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ABSTRACT

This thesis presents a new methodology for automatically learning an optimal

neurostimulation strategy for the treatment of epilepsy. The technical challenge is to

automatically modulate neurostimulation parameters, as a function of the observed

field potential recording, so as to minimize the frequency and duration of seizures.

The methodology leverages recent techniques from the machine learning literature, in

particular the reinforcement learning paradigm, to formalize this optimization prob-

lem. We present an algorithm which is able to learn an adaptive neurostimulation

strategy directly from labeled training data acquired from animal brain tissues. Our

results suggest that this methodology can be used to automatically find a stimulation

strategy which effectively reduces the incidence of seizures, while also minimizing the

amount of stimulation applied. This work highlights the crucial role that modern

machine learning techniques can play in the optimization of treatment strategies for

patients with chronic disorders such as epilepsy.
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ABRÉGÉ

Cette thèse présente une nouvelle méthodologie pour apprendre, de façon au-

tomatique, une stratégie optimale de neurostimulation pour le traitement de l’épilepsie.

Le défi technique est de moduler automatiquement les paramètres de stimulation, en

fonction de l’enregistrement de potentiel de champ observé, afin de minimiser la

fréquence et la durée des crises d’épilepsie. Cette méthodologie fait appel à des

techniques récentes développées dans le domaine de l’apprentissage machine, en par-

ticulier le paradigme d’apprentissage par renforcement, pour formaliser ce problème

d’optimisation. Nous présentons un algorithme qui est capable d’apprendre une

stratégie adaptative de neurostimulation, et ce directement à partir de données

d’apprentissage, étiquetées, acquises depuis des tissus de cerveaux d’animaux. Nos

résultats suggèrent que cette méthodologie peut être utiliser pour trouver, automa-

tiquement, une stratégie de stimulation qui réduit efficacement l’indicence des crises

d’épilepsie tout en minimisant le nombre de stimulations appliquées. Ce travail met

en évidence le rôle crucial que les techniques modernes d’apprentissage machine peu-

vent jouer dans l’optimisation de stratégies de traitements pour des patients souffrant

de maladies chroniques telle l’épilepsie.
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CHAPTER 1
Introduction

Clinicians treating individuals with chronic disorders—e.g., epilepsy, mental ill-

ness, HIV infection—often prescribe a series of treatments in order to maximize

favorable outcome for the patient. This generally requires modifying the duration,

dose or type of treatment over time. Selecting the best sequence of treatments for

an individual presents significant challenges, due to the heterogeneity in response to

treatment, as well as the potential for relapse or side-effects. Clinicians frequently

rely on clinical judgement and instinct, rather than formal evidence-based processes

to optimize sequence of treatments.

Reinforcement learning (RL)1 is a well-known framework for optimizing se-

quences of actions in an evolving, time-varying system [65]. Recent advances in re-

inforcement learning techniques make possible its application to real-world domains

in which the state space is continuous and high-dimensional. When applied in the

context of treatment design, reinforcement learning provides the means to evaluate

the long-term effect of a given treatment, and thus optimize sequences of treatments

for a given objective.

1 Throughout this thesis, reinforcement learning refers to the computer science
framework named as such, rather than the—related—concept of reinforcement in
animal learning.
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The idea of applying reinforcement learning to optimize treatment strategies

is relatively novel both in the medical and machine learning communities. We at-

tribute this in large part to a lack of appropriate sequential data (or alternately a

generative model), which is a key requirement for applying reinforcement learning.

This situation is rapidly changing: the medical community has a strong interest in

designing studies with multiple sequential, randomized trials [48]. In addition, on-

going clinical trials are evaluating the usefulness of treatment strategies that rely on

automated prediction methods to trigger treatment [36], and significant attention is

being devoted to developing high fidelity in silico models of chronic diseases [73].

The growing availability of medical data and the rapid development of machine

learning techniques, such as reinforcement learning, suggest a space for investigating

the automated learning of sequential treatment strategies from data. In this thesis,

we focus our attention on learning a treatment strategy for epilepsy by optimizing

neurostimulations.

1.1 Problem statement

Epilepsy is a highly-prevalent and severe neurological disorder, affecting around

1% of the world population [38]. It is characterized by recurrent unprovoked seizures—

synchronous abnormal neuronal firings in the brain which can cause involuntary

changes in behavior and sensations. Up to 30% of epilepsy patients suffer from re-

fractory epilepsy [39], meaning that anti-epileptic medications are not effective on

those patients. A common treatment option for drug-resistant patients is to undergo

resective surgery, but this comes at the risk of physical and cognitive impairments.
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An emerging treatment alternative for drug-resistant patients is Deep Brain Stimu-

lation (DBS). In DBS, electrical stimulation is applied near the epileptogenic zone,

with the goal of modulating the electrical hyperactivity, and thus preventing seizure

symptoms and therefore improving the poor quality of life of those drug-resistant

patients.

Recent studies evaluated the effectiveness of DBS strategies in drug-resistant

human patients [11, 21, 30, 43]. However, conclusive evidence in humans is difficult

to achieve. There is large variance in the disease and symptoms between patients,

and it can be difficult to choose an adequate stimulation protocol for each patient.

Most results to date come from uncontrolled studies, or (controlled) studies includ-

ing only a small number of patients. There are many parameters to select when

applying DBS, including the target area for stimulation, as well as the frequency,

intensity and pattern of the electrical signal. These can be specified either through

an open-loop paradigm, or as a closed-loop control system. An open-loop strategy

uses preset parameters to deliver stimulation, without monitoring electrical cortical

activity. Examples of open-loop strategies include fixed-frequency (periodic pacing)

stimulation, as well as stimulation strategies based on a fixed random process (e.g.,

gaussian noise generator or Poisson impulse trains). In a closed-loop strategy, the

stimulation parameters are dynamically changed in response to sensor readings of

brain activity; this is illustrated in Figure 1–1. This can be achieved by using software

to automatically detect an impending seizure and administering a fixed stimulation

protocol designed to terminate the seizure [16, 20, 41, 70, 37, 25, 33]. The stimulation

parameters can also be dynamically changed in response to sensor readings through

4



more sophisticated feedback control methods; the purpose of this thesis is to explore

these more elaborated closed-loop control mechanisms by using the reinforcement

learning framework.

Stimulator 

   Sensor

Agent controls based 

on the sensor data

Closed−loop paradigm

Figure 1–1: In closed-loop DBS, the stimulation is dynamically adapted based on sensor
readings from the brain.

More substantial evidence of DBS successfully reducing epileptic symptoms has

been produced using animal models of epilepsy. A number of studies focused on

finding the appropriate stimulation site and frequency of stimulation for open-loop

stimulation strategies [21, 61, 17] as well as for closed-loop strategies [60, 49, 20, 61,

14].

Findings using an in vitro model have consistently demonstrated that repetitive

low-frequency stimulation, delivered in the hippocampus at frequencies similar to

those of naturally occurring discharges, provides a reduction of epileptiform synchro-

nization [17]. In particular, the 1.0 Hz frequency was found to have maximal efficacy

in depressing ictogenesis in rodent brain slices.
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In order to test whether we can find an RL neurostimulation strategy that pro-

vides an improvement over open-loop strategies, we explore the avenue of directly

optimizing stimulation patterns in an in vitro model of epilepsy. Some experimen-

tal variables, such as the location of the stimulating and recording electrodes, are

more easily controlled when using in vitro models than when dealing with living ani-

mals. In addition, the mean interval of time between seizures is shorter in vitro—by

two orders of magnitude. This allows us to concentrate more attention on com-

putational issues than on the management of long and complex biological experi-

mentation, while still maintaining a challenging domain that resembles the human

epileptogenicity. Experimentation is also cheaper in vitro and, as outlined above,

good open-loop neurostimulation strategies already exist for those models, providing

a—challenging—comparison baseline. For the reasons mentioned, it should be clear

that experimenting in an in vitro model of epilepsy is a logical first step towards

adaptive seizure control in human patients.

Informally, the problem can be formulated as follows: at every moment in time,

given some information about what happened to the signal previously, we need to

decide which stimulation action we should choose (if any) so as to minimize seizures

and, to a lesser extent, stimulations now and in the future. The advantage of mini-

mizing the number of stimulations is twofold; first, it can help save the battery life of

the embedded stimulation device and, secondly, it relieves some of the stress which

is applied to the brain tissue when it is stimulated.
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1.2 Computational Approach

Reinforcement learning is one of the leading techniques in computer science

and robotics for automatically learning optimal control strategies in dynamical sys-

tems. The technique was originally inspired by the trial-and-error learning studied

in the psychology of animal learning (thus the term ’learning’). In this setting, good

actions by the animal are positively reinforced and poor actions are negatively re-

inforced (thus the term ’reinforcement’).2 Reinforcement learning was formalized

in computer science and operations research by researchers interested in sequential

decision-making for artificial intelligence and robotics, where there is a need to esti-

mate the usefulness of taking sequences of actions in evolving, time varying system

[35, 65]. It is especially useful in situations in which the agent’s environment is

stochastic, and for poorly-modeled problem domains in which the optimal control

strategy is not obvious.

We frame the problem of learning neurostimulation strategies in the reinforce-

ment learning framework. The goal of the agent is to learn a policy of stimulation

that minimizes the duration of seizures while minimizing the number of stimula-

tions. The policy sequentially decides which frequency of stimulation to use for a

small amount of time until the next decision point.

2 It was later discovered that there is a deeper link between reinforcement learn-
ing algorithms and the brain mechanisms underlying reinforcement and learning in
animals, it is now an active area of research [19].
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The recording data available to the reinforcement learning agent is continuous,

high-dimensional, and substantially noisy; for that reason we require a robust tech-

nique to be able to learn anything from it. In particular, we need to generalize over

unseen states using function approximation. Though employing function approxi-

mation in RL for large continuous problems with unknown dynamics is not a solved

issue, some domain knowledge can help but it is not trivial to incorporate in the

solution. In Chapter 3, we raise the problem of dealing with sparse data and address

it with a domain specific solution to improve the policy of the RL agent.

1.3 Results

We demonstrate the feasibility of using machine learning techniques to learn

adaptive treatment strategies by providing evidence that we can learn, from field-

potential recordings, a neurostimulation controller that suppresses epileptic seizures.

A first set of evidence is provided off line by evaluating our learned reinforcement

learning policy, using hold-out datasets, against other stimulation strategies. A

second set of evidence is obtained by evaluating our closed-loop strategy in vitro

using a rodent-brain slice model of epilepsy. We show that our learned controller

is able to perform as well as a 1.0 Hz open-loop strategy, while reducing the total

amount of stimulation delivered in most slices. Overall, the findings support the

view that our computational methodology, such as the use of reinforcement learning,

is a viable approach to optimize adaptive treatment strategies.
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1.4 Overview

The rest of this thesis is organized as follows. Chapter 2 provides the compu-

tational technical background necessary to understand the methodology and exper-

iments in the thesis. Chapter 3 highlights the advantages of approximating across

actions in our domain. Then, Chapter 4 describes the experiments that were run

and the results, obtained in silico and in vitro, are presented. Part of the results in

Chapter 4 are already published in [58]. Finally, Chapter 5 concludes and discusses

the work presented in this thesis before outlining avenues for future work.
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CHAPTER 2
COMPUTATIONAL METHODS

This chapter presents the computational technical background pertinent to the

work presented in this thesis. In Section 2.1, we introduce reinforcement learning and,

in Section 2.2, we look at the problem of function approximation in reinforcement

learning. We then present a particular reinforcement learning method, called fitted

Q iteration, in Section 2.3. Finally, in Section 2.4, we briefly examine regression in

order to introduce a particular regression method called extremely randomized trees.

2.1 Reinforcement Learning

Reinforcement learning is a problem in which an agent learns to make decisions

optimally in a given environment by exploring possible actions and receiving scalar

rewards for those actions. It is especially useful in situations in which the agent’s

environment is stochastic, and for poorly-modeled problem domains in which the

optimal decision-making policy is not obvious [8, 32, 35, 65, 67].

Formally, the problem is modeled as a Markov decision process (MDP) [32]

represented as 4-tuple (S,A, P, R) consisting of a set of states S, a set of actions A

available to the agent, along with a probabilistic transition function T , and a reward

function R. Time is modeled as a series of discrete steps with 0 ≤ t ≤ ∞. On

performing an action a ∈ A in state s, the agent receives a scalar reward r = R(s, a)

and the environment moves to a new state s′ according to the conditional probability

distribution T (s, a, s′) = P (s′|s, a). The state is assumed to be a sufficient statistic

10



for the past sensor observations, this is known as the Markov assumption. In an MDP,

a policy is a function π : S → A that dictates the behavior of an agent (i.e., it defines

which action an agent chooses to execute for every state of S). In a reinforcement

learning scenario, the transition and reward functions are unknown and the agent

learns about the MDP by interacting with the environment; the classical interaction,

called online RL, is presented in Figure 2–1.

Agent

Environment

actionrewardstate

Figure 2–1: The classical agent-environment interaction in reinforcement learning,
adapted from [65].

The discounted total reward, or return, of following a policy π over some infinite

time horizon, denoted R is:

R =
∞
∑

t=0

γtRt. (2.1)

Here γ ∈ [0, 1) is a discount factor for future rewards, it implies that rewards far in

the future will be worth exponentially less than immediate rewards.1 The sequence

of random variables Rt in Equation 2.1 is a random process that depends on a

1 It can be thought of as the agent’s probability of surviving to the next time step.
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starting state s0 and that defines possible state–action–reward sequences in the MDP

according to the transition function T , the reward function R, and the policy π.

Given this formulation, the value function V π : S → R, designating the value of

each state for an agent following a fixed policy π, can be defined as:

V π(s) = Eπ

[

∞
∑

t=0

γtRt|s0 = s

]

∀s ∈ S. (2.2)

In other words, the value V π of a state s is the expected return of following the policy

π when starting in state s. By expanding Equation 2.2, the value function can be

expressed as a linear fixed-point equation:

V π(s) = R(s, π(s)) + γ
∑

s′∈S

P (s′|s, π(s))V π(s′) (2.3)

= (BπV π)(s) ∀s ∈ S, (2.4)

where Bπ : R|S| → R
|S| is the Bellman operator for policy π defined as

(BπV )(s) = R(s, π(s)) + γ
∑

s′∈S

P (s′|s, π(s))V (s′). (2.5)

We define the optimal value V ∗ for a state s to be:

V ∗(s) = max
π

Eπ

[

∞
∑

t=0

γtRt|s0 = s

]

, (2.6)

which we can expand to the non-linear fixed-point equation:

V ∗(s) = max
a∈A

(

R(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′)

)

(2.7)

= (B∗V ∗)(s) ∀s ∈ S, (2.8)
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where B∗ : R|S| → R
|S| is the Bellman optimality operator defined as

(B∗V )(s) = max
a∈A

R(s, a) + γ
∑

s′∈S

P (s′|s, a)V (s′). (2.9)

Therefore, the optimal value of a state is the maximum2 expected return that

it is possible to achieve in that state. The optimal policy π∗ can then be constructed

from V ∗ as follows:

π∗(s) = argmax
a∈A

(

R(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′)

)

∀s ∈ S. (2.10)

It is also sometimes useful to express the optimal value of a state–action pair,

which we formulate as:

Q∗(s, a) = R(s, a) + γ
∑

s′∈S

P (s′|s, a)max
a′∈A

Q∗(s′, a′). (2.11)

Similarly, the value of a state–action pair, when following a policy π, is defined as

the following fixed-point equation:3

Qπ(s, a) = R(s, a) + γ
∑

s′∈S

P (s′|s, a)Qπ(s′, π(s′)). (2.12)

2 If the action set is not finite, then the maximum operator should be replaced by
the supremum operator.

3 Bellman operators for action–value functions can be defined, mutatis mutandis,
like in Equations 2.5, 2.9.

13



It is easy to see the relation between the value function and the action–value function:

V π(s) = max
a

Qπ(s, a), (2.13)

V ∗(s) = max
a

Q∗(s, a). (2.14)

Using the action–value function and combining Equations 2.10, 2.11, and 2.14, the

optimal policy can now be simply expressed as:

π∗(s) = argmax
a

Q∗(s, a). (2.15)

In a policy evaluation (or value prediction) scenario, the goal of the task is to

evaluate a given policy π by finding V π (or Qπ). This is useful to compare the

performance of different agents or to predict the result of applying a policy π. In

an optimal control scenario, the agent’s goal is to find the optimal policy π∗. The

latter scenario is more pertinent to the work in this thesis; however, both are tightly

related. As a matter of fact, some methods employ algorithms designed to solve

the first scenario as a component to finding the optimal policy; this is known as

policy iteration. Therefore, we first review some basic algorithms that carry out

policy evaluation in Section 2.1.1. Then, in Section 2.1.2, we discuss algorithms that

achieve optimal control. Note that all algorithms presented in Sections 2.1.1 and 2.1.2

are tabular algorithms that assume a finite—and generally small in the sense that it

can be compactly enumerated—state space; Section 2.2 discusses the application of

reinforcement learning for infinite—or simply large—state spaces.
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2.1.1 Value Prediction

Let us first consider the simple case in which we know the MDP model a priori,

in other words S, A, T , and R are known. Then, we can solve the fixed-point

Equation 2.12 by iterating Q̂N over N :

Q̂π
N(s, a)← Bπ(Q̂π

N−1) (2.16)

= R(s, a) + γE
[

Q̂π
N−1(s

′, π(s′))
]

(2.17)

= R(s, a) + γ
∑

s′

P (s′|s, a)Q̂π
N−1(s

′, π(s′)), ∀N > 0 (2.18)

with Q̂π
0 ≡ 0. This is an instance of a dynamic programming solution and is known

as the value iteration algorithm [8]. Bπ is a contraction mapping in the infinity norm,

for γ < 1, since ‖BπQ−BπQ′‖∞ ≤ γ‖Q−Q′‖∞ for any Q and Q′; therefore, by the

Banach fixed-point theorem [6], the sequence converges to a unique fixed point—Qπ.

V π can also be obtained in a similar fashion.

When the model is not available, there are two main approaches to estimate V π.

The agent can first estimate T and R from samples in order to get approximations

T̂ and R̂,4 and then compute the (action-)value function using the value iteration

algorithm described above with a model composed of T̂ and R̂. If T̂ and R̂ are

sufficiently accurate, then the value function obtained will be close to the real V π

[10]. This is called a model-based approach.5 An agent can also estimate V π directly

4 This can be done, for example, using maximum likelihood estimation.

5 There exists several model-based approaches, the one outlined is rather elemen-
tary.
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with so-called model-free approaches. A simple model-free technique is to gather

return estimates Rs from a state s when following policy π to build a Monte-Carlo

(MC) estimate of V π(s):

V̂ π(s)← V̂ π(s) + αt

[

Rs − V̂ π(s)
]

, (2.19)

where αt is the learning rate. A shortcoming of that method is that it requires a full

return estimate in order to update V̂ π(s), we can alleviate that problem with the

so-called temporal-difference (TD) learning method [63]; TD is a central concept in

reinforcement learning. In TD learning, the current estimate of the (action-)value

function is used as part of the learning target to avoid the need for a full return

sample:6

V̂ π(st)← V̂ π(st) + αt

[

rt + γV̂ π(st+1)− V̂ π(st)
]

. (2.20)

Equation 2.20 is the essence of the TD(0) algorithm. The MC method and the

TD(0) algorithm can be viewed as the two extrema of a parametrized algorithm

TD(λ), where λ = 0 leads to TD(0) and λ = 1 leads to a MC method. Note that

TD(λ) is known to converge for all λ [18].

2.1.2 Control

In the optimal control scenario, if the model is known, we can also rely on

dynamic programming by using a value iteration algorithm, as in Equation 2.18,

to learn the optimal action-value function—and therefore the optimal policy. The

6 For that reason TD algorithms are said to bootstrap.
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following update equation is needed in place of Equation 2.18 (i.e., we utilize the B∗

operator instead of Bπ):

Q̂∗
N(s, a)← R(s, a) + γ

∑

s′

P (s′|s, a)max
a∈A

Q̂∗
N−1(s

′, a) ∀s, a ∀N > 0. (2.21)

Again, as in the policy evaluation scenario, model-based approaches can be used

to first estimate the MDP model and then derive the (near-)optimal policy from

the approximated model. With respect to model-free approaches, the temporal-

difference ideas employed in the policy evaluation case can also be leveraged to learn

the optimal policy. The Q-learning algorithm [75] is an online algorithm to learn the

optimal action-value function that relies on a TD update, its main update equation

is:

Q̂∗(st, at)← Q̂∗(st, at) + αt

[

rt + γmax
a∈A

Q̂∗(st+1, a)− Q̂∗(st, at

]

. (2.22)

This algorithm is said to be online because there is an interaction with the environ-

ment to decide which action to execute at each step. In order to converge to the

optimal action-value function, the agent must not act greedily; that is to say, the

agent must occasionally select actions which are not optimal according to its current

estimate in order to explore potentially better actions. A simple non-greedy policy,

called ǫ-greedy policy, chooses to execute a random action with probability ǫ and

acts greedily otherwise. Since the Q-learning algorithm will converge to the optimal

action-value function,7 as opposed to the action-value function of the policy it is

7 If αt decreases in an appropriate manner.
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executing (i.e., the ǫ-greedy policy or some other exploration policy), we say it is an

off-policy algorithm. The early theoretical analysis of Q-learning is presented in [71].

Note that the subject of efficient exploration in RL is vast and is still the subject

of active investigation. Researchers seek algorithms that achieve faster convergence,

or good enough performance with a finite set of samples, instead of simply guar-

anteeing asymptotic convergence. The case in which we cannot interact with the

system is covered in Section 2.3.

2.2 Function Approximation

Standard tabular reinforcement learning algorithms assume a finite number of

states—and actions—, yet most real-world problems possess some continuous com-

ponents that do not have straightforward discretizations. For those problems, the

continuity implies an infinite number of states and, therefore, some form of general-

ization over unseen states is required to be able to learn a policy for all states. If V π

is the true value function of a policy π, then the function approximation problem is to

find a representable and computable function V π ′ from a defined class of functions,

such as to match V π closely.

A popular method is to represent the value function V π ′ as a smooth differen-

tiable function of a parameter vector θ and to learn the parameters using gradient-

descent [63]. In a special case of parametrization, called linear function approxima-

tion, a vector of features φs represents a state s such that the value function can be

represented as a linear combination of those features: V π ′(s) = θ⊤φ =
∑

i

θ(i)φs(i).
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Since being able to approximate the value function is a crucial requirement to

solving most real-world problems, we briefly review methods for approximating the

value function in the value prediction and control scenarios.

2.2.1 Value Prediction

In a value prediction scenario, the problem is to find the value V π of a fixed

policy π by interacting with the environment. The update for TD(0) when used with

linear function approximation is:

θ ← θ + α(rt + γV (st+1)− V (st))∇θV (st) (2.23)

= θ + α(rt + γV (st+1)− V (st))φst . (2.24)

Gradient-descent methods for TD(λ) learning with linear function approximation

were initially proposed in [63] along with a proof of convergence for the cases TD(0)

and TD(1). The algorithm was used successfully to learn an expert backgammon

player in [68]. A proof of convergence of linear TD(λ), for general λ, was later pub-

lished in [72]. However, those results were only valid for on-policy learning (i.e., the

states are sampled according to the policy π to be evaluated) which is not applicable

if the samples are generated through the execution of a different behavior policy. In

[59], an off-policy linear TD(λ) learning algorithm that relies on importance sam-

pling was demonstrated to be convergent, but at the expense of high variance. More

recently, a fast convergent off-policy TD(0) algorithm with linear function approxi-

mation, called GTD for gradient temporal-difference, was introduced to remove those

limitations [66]. This work was later generalized to non-linear function approxima-

tion [42].
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2.2.2 Control

Function approximation has been employed early on in order to seek (near-) op-

timal policies of complex problems [64]. Nevertheless, researchers soon realized that

using function approximation was not necessarily sound and could lead to divergence

even on some simple problems [12].

If the transition model is known, then a classic solution is to run the fitted

value iteration (FVI) algorithm which iterates the value function as follows: Vk+1 =

ΠFBVk, where B is the Bellman operator and ΠF is a projection on the space of

value functions representable by the class of functions F employed for the function

approximation. FVI is known to be convergent if ΠF is a non-expansion, this is

satisfied in particular for a class of approximation functions called averagers or kernel-

based methods [27]. Examples of averagers are k-nearest-neighbor, state aggregation,

tree-based methods, and local weighted averaging.

If the model is unknown, then an approximate version of fitted value itera-

tion, described in more details in Section 2.3, relies on sample trajectories from the

MDP to learn a policy and is known to be converge to the optimal value function

asymptotically under some continuity assumption and for particular classes of ap-

proximation function [53]. Finite sample bounds for those methods were obtained

in [47]. Other methods are used in practice, such as variants of Q-learning with

function approximation, although they do not always provide theoretical guarantees.

If state aggregation is used with Q-learning, then convergence to an approximation

of Q∗—optimal in the induced MDP—can be obtained [9].
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2.3 Fitted Q Iteration

Many traditional reinforcement learning approaches use on-line learning, in

which the agent interacts with the environment dynamically and updates its pol-

icy after taking each action [65]. However, in many practical domains (including

instances of medical treatment design), it is not possible to train an agent entirely

on-line. Normally, data will be collected in a fixed series of experimental trials and

the potentially disruptive effects of an untrained agent may impose an unacceptable

risk (e.g., if the policy is applied to a patient as part of a medical treatment).

In cases such as this, it is preferable to take a batch mode reinforcement learn-

ing approach, in which the agent is trained using a series of previously recorded

trajectories containing state, action, and reward information.

The fittedQ iteration (FQI) algorithm [22], which builds on earlier work on fitted

value iteration [28, 53], takes as input a set F of 4-tuples of the form (st, at, rt, st+1),

where each tuple is a sample of a one-step transition dynamics of the system. Unlike

earlier formulations of batch-mode RL, the FQI algorithm is well suited for problems

with continuous state and action spaces. Also, the algorithm has been shown to

make efficient use of training data [34], which is especially important in medical

applications, where data may be sparse and expensive to collect.

When using FQI, it is assumed that we do not know the transition dynamics or

reward function of the MDP. We can still approximate the value iteration algorithm

as follows; at each iteration k of the algorithm, we form an estimate Q̂k of the true

Qk function by iteratively learning the mapping from the sample transitions:
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Q̂k(st, at) = rt + γmax
a′∈A

Q̂k−1(st+1, a
′). (2.25)

By using this formulation, the reinforcement learning problem can be cast as a

batch supervised learning problem. Thus any regression algorithm can be used to

learn the mapping Q : S × A → R at each iteration. The pseudocode for the FQI

algorithm is listed in Algorithm 1.

Algorithm 1: Fitted Q iteration algorithm, adapted from [22].

Input: F = {
(

slt, a
l
t, r

l
t, s

l
t+1

)

, l = 1, . . . , n} and a regression algorithm
r : {(i, o)|(i, o) ∈ R

k × R} → f : Rk → R

Output: Q̂
N ← 01

Q̂N(s, a)← 0 ∀(s, a) ∈ S ×A2

while Stopping condition is not reached do3

N ← N + 14

T S ← {
(

il, ol
)

, l = 1, . . . , |F|} where5

il = (slt, a
l
t),6

ol = rlt + γmax
a∈A

Q̂N−1(s
l
t+1, a).7

Q̂N ← r(T S)8

end9

Q̂← Q̂N10

If the transitions are stochastic, then most regression methods ensure that we are

implicitly computing an expectation for Q̂N(s, a), instead of fitting it to a particular

realization of the transition kernel.

The stopping condition in Algorithm 1 typically checks if the difference between

two consecutive Q̂N is less than some threshold: ‖Q̂N − Q̂N−1‖∞ < ǫ. However, the

FQI algorithm is only guaranteed to converge under some conditions, for example in
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the case of kernel-based methods if the kernels are kept constant across the iterations

[22]. Therefore, it is sometimes more appropriate to set a fixed number of iterations,

relying on the rate of convergence of the value iteration algorithm as an indicator for

the required number of iterations.

In terms of the theoretical quality of the solution obtained by the algorithm,

some finite-sample performance bounds for FQI were proven in [2] and [47] for a

particular class of regressors.

2.4 Regression

The FQI algorithm requires an appropriate supervised regression algorithm to

learn the Q̂N functions. In this section, we first briefly review the bias/variance

decomposition for supervised learning and then introduce a particular tree-based

regression algorithm called Extremely Randomized Trees.

2.4.1 Bias/Variance Decomposition

In supervised learning, a statistical model describing the data generation process

that we want to model is generally assumed:

O = f(I) + ǫ, (2.26)

where O is the output random variable that depends on I, the input variable, and

the random variable ǫ models noise or variation with E(ǫ) = 0 and V ar(ǫ) = σ2
ǫ .

The random variable I is distributed according to some distribution DI . The goal of

the regression problem is to learn the relation f(i) = E(O|I = i) ∀i given a set of

pairs T S = {(il, ol)|l = 1, . . . , n} generated according to the (unknown) model. The

learned estimate of f is denoted by f̂ . We can decompose the expected prediction

23



error of the regression algorithm’s estimate for a particular query point i0 as follows:

Err(i0) = E[(O − f̂(i0))
2|I = i0]

= σ2
ǫ + (E[f̂(i0)]− f(i0))

2 + E[(f̂(i0)− E[f̂(i0)])
2]

= σ2
ǫ + Bias2(f̂(i0)) + Var(f̂(i0)). (2.27)

The first term in Equation 2.27 is the irreducible error of this statistical model,

it is a lower bound on what is achievable by any learning algorithm. Supervised

learning algorithms strive to reduce the two other terms, the bias and variance terms.

The squared bias term indicates how far is the average estimate to the true average

output, and the variance term expresses how the estimate varies around its mean

depending on the learning samples and, potentially, the algorithm’s randomness.

Note that this is a local estimate of the error which can be globalized by taking into

account the distribution of samples DI .

One possible strategy to reduce the bias and variance terms involves utilizing a

combination of randomization and averaging [31]. We review one particular method

that performs this, called Extremely Randomized Trees, in the following section.

2.4.2 Extremely Randomized Trees

The Extremely Randomized (Extra) trees [26] is a regressor with attractive

properties that has already been employed in the context of a medical application

[23].

Unlike classical regression tree algorithms such as CART or Kd-trees, the Extra

Tree algorithm builds an ensemble of trees, and the overall value returned by the

final classifier is the mean of the values of the individual trees. The Extra Trees
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algorithm is inspired by the celebrated Random Forest algorithm [13], the main

differences between the two algorithms are that the Extra Trees method does not

bootstrap samples from the training set—instead it relies on all the samples for

building every tree—and more randomness is introduced in the tree construction

process. The first difference is intended to reduce bias and the second to reduce

variance—after averaging of the trees in the forest. In a vast empirical study, Extra

trees were faster to compute and generally obtained similar or better performance

than Random Forests [26].

The Extra Tree algorithm has three parameters: M , the number of trees to

create; K, the number of candidate tests at each node; and nmin, the minimal number

of nodes at each leaf. The algorithm builds each of M trees using the entire training

set T S. Each node is constructed by creating K candidate tests consisting of a

randomly selected element of the input vector and a random cut point. A score is

calculated for each candidate test based on the relative variance reduction of each

test. The best test is kept and all others discarded. The process continues until

each leaf node contains no more than nmin elements. The output of the M trees are

averaged to produce the output of the ensemble. The pseudocode for building one of

the M trees is outlined in Algorithm 2 and 3. It should now be clear how the Extra

Trees combine the randomization and the averaging. Let us understand the effect of

such a strategy on the bias and variance terms of Equation 2.27. First, if we assume

a single tree, the variance term can be decomposed, using the law of total variance,

as follows:

VarT S,T Bf̂(i0) = VarT S

[

ET B|T S

[

f̂(i0)
]]

+ ET S

[

VarT B|T S

[

f̂(i0)
]]

, (2.28)
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where T S is the training set and T B is the random variable governing an entire

tree-building process.8 The first term in Equation 2.28 expresses how the average—

with respect to the tree-building process—prediction varies with different training

samples; the second term represents the expectation, over all training sets, of the

variance in the prediction with respect to T B. When building M independent trees,

we have:

VarT S,T BM f̂(i0) = VarT S

[

ET B|T S

[

f̂(i0)
]]

+
ET S

[

VarT B|T S

[

f̂(i0)
]]

M
. (2.29)

Therefore, the second term in the prediction variance can be arbitrarily controlled

as we increase the number of trees. By introducing randomization, both the bias

and variance in the expected prediction error generally increase. This phenomenon

is illustrated in Figure 2–2. However, the averaging of the randomized estimates

generally reduces the overall expected prediction error.

The exact outcome of such a strategy depends on the particular algorithm used

but also on its parameters. In the Extra Trees case, the parameter K determines

the amount of randomness introduced. If K is small, then the tree-building process

mostly ignores the training set, which reduces the variance due to the distribution

of training sets but induces a significant bias.

Any randomized regression tree algorithm could be an appropriate choice of

supervised regression algorithm to utilize with the FQI algorithm, given both their

8 For clarity, it is made implicit in the notation of Equation 2.28 that f̂ depends
on both T S and T B.
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Original algorithm

Randomized algorithm

Averaged algorithm

Figure 2–2: Evolution of the bias and variance terms in Equation 2.27 after randomiza-
tion and averaging. Adapted from [26].

efficiency and their excellent performance in the presence of noisy or irrelevant vari-

ables. In empirical experiments with several reinforcement learning domains, the

Extra Trees algorithm has exhibited excellent performance in terms of both compu-

tational efficiency and empirical return relative to other regression tree algorithms

[22]; therefore, we select this method for experiments conducted in this thesis.

2.5 Conclusion

This technical background chapter covered sequential decision making in MDPs

using RL techniques, function approximation in RL, and a particular batch RL al-

gorithm called Fitted Q iteration. Some basic regression concepts were introduced

along with a tree-based regression algorithm called Extremely Randomized Trees.

Since the focus of this chapter is on computational methods, we omitted reviews of

fundamental neuroscience and electrophysiology concepts.
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Algorithm 2: BuildExtraTree, adapted from [26].

Input: T S = {
(

il, ol
)

, l = 1, . . . , n}
Output: tree T
if1

|T S| < nmin, or2

all input variables are constant in T S, or3

all output variables are constant in T S4

then5

Return leaf with value the average of the output values in T S: 1
|T S|

∑

l

ol.
6

else7

Let [ij < tj] = FindTest(T S)8

Split T S into T S left and T Sright according to the test [ij < t].9

Build Tleft = BuildExtraTree (T S left) and10

Tright = BuildExtraTree(T Sright) from these subsets.
Create a node T with the test [ij < tj], let Tleft and Tright be the left and11

right subtrees of this node.
Return T .12

end13

Algorithm 3: FindTest, adapted from [26].

Input: T S = {
(

il, ol
)

, l = 1, . . . , n}
Output: test [ij < tj]
Select K input indices {i1, i2, . . . , iK} at random, without replacement,1

among all input indices that are non-constant across T S.
for k = 1 to K do2

Compute maximal value of ik in T S: iT S
k,max.3

Compute minimal value of ik in T S: iT S
k,min.4

Draw discretization threshold tk uniformly in ]iT S
k,min, i

T S
k,max[.5

Compute score Sk =
V ar(o|T S)−

|T Sleft|

|T S|
V ar(o|T Sleft)−

|T Sright|

|T S|
V ar(o|T Sright)

V ar(o|T S)
.6

end7

Return test [ij < tj] with highest score Sj.8
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CHAPTER 3
APPROXIMATION ACROSS ACTIONS

In reinforcement learning, researchers usually study the problem of generalizing

over the input states to learn the action-value function. A less-studied problem is the

generalization over actions which arises whenever there is a limited amount of training

data available to an RL agent; when estimating Q values, it is possible to employ

either a function approximator for each action or only one function approximator

whose input encompass states and actions. The first option is not practical for

large—or continuous—action spaces, but it can be applied in presence of relatively

small action sets.

When sufficient data is available about the environment dynamics, the two vari-

ants should be able to perform equally well. However, it is frequently the case that

the training data for a real-world problem does not contain all of the environment

dynamics. This is especially true in batch reinforcement learning where the data is

frequently acquired under some behavior policy which is different than the learned

policy; therefore, the distribution of state-action pairs can be different in the train-

ing set, compared to what is observed during the execution of the learned policy.

In particular, entire sections of the state-action space might be missing, or poorly

represented, in the training set. If that is the case, the outcome of the two variants

might differ considerably. In this chapter, we examine empirically, in a batch RL

setting, how incomplete datasets affect the two strategies across a set of contrasting
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domains. The conclusions drawn from the obtained results form the basis of some

design decisions in our adaptive neurostimulation controller.

3.1 Technical Development

In this section and throughout the rest of this chapter, we adopt the notation

and concepts introduced in Chapter 2. The main objective of this chapter is to

understand, in the context of batch reinforcement learning, the difference between

learning the state-action value function (Q : S × A → R) by estimating Q(·, a) for

each a ∈ A separately, and learning Q by estimating Q(·, ·) directly—treating S ×A

as the input space.

For example, when using the FQI algorithm (Algorithm 1), we need to apply a

supervised regression algorithm to learn the mapping Q : S ×A → R. When A is a

finite set, the regression problem can be constructed as outlined in Algorithm 1:

T S ← {
(

il, ol
)

, l = 1, . . . , |F|}, (3.1)

with il = (slt, a
l
t) and ol = rlt + γmax

a∈A
Q̂N−1(s

l
t+1, a), or it can also be split in |A|

regression problems as follows:

T Sa ← {
(

slt, o
l
t

)

| alt = a, l = 1, . . . , n}, (3.2)

with ol = rlt+γmax
a∈A

Q̂N−1(s
l
t+1, a). In the first strategy, the action and state compo-

nents are assembled into the input vector, allowing the possibility of approximating

or generalizing the Q̂N estimate over actions. In the second strategy, as outlined in

Equation 3.2, the tuples are first partitioned based on their actions, then the input

vector for each regression partition consists of the state components.
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If the FQI algorithm is utilized in conjunction with the Extra Trees, the first

regression strategy, which we will call Strees for notation convenience, maintains one

forest for all actions. In each tree of that forest, the tests can split on the action

component in addition to each of the state feature. The other variant, which we will

call Atrees, maintains a separate forest of trees for each action. Hence, for the Atrees,

each forest represents the function Q(., a) for a particular action a. One should note

that the Atrees can be seen as a particular Strees construction in which each tree is

split on the action component at the root node (using a non-binary split). To extract

the policy from the Atrees for a state s, every forest is queried with s and, then, the

action associated with the forest leading to the maximum value is returned.

3.2 Experiments

We compare the performance of FQI, when dealing with a finite action set,

between the two different strategies outlined in the previous section. We conduct

experiments in three domains with the Extra trees as a regressor. The first do-

main, described in Section 3.2.1, is a classical reinforcement learning problem with

continuous states. The second domain, described in Section 3.2.2, is a toy problem

resembling the epilepsy problem in some high-level way. This toy problem has similar

characteristics to the Puddle World domain but its simplicity allows for an analyt-

ical interpretation of the results. The third domain, described in Section 3.2.3, is

another toy problem with different characteristics from the other two problems. The

hypothesis driving this choice of domains is the exhibition of performance differences

between the two variants depending on the attributes of each domain (e.g., action

set, reward function).
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3.2.1 Puddle World

The Puddle World problem is based on [64]; the objective of the task is to reach

a goal box in a 2-dimensional continuous unit square that contains an obstacle, the

puddle (see Figure 3–1). In this variation of the problem, the puddle has radius 0.1

and the goal region is 0.1× 0.1, located at the top right corner. The reward is −1 at

each step except if the agent is in the goal region, in which case the reward is 100.

A negative reward ranging from 0 to −1000 is given proportional to how close the

agent is to the center of the puddle. The agent is free to move in the four cardinal

directions within the unit square, the step size being 0.05. Gaussian noise is added

to the location of the agent after a step is taken. We make the task non-episodic

by teleporting the agent to a random location, uniformly across the two-dimensional

state space, from any action within the goal box.

We generate 5 datasets, F l
1 with l ∈ {1, . . . , 5}, of 40, 000 4-tuples under a

random policy that is enough to learn a close approximation to the optimal policy

for the two variants of the FQI algorithm. We then generate tuples for a different

kind of training dataset, F l
2, in a more constrained way. We set the training data to

be sparse in a rectangular region around the puddle (see dotted lines in Figure 3–1)

by terminating the agent’s trajectory and restarting it in a random location with

probability ǫ for every step in that region. In a sense, this is a realistic scenario as

it is generally easier to acquire data for nice parts of an environment than for parts

which present risks. Here we could view the zone around the puddle as hazardous;

therefore, less information about would be available in that training data set.
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Figure 3–1: The Puddle World problem. The red line denotes the center of the puddle,
and the red-shaded area is the influence zone of the puddle where negative rewards are
given. The green square on the top right is the goal zone of this environment where positive
rewards are given. The black dotted lines around the puddle zone demarcates the zone
where the probability of ending the agent’s trajectory is ǫ.

We feed the sets of tuples, F l
1 and F

l
2 with l ∈ {1, . . . , 5}, to the Atrees and Strees

in order to obtain estimates Q̂l
1 and Q̂l

2. We then test the control policies derived from

Q̂l
1 and Q̂2l in the Puddle World environment. This procedure is repeated 10 times

for each of the 5 series of datasets before averaging. A standard set of parameters

was used for both variants: M = 80, K = 2, nmin = 5 with 130 iterations in

the FQI algorithm (the structure of the trees is fixed after 50 iterations to ensure

convergence).
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3.2.2 Toy Epilepsy Problem

This is a simple problem consisting of 6 states and 2 actions that is specially

designed to illustrate how a difference can arise between the two variants in the

neurostimulation optimization problem. The MDP underlying the toy problem is

rendered on Figure 3–2, it is composed of S = {1, . . . , 5}, A = {0, 1}. From any

state s, both actions take the system to state s+1, except in state 3 where action 1

leads to state 1 and in state 6 where both actions lead to state 1. A reward of −1 is

given for being in state 5 or 6 (0 otherwise), in addition action 1 is always associated

with a negative reward of −0.01.

The crude parallel between this toy problem and the neurostimulation is realized

once we map action 1 in the toy problem to an electrical stimulation event, and

states 4− 6 to seizure states. Similar to what goes on in the brain, the stimulation

events keep the system from going into seizures, but once a seizure is initiated then

stimulations do not influence heavily the seizure propagation.

1 2 3 4 5 6

a:0,1 a:0,1 a:0 a:0,1 a:0,1

a:0,1
a:0,1

r=-1 r=-1

Rewards R(a) for actions: R(0) = 0

                                      R(1) = -0.01

Figure 3–2: The toy epilepsy problem, this MDP is composed of 6 states and 2 actions.
Action 1 always carries a small negative reward and states 5 − 6 incur a greater negative
reward. Action 1 should be interpreted as a stimulation and states 5 and 6 as seizure states.
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As can be seen in Figure 3–2, the optimal policy would be to select action 0

at all times except in state 3, in which case action 1 should be selected. We build

two kinds of data sets from this environment, one, acting as control, is simply a

small data set acquired by following a random policy that selects actions uniformly

at random. The other one, meant to show the difference between the two variants,

is acquired by running action 0 only, until we obtain 100 tuples, and then running

action 1 only, until we get an additional 100 tuples. It should be noted that the last

data set does not contain tuples with state 4, 5 or 6 under action 1. Additionally,

we either generate these two data sets with perfect information on the states, or by

introducing noise in the observations as well as extra noisy dimensions. We add noise

in the observations by simply adding a uniform random number between −1 and 1,

as well as adding a small negative random number when action 1 is selected, such

that the action has an effect on the observation.

In the noise condition, since the state information is not complete for the ob-

server, an agent that only acts based on the current observation cannot attain the

optimal control policy. However, it can still do fairly well by being cautious not to

run into states 5 and 6 which carry the large negative reward.

We employ those sets of tuples, generated according to the description above,

to train the Q̂ function of an agent using the two variants of the FQI algorithm,

Atrees and Strees. We then test the control policies obtained by running them in the

environment.
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3.2.3 Toy Problem ‘Easy choice’

Finally, the third MDP considered for experimentation is composed of 10 states

and 11 actions. From each state i, the action aj for j ≤ 10, with probability 0.5, leads

to state j acquiring a reward of j; with probability 0.5/i, the action aj carries the

system to state k, for k ≤ i, incurring a reward of 0. From any state, action a11 brings

the system to state 1 with a reward of −1. This MDP is illustrated in Figure 3–3. It

should be noted that the optimal policy is simply to execute action a10 regardless of

the current state. We choose this MDP because the effects of all actions are mostly

similar across states and, therefore, we can speculate that not approximating across

actions could be a superior strategy when training data is missing.

1 i 10... ... j ...

...

Figure 3–3: This ‘Easy choice’ toy MDP is composed of 10 states and 11 actions. In state
i, the action aj (j ≤ 10) leads to state j and a reward j with probability 0.5 and otherwise
leads to one of the lower states (s ≤ i) uniformly with no reward. Action a11 always resets
the system to state 1 with a reward of −1.

We generate two kinds of datasets from the environment. The first, F l
1, is

obtained by sampling states and actions uniformly. The second, F l
2, is obtained

by biasing the selection of action for s ≤ 5: action ai is selected with probability

δ
6
+ 1−δ

11
if i ≤ 5 or if i = 11, and with probability 1−δ

11
if i > 5. In other words,
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the bias is controlled by the δ parameter; as δ increases towards 1, actions smaller

than or equal to 5 and action a11 become more likely to be sampled (when the state

is smaller or equal than 5). Therefore, if δ is big, tuples that start in a state lower

than 5 and take actions bigger than 5 are rare in the training dataset. Collections

of 200 datasets of F1 or F2 for various δ, all composed of 2000 tuples, are generated

and the estimates Q̂1 and Q̂2 obtained, respectively, by the Atrees and Strees, are

computed each time. The parameters employed for training are identical to those

used in the Puddle World environment. After training, the policies induced by the

Q-value estimates are subjected to testing in the MDP.

3.3 Results

3.3.1 Puddle World

When we progressively starve the learning agent from environment dynamics in

the puddle zone by increasing ǫ, the performance of the agent decreases but the two

variants react differently as ǫ goes to 1. We observe a rough trend that indicates

that the Strees method might be more robust to the loss of information about the

environment dynamics around the puddle zone. Figure 3–4 presents the case ǫ =

0 and ǫ = 0.9999. When the training data is gathered without constraints, the

performance of the agents trained using the two variants is nearly identical. When

the constraint is introduced, the Strees perform better on average and with less

variance than the Atrees.

Figure 3–5 illustrates the similarity of the output of the two variants when train-

ing from F1 (ǫ = 0) by displaying the policy and Q-value function (for action UP)

over the two-dimensional state space. Contrastingly, when using F2 (ǫ = 0.9999), the
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Figure 3–4: Average reward in the puddle world for the two strategies in two scenarios:
ǫ = 0 (Unconstrained) and ǫ = 0.9999 (Constrained). The results are averaged over the 5
datasets and the 10 runs per dataset. The error bar represents the standard error of the
mean. When ǫ = 0.9999, the performance difference between the two variants is statistically
significant with P < 0.001.

difference between generalizing or not across actions can qualitatively be appreciated

by plotting the resulting policies and Q-value functions, as shown in Figure 3–6. We

observe that the Atrees barely learn anything about the puddle’s presence while the

Strees, resorting to the same dataset, learns a rough approximation of the optimal

policy.

3.3.2 Toy Problem

Both variants (Strees and Atrees) find the optimal policy given the 4-tuples

acquired by the random behaviour policy. In the different noise conditions, they also

do equally well. But as mentioned in the description of the problem, they cannot be

optimal in this case because of the uncertainty.
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Figure 3–5: Result of training from F1 (i.e., ǫ = 0) with and without approximation
across actions. In a), the policy obtained by the Strees is represented using a four-color
scheme. The legend for that scheme is indicated by the arrows on the figure. The two-
dimensional representation of the puddle world’s state space is identical to what displayed
in Figure 3–1. The figure in b) employs the same color scheme to represent the policy
obtained by the Atrees. The policies in a) and b) are mostly identical (except in parts of
the space where two actions can be chosen to act optimally) and avoid going through the
puddle in order to reach the goal square. Figures c) and d) present, under each policy, the
corresponding Q-value for action UP, Q(·,UP). The topology of the Q-value functions is
similar but differ slightly because the Atrees have the tendency to overestimate the Q-value
while the Strees have a tendency to underestimate the Q-value.
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Figure 3–6: Result of training on a dataset F2 (i.e., ǫ = 0.9999) with (left column) and
without (right column) approximation across actions. The legend is identical to the one
in Figure 3–5. In a), the policy obtained with the Strees learns, to a certain degree, to
circumvent the puddle. In b), the policy obtained with the Atrees pays almost no attention
to the puddle. This is confirmed in c) and d) by looking at the Q-value function estimate for
action UP learned by the Strees and Atrees, c) displays a large depression in the Q-value
function around the puddle while it is difficult to observe the puddle effect on the Q-value
estimate in d).
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A different story unfolds when using the data set acquired under the fixed be-

haviour policy. In the condition without noise, which is easier to interpret, the Strees

find the optimal policy while the Atrees find a terrible policy (see Figure 3–7). A

similar pattern is found in the conditions with noise.

1 2 3 4 5 6

0 0 0 1 1

1

Figure 3–7: The policy found by the Atrees when learning from the fixed behaviour policy.

It is worthwhile to study what goes wrong exactly in this particular case. Recall

that during the first iteration of the FQI algorithm, an approximation of the imme-

diate reward for each pair of state and action is learned. The rest of the algorithm

then builds on that approximation to find the Q̂ function. In the Atrees case, the

trees for a particular action a0 are built during the first iteration using input-output

pairs of the form (s, r) which are directly extracted from the set of 4-tuples. For the

toy problem, if a0 = 1, those tuples are exactly < 1, 1,−0.1, 2 >,< 2, 1,−0.1, 3 >

and < 3, 1,−0.1, 1 > (assuming the condition without noise), so the regressed trees

for action 1 return −0.1 for all states. Of course, this is not true since state 4, 5, and

6 are not represented, but states 4, 5, and 6 are represented in the trees for action

0 since the behaviour policy observed them under action 0. So at the end of that

iteration, Q̂1(4, 0) = −1 while Q̂1(4, 1) = −0.1 which implies that π(4) = 1. This is

what we see in Figure 3–7. On the other hand, for the Strees, tuples that contain

state 4, 5, or 6 are not split on actions since they are all observed under constant
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action 0 and, therefore, this split wouldn’t get a good test score. Hence, for the

Strees, we get Q̂1(4, 1) = Q̂1(4, 0) = −1, which allows the Strees to learn the optimal

policy for this particular problem.

3.3.3 Toy Problem ‘Easy choice’

The resulting statistics for the second toy problem are presented in Figure 3–8.

For this problem, the generalization across actions performed by the Strees is detri-

mental when the bias in the data acquisition, δ, is too high. The Atrees generalize

the effect of actions across the state space; hence, they are able to perform well on

this problem even as δ goes to 1.

3.4 Discussion

In this chapter, we described the issue of generalizing across actions in the con-

text of batch reinforcement learning. When environment dynamics are missing in

the training data, we showed empirically that, depending on the problem, generaliz-

ing or not across actions can substantially affect performance. In applications that

require the adoption of a batch RL algorithm, we typically do not have control over

the exploration phase and, consequently, incomplete training datasets are commonly

encountered. Therefore, a proper understanding of the failure conditions of each

variant is crucial. Based on the results presented in the previous section, we can

attempt to characterize the properties of a problem that makes one variant more

successful than the other.

For each iteration of the FQI algorithm, the Strees variant is constructing a

function approximation of the state-action space using all tuples in the training

set whereas the Atrees are constructing a different state space approximation for
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Figure 3–8: Average reward obtained for different values of the bias, δ, when learning
with (Strees) and without (Atrees) generalization across actions. The error bars represent
the standard error of the means. Each bar is the result of an average over 200 sampled
datasets.For δ < 0.75, the two variants perform indistinctively—both variants suffer the
same reduction in performance when δ > 0. Then, as δ increases further, the general trend
is that the performance of the Atrees stabilizes while the performance of the Strees drops
by a significant amount. The difference between the performance of the two variants when
δ ≥ 0.9 is statistically significant with P > 0.05 and with P > 0.001 when δ ≥ 0.99.

each action in A using only the tuples that contain that action. In the Puddle

World domain, that means the Atrees forest constructed at each iteration for action

RIGHT, for example, is constructed independently from tuples figuring actions UP,

DOWN, and LEFT. If the exploratory trajectories given to the FQI algorithm do

not contain examples of traversing some area of the puddle with a RIGHT action,

then the Q-value for the RIGHT action assigned to that area will depend on tuples

with a RIGHT action outside that area that are potentially not part of the puddle.

If that is the case, then that Q-value will not reflect the presence of the tuple and
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the policy is likely to prescribe crossing that puddle area. On the other hand, in

the exact same situation, the Strees can also rely on tuples containing other actions

than RIGHT in that area in order to estimate the Q-value of the action RIGHT in

that region. That value would not be exactly estimated since it would only capture

the value of the states in that area and not the subtleties of the action dynamics.

Nevertheless, that estimate can be enough to prevent the policy from traversing the

puddle. To summarize, the characteristics of the Puddle World problem that benefit

the Strees are that the actions only have local effects on the dynamics of the system

(i.e, |st+1 − st| is small after any action at), the rewards carried by the actions (in

the Puddle World, a small negative reward for each action) are not as significant as

the rewards carried by the state themselves (in the Puddle World, the puddle and

the goal square), and the region where dynamics are missing is a region that will be

avoided by the optimal policy.

For problems in which it is the actions that dominate the reward function (i.e

states only give a small contribution) and the actions cannot be easily related, then we

expect the Atrees variant to do better. The ‘Easy Choice’ problem presented in this

chapter is an extreme example of that: the reward function is completely independent

of the states. In that problem, generalizing across actions can be damaging because

adjacent actions can have completely different effects, for example action a10 gives

the highest reward with probability 0.5 whereas action a11 always afflicts the lowest

reward. Learning about actions separately, like the Atrees, is advantageous in those

classes of problems.
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To recapitulate in short form, here are some clues that might indicate superior

performance of the Strees in a batch RL setting with an incomplete training dataset:

• local effect of actions,

• actions are on a continuum,

• reward function is dominated by the states,

• poorly-sampled region is a region avoided by the optimal policy.

On the other hand, clues that might indicate superior performance of the Atrees are:

• global effect of actions,

• adjacent actions have disparate effects,

• reward function is dominated by the actions,

• effect of actions in poorly-sampled region is similar to effect of actions in adja-

cent regions.

Finally, since the purpose of this thesis is to learn a neurostimulation controller,

we outline some specific recommendations for that problem. The actions in the

seizure control problem are electrical stimulations, domain knowledge tells us that

the effect of a single stimulation does not have a substantial effect on the brain tissue;

therefore, we can consider those as having a local effect. In the next chapter, the

problem definition details will make clear that actions are also on a continuum and

that the reward is dominated by the states—seizure is the main reward criterion.

In addition, because of their diversity and rarity under stimulation protocols in

the training data, seizure states can be argued to be less well sampled than non-

seizure states; and it should come as no surprise that the optimal policy for our

controller would try to stay away from seizure states. Hence, the empirical results
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in this chapter suggest that using the Strees would be more appropriate for our

neurostimulation problem.

3.5 Related Work

In the RL survey by Kaelbling et al. [35], the issue of generalization across

actions is briefly mentioned. The authors recommend to generalize over actions

‘when actions are described combinatorially to avoid keeping separate statistics for

the huge number of actions that can be chosen’.

In [53], separate training sets are employed for each action, so their kernel-based

reinforcement learning algorithm does not generalize across actions. In the paper that

introduce tree-based batch RL [22], both variants seem to be favored equally without

distinction.

On a real-world application of RL for autonomic resource allocation, the adop-

tion of function approximators that generalize across action is justified by a reduction

in the number of exploratory samples needed to learn a good policy [69].

In [54], in the context of learning using an embedding based on the graph Lapla-

cian, the authors analyze the potential of the state-action basis functions for Q-value

function approximation compared to the more traditional state basis functions. The

state-action basis function is able to generalize across actions and is shown to present

some advantages in some toy domains.

Finally, a recent work proposed an algorithm, with provable guarantees, that

handles the lack of data in batch RL by being conservative [24]; it was tested, with
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a similar experiment as the one in this chapter, in the Puddle World domain. How-

ever, the algorithm solely produces open-loop policies which is not appropriate for

stochastic systems.

It should be mentioned that there exists a considerable body of work on RL with

continuous actions that has to deal with generalization across actions [44, 40, 50],

but a full review of that material is outside the scope of this thesis.

3.6 Future Work

The motivating question of this chapter is whether one should generalize across

actions in a batch RL setting with discrete actions. We partially answered that

question by showing that the solution was domain dependent. We also provided some

rules of thumb to help decide when to generalize across actions. An evident avenue

for future work is to generalize the problem further by defining conditions that can

make one variant provably better than the other. Additionally, with respect to the

neurostimulation optimization problem, a careful comparison of the two strategies in

a realistic computational model of epilepsy would provide a more accurate estimate of

the variants’ behavior when applied to a real epileptic system; nonetheless, realistic

computational models of epilepsy that encompass electrical stimulation are still the

subject of active research.

47



CHAPTER 4
EXPERIMENTAL INVESTIGATION

In this chapter, we describe how to apply the techniques presented in Chap-

ter 2 and 3 to the problem of optimizing neurostimulations in an in vitro model of

epilepsy. We discuss the data acquisition step and how the data is then processed

to form the set of 4-tuples F described in Section 2.3. We then present results ob-

tained using these techniques. Since the application of the reinforcement learning

techniques is directed towards controlling seizure in an in vitro model, we first de-

pict that model and provide some background necessary to understand the rationale

behind DBS.

4.1 In Vitro Model

The in vitro model of epilepsy we adopt for this experimentavl investigation is

a rat hippocampus-entorhinal cortex (EC) slice with ictal 1 activity, induced by

superfusion with the convulsant 4-aminopyridine (4AP), generated in the EC [5].

The hippocampus and EC are brain structures located in the medial temporal lobe.

Cognitively, they are crucial components of memory formations and spatial reason-

ing [62, 52]. Pathologically, they play a special role in the formation of seizures,

1 A recording during an epileptic seizure is said to be ictal.
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especially in the case of temporal lobe epilepsy [57]. A schematic of the organi-

zation of the hippocampus-EC slice is presented in Figure 4–2, and a real picture

of the experimental setup, with recording and stimulating electrode, is displayed in

Figure 4–3.

As was briefly mentioned in the introduction, fixed low-frequency stimulation at

1.0 Hz, in a part of the hippocampus called the subiculum, is known to be effective

in suppressing epileptiform activity in this in vitro model of epilepsy [17]. Those

results are summarized in Figure 4–1.

As evidenced in [7], the hypothesis behind the effectiveness of repetitive low-

frequency stimulation is that it mimics the naturally occurring, but dysfunctional in

epilepsy patients, interictal discharges originating in the CA3. Those discharges are

believed to play an important role in controlling the epileptogenesis taking place in

the EC. This mechanism is illustrated in more detail in Figure 4–4.

The brain slice preparation and maintenance is detailed in the Appendix, along

with a specification of the experimental apparatus.

4.2 Data Acquisition and Processing

The in vitro model described in Section 4.1 allows us to gather field-potential

recordings. The particular protocol we follow to gather training data is outlined

below.

Electrical stimulation was applied to the subiculum using low-frequency single-

pulse patterns with varied timing. Each slice was subject to a stimulation protocol

consisting of seven phases of stimulation patterns. Each sequence began with a

control period of recording with no stimulation. Then, stimulation was applied for
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Figure 4–1: This figure from [17] displays field potential recordings in the EC middle
layers from epileptic hippocampus-EC slices under the effect of repetitive low-frequency
stimulation in the subiculum for various frequencies. The start of an seizure-like event is
denoted by an arrow and electrical stimulations are marked with circles under the trace.
The first trace shows a seizure occurring without any stimulation, the seizure lasts approxi-
mately 15 seconds. The second trace displays the effect of stimulation at 0.1 Hz, the seizure
duration stays almost constant. The third trace demonstrates the return to normal condi-
tions after an episode of stimulation. The three subsequent traces illustrate the reduction
in seizure length as the stimulation frequency increases. The 1.0 Hz frequency achieves the
higher level of epileptiform activity suppression.
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Figure 4–2: Schematic of the hippocampus-EC slice. Relevant substructures are labeled
and the location of the stimulation (A) and recording (B) electrodes is indicated.
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Figure 4–3: Picture of the hippocampus-EC slice with the stimulation (A) and recording
(B) electrodes.
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Figure 4–4: A schematic of the seizure control hypothesis taking place in the hippocam-
pus. Ictal discharges form in the EC, propagate to the Dentate Gyrus via the Perforant
Path, and follow the hippocampus loop to be projected back in the EC. Interictal discharges
form in CA3, propagate to CA1 via the Schaffer collaterals, and are projected back in the
EC. According to [7], the role of the re-entrant activity is to prevent, rather than sus-
tain, prolonged ictal events. Cell damage in the CA3 area is frequently found in temporal
lobe epilepsy patients, this damage can be simulated with a cut of the Schaffer collater-
als, represented here with a thick dotted line. This cut stops the interictal discharges from
propagating, therefore increasing the epileptiform activity; artificial stimulation in CA1 or
subiculum can artificially restore the normal condition.

several minutes at a fixed low-frequency (1.0 Hz). Stimulation was then turned

off and the slice was allowed to return to baseline for a period of several minutes.

This process was repeated with stimulation at different rates (0.5 Hz and 2.0 Hz),

always interleaving, between each stimulation phase, a prolonged recovery period

during which no stimulation was performed. The data was collected according to

this protocol rather than in a more randomized fashion because it is the procedure

electrophysiologist use to gather stimulation data. We could potentially benefit from
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a more sophisticated exploration policy, this should be the subject of future investi-

gations.

Figure 4–5 shows a sample trace recorded from the EC while stimulating the

subiculum at 0.5 Hz. An ictal event starts around t = 20sec. The stimulation

artifacts are also visible in this recording. In general, the actions may or may not

be visible in the EEG signal, depending on the sample rate and relative electrode

placement.
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Figure 4–5: Trace example recorded in the EC. Stimulation is applied to the subiculum at
0.5 Hz. An ictal event appears in the first half, lasting approximately 45 seconds. Periodic
stimulation artifacts are observed at 2-second intervals. Interictal spikes are also observed.

Using this procedure, we obtain raw field-potential recordings with a sample rate

of 5000Hz. Subsequently, some signal processing is necessary to extract information

into a form appropriate for learning. This is presented in the following section.

4.2.1 Signal Processing

Each trace is divided into a set of overlapping frames of 65536 samples (approx-

imately 13 seconds) in length, with each frame beginning 8192 samples after the

previous frame. Each frame is smoothed with a Hann window and normalized, and
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the range and energy of the signal is calculated. A discrete fast Fourier transform

is used to extract spectral magnitude features from the frame. Within each frame,

the smoothing, normalization, and Fourier transform is repeated for the final half

frame (32768 samples), quarter frame (16384 samples), eighth frame (8192 samples),

and sixteenth frame (4096 samples). Low frequency components are extracted from

the full-frame spectrum, and high frequency components from the subframe spectra.

These features are combined with the range and energy of each subframe to yield a

109-dimensional continuous feature vector. Many other features could be extracted,

for example those proposed in the literature on seizure prediction and on EEG anal-

ysis [45, 1, 55]. In fact the question of feature selection is a challenging statistical

problem, which should be the subject of future investigations.

The other information which could be included is the time elapsed since begin-

ning of the pulse train.2 We do not include this information in the current imple-

mentation, because we assume that all recordings we use feature periodic stimulation

that has been applied for a sufficiently long time to ignore edge effects.

4.2.2 Data Labeling

The adaptive control algorithm described in the following section requires a num-

ber of traces with hand-annotated state information, for automatically learning the

optimal stimulation strategy. Specifically, we need to know the action at associated

2 Presumably, applying a single pulse is not the same as applying a sequence of
10, or 100, or more; the system adapts to trains and responds differently depending
on whether the train is of long or short duration.
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with each state st along with the immediate reward rt = R(s, a) (see next section

for an exact description of the reward function). Therefore, all recorded traces were

labeled by hand, indicating on each frame whether it features ictal or normal activity,

as well as which stimulation protocol was used at the time. In the future, this step

could be performed by an automatic seizure detection algorithm [15, 74].

4.3 Learning

In section 2.3, the input of the FQI algorithm was specified to be a set of one-

step transitions F = (st, at, rt, st+1). Our state space S is constructed such that

each element st is a feature vector, summarizing past EEG activity, as specified in

Section 4.2.1. Our action set A consists of four options: no stimulation, stimulation

at one of the fixed frequencies of 0.5, 1.0, and 2.0 Hz. Each frame is assigned an

action at based on the labeling information.

We define a reward function

rt = Rseizure(st) + αRstim(at) (4.1)

to penalize both stimulation and seizure occurrences. We assume Rseizure(st)={-1 if

seizure is occurring at time t, 0 otherwise} and Rstim(at)={-1 if stimulation is ap-

plied at time t, 0 otherwise}. This reward function requires a quantitative trade-off

between the penalty for occurrence of a seizure, and the penalty for applying stimu-

lation. This trade-off is defined by the parameter α. In most experiments described

below, we assume that a seizure is substantially more costly than delivering a single

stimulation event (unless mentioned otherwise, we assume α = 0.04). Changing this
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parameter may affect the learned stimulation strategy; we investigate this further in

the experiments presented below.

Each element of the training set F is constructed by concatenating the experience-

tuples (st, at, rt, st+1).

We assume a discrete time step of 1.6 seconds (=8192 samples). This is sufficient

to compute our input features in real time, yet is sufficiently short to allow flexibility

in the learned policy. For all of our experiments, the discount factor is γ = 0.95; this

is a common choice in the reinforcement learning literature.

Given this formulation, the FQI algorithm can be applied with the Extra Trees

to learn a policy of stimulation. Because the conditions of failure of the Atrees, as

described in Chapter 3, seem to fit our problem description and learning dataset,

we employ the Strees variant of the FQI algorithm as a conservative measure. The

resulting policy is subjected to a multifaceted evaluation in the next section.

4.4 Results

We first conduct in silico, or offline, experiments to measure the quality of

the obtained reinforcement learning policy. We then carry experiments in vitro and

report the results in Section 4.4.2.

4.4.1 Offline Experiments

Many in vitro studies have investigated effectiveness of low-frequency periodic

pacing for suppressing ictal events. For the particular animal model we are consid-

ering, the most effective fixed stimulation frequency was identified to be 1.0-2.0 Hz

[7, 17]. In this section, we evaluate the ability of our reinforcement learning frame-

work to automatically acquire an adaptive strategy from the in vitro recordings. We
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analyze the behavior of the adaptive strategy in comparison with non-adaptive pe-

riodic stimulation strategies at low-frequencies as well as a control (no stimulation)

strategy.

Measures of Performance

We consider quantitative measures which can be estimated using a hold-out

test set, which is separate from our training data. Our original data set includes

recordings from four animal slices. Therefore, during testing, we perform four-fold

cross-validation, whereby the Q-function is estimated using data from three different

slices, and we then measure performance on the fourth slice. We then repeat with all

slice permutations. This means that data in the test set comes from a different animal

than the training data. It is well-documented that epileptic seizures vary between

animals, therefore this is an important test for the generalizability of our approach.

In future work, an individual Q-function could be learned for each patient (or slice),

thereby providing a neurostimulation strategy that is specific to each individual.

There is another subtle difficulty in using a test set to validate a target policy

(e.g. the learned policy, π). That is the fact that the test set was collected using

a behavior policy, πb, which is different from the target policy. We cannot simply

compute a score over the test set. Instead, we create a surrogate data set for the

target policy by using rejection sampling to select only those segments of the test set

which are consistent with the target policy. Recall that the test set is divided into
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single-step episodes: (si, ai, ri, si+1). We define an indicator function:

Iπ(si, ai) =















1 if π(si) = ai

0 otherwise

(4.2)

to flag experience-tuples where the action in the test set (ai) matches the target policy

(π(si)). We exclude all experience-tuples that do not match the target policy. Using

this indicator function, we consider two different scores to quantify the performance

of the adaptive neurostimulation strategy.

The first score is an estimated proportion of seizure steps when following a

particular strategy π. Again, we compare the action selected by the policy and the

action in the test trace for each experience-tuple from the test trace, and count the

number of states which were labeled as ’seizure’:

Ŝπ =

∑N

i=0 Iπ(si, ai)Iseizure(si)
N
∑

i=0

Iπ(si, ai)

, (4.3)

where Iseizure(si) indicates whether state si was hand-labeled as a seizure (1 if yes, 0

if no). Recall that data instances are defined on a 1.6-second window interval.

The second score calculates the estimated value function (i.e., discounted sum

of rewards), averaged over all states in the test set for which the target policy π

matches the behavior policy πb. Formally,

V̂ π =

∑N

i=0 Iπ(si, ai)
[

r(si) + γQ̂(si+1, π(si+1))
]

N
∑

i=0

Iπ(si, ai)

, (4.4)
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where Q̂ is the estimated Q-function calculated by the regression algorithm (Equa-

tion 2.25). For fixed stimulation strategies, which were in fact deployed during data

collection, we use the empirical return instead. This second score is considered

because it reflects the expected long-term accumulated reward. Since our reward

function is a linear combination of the amount of both stimulation and seizure, this

is an aggregate measure of the optimization over these two components.

Offline Results

We first report on results characterizing the performance of the learning algo-

rithm used to acquire the adaptive strategy. All error bars correspond to 1 standard

error. In the case of the control and periodic strategies, this is due to variance

between the four slices in the dataset. In the case of the adaptive strategy, the stan-

dard error includes both slice-to-slice variance and variance in the randomized tree

regression algorithm.

Figure 4–6 compares the proportion of states in which epileptiform activity

is observed under each of the policies. This corresponds to the score calculated

in Equation 4.3. We first note that under control conditions, slices in the dataset

exhibit a larger rate of ictal events than under any of the stimulation strategies. Next,

we observe that periodic pacing at either 1.0 Hz or 2.0 Hz achieves near-complete

suppression, and that performance is slightly less effective when stimulating at 0.5

Hz. Finally, we note that the adaptive strategy is able to achieve similar performance

as the 0.5 Hz strategy in terms of seizure suppression.

Figure 4–7 shows the estimated long-term expected return for each of the strate-

gies considered. This corresponds to the score calculated in Equation 4.4. The results
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Figure 4–6: Proportion of seizure steps (compared to non-seizure) under the following
strategies: Control (no stimulation), Periodic pacing at 0.5 Hz, 1.0 Hz, 2.0 Hz, and Adap-
tive stimulation. The proportion of seizure / non-seizure for the Adaptive stimulation is
estimated from Equation 4.3. Proportions of seizure / non-seizure for the other strategies
is calculated through hand-annotations of the EEG trace by an expert.

here show a better return for the adaptive policy, compared to the periodic stimu-

lation and control cases. Given that all strategies (except Control) achieve similar

suppression efficacy, it seems reasonable to conclude that this return gain is primarily

achieved through a reduction of the stimulation in the adaptive strategy (compared

to the periodic strategies).

Figure 4–8 supports this by showing the proportion of time during which stim-

ulation is turned on under each of the conditions. We also show how this proportion

changes as we re-train the adaptive strategy for different values of the parameter pe-

nalizing each stimulation action (α in Equation 4.1). As expected, when the penalty

for stimulating is increased, the amount of stimulation is automatically reduced.
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Figure 4–7: Estimated long-term return under the following strategies: Control (no stim-
ulation), Periodic pacing at 0.5 Hz, 1.0 Hz, 2.0 Hz, and Adaptive stimulation.

There is substantial variation here between the different slices; in some slices some

amount of stimulation would be necessary throughout most of the life of the slice to

achieve reasonable suppression; in other slices it is possible to turn off any stimulation

for prolonged periods of time.

Lastly, it is worth considering how changes in the reward function impact the

suppression efficacy. As shown in Figure 4–9, the effect seems to be quite minimal.

4.4.2 Online Experiments

Given satisfying offline results, a more accurate evaluation is executed in the in

vitro animal model.
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Figure 4–8: Proportion of time under stimulation. All periodic strategies assume stimula-
tion is on continuously. The proportion for the adaptive strategies is evaluated for different
reward parameters.

−0.01 −0.04 −0.1
0

0.05

0.1

0.15

0.2

0.25

0.3

%
 ic

ta
l s

te
ps

Adaptive
α = 0.01

Adaptive
α = 0.04

Adaptive
α = 0.1

Figure 4–9: Proportion of seizure steps as a function of the stimulation penalty. The
result for α = 0.04 is the same as shown in Figure 4–6.
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Experimental protocol

After a control period without stimulation spanning at least 3 seizures, the slice

is first stimulated at a fixed frequency of 1.0 Hz. The stimulation intensity is man-

ually tuned at the start of this protocol; the objective of the tuning is to obtain the

lowest intensity that provoked a large enough response in the networks surrounding

the stimulation electrode and that leads to good suppression efficacy. After the 1.0

Hz protocol, the slice is allowed to recover until the interval between ictal discharges

stabilizes. Then the adaptive controller is run. The slice is again allowed to recover.

The effective, or mean, frequency f used by the adaptive controller in the previous

protocol is computed, f = ns/T where ns is the number of stimulations that occurs

during the adaptive protocol and T is the duration, in seconds, of the adaptive pro-

tocol. The slice is then subjected to a fixed frequency stimulation protocol at f Hz.

Stimulating using the mean frequency of the adaptive protocol aims at determining

whether the patterns of stimulation in the adaptive protocol provide any advantage

compared to a protocol with the same amount of stimulations but equally distributed

in time. Following this, the slice is again allowed to recover. This entire protocol is

carried out 11 times, across 10 slices.3

3 The total number of slices is 11. One slice was discarded because of software
issues during the experiment. In one slice which had short ictal intervals, we were
able to run two consecutive protocols.
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Measures of performance

Let tip denote the proportion of seizure time during protocol p for the slice i, and

let c(p) be the protocol with no stimulations immediately preceding a stimulation

protocol p. Then, an estimate of the proportion of seizure time across slices, nor-

malized with respect to the protocol without stimulations preceding it, is obtained

by averaging:

tp =

n
∑

i=1

tip
ti
c(p)

n
, (4.5)

where p is a stimulation protocol (p ∈ {fixed 1.0 Hz, adaptive, effective frequency})

and n is the total number of slices. In other words, tp estimates the expected percent-

age of seizure time compared to a protocol with no stimulation. Note that a lower tp

is better as it corresponds to a greater seizure suppression efficacy. The introduced

normalization is meant to control for the fact that the proportion of seizure time

is monotonically decreasing during the course of an experiment. The other perfor-

mance indicator of a controller is the amount of stimulation it uses, which can be

measured by its mean frequency during a protocol.

We assume that the performance estimate tp, described in Equation 4.5, of the

stimulation protocols over different experiments follows a normal distribution. How-

ever, we cannot assume that those distributions have equal variance across protocols;

therefore, we use Welch’s t tests in order to compare the performance of different

stimulation protocols.

64



Online Results

In Fig. 4–10, the estimate tp is computed, along with the standard error of the

mean, for the different stimulation protocols. A Welch’s t test (n = 11, P < 0.05)

indicates that, on average, the performance of the adaptive controller is better than

the effective frequency controller. This demonstrates that the patterns of stimula-

tions, and not just the amount of stimulations, have a role to play in controlling the

seizures. The performance of the adaptive controller is, in terms of seizure suppres-

sion, statistically indistinguishable from the performance of a fixed 1.0 Hz controller.

Nevertheless, as exposed in Fig. 4–11, in 7 out of 11 slices the effective frequency
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Figure 4–10: The measure tp, as described in Equation 4.5, is computed for the three
different stimulation protocols. The error bars represent the standard error of the mean.
The star symbol (*) indicates a P -value of 0.05.
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of the adaptive controller is under 1.0 Hz (the frequency range for those slices is

[0.32, 0.73]). In 4 out of 11 slices, the effective frequency of the adaptive controller

is above 1.0 Hz (the frequency range for those slices is [1.32, 1.55]).
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Figure 4–11: Distribution of the effective frequency of the adaptive controller across the
different experiments.

The behavior of the adaptive policy is exemplified in Figure 4–12 with four

different short traces. Each trace displays a different scenario that the RL agent

encountered and reacted to. Generally, the amount of stimulation increases when a

seizure is forecasted and, depending on the slice and the state of network dynamics at

that time, these higher-frequency stimulations might be sustained for some time to

prevent other seizures. For some slices, the RL agent stimulates more throughout its
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protocol, this could be due to several factors. One possible reason is that the slice’s

epileptic activity is simply harder to control than in other slices, this is sometimes

confirmed by observing a poor effectiveness of the 1 Hz stimulation protocol on that

slice. An other reason could be that the slice’s dynamics are not well represented in

the agent’s training data, thus the RL agent is not able to control them efficiently—

with few stimulations.

4.5 Discussion

Our experimental investigation in this chapter exposes our methodology, and its

evaluation, for using reinforcement learning techniques to optimize neurostimulations

in an animal model of epilepsy. Results obtained offline and in real-time suggest

that the learned policy can achieve the same level of performance, in terms of seizure

suppression, as the best known open-loop strategies. The learned policy is more

economical with its stimulations, which is its main benefit when applied to this

animal model. Moreover, our results support the fact that merely stimulating at

the average frequency of the adaptive controller is not enough to achieve the same

suppression efficacy, highlighting the role patterns of stimulation play in adaptive

seizure control.

Different challenges and possibilities for improvement over open-loop policies are

present in more complex animal models, such as chronic in vivo models of epilepsy;

these are outlined in the next chapter which form the conclusion of this thesis.
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Figure 4–12: Four different excerpts of EC recordings during the execution of the adaptive policy. The vertical thick
black lines indicate stimulation events. a) Stimulation frequency increases (t = 30 s) in order to abate a seizure. The
frequency remains high after the short event (t > 45 s). b) Infrequent stimulations are enough to shorten, but not
suppress, a seizure (t = 45-55 s). c) Stimulation frequency increases (t = 38 s) to abort a seizure, and decreases
after the abnormal activity is over (t = 52 s). d) A slice with unstable activity requires sustained stimulations. The
adaptive policy is not able to suppress this seizure (t = 30-45 s), but its duration is still reduced when compared to
seizure durations in the control condition.
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4.6 Related Work

We have already investigated a similar problem in a slightly different experimen-

tal setup (amygdala stimulation and perirhinal cortex recording), but our results were

limited to offline measures [29].

A manifold embedding approach combined with reinforcement learning applied

to the same problem (same animal model, same objectives) is still under investigation

[14]. The main difference with our approach is the construction of a model from the

recording data before learning takes place in the embedded space. Their approach

is then subject to incorrect modelling assumptions that can bias the learning, but if

the model is faithful to the real system then the obtained policy could achieve better

performance than our approach because the learning process is not constrained by a

small dataset.

Control, in a different slice preparation (High [K+]), of spontaneous burst ac-

tivity is achieved using non-linear control techniques in [60]; however, those findings

have not been replicated. In that same slice preparation, an approach that stimu-

lates with applied currents only when a seizure is automatically detected is shown

to provide seizure suppression [49]. Those findings are difficult to compare directly

to our work because of the different experimental setup and performance criteria

employed. A review of those findings and others is available in [20].

4.7 Future Work

There are several avenues for improvement regarding the quality of the learned

policy in this experimental framework. An obvious one is to improve the training data

set so that it contains a more comprehensive representation of the slice dynamics.
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Nevertheless, there still exists a significant amount of variance in the dynamics across

slices; hence it would be beneficial to tailor the policy to a particular slice by learning

from it online. Efficient RL exploration techniques could be used to learn online

[51] but it is unclear if they would scale well to this problem because of the high-

dimensional state space.

The second avenue to improve the policy is to develop more informative and

less noisy features for the state representation. Doing this in a principled way is still

an open problem but extensive trial-and-error search, or relying on features found in

the seizure detection/prediction literature [15, 46], could reveal features that induce

greater policies.

Finally, using a larger set of actions would provide finer-grain control to the RL

agent, but at the expense of a more complex learning problem. This is likely to be a

necessary step in future investigations, especially in living animals where the small

action set that we employed in this study might not provide the accurate toolset

required to play with the intricate brain dynamics. Although a larger but finite

action set would presumably only require more training data, using a continuous

action set is a difficult problem in RL and is still the subject of active research.
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CHAPTER 5
CONCLUSION

This chapter concludes the thesis by providing an overview of the work presented

and some discussion. Then, avenues for future work are outlined in Section 5.2.

5.1 Discussion

The main contribution of this thesis is to propose a new methodology for auto-

matically learning adaptive neurostimulation strategies for the treatment of epilep-

tiform disorders in vitro. We have demonstrated that an adaptive stimulation policy

can be learned through pre-recorded data of low-frequency single-pulse fixed stim-

ulation, using a batch reinforcement learning methodology. Analysis of the learned

adaptive strategy using pre-recorded data indicates a potential reduction in the total

amount of stimulation applied, compared to fixed stimulation strategies. Our anal-

ysis also indicates that the expected incidence of seizure under the adaptive policy

is similar to that under the best periodic pacing strategies. It is worth emphasizing

that suppression efficacy in this in vitro model is very high; in cases where suppres-

sion is not as effective, it may be possible for the adaptive strategy to outperform the

periodic strategies in this respect. This offline analysis is validated on rodent brain

slices possessing epileptiform activity. Overall, the results presented in Chapter 4

suggest that reinforcement learning is a promising methodology for learning adaptive

stimulation strategies online. One of the key advantages of this methodology is its

ability to trade-off between minimizing incidence (and/or duration) of seizures, and
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the quantity of stimulation delivered. Another contribution of this thesis, presented

in Chapter 3, is to characterize the advantages of generalizing across actions in a

batch RL setting when the exploration policy employed to acquire the data does not

sample the space comprehensively.

5.2 Future Work

An important question is whether the methodology outlined in this thesis will

carry over to in vivo models of epilepsy. From a technical perspective, we do not

anticipate any major technical obstacles. The reinforcement learning framework is

well suited to handling larger state representations, as would be necessary in cases

where there are multiple sensing electrodes, placed at different (possibly unknown)

locations. The framework is also able to deal with a larger set of possible stimulation

parameters (intensity, duration, higher frequencies, multiple stimulation electrodes).

However we do foresee two major practical challenges. First, it will likely be necessary

to collect larger amounts of data to accurately learn the Q-function. Second, it is

imperative to ensure that the action strategy used during the data collection (i.e.

before the learning) is ‘safe’. Neither of these issues arises when working with in silico

or even in vitro models of epilepsy, but they are of definite concern when dealing

with in vivo subjects. It is worth noting that there are substantial ongoing efforts

in the computer science community to address precisely those problems, namely in

developing algorithms that can efficiently learn from very small data sets, and in

providing formal guarantees regarding the safety (or worst-case performance) of the

system during the data collection process. We hope to leverage such results as they

become available.
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One of the important amenities of working in vivo, compared to working in

vitro, is the time frame available for data collection about the animal and also for

the evaluation of a learned policy; in point of fact, a slice preparation can only

be maintained with the right activity for a handful of hours, whereas in vivo ex-

periments can go on for weeks. With respect to data collection, this means that

a pure—but safe—exploration phase could realistically take place before trying to

apply any seizure-suppressing policy. Then, after that initial stage, an agent care-

fully trading-off the remaining exploration and exploitation could be deployed for

the long-term adaptive control of seizures. Since the brain dynamics are, assumably,

continuously evolving in an individual, the exploration component might need to be

kept permanently to ensure that the RL agent’s model is always on par with the real

dynamics and can adjust its policy accordingly.

In conclusion, this thesis presents a novel application of reinforcement learning

methodologies to a challenging and important optimization problem. The potential

impact of this work is tremendous, and while the early results are promising, there

remains a long road of exploration and experimentation to come up with an adaptive

controller for human patients.
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Appendix A: Brain Slice Preparation and Maintenance

Male, adult Sprague-Dawley rat (250-300 g) were decapitated under deep isoflu-

rane anesthesia. The brain was quickly removed and placed in cold (0–2◦ C) artificial

cerebro-spinal fluid (aCSF), having the following composition (mM): 124 NaCl, 2

KCl, 2 MgSO4, 2 CaCl2, 1.25 KH2PO4, 26 NaHCO3 and 10 D-glucose, and was con-

tinuously bubbled with CO2 5% and O2 95% to equilibrate at pH=7.35–7.40. We cut

partially disconnected combined hippocampus-EC slices 450µm thick as previously

described [56] using a VT1000S vibratome (Leica, Germany). In these brain slices,

which included the most ventral part of the hippocampal formation, we observed

fast CA3-driven interictal-like activity disclosed by 4AP application to be restrained

to the hippocampus proper and not to be propagating to the EC (cf., [3], but see

also [4]). We then transferred slices to an interface recording chamber, lying between

warm (∼ 32◦ C) aCSF and humidified gas (CO2 5% and O2 95%), where they were

allowed to recover for at least 1 hour before beginning continuous bath-application

of 4AP, continuously perfusing at ∼1 ml/min. We made all efforts to minimize the

number of animals used and their suffering. We carried on all procedures in ac-

cordance to the CCAC (Canadian Council for Animal Care) and McGill University

guidelines.
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Appendix B: Field Potential Recording and Stimulation

Field potential recordings were made with ACSF-filled pipettes (tip diameter

< 10µm; resistance= 5-10 MΩ) pulled from borosilicate capillary tubing (World

Precision Instruments Inc., Sarasota, FL, USA) using a P-97 puller (Sutter Instru-

ment, Novato, CA, USA). Extracellular signals were fed to a Cyberamp 380 amplifier

(Molecular Devices, Palo Alto, CA) connected to a digital interface device (Digidata

1320A, Molecular Devices). Data were acquired at a sampling rate of 5 KHz, us-

ing the software Clampex 8.2 (Molecular Devices), stored on the hard drive and

analyzed off-line. Recording electrodes were placed in the EC deep layers and the

subiculum. Extracellular current pulses (0.1-2.25 mA, pulse width 100 µs) were

delivered in the subiculum through a bipolar concentric Pt-Ir electrode (FHC, Bow-

doin, ME, USA) plugged into a high voltage stimulus isolator unit (A360, WPI Inc.,

Sarasota, Florida, USA) connected to the pulse generator Pulsemaster A300 (WPI

Inc., Sarasota, Florida, USA). The Cyberamp 380 amplifier was also connected to

another digital interface device (USB-6221 M Series, National Instruments, Texas,

USA) that acquired data at a sampling rate of 5 KHz using an in-house software.

That software was performing signal processing in real time and was querying the

adaptive controller software for the stimulation actions. Those stimulation requests

were then transmitted digitally from the National Instruments digitizer to the pulse

generator.
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