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Preface

This thesis is concerned with the study of certain objects
known as group laws (which are defined over rings), or, as they are
often called -~ one-parameter formal Iie groups, and with the proof of
the reciprocity law for local class fields. In part I the immediate
structural consequences of definitions are presented in a straight-
forward manner, together with some basic results on the form of group
laws (which are actually types of power series). The second section
deals with results which are somewhat beyond the bésic level -~ in
particular some properties of homomorphisms are considered. Part III
gives an introductory development of group laws as they pertain to
algebraic number theory - specifically, we consider group laws oOver a
complete discrete valuation ring and examine results with respect to
the residue class field. Isomorphisms between group laws are considered
in the fourth section, and, a close relationship between roots of unity
and such isomorphisms is revealed. The thesis concludes with a proof
of the reciprocity law for local class field theory, the preparation
for which was carried out in part V - a particular construcition of

group laws.

The study of group laws and their properties is a relatively
new topic, going back to about 1950, but, related investigations were
undertaken in connection with the theory of elliptic curves, for many
years prior to this date. Dieudonné, in his series of papers (see
Bibliography, nos. 2—9), employed infinitesimal methods (now somewhat

out of vogue due to the popularity of the newer, more direct approach
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of Lagard and Lubin) to obtain required results. The later papers

by Lubin and Tate establish a close relationship between algebraic

number theory and group laws.

Almost the entire development of this thesis is to be found
in J. Iubin's papers listed in the Bibliography (nos. 13-17); the
papers most frequently used were those listed in the Bibliography
with reference nos. 1% and 17. My contributions are that I have
supplied more detailed demonstrations of statements found therein,
rearranged some proofs and constructed others for results due to
Lazard (T10, T20) which were simply quoted by Lubin. In addition,

T3B, and T1ll are some formulations of my own.

Notation:

1/ RHS, IHS mean right-hand-side, left-~hand-side respectively, of ='s.
2/ D1, D2,..., stand for definitions.

3/ T1, T24¢..5 Trepresent statements with proof which are sometimes

given names such as theorem, proposition, lemma, corollary, depending
on their importence to the development.

4/ Rings which are commutative and have unity are often denoted by A.

5/ char A stands for the characteristic of the ring A.

6/ The word "in" stands for "an element of".

I would like to thank Mrs. Anne Liepinaitis for typing

the manuscript.

Michael Urda
Montreal, 1972 ichae
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I Elementary Properties of Group ILaws

D1 Given A, a commutative ring with unity, then.A[E%,...,Tn]]represents
the ring of formal power series in the n indeterminates, T1""’Tn’ The
a a
n

monomial aT ...Tn

1 9 aéo, is said to have total degree a

graste..ta .
D2 If F,G in A[[T1,...,Tn]] then we write F = ¢ (mod deg r), by which
is meant: any monomial occurring in P and G of total degree less than r
occurs in F with the same coefficient as it occurs in G.
A power series substituted into another power series is a well-defined
power series provided that the substituents have no constant term.
D3 A group law over A is any formal power series F in A[Ex,y]]
satisfying:

1/ F(x,y) = x+y (mod deg 2)

2/ F(F(x,y),2) = F(x,F(y,z)), i.e. an associative law.
71 F(x,0) = x for any group law, F(similarly F(0,y) = y).
PROOF:

By the associative law F(¥(x,0),0) = F(x,F(0,0)) = P(x,0).

From the definition of group laws we may write F(x,o) = x+b2x2+b x3+...,

3
and say that br is the first coefficient # 0O beyond the first;

then, F(x,O) = x+brxr+...;

L -]
r - T T i T
hence, F((X+brx +.0.),0) = x+b_Xx +;§;bi(X+brx teu.) X+2b X +e.. (mod degrl).
Therefore, x+brxr+... = x+2brxr+..., and so it follows that br = 2br, which
implies that br = 0, contradicting our assumption that br é 0. Hence,

there is no first coefficient of P(x,0) beyond the first which is different

from O; that is, P(x,0) = x.
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I2 If F is a group law over A then there exisis iF(T) in A[[T]] such
that F(T,iF(T)) = O.

PROOF:

We may write F(x,y) = x+y+a11xy+(a12xy2+321x2y)+... using T1,
and suppose we have a power series iF(T) = b1T+b2T2+...; then we must
find elements b, so that F(T,iF(T)) = 0. But, this is equivalent to

solving the following sequence of equations:

b1+1 =0
b2+a11b1 =0
b, +a, . b +a_,.b 2+a b, =0

J J
.. . . . 1 T
bn+§£h(1,3,k1,k2,...,kr,31,32,...,3r)aijbl1 ,...,bkr =0

where n's are positive integers and :E:is extended over bi's such that
i€n. It is clear that a solution for the bi‘s exists (in fact, the
general formula for bn could be obtained in terms of aij's, i+j4n, and

integers).

T3 ILazard showed that a group law defined over A, a commutative ring
with unity, having no nilpotent elements (i.e. theredoes not exist a
in A such that a? = 0 for any positive integer n), must necessarily be
abelian, that is PF(x,y) = F(y,x).

See Lazard's paper: "Ia non=zexistence des groupes de Lie

formel non-abéliens & un parametre" (reference no. 11).



T3A 1In 1966 I.G. Connell obtained the following characterization:
In order that all group laws over A be abelian it is necessary and

sufficient that the ideal of nilpotent elements of A be torsion-free

as an additive group.

See paper titled "Abelian Formal Groups", by I. Connell

(reference no. 1).

Throughout the rest of this thesis we assume that the group
laws we deal with are abelian so whenever we speak of a group law over

a ring, that ring is assumed to satisfy the hypothesis of T3A.

T3B We will prove Lazard's result for fields, A, such that char A = O,

PROOF:

It is clear that we need only show aij = aji for every pair
of positive integers, i,j. This is done by induction on i+j - for i=j=1
there is nothing to prove, so we can proceed and assume the inductional
hypothesis, namely that aij = aji for all i+j<n. Consider the associa-
tive law F(F(x,y),z) = F(x,F(y,z)), and compare the coefficients on the
LHS, RHS of xyi_1zj, xjyi-1z, and xyn—zz. For example, in the first
case?

IHS = ((x+y+a11xy+...)+z)
+ a11(x+y+a11xy+...)z)
+ (a12(x+y+a11xy+...)z2+aé1(x+y+a11xy+...)2z)
+ (a13(x+y+a11xy+...)x3+a22(x+y+a11xy+...)222+331(x+y+...)3z)

+ ete.

RHS = (x+(y+z+a11yz+...))



+(a11(x(y+z+a11yz+...)))
2
+(a12(x(y+z+a11yz+...)%%a21x (y+z+a11yz+...))
3 2 2 5,
+(a13(x(y+z+a11yz+...) +a22(x (y+z+a11yz+...) )+a31(x (y+z+

a11yx+...)))

+ete;

we oObserve that xyl-jzJ can occur on ILHS only within:
3
243 (x+y+ee.)z

2 3J
azj(x+y+...) z
id
aij(x+y+. s o) Z
and on the RHS only within:
a11x(y+z+...)

2
a12x(y+z+...)

n-1
a1,n_1x(y+z+...) .

. . . ' _ n: t .
Hence, for this case we obtain 1aij+f(alk s) = El Pa _1+g(alk s)

1m0
. Py . o [ - n: [}
.And, similarly in the second case gaji+f(ak1 s) = Eg i an—1,1+g(ak1 s).

(where 1+k<n and f,g are polynomials)
Therefore, a..-a.. = (E§:13/i—€%:43/j)a = 0, since 163113 = jg§:13,
13734 1,n-1
and a = a (which is established as follows). In the latter case
1,n-1 n-1,1

- 1 = - t i -
we get (n 1)a1,n—1+f(a1k s) = (n 1)an_1,1+f(ak1 s), where f is a poly

nomial and 1l+k<n; hence an_1,1 = a1’n_1.

D4 For group laws F,G over a ring, A, we put {f in A[[T]]: £f=0



(moa deg 1) and £(F(x,y)) = G(f(x),f(y))} = HomA(F,G), and call the

individual elements A~-homomorphisms from F to G. When there exists an

A-homomorphism,f, from F to G, and an A~homomorphism, g, from G to F

such that f.g(T) = T = g.£(T), then we say that £ is an A-isomorphism

(similarly g).

T4 (Proposition) Hom,(F,&) is an abelian group.
PROOF':

1/ We define the addition as follows:
for f,g in Hom, (F,6) put (£+g)(T) = 6(£(T),g(T)).

f+g is again an A-homomorphism from F to G:

We must

show that

O// (f+g)(T) is a well-defined power series since both

f and g, by definition,have O constant term.

1// (£+g)(F(x,y)) = 6(2(P(x,¥)), (F( x,5))) =

(definition of +)

= ¢(e(2(x),£(3)),6(e(x),e(y))) =

(f,g are A-homomorphisms)

= a(e(£(x),2(y)),6(g(y),a(x)))
= 6(e(6(£(x),2(y)),a(y)) ,a(x))
= a(e(£(x),6(2(y),a(y)),e(x))

= 6(£(x),6(e(£(y),8( ¥)),e(x)))
= ¢(£(x),e(g(x),c(£(y),a(y )
= ¢(e(£(x),a(x)),e(2(y),e(y)))
= a((£+g) (x), (£+g) ()

i

n

(¢ is
(¢ is
(¢ is
(¢ is
(¢ is

(G is

abelian)
associative)
associative)
associative)
abelian)

associative)

(definition of +);

consequently (f+g)(F(x,y)) = ¢((f+g)(x),(£+g)(y)).



2/ As additive identity choose the zero power series,

denoted O(T); then (£+0)(T) = a(£(?),0(T)) = ¢(£(T),0) = £(P) (by T1)

c(o,2(T)) = £(2) (by T1).

and (0+£)(T) = G(O(T)’f(T))

3/ Existence of additive inverses: let f in HomA(F,G) then

we claim that f+i,.f = i,.f+f = 0; for, (f+iG.f)(T) = G(f(T),iG.f(T)) =

G(f(T),iG.f(T)) = 0o(T) by T2.

4/ Associativity of + : (£+(g+h))(T) = e(£(T),(g+n)(T)) =
a(£(1),6(g(T),n(T)))

Il
i

c(e(£(T),g(T)),h(T)) = (by associativity of G)

G((£+g)(1),h(T)) = . (definition of +)

((£+g)+n) (1) (definition of +);

hence, f+(g+h) = (f+g)+h, where f,g,h in HomA(F,G).
1/ to 4/ show that HomA(F,G) is a group under +.

5/ Commutativity of +: (£f+g)(T) = a(£(1),g(T)) = &(g(T),2(T))

since G is abelian, = (g+f)(T); hence, f+g=g+f.

5 (Proposition) The set of group laws over A gives rise to a category
with a bi~additive composition.
PROOF:

1. The set of objects consists of group laws over A.

2. Given F,G, any two group laws,then Mor(F,G) is defined to
be Hom, (F,e).

3. Given 3 group laws F,G,H and homomorphisms £ in HomA(F,G),
g in HomA(G,H) then we define g.f to be g.f(T) = g(f(T)), i.e. the
composed power series,

We must check that composition is well-defined, i.e. that

g.f in HomA(F,H): but, (F(x,y)) = ¢(£(x),#(y)),
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and, g(6(x,y)) = H(g(x),g(y)); we claim that g.f(F(x,y)) = H(g.f(x),g.£(y)),
for, IHS = g(£(F(x,y))) = g(e(£(x),£(y))) =

= H(g(£(x)),g((y))) = H(g.f(x),g.£(y)) = RHS.

The following axioms must be verifieds:
CAT1 HomA(F,G),HomA(F',G') are disjoint or equal,.the latter occurring
only if F=F', G=G'; this is done by specifying that homomorphisms f in

HomA(F,G) are actually triples (£,F,G).

CAT?2 Given a group law, F, then define. IF(T) to be T: so that if £ in
HomA(F,G) f.1F(T) = £(T) implies f.1p = £, and if g in HomA(G,F)

1F-g(T) = g(T) implies 1p-8 = 8-

CAT3 Given homomorphisms f in HomA(F,G), g in HomA(G,H),h in HomA(H,I)
of group laws F,G,H,I, then we must show that h.(g.f) = (h.g).f. But,
this follows from the well known fact that well-defined composition of
power series is associative.

To show that the category has a bi-additive composition we
need: (g1+g2).f = g1.f+g2.f, and g.(f1+f2) = g.f1+g.f2 where 8184185 in
HomA(G,H) and f,f1,f2 in HomA(F,G). It suffices to show only one, the
first, for example; ((g,+g,).£)(T) = (g,+g,)(£(1)) = H(g,(2(1)), g,(£(T)))

= (g1 of+g2-f)(T)-

D5 We call HomA(F,F) the set of endomorphisms of the group law F; it is

denoted by EndA(F).

T6 (Corollary) EndA(F) is a ring with unity.

PROOF:



We already know it is an abelian group by T4. The multiplica-
tion on EndA(F) is defined to be,simply, the composition of power series;
it is well-defined, as was shown in T5 3., Furthermore, the multiplica-
tion is associative (see CAT3 of T5), and the unity element is clearly
1F (see CAT2 of T5), Finally, the bi-additivity of . proved in T5 shows
that this operation is distributive over +, i.e. (f+g)h = f.h+g.h and

f.(g+h) = f.g+f.h, where f,g,h in EndA(F).

D6 The image of n in Z(integers) under the canonical homomorphism

zz-—:’gn?ﬁ;‘) is denoted by [n]F



I1 Homomorphisms and Isomorphisms

D7 Suppose that f in A[[T]] with £(T) = a1T+azT2+... then the first

degree coefficient of f, namely, a,, is denoted c(f).

17 (Proposition) The mapping c:HomA(F,G)———eA, which is defined by:

f in Hom, (F,6),f = a1T+a2T2+..., implies c(f)=a1, is a group homo-
morphism which becomes a unitary ring homomorphism in the special céase
c:EndA(F)--aA.

PROOF:

2

1/ Suppose f,g in HomA(F,G), f=a P teee

2
1T‘-|-a2T +o'v, g = b1T+b

(£(D),g(T)) = £(P)+g(T) (mod deg 2)

2

then (f+g)(T)

i

a,T+b T = (a1+b1)T (mod deg 2);

hence c(f+g) = a+b, = c(f)+elg).

a/ For the special case we again have c(f+g) = c(f)+c(g) by1/;
bat, also, f£.g(T) = £(g(T)) = a,b,T (mod deg 2), so that c(f.g) = a,b,
= c(£).e(g); and, finally, 1F(T) = 1.T implies c(1F) = 1.

Now we consider some properties involving group laws over

two distinet rings.

D8 Let *:A—B be a unitary homomorphism of commutative rings with
unity and suppose f(x1,...,xn)is a power series over A then define a

power series over B by putting f*(x1,...,xn) =

Za %*x I In .
iT""’in’j1""’jnl i1 recenXy provided that

£x: 1 n
P-4 eeoe X =
( 1’ ? n) Zai1,'..’i Xi1 oo-Xi
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78 (Proposition) 1. There exists a covariant agditive functor * from
GAto GB(where GAdenotes the category of group laws over A).
2. The map *:EndA(F)~——+EndB(F*) given by f—3f%
is a unitary ring homomorphism \where ¥ is the map in D8).
PROOF:
1e In order that a functor be defined we must associate each

object of G,with an object of Gg. This is done by teking F in Obj(GA)
and mapping it onto F¥; but, we should show that F¥ is, in fact, in GB’
i.e., that ¥ is a group law over B:

o/ clearly F¥ is a power series over B

1/ P(x,y) = x+y (mod deg 2) implies F*(x,y) =
1*x+1%y  (mod deg 2) = x+y (mod deg 2)

2/ ®(P(x,y),2) = F(x,F(y,z)) implies F* (F*(x,y),z) =

= M(x,(y,z)) by taking * of LHS and RHS.,

To complete the finctor's definition we must associate with
each f in HomA(F,G) an element of HomB(F*,G*) - this element is obvious-—
1y £¥. DNow, we verify:

FUN1 (1F)* = 1pxi let £ in HomA(F*,G*), then f.(1F)*(T) = £(1g*(T)) =

£(T), so £ .(1F)* = £ and if ve put £ = 1p, it follows that (1p)* =

= Tpxe

FUN2 if £ in Hom,(P,G), g in HomA(G,H) we must show that (g.f)* = g¥.f*;
let us assume T =Zai‘l‘l and g =zbi'.[‘l, so that (g.f)*T = (g.£(T))*
k k
1 r\ .k
- *
- (zk(Znaibj1 S )T)
i,j1,k1,...jr,kr and the second ji'also depends on these)

(where n is an integer depending on
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k1 kr k \
- E:kCE:nai*bj *loby * )T 2 gx(£2(2)) = g*.£%(1); this ‘establishes
1 r

the covariance of *,

The following will show that * is additive:
f,g in HomA(F,G) implies (f+g)¥* = f¥+g¥; but, LHS = (¢(£(T),g(T)))* =
= G*(2%(7),g*(P)) = (see FUN 2 for a similiar verification), = f¥+g¥*.
2. The fact that *:EndA(F)-——+EndB(F*) is a ring homomorphism
has been established in 1., since, we showed that:
a/ * is additive i.e. (f+g)%* = f¥+g*
b/ * is multiplicative i.e. (f.g)* = £*.g* (in FUN 2)

in 2 general setting. OFf course, (1F)* = 1_, by FUN 1.

¥

D9 If f is in A[[T1,...,Tn]], and has O constant term, and u, u! are

- _1 _1

1n.A[[T]] ,—= we then put fu(T1,...,Tn) = u(f(u (T1),..., u (Tn))).

T9 (Lemma) P and G are isomorphic group laws over A if and only if there

exists u(T) in A[[T]]whose inverse exists and such that G = F~,

PROOF:

1. Say ¢ = F%, then uF(u-1(x),u-1(y)) = G(x,y) implies that
F(u-1(x),u-1(y)) = u_1(G(x,y)), which shows that u™ is in HomA(G,F).
Also, replacing x,y by u(x), u(y) respectively shows that u(F(x,y)) =
= 6¢(u(x),uly)), and so u is in HomA(F,G). Furthermore, we already know

1 1

that ua’ = = g9 u u = 1ps SO that one implication is completed.

2. If F,G are isomorphic over A then there exist f in HomA(F,G),

g in HomA(G,F) such that f.g = 1;, g.f = 1, so take u to be f and w1 %o

be g; then g(6(x,y)) = F(g(x),g(y)) implies that G(x,y) = £(F(g(x), &(y¥))),
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i.e. G=F%,

110 (Proposition) If L is a field of characteristic zero then any group
law F(overL) is isomorphic to x+y over L.
PROOF:

It suffices to show that ther exists u in L [[T]] which is

invertible and which satisfies: P(x,y) = w(u™ (X)),

1. Pirst show that for any u in L{[T]] which is invertible
u(ﬁ71(x)+u—1(y)) is a group law:
0/ it is clearly a power series over L
1/ it is = x+y  (mod deg 2), from inspection
2/ u(u™ (™ )+ (1)) (@) =u( (67 )+ () ) (=)
= u(u™ @)+ () (2))=u(e™ ) ™ () (2))))
2. Now, we claim that any group law over a field of characteristic
zero (in our case L),say B =:E:aijxiyj,is determined by 311,a12,a13,...;
and this demonstrated,when it is shown that each aij,i+j=n, can be
represented by a function depending only on a and a.. . 's where

1yn=-1 1k
1+k<n. Let us examine the associativity relation F(F(x,y),z) = F(x,Ply,z)).

LHS

((x+y+a11xy+...)+z)

+

(a11(x+y+a11xy+...)z)

+

2 2
1Xy+. X )Z +a21 (X+y+a11xy+oo c) z)

3 2 2 3
(a13(x+y+a11xy+...)z +a22(x+y+a11xy+...) z +a31(x+y+a11xy+...) z)

(a12(x+y+a1

+

+ etec.

RHS

]

(x+(y+z+a11yz+...))
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*(a11(x(y+z+a11yz+...))
2 2
+(a12(x(y+z+a11yz+...) +a,,% (y+z+a11yz+...))

2 2
(a5 (xlyrara, yore. ) ona,, (6P (yrava yor. . ) vag (2 (grara yae. ..))

+etc.

Compare the coefficients of xy1-1zJ on both sides of the equation:

1—1ZJ

xy can occur on LHS only within:

J

a1j(x+y+.- .)z
2.3
azj(x+y+...) z

i3
aij(x+y+...) zY,
and on RHS only within:
a11x(y+z+...)
2
a12x(y+z+. oo)

n-1
a1’n_1x(y+z+...) .

- - . - —— 1 — n: %
by equating coefficients we obtain 1aij+fn(a1k s) = El 1331,n—1+gn(a1k s)

(where fn,gn are some determinable polynomials and 1+k&n). Hence,the

. PO _ n: 1 _ t =1
equation we want is: a5 = (21 43a1,n_1+gn(alk s) fn(alk s))i™ .

3. Consider all possible group laws u(u'1(x)+u-1(y)) where

u runs over invertible power series, we observe that any such group

law is of the fornn}ibijxlya where b,, = £,(b,,b,)

Bip = Tp(0ys0505)

B b, = fn(b1,...,bn

etc.,

)

+1
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)

where bi are variables (coefficients of u), b1 é 0 and f1(b1,...,bl¥q

is a function in which bi+1 occurs without multipliers. (Note that
since L is a field of characteristic zero all power series £ 0 and
having non-zero first degree term are invertible, and this allows us

to call the b,,by5eee,b yeee "variables".) Let PF(x,y) =:E:aijxiyj, and
put b1n = a1n for all n; this allows us to solve for the bi in terms of

the a and still, we can consider b

14 1 to be a variable., By part 2..

F(x,y)= u(u-1(x)+u-1(y)) with b, = 1, for example.

211 (Corollary) Any group law, F, over a field of characteristic zero
is determined by the coefficients B4 492 0000098, yeee, where
i d
F(x,y) =Zaijx xv,
PROOF:

See proof of T10 2.
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III Properties of HomD(F,G) and Homk(F,G)

D10 We denote by D any complete valuation ring such that char D =0

and vhich is discrete; Q(R) = L represents the quotient field of D, m
= dD is the maximal ideal of D and k = D/m is the residue field with

p(=prime) elements. U represents the units of D.

12 (Theorem) 1. c:HomD(F,G)-——aD is an injective homomorphism of groups.

2. The image of ¢ is a closed subgroup of D.
PROOF:

1« The result, T7, shows that ¢ is already a group homomorphism,
so it remains to demonstrate that ¢ is an injection. Let f in HomD(F,G?
be such that c(f) = 0, we claim that £ = 0. By T10 we have F(x,y)
= w(u” () +u N (y)), e(x,y) = v(v 1 (x)+v" (y)), with u,v in L[[r]] (where
L = Q(D)). But, since £ is a homomorphism f{F(x,y)) = ¢(£(x),£(y)) which
implies f.u(u’1(x)+uf1(y)) - v(v_1.f(x)+v_1.f(y)); hence,
v-1(f.u)(u—1(x)+u-1(y)) = v—1.f(x)+v-1.f(y), and replacing x by u(x),

v by u(y) yields v—1.f.u(x+y) = v_1.f.u(x)+v-1.fu.(y). This means that

-1 . ‘s . -1 .
v +f.u is an additive power series, and so v .f.u must be a linear

monomial, aT, for example.

It is clear that we may choose u,v having first coefficient
equal to 1 (by the concluding remark in T10) so that a must bee(f),

which is O by hypothesis. Therefore, v-‘.f.u = 0, and this obviously

implies £ = O.

2. The proof takes four steps.
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1/ c(Hom_D(F,G)) ={aeD: v.(:a.).u_1 in D [[T]], where
(a)(1) = ar}.

Proof:

By the technique in 1. we can write f in HomD(F,G) in the
form v.(a).u”! where a = c(£), for particular u,v depending only on
P,G. This shows that if c¢(f) in IHS then c¢(f) = a in RHS, because

v.(a).v.-1 = f in HomD(F,G) implies v.(a).u-1 in D[[T]], and a in D.

Conversely, suppose a in RHS, i.e. v.(a).u”! in p[[r]] ana
2 in D then v.(a).u”| in HomD(F,G):
for, v.(a).u™ (F(x,y)) = v.(a)(u™ (x)+u" () = v(a(u (x))+alu " (y)))
v((2) o (x) (2w () =
e(v((a).u™ 1 (x)),v((a) o (F))) =
¢(v.(a)u™ (%) ,v. (@)™ (3))

Purthermore, c(v.(a).u_1) = a by definition of v and ol (see 1.),

and consequently a in IHS.,

2/ Associate with each a in L the element bi(a),
obtained as the coefficient of T+ ﬁav.(a).u-1; then bi(a) is a poly-
nomial function of a whose coefficientsare in L; hence, bi(a) is a
continuous function of a (using the valuation metric).

3/ Let us define X, = {a in D: b (a) in D}, then it
follows that Xi is closed in D:

Proof:

It is clear that D is closed in I = Q(D) and also that bi(D)

" is closed in L; hence, it follows that bi(D)r\D is closed in L(because
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the intersection of two closed sets is again closed). But, this last
set is precisely Xi.
4/(\Xi = {a in D: ve(a).u " in D[[T]]}.
Proof:
Let a in f\Xi, then bi(a) in D for each i, hence, v.(a).u-'1 is
in D[[T]] and, therefore, a in RHS.
Let a in RHS, then v.(a).u” ! in D[[T]] and clearly bi(a) in D

for each i; hence, a in Xi for all i, which implies that a in LHS.

In conclusion we observe that (\Xi is closed since Xi are

closed; therefore, c(HomD(F,G)), which is f\Xi by 1/ and 4/, is closed

in D.

In the proof of T12 1. we could have replaced D by L and ob-
tained that c:HomL(F,G)———{L is injective, this makes possible the
following definition (extending in a sence D6).

D11 Denote by [a]F the unique L-endomorphism of F with first degree

coefficient equal to a, for any a in L.
T13 HomD(F,G) is a’zp module, where Zp is the ring of p-adic integers.
PROOF:

Observe that c(EndD(F)) is closed in D by T12 2., contains
Z (since c([n]F) = n), and hence contains the closure, Zp, of & in D.
Hence, the injectivity of c_1zc(EndD(F))-—)EndD(F) shows that Z_ is
canonically contained in EndD(F).

Let 2 in 2 and f in Homy(F,G), then we define the action

of Zp on HomD(F,G) as follows: a.f = f.[a]F (=[a]G.f); this action
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is well-defined since -

1. a.f in HomD(F,G), for, f.[afFF(x,y) = f([a]F(F(x,y») = ffax,ay) =
= e(£(ax),g(ay)) = ¢(£.[a]5(x),2.[a] 5(¥)),

2. given a there is a unigue [a]F.

114 (Proposition) If f in Homk(F,G),where k is any field such that
char k = p>0 and £ £ [0] then there exists g = p’ such that
£(?) = aT®  (mod deg g+1), a £ O.
PROOF:
Suppose £(T) = a1T+a2T2+..., and say that n is the smallest
positive integer such that a, é 0, so £(T) = anTn+... and
£(T) = anTn (mod deg n+1). But, since f in Homk(F,G) we get
£(F(x,y)) = 6(£(x),£(y)) (mod deg n+1); hence,
an(x+y)n = anxn+anyn (mod deg n+1), which implies (x+y)" = x"+y".
Now, suppose there exists m|n such that g.c.d.(m,p) = 1
and say n = mpr then xprm+yprm = (x+y)prm. We know from elementary
r T T
number theory that x* +y° = (x+y)P (mod p), so we get, putting

r
s=xP , t=y°, st = (s+t)™ (mod p) which implies that

(?3 =m = 0 (mod p), a contradiction. Therefore, there does not

exist m‘n such that (m,p) = 1; i.e. n = pr for some positive integer r.

r

Therefore, f(T) = anTn (mod deg n+1) and n = P

D12 Given a group law F defined over k (a field of characteristic p)
. - ph h .
and if 0 £ [p]F(T) = al (mod deg p +1), which must be the case by T14

then h is called the height of Fj; if [IJFKT) = O then we say that F has

infinite height (in both cases denoted height(F))
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T15 If height(F) £ height(G) then Homk(F,G) = 0, where F,G are group
laws over k.

PROOF:

Suppose that 0 £ f in Homk(F,G), then £(F(x,y)) = ¢(£(x),f(y))

and hence f.[p]F = f.([1]F+...+[1]F) = f.[1]F+...+f.[1]F = F+eootf;
p times

also [p]g-f =([1]g+--e+[1]g)ef = [1]geg+ecot[1]gef = £+.. o485 therefore,

f.[p]F = [p]G.f £ 0 (unless both [p]F and[p]G = 0 in which case height F

= height G = infinity). It is clear that this equation holds only if the
leading coefficients of [P]F and [p]G have the same degree, which by T14

must be of the form ph; hence, height (F) = height (G). The statement

T15 is simply the contrapositive of the above deduction.

T16 (Proposition) 1. height (F¥)<w® implies *: HomD(F,G)———ﬁHomk(FsG%
is injective.
2. height (F*) =o does not imply *: HomD(F,G)~—+Homk(F§G$
is injective.
PROOF:

1. We will show that £ £ O implies £*¥ £ 0. It is clear that
when at least one of f's coefficients is a unit then £¥* £ O, so we assume
that each coefficient of £ has value greater than zero. Hence, £(T) =
drg(T) where r>0 is some integer, 4@ is a local uniformizer (arising from
the valuation on D), and g(T) in D[[T]] is such that g*(T) £ 0. Now,

& .g(F(x,y)) = ¢(a"s(x),a"e(y)), since £ in HomD(F,G),
= drg(x)+drg(y)+d2rP(x,y), since @ is a group law and P(x,y) in D[[x,y]].

Hence, g(F(x,y)) = g(x)+g(y)+a P(x,y), so that g*(F*(x,y)) = g*(x)+g*(y).
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But, this shows that g% in Homk(F*,x+y), and we can easily see that
height (x+y) is infinite (since'[p]x+y = [i]x+y+"’+[1]x+y = pT = 0,
since char k = p); so that g*=0 by T15. Hence, we have a contradiction
and cur assumption (that r>0) is false - so £* £ 0.
2. Consider F¥* of infinite height and G* of finite height; in
particular F(x,y) = x+y+bxy, b in m, the maximal ideal of D, and G(x,y) =

= X+y+xy, so height (F*¥) = height (x+y) is infinite whereas height (G*)

= 1. Put £(T) = bT, then £f(F(x,y)) = fx+y+bxy) = (bx+by+b2xy)

= G(bx,by) = G(f(x),f(y)), which means f in HomD(F,G) and yet £¥*

1
o

so ¥ is not injective.

T17 (Proposition) If F,G are group laws over D then there exist polynomials

Piin D[X1,...,Xn] and Riln L[X] where L = Q(D) satisfying:

Te Ri(X) Pi(X,Rz(X),...,R, 1(X)) when i £ p° for some r*0,

-

2. R (%) = 1/pP, (X,By(X),...,R, (X)) if 1 = p*T for some r>0,

3. if £ in HomL(F,G) and c(f) = a1in L then ith degree coefficient
in £(T) is Ri(a1).
PROOTF:
Induction on i.
Case i = 1: Let R1 = P1 = X then 1.,2. are clearly satisfield; suppose
f in HomL(F,G), e(f) = a, in L then the first degree coefficient in £(1)

so 3. holds.

is a, and R1(a1) = X(a1) = a

1’

Case j=i: We must show that the result holds for j = i.

1. Say i £ pT, 0, let i = mq where m»1, p does not divide

-1
2. Suppose i = pr, r>0, let i = mq again where m = p and g = pr
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Since f is a homomorphism we have f(PF(x,y)) = G(£(x),f(y)), and we can
examine the coefficients of qu(m'1)q on both sides of this equality.

On the ILHS we get a polyromial over D in R LI
On the RHS we get a polynomial over D in 2 9000985 49 but a

s added to quaai;
i does not
appear.- Eguating coefficients and solving for ai we get:

a; equal to a polynomial over D, Pi(a1,...,ai_1) if i A p?,
a; equal to 1/p-(a polynomial over D) 1/p Pi(a1,...,ai_1) if i =p';
since qug is p-adic unit if i £ pr and is 1/p times a p-adic unit
otherwise (it is suffiecient to show a. (m,p) = 1 implies (gp;ma,p) =
b. (ﬁgg_ i %) =

. r_1

this is done by observing g e l; (mp -z)/(p -z), 1n which mp® -z,

pr-z always have the same power of p, and g % i ] (p —z)/(p —z),

in which pr-z, pr—1—z always have the same power of p except when z = 0).

This defines P_, and now we put Ri(x)

]

P (X eee0R, (X)) if 1 £ p"

N . r
and Ri(X) 1/pPi(X ,...,Ri_1(X)) if i =1p

By the definitions of Ri,Pi 3. follows immediately.

8 (Corcllary) Suppose that £ in HomL(F,G), where F,G are group laws
over D, f = a1T+a2T2+..., and that n>1 is the smallest positive integer
such that a, is not in D, then 1. n = pr for some >0

and 2. pa_ in D.
n

PROOF:

1. If n £ pr, r>0 then by T17 there are polynomials P1""3?n

( =
over D and R1,...,Rn such that Rn\X) = Pn(X,, RQ(X),...,Rn_1(X)) and

Rn(a1) =2a . But, since n is the smallest positive integer such that
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a is not in D it is clear that a,,...,a . are in D, so that R1(a1),
...,Rn_1(an) must be in D. Now a = Rn(a1) = Pn(a1,.;.,Rn_1(a1)) which
is clearly in D, and yet a, is not in D; +this contradiction enables us

to conclude that n = pr.

2. We know that Pn(a1,R1(a1),...,Rn_1(a1)) is in D, but this is

exactly equal +to pan since n = pr.

D13 If n is an integer greater than or equal to 2 put Bn(x,y) =

= (x+y)P=-x"=y", and Cn(x,y) = B if n is not a power ofa prime

1/an if n is a prime (=q) power.

T19 Cn(x,y) is not zeroc considered as a polynomial of K[x,y] where K is

any field.

PROOF:

We must show that the coefficientsof Cn(x,y) are relatively

prime °

Case a. TLet C =3B = 2?3 xn-1y+...+gn§1a xyn-1, and suppose

that p is a prime dividing each coefficient; it follows that p divides

n and that (x+y)® = x™+y® (mod p). Put p° = q and n = qm where (p,m) = 1
r+1

and p does not divide n, then (x+y)®™ = (x2)®+(y?)™ which implies that

(Z4yD™ = (D% (3™ (mod p), 2nd hence p divides m, a contradiction.

Therefore, our assumption that some prime divides each coefficient is false.

Case b. Let Cn = 1/an, p is a prime and n = qr. Again, let q

be a prime dividing all the coefficients of Cn then q divides pr—1 and so

r 2
q must bep; but near the end of T17 we showed that (Egr_13, p°) = p,

S0 g = p does not divide all coefficients of Cn, contradicting our
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assumption; hence, the result.

The following is a result due to lLazard, we prove it for

integral domains.

720 (Proposition) Let F,G be abelian group laws over any commutative
ring,A, with 1 such that F = G (mod deg n) then there exists a in A

such that F(x,y) = G(x,y)+acn(x,y) (mod deg n+1).

BROOF:

This proof is valid forintegral domains, A.

1., Pirst, we prove the result for fields, A, of characteristic
zero., By comparing the coefficients of xyi—1zj for the associative law,
PMP(x,y),2) = P(x,F(y,z)), we get (where F(x,y) = x+y+a11xy+...)

s 1 _ - 1
1aij+fij(alk s) = gl ]aa1,n—1+gij(alk s), where 1l+k4n and fij’gij are
simple functions since:

on ILHS xy1—1zJ

occurs only in a1j(x+y+a X§+ees)zd

11
2.3
azj(x+y+a11xy+...) z

i J
aij(x+y+a11xy+...) z

while on RHS it occurs only in a11x(y+z+a11yz+...)

2
a12x(y+z+a11yz+...)

n-1
a1,n_1x(y+z+a11yz+...) .
Similarly for G(x,y) = x+y+b11xy+.... Hence, i(aij-bij) =
- _ - 1 - (] ' -
gl 13(a1’n_1 b1,n-1) since fij(alk s) fij(b1k s) ana gij(alk s) =

= gij(blk's) by hypothesis. Therefore, all we need is to solve:
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n-1 n
when n £ q° ai.-bij = ((i—13/i)(a1’n_ b, éi; for each i between

J

,n~1 =
e REIAn
1 and n-1. This is done if we put a = ({i-1 )(a

1,n-1" b, s = 1)’
New
i.e. @ = (a1,n_1-b1,n_1)/n (since Ei-1 /i = siz/n from elementary

number theory). Note that if n = q?then the above applies to yield

Je/n.

a = (8 0170 0

2e Now we prove the result for fields, A, of characteristic
p = prime.
Case 1 n A qr.
1/ p does not divide n: Here we can solve for aij—bij in terms
of a ~b as follows., Say p does not divide i then examination
1,n=-1 1,n-1
of coefficients(in the associative law) for xy1-1zJ gives
aij—bij E 3/1)(a1'n - 1,n—1 as in 1. If p does divide i then it does
not divide j = n-~i and we apply the above procedure to aji(whieh is
actually ay ) and get a symmetric result. Hence, there is only one
equation to solve - it is na:(a1 -b ) and has the obvious solution.
’n-1 1 ,n—1
2/ p does not divide n and n = prm,(m,ﬁ=1: Since pjn then

comparing coefficients of xypzn-p in the associative law shows that

a -b = 0. Comparing coefficients of xy1-1zJ for i not a
Teni=1 ~1,4n=1
multiple of p yields a..-b.j = 0. So for these i,j any a will do to
n n
solve aij-bij = iiga since p divides Eig. Consequently we focus our

attention on aij where i and hence j are multiples of p.

c .d oo co i
Onsider &, n-p?®2p,n-2p’°*°?*(p-1)p,n-(p-1)p’ COTPETINE
prn—(L+1)pzp

coefficients of x (L between 1 and p-1) yields a relation

between Eﬁﬁpgé and g%—Lpa

a and since p does not divide
P,yn-p Lp,n-Tp

n-L

S

we can solve for a in terms of a ; this then shows
© Lp,n-Ip pyn-p’
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thatthe equations aLp,n—Lp_pr,n—Lp = gﬂpaa all reduce to the same

n
equation, a -b = a., Similarly for a a coe
4 ? “pyn-p p,yn-p P v p°,n-pS? 2pS n.opS?°

a(p-1)p5,n-(p-1)ps’ s:r we get only one equation actually,

a -b = S . = i
pS,n-pS”"pS,n-ps P¥la For s r we get the same except that L is

between 1 and m-1, but still only one equation results. Now, we need

only consider equations dealing with a geseyd re But comparing

o pyn-p pT,yn-p
coefficients of xPy" PP 2P gives a relation between Engp‘a and
P<: ] Pen=p
2
n-— a which enables us to solve for a in terms of a
tB-r"Yag2 np2 P,n-D p2,0-p°

since p does not divide @;Ba. Again we see that the first two eguations
become one. In a similar fashion we eliminate other equations to finally
be left with only one equation,which is a a=b = (n

Y q ) r,n—pr pr’n_pr Epraa and
which can easily be solved since p does not divide ggra.

Case 2 n = qr.

Either p divides n i.e. p = q or it does not divide n. If g
»# p then Case m1/ applies with minor alteration and finally we obtain
again that there is only one equation to solve: (n/q)a = a, -b
yn=1 "1,n-%
to which the solution is obvious. When g = p we are forced 1o apply the
technique of Case 1.2/ in which instance the only equation to solve

becomes: n

a_ o - =
p?=1,nopr=1"Ppr-1 p_prt = (fore

13/p)a, the solution #£o which
is again clear.

3. We can now prove the result for arbitrary integral domains,
A, with unity. Consider Q(A), the quotientfield of A, and observe that
F,G are elements of the set of group laws over Q(A), by the natural

embedding; now, the proposition holds for Q(A) so we obtain a in Q(A)
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such that F(x,y) = G(x,y)+acn(x,y) (mod deg n+1). But F(x,y)-6(x,y)
is over A so that a must be in A also; (719 shows that the coefficients

of Cn* are relatively prime so a linear combination of them equals 1).

T2 (Proposition) Let PyG be group laws over D and 'suppose that
F*(x,y) = H*(x,y)+a0r(3;y) (mod deg r+1), a in k, T=p"; then, [p]F*(T) =
[p]H*('l‘)-aTr (mod deg T+1).
PROOF:

A simple computation reveals that [p] F*(T) =

._Z (f(alk )+1+3 n(?ﬂ )a )T (;E?re f is a simple function and

1$l\:]
1+k<n) so that [p] F*—[p] — lgr( 71 )(a -bi
1€i¢j
since the previous Ay = blk’ 1+k<n,

- (2 (Bt 8] /et

j))Tr (mod deg r+1),

i+j=r
1¢
But, - lsa -1 s
2 i E i_qi_,i_ P _
i-l-;j---r(ﬁ:L ) = ;(1*‘3 r g(lﬂ) R pe

1< (
Hence[p] F*(T) [p] H*(T) ((ppé-—p)/p)a‘r = ~a?t (mod deg r+1).
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IV Isomorphisms between Group Laws and Properties of Power Series

D14 Let T in.A[ED1,...,Tn]] for any ring, A, and consider the polynomial
p(T1,...,Tn) such that p = £ (mod deg n+1), we will call this p the

n-bud of £ and denote it by n-bud(f).

It is clear that n-bud(f) = n-bud(g) if and only if
f =g (mod deg n+1).
122 (Theorem) Say F is a group law defined over D, height(¥*) = h finite,
coefficents of theq-bud of F,(q = ph),E*J, a subring of D such that Q(v)
is an unramified extension of Qp; then there exists a D-group law G(x,y) =
= x+y+acq(x,y) (mod deg q+1), where a is a unit in U, such that F is
U-isomorphic to G, It follows that F is D-isomorphic to G.
PROOF:
We claim there exists G(x,y) sueh that G(x,y) = x+y (mod deg q)

and G’ = F, v in U[[T]], i.e. G is U-isomorphic to P. First, we know that

for some integer r»2 there is a G(x,y) such that G(x,y) = x+y (mod deg r)
with G being U-isomorphic to F (simply take r = 2 and F = G). Now, let

r be the largest positive integer less than q = ph such that there is

a G with G(%,y) = x+ty (mod deg r) and G' = F for some v in U[ﬁq].

Then G(x,y) = x+y+bCr(x,y) (mod deg r+1) by T20, b in U.

Case 1 If r £ ps for some integer s30 then Cr= cBr where ¢ is invertible

in Zp, and hence in U. Put u(T) = T-beT in U[[T]] then FX(x,y) =

= F(x,y)+aBn(x,y) (mod deg n+1) (which can be shown by substituting),

= x+y+chr(x,y)+(-b)cBr(x,y)

x+y (mod deg r+1), and we have G*,F
u)u-1v - G(uu-1)v AN

U-isomorphic (since (G G
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Case 2 If r = ps for some integer s20 the b is necessarily not a unit
in U (suppose it were, then [p]G*(T) = -b*1T  (mod deg r+1) by T21,
where H* = x+y; hence, height(G*) = s¢h contradicting the result, T15,
(note: F D<isomorphic to G implies F¥ k-isomorphic to G*». But, U is
unramified over Qp s0 b = pec for some ¢ in U; therefore, letting

u(?) = T=cT¥ in U[[T]] we obtain G'(x,y) = x+y (mod deg r+1). Once
again, G~ is D-isomorphic to F (via wv). This completes the proof
of the claim since we need only apply the above process finitely many

times to arrive at the last step: G(x,¥)

X+y +‘Q(x,y) (moa deg q)

where O(x,y) is the zero power series and G = F' for some Vv in U[[T]].

n

Hence, G(x,y) x+y+acq(x,y) (mod deg q+1), a in U, by T20.
It remains to show that a is a unit; but, if it were not we would obtain
[Plg«(T) = (-2)T"+aT™™ = 0 (mod deg g+1) by T21, which says that

height(G*)>h, contradicting the existence of a U-isomorphism between F¥

and G* (making use of T15).

D15 Let A be any ring, then A[[T1,...,Tn3}r stands for the set:
{f in A[BD1,...,TnJ]= non-zero coefficients of f occur only for degrees

= 1 (mod deg r-1)}.

It is clear that f in A[{T,,...,7]] | and u in A[[‘l‘]]r invertible

implies £ in A[[T1,...,Tn]]r and u” | in A[[T]]r.

T23 (Proposition) Suppose n is an integer and that p does not divide

n, that w is a primitive nth root in D, and £ in D[[T]]is such that
f(n)('l‘) = T, where £(8) senotes the composition of f with itself n times,
if, furthermore, £(T) = wI (mod deg 2) then there is a u in D[[T]] so

thets £2(T) = wl, and where u is invertible over D.
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1. We claim that the following implies T2%: Given

T+aTm (mod deg m+1)
such that u .f .u _1(T) s T (mod deg m+1) and u =1 in D[[T]].
m° m® m m

Proof:

fm(T) = wI (mod deg m) then there exists um(T)

-1 -1
Put £, = £, £, = u,fu, ,...,(umum_1...uz)f(umum_1...u2) yoooe
Then, it is clear that u2,u3u2,u4u3u2,... is a Cauchy sequence since
W _qeeels = W gty (moa deg m); hence the sequence converges to

a limit, u, in D[[T]] (using the fact that D[[T]] is complete). Now,
we establish that this is the required u; for, because the sequence,
u2,u3u2,..., is invertible over D then so is its limit; also
ufu-1(T)-ukmfk u '1(T) = 0 (mod deg m+1) for all sufficiently large
m Km

km (by definition of u), which implies that ufu—1(T) = wl (mod deg m+1)
for each m; hence, ufu—1(T) = wl which means that £U(T) = wT.

2. Proof of the statement in 1.
Case 1 If m % 1 (mod n); we have fﬁ(T) = wl+aT"  (mod deg m+1),
say, and let us suppose that um(T) = T+bT", then

u
m - m
= = T+(= =
fm (1) = umfmum (T) umfm( +(-b)T ) (mod deg m+1)

um(wT+w(-b)Tm+aTm) =

wl+w( -0 ) T +b { wP+w(~b )T +aT™® =

wi+(a+b(w'=w))T™  (moa deg m+1).

. m . s .
We claim that w -w is a unit in D; clearly Whew £ 0, further, w* is a
primitive nth root of unity in k so w¥T £ w¥, hence (wo-w)* £ 0, which

implies the claim. Now, simply define b

= a(w-wm)—1 and we have U s
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the required power series (um's inverse is clearly defined over D).
Case 2 m =1 (mod n); we have , therefore, w = w. If

fm(T) = wI+aT" (mod deg m+1) then

fm(z)(T) = w(wl+aT™)+a(wi+a?™)™ = w2T+(w+wm)aTm (mod deg m+1),
fm(B)(T) = w(wlr+(wtv™®)ar) +a(v?T)® = woT+ (W™ T4w?®)aT™ (mod deg m+1),
fm(4)(T) = w(w3T+(w2+wm+1+w2m)aTm)+a(waT)m (mod deg m+1)

= w4T+(w3+wm+2+w2m+1+w3m)aTm (mod deg m+1),

and, in general,

fm(n)(T)

wnT+(wn'1+ wn+m32+.'.+wn+im-(1+1)+_..+w(n-1)maTm (mod deg m+1)

1

= T+nw a™ (mod deg m+1), sincem = 1 (mod n).

(n) (n) -1 . (n)
But, £ (7)) = (um_1...u2)f (um_1...u2) (P) =T since f () = m,
so we must have a = O, and comsequently £ = wT (mod deg m+1). In this

case we can choose um(T) = T and we get fmum = wI (mod deg m+1).

124 (Corollary) If w is a primitive (r-1)th root of unity in D, r = >,
and F is a D-group law such that [W]F in EndD(F), then there exists G, a
D-group law in D[[x,y]]r such that it is D-isomorphic tc F.
PROOCTF:

Let [w]F be denoted by £, then by T23 there exists an invertible
u in D[[T]] such that £3(T) = wl. Put G = F*. We claim that £~ in EndD(G),
for, clearly £ in D[Fﬂ] and £ = 0 (mod deg 1); but, also

fu(G(XQY))

ufu” (6 (x,y)) = ue(F(u~ " (x),u" (¥))) = uP(fu™ " (x),fu” ' (y)) =

uF(u_1ufu_1(x),u_1ufu-1(y)) = G(fu(x)yfu(y))‘

Furthermore, G(x,y) is in D[[x,y]] ; for, otherwise, there exists a
least m #Z 1 (mod r=1) such that G(x,y) has terms of degree m, then we

can write G = G, +H (mod deg m+1), where G1(x,y) in D[[x,j]]r and H is
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a form of degree mj; and so,

wG1(x,y)+wH(x,y) we(x,y) = £2G(x,y)) (mod deg m+1)

1

G(£%(x),£%(y)) = G1(wx,wy)+H(wx,wy) (mod deg m+1)

wG, (x,y)+w H(x,y) (mod deg m+1),
1

which implies that wH = me, consequently H is O.

We conclude this section with two interesting results:
one on power series and another dealing with homomorphic group laws.
T25 (Proposition) Suppose K is an algebraically closed field with char K

= p>0y that f in K[EI]]r (r = Ias) is actually a power series in T and that

H
~
]
~
in

aT®  (mod deg r+1), a # O, then there ists an invertible u in

K[[T]]r such that £2(T) = aT®.

Te We claim that if there exists f, yece3f 4e.eo such that £
1 m m

in K[EI]]r is a power series in T for each m and fm(T) = aT" (mod deg m)

implies there exists u_ in K[[I]] such that f =ufu"]
m r m+

u and
1 momom

um(T) =T (mod deg lm) where 1 goes to infinity with m, then the result
follovs.

Proof:
. =1 1
Consider f, = f,f, = u,lfu1 1eeerf = (um_q...u1)f(um_1...u17 soeof
we observe that uq,uauq,...,(um...u1),... is a Cauchy sequence in K[[T]]
and since this ring is complete the sequence must have a limit, u, say,

which is, in fact, in K[EI]]r by definition of the ui’so llow, this u is

s . -1 -1 -
the one required since ufu (T)—(ukm...uq)f(ukm...u1) 20 (mod deg 1, )

m
for all sufficiently large 1 because u-u e..u; =0 (mod deg 1, ) for all

1

m m

sufficiently large 1; consequently, ufu—1(T) z art (mod deg lk ) for all
m
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2. We prove the statement in 1. Let fm(T) aT +bT™  (mod deg m+1);

we want T =u fu -1 so we must define u_ in such a way that
m+1 m m m m
-1 - r : - .
umfmum = aT (mod degm#1) and um(T) =T (mod deg m), u_ in K[[T]]r’

If b = O then we can take u_to be the identity. For b £ O we must have

m

= 1

then fmum(T)

r (mod ra-r) since m must be a multiple rn, of r and then n must be

(mod r-1); clearly n*1, znd if we consider any um(T) = T+cT"  (mod deg n+1)

u £ u " HT) = uf (T=cT™) = u(alT-oT™) +b(T=cT™™) =
mmm m

u(a(T-cT)T+T™) = a(T-cT™) T+ e (a(T-cT™) T +o1™ ™ =

i}

aTt —acT T +bT +ca™ " (mod deg m+1),

using the facts that (x+y = X +y mod p)y, P = r, char = pJl,
(using the £ hat (x+y)7 = x*+y°  (mod p), p° har K = p)

= atf+(-acT+b+a"c)T®  (mod deg m+1).

Now, we want this to be = aT*  (mod deg m+1), so we need only choose ¢

satisfying —ac”+b+a’c = O (which is permissible since K is algebraically

closed) to obtain the result, um(T) being simply T+cT .

126

(Corollary) With the hypothesis as in T25, then, there is a v in K[[T]]r

such that £'(T) = T'.

PROOF:

v =

Just put w(T) = bT where b is any (r-1)th root of a, then let

we.u where u is obtained from T25. Now we get

(1) = £9°%() = ()Y = @) = w@)w (T) =

w(@) (o~ HTT = wlab TTF) = bab *T = aa” T = T.

T27

(Proposition) Let F,G be L-group laws where L is a field with char L = O,

f in L[ﬁﬂ] satisfy:
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£ (F(x,y)) 2 F(£(x),£(y))  (mod deg n),

f(G(x,y))

n

G(£(x),f(y)) (mod deg n),
c(£f) # 0, c(f) # any root of 1,
then, F £ G (mod deg n).

PROOF':

By T10 we can obtain u,v in L[[T]] such that c(u) = c(v) = 1 and
Fx,y) = x+y, G (x,y) = x+y. It follows that both f and f' are linear

(mod deg n) since: f£H(FMx,y)) = ufu—q.uF(u-1(x),u-1(y)) =

ufF(u-q(x),u—1(y)) = uF(fu-1(x),fu-1(y)) (mod deg n)

uF(u_qfu(x),uquu(y)) = FHE% () ,£%(3)) (mod deg n);

hence £ (x+y) = £7(x)+f'(y) (mod deg n), n33, which can happen only if
u

£% is linear (mod deg n); therefore, f (T) = bT (mod deg n) and since

clu) = c(u-1) = 1 then b must be a. Similarly we can obtain

£(T) = a (mod deg n). Hence, v.u-1(aT)

v(£™ N T)) = (moa deg n)

av.u_q(T) (mod deg n).

Now, we claim that any series with first degree coefficient not
equal to O or a root of 1 commuting with a linear monomial over a field of
characteristic zero must itself be linear.

Proof:

Say g(T) = bT+aT" (mod deg r+1), rén and that
a.g(T) = g(aT) (mod deg n), a £ O3 then,

abT+adT’ = abT+da’T"  (mod deg r+1), hence , d(a'-a) = O, which implies that

d = O (since a* # a). Consequently, veu (T) = bT  (mod deg n); further,

it is clear that b = 1 according to the definitions of u and v.

Finally, we observe that F(x,y) = u(u-1(x)+u_1(y)) =
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= v(v-1(x)+v-1(y)) = G(x,y) (mod deg n),

(since u = v (mod deg n)l
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V A Construction of D-Group Laws

D16 Suppose we have a complete discrete valuation ring, D, with prime

element, d, such that p = (D:d(D)) is the number of elements in the residue
class field, and Q(D) is the quotient field, which is, hence, complete with
respect to the valuation (that is, the situation of D10) then we denote by
D, the subsetCD[[T]]consisting of all f's such that £(T) = dT (mod deg 2)

and £(T) = TP  (mod d).

In order to carry out the intended construction we must consider

a preliminary result concerning power series.

728 (Lemma) Let f,g in D, and say l(X1,...,Xn) = ;g;aixi is a linear form
over D, then there exists h in D[[X1,...,XDJ] such that
h(x1,.o-,xn) = l(x,‘,ooa,xn) (mod deg 2) and
f(h(x,‘,oO-,Xn)) = h(g(xq),oco,g(xn))o
PROOF':
To make the notation less burdensome put X = (X1""’Xn) and
g(X) = (g(X,l),..-,éxn)).
1. We claim that the congruences hr(X) & 1(X) (mod deg 2)
and f(hr(X)) = hr(g(X)) (mod deg r+1) have a unique (mod deg r+1) solution
b (X) in D [fx;,....x 1]
Case r =1: Simply take h, x) = 1(x).
Case r21: We assume the result for any rdl.

Case r+1: We must exhibit a solution hr+ to the system -

1
hr+1(X) = 1(X) (mod deg 2),
f(hr+1(X)) = hr+1(g(X)) (mod deg r+2).

Let us write h  , = h +dif for some 4if in D[[x1,...,xn]]; then,
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f(hr(x)+difr(x)) = (hr(x)+difr(x))(g(x)j (mod deg r+2),

hence, f(hr(x))+f(difr(x))+hr(X)difr(X)(...) =

= hr(g(X))+difr(g(X)) (mod deg r+1),
therefore, f(difr(x»+hr(1)difr(x)(...)

i

difr(g(X)) (mod deg r+1),
(using the induction hypothesis). But, the last congruence can be
satisfied only if difr(x) =0 (mod deg r+1); because, if a £ 0 is a
coefficient of a term of lovest degree, t§r, appearing in difr(x) then
we must have da = dta, so that t must be 1 (since d is prime), which
implies that difr(X) has a linear term, in contradiction to the required

congruence: 1(X) = hr(X) = hr+1(X) (mod deg 2). It follows necessarily

that b . = h +dif where dif =0 (mod deg r+1). Consequently,
£(n, (X)) = f(hr(X)+d(difr(X)) (mod deg r+2), and

- r+1 .
hr+1(g(X)) = hr(g(X))+d (dlfr(X)) (mod deg r+2)

require that we take difr(X) = f(hr(X))—hr(g(X)) (mod deg r+2).

dr+1_d

It is clear that the coefficients of difr(x) (and hence hr+1(X))arein D
since (b (X))-b (g(X)) = (1, (x))P-n_(2°) = 0  (mod a), using the fact
that d divides p; so that 4 does, in fact, divide the numerator of
difr(X).

2. To complete the demonstration of existence it sufficies to
remark that Iﬁ?1,...,XJ] is complete, so that the limit of the Cauchy
sequence, h, (X),h,(X),..., exists in D[[X1,...,Xn]]; if we call this limit
h(X), clearly h(X) = 1(X) (moa deg 2) and F(n(%)) = n(g(x)).

3. The uniqueness of h(X) follows from the form of the existence
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proof 1. and 2. which indicates that the sequence, h1,h2,...;is uniquely
determined and, hence, determines @niquely)h since we are dealing with
a Hausdorff topology.
We are now in a position to make the following definition.
D17 Given f in D; denote by Ff(X,Y) the unique solution of:

Ff(X,Y) X+Y (mod deg 2) and f(Ff(X,Y)) = Ff(fk)ﬂy)).

Given a in D and f,g in Dd denote by [a]f,g(T) the unique solution of:
[a]f,g(T) = aT (mod deg 2) and f([a]f’g(T)) = [a]f’g(g(T)).'
129 (Theorem) Let f,g,h in Dy and a,b in D then wé have:

1. Ff(X,Y) = Ff(Y,x)

2. Ff(Ff(X,Y),Z) = Ff(X,Ff(Y,Z))

3. Fol[a]e, (s [a]s, (YD) = [2];, (P (X,1))

4e [a]f,g([b]g,h(m)) = [ab]f,h(m)

5. [a+b]f’g(T) = Ff([a]f’g(T),[b]f’g(T))

6. [a]f,f(m) = (1), p]f’f(m) = T.
PROOF:

The method of proof is the same in each case; we simply
demonstrate that the LHS, RHS are both solutions to a problem of the

type found in T28, and since we know there is exactly one such solution,

the IHS and RHS must be the same. Corresponding to each equation is

listed the problem to which it belongs, and then the verifications are
carried out.
1/ a/ 6(X,Y) = X+Y  (mod deg 2)

v/ £(a(Xx,Y)) = ¢(£(x),£(Y)).
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By definition, Ff(X,Y) is a solution to this problem and also,

a/ F(Y,X) = Y+X = X+Y (mod deg 2)

b/ IHS = f(Ff(Y,X)) = Ff(f(Y),f(X)) = RHS
which show that Ff(Y,X) is a solution to 1/.
2/ a/ 6(X,Y,2) = X+¥+2 (mod deg 2)

b/ £(6(%,Y,2)) = ¢(£(x),£(¥),2(2)).

a/ Ff(Ff(X,Y),Z) = Ff(X+Y,Z) = (X+¥*2 (mod deg 2)

o/ 1S = £(F (F.(X,Y,),2)) = P.(£F.(X,¥),2(2))

Ff(Ff(f(X),f(Y)),f(Z)) = RHS;

1]

hence, the ILHS of 2. is a solution for 2/.

a/ Ff(x ,Ff(Y,Z)) = Ff(X,Y+Z) = X+(¥+2) (mod deg

v/ 1HS = £(F (X,F.(Y,2))) = P (£(x),£(F.(Y,2)))
= Ff(f(x),Ff(f(Ylf(Z))) = RHS;

so, the RHS of 2. is a solution for 2/.

3/ a/ G¢(X,Y) = aX+aY (mod deg?2)

v/ £(e(x,Y)) = a(g(x),s(¥)).

a/ Ff([a]f,g(x),[a]f,g(‘f)) = [a]f’g(x)+[a]f,g(Y)

2)

aX+a¥

(mod deg 2)

b/ 1S = 2(F.([a] . (X),[a], (1)) = Po(e([a], (0)),2([a] . (VD))

= Ff([a]f,g(g(x)’[a]f’g(g(x)))) = RHS;

so, LHS of 3. is a solution of 3/.

a/ [alf,g(fg(X,Y)) = aFg(X,Y) = a(X+Y) (mod deg 2)

o/ s = 2({a], (P (X,1)) = [a], (a(® (x,7)))
= [a] ¢, (7, (e(x),6(¥))) = mEs

which mean that RHS of 3. is solution to 3/.
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4/ a/ G(T) = (ab)T (mod deg 2)
v/ £(e(1)) = e(n(D)). _
a/ [a]; (], (™) = a(fo], (7)) = a(er)  (moa aeg 2)
o/ 188 = 2([a] , ([o], (1)) = [d], (e([e], (™))
= [e]¢, ([p],, n(n(®))) = mas;

that is, LHS of 4. solves 4/.

a/ [ab]f’h(T) = (ab)T (mod deg 2)

b/ IHS = f([ab]f’h@)) = [aq]f’h(h(m)) - RHS;

showing that RHS of 4. solves 4/.

5/ a/ G(T) = @+b)T  (mod deg 2)

v/ £(e(1)) = e(g(r)).

a/’%&blf,g(T) = (a+b)T (mod deg 2)

b/ IHS = f([a+b]f’g(T)) = [a+b]f,g(g(T))=RHS;

therefore, LHS of 5. is a solution to 5/.

o/ Fol[a]p (), o], () = [a], ()+[o], () =2+  (mod deg 2)

v/ s = 2(® ], (1),[6], (1)) = r(e([a]; (0),2([o], (1))
= Ff(Eﬂfug(g(T)),[b]f,g(g(T))) = RHS;

so, RHS of 5. is a solution to 5/.

6/ a/ G(T) = aT a/ a(1) =T }
b/ £(e(T)) = e(£(1)))s v/ £(6(1)) = 6(£(D))

Here, the verifications are completely trivial.

T30 (Corollary) Te Ff is an abelian group law.

2. The map A-——-)EndA(Ff) given by a——-)[a]f,f is an

injective ring homomorphism.
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3. The isomorphism class for Ff depends only on 4 and
not on f in Dd.

4, A group law, G, over D is in the isomorphism class
of Ff if and only if there exists g in EndD(G) with g¥ = Frobenius and
f'(O) =d (where‘Frobenius(T) = Tp).

PROOF:

1. The fact that Ff is a group law follows from T29 2., and
it is necessarily abelian by T29 1.

2. The given map preserves multiplication by T29 4., addition
by T29 5-.(putting f = g in these equations) and henceisa ring homomorphism;
it is injective because [a]f,f = 0 implies aT = 0 (mod deg 2) which
implies that a = O.

3. This is demonstrated by observing that we have a canonical
isomorphisn between:Ff and Fg given by [1]f,g:

First, 3. of T29 shows that [a]f,g in HomD(Ff,Fg) so that [1]f,g in
HomD(Ff,Fg); similarly [1]g,f in HomD(Fg,Ff); and clearly [1]f,g[1]g,f =
= [1] = [1]g,f'[1]f,g; which means that [1]f’gis an isomorphism between
Fng. Hence, once we choose a prime, d, in D, then, given any f,g in Dd’
we immediately obtain an isomorphism between Ff and Fg.

4, If G is isomorphic to Ff via u(T) then we observe that u-1fu
is the required g (it satisfies the required properties, which are direct
translations of D16, because f does).

Conversely, if there exists a g with the given properties then
G is, in fact, one of the F, 's by the uniqueness in T28; in particular

h

it is Fg, and we know by 3. that ngs isomorphic to Ff.
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D18 Iet K be an algebraic extension of Q(D), then we denote the maximal

ideal in the ring of integers in K by M(XK).

731 (Corollary) M(X) has a D-module structure which depends on any given

f in Dd’

PROOF: )
Consider X;,X,js-ss in M(X) and a formal power series, G,
in D[[X geeeyX ]] with O constant term, if we substitute x. for X. we
1 n i i
get an infinite series which converges with respect to the given valuation
since the value of terms increases steadily as the series progresses
(see, for example, E., Weiss for a proof in one variable, reference no. 19,

P 35-%36). We apply this result as follows. Define x+y = Ff(x,y),

and ax = [a]f,f(x);
the series on the RHSs converge to some unique elements in M(K), so
that the operations are well-defined.

To check the rules required for a module it is sufficient to
observe that replacing the indeterminates by elements does not change
the equalities in T29, so we have:

a/ T29 1. and 2. gives commutativity and associativity
b/ the zero element is obviously the zero power series
c/ additive inverses are obtained through the analogue to T2

d/ the femaining module properties are obtained by T29 3.,4.,5.,6.
D19 The D-module obtained from M(X) by way of T31 is written Mf(K).
2

732 (Proposition) 1. Q(D)CK1CK implies Mf(K1)CMf(K), for algebraic

extensions of Q(D).
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2, If further, K|K1 is an algebraic extension of

fields with a K1-fixing automorphism, g, then g induces an automorphism
of Mf(K).

PROOF:

1. We simply observe that an element in K1 with positive wvalue

has positive extended wvalue.

2. It is clear that g, being an automorphism of K, is a
continuous function on Q(D) (under the valuation topology). We must
show that g restricted to Mf(K)i_Sra module homomorphism: but, since
the operation,+, and the action, Juxt¥aposition, are defined using

convergent series with coefficients in D, and, hence, left fixed, and

because g is continuous means we have g(ZaijxlyJ) Zg(aijxly«]) for
convergent series; then it follows that g(Ff(x,y))

a( [a]f,f)(x) = [a]f’f(g(x))-

Of course, it is clear that the image of g restricted to

F.(g(x),g(y)) and

Mf(K) is exactly Mf(K) because, given any algebraic extension & fields,
K!Q(D),QQD) complete with respect to the given valuation then the
extended value of the image (under & Q(D)-fixing automorphism of K) of
an element is exactly the extended value of the element (see, for

example, E. Weiss, reference no. 19, Corollary 2.2.12 p.51).



43

VI The Reciprocity Law

D20 We denote by Q(D)s, a fixed separable algebraic closure of Q(D)

in an algebraic closure, (D).
D21 Given £ in Dd and an integer m21, Vf m stands for the D-submodule
?

of Mf(Q(D)S) consisting of elements, v, such that d°v = O.

T33 It is clear that if f,g are in_Da, then we have: v in Vf m if and
?

only if [1]g,f(v) in vg,m'

PROOPF:

If v is in V.,  then d™v = 0 where v is in M(Q(D)s) and so
]
D]g,f(v) is in M(Q(D)s); furthermore, [1]8sf has a factor ,v, so that
dm([1]g f(v)) has a factor d"v, which means it is O.
9
.. n . m
ir [1]g,f(v) is in vg,m then d [1]g,f(v) = 0, i.€. [d-]g;f(VJ = 03
m m
hence, D]f,g[d ]g,f(v) = 0 so that & v = O; furthermore, D]f,g[il

is in M(Q(D) ). This means that v is in V_ _.
s fym

g,f(V) =v

We observe that Q(D)(Vf m)‘Q(D) is clearly separable and is also
b4

normal (since v in Vf - implies that dmv = 0 implies that v = 0 implies
?

that v is in Vf m? S° that the conjugate of every element in Vf m is in
9 : : ’

V. ) and hence Galois.
f,m

D22 According to T33 the field extension Q(D)(Vf m”CQ(D)) depends only
b -

on d,not on £ in D, so we can denote it by L, mIQ(D) and write its Galois
?

. ot
group, GalA(Q(D)(Vf,m)|Q(D)), as Gald,m. Furthermore, we put V, = ég1vf’m,
Ly = Q(D)(Vf) and let proj lim Gal, ~ denote the projective limit of the

b
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P34 (Theorem) Given any prime, d, in D, f in P, then the following

statements are wvalid:
1. Mf(Q(D)S) is a divisible D-module
2. vf’m and D/de are isomorphic D-modules for every integer m31
3. V, and Q(ﬁ)/D are isomorphic D-modules
4. If t is in proj lim Gald,m then there exists a unique unit,

u, in D satisfying tv = [u]f f(v) for each v in Vf
?

5. We have an isomorphism from proj lim C—ald o onto the group
?

of units

6. 4 is a norm for the extension Q(D)(Vf,m)lQ(D) for each m31,
PROOF:

For the first three parts we can assume that the £ with which
we are dealing has the basic form Tp+dT; this is because there exists a
standard isomorphism [1]f,g between the modules Mf(Q(D)s) and Mg(Q(D)S)'
and since the isomorphic image of a divisible module is again divisible.

1. We must show that ax = b is solvable for x in Mf(Q(D)s),
given any a in D and b in Mf(Q(D)S). Since 4 is a prime for D we need
only consider solving 4T = b,i.e. Tp+dT = b; but, the polynomial Tp+dT-b
has all its roots in 6?57 because 5?57 is algebraically closed, and, in
fact, they must be in M(E(fy), for, otherwise the value of b would be
negative contradicting the fact that b is in M(Q(D)s). Purthermore, the
roots are distincf because £'(T) = prid = d, which clearly has no roots
in M(Q(D)); this means that the roots of £(T) = b are separable over Q(D)
and so are in Q(D)s, this being the fixed separable closure. Consequently

we have that the roots of f£(T) = b are in M(Q(D)s), i.e. Mf(Q(D)S) is
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divisible.

We observe that vf,1 consists of the roots of the equation
£(1T) = PP4+d? = 0 and so has exactly p elements and is, consequently,
one-dimensional as a vector space over the residue class field,D/dD
(for, any r in Vf’1 is a basis of Vf’1 over D/dD because a'r = ar
implies (a'-a) .r = O for a',a in D/AD which implies r = O since d
does not divide a'-a (meaning that this is a unit in D/4D)).

2. We have that for each m vf,m is a torsion D-module which
is surely finitely generated since it is finite and by the structure
theorem for finitely generated torsion modules (over principal ideal
domains) it is the direct sum of D/dn1D,D/dn2D;...,D/dnrD (e.g. see
Lang p.390, reference no. 10); but we know that here d:Vf’ﬁ———evf,m
has kernel Vf’1, vwhich is a one-dimensional vector space oOver D/dD
so we must have r = 1 (otherwise ker d would not be one-~dimensional).
Hence, Vf,m and D/an are isomorphic as D-modules; then dm(1+an) =0
implies that a”+d™D = O implies that m>n; on the other hand we have
dm-1(a+an) £ 0 for some a+d™D since vf,m £0i.e. a™a is not in
a"D which implies that ndn-1; consequently m*ndm-1 so n = m and we have
the desired isomorphism between Vf,m and D/de.

3. To establish the isomorphism we observe that a divisible

torsion module over a discrete valuation ring, D, has the form

?Q(D)?(Q(D)/D) where c,,c, are certain cardinals, and in our case

1 2

this takes the form Mf(Q(D)f) = ? Q(D)?(Q(D)/D). But, the torsion
1 2

part of this module is exactly Vf = % (Q(D)/D); further, since ker 4,
2
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d:Vf———*Vf is one-dimensional over D/dD then e, = 1, otherwvise ker d

would not be one~dimensional.

4. 'Using 732 we can see that each t in proj 1lim Gald n
L4

induces an automorphism of Vf, the union of all Vf’m's. But, for
VfﬂzQ(D)/D as modules over a complete valuation ring, D, the only
auntomorphisms are of the form v —uv where u is a unit of D; this
establishes the existence of the unique unit.
5. To show that the map t——ru is 2 homomorphism we need only
observe that:
ty¥;—>the unique u such that (+4%,)(v) = [u]f,f(v), and
(546 )v) = 5,(v)e5,(v) = [“{]f,f(V)+[“2]f,f(v) = ([u1]f,f+[u2]f,f)(v)
= [u1+u2]f,f(v);
consequently, t1+té———au1+u2, where.tf——étﬁ and ts——>ru,e

2 2

The map is injective because for any u in U, the units of D,

u=1 (mod a™p), i.e. multiplication by 2 unit is the identity onm
D/dmncsvf,m if and only if t is the identity on Q(D)(Vf’m) for each m.
Since u = 1 satisfies the former condition the injectivity of the map
follows. As a further consequence of the latter equivalence we have

the induced injections Gald.;r——+U/(1+de).
9

Surjectivity is obtained as follows: First, we show that the

order of Gal; is PR T, fdr,Q(D)(Vf m) contains the roots of the
? ?
10
polynomial fm(X) = f(f(...(f(X))...)) = Xp'+...+de; hence, it contains
the roots of £™(X)/£™ 1(x) = 2= (X)) = (£™1(x))P '4q, vhich clearly
fm-1 (X)

-1
has degree pm—pm ;s further, a simple application of Eisenstein's criterion
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shows that the polynomial is irreducible over Q(D) so that pm-pm_1_
is the degree of the field extension Q(D)(V, m)lQ(D); hence, the
?

order of its Galois group, Gal equals this number. Next, we

d,m’

observe that U/(1+d™D) has order pm-pm"1 (see, for example, Weiss

p. 19, reference no. 19). These two facts demonstrate surjectivitye.
Taking the projective limit of both sides of the isomorphism

between Gald’m and U/(1+de) yields the required isomorphism between

proj lim Gal

d.m and U, since both groups are compact.
?

6., Since v in Vf n is a root of the Eisenstein polynomial
’
(£ 1(x))P "+a then, cleariy, QD)(V, ) = A(D)(¥) so @ is the norm
?

of an element in the extension Q(D)(Vf m)lQ(D).
"

D23 We let the maximal unramified extension of Q(D) be represented by

T and denote the Frobenius automorphism of T over Q(D) by Frob(TlQ(D)).

I, is totally remified over Q(D) and since ¥ is unramified
then LAT = Q(D). Now, because one of Lde(D) and T,Q(D) is Galois
(in fact, both are) and LT = Q(D) it follows that L; is linearly
disjoint from T. Hence, we have Gal(LdTIQ(D)) = Gal(Ld|Q(D))Ga1(T|Q(D)),
and this together with the facts that Gal(Lde(D)) gai(rfe(p)) =1
and that both these subgroups are normal in Gal(LdTlQ(D)) enables us
to deduce that:

cal(z 7|a(D)) = cal(n;|a(p))Xea1(r|a(D)).

We can now make the following definition.

D24 Put rd:Q(n)*-—-aGal(LdmlQ(D)), for each prime, d, in D, defined

as that homomorphism such that:
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1. For each u in U,rd(u) is the identity on T, and on L

is the inverse of t (% being the element corresponding to u under the

map established by T34 part 5).

2. On Ldra(d) is the identity, while on T it is precisely
Frob(T]Q(D)).

So, if a = ud™ is an arbitrary element of Q(D)* then
rd(a) = (Frob(TlQ(D)))m on T, and

rd(u)(v) = [u-1]f’f(v) for all v in V.

P35 (Lemma) If the ring of integers of T is denoted B and we write
B for the completion of B, then there «<ists, u in U and any f in Fd’
eX (mod deg 2) where

e

in F , w = ud, a power series over B, H(X)

e is some unit satisfying:
AY

1. Frob(T|Q(D)) (H(X)) = H( [u]f’f(X))

2. H(F(X,Y)) = F (H(X),H(Y))

3, H([a]f’f(x)) = [a]g,g(H(X)), for all a in D.
PROOF:

Essential to the proof is the well-known result that the
endomorphism, Frob(T‘Q(D))-1,is onto the additive group of B and onto
the multiplicative group of units in B (according to Serre p.209

reference no. 18).

Pirst, we find a series H(X) satisfying 1. Say a is a unit

in B satisfying Frob(T]|Q(D))(e) = eu (one such certainly exists by the
opening remark), then for H1(X) = [e]f,f(x) we have
Frob(2[Q(0)) (#,(X)) = [Frov(za(®)) ()], (x) = [eu], ,(x)

= [e]f,f([u]f,f(x)) = H1([u]f,f(x))'
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Now, let us assume that we have

Frob(T‘Q(D))Hr(X) = Hr( [u]f,f(X)) (mo@ deg r+1),
proceeding by induction we must find b in B so that Hr+1(x), defined

by 1+1r(x)+\:>xr*1 , satisfies:

Frob(2[a(@)) (8, (X)) = 1 (fu]; (X)) (mod aeg r+2).

If we put b = aer+1 then a must satisfy:

Frob(T|a(D)) (", , (X))

Frob(7|Q(D)) (E_(x)+px™*")

]

Frob(T|Q(D)) (E_(X))+Frob(T|a(D)) (bx™*")

Frob(T [Q(D)) (H_(X))+Frob(T|a(D))(b)x™"

L[}

and this must be

n

Hr+1([u]f’f(x)) (mod deg r+2)

H([u]p (E)#e([u], GNTT (moa aeg z+2).
Hence, Frob(TlQ(D))(Hr(X))-Hr([u]f’f(x)) =

i}

b([u]f f(x))””-m«w(cn|Q(1>))(b)xr+1 (mod deg r+2); so that
?
e = a(ue)r+1—Frob(T|Q(D))(a)Frob(T'Q(D))(er+1), where ¢ is the coefficient

of Xr+1 on LHS of the last congruence. That is,

o/ (Bron(T [a()) ()™ = a-Frob(r|a(D)) ().
But, we know that Frob(T‘Q(D))-1 is surjective on the additive group of
B so it is possible to choose a in this fashion, and, hence to determine
b = aer+1 as required. This allows us to define H = 1im Hr’ and this
H is the required series satisfying 1.
Now, (simplifying the notation for Frobenius in the obvious

H [u]f’ffH—1=
mefu], 57 H[d]f,f[u]f,fH-1—_-
1 1

H[du]f’fH- =], w7,

way, by omitting (TIQ(D))) observe that h = Frob(H)fH™1

Il
1]
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and that the coefficients of h are in D since, they are clearly in B,

and Frob(h) = Frob(H[w]f’fH-1) = Frob(H)Frob([w]f’gFrob(H-j)

Frob(H)f[u]f fFrob(H-1) !

Frob(H)FH™ ' = h

(because from 1. we have Frob(H)(FrobH’1) H([u]f fFrob(H_1)) so
b4

gt - [u]f f(Frob(H-1))), meaning that the coefficients must also be
9’
in Q(D).

We can also say that h is in Fw since

-1
ewe X = X (mod deg 2) and,

1}

h(x)

h(X)

Prob(H) (£(& (X)) = Frob (®)((E'(X))P) (moa a)

Frob(H) (Frob(E™)(XP)) = x*  (mod a)

by definition of the Frobenius. Furthermore, we can replace H by
b]g h(H) in the above and 1. remains valid, but, now we have g = FrobHfH™ |
?
-1
To verify 2. we need only show that F(X,Y) = H(Ff(H‘1(x),H'1(Y)))
satisfies the defining properties of Fg(X,Y). Clearly,
F = X+Y (mod deg 2), and also,
-1 -1 -1 -1
HEL (O NE () = 1 [v], x7@ ,[w], &) -
-1 -1
H[v], (P (0,57 (X)) =
-1 1
gH(F @ (X),H '(¥)))

Purthermore, F is defined over D since, the proof of T28 shows that the

f

F satisfying the two defining conditions must, in fact, be defined over D.
L R -1

In a 31m1:ar fashion we have H [a]g’g(H(X)) = [a]f’f(x). For,

clearly H[a] (B (X)) = aXx (mod deg 2) and also,
£,
-1 -1 -1
Hla H X Hiw H Hla H X))=

&( [ ]f,f (x)) = ( [ ]f,f ) [ ]f,f (x))

H[w]f’f[a]f,fH-1(X) =

1
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H[a]f’f[w]f’fH—1(X) =
H[a]f’fH-1(H[WJf’fH-1 (x)) =
H[a]f’fH"1(g(x)).

This shows that 3. is valid, and, consequently, the proof is complete.

736 (Theorem) The field,L,T,and the homomorphism, r,, are the same
no matter what prime, d, is chosen.

PROOF:
Given a separable algebraic extension, K, of Q(D), contained.
in Q(D)s we again denote by K a completion of K, which is contained in

the fixed completion, Q(D)s, of Q(D)s. For a Galois extension, K‘Q(D),

the automorphisms of K over Q(D) have unique extensions to X over Q(D)

because they are continuous and K is complete; so we can proceed as

follows., If d and w = ud (for u in U) are any two primeseD, which

give rise to the two series,f in Fd,gEF}pthen we must show that

1/ LT = LT and 2/ ry =T .
1/ T35 2. shows that H is in HomB(Ff,Fg), and H is, in fact,

an isomorphism because H'(0) = e is a unit so that H‘1(X) is well-defined

over B. This fact and T35 3. allow us to deduce that the map vw——ﬁH(v)

is an isomorphism of the torsion submodule, V., of Mf(Q(D)S) onto that

of Mg(Q(D)s), denoted by V,. Consequently,

vg = H(Vf)c'T(Vf) = TL,, and
-1
= c = .
vV, = H (vg) (V) TL,,

These two sequences imply that TLw is contained in and contains TLd, so

equality is established. Now, we simply observe that TLd = TLW since

both equal the unique separable algebraic closure of Q(D) in TLd.
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2/ To show that ry =T, Ve need only prove that rw(w) = rd(w)
since this implies that all homomorphisms, Ty coincide on the prime,

W, SO they must be equal on Q(D)* (which is generated as a group by such
primes, w). On T, rd(w) and rw(w) are both equal to Frob(TlQ(D)) so it
remains to show that the automerphisms have the same effect on Lw'
However, rw(w) is the identity on L = Q(D)(Vg) and since L is generated
by all H(v) for v in V., we need only verify that rd(w)(H(v)) = H(v),

for all v in V.. But, rd(w) = rd(u)rd(d), where rd(d) is Frob(g‘Q(D))
on T and takes v onto v in V

ps While rd(u) is trivial on T and takes

v onto EfJJf f(v), v in V.. Now, H has coefficients in T so we can
?

say that

4 (w) (E(v))

(rg(a)ry(u))(E(v)) =
ry(@)E(r (u)(v)) =
ra(a([u"], o(+))

and this is, by 1. of T35 = H([ﬁ]f,f([u'1]f,f(v))) = H(v).

737 (corollary) 1. The reciprocity law homomorphism for LdT!Q(D) is
3 — 2 *
Tyy i.e. rd(a) = (qLdT|Q(D)), for a in Q(D)*,
2e LdT is, in fact, the maximal abelian extension of
Q(D).

PROOF:

1. To show that rd is the reciprocity law homomorphism, s,

we must demonstrate that s(a) = (a,LdT|Q(D)) satisfies: s(d) = rd(d) =
r(d) where T = T3 for all 4 by T36, because the primes, d, generate

Q(D)*. We observe that s(d) is the identity on L, since 4 is a norm

d

from L,  for each m (according to T34 6.) and s{d) is Frob(T‘Q(D))

9
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so the equality is proved.

2. LdTIQ(D) is a maximal abelian extension since L,T contains

T, the maximal, unramified extension of Q(D) and ry Testricted to U is

injective (because u in U and rd(u) = 1 on Ly and hence on L,  for
9

each m, then u = 1 (moa dm) for each m»1 so that u must be 1).

WK KN KN



