I )κ

β ∂δC
β

∂z

∣∣∣
zI−ϵ

+Mα(Cα
eq + δCα

I )κ
α∂δC

α

∂z

∣∣∣
zI+ϵ

}
(uncoupled)

JJrK = lim
ϵ→0

{
−MβCβ

I

∂µβ

∂r

∣∣∣
a+ϵ

+MαCα
I

∂µα

∂r

∣∣∣
a−ϵ

}
, (coupled)

= lim
ϵ→0

{
−Mβ(Cβ

eq + δCβ
I )κ

β ∂δC
β

∂r

∣∣∣
a+ϵ

+Mα(Cα
eq + δCα

I )κ
α∂δC

α

∂r

∣∣∣
a−ϵ

}
, (uncoupled)

(3.41)

where Eqs. (3.28), (3.29), and (3.31) were used.
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3.10.3 Boundary conditions

The flux is specified:

−MβCβ ∂µ
β

∂r

∣∣∣
r=b

= J∗ (spherical),

−MβCβ ∂(δµ
β)

∂r

∣∣∣
r=b

= J∗ (coupled),

−MβCβκβ ∂(δC
β)

∂r

∣∣∣
r=b

= J∗ (uncoupled),

−MβCβ ∂µ
β

∂z

∣∣∣
z=0

= J∗ (planar),

−MβCβ ∂(δµ
β)

∂z

∣∣∣
z=0

= J∗ (coupled),

−MβCβκβ ∂(δC
β)

∂z

∣∣∣
z=0

= J∗ (uncoupled),

(3.42)

where Eqs. (3.29) and (3.31) were used to simplify.

The flux boundary condition is further simplified using
(
1 +

δCβ

Cβ
eq

)−1

≈ 1 − δCβ

Cβ
eq

. For

example, consider the flux boundary condition for the planar case:[
(Cβ

eq + δCβ)
∂(δµβ)

∂z

]
z=0

= − J∗

Mβ
,[(

1 +
δCβ

Cβ
eq

)∂(δµβ)

∂z

]
z=0

= − J∗

MβCβ
eq

,

∂(δµβ)

∂z

∣∣∣
z=0

= − J∗

MβCβ
eq

(
1 +

δCβ

Cβ
eq

∣∣∣
z=0

) ,
∂(δµβ)

∂z

∣∣∣
z=0

= − J∗

MβCβ
eq

(
1− δCβ

Cβ
eq

∣∣∣
z=0

)
.

(3.43)

45



The same procedure is used for the boundary condition in the spherical case. Thus, the final

set of flux boundary conditions are given by(∂(δµβ)

∂r
+ ζκβδCβ

)∣∣∣
r=b

= ζκβCβ
eq (spherical coupled),(d(δCβ)

dr
+ ζδCβ

)∣∣∣
r=b

= ζCβ
eq (spherical uncoupled),

(∂(δµβ)

∂z
− ζκβδCβ

)∣∣∣
z=0

= −ζκβCβ
eq (planar coupled),(d(δCβ)

dz
− ζδCβ

)∣∣∣
z=0

= −ζCβ
eq (planar uncoupled),

(3.44)

where ζ =
J∗

Mβκβ(Cβ
eq)2

; in uncoupled analyses, the flux boundary condition is a Robin

condition because it involves δC and its derivative.

The second boundary condition specifies the concentration at the interface, which is given

by

Cη
∣∣∣
r=a

= Cβ
eq + δCη

I (spherical),
η = α, β

Cη
∣∣∣
z=zI

= Cη
eq + δCη

I (planar).
(3.45)
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Chapter 4

Uncoupled quasi-steady state analyses of diffusive phase

growth

This chapter considers uncoupled diffusion and phase transformation in the binary systems,

and ignores deformation. The diffusion equations are solved to obtain the concentration

deviation in the phases. The interfacial equations are used to solve the concentration

deviation at the interface as well as the location and velocity of the interface.

In the absence of stress, Eq. (3.29) simplifies to

µα = µeq + καδCα,

µβ = µeq + κβδCβ.

(4.1)

The chemical equilibrium condition at the interface, Eq. (3.32), simplifies to

καδCα
I = κβδCβ

I . (4.2)

In the absence of deformation, the driving force for the phase transformation reaction, Eq.

(3.37), simplifies to

Φ = −κβδCβ
I (C

β
eq − Cα

eq), (4.3)
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where Eq. (3.36)b is used. Substituting Eq. (4.3) in Eq. (3.7) gives the velocity of the

interface:

vI =
V0

CART
κβδCβ

I (C
β
eq − Cα

eq). (4.4)

4.1. Spherical core-shell particle

4.1.1 Concentration deviations

The steady state diffusion in the α-phase is described by

∂Jα
r

∂r
+

2

r
Jα
r = 0, (4.5)

where Eq. (3.4)b is used with
∂Cβ

∂t
= 0. It can be seen that Jα

r must vanish for the above

equality to hold because r = 0 is part of the core domain, 0 ≤ r ≤ a. Near equilibrium,

Jα
r = 0 simplifies to

dδCα

dr
= 0, using Eqs. (3.4)a and (3.29)a. Thus, δCα is constant. Using

the boundary condition, Eq. (3.45)a, the α-phase solution is given by

δCα = δCα
I , (4.6)

where δCα
I is to be determined. Thus, at steady state, the core exhibits uniform

concentration; the deviation in concentration of the core is equal to its interfacial value.

The steady state diffusion in the β-phase near equilibrium is described by

∂Jβ
r

∂r
+

2

r
Jβ
r = 0,

1

r2
d

dr

(
r2
dδCβ

dr

)
= 0,

d

dr

(
r2
dδCβ

dr

)
= 0,

(4.7)
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where Eqs. (3.4)a and (3.29)b are used to simplify. Integrating twice with respect to r :

δCβ(r) = −As

r
+Bs. (4.8)

At r = a, δCβ = δCβ
I as per Eq. (3.45)a, and we obtain

Bs = δCβ
I +

As

a
. (4.9)

Thus, the deviation in concentration in the shell is given by

δCβ(r) = As

(1
a
− 1

r

)
+ δCβ

I , (4.10)

where As and δCβ
I are unknown. Using the flux BC, Eq. (3.44), we obtain

As =
ζ(Cβ

eq − δCβ
I ){ 1

b2
+ ζ

(1
a
− 1

b

)} ≈
ζCβ

eq{ 1

b2
+ ζ

(1
a
− 1

b

)} . (4.11)

Thus, the concentration field in the shell is given by

δCβ(r) = δCβ
I +

ζCβ
eq{ 1

b2
+ ζ

(1
a
− 1

b

)}(1
a
− 1

r

)
, (4.12)

where only a is a function of time.

4.1.2 Interfacial concentration deviations

For the quasi-steady state analysis, δCα
I is independent of r ; subsequently, the derivative in

the second term of Eq. (3.41) is zero. Substituting Eq. (4.12) in Eq. (3.41) (uncoupled), and

setting the velocity of the interface from the mass balance condition equal to the velocity of
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the interface from the phase kinetics equation, we obtain

δCβ
I =

MβRT (Cβ
eq)

2CA

(Cβ
eq − Cα

eq)
2V0

ζ

a2
{ 1

b2
+ ζ

(1
a
− 1

b

)} ,

=
J∗RTCA

κβV0(C
β
eq − Cα

eq)
2

1

a2
{ 1

b2
+ ζ

(1
a
− 1

b

)} ,

(4.13)

where (δCβ
I )

2 terms were ignored, and the definition of ζ was used to simplify.

The interfacial concentration change in the core is given by Eq. (4.2):

δCα
I =

κβ

κα
δCβ

I . (4.14)

4.1.3 Interface kinetics

Using Eq. (4.13)b in Eq. (4.4), we obtain

da

dt
= − J∗(

Cβ
eq − Cα

eq

) b2

a2
{
1 + ζb

(
b
a
− 1

)} , (4.15)

which alternately, can also be derived using the mass balance condition at the interface.

Integrating the equation from t = 0 to t gives the location of the interface:

(1− ζb)
(a3 − a30)

3
+ ζb2

(a2 − a20)

2
= − J∗b2

(Cβ
eq − Cα

eq)
t, (4.16)

where a0 is the position of the interface at t = 0.

50



4.2. Planar bilayer

4.2.1 Concentration deviations

For uncoupled steady-state diffusion and small deviations from equilibrium, the diffusion Eq.

(3.5) for the β-phase simplifies to

∂2δCβ

∂z2
= 0, (4.17)

which results in a linear variation of the concentration field with respect to z :

δCβ(z) = Apz +Bp. (4.18)

Using the BCs, Eqs. (3.44) and (3.45), we obtain

Ap = −
ζCβ

eq − δCβ
I )

1 + ζzI
≈ −

ζCβ
eq

1 + ζzI
,

Bp = δCβ
I +

ζ(Cβ
eq − δCβ

I )zI

1 + ζzI
= δCβ

I +
ζCβ

eqzI

1 + ζzI
,

(4.19)

which results in the following quasi-steady state solution:

δCβ(z) = δCβ
I +

ζCβ
eq

1 + ζzI
(zI − z),

δCα(z) = δCα
I =

κβ

κα
δCβ

I ,

(4.20)

where only zI is a function of time.

4.2.2 Interfacial concentration deviations

For the quasi-steady state analysis, δCα
I is independent of z ; subsequently, the derivative in

the second term of Eq. (3.41) is zero and JJK simplifies to

JJK = −Mβ(Cβ
eq + δCβ

I )κ
β lim
ϵ→0

∂δCβ

∂z

∣∣∣
zI−ϵ

. (4.21)
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Substituting Eqs. (3.40) and (4.21) in Eq. (3.41), we obtain

−Mβ(Cβ
eq + δCβ

I )κ
β lim
ϵ→0

∂δCβ

∂z

∣∣∣
zI−ϵ

= (Cα
eq − Cβ

eq + δCα
I − δCβ

I )
dzI
dt

. (4.22)

Using the steady state solution of Eq. (4.20), and Eq. (4.4) into Eq. (4.22), and ignoring

higher orders of δCβ
I , we can solve for δCβ

I , which is given by

δCβ
I =

MβRT (Cβ
eq)

2CA

(Cβ
eq − Cα

eq)
2V0

ζ(
1 + ζzI

) ,
=

J∗RTCA

κβV0(C
β
eq − Cα

eq)
2

1(
1 + ζzI

) , (4.23)

where the definition of ζ was used to simplify.

4.2.3 Interface kinetics

Substituting Eq. (4.23) in Eq. (4.4) provides the velocity of the interface:

dzI
dt

=
J∗(

Cβ
eq − Cα

eq

)(
1 + ζzI

) . (4.24)

Integrating the equation from t = 0 to t gives the location of the interface:�

�

�

�
zI +

ζ

2
z2I = z0I +

ζ

2
(z0I )

2 +
J∗t(

Cβ
eq − Cα

eq

) , (4.25)

where z0I is the position of the interface at t = 0.

4.3. Discussion

By ignoring deformation, we are assuming the two phases are rigid and incompressible.
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4.3.1 Planar limit

Let us consider the solution when a and b approach infinity with b − a and
b

a
maintaining

finite values, which corresponds to a planar limit. To check if we recover the planar solution,

we consider Eqs. (4.12), (4.13), and (4.15) with these limits.

By comparing the geometric and planar pictures, we notice the following limits:

b− a → zI ,

lim
a→∞

b

a
→ lim

a→∞

zI + a

a
→ 1,

r − a → zI − z.

(4.26)

Thus, the geometric terms appearing in Eqs. (4.12), (4.13), and (4.15) are simplified to(1
a
− 1

r

)
{ 1

b2
+ ζ

(1
a
− 1

b

)} =
r − a

r

b

{a

b
+ ζ(b− a)

} → zI − z

(1 + ζzI)
,

a2
{ 1

b2
+ ζ

(1
a
− 1

b

)}
=

a2

b2
+ ζ

a(b− a)

b
→ 1 + ζzI ,

ζb
( b
a
− 1

)
= ζ

b

a
(b− a) → ζzI ,

(4.27)

which correspond to the planar terms in Eqs. (4.20), (4.23), and (4.24).

4.3.2 Limit analysis of the spherical solution

Consider the kinetic regime given by ζb
( b
a
− 1

)
≪ 1. This limit can also be written as

ζ
(
b− a

)
≪ a

b
.

The velocity corresponding to this limit is given by

da

dt
= − J∗(

Cβ
eq − Cα

eq

) b2

a2
. (4.28)
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The location of the interface corresponding to this limit is given by

a3 − a30
3

= − J∗b2

(Cβ
eq − Cα

eq)
t, (4.29)

where only the cubic terms appear.

Next, we consider the kinetic regime given by ζb
( b
a
− 1

)
≫ 1. The velocity corresponding

to this limit is given by

da

dt
= − J∗(

Cβ
eq − Cα

eq

) b

ζa(b− a)
. (4.30)

The location of the interface corresponding to this limit is given by

−(a3 − a30)

3
+ b

(a2 − a20)

2
= − J∗b

ζ(Cβ
eq − Cα

eq)
t, (4.31)

where both cubic and parabolic terms appear.

4.3.3 Stress-free diffusive phase growth

The closed-form equations describing the uncoupled growth kinetics for the two geometries

represent the diffusive phase growth in the absence of stress. These kinetic equations include

thermodynamic-kinetic parameters instead of fitting parameters and compare well to the

classical (SF) kinetic models.

To compare the derived growth kinetics to the well-known G-B model for spherical particles,

a0 is set to b as the G-B model does not consider an initial thickness; Eq. (4.31) can be

expressed as

�

�

�

�
3− 2ξ − 3(1− ξ)2/3 = 6Mβκβ

(Cβ
eq)

2

(Cβ
eq − Cα

eq)b
2
t, (4.32)
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where ξ is the extent of reaction, introduced in Chapter 2. It is iterated that for ideal dilute

solutions, the mobility of the B -atoms is related to their diffusivity via M = D/RT in Eq.

(4.32).

Equations (4.32) and (4.25) compare qualitatively to the G-B and D-G models respectively,

given by Eqs. (2.31) and (2.32).

4.3.4 Validity of the steady-state assumption

The solutions are quasi-steady state (QSS) approximations because they were derived in the

presence of a moving interface by assuming steady state diffusion.

Consider the dimensionless parameter, λQSS, which is given by [23]

λQSS =
B -atoms in the bulk

B -atoms at the interface

=

∂δCβ

∂t
· volume of film

[C] · surface area of the interface · vI
.

(4.33)

For example, for the planar system, using Eq. (4.20) for z = 0, where the maximum deviation

in concentration occurs, λQSS is derived and is given by

λQSS =

(
Cβ

eq −
JBRTCA

κβV0(C
β
eq − Cα

eq)
2

) ζzI
(1 + ζzI)2

(Cβ
eq − Cα

eq)
.

(4.34)

The quasi-steady state assumption (i.e.
∂δCβ

∂t
≈ 0) is valid when λQSS ≪ 1.

Further discussion related to the growth kinetics results is presented together with the

elastically-coupled discussion in the next chapter.
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Chapter 5

Elastically-coupled quasi-steady state analyses of diffusive

phase growth

This chapter formulates and solves the steady-state problem of elastically-coupled diffusive

phase growth for both spherical and planar geometries.

It is assumed that the spherical deformation is axisymmetric; subsequently, θ = ϕ, and the

displacement in each phase, uη, is a function of r only. The planar system is assumed to be

in an equibiaxial state of stress and strain.

5.1. Strain contributions

For small strains, the total strain of each system can be written as

ϵij = ϵcij + ϵeij, (5.1)

where ϵe denotes elastic strains, and ϵc denotes diffusion-induced strains.
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Furthermore, the total strains are related to the displacement u(r) of the axisymmetric

spherical problem:

ϵrr =
du

dr
,

(spherical)
ϵθθ =

u

r
.

(5.2)

5.1.1 Diffusion-induced strains

Diffusion-induced strains are stress-free strains that arise because changes in chemical

composition lead to chemical expansion which produces a change in lattice dimensions, and

hence volume. To model these strains, we assume the solutions generate isotropic volumetric

(or dilatational) strains; subsequently, we can assume the solid solutions obey Vegard’s law

which states that the diffusion-induced strains vary linearly with concentration, which is

expressed as [31]

ϵc =
Ω

3
δCI,

or

ϵcij =
Ω

3
δCδij,

(5.3)

where Ω is the partial molar volume of the B -component at zero stress. We assume Ω has

the same value in both phases.

5.1.2 Elastic strains

For an isotropic, linearly elastic material, the elastic strains are given by

ϵeij =
1

E

[
(1 + ν)σij − νσkkδij

]
, (5.4)

where ν is Poisson’s ratio. The stresses are generated because of composition changes;

consequently, they are often known as diffusion-induced stresses (DISs) in the literature.
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For the spherical system, the constitutive equation is derived in Appendix D and given by

Eq. (27):

σrr

σθθ

 =
E

(1 + ν)(1− 2ν)

1− ν 2ν

ν 1


ϵerr
ϵeθθ

 . (5.5)

For an equibiaxial state of stress and strain, the stress-strain relationship, Eq. (5.4) simplifies

to

ση =
Eη

1− νη
ϵeη,

η = α, β

= E
η
(ϵ− ϵcη),

(5.6)

where E =
E

1− ν
, and is called the biaxial modulus.

In summary, we have two binary systems where the mobile interstitial B -atoms diffuse and

generate stress-free strains, ϵcηij . The A-lattice resists this volume expansion and undergoes

elastic strains, ϵeηij , generating elastic stresses, ση
ij, in each phase. The nature of the elastic

stresses and strains is governed by the system geometries.

5.2. Core-shell particle

Introducing deformation into the analysis leads to five new unknowns in each phase: σrr,

σθθ, ϵerr, ϵeθθ, and u(r). This requires five equations which are given by the two equations

of (5.2) combined with Eq. (5.1), the two equations of (5.5), and (3.34)a. All unknowns

depend on r and δC. Furthermore, we have the following conditions at the outer surface

58



and at the interface:

σrr

∣∣
r=b

= 0 (traction-free surface),

uα(r)
∣∣
r=a

= uβ(r)
∣∣
r=a

(displacement continuity at the interface),

σα
rr

∣∣
r=a

= σβ
rr

∣∣
r=a

(mechanical equilibrium at the interface)

δµα
I = δµβ

I (chemical equilibrium at the interface),

(5.7)

where Eq. (5.7)c is a consequence of Eq. (2.29)a.

Following Bower et al. [23], the method of solution to obtain the concentration deviation

in the shell entails solving the steady state diffusion equation, applying the flux boundary

condition, and incorporating the shell mechanics by eliminating the displacement.

5.2.1 Core thermodynamics and mechanics

Under quasi-steady state conditions, the core is in a hydrostatic state of stress because the

concentration change in the core is independent of the radial coordinate, r, and only depends

on the interfacial position, a, because δCα = δCα
I . Subsequently, the DIS is independent of

the radial coordinate as well. Thus, σα is not a function of r ; hence σα
rr = σα

θθ = σα
ϕϕ = P ,

where P is the hydrostatic stress in the core. Using Eq. (5.5), the elastic strains are given

by

ϵeαrr = ϵeαθθ =
(1− 2ν)

E
P. (5.8)

Using Eqs. (5.2) and (5.8), we obtain

duα

dr
=

uα

r
. (5.9)

Integrating with respect to r gives the displacement in the core:

uα(r) = uP r, (5.10)
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where uP is a constant of integration and determined using Eqs. (5.10), (5.1), and (5.2):

uP =
uα

r
= ϵαθθ + ϵαθθ,

uP =
(1− 2ν)

E
P +

Ω

3
δCα

I ,

(5.11)

where Eqs. (5.3) and (5.8) were used to simplify. Thus, the displacement in the core is given

by

uα(r) =
{(1− 2ν)

E
P +

Ω

3
δCα

I

}
r. (5.12)

The chemical potential change in the core is given by

δµα = καδCα − Ω

3
P. (5.13)

The unknowns in Eqs. (5.12) and (5.13) include P and δCα
I , which will be determined using

the conditions at the interface.

5.2.2 Shell thermodynamics and mechanics

First, the steady state diffusion in the β-phase is considered, which is described by Eq. (3.4)

with
∂Cβ

∂t
= 0. For small deviations from equilibrium, we obtain

∂

∂r

{
(Cβ

eq + δCβ)
∂δµβ

∂r

}
+

2

r
(Cβ

eq + δCβ)
∂δµβ

∂r
= 0, (5.14)
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which is simplified to

∂2δµβ

∂r2
+

2

r

∂δµβ

∂r
= 0,

1

r2

{ ∂

∂r

(
r2
∂δµβ

∂r

)}
= 0,

∂

∂r

(
r2
∂δµβ

∂r

)
= 0,

(5.15)

where r ̸= 0 because it is not part of the β-phase domain. Integrating twice with respect to

r, we obtain

δµβ = −c1
r
+ c2, (5.16)

where c1 and c2 are constants of integration. Using Eq. (5.16) in the flux equation (3.44),

we obtain

c1
b2

+
J∗

MC2
eq

δCβ
∣∣∣
r=b

=
J∗

MCeq

. (5.17)

Second, the shell mechanics is considered. To obtain an expression in terms of the

concentration change only, the displacement is eliminated, and the subsequent mechanics

terms are used in the chemical potential expression. To undertake this procedure, we begin

with the total radial and hoop strains. Using Eqs. (5.1)-(5.4), the total hoop strain is given
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by

uβ

r
= ϵeβθθ + ϵcβθθ,

=
σβ
θθ

E
− ν

E
(σβ

rr + σβ
ϕϕ) +

Ω

3
δCβ,

=
σβ
θθ

E
− ν

E
(σβ

rr + σβ
θθ +

Ω

3
δCβ),

= − ν

E
σβ
rr +

(1− ν)

E
σβ
θθ +

Ω

3
δCβ.

(5.18)

Thus, the displacement experienced by the shell is given by

uβ = − ν

E
rσβ

rr +
(1− ν)

E
rσβ

θθ +
Ω

3
rδCβ, (5.19)

which can be differentiated with respect to r to obtain

duβ

dr
= − ν

E

{
r
∂σβ

rr

∂r
+ σβ

rr

}
+

(1− ν)

E

{
r
∂σβ

θθ

∂r
+ σβ

θθ

}
+

Ω

3

{
r
dδCβ

dr
+ δCβ

}
. (5.20)

Using Eqs. (5.1)-(5.4), the total radial strain is given by

duβ

dr
= ϵeβrr + ϵcβrr,

=
σβ
rr

E
− ν

E
(σβ

θθ + σβ
ϕϕ) +

Ω

3
δCβ,

=
σβ
rr

E
− ν

E
(σβ

θθ + σβ
θθ) +

Ω

3
δCβ.

(5.21)

Equating the two expressions for du
dr

, Eqs. (5.20) and (5.21), we obtain

(1 + ν)

E
(σβ

rr − σβ
θθ) =

Ω

3

(
r
dδCβ

dr

)
− ν

E

(
r
∂σβ

rr

∂r

)
+

(1− ν))

E

(
r
∂σβ

θθ

∂r

)
. (5.22)

Substituting the derivative of radial stress from the mechanical equilibrium condition, Eq.

(3.34), in Eq. (5.22), we obtain the partial derivative of the hoop strain in the shell:

∂σβ
θθ

∂r
=

σβ
rr − σβ

θθ

r
− ΩE

3

dδCβ

dr
. (5.23)
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The chemical potential change is given by

δµβ = κβδCβ − Ω

3
(σβ

rr + 2σβ
θθ). (5.24)

Taking the derivative of Eq. (5.24) with respect to r, and substituting Eqs. (3.34) and

(5.23), we obtain

∂δµβ

∂r
= κβ dδC

β

dr
− Ω

3

(∂σβ
rr

∂r
+ 2

∂σβ
θθ

∂r
),

= κ′β dδC
β

dr
,

(5.25)

where

κ′β = κβ +
2

9
EΩ2. (5.26)

Using Eqs. (5.16) and (5.25), we obtain an expression in terms of the concentration change

only, which is given by

dδCβ

dr
=

c1
κ′βr2

. (5.27)

Integrating and using the BCs, Eqs. (3.44) and (3.45), we obtain

δCβ(r) = δCβ
I +

c1
κ′β

(1
a
− 1

r

)
, (5.28)

where
c1
κ′β =

ζ ′Cβ
eq{

ζ ′
(1
a
− 1

b

)
+

1

b2

} .

Thus, the concentration field in the shell is given by

δCβ(r) = δCβ
I +

ζ ′Cβ
eq{

ζ ′
(1
a
− 1

b

)
+

1

b2

}(1
a
− 1

r

)
, (5.29)
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where δCβ
I will be determined from the interfacial conditions.

5.2.3 Stress field

Equation (5.29) is now used in the mechanics equations, Eqs. (5.18) and (5.21). The

subsequent set of two equations can be solved for the two stresses, which are expressed in

terms of displacement and concentration change, and given by

σβ
rr =

E

(1 + ν)(1− 2ν)

{
2ν

uβ

r
+ (1− ν)

duβ

dr
− Ω

3
(1 + ν)δCβ

}
,

σβ
θθ =

E

(1 + ν)(1− 2ν)

{uβ

r
+ ν

duβ

dr
− Ω

3
(1 + ν)δCβ

}
.

(5.30)

Substituting the stresses given by Eq. (5.30) in the mechanical equilibrium condition, Eq.

(3.34), we obtain a second-order ordinary differential equation (ODE) for the displacement,

uβ(r):

d2uβ

dr2
+

2

r

duβ

dr
− 2

uβ

r2
=

Ω

3

(1 + ν)

(1− ν)

dδCβ

dr
,

d2uβ

dr2
+ 2

d

dr

(uβ

r

)
=

Ω

3

(1 + ν)

(1− ν)

µ1

κ′β r
2.

(5.31)

Integrating with respect to r, we obtain

duβ

dr
+

2uβ

r
= −Ω

3

(1 + ν)

(1− ν)

µ1

κ′β

r
+ u1, (5.32)

where u1 is constant. The ODE is now first order; the integrating factor is r2. Solving this

equation provides an expression for the displacement:

uβ(r) = −Ω

6

(1 + ν)

(1− ν)

µ1

κ′β + u1
r

3
+

u2

r2
, (5.33)

where the two unknowns, u1 and u2, are solved using the first two conditions of Eq. (5.7).

For the first boundary condition, we substitute Eq. (5.33) in Eq. (5.30)a and set the radial

64



stress to zero at r = b, which simplifies to

(1 + ν)
u1

3
− 2(1− 2ν)

u2

b3
+ 2ν

u0

b
− Ω

3
(1 + ν)δCβ

I − Ω

3
(1 + ν)

c1
κ′

(1
a
− 1

b

)
= 0,

u1 =6
(1− 2ν)

(1 + ν)

u2

b3
+ ΩδCβ

I +
Ω

a

c1
κ′ −

Ω

b

c1
κ′

(1− 2ν)

(1− ν)
.

(5.34)

To obtain a second expression in terms of u1 and u2, we use Eq. (5.7)b, where the two

displacements corresponding to the two phases are given by Eqs. (5.12) and (5.33); the

substitutions lead to

{(1− 2ν)

E
P +

Ω

3
δCα

I

}
a = u0 +

u1

3
a+

u2

a2
. (5.35)

Solving Eqs. (5.34) and (5.35) for u1 and u2, we obtain

u1

3
=

1(
1 + ν + 2(1− 2ν)ã3

)[2(1− 2ν)2

(1− ν)

P

E
ã3 − u0

a

{
2− 2ν + 2(1− 2ν)ã3 − 2(1− 2ν)ã

}
+ 2(1− 2ν)

Ω

3
δCα

I ã
3 + (1 + ν)

Ω

3
δCβ

I

]
,

(5.36)

u2 =
a3(

1 + ν + 2(1− 2ν)ã3
)[(1 + ν)(1− 2ν)

(1− ν)

P

E
+

u0

a

{
1− 3ν − 2(1− 2ν)ã

}
+ (1 + ν)

Ω

3

(
δCα

I − δCβ
I

)]
,

(5.37)

where ã =
a

b
, u0 = −Ω

6

(1 + ν)

(1− ν)

µ1

κ′β and
c1
κ′β is known from Section 5.2.2.

Next, we solve for P using Eq. (5.7)c, which is given by

P =
E

(1 + ν)(1− 2ν)

[
− Ω

3
(1 + ν)δCβ

I + 2ν
u0

a
+ (1 + ν)

u1

3
− 2(1− 2ν)

u2

a3

]
. (5.38)

Substituting u1 from Eq. (5.34) into Eq. (5.38), we obtain

3(1− ν)

a3
u2 =

Ω

3
(1 + ν)(δCα

I − δCβ
I )−

u0

a
(1− ν). (5.39)
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Extracting u2 from Eq. (5.39) and setting it equal to Eq. (5.37) provides an expression for

P and consequently the stress state of the core:

σα
rr = σα

θθ = P =
EΩ

9

[ ζ ′Cβ
eq{

ζ ′
(1
a
− 1

b

)
+

1

b2

}
ãb

(ã− 1)2(ã+2)− 2(1− ã3)(δCα
I − δCβ

I )
]
. (5.40)

Equation (5.30) requires the concentration change and displacement of the shell, given by

Eqs. (5.29) and (5.33) respectively; the latter equation also requires Eqs. (5.36), (5.37), and

(5.40). By making these substitutions, we obtain the stress state of the shell:

σβ
rr = E

[2
9
Ω(1− r̃3)

ã3

r̃3
(δCβ

I − δCα
I )−

Ω

9b

ζ ′Cβ
eq{

ζ ′
(1
a
− 1

b

)
+

1

b2

} (1− r̃)

r̃3
(ã2 + ã2r̃ + ã2r̃2 − 3r̃2)

]
,

σβ
θθ = E

[Ω
9
(1 + 2r̃3)

ã3

r̃3
(δCα

I − δCβ
I ) +

Ω

6b

ζ ′Cβ
eq{

ζ ′
(1
a
− 1

b

)
+

1

b2

} (ã2 − 6r̃3 + 2ã2r̃3 + 3r̃2)

3r̃3

]
,

(5.41)

where the only unknowns are the interfacial concentrations and the location of the interface.

5.2.4 Interfacial concentrations

The last leg of the steady state analysis entails the computation of the thermodynamic and

kinetic characteristics pertinent to the interface, namely the location and velocity of the

interface and the interfacial concentrations.

First, we consider the condition of chemical equilibrium at the interface given by Eq. (5.7)d;

using Eqs. (5.13) and (5.24), we obtain

καδCα
I − ΩP = κβδCβ

I − Ω

3
(σβ

rr + 2σβ
θθ

∣∣∣
r=a

),

καδCα
I − ΩP = κβδCβ

I − Ω

3
(P + 2σβ

θθ

∣∣∣
r=a

),

καδCα
I = κβδCβ

I +
2Ω

3
(P − σβ

θθ

∣∣∣
r=a

),

(5.42)
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where Eq. (5.7)c is used to simplify. We can simplify this equation further using the hoop

shell stress at the interface from Eq. (5.41)b which leads to

καδCα
I = κβδCβ

I − 2EΩ2

27
(3 + 4ã3)(δCα

I − δCβ
I ). (5.43)

Simplifying the above equation gives the first equation for the unknown interface

concentrations:

δCα
I =

(
κβ +

2EΩ2

27
(3 + 4ã3)

)
(
κα +

2EΩ2

27
(3 + 4ã3)

)δCβ
I κα ̸= κβ,

δCα
I = δCβ

I κα = κβ.

(5.44)

To obtain a second equation involving the interfacial concentrations, we consider the phase

kinetics. We have two expressions for the velocity of the interface: the mass conservation

Eq. (3.8), and the phase kinetics Eq. (3.7). Equating vI of both equations, we obtain

vI = − V0

CART
Φ = − JJK

JCK
. (5.45)

Using Eqs. (3.40) and (3.41) for the flux and concentration jump terms, we obtain an

expression for the driving force:

Φ = − J∗CARTb2

V0a2
{
1 + ζ ′b

(
b
a
− 1

)}
(Cβ

eq − Cα
eq)

. (5.46)

Equation (3.37) is another expression for the driving force; it requires computation of the

interfacial strain energy of each phase and the interface work term for the spherical system.
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The strain energy of the core is given by

ϕα =
1

2
σα
rrϵ

α
θθ + σα

θθϵ
α
θθ,

=
3

2

(1− 2ν)

E
P 2,

(5.47)

where Eq. (5.8) is used to simplify. The strain energy of the shell is given by

ϕβ =
1

2
σβ
rrϵ

β
θθ + σβ

θθϵ
β
θθ. (5.48)

The jump in the strain energy at the interface is given by JϕK = ϕβ
∣∣
r=a

− ϕα = 0. The

interface work term is given by

JϵK · σα = (ϵβrr − ϵαrr)
∣∣∣
r=a

P, (5.49)

where ϵrr of each phase is related to the corresponding displacement via Eq. (5.2). Using

the expressions for the displacements, given by Eqs. (5.12) and (5.33), in Eq. (5.2) for each

phase, we obtain

JϵK · σα =
EΩ2(1 + ν)

27(1− ν)

ζ ′Cβ
eq{

ζ ′
(1
a
− 1

b

)
+

1

b2

} (ã− 1)2(ã+ 2)

a
(δCα

I − δCβ
I ), (5.50)

where Eqs. (5.36) and (5.37) were used; this step completes the expression for the driving

force, given by Eq. (3.37) for the spherical case. Thus, for the two unknown interfacial

concentrations, we now have two expressions, given by Eqs. (3.37) (with (5.46)) and (5.44),

which can be solved for the interfacial concentrations.

The interfacial concentration solution is presented for the special case when the curvature of

the Gibbs energy density, κ, is the same in the two phases. The first equation for interfacial

concentrations corresponds to Eq. (5.44)b, which implies the interface work term does not
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contribute, as per Eq. (5.50). Subsequently, using Eqs. (5.74) and (5.46), we obtain

−δµβ
I (C

β
eq − Cα

eq) = − J∗CARTb2

V0a2
{
1 + ζb

(
b
a
− 1

)}
(Cβ

eq − Cα
eq)

,

δµβ
I =

J∗CARTb2

V0a2
{
1 + ζb

(
b
a
− 1

)}
(Cβ

eq − Cα
eq)

2
.

(5.51)

Using Eq. (5.24) on the left-hand side of the above equation, we obtain

κβδCβ
I − Ω

3

(
σβ
rr + 2σβ

θθ

)∣∣∣
r=a

=
J∗CARTb2

V0a2
{
1 + ζb

(
b
a
− 1

)}
(Cβ

eq − Cα
eq)

2
, (5.52)

which can be further simplified using the solutions for the shell stresses, which leads to

κβδCβ
I − E

Ω2

9

[ ζ ′Cβ
eqb

2{
1 + ζb

(
b
a
− 1

)} (ã− 1)2(ã+ 2)

ãb

]
=

J∗CARTb2

V0a2
{
1 + ζb

(
b
a
− 1

)}
(Cβ

eq − Cα
eq)

2
.

(5.53)

Thus, the solution to the interfacial concentrations when κα = κβ = κ is given by

δCα
I = δCβ

I =
J∗b2

κa
{
1 + ζb

(
b
a
− 1

)}[ CART

V0a(C
β
eq − Cα

eq)
2
+

EΩ2

9

(ã− 1)2(ã+ 2)

MβκCβ
eq

]
. (5.54)

5.2.5 Interface kinetics

Using the mass conservation Eq. (3.8), the velocity of the interface can be calculated:

da

dt
= − J∗(

Cβ
eq − Cα

eq

) b2

a2
{
1 + ζ ′b

(
b
a
− 1

)} . (5.55)

Integrating the equation from t = 0 to t gives the location of the interface:�

�

�

�
(1− ζ ′b)

(a3 − a30)

3
+ ζ ′b2

(a2 − a20)

2
= − J∗b2

(Cβ
eq − Cα

eq)
t. (5.56)
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5.3. Planar thin-film bilayer

To investigate the stresses in the planar system, consider the substrate or the α-phase, as

shown in Fig. 5.1. The B -atoms are inserted via an applied flux to create a thin layer of the

β-phase. In general, the stresses and strains in the two phases are non-zero, and bend the

bilayer.

Figure 5.1: Schematic of the fabrication of the bilayer. The applied flux introduces B -

atoms leading to diffusion of B -atoms, chemical reaction which forms the β-phase, and elastic

deformation of the two phases. The applied flux is then stopped. As the kinetics (diffusion

and reaction) subside, the two stressed phases exhibit uniform equilibrium concentrations;

hα and hβ denote the thicknesses of the substrate and film respectively.

5.3.1 Bilayer deformation

The total strain of the bilayer is expressed using laminate theory [101]:

ϵ = ϵ0 +
z − hb

r
, (5.57)

where the three unknowns are the uniform strain, ϵ0, the location of the bending axis, hb,

and the radius of curvature of the bilayer, rb. The bilayer is freestanding and unconstrained.
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The linear relationship between the strain and the thickness coordinate is a consequence of

the Kirchhoff hypothesis, i.e. the deformation is entirely because of bending and in-plane

stretching; transverse shear and transverse normal effects are ignored.10

Subsequently, the effects of the resultant forces because of the uniform strain and bending

components are zero, and the total bending moment with respect to the bending axis is also

zero. Following the procedure by Hseuh [102] to apply these three conditions, the solution

is given by

ϵ0 =

Ω

3
(E

α
hαδCα + E

β
hβδCβ)

E
α
hα + E

β
hβ

,

hb =
E

β
(hβ)2 − E

α
(hα)2

2(E
α
hα + E

β
hβ)

,

1

rb
=

6E
α
E

β
hαhβ(hα + hβ)

Ω

3
(δCβ − δCα)

(E
α
)2(hα)4 + (E

β
)2(hβ)4 + 2E

α
E

β
hαhβ(2(hα)2 + 2(hβ)2 + 3hαhβ)

,

(5.58)

where δC is constant for the bilayer in Fig. 5.1. Using Eqs. (5.1) and (5.6), the stress

distribution in the bilayer simplifies to

σα = E
α
[Eβ

hβΩ

3
(δCβ − δCα)

E
α
hα + E

β
hβ

+
z − hb

r

]
,

σβ = E
β
[Eα

hαΩ

3
(δCα − δCβ)

E
α
hα + E

β
hβ

+
z − hb

r

]
.

(5.59)

5.3.2 Thin film simplification

In the limit of a thin film on a substrate, we can forgo the consideration of the stress

distribution through the thickness. Instead, we consider the average stress through the film

10It is also noted that the total strain, Eq. (5.57), satisfies the compatibilty condition for this system [103],

which is given by
d2ϵ

dz2
= 0.
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thickness, which is given by

σβ =
1

hβ

∫ hβ

0

σβdz,

=
E

α
E

β
hαΩ

3
(E

α
(hα)3 + E

β
(hβ)3)(δCα − δCβ)

(E
α
)2(hα)4 + (E

β
)2(hβ)4 + 2E

α
E

β
hαhβ(2(hα)2 + 2(hβ)2 + 3hαhβ)

.

(5.60)

When hβ ≪ hα, Eqs. (5.58), (5.59)a, and (5.60) simplify to

hb ≈
hα

2
,

1

r
≈ 0,

σα ≈ 0,

σβ = E
βΩ

3

(
δCα − δCβ

)
.

(5.61)

Therefore, for hβ ≪ hα, we can assume the substrate is stress-free, the curvature of the

interface is negligible, and the stress in the thin film is given by its average stress; this

completes the description of the deformation of the binary bilayer at equilibrium, and is

depicted in Fig. 5.1b.

5.3.3 Diffusion and elasticity formulation

Before undertaking the coupled analysis, we revisit the framework results which entail

deformation and recast them in terms of the average stresses. To do so, we consider the

hydrostatic stress, σh, for the thin film, which is given by

σβ
h =

σβ
xx + σβ

yy + σβ
zz

3
,

=
σβ
xx + σβ

yy

3
,

≈ σβ + σβ

3
,

=
2

3
σβ.

(5.62)
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Appendix E shows that the mechanical equilibrium condition can be written in terms of the

hydrostatic stress and concentration as [104]

∇ · (σh + ΓC) = 0, (5.63)

where Γ =
2

9
EΩβ. For our system, Eq. (5.63) simplifies to

∂2

∂z2
(σh + ΓC) = 0. (5.64)

Equation (5.63) entails Laplacians of the hydrostatic stress and the concentration of the

mobile B -atoms and displays their proportionality. In the absence of concentration effects,

the equation simplifies to a well-known harmonic equation of linear elasticity [105].

Diffusion is driven by gradients in the chemical potential, which is stress-dependent for the

β-phase; Eq. (3.20) is simplified using Eqs. (5.3) and (5.62) to

µβ(C, σ) = µβ(C, 0)− Ωβ

3
δijσ

β
ij,

= µβ(C, 0)− Ωβ

3
σβ
kk,

= µβ(C, 0)− Ωβσβ
h ,

= µβ(C, 0)− 2

3
Ωβσβ.

(5.65)

Equations (3.5)a and (5.65) show that the diffusive flux has two components: the first

corresponds to the stress-free chemical potential gradient, and the second contribution is

from the gradient in hydrostatic stress.
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The driving force for the phase transformation reaction, Eq. (3.25), under the assumed state

of deformation is simplified to

Φ = Jg K − µIJCK + ϕβ,

= Jg K − µIJCK +
1

2E
β
(σβ

xx)
2 +

1

2E
β
(σβ

yy)
2,

= Jg K − µIJCK +
(σβ)2

E
β

.

(5.66)

Thus, the stress modifies the kinetics of diffusion and reaction via the chemical potential and

the reaction driving force, as shown by Eqs. (5.65) and (5.66).

Mechanical equilibrium is trivially satisfied by the stress-free substrate, and it is satisfied by

the hydrostatic stress in the film as shown by Eqs. (5.64), (5.62), and (5.61).

The Gibbs energy density of the film is now a function of concentration and stress. In

general, the common tangent construction need not apply.

5.3.4 Solution

It is assumed that the substrate remains stress-free and the interface remains planar during

the kinetic processes. Therefore, the problem is to solve for the new concentrations of the

phases, Cα and Cβ, the velocity and location of the interface, vI and zI respectively, and the

thin-film stress, σβ.

Similar to the uncoupled case, we assume the system undergoes small deviations from

equilibrium. We undertake a quasi-steady state analysis, i.e. the bilayer is undergoing

steady state diffusion and only the interface moves with time; subsequently, the concentration

deviation in the film is only a function of z.
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We assume the thin-film stress has the same nature as the equilibrium case, and thereby,

exhibits the following relationship to the concentration deviation:

σβ ≈ E
βΩ

3

(
δCα − δCβ(z)

)
, (5.67)

where δCα = δCα
I , which is constant for a given zI .

For small deviations from equilibrium, the chemical potential of B -atoms in the β-phase can

be written as

µβ ≈ µβ
eq + δµβ, (5.68)

where δµβ is obtained using Eq. (3.20):

δµβ =
∂µβ(Cβ, 0)

∂Cβ

∣∣∣
eq
δCβ − 2

9
Ω
∂σβ

∂C

∣∣∣
eq
δCβ

=
∂2g (Cβ, 0)

∂Cβ2

∣∣∣
eq
δCβ +

2

9
E

β
Ω2δCβ,

= (κβ +
2

9
E

β
Ω2)δCβ,

= κ′βδCβ,

(5.69)

where κ′ was introduced in Eq. (5.26).

Thus, the chemical potential of the stressed thin film undergoing small deviations from

equilibrium is given by

µβ ≈ µβ
eq + κ′βδCβ. (5.70)

Terms containing second order deviations, (δC)2, are ignored, subsequently, the driving force

for the phase transformation reaction is simplified and given by Φ = Jg K − µIJCK.
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We find that the equations to be solved are exactly the same as the uncoupled case if the

curvature, κβ, is replaced with the new curvature κ′β. Therefore, the results of the elastically-

coupled analysis are given by

Cα = Cα
eq + δCα,

Cβ = Cβ
eq + δCβ,

δCα(z) = δCα
I =

κ′β

κα
δCβ

I ,

δCβ(z) = δCβ
I +

ζ ′Cβ
eq

1 + ζ ′zI
(z − zI),

δCβ
I =

J∗RTCA

κ′βV0

(
1 + ζ ′zI

)
(Cβ

eq − Cα
eq)

2
,

dzI
dt

=
J∗(

Cβ
eq − Cα

eq

)(
1 + ζ ′zI

) ,

(5.71)

where ζ ′ =
J∗RT

Dβκ′β(Cβ
eq)2

. Integrating the final equation from t = 0 to t gives the location of

the interface:

�

�

�

�
zI +

ζ ′

2
z2I = z0I +

ζ ′

2
(z0I )

2 +
J∗t(

Cβ
eq − Cα

eq

) . (5.72)
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5.4. Discussion

5.4.1 Stress-enhanced diffusion

The driving force for diffusion in the β-phase, i.e. the gradient of the chemical potential

is found to be ∂δµ/∂x = κ′dδC/dx, where x=r, z for the spherical and planar systems

respectively. Thus, diffusion in both systems is governed by κ′ = κβ +
2

9
E

β
Ω2, which can

be interpreted as an increased curvature of the Gibbs energy density for a stressed system.

Subsequently, the effect of stress on diffusion can be interpreted as stress-enhanced diffusion

(SED).

This effect is illustrated by considering an ideal dilute solution model: µβ(C, 0) = µβ
0 +

RT ln
(
Cβ

CA

)
, where µ0 is the chemical potential of B -atoms under standard conditions

(generally, 1 atm pressure and system temperature). The gradient of the chemical potential

simplifies to ∂µβ

∂z
=

(
RT
Cβ + 2

9
E

β
Ω2

)
∂Cβ

∂z
. Using the mobility of ideal solutions, M = D/RT ,

the flux is given by

Jβ = −DβCβ

RT

(RT

Cβ
+

2

9
E

β
Ω2

)∂Cβ

∂z
,

= −Dβ
(
1 +

2

9

E
β
Ω2

RT
Cβ

)∂Cβ

∂z
,

= −Dβ
eff
∂Cβ

∂z
,

(5.73)

where the effective diffusivity is given by Dβ
eff = Dβ

(
1+ 2

9
E

β
Ω2

RT
Cβ

)
. Equation (5.73) resembles

Fick’s law of diffusion with a stress-dependent diffusivity, and entails the contribution of the

local volume expansion (arising from the local change of composition) to diffusion; Dβ
eff

reduces to Dβ in the absence of stress.

The DIS literature, particularly with respect to LIBs, extensively uses stress-enhanced

diffusivities as well as the general L-C stress-dependent chemical potential; consequently,
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the L-C publications are largely cited for their coupled chemical potential result and SED

[63,106–110].

5.4.2 Coupled reaction driving force

The driving force for the phase transformation reaction in the presence of deformation is

given by [35,99]

Φ = Jg K − µIJCK + JϕK − JϵijKσα
ij,

= −δµβ
I (C

β
eq − Cα

eq) + JϕK − JϵijKσα
ij.

(5.74)

The chemical potential change for the spherical system is given by

δµα = −EΩ2

27

[ ζ ′Cβ
eq{

ζ ′
(1
a
− 1

b

)
+

1

b2

}
ãb

(ã− 1)2(ã+ 2)− 2(1− ã3)(δCα
I − δCβ

I )
]
,

δµβ = δCβ
I

{
κβ +

2EΩ2

9

(κα − κβ)

(κα +
2EΩ2

27
(3 + 4ã3))

ã3
}

+
ζ ′Cβ

eq{
ζ ′
(1
a
− 1

b

)
+

1

b2

}[
κβ

(1
a
− 1

r

)
+

EΩ2

9r

(
3r̃ − 2− ã2r̃

)]
.

(5.75)

The chemical potential change for the planar case is given by Eq. (5.69).

5.4.3 Growth kinetics

The equations for the growth kinetics of both geometries match the uncoupled solution, but

for the κ′β term instead of κβ, and consequently the ζ ′ term instead of ζ.
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For each phase, the variables for stress, and deviations in chemical potential and

concentration can be cast into their dimensionless forms:

σ̃ij =
σij

E
,

δµ̃ =
( Cβ

eq − Cα
eq

g (Cα
eq)− g (C

β
eq)

)
δµ,

δC̃ =
δC

(Cβ
eq − Cα

eq)
,

(5.76)

where, following Bower et al. [23], the dimensionless material parameters are given by

∆ =
J∗(Cβ

eq − Cα
eq)b

MβCβ
eq(g (Cα

eq)− g (C
β
eq))

,

Θ =
J∗

V0(C
β
eq − Cα

eq)

CART

(g (Cα
eq)− g (C

β
eq))

,

Λ =
EΩ̃2

3(g (Cα
eq)− g (C

β
eq))

,

Ω̃ = Ω(Cβ
eq − Cα

eq),

Γ =
κ(Cβ

eq − Cα
eq)

2

(g (Cα
eq)− g (C

β
eq))

,

(5.77)

The rate of insertion of B -atoms to the rate of diffusion in the bulk is given by ∆; the rate of

insertion of B -atoms to the rate of phase boundary movement is given by Θ. The solubility

of B -atoms in each phase is quantified by Γ.

For the spherical system, r̃ =
r

b
, and ã =

a

b
; the latter notation was introduced in Section

5.2.3. Subsequently, the location of the interface, Eq. (5.56), is cast into its dimensionless

form:

(
1− 3∆(1−KD)

(3Γ + 2Λ)

)(ã3 − ã30)

3
+

3∆(1−KD)

(3Γ + 2Λ)

(ã2 − ã20)

2
= −t̃, (5.78)

where KD = Cα
eq/C

β
eq and t̃ = t/(b(Cβ

eq−Cα
eq)/J

∗). This equation can be visualized graphically

to analyze the effects of elasticity and chemical thermodynamics; for example, in Fig. 5.2,
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Figure 5.2: Normalized interface location, ã, vs normalized time, t̃. Three solutions

are presented, corresponding to Λ = 0, 0.5, 3. The circles show the results for ∆ = 0.5; the

triangles correspond to ∆ = 2. The remaining material parameters are selected as follows:

Θ = 0.5, Γ = 1, and KD = 0.5. Initially, the interface is at ã0 = 0.8. The solutions were

evaluated in MATLAB®.

the uncoupled solution (Λ=0) is presented together with two elastically-coupled solutions

(Λ=0.5, 3). The triangles (∆ = 2) illustrate the results for faster transport of B -atoms

through the bulk compared to the circles (∆ = 0.5); in each case, the results show that the

diffusive phase growth is enhanced in the presence of elasticity. The chemical and mechanical

contributions to the driving forces of diffusion and phase transformation dictate the interface

growth; the interplay is especially noted in the two cases corresponding to ∆ = 0.5, Λ = 0.5,

and ∆ = 2, Λ = 3, where the two sets of material parameters exhibit comparable phase

growth.
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5.4.4 Limit analysis

The nature of equations (4.15, 5.55) and (4.24, 5.71f) cue a limit analysis of growth kinetics

involving ζ or ζ ′ and the thickness of the β-phase; a limit analysis was undertaken for

the uncoupled core-shell model in Section 4.3.2. This analysis reveals reaction-dominated

behavior at smaller thicknesses, and diffusion-limited behavior at greater thicknesses; in the

planar case, this manifests as linear growth when reaction is dominating the kinetics, and

parabolic growth when diffusion is predominant:

ζzI ≪ 1 : zI(t) = z0I +
J∗(

Cβ
eq − Cα

eq

)t,
ζzI ≫ 1 :

z2I
2

=
(z0I )

2

2
+

J∗t(
Cβ

eq − Cα
eq

)
ζ
.

(5.79)

The parameter, 1/ζ, can be interpreted as a critical thickness which characterizes the two

growth regimes [111]. In the presence of DISs, the parameter is 1/ζ ′, and 1/ζ ′ > 1/ζ;

however, the qualitative nature of the growth kinetics remains the same, as seen in Eqs.

(5.55) and (5.71)f, and illustrated in Fig. 5.2 for the coupled spherical model.

It is noted that these linear and parabolic kinetic regimes, where the latter regime is observed

at larger thicknesses and depends on the thickness, as well as the linear-to-parabolic growth

transition above a critical transition thickness are characteristic of several thin film material

systems including hydrides, oxides, and silicides [56, 111–113]. While there is experimental

evidence for these growth behaviors, knowledge of thermodynamic driving forces is required

to determine the transport coefficients quantitatively.

In this thesis, the uncoupled and elastically-coupled growth kinetics of the considered models

exhibit two kinetic regimes using well-defined thermodynamic and kinetic parameters.
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5.4.5 Nature of coupling

The elastically-coupled results and subsequent discussion presented in the previous sections

apply when the nature of coupling is such that the coupled driving force for the phase

transformation reaction remains negative. The consequences of large coupling effects are

discussed in this section.

Reaction block

In the absence of deformation, the driving force for phase transformation is always negative,

and given by Φ = −κβδCβ
I (C

β
eq − Cα

eq).

In the presence of stress, the phase transformation driving force may not be negative, which

is evident from Eq. (5.74). For the spherical case, when κα = κβ = κ, Φcore-shell is given by

Φcore-shell = −κδCI(C
β
eq − Cα

eq) +
EΩ2

9

ζ ′Cβ
eq

ãb{ζ ′( 1
a
− 1

b
) + 1

b2
}
(ã− 1)2(ã+ 2)(Cβ

eq − Cα
eq), (5.80)

which vanishes when δCI = EΩ2

9κ

ζ′Cβ
eq

ãb{ζ′( 1
a
− 1

b
)+ 1

b2
}(ã − 1)2(ã + 2). Subsequently, the phase

transformation reaction cannot proceed; this scenario is interpreted as a reaction block or

lock, and also occurs in the planar case, where Φbilayer is given by

Φbilayer = Jg K − µIJCK +
(σβ)2

E
β

. (5.81)

In the presence of reaction block, it is evident that the growth kinetics are affected; this

locking effect can be interpreted as an energy threshold or barrier that must be overcome

for the interface to move again.

To query the occurrence of reaction block for the selected set of points corresponding to

∆ = 0.5 in Fig. 5.2, specified using a grey box, we cast Eq. (5.80) into its dimensionless form

using Eq. (5.77) to obtain the corresponding normalized interfacial concentration deviation
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when Φcore-shell = 0:

δC̃w =
Λ/∆

(Γ/∆)(3Λ/∆+ 2Λ/∆)

(ã− 1)2(ã+ 2)

ã

1(
1 + 3

(1−KD)(
1
ã
− 1)

(3Λ/∆+ 2Λ/∆)

) , (5.82)

where the subscript w is used to emphasize that the solution corresponds to the interfacial

concentration deviation when the interface is not moving, i.e., it is ‘waiting’.

Λ δC̃w

0 0
0.5 0.04
3 0.12

Table 5.1: Estimated values of δC̃w for the specified set of points in Fig. 5.2 for ∆ = 0.5.

Table 5.1 presents the estimated values of δC̃w corresponding to the selection in Fig. 5.2.

In the uncoupled case, the interfacial concentration vanishes, corresponding to interfacial

equilibrium. In the two elastically coupled cases, it is possible for Φcore-shell to vanish away

from equilibrium, i.e. when δC̃w ̸= 0; when these deviations violate the key assumption,

δC̃w ≪ 1, the situation is out of scope of this chapter, and we require another model.11

The slowing down of reaction fronts in the presence of mechanical stress as well as a

complete arrest of the phase transformation reaction has been observed via in-situ TEM

studies of material systems such as silicon nanowires (SiNWs) [62, 65], lithium-silicon and

lithium-germanium nanoparticles and nanowires [64, 67, 68]. Analysis of such systems are

of key interest to nanoscale devices and LIB technologies. However, the stress mediated

kinetics affect the charging/discharging rates, thereby compromising their net capacity and

performance. To describe these experimental observations, effective transport parameters

are often used, which contain fitting parameters [64]. Similarly, theoretical investigations

11A kinetic model is proposed in Chapter 8 using modeling insights derived from the full tertiary coupling
considered here.
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often feature effective parameters as well; for example, a surface locking instability has been

proposed in the context of LIB by coupling stress with diffusion via an effective diffusivity,

which contains the effects of a stress-induced energy barrier [24].

In this work, we demonstrated the deceleration effect to be a consequence of strong stress-

reaction coupling using the thermodynamic concept of reaction driving force in the presence

of stress. This result is revisited in Chapter 8 to contemplate the next step in its modeling.

It is noted that we used the terminology of Freidin et al. [48, 49, 114–116], who use reaction

block or reaction lock to describe this coupled effect, which they predict by considering binary

coupling between stress and phase transformation within a nonclassical thermodynamics

formulation.

Phase stability and hysteresis

Interfacial equilibrium entails Φ = 0. In the absence of stress, this condition was described

graphically in Fig. 3.2 by a common tangent to the two Gibbs energy density curves, which

sections the composition range. For compositions between Cα
eq and Cβ

eq, the stable state of

the system comprises two phases with compositions at Cα
eq and Cβ

eq, where the lever rule

provides the relative proportions. This state is often referred to as the true equilibrium

state.

When a reaction block occurs, the driving force is once again zero. This state, which is often

interpreted as a false interfacial equilibrium [117], raises the question of phase stability in

the presence of stress, particularly under cyclic conditions.

Crucially, stress has modified the two-phase field. When a solution to the interfacial and

chemical equilibrium exists, a two-phase field is possible even in the presence of stress,

as shown by the blocked state. Nevertheless, a state with stress holds more energy, and

is subsequently metastable compared to a stress-free state. During an isothermal cyclic
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operation, the α to β phase transformation reaction experiences an energy barrier. This

energy threshold can be interpreted as a metastability barrier that leads to hysteresis.

Other impeding effects in the literature

In physical metallurgical literature, which includes metal hydride systems, well-known

impeding effects, often in the presence of stresses, include solute pinning, solute drag, solute

trapping [118], and interface pinning [86], where solute particles refer to point defects or

impurity atoms and trapping sites include grain boundaries, dislocations and second-phase

particles, i.e. the microstructure is at the forefront in these studies. These effects require

sophisticated models; at present, they are modeled using diffusion equations by invoking

pinning potentials, trapping energies, and effective diffusivities, which require experimental

data to fit the parameters. To model trapping, chemical reactions are often used with

diffusion.

Recently, interface pinning has been proposed to be the source of hysteresis between the

absorption and desorption of hydrogen in palladium-hydride systems in their bulk form,

which exhibits defects [86].

The modeling of reaction block, interface pinning, and trapping to investigate phase stability

and the mechanism of hysteresis in bulk and nanoscale materials are active areas of research

in metal hydrogen systems and lithium-ion batteries [81,83,86,119].

5.4.6 Model validity

The QSS model applies when δC ≪ (Cβ
eq − Cα

eq). As δCβ is nonhomogeneous, the validity

of the steady-state condition can be expressed in terms of λQSS, the ratio of the maximum

deviation resulting from the B -atoms in the bulk to those at the interface [23]; λQSS ≪ 1 for

the steady-state assumption to hold, as seen in Section 4.3.4. This condition indicates that

the analysis assumes (a) slow interface kinetics and (b) limited bulk solubility. When there
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are no limitations to the solubility of the bulk phase, the phase interface is stationary and

the kinetics of the problem are described by a transient diffusion problem.

The linear kinetic models, governed by linear irreversible thermodynamics (LIT), rely on the

local equilibrium hypothesis, which states that at any given time, each material point or cell

exhibits equilibrium, however, this equilibrium state differs from that of its neighbouring cells

thereby allowing mass and energy transfer. The upshot of this hypothesis is that it enables

the use of equilibrium thermostatics concepts of Chapter 2, while imposing restrictions on

the systems and processes because it is only valid for large length and time scales. This

hypothesis is typically characterized by the Deborah number, De, which is a ratio of the

time required for equilibration within one cell to the macroscopic characteristic time; when

De ≪ 1, the local equilibrium assumption is valid [120].

Finally, the underlying thermostatic framework is based on the internal energy density as

a function of the small strain tensor, entropy density, and concentration: u = u (ϵ, s , C),

as seen in Section 2.2. This is a constitutive assumption for the deformed continuum that

further dictates the material and mechanics that can be studied within this framework.

5.5. Summary

Chapters 3-5 presented the formulation and analyses of moving boundary problems, derived

using linear kinetic models guided by equilibrium thermostatics. The quasi-steady state

approximation permits closed-form analytical solutions for concentration, growth kinetics,

and elastic stresses in a spherical and planar particle, which offer a rich variety of

physical insights. Specifically, it was demonstrated for the first time within this framework

that the derived growth kinetics compare qualitatively to classical empirical models, and

contain thermodynamic-kinetic parameters instead of fitting parameters. The effects of

stress-diffusion and stress-reaction coupling are derived. Stress-enhanced diffusion was

deduced and coupling conditions for stress-induced reaction blocking were derived. Reaction
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blocking, phase stability, and hysteresis are interrelated concepts that were discussed within

this framework. While some of these phenomena have been investigated separately, the

deductions presented in these chapters, which lend themselves to physical and modeling

insights, are presented for the first time using a consolidated theoretical approach based on

both thermodynamics and kinetics.

Furthermore, the systematic layout of the formulation and the accompanying assumptions

provide insights into possible nonclassical extensions as well as the constraints of the

models in the realm of real devices and materials. For example, it is possible to apply

the formulation of these chapters to explore diffusion in rubbery polymers, which exhibit

Fickian-type diffusion. However, to describe non-Fickian transport, which can occur when

diffusion is accompanied by substantial macromolecular relaxations, one needs to modify and

extend at the foundational level because the local equilibrium hypothesis is no longer valid.

Subsequently, glassy polymers, which exhibit non-Fickian characteristics cannot be studied

within this framework.

Similarly, to explore the system behavior under conditions of strong coupling, it is

required to extend the kinetics and mechanics to consider nonlinear diffusion and nonlinear

elasticity. For example, for larger concentrations, and subsequently strong coupling, which

is encountered in both metal hydrides and lithium-ion batteries, the kinetics of diffusion

exhibit nonlinearities. It is noted that while the assumptions of the present chapter do not

include large concentrations, the exploration of the full tertiary coupling, enabled by these

simplifying assumptions, offers several kinetic modeling insights, which are highlighted in

Chapter 8, including a nonlinear diffusion equation that may be best suited to model the

coupled phenomenon of reaction block. Likewise, relaxing the assumption of constant elastic

parameters to include concentration-dependent elastic modulus also generates nonlinear

kinetics. In [121], Yang derived the diffusion equation for regular binary solid solutions

using a thermodynamic model; however, to obtain closed-form expressions, this diffusion
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equation was simplified by assuming that the effect of stress on diffusion of the solute can

be ignored, and that the solid solution is ideal.

In many scenarios, nonlinear diffusion equations, specifically, the effective diffusivities,

which are nonlinear functions of the solute concentration, need to be analyzed. These

nonlinear diffusivities are rich in information, including pertinent length and time scales;

however, extracting these characteristics from the nonlinear equation is nontrivial and

requires sophisticated tools of analysis, including asymptotics and renormalization.
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Chapter 6

Phase equilibrium and stability of an elastically stressed

thin-film bilayer

This open chapter explores the effects of elasticity on the solution thermodynamics of a

thin-film bilayer.

When lattice misfit occurs between phases, coherency strains are generated, which play an

important role in thermodynamics because they influence the solubility and stability of the

phases. This topic can be an entire thesis in its own right; indeed, there are extensive

publications, including those of W. C. Johnson and P. W. Voorhees, contemporaries of

Larché and Cahn, that investigate the thermodynamics of coherent equilibrium and the

stability of the phases at and away from equilibrium in various elastically stressed systems

[78–80,122–160]. Several of these studies were motivated by the Cahn-Larché model in [123].

This chapter considers a thin-film bilayer model to explore the effects of the elastic stresses

in the film, which are given by

σβ = E
β 1

3

(
Ωα∆Cα − Ωβ∆Cβ

)
, (6.1)

where ∆C is analogous to temperature changes in heat transfer problems, and Ωα ̸= Ωβ,

i.e. the material parameter, Ω, is assumed to be constant but has different values in the two

phases. Equation (6.1) can be obtained using the derivations of Sections 5.3.1 and 5.3.2.
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6.1. Equilibrium thermostatics

At a given temperature, the total Helmholtz energy of the thin-film bilayer is given by [123]

F = VA

[
(1− x)f α

(C, 0) + xf β
(C, 0) + x(1− x)ϕβ

]
, (6.2)

where VA denotes the volume occupied by the A-atoms, x is the volume fraction of the β-

phase, x = V β/VA, f denotes the Helmholtz energy density, and ϕβ is the strain energy

density of the thin-film β-phase. For single phases, i.e. when x is 0 or 1, the last term

vanishes.

Since a thin-film of β-phase is assumed, x ≪ 1; subsequently, the last term can be simplified

to xϕβ, and the total energy is given by

F = VA

[
(1− x)f α

(C, 0) + xf β
(C, 0) + xϕβ

]
,

F = VA

[
(1− x)f α

(C, 0) + xf β
(C, σ)

]
,

(6.3)

where f (C, σ) = f (C, 0) + ϕ for the β-phase; this derivation is presented in Appendix F.

The equation for a constant overall composition of the B-atoms, Co, is given by

xCβ + (1− x)Cα = Co. (6.4)

The conditions for chemical and interface equilibrium can be obtained by minimizing the

total energy of the system, subjected to the constraint of constant overall composition, which

is incorporated via a Lagrange multiplier:

∂

∂Cα
(F ′ − λ(xCβ + (1− x)Cα − Co)) = 0,

∂

∂Cβ
(F ′ − λ(xCβ + (1− x)Cα − Co)) = 0,

∂

∂x
(F ′ − λ(xCβ + (1− x)Cα − Co)) = 0,

(6.5)
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where F ′ = F/VA. Equation (6.5)a simplifies to

∂F ′

∂Cα
− λ(1− x) = 0. (6.6)

The first term is given by
∂F ′

∂Cα
= (1 − x)

∂f α

∂Cα
+ x(1 − x)

∂ϕβ

∂Cα
= (1 − x)

(∂f α

∂Cα
+ x

∂ϕβ

∂Cα

)
.

Thus, Eq. (6.6) is satisfied by

x = 1

or

λ =
∂f α

∂Cα
+ x

∂ϕβ

∂Cα
.

(6.7)

Similarly Eq. (6.5)b simplifies to

x = 0,

or

λ =
∂f β

∂Cβ
(C, σ),

(6.8)

where x ≪ 1 is used to simplify.

The results, x = 0 and x = 1, correspond to single phases. The two-phase solution for

chemical equilibrium corresponds to Eqs. (6.7)b and (6.8)b.

6.1.1 Two-phase equilibrium when Ωα = 0

Assuming Ωα = 0, we obtain

λ =
∂f α

∂Cα
, (6.9)
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where Eq. (6.7) was simplified. As λ is a Lagrange multiplier, it is constant and given by

λ =
∂f α

(C, 0)

∂Cα
=

∂f β
(C, σ)

∂Cβ
. (6.10)

This equation represents the chemical equilibrium, where λ is identified with the chemical

potential, µ.

Equation (6.5)c simplifies to

f β
(C, σ)− f α

(C, 0)− λ(Cβ − Cα) = 0, (6.11)

where x ≪ 1 is used to simplify. This equation represents the interfacial equilibrium for a

planar coherent interface.

6.2. Coherent concentration field

The coherent equilibrium, if it exists, corresponds to the concentration field, Cη (η = α, β),

and non-zero thin-film stresses. Assuming a two-phase stress-free (SF) state exists, we

assume that the coherent equilibrium is close to this SF state, whose concentrations are

denoted Cη
0 . This implies we can undertake the following linearization:

Cη = Cη
0 +∆Cη,

µη(C, 0) = µη(Cη
0 , 0) + χη∆Cη, η = α, β

f η
(C, 0) = f η

(Cη
0 , 0) + µη

0∆Cη,

(6.12)

where µ0 and χ are respectively the first and second derivatives of the Helmholtz energy

density with respect to concentration in the absence of stress; both are evaluated at the SF

concentrations.

To solve for the coherent equilibrium compositions, Cα and Cβ, we require two equations,

which are provided by the chemical and interfacial equilibrium conditions. The chemical
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equilibrium condition, Eq. (6.10), is simplified for Ωα = 0:

∂f α
(C, 0)

∂Cα
=

∂f β
(C, 0)

∂Cβ
+

∂ϕβ

∂Cβ
,

µα(C, 0) = µβ(C, 0) +
2

9
E

β
(Ωβ)2∆Cβ,

(6.13)

and subsequent linearizations are as follows:

µα(Cα
0 , 0) + χα∆Cα = µβ(Cβ

0 , 0) + χβ∆Cβ +
2

9
E

β
(Ωβ)2∆Cβ,

µα(Cα
0 , 0) + χα∆Cα = µβ(Cβ

0 , 0) + χ′β∆Cβ,

(6.14)

where χ′β = χβ + (2/9)E
β
(Ωβ)2.

The SF chemical equilibrium corresponds to µ0 = µα(Cα
0 , 0) = µβ(Cβ

0 , 0). Thus, Eq. (6.14)

simplifies to

χα∆Cα = χ′β∆Cβ. (6.15)

Similarly, simplifying the interfacial equilibrium, Eq. (6.11), using linearization, and

incorporating Eq. (6.15) and the SF interfacial equilibrium condition, i.e.,

f β
(Cβ

0 , 0)− f
α
(Cα

0 , 0)− µ0(C
β
0 − Cα

0 ) = 0, we obtain two solutions for ∆Cα and ∆Cβ:

∆Cα = ∆Cβ = 0,

or

∆Cβ

Cβ
0

=
1− Ĉ[Eβ

(Ωβ)2

9χ′β − (1− χ̂)
] ,

(6.16)

where Ĉ = Cα
0 /C

β
0 , χ̂ = χ′β/χα, and ∆Cα =

χ′β

χα
∆Cβ. The first result is a trivial solution

corresponding to the SF solution; the second result corresponds to coherent equilibrium in

the presence of stress.
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In summary, we have two solutions for the equilibrium concentration field: stress-free

solution, C0, and elastically-stressed solution, C. This raises the question of stability of

the concentration field in the presence of stress. To gain insight, we consider the relative

linear stability of the phases corresponding to the two solutions.

6.3. Relative stability of phases

β

T

C

⍺

⍺ + β

A B

!"#$!!%&#$$'
()*+

,-./0$12!"#$!!$1'
()+

∆C⍺ ∆C	β

Figure 6.1: Schematic phase boundaries of the thin-film bilayer corresponding to the

two equilibrium solutions. The solid lines correspond to the stress-free (SF) solution. The

dashed lines correspond to the stressed solution (S), given by Eqs. (6.15) and (6.16)b. The

shift in the phase boundaries or solubilities indicates the effects of the film stress on relative

stability; when the β-phase is stabilized by the stress, the α-phase is destabilized.

The β-phase is stabilized by the stress when ∆Cβ is negative, i.e., the stressed α+β/β phase

boundary is on the left of the corresponding SF boundary. Because of Eq. (6.15), the stressed

α/α+β phase boundary is also on the left of the SF boundary. A schematic of these two

solutions is displayed in Fig 6.1.
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6.4. Graphical analyses and discussion

The following stability considerations are undertaken graphically.

6.4.1 Stability considerations for open systems at constant

temperature

In open systems, the overall composition of the B -atoms, Co, is an external variable that

is changed by varying the prescribed partial pressure of the mobile B -atoms in the gaseous

phase, which is related to their chemical potential in the solid phases, and provides the

driving force for the absorption and desorption of B -atoms.

Absorption at constant temperature

Consider the process of absorption at constant temperature, as shown in Fig. 6.2a. Initially,

the solid is in its single α-phase. The pressure of the gas is increased, which increases the

chemical potential of the B -atoms, and subsequently, the overall composition. The solid

continues to exist in the α-phase until the concentration of the B -atoms is such that it is

energetically more favorable to phase transform; this two phase α+β field is delineated by

phase boundaries.

In classical thermodynamics, there is only one solution to the phase boundaries, determined

by the SF concentrations. Here, there are two possible solutions for the α/α+β phase

boundary. However, when starting from the α-phase, the SF phase boundary is stable

compared to the stressed solution, as per Section 6.3. Thus, the two-phase solution under

absorption of B -atoms by the α-phase corresponds to SF equilibrium.
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Figure 6.2: Schematic phase boundaries of the thin-film bilayer corresponding to the

absorption (desorption) of B -atoms at constant temperature, T0, are given by the SF (S)

solutions.

Desorption at constant temperature

Similarly, the stable solution corresponding to the desorption of the β-phase is the stressed

solution, as shown in Fig. 6.2b.

Absorption-Desorption offset

The absorption and desorption of B -atoms exhibit an offset induced by stress, and

consequently, the partial pressure of B -atoms required for absorption (SF) is greater than the

partial pressure that drives desorption (S). This offset may be interpreted as a macroscopic

energy barrier that must be overcome (by increasing the chemical potential of the gas and

thereby the overall composition of the B -atoms) for the phase transformation to proceed;

else the phase transformation reaction is locked.
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Hysteresis

The absorption-desorption offset and the associated energy barrier are indicators of

isothermal hysteresis, which appears to be an intrinsic property of the system as it is deduced

solely based on the existence of two metastable solutions. The thermodynamic path is not

conservative because it is path-dependent (and therefore history-dependent), as indicated

by Fig. 6.2 and the subsequent discussion of absorption and desorption. Furthermore, the

nature of the hysteresis appears to be rate-independent because it cannot be decreased by

slowing down the rates of absorption and desorption.

Stability of the two-phase field

The stress-free two-phase field corresponds to an α-phase that is relatively stable than the

β-phase; the elastically stressed two-phase field corresponds to a β-phase that is relatively

stable than the α-phase.

Consequently, the two-phase field becomes unstable for the open system because of the two

metastable solutions. During absorption, once the energy barrier is overcome, the α to β

phase transformation proceeds spontaneously until all the α-phase is converted to β, and vice

versa for desorption. Therefore, equilibrium coexistence of α- and β-phases is not possible

under open conditions.

6.4.2 Stability considerations for closed systems at constant

temperature

Closed systems have a fixed number of B -atoms, and thereby a constant overall composition

of the B-atoms, which is given by Co.

If we undertake a temperature scan on the solvus side, i.e. the dilute phase boundary side,

of the phase diagram, we once again encounter an offset, as shown in Fig. 6.3. Here, we

obtain a temperature offset: the solvus temperature required for heating is greater than the
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solvus temperature required for cooling. Thus, the closed systems must also overcome an

energy barrier for the reaction to proceed. However, unlike open systems, closed systems at

a given operating temperature are in an arrested state, and cannot access other favorable

states. Subsequently, there is no spontaneous phase transition and the closed thin-film bilayer

system is able to exhibit two-phase equilibrium.

β

T

C

⍺

⍺ + βT0

A BCo

Figure 6.3: Schematic illustration of a temperature scan in a closed thin-film bilayer

system. The relationship to heating and cooling are indicated in blue, corresponding to a

temperature offset.

6.4.3 Palladium-hydrogen system

To corroborate the deductions of the above analyses, we seek material systems that can be

approximated by the physical model considered here, namely, a binary system exhibiting two

isostructural12 solid phases, where the absorption of B -atoms generates volume expansion of

12Isostructural or isomorphic phases differ only in their composition.
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the A-lattice, and the mobile B -atoms occupy interstitial positions. Metal-hydride systems

are suitable candidates, particularly the palladium-hydrogen system, as the partial molar

volume of its α-phase is close to zero, i.e. the lattice parameters of this phase are close to

the undeformed A-lattice or Pd-lattice.

The hydrogenation of palladium entails reactions at its surface, where the hydrogen gas is

split catalytically, and subsequently, the atomic hydrogen intercalates into the metal. The

chemical potential of the hydrogen atoms is controlled by the hydrogen pressure; at low

pressures, we observe the dilute solid solution or the α-PdHx phase (at 298 K, H/Pd atom

ratio is less than ∼0.015), where the hydrogen atoms occupy random interstitial octahedral

sites in palladium. The lattice constant of this phase is 3.894 Å. The lattice constant of

pure Pd is 3.889 Å; subsequently α-PdHx features a light expansion of the lattice. When

the hydrogen gas pressure is increased, α → β phase transformation occurs, which entails

an expanded lattice with ∼3.7% expansion in the lattice constant, and a H/Pd ratio that is

larger than ∼0.6 [71]. The hydrogen pressure corresponding to the α → β phase transition

occurs at a higher hydrogen pressure than the reverse reaction, leading to hysteresis, a

ubiquitous characteristic of metal hydrides in general.

The temperature-composition phase diagram of the Pd-H system was determined

experimentally by a few researchers [87, 161, 162] based on hydrogenation (absorption) and

dehydrogenation (desorption) data. These papers established two sets of solubility curves or

phase boundaries corresponding to the two palladium hydride interstitial alloys.

It is noted that figures 5, 1, and 7 in [161], [162], and [87] respectively, exhibit an absorption-

desorption offset that is qualitatively comparable to that of Fig. 6.2. For example,

Fig. 5 of Flanagan and Oates [161], displayed in Fig. 6.4, shows the plot of phase

boundary composition using r, denoting the ratio of the hydrogen concentration to the

Pd concentration; the temperatures are normalized with respect to the critical temperature.

Figure 7 of Wicke and Blaurock [87], displayed in Fig. 6.5, shows a similar trend. These
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Figure 6.4: Phase boundary compositions for the Pd-H system: dashed plot corresponds

to hydride formation, solid lines represent hydride decomposition [161]. Reprinted from “The

effect of hysteresis on the phase diagram of Pd-H," by T. B. Flanagan and W. A. Oates,

1983, Journal of the Less-Common Metals, 92, p. 137. 2022 by "Surabhi Joshi". Reprinted

with permission.

publications attributed the observed offset to hysteresis, however, its origin was extensively

discussed and debated.

Finally, several experiments have reported that hysteresis in hydrogen absorbing alloys is

reproducible over thousands of cycles [79, 163,164].
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Figure 6.5: Phase boundary compositions for Pd-H showing the absorption and

desorption behavior of palladium hydride [87]. Reprinted from "New experiments on and

interpretations of hysteresis effects of Pd-D2 and Pd-H2," by E. Wicke, J. Blaurock, 1987,

Journal of the Less Common Metals, 130, p. 360. 2022 by "Surabhi Joshi". Reprinted with

permission.

The existence of the two-phase field was not questioned in these studies; this is where these

experiments differ from the stability analysis of the open system in Section 6.4.1. However,

it is noted that the analyses and solubility curves in this chapter correspond to a defect-free

particle unlike the experiments cited thus far which use palladium samples in bulk form, i.e.

containing several particles, each of which undergoes phase transitions during the processes

of absorption and desorption; furthermore some of these particles may be defective, i.e.

contain interfaces that are semicoherent and incoherent.

Dionne et al. [71] conducted several in-situ experiments on palladium nanocrystals using

the tools of environmental electron microscopy and spectroscopy. These single particle
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experiments shed light on the phase transition processes with nanometer resolution. Their

single-crystalline nanoparticles, which included cubes, did not exhibit phase coexistence in

equilibrium, which matches our deductions.

The Schwarz–Khachaturyan (S-K) thermodynamic theory considered open interstitial

systems that form coherent interstitial phases, such as coherent hydrides, in the host lattice,

which is assumed to be elastically isotropic and its lattice parameters vary linearly with

concentration. They employed a strain energy equation based on Eshelby’s model [165],

which assumes the solute atoms are misfitting elastic spheres that are coherently inserted

into a matrix that forms the parent phase. Their model [78] established that isostructural

phase transformations in such systems may be characterized by a macroscopic energy barrier

that makes two-phase equilibrium impossible in open coherent systems; their graphical

considerations entailed curves of free energy and chemical potential vs concentration. In

2020, Schwarz et al. [80] confirmed their theoretical conclusions, namely, the presence of

ubiquitous hysteresis under open conditions, and no hysteresis in closed systems. This was

possible via atomistic experiments, which enabled the study of the Pd-H system in its single

crystalline form without any material defects, as well as the study of closed systems, both

of which are challenging to conduct in real experiments.

6.4.4 Thermomechanical equilibrium

It is noted that the elastically-coupled analyses of the driven systems in Chapters 4 and

5 assumed stress-free thermochemical equilibrium as the starting point, which was set up

in Section 3.9. The systems did not exhibit any initial stress; stresses were generated as

the systems were driven away from equilibrium. However, the L-C equilibrium framework

does not exclude stresses; such a thermomechanical or thermo-chemo-mechanical equilibrium

state satisfies all the equilibrium conditions: thermal, mechanical, chemical, and interfacial

equilibrium, as demonstrated in Section 2.2 Equilibrium Thermostatics. For systems with
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coherent interfaces, the stressed equilibrium is called coherent equilibrium, an active area of

theoretical and experimental research, especially at small scales.

6.5. Summary

“When we are not sure, we are alive.”

Graham Greene

When elastic stresses in two-phase binary solids extend (or reduce) the range of solubility of

both phases, it is concluded undoubtedly that the stresses have a stabilizing (destabilizing)

effect on the solution thermodynamics. For example, an overall stabilizing effect of stresses

in this study would correspond to the coherent α/α+β phase boundary shifting to the right

of the corresponding SF boundary, and α+β/β phase boundary displacing to the left of the

SF boundary. This situation is familiar to many models in this literature [122,132,148,160].

However, in this chapter, the nature of the shifts, which are implied by Eq. (6.15), differ

from the above scenario. Subsequently, at first glance, we cannot be sure of the stability of

the thermomechanical equilibrium.

To gain an understanding of the stress-induced effects on phase equilibria, a graphical

approach was undertaken to explore the (a) relative stability of the two phases, (b) absorption

and desorption behavior of the B -atoms under open conditions at a given operating

temperature, and (c) the absorption and desorption behavior of the closed system.

These thought experiments reveal several pertinent aspects; in particular, the stress-induced

absorption-desorption offset is identified as the source of thermodynamic hysteresis, which

forms a fundamental limit to cyclic operations because of its rate-independent nature.

Furthermore, the graphical analyses compare qualitatively to the Pd-H system, which was

illustrated for the first time.
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Nevertheless, to study this system quantitatively, several foundational assumptions must be

revisited and revised, requiring a new framework thermodynamically, and mechanically. For

example, in the presence of elastic strains, the total energy of the system is no longer additive

because the strain energy term varies nonlinearly with the volume fractions of the coexisting

phases. Ergodicity is not applicable either because the state of the system depends on the

history; indeed, this lack of ergodicity lends the hysteresis its rate-independent character

[80]. Consequently, the key assumptions in classical thermodynamics of phase transitions,

additivity and ergodicity, are violated. Physically, this is because of the presence of long-

range or nonlocal interactions, which is a consequence of the elastic stresses, as seen in

Eq. (6.1), which represents the average stress experienced by the thin film or β-phase;

the thin-film stress depends on the material parameter, Ω, and concentration of the α-

phase. In the absence of such nonlocal effects, the equations for mechanical equilibrium

can be decoupled from equations for chemical equilibrium, and a quantitative approach can

be undertaken, for example, in [130], Johnson and Voorhees analyzed a spherical system,

assuming a substitutional binary two-phase system. Likewise, in [132], Johnson and Chiang

consider a two-phase thin-film system on a rigid substrate, modeled by imposing a set of

displacement boundary conditions along the film’s edge; subsequently, the free energy of a

phase does not depend on the presence of the second phase.

In this chapter, we were able to speculate on the system behavior by assuming Ωα = 0,

and the stressed state is close to a stress-free state, which is assumed to exist. The latter

assumption enabled linearization of the conditions for chemical and phase equilibria, and

the concentration field in the presence of stress was derived. A coherent phase diagram was

presented where the new growing phase is stabilized by the stress, and formed the basis for

the subsequent graphical analyses.

Subsequently, it was concluded that the key consequence of elastic coupling in isostructural

phase transformations is the appearance of hysteresis in coherent open systems, which
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appears to be an inherent characteristic, leading to entropy production. This kind of

fundamental mechanism of energy dissipation is redolent of thermoelastic damping (TED), a

mechanism of material damping which occurs ubiquitously in resonators due to the coupling

of temperature and strain in a solid via the thermal expansion coefficient [166].

This reproducible thermodynamic hysteresis that continues to persist with vanishing kinetics

is observed experimentally in several phase transforming systems including metal hydrides

and lithium-ion batteries. In electrochemical systems, the subsequent residual voltage is

called a zero-current offset [20, 71, 74–76]; this zero-current hysteresis is predicted even for

a single particle [83]. Similarly, the lack of phase coexistence shown in this chapter is also

observed in nanostructured Li-insertion compounds that undergo volume expansion when

lithium-ions are inserted, such as TiO2 and FePO4 [167].
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Chapter 7

Transient diffusion analysis of a viscoelastic thin-film

bilayer

This chapter considers unsteady diffusion in both phases of the thin-film bilayer, and

viscoelastic deformation in the thin film. It is assumed that both phases undergo small

deviations from equilibrium, and the phase boundary is stationary and does not move.

The transient diffusion problem entails solving the concentration deviations from equilibrium,

which are given by δC(z, t).

7.1. Boundary conditions

Two flux conditions are specified. The first condition prescribes the flux of B -atoms at z = 0:

J
∣∣∣
z=0

= J∗,

∂δCβ

∂z

∣∣∣
z=0

= − J∗

MβCβ
eqκβ

.
(7.1)

The second outer boundary, z = zo, is impermeable, i.e., the flux is 0:

J
∣∣∣
z=zo

= 0,

∂δCα

∂z

∣∣∣
z=zo

= 0.

(7.2)

Equations (3.5)a, (3.28), and (3.31) were used to simplify the flux boundary conditions.
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7.2. Interface model

The first interface condition is given by

JJK = 0, (7.3)

which is a continuity equation at the interface in the absence of any sources and sinks.

The interface experiences diffusion of B -atoms on both sides, both from and to each phase.

Subsequently, the interface is no longer in chemical equilibrium. This interfacial description

requires a model for the interface that accounts for the diffusion in the presence of different

equilibrium concentrations of the two phases. Subsequently, the second interface condition

is given by

−JI = V0(C
α
I −

Cα
eq

Cβ
eq

Cβ
I ), (7.4)

which relates the interfacial concentrations to the local flux; this general description is derived

in Appendix C.2. based on the first-order kinetic model of the interface.

7.3. Diffusion analysis

The goal of the transient diffusion analysis is to derive the concentration field in the planar

system for small deviations from equilibrium, where Eq. (3.5) describes the unsteady

diffusion in the bilayer, which is taking place in the presence of a sharp phase interface.

Using Eqs. (3.5), (3.28), and (3.31) for the β-phase, the diffusion equation simplifies to

∂δCβ(z, t)

∂t
= Mβ(Cβ

eq + δCβ)κβ ∂δC
β(z, t)

∂z
,

= D′β ∂
2δCβ(z, t)

∂z2
,

(7.5)
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where D′β ≡ MβCβ
eqκ

β. Similarly, for the α-phase, the diffusion equation is given by

∂δCα(z, t)

∂t
= D′α∂

2δCα(z, t)

∂z2
, (7.6)

where D′α ≡ MαCα
eqκ

α.

7.3.1 Extended separation of variables method

The transient diffusion problem for the composite system consists of the partial differential

equations (PDEs) (7.5) and (7.6) with two interface conditions and two boundary conditions.

Initially, the phases are in equilibrium.

To solve the concentration field in a composite system subjected to two flux boundary

conditions, the method of variable transformation is applied. This method splits the

solution into three components to account for the nonhomogeneous boundary conditions,

homogeneous boundary conditions, and the initial conditions. Subsequently, for each phase,

the following variable transformations are used [168]:

δC(z, t) = v(t) + w(z) + u(z, t), (7.7)

where u(z, t) satisfies the homogeneous boundary conditions, and is given by

u(z, t) = Z(z)T (t). (7.8)

Substituting Eq. (7.7) into the diffusion equation, we obtain

∂u

∂t
+

dv

dt
= D′

(d2w
dz2

+
∂2u

∂z2

)
. (7.9)

As u(z, t) satisfies the homogeneous boundary conditions and PDE, the corresponding PDE

is given by

∂u

∂t
= D′∂

2u

∂z2
. (7.10)
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Thus, from Eqs. (7.9) and (7.10), we obtain

1

D′
dv

dt
=

d2w

dz2
, (7.11)

where the LHS is a function of time and the RHS is a function of z, therefore, the above

equation must be equal to a constant; here, we set it equal to w1:

dv

dt
= w1,

D′d
2w

dz2
= w1.

(7.12)

By integrating the above equations, we obtain the following expressions for v(t) and w(z):

v(t) = w1D
′t+ v1,

w(z) = w1
z2

2
+ w2z + w3,

(7.13)

where w1, w2, and v1 are unknown constants to be determined. As v(t) satisfies the initial

condition, i.e. v(t = 0) = 0, we obtain v1 = 0.

To derive u(z, t), we substitute Eq. (7.8) into Eq. (7.10). Separating the variables leads to

d2Z

dz2
=

1

D′
dT

dt
= −λ2, (7.14)

where the LHS is a function of z, and the RHS is a function of time, hence, the equation must

be equal to a constant; furthermore, this constant must be negative because the concentration

cannot increase exponentially with time in the absence of a source term in the PDE, Eq.

(7.10). Thus, from Eq. (7.14), we obtain two ODEs, which can be solved to obtain the two

components of u(z, t):

Z(z) = A cos(λz) +B sin(λz),

T (t) = Ce−D′λ2t,

(7.15)

where λ, A, B, and C are unknown constants.
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The subsequent sections apply Eqs. (7.7), (7.8), (7.13), and (7.15) to the thin film and

substrate with the corresponding boundary conditions, interface conditions, and initial

conditions.

7.3.2 Thin film

The deviation in the concentration of the B -atoms in the thin film is given by

δCβ(z, t) = vβ(t) + wβ(z) + uβ(z, t), (7.16)

where

vβ(t) = wβ
1D

′βt,

wβ(z) = wβ
1

z2

2
+ wβ

2 z + wβ
3 ,

uβ(z, t) = Zβ(z)T β(t) = Cβe−D′β(λβ)2t(Aβ cos(λβz) +Bβ sin(λβz)).

(7.17)

Applying the nonhomogeneous flux boundary condition at z = 0, Eq. (7.1), which is

accounted for by wβ(z), given by Eq. (7.17)b, we obtain

wβ
2 = −ζCβ

eq. (7.18)

It is noted that Zβ(z), which is part of uβ(z, t), the homogeneous flux boundary condition,

i.e. Eq. (7.1) with RHS equal to 0, corresponds to
∂uβ

∂z

∣∣∣
z=0

= 0; this equation is used with

Eq. (7.17)c to obtain

Zβ(z) = Aβ cos(λβz). (7.19)

Thus, uβ(z, t) simplifies to

uβ(z, t) = F βe−D′β(λβ)2t cos(λβz), (7.20)
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where F β ≡ AβCβ.

7.3.3 Substrate

Applying the same procedure to the substrate, we obtain

δCα(z, t) = vα(t) + wα(z) + uα(z, t), (7.21)

where

vα(t) = wα
1D

′αt,

wα(z) = wα
1

z2

2
+ wα

2 z + wα
3 ,

uα(z, t) = Zα(z)Tα(t) = Cαe−D′α(λα)2t(Aα cos(λαz) +Bα sin(λαz)).

(7.22)

Applying the boundary condition, Eq. (7.2), we obtain

wα
2 = −wα

1 zo,

Zα(z) = A′α cos(λα(z − zo)),

(7.23)

where A′α =
Aα

cos(λα(zo)
. Thus, uα(z, t) simplifies to

uα = Fαe−D′α(λα)2t cos(λα(z − zo)), (7.24)

where Fα ≡ AαCα.

7.3.4 Interface conditions

The continuity of flux across the interface is given by Eq. (7.3); simplifying this condition

using Eqs. (3.5)a, (3.28), and (3.31), we obtain

∂δCα

∂z

∣∣∣
zI

=
D′β

D′α
∂δCβ

∂z

∣∣∣
zI
, (7.25)
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which can be further simplified using Eqs. (7.16), (7.17), (7.20)-(7.22), and (7.24) to obtain

wα
1 (zI−zo)−λαFαe−(λα)2D′αt sin(λα(z−zo)) =

(D′β

D′α

)(
wβ

1 zI−ζCβ
eq−λβF βe−(λβ)2D′βt sin(λβzI)

)
.

(7.26)

For the above equality to hold for arbitrary time, the following conditions must hold:

−λαFαe−(λα)2D′αt sin(λα(z − zo)) =
(D′β

D′α

)
F βe−(λβ)2D′βt sin(λβzI), (7.27)

and,

e−(λα)2D′αt = e−(λβ)2D′βt,

(λα)2D′α = (λβ)2D′β,

λα

λβ
=

√
D′β

D′α .

(7.28)

Equation (7.28) can be used to simplify Eq. (7.27):

−λαFα sin(λα(z − zo)) = −λβD
′β

D′αF
β sin(λβzI). (7.29)

Subsequently, Eq. (7.26) simplifies to13

wα
1 (zI − zo) =

D′β

D′α

(
wβ

1 zI − ζCβ
eq

)
,

wα
1 =

D′β

D′α

(zI − zo)

(
wβ

1 zI − ζCβ
eq

)
.

(7.30)

13ζCβ
eq =

J∗

D′β
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The second interface condition, Eq. (7.4), is similarly simplified using Eqs. (3.5)a, (3.28),

and (3.31) to obtain

∂(δCα)

∂z

∣∣∣
zI

=
V0

D′α

(
δCα

I −
(Cα

eq

Cβ
eq

)
δCβ

I

)
,

dwα

dz

∣∣∣
zI
+ Tα(t)

dZα

dz

∣∣∣
zI

=
V0

D′α

(
wα(zI)−

(Cα
eq

Cβ
eq

)
wβ(zI) + Zα(z)Tα(t)

−
(Cα

eq

Cβ
eq

)
Zβ(z)T β(t) + vα(t)−

(Cα
eq

Cβ
eq

)
vβ(t)

)
,

(7.31)

where Eqs. (7.16), (7.17), (7.20)-(7.22), and (7.24) were used to expand the concentration

terms. For the above equality to hold for arbitrary time, the following condition must hold:

Tα(t)
dZα

dz

∣∣∣
zI

=
V0

D′α

(
Zα(z)Tα(t)−

(Cα
eq

Cβ
eq

)
Zβ(z)T β(t) + vα(t)−

(Cα
eq

Cβ
eq

)
vβ(t)

)
. (7.32)

Dividing by Tα(t), we obtain

dZα

dz

∣∣∣
zI

=
V0

D′α

(
Zα(z)−

(Cα
eq

Cβ
eq

)
Zβ(z)

Cβ

Cα
+

vα(t)

Tα(t)
−
(Cα

eq

Cβ
eq

) vβ(t)

Tα(t)

)
. (7.33)

For the above equality to hold for arbitrary time, the following conditions must hold:

dZα

dz

∣∣∣
zI

=
V0

D′α

(
Zα(z)−

(Cα
eq

Cβ
eq

)
Zβ(z)

Cβ

Cα

)
,

V0

D′α

( vα(t)

Tα(t)
−
(Cα

eq

Cβ
eq

) vβ(t)

Tα(t)

)
= 0.

(7.34)

Using Eqs. (7.31) and (7.34)a, we obtain

dwα

dz

∣∣∣
zI

=
V0

D′α

(
wα(zI)−

(Cα
eq

Cβ
eq

)
wβ(zI)

)
. (7.35)

Using Eqs. (7.17) and (7.22) in (7.35), we obtain

wβ
3 =

Cβ
eq

Cα
eq

[
wα

1

z2I
2

+ wα
2 zI + wα

3 − D′α

V0

(wα
1 zI + wα

2 )
]
. (7.36)
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Equation (7.34)b simplifies to

vα(t)−
(Cα

eq

Cβ
eq

)
vβ(t) = 0, (7.37)

which can be expressed in terms of two unknown constants, wα
1 and wβ

1 using Eqs. (7.17)a

and (7.22)a; subsequently, we obtain

wα
1 =

(Cα
eq

Cβ
eq

)(D′β

D′α

)
wβ

1 . (7.38)

Equations (7.30) and (7.38) generate a solution for wβ
1 :

wβ
1 =

ζCβ
eq(

zI
(
1− Cα

eq

Cβ
eq

)
+

Cα
eq

Cβ
eq
zo

) . (7.39)

Equation (7.34)a is expanded using Eqs. (7.19) and (7.23):

Fα = F β
( V0

D′α

)(Cα
eq

Cβ
eq

) cos(λzI){ V0

D′α cos(λα(z − zI)) + λα sin(λα(z − zI))
} . (7.40)

Using Eqs. (7.29) and (7.40), we obtain a transcendental equation for the eigenvalues:

tan(λβzI)(V0 + λαD′α tan(λα(zI − zo)))

tan(λα(zI − zo))
= V0

Cα
eq

Cβ
eq

√
D′α

D′β ,

tan(λβzI)(V0 + λβ
√
D′αD′β tan(λβ

√
D′β

D′α (zI − zo)))

tan(λβ

√
D′β

D′α (zI − zo))
= V0

Cα
eq

Cβ
eq

√
D′α

D′β ,

(7.41)

where Eq. (7.28)c was used to express the equation in terms of λβ only. This equation has

multiple solutions for λβ, and subsequently, λα; thus, by principle of superposition, uα(z, t)

and uβ(z, t) are series solutions given by
∑∞

n=1 Z
αTα, and

∑∞
n=1 Z

βT β respectively.
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To summarize, the concentration deviations are given by

δCα(z, t) = wα
1

z2

2
+ wα

2 z + wα
3 + wα

1D
′αt+

∞∑
n=1

Fnλ
β sin(λβzI) cos(λ

α(z − zo))e
−D′α(λα)2t,

δCβ(z, t) = wβ
1

z2

2
+ wβ

2 z + wβ
3 + wβ

1D
′βt+

∞∑
n=1

Fnλ
αD

′α

D′β sin(λα(z − zo)) cos(λ
βz)e−D′β(λβ)2t,

(7.42)

where Fn =
Fα

λβ sin(λβzI)
=

F β

λα sin(λα(zI − zo)
D′α

D′β

using Eq. (7.29). The eigenvalues are

given by the transcendental equation; wα
1 , wα

2 , wβ
1 , wβ

2 are known from Eqs. (7.38), (7.39),

(7.23)c, and (7.18); wβ
3 is given by Eq. (7.36) and depends on wα

3 .

Thus, there are two outstanding constants in Eq. (7.42): wα
3 and Fn; these will be determined

using initial conditions.

7.3.5 Initial conditions

The initial conditions are given by

δCα(z, 0) = 0,

δCβ(z, 0) = 0.

(7.43)

The initial condition can be applied in the integral form:∫ zI

0

δCβ(z, 0)dz +

∫ zo

zI

δCα(z, 0)dz = 0, (7.44)

which is expanded using Eq. (7.42), leading to∫ zI

0

wβ(z)dz +

∫ zo

zI

wα(z)dz +
∞∑
n=1

Fn

(∫ zI

0

fβ(z)dz +

∫ zo

zI

fα(z)dz
)
= 0, (7.45)

where fα(z) and fβ(z) are eigenfunctions in the series expansion, and are given by

fα(z) = λβ sin(λβzI) cos(λ
α(z − zo)),

fβ(z) = λαD
′α

D′β sin(λα(z − zo)) cos(λ
βz).

(7.46)
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Simplifying the integrals of Eq. (7.45) , we obtain wα
3 :

wα
3 = −wα

1

1

(zo − zI)

[z3I
6
+
(1
ζ

(Cα
eq

Cβ
eq

)
(zI−zo)−

zI
ζ

)
zI+

(Cα
eq

Cβ
eq

)(D′β

D′α

)(z3o − z3I
6

−zo
(z2o − z2I )

2

)]
.

(7.47)

To solve for the coefficient of the series, Fn, we use the following equation:

Fn = −
∫ zo
zI

wα(z)fα
n (z)dz + Ĉ

∫ zI
0

wβ(z)fβ
n (z)dz∫ zo

zI
wα(z)(fα

n (z))
2dz + Ĉ

∫ zI
0

wβ(z)(fβ
n (z))2dz

, (7.48)

where Ĉ ≡
Cα

eq

Cβ
eq

is a discontinuous-weighting function for our composite system, which makes

the eigenfunctions orthogonal [169]. The derivations of this weighting function and Eq. (7.48)

are provided in Appendix H. Applying Eq. (7.48) leads to the series coefficient for the bilayer:

Fn = −
2ζCα

eq

D̂λβ

sin(λβzI) sin(λ
α(zI − zo))

[ λβz2I

2(zI(1− Ĉ) + Ĉzo)
− λβzI + 1

]
[
sin2(λβzI)(zo − zI −

sin(2λα(zI − zo))

2λα
) + Ĉ

D̂2
sin2(λα(zI − zo))(zI +

sin(2λβzI)
2λβ )

] .
(7.49)

This completes the semi-analytical solution to the transient diffusion problem.

7.4. Viscoelastically-coupled analysis

This section considers viscoelastic deformation in the thin film. However, incorporating

viscoelasticity, and thereby, new mechanics and material response compared to our analyses

so far, requires a visit to the foundations of continuum mechanics and the underlying

principles used to build the constitutive theories of elasticity and fluid mechanics.

7.4.1 Foundations of constitutive equations

The response of a material to an imposed loading (mechanical, chemical, or thermal) is

described mathematically by constitutive equations or response functions.
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For linear isotropic elasticity, the constitutive equation is given by Hooke’s law: σ = λtrϵI+

2µϵ, where λ and µ are the Lamé elastic moduli and are related to material parameters.

Linear viscous fluids are described using Newton’s viscous constitutive law, which is given

by σ = η
dϵ

dt
, where η denotes the coefficient of viscosity.14

These constitutive functions are restricted by several physical principles, which include the

principles of determinism, local action, and material frame-indifference. The principle of

determinism states that past events determine the present. According to the principle of

local action, the response of the material at a point is influenced by what’s occurring in a

small region about that point. The principle of material frame-indifference or objectivity

imposes that all physical variables requiring constitutive relations remain the same in all

reference frames; such entities are called objective tensors. Finally, a constitutive relation

must obey the second law of thermodynamics [170].

7.4.2 Viscoelastic mechanics and material model

Viscoelastic or rheological materials exhibit both elastic and viscous-like characteristics, and

the relationship between stress and strain depends on time.15 To model the viscoelastic

material response, memory effects must also be incorporated.

In this thesis, it is assumed that the β-phase exhibits linear viscoelastic behavior at the

operating temperature, and can be described by Maxwell’s rheological model. This selected

material model consists of a spring (Hookean element) and dashpot (viscous or Newton

element) in series as shown in Fig. 7.1; the corresponding 1D constitutive equation is given

14On notation: η was used as an index in the previous chapters; here it is used for the coefficient of
viscosity.

15In the elastic solutions, time does not appear explicitly (only via the interface position); stresses depend
on the instantaneous value of the interface position.
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by

τ σ̇ + σ = ηϵ̇, (7.50)

where the time constant of the model is given by τ =
η

E
and represents the relaxation time,

and ϵ is the total mechanical strain, which is equal to the sum of the elastic and viscous

strains [171].

E η
21 3

d dA
dt dt

A As es e+ = + 21 3
d dA
dt dt

A As es e+ = +

Figure 7.1: Schematic of the Maxwell model of viscoelasticity comprising a spring (or

a Hookean element) in series with a dashpot (or a Newtonian viscous element). The model

exhibits a relaxation time. There are no inertial effects.

7.4.3 Correspondence principle

The general partial differential equation describing the stress-strain behavior in a viscoelastic

material is position- and time-dependent. Instead of solving this formidable equation directly,

Laplace transform can be applied to the field equations and boundary conditions to derive

the viscoelastic stresses.

The correspondence principle compares the Laplace transformed field equations of

viscoelasticity to the corresponding elastic field equations; because these equations exhibit

the same form, the solution to the elastic problem that is compatible with the transformed

boundary conditions can be used to solve the original problem by transform inversion. This

method of applying the correspondence between the elastic and viscoelastic equations to

solve viscoelastic stress analysis problems is well-established and also known as the elastic-
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viscoelastic analogy [172]. In its classical form, the elastic-viscoelastic analogy only holds for

time-independent or stationary boundary conditions [171,173].

Before applying the analogy, two key steps are typically undertaken: the stress-strain-

time constitutive equation for viscoelastic materials is extended to three dimensions,

and the stress and strain tensors are decomposed into their dilatational (or mean) and

deviatoric contributions respectively. This decomposition is typically undertaken because

most materials behave elastically under hydrostatic conditions. Subsequently, only the

deviatoric parts are affected by the presence of viscoelasticity; in the presence of volumetric

strain, the pertinent constitutive relation, in its general form, is given by16 [172]

Pmsij = 2Qmeij,

Pm

(
σij −

σkk

3
δij

)
= 2Qm

(
ϵij −

ϵkk
3
δij − CΩδij

)
,

(7.51)

where sij and eij are the deviatoric components of stress and strain respectively, ϵ represents

the total strain tensor which consists of the mechanical strain and the diffusion-induced

strain, and Pm and Qm are model-dependent operators given by

Pm =
m∑
k=0

ak
∂k

∂tk
,

Qm =
n∑

k=0

bk
∂k

∂tk
,

(7.52)

where ak and bk are material constants. For the Maxwell model, Pm =
1

G

∂

∂t
+

1

η
and

Qm =
∂

∂t
, where G is the shear modulus17 [166].

The Laplace transformed viscoelastic equations of mechanical equilibrium, strain-

displacement relation, prescribed traction and/or displacement boundary conditions, and

constitutive equations correspond to the elastic equations [172]. Thus, by comparing the

16The numerical factor 2 is introduced for convenience [172].
17For linear isotropic elasticity, Pm = 1 and Qm = G.
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elastic equation involving the deviatoric components, σed
ij = 2Gϵedij , to the Laplace transform

of Eq. (7.51), Pm(s)L{σd
ij} = 2QmL{ϵdij}, it is deduced that replacing the shear modulus

of the elastic problem with Qm(s)
Pm(s)

generates the same form as the Laplace transformed

viscoelastic equations. For the Maxwell material:

G(s) =
Qm(s)

Pm(s)
=

s
s

G
+

1

η

=
Gηs

(G+ ηs)
. (7.53)

When the solution to the elastic problem is available, it can be readily used by replacing the

shear modulus as described above to obtain the Laplace transformed viscoelastic equation.

Inverting this equation then provides the viscoelastic solution. This method is undertaken

in Section 7.4.4 to obtain the viscoelastic stresses in the thin film.

7.4.4 Viscoelastic stress analysis

The viscoelastic stress analysis is undertaken using the classical quasi-static correspondence

principle or elastic-viscoelastic analogy.

Using the elastic solution, Eq. (5.61)d, the Laplace transform of the viscoelastic solution is

given by

L{σβ
V (z, t)} ≈ E

β

V

Ω

3
L{δCα(z, t)− δCβ(z, t)}, (7.54)

where the subscript V denotes the viscoelastic entity. Eβ

V is the transformed biaxial modulus,

and its value depends on the choice of the viscoelastic material; for a Maxwell material model,

it is given by Eq. (45) [172]:

EV =
EV

1− νV
=

18KGηs

(3K(G+ ηs) + 4Gηs)
, (7.55)
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where K is the bulk modulus. For isotropic elasticity, the bulk and shear moduli are given

by [105]

K =
E

3(1− 2ν)
,

G =
E

2(1 + ν)
,

(7.56)

which can be used to simplify Eq. (7.55):

EV =
6Eηs

(E + 6ηs)
=

Es(
s+

E

6η

) . (7.57)

Substituting Eq. (7.57) in Eq. (7.54), we obtain

L{σβ
V (z, t)} =

s(
s+

E
β

6η

)EβΩ

3
L{δCα(z, t)− δCβ(z, t)},

L{σβ
V (z, t)} =

s(
s+

E
β

6η

)L{σβ
E(z, t)},

(7.58)

where the Laplace transform of the elastic solution was identified and substituted based on

Eq. (5.61); the subscript E denotes this elastic solution. Next, we use Laplace transform

operations to simplify, starting with the numerator, which is simplified using the derivative

rule; the subsequent expression is given by

L{σβ
V (z, t)} =

1(
s+

E
β

6η

)
(
L±

{dσβ
E

dt

}
+ σβ

E(t = 0)
)
. (7.59)
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Taking the inverse of the Laplace transform on both sides, we obtain

σβ
V (z, t) = L−1

[ 1(
s+

E
β

6η

)
(
L±

{dσβ
E

dt

}
+ σβ

E(t = 0)
)]

,

= L−1
[L±

{dσβ
E

dt

}
(
s+

E
β

6η

)
]
+ σβ

E(t = 0)e−
E
β

6η
t,

= L−1
[
G(s)F (s)

]
+ σβ

E(t = 0)e−
E
β

6η
t,

(7.60)

where F (s) = 1(
s+E

β

6η

) and G(s) = L±

{dσβ
E

dt

}
. The first term on the right hand side of Eq.

(7.60) is simplified using the convolution rule which states that [174]

G(s)F (s) = L(g(t)f(t)) = L((g ∗ f)(t)) = L{
∫ t

0

g(x)f(t− x)}. (7.61)

Using Eq. (7.61) in Eq. (7.60), we obtain

σβ
V (z, t) =

∫ t

0

dσβ
E

du
e−

E
β

6η
(t−u)du+ σβ

E(t = 0)e−
E
β

6η
t. (7.62)

For an initially stress-free system that subsequently experiences diffusion-induced viscoelastic

stresses, σβ
E(t = 0) = 0; thus σβ

xx = σβ
yy = σβ

V :

σβ
V (z, t) =

∫ t

0

dσβ
E

du
e−

E
β

6η
(t−u)du,

= σβ
E − E

β

6η

∫ t

0

σβ
E(z, u)e

−E
β

6η
(t−u)du.

(7.63)

Equation (7.63) represents the viscoelastic (Maxwell) stress distribution in a thin film of

thickness zI at a given time t.

7.4.5 Mass transport in the viscoelastic layer

Sections 7.3 and 7.4.4 describe the viscoelasically-coupled transient diffusion in the thin-film

bilayer.
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Assuming one-way coupling between diffusion and deformation, the viscoelastic stresses in

the thin film, induced by diffusion of B -entities, do not influence diffusion. Thus, the modified

Fick’s equation for diffusion, Eq. (3.5), is still applicable. Subsequently, the results of Section

7.3 provide the solution to the concentration field. Figure 7.2 illustrates these solutions, Eq.

(7.42), by showing the results for the concentration deviation in the two phases. For further

clarification, Fig. 7.3 shows the effects of Ĉ. The semi-analytical solutions were evaluated

in MATLAB®.

Figure 7.2: Normalized concentration deviations, δC/Ceq, in the two phases at time

2.7 s in the presence of a general interface, located at zI/zo = 0.25. The prescribed flux is

0.01 mol/m2s, V0 is 500 m/s, and the diffusivity ratio, D′β/D′α = 2. This figure shows three

cases corresponding to different ratios of equilibrium concentrations.
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Figure 7.3: Concentration deviation, δC vs distance, z, for two cases of Ĉ. The interface

exhibits a concentration jump that is transposed from the Ĉ = 0.5 case to the Ĉ = 2 case.

7.5. Discussion

This chapter considered transient concentration fields that are interacting at the interfaces;

subsequently, the interface is no longer in interfacial equilibrium.

The flux, J∗, is applied at z = 0, and the simplified Robin condition is approximated as a

Neumann condition; i.e., it is assumed that ζzI ≪ 1. The second boundary condition is also

a flux condition; consequently, the classical solution methods of PDEs cannot be applied to

this composite problem.
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For a single layer subject to two flux boundary conditions, the solution to the diffusion

equation can be derived using the classical method of Laplace transformation [175].

Subramanian and White [168] have demonstrated that this solution to the single layer

problem can also be derived using the method of variable transformation, which splits the

solution into three components to account for the nonhomogeneous boundary conditions,

homogeneous boundary conditions, and the initial conditions [168]. Furthermore, this latter

method can be easily applied to a bilayer system; subsequently, it is used to solve for the

concentration field.

7.5.1 Interface boundary condition

The interface boundary condition (IBC) given by Eq. (7.4) describes the transfer of B -atoms

at the interface. It is given by

−JI = V0(C
α
I −KDC

β
I ), (7.64)

where the discontinuous weighting function, Ĉ, is identified with KD, which denotes the

partition ratio for the system under consideration; it is also known as the distribution

constant, and represents the ratio of concentrations of a component in two phases at

equilibrium [176].18 Thus, the interface can be interpreted as a membrane and the IBC

contains the pertinent membrane transport parameters related to diffusion, partitioning, and

permeation; in this model, the characteristic velocity, V0 [m/s], represents the permeability

of the membrane, and characterizes its diffusing ability of the solute.

The concentrations are not continuous at the interface, i.e. there is imperfect contact at the

interface because the interface exhibits a resistance called the mass transfer resistance, which

is manifested as a discontinuity in the chemical potential and hence the concentrations. The

equation also displays a discontinuity in the diffusivity as well as represents a semi-permeable

18It is noted that this dimensionless material parameter appeared in Chapters 5 and 6 as well.
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membrane with a finite permeability between 0 (impermeable) and ∞ (fully permeable).

Considering a few limiting cases can provide more insight into the physics of this general

interface model.

Partition ratio = 1

Partitioning occurs because of a chemical potential difference between the two phases. In the

absence of partitioning, the B -entities are able to move freely through the interface. Thus,

in the limiting case where both phases exhibit the same equilibrium capacities, Cα
eq = Cβ

eq,

the interface condition simplifies to

−JI = V0(C
α
I − Cβ

I ), (7.65)

which exhibits semi-permeability but without any chemical potential jump. When V0 = 0

(i.e. zero permeability), the above equation simplifies to a perfectly reflecting condition with

the flux at the interface equal to 0.

Fully permeable membrane

When V0 → ∞, (i.e. fully permeable) the general interface condition simplifies to

Cα
I −

Cα
eq

Cβ
eq

Cβ
I = 0, (7.66)

where partitioning still occurs.

Perfect contact

In the absence of partitioning, Eq. (7.66) simplifies to Cα
I = Cβ

I , i.e. the interfacial

concentrations are equal and there is perfect contact.
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7.5.2 Model validity

Both Fickian diffusion, Eq. (7.5), as well as the simplified boundary condition at z=0 are

valid for small times and small thicknesses, ζzI ≪ 1. For later times as well as larger

thicknesses, the effects of the viscoelastic stresses on diffusion can no longer be ignored;

subsequently non-Fickian diffusion models must be invoked.

7.5.3 Viscoelastic thin film

In this chapter, the diffusion-induced deformation is viscoelastic, i.e. diffusion can loosen

the network structure of the β-phase, which has the constitution of a Maxwell fluid, and can

now flow according to Eq. (7.50). The stress relaxation is diffusion-controlled.

The system exhibits a relaxation time, which is given by τr = 6η/E
β. The normalized

time is given by t/τr = E
β
t/6η; as this normalized time increases, the viscoelastic stresses

decrease and subsequently vanish as the normalized time approaches infinity. Thus the

system eventually relaxes to equilibrium. Consequently, there is no material degradation as

the film/substrate interface is stationary and the film returns to its stress-free state with

time.

The presence of viscoelasticity introduces a time lag between the elastic and viscoelastic

stress that is characterized by the viscosity, η. For systems exhibiting large values of η, the

time lag is negligible, and the stress is elastic. Furthermore, Eq. (7.63)b shows that the

Maxwell type viscoelasticity reduces the magnitude of the stresses when σβ
E(z, t) is of the

same sign for all times, for a given value of z.

7.5.4 Thermodynamic framework

The presence of viscoelasticity implies that the framework of linear irreversible

thermodynamics (LIT) or thermodynamics of irreversible processes (TIP) is no longer
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applicable because it relies on the postulate of local equilibrium hypothesis (Section 5.4.6);

subsequently, the kinetic models of this framework are unable to capture the material

behavior described by the Maxwell model. The simplest extension of the LIT formulation is

the Internal Variable Theory (IVT) or Thermodynamics of Internal Variables (TIV). This

nonclassical framework expands the state space of classical thermostatics to include internal

or hidden variables that account for the internal order that characterizes the material under

study. For the Maxwell material, by identifying the internal variable with the viscous strain,

the rheological model given by Eq. (7.50), can be derived within this IVT formulation.

It is noted that the IVT framework replaces the local equilibrium hypothesis of LIT with

a generalized axiom called the hypothesis of the local accompanying state (LAS), which

postulates an accompanying (fictitious) equilibrium state to each non-equilibrium state [120].

In this chapter, we used a continuum mechanics concept, namely, the correspondence between

elasticity and viscoelasticity, to prepare a partially-coupled model. This approach also

allowed us to sidestep the thermodynamic considerations described above. However, to

extend and develop the model further thermodynamically, the foundations must be revisited.

7.5.5 Moving boundary

To incorporate a moving boundary in the absence of deformation, one can prescribe the

interfacial kinetics, zI = kt2, where k is a kinetic parameter.

In the presence of viscoelastic deformation, moving boundaries pose a problem because

the classical elastic-viscoelastic analogy cannot be applied as the underlying Laplace

transformation is defined for stationary boundaries. However, for the thin-film bilayer

under study, the mechanical conditions at the interface correspond to a trivial solution.

Subsequently, the classical correspondence principle still applies in the presence of partial

coupling and the moving boundary can be prescribed. However, such models may be of
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limited utility when the effect of viscoelastic stress on diffusion must be considered as the

film grows, requiring nonclassical theories such as IVT.

7.6. Summary

Viscous and viscoelastic effects appear in several thin-film applications including silicon

oxide processing and polymer technologies, where they accompany diffusion and reactions.

Polymers are increasingly used as coatings, barriers, and membranes in organic electronics

and controlled drug delivery technologies; in the latter application, design considerations

include concentration profiles of the drug at various times [177].

This chapter formulated a viscoelasically-coupled unsteady diffusion problem in a thin-film

bilayer. Sections 7.3 and 7.4 describe the solution, which is semi-analytical, and valid for

small times and thicknesses. The problem is partially-coupled as the stress does not affect

diffusion.

To illustrate the pharmaceutical application of controlled drug release with respect to the

system under study, we consider the following scenario: the applied flux is used to inject the

desired amount of solute (drug) into the thin film; the flux is then turned off, and the system

sealed. The film has undergone viscoelastic deformation during the diffusion of the drug.

When the system is in contact with the target environment, the drug is released (desorption),

and the film gets restored to its stress-free state. Thus, the drug or solute can be stored for

later release.

The thin-film bilayer model also featured a general interface. Physically, this sharp interface

represents a thin membrane that is permeable to the small and mobile B -atoms. In problems

of membrane transport, processes of diffusion and permeability play a key role. For example,

in applications where the film acts as a protective layer against the B -entities, it is desirable

to have an impermeable interface and an inert film with respect to phase transformation.
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The IBC given by Eq. (7.4) is a general interface condition that combines many types

of interfaces; it includes discontinuity in diffusivity, discontinuity in chemical potential

(imperfect contact), and semi-permeability. Such interfaces are of interest in studies of

living cell membranes, where the transport of small ions or molecules occurs by diffusion

across the membranes; the diffusion of these species is often described by Fick’s equations.

Furthermore, the IBC, derived in this work using simple kinetic considerations, resembles

the modified Kedem-Katchalsky (K-K) equation in the absence of convection [178, 179];

the K-K equation is well-known equation in biological literature to describe transport of

substances across biological membranes. Finally, it is noted that the mass transfer resistance

exhibited by this interface is analogous to thermal or contact resistance in heat conduction

literature [180–182], and charge transfer resistance in battery literature [183].

Incorporating viscoelasticity, and thereby, new mechanics and material response, required a

visit to the foundations of continuum mechanics and the underlying principles used to build

the constitutive theories of elasticity and fluid mechanics. While the L-C framework used in

previous chapters is no longer valid in the presence of viscoelasticity, it was possible to forgo

these thermodynamic considerations at present because the problem is partially-coupled and

the mechanics can be derived using the classical correspondence principle. Thus, we were

able to analyze the diffusion-induced stresses within the framework of linear viscoelasticity

and the concentration field within the framework of classical thermodynamics for the planar

bilayer of Fig. 5.1 with the film exhibiting viscoelastic (Maxwell) deformation. Nevertheless,

the systematic set up of the model led to the following modeling insights: partially-coupled

analyses of systems that feature a moving boundary and non-trivial mechanical BCs at

the interface require an extended version of the correspondence principle [173], and a

fully-coupled diffusion-reaction-deformation analysis requires a reformulated thermodynamic

framework. The IVT formulation can be used for small deformation and material models such

as the Maxwell model, however for large deformation as well as complex materials, further
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extensions may be necessary. For example, the Hookean spring of the Maxwell model can

be generalized to accommodate larger deformation. Similarly, the Maxwell model, which

features a single relaxation time, may be generalized to exhibit a distribution of relaxation

times.
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Chapter 8

Modeling insights and implications

“Men can do nothing without the

make-believe of a beginning.

Even science, the strict measurer, is

obliged to start with a make-believe

unit, and must fix on a point in the

stars’ unceasing journey when his

sidereal clock shall pretend that time is

at Nought.”

George Eliot

We began our modeling exploration by selecting a thermodynamic framework that provided a

natural extension of classical thermodynamics. Most models are thermodynamic, few kinetic

even though the latter are most useful to technological applications. In this thesis, we used

the Larché-Cahn theory as the starting point, and applied and extended it to model the

growth kinetics in two geometries as well as predict the effects of diffusion-induced stresses.

However, solely kinetic models are often utilized to estimate the key kinetic parameters.

Indeed, Fick’s first law of diffusion is a phenomenological equation based on experiments.
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Modeling the chemical kinetics of diffusion and reaction in solids, particularly the growth

behavior, was the motivation for this thesis and will continue to drive our research, with

kinetics at the forefront. Therefore, this chapter takes the kinetic viewpoint to develop

further modeling insights and set up future work. First, let’s consider two illustrative semi-

infinite planar problems with a prescribed surface concentration.

8.1. Fickian diffusion with a moving interface

Consider a semi-infinite supersaturated α-phase. Initially, this phase occupies the spatial

range: 0 ≤ z < ∞. When the boundary, z = 0, is subjected to a concentration C∗, a sharp

interface develops and propagates into the α-phase; this interface divides the α-phase from

the β-phase that is growing at the surface and at time t, occupies the region 0 ≤ z ≤ S(t),

where S(t) denotes the location of the interface.

It is assumed that the concentration changes in the semi-infinite α-phase, which acts like a

reservoir, can be ignored; subsequently, only the β-phase experiences diffusion of B -atoms.

The Fickian diffusion equation is given by

∂Cβ

∂t
= Dβ ∂

2Cβ

∂z2
. (8.1)

The mass balance condition at the interface is given by

−Dβ ∂C
β

∂z

∣∣∣
S(t)

= (Cβ
eq − Cα

eq)
dz

dt

∣∣∣
S(t)

, (8.2)

where it is assumed that the interfacial concentrations are constants, and correspond to the

equilibrium values.

An exact solution to this semi-infinite diffusion problem is given by [11]

Cβ(z, t) = C∗ + c1 erf
( z

2
√
Dt

)
,

Cβ(z, t)− C∗

Cβ
eq − C∗

=
erf(γz/S)

erf(γ)
,

(8.3)
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where c1 is determined by the interfacial boundary condition: C∗ + c1 erf(S/(2
√
Dt)) =

Cβ
eq; as the interfacial concentration is assumed to be constant, it cannot depend on time,

i.e. S/(2
√
Dt) = γ, a constant, which is to be determined by the transcendental equation

resulting from Eq. (8.2):

√
πγ erf(γ)eγ

2

= ε ≡
(C∗ − Cβ

eq)

(Cβ
eq − Cα

eq)
. (8.4)

For small values of γ, the error function is given by [184]

erf(γ) =
2√
π
e−γ2

∞∑
n=0

2nγ2n+1

(2n+ 1)!!
.

Subsequently, Eq. (8.4) simplifies to

∞∑
n=0

(2γ2)n+1

(2n+ 1)!!
= ε. (8.5)

A general series such as

∞∑
n=1

an(γ
2)n = ε

can be reversed to

γ2 =
∞∑
n=1

bn = εn,

where b1 = 1/a1, b2 = −a2/a
3
1, and b3 = (2a22 − a1a3)/a

5
1 [185]. Subsequently, we obtain

γ2 =
ε

2
− ε2

16
+

7ε3

90
. (8.6)
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8.1.1 Control parameter

Equation (8.4) illustrates the kinetic parameter that controls the diffusion behavior of the

solution:

ε =
(C∗ − Cβ

eq)

(Cβ
eq − Cα

eq)
=

(C∗ − Cβ
eq)

aCA

, (8.7)

where the latter equation is applicable to stoichiometric reactions; a is the stochiometric

coefficient.

This supersaturation ratio is a key parameter that controls the growth kinetics as well as

the validity of steady state diffusion models, as seen in the subsequent sections.

8.1.2 Pseudo-steady state solution

The pseudo-steady state (PSS) or quasi-steady state (QSS) approximation represents a

suitable estimate of the time-dependent solution when ε ≪ 1.

Using a boundary fixing transformation, y = z/S(t) [186], Eq. (8.3)b can be written as

Cβ(z, t)− C∗

Cβ
I − C∗

=
erf(γy)

erf(γ)
=

∫ γy

0
e−η2dη∫ γ

0
e−η2dη

, (8.8)

which is simplified using the Taylor expansion for the exponential function, resulting in the

PSS solution to the concentration, which is given by

Cβ(z, t)− C∗

Cβ
I − C∗

=
z

S(t)

(
1 +

γ2

3

)
,

Cβ
PSS(z, t)− C∗

Cβ
I − C∗

≈ z

S(t)
,

(8.9)

when ε ≪ 1. The location of the interface is given by

SPSS(t) =
√
2ϵDt. (8.10)
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Equations (8.9) and (8.10) demonstrate that the PSS solution forms an upper bound on the

concentration and a lower bound on the interface position.

8.1.3 Growth kinetics

The reaction interface location exhibits parabolic behavior, i.e. S(t) = O(t1/2). It is noted

that the short-time behavior of the interface speed is not physical because the velocity,

dS(t)/dt → ∞ as t → 0+.

8.1.4 Summary

The presented problem and the subsequent analyses were guided by heat conduction

literature.

Chapters 4 and 5 employed quasi-steady state analyses. The implication of steady state

diffusion was discussed in Section 5.4.6 and illustrated further in the above problem.

Fickian diffusion in the absence of any reaction kinetics contains no natural length or time

scales, leading to a self-similar solution, as seen in Eq. (8.3). The growth of the β-phase is

parabolic, which has an effect on the small-time limit behavior, namely that the model does

not exhibit physical behavior in this limit. This ‘blow up’ in finite time is a key deficiency

of this model, and is typically overcome in kinetic models by including reaction kinetics.

Chapter 3 presented a moving boundary formulation using a thermodynamic-kinetic

approach where the driving force for phase transformation was identified from the equilibrium

thermostatics framework of Chapter 2, and related to the velocity of the interface to describe

the phase transformation reaction. This procedure led to the kinetic model given by Eq.

(3.7). Consequently, reaction kinetics arise naturally in this model formulation.

The research methodology of Chapter 3 was used in the uncoupled and elastically-coupled

analyses of Chapters 4 and 5 respectively, leading to linear-parabolic growth kinetics in the
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planar problem instead of solely parabolic growth. The implications of the linear-parabolic

growth kinetics were discussed in Section 5.4.4 via a limit analysis, which demonstrated that

at small times, the planar interface grows linearly. Subsequently, the small-time asymptotic

behavior in the presence of reaction kinetics, S(t) = O(t), is stable. Thus, including reaction

kinetics in the model has a regularizing effect.

8.2. Concentration effects as moving interfaces

Consider diffusion in both phases in the presence of a perfect interface, which entails

continuous concentrations and fluxes across the interface. Assuming the diffusivity has

different values in different ranges of the local concentration, the two regions, α and β

correspond to regions of low and high concentrations respectively.

The equations for determining the concentrations, C(z, t), in the two regions are assumed to

be given by Fick’s law with different diffusivities. Thus, two different mechanisms of diffusion

occur with diffusivity Dβ (Dα) in region β (α) defined by the concentration range C < CS

(C ≥ CS), where CS is the concentration at the moving boundary, z = S(t). Subsequently,

the conditions of this transient problem are given by

Cα(z, 0) = Ca,

Cβ(0, t) = Cb,

−Dβ ∂C
β

∂z
= −Dα∂C

α

∂z
at z = S(t),

(8.11)

where Ca and Cb are prescribed concentrations corresponding to the initial condition and

the boundary condition respectively; Eq. (8.11)c is an interfacial boundary condition,

representing continuous flux across the interface. Since the interface is moving because

of the effects of diffusion, the kinetics follow a parabolic law; subsequently, S(t) = k
√
t,

where k is unknown and to be determined. The solution to the concentration field is given

137



by [187]

Cβ(z, t) = Cb +Bβ erf
( z

2
√
Dβt

)
,

Cα(z, t) = Ca +Bα erfc
( z

2
√
Dαt

)
,

(8.12)

where erfc denotes the complementary error function, and Bβ and Bα are constants given by

Bβ = (CS − Cβ)/ erf(k/2
√
Dβ) and Bα = (CS − Cα)/ erfc(k/2

√
Dα), determined using the

interfacial boundary condition. The parabolic growth kinetic parameter is determined using

(CS −Cb)/(
√
πKbe

K2
b erfKb)+(CS −Ca)/(

√
πKae

K2
a erfcKa) = 0, where Ka = k/2

√
Dα and

Kb = k/2
√
Dβ.

8.2.1 Vanishing diffusivity at low concentrations

If we set Dα = 0, Cα stays 0, and the above formulation can be used to solve for

the concentration distribution in the β-phase. Furthermore, the distribution of the local

concentration can be expressed in terms of the local reaction: −DCz = CSSt, where the

derivatives are denoted using subscripts.

That is, using this local reaction instead of the diffusion equation, Cβ
t = DβCβ

zz, provides

the same result for Dα = 0. Thus, it is possible to interpret the immobilization reaction as

a pure diffusion process, where D = 0 over 0 ≤ C < CS with D changing sharply at CS.

8.2.2 Summary

Transient diffusion problems with discontinuous properties arise in composite barriers and

multilayer applications.

The presented problem assumes a perfect interface, which entails equal capacities or

equilibrium concentrations of the two phases; it can be derived from the general semi-
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permeable sharp interface model that was presented in Chapter 7 and is derived in Appendix

C.2..

Chapter 7 considered a transient diffusion problem with two layers and a general semi-

permeable interface. Unlike the classical methods of solution, an extended separation of

variables was required. The problem was solved in the presence of a viscoelastic thin film;

the interface was stationary. This problem can be extended to incorporate parabolic growth,

as demonstrated by the kinetic problem presented above.

Analyses of macroscopic local diffusion processes and immobilization reactions often

postulate discontinuities in diffusivities [5, 187]. The correspondence between diffusion and

local reaction models is noted above; this feature, which is valuable for experimental models

and analyses, is developed further in the subsequent sections.

8.3. Effective kinetic parameters

Experimental modeling frequently involves effective kinetic parameters to fit the

measurements. These heuristic models describe experimental observations by invoking

nonlinearity via the transport parameters to describe the complex kinetics that arise because

of the effects of deformation, microstructure, trapping, and porosity.

For example, measurements of growth kinetics in silicon nanowires (SiNWs) undergoing

lithium diffusion and reaction are fitted to empirical kinetic coefficients to explain the

observed blocking of the phase transformation reaction, which is attributed to the effects of

stress [188]. Liu et al. showed that the measured data could be fitted using either an effective

diffusivity or an effective interface rate coefficient, both involving stretched exponentials; for

instance, the effective diffusivity was given by D = D0e
−(pXr/Xi)

q , where D0 is the stress-free

diffusivity, Xr denotes the radius of the SiNW and Xi is its initial radius, p and q are fitting

parameters [188].
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Power-law diffusivities, D(C) = D0C
m, describe the kinetics in a wide range of phenomena,

including the diffusivities of many elements at high concentrations; m denotes the power-

law exponent and is constant. For example, the diffusion of dopants, such as boron and

phosphorous, in silicon can be modeled using power-law diffusivities with m=1 and m=2

respectively [189].

8.3.1 Summary

Chapter 5 presented the effective diffusivity for ideal solutions in the presence of elastic

stress:

Deff(C) = D0

(
1 +

2

9

EΩ2

RT
C
)
. (8.13)

The derivation entailed Vegard’s law, which assumes that the diffusion-induced strains vary

linearly with concentration. Consequently, for higher concentrations and subsequent stronger

elastic coupling, an extension of Vegard’s law and hence the effective diffusivity is required.

Power-law diffusivities may prove to be suitable candidates.

Chapter 5 also predicted reaction blocking in the presence of strong coupling, which is

delineated in Section 5.4.5. This effect of stress is often known as self-limiting lithiation

in battery literature.

8.4. Nonlinear degenerate diffusion

Moving boundary problems can be described within the framework of nonlinear degenerate

diffusion, where free boundaries arise via the theory rather than the formulation. The

manifestation of interfaces is a consequence of the degeneracy.
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The porous medium equation is a well known example of a nonlinear degenerate equation;

the one-dimensional nondimensionalized form is given by19 [190]

Ct = (CmCz)z. (8.14)

This model governs a wide range of physical phenomena, including gas percolation in porous

media, spreading of a thin film under gravity, and saturated flow in thin regions in porous

media [191,192]. Subsequently, a vast and rich mathematical literature is available.

8.4.1 Waiting time solutions

Waiting time solutions of nonlinear degenerate diffusion equations feature interfaces that do

not move immediately but after a finite time period known as waiting time, tw.

Two-parameter family of weak solutions of Eq. (8.14) for t > 0 exhibit a moving free

boundary at z = atb, where a > 0 and b > 1. Under appropriate initial data, these solutions

exhibit a finite waiting time [191].

8.4.2 Summary

The reaction block phenomenon, predicted in Chapter 5, alters the growth kinetics in a

nontrivial manner, requiring another framework. Thinking in terms of diffusivity, guided by

Eq. (8.13), concentration-dependent diffusivities depending on higher orders can be selected,

where the exponent depends on the material system under study.

Furthermore, it is inferred that the waiting time solutions may capture the reaction block

phenomenon in a reasoned manner because the analysis of the consequent nonlinear equation

within the framework of nonlinear mathematics can be used to derive error estimates and

19For our planar system, C in this model represents a normalized concentration of B -atoms.
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bounds of concentrations, diffusivities, and waiting times. These estimates may be used to

analyze experimental data.

8.5. Non-Fickian diffusion for viscoelasticity

Transport phenomena in polymer-penetrant systems entail diffusion of solvents in the

polymer’s entanglement network. When these systems exhibit glassy regions, non-Fickian

transport occurs.

Consider a semi-infinite polymer-penetrant system exhibiting two viscoelastic phases that

are distinguished by C, the concentration of the penetrant: glassy (0 ≤ C ≤ CS) and

rubbery (CS ≤ C ≤ Csat), where Csat denotes the saturation threshold of the polymer and

CS denotes the concentration at the moving boundary or the concentration at which the

phase transition, i.e. rubber to glassy transition, takes place.

A non-Fickian diffusion formulation that postulates a generalized flux to account for the

viscoelastic effects on diffusion is given by [193]

Ct =
[
D(C)Cz + Ẽσ̃z

]
z
,

σ̃t + β̃(C)σ̃ = µ̃C + ν̃Ct,

(8.15)

where the second term of Eq. (8.15)a represents the contribution of the relaxation process

to the diffusive flux, Ẽ, µ̃, and ν̃ are positive constants, β̃(C) is the inverse of the relaxation

time, assumed to be constant in each material phase, and σ̃, which can be interpreted as a

stress, is a convenient artifice that is introduced to simplify the formulation; its evolution is

described by Eq. (8.15)b [194].

Desorption of saturated films of polymers can lead to the formation of a thin skin of the

polymer with glassy properties. Subsequently, a non-Fickian formulation is required that

accounts for the effects of viscoelasticity on diffusion; by applying the above moving boundary
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model, Edwards [193] predicted the phenomenon of trapping skinning, in which an increase

in the driving force for desorption decreases the accumulated flux.

8.5.1 Summary

Chapter 7 considered a viscoelastic thin film on an elastic substrate. This formulation can

model coatings, barriers, and membranes, where the general semi-permeable interface allows

the desired diffusion profile to be designed.

Polymer-penetrant systems that exhibit glassy regions cannot ignore the effects of

viscoelasticity on diffusion because of their long relaxation times. To model diffusion with

viscoelastic effects, one possible thermodynamic approach is discussed in Chapter 7.

Undertaking a kinetic approach in the context of viscoelasticity entails approximating the

chemical potential to account for the effects of viscoelasticity on diffusion, as seen in the

above example from [193]; it is noted that the assumed chemical potential of Eq. (8.15)a

can be interpreted as an extension of Eq. (3.20).

Using the constitutive equation given by Eq. (8.15)b, which can be interpreted as an

extension of the Maxwell material, Eq. (7.50), their work predicted the phenomenon of

trapping skinning or solvent trapping during desorption. Physically, this blocking effect of

viscoelastic stress on diffusion is analogous to reaction block or solute trapping in the context

of elastically-coupled effects (Chapter 5).

8.6. Discussion

In this thesis, the analyses of the previous chapters illustrated a range of physical phenomena

that result from the diffusion-reaction-deformation coupling; however, when applying any

model, the following items must be addressed:

• model validity

143



• errors and bounds

• control parameters

• comparison to experiments

• pertinent length or time scales

• asymptotic regimes

The previous chapters discussed some of these aspects. This chapter attempted to expand

them further as well as demonstrate additional modeling characteristics by considering five

illustrative planar problems, guided by heat conduction and applied mathematical literature

in addition to the thermodynamic foundation and analyses of this thesis. This exercise

revealed several unifying aspects that link these vast fields. A systemized vetting of the

pertinent features was undertaken to build understanding and shape future work.
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Chapter 9

Conclusions and future work

"Complex models are rarely useful

(except for those writing their

dissertation)."

V.I. Arnold

In this study, the simplest models and assumptions were used to systematically derive,

present, and unify key modeling ideas thermodynamically, kinetically, and mathematically.

9.1. Contribution to original knowledge

By applying and extending the rigorous equilibrium thermostatics framework of Larché and

Cahn to binary two-phase systems, a consolidated theoretical approach, comprising linear

kinetic models guided by the L-C theory is presented. The contributions are as follows.

• Closed-form analytical solutions are presented for composition and elastic stresses in

a core-shell particle and a thin-film bilayer under conditions of steady-state diffusion.

• For the first time, the classical (uncoupled) stress-free growth kinetics of the spherical

core-shell particle and planar bilayer are derived within this formulation, containing

well-defined thermodynamic and kinetic quantities instead of fitting parameters.
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The growth kinetics exhibit two kinetic regimes, where the limiting behavior is

characterized by the critical thickness parameter, 1/ζ ′ (1/ζ in the absence of stress),

which depends on the material parameters, and the applied flux.

The selected theoretical approach also provided the thermodynamic framework to study the

elastically-coupled effects systematically.

• The elastically-coupled parameters that influence the two growth kinetic regimes

are identified, and the nature of coupling is defined to subsequently address the

consequences of strong coupling.

• The coupled phenomena of stress-induced reaction blocking and hysteresis were

predicted for the first time within this framework.

• Stability of the reaction front and isothermal hysteresis are discussed using the

conceptual tools of thermodynamic driving force for phase transformations in the

presence of stress, and the associated energy barrier. In particular, the thermodynamic

origin of hysteresis in the planar bilayer is deduced using graphical analyses and

stability arguments, which represent a novel look at the highly debated origins of

the ubiquitous hysteresis that is characteristic of several material systems, including

the palladium-hydrogen system.

These gaps in knowledge may have persisted in the literature because the original L-C

thermostatics theory is general and involves multiple components and phases, which gave

rise to alternative energy approaches to investigate equilibrium problems. For example,

Puls [77] remarks:

"Beginning in the 1970s, a series of comprehensive studies were carried out

by Larché and Cahn [14–18] to determine the general conditions for thermo-

chemical equilibrium and diffusion in multi-component crystalline solids self-

stressed by coherency strains. The important contribution of these authors
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was the development of a rigorous thermodynamic framework dealing with the

linkage between composition and stress in coherently stressed solids. However,

the very generality of this treatment, involving lengthy and complex relationships

and requiring the introduction of many new physical parameters, seems to

have obscured recognition of some unusual and potentially important physical

characteristics of phase equilbria in such solids. These features were recognized

in two important papers by Williams [26, 27], who based his thermodynamic

analysis of the effect of coherency strains on a simpler, more intuitive approach."

Indeed, such an alternative energy approach was used as the basis in Chapter 6 to investigate

coherent equilibrium. However, kinetic formulations in the literature have not utilized the

full extent of the original and lengthy L-C theory, which was our starting point to model the

phase growth kinetics.

• This thesis applied the L-C thermostatics framework directly to a binary two-phase

system, and presented it explicitly for the first time.

To explore bilayer mass transfer problems involving viscoelasticity, the techniques of classical

elastic-viscoelastic correspondence principle and extended separation of variables were

applied to a partially-coupled formulation.

• A protocol containing both viscoelasticity and transient diffusion is devised. The

interface model, derived from simple kinetic considerations, describes a general semi-

permeable sharp interface, and is identified with the modified Kedem-Katchalsky (K-K)

equation.

The coupled phenomena of stress-enhanced diffusion, reaction blocking, and hysteresis as

well as their modeling are of immediate relevance to technology and experimental analyses.

To facilitate further progress in this direction, a kinetic point of view is adopted to present the

salient points pertinent to the modeling of transport phenomena, guided by the literature in
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multiple disciplines. Once again, simple kinetic formulations are undertaken for this reflective

analysis.

• The correspondence between modeling diffusion and immobilization reactions is noted

for a moving boundary problem. Subsequently, the stress-enhanced diffusion result of

Chapter 5 is revisited to motivate power-law diffusivities for higher concentrations and

consequently, stronger coupling, which directs us to nonlinear degenerate diffusion.

• A survey of the theory of nonlinear degenerate diffusion reveals that power-law

diffusivities exhibit waiting time solutions, a mathematical analog of reaction blocking!

It is noted that this conclusion was drawn by considering the full tertiary coupling

between diffusion, reaction, and deformation, as illustrated by the concept map in Fig.

9.1.

This transfer of knowledge forms the final contribution of this work, and provides a

natural starting point for future experimental modeling research, which largely employs

heuristic effective diffusivities at present. That is, the framework of nonlinear mathematics

lends itself to (a) modeling reaction as part of the diffusion theory, (b) extracting kinetic

information from effective diffusivities, which are the transport quantities that get measured

in experiments, and (c) estimating the effective diffusivities, waiting times, and concentration

solutions, as well as their bounds.

Furthermore, this reflection encapsulates the multidisciplinary approach involving

thermodynamics, kinetics, and mathematics, and demonstrates the combined capacity of

these fields for modeling insights.

The key contributions of this thesis and their underlying links are presented visually in Fig.

9.1.

148



9.2. Modeling implications and extensions

"Coming back to where you started is

not the same as never leaving.”

Terry Pratchett

This work can be extended in multiple directions. Broadly, there are two key areas for further

investigation of the tertiary coupling:

9.2.1 Modeling of diffusion-reaction-deformation phenomena using

nonclassical frameworks

Nonclassical formulations of mechanics, thermodynamics, and kinetics are active areas of

research worldwide with an abundant and growing literature.

By enriching the description of the deformed continuum, these nonclassical frameworks

can enhance the system resolution to characterize their complex behavior in the presence

of additional considerations such as surface effects, charges, porosity, plasticity, fracture,

and viscoelastic diffusion. The literature survey in Chapter 2 cited extensions of the L-C

framework with respect to some of these extensions. However, by applying and extending

the L-C framework to investigate the effects of coupling in considerable detail, we are in

a better position to revisit and assess the vast literature of nonclassical mechanics and

thermodynamics, and substantiate their utility in studying coupled effects in elastic and

viscoelastic applications.

For example, selecting, applying, and extending a suitable nonclassical thermodynamic

framework to account for viscoelastic diffusion is an important area for future research, and

can lend itself to predicting the subsequent coupled phenomena, including the phenomenon

of trapping skinning, which was discussed in Chapter 8. While the Maxwell model of

viscoelasticity can be derived within the TIV framework in the absence of diffusion [195] using
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the notion of internal variables, extending IVT as well as other nonclassical thermodynamic

frameworks to include diffusion is nontrivial and an open area of thermodynamics research.

An example of a nonclassical framework that deviates from the classical Gibbsian

thermodynamics and its extensions is the formulation that employs the notions of a chemical

potential tensor and an equilibrium concentration that depends on the current state. This

framework has been applied to describe the thermodynamic phenomenon of reaction block

[48] in the absence of diffusion and has also included viscoelasticity in recent publications

[196].

9.2.2 Estimating solutions and parameters of approximate

(asymptotic) nonlinear models

Approximate models, constructed using nonlinear kinetics, can be used to describe the system

behavior away from equilibrium. Often, the driving forces in the nonlinear diffusion and

reaction equations are guided by their linear analogs, which serve as building blocks for the

nonlinear model. An example of this approach from the literature was described in Section

8.15, which entails an extension of Eq. (3.20).

While these nonlinear models contain unknown kinetic parameters, the utility of the

asymptotic approach lies in their immediate application to experiments by providing the

range of validity of the kinetic parameters, as opposed to merely extracting them by fitting

experimental data.

Chapter 8 made a preliminary link between the phenomenon of stress-induced reaction block,

predicted in this work using L-C thermodynamics, and the waiting time solution, which

exists for weak solutions of nonlinear degenerate diffusion equations. It would be of interest

to explore this connection further for experimental modeling. For example, revisiting the

literature survey of LIBs in Chapter 2, it is noted that the self-limiting effect of stress,

i.e. reaction block, observed in LIB experiments has been found to exhibit a stretched
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exponential behavior [64]; similarly, the self-limiting behavior in silicon oxidation has also

been explored using the self-same power-law ansatz [197]. Consequently, the framework of

nonlinear degenerate diffusion, which entails stretched exponentials, lends itself to kinetic

models, solutions, and theories that are of utility in the analysis of experimental data.
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A. Phase change in the deformed state

Let x be a vector in the deformed configuration, and X be a vector in the undeformed

state. The displacements and the rotations of a deformable solid are assumed infinitesimal.

Thus, the deformed configuration, x, is obtained by a smooth displacement, u, from the

undeformed configuration, X, which is given by

x = X + u. (1)

This implies

F =
∂x

∂X
= I +∇0u, (2)

where ∇0 is the gradient operator in the undeformed state, and F is called the

deformation gradient, and relates an infinitesimal vector in the deformed configuration to

the corresponding vector in the undeformed configuration. Mathematically, this is given by

dx = F dX. (3)

For small strains, the displacement gradient is given by

∇0u = ϵ+w, (4)

where ϵ is the small strain tensor, and w is the infinitesimal rotation tensor. In component

form, Eq. (4) is written as: ϵij + ωij =
∂ui

∂Xj

.
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For infinitesimal deformation, the scalar components of the infinitesimial rotation tensor

satisfy the condition wij ≪ 1, and the distinction between the reference and deformed

coordinates disappears, i.e., ∇0 = ∇, the gradient operator in the deformed state. Therefore,

∇0u = ∇u = ϵ, (5)

and Eq. (2) simplifies to

F = I + ϵ. (6)

Using Eqs. (3) and (6), we obtain

dx = (I + ϵ)dX. (7)

Thus, for infinitesimal strains, the displacement due to phase change in the actual

configuration is given by (I + ϵ)Nδz, where Nδz is the displacement due to phase change

in the reference configuration.
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B. Mobility of dilute solutions

The phenomenological equation for the chemical potential is given by [7]

µ = µ0 +RT ln(γX), (8)

where µ0 is the chemical potential of the B -atoms under standard conditions (generally, 1.0

atm pressure and the system temperature), and γ is the activity coefficient of the B -atoms.

For dilute solutions, γ ≈ 1. As the thin film and substrate contain dilute amounts of the

B -species, their chemical potentials can be expressed in terms of concentration using Eq.

(1.3). The simplified chemical potential is given by

µ ≈ µ0 +RT ln
C

CA

. (9)

The derivative of the chemical potential in the η-phase (η = α, β) is ∇µη =
RT

Cη
∇Cη. Thus,

for isotropic diffusion, Eq. (3.3)a simplifies to

Jη = −MηRT∇Cη. (10)

Comparing Eq. (10) to Fick’s first law of diffusion, Jη = −Dη∇Cη, we obtain the

relationship between the diffusivity and mobility for dilute solutions undergoing small

deviations from equilibrium, Mη = Dη/RT .
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C. Interface conditions

C.1. Kinetic model of the interface

The form of the kinetic model, Eq. (3.7), to describe the velocity of the interface is motivated

by a standard model used in the thermodynamics of reactions of gases. Following [26], let

us consider the following reaction:

aA+ bB ⇄ cC + dD, (11)

where A, B, C, and D represent the chemical species participating in the reaction and a, b,

c, and d are the stoichiometric coefficients of these species. In the forward reaction, A and

B are reactants and, C and D are products.

The rate of a reaction is equal to the rate of the forward reaction minus the rate of the

reverse reaction, which is expressed as

v = v1 − v2, (12)

where v is the net rate of the reaction, and v1 and v2 are the rates of the forward and

backward reactions respectively.

The thermodynamics of reactions of gases use the van’t Hoff isotherm, which is given by [26]

∆GT = ∆G0
T +RT∆ ln pi, (13)
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where pi is the partial pressure of component i, ∆GT is the change of the Gibbs energy,

and ∆G0
T is called the standard change of the Gibbs energy of the reaction; ∆GT = ∆G0

T

when the reaction occurs under standard conditions (all species are at 1 atm). Equation (13)

assumes that the system is large, i.e., the variation in the number of moles of the participating

species is negligible, and does not affect their concentration or partial pressures.

The van’t Hoff isotherm determines the reaction’s direction: when ∆GT < 0, the forward

reaction occurs; when ∆GT > 0, the backward reaction takes place.

At equilibrium, the change in Gibbs energy vanishes:

∆GT = 0,

RT ln
pcCp

d
D

paAp
b
B

= −∆G0
T ,

(14)

where the partial pressures are equilibrium partial pressures, and their ratio is given by Kp,

which denotes the equilibrium constant:

Kp =
pcCp

d
D

paAp
b
B

, (15)

which is known as the law of mass action and entails equilibrium partial pressures. It is

noted that ∆G0
T , and subsequently, Kp only depend on temperature.

Thus, RT lnKp = −∆G0
T ; revisiting Eq. (13), we obtain

∆GT = −RT lnKp +RT∆ ln pi.

= RT ln
( 1

Kp

pcCp
d
D

paAp
b
B

)
,

(16)

where the ln function includes instantaneous and equilibrium (via Kp) partial pressures.
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Using Eqs. (12) and (16), we obtain

v = v1 − v2,

= k1p
a
Ap

b
B − k2p

c
Cp

d
D,

= v1

(
1− 1

Kp

pcCp
d
D

paAp
b
B

)
= v1

(
1− e

∆G
RT

)
(17)

where the reaction constant for the forward reaction is k1 and for the backward reaction is

k2; subsequently, Kp =
k1
k2

=
pcCp

d
D

paAp
b
B

.

Consequently, we can express the rate of the reaction near equilibrium as

v ≈ v1

(
1−

(
1 +

∆G

RT
+ ...

))
,

v ≈ −v1
∆G

RT
,

(18)

which motivates the following kinetic model used for the interfacial reaction rate in Chapter

3 :

vI = − V0

RT

Φ

CA

, (19)

where v1 is identified as the characteristic velocity and denoted using V0, while Φ/CA is

analogous to Gibbs energy, and drives the forward reaction.

C.2. Interface resistance

The transient diffusion analysis of Section 7.2 features mass-transfer resistance because of

the presence of heterogeneity, i.e. the two phases, α and β, in the system. This interface

boundary condition is derived using insights from the previous section, namely, by expressing
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Eq. (12) in terms of concentration:

v = vα→β − vβ→α

= kαC
α
I − kβC

β
I

= vα→β

(
1− kβC

β
I

kαCα
I

)
= vα→β

(
1−

Cα
eqC

β
I

Cβ
eqCα

I

)
= v1

(
1−

Cα
eq

Cβ
eq

Cβ
I

Cα
I

)
,

(20)

where vβ→α and vβ→α denote the rates of the forward (α → β) and backward (β → α)

reactions respectively, and kα and kβ denote the corresponding coefficients; v1 = vα→β.

Next, we express the net rate of the interfacial reaction in terms of the local flux. For the

planar system, the direction of the z-coordinate is shown in Fig. 3.1; subsequently, the flux

of B -atoms on the α-side of the system across the interface is opposite to the z -direction,

and we obtain

− Jα
I

Cα
I

= v1

(
1−

Cα
eq

Cβ
eq

Cβ
I

Cα
I

)
,

JI = −V0

(
Cα

I −
Cα

eq

Cβ
eq

Cβ
I

)
,

(21)

where JI = Jα
I = Jβ

I as per Eq. (7.3).
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D. Axisymmetric mechanics

Assuming axisymmetry, the constitutive relations are given by [103,166]

ϵerr =
σrr

E
− ν(σθθ + σϕϕ)

E
,

=
σrr

E
− 2ν

E
σθθ,

(22)

and

ϵeθθ =
σθθ

E
− ν(σrr + σϕϕ)

E
,

=
σθθ

E
− ν(σrr + σθθ)

E
,

= − ν

E
σrr +

(1− ν)

E
σθθ,

(23)

where the superscript e denotes elastic. Using Eqs. (22) and (23), we obtain

σrr = Eϵerr + 2νσθθ,

σrr =
−1

ν

(
Eϵeθθ − (1− ν)σθθ

)
.

(24)

Solving Eq. (24) for the radial stress, we obtain

σθθ =
E

(1− ν − 2ν2)
(νϵerr + ϵeθθ),

=
E

(1 + ν)(1− 2ν)
(νϵerr + ϵeθθ).

(25)

Subsequently, the radial stress is obtained as follows:

σrr =
E

(1 + ν)(1− 2ν)

(
(1− ν)ϵerr + 2νϵeθθ

)
. (26)
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Equations (25) and (26) can be expressed in the matrix-vector form:σrr

σθθ

 =
E

(1 + ν)(1− 2ν)

1− ν 2ν

ν 1


ϵerr
ϵeθθ

 . (27)
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E. Mechanical equilibrium reformulation

In the absence of body forces, the mechanical equilibrium condition, Eq. (2.27), in the

component form, is given by

σij,j = 0. (28)

Using Eqs. (5.1), (5.3), and (5.4), we obtain

σij =
E

1 + ν

[
ϵij −

(1 + ν)

(1− 2ν)

∆CΩ

3
δij +

ν

1− 2ν
ϵkkδij

]
. (29)

Taking the divergence of Eq. (29), and writing the strains in terms of the displacement,

ϵij =
ui,j + uj,i

2
and ϵkk = uk,k, we obtain the displacement formulation of σij,j:

σij,j =
E

1 + ν

[ui,jj + uj,ij

2
− C,jΩ(1 + ν)

3(1− 2ν)
δij +

ν

1− 2ν
uk,kjδij

]
,

=
E

1 + ν

[ui,jj + uj,ij

2
− C,iΩ(1 + ν)

3(1− 2ν)
+

ν

1− 2ν
uk,ki

]
,

=
E

1 + ν

[ui,jj + uj,ij

2
− C,iΩ(1 + ν)

3(1− 2ν)
+

ν

1− 2ν
uk,ik

]
,

=
E

1 + ν

[(1
2
+

ν

1− 2ν

)
uj,ij +

1

2
ui,jj −

(1 + ν)

(1− 2ν)

C,iΩ

3

]
,

=
E

1 + ν

[ uj,ij

2(1− 2ν)
+

ui,jj

2
− (1 + ν)

(1− 2ν)

C,iΩ

3

]
,

=
E

1 + ν

[ uj,ji

2(1− 2ν)
+

ui,jj

2
− (1 + ν)

(1− 2ν)

C,iΩ

3

]
,

=
E

1 + ν

[ e,i
2(1− 2ν)

+
ui,jj

2
− (1 + ν)

(1− 2ν)

C,iΩ

3

]
,

(30)
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where e is the volumetric strain given by e = ϵkk = uk,k [104].

Applying the divergence operator to Eq. (30), and using Eq. (28), we obtain[ e,i
2(1− 2ν)

+
ui,jj

2
− (1 + ν)

(1− 2ν)

C,iΩ

3

]
,i
= 0,

e,ii
2(1− 2ν)

+
ui,jji

2
− (1 + ν)

(1− 2ν)

C,iiΩ

3
= 0,

e,ii
2(1− 2ν)

+
ui,ijj

2
− (1 + ν)

(1− 2ν)

C,iiΩ

3
= 0,

e,ii
2(1− 2ν)

+
e,jj
2

− (1 + ν)

(1− 2ν)

C,iiΩ

3
= 0,(

e− Ω

3

(1 + ν)

(1− ν)
C
)
,ii
= 0,

∇2
(
e− Ω

3

(1 + ν)

(1− ν)
C
)
= 0.

(31)

For the state of stresses in our system, e is given by

e = ϵxx + ϵyy + ϵzz,

= 2ϵxx + ϵzz.

(32)

Using Eqs. (5.1), (5.3), and (5.4), we obtain

ϵij =
1

E

[
(1 + ν)σij − νσkkδij

]
+

Ω

3
Cδij. (33)

Subsequently, the non-zero strains are given by

ϵyy = ϵxx =
σxx

E
+

CΩ

3
,

ϵzz = −2νσxx

E
+

CΩ

3
.

(34)

As σxx ≈ σ =
3

2
σh as per Eq. (5.62), the volumetric deformation simplifies to

e =
3(1− 2ν)σh

E
+ CΩ. (35)
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Substituting Eq. (35) in (31), we obtain

∇2(σh + ΓC) = 0, (36)

where Γ =
2

9
EΩ.

In the absence of concentration effects, Eqs. (36) and (31) simplify to equations that are

well known in the linear elasticity theory: ∇2e = 0, which implies harmonic volumetric

deformation and ∇2σh = 0, which implies harmonic mean hydrostatic stress; these

correspond to biharmonic stresses in the static problem [105].
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F. Helmholtz energy density

The Helmholtz energy density is given by

f = u − T s . (37)

The total differential of Helmholtz energy density is given by

df = du − Tds − s dT,

= σijdϵij + µdC − s dT,

(38)

where Eq. (3.10) is used to simplify.

At constant temperature, T, and concentration, C, Eq. (38) simplifies to

df = σijdϵ
e
ij, (39)

where ϵij = ϵcij + ϵeij = ϵeij at constant C.

Integrating at constant T and C from a state of zero stress (zero elastic strain), we obtain

f (C, σ) = f (C, 0)− ν

2E
(σkk)

2 +
1

4G
σijσij, (40)

where G =
E

2(1 + ν)
.
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For an equibiaxial state of stress, σkk = σxx + σyy = σ. Subsequently, Eq. (40) simplifies to

f (C, σ) = f (C, 0) +
σ2

E
,

f (C, σ) = f (C, 0) + ϕ.

(41)
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G. Laplace transformed biaxial modulus

For a Maxwell material, the laplace transformed shear modulus is given by Eq. (7.53):

GV =
Qm(s)

Pm(s)
=

s
s

G
+

1

η

=
Gηs

(G+ ηs)
(42)

The linear isotropic elastic moduli are given by

G =
E

2(1 + ν)
,

K =
E

3(1− ν)
,

(43)

where K is the bulk modulus.

In the elastic equation, G is replaced by GV for a Maxwell material, while K remains

unchanged: KV = K.

Subsequently, using Eq. (42) to replace G in Eq. (43)a, and solving for the transformed

material parameters, EV and νV , using Eqs. (43), we obtain

νV =
3K(G+ ηs)− 2Gηs

6K(G+ ηs) + 2Gηs
,

EV =
9KGηs)

3K(G+ ηs) +Gηs
.

(44)

Thus, the Laplace transformed biaxial modulus for a Maxwell material is given by

EV =
EV

(1− νV )
=

18KGηs

3K(G+ ηs) + 4Gηs
. (45)
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H. Transient diffusion analysis

H.1. Discontinuous-weighting function

The eigenfunctions of the series in Eq. (7.42), fα(z) and fβ(z), are given by Eq. (7.46). These

functions are not orthogonal; however, they can be made orthogonal using orthogonality

factors20 [169], which are determined by applying the condition for orthogonality:

C2

∫ zI

0

fβ
n (z)f

β
m(z)dz + C1

∫ zo

zI

fα
n (z)f

α
m(z)dz = 0, (46)

where C1 and C2 are the orthogonality factors corresponding to fα(z) and fβ(z) respectively.

Setting C1 = 1, we obtain

C2 = −
∫ zo
zI

fα
n (z)f

α
m(z)dz∫ zI

0
fβ
n (z)f

β
m(z)dz

. (47)

This procedure generates the orthogonality factor, which is also known as the discontinuous-

weighting function for a composite system.

For our system, C2 =
Cα

eq

Cβ
eq

; the details of the derivation are provided below.

20Consequently, fα(z) and fβ(z) are known as quasi-orthogonal functions [169].
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First, using Eq. (7.28)b in Eq. (7.46), the nonorthogonal eigenfunctions are expressed in

terms of λβ:

fα
n (z) = λn sin(λnzI) cos(λnD̂(z − zI)),

fβ
n (z) =

λn

D̂
sin(λnD̂(zI − zo)) cos(λnz),

(48)

where D̂2 ≡ D′β

D′α , and the eigenvalue, λn = λβ. The integrals in Eq. (47) simplify to

∫ zo

zI

fα
n (z)f

α
m(z)dz = −λmλn sin(λmzI) sin(λnzI)

2D̂(λ2
n − λ2

m)

[
(λn + λm) sin(D̂(λn − λm)(zI − zo))

+ (λn − λm) sin(D̂(λn + λm)(zI − zo))
]
,∫ zI

0

fβ
n (z)f

β
m(z)dz =

λmλn sin(λmD̂(zI − (zI)) sin(λnD̂(zI − (zI))

2D̂2(λ2
n − λ2

m)

[
(λn + λm) sin((λn − λm)zI)

+ (λn − λm) sin((λn + λm)zI)
]
.

(49)

Subsequently, substituting the integrals of Eq. (49) in Eq. (47) provides the orthogonality

factor:

C2 = D̂

( λn

tan(λmD̂(zI − zo))
− λm

tan(λnD̂(zI − zo))

)
( λn

tan(λmzI)
− λm

tan(λnzI)

) . (50)

To simplify Eq. (50), we revisit the transcendental Eq. (7.41), which is given by

1

tan(λnD̂(zI − zo))
=

Ĉ

D̂ tan(λnzI)
− λnzo

γpD̂
, (51)

where γp =
V0zo
D′β .

Equation (51) is used to simplify Eq. (50), which leads to: C2 = Ĉ =
Cα

eq

Cβ
eq

.
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Consequently, the orthogonal eigenfunctions, denoted gα(z) and gβ(z), are given by

gα(z) = C1f
α(z) = fα(z),

gβ(z) = C2f
β(z) = Ĉfβ(z).

(52)

H.2. Series coefficient Fn

The series coefficient, Fn, appears in the two subproblems of the composite planar system,

as seen in Eq. (7.42). To determine Fn, the initial conditions, given by Eq. (7.43), are

applied [177,183].

Applying the initial conditions to each subproblem in Eq. (7.42) leads to

∞∑
n=1

Fnf
α
n (z) = −wα(z),

∞∑
n=1

Fnf
β
n (z) = −wβ(z).

(53)

Next, we multiply Eq. (53)a by gαm(z) and integrate it within the α-phase; repeating the same

step for the series corresponding to the β-phase, and adding the two subproblems together,

we obtain

∞∑
n=1

Fn

[ ∫ zo

zI

fα
n (z)g

α
m(z)dz +

∫ zI

0

fβ
n (z)g

β
m(z)dz

]
=

−
[ ∫ zo

zI

wα(z)gαm(z)dz +

∫ zI

0

wβ(z)gβm(z)dz
]
.

(54)

Using Eq. (52) in Eq. (54), we obtain

∞∑
n=1

Fn

[ ∫ zo

zI

fα
n (z)f

α
m(z)dz + Ĉ

∫ zI

0

fβ
n (z)f

β
m(z)dz

]
=

−
[ ∫ zo

zI

wα(z)fα
m(z)dz + Ĉ

∫ zI

0

wβ(z)fβ
m(z)dz

]
.

(55)
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The sum of the two integrals on the LHS of Eq. (55) is 0 as per Eq. (46), unless m = n.

Subsequently, the sum in Eq. (55) reduces to one term, m = n, and we obtain an expression

for the series coefficient, Fn:

Fn = −
∫ zo
zI

wα(z)fα
n (z)dz + Ĉ

∫ zI
0

wβ(z)fβ
n (z)dz∫ zo

zI
wα(z)(fα

n (z))
2dz + Ĉ

∫ zI
0

wβ(z)(fβ
n (z))2dz

. (56)
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