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Abstract

The limitations of current static spectrum management policy drive the idea of a more dynamic
access policy to improve the efficiency of radio spectrum usage and accommodate the increasing
demand for wireless communication applications. Known as the opportunistic spectrum access
(OSA), the new paradigm allows cognitive secondary users (SUs) to access the licensed spectrum,
provided that the interference to the licensed primary users (PUs) is limited. In a cognitive
radio network, since SUs are intended to track and take advantage of instantaneous spectrum
opportunities, adaptive learning-based spectrum access schemes are desired to optimize spectrum
utilization and ensure a peaceful coexistence of licensed and unlicensed systems. This thesis deals
with the modeling, development and analysis of OSA schemes in a cognitive radio network from
both SU and PU perspectives. The research objective is to maximize the overall throughput of
SUs, while sufficiently protecting the ongoing operation of PUs.

From the SU perspective, to avoid the high-risk data loss due to the random return of PUs, we
present a dynamic hopping transmission strategy for SUs to access the temporarily idle frequency
slots of a licensed frequency band, with adaptive activity factors. Upon applying the dual decom-
position, the optimal activity factor allocation algorithm is developed. To facilitate spectrum
sharing in a decentralized manner, we propose an adaptive carrier sense multiple access (CSMA)
scheme. Based on the proposed CSMA scheme, learning-based distributed access algorithms for
SUs are devised, including non-game-theoretic and game-theoretic approaches. The proposed
algorithms can be independently performed by each SU to learn its optimal activity factors from
the locally available information. To evaluate the effects of inevitable collisions among SUs in the
proposed adaptive CSMA scheme, the collision probability and saturation throughput are studied
by both analysis and simulation. Simulation results show significant performance improvements
in terms of the achievable throughput compared to the conventional CSMA scheme.

From the PU perspective, by applying the proposed access scheme to SUs, we study the inter-
ference caused by SUs to the PU due to miss-detection, and also its effects on the capacity-outage
performance of the PU in a cognitive radio network. Based on the developed statistical models
for the interference distribution, closed-form expressions for the capacity-outage probability of
the PU are derived to examine the effects of various system parameters on the performance of the
PU in the presence of interference from SUs. The model is extended to investigate the effects of
cooperative sensing on the aggregate interference and the capacity-outage performance, consid-
ering OR (logical OR operation) and maximum likelihood cooperative detection techniques.
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Sommaire

Les limites de la politique d’utilisation statique du spectre ont conduit à l’idée d’une politique
d’accès plus dynamique pour améliorer l’efficacité du spectre radio utilisé et accommoder l’aug-
mentation de la demande des applications de communication sans fils. Connu sous le nom d’accès
opportuniste au spectre (AOS), ce nouveau model permet à un utilisateur secondaire (US) cog-
nitif d’accéder à un spectre licencié, tout en limitant l’interférence de l’utilisateur primaire (UP)
licencié. Dans un réseau radio cognitif, puisque les USs sont sensés traquer et profiter des in-
stants d’opportunité spectrale, des schémas d’accès spectral basés sur l’apprentissage adaptatif
sont désirés pour optimiser l’utilisation spectrale et assurer une parfaite coexistence entre les
systèmes licenciés et non licenciés. Cette thèse se consacre à la modélisation, au développement
et à l’analyse des schémas d’AOS dans les réseaux radio cognitif du point de vue des UP et US.
L’objectif de cette recherche est de maximiser le flux total des USs, tout en protégeant suffisam-
ment le fonctionnement de l’UP.

Du point de vue de l’US, afin d’éviter un risque élevé de perte de données causée par le retour
aléatoire de l’UP, nous présentons une stratégie de transmission basée sur le saut dynamique pour
les USs afin d’accéder aux blocs de fréquences temporairement libres dans une bande licenciée,
avec un facteur d’activité adaptatif. Lors de l’application de la double décomposition, un algo-
rithme d’allocation optimale des facteurs d’activité est développé. Afin de faciliter le partage
du spectre de manière décentralisée, nous proposons un schéma adaptif basé sure la technique
CSMA (accès multiple avec détection de porteuses). En se basant sur le schéma proposé, des
algorithmes d’accès distribués pour les USs basés sur l’apprentissage sont conçus, incluant des
approches basées sur la théorie des jeux et d’autre non. Les algorithmes proposés peuvent être
utilisés indépendamment par chaque US pour apprendre son facteur d’activité optimal à partir
de l’information localement disponible. Pour évaluer les effets de collisions inévitables entre
les USs dans le schéma CSMA proposé, la probabilité de collision et le flux de saturation sont
étudiés analytiquement et à travers simulations. Les résultats des simulations démontrent une
amélioration considérable de performance, particulièrement de point de vue de débit réalisé par
rapport à celui réalisé selon le CSMA conventionnel.

Du point de vue de l’UP, nous employons le schéma d’accès proposé pour les USs, et étudions
l’interférence causée par les USs aux UPs à la suite d’une erreur de détection, ainsi que ses effets
sur la capacité de coupure de l’UP dans un réseau radio cognitif. En se basant sur les modèles
statistiques de la distribution de l’interférence, des expressions exactes de la probabilité de la
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capacité de coupure pour l’UP sont dérivées afin d’examiner les effets des différents paramètres
du système sur la performance de l’UP en présence des USs interférant. Le modèle est étendu
pour investiguer les effets de la détection coopérative sur l’interférence totale et la capacité de
coupure, en considérant l’operateur logique OR et une détection coopérative de maximum de
vraisemblance.
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Chapter 1

Introduction

1.1 Cognitive Radio and Opportunistic Spectrum Access

Over the last two decades, there has been a growing interest in wireless communication devices
and applications, and hence, an ever-increasing demand for radio spectrum. Since radio spectrum
is an open and shared broadcast medium, all radios operating over the same frequency band and
within the same geographical location interfere with each other. Conventionally, to avoid co-
channel interference, static spectrum allocation strategy is deployed in which different frequency
bands are licensed to different types of wireless users who will have an exclusive right to use that
portion of the spectrum. As the number of wireless users has been exponentially increasing, the
spectrum allocation chart has become severely crowded and the availability of frequency bands
for emerging wireless applications has become limited.

However, recent studies [1–4] have indicated that the conventional static spectrum allocation
strategy leads to significant spectrum underutilization. It has been revealed that while almost all
frequency bands have been assigned to licensed users, at any given time and any given location,
many frequency slots are unoccupied in a licensed frequency band. In other words, despite the
activity of licensed users, measurements show that there still exists plenty of instantaneous spec-
trum availabilities (also referred to as “spectrum opportunities”, “spectrum holes” and “white
spaces”) in the licensed spectrum. Figure 1.1 illustrates an example of the spectrum holes in both
frequency and time domains in a licensed frequency band.

The limitations of static resource allocation on one hand and the success of wireless technolo-
gies in unlicensed bands on the other hand demonstrate the need for a more flexible spectrum
allocation strategy that could enable further growth for wireless communications. This moti-
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Fig. 1.1 Example of spectrum holes in time and frequency domains in a licensed
frequency band.

vates the idea of opportunistic spectrum access (OSA) to exploit such spectrum availabilities,
aiming to improve spectrum utilization [5–9]. OSA allows the unlicensed users (also referred to
as secondary users) to identify and utilize instantaneous spectrum opportunities, while limiting
the level of interference to the high-priority licensed users (also referred to as primary users).
Therefore, the two fundamental elements of OSA are opportunity identification and opportu-
nity exploitation. In the opportunity identification (also known as spectrum sensing), secondary
users (SUs) need to identify and track dynamically changing idle frequency slots (or channels)
in an intelligent way. Based on the observations obtained from the opportunity identification,
the opportunity exploitation is responsible to determine the optimal transmission strategy for the
secondary access in an idle channel [7].

The key enabling technology for OSA is cognitive radio. More specifically, a cognitive ra-
dio is an intelligent and reconfigurable wireless communication system that enables monitoring
the radio environment, learning, and accordingly, adapting transmission parameters in order to
achieve the optimal spectrum utilization [10–12]. Cognitive radios, together with opportunistic
spectrum access, attempt to overcome the dilemma between the increasing spectrum requirements
and the scarce spectral resources.
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1.2 Emerging Cognitive Radio Standards

In the past few years, there have been worldwide efforts on developing new spectrum policies to
accelerate opportunistic usage of spectrum. In particular, the Federal Communications Commis-
sion (FCC) in the USA allowed unlicensed operations in the unused TV broadcast bands [13],
and later released the rules and the technical conditions for such transmission in rural and urban
areas using fixed and portable devices [14, 15]. The white space in the TV band (TVWS) is
viewed as one of the first opportunities to adopt and realize the OSA model. This is because of its
relatively high robustness to interference (due to the high power transmission) and convenience
in opportunity identification (due to the fixed location of TV broadcast sites). Furthermore, the
analogue to digital TV switchover results in a reduction of the required spectrum and generates a
considerable amount of vacant spectrum in the TV bands [3, 4].

In order to take advantage of these spectrum availabilities, new wireless standards are be-
ing developed. Some developing standards for using TVWS are namely IEEE 802.22 for wire-
less regional area networks (WRAN) [16, 17], and IEEE 802.11af for wireless local area net-
works (WLAN) [18, 19]. These developing standards are actually extensions of two existing
standards, namely IEEE 802.16 Wireless Interoperability for Microwave Access (WiMAX) and
IEEE 802.11 WLAN (Wi-Fi). They provide incremental improvements on the existing standards
towards comprising and realizing full cognitive features [20].

IEEE 802.22 WRAN is designed to provide broadband access in rural areas for fixed cognitive
radio devices that operate in unused channels in the very-high-frequency/ultra-high-frequency
(VHF/UHF) TV bands between 54 and 862 MHz. It is an infrastructured cellular network which
includes the base station (BS) and the end-user devices called customer premises equipment
(CPE). In the IEEE 802.22 standard, each BS is responsible for the resource allocation among
the CPEs within its cell. This standard adopts a centralized medium access control (MAC) and
the orthogonal frequency-division multiple access (OFDMA) for its physical layer (PHY). To
protect PUs (i.e., analogue TV, digital TV and licensed low-power devices such as wireless mi-
crophones), spectrum sensing techniques and a geolocation database are considered to be used in
order to enable a PU-SU coexistence. Although IEEE 802.22 is the first international cognitive
radio standard, considering the deployment cost of WRAN infrastructure, it still remains unclear
whether the WRAN could create a profitable service in rural areas [16, 17, 19, 21].

Furthermore, as another potential application for OSA, IEEE 802.11af (also known as “White-
Fi” or “Wi-Fi 2.0”) is being developed to enhance the capacity and quality-of-service (QoS) of
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current Wi-Fi systems with the use of the TVWS. IEEE 802.11af is a wireless network comprising
a cognitive access point (AP) and associated cognitive end users. Due to the better propagation
characteristics of the VHF/UHF bands compared to the industrial, scientific and medical (ISM)
band, it is expected that IEEE 802.11af offers higher speed and wider coverage than the current
Wi-Fi, and also supports better QoS guarantees [19]. According to [20], modern WLANs could
already be considered as cognitive radios because of their coexistence capabilities and dynam-
ically changing frequencies and transmission power. The basic coexistence capability of IEEE
802.11 is its listen-before-talk MAC based on the carrier sense multiple access with collision
avoidance (CSMA/CA). The simplicity and success of the listen-before-talk contention-based
MAC has the potential to be applied for the early cognitive systems [20].

1.3 Technical Challenges of Opportunistic Spectrum Access

Opportunistic spectrum access causes a revolutionary change in the radio spectrum regulations
and also plays an important role in enhancing the spectrum usage efficiency. That is because it
enables time-varying and flexible usage of radio spectrum, while taking into account technical
and regulatory considerations. The spectrum opportunities are time-varying depending on the
activities of primary users (PUs) in the licensed channels (e.g., TVWS are dynamic due to digital
TV multicasting and activity of low-power devices such as wireless microphones). This fact
makes a cognitive radio network a highly dynamic and challenging wireless environment. To
get the most out of such dynamic spectrum opportunities while protecting the spectrum licensees
from interference, it is critical to design an OSA scheme that is capable of filling the spectral
gaps of PUs in an intelligent way. Thus, the need for intelligent coexistence capabilities and
autonomous coordination in OSA raises a new set of technical challenges which are not present
in the existing radio systems.

First, modeling the dynamic behavior of the PUs and the interactive behavior of SUs in re-
sponse to PUs’ dynamics is a major design issue in a cognitive radio network. To provide suf-
ficient benefit to SUs, an accurate model is needed to simultaneously capture the dynamics of
spectrum opportunities and describe the decision process of SUs. Furthermore, since cognitive
radio can be viewed as an enabler for distributed radio resource management, it is important
that such a model can support distributed operations of SUs, in which each SU autonomously
coordinates its usage and independently achieves the optimal transmission strategy.

Second, to design an OSA scheme for SUs, there is a tradeoff between two conflicting objec-
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Fig. 1.2 Interference situations between a SU and a PU.

tives, i.e., maximizing the opportunistic spectrum utilization for SUs and minimizing the possible
collisions between SUs and PUs. To identify the time-varying spectrum holes for transmission,
SUs need to periodically monitor the channels to determine whether or not PUs are active. Al-
though SUs are intended to only exploit the spectrum holes for communications, two types of
collision between SUs and PUs could happen. First, a SU may miss-detect the PU’s activity and
start transmitting while the PU is present. Such a miss-detection is due to inevitable errors in
spectrum sensing which are caused by noise and fading. Second, even if an idle channel is per-
fectly detected and used by a SU, a collision may still occur since the PU may return and reoccupy
that idle channel at any time during the SU transmission. Figure 1.2 illustrates these interference
situations between a SU and a PU in a given frequency slot. In the presence of miss-detection
errors and non-zero PU return probabilities, to reduce the effects of collisions between PUs and
SUs, an adaptive transmission strategy needs to be adopted for SUs. As such, SUs need to opti-
mally configure their transmission parameters in order to simultaneously minimize collisions and
make the best use of the available opportunities.

Third, to guarantee the compatibility with legacy systems, it is important to define and impose
an appropriate interference constraint to sufficiently protect PUs’ communications. This is be-
cause different definitions of the interference constraint may result in different levels of protection
for PUs. Generally, an interference constraint must reflect two parameters: first, the maximum
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tolerable interference level at an active primary receiver and second, the maximum tolerable
probability that the interference level exceeds its maximum level [7]. However, to precisely de-
fine an interference constraint, there are other aspects that need to be addressed. For example,
in a cognitive radio network with multiple SUs, the locations of SUs with respect to the primary
receiver and the channel propagation characteristics must be considered to set a constraint on the
aggregate interference caused by SUs to a PU.

1.4 Thesis Contributions and Organization

Opportunistic spectrum access is a promising approach to overcome the spectrum scarcity and
increase the spectral efficiency by taking advantage of unused spectrum that belongs to the in-
cumbent radio systems. Nevertheless, the development of OSA schemes has to deal with many
technical and practical issues, so that its full potential can be realized. Addressing the aforemen-
tioned technical challenges in a cognitive radio network, the objective of this Ph.D. research is to
develop optimal OSA schemes by properly modeling PUs’ dynamics and SUs’ interactions in a
cognitive radio network. In particular, we aim to propose adaptive access schemes for SUs that
could effectively handle the tradeoff between the SUs’ demand for spectrum access and the PUs’
requirement for protection.

Furthermore, our goal is to present solutions that help to achieve a fair and efficient spec-
trum sharing among the SUs. Given the restrictions on the exchange of overhead information in
either infrastructureless or infrastructure-based networks, we aim at developing learning-based
distributed algorithms in which system parameters are adapted to their optimal values over time
based on the locally available information. In addition, this research attempts to devise a network-
level interference constraint imposed on the aggregate transmission activities of all SUs.

The remainder of this thesis is organized as follows. Chapter 2 reviews relevant studies on
the OSA design and the aggregate interference analysis in cognitive radio networks that will be
used for the development of OSA schemes in the subsequent chapters.

Chapter 3 studies and develops OSA schemes for SUs, taking into account the time-varying
and dynamic behavior of PUs. Aiming to reduce the effects of collision between PUs and SUs
due to the PU random return, a transmission strategy is proposed for SUs to dynamically hop
over multiple idle frequency slots, each with an adaptive activity factor to be determined. Taking
into account the spectrum sharing among SUs, the dynamic PU activity and channel character-
istics, the SU activity factor optimization problem for maximizing the overall SU throughput is
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formulated. More specifically, two sets of constraints are considered to support a fair access and
enable orthogonal spectrum sharing in the time domain among individual SUs. Furthermore, the
throughput of each user is defined as the successful transmission rate. Subsequently, the optimal
OSA algorithm is developed based on the dual decomposition method. By introducing an adap-
tive carrier sense multiple access (CSMA) scheme, a learning-based distributed access algorithm
for SUs is proposed. Using the stochastic gradient descent optimization framework, an analysis
is provided on the convergence properties of the proposed algorithm.

Chapter 4 is concerned with the game-theoretic design of the activity factor optimization
problem, while using the proposed adaptive CSMA scheme for spectrum sharing among SUs.
Via the game theory framework, it is shown that the formulated game is an exact potential game.
The conditions assuring the feasibility and optimality of the Nash equilibrium (NE) in this non-
cooperative design are examined. To achieve the globally optimum solution, learning algorithms
including best-response dynamics and log-linear dynamics are developed. In addition, to reflect
the inherent competition among SUs in the adaptive CSMA scheme and to enable contention con-
trol, a different design objective is introduced for the activity factor optimization problem. Since
the new problem is non-convex, obtaining its globally optimal solution is highly intractable.
Thus, the OSA design is cast into a game-theoretic framework that enables a distributed imple-
mentation and fast convergence. In the formulated game, each SU selfishly determines its optimal
activity factors, without any coordination with other SUs. In this competitive design, it is shown
that the NE may be highly inefficient compared to the globally optimal solution of the fully co-
ordinated design. To improve the efficiency of such an NE, the SUs are forced to act in a more
cooperative manner by applying a dynamic pricing mechanism. Finally, to reach the steady state,
an iterative algorithm based on best-response dynamics is proposed.

Chapter 5 evaluates the performance of the proposed adaptive CSMA scheme by developing
an analytical model to compute the system throughput in a single channel. The system throughput
is defined and derived as the fraction of opportunities used to successfully transmit data, taking
into account the inevitable collisions among SUs. It is shown that the adaptive CSMA scheme
is able to intelligently control the contention among the users, while effectively reducing the
collision probability. Thus, it achieves a higher throughput compared to the conventional CSMA.
This is because the adaptive CSMA allocates a higher chance of transmission to those users
with more favorable conditions through granting higher activity factors. Moreover, the effects
of network configuration parameters (e.g., the number of users in the network, the minimum
contention window, and the packet length) on the throughput performance are investigated.



1 Introduction 8

Chapter 6 studies the OSA design from the PU perspective and proposes a network-level inter-
ference constraint to ensure non-intrusive communications of SUs. Given that errors in spectrum
opportunity detection are inevitable, a study is presented to examine the aggregate interference
induced by SUs to a PU due to miss-detection errors. Specifically, a statistical model of the aggre-
gate interference is provided considering both the random SU locations and the signal attenuation
model in a fading environment. Based on the developed statistical model for the interference dis-
tribution, the closed-form expressions for capacity-outage probability of the PU are derived to be
used as a measure of maintaining PU’s QoS in the design of OSA strategy. The effects of the
beacon transmitter placement and cooperative sensing on the aggregate interference distribution
and capacity-outage performance are also investigated.

Finally, Chapter 7 concludes this thesis with an overall summary of the key results and a brief
discussion of possible future research.
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Chapter 2

Literature Review

This chapter presents some current state-of-the-art OSA designs for cognitive radio networks,
from both SU and PU perspectives. The first part discusses and categorizes the design approaches
for opportunistic access of SUs, considering the transmission model of PUs and the network
structure of SUs. Then, the second part presents studies on the aggregate interference analysis
for PUs.

2.1 Opportunistic Spectrum Access Design

Consider a frequency band licensed to PUs, which is divided into Np non-overlapping frequency
slots (or channels), each with bandwidth Bi, i = 1, . . . , Np. Also, assume a secondary network
with Ns SUs looking for temporal spectrum opportunities in these Np channels. Each SU is as-
sumed to follow a slotted transmission scheme. Each time-slot with an equal duration T consists
of two periods: sensing of duration τ and transmission of duration (T − τ ). Figure 2.1 depicts an
example of the general time-slot structure employed by SUs.

In the OSA design, the main objective is to maximize the spectrum utilization of SUs by
properly designing their spectrum access strategies, while limiting the conflicts between SUs and
PUs. In the following, we categorize the design approaches under two different criteria, including
the transmission model of PUs and the network structure for SUs.
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τ τ τ τ  

Fig. 2.1 Example of a general 2-phase time-slot structure for SUs.

2.1.1 Time Slotted versus Un-Slotted Transmission Structure for Primary Users

In the OSA design literature, two different transmission structures, i.e., time slotted and un-
slotted transmission, are considered for PUs. To develop OSA schemes for SUs, several studies
assume that both PUs and SUs have the same transmission time-slot structure [22–26]. In this
case, the collision between SUs and PUs occurs only due to the miss-detection errors. With such
assumption of synchronous slotted transmission structure, time coordination is required between
PU and SU networks. Nevertheless, since time coordination between PU and SU networks cannot
be feasible in many scenarios, the transmission of PUs is assumed to be un-slotted in [27–30].
Accordingly, the traffic pattern of PUs is modeled as a continuous-time ON/OFF random process
with the ON (1) and OFF (0) states respectively representing the busy and idle periods of the
PU. In this case, even if an idle channel is perfectly detected and used by a SU, a collision can
still happen since the PU may return and reoccupy that idle channel at any time during the SU
transmission.

Assuming a synchronous slotted transmission structure between PU and SU networks, in [22],
an optimal design of OSA is developed. To address hardware limitations and energy costs, it is
considered that the SU cannot sense all channels at a certain time. In particular, it is assumed that
each SU can sense and access only Q1 channels in each time-slot, where Q1 < Np. Prior to start
spectrum sensing at the beginning of each time-slot, a SU needs to select a subsetAs (|As| ≤ Q1)
of channels to sense. Then, given the sensing observations for channels in As, the SU picks a
subset Aa (Aa ⊂ As) of the sensed channels to access [22].

In [22], it is assumed that the PU activities in different channels follow a discrete-time Markov
process with M = 2Np states, while each state represents ON/OFF status on all Np channels.
Since the SU is able to sense only parts of the available channels, the overall state of the network
is partially observable. Thus, the joint design of sensing and access strategies of a SU is modeled
as a partially observable Markov decision process (POMDP) [31]. In the formulated POMDP,
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the actions of a SU are sensing and access strategies (i.e., {As,Aa}) and the observations of a
SU are the results of its sensing. According to the decision and observation history, a SU updates
a belief vector which reflects its knowledge about the system state. More specifically, the belief
vector of a SU is represented by Ω(t) = [ω1(t), . . . , ωM(t)] where ωi(t) is the probability that the
network is in the state i at the beginning of time-slot t.

In [22], when a SU senses some channels (As) and transmits in a subset of them (Aa), it then
receives a reward which is defined as the number of transmitted bits, i.e.,

r(t) =
∑
i∈Aa

Si(t)B
i (2.1)

where Si(t) ∈ {0, 1} is the state of channel i in time-slot t. Subsequently, with a constraint on
the maximum collision probability between a SU and a PU, an optimization problem is designed
to maximize the expected total number of transmitted bits in Nts time-slots, i.e.,

max E
[ Nts∑

t=1

r(t)|Ω(1)
]

subject to Pcol ≤ ζ (2.2)

where Pcol is the probability of collision between the SU and the PU, ζ is the the maximum
tolerable probability of collision by the PU, and Ω(1) is the initial belief vector.

The optimal solution of this POMDP model can be obtained using a linear programming al-
gorithm. However, as the number of channels (i.e., Np) increases, the computational complexity
grows exponentially, due to the state space growth. Thus, by reducing number of states, a subop-
timal strategy is also devised with reduced complexity [22]. In addition to the sensing and access
strategies, the design of the spectrum sensor operating characteristics is studied in [23], under the
assumption of erroneous spectrum sensing.

In [22, 23], it is assumed that the channel occupancy follows a Markovian model for which
the state transition probabilities are known to the SUs. However, such information may not be
available for the SUs. Assuming that the statistics of the channel availabilities are not available a
priori, the studies in [24–26] investigate learning-based OSA approaches for SUs that have partial
sensing ability. In [24, 25], the design of optimal sensing and access strategies is formulated
as a multi-armed bandit process [32], where there is a tradeoff between using well-explored
channels and searching unexplored channels. The study in [26] extends the earlier work in [24]
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Fig. 2.2 Example of transmission strategies for a single SU proposed in [27, 28].

by considering sensing errors.
Assuming no time coordination between SUs and PUs, in [27], a transmission strategy for

a single SU is proposed to prevent a possible collision between the SU and the PU due to the
random return of the PU. In the proposed access scheme for the SU, the transmission duration
within each time-slot (i.e., T −τ ) is divided into S sub-slots. The SU can transmit data in the first
nt consecutive sub-slots. Then, it does not transmit in the remaining S−nt sub-slots (see Figure
2.2(a)). This transmission strategy helps to reduce the collision probability between the SU and
the PU. This is because the PU return probability during the SU transmission is an increasing
function of time, given that channel is detected idle in the sensing duration. Subsequently, nt is
optimized based on the PU traffic models, while bounding the collision probability between the
SU and the PU below a target level.

In [28], the OSA design is studied for a single SU that shares spectrum with a data-centric PU
network (e.g., GSM networks and 802.11-based WLANs). To take advantage of the short-lived
opportunities created between the packet bursts in such PU network, a different transmission
strategy is proposed for the SU. In the proposed access scheme, the SU can transmit in each sep-
arate sub-slot during a transmission duration (see Figure 2.2(b)). Compared to [27], the proposed
access strategy in [28] allows more flexibility for the SU to optimize its spectral efficiency. Using
a POMDP framework, the SU decides to either access or perform extra spectrum sensing in each
sub-slot, by maximizing its probability of successful transmission over S sub-slots.

For a multi-channel scenario, [29] presents an OSA strategy for a single SU. In the pro-
posed method, the SU periodically senses the channels, assuming that the SU can sense only one
channel in each sensing phase. Based on the spectrum sensing history, the SU decides either to
transmit on one of the channels or not to transmit in each transmission phase. By learning from
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the sensing outcomes in different channels, the optimal channel to access is selected by maximiz-
ing the SU throughput, while limiting the collision probability caused by a SU to the PU due to
sensing errors and PU random return.

When studying OSA design under the effect of PU return, past OSA studies mainly focus on
designing optimal channel access schemes, considering a single SU or a simple mechanism for
random sharing among SUs without taking into account the competition or coordination among
SUs. Thus, further research is needed to develop OSA schemes that apply some sharing incen-
tives among SUs to avoid the channel degradation due to the crowding effects. This coordination
can lead to a higher network performance compared to when each SU picks actions independently
and competes randomly to capture the channel.

2.1.2 Centralized versus Distributed Design

In the multi-user OSA design, a key challenge is how to coordinate and share opportunities
among SUs to achieve a network-level objective. There are two common designs, i.e., centralized
and distributed, according to the network architecture. The centralized OSA schemes would be
mostly applicable when there exists a central controller, such as a BS, that is responsible for
managing the spectrum access of all SUs. When such central controller is not available, for
instance in ad-hoc cognitive radio networks, the distributed OSA is required. In the distributed
design, each SU separately makes the decision on its own spectrum access strategy [8, 33].

For the centralized design, a central controller synchronizes and coordinates the spectrum al-
location and sharing among SUs, aiming to maximize the overall network performance. To obtain
the optimal solution, the central controller needs to communicate with SUs in order to know their
transmission requirements. Furthermore, it needs to gather and process the information about
channel availabilities. The centralized OSA design has been investigated in some recent works
(e.g., in [34]). Furthermore, IEEE 802.22 is a centralized standard in which the BS manages the
spectrum allocation and sharing among CPEs within its own cell. In IEEE 802.22 MAC, time
division multiplexing (TDM) and demand-assigned time division multiple access (TDMA) are
respectively used in the down stream and upstream directions [35].

For the distributed design, the spectrum access decisions need to be made independently
by each SU. To autonomously access the spectrum, the SU may need to collect and exchange
information about the spectrum usage pattern of PUs and other SUs. Based on the available in-
formation, the optimal access strategy is obtained by each SU. Corresponding to different design
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objectives, the way SUs manage spectrum allocation could be cooperative or non-cooperative.
In a cooperative design, each SU optimizes its spectrum access strategy, aiming to enhance the
overall performance of the network. However, in a non-cooperative design, each SU maximizes
its own benefit, without being concerned about the overall network performance [8, 33]. In the
distributed OSA design literature, both ways are explored. On one hand, optimization and coop-
erative game-theoretic approaches are devised, enabling SUs to achieve a network-level objective
(e.g., [36]). On the other hand, non-cooperative game-theoretic designs are applied in which each
SU selfishly maximizes its own performance (e.g., [37, 38]).

In distributed OSA schemes, a common way of sharing the spectrum by SUs is to use ran-
dom access schemes. Accordingly, random access-based MAC protocols are developed in multi-
channel and multi-user cognitive radio networks [22, 39–46]. A random access-based MAC pro-
tocol should be able to perform the channel contention and reservation to manage the spectrum
sharing among SUs. In [22], a simple mechanism is considered for the random sharing among
SUs based on the CSMA scheme with an in-band signaling. Nevertheless, the effect of contention
among SUs is not reflected in the optimal design of access strategies for SUs. In the proposed
method, each SU picks actions independently and competes randomly to capture the channel.
In [39, 40], SUs perform contention on an out-of-band control channel prior to the optimization
process. In each time-slot, the winner of the contention continues to find its optimal sensing and
access strategy. Since the wining SU is able to sense only a subset of channels (i.e., As), there
might be spectrum opportunities that are overlooked and wasted in each time-slot [47].

Such random access-based MAC schemes, in comparison with contention-free centralized
protocols, degrade the channel utilization because of collision avoidance overheads and inevitable
collisions among users. Therefore, to improve the efficiency and throughput, efforts have been
exerted on optimizing random access performance. For example regarding IEEE 802.11 MAC
operation, there are two different directions in MAC enhancement studies, including collision
avoidance overhead reduction (e.g., [48–51]) or/and collision probability decrease (e.g., [52–56]).

On one hand, to decrease the collision avoidance overhead, IEEE 802.11e amendment of-
fers frame bursting in which the user that obtains transmission opportunity (after winning in the
backoff competition) can send a burst of back-to-back packets based on its channel quality [48].
Furthermore, MAC frame aggregation is introduced in IEEE 802.11n to decrease the frequency
of PHY and MAC overheads during transmission of multiple packets [49]. In the frame aggrega-
tion, by concatenating or packing multiple packets together, overheads can be added over a group
of packets rather than over separate ones [49].
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On the other hand, to reduce the collision probability, there are works that focus on optimizing
backoff algorithms, and hence, maximizing the overall throughput. For instance, in [52, 53], the
contention window size is optimized depending on the network and load configuration (e.g.,
number of active users and packet length) to control contention among users. In [54], a collision-
minimizing CSMA is proposed in which the probability distribution using which users randomly
select their backoff time is not necessarily uniform; rather, it is carefully chosen to minimize
the collision among the competing users. Furthermore, in [55], an opportunistic CSMA scheme
is proposed in which throughput is improved by exploiting the multi-user diversity gain. The
proposed opportunistic CSMA prioritizes the users with high-SNRs by granting earlier access to
them.

2.2 Aggregate Interference Analysis

Recently, the characteristics of aggregate interference caused by multiple SUs in a cognitive ra-
dio network have been investigated in several works. Past studies mostly study the aggregate
interference analysis for a cognitive radio network, considering the underlay spectrum access
model [57–62]. The underlay paradigm allows SUs to concurrently transmit with PUs in the
licensed spectrum band, while maintaining the aggregate interference induced by SUs to PUs be-
low a certain threshold [12]. In the underlay cognitive radio networks, the aggregate interference
analysis does not take into account the sensing errors.

In this thesis, our focus is on cognitive radio networks with OSA in which SUs identify and
utilize spectrum holes in the licensed spectrum band. In the context of cognitive radio networks
with OSA, interference characteristics have been explored in [63–67]. In [63], the effects of
power control and sensing performance on the aggregate interference are discussed in a cognitive
radio network where SUs are scattered continuously around the primary transmitter. Neverthe-
less, the aggregate interference is modeled as a deterministic value since the random locations and
sensing errors (due to fading) are not taken into account. Addressing random variations in both
SUs’ locations and propagation characteristics, efforts have been made to study the statistical
model of the aggregate interference in a cognitive radio network with OSA (e.g., [64–67]).

In [64], the probabilistic properties of the aggregate interference are investigated by consid-
ering random variations in the number and location of SUs, as well as the signal attenuation
model in a fading environment. In that study, it is assumed that SUs spread out according to an
homogenous Poisson point process of intensity λd around the PU receiver which is placed at the
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center. In a Poisson point process of intensity λd, the number of SUs in a regionR of area A is a
Poisson random variable with parameter λdA. Furthermore, the propagation power loss of SU k

at distance rk from the PU receiver is modeled by |h̃k|2r−α
k , where r−α

k is the distance-dependent
path-loss with the path-loss exponent α ≥ 2, and h̃k is a unit-mean random variable represent-
ing the small-scale fading effects. It is assumed that |h̃k|2, k = 1, . . . , Ns are independent and
identically distributed (i.i.d.) for different SUs, each with probability density function (PDF) of
fH(h̃).

Subsequently, assuming that all SUs transmit at the same constant power level P , the aggre-
gate interference (i.e., I0) is represented as

I0 =
∑
k∈Πt

P |h̃k|2r−α
k (2.3)

where Πt is the set of transmitting SUs due to the erroneous sensing. It is shown that Πt can be
modeled as a different Poisson point process with a different intensity, given by

λt(r, h̃) = λdfH(h̃)Pm(r, h̃) (2.4)

where Pm(r, h̃) represents the miss-detection probability of each SU, which is a function of its
location and fading. By developing the statistical characteristics of I0, the distribution of the
aggregate interference is approximated by a shifted log-normal distribution with the same mean
and variance as I0 [64].

Assuming a network model with a different distribution for SUs, [65] studies the aggregate
interference caused by SUs to a PU. It is assumed that Ns SUs are uniformly located with a
density of λd SUs per unit area in a ring centered at the PU receiver. Accordingly, the aggregate
interference (i.e., I0) is represented as

I0 =
Ns∑
k=1

Pm,kP |h̃k|2r−α
k (2.5)

where Pm,k represents the miss-detection probability of SU k. The upper bounds for mean and
variance of aggregate interference in Rayleigh fading channels are derived. Furthermore, the
aggregate interference is approximately modeled with a Gaussian random variable (based on the
central limit theorem) for a large number of SUs. However, it has been shown that the aggregate
interference is in fact a positively-skewed and right-tailed random variable.
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Moreover, a statistical model for the aggregate interference caused by SUs is developed
in [66], although only the path loss is considered for the propagation channels. In [67], the
characteristic function and the cumulants of the aggregate interference are numerically derived
considering fading channels. Subsequently, the aggregate interference distribution is approxi-
mately characterized with truncated-stable distributions.

2.3 Concluding Remarks

In this chapter, we have provided a survey on the available techniques in the OSA design for SUs
and statistical models in the aggregate interference analysis for PUs in cognitive radio networks.
For the OSA design, it has been discussed that the assumption about the the transmission structure
of PUs plays an important role. Only a limited number of works, such as [27–30], have considered
the OSA design under the assumption of no time coordination between SUs and PUs. However,
these proposed schemes mainly focus on the design for a single SU. Furthermore, in a ad-hoc
cognitive radio network, there is a need for a fully distributed OSA design with the cooperative
behavior for SUs. These observations motivate us to study the distributed OSA design in a multi-
user cognitive radio network, considering the effect of random returns of PUs.

For the aggregate interference analysis, previous research has mainly examined modeling the
aggregate interference without measuring the effect of this interference to the PU performance.
This motivates us to study the aggregate interference and the PU performance in the presence of
interference, aiming to examine the effects of system parameters, such as the sensing capability
and the density of SUs.
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Chapter 3

Opportunistic Spectrum Access with
Hopping Transmission Strategy in
Cognitive Radio Networks

3.1 Introduction

As previously discussed in Chapter 1, the development and implementation of OSA schemes
in the cognitive radio environment involve challenges that are not present in the existing radio
systems. More specifically, in a cognitive radio network, each SU needs to identify spectrum
opportunities, coordinate their sharing with other competing SUs, and release them when they
are acquired by PUs. Since PUs have higher priority to access the spectrum, two conflicting
objectives arise in designing an optimal OSA scheme for SUs. In particular, the opportunistic
spectrum utilization of SUs needs to be maximized, while possible collisions between SUs to
PUs must be kept limited [22, 29]. Considering such conflicts between SUs and PUs, in this
chapter1, we aim to develop an efficient OSA strategy for the SUs.

Recently, the design of OSA schemes has received considerable attention [6–9,20,33]. There
are several OSA strategies presented in the literature that allow SUs to choose a frequency slot (or
channel) to sense and, if available, access for an entire transmission duration. These strategies
assume that both PUs and SUs have the same transmission time-slot structure [22–26]. Such

1Parts of Chapter 3 have been presented at the 2011 IEEE Global Communications Conference (GLOBECOM)
in Houston, TX, USA [68] and the 2012 IEEE Wireless Communications and Networking Conference (WCNC) in
Paris, France [69], and published in the IEEE Transactions on Wireless Communications [70].
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assumption of synchronous slotted transmission structure between PU and SU networks is not a
sensible assumption since it needs good coordination in time between the PU and SU networks.
Without assuming synchronization between PUs and SUs, PU activity in a channel with respect
to SUs is dynamic and can be represented as a continuous-time ON/OFF random process (e.g.,
[71]). As a result, even if an idle channel is perfectly detected and used by a SU, a collision can
still occur since the PU may return and reoccupy that idle channel at any time during the SU
transmission.

To deal with the aforementioned issue, in this chapter, we propose an adaptive hopping trans-
mission strategy for SUs. In particular, this transmission strategy aims to reduce the effects of
collision between PUs and SUs due to PU return in consideration of the PU dynamics assuming
no time coordination between SUs and PUs. In the proposed scheme, instead of sensing and
selecting one idle channel for the entire transmission as in previous studies, the SU accesses mul-
tiple idle channels, each with a different sojourn time (called activity factor). In this case, possible
PU return in a channel may destroy only a small fraction of the SU transmission that can be re-
covered by erasure-correction coding to improve the SU transmission performance. Taking into
account spectrum sharing among SUs, the dynamic PU activity, and also channel characteristics,
the SU activity factor optimization problem is formulated to maximize the overall SU through-
put. Subsequently, optimal OSA algorithms are developed for SUs, based on the Lagrange dual
decomposition method.

In addition, the proposed dual decomposition method–that provides a global solution to the
optimization problem with affordable complexity–gives rise to the realization of distributed im-
plementation. In other words, the optimal OSA algorithm can be potentially performed in a
distributed manner by each SU, provided that the knowledge of other SUs’ activity factors are
available. Such information can be obtained either with the aid of a central coordinator or by
exchange of overhead information among SUs which may cause complexity and result in an
un-scalable system. Consequently, we present an OSA algorithm in which each SU adjusts its
activity factors independently by learning from the locally available information. In the proposed
OSA algorithm, each SU learns to respond optimally to its environment and adapts its activity
factors to the optimal values over time. This fully distributed learning-based OSA algorithm dis-
tinguishes this work in coordinating spectrum access among SUs from the previously proposed
channel assignment schemes for SUs with support of a central controller (e.g., [34]) or exploiting
a common control channel (e.g., [39]).

The implementation of the proposed learning-based OSA depends on the estimation of the
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sum of activity factors of all SUs in each channel. Since estimation with limited samples suffers
from random errors, the proposed learning-based OSA algorithm can be cast in the framework of
stochastic gradient descent optimization. We analytically investigate its convergence and conver-
gence rate to characterize its asymptotic behavior and efficiency. The main difficulty in analyzing
its convergence properties lies in the fact that the estimation errors are biased.

The remainder of this chapter is organized as follows. Section 3.2 presents an overview of the
system model and problem formulation. In Section 3.3, the proposed OSA scheme using adaptive
hopping-based transmission strategy is developed and the corresponding optimization problem is
formulated to derive the optimum activity factors for SUs. Next, in Section 3.4, we develop a
fully distributed learning-based OSA algorithm, which can be formulated as a stochastic gradient
descent method. Subsequently, in Section 3.5, its convergence behavior and convergence rate are
analyzed in consideration of biased noisy feedbacks. Illustrative results are provided in Section
3.6. Finally, Section 3.7 presents the concluding remarks.

3.2 System Model and Problem Formulation

We consider a frequency band licensed to PUs, which is divided into Np non-overlapping fre-
quency slots (or channels), each with bandwidth Bi. The frequency channels are chosen such
that multipath fading can be considered constant (i.e., flat fading) over each channel (e.g., or-
thogonal frequency-division multiplexing (OFDM) narrowband subcarriers). Furthermore, we
consider an ad-hoc secondary network with Ns SUs looking for temporal spectrum opportunities
in these Np channels. SUs are assumed to follow a slotted transmission scheme. Each time-slot
of equal duration T consists of two periods: sensing of duration τ and transmission of duration
(T −τ ). In this work, we assume sufficiently accurate sensing with negligible PU miss-detection.
Perfect sensing could be a sensible assumption in certain scenarios, e.g., applications in which
SUs are located inside the service area of the PU transmitter (e.g., [71]).

Let Na := {1, . . . , Na} denote the set of Na channels that are detected idle at the beginning
of each time-slot, and hence, can be utilized by Ns SUs. In this work, we assume that SUs are
able to perform full spectrum sensing of Np channels to find the idle channels in each time-slot.
Furthermore, let Ci

k reflect channel quality (i.e., bits per second) for the SU k in the channel i and
gik,k denote the power gain of the SU link k in the channel i. Consider a block flat fading situation
in which gik,k remains unchanged during a given time-slot but independently varies from one time-
slot to another. Thus, the transmission capacity of SU k in channel i is Bilog(1 + P i

kg
i
k,k/n

i
k)
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where P i
k and ni

k represent the signal power and the noise power for the SU k in the channel i,
respectively. In this work, without loss of generality, we consider the transmission capacity of
SU k in channel i as a measure for C i

k.
In general, the PU can use a time frame different from that of SUs. From the SU viewpoint,

the PU activity in a given channel can be modeled as a two-state continuous-time random process
with the ON (1) and OFF (0) states representing the busy and idle periods of the PU, respectively.

Given that channel i is detected idle in the sensing slot, the conditional probability that it be-
comes busy t seconds later is denoted by πi

01(t) which is an increasing function of time. Note that,
by properly designing transmission slot duration (i.e., T − τ ), the increase of instantaneous PU
return probability over a transmission slot can be kept negligible. Subsequently, the probability–
that the PU reoccupies channel i in a transmission slot given that channel i is detected idle in the
sensing slot at the beginning of that time-slot–is defined as the average of instantaneous proba-
bility of PU return over the whole transmission time, i.e., αi =

1
T−τ

∫ T−τ

t=0
πi
01(t)dt. As a result,

αi is a time-independent function, however, it is still a function of spectrum usage statistics of
the primary users. On one hand, the PU return causes collision for the PU. In order to protect
the PU transmission quality, αi can be kept smaller than a required level by designing proper
transmission duration (i.e., T − τ ). For instance, in [72, 73], it is demonstrated that by selecting
a suitable spectrum sensing time and a transmission time, the SU can maximize its achievable
throughput under the constraint that PUs are adequately protected.

On the other hand, the PU return may destroy the entire on-going SU transmission in the
channel i. To avoid such a serious data loss due to the PU return, we propose an adaptive trans-
mission strategy for SUs in which a SU dynamically hops over multiple idle channels, each with
an unequal sojourn time (called activity factor) to be determined, so that possible PU return in
a channel may destroy only a small fraction of the SU transmission that can be recovered by
erasure-correction coding. Let βi

k (0 ≤ βi
k ≤ 1) denote the activity factor of SU k in channel

i ∈ Na during a transmission slot. The activity-factor matrix of all βi
k of all Ns SUs in Na idle

channels can be presented as βββ =


β1
1 . . . βNa

1
... . . . ...

β1
Ns

. . . βNa
Ns

.

Note that βi
k is restricted to a binary value in previous studies [22–26,74,75], such that βi

k = 0

expresses that the SU k does not transmit in the channel i and βi
k = 1 represents that the SU k

transmits in the channel i for the entire transmission slot. Therefore, the proposed transmission
scheme with 0 ≤ βi

k ≤ 1 generalizes the existing schemes. Figure 3.1 illustrates an example of a
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τ
 

Fig. 3.1 An example of a SU activity in three idle channels with different activity
factors during a transmission slot.

SU activity according to the proposed hopping transmission strategy during a single transmission
slot. In this example, assuming that the SU needs one channel for its transmission and Na = 3,
the activity factors of the SU in the different channels can be calculated as βi

k =
ti

T−τ
, i = 1, 2, 3.

To coordinate spectrum access among SUs, we assume that SUs share an idle channel orthog-
onally in time domain, and hence, there is no mutual interference between SUs. Since one SU can
exclusively use an idle channel at a certain point of time during each transmission slot, it is needed
to assure that the total activity factors of different SUs in each idle channel remains smaller than
1. This constraint guarantees possible orthogonal sharing in time for each idle channel. Thus,∑Ns

k=1 β
i
k ≤ 1, i = 1, . . . , Na.

Consider that the SU k needs a fixed number of channels, Rk, for its transmission during a
single transmission slot. It follows that the sum of all activity factors of each SU k over all idle
channels must equal its required number of channels, i.e.,

∑Na

i=1 β
i
k = Rk.

The normalized transmission rate of SU k in channel i is βi
kC

i
k since it transmits partially with

activity factor βi
k. Taking into account the possible loss in SU transmission due to PU return in

each idle channel i with probability of αi, the throughput of SU k in the idle channel i is defined
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as its successful transmission rate

f i
k = βi

kC
i
k

(
1− βi

kαi

)
(3.1)

where βi
kαi expresses the probability that the SU k experiences transmission loss due to the PU

return. In other words, the PU return probabilities, αi, enable modeling the effect of dynamic PU
activities on SU performance.

The goal of this work is to develop a resource allocation scheme that determines the optimal
activity factors for Ns SUs in Na idle channels in a single transmission slot to maximize the
overall throughput of all SUs (i.e., f =

∑Ns

k=1

∑Na

i=1 f
i
k) under constraints of ensuring possible

orthogonal time sharing in each idle channel (i.e.,
∑Ns

k=1 β
i
k ≤ 1) and fixed channel requirements

for SUs (i.e.,
∑Na

i=1 β
i
k = Rk).

3.3 Optimal Hopping-Based Opportunistic Spectrum Access

In this section, we study optimization problems which offer optimum activity factors considering
the adaptive hopping-based transmission strategy for SUs. First, the activity factor optimization
problem is developed for a single SU to find the best solution for each SU without considera-
tion of the spectrum sharing with the other SUs. Then, the activity factor optimization problem
formulation and algorithm development are discussed for multiple SUs.

3.3.1 Single-User Opportunistic Spectrum Access

We first consider the activity factor optimization problem for a single SU. The index of SU k is
set to 1 without loss of generality in this section. In this case, the optimization problem can be
formulated as

max
βββ1

Na∑
i=1

βi
1C

i
1

(
1− βi

1αi

)
(3.2a)

subject to
Na∑
i=1

βi
1 = R1 (3.2b)

0 ≤ βi
1 ≤ 1, i = 1, . . . , Na. (3.2c)
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Note that the objective function in (3.2a) expresses the overall SU throughput over all idle chan-
nels and R1 in (3.2b) represents the channel requirement of the SU. Based on (3.1), the overall
throughput of the SU k over all idle channels can be simply presented by

∑Na

i=1 f
i
k due to indepen-

dent activity of the SU k over different idle channels. Note that there are no specific assumptions
on the joint distribution of the PU activities to formulate the overall throughput in (3.2a).

Since the objective function in (3.2a) is concave (i.e., the negative of objective function is
convex) and the equality constraint in (3.2b) is a linear function of βββ1 =

[
β1
1 , . . . , β

Na
1

]
, this

problem is a convex optimization with a coupling constraint in (3.2b). A dual decomposition is
an appropriate approach to solve the convex problem with zero duality gap when the problem has
coupling constraints. By relaxing the coupling constraints, the optimization problem decouples
into several sub-problems [76]. To relax the coupling constraint in (3.2b), it makes sense to write
the Lagrangian function of (3.2) as

L (λ,βββ1) =
Na∑
i=1

βi
1C

i
1

(
1− βi

1αi

)
− λ

(
Na∑
i=1

βi
1 −R1

)
(3.3)

where λ denotes the Lagrange multiplier corresponding to (3.2b). The optimization problem
can be separated into two levels of optimization. At the lower level, there are Na sub-problems
for each idle channel with Lagrangian L (λ, βi

1) = βi
1C

i
1 (1− βi

1αi) − λβi
1 assuming λ is fixed.

Subsequently, it can be solved by writing the the Karush-Kuhn-Tucker (KKT) conditions

∂L (λ, βi
1)

∂βi
1

= C i
1 − 2C i

1β
i
1αi − λ = 0. (3.4)

Then, considering 0 ≤ βi
1 ≤ 1, we obtain βi

1(λ) =
[
Ci

1−λ

2Ci
1αi

]1
0

where [x]ba = min (b,max (a, x)). At
the higher level, there is the master dual problem responsible for updating the dual variable (i.e.,
λ) by solving the dual problem. Then, λ can be found iteratively with the help of the following
gradient method

λn+1 = λn + ε

(
Na∑
i=1

βi
1 (λ

n)−R1

)
(3.5)

where n is the iteration index, ε is a sufficiently small positive step-size. Since the proposed
transmission strategy generalizes the existing approaches, the non-binary optimal activity factors
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prove the benefit of the proposed approach over the existing schemes in offering throughput
improvement. This can be explained by the fact that using more idle channels, each of them for
a fraction of transmission slot, helps the SU to decrease transmission loss due to the collision
caused by the PU return.

Assuming that there is a λ such that 0 ≤ Ci
1−λ

2Ci
1αi
≤ 1, ∀i ∈ Na, then, βi

1 =
Ci

1−λ

2Ci
1αi

, and,
according to the equality constraint (3.2b),

Na∑
i=1

Ci
1 − λ

2C i
1αi

= R1 ⇒ λ =

∑Na

i=1
1

2αi
−R1∑Na

i=1
1

2Ci
1αi

. (3.6)

Therefore, the optimum activity factor in the channel i can be represented as

βi
1 =

R1 + Ci
1

∑Na

i=1
1

2Ci
1αi
−
∑Na

i=1
1

2αi

2Ci
1αi

∑Na

i=1
1

2Ci
1αi

. (3.7)

3.3.2 Multi-User Opportunistic Spectrum Access

Considering multiple SUs in a secondary network, the problem of spectrum sharing affects the
design of OSA. To coordinate the spectrum access among SUs, we assume that SUs share an idle
channel orthogonally in time domain, and hence, there is no mutual interference between SUs.
The goal is to maximize the overall throughput of SUs (i.e.,

∑Ns

k=1

∑Na

i=1 f
i
k) under constraints of

ensuring possible orthogonal time sharing in each idle channel and fixed channel requirements
for SUs. More specifically, the optimization problem can be formulated as

max
βββ

Ns∑
k=1

Na∑
i=1

βi
kC

i
k

(
1− βi

kαi

)
(3.8a)

subject to
Ns∑
k=1

βi
k ≤ 1, i = 1, . . . , Na (3.8b)

Na∑
i=1

βi
k = Rk, k = 1, . . . , Ns (3.8c)

0 ≤ βi
k ≤ 1, i = 1, . . . , Na, k = 1, . . . , Ns. (3.8d)

It is worth mentioning that the feasibility criterion for the above optimization problem is
∑Ns

k=1Rk

≤ Na. In other words, when the demand of all SUs combined (i.e.,
∑Ns

k=1Rk) is larger than the
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number of accessible idle channels (i.e., Na), it is not possible to select a matrix of activity factors
(i.e., βββ) which satisfies all constraints.

This problem is a convex optimization with coupling constraints in (3.8b) and (3.8c). In
order to decouple this problem, first, a dual decomposition with respect to (3.8b) and then, for
the sub-problem, another dual decomposition with respect to (3.8c) are applied. This offers a
two-level optimization decomposition including a master dual problem, a secondary master dual
problem, and the sub-problems [76]. By taking a relaxation of the coupling constraints in (3.8b),
the Lagrangian function of the optimization problem in (3.8) becomes

max
βββ

Ns∑
k=1

Na∑
i=1

βi
kC

i
k

(
1− βi

kαi

)
−

Na∑
i=1

µi

(
Ns∑
k=1

βi
k − 1

)
(3.9)

where µi ≥ 0 is the Lagrange multiplier associated with (3.8b). Therefore, at the lower level, for
fixed µi, there are Ns sub-problems with the following objective function for each SU

max
βββk

Na∑
i=1

βi
kC

i
k

(
1− βi

kαi

)
−

Na∑
i=1

µiβ
i
k (3.10a)

subject to
Na∑
i=1

βi
k = Rk (3.10b)

0 ≤ βi
k ≤ 1, i = 1, . . . , Na (3.10c)

where βββk =
[
β1
k , . . . , β

Na
k

]
. The Lagrangian function of (3.10) for fixed µµµ = [µ1, . . . , µNa ] is

L (λk,µµµ,βββk) =
Na∑
i=1

βi
kC

i
k

(
1− βi

kαi

)
−

Na∑
i=1

µiβ
i
k − λk

(
Na∑
i=1

βi
k −Rk

)
(3.11)

where λk is the Lagrange multiplier associated with (3.10b). This optimization problem can also
be separated into two levels of optimization. At the lower level, there are Na sub-problems for
each idle channel with Lagrangian L (λk, µi, βk) = βi

kC
i
k (1− βi

kαi)−µiβ
i
k−λkβ

i
k assuming λk
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is fixed. Subsequently, it can be solved by writing the KKT conditions

∂L (λk, µi, βk)

∂βi
k

= Ci
k − 2Ci

kβ
i
kαi − µi − λk = 0. (3.12)

Then, considering 0 ≤ βi
k ≤ 1,

βi
k (λk, µi) =

[
C i

k − µi − λk

2C i
kαi

]1
0

(3.13)

where [x]ba = min (b,max (a, x)). At the higher level, there exists the secondary master dual
problem responsible for updating the dual variable λk by solving the secondary dual problem.
Then, λk can be found iteratively with the help of the following gradient method

λn+1
k = λn

k + νn

(
Na∑
i=1

βi
k (λ

n
k , µ

n
i )−Rk

)
(3.14)

where n is the iteration index and νn > 0 is a sequence of scalar step-sizes. λk (called SU k

price) is updated until satisfying the channel requirement for the SU k. Then, at the highest level,
µi (called channel i price) is updated with a slower rate until satisfying

∑Ns

k=1 β
i
k ≤ 1. The µi can

be found iteratively with the help of gradient approach. The following gradient method can be
used

µn+1
i =

[
µn
i + γn

(
Ns∑
k=1

βi
k (λ

n
k , µ

n
i )− 1

)]+
(3.15)

where γn > 0 is a sequence of scalar step-sizes. Also, [.]+ denotes the projection onto the
non-negative space. The dual variables will converge to the dual optimals as long as νn and
γn are chosen to be sufficiently small. Some popular choices include constant value δ > 0 or
diminishing functions of time as an−c for some constants a > 0 and 0 < c ≤ 1. Since the
duality gap is zero due to the convex optimization, the primal variable βi

k will also converge to
the optimal value as well.

Based on the above derivations, we present the optimal OSA scheme in Algorithm 1, with an
inner loop to update the SU prices (i.e., λk) and an outer loop to update the channel prices (i.e.,
µi). Algorithm 1 needs to be performed at the beginning of every time-slot of duration T to find
the optimal activity factors of SUs. However, considering slowly varying statistics of PU activity
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Algorithm 1 Optimal OSA

1 Set n = 0, µ0
i equal to some non-negative value for all i and λ0

k equal to some value for all k.

2 βi
k is computed for all k and i according to (3.13).

3 Fast price updating: each SU price λk is updated with the gradient iteration (3.14).

4 Set n← n+ 1 and go to step 2 (until satisfying termination criterion).

5 Slow price updating: each channel price µi is updated according to the gradient iteration (3.15).

6 Go to step 2 (until satisfying termination criterion).

and slow fading, the frequency that optimization problem needs to be solved will decrease. In
Algorithm 1, it is noted that a central coordinator is responsible to manage the sequence of access
of different users in different channels based on their optimal activity factors.

Apparently, Algorithm 1 (i.e., the optimal OSA) can be potentially performed in a distributed
manner by each SU. However, from (3.15), it is obvious that each SU needs to know the sum of
activity factors of all Ns SUs in the idle channel i, βi =

∑Ns

k=1 β
i
k(t), to update the channel price

µi. Such information can be obtained with the aid of a central coordinator or heavy exchange of
overhead information which causes complexity and results in an un-scalable system. It is thus
crucial that SUs learn this information to update channel prices independently which will be used
to adjust their activity factors. It is noted that perfect knowledge of channel gains are required to
update βi

k based on (3.13). However, in the potential distributed implementation, each SU needs
only the channel state information of its own link (i.e., the channel state information of other SU
links are not required).

3.4 Learning-Based Distributed Opportunistic Spectrum Access

In this section, to enable distributed implementation of the optimal OSA scheme, an adaptive
carrier sensing multiple access (CSMA) scheme is devised as a decentralized mechanism to ac-
cess an idle channel for SUs based on their activity factors. Then, we discuss how to use the
capturing status feedbacks of the proposed adaptive CSMA scheme to estimate the sum of activ-
ity factors of all SUs in each idle channel, which will be employed to update the channel prices
(i.e., µi). Subsequently, we model channel price updating as a stochastic gradient descent method
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considering erroneous estimations of βi.
It is proposed that SUs share idle channels by means of an adaptive CSMA based on their

activity factors without a central coordinator. In the adaptive CSMA scheme, each transmission
slot is divided into S equal sub-slots with length T−τ

S
, labeled t1, . . . , tS . In each sub-slot tj in

channel i, the SU k performs the following steps:

1- Generate a Bernoulli random variable xi
k (tj) with the success probability βi

k to be determined.
If xi

k (tj) = 0, the SU k will not transmit in the subslot tj . If xi
k (tj) = 1, the SU k will proceed

to the next step.

2- Generate a backoff time W i
k (tj) according to a uniform distribution in the interval (0,W ).

3- After expiry of the backoff time, sense the channel i, if it is idle, transmit.

In this proposed adaptive CSMA scheme, one SU with the smallest backoff time among the
SUs who compete for the same sub-slot (i.e., xi

k (tj) = 1) will succeed and transmit in this sub-
slot. Let yik (tj) be a binary random variable representing the capturing status: yik (tj) = 1 if the
SU k captures the channel i in sub-slot tj; otherwise, yik (tj) = 0.

Assuming that each SU k keeps track of its capturing status feedbacks, yik (tj), the achieved

activity factor of SU k in the channel i (i.e., the average time proportion of a transmission slot that
an SU successfully occupies the channel i, given the competition among SUs) can be obtained as

β̄i
k =

E
[∑S

j=1 x
i
k(tj)y

i
k(tj)

]
S

. (3.16)

Then,

β̄i
k = Prob

[
yik(tj) = 1, xi

k(tj) = 1
]

= βi
kProb

[
yik(tj) = 1|xi

k(tj) = 1
]

(3.17)

where βi
k = Prob[xi

k = 1] represents the intended activity factor of SU k in channel i. The
probability of getting the smallest backoff time to capture the channel is inversely proportional to
the number of SUs actively competing to capture the same channel, i.e.,

Prob
[
yik(tj) = 1|xi

k(tj) = 1
]
= E

[
1

1 +
∑Ns

k̄=1,k̄ ̸=k x
i
k̄
(tj)

]
. (3.18)
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Applying the Jensen’s inequality, Prob [yik(tj) = 1|xi
k(tj) = 1] ≥ 1

1+
∑Ns

k̄=1,k̄ ̸=k
βi
k̄

. In order to find

a closed-form expression, Prob [yik(tj) = 1|xi
k(tj) = 1] is approximated with the lower-bound,

i.e.,

β̄i
k ≃

βi
k

1 +
∑Ns

k̄=1,k̄ ̸=k β
i
k̄

. (3.19)

Note that (3.19) shows that the achieved activity factor of each SU using the proposed CSMA
scheme depends on the intended activity factor of other SUs. However, by keeping

∑Ns

k=1 β
i
k ≤ 1,

it can be guaranteed that the achieved activity factor is always larger than the half of intended

activity factor (i.e., β̄i
k ≥

βi
k

2
). Thus, to reduce computational complexity, here, we consider the

similar utility function as in (3.8), along with
∑Ns

k=1 β
i
k ≤ 1 to manage competition among SUs.

Note that this helps to alleviate achieved activity factor (i.e., β̄i
k) degradation due to the crowding

effects.
Apparently, in Algorithm 1, each SU k needs the sum of the activity factors of all Ns SUs

in channel i,
∑Ns

k=1 β
i
k , to update the channel price µi in (3.15). From (3.19), the SU k can

estimate
∑Ns

k̄=1,k̄ ̸=k β
i
k̄
≃
(

βi
k

β̄i
k
− 1
)

where its achieved activity factor β̄i
k can be updated after a

window of S ′ sub-slots, based on the available observations of yik(tl), l = f, . . . , f + S ′ where
0 ≤ f ≤ S − S ′, as β̄i

k =
∑f+S′

l=f yik(tl)/S
′. Hence, βi =

∑Ns

k=1 β
i
k can be updated after each S ′

sub-slots as

β̂i ≃ βi
k +

S ′.βi
k∑f+S′

l=f yik(tl)
− 1. (3.20)

Note that if βi
k = 0, the SU k can estimate

∑Ns

k̄=1,k̄ ̸=k β
i
k̄

by keeping track of its capturing status

feedbacks, yik(tj), while assuming a virtual activity factor β̃i
k = 1, i.e.,

∑Ns

k̄=1,k̄ ̸=k β
i
k̄
≃
(

β̃i
k
¯̃
βi
k

− 1

)
.

In other words, the SU k performs the proposed CSMA scheme with β̃i
k = 1 and sets yik(tj) = 1

if it achieves the smallest back-off time. However, since the actual activity factor is zero, the SU
k does not transmit in order to avoid affecting other SUs’ estimation process.

Since the estimator β̂i is a non-linear function of β̄i
k =

∑f+S′
l=f yik(tl)

S′ , it can be proved that the
bias and the variance of β̂i are of O((S ′)−1) [77]. In other words, considering β̂i = βi + w =
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Algorithm 2 Learning-based OSA

1 Set n = 0, µ0
i equal to some non-negative value for all i and λ0

k equal to some value.

2 Each SU k computes βi
k for all i according to (3.13).

3 Fast price updating: each SU k updates λk price with the gradient iteration (3.14).

4 Set n← n+ 1 and go to step 2 (until satisfying termination criterion).

5 According to the selected βi
k in different channels, each SU k starts transmission for S ′ sub-

slots based on the proposed CSMA procedure.

6 Slow price updating after each S ′ sub-slots: Each SU k updates
∑Ns

k=1 β
i
k according to (3.20)

and µi according to the gradient iteration (3.22).

7 Go to step 2 (until satisfying the termination criterion).

∑Ns

k=1 β
i
k + w where w denotes the random error, we have

E [w] ≤ Ke (S
′)
−1

and var [w] ≤ Kv (S
′)
−1

. (3.21)

From (3.15), in the optimal OSA scheme, the channel price µi is updated using a gradient method
with ∇g (µi) = 1 −

∑Ns

k=1 β
i
k = 1 − βi. However, in the learning-based OSA, only noisy

measurements of ∇g (µi) are available for SUs. Based on (3.15), using the estimation of βi =∑Ns

k=1 β
i
k, channel price µi can be updated independently by each SU as

µn+1
i =

[
µn
i + γn(β̂

i − 1)
]+

= [µn
i + γn (−∇g (µn

i ) + wn)]
+ . (3.22)

Comparing to (3.15), the channel price updating in (3.22) involves stochastic errors (i.e., wn),
and hence, the popular stochastic gradient descent method [78, 79] is exploited to study the con-
vergence of the proposed learning-based OSA algorithm.

Based on the above derivations, we present the fully-distributed OSA scheme in Algorithm 2,
which can be separately performed by each SU to determine its optimal activity factors. Each SU
needs to perform Algorithm 2 at the beginning of every time-slot of duration T to update its own
activity factors iteratively until convergence to the optimal values. It is noted that the average time
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scale of SU activity (i.e., being on and off) is a sub-slot in which a successful transmission could
happen. Thus, on one hand, a sub-slot has to be large enough to accommodate a transmission with
all overheads and collision avoidance signaling. On the other hand, it should be short enough that
S sub-slots (i.e., the whole transmission duration) can be smaller than the coherence time since a
block flat fading situation is considered.

3.5 Convergence Analysis

In this section, our goal is to prove that if each SU autonomously deploys (3.22) to update the
channel prices, then the network performance converges to the optimal value. Thus, we inves-
tigate the convergence and convergence rate, which characterize the asymptotic behavior and
efficiency of the proposed OSA algorithm while it is formulated as a stochastic gradient descent
method. To study the convergence, we adopt the following assumptions on the step size γn and
learning window size S ′.

Assumption 1 γn is assumed as a deterministic positive step size satisfying γn > 0, γn → 0,∑∞
n=0 γn →∞,

∑∞
n=0 γ

2
n <∞.

Note that Assumption 1 is widely used in the stochastic gradient search literature [79–81].
This is because, these conditions ensure a balance to have the step size decay neither too slow nor
too fast. In particular, the step size should approach zero sufficiently slow (γn → 0,

∑∞
n=0 γn →∞)

to avoid false convergence while approaching zero at a sufficiently fast rate (γn → 0,
∑∞

n=0 γ
2
n <∞)

to diminish the noise effects as the iteration gets close to the optimal solution. A common gener-
alization of step size sequence is γn = an−c for a > 0 and 0.5 < c ≤ 1 [79].

Assumption 2 The size of learning window (i.e., S ′) is assumed as an increasing function of time

S ′ = Kbn
b, Kb ≥ 1 , b > 0 such that b + c > 1. The condition b + c > 1 forces sufficiently fast

decay of estimation bias.

Remark 1 Based on (3.21), Assumption 2 guarantees that the bias and variance of gradient

estimator are diminishing functions of time. Specifically, E [wn] ≤ Ken
−b and var [wn] ≤ Kvn

−b.

Remark 2 ∇g (µi) has Lipschitz continuity, i.e., there exists a positive real constant D0 such

that |∇g (µi)−∇g (µ′
i)| ≤ D0 |µi − µ′

i| for all positive µi and µ′
i. This can be explained by the

fact that ∇g (µi) is a continuous and linear function of µi based on (3.13), and also bounded

(i.e., 1−Ns ≤ ∇g (µi) = 1−
∑Ns

k=1 β
i
k ≤ 1).
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In the following proposition, we establish the convergence of µn+1
i = µn

i +γn (−∇g (µn
i ) + wn)

which guarantees the convergence of (3.22), and hence, the activity factors of all SUs. This result
is an extension of Theorem 1 in [82, page 51] in consideration of biased errors.

Proposition 1 (Convergence with probability of 1) Under Assumption 1 and Assumption 2, the

sequence {µn
i } converges to the optimal value with probability of 1.

Proof : See Appendix A.1 for the proof.

Remark 3 If S ′ is fixed, limn→∞
[
(g (µn

i )− g (µ∗
i )) − E [wn] (µ

n
i − µ∗

i )
]
= 0. It implies that

g(µn
i )−g(µ∗

i )
µn
i −µ∗

i
→ E [wn]. Since {|µn

i − µ∗
i |

2} is convergent, if S ′ is chosen sufficiently large (i.e.,

sufficiently small E [wn]), g (µn
i )− g (µ∗

i ) becomes sufficiently small. This explains that iterations

(i.e., µn
i ) converge in a neighborhood of the optimal value as moving in the direction of the

optimal point.

Remark 4 For some positive real constants D1 and D2, and for all µn
i ,

D1 |µn
i − µ∗

i | ≤ |∇g(µn
i )−∇g(µ∗

i )| ≤ D2 |µn
i − µ∗

i | . (3.23)

This is because∇g(µn
i ) = 1−

∑Ns

k=1 β
i
k is a continuous and linear function of µn

i based on (3.13),

and also bounded.

Next, we present our second main result on the convergence rate of the learning-based algo-
rithm. It reveals that the convergence rate is attached by how rapidly the learning window size
increases and how fast the step size diminishes. The proof of the following proposition is built
on the result for the convergence rate considering unbiased random errors in [83].

Proposition 2 (Convergence rate) Let Assumption 1 and Assumption 2 hold. Then, for 0.5 <

c < 1, there exists an N0 such that for all n > N0, the following is true:

E
[∣∣µn+1

i − µ∗
i

∣∣2] ≤aD3K
2
e q

−1

1−D5q−1
n−2b +

D4q
−1

1−D5q−1
n−b−c

+O
(
n−2b−1 + n−b−c−1

)
(3.24)

which implies E
[∣∣µn+1

i − µ∗
i

∣∣2] = O (n−min(2b,b+c)
)
. And for c = 1,

E
[∣∣µn+1

i − µ∗
i

∣∣2] ≤ D8n
−D1a +D6n

−2b +D7n
−b−1 (3.25)
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which implies E
[∣∣µn+1

i − µ∗
i

∣∣2] = O (n−min(D1a,2b,b+1)
)
. Note that D3, D4, D5, D6, D7, D8 and

q are positive real constants.

Proof : See Appendix A.2 for the proof.

Remark 5 Based on Proposition 2, by adjusting the values of b and c, we can control the con-

vergence rate properly when 0.5 < c < 1. If c = 1, the magnitude of step size (i.e., a) is another

parameter which needs to be designed accurately to achieve the desired convergence rate.

3.6 Numerical Results

In this section, we present three numerical examples including one on the performance of the
optimal OSA with hopping strategy, the second on the convergence of the learning-based OSA
algorithm, and the third on the robustness of the optimal OSA under perturbations of PU return
probability. In these examples, we assume independent channels with the same bandwidth Bi = 1

and same αi. We set the same SNR =
P i
k

ni
k

and same channel requirement (i.e., Rk = 1) for
individual SUs.

3.6.1 Performance of the Optimal Opportunistic Spectrum Access

First, we present numerical results to evaluate the performance of the optimal hopping-based
OSA. To better understand the proposed approach with 0 ≤ βi

k ≤ 1, we compare it with existing
OSA approaches (e.g., [22–26,74,75]) in which βi

k is restricted to a binary value. In this example,
SU power gains gik,k are randomly generated according to the Rayleigh distribution assuming
E[gik,k] = 1.

Figure 3.2 illustrates the overall throughput of all SUs versus number of idle licensed channels
(i.e., Na) for Ns = 1 and Ns = 2 assuming fixed αi = 0.3 and SNR = 10dB. It is shown that the
proposed hopping-based OSA strategy offers a significant system improvement in comparison
with the existing OSA approaches. Furthermore, this improvement is an increasing function of
Ns. It also demonstrates that the throughput of the SU increases with Na because distributing the
channel requirement into more channels reduces the SU transmission loss due to the PU return
and takes advantage of the channel diversity.

On the other hand, with a fixed Na of 10, Figure 3.3 shows that the proposed hopping-based
OSA strategy offers an overall throughput that is a decreasing function of αi with a remarkably
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Fig. 3.2 Performance comparison of the proposed OSA and conventional OSA ver-
sus the number of idle channels Na for fixed αi = 0.3 and SNR = 10dB.

lower slope in comparison with the existing OSA approaches. It confirms the advantage of the
proposed strategy over the existing OSA schems, especially at high αi. In addition, Figure 3.4
illustrates the overall throughput of all SUs versus SNR of SUs assuming fixed αi = 0.3 and
Na = 10. It is shown that throughput improvement increases as the SNR of an individual SU
increases.

3.6.2 Convergence of the Learning-Based Opportunistic Spectrum Access Algorithm

Here, we investigate the performance of the learning-based OSA algorithm by presenting nu-
merical results which confirm convergence of SUs’ activity factors to the optimal values. In this
example, we assume Ns = 3, Na = 3, αi = 0.1 and SNR = 10dB. Figure 3.5 and Figure
3.6 illustrate the convergence process of the activity factors of three different SUs in one of the
idle licensed channels for two different sets of power gains (i.e., gik,k). As can be observed, the
learning-based scheme takes merely around 100 iterations to quickly converge to optimum solu-
tions. Moreover, it depicts that although activity factors of SUs do not converge by using a fixed
learning window, they stay in a close vicinity of the optimal values which is explained by Remark
3.
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Fig. 3.3 Performance comparison of the proposed OSA and conventional OSA ver-
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Fig. 3.6 Convergence of the proposed distributed learning-based OSA.
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Fig. 3.7 Effect of the PU return probability change on the SU throughput.

3.6.3 Robustness to the Perturbations of Primary User Return Probability

Finally, we evaluate the robustness of the optimal OSA while the PU return probability deviates
from its assumed norms. In this example, we assume Ns = 2, SNR = 10dB and αi = 0.3 and
also we allow ±5% and ±10% deviations of αi. Figure 3.7 shows the overall SU throughput
versus number of idle channels (i.e., Na). It is shown that the overall SU throughput only varies
slightly as the PU return probability αi slightly increases or decreases.

3.7 Concluding Remarks

In this chapter, we have presented an adaptive hopping transmission strategy for OSA, in which
the SU transmits over multiple idle channels, each with an adaptive activity factor to alleviate
the effects of collision caused by the PU return. Based on the dual decomposition method, we
have provided an algorithm which can be implemented in a distributed manner to determine the
optimal activity factors. The optimal values for activity factors reveal the benefits of the proposed
approach relative to the existing schemes in which a SU selects one channel to transmit for the en-
tire transmission. Illustrative results confirm performance gains offered by the proposed adaptive
hopping access strategy in comparison with the existing schemes. In addition, we have presented
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a learning-based algorithm which enables each SU to adapt its activity factors autonomously by
learning the other SUs’ behavior. Via stochastic gradient search analysis, we have established that
the updated activity factors by SUs converge with probability of 1 to the optimal points. Also,
the study on the convergence rate demonstrates that the increasing rate of the learning window
size and the decreasing rate of the step size affect how fast the proposed OSA algorithm tracks
the optimal values. Illustrative results confirm the validity of the analytical convergence study.



40

Chapter 4

Distributed Opportunistic Spectrum Access
via Adaptive Carrier Sensing
in Cognitive Radio Networks:
Game-Theoretic Approaches

4.1 Introduction

In Chapter 3, we have presented an adaptive CSMA scheme to autonomously coordinate spectrum
sharing among SUs in the proposed OSA design. In the proposed CSMA-based OSA scheme,
adaptive access probabilities (called activity factors) are adopted and optimized for SUs by taking
into account channel qualities, PU return probabilities and spectrum sharing incentives. Using
the proposed adaptive CSMA scheme, in this chapter1, we study the SU activity factor allocation
problem in a game-theoretic framework. There are three key reasons for using a game-theoretic
approach. First, since game theory explicitly recognizes interactions among autonomous SUs, it
enables the development of distributed algorithms. Second, game-theoretic algorithms empower
us to accelerate the convergence compared to the distributed OSA algorithm proposed in Chap-
ter 3. Third, game theory offers a useful tool to predict, analyze and characterize the long-run
behavior of the system, specifically in comparison with the globally optimal solution.

1Parts of Chapter 4 have been presented at the 2012 IEEE Vehicular Technology Conference (VTC-Fall) in
Quebec City, QC, Canada [84] and the 2012 IEEE Global Communications Conference (GLOBECOM) in Anaheim,
CA, USA [85], and submitted for possible publication in the IEEE Transactions on Vehicular Technology [86].
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In the proposed game-theoretic algorithm, activity factor selections are made independently
and dynamically by each SU which aims to satisfy its own demand despite the imposed shar-
ing incentives. More specifically, we formulate the activity factor optimization problem as an
exact potential game and analyze the existence, feasibility, and optimality of the Nash equi-
librium (NE). To address incomplete information about the game structure, we study learning
approaches, which can respond optimally to the history information and achieve NE points, in
terms of information requirements and convergence properties. In light of having perfect in-
formation, we establish the convergence of the best-response iterations to a pure NE that is not
essentially Pareto-optimal. Aiming to enable equilibrium selection, we introduce the log-linear
learning process that assures convergence to the most efficient NE. By introducing noise into the
decision making process, the log-linear iterations diverge from the suboptimal NE, while moving
in the direction toward the Pareto-optimal NE which is robust to noisy perturbations [87, 88].

Inspired by how the log-linear learning works, we propose a fully-distributed algorithm based
on best-response dynamics in which each SU adjusts its activity factors independently by learn-
ing from the locally available information. Taking advantage of the noisy observations, we show
that the best-response iterations will finally stay in a neighborhood of the Pareto-optimal NE
with probability of 1. This can be explained by the fact that the Pareto-optimal NE of the for-
mulated game is the single stochastically stable NE. It is noteworthy that, in comparison with
the learning-based algorithm offered in Chapter 3, the proposed game-theoretic algorithm in this
chapter appears to have much faster convergence.

Furthermore, in order to address competition among SUs in the adaptive CSMA-based access
scheme, we introduce an alternative design objective based on the achieved activity factors of
SUs instead of intended activity factors. Then, the problem of finding optimal activity factors
of SUs is cast in a game-theoretic framework to highlight the issues of competition and cooper-
ation among SUs. Subsequently, the existence and characteristics including the uniqueness and
efficiency of the NE are investigated. To improve the efficiency of the unique NE in the compet-
itive design, the game is transformed into a more cooperative framework by exploiting a pricing
mechanism. Finally, an algorithm based on the best-response dynamics is developed in which
each SU independently updates its activity factors until convergence to the unique NE.

The remainder of this chapter is organized as follows. Section 4.2 presents an overview of the
system model under consideration. In Section 4.3, the OSA design is formulated as an exact po-
tential game. Then, the existence, feasibility and efficiency of the NE for the formulated game are
analyzed. Section 4.4 investigates the convergence properties of learning approaches including
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the best-response dynamics in the presence of perfect information and noisy estimations, and the
log-linear dynamics. In Section 4.5, the competition among SUs is addressed by introducing an
alternative optimization problem in the OSA design. Finally, Section 4.6 presents the concluding
remarks.

4.2 System Model

The system model considered in this chapter is similar to the Chapter 3. In particular, we study a
cognitive radio network with Ns SUs looking for temporal spectrum availabilities in Np frequency
slots (or channels), licensed to PUs. SUs are assumed to follow a time-slotted transmission
aiming to sense the channel before transmission. Each time-slot of equal duration T consists of
two periods: sensing of duration τ and transmission of duration (T − τ). LetNa := {1, . . . , Na}
denote the set of Na channels that are detected idle at the beginning of each time-slot, and hence,
can be utilized by Ns SUs.

Regarding the spectrum sharing, it is assumed that SUs share idle channels using the proposed
adaptive CSMA approach in Chapter 3, Section 3.4. In the proposed CSMA, the SU k enters a
competition to access the idle channel i ∈ Na during a transmission slot with a certain probability
(called activity factors), βi

k(0 ≤ βi
k ≤ 1). The activity factors of SUs need to be determined based

on the channel qualities, PU return probabilities and sharing incentives. Adaptive activity factors
enable prioritizing SUs who gain most from using a channel, and hence, improving channel
utilization in comparison with a simple random access scheme.

In a highly dynamic environment such as cognitive radio networks, it is practically essen-
tial to find a reasonably good solution which can be obtained in a sufficiently fast manner. To
this end, in this work, we study the activity factor optimization problem in (3.8) from a game-
theoretic learning perspective which enables distributed implementation and fast convergence to
a reasonably good solution.

4.3 Game-Theoretic Design of Hopping-Based Opportunistic Spectrum
Access

In this section, we formulate the access design for SUs from a game-theoretic perspective aiming
to present a distributed scheme. More specifically, we consider a strategic non-cooperative game
in which the players are SUs.
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According to the optimization problem in (3.8), each SU could simply maximize its transmis-
sion rate (i.e.,

∑Na

i=1 β
i
kC

i
k (1− βi

kαi)). However, SUs cannot select activity factors which violate
the coupling constraints in (3.8b). Since it is difficult for SUs to identify feasible activity factors
in advance, we construct an alternative payoff function for SU k as

uk =
Na∑
i=1

βi
kC

i
k

(
1− βi

kαi

)
−

Na∑
i=1

µiΘ

(
Ns∑
j=1

βi
j − 1

)
(4.1)

where Θ(x) =

 x, x ≥ 0

0, x < 0
and µi’s are positive scalars. The second term of (4.1) represents

the coupling constraints in (3.8b) by severely punishing the SU who violates each of them.
Let βββk =

[
β1
k , . . . , β

Na
k

]
be the strategy at SU k and βββ−k be the strategy of all SUs excluding

the SU k. Furthermore, the admissible strategies of SU k is defined as

Bk =

{
βββk : β

i
k ∈ {0,

1

S
,
2

S
, . . . , 1},∀i ∈ Na,

Na∑
i=1

βi
k = Rk

}
. (4.2)

Note that βi
k takes discrete values in the proposed CSMA-based algorithm. Then, we can define

the non-cooperative game for the spectrum access design of SUs as

G = [Ns, {Bk}k∈Ns , {uk}k∈Ns ] (4.3)

where Ns = {1, . . . , Ns} is the set of players of the game (i.e. SUs), Bk is the activity factor
strategy set of the SU k and uk is the corresponding payoff function of the SU k defined on the
set of pure-strategy profiles B = B1 × . . .× BNs .

An exact potential game is a strategic game in which the incentive of all players to change
their strategies can be expressed in a global potential function. The potential games are easy to
analyze since improving each player’s utility also increases the value of a potential function [89].
In the following theorem, we demonstrate that the game G falls into the framework of exact
potential games.
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Theorem 1 G is an exact potential game with the potential function,

Φ =
Ns∑
j=1

Na∑
i=1

βi
jC

i
j(1− βi

jαi)−
Na∑
i=1

µiΘ

(
Ns∑
j=1

βi
j − 1

)
. (4.4)

Proof : It is clear that the game G satisfies the exact potential game definition [89],

uk(βββk,βββ−k)− uk(βββ
′

k,βββ−k) = Φ(βββk,βββ−k)− Φ(βββ
′

k,βββ−k), ∀βββk,βββ
′

k ∈ Bk,∀k ∈ Ns. (4.5)

Thus, G is an exact potential game and Φ is the potential function of G. �
Conceptually, a strategic game can reach a steady-state NE point, if it exists, from which no

player can improve its utility by changing its own strategy unilaterally [90]. In other words, a
strategy profile βββ∗ = {βββ∗

k}
Ns
k=1 ∈ B is a NE if and only if

uk(βββ
∗
k,βββ

∗
−k) ≥ uk(βββ

′

k,βββ
∗
−k),∀βββ

′

k ∈ Bk,∀k ∈ Ns. (4.6)

We are interested to investigate the existence and characteristics including the feasibility and
efficiency of NE for the game G.

4.3.1 Existence of the Nash Equilibrium

First of all, we study the existence of NE of the game G in the following theorem based on the
properties of the potential games.

Theorem 2 The game G admits at least one pure-strategy NE.

Proof : This theorem comes directly from Corollary 4 in [91], which states every finite potential
game G has at least one pure-strategy NE. �

Remark 6 In general, the pure-strategy NE of game G may not be unique.

4.3.2 Feasibility of the Nash Equilibrium

Since the optimization problem in (3.8) has the coupling constraints in (3.8b) which are merged
in the payoff functions in the formulated game G, it is required to verify if an arbitrary pure-
strategy NEs is feasible, i.e., satisfying the constraints

∑Ns

k=1 β
i
k ≤ 1, i = 1, . . . , Na. Thus, the

following theorem presents conditions that assure the feasibility of pure-strategy NEs.
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Theorem 3 All pure-strategy NEs of the game G must be feasible if

µi > µth,∀i ∈ Na (4.7)

where

µth = max
k∈Ns,βββk∈Bk

(
S

Na∑
i=1

βi
kC

i
k

(
1− βi

kαi

))
. (4.8)

Proof : See Appendix B.1 for the proof.
Theorem 3 ensures that, by properly designing µi’s, the payoff functions in (4.1) can guaran-

tee the feasibility of the steady states of the system.

4.3.3 Efficiency of the Nash Equilibrium

The other aspect that we study is how efficient the NE of game G is in comparison with the
optimal solution of (3.8). The following theorem specifies the relationship between the optimal
solution and the NE of the game G.

Theorem 4 The optimal solution of (3.8) is the Pareto-optimal pure-strategy NE of G if µi >

µth,∀i ∈ Na.

Proof : See Appendix B.2 for the proof.

Remark 7 In the next section, learning-based iterative algorithms are proposed which enable

the convergence to the Pareto-optimal pure-strategy NE.

4.4 Iterative Learning-Based Access Algorithms with Perfect and Noisy
Observations

Assuming that the rationality of players and the structure of the game are common knowledge,
equilibrium can be observed as a result of analysis and introspection of the players. Otherwise,
under assumption of bounded rationality or partial information, equilibrium may arise as a con-
sequence of a long-run learning process [92]. In this section, aiming to achieve an equilibrium
of the game G, we discuss learning approaches in terms of information requirements and conver-
gence properties.
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4.4.1 Best-Response Dynamics with Perfect Observations

To reach an equilibrium of the game G, first, we present a simple learning algorithm for activity
factor selection, based on the asynchronous best-response dynamics [92]. In particular, at each
time t ∈ {0, 1, 2, . . .}, exactly one SU k ∈ Ns, is randomly selected to revise its activity factors
based on the best-response dynamics defined as

βββk[t] = arg max
βββ
′
k∈Bk

uk(βββ
′

k,βββ−k[t− 1]). (4.9)

Under the perfect knowledge of current strategies of the other SUs (i.e., βββ−k[t− 1]), the conver-
gence of the proposed game-theoretic algorithm is established in the following theorem.

Theorem 5 The learning algorithm under asynchronous best-response dynamics converges with

probability of 1 to a pure-strategy NE of the game G from any initial strategy point.

Proof : Based on Theorem 19 in [90], in a finite exact potential game, best-response dynamics
will converge with probability of 1 to a pure-strategy NE in finite steps. Accordingly, in game G,
the best-response iterations will converge to a pure-strategy NE. �

To verify convergence of the best-response dynamics, we provide a numerical result. In this
example, we assume independent channels with the same bandwidth Bi = 1 and the same αi.
We set the same SNR =

P i
k

ni
k
= 10dB and Rk = 1 for individual SUs. Furthermore, we assume

Ns = 3, Na = 3 and αi = 0.1. Note that we use the same example for all simulation results in
this chapter.

Figure 4.1 demonstrates the convergence process of the activity factors of three SUs in the
first idle licensed channel for a certain channel realization. All SUs start by setting their initial
values of their activity factors to zero. In each iteration, they sequentially play to optimize their
own payoff functions, and update their activity factors based on the best-response dynamics in
(4.9) (e.g., in the following order: SU3, SU2, SU1). Note that each SU updates its activity factors
in three different channels simultaneously. However, the simulation results for only channel 1 are
demonstrated.

In iteration 1, SU3 plays followed by SU2 and SU1 to obtain β1
3 [1] = 0.5, β1

2 [1] = 0.33, and
β1
1 [1] = 0.53, which result in

∑3
k=1 β

1
k ≥ 1. In iteration 2, SU3 is penalized for this excessive

amount, and, for its specific channel realization, Figure 4.1 indicates that the SU3 is forced to
reduce its activity factor to β1

3 [2] = 0.14 in order to keep
∑3

k=1 β
1
k ≤ 1. Subsequently, SU2 and



4 Distributed Opportunistic Spectrum Access: Game-Theoretic Approaches 47

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iterations

A
ct

iv
ity

 fa
ct

or
 (β

ki )

 

 

SU1− Optimum
SU2− Optimum
SU3− Optimum
SU1− Best response
SU2− Best response
SU3− Best response

Fig. 4.1 Convergence of the SU activity factors with best-response dynamics.

SU1 do not need to change their strategies, and maintain β1
2 [2] = 0.33, and β1

1 [2] = 0.53. From
iteration 3, since

∑3
k=1 β

1
k ≤ 1, i = 1, . . . , 3, SUs actually optimize their own throughput, i.e.,

their own payoff functions become uk =
∑3

i=1 β
i
kC

i
k (1− βi

kαi). Thus, their strategies do not
change any more. Note that, for different channel realizations, it is possible that all SUs change
their activity factors to satisfy

∑Ns

k=1 β
i
k ≤ 1 in iteration 2. Furthermore, the process of reducing∑Ns

k=1 β
i
k may take more than two iterations.

Additionally, Figure 4.2 shows the convergence of the potential function. As evident from
Figures 4.1 and 4.2, in less than 10 iterations, the activity factor selection algorithm converges to
a NE which is not essentially Pareto-optimal. Note that each iteration corresponds to a complete
update by all the SUs.

According to Theorem 5, the best-response iterations will converge to a pure-strategy NE
which is not necessarily the maximizer of the potential function Φ (i.e., the globally optimal so-
lution of (3.8)). Since NE could be highly inefficient with regards to the network-level objective,
it is thus crucial to find a learning process to reach the socially optimum solution.
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Fig. 4.2 Convergence of the potential function with best-response dynamics.

4.4.2 Log-Linear Dynamics with Perfect Observations

Since the basic best-response dynamics suffer from multiple rest points (e.g., any pure-strategy
NE), it is essential to introduce a learning process that can select an appropriate equilibrium.
Aiming to enable equilibrium selection, log-linear learning has been proposed as a perturbed
best-response process which guarantees convergence to the most efficient NE for potential games
[87,88]. The basic idea behind the equilibrium selection in the log-linear learning is to introduce
noise into decision making process which enables categorizing equilibria based on their stability
characteristics. This noise allows players to select suboptimal actions with a certain probabil-
ity which is attached with the magnitude of the payoff difference of the best response and the
suboptimal action.

In the log-linear learning, SUs are assumed to be myopic and boundedly rational. At each
time t > 0, exactly one SU k ∈ Ns is randomly selected to update its action, using a probability
distribution over its strategy set in response to the current strategy profile. Let k be the player
chosen at time t to revise its action. Then, the SU k will choose action βββk given the current
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strategy profile βββ−k[t− 1] with a probability based on the log-linear choice rule

πβββk

k [t] =
e

1
ϵ
uk(βββk,βββ−k[t−1])

Σβββ
′
k∈Bk

e
1
ϵ
uk(βββ

′
k,βββ−k[t−1])

(4.10)

where 0 < 1
ϵ
<∞. The scalar 1

ϵ
can be interpreted as the level of rationality of the SUs. In other

words, ϵ shows the level of noise in the SUs’ decisions and determines how often SUs choose
their best responses. The described rule is called log-linear since the log-likelihood ratio of
selecting between two actions is linearly proportional to the difference of corresponding payoffs,
given other SUs’ actions [93]. As ϵ → 0, the log-linear rule approaches to the best-response
rule. However, the SU k will choose any action βββk ∈ Bk with equal probability as ϵ → ∞.
Thus, for any 0 < ϵ <∞, SUs explore non-best responses with non-zero probabilities which are
exponentially smaller for actions yielding smaller payoffs [87, 88].

Our goal is to characterize the long-run behavior of asynchronous log-linear learning process
for game G. To this end, the log-linear dynamic adjustment process is represented as an irre-
ducible and aperiodic Markov chain {Xϵ

t }t∈N on the set of strategy profiles of the game [87, 88].
Subsequently, the stationary distribution, i.e., limiting distribution in a Markov chain, is stud-
ied to explain the long-run behavior of this update rule. In [87], the stationary distribution of
asynchronous log-linear learning process in game G is presented as

Pϵ(βββ) =
e

1
ϵ
Φ(βββ)∑

βββ∈B e
1
ϵ
Φ(βββ)

. (4.11)

According to (4.11), Pϵ(βββ) (i.e., the probability that Xϵ
t = βββ for sufficiently large times t > 0)

can be expressed as an explicit function of the potential function. A strategy profile βββ = {βββk}Ns
k=1

is said to be stochastically stable if limϵ→0Pϵ(βββ) > 0. Consequently, the stochastically stable
strategy can be computed based on (4.11).

Corollary 1 In game G, the only stochastically stable strategy profile of asynchronous log-linear

learning process is the maximizer of potential function Φ which is the NE of the potential game G
based on Theorem 2 in [89]. Assuming µi > µth,∀i ∈ Na, the optimal solution of (3.8) is equal

to the maximizer of the potential function. As a result, the optimal solution of (3.8) is the only

stochastically stable NE of the game G assuming µi > µth, ∀i ∈ Na.

The importance of this Corollary–which comes directly from Corollary 1 in [87] for exact po-
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tential games–is two-fold, i.e., convergence and equilibrium selection. In particular, it explains
that the asynchronous log-linear learning guarantees convergence to a set of Nash equilibria and
more specifically enables equilibrium refinement. In other words, the log-linear learning assures
convergence to the potential maximizer which is equal to the globally optimal solution in the
game G assuming µi > µth,∀i ∈ Na.

To verify the convergence properties of log-linear learning, Figures 4.3 and 4.4 show the con-
vergence process of the activity factors of three SUs in the first idle licensed channel for a certain
channel realization and the convergence of the potential function, respectively. They confirm that
the log-linear iterations lead to the globally optimal solution despite the best-response dynamics.
As can be observed, it takes merely around 20 iterations to quickly converge to the optimum
solution.

The other aspect which affects the practicality of a learning process is the convergence speed.
From Proposition 152 in [94], assuming µi > µth, the convergence time of the log-linear learning
to be η-close to the optimal solution is in the order of

Ns log log(Ns) + log

(
1

η

)
(4.12)

for any initial condition if the rationality level (i.e., 1
ϵ
) is sufficiently large. According to (4.12),

the convergence time is linearly proportional to the number of SUs using the log-linear learning
in game G.

Up to this point, we study the best-response dynamics and the log-linear dynamics assuming
the perfect knowledge of the sum of activity factors of all Ns SUs in an idle channel, i.e.,

∑Ns

k=1 β
i
k.

Such information can be obtained with the aid of a central coordinator or heavy exchange of
overhead information, which causes high complexity and results in an un-scalable system. It is
thus crucial that SUs learn this information to adjust their activity factors.

4.4.3 Best-Response Dynamics with Noisy Observations

In Chapter 3, Section 3.4, we have studied how to use the capturing status feedbacks of the
proposed adaptive CSMA scheme, yik(tj), to estimate the sum of activity factors of all SUs in
each channel. It is shown that βi =

∑Ns

k=1 β
i
k can be updated after each window of S ′ sub-slots as

β̂i ≃ βi
k +

(
S
′
.βi

k∑f+S
′

l=f+1 y
i
k(tl)

)
− 1. Since estimation with a limited number of samples suffers from

random errors, it is shown that β̂i = βi + w where E[w] and var[w] are of O
(
(S

′
)−1
)
.
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Fig. 4.4 Convergence of the potential function with log-linear dynamics.
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From (4.1), it is clear that the estimation noise of βi will cause a bias b (|b| ≤ |w|) in uk, and
hence, best-response iterations in (4.9) will also involve random errors. Since the first derivative
of uk is finite, the bias and variance of the random noise in the best-response iterations should be
also of O

(
(S

′
)−1
)
.

As shown in the log-linear learning, adding noise to the decision making process enables equi-
librium selection, taking advantage of the fact that the Pareto-optimal NE is the only stochasti-
cally stable NE in potential games. Accordingly, in Theorem 3 of [95], it is shown that a bounded
noise will asymptotically ensure the convergence of the best-response iterations to a neighbor-
hood of the globally optimal solution in potential games. That is because suboptimal NE points
are less stable than the Pareto-optimal NE (i.e., the global optimum) in a sense that a small noise
can cause the best-response iterations diverge from the suboptimal NE while moving in the di-
rection toward the Pareto-optimal NE.

Similarly, in the proposed algorithm, best-response iterations involve errors although they
are random with bounded bias and variance. With a sufficiently large or increasing estimation
window (i.e., S ′), the random noise can be approximated as a bounded noise. Therefore, it is
expected that the best-response iterations converge to the global optimum. Mathematically, this
can be presented as the following claim.

Claim 1 ∀ξ > 0, an estimation window size can be selected (i.e., ∃S ′
> 0) such that

limt→∞ inf Φ(βββ[t]) ≥ Φmax − ξ with probability of 1.

This claim declares that, by properly designing an estimation window size (i.e., S ′), the best-
response iterations can get arbitrarily close to the globally optimal solution of (3.8) which is also
the maximizer of the potential function (i.e., Φ), assuming µi > µth,∀i ∈ Na.

To confirm convergence of the noisy best-response iterations to the global optimum, Figure
4.5 demonstrates the convergence process of the activity factors of three SUs in the first idle
licensed channel. In addition, the convergence process based on the proposed learning-based
non-game-theoretic algorithm in Chapter 3, Section 3.4 is illustrated in Figure 4.5. It is clear that
the game-theoretic algorithm accelerate the convergence in comparison with the algorithm pro-
posed in Chapter 3, Section 3.4. Furthermore, Figure 4.6 shows the convergence of the potential
function. They confirm that the best-response iterations will stay in a neighborhood of the global
optimum.
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4.5 Competition and Cooperation in Opportunistic Spectrum Access via
Adaptive Carrier Sensing

As previously discussed in Chapter 3, Section 3.4, by adopting adaptive CSMA scheme as a
decentralized mechanism among SUs, the achieved activity factor of each SU depends on the
intended activity factors of the other SUs, i.e., β̄i

k ≃
βi
k

1+
∑Ns

k̄=1,k̄ ̸=k
βi
k̄

. This is due to the congestion

nature of channel contention in carrier sensing. Accordingly, we consider an alternative utility
function based on achieved activity factor of SUs for the CSMA-based OSA design, aiming to
reflect the crowding effects in the activity factor optimization problem.

4.5.1 Problem Formulation

We formulate the activity factor optimization problem to maximize the overall throughput of
all SUs which reflects the competition among SUs under constraints of fixed channel require-
ments for SUs. Different from the optimization problem in (3.8), we set the utility function
as
∑Ns

k=1

∑Na

i=1 β̄i
kC

i
k(1 − β̄i

kαi) instead of
∑Ns

k=1

∑Na

i=1 β
i
kC

i
k (1− βi

kαi). Note that the orthog-
onal time sharing constraints (i.e.,

∑Ns

k=1 β
i
k ≤ 1, i = 1, . . . , Na) are not required in this

problem since SUs share the idle channels using the adaptive CSMA scheme. Furthermore,
since the contention among SUs is reflected in the utility function, there is no need to keep∑Ns

k=1 β
i
k ≤ 1, i = 1, . . . , Na for contention control among SUs as well. More specifically, the

activity optimization problem is given by

max
βββ

Ns∑
k=1

Na∑
i=1

βi
kC

i
k

1 +
∑Ns

k̄=1,k̄ ̸=k β
i
k̄

(
1− βi

kαi

1 +
∑Ns

k̄=1,k̄ ̸=k β
i
k̄

)
(4.13a)

subject to
Na∑
i=1

βi
k = Rk, k = 1, . . . , Ns (4.13b)

0 ≤ βi
k ≤ 1, i = 1, . . . , Na, k = 1, . . . , Ns. (4.13c)

Based on (4.13), we aim to develop a resource allocation scheme which determines the optimal
activity factors. Since the optimization problem in (4.13) is generally non-convex, and hence,
suffers from highly computational complexity, we study the OSA design in a game-theoretic
framework which enables us to model interactions between competing SUs and subsequently
present a distributed scheme. More specifically, we consider a strategic non-cooperative game in
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which the players are SUs.

4.5.2 Game-Theoretic Design

We consider the case where SUs simply choose their activity factors to maximize their individual
utilities. Therefore, the payoff function of SU k becomes

u
′

k =
Na∑
i=1

βi
kC

i
k

1 +
∑Ns

k̄=1,k̄ ̸=k β
i
k̄

(
1− βi

kαi

1 +
∑Ns

k̄=1,k̄ ̸=k β
i
k̄

)
. (4.14)

Let βββk =
[
β1
k , . . . , β

Na
k

]
be the strategy at SU k and βββ−k be the strategy of all SUs excluding the

SU k. Furthermore, the admissible strategies of SU k is defined as

Dk =

{
βββk : 0 ≤ βi

k ≤ 1,∀i ∈ Na,
Na∑
i=1

βi
k = Rk

}
. (4.15)

Then, we can define the non-cooperative game for the OSA design in cognitive radio networks as

G ′
=
[
Ns, {Dk}k∈Ns , {u

′

k}k∈Ns

]
(4.16)

where Ns = {1, . . . , Ns} is the set of players of the game (i.e., SUs), Dk is the activity factor
strategy set of the SU k, and u

′

k is the corresponding payoff function of the SU k defined on the
set of pure-strategy profiles D = D1 × . . .×DNs .

Existence of the Nash Equilibrium

Although the NE concept predicts a stable outcome of a non-cooperative game, such a point does
not necessarily exist. Thus, first, we study the existence of NE of the game G ′ in the following
theorem.

Theorem 6 The game G ′
admits at least one pure-strategy NE.

Proof : This comes directly from Theorem 1 in [96], which presents sufficient conditions for
the existence of NE for games with continuous payoff functions. Accordingly, since Dk’s are
compact and convex sets, and u

′

k is a continuous function and also concave in Dk (definition of a
concave game), the game G ′ has at least one pure-strategy NE.�
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Uniqueness of the Nash Equilibrium

To investigate the convergence issues, after ensuring the NE existence, it is important to know
whether the NE of the game G ′ is unique or not. The following theorem investigates the unique-
ness of NE of the game G ′ .

Theorem 7 The pure-strategy NE of the game G ′
is unique for non-zero αi values.

Proof : Theorem 2 in [96] guarantees NE uniqueness for the concave games if a certain condi-
tion, called diagonally strict concavity (DSC), is met. Based on this theorem, we establish the
uniqueness for the game G ′ . A game with strictly concave payoff functions satisfies DSC. Ac-
cordingly, since u

′

k is a strictly concave function in Dk under assumption of non-zero αi’s, it can
be concluded that G ′ has a unique pure-strategy NE.�

Efficiency of the Nash Equilibrium

The other aspect which is important to characterize is the equilibrium efficiency in a game-
theoretic design, since it is the state at which the network will spontaneously operate. In other
words, we are interested to study how efficient the NE of game G ′ is as compared to the optimal
solution of (4.13). To this end, numerical results are provided to compare the overall throughput
of SUs which can be obtained from the globally optimal solution of (4.13) to that which can be
reached from the NE of game G ′ .

In this example, we assume independent channels with the same bandwidth Bi = 1 and the
same αi. We set the same SNR =

P i
k

ni
k
= 10dB and same channel requirement (i.e., Rk = 1)

for individual SUs. Figure 4.7 shows that the unique NE of G ′ may be inefficient in terms of
total profit for all SUs. However, the throughput decrease is small while the globally optimal
solution can only be achieved at the cost of high complexity. Furthermore, it demonstrates the
overall throughput of SUs while βi

k are restricted to binary values. Apparently, the proposed
hopping-based OSA strategy (with non-binary βi

k) improves the performance comparing to the
existing OSA approaches (with binary βi

k). For the higher range of αi, even the overall throughput
obtained in NE of game G ′ with non-binary βi

k is larger than which can be obtained from globally
optimal solution of (4.13) with binary βi

k.
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4.5.3 Cooperative Design with Dynamic Pricing

In the non-cooperative game G ′ , each SU acts self-interestedly, and hence, ignores the cost im-
posed to the other SUs. Thus, a key challenge is how to modify the payoff function of each SU to
deal with NE inefficiency by inducing cooperation, while maintaining the non-cooperative game
framework. Pricing has been used as an effective tool to motivate users in a non-cooperative
game to adopt a more cooperative behavior [97]. By adding a pricing mechanism to the payoff
functions, each SU pays a price for using the resources, and hence, voluntarily cooperates with
other SUs.

Therefore, we develop a non-cooperative game with pricing (i.e., G ′′) which is practically the
same game as G ′ with different payoff functions, as given below,

G ′′
=
[
Ns, {Dk}k∈Ns , {u

′′

k}k∈Ns

]
. (4.17)
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In the game G ′′ , considering a linear usage-based pricing scheme, the payoff functions are con-
structed as

u
′′

k =
Na∑
i=1

βi
kC

i
k

1 +
∑Ns

k̄=1,k̄ ̸=k β
i
k̄

(
1− βi

kαi

1 +
∑Ns

k̄=1,k̄ ̸=k β
i
k̄

)
−

Na∑
i=1

µ̄i
kβ

i
k (4.18)

where µ̄i
k ≥ 0 represents the pricing factor of the SU k in channel i.

Remark 8 Since payoff functions with pricing (i.e., u
′′

k) are also strictly concave for non-zeros

αi values, similar to Theorem 6 and 7, it is clear that the game G ′′
owns a unique pure-strategy

NE.

In general, the pricing factors need to be adjusted in such a way that it offers the largest pos-
sible enhancement in the overall throughput. In this work, we consider a game with dynamic
pricing factors by defining µ̄i

k = αi

∑Ns

k̄=1,k̄ ̸=k β
i
k̄
. This implies that each SU pays a penalty for

each channel proportional to the crowdedness and the PU return probability of the corresponding
channel. As a result, each SU may avoid channels in which the other SUs have already high ac-
tivity. Thus, this setting can facilitate to resolve contention among SUs in the crowded channels
and subsequently improve the NE efficiency in comparison with the game G ′ with no pricing.

To investigate the NE efficiency of the game G ′′ , we present numerical results which evaluate
the overall throughput of SUs obtained from the NE of game G ′′ . With the same setting as Figure
4.7, Figure 4.8 shows that pricing mechanism offers improvement in terms of the total profit for
all SUs compared to the game G ′ with no pricing. Particularly, for higher αi, the performance of
the NE with pricing is close to the optimal solution.

4.5.4 Learning Equilibrium

In this section, we explore how to reach the unique NE of the formulated games as a consequence
of a long-run learning process. The key idea is to present an iterative algorithm in which each SU
could update its strategy independently while terminating with the unique NE.

One reasonable dynamic learning process is called the continuous best-response dynamics in
which each player changes its strategy at a rate proportional to the gradient of its payoff func-
tion [96]. Assuming that λ̄k denotes the proportionality constant for the SU k, the differential
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and the globally optimal

solution versus the PU return probability αi for fixed Ns = 2, Na = 2 and SNR =
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equations for updating the activity factors βββk become

∂βββk

∂t
= λ̄k∇ku

′

k, k = 1, . . . , Ns (4.19)

where ∇ku
′

k denotes the gradient with respect to βββk of u′

k. The following theorem ensures the
convergence of the continuous best-response dynamics in (4.19) for the games G ′ and G ′′ .

Theorem 8 The continuous best-response dynamics converge to the unique pure-strategy NE

considering either the game G ′
or game G ′′

from any feasible initial strategy point for non-zero

αi values.

Proof : This comes directly from Theorem 8 in [96] in which it is shown that for a game satisfying
DSC, the system in (4.19) is globally asymptotically stable with respect to the unique NE of the
game. Since a game with strictly concave payoff functions satisfies DSC, the continuous best-
response dynamics converge to the unique NE for both the strictly concave game G ′ and the
strictly concave game G ′′ .�

Consequently, we present iterative game-theoretic algorithms for activity factor selection to
reach the unique equilibrium of both game G ′ and game G ′′ , based on the best-response dynamics.
In particular, in a round robin fashion, SUs iteratively update their activity factors based on the
best-response dynamics defined as

βββk[t] = arg max
βββ
′
k∈Bk

uk(βββ
′

k,βββ−k[t− 1]). (4.20)

To verify the convergence of the iterative algorithm based on (4.20), numerical results are also
provided. Figure 4.9 demonstrates the convergence process of the activity factors of three SUs
in one of the idle licensed channels considering the game G ′ . Similarly, Figure 4.10 shows the
convergence for the game G ′′ with pricing. They confirm that the best-response iterations will
converge to the unique NE. As can be observed, the OSA scheme takes merely around 10 it-
erations to converge to the NE. Note that each iteration corresponds to a complete round-robin
update by all the SUs. Furthermore, comparing Figure 4.10 with Figure 4.9, it is clear that using
the pricing scheme keeps

∑Ns

k=1 β
i
k smaller that means less contention among SUs in the channel

i. By decreasing contention among SUs in a specific channel and distributing SUs’ activity over
different channels, the pricing scheme improves the total throughput.
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4.6 Concluding Remarks

In this chapter, we have developed a distributed game-theoretic CSMA-based OSA scheme in
which activity factors of SUs over multiple idle channels are adaptively adjusted. Via potential
game framework, it is established that the formulated game admits at least one pure-strategy NE.
In consideration of coupling constraints among SUs, sufficient conditions are presented to ensure
the feasibility of the pure-strategy NE. In addition, it is proved that the globally optimal solution
is the Pareto-optimal NE.

Furthermore, we have investigated the convergence properties of the best-response dynamics
and log-linear dynamics of the formulated game. Assuming that the perfect knowledge of moves
previously made by all SUs is available for each SU, we have proved that best-response iterations
converge to a pure-strategy NE which is not essentially the global solution. However, the log-
linear process enables equilibrium refinement and convergence to the most socially desirable
solution. Subsequently, in a game with noisy observations, we have shown that best-response
iterations also converge with probability of 1 to a neighborhood of the global optimum.

Moreover, we have presented an alternative design objective for SUs which reflects compe-
tition among SUs and formulated the problem in the game-theoretic framework. Via concave
game framework, we have established that the formulated game admits a unique pure-strategy
NE which is not necessarily efficient. With the aid of a dynamic pricing mechanism, we have
improved the NE efficiency by inducing cooperation in the non-cooperative game. Furthermore,
we have proved that the iterative algorithms based on the best-response dynamics converge to the
unique pure-strategy NE.
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Chapter 5

Throughput Analysis for
Adaptive Carrier Sense Multiple Access

5.1 Introduction

In Chapter 3 and Chapter 4, we have presented an adaptive CSMA scheme, aiming to present
fully-distributed OSA algorithms (including non-game-theoretic and game-theoretic approaches)
for SUs. In the proposed adaptive CSMA, each SU that has a new packet for transmission en-
ters a competition (i.e., backoff mechanism) to access an idle channel with a certain probability
(called activity factor). Activity factors of different SUs need to be optimized based on channel
qualities, PU return probabilities and sharing incentives. By assigning adaptive access proba-
bilities to different SUs, the proposed adaptive CSMA prioritizes SUs that will gain most from
using a channel, and hence, improves channel utilization compared to a simple random access
scheme. Although the proposed random access scheme (i.e., adaptive CSMA) aims to minimize
the collision probability among SUs, the contention among users is inherent in any random access
scheme. Thus, in this chapter1, we develop an analytical model to compute the system throughput
and evaluate the performance of the adaptive CSMA in the presence of inevitable collisions.

More specifically, we analyze the collision probability among competing users and the satura-
tion throughput of the proposed adaptive CSMA in a single idle channel. In [100], the saturation
throughput of a CSMA scheme is defined as the fraction of opportunities which are used success-

1Parts of Chapter 5 have been submitted to the 2013 IEEE Global Communications Conference (GLOBECOM)
in Atlanta, GA, USA [98], and submitted for possible publication in the IEEE Transactions on Wireless Communi-
cations [99].
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fully to transmit data, assuming users always have data to transmit. Comparing to the conven-
tional CSMA, we show that the adaptive CSMA significantly decreases the collision probability
and increases the saturation throughput, specifically in networks with larger number of users.
Furthermore, we investigate the effects of the network configuration-based adaptations on the
saturation throughput.

To study the saturation throughput of the adaptive CSMA, we design a MAC layer which
can be backward compatible with distributed coordination function (DCF), IEEE 802.11 CSMA-
based MAC mechanism. However, the random backoff mechanism is slightly modified to miti-
gate the contention among users and improve the throughput performance. Similar to DCF, we
consider the binary exponential backoff rules and the collision avoidance operations to manage
retransmission of collided packets.

In the IEEE 802.11 MAC enhancement studies, there are works that focuse on optimizing
the backoff algorithm of CSMA to reduce the collision probability, and hence, to maximize the
overall throughput. For instance, [55], which is the closest in spirit with our proposed adaptive
CSMA, has proposed an opportunistic CSMA scheme for a WLAN to improve throughput by
exploiting the multi-user diversity gain. The proposed opportunistic CSMA prioritizes the users
with high-SNRs by granting earlier access to those users. Since the priority is given by earlier
access, there is a conflict between users with high-SNRs and users who are newly arrived with
smaller contention window sizes. To address this issue, it is assumed that all users share the
same contention window size. By enforcing same contention window size among different users,
backoff operation needs to be performed centrally at the AP and the resulting backoff window
size needs to be broadcasted to all users. However, in our work, prioritizing users with a good
channel quality is based on granting higher access probability, instead of earlier access as in
[55]. Consequently, the proposed adaptive CSMA can support fully distributed and asynchronous
operation with the exponential backoff mechanism on the user-side.

The remainder of this chapter is organized as follows. Section 5.2 presents an overview of
the IEEE 802.11 CSMA-based MAC mechanism. In Section 5.3, the system model and prob-
lem formulation under consideration are provided. Next, Section 5.4 analyzes the saturation
throughput of the proposed adaptive CSMA. Furthermore, in Section 5.5, numerical results are
provided to validate the throughput analysis and illustrate throughput improvement compared to
the conventional CSMA. Finally, Section 5.6 presents the concluding remarks.
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5.2 IEEE 802.11 Distributed Coordination Function Review

In IEEE 802.11 standard, the MAC mechanism has two different operation modes including,
distributed coordination function (DCF) and optional point coordination function (PCF). PCF
is a centralized MAC protocol in which a centralized scheduler at the AP coordinates access
among users by sending polling messages, aiming to support collision-free services. However,
DCF is a contention-based access scheme, based on CSMA using binary exponential backoff
rules to manage retransmission of collided packets [100]. In this section, we briefly review DCF
operation, as standardized by 802.11 protocol.

DCF requires a user, with a new packet for transmission, to sense the channel activity prior
to transmission. If the channel is sensed idle for a time interval equal to a distributed inter-frame
space (DIFS), the user transmits. Otherwise, if the user senses a transmission either immediately
or during the DIFS, it continues monitoring the channel. When the channel is measured idle for
a DIFS, the user backoffs for a random period of time. The backoff mechanism enables collision
avoidance by minimizing the probability of collision with other users. Furthermore, a user must
go through the backoff mechanism between two consecutive packet transmissions to avoid the
channel capture [100].

DCF uses a discrete-time backoff mechanism, i.e., the time following a DIFS is slotted. The
backoff time-slot length needs to be designed equal to the time a user requires to detect the
transmission of a packet from any other user. At each packet transmission, the backoff time is
selected according to a uniform distribution in the interval (0,W − 1) where W represents the
contention window which is a function of the number of transmissions already failed for the
packet. Each user starts the packet transmission by setting W equal to the minimum contention
window size (i.e., CWmin). According to the binary exponential backoff rules, W is doubled after
each unsuccessful transmission. Each user increases W up to the maximum contention window
size CWmax = 2mCWmin where m represents the maximum backoff stage [100].

The backoff time counter is decremented and a user transmits when the backoff time counter
reaches zero. Once the data packet is received successfully, the receiver waits for a period of time
called short inter-frame space (SIFS) and then sends an acknowledgement (ACK). By sensing
the ACK, the receiver informs the transmitter about the successful reception of the transmitted
packet. If the ACK is not received by the transmitter, it retransmits that packet according to the
exponential backoff rules [100].

To improve the throughput performance of CSMA in IEEE 802.11, in addition to the basic ac-
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Fig. 5.1 Example of the channel-access procedure of two users using CSMA with
the RTS/CTS access mechanism in time domain.

cess mechanism, an optional four-way handshaking technique, i.e., request-to-send/clear-to-send
(RTS/CTS), has been proposed for a packet transmission. In the RTS/CTS access mechanism, a
user who is ready to transmit, after waiting for a DIFS and passing the backoff process, has to
transmit a special short frame called request-to-send (RTS) before transmitting its packet. After
detection of the RTS frame by the receiver, it responds by transmitting a clear-to-send (CTS)
frame after a SIFS. If the CTS frame is correctly detected by the transmitter, it is allowed to
transmit its packet afterwards. The RTS/CTS access mechanism effectively reduces the average
collision time because collisions can be early detected by the transmitters when the CTS is not
received [100].

Figure 5.1 illustrates an example of the channel-access procedure of two users using CSMA
with the RTS/CTS access mechanism. At the end of the packet transmission of user 1, both
users wait for a DIFS and pick their backoff times. Since the backoff time of user 2 is shorter, it
wins the competition and starts the packet transmission, while user 1 is still in the middle of its
backoff procedure. When user 1 senses the channel busy because of the transmitted RTS, it stops
its backoff mechanism. When the channel is measured idle again for a DIFS, user 1 joins the
competition and sets its backoff time to 3 without resetting its backoff counter. However, user 2
randomly picks a new backoff time (i.e., 6).

Although the binary exponential backoff mechanism is effective in controlling collision among
users, the throughput of a network using DCF still decreases by increasing the number of users
due to the collision probability increase. However, the large number of users potentially could be
an opportunity to improve the overall throughput of a network by creating the multi-user diversity.
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5.3 System Model and Problem Formulation

Different from DCF, the proposed adaptive CSMA attempts to manage the contention among
users prior to entering the backoff mechanism. To enable such contention management, it assigns
a certain probability (called activity factor) to each user with a new packet for transmission and
allows it to enter the backoff competition to access a specific idle channel (e.g., i) based on its
own activity factor, βi

k(0 ≤ βi
k ≤ 1). Adaptive activity factors enable prioritizing users who gain

most from using a channel, and hence, improving the channel utilization in comparison with a
simple random access scheme.

More specifically, in the adaptive CSMA, the user k–which already sensed the channel i idle
for a DIFS and is ready to transmit a packet–performs the following steps:

1. Generate a Bernoulli random variable xi
k with the success probability βi

k. If xi
k = 0, the

user k will not transmit and defer its transmission for a period of time called long inter-
frame space (LIFS). If xi

k = 1, the user k will proceed to the next step.

2. Generate a backoff time according to a uniform distribution in the interval (0,W − 1).

3. After expiry of the backoff time, sense the channel i, if it is idle, continue to transmit using
the basic access or the RTS/CTS access mechanism rules.

Note that LIFS is a newly-defined inter-frame space parameter in the adaptive CSMA scheme.
We assume that LIFS is properly designed such that the user with xi

k = 0 could skip the current
competition and retry after the on-going packet transmission process. For instance, LIFS can be
set equal to W for each user, to ensure that the corresponding user with xi

k = 0 would not capture
the channel.

According to the activity factor optimization problem in (3.8), it is not possible to derive
the closed-form expressions of the optimal activity factors based on the channel qualities, the
PU return probabilities and the number of SUs. Thus, to study the throughput performance of
the adaptive CSMA, we consider a specific case in which the adaptive CSMA attempts to take
advantage of the channel diversity among different users and give higher chance of access to the
users with better channel qualities. To this end, inspired by (3.13), the activity factor of each
user in each channel is defined as an increasing function of its channel transmission capacity as
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follows,

βi
k =

[
1− µ̃i

k

Ci
k

]1
0

(5.1)

where [x]ba = min (b,max(a, x)), Ci
k represents the channel transmission capacity for the user k

in the channel i, and µ̃i
k denotes the threshold for the user k in the channel i which is a positive

scalar. Note that the derived analytical results on the saturation throughput–presented in the
next section–are generally developed as functions of βi

k, and are not dependent on the specific
definitions of βi

k. The reason for the specific definition of βi
k in (5.1) is to be used in the numerical

results to illustrate the throughput performance.
Similar to Chapters 3 and 4, the channel transmission capacity of the user k in the channel i

is represented by Ci
k = Bi log(1 + P i

kg
i
k,k/n

i
k) where Bi denotes the bandwidth in the channel i,

P i
k

ni
k

is the signal-to-noise ratio (SNR) for the user k in the channel i, and gik,k is the channel power
gain for the user k in the channel i. In this work, a block-fading model is assumed in which gik,k
remains unchanged within the coherence time but independently varies of the previous channel
realization. To make sure that gik,k does not change during a packet transmission, the coherence
time is assumed sufficiently long in this work. Furthermore, the channel power gains gik,k are
considered independent for different users.

To support the distributed operation by each user and allow the fair access among different
users, we assume that each user updates its activity factor in each channel relative to its own
average channel transmission capacity. Then, we define the threshold for the user k in the channel
i as

µ̃i
k = ρikEg[C

i
k] (5.2)

where ρik is a positive scalar and Eg[.] denotes the expectation with respect to the channel power
gain distribution. In practice, this expected value (i.e., Eg[C

i
k]) can be empirically estimated by

each user. By adjusting the threshold based on (5.2), each user gets a higher chance of transmis-
sion if its channel transmission capacity (i.e., Ci

k) is relatively higher than its own average (i.e.,
Eg[C

i
k]). In other words, each user is compared with itself, and hence obtains the fair access over

a long time.
In particular, to enable a long-term fairness for different users with different channel condi-

tions (i.e., different SNR =
P i
k

ni
k

and/or different probability distribution for gik,k), we select ρik for
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each user in each channel such that the same average access probability (i.e., Eg[β
i
k] = β) can be

achieved for all users. More specifically,

Eg[β
i
k] = Eg

{[
1− ρkEg[C

i
k]

C i
k

]1
0

}
= β. (5.3)

According to (5.1), (5.2) and (5.3), it is clear that each user can update its activity factor in each
channel based on the locally available information and does not need to know the knowledge
on other users. Thus, the proposed adaptive CSMA can be implemented in a fully-distributed
manner.

Furthermore, aiming to enhance the efficiency of the proposed adaptive CSMA, ρik can be
tuned dynamically depending on the network-configuration parameters. Some network parame-
ters such as the number of users in the network have a significant impact on the system through-
put. Assuming that users have the perfect knowledge of the number of users in the network, ρik
can be defined as an increasing function of Ns to control

∑Ns

k=1 β
i
k (i.e., the sum of all activity

factors in the channel i) as Ns increases. In other words, by increasing the thresholds (i.e., ρik)
in the larger networks, the adaptive CSMA attempts to reduce the activity factors of users. Such
dynamic threshold setting helps to control the contention among users, and decreases the colli-
sion probability. For instance, assuming that users have same SNR, ρik can be chosen as 1− 1

Ns
.

In the next section, we investigate the effects of choosing different ρik on the throughput by the
numerical results.

5.4 Throughput Analysis

In this section, we study the saturation throughput of the proposed adaptive CSMA in a single
idle channel (e.g., i), assuming a constant packet size LP. In [100], the saturation throughput for
CSMA-based DCF is defined and calculated as the number of successfully delivered information
bits per second, while the transmission queue of each user is assumed to be always nonempty.
Accordingly, considering that the activity factors of different users are channel dependent, we
define the saturation throughput of the adaptive CSMA as

Tsaturation = Eg

[
PsLP

(1− Ptr)Tb +
∑N

k=1 Ps,kTs,k + (Ptr − Ps)Tc

]
(5.4)
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where Tb is the duration of a backoff time-slot, Ps =
∑N

k=1 Ps,k is the probability that a successful
transmission happens in a generic (i.e., randomly chosen) backoff time-slot, Ps,k is the probability
of a successful transmission by the user k in a generic backoff time-slot, Ptr is the probability that
at least one transmission, either successful or not, happens in a generic backoff time-slot, Ts,k is
the average time that the channel is sensed busy because of a successful transmission by the user
k, and Tc is the average time that the channel is sensed busy by each user because of a collision.

In the saturation throughput expression (5.4), the numerator represents the average number of
information bits that successfully transmitted in a backoff time-slot, i.e., PsLP. In the denomina-
tor, the average length of a backoff time-slot is presented. In particular, the back-off time-slot is
empty with probability (1 − Ptr), it contains a successful transmission with probability Ps, and
it contains a collision with probability Pc = Ptr − Ps [100]. To analyze the saturation through-
put in (5.4), first, we need to derive the probability (called access probability) that a single user
transmits a packet in a generic backoff time-slot. Then, by defining Ps and Ptr, we can express
the throughput as a function of access probability.

For the conventional CSMA scheme, in [100], the access probability Pa of a user has been
studied by analyzing the behavior of a single user with a Markov model. The proposed Markov
chain models the binary exponential backoff rules and the collision avoidance operations of a
single user. Assuming that each transmitted packet collides and fails with a constant and inde-
pendent probability (Pf), the access probability of a user is computed as a function of Pf , the
contention window W and the maximum backoff stage m as follows

Pa =
2(1− 2Pf)

(1− 2Pf)(W + 1) + PfW (1− (2Pf)m)
. (5.5)

On the other hand, the probability that a transmitted packet in a generic backoff time-slot en-
counters a collision is equal to the probability that at least one of the remaining users transmits.
Thus,

Pf = 1− (1− Pa)
Ns−1 (5.6)

where Ns denotes the number of competing users [100]. By solving the nonlinear system of
(5.5) and (5.6), Pa can be obtained as a function of Ns, W and m. In [100], it is proved that the
nonlinear system of Pa and Pf has a unique solution.

In the proposed adaptive CSMA scheme, the access probability of the user k is different and
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can be calculated as βi
kPa in consideration of the adaptive access scheme based on the activity

factors. Then, since there are Ns users in the network attempting to transmit on the channel, each
with different access probability βi

kPa, the probability that there is at least one transmission in a
generic backoff time-slot (i.e., Ptr) is

Ptr = 1−
Ns∏
k=1

(1− βi
kPa). (5.7)

A transmitted packet will be received successfully, if exactly one user transmits on the channel.
Thus, the probability of successful transmission (i.e., Ps) becomes

Ps =
Ns∑
k=1

Ps,k =
Ns∑
k=1

βi
kPa

Ns∏
k′=1,k′ ̸=k

(1− βi
k′
Pa). (5.8)

Based on (5.4), to specifically compute the saturation throughput, it is required to specify the
values of Ts,k and Tc. Consider that H represents the size of PHY and MAC header and δ denotes
the propagation delay. In the basic access mechanism, we have

T bas
s,k = H+

LP

Ci
k

+ SIFS + δ +ACK+DIFS + δ, (5.9)

T bas
c = H+ L∗

P +DIFS + δ (5.10)

where LP

Ci
k

represents the transmission duration of the user k and L∗
P represents the average time of

the longest packet transmission involved in a collision. Consider a case that different users have
the same SNR and same probability distribution for gik,k. In this case, assuming that the collision
probability of three or more packets is negligible, L∗

P can be approximated as

L∗
P ≃ Eg

[
max

{
LP

Ci
k

,
LP

Ci
k′

}]
. (5.11)

On the other hand, by using the RTS/CTS access mechanism, collision can happen only during
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Table 5.1 IEEE 802.11 MAC parameters used in the numerical results.

Packet Payload (LP) 2400 bytes
Backoff Time-Slot (Tb) 9 µs
PHY and MAC Header (H) 65 µs
Propagation Delay (δ) 1µs
SIFS 10 µs
DIFS 28 µs
ACK 40 µs
RST 48 µs
CTS 40 µs
CWmin 16
CWmax 1024

the RTS frames, and hence, Ts,k and Tc can be represented as

T rts
s,k =RTS + SIFS + δ + CTS + SIFS + δ +H+

LP

C i
k

+ SIFS + δ +ACK+DIFS + δ, (5.12)

T rts
c = RTS + DIFS + δ. (5.13)

Consequently, based on (5.7), (5.8), (5.9), (5.10), (5.12) and (5.13), the saturation throughput can
be obtained using (5.4).

5.5 Numerical Results

In this section, we discuss a numerical example on the throughput of the adaptive CSMA scheme
based on the analytical and the simulation results. Such numerical example helps us to validate
the throughput analysis of the adaptive CSMA, in comparison with the simulation results. Fur-
thermore, it illustrates the throughput improvement offered by the adaptive CSMA relative to
the conventional CSMA scheme. For the simulation results, we used a simplified MAC layer
simulator which is implemented in Matlab.

The set of parameters used in the numerical results, by both analysis and simulation, are
summarized in Table 5.1 based on the IEEE 802.11g MAC specifications [101]. The channel
bandwidth is assumed equal to Bi = 20MHz. Unless otherwise specified, we consider the same
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Fig. 5.2 Saturation throughput versus number of users using the basic access mech-
anism.

average signal-to-noise ratio (i.e., SNR =
P i
k

ni
k
= 10dB) for all users. Furthermore, in all the

presented results, the channel power gains gik,k are randomly generated according to the Rayleigh
distribution assuming Eg[g

i
k,k] = 1.

Using the basic access mechanism, Figure 5.2 demonstrates the saturation throughput (i.e.,
Tsaturation) of the adaptive CSMA scheme versus the number of users in the network (i.e., Ns).
In this figure, the throughput performance of the adaptive CSMA is shown considering different
threshold settings (i.e., ρik). Comparing to the conventional CSMA scheme, it is shown that
the adaptive CSMA offers a significant throughput improvement for networks with more than 5
users. As evident from Figure 5.2, the adaptive CSMA with the dynamic threshold ρik = 1− 1

Ns

outperforms the conventional CSMA for any number of users.
Using the RTS/CTS access mechanism, Figure 5.3 illustrates the saturation throughput of the

adaptive CSMA scheme versus the number of users in the network for different threshold set-
tings. As can be observed, the adaptive CSMA with the dynamic threshold ρik = 1− 1

Ns
achieves

the multi-user diversity gain using the RTS/CTS access mechanism. In other words, the adap-
tive CSMA improves the throughput as Ns increases, while the throughput of the conventional
CSMA decreases with the number of users due to the more frequent collisions. Comparing to
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Fig. 5.3 Saturation throughput versus number of users using the RTS/CTS access
mechanism.

Figure 5.2, it is clear that the RTC/CTS technique improves the throughput performance relative
to the basic access scheme. This can be explained by the fact that the RTC/CTS technique effec-
tively reduces the collision time (i.e., Tc). Figure 5.2 and Figure 5.3 confirm the precision of the
analytical results on the saturation throughput (lines) as they closely match the simulation results
(the symbols), for both the basic access and the RTS/CTS access mechanisms.

Figure 5.4 shows the collision probability (i.e., Pc = Ptr−Ps) of the adaptive CSMA scheme
versus the number of users for different threshold settings. It is clear that the adaptive CSMA sig-
nificantly decreases the collision probability. In agreement with the throughput results in Figure
5.3, it also demonstrates that the adaptive CSMA with ρik = 1− 1

Ns
provides the largest decrease

as compared to the conventional CSMA, except for ρik = 1. Despite the smaller collision proba-
bility for ρik = 1, the adaptive CSMA with ρik = 1− 1

Ns
provides a higher throughput. According

to Figure 5.5, this can be explained with the larger probability of successful transmission for the
adaptive CSMA with ρik = 1− 1

Ns
comparing to the adaptive CSMA with ρik = 1, specifically for

smaller Ns.
To investigate the effects of the packet length on the throughput performance, Figure 5.6

illustrates the saturation throughput of the adaptive CSMA scheme with ρik = 1 − 1
Ns

versus
the packet length for Ns = 20. Apparently, the saturation throughput improves when the packet
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Fig. 5.6 Saturation throughput versus packet length with Ns = 20.

length increases. This happens because the MAC overhead is constant, while the packet length
is increasing. Furthermore, it is shown that the throughput improvement offered by the adaptive
CSMA comparing to the conventional CSMA is an increasing function of the packet length.

Figure 5.7 and Figure 5.8 explore the dependency of the saturation throughput of the adaptive
CSMA scheme on the minimum contention window size CWmin, using the basic access and the
RTS/CTS access mechanisms. In both figures, we assume the maximum backoff stage equal
to 6 (i.e., m = 6). In addition, in each figure, two different threshold settings (ρik = 0.1 and
ρik = 1− 1

Ns
) are investigated for three different network sizes (Ns = 5, Ns = 25 and Ns = 50).

Using the basic access mechanism, Figure 5.7 shows that the throughput is highly dependent
on the minimum contention window size. To achieve the maximum throughput, it is clear that
CWmin needs to be designed as a function of the number of users in the network. For instance,
the optimal value of CWmin is around 16 for a network with 5 users, while CWmin = 128 gives
a better throughput performance when Ns = 50. Furthermore, for a certain number of users,
it is shown that using a fixed ρk reduces the maximum achievable throughput comparing to the
dynamic threshold setting ρk = 1− 1

Ns
.

Figure 5.8 shows the behavior of the saturation throughput of the adaptive CSMA scheme
with the RTS/CTS access mechanism for different values of CWmin. Apparently, in this case,
the saturation throughput is less sensitive to the minimum contention window size for the lower
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Fig. 5.7 Saturation throughput versus minimum contention window size using the
basic access mechanism.
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Table 5.2 Percentage of successfully transmitted packets for different users with
different SNRs, assuming β = 0.8.

User Index 1 2 3 4 5 6 7 8 9 10
SNR (dB) 0 2.5 5 7.5 10 12.5 15 17.5 20 25

Percentage (%) 9.96 9.95 9.97 9.93 9.97 9.99 9.96 9.97 9.96 10

range of CWmin. For instance, using ρik = 0.1, the saturation throughput is almost independent
of the minimum contention window size for CWmin < 64. Comparing two different threshold
settings, it is shown that the maximum achievable throughput is higher for ρik = 1− 1

Ns
.

To confirm that the proposed adaptive CSMA gives fair access to different users, Table 5.2
shows the distribution of successfully transmitted packets among 10 users, each with a different
SNR between 0dB to 25dB. It is shown that the successfully transmitted packets are fairly
distributed among users.

5.6 Concluding Remarks

In this chapter, we have presented a study on the throughput performance of the proposed adaptive
CSMA in a single idle channel. The effects of network configuration parameters (e.g., the num-
ber of users in the network, the minimum contention window, and the packet length) have been
investigated on the saturation throughput. In the adaptive CSMA, users go through a refinement
process based on their adaptive activity factors, before participating in the backoff competition.
As a result, we have shown that the collision probability is decreased due to the smaller number
of competitors. Furthermore, the saturation throughput is improved since users with better chan-
nel qualities are given higher chance to stay in the competition. Numerical results confirm the
performance gains, i.e., high throughput as well as long-term fairness, offered by the proposed
adaptive CSMA-based access strategy in comparison with the conventional CSMA scheme.
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Chapter 6

Aggregate Interference and
Capacity-Outage Analysis in
Cognitive Radio Networks

6.1 Introduction

When studying the OSA design in a cognitive radio network, one of the key design issues is suf-
ficiently protecting PUs’ communications from the interference caused by SUs, while optimizing
the spectrum utilization of SUs. In Chapter 3, we have proposed an adaptive transmission strat-
egy for SUs to reduce the effects of collision between PU and SU. Assuming the proposed access
scheme, in Chapter 3 and Chapter 4, we have developed SU access algorithms, focusing on the
SU access optimization. To be able to support QoS requirements for PUs, in this chapter1, we
look into the problem from a PU perspective and evaluate the PU performance in the presence
of interference from SUs. More specifically, we present a study on the aggregate interference
imposed by SUs to a PU and introduce the capacity-outage probability of PU as a measure to
keep the level of interference below a prescribed tolerance level.

To guarantee a certain level of QoS for PUs, different approaches are considered in the OSA
design literature. In [22, 29], the proposed OSA schemes limit the probability of collision of

1Parts of Chapter 6 have been presented at the 2010 25th Queen’s Biennial Symposium on Communications
(QBSC) in Kingston, ON, Canada [102], the 2010 IEEE Vehicular Technology Conference (VTC-Fall) in Ottawa,
ON, Canada [103] and the 2011 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) in
Niagara Falls, ON, Canada [104], and published in the IEEE Transactions on Vehicular Technology [105].
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SUs with PUs. However, the collision probability is not a precise measure to protect PUs since
the effects of propagation channel gains from SUs to PUs are not considered. Another proposed
approach is to keep the aggregate interference level caused by SUs below a prescribed tolerable
threshold for PUs assuming perfect knowledge of instantaneous channel gains from SU transmit-
ters to PU receivers [106, 107]. However, knowing and tracking the instantaneous channel gains
from SU transmitters to PU receivers might be difficult in practice.

Recognizing such practical limitations, in this chapter, we present a statistical model on the
aggregate interference caused by SUs to a PU due to miss-detection errors. In particular, the
probabilistic properties of the aggregate interference is investigated in consideration of random
SU locations and their propagation characteristics. Based on the developed statistical model, we
subsequently derive the PU capacity-outage probability (i.e., the probability that the PU capacity
falls below a prescribed level). This will help to examine the effects of various system parame-
ters on the performance of the PU in the presence of interference from SUs. Consequently, PU
capacity-outage probabilities are introduced as a measure to maintain QoS for PUs in designing
OSA schemes for SUs.

In cognitive radio networks, beacon signaling can be used by PUs in order to help SUs in the
detection of spectrum holes [108–110]. In a cognitive network using a beacon, different locations
are considered for the beacon transmitter to study the aggregate interference. The beacon trans-
mitter could be located at the PU receiver [64, 110] or at the PU transmitter [65]. Accordingly,
we analyze the effects of the beacon transmitter location on the aggregate interference caused by
SUs and the performance of the PU dealing with such aggregate interference. In addition, we
study the effects of applying cooperative sensing [111–116] in a cognitive radio network on the
mitigation of interference. More specifically, we look into the interference distribution and the
capacity-outage probability of the PU, while SUs use OR (logical OR operation) and maximum
likelihood (ML) cooperative techniques to detect the spectrum holes.

The remainder of this chapter is organized as follows. After a brief overview of the system
configuration and modeling in Section 6.2, Section 6.3 provides the probability density function
(PDF) of the aggregate interference over Nakagami fading channels and the closed-form expres-
sion for the capacity-outage probability when the beacon transmitter is at the PU receiver. Sec-
tion 6.4 presents the interference distribution and closed-form expression for the capacity-outage
probability for the case in which the beacon transmitter is at the PU transmitter. In addition, the
performance comparison is provided to study the beacon transmitter placement effect. In Sec-
tion 6.5, the interference and capacity-outage analysis of a network with cooperative sensing are
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Fig. 6.1 Network model.

studied. Finally, Section 6.6 presents the concluding remarks.

6.2 System Configuration and Modeling

To model the aggregate interference caused by SUs to a PU in a single licensed channel, we
consider a PU communications link of distance R0 surrounded by Ns SUs. According to the
proposed transmission strategy for SUs in Chapter 3, we assume that each SU has an activity
factor of β, which is the probability that the SU is actively transmitting. Furthermore, we assume
that the SUs are uniformly located with a density of λd SUs per unit area in a ring centered at
the PU receiver with the inner radius ε and the outer radius of R, where ε < R0. In other words,
ε represents the minimum allowable distance between a transmitter and a receiver. Under these
assumptions, the distance between the SU transmitter k and the PU receiver, rk, is a random
variable with PDF frk(rk) = 2rk(R

2 − ε2)−1, where ε ≤ rk ≤ R. Moreover, the angle θk, which
the SU transmitter k makes to the line connecting the PU transmitter and receiver, is uniformly
distributed between 0 and 2π (see Figure 6.1).

The wireless channel model includes the path loss and the small-scale fading, i.e., the channel
response can be expressed as h = h̃Ad−

α
2 , where d is the distance between the transmitter and

the receiver under consideration, α ≥ 2 is the path-loss exponent, A is a constant dependent
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on the frequency and transmitter/receiver antenna gain, and h̃ represents the small-scale fading
component. Since such a model is valid for d ̸= 0, we assume that transmitters cannot be located
closer than an arbitrarily small distance ε > 0 (i.e., a minimum allowable distance between a
transmitter and a receiver). For simplicity, without loss of generality, we normalize A = 1 in the
following discussion. The channel response of the PU transmitter-receiver link is denoted as h0,
whereas that of the interference link from the SU transmitter k to the PU receiver is denoted as
hk.

To indicate the presence of PU transmission, we assume that a beacon signal is transmitted
on an out-of-band control channel. If a SU correctly detects the beacon, it will be silent for
the whole PU transmission period. In the case that it miss-detects the beacon, the SU transmits
concurrently with the PU with a probability that is its activity factor β. As a result, it may
introduce interference to the PU. Different approaches are proposed in literature for the spectrum
sensing in cognitive radio networks such as the direct spectrum sensing (i.e., sensing the PU
signal) [117] and spectrum sensing through beacon signals [108]. In this work, we consider the
spectrum sensing through beacons in order to study the effects of beacon transmitter placement
on the aggregate interference. However, the aggregate interference analysis for the direct sensing
is similar to the case when the beacon transmitter is located at the PU transmitter. Therefore, the
results can be applied for the direct sensing as well.

Assume an energy detection scheme in which the SU declares the beacon presence if its
received power from the beacon is larger than a threshold. The received beacon signal at the
SU transmitter k can be presented as yB,k = g̃kd

−α
2

B,kxB + zB where xB is the transmitted beacon
signal with power PB, dB,k is the distance between the beacon transmitter and the SU transmitter
k, g̃k represents the small-scale fading over the link between the beacon transmitter and the
SU transmitter k, and zB ∼ N (0, σ2

B) is the additive white Gaussian noise (AWGN). Hence,
the received signal-to-noise ratio (SNR) of the beacon signal at the SU transmitter k is ηk =
PB|g̃k|2d−α

B,k

σ2
B

.
In [118], the exact detection probability of an energy detector is derived as a function of

ηk. In particular, Pd(ηk) = Q
(

Q−1(Pfa)−
√
νηk√

1+2ηk

)
where Pfa is the false alarm probability and ν is

the product of the energy detector’s integration time and the channel bandwidth. In [64], it is
shown that for a small Pfa (e.g., Pfa < 0.01), the detection probability can be approximated as

Pd(ηk) ≃

 0, ηk < η0

1, ηk ≥ η0
, where η0 = Q−1(Pfa)√

ν
. Hence, the average beacon miss-detection
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probability of the SU k can be approximated as

Pm,k ≃ Prob(ηk < η0). (6.1)

Assuming γ =
σ2
Bη0
PB

, then

Pm,k ≃ Prob

(
|g̃k|2 <

σ2
Bη0
PB

dαB,k

)
= Prob(|g̃k|2 < γdαB,k). (6.2)

Let x0 and xk be the transmitted signals from the PU and the SU k with power of P0 and P ,
respectively. The received signal at the PU receiver can be written as

y0 = h0x0 +
Ns∑
k=1

Fkhkxk + z0 (6.3)

where z0 ∼ N (0, σ2
0) is AWGN and Fk, which indicates the coincident transmission of the SU k

with the PU transmission, is a Bernoulli random variable, i.e.,

Fk =

 1, with probability Pm,kβ

0, with probability 1− Pm,kβ
. (6.4)

Since xk in (6.3) are independent and zero-mean signals with power P , according to (6.3) and
(6.4), the aggregate interference caused by SUs becomes

I0 =
Ns∑
k=1

Ik, Ik = Pm,kLk = Pm,kβP |h̃k|2r−α
k (6.5)

where Lk = Pβ|h̃k|2r−α
k denotes the level of interference that the SU k causes to the PU receiver

if it miss-detects the beacon signal. According to (6.5), the contribution level of the SU k to the
aggregate interference depends on the product Pm,kLk.
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6.3 Beacon Transmitter at the Primary User Receiver

6.3.1 Interference Model

In this section, we study the probabilistic properties of aggregate interference in small-scale fad-
ing channels when the beacon transmitter is located at the PU receiver.

Rayleigh fading

In a Rayleigh fading channel, |g̃k|2 has an exponential distribution with parameter 1. Therefore,
according to (6.2), the beacon miss-detection probability is given by

Pm,k ≃ 1− e−γdαB,k . (6.6)

The beacon miss-detection probability must be kept low, typically lower than 3% for good oper-
ation, and in this range, it can be further approximated as

Pm,k ≃ 1− e−γdαB,k ≃ 1− (1− γdαB,k) = γdαB,k. (6.7)

When the beacon transmitter is located at the primary receiver, dB,k = rk, and from (6.5) and
(6.7), Ik = Pβγ|h̃k|2. Since |h̃k|2 has an exponential distribution with parameter 1, Ik, k =

1, . . . , Ns are i.i.d. random variables and have the exponential distribution with parameter 1
Pβγ

.
As a result, I0 =

∑Ns

k=1 Ik has a Gamma distribution with shape parameter Ns, scale parameter
Pβγ and E[I0] = NsPβγ, i.e.,

fI0(i0;Ns, Pβγ) =
iNs−1
0 e−

i0
Pβγ

(Pβγ)NsΓ(Ns)
, i0 > 0. (6.8)

Figure 6.2 illustrates the plot of the cumulative distribution function (CDF) of aggregate inter-
ference. The plot confirms that the Gamma distribution with the calculated parameters has an
accurate fit for the interference distribution 2.

2β = 0.01, λd = 0.01, γ = 10−6, P = 1, ε = 1, R0 = 5 and R = 50 are used for numerical results shown in
Figures 6.2-6.15 unless specified otherwise.
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Fig. 6.2 CDF of the aggregate interference in a Rayleigh fading channel for the
beacon transmitter at the PU receiver.

Nakagami fading

In a Nakagami fading channel parameterized by the average received power Pavg and the fading
parameter m, the channel power (i.e., |h̃k|2 and |g̃k|2) has a Gamma distribution with the shape
parameter ζ = m and the scale parameter θ = 1

m
assuming Pavg = 1. Considering the CDF of

the Gamma distribution, according to (6.2), the miss-detection probability is

Pm,k = Prob(|g̃k|2 < γrαk ) =
Γ(ζ, γrαk /θ)

Γ(ζ)
=

Γ(m,mγrαk )

Γ(m)
(6.9)

where Γ(s) =
∫ +∞
0

ts−1e−tdt is the Gamma function and Γ(s, x) =
∫ x

0
ts−1e−tdt is the lower

incomplete Gamma function. For small γ ≪ 1, Γ(m,mγrαk ) ≈
(mγrαk )

m

m
. Therefore, according to

(6.5), the aggregate interference is

I0 =
Ns∑
k=1

Ik, Ik = Pβ
(mγ)m

mΓ(m)
|h̃k|2rα(m−1)

k . (6.10)

To present a statistical model for the interference, the mean and variance of the aggregate inter-
ference are calculated. Since frk(rk) = 2rk(R

2 − ε2)−1, where ε ≤ rk ≤ R, then for ε ≪ R,
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E
[
r
α(m−1)
k

]
≃ 2Rα(m−1)

α(m−1)+2
. Note that E[.] and var[.] denote expectation and variance respectively.

Therefore, the mean of aggregate interference becomes

E[I0] ≃ NsPβ
(mγ)m

mΓ(m)

2Rα(m−1)

α(m− 1) + 2
. (6.11)

Since var
[
|h̃k|2rα(m−1)

k

]
≃ R2α(m−1)

m

[
2−α(m−1)2

(α(m−1)+1)(α(m−1)+2)

]
, then

var[I0] ≃ Ns

(
Pβ

(mγ)m

mΓ(m)

)2
R2α(m−1)

m

[
2− α(m− 1)2

(α(m− 1) + 1)(α(m− 1) + 2)

]
. (6.12)

By using mean squared-error curve-fitting for different numbers of SUs, the Gamma distribu-
tion is found to have a good agreement with the simulation results. For a given set of {rk},
Ik, k = 1, . . . , Ns are Gamma random variables. As a sum of Gamma random variables, I0 (con-
ditioned on {rk}) is a Gamma random variable as well with E[I0|{rk}] ≃ Pβ (mγ)m

mΓ(m)

∑Ns

k=1 r
α(m−1)
k

and var[I0|{rk}] =
(
Pβ (mγ)m

mΓ(m)

)2∑Ns

k=1

r
2α(m−1)
k

m
. For a large number of SUs independently and

identically distributed uniformly in the circular area with ε ≤ rk ≤ R, I0 (unconditioned)
can be approximated as a Gamma random variable with E[I0] ≃ NsPβ (mγ)m

mΓ(m)
E[r

α(m−1)
k ] and

var[I0] = Ns

(
Pβ (mγ)m

mΓ(m)

)2
var
[
|h̃k|2rα(m−1)

k

]
in (6.11) and (6.12).

According to (6.11) and (6.12), the shape parameter ζ and the scale parameter θ of Gamma
distribution can be derived as

ζ =
E2[I0]

var[I0]
= Nsm

4(α(m− 1) + 1)

(α(m− 1) + 2)(2− α(m− 1)2)
,

θ =
var[I0]

E[I0]
= Pβ

(mγ)m

mΓ(m)

Rα(m−1)

m

2− α(m− 1)2

2(α(m− 1) + 1)
. (6.13)

Figure 6.3 compares the simulations results with Gamma distribution with the calculated parame-
ters for different m. It shows that the Gamma approximation matches closely with the simulation
results.

6.3.2 Capacity-Outage Probability

In the presence of interference from SUs, the instantaneous capacity of the PU is CI0 = log2(
1 + |h0|2 P0

I0+σ2
0

)
. Given a required PU threshold rate C0, the capacity-outage probability can be
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(b) m = 3

Fig. 6.3 CDF of the aggregate interference in Nakagami fading channels with non-
cooperative sensing and the beacon transmitter at the PU receiver.
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calculated as

Pout = E[Prob[CI0 ≤ C0|I0]] (6.14)

where Prob [CI0 ≤ C0|I0] = Prob
[
|h̃0|2 ≤ P−1

r (I0 + σ2
0)
]

and Pr = P0(2
C0 − 1)−1R−α

0 . As-
suming Rayleigh fading channel, |h0|2 has the exponential distribution with parameter 1 and I0

has the Gamma distribution represented by its PDF fI0(i0;Ns, Pβγ) given by (6.8). As a result,

Prob[|h̃0|2 ≤ P−1
r (I0 + σ2

0)] = 1− eP
−1
r (I0+σ2

0) (6.15)

and

Pout = 1− e−
σ2
0

Pr

∫ +∞

0

e−
i0
Pr fI0(i0;Ns, Pβγ)di0

= 1− e−
σ2
0

Pr

(
1 +

θ

Pr

)−ζ

= 1− e−
σ2
0

Pr

(
1 +

Pβγ

Pr

)−Ns

. (6.16)

For low outage probability, e.g., 3% or less, the above expression can be approximated as

Pout = 1−
(
1− σ2

0

Pr

)(
1−Ns

Pβγ

Pr

)
≈ σ2

0 +NsPβγ

Pr

=

(
P0R

−α
0

σ2
0 +NsPβγ

)−1

(2C0 − 1).

(6.17)

In the above expression, P0R
−α
0 is the average power of the received PU signal, whereas NsPβ

represents the average total transmitted power from SUs. NsPβγ can be interpreted as the effec-
tive interference, and P0R

−α
0

σ2
0+NsPβγ

represents the average signal-to-SU-interference-and-noise ratio
(SINR) at the PU receiver. In other words, the above expression indicates that the capacity-outage
probability is approximately proportional to the inverse of the SINR, and exponentially increases
with the required PU threshold rate C0. The expression is also applicable for the case of no SU by
setting Ns, β, or γ to 0. Figure 6.4 illustrates the plots of the capacity-outage probability versus
the PU threshold rate C0 (in b/s/Hz) for different SINR values. The plot confirms the precision
of the analytical derivation in (6.16) as it closely matches the simulation results. It also supports
the result that the capacity-outage probability is approximately proportional to the inverse of the
SINR by comparing different plots for a given C0.
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Fig. 6.4 PU capacity-outage probability versus required threshold rate for various
SINRs in a Rayleigh fading channel with the beacon transmitter at the PU receiver.

Assuming different activity factors βi
k for SUs in a specific channel i, the effective interference

power (i.e., aggregate interference mean) which limit the capacity-outage probability of PU is∑Ns

k=1 Pβi
kγ. Hence, SUs need to keep this effective interference parameter below a certain level

(i.e., Ith) to guarantee an acceptable capacity-outage probability for the PUs in each channel.
Thus,

Ns∑
k=1

Pβi
kγ ≤ Ith ⇒

Ns∑
k=1

βi
k ≤ βth. (6.18)

where βth = Ith
Pγ

. Since we already had the orthogonal sharing constraints (i.e.,
∑Ns

k=1 β
i
k ≤ 1)

in the activity factor allocation problem (3.8), the PU capacity-outage constraints (due to the
imperfect sensing) do not affect the developed algorithms in Chapter 3 and Chapter 4.
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6.4 Beacon Transmitter at the Primary User Transmitter

6.4.1 Interference Model

Rayleigh fading

When the beacon transmitter is located at the PU transmitter, the distance between the beacon
transmitter and the SU transmitter k is dB,k =

√
r2k +R2

0 − 2rkR0 cos θk. From (6.5) and (6.7),
the instantaneous interference from the SU transmitter k to the PU receiver becomes

Ik = Pβγ|h̃k|2
[
1 +

R2
0

r2k
− 2

R0

rk
cosθk

]α/2
(6.19)

where rk is a random variable with PDF frk(rk) = 2rk(R
2 − ε2)−1, where ε ≤ rk ≤ R, and

the angle θk, which the SU transmitter k makes to the line connecting the PU transmitter and
receiver, is uniformly distributed between 0 and 2π. The aggregate interference from SUs is

I0 =
Ns∑
k=1

Pβγ|h̃k|2
[
1 +

R2
0

r2k
− 2

R0

rk
cosθk

]α/2
. (6.20)

To present a statistical model for the interference, the aggregate interference mean is calculated.

Since E
[
|h̃k|2

]
= 1, E[I0] = NsPβγE

[[
1 +

R2
0

r2k
− 2R0

rk
cos θk

]α/2]
. By approximating E[I0]

with four terms, the mean of aggregate interference becomes

E[I0] ≃ NsPβγ

(
1−

(
α
2

1

)
E

[
2
R0

rk
cosθk

]
+

(
α
2

1

)
E

[
R2

0

r2k

]
+

(
α
2

2

)
E

[
4
R2

0

r2k
cos2θk

])
.

(6.21)

Since E[cos θk] = 0, E[cos2 θk] = 0.5 and E[r−2
k ] = 2(ln(R)−ln(ε))

(R2−ε2)
,

E[I0] ≃ NsPβγ

(
1 + 0.5α2R2

0

(
ln(R)− ln(ε)

R2 − ε2

))
. (6.22)

Based on the probabilistic properties of θk, |h̃k|2, and rk, sample values of I0 can be generated
by simulation to obtain the histogram of its distribution as shown in Figure 6.5. The aggregate
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Fig. 6.5 Histogram and PDF of interference I0 in a Rayleigh fading channel with
path-loss exponent α = 2.1.

interference from SUs can be approximated as

I0 ≈
Ns∑
k=1

Pβγ|h̃k|2 + Ī0. (6.23)

In other words, in a Rayleigh channel, the aggregate interference from SUs can be approximated
as a shifted-Gamma distributed random variable with the PDF

fI0(i0;Ns, Pβγ, Ī0) =
(i0 − Ī0)

Ns−1e−
(i0−Ī0)
Pβγ

(Pβγ)NsΓ(Ns)
, i > Ī0 (6.24)

where Ns, Pβγ and Ī0 are, respectively, the shape parameter, the scale parameter and the shift
parameter. According to (6.22) and (6.23), Ī0 ≃ 0.5NsPβγα2R2

0

(
ln(R)−ln(ε)

R2−ε2

)
. The shift param-

eter empowers us to match the skewness of the distribution, in addition to the scale and shape
parameters. If µ, σ2 and κ are considered as mean, variance, and skewness of the aggregate
interference I0, then Ns = 4κ−2, Pβγ = σκ

2
and Ī0 = µ− 2σκ−1.

The CDF of the aggregate interference plotted in Figure 6.6 shows that the shifted-Gamma
approximation closely follows the simulation results and is more accurate than the Gamma ap-
proximation.
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Fig. 6.6 CDF of aggregate interference in a Rayleigh fading channel for the beacon
transmitter at the PU transmitter.

6.4.2 Capacity-Outage Probability

A closed-form expression for the outage probability of the PU related to the mean and variance
of the interference can be derived to quantify the effect of SUs by using (6.15), where I0 has
the shifted-Gamma distribution represented by its PDF fI0(i0;Ns, Pβγ, Ī0) given by (6.24). As a
result,

Pout = 1− e−
σ2
0

Pr

∫ +∞

0

e−
i0
Pr fI0(i0;Ns, Pβγ, Ī0)di0 = 1− e−

(σ2
0+Ī0)

Pr

(
1 +

Pβγ

Pr

)−Ns

. (6.25)

For low outage probability, e.g., 3% or less, the above expression can be approximated as

Pout ≈ 1−
(
1− (σ2

0 + Ī0)

Pr

)(
1−Ns

Pβγ

Pr

)
≈ (σ2

0 + Ī0) +NsPβγ

Pr

=

(
P0R

−α
0

σ2
0 + Ī0 +NsPβγ

)−1

(2C0 − 1). (6.26)

The expression in (6.26) is very much similar to (6.17) with the same average power of the re-
ceived PU signal, as represented by P0R

−α
0 , whereas the effective interference becomes NsPβγ+

Ī0, which is increased by an additional term Ī0, as compared to that in the case of beacon trans-
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Fig. 6.7 PU capacity-outage probability versus required threshold rate for various
SINRs in a Rayleigh fading channel with the beacon transmitter at the PU transmitter.

mitter at the PU receiver.
Figure 6.7 illustrates the plots of the capacity-outage probability versus the PU threshold

rate C0 (in b/s/Hz) for different values of SINR , P0R
−α
0

σ2
0+NsPβγ

. The plots confirm the precision
of the analytical derivation in (6.25) as they closely match the simulation results. Furthermore,
as compared to results in Figure 6.4, for the same SINR and PU threshold rate C0, the beacon
transmitter at the PU transmitter yields a higher capacity-outage probability than the beacon
transmitter at the PU receiver.

6.4.3 Beacon Transmitter Placement Comparison

In this section, with focus on the general network model in Figure 6.1, we study the effect of
beacon transmitter placement on the performance of the network by comparing the aggregate
interference mean and the capacity-outage probability of PU for two different scenarios: the
beacon transmitter 1) at the PU transmitter or 2) at the PU receiver.

As shown in (6.5), the contribution level of SU k to the aggregate interference depends on
the product Pm,kLk. The probability of miss-detection Pm,k (and also the probability of causing
interference) depends on the distance from the SU transmitter k to the beacon transmitter, dB,k,
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Fig. 6.8 Interference mean E[I0] versus PU transmitter-receiver distance R0.

whereas the interference level Lk depends on the distance from the SU transmitter k to the PU
receiver, rk. This fact makes the location of beacon transmitter (at the PU transmitter or at the
PU receiver) influencing the effective aggregate interference differently. In locations of high
interference level Lk (i.e., when the SU transmitter is close to the PU receiver), placing the
beacon transmitter at the PU transmitter increases the probability of causing interference Pm,k,
whereas placing the beacon transmitter at the PU receiver decreases the probability of causing
interference. As a result, placing the beacon transmitter at the PU transmitter causes higher
Pm,kLk and hence higher effective aggregate interference in comparison with locating the beacon
transmitter at the PU receiver.

As shown in (6.26), as compared to the case with the beacon transmitter at the PU receiver,
the use of beacon transmitter at the PU transmitter introduces extra interference, represented
by Ī0. Consequently, the PU capacity-outage probability is increased. It means that, for the
network model considered in Figure 6.1, placing the beacon transmitter at the PU receiver is
more beneficial to avoid interference increase although it is more practical to put the beacon
transmitter at the PU transmitter.

Figure 6.8 illustrates the plots of aggregate interference mean versus R0 for two different
scenarios, i.e., the beacon transmitter at the PU receiver and the beacon transmitter at the PU
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Fig. 6.9 PU capacity-outage probability versus required threshold rate.

transmitter. Both analytical results and simulation results are provided. It can be observed that
the analytical results according to E[I0] = NsPβγ for the case with beacon transmitter at primary
receiver and (6.22) match closely with the respective simulation results. It is apparent that the
mean value (i.e., E[I0] = NsPβγ) is independent of R0 when the beacon transmitter located at
the PU receiver. However, when the beacon transmitter is located at the PU transmitter, the mean
value according to (6.22) is an increasing function of R0. The plots show that the interference
increase caused by locating the beacon transmitter at the PU transmitter is larger when the PU
transmitter-receiver link is longer.

Figure 6.9 compares the capacity-outage probability of two different beacon transmitter place-
ments, and shows that setting the beacon transmitter at the PU receiver improves the capacity-
outage performance of PU by reducing the effective interference. Furthermore, in accordance
with the results in Figure 6.8, it confirms that this PU capacity-outage performance improvement
increases with larger PU transmitter-receiver distance R0.
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6.5 Cooperative Sensing

In this section, we provide a study on the effect of cooperative sensing (i.e., OR sensing and
ML sensing) on alleviating the aggregate interference in Nakagami fading channels assuming
a beacon transmitter at the PU receiver (i.e., dB,k = rk and g̃k = h̃k). Since our objective is
to highlight the impact of SU cooperation on the aggregate interference rather than designing
advanced cooperation schemes, we simply consider the following cooperation protocol. Upon
detecting a beacon, a SU broadcasts a signal–which can be the preliminary result as 1 bit in OR
cooperation or the received beacon signal power in ML cooperation–to its neighbors within its
cooperation range. In this simple protocol, SUs broadcast their messages in different time-slots
of a control frame on a dedicated control channel.

The probabilistic properties of aggregate interference are investigated for OR and ML coop-
erative sensing in Nakagami fading channels. The closed-form expressions for capacity-outage
probability are derived in Rayleigh fading channels. Comparing the mean of interference and
capacity-outage probability, it can be concluded that increasing the cooperation range (i.e., in-
creasing the number of cooperating SUs) offers lower interference and, hence, better capacity-
outage probabilities. In addition, it is shown that employing ML cooperative sensing offers lower
interference at the cost of requiring more signaling overheads.

6.5.1 OR Detector

Interference Model

In OR cooperative detection, it is assumed that each SU sends its preliminary detection deci-
sion as 1 bit via the cooperation channel. The SUs within a certain range (cooperation Rc) can
correctly receive the other SUs’ preliminary decisions. Each SU will use the OR rule on the
preliminary decisions to decide finally if the PU exists. Then, the new beacon miss-detection
probability of each SU with OR sensing is the product of the preliminary miss-detection proba-
bility of that SU and the probability that all of the SUs in its cooperation range miss-detect the
beacon.

According to (6.9), the miss-detection probability can be written as Pm,k =
∏Nc

j=1

Γ(m,mγrαj )

Γ(m)

where Nc = 1 + λdπR
2
c is the number of cooperating SUs. Considering Rc < R, where R

is the outer radius of the network, all rj in the cooperation range of SU k are assumed equal
to rk to simplify the problem. Therefore, the new beacon miss-detection probability is Pm,k ≃
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(
Γ(m,mγrαk )

Γ(m)

)Nc

. For small γ ≪ 1, it can be approximated as

Pm,k ≃
(
(mγrαk )

m

mΓ(m)

)Nc

. (6.27)

Since dB,k = rk, according to (6.5) and (6.27),

I0 =
Ns∑
k=1

Ik, Ik = Pβ
(mγ)Ncm

(mΓ(m))Nc
|h̃k|2rα(Ncm−1)

k . (6.28)

Similar to (6.11) and (6.12), the mean and variance of aggregate interference can be derived as

E[I0] = NsPβ
(mγ)Ncm

(mΓ(m))Nc

2Rα(Ncm−1)

α(Ncm− 1) + 2
, (6.29)

var[I0] = Ns

(
Pβ

(mγ)Ncm

(mΓ(m))Nc

)2
Rα(Ncm−1)

m

[
2− α(m− 1)(mNc − 1)

(α(mNc − 1) + 1)(α(mNc − 1) + 2)

]
. (6.30)

Similar to the non-cooperative case, by using mean squared-error curve-fitting for different num-
ber of SUs, the Gamma distribution matches closely with the simulation results. For a given set of
{rk}, Ik, k = 1, . . . , Ns are Gamma random variables. As the sum of Gamma random variables,
I0 (conditioned on {rk}) is a Gamma random variable with E[I0|{rk}] ≃ Pβ (mγ)Ncm

(mΓ(m))Nc

∑Ns

k=1 r
α(Ncm−1)
k

and var[I0|{rk}] =
(
Pβ (mγ)Ncm

(mΓ(m))Nc

)2∑Ns

k=1

r
2α(Ncm−1)
k

m
. For a large number of SUs independently

and identically distributed uniformly in the circular area with ε ≤ rk ≤ R, I0 (unconditioned)
can be approximated as a Gamma random variable with E[I0] ≃ Pβ (mγ)Ncm

(mΓ(m))NcE
[
r
α(Ncm−1)
k

]
and

var[I0] =
(
Pβ (mγ)Ncm

(mΓ(m))Nc

)2
var
[
|h̃k|2rα(Ncm−1)

k

]
in (6.29) and (6.30). According to (6.29) and

(6.30), the shape parameter ζ and the scale parameter θ of Gamma distribution are derived as

ζ = Nsm
4(α(mNc − 1) + 1)

(α(mNc − 1) + 2)(2− α(m− 1))(mNc − 1)
,

θ = Pβ
(mγ)Ncm

(mΓ(m))Nc

Rα(Ncm−1)

m

2− α(m− 1)(mNc − 1)

2(α(mNc − 1) + 1)
. (6.31)

Figure 6.10 shows the CDF of the aggregate interference for Rc = 10 in Nakagami fading
channel with m = 1 and m = 2. It shows that the Gamma distribution provides a close fit for the
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Fig. 6.10 CDF of aggregate interference in Nakagami fading channels with OR
sensing (Rc = 10).
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aggregate interference.

Capacity-outage probability

In this section, we derive the capacity-outage probability of PU in the Rayleigh fading channel.
Since the aggregate interference is approximated as a Gamma random variable with the calculated
parameters in (6.31), similar to (6.16), the capacity-outage probability becomes

Pout = 1− e−
σ2
0

Pr

(
1 +

θ

Pr

)−ζ

= 1− e−
σ2
0

Pr

(
1 +

PβγNcRα(Nc−1)/(α(Nc − 1) + 1)

Pr

) 2Ns(α(Nc−1)+1)
(α(Nc−1)+2)

. (6.32)

For low outage probability, e.g., 3% or less, the expression in (6.32) can be approximated as

Pout ≈ 1−
(
1− σ2

0

Pr

)(
1− 2Ns

(α(Nc − 1) + 2)

PβγNcRα(Nc−1)

Pr

)
≈

σ2
0 +

2NsPβγNcRα(Nc−1)

(α(Nc−1)+2)

Pr

=

(
P0R

−α
0

σ2
0 +

2NsPβγNcRα(Nc−1)

(α(Nc−1)+2)

)−1

(2C0 − 1). (6.33)

In the above expression, 2NsPβγNcRα(Nc−1)

α(Nc−1)+2
represents the average total transmitted power from

SUs applying OR cooperative sensing, which can be interpreted as the effective interference,
and P0R

−α
0

σ2
0+

2NsPγNcRα(Nc−1)

α(Nc−1)+2

represents the average signal-to-SU-interference-and-noise (SINR) at the

PU receiver. In other words, the above expression indicates that the capacity-outage probability
is approximately proportional to the inverse of the SINR, and exponentially increases with the
required PU threshold rate C0 similar to (6.17) and (6.26). The result is also applicable for the
non-cooperative sensing schemes when Nc = 1. It is because SINR turns to P0R

−α
0

σ2
0+NsPβγ

in this
case.

Figure 6.11 illustrates the plots of the capacity-outage probabilities versus the PU threshold
rate C0 (in b/s/Hz) for Rc = 10 for different values of SINR , P0R

−α
0

σ2
0+NsPβγ

.
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Fig. 6.11 PU capacity-outage probability versus required threshold rate for various
SINRs with OR sensing in a Rayleigh fading channel.

6.5.2 Maximum Likelihood Detector

Interference Model

In ML cooperative detection, each SU sends the received beacon signal power to the other SUs
in its cooperation range. Thus, at each SU, a final detection decision will be made based on
the total sum of received beacon powers, including directly from the beacon transmitter and the
nearby SUs. Then, according to (6.1), the new beacon miss-detection probability of each SU
with ML sensing will be Pm,k = Prob[ηk−Tot < η0] where ηk−Tot denotes total received beacon
SNR at the SU k. ηk−Tot can be presented as ηk−Tot = ηk +

∑Nc

j=1,j ̸=k ήj where ηk is the beacon
SNR which is received at the SU k directly from the beacon transmitter and ήj is the received
beacon SNR relayed from SU j. Due to double AWGN at relay and at destination SU, ήj = 1

2
ηj

where ηj represents the directly received beacon SNR from beacon transmitter at SU j. Hence,

ηk−Tot = ηk +
1
2

∑Nc

j=1,j ̸=k ηj =
Pb[ 12

∑Nc
j=1,j ̸=k |hj |2r−α

j +|hk|2r−α
k ]

σ2
B

.
Considering Rc < R, all rj in the cooperation range of SU k are considered equal to rk. Then,
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ηk−Tot =
Pbr

−α
k

σ2
B

[
1
2

∑Nc

j=1,j ̸=k |h̃j|2 + |h̃k|2
]
. Hence, the miss-detection probability becomes

Pm,k = Prob[ηk−Tot < η0] = Prob

[
1

2

Nc∑
j=1,j ̸=k

|h̃j|2 + |h̃k|2 < γrαk

]
≤ Prob

[
Nc∑
j=1

|h̃j|2 < 2γrαk

]
.

(6.34)

To find a closed-form expression, the miss-detection probability of ML cooperative sensing is
approximated with a tight upper-bound for Nc ≫ 1. Considering Nakagami fading with m and
Pr = 1,

∑Nc

j=1 |h̃j|2 has a Gamma distribution with ζ = Ncm and θ = 1
m

. According to the CDF
of Gamma distribution, the miss-detection is derived as

Pm,k ≃
Γ(ζ, 2γrαk /θ)

Γ(ζ)
≃ Γ(Ncm, 2mγrαk )

Γ(Ncm)
. (6.35)

For small γ, the lower incomplete Gamma function can be approximated as Γ(Ncm,mγrαk ) ≈
(2mγrαk )

Ncm

Ncm
. Therefore, according to (6.5) and (6.35), the aggregate interference becomes

I0 =
Ns∑
k=1

Ik, Ik ≃ Pβ
(2mγ)Ncm

NcmΓ(Ncm)
|h̃k|2rα(Ncm−1)

k . (6.36)

Similar to (6.11) and (6.12), the mean and variance of aggregate interference are computed as

E[I0] = NsPβ
(2mγ)Ncm

NcmΓ(Ncm)

2Rα(Ncm−1)

α(Ncm− 1) + 2
, (6.37)

var[I0] = Ns

(
Pβ

(2mγ)Ncm

NcmΓ(Ncm)

)2
2Rα(Ncm−1)

m

[
2− α(m− 1)(mNc − 1)

(α(mNc − 1))(α(mNc − 1) + 2)

]
. (6.38)

Similar to non-cooperative sensing and OR sensing, the Gamma distribution also matches closely
with the simulation results in ML sensing with the following scale and shape parameters:

ζ = Nsm
4(α(mNc − 1) + 1)

(α(mNc − 1) + 2)(2− α(m− 1)(mNc − 1))
,

θ =
Pβ(2mγ)Ncm

NcmΓ(Ncm)

Rα(Ncm−1)

m

2− α(m− 1)(mNc − 1)

2(α(mNc − 1) + 1)
. (6.39)
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Figures 6.12 shows the CDF of the aggregate interference for Rc = 10 in Nakagami fading
channels with m = 1 and m = 2. It shows that the Gamma distribution provides a close estimate
of the interference CDF.

In Figures 6.13, the mean of interference is plotted as a function of cooperation range based
on simulation results and analytical results according to (6.29) and (6.37). Figure 6.13 confirms
the accuracy of the analytical derivations in (6.29) and (6.37) since they closely match the sim-
ulation results. It is also shown that the mean of interference is a decreasing function of Rc,
since increasing the number of cooperating users (i.e., increasing Rc) is beneficial to reduce the
miss-detection probability. When Rc is equal to R (e.g. Rc = R = 50), it represents the sce-
nario where all SUs cooperate for spectrum sensing. It illustrates that the cooperation of all SUs
will be beneficial to cause the least interference mean. In addition, the results show that ML
sensing offers lower interference due to further detection improvement based on more signaling
information as compared to the OR detector.

Capacity-outage probability

In this section, we study the capacity-outage probability of PU for ML cooperative sensing. Ac-
cording to (6.16) and (6.39), the outage probability is

Pout = 1− e−
σ2
0

Pr

(
1 +

θ

Pr

)−ζ

= 1− e−
σ2
0

Pr

1 +

Pβ(2γ)NcRα(Nc−1)

NcΓ(Nc)(α(Nc−1)+1)

Pr

− 2Ns(α(Nc−1)+1)
(α(Nc−1)+2)

. (6.40)

For low outage probability, e.g., 3% or less, (6.40) can be approximated as

Pout ≈ 1−
(
1− σ2

0

Pr

)(
1− 2Ns

(α(Nc − 1) + 2)

Pβ(2γ)NcRα(Nc−1)

Pr

)

≈
σ2
0 +

2NsPβ(2γ)NcRα(Nc−1)

NcΓ(Nc)(α(Nc−1)+2)

Pr

=

 P0R
−α
0

σ2
0 +

2NsPβ(2γ)NcRα(Nc−1)

NcΓ(Nc)(α(Nc−1)+2)

−1

(2C0 − 1), Nc ≫ 1. (6.41)

Comparing to the capacity-outage probability for OR sensing, it is obvious that the capacity-
outage probability is smaller with cooperative ML sensing because of lower effective interference
2NsPβ(2γ)NcRα(Nc−1)

NcΓ(Nc)(α(Nc−1)+2)
for Nc ≫ 1. Figures 6.14 illustrates the capacity-outage probability versus

the PU threshold rate C0 (in b/s/Hz) for Rc = 10 for different values of SINR , P0R
−α
0

σ2
0+NsPβγ

.
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Figures 6.15 compares the capacity-outage probabilities for ML and OR sensing in a certain
SINR for small and large Nc. It is shown that the larger number of cooperating SUs offers
larger performance gains for ML sensing in comparison with OR sensing. Moreover, it is shown
how cooperative sensing with larger number of cooperating SUs improves the capacity-outage
probability by offering lower interference. For example, increasing the cooperation range from
Rc = 5 to 10 approximately reduces capacity-outage probability of the PU by six orders of
magnitude for OR cooperation and seven orders of magnitude for ML cooperation.

6.6 Concluding Remarks

In this chapter, we have studied the aggregate interference model and its probability distribution in
a cognitive radio network–which consists of multiple SUs and a single PU–with beacon signaling.
The capacity-outage probability of the PU has also been discussed to investigate the effects of
aggregate interference on the PU performance.

First, we have derived closed-form expressions representing the aggregate interference im-
posed by SUs to the PU receiver and PU capacity-outage probability for both cases: beacon
transmitter at PU transmitter and receiver. These results can be used to establish cognitive ra-
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dio network parameters and/or to estimate its performance. We have provided simulation and
numerical results to verify the derived closed-form results. It is shown that locating the beacon
transmitter at the PU receiver could be beneficial to enhance the performance by comparing the
mean value of aggregate interference and the capacity-outage probability of PU.

Then, we have derived closed-form expressions for interference and capacity-outage proba-
bility for OR and ML cooperative sensing. Simulation and analytical results indicate that cooper-
ation can be used to maintain the capacity-outage probability of the PU at the desired level when
it is not practical to enhance the sensitivity of the individual detectors. Comparing the capacity-
outage probabilities and interference means, it is shown that ML cooperative sensing offers lower
interference in comparison with OR cooperative sensing.
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Chapter 7

Conclusions

7.1 Summary

Opportunistic spectrum access and the adopting technology, i.e., cognitive radio, are expected to
lead the key evolutions in the next-generation wireless communications, aiming to improve the
spectral efficiency and enhance the performance of wireless systems. Nevertheless, standardiza-
tion and development of OSA have to deal with several technical considerations and regulatory
requirements. Due to the time-varying and dynamic nature of spectrum resources in a cognitive
radio network, OSA design necessitates adaptive decision making and learning techniques that
enable efficient spectrum utilization. In addition, there is a crucial requirement to prevent the
performance degradation for the licensed users. In this work, we have addressed the modeling,
development and analysis of OSA schemes from both SU and PU viewpoints, aiming to optimize
the opportunistic secondary access and ensure an acceptable level of protection for the legacy
users.

In Chapter 3, we have proposed an adaptive hopping transmission strategy for SUs and de-
veloped an optimal access algorithm with the objective of reducing PU-SU conflicts due to the
random PU returns. To realize distributed implementation in the absence of coordination and
synchronization among SUs, a random access (i.e., adaptive CSMA) scheme has been proposed
which efficiently shares the opportunities among SUs based on their activity factors. Using the
feedbacks from the proposed CSMA scheme, a learning-based distributed algorithm has been de-
veloped which requires no additional control message exchange among SUs to reach the globally
optimal solution.

In Chapter 4, we have considered game-theoretic approaches in the OSA design, aiming to
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accelerate the convergence process of the distributed OSA schemes for SUs. Via the potential
game framework, the existence, feasibility and optimality of a stable pure-strategy NE have been
established by presenting sufficient conditions. Aiming to achieve an equilibrium point, learning
algorithms have been developed and their convergence properties have been studied. Further-
more, with a different design objective, the effects of intrinsic collisions among SUs–using the
proposed adaptive CSMA scheme for spectrum sharing–have been addressed in the activity factor
allocation problem.

In Chapter 5, we have addressed the throughput analysis of the proposed adaptive CSMA
scheme in the presence of inevitable collisions among SUs. While throughput represents the ra-
tio of successfully transmitted opportunities without facing any collisions, it has been established
that the adaptive CSMA plays an important role to reduce the contention among SUs. Through
analysis and simulation, it has been confirmed that the proposed adaptive CSMA scheme of-
fers performance gains, such as high throughput and long-term fairness, in comparison with the
conventional CSMA scheme.

In Chapter 6, we have considered the PU performance analysis in the presence of interference
from SUs. Recognizing that spectrum sensing suffers from errors due to noise and fading, the
statistical characteristics of the aggregate interference have been investigated. Based on the de-
veloped model, we have introduced and derived the capacity-outage probability of PU as a metric
to protect the primary performance in the OSA design. For spectrum sensing using beacons, it
has been shown that placing the beacon transmitter at the PU receiver reduces the mean-value of
the aggregate interference, and hence improves the capacity-outage probability of the PU.

7.2 Potential Future Studies

The main focus of this Ph.D. thesis has been on improving the spectral efficiency of a cognitive
radio network via adaptive resource allocation. Although we have proposed some mechanisms to
support a fair spectrum allocation among different SUs, there is no QoS guarantee for individual
SUs in the proposed OSA schemes. Considering that several emerging applications for cognitive
radios (such as multimedia streaming) are delay-sensitive, supporting the delay QoS in such ap-
plications is indispensable. However, there is only a limited number of studies (e.g., [119–121])
that address resource allocation design for delay-sensitive applications in hierarchical cognitive
radio networks. Therefore, further research is needed to study a multi-user resource allocation
method in which SUs need to optimally adjust their transmission strategies according to the avail-
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able resources, while fulfilling the necessary latency requirements, specifically in a distributed
manner. Due to the stochastic nature of the spectrum opportunities, satisfying the delay require-
ments for SUs is a major challenge in a cognitive radio network. Such uncertainty in the resource
availability and the competition among multiple SUs significantly influences the queuing delay
of SUs. In such a situation, a promising research direction is to apply a stochastic game frame-
work [122] in which the uncertainties can be modeled in the decision making process of multiple
SUs.

Moreover, in this work, the orthogonal time sharing has been considered in the OSA design
to manage the spectrum sharing among different SUs, either with the assistance of a central co-
ordinator or through the proposed adaptive CSMA scheme. Aiming to improve the spectrum
utilization of SUs based on the spatial diversity, it would be interesting to study an overlapping
sharing scheme in which SUs are allowed to simultaneously access an idle channel. Overlapping
sharing takes advantage of the multi-user and spatial diversities and enables concurrent transmis-
sions of SUs to enhance spectral efficiency. Nevertheless, as there is a mutual interference among
the SUs, it is required to guarantee a minimum QoS for SUs. Interference management among
SUs in the overlapping sharing makes the problem generally non-convex and thus, challenging
to solve.

Furthermore, throughout this study, we have assumed a full knowledge of the availability of
all channels for each SU. However, the assumption of continuous full-spectrum sensing is energy
inefficient and hardware demanding. Addressing the case of partial sensing, [22] considers that
each SU can choose a subset of channels to sense and decide to access based on its sensing
observations. Subsequently, a joint design of sensing and access strategies is studied under the
framework of finite-horizon POMDP. However, it is assumed that both PUs and SUs have the
same transmission time-slot structure. Thus, another potential research direction is thus a cross-
layer design of sensing and access strategies, while taking into account the effect of random PU
returns.
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Appendix A

Appendix to Chapter 3

A.1 Proof of Proposition 1

From (3.22),
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i

∣∣2 = |µn
i − µ∗

i + γn (−∇g (µn
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i |
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i ) + wn|2 . (A.1)

Since the dual objective function g (µn
i ) is convex, ∇g (µn

i ) (µ
n
i − µ∗

i ) ≥ g (µn
i )− g(µ∗

i ). Then,
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By adding and subtracting∇g(µ∗
i ) in the last term of (A.2), since |r+ s|2 ≤ 2|r|2 +2|s|2 for any

r, s ∈ R,
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According to Remark 2 in Chapter 3, due to Lipschitz continuity of∇g, we have
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By taking the conditional expectation given Fn = {µ0
i , . . . , µ

n
i }, we obtain
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Based on Remark 1 in Chapter 3 and the fact that ∇g(µi) is bounded, it is clear that [|∇g(µ∗
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+E[|wn|2]] is bounded, and hence,
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A.2 Proof of Proposition 2

By definition,
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Squaring both sides of (A.6), taking the expected value and using γn = an−c, we have
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Using the inequality xy ≤ 1
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where D3 is a positive real constant. According to Remark 1 in Chapter 3,
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From (A.8) and (A.9), (A.7) can be written as
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Considering (A.13), (A.10) becomes

E
[∣∣µn+1

i − µ∗
i

∣∣2] ≤(1− qn−c)E[|µn
i − µ∗

i |
2] + a2Kvn

−2c−b

+ a2K2
en

−2c−2b + aD3K
2
en

−c−2b. (A.14)



A Appendix to Chapter 3 113

Notice that there is a positive real constant (i.e., D4) such that for n > N0, a2Kvn
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where Amn =


∏n

h=m+1(1− qh−c), 0 ≤ m < n

1, m = n
. The rest of the proof is divided into two

steps. First, we assume that 0.5 < c < 1. Then, we consider the case in which c = 1.

A.2.1 Step 1 (0.5 < c < 1)

It is well-known that
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Taking into consideration that AN0n = O
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which concludes the proof for this case. �

A.2.2 Step 2 (c = 1)

In this case,
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Therefore, AN0n = O (n−q), and hence, the first term of (A.15) is of O(n−q). The second term
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n∑
m=N0+1

Amnm
−2−b ≤ D7n

−b−1. (A.26)

where D7 is a positive real constant. As a consequence, considering that D8 is a positive real
constant,
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which concludes the proof. �
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Appendix B

Appendix to Chapter 4

B.1 Proof of Theorem 3

Suppose that βββ = {βββk}Ns
k=1, where βββk ∈ Bk, is a pure-strategy NE of game G, but it is not

feasible, i.e., it violates at least one of the constraints in (3.8b). Further, suppose that m is the
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Thus, from (B.1) and (B.2),

uk(βββk,βββ−k)− uk(β̃ββk,βββ−k) =
Na∑
i=1

βi
kC

i
k

(
1− βi

kαi

)
−

Na∑
i=1

β̃i
kC

i
k(1− β̃i

kαi)

− µm

(
Ns∑
j=1

βm
j − 1

)
+ µmΘ

(
Ns∑
j=1

βm
j − 1− δ

)
. (B.3)

Since δ ≤ ϵ, we have

µmΘ

(
Ns∑
j=1

βm
j − 1− δ

)
− µm

(
Ns∑
j=1

βm
j − 1

)
= µmΘ(ϵ− δ)− µmϵ ≤ −µmδ. (B.4)

Subsequently, from (B.3) and (B.4),

uk(βββk,βββ−k)− uk(β̃ββk,βββ−k) ≤
Na∑
i=1

βi
kC

i
k

(
1− βi

kαi

)
−

Na∑
i=1

β̃i
kC

i
k(1− β̃i

kαi)− µmδ. (B.5)

Under the assumption of µi > µth,∀i ∈ Na, from (4.8), we have

µm > S
Na∑
i=1

βi
kC

i
k

(
1− βi

kαi

)
. (B.6)

Since δ ≥ 1
S

, from (B.6), it can be concluded that

Na∑
i=1

βi
kC

i
k

(
1− βi

kαi

)
− µmδ < 0. (B.7)
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Thus, based on (B.5) and (B.7),

uk(βββk,βββ−k)− uk(β̃ββk,βββ−k) ≤ 0. (B.8)

Note that this contradicts the assumption that βββ = {βββk}Ns
k=1 is a pure-strategy NE of game G

according to the definition of NE in (4.6). Thus, βββ is not a pure-strategy NE of G. Hence, it can
be concluded that all pure-strategy NE must be feasible if µi > µth,∀i ∈ Na. �

B.2 Proof of Theorem 4

Assume that βββ = {βββk}Ns
k=1 is the optimal solution of (3.8). Assuming µi > µth, ∀i ∈ Na, βββ is

the maximizer of the potential function Φ. Based on Theorem 2 in [89], the maximizer of the
potential function is the NE of the potential game. Hence, βββ is the NE of the game G.

Subsequently, we need to establish that βββ is the Pareto-optimal NE. Assume that βββ is not
Pareto-optimal. Then, there exists an arbitrary strategy profile βββ ′

= {βββ ′

k}
Ns
k=1 such that

uk(βββ
′

k,βββ
′

−k) ≥ uk(βββk,βββ−k),∀k ∈ Ns, k ̸= j (B.9)

and, for some j,

uj(βββ
′

j,βββ
′

−j) > uj(βββj,βββ−j). (B.10)

As a result,

Ns∑
k=1

uk(βββ
′
) >

Ns∑
k=1

uk(βββ). (B.11)

Sinceβββ is a NE of the game G, it is feasible based on Theorem 3 (i.e.,
∑Na

i=1 µiΘ
(∑Ns

j=1 β
i
j − 1

)
=

0). Then, we have

Φ(βββ) =
Ns∑
k=1

uk(βββ). (B.12)

Furthermore, considering that µi, ∀i ∈ Na are positive scalars, from (4.1) and (4.4), for an
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arbitrary βββ
′ , we have

Φ(βββ
′
) ≥

Ns∑
k=1

uk(βββ
′
). (B.13)

Consequently, based on (A.11), (A.12) and (A.13),

Φ(βββ
′
) > Φ(βββ). (B.14)

This contradicts the fact that βββ is the maximzer of the potential function Φ. Thus, the optimal
solution of (3.8) is the Pareto-optimal pure-strategy NE of the game G. �
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