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Abstract

It is known that low-level Arctic clouds are largely responsible for the disagreement

in Arctic warming in contemporary climate models. To constrain this uncertainty,

accurate retrievals of low-level (less than or equal to 2 km above the surface) cloud-

top-height (CTH), cloud fraction and cloud-phase are needed. A comparison of CTH,

cloud fraction and cloud-phase is presented between the Moderate Resolution Imag-

ing Spectroradiometer (MODIS) instrument on the Aqua satellite and the Cloud-

Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, where CALIOP

is taken to be ground-truth. Single-layer clouds are chosen since MODIS cannot infer

the vertical structure of the atmosphere as a passive remote sensing instrument.

Over 1,265,000 cloud comparisons were made for single-layer clouds below 2 km and

north of 60 ◦N in 2015 March 1st ± September 30th (polar-day). We aimed to first an-

alyze MODIS CTH biases, which are defined relative to CALIOP. We propose two hy-

potheses for CTH. First, lower-tropospheric-stability (LTS) impacts the CTH bias due

to the use of brightness temperature (BT) in the low-level CTH retrieval algorithm.

Composites of CTH as a function of LTS and MODIS cloud optical depth suggest that

the use of an average Arctic LTS in the MODIS algorithm may result in small biases in

CTH due to compensating effects, however, local impacts on CTH retrievals may be

large. Moreover, we show that there is a strong geographic dependence of CTH biases.

The second CTH hypothesis states that the zonal averaging of the apparent brightness

temperature lapse rate (BTLR) and the neglect of surface emissivity differences be-

tween sea-ice and open-ocean areas in CTH calculations result in biases. We replicate

the calculation of BTLR and CTH values using collocated CALIOP CTH retrievals,

MODIS BT retrievals, and clear-sky BT computed with the Community Radiative

Transfer Model (CRTM) model. We show that while surface emissivity does impact
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CTH computations, large individual errors in CTH might arise with discrepancies be-

tween modelled and measured BTs.

Finally, we analyze the CloudMask algorithm against the 2B-GEOPROF-LIDAR in-

strument and cloud-phase detection algorithm against CALIOP. The CloudMask bias

was found to have a surface dependence, and the 10 ◦ longitude × 3 ◦ latitude daily av-

erage cloud fraction overestimated the 2B-GEORPOF-LIDAR average cloud fraction.

Two MODIS 1 km thermodynamic phase retrieval techniques (named the Tri-spectral

IR thermodynamic phase test, TIR, and Optical Properties phase retrieval, OP) were

compared to CALIOP’s own phase retrieval algorithm. It was found that agreement

between CALIOP and MODIS decreased when sea-ice fractional cover, from collo-

cated AMSR-E retrievals, increased above 0% which may be expected due to issues

with MODIS detecting clouds over ice, and that the OP method performed better than

the TIR method.

The results have implications for improvements in the passive retrieval of Arctic cloud

macrophysical properties. In particular, quantifying the effect of LTS and underlying

surface assumptions in CTH.



v

MCGILL UNIVERSITY

Résumé

Il est connu que les nuages de l’Arctique de basse altitude sont largement respon-

sables de l’incertitude concernant le réchauffement de l’Arctique dans les modèles

climatiques contemporains. Pour contraindre cette incertitude, des mesures précises

de la hauteur du sommet des nuages (HSN) de basse altitude (moins que ou égal à

2 km au dessus de la surface), de la fraction de nuages et de la phase nuageuse sont

nécessaires. Une comparaison de la HSN et de la fraction de nuages et de la phase

nuageuse est présentée entre l’instrument Moderate Resolution Imaging Spectrora-

diometer (MODIS) sur le satellite Aqua et l’instrument Cloud-Aerosol Lidar with Or-

thogonal Polarization (CALIOP), où CALIOP est considéré comme la vérité de terrain.

Nous choisissons ici des nuages monocouches car MODIS ne peut pas déterminer

la structure verticale de l’atmosphère en tant qu’instrument de télédétection passive.

Plus de 1 265 000 comparaisons de nuages ont été effectuées pour des nuages mono-

couches dont l’altitude est en dessous de 2 km et au nord de 60°N entre le 1er mars et

le 30 septembre 2015 (jour polaire).

Nous avons d’abord cherché à analyser les biais HSN MODIS, définis par rapport à

CALIOP. La première hypothèses, l’instabilité de la basse troposphère (IBT) a un im-

pact sur le biais de la HSN dû à l’utilisation de la température de brillance (TB) dans

l’algorithme de récupération de la HSN de basse altitude. Des composites de la HSN

en fonction de l’IBT et de la profondeur optique des nuages MODIS suggèrent que

l’utilisation d’une IBT arctique moyenne dans l’algorithme MODIS peut entraîner de

petits biais dans la HSN dus à des effets compensatoires, mais que l’impact local sur

les récupérations de la HSN peuvent être importants. De plus, nous montrons que les

biais de HSN ont une grande dépendance géographique.

La deuxième hypothèse concernant la HSN indique que la moyenne zonale du

gradient de température de brillance (GTB) apparent et l’omission des différences
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d’émissivité de surface entre la glace de mer et la haute mer utilisées dans les cal-

culs de HSN entraînent des biais. Nous avons reproduit le calcul des valeurs de GTB

et de hauteur de nuage en utilisant des récupérations de hauteur de nuage de CALIOP

colocalisées, des récupérations de TB de MODIS et des récupérations de TB pour un

ciel clair calculées avec le Community Radiative Transfer Model (CRTM). Nous mon-

trons que tandis que l’émissivité de surface a un impact sur les calculs de HSN, de

grandes erreurs individuelles dans la HSN peuvent provenir des différences entre les

TBs modélisées et mesurées.

Enfin, nous analysons l’algorithme CloudMask par rapport à l’instrument 2B-

GEOPROF-LIDAR et l’algorithme de détection de phase nuageuse par rapport à

CALIOP. Il a été constaté que le biais de CloudMask dépendait de la surface, et la frac-

tion nuageuse moyenne quotidienne sur 10 ◦ longitude × 3 ◦ latitude surestimait la

fraction nuageuse moyenne de 2B-GEORPOF-LIDAR. Deux techniques de récupéra-

tion de phase thermodynamique MODIS 1 km (appelées test de phase thermody-

namique IR trispectral, IRT, et récupération de phase des propriétés optiques, PO) ont

été comparées à l’algorithme de récupération de phase de CALIOP. Il a été constaté

que l’accord entre CALIOP et MODIS diminuait lorsque la fraction de la couverture

de glace de mer, calculée à partir de récupérations AMSR-E colocalisées, augmentait

au-dessus de 0 %, ce qui peut être attendu en raison de problèmes de détection des

nuages par MODIS au-dessus de la glace, et que la méthode PO avait de meilleurs

résultats que la méthode IRT. Les résultats ont des implications pour l’amélioration de

la mesure passive des propriétés macrophysiques des nuages arctiques - il s’agit de

quantifier l’effet de l’IBT et des hypothèses de surface sous-jacentes dans les récupéra-

tions de la HSN, et de comprendre les impacts de la surface terrestre sur les mesures

de fraction de nuages.
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Chapter 1

Introduction

1.1 Arctic Amplification

Global surface temperatures have increased by greater than 1 ◦C when measured

over the period 1901±2016 (Wuebles et al., 2017) due to anthropogenic gasses like

carbon dioxide and methane. Anthropogenic gases can induce a greenhouse effect

warming surface temperatures globally, which in turn can induce effects that amplify

the warming in the Arctic, an effect known as Arctic Amplification. A large amount

of uncertainty remains in the physical processes governing the evolution of Arctic

Amplification (Taylor et al., 2021). A large proportion of this uncertainty is due to

how low-level clouds are represented in climate models. Zelinka et al. (2020) showed

that low-level clouds drive a large proportion of the spread of warming predicted by

different models in their global feedback analysis, though it is important to note that

their paper did not focus on the Arctic. The importance of clouds for global surface

warming is largely due to their radiative feedback effects. Feedback effects describe

how changes to variables (other than surface-temperature) due to surface warming

impact the incoming and outgoing radiation entering into and leaving the Earth’s

atmosphere, which in turn feedbacks onto the pre-perturbed surface temperature.

In particular, low-level Arctic cloud feedback effects describe how changes to Arctic

low-level cloud properties (such as low-level cloud cover amount) due to climate

warming in turn affect the shortwave and longwave radiation budgets by either

amplifying surface warming (positive feedback) or by dampening surface warming



2 Chapter 1. Introduction

(negative feedback).

While low-level clouds are particularly important for the global mean of the

shortwave radiation feedback (Zelinka et al., 2012a), it is known that in the Arctic

they also play a crucial role in the longwave radiation feedback (Curry et al., 1996).

Low-level clouds emit downwelling longwave radiation towards the Arctic surface,

acting to heat the surface. In the Arctic, the annual total downwelling radiation at the

surface in the longwave is double that in the shortwave, largely due to the fact that in

the polar-night between 1st October ± 1st March (depending on the specific latitude)

the downwelling shortwave radiation is negligible in comparison (Curry et al., 1996).

However, a large amount of uncertainty remains in low-level Arctic clouds and their

feedbacks, which play a large role in the spread of warming modelled in the Arctic.

For example, Taylor et al. (2019) showed that the differences in models for cloud

amount (i.e. the horizontal extent of cloud coverage) was largest for low-level clouds.

In a study that did focus on Arctic Amplification, Hahn et al. (2021) showed that

cloud feedback contributes negatively to the annual and zonal mean near-surface

warming (◦ C) in scenarios of centered around year-100 of abrupt CO2 quadrupling

(in contrast to the positive contribution seen in the tropics from cloud feedbacks).

More specifically, there was stronger warming in the Arctic in phase 6 of the Coupled

Model Intercomparison Project (CMIP6) models (an ensemble of models aiming to

compare the latest outcomes of global climate models) than the phase 5 (CMIP5)

models mostly due to less-negative shortwave low-level cloud amount and scattering

feedback. The shortwave scattering feedback is closely tied to cloud optical depth

(τ) (Ceppi et al., 2017), and describes how much incident shortwave radiation from

space is scattered by the cloud and how this in turn impacts the shortwave radiation

budget. These studies show that low-level cloud amount plays a crucial role in the

radiative feedback processes governing Arctic Amplification. However there are three

more low-level cloud properties that are crucial for understanding the evolution of



1.1. Arctic Amplification 3

low-level cloud feedback in the Arctic: cloud-top-pressure (CTP), τ, and cloud-phase.

Zelinka et al. (2012a) used a radiative transfer model method to break up changes

to clouds into a diagnostic framework of CTP and τ bins to analyse the net radiative

forcing due to changes in cloud amount from a doubling of carbon dioxide. Zelinka

et al. (2012a) showed that the sign and strength of the contribution of the changes to

the total cloud radiative feedback was dependent on CTP and τ. Moreover, Zelinka

et al. (2012a) showed that the shortwave feedback is dominated by low-level cloud

changes that contribute positively to the ensemble mean global mean cloud feedback.

Low level clouds (as defined by Zelinka et al., 2012a as 680 < CTP ≤ 1000 hPa)

contributed positively to the global and annual mean of the shortwave feedback with

a net shortwave cloud feedback across all latitudes of 0.31 Wm−2K−1. Meanwhile

high clouds (50 < CTP ≤ 440 hPa) generally contribute negatively with a net

shortwave cloud feedback across all latitudes of −0.19 Wm−2K−1. Interestingly for

latitudes greater than 70 ◦N, both high and low clouds contribute negatively to the

shortwave cloud feedback.

Moreover, the multi-model-mean net cloud feedback for cloud altitude changes

was shown to be in general positive (Ceppi et al., 2017; Zelinka et al., 2016). More

specifically, Zelinka et al., 2012b showed that the global mean change in cloud-fraction

weighted CTP per degree of warming was −3.68 hPa K−1 and that this lead to an an-

nual and ensemble global mean longwave feedback due to cloud-top altitude changes

of 0.39 W m2 K−1. The result for shortwave feedback was −0.07 W m2 K−1. Impor-

tantly, the change in cloud-fraction weighted CTP were negative nearly everywhere

except regions dominated by low-level clouds such as the Arctic. Correctly classifying

CTP is therefore important for correctly determining the magnitude of cloud feedback.

Zelinka et al., 2012a also showed that the strength and sign of the shortwave

feedback closely related to τ. This is because τ governs the amount of incoming
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shortwave radiation (sunlight) that is reflected back out to space through the top of

the atmosphere (TOA), though it is important to highlight that τ also affects longwave

downwelling radiation strongly in the Arctic particularly when there is no sunlight

in the polar-night (Curry et al., 1996; Intrieri et al., 2002). Zelinka et al., 2012a found,

more specifically, that the sign of the contribution of clouds to the ensemble mean

zonal mean shortwave feedback depends on both latitude and cloud thickness, with

thick clouds (τ ≥ 23) contributing negatively for latitudes greater than 50◦, while

contributing positively equatorward of about 45◦. In contrast, thin clouds (τ < 3.6)

contribute minimally but positively at higher latitudes. More specifically, Zelinka

et al., 2012b showed that the ensemble mean change in cloud-fraction weighted ln(τ)

per degree of global average surface air temperature warming was 0.03 K−1, and the

resulting longwave feedback per degree of warming was 0.22 W m2 K−1. The result

for shortwave feedback was −0.14 W m2 K−1. Correctly classifying cloud τ therefore

plays a crucial role in the total cloud radiative feedback. Importantly, τ changes are

the dominant cause of the negative net-feedback found in the Arctic (Zelinka et al.,

2012b). Therefore, correctly classifying cloud optical thickness is crucial for narrowing

down the magnitude of cloud feedback in the Arctic.

Cloud-phase can also play a large role in shortwave feedback. More specifically,

liquid phase clouds tend to be optically thicker as they tend to have more numerous,

smaller droplets compared to ice-phase clouds which tend to have fewer, larger

particles. The liquid clouds therefore have larger scattering and reflectance properties,

and so changes to the distribution of liquid clouds directly impacts the shortwave

feedback (Murray et al., 2021).

We can separate the radiative impact of the phase of the cloud from the phase

feedbacks themselves, which describe how changes to the cloud-phase distribution

with surface warming changes the radiative properties of the atmosphere. Broadly,

Tsushima et al. (2006) showed that replicating the inital distribution of cloud-phase in
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the mixed phase layer is particularly important for how the cloud-phase distribution

changes with a doubling of CO2. As discussed, cloud-phase has a direct impact on

the radiative properties of the atmosphere. Tan et al. (2016) also discussed phase

feedbacks for mixed-phase clouds highlighting that the doubling of CO2 will cause

a warming in the atmosphere causing isotherms (lines of constant temperature) to

shift to higher altitudes compared to pre-doubling. At a constant altitude compared

to pre-doubling the share of liquid phase particles in mixed-phase clouds could

therefore increase, subsequently increasing the τ of the cloud. This would result

in higher reflectivity and more shortwave radiation reflected back out to space,

producing a negative feedback effect. Another example of a cloud-phase feedback

was shown by Mitchell et al. (1989). They argued that since ice clouds precipitate

more quickly than liquid clouds, a shift towards more liquid water coverage as

atmospheric temperatures warm results in greater cloud amount. This in turn has

a negative feedback effect as the increase in cloud amount reflects more shortwave

radiation back out to space.

Given the importance of the cloud amount, CTP, τ, and cloud-phase distribution

for the low-level cloud radiative feedback, correctly simulating their future evolution

in climate models is crucial. Satellite observations allow for analysis on large spatial

and temporal scales allowing for broader analysis on a variety of scales and variables.

We can use these observations to search for emergent constraints that relate these vari-

ables and other meteorological observables. Emergent constraints describe empirical

relationships between an observable (e.g. cloud fraction) of a current climate system

simulation and the long-term projections of a different variable (e.g. the long-term

feedback of cloud fraction) (Klein & Hall, 2015; Qu et al., 2018). For example, by

finding a relationship between observations of cloud fraction and the long-term

feedback of cloud fraction, we can use current observations of cloud fraction to

restrict the range of values the feedback takes in future climate projections. More

generally, through a better understanding of the relationships between meteorological
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observables (such as CTP, τ, cloud-phase distribution and low-level cloud amount)

and their long-term feedbacks we can better evaluate the simulation of low-level

clouds in models and their subsequent radiative response to climate warming in

future projections.

In order to search for emergent constraints on the evolution of CTP, τ, cloud-phase

distribution and cloud amount for low-level clouds, accurate long-term observations

are needed for evaluation. The Moderate Resolution Imaging Spectroradiometer

(MODIS) instrument is a passive imaging radiometer mounted onboard the National

Aeronautic and Space Administration (NASA) Terra and Aqua satellites, which are

polar orbiting satellites. This passive instrument records the outgoing radiation at

the TOA for 36 wavelengths ranging from 620 nm − 14.385 µm in the infra-red and

visible light spectrum emitted directly from the target (Platnick et al., 2018). It has the

benefit of a large swath of 2330 km providing greater spatial coverage, and moreover

provides a dataset that spans just over two-decades with the Aqua satellite having

been launched in 2002. However, the accuracy of this passive instrument is known

to be lower over sea-ice surfaces (Liu et al., 2010) since they have a similar surface

albedo compared to that of low-level clouds and lack a significant thermal contrast

with low-level clouds.

Unlike MODIS, the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)

instrument is mounted onboard the Cloud-Aerosol Lidar and Infrared Pathfinder

Satellite Observation (CALIPSO) and is a remote sensor that makes active measure-

ments. CALIPSO has a circular low-earth sun-synchronous polar orbit at 705 km

above sea level (Winker et al., 2006), meaning that the satellite always passes the same

point on the Earth’s surface at the same local time with a footprint of 90 m. Rather

than passively measuring outgoing radiation it is a Light Detection and Ranging

(lidar) instrument that measures the backscatter and depolarization of beams emitted

at 1064 nm and 532 nm wavelengths, the latter of which is a linearly polarized beam
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(Winker et al., 2006). This polarization allows for depolarization effects from back-

scattering to be used to determine cloud-phase more accurately than MODIS (Hu

et al., 2009). The lidar instrument also has the ability to provide a vertical cross-section

of the structure of the atmosphere, breaking up readings into a 30/60 m vertical

resolution depending on the altitude. However, its limitations include having smaller

spatial coverage with a horizontal averaging resolution of 333 m, and so provides a

smaller data-set when analysing variables across large geophysical scales (Winker

et al., 2006). Moreover, while the CALIOP instrument is considered accurate for

measuring τ for thin clouds the active beam attenuates quickly for larger (τ ≥ 3 − 5)

τ units (Young et al., 2018).

While τ is an important fourth variable in governing Arctic Amplification (Tan

et al., 2022), in this thesis we will be focusing on validating cloud-top-height (CTH),

cloud amount and cloud-phase detection only for the MODIS instrument for regions

with a latitude greater than 60 ◦N. This is because of the lack of accurate τ retrievals

or measurements available to validate MODIS τ retrievals against. The CALIOP

instrument, which we will be using to evaluate CTH and cloud-phase, while possible

to collocate with MODIS, attenuates quickly for thick clouds and ground-clutter

(non-meteorological targets) can also interfere with the signal. Moreover, since we are

evaluating Arctic clouds there are few ground and air-based observations of τ with

which to compare (although King et al. (2004) and Eloranta and Ponsardin (2001) have

made use of aircraft and ground-based instruments to measure Arctic τ previously).

Hence, this thesis will focus on validating MODIS CTH and cloud-phase retrievals for

low-lying clouds in the Arctic using CALIOP, where CTH is less than or equal to 2 km

above the surface. We will be using the 2B-GEOPROF-LIDAR dataset, a combination

of CALIOP and the CloudSat cloud profiling radar (Mace et al., 2007), to analyse

cloud amount.

We will focus on single-layer clouds because as a passive instrument, MODIS
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measures the total atmospheric integrated radiance at the TOA and so MODIS

cannot infer the vertical structure of cloud property readings, and hence does not

give distinct retrievals for distinct cloud layers. Moreover, we will focus on Arctic

polar-day because the MODIS passive instrument utilises bands lying in the visible

spectrum as part of the optical property algorithm that retrieves cloud-phase, such

as the visible (VIS)/near-infrared (NIR) and shortwave infrared (SWIR) channels

(Platnick et al., 2018). Hence, these readings are not available in the polar-night (CTH

is available however since it relies on the 11 µm brightness temperature (BT) as will

be discussed in Section 4.2). We will therefore also be focusing this thesis on Arctic

polar-day retrievals between March 1st - September 30th in 2015, where low-level

clouds are common, occurring 80 − 90 % of the time in the summer (Curry & Ebert,

1992; Shupe et al., 2011). More specifically, we will be analysing collection 6 (C6)

which is the most recent update to the MODIS algorithm and contains key changes

to its predecessor that have not been analysed in the Arctic, unlike collection 5 (C5)

which has been analysed for the Arctic (Ackerman et al., 2008; Holz et al., 2008).

First, in Section 1.2 I will discuss key updates to the C6 algorithm and their ex-

pected impact on MODIS’ retrieval mechanisms for the CTH, CloudMask, cloud-

phase and τ. Despite not analysing τ retrievals directly, we will discuss changes to

the τ retrieval mechanism since these are used in the cloud-phase retrieval mecha-

nism (Platnick et al., 2018). Next, in Section 1.3 we will discuss the CALIOP retrieval

algorithm for CTH and cloud-phase to be used as the ground truth. After, in Sec-

tion 2 we will discuss our CTH hypotheses and then in Section 3 our methodology for

analysing Arctic single-layer low-level clouds during the polar-day in 2015. This dis-

cussion can be broken up into two hypotheses for CTH, another analysis discussing

the performance of the CloudMask algorithm for cloud fraction, and an analysis of the

cloud-phase retrieval mechanisms. Then, in Section 4, I will discuss my results before

discussing my conclusions and future work in Section 5.
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1.2 MODIS Retrieval Algorithms and C6 Updates

1.2.1 Cloud Top Height

For low-clouds (CTP greater than 600 hPa) MODIS C6 retrieves CTP using the

infrared-window approach (IRW) (Baum et al., 2012). MODIS measures the BT in

the 11 µm channel (BT11 µm) (Channel 31 of the MODIS instrument) for a pixel with

a cloud detected. The BT of an object is related to the measured emission I(λ, T) and

emissivity (ϵ) such that I(λ, BT) = ϵI(λ, T), such that as ϵ increases so does BT. The C6

algorithm then differences this measurement with the clear-sky BT in the 11 µm chan-

nel, derived from the transmittance model called Pressure layer Fast Algorithm for

Atmospheric Transmittances (PFAAST) (Hannon et al., 1996). This difference is then

divided by the apparent BT11 µm lapse rate (BTLR) pre-calculated from the following

equation (Baum et al., 2012):

BTLR =
BT11 µm(PFAAST)− BT11 µm(MODIS)

CTHCALIOP
. (1.1)

Here, BT11 µm(PFAAST), BT11 µm(MODIS), CTHCALIOP represent the modelled

clear-sky BT11 µm derived from atmospherically corrected surface temperatures using

the PFAAST model, MODIS measured cloud-top BT11 µm and CALIOP measured

CTH, respectively. The CALIOP CTH is collocated with MODIS using the nearest

great circle technique described by Holz et al. (2008) and in Section 3.2. This apparent

BTLR is then averaged zonally and monthly to be used in the MODIS IRW algorithm.

The 11 µm channel is within the atmospheric window. Since it has a high transmit-

tance through the Earth’s atmosphere it is useful for detecting low-lying features in

the atmosphere since a large proportion of the radiation from lower levels will reach

the TOA in this channel. This allows the passive instrument to detect radiation with

this wavelength from atmospheric layers near to the Earth’s surface, and so is useful

for detecting low-level clouds.
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The IRW retrieval method was adapted from the method used in C5 which

compared measured BT11 µm to a vertical profile of BT11 µm values calculated utilising

the PFAAST radiative transfer model which requires inputs from the gridded Global

Data Assimulation System (GDAS) such as atmospheric temperature and water

vapour profiles (Baum et al., 2012). Expressly, MODIS measures BT11 µm for a pixel

that detects a cloud according to the CloudMask mechanism (which will be discussed

in more detail in Section 1.2.2) and compares the value to a modelled profile of BT11 µm

values to find the atmospheric layer that is dominating the TOA radiance. In the

case of a tropospheric temperature inversion where the same BT11 µm could exist at

different pressure levels, the algorithm chooses the higher pressure value.

The C5 method struggled with a positive bias when a low-lying temperature in-

version was present, common in marine locations and the Arctic. In particular, C5

was found to have a systematic bias (positive) of more than 2 km in comparison

to CALIPSO according to Holz et al. (2008) in regions over open ocean where low-

level temperature inversions are often found. Since the C6 method utilises the ap-

parent BTLR in place of the C5 top-down approach to attempt to better estimate dif-

ferences between surfaces and cloud-top temperatures, these overestimates were re-

duced. Baum et al. (2012) showed that the inclusion of the apparent BTLR reduced

global positive overestimates of CTH in low-lying clouds between 60 ◦N and 60 ◦S.

While the new C6 method has yet to be compared to CALIOP in Arctic regions, the

inclusion of apparent BTLR should have a significant impact in the Arctic where low-

lying temperature inversions are particularly relevant.

1.2.2 MODIS CloudMask and Clear-Sky Restoral

A major update in C6 has been made to the CloudMask. The MODIS CloudMask

algorithm produces a 48 bit output that gives information on cloud cover, tests used
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during cloud detection, and other relevant meteorological and surface factors. More

specifically, bits 1±2 classify each pixel as either cloudy, uncertain clear, probably

clear, and confident clear, which is determined from the individual spectral test results.

Previous papers show that CALIOP and MODIS C5 1 km products agree in identi-

fying clear scenes in more than 85 % of cases (Ackerman et al., 2008; Holz et al., 2008).

One important note is that C5 is clear-sky conservative due to how the CloudMask

determines if a scene is cloudy or not. MODIS performs many tests, each of which

produce a confidence level (Fi) that each pixel is cloudy between 0 and 1 inclusive,

with 0 indicating a cloudy scene. The product of these tests (Q) determines the pixel

classification such that a value of 0 also indicates a cloudy scene and there are Q

thresholds between 0 and 1 that determine if the pixel is probably cloudy, probably

clear, or clear. Hence, if any test detects a cloud the CloudMask will classify that pixel

as cloudy since Q will equal 0. The CloudMask is therefore clear-sky conservative

(Platnick et al., 2018). However, it is important to highlight that Holz et al. (2008)

found in the Arctic winter period that the CloudMask is clear-sky biased in regions

of high sea-ice. This is suggested to be due to higher surface albedos dominating the

reflectivity functions measured by the sensor at the TOA, which is characteristic in the

Arctic winter due to high sea-ice coverage.

Due to the clear-sky conservative nature of the CloudMask, C5 implemented a

clear-sky restoral (CSR) logic which aimed to identify pixels that were likely to be

poor retrieval candidates, such as broken cloud edges, in order to restore them to

clear-sky based on several thresholds. Every pixel identified as cloudy passes through

these tests and the CSR logic outputs whether these pixels are: overcast cloudy, not

cloudy, partly cloudy, or a cloud edge based on multiple factors.

In C6, there were several changes to the CSR logic (Platnick et al., 2018):

• Unlike C5, cloudy pixels that were put through the logic and determined to be
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either partly cloudy and not cloudy scenes were restored to clear-sky values,

in C6 only not cloudy scenes were restored to clear-sky. Partly cloudy pixels

(PCL) were then stored in separate scientific data sets or retrieved failure metrics

scientific data sets depending on whether or not optical and physical property

retrievals were successful.

• The altitude indicator test, previously based on the tri-spectral IR thermody-

namic (TIR) phase test, which as will be discussed later in Section 1.2.3 may

falsely classify thin cirrus cloud edges as liquid water phase over warm surfaces,

now uses the IRW and CO2 slicing methods to determine cloud top altitude al-

lowing thin cirrus clouds to be more accurately handled.

However, several problems still remain. Thin cirrus clouds are still failing to be

detected by the CSR algorithm in C6, and broken cloud edges may still be classified as

clear-sky or vice-versa. However, overall as discussed by Platnick et al. (2018), the C6

CloudMask is still generally clear-sky conservative.

1.2.3 Cloud-Phase

The MODIS phase retrieval algorithm differs in daytime and nighttime. In nighttime

retrievals only the TIR phase retrieval is used, which has been significantly updated in

C6. In C6, the TIR retrieval utilises a new method including logarithmic cloud emis-

sivity ratios in three pairs of bands, aiming to reduce the influence of the radiation

emitted by the surface. The ratio (known as the β ratio) can be derived from the equa-

tion for the radiance at the TOA, which is approximated (Menzel et al., 2015):

I = (1 − ϵ)[Iclr − Iac] + Iac + TacϵB(Te f f ) (1.2)

where I is the TOA radiance measured by MODIS, Iclr the clear-sky TOA radiance, Iac
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is the radiance contribution from the above-cloud atmospheric layer, Tac is the above-

cloud transmittance, and B(Te f f ) is the blackbody radiation at the effective tempera-

ture (Te f f ) of the cloud derived from the pressure profiles used in the PFAAST model

(Menzel et al., 2015). The impact of the surface radiance on the measured TOA radi-

ance is taken into account through the difference of the measured intensity I and the

PFAAST calculated clear-sky intensity Iclr. Rearranging Eqn. 1.2 leads to an equation

for emissivity of:

ϵ =
(I − Iclr)

[Iac + TacB(Te f f )− Iclr]
. (1.3)

Using Eqn. 1.3 ϵ values may be calculated from measured I values and B values de-

rived from Planck’s law assuming that cloud-top BT = Te f f (Pavolonis, 2010). Util-

ising the Parol et al. (1991) β parameter the measured emissivities of two bands (x,y)

may be related logarithmically:

βy,x =
ln[1 − ϵy]

ln[1 − ϵx]
. (1.4)

The specific use of the beta parameter and the bands used depend on various thresh-

olds and importantly the underlying surface type (a description of which can be

found in Platnick et al. (2018)); however, the benefit is that it allows the impact of the

surface radiance to be taken into account and therefore the influence of the surface is

decreased in comparison to the C5 technique, which just relied on the BT differences.

In application, the inclusion of the emissivity ratio in C6 uses three particular band

combinations (7.3 µm/11 µm, 11 µm/12 µm and 8.5 µm/11 µm) in conjunction with

BT differences (Menzel et al., 2015), applying thresholds to determine phase that vary

based on surface type.

According to the literature, these changes to the TIR method show improved
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results for broken clouds and optically thin ice clouds (previously mis-classified as

liquid phase). However, the phase success rate when compared to CALIOP still strug-

gles with optically thin clouds, and while false ice phase discrimination is rarer in

low maritime broken liquid cloud scenes, it still remains a problem for the algorithm

(Platnick et al., 2018). The emissivity ratios also do not seem to greatly improve liquid

phase classification according to Platnick et al. (2018), but many of these pixels are

now classified as uncertain in C6. Importantly we do expect the influence of surface

type to be smaller in C6 due to the inclusion of the beta parameter.

In the daytime (and therefore Arctic polar-day), the C6 cloud-phase tests can be

broken up into four categories, the Cloud Top Temperature (CTT) test, the TIR phase

test, and two SWIR based test (Platnick et al., 2018):

• Cloud top temperature tests: Utilising MOD06 1 km CTT retrievals, where C5

warm cloud sanity checks that force phase to liquid for CTT > 270 K were re-

tained when liquid τ > 2.

• TIR phase test: Previously based on the analysis of 8.5 µm and 11 µm BTs, the al-

gorithm was improved by using cloud emissivity ratios (Heidinger & Pavolonis,

2009; Pavolonis, 2010) that account for clear-sky radiance to reduce the influence

of the surface emissivity to address one limitation: optically thin cirrus clouds

failed to be classed as ice phase. However, this improvement has little impact of

addressing the C5 limitation: super-cooled water or mixed-phase cloud identifi-

cation problems (Baum et al., 2012).

• 1.38 µm test: This test separates high-altitude ice clouds from low-altitude liquid

clouds using the 1.38 µm high cloud flag from the MOD35 CloudMask product.

It utilises strong water vapour absorption at 1.38 µm effective over snow- and

ice-covered surfaces in the Arctic (Gao et al., 1993) and is only applied when suf-

ficient water vapour is present. This vapour band detects little radiance reflected
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from low-level clouds compared to higher cirrus clouds as it is quickly absorbed

by water vapour in its atmospheric path (Platnick et al., 2018).

• Spectral cloud effective radii tests: Replacing the C5 SWIR/NIR reflectance ratio

tests with three SWIR wavelength τ and effective radius (re) retrievals. As pre-

viously discussed in Section 1.1, cloud-phase and τ are strongly related, so suc-

cesful τ and re retrievals provide information on the phase of the cloud. Three

wavelengths are used to reduce the ambiguous phase overlap regions.

In C6 rather than using a linear sequence of tests as in C5, when MODIS per-

forms each of these four separate phase tests each produces a weighted phase vote

which combined lead to the Optical Properties (OP) phase retrieval. Hence, in day-

time MODIS produces both the TIR phase product (the result of only the TIR method)

and the OP method (the result of all four tests). These assigns a cloud as either liquid,

ice, mixed phase, or unknown, and are only implemented given a pixel is classified as

cloudy by the CloudMask product and the 8.5 µm and 11 µm BTs are available (Menzel

et al., 2015). This method was implemented in order to provide better adaptation to

different cloud scenes, as the weight of the vote is a measure of each test’s certainty.

It has been shown (Platnick et al., 2018) that the phase agreement fraction between

CALIOP v3 Cloud Layer product and MODIS C6 has improved to 92 % compared

to 83 % for the C5 product where CALIOP detected a single phase, in particular the

greatest improvement is seen for opaque (τ > 3) clouds over permanent snow/ice

surfaces such as Greenland. In this paper, we will be analyzing the TIR retrieval and

comparing it to the OP phase retrieval. Since the OP test takes into account three ad-

ditional more stringent tests, which will not be evaluated directly, we expect the OP

phase retrieval to be more accurate and adaptable to different cloud scenes than the

TIR method on its own.
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1.2.4 Cloud Optical Depth

While we will not be analysing τ directly, its retrieval plays an important and direct

role in MODIS cloud-phase retrievals which we will be using to analyse the cloud

detection success rate against CALIOP. Microphysical cloud property retrievals,

such as τ and re, are obtained by MODIS using two techniques. The first utilises a

forward radiative transfer model to pre-compute look-up-tables (LUTs) to compare to

simultaneous measurements of the reflectance functions in two spectral channels that

are not absorbed (VIS/NIR) and absorbed (SWIR) by water vapour.

A forward radiative transfer model is one that calculates TOA radiative fluxes from

known inputs such as scattering properties. MODIS uses a model which assumes a

horizontally homogeneous atmosphere with radiation that obeys Lambert’s law of

reflection, where the radiant intensity observed reflecting from a surface is directly

proportional to the cosine of the angle between the incident radiation and the surface

normal. It is important to distinguish conservative and non-conservative scattering

respectively, where conservative scattering means that all incident radiant energy is

not converted into other forms of energy (non-conservative scattering is more realistic

when dealing with optically thicker atmospheric layers). Importantly, the reflectivity

function (R) governing non-conservative scattering (as described by King (1987)) is

dependent on both τ and re. This is illustrated by Fig. 1.1 from Nakajima and King

(1990), which shows the relationship between two reflectivity functions for various

τ and re values. I highlight that R is also a function of the cosine of the solar zenith

angle (µ0), the absolute value of the cosine of the solar zenith angle (µ), and the

relative azimuth angle between the incident and emerging radiation (ϕ), and crucially

of cloud-phase as well.

Pre-computed LUT values for R like those seen in Fig. 1.1 are calculated for each τ
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FIGURE 1.1: Theoretical relationship between reflectivity functions at two
wavelengths for various values of τ and re, with data from the First In-
ternational Satellite Cloud Climatology Project Regional Experiment su-
perimposed on top. Figure reproduced from Nakajima and King (1990).

Published 1990 by the American Meteorological Society.

and re value, which are then compared to MODIS reflectance measurements to deter-

mine the most viable τ and re values. MODIS measures reflectance data is equivalent

to radiance data, related to measured radiance (I) such that (Barnes et al., 2019):

R = I/F0 (1.5)

where F0 is the mean extraterrestial solar irradiance (a constant for a give wave-

length but dependent on solar zenith angle). MODIS utilises two channels in the VIS
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and SWIR spectral regions since for any given reflectance measurement in one channel

multiple τ and re values are possible, however utilising two channels constrains the

possible τ and re values to one possible value (Platnick et al., 2018). This is known as

the bi-spectral approach.

While this approach has been validated with comparisons to airborne data in

Nakajima and King (1990), they showed that the greatest sensitivity of R occurs when

the underlying surface albedo is small, which is a problem in high sea-ice regions

where surface albedo is high. Hence, a second supplementary method was put

forward by (Platnick et al., 2018) in C6. Over regions of snow and ice MODIS only

utilises channels 2.13 µm and 1.6 µm. This is because surface albedo, which varies

depending on the channel used, was low over snow and sea-ice for these channels

(Moody et al., 2007) . Hence, the accuracy of τ and re retrievals from the LUTs was

improved in C6 over snow and ice surfaces.

Moreover, another improvement in C6 is the separation of the τ (cloud optical

thickness, COT) (and re) retrievals in the 1.6 µm (COT16), 2.1 µm (COT21), and 3.7 µm

(COT37) channels. Due to the sometimes largely differing failure patterns of the

three channels (Cho et al., 2015) where the reflectance observations may lie outside

of the τ-re LUT solution space, there can be significantly different pixel populations

of τ and re for each channel. In C5, the retrievals from 1.6 µm and 3.7 µm channels

are reported as differences from the 2.1 µm channel and hence coupled to the latter

channel (Platnick et al., 2018). So, when the latter channel failed to retrieve data so

did the former. Separating the retrievals ensured that the 1.6 µm and 3.7 µm channels

do not necessarily fail when the 2.1 µm channel fails. Therefore, we expect less failed

τ retrievals in the C6 pixel population since the coupling has been removed. In

particular, this is important for broken liquid water cloud-phase retrievals, often on

the edge of cloud distributions such that the heterogeneity scales are on an order of

less than 1 km (for the nadir pixels) (Lebsock et al., 2011; Zhang et al., 2012), where the
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2.1 µm channel fails often.

1.3 CALIOP Retrieval Algorithms

1.3.1 Cloud Top Height

CALIOP retrieves CTH through the Feature Finding algorithm (Vaughan et al.,

2005; Winker et al., 2006). CALIOP measures the attenuated backscatter coefficient

from a beam directed towards the surface of the Earth at a wavelength of 532 nm.

The beams interact with particles and molecules in the atmosphere and CALIOP

measures the strength of the backscatter from these interactions and then determines

the backscatter coefficient. The backscatter coefficient is a measure of the reflective

strength of a target and contains information about the molecular composition of

the target. From here it calculates the attenuated scattering ratio, which is equal to

the measured attenuated backscatter coefficient divided by the modelled clear-sky

attenuated backscatter coefficient. Clear-sky backscatter coefficients are constructed

from molecular and ozone number density profiles derived from meteorological data

produced by the NASA’s Global Modeling and Assimilation Office (Vaughan et al.,

2005). The attenuated scattering ratio is used to mitigate the effects of background

noise as it takes into account a clear-sky modelled backscatter coefficient. The

normalization by the clear-sky modelled attenuated backscatter coefficient is such

that the ratio is close to one when no backscattering feature is present. In contrast, a

spike in the attenuated scattering region is seen whenever a feature, such as a cloud

or aerosol layer, is detected.

In order to qualify as a feature rather than insignificant noise the attenuated scat-

tering ratios must rise above the local predefined threshold level for a number of con-

secutive points that exceed the minimum feature distance, which is a measure of the
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vertical length of the feature. The threshold for the minimum feature distance was

determined from the expected geometric depths of features within the vertical region

(Vaughan et al., 2005). This retrieval method allows CALIOP to retrieve the height of

multiple features throughout the vertical profile of the atmosphere.

1.3.2 Cloud-Phase

In order to determine cloud-phase, CALIOP utilises a combination of the layer

integrated attenuated backscatter and the linear depolarization ratio. The 532 nm

channel is used because it is linearly depolarized by cloud features, whereas the

1064 nm channel is not.

The lidar beam, when transmitted towards the cloud, is nearly fully linearly

polarized, meaning that the oscillation of the electromagnetic waves is confined

to a single plane. The depolarization ratio of backscatter (δ) by cloud particles is

the ratio of the cross-polarization and the co-polarization component. Past studies

(Sassen, 1991) have shown that single-scattering of this transmitted signal from ice

crystals results in a measurable signal in the plane perpendicular to the original

polarization plane. The magnitude of this depolarization depends on the habit of

the ice crystals, but is usually in the range of 30 % − 50 % (Liu et al., 2005). Lower

values have been shown for horizontal orientated ice crystals (Sassen & Benson,

2001). In contrast, spherical water droplets do not produce a measurable signal in the

cross-polarization component for single-scattering, and so δ is zero since no depo-

larization occurs (Hu et al., 2009). In this way, δ is dependent on the phase of the cloud.

Importantly, studies have also shown that optically thicker liquid clouds can give

rise to multiple scattering which can result in linear depolarization (Liu et al., 2005).

Hence, for liquid clouds δ increases with the τ of the cloud. Moreover, as highlighted

by Cho et al. (2008) the layer integrated attenuated backscatter is proportional to
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the τ of the cloud. Therefore δ for liquid clouds increases with increasing layer

integrated attenuated backscatter. More generally, Hu et al. (2001) showed that the

depolarization threshold values for the phase of the cloud were a function of the

layer-integrated backscatter.

Fig. 1.2 shows the thresholds used by CALIOP to determine the phase of a cloud

(Hu et al., 2009). As can be seen, clouds dominated by water droplets (denoted as

"water phase" from now on) fall close to the black line, which describes the theoreti-

cal relationship derived by (Hu, 2007). CALIOP uses these thresholds to distinguish

the phase of the cloud by measuring both the linear depolarization ratio and layer

integrated attenuated backscatter.

FIGURE 1.2: Density plot showing the frequency of occurrence as a func-
tion of depolarization ratio and layer-integrated attenuated backscatter
reproduced from Hu et al. (2009) The left figure shows data from January
2007 and the right January 2008. The red line shows the threshold for ice-
phase cloud, the threshold for distinguishing layers dominated by liquid
water droplets and layers containing horizontally orientated ice crystals
is shown in green. ©American Meteorological Society. Used with permis-

sion.
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Chapter 2

Cloud Top Height Hypotheses

2.1 Hypothesis 1 ± Quantification of Biases Arising from

Lower-Tropospheric-Stability

Hypothesis 1 states that lower-tropospheric-stability (LTS) plays a role in the strength

and sign of the MODIS CTH biases in the presence of low-level (CTH ≤ 2 km)

single-layer clouds, where the τ of the cloud is small and the influence of the surface

is large. This hypothesis only applies to low-level clouds since this bias is applicable

when MODIS utilises the IRW CTH retrieval technique rather than the CO2-slicing

technique, which occurs for clouds residing at a pressure altitude smaller than 600 hPa

(Platnick et al., 2018).

The MODIS IRW CTH technique struggles in the case of low τ due to the influence

of the underlying surface on the TOA measured radiance for a wavelength of 11 µm.

Ideally, MODIS would measure the radiance emitted directly from the cloud-top

to determine the cloud-top BT. However, as a passive instrument it measures the

total vertically integrated radiance at the TOA. Since the atmosphere and surface of

the Earth consist of many layers of absorbers and emitters, this TOA radiance is a

combination of radiance emitted from all these layers. Hence, the retrieved BT will

come from a superposition of radiation emitted from the surface of the Earth and

every atmospheric layer between the surface and the TOA. As the 11 µm channel is
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an atmospheric window channel, we expect most atmospheric layers without a cloud

present to be relatively (but not completely) transparent; however, the surface of the

Earth can emit strongly in this channel. We therefore expect the MODIS retrieved BT

to sit somewhere between the surface-level temperature at 11 µm, which is directly

related to the surface and near-surface air temperature, and the temperature of the

cloud-top.

The effect of this BT bias on the CTH bias can be understood through analysis of

the following CTH equation used in MODIS’ algorithm (Menzel et al., 2008):

CTH =
BT11 µm(PFAAST)− BT11 µm(MODIS)

BTLR
. (2.1)

Since the detected radiance at the TOA is a combination of the surface radiance

and the cloud-top radiance, particularly for small τ values, the MODIS measured

BT11 µm(MODIS) will sit somewhere between the surface BT (represented in Eqn. 2.1

by the modelled BT11 µm(PFAAST)) and the actual cloud-top BT. Using Eqn. 2.1,

since BT11 µm(MODIS) will take a value closer in magnitude to BT11 µm(PFAAST), the

modelled clear-sky BT, the numerator in Eqn. 2.1 will be smaller than the physical BT

difference between the cloud-top and the surface, and hence CTH underestimated.

More specifically the impact of the surface will be stronger when the cloud is

optically thin. When τ is low the TOA outgoing radiation detected by the passive

sensor is heavily influenced by the surface underlying the low-lying clouds, since

the emitted radiation from the surface attenuates very little while passing through

the cloud-layer. In contrast, when the cloud is optically thick, the surface radiation

attenuates more before reaching the TOA according to the equation Iout = Iine−τ

(Bodhaine et al., 1999), where Iin is the radiation incident to the cloud and Iout the

radiation leaving the cloud after attenuating. Hence, when τ is small the impact of



2.1. Hypothesis 1 ± Quantification of Biases Arising from

Lower-Tropospheric-Stability
25

the surface radiation is stronger and therefore the measured BT will be closer to the

surface BT rather than the targeted actual cloud-top BT.

More generally, we also expect that the CTH underestimation will be larger when

the influence of the surface is larger. The stronger the radiation emitted from the sur-

face in the 11 µm wavelength is, the stronger the influence of the surface on the TOA

radiance is. According to Planck’s law the strength of emission for a particular wave-

length is governed by (Chandrasekhar, 1960):

I(λ, T) =
c1

λ5[ec2/λT − 1]
, (2.2)

where λ is the relevant wavelength, T is the temperature of the object, c1 = 2hc2

where c is the speed of light (equal to 299, 792, 458 ms−1) and h is the Planck con-

stant (∼ 6.63 × 10−34 J Hz−1), and c2 = hc
kB

where kB is the Boltzmann constant

(∼ 1.38 × 10−23 J K−1). According to Eqn. 2.2, the radiance emitted by an object

increases with the temperature of the object, for classical black or grey objects. Since

temperature plays a crucial role in the emission strength of an object in Planck’s law,

we hypothesize CTH biases to be closely tied to the temperature structure between the

surface and cloud itself. More specifically we expect the bias to be largest when the

temperature of the surface is higher and the temperature of the cloud lower since in

this case the radiation emitted by the surface is more intense relative to the radiation

emitted by the cloud according to Eqn. 2.2. Importantly, the radiation emitted from

the surface may not dominate at the TOA in this example, it will just play a larger

role.

We can use the metric LTS as an indicator of the potential temperature structure of

the atmosphere, where the 800 hPa LTS was chosen as it is close to the upper 2 km CTH

boundary used throughout this thesis. The 800 hPa LTS is defined by the equation
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(Slingo, 1987; Wood & Bretherton, 2006):

LTS = θ800 hPa − θ2 m (2.3)

where θ800 hPa and θ2 m are the potential temperatures of 800 hPa and 2 m above

the surface respectively. When LTS is equal to 0 K, the lower troposphere is dry

neutral (which means conditionally unstable) in terms of static stability. In contrast,

a negative LTS would indicate absolutely unstable conditions, which would trigger

spontaneous overturning of the air layer, restoring at least dry neutral stability.

Therefore, a negative LTS is expected to only occur rarely and for short time periods.

When LTS is high, θ800 hPa is much larger than θ2 m. This generally indicates a

high level of stability and the presence of a low-lying temperature inversion (Wood

& Bretherton, 2006), which is particularly common in the Arctic in the winter over

regions of high sea-ice concentration. In thermal wavelengths there is a continuous

loss of heat from the surface of sea-ice through radiant emission, lowering surface

temperatures and causing low-lying temperature inversions (Stramler et al., 2011;

Uttal et al., 2002). However, when LTS is low this indicates the lack of or a weaker

and elevated temperature inversion, usually occurring when the temperature of the

surface is higher than the CTT, and is generally favoured in summer and autumn

(Graversen & Wang, 2009).

Importantly, note that when LTS is relatively small, θ2 m has a more comparable

magnitude to θ800 hPa. Since θx = Tx × ( P0
Px
)k, where x is the pressure level of θ, k is

the ratio of R and the specific heat capacity at a constant pressure, equal to 0.286,

and P0 is the reference pressure level equal to 1000 hPa, low LTS indicates that either

P2 m is relatively small, T2 m is relatively large or that T800 hPa is relatively small.

In the case that T2 m is larger we can hypothesize that the relative intensity of the
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radiation emitted from the Arctic surface is larger than if T2 m were smaller due to

Eqn. 2.2, assuming that T2 m is an indicator of surface temperature. Alternatively, in

the case that T800 hPa is relatively small, the intensity of the radiation emitted from the

cloud-top is reduced, if we assume T800 hPa is an indicator of cloud-top temperature.

Hence, the cloud-top emitted radiation would play less of a dominating role at the

TOA and the relative influence of the surface would be larger than when T800 hPa is

relatively large.

In both cases, the influence of the surface on the measured BT11 µm(MODIS) is

large, and so we hypothesize that the magnitude of the underestimation of CTH

is greatest when LTS is lower. It is important to highlight again that the impact of

the surface emission would be relatively smaller as τ gets larger since the radiation

would attenuate more as it passes through the cloud, as previously discussed. Hence,

we expect the surface radiance to only play a large role in the determination of the

cloud-top BT when the cloud is optically thin.

Moreover, the impact of the surface radiance on the CTH bias could be mitigated

since the calculation of apparent BTLR and CTH use the same simplified physics. For

instance, if the actual BTLR was conserved between the pre-calculated monthly and

zonal BTLR values (using Eqn. 1.1) and the calculation of CTH using Eqn. 2.1, which

could be achieved if the cloud-top temperature and surface temperature co-varied

similarly between the two calculations, the validity of the CTH estimate would

be good. More specifically, since both equations rely directly on BT11 µm(MODIS)

retrievals, any errors due to influence of the surface on the TOA radiation used to

determine cloud-top BT would be accounted for by the apparent BTLR. Therefore,

the consistency of the approach between Eqn. 1.1 and Eqn. 2.1 could justify this CTH

retrieval method. However, problems could occur if there was any inconsistency

in the atmospheric or surface conditions between the calculation of the zonally and

monthly averaged apparent BTLR using Eqn. 1.1m and the calculation of CTH using
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Eqn. 2.1. For example, if the cloud was near-black (opaque) in the 11 µm wavelength

range during the calculation of BTLR, yet not black in the calculation of CTH, the

impact of the surface previously discussed could cause a CTH bias. In this case,

since the surface radiation would attenuate more as it passed through the optically

near-black cloud during the calculation of Eqn. 1.1, the influence of the surface would

not impact the MODIS cloud-top retrieved BT used in the calculation of the apparent

BTLR, and hence not taken into account by use of the apparent BTLR in the calcula-

tion of CTH using Eqn. 2.1. Therefore, while the impact of LTS does not necessarily

invalidate the C6 CTH retrieval method, we hypothesize that it will lead to a CTH bias.

In summary, we hypothesize that the size of the CTH underestimation compared

to CALIOP is largest when τ is small and LTS is low, however it is possible that other

causes could influence the CTH bias, and analysis and discussion of these, along with

Hypothesis 1, will be presented in Section 4.2.

2.2 Hypothesis 2 ± Importance of Surface Type Emissiv-

ity

MODIS makes two simplifying assumptions in its computation of CTH. First, it

assumes that the underlying sea-ice fractional coverage is 0 % in its computation

of the clear-sky BT11 µm(PFAAST) (Hannon et al., 1996; Strow et al., 2003). Second,

MODIS uses zonal and monthly averages of the apparent BTLR in Eq. 1.1 (Baum

et al., 2012). These two assumptions directly affect MODIS CTH calculations. More

specifically, BT11 µm(PFAAST) is directly used to calculate CTH and the apparent

BTLR, so inaccurately classifying the underlying surface emissivity by assuming

sea-ice fractional cover is 0 % directly impacts CTH. Moreover, using monthly zonal

averages of the BTLRs in Eqn. 2.1, also assuming sea-ice fractional cover is 0 %, ne-

glects longitudinally varying surface emissivity differences. Both these assumptions
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are unphysical in the Arctic, as large parts of the Arctic ocean are covered in sea-ice

and we expect the apparent BTLR to vary longitudinally.

The impact of these assumptions can be understood by understanding how

emissivity affects emitted radiance and how BT is derived. Emissivity is the ratio

between the energy emitted from a materials surface to that of a perfect emitter (or

blackbody), and is wavelength-dependent for real surface types. A higher emissivity

value means that the radiance emitted is stronger and closer to that emitted by a

blackbody emitter at the same temperature. On the other hand, BT is the temperature

a blackbody object would have to emit radiation at the strength measured. According

to Planck’s law the strength of emission for a particular wavelength is governed by

Eqn. 2.2. BT can be expressed in place of the regular temperature (T) in Planck’s law,

as the equivalent blackbody emission of an object is related to the measured emission

I(λ, T) such that I(λ, BT) = ϵI(λ, T). Hence a higher ϵ means that a higher BT is

derived. Therefore, inaccurate surface emissivity values lead to inaccurate modelling

of BT11 µm(PFAAST).

More specifically, assuming 0 % sea-ice fractional cover will raise the modelled

BT11 µm(PFAAST). This is because open-ocean has a higher emissivity than ice,

approximately 2 % higher in the 11 µm wavelength (∼ 909 cm−1 wavenumber), as

can be seen in Fig. 2.1. Hence, the modelled TOA clear-sky radiance will be stronger

when MODIS assumes 0 % fractional cover than when physically accurate sea-ice

cover is used for cloudy pixels that sit over ice-covered surfaces. Therefore, the

modelled BT11 µm(PFAAST) is overestimated. Hence the magnitude of the numerator

in Eqn. 2.1 would be overestimated or underestimated depending on whether an

inversion was present.

The dependence on whether or not an inversion is present can be seen by

noting that in the case of a low-level temperature inversion, BT11 µm(PFAAST) <
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FIGURE 2.1: Surface emissivity by wavenumber broken into water, ice,
snow, and desert surface types. Figure reproduced from Huang et al.

(2018). ©American Meteorological Society. Used with permission.

BT11 µm(MODIS), since temperature increases with altitude in that situation.

Therefore using unrealistic 0 % sea-ice fractional cover and hence raising

BT11 µm(PFAAST) will lead to an smaller numerator in Eqn. 2.1 than if realistic

sea-ice fractional cover values were used. When an inversion is not present and

BT11 µm(PFAAST) > BT11 µm(MODIS), the overestimate in BT11 µm(PFAAST) when

unrealistic 0 % sea-ice fractional cover is used leads to an overestimate in the numer-

ator in Eqn. 2.1 compared to the case when realistic sea-ice fractional cover values

were used. In general, in polar-day conditions a low-level temperature inversion is

less common or generally weaker and raised in altitude (Graversen & Wang, 2009),

so we expect using realistic sea-ice fractional cover in the calculation of clear-sky

BT to lead to an average reduction in CTH; although the magnitude of this effect

may be small, yet needs to be quantified. It should be noted that it is also possible

that BT11 µm(PFAAST) < BT11 µm(MODIS) occurs because of inconsistency between

the PFAAST model and the actual atmospheric profile influencing the retrieved
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cloud-top BT. For example, errors in PFAAST simulated surface temperature could

be particularly relevant for pixels with a small vertical temperature gradient, such

that the actual surface and cloud-top BTs are close in magnitude. Hence, a small error

in the PFAAST surface temperature could result in the modelled surface BT being

smaller than the measured cloud-top BT. In this case, the use of realistic sea-ice values

would lead to a larger numerator, even though no temperature inversion is present,

since the PFAAST model is simulating the BT as larger than the measured cloud-top

BT.

It is worth noting that the new C6 method using the apparent BTLR showed

some improvement relative to C5 for CTH biases in comparisons to CALIOP, with

the retrieval bias for August 2006 reducing to less than 0.5 km (Baum et al., 2012).

However, a full comparison of CTH for polar-day single-layer low-level clouds in the

Arctic for the C6 algorithm has not yet been performed. In particular, the Arctic is a

challenging landscape since sea-ice covers much of the ocean, and has a low thermal

contrast with low-lying clouds in the thermal-infrared.

Given the relatively small differences in surface emissivity between water and

sea-ice, it is possible that the impact of correctly assigning surface emissivity in the

PFAAST model on both the CTH (Eqn. 2.1) and BTLR (Eqn. 1.1) MODIS calculations

is small, and therefore that these calculations are impacted by influences other than

surface emissivity changes. Analysis and discussion of these, along with analysis of

Hypothesis 2, will be presented in Section 4.3. Hypothesis 1 and 2 simply motivate

the initial analysis of the dataset and might point to other sources of uncertainty in the

MODIS CTH determination.
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Chapter 3

Methodology

3.1 Structure of Satellite Data

MODIS satellite data can generally be split into five product levels. Level 0 is raw

satellite feeds with no processing, Level 1 come from radiometrically calibrating

the Level 0 data to calculate physical properties such as spectral radiance allowing

satellite data to be compared (Price, 1987). This data can generally be broken up into

different geometric resolutions, in the case of MODIS 1 km, 500 m, 250 m resolutions as

measured at the surface level. Level 2 data is atmospherically corrected Level 1 data

yielding surface reflectance products (Roger et al., 2015), taking into account scattering

or absorption effects in each of the spectral bands. Level 3 data has been temporally

averaged or composited and has been gridded onto a map projection. Finally, Level 4

data, usually saved for data assimilation products, has been additionally processed.

Throughout this thesis I will be using data obtained during the 2015 polar-day to

analyse the validity of the cloud property retrieval algorithm. MODIS data can be split

into different collections, which differ in the algorithm specifics used to obtain Level

2 atmospheric properties from Level 1 data. This paper will focus on C6 reprocessed

from C5 to improve calibration, upstream products and algorithm refinements (Roger

et al., 2015). More specifically, the satellite data we are using is described in Table 3.1,

and the reanalysis data is described in Table 3.2.
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TABLE 3.1: Listing of MODIS and CALIOP dataset versions and spe-
cific variables used in this work. Latitude and longitude coordinates are

geodetic.

Reference Name Full Variable Name; Processing Level; Version Number; Spatial Resolution; Product Name; Ref-
erence

MODIS CTH Cloud_top_height_1km; Level 2; Collection 6.1; 1 km ; MYD06; Platnick et al., 2015

MODIS TIR cloud-phase Cloud_Phase_Infrared_1km; Level 2; Collection 6.1; 1 km; MYD06; Platnick et al., 2015

MODIS OP cloud-phase Cloud_Phase_Optical_Properties; Level 2; Collection 6.1 1 km; MYD06; Platnick et al., 2015

MODIS COT21 Cloud_Optical_Thickness; Level 2; Collection 6.1; 1 km; MYD06; Platnick et al., 2015

MODIS multi-layer flag Cloud_Multi_Layer_Flag; Level 2; Collection 6.1; 1 km; MYD06; Platnick et al., 2015

MODIS BT11 µm Band 31; Level 1B; Collection 6.1; 1 km; MYD02; MODIS Characterization Support Team, 2017a

MODIS latitude Latitude; Level 1A; Collection 6.1; 1 km; MYD03; MODIS Characterization Support Team, 2017b

MODIS longitude Longitude; Level 1A; Collection 6.1; 1 km; MYD03; MODIS Characterization Support Team, 2017b

CALIOP CTH Layer_Top_Altitude; Level 2; V4.20; 1 km; Lidar Level 2 Cloud, Aerosol, and Merged Layer V4.20
Products; Winker et al., 2023

CALIOP cloud-phase Feature_Classification_Flags; Level 2; V4.20; 1 km; Lidar Level 2 Cloud, Aerosol, and Merged
Layer V4.20 Products ; Winker et al., 2023

CALIOP 523 nm τ Column_Optical_Depth_Cloud_532; Level 2; V4.20; 5 km; Lidar Level 2 Cloud, Aerosol, and
Merged Layer V4.20 ; Winker et al., 2023

CALIOP latitude Latitude; Level 2; V4.20; 1 km; Lidar Level 2 Cloud, Aerosol, and Merged Layer V4.20 Products ;
Winker et al., 2023

CALIOP longitude Longitude; Level 2; V4.20; 1 km; Lidar Level 2 Cloud, Aerosol, and Merged Layer V4.20 Products
; Winker et al., 2023

AUX CloudMask Cloud_Mask_1km; Level 2; Collection 6.1; 1 km; MODIS-AUX P_R05; Heather and Partain, 2017

AUX latitude MODIS_Latitude; Level 2; Collection 6.1; 1 km; MODIS-AUX P_R05; Heather and Partain, 2017

AUX longitude MODIS_Longitude; Level 2; Collection 6.1; 1 km; MODIS-AUX P_R05; Heather and Partain, 2017

2B layertop LayerTop; Level 2 ; Version 1; 1 km; 2B-GEOPROF-LIDAR P2_R05_E06; Mace et al., 2007

2B cloudfraction CloudFraction; Level 2 ; Version 1; 1 km; 2B-GEOPROF-LIDAR P2_R05_E06; Mace et al., 2007

2B latitude Latitude; Level 2 ; Version 1; 1 km; 2B-GEOPROF-LIDAR P2_R05_E06; Mace et al., 2007

2B longitude Longitude; Level 2 ; Version 1; 1 km; 2B-GEOPROF-LIDAR P2_R05_E06; Mace et al., 2007

1The MODIS and CALIOP variables were collocated and provided by an external collaborator (Dr. Wang), with the exception of
the AUX CloudMask and 2B variables that were collocated by Henry Carr.

TABLE 3.2: Listing of AMSR-E, MERRA2, and ERA5 reanalysis dataset
versions used and the specific variables used in this work and collocated

with the satellite retrievals.

Reference Name Full Variable Name; Version Number; Spatial Resolution; Product Name; Refer-
ence

MERRA2 surface pressure, atmospheric
temperature, and atmospheric pressure
levels

surface_pressure, air_temperature, vertical level; V5.12.4; 0.5◦ × 0.625 ◦ latitude
× longitude; M2I3NPASM; Global Modeling and Assimilation Office, 2015a

MERRA2 surface temperature surface_skin_temperature; V5.12.4; 0.5◦ × 0.625 ◦ latitude × longitude;
M2T1NXSLV; Global Modeling and Assimilation Office, 2015b

ERA5 atmospheric temperature Temperature; 0.25 ◦ × 0.25 ◦ latitude × longitude; ECMWF ERA5; Hersbach et
al., 2023b

ERA5 surface pressure Surface pressure; 0.25 ◦ × 0.25 ◦ latitude × longitude; ECMWF ERA5; Hersbach
et al., 2023a

AMSR-E sea-ice concentration Sea ice product; Version 3; 12.5 km; AE_SI12 (Level 3); Cavalieri and Comiso., 2014
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More specifically, to analyse CTH and cloud-phase we must first collocate cloud

property retrievals from the two separate CALIOP and MODIS instruments using the

nearest great circle (a circle that lies in the plane of Earth’s centre) distance method

highlighted by Holz et al. (2008) and performed by Dr. Chenxi Wang, as described

below.

To analyse MODIS cloud detection success, we will use the MODIS Aqua Level 2,

1 km CloudMask (referred to as CloudMask) product from the MODIS-AUX subset of

data (Heather & Partain, 2017), and we will be comparing to the 2B-GEOPROF-LIDAR

P2_R05_E06 layertop and cloudfraction products (Mace et al., 2007) (referred to as

LayerTop and CloudFraction respectively).

First, i will describe the collocation technique used to collocate CALIOP and

MODIS data. Then, once I have described the collocation technique implemented by

Dr. Chenxi Wang, I will discuss the analysis methods for the MODIS CTH retrieval al-

gorithm, CloudMask cloud detection retrievals and the MODIS cloud-phase retrievals.

3.2 Pixel by Pixel Collocation

We must define the coordinate system in use. We assume that the MODIS scan line co-

ordinates are in the form of geodetic MODIS latitude, MODIS longitude and time. This

assumes that Earth’s surface is approximated as an ellipsoid and the horizontal loca-

tion on the Earth’s surface is measured using a horizontal datum, in this case geodetic

latitude and longitude. In contrast to geocentric latitude, which is defined as the angle

between the equatorial plane and a radial line connecting the surface and ellipsoid’s

center, geodetic latitude is defined as the angle between the equatorial plane and the

surface at a point where the line intersects the surface at a perpendicular angle. Figure

3.1 illustrates this. The conversion between the two uses the following relation (Holz

et al., 2008):
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FIGURE 3.1: Geodetic vs geocentric latitudinal coordinates.

b2 tan (D) = tan (C) (3.1)

where b2 = 0.99327730 and D and C are the geodetic and geocentric latitudes

respectively.

We aim to know which CALIOP Ground Instantaneous Field of View (GIFOV) in-

tersects the MODIS scan line. A MODIS scan path takes about 0.5 s (Holz et al., 2008)

and contains 1354 pixels. Since the Earth rotates during this scan, the motion of the

satellite and its scan line do not perfectly describe a great circle, however the approxi-

mation can be made given the movement of the Earth is much smaller than the length

of the scan line. The time (t1) that CALIOP is over a point (such as a MODIS field-

of-view, FOV) can be found using a technique that relies on a 4th order polynomial

solving technique developed by Froberg (1965). Given the satellite has an arc distance

of A(t) from the starting position at time t0 the solution is (Holz et al., 2008):
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t1 = t0 −
A(t)

A′(t)
. (3.2)

Now that we have the time that the satellite will be abeam of a given MODIS FOV, we

can know which CALIOP observation is approximately closest to the given MODIS

FOV. It is worth noting that the technique must be adjusted by two factors. One, the

Earth’s eastward rotation during the scan creates an apparent westward movement

for the satellite. We can find the approximate CALIOP’s trace on the Earth’s surface

using the following three equations (Holz et al., 2008):

M = A × B (3.3)

Vt = Vs − E cos (l)Ue (3.4)

P = R × Vt (3.5)

where A and B are the initial and final positions of the MODIS scan position vectors

measured in the geodetic coordinate system, Vs is the velocity of the CALIPSO satellite

through space (adjusted by the ratio of the Earth’s radius to the satellite radius vector),

Ue is the unit vector pointing East at the particular FOV at latitude l, E is a scalar of

the eastward speed of rotation at the Earth’s equator measured in the same units as

Vs, and R is the terrestrial position vector of the particular FOV. The cross product

between P and M points to the position of the intersection between the CALIOP trace

and the MODIS scan line. Though the initial CALIOP FOV may be far from this new

adjusted intersection, using the Eqn. 3.2 we can find the time when CALIOP is over

this point using the new intersection position vector in Eqn. 3.2.

The second adjustment is due to the fact that MODIS does not only take nadir

readings (Wang et al., 2011), and is called the parallax effect. The impact of this can
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FIGURE 3.2: Schematic detailing the impact of the parallax effect on the
collocation of MODIS and CALIOP.

be seen in Figure 3.2. The ground footprint of MODIS is not directly below the cloud,

whereas for CALIOP it is. Hence, if the parallax effect is not taken into account the

cloud CALIPSO detects at point a will be projected onto point a′ by MODIS, and hence

the surface projection of the two detectors will be out of alignment. The collocation

method therefore adjusts the reading by using CALIOP’s CTH and MODIS’ solar

zenith and azimuth angles to determine the cloud displacement vector. It uses this

to adjust the MODIS pixel location to the correct position on the Earth’s surface. The

importance of this is lessened for lower clouds.

It is worth noting that an alternative collocation method involves creating a table

of CALIOP points on the Earth’s surface and interpolating the distance of each from

the MODIS FOV, however this is computationally heavy so is not preferred.
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3.3 Hypothesis 1

To investigate Hypothesis 1, I first filtered the MODIS and CALIOP data to only

include single-layer clouds. To select pixels where both instruments agreed that a

single-layer cloud is being detected, I used the MODIS multi-layer cloud flag variable

and CALIOP’s CTH product, which breaks the atmosphere up into 10 layers allowing

us to select only those pixels where a CTH value is present in only one of the 10

vertical layers. Finally, I also selected points where CTH, according to both MODIS

and CALIOP, was between 0 km and 2 km (including 2km) to filter for low-level

clouds. We also filtered the data such that only pixels where a successful COT21 τ

retrieval occurred were included, and that this COT21 τ retrieval had a value of less

than or equal to 20, so that the influence of the surface could be analysed for optically

thinner clouds. τ is determined by the MODIS COT21 1 km variable since CALIOP

attenuates quickly and so fails to retrieve larger τ values for optically thicker clouds.

First, for these single-layer low-level pixels, I plot a representation of a 2D proba-

bility density function calculated using the python function guassian kernel-density

estimate described in ªSciPy Gaussian KDE Function - v1.11.2 Manualº, 2023 (from

module scipy-stack/2020b) (Virtanen et al., 2020). I also calculated the mean bias

error and absolute average error for MODIS CTH compared to CALIOP CTH. This

analysis prompted a further filter to be applied to the CALIOP data to allow for a

less biased limit, which will be discussed more in Section 4.2. All data for the rest of

Section 3.3 was subsequently filtered to only include pixels where CALIOP CTH was

less than 1.2 km. For these composites of single-layer low-level cloud CTH retrievals

we aggregated the data into 100 × 100 collocated τ±LTS bins. This aggregation

takes all the collocated MODIS and CALIOP CTH values where the corresponding

τ and LTS values are between the two extreme values for each τ±LTS bin, and then

calculates the mean CTH difference (CTHMODIS − CTHCALIOP) in each bin. Then I

plot the bins in a 2D histogram plot with τ on the y-axis and LTS on the x-axis, where
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the color bar shows the mean CTH difference. A statistical limit of 50 points was used

in the aggregation to remove bins with too few data to be of statistical significance.

We also aggregated the mean CTH difference into 30 × 360 latitude × longitude bins

for polar-day 2015, April 2015, and August 2015. These aggregated bins were then

projected onto an Arctic map plot.

To compare the MODIS CTH bias to LTS, I first needed to construct temporally

and geospatially accurate LTS readings collocated with our satellite retrievals, since it

is not a variable retrieved by MODIS or CALIOP.

3.3.1 LTS Grid

LTS is a measure of thermodynamic stability and indicator of the temperature struc-

ture of the atmosphere, as is defined by the Eqn. 2.3. To obtain the LTS values, I created

a LTS grid with a spatial resolution of 0.625 ◦ longitude × 0.5 ◦ latitude and a temporal

resolution of 3 hours from the Modern Era Retrospective Analysis for Research and

Applications version 2 (MERRA2) atmospheric pressure and temperature reanalysis

data (Gelaro et al., 2017).

MERRA2 is reanalysis data which aims to provide a consistent reprocessing of

meteorological observations (Gelaro et al., 2017). By using a forecast model to combine

physical observations reanalysis data produces physically consistent gridded datasets

for a given variable. The MERRA2 dataset is produced using the Goddard Earth

Observing System (GEOS) version 5.12.4 (Gelaro et al., 2017) data assimilation system

based on the GEOS atmospheric model (Reinecker et al., 2008). This model is able to

resolve both troposphere and stratosphere structures to run uncoupled and coupled

climate simulations and predictions based on four types of physical processes: moist,

radiation, turbulent mixing and surface processes.
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Using the hypsometric equation I calculated the 2 m pressure (P2 m) (Wallace &

Hobbs, 1977):

P2 m = Ps × e−g×h/(R× ÅT), (3.6)

where h is the altitude above the surface equal to 2 m, g is the gravitational constant

equal to 9.8 m s−1 and R is the specific gas constant for dry air equal to 287 J kg−1 K−1.

I approximated the virtual temperature of the sur f ace − 2 m layer as the mean air tem-

perature ( ÅT) between the two largest pressure levels given since I did not have access

to the virtual temperature of the sur f ace − 2 m layer in the MERRA2 dataset. I used

3-hourly surface pressure (Ps), atmospheric pressure and atmospheric temperature (T)

data from the MERRA2 dataset to calculate P2 m and ÅT at a 3-hourly resolution, where

T is provided at 42 pressure levels. Then I calculated LTS (as previously defined in

Section 2.1) at a resolution of 0.625 ◦ longitude × 0.5 ◦ latitude using the following

equation (Wood & Bretherton, 2006):

LTS = TP1
× (

P0

P1
)k − T2 m × (

P0

P2 m
)k, (3.7)

where T2 m then comes from taking the nearest above surface pressure layer to P2 m

in the MERRA2 dataset and selecting the corresponding T value. P0 is the reference

pressure value (1000 hPa), P1 is 800 hPa, and k is the ratio of R and the specific heat

capacity at a constant pressure equal to 0.286. The MERRA2 dataset provides TP1
, the

temperature at 800 hPa.

We will also use the MERRA2 dataset to create an estimate of the 900 hPa tem-

perature lapse rate at the same resolution as the LTS grid. To do this, we will take

the temperature at 900 hPa and difference this with the temperature of the lowest

atmospheric level at that latitude and longitude. Then, we will use the hypsometric

equation to calculate the geometric thickness between the surface and 900 hPa,

approximating virtual temperature as the mean temperature between the surface
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and the 900 hPa level. Points where the surfaces sits near the 900 hPa pressure level,

and hence the first atmospheric temperature assignment in the MERRA2 dataset is

at 900 hPa, are removed. We then divide the temperature difference between the

surface and 900 hPa by the geometric thickness to get an estimate of the atmospheric

temperature lapse rate.

We also reconstructed LTS using the European Environment Agency (ERA5)

reanalysis data-set from the European Centre for Medium-Range Weather Forecasts

(ECMWF) to test the robustness of our results. We used 3-hourly Ps and atmospheric

T values as a function of 37 atmospheric P levels to produce P2 m and T2 m values

using Eqn. 3.6. T2 m is obtained from selecting the T value for the nearest ERA5

pressure level to P2 m. LTS is then constructed using Eqn. 3.7 for a grid resolution of

0.75 ◦ longitude × 0.5 ◦ latitude. This was done by selecting every other latitudinal

data point in the ERA5 grid and every third longitudinal data point.

After creating the global LTS grid at a 3-hourly resolution for both datasets, I col-

located the LTS readings with the MODIS CTH and τ retrievals by selecting the LTS

value with the nearest latitude, longitude and temporal coordinates. Here, nearest

LTS latitude (or longitude or time) is the latitude where the absolute difference with

the MODIS CTH latitude is smallest for the entire LTS grid. The temperature lapse

rate grid will also be collocated with the MODIS pixels using the same technique.

3.4 Hypothesis 2

To investigate Hypothesis 2, I will be filtering the data to only include single-layer

low-level clouds (0 − 2 km) in our analysis for polar-day for 2015 using the same

technique described in Section 3.3. Then I will use the Community Radiative Transfer

Model (CRTM) to calculate TOA clear-sky BTs for Channel 31 of MODIS at a wave-

length of 11 µm (BT11 µm(CRTM)). Then, I will use BT11 µm(CRTM) in conjunction
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with collocated measured MODIS Channel 31 TOA BT readings for cloudy pixels

(BT11 µm(MODIS)) to reconstruct the shared numerator in Eqn. 2.1 and Eqn. 1.1. I

am using the CRTM model in place of the PFAAST model that MODIS actually uses

since I do not have access to the latter, and collocated Advanced Microwave Scanning

Radiometer for the Earth Observing System (AMSR-E) fractional sea-ice coverage

data.

First, I will describe the CRTM model and our implementation of it to obtain clear-

sky BTs. Then I will describe the AMSR-E sea-ice concentration dataset that will be

used in our analysis technique of Hypothesis 2. After, I will describe our analysis

techniques for analyzing the zonal averaging of the apparent BTLR and the use of

unrealistic fractional sea-ice values in the MODIS CTH algorithm.

3.4.1 CRTM

To analyse Hypothesis 2, I will use the CRTM to replicate the process used by MODIS

to calculate the clear-sky BT11 µm in place of the PFAAST model. The CRTM model

is a radiative transfer model that uses inputs such as surface emissivity and vertical

atmospheric structure (obtained from MERRA2 data) to calculate outputs such as

TOA radiance for sensors such as MODIS Aqua. The model uses the inputted

atmospheric, surface, sensor structure, and a gaseous absorption model in a radiative

transfer component to calculate forward radiance outputs at the TOA. The gaseous

absorption model interpolates LUTs of optical properties such as scattering albedos

and extinction coefficients to calculate the impact of aerosols and clouds on the

transmittance of radiance (Delst et al., 2020).

Two radiative models are used by CRTM. First is the advanced doubling adding

(ADA) method which is chosen as a baseline, an accurate tool for multiple-scattering

calculations (Liu & Weng, 2006). The principle of the double-adding method was
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first put forward by Stokes (1862), which describes the intensity of light transmitted

through a layer with the additional intensity from internal reflection within the layer

taken into account. It assumes that the reflection and transmission of a layer twice

as thick as a single thin homogeneous layer (for which transmission and reflection

properties are assumed to be known) is obtained by summing the contributions of

two identical juxtaposing slabs. In strongly scattering profiles, the successive order of

interaction (SOI) has also been implemented as described by Heidinger et al. (2006).

3.4.2 AMSR-E Sea-Ice Concentration

To analyze Hypothesis 2, I will also need collocated sea-ice fractional cover values.

These were collocated with the CALIOP retrievals by selecting the nearest pixel to

each CALIOP retrieval. I will use the AMSR-E sea ice concentration product that

makes use of the polarization and spectral gradient ratios in two polarized channels

(19 GHz and 89 GHz) (Markus et al., 2012). A polarization ratio is a fucntion of the

BT in the horizontal and vertical components in two channels, obtained using passive

microwave data from the Special Sensor Microwave Imager (SSMI) on the U.S. De-

fense Meteorological Satellite Program satellites. In contrast, spectral gradient ratios

are a function of the BTs in both channels for a particular polarization (horizontal or

vertical) (Markus & Cavaleri, 2009).

Theoretical values of the polarization and spectral gradient ratios are calculated

using the NASA Team algorithm described by Markus and Cavaleri (2009) for all fre-

quency, polarization, ice concentration and weather combinations to create a LUT. This

highlights that the ratios are functions of weather and ice concentration values, and

hence for a given polarization and frequency measurement by the SSMI instrument

the nearest ice concentration±weather combination can be found where the three-

dimensional distance between the measured and pre-computed values is smallest.
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3.4.3 BTLR Replication

In MODIS, the BTLR measurements are constructed using Eqn. 1.1 where

BT11 µm(PFAAST) is obtained from the PFAAST model and then zonally aver-

aged for each month (Baum et al., 2012), and CTHCALIOP are collocated CALIOP CTH

values. Our reconstruction of Eqn. 1.1 is in contrast to the actual method MODIS uses

which uses the PFAAST model for the clear-sky model readings in the 11 µm channel,

where instead I will be using CRTM.

For each low-lying single-layer cloud detected not over land or open-ocean

(defined as the points where the sea-ice fractional coverage is greater than 0 %

according to AMSR-E) in the Arctic in polar-day in 2015, I will be assigning a vertical

temperature structure obtained from collocated MERRA2 atmospheric temperature

and pressure values. I will also assign the CRTM surface temperature to be equal

to the collocated MERRA2 surface temperature. I will then run the CRTM model,

which outputs TOA BT at 11 µm in clear-sky conditions (BT11 µm(CRTM)) as would

be detected by the MODIS Aqua satellite, for two scenarios: first using underlying

sea-ice fractional cover value set to 0 % to replicate MODIS (which I will refer to as

the unrealistic scenario), and then again setting the underlying sea-ice fractional cover

value equal to collocated sea-ice fractional values from AMSR-E data (which I will

refer to as the realistic scenario).

For each scenario I will replicate Eqn. 1.1 with BT11 µm(PFAAST) replaced

with BT11 µm(CRTM), collocated MODIS BT readings in the 11 µm channel as

BT11 µm(MODIS), and collocated CALIOP CTH readings as CTHCALIOP. Then I will

aggregate BTLR data for 2015 polar-day into 6 ◦ longitude × 0.371 ◦ latitude bins

(centred on −177 ◦E, −171 ◦E etc longitude and 61.186 ◦N, 60.557 ◦N etc latitude),

then take the mean of each bin. I will plot these means in a 2D histogram to evaluate

the longitudinal variation of Arctic BTLR and test the validity of zonally averaging
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BTLR in the MODIS CTH algorithm.

Next, I will zonally average all the BTLR readings into 22 latitudinal bins (centred

on 60.5 ◦N, 61.5 ◦N etc latitude), and plot the results against the latitudinal bin centres

for both scenarios. Then I will calculate the mean of these zonal averages for both

scenarios. This will allow us to quantify how the use of realistic sea-ice values affects

the longitudinally averaged BTLR readings that MODIS uses in its CTH calculations.

I will also run the CRTM model to output BT11 µm(CRTM) collocated with surface

temperature obtained from the MERRA2 dataset and BT11 µm(MODIS) retrievals

under clear-sky conditions. These will be pixels where neither MODIS nor CALIOP

detects any cloud. This will be done to verify the relationship between our replicated

CRTM BT values and those directly measured by MODIS in the 11 µm channel.

3.4.4 CTH Replication

As with the apparent BTLR replication (Section 3.4.3), I will run the CRTM model

using MERRA2 atmospheric temperature, surface temperature, and pressure values

for each single-layer low-level cloud not overlying land or open-ocean (defined as the

points where the sea-ice fractional coverage is greater than 0 % according to AMSR-E)

in the Arctic to output clear-sky BT for two scenarios: first I will set the underlying

surface to 0 % sea-ice cover (which I will refer to as the unrealistic scenario), second I

will set the underlying surface to AMSR-E collocated sea-ice fractional cover values

(which I will refer to as the realistic scenario).

To analyse the effect of assuming that there is no sea-ice underlying the cloud on

CTH I will first reconstruct the zonally averaged BTLR readings used by MODIS. I am

using the same BTLR readings used by MODIS, rather than our own replicated BTLR
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readings from Section 3.4.3, so that the only difference between the two scenarios is the

surface emissivity value used by CRTM in calculating the clear-sky BT in the numer-

ator in Eqn. 2.1. The MODIS BTLR readings (BTLRBaum) can be reconstructed using

the fourth order polynomial coefficients found in Baum et al. (2012), substituting them

into:

BTLRBaum = a0 + a1lat + a2lat2 + a3lat3 + a4lat4 (3.8)

where lat is the latitude of our collocated MODIS measurements, and a1, a2, a3, a4

are the polynomial coefficients given in Baum et al. (2012). For each month there

are different coefficients and latitude ranges described in Table 3.3. Once this has

been done successfully, these reproduced BTLRBaum readings will be used in the

denominator in Eqn. 2.1.

TABLE 3.3: List of coefficients describing the fourth-order polynomial pa-
rameterization of apparent BTLR for Eqn. 3.8, from Baum et al., 2012, and

the latitude range in which they apply.

month coefficients [a0, a1, a2, a3, a4] latitude range

03 [3.1251275, -0.1214572, 0.0146488, -0.0003188, 0.00000210] 10.7 ◦N ± 90 ◦N
04 [13.3931707, -1.2206948, 0.0560381, -0.0009874, 0.00000598] 29.4 ◦N ± 90 ◦N
05 [1.6432070, 0.1151207, 0.0033131, -0.0001458, 0.00000129] 14.9 ◦N ± 90 ◦N
06 [-5.2366360, 1.0105575, -0.0355440, 0.0005188, -0.00000262] 16.8 ◦N ± 90 ◦N
07 [-4.7396481, 0.9625734, -0.0355847, 0.0005522, -0.00000300] 15.0 ◦N ± 90 ◦N
08 [-1.4424843, 0.4769307, -0.0139027, 0.0001759, -0.00000080] 19.5 ◦N ± 90 ◦N
09 [-3.7140186, 0.6720954, -0.0210550, 0.0002974, -0.00000150] 17.4 ◦N ± 90 ◦N

For each scenario I will replicate Eqn. 2.1 with BT11 µm(PFAAST) replaced

with BT11 µm(CRTM), collocated MODIS BT readings in the 11 µm channel as

BT11 µm(MODIS), and reconstructed BTLRBaum as the BTLR values. I will then plot

a 2D density plot of our replicated MODIS CTH against actual MODIS CTH readings

for both the scenarios. This will first allow us to verify the validity of using the CRTM

model by comparing the 0 % fractional sea-ice calculations to MODIS measurements.

Then I will analyze the impact of using realistic sea-ice values by calculating the mean
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of the difference between the replicated MODIS CTH and measured MODIS CTH in

both scenarios.

3.5 Cloud Detection

3.5.1 CloudMask and Cloud Fractional Agreement

To analyse the success of the MODIS cloud detection algorithm I will first analyse the

performance of the MODIS CloudMask. As highlighted in Section 1.2.2, the MODIS

CloudMask produces a 48 bit output that gives four classifications for each pixel:

cloudy, uncertain clear, probably clear, and confident clear. The MODIS-AUX product,

as described by Heather and Partain (2017), is a subset of MODIS C6 radiance and

CloudMask data that overlaps each CloudSat cloud profiling radar (CPR) footprint

from MODIS data fields at a 1 km resolution. It uses the great-circle nearest-neighbor

scheme to locate each MODIS pixel to the nearest CloudSat pixel, storing the 3 nearest

across-track MODIS pixels and 5 nearest along-track MODIS pixels for each CloudSat

pixel. We will only analyse the 2nd across-track and 3rd along-track CloudMask pixel.

The 2B-GEOPROF-LIDAR data product is a combination of the CPR and CALIOP

CloudMask products aiming to provide a complete picture of aerosol and cloud occur-

rence (Mace et al., 2007). Unlike CALIOP which struggles with optically thick cloud

layers due to attenuation problems, CPR has an accurate ability to analyse optically

thick cloud layers and large-particle layers due to its longer wavelength. It utilises a

94 GHz frequency that is better able to penetrate further into optically thicker clouds

(Marchand et al., 2008). The method for combing CPR and CALIOP is described in

Mace et al. (2007). It is worth highlighting however that 2B-GEOPROF-LIDAR has its

own limitations, including a difficulty in viewing cloud fraction in the bottom 1 km of

the atmosphere in comparisons to surface based observations (Liu et al., 2017).
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The aim is to analyse the performance of MODIS in terms of fractional coverage of

clouds for single-layer, low-level clouds. For these products the active observations

will be taken to be the truth for the multi-layer and CTH detection. Hence, I will be

filtering for single-layer low-level clouds using the 2B-GEOPROF-LIDAR LayerTop

variable to indicate points where a single cloud was detected in the 0 − 2 km range as

the MODIS AUX product does not contain the multi-layer flag.

To analyse the performance of the MODIS-AUX CloudMask, which does not di-

rectly give cloud fractional coverage, I will calculate the fractional coverage parameter

for each of the 10 ◦ longitude × 3 ◦ latitude bins in the Arctic, where the bins are

centred at 5 ◦E, 15 ◦E, etc. longitude and 61.5 ◦N, 64.5 ◦N, etc. latitude, respectively.

The MODIS-AUX fractional coverage parameter is defined as CFAUX = C
T where C

and T are the number of pixels classified as cloudy and the total number of pixels

(including uncertain, clear, and cloudy points) respectively in each bin. To analyse

the success of the CFAUX approximation these bins will be calculated for September

in 2015. I will also calculate the mean cloud fractional coverage (CF2B) from the

collocated 2B-GEOPROF-LIDAR dataset in the same 10 ◦ longitude × 3 ◦ latitude bins

for the same month. I will then plot the monthly mean CFAUX and CF2B against the

longitude bin centres for a latitude of 85.5 ◦N. This will allow us to investigate the

performance of the CFAUX approximation of cloud fraction compared to CF2B cloud

fraction for a 10 ◦ longitude × 3 ◦ latitude resolution.

Once this technique has been validated, I will plot daily-averaged CFAUX and CF2B

in all latitude and longitude bins north of 60 ◦N during the 2015 polar-day in a 2D

density plot. This will be done by taking every pixel in a given day within each 10 ◦

longitude × 3 ◦ latitude bin and calculating CFAUX and CF2B for these aggregates. The

x-axis will be the average AMSR-E sea-ice concentration in the respective latitude and

longitude bin and the y-axis the daily-average CFAUX or CF2B within the respective

bin. The AMSR-E average sea-ice concentration will be determined by aggregating all
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sea-ice fractional coverage values within each latitude and longitude bin for each day

and then taking the mean of this fractional coverage. I will then difference the daily-

average CFAUX and CF2B values and produce a density plot of the results with the y-

axis representing the CFAUX −CF2B difference and the x-axis the daily-average AMSR-

E sea-ice concentration within each latitude and longitude bin, aiming to analyse the

surface-type sensitivity of the success rate of the MODIS CloudMask cloud detection

algorithm compared to the 2B-GEOPROF-LIDAR dataset.

3.5.2 Cloud-Phase Hitrate

Once I have analysed the MODIS CloudMask detection performance, I will move

on to investigating the success of the MODIS cloud-phase detection algorithm. The

cloud-optical properties phase algorithm, which is made up of 4 separate tests (see

Section 1.2.3), is only implemented if the CloudMask returns the pixel as ’cloudy’ or

’probably cloudy’, or if the CSR returns the pixel as "not cloudy" (Marchant et al.,

2016). The TIR and OP phase retrievals provide four options for each pixel. The

pixel is classified as clear-sky, liquid phase, ice phase, or uncertain. The OP retrieval

also has an additional classification of ’no-data’. Likewise, the CALIOP phase

retrieval mechanism produces four classifications for each pixel: no-data/unknown,

liquid phase, ice phase, and horizontally orientated ice crystals. Using TIR and OP

phase retrievals collocated with CALIOP’s cloud-phase retrieval mechanism at the

pixel level, I will analyse the phase detection success rate against CALIOP for low-

level single-layer clouds, filtered for using the same technique described in Section 3.3.

To analyse the phase detection success rate for liquid and ice clouds, I will define a

metric called phase hitrate:

hitrate(phase x) =
A

P
(3.9)
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where A is the total number of pixels where MODIS and CALIOP agree that the

phase of the cloud is phase x (liquid or ice) plus the number of pixels where they

agree no cloud is detected. P is the total number of agreement pixels plus the number

of pixels where either MODIS or CALIOP detect a cloud of phase x and the other

detects no cloud. I will partition these points into pixels where the underlying sea-ice

fraction is between two extreme values of 10 separate sea-ice bins (ranging from 0

to 1.0 fractional coverage centred on 0.5, 0.15 etc.) using collocated AMSR-E sea-ice

fractional coverage data. I will plot the hitrate against the sea-ice bins along with the

number of points analysed. I will also calculate the average hitrate for every month

in the Arctic 2015 polar-day for both TIR and OP, also plotting the number of points

analysed. For the seasonal analysis, phase x can be either liquid or ice, and the data

will be filtered such that the pixels sit over ocean regions only. Similarly, I will also

plot the seasonal hitrate over ocean regions again, but this time with pixels that the

two instruments agree no cloud is detected in removed.

Our investigation differs from previous investigations into the C5 pixel-to-pixel

phase detection rate in several ways (Liu et al., 2010). First, I have removed uncertain

pixels from the denominator in Eqn. 3.9 while using the updated C6 algorithm.

Moreover, Liu et al. (2010) analysed polar-night cases between July 2007 and June

2008, breaking up the analysis into sea-ice vs open-ocean cases when plotting a

seasonal hitrate analysis. Instead I will be breaking up our analysis into sea-ice bins

and, separately, monthly hitrates for 2015 polar-day.

Generally, we might expect the OP hitrate to perform better than the TIR hitrate

since it is the result of a weighted vote from the TIR test and three additional more

stringent tests, allowing greater adaptability to different cloud scenes. Moreover, we

might expect the MODIS hitrate to perform worse for liquid phase clouds based on the

literature, since liquid phase clouds are often mis-classifed as ice phase, particularly
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for low-lying maritime broken cloud scenes (Platnick et al., 2018). It should be noted

however that in the summer there are many stratiform Arctic clouds and so broken

cloudy scenes should be less of an issue (Curry et al., 1996). Finally, as with CTH

we might expect high sea-ice coverage pixels to cause MODIS to struggle with phase

discrimination due to the low thermal contrast between the cloud and the underlying

surface. However, the inclusion of the β parameter may go someway to resolving this

bias.
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Chapter 4

Results and Discussion

4.1 Low-Level, Single-Layer Clouds

In this study I will be evaluating low-level, single-layer cloud-top properties for

the MODIS instrument. The collocation methodology, described in Section 3.2, was

first verified to make sure the data points from the two satellites were aligned.

This check was done throughout the project by computing the maximum absolute

latitudinal and longitudinal differences between the MODIS and CALIOP geoloca-

tions to confirm that the difference was small. Once this was done, we calculated

the total number (T) of single-layer low-lying (CALIOP CTH ≤ 2 km and MODIS

CTH ≤ 2 km) clouds according to each instrument and technique independently,

and the percentage of these that are classified as liquid and ice-phase respectively.

The key statistics describing these data points can be seen in Table 4.1. Note that

the percentages do not add up to 100 % because some pixels are classified as uncertain.

In Table 4.1, it can be seen that out of the low-level, single-layer clouds detected

by MODIS the TIR retrieval technique detects much fewer liquid clouds compared

to the OP retrieval mechanism. As will be discussed in more detail in Section 4.5

and already outlined in Section 1.2.3, it is known that the TIR technique struggles

classifying liquid-phase clouds. However of particular interest is that CALIOP

detects many more single-layer, low-level clouds than MODIS does. This is likely

due to the attenuation of the CALIOP beam through optically thicker clouds. It is
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TABLE 4.1: Statistics of 2015 polar-day single-layer, low-level clouds as
determined by the MODIS TIR 1 km and OP 1 km phase retrieval mech-
anisms and CALIOP’s own retrieval mechanism separately. A total of
1.385 × 107 collocated retrieval points were analysed. The detection of
single-layer and low-level clouds utilises the same technique described
in Section 3.3 for each instrument, however in this instance does not re-
quire that the two instruments agree that a single-layer low-level cloud
is detected. Rather, T is the total detected single-layer low-level clouds

according to each instrument and retrieval method independently.

T Liquid [%] Ice [%]

MODIS TIR 1,944,294 66.1 10.1

MODIS OP 1,944,294 91.3 7.1

CALIOP 3,942,895 92.3 3.4

known that the CALIOP beam attenuates quickly after larger τ values. Generally,

a cloud is considered opaque by CALIOP when backscatter signals below the layer

are determined to be absent, and generally occurs after a detected τ value of ∼ 4 for

daytime retrievals (Young et al., 2018). This would mean that layers below the opaque

cloud are not detected by the lidar instrument, and could mean that the pixel actually

contains multiple cloud layers.

To avoid issues of attenuation, I filtered the data (as described in Section 3.3) such

that the instruments agreed that they were detecting a single-layer cloud in the 0±2 km

range. I was able to evaluate over 1,265,000 data points in the Arctic during 2015 polar-

day for which the instruments MODIS and CALIOP agreed that low-level, single-layer

clouds were detected.

4.2 Hypothesis 1 Results

Hypothesis 1 states that MODIS underestimates CTH when τ is small and LTS is

low. First, Fig. 4.1a shows a comparison of MODIS and CALIOP CTH, for points

where the two instruments agree that a single-layer low-level cloud is detected, by

plotting a representation of a probability density function of this 2-dimensional space

calculated using the python function Gaussian kernel-density estimate described in
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ªSciPy Gaussian KDE Function - v1.11.2 Manualº, 2023. The dashed regression line

B is calculated for all data points in the 0±2 km range (orange) and is described by

y = 0.790× x, where x is the x-axis coordinate [km] (CALIOP CTH) and y is the y-axis

[km] (MODIS CTH), calculated using a curve fit python function (ªSciPy Curve Fit

Function - v1.11.2º, 2023) and forced through y = 0, x = 0, since we have filtered our

data to agree that a cloud is detected. Similarly, the regression line A is calculated for

data points restricted to the 0±1.2 km range according to CALIOP CTH, described by

y = 1.016 × x. Line A is shown because restricting CALIOP CTH to less than 1.2 km

gives MODIS room to overestimate as well as underestimate CALIOP CTH. Since we

have filtered the data such that the two instruments agree that a cloud is detected

between 0±2 km, the regression calculation for line B does not take into account data

points where CALIOP detects CTH to be near 2 km but MODIS detects CTH greater

than 2 km. Hence, line A is considered to provide a more accurate assessment of the

true relationship between CALIOP and MODIS CTH.

MODIS generally underestimates CALIOP CTH when we analyse regression fit B,

where CALIOP has a mean CTH of 0.934 km, with the mean CTH difference (MODIS

− CALIOP) equal to −0.116 km. This is particularly interesting to note since MODIS

CTH in C5 was found to have a overall positive bias in the Arctic of 0.3 km and

0.1 km for August 2006 and February 2007 in comparison to CALIPSO according to

Holz et al. (2008). Our initial results suggest that the inclusion of the apparent BTLR

in the C6 CTH retrieval method has lead to a decreased magnitude of the absolute

difference compared to CALIOP, but MODIS now seems to have a low bias if we

analyse regression fit B. This aligns with previous research by Baum et al., 2012 that

showed that the inclusion of the apparent BTLR reduced global positive overestimates

(as discussed in Section 4.2).

However, at low CALIOP CTH values (less than 1.2 km) MODIS generally per-

forms slightly better according to the linear regression fit, with many points showing
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(A) MODIS and CALIOP CTH probability den-
sity function plot. The black line represents the
1:1 markers, the orange line a linear regression
fit only taking into account points where CALIOP
CTH is less than or equal to 1.2 km (and MODIS
CTH ≤ 2 km) described by y = 1.016 × x, and
the dashed orange line a linear regression fit for
all data (CALIOP CTH ≤ 2 km and MODIS CTH
≤ 2 km) described by y = 0.790 × x. The plot
is split into 80 × 80 bins centred on 0.0125 km,

0.0375 km, etc. CTH.

(B) CTH mean bias error (MBE) and absolute av-
erage error (AAE) for all single-layer, low-level
clouds in polar-day 2015. MBE is calculated
by taking the mean CTH difference (MODIS -
CALIOP) in each bin, centred on 0.05 km, 0.15 km,
etc. CALIOP CTH, and AMBE by taking the ab-
solute value of the MBE values. The bars on MBE
represent the standard deviation of the CTH dif-

ference in each bin.

FIGURE 4.1

that MODIS actually slightly overestimates the CALIOP CTH values. This is sup-

ported by regression line A that is slightly steeper than the 1:1 line. This is reflected

in a mean CTH difference (MODIS − CALIOP) for data points where CALIOP CTH

≤ 1.2 km with a positive value of 0.049 km and a standard deviation of 0.412 km.

Moreover, the magnitude of the error seems to increase with CTH between the 1±2 km

level according to Fig. 4.1b. This might simply be because at larger CTH values there

is more room for error (in either direction). However, we propose that it is a result

of our data filtering that restricts all retrievals to having a MODIS CTH smaller than

2 km. As mentioned earlier, this filtering could neglect many points that overestimate

CALIOP CTH at values closer to 2 km and therefore skew the mean bias error (MBE)

to larger negative values. Hence, we consider regression line A to be a more accurate

representation of the CTH comparison. Therefore, we will filter the rest of the results

in Section 4.2 such that CALIOP CTH is less than 1.2 km. All data points and figures

evaluated in this section therefore now contain single-layer clouds according to both
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(A) MERRA2 LTS (B) ERA5 LTS

FIGURE 4.2: Polar projections of average LTS in 2015 polar-day, where
LTS is constructed at a 3-hourly temporal resolution and at a spatial reso-
lution of 0.625 ◦ longitude ×0.5 ◦ latitude from the MERRA2 dataset, and
at a resolution of 0.75 ◦ longitude × 0.5 ◦ latitude from the ERA5 datasets.

instruments and a cloud top height in agreement with the determined MODIS CTH

less than 2 km and the CALIOP CTH less than 1.2 km.

Fig. 4.2 shows our MERRA2 and ERA5 constructed LTS averaged over 2015

polar-day and polar-projected. It is worth highlighting that no LTS values are seen

in areas where the surface sits at a pressure level smaller than 800 hPa, such as

the Greenland ice-sheets. In general, the result shows the hypothesised pattern of

higher LTS over regions that generally contain higher sea-ice values (as discussed in

Section 2.1), and lower over land. Figure 4.2a and 4.2b show similar spatial patterns

for the climatological 2015 polar-day average of LTS, validating the consistency of

my technique used to construct the LTS grid across both datasets as described in

Section 3.3.1. It is important to highlight that since I are using the 800 hPa LTS, small

LTS values may indicate that surface altitude is close to 800 hPa, rather than that the

lower troposphere has a low stability.

Figure 4.3 shows the CTH climatology in the LTS-τ space for MODIS and CALIOP,

where LTS is constructed using MERRA2 data. One observation is that the mean

MODIS CTH (Fig. 4.3b) in low LTS and higher τ bins is noticeably higher that
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(A) CALIOP mean CTH. (B) MODIS mean CTH.

FIGURE 4.3: Mean MODIS and CALIOP CTH [km] retrievals in the LTS-τ
retrieval space for 2015 polar-day, where LTS is constructed at a 3-hourly
temporal resolution and at a spatial resolution of 0.625 ◦ longitude ×0.5 ◦

latitude from the MERRA2 datasets. All pixels included contain single-
layer clouds according to both instruments such that MODIS CTH is less

than 2 km and CALIOP CTH is less than 1.2 km.

the mean CALIOP CTH (Fig. 4.3a) in those same bins. It also seems like CALIOP

overestimates MODIS for low τ and low LTS bins. Otherwise, MODIS and CALIOP

show broadly similar CTH climatologies in the LTS-τ retrieval space. To investigate

the differences further, I calculated the mean CTH difference (MODIS − CALIOP)

between the two plots.

The results quantifying the effect of τ and LTS on the mean CTH difference are

shown in Fig. 4.4a using the MERRA2 dataset to create LTS and replicated in Fig. 4.5a

using ERA5 to create LTS. Importantly, the CTH bias climatology in the LTS-τ space

does not seem to depend on our choice of reanalysis dataset. Fig. 4.4b and 4.5b show

the distribution of the total number of points used in the two respective graphs.

Bins containing less than 50 points are not shown. There are two key features to

notice in Fig. 4.4a. First, the CTH underestimation is largest when τ is small, and this

underestimation seems to be slightly skewed towards low LTS values also. Second,

there is a group of positive biases located in the upper left corner of the plot that

extends to an LTS value of about 16 K before more negative bins are seen as LTS
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(A) Mean CTH difference in each bin. Bins centred
on 0.10, 0.30 etc.τ and 1.15 K, 1.48 K etc. LTS.

(B) Total number of points in each bin. Bins cen-
tred on 0.10, 0.30 etc.τ and 1.15 K, 1.48 K etc. LTS.

FIGURE 4.4: Mean CTH difference and total number of points used
grouped into 100 × 100 LTS±τ bins, where LTS is created with the reanal-
ysis dataset MERRA2 and τ comes from the MODIS 1 km COT21 variable.
A statistical limit is placed on each 2D bin such that the bins must contain
a minimum of n ≥ 50 points to be plotted, aiming to remove statisti-
cally insignificant bins. All pixels included contain single-layer clouds
according to both instruments such that MODIS CTH is less than 2 km

and CALIOP CTH is less than 1.2 km.

increases.

As per Hypothesis 1 (Section 2.1), a low τ value allows more radiation from the

surface to reach the passive sensor. Meanwhile, a small LTS is an indicator that

either none or a weaker temperature inversion is present, meaning that the TOA

radiative influence by the surface is strong relative to the radiation emitted from

the cloud. Hence underestimation increasing as τ decreases to smaller values and

as LTS decreases to smaller values might be explained by our hypothesis described

in Section 2.1. My results are corroborated by Fig. 4.5a, which also shows that the

strength of underestimation is larger for low τ and LTS values using an alternative

dataset (ERA5) to calculate 800 hPa LTS values. Importantly, it is worth highlighting

that even for low τ and LTS the radiation from the surface does not necessarily

dominate compared to the radiation from the cloud-top, but just that it has a larger

influence. It is also worth highlighting that the cloud τ at the 2.1 µm wavelength

is generally of a greater magnitude than that at the 11 µm wavelength (Wylie et al.,
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(A) Mean CTH difference in each bin. Bins centred
on 0.10, 0.30 etc.τ and 0.27 K, 0.60 K etc. LTS.

(B) Total number of points in each bin. Bins cen-
tred on 0.10, 0.30 etc.τ and 0.27 K, 0.60 K etc. LTS.

FIGURE 4.5: Mean CTH difference and total number of points used, as in
Fig. 4.4, but using ERA5 reanalysis data instead of MERRA2 to calculate

LTS.

1995). However, the general pattern that underestimation of CTH by MODIS increases

for low τ remains. More generally, the mean CTH difference (MODIS − CALIOP) for

all data points included in Fig. 4.4 is 0.049 km with a standard deviation of 0.412 km,

so in general MODIS overestimates CALIOP when CALIOP CTH is less than 1.2 km.

However, the standard deviation around the mean overestimation is significant, and

therefore includes many pixels where CTH is underestimated. This is suggests a

significant improvement in MODIS C6 retrieved CTH compared to C5 where the

CTH difference with CALIOP in the Arctic was 0.3 ± 1.2 km in August 2006 and

0.1 ± 1.7 km in February 2007 (Holz et al., 2008).

Interestingly, as can be seen in both Fig. 4.4b and 4.5b, most of the data points

arise from more central LTS and τ values. Comparing this observation with Fig. 4.4a

and 4.5a, this indicates that most data points occur in bins where a slight average

overestimation occurs of a few tens to a few hundreds of metres. The mean value of

the CTH difference (MODIS − CALIOP) for all data points is 0.049 km, so in general

a slight average overestimation does occur. Importantly this mean difference is much

smaller than the extreme values in the bottom left and upper left corners of Fig. 4.4

and Fig. 4.5, which could be explained given the relatively few data points that occur
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for low LTS values.

Fig. 4.6a and 4.6b show the standard deviation of the mean CTH difference values

in each bin for Fig. 4.4a and 4.5a respectively. There is a larger spread in the biases for

low LTS and higher τ compared to elsewhere. These are also the bins where MODIS

tends to overestimate CTH. This could be because, as highlighted by Scott et al., 2020

(though this study did not include the Arctic region), strong inversions favour greater

cloud opacity of low-level cloud cover by trapping moisture in the marine boundary

layer. These thicker clouds may be easier for MODIS to identify and to detect the

CTH of due to the decreased influence of radiation not arising from the cloud-top. It

is important to note that the high standard deviation values of 0.55 km are not unique

to our study, as Holz et al., 2008 found that MODIS C5 had a mean bias ± standard

deviation compared to CALIOP (MODIS − CALIOP) of 0.3 ± 1.2 km in August 2006

and of 0.1 ± 1.7 km in February 2007.

(A) Standard deviation of CTH difference values
in each bin for Fig. 4.4a. Bins centred on 0.10, 0.30
etc.τ and 1.15 K, 1.48 K etc. LTS calculated from

MERRA2.

(B) Standard deviation of CTH difference values
in each bin for Fig. 4.5a. Bins centred on 0.10, 0.30
etc.τ and 1.15 K, 1.48 K etc. LTS calculated from

ERA5.

FIGURE 4.6: Standard deviation of the mean CTH difference [km]
(MODIS - CALIOP) per bin with the dataset grouped into 100 × 100
LTS±τ bins, where LTS is created with the reanalysis dataset ERA5 and
MERRA2 and τ comes from the MODIS 1 km COT21 variable. Filtering

as in Fig. 4.4.
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(A) Mean CTH difference in each bin. Bins centred
on 0.10, 0.30 etc.τ and 1.15 K, 1.48 K etc. LTS ac-

cording to MERRA2.

(B) Mean CTH difference in each bin. Bins centred
on 0.10, 0.30 etc.τ and 1.15 K, 1.48 K etc. LTS ac-

cording to ERA5.

FIGURE 4.7: Mean CTH difference (MODIS - CALIOP) per bin with the
dataset grouped into 100 × 100 LTS±τ bins, where LTS is created with
the reanalysis dataset ERA5 and MERRA2 and τ comes from the MODIS
1 km COT21 variable. Filtering as in Fig. 4.4 with pixels situated over land

according to the AMSR-E sea-ice mask removed.

Regarding the bins where MODIS overestimates CALIOP as seen in both Fig. 4.4a

and Fig. 4.5a, they seem to occur when τ is larger. Hence the underestimation effect of

the surface could be masked since the surface radiation would be more attenuated as

it passes through the cloud. Hence, as τ increases competing impacts could begin to

dominate over the impact of the surface radiation. For example, at larger τ values the

impact outlined by Hypothesis 2 (Section 2.2) could begin to dominate, since the effect

of Hypothesis 1 becomes weaker. The lack of realistic sea-ice values in the modelled

clear-sky BT could theoretically result in an overestimate of CTH when no inversion

is present, which a low LTS would generally indicate. This hypothesis will be

investigated further in Section. 4.3. However first, to further investigate those points

for which an overestimate occurs, I recreated Figs. 4.4a and 4.5a again but removed

pixels situated over land. Figure 4.7 shows the results of this surface-type-selective

data processing.

As shown in Fig. 4.7, the visual pattern in the LTS-τ space does not change sub-

stantially when land points are removed. The widespread overestimation by MODIS
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seen at high τ and low LTS remains, and the generally higher underestimation at low

LTS and low τ remains. This suggests that the cause of this overestimation (and also

underestimation) is at least in part linked to LTS. However, the mean CTH difference

(MODIS - CALIOP) decreased to 0.027 km with a standard deviation of 0.394 km

when land points were removed (compared to 0.049km km with a standard deviation

of 0.412 km with land points included) suggesting that MODIS underestimates more

over ocean regions in the Arctic (although not everywhere, as is evident from Fig. 4.7).

To investigate the positive vs. negative biases further, I plotted the aggregated mean

CTH difference projection for 2015 polar-day for low-level, single-layer clouds in the

Arctic (Fig. 4.8).

Figure 4.8 shows that for regions at higher latitudes and over ocean, MODIS tends

to underestimate CALIOP by a few tens to a few hundred meters. In contrast, there

is larger overestimation for points overlying ocean locations at lower latitudes, and

over land surfaces. This could be because the higher latitude regions over ocean tend

to have a higher LTS according to Fig. 4.2, suggesting that the geographic shift in the

Barents sea, from a general overestimate to a more neutral or even underestimate

as latitude increases, might be tied to an increased LTS. Figure 4.7 also shows that

overestimation at τ greater than 5.0 decreases as LTS increases. However, it should

be noted that these ocean regions of higher LTS might generally be expected to

have higher sea-ice coverage that is associated with a larger LTS. Sea-ice surfaces

generally have lower surface temperatures due to the continuous loss of heat through

radiant emission, and the sea-ice acts as a thermal insulator limiting heat conduction

from the underlying ocean water, causing low-lying temperature inversions and

leading to higher LTS (Stramler et al., 2011; Uttal et al., 2002). The increased sea-ice

coverage could therefore be the cause of the increased underestimation of MODIS

CTH at higher latitudes over ocean regions. Sea-ice generally has a higher surface

reflectance compared to open ocean surfaces (Warren & Brandt, 2008), which would

lead to an increase in the reflected downwelling radiation. This could increase the



64 Chapter 4. Results and Discussion

FIGURE 4.8: Aggregated mean CTH difference (MODIS - CALIOP) pro-
jected onto the Arctic region (latitudes greater that 60 ◦N), calculated over
2015 polar-day. There are 30 latitude × 360 longitude bins. Bins are cen-
tred on −177.5 ◦E, −176.5 ◦E etc. longitude and 60.5 ◦N, 61.5 ◦N etc.

latitude. Data points filtered as for Fig. 4.4.

intensity of the radiation detected at the TOA and therefore increase the measured

cloud-top BT11 µm. This in turn could reduce the BT11 µm difference between the

PFAAST modelled clear-sky scenario and MODIS measured cloud-top BT assuming

no low-level temperature inversion was present, leading to an underestimate in the

MODIS CTH retrieval. Interestingly, Holz et al., 2008 showed that in Arctic regions

the overestimation of CTH by MODIS compared to CALIOP was less in February

2007 than in August 2006 for a resolution of 1 km. This could corroborate our finding

that MODIS tends to underestimate more over sea-ice surfaces, since February

would generally imply a higher sea-ice regional coverage than August. Though, it

is important to note that the study by Holz et al., 2008 compared the MODIS C5
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(A) April 2015. (B) August 2015.

FIGURE 4.9: Aggregated mean CTH difference (MODIS - CALIOP) for
two distinct months projected onto the Arctic region (latitudes greater
that 60 ◦N), calculated for (A) April and (B) August 2015. There are 30
latitude × 360 longitude bins. Bins are centred on −177.5 ◦E, −176.5 ◦E
etc.longitude and 60.5 ◦N, 61.5 ◦N etc.latitude. Data filtered as for Fig. 4.4.

product to CALIOP, whereas I am analysing MODIS C6, for which the CTH retrieval

technique has been changed from C5, as discussed in Section . However, both C5 and

C6 rely on measured BT11 µm, which could explain the correlation.

To compare more closely to results from Holz et al., 2008 we projected the mean

CTH difference for April and August 2015 (since we did not have access to data

from February or 2007). The results can be seen in Fig. 4.9. As can be seen, the

negative mean biases extend to much lower latitudes in the month of April compared

to the month of August. This could be due to sea-ice concentration being higher

at lower latitudes in April than in August. The increase in points with an average

underestimation might also align with results by Holz et al., 2008 that show that

MODIS overestimates CTH less compared to CALIOP in winter months than in

summer months. Moreover, August 2015 has a mean CTH difference (MODIS -

CALIOP) 0.036 ± 0.424km, whereas for April 2015 this difference decreases to

−0.006 ± 0.428km.
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Our projections suggest that CTH bias could be tied to sea-ice fractional coverage

underlying the cloud since underestimation seems to increase in the winter months.

However, it should again be highlighted that the spatial pattern of Fig. 4.8 is similar to

the spatial pattern of the mean aggregated LTS in Fig. 4.2. In the Barents sea, we see a

clear increase in LTS as latitude increases which is visually similar to the line between

blue and red points in Fig. 4.8. This suggests that high LTS is more associated with

an increased underestimate. However there are also some differences in the spatial

patterns between the Fig. 4.2 and Fig. 4.8, such as Baffin Bay which shows neutral to

positive CTH bias but a generally higher LTS. These discrepancies might be explained

since for strong non-linear temperature changes in the atmosphere, inversion strength

was not directly tied to LTS (Wood & Bretherton, 2006). Hence, there may be some

points where non-linear θ gradients impact the temperature of the cloud-top in a way

that is not adequately represented by LTS. For example, I have calculated LTS using

an elevated altitude pressure level of 800 hPa, however the cloud may sit at a higher

pressure level, and hence have a different potential temperature difference with the

2 m level than indicated by LTS. Therefore, while the cloud may sit within a pixel with

a higher LTS, the cloud-top temperature could be much lower or higher than T800 hPa

and therefore the relative influence of the surface much higher or lower, respectively.

Therefore, these discrepancies between Fig. 4.8 and Fig. 4.2 might further support our

findings that while CTH bias is tied to LTS it also seems to depend on other factors

such as sea-ice coverage.

In general, our findings suggest that the combination of low LTS and low τ plays a

role in causing MODIS CTH to be underestimated, while low LTS and higher τ seems

to be associated with an overestimation. However the higher standard deviation seen

in Fig. 4.6b and Fig. 4.6a suggest that the mean CTH errors result from an averaging

of much larger errors in individual retrievals. Moreover Fig. 4.8 suggests that the

MODIS CTH bias has a high surface type dependence (for example open-ocean

vs. sea-ice surfaces), which could explain any CTH bias patterns seen in the LTS-τ
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space since Fig. 4.2 shows that LTS also has a high geographic dependence. More

specifically, Fig. 4.8 shows that underestimated points generally come from regions

that would generally have higher sea-ice concentration. This observation is further

verified by Fig. 4.9 which shows that underestimation increases in winter months

compared to summer months.

4.3 Hypothesis 2 Results

4.3.1 CTH Replication

Fig. 4.10 shows the results of my CTH replication where I used Eqn. 2.1 to replicate the

MODIS CTH algorithm, for pixels where a single-layer and low-lying (CTH ≤ 2 km)

cloud, according to both instruments, is detected over ocean, using the CRTM model

in place of the PFAAST model to calculate clear-sky BT. From Fig. 4.10a and 4.10b, the

mean calculated CTH (i.e. y axis) is 0.731 km and 0.652 km respectively.

(A) Unrealistic sea-ice fractional cover values
(0 %).

(B) Realistic sea-ice fractional cover values from
the collocated AMSR-E sea-ice product.

FIGURE 4.10: Density plot of MODIS measured CTH and CTH calculated
using the CRTM model (in place of the PFAAST model) to calculate clear-
sky BT, where the blue lines represent the 1:1 markers and the color bar
the density of points. Data is filtered to only include single-layer low-level
(0 − 2 km) clouds north of 60 ◦N for points where fractional sea-ice cover

is greater than 0 % for polar-day 2015.
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TABLE 4.2: Mean difference (CRTM CTH - Measured CTH) [km] statis-
tics for clouds in different altitude layers according to the MODIS CTH

retrieval method for Fig. 4.10. ∆ represents: column 3 − column 2.

Unrealistic sea-ice value AMSR-E sea-ice value ∆

All 0±2 km clouds 0.04 -0.04 -0.08

0±1 km clouds 0.09 0.01 -0.08

1±2 km clouds -0.13 -0.22 -0.09

First, the CRTM method is replicating MODIS CTH retrievals well, however there

is a spread from a 1:1 match (blue line). This could be explained since I am using

a different radiative transfer model and atmospheric property values to calculate

BT11 µm(CRTM) values than MODIS uses. Interestingly, my replication of CTH

underestimates compared to the measured values more for points higher than 1 km.

For clouds within the 0±1 km range the CRTM model slightly overestimates the

measured values, whereas for clouds within the 1±2 km range the CRTM model seems

to underestimate the measured values more. This distinction between the upper and

lower levels of the 0±2 km range for CTH biases can be seen in Table 4.2, which lists

the mean difference between my replicated CTH algorithm and MODIS’ measured

CTH. It should be highlighted that there are more points in the 0±1 km range, so

in general the model slightly overestimates the measured values. One potential

future improvement in the CTH replication could be the use of more realistic H2O

concentration and O3 concentration values, which were kept constant throughout

my CTH calculations in the CRTM model. This would more accurately represent the

atmospheric conditions of each cloudy pixel and the PFAAST model itself, which uses

water vapour and ozone profiles from GDAS (Baum et al., 2012).

Table 4.2 also shows that the 1±2 km level shows a greater decrease in CTH between

the unrealistic and realistic scenario, represented by ∆. This indicates that the use of

realistic sea-ice values lowers (compared to the unrealistic scenario) BT11 µm(CRTM)

more for higher clouds. The difference in the two layers could be because the higher

clouds are more likely to sit over higher sea-ice values. Open oceans tend to have
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higher surface temperatures, stronger evaporation, and more lower tropospheric

moisture in the warmer summer months, promoting more low-level cloud amount

since the surface is more coupled to the cloud layer enhancing surface turbulent mois-

ture fluxes to the atmosphere (Yu et al., 2019). It is therefore possible that many of the

pixels falling in the 0±1 km range exist over lower fractional sea-ice cover surfaces than

the 1±2 km pixels. This would mean that the difference in surface emissivity between

the two scenarios would be lower for the 1±2 km layer and therefore the magnitude

of the impact on BT11 µm(CRTM) lower. However it should be noted that the magni-

tude of ∆ is relatively similar for the two layers so the difference could be insignificant.

Second, the use of realistic sea-ice values (Fig. 4.10b) lowers the average replicated

CTH values by 0.079 km compared to Fig. 4.10a. This aligns with the hypothesis

as described in Section 2.2, particularly given that during polar-day temperature

inversions are generally either weaker, at an elevated altitude, or do not exit (Gra-

versen & Wang, 2009) such that the temperature of the cloud-top is generally cooler

than the surface. In the unrealistic scenario 0 % sea-ice surface cover is used in the

CRTM model underlying the cloud, leading to an overestimate of the calculated

BT11 µm(CRTM) and hence an average overestimate in the numerator of Eqn. 2.1, as

discussed in Section 2.2. This suggests that the use of unrealistic sea-ice coverage

values in the Arctic leads to a positive CTH bias, and that replacing these values with

locally accurate sea-ice values could reduce the MODIS measured CTH. However,

it is worth highlighting that the difference of 0.079 km is relatively small compared

to the average CTH (unrealsitic scenario) of 0.731 km, suggesting that the impact

of emissivity differences between open-ocean and sea-ice is relatively small. This

could be explained given the relatively small difference in emissivity between the two

surface types, as illustrated in Fig. 2.1.
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FIGURE 4.11: CRTM simulated variation of BT11 µm with sea-ice fractional

coverage. Atmospheric conditions obtained from MERRA2 data for 5th

March 2015 at approximately 20:00 UTC, at a longitude of −116.83 ◦ E
and latitude of 69.22 ◦ N. Note, there is a small temperature range on the

y-axis of approximately 0.62 K.

To verify this expectation that surface emissivity changes should have a small im-

pact on CTH retrievals, I plot the variation of BT11 µm with sea-ice fractional cover-

age as simulated by the CRTM model. Figure 4.11 shows the results. The surface

temperature was kept constant at 260 K and the CRTM model was run for clear-sky

conditions over open-ocean in the Arctic at a longitude of −116.83 ◦E and latitude of

69.22 ◦N, where the atmospheric conditions (such as atmospheric temperature) were

obtained from MERRA2 and kept constant throughout the run. The atmospheric con-

ditions were obtained from MERRA2 data for 5th March 2015. As can be seen BT11 µm

decreases linearly with a corresponding increase in sea-ice fractional coverage. As

discussed in Section 2.2 this is expected due to the decreased emissivity of sea-ice

compared to open-ocean. However, it is important to note that the magnitude of the

change is relatively small at approximately 0.62 K between 0 % and 100 % fractional

coverage. This is expected due to the relatively small emissivity difference between
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sea-ice and open-ocean as illustrated in Fig. 2.1. Moreover, given the attenuation of

radiation emitted from the surface as it passes through the atmosphere and the reflec-

tion of downwelling radiation at the surface, the impact of surface emissivity could be

reduced even further. This likely explains the small change in mean CRTM calculated

CTH seen in Fig. 4.10.

4.3.2 BTLR Replication

The results for the replicated BTLR computation are shown in Fig. 4.12. Since I am

only running the CRTM model for data points where the underlying surface has a

sea-ice fractional coverage greater than 0 %, there are few data points at latitudes

lower than 70 ◦N, and none over land. However, it is clear that there is a strong

longitudinal variance of the average apparent BTLR readings even in the unrealistic

sea-ice scenario. This suggests that accurate local apparent BTLR values largely

depend on properties other than surface emissivity. This is likely explained given

that factors other than surface emissivity can affect the temperature structure of the

atmosphere, which can also vary longitudinally. For example, in the CRTM model I

used local atmospheric temperature and pressure values from the MERRA2 dataset,

which would likely have a direct impact on the calculated BTLR values. However,

importantly what Fig. 4.12 shows is that the zonal averaging of apparent BTLR values

is not accurate in the Arctic.

Interestingly, when zonally averaging these apparent BTLR values and plotting

these average values against latitudinal coordinates on the x-axis, the unrealistic and

realistic sea-ice fractional cover runs produce similar visual patterns, as is shown

in Fig. 4.13a and 4.13b respectively. This is likely because the BTLR is dominated

by the vertical temperature structure of the atmosphere which was kept constant

between the two runs. However, the average latitudinal apparent BTLR value drops

from 7.62 K km−1 to 6.75 K km−1 between unrealistic (Fig. 4.13a) and realistic sea-ice
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(A) Unrealistic sea-ice fractional cover values
(0 %).

(B) Realistic sea-ice fractional cover values from
the collocated AMSR-E sea-ice product.

FIGURE 4.12: A distribution of CRTM replicated BTLR values averaged
into 60 latitude × 60 longitude bins. Bins are centred on −177.00 ◦E,
−171.00 ◦E etc.longitude and 60.19 ◦N, 60.56 ◦N etc.latitude. Data fil-
tered to only include single-layer low-level (CTH ≤ 2 km) clouds north
of 60 ◦N for points where fractional sea-ice cover is greater than 0 % for

polar-day 2015.

(Fig. 4.13b) values respectively. Like the CTH plots (see Fig. 4.10), the only change

between the runs was that realistic sea-ice fractional cover values have been used in

the calculation of BT11 µm(CRTM). As discussed in Section 2.2, this decrease is likely

explained by the impact of emissivity differences between open-ocean and sea-ice on

BT11 µm(CRTM).

It should be noted that for lower latitudes there are fewer points to analyze. This

makes physical sense since I am evaluating points where sea-ice fraction is greater

than 0 % to analyse the effect of using non-zero, physically realistic sea-ice fractional

cover values. However, the general pattern that using realistic sea-ice fractional cover

values over sea-ice points lowers the CRTM calculated apparent BTLR remains. This

suggests that the use of unrealistic sea-ice coverage values in the Arctic leads to a

positive BTLR bias, and that replacing these values with locally accurate sea-ice values

could reduce the magnitude of the apparent BTLR values used in the denominator of

Eqn. 2.1. It should be noted that the magnitude of the effect of the surface emissivity

change on the zonal average of apparent BTLR is small compared to the geographic
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(A) Unrealistic sea-ice fractional cover values
(0 %).

(B) Realistic sea-ice fractional cover values from
the collocated AMSR-E sea-ice product.

FIGURE 4.13: A distribution of the CRTM replicated BTLR values av-
eraged into 22 latitude bins. Bins are centred on 60.5 ◦N, 61.5 ◦N
etc.latitude. Data filtered to only include single-layer low-level clouds
north of 60 ◦N for points where fractional sea-ice cover is greater than

0 % for polar-day 2015.

variation shown in Fig. 4.12. As with the CTH replication (discussed in Section 4.3.1),

this is likely due to the small emissivity difference between open-ocean and sea-ice in

the 11 µm wavelength.

Importantly, further validation was warranted to evaluate if the CRTM calculated

apparent BTLR values were physical, particularly for values greater than the dry

adiabatic temperature lapse rate (∼ 9.8 K km−1) as seen in Fig. 4.12. To verify the

relationship between the apparent BTLR and temperature lapse rate, I first plot

the temperature lapse rate against our CRTM calculated BTLR values, shown in

Fig. 4.14. The temperature lapse rate was calculated against the 900 hPa level as it is

approximately near the mean CTH level in the 0 − 2 km range of 0.934 km according

to CALIOP. For example, using an example mean temperature between the 1000 hPa

to 900 hPa levels in the Arctic obtained from the MERRA2 dataset, equal to 269 K, as

an approximation for the virtual temperature of the level, we can use the hypsometric

equation to calculate a surface-900 hPa thickness of approximately 1000 m, which

is approximately the same as the mean CALIOP CTH. Since MODIS restricts the
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FIGURE 4.14: 2D histogram of lapse rate, calculated between the surface
temperature and 900 hPa atmospheric temperature, against CRTM calcu-
lated BTLR lapse rate. There are 50 × 50 histogram bins between 1 K
and 10 K, centred on 1.09 K km−1, 1.27 K km−1 etc. BTLR and tempera-
ture lapse rate, with bins that contain less than 30 points not shown. The
orange line shows the regression fit and the blue the 1:1 marker. Data
were selected such that only every 6th day (starting from 1st March 2015)

of 2015 polar-day was included.

apparent BTLR values a maximum of 10 K km−1 post-processing (Baum et al., 2012), I

also restricted our replication of BTLR to the same values. A minimum statistical limit

of 30 was placed such that bins with less points are not shown to remove statistically

insignificant bins. The data was selected such that only every 6th day (starting from

1st March 2015) of the 2015 polar-day was included. A regression fit calculated using

the same technique as Fig. 4.1a is shown in orange. The equation governing that fit is

y = 1.18 × x where y is the y-axis (BTLR [K km−1]) and x is the x-axis (temperature

lapse rate [K km−1]). As can be seen through the regression fit, the two generally

increase together at a gradient steeper than a 1:1 relationship. This is consistent with

our earlier findings as it suggests that some BTLR values seem to be overestimated. It
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should also be noted that the mean lapse rate of 3.8 K km−1 is slightly below literature

values of the lapse rate in the Arctic of 4.5 K km−1 (Mokhov & Akperov, 2006). In

the Arctic, particularly over sea-ice surfaces, temperature inversions near the surface

are common and could lead to a lower lapse rate near the surface since the 900 hPa

temperature would be closer to the surface temperature in these cases. This could

explain the lower temperature lapse rate, and therefore lower apparent BTLR, values

seen in Fig. 4.14.

(A) A distribution of BTLR values calculated us-
ing the polynomial parametization and associ-
ated coefficients obtained from Baum et al., 2012,
and calculated utilising MODIS latitude values for
cloudy-sky pixels not over land for polar-day 2015.

(B) A distribution of BTLR values calculated using
our CRTM replication of Eqn. 1.1 for cloudy-sky

pixels not over land for polar-day 2015.

FIGURE 4.15

However, in general there seem to be a significant number of overestimated BTLR

values that need to be explained. To investigate these overestimates further, we

first needed to compare the validity of the zonally averaged BTLR values calculated

from CRTM to those obtained from the literature. To do this, I took the BTLR values

calculated with Eqn. 1.1 using the CRTM model with inputs of MODIS retrieved

BT, MERRA2 data, and CALIOP CTH using realistic sea-ice values. I then used the

latitude of each MODIS pixel used in the CRTM replication of BTLR, along with

the coefficient values and polynomial parametization for each month obtained from

Baum et al., 2012, to calculate the apparent BTLR according to the literature (and
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actually used by the MODIS CTH algorithm). The distribution of the BTLR values

obtained from the CRTM replication and the literature can be seen in Fig. 4.15. As with

Fig. 4.12, this was only done for cloudy pixels (single-layer and low-level according to

both instruments) not over land.

The mean of Fig. 4.15b is 6.68 K km−1 and of Fig. 4.15a is 7.69 K km−1. Therefore, it

seems that the magnitude of the literature values is approximately equivalent to our

CRTM calculated values, if not slightly higher. This could be because we used realistic

sea-ice values in our CRTM computation of BTLR seen in Fig. 4.15b. Moreover, for

our CRTM replication of BTLR, 19.8 % of points are over 10 K km−1, whereas for the

literature values 23.8 % of points are over 10 K km−1, which is greater than the post-

processing cut-off used by the MODIS instrument (Baum et al., 2012). Importantly,

both plots use Eqn. 1.1 to calculate BTLR, though Fig. 4.15a has both zonally and

monthly averaged its values (Baum et al., 2012), and also uses the PFAAST model in

place of the CRTM model. This suggests that the methodology used to calculate BTLR

by MODIS needs to be investigated further, since both our replication of BTLR and

the literature BTLR values seem to be significantly higher than the actual temperature

lapse rate in the Arctic according to MERRA2 (see Fig. 4.14).

To verify our extraction of the apparent BTLR values from the literature, I used the

coefficients from Table 3.3 and polynomial parametization from Baum et al., 2012 to

show the zonal variation of BTLR for August, and also for all months in the polar-day

using the coefficients from Baum et al., 2012. The results for August are shown in

Fig. 4.16 as the brown line and match the expected literature plot. More interestingly,

however, is that the higher BTLR values seem to be coming from March, April, and

May at higher latitudes. This suggests that the methodology and instruments used in

Eqn. 1.1 might overestimate the apparent BTLR (compared to the typical temperature

lapse rate values seen in Fig. 4.14) more in winter months than in summer months,

and at higher latitudes. There could be several reasons for this. First, the methodology
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FIGURE 4.16: Zonal averages of BTLR polar-day months calculated and
plotted using polynomial parameterization (described in Eqn. 3.8) and as-
sociated coefficients by Baum et al., 2012. The legend contains the months
of the year (i.e. 03 = March, 04 = April). The dashed line represents the
maximum limit applied in post-processing to BTLR by MODIS (Baum et

al., 2012).

could overestimate in the presence of low-lying temperature inversions, which are

particularly common in the winter (Graversen & Wang, 2009). Alternatively, it could

be that the methodology struggles over sea-ice surfaces.

To investigate the apparent BTLR calculations further, we broke down the compo-

nents of Eqn. 1.1 further. Throughout this thesis we are taking CALIOP as the truth,

so we assume that the error is likely arising within the numerator of Eqn. 1.1. We

verified our CRTM calculation of BT11 µm(CRTM) by plotting a probability distri-

bution function of it against the collocated surface temperature used as the surface

temperature input into the CRTM model (obtained from the MERRA2 dataset). Then,

we repeated the process comparing our CRTM calculation of BT11 µm(CRTM) with

collocated MODIS BT11 µm(MODIS) retrievals. These two plots were done for every

10th clear-sky pixel for every 12th day of the polar-day year starting at 1st March to



78 Chapter 4. Results and Discussion

save computation time. The probability distribution functions, and the corresponding

linear regression lines, were calculated as for Fig. 4.1a. The results are shown in

Fig. 4.17a and Fig. 4.17b, respectively.

Two observations are clear. First, the CRTM model is replicating clear-sky con-

ditions well in comparison to the inputted surface temperature. The orange line in

Fig. 4.17a shows the regression fit, calculated using the same technique as for Fig. 4.1a,

described by y = 1.02 × x − 6.77, and the black line the 1:1 identity line. As can

be seen, the two show a similar gradient, suggesting that the CRTM clear-sky BT is

closely tied to the surface temperature inputted into the model ± as we would expect.

The gradient of the regression line also confirms that there appears to be a linear

relationship between surface temperature and CRTM determined surface BT, with the

values of roughly the correct magnitude. The non-zero y-intercept due to the fact that

the gradient is slightly larger than 1.0. This suggests that the clear-sky BT variable in

our replication of Eqn. 1.1 is functioning correctly.

Second, the CRTM modelled clear-sky BTs are generally larger than the MODIS

measured clear-sky BTs. The slope of regression fit A in Fig. 4.17b, described by

y = 0.81 × x + 52.57, is shallower than the 1:1 line shown in black. If we force the

regression fit to have a gradient of 1.0, it is described by regression fit B. This dashed

orange line is described by the equation y = x + 4.17. These two lines indicate that

discrepancy between the MODIS retrieved BT and the CRTM model gets worse for

smaller MODIS measured BT values, and generally increases at a gradient slightly

smaller than that of a linear relationship. More generally, it suggests that our CRTM

model is overestimating BT retrievals in comparison to MODIS retrievals. This could

explain the overestimation seen in our replication of BTLR compared to temperature

lapse rate (Fig. 4.14). If the modelled clear-sky BT was too large when we replicated

Eqn. 1.1, it could lead to an overestimated BT difference from the MODIS measured

cloud-top BT, if a temperature inversion was not present. Since the CRTM model
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(A) Clear-sky CRTM BT compared to MERRA2
surface temperature. The probability distribution
calculation was calculated using 70 × 70 bins cen-
tred on 224.5 K, 225.5 K etc. MERRA2 surface tem-

perature and BT11 µm(CRTM).

(B) Clear-sky CRTM BT compared to pertaining
MODIS retrieved BT. The probability distribution
calculation was calculated for 70 × 70 bins cen-
tred on 227.5 K, 227.5 K etc. BT11 µm(MODIS) and

BT11 µm(CRTM).

FIGURE 4.17: Clear-sky BT11 µm(CRTM) compared to collocated
MERRA2 surface temperature and collocated MODIS retrieved
BT11 µm(MODIS) for every 10th pixel of every 12th day of the polar-
day, starting at 1st March 2015. Data were also filtered such that a pixel
was clear-sky according to both MODIS and CALIOP, and that the pixel
was located over sea-ice surfaces according to the collocated AMSR-E

data.

seems to be performing as expected in relation to the inputted surface temperature,

this suggests that the discrepancy is due to discrepancies between MERRA2 surface

temperature and the actual surface temperature impacting the satellite radiance

measurement, or, less likely, a MODIS calibration issue.

The literature suggests that surface temperatures need to be atmospherically

corrected in the model to be used in MODIS CTH calculations (Menzel et al., 2008),

and we could speculate that such a correction to our CRTM model input could reduce

the BT bias shown in Fig. 4.17. Moreover, the literature suggests that a radiance

bias adjustment needs to be incorporated to correct for differences between model-

derived and measured TOA radiances (Baum et al., 2012). Though the literature

suggests this adjustment was applied to radiances used in the CO2-slicing height

retrieval method, it is not clear how such adjustments affect the computation of appar-

ent BTLR in Eqn. 1.1 or if they also might need to be implemented for low-level clouds.
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In general, our results suggest that a deeper investigation into the accuracy of

MODIS retrieved BT in the Arctic is needed to further improve the apparent BTLR

and CTH algorithms and to reduce number of unphysical BTLR values. One such

avenue could be investigating more specifically where the high BTLR and low lapse

rate points seen in Fig. 4.14 are arising from. For instance, Fig. 4.16 suggests that

such instances could be occurring over particular surface types such as sea-ice, which

would explain why they seem to primarily arise in March, April, and May, according

to the literature. Alternatively, they could be arising in the presence of low-level

temperature inversions, which may occur more frequently over sea-ice conditions in

the winter months (while my analysis is restricted to the polar-day season).

A limitation of our analysis is that it was beyond the scope of this thesis to anal-

yse the performance of the CRTM model in cloudy-sky conditions in comparison to

MODIS retrieved BT due to substantial computational costs and limited time available.

To do this, one could use the CALIOP cloud profile to determine cloud-top height and

cloud-base height, therefore obtaining a measure of cloud physical thickness. Then,

this could be used in conjunction with CALIOP’s cloud optical depth retrievals to ob-

tain the liquid water path of the cloud, as described by the relationship in Brenguier

et al., 2011. One might also need an estimate of the total cloud droplet number concen-

tration. This liquid water path could then be used to obtain the liquid water content

of the cloud. Alongside a measure of effective radius, that could be obtained from the

MYD06 MODIS product (described in Table 3.1), this liquid water content could then

be input into the CRTM model as the cloud structure component (Delst et al., 2020).

Alongside MERRA2 temperature data, CRTM could then be used to simulate TOA

radiances in the 11 µm range, which would then support a realistic estimate of the

cloud-top BT as measured by MODIS. These simulated cloudy-sky BTs could then be

compared to actual MODIS retrieved BTs, which would allow us to analyse any biases
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in the MODIS cloud-top BT compared to the CRTM model. Moreover, such simula-

tions could be run over various realistic low-level clouds situated at different heights

and over different surfaces. This would provide information on the expected variabil-

ity in TOA radiances. Due to computational constraints it was beyond the scope of the

thesis to investigate this cloudy-sky scenario via extensive simulation experiments,

but such an investigation would be a valid addition to this research. It would also be

useful to use an observing system simulation experiment (OSSE) to better constrain

the uncertainties of MODIS BT retrievals and therefore MODIS and CALIOP observed

BTLR according to Eqn. 1.1. Such a technique will be discussed further in Section 5.2.

4.4 CloudMask Cloud Fractional Agreement Results

FIGURE 4.18: Monthly average MODIS AUX CFAUX (aux) and CF2B (2b)
cloud fraction for 2015 September in each 10 ◦ longitude bin for a latitude

of 85.5 ◦N. The longitude bins are centred at −175 ◦E, −165 ◦E etc.

The results comparing the MODIS AUX CloudMask CFAUX calculation to CF2B

can be seen in Fig. 4.18 and Fig. 4.19. Figure 4.18 shows a comparison of the monthly

average cloud fraction in 10 ◦ longitude × 3 ◦ latitude bins for 2015 September for a
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(A) CF2B (cloud fraction) obtained from the 2B
CloudFraction product.

(B) CF (cloud fraction) obtained from the MODIS
AUX CloudMask product.

FIGURE 4.19: Daily average CFAUX (A) or CF2B (B) cloud fraction and
AMSR-E fractional sea-ice coverage plotted in a 2D density plot for 2015
polar-day. There are 35 CFAUX (A) or 35 CF2B (B) bins (centred on 0.0143,
0.0286 etc. cloud fraction), and 35 sea-ice bins (centred on 1.43 %, 2.86 %

etc.sea-ice fractional coverage).

latitude of 85.5 ◦N. While there are some differences between the CF2B and CFAUX

values, in general there is good agreement between the two instruments for cloud

fraction. This suggests that the technique described in Section 3.5.1 for approximating

CloudMask cloud fractional coverage as CFAUX in a coarse resolution latitude and

longitude grid generally replicates the average CF2B well.

Moving forward onto a 2015 polar-day and Arctic comparison of the two products,

Fig. 4.19 shows 2D density plots of the daily average CFAUX and CF2B values aggre-

gated into collocated AMSR-E fractional sea-ice cover bins. Examining Fig. 4.19, it is

clear that there is broad agreement between the two techniques. The concentration

of points in the largest sea-ice bin is likely because there is a large amount of full

sea-ice coverage in the Arctic. Likewise, the concentration of points in the smallest

sea-ice bin is likely because in the polar-day there are many open-ocean points with

sea-ice fractional coverage values of 0 %. It is clear from both Fig. 4.19a and Fig. 4.19b

that there are more cloudy pixels over open-ocean than over higher sea-ice points.

This is likely explained since open-ocean tends to favour low-level cloud formation
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FIGURE 4.20: Daily average CFAUX - CF2B cloud fraction difference and
AMSR-E fractional sea-ice coverage plotted in a 2D density plot for 2015
polar-day. There are 35 CFAUX - CF2B bins (centred on −0.0572, −0.0286,
0.0286, 0.0572 etc. cloud fraction), and 35 sea-ice bins (centred on 1.43 %,

2.86 % etc.sea-ice fractional coverage).

(Sato et al., 2012; Yu et al., 2019) in the Arctic. One potential issue is that the latitude

and longitude centres of these bins vary, and so factors other than sea-ice could be

affecting the cloud fraction retrieval. Keeping the latitude and longitude coordinates

constant could therefore be a warranted avenue of future work.

Figure 4.20 shows a density plot of the difference between Fig. 4.19b and Fig. 4.19a.

As can be seen, there is a vertical spread in the data points, particularly for low

and high sea-ice values. More specifically, it looks like CFAUX overestimates CF2B

more frequently than underestimates. This could be explained by a combination of

two reasons. First, the CloudMask product is known to be clear-sky conservative
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(Platnick et al., 2018). Therefore, it is possible that many clear-sky pixels are being

classified as cloudy in the AUX product, shifting the CFAUX grid box daily average

higher. It is important to highlight that Holz et al. (2008) found in the Arctic winter

period that the CloudMask is clear-sky biased in regions of high sea-ice for C5. This

is reflected in Fig. 4.20 where there is a small spread below the 0.00 CFAUX − CF2B

line in the 90±100 % sea-ice concentration bins. However, even at these higher sea-ice

concentration bins more points are overestimated by CFAUX.

The second explanation is tied to the technique used to approximate the grid level

cloud fraction cover (as described in Section 3.5.1). The CFAUX calculation utilises a

binary Boolean approach for the N values: cloudy pixels are given a weight of 1.0

and all others are given a weight of 0.0. In contrast, the cloudy pixels used in CF2B

can take a value in the range 0.0±1.0, since the 2B-GEOPROF-LIDAR product gives

cloud fraction values of less than 1.0 when a pixel is only partly covered by clouds.

Therefore, pixels which are partly cloudy will contribute to the daily average CF2B

with a value of less than 1.0 but to the daily average CFAUX with a value equal to 1.0.

This would lead to an overestimate of CFAUX compared to CF2B in the case of high

fractional coverage grid bins.

While the overestimation is seen for all sea-ice concentration bins, there is

specifically a large CFAUX overestimation compared to CF2B for the lowest sea-ice

concentration bin. The increase in points seen in the lowest sea-ice bin might be

partially explained since there are simply more retrievals over open-ocean than high

sea-ice concentration points. However, low sea-ice cover also generally favours more

low-level cloud cover as previously discussed. This could lead to more CFAUX and

CF2B values greater than 0.0 which might explain why more points are seen further

away from the 0.00 CFAUX − CF2B line than for higher sea-ice cover values. In partic-

ular, there are many points in this bin where CFAUX − CF2B is near to 1.00, suggesting

that there are points where MODIS detects a cloud that the 2B-GEOPROF-LIDAR
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product fails to detect. I know the CloudMask is clear-sky conservative as discussed

in Section 1.2.2, which may explain this disagreement.

Overall the CFAUX calculation seems to replicate CF2B well at the 10 ◦ longitude

× 3 ◦ latitude resolution since most points sit near the 0.00 CFAUX − CF2B line.

However, Fig. 4.20 seems to show a surface dependence for the CloudMask cloud-

detection success rate compared to 2B-GEOPROF-LIDAR. Given the lack of thermal

contrast between sea-ice and clouds as discussed by Liu et al. (2010), this dependence

on sea-ice concentration could be explained (note that Liu et al. (2010) investigated

C5 not C6), however it could also be partially explained by the difference in the

number of retrievals in each bin. Therefore, further investigation is warranted. I

suggest reducing the coarseness of the grid resolution as there could be large sea-ice

concentration variability within a 10 ◦ longitude × 3 ◦ latitude bin, and evaluating

how changes to sea-ice concentration impact low-level cloud cover detection at a

constant latitude and longitude coordinate.

4.5 Phase Hitrate Results

4.5.1 Low-Level, Single-Layer Cloud Phase Distribution

The statistics for the pixels where MODIS and CALIOP agree that a low-level (CTH

≤ 2 km) single-layer cloud is detected can be broken up into thin (τCALIOP < 2)

and thick clouds (τCALIOP ≥ 2) respectively, with τCALIOP being determined by the

CALIOP 532 nm 5 km τ product. The CALIOP 532 nm 5 km product was used since I

did not have access to the 1 km product, and since CALIOP is known to be accurate

for low τ retrievals (Young et al., 2018). The results are listed in Table 4.3. The small

percentage of ice-phase clouds is likely explained since I am analysing low-level

clouds in the Arctic polar-day period, during which temperatures are warmer than in
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the polar-night and for higher altitudes.

TABLE 4.3: Statistics of agreement between MODIS TIR/OP 1 km and
CALIOP phase retrieval techniques, broken up into thin (τ < 2) and thick
(τ ≥ 2) clouds, where 275, 956 thin single-layer low-lying clouds were
detected by the CALIOP 532 nm 5 km τ retrieval mechanism and 989, 483
thick single-layer low-lying clouds were detected. The table does not in-
clude data where the CALIOP phase retrieval mechanism failed, which
makes up 0.23 % and 0.5 % of the data for thick and thin clouds, respec-
tively. The percentages are in terms of the number of total single-layer
low-lying clouds as agreed upon by MODIS and CALIOP (1, 265, 439 re-

trievals).

CALIOP liquid
[%] thin

CALIOP liquid
[%] thick

CALIOP ice [%]
thin

CALIOP ice [%]
thick

TIR liquid 14.39 56.76 0.30 0.40

TIR ice 1.41 1.06 0.20 0.06

TIR uncertain 4.58 19.45 0.43 0.23

OP liquid 19.18 76.56 0.56 0.58

OP ice 0.86 0.33 0.32 0.09

OP uncertain 0.34 0.39 0.05 0.01

Three key features stand out in Table 4.3. First, there are a large number of points

classified as ice by the TIR method that CALIOP classifies as liquid (a total of 2.47 %

of all pixels). It is known from the literature (Platnick et al., 2018) that MODIS C6

still struggles with mis-classifying low-lying liquid clouds as ice-phase (though this is

expected to have improved since C5); however, I hypothesize this number to be larger

for optically thin clouds or broken cloud scenes due to the increased influence of

surface radiance at the TOA. This is reflected in Table 4.3, which lists that the share of

mis-classified liquid-phase clouds decreases for thicker clouds. However, as expected

from the literature (Platnick et al., 2018) the use of emissivity ratios in the TIR method

do not seem to lead to a consistent liquid-phase classification when compared to

the CALIOP instrument or even the OP method. Instead, as expected many of the

liquid-phase pixels (according to CALIOP) are now classified as uncertain according

to the TIR method (Platnick et al., 2018).
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This leads us to the second observation, that the TIR method classifies a large pro-

portion of pixels where a cloud is detected as uncertain, with a total of 24.69 % across

all single-layer low-level clouds. In C6, it is known that many of the pixels previously

classified as liquid are now classified as uncertain in C6 by the TIR method (Platnick

et al., 2018). This is reflected in Table 4.3 where 24.03 % of the pixels were classified as

uncertain according to the TIR method but liquid by the CALIOP method. In contrast,

the percentage of points classified as uncertain by the OP retrieval mechanism is

much smaller, a total 0.79 % of the total cloudy points. This could be explained by the

additional more stringent tests included in the OP test on top of the TIR test itself.

Third, the retrievals are dominated by thick clouds (78.2 % of retrievals), and the

agreement for thicker clouds is generally better. For example, for both the TIR and

OP methods the agreement with CALIOP that a liquid cloud is detected is higher for

thicker clouds, making up 72.59 % and 97.91 % of the 989, 483 thick clouds detected

(for TIR and OP respectively). For thin clouds, out of a total of 275, 956 retrievals these

percentages drop to 66.00 % and 87.95 % for the TIR and OP methods, respectively.

This suggests two interpretations. First, MODIS phase classification performs better

for liquid-phase clouds when the clouds are optically thicker. Second, since the ma-

jority of points are liquid according to CALIOP (97.66 % of the total thin and thick

clouds) and most are thick liquid clouds (77.27 % of the total thin and thick clouds),

the phase hitrate analysis outlined in Section 4.5.2 and 4.5.3 will be dominated by the

success of liquid, thick cloud retrievals.

4.5.2 Influence of Sea-Ice Fractional Cover on Phase Hitrate

Liquid Clouds

Fig. 4.21 shows the phase hitrate for the TIR and OP retrieval methods averaged

into 10 sea-ice bins from collocated AMSR-E data for 2015 polar-day. First, the OP

method has a higher average hitrate than the TIR method for liquid clouds, likely
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FIGURE 4.21: MODIS (TIR and OP retrieval methods) and CALIOP hi-
trate agreement for Arctic polar-day in 2015 broken into 10 collocated
AMSR-E sea-ice bins for liquid-phase clouds. N is the total number of

retrievals in each sea-ice bin.

due to the inclusion of the additional more stringent tests in OP. More specifically,

the hitrate drops largely after the first sea-ice bin for both methods, but the drop is

larger for the TIR method. The TIR and OP hitrates show an initial decrease between

sea-ice fractional coverage bins 0±10 % to 10±20 % of 11.45 % and 6.31 % for TIR

and OP respectively. This suggests that the TIR method is more affected by surface

fractional ice-coverage than the OP method. Given that the OP retrieval method

relies on additional phase votes by three additional tests which might provide greater

adaptability to difference surface types, this smaller drop when sea-ice fractional

cover increases above 0 % might be expected. For example, the 1.38 µm test is known

to be useful over snow and ice covered surfaces in the Arctic (Gao et al., 1993), so may

be reducing the impact of the sea-ice on phase retrievals.

Interestingly, it appears that as sea-ice coverage increases further the hitrate rises

again. Figure 4.22a shows the percentage of points that are classified as not cloudy
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and cloudy by both CALIOP and MODIS for each retrieval technique respectively. As

can be seen, for higher sea-ice fractional cover bins the percentage of points classified

as not-cloudy by both instruments increases, and the percentage of cloudy points

is generally consistent, though has a slight dip at the end. This correlates with the

increase in hitrate for both instruments as sea-ice cover increases. Given the literature

suggests that many of the issues for the TIR technique lie with broken or optically

thin clouds (see Section 1.2.3), a higher percentage of cloud-free pixels in the analysed

datset could explain the increase in hitrate since MODIS would not have to extract

phase from optically thin clouds. However an investigation into the distribution

of cloud τ against sea-ice fractional coverage would be necessary to confirm this

hypothesis.

To analyse the hitrates further, I broke up the hitrates into fractional disagreement

that a cloud was detected and that no cloud was detected, and the results can be seen

in Fig. 4.22b. These percentages show the percentage of points where MODIS and

CALIOP disagreed that a liquid cloud was detected, where D1 indicates that CALIOP

detects clear-sky and D2 indicates that MODIS detects clear-sky. It is clear that as

fractional sea-ice cover increases past the 40±50 % bin the amount of D1 disagreement

decreases, and D2 increases slightly. The D1 decrease is further corroborated by

looking back at Fig. 4.22a, as there is a corresponding increase in the agreement that

a clear-sky pixel is detected. This suggests that as sea-ice fractional cover increases

towards 100 % MODIS performs better in terms of classifying clear-sky pixels cor-

rectly, but slightly worse in terms of mis-classifying liquid cloud pixels as clear-sky.

This could suggest that a partly sea-ice covered surface has more similar thermal

properties in the 8.5 µm, 11 µm, and 12 µm channels to a liquid cloud than a fully

covered sea-ice surface. Importantly, the former improvement seems to dominate and

make up a larger fraction of the pixels, and hence seems to explain the corresponding

increase in hitrate at higher sea-ice fractional cover bins.
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(A) MODIS TIR/OP phase retrieval method and
CALIOP hitrate agreement that a clear-sky or
cloudy pixel (where the phase of the cloud is liq-
uid) is detected as a fraction of the total points used
in Fig. 4.21 for Arctic polar-day in 2015 broken into
10 collocated AMSR-E sea-ice bins for liquid-phase

clouds.

(B) MODIS and CALIOP hitrate disagreement for
Arctic polar-day in 2015 broken into 10 collocated
AMSR-E sea-ice bins for liquid-phase clouds. D1
denotes all points where CALIOP detects a clear-
sky pixel and MODIS detects a liquid-phase pixel,
and D2 indicates all points where CALIOP detects
a liquid-phase pixel and MODIS detects a clear-sky

pixel.

FIGURE 4.22

Interestingly, the increase in D1 between the first two sea-ice fractional coverage

bins also correlates to the decrease in hitrate discussed earlier. This, in conjunction

with the correlation between D1 and hitrate in higher sea-ice bins, suggests that the

liquid-phase hitrate is driven primarily by the success of MODIS in detecting clear-sky

pixels correctly. Once again, OP seems to perform better at this than the TIR method.

Ice Clouds

Figure 4.23 shows the hitrate agreement for ice-phase clouds. The first thing to

notice is that the hitrate percentages are higher than the liquid counterparts. This

is likely due to the fact that there are very few ice-phase pixels in the Arctic in

polar-day for low-lying, single-layer clouds, as can also be seen in Table 4.3. As

can be seen in Fig. 4.24a, for both retrieval techniques clear-sky pixels dominate

the hitrate. The percentage of ice-phase pixels increases in the largest sea-ice bin,

which makes sense given the likely corresponding temperature drop over cooler sea-

ice surfaces, however, even then non-cloudy pixels make up around 95 % of the pixels.
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FIGURE 4.23: MODIS TIR/OP phase retrieval method and CALIOP hi-
trate agreement for Arctic polar-day in 2015 broken into 10 collocated
AMSR-E sea-ice bins for ice-phase clouds. N is the total number of re-

trievals in each sea-ice bin.

The next striking observation is that there is more variability in the TIR hitrate com-

pared to the OP method, with standard deviations of 2.05 % and 1.00 % respectively.

This is likely due to the fact that the TIR method classifies more pixels as ice compared

to OP, as is reflected in the lower fractional amount of clear-sky pixels classified by

the TIR method compared to the OP method (Fig. 4.24a). Moreover, Fig. 4.24b shows

that the TIR method struggles much more with D1 disagreement where CALIOP

detects a clear-sky pixel and MODIS detects a cloudy (in this case ice-phase) pixel.

This suggests that the decrease in agreement of clear-sky pixels is explained by the

TIR method mis-classifying clear-sky as ice-phase. In contrast, this occurs for much

fewer pixels for the OP method, suggesting that the additional stringent tests go some

way to improving clear-sky classification. Once again, mis-classifying clear-sky pixels

as cloudy seems to drive the disagreement with the CALIOP phase retrievals.
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(A) MODIS TIR/OP phase retrieval method and
CALIOP hitrate agreement that a clear-sky or
cloudy pixel (where the phase must be ice) is de-
tected as a fraction of the total points used in
Fig. 4.23 for Arctic polar-day in 2015 broken into
10 collocated AMSR-E sea-ice bins for ice-phase

clouds.

(B) MODIS and CALIOP hitrate disagreement for
Arctic polar-day in 2015 broken into 10 collocated
AMSR-E sea-ice bins for ice-phase clouds. D1 in-
cluded all points where CALIOP detects a clear-
sky pixel and MODIS detects an ice-phase pixel,
and D2 included all points where CALIOP detects
an ice-phase pixel and MODIS detects a clear-sky

pixel.

FIGURE 4.24

4.5.3 Seasonal variability of phase hitrate

Fig. 4.25b shows hitrate plots partitioned into monthly averages for all 2015 polar-day

pixels not over land, where the phase of the agreement (or disagreement) in Eqn. 3.9

can be either liquid or ice. Fig. 4.25a shows the same plot, except this time with

pixels where MODIS and CALIOP agree that no-cloud is detected not included in the

calculation so that those pixels do not dominate the hitrate values. Two observations

are clear. First, the OP method performs better on average in comparison to CALIOP

than the TIR method. Second, the seasonal variability in hitrate is larger for TIR than

for OP. The standard deviation of the monthly hitrate values in Fig. 4.25b for each

method are 2.83 % and 0.81 % for TIR and OP phase retrieval methods respectively.

Interestingly, Fig. 4.25a shows a much decreased overall hitrate in the winter

months, a decrease that is much smaller in Fig. 4.25b. To analyse this hitrate further, I

repeated the diagnostic breakdown in Section 4.5.2 on Fig. 4.25b. Figure 4.26a shows

that in those winter months the agreement that a cloud is detected drops but that there
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(A) MODIS TIR/OP phase retrieval method and
CALIOP hitrate agreement for all single-layer low-
level pixels not over land in the Arctic for polar-
day in 2015. Dataset broken into monthly aggre-
gated hitrate averages. Pixels where the two in-
struments agree that no cloud is detected have
been removed fron Eqn. 3.9. N is the total num-

ber of retrievals in each month.

(B) MODIS TIR/OP phase retrieval method and
CALIOP hitrate agreement for all single-layer low-
level pixels in Arctic polar-day in 2015 not over
land surfaces, broken into monthly aggregated hi-
trate averages. Unlike (A), no-cloud pixels were
counted in the hitrate here. N is the total number

of retrievals in each month.

FIGURE 4.25

(A) MODIS TIR/OP phase retrieval method and
CALIOP hitrate agreement that a clear-sky or
cloudy pixel (where the phase of the cloud can
be anything) is detected as a fraction of the total
points used in Fig. 4.25b for all single-layer low-
level pixels in the Arctic polar-day in 2015 not over

land surfaces, broken into monthly averages.

(B) MODIS and CALIOP hitrate disagreement (as
a fraction of the total points used in Fig. 4.25b)
for all single-layer low-level pixels in the Arctic
polar-day in 2015 not over land surfaces. The dis-
agreement is broken into monthly aggregated hi-
trate averages, where D1 denotes all points where
CALIOP detects a clear-sky pixel and MODIS de-
tects a cloudy pixel. Whereas, D2 labels all points
where CALIOP detects a liquid cloud and MODIS

detects a clear-sky pixel.

FIGURE 4.26

is a corresponding increase in the agreement that a clear-sky is detected. The impact of

the drop in Fig. 4.26a on Fig. 4.25b therefore might be lessened due to the domination
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of pixels where the two instruments agree that a clear-sky is detected. It is therefore

likely that this drop in cloudy pixels being detected explains the corresponding drop

in hitrate in the first three months of Fig. 4.25a and the much smaller drop in Fig. 4.25b.

Figure 4.26b shows the seasonal percentage disagreement between the two instru-

ments for two different scenarios for the TIR and OP method respectively: first (D1)

where CALIOP detects a clear-sky pixel and MODIS detects a cloudy pixel, second

(D2) where CALIOP detects a liquid cloud and MODIS detects a clear-sky pixel.

Generally, these values are consistent for all four options. However, D2 increases in

September for the TIR method, where it is also the case that cloudy pixels (as agreed

by each instrument) make up approximately 60±70 % of pixels, a percentage which

increases into the summer months (see Fig. 4.26a). The increase in low-level cloud

amount is also verified in the literature where past studies have seen large amounts

of low-level clouds in the summer (Curry & Ebert, 1992). Both the increase in D2

disagreement and low-level cloud amount in September also correspond with a drop

in hitrate to about 80 % in September for the TIR method.

This sudden increase in the mis-classification of liquid clouds as clear-sky by

the TIR method could be due to a variety of reasons, however it does not seem

to be replicated by the OP method. The increase in the fraction of pixels that are

cloudy could play a large role, particularly if this lead to a corresponding increase

in the number of pixels observing thin low-lying liquid clouds over open-ocean. I

know from Table 4.3 that TIR struggles with liquid pixels, which is also seen in the

literature which specifies that this is a particular problem over open-ocean (Platnick

et al., 2018). The impact of surface type could be particularly relevant if there was

an increase in the number of thin low-lying liquid clouds over open-ocean so that

the radiative influence from the surface is higher at the TOA. In September, sea-ice

extent is generally at a minimum, so the number of thin low-lying liquid clouds over

open-ocean could reasonably be hypothesised to be higher, perhaps explaining the



4.5. Phase Hitrate Results 95

general tend in Fig. 4.26b that TIR D2 increases into the summer months.

Moreover, the strong seasonal variability in cloud type could have an impact on

the hitrate values. This variability could be due to a variety of factors, for example

variations in sea-ice coverage can impact cloud type (see Tan et al. (2021) for more dis-

cussion on factors influencing Arctic mixed-phase cloud type, or Scott et al. (2020) for

a discussion on how cloud-type is linked to LTS and surface type). It is therefore likely

that factors controlling cloud-type are also indirectly affecting the monthly average

hitrate. This may effect the TIR method more since the additional tests used by OP in

its voting method could provide better adaptability to different cloud scenes.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Focusing on single-layer, low-level clouds north of 60 ◦N in polar-day 2015, this

study has quantified the effects of local variations in τ and LTS on MODIS’s CTH

bias relative to the CALIOP instrument. Reanalysis data was utilised to construct

local LTS variations, in particular the results were replicated using the ERA5 and

MERRA2 datasets for the vertical temperature structure in the Arctic. It was found

that consistent underestimation values occur for the parameter space characterized by

low LTS and low τ values, whereas CTH overestimates occurred for low LTS and high

τ values. Using LTS as an indicator of the temperature structure and static stability

of the lower atmosphere, we propose that the influence of the surface radiance at the

TOA would increase with an increase in surface temperature relative to the CTT. This

increase in surface temperature would lead to a corresponding increase in the strength

of radiation emitted by the surface according to Plank’s law, and therefore the surface

radiance would have a stronger impact at the TOA. Since the TOA radiance detected

by the passive MODIS sensor is a superposition of radiance from all atmospheric

levels and the surface, this leads to a surface-bias in the measured cloud-top BT and

an underestimate in the CTH retrieval. Moreover, we also propose that the scale of

the CTH bias increases as τ decreases since the surface radiance would be attenuated

less as it passes through cloud layers.
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However, the large standard deviation values shown in Fig. 4.6a suggest that the

CTH biases demonstrated by Fig. 4.4 and Fig. 4.5 come from the averaging of typically

much larger individual errors. It is suggested that non-linear potential temperature

changes could reduce the coupling between LTS and CTH biases since clouds may

sit lower or even higher than the 800 hPa pressure-level. However, Fig. 4.9 suggests

that CTH bias might also vary with sea-ice concentration, which we speculate might

be due to the increased reflectance of downwelling longwave radiation. While the

geographic variance of the CTH biases (Fig. 4.8) showed that the spatial pattern was

similar to the spatial pattern of the annual LTS projection with negative biases arising

in areas of higher LTS over open-ocean, the two plots showed differences in some

key regions as well. More generally, while our results suggest that LTS and τ are

important to the magnitude and sign of the CTH bias, other reasons, such as surface

type and geographic location, also seem to be important, but no single dominant

reason is easily identified. This suggests that further work is needed to more closely

tie the CTH biases in the Arctic to other geographically and seasonally varying

properties such as sea-ice cover.

Three conclusions may be drawn from our analysis of Hypothesis 2. First, the zonal

averaging of BTLR values applied in Eqn. 2.1 and used by MODIS’s CTH product is

inconsistent with CRTM calculated BTLR values. Second, the use of AMSR-E sea-ice

concentration in the computation of clear-sky BT lowers the calculated CTH and

BTLR values in polar-day conditions in 2015 due to emissivity differences between

open-ocean and fractional sea-ice cover. However, the impact of correctly assigning

surface type is small due to similar emissivities between sea-ice and open-ocean at

wavelengths around 11 µm. Third, it is clear that there is a discrepancy between the

apparent BTLR calculated using Eqn. 1.1 and the temperature lapse rate according

to MERRA2 data. The apparent BTLR calculation seems to be overestimating the

temperature lapse rate, an issue that also seems to occur for values obtained from the

literature (Baum et al., 2012). Upon further investigation, it appears likely that most of
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the difference is arising due to discrepancies between the MODIS retrieved BT in the

11 µm channel compared to those simulated by the CRTM model in clear-sky condi-

tions. More specifically, MODIS measured BT values seem to be overestimated by the

CRTM modelled BT calculated using MERRA2 reanalysis surface temperature data.

This hints at the potential for similar discrepancies existing for MODIS measured

cloud-top BT relative to "true" cloud-top temperatures and cloud-top BT as simulated

by CRTM (although such simulations were not carried out in this work).

Overall, while Hypothesis 2 is qualitatively correct, the magnitude of the impact

on CTH calculations was found to be small due to small emissivity differences

between water and sea-ice. In contrast, our investigation of BTLR suggests that the

methodology described by Eqn. 1.1 overestimates at higher latitudes, particularly in

winter months. Therefore, it is likely that BTLR biases, and therefore MODIS CTH

biases, are being influenced by factors outside of those outlined by Hypothesis 2.

Our analysis of the MODIS CloudMask showed that the approximation for cloud

fraction represented by the variable CFAUX was comparable to the average CF2B cloud

fraction for a coarse bin resolution of 10 ◦ longitude × 3 ◦ latitude . The difference

between the two variables showed a sea-ice concentration dependence and that

CFAUX overestimated CF2B more than it underestimated. We suggest this can be

explained by the clear-sky conservative nature of the MODIS CloudMask product

and the weighting of cloudy pixels used in calculating CFAUX which used a binary

pixel classification logic.

Finally, by analysing phase hitrate compared to CALIOP, it was found that the TIR

hitrate consistently performs worse than the OP method. It was found that the hi-

trates are strongly affected by surface type through the use of collocated AMSR-E sea-

ice fractional coverage readings. More generally, a key conclusion from this section

is that in the case of both liquid and ice-phase hitrates, clear-sky pixels (according to
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CALIOP) cause the largest disagreement. In other words, MODIS struggles with mis-

classifying non-cloudy pixels as either liquid or ice-phase, with peak disagreements

occurring for sea-ice bins in the 20±50 % sea-ice fractional coverage range. This is

a particular problem for the TIR method, but also a problem for the OP method for

liquid-phase clouds. Moreover, it was found that there is a strong seasonal depen-

dence for phase hitrate. We suggest that this is due to a combination of surface type

changes, which affects hitrate as verified in Section 4.5.2, but also seasonal cloud type

variability.

5.2 Future Work

To further analyse Hypothesis 1, one could use AMSR-E data collocated with MODIS

and CALIOP CTH readings to analyse the dependence of CTH bias on sea-ice

fractional coverage. Since Fig. 4.9 seems to suggest a seasonal variation in CTH bias,

this is a viable avenue for future work that could reveal a clear surface dependence

of low-level CTH biases in the Arctic. Additionally, one could use an alternative

measure of the vertical potential temperature gradient, such as estimated inversion

strength (Wood & Bretherton, 2006), to analyse whether the spread in individual

errors shown in Fig. 4.6 is due to a decoupling between LTS and CTH biases. This

could be due to non-linear potential temperature changes, as discussed in Section. 4.2.

Narrowing down why the overestimate values of clear-sky CRTM simulated

BT occur would be a warranted avenue of future research. First, it could be that

these overestimates are occurring over regions of high sea-ice at higher latitudes,

or that the MERRA2 reanalysis dataset is inaccurately representing the actual sur-

face temperature influencing MODIS retrievals of BT. To investigate this further, a

radiative-transfer-model-based OSSE (Zeng et al., 2020) could be used to simulate the

BT that MODIS could detect under different circumstances and the level of precision

that could be expected from the instrument. An OSSE usually includes a nature run
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to simulate the so-called "truth" state of the atmosphere without making use of data

assimilation techniques that account for actual observations (e.g., Masutani et al.,

2013). This nature state is then used in a simulation of possible observations of a given

variable as it would be detected by an instrument (Ye et al., 2022), such as MODIS

radiance measurements. In our case, we would want to estimate the true state of

the apparent BTLR. This "truth" BTLR could be obtained from reanalysis datasets

containing BT values (or temperature and known emissivities at 11 µm), and these

simulations should generally also produce realistic errors (Masutani et al., 2013).

One could use CALIOP cloud data (such as cloud-top and cloud-base height), to

generate optically realistic cloud layers in a CRTM simulation. Then, this simulation

could be run to simulate BTs for cloudy-sky and clear-sky conditions while keeping

the temperature profile constant to obtain a simulated BTLR related to CALIOP

CTH. Then, one could vary various atmospheric and surface properties, such as the

temperature profile, surface type, or CTH in this simulation to quantify the impact

these variations would have on the simulated BTLR. Since this simulated BTLR

would be calculated using the same methodology (described by Eqn. 1.1) as when

using actual MODIS retrieved BTs, the uncertainties for the actual MODIS BTLR

and CTH estimations would be bounded, assuming MODIS runs perfectly, or with

added uncertainties included when there is additional calibration error in the MODIS

instruments. This would be a sensible approach to determine how realistic variability

in properties such as surface emissivity or surface temperature would impact MODIS

retrieved radiances and how this could affect the precision of BTLR, or even CTH. It

would also help to better bound the MODIS BTLR calculations and therefore allow

for an assessment of the possible reasons for the large variation found in this work for

individual data within a latitude and longitude bin (e.g. Fig. 4.12).

For the analysis of MODIS CloudMask, future experiments could include analysis

of finer resolutions to find the scale limit of the CFAUX approximation and to inves-

tigate the variability of the CFAUX − CF2B distribution for low sea-ice concentration
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values. Alternatively, we suggest looking at how cloud fractional coverage varies with

surface sea-ice cover for points at a constant latitude and longitude to more directly

analyse the impact of sea-ice fractional coverage. Moreover, for the analysis of hitrate,

we speculate that the misclassification of clear-sky pixels is likely driven by similar

thermal properties between partly sea-ice covered surfaces and low-level clouds, but

further investigation is warranted. In particular, we suggest investigating how hitrate

varies with the underlying surface classification by MODIS since the specific applica-

tion of the new C6 β parameter depends on surface type (Platnick et al., 2018). Given

the known issues with broken cloudy scenes (Platnick et al., 2018), future work may

include the analysis of MODIS phase hitrate for pixels classified as partly-cloudy by

the CSR mask to analyse the impact of cloud type on phase detection.
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