
	 	 	

Identifying developmentally regulated exons 

in the human brain 
 

 

 

 

Alain Bateman 

 

Master of Science 

 

Department of Human Genetics 

 

McGill University 

Montreal, Quebec 

2016-8-15 

 

A thesis submitted to McGill University in partial fulfilment of the 
requirements of the degree of Master of Science 

 

© Alain Bateman 2016 

 



	 	 Page	2	

Acknowledgements 
 

I would like to thank and acknowledge the contributions of my supervisor Dr. 

Claudia Kleinman for her help in the design and execution of this project. I would 

like to thank and acknowledge the contributions of my supervisory committee: Dr. 

Guillaume Bourque and Dr. Celia Greenwood for their feedback and support. 

I would like to thank and acknowledge the support and contributions of the 

Kleinman lab. In particular, Dr. Rodrigo Sieira for his assistance in the primer 

design, Karine Choquet for her assistance in overseeing the qtRT-PCR experiments 

and for acquiring and preparing the biological samples. I’d like to thank Steven 

Hebert and Nicolas De Jay for the use of their, and their assistance with, RNAseq 

pipeline tools. 

I would furthermore like to thank our collaborators Dr. Nada Jabado and Dr. 

Gustavo Turecki for their contribution of human brain samples that enabled our 

validation testing. I’d like to thank Dr. Marie Forest and Dr. Aurélie Labbe for their 

helpful discussions around establishing distances between parameterized curves. I’d 

also like to thank Dr. Santiago Costantino for his input on initializing parameters in 

solving non-linear equations. 

Finally, I’d like to thank the Genomics Platform of the Institute for Research 

in Immunology and Cancerology (Montreal, Canada) for performing qtRT-PCR 

experiments and the FRSQ for partly funding this work. 

 



	 	 Page	3	

Abstract 

 

 Alternative splicing generates variety in the exonic content of mature RNA. 

Exonic content has been shown to vary over the course of the maturation of the 

human brain. Current methods for the detection of these isoforms are limited by 

compounded uncertainty in the case of isoform reconstruction or limited 

dimensionality in the case of analysis of variant studies. Here we present a 

parameterized approach to summarize as trajectories the changing expression of 

exonic content over the course of the development of the human brain. We apply 

our methods to the Brainspan dataset and present several analyses of the exonic 

trajectories inferred by our methods to predict differentially expressed exons. We 

identify approximately 4000 developmentally regulated exons among 2500 genes in 

the brain. We validate our predictions in a novel validation dataset and some select 

candidates in mice. These methods provide evidence of previously unknown 

temporal bounds on the expression of these exons in-vivo. Thus we advance our 

knowledge on the evolving transcriptome of the human brain and increase our 

toolset for the analysis of temporally regulated exonic content. 
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1 Introduction 

1.1 Motivation 

Alternative splicing and the related selection of alternate transcription start 

sites are pervasive phenomena at the heart of molecular biology.1 The varied 

inclusion of transcribed segments of a gene into the gene product greatly increases 

the diversity of mature transcripts produced by the cell.2 Mutations in the factors 

regulating this complex process are a source of human disease3–5 as is the aberrant 

inclusion of exonic content outside of temporal and tissue appropriate context.6 

The motivation for developing methods of mapping the changes in exonic 

content over time is therefore twofold. Firstly, it sheds some light on the regulation 

of the mature transcriptome. Secondly, it provides an investigative avenue into 

neuropathological etiologies. Here we adapt a set of methods to identify differential 

exon expression over the course of the development of the human brain. 

 

1.2 An overview of topics germane to this study. 

This thesis deals with the approximation of temporal trajectories of exons 

over the course of the development of the human brain. In this section we review 

contemporary background knowledge that will assist in the understanding of the 

work.  

As the principal aim of the thesis remains in identifying biological instances of 

alternative exon usage, we provide an overview of the phenomenon of alternative 

splicing (AS) in eukaryotes. While the detailed architecture of the molecular 
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complexes involved are beyond the scope of this study, we strive to provide the 

required understanding of the different types of alternative splicing that occur, 

where they occur in the genome, and the machinery involved in their generation. 

Being concerned with the development of the human brain, we then proceed to 

layout some current examples of the regulation of alternative splicing in the 

development of the mammalian nervous system and some pathologies that result 

from aberrant alternative splicing events. 

Our elucidation of temporal exonic trajectories relies on the analysis of 

RNAseq data. While, to the best of our current knowledge, the methods of analyses 

here are novel, the use of next generation sequencing to identify differential exonic 

expression is not. In the second part of this literature review we provide an 

overview of common modern approaches to this line of inquiry and we focus on two 

widely used approaches the first being isoform quantification and the second being 

variance based analysis of individual exon expression. 

 

1.3 An overview of alternative splicing 

The definition of an exon is tightly related to the process of splicing; it refers 

to those segments of transcribed RNA that are included in the matured transcript. It 

is worth noting that not all exons in the matured transcript will be translated; the 

regions that are not translated into the final product are called UnTranslated 

Regions (UTRs). In most cases exons are interleaved, along the loci, with relatively 

longer segments of regions termed introns. Most introns are removed over the 

course of the transcription of genomic DNA to RNA by a complex aggregation of 
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proteic and ribonucleic sub-units termed the spliceosome. The association of 

regulators with this same ribonucleic complex may influence the selection of exons 

to excise from the finished product. In some cases, intronic regions are retained. 

This alternative inclusion of RNA segments is an early target for the 

regulation of the cell's set of expressed gene products, i.e. the cell’s expression 

profile. By varying matured transcripts, AS events can modify the translated 

protein: varying its structure and therefore influencing its function. Inclusion of 

exons is not limited to function, AS events can also affect the localization of the 

mRNA or label transcripts for nonsense-mediated decay. Alternative splicing is 

frequent and the varied isoforms produced from AS events can produce disparate 

biological outcomes. 

 

1.4 On the frequency of alternative splicing events in human beings 

The initial sequencing of the human genome in 20017,8 confounded the 

expectations of many in its low estimation of the number of protein-coding 

transcripts: 26,000. This number has been adjusted downwards today.9 The 

diversity of mature protein-coding transcripts is estimated at an order of magnitude 

higher and the number of mature gene products higher still. (One conservative 

estimate puts the number of protein-coding transcripts at 60,0009 however, this 

number is less robust as it is more sensitive to genomic feature annotation.10) 

These numbers suggest a mean of 3 isoforms per gene product and indeed the vast 

majority of genes experience at least one AS event. Recent studies estimate that 

approximately 95% of multi-exon genes in human beings undergo some form of AS 
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event although these events are scarcer in genes with fewer than 4 exons.1 It is 

therefore not surprising that a consensus has developed around the suggestions 

that AS helps resolve the apparent discrepancy between the number of protein-

coding loci and the diversity of human proteome.11 

This consensus is further supported by evolutionary studies linking increased 

AS frequency with perceived organism morphological and behavioral complexity.12 

The greater frequency of AS events and the corresponding greater diversity of 

transcripts in human beings when compared to Caenorhabditis elegans (25% of 

multi-exon protein-coding genes undergo alternative splicing), or to Drosophila 

(45%,) or to mice (63%) suggest that AS may help resolve the apparent paradox 

of observed species diversity with conserved genomic sequences.13 While human 

beings and chimps share 99% of genomic sequences, differences in splicing events 

range between 6-8% based on tissue.14 Thus AS further provides a plausible 

mechanism for the range of observed biological phenomena, including the structural 

differences between the organs of cognition15. It is perhaps not surprising given the 

documented complexity of the development processes surrounding the maturation 

of the human brain16,17 

 

1.5 On the essentials of the splicing machinery and its regulation 

At the core of AS events is the spliceosome, a very large ribonucleoproteic 

complex that carries out the ejection of RNA segments not selected for inclusion in 

the mature transcript. In human beings there exists two spliceosome complexes: 

the common U1/U2-mediated spliceosome, and the less common U12-mediated 
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spliceosome, which assembles on less than 0.5% of introns in human beings.18 

U12-mediated exon selection is absent in some metazoans altogether.19 In the 

interest of concision, the description of the molecular essentials of alternative 

splicing will focus on describing the mammalian U2-spliceosome. We first describe 

the layout of the essential features of splicing sites: locations of the genome where 

alternative splicing can occur and then discuss the known, central mechanisms of 

its regulation. We then discuss known examples of the regulation of alternative 

splicing in the human nervous system germane to this work on identifying 

alternative exons in the human brain. 

 

1.5.1 A review of the genomic features of splicing 

 Three genomic features are of particular interest in elucidating the 

mechanism of splicing. They are the 5' splice site (5'ss), the intron branch point 

(ibp) and the 3' splice site (3'ss). Upstream of the 5'ss is a sequence retained in the 

maturing RNA transcript. Just downstream of the 5'ss, in metazoan U2 introns, is 

the degenerated consensus sequence GURAGU (R is a purine). Downstream from 

the 5'ss is the intron branch point (ibp). An adenine base located in this branch 

point is directly involved in the transesterification reactions. The consensus 

sequence in metazoans is YNCURAC (Y is a pyrimidine, N is any nucleotide, R is a 

purine). In mammals, this is typically followed by a polypyrimidine tract20 (15-20 

base pairs rich in pyrimidine nucleotides, especially uracil). Downstream from the 

ibp by 18-40 base-pairs is the 3' splice site (3'ss). It is preceded, in metazoans, by 
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the short degenerated consensus sequence of YAG (Y is a pyrimidine). Downstream 

from the 3'ss is the second retained sequence in the maturing RNA transcript.20 

GURAGU YNCURAC YYY… YAG

5’ splice site branch point polypyrimidine tract 3’ splice site

G AG

5’ alternative splice site 3’ alternative splice site  

Figure 1 Semi-conserved genomic features of alternative splicing 

Schematized layout of the semi-conserved genomic features involved in splicing. 
Above the maturing transcript indicate the essential elements recognized by the 
splicing machinery. The adenosine base of the branch point is involved in the first 
transesterification reaction. Below the transcript are indications of alternate 3'ss 
and 5'ss whereby a constitutive exon may be shortened or lengthened during 
inclusion by a repositioning of the splicing machinery. 

 

1.5.2 An overview of the splicing reaction 

 The spliceosome complex, once assembled, will catalyze a pair of 

transesterification reactions that characterize precursor mRNA splicing. The 2' 

hydroxyl group of the ibp performs a nucleophilic attack on the 5'ss, cleaving the 

intron. The 3' hydroxyl group of the 5'ss then performs a nucleophilic attack on the 

3'ss, ligating the 5'ss to the 3'ss. The circular intron (termed the lariat structure) is 

thus excised from the maturing mRNA.21 There is some dispute as to the catalytic 

center of the spliceosome which includes RNA from the U2 and U6 snRNAs. The 

spliceosome's active site does contain RNA from a self-splicing group of introns22 

yet there is a substantial amount of evidence that indicate that proteins comprise 

part of the spliceosome's active site23, in particular the spliceosomal protein Prp8 

which contains a RNAse H-like domain20. 
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1.5.3 An overview of the recognition of splicing features by the spliceosome 

 The U2-dependent spliceosome consists of the U1, U2, U4, U5, and U6 

small nuclear ribonucleic proteins (snRNPs) and many non-snRNP proteins. Its 

assembly is regulated by some cis-elements located near these genomic splicing-

related features discussed above which can promote or silence either these central 

snRNP components of the spliceosome. For instance, the U1 snRNA will recognize 

and base-pair with the 5'ss sequence while the U2 snRNA will recognize and base-

pair with the ibp sequence24. 

 

1.5.4 On the regulation of splicing events by SR proteins 

Cis-elements may also recruit proteins from the well characterized SR 

(serine/arginine) family to mediate alternative splicing events.25 These proteins 

contain a RNA recognition motif (RRM) which will recognize and base-pair with the 

relevant elements on the maturing RNA transcript. In addition, SR proteins contain 

their eponymous domain, rich in serine and arginine residues. Cis elements such as 

exonic splicing enhancers (ESEs), exonic splicing inhibitors (ESIs), intronic splicing 

enhancers (ISEs) and intronic splicing inhibitors (ISIs), are sites that are often 

located within the exon or intron targeted for exclusion/inclusion and are generally 

recognized by at least one member of the SR protein family which will then interact 

with the core constituents of the splicing machinery as appropriate.3 
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a. cassette exon 

b. mutually exclusive exons 

c. alternative 5’ splice site

d. alternative 3’ splice site

e. alternative promoters

f. alternative terminators

g. alternative polyadenylation

h. retained intron

constitutive exon

alternative exon

promoter

terminator

start of polyadenylation

 

Figure 2 Types of isoform generating events. 

a) The alternately included cassette exon is flanked on either side by exons that will 
not be selectively excised, b) the mutually exclusive exon is a special case of the 
cassette exon in which the two alternately selected exons are generally not included 
in the same transcript, c) the alternative 5' splice site varies the length of the exon 
included in the transcript upstream from the splice site, d) the alternative 3' splice 
site varies the length of the downstream exon included in the transcript, e) 
alternative promoters are a particular case, they vary the start of transcription and 
can thus can be regulated quite differently to affect the start of the mature 
transcript, f) the varied inclusion of the last exon, g) the varied start of 
polyadenylation of the transcript, selectively includes different lengths of 3'UTR 
(untranslated region), h) the retained intron selectively includes the usually excised 
genomic region between 2 exons. 
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1.5.6 On cassette exons and exon skipping 

 Exon skipping occurs when the exon is selectively omitted from a 

transcript altogether. This is the most common AS event, accounting for 40% of AS 

events in eukaryotes.26 Selective exon inclusion can insert whole functional domains 

or modifications to existing ones.  A well-studied example is that of neuroligins 

transcripts: a set of membrane proteins that bind to human trans-synaptic proteins 

called neurexins. Neuroligin's specificity for different forms of neurexins is partly 

determined by the inclusion of short alternative exons at well specified positions 

within their ectodomains27. Thus, the functionality of these proteins, i.e. connecting 

cells at the synapse, is modified via exon regulation which in turn modifies their 

connector specificity. 

 Mutually-exclusive exons a special case of case of exon skipping. This 

is a much rarer event perhaps due to required coordination as the splicing of each 

exon involved is no longer an independent event. The selection between sequences 

of similar length (obviously within the constraints of an existing translative reading 

frame) implies that a downstream protein may conserve not only its functional 

structure but its spatial structure. Constitutive segments that are translated into 

the protein’s shape are preserved and smaller active sites are modified. An intuitive 

and confirmed example are transcripts for proteins that are involved in 

transmembrane ion transport channels.28,29 
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1.5.7 On alternative splice site selection 

The molecular machinery of the spliceosome complex and its cis-elements 

can act to shorten or elongate an included exon. Modification of the length of the 

included exon can occur either upstream, at the 5’ exon or downstream, at the 3’ 

exon giving rise to alternative 5’ splice sites (5’ss) or 3’ splice sites (3’ss) 

respectively. 

Sites where alternative splicing occurs in cases of aberrant splicing are 

termed cryptic 5' or 3’ splice sites. A relevant example is a well-documented 

hereditary case that assisted in the discovery of a principal cause of an inherited 

form frontotemporal dementia through the MAPT protein (also known as TAU).30 

This study demonstrated that mutations only 13-16 base pairs downstream of 

TAU's tenth exon promote the inclusion of exon 10, resulting in a longer isoform 

which presents high-yield phosphorylation targets. Later studies confirmed the 

authors suspicions that the mutations impacted a secondary structure of the mRNA 

precursor affecting the formation of the splicing complex.31 Aberrant splicing at 

such sites are referred to as cryptic 3' splice site selection.  

 

1.5.8 On alternative polyA sites 

Almost all protein-encoding transcripts in human beings, with the exception 

of some histone genes are poly-adenylated.32 Prior to the polymerization of the 

adenylated tail, the transcripts must be cleaved and this often occurs at a site 

(often a CA element) between the highly conserved AAUAAA motif and a 

downstream element rich in U or GU. Varying the cleavage site in transcripts is 
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another potential factor in generating diverse isoforms. Such cross-talk between 

splicing and the synthesis of the poly-A tail has been characterized in the IgM’s 

heavy chain gene and in the calcitonin gene.33 

 

1.5.9 On intron retention 

 Of the classes of alternative splicing phenomena so far discussed, 

intron retention is perhaps the least well understood though it is well reviewed in 

the current literature.34 While intron retention is perhaps the most common class of 

alternative splicing in plants35 and in unicellular eukaryotes36, it is the least frequent 

in metazoans.37 (Cassette exons are the most common class in human beings.) 

Intron retention has been shown to play a role in gene expression regulation by 

relegation of its targets to nonsense-mediated decay (NMD).38 A more nuanced 

mechanism links intron retention in presynaptic proteins to the presence of the 

polypyrimidine-tract binding protein Ptbp1 in mice.39 (These transcripts are 

destroyed by the cell in a pathway different from NMD.) Ptbp1 is not expressed in 

neuronal cells (more on this in humans later) and precursors without the introns 

are matured to generate the requisite proteins in its absence. Not surprisingly the 

deregulation of intron retention has also been linked to cancer. Aberrant intron 

retention has been found in many cases of tumor-suppression inactivation in human 

beings.40 
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1.5.10 On alternative promoters 

 Alternative promoters provide different genomic positions for the 

initiation of transcription and is therefore quite distinct from the selection of 

different cassette exons for inclusion. These sites promote assembly of the 

transcription machinery and are regulated by the usual regulators of transcription: 

transcription factors41, chromatin remodelers42, histone marks43 and DNA 

methylation43 for example. Alternative start sites for transcription of the same loci 

have been well elucidated since the early 1980s when traditional biochemical 

methods investigated mutually exclusive starts of transcription in isoforms of the 

myosin light chain.44  

Many genes have multiple promoters and each is subjected to its own set of 

transcription regulation factors and cofactors.45 As for other cases of alternative 

isoform expression, events relevant to brain biology are well known. For instance, 

alternative promoters generate transcript diversity in neurexis, a family of protein 

that is thought to mediate trans-synaptic interactions.46 Two alternative promoters 

give rise to a longer and shorter isoform that include up to five sets of splicing 

features creating hundreds of possible transcripts. 

 

1.5.11 On the regulation of alternative splicing 

This study is devoted to developing methods that identify events of 

developmentally regulated differential exon inclusion. While the methods are tissue 

agnostic, their development has been tested in a set of transcriptomes of the 

human brain. This organ has been selected because of the requirements of its strict 
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development program and the long interest in the phenomena associated with this 

development. Alternative splicing in the human nervous system has been identified 

for many years and its elucidation has been pursued for as long47–49  

One of the better studied cases of alternative splicing interactions in the 

mammalian brain is the set of interactions between PTBP1 and PTBP2 proteins. 

PTBP2 is thought to promote neuronal differentiation and its expression is limited, 

having been observed in neurons, myoblasts and spermatocytes50. On the other 

hand, PTBP1 is broadly expressed in many cell types but absent from neurons and 

muscle cells despite being abundant in their progenitors50. Recent dramatic 

evidence of the role of PTBP1 in repressing the neuronal differentiation program is 

the direct conversion of fibroblasts to neurons by removing PTBP1 from the cells51. 

The neuronal program is held in check, at least in part, through the omission of 

exon 10 in PTBP2 transcripts through the activity of PTBP1. This leads to the 

nonsense-mediated decay of PTBP2 transcripts.52 The expression of PTBP1, in turn 

is repressed by the brain-specific microRNA miR-124, an indicator of neuronal 

differentiation. 53 A further indication of the importance of PTBP1 as a regulator of 

splicing events is the repression of a particular exon in PBX1 transcripts. 

Experiments have shown that isoforms with the regulated exon lead to the 

expression of neurogenic genes54. 

A second form of regulation occurs via overlapping cis-elements that promote 

different splicing events. The expression of Srrm4, an SR-related protein has shown 

to be brain-specific in mice55. It binds to sequences rich in UGC between the poly-

pyrimidine tract and the 3'ss of exons, likely antagonizing PTBP by overlapping 
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nearby PTBP binding elements56. The preferential binding of the SRRM4 SR-related 

protein in place of its antagonist PTBP for example, promotes the excision of 

cassette exons from the REST4 gene.57 The resulting REST4 transcripts code for a 

protein with 4 fewer zinc fingers (the reference isoform of Rest4 has 9 zinc fingers) 

reducing the transcription activity of the REST4 gene58. 

 

1.6 An overview of large scale alternative splicing quantification through RNAseq 

 While the phenomenon of AS is not new, the advent of next-

generation sequencing (NGS) technologies offers new tools to perform large scale 

analyses of their occurrence, identify a potentially large number of previously 

unknown events, and gain new insights into general underlying mechanisms. 

Among the NGS tools being developed is RNAseq, a technical approach to the 

reconstruction of the set of RNA transcripts (the cell’s transcriptome). A full review 

of all the steps involved in the processing of RNAseq is beyond the scope of this 

paper but a short overview will be provided here. Many modern reviews exist for 

this purpose such as Conesa’s 2016 paper.59 

RNA is extracted from the samples considered by following an extraction 

protocol that, in addition to isolating the RNA from the remainder of the cell’s 

content, deals with the problem of the overall abundance of ribosomal RNA (rRNA). 

rRNA is very abundant in the cell but in many cases it is not of singular interest. 

Therefore, it is often removed either by targeting rRNA directly (which requires high 

RNA integrity) or by selecting messenger RNA (mRNA) by their polyA tails (which 

results in a bias towards quantifying the 3’ end of isoforms). 
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The NGS machinery fragments and produces millions of sequencing assays 

termed reads. These reads undergo a set of quality assurance filters and the 

remaining reads are assigned positions on a reference genome. The number of 

reads assigned to a specific region of the genome, after a normalization that 

accounts for the length of the region and library size, is assumed to be proportional 

to the level of expression of this genomic region. However, the problem of aligning 

a very large number of fragmented reads to a very large genome is a significant 

challenge. 

In order to infer alternative splicing events, the ideal technology would 

simply sequence each mature RNA molecule from beginning to end and produce a 

report on each molecule thus evaluated. Human transcripts vary in length from 

TTN, expressed in isoforms that near 100kb to the much smaller micro RNAs of just 

about 20 nucleotides in length. Each edge case (in terms of length) present unique 

challenges. For the purposes of this work, the primary consideration is read length. 

While the technology that allows for longer read lengths is being deployed, there 

are substantial considerations such as increased error rate, reduced molecular 

throughput, sensitivity to molecular degradation and the requirements in terms of 

capital and time to overcome these obstacles. They have thus far been reserved for 

targeted analyses. 

The current state of popular RNAseq technologies can generate reads on the 

order of 75-150bp often at both ends of the molecule being sequenced, leaving an 

un-sequenced region for each pair of reads that correspond to that middle part of 

the sequenced molecule which is unread. This is termed paired end sequencing. 
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This concept is introduced here because while most of the data considered in this 

work comes from an earlier technology in which reads were not paired, so-called 

single-ended reads, our validation dataset uses paired-end data. We discuss both in 

the framework of the quantification of isoform expression and their relative 

performance. 

RNAseq data provides 2 types of information that assist in isoform inference. 

The first is simply a count of the reads that align along exon coordinates. The 

second type of data comes from a subset of the reads which span exon boundaries. 

In the case of both paired end and single ended sequencing, a sequenced fragment 

of RNA can begin in one exonic region and extend past the end of this exon, 

continuing into another exon that was spliced in by the splicing machinery 

discussed previously. These reads that span exon boundaries (in both single-ended 

and paired-ended data) will be referred to here as splice junction reads. They 

provide direct evidence of exon inclusion/skipping. 

Methods applied to RNAseq technology that leverage these sets of reads in 

order to identify exon expression can be grouped into two broad categories. The 

first attempts to infer full-length transcripts from short(er) sequences that are 

generated from the NGS platforms. This allows for a quantification of isoforms that 

is prior to and central to any further analyses. The second category of exon 

expression analysis does not offer informative estimates about full-length isoform 

populations but instead reports differential exon use for specific genomic 

coordinates across a categorical variable through some variance analysis (such as 

ANOVA). Refraining from isoform reconstruction restricts the cumulative burden of 
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uncertainty present in the first category but does not offer information on 

reconstructed transcripts. In this section, we will review both categories and 

provide some details around the lead tool in each category: cufflinks and dexseq. 

 

1.7 An Overview of isoform construction: cufflinks and related tools 

 Many tools have been developed that generate and quantify 

transcripts from reads generated by NGS technologies59.These tools can be grouped 

into two broad categories depending on the existence of a step of isoform 

reconstitution. Category 1 regroups tools that estimate isoform expression first, 

then computes the differential expression of the estimated isoforms as a second 

step. Perhaps the most commonly used is the CuffDiff260–62 algorithm (cited over 

7000 times as of 2016) which quantifies isoforms using Cufflinks,62 prior to 

computing the difference between isoform expression in the samples. Finally, a new 

method: rSeqDiff has been proposed that uses a hierarchical likelihood ratio test to 

detect differential isoform expression simultaneously with differential gene 

expression.63 This first category of tools is limited by the challenge of obtaining 

accurate information at the isoform level from short-read sequencing.64 Category 2 

omits the reconstruction of isoforms all-together and compares the distribution of 

reads to exonic features instead. DEXseq65 and DSGSeq66 aim to identify significant 

differences in read counts between samples using only exons and junctions. rMats67 

compares exon inclusion levels defined by junction reads. Both Category 1 and 2 

tools depend on the mapping of NGS reads to a reference genome by an aligner 
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such as TopHat68 or STAR69, while only Category 1 tools depend on an initial step of 

isoform quantification. 

Isoform quantification, that initial step on which Category 1 tools depend, is 

addressed by many tools: MISO70, RSEM71, eXpress72 and Sailfish73 among others. 

Of these, the precocious and often-updated Cufflinks from the Trapnell lab62 is 

perhaps the most widely used. Cufflinks generates a bipartite graph of aligned 

reads weighted by the frequency of the fragments that are complementary to 

specific isoforms. Fragments are matched to the maximal number of possible 

isoforms and the count of isoforms identified for a particular transcriptome is the 

minimum set of transcripts that accounts for all fragments. Then, given the 

distribution of the reads, the abundance of each isoform is computed.  A likelihood 

function is maximized under the assumption all reads are generated in a uniform 

manner, dependent only on the length of the sequence and their availability. 

Computational requirements notwithstanding, comparison studies of the 

isoform quantification step on which Category 1 tools depend, show that the 

variance in the precision and sensitivity of these tools lie in the in precursor steps 

to the analyses (the RNA separation protocols discussed in section 1.6 for instance) 

rather than in the tools themselves and in the assumption of the completeness of 

the annotation set provided74. Current reviews of these methods show that while 

they achieve comparable precision and accuracy rates71,74–76, there are substantial 

gaps in the overlap when it comes to sets of predictions made by each tool. In 

these third party studies, cufflinks performs well relative to other tools in the same 

problem space (that of isoform identification with annotation set). If we define 
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precision as the ratio of true positives to the sum of true positives and false 

negatives and we define sensitivity as the ratio of true positives to the sum of true 

positives and false positives as Angelini does in her review of these tools74, then 

cufflinks achieves precision rates of 70-90% in 100bp paired-ended read sets. Its 

sensitivity to known isoform quantification is poor (although still better than 

competitors), ranging between 40-50% ratio in 100bp paired-ended read sets. 

Unfortunately, the performance of these tools in datasets that older, single ended 

technology is fails to outperform any meaningful tolerance threshold. The high level 

of false positives generated by these methods keeps the sensitivity below 40%74. 

Precision is similar to that in data sets generated from paired end reads. 

As previously discussed Cufflinks performs well in identifying known isoforms 

although it tends to create a great deal of false positives. However, based on its 

methodology some biases are readily discoverable. Given two transcripts of 

different lengths, cufflinks will assign a greater likelihood to the shorter transcript. 

This is compounded by the known 3' bias of read generation methods that purify 

RNA by using the polyA tail for extraction. The cuffdiff paper itself notes the 

unsuitability of isoform creation for moderately expressed genes when the coverage 

is less than 40 million reads.62 (Less than 40% of transcripts are recovered in the 

author's own results for genes expressed between 4 and 7.5 FPKM.) 

 

1.8 On modelling individual exon expression: Dexseq 

 Unlike cufflinks and related tools, Dexseq65 claims to avoid the 

unmeasured accumulation of uncertainties involved in the isoform inference 
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methods discussed above and to detect differential exon use across discrete 

categories with high sensitivity.  Essentially, Dexseq process compares the fits of a 

generalized linear model (GLM) to a reduced form and calculates a p-value for a 

model coefficient that corresponds to the distribution of reads at an exon. 

Dexseq fits the following linear model to each exon: 

log $%&' 	= 	*%+ + *%'- + *%./ + *%.'-/   where l is the exon index, i the gene index, j is the 

sample index and p is the discrete condition category of sample j. µ"#$  is the 

estimated count of reads linked to the estimated fragment counts via a parameter 

that accounts for exon length. The authors model the likelihood of fragment counts 

sequenced (and thus build a likelihood distribution for µ"#$  ) by using the negative 

binomial distribution. 

The authors justify the use of the negative binomial distribution as the 

probability distribution for counts of reads overlapping exonic coordinates by citing 

the arguments the works of Lu et al77. and Robinson and Smyth78. The argument in 

the Dexseq supplementary papers65 begins by extending the Poisson distribution. 

Assuming a concentration of cDNA fragments to be sequenced, the probability of 

the sequencing of any given fragment is small and independent from the 

sequencing of other fragments, and depends only on the total number of fragments 

to be sequenced in solution. (One might quibble with asserting the second point 

across all library preparation methods and existing sequencing technologies.) 
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Factors linked to detection efficiency, such as GC content, feature length and 

secondary structure are not considered by the model as they are determined not to 

depend on sample under study. (Once again, one might ask if secondary structure 

can be shown to be independent of all sample categories, including, different 

alkaline conditions for example.) Starting from the equivalency of the variance and 

the mean of a Poisson distribution, the authors establish the negative binomial 

mean and variance relationship (!	 = 	$ + &$'  ). Here v is the variance, µ is the 

estimated mean and α is the dispersion parameter. The authors then show that the 

dispersion of proposed NB distribution is proportional to the Poisson distribution 

within a asymptotic value thus validating their chosen distribution. 

 For each exon i, The above model log $%&' 	= 	*%+ + *%'- + *%./ + *%.'-/   is 

compared with the reduced model log $%&' 	= 	*%+ + *%'- + *%./    and a likelihood ratio test 

is evaluated by means of a !2 distribution. Multiple covariates can be considered in 

which case the null hypothesis is rejected if any of the conditions influence exon 

read counts. 

 As can be inferred in the discussion above, Dexseq contends with a 

few challenges. Foremost, for our purposes is the limitation on the discrete binning 

of samples. Each categorization of samples requires an expansion of the model 

being applied with the usual negative consequences for statistical power, which 

must account for overfitting, and complexity (a new parameter is added to the 
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model for each new bin). In addition, it is not specified in their presentation of the 

proposed algorithm that terms are included for interactions between specified 

conditions. With respect to this question both options are unfavorable. The inclusion 

of interaction terms generates more capacity in an increasingly complex the model 

but their removal may overlook interactions and over-estimate the significance of 

the differential exon term. 

 

1.9 A review of trajectory representations of gene expression 

We have so far discussed the quantification of alternative splicing events. 

Several analytical approaches exist to analyze expression changes over time, in 

particular for microarray transcriptomic data and at the whole gene level. These 

studies are relevant as this work will mostly be concerned with modeling 

trajectories of exon expression and to use these trajectories as an alternative 

means of inquiry to the approaches described above. 

 Most commonly, time-series analyses seek to cluster co-expressed 

genes along a temporal coordinate. Popular methods aggregate temporal 

trajectories through auto-regressive equations79, hidden Markov models80, dynamic 

Bayesian networks81 and translational matrices82 (singular value decomposition). 

Otherwise, efforts have been made to model individual features such as Chen's 

integration of transcription and translation kinetics into differential equations83. 

However, genomic datasets based on next-generation sequencing (NGS) data 

present characteristics that differ from those specific to microarray technology. NGS 

datasets have distinct biases and underlying error models; there are generally 



	 	 Page	32	

fewer samples due to cost, and the technical complexities and biases of reads and 

their alignment are not necessarily taken into account by microarray-based 

methods. The widely used Bioconductor R package which implements Dexseq 

detailed above65 is currently used to address this vacancy, however it performs only 

static pairwise comparisons. 

Here we end our discussion of the biological occurrence of alternative splicing 

and the tools currently available for its quantification. We have reviewed the 

prevalence of alternative splicing and some of its particularities including the special 

case of alternative promoters. We have discussed the special case of its regulation 

in the human brain. We then reviewed some of the contemporary means of 

assessing the content of RNA in biological samples and how this information may be 

used to examine differences between samples, either through the full reconstitution 

of isoforms or in variance analyses of exons. We will now review the goals and 

hypotheses of this study where we will discuss a new approach to examining 

differential exon expression overtime. 
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2. Introduction 

2.1 Goal 

The overall goal of our work is to identify and characterize previously 

unknown exons that are functionally important to the development of the human 

brain, while the specific aim of this thesis is to identify exons whose inclusion in 

their respective gene-product is temporally regulated and restricted to a 

developmental stage of the brain. 

As mentioned in the introduction (in section 1.9), characterizing the temporal 

nature of gene expression has been useful in identifying interactions between gene-

products79,83 and defining networks of such interactions81 and has led to the 

discovery and elucidations of the underlying biological mechanisms79–81,83. Here we 

aim to extend this avenue of research to characterize the temporal nature of exon 

inclusion within gene products. 

To obtain this goal, we propose to develop a framework in which exon 

expression levels in the brain are modelled as a parameterized function of the 

brain’s age. In applying these methods to a large-scale dataset of exon expression 

in the brain, we aim to reduce complex and high-dimensional expression data to a 

small set of biologically meaningful parameters. We propose to leverage 

dissimilarity between exon models in shared loci in order to identify exons whose 

expression is limited to particular developmental phases of the brain’s 

development. 
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2.2 Hypothesis 

The hypothesis of this report is threefold. We hypothesize that there exists a 

large number of cases of developmentally regulated exons in the brain that are 

currently unknown. We further hypothesize that the current sets of developmental 

transcriptomes studied over the course of this work have a sufficient sampling size 

and density as to produce results that are accurate and reproducible. We further 

hypothesize that the technology used to assay these samples has the requisite 

resolution to detect these changes in exon expression given the samples examined. 

 

2.3 Data 

 This study leverages RNAseq data from three different datasets. We 

use one publicly available dataset: Brainspan, described below, to generate exon 

trajectories and the associated parameter estimates from which predictions are 

later made with regards to trajectory dissimilarity and developmentally regulated 

exons. We amalgamate samples from two other independent datasets into a 

combined validation dataset to test our parameterization and our predicted 

differential exon inclusions. Findings were further confirmed in mice samples. 

 

2.3.1 The Brainspan Dataset  

The Brainspan dataset84 is public resource for the study of transcriptional 

activity in the human brain developed by a consortium which includes the Allen 

Institute for Brain Science, Yale University, The University of California, Los Angeles 

and the University of Texas Southwestern Medical Center, among others. The 



	 	 Page	35	

dataset provides expression counts for a large number of exons from a relatively 

large number of samples (524) and donors (42), that provide a well-sampled 

coverage over the development of the human brain from the fetal period into 

adulthood. 

Brainspan quantifies expression levels for 309,223 exon features and 52,376 

genes as annotated by Ensembl release 6585. The expression is normalized to 

account for both the length of the feature expressed and the number of reads in the 

overall assay. The unit of expression is reads per kilobase per million reads (RPKM). 

These samples spanned donors and brain substructures. Donors ranged in age from 

8 post-conception weeks to 40 years of age. 

 

Figure 3 Brainspan donor distribution 

Distribution of donors across the lifespan of human beings (age represented in log 
scale). The earliest samples are 8 post conception weeks (pcw). The most aged 
samples are 40 years of age. The light green line indicates birth. Early prenatal 
samples are 8-12 pcw. Mid-prenatal samples are 13-25 pcw. Late prenatal samples 
are 25-38 pcw. Infancy samples are of 0 to 18 months old. Childhood samples are 
19 months to 11 years old. Adolescent samples are 12-19 years old. Adult samples 
are 20 to 60 years old. 
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In almost all cases, several transcriptomes were generated from each donor: 

one per brain substructure sampled. The number and regions of the brain sampled 

and assayed by donor varied based on the developmental stage of the donor and 

the integrity of the organ. 

The Brainspan consortium group established guidelines on sample selection 

that exclude samples with insults to the human brain, visible or otherwise. Samples 

were excluded on evidence of large-scale chromosomal abnormalities detected by 

karyogram and/or Illumina Human Omni-2.5. Samples were excluded if drug or 

alcohol use by the mother was reported during pregnancy, if malformations or 

lesions were observed, or on positive tests of Hepatitis B, C or HIV. Samples were 

further excluded if drug or alcohol abuse was reported and on knowledge of 

neurological or psychiatric disorders, on the ingestion of neurotoxic substances, 

death by suicide, severe head injury, brain lesions, stroke or other signs of neural 

abnormalities or neurodegeneration. Dissections were documented and all 

dissections were performed by a single individual and reviewed for the above as 

well as tumors, infections demyelination and metabolic disease by a small team of 

pathologists. 

mRNA library preparation was performed using a polyA approach and 

sequenced on Illumina's Genome Analyzer II generating 76-bp single-end reads. 

The Brainspan group use the RSEQtools86 framework to align generated reads to 

the GRCh37 genome. Reads were filtered using a Phred-like quality threshold of B. 

Tophat68 (version 1.3.1) was used to align reads. SAM tools87 and mrfQuantifier86 
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were used to quantify exon expression using Brainspan's composite model for 

exons. 

Brainspan uses a composite model to summarize read counts for each exon, 

without resolving alternative, overlapping isoforms. One isoform may only include 

100bp of an exon and excise a further 100bp that are retained in other isoforms, as 

seen in the following figure from The Brainspan Consortium's Technical White 

Paper. 

 

 

Figure 4 Collapsing Brainspan exon annotation 

Theoretical set of three isoforms containing 4 exons collapsed to Brainspan style 
annotation. Taken from The Brainspan Consortium's Technical White Paper: 
Transcriptome Profiling by RNA Sequencing and Exon Microarray 

This collapsing of exon genomic coordinates has implications for our 

inference and validation procedures that will be outlined in the section on predicting 

differential exon inclusion. 

 

2.3.2 Validation Dataset 

 We assembled a second dataset in order to validate predictions made 

in analyses originating from the Brainspan dataset. The second dataset combines 
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human brain samples from the laboratory of Dr. Nada Jabado at McGill and 

Montreal Children's Hospital with a second set of samples from the laboratory of Dr. 

Gustavo Turecki from McGill and The Douglas Mental Health University Institute. 

This second dataset will be referred to, in this paper, as the validation dataset.  

Dr. Jabado provided transcriptomic data from 13 fetal brain samples from an 

indeterminate brain substructure. Twelve were aged from 6 to 18 post-conception 

weeks. (1 sample was of unknown age; it was not used in these analyses.) Dr. 

Turecki provided transcriptome data from 4 anterior cingulate cortex samples. 

These samples ranged in age from 15 years of age to 20 years of age. 

Samples from both laboratories were prepared and sequenced by the Quebec 

Genome Center using the same protocols for library preparation, sequencing and 

bioinformatic analyses. The Quebec Genome Center uses Illumina’s Ribo-Zero rRNA 

removal kit for ribosomal depletion and generates 100 base-pair, paired-end reads 

on Illumina’s Hiseq 2000 platform. We received raw sequencing data for all 

validation samples and were thus able to control the analysis in all downstream 

processing steps. 

Resulting read sets were trimmed for quality using a Phred33 score of 30 

using a sliding window average. Reads under the required length of 30-bp (base-

pair) meeting the quality score were discarded. Read trimming was done using 

Trimmomatic88 (v0.32). Known adaptors and Illumina-specific sequences were 

removed from reads in palindrome mode. Reads thus processed were aligned using 

STAR69 (v2.3.0e) to the UCSC hg19 genome.  
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We quantified expression levels for the annotation set used by the Brainspan 

group (above). Read counts were estimated by counting reads with featureCounts89 

(v1.4.4) using default settings. The minimum mapping quality score for a read to 

be counted is 3, and only primary alignments are counted. RPKMs are also 

calculated for each feature by dividing the calculated read count by the sample total 

read count and by the cumulative genomic length of each feature. 
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3. Results 

3.1 Overview 

In order to identify exons whose expression in the brain were restricted to a 

developmental period, we applied a modeling framework to a large scale dataset of 

brain transcriptomes. We sought to summarize exon expression over the 

development of the human brain. We fit curves that modelled the expression of 

exons in the brain as a function of brain age using the Brainspan dataset described 

in the previous section. We refer to these curves that summarize exon/gene 

expression as a function of brain age as exon/gene trajectories. 

We tested parameterized models with 1. parameters interpretable in ways 

meaningful to biologists, 2. a small parameter set to avoid over-fitting the data, 

and 3. whose flexibility could accommodate unimodal peaks in expression. After 

testing several models, we settled on a function that resembles the Gaussian 

probability distribution function (in its shape and its flexibility). We generated 

trajectories using the Gaussian model for all exons and genes in the Brainspan 

dataset. 

We then compared methods that establish a measure of distance between a 

gene’s shared exons by taking into account the parameters that describe the exonic 

trajectories generated by the model. Each measure of distance considered suggests 

a set of exons which are dissimilar from the remainder of the exons that constituted 

its gene-product. In evaluating these methods to compare exon trajectories, within 

a shared gene, and to generate predictions about exons present only at particular 

stages of development, we leverage a second dataset. We tested that these exons 
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are expressed only in particular developmental intervals using a novel validated 

dataset and, for a limited subset of exons, qtRT-PCR experiments among 

orthologues in mice. Figure 5 shows an overview of our methods. 
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Figure 5 Overview of methods 

Exon trajectories and predictions are made using the Brainspan dataset. The 
parameterization of the models and validation of differential exon inclusion is done 
in the validation dataset. 

 

3.2 Modeling exon expression trajectories 

We sought to summarize exon expression as curves, modelling expression 

(y-axis values) as a function of time or development over the lifespan (x-axis 

values). In particular, we define developmentally regulated trajectories as smooth 

functions of few parameters, with a single local maximum (i.e. a single expression 

peak). Reducing the expression data to curves that are described by a small set of 

parameters allows for comparison of the parameters that describe the exon 



	 	 Page	42	

expression patterns instead of the high-dimension expression data (524 samples 

per feature). 

We sought to select a model in such a way as to reflect biologically relevant 

information in the values of the parameters. In this way, in knowing the values of 

the parameters that described the modelled pattern of expression of an exon, one 

could make biological inferences on the exon itself: such as its expression level for 

a particular point in the donor’s lifespan. 

We considered three families of well-known functions that fit these 

requirements: the exponential, the gamma family of curves and the Gaussian 

curve. All modeling strategies are of the form ! = # $    where y is the expression of 

the feature and x is weeks since conception in a log scale. The justification for the 

log scale is simply to give a higher resolution to events at the beginning of the 

developmental time series. It is well known that the development of the brain 

undergoes largescale structuring prior to the maturation of the adolescent90,91. 

Neuronal proliferation and neuron migration in particular occur during gestation91. 

We utilize a log transform to ensure visibility of these early events. 

The following discussion applies also to models of gene expression that were 

constructed in parallel to the exon models. However, our primary interest remains 

the characterization of exon expression. 
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3.2.1 The exponential model 

The exponential family of curves takes the form  

 ! = #$%&   Equation 1 

Where A is a scaling parameter and c serves the dual function of controlling 

the rate of descent from peak expression while the sign of c indicates the window of 

peak expression. This formulation limits the number of parameters estimated to 2. 

The first (A) is required to capture the variance in gene expression.  The sign of the 

second (c) is useful in that it positions the peak expression of an exon in one of two 

developmental windows. Positive values of c indicate that the peak expression of an 

exon occurs at conception. Negative values of c indicate that the peak expression of 

an exon occurs at the end of a human being's lifespan. Figure 6 demonstrates the 

flexibility of the exponential curve for modelling exon trajectories. 
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Figure 6 Flexibility of the exponential model 

Each curve is modelled for different values of c in Equation 1. A is chosen to so as 
to plot similar peak expression values. The green and blue curves show the model's 
capacity to model monotonically increasing or decreasing expression trajectories. 
The red curve shows that values of c can influence the rate of change of expression. 

The limitations of the model are apparent on inspection. Exons which 

reach a peak expression at an intermediate developmental stage will not be 

adequately captured by the model. This model was applied to all features: 

exon and genes (more details on the fitting process later) but was ultimately 

abandoned in favor of a more flexible model once we observed the 

frequency of features with a peak expression that did not lie at either 

extreme of the lifespan (conception or adulthood). 
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3.2.2 The gamma model 

The gamma family of curves resembles the probability density function of the 

same name. However, only the flexibility of the curve of the non-cumulative 

probability distribution is of interest here. None of the characteristics of such a 

probability distribution function are conserved (or even desired). What is of interest 

is the curvature property which is a function of two parameters: the gamma shape 

(k) and the gamma scale (t). The function of the proposed model is put forth in 

Equation 2. 

 ! = #$%&'	)-
+
,   Equation 2 

A is a scaling parameter which accounts for the y unit scale. k is the gamma 

shape parameter, it affects the overall shape of the trajectory; t is the gamma scale 

parameter, it stretches out the curve along the age coordinate (x axis) as seen in 

Figure 7. 
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Figure 7 Flexibility of the gamma function. 

A. The curve readily adapts to possible instances of peak feature expression at 
conception or in adulthood as in the case of the basic exponential function. B. 
Moreover, the gamma function adapts to peak expression at some intermediate 
developmental stage as shown. As can be seen, the gamma function allows for 
skew. The green curve shown has a higher rate of change when approaching peak 
expression than its rate of descent down from peak expression into adulthood 

The gamma curves require 1 more parameter than the exponential model. It 

is thus more flexible and can accommodate more trajectories. Figure 3.2 makes the 

case for the adoption of the gamma function over the exponential function as the 

additional capacity afforded does capture biologically relevant cases. Genomic 

features such as genes are known to be highly expressed in developmental phases 

that are not simply extremities of the lifespan: conception or adulthood. 

Nonetheless, the gamma distribution poses a challenge in the interpretation 

of its parameters. While the gamma scaling parameter can be readily 

communicated (it stretches the curve along the x-axis) the impact of the gamma 
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shape parameter (k) is not as simple. One has to review a few cases to grasp the 

rightward migration of the function's peak and the corresponding skew. 

A similar model to the gamma distribution was further tested: the so called 

Weibull distribution. The Weibull curve family shares the characteristics of the 

gamma curves and is so similar in fact that its discussion is redundant. 

 

3.2.3 The Gaussian model 

Like the gamma model, the Gaussian model is inspired by the shape of the 

eponymous probability distribution. As in the application of the gamma curves, only 

the shape of the curves are conserved in the model, properties that are attributed 

to the non-cumulative probability distribution are not relevant to this study. The 

Gaussian curves are described by Equation 3.  

 !" 	= 	%"&'(
- *	-+,	

-

.,-
   (Equation 3) 

!"   is the estimated scaling parameter, !"   is the estimated peak expression 

and !"   scales with the width of the peak expression. 
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Figure 8 Flexibility of the Gaussian function 

The Gaussian curves adapts to unimodal expression patterns. The blue and 
red curves model fetal and adult trajectories respectively. The red and teal 
curves peak midway through the developmental coordinate (log-scaled). The 
teal and red curves show the capacity of the Gaussian curves to adapt to 
different rates of change in expression from a pronounced peak (red) to a 
negligible difference in expression (teal) perhaps modelling a non-
developmentally regulated trajectory. 

 

 Like the Weibull and gamma curves, the Gaussian curves restrict the 

cardinality of the parameter set to 3 parameters. Unlike the former two, the 

Gaussian parameters are inherently interpretive. They allow for a straightforward 

biological interpretation of the trajectories plotted. !"   corresponds to the age of 

peak expression of the j feature modelled and !"   relates to the duration of the 
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period of elevated expression of the jth feature. For this reason, we applied the 

Gaussian model to features in the Brainspan dataset and this representation of 

those time series is used in the remainder of the analysis.  

 In choosing to apply the Gaussian model to the data we have 

deliberately left out one of the advantages of the Weibull and gamma curves. The 

Gaussian model does not allow for any skew of the trajectories. The nth derivatives 

(rates of changes) that shape the curve up to the peak of expression are equivalent 

(in magnitude but not in sign) to the derivatives that follow the peak. We 

considered this tradeoff to be acceptable given that the skew of the trajectories is 

challenging to measure accurately given the noise of the dataset. 

 

3.2.4 Parameter estimation 

We created a Gaussian model framework by fitting Equation 3 to the 

expression data of each exon in the Brainspan dataset. Several non-linear 

parameter estimation techniques were attempted within a python 2.10 

environment92–94 using the well-known Scipy95 library.  

 

3.2.5 Objective function 

We created an objective function L defined as the sum of the residuals across 

all samples and all donors for which the feature was quantified in the Brainspan 

dataset. L is defined in Equation 4. 
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 !" = $"%-$"%
'()

%*+
(,
-*+    Equation 4 

Where yjk is the observed expression of the jth exon in the kth sample for 

donor i. !"#   is the value estimated by the Gaussian model (Equation 3) for the given 

parameter set. 

 

3.2.6 Parameter initialization 

 All methods of parameter estimation implemented converge on local 

minima only and therefore are sensitive to parameter initialization. We estimated 

parameters for exon trajectories and gene trajectories in the same fashion. A was 

initialized to midway between the maximum and minimal expression reached by the 

feature across all donors and samples. (If expression was constant, A was assigned 

the mode). !   the median age of all values greater than A (or the age of the 

maximum expression if only a single value was greater than A). Like !  , !   was 

initialized based on the number of expression values greater than A. If there were 

more than 2, sigma was assigned half the spread of these values. If there was a 

single value, sigma was assigned a sixth of the spread of all values. 

 



	 	 Page	51	

3.3 Optimization strategies 

We tested several optimization strategies, beginning with unbounded 

parameters (no restrictions on values estimated) and later deciding on a strategy 

that bound parameters to values that did not greatly exceed the biological 

thresholds on life expectancy. 

We first attempted the Scipy implementation of the common Levenberg-

Marquardt (LM) algorithm to minimize the sum of the residuals objective function. 

Like all other methods attempted, LM converges only on local minima and does not 

support bounds on parameters although bounds can be enforced by changing the 

loss function so as to strongly penalize values that exceed the desired thresholds. 

Convergence of the LM estimates was lackluster in that just over a thousand 

features did not converge in the computational window allotted: 8 hours on 20 i7 

cores with 8 threads each. Additionally, the optimization method generated many 

estimates for !   that were either negative or greater than 10. As shown in Figure 8, 

negative values for !   indicate a monotonic decrease from peak feature expression 

at conception (blue line). Values for !   greater than 10 indicate a net monotonic 

increase in expression from conception to a peak expression in adulthood (red line). 

We therefore opted to set bounds on !   as the heterogeneity in the !   estimates 

could be adapted in the curve fitting by appropriately modifying !   and A. Rather 
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than modifying the objective function, we utilized the Scipy implementation of 

Coleman and Li’s Trust Region Reflective (TRR) algorithm96 to estimate parameters 

for the feature sets. 

 

3.4 Optimization results 

We fitted the 309,223 annotated exons and 52,376 gene features using the 

Scipy implementation of the TRR algorithm. 309,152 exonic models and 52,369 

genic models converged onto local minima within the same computational 

constraints. !   and !   are constrained to [0, 10] values, A is constrained to positive 

values. 

Resulting parameter estimated fall into relatively well defined populations in 

both sets of features: genes and exons. 

In order to verify that our modeling strategy was adequately capturing 

developmental expression patterns, we randomly selected sets of exon expression 

and the trajectories generated by our models for visualization. A subset of features 

randomly selected from the different parameter populations obtained after fitting 

are presented in Figures 9, 10 and 11. These support the abstraction of the data 

into the !		 and !		 parameters. As can be seen in these figures, the parameters 

estimated fall into relatively well defined populations in both sets of features: genes 

and exons. 
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Figure 9 Randomly selected exon expression patterns by !    
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The population of !   parameters estimated from the data fall into 4 populations with 
peaks at 0, 3, 6.5 and 10, the last peak consisting of exons with non-developmental 
trajectories (i.e. exons whose expression does not vary as a function of 
developmental phase). 2B Randomly selected trajectories with values of !   near 0 
(random seed of 2016) C Randomly selected trajectories with values of !   near 3. D 
Randomly selected trajectories with values of !   near 6. E. Randomly selected 
trajectories with values of !   near 10. 
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Figure 10 Randomly selected exon expression patterns by !   
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The !   (peak expression) values show a quad-modal distribution. One set of exons 
peak and decline in expression from conception, a second set peak before birth, a 
third nearing 5 years of age and a final set see peak expression in adulthood. 0.1B 
Randomly selected trajectories (random seed of 2016) with a !   at conception. 3C 
Randomly selected exons with a !   near 3. 3D Randomly selected exon trajectories 
with a !   near 5. 3D Randomly selected exon trajectories with a !   near 10. 
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Figure 11 Randomly selected gene trajectories by !   and !   

Distribution of the goodness of fit metric for gene trajectories. 2B Distribution of 
estimated !   parameters for gene trajectories. 2C Distribution of estimated !   
parameters for gene trajectories. 2D Random gene trajectories for increasing 
values of !  . 2E Random gene trajectories for increasing values of !  . 
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3.5 On the assessment of the goodness of fit 

In order to assess the robustness of the parameter estimation, we used 

donor information to perform a leave-p-out cross-validation. The size (42 donors) 

and design of the Brainspan dataset (1-3 donors per time point, with samples 

originating from the same donor being highly correlated) precludes the use of a 

standard X-fold cross-validation procedure. Instead, leave-p-out calculations, for 

each exon, were performed as follows. In each iteration, all samples from one 

donor (p samples) were removed from the dataset, parameters were estimated 

using the remaining data, and the root mean standard error (RMSE) for the omitted 

observations was computed. The procedure was repeated for all donors, one at a 

time. The average RMSE obtained, normalized by the mean expression of the exon, 

constitutes the final leave-p-out score: NRMSE. Figure 3.7 shows the distribution of 

NRMSEs obtained for all exons. 
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Figure 12 NRMSE distribution of exon trajectories 

Density plot of the leave-p-out cross-validation metric: NRMSE (based on the 
average sum of residuals over mean expression) follows a unimodal distribution 
skewed to the right. A low NRMSE value indicates a robust fit. The long, sparse 
density right tail extends to a maximal NRMSE of 94. 

3.6 Validation of parameterization 

In order to assess the reliability of these estimated trajectories (particularly 

the predicted peak and width), we assembled a novel independent RNAseq dataset. 

This independent dataset presents many technical differences with respect to 

Brainspan, including sample collection and brain region, library preparation, 

sequencing technology and coverage, and thus represents a stringent test for 

predictions. Of primary concern was the accuracy of our estimated peak expression 

for each exon. Our validation samples fall into two broad developmental periods: 
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prenatal and young adult. Among our models, 127,286 predicted values for !		 fell 

into the prenatal window and 64,051 fall into the adult window. 

Since our validation dataset consists of samples belonging to two narrow 

developmental windows, we designed a binary test for validation. We validated 

exons whose predicted peak expression (!		) fell into developmental windows that 

were represented in our validation dataset. These windows are the fetal window, F, 

defined as conception to 38 weeks post conception, and the adult window A, 

defined as 780 weeks post conception (14 years of age) and onwards.  

If we take !"		 to be the mean expression of exon j in fetal validation samples 

and !"		 to be the mean expression of exon j in adult validation samples, then the 

parameterization of an exon’s peak expression is considered validated if either of 

the following conditions were met. 

!"	$	%		 and !" > $"		 (fetal peak predicted and corroborated), 

!"	$	%		 and !" < $"		 (adult peak predicted and corroborated) 

Only exons with predicted expression within the two windows covered by the 

validation dataset were subjected to this test. We also omitted exons that were 

weakly expressed (less than 1 RPKM) and exons that overlapped another exonic 

feature (the latter is discussed in detail in section 4.2). 

Validation rates are expected to vary depending on the values of the sigma 

parameter (width of peak expression) and NRMSE (robustness score). We thus 

binned exons by these two values, and then calculated the validation rate for each 
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bin (Figure 13). Rates for each bin following randomized label shuffling hover 

around 50%, as expected for this binary test (Figure 14). 



	 	 Page	63	

 

Figure 13: Validation of parameterization 

 Validation rate of peak expression concordance with validation dataset, 
binned by estimated value of sigma and NRMSE. B Counts of exon 
trajectories for each bin. 
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Figure 14 Validation of parametrization with shuffled labels  

Validation rate of exons with shuffled labels, binned by estimated value of sigma 
and NRMSE.  

As expected, the validation rate declines with higher estimated !   values and 

with higher NRMSE scores. The rate declines to below 80% with NRMSE values over 

1 and !   values over 6, reflecting the anticipated uncertainty in the predictions of 

non-robust fits (high NRMS) and the low predictive value of the parameter µ for 

non-developmental (flat) trajectories (high values of !  ). Very wide peak expression 

intervals (" > 9) do not provide useful predictions for the exon's peak (µ) and are 

referred to as non-developmental trajectories in this work. Exons with these 

trajectories are sometimes referred to as non-developmental exons. 
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The bulk of exons fall into high !   bins and moderate NRMSE scores, 

indicating that the majority of exons display non-developmental trajectories that 

remain reasonably stable when substituting donors in the leave-one-out 

calculations.  

In summary, our method reliably predicts peak exon expression for 

trajectories with !   value between 0 and 6 with an NRMSE value equal to or less 

than 1. Furthermore, the capacity of the Gaussian model is sufficient to categorize 

relatively flat, non-developmental trajectories which are relatively robust to leave-

one-out calculations. 
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4. Predicting differential exon inclusion 
 

4.1 Overview 

The parameterized model described so far allows for the straight-forward 

comparison of parameters that summarize exon trajectories. Measures of 

robustness (NRMSE) and of indicators of developmental trajectories (!  ) provide the 

remainder of the metrics required for making predictions about developmental 

exons by comparing exon trajectories within a shared gene product. For-instance, 

one may query the data for genes with robust, developmental exon trajectories 

whose estimated peak expressions (!  ) fall into different developmental windows. 

We posit that at least one of these exons is differentially expressed between the 2 

windows and predict these candidates as differentially and developmentally 

expressed. This is but one of a number of curve comparison methods can be 

applied for our purposes, from straightforward queries of parameters to more 

sophisticated methods of curve clustering and outlier detection. Each one of these 

methods will varies in sensitivity and specificity. 

In what follows, we first describe the resolution of overlapping exonic 

features along the genome and the identification of categories of exons through the 

required annotation and curation steps in order to reduce false positive predictions. 

We then design a validation test to test for the differential inclusion of exons 

between fetal and adult samples in our validation dataset. Cassette exons are 

tested separately from initial and final transcript exons because of the nature of the 
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splice junction reads used in the test. We generate thresholds for this test by 

utilizing the query described above: detecting pairs of exons within a gene-product 

that peak in different development windows. We compare exons selected in this 

way to randomly selected exons. 

We then present the exon trajectory comparison strategies we implemented, 

following a logical progression. We apply progressively more sophisticated distance 

measures to quantify dis-similarity of exon trajectories within gene products. Within 

a gene product we aggregate exons and compute mean, median and maximal 

distances between the estimated peak expressions of exons within the set. We also 

compute zscores of the distance of each exon’s peak expression to estimates of the 

gene’s peak expression. These scores are utilized to predict exons that are 

differentially included over the course of development. We increase the complexity 

of the distance computation and apply hierarchical clustering to the predicted peak 

expression of each exon within a gene product. Generally speaking, by increasing 

the complexity of the distance score we increase the number of candidates 

predicted by each approach however the validation rate for complex methods is 

lessened. Nonetheless, we feel that the incremental discovery of novel and valid 

candidates outweighed the lesser validation rates and so all results are presented 

here for exons with peak expression in the validation fetal and adult windows 

below. We also select some candidates for qtRT-PCR validation in mice. 
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4.2 Annotation curation 

 The human genome presents many instances of exons overlapping in 

genomic coordinates, many are located in opposite strands of the DNA. Brainspan 

collapses exon annotation for overlapping exons that share the same strand but 

have alternate 5’ss or 3’ss as described in section 2.3.4 (Figure 4). However, the 

Brainspan annotation does not contain strand information, only expression data for 

genomic coordinates and thus contains many instances of confounded expression 

signals. Moreover, the exon annotation of Brainspan, generated using the Ensembl 

65 release, contains some outdated information, attributing some transcribed exons 

to the incorrect gene. 

Therefore, some further curation was undertaken in order to remove these 

confounding factors in the comparison of exon trajectories: feature overlap 

identification and extra-genic exon. We intersected the genomic coordinates for the 

Brainspan exons with themselves using bedtools83. Any exon that overlapped more 

than 1 annotated feature (itself) was flagged and excluded from downstream 

analyses. 

In order to reduce annotation errors that would induce false positive 

predictions, we compared Brainspan annotations with the latest release of Ensembl 

(release 82).97 Brainspan exons that fell outside the gene coordinates in this version 

of Ensembl were removed from our analyses. We calculated gene coordinates in 

order to resolve the most encompassing genomic region for each gene by 

aggregating gene isoforms and computing minimal genomic starts and maximal 

genomic ends for the set of each gene’s isoforms.  
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4.3 Identification of promoters, terminators and cassette exons. 

To assign Brainspan annotated exons to a category of promoter, terminator 

or cassette, we utilized the Ensembl annotation set version 82.97 The Ensembl data 

was filtered to contain only exons belonging to known protein coding genes and 

matured transcripts based on Ensembl’s annotation of these properties. Informed 

by their position within the transcripts, annotated exons were marked as promoter 

(i.e. first exon of a transcript), ‘terminator’ (i.e. last exon of a transcript), ‘cassette’ 

or a combination of these labels if they existed in different roles among the 

different isoforms of a gene.  

To assign Brainspan annotated exons to each category, the genomic 

coordinates of exons with unique labels (as promoters, terminators or cassettes) 

were then intersected with the existing Brainspan dataset annotation using 

pybedtools98 a python wrapper around the bedtools99 suite. Exons within that 

Brainspan annotation that overlapped with only one of the labelled exons were, in 

turn, labelled accordingly as a promoter, terminator or cassette exon. 

 

4.4 Development of a validation test 

To develop a validation test, we considered cassette exons separately from 

promoter and terminator exons since the method for the quantification of inclusion 

varies accordingly. Cassette exon inclusion can be calculated via the ratio of reads 

that bypass a given exon to the splice junction reads that support its inclusion in 
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the transcript. Promoters and terminators are not skipped over by splice junction 

reads, we quantify their inclusion with respect to a set of exons with constitutive 

properties. 

4.4.1 Cassette exons 

In the case of cassette exons, we calculated an exon inclusion rate in the 

validation dataset as follows. Let !"#	  be the number of splice junction reads that join 

exon j to an upstream exon in sample i (within the same gene). Let !"#   be the 

number of splice junction reads that join exon j to downstream exons in sample i 

(within the same gene). Finally, let !"#   be the number of reads that join exons 

upstream and downstream of exon j, passing over exon j (within the same gene, 

for sample i). The exon inclusion rate for exon j in sample i (!"#  ) is defined as 

follows: 

 !"# =
%&'()*+,-*+)

%&'()*+,-*+)	01*+	
		 (Equation 5) 

A visualization of these counts for a hypothetical exon j is shown in Figure 

15.  
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Figure 15 Exon inclusion rates 

Visualization of hypothetical read counts for exon j. Exon j is situated on the plus 
strand and is part of a 3 exon gene. Reads that join exon j to an upstream exon 
number 2. (The third read is ignored as it originates before the gene begins.) Reads 
that join exon j to a downstream exon number 1. Reads that skip over exon j, 
joining exons upstream and downstream of it, number 1. Therefore the !"   
calculation is max(2,1):[max(2,1)+1]=2/3. 

 

The magnitude of the difference of the means of fetal samples (!"  ) and adult 

samples (!"  ) in the validation dataset is reported as ∆"  . 

 ∆" = "$-"& 		 (Equation 6) 

 

4.4.2 Promoter and terminator exons 

 Promoter and terminator exons are not always passed over by 

skipping reads that join exons upstream and downstream. Therefore, a different 

validation test is needed. On a per-sample basis, we normalize the number of splice 

junction reads supporting inclusion of the exon using splice junction reads from a 
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set of constitutive exons belonging to the same gene. We select these constitutive 

exons based on 2 criteria: Equations 7 and 8. 

 !" = !$ = 1		 (Equation 7) 

 !" > 	 %&' !(&'
()% 		 (Equation 8) 

 

Equation 7 states that the median inclusion rate for constitutive exons must 

be 1 for adult and fetal samples. Equation 8 states that the median expression (in 

RPKM) of constitutive exons (!")   across samples must be greater (and not equal) to 

the mean expression of exons (!)   in the gene across samples. Figure 16 shows a 

selection of constitutive exons for the PHLDB1 gene. 

 

Figure 16 Constitutive exon identification 

A boxplot of expression values among samples for each exon, arranged along the x-
axis, of the PHLDB1 gene. Boxplots for fetal samples among the validation dataset 
are on the left. Boxplots for adult samples among the validation dataset are on the 
right. Arrows indicate the exons selected as constitutive by the algorithm outlined 
above. The exons have a ! > 1   in both adult and fetal samples and are expressed 
greater than the mean overall expression for the gene. 
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Using the set of constitutive exons for normalization, promoter and 

terminator inclusion is computed as a ratio of promoter/terminator splice junction 

reads to the median of the constitutive splice junction reads:  

 !"# 	=
&'((*+,,.+,)

0,
		 , (Equation 9) 

where !"   is the median of !"#(%&', )&')   for all exons k in the constitutive exon 

set. We compute a log2 fold change between adult and fetal sample means and 

report this as !"   for exon j. 

 

4.4.2 Comparison of initial dual-peak query with random exons 

We queried our fitted models to identify genes that included exon trajectories 

whose peaks were in different developmental windows and whose developmental 

windows corresponded to those found in the validation dataset: fetal and adult. 

We identified 104 genes with at least 1 adult and 1 fetal exon (cassette, 

promoter or terminator). In each case we considered only robust trajectories 

(NRMSE < 1) and informative values of sigma (sigma < 9). 
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4.4.3 Comparison with random exons 

We defined a gene to be validated if one of its exons, predicted as being 

developmental, met a threshold for ∆Ψ   in the case of cassette exons, or a threshold 

of ρ   in the case of promoters or terminators. In order to identify a reasonable 

lower-bound for these thresholds, we constructed a test of validation rates that 

compared the candidates selected above in section 4.4 with a set of randomly 

selected exons. 

We selected a set of random exons that were not predicted as developmental 

using the method outlined in section 4.4, that were expressed (RPKM > 1), whose 

peak expression was in a region covered by our validation dataset (fetal or adult) 

and which met prior set criteria for robustness (NRMSE < 1). We also ensured that 

these exons were not overlapping other features and that they respected the 

Ensembl 82 annotation set, as discussed above in the annotation and curation 

section (section 4.2). 

We divided exons between promoter/terminator and cassettes. The results of 

the exon inclusion tests are shown in Figure 17. Only 10% of genes with randomly 

selected exons validate at a !   of 1 or a ∆"   of 0.05; we set our thresholds 

accordingly. 

Note, the log2 fold change is not computed in cassette exons. The delta of 

percentage inclusions measure applied to cassettes is intuitive whereas the ratio to 
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constitutive exons, applied to promoter/terminators is not. For instance, this occurs 

in cases where a candidate exon exceeds the expression of the constitutive exons in 

one developmental window but not in the other. Furthermore, the delta threshold 

required for validating cassette exons (as seen in the following section) is small: a 

5% difference between the percentage inclusions calculated in each developmental 

window disqualifies over 90% of random exons. Taking a log fold change further 

reduces this number further while obscuring its meaning.  

 

!"

A B

 

Figure 17 Validation rate of genes with fetal and adult exons 

Validation rate of promoter and terminator exons. A candidate exon is considered to 
be validated if !   is greater than the threshold along the x-axis (a constant of 1e-4 is 
added to avoid undefined values of log). 10% of random promoters/terminators 
validate at a threshold of 1 (the red vertical line). B Validation rate of cassette 
exons as a function of ∆"   along the x-axis. 10% of random cassettes validate at a 
delta psi threshold of 0.05 (corresponding to the red vertical line). 
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4.5 Further methods for predicting temporal exon inclusion  

Having implemented a parameterized modeling framework, verified the 

consistency of estimated the parameters, and implemented a validation test by 

analyzing the straight-forward query presented above, we now turn to other 

methods for predicting developmental exons. 

Note in the elucidation of methods below we generally constrain ourselves to 

calculating measures of dis-similarity between trajectories based on their peak 

expression !  . Nonetheless, the other parameters inform the trajectories. A scales 

the trajectory to meet the expression unit scale. The result of our p-fold validation 

tests (NRMSE) while not strictly an estimated parameter, provides a measures of 

robustness. !   provides a measure on the accuracy of !  , small values of !   indicate 

developmentally sensitive trajectories. Prior attempts to integrate !   into measures 

of dis-similarity as discussed in the following sections produced less favorable 

validation rates when attempted. 

 

4.5.1 Predictions Dmean, Dmedian, Dmax 

We sought to extend the measure of distance between exon trajectories by 

leveraging dis-similarities in !  . Dmean calculates the mean distance from !"   for an 
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exon j to estimated values of !   for all other exons within the gene product 

(restricted to informative and robust trajectories). 

Let j be an exon of interest and take l to index G: the set of informative 

(!" 	< 	9)   and robust ("#$%&' < 1)   exon trajectories included within the gene product 

G. Then with !"   the size of the set G, dj is the Dmean score for exon j (Equation 

10). 

 !" = $
%&

'"-')*")	,	- 		 Equation 10 

Exons that are expressed (RPKM > 1) and developmental (!   < 9) with the 

greatest Dmean score among other exons in the same gene product are predicted 

as being differentially expressed if at least one other exon (not necessarily 

developmental) is found to be the opposing validation development window 

We applied the same methods using the median of the distances. Dmedian. 

calculates the median distance from !"   for an exon j to all other exons within the 

gene product with informative and robust trajectories. Finally, the Dmax measure 

takes the maximum distance between 1 exon and other exons within the same 

gene product. 
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Given the thresholds established above using the random exon trials, we 

validate 21 of the 29 exons predicted by Dmeans (72% accurate), 19 of the 27 

exons predicted by Dmedian (70% accurate), and 17 of the 26 exons predicted by 

Dmax (65% accurate). There is a non-trivial amount of overlap between the 

methods as can be seen in Figure 18. In total, 31 exons are predicted by the union 

of the methods, of these, 21 validate (10 cassettes, 11 promoters, no terminators) 

for a 67% accuracy rate. The results are included in Table A1 in the appendix. 

 

 

 

Figure 18 Intersections of predicted exons by Dmean, Dmedian and Dmax. 

31 exons in total are predicted by the three methods and 21 validate. All three 
methods predict a set of 22 exons from which 16 validate. Dmax predicts three 
false positives and no validated exons that are not also covered by the other 
methods. 
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4.5.2 Predictions Zscore 

We then attempted to integrate information about the peak expression of the 

gene trajectory parameter µG (estimated from whole gene expression) in order to 

predict candidate exons. A distance from the µG is calculated for each exon j and 

based on these distances, a zscore zj is calculated for each exon j. If the distance 

between the exon and gene parameters are calculated such as in Equation 11 

 djG = |µj � µG| Equation 11 

Then, the zscore for an exon j is 

 
zj =

djG � d̄G
�G  Equation 12 

where d̄G is the mean of the distances diG for all exons in in the set G and σG 

is the standard deviation of these distances.  

This method predicts 30 developmental exons, 28 of which are predicted by 

the union of the methods in section 4.5.1. We validate 18 exons (8 cassettes and 

10 promoters), all of which were validated by the methods above. Thus, 

incorporating explicit information from the gene-product’s trajectory does not 

improve our prediction strategies, indicating that modeling the ensemble of 

individual exons may be sufficient to capture this information. These results are 

included in Table A1 in the appendix. 

Table A1 presents all exons that are predicted by the above methods and 

that validate by our validation test: 130 exons distributed among 114 genes. 
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4.5.3 Hierarchical clustering 

 We then sought to determine dissimilar trajectories through 

agglomerative clustering methods. For each gene, we performed a hierarchical 

clustering analysis using the Euclidean distance between each exon’s estimated 

value of !  .  

Hierarchical clustering100 is the iterative assembly of elements into groups. In 

our case, the elements being grouped are exon trajectories. The distance between 

exon trajectories is the Euclidean distance between the estimated peak expression 

for each: !  . Exons with the least distance between estimated values of !   are 

grouped first. Distances are then recomputed between values of !   for ungrouped 

exons. Distances between groups (also called clusters) and ungrouped exons are 

also computed. These distances are determined by taking the maximal distance 

between exons in the group and the ungrouped exon. (This so called distance 

function is referred to as a ‘complete’ distance). Distances between 2 groups, 

should that occur are taken as the maximal of the pairwise distances between the 

members of the disjoint groups. 

This iterative clustering is done until all exons are grouped as a single set. 

We are primarily interested in the maximal distance of the cluster, that is the 

distance calculated between the last 2 groups or ungrouped exons or a mix, 
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whichever collection remains. This final distance is indicative of the greatest degree 

of dis-similarity between groups of exons in a gene product.  

By filtering clusters by maximal distance threshold (t) we identify groups of 

candidates based on this level of dis-similarity. Unlike the previous methods, the 

exons that are differentially expressed in different windows are not identified by 

this method as they can be in either of the dis-similar clusters. We thus test each of 

the robust, developmental trajectories using the validation dataset in order to 

validate at the gene level. At a threshold of t=1, only 13% of the genes validate, 

close to the random exon validation rate, as expected (the rate is slightly higher on 

account of the gene validating if one of its multiple exons validate.) Exons that 

validate (at a threshold of t=2 or higher, are tabulated in Table A2 in the appendix. 
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Figure 19 Validation rates for hierarchical clustering 

The validation rate of genes predicted to have developmentally regulated exonic 
content as identified using the hierarchical clustering method for varied values of t 
(the cluster cutting threshold). 

Hierarchical clustering produces a much higher number of candidates but at a 

greater false positive rate. Nonetheless, we can estimate the number of true 

positives identified using the final bin in Figure 19, if we assume that the false 

discovery rate of our validation test is uniform for all values of t, at approximately 

13%. In this case, using a cut-off of t=2, hierarchical clustering methods identify 

4096 exons among 2488 genes. In the interest of concision, we include the top 250 

candidates (ranked by width of developmental peak) in Table A2. The remaining 

candidates are available through the corresponding author and in the 

supplementary material for the forthcoming publication. 
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4.6 Validation in mice 

In order to ensure that our results were not simply technical artifacts, nor 

purely due to evidence of differential cellular composition of tissues, we selected 

some candidates with orthologues in mice for validation via qt-PCR. Orthologues 

were identified and verified using UCSC's BLAT tool101 and genome browser102. 

Primers were designed to bind regions spanning splice junctions when possible, so 

as to obtain a product only when the candidate exon is included. Many candidate 

exons are of small size and thus, primers were designed to amplify regions that 

would only exist if the exon where included.  Constitutive exons were used for 

normalization. Figure 20 shows the primer design. 

 

Figure 20 Primer design 

Primers were selected to amplify their targets only if the developmentally regulated 
exons were present (depicted in red). For each gene-product a second set of 
primers was selected to span a region of the gene-product predicted to be 
constitutive. NCBI accession numbers are given for the developmental region when 
available, otherwise the Ensembl transcript identifier is given. 
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All 9 exons predicted as being developmentally regulated validated. 

(Figure 21). 

 

Figure 21 qtRT-PCR results 

Bars plot the fold change of predicted developmental exons to the constitutive exon 
amplification target. Embryonic brain samples are in red, adult brain samples are in 
orange. All exon amplification products have a markedly different profile between 
fetal and adult mice samples and correspond to the predicted developmental 
window. 
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5. Discussion 

Alternative splicing is an important biological phenomenon that greatly 

diversifies the population of transcripts and downstream gene products generated 

by the cell. This research approaches the temporal development of the brain’s 

transcriptome through a framework of parameterized model building. Parameters 

are inferred from the time-series of individual exonic expression as assayed by next 

generation sequencing technologies and (the parameters) are tied to biologically 

meaningful properties of the developing tissue. Peak expression and the rate of its 

attainment are represented by the parameterization of the model. Thus high 

dimensionality data, equal to the number of observations in the time series (524 

samples in this implementation), is reduced to a small set of parameters: 1 scaling 

parameter and 2 that shape the trajectory. The model has been chosen so that 

these parameters are immediately informative. 

We measured dis-similarity between exon trajectories within the same gene 

product and predicted a differential of exonic expression among developmental 

periods. We tested these predictions by measuring exon expression by leveraging 

splice junction reads in a validation dataset. Our methods identify approximately 

600 developmentally regulated exons among as many genes with a high degree of 

confidence (hierarchical candidates with t=9, section 4.5.3), using methods that 

predict differential inclusion in 1 dataset and validate the findings in an 

amalgamation of 2 more.  
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5.1 Differential expression of promoter exons 

Our methods allow for the identification of promoters that are associated with 

developmental periods. Since activation of promoters is accompanied by large 

changes in chromatin states (chromatin accessibility, deposition of histone marks, 

changes in DNA methylation), predictions regarding temporal changes on promoter 

activation state can be validated using independent epigenomic data. Thus, using 

data from the Epigenome Roadmap Project103 from the NIH we can further 

corroborate predictions made by the Brainspan dataset and corroborations made by 

our validation dataset. Here we present a novel promoter found by our methods: 

RTN4, an important regulator of neurite propagation. 

Reticulons are a family of membrane-anchored proteins present in the 

endoplasmic reticulum (ER). There are 4 mammalian RTN genes, one of which is 

the 14 exon RTN4104, also known as NOGO for its role in the inhibition of CNS 

regeneration105. NOGO gives rise to 3 major isoforms: NOGO-A, NOGO-B and NOGO 

-C which share a common C-terminal of 188 amino acids. NOGO-A, the largest 

isoform is predominantly expressed by CNS myelin-forming oligodendrocytes in the 

CNS106 and contains at least 2 domains that are strong inhibitors of neurite 

outgrowth (Nogo-66 and Nogo-40) proximal to the C terminal. Our findings suggest 

that the shorter isoform has a distinct temporal trajectory, unknown prior to this 

study. This isoform is transcribed from a distinct adult only-promoter that is most 

active in the adult development window. The clustering of the trajectories is shown 

in Figure 22. 
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Figure 22 Hierarchical clustering of RTN4 trajectories 

RTN4 is flagged as a gene with developmentally regulated exons at a threshold of 
t=7. Informative, developmental exon trajectories separate into trajectories with 
adult peaks and fetal peaks. The three leftmost trajectories with a peak expression 
of 0 correspond to the RTN4/Nogo-A isoform known to be present in the brain. Of 
more particular interest is the promoter trajectory with a peak at 7.4 (exon 67469) 
signaling the increased presence of the shorter RTN4 isoform (NOGO-C) in the older 
human brains. 

Using the Washington Epigenome Browser107 to view epigenome information 

made available through the Epigenome Roadmap Project103, we can see that 

chromatin marks often associated with promoter use are absent in the fetal sample 

yet are present in the adult samples. 
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Figure 23 Histone modifications for RTN4 exons. 

Histone marks H3K4me3, associated with active promoter use, are present in both 
adult and fetal samples on the right at the distal promoter for the longer isoform 
(Nogo-A) however only adult samples show histone marks for the shorter isoform’s 
promoter 

Figure 24 demonstrates the corroboration of the validation dataset with the 

trajectory estimated using the Brainspan data. 

A B C

 

Figure 24 RTN4 differentially expressed promoter exons 

Our models traced as red curves predict developmental trajectories that peak in at 
conception. Brainspan samples are plotted in blue according to the left y-axis, 
greater saturation indicates a greater density of samples. Validation data is in red, 
plotted according to the right y-axis. Expression in validation samples declines from 
conception to adulthood. 

Thus this developmental trajectory of these RTN4 exons is corroborated by 

three different datasets: predicted by the Brainspan dataset and validated our 

aggregated validation dataset (provided by 2 different researchers). RTN4 was also 

one of the candidates validated in mice orthologues (Figure 20). 

Predicted	as	an	adult	specific	promoter 

Fetal	
H3K4me3 

Adult	
H3K4me3 
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5.2 Differential expression of MAPT cassette exons 

Our methods allow for the identification of cassette exons that are included in 

transcripts only for a particular developmental window. Many of these exons code 

for quite short sequences and further research is required to determine their 

importance and functional consequences. Nonetheless, the disease relevance of 

some of these exons, in the case of previously identified genes, has already been 

proven. Our methods identify the differential inclusion of exons in the MAPT protein, 

also known as TAU that is associated with several forms of dementia.31  

We predict differential inclusion of the third exon in MAPT transcripts as 

shown in Figure 25. Using data from three different data sources, we show that the 

incorporation of this exon occurs increasingly in adults. Its threonine rich sequence 

offers a greater number of the potential number of phosphorylation targets. 

Phosphorylation is known to reduce MAPT capability to bind to microtubules108. 

Phosphorylation of certain sites is normal in early development but hyper-

phosphorylation in adults has been strongly linked to dementia.109 
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Figure 25 Developmental exons in MAPT 

A Clustering of Brainspan trajectories for the MAPT exons. B Trajectories for E3 
predicted developmental exon (circled in A) and the constitutive E4 MAPT exon. The 
E3 trajectory slopes upwards, peaking in adulthood whereas the constitutive E4 
exon shows a peak in the prenatal period. B. RNAseq expression for the E3 and E4 
exons in the validation datasets. E3 is expressed in all samples. 

 

5.3 Differential expression of GLS terminator exons 

Our methods allow for the identification of alternative 3’ ends to the 

transcript. As above we present a case study whereby our methods identify 

developmentally regulated exonic content for a particular gene important in the 

maturation of the brain.  

Glutamine small charge neutral, polar amino acid that is an important source 

of carbon and nitrogen for the cell and the most abundant free amino acid in the 

blood.110 In the nervous system, it is a precursor to glutamate, the primary 
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excitatory neurotransmitter.111 This pathway is mediated through the enzyme 

glutaminase which is coded by 2 paralogues: GLS and GLS2112. Gls is expressed as 

2 transcripts (Figure 26) a long version (referred to as KGA) and a shorter isoform 

(known as GAC) that terminates on the 15th exon. The 15th exon is skipped in the 

KGA isoform. Recently, in vitro studies have suggest that both the GAC and KAG 

are upregulated during neuronal differentiation.113  

 

Figure 26 The isoforms of GLS 

GLS is expressed as 2 isoforms in the human brain. Here the longer isoform (KGA) 
is depicted as per its layout on the hg19 genome assembly above the shorter 
isoform (GAC). The developmentally regulated exon predicted by our methods is 
circled in red. 

Our inquiry into in vivo quantifications of the GLS gene product identified a 

substantial presence of the 15th exon in the very early stages of brain development. 

Exon 15 was classed as developmental by our methods due to a temporal trajectory 

that is unlike any of the other informative, robust exon trajectories associated with 

the GLS gene. The 15th exon peaks at conception and rapidly tails off suggesting 

that the shortened isoform is present for a brief window before being down-

regulated by in accordance with the maturation of the brain. Figure 27 shows the 

clustering of the trajectories for the GLS gene. 
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Figure 27 Clustering of GLS exon trajectories. 

All informative and robust trajectories save the rightmost have a gradual increase 
in expression with a peak situated at the end of lifespan. The exception is the 
terminator schematized above which peaks early in development and tapers off 
immediately indicating the short-term presence of the CAG isoform in human fetal 
brains at the start of development. 

Figure 28 offers a close-up of the validation expression data corroborating 

the Brainspan expression data for the terminating exon (right-most trajectory in 

Figure 25). 
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Figure 28 GLS differentially expressed terminator exons 

Our models, abstracted as the red curves predict developmental trajectories that 
peak in at conception. Brainspan samples is plotted in blue according to the left y-
axis, greater saturation indicates a greater density of samples. Validation data is in 
red, plotted according to the right y-axis. Expression in validation samples declines 
from conception to adulthood. 

This GLS terminator is corroborated by three different datasets: predicted by 

the Brainspan dataset and validated our aggregated validation dataset (provided by 

2 different researchers). A GLS orthologue in mice was also validated (Figure 20). 
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5.4 Concluding remarks 

The results of this study are subject to some limitations. We first 

acknowledge the difficulty in exon expression elucidation given the heterogeneity of 

the brain's cellular composition. Therefore, exon expression is confounded, in at 

least some cases, with the maturation of the tissue. Despite the complicated 

composition of the brain, this tissue was chosen in part because the stringency of 

its regulation would favor robust trajectories. Given the success of the method in 

this complex tissue, an important avenue for further work lies in the application of 

this model-based framework in other tissue types, such as blood or the liver. 

A natural expansion on this vein of research would be the inclusion of bio-

informatics tools to estimate cell types and their counts among the tissue 

heterogeneity used to construct the Brainspan transcriptomes. Such counts would 

inform our process to exclude candidates that show marked temporal differences in 

exon expression likely due to changes in tissue heterogeneity coincident with aging. 

Computational methods exist have begun to be developed114,115 and assessed.116 

Given the relatively new onset of such technique, they would require some non-

trivial analysis prior to their integration to our methods. 

A more proximal, yet still only partial, solution to this concern of cellularity 

lies in the availability of substructure data for the brain. Brainspan data exists for 

substructures of the brain on which our approach can be applied although the 

number of samples is quite low and precludes cross-validation straetgies. Validation 

datasets specific to these regions (required to assess candidates) are not yet 

publicly available. Should further transcriptomic datasets of these same brain 
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regions become available for use in candidate validation, our methods could be 

applied to these more specific brain regions as delineated in the Brainspan dataset. 

A further limitation includes the precision of the trajectories reviewed. Models 

were built on RNAseq data available from a 2010 assay of a limited set of donor 

transcriptomes. As a result, differences between exon peak expression patterns 

were only validated for quite high values of dissimilarities. While a finer resolution 

would not have been immediately useful given the sparsity of our limited validation 

dataset, it is anticipated that in further application of these methods more samples 

will aid in the detection of trajectories whose peaks differ only slightly thus inviting 

comparisons between more proximal developmental windows (rather than only fetal 

and adults, for example).  

In light of these limitations the high number of developmentally regulated 

exons predicted and validated using our methods is instructive in developing an 

understanding of the frequency of developmentally regulated exon expression in 

the brain. Studies show that the occurrence of alternative splicing events varies by 

tissue117 and that the liver and the testis in particular, experience a high number of 

AS events (as does the brain).118 These tissues are natural targets of further studies 

to elucidate the role of AS events in their development. 

These findings suggest a non-trivial frequency of developmental exon 

presence in transcripts in the brain. We anticipate further applications of these 

techniques to other datasets will reveal a comparable number of events of the 

developmental regulation of exons. This suggests the immediate applicability of this 

approach and its results in prioritizing candidate SNPs discovered in genome wide 
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association studies (GWAS). For example one might hypothesize that the inclusion 

of temporally sensitive exons in a transcript is more likely to bring about pathology 

either by its untimely inclusion, for instance in the development of brain cancer6 or 

simply by the presence of a time-sensitive active domain such as the increased 

phosphorylation of an adult-specific exon in MAPT in cases of dementia.109 

Application of our methods on a larger scale would greatly expand the use of such 

tools for biologists conducting sequence-specific protocols.  

In addition, the results provided by our approach to identify developmentally 

regulated exons within a tissue, when referenced with data sets that associate 

pathology and genome segments, may provide interpretability as to the 

physiological cause underlying disease and traction for further research. Current 

annotation sets duly lay out the various isoforms present in the various tissues yet 

this representation is misleading as a tissue’s population changes over the course of 

development. The application of our methods may shed more light on the 

developmental course of alternative splicing events in the hopes of rounding out 

this body of knowledge. 
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7. Appendix 
	

Table A1: Developmentally regulated exons predicted by Dmeans, Dmedian, 
Dmax, Zscores and Dual-Peak  

Exons predicted and validated using the Dmeans, Dmedian, Dmax, Zscores and the 
dual-peak queries methods as detailed in Sections 4.4.2 through 4.5.2. Locations 
are given with regards to the hg19 genome assembly coordinates. 



Table A1

Gene Exon Location A mu sigma NRMSE Cassette Delta PSI RHO Simple Dmax Dmean Dmedian Zscore

PPHLN1 chr12:42778741-42778798 7.46 6.78 3.35 0.61 Y 0.35 2.13 Y Y Y Y Y

PTPRD chr9:8437197-8437239 5.54 7.02 3.19 0.93 Y 0.27 2.81 Y Y Y Y Y

PRPF18 chr10:13639644-13639671 2.60 6.95 3.01 0.93 Y 0.17 1.11 Y Y Y Y Y

PHLDB1 chr11:118492077-118492253 4.98 0.00 2.93 0.71 N 0.52 1.59 Y Y Y Y Y

ADAM23 chr2:207470513-207470604 2.69 2.78 1.41 0.78 Y 0.25 2.67 Y Y Y Y Y

EPB41L1 chr20:34680601-34680735 5.95 2.77 0.91 0.89 N 0.07 2.52 Y Y Y Y Y

PFKP chr10:3167288-3167441 5.50 3.19 0.87 0.95 Y 0.15 9.01 Y Y Y Y Y

KCNMA1 chr10:78761164-78761338 2.78 2.78 0.79 0.88 Y 0.63 3.11 Y Y Y Y Y

SCN2A chr2:166165674-166165766 8.45 2.73 0.67 0.88 Y 0.43 1.50 Y Y Y Y Y

DNAJC6 chr1:65775227-65775621 10.05 2.68 0.66 0.65 N 0.37 2.77 Y Y Y Y Y

NRCAM chr7:107866088-107866145 49.49 2.45 0.38 0.81 Y 0.19 0.50 Y Y Y Y Y

APBB2 chr4:40859001-40859209 128.73 0.00 1.27 0.98 N 0.01 1.92 N Y Y Y Y

DLG4 chr17:7108264-7108487 7.92 2.66 0.84 0.68 N 0.13 2.12 N Y Y Y Y

MADD chr11:47290926-47291195 2.53 2.61 0.72 0.76 N 0.09 1.53 N Y Y Y Y

GAS7 chr17:10101524-10101868 5.36 2.56 0.40 0.87 N 0.00 1.11 N Y Y Y Y

SIPA1L1 chr14:72052997-72053645 15.44 2.52 0.03 0.90 N 0.11 1.07 N Y Y Y Y

DMD chrX:31144758-31144820 2.55 7.12 3.83 0.74 Y 0.43 1.82 Y N Y Y N

WDR37 chr10:1102797-1102908 7.33 0.00 3.09 0.78 N 0.42 1.61 N Y Y N Y

CDK14 chr7:90225810-90226032 13.49 0.00 2.66 0.67 N 0.24 1.57 N N Y N Y

SEPT5 chr22:19701986-19702154 32.23 2.77 1.50 0.68 N 0.00 1.64 N N Y Y N

CRTC2 chr1:153921309-153921376 4.96 3.02 0.72 0.99 Y 0.56 3.62 N N Y Y N

FXR1 chr3:180693100-180693192 23.50 0.00 8.98 0.40 Y 0.08 0.27 Y N N N N

GRIA1 chr5:153174180-153174295 20.07 10.00 8.70 0.70 Y 0.40 1.83 Y N N N N

PPHLN1 chr12:42726461-42726504 2.93 0.00 8.65 0.76 Y 0.05 0.19 Y N N N N

RAPGEF1 chr9:134494437-134494596 17.68 0.00 8.61 0.61 Y 0.16 0.52 Y N N N N

NARF chr17:80441060-80441180 1.53 10.00 8.52 0.81 Y 0.08 1.68 Y N N N N

NBR1 chr17:41322510-41322960 1.80 10.00 8.49 0.53 N 0.00 1.39 Y N N N N

ZNF138 chr7:64291317-64291454 2.15 6.81 8.44 0.68 Y 0.26 1.25 Y N N N N

WNK1 chr12:988738-989197 7.96 0.00 8.26 0.68 Y 0.38 1.48 Y N N N N

XPA chr9:100438052-100438237 1.88 10.00 8.23 0.92 N 0.01 1.19 Y N N N N

CCDC65 chr12:49312467-49312686 7.68 10.00 8.23 0.61 Y 0.09 0.04 Y N N N N

NFASC chr1:204946808-204946853 10.68 0.00 8.18 0.79 Y 0.25 0.86 Y N N N N

ZC4H2 chrX:64254508-64254593 2.01 10.00 8.12 0.94 N 0.00 2.61 Y N N N N

CRTC1 chr19:18885709-18885796 10.00 10.00 7.99 0.56 Y 0.37 0.90 Y N N N N

G3BP2 chr4:76579166-76579265 66.32 10.00 7.92 0.66 Y 0.33 0.85 Y N N N N

FAM49B chr8:130891634-130891717 43.18 0.00 7.87 0.51 Y 0.17 0.49 Y N N N N

KALRN chr3:123881555-123883533 1.72 10.00 7.84 0.53 N 0.64 1.44 Y N N N N

PTPRG chr3:62216898-62216985 1.89 6.88 7.70 0.84 Y 0.26 0.82 Y N N N N

TSC2 chr16:2132436-2132505 4.08 10.00 7.69 0.75 Y 0.19 1.36 Y N N N N

CCDC136 chr7:128455667-128455985 5.83 0.00 7.60 0.73 Y 0.37 2.36 Y N N N N

NFASC chr1:204970297-204970414 9.98 10.00 7.59 0.84 Y 0.19 1.54 Y N N N N

FAM49B chr8:130892621-130892704 14.87 9.20 7.48 0.71 Y 0.05 0.37 Y N N N N

WNK1 chr12:980430-980514 16.69 10.00 7.44 0.57 Y 0.17 0.78 Y N N N N

TTLL5 chr14:76203908-76203950 1.77 10.00 7.43 0.95 Y 0.27 1.79 Y N N N N

MTMR1 chrX:149882950-149883004 3.50 10.00 7.35 0.80 Y 0.41 1.51 Y N N N N

NFASC chr1:204971723-204971876 13.05 10.00 7.25 0.83 Y 0.17 1.53 Y N N N N

SLC6A9 chr1:44463526-44463697 7.85 7.14 7.23 0.71 Y 0.06 0.10 Y N N N N

SORBS1 chr10:97131740-97131806 3.14 10.00 7.19 0.89 Y 0.10 0.55 Y N N N N

NRXN1 chr2:50573828-50574892 10.67 0.00 7.13 0.89 N 0.22 2.33 Y N N N N

MTRR chr5:7873485-7873639 6.35 10.00 7.09 0.52 Y 0.22 0.11 Y N N N N

PTPRD chr9:8499646-8499840 4.03 1.88 7.07 0.88 Y 0.11 0.61 Y N N N N

PTPRD chr9:9734532-9734571 7.00 0.00 7.03 0.94 Y 0.11 0.10 Y N N N N

ZNF827 chr4:146684241-146684274 2.13 6.82 6.98 0.90 Y 0.49 0.56 Y N N N N
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Gene Exon Location A mu sigma NRMSE Cassette Delta PSI RHO Simple Dmax Dmean Dmedian Zscore

LIN7A chr12:81241877-81241954 2.19 10.00 6.94 0.94 Y 0.10 0.52 Y N N N N

SHC4 chr15:49143384-49143445 2.87 10.00 6.87 0.83 Y 0.07 0.11 Y N N N N

ATP8A1 chr4:42592827-42592901 12.24 10.00 6.77 0.90 Y 0.31 0.89 Y N N N N

MTRR chr5:7856899-7857005 1.88 0.00 6.76 0.88 Y 0.09 0.91 Y N N N N

CCDC136 chr7:128452761-128452983 6.68 0.00 6.71 0.77 Y 0.49 2.46 Y N N N N

PFKP chr10:3162083-3162236 137.49 10.00 6.70 0.57 Y 0.11 0.20 Y N N N N

GPHN chr14:67452398-67452455 5.81 10.00 6.57 0.76 Y 0.30 1.98 Y N N N N

SOS1 chr2:39216410-39216455 3.36 10.00 6.56 0.79 Y 0.06 0.44 Y N N N N

MYO18A chr17:27406744-27406794 4.50 10.00 6.50 0.78 N 0.06 3.00 Y N N N N

KIAA1841 chr2:61300592-61300686 6.05 0.00 6.50 0.63 Y 0.07 0.34 Y N N N N

SEC16A chr9:139339503-139339563 6.78 10.00 6.47 0.66 Y 0.54 1.21 Y N N N N

PRDM2 chr1:14095533-14095668 2.02 10.00 6.45 0.84 Y 0.15 0.02 Y N N N N

RP11-48B14.2 chr17:3567488-3567566 48.85 0.00 6.28 0.44 Y 0.06 0.22 Y N N N N

RAPGEF1 chr9:134479347-134479440 3.12 10.00 6.24 0.72 Y 0.11 1.38 Y N N N N

ATP8A1 chr4:42596305-42596379 12.42 0.00 6.22 0.82 Y 0.38 1.15 Y N N N N

CCDC136 chr7:128451853-128452366 5.83 0.00 6.19 0.92 Y 0.48 2.38 Y N N N N

RGS7 chr1:240964754-240964808 4.38 0.00 6.16 0.85 Y 0.30 4.70 Y N N N N

CADPS chr3:62499312-62499381 13.77 0.00 6.08 0.85 Y 0.06 0.60 Y N N N N

RP11-48B14.2 chr17:3594249-3594321 5.50 10.00 6.04 0.90 Y 0.06 2.86 Y N N N N

MACF1 chr1:39925489-39925504 4.24 10.00 5.98 0.87 Y 0.07 1.93 Y N N N N

MKL1 chr22:40929593-40929815 2.29 10.00 5.95 0.94 N 0.14 4.68 Y N N N N

KIAA0226 chr3:197417944-197418019 4.06 10.00 5.85 0.81 Y 0.19 1.63 Y N N N N

KIAA1841 chr2:61386452-61386574 2.82 10.00 5.76 0.79 Y 0.06 1.52 Y N N N N

SORBS1 chr10:97131082-97131184 9.67 10.00 5.72 0.93 Y 0.14 0.92 Y N N N N

NRCAM chr7:107808721-107808847 22.93 10.00 5.63 0.74 Y 0.06 1.06 Y N N N N

KIAA1841 chr2:61384996-61385147 9.40 10.00 5.62 0.61 Y 0.13 2.12 Y N N N N

NRCAM chr7:107807365-107807518 20.16 10.00 5.54 0.73 Y 0.08 1.36 Y N N N N

SORBS1 chr10:97096277-97097051 6.90 10.00 5.41 0.83 Y 0.06 3.62 Y N N N N

CDC42BPA chr1:227406963-227407121 2.28 0.00 5.40 0.85 Y 0.16 0.88 Y N N N N

VLDLR chr9:2651414-2651498 3.65 8.28 5.32 0.82 Y 0.21 1.26 Y N N N N

KIDINS220 chr2:8865407-8865729 5.65 10.00 5.29 0.73 N 0.00 5.47 Y N N N N

CADPS chr3:62498425-62498443 31.99 10.00 5.27 0.89 Y 0.58 2.07 Y N N N N

SORBS1 chr10:97110965-97111133 21.68 8.67 5.26 0.58 Y 0.57 2.09 Y N N N N

KCNQ2 chr20:62043127-62043235 5.06 10.00 5.06 0.78 Y 0.07 3.15 Y N N N N

ZFR2 chr19:3851811-3852612 6.56 2.97 4.97 0.70 N 0.15 1.63 Y N N N N

ADAM23 chr2:207474633-207474724 42.63 10.00 4.92 0.69 Y 0.45 1.39 Y N N N N

LRRFIP1 chr2:238628165-238628210 9.00 9.61 4.90 0.76 Y 0.58 2.80 Y N N N N

PACS2 chr14:105852021-105852054 29.31 10.00 4.90 0.54 Y 0.60 4.12 Y N N N N

KIDINS220 chr2:8867016-8867073 10.76 10.00 4.84 0.74 Y 0.06 5.50 Y N N N N

KCNQ2 chr20:62062692-62062722 25.90 8.24 4.74 0.69 Y 0.78 2.82 Y N N N N

DCLK2 chr4:151120179-151120230 23.21 10.00 4.74 0.70 Y 0.40 4.68 Y N N N N

SORBS1 chr10:97135729-97135813 10.59 7.64 4.62 0.69 Y 0.56 2.04 Y N N N N

DCLK2 chr4:151174625-151174708 12.70 0.00 4.51 0.69 Y 0.12 8.18 Y N N N N

PALM chr19:740351-740483 39.33 9.13 4.49 0.46 Y 0.17 1.86 Y N N N N

LRRFIP1 chr2:238626402-238626452 7.89 9.24 4.40 0.76 Y 0.65 3.68 Y N N N N

SLC22A23 chr6:3285169-3285193 9.49 10.00 4.31 0.85 Y 0.42 4.69 Y N N N N

SH3KBP1 chrX:19705734-19705809 15.45 9.23 4.25 0.85 Y 0.69 4.67 Y N N N N

NRXN1 chr2:50201105-50201341 4.61 9.09 4.19 0.88 N 0.04 1.21 Y N N N N

LRRFIP1 chr2:238622901-238622919 5.29 8.89 4.14 0.83 Y 0.59 2.97 Y N N N N

EPB41L3 chr18:5630375-5630640 3.60 7.21 4.05 0.97 N 0.00 1.44 Y N N N N

R3HDM2 chr12:57682639-57682693 15.03 7.04 3.96 0.80 Y 0.63 3.99 Y N N N N

KCNMA1 chr10:78673814-78673895 22.70 10.00 3.95 0.83 Y 0.76 7.72 Y N N N N

DNAJC6 chr1:65730423-65730615 10.76 8.26 3.88 0.89 N 0.30 2.32 Y N N N N
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LRRFIP1 chr2:238636518-238636578 4.31 7.74 3.65 0.87 Y 0.43 2.38 Y N N N N

MYO18A chr17:27412621-27412666 7.23 7.07 3.58 0.80 Y 0.13 0.74 Y N N N N

MAGI1 chr3:65344738-65344827 8.08 6.96 3.47 0.86 Y 0.48 1.93 Y N N N N

MYH10 chr17:8433940-8434003 18.09 10.00 3.36 0.81 Y 0.41 11.44 Y N N N N

BTBD10 chr11:13461430-13461826 2.95 6.74 3.32 0.94 N 0.04 3.07 Y N N N N

SH3KBP1 chrX:19713112-19713169 4.52 6.95 3.14 0.92 Y 0.27 2.97 Y N N N N

KALRN chr3:124237246-124238697 45.50 6.86 3.10 0.66 N 0.63 5.14 Y N N N N

EPB41L1 chr20:34793770-34795702 8.61 10.00 3.09 0.92 N 0.04 7.92 Y N N N N

NFASC chr1:204931235-204931286 4.47 7.15 2.74 0.99 Y 0.16 2.07 Y N N N N

NCAM1 chr11:113133567-113135919 48.69 6.90 2.72 0.64 N 0.25 5.09 Y N N N N

CDC42BPA chr1:227198578-227198764 4.18 7.21 2.14 0.74 Y 0.23 9.50 Y N N N N

FAM107B chr10:14646238-14646417 15.60 0.00 2.11 0.93 N 0.01 1.27 Y N N N N

FAM107B chr10:14613761-14614188 4.20 6.75 1.65 0.80 N 0.97 11.52 Y N N N N

GRIA1 chr5:153175035-153175150 45.12 2.73 1.36 0.82 Y 0.32 0.67 Y N N N N

MAPT chr17:44091608-44091690 247.69 2.93 1.27 0.71 Y 0.06 1.31 Y N N N N

MACF1 chr1:39930766-39930784 40.52 2.96 1.08 0.74 Y 0.29 0.54 Y N N N N

VLDLR chr9:2641376-2641499 15.97 2.64 0.59 0.77 Y 0.05 0.45 Y N N N N

SORBS1 chr10:97082502-97082562 3.06 2.73 0.54 0.94 Y 0.15 10.28 Y N N N N

PTPRD chr9:8454579-8454594 12.63 2.60 0.50 0.84 Y 0.21 0.74 Y N N N N

PTPRD chr9:8523512-8523524 14.79 2.63 0.49 0.78 Y 0.21 0.54 Y N N N N

PTPRD chr9:8526626-8526644 18.40 2.61 0.47 0.79 Y 0.28 0.59 Y N N N N

DLG2 chr11:83393200-83393468 15.28 2.56 0.38 0.76 N 0.50 3.82 Y N N N N

EPB41L3 chr18:5540338-5540555 89.38 2.52 0.03 0.84 N 0.28 2.34 Y N N N N



Table A2 

Exons predicted and validated using the Hierarchical clustering method detailed in 
Sections 4.5.3. Locations are given with regards to the hg19 genome assembly 
coordinates. 
	



Table A2

Gene Location A mu sigma NRMSE Cassette Delta PSI RHO fold change
EPB41L3 chr18:5540338-5540555 89.38 2.52 0.03 0.84 N 0.28 2.34
TIAM2 chr6:155411422-155411513 66.53 2.53 0.03 0.86 N 0.00 4.28
RBFOX1 chr16:6533179-6533545 24.22 2.52 0.03 0.83 N 0.15 1.92
CADPS chr3:62516328-62516487 48.54 2.14 0.04 1.17 Y 0.10 1.17
CCDC136 chr7:128431463-128431605 32.76 4.24 0.17 1.52 N 0.50 1.17
PEX26 chr22:18606922-18607071 55.61 4.25 0.28 1.24 N 0.02 2.27
TIAM2 chr6:155450305-155451551 18.95 2.53 0.36 0.71 N 0.00 2.90
TIAM2 chr6:155532337-155532441 32.84 2.53 0.39 0.71 N 0.00 2.49
TIAM2 chr6:155504370-155504634 30.67 2.55 0.39 0.69 N 0.00 1.90
PDE4D chr5:58481014-58481088 11.32 2.56 0.46 0.81 Y 0.06 0.26
MTUS1 chr8:17579220-17579730 4.60 2.46 0.52 1.10 N 0.61 2.40
ANK3 chr10:61871491-61871524 5.49 2.51 0.53 0.83 N 0.35 3.61
SORBS1 chr10:97082502-97082562 3.06 2.73 0.54 0.94 Y 0.15 10.28
TSC2 chr16:2127598-2127727 21.67 2.69 0.72 0.47 N 0.55 2.69
MAPT chr17:43971747-43972052 52.14 2.80 0.74 0.74 N 0.00 3.65
HECW1 chr7:43152197-43152536 4.86 2.36 0.80 0.74 N 0.00 2.23
ANK2 chr4:114244914-114244950 9.03 7.23 0.84 0.86 Y 0.05 0.94
MCF2L chr13:113656030-113656297 3.44 2.79 0.86 0.75 N 0.21 1.88
CADPS chr3:62479319-62479340 11.52 7.50 0.88 1.10 Y 0.12 2.19
ABR chr17:982053-982241 16.11 2.37 0.89 0.48 N 0.24 5.46
NRXN1 chr2:50693598-50693625 12.97 2.89 0.90 0.81 Y 0.21 2.78
MAPT chr17:44055740-44055806 244.53 2.86 1.02 0.71 N 0.00 2.43
PSD3 chr8:18793543-18793652 5.73 2.22 1.04 0.85 N 0.00 2.86
MACF1 chr1:39930766-39930784 40.52 2.96 1.08 0.74 Y 0.29 0.54
MAPT chr17:44039686-44039836 186.58 2.87 1.09 0.72 N 0.00 2.45
RERE chr1:8684368-8684439 21.55 2.49 1.12 0.69 N 0.01 1.53
TIAM2 chr6:155282262-155282613 3.02 2.74 1.16 0.70 N 0.06 2.35
RERE chr1:8674619-8674745 12.05 2.47 1.18 0.68 Y 0.06 0.60
AC073479.1 chr2:6122109-6122204 1.96 2.52 1.23 0.84 N 0.71 12.82
TRIM2 chr4:154074269-154074422 4.33 2.03 1.25 0.65 N 0.37 3.19
MAPT chr17:44091608-44091690 247.69 2.93 1.27 0.71 Y 0.06 1.31
APBB2 chr4:40859001-40859209 128.73 0.00 1.27 0.98 N 0.01 1.92
MAPT chr17:44064405-44064461 194.83 2.82 1.29 0.69 N 0.00 2.54
GRIA1 chr5:153175035-153175150 45.12 2.73 1.36 0.82 Y 0.32 0.67
ABAT chr16:8814572-8814791 47.39 0.00 1.43 1.23 N 0.17 2.24
HNRNPL chr19:39340339-39340617 400.33 0.00 1.60 1.08 N 0.30 1.39
AC073479.1 chr2:6122405-6125029 2.85 2.63 1.64 0.70 N 0.22 3.52
FAM107B chr10:14613761-14614188 4.20 6.75 1.65 0.80 N 0.97 11.52
NASP chr1:46072992-46074009 216.58 0.00 1.94 0.57 N 0.19 1.37
ARAP1 chr11:72463372-72463448 2.35 5.32 2.02 1.74 N 0.63 2.42
PHLDB1 chr11:118478305-118478414 2.67 5.67 2.03 1.12 N 0.00 1.91
WASF3 chr13:27254171-27254338 24.76 5.77 2.08 0.99 Y 0.44 3.10
FAM107B chr10:14646238-14646417 15.60 0.00 2.11 0.93 N 0.01 1.27
CDC42BPA chr1:227198578-227198764 4.18 7.21 2.14 0.74 Y 0.23 9.50
ARAP1 chr11:72443559-72443642 2.52 5.38 2.23 1.25 Y 0.13 0.81
CDH23 chr10:73574708-73575702 2.74 5.19 2.25 1.83 N 0.00 1.02
KIAA0930 chr22:45607214-45607313 6.56 6.38 2.35 1.09 N 0.07 9.20
DLGAP1 chr18:3656083-3656113 26.42 6.96 2.43 1.18 Y 0.59 11.47
MTUS1 chr8:17554765-17555179 11.30 6.38 2.56 0.71 N 0.34 1.66
MACF1 chr1:39802853-39803003 2.03 5.69 2.58 1.20 Y 0.22 1.45
CDK14 chr7:90225810-90226032 13.49 0.00 2.66 0.67 N 0.24 1.57
SMARCA2 chr9:2017438-2017502 1.70 4.86 2.66 1.29 N 0.04 1.75
PAK1 chr11:77122818-77123109 16.01 6.20 2.70 1.09 N 0.37 1.04
FEZ1 chr11:125321306-125321416 2.66 6.39 2.74 0.79 N 0.01 1.90
NFASC chr1:204931235-204931286 4.47 7.15 2.74 0.99 Y 0.16 2.07
HSD17B4 chr5:118812236-118812419 2.49 6.92 2.76 1.11 N 0.03 7.87
ANK3 chr10:61926348-61926411 5.02 7.43 2.77 1.10 Y 0.13 1.47
SORBS1 chr10:97154757-97154832 6.91 6.27 2.86 1.01 Y 0.55 4.17
SORBS1 chr10:97154367-97154430 1.89 6.41 2.90 1.13 Y 0.22 3.51
MAPT chr17:44067243-44067441 2.09 5.64 2.91 0.97 Y 0.19 1.34
PHLDB1 chr11:118492077-118492253 4.98 0.00 2.93 0.71 N 0.52 1.59
RTN4 chr2:55237222-55237585 95.78 7.44 2.94 0.75 N 0.63 5.26
SORBS1 chr10:97194378-97194474 4.73 5.61 2.95 0.99 Y 0.25 1.56
GPC1 chr2:241394254-241394437 3.83 4.93 2.96 1.22 N 0.02 5.98



Table A2
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PSD3 chr8:18541283-18541631 13.63 6.43 2.97 1.06 N 0.54 1.74
NFASC chr1:204955037-204955242 5.06 7.45 3.03 1.01 Y 0.16 2.66
AGAP3 chr7:150817606-150818120 29.13 7.43 3.03 0.40 N 0.29 1.77
KALRN chr3:124237246-124238697 45.50 6.86 3.10 0.66 N 0.63 5.14
MAPT chr17:44051750-44051837 8.07 10.00 3.17 0.90 N 0.04 1.72
NFASC chr1:204953154-204953457 2.80 7.59 3.19 0.85 N 0.23 2.85
R3HDM1 chr2:136374237-136374327 21.74 5.37 3.21 0.91 Y 0.34 0.95
CLTA chr9:36210621-36210658 21.94 6.13 3.25 0.65 Y 0.43 2.92
PDE4DIP chr1:145039589-145040002 25.99 4.84 3.26 0.47 N 0.05 1.51
PHLDB1 chr11:118526569-118526602 34.93 8.54 3.28 0.78 Y 0.33 11.40
PHLDB1 chr11:118485273-118485909 2.48 7.25 3.30 0.74 N 0.00 1.75
PDE4DIP chr1:145015683-145016011 54.10 5.59 3.33 0.43 N 0.00 1.37
GAD1 chr2:171672623-171672766 3.55 0.00 3.36 1.51 N 1.00 4.18
MYH10 chr17:8433940-8434003 18.09 10.00 3.36 0.81 Y 0.41 11.44
R3HDM1 chr2:136373721-136373763 18.93 5.51 3.38 0.94 Y 0.42 1.12
SEMA6A chr5:115808580-115808631 5.92 4.30 3.42 1.16 Y 0.27 1.65
DLGAP1 chr18:3874147-3874325 7.27 7.43 3.47 0.98 N 0.33 2.42
MAGI1 chr3:65344738-65344827 8.08 6.96 3.47 0.86 Y 0.48 1.93
MAP4 chr3:47894652-47894842 64.29 5.87 3.48 0.60 Y 0.07 0.36
ABR chr17:1082960-1083131 11.13 5.70 3.55 0.86 N 0.05 1.38
ABR chr17:1028517-1028702 33.34 5.81 3.56 0.67 N 0.00 1.55
MYO18A chr17:27412621-27412666 7.23 7.07 3.58 0.80 Y 0.13 0.74
WHSC2 chr4:2043442-2043630 2.12 5.10 3.62 0.73 N 0.00 2.23
LRRFIP1 chr2:238636518-238636578 4.31 7.74 3.65 0.87 Y 0.43 2.38
OXR1 chr8:107696473-107696587 47.03 8.39 3.66 0.79 N 0.00 1.44
MKL2 chr16:14280573-14280892 6.64 7.36 3.69 1.13 N 0.46 1.31
KIAA0528 chr12:22655672-22655738 8.61 10.00 3.77 0.87 Y 0.48 6.84
PDE4DIP chr1:144994590-144995082 19.89 5.93 3.77 0.46 N 0.01 1.41
RP11-48B14.2 chr17:3582883-3583078 9.55 5.94 3.81 0.75 N 0.00 1.80
MAP4 chr3:48057823-48057902 10.20 10.00 3.83 0.89 N 0.18 10.24
PDE4D chr5:59817877-59817947 11.06 10.00 3.85 1.07 N 3.69
DLGAP1 chr18:3845231-3845359 8.96 8.38 3.88 1.11 N 0.28 4.83
RERE chr1:8877218-8877702 5.09 0.00 4.03 0.64 N 0.00 3.00
GS1-124K5.12 chr7:66049331-66049453 1.65 4.11 4.03 0.83 Y 0.15 0.87
EPB41L3 chr18:5630375-5630640 3.60 7.21 4.05 0.97 N 0.00 1.44
PTK2 chr8:142011223-142011478 3.16 0.00 4.06 0.74 N 0.00 1.21
SH3PXD2A chr10:105452785-105452930 2.05 6.79 4.06 0.71 N 0.00 1.27
MAP4 chr3:47917174-47917390 81.23 6.05 4.14 0.53 Y 0.05 0.34
LRRFIP1 chr2:238622901-238622919 5.29 8.89 4.14 0.83 Y 0.59 2.97
ACTR2 chr2:65469105-65469197 4.81 10.00 4.15 0.76 Y 0.13 2.59
NRXN1 chr2:50201105-50201341 4.61 9.09 4.19 0.88 N 0.04 1.21
NRXN1 chr2:50848342-50848387 6.05 5.60 4.20 0.92 Y 0.08 0.19
OXR1 chr8:107718608-107719918 28.37 9.06 4.21 0.74 N 0.00 1.06
CDK14 chr7:90338564-90339271 3.29 8.85 4.21 0.85 N 0.51 2.04
ARFGAP1 chr20:61915202-61915232 12.46 7.23 4.22 0.67 Y 0.57 2.33
SLC22A23 chr6:3285169-3285193 9.49 10.00 4.31 0.85 Y 0.42 4.69
NFE2L1 chr17:46134393-46134483 7.21 7.05 4.34 0.62 Y 0.12 0.30
GOLT1B chr12:21668171-21668204 3.59 7.06 4.36 0.95 Y 0.13 1.51
PLCH1 chr3:155203935-155203995 2.97 8.71 4.39 1.14 Y 0.80 3.33
LRRFIP1 chr2:238626402-238626452 7.89 9.24 4.40 0.76 Y 0.65 3.68
RNPS1 chr16:2317175-2317238 14.09 10.00 4.43 0.62 N 0.34 4.77
OXR1 chr8:107371703-107371864 28.09 10.00 4.43 0.86 N 0.00 1.18
WHSC2 chr4:2019391-2019469 2.16 6.15 4.43 0.80 Y 0.08 1.62
AC073479.1 chr2:6141114-6141407 2.86 0.00 4.48 0.74 N 0.00 3.15
NUMA1 chr11:71723304-71723488 5.65 9.58 4.49 0.57 N 0.31 1.67
OXR1 chr8:107715133-107715318 34.51 9.44 4.49 0.82 N 0.01 1.07
MAP4 chr3:47908735-47908828 81.11 6.69 4.49 0.45 Y 0.13 0.20
DCLK2 chr4:151174625-151174708 12.70 0.00 4.51 0.69 Y 0.12 8.18
GAD1 chr2:171699078-171699269 2.62 0.00 4.51 1.36 N 0.17 4.51
PACRGL chr4:20754187-20754530 1.81 5.11 4.52 0.74 N 0.00 2.05
SF1 chr11:64544970-64545233 1.62 5.48 4.53 0.70 N 0.04 1.91
PEX26 chr22:18609120-18609801 46.41 9.19 4.54 0.83 N 0.00 1.25
PRDM11 chr11:45230424-45230758 3.95 8.59 4.54 0.53 Y 0.31 1.61
RP11-48B14.2 chr17:3591305-3591399 10.18 7.36 4.55 0.73 N 0.00 1.79
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PDE4DIP chr1:144871695-144871881 19.81 10.00 4.57 0.78 Y 0.46 3.57
RERE chr1:8716031-8716500 15.76 0.00 4.57 0.58 N 0.00 1.53
ATG16L1 chr2:234182636-234182687 7.26 10.00 4.58 0.91 Y 0.32 1.81
SORBS1 chr10:97135729-97135813 10.59 7.64 4.62 0.69 Y 0.56 2.04
AC024560.3 chr3:197338442-197338493 4.64 6.21 4.62 1.02 N 0.00 4.59
ARNT2 chr15:80735177-80735366 10.10 10.00 4.64 0.90 Y 0.35 3.26
ZNF273 chr7:64353789-64353834 3.97 10.00 4.67 1.21 Y 0.07 1.48
ANKS1B chr12:99201621-99201696 35.52 10.00 4.71 0.79 Y 0.52 6.76
DCLK2 chr4:151120179-151120230 23.21 10.00 4.74 0.70 Y 0.40 4.68
KCNQ2 chr20:62062692-62062722 25.90 8.24 4.74 0.69 Y 0.78 2.82
SRRM3 chr7:75902370-75902913 7.00 10.00 4.75 1.36 N 0.06 1.23
CIZ1 chr9:130953558-130953868 3.19 0.00 4.75 0.83 N 0.36 1.99
SRRM3 chr7:75911931-75912190 2.20 4.76 4.75 1.22 N 0.00 1.05
ANK3 chr10:61867945-61868044 3.82 10.00 4.82 1.00 Y 0.16 2.28
XPNPEP3 chr22:41322272-41328819 1.38 6.29 4.82 0.47 N 0.01 1.23
TBC1D24 chr16:2547710-2547728 12.83 10.00 4.85 0.77 Y 0.56 2.18
EPB41L3 chr18:5415816-5416377 17.29 10.00 4.87 0.72 N 0.06 1.03
ATP1B3 chr3:141594965-141595236 11.51 0.00 4.87 0.60 N 3.01
POLR2F chr22:38437074-38437113 11.34 10.00 4.88 0.65 N 0.00 4.26
SRPK2 chr7:105029690-105029838 2.14 5.30 4.89 0.90 N 0.00 1.42
PACS2 chr14:105852021-105852054 29.31 10.00 4.90 0.54 Y 0.60 4.12
LRRFIP1 chr2:238628165-238628210 9.00 9.61 4.90 0.76 Y 0.58 2.80
TAOK3 chr12:118677031-118677077 3.67 7.50 4.92 0.86 Y 0.06 0.72
KIAA1841 chr2:61390186-61390367 37.15 8.51 4.92 0.37 N 0.01 1.99
LRRFIP2 chr3:37132957-37133029 7.94 7.99 4.96 0.62 Y 0.69 2.53
SND1 chr7:127637524-127638129 3.02 10.00 4.97 0.57 N 0.01 1.74
GIT2 chr12:110383064-110383154 2.38 7.76 4.98 0.82 Y 0.44 1.44
ATP1B3 chr3:141620977-141621069 32.20 10.00 5.01 0.67 Y 0.35 2.40
GRIA3 chrX:122599524-122599639 11.18 10.00 5.05 0.66 Y 0.27 1.44
ANKMY1 chr2:241418838-241419072 1.44 6.62 5.06 0.84 N 0.00 1.19
KCNQ2 chr20:62043127-62043235 5.06 10.00 5.06 0.78 Y 0.07 3.15
INPP4A chr2:99198038-99198284 5.46 10.00 5.07 0.72 N 0.31 2.08
PACRGL chr4:20703763-20703844 2.17 6.60 5.09 0.81 N 0.32 1.47
ATP9B chr18:77137246-77138278 6.72 7.30 5.19 0.39 N 0.00 1.46
AC073479.1 chr2:6125556-6125850 5.49 0.00 5.19 0.68 N 0.02 1.25
DLGAP1 chr18:3496029-3499392 52.95 8.38 5.20 0.60 N 0.00 1.37
PSD3 chr8:18662213-18662408 9.93 0.00 5.25 0.68 N 0.00 2.18
SORBS1 chr10:97110965-97111133 21.68 8.67 5.26 0.58 Y 0.57 2.09
CADPS chr3:62498425-62498443 31.99 10.00 5.27 0.89 Y 0.58 2.07
PDE4DIP chr1:144942179-144942690 1.74 6.33 5.30 0.83 N 0.00 1.71
PICALM chr11:85689112-85689758 2.90 10.00 5.32 0.52 N 0.48 1.91
CDC42BPA chr1:227406963-227407121 2.28 0.00 5.40 0.85 Y 0.16 0.88
SORBS1 chr10:97096277-97097051 6.90 10.00 5.41 0.83 Y 0.06 3.62
MKL2 chr16:14173144-14173211 4.18 0.00 5.42 1.10 N 0.00 1.77
AGAP3 chr7:150831486-150831655 44.36 0.00 5.43 0.47 N 0.00 2.09
MAP2 chr2:210555326-210555572 2.45 10.00 5.44 0.84 N 0.02 3.82
AGFG1 chr2:228414774-228414822 20.72 10.00 5.45 0.72 Y 0.37 2.87
DLGAP1 chr18:3879111-3880140 14.31 0.00 5.48 0.74 N 0.00 1.34
GLS chr2:191797382-191800015 5.25 0.00 5.48 0.48 N 0.45 2.59
OXR1 chr8:107749747-107749828 62.41 10.00 5.49 0.63 Y 0.20 0.23
AGAP3 chr7:150835229-150835400 13.17 0.00 5.50 0.51 N 0.08 2.18
ARHGAP21 chr10:24879124-24879408 28.41 10.00 5.58 0.74 Y 0.38 2.25
RTN4 chr2:55276880-55277734 82.38 0.00 5.60 0.59 N 0.02 1.14
AGAP3 chr7:150825419-150825771 18.85 0.00 5.61 0.54 N 0.00 2.15
PDE4DIP chr1:144930583-144932552 15.23 0.00 5.62 0.67 N 0.32 1.11
KIAA1841 chr2:61384996-61385147 9.40 10.00 5.62 0.61 Y 0.13 2.12
SORBS1 chr10:97131082-97131184 9.67 10.00 5.72 0.93 Y 0.14 0.92
TCOF1 chr5:149763300-149763816 3.77 10.00 5.73 0.52 N 0.25 2.15
RP11-539I5.1 chr10:118592511-118592884 1.93 0.00 5.74 0.67 N 0.00 1.14
KIAA1841 chr2:61386452-61386574 2.82 10.00 5.76 0.79 Y 0.06 1.52
N4BP2L2 chr13:33112754-33112970 9.86 0.00 5.78 0.51 N 0.00 2.33
C7orf50 chr7:1166892-1167024 19.68 0.00 5.80 0.44 N 0.00 1.19
TIAM2 chr6:155228863-155230002 4.89 0.00 5.83 0.38 N 0.07 2.80
KIAA0226 chr3:197417944-197418019 4.06 10.00 5.85 0.81 Y 0.19 1.63
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ZYX chr7:143084854-143084880 3.99 10.00 5.87 1.08 Y 0.24 3.82
PSD3 chr8:18622958-18623048 8.08 0.00 5.87 0.74 N 0.00 1.42
R3HDM1 chr2:136289024-136289203 4.61 0.00 5.91 0.67 N 0.00 1.86
AGAP3 chr7:150840823-150841523 59.79 1.82 5.92 0.40 N 0.00 1.54
MKL1 chr22:40929593-40929815 2.29 10.00 5.95 0.94 N 0.14 4.68
KALRN chr3:124397036-124397484 2.35 0.00 5.97 0.80 N 0.01 1.07
MACF1 chr1:39925489-39925504 4.24 10.00 5.98 0.87 Y 0.07 1.93
ATP9B chr18:77105427-77105572 5.68 6.43 5.99 0.53 N 0.00 1.16
RP11-48B14.2 chr17:3593898-3593974 6.53 9.03 6.00 0.83 N 0.00 2.38
DNM1L chr12:32858758-32859036 2.44 10.00 6.00 0.73 N 0.37 2.17
ME3 chr11:86383315-86383678 3.30 0.57 6.04 0.66 N 0.00 1.35
RP11-48B14.2 chr17:3594249-3594321 5.50 10.00 6.04 0.90 Y 0.06 2.86
HECW1 chr7:43490426-43490528 14.09 0.00 6.05 0.70 Y 0.18 0.98
AGAP3 chr7:150836654-150839139 6.21 0.00 6.07 0.46 N 0.00 1.94
AMPD2 chr1:110162458-110162900 4.07 0.00 6.08 0.55 N 0.00 1.01
CADPS chr3:62499312-62499381 13.77 0.00 6.08 0.85 Y 0.06 0.60
MARK2 chr11:63675731-63675776 10.98 7.34 6.11 0.47 Y 0.19 1.11
SMARCA2 chr9:2015341-2015404 6.94 0.00 6.12 0.87 N 0.00 1.62
RNH1 chr11:506608-506821 6.49 4.87 6.14 0.39 N 0.26 1.03
RGS7 chr1:240964754-240964808 4.38 0.00 6.16 0.85 Y 0.30 4.70
CCDC136 chr7:128454691-128454973 4.44 0.00 6.18 0.81 N 0.35 2.38
CCDC136 chr7:128451853-128452366 5.83 0.00 6.19 0.92 Y 0.48 2.38
CCDC136 chr7:128450192-128450420 6.18 0.00 6.20 0.78 N 0.44 2.65
PLXNB1 chr3:48470661-48470890 1.82 0.00 6.21 0.94 N 0.50 1.35
ATP8A1 chr4:42596305-42596379 12.42 0.00 6.22 0.82 Y 0.38 1.15
SCAF11 chr12:46354413-46355105 4.46 9.49 6.22 0.59 N 0.20 1.89
CHKA chr11:67849957-67849987 3.11 10.00 6.24 1.17 Y 0.07 0.01
RAPGEF1 chr9:134479347-134479440 3.12 10.00 6.24 0.72 Y 0.11 1.38
SON chr21:34944174-34944209 2.64 10.00 6.26 1.18 N 0.00 3.83
PAK1 chr11:77184596-77185107 4.19 0.00 6.27 0.73 N 0.03 1.19
RP11-48B14.2 chr17:3567488-3567566 48.85 0.00 6.28 0.44 Y 0.06 0.22
MORN1 chr1:2252691-2253018 3.10 10.00 6.32 1.38 N 0.00 1.92
CYTH1 chr17:76673076-76673132 5.04 10.00 6.32 0.78 N 0.09 1.35
OXR1 chr8:107738239-107738537 6.80 0.00 6.33 0.62 N 0.64 2.76
ANK3 chr10:61841907-61841934 8.50 0.00 6.36 1.12 Y 0.69 1.91
DDHD2 chr8:38130887-38130960 9.59 0.00 6.37 0.65 Y 0.11 7.61
MATR3 chr5:138611797-138611839 2.46 8.78 6.38 0.88 N 0.00 2.02
N4BP2L2 chr13:33109905-33111164 19.32 0.00 6.44 0.43 N 0.02 2.40
PRDM2 chr1:14095533-14095668 2.02 10.00 6.45 0.84 Y 0.15 0.02
MAPT chr17:44095983-44096096 303.40 0.00 6.45 0.57 N 0.00 1.26
NCKAP1 chr2:183889705-183889723 27.01 9.21 6.45 0.74 Y 0.29 0.96
SEC16A chr9:139339503-139339563 6.78 10.00 6.47 0.66 Y 0.54 1.21
FNIP1 chr5:131046270-131046354 3.58 0.00 6.48 0.78 Y 0.24 0.13
KALRN chr3:124398304-124398596 1.75 0.00 6.48 0.84 N 0.00 1.07
NRXN1 chr2:51153075-51153093 14.51 0.00 6.49 0.71 Y 0.23 0.71
KIAA1841 chr2:61300592-61300686 6.05 0.00 6.50 0.63 Y 0.07 0.34
CHKA chr11:67828959-67829297 2.82 10.00 6.50 0.85 N 0.16 1.38
MYO18A chr17:27406744-27406794 4.50 10.00 6.50 0.78 N 0.06 3.00
PSD3 chr8:18661869-18662112 1.92 0.00 6.52 0.78 N 0.00 1.72
SOS1 chr2:39216410-39216455 3.36 10.00 6.56 0.79 Y 0.06 0.44
ATG13 chr11:46685546-46685699 10.26 10.00 6.56 0.52 N 0.23 1.28
GPHN chr14:67452398-67452455 5.81 10.00 6.57 0.76 Y 0.30 1.98
MTMR2 chr11:95647405-95647476 2.68 0.00 6.60 0.74 Y 0.05 0.13
PPFIA2 chr12:82152178-82152580 5.71 0.00 6.65 0.62 N 0.00 1.53
PSD3 chr8:18658506-18658892 1.83 0.00 6.65 0.71 N 0.00 1.57
RP11-33B1.1 chr4:120464907-120465000 1.54 2.45 6.66 0.88 Y 0.06 0.66
MTRR chr5:7862063-7862170 2.11 0.00 6.67 0.93 N 0.00 1.78
SHFM1 chr7:96279526-96279831 2.03 10.00 6.67 0.81 N 0.35 1.81


