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Abstract

In this thesis, we demonstrate the use of physics-informed inductive biases for a wide
variety of learned models that control robot behaviour. In addition to reducing train-
ing time, models trained with a priori knowledge demonstrate better generalization and
contextualization based on observation compared to pure physics-only or learning-only
methods. These performance qualities are especially important for robots operating in
uncertain and dynamic environments that require data that is difficult or costly to model
in training.

This document presents a series of practical improvements in robotic perception and
behaviour learning centred around building high-quality models of the robot’s environ-
ment, its sensors, and the robot itself. We show the empirical effectiveness of incorpo-
rating structural bias for various robot tasks, including learning conditional computation
for an extraterrestrial machine vision task, deploying a robot mapping team that relies on

physics for propulsion, and robot arms that learn controllers for manipulation.



Abrégé

Dans cette these, nous démontrons 1'utilisation de la physique comme biais inductif pour
les modeles d’apprentissage controlant le comportement des robots. Nous montrons que
les robots ayant acces a des priors informés par la physique pendant 1’apprentissage
nécessitent moins d’interactions avec I’environnement pendant la formation et présentent
une meilleure généralisation par rapport aux méthodes purement physiques ou pure-
ment basées sur "apprentissage. Ces qualités de performance sont particuliérement im-
portantes pour les robots opérant dans des environnements incertains et dynamiques,
difficiles ou cotiteux a modéliser en formation.

Ce document présente une série d’améliorations pratiques dans la perception et
I'apprentissage comportemental des robots, centrées sur la construction de modéles de
haute qualité de I’environnement du robot, de ses capteurs et du robot lui-méme. Nous
démontrons 1’efficacité empirique de l'intégration de biais structurels pour une variété
de taches robotiques, notamment l’apprentissage du calcul conditionnel pour une tache
de vision machine extraterrestre, le déploiement d’une équipe de cartographie robotique
s’appuyant sur la physique pour la propulsion, et des bras robotiques qui apprennent des

contrdleurs pour la manipulation.
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Chapter 1

Introduction

1.1 Motivation

Perhaps the most well-known scientific robot is the Mars Curiosity Rover. Curiosity is
a car-sized wheeled robot exploring the Gale Crater on Mars since 2012, achieving its
scientific mission of mapping the region with acutely bandwidth-limited human super-
vision [Webster, 2013]. Given its lonely locale, Curiosity operates semi-autonomously.
Scientists provide high-level directions that trade-off their research goals with what they
anticipate the robot can accomplish.

The robot’s planner orchestrates short-horizon obstacle avoidance, which is eventu-
ally interpreted down to low-level control of wheel propulsion and steering. The 225
million kilometres distance between Earth and Mars results in a 20-minute one-way com-
munication delay between each command, meaning engineers back on Earth are rarely
informed on the full state of the actuators, cameras, and scientific instruments needed to
make real-time decisions about navigation and sampling, highlighting the importance of
autonomy in robots. Despite its ability to operate without hands-on oversight, Curiosity
still needs a fair amount of human input to balance a particular scientific mission with its
own safety. This expert control by humans comes at a cost. Supervision is often tedious

and expensive, and most robots deployed in natural environments still lack the sophis-
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tication to perform complex tasks without instruction from human experts. Other scien-
tific sampling robots, such as those depicted in Figure 1.1, have been deployed to harsh
environments to gather data for scientific discovery and monitoring. These robots are
equipped with specialized sensors that collect data as the robot travels to various parts of
a survey region, collecting in-situ (local) observations of a phenomenon that is changing
over a spatial and/or temporal scale. In Fig 1.1a, we see an example of Curiosity’s semi-
autonomous exploration. Scientists back on earth choose specified waypoints of interest
(marked in green in the figure), and Curiosity chooses a safe path through the waypoints
[Webster, 2013]. In Fig 1.1b, the Icefin robot [Meister et al., 2018] was used to capture novel
data from under the Thwaites Glacier in Antarctica that have radically improved scientific
understanding of underwater glacial melt rate, having important implications for climate
modeling [Schmidt et al., 2023]. Robots working in under-ice environments require ad-
vanced localization capabilities to accurately map their sensor observations onto a world
map that can be used for science. In Figure 1.1c, an unmanned aircraft is adaptively
teleoperated by human experts to collect data during Hurricane Michael [JPL, 2016]. The
image depicts the temperature of the atmosphere as collected by the drone overlaid on
ground-based radar observation of the storm.

Robots are physical agents that interact with the world by observing their environ-
ment via sensors and carrying out actions based on these observations that enact physical
change, such as movement. In addition to sensing used to inform navigation, scientific
robots often require sensors that are instead utilized for gathering data for some down-
stream scientific task. When mobile robots are tasked to gather samples to provide insight
into some physical system (such as the underside of a glacier), attaining more distinct
and quality samples will generally improve understanding of the underlying data distri-
bution. Although the distinct data observations gathered by robots are typically much
less than the cost of mapping the same region with humans, robots gathering new data
points still incur a cost. In the case of environmental sampling, the cost associated with

collecting in-situ samples is often dominated by the battery energy, time, or risk required
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to travel to disparate locations in a survey region. Inspired by this observation, this thesis
specializes in developing practical systems that optimize cost-to-performance trade-offs
in robot behaviour using informed priors.

Despite their accomplishments and sophistication, the “autonomous” robots in Fig-
ure 1.1 each require an entire team of professional engineers and programmers to help
plan and prioritize their activity [Silver, 2010]. Though truly autonomous robots have the
opportunity to fill important holes in scientific exploration and data acquisition, at this
time, most autonomous scientific mobile vehicles which need to interact with their envi-
ronment only perform tasks under the watchful eye of experts. Exploration robots that
require such intense supervision tend only to fill roles that are much too costly, tedious,
and/or dangerous for humans.

Outside of scientific robots, in recent years, we have seen a large increase in robots
deployed commercially, such as those that handle boxes in warehouses or control row-
driving tractors. In these settings, the robots interact with domain experts rather than

specially trained engineers, with the key difference being that these machines are usually

7 2 N

(a) Mars mapping (b) Imaging under a glacier (c) Data inside a hurricane

Figure 1.1: This panel depicts the track of several scientific sampling robots. Starting
from the left, we see the track of Curiosity [Webster, 2013] on Mars as guided by a semi-
autonomous navigation planner, an image of the underside of the Thwaites glacier cap-
tured with the hybrid-remote vehicle, Icefin [Meister et al., 2018], and a collation of hur-
ricane data captured from a remotely operated drone [JPL, 2016]. The robots are roughly
ordered left-to-right by the degree to which they rely on human operators for decision-
making. Images are from the respective cited publications with permission from the copy-
right holder.
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confined to relatively controlled (structured) environments and specific tasks. Machines
that interact with non-engineers in human spaces have historically taken on tasks with
low sensitivity to failure and do not require complex reasoning, such as vacuum cleaning

or lawn mowing.

1.2 Problem Statement

Structured environments are those in which the space or environment is clearly defined,
usually consisting of static geometric shapes and constrained variables that may affect
sensor observations (such as consistent lighting and flat flooring with known friction).
However, most of the real world is unstructured, with infinite unknown and dynamic
variables. A relatively well-structured environment can still seem unstructured to a robot’s
sensors as features like lighting, friction, or the sensors themselves vary.

Despite the lack of structure in the open world, humans tend to do a good job of
operating in these environments. Part of this is because we can adapt and improve our
model of the world over time. Following architectural cues, humans can walk into a new
restaurant and quickly determine where the kitchen is. If that fails, we might utilize
an exploratory crutch and follow one of the waitstaff away from a table they have just
serviced, expecting them to return to the kitchen for a new tray. Traditional general-
purpose planning algorithms like those often employed in mobile robotic systems would
solve the same task by laboriously mapping the entire restaurant until they stumble upon
an oven or a chef. Although the robot that exhaustively searches for the kitchen is likely
to handle edge cases better, one can see how a robot with some built-in intuition can often
solve the problem more efficiently. Our intention in this work is to combine the strengths
of classical robotic algorithms while enabling robots to adapt to experience and improve
their world model over time.

Indeed, in the context of scientific sampling robots, we know that humans make in-

formed decisions about where to collect data based on their prior knowledge and exper-
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tise, preferring to heavily sample unpredictable areas and take fewer measurements from
well-known areas. For instance, we can reliably guess that the drone operator in Fig .1.1c
chose the vehicle’s path based on some prior understanding of hurricanes, the current at-
mospheric conditions, and the data collection mission. He probably wanted to maintain
the vehicle’s safety while exploiting the strengths of the sensor (HAMSR) observing the
system. Since there were ground radar and satellite observations before beginning the
flight, we expect that this data may have raised questions that could only be answered by

capturing in-situ data.

1.3 Contribution to Original Knowledge

This thesis contributes to developing robot systems that can operate in unstructured
environments by empowering them with structured bias that helps explain themselves
and/or the world around them. We argue that with better modelling, the robot’s envi-
ronment appears more structured, thanks to a greater context.

This thesis begins with General (Part I) and Technical (Part II) Introductions and then
proceeds into original contributions. In part III of this thesis, we look at two novel sys-
tems developed for scientific sampling robots. In Part IV, we introduce physics priors
into the structure of neural controllers learned for performing dexterous manipulation.
Throughout this thesis, we propose several techniques for improving autonomy, includ-

ing the following:

1. Chapter 5 focuses on developing a model-based robotic system capable of collecting
observations from marine environments at low cost. This system consists of sen-
sors whose sample trajectory is determined primarily by exploiting flow fields for
propulsion. This line of work requires accurate modelling of these sensors, called

drifters, and led to a series of projects, including;:

¢ A large-scale collated dataset of paired drifter trajectories and weather phe-

nomena [Hansen et al., 2022b].
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2.

1.4

A method for utilizing randomly deployed drifters for improving adaptive

sample collection with an autonomous surface vehicle [Manjanna et al., 2017b].

* A method for improving coverage with model-based search over drifter de-

ployment points [Hansen and Dudek, 2018].

* A method for learning to adaptively sample a region with a heterogenous
robot team composed of an autonomous surface vehicle and a team of drifters

[Hansen et al., 2018].

¢ Improvements to boat hardware enabled real-world experiments [Huang et al.,

2021].

In Chapter 7, we design and evaluate a new method for learning to adaptively uti-

lize disparate sensing modalities in the context of visuotactile manipulation [Hansen

et al., 2022a].

. Finally, in Chapter 6, we discuss the method we developed for improving and sta-

bilizing vision-based learning algorithms in multi-link manipulators by leveraging

privileged differentiable kinematics in the model structure.

Contribution of Authors

Chapters 1, 2, 3, and 4 provide the introduction and background material referenced
throughout the thesis. The content and inspiration for these chapters from a variety
of sources collected throughout my career, including Computation Principals of Mobile
Robotics [Dudek and Jenkin, 2010c] and theses of David Silver [Silver, 2010], Florian
Shkurti [Shkurti, 2019], Sandeep Manjanna [Manjanna, 2021], Ryan Lowe [Lowe,
2020], and Tegan Maharaj [Maharaj, 2022].

In Chapter 5, we employ an autonomous surface vehicle (ASV) design known as
Gannet that was developed and improved as part of a team effort. Sandeep Man-

janna, a collaborator and fellow graduate student, led much of the design effort,
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purchasing, and assembly. Nikolaos Pateromichelakis, an engineer in the Mobile
Robotics Lab, helped design and build the mechanical aspects of the boat. I as-
sisted with wireless and wired communications, power management, and various
sensor integration. Jeremy Mallette, a summer engineer in the Mobile Robotics Lab,
helped with the field tests and hardware updates. Travis Manderson consulted on
the power and battery design. Ian Karp assisted with purchasing and transport.
Much of the work that employed physical drifters utilizes hardware developed by
the lab of Ioannis Rekleitis. The drifter software was developed in collaboration

with Alberto Quattrini Li and Sandeep Manjanna.

The improvements to the Gannet ASV used in Chapter 5 that enable drifter recovery
were developed as part of two Mechanical Engineering Capstone Projects at McGill.
Profs. Gregory Dudek, David Meger, and I advised a team of students, including
Yuying Huang, Yiming Yao, Chris Jing, and Khaled Al Masaid. I developed the
problem statement and design concept and led the assembly and field experiments.
Yuying handled most of the mechanical modelling, sensor communications, and
project organization. Yiming designed a new controller for the sensor and led much
of the electrical engineering effort. Chris and Khaled helped study the feasibility
of the mechanical design. Sandeep Manjanna and Jeremey Mallette guided ASV
deployment. This work is associated with [Huang et al., 2021] in which Yuying,
Yiming, and I collaborated on the writing with guidance from David and Sandeep.

This project would not be possible without the aforementioned Gannet ASV.

Chapter 5 also includes dataset and computational work carried out in the final
quarter of the project. Khalil Virji contributed by developing a general interface
for querying environmental data related to drifter trajectories. Travis Manderson
helped develop an ensemble model for evaluating drifter trajectory estimates, and I

developed and tuned the models.
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* Chapter 7 is derived from the paper ”Visuotactile-RL: Learning Multimodal Manip-
ulation Policies with Deep Reinforcement Learning” presented at ICRA 2022. This
work was performed while I was an intern at the Samsung Al Research Center in
Montreal. I performed much of the code development to perform visuotactile sim-
ulation and adapted the RL agent to work with multimodal observations. Dmitriy
Rivkin and Francois Hogan were also heavily involved in this effort, especially in
speeding up the simulation and running early experiments. Francois also provided
expertise in guiding the project from a manipulation and tactile perspective. David
Meger, Michael Jenkin, and Greg Dudek provided leadership on architecture design

and writing.

¢ Chapter 6 is based on Kinematic Critic, which was work done in collaboration with
Kyle Kastner and Yuying Huang. This work developed from a discussion about
forward kinematics while determining the calibration of the Jaco robot manipula-
tor. Kyle connected that the transformation between rigid body links is fully differ-
entiable, similar to a recurrent neural network with fixed parameters. We brain-
stormed different methods for using this insight and introduced the Kinematic-
Critic architecture based on my experience with visual reinforcement learning algo-
rithms such as DrQ. Kyle helped with the architecture design; I wrote the Kinematic
Critic and performed the experiments. Yuying Huang found the DH parameters
for various robots in the DM-Control suite. Aaron Courville, David Meger, and
Gregory Dudek provided supervisory support and editing suggestions. Sahand
Rezaei-Shoshtari worked on a version of this work where we attempted to learn the
Denavit-Hartenberg parameters online, though this effort has not reached publica-

tion maturity.
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1.5 Outline

This thesis begins with Part II devoted to introducing robots and models for learning
robot behaviours. In Chapter 2, we'll look at how a robot makes observations about the
world through sensors and then look at how to collate sensed observations into behaviour
in Chapter 3. This background portion of the thesis will conclude by covering machine
learning, modelling, and simulation topics in Chpater 4. In subsequent chapters, we in-
vestigate co-authored original research with relevant references. In Part III, we look at
applications in scientific sampling and design a system to automatically collect marine
observations with drifting sensor nodes. Finally, in Part IV, we examine how we can

change model architecture via physics-induced priors to learn robot behaviours.
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Part 11

Technical Background
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Chapter 2

Robot Observations

In this chapter, we'll discuss how robots observe and estimate the world around them.
The first section focuses on robot perception, introducing various physical sensors robots
use. In the remaining sections, we discuss state estimation methods for interpreting obser-

vation and how sensor understanding relates to robot shape and control.

2.1 Robotic Perception

Robots perceive the world around them using various sensors. Sensors are devices that
measure an analog physical quantity and convert it into a signal that computers can use.
Like mammals who utilize multiple senses in daily life, most robots require a collection of
sensors to avoid obstacles, determine where they are in the world, and recognize objects
for interaction. Sensor readings include range and visual sensors, which may provide
geometric or qualitative information about the environment. They also include absolute
and inertial position readings, which tell the robot about its pose. Real-world sensors are
often limited in observational accuracy due to noise or bias.

An essential part of building a robotic system is selecting the best sensors for a partic-
ular task within budget, power, computational, and mechanical constraints. As batteries

often power mobile robots, sensors’ energy efficiency and relative payload requirements
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are critical considerations. The following section will discuss different types of sensors
and their tradeoffs.

Although performance can vary depending on the quality of a sensor, the data col-
lected will be an imperfect observation of the world. Sensors are subject to internal and
external noise and, therefore, cannot make perfect measurements. Sensors are limited in
range and resolution, and their performance will depend on environmental conditions

like temperature or fog.

2.1.1 Absolute Position Sensors

Absolute Position Sensors allow a robot to compute its position within some known frame
using an external reference. Perhaps the best-known and most widely used system for ab-
solute positioning is the Global Positioning System (GPS). Since 1995, GPS has provided
latitude, longitude, altitude, and time to a capable receiver anywhere on Earth with a clear
view of the sky. This system consists of 31 satellites in orbit around the earth, each emit-
ting regular messages detailing the satellite’s position and the precise time the message
was transmitted. A GPS receiver that receives messages from at least four of the satellites
can compare the relative distances (determined by the time of flight of the messages) be-
tween the satellites to determine its position to an accuracy, usually within tens of meters.
Though GPS is handy for many terrestrial applications, it often fails when line-of-sight
to the satellite is lost, such as when the receiver is indoors, underwater, or underground.
In these cases, we must determine vehicle position within a local absolute positioning
system or defer to inertial sensors for relative position, as discussed in Sec. 2.1.2.

Since GPS signals are unable to penetrate water effectively, robots working underwa-
ter turn to local absolute positioning systems such as long baseline (LBL) or ultra short
baseline (USBL). Long baseline measures the relative distance to acoustic transponders
placed at known points underwater (usually spaced 100s of meters apart on the ocean
floor). These systems, like those mentioned before, use the time of flight through the wa-

ter to measure the range between transducers on the vehicle and the reference transpon-
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ders. High-frequency LBL (> 300kHz) systems can achieve sub-centimetre position accu-
racy, while standard full ocean depth systems with ranges of 10 km can achieve a range-
dependent precision of 0.1 to 10 m [Kinsey et al., 2006]. Deploying an LBL positioning
system in the deep ocean can be costly. Before the system can provide positioning infor-
mation, each base transponder must be precisely localized.

USBL systems require a single, small transducer array unit that can be mounted on the
hull of a surface vehicle (usually a ship) with minimal calibration between the transducer
and the surface vehicle’s GPS and an orientation estimate of the boat. This array measures
the phase difference of a signal received from an underwater transducer to determine the
relative range and bearing. The noise errors associated with LBL and USBL positioning
estimates are different. LBL is often subject to bias due to initial sensor calibration but suf-
fers relatively low ongoing noise due to sizeable spatial diversity and the fixed position
of the ranging devices. USBL systems tend to have high variance due to GPS / orienta-
tion errors registered at each positioning update, especially if sea conditions induce high
orientation variability. Both systems suffer if the speed of sound in water is inaccurately
estimated because sound velocity varies dramatically due to water temperature and den-
sity changes in the water column. In practice, sound velocity is only approximated by
sparse measurements in the survey area, which means that the localization of vehicles
working underwater is usually imprecise. On-vehicle sensors, which will be discussed
in the following sections, combined with state estimation algorithms, can help improve

state estimates based on local measurements.

2.1.2 Internal-State Sensors

Internal-state sensors measure information about the robot, such as battery level, pro-
peller thrust, or internal temperature. Although internal-state sensors can play an essen-
tial role in a robot’s behaviour, for instance, signalling to a robot that it should return to

its base when its battery has run low, they are beyond the scope of this thesis.
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Inertial Sensors

Inertial sensors can estimate a robot’s relative position without active references from the
outside world. Robotics-relevant inertial sensors are typically combined into a device
called an inertial measurement unit (IMU). These devices consist of accelerometers and gy-
roscopes that measure linear and angular acceleration and typically update rapidly.
Accelerometers behave like a spring-mounted mass where displacement under accel-
eration is measured using Newton’s law, and the spring-mass relationship to produce the
Eq. 2.1 where £ is the spring constant a, m is the mass and =z is the distance the spring is
moved from its equilibrium [Dudek and Jenkin, 2010a]. Accelerometers tend to perform
poorly in the presence of time-varying acceleration such as heave [Kinsey et al., 2006].
ke

a= (2.1)
m

Gyroscopes measure angular acceleration about an axis by exploiting the conservation
of angular momentum. Changes in the orientation of the gyroscope result in a force that
can be measured. A gyroscope’s accuracy (and cost) varies widely with the method in
which angular momentum is measured.

Traditional, mechanical gyroscopes are made of a rapidly spinning mass suspended in
a gimbal [Dudek and Jenkin, 2010a]. Mechanical systems are prone to drift over time due
to imperfections and friction in the gimbal system. MEMS (micro-electro-mechanical sys-
tem) gyroscopes are small and inexpensive systems often used in modern electronic de-
vices. Because of their low price, they are used extensively in consumer robots. These de-
vices estimate angular acceleration by measuring the change in position (and thus change
in voltage) of a small vibrating mass [Maenaka, 2008]. The mass is often a piezoelectric
material induced to vibrate at a constant rate by an applied voltage. Rotation causes in-
creased lateral motion due to the Coriolis force. Optical gyroscopes are on the other end
of the performance and cost spectrum from MEMS. Optical gyroscopes calculate rotation

using the Sagnac effect. They work by measuring an apparent change in the length of
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an optical cavity (usually a long, coiled optical fibre) in the presence of rotation. This is
expressed by Eq. 2.2, where r is the radius of the cavity, 2 is the angular velocity, and c is
the speed of light in the medium of the cavity. The apparent change in length of the light
path under rotation produces a change in the observed frequency of the emitted light as

described by Eq. 2.3, where ) is the wavelength.

2

il — ar (2.2)
C
2rQ)

df = TT (2.3)

Pressure sensors can provide altitude above or below sea level when combined with
standard air or water density equations. When vehicles use only inertial navigation sys-
tems (INS) for navigation, they perform what is called dead reckoning, meaning that the
system does not use external references for localization. Robots that rely on dead reckon-
ing are appealing because they do not need additional sensing infrastructure; they tend
to suffer from estimation drift over time due to the highlighted limitations of internal
sensors. It is common in practice for mobile robots to use a combination of relatively
high-update rate inertial measurement sensors and relatively low-update rate absolute

position measurements for positioning.

2.1.3 External-State Sensors

External-state sensors tell us something about the world around the vehicle and are di-
vided further into active and passive sensors. Active sensors emit energy and then mea-
sure how that energy interacts with the environment while passive sensors, like cameras,
measure the environment without emission and thus tend to be more energy efficient

when compared to active sensors.
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Range Sensors

Range sensors are active sensors that measure distance by emitting a signal and then
measuring its reflection on the environment. Range sensors work over a broad range of
the frequency spectrum. SONAR (sound navigation and ranging) ranging systems utilize
acoustic signals on the low end of the spectrum (3Hz-300kHz). In contrast, RaDAR (radio
detection and ranging) systems use radio signals (3-30 MHz). Higher frequencies tend to
attenuate faster than lower frequency signals but can provide higher spatial resolution,
though this typically comes at the cost of more complex receivers. Underwater ranging
and communication systems use acoustic systems almost exclusively due to aggressive
attenuation in water.

1

If the ranging system’s transmitter and receiver are the same, the distance between
the transmitter and the object from which the signal was reflected can be determined us-
ing Eq. 2.4. In this equation, c is the speed of the signal in the medium through which it
travelled, and ¢ is the time between the transmission and the return of the signal. Other
attributes about the received signal, such as attenuation or phase shift, may provide ad-
ditional information about objects in the environment.

Although we presented a simple equation for the range from the sensor to an object,
this is often not enough detail to truly understand where the reflective object is located in
environments with many objects or when the robot is moving. This is because the simple
range calculation makes the naive assumption that the reflected signal is from a static
object directly in front of the sensor, but this is often not the case.

Typically, transmitters utilized for range-finding will have a directional beam pattern
in which the majority of energy is contained in a main lobe of a specified width. How-
ever, side lobes will also emit energy that can reflect from objects in an environment and

complicate the range measurement. The effect of these multiple energy wavefronts can
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(a) Multibeam (b) ADCP

Figure 2.1: Fig. 2.1a demonstrates a full bathymetry map of the Vailulu'u Seamount in
American Samoa made with data from a multibeam sonar. In addition to the seafloor,
the sensor has responded to a midwater plume of bubbles in the water column (shown
in light green and neon yellow). Image courtesy of [National Oceanic and Atmospheric
Administration Office of Ocean Exploration and Research, 2017]. Fig. 2.1b shows a typ-
ical Acoustic Doppler Current Profiler (ADCP) consisting of 4 transducers that alternate
transmitting and receiving sound to measure particle speed in the water column. Image
courtesy of [National Oceanic and Atmospheric Administration Office of Ocean Explo-
ration and Research, 2023].

result in a circular arc of returns known as regions of constant distance (RCDs). One way
to overcome the impact of RCDs is to use a more advanced transmitting or receiving sys-
tem, such as beamforming. A system that uses beamforming receivers employs an array
of physically separate receivers instead of a single receiver. This spatial disparity means
the delay in a received signal between receivers provides information about the signal’s
direction.

Modern ground robots often employ LiDAR (Light Detection and Ranging) sensors,
which emit light waves (typically 600-1000 nm wavelength) for range sensing. These sen-
sors may use designs with multiple transmitters and receivers, moving or steered parts,
or both to reduce component cost and/or increase coverage.

In underwater applications, particulates in the medium quickly degrade transmission
at wavelengths in the visible spectrum. Thus, most robots in this domain utilize range

finders in the acoustic spectrum. Sidescan Sonars emit a conical pulse at 100-500 khz
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towards the region of interest (typically the seafloor), recording an observation directly
under the sensor as the vehicle moves throughout a survey region. The result of these
responses can be stitched together to form a single-channel image with the magnitude
of the pixels in the resulting image indicating the strength of the response. This mag-
nitude of reflection is influenced by several factors which can be somewhat challenging
to disentangle, including distance (if an object is closer, its reflectance will be of greater
magnitude), hardness (granite rock will reflect stronger than silt), and angle of incidence.

Multibeam sonars also operate in the acoustic range but typically consist of an array
of transducers and produce 3-dimensional point clouds of data. This allows more precise
maps of the seafloor and in the water column than side-scan sonar. See Fig. 2.1a for an
example of an environment map made from a multibeam sonar.

The Acoustic Doppler Current Profiler (ADCP) is another external sensor that uses
sound waves to observe the external world. The ADCP (see Fig. 2.1b) measures the ve-
locity of currents in the water column by measuring the displacement of sound from tiny
particles in the water. This sensor exploits the Doppler effect, which tells us that particles
moving away from the transducer will have a higher frequency response than particles
moving toward the transducer. Current measurement is an essential observation for sci-

entific purposes, but can also be used by robots to estimate relative speed and drift.

Visual Sensors

We know that vision is a powerful sense for humans, providing a dense representation
of the world that allows us to avoid obstacles, recognize predators, and understand writ-
ten and non-verbal communication signals. Since cameras are passive, they tend to use
less power, have a higher capture rate, and can be obtained at a lower cost than active
range-finding sensors such as sonar. Although camera perception is limited to the visual
spectrum and is occluded by particulates such as fog, dust, or snow, this sensor is es-
sential to most modern robots. Even if the robot does not interpret the data directly, the

recorded footage is often helpful to human operators.
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Camera data is typically observed as sequential observations in rasterized colour (red-
green-blue or RGB) images. A single observation of an object does not provide explicit in-
formation regarding the distance to the object or the object’s size, but multiple views of the
same object from known locations can provide explicit geometrical information. Systems
that leverage cameras for navigation achieve distinct viewpoints by capturing a scene
with either narrow-baseline or wide-baseline camera systems, where baseline refers to
the distance between two cameras with overlapping scenes. Narrow-baseline, or simply
stereo vision, involves mounting two cameras at a known distance from each other on
the robot and capturing images simultaneously from both sensors. Corresponding fea-
tures captured in both images can be compared to the known offset between the cameras
to determine the range from the robot to the object. Wide-baseline, or monocular sys-
tems estimate geometry by using a moving camera which captures multiple views of an
object from estimated locations based on robot movement. A calibrated narrow-baseline
produces more accurate results due to the known physical constraint between the cam-
eras compared to a wide-baseline, which relies on an algorithmic estimate of movement
between frames. Narrow baseline systems are often limited to capturing small scenes by
the necessarily narrow (due to the physical size of the robot) view difference between the

cameras.

Touch Sensors

High-contact touch and manipulation, in general, remain challenging problems in robotics.
One of the main limitations of developing robots capable of natural contact interactions
and dexterity is the relative immaturity of touch-sensing technology. Current sensors
cannot provide sensitive and responsive touch at a high resolution without considerable
expense or size.

One approach on the high-cost scale is BioTac [Wettels et al., 2008], a fingertip-inspired
touch sensor. This sensor has a small form factor consisting of a multi-electrode array and

a hydro-acoustic sensor embedded in a soft silicon “skin.”
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On the low-cost end of the spectrum, visuotactile sensors (shown in Fig. 7.1) enable
touch sensing with off-the-shelf cameras. Initially introduced by GelSight [Yuan et al.,
2017], this class of sensors converts physical contact into an image using a camera posi-
tioned under a pliable gel. This sensor design can provide high-resolution touch sensing
that is helpful when manipulating and localizing small objects in the hand. Visuotactile
sensors may also have markers embedded on the gel membrane to improve membrane
displacement estimates [Dong et al., 2017], or the gel may be made to be transparent,

allowing vision and tactile through the sensor [Hogan et al., 2021].

Force-Torque Sensors

Force-torque sensors can measure linear and rotational forces. They are typically de-
signed using a combination of 6-axis strain gauges, which measure resistance as pressure
is applied. These sensors are often found in crucial joints in robot manipulators and help

measure force when interacting with external objects.

2.1.4 Precision and Noise

Most sensors measure continuous signals in both time and amplitude that must be dis-
cretized by sampling the signal in time and quantizing the voltage. Discretization is a
many-to-few mapping process that causes an inherent loss of information from the analog
signal. When converting a sensor’s perception of the world into a digital representation,
we seek to optimize the number of bits per second or encoding rate required to represent
the signal in digital format. Too few bits will result in an unacceptable loss in the resolu-
tion of the original signal, but too many bits may be expensive (in time, computation, and
cost).

In addition to resolution lost due to digital quantization, intrinsic or extrinsic noise
often degrades the sensor signal. Noise is any unwanted electrical signal that interferes
with or distorts the desired signal. Sensor characteristics, such as electromagnetic inter-

ference or manufacturing imperfections, cause intrinsic noise. Extrinsic noise is caused by
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external factors such as the temperature of interference from other sensors or the environ-
ment. In range-finding sensors, external noise in the form of reflections is a notable cause
of error. Noise can be countered by the fusion of sensors with complementary noise char-
acteristics (such as lidar and cameras) and the calibration of sensors to particular extrinsic

noise in a known environment.

2.2 Robot State Estimation

Robots interact with the world around them by observing the environment through sen-
sors and taking control actions that change the environment and/or themselves. Often,
these sensors provide only noisy measurements of limited precision. In addition, the
robot’s actions, often expressed as mechanical force, interact with the physical world in a
way that is imperfectly modelled. Formally, the robot’s state, x, is defined as the collec-
tion of all parameters about the robot and its environment that may influence its future,
including its pose.

We utilize the following notation as defined in Thrun’s Probabilistic Robotics [Thrun

et al., 2005] to discuss robot state:

* Observation, denoted by o, specifies a collection of sensor readings that inform
robot state. Sensor measurements generally improve confidence in a current state

estimate.

* Action, denoted by u, describe the robot’s estimated change in position. In our con-
text, a control action is usually an applied wheel torque or propeller thrust, which
we expect will move the robot based on the vehicle’s dynamics. Control actions
tend to decrease confidence in a state estimate due to imperfectly modelled forces

in the environment.

e State, denoted by x, describes the robot’s pose and any parameters from the robot

or the environment that may impact the robot’s future.
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It is often convenient to make the simplifying assumption that state is Markovovian
such that each state, x;, is a complete summary of past states x,;_;. This assumption
means that the current state is conditionally independent of prior states given the current

state as expressed in Eq. 2.5.

P(l’t|$o:t71, O1:t—1, Ul:t) = p($t|1‘t717 Ut) (2-5)

2.2.1 Morphology and State

Robotic platforms come in a wide variety of shapes and sizes. This morphology will
exacerbate or reduce uncertainty in state estimation. This thesis will cover two classes
of robots: mobile robots and articulated robot manipulators or robot arms. As the name
suggests, mobile robots have the freedom to move about the world and require sensing
to avoid obstacles. They usually need a means of propulsion and control. There are
significant challenges in safely and efficiently moving a robot around the real world while
avoiding static and dynamic obstacles. Estimating the actual state is crucial for mobile
robots aiming to generate a precise map, which may be needed for downstream uses
such as scientific discovery. Mobile robots operating in mostly free space, such as aerial
or underwater robots, need to estimate pose in 6 degrees of freedom (6-DOF) described
by cartesian position (X, Y, Z) and orientation (yaw, pitch, roll). Rover-style vehicles on
flat ground often only need to estimate pose in (X, Y') Cartesian coordinates and yaw,
typically reducing the difficulty of accurately estimating pose.

Manipulators refer to the class of robots broadly meant to function similarly to a hu-
man arm, with usually 2-10 rotational or hinge joints connected by rigid links and ending
with an end-effector. Manipulators can be fixed to a mount or operate on a moving base
or body. Given accurate sensing of joint encoding, the pose of the arm and end-effector
can be calculated with a process known as forward kinematics. Many of the challenges
faced in this class of robots involve the difficulty of perceiving and interacting with ob-

jects external to the robot’s end-effector.
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(a) Mobile

Figure 2.2: Robot morphology dictates much of the challenges faced in state estima-
tion. This diagram shows the scientific mapping mobile robot, NUI, working under
ice in Fig. 2.2a [Jakuba, 2014], mounted Kuka IIWA arms picking objects from bins in
Fig. 2.2b [Levine et al., 2018], and the Atlas legged robot moving a heavy board in
Fig. 2.2¢ [Deits and Koolen, 2023]. Images are copied from the referenced publication

with permission from the copyright holder.

Fig. 2.2 illustrates the state estimation challenges induced by various robot morphol-
ogy. The scientific mobile robot Nereid Under Ice (NUI), estimates 6-DOF state with as-
sistance from sensors that reflect off of (often dynamic) sea ice, the seafloor, and (always
dynamic) water currents. Constantly moving currents and ice make estimating state rela-
tive to these obstacles challenging. Robot arms on fixed platforms can use forward kine-
matics to find a reasonable pose estimate but often need external sensors such as cameras
to provide insight into the surrounding environment. Legged robots face the state esti-
mate challenges of both classes above robots and have the added difficulty of needing to

induce stability through active balance to improve sensor measurements.

2.2.2 Estimating State

Robot state estimation is the process by which a robot utilizes sensor information to de-
termine its state or configuration. State cannot be known explicitly since it results from a

series of noisy measurements. One approach to state estimation is to assign conditional
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probability distributions to each of the possible hypotheses as to the actual state in a pos-

terior distribution referred to as a belief (see Eq. 2.6).

bel = p(It|01:tU1:t) (2.6)

The Bayes filter [Fox et al., 2003] is a recursive algorithm that can be used for calculating

Algorithm 1 Bayes filter

1: procedure (bel(xi—1), pit, 01)
2: for all z; do

3: bel(zy) = [ p(xy|pae, i—1)bel (1) dxi
4: bel(xy) = n plog|xy)bel ()
5: end for

6: end procedure

belief from time-varying phenomena, including sensor and control data. Alg. 6 describes
the two steps of updating belief, action and measurement update steps. The action step
updates belief based on the previous belief distribution, the previous state, and the cur-
rent control input. The measurement update step updates belief based on the sensor input
with a normalization constant 7.

The Bayes filter is usually intractable for real-world problems and must be approxi-
mated. The Kalman filter is a tractable implementation of the Bayes filter that approx-
imates the state and measurement probability density functions by their first two mo-
ments, mean (1) and covariance (X). Published by Rudolf Kalman in 1960 [Kalman, 1960],
the Kalman filter is a core technique for estimation in Gaussian systems because of its low
computational complexity.

For a Kalman filter to be optimal, the initial belief must be Gaussian, and the state
transition and measurement probabilities must be linear functions with Gaussian noise.
The state transition probability, p(x;|u, 2;:—1), is expressed as a linear function with added
Gaussian noise. The random Gaussian noise vector, €, describes uncertainty in the state
transition with a mean of zero and covariance. The designer must explicitly define a state

transition control model (often painstakingly). The Kalman filter works similarly to the
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Bayes filter in that we use the process model to recursively predict the next state based
on control actions and noisy observations. The current state is a linear combination of the
expected state based on the control input and the difference between the predicted and
actual measurements.

Despite its elegance and efficiency, the Kalman filter’s assumption of linearity means it
has limited real-world applications where the theory holds. Successors which can handle
nonlinear estimation include the extended Kalman filter (EKF) [Anderson and Moore,
1979] and the Unscented Kalman filter (UKF) [Julier and Uhlmann, 1997].

The EKEF is lightweight and efficient, making it a popular tool for state estimation in
modern robotic systems. The EKF relies on propagating a Gaussian Random Variable
analytically through a first-order linearization of the nonlinear system, which can result
in significant errors and even divergence when the modelled system is not linear. The
Unscented Kalman Filter relaxes the necessity of linearity near the mean by using an
unscented transform with a similar computational cost.

The Particle Filter [Doucet et al., 2001] is another state estimation tool, but unlike the
Kalman filter and its variants, this algorithm doesn’t require the posterior to be of a Gaus-
sian form. Particle filters can represent complex, multimodal beliefs even in the face of
considerable uncertainty but often have higher computational requirements in practice.
This Monte Carlo method approximates the posterior with random points (called parti-
cles), runs through a weighted system model, and then re-samples according to actual
observations, producing an ensemble of estimates.

In the past decade, research has attempted to overcome the limitations of classic belief
state estimation algorithms through machine learning. These include the Deep Kalman
Filters [Krishnan et al., 2015], which learn a generative model to fit a sequence of ob-
servations and actions to transition dynamics and emission distributions. Other modern
solutions, such as the robot arm farm shown in Fig. 2.2b, forego explicit state estimates

and learn a mapping directly from visual observations to actions with neural networks.
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2.2.3 Localization and Mapping

A robot usually needs to represent spatial features internally to plan motion toward a
goal and recognize locations in its environment. This representation of space is gener-
ally called a map. A map details information about objects in an environment, including
spatial configuration and other attributes such as maximum traversal speed or relative
safety. In some problems, we will assume that a robot is given a map of the environment
in advance and must determine its location within the map. Other issues will require the
robot to develop its own map of an area.

Pose estimation or localization problems occur when a robot has a map describing
its environment but isn’t explicitly given its location. The robot must determine its lo-
cation and orientation within the map by finding correspondences between its sensor
observations and features in the map. Many aspects impact the difficulty of localization
problems, including the quality of sensor information and how similar the environment
is over space or dynamic objects within the environment.

Mapping involves building a map of the environment containing all objects and their
locations. In pure mapping tasks, the robot is given its position but must relate sensed
information about the environment to its current location. Mapping problems can be
complicated when sensors are corrupted by noise or scenes are disturbed by moving ob-
jects.

If a robot lacks a map and knowledge about its position, it must solve a problem that
is generally more difficult than localization or mapping alone. Simultaneous Localization
and Mapping (SLAM) describes the computational approach to building and updating a
map of an unknown environment while also solving the problem of the robot’s location
within this map.

EKF algorithms have achieved wide use in SLAM (Simultaneous Localization and
Mapping) systems where the robot attempts to both make a map of its environment and
discover its pose in said environment [Mouragnon et al., 2006, Klein and Murray, 2007,

Davison et al., 2007].
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In this chapter, we examined the sensor input used by robots to make decisions. In the
next two chapter, we’ll cover how robots select actions and make sense of observations

through modeling.
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Chapter 3

Actions

Robots are deployed with a wide variety of autonomy, from machines that select all their
actions autonomously to those that humans fully teleoperate. This thesis will focus on
robot decision-making systems where humans play minimal roles in the online control
process.

Robot control can be framed as a Markov Decision Process (MDP) [Puterman, 2014]. In
this mathematical formulation, outcomes are influenced by both randomness and agent
control. According to the MDP assumption, at each timestep, ¢, an agent observes a state
s; and chooses an action a;. Most real-world systems are actually Partially Observed
MDP (POMDP) [Monahan, 1982] since the true full state of the world and the robot can
be difficult to ascertain through sensing.

A map is a representation of the real environment, often including obstacles and robot
location. In traditional robot planning literature, robots typically operate in an environ-
ment with a known map of obstacles. They are tasked to develop plans from initial to goal
poses while avoiding known obstacles within their map. In this formulation, the robot
only needs to localize within the map and act according to its plan. A configuration space
represents all of the possible kinematic states of a robot within the map with a dimension
for every degree of freedom in the robot. Any space in the configuration space that the

robot can occupy without encountering an obstacle is known as free space, and a path is a
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set of trajectories through free space between the robot’s initial pose and a goal location.
Depending on the task, the robot may wish to minimize the time or distance of the path

or to maximize some other condition, such as the robot’s safety.

3.1 Deliberative Control

Planning algorithms can work over maps by converting a map into a graph that can be
searched to find a traversal path. Points in free space are often represented as nodes
connected to another node if there is a path through free space between them. Graph
search methods such as Dijkstra’s algorithm [Dijksta, 1959] or A* [Hart et al., 1968] can be
utilized to find paths from start to goal states.

Important limitations of these classic planning frameworks are that they 1) must have
a map of the environment in advance, 2) the map must be faithfully converted to a graph
representation, and 3) the start and goal configurations must be specified. In real systems,
a reliable environmental map is often unavailable. Even if the map is available, small
errors in position estimates for the robot or obstacles may cause the planned route to be
invalid. To address this limitation, we can utilize online algorithms, which allow robots to
update their plan as they observe information along their path [Dudek and Jenkin, 2010b].
One popular algorithm for optimal dynamic planning is the D* algorithm [Stentz, 1997],
introduced in 1997 by Stentz. The D* algorithm develops an initial plan using A* and
then adapts as new information is available.

Planning the entire path in complex environments, as described in the previous sec-
tion, is often not computationally practical or complete. Probabilistically complete, sampling-
based planning methods were introduced in the mid-1990s, which can be used in config-
uration spaces higher than 2D (such as many-link robot manipulators). Sampling-based
planning methods like the probabilistic roadmap (PRM) [Kavraki et al., 1996], which was
published in 1996 by Kavraki and Latombe, allow planning in large configuration spaces.

PRMs sample the configuration space probabilistically in two phases. In the learning
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phase, the algorithm generates random nodes in the configuration space and then con-
structs a roadmap based on the nodes that occur in free space. In the query phase, a
probabilistic search is conducted over the graph. Rapidly-exploring random trees (RRT)
[Lavalle, 1998a] were introduced in 1998. The RRT is a probabilistic algorithm that grows
a space-filling tree within free space beginning at the initial pose.

Monte-Carlo Tree Search (MCTS) [Kocsis and Szepesvari, 2006, Coulom, 2007] is an
any-time, best-first tree-search algorithm that can solve sequential decision-making tasks
in large state spaces through planning [Browne and Powley, 2012]. Given an accurate
representation of the future and unlimited time to compute, MCTS achieves high perfor-
mance by rolling out many possible future scenarios to acquire an approximate (Monte
Carlo) estimate of the value of taking a specific action from a particular state. Recently,
MCTS has been combined with learned approximators to estimate the value of partic-
ular states, such as in the landmark work of AlphaGoZero [Silver et al., 2017b] and its
successor [Silver et al., 2017a], which operated in Go, Shogi, and Chess.

Planning agents, like those that use the aforementioned algorithms, find actions at
each decision point by considering future scenarios from their current state against a
model of the world [Lavalle, 1998b, Kocsis and Szepesvéri, 2006, Stentz, 1995, van den
Berg et al., 2006].

Though typically slower at decision time than model-free agents, agents which use
planning can be configured and tuned with explicit constraints. Planning-based methods
can also reduce the compounding of errors for sequential decisions by directly testing
long-term consequences from action choices, balancing exploitation and exploration, and
generally limiting issues with long-term credit assignments. In addition, planning-based
methods can directly adapt to differences in new environments and evaluation because
standard planning approaches operate on each new environment from scratch.

The class of model-based control methods reference a model for forward rollouts of the

future. The model is typically either simple and known (such as the aforementioned maps
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or chess games), calculated by physics (which is probably at least a little bit wrong due to
poor estimates of friction), or learned through observation.

Reinforcement learning (RL) is an online learning paradigm where an agent learns a
policy through trial-and-error with its environment. In model-based reinforcement learn-
ing systems, agents optimize for future states given the current observed state and a se-
quence of imagined actions. The longer the set of predicted actions, the harder it is to
predict the state correctly, as error compounds as we get farther from the true observation

and experience state aliasing.

3.2 Reactive Control

Model-free reinforcement algorithms rely on controllers to make action selections without
a lookahead and without an explicit model of the world. Reactive controllers are typically
employed in situations where the model is too complex to specify when the model is

expected to change over time, or underneath more complex controllers.

de(t)
dt

u(t) = Kpe(t +K/ 7)dr + Ky (3.1)

The Proportional-Integral-Derivative (PID) controller (Eq. 3.1) is a classic, simple, and
robust algorithm that is often employed as a low-level joint or wheel controller. The
proportional gain, K, integral gain, K;, and derivative gain, K, are tuned so the control
signal, u(t) reduces error e(t) from the desired value.

On-Policy reinforcement learning agents directly use the output or samples from the
policy to train the agent. REINFORCE [Williams, 1992b] is a high-variance, low-bias al-
gorithm in which RL agents sample a trajectory from the current policy and then perform
an update based on Eq. 3.2. To improve stability, most REINFORCE algorithms are im-
plemented with a baseline value  where [ is often set to be the average discounted re-
turns or the estimate of the state’s value. Proximal Policy Optimization (PPO) [Schulman

et al., 2017] is a popular policy-gradient-based off-policy method for training reinforce-
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Figure 3.1: Taxonomy of RL algorithms adapted from the Spinning Up example [OpenAl,

2023]. In addition to standard algorithms in blue, our contributions are added in red.

ment learning agents that uses the notion of a Trust Region to prevent the agent from
diverging during training. PPO estimates the advantage or difference between the value

of a state and the value of the state after taking an action as shown in Eq. 3.3.

0 + 9—1—04~V9210g7r9(at|5t) Ty (3.2)
t=0
Aﬂ-(sa CL) = Qﬂ-(sa CL) - Vﬂ-(s) (33)

When the agent has access to state transitions from a different policy (typically derived
from a previous iteration of the current policy) rather than the output of the current policy,
the agent is considered to be off-policy. The ability to leverage out-of-distribution exam-
ples enables imitation learning and typically reduces the number of interactions with the

environment needed for training.
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Q" (s,a) =E[Ryq +v- ma?}X Q" (s,d")|Sy = 5, Ay = d (3.4)

Q-Learning [Watkins and Dayan, 1992] is a popular method for off-policy methods for
optimizing RL agents. Q-learning employs an iterative update where the Q-function is
updated for a single state-action pair at each iteration according to the Bellman Equation.
Richard E. Bellman came up with the Bellman equation in the 1950s to describe the ex-
pected return of taking a particular action in a particular state, given the expected returns
of taking other actions in other states. In these RL equations, the value function, V(s),
represents the expected future reward starting from state s, A(s) is the set of available
actions in state s, and a is the action taken by the agent. v is a tunable discount factor in-
dicating the importance of future rewards, . In ) — learning, the () expresses the quality

of a particular state and action pair.

Q(s,a) < Q(s,a) + « - (7‘ +7 - max Q(s',d) — Q(s, a)) (3.5)

3.3 Imitation Learning

There are various methods of using expert demonstrations to reduce the exploration
space for reinforcement learning agents. Imitation Learning is a method for learning to
copy expert (often human) behaviour given examples. Often, imitation is challenged by
the lack of matching domains between the expert and the robot. For instance, we can
train a robot to pour a glass of water (as in [Langsfeld et al., 2014]) by observing human
demonstrations without access to the human’s underlying state. This approach helps mit-
igate the challenge of exploration in reinforcement learning but can also fail to generalize
to out-of-distribution (often failure) states. Behavior Cloning is a fully supervised vari-
ant of IL where the agent learns to mimic an expert’s policy without interacting with the

environment or querying an expert. Inverse Reinforcement Learning is a variant of Imita-
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tion Learning where a reward function is learned based on expert demonstrations, then a

policy is learned from that reward function.

3.4 Multi-Agent Systems

There are many applications where it is advantageous for teams of robots (of the same
morphology or not) to work together to accomplish a common goal. Collaborative mobile
robot teams are especially attractive for environmental mapping tasks where a divide-and-
conquer strategy can significantly reduce the time required for a survey. While mapping is
generally faster with multiple robots, division of labour, communication, and data prop-
agation become more complex. In addition to avoiding environmental obstacles, multi-
robot teams must avoid colliding with each other and divide the survey space appropri-
ately.

Multi-robot path planning is usually split into approaches using a single central plan-
ner and decoupled planners for each robot [Dudek and Jenkin, 2010b]. Centralized plan-
ning requires reliable communication between the robots and the central supervising
planner. This communication is often difficult to achieve in field robotics, where commu-
nication may be limited by distance and interference from the environment, so decoupled
planners are often employed.

The existence of multiple sensing vehicles can also be exploited to improve decision-
making throughout the mission [Mitchell et al., 2023]. Collaborative localization has been
shown to improve individual robot localization performance in a robot team with lim-
ited communication [Luft et al., 2016, Anderson and Hollinger, 2021]. In this localization
scheme, the robots share information only when they’ve collected a relative measurement
between each other. This is appealing for operating in environments where long-range,
constant communication is expensive or impossible (like in underwater environments).

In the next chapter, we look at how models of the robot and its environment can be

used to improve action selection.
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Chapter 4

Models for Robot Decision Making

4.1 Learning from Data

Machine Learning (ML) refers to a broad class of methods that arrive at an algorithm
based on experience (from data) rather than by pre-determined rules. This is useful for a
wide range of problems in which formulating and writing rules for a problem is complex
or unknown.

Although electronic sensors have existed for decades, recent developments in lightweight
computers, sensors, and batteries coupled with reliable wireless communication and lo-
calization schemes allow us to gather information from environments that were previ-
ously seen as too costly or risky to the instrument. All of this newly generated data means
that we have more information that describes human [Lane et al., 2010], built [Zanella
et al., 2014], and natural [Hart and Martinez, 2006, Villarini et al., 2008] dynamics and
distributions. The data from these sensors can be used to train machine learning models
to model similar systems.

In addition to data collected from natural systems, artificial worlds developed from
actual observations of human environments [Xia et al., 2018], simulation environments

based on the natural world [Manderson and Dudek, 2018], and computer games [Belle-
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mare et al., 2012] allow artificial agents to gain nearly unlimited experience in new physics
and visual states without risk to the hardware [Choi et al., 2021].

Many ML methods make assumptions about the data used as experience. Perhaps
the most significant assumption affecting robot learning is the assumption that samples
(or experience) are i.i.d, meaning that the data was collected independently and that it is
identically distributed (coming from the same underlying distribution). Most ML algo-
rithms also have hyperparameters settings chosen outside of the learning process.

We consider three main formulations of machine learning problems:

¢ In the standard Supervised Learning task, we task a model to learn to predict a label
with its paired input data. Object recognition in images is a common and significant
problem in mobile robotics that is often solved via classification, where supervision

is given in the form of object labels for a given image.

* In Unsupervised Learning, no label is given, but the model is tasked with uncover-

ing the dataset’s properties.

* Reinforcement Learning relies on an agent (model) collecting experience and using
this experience to choose better actions, given state observations. Instead of labels,
agents learn to map states perceived from their environment to actions that result in

numerical rewards. This learned mapping is called a policy.

Supervised Learning can use various supervision forms to map input to outputs. In
regression tasks, the model is asked to predict a numerical value given some input. Many
tasks require structured output, requiring outputting a vector in which relationships exist
between members of the vector. A prime example of structured output includes predict-
ing the relevant objective of pixel-wise image segmentation of images. Models are often
asked to learn the characteristics of a dataset and then generate or synthesize new exam-
ples similar to those in the training data.

In transfer learning, a model is trained on one (usually large or widely available)

dataset and then asked to adapt to or transfer to another (generally smaller) dataset. Using
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this technique, we can leverage the large dataset for generalization and the specialized
dataset for fine-tuning.

Many modern models are multi-task and solve multiple problems. A popular exam-
ple of such a model is Mask R-CNN [He et al., 2017], which learns image-wise, instance
segmentation of objects in images (as its name implies) as well as object-level bounding
boxes and human key points all in the same model. In multimodal learning, the model
predicts output from multiple data sources. For instance, we may have multiple sensor
streams, such as IMU and image data observed by our robot, that we may need to use to

solve for localization.

4.2 Models for Decision Making

Reinforcement learning agents often operate in environments where generalization be-
tween similar states is useful. A model for performing the non-linear function approxi-
mation between states is with a neural network. Neural networks can also be employed
to map states to actions directly. A forward model maps control input to the change of
system state while an inverse model estimates the reverse and maps system change to
control input.

State observations can have condensed, vector-formatted observations (often consist-
ing of joint position, velocity, and state of task-relevant objects) or high-dimensional in-
puts such as camera observations, or even multimodal inputs consisting of combinations
of different sensors that must be interpreted by the agent into actions.

Learning accurate models of the environment has long been a goal in model-based
reinforcement learning and unsupervised Learning. Model-based agents have some ad-
vantages over agents which are model-free. Perhaps the most pertinent is that a good
model will mean that the agent does not need to collect real experience to map from

states to actions and instead can query its model to play out potential scenarios.
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Figure 4.1: The model architecture from the seminal work of [Mnih et al., 2015]. The RL
agent perceives a stacked history of the past four images as state and outputs discrete

actions to control Atari agents.

A common reason to use model-based controllers in robotics applications is their in-
creased interpretability to humans. When a model-based robot fails to behave as ex-
pected, humans can replay the model state, often identifying the reason the model failed
and working to improve it. One example of this is in System Identification (SysID). Tradi-
tionally (and still command today), roboticists employed the statistical process of SysID
to build mathematical models of real robot attributes. These physical models can provide
stable insight for agents who must reason about prior actions or plan future actions based
on underlying physical phenomena.

Modern approaches often incorporate physics-motivated inductive biases into learn-
ing architectures. In Deep Lagrangian Networks [Lutter et al., 2019], the physics prior is
encoded as a differential in the network topology. This inductive bias enables improved
extrapolation outside the training set since the underlying physics is true in regimes not

specifically seen in the dataset. In AugWM [Ball et al., 2021], agents are trained in simula-
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tion with simple dynamics transformation that seeks to capture expected changes in the
physical properties of the robot. Agents are conditioned on the sampled augmentation
as input context, which allows rapid estimation of the context of the real environment
during evaluation.

Work has shown the power of learning action-conditional models for training decision-
making agents which operate in perceptual states [Ha and Schmidhuber, 2018, Schmidhu-
ber, 2015, Buesing et al., 2018, Oh et al., 2015, Graves, 2013] and combining planning and
with environment models [Silver et al., 2016, Zhang et al., 2018, Pascanu et al., 2017, Guez
et al., 2018, Anthony et al., 2017, Guez et al., 2018]. In World Models [Ha and Schmidhu-
ber, 2018], a recurrent neural network (RNN) learns a conditional sequence model over
the latent space of a Variational Autoencoder (VAE) trained on perceptual input [Kingma
and Welling, 2013].

Recent work has seen a surge in imitation-based agents which rely on high-quality
expert examples such as Aloha [Fu et al., 2024] and Decision Transformer [Chen et al.,

2021] that use transformer model architectures [Vaswani et al., 2017].

4.3 Simulated Experience for Learning

Reinforcement learning agents employed in robotics often require many unique interac-
tions with the environment during training. Practitioners often leverage simulated envi-
ronments because this training can be too costly on real hardware. Designing sufficiently
realistic and appropriately challenging tasks in simulation is a delicate and meticulous job
for practitioners, as the environment and robot should accurately prepare the algorithm
for deployment in the real world.

An early success in sim-to-real transfer with neural networks was the ALVINN [Pomer-
leau, 1988] project, which demonstrated autonomous road following in 1988. This robot
was trained in a simple simulator and learned to map input from images and a laser range

finder into steering direction using a 3-layer feedforward neural network.
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Simulation experience, while helpful in generating data, often does not provide per-
fect transfer to real robots due to the sim-to-real gap [Jakobi et al., 1995] that often results
from an imperfect match between the simulated training environment and the states and
observations encountered on the real system. A well-acknowledged challenge of lever-
aging simulation environments for training or refining robot policies is the potential for
visual and dynamics mismatch between the simulation environment and the deployed
environment. To bridge the sim-to-real gap, one can employ dynamics randomization
(DR) to the simulation environment. In DR, various world and robot physics attributes
are randomized during training. This randomization includes varying the mass and in-
ertia of the robot components, the objects they interact with (if applicable), and varying
friction coefficients and properties. The agent learns to become robust to the dynamics
changes seen in simulation, thereby making it robust to the inevitable sim-to-real gap.

In one such example of this approach, [Yu et al., 2017] learn a control policy that is
trained under domain randomization and then utilize Online System Identification with
state and action to predict dynamics model parameters online, producing a robot capable
of robust control over a wide range of conditions. In [OpenAl et al., 2019], automatic
domain randomization increased randomization during training, successfully transferring
a simulation learned policy to a hand control policy that could solve a Rubik’s Cube.

In the next chapter, we examine various methods introduced in this thesis. Our sys-
tems encompass tools covered in Chapters 2, 3, and 4 where we leverage structural
knowledge about state estimation and available actions to develop new models for robots

scientific sampling robots in Part III and table-top manipulators in Part IV.

60



Part 111

Informed Scientific Sampling with

Algorithmic Priors
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Chapter 5

Physics-Informed Sampling in Flows

with Passive Sensors

5.1 Introduction

In this chapter, we tackle problems at the confluence of robot morphology and structured
prediction, examining how we can combine known fundamentals about the world, robot,
and sensor limitations to improve access to data that describes aquatic environments. We
frame these problems around goal-oriented, mobile robots working in large-scale spaces
where large-scale spaces are defined as worlds in which the robot must change its physical
position to acquire full scene understanding from multiple vantage points. This chapter

encompasses work presented in several conference publications including:

* We introduce a robot team that leverages unactuated robots for all or part of a sur-

veying mission.

* Develops a model-based algorithm for optimizing drifter sensor path planning with

a tuned ocean-physics model.

¢ Builds an algorithm for complimentary surveying with a team of drifters and au-

tonomous boats.
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* Introduces hardware innovation for drifter shepherding.

March, 2023 (S. Dolk & R. Lumpkin)

Gilobal Drifter Array - Deployment Values

Figure 5.1: This map of global drifter deployment location values in March of 2023
[NOAA] is calculated using the method from Dolk and Lumpkin [Lumpkin et al., 2012].
Locations that they found to be associated with high-value deployments are shaded blue

and less desirable deployment locations are found in red.

Scientific understanding and modelling of spatiotemporal phenomena related to the
water, weather, and climate at the marine-air boundary layer are key to preserving the
health of marine ecosystems and improving climate predictions. Predictive models of
these interactions, which help us forecast a number of important phenomena, including
climate change, weather, and marine health, require extensive in-situ data collection to im-
prove accuracy. Spatiotemporally extended local measurements across the world’s lakes,
oceans, and rivers entail significant investments in physical infrastructure in an interface
that is often harsh, requiring sensors that are robust to waves, storms, and extreme tem-
peratures and remote, necessitating long operating times without human intervention or
battery changes.

One such tool for gathering these scientific samples is floating sensors called drifters.

Drifters are propelled strictly or predominately by the ambient wind and/or water cur-
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rents and have been used extensively in oceanography [Wilson et al., 1996, Soreide et al.,
2001, Lumpkin et al., 2007]. These devices can be equipped with any number of sensors
(such as temperature, pH, or cameras) that enable them to sample the local environment
and report geotagged data back to a central server. Because they inherently require no or
very little intelligent control, propulsion, or human intervention, these devices are attrac-
tive for various scientific applications that are sensitive to cost and do not have precise

spatial requirements on samples.

Figure 5.2: In this figure, drifters were deployed randomly over a simulated flow field to
illustrate example trajectories from a deployment point (represented by a green dot). The
flow field direction is described in each grid cell by an arrow. Speed is represented by the
colour map in m/s according to the attached colour bar. This particular flow field is one
of 40 used for evaluation and serves as the ground truth flow field, V, for Figures 5.13
and 5.10.

5.2 Problem Statement

Although passive sensors cannot control their own movement, their fate can be estimated

given the known physical characteristics of the drifter and an estimate of extrinsic factors.
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These external factors, namely wind, waves, and currents, can be difficult to measure and
(more so) predict, especially in boundary conditions near coastlines or in areas with poor
forecasts, such as the remote ocean. In addition, the complex interactions occurring be-
tween the drifter at the air and water boundary will not be fully accounted for; therefore,
accurate drifter prediction, even a few days into the future, remains a significant unsolved
challenge [DARPA-FFT, 2021]. In this work, we examine the problems related to drifter
forecasting. This work aims to develop a low-cost, non-static sensor system to collect
measurements in a flow field with minimal investment by exploiting natural currents to
sample trajectories over a survey region. We introduce a collated dataset (described in
Section 5.3.4 for use in machine learning that enables ocean-scale drifter trajectory fore-
casting (the position of the drifter over time as described by latitude and longitude). We
also discuss our work in developing robot-in-the-loop mapping with drifters, optimizing

for both coverage and data reconstruction accuracy in Section 5.5.

5.3 Background

The concept of the drifting data collector, perhaps beginning with a message in a bot-
tle [Sverdrup et al., 1942], has long been employed to gather information about bodies
of water [Soreide et al., 2001]. The largest network of drifters is organized by the Global
Drifter Program and has been conducting global-scale data collection in the world’s oceans
since 1979 [Lumpkin et al., 2007]. This program’s 3000+ operational drifters gather a
plethora of scientific readings that have been integral in building and validating the ocean
models [Blockley et al., 2012], improving the accuracy of remote sensing estimates [Perez
etal., 2023] and informing transport calculations of other passive particles such as marine

debris [Maximenko et al., 2012] and radioactive contaminants [Nagatani et al., 2013].
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(@) AUV (b) Glider (c) Mooring

Figure 5.3: An overview of sampling of robot morphologies used in aquatic surveying.
Fig. 5.3a shows the Aqua AUV [Dudek et al., 2007] performing informed visual mapping
of a coral reef in [Koreitem et al., 2020]. Fig. 5.3b shows a partially controlled Slocum
glider [Schofield et al., 2007] surveying the underside of icebergs by taking informed dives
in [Zhou et al., 2019]. Fig. 5.3c shows the sensor payload of a typical surface mooring from
[Kamphaus et al., 2008].

5.3.1 Vehicles for In-Situ Marine Sampling

Robots are widely used for scientific discovery in marine environments, reducing the
need for laborious manual data acquisition campaigns [Madrid and Zayas, 2007]. Marine
robots face unique challenges when compared to warehouses or even other field robots.
The most obvious obstacle is the harsh operating conditions - especially saltwater, which
is corrosive and can induce failure in electronic systems.

The mobile systems we work with in this chapter all must carry their own source of
power, and power failure or depletion can often mean the loss of a system in the ocean.
There is often little or no infrastructure for communications, meaning robots must work
without access to the internet and with limited connectivity. Operating locations are often
remote, which makes ease of deployment with a small engineering team an important
factor.

Most surveying systems involve a trade-off between cost, mobility, and resolution in
time and space. Traditional marine surveying schemes typically lack spatial or tempo-

ral resolution (and sometimes both) because of the expense of continuously sampling
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harsh marine environments. Sophisticated robots, such as autonomous surface vehicles
(ASVs) or autonomous underwater vehicles (AUVs), can achieve high-sampling resolu-
tion by using thrusters to control their position. Controllable robots can perform scien-
tific mapping with an exhaustive [Williams et al., 2010, Pizarro et al., 2014] or selective
[Girdhar and Dudek, 2016] sampling strategy according to research needs. Autonomous
surface vehicles (ASVs) have increased prominence in near-shore surface observation op-
erations [Ferri et al., 2015, Madeo et al., 2020, Pradalier et al., 2019]. These often unso-
phisticated and intuitive systems fill various niches such as persistent monitoring [Koay
et al., 2017], collecting in situ collections of both physical samples [Manjanna et al., 2018,
Flaspohler et al., 2018, Das et al., 2015a] and observational samples [C. L. Gentemann
et al., 2020, Manjanna et al., 2020].

There have been consistent efforts to reduce the cost (both human and monetary) of
acquiring in-situ scientific marine data (see Table 5.1). Gliders are a low-cost platform
that uses various, mostly passive designs to move through the water. This morphology
excels at travelling far distances over long periods with minimal servicing, but it is at the
mercy of the local environment for much of its movement. Slocum gliders [Schofield et al.,
2007] are shaped like a torpedo and use pumps to gently change buoyancy over time,
allowing the vehicle to glide up and down through the water slowly. These machines
are partially controllable as they can change the position in the water column to catch
ambient currents.

Fully passive sensors such as fixed moorings [Chavez et al., 1997] can be deployed at
a low cost but suffer in spatial resolution as they have no means to move about a survey
region. The low cost of individual moorings makes deploying arrays of static sensors
(such as in [Brainard et al., 2009]) an attractive approach for long-term monitoring. This
deployment method can take measurements at high frequency (depending on power con-

straints) but is usually too costly to deploy at a high spatial resolution over a large region.
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Platform Vehicle | Deployment | Controllable | Water Column | Mobile
AUV 55 $55H Yes Yes Yes
ASV $$ $$ Yes No Yes
ASV+Winch $$ $$ Yes Mostly Yes
Glider 535 35 Partial Mostly Yes
Drifters $ $ No Possible Yes
ASV+Drifters $$ $$ Partial Possible Yes
Mooring $ $ No Possible No

Table 5.1: A comparison of autonomous data collection platforms. Although the values
are estimates and can vary depending on sensor fidelity, cost generally increases with con-
trollability, depth, and endurance. Drifters can be built for less than $100 and surveying
AUVs/ROVS are often hundreds of thousands of dollars.

Drifting sensors, though inexpensive and offering flexible deployment, cannot be ex-
plicitly utilized for actively gathering information from scientifically important positions
as they are not spatially controllable after release. Drifting data collectors come in many
shapes and forms, including the most simplistic floating drifter, which captures a 2-
dimensional profile of the water surface. There are also subsurface drifters which can
gather data in three dimensions (such as Argo profiling floats [Jayne et al., 2017]) and
moored sensors [Doherty et al., 1999] that are anchored in place (either at the surface,
at depth, or can move throughout the water column). One appeal and differentiation
of ocean drifters from other morphologies discussed in this section is that once they are
deployed, they need not necessarily be recovered (as opposed to more expensive plat-
forms), which saves considerable engineering time and resources. Most drifters are de-
ployed without the intention of recovery re-deployment, making them attractive from an
engineering standpoint, while raising some questions regarding their eventual destiny in

the environment.

5.3.2 Estimating Drifter Trajectories

Passive objects on the sea surface experience basic disturbance forces as described in
Eq. 5.1 where V is the velocity of the object, m is the mass of the object, and m’ is the

acceleration of water particles along the hull (underside) of the object [Hodgins and Hod-
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gins, 1998]. Drifting objects also experience Stokes drift, a downwave force caused by water
particles in a wave field. Although Stokes drift is a strong factor in advection (the move-
ment of matter by the fluid flow) for suspended objects (such as larvae or sediment), it
is difficult to measure in field campaigns and has been excluded from most empirical

models.

(m—i—m')cii—‘t/ =3 F (5.1)

Estimating the trajectories of drifters in flow fields requires solving for a time-evolving
forecast that is dependent on the forcing fields, primarily: wind, wave, and current vec-
tors. Physics-based simulators are widely used in fluid dynamics research such as aircraft,
atmospheric modeling, and oceanography. The accuracy of these physics simulations is
highly dependent on the fidelity of the numerical methods and the quality of the input
data and boundary conditions.

All experiments in this dissertation utilize OpenDirift [Dagestad et al., 2018], an open-
source, parameterized particle advection engine for drifter trajectory predictions. Open-
Drift is a physics-based simulator developed primarily by the Norwegian Meteorological
Institute that works by numerically solving Lagrangian equations of fluid dynamics using
drifting particles as a reference.

The Leeway Model [Breivik and Allen, 2008] is a popular empirical method contained
within OpenDirift for predicting the leeway or relation between wind and the motion of a
drifting object. The Leeway Model was developed by analyzing the real trajectories of 63
categories of search and rescue objects that were compiled by the US Coast Guard [Allen
and Plourde, 1999]. The trajectory model of the drifter for Leeway models (Eq. 5.2) utilizes
the second-order Runge-Kutta method to find the arc traced by the leeway vector on the
surface current. Trajectories are calculated as an ensemble, with external forcing functions
(wind and water current) embedded in V' along with random perturbations to represent

the heteroscedastic nature of the observed data (Eq. 5.3).
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a, = a+ €,/20b, = b+€/2.0 (5.3)

5.3.3 Drifter Deployment Values

The oceanographic community has extensively examined the effect of a deployment lo-
cation on a particular drifter’s trajectory over its lifetime at the ocean scale. It is well-
recognized that deploying drifters in high-value locations will maximize drifter data cov-
erage, reduce deployment redundancy, and increase drifter lifetimes. [Lumpkin et al.,
2012] examined factors affecting drifter lifetimes over a global fleet of drifters, focusing
their efforts on identifying regions of the globe where drifters tended to die very quickly.
They identified a key metric of the drifter half-life which is the rate in days at which half of
the drifters released from a particular location stop communicating due to electronics fail-
ure or drowning (posed to be due to harsh weather conditions). Other metrics are based
on the relative value of new observations considering the configuration of the currently
deployed drifter array. A map of the current (depicted in Fig. 5.1) drifter deployment
value formulation is updated monthly on NOAA’s website.

In [Molcard et al., 2006], the authors show that directing the initial drifter positions
along the out-flowing branch of Lagrangian boundaries optimized the relative dispersion
of drifters. This work also demonstrated that the performance of drifter data assimila-
tion into ocean models strongly depends on the independence of the observed drifter
trajectories. In [Salman et al., 2008], the authors compare long-term multi-drifter deploy-
ment strategies and show how different release formations affect data assimilation per-
formance. They demonstrate that total error reduction requires the dispersion of drifters,

but local errors are reduced by targeting specific flow features.
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Environmental Data Details
Data Source Variable | Forecast | Spatial | Temporal
DARPA FFT Drifter NA NA 24 hrs
Global Forecast System (GFS) Wind | 10days | 0.25° 1-3 hrs
Real Time Ocean Forecast System (RTOFS) | Current | 8 days 0.08° 1-3 hrs

Table 5.2: Drift-NCRN [Hansen et al., 2022b] describes our collation of the highest resolu-
tion / longest environmental forecasts available to the public at the time of the Darpa-FFT
Challenge.

Though a drifter’s low cost is what makes it an attractive approach for marine sam-
pling, its simplicity also makes it a difficult platform from which to sample efficiently. A
traditional drifter’s initial deployment point is its only controllable aspect. The remain-
ing sample trajectory, and thus the amount of the survey area covered by the sensor, is
dictated by the ambient flow field. When a drifter in a drifter network is poorly deployed
or confronted with unstable currents, it can become trapped in an eddy or quickly rushed
out of a survey area, collecting redundant or few samples for the survey. Thus, the need
for a strategic deployment is necessary to achieve any form of efficient coverage with
drifters.

This was evident in our earlier work, [Manjanna et al., 2017a], in which we introduced
an adaptive sampling technique that relied on deployed drifters for explorative scouting
for an ASV performing adaptive sampling. In these experiments, the drifters tended to

clump together or rapidly exit the survey area, reducing their utility.

5.3.4 Flow Field Datasets

In the previous sections, we discussed the limitations to gathering in-situ data in real ma-
rine environments. Real-world data from dense flowfields is not (widely) available due
to the complexities of acquiring high-resolution samples. Much of the work in this chap-
ter utilizes flow fields generated from the prominent Regional Ocean Modeling Systems
(ROMS) model [Shchepetkin and McWilliams, 2005], which utilizes efficient physical and

numerical algorithms to estimate flow. By using a numerical model, we can produce a
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regular output grid of wind and water flow field vectors to use as a source of ground

truth for algorithms related to robot sampling.

Displacement of FFT Challenge Drifters
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(a) Spot Drifter (b) Spaghetti of Trajectories
Figure 5.4: Fig. 5.4a shows the Spot drifter used in the DARPA-FFT competition [DARPA-
FFT, 2021]. Fig. 5.3.4 depicts the dataset of ninety drifter trajectories over the twenty
days prior to the start of the DARPA-FFT competition, translated to the same origin. The

color indicates the day of the sample with the red point indicating termination and a star

indicating the start date.

We will also utilize time and spatially tagged real drifter trajectories and combine these
trajectories with measured and estimated values of environmental conditions throughout
the trajectory. One source of this real data was generated during the DARPA Forecasting
Floats in Turbulence (FFT) Challenge [DARPA-FFT, 2021]. This challenge was run in real-
time in the Fall of 2021 with the goal of improving the state of algorithms used for drifter
forecasting. The challenge released ninety GPS-enabled drifters (Fig. 5.4a) throughout the
Atlantic Ocean and asked competitors to predict the drifter fates ten days into the future,
given twenty days of prior tracking data. The competition highlighted the difficulty of
drifter trajectory forecasting as fewer than half (14 of the 31 teams) of the organizations
participating in the challenge predicted any of the ninety drifter positions on day 10 to

within 32 km of the true position.
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Figure 5.5: The full DARPA-FFT dataset of drifter trajectories in the Atlantic Ocean. Train-
ing data (days 0-20) is shown in purple traces. Our trajectory prediction error using the

Leeway Model is shown on the test set (days 20-30 of the competition).

Drifter trajectories are a function of external factors including wind, waves, and local
weather (see Fig. for an illustration of trajectory independence). At the time drifter pre-
dictions are made, one necessarily needs to rely on forecasts for these parameters as they
have not yet occurred. At the time of this project, NOAA ocean current forecasts were
only available for the first eight to ten days of the trajectory prediction, depending on
resolution and time-frequency. Significant forecast error, especially as the time horizon of
the forecast increases, makes the data unreliable and it is important to capture this lack of
accuracy in the dataset used for tuning prediction models. Furthermore, these forecasts
are typically ephemeral data products (at least to the public) due to data storage limita-
tions. In our dataset paper [Hansen et al., 2022b], we collect the data products needed to
complete the FFT competition (described in Tab. 5.2) and release them to the public in a

format common to machine learning research.
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5.4 Related Work

In typical self-propelled robotic systems, exogenous (external) forces are usually consid-
ered a mildly antagonistic influence to be counteracted to reach a desired pose. In de-
ployed under-actuated or un-actuated systems, however, external forces are the propul-
sive mechanism used to achieve robot movement. Much of the previous work on cover-
age and deployment of sensor systems assumes either an environment where agents can
move deliberately [Hollinger and Sukhatme, 2013] or systems in which only initial place-
ment in a static environment is considered [Wu et al., 2012, Rahimi et al., 2005a]. [Pont-
briand et al., 2015, Hollinger et al., 2012] demonstrates the use of autonomous underwater
vehicles to extract data from arrays of underwater static sensing platforms, exploiting a
complimentary team composed of a single high-cost but high-mobility robot and the high
spatiotemporal resolution of low-cost of a team of static sensors.

The following paragraph will discuss related work in trajectory planning in marine
flow fields, ordered from full-actuation to passive systems. In [Smith et al., 2010, Ku-
laratne and Hsieh, 2015], the authors present methods for physically tracking features of
interest by utilizing the output of predictive ocean models to inform planning for marine
vehicles. [Kularatne et al., 2018] find energy-efficient motion plans in flow fields for fully
actuated vehicles using graph search methods. Several works have also considered the
use of drifters for mapping [Manjanna et al., 2017a, Shkurti et al., 2012, Das et al., 2012]
and have studied the interception of drifting sensors [Meghjani et al., 2016].

Perhaps more relevant to our work are systems which enable under-actuated vehicles
to strategically move through flow fields according to environment models. These situa-
tions impose limitations on planning, which makes initial deployment points important.
[Pereira et al., 2013] present techniques for risk-aware path planning and demonstrate
AUVs navigating in strong currents, utilizing regional ocean models to avoid trajecto-
ries where collision with external obstacles is more likely. In [Leonard et al., 2007], the

authors describe a performance metric for determining optimal paths with self-directed
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underwater gliders, which minimizes the error in the model estimate of the sampled field.
In [Inanc et al., 2005], the authors demonstrate an approach to optimal trajectory planning
for an underwater glider using Lagrangian Coherent Structures with global flow geom-
etry based on approximate ocean current models. [Hollinger et al., 2016] explores the
use of modelling the uncertainty in ocean model predictions for improving glider nav-
igation in busy shipping channels. They leverage Gaussian processes (GPs) augmented
with interpolation variance to provide confidence measures on predictions and improve
planning in simulation and field deployment.

Active drifters, which have some limited ability to influence their trajectory, are an
active area of research for use in strategic sampling tasks. [Kwok and Martinez, 2010]
optimized for coverage in a riverine environment with drifters equipped with limited
velocity control. In [Kwok and Martinez, 2012], a team of underactuated agents exploit
flowfields in their environment to maximize the total coverage area. In [Ouimet and
Cortés, 2014] active underwater drifters alter their depth to use ocean flow fields that
are carefully modeled in advance for coordinated rendezvous to enable efficient recov-
ery. The active drifter system proposed in [Molchanov et al., 2015] performs spreading
and aggregation in an ocean simulation model by lowering or raising individual drifter
drogues to take advantage of ocean currents measured in-situ by individual drifters to

reach a goal point.

5.5 Robot-Drifter Teams

So far in this chapter, we’ve discussed the complexities and costs associated with cap-
turing aquatic data, focusing on problems induced by platform morphology. We’ve also
highlighted the limitations of publicly available models for predicting environmental con-
ditions (namely wind and current) that influence the performance of low-cost platforms
such as passive drifters, which are wholly dependent on the local flow field for collecting

spatially diverse samples. In this section, we will discuss two related efforts to marry
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Figure 5.6: Predictions (gray) for the fate of drifter, Spot 0442 of the DARPA-FFT dataset
compared to predictions from the Leeway model of OpenDrift using a 10m seeding radius

and environmental dataset collated in Drift-NCRN.

Figure 5.7: A system overview depicting two deployed drifters that relay information

about their local environment back to an autonomous boat.

the advantages of intelligent surface vehicles with low-cost floating sensors (Fig.5.7) to
leverage their inherent advantages for sampling. In Section 5.6, we develop a physics-

informed model for estimating drifter placement value with the goal of optimizing cov-
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erage over a survey region and then extend this work in Section 5.7 to enable adaptive
sampling of an ASV and drifter team to optimize reconstruction of an unknown survey

region. First, we'll formulate a common vocabulary and mathematical description.

5.5.1 Problem Formulation

We introduce a mapping problem in which a network of passive floating sensors is used
to collect samples in a body of water. This system employs an iterative measurement and
modeling scheme to incrementally deploy drifting sensors so as to collect new observa-
tions, despite only controlling the initial deployment point of the sensor. Once deployed,
sensors are moved about a survey area by ambient surface currents which can only be
observed in-situ.

Drifter trajectories can be modelled effectively with an accurate flow field representa-
tion; however, at the basin-sized scale (< 5km? survey region with sample resolution of
< 20m), we consider when mapping with the ASV drifter team, the flow field for most
bodies of water is largely unknown before the survey begins and is only observable in-
situ. Even if the dynamic model of the flow field is known, the question of optimal drifter
placement remains. An exhaustive placement search could be performed through the
known flow field with a particle trajectory simulator, however, this search is generally
too costly to perform in real-time deployments. In the sections that follow, we describe
our approach to overcoming these two limitations and present a method for non-actuated
sensor coverage optimization in partially observed flow fields that is able to run in a real-
time system.

We propose and implement a method for coverage of survey region, R, with drifters
which handles these bottlenecks by iteratively assimilating flow field observations and
assimilating them into a full flow field model. Our two objectives (sample coverage and
accurately modelling the flow field) are somewhat dichotomous because sensor place-

ments that maximize our understanding of the sample region are also inherently risky

77



since the drifter will be placed in a part of the flow field that is currently poorly mod-
elled.

We define the flow field as V which is a distribution of water and wind velocity over R,
denoted in Euclidean space as V = V (z,y, z, ). Velocity at every point in V' is defined by
components in each coordinate direction as described by V = ui + v + wk. Each velocity
component (u,v,w) is a function of (z,y,2,t) as defined in Equation 5.4. We assume that =
is a constant (at the water’s surface) and that the vertical current is negligible since the
drifters have substantial positive buoyancy. In addition, we assume that the flow field is a
steady flow in that it does not change over our observation window, leaving V = V (z, y)
and V = ui + vj.

Each deployed drifter is denoted by the time-independent point, d,,, which also de-
scribes the drifter’s initial deployment point in d,, = (Zinit, Yinit)- A deployed drifter has
a trajectory D,,, which is the collection of the points it has visited in R. The collection
of observed samples along D, (z,y,u,v) is denoted by O,,. We refer to the collection of
trajectories from all deployed drifters as D and the collection of observed samples from

all deployed drifters as O. The total number of drifters for a survey is denoted by n,.

V =u(x,y, 2, )i +v(,y, 2, )] + w(z,y, 2, 1)k (5.4)

Given a perfectly known flow field, V, and an initial location of a point particle, a
trajectory of the particle through V can be calculated by integrating using the advection
equation as a function of time. With unlimited computation time, we could use the per-
fect flow field model to estimate future trajectories of drifters which have been deployed
throughout R and choose the most appealing point for deployment of the real sensor.
This simple approach to drifter deployment is, unfortunately, intractable in real systems
due to both the vast number of possible deployment points and the high computational
cost of solving for each possible trajectory. Moreover, we lack a perfect model of the flow
tield model, since we only have isolated, in-situ measurements at O. In addition, since our

drifters are not point particles, but floating sensors, we realize that we will only imper-
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fectly estimate advection with the help of physical parameters describing drifter shape.
These factors make evaluating potential deployment points difficult, but our approach in
the following sections seeks to make the problem tractable. First, we discretize the survey
space, R, into m x n square cells of size r, where r is related to the sample validity of the
sensors used in the drifters.

Our iterative trajectory planning approach picks new deployment points based on es-
timated futures developed from observations made by sensors. These observations allow
us to update our estimate of the flow field, V through data assimilation as described in
Section 5.5.2. Instead of calculating trajectories for all points in the flow field, we have
developed a process of point proposals (Section 5.6.2) to reduce the number of trajecto-
ries that need to be calculated. We assess the trajectories from proposed points using a
scoring mechanism that combines the expected improvement of V with a parameter that
encourages drifter trajectories that observe new points in R. Because we initially had no
knowledge of the flow field, we always chose the very center of the survey area as the

deployment point for the first drifter.

(a) Visual Drifter (b) ASV and Drifter Deployment

Figure 5.8: Hardware description for drifter field experiments.

5.5.2 Flow Field Assimilation from Sensor Observations

Flow information from deployed sensors is collected, assimilated, and used to estimate
the value of sampling a location in the region of interest. The assimilation of drifter ve-

locity measurements into a current model has been widely studied in the oceanography
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community [Allen and Billing, 1988, Salman et al., 2006, Kamachi and O’Brien, 1995, Tinka
et al., 2009, Sun et al., 2017], with most practitioners employing a Bayesian filtering ap-
proach to integrating data.

We will also take a Bayesian approach, formulating the estimation of unobserved
points as a regression problem and utilizing a Gaussian process (GP) to approximate the
flow field for the entire survey area. Gaussian processes properties make them a com-
mon tool for modelling spatiotemporal processes as seen in [Singh et al., 2010, Zhao et al.,
2016, Kim et al., 2011, Reece et al., 2011]. GPs are non-parametric functions for estima-
tion that do not make strong assumptions about the underlying distribution of the data,
making them ideal for the online estimation of previously unseen flow fields. In addi-
tion, they give a probability distribution over output that will prove useful when driving
exploration.

For this sampling problem, assume we have n sample points z;,7 = 1,2, ...n and corre-
sponding vector labels of the flow field y = (v1, ¥, ..., y»). For a new point z,, we want to
predict y. = f(x.). The regression function, f, is a Gaussian process, thus the distribution

of the values of f at any finite number of points is a Gaussian distribution.

y K K,
~ N (o, ) , (5.5)

where K is the covariance matrix for the labeled points, K, is the covariance vector be-
tween the new point and the labeled points, and K. is the inherent measurement noise.
Then,

p(y.ly) ~ N(K.K 'y, K. — K,.K'K}). (5.6)

In this GP, we utilize an exponential kernel (Eq. 5.7) with o = 1 and the length param-

eter [ = 0.2. These hyperparameters were found experimentally on the training dataset.

—) (5.7)
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The length parameter regulates how far the GP will extrapolate from an observed data
point. The o parameter is a scaling factor that controls the average distance from the
mean.

The current GP model is referred to as V, the true flow field as 17, and all observed flow
field measurements as O. The covariance matrix of the GP provides us with a measure of
uncertainty, U, of the flow field estimate that describes the similarity between every pair
of the input points K (z,2’). We will use U to encourage exploration into points in the

survey region that are not currently well modelled.

5.6 Active Mapping for Coverage

In this section, we consider the problem of collecting measurements in as many cells of
an evenly gridded survey area as possible in a limited amount of time using only passive
drifters for data observations deployed in the survey region. We incrementally measure
and estimate these flow fields in real-time from limited local observations and then har-
ness those estimates to effectively cover a sample space by selecting valuable deployment

locations.

5.6.1 Drifter Trajectory Estimates

Trajectory estimates are computed twice each time we search for a new deployment
point. The first estimation is performed to find n; potential future trajectories from the
last known point of each deployed drifter. These future path estimates of the deployed
drifters are collectively referred to as D and will be used to evaluate the proposed de-
ployment point’s paths against the futures of drifters which are already deployed. In our
experiments, we set ny = 4 and randomly seed a 2-meter location around the last known
location of each deployed drifter. This noise in the seed location helps account for errors
that will undoubtedly be imposed in the often imprecise automatic drifter deployment

process due to mechanical and environmental factors. The second trajectory estimate is
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Figure 5.9: Performance comparison over 40 flow field maps as described in Section 5.6.4.
Good surveys contain many unique points and have drifters which stay in R for as long
as possible (i.e. the top right corner is best). Our deployment scheme performed best in
37 of the 40 schemes we examined.

computed over all of the proposed deployment points. These proposal point trajectories,
P will be scored and ranked as described in Section 5.6.3 to choose the optimal deploy-

ment point.

5.6.2 Deployment Point Proposals

We expect flow field estimates of V which are near V to enable us to more accurately
model trajectories. When searching for a new deployment point, we must balance the
desire to gain new observations which improve our estimate of V while still exploiting
what we already know about the flow field to achieve long trajectories which cover as

many new points of R as possible. However, estimated trajectories which pass through
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Figure 5.10: This panel shows the deployments (numbered red points) chosen for ten
drifters under four different deployment schemes as discussed in Section 5.6.4. The true
flow field for these experiments is depicted in Fig. 5.2 and also shown in Fig. 5.10e. The
background and arrows in the experimental figures depict each deployment scheme’s
estimate of V at the terminal state of the survey. The comparative performance of these

strategies in this flow field is shown in Fig. 5.12a.
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areas where V has low confidence (U is high) may be inaccurate, resulting in unpredicted
paths which perform poorly. In the following sections, we discuss how we choose d,, to
balance our desire to better model V with our quest to cover R.

These incentives are realized in a 2D matrix dubbed the preference field of size m x n.
The preference field, , is initialized to equal a normalized U. A receding safety buffer
sets points along the edge of R to zero. This receding safety buffer prevents proposals
along the edges of R which may be appealing to our sampler because of high values in
U, but could result in short trajectories when the drifter is actually released. The receding
safety buffer allows proposals to slowly become riskier as we gather observations of V.
In our experiments, we relate the number of edge cells in the safety buffer to the number
of drifters already deployed, n. The number of edge cells zeroed in @ is calculated by
((n * (min (m,n) — b,)/ng) + b,) for each drifter deployment, with the minimum edge
buffer, b,, chosen to be ten cells. Next, each point in ® that a deployed drifter has already
observed is set to 0. Then n—lf is subtracted from @ for each point in D. Lastly, dilation
is performed over ® which increases the boundaries of the drifter tracks, discouraging
proposal points near deployed trajectories.

Rejection sampling is performed on all of the coordinates in ® until we have acquired
1000 unique points in 2. We further prune this set of points using a fast spatial filtering
process known as non-maximum suppression (NMS) until we have p,, promising points
(pr, = 100 in our experiments). NMS works by greedily selecting high-value proposals
while deleting nearby proposals which cover the same area [Rosenfeld and Thurston,
1971]. Our proposal approach was inspired by modern object recognition systems in
image processing pipelines such as [Ren et al., 2015] in which an object detector proposes
many windows around each object in an image, and then the windows are thinned out
based on their overlap by NMS to produce the most likely window directly over an object.
The proposal points resulting from this process are pictured as yellow points in Fig. 5.13b

over O.
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Figure 5.11: This panel depicts the deployments (numbered red points) chosen for ten
drifters under four different deployment schemes. All of the methods performed reason-
ably poorly (see Fig. 5.12b) in this chaotic flow field (Fig. 5.11e) because it contains many
eddies and regions with near zero current. The backgrounds (which reference Fig. 5.11f)
and arrows in the experimental figures depict each deployment scheme’s estimate of V at

the terminal state of the survey.
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5.6.3 Deployment Point Selection

At this step in the deployment pipeline, we have filtered the set of potential deployment
points down to a manageable number of points, p. To select the best p, we estimate trajec-
tories for each p under V (an example of this step is shown in Fig. 5.13c). Each proposal
point’s trajectory, P,, is scored by summing the unique points in R that are visited with
respect to a value field, I'. T" is the same as ®, except that the receding safety border is
replaced with a narrow, fixed zero-value border, b,, to remove value from risky edge de-
ployments. In our experiments, we found b, = 10 to be reasonable, but this parameter
can be adjusted. Proposal rewards are depicted in Fig. 5.13d with yellow markers which
reflect the relative score of a point. The proposal reward with the highest value score
is selected, and the ASV is instructed to drive to this deployment point to offload the
next drifter. In our experiments, the ASV waits for 5 minutes before considering the next

deployment.

5.6.4 Drifter Coverage Experiments

To obtain large-scale statistically valid quantitative results with access to ground truth,
we report an analysis using archival geophysical flow fields from the Norwegian ROMS
dataset [Shchepetkin and McWilliams, 2005] with simulated sensor and vehicle place-

ments.

ours | long | var | short | rand
32 6 2 0 0

Table 5.3: Number of surveys out of the 40 flow fields tested in which a particular de-
ployment scheme sampled the most unique cells from all the baselines.

The data set consists of an array of 100 x 155 measurements of in-situ ocean current. In
the original dataset, each data point was separated by 800m, but we rescaled the spacing
between sample points to correspond to a measurement interval of 5m so as to make

the survey area small enough to be feasibly traversed by a typical ASV and so that our
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assumptions of a steady flow field were reasonable. This change made our testbed, R,
equal to a size of 500m x 775m.

For each simulation, we initialize a simulated ASV with an average speed of 3m/s to
an initial position of (0,0). The ASV begins each survey with n,;=10 drifters and must
decide where to place each of them. When the ASV chooses a deployment point, our
simulator generates ten plausible paths based on the ground truth flow field that are 8
hours in length from the requested deployment point and randomly assigns one of these
paths to the newly “deployed” drifter. The boat pauses for 30 seconds to release the
drifter before considering the deployment point for the next drifter. Each released drifter
will sample the flow field at twice the Nyquist rate for the flow field until it exits R. In
these experiments, we add a le-6 normal noise factor to each current observation. We
assume that neither the flow field nor the drifter load affects the speed of the ASV. An
experiment terminates when all drifters have left R or after 8 hours.

Results from the experiments described in this section can be seen in Fig. 5.9. Our
approach covered the most unique cells in 92.5% (37 out of the 40) flow fields. Variance,
distributed long, and distributed short each were the highest-performing deployment
schemes on one of the 40 flow fields. The flow fields in which our approach struggled
contained eddies and regions with low currents that were difficult to model correctly. See
Fig. 5.11 for an example of a difficult survey area. Although the variance-based deploy-
ment occasionally produced a better estimate of V in a shorter amount of time, it often
squandered drifters by deploying them at points that guaranteed they had short trajecto-
ries.

Fig. 5.13 shows a visual representation of the drifter deployment pipeline. The true
tlow field is shown in Fig. 5.2; however, at the decision point depicted in Fig. 5.13a, we
have only observed a small portion of the survey area. Fig. 5.13a shows V for the survey
after three drifters have been deployed. This can be compared to the true flow field 1%
which is pictured in Fig. 5.2. The flow field estimate is closer to the true flow field near

where the drifters have sampled and regressed to the mean far away from data points.
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These flow field observations, O, are shown with black dots. Initial deployment points
are shown by numbered red dots. These current observations were assimilated into an
estimate of the flow field, V, which is shown in the background of Fig. 5.13a. We use
V to estimate possible future trajectories (shown in grey points in Fig. 5.13a) from the
last observed position for each deployed drifter (green dots). These future trajectories,
D, are combined with previously observed points, D, uncertainty, U/, and an edge mask
to build a heuristic field over R that describes a preference for deployment points. From
this preference field, ®, (seen in the colormap of Fig. 5.13b), we sample n, proposal points,
p, (yellow points) for evaluation. Next, we estimate possible trajectories for these points
with V as shown in Fig. 5.13c. In Fig. 5.13d, we evaluate the trajectories (light grey) of
p against the value field, I', which is depicted in the colormap. I'is constructed from a
combination of U, D, D, and a safety buffer, rewarding long trajectories which traverse
unseen points. Also in Fig. 5.13d, we show the relative score of the proposal points by
the size of their yellow markers. The highest scoring point is marked in red and becomes
the deployment point. In the final map in this panel, we show the new V after deploying
the fourth drifter. The colormaps in Figures 5.13a, 5.13c, and 5.13e colormaps refer to
Fig. 5.2’s colorbar for flow speed in m/s. The colormaps for Figures 5.13b and 5.13d refer
to the colorbar in Fig. 5.13f.
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Figure 5.12: This figure depicts comparisons of deployment schemes on a typical and
challenging flowfield over time. A higher number of unique cells covered is desirable
and we see that our method out-performs baselines, sampling more unique cells during
the runtime of the batteries. Fig 5.12a shows performance on the flow field visualized in

Fig. 5.10 over time. Fig. 5.12b shows results on a chaotic flowfield visualized in Fig. 5.11.

89



(a) Model (c) Rollout

1.0

(d) Evaluate (f)

Figure 5.13: This sequence of figures details the steps performed to determine a deploy-

ment point for a fourth drifter into a partially observed flow field.
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5.7 Collaborative Sampling with Drifters

When spatial precision is necessary, environmental surveys of coastal areas traditionally
require sophisticated (costly) robotic vehicles or significant human effort to gather the
samples to effectively model a region. Although the drifter-driven sampling system pre-
sented in Section 5.6 introduced a method for increasing coverage with low-cost drifters,
passive sensors controlled only at the deployment point are not always practical for ac-
tively collecting samples from particular phenomena in particular flow fields. We extend
this work to enable observations from the drifters and the ASV, enabling both morpholo-
gies to exploit their strengths. The ASV adaptively samples expected information-rich
regions, while the drifters are strategically deployed to maximize long-term exploration.
We investigate the utility of this mixed-modality surveying scheme and provide empirical

results from ocean flow simulations.

5.7.1 Adaptive Sampling

Although complete sampling of regions at a higher than Nyquist frequency is almost
always ideal, practical constraints often limit the time or resources that can be used to
collect data in real systems. However, in some instances, such as those in which high-
variable data clusters in spatial regions, an adaptive sampling approach can yield similar
modelling errors with a significant reduction in the time/energy resources needed [Das
et al., 2015b, Low et al., 2008, Rahimi et al., 2005b, Singh et al., 2007, Fiorelli et al., 2006,
Chadwick et al., 2016].

We demonstrate the utility of a non-uniform sampling technique for exploiting ex-
pected high-information regions of a survey area using a low-resolution survey by the
ASV as a prior [Manjanna and Dudek, 2017] and samples gathered from randomly de-
ployed drifters as a prior in [Manjanna et al., 2017a]. In [Hansen and Dudek, 2018], we
found drifter deployment points that optimized for survey coverage. In this work, we

combine our previous work into a comprehensive technique for optimizing modelling er-
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Figure 5.14: Adaptive sampling with drifters: planning process

ror with an ASV which adaptively samples and deploys drifters so as to split the burden
of spatial sampling. Others have shown that drifters can be used to exploit the unique
nature of flow fields to transport drifters for sampling, search, and exploration [Meghjani
et al.,, 2016, Shkurti et al., 2012, Alam et al., 2018, Aoyagi et al., 2004]. In [Das et al., 2012],
the authors present an approach to multi-day sampling of time and spatially varying
oceanographic phenomena in which drifters inform autonomous underwater vehicles of

the movement of features of interest. Like our approach, others have utilized flow fields
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for tracking features of interest [Kularatne and Hsieh, 2015] and for generating informed
paths [Kularatne et al., 2018, Inanc et al., 2005, Kwok and Martinez, 2010]. To survey a
large-scale ocean front with a team of gliders and surface vehicles, [McCammon et al.,
2021] employs a Monte Carlo Tree Search planner that leverages knowledge about the
deployed environment by performing state estimates with a Gaussian Process that has
access to an informed nearest neighbour prior and a drifting reference frame.

We assume that all V; drifters used in the experiment are carried on the ASV and
can be autonomously deployed in D, seconds (where D, = 10 in our experiments). The
deployment of a drifter takes time and energy to travel to an appealing launch location,
but thereafter, the data collected from the drifter comes at no cost to the ASV.

The ASV and all drifters can collect compatibly, transformable samples from 1) the
specified phenomena of interest and 2) from the flow field at the same fixed depth. In this
project, we select the phenomena of interest to be the flow field itself for the purpose of
improving visualization, however, we can easily optimize for different phenomena such
as oxygen, visual observation, or temperature.

Formally, we are considering the problem of physically collecting point measurements
over a defined marine region, S, with one ASV and a number, N, of marine drifters so
as to reconstruct the spatially distributed phenomena of interest, I, as accurately as possi-
ble with minimal time invested. At each update, we assimilate samples that have been

collected by the ASV and deployed drifters.

5.7.2 Adaptive Path Planning

To drive exploration and mapping into areas of expected high information gain, we use
the uncertainty estimate from the assimilation step, R, as a reward function for finding the
value of sampling each cell in S. We utilize Value Iteration, an approach for finding opti-
mal policies as defined by the Bellman equation in a Markov Decision Process [Bellman,
1957]. The value of sampling each cell from a given state is described by V'* (Equation

5.8). Once V* is found, the optimal policy 7* from a given state (s) can be found by tak-
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ing the action a with the largest value. In our experiments, we set the discount factor,

v = 0.95.
V*(s) = max <R(s, a) + -y Zp(s'\s, a)V*(s')) , (5.8)
s'eS
*(s) = arg max (R(S, a) + -y Zp(s']s, a)V*(s’)) (5.9)
s'eS

Ideally, for full Markovian guarantees, after each sample is collected, data assimilation
would be recomputed and a new reward map calculated; however, this is computation-
ally intractable. Empirically, we have found that performing data assimilation update
every F, = 15 step works well in practice. We negate the reward map at the coordinates
of each step as it is planned with Value Iteration as an approximation to the full recom-

putation as described in [Manjanna and Dudek, 2017].

5.7.3 Strategic Drifter Deployment

We model trajectories both for proposed drifter deployment points and for already de-
ployed drifters. The estimated paths of deployed drifters populate the dynamic Reward
Map, R which ultimately helps the model decide on the next deployment point.

For each deployed drifter, we seed n; points (ny = 5 in these experiments) in a 2m ra-
dius around the last known location and use OpenDirift to find possible future trajectories
so we can update R to reflect the best estimate of where the drifters will travel. For each
deployed drifter, n—lf is subtracted from R at each point in the estimated future trajectories
and is used in path planning and finding proposal points. The expected future trajectory
of a newly deployed drifter is shown in gray in Fig. 5.15b and is reflected in the R which
corresponds to the background of Figures 5.15d and 5.15e.

It is computationally expensive to predict drifter trajectories, so we use a method of

reducing the number of points to evaluate as originally described in Section 5.6.
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Trajectories are found for the top proposal points by simulating paths from each of
the points for the expected battery life of the drifters (4 hours in these experiments) with
our best estimate of the flow field, V (shown in Fig. 5.15a). The resulting trajectories
are scored by summing the expected sampling points in R. The highest scoring proposal
reward (the top 10 of the 20 evaluated in the experiments presented here) is then passed to
the ASV decision process for consideration (their respective size shows proposal reward

in the pink xs in Fig. 5.15b).

5.7.4 Decision State: Drifter or Drive?

While the ASV still has undeployed drifters, it must decide at each update step whether
to deploy a drifter at a proposal point or adaptively sample the area. Our system provides
a variable from which to control this decision point, B,,. At each decision point, the ASV
plans a comparison path using Value Iteration of B,, steps and finds the total score that
would be achieved with the R through those points. Alternatively, for each proposal
point, the ASV calculates a path of maximum length B,,, which travels through the point
and finds the score of this path plus the expected value of the proposal point, which was
calculated in the previous step. This can be thought of as planning a non-optimal path to
the proposal point, but with a bonus of earning the full trajectory of the drifter for free.
If any of the proposed paths score higher than the comparison path, then that path is
executed up to the proposal point, and the drifter is deployed.

If the comparison path scores better than any of the proposal paths or if there are
no drifters left to deploy, then F, steps are executed. At this point, data assimilation is

restarted and the process repeats itself, as seen in Fig. 5.14.

5.7.5 Collaborative Drifter Experiments

To obtain quantitative results under ground truth, we evaluate our approach using 25

archival flow fields from a Regional Ocean Modeling Systems (ROMS) dataset with sim-
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ulated sensor and vehicle placements. This data set consists of an array of 100 x 155
measurements of in-situ ocean current. We rescaled the original dataset from 800 x 800 m
grid cell size to an interval of 5 x 5m in order to make the region feasibly traversable for
a typical battery-powered ASV. As a result, we compared our results over 40 different
ocean flows over a region of size 500 x 775 m.

Our simulated ASV kept an average speed of 1 m/s and is capable of choosing 1 of 8
actions corresponding to movement into adjacent cells at each time step. We assume that
neither the flow field nor the drifter load affects the speed of the ASV. Our simulation
allows the ASV to operate for 2 simulated hours after the experiment begins.

Each released drifter will take a sample every 5 seconds until it exits S or its time limit
expires. In the simulations depicted here, the drifters collect data for 4 hours after their
initial release. The entire experiment terminates when all deployed drifters have left S or
have expired, though the boat stops sampling after it reaches its time limit.

Each adaptive experiment starts the same way, with the ASV at coordinate (0,0) and
driving 75% of the way to the diagonal corner of the survey area. After reaching this
point, the first update is run, complete with data assimilation, deployment proposals,
path comparisons, and finally the next path.

In Fig. 5.17a we show results from all 25 simulated flow fields. Our system has an
initial advantage over the ASV-only deployments, as it is able to achieve a more compre-
hensive model faster. As expected, however, after appropriate survey time, the ASV-only
experiments sufficiently covered the region in a more complete manner. The selection of
B, for a survey will determine how selective the ASV is when deploying drifters. We
see in Fig. 5.17a that surveys in flow fields with more variability perform better without
drifters of large B,. In the future, we hope to learn and adapt this parameter during
surveys.

We have also conducted field experiments (see Fig. 5.8) which demonstrate the proof

of concept of our systems. We were able to successfully communicate with distributed
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sensors over WiFi and assimilate flow data collected from GPS measurements. During

the field experiments, we lacked an automated deployment mechanism.
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Figure 5.15: This figure demonstrates a decision point in which the ASV considers the
deployment of a second drifter into the flow field 16 minutes after starting the experiment.
This experiment used 5 drifters with F,, = 5, and B, = 90. The current estimate of
the flow field is depicted in the background of Fig. 5.15a with the colorbar in Fig. 5.15¢c
representing estimated velocity. Drifter proposal points near the current position of the
ASV are depicted in Fig. 5.15a with their expected trajectories, given the current estimate
of V. The experiment state is depicted in Fig. 5.15b with the ASV’s current position shown
with a red square marker. The ASV has just finished deploying a drifter, which has an
expected trajectory plotted in gray. The Proposal Points are plotted as pink = markers
with their size correlating to their expected value along their trajectories. The reward
map is plotted in the right three plots with their colorbar shown in Fig. 5.15f. Figures
5.15d and 5.15e with expected values of 304.64 and 802.76 show the two paths considered

in red. In this case, the second drifter was deployed.
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Figure 5.16: This series depicts an ASV and drifter team sampling a basin. Fig. 5.16a
shows the full boat path (black points) at the end of an experiment (last position shown
in red) and all sampled positions (violet). The background is the current Reward Map, R,
which references the colour bar shown in Fig. 5.15f. This experiment used 5 drifters with
F, =5,and B,, = 90. Fig. 5.16e is the true flow field, and Fig. 5.16d is what the experiment
estimated the flow field to be at the end of the experiment. The backgrounds of Figures
5.16e and 5.16d refer to speed in m/s in the colorbar seen in Fig. 5.16f. Fig. 5.16b shows
the Root Mean Square Error (RMSE) in m/s of Fig. 5.16d with respect to the ground truth.
The colorbar in Fig. 5.16c provides the metric for Fig. 5.16b.
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Figure 5.17: Fig. 5.17a shows the resulting final RMSE after the heterogenous ASV team
sampled for 2 hours. Drifter data was integrated until the drifter exited the survey area
or expired. Our approach outperforms the adaptive planning approach when the flow
tield is more predictable. However, when the flow field is less predictable, drifters are
sometimes placed in sub-optimal deployment points due to a poor estimate of the true
data. Fig. 5.17b shows the RMSE at each point in which data was assimilated for all 25
test maps. The lines indicate the trend found with a first-order, bootstrapped regressor
(n = 1000) with shading showing the 95% confidence interval. This plot demonstrates the
advantage of using a tuned adaptive drifter system to effectively model a region quickly.

Given enough survey time, the different schemes converge.
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5.8 Improving Drifter Hardware

(a) Heron ASV (b) Gannet ASV

Figure 5.18: Fig. 5.18a shows the Clearpath Heron ASV maneuvering a drifter to a new
position. Fig. 5.18b shows our Gannet ASV collecting bathymetry data of a coral reef.

Two small boats were used in our marine experiments: the Heron and Gannet. The
Clearpath Heron Autonomous Surface Vehicle (ASV), shown in Fig. 5.18a, is a battery-
propelled catamaran equipped with observational sensors for capturing features of a
body of water from the surface. The Gannet ASV (Fig. 5.18b) is a floating vehicle with
a differential drive thruster configuration. The Gannet, built by our team at McGill, en-
ables us to collect controlled spatial measurements along the surface of a body of water
using completely off-the-shelf components. It also allowed for a larger payload and en-
durance than the Heron ASV. Onboard electronics are stored in a waterproof bin situated
between two kayak catamarans and can be customized with a variety of sensors to log
or stream geo-located sensor observations including video (underwater or above-water),
echo soundings, and various environmental measurements.

We created a system that enables autonomous surface vehicles to deploy and use non-
actuated drifters for marine surveys. Our design, known as Buoy-Acquisition Boat Equip-
ment (BABE), allows for long-term surveys with diverse spatial measurements. BABE
allows for surveys to be launched with little operational overhead due to the comple-

mentary functions of the ASV and drifters. Our system includes scalable storage tracks, a
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Figure 5.19: BABE drifter with hull design and internals.

capture mechanism that sorts incoming drifters, and a deployment mechanism to release
drifters into the survey area.

The BABE drifters are designed to fit into the rails track of the ASV with a buoy pro-
viding both flotation and visibility. The buoy is sourced from polyvinyl chloride (PVC), a
standard material in the marine sector that is also easily obtainable in the consumer mar-
ket. A central bore allows for communication and power transfer throughout the system
while allowing radio-based wireless communication above the water.

Several key objectives drive the design of the BABE system, including ergonomic de-
ployability in the field by a single operator, robust capture and deployment mechanisms
for high-confidence autonomy, and a fail-closed design to further bolster this confidence.
Figure 5.20a displays the core mechanism and Figure 5.19 shows the drifter platform.

Our design is driven by the following principles:

1. Deployable: This system is meant to be mounted on a human portable ASV. At 3kg,
the BABE ASV can be fielded by a single operator and can be completely disassem-

bled to enable transport by air.

2. Reliable: The entry and exit points of the tracks are fitted with one-way gates in-

spired by the paddles of a pinball machine. The capture mechanism is simple, and
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(a) Isometric view

(b) Front view

Figure 5.20: BABE empty isometric and front view of a single track with a stowed drifter.

The system is configured with two tracks to support a total of six drifters (Fig. 5.19).

the remainder of the drifter storage system is passive, using the inertia and drag of

the drifters against the movement of the ASV to achieve movement onto the tracks.
3. Fail-closed design: Reduce the risk of drifter loss if power loss occurs on the ASV.

4. Extendable: Additional tracks can be added for more sorting options upon capture

and deployment.

The gates are actuated and able to sort the buoys upon capture, which allows ad-
vanced manipulation of the buoys. For instance, one track can be used for stowing drifters
with depleted batteries, while another track is used for capturing and re-deployment. Fig.
5.20a shows a canal-style gate that completely blocks the exit of each track.

BABE storage racks are slightly submerged below the waterline of the paired drifters
(Fig. 5.19) and made of a slippery plastic to allow the drifters to be propelled along the
chute by drag as the ASV moves through the water (see Fig. 5.20).
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5.9 Discussion and Retrospective

We investigate relationships between survey time, energy, and modelling error and present
a tunable algorithm for selectively choosing when to add additional drifters to the sur-
vey. We also show when drifters are not useful such as when there is an unstable or
low-velocity flow field or when survey time is not limited. Our work exploits the use of
structural bias and physics to develop a robot team composed of unactuated robots that
is capable of productively surveying in flow fields.

Practical environmental surveys require trade-offs between cost, mobility, and spa-
tial or temporal resolution. We can effectively observe environmental phenomena by
exploiting the efficiencies of both active and passive sensor platforms. We show that the
proposed heterogeneous system selectively samples these environments to achieve faster
modelling results in many scenarios.

It is also essential to consider the added complexity of adding drifters to a survey
team. Each additional sensor adds more hardware that must be maintained and repaired.
In addition, if drifters are to be reused, they must be physically retrieved at the end of the
experiment. Although they will typically have long battery life, drifters almost always
cover a region more slowly than actuated vehicles.

In the next few chapters, we transition to a discussion of structured modelling in the

context of tabletop manipulation.

104



Part IV

Learning with Structure-Induced Priors
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Chapter 6

Leveraging Kinematics for Learning

Manipulation Policies

Forward kinematics, as described by the Denavit-Hartenberg (DH) [Denavit, 1955] pa-
rameterization for rigid-body robots, is fully differentiable with respect to input joint
angles, given fixed link-relative geometric information, and including this differentiable
module improves the training of reinforcement learning agents on an array of benchmark
manipulation tasks. This work exploits this fact and introduces a method for learning
manipulation agents incorporating robot forward kinematics as a differentiable mod-

ule for reinforcement learning systems. Forward kinematics, as described by Denavit-
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Figure 6.1: DH parameters used for forward kinematics for the Jaco 7DOF Robot as given

by the manufacturer, Kinova.
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Hartenberg (DH) parameterization for rigid-body robots, is fully differentiable with re-
spect to input joint angles, given fixed link-relative geometric information. Including
this differentiable module into the structure of a reinforcement learning agent improves
training speed, stability, and overall performance. By incorporating this information only
in the critic, the final learned policy used to predict joint actions from image input does
not directly depend on receiving input joint information, instead learning the necessary
behaviour implicitly via the kinematics-informed critic. We illustrate this approach by
modifying the critic in a modern pixel-based actor-critic baseline to be a Kinematic Critic
and ablating across variations that provide similar pose information but without the kine-
matic bias in the network architecture. Results are given across several manipulation
tasks and two robot arms in Robosuite [Zhu et al., 2020]. We additionally demonstrate a

simulation-learned policy running on a real Jaco 7DOF robot.

(a) image (b) (c) kine (d) eef
Q— .- Q Q:
f; f; It t
critic critic critic critic

£ ot 1 # £t

b oa he & Je h he

gradient
forward activation

L
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Figure 6.2: Diagrams illustrating the 4 critic architectures tested in this chapter. The (a)
image variation represents the standard DrQv2 critic setup, the (b) variation shows the
critic network with joint angle directly, (c) is kine method, which exploits the Denavit-
Hartenberg parameterization of forward kinematics to provide a lightweight, differen-
tiable model of the end effector pose to the critic, and finally, in eef, we test the importance
of differentiability through the kinematic function by removing the gradients while still
giving the critic access to the end effector pose. Critic setups (b), (c), and (d) are a core

contribution to this work, and we study the performance of each variant in Section 6.3
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This chapter incorporates the classic Denavit-Hartenburg (DH) [Denavit, 1955] method
of parameterizing robot kinematics as a differentiable function for improving reinforce-
ment learning agents on several robotic manipulation tasks. The DH method of joint pa-
rameterization was developed in 1955 by Jacques Denavit and Richard Hartenberg [De-
navit, 1955] and has been a staple tool for defining kinematic functions for rigid-body
robots.

Robots learning to solve manipulation tasks must inherently reason about controlling
their own body. Models and controllers based on explicit analytic physical parameteriza-
tion traditionally need detailed information such as manipulator redundancies, kinematic
limits, friction, acceleration, and/or inertia, which can be difficult to define exhaustively
and measure accurately. When solving control tasks without explicit information about
the robot’s kinematics, such as model-free reinforcement learning (RL), dynamics and
structure prediction are inherently coupled with task-solving in the agent. In this chapter,
we argue for a middle ground between fully human-defined controllers, which require
defining parameters such as friction and inertia, which are often difficult to accurately
estimate, measure, or simulate, and fully learned agents who do not know the robot they
are tasked with controlling. Our approach incorporates the easily defined and (typically)
constant factors of robot geometry into the learning pipeline, resulting in better overall
learned control policies.

Recently introduced automatic differentiation tools such as Pytorch [Paszke et al.,
2019] and Jax [Bradbury et al., 2018] enable easy incorporation of the DH-defined kine-
matics function (and its Jacobian) into deep learning models with full gradient propaga-
tion. Recent innovations have illustrated the appeal of incorporating differentiable func-
tions [Riba et al., 2020] into learning systems or building entire environments [Hu et al.,
2020, Jatavallabhula et al., 2021, Gradu et al., 2021] as a method for improving the learn-
ing of complex functions which have differentiable physical simulators. Our approach

maintains much of the simplicity of model-free RL while harnessing well-defined robot
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Figure 6.3: In the Kinematic Critic architecture, we differentiate through a function ex-
pressed using Denavit-Hartenburg kinematics during training. The DH function is given
the constant o, d, and [ parameters as well as the joint angle state, j;, and relative angle ac-
tion, a;, which are added together to form 6 in Eq. 6.2. Note that the sampling of action a,
admits differentiation with respect to the action distribution predicted by the actor, using

the reparameterization trick [Kingma and Welling, 2014, Williams, 1992a].

kinematics as a differentiable structural bias without the overhead of fully differentiable
environments.

The main contributions of this chapter are as follows:

* We describe a method to incorporate forward kinematics with the Denavit-Hartenberg
(DH) function in an automatic differentiation framework for use in a deep reinforce-

ment learning algorithm.

¢ We demonstrate notable improvement on a suite of robot manipulation benchmarks
in simulation on Jaco and Panda robots over a standard pixel-based actor-critic al-

gorithm.
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* We show the importance of differentiating through the kinematic function over ar-
chitectures that provide the same joint information without the structural bias of

kinematics.

6.1 Background

Kinematics

Forward kinematics allows computing a robot’s kinematic chain for a particular config-
uration to find the pose of the end-effector from joint parameters and joint angles, where
joint parameters are known constants that define the geometric relationship between the
serial links of a rigid body chain. There are several conventions for assigning joint param-
eters [Rocha et al., 2011], but in this work, we only explore the Denavit-Hartenburg [De-
navit, 1955] parameterization method. DH is advantageous because it is easily calculable,
is often provided by default by robot manufacturers, and is differentiable with respect to
input joint angles, given geometric information such as lengths and relative link rotations
(see Fig 6.1).

For each joint, i, in a rigid body, the DH parameters are described by d; (distance from
joint 7 to the actuator axis i — 1), 6; (angle rotation about axis i — 1), a; (the distance of the
joint ¢ along actuator axis ¢ — 1), and «; (the angle between actuators of axis i and axis
i—1).

In this convention, coordinate frames are serially assigned to two links between a joint
such that the first transformation is associated with the joint (Z). The second is assigned
to the link (X) such that the full kinematic equation assigned to a robot with n links can

be described in minimal joint parameters by the transformation 7" in Eq. 6.1.

T =7 %Xy %Zy..Xn—1[Z,][X,] (6.1)
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Figure 6.4: Evaluation curves depicting the mean (solid line) and the shaded 95 percent
confidence interval around the mean, with performance measured over 5 randomly cho-
sen seeds. The Kinematic Critic architecture (green) outperforms other ablations on aver-
age, including agents with critics which directly calculate the expected end-effector pose
without back-propagating gradient information (red) and agents which are given robot
joint angles directly (orange). The stark discrepancy between the green and red reward

curves emphasizes the power of allowing gradient propagation.
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n

1) =[] 7:(6:) 6.2)

i=1
In this convention, transformations are serially performed between n links with joint pa-
rameters 6; as specified in Eq. 6.2. The value of a joint angle, “=1T(6;), shown in Eq. 6.3

describes the transformation from link : to the previous link.

cosf; —sinf;cosq; sinf;sina; a;cosb;
i _ sinf; cosB;coscqy —cosf;sinq; a;sinb; (6 3)
' 0 sin oy COS (; d;
0 0 0 1

In this work, the DH parameters («, d, and [) are assumed constant throughout training
and not directly optimized via backpropagation or other means. Joint angles, specified
by 6, are optimized by the neural control policy of the reinforcement learning agent.
Given a fixed set of DH parameters, it is possible to describe the Jacobian from the
end-effector position through the DH transformation into joint angle space and thus any
preceding functions (such as neural network layers of a policy network), thus enabling
the use of this function as part of a deep neural network trained by backpropagation. The

importance of this differentiability is further detailed in Sec. 6.3.

Learned Controllers

The choice of controller to use for robot learning can have a large impact on task dif-
ficulty - for instance, a ping-pong robot will need precise control of both end-effector
pose and velocity, while the task of box stacking may be simpler to learn with a Carte-
sian controller [Martin-Martin et al., 2019] where low-level control of joints is handled
by a controller specified from expert robot knowledge [Khatib, 1995]. In Cartesian (also
known as Task) Space, actions are the end-effector’s target position and/or orientation in
Euclidean space (z,y, z). These high-level control methods can simplify many tasks but
often make assumptions about the operating environment and agent structure to perform

the complex task of Cartesian space to joint space mapping, which may make accounting
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for nuance, such as correcting for a grasped object’s weight or avoiding obstacles more
difficult.

At the other end of the control spectrum are agents which learn to control robots di-
rectly from the torque applied to motors [Yarats et al., 2021a, Srinivas et al., 2020, Hafner
et al., 2019a, Deisenroth and Rasmussen, 2011]. This can make solving tasks requiring
longer-term planning challenging, as agents typically need to operate at higher control
rates while also learning physical dynamics.

In this chapter, we bridge the utility of high and lower-level controllers, utilizing joint-
angle control to enable precise control of joints while biasing this control with a forward
kinematics function that provides structural bias of end-effector pose. Similarly, JAiLeR
[Kumar et al., 2021] details a paradigm for training a joint angle controller which maps
from Cartesian space to joint space using model-free RL on proprioceptive state observa-
tions. JAiLeR relies on curriculum learning to produce an inverse kinematics controller
with similar performance to OSC on goal-conditioned reach tasks, demonstrating the ca-
pability to incorporate obstacle avoidance directly into the observation state space of the
agent. Unlike JAiLeR, an agent trained with a Kinematic Critic operates on images rather
than joint states during evaluation, requires no special curriculum during training, and is
shown to work on other complex tasks in addition to inverse kinematics. We bridge these
two approaches using joint-level control by employing joint-position controllers but in-
corporate a kinematic structure into the model to facilitate learning of the end-effector

pose in Cartesian space.

Model-Based Control

The Kinematic Critic may be considered a Model-Based Controller as the module com-
putes the forward kinematics for a given agent action though the accuracy of this model
is not corrected by any special loss term. Most traditional controllers also use the robot’s
physical attributes and /or its environment for operation. In the widely used Operational

Space Controller [Nakanishi et al., 2008, Khatib, 1995], the accuracy of the physical param-
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eterization of the robot, particularly the mass matrix, can vary based on load and config-
uration, and performance can deteriorate quickly if this estimate is inaccurate [Nakanishi
et al., 2008].

There is a large field of research on developing physics models for use by robot con-
trollers. One can impose varying degrees of prior knowledge about the system into the
model, including kinematic equations and factors such as mass, friction, or inertia [Lutter
et al.,, 2021a,b, East et al., 2020]. Despite its appeal, prescribed knowledge can be diffi-
cult to define for particular robots but can potentially provide both generalization and
interpretability.

On the other hand, purely data-driven models [Deisenroth and Rasmussen, 2011,
Higuera et al., 2018] use function approximators to fit the complex dynamics that gov-
ern robot control. Data-driven approaches tend to be limited by the coverage of their
dataset and are slower to train, but are often simpler to implement and can excel if the
true system characteristics differ from those that might have been prescribed by (often
practically limited) model factorizations.

Most deployed systems blend prescribed physics with learned models that attempt to
overcome the inevitable dynamics errors of our physics assumptions in complex robots.
Williams et al. [Williams et al., 2017] demonstrates the power of learning a controller with
factorized dynamics models. They incorporate kinematic equations on several robotic
systems, including an aggressive driving task. Model-based Action-Gradient-Estimator
Policy Optimization (MAGE) [D’Oro and Jaskowski, 2020] is a continuous-control DDPG
actor-critic algorithm that explicitly trains the critic to provide action-gradients by back-
propagating through a learned dynamics model. OSCAR [Wong et al., 2022], introduces a
data-driven variant of OSC that learns to adapt the physics model online for task-specific
and task-agnostic manipulation. For a more exhaustive review of design choices in incor-

porating learned dynamics models with physics, refer to Lutter et al. [Lutter et al., 2021a].
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Parameter Value
Controller Type Joint Position
Control Rate 10 Hz
Impedance Mode Fixed
Max Action Step 0.15 radians
KP (30, 60, 50, 70, 60, 70, 90)
Damping Ratio (0.1,0.17,0.2,0.3,0.1,0.1,0.1)
Actor Input 3 consecutive RGB frames
Camera Frontview
Reward Dense
Expl. Stddev. Schedule linear(1.0, 0.1, 500000)
Reach: Target 0.1m from EEF
) ) .. | Door: +.02m, +0.25rad from origin
Environment Uniform Init Lift: Cube £0.03m from origir%
Can: Can £0.145m x £0.195 region
Robot Joint Init Gaussian, stddev=0.2

Table 6.1: Kinematic-Critic Experiment Hyperparameters

Differentiable Physics Engines

Incorporating differentiable physics into robot learning agents has become increasingly
effective and efficient thanks to the continually improving fidelity and speed of simula-
tors [Jatavallabhula et al., 2021]. For instance, Deluca [Gradu et al., 2021], a Jax-based
library introduces several fully differentiable classic control tasks and ChainQueen [Hu
et al., 2019] presents a real-time differentiable simulator for deformable objects. Millard
et al. [Millard et al., 2020] demonstrate a differentiable simulator for rigid body dynam-
ics with realistic integrators constrained to the laws of physics. The strength of their
simulator accuracy is demonstrated over long-horizon adaptive model-predictive control

(MPC).

Learning Pose with Kinematic Constraints

We study the problem of learning to solve manipulation tasks from images, where the
robot must complete a task with state information provided from camera observations.
During training, our agent also has access to its joint angles. When learning robot policies

from images, an agent must implicitly learn to map the image and its actions back to
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its pose. Learning this action-observation mapping of multi-link articulated objects is
inherently difficult because the pose is high-dimensional and has structural constraints
inherent in the rigid body chain that makes up the robot, which is compounding and
not always visible in the single-camera view provided. Past work on mixture density
estimation using neural networks [Bishop, 1994] utilizes a neural network that, given
input joint angles and assuming fixed link lengths, predicts the parameters of a mixture
distribution over end-effector positions for robot kinematics of a simplified two-link arm.
Though this work was not utilized directly for control, this example introduces the more
general kinematics concepts at play in our work.

The computer vision community has extensively tackled the problem of finding kine-
matics from images (or a sequence of images), especially for finding human poses. Deep
Kinematic Pose Regression [Zhou et al., 2016] embeds a differentiable kinematic object
model into a neural network for predicting pose from images. Their network predicts
the joint motion parameters of an object while learning directly about the joint location
loss described by a kinematics chain or kinematics tree. This model is demonstrated on
a toy 2D robot and 3D human pose, achieving state-of-the-art results on the Human3.6M
dataset [Ionescu et al., 2013]. The formulation of the kinematics loss based on pixel input
bears similarity to the overall approach featured in our work. However, Deep Kinematic
Pose Regression was used in a supervised learning setting with a direct loss of pose rather

than for robotic control.

Learning Kinematic and Robot Tasks from Images

There has been an enormous spectrum of work published on learning kinematic [Pavllo
et al., 2018] and robotic tasks from images [Levine et al., 2016] and /or expert traces [Peng
et al., 2020]. Like our approach, Asymmetric Actor-Critic [Pinto et al., 2017] employs
an actor-critic training algorithm in which the critic is trained on rich state observations,

while the actor only receives image observations. They emphasize the benefits of fully

116



(a) Jaco Door Opening Trained with Images and a Kinematic Critic (kine)

(b) Jaco Door Opening Trained with Images Only (image)

(c) Representative frames from Kinematic Critic (top row) and Image Only (bottom row) agents
solving the Door Opening task. We find that Kinematic Critic agents show higher coordination
among joints (especially evident in the Jaco arm), producing policies in which the end effector

moves smoothly and efficiently through space.

utilizing the simulator to speed up training with auxiliary tasks and add robustness in
sim?2real.

The key concepts which unify many of these works are:

* Prior knowledge of the skeleton of the agent, including important information such

as the number of links and link length

* Focus on task-specific training schemes (sometimes with the inclusion of expert

traces, behaviour cloning, and/or imitation learning)

* Frequent use of curriculum learning, replay buffers, and other training techniques

common to reinforcement and continual learning.

Many of these methods also utilize a combination of auxiliary objectives in addition to

the main task loss or task reward.
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6.2 Method

We employ a Deep Deterministic Policy Gradients (DDPG) [Lillicrap et al., 2019] rein-
forcement learning agent that utilizes an actor-critic [Konda and Tsitsiklis, 1999] network
structure. As in Asymmetric Actor-Critic [Pinto et al., 2017], our approach uses the actor
and critic as two separate networks to give extra information to the critic during training.
Our reinforcement learning agent is built on the successful DrQv2 [Yarats et al., 2021a]
network architecture. DrQv2, which iterated on its predecessor DrQ [Yarats et al., 2021c],
utilizes image augmentation to achieve sample-efficient high performance on continuous
robot control tasks. DrQv2 employs a DDPG learner with uses n-step returns to estimate
TD error. As in DrQ [Yarats et al., 2021c], DrQv2 [Yarats et al., 2021a], and TD3 [Fujimoto
et al., 2018], the practical implementation of these Q functions uses clipped Double Q-
learning, duplicating estimate calculations through independent networks with identical
architectures f; and f5, resulting in 1, and )2... For more details on this formulation and
overall problem setting, see DrQv2 [Yarats et al., 2021a]. All of our environment hyperpa-
rameters match the official implementation of DrQv2, aside from the replay buffer size,
which we adjust from 1M to 500k stored image states. To adapt DrQv2 from Deepmind
Control Suite [Tassa et al., 2020] Torque Control to Robosuite [Zhu et al., 2020] Joint Po-
sition Control, we do not repeat actions. Instead, the agent runs its controller, requesting
relative joint angles at a constant control rate. Please see Tab. 6.1 for additional details.
We test the image critic architecture from DrQv2, with angle, kine (Kinematic Critic),
and eef ablations as described in Fig. 6.2. These ablations were chosen to test the influ-
ence of the choice of representation of the additional information provided in Kinematic
Critic. In the angle ablation, current robot joint angles are concatenated with the state, 7,
(as encoded by a convolutional network), and actions, though it does not benefit from
explicit knowledge of the kinematic structure of the robot. For both eef and kine, we
estimate the expected pose of the end-effector for a given relative action by computing

forward kinematics from the current joint angle using the DH method. In kine, the Kine-
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matic Critic enables differentiation that the agent can use as a gradient path for learning
and backpropagation. However, in the eef experiments, we prevent gradient propagation
through the DH function to study the importance of gradient flow, while providing access

to roughly the same information as the kine variant.

Qim = [ (I, ar) (6.4)
Qangte = [ (he, a, ji) (6.5)
Qrine = f(he, DH (as + ji)) (6.6)
Qees = f(he, DH(sg(as) + ji))) (6.7)

Equation group 6.7 outlines the core critic calculations used by our tested architec-
tures, as outlined in Figure 6.2. We denote the parameterized critic architecture as f, sg
for stop gradient, and D H for the Denavit-Hartenburg calculation as described in subsec-
tion 6.1. h; is the intermediate hidden activation resulting from a convolutional network
over the input image at time ¢, x,, hy = conv(z;), a; is the relative action sampled from the
actor sub-network, and j; denotes the absolute joint position, as given by angle encoders
on robot joints.

The primary contributions of our method, as compared to the aforementioned back-

ground, are as follows

* Our work builds directly on a strong actor-critic visual RL baseline without expert

traces, imitation learning, or behaviour cloning.

* We utilize environmental rewards and do not formulate pose-specific losses or em-
ploy multitask training. We provide end-effector pose information (via a differen-
tiable DH function) through the internal workings of the critic sub-network, thus
allowing the overall actor-critic model to decide how best to use this information

to maximize overall reward. This means useful pose-related dynamics (such as
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smoothness or stability) are learned implicitly, without explicit pose-specific losses

or rewards.

* Rather than using the entire feature-based state information in the critic like Asym-
metric Actor-Critic [Pinto et al., 2017], we use only joint angles of the robot along
with the DH parameterization to improve training. This is advantageous as joint

angles are likely well-modelled in sim2real transfer for various robot platforms.

* Dynamics learning is relegated to the underlying RL agent, and we do not explic-
itly factorize dynamics learning using physics knowledge - only kinematic struc-
ture, on a per-timestep basis, is used. While kinematic structure in this work is
closely related to the adjoint calculations used in the Articulated Body Algorithm
(ABA) [Featherstone, 2014, Lutter et al., 2021b], as well as the kinematic calcula-
tions in Deep Kinematic Pose Regression [Zhou et al., 2016], QuaterNet [Pavllo
et al., 2018], or many other works utilizing kinematic chain or tree calculations, it

is not coupled with estimations of velocity, acceleration, mass, inertia, and other

(a) Jaco Reach Real (b) Jaco Reach Sim

Figure 6.6: Input images from the real (left) and sim (right) ReachBall task for the Jaco
arms. The small sim2real gap and data augmentation allowed us to run the sim-trained

policy on the real task.
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physics related quantities. Instead, we utilize a combination of RL and standard

joint-position controllers for overall problem dynamics.

¢ We operate directly from pixels, with no goal conditioning or state information [Ku-
mar et al., 2021] beyond the knowledge of the robot geometry (assumed constant
throughout training on a per-task basis, and given to the critic sub-network) and
robot joint angles (which are also used by the controller). The actor only consumes
images as inputs, which is common in continuous control from pixels in reinforce-

ment learning [Yarats et al., 2021a, Srinivas et al., 2020].

6.3 Experiments and Discussion

We investigate the impact of adding differentiable kinematics structure into the critic of
an image-based reinforcement learning architecture for a set of tasks trained in Robo-
suite [Zhu et al., 2020], a robotics simulation framework powered by the MuJoCo physics
engine [Todorov et al., 2012].

We utilize a Joint Position controller with fixed impedance parameters for all experi-
ments. The joint position controller has a max action step of 0.15 radians for all joints.
We tune the controller for Jaco to set KP and damping ratios for the seven joints to
(30, 60, 50, 70, 60, 70,90) and (0.1,0.17,0.2,0.3,0.1,0.1,0.1), respectively. Agents view the
scene with a single RGB camera and receive a dense reward for all tasks.

In the PickPlaceCan task, we greatly improved sample efficiency on all agents by
adapting the dense reward in Robosuite to include a dense reward that encourages each
fingerpad of the manipulator to make contact with the object of interest (in this case, the
can). This touch-based reward was especially important in the compliant 3-finger Jaco
gripper, where collecting the benchmark grasp reward was difficult as it required caging
with all fingers.

We demonstrate performance on four tasks: Door, Reach, Lift, and Can (listed in the

order of increasing difficulty) for the Jaco 7DOF manipulator and the Panda 7DOF arm.
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Object position and robot initial joints are randomized on reset, with a range of variability
set per task as default in Robosuite. All performance curves depict the mean (solid line)
and the 95 percent shaded confidence interval around the mean over 5 randomly chosen
seeds of episodic reward over agent training steps in evaluation.

Our experiments show the differentiability of the DH function is critical to driving
effective learning of the network. Simply providing the relevant proprioceptive informa-
tion to the critic, such as in the angle variant (orange), did not seem to help much over
the pure image variant (blue). This is particularly evident in the reward traces for the Jaco
Door opening task shown in Fig 6.4. By propagating information from the DH function
inside the critic, through the action space, into the actor and finally through the convo-
lutional encoder networks, we see that the Kinematic Critic agent (green) greatly outper-
forms the eef variant (red) despite both agents receiving the end effector pose as input
into the critic. Enabling gradient flow through a kinematics function improves learning
speed, stability, and overall performance in every case we tested. This performance in-
crease is particularly notable on tasks requiring a wide distribution of coordinated poses,
especially on the Jaco, which was less stable in our simulation.

We also demonstrate the Reach policy on a real Jaco arm (see Fig. 6.9f) by iteratively
syncing the simulator to the real setting, predicting actions based on simulator frames,
and then applying the predicted action back to the real robot. More sophisticated real2sim
or sim2real [Mozifian et al., 2020] approaches could be integrated symbiotically with the
Kinematic Critic to improve performance in this setting but fall outside the scope of the

current chapter.
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Figure 6.7: Reach, Lift, and Can tasks on the Panda show that our Kinematic-Critic (green)
improves learning speed and final performance across the board compared to agents that
do not leverage robot kinematics in critic training, and instead observe only images (blue)

or images and joint angles (orange).
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Figure 6.8: Reach, Lift, and Can tasks on the Jaco show that our Kinematic-Critic (green)
significantly improves learning speed and final performance across the board compared
to agents that do not leverage robot kinematics in critic training and instead observe only

images (blue) or images and joint angles (orange).
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(a) Jaco Pick Can

(c) Panda Open Door

(d) Jaco Reach Ball

(f) Training visual policies with a Denavit-Hartenburg view of robot joint positions enables agents

(e) Jaco Reach Real

to learn complex visual policies that can operate in the real world. This figure depicts successive
frames of our Kinematic Critic performing robotic manipulation tasks. Full videos can be found

athttps://Jjohannah.github.io/kinematic—-critic
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6.4 Discussion and Retrospective

This work introduced a method of incorporating differentiable Denavit-Hartenburg (DH)
transformations into an actor-critic reinforcement learning algorithm. By training a critic
with access to DH while training its actor only on images, we learn vision-based policies
for complex manipulation tasks with better performance than variants with access to the
same joint state information. Our evaluation shows that the differentiability of the DH
transformation in the critic is crucial for effective training. Overall, this method improves
upon strong actor-critic baselines across several benchmark tasks and solves all tasks.

Physics-informed learning methods are a growing and popular area of research. Py-
Pose [Wang et al., 2023] is a new robotics-oriented library that combines deep perceptual
models with physics-based optimization. Along with a suite of other robotics tasks, they
integrate dynamics and control tasks into an end-to-end learning framework and demon-
strate the framework with learning-based MPC by parameterizing the cost functions and
dynamics and learning these values with automatic differentiation.

In the next chapter, we look at using the known structure of sensor performance to

influence the model architecture in a learned controller for robust grasping.
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Chapter 7

Learning Multimodal Manipulation

Policies

Manipulating objects with dexterity requires timely feedback that simultaneously lever-
ages the senses of vision and touch. This chapter focuses on the problem setting where vi-
sual and tactile sensors provide pixel-level feedback for Visuotactile reinforcement learn-
ing agents. Following the theme of this thesis, we look at how we can change the structure
of the model to encourage the agent to exploit both forms of high-dimensional input.

We investigate the challenges associated with multimodal learning and propose im-
provements to existing RL methods, including tactile gating, tactile data augmentation,
and visual degradation. When compared with visual-only and tactile-only baselines, our
Visuotactile-RL agents showcase (1) significant improvements in contact-rich tasks, (2)
improved robustness to visual changes (lighting/camera view) in the workspace, and (3)

resilience to physical changes in the task environment (weight/friction of objects).

7.1 Introduction

The synergy between the senses of vision and touch is fundamental to how animals in-

teract with the world around them. While vision is informative of an object’s pose and
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(a) GelSight (b) GelSlim (c) STS (d) DIGIT

Figure 7.1: Optical tactile sensors. This class of high-resolution tactile sensors renders
pixel-level images that emphasize the contact geometry of objects as they interact with
the robot finger. From left to right, these sensors show a Gelsight [Li and Adelson, 2013],
GelSlim [Donlon et al., 2018], See-Through-your-Skin sensor (STS) [Hogan et al., 2021],
and DIGIT [Lambeta et al., 2020] sensor.

general shape, the sense of touch provides accurate feedback on the location of the con-
tact, interaction forces, and the object’s material properties. Despite the well-understood
importance of visual and tactile feedback in human manipulation [Bozzacchi et al., 2014],
robotic systems struggle to integrate both modalities with the ease humans display.

We develop model-free deep reinforcement learning agents that learn to utilize high-
resolution visual and tactile information for manipulation tasks. Reinforcement learning
approaches have shown an impressive ability to learn expressible controllers for robotic
manipulation [Yarats et al.,, 2021b]. Most techniques are developed to use visual data
from a third-person view optical camera [Yarats et al., 2021b] or combine camera obser-
vations with low-resolution tactile sensing [Lee et al., 2019]. With the recent development
of modern pixel-based tactile sensors such as Gelsight [Yuan et al., 2017], Omnitact [Pad-
manabha et al., 2020], GelSlim [Donlon et al., 2018], and STS [Hogan et al., 2021], there
is an opportunity to provide robots with high-resolution touch feedback. Here, we con-
sider a challenging triad: dexterous manipulation tasks, high-resolution visual and tactile
sensors, and reinforcement learning.

In over 200 experiments, we illustrate the benefits of the Visuotactile-RL paradigm and
investigate the challenges of this high-resolution, multimodal observation space. In ad-

dition to evaluating state-of-the-art reinforcement learning algorithms, we propose train-
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Figure 7.2: Visuotactile-RL network architecture diagram of MP-DrQv2 with tactile gat-
ing. The network takes in raw visual, tactile, and proprioceptive observations and en-
codes them with modality-specific modules. All training is done online with a TD error
objective. We find that including a tactile gate to control the flow of tactile gradients
through the network as a function of the contact state improves learning on tactile-rich
tasks.

ing techniques and network architectures to overcome the difficulties faced in this multi-
faceted sensing regime.

While visual sensing provides continuous feedback to the agent during interactions,
tactile sensing only provides feedback when the sensor interacts with the environment
physically. During contact, tactile sensing provides valuable information related to the
interaction: location, shape, and interaction forces at contact. For example, when opening
a door, visual feedback drives the reaching phase, while our attention quickly shifts to
tactile cues once contact is made with the handle to obtain more precise information about
the moment of contact, the handle location, and the grasp stability.

The fundamentally discontinuous nature of physical interactions poses important chal-
lenges for policy learning methods. While this is acknowledged and well-studied within
the model-based planning and control community[Kroemer et al., 2010, Posa et al., 2014,
Hogan and Rodriguez, 2020, Toussaint et al., 2018], it is often overlooked in reinforcement

learning. Even as data-driven methods do not explicitly require reasoning over sensory

129



discontinuities so long as the full state is observable, they must cope with unbalanced
datasets where only a small fraction of examples include tactile information, as illustrated
in Fig. 7.4. This leads to several important questions regarding the applicability and ef-
fectiveness of reinforcement learning methods for policy learning. How do we prevent
the agent from over-biasing its attention on visual feedback, which is more prevalent in
the dataset? Do the discontinuities associated with contact interactions negatively impact
learning stability?

While tactile-only feedback controllers have been show-cased for tactile-centric tasks
such as peg insertion [Dong et al., 2021], here we investigate a more general scenario
where the object does not begin in contact with the desired location in the environment.
In this chapter, we investigate the limitations of the existing RL algorithm for multimodal
policy learning and propose novel perceptual architectures and training procedures to

overcome them. The main contributions of this work are:

* Analysis of Visuotactile-RL We present an in-depth analysis of the performance of
state-of-the-art reinforcement learning algorithms and various data augmentation
and training strategies. We test a variety of perceptual frameworks and architectures
to fuse the visuotactile sensing modalities best and present a numerical experiment
study on three simulated manipulation robotic tasks in the Robosuite [Zhu et al.,

2020] simulation framework.

* Multimodal Perception Architecture We introduce tactile gating, a learning mech-
anism that addresses the intermittent nature of tactile feedback. A tactile gate in the
tactile perceptual module prevents the flow of tactile feedback through the network
without detected contact. We show that tactile gating can improve learning perfor-
mance and help the agent better exploit tactile sensing when used in tandem with

visual feedback on contact-rich tasks.

The long-term objective of this research is to design control strategies for contact-rich

robotic manipulation tasks that exploit multimodal sensing. The rest of this chapter
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is structured as follows. Section 7.3 reviews relevant work related to tactile manipula-
tion. We also introduce and discuss Data Regularized Q Learning (DrQ and its follow-up
DrQv2), model-free reinforcement learning algorithms used as the base learning algo-
rithms for learning continuous control from high-dimensional input. We introduce tactile
gating, a learning mechanism that controls the flow of tactile feedback through the agent’s
network, which is effective for the multimodal contact-rich task. We present our experi-

mental setup and experimental results on three robotic manipulation simulation tasks.

7.2 Related Work

7.2.1 Tactile Sensing for Robotics

The sense of touch is a rich and critical source of feedback during robot manipulation.
Traditional tactile sensing has included the measurement of shape, texture, and forces
in various directions, among other key attributes [Tiwana et al., 2012], gathered using
a wide variety of tactile measuring technologies [Chi et al., 2018]. A new generation of
optical tactile sensing [Yuan et al., 2017, Donlon et al., 2018] employs cameras embed-
ded in a compliant gel capable of imaging the contact surface at high resolution. These
sensors capture the deformations of a reflective soft surface as it makes contact with the
world. This enables high-resolution reasoning about contact geometry and slip and con-
tact forces.

Recently, several works have developed tactile policies that can exploit the rich infor-
mation provided by optical tactile sensors for robotic manipulation. Tian et al. [Tian et al.,
2019] develop a model-based tactile controller using pixel-level feedback to manipulate
small objects. Hogan et al. [Hogan et al., 2020] develop closed-loop tactile controllers for
a dual palm manipulation system able to manipulate objects with dexterity on a tabletop.
Wang et al. [Wang et al., 2020] showcase a robotic system capable of swinging up and sta-
bilizing objects by using the rich feedback provided by optical tactile sensors to estimate

the object’s physical parameters. In Dong et al. [Dong et al., 2021], model-free RL is used
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to develop a tactile policy to align an object and environment with a tactile-based feed-
back insertion policy. These methods all approach the tactile manipulation problem by
looking at feedback from the touch signal without considering the multimodality prob-

lem of observing manipulation from visual sensors.

7.2.2 Visuotactile Manipulation

There are several recent works in the literature that explore how best to fuse visual and
tactile feedback in the context of reinforcement learning. Van Hoof et al. [Van Hoof et al.,
2016] showed that a Variational Autoencoder (VAE) [Kingma and Welling, 2014] per-
ceptual architecture is effective in extracting meaningful state representations from vi-
sual and tactile inputs on a simple manipulation task. This architecture is extended to
multimodal control in [Lee et al., 2019] on a peg insertion task with visual and force-
torque sensing. Church et al. [Church et al., 2022] use Proximal Policy Optimization
(PPO) [Schulman et al., 2017] with pixel-level visuotactile inputs to teach a simulated
robot arm to perform several tactile-rich tasks in a simulation environment. Unlike the
tasks that are the focus of this work, the tasks in Church et al. feature sustained contact in-
teractions between the surface of the tactile sensor and the manipulated object. Our work
contrasts with these previous approaches by focusing on the learning performance in
the presence of intermittent tactile feedback and evaluating the robustness of the learned

policies to perturbations to the physical and visual properties of the environment.

7.2.3 RL for high-dimensional inputs

There have been some recent advances in developing RL approaches that learn policies
directly from pixel-level feedback. A popular approach has been to extract informa-
tion from image observations using learned models as in SLAC [Lee et al., 2020], SAC-
AE [Yarats et al., 2021d], PlaNet [Hafner et al., 2019b] and Dreamer agents [Hafner et al.,
2019b, 2020, 2023]. However, by employing data augmentation, DrQ [Yarats et al., 2021c]
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(a) TactileReach (b) Door (c) TactileLift

Figure 7.3: We consider three robotic tasks implemented in the Robosuite simulation
framework. In TactileReach (A), the task is precisely making contact with one of the three
textures (square, triangle, sphere). In Door (B), the task is to open a hinged door with
a robotic palm. In TactileLift (C), the task is to grasp and raise an object with a robotic

gripper to a minimum height.
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Figure 7.4: Tactile interactions vs. learning experience. Tactile sensing provides intermit-
tent feedback as the sensor interacts with the environment. As the agent learns to interact
with the environment during a door-opening task, it explores the door handle in three
stages. Under 100 episodes, it makes very few tactile interactions, resulting in sparse tac-
tile observations. From 100 to 300 episodes, it obtains rich tactile observations as it learns
to turn the handle. Once the behaviour is learned (around 300 episodes), the agent only

receives tactile feedback during the handle-turning phase around eval-step 50.
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Figure 7.5: Tactile Gating improves learning speed on tactile-critical tasks. This plot
demonstrates the evaluation reward by training step for TactileReach. Tactile gating (or-
ange) significantly improves the speed at which the agent learns to solve this visuotactile

task compared to the multimodal baseline, MP-DrQv2 (blue).

showed that state-of-the-art performance could be achieved in a model-free setting with a
Soft Actor-Critic (SAC) agent. The Data Regularized Q (DrQ) learning approach demon-
strates that image-based RL agents tend to overfit observed data. This work was followed
by DrQv2, which exchanges SAC for a DDPG learner and multi-step Q updates. The idea
that diverse data improves learning and robustness, a well-known concept in the field
of computer vision, is also employed in robotic sim2real tasks. Domain randomization
(DR), where a simulated environment is randomized during agent training [Tobin et al.,

2017] is a common tool for improving robustness in sim2real.

7.3 Background

We consider a Markov Decision Process (MDP) defined by the tuple (S, A, p, ), where S
is the set of continuous states, A is the set of continuous actions, p : S x S x A — R*
represents the probability density of the next state s,.; € S given the current state s,inS
and the current action a,inA. A stochastic policy is a mapping 7 : S x A — R*. The envi-

ronment returns a reward 7 : S X A € [Iin, "maz) at every state transition. The objective of
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reinforcement learning is to find an optimal policy 7* from the set of admissible policies

IT that maximizes the total returns given a reward function.

™ = argmaxen Z E (s, a0) p(i) [7(5t5 ar)] (7.1)

t

DrQv?2 [Yarats et al., 2021a] is an off-policy actor-critic RL algorithm that efficiently
learns a policy directly from pixels without a model. Due to its recent success in learning
robotic control from images, we employ this approach as the basis for our Visuotactile-
RL agents. DrQv2 yields state-of-the-art performance by using image perturbations to
regularize the value function.

Adapting the DDPG algorithm, DrQv2 incorporates n-step returns, employs a decay-
ing schedule for exploration noise, and computes the Q-function over image observa-
tions, which undergo a randomly sampled image shift during training.

As DrQv2 owes much of its high performance to the augmentation of images during
training, it is natural to ask whether this technique will translate from the stationary vi-
sual setting to the tactile paradigm. For instance, DrQv2 performs a random shift of the
input image, a common data augmentation computer vision pipeline, but may not apply
to visuotactile observations. We know that this operation will not preserve the underlying
state of the tactile observation as it introduces an effective relative position shift between
the observed scene and the tactile sensor. We further explore this concept and test the

idea of tactile augmentation in Section 7.6.

7.4 Methodology

This effort aims to investigate the challenges of visuotactile-RL to develop agents capable
of robustly fusing the senses of vision and touch for robotic manipulation. We focus on
the problem setting where visual information is provided as an RGB image and where
tactile feedback is provided in pixel-level measurements, as is typical for novel optical

tactile sensors.
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One of the biggest challenges in achieving robust multimodal policies is that the tactile
signal can be difficult to exploit when combined with visual feedback. We hypothesize
that this occurs due to an unbalanced dataset where only a fraction of examples includes
tactile information. The distribution of tactile examples is also non-uniform over training.
We illustrate this data imbalance problem in Fig. 7.4, which shows the intermittent feed-
back tactile measurements provide as the sensor interacts with the environment. Early
in the training process, the agent makes infrequent tactile encounters. Still, as learning
progresses and the tactile sensor is activated more often due to successful manipulation,
the model must now deal with an increasingly useful tactile modality.

Perhaps due to the intermittent tactile signal, baseline models become overly reliant on
visual information and ignore the tactile input in tasks that do not explicitly require tactile
(Door and TactileLift). To evaluate the capability of multimodal agents to utilize either
modality, we propose using domain randomization to test the ability of agents to exploit
either vision or touch. Our evaluation will involve testing agents in a setting in which
one of the modalities has been altered from the training environment and compared to a

baseline agent specifically trained under domain randomization.

Tactile Gating

Inspired by Long Short Term Memory (LSTM) networks [Hochreiter and Schmidhuber,
1997] and Highway Networks [Srivastava et al., 2015], we introduce a gating mechanism
that dynamically controls the flow of the information to the agent state at each time step
based on the usefulness of the tactile signal. This technique, which we call tactile gating,
utilizes a hard gate activated during contact, where contact is detected by monitoring
the depth image from the tactile observation. The gate remains closed when no tactile

activation prevents gradient propagation to the tactile encoder.
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Visual Degradation

We also investigate whether degrading the visual signal can improve multimodal perfor-
mance. Motivated by the incentive to better exploit tactile feedback, during training, we
reduce the quality of the visual measurements to encourage the system to focus its atten-
tion on tactile cues. In the image dropout training paradigm, the signal from the camera

is randomly removed from the observation for a fraction of the interactions.

7.5 Task Descriptions

We investigate Visuotactile-RL on a suite of tasks where the agent must learn to exploit
visual information to find and establish contact with an object and then use its tactile
sensor to interact with it.

Experiments are performed in the Robosuite [Zhu et al., 2020] simulation framework,
which uses MuJoCo [Todorov et al., 2012] as a physics engine. In all scenarios, the RL
agent controls the agent using an Operation Space Controller (OSC) [Khatib, 1987] oper-
ating at 20 Hz on end-effector pose. Our results are reported on the Panda robot arm,
which uses proprioceptive feedback and at least one other pixel-based sensing modality
to complete the task.

We simulate the output of the tactile sensor by rendering the contact geometry rela-
tive to the perspective of the robot manipulator. While there are several available simu-
lators for optical-based tactile sensors such as TACTO [Wang et al., 2022], Tactile-Gym:
RL [Church et al., 2022], and Geometric Contact Rendering [Villalonga et al., 2021]. We
use Geometric Contact Rendering as detailed in [Villalonga et al., 2021] to simulate the
tactile imprint. This technique consists of clipping the depth image obtained from the
perspective of the robot’s fingertip to a threshold value corresponding to the half-width
of the silicone membrane. The main motivation to use this technique is that it results
in faster simulation speeds that translate to lower agent training times. Note that a

well-established procedure based on the photometric stereo allows for reconstructing
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the depth image from the raw, tactile imprint from optical tactile sensors, as depicted
in Fig. 7.1.

We focus on three simulated robot tasks: TactileReach, Door, and TactileLift (see Figure
3). Each task is evaluated on three sensor combinations: 1) camera-proprio, 2) camera-
tactile-proprio, and 3) tactile-proprio, where camera denotes a third-person view on the
environment, tactile refers to an image-based imprint of the contact, and proprio is the
position and velocity of the robot joints.

TactileReach: In TactileReach, shown in the leftmost image of Fig. 7.3, the agent is
tasked with touching a tactile feature on the surface of the cylinder in the presence of two
distracting tactile features with a palm end-effector. We design this task to test the per-
formance of visuotactile controllers across both modalities. The robot must use vision to
reach out from a starting position to the cylinder, randomly initialized on the workspace.
Since the tactile features are not observable by the camera, tactile feedback is necessary to
intentionally align the palm with the target tactile feature and receive a full reward. The
reward schedule is the same as the Reach component of the Robosuite Lift task, except
that success is defined as the visuotactile sensor making precise contact with the target
texture.

Door: We consider a standard Robosuite door opening task but outfit the robot arm
with a palm end-effector. The task requires the agent to turn an articulated handle to open
a door with a randomly generated door frame position and rotation offset.

TactileLift: The TactileLift task is adapted from the standard Robosuite Lift task to
test tactile sensing. This task requires the agent to grasp and raise a randomly positioned
box to a minimum height. We equip the robot with a parallel jaw gripper with two tactile
sensors. Images from the two tactile sensors are stacked on the channel axis and treated
as one observation. At the start of each episode, we randomly generate small spherical
protrusions on the box’s surface. The spheres are made tactile obstacles by reducing the

simulated friction on their surface to make grasping the box more difficult.
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Best Agent: % of Visual Agent
visual+tactile | tactile gating | visual dropout| tactile-only

reach 228.18 219.09 -9.09 -32.73
door 0.54 -0.27 -1.08 -0.27
lift -3.96 -7.01 -58.54 -84.45

Dynamics Randomized: % of Visual Agent
door 25.45 10.75 4.66 -2.15
lift 2.98 4.68 -58.30 -68.51

Camera Randomized: % of Visual Agent

reach 28.89 102.22 126.67 93.33
door -6.82 25.00 312.50 315.91
lift -7.84 -21.57 68.63 11.76

Figure 7.6: Results on tasks reported as the mean improvement over the base vision-only
agent in evaluation over 10 rollouts for the most performant agent trained under each
paradigm. The multimodal paradigm was essential for the tactile reach task and under
dynamics randomization. Visual degradation allowed the agent to perform well under

visual randomization.

7.6 Experiments

This section demonstrates that Visuotactile-RL is powerful in scenarios involving 1) rich
contact interactions, 2) visual randomizations, and 3) perturbed dynamic parameters.

All RL experiments are performed using the default DrQv2 hyperparameters [Yarats
et al., 2021a]. We changed the size of the replay buffer to 600,000 to accommodate the
longer training time needed to learn manipulation. In addition to our analysis using
DrQv2, we develop and evaluate a pixel-based variant of TD3 [Fujimoto et al., 2018],
dubbed DrTD3, which utilizes the same encoder architecture and data augmentation
strategy as MP-DrQv2, but without the n-step TD error estimates and scheduled explo-
ration noise.

Perception Architecture: We investigate two image encoder architectures: MultiPath

(MP) and SinglePath (SP). In the MultiPath paradigm, a unique encoding network is used
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for vision and tactile, while in SP, both modalities share the same encoder. Our agent
utilizes the past 3 frames as an input state, resulting in an observation size of (9 x 84 x 84)
for the RGB image and an observation size of (3 x 84 x 84) for the tactile depth image
when using the palm tactile sensor and (6 x 84 x 84) when utilizing the parallel jaw
gripper sensors. In the SinglePath setting, images from both sensors are combined on the
channels axis, producing an input of (12 x 84 x 84) to the convolutional encoder with
the palm sensor. We employ the same convolutional encoder architecture described in
DrQv2 [Yarats et al., 2021a] in all pixel-based encoders in this work. We consider MP vs
SP in the table in Fig. 7.6 and find that overwhelmingly, the MP architecture offers higher
performance, justifying the increase in the number of model parameters and wall clock
training time necessary for separate encoders.

Tactile Gating: The inclusion of tactile gating in the model architecture improves the
learning speed in contact-rich tasks. We present the learning curve for TactileReach in
Fig. 7.5 where using a tactile gate provides a performance improvement of 25 percent.
We also note that this agent needs fewer environment interactions to learn to solve the
task and can exploit the tactile sensor more effectively than baseline methods. For the
Door task, including tactile gating did not significantly alter the learning performance
but improved robustness to visual perturbations. We hypothesize that this is because
tactile reasoning is less critical for successfully executing these tasks in the simulated
environment.

Visual Degradation: We test several methods of visual degradation where we reduce
the quality of the visual observations to encourage the agent to utilize tactile informa-
tion. We tested visual degradation by training agents with visual dropout and DR Visual
and found that visual dropout produces more performant agents in both the standard
environment and DR Visual evaluation. Note that visual degradation techniques have a
negative impact on overall system performance but do seem to improve agent reliance
on tactile information. Given the promising performance of image dropout to improve

multimodal sensing, this technique should be explored further, for example by exploiting
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the simulation environment to implement conditional camera degradation that depends
on the presence of a tactile signal.

Tactile Augmentation: We find that Tactile Augmentation improves performance on
most tasks as shown in columns MP-DrQv2 and DrQv2 without Tactile Augmentation
in Fig. 7.6. This suggests that the successful augmentation approaches in pixel-based RL
may translate well to the tactile signals.

Robustness to Domain Shift: To quantify agent robustness to physical changes in the
environment, we employ domain randomization on physical dynamics (friction, weight,
etc) for objects in the scene. This environment setup is referred to as DR Dynamics, as
shown in Fig. 7.6, and is employed in some training experiments and for evaluation in
relevant tasks. High performance under DR Dynamics suggests the agent may utilize
the tactile sensor for feedback when environmental changes are not evident in the visual
sensor. Our evaluations are done on all objects in the scene besides the robot. TactileLift
policies evaluated in out-of-training distribution with dynamics randomization. Multi-
modal policies improve robustness to these dynamics changes such as weight, friction of
the box. We find that tactile is critical to solving this evaluation, with multimodal agents
performing better than visual-only or tactile-only policies when faced with randomized
dynamics. The agent trained on domain randomization performed best overall, but Tac-
tile Gating produced the single highest-performing agent on this evaluation.

We also test the agents under DR Visual, which perturbs the visual image’s light-
ing conditions and camera location. This randomization significantly alters the camera’s
viewpoint, often causing the object of interest to be absent from the scene. We employ
the default Robosuite DR wrapper for randomization and sample a new environment
configuration for each episode. We sho that agents that effectively learn to exploit tac-
tile information perform better under strong visual changes than visual-only agents. The
visual-only agent fails under strong visual perturbations, while the tactile-only agent re-
mains robust as it does not observe the randomization. Comparing the multimodal mod-

els, we find that Tactile Gating performs similarly to the baseline (MP-DrQv2) without

141



requiring intentional degradation of the visual sensor during training (DR Visual and

Camera Dropout).

7.7 Discussion and Retrospective

This chapter explores the ability of deep reinforcement learning methods to fuse and ex-
ploit visual and tactile feedback to learn manipulation policies. We focus on the prob-
lem setting where tactile feedback is provided by optical-based sensors that render high-
resolution pixel-level information. We find that the fusion of both modalities results in
optimal performance on a set of manipulation tasks and improved robustness to system
perturbations in the dynamics and lighting conditions.

Key to these results is the inclusion of a tactile gate that controls the flow of tactile
feedback through the agent’s network. We show that tactile gating results in an agent
that can exploit tactile sensing earlier and achieve higher performance than benchmarks
that employ common encoder-based perceptual modules. Additionally, we show that
data augmentation techniques adapted from DrQv2 on both tactile and visual streams
benefit robust learning. While this is well-known for visual feedback, we show that this
technique also significantly improves tactile sensing.

This chapter intersects with several high-growth research fields, including multimodal
learning, reinforcement learning for robotics, and visuotactile sensing.

Multimodal learning has seen significant improvements, notably when paired with
self-supervised learning and moving toward foundation models trained on large datasets.
CLIP [Radford et al., 2021] trains an image encoder and a text encoder to learn to match
pairings between images and text, resulting in a model that shows impressive zero-shot
performance in classification. A similar method could be employed to learn a mapping
between the visual and tactile input sources in this chapter, resulting in a learned embed-

ding that could be applied to various downstream tasks.
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In tactile sensing, efforts have been made to simultaneously (1) improve simulation
tidelity and (2) reduce the sim2real gap. [Narang et al.,, 2021] introduce a finite ele-
ment method (FEM) model of the BioTac sensor that allows for fast and accurate simu-
lation. This paper also learns a cross-modal self-supervised latent representation (shown
in Fig.7.7) to reduce the sim2real gap from a small supervised dataset of contact patches
represented in sim and real. This method of learning a direct mapping from the physics
model to the real observation highlights the strengths of combining physics and data-

driven methods.
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Figure 7.7: Learning method for reducing the sim2real gap through self-supervision on a

real small dataset introduced in [Narang et al., 2021]. Figure from [Narang et al., 2021].

In reinforcement learning for robotics, like this work, there has been increased interest
[Yuetal, 2022, Yarats et al., 2022] in analyzing the data on which agents are trained. Better
simulation [Gao et al., 2022] of robots, objects, and robot-object interactions improves the
accuracy of agents. [Qin et al., 2023] reinforces some of the themes of our work, showing
that the choice of representation (such as point clouds) and task-specific supervision (in
the form of contact-based rewards) can help generalize to new objects in the real world.

In the next chapter, we summarize the contributions of this thesis and contemplate the

future directions of this line of research.
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Chapter 8

General Conclusion

The work presented in this thesis is an investigation into applications of robot control poli-
cies that work by incorporating structural bias from prior knowledge into controllers that
learn about their observed environment. This dissertation reflects rapid changes in how
roboticists approach algorithms for interpreting observations and defining controllers in
robots. The time period covered in this work, beginning in 2016, was marked by a notable
shift in the zeitgeist, as robotics tended away from years of expert-defined systems and
towards learning-based methods. This dissertation leverages state-of-the-art algorithms
and machine learning models while leveraging years of expertise in expert systems. We
show how physics-based models can boost performance in learned systems, especially in

domains with difficult-to-acquire data.

8.1 Summary of Contributions

In the following section, we revisit the objectives presented in Section 1.3 and summarize
the contributions presented in this thesis. Specifically, we examine how we can exploit

the following structural bias to improve robot behaviour:

1. Developing robots that can deploy contextually variable control schemes: In the

introduction to this document, we discussed that a major limitation of modern
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robots is their lack of ability to take environmental context into account and sig-
nificantly modify behaviour. Over the course of this thesis, we have introduced

several improvements for robustifying robot deployment.

(@) In Chapter 5, we tackle the costly problem of ocean basin mapping and show
that by building an intelligent surveying system that leverages the heterogene-
ity of various robot morphologies, we can efficiently survey a region. Given
a mapping objective, our system works by contextually predicting the time vs
value of an ASV releasing a drifter at a particular position. We demonstrate
that this system is robust, improving the surveying capacity over a mapping
ASV working alone and showing superior map quality over a team of drifters

deployed without predictive deployment.

(b) In Chapter 7, we show a method for adding inductive bias into a learned con-
troller so that a robot manipulator learns to utilize two complementary sensor
modalities, vision and touch contextually. This problem is difficult because the
tabular rasa learning agent rarely encounters useful touch observations early in
training, so it simply learns to ignore touch input in favour of vision, but ulti-
mately, touch is needed to complete the dexterous tasks fully. We add synthetic
noise and artificial gating to vision observations to force the agent to leverage
both modalities and show that agents trained with this prior are able to com-
plete dexterous tasks even when one of the input modalities is corrupted, con-
textually switching to the modality which serves as the best information source

at the current state.

2. Leverage known physics in learning paradigms This thesis argues that learning-
based methods need not re-learn all physics but can exploit known physics and

learn residuals on top of known equations.

(a) In Chapter 5, we rely on physical models of ocean currents to predict drifter

flow and use these predictions to inform active drifter distribution.
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(b)

(©)

Less directly, in Visuotactile-RL (Chapter 7), we leverage our knowledge about
the relative performance of vision and tactile sensors at various parts of ma-

nipulation (approach vs object interaction) to improve learning performance.

Chapter 6, we directly incorporate physics equations describing forward kine-
matics into the architecture of a vision-based learned controller for a robot ma-
nipulator. We show that without optimizing the end-effector pose directly, the
resulting learned controller learns faster and more stable policies than compar-

ison baselines.

3. Exploit information heterogeneity Truly robust robots know how to adapt to vary-

ing information at deployment time. They use the right sensor for a particular job,

make informed guesses about control strategies, and effectively backtrack when

they encounter problems.

()

(b)

In our effort to build a controller that could operate on Martian terrain for
sample tuble re-localization where we may not be able to account for envi-
ronmental or domain shift, we developed a meta-model that could predict per-
formance between a classical method that had access to pose labels collected
years prior and a learned method that could operate reactively based on obser-
vations. We showed how the meta-model successfully learned to choose the
classical method when the sample tube was artificially masked in the given ob-
servation and the direct method when feature mapping was challenging due

to the lack of landmark features such as rocks.

In Chapter 5, we use the ability of low-cost sensors to achieve spatial diver-
sity and utilize the strengths of different robot morphologies to achieve better
sampling at a lower cost. Passive drifters are deployed at positions where they
are expected to have long trajectories over parts of the survey space that were
previously unseen. At the same time, the ASV uses its ability to control its pose

to sample regions of the survey area with complex or unknown water currents.
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(c) Chapter 7 shows a robot that learns to use touch and/or vision sensors to ma-
nipulate objects robustly. In this case, our training paradigm encourages the
robot to effectively attend to touch when dexterity is required and vision when
objects are not in manipulation range. When vision is corrupted, we show that

the agent is able to adapt to a more tactile-dependent policy.

(d) In Chapter 6, we give extra information during training to the critic, including
proprioceptive joint-angle information propagated through forward kinemat-
ics to improve and stabilize policy learning. At evaluation time, the robot only
needed images to make actions but learned significantly faster than baselines

whose critic only had access to images during training.

8.2 Limitations

In this section, we discuss some of the limitations of this dissertation, mostly related to
challenges that arise from the need to deploy robots with real-world sensing into their

intended environment.

¢ Hardware Experiments This dissertation primarily demonstrates performance on
datasets or in simulation rather than on real hardware. Our drifter solutions mostly
present algorithmic performance in simulation but pair it with real-world deploy-
ments that are demonstrations only due to the inability to observe the true ground
truth state of the complex real-world system. Although we designed a fully au-
tonomous drifter deployment and recovery system, this system was never built due

to Covid restrictions and associated delays.

* Online Learning The physics-based planning method presented in Chapter 5 is
unique among the presented solutions in that the robots refine policies based on
online observations. Other Chapters present solutions that pre-train control policies

and then deploy them to the target environment with little online refinement. This
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can make the proposed solutions susceptible to domain shifts that are likely to be

encountered over the life of the robot.

¢ Sim-to-Real Real robot deployments face sim-to-real challenges as sensor observa-
tions and robot states are not perfectly captured in simulation. Robustness in the
shift from simulation to on-robot deployment was mostly ignored in this disserta-
tion. In the manipulation work specifically, we expect to face challenges due to the

visual transfer of simplistic synthetic worlds to the complexity of the real world.

As is common in the necessarily cross-disciplinary field of robotics, this thesis blends
progress from multiple domains, including computer science, electrical engineering, and
mechanical engineering, and works to improve data accessibility for scientific sampling

domains for oceanographers, environmental scientists, and geologists.

8.3 Future Work and Perspective

Many robotic programs are simple at a high level (move and grab), but reliable behaviours
require knowledge of context that can be hard to program explicitly (a robot should walk
on a pathway but avoid puddles). In our effort to produce robots that can operate ro-
bustly in open-world environments, we were often limited by access to data and external
context. These limitations are rapidly fading thanks to two major changes in the machine
learning landscape, (1) large foundational models trained on internet-scale data and (2)

increasing access to task-specific data.

8.3.1 Foundation Models in Robotics

At the time of this writing, large foundation models [Bommasani et al., 2021] trained on
diverse, task-agnostic, internet-scale data are beginning to be leveraged to provide broad
generalization that enables robots to operate in diverse environments [Brohan et al., 2022]

and interact with humans via conversational language [Brohan et al., 2023]. In addition
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to providing real-world grounding, large foundation models also demonstrate in-context
learning [Brown et al., 2020], allowing for effective adaptation to new tasks with online
prompting for controlling behaviour through language [Yu et al., 2023]. We expect large-
scale models to continue to help provide useful and easily specifiable priors for robots,

especially in human-built environments.

8.3.2 Low Domain-Gap Expert Demonstrations

Access to expert behaviour data has been a limitation in robotics, where real-world inter-
action requires instrumentation to achieve demonstrations of successful task performance
without a large domain or morphology mismatch. This really sets the field apart from
tasks such as computer vision, language processing, or speech generation, where large,
labelled, and curated datasets are readily available. We may be entering an era where this
limitation ceases due to increased investments in (1) low-cost demonstration hardware,
(2) improvements in off-morphology algorithms, (3) improved simulations, and (4) more
tielded robots bootstrapping data collection.

We have seen significant advances in low-cost solutions for collecting demonstrations
without domain shift from platforms such as Mobile Aloha [Fu et al., 2024]. Improve-
ments in learning controllers capable of translating morphology from observations may
allow us to effectively leverage large datasets of video of humans interacting with the
world [Yuan and Makoviychuk, 2023, Hassan et al., 2023]. It is also fairly safe to anticipate
that simulation and world models, in general, will continue to improve as new methods
emerge for generating physically realistic video. Improved world bounds in simulation
will naturally reduce the necessity of acquiring costly real-world data on robotic hard-
ware. Finally, as the number of fielded robots increases, access to large datasets of robot
behaviour in the wild will become available to train increasingly large and more general

models for planning and control.
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8.4 Concluding Remarks

This dissertation set out to provide robots with informed inductive biases that could im-
prove their behaviour in the real world. Through four diverse projects, we showed an
ability to build systems that were able to contextualize based on their environment, learn
from limited data due to useful inductive biases, and exploit information heterogeneity
through sensing. We hope that the contributions made in this thesis inspire further work

in developing fielded robots that make use of physics-informed and learned information.
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