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Preface 

This thesis is concerned with the study of certain objects 

known as group laws (which are defined over rings), or, as they are 

often called - one-parameter formaI Lie groups, and with the proof of 

the reciprocity law for local class fields. In part l the immedlate 

structural consequences of definitions are presented in a straight= 

forward manner, together with some basic results on the form of group 

laws (which are actually types of power series). The second section 

deals with results which are somewhat beyond the basic level - in 

particular some properties of homomorphisms are considered. Part III 

gives an introductory development of group laws as they pertain to 

algebraic number theory - specifically, we consider group laws Over a 

complete discrete valuation ring and examine results with respect to 

the residue class field. Isomorphisms between group laws are considered 

in the fourth section, and, a close relationship between roots of unit Y 

and such isomorphisms is revealed. The thesis concludes with a proof 

of the reciprocity law for local class field theory, the preparation 

for which was carried out in part V - a particular construction of 

group laws. 

The study of group laws and their properties is a relatively 

new topic, going back to about 1950, but, related investigations were 

undertaken in connection with the theorY,of eIaptic curves, for many 

years prior to this date. Dieudonné, in his series of papers (see 

Bibliography, nos. 2-9), employed infinitesimal methods (now somewhat 

out of vogue due to the popularity of the newer, more direct approach 
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of Lazard and Lubin) to obtain required results. The later papers 

by Lubin and Tate establish a close relationship between algebraic 

number theory and group laws. 

Almost the entire development of this thesis is to be found 

in J. Lubin's papers listed in the Bibliography (nos. 13-17); the 

papers most frequently used were those listed in the Bibliography 

with reference nos. 13 and 17. My contributions are that l have 

supplied more detailed demonstrations of statements found therein, 

rearranged some proofs and constructed others for results due to 

Lazard (T10, T20) which vere simply quoted by Lubin. In addition, 

T3B, and Tll are some formulations of my own. 

Notation: 

1/ RHS, LBS mean right-hand-side, left-hand-side respectively, of ='s. 

2/ D1, D2, ••• , stand for definitions. 

3/ T1, T2, ••• , represent statements with proof which are sometimes 

given names such as theorem, proposition, lemma, corollary, depending 

on their import8.nce to the development. 

4/ Rings which are commutative and have unit Y are often denoted by A. 

5/ char A stands for the characteristic of the ring A. 

6/ The word "in" stands for "an element of". 

l would like to thank Mrs. Anne Liepinaitis for typing 

the manuscript. 

Montreal, 1972 
Michael Urda 
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l E1ementary Properties of Group Laws 

12.1 Given A, a commutative ring with unit y, then A [[T
1
, ••• ,Tnl}represents 

the ring of formal pO\o,'er series in the n indeterminates, The 
a

1 
a 

monomial aT 1 ••• Tn n, aftO, is said to have total degree a
1
+a

2
+ ••• +a

n
• 

(mod deg r), by which 

is meant: any monomial occurring in F and G of tota1 degree 1ess than r 

occurs in F with the same coefficient as it occurs in G. 

A power series substituted into another power series is a we1l-defined 

power series provided that the substituents have no constant term. 

D3 A group 1aw over A is any formal power series F in A [[x,y]] 
satisfying: 

n F(x,O) 

PROOF: 

1/ F(x,y) = x+y (mod deg 2) 

2/ F(F(x,y),z) = F(x,F(y,z)), i.e. an associative 1aw. 

x for any group 1aw, F(similarly F(O,y) y). 

By the associative law F(F(x,O),O) = F(x,F(O,O)) = F(x,O). 

From the definition of group laws we may \œite F(x,O) = X+b 2X
2

+b
3

X3+ ••• , 

and say that br is the first coefficient ft ° beyond the first; 

then, F(x,O) = x+brx
r

+ ••• ; ~ 

hence, F«x+b xr+ ••• ),O) ;;; x+b xr+Lb.(X+b xr+ ••• )i _ x+2b x r + ••• (mod degr+1). 
r r 1.=r 1. r r 

Therefore, x+b x r + ••• = x+2b x r + ••• , and so it fo1lows that br = 2b , which r r r 

imp1ies that br = 0, contradicting our assumption that br ft O. Hence, 

there is no first coefficient of F(x,O) beyond the first which is different 

from 0; that is, F(x,O) = x. 



2 

~ If F is a group law over A then there exists iF(T) in A [[T]] such 

that F(T,iF(T)) = O. 

PROOF: 

We may write F(x,y) = x+y+a11xy+(a12xy2+a21x2y)+ ••• using T1, 

and suppose we have a power series iF(T) = b
1

T+b 2T
2

+ ••• ; then we must 

find elements b
i 

so that F(T,iF(T)) = O. But, this is equivalent to 

solving the following sequence of equations: 

b 1+1 = 0 

b
2
+a 11 b 1 

= 0 

where n's are positive integers and ~ is extended over b. 's such that 
~ 

i(n. It is clear that a solution for the b. 's exists (in fact, the 
~ 

general formula for b
n 

could be obtained in terms of aij's, i+j~n, and 

integers). 

T3 Lazard showed that a group law defined over A, a commutative ring 

with unit y, having no nilpotent elements (i.e. theredoes not exist a 

in A such that an = 0 for any positive integer n), must necessarily be 

abelian, that is F(x,y) = F(y,x). 

See Lazard's paper: "La non=existence des groupes de Lie 

formel non-abéliens à un parametre" (reference no. 11). 
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T3A In 1966 I.G. Connell obtained the following characterization: 

In order that all group laws over A be abelian it is necessary and 

sufficient that the ideal of nilpotent elements of A be torsion-free 

as an additive group. 

See paper titled "Abelian Formal Groups", by l. Connell 

(reference no. 1). 

Throughout the rest of this thesis we assume that the group 

laws we deal with are abelian so whenever we speak of a group law over 

a ring, that ring is assumed to satisfy the hypothesis of T3A. 

T3B We will prove Lazard's result for fields, A, such that char A O. 

PROOF: 

lt is clear that we need only show a .. = a .. for every pair 
~J J~ 

of positive integers, i,j. This is done by induction on i+j - for i=j=1 

there is nothing to prove, so we can proceed and assume the inductional 

hypothesis, namely that a .. = a .. for all i+j<n. Consider the associa-
~J J~ 

tive law F(F(x,y),z) = F(x,F(y,z)), and compare the coefficients on the 

RES O~ i-1 j j i-1 n-2 LHS, ~ xy z, x y z, and xy z. For example, in the first 

case: 

LBS = «x+y+a 11 xy+ ••• )+z) 

+ a 11 (x+y+a 11xy+ ••• )z) 

+ (a12(x+y+a11xy+ ••• )z2+a21(x+y+a11xy+ ••• )2z) 

+ {a13(x+y+a11xy+ ••• )x3+a22(x+y+a11xy+ ••• )2z2+a31(x+y+ ••• )3z ) 

+ etc. 

RHS (x+(y+z+a 11 yz+ ••• )) 
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+(a11 (x(y+z+a 11 yz+ ••• ))) 

+(a12(x(y+z+a11yz+ ••• )~a21x2(y+z+a11Yz+ ••• )) 

+(an (x(y+z+a11yz+ ••• )3+a22(x2{y+z+a11Yz+ ••• )2)+a
31 

Cx3 (y+z+ 

a 11 yx+ ••• ))) 

+etc; 

i-.1 j we observe that xy z can oceur on LHS only within: 

a.... (x+y+ ••• )zj 
.LJ 

2 . 
a

2j
(x+y+ ••• ) zJ 

a .. (x+y+ ••• )izj 
~J 

and on the RHS only within: 

a 11x(y+Z+ ••• ) 

a
12

x(y+z+ ••• )2 

( ) n-1 a 1 IX y+z+... • ,n-
Henee, for this case we obtain iaij+f(alk's) = ~~=lJa1 n_1+g (alk 's). 

And, similarly in the second ease jaji+f(akl's) = ~~=1~an_1,1+g(akl's). 
(where l+k<n and f,g are polynomials) 

Therefore, a .. -a .. = d~=n/i-~~=n/j)a1 1 = 0, sinee i~~=n = j~~=1L 
~J J~ ,n-

and a 1 1 = a 1 1(whieh is established as follows). In the lafuer case ,n- n- , 

we get (n-1)a1,n_1+f(alk's) = (n-1)an_1,1+f(akl's), where f is a poly-

nomial and l+k<n; hence a 1 1 = a 1 1. n- , ,n-

D4 For group laws F,G over a ring, A, we put {f in A [[T]] : f _ ° 
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(mod deg 1) and f(F(x,y)) = G(f(X),f(y))3 = HomA(F,G), and calI the 

individual elements A-homomorphisms from F to G. When there exists an 

A-homomorphism,f, from F to G, and an A-homomorphism~ g, from G to F 

such that f.g(T) = T = g.f(T), th en we say that f is an A-isomorphism 

(similarly g). 

T4 (Proposition) HomA(F,G) is an abelian group. 

PROOF: 

1/ We define the addition as follows: 

for f,g in HomA(F,G) put (f+g)(T) = G\f(T),g(T)). We must show that 

f+g is aga in an A-homomorphism from F to G: 

0// (f+g)(T) is a weII-defined power series since both 

f and g, by definition,hav~O constant terme 

1// (f+g)(F(x,y)) = G(f(F(x,y)), g(F( x,y))) 

(definition of +) 

= G(G(f(x),f(y)),G(g(x),g(y))) = 

(f,g are A-homomorphisms) 

= G(G(f(x),f(y)),G(g(y),g(x))) = (G is abelian) 

= G(G(G(f(x),f(y)),g(y)),g(x)) = (G is associative) 

G(G(f(x),G(f(y),g(y)),g(x)) = (G is associative) 

G(f(x),G(G(f(y),g( y)),g(x))) = (G is associative) 

= G(f(x),G(g(x),G(f(y),G(y)))) (G is abelian) 

G(G(f(x),g(x)),G(f(y),g(y))) (G is associative) 

= G«f+g)(x),(f+g)(y)) (definition of +); 

consequently (f+g)(F(x,y)) G«f+g)(x),(f+g)(y)). 



· ,.,,-

6 

2/ As additive identity choose the zero power series, 

denoted O(T); then (f+O)(T) 

and (O+f)(T) = G(O(T) f(T)) 

G(f(T),O(T)) = G(f(T),O) c f(T) (by T1) 

~ 
G(O,f(T)) = f(T) (by T1)o 

3/ Existence of additive inverses: let f in HomA(F,G) then 

we claim that f+iGof = iGof+f = 0; for, (f+iGof)(T) = G(f(T),iG.f(T)) = 

G(f(T),iGof(T)) = O(~) by T2. 

4/ Associativity of + : (f+(g+h))(T) = G(f(T),(g+h)(T)) = 

G(f(T),G(g(T),h(T))) = G(G(f(T),g(T)),h(T)) = ~y associativity of G) 

G«f+g)(T),h(T)) = (definition of +) 

«f+g )+h) (T) (definition of +); 

hence, f+(g+h) = (f+g)+h, where f,g,h in HomA(F,G). 

1/ to 4/ show that HomA(F,G) is a group under +. 

5/ Commutativity of +: (f+g)(T) = G(f(T),g(T)) G(g(T),f(T)) 

since G is abelian, = (g+f)(T); hence, f+g=g+f. 

T5 (Proposition) The set of group laws over A gives rise to a category 

with a bi-additive composition. 

PROOF: 

1, The set of ob j ects consi'sts of group laws over A. 

2. Given F,G, any two group laws~then Mor(F,G) is defined to 

be HomA(F,G). 

3. Given 3 group laws F,G,H and homomorphisms f'in HomA(F,G), 

g in HomA(G,H) then we define g.f to be g.f(T) = g(f(T)), i.e. the 

composed power series. 

We must check that composition is well-defined, i.e. that 

gof in HomA(F,H): but, (F(x,y)) = G(f(x),f(y)), 
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and, g(G(x,y) = H(g(x),g(y)); we claim that g.f(F(x,y» = H(g.f(x),g.f(y), 

for, LHS = g(f(F(x,y») = g(G(f(x),f(y») = 

= H(g(f(x»),g(f(y») = H(g.f(x),g.f(y») RHS. 

The following axioms must be verified: 

.9!:1.1. HomA(F,G),HomA(F',G') are disjoint or equal,the latter occurring 

only if F=F', G=G'; this is done by specifying that homomorphisms f in 

HomA(F,G) are actually triples (f,F,G). 

~ Given a group law, F, then define. l F(T) to be T: so that if f in 

HomA(F,G) f.1 F (T) = f(T) implies f.1 F = f, and if g in HomA(G,F) 

1F ·g(T) = g(T) implies 'F. g = g. 

CAT3 Given homomorphisms f in HomA(F,G), g in HomA(G,H),h in HomA(H,I) 

of group laws F,G,H,I, th en we must show that h.(g.f) = (h.g).f. But, 

this follows from the weIl known fact that well-defined composition of 

power series is associative. 

To show that the category has a bi-additive composition we 

need: (g1+g 2).f = g1. f +g 2. f , and g.(f1+f2 ) = g.f1+g.f2 where g,g1,g2 in 

HomA(G,H) and f,f 1 ,f2 in HomA(F,G). It suffices to show only one, the 

first, for example; «g1+g 2).f)(T) = (g1+g 2)(f(T» = H(g1(f(T), g2(f(T») 

= (g1· f +g 2· f )(T). 

D5 We calI HomA(F,F) the set of endomorphisms of the group law F, it is 

denoted by EndA(F). 

T6 (Corollary) EndA(F) is a ring with unity. 

PROOF: 
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We already know it is an abelian group by T4. The multiplica

tion on EndA(F) is defined to be,simply, the composition of power series; 

it is well-defined, as was shown in T5 3. Furthermore, the multiplica

tion is associative (see CAT3 of T5), and the unit Y element is clearly 

1F (see CAT2 of T5). Finally, the bi-additivity of • proved in T5 shows 

that this operation is distributive Over +, i.e. (f+g)h = f.h+g.h and 

f. (g+h) f.g+f.h, where f,g,h in EndA(F). 

D6 The image of n in Z(integers) under the canonical homomorphism 

Z--+End (F) 
:Z--. z. [4]F 

is denoted by [n]F. 
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II Homomorphisms and Isomorphisms 

D7 Suppose that f in A [[T]] wi th f(T) = a 1T+a2T
2

+ ••• then the first 

degree coefficient of f, name].y, a
1

, is denoted c(f). 

T7 (Proposition) The mapping c:HomA(F,G)---;A, which is defined by: 

f in HOIDA(F,G),f = a 1T+a2T2+ ••• , implies c(f)=a1 , is a group homo-

morphism which becomes a unitary ring-homomorphism in the special case 

c:EndA (F) ~A. 

PROOF: 

1/ Suppose f,g in HomA(F,G), f 

then (f+g)(T) = G(f(T),g(T)) = f(T)+g(T) 

2 a
1
T+a2T + ••• , g 

(mod deg 2) 

- a 1T+b
1

T ~ (a
1

+b 1 )T 

hence c(f+g) = a 1+b
1 

= c(f)+c(g). 

(mod deg 2); 

2/ For the special case we aga in have c(f+g) = c(f)+c(g) by1/; 

but, also, f.g(T) = f(g(T)) = a 1b 1T (mod deg 2), so that c(f.g) = a 1b 1 

= c(f).c(g); and, finally, 1F (T) = 1.T implies C(1
F

) = 1. 

Now we consider some properties involving group laws over 

two distinct rings. 

D8 Let *:A~B be a unitary homomorphism of commutative rings with 

unit Y and supposa f(x 1 , ••• ,Xn )iS a power series over A then define a 

power series over B by putt5.ng f*(x 1 ,··· ,xn ) = 

2:a. .. . ~x. j1 , ••• ,x. jn provided that 
~1,···,:Ln,J1,···,Jn:L1 . :Ln 

( _ ) ~ J 1 jn 
f x 1 , ••• ,x = La. . x. • •• x. 

n :L 1 ,···,:Ln ~1 :Ln 
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TB (Proposition) 1. There exists a covariant additive functor * from 

GAto GB(where GAdenotes the category of group laws over A). 

2. The map *:EndA(F)----.,En~(F*) given by f~f* 

is a unitary ring homomorphism \where * is tbe map in DB). 

PROOF: 

1. In order that a functor be defined we must associate eacb 

object of GAwith an object of GB • Tbis is done by taking F in Obj(GA) 

and mapping it onto F*; but, we sbould show tbat F* is, in fact, in GB , 

i.e. tbat F* is a group law over B: 

0/ clearly F* is a power series over B 

1/ F(x,y) == x+y (mod deg 2) implies F*(x,y) -

1*x+1*y (mod deg 2) = x+y (mod deg 2) 

2/ F(F(x,y),z) = F(x,F(y,z)) implies F* (F*(x,y),z) 

F*(x,F*(y,z)) by taking * of LHS and RHS. 

To complete tbefunctor's definition we must associate witb 

each f in HomA(F,G) an element of Ho~(F*,G*) - this element is obvious

ly f*. Now, we verify: 

FUN1 (1 F )* = 1F*; let f in HomA(F*,G*), then f.(1 F)*(T) = f(1 F*(T)) = 

f(T), so f .(1 F)* = f and if we put f = 1F* it follows tbat (1 F )* = 

= 1F*· 

FUN2 if f in HomA(F,G), g in HomA(G,H) we must show that (g.f)* = g*.f*; 

(where n is an integer depending on 
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= 2:k(~a.*p. *k1 ••• b . *kr)Tk 
~ J 1 J r 

g*(f*(T» g* .f*(T); this"establishes 

the covariance of *. 

The following will show that * is additive: 

f,g in HomA(F,G) implies (f+g)* = f*+g*; but, LHS = (G(f(T),g(T)))* = 

= G*(~*(T),g*(T)) = (see FUN 2 for a similiar verification), = f*+g*. 

2. The fact that *:EndA(F)---'En~(F*) is a ring homomorphism 

has been established in 1., since, we showed that: 

al * is additive i.e. (f+g)* = f*+g* 

bl * is multiplicative i.e. (f.g)* = f*.g* (in FUN 2) 

in a general setting. Of course, (1 F )* = 1F* by FUN 1. 

m If f is in A [[T 1'." ,Tn]] , and has 0 constant term, and u, u-
1 

are 

in A [[T]] ,-- we then put f U (T
1

, ••• ,T
n

) = U(f(u-1 (T
1
), ••• , u-1 (T

n
))). 

!2 (Lemma) F and Gare isomorphic group laws over A if and only if there 

exists u(T) in A[[T]]whose inverse exists and such that G = FU. 

PROOF: 

1. Say G = FU, then uF(u-1 (x),u-1 (y)) = G(x,y) implies that 

F(u-1 (x),u-
1

(y)) = u-
1
(G(x,y)), which shows that U-1iS in HomA(G,F). 

Also, replacing x,y by u(x), u(y) respectively shows that u(F(x,y)) = 
= G(u(x),u(y)), and so u is in HomA(F,G). Furthermore, we already know 

-1 -1 that uu = 1G, u u = 1F , sa that one implication is completed. 

2. If F,G are isomorphic over A then there exist f in HomA(F,G), 

g in HomA(G,F) such that f.g = 1G, g.f = 1F , sa take u ta be f and u-1 to 

be g; then g(G(x,y) = F(g(x),g(y)) implies that G(x,y) = f(F(g(x), g(y))), 
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112 (Proposition) If L is a field of characteristic zero then any group 

law F(overL) is isomorphic to x+y over L. 

PROOF: 

It suffices to show that the:re exists u in L [[T]] wh,ich is 

invertible and which satisfies: F(x,y) = u(u- 1(x)+u-1(7)). 

1. First show that for any u in L([T]] which is invertible 

u(u-1 (x)+u-1 (y)) is a group law: 

0/ it is clearly a power series over L 

1/ it is == x+y (mod deg 2), from inspection 

2/ u(u-1(u(u-1(x)+u-1(y)))+u-1(z))=u«ü-1(x)+u-1(y))+u-1(z)) 

= u(u-1 (x)+(u-1(y)+u-1(z)))=u(u-1(x)+u-1(u(u-1 (y)+u- 1 (z) ))) 

2. Now, we claim that any group law over a field of characteristic 

zero ( ~n our case L) s y F '"C" i j . s d t rmi d b a a • ... ,a =~aijx y,~ e e ne y 11,a12 ! 13' ••• ' 

and this demonstrated,when it is sho~m that each a .. ,i+j=n, can be 
~J 

represented by a function depending only on a 1 ,n_1 and alk's where 

l+k<n. Let us examine the associativity relation F(F(x,y),z) = F(x,F(y,z)). 

LHS = «x+y+a11 xy+ ••• )+z) 

+ (a11 (x+y+a11 xy+ ••• )z) 

+ (a12(x+y+a11xy+ ••• )z2+a21(x+y+a11xy+···)2z) 

+ (a13(x+y+a11xy+ ••• )z3+a22(x+y+a11xy+ ••• )2z2+a31(x+y+a11xy+ ••• )3 z ) 

+ etc. 

RHS = (x+(y+z+a 11 yz+ ••• )) 
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~(a11(x(y+z+a11Yz+ ••• )) 

+(a12(x(y+z+a11yz+ ••• )2+a21x2(y+z+a11Yz+ ••• )) 

+(a13(x(y+z+a11yz+ ••• )3+a22(x2(y+z+a11yz+ ••• )2)+a31(x3(y+z+a11yz+ ••• ))) 

+etc. 
. 1 . 

Compare the coefficients of xy~- zJ on both sides of the equat~on: 

xyi-1zj can occur on LHS only within: 

a 1 j (x+y+ •.• ) z j 
2 . 

a
2j 

(x+y+ ••• ) zJ 

a .. (x+y+ ••• )iz j , 
~J 

and on RHS only within: 

a 11 x(y+Z+ ••• ) 

a
12

x(y+z+ ••• )2 

( ) n-1 
a 1 1x y+z+... • ,n-

by equating coefficients we obtain--iaij+fn(alk's) = ~~:1~a1,n_1+gn(alk's) 
(where f ,g are some determinable polynomials and l+k(n). Hence,the n n 

equation we want is: a ij = (~~:~~a1,n_1+gn(alkls)-fn(alkrs))i-1. 

3. Consider all possible group laws u(u-1 (x)+u-1 (y)) where 

u runs over invertible power series, we observe that any such group 

law is of the fOrm~bijxiyj where b 11 

b 12 

f
1

(b
1

,b
2

) 

f 2 (b 1 ,b 2 ,b
3

) 

b 1n = f n (b 1 ,···,bn+1 ) 

etc. , 
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where bi are variables (coefficients of u), b 1 fo 0 and f 1 (b 1 , ••• ,b
i
+,) 

is a function in which b. 1 occurs ''li thout mul tipliers. 
~+ 

(Note that 

since L is a field of characteristic zero aIl power series fo 0 and 

having non-zero first degree term are invertible, and this allows us 

to calI the b
1

,b2 , ••• ,bn , ••• "variables".) Let F(x,y) =2:aijxiyj, and 

put b
1n 

= a 1n for aIl n; this allows us to solve for the b
i 

in terms of 

the a
1i 

and still, we can consider b
1 

to be a variable. By part 2 .. 

F(x.,y)= u(u-
1 

(x)+u-1 (y)) with b
1 

= 1, for example. 

T11 (Corollary) Any group law, F, over a field of characteristic zero 

is determined by the coefficients a11,a12, ••• ,a1n' ••• ' where 

F(x,y) = L aijxix
j 

• 

PROOF: 

See proof of T10 2. 
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III Properties of Ho~(F,G) and HO~(F,G) 

D10 We denote by D any complete valuation ring such that char D =0 

and which is discrete; Q(D) = L represents the quotient field of D, m 

= dD is the maximal ideal of D and k = D/m is the residue field with 

p(=prime) elements. U represents the units of D. 

~ (Theorem) 1. c:HO~(F,G)----+D is an injective homomorphism of groups. 

2. The image of c i8 a closed subgroup of D. 

PROOF: 

1. The result, T7, shows that c is already a group homomorphism, 

so it remains to demonstrate that c is an injection. Let f in HomD(F,G~ 

be such that c(f) = 0, we claim that f = O. By T10 we have F(x,y) 

= u(u- 1(x)+U- 1 (y)) , G(x,y) = v(v- 1(x)+v-1(y)), with u,v in L[[T]] (where 

L = Q(D)). But, since f is a homomorphism f(F(x,y)) - G(f(x),f(y)) which 

implies fou(u- 1 (x)+u-1 (y)) _ V(V-1 .f(X)+V-1 .f(y)); hence, 

v-1(f.u)(u-1 (x)+u- 1(y)) = v-1 .f(x)+v-1 .f(Y), and replacing x by u(x), 

y by u(y) yields v-
1

.f.U(x+y) = v-1 .fou(x)+v-
1
.fu.(y). This means that 

-1 1 
v .f.u is an additive power series, and so v- .f.u must be a linear 

monomial, aT, for example. 

It is clear that we may choose u,v having first coefficient 

equal to 1 (by the concluding remark in T10) so that a must bec(f), 

which is 0 by hypothesis. 
-1 

Therefore, v .f.u = 0, and this ovviously 

implies f = O. 

2. The proof takes four steps. 
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1/ C(HO~(F,G)) ={a~D: v.(a).u-
1 

in D [[T]] , where 

(a)(T) = aTJ. 

Proof: 

By the technique in 1. we can write f in Ho~(F,G) in the 

form v.(a).u-
1 

where a = c(f), for particular u,v depending only on 

F,G. This shows that if c(f) in LHS then c(f) = a in RHS, because 

v.(a).u-
1 = f in HO~(F,G) implies v.(a).u-1 in D[[T]], and a in D. 

Conversely, suppose a in RHS, i.e. v.(a).u-
1 

in D[[T]] and 

a in D then v.(a).u-
1 

in HomD(F,G): 

for, v.(a).u-1 (F(x,y)) = v.(a)(u-1 (x)+u-1 (y)) = v(a(u-1(x))+a(u-1(y))) 

v«a).u-1 (x)+(alu-1(y)) = 

G(v«a).u-1 (x)),v«a).u-1(y))) 

= G(v.(a).u-1(x),v.(a)~-1(y)). 

FUrthermore, c(v.(a).u-1 ) = a by definition of v and u-1 (see 1.), 

and consequently a in LBS. 

2/ Associate with each a in L the element b.(a), 
~ 

obtained as the coefficient of Ti mv.(a).u-1 ; then b.(a) is a poly
~ 

nomial function of a whose coefficientsare in L; hence, b.(a) is a 
~ 

continuous function of a (using the valuation metric). 

3/ Let us define Xi = fa in D: bi(a) in D} , then it 

follows that X. is closed in D: 

Proof: 

~ 

It is clear that n is closed in L = Q(n) and also that b.(n) 
~ 

is closed in L; hence, it follows that b.(n)OD is closed in L(because 
~ 
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the intersection of two closed sets is again closed). But, this last 

set is precisely X .• 
J. 

{a in D: v.(a).u-
1 

in D[[T]]}. 
Proo±': 

Let a in nX., then b.(a) in D for each i, hence, v.(a).u- 1 is 
J. J. 

in D[[T]] and, therefore, a in RHS. 

Let a in RHS, then v.(a).u- 1 in D[[T]] and clearly bi(a) in D 

for each i; hence, a in X. for aIl i, which implies that a in LHS. 
J. 

In conclusion we observe that nx. is closed since X. are 
J. J. 

closed; therefore, C(HO~(F,G)), which is OXi by 1/ and 4/, is closed 

in D. 

In the proof of T12 1. we could have replaced D by Land ob

tained that c:HomL(F,G)---+L is injective, t~is makes possible the 

follo\ving defini tion (extending in a sence D6). 

D11 Denote by [a]F the unique L-endomorphism of F with first degree 

coefficient equal to a, for any a in L. 

HomD(F,G) is a' Z module, where Z is the ring of p-adic integers. 
p p 

PROOF: 

Observe that c(EndD(F)) is closed in D by T12 2., contains 

Z (since c([n]F) = n), and hence contains the closure, zp' of Z in D. 

Hence, the injectivity of 0-
1 

:c(EndD(F))---+EndD(F) shows that Zp is 

canonically contained in EndD(F). 

Let a in zp and l' in HomD(F,G), then we define the action 
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is well-defined since -

1. a.f in HO~(F,G), for, f.[a]>FF(x,y) = f([a]F(F(x,y»)) = fE(ax,ay) = 

= G(f(ax) ,g(ay») G(f. [alF(x) ,f • [al F(y»), 

2. given a there is a unique [a]F. 

T14 (Proposition) If f in Ho~(F,G),where k is any field such that 

char k = p>O and f fo [0] then there exists q = pr such that 

(mod deg q+1), a fo O. 

PROOF: 

Suppose f(T) = a
1

T+a 2T2+ ••• , and say that n is the smallest 

positive integer such that a fo 0, so f(T) = a T
n

+ ••• and 
n n 

f(T) = anT
n 

(mod deg n+1). But, since f in Ho~(F,G) we get 

f(F(x,y)) = G(f(x),f(y) (mod deg n+1); hence, 

(mod deg n+1), which implies (x+y)n = xn+yn. 

Now, suppose there exists min such that g.c.d.(m,p) = 1 
r r r 

and say Il = mpr th en xP m+y
p m = (x+y)p m. We kno, ... from elementary 

r r r 
number theory that x P +yP = (x+y)P (mod p), so we get, putting 

r r 
p p m m ( )m s = x ,t = Y ,s +t = s+t (mod p) which implies that 

~~, = m = 0 (mod p), a contradiction. Therefore, there does not 

exist min such that (m,p) = 1; i.e. n 

Therefore, f(T) = a Tn 
n 

(mod deg n+1) 

r p for some positjve integer r. 

r 
and n = p • 

D12 Given a group law F defined over k (a field of characteristic p) 
h 

and if 0 fo [P1F(T) = aTP (mod deg ph+ 1), which must be the case by T14 

then h is called the height of F; if [P]F(T) = 0 then we say that F has 

infini te height (in both cases denoted height(F»). 
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T15 If height(F) fo height(G) then HO~(F,G) 0, where F,G are group 

laws over k. 

PROOF: 

Suppose that 0 fo f in HO~(F,G), then f(F{x,y)) = G(f(x),f(y)) 

and hence f.[P]F = f.([1]F+ •• ~+[1]F) = f.[1]F+ ••• +f.[1]F = f+ ••• +f; 
P t~mes 

also [p]G.f =([1]G+ ••• +[1]G).f = [1]G.f+ ••• +[1]G.f = f+ ••• +f; therefore, 

f.[~]F = [p]G- f fo 0 (unless both [P]F and[p]G = 0 in which case hèight F 

= height G = infinity). It is clear that this equation holds only if the 

leading coefficients of [P]F and [p]G have the same degree, which by T14 

must be of the form ph; hence, height (F) = height (G). The statement 

T15 is simply the contrapositive of the above deduction. 

T16 (Proposition) 1. height (F*)<~ implies *: HomD(F,G)---7Ho~(~~ 

is injective. 

2. height (F*) =00 does not imply *: HO~(F,G)--+Ho~(F")~Gl') 

is injective. 

PROOF: 

1. We will show that f fo 0 implies f* fo O. It is clear that 

when at least one of fIs coefficients is a unit then f* fo 0, so we assume 

that each coefficient of f has value greater than zero. Hence, f(T) 

drg(T) where r>O is some integer, d is a local uniformizer (arising from 

the valuation on D), and g(T) in D[[T]] is such that g*(T) fo O. Now, 

since f in HO~(F,G), 

since G is a group law and p(x,y) in D[[x,y]]. 

·Rence, g(F(x,y)) = g(x)+g(y)+drp(x,y), so that g*(F*(x,y)) = g*(x)+g*(y). 
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But, this shows that g* in HO~(F*,x+y), and we can easily see that 

height (x+y) is infinite (since'[p1 = [1] + ••• +[1] = pT = 0, Jx+y x+y x+y 

since char k = p); so that g*=O by T15. Hence, we have a contradiction 

and eur assumption (that r>O) is false - so f* fo O. 

2. Consider F* of infinite height and G* of finite height; in 

particular F(x,y) = x+y+bxy, b in m, the maximal ideal of D, and G(x,y) 

= x+y+xy, so height (F*) = height (x+y) is infinite whereas height (G*) 

= 1. Put f(T) = bT, then f(F(x,y)) = f(x+y+bxy) = (bX+bY+b 2xy) = 

= G(bx,by) = G(f(x),f(y)), which means f in Ho~(F,G) and yet f* = ° 
50 * is not injective. 

!1l (Proposition) If F,G are group laws over D then there exist polynomials 

Piin D[x1, ••• ,xnl and Riin L[X] where L = Q(n) satisfying: 

1. R. (X) 
~ 

P.(X,R2 (X), ••• ,R. 1(X)) when i fo pr for some r)O, 
~ J.-

2. R. (X) 
J. 

1/pP.(X,R2 (X), ••• ,R. 1(X)) if i 
J. J.-

r p for sorne r>O, 

3. if f in HomL(F,G) and c(f) = a 1in L then ith degree coefficient 

in f(T) is R
i

(a
1
). 

PROOF: 

Induction on i. 

Case i 1: Let R1 = P1 = X then 1.,2. are clearly satisfield; suppose 

f in HomL(F,G), c(f) = a 1 in L then the first degree coefficient in f(T) 

is a 1 and R1(a 1) = X(a 1 ) = a 1 , 50 3. holds. 

Case j=i: We must show that the result holds for j i. 

1. Say i fo pr, r)O, let i = mq where m>1, p does not divide 

m and q r 
p • 

2. Suppose i 
r 

p , r)O, let i mq again where m p and q r-1 
p 
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Since f is a homomorphism we have f(F(x,y)) = G(f(x),f(y)), and we can 

examine the coefficients of xqy(m-1)q on both sides of this equality. 

On the LHS we get a polynomial over D in a1~.·.,ai_1' added to ~~q~ai; 
On the RHS we get a polynomial over D in a 1 , ••• ,a

i
_ 1 , but ai does not 

appear.- Equating coefficients and solving for a. we get: 
~ 

l t l . l D P ( ) -lf -l 1 r a. equa 0 a po ynom~a over , . a 1,.·.,a. 1 ........ 1= P. , 
~ ~~-

a. equal to 1/p.(a polynomial over Dh 1/p P.(a1 , ••• ,a. 1) if i = pr 
~ ~ ~-

since ~~q~ is p-adic unit if i fo pr and is 1/p times a p-adic unit 
r 

otherwise (i t is suffic"5.ent to show a. (m,p) = 1 implies q~r m~ ,p) = 1 
hpp-1~ 2 

b. (~ p-1 ~,p ) = p; 

~ Pprrm~ Br_j P 
this is done by observing ~ (mpr_z)/(pr_z), in which mpr_z, 

z~d· r 1 

pr_z always have the same power of p, and ~~~-1~ = ~ (pr_z)/(pr-1_z), 

in which pr_z, pr-1_z always have the same pO\ofer of p except when z = 0). 

This defines P., and now 'Ille put R. (X) 
~ ~ 

= P.(X , ••• ,R. 1(X)) if i fo pr 
~ ~-

= 1/pP. (X , ••• ,R. 1 (X)) if i = pr. 
~ ~-

By the definitions of R.,P. 3. follows immediately. 
~ ~ 

T18 (Corollary) Suppose that f in HO~(F,G), where F,G are group laws 

2 
over D, f = a1T+a2~ + ••• , and that n>1 is the smallest positive integer 

r such that a is not in D, then 1. n = p for some r>O 
n 

PROOF: 

and 2. pa in D. 
n 

1. If n 1= pr, r>O then by T17 there are polynomials P1'·· •. ~~n 

over D and R1, ••• ,Rn such that Rn(X) = Pn(X, R2 (X), ••• ,Rn_ 1 (X)) and 

a • 
n 

But, since n is the smallest positive integer such that 
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a 
n 

is not in D it is clear that a1 ,···,an_1 
are in D, so that R1(a

1
), 

= Pn (a 1 , ••• , Rrt_1 (a1 )) whi.ch 

is clearly in D, and yet a is not in D; this contradiction enables us 
n 

r to conclude that n = p • 

2. We know that Pn(a1,R1(a1), ••• ,Rn_1(a1)) is in D, but this is 

exactly equal to pa since n = pre 
n 

D13 If n is an integer greater than or equal to 2 put Bn(x,y) = 

( ) n n n () = x+y -x -y , and C x,y = B if n is not a power ofaprime 
n n 

= 1/qB if n is a prime (=q) power. 
n 

T19 Cn(x,y) is not zero considered as a polynomial of K[x,y] where K is 

any field. 

PROOF: 

prime. 

We must show that the coefficien~of C (x,y) are relatively 
n 

that p is a prime dividing each coefficient; it follows that p divides 

(mod p). Put pr = q and n = qm where (p,m) = 

(mod p), and hence p divides m, a contradiction. 

Therefore, our assumption that some prime divides each coefficient is false. 

Case b. Let C = 1/pB , p is a prime and n = qr. Again, let q n n 

be a prime dividing aIl the coefficients of Cn th en q divides pr-1 and so 

pr 2 
q must bep; but near the end of T17 we showed that (~pr-13' p ) = p~ 

so q = p does not divide aIl coefficients of C , contradicting our 
n 
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assumption; hence, the result. 

The following is a result due to Lazard, we prove it for 

integral domains. 

~ (Proposition) Let F,G be abelian group laws over any commutative 

ring,A, with 1 such that F = G (mod deg n) then there exists a in A 

sueh that F(x,y) = G(x,y)+aC (x ,y) (mod deg n+1). 
n 

This proof is valid forintegral domains, A. 

1. First, we prove the result for fields, A, of characteristic 

zero. By eomparing the coefficients of xyi-1zj for the associative law, 

F(F(x,y),z) = F(x,F(y,z)), we get (where F(x,y) = x+y+a 11 xy+ ••• ) 

iaij+fij(alk's) = ~~:~~a1,n_1+gij(alk's), where l+k(n and fij,gij are 

simple functions sinee: 

on LHS xyi-1zj oecurs only in a1j(x+y+a11xy+ ••• )zj 
2 . 

a2j(x+y+a11xy+ ••• ) zJ 

aij(x+y+a11xy+···)izj 

while on RES it oecurs only in a 11x(y+z+a 11 yz+ ••• ) 

2 a 12x(y+z+a 11yz+ ••• ) 

( )n-1 
a 1 ,n_1 x y+z+a11 yz+... • 

Similarly for G(x,y) = x+y+b 11 xy+ •••• Renee, i(aij-bij ) = 

~~:1~(a1,n_1-b1,n_1) since fij(alk's) = fij(blk's) and gij(alk's) 

gij(blk's) by hypothesis. Therefore, aIl we need is to solve: 
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when n ft gr a .. -b .. = (~r:~~/i)(a1 1-b1 1) = ~rj for each i between 
J.J J.J ,n- ,n-

i and n-1. This is done if we put a = (~r:1~/i~r~)(a1 1-b 1 1)' ) ,n- ,n-
i.e. a = (a 1 1-b1 1)/n (since ~r:l~/i f~)/n from elementary ,n- ,n-
number theory). Note that if n = g~then the above applies to yield 

a = (a1 1-b 1 1 )p/n. ,n- ,n-

2. Now we prove the result for fields, A, of characteristic 

p = prime. 

Case 1 n ft gr. 

1/ p does not divide n: Here we can solve for a .. -b .. in terms 
J.J J.J 

of a -b as follows. 
1,n-1 :1 ,n-1 

Say p does not divide i then examination 

of coefficients (in the associative la~ for 
(n-1) 

i-1 . 
xy zJ gives 

a .. -b .. = «i-1)/i)(a1 1-b1 1 as in 1. J.J J.J . ,n- ,n-
If p does divide i then it· does 

not divide j = n-i and we apply the above procedure to a .. (which is 
JJ. 

actually a ij ) and get a symmetric result. Hence, there is only one 

eguation to solve - it is na=(a 1 1-b1 1) and has the obvious solution. ,n- ,n-
2/ p does not divide n and n = prm,(m,g:1: Since pin then 

comparing coefficients of xypzn-p in the associative law shows that 

a -b O. Comparing coefficients of i-1 zj for i not 
1,n-1 1,n-1 = xy a 

multiple of p yields a .. -b .. = O. So for these i, j any a will do to 

~r~a 
J.J J.J 

~rL solve aij-bij = since p divides Consequently we focus our 

attention on a .. where i and hence j are multiples of p. 
J.J 

Consider a p ,n_p,a2p ,n_2p, ••• ,a(p_1)p,n_Cp_1)p; comparing 

coefficients of x LPyn-CL+1)PzP (L between 1 and p-1) yields a relation 

between ~~pP~à and (~~LP~aL Land since p does not divide 
p,n-p p,n- p 

~~-LPJ we can solve for aL L in terms of a ; this then shows p,n- p p,n-p 
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that~e equations aL L -bL L = ~~p~a aIl reduee to the same p,n- p p,n- p 

equation, a -b = ~~'a. Similarly for a s s,a2 s 2 s, ••• , 
P ,n-p p,n-p P ,n-p P ,n- p 

a(p_1)pS,n_(p_1)pS' s<r we get only one equation aetually, 

a ps s-bps n pS = ~~s~a. For s = r we get the same exeept that L is ,n-p , -

between 1 and m-1, but still only One equation results. Now, we need 

only consider equations dealing with a , ••• ,a r r. But comparing 
2 2 p,n-p p ,n-p 

coefficients of xpyn-p-p zP gives a relation between Cn;P)a and 
tp ,'J p,n-p 

Cn _p2J a 2 2 whieh enables us ta solve for a in terms of a 2 2 \P ? p ,n-p p,n-p p ,n-p 

since p does not divide ~~~. Again we see that the first two equations 

beèome one. In a similar fashion we eliminate other equations to finally 

be left wi th only one equation, which is a ---b en J pr,n_pr pr,n_pr = tpr,a and 

whieh ean easily be solved sinee p does not divide ~~r,. 

Case 2 r 
n = q • 

Either p divides n i.e. p = q or it does not divide n. If q 

~ p then Case 1.1/ applies wi th minor al teration and finally we ob tain 

again that there is only one equation to solve: (n/q)a = a 1 1-b 1 1) ,n- . ,n-
to whieh the solution is obvious. When q = p' we are forced to apply the 

technique of Case 1.2/ in whieh instance the only equatinn to solve 

becomes: apr_1 n pr_1-b r 1 r 1 = (en
r 1 J/p)a, the solution .-t;o\oihieh , - p - ,n-p - tp - , 

is again clear. 

3. We ean now prove the r~sult for arbitrary integral domains, 

A, with unity. Consider Q(A), the quotientfield of A, and observe that 

F,G are elements of the set of group laws over Q(A), by the natural 

embedding; now, the proposition holds for Q(A) sa we obtain a in Q(A) 

'! 



such that F(x,y) = G(x,y)+aC (x,y) 
n 
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(mod deg n+1). But F(x,y)-G(x,y) 

is over A so that a must be in A aIso; (T19 shows that the coeffic±ents 

of Cn:are relatively prime so a Iinear combination of them equals 1). 

T21 (Proposition) Let F,G be group Iaws over D and suppose that 

F*(x,y) ~ H*(x,y)+aC~~0 (mod deg r+1), a in k, r=ps; then, [P]F*(T) ~ 

[P]H*(T)-aT
r 

(mod deg r+1). 

PROOF: 
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IV Isomorphisms between Group Laws and Properties of Power Series 

lUi Let f in A [[T 1 ,. - - ,Tn1] for any ring, A, and consider the polynomial 

(mod deg n+1), we will calI this p the 

n-bud of f and denote it by n-bud(f). 

f = g 

It is clear that n-bud(f) = n-bud(g) if and only if 

(mod deg n+1)_ 

~ (Theorem) Say F is a group law defined over D, height(F*) = h fini te, 

coefficients of theq-bud of F,(q = P~,EU, a subring of D such that Q(U) 

is an unramified· extension of Qp; then there exists aD-group law G1x,y) -

~ x+y+aC (x,y) (mod deg q+1), where a is a unit in U, such that F is 
q 

U-isomorphic to G. It follows that F is D-isomorphic to G. 

PROOF: 

We claim there exists G(x,y) such that G(x,y) == x+y (mod deg q) 

and G
V = F, v in U([T]] , i.e. G is U-isomorphic to F. First, we know that 

for some integer r~2 there is a G(x,y) such that G(x,y) - x+y (mod deg r) 

with G being U-isomorphic to F (simply take r = 2 and F = G) • Now, let 

r be the largest positive integer less than h such that there is q = p 

a G with G(x,y) == x+y (mod deg r) and GV = F for some v in U [[Tl1-

Then G(x,y) == x+y+bC (x,y) (mod r deg r+1) by T20, b in U. 

Case 1 If r 1: pS for some integer s?;O then C = cB where c is invertible 

in Z , and hence in U. 
p 

r r 

Put u(T) = T-bcTrin U[[TJ] then FU(x,y) == 

- F(x,y)+aB (x,y) 
n 

(mod deg n+1) (which can be shown by substituting), 

- x+y+bcB (x,y)+(-b)cB (x,y) 
r r -1 

U-isomorphic (since (GU)U v 

- x+y (mod deg r+1), and we have GU,F 

G(uu-
1

)v = GV = Fl 
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Case 2 If r = pS for some integer s~O the b is necessarily not a unit 

in U (suppose it were, then [p]G*(T) ~ _b*T
r (mod deg r+1) by T21, 

where H* = x+y; hence, height(G*) = s~h contradicting the result, T15, 

(note: F ~~omorphic to G implies F* k-isomorphic to G*~. But, U is 

unramified over Q so b = pc for some c in U; therefore, letting 
p 

(mod deg r+1). Once 

again, GU is D-isomorphic to F (via u- 1v). This completes the proof 

of the claim since we need only apply the above process finitely many 

times to arrive at the last step: G(x~y) - x+y + O(x,y) (mod deg q) 

where O(x,y) is the zero power series and G = FV for some v in U[{T]]. 

Hence, G(x,y) - x+y+aC (x ,y) 
q 

(mod deg q+1), a in U, by T20. 

It remains to show that a is a unit; but, if it were not we would ob tain 

(mod deg q+1) by T21, which says that 

height(G*»h, contradicting the existence of a U-isomorphism between F* 

and G* (making use of T15). 

D15 Let A be any ring, then A[[T 1 , ••• ,Tnl1r s~ands for the set: 

ff in A[[T 1 , ••• , Tnl1: non-zero coefficients of f occur only for degrees 

~ 1 (mod deg r-1)}. 

It is clear that f in A [[T 1 , ••• ,TJ] rand u in A [[T]]r invertible 

implies fU in A[[T 1 , ••• ,Tn]]r and u-
1 

in A[[T]]r. 

T23 (Proposition) Suppose n is an integer and that p does not divide 

n, that w is a primitive nth root in D, and f in D[[T11iS such that 

f(n)(T) T, where f(n) denotes the composition of f with itself n times, 

if, furthermore, f(T) = wT (mod deg 2) then there is a u in D [(Tl1 so 

tbat fU(T) = wT, and where u is invertible over D. 
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PROOF: 

1. We claim that the fOllowing implies T23: Given 

f (T) == wT 
m 

(mod deg m) then there exists u (T) == T+aTm 
m 

(mod deg m+1) 

such that u .f .u -1(T) ~ wT 
m m m 

Proof: 

(mod deg m+1) and u -1 in 
m D [[ T]] . 

Put f 2 = f, f3 = u2fU2-1, ••• '(umum_1 ••• u2)f(Umum_1 ••• u2)-1, •••• 

The~it is clear that u2,u3u2,u4u3u2' ••• is a Cauchy sequence since 

um_ 1 ••• u 2 == u
m

um_ 1 ••• u 2 (mod deg m); hence the sequence converges to 

a limit, u, in D[[T]] (using the fact that D([T]] is complete). Now, 

we establish that this is the required U; for, because the sequence, 

u 2 'u
3

u 2 , ••• , is inve~tible over D then so is its limit; also 

UfU-1(T)_~ f k ~ -1(T) = ° (mod deg m+1) for all sufficiently large 
m m m 

k (by definition of u), which implies that ufu- 1 (T) == wT (mod deg m+1) 
m 

for each m; hence, ufu- 1 (T) = wT which means that fU(T) = wT. 

2. Proof of the statement in 1. 

Case 1 If m t 1 (mod n); we have f (T) _ wT+aTm 
m 

(mod deg m+1), 

say, and let us suppose that u (T) = T+bTm, then 
m u 

f meT) == u f u -1(T) = u f (T+(_b)Tm) = (mod deg m+1) 
m mmm mm 

~ u (wT+w(_b)Tm+aTm) = 
m 

m· m m _ wTi:w(-b)T +b(WT+W(-b)T +aT)m _ 

(mod deg m+1). 

We claim that wm_w is a unit in D; clearly wm_w fo 0, further, w* is a 

primitive nth root of unit Y in k so w*m fo w*, hence (wm_w)* fo 0, which 

implies the claim. Now, simply define b = a(w_wm)-1 and we have u 
m' 
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the required power series (u 's inverse is clearly defined over n). m 

Case 2 m == 1 (mod n)'; we have , therefore, wm 

f (T) = wT+aTm (mod deg m+1) then 
m 

w. If 

f (2)(T) ;!! w(wT+aTm)+a(wT+aTm)m == w2T+(w+wLi)aTm (mod deg m+1), 
m 

f (3)(T) ~ wCw2T+(w+wm)aTm)+aCw2T)m == w3T+Cw2~wm+1+w2m)aTm (mod deg m+1), 
m 

f (4)CT) _ wCw3T+(w2+wm+1+w2m)aTm)+a(w3T)m (mod deg m+1) 
m 

4T ( 3+ m+2 2m+1 3m) Tm - w + w w +w +w a (mod deg m+1), 

and, in general, 

f (n)(T) == wn T+(wn - 1+ 
m 

n+m-2 n+im-(i+1) (n-1)m Tm w + ••• +w + ••• +w a 

Cmod n). 

(mod deg m+1) 

- T+nw- 1
aT

m (mod deg m+1), since m ~ 1 

But, f (n)CT) = (u 1 ••• u2)fCn)(U 1 ••• u2)-1CT) T 
m m- m-

since f(n)(T) = T, 

so we must have a = 0, and consequently f m - wT 

case we can choose u (T) = T and we get f um = wT m m 

(mod deg m+1). In this 

(mod deg m+1). 

(Corollary) If w is a primitive (r-1)th root of unit Y in D, r 
s = p 

and F is aD-group law such that [w] F in Endn(F), then there exists G, a 

n..,.groùp law in D{[X'Y]]r such that i t is n-isomorphic to F. 

PROOF: 

Let [w)F be denoted by f, th en by T23 there exists an invertible 

u in n([T]] such that fU(T) = wT. Put G = FU. We claim that fU in EndD(G), 

for, clearly fU in D [[Tl] and fU == 0 (mod deg 1); but, also 

fU(G(x,y» Ufu- 1 (G(x,y») = Uf(F(u- 1(x),u-1 (y»)) = uF(fu-1(x),fu-1 (y» 

uF(u- 1Ufu- 1(x),u-1Ufu- 1(y» = G(fU(x),fU(y»). 

Furthermore, G(x,y) is in D[[X,y]); ~or, otherwise, there exists a 

least m ~ 1 (mod r-1) such that G(x,y) has terms of degree m, then we 

can write G - G1+H (mod deg m+1), where G1 (x,y) in D([x,y]lr and His 
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a form of degree m; and so, 

(mod deg m+1) 

(mod deg m+1) 

(mod deg m+1), 

m \vhich implies that wH = w H, consequently H is O. 

vie conclude this section with two interesting results: 

one on power series and another dealing with homomorphie group laws. 

T25 (Proposition) Suppose K is an algebraieally elosed field vdth char K 

= p>O, that f in K[[T]] r (r = p s) is actually a po\ .. er series in Tr and that 

(mod deg r+1), al 0, then there Œists an invertible u in 

K[[T)]r such that fU(T) = aTr • 

PROOF: 

1. \..Je claim that if there exists f 1 , ••• ,fm, •••• such that 

in K[[T]]r is a power series in T for each m and f (T) - aTr (mod 
r m 

implies there exists um in K[[T]]r such that f = u f u -1 and m+1 lL m m 

f m 

deg m) 

u (T) ~ T 
m (mod deg l ) \'Jhere l goes to infinity with m, then the result m m 

follows. 

Proof: 

-1 1 
Consider f 1 = f,f2 = u 1fu1 , ••• ,fm = (um_1 ••• u1)f(um_1oooU1) , ••• ; 

we observe that u1,u2u1, ••• ,(um ••• u1)' ••• is a Cauchy sequence in K[[T]] 

and sinee this ring is complete the sequence must have a limit, u, say, 

\'Ihich is, in fact, in K[[T]]r by definition of the U.i'So 

the one required since Ufu-1(T)_(~ ••• u1)f(~ ••• u
1

)-1 ~ 0 

U01rl, this u is 

(mod deg lk ) 
m 

(mod deg lk ) for all 
m 

m m 
for all sufficiently large l because u-~ ••• u 1 = 0 

1
m 

suffieiently lexge 1; consequently, ufu- (T) ~ aTr (mod deg lk ) for all 
m 
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sufficiently large l, which means that fU(T) = aTr • 

2. We prove the statement in 1. 

we want f m+1 = 

-1 r 
u f u == aT mmm 

-1 u f u 50 'Ile must; define u in such a way that mmm m 

(mod deg mF1) and u (T) == T 
m 

(mod deg m+1); 

If b = 0 then we can take u to be the identity. For b F 0 we must have 
m 

m - r (mod r 2_r) since m must be a multiple rn, of rand then n must be 

_ 1 (mod r-1); clearly n>1, and if \-/e consider any u (T) == T+cTn (mod deg n+1) m 

then f um(T) = u f u -1(T) == uf (T_cTn ) == u(a(T_cTn)r+b(T_cTn)m) ~ 
m m m m m 

_ u(a(T_cTn)r+bTm) == a(T_cTn)r+bTm+c(a(T_cTn)r+bTm)n _ 

( ) r r r (using the facts that x+y = x +y 

(mod deg m+1), 

(mod p), pS = r, char K = p), 

(mod deg m+1). 

Now, we want this to be - aTr (mod deg m+1), 50 we need only choose c 

satisfying _acr+b+anc = 0 (which is permissible since K is algebraically 

closed) to obt?in the result, u (T) being simply T+cTn • 
m 

T26 (Corollary) With the hypothesis as in T25, then, there is a v in K[[T)]r 

such that fV(T) = Tr • 

PROOF: 

Just put w(T) = bT where b is any (r-1)th root of a, then let 

v = w.u where u is obtained from T25. Now we get 

fV(T) = fw.u(T) = (fu)'tl = (aT)w = w(a)w-1 (T) 

w(a)(b-\T))r = \..r(ab-rTr ) = bab -rT = aa -1T = T. 

T27 (Proposition) Let F,G be L-group laws where L is a field with char L = 0, 

f in L [[Tl1 satisfy: 
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f(G(x,y» = G(f(x),f(y» 
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(mod deg n), 

(mod deg n), 

e(f) ~ 0, e(f) ~ any root of 1, 

then, F _ G (mod àeg n). 

PROOF: 

By T10 we ean obtain u,v in L[[T]] sueh that eCu) = e(v) = 1 and 

Fu() v() l U and fV . x,y = x+y, G x,y = x+y. t follows that both f are l~near 

(mod deg n) sinee: fU(Fu(x,y» = ufu-1 .uF(u-1 (x),u-1 (y» = 
-1 ) -1» -1() -1() ufF(u (x,u (y = uF(fu x ,fu y) (mod deg n) 

_ uF(u-1 f u (x),u-1f U(y» = FU(fu(x),fu(y» (mod deg n); 

henee fU(x+y) = rU(x)+fu(y) (mod deg n), n}3, whieh ean happen only if 

fU is linear (mod deg n); therefore, fU(T) ~ bT (mod deg n) and sinee 

eCu) = eCu-
1

) = 1 then b must be a. Similarly we ean obtain 

fV(T) = aT (mod deg n). Renee, v.u-1 (aT) _ v(f(u-1 (T») = (mod deg n) 

(mod deg n). 

Now, we elaim that any series with first degree coefficient not 

equal to 0 or a root of 1 commuting with a linear monomial over a field of 

characteristic zero must itself be linear. 

Proof: 

Say g(T) ~ bT+dTr (mod deg r+1), r'n and that 

a.g(T) = g(aT) (mod deg n), a p 0; then, 

(mod deg r+1), hence , d(ar_a) = 0, which implies that 

d = 0 (since a r ~ a). Consequently, v.u-1 (T) = bT (mod deg n); further, 

it is clear that b = 1 according to the definitions of u and v. 



(mod deg n), 

(since u = v (mod deg n)). 
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V A Construction of D-Group Laws 

D16 Suppose \-Te have a complete discrete valuation ring, D, with prime 

element, d, such that p = (D:d(D» is the number of elements in the residue 

class field, and Q(D) is the quotient field, which is, hence, complete with 

respect to the valuation (that is, the situation of D10) then we denote by 

Dd the subsetCD[[T]]consisting of all fIS such that f(T) = dT 

and f(T) ~ TP (mod d). 

(mod deg 2) 

In order to carry out the intended construction we must consider 

a preliminary result concerning power series. 

= ~ a.X. is a linear form fu ~ ~ 

over D, then there exists h in D[[X1 , ••• ,xn]] such that 

h(X1 , ••• ,Xn) = 1(X1 , ••• ,X
n

) (mod deg 2) and 

f(h(X1 ,···,Xn » = h(g(X1 ),···,g(Xn»· 

PROOF: 

To make the notation less burdensome put X 

g(X) = (g(X1)' ••• '~n». 

1. We claim that the congruences h (X) - l(X) r 
(mod deg 2) 

and f(h (X» = h (g(X» r r 
(mod deg r+1) have a unique (mod deg r+1) solution 

h (X) in D [[X1 ' ••• , X ] 1 . r n 

Case r =1: Simply take h1 (X) = l(X). 

Case r~1: v.Je assume the result for any r~1. 

Case r+1: We must exhibit a solution h 1to the system -r+ 

h 1(X) = l(X) r+ 
(mod deg 2), 

f(h 1(X» = h 1(g(X» r+ r+ 
(mod deg r+2). 

Let us \'!rite h 1 = h +dif for sorne dif in r+ r r r 

',' 
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f(h (X)+dif (X)) ~ (h (X)+dif (X))(g(X)) 
r r r r 

(mod deg r+2), 

hence, f(h (X))+f(dif (X))+h (X)dif (X)( ••• ) = r r r r 

~ h (g(X))+dif (g(X)) 
r r 

(mod deg r+1), 

therefore, f(dif (X)~h (X)dif (X)( ••• ) ~ dif (g(X)) 
r r r r 

(mod deg r+1), 

(using the induction hypothesis). But, the last congruence can be 

satisfied only if dif (X) = 0 
r 

(mod deg r+1); because, if a fo 0 is a 

coefficient of a term of lowest degree, t~r, appearing in dif (X) then r 

we must have da = dta, so that t must be 1 (since d is prime), which 

implies that dif (X) has a linear term, in contradiction to the required 
r 

congruence: 

f(h 1(X)) -r+ 

hr+1 (g(X)) -
require that 

I(X) = h (X) ~ h 1(X) r r+ (mod deg 2). It follows necessarily 

(mod deg r+1). Consequently, 

f(h (X)+d(dif (X)) r r (mod deg r+2), and 

h (g(X))+dr + 1 (dif (X)) r r (mod deg r+2) 

we take dif (X) = r f(h (X))-h (g(X)) r r (mod deg r+2). 

It is clear that the coefflcients of difr(X) (and hence h r +1 (X))arein D 

since f(h (X))-h (g(X)) ~ (h (X))P-h (XP ) = 0 (mod d), using the fact r r r r 

that d divides p; so that d does, in fact, divide the numerator of 

dif (X). 
r 

2. To complete the demonstration of existence it sufficies to 

remark that r{[x 1 , ••• ,xJl is complete, so that the limit of the Cauchy 

sequence, h 1 (X) ,h2 (X), ••• , exists in D [[x1 , ••• ,xnl1; if we calI this limi t 

h(X),clearly h(X) = I(X) (mod deg 2) and f(h(X)) = h(g(X)). 

3. The uniqueness of h(X) follows from the form of the existence 
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proof 1. and 2. which in~icates that the sequence, h 1 ,h2 , ••• ,is uniquely 

determined and, hence, determines (uniquely)h since we are dealing with 

a Hausdorff topology. 

We are now in a position to make the follovling defini tion. 

D17 Given f in Dd denote by Ff(X,y) the unique solution of: 

Ff(X,y) - X+Y (mod deg 2) and f(Ff(X,Y)) = Ff(f~\~)). 

Given a in D and f,g in Dd denote by [a]f,g(T) the unique solution of: 

[a]f,g(T) = aT (mod deg 2) and f([a]f,g(T)) = [a]f,g(g(T)).· 

T29 (Theorem) Let f,g,h in Dd and a,b in D then we have: 

PROOF: 

1. Ff(X,y) = Ff(Y,X) 

2. Ff(Ff(X,Y),z) = Ff(X,Ff(Y,Z)) 

3. Ff([a]f,g(x),[a]f,g(Y)) = [a]f,g(Fg(X,y)) 

4. [a]f,g([b]g,h(T)) = [ab]f,h(T.) 

5 • [a+ b ] f , g ( T ) = F f ( [a] f ,g ( T) , (b ] f ,g ( T ) ) 

6. [d]f,f(T) = f(T), [1]f,f(T) = T. 

The method of proof is the same in each case; we simply 

demonstrate that the LHS, RHS are both solutions to a problem of the 

type found in T28, and since we know there is exactly one such solution, 

the LHS and RHS must be the same. Corresponding to each equation is 

listed the problem ta which it belongs, and then the verifications are 

carried out. 

1/ al G(X,Y) = X+Y (mod deg 2) 

bl f(G(X,Y)) = G(f(X),f(Y)). 
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By definition, Ff(X,y) is a solution to this problem and also, 

al Ff(Y,X) ~ Y+X = X+Y (mod deg 2) 

bl LHS = f(Ff(Y,X)) = Ff(f(Y),f(X)) = RHS 

which show that Ff(Y,X) is a solution to 1/. 

21 al G(X,Y,Z) = X+Y+Z (mod deg 2) 

bl f(G(X,Y,Z)) = G(f(X),f(Y),f(Z)). 

al Ff(Ff(X,Y),z) = Ff(X+Y,z) = (X+YfrZ (mod deg 2) 

bl LHS = f(Ff(Ff(X,Y,),z)) = Ff(fFf(X,Y),f(Z)) 

= Ff(Ff(f(X),f(Y)),f(Z)) = RHS; 

hence, the LHS of 2. is a solution for 2/. 

al Ff(X ,Ff(Y,Z)) = Ff(X,y+z) = X+(Y+Z) (mod deg 2) 

bl LHS = f(Ff(X,Ff(Y,Z))) = Ff(f(X),f(Ff(Y,Z))) 

= Ff(f(X),Ff(f(Y~f(Z))) = RHS; 

so, the RHS of 2. is a solution for 2/. 

31 al G(X, y) = aX+aY (mod deg 2) 

bl f(G(X,Y)) = G(g(X),g(Y)). 

al Ff([a]f,g(x),[a]f,g(Y)) = [a]f,g(x)+[a]î,g(Y) :; aX+aY (mod deg 2) 

bl LHS = f(Ff([a]f,g(x),[a]f,g(Y))) = Ff(f([a]f,g(x)),f([a] f,g(Y))) 

= Ff([a]f,g(g(x),[a]f,g(g(X)))) = RHS; 

so, LHS of 3. is a solution of 3/. 

al [a]f (f (X,Y)) = aF (X,Y) :; a(X+Y) (mod deg 2) 
,g g g 

bl LHS = f([a]f,g(Fg(X,y)) = (a]f,g(g(Fg(X,y))) 

= [a]f,g(Fg(g(X),g(Y))) = RHS 

which mean that RHS of 3. is solution to 3/. 
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41 al G(T) ~ (ab)T (mod deg 2) 

bl f(G(T)) = G(h(T)). 

al [a]f,g([b]g,h(T») == a([b]g,h(T)) == a(bT) (mod deg~) 

b 1 LHS = f ( [a] f , g ( [b ] g , h ( T ) )) = [a] f ,g (g ( [ b] g , h ( T) ) ) 

= [a]f,g( [b]g,h(h(T))) = RHS; 

that is, LHS of 4. solves 4/. 

al [ab]f h(T) == (ab)T (mod deg 2) , 
bl LHS = f([ab]f,h~)) [ab]f,h(h(T)) = RHS; 

showing that RRS of 4. solves 4/. 

si al G(T) == ~+b)T (mod deg 2) 

bl f(G(T)) = G(g(T)). 

al [a+b]f,g(T) == (a+b)T (mod deg 2) 

bl LHS = f([a+b]f,g(T)) = [a+b]f,g(g(T)):RHS; 

therefore, LHS of S. is a solution tOo si. 

al Ff([a]f,g(T), (b]f,g(T)) ;; [a]f,g(T)+[b]f,g(T) == a+b (mod deg 2) 

bl LHS = f(Fi[a]f,g(T),[b]f,g(T))) = Ff(f([a]f,g(T)),f<[b]f,g(T))) 

= F f ( [a] f , g (g ( T) ) , [ b ] f , g (g ( T ) )) = RRS; 

so, RHS of S. is a solution to si. 

61 al G(T) dT 1 
bl f(G(T)) = G(f(T))); 

al G(T) = T 1 
bl f(G(T)) = G(f(T))} 

Rere, the verifications are completely trivial. 

T30 (Corollary) 1. F is an abelian group law. 
f 

2. The map A---+EndA(Ff ) given by a~[a]f,f is an 

inject~ve ring homomorphism. 

· \ 
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3. Theisoffiorphism class for Ff depends only on d and 

not on f' in Dd' 

4. A group law, G, over D is in the isomorphism class 

of' Ff' if and only if' there exists g in EndD(G) with g. = Frobenius and 

f' (0) d (where Frobenius(T) = TP). 

PROOF: 

1. The f'act that F is a group law f'ollows f'rom T29 2., and 
f' 

it is necessarily abelian by T29 1. 

2. The given map preserves multiplication by T29 4., addition 

by T29 5. (putting f = g in these equations) and henceiSa ring homomorphism; 

it is injective because [a]f,f = 0 implies aT = 0 

implies that a = O. 

(mod deg 2) which 

3. This is demonstrated by observing that we have a canonical 

isomorphism between-Ff' 

First, 3. of T29 shows 

HO~(Ff,Fg); similarly 

= [1] = [1]g,f. [1]f,g; 

and Fg given by (1]f,g: 

that [alf',g in HO~(Ff,Fg) 

GJg,f' in HomD(Fg,Ff ); and 

which means that [1]f' ,giS 

so that [1]f',g in 

clearly [1]f,g(1]g,f = 
an isomorphism between 

Ff'Fg. Hence, once we choose a prime, d, in D, then, given any f',g in Dd' 

we immediately obtain an isomorphism bet\oleen Ff and Fg. 

4. If G is isomorphic to Ff' via u(T) then we observe that u-
1

f'u 

is the required g (it satisf'ies the required properties, which are direct 

translations of D16, because f' does). 

Conversely, if' there exists a g with the given properties then 

Gis, in fact, one of the Fh's by the uniqueness in T28; in particular 

it is Fg' and we know by 3. that FgiS ~omorphic to Ff. 
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D18 Let K be an algebraic extension of Q(D), then we denote the maximal 

ideal in the ring of integers in K by M(K). 

T3l (Corollary) M(K) bas a D-module structure which depends on any given 

Consider x 1 ,x2 ' •••• in M(K) and a formaI power series, G, 

in D[[X1 , ••• ,xn]] with 0 constant term, if we substitute xi for Xi we 

get an infinite series which converges with respect to the given valuation 

since the value of terms increases steadily as the series progresses 

(see, for example, E. Weiss for a pro of in one variable, reference no. 19, 

p. 35-36). We apply this result as follows. Define x+y = Ff(x,y), 

and ax = [a]f,f(x); 

the series on the RHSs converge to some unique elements in M(K), so 

that the operations are well-defined. 

To check the rules required for a module it is sufficient to 

ob,serve that replacing the indeterminates by elements does not change 

the equalities in T29, so we have: 

al T29 t. and 2. gives commutativity and associativity 

bl the zero element is obviously the zero power series 

cl additive inverses are obtained through the analogue to T2 

dl the remaining module properties are obtained by T29 3.,4.,5.,6. 

D19 The D-module obtained from M(K) by way of T3l is written Mf(K). 

T32 (Proposition) 1. Q(D)~K1CK implies Mf (K1 )CMf (K), for algebraic 

extensions of Q(n). 
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2. If further, KIK1 is an algebraic extension of 

fields with a K
1
-fixing automorphism, g, then g induces an automorphism 

of Mf(K). 

PROOF: 

1. We simply observe that an element in K
1 

with positive value 

has positive extended value. 

2. It is clear that g, being an automorphism of K, is a 

continuous function on Q(D) (tinder the valuation topology). We must 

show that g restricted to Mf(K)i:s:a module homomorphism: but, since 

the operation,+, and the action, ju~taposition, are defined using 

convergent series with coefficients in D, and, hence, left fixed, and 

because g is continuous means we have g(l:a .. xiyj) = ~g(a .. xiyj) for 
~J L- ~J 

convergent series; then it follows that g(Ff(x,y)) = Ff(g(x),g(y)) and 

g( [a] f ,f)(x) = [a] f ,f(g(x)). 

Of course, it is clear that the image of g restricted to 

Mf(K) is exactly Mf(K) because, given any algebraic extension ~ fields, 

KlQ(D),QCn} complete with respect to the given valuation th en the 

extended value of the image (under aQ(n)-fixing automorphism of K)- of 

an element is exactly the extended value of the element (see, for 

example, E. Weiss, reference no. 19, Corollary 2.2.12 p.5l). 
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VI The Reciprocity Law 

We denote by Q(D) , a fixed separable algebraic cl~sure of Q(D) s 

in an algebraic closure, QëD). 

D21 Given f in Dd and an integer m~1, Vf,m stands for the D-submodule 

of Mf(Q(D)s) consisting of elements, v, such that dmv = o. 

T33 It is clear that if f,g are in.D~~ then we have: v in V if and u f,m 

only if [1]g,f( v) in V g,m. 

PROOF: 

If v is in Vf,m then dmv = 0 where v is in M(Q(D)s) and 50 

~]g,f(V) is in M(Q(D)s); furthermore, [1]g,f has a factor ,v, so that 

d
m

([1]g,f(v)) has a factor dmv, which means it is O. 

If [1]g,f(v) is in Vg,m then d
m

[1]g,f(v) = 0, i.e. [dm]g'-f Cv) 0; 

hence, [1]f,g[d
m
]g,f(v) = 0 so that dmv == 0; furthermore, [1]f,g[1]g,f(V) ==v 

is in M(Q(D)). This means that v is in V
f 

• s ,m 

We observe that Q(D)(Vf',m)IQ(D) is clearly separable and is also 

normal (since v in V~ implies that dmv = 0 implies that dm; == 0 implies ,,-,m 

that v is in V~ ,so that the conjugate of every element in V is in ,,-,m f,m 

V~ ) and hence Galois. ,,-,m 

According to T33 the field extension Q(D)(Vf )ICQ(D)) depends only ,m ~ 

on d,not on f in Dd so we can denote it by Ld,mIQ(D) and write its Galois 

group, Gal (Q(D)(Vf )IQ(D)), as Gald • Furth t V Ü V ,m . ,m ermore, we pu f = m=1 f,m' 

Ld = Q(D)(Vf ) and let proj lim Gald,m denote the projective limit of the 

Gal
d 

• ,m 
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T34 (Theorem) Given any prime, d, in D, f in Fd then the following 

statements are valid: 

1. Mf(Q(D)s) is a divisible D-module 

2. Vf and D/d~ are isomorphic D-modules for every integer m)1 ,m 

3. Vf and Q(n)/D are isomorphic D-modules 

4. If t is in proj lim Gal
d 

then there exists a unique unit, ,m 

u, in D satisfying tv = [u]f,f(v) for each v in Vf 

of units 

PROOF: 

5. We have an isomorphism from proj lim Gald onto the group ,m 

6. d is a norm for the extension Q(D)(Vf,m)IQ(D) for each m~1. 

For the first three parts we can assume that the f with which 

we are dealing has the basic form TP+dT; this is because there exists a 

standard isomorphism [1]f between the modules Mf(Q(D) ) and M (Q(D) ). ,g s g s 

and since the isomorphic image of a divisible module is again divisible. 

1. We must show that ax = b is solvable for x in Mf(Q(D)s)' 

given any a in D and b in Mf(Q(D)s). Since d is a prime for D we need 

only consider solving dT = b,i.e. TP+dT = b; but, the polynomial TP+dT-b 

has aIl its roots in QTD) because QTD) is algebraically closed, and, in 

fact, they must be in M(QID)) , for, otherwise the value of b would be 

negative contradicting the fact that b is in M(Q(D)). Furthermore, the 
s 

roots are distinct because fl(T) = pTPid = d, which clearly has no roots 

in M(QTD)); this means that the roots of f(T) = b are separable over Q(D) 

and so are in Q(D)s' this being the fixed separable closure. Consequently 

we have that the roots of f(T) = b are in M(Q(D) ), i.e. Mf(Q(D) ) is s s 
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divisible. 

We observe that Vf ,1 consists of the roots of the equation 

f(T) = TP+dT = 0 and so has exactly p elements and is, consequently, 

one-dimensional as a vector space over the residue class field,D/dD 

(for, any r in Vf ,1 is a basis of Vf ,1 over D/dD because aIr = ar 

implies (al-a) ~ = 0 for al,a in D/dD which implies r = 0 since d 

does not divide al-a (meaning that this is a unit in D/dD)). 

2. We have that for each m V~ is a torsion D-module which 
~,m 

is surely finitely generated since it is finite and by the structure 

theorem for finitely generated torsion modules (over principal ideal 

domains) it is the direct sum of D/~n1D,D/dn2D, ••• ,D/dnrD (e.g. see 

Lang p.390, reference no. 10); but we know that here d:V~ ~V~ 
~,m ~,m 

has kernel V~ l' which is a one-dimensional vector space Over D/dD 
~, 

so we must have r = 1 (otherwise ker d would not be one-dimensional). 

Rence, V~ and D/d~ are isomorphic as D-modules; then dm(1+d~) = 0 
~,m 

implies that dm+d~ 0 implies that m~n; on the other hand we have 

dm-1(a+d~) fo 0 for some a+dnD since V fo 0 i.e. d~1a is not in 
f,m 

à~ which implies that n>m-1; consequently m~n~-1 so n = m and we have 

the desired isomorphism between V~ and D/dmD. 
~,m 

3. To establish the isomorphism we observe that a divisible 

torsion module over a discrete valuation ring, D, has the form 

œQ(D)œ(Q(D)/D) where c 1 ,c 2 are certain cardinals, and in our case c
1 

c
2 

this takes the form Mf(Q(D)f) - $ Q(D)$(Q(D)/D). But, the torsion c
1 

c
2 

part of this module is exactly Vf = $ (Q(D)/D); further, since ker d, 
c 2 
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d:V~Vf is one-dimensional over D/dD then c 2 " other\olise ker d 

would not be one-dimensional. 

4.Using T32 we can see that each t in proj lim Gal
d ,m 

induces an automorphism of Vf , the union of aIl Vf,m's. But, for 

Vf~Q(D)/D as modules over a complete valuation ring, D, the only 

automorphisms are of the form v~uv where u is a unit of D; this 

establishes the existence of the unique unit. 

5. To sho,,, that the map t---f,U is a .homomorphism we need only 

observe that: 

t,+t2----+the unique u such that (ttt2 )(v) = [U]f,f(v), and 

(t~~tt<v) = t,(v)+t2(v) = [u']f,f(v)+[U2]f,f(v) = ([u']f,f+[U2]f,f)(v) 

[u'+U2]f,f(v); 

consequently, t,+t~u1+u2' where t~ u 1 and t 2---+u2 • 

The map is injective because for any u in U, the units of D, 

u == 1 (mod d~), i.e. multiplication by a unit is the identity on 

D/dmD~V if and only if t is the identity ~n Q(D)(V
f 

) for each m. 
f,m ,m 

Since u = , satisfies the former condition the injectivity of the map 

follows. As a further consequence of the latter equivalence we have 

the induced injection: Gald ----. U/ ( 1 +d~ ) • ,m 

Surjectivity is obtained as follows: First, we show that the 

order of Gal
d 

is pm_pm-1; for,Q(D)(V
f 

) contains the roots of the 
,m ,m 

polynomial fm(X) = f(f( ••• (f(X)) ••• )) = xpm+ ••• +d~; hence, it contains 

f(fm- 1 (X)) (fm-' (X) )p-1 _ _ __ = +d, \o,hich clearly 
fm-,(X) 

m m-1 
has degree p -p further, a simple application of Eisenstein's criterion 
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( ) m m-1 shows that the polynomial is irredueible over Q D so that p -p 

is the degree of the field extension Q(D)(Vf )IQ(D); hence, the ,m 

order of its Galois group, Gald ,equals this number. Next, we ,m 

j( nt...) m m-1 ( observe that U 1+d ~ has order p -p see, for example, Weiss 

p. 19, reference no. 19). These two facts demonstrate surjectivity. 

Taking the projective limit of both sides of the isomorphism 

between Gald and U/(1+d~) yields the required isomorphism between ,m 

proj lim Gald and U, sinee both groups are compact. ,m 

6. Since v in V
f 

is a root of the Eisenstein polynomial 
,m 

(fm- 1 (X»)p-1+d then, clearly, Q(D)(V
f 

) = Q(D)(v) so d is the norm 
,m 

of an element in the extension Q(D)(Vf,m) (Q(D). 

D23 We let the maximal unramified extension of Q(D) be represented by 

T and denote the Frobenius automorphism of T over Q(D) by FrOb(TIQ(D». 

Ld is totally ramified over Q(D) and sinee ~ is unramified 

then LdnT = Q(D). Now, because one of LdIQ(D) and TIQ(D) is Galois 

(in fact, both are) and LdnT = Q(D) it follows that Ld is linearly 

disjoint from T. Renee, we have Gal(LdTIQ(D» = Gal(LdIQ(D»Gal(TIQ(D», 

and this together with the facts that Gal(LdIQ(D)) Gal(TIQ(D)) = l 

and that both these subgroups are normal in Gal(LdTIQ(D» enables us 

to deduce that: 

We can no' .... make the following defini tion. 

as that homomorphism such that: 
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1. For each u in u~rd(u) is the identity on T, and on Ld 

is the inverse of t (t being the element corresponding to u under the 

map established by T34 part 5). 

2. On Ldrd(d) is the identity, while on T it is precisely 

Frob(TIQ(D)). 

So, if a = ud
m 

is an arbitrary element of Q(D)* th en 

rd(a) = (Frob(TIQ(D)))m on T, and 

rd(u)(v) = [u-
1
]f,f(v) for all v in Vf • 

T35 (Lemma) If the ring of integers of T is denoted Band we write 

~ for the completion of B, then there ~sts, u in U and any f in Fd' 

g in F , w = ud, a power series over ~, H(X) - eX w 

e is some unit satisfying: 

1. Frob(TIQ(D))(H(X)) = H([u]f,f(X)) 

2. H(Ff(X,y)) = Fg(H(X),H(Y)) 

(mod deg 2) where 

3. H([a]f,f(X)) = [a]g,g(H(X)), for all a in D. 

PROOF: 

Essential to the proof is the well-known result that the 

endomorphism, Frob(TIQ(D))-1,is onto the additive group of ~ and onto 

the multiplicative group of units in ~ (according to Serre p.209 

-reference no. la:). 

First, we find a series R(X) satisfying 1. Say a is a unit 

in ~ satisfying Frob(T\Q(D))(e) eu (one such certainly exists by the 

opening remark), then for H1 (X) [e]f,f(X) we have 

Frob(TIQ(D))(H1 (X)) [Frob(TIQ(D))(e)]f,f(X) = [eu]f,f(X) 

[e]f,f([U]f,f(X)) = R1([u]f,f(X)). 
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Now, let us assume that we have 

(moc! deg r+1), 

proceeding by induction we must find b in ~ so that Hr + 1(X) , defined 

by H (X)+bXr + 1 , satisfies: 
r 

Frob(T IQ(D))(Hr +1 (X)) - Hr+1( [u]f,f(X)) 

r+1 
If we put b = ae then a must satisfy: 

(mod deg r+2). 

Frob(TIQ(D))(Hr +1(X)) = Frob(TIQ(D))(Hr (X)+bX
r

+
1

) 

and this must be 

= Frob(TIQ(D))(H
r

(x))+Frob(TIQ(D))(bxr +
1

) 

= Frob(TIQ(D))(Hr (X))+Frob(TIQ(D))(b)X
r

+1 

- Hr + 1 ([u]f,f(X)) (mod deg r+2) 

== Hr ([u]f,f(X))+b([u]f,f(x))r+1 (mod deg r+2). 

Hence, Frob(TIQ(D))(Hr(X))-Hr([u]f,f(X)) = 
b([u]f,f(X))r+1-Frob(TIQ(D))(b)Xr+1 (mod deg r+2); so that 

c = a(ue)r+1_Frob(TIQ(D))(a)Frob(TIQ(D))(er+1), where c is the coefficient 

r+1 
of X on LHS of the last congruence. That is, 

But, we know that Frob(T\Q(D))-1 is surjective on the additive group of 

~ so it is possible to choose a in this fashion, and, hence to determine 

b = aer + 1 as required. This allows us to define H = lim H , and this 
r 

H is the required series satisfying 1. 

Now, (simplifying the notation for Frobenius in the obvious 

way, by omitting (TlQ(D))) observe that h = Frob(H)fH-1 = 

= Hf [u]f ,fH-
1 

= H [dU]f ,fH-
1 
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and that the coefficients of h are in D since, they are clearly in ~, 

and Frob(h) Frob(H[w]f,fH-1) = Frob(H)Frob([w]f,~rob(H-1) 

Frob(H)f{u]f,fFrob(H-1) Frob(H)fH-
1 = h 

(because from 1. we have Frob(H)(FrobH-
1

) H([u]f,fFrob(H-1)) so 

H-
1 = [u]f,f(Frob(H-1))), meaning that the coefficients must also be 

in Q(D). 

We can also say that h is in F since 
w 

h(X) 
-1 

(mod deg 2) == ewe X = wX and, 

h(X) - Frob(H)(f(H-
1

(X))) ~ Frob (H)«H-1 (X))p) (mod d) 

(mod d) 

by definition of the Frobenius. Furthermore, we can replace H by 

V]g,h(H) in the above and 1. remains valid, but, now we have g 

= H [w Jf ,fH-1 • 

-1 FrobHfH 

To verify 2. we need only show that F(X,Y) = H(F
f

(H-1 (X),H- 1 (y))) 

satisfies the defining properties of F (X,Y). Clearly, 
g 

F !!! X+Y (mod deg 2), and also, 

H(F p-1 «g(X) ),H-
1 

(g(Y))) H(F f ( [w J
f 

,fH-1 (X) ,[ w Jf ,fH-1 (y) )) 

= H[w]f,f(Ff (H-
1

(X),H-
1 (y))) 

gH(F/C1 (X) ,H-1 (y))) 

Furthermore, F is defined over D since, the proof of T28 shows that the 

F satisfying the two defining conditions must, in fact, be defined over D. 

In a similar fashion we have H-
1

[a]g,g(H(X)) = [a]f,f(X). For, 

clearly H[a]f,f(H-
1

(X)) == aX (mod deg 2) and also, 

g ( H [a] f ,fH-
1 

(X) ) (H [ w] f ,fH-
1 

) ( H[ a] f ,fH-
1 

(X) = 

H[w]f,f[a]f,fH-
1

(X) = 
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H[a]f,f[w]r,fH-
1

(X) = 

H[ a] l' ,fH-
1 

(H [w]f ,fH-
1 

(X)) = 

= H[ a] l' ,fH-
1 
(g(X)). 

This shows that 3. is valid, and, consequently, the proof is complete. 

T36 (Theorem) The field,LdT,and the homomorphism, rd' are the same 

no matter what prime, d, is chosen. 

PROOF: 

Given a separable algebraic 'extension, K, of Q(D), contained· 

in Q(D)s we again denote by ! a completion of K, which is contained in 

the fixed completion, Q(D)s' of Q(D)s. For a Galois extension, K'Q(D), 

the automorphisms of K over Q(D) have unique extensions to K over Q(D) 

because they are continuous and! is complete; so we can proceed as 

follows. If d and w = ud (for u in U) are any two primes~D, which 

gi ve rise to the two series,f in Fd,g€F w,then we must show that 

1/ LdT = L T and 2/ rd = rw· w 

1/ T35 2. shows that H is in HO~(Ff,F ), and H is, in fact, 
- g 

an isomorphism because HI (0) = e is a unit so that H- 1 (X) is well-defined 

over~. This fact and T35 3. allow us to deduce that the map v~(v) 

is an isomorphism of the' torsion submodule, Vf , of Mf(Q(D)s) onto that 

of M (Q(D) ), denoted by V. Consequently, g _____ s g 

Vg = H(Vf ) C:(Vf ) = TLd , and 

V
oP 

H-1 (V ) C T ( V ) = TL • 
.L g -..:-iL.. --2! 

These two sequences imply that TLw is contained in and contains TL
d

, so 

equality is established. Now, we simply observe that TLd = TLw since 

both equal the unique separable algebraic closure of Q(D) in TL
d

• 
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2/ To show that rd = rw we need only prove that rw(w) = rd(w) 

since this implies that aIl homomorphisms, rd' coincide on the prime, 

w, so they must be equal on Q(D)* (which is generated as a group by such 

primes, w). On T, rd(w) and rw(w) are both equal to Frob(TIQ(D» 60 it 

remains to show that the automorphisms have the same effect on L • 
w 

However, r (w) is the identity on L w w Q(D)(V ) and since L is generated 
g w 

by aIl H(v) for v in Vf we need only verify that rd(w)(H(v» = H(v), 

for aIl v in Vfo But, rd(w) = rd(u)rd(d), where rd(d) is Frob(!lQ(D» 

on ! and takes v onto v in Vf , while rdCu) is trivial on ! and takes 

v onto [u-
1
]f,f(v), v in Vf • Now, H has coefficients in! so we can 

say that 

rd(w)(H(V» = (rd(d)rd(u»(H(v» = 

= rd(d)H(rd(u)(v» = 

= r d (u)H([u-
1
]f,f(v» 

and this i8, by 1. of T35 = H([u]f,f([u-
1
]f,f(v») = H(v). 

T37 (Corollary) 1. The reciprocity law homomorphism for LdTIQ(D) is 

rd' i.e. rd(a) = (~dT,Q(D», for a in Q(D)*. 

2. LdT is, in fact, the maximal abelian extension of 

Q(D). 

PROOF: 

1. To show that rd is the reciprocity law homomorphism, s, 

we must demonstrate that s(a) = (a,LdTlQ(D» satisfies: s(d) = rd(d) 

r(d) where r = rd for aIl d by T36, because the primes, d, generate 

Q(D)*. We observe that s(d) is the identity on Ld since d is a norm 

from Ld,m for each m (according to T34 6.) and s(d) is Frob(TlQ(D» 
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so the equality is proved. 

2. LdTIQ(n) is a maximal abelian extension since LdT contains 

T, the maximal, unramified extension of Q(n) and rd restricted ta U is 

injective (because u in U and rd(u) = 1 on Ld and hence on Ld,m for 

each m, then u = 1 (mod dm) for each m~1 sa that u must be 1). 

******** 


