
Statistical Methods for Design and

Analysis of Electrical Machines

Arbaaz Khan

Department of Electrical & Computer Engineering

McGill University

Montreal, Canada

September 2021

A thesis submitted to McGill University in partial fulfillment of the requirements for the

degree of Doctor of Philosophy.

© 2021 Arbaaz Khan

i

Abstract

In engineering, the process of designing a product relies heavily on computer simulations to

provide accurate insights into the product performance, under different design requirements

and constraints. These computer simulations play a crucial role in virtual prototyping, as one

can get accurate details about the product performance, without actually building a physical

structure. As such, these analyses are carried out through high-fidelity and time-consuming

computer simulations. At times, these simulations can be too expensive, which can limit the

efficiency of the analysis and thus the ability to explore new design possibilities. Data-driven

statistical learning methods can help reduce the computation burden associated with these

simulations, by either finding a cheap-to-evaluate surrogate model to approximate the sim-

ulation output or reducing the number of simulations required in the design process. In this

thesis, both these two approaches are explored for the design and analysis of electromagnetic

devices.

The first few chapters of this thesis investigate the feasibility of novel data-driven deep

learning models to predict the solution of Maxwell’s equations and performance maps for low-

frequency electromagnetic devices. A deep neural network is trained in a supervised manner

to learn a mapping for the magnetic field distribution for topologies of different complexities

of geometry. Further, a probabilistic model is introduced to improve the accuracy and

to quantify the uncertainty in the prediction, based on Monte Carlo dropout. The same

methodology along with other architectures are explored for predicting performance maps of

electric motor drives. The output of the proposed methods has a good match with that of the

finite element solution, indicating a high prediction accuracy as well as low run-time useful

for design and optimization problems. Further, this work also explores methods to extend

a trained deep neural network for predicting performance maps to work on different motor

drive topologies. This procedure reduces the computation cost associated with training Deep

Networks by transferring knowledge over similar tasks handled by the deep networks.

The other contribution of this work proposes a new Topology Optimization method which

transforms the material distribution problem into a movement sequence search problem for a

controller moving in the design space. This method enforces connectivity between the cells in

the discretized design domain that contain the same material. This removes the need of any

filtering or smoothing of the optimal result to obtain a manufacturable design. This method

also provides the ability to leverage the use of different tree search algorithms such as a

data-driven Reinforcement Learning based agent which is trained on the proposed Topology

Optimization based environment. Compared with conventional optimization methods, such

as the evolutionary algorithms, that require high computational cost for iterative electro-

ii

magnetic analyses for generating optimal designs, once the training process is finished, the

deep reinforcement learning based agent is capable of yielding manufacturable solutions with-

out any time-consuming iterative analysis process, thus reducing the number of computer

simulations required for product design.

iii

Résumé

En ingénierie, le processus de conception d’un produit repose grandement sur des simulations

informatiques afin de procurer des informations précises sur les performances du produit, et

ce, sous différentes exigences et contraintes de conception. Ces simulations jouent un rôle

crucial dans le prototypage virtuel, car elles permettent d’obtenir des détails précis sur

les performances du produit, sans pour autant devoir construire une structure physique.

À ce titre, ces analyses sont effectuées par le biais de simulations informatiques haute-

fidélité qui prennent beaucoup de temps. Ces simulations peuvent parfois être trop coûteuses,

ce qui peut limiter l’efficacité des analyses, et par conséquent la capacité d’explorer de

nouvelles possibilités de conception. Les méthodes d’apprentissage statistique basées sur

les données peuvent aider à réduire la charge de calcul associée à ces simulations. On peut

trouver un modèle de substitution moins coûteux pour approcher le résultat de la simulation,

ou bien réduire le nombre de simulations requises dans le processus de conception. Dans

cette thèse, ces deux approches sont explorées pour la conception et l’analyse de dispositifs

électromagnétiques.

Les premiers chapitres de cette thèse étudient la faisabilité de nouveaux modèles

d’apprentissage en profondeur basés sur les données afin de prédire la solution des équations

de Maxwell et les cartes de rendement des dispositifs électromagnétiques à basse fréquence.

Un réseau neuronal profond est entrâıné de manière supervisée pour en connâıtre davan-

tage sur la cartographie de la distribution du champ magnétique pour des topologies avec

différentes complexités de géométrie. De plus, un modèle probabiliste est introduit pour en

améliorer la précision et quantifier l’incertitude de la prédiction en se basant sur la perte de

Monte Carlo (Monte Carlo dropout). La même méthodologie ainsi que d’autres architectures

sont explorées pour prédire les cartes de rendement des entrâınements de moteursélectriques.

Le résultat des méthodes proposées correspond bien à celui de la solution par éléments fi-

nis. Celui-ci indique une précision de prédiction élevée ainsi qu’un temps d’exécution moin-

dre, utile pour les problèmes de conception et d’optimisation. En outre, ce travail explore

également des méthodes afin d’étendre un réseau neuronal profond entrâınés pour prédire

des cartes de performances afin de fonctionner sur différentes topologies d’entrâınement de

moteurs. Cette procédure réduit le coût de calcul associé pour former des réseaux profonds

en transférant les connaissances des tâches similaires gérées par les réseaux profonds.

L’autre contribution de ce travail propose une nouvelle méthode d’optimisation de la

topologie qui transforme le problème de distribution des matériaux en un problème de

recherche de séquence de mouvement d’un contrôleur se déplaçant dans l’espace de con-

ception. Cette méthode renforce la connectivité entre les cellules du domaine de conception

iv

discrétisé qui contiennent le même matériau. Cela élimine le besoin de filtrer ou d’affiner le

résultat optimal afin d’obtenir une conception fabricable. Cette méthode offre également la

possibilité d’exploiter l’utilisation de différents algorithmes de recherche arborescente, tels

qu’un agent utilisant l’apprentissage par renforcement basé sur les données. Celui-ci est formé

sur l’environnement basé sur l’optimisation de la topologie. L’agent basé sur l’apprentissage

par renforcement en profondeur est capable de produire des solutions manufacturables qui

prennent peu de temps de processus d’analyse itérative, réduisant ainsi le nombre de sim-

ulations informatiques nécessaires à la conception du produit. Ce processus est favorable

si on le compare aux méthodes d’optimisation conventionnelles, telles que les algorithmes

évolutionnaires, demandant un coût de calcul élevé pour les analyses électromagnétiques

itératives pour générer des conceptions optimales, une fois le processus de formation ter-

miné.

v

Acknowledgements

With great pleasure, I would like to express my deep gratitude to my research supervisor

Prof. David A. Lowther, for his guidance, patience, and encouragement. I feel honored to

have got this opportunity to work under his supervision and learn from him.

I thank God Almighty for blessing me with the strength, knowledge, and opportunity to

undertake this research and complete it.

I appreciate the help and support rendered to me by my colleagues Chetan Midha, Dr.

Armin Salimi, Dr. Vahid Ghorbanian, Dr. Mohammad Hossain Mohammadi, and all other

members of the COMPEM lab. The insightful discussions we had throughout this thesis

helped me become a better researcher.

I thank my parents and family for their unconditional love and encouragement, which has

been a source of inspiration and motivation for me throughout the years. A special thanks

to my wife, who showed remarkable patience to bear with me during the most testing times.

Special thanks go to my friends Aditya Kashi, Akash Nandi, Mushfique and Shaunak

Sinha for their kind words and company, which made this journey a great experience.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Overview of Thesis Contribution . 3

1.2.1 Application of Deep Learning for Electric Machine Performance Analysis 4

1.2.2 Surrogate Model for Performance Maps 4

1.2.3 Topology Optimization . 5

1.3 Challenges . 6

2 Magnetic Field Prediction 8

2.1 Introduction . 8

2.2 Physics-based Modeling . 11

2.2.1 Finite Element Methods . 12

2.2.2 Magnetic Equivalent Circuits . 13

2.2.3 Comparison between MEC & FEA 14

2.2.4 Need for an Improved Surrogate Model 15

2.3 Machine Learning . 16

2.4 Data Collection . 18

2.4.1 Coil . 19

2.4.2 Transformer . 19

2.4.3 IPM Motor . 20

2.5 Neural Networks . 21

2.6 Convolutional Neural Networks . 22

2.6.1 Architecture of the CNN based model 23

2.6.2 Working of the DL model . 25

2.7 Results & Performance . 27

2.8 Uncertainty Prediction . 30

2.8.1 Uncertainty Maps . 30

2.8.2 Theory . 30

vi

CONTENTS vii

2.9 Bayesian Network - Results . 32

2.10 Conclusion . 33

3 Performance Map Prediction 35

3.1 Introduction . 35

3.2 Literature survey . 38

3.3 Data Collection . 40

3.4 Neural Networks . 41

3.4.1 Modular network approach . 41

3.4.2 End-to-end network approach . 44

3.5 Results of Supervised Learning . 45

3.5.1 Modular network approach . 45

3.5.2 End-to-end network approach . 48

3.6 Challenges with Supervised Learning . 51

3.7 Transfer Learning Methodology . 51

3.7.1 Dataset Generation . 51

3.7.2 Problem Definition of Transfer Learning 52

3.7.3 Knowledge Transfer Procedure . 54

3.8 Results of Transfer Learning . 55

3.8.1 Internal Knowledge Transfer . 56

3.8.2 External Knowledge Transfer . 57

3.8.3 Data Requirements . 59

3.9 Conclusion . 60

4 Sequence based Topology Optimization 61

4.1 Introduction . 61

4.1.1 Topology Optimization . 63

4.1.2 Design Optimization Methodologies 64

4.1.3 Optimization Algorithms . 65

4.2 Literature Survey . 67

4.2.1 Popular techniques of TO . 67

4.2.2 Homogenization method . 67

4.2.3 Density method for TO . 69

4.2.4 Boundary based TO . 70

4.2.5 Discrete Methods . 71

4.2.6 Improvement to ON/OFF TO methodology 72

4.3 Sequence based controller . 72

CONTENTS

CONTENTS viii

4.3.1 The Operation of the Controller . 73

4.4 Topology Optimization with SeqTO-v1 . 73

4.4.1 Genetic Algorithm . 73

4.4.2 Tree Search Algorithms . 77

4.5 TD Learning . 77

4.5.1 Markov Decision Process . 77

4.5.2 Value functions . 81

4.5.3 Policy function . 84

4.6 C-core - Topology Optimization Results . 88

4.6.1 GA with SeqTO-v1 . 88

4.6.2 C-core: Results of TD-learning . 91

4.7 Synchronous Reluctance Motor . 91

4.8 SynRM - Topology Optimization . 94

4.8.1 GA Results with SeqTO-v1 . 94

4.8.2 SynRM - TD-Learning results . 95

4.9 Comparison between ON/OFF & SeqTO-v1 96

4.10 Conclusion . 98

5 Intelligent Agents for Topology Optimization 100

5.1 Introduction . 100

5.2 Literature survey . 102

5.2.1 Application of ML algorithms in TO 102

5.2.2 Addressing the Disadvantages of Supervised Learning in TO 104

5.3 Setting up Deep RL . 105

5.3.1 Advanced Function Approximators 105

5.3.2 Objective of the RL Task . 109

5.3.3 Experience Replay . 112

5.3.4 Deep Q-learning . 113

5.3.5 Results of Q-Learning . 114

5.4 Modifications to SeqTo-v1 environment . 114

5.5 Policy Gradient . 117

5.5.1 Improvement to Policy Gradient . 121

5.6 Experiment Setup - A2C . 124

5.7 Results & Discussion . 126

5.8 Conclusion . 142

CONTENTS

CONTENTS ix

6 Conclusion & Future Work 144

6.1 Conclusion . 144

6.2 Future Work . 145

List of References 147

CONTENTS

List of Figures

1.1 The V-Design and Manufacturing Cycle . 2

2.1 Different electromagnetic modeling techniques. 10

2.2 Computational Analysis in FEM . 13

2.3 Parametrized Geometry - Coil. 20

2.4 Parametrized Geometry-Transformer. 20

2.5 Parametrized Geometry - IPM Motor. 21

2.6 Artificial/Feedforward Neural Network with 2 hidden layers. 22

2.7 Convolution kernel visualization (Dumoulin and Visin 2016) (Blue = Input

map, Cyan = Output map). 23

2.8 Encode-Decoder based Convolutional Neural Network Architecture 24

2.9 Different types of kernel for a Convolutional layer in a CNN (Dumoulin and

Visin 2016) (Blue = Input map, Cyan = Output map) 25

2.10 Training curve with Normalized Prediction Error (calculated over validation

dataset). 27

2.11 (a) Problem definition, (b) Deep network architecture, (c) field predictions,

(d) FEA results. 28

2.12 Error (Ground Truth - Prediction) distribution. 29

2.13 (a) Error distribution, (b) Normalized uncertainty map from Bayesian Infer-

ence, (c) Region of uncertainty map with high uncertainty. 33

3.1 Annual (a) CO2 emission (b) Global land-sea temperature increase relative to

1961-1990 average temperature. Data from (Friedlingstein et al. 2019). . . . 36

3.2 US GHG Emissions by Sector . 36

3.3 US Transportation Sector GHG Emissions by Source 37

3.4 Efficiency map of the 2010 Toyota Prius IPM motor (Mahmoudi et al. 2015). 39

3.5 Flowchart of the process for calculating efficiency maps. 40

3.6 Parametrized Motor Geometry - IPM Motor. 41

x

LIST OF FIGURES xi

3.7 Neural network-based flux linkage prediction. 42

3.8 Network architecture: (a) RNN with attention mechanism, (b) prediction

from time distributed feedforward layers. 43

3.9 Network Architecture for End-to-end efficiency map prediction. 44

3.10 Supplementary Neural network for maximum Torque and Speed prediction. . 45

3.11 Flux linkage (d-axis) map obtained from (a) DL, (b) FE. 46

3.12 Qualitative and quantitative results of efficiency maps for two design samples:

(a) Targets, (b) Predictions, (c) Confusion Matrices. 47

3.13 Training curves for supervised efficiency map prediction. 49

3.14 End-to-end model: (a) Target, (b) Prediction. 49

3.15 (a) Normalized error distribution, (b) Normalized uncertainty map 50

3.16 Parametrized Motor Geometry of FSCW PM Motor 52

3.17 Flowchart of the process for calculating performance maps. 53

3.18 Transfer learning tasks: Internal Knowledge Transfer (IPM to IPM) and Ex-

ternal Knowledge Transfer (IPM to PM). 55

3.19 Change in weights of each layer: Efficiency map to Power factor map (IPM

to IPM) . 57

3.20 Comparison of training curves between supervised learning and transfer learn-

ing tasks: Efficiency map to Power factor map (IPM to IPM) 58

3.21 Change in weights of each layer: Efficiency map to Efficiency map (IPM to

PM). 58

3.22 Comparison of training curves between supervised learning and transfer learn-

ing tasks: Efficiency map to Efficiency map (IPM to PM) 59

4.1 GE Aircraft mounted bracket challenge (Morgan et al. 2014) (a) Conventional

mounted bracket (b) TO based design analysis (c) Optimized design 62

4.2 Global Electricity consumption (Lei et al. 2017). 62

4.3 Different categories of optimal design problems. 65

4.4 Schematic representation of domain discretization used in the homogenization

along with a 2-D Unit microstructure with cavity. 68

4.5 Example of a 3D printed lattice structure of a jet engine mounting bracket

(Morgan et al. 2014; Allaire et al. 2019). 68

4.6 (a) Initial Topology, (b) Optimal design from density method, (c) Result with

Average filtering (Midha et al. 2019). 69

4.7 Represention of a curve by a level set. 70

4.8 The movement of a Controller (size 3× 3) in a design domain. 73

LIST OF FIGURES

LIST OF FIGURES xii

4.9 The C - core EM actuator . 75

4.10 C - core discretized design space . 75

4.11 C-core controller . 76

4.12 State Transition (st, at, st+1) . 78

4.13 C-core controller . 80

4.14 Discrete design domain as the state space . 81

4.15 Discrete design domain with the |B|airgap as the state space 81

4.16 Discrete design domain along with the |B| in the design space as the state space 81

4.17 Scenario for a negative Reward (Rt) . 81

4.18 Possibility of a design error due to the controller moving out of the designated

design space. 82

4.19 A deterministic policy behavior . 85

4.20 The tree diagram for the sequence based controller. 86

4.21 (a) Conventional C-core design (b) Only half of the geometry is simulated due

to symmetricity. 88

4.22 Optimized geometry for 3× 3 Linear environment (SeqTO-v1 with GA). . . 89

4.23 Optimized geometry’s magnetic field distribution for 3×3 Linear environment

(SeqTO-v1 with GA). 89

4.24 Optimized geometry for 1× 1 Non-linear environment (SeqTO-v1 with GA). 90

4.25 Optimized geometry’s magnetic field distribution for 1 × 1 Non-linear envi-

ronment (SeqTO-v1 with GA). 90

4.26 Optimal solution 3× 3 controller (SeqTO-v1) with TD-learning, on a C-core

design domain. 91

4.27 Conventional rotor designs for synchronous reluctance motors (a) salient pole

type, (b) axial lamination type (c) transverse lamination type (Kolehmainen

2010). 92

4.28 SynRM characteristics . 94

4.29 (a) Optimized geometry and the magnetic flux distribution for a discretized

SynRM (5× 5 design space). SeqTO-v1 with GA. 95

4.30 (a) Optimized geometry and the magnetic flux distribution for a discretized

SynRM (5× 5 design space). SeqTO-v1 with TD-learning. 96

4.31 Training Rewards vs Episodes . 98

5.1 RL and DL combine to form DRL paradigm of algorithms. 101

5.2 Application of DRL in the field of (a) Atari games, (b) Game of Go and (c)

Robotics . 101

LIST OF FIGURES

LIST OF FIGURES xiii

5.3 Feedforward neural network for Value function (Q(s, a) or V (s)). 108

5.4 Sudden decrease in performance with a slight change in the state representa-

tion. Coil Current: 1.5 Amps, No. of Turns: 500. 108

5.5 Different approaches of setting up the Q-Network 111

5.6 Q-Learning Cycle . 112

5.7 (a) Conventional C-core actuator (b) Design domain for half C-core with the

controller (3× 3), pointer and performance measure. 113

5.8 Optimal geometry of C-core with Deep Q-Learning, using a 3 × 3 controller

filling linear iron material. 114

5.9 Discrete design domain as the state space . 115

5.10 Discrete design domain with the |B|airgap as the state space 115

5.11 Discrete design domain along with the |B| in the design space as the state space116

5.12 Agent Movement with SeqTO-v2 controller. 117

5.13 Possibility of a design error due to the controller moving out of the designated

design space. 117

5.14 Q-learning vs Policy Gradient Method . 118

5.15 Policy Gradient implementation . 119

5.16 (a) Greedy QL policy always chooses action:2, (b) Probabilistic policy with

A2C samples all actions . 120

5.17 Generic AC . 122

5.18 Advantage Actor Critic . 124

5.19 Network Architecture for A2C . 124

5.20 (a) Conventional C-core design (b) Only half of the geometry is simulated due

to symmetricity. 125

5.21 Optimal geometry and B distribution for excitation scenario (1.0 A, 250

Turns) for (a) GA (b) QL based on SeqTO-v1 (c) A2C based on SeqTO-v2. 129

5.22 Convergence results for 1.0 Amps, 250 Turns 129

5.23 Sequence for optimal geometry for excitation: 1.0 A, 250 Turns. Only the

design domain is shown. S: Step No., M: Material left, L: Lives left. 130

5.24 Optimal geometry and B distribution for excitation scenario (0.75 A, 500

Turns) for (a) GA (b) QL based on SeqTO-v1 (c) A2C based on SeqTO-v2

(d) fine-tuned A2C agent. 132

5.25 Sequence for optimal geometry for excitation: 0.75 A, 500 Turns. S: Step No.,

M: Material left, L: Lives left. 133

5.26 Convergence results for 0.75 Amps, 500 Turns. 134

LIST OF FIGURES

LIST OF FIGURES xiv

5.27 Optimal geometry and B distribution for excitation scenario (1.5 A, 500

Turns) for (a) GA (b) QL based on SeqTO-v1 (c) A2C based on SeqTO-v2. 135

5.28 Sequence for optimal geometry for excitation: 1.5 A, 500 Turns. S: Step No.,

M: Material left, L: Lives left. 136

5.29 Convergence results for 1.5 Amps, 500 Turns. 137

5.30 Optimal geometry and B distribution for excitation scenario (2.0 A, 500

Turns) for (a) GA (b) QL based on SeqTO-v1 (c) A2C based on SeqTO-v2. 138

5.31 Optimal geometry and B distribution for excitation scenario (1.75 A, 500

Turns) for (a) GA (b) QL based on SeqTO-v1 (c) A2C based on SeqTO-v2. 139

5.32 Optimal geometry and B distribution for excitation scenario (1.25 A, 500

Turns) for (a) GA (b) QL based on SeqTO-v1 (c) A2C based on SeqTO-v2. 140

5.33 Optimal geometry and B distribution for excitation scenario (0.25 A, 500

Turns) for (a) GA (b) QL based on SeqTO-v1 (c) A2C based on SeqTO-v2. 141

LIST OF FIGURES

List of Tables

2.1 Experimental and Simulation result comparison 15

2.2 Transformer Parameters . 20

2.3 IPM Motor Parameters . 21

2.4 Network and Training partition features. 25

3.1 Dependent & Independent Parameters of the reference design. 41

3.2 Confusion Matrix for high efficiency classification. 46

3.3 Dependent & Independent Parameters of the reference design for a FSCW

PM Motor . 52

4.1 Comparison between Evolutionary Algorithms & Reinforcement Learning . . 77

4.2 A deterministic policy behavior. 85

4.3 Example of a Q-table . 85

4.4 C-core results obtained from Genetic Algorithm using the SeqTO-v1 TO envi-

ronment, along with a comparison of armature force wrt GA optimized results

+ filters (Midha et al. 2019). 88

4.5 SynRM fixed parameters . 94

4.6 TO results for SynRM using GA on the rotor structure; based on SeqTO-v1 95

4.7 SynRM results using TD-learning with SeqTO-v1. 96

4.8 Comparison of On/Off TO with Seq based TO using GA & TD-learning . . 97

5.1 Literature survey of ML papers in Topology Optimization 103

5.2 Example of a Q-table . 106

5.3 Evolved action space of the controller (SeqTO-v2). 116

5.4 Different excitation scenarios used for TO of a C-core actuator. 125

xv

LIST OF TABLES xvi

5.5 Comparison of Force magnitude wrt GA optimized results (Park and Min

2009b), GA+filters (Midha et al. 2019), Tabular QL (using SeqTO-v1) op-

timized results and with the A2C (RL based; using SeqTO-v2) agent. The

number in the brackets in each cell corresponds to the number of FE calls

during the particular optimization process. 127

LIST OF TABLES

List of Acronyms

AC Actor-Critic

A2C Advantage Actor-Critic

AI Artificial Intelligence

ANN Artificial Neural Network

ConvNet Convolutional Neural Network

CNN Convolutional Neural Network

DNN Deep Neural Network

DL Deep Learning

EA Evolutionary Algorithms

EM Electromagnetic

FE Finite Element

FNN Feedforward neural networks

FSCW Fractional-slot Concentrated Winding

GA Genetic Algorithm

GHG Green House Gas

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

Gt expected return

xvii

LIST OF TABLES xviii

IPM Internal Permanent Magnet

l.r learning rate

LSTM Long short-term memory

MC Monte Carlo

MEC Magnetic Equivalent Circuits

MDP Markov Decision Process

ML Machine Learning

MSE mean squared error

NL non-linear

NN Neural Network

PG Policy Gradient

QL Q-Learning

Q(s, a) Action value function

RNN Recurrent Neural Network

SeqTO Sequence based Topology Optimization

SynRM Synchronous Reluctance Motors

TD Temporal Difference

TL Transfer Learning

RL Reinforcement Learning

TO Topology Optimization

VDC V-design cycle

V(s) State value function

LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

The most important energy conversion devices nowadays are electric machines which in-

cludes motors and generators. They are used with different specifications, structures and

ratings in various applications, such as aerospace (Bouzidi, Masmoudi, and Bianchi 2015),

transportation (Bilgin et al. 2019), power generation (Saruwatari et al. 2016) and healthcare

(Nicolaescu 2012). Depending on the application, different optimal performance parame-

ters, such as efficiency (McCoy and Douglass 2014), noise and vibration (Wang et al. 2016),

(Sheikman, Folden, and Francis 2014) and torque ripple (Baek et al. 2014), might be re-

quired. This makes electromagnetic analysis and optimization the basic ingredients for the

development of an electric machine. The designing of an electric motor is generally a rig-

orous, highly knowledge- or experienced-based, and time-consuming procedure (Mayr et al.

2018). During the product development procedure, from design and optimization through

to manufacturing and test stages, a common flow of product development is followed, which

is also known as V-design cycle (VDC) (Sharafi 2013; Rivera et al. 2017). This product

development process of electric motors consists of two main stages, namely design and man-

ufacturing. The overview of the proposed automated design and manufacturing process for

electric motor drives is illustrated in Figure 1.1, along with the principal components.

Given a machine’s specification, the goal is to find a winning candidate in terms of

performance and to make sure the candidate satisfies all the design criteria. The ‘Design

Phase’ in the V-Design cycle is a critical stage since the product requirements, i.e. system-

and subsystem-level, are specified in this stage to perform a simulation-based engineering

design and optimization of the subsystems (motor, inverter, gearbox, battery, and charger,

etc), that are then passed to the next stage in order to make sure the implemented system

satisfies the initial specifications (Ghorbanian, Salimi, and Lowther 2017). There can be a

1

1.1. MOTIVATION 2

Figure 1.1: The V-Design and Manufacturing Cycle

significantly high number of possible candidates in a design space for a machine, even after

applying the design and engineering constraints. Since sophisticated simulation and design

optimization tools, i.e. (FE) packages, are used to analyze the multiphysics performances,

the wall-clock time for finding an optimal design directly depends on how fast the simulation

and optimization processes are (Tüchsen et al. 2018; Silva 2018b). The required resources,

including time, money, and high-performance computing services, will increase dramatically

if the process is to be repeated for all new designs or applications. In such a scenario, it is

infeasible to rank all the possibilities before choosing an optimal solution due to the massive

computational burden involved in the analysis through conventional techniques. Hence, only

a handful of potential designs obtained through the design cycle undergo a full multi-physics

simulation at any stage in the design process. Finally, a prototype is manufactured and its

performance is experimentally verified.

In case the design or prototype does not meet the desired requirements, the process

has to restart. This cycle can be reduced if the design space can be searched based on a

CHAPTER 1. INTRODUCTION

1.2. OVERVIEW OF THESIS CONTRIBUTION 3

multi-physics solution. However modern computer tools for analysis (at high fidelity), will

take too long as there are hundreds or even thousands of design candidates. Hence, a need

to formulate alternative strategies to ease the computational cost involved in the process.

This has the potential to reduce the research cycle associated with product development.

This thesis will look at some novel ideas for the design and analysis of electric devices and

machines, ranging from surrogate models for fields and performance maps to intelligent

agents for design optimization. All the data-driven methodologies discussed in this work

originate from the field of statistical learning.

Machine Learning (ML) algorithms, specifically feedforward neural networks (FNN) have

been shown as suitable candidates for function approximation. The application of this has

been seen in the usage of neural networks as surrogates for performance evaluation metrics

(such as Torque) have become prominent in the past couple of decades (Ghorbanian 2018;

Wlas, Krzeminski, and Toliyat 2008). Alternatively, electrical machines can also be designed

using an equivalent circuit (or lumped parameter approach). These methods can provide a

fast prediction of global performance parameters such as average and ripple torque. How-

ever, these models cannot produce information on local effects within the device such as

fields, losses, and stresses. Due to these complexities and limitations, big data, Artificial

Intelligence (AI), Machine Learning (ML), and data mining tools seem to be promising ways

to keep up with the ever-increasing demand of fast and accurate analysis of electric designs

(Kißkalt et al. 2018; Khan et al. 2020a; Salimi 2018; Ghorbanian et al. 2019). This work

focuses on technologies that broadly include (a) modern machine learning techniques, such

as deep learning carried out with the aid of high-performance computing, and (b) intelligent

generative design, such as the topology optimization for flexible and complex shape design.

1.2 Overview of Thesis Contribution

The thesis is organized into six chapters and in terms of the research methodology of AI, the

work performed here can be broadly classified into two categories: supervised learning and

reinforcement learning. However, the algorithms have been extended as per the requirement

of the task being considered. As an example, the supervised learning task in Chapter 2 was

extended to incorporate Bayesian learning to develop an indication of algorithm confidence

in the prediction. Similarly, the usage of certain algorithms such as the attention mechanism

was modified (as compared to (Bahdanau, Cho, and Bengio 2014)) to better suit the task of

efficiency prediction in Chapter 3.

CHAPTER 1. INTRODUCTION

1.2. OVERVIEW OF THESIS CONTRIBUTION 4

This section presents an overview of all the chapters of this thesis, along with the author’s

contribution.

1.2.1 Application of Deep Learning for Electric Machine Perfor-

mance Analysis

For designing surrogates for the global quantities, (e.g. the torque ripple) which have a

limited number of output values, usually one, for each motor design, the task is simple

enough to be handled by a simple feedforward neural network. However, fully connected

neural networks usually lose their attractions when it comes to many input-many output

design and modeling problems, due to the required training complexity, while the same

problem can be handled more efficiently using the deep Convolutional Neural Networks

(CNNs) and/or Recurrent Neural Networks (RNNs). One example of such kinds of problems

is modeling a local quantity of an electric motor, such as the magnetic flux density, where

hundreds or thousands of numerical values distributed on the mesh structure of an FE

solution should be predicted.

Chapter 2 deals with the problems of many electric devices operating at electrical power

frequency (50Hz). The advantages and limitations of such methods for a variety of problems

are also discussed. In addition to task compatibility, the change helped improve the speed

of training (Khan, Ghorbanian, and Lowther 2019).

The author is responsible for handling the data generation along with development and

validation of all DL models associated with the study. The findings of this Chapter are

presented in Khan, Ghorbanian, and Lowther 2019, with other authors contributing with

guidance on the research methodology, reviewing of manuscript and analysis of the results.

1.2.2 Surrogate Model for Performance Maps

Extending the usage of deep networks such as CNN, and RNN, is used for predicting perfor-

mance parameters of electric motor drives (Khan et al. 2020a). The RNNs are useful when

a variable number of inputs, outputs, or both exist. The efficiency, power factor, losses, and

advance angle maps of an electric motor drive are clear examples of this application. Further,

the usage and application of such networks are extended to predict higher dimensional out-

put spaces such as performance maps, which will be discussed in Chapter 3. The prediction

time of performance maps is reduced considerably to a few seconds for multiple geometries,

against hours required for traditional approaches (Mohammadi and Lowther 2017).

Two papers (Khan et al. 2020a & Khan et al. 2020b) were published based on the results

obtained in Chapter 3. The author is partially responsible for handling the data generation

CHAPTER 1. INTRODUCTION

1.2. OVERVIEW OF THESIS CONTRIBUTION 5

and solely performed the analysis and validation of components associated with DL models,

along with formulating the experiment associated with transfer learning (Section 3.7). Other

authors involved in this work contributed in conception of the research work, acquisition of

data, interpretation of results and drafting of the article.

1.2.3 Topology Optimization

The most noticeable advantage of the Topology Optimization (TO) is its capability of free-

shape optimization, which can outperform template-based design optimization routines in

terms of the speed of the process if well-tuned. However, the majority of the TO techniques

introduced in the literature result in solutions that are not easily manufacturable, i.e., the

optimized design has checkerboard patterns, floating or stray pieces of material. To over-

come this difficulty, either different filtering or smoothing methods are employed (Campelo,

Watanabe, and Igarashi 2008a) or smoothness of the solution is added as an objective of

the optimization process itself (Dupré et al. 2014). A new TO method (sequence-based) is

proposed in Chapter 4 which ensures that the final optimized solution does not have any

checkerboard patterns, perforations, or floating pieces of material. This method leverages a

sequence-based environment to impose connectivity on cells containing the same material.

This proposed methodology neither requires any filtering or smoothing technique nor any

modification to the optimization objective function for obtaining manufacturable optimal

solutions.

Building on the proposed sequence-based TO methodology, in the next chapter (Chapter

5), the concept of an intelligent agent is investigated in the field of TO by means of Deep

Reinforcement Learning (DRL) algorithms. The agent is trained in an interactive manner

of learning such that the topology of the geometry is basically an iterative process involving

continuous interaction between an RL agent and a FE-based environment. The process in-

volves an incentive-based generation of a number of design structures as output that satisfies

the design requirements and objectives determined by the designer at the highest level of

the design process.

The results from this section were published through Khan, Midha, and Lowther 2020

and Khan and Lowther 2020. Although the author was involved in all aspects of the work,

research based on reinforcement learning and sequence-based TO environment formulation

was carried out individually. The rest of the authors were involved in data acquisition,

methodology validation, benchmarking the results and drafting of the article.

CHAPTER 1. INTRODUCTION

1.3. CHALLENGES 6

1.3 Challenges

The application of ML or DL algorithms is a budding area of research. Most of the active

fields of research associated with modern AI algorithms are applied in the field of computer

vision, language/signal processing, robotics, medical science. However, finding suitable ap-

plications in the field of electromagnetics, using state-of-the-art ML techniques, is not an

easy task. Replication of work performed in other fields without understanding the behavior

of every component of the algorithm can lead to inefficient results or misleading results. This

generates a responsibility that while checking the feasibility of ML algorithms in different

aspects of design and analysis of electric machines, an effort should be made to understand

the limitations of the algorithms and perform knowledge extractions, rather than targeting

high accuracy predictions. Some of the major issues faced during this study are discussed

next.

It is well known that some of the tasks that feel intuitive for a human are very difficult

for an AI agent. While analyzing the magnetic field distribution in a geometry, a trained

human eye can easily identify regions of high magnetic saturation and can recommend ac-

cordingly for improvements. The lack of this intuitive understanding continues to impact the

adoption of AI in the industry. Furthermore, the ability to learn from given data, explored

in Chapters 2 & 3, often shows the limitation of supervised learning and is related to the

limited sample data collected for training. One of the possible issues is that ML (especially

deep networks) requires building rich representations of the knowledge needed to understand

an environment. A task of design optimization can involve information about material dis-

tribution, field distribution, excitations, boundary conditions, and other factors that affect

the performance. This results in a high dimensional space representation in the character-

ization of a learning task. All this requires substantial computational resources both from

generating big data based on electromagnetic analysis and proper training of the DL-based

learning algorithm. This constrains the ML algorithm from generalizing to the population

data representation and often introduces biases in the model performance. Techniques to

limit the high computation requirements and improve generalization are discussed through

out the work, where deemed necessary. In Chapter 3, knowledge learnt by a neural network

on a task is used to improve the performance on a different task. Similarly, in Chapters 4

and 5, a novel technique to allow the AI to interact with the electromagnetic environment

opens new domains for improving the computational efficiency of a Topology Optimization

task. This ability also opens frontiers to learn directly from an environment without any bias

introduced by the pre-computed and collected data. Further, the AI can hold the interaction

experiences and replay to learn from its memory and react accordingly to the dynamics of

CHAPTER 1. INTRODUCTION

1.3. CHALLENGES 7

a physics-based environment. This is an interesting field to explore and extend the current

state of the art in the field of electromagnetics.

Another important issue is the formulation of an incentive for the learning algorithm to

improve its performance. For a supervised learning task (such as in Chapters 2 & 3), this can

be easily established as we have access to true labels. However, for the search of an optimal

geometry, the formulation is troublesome. The incentive here should be able to come up

with novel designs and be able to teach itself patterns that can be easily generalized and at

the same time improve its performance. Further, the AI agent should be able to learn the

essentials of the new task in a relatively short period of time (through training on a new

task or environment) and extend its usefulness to similar electromagnetic designing tasks.

For all the statistical learning experiments in this thesis, ground truth, labels and eval-

uations is gathered using a Finite element analysis (MAGNET v2020.2). There are various

sources of errors associated with any numerical method. In case of FEA, errors can be

introduced in the solution due to rounding-off, limited modeling capabilities and through

insufficient discretization of the mesh. However, due to a lack of better analysis technique

for handling massive design space and for the wide usage of FEA in the industry (FEA Soft-

ware Market - Global Industry Analysis 2021), the solution obtained through a FE based

simulator is accepted as the ground truth.

The purpose of this work will be to explore statistical algorithms and develop intelligent

agents for aiding the design and analysis of electric machines. An emphasis will be placed on

developing algorithms that are flexible enough to adapt to similar tasks and environments.

This is a grand ambition but with real potential in today’s age of big data, compute power,

and advancements in the field of AI. With these advancements, the task looks feasible.

CHAPTER 1. INTRODUCTION

Chapter 2

Magnetic Field Prediction

2.1 Introduction

Data-driven methodologies are currently revolutionizing how we model, predict, and control

complex systems such as climate (Knüsel and Baumberger 2020), finance (Hilpisch 2018),

traffic (Lin et al. 2018), robotics and autonomy (Zhang, Han, and Deng 2018). The most

pressing scientific and engineering tasks of the present era are not dependent on empirical

models or derivations based on first principles (Brunton and Kutz 2019). Increasingly, re-

searchers are turning to data-driven approaches for characterizing and modeling a diverse

range of complex systems with the goal of sensing, prediction, estimation, and control. With

modern mathematical methods, enabled by the unprecedented availability of data and com-

putational resources, we are now able to tackle previously unattainable challenge. One such

challenge is to analyze the performance of the electric machine in a relatively short period

of time. An electromagnetic model is needed to perform the design and analysis of an elec-

tric machine (Mousavi-Aghdam et al. 2015). This model will be used to evaluate relevant

electromagnetic performance characteristics associated with an electric machine such as elec-

tromagnetic force, torque, fields, and losses distribution maps. Further, a model capable of

providing an accurate and fast performance evaluation is the backbone of an optimization

task for achieving objectives such as minimizing the torque ripple, increasing average torque

and efficiency. It also plays a central role in designing the motor drive system.

The very word ‘model’ implies simplification and idealization. A model is an approxima-

tion of reality and hence will not reflect all of reality. In 1976, a renowned British statistician

named George Box wrote the famous line, “All models are wrong, some are useful” (Box

1979; Box 2006). The intuition behind this sentence is that every model is wrong because

it is a simplification of reality. However, simplifications of reality can be quite useful. They

can help us explain, predict and understand the universe and all its various components. It

8

2.1. INTRODUCTION 9

means useful insights can be provided from models which are not a perfect representation of

the phenomena they model. The practical question is how wrong do they have to be in order

to be not useful. As such, the desirable features of a model can be summarized as follows

(Silva 2018a):

• A model should be consistent in its ability to explain past observations and predict

future observations.

• Cost of usage: A model should be computationally cheaper than traditional methods

available for analysis.

• Level of accuracy in the prediction: A model that gives highly accurate results but

takes a lot of computational time may not be useful. On the other hand, a model that

is not as accurate but can produce estimates very quickly can be beneficial.

Maxwell’s equations form the foundation of classical electromagnetism, classical optics,

and electric circuits. We can consider models built on solving physics (such as Maxwell’s

equations) as the First Principle models (Silva 2018a). Modeling is the mathematical rep-

resentation of physical phenomenona and simulation is the numerical representation of such

models on computing machines. Over the years Computer-Aided Design (CAD) has evolved

as the field of “using computers to aid in the creation, modification, analysis, or optimization

of a design” (Sarcar, Rao, and Narayan 2008). Accurate modeling and analysis of an electro-

magnetic problem is both a challenging and time-consuming process due to several reasons.

First of all, the system of differential equations for the electromagnetic analysis of electric

devices is nonlinear due to the property of saturation in magnetic materials. The non-linear

dependence of inductances on rotor-to-stator angles is reflected in the non-linear relation-

ship between current and fluxes. Since the induced voltage and electromagnetic torque are

proportional to the state variables, such as flux, current, and speed, it makes it impossible

to find an analytic solution to the machine system of differential equations (Ostovic 2012).

If we neglect the effects of saturation and non-linear magnetic materials, a model will be

suitable for only a fraction of a device’s operating capacity. Apart from the difficulty of

solving a nonlinear system of equations, finding a field solution on a complex geometry such

as that of an electric machine also adds to the complexity of the task.

Having identified the challenges associated with the field of electromagnetic modeling

and simulation, we can broadly divide the field into three categories of algorithms namely:

Analytical, Numerical, and Magnetic Equivalent Circuits (MEC), as shown in Figure 2.1.

Of the three, analytical algorithms are usually the least demanding in terms of computa-

tional need and will provide the fastest results. These methods try to find the closed-form

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.1. INTRODUCTION 10

Figure 2.1: Different electromagnetic modeling techniques.

expressions for magnetic fields and losses in a motor. However, they face a major challenge

in approximating complex geometries and incorporating the effect of iron saturation in their

analysis (Alger 1970; Hamdi 1994), which is significant for estimating magnetic fields and

losses of the motors (Sheikh-Ghalavand, Vaez-Zadeh, and Isfahani 2009). Furthermore, they

are incapable of modeling skin and proximity effects in the winding and the end winding

inductance. Despite their limited capabilities, analytic models are popular because of the

low computation power required for their highly simplified expressions and ease of parame-

terization. As a result, they are employed when fast prototyping is needed and the design is

evaluated only on the basis of global performance quantities such as torque and forces (Ray

et al. 1984; Krishnan, Arumugan, and Lindsay 1988).

The physics-based models, on the other hand, are founded on established and detailed

physical principles and lead to more accurate simulations (Salon 1995). They model the

interaction of electromagnetic fields with physical objects and the environment. Two such

methods are Magnetic Equivalent Circuits (MEC) and Finite Element Analysis (FEA).

The MEC modeling is a popular method in modeling electric machines (Yilmaz and Krein

2008). It is a special case since it can be considered as an analytical or numerical technique

according to how it is applied. It is considered as an analytical technique if it is combined

with other analytical modeling techniques such as Maxwell’s equations (Uddin and Sozer

2017; Radun 2000). When the nonlinearity of the magnetic materials is considered, the

MEC modeling has to be combined with numerical techniques (Ostovic 2012). In Ostovic

2012, the MEC method was applied to calculate the magnetic flux in C-core magnetic devices

and also to model magnetic devices with moving parts such as electric machines.

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.2. PHYSICS-BASED MODELING 11

The present-day Finite Element (FE) method based software suite allows for the accurate

analysis of electric machines in three dimensions with coupled fields. It is the method of

choice for today’s machine designers, in comparison to analytical models and MECs. Finite

Difference Methods (FDM) are another option to model electric machines. However, FDM

has difficulties in modeling complex geometries; therefore, it is not directly applied to model

electric machines (Hameyer and Belmans 1999).

Another class of models, surrogate or data-driven models, is not necessarily based on

first principles. They approximate the relationship between the input parameters and out-

put characteristics and reduce the repetitive bottom-up approach taken by the first principle

models. Machine Learning (ML) and curve-fitting-based techniques are some of the ap-

proaches in this category of modeling used to predict the performance of electric machines.

They include experimental or Finite Element (FE) model data to develop the model. These

methods can provide a fast prediction of global performance parameters such as average and

ripple torque (Mohammadi, Ghorbanian, and Lowther 2019; Ibrahim et al. 2020). However,

these models, based on current the literature, are not capable of producing information on

local effects within the device such as fields, losses, and stresses. Knowledge of the flux dis-

tribution inside the motor for different operating conditions is essential, at the design stage,

to predict the performance (Watthewaduge et al. 2020). The saturation and the geometry

of the motor structure make the analytical methods of field analysis difficult. This chapter

will explore the field of Deep Learning (a sub-field of ML) to predict the field distribution

for different electromagnetic problems. Since ML models require labeled data for training

and without an accurate model, it is impossible to predict a machine’s characteristics and

performance. As such it is important to identify a reliable source to generate training data

for the ML task. Since analytical models are not capable of capturing sufficient information

for the analysis of electric machines, the discussion will be limited to only MEC and FEA,

to serve as the source of data generation.

2.2 Physics-based Modeling

Before finalizing the source of labeled data, it is important to understand the capabilities and

limitations of FE analysis and MEC in reference to electric machine design analysis. Based

on the study, we will determine the numerical method suitable to generate the synthetic

training data. The literature on FE and MEC based techniques is vast and covers the

analysis of a variety of electric devices. This study is limited to only electric machines, as

they are the primary motivation of this work.

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.2. PHYSICS-BASED MODELING 12

2.2.1 Finite Element Methods

The FE method is applied to design and analyze electric motors and generators with various

stator/rotor topologies (Mousavi-Aghdam et al. 2015; Rosu et al. 2017). It is a numerical

model for solving problems of engineering and mathematical physics by formulating the

problem results in a system of algebraic equations. FE analysis can be broken down into

four broad steps (Jin 2015; Salon 1995):

• Domain Discretization.

• Selection of Interpolation Functions.

• Formulation of the System of Equations.

• Solution of the System of Equations.

A proper discretization optimizes the number of elements and unknowns for the desired

solution accuracy because the manner in which the domain of the solution is discretized

will affect the memory storage space, computation time, and the accuracy of the numerical

solution.

The process of generating a system of equations is to convert a continuous operator

problem to a discrete problem. This step is more involved and depends on the specific FEM

method used (two popular methods are Ritz and Galerkin (Silvester and Ferrari 1996)). The

whole cycle of the FEM model can be shown in Figure 2.2.

The final accuracy of the results reported in a finite element analysis model depends

on many factors. One of the primary factors for accuracy is the number of mesh elements

(Bianchi and Bolognani 1998). It is necessary to increase the number of elements in the highly

saturated regions to improve the model accuracy. Among all numerical modeling techniques,

FE is considered the most popular technique for modeling machines that operate in magnetic

saturation conditions (Bostanci et al. 2017). Moreover, since the machine airgap is changing

with the rotation of the rotor, it will also require a large number of elements.

The field solution can be obtained using various numerical methods, for example, LU

Decomposition, Banded Choleski, the Conjugate Gradient Method, and the Preconditioned

Conjugate Gradient Method. These methods work by reducing the error between an esti-

mate and the unknown solution at every iteration. Due to the nonlinearity of the magnetic

materials, the formulated system of equations is nonlinear. The Newton-Raphson method is

used to solve the system of equations (Salon 1995). For electric motors, post-processing is

afterward applied to the converged magnetic vector potentials to calculate various electro-

magnetic quantities such as flux linkage, flux density, and electromagnetic torque.

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.2. PHYSICS-BASED MODELING 13

Figure 2.2: Computational Analysis in FEM

2.2.2 Magnetic Equivalent Circuits

MEC models, in general, are seen as a compromise between FEM and lumped parameter

models (Sudhoff et al. 2007). They take machine geometry and material characteristics into

account and are thus more refined than lumped parameter models (Amrhein and Krein 2007;

Moallem and Dawson 1998). The circuit-oriented approach makes them a more intuitive

design tool compared with FEM models (Tavana and Dinavahi 2016; Asghari and Dinavahi

2012).

MECs offer an alternative possibility that is based on permeance network models com-

prising reluctance and mmf sources. In general three types of elements appear in MEC:

mmf sources, flux sources, and permeance. Node potential methods (Ostović 1987) solve the

MEC. The MEC can be considered as a reduced order FE which translates a geometrical de-

scription of a magnetic device consisting of coils of wire, a magnetic conductor such as iron,

and permanent magnet material into an electrical circuit description (Krause et al. 2013).

By taking into account an approximately accurate machine geometry, stator, and rotor slots

effects, skewing, the type of winding connections, stator and rotor leakages, and linear or

nonlinear magnetic characteristics of machine cores it provides a comparatively more accu-

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.2. PHYSICS-BASED MODELING 14

rate solution than analytic methods (Carpenter 1968). An electric machine is assumed to be

a quasi-stationary device; that is, any change of current that builds the flux is followed by

an immediate change of flux (In other words, the time needed for an electromagnetic wave

to pass through the machine is negligible compared to the period of the wave). Such a space

may be partitioned into flux tubes. The flux tubes are the basis of the magnetic equivalent

circuit method. A flux tube is a geometrical space in which all lines of flux are perpendicular

to their bases, and no lines of flux cut their sides (Ostovic 2012).

Currents flowing in the windings are the MMF sources in the magnetic equivalent circuit

of an electric machine. These MMF sources are placed in the teeth. A reluctance/permeance

and an unknown flux are assigned to each yoke part or each tooth. Slots are modeled by their

leakage permeances. In the air gap, a flux tube is defined when any of the stator teeth come

face to face with a rotor tooth. Permeance is assigned to each air-gap flux tube. Geometries

of these flux tubes vary due to the rotation of rotor teeth with respect to stator teeth and

also depend on the air-gap length between any two facing stator and rotor teeth. Any air-

gap asymmetry will affect the height of these flux tubes. Although some researchers have

presented methods to consider motion in motors, the change of reluctance network during

motion adds to the complexity of solving equations (Zhao et al. 2011; Zhang et al. 2006)

2.2.3 Comparison between MEC & FEA

The finer modeling and simulation resolution offered by FE analysis enables us to study

complex issues such as internal faults or localized magnetic saturation in machines (Wang,

Jatskevich, and Dommel 2007). FEM models are computationally very intensive, and the

model size and time step constraints make them unsuitable for use in a real-time simulation

environment (Tavana and Dinavahi 2016; Liu, Mohammed, and Liu 2009). Hence in the case

of limited computation capability, FEA models are used for final design analysis only.

The advantages of the MEC method include reduced model complexity compared to

FE, ease of parameterization, and fast computational time (Yilmaz and Krein 2008). MEC

has gained popularity in past years mainly since the extension to 3-D does not expand the

numerical complexity as quickly as with FEA (Kim et al. 2002; Amrhein and Krein 2007).

MEC is also useful for performance analysis and initial device sizing. However, it may

be inadequate for the accurate representation of complex geometric shapes and nonlinear

material properties. A comparison of reported results between FEA and MEC simulations

against experimental measurements is shown in Table 2.1. It can be observed that both FEA

and MEC exhibit acceptable accuracy against experimental results.

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.2. PHYSICS-BASED MODELING 15

Ref Method Force/Torque Comparison

(Liu and Chiang 2006) FEA-MEC
6% on force between MEC and test
10% on force between FEA and test

(Hur et al. 1997) FEA-MEC
8.6% on force between 2D MEC and test
9% on force between 2D FEA and test
1% on force between 3D MEC and test

(Leplat et al. 1996) FEA-MEC
16.9% on torque between MEC and test
11.1% on torque between FEA and test

(Kim et al. 2004) FEA-MEC
3-5% on force between FEA and test

5-35% on force between MEC and test

Table 2.1: Experimental and Simulation result comparison

FE analysis has both advantages and disadvantages relative to MEC based analysis. Re-

garding benefits, FEA generally requires less deployment time for simulation. The direction

of flux in each element of the MEC model must be known before the MEC method is applied,

whereas, in FEA, one of the results of computation is the flux distribution itself (Ostovic

2012). In addition to that, FEA is generally more accurate than MEC analysis. FEA also

offers a comparatively more flexible tool to study designs incorporating new shapes as com-

pared to any other models discussed thus far. Based on this study, it is decided that FE

offers the flexibility to model complex geometries and generates the field solution with high

accuracy and thus is ideal for populating the training dataset consisting of thousands of

simulated designs.

2.2.4 Need for an Improved Surrogate Model

Having discussed the advantages and limitations of the popular numerical methods asso-

ciated with the analysis of electric machines, it is clear that a computationally cheap and

accurate field solution is necessary for the analysis of electromagnetic devices such as actua-

tors, transformers, and electrical machines (Yilmaz and Krein 2008; Silva 2018b; Silva et al.

2017b). This can be a challenging task and usually for generating an optimal design, we

need to perform a few thousand analyses as part of optimization. Usually, once a handful of

designs are shortlisted using MEC or d-q analysis, testing of these designs with 3-D FEA is

performed. There have been studies where FEA is used for design step directly (Bianchi and

Bolognani 1998; Salon 1995). However, this dramatically reduces the size of search space

and is computationally very expensive due to longer analysis time. Decades of research and

engineering have gone into designing fast numerical solvers for design analysis. However,

employing FE methods for modeling and simulation purposes remains a computationally

expensive process and is still an active field of research. This has also led to the development

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.3. MACHINE LEARNING 16

of alternative surrogate models to accurately evaluate and/or optimize a device (Silva 2018b;

Silva et al. 2017b; Wang et al. 2016; Ghorbanian, Salimi, and Lowther 2017; Ghorbanian and

Lowther 2017). Unfortunately, these surrogate methods are usually specific to a problem and

describe systems with very few parameters, thus limiting the ability of such surrogate models

to deal with any arbitrary change in the design of a machine (Silva et al. 2017b). On the other

hand, in recent years, rapid developments in the field of machine learning (ML) and big data

(Krizhevsky, Sutskever, and Hinton 2012), have opened new venues for pattern recognition

and curve fitting in complex problems such as computer vision (Krizhevsky, Sutskever, and

Hinton 2012; He et al. 2016), dense regression (Badrinarayanan, Handa, and Cipolla 2015).

Most of the recent work in this growing field of research is related to improving data-driven

statistical methods to supplement simulations to solve engineering problems. These works

are shown across applications such as smoke simulation (Chu and Thuerey 2017), liquid

splash modeling (Um, Hu, and Thuerey 2018) and modeling liquid behavior with obstacles

(Tompson et al. 2017). Another work, which is more related to this discussion, tried solving

Poisson’s equation with a Deep Learning (DL) algorithm (Tang et al. 2017). The use of deep

networks suitable for the task for magnetic field estimation might accelerate the solution of

such problems. Hence, the possibility of applying deep networks to magnetic field estimation

is investigated in this work, for the domain of low-frequency EM devices, using a bitmap

approach.

2.3 Machine Learning

Although DL has gained a lot of importance in recent times, it has been in existence since

1940. The first experiment with neural networks was performed in the 1940s (McCulloch

and Pitts 1943) and the algorithms to train deep networks have been present since 1980.

The first successful application of Convolutional Neural Networks(CNN/ ConvNets) was

developed by Yann LeCun (LeCun et al. 1998) in the 1990s. The most popular of those

architectures is known as LeNet, which was used to read zip codes, handwritten digits, etc.

Utilization of these concepts for producing state of the art results in more evolved fields

such as computer vision (He et al. 2015), text analysis (Devlin et al. 2018), forecasting, etc.,

demands computational memory and speed which was not available on mainframes until a

few years back. At one point in time, this field was regarded as an art rather than a science

due to the difficulty involved in successfully training these models, but that is not the case

anymore. Some other reasons that have contributed to the success of these deep models

today are the resources available both regarding training data and software libraries such as

Tensorflow(Abadi et al. 2015), Theano (Theano Development Team 2016), PyTorch (Paszke

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.3. MACHINE LEARNING 17

et al. 2017), etc. Also, these algorithms have undergone some major changes in the past

decade which have greatly simplified the training process.

Due to the advancement in computational technologies and improvement in DL algo-

rithms(Hinton, Osindero, and Teh 2006; Bengio, LeCun, et al. 2007; Delalleau and Bengio

2011), the number of hidden units in an artificial neural network has doubled in size every

2-3 years (Goodfellow, Bengio, and Courville 2016), since the late 2000s. Some of the major

factors that can be attributed to this growth are:

• Computation Power (GPUs, ASICs, TPU (Tensor Processing Unit)).

• Data (Both ability to generate massive datasets and process them).

• Improvement in algorithms (CNN, LSTM (Long short term memory)).

• Infrastructure & Frameworks (Git, Cloud Computing, Tensorflow (Abadi et al. 2015)).

As for defining ‘Deep Networks’, there is no universally agreed-upon threshold of depth

dividing shallow learning from deep learning. One of the earliest deep neural networks

had three densely connected hidden layers (Hinton, Osindero, and Teh 2006). In 2014, VGG

networks consisted of 16+ hidden layers and were called ‘Very Deep’ networks (Simonyan and

Zisserman 2014). In 2016 the “Extremely Deep” residual networks (He et al. 2016) consisted

of 50 to 1,000 hidden layers. For Feedforward Networks, CAP is the number of hidden

layers plus one. Formally, CAP (Credit Assignment Path) is the chain of transformations

from input to output. Most researchers in the field agree that deep learning has multiple

nonlinear layers (CAP ≥ 3) and Schmidhuber (Schmidhuber 2015) considers CAP ≥ 10 to be

very deep learning. So, a neural network with more than one hidden layer can be considered

a Deep Network.

Why and where should one use a Deep Neural Network? As the number of features

increases in our data, it becomes difficult to train a linear model. The interaction between

these features can be too complicated for simpler models to achieve satisfactory accuracy. On

the other hand, deep neural networks can adapt to more complex datasets and generalize

to previously unseen data; thus they can fit more complex data than linear models can.

It has been observed that the network’s performance degrades if a single layer is removed

(Krizhevsky, Sutskever, and Hinton 2012). However, the tradeoff of an additional layer is

that the model will take longer to train, will be larger in size, and have lesser interpretability.

One of the trickiest things about these networks is to get a configuration of parameters that

works. There can be multiple possibilities of these configurations.

The way the model is trained, i.e., the starting position, optimization algorithms, learn-

ing rate, etc., plays an essential role in the success and failure of our model. For the DL

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.4. DATA COLLECTION 18

models trained in this chapter, the outcome/target/label/dependent variable is in the form

of a quantitative quality (magnetic field distribution), which is predicted based on the in-

formation related to geometric features, excitations and the material properties, all of which

will constitute the features/predictors/independent variable. Having identified the training

data, the next step is to perform statistical learning that will enable us to predict the field

solution of new unseen geometries. This type of learning is a case of supervised learning. The

next few sections will dig deep into the complete ML pipeline. The first step (discussed in

Section 2.4) in the pipeline is the collection of training data in a format suitable for training

a DNN. Once sufficient data is collected different neural network architecture are explored to

suit the learning task, This process is discussed in Section 2.6.1, followed by the working of

the Neural network in Section 2.6.2 and the decision-making process involved in tuning the

network suitable for the task at hand. Results based on this pipeline are shown in Section

2.7.

In addition to magnetic field estimation, identifying when the input does not fit the

problem description is also essential and is handled very well by an FEA solution system.

Basically, a ML network trained in a supervised manner could predict the solution for any

arbitrary input. As such, a DL emulator lacks a physics-based judgment. This is an im-

portant issue that will be addressed through an uncertainty analysis over the prediction, to

generalize the DL estimator as much as possible.

2.4 Data Collection

Deep Learning models usually have many parameters to be tuned and therefore need a lot of

data to generalize. The input data is called a dataset. A ‘dataset’ is defined as a collection of

instances that share some common attributes. One of the most significant attributes related

to a dataset is the type of task which is also referred to as the ‘target’. The other important

attribute is the domain, which is the source of the data. The domain and task characterize

a supervised learning problem.

In supervised learning, the two most important types of learning problems can be charac-

terized based on the type of task, which are classification and regression. For a Classification

task, the target is a label (also known as class) where the task is to match the samples with

existing entities in the form of classes. On the other hand Regression is an example of su-

pervised learning where the task is to predict a number by learning a function relating the

input and output.

The performance of any ML algorithm is only as good as the data used to train it. A

weak representation of the ML problem insufficiently captures the dynamics necessary to

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.4. DATA COLLECTION 19

successfully learn the mapping of inputs to outputs.

A weak representation of a problem can be attributed to two main reasons:

1. Missing important information of the domain representation (input).

2. The dataset, which is a sample of a population, does not represent the population in

an unbiased manner.

To tackle the above issues, the input data is represented using the CAD geometry along

with information related to the material distribution and excitations, at sufficient resolution.

Further, all the samples are populated using a Latin Hypercube.

Depending on the complexity of the problem, different network architectures or param-

eters might be considered in the search for an optimal structure to guarantee a reasonable

prediction error. Therefore, to appropriately establish the idea of DL for magnetic field esti-

mation, three problems with different complexities of the geometry, material, and excitation,

i.e. a simple coil in air, a transformer (Description of TEAM Problem: 32 A Test-Case for

Validation of Magnetic Field Analysis with Vector Hysteresis) and an Interior Permanent

Magnet (IPM) machine (Wang et al. 2016; Ghorbanian, Salimi, and Lowther 2017; Ghor-

banian and Lowther 2017) are incorporated. All the three problems are parameterized and

simulated in the FEA software package – MAGNET (MAGNET v2020.2). All the materials

properties including the non-linear (NL) nature of the B-H relation were used as is mentioned

in the material library of MAGNET (MAGNET v2020.2).

Given the goal of this work, i.e. predicting the field distribution in electromagnetic devices

using DL, a set of inputs and outputs used for training the networks must be generated first.

The input of the network is formatted as a uniform structured grid containing information

regarding the geometry, material, and excitation at each node in the input (pixel).

2.4.1 Coil

A simple coil made of copper is located inside an airbox, whose dimensions (height = 160mm,

width = 160 mm) are fixed. However, the radius of the coil (3mm ≤ R ≤ 15mm) as well

as its center’s position change as the parameters of the problem. Constraints are placed to

make sure the entire coil remains inside the box and that the radius is determined first and

the center is adjusted accordingly. The coil current is also changed from 5A to 15A.

2.4.2 Transformer

A transformer with two coils, one of which is not excited, is considered as the second problem

which is more complex than the coil problem in terms of the geometry, material, and field

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.4. DATA COLLECTION 20

Figure 2.3: Parametrized Geometry - Coil.

distribution. The transformer core is made of M19 silicon steel material(NL). The coils are

made up of copper, and the dimensions change as in Table 2.2. The left coil’s current is fixed

at 1A and there are 90 turns and the right coil’s current is zero. The transformer depth is

2.5mm.

Figure 2.4: Parametrized Geometry-Transformer.

Para-

meter

Minimum

(mm)

Maximum

(mm)

x 10 190

y 10 190

w 5 150

yc 5 50

Table 2.2: Transformer Parameters

2.4.3 IPM Motor

A 4-Pole, 24-slot IPM motor is analyzed as the most complex problem in this work. In

addition to M19, and copper, permanent magnets (NdFeBr) are also incorporated. Table

2.3 lists the parameters of the IPM motor. The stator windings have 8 turns and the

excitation current was varied from 25 A to 35 A rms. A partial (one pole) model is used for

the simulations to reduce the computation time.

In addition to magnetic field estimation, identifying when the input does not fit the

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.5. NEURAL NETWORKS 21

problem description is also essential and is handled very well by an FEA solution system.

Basically, a ML network trained in a supervised manner could predict the solution for any

arbitrary input. As such, a DL emulator lacks a physics-based judgment. This is an impor-

tant issue that will be addressed employing the uncertainty analysis, to generalize the DL

estimator as much as possible.

Figure 2.5: Parametrized Geom-
etry - IPM Motor.

Parameter
Minimum

(mm)

Maximum

(mm)

Stator back iron (x1) 5 35

Stator tooth width (x2) 5 12

Magnet inset depth (x3) 5 25

Magnet thickness (x4) 1 50

Magnet width (x5) 20 50

Table 2.3: IPM Motor Parameters

2.5 Neural Networks

Neural Networks consist of collections of neurons that are connected in an acyclic graph.

In other words, the outputs of the neurons in a fully connected layer can become inputs to

other neurons through pairwise connections. Cycles are not allowed since that could result

in an infinite loop during the forward pass of a network. Also, any two neurons in a single

hidden layer do not share any connections. The architecture of an Artificial Neural Network

(ANN) with two hidden layers is shown in Figure 2.6.

Every node computes a weighted sum of incoming inputs connecting the nodes of the

previous layer. This can be visualized as merging all the (weighted) inputs entering a node to

generate a single number. Every activation function (or non-linearity) takes a unique value

and performs a specific fixed mathematical operation on it. Several activation functions are

described in the literature (Goodfellow, Bengio, and Courville 2016).

Unlike all layers in a Neural Network, the output layer neurons most commonly do

not have an activation function. This is because the last output layer is usually taken to

represent the class scores (e.g., in classification), which are arbitrary real-valued numbers,

or some real-valued target (e.g., in regression).

A loss function measures the quality of a particular set of parameters based on how

well the induced scores agreed with the ground truth target in the training data. The loss

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.6. CONVOLUTIONAL NEURAL NETWORKS 22

Figure 2.6: Artificial/Feedforward Neural Network with 2 hidden layers.

function is dependent on training data and weights/ biases of the network. Since in Machine

Learning, we take the training data as given and fixed, and weights as variables that we can

control, we use back backpropagation to compute the gradients for the network parameters

and perform a parameter update. Backpropagation is a way of computing gradients of

expressions through the recursive application of the chain rule. The terminology of an N-

layer neural network is such that we do not count the input layer. Therefore, a single-layer

neural network describes a model with no hidden layers (input directly mapped to output).

This same terminology will be followed for the CNN and RNN as well.

2.6 Convolutional Neural Networks

Convolution Neural Networks (ConvNets or CNN) are similar to ordinary Neural Networks

in the sense that they are made up of learnable weights and biases. Each neuron will receive

some inputs, multiplies them with weights (trainable parameters), and operates on it with

a non-linear function. But the difference is that CNNs make an explicit assumption that

input data follows a structured pattern to store the information (usually in the form of a

uniform grid such as images, time-series events, etc.). This introduces certain properties in

the architecture which helps in reducing the number of parameters in the network and makes

the whole training process easier (Goodfellow, Bengio, and Courville 2016).

A brief discussion on simple Feedforward Neural Networks is covered in Section 2.5. This

will help in comparing and relating simple Neural Networks with CNNs.

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.6. CONVOLUTIONAL NEURAL NETWORKS 23

Figure 2.7: Convolution kernel visualization (Dumoulin and Visin 2016) (Blue = Input map,
Cyan = Output map).

2.6.1 Architecture of the CNN based model

There are three main types of layers present in CNN architecture:

• Convolutional layer(CONV): is used to compute the connection of each neuron

with the local region of the input volume. It consists of a set of learnable filters/

kernels, as shown in Figure 2.7. Each filter is small spatially as compared to the input

image but slides across the whole length and width of the image and computes dot

products between the entries of the filter and the input at any position creating a 2-D

activation map/feature map giving the response of that filter at any position. The

algorithm can learn appropriate filters that get activated for certain visual features,

each filter looking for something new to learn. When the 2-D activation map/ feature

map is stacked together, they result in the output volume of a CONV layer.

• Pooling layer (POOL): is in charge of downsampling the spatial dimension of the

input. They are periodically inserted in-between CONV layers. The aim is to reduce

the number of parameters in the network, thus helping in avoiding overfitting. The

most popular form is a pooling layer with filters of size 2× 2 applied with a stride of 2

(skipping a pixel), thus down-sampling every depth slice in the input by two along both

width and height. It has two hyperparameters size and stride to control the volume of

the output.

• Fully connected layer (FC): Neurons in these layers have a dense connection with

all activations in the previous layers, similar to the architecture of regular Neural

Networks. FC and CONV layers differ in the structure, as a CONV layer exhibits local

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.6. CONVOLUTIONAL NEURAL NETWORKS 24

Figure 2.8: Encode-Decoder based Convolutional Neural Network Architecture

connectivity and parameter sharing, but are identical in their functionality since both

layers still compute the dot product between their weights and activations, followed

by a non-linear activation function. The FC layer aims to balance the locality-context

tradeoff. This layer can be thought of as relating all the features learned by the CONV

layer to develop patterns that capture global trends.

The input to the DL network consists of uniformly placed spatial data where the neigh-

boring pixels are related to each other. Grouping together the pixels that have similar

attributes, through a convolutional filter is performed using a dense kernel as shown in Fig-

ure 2.7. The traversal of the filter over the geometry results in a local measure of how likely

two pixels are related to each other. In addition, a dilated filter is able to capture spatially

distant relationships as shown in Figure 2.9b.

The DL model shown in Figure 2.8 and 2.11 consists of a total of 32 layers with 16

trainable convolutional layers, 8 pooling/up-sampling layers and 8 dropout layers. Each

block in the architecture consists of two sets of 3×3 convolution layers (including ReLU

(Rectified Linear Unit (Goodfellow, Bengio, and Courville 2016)) and a batch-normalization

layer (Géron 2019)), followed by a 2 × 2 max-pooling (Goodfellow, Bengio, and Courville

2016) (green arrow)/ up-sampling (blue arrow) layer with a stride of 2. This pattern is not

followed for the last two convolutional layers due to a network design constraint, i.e. to fit the

field distribution dimensionality. Each convolutional layer has a stride of 1. The network is

trained using backpropagation with an aim to minimize the RMS error between the prediction

and FEA field distribution. The limits on geometrical and excitation parameters mentioned

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.6. CONVOLUTIONAL NEURAL NETWORKS 25

Network Architecture Dataset

Number of Layers 32 Training Dataset 30000
Trainable Layers 16 Validation Dataset 10000

Number of parameters 2.4 Million Test Dataset 5000

Table 2.4: Network and Training partition features.

in Section 2.4 are used to populate a design space using a Latin Hypercube. The dataset

was then partitioned randomly into training, validation, and test sets. More information on

the network and training dataset size can be seen in Table 2.4. Although there are other

techniques for partitioning the data, namely, cross-validation and bootstrap-based validation,

the high computation cost associated with these techniques prohibited their usage in this

case.

(a) Non-dilated Convolutional filter with padding. (b) Dilated filter with dilation rate of 1.

Figure 2.9: Different types of kernel for a Convolutional layer in a CNN (Dumoulin and Visin
2016) (Blue = Input map, Cyan = Output map)

2.6.2 Working of the DL model

The architecture of such a network resembles that for image segmentation purposes with

the focus on dense regression instead of classification (Badrinarayanan, Kendall, and Cipolla

2017). The network architecture can be divided into two parts: encoder and decoder, as

seen in Figure 2.8. The encoder section tries to extract spatially related features from the

input. This involves creating a bottleneck layer to compress out the most useful information

from a high dimensional input, known as ‘latent representation’. This information is then

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.6. CONVOLUTIONAL NEURAL NETWORKS 26

used by the decoder section to semantically project the discriminative features learned by

the encoder onto the original input space to predict the field solution. For the network to

train successfully, it must have sufficient capacity to satisfactorily capture the complexity

of the problem (Ghorbanian, Salimi, and Lowther 2017). This capability is achieved by

choosing an appropriate value for the number of layers, kernel size, number of kernels, and

proper parameters for regularization. Model selection is usually performed by investigating

a set of candidate models and choosing the one which gives the best balance between model

fit and complexity. Random search and grid search are two of the common ways to arrive

at optimal values of these hyperparameters (Géron 2019). A total of 35 networks with

different configurations were trained in the process of model selection. It is observed that

the number of layers and the number of kernels/filters in a layer play an important role in

the model performance. However, the most significant improvement is achieved by adding

dilated filters, shown in Figure 2.9b. This is a significant feature since the performance

of the network improved not due to the addition of neurons but by changing the behavior

of the constituent’s filters. A comparison is shown in Figure 2.10, where a network with a

kernel size of 5, number of kernels/filters in a convolutional layers (K) = 64, skip connections

(shown in Figure 2.8 and 2.11 (b)) and alternate dilated layers in the encoder outperforms

other networks. The normalized RMS error in prediction over the validation shows an

improvement for a network with dilation over the same network architecture with non-dilated

(dense) kernels. The pattern is consistent for all three problems, with a similar accuracy

level achieved for networks with K=32 and K=64 for the coil problem, as is shown in Figure

2.10 (a), (b) and (c).

To gain intuition, we can think that the magnetic field at a point can be affected by regions

far away from it (the source of excitation). The presence of dilation enables spatially far

relations to be captured without increasing the kernel size. This is important for maintaining

the locality-context trade-off of the network.

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.7. RESULTS & PERFORMANCE 27

Figure 2.10: Training curve with Normalized Prediction Error (calculated over validation dataset).

2.7 Results & Performance

Figure 2.11 (c) shows the predicted magnetic field distribution in a coil, transformer and

an IPM motor. The normalized mean squared error between the ground truth and the

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.7. RESULTS & PERFORMANCE 28

Figure 2.11: (a) Problem definition, (b) Deep network architecture, (c) field predictions, (d) FEA
results.

prediction lies in the range of 0.1% - 1% per node/pixel. The error distribution for an IPM

motor can be observed in Figure 2.12 and is highest around the corners, specifically in the

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.7. RESULTS & PERFORMANCE 29

carrier region of the rotor (boxed in black) and in the section of back iron (circled red). This

was expected since a structured grid dense enough to capture these minute details will be

computationally too expensive for this exploratory work. Although material exhibiting non-

linear relations was included in the study, the performance of the network will deteriorate if

the excitation is far different from that used for generating the dataset.

Figure 2.12: Error (Ground Truth - Prediction) distribution.

The network was trained on an NVIDIA 1080 Ti and took around 10 minutes per epoch

with a batch size of 16. Convergence is achieved in around 60 - 100 epochs (depending on

the network configuration, as shown in Figure 2.10), resulting in a total run time of 12 –

15 hours. The prediction time is in the range of 2-3 seconds for 100 geometries at a time

(batch size). The time required to analyze multiple geometries is memory-bound rather than

compute-bound, i.e. it is possible to parallelize the training and inference to thousands of

samples if the memory requirements are satisfied.

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.8. UNCERTAINTY PREDICTION 30

2.8 Uncertainty Prediction

The DL trained in this work and some other works (Tang et al. 2017) employ supervised

training and the prediction accuracy depends on how close the input is to the training

data. A geometry that is significantly different from the ones in the training dataset will

produce substantial errors. To be able to rely on such a predictor (trained in a supervised

manner), we need to provide a measure of uncertainty in the results. This knowledge is

essential to quantify the confidence one can have in the results. One way to achieve this is

by extending the DL model by introducing a probabilistic component in the neuron weights.

The technique is based on quantifying uncertainty known as Monte- Carlo (MC) dropout (Gal

and Ghahramani 2016). Monte Carlo integration gained popularity during the Manhattan

Project. Due to its effectiveness, it was included in the top 10 algorithms of 20th century

(The Beginning of Monte Carlo Method). Instead of generating a system of the equations to

describe a complex problem, we can simulate it multiple times and average out the quantity

we are interested in.

2.8.1 Uncertainty Maps

Uncertainty maps are images that indicate the model’s uncertainty for a given pixel classi-

fication. It may be tempting to interpret the values from the final softmax layer of a CNN

as confidence scores, but we must be careful as work on Adversarial Networks have shown

that minute perturbations to a real image can change the softmax output to arbitrary values

(Goodfellow, Shlens, and Szegedy 2014). This can make the network predict wrong results

with high confidence. A network will try to predict even in cases where the input data itself

might be irrelevant. This is especially important when dealing with images that were not

present during training. (Gal and Ghahramani 2016) showed how we can use dropout in

a deep CNN to get uncertainty information from a model’s predictions. Instead of having

fixed weights, each weight is drawn from a distribution.

Quantifying the uncertainty in the network’s prediction would allow us to find regions in

an image for which the network is unsure of its prediction. Furthermore, segmentation based

on an uncertainty threshold value can sort out the pixels over which the model is confident

in the prediction, thus providing us with a partial but highly accurate solution.

2.8.2 Theory

Dropout (Srivastava et al. 2014) was introduced as a regularization technique with an aim

to check the bias-variance tradeoff of the network. The technique involves a parameter

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.8. UNCERTAINTY PREDICTION 31

(p), which determines the probability of dropping out any neuron from the network for an

iteration during the training on the dataset (X, Y). Thus, training a neural network with

dropout is equivalent to training a collection of 2K thinned networks with extensive weight

(W) sharing, but a single network approximates the average output at test time, through a

weight averaging technique (Badrinarayanan, Handa, and Cipolla 2015). Thus, assuming a

point estimate for weights. On the other hand, dropout variational inference is a practical

approach for approximate inference in large and complex models (Kendall, Badrinarayanan,

and Cipolla 2015).

Even with a small number of parameters, inferring the model posterior distribution

(p(W |X, Y)) in a Bayesian NN is a difficult task, with the variational inference being a

popular approach to approximate the posterior distribution. This is done by minimizing the

Kullback-Leibler divergence from the true posterior (p(W |X, Y)). However, this approach

can be very computationally expensive, almost doubling the number of model parameters

(Blundell et al. 2015). On the other hand, it has been shown that dropout can be cast

as approximate Bayesian inference in Gaussian processes. This means that uncertainty in-

formation can be extracted from models without requiring additional parameters. Usually,

training a neural network with dropout can be seen as training a collection of 2K thinned net-

works with extensive weight sharing, but a single network approximates the average output

at test time. Thus assuming a point estimate for weights.

Instead, performing dropout during the test phase can be viewed as performing Monte

Carlo sampling from the posterior distribution over the various dropout models. By applying

dropout to all the weight layers, we are essentially drawing weight from a Bernoulli distribu-

tion. This technique has been utilized in order to produce uncertainty maps as a measure of

prediction uncertainty. This work is in line with Bayesian SegNet (Kendall, Badrinarayanan,

and Cipolla 2015). However, this work extends this information to more than a visualization

tool and relates uncertainty information and segmentation accuracy.

We are interested in finding the posterior distribution over the convolutional weights, W

given the observed training data: input (X) and target (Y).

p(W |X, Y)

Unfortunately, this posterior distribution is not tractable.

p(W |X, Y) =
p(Y |X,W)× p(W)

P (X)

The evidence term : p(X) =
∫
p(X,W) × p(W)dW , is very difficult to compute. We need

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.9. BAYESIAN NETWORK - RESULTS 32

to approximate the distribution of the weights (W). We can use Variational Inference (VI)

to approximate it. Here we learn a distribution q(W), by minimizing the Kullback-Leibler

divergence between this approximate distribution & the true posterior:

KL (q(W) || p (W |X, Y)).

Since dropout is seen as an approximation to a Bayesian Network, the uncertainty in the

weights induces a prediction uncertainty.

p(y|x,X, Y) =

∫
p(y|x,W)× p(W |X, Y)dW

Since the true posterior is intractable, we approximate the posterior using Monte Carlo

integration:

p(y|x,X, Y) =

∫
p(y|x,W)× q(W)dW

How to implement this? With Dropout, a unit is present with a probability ‘p’, and

at testing the unit is always present and the weights are multiplied by ‘p’. In practice, we

can sample from the distribution by running several forward passes through the network.

Dropout can be cast as approximate Bayesian inference over the network’s weights. This

imposes a Bernoulli distribution over the CNN filter’s weights.

2.9 Bayesian Network - Results

Using Monte Carlo (MC) dropout (Gal and Ghahramani 2016), uncertainty maps are com-

puted for all three CNNs by retrieving 10 Monte Carlo samples from the networks and

then calculating the standard deviation over the softmax outputs of the samples. In this

Chapter, if not stated otherwise, the uncertainty maps are displaying the mean standard

deviation over all the classes. Besides the uncertainty maps, Monte Carlo sampling has also

been shown to be valuable to increase classification accuracy (Kendall, Badrinarayanan, and

Cipolla 2015), as it has been shown to outperform the standard weight averaging technique.

A qualitative measure can also be extracted by generating uncertainty maps. A normalized

uncertainty map through such implementation is shown in Figure 2.13(b), with regions of

high uncertainty highlighted and expanded in Figure 2.13(c). Figure 2.13(a) shows the error

distribution between the prediction and ground truth. It can be seen that the standard de-

viation of the Monte Carlo samples (Figure 2.13(b)), is related to classification accuracy. A

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.10. CONCLUSION 33

Figure 2.13: (a) Error distribution, (b) Normalized uncertainty map from Bayesian Inference, (c)
Region of uncertainty map with high uncertainty.

high value of uncertainty is an indication to not rely on the results and perhaps employ the

generalized conventional solvers (FEA, FDM, etc.). Out of the three regions of high error

(circled in Figure 2.13 (a)), the Bayesian approach could relate two (black box in Figure

2.13(a)) with high uncertainty. The uncertainty maps are computed by retrieving 10 MC

samples from the network and calculating the standard deviation over the samples. Besides

the uncertainty maps, MC sampling improved the accuracy (normalized mean squared error)

by around 10%.

2.10 Conclusion

By learning the field distribution from the FEA software, our model efficiently approximated

the distribution. This enables us to generate the field distribution for new geometries at

lower computational costs, with the added advantage of parallelizability over GPUs. A

probabilistic way of analyzing the prediction without the ground truth is also presented.

Thus, providing the decision-making capacity to either use the estimated field for post-

processing or revert to other numerical solvers. Although a structured CNN is not the ideal

architecture to handle an unstructured mesh as is employed in FEA, the DL field estimator

model can function as an initial guess for the FEA solver. With recent advancements in

Graph Convolutional networks, which are more suited to handle unstructured meshes, we

hope to extend this work to come up with an improved predictor in the future. Another

bottleneck is the amount of simulated (big) data required for training a deep network. An

approach involving semi-supervised or unsupervised learning can offer an exciting path with

CHAPTER 2. MAGNETIC FIELD PREDICTION

2.10. CONCLUSION 34

less dependency on labeled data. Nonetheless, this work can provide guidelines for selecting

a suitable network design for future work in this field.

Crucially, the proposed approach shows good accuracy in magnetic field prediction and

can take advantage of GPUs for fast training. Through this chapter, essential guidelines

for setting up deep networks are established, the result/inference is improved by Bayesian

techniques and the confidence levels of predictions are evaluated appropriately.

The work presented in this chapter serves as foundation for exploring the usage of DL

models for other computationally expensive tasks such as performance maps, namely effi-

ciency and power factor maps. These will be discussed next in Chapter 3.

CHAPTER 2. MAGNETIC FIELD PREDICTION

Chapter 3

Performance Map Prediction

3.1 Introduction

The Paris Climate Change Conference (COP 21) (“UNFCCC, Adoption of the Paris agree-

ment. COP” 2015; “Paris agreement” 2015) was tasked to address the greatest challenge

ever faced by the world - Global Warming (Figure 3.1). The principal target of this confer-

ence was to adopt a new climate agreement to limit global warming to well below 2◦C, as

compared to pre-industrial levels. All the participating nations submitted national plans to

achieve this target in the next few decades and identified options that may help to reduce

anthropogenic greenhouse gas (GHG) emissions. One of the largest contributors to GHG

emissions is the transportation sector. This has been shown in a study performed in the USA

(U.S. Greenhouse Gas Emissions and Sinks 1990–2018) (Inventory of US Greenhouse Gas

Emissions and Sinks: 1990–2016 2018), under the United Nations Framework Convention

on Climate Change (UNFCCC), where it was found that the transportation sector accounted

for the largest portion (28%) of total U.S. GHG emissions in 2018, followed by electricity

generation as shown in Figure 3.2. The worldwide contribution of the transportation sec-

tor towards global CO2 emissions is at 14%, with 95% of the worlds’ transportation energy

coming from burning fossil fuels, especially gasoline and diesel.

Cars, trucks, commercial aircraft, and railroads, among other sources, all contribute to

transportation sector emissions. In the same study, (Inventory of US Greenhouse Gas Emis-

sions and Sinks: 1990–2016 2018), it was also observed that the trend from 1990 to 2018 (for

the USA) shows that GHG emissions in the transportation sector increased more in absolute

terms than any other sector (i.e. electricity generation, industry, agriculture, residential,

commercial), largely due to increased demand for travel and personal ownership of vehicles.

Within the transportation sector, light-duty vehicles (including passenger cars and light-

duty trucks) were by far the largest category, with 59% of GHG emissions, while medium-

35

3.1. INTRODUCTION 36

Figure 3.1: Annual (a) CO2 emission (b) Global land-sea temperature increase relative to 1961-
1990 average temperature. Data from (Friedlingstein et al. 2019).

Figure 3.2: US GHG Emissions by Sector

and heavy-duty trucks made up the second-largest category, with 23% of emissions, a com-

bined share of 82% as shown in Figure 3.3. The greenhouse gas pollution that causes global

warming comes from numerous sources (CO2, CH4, N2O and various HFCs). Although au-

tomobiles release most of the GHG, the main contribution comes from the carbon dioxide

(CO2) emitted as the engine burns fuel.

To reduce the GHG emissions, governments and car manufacturers around the world are

setting ambitious targets of ending the sale of combustion engine-based cars in the not too

distant future. Thus, targeting the 82% share of carbon emissions from the transportation

sector, agencies such as the European Environment Agency (EEA) are also designing strict

guidelines and placing heavy emission premiums to limit the CO2 emissions (European En-

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.1. INTRODUCTION 37

Figure 3.3: US Transportation Sector GHG Emissions by Source

vironment Agency 2016; European Environment Agency 2015). With a similar focus on

reducing carbon emissions, the US Department of Energy (Yang et al. 2015) has also en-

couraged researchers and automotive manufacturers to design highly efficient drivetrains for

variable-speed drives such as those for hybrid and electric vehicles (HEVs). HEVs serve as

an alternative to fossil fuel-based vehicles and have become popular in recent years. They

offer a chance for a more environmentally-friendly mode of transportation and an increas-

ingly viable solution to the global pollution crisis. The popularity of HEVs is due to other

factors too. A study from the University of Michigan’s Transportation Research Institute

(Sivak and Schoettle 2018) found that electric vehicles cost less than half as much to operate

as gas-powered cars.

This serves as a massive motivation to develop techniques that can help improve the

efficiency of electric vehicles so that they become even more popular and efficient. One

of the most effective graphical ways to describe the performance of an electric machine is

through a performance map. This chapter is dedicated to finding novel statistical solutions

to generate performance maps such as efficiency and power factor maps. Although only two

types of electric motors are considered, the techniques discussed in this chapter can easily

be adapted for all kinds of electric machines.

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.2. LITERATURE SURVEY 38

3.2 Literature survey

The main component of an electric drivetrain is the electric motor. Electric motors used in

the majority of industrial applications operate at one or a few predefined operating points.

As such motors designed for such industrial usage are optimized for specific operating points

and the performance is well defined. Additionally, many machines were designed to operate

at either dc or a fixed frequency and voltage, e.g. 60Hz, 110volts. The development of power

electronics; the electrification of many systems; and the need to operate efficiently over an

entire performance envelope rather than just at one point; have significantly changed the

design targets of an electric motor. At the same time, motors used in the field of Electric

Vehicles and Hybrid Electric Vehicles are expected to operate efficiently over the entire

torque-speed range. Further, the machine is designed to account for frequent start/stop and

high acceleration and deceleration. To analyze a motor’s performance, it has to be studied

at all possible torque-speed combinations within the motor’s operating range.

For a specific drive configuration (battery, inverter, modulation scheme), an electric motor

such as the interior permanent magnet (IPM) machine can operate flexibly at different

speed and torque points with high-efficiency levels when compared to an internal combustion

engine. Typically, these points are represented by an efficiency map as shown in Figure 3.4.

Projecting onto the 2-D plane of speed and torque, the efficiency map consists of varying

efficiency levels in different regions. The peak torque is constrained by the motor’s thermal

limit, while the maximum speed depends on the rotor’s mechanical structure. The benefit

of an efficiency map is for vehicle dynamic simulations, as in (Mahmoudi et al. 2015), to

predict an HEV’s range (or total energy usage) in an urban or highway setting.

Finding such a map, however, for a given motor design is computationally expensive. The

generation of a performance map such as efficiency, power factor, etc., can require significant

computation, extending from hours to even days to run finite element (FE) simulations

for all operating points and this means that it is difficult to include this information in

the early stages of the design process. To tackle this computational burden, related works

on designing electric traction motors consider multiple operating points (e.g. rated, peak,

or max speed) using surrogate-based optimization to ensure that the designed motor is

optimized with respect to different operating conditions (Silva et al. 2017a). While this

methodology can provide optimal solutions, it is difficult to determine how changing a motor

parameter can affect the location of the high-efficiency regions in an efficiency map. However,

the performance map itself could be described as a response surface representing the impact

of changes in excitation, geometry, and materials on the particular performance parameter

over the entire operational envelope. As such, it could be a candidate for a machine learning

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.2. LITERATURE SURVEY 39

Figure 3.4: Efficiency map of the 2010 Toyota Prius IPM motor (Mahmoudi et al. 2015).

approach provided that issues such as generalization of the knowledge and the ability to

transfer learning between scenarios can be resolved. Having the capability to predict this

map reasonably quickly, e.g. in seconds, for use in motor design and optimization as well as

in sensitivity analysis will be a significant improvement over the present method.

Recently, deep neural networks (DNNs) have gained popularity in the field of computa-

tional electromagnetics, since they can provide relatively accurate solutions in a reasonably

short time compared to physics-based simulations. Examples include topology optimization

of electric motors (Asanuma, Doi, and Igarashi 2020; Barmada et al. 2020) and performance

prediction of motor drives (refer Chapter 2). Such approaches employ data-driven, deep

neural networks to approximate the output performance that was derived from the solution

of FE solvers.

This chapter explores different architectures and techniques to develop a suitable DL

surrogate model for predicting a performance map for different motors. Based on the inves-

tigations, this work suggests guidelines for designing a Deep Learning (DL) surrogate using

supervised learning. Once the optimal architecture has been identified, the focus will shift

to reduce the data and computational requirements associated with supervised learning.

This chapter aims to extend DL-based surrogate modeling and the content and structure

of the chapter are summarized as follows: Section 3.3 starts with the setup of the super-

vised learning task by describing the data collection process. Next in Section 3.4, the problem

description for supervised learning is identified and relevant requirements of the model archi-

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.3. DATA COLLECTION 40

tecture are discussed. Throughout Section 3.5, the results obtained with different supervised

task approaches are compared and discussed, before a Bayesian learning approach is used to

address the issue of uncertainty in the trained networks. This will conclude the cold start

supervised learning task of a performance map estimation.

From Section 3.7 onwards, the trained networks are extended to train and predict per-

formance maps for a new geometry. This will involve the discussion of a transfer learning

strategy and performance analysis in Section 3.8.

3.3 Data Collection

The procedure for efficiency map calculation is given below and shown in Figure 3.5, which

is based on Mohammadi and Lowther 2017. For a given motor geometry, material and

simulation parameters (drive, excitation, time steps), electromagnetic FE simulations using

Simcenter MotorSolve are run at different dq currents to obtain the dq flux linkages for

characterization in Stage 1. Then, these 9 dq flux linkages points are used to construct flux

linkage maps (λd, λq) as functions of the dq currents using 2nd-degree polynomials. Next in

Stage 2, different control strategies, namely the Maximum-Torque-Per-Ampere, Flux Weak-

ening, and Maximum-Torque-Per-Volt, are used to find optimal excitation conditions (I∗s , γ
∗)

for every motor speed N∗. In Stage 3, these points are used in FE simulations to compute

the values of the electromagnetic torque T ∗em and efficiency η∗. The final (N∗, T ∗em, η
∗) points

are then post-processed and interpolated to generate an efficiency map in Stage 4.

Figure 3.5: Flowchart of the process for calculating efficiency maps.

To predict the efficiency map for a given motor geometry, a large dataset of design vari-

ations, motor geometric images, and efficiency maps is required. Latin Hypercube sampling

(McKay, Beckman, and Conover 2000) was used to populate a design space of 2900 samples

of a 24-slot 4-pole parameterized IPM motor displayed in Figure 3.6. A variation of ±50%

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.4. NEURAL NETWORKS 41

was set on each of the reference design parameters (shown in Table 3.1). Of these samples,

2500, 200, and 200 were randomly partitioned for the training, validation, and test sets. For

each motor sample around 120 FE simulations were used for Stages 1 and 3.

Figure 3.6: Parametrized Motor Ge-
ometry - IPM Motor.

Independent Parameters

24 slots 4 poles

33.33 Arms 400Vdc

Parameter Value Parameter Value

X1 18 mm X7 50 mm

X2 5.8 mm X8 18 mm

X3 3 mm X9 4 mm

X4 1 mm X10 15 mm

X5 1 mm X11 45◦

X6 100 mm X12 1.5 mm

Table 3.1: Dependent & Independent Parameters
of the reference design.

3.4 Neural Networks

Due to the high cost of generating an efficiency map from detailed FE computations, Stages

1 and 3 in Figure 3.5 which usually involves FE simulations, are targeted as candidates for

DL models. The first model is based on an Artificial Neural Network-Convolutional Neural

Network (ANN-CNN) architecture and acts as a surrogate to Stage 1 for ‘Flux Linkage

Calculation’ shown in Figure 3.5. Similarly, a second network discussed later, learns the

behavior of the ‘Torque and Efficiency Calculation’ FE simulations in Stage 3 of Figure 3.5.

This model is based on a combined CNN-Recurrent Neural Network (RNN) architecture.

Note that the terms feedforward network and ANN are used interchangeably in this work.

3.4.1 Modular network approach

The aim of the model in Figure 3.7 is to predict the values of dq flux linkages (Stage 1, Figure

3.5), necessary for characterizing a motor drive. This model consists of three sub-networks.

The first takes the CAD geometry, which is parametrized to change dimensions to build a

design space consisting of 2900 different designs (samples), along with the information of

material distribution in the form of a pixelated image as input to a CNN. In parallel, the

current excitation (Is, γ) represented as a 1-D vector is fed to the first feedforward network.

After the information passes through a series of hidden layers on both sides of the network

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.4. NEURAL NETWORKS 42

Figure 3.7: Neural network-based flux linkage prediction.

(ANN and CNN), the hidden output from the CNN is flattened and merged with the hidden

vector of the first ANN, which is fed to the second feedforward network, which then predicts

the target dq flux linkages. The flux linkage map, obtained by interpolating the predicted

dq flux linkage values, is used for calculating the optimal control values (N∗, I∗s , γ∗) in Stage

2. These points along with the pixelated input of CAD geometry and material distribution,

are used as input for the Stage 3 surrogate model, as represented in Figure 3.8 to predict

the corresponding efficiency (η∗) values. However, due to the different torque-speed range

of various designs, the output length depends on the number of inputs. This means that a

model architecture suited to handle variable input sequence length is required. Although an

efficiency map is represented on a 2D map, the torque-speed points can be represented in the

form of a 1D sequence. The conversion of a 2D map to a 1D sequence can be done in many

ways - row first, column first, or in any random order. The architecture for performance

should be independent of the order of the sequence and should rather be able to identify the

spatial relation over a large separation over the sequence of the input. For these requirements,

a popular DL algorithm for such sequence-to-sequence modeling is based on using RNNs with

an attention mechanism to handle long-term dependencies as in Figure 3.8 (a). This part of

the model is called the ‘Encoder’. Finally, a dense time distributed layer in Figure 3.8 (b)

accumulates information from all the sub-networks and works as a decoder to predict the

target in the form of a sequence of efficiency values.

There are five inputs fed to the sequence-based model: the excitation (N∗, I∗s , γ
∗) and

torque values (T ∗em) along with the base speed (N∗base), for all the points where efficiency values

are to be calculated, as displayed in Figure 3.8 (a). An RNN cell consists of hidden memory

elements which are responsible for encoding long-term dependencies (Graves, Mohamed, and

Hinton 2013) in the input sequence, shown with the dotted arrow in Figure 3.8 (a). Once the

RNN has seen all the input sequence, the encoded hidden information is referred to as the

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.4. NEURAL NETWORKS 43

Figure 3.8: Network architecture: (a) RNN with attention mechanism, (b) prediction from time
distributed feedforward layers.

context. This context vector is initialized with information related to the motor geometry,

provided either as geometric parameters or through a CNN as in Figure 3.8 (a), and encodes

input information (geometric parameters, excitation, torque) relevant for the prediction. In

brief, this vector tries to summarize the global information for a design sample from the

inputs in a single abstract representation.

Even though efficiency maps can be predicted with just the context and encoder hidden

vector, there is an information loss which leads to poor performance. This occurs when all

the input data and motor geometric information is encoded into a potentially long sequence

(∼ 120− 170). To mitigate this issue, we introduce an attention mechanism (Vaswani et al.

2017) in Figure 3.8 (a). The importance of this attention mechanism can be attributed to the

smooth regions of an efficiency map. For an intuitive understanding, the neighboring regions

in the map can contribute to the prediction as they tend to have similar values especially

in the regions of high efficiency. Thus, the closer the neighbor is to the point of prediction,

the higher the voting power (i.e. attention) it gets. The calculation of attention can be

costly as the model needs to compute the attention value for each combination of input and

output sequence elements. As for the operation in the attention layer, the input sequence

is assembled and is compared with the information captured by the encoder sequence to

generate a corresponding score. As an example, assume that an attention score (a32) is

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.4. NEURAL NETWORKS 44

large, then the second encoder output state will get a lot of attention while predicting the

value of efficiency for sequence step 3. This can be visualized in Figure 3.8 (b), where

the encoder output is weighted with the ‘score’ value before being provided to the time

distributed feedforward network. Moreover, the time-distributed feedforward network takes

global information (the same for all the points) in the form of a ‘context vector’. The

output of this ANN sub-network is the predicted efficiency values in a sequence. One of

the important reasons for the model to handle variable sequence lengths is the property of

‘parameter sharing’. The RNNs can “roll-on” to any length of sequence as the weights of

each RNN cell are shared with all the other cells. Similarly, the time-distributed feedforward

network is a copy of the same network offered for the prediction of each element of the

sequence.

3.4.2 End-to-end network approach

Another study is performed to find the effectiveness of a single end-to-end DL model instead

of the chain of sub-models explained in Section 3.4.1. A different configuration involves data

engineering such that the 2D structured input contains information about the CAD geometry

and material distribution. The target is a uniform grid of efficiency values interpolated from

an FE-based efficiency map. Formulating the data in such a way bypasses the dependency

on the generation of the flux linkage map and excitation calculation through the control

strategies. The target 2D data is formulated such that the peak value of speed (N∗) and

EM torque (T ∗em) were normalized to 1 per sample. Thus, the efficiency map relies on a

separate network, which is trained to predict the peak values associated with each design.

This network for efficiency map prediction is similar to the CNN-based network discussed in

Section 2.6. The network architecture is shown in Figure 3.9. The encoding and decoding

sections of the network are symmetrical.

Figure 3.9: Network Architecture for End-to-end efficiency map prediction.

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.5. RESULTS OF SUPERVISED LEARNING 45

Figure 3.10: Supplementary Neural network for maximum Torque and Speed prediction.

However, the value of speed (N∗) and EM torque (T ∗em) in the predicted map are normal-

ized values. The other network used to convert the normalized T ∗em, N
∗ to absolute values

is shown in Figure 3.10. This supplementary network uses two sets of information as input,

one from the CAD geometry and additional 3D geometrical parameters such as the stack

length of the motor. Predictions from both the networks are needed to create an efficiency

map.

3.5 Results of Supervised Learning

3.5.1 Modular network approach

An example flux linkage map constructed using the predicted dq flux linkage values from

the DL model is shown in Figure 3.11 (a), alongside the map obtained using FE analysis

in Figure 3.11 (b), and shows a close match. The root mean squared error (RMSE) of the

output of the network in Figure 3.11 is compared to the ground truth over the test dataset

and lies in the range of 1-2%. The predicted values of dq flux linkages are then used to

evaluate the excitations to be fed into the second network for efficiency value prediction.

Two variants of this sub-network were trained. One includes a CNN which feeds the de-

sign and material distribution information to the RNN as the initiation of the hidden layer,

while the other variant uses the values of the geometric parameters. The performance of both

variants was comparable, with the one using data from geometric parameters marginally bet-

ter than the CNN-based model. In addition, several hyperparameters were tested as part

of model selection. While grid search can be employed, as it is computationally demanding

and thus a random search was employed to come up with an optimal hyperparameter con-

figuration. The RMSE over the test set was in the range of 0.75-1.5% per point. Finally, the

predicted sequence of efficiency values is used to generate an efficiency map. The prediction

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.5. RESULTS OF SUPERVISED LEARNING 46

Figure 3.11: Flux linkage (d-axis) map obtained from (a) DL, (b) FE.

from the model illustrated in Figure 3.8 is shown in Figure 3.12 for two design samples.

For a more quantitative measure, the concept of a confusion matrix (Géron 2019) is used

as a performance evaluator. The efficiency values are partitioned into two classes based on

a threshold chosen here as 85%. The (T ∗em, N) points in the efficiency map either belong

to class 1 (η∗ > 85%) or class 0 (η∗ ≤ 85%). Based on this classification, the following

metrics defined in Table 3.2, were used where CA is the classification accuracy in eqn. 3.1.

The variation of CA over 100 randomly selected designs from the test set is between 90-96%

indicating high accuracy in detecting high-efficiency regions in the tested maps. Since class

imbalance is not an issue for this analysis, further measures derived from confusion matrix

such as precision and recall are not evaluated.

Prediction: 0 Prediction: 1

Target: 0 True Negative (TN) False Positive (FP)
Target: 1 False Negative (FN) True Positive (TP)

Table 3.2: Confusion Matrix for high efficiency classification.

Classification Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

The results presented were based on a dataset of 2900 samples used here as a proof-of-concept.

Several constraints in terms of regularization and early stopping (Caruana, Lawrence, and

Giles 2001) were employed to check over-fitting during the training process. The network

was trained on an NVIDIA 1050 Ti GPU and took around 5 mins per epoch with a batch

size of 32. Convergence was achieved in around 25–35 epochs, resulting in a total run time

of 2–3 hours. The prediction time is in the range of 10–12 seconds for 100 geometries at

a time (batch size) which demonstrates an improvement over using FE simulations for this

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.5. RESULTS OF SUPERVISED LEARNING 47

Figure 3.12: Qualitative and quantitative results of efficiency maps for two design samples: (a)
Targets, (b) Predictions, (c) Confusion Matrices.

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.5. RESULTS OF SUPERVISED LEARNING 48

IPM motor. It should be noted that the time required to analyze multiple geometries is

memory-bound rather than compute-bound, i.e. it is possible to parallelize the training and

inference to thousands of samples if the memory requirements are satisfied. In comparison

FE based calculation of an efficiency map can take between 1-2 hours, resulting in months

to generate a dataset of this size. Further, the FE calculation is usually compute-bound.

3.5.2 End-to-end network approach

Similar to the above, the end-to-end network was trained on the same GPU and took around

10 mins per epoch with a batch size of 16. The network converged in around 40–50 epochs

with a total run time of 6–7 hours. The prediction time is in the range of 2–3 seconds for

100 geometries. Figure 3.14 shows the target and predicted efficiency map for a sample IPM

motor. The average mean squared error between the ground truth and the prediction lies in

the range of 1-1.5% per node/point in the 2D grid for a sample, similar to the performance

obtained with the Modular network approach (Section 3.5.1).

A computationally cheaper surrogate for the time-consuming task of generating an effi-

ciency map can streamline the process of design and analysis. However, a neural network

will make a prediction even if the input is completely unrelated to what it has been trained

on. A motor geometry significantly different from the ones in the training set can produce

substantial errors. This creates a dilemma for the user; whether to trust the prediction or

not in the absence of ground truth (FE results). To rely on such a predictor (trained in

a supervised manner), it is necessary to provide an uncertainty measure in the results to

quantify the confidence level. One way to achieve this is to extend the DL model using a

probabilistic component in the neuron weights. The mathematical study on the theory of

MC dropout can be found in Section 2.8.2.

Similar to Chapter 2, Monte Carlo (MC) dropout technique is used to quantify the

uncertainty in the predictions. A high value of uncertainty is an indicator that the designer

should not rely on the prediction and perhaps employ conventional FE solvers instead. The

error distribution, normalized for better visualization, over the efficiency map in Figure 3.14

can be observed in Figure 3.15 (a) and is highest around the edges of envelopes. A normalized

uncertainty map for the same design sample using MC dropout implementation is shown in

Figure 3.15 (b). It can be seen that the Bayesian approach could relate the regions of high

error with high uncertainty. These uncertainty maps are computed by retrieving ten-MC

samples from the network and calculating the standard deviation over the samples.

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.5. RESULTS OF SUPERVISED LEARNING 49

Figure 3.13: Training curves for supervised efficiency map prediction.

Figure 3.14: End-to-end model: (a) Target, (b) Prediction.

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.5. RESULTS OF SUPERVISED LEARNING 50

Figure 3.15: (a) Normalized error distribution, (b) Normalized uncertainty map

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.6. CHALLENGES WITH SUPERVISED LEARNING 51

3.6 Challenges with Supervised Learning

By learning a representation of the efficiency map, the various models in Section 3.4 can act

well as a surrogate to FE simulations for geometries similar to the training data. However,

a significant bottleneck throughout this work was the computational resources required to

generate the training data. The data collection process took a total of more than 2 months,

with four instances of motor design space being analyzed at a time using a FE software

(Simcenter MotorSolve). This is a major drawback of training an entire DNN from scratch

(e.g. through random initialization). It is important to find a solution to this issue of the

requirement that sufficient data for training is available from the same distribution.

A possible solution to reduce the computational burden on both fronts (data generation

and training time) is to use the concept of ‘transfer learning’ (TL) (Pan and Yang 2009),

where useful knowledge is extracted from neural networks trained on similar domains, i.e.

motor geometries. The predictor for a new task will start its learning based on the knowledge

extracted from a related task that has already been learned (Mou et al. 2016). In other words,

a pre-trained network, which is initially ill-prepared for the new task, is selected to make

predictions and its network architecture is incrementally modified to fit the needs of the

new task. This learning concept is necessary since many different motor configurations are

available, and it will be impossible to generate massive datasets for all of them. Also, a model

trained on one type of geometry can be used in creating a surrogate for other performances

such as power factor and loss maps. Therefore, the following sections investigate transfer

learning to reduce the training time of deep neural networks applied to electric motor drives

by transferring knowledge over similar tasks. Two types of synchronous AC machines are

studied: an interior permanent magnet (IPM) (Khan, Ghorbanian, and Lowther 2019) (the

same as one used in Section 3.3) and a fractional-slot concentrated winding permanent

magnet (FSCW PM) (Reddy et al. 2012; Rahman et al. 2017). Design spaces of motor

geometries are fed as inputs to the DNNs, which then output performance maps of motor

drives, such as efficiency and power factor, as described below.

3.7 Transfer Learning Methodology

3.7.1 Dataset Generation

The technique for data generation is similar to that employed in Section 3.3. Different

datasets of motor designs and performance maps are needed for the transfer learning problem.

Each parameter of the reference designs in Figure 3.16 was varied by ±50% of the nominal

value. Next, Latin Hypercube sampling was used to generate a design space of 3200 samples

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.7. TRANSFER LEARNING METHODOLOGY 52

for the parameterized PM motors. From these generated samples, 2500, 200, and 200 were

randomly partitioned for the training, validation, and test sets, respectively. The additional

(300) samples of the PM motor were not used for the TL process (Section 3.8.1 & 3.8.2) and

act as a ‘data sufficiency’ check for Section 3.8.3.

To calculate the performance maps, i.e. efficiency and power factor, a similar procedure

as in 3.3 and (Mohammadi and Lowther 2017; Khan et al. 2020a) is adopted as shown in

Figure 3.17. For a given motor geometry and a set of parameters, electromagnetic finite

element (FE) simulations (Simcenter MotorSolve) are run at various dq currents for motor

characterization. Different motor control strategies are then solved to find the optimal exci-

tation conditions for every speed. These points are used to compute optimal electromagnetic

quantities, including torque, efficiency, and power factor, using FE simulations. Finally, the

desired performance map is generated in the post-processing stage. Here, two DNNs were

used to act as surrogates for the FE analysis, namely for Stages 1 and 3 of Figure 3.17.

Figure 3.16: Parametrized Motor Ge-
ometry of FSCW PM Motor

Independent Parameters

12 slots 10 poles

300 Arms 450Vdc

Parameter Value Parameter Value

X1 13 mm X6 115 mm

X2 25 mm X7 122.5 mm

X3 4.3 mm X8 12.5 mm

X4 7 mm X9 60 mm

X5 1.0 mm X10 0.25 mm

Table 3.3: Dependent & Independent Parameters of the
reference design for a FSCW PM Motor

3.7.2 Problem Definition of Transfer Learning

Transfer Learning is a well-studied topic in the field of machine learning. This work focuses

on performing model-based knowledge transfer, which is the most popular methodology for

DNNs (Pan and Yang 2009). The main aim is to enhance the ‘generalizability’ of DNNs,

which is necessary to reduce the future costs of training networks on similar tasks and at the

same time improve the network’s robustness. The magnitude of similarity between two ML

tasks is not a well-defined metric but an attempt can be made by relating the input features

and the label space of the task. Using the notation defined in Pan and Yang 2009, the task

of prediction using a ML model can be seen as a representation of the domain to the target

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.7. TRANSFER LEARNING METHODOLOGY 53

label. The domain ‘D’ is composed of two components: a feature space X and a marginal

probability distribution P (x), where each input observation in the dataset belongs to X, i.e.

x ∈ X. For a given domain, a label space ‘L’ also has two components Y and P (y|x), where

the probabilistic function denoted by P (y|x) can make predictions on instances from X. In

the case of (Khan et al. 2020a), the labels were efficiency values for each design point and

a design point was represented by the geometrical features (either as CAD image or design

vector) and the excitation points. For supervised learning, we require data for a domain and

corresponding data for labels. On the other hand, for TL, a model must be trained on a

source domain and labels (Ds, Ls) and also on target data for the domain and labels (Dt, Lt)

where the original knowledge is to be transferred. This work explores knowledge transfer

capability over two scenarios as shown in Figure 3.18. In the first scenario, the source task of

efficiency map prediction estimation is replaced with the target task of a power factor map,

over the same IPM geometry. In this case the source and target domain remain the same

(Ds = Dt), but the label space changes (Ls 6= Lt). For the rest of the Chapter, this task will

be referred to as ‘Internal Knowledge Transfer’. On the other hand, the task referred to as

‘External Knowledge Transfer’ involves the prediction of efficiency maps but over a different

design space of a FSCW Surface-mounted PM motor. This is a comparatively less similar

task since neither the domains nor the labels necessarily overlap (Ds 6= Dt and Ls 6= Lt)

completely. However, given the domain spaces (Ds, Dt), there can be some resemblance over

the labels since both Ys and Yt are bounded between 0-100% and the conditional probabilities

can also be relatable. Calculating performance maps remains the same based on the domain

knowledge. Understanding the source and target task is important as it was observed that

very dissimilar tasks fail in the transfer learning process (Mou et al. 2016).

Figure 3.17: Flowchart of the process for calculating performance maps.

It is also important to distinguish TL from a closely related learning paradigm called

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.7. TRANSFER LEARNING METHODOLOGY 54

multi-task learning. Although both aim to generalize and exploit the common knowledge

shared by different tasks, the approaches are different. TL focuses on learning a new task

using some source task as auxiliary information. Conversely, multi-task learning tries to

jointly improve the general performance of all the constituent tasks without any source or

auxiliary information. As such, multi-task learning requires training data for all the tasks

to be learned. The goal of multi-task learning is not to reduce the data dependency or the

computational load. This also highlights the advantage of TL in cases where the source

pre-trained model has millions of weight parameters and is trained on massive datasets that

needed significant GPU hours. Access to only the trained weights along with the network

architecture is needed for transferring knowledge to a target task.

3.7.3 Knowledge Transfer Procedure

After identifying the source and target tasks, the next step is the procedure of transferring

the knowledge from the source to the target. Only Stage 3 of Figure 3.17 is used here for TL,

since the data and computation required for Stage 1 was significantly lower than that for

Stage 3, i.e. Stage 1 can be trained in a supervised manner. The source training data remains

the same, as used in Section 3.3 to train the network in Section 3.4. For Stage 3, the general

approach used to achieve successful transfer of knowledge is by combining the techniques of

greedy pre-training followed by fine-tuning the overall model. The idea of greedy layer-wise

pretraining is widely used in training deep belief networks and autoencoders (Goodfellow

et al. 2014). However, the DNN weights, in this case, are trained in a supervised manner.

A certain part of the pre-trained network is identified as prior knowledge, which is useful

for the new task and can be identified as the common knowledge between the source and

target task. Greedy pre-training ‘freezes’ the prior knowledge part of the pre-trained network

and substitutes the rest of the network with corresponding ‘new’ layers. The terms ‘frozen’

and ‘new’ refer to whether the gradient can flow through the layers during training through

backpropagation. A ‘frozen’ layer will not see a change in its weights during the training

procedure, whereas a ‘new’ layer, initialized either randomly or using one of the initialization

techniques (Goodfellow et al. 2014), is trained in a supervised manner during the pre-training

stage.

Once the new layers are sufficiently trained and are assumed to work in synchronization

with the ‘frozen’ or prior section of the network, the whole network is fine-tuned. This process

is similar to supervised learning, where the gradient flows through the whole network, making

changes in the weights of all layers and no part of the network is in the ‘frozen’ state anymore.

One distinction in practice is reducing the learning rate during the fine-tuning step, as large

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.8. RESULTS OF TRANSFER LEARNING 55

Figure 3.18: Transfer learning tasks: Internal Knowledge Transfer (IPM to IPM) and External
Knowledge Transfer (IPM to PM).

changes in the pre-trained part of the network can compromise the highly optimized weights

from the source model. Although guidelines for the learning rate are not well defined, in

this work the learning rate was reduced by an order of 10 between the greedy pre-training

and fine-tuning step. Ideally, the pre-trained network must be retained as much as possible

to leverage the powerful expressive ability of deep learning models. The decision to freeze

or replace a part of a network is highly task-dependent and certain guidelines that were

observed during this work are discussed next.

3.8 Results of Transfer Learning

As explained earlier, transfer learning aims to decrease the computational load by reducing

the data requirement and training cost on the target task. To compare the training time,

supervised learning on the same target task serves as the benchmark. Once the ideal per-

formance for a task is identified, the training data is systematically reduced until there is

a significant drop in model performance and the data requirement threshold for successful

knowledge transfer is saved. To quantify the change in weights and to compare the relative

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.8. RESULTS OF TRANSFER LEARNING 56

change with other layers in the same network, the weight distribution of each layer from

the pre-trained network is compared with the target network through a hypothesis test of

statistical significance between the two means of the weights:

H0 : µs = µt (3.2)

Ha : µs 6= µt (3.3)

Here, the α-value (coverage) is set to 0.05 or 5%.

Instead of using classical formula based statistical methods for hypothesis testing, a re-

sampling based technique is used (as described in Chapter 5, Bruce, Bruce, and Gedeck

2020). The procedure behind this resampling based hypothesis test is to combine the data

from both sets (pre-trained and trained weights) and repeatedly draw samples without re-

placement from the permuted data. On calculating the quantity of interest (difference in

weights between the two sets), one can obtain the distribution due to random variation in

the weights of the two NNs. Based on the hypothesis test, if there is no significant difference

in the mean values of layers from the source and target model, then these layers are denoted

by the ‘green’ color in Figure 3.19. A p-value failing to cross the threshold results in failing

to reject the null hypothesis, i.e. there is no significant difference in the mean values of both

layers from source and target models. These insignificant layers are denoted by ‘green’ color

in Figure 3.19. The largest change in weights for a layer in the network is denoted by the

color ‘red’. The level of change is relative to the change observed in other layers of the same

network and all the changes in between the two extremes (‘red’ ‘green’) are denoted with

‘yellow’ color. To quantify these changes, the architecture is kept the same between the

source and target neural networks. No additional layers were added to the source network

in this study.

3.8.1 Internal Knowledge Transfer

To transfer part of the pre-trained network that was originally trained on efficiency maps

to power factor maps, the domain remains the same (Ds = Dt), i.e. the same geometric

variations of the IPM motor are used. Since the label space for the target is significantly

different from that of the source, the output layer (time-distributed dense layer) of the

pre-trained network was replaced with a new layer. The process of greedy supervised pre-

training was used to train this layer with a learning rate of 1×10−3. After sufficient training,

the network was fine-tuned with changes performed in all layers at a learning rate of 1 ×
10−4. Overall, TL managed to save about 50-55% in training time compared to a cold-

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.8. RESULTS OF TRANSFER LEARNING 57

start supervised learning process as shown in Figure 3.20. All other configurations for using

different parts of the network for pre-training and fine-tuning were tested and did not result

in a better performance than the one shown in Figure 3.19. The majority of change in

weights is observed in layers closer to the output, which matches with the discussion in

Section 3.7.2. Similar to 3.5, the normalized RMSE over the test set lies in the range of

0.25-1.0% per point in the pf map.

Figure 3.19: Change in weights of each layer: Efficiency map to Power factor map (IPM to IPM)

3.8.2 External Knowledge Transfer

For the External Knowledge Transfer task, the difference mentioned in Section 3.7.2 lies with

both the domain and label parts of the task, which differs from the original one. Also, the

geometrical features do not match as seen in Figure 3.18. Hence, the feedforward network

must be modified completely with new dimensionality to match the input dimensions, but

at the same time should work in tandem with the rest of the network. The rest of the

network is tuned only after appreciable training is completed with the input part of the

network. However as seen in Figure 3.21, the changes in the network are distributed evenly

near the input and output layers, signifying the hypothesis in Section 3.7.2. The normalized

RMSE value per point lies in the range of 2-3%, which is slightly worse than that obtained

for the IPM Motor in Section 3.5 (≈ 1.5%). As observed in the training curves of Figure

3.22 the computation load for training has been reduced by about 40-45% as compared to a

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.8. RESULTS OF TRANSFER LEARNING 58

Figure 3.20: Comparison of training curves between supervised learning and transfer learning
tasks: Efficiency map to Power factor map (IPM to IPM)

supervised learning approach on the same task.

Figure 3.21: Change in weights of each layer: Efficiency map to Efficiency map (IPM to PM).

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.8. RESULTS OF TRANSFER LEARNING 59

Figure 3.22: Comparison of training curves between supervised learning and transfer learning
tasks: Efficiency map to Efficiency map (IPM to PM)

3.8.3 Data Requirements

The other significant contribution of TL is the reduction in the training data needed to

successfully train a network. For this reason, part of the overall data is held out to check for

‘data sufficiency’ (300 samples). The remaining data is divided into the usual components

of train, validation, and test parts for TL. The training data is continuously decreased until

a significant drop in model performance is observed. This performance is observed over

the ‘data sufficiency’ part of the dataset. This study yields the threshold of data required

to successfully perform transfer learning on this task with this network. A grid search

was performed with the percentage of data used for TL starting from 100% and randomly

removing 5% of the data at each step of the search. With this study, it was observed that

only 60-65% of the data is needed for Internal Knowledge Transfer and about 75-80% of the

data needed for External Knowledge Transfer. This demonstrates that the more dissimilar

the source and target tasks are in terms of either domain or label space, the more data will

be needed for successful TL processes.

Multiple runs for each test (for TL tasks and Data sufficiency check) were performed

with the random seed being the only difference.

CHAPTER 3. PERFORMANCE MAP PREDICTION

3.9. CONCLUSION 60

3.9 Conclusion

This work shows that by learning a representation of the efficiency map, the various models

in Section 3.4 can act as a surrogate to FE simulations with high accuracy, for geometries

similar to the training data. For geometries significantly different from the training data,

transfer learning was employed. Transferring knowledge from one domain to another allows

machine learning systems to extend their range of applicability beyond their original creation.

Instead of training a neural network from scratch for every problem, transfer learning enables

the reuse of models resulting in fewer computational resources being needed. The results

demonstrated that for both case studies (i) the training time was reduced by more than 40%

and (ii) at most 80% of the training data. This generalization ability also helps to make

machine learning models more accessible and more robust in many areas where capabilities or

resources such as computing power, data, and hardware might be scarce. Once two domains

are known to be close to each other, deep neural network models can be propagated from a

well-developed domain to a less-developed domain. Also, in situations that differ from the

training data, the trained models need adaptation, before they can be used for the target

task.

Finally, it was also found that all the studied models predicted the efficiency maps with

high accuracy, and with the advantage of GPUs and probabilistic methods, a parallelizable

and robust method to produce efficiency maps is feasible.

CHAPTER 3. PERFORMANCE MAP PREDICTION

Chapter 4

Sequence based Topology

Optimization

4.1 Introduction

Topology optimization (TO) is an advanced computer-based design method used for creat-

ing efficient topologies via a reasonable material distribution satisfying performance require-

ments and constraints. Domains such as aerospace (Zhu, Zhang, and Xia 2016), automotive

(Jankovics and Barari 2019), civil engineering (Jewett and Carstensen 2019) and mechan-

ical engineering (Guanghui et al. 2020; Zhu et al. 2021) use this sub-field of engineering

proactively to create high-performance, lightweight and innovative design solutions that will

outperform manual designs. TO algorithms are capable of creating sustainable designs while

still being rooted in sound logic. Also, topologically optimized products save resources

through weight reduction, by minimizing material usage. A great example is how General

Electric used TO to reduce the weight of an engine bracket by 84%, as shown in Figure 4.1.

This modification in a small part saved the airlines nearly 31 million dollars by improving

the overall energy efficiency (Morgan et al. 2014). Another useful example of a TO solution

is the design of the droop nose ribs for Airbus 380, which achieved the required mechani-

cal performance requirements along with reducing weight as compared to the conventional

design (Krog, Tucker, Rollema, et al. 2002).

In recent years, the significance of TO has increased in the manufacturing industry with

the development of Additive Manufacturing (AM) techniques. Many industries are nowa-

days looking towards advanced design methods like topology optimization and generative

design (Atkinson and Ezell 2019; Coop 2018) for designing future products, including elec-

tric machines. Electrical machines are the heart of many appliances, industrial equipment,

61

4.1. INTRODUCTION 62

Figure 4.1: GE Aircraft mounted bracket challenge (Morgan et al. 2014) (a) Conventional
mounted bracket (b) TO based design analysis (c) Optimized design

and systems. They are the foundation of the power industry and the core components of

industrial machinery (Lei et al. 2017). It is estimated that electrical machines use about 43%

- 46% of total electricity generated globally (Waide and Brunner 2011), resulting in about

6040 Mega-tonnes of CO2 emission. This is the largest portion of electricity use among

other utilities, as shown in Figure 4.2. Therefore, electric machine energy efficiency is cru-

cial for energy conservation, environment safe-keeping, and global sustainable development.

Consequentially, high-efficiency motors will dominate the market development of electrical

machines worldwide as discussed in Chapter 3.

Figure 4.2: Global Electricity consumption (Lei et al. 2017).

In the context of global sustainability, the demand for sustainable alternatives is increas-

ing and electric machines must also fulfill such requirements. As such it is expected that

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.1. INTRODUCTION 63

electric machines of the future will be optimized not only physically and technologically but

also for their environmental impact. Therefore, their design optimization process becomes

more and more complex as more engineering disciplines/domains and constraints are in-

volved, such as electromagnetics, structural, mechanics, and heat transfer (Lei et al. 2017).

This will result in more and more companies in the design and manufacturing industry

employing TO in search of environment-friendly designs.

4.1.1 Topology Optimization

The theoretical description of topology optimization originates from the mechanical domain,

which can be traced back to Michell’s optimization paper, published in 1904 (Michell 1904).

The decade of 1950-60 saw a renewed interest in this sub-field of engineering, with work

focused on the optimal layout design of trusses (Cox 1958; Hemp 1958). According to the

documented literature, the surge in layout theory research in the 1960s and 1970s led to

many significant publications (Cox 1958; Prager and Taylor 1968; Dobbs and Felton 1969).

Topology optimization was first applied to electromagnetic (EM) field by (Dyck and Lowther

1996), which proposed the Optimized Material Distribution method.

Before discussing TO in-depth, it is essential to understand the motivation behind em-

ploying TO over other designing techniques. While designers are known to have excellent

imagination, they are prone to biases. The way they have worked in the past influences

their future decisions when it comes to modelling. In such cases, the initial geometry can

either come from the literature or be based on the designer’s knowledge. In either case, the

proposed designs tend to be similar to the ones already proved to be efficient. In such cases,

even if the design is justified, it might not be the most efficient one. Further, the design

requirements may be unique in which case previous knowledge may not exist. In cases, such

as these, TO is very useful. TO introduces new shapes and sizes that a designer could not

have come up with. These shapes and sizes are generally more efficient at accomplishing

the product’s intended task and free from any priors and biases, as decision-making is solely

based on input data.

There is no fixed procedure for the design optimization of a device. However, there are

some routine steps to be followed. These are briefly described as follows.

1. Define the domain: Select a possible design type or topology, which serves as the

design domain. Materials and dimensions are set according to the requirements given

by the application and users. The main aim of this stage is to find a feasible scheme

for a given application that can be explored for an optimal solution.

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.1. INTRODUCTION 64

2. Performance and Constraints: Quantifies the performance/likelihood of the design

to be a fit for the requirements. For example, the performance parameters of an electric

device can include efficiency, force, torque, etc., while common design constraints are

material and manufacturing costs, volume, etc. The main aim of this step is to obtain

several design options that may be suitable for the specific application.

3. Optimization process: The main target of this stage is to improve the performance

of the candidate design proposed in each iteration through some optimization algo-

rithms, to finally converge to an optimal design. This includes implementing multi-

physics analysis for each design option generated in the previous step. Due to the

multi-physics nature, many engineering disciplines have to be investigated in this step,

such as electromagnetics, mechanics, structural, and heat transfer. As an outcome, an

optimal design is obtained for a single objective design problem, or some non-dominated

designs (also called Pareto optimal solutions) are obtained from a multi-objective de-

sign problem.

4.1.2 Design Optimization Methodologies

There are various methodologies designers have employed over the years to find a design

which satisfies all the criteria. Some of the techniques popular in literature are:

1. Sizing (Parametric) Optimization: Designs are parametrized by a few geometric

variables (such as thickness, width, length), as shown in Figure 4.3 (a).

2. Shape (Geometric) Optimization: Shape Optimization optimizes the boundary

and cross-section of the components of a structure. This results in changes of the size

and cross-section of the components/members of the structure, as shown in Figure 4.3

(b).

3. Topology Optimization: Both the shape and the topology of the design can vary

without any restriction on the design, as seen in Figure 4.3 (c), where the broken lines

show holes in the design.

The design variables associated with sizing optimization are simpler than shape design

variables. Sizing will usually increase or decrease the geometrical parameters of a design for

example the thickness, which can be very limiting in terms of freedom offered for making

changes in the design. Size or Parameter optimization is the most constrained design op-

timization methodology in terms of the freedom of making change where only pre-defined

geometrical parameters are to be changed to find an optimal structure (Haftka and Grandhi

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.1. INTRODUCTION 65

Figure 4.3: Different categories of optimal design problems.

1986). On the other hand, shape optimization offers more freedom than sizing, by modifying

the shape of the boundary as shown in Figure 4.3. However, a major restriction in both

types of optimization methodology (shape and size) is that the design topology is fixed and

pre-defined (Bremicker et al. 1991).

TO is significantly different from the other two approaches since it necessitates trans-

forming the design optimization problem into a material distribution problem and offers the

highest freedom in terms of making changes to the design (Lei et al. 2017). It is the most

flexible of all the categories of optimization methodology and designing with the advantage

of free-shape optimization can outperform other optimization routines in terms of the per-

formance if well-tuned (Garibaldi et al. 2019; Faria et al. 2015). Further, TO is used when

any prior bias is to be avoided for a design. Due to this capability to generate novel designs

TO has become an integral part of modern engineering design and an asset for designers.

4.1.3 Optimization Algorithms

Unfortunately, transforming the design optimization problem into a material distribution

one is also why TO is difficult as the size of search space can be massive. This is related to

the number of variables present in the structure to optimize.

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.1. INTRODUCTION 66

The problem of optimal design is defined based on the following constituents (Allaire

et al. 2019):

1. A model, to evaluate (or analyze) the performance of a design.

2. Objective function: which is to be either minimized or maximized. Also known as a

cost function.

3. Admissible designs/Design domain: defines optimization variables, including constraints.

Before initializing a search for optimal design, it is important to define the design opti-

mization objective, constraints, and parameters. These are usually pre-determined by the

user or are derived based on the application requirements and are also dependent on the

analysis model used to determine the performance of the designs. As an example, optimiza-

tion of an electric motor can involve multi-objective requirements to maximize the efficiency

based on the constraints of material used and external dimensions.In addition, thermal and

structural aspects are also taken into account. In such a case, an electromagnetic analy-

sis based on either FE or MEC has to be performed, along with a thermal network and

structural model analysis to calculate winding temperature and resonance frequency.

Once the objectives and design analysis models are defined, the next task is to choose an

appropriate optimization method. Optimization methods for solving topology optimization

problems can be roughly divided into two categories: methods based on deterministic algo-

rithms and those based on stochastic algorithms. The deterministic methods use the gradient

information of the objective function, and have a quick convergence speed. However, their

global search ability is poor, and they are prone to stagnate into optimal local solutions,

especially non-convex problems. Moreover, the performance deteriorates when dealing with

multi-objective optimization problems directly (Li 2019). Such methods are also not suitable

for topology optimization problems with a large number of design variables.

On the contrary, stochastic methods are optimization methods that use random search

mechanisms. The most popular of such are called Evolutionary Algorithms (EA). They have

the following three characteristics:

1. Population: EA optimizes the current solutions to generate better solutions. The

current set of solutions is called the population.

2. Fitness: used to quantify which of the solutions is better than others. The fitness

value is calculated for each of the solutions using the fitness function.

3. Variation: Since the next generation of the population is an improvement over the

current one, several transformations are performed on the present generation.

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.2. LITERATURE SURVEY 67

Stochastic algorithms are well designed to converge to global solutions of an optimiza-

tion problem. The injected random variations enable the method to escape from a local

optimum; therefore, these methods have a stronger affinity for global optimum than the

deterministic algorithms. Further, EA are more suited for mathematical optimization prob-

lems with many local extrema. However, the main disadvantage of this kind of method is

that the computational cost is high and the convergence speed is slow. This issue becomes

overwhelming when a high solution accuracy is desired, resulting in finer meshes. Currently,

the global optimization methods commonly applied in the electromagnetic field are genetic

algorithms, simulated annealing algorithms, the tabu search algorithm, particle swarm op-

timization algorithm and quantum evolution algorithms. The underlying principle in these

algorithms is to eliminate the inferior solutions and advance the superior solutions through

the iterative process of mutation and cross-over, and finally finding the optimal solution of

the optimization problem (Li 2019).

4.2 Literature Survey

4.2.1 Popular techniques of TO

Distributing materials in a domain to optimize performance is a significant topic in many

fields, such as electromagnetics, solid mechanics, heat transfer, acoustics, fluid mechanics,

materials design, and various other multiphysics disciplines, as mentioned earlier. There are

several TO methods discussed in the literature, such as density-based methods, homogeniza-

tion, discrete methods or the ON/OFF approach, and boundary variation methods. These

have been applied to the design of Electromagnetic (EM) devices with varying degrees of

success and popularity. A brief description of some of the popular TO methods discussed

in the literature, such as homogenization methods, density-based methods, boundary-based

methods, and discrete methods is included in this section.

4.2.2 Homogenization method

Bendsoe and Kikuchi (Bendsøe and Kikuchi 1988) proposed a method based on the homoge-

nization principle in the late 1980s. The method has received a lot of attention in the field of

structural engineering as represented by Bendsøe, Dı́az, and Kikuchi 1993 and Allaire 1997.

This method was first applied in the field of EM in (Yoo, Kikuchi, and Volakis 2000).

In this methodology, the optimal shape of the structure is transformed into an optimiza-

tion problem for ideal material distribution. This method uses three design variables (in 2D

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.2. LITERATURE SURVEY 68

design space) to describe a microstructure, as shown in Figure 4.4. This results in a large

number of variables.

Figure 4.4: Schematic representation of domain discretization used in the homogenization along
with a 2-D Unit microstructure with cavity.

In homogenization methods, the optimal shape of a structure is transformed into the

optimal material distribution. The homogenization method is based on the concept of re-

laxation: making ill-posed problems well-posed by enlarging the space of admissible shapes

(Allaire et al. 2019). However, it is not suited for large systems due to a large number of

variables and adopts a non-smooth estimate of the topology boundary (Midha 2018).

In recent times, the homogenization method has received renewed attention, due to

progress in the field of additive manufacturing. The ease of manufacturing microstructure

materials and homogenization being the ideal technique to deal with microstructure leads to

an ideal combination for TO with 3D printing (Guo and Leu 2013), as shown in Figure 4.5.

Figure 4.5: Example of a 3D printed lattice structure of a jet engine mounting bracket (Morgan
et al. 2014; Allaire et al. 2019).

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.2. LITERATURE SURVEY 69

4.2.3 Density method for TO

Given a fixed domain of finite elements, density based methods optimize the objective func-

tion by determining whether each element should be either solid material or void. Thus it

poses an extremely large-scale combination optimization problem. By adopting interpolation

functions where the material properties are explicitly interpreted as the continuous design

variables (usually the density of materials), the discrete variables are transferred to contin-

uous variables and an optimizer is used to iteratively steer the solution towards a discrete

solid/void topology. Usually, penalty methods are utilized to force the solution to a crisp

“0/1” or “solid/void” topologies. Further, regularization and filter techniques are adopted to

alleviate the checkerboard problem and mesh-dependency issue. The typical density based

methods, namely the Solid Isotropic Microstructure with Penalization (SIMP) method, was

proposed by (Bendsøe 1989). Later (Rozvany and Zhou 1991) studied and further devel-

oped the SIMP method. After it gained popularity in structure optimizations, literature

of topology optimization in EM domain based on density-based methods have sprouted in

electromagnetics (Yoo and Soh 2005; Byun, Park, and Hahn 2002; Wang, Park, and Kang

2004; Okamoto, Akiyama, and Takahashi 2006).

Figure 4.6: (a) Initial Topology, (b) Optimal design from density method, (c) Result with Average
filtering (Midha et al. 2019).

Though the density-based method takes the dominant position in the topology opti-

mization based on its versatility, effectiveness and ease of implementation (compared to the

homogenization approach), it also has a few distinct disadvantages. In the mechanical do-

main, Sigmund and Petersson (Sigmund and Petersson 1998) discussed the difficulties of the

SIMP method such as local optimal, mesh-dependent structures and checkerboard patterns.

Byun (Byun, Lee, and Park 2004) and Okamoto (Okamoto and Takahashi 2006) observed

that the optimized results depend on the initial conditions. Besides, one typical problem

with the density-based method is that of intermediate density. This is also referred to as

grayscales material, regions of intermediate density that are allowed to exist in the optimal

configurations. Although the penalization (regularization) scheme and filtering techniques

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.2. LITERATURE SURVEY 70

(Midha et al. 2019) will eliminate grayscales in a fraction of engineering topology design

problems, such filtering schemes crucially depend on artificial parameters that lack rational

guidelines for determining appropriate a priori parameter values.

4.2.4 Boundary based TO

Apart from homogenization and density-based methods, boundary based methods are a

widely adopted approach to topology optimization, especially in recent decades. The method-

ology was developed by Osher and Sethian 1988. The root of boundary variation methods

lies in shape optimization techniques. Different from the density-based methods in which

design domain is parameterized in an explicit function, the boundary based methods are

based on an implicit function (Φ(x, t) = c) that defines the structural boundary (Deaton

and Grandhi 2014). A new dimension is introduced by representing the 2D curve by an

intersection between the plane and the surface as shown in Figure 4.7. The circular curve

(Φ(x, t) = 0) represents the boundary, that is tracked and is specified as the zero level set of

the function Φ. The material distribution in the design domain is determined by the values

of the level set function (Φ) in the domain, such as

Material =

0, if Φ < 0

1, if Φ ≥ 0
(4.1)

(a) Intersection of a plane and and a surface (b) Top View

Figure 4.7: Represention of a curve by a level set.

Boundary variations methods are mainly employed using level-set and phase-field meth-

ods. In the level-set method, the obtained boundaries are still represented by a discretized

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.2. LITERATURE SURVEY 71

and unsmooth mesh in the analysis domain unless alternative techniques are applied. An-

other difference between density based methods and boundary based methods lies in the

product of optimization. In density based methods, the optimized topology usually contain

a lot of intermediate density elements where a post-processing procedure for interpreting

topology is needed; however, the latter methods could generate the optimized topology with

crisp and smooth edges. Boundary based methods such as level-set method, also generates an

irregular and toothed optimized topology and sometimes the resulting solutions are heavily

dependent on the initial state.

4.2.5 Discrete Methods

The ON/OFF or binary discrete methods constitute the discrete approach to TO, where

each element in the design space is described using binary digits. In this way, each element

can either assume a particular material or remain void (or a background material such as

air) (Midha 2018) and thus gray cells/materials are absent in discrete TO methods. In this

regard, density-based methods can be seen as translating the discrete problem of material

distribution to a continuous form, thus enabling gradient-based optimization algorithms.

Although the gradient-based approach is usually faster than stochastic optimization based

discrete methods, stochastic methods, such as Evolutionary Algorithms (EA) (used in solving

a discrete material distribution problem) offer better optimization capability at finding the

global solution, stronger robustness and parallel searching capability, as mentioned in Section

4.1.3. This is a distinct advantage over gradient-based methods, even though it comes at

a cost of high computation demand by frequent objective evaluation calls. A TO design

for an electric machine can easily involve more than a 10,000 FE solution in the process of

generating the optimal design. The time frame with a 3D FE solver can easily extend to a

week. This is a huge computation burden for most designers.

Another drawback of discrete methods is that the optimal solutions contain floating

pieces and checkerboard patterns. To overcome this difficulty, either different filtering or

smoothing methods are employed (Campelo, Watanabe, and Igarashi 2008b) or smoothness

of the solution is added as an objective of the optimization process itself (Dupré et al.

2014). Various filtering clusters and clan or smoothing techniques are employed to tackle

this problem (Campelo, Ramirez, and Igarashi 2010; Campelo, Watanabe, and Igarashi

2008a; Sato, Watanabe, and Igarashi 2014). However, the filtering technique is not reliable

and can often lead to an infeasible solution, which can drastically decrease the performance

of the optimal design. Further, the filtering technique requires tuning several parameters

such as the filter dimensions, thresholds associated with filtering, and the choice of different

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.3. SEQUENCE BASED CONTROLLER 72

operating characteristics. Even after tuning, the absence of a single set of parameters of

a filtering technique that can give optimal results for all TO problems is missing from the

literature.

Even with these shortcomings, the ON/OFF method is popular in the literature due to

the convenient implementation of different TO problems, along with easy integration with

commercial FEA software. With the help of evolutionary algorithms, it is well designed to

exploit global solutions.

4.2.6 Improvement to ON/OFF TO methodology

Considering the above-mentioned shortcomings of ON/OFF based TO, several improvements

are proposed in this chapter. The first novel contribution of this chapter is a new TO method

which ensures that the final optimized solution does not have any checkerboard patterns,

perforations or floating pieces of material. Such designs can be difficult to manufacture

using conventional subtractive manufacturing methods. Given that AM is quite flexible in

terms of what it can manufacture, it is still necessary to check for manufacturability prior

to finalizing the design. The proposed TO methodology leverages a sequence-based environ-

ment to impose connectivity on cells containing the same material. This new TO method

(sequence-based) neither requires any filtering or smoothing technique nor any modification

to the optimization objective function for obtaining manufacturable optimal solutions. Fur-

thermore, this method facilitates the application of heuristic tree search-based algorithms

such as Reinforcement Learning, which is another novel proposal of this chapter (discussed

in Section 4.5.3). A few test problems proving the validity of this method are also presented,

specifically a C-core actuator in Section 4.8 & the rotor of a Synchronous Reluctance Motor

in Section 4.6. Further, the TO methodology discussed in this chapter will be extended to

Chapter 5 to tackle the issue of generalizing to previously unseen design problems. The

ability to generalize will significantly decrease the computation burden associated with an

evolutionary algorithm-based discrete TO.

4.3 Sequence based controller

In this proposed sequence based TO method, a group of cells of the discretized design space

serves as a pointer which can move about in the design space (Figure 4.8), one step at a time

and it is referred to as “the controller”. The controller is characterized by its size and the

material associated with it. The movement of the controller is decided by choosing from a

set of available actions (such as left, right, up or down in the global frame of reference) and

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.4. TOPOLOGY OPTIMIZATION WITH SEQTO-V1 73

the controller leaves behind a trail of material as it moves in the design space. So, the goal is

to search for the sequence of actions for the controller such that its movements result in an

optimized material distribution in the design space. Figure 4.8 shows the controller moving

in a blank grid-based structure. A controller of size 3 fills an area of 3 × 3 = 9 cells in the

design space. This can be used to modify the problem complexity as a larger size reduces

the computation burden of the design optimization problem.

Figure 4.8: The movement of a Controller (size 3× 3) in a design domain.

To distinguish the current state representation with any changes made in the future,

versioning is maintained such that the current formulation of Sequence based TO method-

ology is named as SeqTO-v1. A future modification named SeqTO-v2, will be introduced in

Chapter 5 Section 5.4.

4.3.1 The Operation of the Controller

The controller can move in the design space freely as long as it does not encounter the

boundary of the design space. This boundary can be with the excitation source, air or due

to symmetry. Further, the controller can be of different size, which will affect the amount of

material it can place at a time. The current position of the controller is characterized by a

pointer. This is to distinguish the controller from the rest of the material placed in the trail.

In the case where the controller is greater than a single element of the grid, the centermost

point of the controller is the pointer as shown in Figure 4.8.

4.4 Topology Optimization with SeqTO-v1

4.4.1 Genetic Algorithm

For the ON/OFF method and SeqTO-v1, the design parameters or optimization variables

under consideration are discrete, and an optimization technique based on evolutionary algo-

rithms, such as a Genetic Algorithm (GA) works well in such circumstances.

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.4. TOPOLOGY OPTIMIZATION WITH SEQTO-V1 74

GA is one of the most popular metaheuristic approaches for binary optimization prob-

lems, and is inspired by the process of natural selection. In GA, a set of solutions are

repeatedly modified using the operations such as ‘selection’, where superior solutions at the

current generation are selected for future generations, ‘crossover’, where the selected solu-

tions are combined to evolve into child solutions sharing the characteristics of the parents,

and ‘mutation’, where the selected solutions randomly change their values with low proba-

bility. The GA algorithm used in this study is based on the work in Midha 2018 and the

readers are referred to this material for in-depth explanation. MATLAB’s “Global Opti-

mization” (MATLAB 2018; The MathWorks, Inc. 2017) is chosen to implement a GA to test

the applicability of the proposed environment.

C-core actuator

An electromagnetic actuator is a widely popular device with applications across different

industries (Sigmund 2001; Choi and Yoo 2009; Wang and Kang 2002). A ‘C’ shaped electro-

magnet consisting of a coil, a magnetic core, and an armature constitutes a C-core actuator,

as can be seen in Figure 4.9 In this structure, the current-carrying coil will produce a mag-

netic field according to Ampere’s circuit law (Maxwell 1861). The main purpose of the core

is to amplify and concentrate the magnetic flux in a well-defined guided path. In this study,

a soft magnetic material (M-19) is used as the ferromagnetic material to form the core. The

aim is to guide and maximize the magnetic flux flowing through the magnetic core into the

armature. The higher the flux connecting the core and armature, the greater will be the

pull/force experienced by the armature. The maximization of the flux through the core is

a fundamental issue in the design of many electromagnetic devices including actuators, air

compressors, electric motors, and generators. As such, the designing of an actuator is a

well-studied topic in the field of EM design (B́ıró et al. 2011; Lim et al. 2011; Lee and Wang

2012; Park and Yoo 2012; Okamoto et al. 2015). Some of the work focusing on the design

of a C-core is used as a benchmark in this study (Park et al. 2008; Midha et al. 2019).

Applying the Genetic Algorithm (GA) with both ON/OFF and SeqTO-v1 methodology,

to optimize the core of an electromagnetic (EM) actuator so as to maximize the force experi-

enced by the armature. This is done by optimizing the sequence of movements of a controller

that consequently results in an optimized material distribution for the core of an EM actu-

ator. The dimensions of the C-core actuator are chosen based on the example considered

in Park and Min 2009a and Midha et al. 2019, as shown in Figure 4.9. The optimization

problem is formulated in Eqn. 4.2 as

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.4. TOPOLOGY OPTIMIZATION WITH SEQTO-V1 75

Figure 4.9: The C - core EM actuator

minimize
ai=0,1,2,3
i=0,1,2,...,m

f(a)

subject to K1 ≤
n∑
j=1

(pj = 1) ≤ K2

(4.2)

where, f(a) is the negative magnitude of force experienced by the armature (the negative

is imposed to formulate a minimization objective), a is a sequence of actions that governs the

controller’s movements in the design space. The material distribution in the design space is

represented by a vector p, which is populated by the action vector a. The vector p contains

the material property of each cell in the discretized design domain, m is the pre-defined

sequence length (length of vector a) and is a representative of the freedom given to the

controller to explore the environment, n is the length of the material distribution vector p,

and K1 & K2 is a limit on the minimum and maximum number of switched (pj : 0 → 1)

cells permitted in the design space.

Figure 4.10: C - core discretized design space

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.4. TOPOLOGY OPTIMIZATION WITH SEQTO-V1 76

Figure 4.11: C-core controller

The depth of both the armature and the core is fixed to 40 mm (the same as that in

(Midha et al. 2019)). The 2-D design space is discretized into 288 square cells of size 1 mm

and symmetry about the x-axis is utilized to reduce the size of the design space as shown

in Figure 4.10. The material in these cells is permitted to switch between air (pi = 0) and

electrical steel (pi = 1), depending on the movements of the controller.

A conventional half-symmetric C-core shape consists of 180 electrical steel cells in the

discretized design domain. K2 is set to 180 and serves to enforce the volume constraint

on the electrical steel. K1 is set to 80 to ensure that the controller explores the design

space. The value of m (length of a) is an important hyperparameter which must be decided

beforehand and it also depends on the selected controller size. It is equal to the maximum

number of steps (actions) that the controller is allowed to take when it moves in the design

space. This value should be such that the controller is able to take enough steps to fill in

at least the allowed number (K2) of cells with material. Usually, m is chosen such that the

controller is able to fill a little more than K2 number of cells in the design space. This is

done to account for the steps taken by the controller which do not result in any additional

material in the design space. Initially, air (pi = 0) is assigned to all the cells in the design

space. A starting location for the controller is specified beforehand and it remains constant

throughout the optimization process. This method also allows for the selection of different

starting positions of the controller in the design space.

Some of the GA’s parameters are directly dependent on the TO controller configuration.

The number of design variables for GA is set equal to m. The population size is selected to

be a multiple of the number of design variables.

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.5. TD LEARNING 77

4.4.2 Tree Search Algorithms

Apart from the advantage of generated designs which are free from checkerboard patterns

and ensuring connectivity of material in the design domain, sequence-based TO also provides

the capability to use algorithms which make decisions as a series of sequences such as tree

search algorithms like Temporal difference (TD) learning, Monte Carlo (MC) algorithms and

others that are related to Dynamic Programming (DP) (Sutton 1988).

The main advantage of exploring these algorithms is the stark difference they pose in

relation to evolutionary algorithms. Table 4.1 lists a comparison of Evolutionary Algorithms

and sequence based decision making such as TD-learning. It should be noted that these

sequence-based decision making algorithms come under the wide topic of Reinforcement

Learning (RL). Reinforcement learning is characterized by the fact that the learning system’s

actions (movement of the controller) influence its later inputs (states). The learning system

does not have direct instructions on the optimal actions to take, and no knowledge of the

consequences of actions, including reward signals, and how they play out over extended

period of time (Sutton and Barto 2018). Since this work only deploys a TD-learning based

algorithm, the general algorithms in RL will not be discussed here.

Reinforcement Learning Evolutionary Algorithms

One agent trying to learn from
both positive and negative actions

Starts with many agents,
but only strong ones survive

Learns from both positive and
negative rewarding actions

Only learns the optimal solutions.
Negative or sub-optimal solution
information is discarded and lost

Good for problems that can be
represented as a Markov
Decision Process (MDP)

(Section 4.5.1)

Good for problems where
loss function is non-differentiable.

Table 4.1: Comparison between Evolutionary Algorithms & Reinforcement Learning

4.5 TD Learning

4.5.1 Markov Decision Process

A Markov Decision Process (MDP) is a discrete-time process that converts a given ‘task’

to a sequential problem. The key entities of an MDP are the environment, state, action,

and reward. The controller interacts with the environment in discrete steps. At each step

(denoted by ‘t’ in subscript) the controller receives a ‘state’ from the environment. The

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.5. TD LEARNING 78

‘state’ contains sufficient information regarding the current material distribution in the design

domain for the controller to interpret and make a rational decision (action). Based on the

action that the agent took in a state (st), the environment provides a feedback in the form of

a reward (rt). Contrary to the word ‘reward’, the agent can also be penalized for an illegal

or a bad move with a penalty (through a negative reward). The environment also provides

the next transition state (st+1). Actions influence the reward as well as the future states and

through that future rewards. The algorithm revolves around exploring the environment to

learn the transition from one state (st) to another (s′t), based on an action (a),(s→ s′). This

transition will result in a reward signal (rt). This reward at each step is a scalar quantity

rt ∈ R.

In an MDP, state transition and reward function are solely dependent on the current

state and the chosen action and is independent of the previous states and actions. Some

states are set as terminal states, and tasks reaching them are terminated.

Figure 4.12: State Transition (st, at, st+1)

Policy

The choice of action has an impact on both the immediate reward and the next state. Policies

determine how an agent selects these actions. A ‘policy’ is a distribution over actions for all

possible states. A deterministic policy maps each state to a single action from the action

set, thus:

π(s) = a

where π is a deterministic policy and π(s) represents the action selected in the state (s) by

the policy (π). A deterministic policy here can be represented in a tabular format. The

same action can be selected in multiple states, however, some actions may not be favorable

and are not selected at all. The distribution of actions is independent of each other, for all

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.5. TD LEARNING 79

possible states. On the other hand, a stochastic policy is one where multiple actions can be

selected with a non-zero probability. The set of available actions in each state is the same

but the probability distribution varies. In an ideal MDP, a state has all the information for

decision making. This chapter deals with deterministic policies and stochastic policies will

be discussed in Chapter 5.

Episodic Task

Another important criterion is to determine if the task is episodic or continuous. Since the

controller has a limited amount of material (volume constraint) and we want the controller

to limit the number of function (FE in this case) calls, the design optimization setup limits

the length of an episode to be sufficient to move around and place the given volume of

material. It should be checked that the agent has enough leeway in the number of steps in

an episode, to be able to explore the vast design space. A guideline, in this case, would be

to identify the number of steps needed to come up with the conventional geometry using the

MDP formulation and allow the controller to spend double the number of steps in the design

domain for each episode. This will give the agent a sufficient amount of steps to explore the

design space.

Reward Formulation

The dynamics of the MDP have to be such that they result in the successful creation of an

optimal geometry subject to a material (volume) constraint. The goal should be to translate

an agent’s behavior to maximize the reward. This means maximizing the immediate reward

and the cumulative reward in the long run (such as an episode). The agent’s learning has to

balance the short term and long term goals. The reward function should be seen as a way

to communicate with the agent as to what to achieve. In such a case, the obvious reward

function will be the performance (objective) criteria that is being maximized/minimized.

For a C-core, it will be the force experienced by the armature at any given step of the

MDP. However, it was observed that sometimes the force experienced can be noisy and not

accurate. This was attributed to circumstances when the design domain contains very little

material (usually at the start of an episode), the force value will be small and it will become

difficult to distinguish two sparsely populated (with material) design domains. Thus, it was

decided that the magnetic field distribution values in the C-core armature (Figure 4.13) is

a far more robust indicator of performance. Further, this can work as a substitute for force

value as it is directly proportional to the magnetic field lines passing through the armature.

Maximizing the total return at time ‘t’, is simply the sum of rewards the agent will receive

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.5. TD LEARNING 80

Figure 4.13: C-core controller

after time ‘t’.

Gt
.
= Rt+1 +Rt+2 + . . .+RN

where Gt is called the return.

MDP Dynamics

An important property to remember is that the future states and reward only depend on

the current state and the action. This is a Markov property that needs to be satisfied for

a proper MDP. For enabling actions that depend on the agent’s behavior (action taken)

in the previous step, it is important to include this information in the state representation

without violating the Markov property. This is achieved through keeping a trace of past

distribution of the design domain and material distribution in the state representation. The

Markov property means that the present state is sufficient and remembering earlier states

would not improve predictions about the future. This is an important property as there can

be multiple ways of representing the state for a discrete design domain for TO, as shown in

Figure 4.14, 4.15 & 4.16. In this chapter only the state representation shown in Figure 4.14

will be used with the RL and GA algorithms. The other state spaces (Figure 4.15 & 4.16)

will be used in Chapter 5 with advanced algorithms in RL.

It should be noted that the MDP formulation can be designed in many different ways. It

is very abstract and flexible. Formulating an MDP for any task requires knowledge of sys-

tem dynamics of the electromagnetic problem, agent training, and the reward formulation.

Necessary changes have to be made for adapting this work to other tasks. A number of mod-

ifications in the current formulation of SeqTO-v1 will be discussed in Section 5.4. Further,

we have not delved into the process of accounting for the complexity of the problem. The

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.5. TD LEARNING 81

Figure 4.14: Discrete design domain as the
state space Figure 4.15: Discrete design domain with

the |B|airgap as the state space

Figure 4.16: Discrete design domain along with the |B| in the design space as the state space

set of states and actions are countable, the value will be very high and is ∞ for the reward

set.

Figure 4.17: Scenario for a negative Reward (Rt)

4.5.2 Value functions

The reward function captures the notion of short term gain. However, the agent should

achieve the most reward in all the subsequent state trajectories, i.e, in the long term. The

Value function, either Q(s, a) or V (s), formalizes this. The value function can be represented

in two forms:

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.5. TD LEARNING 82

Figure 4.18: Possibility of a design error due to the controller moving out of the designated design
space.

• Action value function Q(s, a): A Q-Value (Q(s, a)) is a measure of all the rewards

the agent shall receive till the end of the episode, starting from the state (s) and after

performing an action (a). This cumulative reward function can be discounted based

on the temporal position of the reward from the current step (t).

• State value function V (s): On the other hand, the State value function (V (s)) is

the expected value of all possible future rewards, on all possible actions.

It is preferable to use the Action value function (Q(s, a)) for this work. This preference

is based on the knowledge that a transition from one state to another can be performed

in more than one way. Further Q(s, a) is more useful for comparing the different actions

available in a state. The agent-environment interaction generates a trajectory of experience

consisting of states, action, and rewards. TD-learning uses the value associated with each

state-action pair to utilize all the experience (s, a, s′, r) generated by the agent. The value

of the state-action pair is the expected return (Gt) when that action is taken

Q(s, a)
.
= Eπ[Gt|st = s, at = a] (4.3)

For an episodic task, the learning algorithm needs to wait until the end of the episode to

work with the absolute/true value of the ‘return’ for every step in the corresponding episode,

since the ‘return’ (Gt) depends on all the reward obtained from t - step onwards.

Gt
.
= Rt+1 +Rt+2 . . . Rn (4.4)

This approach is the key to Monte Carlo (MC) based methods. In MC, there is no

guarantee that the agent will visit all the possible states, along with the other issue of waiting

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.5. TD LEARNING 83

for the end of an episode to update the value function (Q(s, a)) (Singh and Sutton 1996).

However, there is another approach that uses bootstrapping, which is based on recursive use:

Gt
.
= Rt+1 +Gt+1 (4.5)

In a similar fashion as Eqn. 4.5, the value function (Eqn. 4.3) can also be updated as:

Q(st, at)
.
= Eπ[Rt+1 +Gt+1|st = s, at = a]

Qπ(s) = Rt+1 +Qπ(st+1, at+1)
(4.6)

Compared to MC-based methods that wait until the end of the episode to update all the

corresponding value functions, bootstrapping-based methods (such as TD-learning) learn

incrementally and throughout the episode. However, the disadvantage of the TD-learning

approach is that the incremental updates can have higher variance compared to the true

return based approach of MC methods. It has been shown practically that bootstrapping

based methods converge faster but may be off the target, or not properly learn the true

return values (Sutton and Barto 2018). For faster learning, we want to update towards the

return but not wait for the episode to complete, so the empirical (true) value of the return

at a time ‘t’ is replaced with the reward and the estimate of the return from the next state.

This way the updates to the value function (Q(st, at), performed by the learning algorithms

are faster.

Qπ(st, at)← Qπ(st, at) +
[
Gt −Qπ(st, at)

]
(4.7)

Qπ(st, at)← Qπ(st, at) +
[
Rt+1 + max

a′
Qπ(st+1, a

′)−Qπ(st, at)
]

(4.8)

TD updates the value of one state (Q(st, at)) towards it’s own estimate of the value in

the next state (Q(st+1, at+1)). As the estimated value of the next state improves, so does

the target.

To overcome the disadvantage of higher variance in the return due to incremental updates

in TD learning, the rewards are adjusted by weighing the rewards based on their importance

over time. The farther in future a reward is received, the lesser is it’s importance while

calculating the return at time ‘t’ (Gt). This is controlled using discount factor (γ). The

discount factor helps reduce the degree to which future rewards affect the current value

function estimates; thus stabilizing the learning. The relation in Eqn. 4.6 modifies to:

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.5. TD LEARNING 84

Q(s, a) = r + γmax
a′

Q(s′, a′) (4.9)

TD-learning and MC-based methods have some similarities too. Both of them learn

directly from the experience generated by the agent’s interaction with the environment. TD

shares some similarities with Dynamic Programming (DP) too. In fact, RL algorithms were

developed from DP principles (Bellman 1957). Like DP, TD-learning bootstraps too. In a

way, TD-learning combines the ideas from both DP and MC based learning.

4.5.3 Policy function

Intelligent behavior arises from the actions of an individual seeking to maximize the received

reward signals in a complex world. The aim is to identify:

• Policy Evaluation: Use the reward signal to understand the behavior of agent-environment

interaction.

• Control / Policy Improvement: Develop algorithms that search the space of behaviors

to maximize reward signals.

Policy Evaluation is the task of determining the value function for a specific policy.

Control on the other hand is the task of finding a policy to obtain as much reward as

possible or in other words, finding a policy that maximizes the value function. Thus, the

task of policy evaluation and improvement is an iterative process. In Section 4.5.2, it was

shown that TD-learning can be used for estimating the value function. However, a value

function is always defined with reference to a policy, denoted by π. Action value function

(Qπ) describes what happens when the agent selects a particular action. Qπ indicates that

the value function is contingent on the agent selecting actions according to the policy (π).

The Action value of a state is the expected return if the agent selects an action ‘a’ and then

follows a policy ‘π’. If the policy changes, the learning algorithm should reflect the change by

adjusting the value function accordingly. As part of policy improvement, the agent uses the

information from the value function to make decisions. A policy can be seen as a probability

distribution over actions for each state, denoted by π(a|s). When a policy maps each state

to a single action, it results in a deterministic policy, denoted as:

π(s) = a (4.10)

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.5. TD LEARNING 85

Figure 4.19: A deterministic policy behavior

State Actions

s0 a0

s1 a0

s2 a2

Table 4.2: A deterministic policy behavior.

a0 a1 a2 a3

S0 8.2 -0.2 4.1 4.4

S1 6.6 -1.0 -1.5 5.6

S2 -3.3 -2.6 11.1 -4.7

Table 4.3: Example of a Q-table

Knowing the optimal Q(s, a) function automatically gives us the optimal policy. Specif-

ically, the best policy represents, at every state, choosing the optimal action:

π(s) = argmaxa Q(s, a) (4.11)

which provides the agent the optimal action based on the policy starting in the state

(s) and all the way until the end of the episode. The policy (π or sometimes π(a|s)), is a

mapping from some state (s) to the probabilities of selecting each possible action given that

state, as can be seen in Figure 4.19 and Table 4.3. For example, a greedy policy outputs for

every state the action with the highest expected Q-Value.

Q-Learning

An ideal scenario would be that the value function is accurate in it’s estimation of the true

return from each state. However, a good value estimator needs to have good environment

experience to learn from. To generate good experience trajectories, the agent needs to explore

the environment and exploit the information it has learned. Even with a branching factor

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.5. TD LEARNING 86

of four (as shown in Figure 4.20), the length of the tree can be massive both due to the

length of the episode and the looping characteristics of the MDP. As such the agent needs to

identify whether a tree node is good or bad and improve the value function estimate of only

those nodes which are potential for optimal geometries. To satisfy both these requirements,

we have to use Q-learning. Q-learning (QL) uses the information from the Value function

along with a stochastic action to balance the dilemma of exploration and exploitation. This

stochastic rule is called the ε-greedy approach.

Figure 4.20: The tree diagram for the sequence based controller.

QL was developed in 1989 (Watkins and Dayan 1992). It is one of the major online

learning algorithms. The equation shown below describes the TD-learning based update

rule for an Action value function (Q-function)

It describes how the action values can be estimated incrementally

Q(st, at)← Q(st, at) + α︸︷︷︸
lr

[TD-target︷ ︸︸ ︷
Rt+1 + γ︸︷︷︸

df

max
a′

Q(st+1, a
′)︸ ︷︷ ︸

off-policy

−Q(st, at)
]

(4.12)

The error in the estimate is the difference between the old estimate and the new target.

Taking a step towards the new target will create a new estimate that reduces the error. The

size of the step is determined by the step-size parameter called the ‘learning rate’. The value

of step size is in the range of 0 and 1.

ε-greedy exploration

ε-greedy is a method for balancing the exploration and exploitation performed by the QL-

based controller. Exploration allows the agent to improve its knowledge about each action.

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.5. TD LEARNING 87

By improving the accuracy of the estimated action values, the agent can make more informed

decisions in the future. Exploitation on the other hand exploits the agent’s current estimated

values (Q(s, a)). It chooses the greedy action to try to get the most reward. When the agent

explores, it gets a more accurate estimate of its value function. On the other hand, when

the agent exploits, it has a higher chance of getting more reward. It is not possible to choose

both simultaneously. A simple method for choosing between exploration and exploitation is

called ε-greedy, which is a random process. This approach is based on a parameter ε which

refers to the agent’s probability of choosing to explore over exploit.

At =

arg max
a

Qt(s, a) with probability 1− ε

a ∼ (a1, . . . ak) with probability ε
(4.13)

The action that is selected at time-step ‘t’ is the greedy action with probability 1− ε or

is a random action with probability ε. The value of epsilon varies from 0 to 1. We usually

start with a high ε value, close to 1. The higher the value of ε, the more exploration the

agent will perform as compared to exploitation. This can be justified during the initial stage

of learning as the agent is new to the environment and cannot rely on a randomly initialized

value function for exploitation. It needs to collect experience to train the value function and

as the value function starts gaining capability, we reduce the exploration by decreasing the

value of ε. By the end of the training, ε decreases and goes down to a very low value of

say 0.05. This makes sure that at any given point the agent will have some component of

exploration. Once the agent converges to a policy that is not changing, the training stops.

The starting value, decay rate, and stopping value of the ε are treated as hyperparameters

in this study. In MDPs, there is always an optimal deterministic policy. In other words, you

can always find a deterministic policy that is better than any other policy.

Exploration - exploitation trade-off

Pure greedy action selection can lead to sub-optimal behavior. Since the greedy action is

always the same, the agent misses out on learning from the samples of alternative state action

pairs. This induces the exploration-exploitation dilemma. It is important that the agent gets

the chance to explore most (if not all) of the possible state-action pair that are there in the

environment. However, this is an issue if the state space is of very high dimensionality.

Further, for an MDP representation which involves the field value in the state representation

(Figure 4.15 & 4.16), a tabular method will fail. For a high dimensionality state-space or

cases involving continuous values like the magnetic field distribution, one needs a function

approximator that can handle this, which will be discussed in Chapter 5.

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.6. C-CORE - TOPOLOGY OPTIMIZATION RESULTS 88

4.6 C-core - Topology Optimization Results

4.6.1 GA with SeqTO-v1

Different environments are set up based on the controller size (1 and 3), the type of material

(linear: pure iron (linear B-H characteristics) and nonlinear: electrical steel (M-19 26 Ga)),

the number of variables (m) and the population size (in multiples of m). The coil current

is fixed at 1A and the number of coil turns is set to 500. For this combination of coil turns

and current, the force experienced by the armature of a conventional C-core EM actuator is

40 N , as shown in Figure 4.21, while the force (on the armature) obtained with an ON/OFF

based TO algorithm in (Midha et al. 2019; Park and Min 2009a) employing electrical steel is

50.90 N . This armature force decreases to 50.60 N on application of post-processing filters

to enforce topology smoothness (Midha et al. 2019).

Figure 4.21: (a) Conventional C-core design (b) Only half of the geometry is simulated due to
symmetricity.

Environment
Type

Design
Variables

(m)
Pop. Size

Stall
Gen.

Force
GA

SeqTO-v1

Force
GA On/Off

(Midha et al.)

3 × 3 (Linear) 20 20 ‖40‖60 25 70 N -
3 × 3 (Linear) 25 25 ‖50‖75 25 70 N -

3 × 3 (Non-Linear) 30 20 ‖40‖60 25 51 N -
1 × 1 (Linear) 200 200 100 71 N 70 N

1 × 1 (Non-Linear) 200 200 100 55 N 50.6 N

Table 4.4: C-core results obtained from Genetic Algorithm using the SeqTO-v1 TO environment,
along with a comparison of armature force wrt GA optimized results + filters (Midha et al. 2019).

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.6. C-CORE - TOPOLOGY OPTIMIZATION RESULTS 89

Table 4.4 lists all the different case studies with the dimensions (1× 1 & 3× 3) referred

to the size of the controller, along with the type of material used in the design space. The

dimensionality of the controller is reflected in deciding the value of design variables (m)

for GA (MATLAB 2018) (The MathWorks, Inc. 2017). A limit on the number of stalled

generations is employed to test for convergence. The initial population of the GA is based

on a random seeding.

Figure 4.22: Optimized geometry for 3× 3 Linear environment (SeqTO-v1 with GA).

Figure 4.23: Optimized geometry’s magnetic field distribution for 3 × 3 Linear environment
(SeqTO-v1 with GA).

Using the setup discussed in Section 4.4.1, GA is employed on SeqTO-v1 environment

for all the case studies and the optimal force values are listed in Table 4.4. It is observed

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.6. C-CORE - TOPOLOGY OPTIMIZATION RESULTS 90

Figure 4.24: Optimized geometry for 1× 1 Non-linear environment (SeqTO-v1 with GA).

Figure 4.25: Optimized geometry’s magnetic field distribution for 1× 1 Non-linear environment
(SeqTO-v1 with GA).

that the bigger the size of the controller, the fewer the steps required to fill the design space.

However, this affects the granularity of the optimal structure obtained, as can be seen through

a comparison between a controller of size 3× 3 (Figure 4.22) and 1× 1 (Figure 4.24) when

the material of the controller is electrical steel. With the finer granularity controller (1× 1),

GA managed to achieve a higher performance value for the optimal design. The optimal

design obtained using a 1×1 controller on SeqTO-v1 environment produced a force of 55 N ,

an increase of about 8% as compared to using a controller of size 3× 3 (51 N).

Finally, as it is evident from Table 4.4, this new sequence based TO method performs on

par with Midha et al. 2019 (for the linear case: 70 N) and achieves a good increase in force

when compared for the non-linear cases (8.7% improvement).

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.7. SYNCHRONOUS RELUCTANCE MOTOR 91

4.6.2 C-core: Results of TD-learning

Based on the design setup in Section 4.4.2, a linear material based controller of size three

is tested on the SeqTO-v1. The optimal geometry for a 3 × 3 SeqTO-v1 environment with

linear material is shown in Figure 4.26a. This result matches the geometry obtained through

the GA algorithm (Figure 4.22). In addition to the optimal geometry, we can get a sequence

of actions that are greedy in nature, as proven by the monotonic increase in reward function

in the graph (Figure 4.26b) between the force acting on the armature and the step-index.

This gives a greedy action that tries to continuously increase the value of the force both for

the near future and for the final optimal geometry. The agent needs to account for the long-

term impact of its actions. As such the agent creates a channel to feed magnetic flux lines in

the armature. This leads to an increase in the magnitude of magnetic flux in the armature,

which in turn increases the force value on the armature. However, this results in magnetic

field saturation in the iron placed earlier by the agent. This poses a conundrum for the

agent as to whether it should place material near the armature to increase the surface area

near the airgap and feed more flux or go back and take care of the magnetic saturation in

the core of the design. Such information can be helpful in analyzing the importance of each

element in the whole topology. Further, a designer can use this knowledge to understand

the trade-off of any element with the performance and can further fine-tune the structure

without running an optimization algorithm.

(a) The optimal solution and action sequence in a 3 × 3 linear
environment (b) Force on armature vs steps in an episode

Figure 4.26: Optimal solution 3× 3 controller (SeqTO-v1) with TD-learning, on a C-core design
domain.

4.7 Synchronous Reluctance Motor

Extending the SeqTO-v1 to more complex electric machines, the rotor of a Synchronous

Reluctance Motor (SynRM) is optimized using the proposed TO methodology.

The industrial applications of SynRMs have risen in the past few decades, due to their

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.7. SYNCHRONOUS RELUCTANCE MOTOR 92

simple structure and low costs. The SynRM offers a number of advantages. Some of them

are listed here:

• High efficiency

• High power density

• Less maintenance

• Reduced inertia

• Very Reliable

Compared to Induction Motors (IMs), which have been the industry standard for many

decades, the SynRM can offer high power density for a smaller footprint. This can be almost

2 to 4 times higher than an IM, with a frame size almost 1-2 times smaller (Gyllensten et al.

2016). The SynRM is also one of the most efficient motors available to the industry, with a

recent development even reporting an efficiency value as high as 99.05% (full load on a 44

MW, 6 pole, synchronous motor) (ABB motor sets world record in energy efficiency). Such

highly efficient motors are the future, especially when motors employed by the industries

consume about 28-30% of the world’s electricity (Kober et al. 2020; World Energy Outlook

2019 – Analysis - IEA). Further, a SynRM also operates at a lower temperature as compared

to an IM, helping with a longer operational life of insulation, bearing, etc. Internal bearing

failure is a major concern with an IM, being responsible for almost 40 % of IM failures

(IEEE 1985, IEEE Survey). In addition, with the absence of slip rings, rotor field windings.

permanent magnets, commutators, and brushes, SynRMs have a low manufacturing cost,

require less maintenance, and offer longer operation life. Some of their practical applications

include usage in washing machines, analog electric meters, hard drives disks and electric

vehicles.

Figure 4.27: Conventional rotor designs for synchronous reluctance motors (a) salient pole type,
(b) axial lamination type (c) transverse lamination type (Kolehmainen 2010).

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.7. SYNCHRONOUS RELUCTANCE MOTOR 93

Although reluctance-based machines were invented in the 19th century, they have gained

popularity only since the advancement of microelectronics and control systems. SynRM

operates at exact - “synchronous” speed by syncing the rotor speed with the stator’s rotating

magnetic field. The rotating MMF in the stator can be generated by exciting a 3 phase

stator winding. The rotor poles exhibit saliency due to internal magnetic barriers (slots,

airgaps) or external notches. The presence of notches/barriers/slots in the rotor structure

can affect the profile of the reluctance torque experienced by the rotor. The three types of

synchronous reluctance rotors, as per the literature, are the simple salient pole rotor, the

transverse laminated rotor, and the axially laminated rotor (Kolehmainen 2010), as seen in

Figure 4.27. Due to the law of conservation of energy, the rotor will always try to move to a

position of least reluctance with respect to the stator. With the help of proper and controlled

excitation in the stator poles, the movement of the rotor will be continuous and at a fixed

“synchronous” speed. However, the average torque produced by a SynRM is still inferior

when compared to other motors such as a permanent magnet motor (Murakami et al. 1999)

and is an active field of research (Li, Guimarães, and Lowther 2013; Hidaka and Igarashi

2017; Kim and Park 2010). As a SynRM produces reluctance torque through a salient rotor

structure, the rotor flux barriers play a vital role in the design optimization of SynRMs, since

they force the main flux through the desired iron paths within a fixed stator geometry. Thus,

to improve the performance of SynRM, it is important to optimize the shape of the barrier of

the rotor of a SynRM. The objective will be similar to that in Section 4.4.1 and also stated

in eqn. 4.14, where f(a) is the negative magnitude of the average torque generated by the

motor. The sequence of actions (a) controls the movement of the controller. However, the

material distribution controlled by a is air (pj : 1→ 0), resulting in a rotor’s flux barrier.

minimize
ai=0,1,2,3
i=0,1,2,...,m

f(a)

subject to K1 ≤
n∑
j=1

(pj = 0) ≤ K2

(4.14)

The definition of other parameters (p,K1, K2) associated with defining the problem

remains the same as in Section 4.4.1. The geometry for baseline performance was extracted

from Siemens’s MAGNET (MAGNET v2020.2) with the fixed parameters mentioned in

Table 4.5 and displayed in Figure 4.28a. The baseline SynRM exhibits an average torque

of 2.5 N-m. Taking advantage of the symmetry offered by a 4-pole, 3-phase design, only a

quarter of the geometry is considered as the design space. The quarter 2-D design space is

discretized into 25 (5×5) cells with the initial design filled with iron (pi = 1) and can switch

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.8. SYNRM - TOPOLOGY OPTIMIZATION 94

(a) Conventional single barrier SynRM (b) Discretized rotor geometry (c) Controller at start position.

Figure 4.28: SynRM characteristics

to air (pi = 0), based on the movement of the controller. The cross-section of the discretized

design space is shown in Figure 4.28b and the starting position of the controller in Figure

4.28c.

Fixed Parameters Value Fixed Parameter Value

Number of stator slots 24 Number of Poles 4
Stator outer diameter 112 mm Airgap thickness 0.5 mm
Rotor outer diameter 55 mm Stack height 50 mm
Rotor inner diameter 16 mm RMS current density 18 A

Core material M-19 26 Ga Barrier material Air

Table 4.5: SynRM fixed parameters

4.8 SynRM - Topology Optimization

4.8.1 GA Results with SeqTO-v1

For the combination of geometric and excitation parameters mentioned in Table 4.5, a

sequence-based controller is employed on a 5 × 5 discretized space. The discretized de-

sign space (Figure 4.28b) is filled with iron and the controller is responsible for introducing

air. A GA based topological optimization is performed to obtain an optimal flux barrier

topology. Figure 4.29a shows the optimal topology obtained. The GA algorithm as set in

Section 4.4.1 with m = 25, population size of 50 and stall generations set to 100. With an

average torque of 3.40 N-m, the resultant geometry achieves a significant improvement in

the average torque as compared to the torque (2.5 N-m) of the conventional design (Figure

4.28a). To validate the results by the sequence-based controller, the ON/OFF algorithm

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.8. SYNRM - TOPOLOGY OPTIMIZATION 95

described in Midha et al. 2019 was also employed, which showed similar results. The aver-

age torque (−f(a)) is obtained through transient 2D Finite Element simulation (MAGNET

v2020.2).

The obvious reward function in such a case will be the performance (objective) criteria

that is being maximized/minimized. For a C-core, it was the force experienced by the

armature at any given step of the MDP. Similarly, for SynRM, it is the average torque

generated by the motor at any given step of the MDP.

(a) Optimal geometry (b) Magnetic |B| field distribution

Figure 4.29: (a) Optimized geometry and the magnetic flux distribution for a discretized SynRM
(5× 5 design space). SeqTO-v1 with GA.

Environment
Type

Design Variables
(m)

Population
Size

Stall
Generation

Average
Torque

5× 5 (Non-linear) 25 25‖50 25 3.40 N-m

Table 4.6: TO results for SynRM using GA on the rotor structure; based on SeqTO-v1

4.8.2 SynRM - TD-Learning results

For the combination of geometric and excitation parameters mentioned in Table 4.5, a

sequence-based controller is also employed on a 5x5 discretized space. The discretized design

space (Figure 4.28b) is filled with M-19 26 Ga material and the controller is responsible for

introducing air (barrier material). The optimal topology of the rotor is shown in Figure

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.9. COMPARISON BETWEEN ON/OFF & SEQTO-V1 96

4.30a. With an average torque of 3.40 N-m, the resultant geometry, shown in Figure 4.30a,

achieves a significant improvement in the average torque as compared to the torque (2.5

N-m) of the conventional design. The average torque (Tavg) is obtained through transient

2D Finite Element simulation (MAGNET v2020.2).

Environment Type
Episode
Length

Learning
Rate

Reward
Function

Average
Torque

5 × 5 (Non-linear) 25 0.8 ∇T 3.40 N-m

Table 4.7: SynRM results using TD-learning with SeqTO-v1.

(a) Optimal geometry (b) Magnetic |B| field distribution

Figure 4.30: (a) Optimized geometry and the magnetic flux distribution for a discretized SynRM
(5× 5 design space). SeqTO-v1 with TD-learning.

4.9 Comparison between ON/OFF & SeqTO-v1

Apart from the advantage of enforcing the connectivity of material, which directly results

in manufacturable designs, Sequence-based TO is also efficient in terms of the total number

of function calls during the optimization procedure, as seen during experimentation. This

improvement can be verified by the data in Table 4.8, where the number of function calls

made using Sequence-based TO is reduced by a factor of around 4 - 5, as compared to

ON/OFF TO methodology for the same design problem.

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.9. COMPARISON BETWEEN ON/OFF & SEQTO-V1 97

GA
ON/OFF

GA
SeqTO-v1

TD
SeqTO-v1

Scenario
Optimal

value
FE

Simulations
Optimal

value
FE

Simulations
Optimal

value
FE

Simulations
3 × 3 C-core Linear 70 N 20000 70 N 4500 70 N 3750
3 × 3 C-core (NL) 51 N 45000 51 N 7200 51 N 6000
SynRM 3.4 N-m 12000 3.4 N-m 3000 3.4 N-m 2800

Table 4.8: Comparison of On/Off TO with Seq based TO using GA & TD-learning

This computational efficiency can be attributed to the reduced dimensionality of possi-

ble candidate designs to explore with SeqTO, due to the inherent requirement of enforced

connectivity. This limitation imposed by SeqTO helps avoid the evaluation/generation of

candidate designs with floating or isolated material. Further, in a comparison between the

GA and TD-based learning when applied on SeqTO, it is found experimentally that TD

based learning requires about 15-20% fewer FE evaluations for generating the same optimal

designs for linear and non-linear C-core design problem (using a controller of size 3 × 3).

However, the number of FE calls for both GA and TD show a smaller difference (around

6.5%) for TO of the SynRM, which can be explained due to the relatively smaller design

space of SynRM of 5 × 5 = 25 as compared to that of a C-core (288 elements in C-core

design space). The computation cost presented in Table 4.8 is calculated by the average

performance over many independent runs to make a scientific comparison. The random seed

is the only difference between runs of these algorithms.

The transitional progress of learning with the TD-algorithm is shown in Figure 4.31 (a),

(b), (c) for C-core (using linear and non-linear material) and SynRM respectively. The

graph is plotted by testing the TD algorithm on a fresh episode after a regular interval and

no training is performed during this test episode. The solid line in the curves is the running

average of the past few test runs and the standard deviation of the local averaging. As can

be seen, the TD algorithm continues the learning process until the running average converges

to a fixed value and the variance diminishes to a very low value.

Although a FE solver (MAGNET v2020.2) is used for all electromagnetic analyses in this

study, this is neither a necessary requirement nor a limitation associated with any of the

optimization algorithm discussed in this work. Any EM solver able to evaluate the desired

performance criteria for the problem geometry and has an interface with the optimization

algorithm should be sufficient enough for this work.

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.10. CONCLUSION 98

(a) C-core (Linear material) 3× 3 controller size (b) C-core (Non-linear material) 3× 3 controller size

(c) SynRM 5× 5 design space

Figure 4.31: Training Rewards vs Episodes

4.10 Conclusion

The feasibility of a sequence-based (SeqTO-v1) controller for Topology Optimization is

proved on several geometries of varying complexity. Furthermore, the working applicability

of SeqTO with vastly different algorithms such as GA and QL as potential optimization

processes is also shown. The structures obtained using the sequence-based controller were

free from any island/stray material. The ability of SeqTO to generate such compact designs

is useful for multiple engineering domains apart from electromagnetics, as the methodology

can be easily imported to other design problems. The ability to work with significantly

different algorithms such as GA and TD-learning and resulting in optimal solution proves

the efficacy of sequence-based design optimization. In TD-learning, the additional informa-

tion gained through observing the actions taken by the controller along with the effect on

the performance, at different steps of an episode, introduces interpretability in the whole

design process. This additional information can be useful for designers to understand the

impact of different components in the design. Exploiting this knowledge can result in further

hand-tuned designs and offer more flexibility to a designer.

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

4.10. CONCLUSION 99

Moreover, breaking the whole geometry into a series of sub-components lays the path

to apply more generalizable algorithms such as Deep Reinforcement Learning models, using

Deep Neural Networks (DNN). Leveraging the complexity of a DNN to handle problems

of high dimensionality has additional advantages, such as the ability to transfer knowledge

learned from one environment to another, conditioned on having a similar sub-structure and

relatable performance criteria. These possibilities will be explored in Chapter 5.

CHAPTER 4. SEQUENCE BASED TOPOLOGY OPTIMIZATION

Chapter 5

Intelligent Agents for Topology

Optimization

5.1 Introduction

Inventors have always dreamed of machines that can think. When programmable computers

were first conceived, people wondered whether machines might become intelligent, a hundred

years before one was even built. Building intelligent machines involves the capability to learn

from examples, experiences, or even from other machines (Turing 1950). The true challenge

for Artificial Intelligence (AI) is solving tasks that provide no supervision and involves its

evolution of knowledge from experience. This is significantly different from the supervised

learning algorithms discussed in Chapter 2 and 3, where the task was well defined in terms

of the labeled data, and the feedback provided to the learning algorithm was in the form

of a correct response (ground truth/labeled data). In contrast to supervised learning, a

far more complicated task will be to enable a learning technique to improve over time in

an interactive environment through trial and error and using feedback from its actions and

experiences. This type of learning (RL) when coupled with neural networks is the basis of

Deep Reinforcement Learning (DRL), as shown in Figure 5.1.

To some extent, the psychology principle - ‘Law of effects’ (Thorndike 1913), associated

with the behaviour of animals, can be related to the foundation of Reinforcement Learning.

The notion states that “responses to experiences that produce a satisfying situation become

more likely to occur again in that situation, and responses that produce a discomforting effect

become less likely” (Gray 2011). This principle was advanced by Edward Thorndike, who was

the first to introduce the concept of ‘reinforcement’ in the area of the psychological principle

of learning (Thorndike 1898). The terms ‘satisfying’ and ‘dissatisfying’ in the definition were

100

5.1. INTRODUCTION 101

later replaced with the words ‘reinforcing’ and ‘punishing’ respectively (Mazur 2015).

Figure 5.1: RL and DL combine to form DRL paradigm of algorithms.

Figure 5.2: Application of DRL in the field of (a) Atari games, (b) Game of Go and (c) Robotics

DRL is expected to revolutionize the field of AI and represents a step towards building

autonomous systems with a higher-level understanding of the physical world. The field

received a lot of attention for the development of an algorithm that can play a range of Atari

games (Silver et al. 2016). This was a breakthrough in artificial intelligence since scientists

thought that it would take many more years to make machines win such complex games.

Currently, deep NNs are enabling reinforcement learning to scale to previously intractable

problems, such as creating a single system that can play multiple video games directly from

pixels, named AlphaGo (Silver et al. 2016) and AlphaGo Zero (Silver et al. 2017). DRL

algorithms are also applied to robotics (Kober, Bagnell, and Peters 2013), allowing control

policies for robots to be learned directly from sensory inputs in the real world (Levine et

al. 2016), designing algorithms to automatically learn to allocate and schedule computer

resources to waiting jobs, with the objective to minimize the average job slowdown (Mao et

al. 2016), design a traffic light controller to solve the congestion problem (Arel et al. 2010),

Bidding and Advertisements (Jin et al. 2018). Recently, DRL was tested on predicting

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.2. LITERATURE SURVEY 102

the 3D shape that a protein will fold into. The results of the biennial protein-structure

prediction challenge called CASP (Critical Assessment of Structure Prediction) is seen as a

breakthrough in the application of DRL in the field of drug discovery (Senior et al. 2020),

which is seen as a field that is not part of the conventional RL domains. While the present

achievements of DRL in the field of robotics and computer games are impressive and required

a massive amount of resources to discover, this chapter extends the work in the field of DRL

to Topology Optimization.

5.2 Literature survey

5.2.1 Application of ML algorithms in TO

In the past decade, machine learning algorithms have been extensively studied in the field

of Topology Optimization. This is due to the capability of ML algorithms to approximate

highly non-linear functions. A trained ML surrogate model is capable of predicting structures

based on the patterns and behaviors learned from the analysis of several examples. Machine

Learning (ML) and in particular Deep Learning (DL) have also demonstrated some capabili-

ties in reducing the computational cost associated with topology optimization. A comparison

for most of the recent work in the field of TO involving ML algorithms is shown in Table

5.1. As can be seen, most of the work is based on labeled data and involves supervised

learning algorithms. After training with optimized solutions from conventional methods for

TO- gradient-based or stochastic methods, a neural network can be trained in a supervised

manner to predict solutions of the same TO problem under different input conditions. The

differing conditions represent the geometries obtained during the process of TO optimiza-

tion. In the field of solid mechanics, Yu et al. 2019 used 100,000 optimal solutions to a

simple mechanical compliance problem (distributing material in a domain so that the struc-

ture achieves maximum stiffness for given loading and constraints) with various boundary

forces and the optimal mass fractions to train a neural network consisting of a Convolutional

Neural Network (CNN) (LeCun et al. 1998) and conditional Generative Adversarial Network

(cGAN (Goodfellow et al. 2014)), which can predict near-optimal designs of mass fraction for

any given boundary forces. Further, Chandrasekhar and Suresh 2020 used neural networks

to represent the density parameter in the Solid, Isotropic Microstructures with Penalization

(SIMP) approach (Rozvany, Zhou, and Birker 1992) for a TO process. In another approach,

Banga et al. 2018 showed the potential of a 3D Encoder-Decoder based approach to convert

the TO problem to an image segmentation (Badrinarayanan, Kendall, and Cipolla 2017)

one. The first usage of DL algorithms in the field of TO (Sosnovik and Oseledets 2019)

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.2. LITERATURE SURVEY 103

in recent years was to use a Deep CNN Autoencoder to reduce input dimensionality. The

latent information (usually extracted from the center-most hidden layer) extracted from a

trained CNN-based Autoencoder helped in cutting down the computational time through

dimensionality reduction but was not used as an optimization algorithm for TO.

It should be noted that all the researches listed above belong to supervised learning,

which is a class of ML algorithms based on static and pre-computed training data, where

the input-output (features-labels) pair must be provided. Thus, they suffer from a lack of

generalizability and have been criticized in Deng, Qin, and Lu 2020 as not a TO algorithm,

since they rely on existing optimal designs as the training data. The predictions are re-

stricted by the coverage of the training dataset and thus are biased on the methodology

for collecting the training samples. This can introduce data collection bias to the model,

as a surrogate DL model will provide highly accurate results to the design space part of

its training data. For any unseen new geometry, the performance of the ML model will be

unreliable, if not inaccurate. To consider different domain geometries, these approaches will

require new datasets and train new neural networks for any change in the conditions of the

TO problem. This issue has been the focus of recent works. (Zhang et al. 2019) used a

DL method based on CNN and GANs for TO with generalizability ability where instead of

mapping sparse boundary conditions, physical fields were found to allow the Neural Network

(NN) to learn a more accurate mapping between the boundary condition and the optimal

structure. Thus, the advantage proposed by Zhang et al. 2019 comes from the well-designed

input form, enabling the DL model to solve TO problems with different boundary conditions

even though the training datasets had only one or a few boundary conditions. Nonethe-

less, the learning methodology used in Zhang et al. 2019 is supervised and has the same

shortcomings as mentioned previously. Smart input encoding does not solve the underlying

problem associated with supervised learning methodologies.

Paper
Learning

Architecture
Online

Learning
Design

Optimizer
Generaliz-

abile

Manufactur-
alibility

(part of TO)

(Chandrasekhar and Suresh 2020) Feedforward 8 8 8 8

(Banga et al. 2018) CNN 8 4 8 8

(Sosnovik and Oseledets 2019) CNN 8 8 8 8

(Lei et al. 2019) KNN, SVM 8 4 8 8

(Nie et al. 2020) GANs 8 4 8 8

(Yu et al. 2019) CNN + cGAN 8 8 8 8

(Deng, Qin, and Lu 2020) Feedforward 4 8 4 8

(Doi, Sasaki, and Igarashi 2019) CNN 4 8 8 8

(Sasaki and Igarashi 2019) CNN 8 8 4 8

(Barmada et al. 2020) CNN 8 8 4 8

Table 5.1: Literature survey of ML papers in Topology Optimization

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.2. LITERATURE SURVEY 104

Furthermore, another issue associated with supervised learning is that the material (vol-

ume) constraint is treated as a condition to match as closely as possible rather than a true

inequality constraint. This is due to the nature of supervised learning where the optimiza-

tion algorithm tries to minimize a loss function to as low a value as possible. Due to the

above-mentioned problems with supervised learning, Deng, Qin, and Lu 2020 limited the

use of ML algorithms as a performance estimator (rather than an optimization algorithm)

for the compliance minimization problem in mechanics. Deng, Qin, and Lu 2020 trained

the DNN in an online fashion, where the training data was selectively collected to capture

near-optimal solutions. Although this helped in accelerating the computation by using a

DNN as a surrogate of the objective function evaluator, the ML algorithm is not involved

in the TO process and thus does not influence the generation of new topologies. Further, as

this approach limits the data generation for training only on near-optimal solutions, it will

obstruct the ability of the network to distinguish between a good and a bad solution. As

a consequence of a network trained with a highly imbalanced dataset, it can overestimate

the performance indicator for a poor design and will affect the performance of the stochastic

algorithm itself.

Advancements in TO for Electromagnetics

In the field of electromagnetics, Sasaki and Igarashi 2019 introduced TO for EM analysis

where a CNN-based performance estimator is used to predict the torque values for the

optimization of IPM motors. Further advancements were performed in Doi, Sasaki, and

Igarashi 2019 and Barmada et al. 2020 where incremental efforts were made to reduce the

computation burden associated with FE analysis. These approaches used DL methods as

a filter for removing the inferior population at any iteration of the GA process. The best-

performing designs are reevaluated with FEA to reduce the computation burden. This type

of supervised learning has been implemented in both an on-line (Doi, Sasaki, and Igarashi

2019) and off-line fashion (Sasaki and Igarashi 2019).

5.2.2 Addressing the Disadvantages of Supervised Learning in TO

Given the advantages associated with involving ML algorithms, there is a motivation to

extend the above-mentioned works by pursuing a methodology that focuses on extending

generalizability as a part of the optimization process rather than using DL as a surrogate or

labeled data-constrained supervised learning for TO. For this purpose, the concept of DRL

is introduced for TO in this Chapter. In addition, the concept of manufacturability from

Chapter 4 is also an important criterion and should be included from the initial phase of TO

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.3. SETTING UP DEEP RL 105

with RL.

5.3 Setting up Deep RL

The usage of deep reinforcement learning aims to create a system that can adapt to novel

geometries through the use of suitable system dynamics in the form of an MDP and the

usage of neural networks as function approximators, which can generalize to new geometries

and excitations. This section contains a discussion on the setup of function approximator

following a modification of Q-learning from Tabular (Section 4.5.3) to Deep Q-Learning

methodology, along with the changes introduced in the MDP, in comparison to the one

discussed in Section 4.5.1. As with Chapter 4, the term ‘FE calls’ is used to refer to the

number of simulations performed in a corresponding optimization task. Although a FE solver

is used for all electromagnetic analyses in this study, this is neither a necessary requirement

nor a limitation associated with any of the optimization algorithm discussed in this work.

Any EM solver to be used, as long as it is able to provide an accurate solution and a

performance measure required for the operation of the algorithm, such as force magnitude

and field distribution.

5.3.1 Advanced Function Approximators

This section builds on the Tabular QL algorithm discussed in Chapter 4 Section 4.5.3, where

a greedy policy was obtained for optimal material placement. This involved learning the

value function (Q-value) for the states and action pair associated with a TO environment

(SeqTo-v1). The tabular QL approach will not be able to expand to high dimensional state

and action space, due to the curse of dimensionality. It is not possible to compute and

preserve the value function (Q-value) for all possible state-action pairs, especially when

either of them (state or action) is continuous. Further, a more complex action space adds

to the curse of dimensionality problem, making the tabular method either infeasible or

too memory intensive. There are other ways to store and represent a value function. This

chapter introduces function approximation to approximate the action values. These function

approximators can be expressed with a relatively small number of parameters. The ML

literature consists of many ways to parametrize an approximate value function (Q or V)

such as Linear Regressors, Decision Trees, SVMs, and Neural Networks to name a few

classes of available options. In principle, any function that takes the state as an input and

produces a (or a set of) real number(s) that represents the value associated with that state, is

considered suitable enough to be used as a function approximator for value function (Q or V).

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.3. SETTING UP DEEP RL 106

A popular category used for this is parametrized functions where a set of real-valued weights

are adjusted to learn a representation from the state space to the corresponding action value.

These weights can be tuned to allow for a change in the output of the parameterized function

to account for collected experience as and when the experience is generated in a sequential

learning format. The aim is to generate an Action value function predictor Q̂(s, a, w) which

approximates the true action-value function Qπ(s, a, w). This is better than the tabular

approach (Chapter 4), for large state and action spaces. Further, the tabular approach

worked only with an integer-based encoding of the design domain, as shown in Figure 5.9.

For a richer encoding technique as shown in either Figure 5.10 or 5.11, the tabular approach

is not an appropriate form of storage. The floating-point data type needed to represent

the magnetic field distribution in the air gap (Figure 5.10) and the whole geometry (Figure

5.11), will be either infeasible or will require high memory capacity, as mentioned earlier.

Alternatively, an attempt to discretize the continuous magnetic field values will result in a

precision trade-off. In such cases (Figure 5.10 & 5.11), a parametrized approximator is ideal

for representing a state of the design domain which includes the magnetic field distribution

and offers the flexibility of dealing with similar problems including geometries and excitation.

Thus taking the advantage of parameter fitting and interpolation.

v̂(s, w) ≈ vπ(s)

Another difference between the tabular and parameter-based methodology is that mod-

ifying a single entity of the value function table leaves the value functions associated with

other states (s) or state-action pair (s, a) unchanged. Now the learning algorithm will mod-

ify the weights of a parametrized function and will affect states which are closely related in

the weights distribution space. For parametric representation, the learning algorithm will

modify the weights of the parametrized function and this change will affect all the values

associated with other states (s) or state-actions(s, a) that are closely related to the weight

distribution space.

a0 a1 a2 a3

S0 8.2 -0.2 4.1 4.4

S1 6.6 -1.0 -1.5 5.6

S2 -3.3 -2.6 11.1 -4.7

Table 5.2: Example of a Q-table

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.3. SETTING UP DEEP RL 107

The simplest form of function approximator is a linear function, which is a linear repre-

sentation of the constituent weights for the Q-value (Table 5.2). These weights are multiplied

with the features to get a scalar value for a state Action-value function. The features are

some fixed attributes that explain the state. The performance of linear function approxima-

tors relies on good features that are capable of discriminating between different state-action

pairs. Tabular representation is a special case of linear function approximation, where each

state-action pair is a separate feature and thus requires a weight/Q-value for each instance

of the state-action pair. This can be stated in the following equation as :

Q̂(si, aj, w)
.
=< w, x(si, aj) >

= wij

where x(si, aj) is one-hot encoding (Géron 2019). One-hot encoding is used since only a

single entry in the Q-table will correspond to a state-action pair (s, a), as can be seen from

the Table 5.2. One-hot encoding will produce a vector with only a single non-zero element

(high) which corresponds to the highest possible value for each row of the Q-table.

So a tabular representation is the same as a linear approximation with the number of

weights the same as the number of states, which, as stated above, is suitable for a small

integer encoded state-action space. Neural networks, on the other hand, implement a non-

linear function of the states. The state, or features representing the state, is passed to the

neural network as an input. All the connections through hidden layers correspond to real-

valued weights. When data is passed through a connection the weight gets multiplied by the

input. The weights form a connection between any two layers in the neural network. The

process transforms the input state through a sequence of layers to finally produce the action

value estimate as to the output of the neural network, as shown in Figure 5.3. The field of

Deep Reinforcement Learning (Deep RL) deals with using Neural networks in combination

with the learning algorithms of RL such as (Q-learning, Monte Carlo, Policy Gradients).

Although there are other possibilities for a function approximator, there are criteria that

must be satisfied to produce a satisfactory predictor for the value function. It should possess

the property of both generalizability and discrimination. Generalizability is the ability to

apply knowledge about a specific scenario to a variety of similar situations. An update to

the value estimate of one state-action pair influences the value estimate of other statistically

similar state-action pairs. This is also helpful in speeding up the learning by making better

use of the experience generated and ultimately help in faster convergence to the optimal

solution (design), as not all distinct state-action pairs need to be visited. On the other hand

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.3. SETTING UP DEEP RL 108

Figure 5.3: Feedforward neural network for Value function (Q(s, a) or V (s)).

‘Discrimination’ is an ability to distinguish two significantly different states, by assigning

different values in the form of prediction to significantly different states. There might be some

states with similar features (as they have similar geometry) but drastically different returns.

An example of this can be seen in Figure 5.4. An ideal candidate for a function approximator

should be able to find distinguishable features that can help with the separation. Tabular

methods are great at distinguishing two states perfectly but do not generalize at all. Each

state-action pair is represented by a distinct entry in the table (Table 5.2). Each entry

of the state-action pair (s, a) is independent of each other. Thus, the controller is forced

to visit all the state-action pairs in the MDP to be able to find a greedy policy. A neural

network on the other hand is good at finding a balance to the generalizability-differentiability

trade-off (Hornik, Stinchcombe, and White 1989), conditioned that the features representing

the states contain sufficient information. For the scenario shown in Figure 5.4, additional

information along with the material distribution such as magnetic field distribution can help

the function approximator with balancing the trade-off.

Figure 5.4: Sudden decrease in performance with a slight change in the state representation. Coil
Current: 1.5 Amps, No. of Turns: 500.

An additional characteristic that the learning system should have is the ability to learn

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.3. SETTING UP DEEP RL 109

in a sequential manner. This is in contrast to supervised learning as the data generation

process in an RL task is online. The online nature of the data is attributed to the constant

interaction of the agent with the environment. On the other hand, the data used in supervised

learning is pre-generated and is independent of the current weights of the neural network.

This dynamic interaction makes the data generated at any given time dependant on how well

the agent understands the environment. This creates a non-stationary distribution of the

training data, where previous knowledge gained by the learning system is to be discounted

in favor of the new experience. This is one of the reasons why sample efficient algorithms are

an active area of research in the field of Deep RL (Henderson et al. 2018). On top of that

the ever-present challenge of reducing the computation cost associated with the task of TO.

Identifying an ideal learning system that balances all the above-mentioned requirements is a

difficult job and is heavily task-dependent. A learning system based on non-linear function

approximators such as Neural networks is ideal for generalization, discrimination, and online

learning but will require significantly more training examples to train as compared to a

tabular method. However, the cost of higher sample requirements can be justified with the

ability to generalize over similar optimization tasks.

5.3.2 Objective of the RL Task

The value estimation problem can be setup as a supervised learning task. The first task is to

define an objective to optimize. A regression task can be setup such that the error is stated

as:

Error (MSE) =
[
Q∗(s, a)− Q̂(s, a, w)

]2

(5.1)

Although the problem is formulated in the sense of supervised learning, it will be difficult

to match the true value (Q∗(s, a)) of the action-value function at all states. Also, in most

problems, the optimal value function (Q∗(s, a)) is unknown at the beginning of the training.

Unlike the supervised learning tasks (e.g. the Field & Performance maps estimation), a high

accuracy value that has been obtained in Chapter 2 & 3 does not necessarily reflect in a

value function being a good predictor for the true action-value function. In the absence of the

optimal value function (Q∗(s, a)), (as was discussed in Chapter 4, Section 4.5.2, in Temporal

Difference (TD) learning), the learning algorithm uses it’s own estimate of the value function

to update it’s own prediction. Another alternative is to use an estimate of the return (Gt),

but as was discussed in Chapter 4, Section 4.5.3, the computation cost associated is too

expensive.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.3. SETTING UP DEEP RL 110

For making an update to decrease the error on an experience trajectory:

(S1, A1), Qπ(S1, A1)→ (S2, A2), Qπ(S2, A2)→ (S3, A3), Qπ(S3, A3)→ . . . (5.2)

will be determined by the gradient of the loss function from Eq. 5.1:

α∇
[
Qπ(s, a)− Q̂(s, a, w)

]2

(5.3)

Using the estimation of the return as an approximation for the true Value function, for

making updates in the weights (w) of the neural network predicting the action value function

(Q(s, a):

w ←− w + α[Gt − Q̂(st, atw)]∇Q̂(st, aT , w)

This updates the weights (w) of the neural network such that the action value estimate

is closer to the return (Gt) of the sample experience trajectory. The return can be replaced

with any other estimate of the action-value function. Similar to Section 4.5.3, instead of the

return (Gt), a bootstrap target based on the action-value of the next step resulting in the

following error equation:

Error (MSE) =
[
Rt + max

a′
Q̂(St+1, At+1, w)− Q̂(St, At, w)

]2

(5.4)

The Q-learning with neural networks is implemented by stacking the actions in one neural

network, such that a single network predicts the action value associated with all possible

actions in the state as shown in Figure 5.5. The weights in the Q-learning neural network

are updated as follows:

w ←− w + α[Rt+1 + Q̂(st+1, at+1, w)− Q̂(st, at, w)]∇Q̂(st, at, w) (5.5)

This method of learning is called on-policy learning. A more complex version of it, uses

two neural networks for learning the Q(s, a) value. One is called the behaviour Q-Network

and the other is target Q-network, resulting in the following update equation:

w ←− w + α[Rt+1 + Q̂tar(st, at, wtar)− Q̂beh(st, at, wbeh)]∇ ˆQbeh(st, aT , wbeh) (5.6)

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.3. SETTING UP DEEP RL 111

Figure 5.5: Different approaches of setting up the Q-Network

where Q̂tar(st, at, wtar) is the target policy and Q̂beh(st, at, wbeh) is the behaviour policy.

The behaviour NN is responsible for suggesting actions while collecting the experience. The

target policy on the other hand does not interact with the environment directly but is used

to train the behaviour policy using the eqn. 5.6. The target policy is obtained from the

behaviour policy by the timely transfer of weights from the behaviour policy (shown as

‘Knowledge Transfer’ in Figure5.6). This method of learning is called off-policy learning, as

the policies used for generating experience and training are different. This type of learning

has shown improved performance in the training of Q-learning (Hasselt 2010).

ε−greedy is used for exploration for both off-policy and on-policy, same as that in Section

4.5.2, where the emphasis is on exploration of the environment at the start of the training

and as the agent learns the dynamics of the environment the scale of exploration is gradually

decreased.

at =

arg max
a

Q(beh)(s, a;w(beh)) with probability 1− ε

a ∼ (a1, . . . ak) with probability ε
(5.7)

Finally, it is also not expected that the approximator is giving great performance on

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.3. SETTING UP DEEP RL 112

all possible state-action pairs. Importance should be given to samples (state, action) from

experience which the policy visits more often than others. Samples that occur more compared

to others in a policy should be weighted higher than the ones where the time spent is less.

An agent needs to try many different actions in numerous states to try and learn all the

available possibilities and to find the optimal material distribution which will maximize its

overall reward; this is known as ‘Exploration’, as the agent is searching for better prospects

in the environment. On the other hand, if all the agent will do is random exploration, it will

never maximize the overall reward so it must also use the information it learned from the

experience. This is known as ‘Exploitation’, as the agent exploits its knowledge to maximize

the rewards it can receive. The trade-off between the two is one of the most significant

challenges of RL problems, as the two must be balanced to allow the agent to both explore

the environment enough, but also exploit what it has learned and repeat the most rewarding

path it found.

Figure 5.6: Q-Learning Cycle

5.3.3 Experience Replay

As RL tasks have no pre-generated training sets which they can learn from, the agent must

keep records of the state transitions it encountered so that it can learn from them later. The

memory buffer used to store this is referred to as ‘Experience Replay’. There are several

types and architectures of these memory buffers - but some very common ones are the cyclic

memory buffers, which make sure the agent keeps training over its new behaviour rather than

transaction experience that might no longer be relevant. The memory operation of a cyclic

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.3. SETTING UP DEEP RL 113

memory buffer behaves like that of a queue, where the oldest entry is removed first, once

the buffer reaches its capacity. Another type of memory buffer is reservoir-sampling-based,

which guarantees each state-transition recorded has an even probability to be inserted into

the buffer. In this work, only cyclic memory buffers were used since they limit the amount

of memory required for storing the experience buffer.

5.3.4 Deep Q-learning

DeepMind’s DQN (Deep Q Network) was a breakthrough success in applying deep learning to

RL problems (Mnih et al. 2013). Combining the previously discussed concepts of Experience

Replay, ε based exploration, and the algorithm of Q-learning the algorithm is used to train

a Neural Network (Q-Network, referred as DQN) to find an optimal policy that is greedy on

the cumulated reward function. Algorithmically, DQN is related to the tabular Q-learning

algorithm discussed in Section 4.5.3. However, the key difference is the involvement of

advanced functional approximators for replacing state-action table (from Q-learning; Section

4.5.3) with a neural network to cope with large-scale tasks, where the number of possible

state-action pairs can be enormous. This variation introduces two key addition to the Q-

learning procedure: Experience Replay (discussed in Section 5.3.2) and the use of a separate

target network (Section 5.3.2). The setup of the function approximation-based Q-learning

method is shown in Figure 5.6. The core of the C-core (shown in Figure 5.7) is to be designed

using TO such that the force experienced by the armature is maximized. The excitation for

the current coil is set at 1.0 Amps with 500 turns.

Figure 5.7: (a) Conventional C-core actuator (b) Design domain for half C-core with the controller
(3× 3), pointer and performance measure.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.4. MODIFICATIONS TO SEQTO-V1 ENVIRONMENT 114

5.3.5 Results of Q-Learning

The optimal geometry for a 3×3 SeqTO environment with a linear magnetic material is shown

in Figure 5.8. This result matches the geometry obtained through the GA and tabular TD-

learning/Q-Learning algorithm (Figure 4.26a). The network uses the state representation

similar to the one used for Tabular QL in Section 4.5.3. The memory buffer is populated

with samples collected following a random policy. It was observed that starting with random

sampling helps with the exploration on top of the ε- greedy policy. Once sufficient random

samples have been generated the learning phase of the QL-based agent starts. The results

obtained match those obtained with the tabular QL algorithm in Section 4.9. The network

takes about 950 episodes to converge to the optimal solution, requiring about 20,000 FE

function calls in the process.

(a) Convergence results for 1.0 Amps using Deep Q-learning algo-
rithm. (b) The optimal solution and action sequence in a 3 × 3 linear

environment

Figure 5.8: Optimal geometry of C-core with Deep Q-Learning, using a 3 × 3 controller filling
linear iron material.

5.4 Modifications to SeqTo-v1 environment

The RL task needs to be formulated as a Markov decision process (MDP) (Bellman 1957),

similar to the one discussed in Chapter 4. Briefly speaking, an MDP comprises of four parts

S, A, P , R, where P is the transition probability function. The description of the transition

probability functions P is omitted because any state-action pair deterministically leads to

a unique next state. The reward is based on the increase or decrease of the magnetic field

distribution at the point near the middle of the armature as shown in the armature.

Although the MDP discussed in Chapter 4, Section 4.5.1 is suitable for deploying RL

algorithms, the current discussion extends the MDP to account for more complex geometries

while keeping the computational cost low. Further, certain modifications are to be made to

enable the state to contain more relevant information, that can be useful for the agent to

make a decision.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.4. MODIFICATIONS TO SEQTO-V1 ENVIRONMENT 115

Additionally, up until now only a 3×3 controller has been used with both the tabular and

function approximator form of Q-Learning. This limitation does not allow the generation of

complex structures. If the same state representation and MDP is to be used with a controller

of the size of 1 × 1, the number of steps needed to achieve an optimal structure with the

amount of given material will be overwhelming, resulting in high number of simulations.

Additionally, a state should include as much relevant numerical data of the design as possible.

The MDP formulated in Section 4.5.1, was ideal for tabular algorithms as it consists of only

integer encoding for the state representation.

To mitigate these issues, a state representation that holds more information and an action

space that is more complicated and at the same time offers more flexibility to the controller

is developed and this modified environment will be referred to as SeqTO-v2. SeqTO-v2 will

include different ways of encoding useful numerical information into the state representation.

This change is made for both the C-core problem and SynRM geometry. Although for SynRM

no changes are made in the action dimensionality (as compared to SeqTO-v1), the techniques

mentioned can easily be adopted. These changes are incorporated to balance the granularity

of the solution and limit the number of electromagnetic simulations in an episode of training.

The state representation used in Chapter 4 is shown in Figure 5.9. In addition to the

material distribution and coils, an alternate representation involves additional information

of the magnitude of the magnetic field distribution in the airgap, as shown in Figure 5.10.

Another possibility is providing information related to the magnetic field distribution over

the complete design space. This is shown in Figure 5.11, where the information is stored in

channels as the first channel of dimensions (W ×H) consisting of the material distribution

along with the spatial location, current magnitude, and the number of turns for the coil. The

second channel consists of the magnitude of the magnetic field distribution over the same

spatial dimension as the first channel of a multi-channel or 3D representation. This is the

most complete state representation of the three.

Figure 5.9: Discrete design domain as the
state space Figure 5.10: Discrete design domain with

the |B|airgap as the state space

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.4. MODIFICATIONS TO SEQTO-V1 ENVIRONMENT 116

Figure 5.11: Discrete design domain along with the |B| in the design space as the state space

As for the action space, it initially consists of only four options which were discussed

in Chapter 4, Section 4.3 and shown in Figure 4.8. The action space for the controller is

increased by four to a total of eight such that the controller now has the ability to place not

only 3 × 3 block of data, but additional option including 3 × 1, 1 × 3, 3 × 2, 2 × 3 along

with several other combinations as shown in Figure 5.12. Effectively, the controller now

has the capability of placing from a minimum of 3 (1 × 3) to a maximum of 9 (3 × 3) in a

single step, using an additional set of actions labelled as ‘soft’ actions. The complete set of

actions, available to the controller at any step in an episode are mentioned in Table 5.3 and

the operation of these actions is shown in Figure 5.12.

Action Action

1 Soft Up 5 Up
2 Soft Down 6 Down
3 Soft Right 7 Right
4 Soft Left 8 Left

Table 5.3: Evolved action space of the controller (SeqTO-v2).

Although the Markov property states that there must not be any useful information in

previous states (Markov and Nagornyi 1951). This property can be relaxed, similar to Silver

et al. 2017. In the case of using a single design domain information at an instant ‘t’ as our

state, we are breaking the Markov property because previous frames could be used to infer

the previous changes made by the agent and can help with the differentiation if the agent

took any good or bad actions there. An agent trying to enter the coil space is bad and can

be differentiated here, as shown in Figure 5.13. This is dealt by bringing some of the history

into the state.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.5. POLICY GRADIENT 117

Figure 5.12: Agent Movement with SeqTO-v2 controller.

Figure 5.13: Possibility of a design error due to the controller moving out of the designated design
space.

5.5 Policy Gradient

A Q-Learning algorithm learns by trying to find each state’s action-value function (Q-Value

function). Its entire learning procedure is based on the principle of figuring out the quality of

each possible action and select the best possible action, according to the learned knowledge.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.5. POLICY GRADIENT 118

So Q-Learning tries to have complete and unbiased knowledge of all possible moves, which

is also its most major drawback, as this requires a significant number of attempts of each

possible state and action combination.

Training =⇒ θ −→ Q(s, a) −→ π (5.8)

Policy Gradient (PG) is a different paradigm of RL algorithm that learns more robustly,

by trying not to evaluate the value of each action, but by simply evaluating which action it

should prefer. The learning cycle of a PG algorithm is shorter, skipping the Q-Value function

part:

Training =⇒ θ −→ π (5.9)

Figure 5.14: Q-learning vs Policy Gradient Method

This means that the network will directly output the probability of selecting each action,

skipping the extra calculation. This also allows the PG algorithm to be more robust. The

update for the Q-learning algorithm was based on either the return (Gt) or the bootstrapped

action value (R+Q(s′, a′)). In PG, a metric called the “performance measure” (represented

by the term J) will be responsible for making the changes in the weights of the neural net.

θt+1 = θt + α∇J(θt) (5.10)

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.5. POLICY GRADIENT 119

A simple way of analyzing the performance (J(θ)) is to measure all the rewards seen

by the agent, similar to the return (Gt). The rewards accumulated in an episode is a good

performance measurement since the agent’s sole purpose is to maximize its overall collected

rewards. This can be calculated as:

J(θ) = G(t) ≈
∑
a

(
Q(s0, a)× p(a|s0)

)
(5.11)

Next, the weights of the neural network are to be optimized with respect to the perfor-

mance criteria. It should be noted J(θ) depends on the probability of action selection p(a),

which is derived from the policy (π). The gradient of J(θ) is calculated and the weights are

updated by:

∇θJ = Gt · ∇log(π(at|st; θ)) (5.12)

where Gt is the total accumulated reward from step ‘t’ till the end of the episode. The

change in the weights of the policy network is represented as:

θt+1 = θt + α(Gt · ∇log(π(at|st; θ))) (5.13)

where α is the learning rate and θ is the representation of the parameters (weights)

associated with the neural network of the policy (π).

Figure 5.15: Policy Gradient implementation

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.5. POLICY GRADIENT 120

Exploration & Exploitation

In contrast to QL/DQN, PG trains a stochastic policy, where the actions are sampled based

on the probability associated with selecting any action (p(s|a)). The amount of randomness

in action selection depends on the probability distribution over the action space. If the

probability distribution favors one particular action (high p(a|s) value) in a given state,

the chances of exploration decreases in that state. On the other hand, if two actions have

comparable conditional probability (as seen in Figure 5.15), this will imply that the agent is

not very confident in its action selection and should explore between the two high probability

actions. This is in contrast with QL, where only the action associated with the highest

probability was chosen and the rest were treated the same and explored based on the value

of the parameter ‘ε’.

An example of the same is shown in Figure 5.16 (a), where the Q-Learning algorithm will

always choose the action associated with label two (2) based on the greedy policy. On the

other hand, A2C will sample all the actions based on the probability associated with each

action in Figure 5.16 (b).

Figure 5.16: (a) Greedy QL policy always chooses action:2, (b) Probabilistic policy with A2C
samples all actions

As such action labels 2 & 3, having comparatively high conditional probability will be

sampled more as the optimal action in the given state (s). Additionally, there will still be

some instances where the rest of the actions (1 & 4) will be sampled. Overall, the probability

of occurrence of any of the possibilities from the action space is not zero as was the case

with QL.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.5. POLICY GRADIENT 121

5.5.1 Improvement to Policy Gradient

Unlike Q-learning, the PG algorithm is an on-policy algorithm, which means it learns only

using state-action transitions made by the current active policy. Technically, this means there

is no ‘Experience Replay’ memory as in DQN. Once the model is trained, its parameters

(θ) change, and therefore its policy. This means that all the experience collected before this

training must be discarded, and cannot be used for training at any later stage. So every

piece of data collected for training is used only once.

Actor Critic

For PG, agents were designed to learn a policy directly and are trained based on a perfor-

mance metric, which is to be maximized. As such the chances of selecting an action with a

positive impact on the performance further increases. However, the performance metric, in

this case, is the total reward expected in an episode. Getting the true value of the return

(Gt) requires waiting for the episode to end, delaying the updates to the weights. This can

be computationally expensive. In Section 4.5.3, similar issues led to discarding the MC al-

gorithms. To overcome this, it will be better to merge the two techniques of RL that are

discussed in this chapter:

1. The agent learns the policy directly based on the Policy Gradient (PG) method.

2. At the same time, learning the state- or action-specific knowledge through the value

functions (Q(s, a) or V (s)).

The combined method is known as “Actor-Critic” (AC), and is made of two func-

tions/networks learning together: one learns the policy which determines the behaviour

/action of the agent (and is therefore known as the Actor), and the other network learns the

Q-Value of each state and action pair (and is known as the Critic), where Q-value is also a

learned parameter/network. This means that the whole system is divided into two parts or

two sub-agents, which yields a more complex network as shown in Figure 5.17.

A policy πθ(a|s), defined as the probability of an agent taking action ‘a’ in any state ‘s’,

is expressed as

πθ(a|s) =
ef(s,a,θ)∑
ai
ef(s,ai,θ)

(5.14)

where the policy (π) has θ as its parameters and gives a probability distribution for selecting

an action ‘a’ over all the possible actions (ai) conditioned on the current state (s). ‘f ’ is the

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.5. POLICY GRADIENT 122

Figure 5.17: Generic AC

output of the function approximator. This approach of policy parametrization is called soft-

max (Goodfellow, Bengio, and Courville 2016) in action preferences. As mentioned earlier,

the function ‘f ’ can be a linear combination of features or a deep neural network, as long as

the policy (πθ(a|s)) is differentiable with respect to its parameters.

The update rule mentioned in eqn. 5.13 is modified to be:

θt+1 = θt + α
(
Q(st, at)×∇θ

[
ln π(at|st; θt)

])
(5.15)

where ∇πθt(a∗|s) is the direction in which to move θt so as to increase the estimate of

πθt(a
∗|s) the fastest and thus increase the probability of selecting a∗ more often in states

similar to s.

In the above setting, just like the PG method, AC is also an on-policy model, which

means that after each training all previous data is discarded.

Advantage Actor Critic

A further extension to AC algorithms is to replace the Q-value (in eqn. 5.15) with another

performance metric called ‘Advantage’. This is because an absolute value of Q(s, a) is ex-

tremely dependent on the reward function and can be noisy during the initial stage. Further,

an incorrect initialization of Q(s, a) values should not have a significant effect on the update

rule as a very high and noisy value of Q(s, a) can disturb the update rule in a significant

way. For this, it is important to quantify the value of the Q-function and a comparison

with the other actions is a far better representative of how good certain action is. This is

represented as ‘advantage’, i.e. the advantage of taking a particular action ‘a’, in comparison

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.5. POLICY GRADIENT 123

to other actions a ∈ A. So we can replace the Q-Value in the Actor-Critic update rule (eqn.

5.15) with the ‘advantage’ of an action (A(s, a)), which is defined by subtracting V (s) from

Q(s, a). This function gives an indication to the agent as to how much better or worse taking

action ‘a’ in a state ‘s’ is compared to acting according to the policy (Mnih et al. 2016).

A(s, a) = Q(s, a)− V (s) (5.16)

where V (s) is the state’s Value function (refer to Section 4.5.2). An update to the weights

(θ) with A(s, a) is comparatively much more useful for the gradient calculation than Q(s, a),

as a positive A(s, a) is good (an improvement over the current policy), and a negative A(s, a)

is relatively bad as compared to the action suggested by the current policy. This developed

form of the Actor-Critic model is known as the Advantage Actor-Critic, which is abbreviated

to A2C (Mnih et al. 2016), as shown in Figure 5.18.

Based on eqn. 5.16, it might seem that the A2C version seems to make learning a little

more complex, as the learning system needs to learn both Q(s, a) and V (s). However, that

is not needed since a Q-Value is the reward received from state (s) and action (a) and then

continue following the greedy policy till the end of the episode and can be written as:

Q(s, a) = r(s, a) + γV (s′) (5.17)

which means that a Q-value is the sum of the immediate reward and the state value (V)

of the next state (s
′
). This results in the following equation for the ‘Advantage’ function

(A(s, a)):

A(s, a) =
(
r(s, a) + γV (s′)

)
− V (s) (5.18)

This means that an agent needs to learn only the State-Value Function, and use it twice

- Once for the present state (s) and then for the next state (s
′
). This little tweak makes the

A2C easier to implement than the original Actor-Critic.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.6. EXPERIMENT SETUP - A2C 124

Figure 5.18: Advantage Actor Critic

5.6 Experiment Setup - A2C

As shown in Figure 5.19, the network architecture takes in the state representation and

outputs the probability distribution over the possible eight actions available to the agent at

any given time (based on SeqTO-v2). A few cases with varying coil turns and coil current

are considered. For testing the generalizability of the A2C algorithm, it is trained on only

three out of the possible eight excitation scenarios for a C-core, as listed in Table 5.4.

Figure 5.19: Network Architecture for A2C

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.6. EXPERIMENT SETUP - A2C 125

Type Scenario
Coil current

(A)
No. of turns

(T)

T
R

A
IN 1. 1.0 250

2. 1.0 500
3. 1.5 500

T
E

S
T

4. 0.5 250
5. 0.75 500
6. 1.25 500
7. 1.75 500
8. 2.0 500

Table 5.4: Different excitation scenarios used for TO of a C-core actuator.

Figure 5.20: (a) Conventional C-core design (b) Only half of the geometry is simulated due to
symmetricity.

The scenarios where the agent interacts, collects, and train on data originating from the

scenario, is labeled as ‘Train’. The rest of the scenarios are used to check the ‘generalizability’

of the agent and are referred to as the ‘Test ’ scenarios. After every few iterations of training,

the agent is tested on all the scenarios listed in Table 5.4 to check the performance and

monitor if the agent converged to a solution. The optimal design obtained from A2C is

compared with that obtained using GA (Park and Min 2009b; Midha et al. 2019). The GA

algorithm operates on the On-Off TO methodology. Further, a tabular Q-Learning method

is also employed with SeqTO-v1 (pointer size 1× 1) to verify the results. The comparison is

performed on the value of the performance parameter (force on the armature in C-core) of

the optimal design obtained through each method. The value of the torque is also compared

with the conventional design of a C-core. The geometry shown is Figure 5.20 is considered

as the conventional geometry of the C-core for this study. In addition, a comparison of the

number of simulation calls made for each optimization process is also tabulated.

The network used for Actor & Critic is shown in Figure 5.19. The network starts with

a convolutional layer to capture the spatial relationship of the material distribution in the

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.7. RESULTS & DISCUSSION 126

design domain and the corresponding material distribution for the current and past 4 states.

This is followed by two dense layers and an output layer which correspond to the Q(s, a) for

the critic and π(s, a) for the Actor network. Apart from the output layer, which is dense

(used for regression) for Critic and Softmax (used for distinct classes) for the Actor, the rest

of the network architecture and functionality remains the same and can thus be merged to

form a single input multi-output network as can be seen in Figure 5.19.

After the training, it is observed that the A2C based agent managed to produce a superior

performance on the excitation cases which are part of ‘training ’ scenarios as compared to

the performance on the ‘test ’ scenarios. However, the performance over the ‘test’ cases can

be further improved by using the technique of transfer learning (TL). Some of the same

concepts of TL as discussed in Chapter 3 and (Khan et al. 2020b) can be used here. During

the fine-tuning/ re-training, the learning rate is reduced but the network architecture is not

altered as the design domain and the MDP encoding was kept the same.

5.7 Results & Discussion

The results obtained over the scenario cases for different excitation for the C-core are tab-

ulated in Table 5.5. This shows a comparison over computational efficiency and optimal

accuracy of all RL based algorithms using Sequence-based TO (-v1 & -v2) with that ob-

tained from GA (Park and Min 2009b) and GA + filters (Midha et al. 2019) using ON/OFF

TO. The performance improvement can be observed in all five cases, where the previous

results from Midha et al. 2019 were available. Some additional scenarios are analyzed for

which results from the original work (Midha 2018) were not available, specifically (1.25 A,

500 Turns), (1.75 A, 500 Turns) & 2.0 A, 500 Turns). This is performed as part of the

inference check of the neural network-based A2C algorithms.

To keep track for convergence, the A2C algorithm is tested at a regular interval during

the training phase to check the overall performance of the agent. Along with the value of

force for optimal geometry, the number of FE simulations performed in each optimization

run is also recorded for comparison and is included in Table 5.5.

For each excitation scenario, the GA and QL results are independent runs where the

optimization is performed from scratch. On the other hand, a single A2C based agent

is employed to learn (train) from the experience generated on the three train scenarios and

generalize to all the other five ‘test’ scenarios. In such a case, the FE calls for GA and QL are

to be summed up if one needs optimal geometry for all the eight scenarios mentioned, since

all the runs are independent. In contrast, for A2C, the number of simulations associated with

each excitation scenario is simply a milestone during a single optimization/training session.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.7. RESULTS & DISCUSSION 127

Scenario
Conven
-tional

GA
On/Off
(Park et al.)

+Filter
(Midha et al.)

QL
SeqTO
(1× 1)

A2C
SeqTO

-v2

A2C
(Re-train)

T
R

A
IN

1.0 A,
250T

9.97
16.80
(200k)

15.90
19.02
(125k)

16.6
(190k)

-

1.0A,
500T

38.70
50.90
(210k)

50.60
54.0

(128k)

51.50
(150k)

-

1.5A,
500T

78.40
82.10
(195k)

83.30
82.20
(105k)

85.70
(125k)

-

T
E

S
T

0.5A,
250T

2.52
4.56

(159k)
3.88

4.93
(94k)

4.75
(175k)

4.91
(3500)

0.75A,
500T

22.20
32.50
(160k)

30.80
34.80
(120k)

32.70
(175k)

34.60
(7500)

1.25A,
500T

58.4 - -
71.30
(108k)

71.60
(150)

72.1, 72.3
(7500)

1.75A,
500T

93.6 - -
97.20
(105k)

96.8, 93.6
(135k)

96.8
(2500)

2.0A,
500T

105 - -
106

(115k)

105
(110k)

106
(2750)

Total Simulations (925k) - (900k) (192k) (24k)
Avg. Simulations/Scenario (185k) - (112k) (24k) (4,750)

Table 5.5: Comparison of Force magnitude wrt GA optimized results (Park and Min 2009b),
GA+filters (Midha et al. 2019), Tabular QL (using SeqTO-v1) optimized results and with the A2C
(RL based; using SeqTO-v2) agent. The number in the brackets in each cell corresponds to the
number of FE calls during the particular optimization process.

As such, the number of FE simulations associated with A2C agent in Table 5.5 are not to be

summed up, since the number represents the simulations needed for the A2C algorithm to

converge to the optimal geometry for the corresponding ‘train’ or ‘test’ excitation scenarios.

It is observed that GA requires the most number of FE calls out of all the algorithms

tested in the study. Further, the force on armature value of the optimal geometry identified

by GA is inferior to that obtained through other algorithms. The possible cause for this is

explored later. In terms of FE calls, QL required the fewest function evaluation for seven out

of the eight scenarios, when considered independently. This can be attributed to the binding

nature of the SeqTO-v1 methodology and the deterministic nature of the QL algorithm.

Finally, if the total function evaluations for all the scenarios is to be compared, A2C out

performs both QL and GA, due to the nature of SeqTO-v2 methodology and the ability of the

function approximator (NN) to extract useful patterns and generalize over similar scenarios.

The number of FE simulations required by QL for all (eight) scenarios sums up to 900k. In

comparison, A2C requires only a maximum of 190, 000 FE calls to converge to an optimal

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.7. RESULTS & DISCUSSION 128

solution for the three train cases. On average, QL requires about 112, 000 simulations for

an excitation scenario. In comparison, the average number of simulations needed for A2C

is only 24, 000 FE simulations for an excitation scenario of a C-core. It can be seen that

A2C achieves close to optimal geometries for all the scenarios. This is compensated by the

significantly fewer number of simulations needed to achieve this solution design. In cases,

where only the optimal solution is to be desired, the trained agent can be used as a source

domain to further fine-tune an agent for a specific scenario. The resulting design obtained

after fine-tuning achieves the same force magnitude as the optimal ones, using only a small

amount of computational resources.

The inability of the agent to reach the optimal structure can partially be explained due

to the inflexibility of the SeqTO-v2 methodology, where the methodology does not support

placing a thin strip close to the air gap, that the QL based agent can achieve with SeqTO-v1

(1× 1) environment. However, the number of FE calls needed to use SeqTO-v1 (1× 1) will

be simply too much to handle as function approximators such as neural networks will require

far more training data compared to a deterministic tabular look-up table.

A qualitative discussion for some of the scenarios is presented below, where a comparison

of the optimal geometry along with the plot of the magnitude of magnetic flux density is

also shown.

C-core Excitation Scenario 1

Coil Current = 1.0A & Coil Turns = 250

This excitation scenario is part of the ‘train’ cases, where the agent interacted with the

environment operating with the excitation settings of Coil Current = 1.0 A, Coil Turns =

250, along with two other ‘train’ scenarios (1.0 A, 500 Turns & 1.5 A, 500 Turns). The

force magnitude generated by the optimal design on the armature, along with the magnetic

flux density distribution obtained from the GA, QL, and A2C is shown in Figure 5.21.

The sequence of actions corresponding to the optimal geometry obtained for this exci-

tation using the A2C agent is shown in Figure 5.23. The optimal geometry obtained with

a 1 × 1 controller based on QL generates a higher force (19.02 N) than the one obtained

through an A2C controller (16.60 N). As mentioned earlier, the reason can be attributed to

the ability of a 1 × 1 controller to place a thin strip of iron close to the air gap, whereas

SeqTO-v2 limits such maneuverability. Since the pointer of the controller cannot move out

of the design space, the smallest width of material block is limited to 2 near the boundary

of the design space, in the SeqTO-v2 environment. This can be seen from Step: 12 to 15 in

Figure 5.23.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.7. RESULTS & DISCUSSION 129

Figure 5.21: Optimal geometry and B distribution for excitation scenario (1.0 A, 250 Turns) for
(a) GA (b) QL based on SeqTO-v1 (c) A2C based on SeqTO-v2.

Figure 5.22: Convergence results for 1.0 Amps, 250 Turns

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.7. RESULTS & DISCUSSION 130

Figure 5.23: Sequence for optimal geometry for excitation: 1.0 A, 250 Turns. Only the design
domain is shown. S: Step No., M: Material left, L: Lives left.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.7. RESULTS & DISCUSSION 131

C-core Excitation Scenario 2

Coil Current = 0.75A & Coil Turns = 500

This scenario is part of the ‘test ’ excitation cases i.e., interaction without learning, where

the A2C agent did not learn from an environment operating this excitation scenario during

the training phase. The GA algorithm and the QL-based agent were directly optimized using

the ‘test ’ case excitation values and results in the optimal design solution.

Although this ‘test ’ case was not part of the training for A2C, the agent still managed to

obtain a close to optimal (32.70N ; 6% lower) performance when compared to QL (34.80N)

and an improvement over the result obtained using GA (based on On/Off TO) (32.50N).

The agent’s performance improves on further tuning of the agent. This re-training is per-

formed as a post-processing step, where the agent is exposed to the excitation scenario (Coil

Current = 0.75 A & Coil Turns = 500) and it learns from this experience, i.e., interac-

tion with learning. After this re-training, the agent managed to attain a force magnitude

(34.60N) value similar to the QL-based SeqTO-v1 (1 × 1). Again, the main difference here

is the granularity level that can be achieved by the SeqTO-v2 as compared to SeqTO-v1 as

the QL managed to achieve the same results with less material and higher effective FE Calls.

The optimal results from GA, QL, A2C and A2C(re-train) is shown in Figure 5.24 (a), (b),

(c) (d) respectively, along with their respective magnetic flux density distribution.

The transitional change in the design space due to interaction between the agent and

the environment for the excitation scenario (Coil Current = 0.75 A, Coil Turns = 500) is

shown in Figure 5.25. Similar agent behaviour as seen earlier for excitation scenario of 1.0

A, 250 Turns in Section 5.7, as can be seen in Figure 5.25. The ability to obtain a close to

optimal geometry (only 6% lower compared to QL) without ever encountering the excitation

condition during the training phase, shows the ability of a function approximator-based A2C

agent to generalize to the unseen but relevant input. Further, the number of FEA evaluations

needed for re-tuning of the agent for this excitation scenario stands at 7500. After this re-

tuning, the force magnitude obtained from the optimal design reaches 34.60N (comparable

to QL with 34.80N). This results in significant computational cost reduction as compared

to other learning methodologies like QL (120, 000) and GA (160, 000) for obtaining similar

optimal designs, without a compromise on the performance. An observation that highlights

the capability of the agent’s maneuverability can be seen in Figure 5.25 (step: 13), where

the agent uses the boundary of the design domain to place 2 elements and follows up with

4 elements each in the next couple of steps (step: 14 -15). This is possible as the pointer

of the controller stays inside the design domain but part of the 3 × 3 block gets trimmed

out as it falls out of the design space. The agent uses this capability to save some material.

Later in the episode, it wastes four steps (Step: 23 to 26) trying to move out of the design

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.7. RESULTS & DISCUSSION 132

Figure 5.24: Optimal geometry and B distribution for excitation scenario (0.75 A, 500 Turns) for
(a) GA (b) QL based on SeqTO-v1 (c) A2C based on SeqTO-v2 (d) fine-tuned A2C agent.

domain and loses a life (L: 3 → 2). This places the controller back at the origin and now the

agent adds magnetic material where the design is severely affected by magnetic saturation.

The agent learns to exploit the MDP dynamics where it receives a penalty for moving out

of the domain, but the trade-off is being able to move back to the origin and deal with the

saturation in the region of material placed near the coil.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.7. RESULTS & DISCUSSION 133

Figure 5.25: Sequence for optimal geometry for excitation: 0.75 A, 500 Turns. S: Step No., M:
Material left, L: Lives left.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.7. RESULTS & DISCUSSION 134

Figure 5.26: Convergence results for 0.75 Amps, 500 Turns.

C-core Excitation Scenario 3

Coil Current = 1.5A

Coil Turns = 500

For Coil current = 1.5 A & Coil Turns = 500, it is observed that all the three algorithms

ended up with the core design that resembles the conventional C-core design geometry. Sig-

nificantly, for cases with an excitation of 500 Amp-Turns and beyond, the effect of saturation

is dominant, and based on the information present in the flux distribution and the excitation

level, the agent can form a policy to tackle the phenomenon of material non-linearity.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.7. RESULTS & DISCUSSION 135

Figure 5.27: Optimal geometry and B distribution for excitation scenario (1.5 A, 500 Turns) for
(a) GA (b) QL based on SeqTO-v1 (c) A2C based on SeqTO-v2.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.7. RESULTS & DISCUSSION 136

Figure 5.28: Sequence for optimal geometry for excitation: 1.5 A, 500 Turns. S: Step No., M:
Material left, L: Lives left.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.7. RESULTS & DISCUSSION 137

Figure 5.29: Convergence results for 1.5 Amps, 500 Turns.

Other C-core excitation scenarios

The analysis of other scenarios is similar to the three scenarios discussed earlier in this

section. For excitation scenarios of (1.75 A & 500 Turns) and (2.0 A & 500 Turns), there

is not much margin for topological change as compared to the conventional geometry of the

C-core (shown in Figure 5.20). For both these scenarios, the conventional geometry is one

of the solutions provided by the A2C algorithm, as can be seen in Figure 5.31 (b) and 5.30

(b) for 1.75 A and 2.0 A respectively. Based on the agent’s action, it can be concluded that

the optimal design does not deviate much from the conventional geometry for higher values

of excitation (750 Amp-Turns onwards). This is in agreement with the optimal solutions

obtained using other optimization algorithms (GA and QL).

The excitation scenario: 1.25 A & 500 Turns shows resemblance to 1.5 A & 500 Turns.

A comparison of optimal geometries from GA (On/Off), Tabular QL (SeqTO-v1) and A2C

(SeqTO-v2), is shown in Figure 5.32. In contrast, the agent shows a significant change in

topology for lower values of excitation as can be seen for the scenario: 0.25A & 500 Turns in

Figure 5.33. The reason being that the magnetic material placed near the coils is no longer

easily saturated and the agent can aggressively place more material near the airgap facing

the armature, forcing more flux out laterally.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.7. RESULTS & DISCUSSION 138

Figure 5.30: Optimal geometry and B distribution for excitation scenario (2.0 A, 500 Turns) for
(a) GA (b) QL based on SeqTO-v1 (c) A2C based on SeqTO-v2.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.7. RESULTS & DISCUSSION 139

Figure 5.31: Optimal geometry and B distribution for excitation scenario (1.75 A, 500 Turns) for
(a) GA (b) QL based on SeqTO-v1 (c) A2C based on SeqTO-v2.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.7. RESULTS & DISCUSSION 140

Figure 5.32: Optimal geometry and B distribution for excitation scenario (1.25 A, 500 Turns) for
(a) GA (b) QL based on SeqTO-v1 (c) A2C based on SeqTO-v2.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.7. RESULTS & DISCUSSION 141

Figure 5.33: Optimal geometry and B distribution for excitation scenario (0.25 A, 500 Turns) for
(a) GA (b) QL based on SeqTO-v1 (c) A2C based on SeqTO-v2.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.8. CONCLUSION 142

The probabilistic nature of A2C (or PG algorithms), as explained in Section 5.5 can be

seen by two optimal designs obtained for excitation of 1.75 A & 500 Turns in Figure 5.31

(b) and for 1.25 A & 500 Turns in Figure 5.32. An A2C based agent derives it’s action (a)

from a stochastic policy πθ(a|s), defined as the probability of an agent taking action ‘a’ in

any state ‘s’, and is expressed as

πθ(a|s) =
ef(s,a)∑
ai
ef(s,ai)

(5.19)

where the policy (π) has θ as its parameters and gives a probability distribution for selecting

an action ‘a’ over all the possible actions (ai) conditioned on the current state (s).

This is different for Q-Learning which follows a greedy policy, where the algorithm chooses

the same (high valued) action every time.

a∗ = arg max
a

Q(s, a) (5.20)

The different nature of deterministic and stochastic policy is the sole reason for multiple

optimal geometries obtained for scenarios: 1.25 A & 500 Turns and 1.75 A & 500 Turns.

5.8 Conclusion

It is verified through numerical optimization that the trained A2C agent acquired a pol-

icy to optimize the performance of the C-core actuator while strictly satisfying the volume

constraint. Compared with conventional optimization methods such as the evolutionary al-

gorithms, which result in high computational cost for iterative electromagnetic analyses for

generating optimal designs, a trained deep learning-based RL method is capable of yielding

feasible solutions without any time-consuming iterative analysis process. Although the time

required for training is long, the agent once trained requires a significantly lower computa-

tional cost compared to GA or Tabular QL for previously unseen excitation conditions, thus

showing that the trained agent is generalizable. This capability was demonstrated through

different excitation scenarios and the RL agent managed to achieve the optimal solution

in most of the training scenarios and close of optimal in the rest. These close to optimal

topologies (5-10 % lower performance than optimal) can be further improved upon using re-

trainings requiring very little computation cost. Alternatively, these sub-optimal solutions

can serve as a starting seed for a different optimization scheme. The inability of the agent to

reach the optimal structure can partially be explained due to the inflexibility of the SeqTO-

v2 methodology, where the methodology does not support placing a thin strip close to the

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

5.8. CONCLUSION 143

air gap, as QL can achieve with SeqTO-v1 (1 ×1). However, the number of EM simulations

(FE calls) needed to use SeqTO-v1 (1 × 1) will be simply too much to handle as function

approximators, such as neural networks, will require far more training data compared to a

deterministic tabular look-up table. An improved version of the SeqTO environment will be

explored in the future along with the applicability of other RL algorithms. Overall, this is a

notable display that the agent possesses generalizability over similar topology optimization

tasks.

Although the proposed methodology of Sequence-based TO and sequential decision mak-

ing using Deep Reinforcement learning algorithms is shown to be capable of providing “in-

stant” optimal or near-optimal solutions for an electromagnetic device, the proposed TO

technique and learning methodology can be easily extended to other fields of designing and

engineering where TO is used.

CHAPTER 5. INTELLIGENT AGENTS FOR TOPOLOGY OPTIMIZATION

Chapter 6

Conclusion & Future Work

6.1 Conclusion

This research aimed to explore the feasibility of modern statistical learning techniques for

aiding the design optimization and analysis of electric devices and machines. A number of

statistical learning methods, including supervised, bayesian and reinforcement learning have

been used in the process.

The first objective of the thesis was to use modern Deep Learning models to reduce the

time spent in analyzing field and performance maps for low-frequency electromagnetic devices

as compared to conventional high fidelity solvers based on first principles such as the Finite

Element method. The high computation demands of high fidelity FE solutions can limit the

effectiveness of these analyses and thus the ability to explore new design possibilities. As an

example, for estimating the efficiency map of a single motor drive topology, many operating

points need to be simulated using finite element analysis. Thus incorporating the whole

efficiency map into the design optimization process is an overwhelmingly time-consuming

task and may be impossible, depending on the availability of computational resources. For

specific applications in the field of computational electromagnetics, the first section of this

thesis (Chapter 2 & 3) focuses on designing deep learning strategies for computationally

inexpensive and accurate predictions of field distribution and performance maps of electric

machines. It is demonstrated that DL algorithms can serve as an ideal venue for fast and

precise solutions with sufficient training data. In the process, it was observed that this

approach faced the issue of non-reliability and extended time spent in generating data. At

times, creating massive datasets using Finite Elements simulations can be too expensive and

can take weeks and at times months. For handling the enormous requirements of big data,

an information transfer strategy between similar problems referred to as Transfer Learning

is also implemented. This is verified with application to two test cases - η map to pf map

144

6.2. FUTURE WORK 145

prediction of same motor topology and η map to η map knowledge transfer for different

motor topologies. Overall, a reduction of about 40-60% in overall data requirement was

experimentally observed for the two test cases. In scenarios where the NN is not sure about

the prediction, a study involving uncertainty analysis in the predictions of DNN is also

performed using Bayesian learning.

The other objective of this thesis involved design optimization, where the excessive time

spent in the optimization and manufacturability aspect of the optimized design is addressed.

A new TO method (SeqTO) was introduced, which inherently generates manufacturable

designs, free from checkerboard patterns, perforations or floating pieces of material and re-

quires significantly less computational resources (around 80% lower) as compared to using

the same optimization algorithm with the ON/OFF discrete method. The SeqTO environ-

ment also serves as the platform for exploring tree search-based heuristic algorithms such as

Monte Carlo Tree Search and TD-learning, which further reduces the computation burden by

about 5-15 %, compared to using a GA with SeqTO on the same design problem. Leveraging

the sequential nature of the controller offered by the SeqTO environment and the pattern

learning ability of a NN, a Reinforcement learning agent is also trained, which can generalize

to different design parameters, even when such design parameters were unseen during the

training phase. It is verified through numerical optimization that the trained agent reduces

the number of finite element analysis-based electromagnetic analyses significantly (about 10

times) when deployed for many excitation patterns compared to conventional optimization

methods such as the evolutionary algorithms.

Although all the proposed methodologies in this work are capable of providing “instant”

solutions for electromagnetic devices, they can be easily extended to other applications where

computer simulations play a prominent role in imitating physical laws across various engi-

neering domains.

Overall the main contributions of the thesis revolve around advancing the usage of high

fidelity analysis and designing techniques at an early stage of an electric machine develop-

ment cycle (V-cycle) as envisioned in Chapter 1 (Introduction) of this thesis. It is also aimed

to provide practical guidelines and recommendations for successfully deploying modern sta-

tistical methods in this field.

6.2 Future Work

A few promising avenues for future work are as follows:

1. The work presented in this thesis takes exploratory steps toward using modern statisti-

cal learning methodologies in the field. Generalizability is the key for all the techniques.

CHAPTER 6. CONCLUSION & FUTURE WORK

6.2. FUTURE WORK 146

The experiment should be set up such that it can be extended to other similar problems

with ease. One such approach for EM analysis can be directly solving the governing

partial differential equations (PDEs) using physics-informed deep learning methods.

Incorporating the prior knowledge of physical laws in the loss function and training

the NN in such a fashion should represent the solution of the PDE. Such an approach

is intended to be pursued in the future.

2. Data collection for training DL networks and FE-based performance evaluation for RL

agents is still computationally expensive.

(a) For Supervised Learning tasks, the concept of knowledge transfer is explored in

Chapter 3. Only two test cases were subjected to the analysis in this work to test

knowledge transfer. Future work that investigates different motor designs and

observes the reduction of simulation data needed for training as more knowledge

gets accumulated in a multi-task DL network could be fruitful.

(b) On the other hand, for RL based problems, it will be interesting to use multiple

independent agents which can interact with different instances of the environment

in parallel and thus explore an extensive part of the state-action space in much

less wall-clock time.

3. For TO, only single objective tasks were studied in this work. A multi-physics/multi-

objective TO problem can be set up using the techniques used in this work with minor

changes to the problem setup. Therefore, studying multi-physics and multi-objective

problems will be a possible fruitful research direction.

4. It is observed that although SeqTO-v2 significantly increased the generalizability and

reduced the computation burden associated with SeqTO-v1, it still has limitations in

terms of the granularity of the structure that is produced. Therefore, an improved

version of the SeqTO environment should be explored in the future, which can balance

the requirements of generalizability, computation load, and the necessary fineness of

the structure.

5. In this thesis, only two Deep RL algorithms were explored. However, other algo-

rithms and learning methodologies in the literature, such as PPO (Proximal Policy

Optimization Algorithms), SAC (Soft Actor-Critic), and curiosity-based learning, are

comparatively faster and can be more robust.

CHAPTER 6. CONCLUSION & FUTURE WORK

List of References

Abadi, Mart́ın et al. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. url: https://www.tensorflow.org/.

ABB motor sets world record in energy efficiency. url: https://new.abb.com/news/

detail/1789/ABB-motor-sets-world-record-in-energy-efficiency-saves-half-

a-million-dollars (visited on 06/20/2021).
Alger, Philip Langdon (1970). Induction machines: their behavior and uses. Gordon and

Breach.
Allaire, G (1997). “The homogenization method for topology and shape optimization”. In:

Topology optimization in structural mechanics. Springer, pp. 101–133.
Allaire, Grégoire et al. (2019). “The homogenization method for topology optimization of

structures: old and new”. In: Interdisciplinary Information Sciences 25.2, pp. 75–146.
Amrhein, Marco and Philip T Krein (2007). “Magnetic equivalent circuit modeling of induc-

tion machines design-oriented approach with extension to 3-D”. In: Electric Machines &
Drives Conference, 2007. IEMDC’07. IEEE International. Vol. 2. IEEE, pp. 1557–1563.

Arel, Itamar et al. (2010). “Reinforcement learning-based multi-agent system for network
traffic signal control”. In: IET Intelligent Transport Systems 4.2, pp. 128–135.

Asanuma, Jo, Shuhei Doi, and Hajime Igarashi (2020). “Transfer Learning Through Deep
Learning: Application to Topology Optimization of Electric Motor”. In: IEEE Transac-
tions on Magnetics 56.3, pp. 1–4.

Asghari, Babak and Venkata Dinavahi (2012). “Experimental validation of a geometrical
nonlinear permeance network based real-time induction machine model”. In: Power and
Energy Society General Meeting, 2012 IEEE. IEEE, pp. 1–15.

Atkinson, Robert D and Stephen J Ezell (2019). “The Manufacturing Evolution”. In:
Badrinarayanan, Vijay, Ankur Handa, and Roberto Cipolla (2015). “Segnet: A deep convo-

lutional encoder-decoder architecture for robust semantic pixel-wise labelling”. In: arXiv
preprint arXiv:1505.07293.

Badrinarayanan, Vijay, Alex Kendall, and Roberto Cipolla (2017). “Segnet: A deep convo-
lutional encoder-decoder architecture for image segmentation”. In: IEEE transactions on
pattern analysis and machine intelligence 39.12, pp. 2481–2495.

Baek, Jeihoon et al. (2014). “Optimal design of five-phase permanent magnet assisted syn-
chronous reluctance motor for low output torque ripple”. In: 2014 IEEE Energy Conver-
sion Congress and Exposition (ECCE). IEEE, pp. 2418–2424.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). “Neural machine transla-
tion by jointly learning to align and translate”. In: arXiv preprint arXiv:1409.0473.

147

https://www.tensorflow.org/
https://new.abb.com/news/detail/1789/ABB-motor-sets-world-record-in-energy-efficiency-saves-half-a-million-dollars
https://new.abb.com/news/detail/1789/ABB-motor-sets-world-record-in-energy-efficiency-saves-half-a-million-dollars
https://new.abb.com/news/detail/1789/ABB-motor-sets-world-record-in-energy-efficiency-saves-half-a-million-dollars

LIST OF REFERENCES 148

Banga, Saurabh et al. (2018). “3d topology optimization using convolutional neural net-
works”. In: arXiv preprint arXiv:1808.07440.

Barmada, Sami et al. (2020). “Deep Learning and Reduced Models for Fast Optimization in
Electromagnetics”. In: IEEE Transactions on Magnetics 56.3, pp. 1–4.

Bellman, Richard (1957). “A Markovian decision process”. In: Journal of mathematics and
mechanics, pp. 679–684.

Bendsøe, Martin P (1989). “Optimal shape design as a material distribution problem”. In:
Structural and multidisciplinary optimization 1.4, pp. 193–202.

Bendsøe, Martin Philip, Alejandro Dı́az, and Noboru Kikuchi (1993). “Topology and general-
ized layout optimization of elastic structures”. In: Topology design of structures. Springer,
pp. 159–205.

Bendsøe, Martin Philip and Noboru Kikuchi (1988). “Generating optimal topologies in struc-
tural design using a homogenization method”. In: Computer methods in applied mechanics
and engineering 71.2, pp. 197–224.

Bengio, Yoshua, Yann LeCun, et al. (2007). “Scaling learning algorithms towards AI”. In:
Large-scale kernel machines 34.5, pp. 1–41.

Bianchi, N and S Bolognani (1998). “Design optimisation of electric motors by genetic algo-
rithms”. In: IEE Proceedings-Electric Power Applications 145.5, pp. 475–483.

Bilgin, Berker et al. (2019). “Modeling and analysis of electric motors: state-of-the-art re-
view”. In: IEEE Transactions on Transportation Electrification 5.3, pp. 602–617.

B́ıró, Oszkár et al. (2011). “Multi-domain topology optimization with ant colony systems”.
In: COMPEL-The international journal for computation and mathematics in electrical
and electronic engineering.

Blundell, Charles et al. (2015). “Weight uncertainty in neural networks”. In: arXiv preprint
arXiv:1505.05424.

Bostanci, Emine et al. (2017). “Opportunities and challenges of switched reluctance motor
drives for electric propulsion: A comparative study”. In: IEEE transactions on trans-
portation electrification 3.1, pp. 58–75.

Bottauscio, O et al. Description of TEAM Problem: 32 A Test-Case for Validation of Mag-
netic Field Analysis with Vector Hysteresis. Tech. rep. url: www.cadema.polito.it/
team32/home.html.

Bouzidi, Ikhlas, Ahmed Masmoudi, and Nicola Bianchi (2015). “Electromagnetic/thermal
design procedure of an aerospace electric propeller”. In: IEEE Transactions on Industry
Applications 51.6, pp. 4364–4371.

Box, George (Feb. 2006). “Statistics for Experimenters: Design, Innovation, and Discovery
by George E. P. Box; J. Stuart Hunter; William G. Hunter”. In: 101, pp. 1720–1721.

Box, George EP (1979). “All models are wrong, but some are useful”. In: Robustness in
Statistics 202.1979, p. 549.

Bremicker, Michael et al. (1991). “Integrated topology and shape optimization in structural
design”. In: Journal of Structural Mechanics 19.4, pp. 551–587.

Bruce, Peter, Andrew Bruce, and Peter Gedeck (2020). Practical statistics for data scientists:
50+ essential concepts using R and Python. O’Reilly Media.

Brunton, Steven L and J Nathan Kutz (2019). Data-driven science and engineering: Machine
learning, dynamical systems, and control. Cambridge University Press.

LIST OF REFERENCES

www.cadema.polito.it/team32/home.html
www.cadema.polito.it/team32/home.html

LIST OF REFERENCES 149

Byun, Jin-Kyu, Joon-Ho Lee, and Il-Han Park (2004). “Node-based distribution of material
properties for topology optimization of electromagnetic devices”. In: IEEE transactions
on magnetics 40.2, pp. 1212–1215.

Byun, Jin-kyu, Il-han Park, and Song-yop Hahn (2002). “Topology optimization of elec-
trostatic actuator using design sensitivity”. In: IEEE Transactions on Magnetics 38.2,
pp. 1053–1056.

Campelo, F, J Ramirez, and H Igarashi (2010). A survey of topology optimization in electro-
magnetics: considerations and current trends.

Campelo, Felipe, Kota Watanabe, and Hajime Igarashi (2008a). “Topology optimization
with smoothness considerations”. In: International Journal of Applied Electromagnetics
and Mechanics 28.1, 2, pp. 187–192.

— (2008b). “Topology optimization with smoothness considerations”. In: International Jour-
nal of Applied Electromagnetics and Mechanics 28.1-2, pp. 187–192.

Carpenter, CJ (1968). “Magnetic equivalent circuits”. In: Proceedings of the Institution of
Electrical Engineers. Vol. 115. 10. IET, pp. 1503–1511.

Caruana, Rich, Steve Lawrence, and C Lee Giles (2001). “Overfitting in neural nets: Back-
propagation, conjugate gradient, and early stopping”. In: Advances in neural information
processing systems, pp. 402–408.

Chandrasekhar, A. and K. Suresh (2020). “TOuNN: Direct Topology Optimization using
Neural Networks”. In:

Choi, Jae Seok and Jeonghoon Yoo (2009). “Simultaneous structural topology optimization of
electromagnetic sources and ferromagnetic materials”. In: Computer Methods in Applied
Mechanics and Engineering 198.27-29, pp. 2111–2121.

Chu, Mengyu and Nils Thuerey (2017). “Data-driven synthesis of smoke flows with CNN-
based feature descriptors”. In: ACM Transactions on Graphics (TOG) 36.4, pp. 1–14.

Coop, Robert (2018). Robert Coop, Ph.D. — Head of AI and ML @ Stanley BD - ”Au-
dio Event Detection w/Deep Learning”. url: https://www.youtube.com/watch?v=
9X66iwEQSyI (visited on 06/10/2021).

Cox, HL (1958). Structures of minimum weight: the basic theory of design applied to the
beam under pure bending. ARC.

Deaton, Joshua D and Ramana V Grandhi (2014). “A survey of structural and multidisci-
plinary continuum topology optimization: post 2000”. In: Structural and Multidisciplinary
Optimization 49.1, pp. 1–38.

Delalleau, Olivier and Yoshua Bengio (2011). “Shallow vs. deep sum-product networks”. In:
Advances in Neural Information Processing Systems, pp. 666–674.

Deng, Changyu, Can Qin, and Wei Lu (2020). “Deep-Learning-Enabled Simulated Annealing
for Topology Optimization”. In: arXiv preprint arXiv:2002.01927.

Devlin, Jacob et al. (2018). “Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding”. In: arXiv preprint arXiv:1810.04805.

Dobbs, Michael W and Lewis P Felton (1969). “Optimization of truss geometry”. In: Journal
of the Structural Division 95.10, pp. 2105–2118.

Doi, Shuhei, Hidenori Sasaki, and Hajime Igarashi (2019). “Multi-objective topology opti-
mization of rotating machines using deep learning”. In: IEEE transactions on magnetics
55.6, pp. 1–5.

LIST OF REFERENCES

https://www.youtube.com/watch?v=9X66iwEQSyI
https://www.youtube.com/watch?v=9X66iwEQSyI

LIST OF REFERENCES 150

Dumoulin, Vincent and Francesco Visin (2016). “A guide to convolution arithmetic for deep
learning”. In: arXiv preprint arXiv:1603.07285.

Dupré, Luc et al. (2014). “Ant colony optimization for the topological design of interior per-
manent magnet (IPM) machines”. In: COMPEL: The International Journal for Compu-
tation and Mathematics in Electrical and Electronic Engineering.

Dyck, Derek N and David A Lowther (1996). “Automated design of magnetic devices by
optimizing material distribution”. In: IEEE Transactions on Magnetics 32.3, pp. 1188–
1193.

European Environment Agency (2015). “Evaluating 15 years of transport and environmental
policy integration”. In:

— (2016). “Monitoring CO2 emissions from new passenger cars and vans 2015”. In:
Faria, Cassio T et al. (2015). “Design Process of Advanced Reluctance Machines for Electric

Vehicle Applications: On Target Setting, Optimization of Different Reluctance Motors
Technologies and Assessment of the Most Promising Propulsion Technology for Electric
Vehicle Applications”. In: 2015 IEEE Vehicle Power and Propulsion Conference (VPPC).
IEEE, pp. 1–6.

FEA Software Market - Global Industry Analysis (2021). url: https://www.reportlinker.
com/p06104732/Finite-Element-Analysis-FEA-Software-Market-Global-Industry-

Analysis-Size-Share-Growth-Trends-and-Forecast.html?utm_source=GNW.
Friedlingstein, Pierre et al. (2019). “Global carbon budget 2019”. In: Earth System Science

Data 11.4, pp. 1783–1838.
Gal, Yarin and Zoubin Ghahramani (2016). “Dropout as a bayesian approximation: Rep-

resenting model uncertainty in deep learning”. In: international conference on machine
learning, pp. 1050–1059.

Garibaldi, Michele et al. (2019). “Free-form design of electrical machine rotor cores for pro-
duction using additive manufacturing”. In: Journal of Mechanical Design 141.7.

Géron, Aurélien (2019). Hands-on machine learning with Scikit-Learn, Keras, and Tensor-
Flow: Concepts, tools, and techniques to build intelligent systems. O’Reilly Media.

Ghorbanian, Vahid (2018). An HPC-based Data-driven Approach to System-level Design
Process for Integrated Motor-Drive Systems. McGill University (Canada).

Ghorbanian, Vahid and David A Lowther (2017). “A statistical solution to efficiently opti-
mize the design of an inverter-fed permanent-magnet motor”. In: IEEE Transactions on
Industry Applications 53.6, pp. 5315–5326.

Ghorbanian, Vahid, Armin Salimi, and David Alister Lowther (2017). “A computer-aided
design process for optimizing the size of inverter-fed permanent magnet motors”. In:
IEEE Transactions on Industrial Electronics 65.2, pp. 1819–1827.

Ghorbanian, Vahid et al. (2019). “An HPC-based data-driven process for design exploration
and optimization of motor drives”. In: 2019 IEEE International Electric Machines &
Drives Conference (IEMDC). IEEE, pp. 597–602.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning. MIT press.
Goodfellow, Ian et al. (2014). “Generative adversarial nets”. In: Advances in neural infor-

mation processing systems, pp. 2672–2680.
Goodfellow, Ian J, Jonathon Shlens, and Christian Szegedy (2014). “Explaining and har-

nessing adversarial examples”. In: arXiv preprint arXiv:1412.6572.

LIST OF REFERENCES

https://www.reportlinker.com/p06104732/Finite-Element-Analysis-FEA-Software-Market-Global-Industry-Analysis-Size-Share-Growth-Trends-and-Forecast.html?utm_source=GNW
https://www.reportlinker.com/p06104732/Finite-Element-Analysis-FEA-Software-Market-Global-Industry-Analysis-Size-Share-Growth-Trends-and-Forecast.html?utm_source=GNW
https://www.reportlinker.com/p06104732/Finite-Element-Analysis-FEA-Software-Market-Global-Industry-Analysis-Size-Share-Growth-Trends-and-Forecast.html?utm_source=GNW

LIST OF REFERENCES 151

Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton (2013). “Speech recognition
with deep recurrent neural networks”. In: 2013 IEEE international conference on acous-
tics, speech and signal processing. IEEE, pp. 6645–6649.

Gray, Peter (2011). Psychology. Worth Publishers.
Guanghui, SHI et al. (2020). “An aerospace bracket designed by thermo-elastic topology op-

timization and manufactured by additive manufacturing”. In: Chinese Journal of Aero-
nautics 33.4, pp. 1252–1259.

Guo, Nannan and Ming C Leu (2013). “Additive manufacturing: technology, applications
and research needs”. In: Frontiers of Mechanical Engineering 8.3, pp. 215–243.

Gyllensten, Freddy et al. (Jan. 2016). “Driving force: Rare-earth-free electric motors with ul-
trahigh efficiencies deliver sustainable and reliable solutions”. In: ABB Review 1, pp. 34–
40.

Haftka, Raphael T and Ramana V Grandhi (1986). “Structural shape optimization—a sur-
vey”. In: Computer methods in applied mechanics and engineering 57.1, pp. 91–106.

Hamdi, Essam S (1994). Design of small electrical machines. John Wiley & Sons, Inc.
Hameyer, Kay and Ronnie Belmans (1999). Numerical modelling and design of electrical

machines and devices. Vol. 1. WIT press.
Hasselt, Hado (2010). “Double Q-learning”. In: Advances in neural information processing

systems 23, pp. 2613–2621.
He, Kaiming et al. (2015). “Delving deep into rectifiers: Surpassing human-level performance

on imagenet classification”. In: Proceedings of the IEEE international conference on com-
puter vision, pp. 1026–1034.

— (2016). “Deep residual learning for image recognition”. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 770–778.

Hemp, William S (1958). “Theory of structural design”. In:
Henderson, Peter et al. (2018). “Deep reinforcement learning that matters”. In: Proceedings

of the AAAI Conference on Artificial Intelligence. Vol. 32. 1.
Hidaka, Yuki and Hajime Igarashi (2017). “Topology optimization of synchronous reluc-

tance motors considering localized magnetic degradation caused by punching”. In: IEEE
Transactions on Magnetics 53.6, pp. 1–4.

Hilpisch, Yves (2018). Python for finance: mastering data-driven finance. O’Reilly Media.
Hinton, Geoffrey E, Simon Osindero, and Yee-Whye Teh (2006). “A fast learning algorithm

for deep belief nets”. In: Neural computation 18.7, pp. 1527–1554.
Hornik, Kurt, Maxwell Stinchcombe, and Halbert White (1989). “Multilayer feedforward

networks are universal approximators”. In: Neural networks 2.5, pp. 359–366.
Hur, Jin et al. (1997). “Analysis of PMLSM using three dimensional equivalent magnetic

circuit network method”. In: IEEE Transactions on Magnetics 33.5, pp. 4143–4145.
Ibrahim, Issah et al. (2020). “Surrogate-Based Acoustic Noise Prediction of Electric Motors”.

In: IEEE Transactions on Magnetics 56.2, pp. 1–4.
IEEE (1985). “Report of Large Motor Reliability Survey of Industrial and Commercial In-

stallations, Part I”. In: IEEE Transactions on Industry Applications IA-21.4, pp. 853–
864. doi: 10.1109/TIA.1985.349532.

Inventory of US Greenhouse Gas Emissions and Sinks: 1990–2016 (2018). Tech. rep. EPA
430-R-18-003.

LIST OF REFERENCES

https://doi.org/10.1109/TIA.1985.349532

LIST OF REFERENCES 152

Jankovics, Davin and Ahmad Barari (2019). “Customization of automotive structural compo-
nents using additive manufacturing and topology optimization”. In: IFAC-PapersOnLine
52.10, pp. 212–217.

Jewett, Jackson L and Josephine V Carstensen (2019). “Topology-optimized design, con-
struction and experimental evaluation of concrete beams”. In: Automation in Construc-
tion 102, pp. 59–67.

Jin, Jian-Ming (2015). The finite element method in electromagnetics. John Wiley & Sons.
Jin, Junqi et al. (2018). “Real-time bidding with multi-agent reinforcement learning in display

advertising”. In: Proceedings of the 27th ACM International Conference on Information
and Knowledge Management, pp. 2193–2201.

Kendall, Alex, Vijay Badrinarayanan, and Roberto Cipolla (2015). “Bayesian segnet: Model
uncertainty in deep convolutional encoder-decoder architectures for scene understand-
ing”. In: arXiv preprint arXiv:1511.02680.

Khan, Arbaaz, Vahid Ghorbanian, and David Lowther (2019). “Deep learning for magnetic
field estimation”. In: IEEE Transactions on Magnetics 55.6, pp. 1–4.

Khan, Arbaaz and David A Lowther (2020). “Machine Learning applied to the Design and
Analysis of Low Frequency Electromagnetic Devices”. In: 2020 21st International Sym-
posium on Electrical Apparatus & Technologies (SIELA). IEEE, pp. 1–4.

Khan, Arbaaz, Chetan Midha, and David Alister Lowther (2020). “Sequence-Based Envi-
ronment for Topology Optimization”. In: IEEE Transactions on Magnetics 56.3, pp. 1–
4.

Khan, Arbaaz et al. (2020a). “Efficiency Map Prediction of Motor Drives Using Deep Learn-
ing”. In: IEEE Transactions on Magnetics 56.3, pp. 1–4.

— (2020b). “Transfer Learning for Efficiency Map Prediction”. In: 2020 IEEE 19th Biennial
Conference on Electromagnetic Field Computation (CEFC), pp. 1–4. doi: 10.1109/

CEFC46938.2020.9451362.
Kim, JK et al. (2004). “Static characteristics of linear BLDC motor using equivalent magnetic

circuit and finite element method”. In: IEEE transactions on magnetics 40.2, pp. 742–
745.

Kim, Youn Hyun et al. (2002). “Analysis of hybrid stepping motor using 3D equivalent
magnetic circuit network method based on trapezoidal element”. In: Journal of applied
physics 91.10, pp. 8311–8313.

Kim, Young Sun and Il Han Park (2010). “Topology optimization of rotor in synchronous
reluctance motor using level set method and shape design sensitivity”. In: IEEE Trans-
actions on Applied Superconductivity 20.3, pp. 1093–1096.

Kißkalt, Dominik et al. (2018). “Towards a data-driven process monitoring for machining
operations using the example of electric drive production”. In: 2018 8th International
electric drives production conference (EDPC). IEEE, pp. 1–6.

Knüsel, Benedikt and Christoph Baumberger (2020). “Understanding climate phenomena
with data-driven models”. In: Studies in History and Philosophy of Science Part A 84,
pp. 46–56.

Kober, Jens, J Andrew Bagnell, and Jan Peters (2013). “Reinforcement learning in robotics:
A survey”. In: The International Journal of Robotics Research 32.11, pp. 1238–1274.

Kober, T et al. (2020). “Global energy perspectives to 2060–WEC’s World Energy Scenarios
2019”. In: Energy Strategy Reviews 31, p. 100523.

LIST OF REFERENCES

https://doi.org/10.1109/CEFC46938.2020.9451362
https://doi.org/10.1109/CEFC46938.2020.9451362

LIST OF REFERENCES 153

Kolehmainen, Jere (2010). “Synchronous reluctance motor with form blocked rotor”. In:
IEEE Transactions on Energy Conversion 25.2, pp. 450–456.

Krause, Paul et al. (2013). Analysis of electric machinery and drive systems. Vol. 75. John
Wiley & Sons.

Krishnan, R, R Arumugan, and James F Lindsay (1988). “Design procedure for switched-
reluctance motors”. In: IEEE Transactions on Industry Applications 24.3, pp. 456–461.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet classification
with deep convolutional neural networks”. In: Advances in neural information processing
systems, pp. 1097–1105.

Krog, Lars, Alastair Tucker, Gerrit Rollema, et al. (2002). “Application of topology, sizing
and shape optimization methods to optimal design of aircraft components”. In: Proc. 3rd
Altair UK HyperWorks users conference.

LeCun, Yann et al. (1998). “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11, pp. 2278–2324.

Lee, Jangwon and Semyung Wang (2012). “Topological shape optimization of permanent
magnet in voice coil motor using level set method”. In: IEEE transactions on magnetics
48.2, pp. 931–934.

Lei, Gang et al. (2017). “A review of design optimization methods for electrical machines”.
In: Energies 10.12, p. 1962.

Lei, Xin et al. (2019). “Machine learning-driven real-time topology optimization under mov-
ing morphable component-based framework”. In: Journal of Applied Mechanics 86.1.

Leplat, PM et al. (1996). “Comparison between finite element method and magnetic equiva-
lent scheme to model an induction machine”. In: COMPEL-The international journal for
computation and mathematics in electrical and electronic engineering 15.4, pp. 82–87.

Levine, Sergey et al. (2016). “End-to-end training of deep visuomotor policies”. In: The
Journal of Machine Learning Research 17.1, pp. 1334–1373.

Li, Min, Frederico G Guimarães, and David A Lowther (2013). “A multiobjective approach
for designing the rotor of brushless motors”. In: IEEE transactions on magnetics 49.5,
pp. 2279–2282.

Li, Yilun (2019). “Numerical methodologies for topology optimization of electromagnetic
devices”. PhD thesis. Sorbonne université.

Lim, Sunghoon et al. (2011). “Topology optimization of a magnetic actuator based on a level
set and phase-field approach”. In: IEEE transactions on magnetics 47.5, pp. 1318–1321.

Lin, Kaixiang et al. (2018). “Efficient Collaborative Multi-Agent Deep Reinforcement Learn-
ing for Large-Scale Fleet Management”. In: arXiv preprint arXiv:1802.06444.

Liu, Cheng-Tsung and Yi-Hsuan Chiang (2006). “Closed-loop electromagnetic forces cal-
culations and controls of a noncontacting industrial steel plate conveyance system”. In:
IEEE transactions on magnetics 42.4, pp. 1311–1314.

Liu, Z, Osama A Mohammed, and Shuo Liu (2009). “Equivalent hardware representation of
PM synchronous motors from the physics-based phase variable model obtained through
FE computation”. In: IEEE Transactions on Magnetics 45.3, pp. 1450–1453.

MAGNET v2020.2. Mentor Infolytica, Montreal QC Canada.
Mahmoudi, Amin et al. (2015). “Efficiency maps of electrical machines”. In: 2015 IEEE

Energy Conversion Congress and Exposition (ECCE). IEEE, pp. 2791–2799.

LIST OF REFERENCES

LIST OF REFERENCES 154

Mao, Hongzi et al. (2016). “Resource management with deep reinforcement learning”. In:
Proceedings of the 15th ACM workshop on hot topics in networks, pp. 50–56.

Markov, Andrěı A and NM Nagornyi (1951). “Teoriya algorifmov (Theory of algorithms)”.
In: Trudy MIAN SSSR 38, pp. 176–189.

MATLAB (2018). R2018b (Version 9.5). The MathWorks, Inc.
Maxwell, James Clerk (1861). “Xxv. on physical lines of force: Part i.–the theory of molec-

ular vortices applied to magnetic phenomena”. In: The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science 21.139, pp. 161–175.

Mayr, Andreas et al. (2018). “Electric motor production 4.0–application potentials of indus-
try 4.0 technologies in the manufacturing of electric motors”. In: 2018 8th International
Electric Drives Production Conference (EDPC). IEEE, pp. 1–13.

Mazur, James E (2015). Learning and Behavior: Instructor’s Review Copy. Psychology Press.
McCoy, Gilbert A and John G Douglass (2014). Premium efficiency motor selection and

application guide–a handbook for industry. Tech. rep. Washington State University Energy
Program.

McCulloch, Warren S and Walter Pitts (1943). “A logical calculus of the ideas immanent in
nervous activity”. In: The bulletin of mathematical biophysics 5.4, pp. 115–133.

McKay, Michael D, Richard J Beckman, and William J Conover (2000). “A comparison of
three methods for selecting values of input variables in the analysis of output from a
computer code”. In: Technometrics 42.1, pp. 55–61.

Metropolis, N. The Beginning of Monte Carlo Method. Tech. rep.
Michell, A.G (1904). “The limits of economy of material in frame-structures”. In: The London

Edinburgh, and Dublin Philos Mag and J Sci 8.47, pp. 589–597.
Midha, Chetan (2018). “A Study of Topology Optimization Methods for the Design of Elec-

tromagnetic Devices”. MA thesis. ECE Dept, McGill University.
Midha, Chetan et al. (2019). “Selection of spatial filters for ON/OFF based topology op-

timization of a C-core electromagnetic actuator”. In: IEEE Transactions on Magnetics
55.10, pp. 1–4.

Mnih, Volodymyr et al. (2013). “Playing atari with deep reinforcement learning”. In: arXiv
preprint arXiv:1312.5602.

Mnih, Volodymyr et al. (2016). “Asynchronous methods for deep reinforcement learning”.
In: International conference on machine learning, pp. 1928–1937.

Moallem, M and GE Dawson (1998). “An improved magnetic equivalent circuit method
for predicting the characteristics of highly saturated electromagnetic devices”. In: IEEE
Transactions on magnetics 34.5, pp. 3632–3635.

Mohammadi, Mohammad Hossain, Vahid Ghorbanian, and David Lowther (2019). “A data-
driven approach for design knowledge extraction of synchronous reluctance machines
using multi-physical analysis”. In: IEEE Transactions on Industry Applications 55.4,
pp. 3707–3715.

Mohammadi, Mohammad Hossain and David Alister Lowther (2017). “A computational
study of efficiency map calculation for synchronous AC motor drives including cross-
coupling and saturation effects”. In: IEEE Transactions on Magnetics 53.6, pp. 1–4.

Morgan, HD et al. (2014). “GE Jet engine bracket challenge: a case study in sustainable
design”. In: Sustainable design and manufacturing, pp. 95–107.

LIST OF REFERENCES

LIST OF REFERENCES 155

Mou, Lili et al. (2016). “How transferable are neural networks in nlp applications?” In: arXiv
preprint arXiv:1603.06111.

Mousavi-Aghdam, Seyed Reza et al. (2015). “Design and analysis of a novel high-torque
stator-segmented SRM”. In: IEEE Transactions on Industrial Electronics 63.3, pp. 1458–
1466.

Murakami, Hiroshi et al. (1999). “The performance comparison of SPMSM, IPMSM and
SynRM in use as air-conditioning compressor”. In: Conference Record of the 1999 IEEE
Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No. 99CH36370).
Vol. 2. IEEE, pp. 840–845.

Nicolaescu, Marius-Andrei (2012). “Rotary electrical motors used in medical industry rele-
vant design considerations and actual advances”. In: 2012 International Conference and
Exposition on Electrical and Power Engineering. IEEE, pp. 664–667.

Nie, Zhenguo et al. (2020). “TopologyGAN: Topology Optimization Using Generative Ad-
versarial Networks Based on Physical Fields Over the Initial Domain”. In: arXiv preprint
arXiv:2003.04685.

Okamoto, Yoshifumi, Koji Akiyama, and Norio Takahashi (2006). “3-D topology optimiza-
tion of single-pole-type head by using design sensitivity analysis”. In: IEEE Transactions
on Magnetics 42.4, pp. 1087–1090.

Okamoto, Yoshifumi and Norio Takahashi (2006). “Investigation of topology optimization
of magnetic circuit using density method”. In: Electrical Engineering in Japan 155.2,
pp. 53–63.

Okamoto, Yoshifumi et al. (2015). “Material-density-based topology optimization with mag-
netic nonlinearity by means of stabilized sequential linear programming: SLPSTAB”. In:
IEEE Transactions on Magnetics 51.3, pp. 1–4.

Osher, Stanley and James A Sethian (1988). “Fronts propagating with curvature-dependent
speed: Algorithms based on Hamilton-Jacobi formulations”. In: Journal of computational
physics 79.1, pp. 12–49.

Ostović, V (1987). “Magnetic equivalent circuit presentation of electric machines”. In: ELEC-
TRIC MACHINES AND ELECTROMECHANICS 12.6, pp. 407–432.

Ostovic, Vlado (2012). Dynamics of saturated electric machines. Springer Science & Business
Media.

Pan, Sinno Jialin and Qiang Yang (2009). “A survey on transfer learning”. In: IEEE Trans-
actions on knowledge and data engineering 22.10, pp. 1345–1359.

“Paris agreement” (2015). In: Report of the Conference of the Parties to the United Na-
tions Framework Convention on Climate Change (21st Session, 2015: Paris). Retrived
December. Vol. 4. HeinOnline, p. 2017.

Park, Sang-In and Seungjae Min (2009a). “Magnetic actuator design for maximizing force
using level set based topology optimization”. In: IEEE transactions on magnetics 45.5,
pp. 2336–2339.

— (2009b). “Magnetic actuator design for maximizing force using level set based topology
optimization”. In: IEEE transactions on magnetics 45.5, pp. 2336–2339.

Park, Sang-in et al. (2008). “Magnetic actuator design using level set based topology opti-
mization”. In: IEEE Transactions on magnetics 44.11, pp. 4037–4040.

LIST OF REFERENCES

LIST OF REFERENCES 156

Park, Soonok and Jeonghoon Yoo (2012). “Structural optimization of a multi-physics prob-
lem considering thermal and magnetic effects”. In: IEEE transactions on magnetics 48.11,
pp. 3883–3886.

Paszke, Adam et al. (2017). “Automatic differentiation in PyTorch”. In:
Prager, William and John E Taylor (1968). “Problems of optimal structural design”. In:
Radun, Arthur (2000). “Analytically computing the flux linked by a switched reluctance mo-

tor phase when the stator and rotor poles overlap”. In: IEEE Transactions on magnetics
36.4, pp. 1996–2003.

Rahman, Tanvir et al. (2017). “Comparison of fractional-slot concentrated winding and PM-
assisted synchronous reluctance motors for class IV electric vehicles”. In: 2017 IEEE
International Electric Machines and Drives Conference (IEMDC). IEEE, pp. 1–7.

Ray, WF et al. (1984). “Switched reluctance motor drives for rail traction: a second view”.
In: IEE Proceedings B (Electric Power Applications). Vol. 131. 5. IET, pp. 220–225.

Reddy, Patel B et al. (2012). “Comparison of interior and surface PM machines equipped
with fractional-slot concentrated windings for hybrid traction applications”. In: IEEE
Transactions on Energy Conversion 27.3, pp. 593–602.

Rivera, Christian A et al. (2017). “A Knowledge Based System architecture to manage and
automate the electrical machine design process”. In: 2017 IEEE International Work-
shop of Electronics, Control, Measurement, Signals and their Application to Mechatronics
(ECMSM). IEEE, pp. 1–6.

Rosu, Marius et al. (2017). Multiphysics simulation by design for electrical machines, power
electronics and drives. John Wiley & Sons.

Rozvany, George IN, Ming Zhou, and Torben Birker (1992). “Generalized shape optimization
without homogenization”. In: Structural and Multidisciplinary Optimization 4.3, pp. 250–
252.

Rozvany, GIN and Ming Zhou (1991). “The COC algorithm, part I: cross-section optimiza-
tion or sizing”. In: Computer Methods in Applied Mechanics and Engineering 89.1-3,
pp. 281–308.

Salimi, Armin (2018). “Computer-aided design of electrical machines: the role of robustness
and application of statistical analysis techniques in multi-objective design optimization”.
PhD thesis. McGill University Libraries.

Salon, Sheppard Joel (1995). Finite element analysis of electrical machines. Vol. 101. Kluwer
academic publishers Boston USA.

Sarcar, MMM, K Mallikarjuna Rao, and K Lalit Narayan (2008). Computer aided design
and manufacturing. PHI Learning Pvt. Ltd.

Saruwatari, M et al. (2016). “Design study of 15-MW fully superconducting generators for
offshore wind turbine”. In: IEEE transactions on applied superconductivity 26.4, pp. 1–5.

Sasaki, Hidenori and Hajime Igarashi (2019). “Topology optimization accelerated by deep
learning”. In: IEEE Transactions on Magnetics 55.6, pp. 1–5.

Sato, Takahiro, Kota Watanabe, and Hajime Igarashi (2014). “A modified immune algorithm
with spatial filtering for multiobjective topology optimisation of electromagnetic devices”.
In: COMPEL: The International Journal for Computation and Mathematics in Electrical
and Electronic Engineering 33.3, pp. 821–833.

Schmidhuber, Jürgen (2015). “Deep learning in neural networks: An overview”. In: Neural
networks 61, pp. 85–117.

LIST OF REFERENCES

LIST OF REFERENCES 157

Senior, Andrew W et al. (2020). “Improved protein structure prediction using potentials
from deep learning”. In: Nature 577.7792, pp. 706–710.

Sharafi, Armin (2013). “Knowledge discovery in databases”. In: Knowledge Discovery in
Databases. Springer, pp. 51–108.

Sheikh-Ghalavand, B, S Vaez-Zadeh, and A Hassanpour Isfahani (2009). “An improved
magnetic equivalent circuit model for iron-core linear permanent-magnet synchronous
motors”. In: IEEE Transactions on Magnetics 46.1, pp. 112–120.

Sheikman, Boris Leonid, Dwayne Andrew Folden, and Samuel Thomas Walter Francis (2014).
Methods and systems for monitoring stator winding vibration. US Patent 8,812,254.

Sigmund, O and J Petersson (1998). “Numerical instabilities in topology optimization: A
survey on procedures dealing with checkerboards, mesh-dependencies and local minima”.
In: Structural optimization 16.1, pp. 68–75. issn: 1615-1488. doi: 10.1007/BF01214002.
url: https://doi.org/10.1007/BF01214002.

Sigmund, Ole (2001). “Design of multiphysics actuators using topology optimization–Part
I: One-material structures”. In: Computer methods in applied mechanics and engineering
190.49-50, pp. 6577–6604.

Silva, Rodrigo (2018a). “Surrogate Problem Evaluation and Selection for Optimization with
Expensive Function Evaluations”.

Silva, Rodrigo Cesar Pedrosa (2018b). “Surrogate problem evaluation and selection for opti-
mization with expensive function evaluations”. PhD thesis. McGill University Libraries.

Silva, Rodrigo César Pedrosa et al. (2017a). “Multiple operating points based optimization:
Application to fractional slot concentrated winding electric motors”. In: IEEE Transac-
tions on Industrial Electronics 65.2, pp. 1719–1727.

Silva, Rodrigo CP et al. (2017b). “Surrogate-based MOEA/D for electric motor design with
scarce function evaluations”. In: IEEE Transactions on Magnetics 53.6, pp. 1–4.

Silver, David et al. (2016). “Mastering the game of Go with deep neural networks and tree
search”. In: nature 529.7587, pp. 484–489.

Silver, David et al. (2017). “Mastering the game of go without human knowledge”. In: nature
550.7676, pp. 354–359.

Silvester, Peter P and Ronald L Ferrari (1996). Finite elements for electrical engineers.
Cambridge university press.

Simcenter MotorSolve. url: http://www.infolytica.com/.
Simonyan, Karen and Andrew Zisserman (2014). “Very deep convolutional networks for

large-scale image recognition”. In: arXiv preprint arXiv:1409.1556.
Singh, Satinder P and Richard S Sutton (1996). “Reinforcement learning with replacing

eligibility traces”. In: Machine learning 22.1-3, pp. 123–158.
Sivak, Michael and Brandon Schoettle (2018). “Relative Costs of Driving Electric and Gaso-

line Vehicles in the Individual US States”. In:
Sosnovik, Ivan and Ivan Oseledets (2019). “Neural networks for topology optimization”. In:

Russian Journal of Numerical Analysis and Mathematical Modelling 34.4, pp. 215–223.
Srivastava, Nitish et al. (2014). “Dropout: a simple way to prevent neural networks from

overfitting”. In: The journal of machine learning research 15.1, pp. 1929–1958.
Sudhoff, Scott D et al. (2007). “Magnetic equivalent circuit modeling of induction motors”.

In: IEEE Transactions on Energy Conversion 22.2, pp. 259–270.

LIST OF REFERENCES

https://doi.org/10.1007/BF01214002
https://doi.org/10.1007/BF01214002
http://www.infolytica.com/

LIST OF REFERENCES 158

Sutton, Richard S (1988). “Learning to predict by the methods of temporal differences”. In:
Machine learning 3.1, pp. 9–44.

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning: An introduction.
MIT press.

Tang, Wei et al. (2017). “Study on a Poisson’s equation solver based on deep learning tech-
nique”. In: 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium
(EDAPS). IEEE, pp. 1–3.

Tavana, Nariman Roshandel and Venkata Dinavahi (2016). “Real-time nonlinear magnetic
equivalent circuit model of induction machine on FPGA for hardware-in-the-loop simu-
lation”. In: IEEE Transactions on Energy Conversion 31.2, pp. 520–530.

The MathWorks, Inc. (2017). Global Optimization Toolbox User’s Guide. https://nl.

mathworks.com/help/pdf_doc/gads/gads_tb.pdf.
Theano Development Team (May 2016). “Theano: A Python framework for fast computation

of mathematical expressions”. In: arXiv e-prints abs/1605.02688. url: http://arxiv.
org/abs/1605.02688.

Thorndike, Edward L (1898). “Animal intelligence: an experimental study of the associative
processes in animals.” In: The Psychological Review: Monograph Supplements 2.4, p. i.

Thorndike, Edward Lee (1913). The psychology of learning. Vol. 2. Teachers College, Columbia
University.

Tompson, Jonathan et al. (2017). “Accelerating eulerian fluid simulation with convolutional
networks”. In: International Conference on Machine Learning. PMLR, pp. 3424–3433.

Tüchsen, Johann et al. (2018). “Data driven design selection and generation-an industrial
case study on electric motors”. In: DS 92: Proceedings of the DESIGN 2018 15th Inter-
national Design Conference, pp. 1709–1720.

Turing, AM (1950). “Mind”. In: Mind 59.236, pp. 433–460.
Uddin, Wasi and Yilmaz Sozer (2017). “Analytical modeling of mutually coupled switched

reluctance machines under saturation based on design geometry”. In: IEEE Transactions
on Industry Applications 53.5, pp. 4431–4440.

Um, Kiwon, Xiangyu Hu, and Nils Thuerey (2018). “Liquid splash modeling with neural
networks”. In: Computer Graphics Forum. Vol. 37. 8. Wiley Online Library, pp. 171–182.

“UNFCCC, Adoption of the Paris agreement. COP” (2015). In: 25th session Paris 30.
Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in neural information

processing systems 30, pp. 5998–6008.
Waide, Paul and Conrad U Brunner (2011). “Energy-efficiency policy opportunities for elec-

tric motor-driven systems”. In:
Wang, Bofan et al. (2016). “A neural network based surrogate model for predicting noise

in synchronous reluctance motors”. In: 2016 IEEE Conference on Electromagnetic Field
Computation (CEFC). IEEE, pp. 1–1.

Wang, Liwei, Juri Jatskevich, and Hermann W Dommel (2007). “Re-examination of syn-
chronous machine modeling techniques for electromagnetic transient simulations”. In:
IEEE Transactions on Power Systems 22.3, pp. 1221–1230.

Wang, S and J Kang (2002). “Topology optimization of nonlinear magnetostatics”. In: IEEE
Transactions on Magnetics 38.2, pp. 1029–1032.

LIST OF REFERENCES

https://nl.mathworks.com/help/pdf_doc/gads/gads_tb.pdf
https://nl.mathworks.com/help/pdf_doc/gads/gads_tb.pdf
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688

LIST OF REFERENCES 159

Wang, Semyung, Seungkyu Park, and Jenam Kang (2004). “Multi-domain topology opti-
mization of electromagnetic systems”. In: COMPEL-The international journal for com-
putation and mathematics in electrical and electronic engineering.

Watkins, Christopher JCH and Peter Dayan (1992). “Q-learning”. In: Machine learning 8.3-
4, pp. 279–292.

Watthewaduge, Gayan et al. (2020). “Electromagnetic Modeling Techniques for Switched
Reluctance Machines: State-of-the-Art Review”. In: IEEE Open Journal of the Industrial
Electronics Society 1, pp. 218–234.

Wlas, Miroslaw, Zbigniew Krzeminski, and Hamid A Toliyat (2008). “Neural-network-based
parameter estimations of induction motors”. In: IEEE Transactions on Industrial Elec-
tronics 55.4, pp. 1783–1794.

World Energy Outlook 2019 – Analysis - IEA. url: https://www.iea.org/reports/world-
energy-outlook-2019 (visited on 06/20/2021).

Yang, Zhi et al. (2015). “Comparative study of interior permanent magnet, induction, and
switched reluctance motor drives for EV and HEV applications”. In: IEEE Transactions
on Transportation Electrification 1.3, pp. 245–254.

Yilmaz, Murat and Philip T Krein (2008). “Capabilities of finite element analysis and mag-
netic equivalent circuits for electrical machine analysis and design”. In: 2008 IEEE Power
Electronics Specialists Conference. IEEE, pp. 4027–4033.

Yoo, J and H-J Soh (2005). “An optimal design of magnetic actuators using topology
optimization and the response surface method”. In: Microsystem Technologies 11.12,
pp. 1252–1261.

Yoo, Jeonghoon, Noboru Kikuchi, and John L Volakis (2000). “Structural optimization in
magnetic devices by the homogenization design method”. In: IEEE Transactions on Mag-
netics 36.3, pp. 574–580.

Yu, Yonggyun et al. (2019). “Deep learning for determining a near-optimal topological design
without any iteration”. In: Structural and Multidisciplinary Optimization 59.3, pp. 787–
799.

Zhang, Dongxia, Xiaoqing Han, and Chunyu Deng (2018). “Review on the research and
practice of deep learning and reinforcement learning in smart grids”. In: CSEE Journal
of Power and Energy Systems 4.3, pp. 362–370.

Zhang, Yiquan et al. (2019). “A deep Convolutional Neural Network for topology optimiza-
tion with strong generalization ability”. In: arXiv preprint arXiv:1901.07761.

Zhang, Yuejin et al. (2006). “A finite element–analytical method for electromagnetic field
analysis of electric machines with free rotation”. In: IEEE transactions on magnetics
42.10, pp. 3392–3394.

Zhao, SW et al. (2011). “Survey of modeling methods for flux linkage of switched reluc-
tance motor”. In: 2011 4th International Conference on Power Electronics Systems and
Applications. IEEE, pp. 1–4.

Zhu, Ji-Hong, Wei-Hong Zhang, and Liang Xia (2016). “Topology optimization in aircraft
and aerospace structures design”. In: Archives of Computational Methods in Engineering
23.4, pp. 595–622.

Zhu, Jihong et al. (2021). “A review of topology optimization for additive manufacturing:
Status and challenges”. In: Chinese Journal of Aeronautics 34.1, pp. 91–110. issn: 1000-

LIST OF REFERENCES

https://www.iea.org/reports/world-energy-outlook-2019
https://www.iea.org/reports/world-energy-outlook-2019

LIST OF REFERENCES 160

9361. doi: https://doi.org/10.1016/j.cja.2020.09.020. url: https://www.
sciencedirect.com/science/article/pii/S1000936120304520.

LIST OF REFERENCES

https://doi.org/https://doi.org/10.1016/j.cja.2020.09.020
https://www.sciencedirect.com/science/article/pii/S1000936120304520
https://www.sciencedirect.com/science/article/pii/S1000936120304520

	Introduction
	Motivation
	Overview of Thesis Contribution
	Application of Deep Learning for Electric Machine Performance Analysis
	Surrogate Model for Performance Maps
	Topology Optimization

	Challenges

	Magnetic Field Prediction
	Introduction
	Physics-based Modeling
	Finite Element Methods
	Magnetic Equivalent Circuits
	Comparison between MEC & FEA
	Need for an Improved Surrogate Model

	Machine Learning
	Data Collection
	Coil
	Transformer
	IPM Motor

	Neural Networks
	Convolutional Neural Networks
	Architecture of the CNN based model
	Working of the DL model

	Results & Performance
	Uncertainty Prediction
	Uncertainty Maps
	Theory

	Bayesian Network - Results
	Conclusion

	Performance Map Prediction
	Introduction
	Literature survey
	Data Collection
	Neural Networks
	Modular network approach
	End-to-end network approach

	Results of Supervised Learning
	Modular network approach
	End-to-end network approach

	Challenges with Supervised Learning
	Transfer Learning Methodology
	Dataset Generation
	Problem Definition of Transfer Learning
	Knowledge Transfer Procedure

	Results of Transfer Learning
	Internal Knowledge Transfer
	External Knowledge Transfer
	Data Requirements

	Conclusion

	Sequence based Topology Optimization
	Introduction
	Topology Optimization
	Design Optimization Methodologies
	Optimization Algorithms

	Literature Survey
	Popular techniques of TO
	Homogenization method
	Density method for TO
	Boundary based TO
	Discrete Methods
	Improvement to ON/OFF TO methodology

	Sequence based controller
	The Operation of the Controller

	Topology Optimization with SeqTO-v1
	Genetic Algorithm
	Tree Search Algorithms

	TD Learning
	Markov Decision Process
	Value functions
	Policy function

	C-core - Topology Optimization Results
	GA with SeqTO-v1
	C-core: Results of TD-learning

	Synchronous Reluctance Motor
	SynRM - Topology Optimization
	GA Results with SeqTO-v1
	SynRM - TD-Learning results

	Comparison between ON/OFF & SeqTO-v1
	Conclusion

	Intelligent Agents for Topology Optimization
	Introduction
	Literature survey
	Application of ML algorithms in TO
	Addressing the Disadvantages of Supervised Learning in TO

	Setting up Deep RL
	Advanced Function Approximators
	Objective of the RL Task
	Experience Replay
	Deep Q-learning
	Results of Q-Learning

	Modifications to SeqTo-v1 environment
	Policy Gradient
	Improvement to Policy Gradient

	Experiment Setup - A2C
	Results & Discussion
	Conclusion

	Conclusion & Future Work
	Conclusion
	Future Work

	List of References

