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Abstract

The set of stable matchings induces a distributive lattice. The supremum of the stable

matching lattice is the boy-optimal (girl-pessimal) stable matching and the infimum is

the girl-optimal (boy-pessimal) stable matching. The classical boy-proposal deferred-

acceptance algorithm returns the supremum of the lattice, that is, the boy-optimal stable

matching. In this paper, we study the smallest group of girls, called the minimum winning

coalition of girls, that can act strategically, but independently, to force the boy-proposal

deferred-acceptance algorithm to output the girl-optimal stable matching. We character-

ize the minimum winning coalition in terms of stable matching rotations and show that

its cardinality can take on any value between 0 and
⌊

n
2

⌋

, for instances with n boys and

n girls. Our two main results concern the random matching model. First, the expected

cardinality of the minimum winning coalition is small, specifically (1
2
+ o(1)) logn. This

resolves a conjecture of Kupfer [17]. Second, in contrast, a randomly selected coalition

must contain nearly every girl to ensure it is a winning coalition almost surely. Equiv-

alently, for any ε > 0, the probability a random group of (1 − ε)n girls is not a winning

coalition is at least δ(ε) > 0.
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Abrégé

L’ensemble des mariages stables forme un treillis distributif. La borne supérieure du treil-

lis des mariages stables est optimale pour les hommes et la borne inférieure est optimale

pour les femmes. L’algorithme classique de Gale et Shapley où les hommes se proposent

permet d’obtenir la borne supérieure du treillis, les mariages optimaux pour les hommes.

Dans cette thèse, nous étudions le groupe le plus petit de femmes, que nous appelons

une coalition gagnante de femmes, pouvant agir de façon stratégique mais indépendante

pour forcer l’algorithme à retourner les mariages optimaux pour les femmes. Nous car-

actérisons ces coalitions gagnantes en utilisant des rotations et nous montrons que la taille

de la plus petite coalition peut prendre toute valeur entre 0 et
⌊

n
2

⌋

, lorsqu’il y a n hommes

et n femmes. Nos deux résultats principaux concernent le modèle où les préférences de

tous les agents sont aléatoires. D’abord, nous montrons que la taille espérée d’une coali-

tion gagnante minimale est petite, étant (1
2
+ o(1)) logn. Ce résultat résout une conjecture

de Kupfer [17]. Cependant, notre deuxième résultat montre que lorsque la coalition est

choisie aléatoirement, la coalition doit contenir presque toutes les femmes pour garantir

que c’est une coalition gagnante presque surement. Autrement dit, pour tout ε > 0, la

probabilité qu’un groupe de (1 − ε)n femmes ne soit pas une coalition gagnant est au

moins p(ε) > 0.
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Chapter 1

Introduction

We study the stable matching problem with n boys and n girls. Each boy has a preference

ranking over the girls and vice versa. A matching is stable if there is no boy-girl pair that

prefer each other over their current partners in the matching. A stable matching always

exists and can be found by the deferred-acceptance algorithm [5]. Furthermore, the set

of stable matchings forms a lattice whose supremum matches each boy to his best stable-

partner and each girl to her worst stable-partner. This matching is called the boy-optimal

(girl-pessimal) stable matching. Conversely, the infimum of the lattice matches each boy

to his worst stable-partner and each girl to her best stable-partner. Consequently this

matching is called the girl-optimal (boy-pessimal) stable matching.

Interestingly, the deferred-acceptance algorithm outputs the optimal stable matching

for the proposing side. Perhaps surprisingly, the choice of which side makes the pro-

posal can make a significant difference. For example, for the random matching model,

where the preference list of each boy and girl is sampled uniformly and independently,

Pittel [19] showed the boy-proposal deferred acceptance algorithm assigns the boys with

much better ranking partners than the girls. Specifically, with high probability, the sum

of the partner ranks is close to n logn for the boys and close to n2

logn
for the girls. Hence,

on average, each boy ranks his partner at position logn at the boy-optimal stable match-

ing while each girl only ranks her partner at position n
logn

. Consequently, collectively the
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girls may have a much higher preference for the infimum (girl-optimal) stable matching

than the supremum (girl-pessimal) stable matching output by the boy-proposal deferred-

acceptance algorithm.

Remarkably, Ashlagi et al. [1] proved that in an unbalanced market with one fewer girls

than boys this advantage to the boys is reversed. In the random matching model, with

high probability, each girl is matched to a boy she ranks at log n on average and each boy

is matched to a girl he ranks at n
logn

on average, even using the boy-proposal deferred-

acceptance algorithm.1 Kupfer [17] then showed a similar effect arises in a balanced mar-

ket in which exactly one girl acts strategically. The expected rank of the partner of each

girl improves to O(log4 n) while the expected rank of the partner of each boy deteriorates

to Ω( n
log2+ǫ n

). Thus, just one strategic girl suffices for the stable matching output by the

boy-proposal deferred-acceptance algorithm to change from the supremum of the lattice

to a stable matching “close” to the infimum. But how many strategic girls are required to

guarantee the infimum itself is output? Kupfer [17] conjectured that O(logn) girls suffice

in expectation. In this thesis we prove this conjecture. More precisely, we show that the

minimum number of strategic girls required is 1
2
logn + O(log logn) = (1

2
+ o(1)) logn in

expectation. Consequently, the expected cardinality of the optimal winning coalition of

girls is relatively small.

Conversely, a random coalition of girls must be extremely large, namely of cardinality

n − o(n), if it is to be a winning coalition with high probability. We prove that, for any

ε > 0, the probability a random group of (1− ε)n girls is not a winning coalition is at least

a constant.

1.1 Overview

In Chapter 2, we present the relevant background on the stable matching problem, in

particular, concerning the stable matching lattice and the rotation poset. In Chapter 3, we

1In fact, an unbalanced market essentially contains a unique stable matching; see [1] for details.
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give all the tools that are used to prove the main results of the thesis. In Section 3.1 we

provide a characterization of winning coalitions of girls in terms of minimal rotations in

the rotation poset. This allows us to show that for general stable matching instances the

cardinality of the minimum winning coalition may take on every integral value between

a lower bound of 0 and an upper bound of
⌊

n
2

⌋

. In Section 3.2, we present an example to

illustrate the relevant stable matching concepts and ideas used in the thesis. In Section 3.3,

we present the random matching model studied for the main results of the thesis. In

Chapter 4 we present the main results of the thesis. Our first main result is given in

Section 4.1 and shows that in random instances the cardinality of the minimum winning

coalition is much closer to the lower bound than the upper bound. Specifically, in the

random matching model, the expected cardinality of the minimum winning coalition is

1
2
logn + O(log logn). Our second main result is presented in Section 4.2 and shows that

for a randomly selected coalition to be a winning coalition with probability 1 − o(1), it

must have cardinality n− o(n).
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Chapter 2

The Stable Matching Problem

Here we review the stable matching problem and the concepts and results relevant to this

thesis. The reader is referred to the book [10] by Gusfield and Irving for a comprehensive

introduction to stable matchings. An illustrative example, defined in Table 1, will also be

presented in Section 3.2. We remark that this example is deferred until all the relevant

concepts have been defined (indeed, it will be clearer to present the structural properties

of the example in a different order than how they are defined in this review).

We are given a set B = {b1, b2, . . . , bn} of boys and a set G = {g1, g2, . . . , gn} of girls.

Every boy b ∈ B has a preference ranking ≻b over the girls; similarly, every girl g ∈ G

has a preference ranking ≻g over the boys. Now let µ be a (perfect) matching between the

boys and girls. We say that boy b is matched to girl µ(b) in the matching µ; similarly, girl g

is matched to boy µ(g). Boy b and girl g form a blocking pair {b, g} if they prefer each other

to their partners in the matching µ; that is g ≻b µ(b) and b ≻g µ(g). A matching µ that

contains no blocking pair is called stable; otherwise it is unstable. In the stable matching

problem, the task is to find a stable matching.
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2.1 The Deferred-Acceptance Algorithm

The first question to answer is whether or not a stable matching is guaranteed to ex-

ist. Indeed a stable matching always exists, as shown in the seminal work of Gale and

Shapley [5]. Their proof was constructive; the deferred-acceptance algorithm, described in

Algorithm 1, outputs a stable matching.

Algorithm 1: Deferred-Acceptance (Boy-Proposal Version)

while there is an unmatched boy b do
Let b propose to his favourite girl g who has not yet rejected him;
if g is unmatched then

g provisionally matches with b;

else if g is provisionally matched to b̂ then

g provisionally matches to her favourite of b and b̂, and rejects the other;

The key observation here is that only a girl can reject a provisional match. Thus, from

a girl’s perspective, her provisional match can only improve as the algorithm runs. It fol-

lows that the deferred-acceptance algorithm terminates when every girl has received at

least one proposal. In addition, from a boy’s perspective, his provisional match can only

get worse as the algorithm runs. Indeed, it would be pointless for a boy to propose to

girl who has already rejected him. Thus, each boy will make at most n proposals. Fur-

thermore, because each boy makes proposals in decreasing order of preference, every girl

must eventually receive a proposal. Thus the deferred-acceptance algorithm must termi-

nate with a perfect matching µ. At this point all provisional matches are made permanent.

But why will this permanent set of matches µ form a stable matching? The proof is simple

and informative, so we include it for completeness.

Theorem 2.1.1 (Gale and Shapley 1962 [5]). The deferred-acceptance algorithm outputs a

stable matching.

Proof. Suppose {b, g} is a blocking pair for µ. Then boy b prefers girl g over girl ĝ = µ(b),
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that is g ≻b µ(b). So b must have proposed to g before proposing to ĝ. Then g must have

rejected b. Either she rejected b at the time of the proposal or she provisionally accepted his

offer but later rejected him after receiving a better offer. As her provisional partner only

improves over time, it follows that girl g prefers her final permanent partner b̂ = µ(g)

over b. That is, µ(g) ≻g b, and so {b, g} is not a blocking pair.

2.2 The Stable Matching Lattice

So a stable matching always exists. In fact, there may be an exponential number of stable

matchings [15]; see Theorem 3.1.4 for an example. The set M of all stable matchings forms

a poset (M,>) whose order > is defined via the preference lists of the boys. Specifically,

µ1 > µ2 if and only if every boy weakly prefers their partner in the stable matching µ1 to

their partner in the stable matching µ2; that is µ1(b) �b µ2(b), for every boy b.

Conway (see Knuth [15]) observed that the poset (M,>) is in fact a distributive lattice.

Thus, by the lattice property, each pair of stable matchings µ1 and µ2 has a join (least upper

bound) and a meet (greatest lower bound) in the lattice. Moreover, the join µ̂ = µ1∨µ2 has

the remarkable property that each boy b is matched to his most preferred partner amongst

the girls µ1(b) and µ2(b). Similarly, in the meet µ̌ = µ1 ∧ µ2 each boy is matched to his

least preferred partner amongst the girls µ1(b) and µ2(b). In particular, in the supremum 1 =
∨

µ∈M µ of the lattice each boy is matched to his most preferred partner from any stable

matching (called his best stable-partner). Accordingly, the matching 1 is called the boy-

optimal stable matching. On the other hand, in the infimum 0 =
∧

µ∈M µ of the lattice each

boy is matched to his least preferred partner from any stable matching (called his worst

stable-partner). Accordingly, the matching 0 is called the boy-pessimal stable matching.

Theorem 2.2.1. [5] The deferred-acceptance algorithm outputs the boy-optimal stable matching.

Proof. If not, let b be the first boy rejected by a stable partner, say g, during the course

of the deferred-acceptance algorithm. Assume there is a stable matching µ̂ in which the

pair (b, g) is matched and assume that g rejects b in favour of the boy b̂. By assumption
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b was the first boy rejected by a stable partner so boy b̂ had not been rejected by any

stable-partner when g rejected b. Thus b̂ prefers g over any stable partner. In particular,

he prefers g over his stable partner µ̂(b) 6= g. But then g ≻b̂ µ̂(b̂) and b̂ ≻g µ̂(g) = b. Hence,

{b̂, g} is a blocking pair for the matching µ̂, a contradiction.

The reader may have observed that the description of the deferred-acceptance algo-

rithm given in Algorithm 1 is ill-specified. In particular, which unmatched boy is selected

to make the next proposal? Theorem 2.2.1 explains the laxity of our description. It is ir-

relevant which unmatched boy is chosen in each step, the final outcome is guaranteed to

be the boy-optimal stable matching! In fact, the original description of the algorithm by

Gale and Shapley [5] allowed for simultaneous proposals by unmatched boys – again this

has no effect on the stable matching output.

The inverse poset (M,6) is also of fundamental interest. Indeed, McVitie and Wil-

son [18] made the surprising observation that (M,6) is the lattice defined using the pref-

erence lists of the girls rather than the boys. That is, every boy weakly prefers their part-

ner in the stable matching µ1 to their partner in the stable matching µ2 if and only if every

girl weakly prefers their partner in the stable matching µ2 to their partner in the stable

matching µ1.

Theorem 2.2.2. [18] If µ1 > µ2 in the lattice (M,>) then every girl weakly prefers µ2 over µ1.

Proof. Assume there is a girl g who prefers boy b = µ1(g) over boy µ2(g). But, by assump-

tion, boy b prefers g = µ1(b) over girl µ2(b). Thus {b, g} is a blocking pair for the matching

µ2, a contradiction.

Consequently, the boy-optimal stable matching 1 is also the girl-pessimal stable match-

ing and the boy-pessimal stable matching 0 is the girl-optimal stable matching.

For our example, the set of stable matchings and the stable matching lattice are shown

in Table 3 and Figure 3 of Section 3.2, respectively.
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2.3 The Rotation Poset

Recall that the lattice (M,>) is a distributive lattice. This is important because the funda-

mental theorem for finite distributive lattices of Birkhoff [2] states that associated with any

distributive lattice L is a unique auxiliary poset P(L). Specifically, the order ideals (or

down-sets) of the auxiliary poset P , ordered by inclusion, form the lattice L. We refer

the reader to the book of Stanley [22] for details on the fundamental theorem for finite

distributive lattices. For our purposes, however, it is sufficient to note that the auxiliary

poset P for the stable matching lattice (M,>) has an elegant combinatorial description

that is very amenable in studying stable matchings.

In particular, the auxiliary poset for the stable matching lattice is called the rotation

poset P = (R,≥) and was first discovered by Irving and Leather [12]. The elements of

the auxiliary poset are rotations. Informally, given a stable matching µ, a rotation will

rearrange the partners of a suitably chosen subset of the boys in a circular fashion to

produce another stable matching. Formally, a rotation R ∈ R is a subset of the pairs in

the stable matching µ,R = [(b0, g0), (b1, g1), . . . , (bk, gk)], such that for each boy bi, the girl

gi+1 (mod k+1) is the first girl after his current stable-partner gi on his preference list who

would accept a proposal from him. That is, gi+1 prefers boy bi over her current partner

boy bi+1 and every girl g that boy bi ranks on his list between gi and gi+1 prefers her current

partner in µ over bi.

In this case, we say that R is a rotation exposed by the stable matching µ. Let µ̂ = µ⊗R

be the perfect matching obtained by matching boy bi with the girl gi+1(mod k+1), for each

0 ≤ i ≤ k, with all other matches the same as in µ. Irving and Leather [12] showed that µ̂

is also a stable matching. More importantly they proved:

Theorem 2.3.1. [12] The matching µ̂ is covered1 by µ in the Hasse diagram of the stable matching

lattice if and only if µ̂ = µ⊗ R for some rotation R exposed by µ.

Theorem 2.3.1 implies that we may traverse the stable matching lattice (M,>) using

1We say y is covered by x in a poset if x > y and there is no element z such that x > z > y.

8



rotations. As stated, we may also derive a poset P = (R,≥) whose elements are rotations.

LetRµ be the set of all rotations exposed in µ. Then R =
⋃

µ∈M Rµ is the set of all rotations.

We then define the partial order ≥ as follows. Let R1 ≥ R2 in P if and only if for any stable

matching µ1 ∈ {µ ∈ M : R1 ∈ Rµ} and any stable matching µ2 ∈ {µ ∈ M : R2 ∈ Rµ},

either µ1 and µ2 are incomparable or µ1 > µ2 in (M,>). This rotation poset P = (R,≥)

is the auxiliary poset for the stable matching lattice (M,>); see Gusfield and Irving [10].

In particular, there is a bijection between stable matchings and antichains of the rotation

poset.

The set of rotations and the rotation poset for our running example are illustrated in

Table 2 and Figure 2 of Section 3.2, respectively.

We remark that, unlike the stable matching lattice, the cardinality of the rotation poset

is always polynomial. Specifically, any boy-girl pair {b, g} can appear in at most one

rotation [12]. It immediately follows that the rotation poset has at most O(n2) elements;

in fact, Gusfield [9] showed how to find all the rotations in O(n2) time.

2.4 The Rotation Graph

For any stable matching µ = {(b1, g1), (b2, g2), . . . , (bn, gn)} we define an auxiliary directed

graph H(µ). This graph, which we call the (exposed) rotation graph, has a vertex i for each

boy bi. There is an arc from i to j if the next girl on bi’s list to prefer bi over her current

partner is gj . If for some bi, no such girl exists, then i has out-degree 0; otherwise it has

out-degree 1. By definition, the rotations exposed in µ are exactly the cycles of H(µ).

(See Figure 1 in Section 3.2 for the rotation-graph H(1) for the running example.) For

example, if µ = 1 then H(1) consists of the set of rotations exposed in the boy-optimal

stable matching. We call these the maximal rotations.

A rotation R exposed in µ is minimal if µ ⊗ R = 0. Equivalently, the minimal rotations

are the set of rotations exposed in the girl-optimal stable matching 0 when ordering using

the preferences of the girls rather than the boys.
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2.5 The Number of Stable Partners

Throughout the thesis, we will be looking at the case in which the preferences are uniform

and random, this will be described in further detail in Section 3.3.

In this model, Knuth et al. [16] have shown that for any constant c < 1
2

and C > 1,

a given agent has between c log(n) and C log(n) distinct stable partners. As stated in the

introduction, each agent is expected to have an optimal partner whose rank is close to

log(n) and a pessimal partner who rank is close to n
log(n)

. So, in this model, an agent is

expected to have Θ(log(n)) stable partners, whose ranks are scattered between log(n) and

n
log(n)

.

This is not always the case. For instance, in an unbalanced market, in which the shorter

side is expected to have the advantage, the boy optimal stable matching and the girl

optimal stable matching are nearly the same as was shown by Ashlagi et al. [1]. Similarly,

if the preferences of the agents are correlated, such as in the popularity model introduced

by Immorlica and Mahdian[11], it was shown by Gimbert et al.[7] that the agents get

less stable partners. Finally, when the agents only rank d = o(log2(n)) potential partners,

Kanoria et al. [14] have shown that both sides are expected to get partners they rank

around
√
d and have fewer stable partners.

Our main result, presented in Section 3.3 and proved in Chapter 4, will show how

much of an impact the agents can have in the uniform matching model in which the

agents have multiple stable partners.
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Chapter 3

Main Tools

3.1 Incentives in the Stable Matchings Problem

Intuitively, because the deferred-acceptance algorithm outputs the boy-optimal stable

matching, there is no incentive for a boy not to propose to the girls in order of preference.

This fact was formally proven by Dubins and Freedman [3]. On the other hand, because

the stable matching is girl-pessimal, it can be beneficial for a girl to strategize. Indeed,

Roth [21] showed that no stable matching mechanism exists that is incentive compatible

for every participant.

3.1.1 The Minimum Winning Coalition of Girls

The structure of the stable matching lattice L is extremely useful in understanding the

incentives that arise in the stable matching problem. For example, the following structure

will be of importance in this thesis. Let F ⊆ G be a group of girls and let MF be the

collection of stable matchings where every girl in F is matched to their best stable-partner.

Given the aforementioned properties of the join and meet operation in the stable matching

lattice, it is easy to verify that LF = (MF ,>) is also a lattice. Thus, LF has a supremum

1F which is the boy-optimal stable matching given that every girl in F is matched to

their best stable-partner. Similarly, LF has a infimum 0F which is the boy-pessimal stable
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matching given that every girl in F is matched to their best stable-partner. Observe that

0F is the girl-optimal stable-matching 0, for any subset F of the girls.

Why is this useful here? Well, imagine that each girl in F rejects anyone who is not

their best stable-partner. Then the deferred-acceptance algorithm will output the stable

matching 1F ; see also Gale and Sotomayor [6] and Gonczarowski [8]. Of course, if F = G

then both 1G and 0G must match every girl to their optimal stable partner so 1G = 0G = 0.

We will call any F ⊆ G such that 1F = 0 a winning coalition and the smallest such

group is called a minimum winning coalition. Winning coalitions can be found using the

rotation poset.

Theorem 3.1.1. A set of girls is a winning coalition if and only if it contains at least one girl from

each minimal rotation in the rotation poset (R,≥)

Proof. LetG2 be the set of girls who have at least two stable-partners. For each girl gj ∈ G2,

let Mj be the set of stable matchings in which she is not matched to her best stable-

partner. Then Lj = (Mj,>) is a lattice with supremum 1j and infimum 0j . Observe that

1j = 1 and 0j 6= 0.

Now let {µ1, µ2, . . . , µk} be the minimal stable-matchings in the poset (M\0,>). That

is, {µ1, µ2, . . . , µk} is the set of matchings such that for any i ∈ {1, ..., k} and any stable

matching µ /∈ {µ1, µ2, . . . , µk} ∪ {0}, there is a boy who strictly prefers µ over µi. For each

1 ≤ ℓ ≤ k, observe that µℓ = 0j for some girl gj ∈ G2. But, if µℓ = 0j then girl gj must be

matched to her best stable-partner in µi for any i 6= ℓ. Otherwise, because µℓ ∧ µi = 0 in

the stable matching lattice L, it would be the case that girl gj is not matched to her best

stable-partner in 0, a contradiction. Let Uℓ be the set of girls who are not matched to their

best stable-partner in µℓ. Thus, the sets U1,...,Uk are non-empty and disjoint.

Let F be any group of girls that contains at least one girl from each set Uℓ, for 1 ≤ ℓ ≤ k.

We claim that 1F = 0 and, consequently, F is a winning coalition. For each 1 ≤ ℓ ≤ k,

at least one girl gj in F is not matched to best stable-partner in µℓ. Thus µℓ = 0j > 0.

It follows immediately that there is a unique stable-matching, namely the girl-optimal
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stable matching 0, that matches every girl in F to their best stable-partner. Hence, 1F = 0

as claimed.

Conversely, let F be any group of girls such that for some ℓ, F ∩ Uℓ = ∅. We claim that

1F 6= 0 and, consequently, F is a losing coalition. By definition, every girl in F is matched

to their best stable-partner in µℓ. But then, by definition, 1F > µℓ > 0 as claimed.

Finally, observe that our definition of Ui is exactly the set of girls in the unique rotation

exposed in µi which is a minimal rotation of the rotation poset (R,≥) which proves the

statement of the theorem.

Theorem 3.1.1 allows us to find a minimum winning coalition.

Corollary 3.1.2. The cardinality of the minimum winning coalition is equal to the cardinality of

the set of minimal rotations in the rotation poset (R,≥).

Section 3.2 provides an illustration of how rotations correspond to stable matchings

and gives a minimum winning coalition for the running example.

3.1.2 Efficiency and Extremal Properties

From the structure inherent in Theorem 3.1.1 and Corollary 3.1.2 we can make several

straight-forward deductions regarding winning coalitions.

First, Theorem 3.1.1 implies that we have a polynomial algorithm to verify winning

coalitions. Likewise Corollary 3.1.2 implies that we have a polynomial time algorithm

to compute the minimum winning coalition. In fact, the techniques of Gusfield [9] (see

also [10]) can now be used to solve both problems in O(n2) time.

Second, we can upper bound the cardinality of the minimum winning coalition.

Lemma 3.1.3. In any stable matching problem the minimum winning coalition has cardinality at

most
⌊

n
2

⌋

.

Proof. Consider the minimal stable-matchings {µ1, µ2, . . . , µk} in the poset (M\0,>). We

claim k ≤ ⌊n
2
⌋. To prove this, observe that since ∀ℓ ∈ [k] µℓ 6= 0 there must be at least
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two girls who are not matched to their best stable-partners in the stable matching µℓ.

Furthermore, recall that each girl is matched to their best stable-partner in every matching

{µ1, µ2, . . . , µk} except at most one. It immediately follows that k ≤ ⌊n
2
⌋.

Can this upper bound on the cardinality of the minimum winning coalition ever be ob-

tained? The answer is yes. In fact, every integer between 0 and ⌊n
2
⌋ can be the cardinality

of the smallest winning coalition.

Theorem 3.1.4. For each 0 ≤ k ≤ ⌊n
2
⌋ there exists a stable matching instance where the minimum

winning coalition has cardinality exactly k.

Proof. Take any 0 ≤ k ≤ ⌊n
2
⌋. We construct a stable matching instance where the minimum

winning coalition has cardinality exactly k as follows. For 2k + 1 ≤ ℓ ≤ n, let boy bℓ and

girl gℓ rank each other top of their preference lists – the other rankings in their preference

lists may be arbitrary. Thus, boy bℓ and girl gℓ must be matched together in every stable

matching.

For 1 ≤ ℓ ≤ k, let boy b2ℓ−1 rank girl g2ℓ−1 first and girl g2ℓ second and let boy b2ℓ rank

girl g2ℓ first and girl g2ℓ−1 second. In contrast, let girl g2ℓ−1 rank boy b2ℓ first and boy b2ℓ−1

second and let girl g2ℓ rank boy b2ℓ−1 first and boy b2ℓ second. Again, all other rankings

may be arbitrary.

It is then easy to verify that two possibilities arise. In any stable matching for each

1 ≤ ℓ ≤ k either (i) both boys b2ℓ−1 and b2ℓ are matched to their best stable-partners,

namely girls g2ℓ−1 and g2ℓ, respectively, or (ii) both boys b2ℓ−1 and b2ℓ are matched to their

worst stable-partners, namely girls g2ℓ and g2ℓ−1, respectively.

But this implies that to obtain the girl-optimal stable matching at least one girl from

the pair {g2ℓ−1, g2ℓ} must misreport her preferences, for each 1 ≤ ℓ ≤ k. One girl from

each of these pairs is also sufficient to output the girl-optimal stable matching. Thus the

minimum winning coalition has cardinality exactly k.

We remark that the instances constructed in the proof of Theorem 3.1.4 have 2k stable

matchings. As k can be as large as ⌊n
2
⌋, this gives a simple proof of the well known fact that
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the number of stable matchings may be exponential in the number of participants [15].

We now have all the tools required to address the main questions in this thesis. We

will first, as promised, illustrate these tools using an example.

3.2 An Illustrative Example

Here we present an example to illustrate the main concepts covered in the thesis. This

stable matching instance is derived from an example constructed by Irving et al. [13].

There are eight boys and eight girls whose preference rankings are shown in Table 1.

Table 1: A Stable Matching Instance.

P
P
P
P
P
P
P
P
P

Boy
Rank

1 2 3 4 5 6 7 8

b1 g4 g3 g8 g1 g2 g5 g7 g6
b2 g3 g7 g5 g8 g6 g4 g1 g2
b3 g7 g5 g8 g3 g6 g2 g1 g4
b4 g6 g4 g2 g7 g3 g1 g5 g8
b5 g8 g7 g1 g5 g6 g4 g3 g2
b6 g5 g4 g7 g6 g2 g8 g3 g1
b7 g1 g4 g5 g6 g2 g8 g3 g7
b8 g2 g5 g4 g3 g7 g8 g1 g6

P
P
P
P
P
P
P
P
P

Girl
Rank

1 2 3 4 5 6 7 8

g1 b3 b1 b5 b7 b4 b2 b8 b6
g2 b6 b1 b3 b4 b8 b7 b5 b2
g3 b7 b4 b3 b6 b5 b1 b2 b8
g4 b5 b3 b8 b2 b6 b1 b4 b7
g5 b4 b1 b2 b8 b7 b3 b6 b5
g6 b6 b2 b5 b7 b8 b4 b3 b1
g7 b7 b8 b1 b6 b2 b3 b4 b5
g8 b2 b6 b7 b1 b8 b3 b4 b5

This instance has 23 stable matchings. To see this, let’s begin by running the deferred

acceptance algorithm (Algorithm 1) to find the boy-optimal stable matching. Observe

that all the boys have different first preferences. Thus, the boys will consecutively each
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propose to their first choice who will temporarily accept; once all the boys have proposed

these matches will become permanent. Thus, the boy-optimal matching 1 = M1 simply

matches each boy with his favourite girl. To find the remaining stable matchings, we

swap partners using rotations.

We start by finding the rotations exposed at 1 = M1. To do this we simply search for

the for directed cycles in the (exposed) rotation graph H(1). Recall, this graph has eight

vertices, one for each boy. The first vertex 1 corresponds to boy b1 who is matched to girl

g4 in M1. If girl g4 breaks up with b1 then he will propose to his second choice, girl g3. She

prefers him over her current partner b2 so will accept this offer. Thus boy b1 will gain the

current partner of boy b2; hence there is an arc (1, 2) in the rotation graph H(1). To find the

outgoing arc at vertex 2 assume that g3 does break-up with boy b2. He will then propose

his second choice, girl g7. She prefers him over her current partner b3 so will accept this

offer. Thus, there is an arc at (2, 3). Now (b3, g7) ∈ M1 and if girl g7 breaks-up with b3 then

he will next propose to g5. She will accept as she prefers b3 over her current partner boy

b6. So the rotation graph contains the arc (3, 6). Next consider boy b4. If his partner, girl

g6 breaks up with him then he will propose to girl g4. She will reject this proposal as she

prefers her current partner b1 over b4. So b4 will then propose to his third choice g2 and

this proposal will be accepted as she prefers him over her current partner b8. Hence H(1)

contains the arc (4, 8). Continuing in this fashion, the reader can verify that the rotation

graph H(1) is as shown in Figure 1.

1 2

34 56 78

Figure 1: The (Exposed) Rotation Graph H(1) at the Boy-Optimal Stable Matching.

Observe that the rotation graph H(M1) contains a single cycle {v1, v2, v3, v6}. Conse-

quently, there is exactly one exposed rotation, namely ρ1 = {(b1, g4), (b2, g3), (b3, g7), (b6, g5)}.

We remark that this is the unique maximal rotation for this stable matching instance. Thus
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from M1 = (g4, g3, g7, g6, g8, g5, g1, g2) we may create one new stable matching by perform-

ing the rotation ρ1. Specifically, we rotate the partners of the boys {b1, b2, b3, b6}. This gives

the stable matching M2 = (g3, g7, g5, g6, g8, g4, g1, g2).

Similarly, for M2 the rotation graph H(M2) contains a single directed cycle {v3, v5, v7}.

Rotating the partners of boys {b3, b5, b7} then produces the following stable matching:

M3 = (g3, g7, g8, g6, g1, g4, g5, g2).

The rotation graph H(M3) contains two directed cycle correspond to ρ3 and ρ4. These are

specified, along with all the other rotations in Table 2.

Table 2: The Set of the Rotations R.

Rotation Rotation

ρ1 [(b1, g4), (b2, g3), (b3, g7), (b6, g5)]
ρ2 [(b3, g5), (b5, g8), (b7, g1)]
ρ3 [(b4, g6), (b8, g2), (b7, g5)]
ρ4 [(b1, g3), (b3, g8)]
ρ5 [(b2, g7), (b8, g5), (b6, g4)]
ρ6 [(b3, g3), (b4, g2)]
ρ7 [(b1, g8), (b5, g1), (b7, g6)]
ρ8 [(b5, g6), (b8, g4), (b6, g7)]
ρ9 [(b2, g5), (b7, g8), (b4, g3)]
ρ10 [(b1, g1), (b3, g2)]

These ten rotations form the rotation poset (R,≥) whose Hasse diagram is given in

Figure 2. As shown the rotation ρ1 is the unique maximal rotation, the rotation exposed

at the boy-optimal stable matching 1 = M1. On the other hand, ρ8, ρ9 and ρ10 are the

minimal rotations. These rotations lead to the boy-pessimal (girl-optimal) stable matching

0 = M23.

Applying these rotations in the appropriate order allows us to generate all 23 stable

matchings given in Table 3.

These stable matchings then form the stable matching lattice (M,>) whose Hasse

diagram is illustrated in Figure 3. In this diagram, each edge is labelled by the rotation
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ρ1

ρ2

ρ4ρ3

ρ6ρ7ρ5

ρ10ρ9ρ8

Figure 2: The Hasse diagram of the Rotation Poset (R,≥).

Table 3: The Set of Stable Matchings M. For a matching M , n(M) is the set of rotations

exposed in M and p(M) is the set of rotations that can precede obtaining M

M n(M) p(M) g1 g2 g3 g4 g5 g6 g7 g8

M1 ρ1 ∅ b7 b8 b2 b1 b6 b4 b3 b5
M2 ρ2 ρ1 b7 b8 b1 b6 b3 b4 b2 b5
M3 ρ3, ρ4 ρ2 b5 b8 b1 b6 b7 b4 b2 b3
M4 ρ3 ρ4 b5 b8 b3 b6 b7 b4 b2 b1
M5 ρ4, ρ5 ρ3 b5 b4 b1 b6 b8 b7 b2 b3
M6 ρ5, ρ6, ρ7 ρ3, ρ4 b5 b4 b3 b6 b8 b7 b2 b1
M7 ρ4 ρ5 b5 b4 b1 b8 b2 b7 b6 b3
M8 ρ5, ρ7 ρ6 b5 b3 b4 b6 b8 b7 b2 b1
M9 ρ5, ρ6 ρ7 b1 b4 b3 b6 b8 b5 b2 b7
M10 ρ6, ρ7 ρ4, ρ5 b5 b4 b3 b8 b2 b7 b6 b1
M11 ρ5, ρ10 ρ6, ρ7 b1 b3 b4 b6 b8 b5 b2 b7
M12 ρ7 ρ5, ρ6 b5 b3 b4 b8 b2 b7 b6 b1
M13 ρ6, ρ8 ρ5, ρ7 b1 b4 b3 b8 b2 b5 b6 b7
M14 ρ5 ρ10 b3 b1 b4 b6 b8 b5 b2 b7
M15 ρ8, ρ9, ρ10 ρ7, ρ6, ρ5 b1 b3 b4 b8 b2 b5 b6 b7
M16 ρ6 ρ8 b1 b4 b3 b5 b2 b6 b8 b7
M17 ρ8, ρ9 ρ5, ρ10 b3 b1 b4 b8 b2 b5 b6 b7
M18 ρ8, ρ10 ρ9 b1 b3 b7 b8 b4 b5 b6 b2
M19 ρ9, ρ10 ρ6, ρ8 b1 b3 b4 b5 b2 b6 b8 b7
M20 ρ8 ρ9, ρ10 b3 b1 b7 b8 b4 b5 b6 b2
M21 ρ9 ρ8, ρ10 b3 b1 b4 b5 b2 b6 b8 b7
M22 ρ10 ρ8, ρ9 b1 b3 b7 b5 b4 b6 b8 b2
M23 ∅ ρ8, ρ9, ρ10 b3 b1 b7 b5 b4 b6 b8 b2

that transforms the upper stable matching into the lower stable matching. For example,

the rotation ρ9 is exposed at M15 and applying it produces the matching M18; similarly,
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the rotation ρ4 is exposed at M5 and induces M6.

M23

M22M21M20

M19M18M17

M16M15M14

M13M12M11

M10M9M8

M7M6

M5M4

M3

M2

M1

ρ1

ρ2

ρ3ρ4

ρ3
ρ4

ρ5

ρ6 ρ7
ρ5

ρ4

ρ7
ρ5 ρ6 ρ5 ρ6

ρ7

ρ10 ρ5 ρ7 ρ6 ρ8

ρ5 ρ10 ρ9 ρ8 ρ6

ρ9
ρ8 ρ10 ρ8 ρ10

ρ9

ρ8 ρ9 ρ10

Figure 3: The Hasse Diagram of the Stable Matching Lattice (M,>).

Recall, by the fundamental theorem for finite distributive lattices, the stable matching lat-

tice (M,>) has an auxiliary poset whose order ideals, ordered by inclusion, form M.

We claimed that this auxiliary poset is the rotation poset P = (R,≥). By inspection of

Figure 2 and Figure 3, the reader may verify that this is indeed the case for this stable

matching instance. In particular, we can see the correspondence between minimal stable

matchings in M \ {0} and minimal rotations. In this case there are three such minimal

matchings, namely {M20,M21,M22} and three minimal rotations, namely, {ρ8, ρ9, ρ10}.

Finally, Theorem 3.1.1, tells us that the minimum winning coalition has cardinality
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equal the number of minimal rotations. In this instance, these three rotations consist of

the girls {g1, g2}, {g3, g5, g8} and {g4, g6, g7}, respectively. A minimum winning coalition

must contain exactly one element of each of these groups. For example, the three girls

{g1, g3, g4} form a minimum winning coalition and allow us to descend all the way from

1 to 0. If we select only one girl we descend the lattice only as far down as M17, M18 or

M19. If we select two girls we can descend only as far down as M20, M21, or M22.

3.3 The Random Matching Model

For the rest of the thesis we use the random matching model which was first studied by

Wilson [23] and subsequently examined in detail by Knuth, Pittel and coauthors [15, 19,

16, 20]. Here the preference ranking of each boy and each girl is drawn uniformly and

independently from the symmetric group Sn. Specifically, each preference ranking is a

random permutation of the set [n] = {1, 2, . . . , n}.

We may now state the two main results of the thesis. First, in the random matching

model, the expected cardinality of the minimum winning coalition is O(logn).

Theorem 3.3.1. In the random matching model, the expected cardinality of the minimum winning

coalition F is

E(|F |) = 1

2
log(n) +O(log log n)

So the minimum winning coalition is small. Surprisingly, in sharp contrast, our sec-

ond result states that a random coalition must contain nearly every girl if it is to form a

winning coalition with high probability. Equivalently:

Theorem 3.3.2. In the random matching model, ∀ε > 0, ∃δ(ε) > 0 such that for a random

coalition F of cardinality (1 − ε) · n the probability that F is not a winning coalition is at least

δ(ε).

To prove these results, recall Theorem 3.1.1 which states that a winning coalition F

must intersect each minimal rotation in the rotation poset (R,≥). Thus, for Theorem 3.3.1
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it suffices to show that the expected number of minimal rotations is O(logn). To show

Theorem 3.3.2 we must lower bound the probability that a randomly chosen coalition of

girls contains at least one girl in each minimal rotations. Our approach is to show the

likelihood of a small cardinality minimal rotations is high. In particular, we prove there is

a minimal rotation containing exactly two girls with constant probability. It immediately

follows that a random coalition must contain nearly all the girls if it is to be a winning

coalition with high probability.

3.3.1 Overview of the Proofs

So our proofs require that we study the set of minimal rotations in the random matching

model. The following two “tricks” will be useful in performing our analyses. First, in-

stead of minimal rotations we may, in fact, study the set Rmax of maximal rotations, that

is the rotations that are exposed at the boy-optimal stable matching 1. This is equiva-

lent because Theorem 2.2.2 tells us that the inverse lattice (M,6) is the stable matching

lattice ordered according to the preferences of the girls. This symmetry implies that the

behaviour of minimal rotations is identical to the behaviour of maximal rotations as the

maximal rotations of one lattice are the minimal rotations of the other. But why is the

switch to maximal rotations from minimal rotations helpful? Simply put, as we are using

the boy proposal version of the deferred acceptance algorithm, we obtain the boy-optimal

stable matching and, consequently, it is more convenient to reason about the rotations ex-

posed at 1, that is the maximal rotations.

Second, it will be convenient to view the deferred acceptance algorithm with random

preferences in an alternative manner. In particular, instead of generating the preference

rankings in advance, we may generate them dynamically. Specifically, when a boy b is

selected to make a proposal he asks a girl g chosen uniformly at random. If b has already

proposed to g then this proposal is immediately rejected; such a proposal is termed redun-

dant. Meanwhile, g maintains a preference ranking only for the boys that have proposed

to her. Thus if this is the kth distinct proposal made to girl g then she assigns to b a rank
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chosen uniformly at random among {1, . . . k}. In particular, in the deferred acceptance

algorithm g accepts the proposal with probability 1/k. As explained by Knuth et al. [16],

this process is equivalent to randomly generating the preference rankings independently

in advance. Furthermore, recall from Theorem 2.2.1 that the deferred acceptance algo-

rithm will output the boy-optimal stable matching regardless of the order of proposals.

It follows that, for the purposes of analysis, we may assume the algorithm selects the

unmatched boy with the lowest index to make the next proposal.

So our task now is to investigate the properties of maximal rotations, that is directed

cycles in the rotation graph H(1). Intuitively, this relates to the study of directed cycles in

random graphs with out-degrees exactly one. But there is one major problem. In random

graphs the choice of out-neighbour is independent for each vertex. But in the rotation

graph H(1) this independence is lost. In particular, the arcs in H(1) share intricate de-

pendencies and specifically depend on who made and who received each proposal in

obtaining the boy-optimal stable matching 1. Moreover, a vertex may even have out-

degree zero in H(1). Essentially, the remainder of thesis is devoted to showing that the

myriad of dependencies that arise are collectively of small total consequence. It will then

follow that the expected number or maximal rotations and the minimum cardinality of a

maximal rotation both behave in a predictable manner, similar to that of directed cycles

in random graphs with out-degrees exactly one. Namely, the expected number of cycles

being close to logn
2

and the existence a cycle of size two with constant probability [4].

Consequently, to study maximal rotations we must consider H(1). We do this via

a two-phase approach. In the first phase we calculate the boy-optimal stable matching

1, without loss of generality, 1 = {(b1, g1), (b2, g2), . . . , (bn, gn)}. This of course can be

found by running the boy-proposal deferred acceptance algorithm. In the second phase,

we calculate the rotation graph H(1). But, as explained in Section 2.3 and illustrated in

the example of Section 3.2, we can find the rotations by running the boy-proposal deferred

acceptance algorithm longer.

In fact, to calculate (i) the expected number of maximal rotations and (ii) the probabil-
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ity that there is a maximum rotation of cardinality 2, we will not need the entire rotation

graph H(1) only subgraphs of it. Moreover, the subgraphs we require will be different in

each case. Consequently, the second phases required to prove Theorem 3.3.1 and Theo-

rem 3.3.2 will each be slightly different. These distinct second phases will be described in

detail in Section 4.1 and Section 4.2, respectively. They both, however, share fundamental

properties which will be exploited in shortening the subsequent proofs.

3.3.2 A Technical Tool for Counters

Before describing the two algorithms, we present a technical lemma that we will use re-

peated in analyzing the deviations that arise in their application. To formalize the lemma,

we require the notion of a state. The state of the algorithm at any point is the record of all

the (random) choices made so far: the sequence of proposals and the preference rankings

generated by the girls. Thus we are working in the probability space (Ω, P ) of all possible

states Ω of the algorithm and the probabilities of reaching them.

We index the intermediate states of the algorithm by the number of proposals made to

reach it. Let Ωt denote the set of all possible states of the procedure after t proposals. Thus

Ωt can be thought of as a partition of Ω, and the partition Ωt+1 refines the partition Ωt for

any t. A random variable Xt is Ωt-measurable if Xt is determined by the algorithm state

after t proposals, that is X is constant on each part of Ωt. We say that a sequence (Xt)t≥0 of

random variables is a counter if Xt is Ωt-measurable and Xt−Xt−1 ∈ {0, 1}. Thus counters

count the number of certain events occurring over the course of the algorithm. As an

example, the number of successful proposals among the first t proposals is a counter.

Our main tool is Lemma 3.3.3 below which is used to control large deviations of coun-

ters. Let Bk,p be a random variable which follows a binomial distribution with parameters

k and p. We say that a collection of states G is monotone if for every state S 6∈ G we have

S ′ 6∈ G for every state S ′ that can be reached from S. For example, the collection of states

in which every girl received at most one proposal is monotone. Let {St|t ∈ N} be the

sequence of random variables corresponding to the state of the algorithm at time t
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Lemma 3.3.3. Let G be a monotone collection of states and let (Xt)t≥0 be a counter.

(a) If P (Xt′+1 −Xt′ = 1|St′ = St′) ≥ p for every state St′ ∈ Ωt′ ∩ G, for any t′ ∈ [t, t+ k], then,

for any λ ≥ 0 and any k ≥ 1,

P ((Xt+k −Xt ≤ λ) ∧ (St+k−1 ∈ G)|St = St) ≤ P (Bk,p ≤ λ) .

(b) If P (Xt′+1 −Xt′ = 1|St′ = St′) ≤ p for every state St′ ∈ Ωt′ ∩ G, for any t′ ∈ [t, t + k], then,

for any λ ≥ 0 and any k ≥ 1,

P ((Xt+k −Xt ≥ λ) ∧ (St+k−1 ∈ G)|St = St) ≤ P (Bk,p ≥ λ) .

This implies that if we can bound the probability of the counter being incremented

tightly enough then the behaviour of the counter will be similar to the behaviour of a

binomial random variable. Evidently, this will be useful because binomial random vari-

ables are much simpler to work with.

Proof. We prove (a) by induction on k. The base case k = 1 is immediate. For the induction

step, note that if St 6∈ G then the left side of (a) is zero. Thus we may assume St ∈ G and

hence P (Xt+1 −Xt = 1|St) ≥ p. By the induction hypothesis, we then have

P (Xt+k −Xt+1 ≤ λ− 1|(Xt+1 −Xt = 1) ∧ St = St) ≤ P (Bk−1,p ≤ λ− 1)

and

P (Xt+k −Xt+1 ≤ λ|(Xt+1 −Xt = 0) ∧ St = St) ≤ P (Bk−1,p ≤ λ) .
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Since P (Bk−1,p ≤ λ− 1) ≤ P (Bk−1,p ≤ λ), combining these three inequalities gives

P (Xt+k −Xt ≤ λ|St = St) = P (Xt+1 −Xt = 1|St = St) · P (Bk−1,p ≤ λ− 1)

+ P (Xt+1 −Xt = 0|St = St) · P (Bk−1,p ≤ λ)

≤ pP (Bk−1,p ≤ λ− 1) + (1− p)P (Bk−1,p ≤ λ) (3.1)

≤ P (Bk,p ≤ λ)

where we obtain (3.1) by noting the following:

P (Bk−1,p ≤ λ− 1) ≤ P (Bk−1,p ≤ λ)

=⇒ p · [P (Bk−1,p ≤ λ− 1)− P (Bk−1,p ≤ λ)] ≤ 0

=⇒ pP (Bk−1,p ≤ λ− 1) + (1− p)P (Bk−1,p ≤ λ) ≤ P (Bk,p ≤ λ) .

The proof of (b) is completely analogous.

In our subsequent analyses we will combine Lemma 3.3.3 with the following well-

known Chernoff bounds that control deviations of Bk,p from the mean.

Lemma 3.3.4. For 0 ≤ δ ≤ 1,

P (Bk,p ≥ (1 + δ)pk) ≤ exp

(

−δ2pk

3

)

and P (Bk,p ≤ (1− δ)pk) ≤ exp

(

−δ2pk

2

)

.
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Chapter 4

Main results

4.1 Minimum Winning Coalitions

In this section, we will evaluate the expected cardinality of the minimum winning coali-

tion. Recall, it suffices is to find the expected number of directed cycles, Rmax, in the

rotation graph H(1). To do this, it will be useful to describe the cardinality of Rmax in a

more manipulable form. Specifically, for any boy bi define a variable

Zi =















1
|R| if bi is in a maximal rotation R

0 if bi is not in a maximal rotation

Then we obtain that:

|Rmax| =
∑

R∈Rmax

1 =
∑

R∈Rmax

∑

(b,g)∈R

1

|R| =
n
∑

i=1

Zi

By linearity of expectation, the expected cardinality of the minimum winning coalition F

is

E(|F |) = E(|Rmax|) = E

(

n
∑

i=1

Zi

)

=

n
∑

i=1

E(Zi) (4.1)
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As discussed in Section 3.3, the difficulty in computing E(|F |) is the myriad of dependen-

cies that arise in the formation of the rotations in Rmax. Equation 4.1 is extremely useful

in this regard. To quantify the dependency effects, rather than count expected rotations

directly, it allows to focus simply on computing E(Zi).

4.1.1 Generating Maximal Rotations from the Rotation Graph

Ergo, our task now is to evaluate E(Zi). For this we study a two-phase randomized al-

gorithm, henceforth referred to as the algorithm, for generating the potential maximal ro-

tation containing a given boy. The first phase computes the boy-optimal stable matching

1 = {(b1, g1), (b2, g2), . . . , (bn, gn)}. In the second phase we use a variation of the deferred

acceptance algorithm to generate arcs in (a subgraph of) the rotation graph and generate

a random variable Z.

The second phase starts with a randomly selected boy i1 who makes uniformly ran-

dom proposals until the first time he proposes to a girl gj who prefers him over her partner

bj in the boy-optimal stable matching. The boy bj will make the next sequence of propos-

als. The process terminates if we find a maximal rotation. Moreover, if this rotation is

completed because girl gi1 receives and accepts a proposal then we have found a maxi-

mal rotation containing boy i1. In this case we also update Z. Formally, we initialize the

second-phase by:

• Choose i1 from {1, 2, . . . , n} uniformly at random.

• Initialize the potential cycle in the rotation digraph containing i1 by setting R = [i1].

Once R = [i1, . . . , ik] is found, we generate the arc of the rotation digraph emanating from

ik, as follows.

• Let boy bik make uniformly random proposals until the first time he proposes to

a girl gj such that gj ranks bik higher than bj . That is, gj ranks bik higher than her

pessimal stable partner.
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– If j 6∈ R then we set ik+1 = j, R = [i1, . . . , ik, ik+1], and recurse.

– If j ∈ R then we terminate the procedure. We set Z = 1
|R| , if j = i1, and Z = 0,

otherwise.

• If, instead, boy bik gets rejected by all the girls then the vertex ik has no-outgoing

arcs in the rotation graph. Thus, bi1 belongs to no maximal rotation, so we terminate

the procedure and set Z = 0.

We emphasize that as the second phase runs, we do not change any assigned part-

nerships. Specifically, when a girl receives a proposal we always compare her rank for

the proposing boy to the rank of her pessimal partner, regardless of any other proposals

she may have received during the second phase. Now Z = Zi1 where i1 was chosen uni-

formly at random. The next lemma is then implied by (4.1) as the expectation of Z is the

average of the expectations of Zi.

Lemma 4.1.1. E(|F |) = n · E(Z) where Z is the random variable generated by the algorithm.

Recall, bi1 is in a maximal rotation if and only if the rotation graph of the boy optimal

stable matching has a cycle containing bi1 . Observe that every connected component of a

directed graph in which each vertex has out-degree 1 contains exactly one cycle. Hence,

if we find a cycle in the same connected component as bi but which does not contain

him then bi1 is not in a maximal rotation. Then, since |F | = ∑n
j=1Zij , we get E(|F |) =

∑n
j=1E(Zij ) = n · E(Z).

4.1.2 Properties of the Two-Phase Algorithm

We now present a series of properties that arise with high enough probability during the

two-phase process. In particular, the process does not deviate too far from its expected be-

haviour. For example, the running time of each phase is not much longer than expected,

no girl receives too many proposals, and no boy makes too many proposals. To formalize

this, let T1 and T2 be the number of proposals made in the first and second phases, re-

spectively, and let T = T1 + T2. Further, let a run be a sequence of consecutive proposals
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made by the same boy in the same phase. Now consider the following properties that

may apply to a state:

I. The algorithm has not terminated.

II. If the algorithm is in the first phase then t ≤ 5n logn. If the algorithm is in the second

phase then T1 ≤ 5n logn

III. If the algorithm has not found a rotation yet then t ≤ T1 +
√
n log3 n.

IV. Each girl has received at most 21 logn proposals.

V. Each boy started at most 21 logn runs.

VI. Each run contained at most 111 log2 n proposals.

VII. Each boy has made at most log4 n proposals.

Informally, we want the states of the algorithm to satisfy these property because they

imply that:

• No girl receives too many proposals compared to the others girls. Consequently, the

event of having already accepted a proposal in the second phase does not impact

significantly the probability of accepting another proposal later.

• No boy makes too many proposals. Consequently, we do not need to worry about

redundant proposals.

• The second phase is significantly shorter than the first phase. Consequently, the

probability of a proposal being accepted at the start of the second phase and the

probability of a proposal being accepted at the end of the second phase are very

similar.

Let G be the set of all states that satisfy properties I to VII. We call these good states.

Any state that is not good is bad. Clearly, G is monotone. Let G∗ denote the event ST−1 ∈ G,
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that is, the event that the algorithm is in a good state the period before it terminates. Let

G∗ be the complement of G∗.

We remark that, for technical reasons, we will assume the second-phase terminates

if n logn proposals are made during that phase. This assumption is superfluous here by

conditon III, which states the second phase has at most
√
n log3 n proposals. However, the

assumption is useful as it will allow the following lemma to also apply for the modified

second-phase algorithm that we use in Section 4.2.

Lemma 4.1.2. For n sufficiently large, P (G∗) ≥ 1− O(n−4).

Proof. It suffices to show the probability is O(1/n4) of reaching a state Sk ∈ Ωk such that

(i) the algorithm has not yet terminated, (ii) Sk is bad, and (iii) all the states preceding Sk

are good.

Note that, for n sufficiently large, conditions II and our bound on the length of the sec-

ond phase imply that k ≤ 6n log n for any such state. Furthermore, again for sufficiently

large n, conditions V and VI together imply VII; thus, VII cannot be the only condition

violated by Sk. Hence, it suffices to verify that the probability of reaching such a state

violating one of the conditions II-VI is small.

First consider condition II. Recall the first phase terminates when every girl has re-

ceived a proposal. So if Sk violates II then k ≥ 5n log n and at least one girl still has not

received a proposal. By definition, each proposal is directed at girl g with probability 1/n,

for each g. So, by Lemma 3.3.3 applied to the counter (Xg,k)k≥0, where Xg,k is the number

of proposals received by g by the time k,

P (Xg,k = 0) ≤
(

1− 1

n

)k

≤ e−k/n ≤ 1

n5
.

Thus, by the union bound, Sk violates II with probability at most 1/n4, as desired.

Next consider condition IV. If s = ⌈21 logn⌉ then the probability that a girl g received
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at least s proposals is at most

P (Xg,k ≥ s) ≤
(

k

s

)

1

ns
≤
(

ek

sn

)s

≤
(

6en logn

⌈21 logn⌉n

)s

≤
(

6e

21

)s

≤ n21 log(6e/21) ≤ 1

n5.3

and so, by the union bound, Sk violates IV with probability at most 1/n4.

The proof of V is similar. Take a boy b. Apart from his first run (and possibly the first

state of second phase), b can only start a run if the girl g he had been matched to received

a proposal in the previous round. This occurs with probability at most 1/n conditioned

on the previous state. Thus, analogously to the argument above, Sk violates condition V

with probability at most 1/n4.

Now consider VI and set s = 111 log2 n. For sufficiently large n, the proposal follow-

ing a good state is non-redundant with probability considerably greater than 21/22 by V.

Because each girl has received at most 21 logn proposals by IV, the probability that a pro-

posal is accepted conditioned on the previous good state is at least 1
22 logn

. By Lemma 3.3.3

applied to the counter Xt equal to the number of proposals accepted by time t,

P (Xk −Xk−s = 0) ∧ (Sk−1 ∈ G)|Sk−s = Sk−s) ≤
(

1− 1

22 logn

)s

≤ exp

(

− s

22 logn

)

≤ 1

n5.04

for any good state Sk−s. In particular, for any such state Sk−s, the probability is at most

1
5n5 logn

, for sufficiently large n. By the union bound taken over possible choices of k ≤

5n logn, the probability that we reach Sk violating VI is at most 1/n4.

Set ℓ = ⌈1
2

√
n log3 n⌉. If Sk violates III then the second phase been running for at least

2ℓ steps without finding a cycle, and we have previously reached a state S ∈ Ωk−ℓ such the

second phase contained at least ℓ
111 log2 n

runs before S due to VI. Therefore, the potential

cycle R generated in S may contain at least ℓ
111 log2 n

elements. In each subsequent step

starting in a good state, the probability that a non-redundant proposal is made to a girl

gi with i ∈ R is at least ℓ
n log3 n

. Further, such a proposal is then accepted, terminating

the process, with probability at least 1
21 logn

. However, to reach a state Sk the algorithm

must continue for at least ℓ more steps. By Lemma 3.3.3, the probability that this happens
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starting with any given state S as above is at most

(

1− ℓ

21n log4 n

)ℓ

≤ exp

(

− ℓ2

21n log4 n

)

≤ 1

n6

and thus the probability of reaching Sk violating III is at most 1/n4.

So, with high probability, we are in a good state the period before the algorithm ter-

minates. It follows that the magnitude of the expected number of maximal rotations can

be evaluated by consideration of good states.

4.1.3 The Expected Cardinality of the Minimum Winning Coalition

Now, to calculate the expected number of maximal rotations we must analyze in more

detail the second phase of the algorithm. In particular, this section is devoted to the proof

of the following lemma.

Lemma 4.1.3. Let S∗ = ST1 be the terminal state of the first phase. If P
(

G∗|S∗ = S∗
)

≤ 1
n3

then

E (Z|S∗ = S∗) =
logn

2n
+O

(

log log n

n

)

.

Before embarking on the proof of Lemma 4.1.3, we remark that that our first main

result, Theorem 3.3.1, readily follows from it via Lemmas 4.1.1 and 4.1.2. It is also worth

noting that III implies that the second phase has at most
√
n log3 n proposals when G∗

occurs, due to the fact that we stop once we find our first cycle.

Proof of Theorem 3.3.1 (modulo Lemma 4.1.3). Let G∗∗ denote the set of the terminal states S∗

of the first phase of the algorithm satisfying P
(

G∗|S∗ = S∗
)

≤ 1
n3 . Then P (S∗ 6∈ G∗∗) =
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O(1/n) by Lemma 4.1.2. Since 0 ≤ Z ≤ 1, by Lemmas 4.1.1 and 4.1.3 we have

E(|F |) = nE(Z)

= nE(Z|S∗ ∈ G∗∗)(1− P (S∗ 6∈ G∗∗)) + nE(Z|S∗ 6∈ G∗∗)P (S∗ 6∈ G∗∗)

= nE(Z|S∗ ∈ G∗∗) + nP (S∗ 6∈ G∗∗) (E(Z|S∗ 6∈ G∗∗)− E(Z|S∗ ∈ G∗∗))

=
1

2
logn +O (log log n) +O(1)

So let’s prove Lemma 4.1.3. For the remainder of the section we fix S∗ = S∗ satisfying

the conditions of the lemma. Let ρi be the number of non-redundant proposals received

by girl gi in S∗. Set ρ = 1
n

∑n
i=1

1
ρi+1

. As S∗ is good, we have ρi ≤ 21 logn for every girl gi;

so, ρ ≥ 1
22 logn

. We evaluate E (Z) separately for every choice of initial vertex i1 of R in the

following lemma:

Lemma 4.1.4. For every 1 ≤ i ≤ n we have

E (Z|S∗ = S∗ ∧ (i1 = i)) =
1

nρ(ρi + 1)

(

1

2
logn +O (log log n)

)

.

Since 1
n

∑n
i=1

1
nρ(ρi+1)

= 1
n

1
nρ

∑n
i=1

1
ρi+1

= ρ
nρ

= 1
n

, this lemma implies Lemma 4.1.3. To

prove Lemma 4.1.4, we may assume that we reached the state S∗, chose i1 = i, and that the

probabilities of the subsequent events are scaled accordingly. Note that, by Lemma 4.1.2,

we have P (G∗) ≥ 1 − 1/n2. We relabel the states of our process (S0 = S∗,S1, . . . ,St, . . .),

so that St is the state attained after t proposals have been made in the second phase. Let

Rt denote the (random) set R generated in the state St. Let Xt = |Rt| be the associated

counter. First we show that any proposal made after a good state increases Xt with prob-

ability close to ρ.

Lemma 4.1.5. For any good state St, we have:

P (Xt+1 −Xt = 1|St = St) ∈
[

ρ− n−1/3, ρ
]

.

33



Proof. Let ρi,t′ be the number of non-redundant proposals received by girl gi in a state St′

preceding St, and set

ρ(t′) =
1

n

∑

i 6∈Rt′

1

ρi,t′ + 1
.

Then ρ(0) ≥ ρ− 1/n and ρ(t′ +1) ≥ ρ(t′)− 1/n, for every 0 ≤ t′ ≤ t− 1, as Rt′ increases by

at most one vertex in any step.

Let b be the boy making the proposal following St, and let B be the set of girls b has

already proposed to. Then |B| ≤ log4 n, as St is good. The probability that the next

proposal is accepted by a girl not in Rt, thus increasing Xt, is then

1

n

∑

i 6∈Rt∪B

1

ρi,t + 1
≤ ρ,

immediately implying the upper bound. On the other hand, this probability is lower

bounded by

ρ(t)− |B|
n

≥ ρ− t + 1

n
− log4 n

n
≥ ρ− n−1/3

where the last bound holds as St is good, and so t ≤ √
n log3 n.

Lemma 4.1.6.

1. For t ≥ log5 n, P
((

|Xt − ρt| ≥ ρt
logn

)

∧ (St−1 ∈ G)
)

≤ 1
n2 .

2. For t ≥ 400 log logn
ρ

, P
((

Xt ≤ 1
2
ρt
)

∧ (St−1 ∈ G)
)

≤ 1
2 log5 n

.

Proof. Let δ ≥ log−1 n. Recall that ρ ≥ 1
22
log−1 n, and so

ρ− n−1/3 ≥
(

1− δ

2

)

ρ ≥ 1

25
log−1 n.

Combining Lemma 3.3.4 with Lemma 3.3.3 (where t = 0 and k = t) and Lemma 4.1.5
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gives

P (Xt ≤ (1− δ)ρt ∧ (St−1 ∈ G)) ≤ P
(

Bt,ρ−n−1/3 ≤ (1− δ)ρt
)

≤ P

(

Bt,ρ−n−1/3 ≤
(

1− δ

2

)

(ρ− n−1/3)t

)

≤ exp

(

−1

2

(

δ

2

)2

(ρ− n−1/3)t

)

. (4.2)

If δ = log−1 n and t ≥ log5 n then (4.2) is upper bounded by exp
(

− log2 n
200

)

< 1
2n2 . Mean-

while for δ = 1/2 and t ≥ C log logn
ρ

, the last term of (4.2) can instead be upper bounded by

log−
C
64 n. This proves the stated bounds on lower deviation.

The inequality

P

((

Xt ≥
(

1 +
1

logn

)

ρt

)

∧ (St−1 ∈ G)
)

≤ 1

2n2

for t ≥ log5 n is derived in the same manner.

We also need the following two easy lemmas.

Lemma 4.1.7. We have P (T2 ≤
√
n/ logn) ≤ 1/ log2 n.

Proof. Note that Xt ≤ t+1, and so for any t ≤ √
n log−1 n− 1, the probability that the next

proposal is directed to a girl with index in Rt is at most 1√
n logn

. Therefore, the probability

that the second phase terminates after exactly t proposals is at most 1√
n logn

for every such

t. The lemma follows by applying the union bound.

Let {bj}j∈J be the set of boys who have proposed to gi by the end of the first phase.

Lemma 4.1.8. The probability that at least one of the first
√
n log3 n proposals of the second phase

is directed to a girl gj with j ∈ J is at most n−1/3.

Proof. As S∗ is good, we have |J | ≤ 21 logn. Thus, this lemma follows by applying the

union bound analogously to Lemma 4.1.7. We omit the details.
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Proof of Lemma 4.1.4. Let’s begin by proving the lower bound. Let Lt denote the collection

of states St such that

• log5 n ≤ t ≤ √
n/ logn

• St ∈ G, in particular the algorithm has not yet terminated,

• Xt ≤
(

1 + 1
logn

)

ρt,

• every girl gj with j ∈ J received no proposal in the second phase so far.

It follows from Lemmas 4.1.6, 4.1.7 and 4.1.8 that P (St 6∈ Lt) ≤ log−1 n, for any log5 n ≤

t ≤ √
n log−1 n. As any state St ∈ Lt is good and satisfies t ≥ log5 n, the boy bi has

already finished the run which started the second phase. Moreover, no other boy who

has previously proposed to gi has lost his partner and had an opportunity to make a

proposal. Thus, if the next proposal is directed at gi, which happens with probability 1/n,

it is non redundant. Such a proposal is accepted with probability 1
ρi+1

. In such a case,

the algorithm terminates and outputs Z = 1/Xt. By Lemma 4.1.5, considering only the

contributions of outcomes when the process terminates immediately following a state in

Lt we get the following lower bound on the expected value of Z.

E (Z|S∗ = S∗ ∧ (i1 = i)) ≥
(

1− 1

log2 n

)

1

n(ρi + 1)

√
n

log n
∑

t=log5 n

1
(

1 + 1
logn

)

ρt

=

(

1− 1

log n

)

1

nρ(ρi + 1)

√
n

log n
∑

t=log5 n

1

t

≥
(

1− 2

log n

)

1

nρ(ρi + 1)

(

log

( √
n

log n

)

− log(log5 n)− O(1)

)

=
1

nρ(ρi + 1)

(

1

2
log n− O(log logn)

)

Next we prove the upper bound. Let Ut denote the collection of states St such that

• 400ρ−1 log log n ≤ t ≤ √
n log3 n
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• St ∈ G or the algorithm has terminated,

• Xt ≥ 1
2
ρt.

• Xt ≥
(

1− 1
logn

)

ρt, if t ≥ log5 n,

It follows from Lemma 4.1.6 that:















P (St 6∈ Ut) ≤ log−5 n for 400ρ−1 log log n ≤ t ≤ log5 n

P (St 6∈ Ut) ≤ 1
n

for log5 n ≤ t ≤ √
n log3 n

Noting that the process terminates and outputs Z = 1/Xt immediately following any

given state St with probability at most 1
n(ρi+1)

, we obtain the desired upper bound on the

expected value of Z, as follows:

E (Z|S∗ = S∗ ∧ (i1 = i)) ≤ 1

n(ρi + 1)

∑

t≤400ρ−1 log logn

1 +
1

n(ρi + 1)

log5 n
∑

t=400ρ−1 log logn

(

1

log5 n
+

2

ρt

)

+
1

n(ρi + 1)

√
n log3 n
∑

t=log5 n





1

n
+

1
(

1− 1
logn

)

ρt



 + P
(

T2 ≥
√
n log3 n

)

=
1

n(ρi + 1)

∑

t≤√
n log3 n

1

ρt
+O

(

log log n

nρ(ρi + 1)

)

=
1

nρ(ρi + 1)

(

1

2
logn +O(log logn)

)

.

This complete the proof of Lemma 4.1.4 and thus of Lemma 4.1.3. Our first main result,

Theorem 3.3.1, immediately follows.

4.2 Random Winning Coalitions

In this section, we consider the case where the girls in the coalition are themselves ran-

domly selected. Our task now is to prove that almost every girl must be selected if we

wish to obtain a winning coalition asymptotically almost surely. To do this, it will suffice
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to prove that there is a maximal rotation of cardinality two with constant probability.

4.2.1 Generating Maximal Rotations from the Rotation Graph

Let Z ′ be a random variable counting the number of maximal rotations of cardinality two.

Again, to analyze Z ′ we use a two-phase algorithm. The first phase is the same as before.

We simply generate the boy-optimal stable matching 1 = {(b1, g1), (b2, g2), . . . , (bn, gn)}.

But the second phase is slightly different. Previously we had to evaluate the expected

number of maximal rotations and, to achieve that, it sufficed to end the second phase

once we had found one rotation. Now, because we are interested in maximal rotations of

cardinality two we will extend the second phase and terminate only when and if we find

rotation of cardinality two.

So now in the second phase we the following algorithm to generate the random vari-

able Z ′, initialized at 0:

• Choose i1 from {1, 2, . . . , n} uniformly at random.

• Initialize the set of indices of boys who have made proposals in the second phase

with I = {i1}.

• Set tar = ∞.

For motivation, at any step, girl gtar can be viewed as the target girl. If she accepts the next

proposal then this will complete a rotation of cardinality two. Observe that we intitialize

tar = ∞ as it is impossible to complete a rotation in the fist step.

To complete the description of the second-phase, assume we have I = {i1, . . . , ik}. If

k < n
2

and less than n log n proposals in total have been made then we generate the next

arc of the rotation digraph starting at ik, as follows:

• Let boy bik make uniformly random proposals until the first time he proposes to a

girl gj such that gj ranks bik higher than bj .

– If j = tar then increment Z ′ by 1. Recurse.
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– If j ∈ I \ {tar} then pick ik+1 from {1, 2, . . . , n} \ I uniformly at random. Set

I = {i1, . . . , ik, ik+1} and tar = ∞. Recurse.

– If j 6∈ I then set ik+1 = j, tar = ik, I = {i1, . . . , ik, ik+1}. Recurse.

• If, instead, boy bik gets rejected by all the girls then return Z ′ = 0

Lemma 4.2.1. The probability of the existence of a maximal rotation of size two is lower bounded

by P (Z ′ ≥ 1).

Proof. Observe that Z ′ is only incremented when we find a pair (i, j) such that the next

girls to accept proposals from bi and bj , respectively, are gj and gi. This implies that Z ′ ≥ 1

can only arise when there is a maximal rotation of cardinality 2.

Therefore, our aim is to prove that P (Z ′ ≥ 1) = Ω(1), where Z ′ is the random variable

generated by the algorithm.

4.2.2 Bounding the Number of Proposals

Our objective now is to show that the behaviour of this new two-phase algorithm does

not deviate too much from its expected behaviour. Specifically, we show it satisfies a

series of properties with sufficiently high probability. As before, let T1 and T2 be the

number of proposals made in the first and second phases, respectively, and let T = T1 +

T2. Properties I to VII are as defined in Section 4.1. But now we require several more

properties. To describe these, let pSt denote the probability of the next proposal being

accepted when in state St. We are interested in the following five properties that may

apply to a state in the second phase:

VIII. t ≥ 1
2
n logn

IX. No more than n
9
10 girls have received less than 1

4
log n proposals.

X. No more than
√
n girls have received a redundant proposal.

XI. {pτ |T1 ≤ τ ≤ t} ⊆
[

1
22 logn

, 5
logn

]
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XII. T2 ≥ 1
20
n logn

Let G ′ be the set of all good states in the second phase satisfying these conditions. Like G,

G ′ is monotone. Let G∗ denote the event ST−1 ∈ G ′, that is the event that the algorithm in

a good state satisfying these conditions the period before it terminates.

Lemma 4.2.2. For n sufficiently large, P (G∗) ≥ 1− o(1).

Proof. Given the algorithm has not terminated, properties II to VII hold with high prob-

ability by the same argument as in Lemma 4.1.2. Therefore, it is enough to show that

properties VIII to XII hold almost surely conditioned on II to VII.

Recall T1 is the number of proposals until each girl receives at least one proposal. Thus

T1 is just the random variable for a coupon collector’s problem. Let ti be the number of

proposals needed to collect the ith coupon after the first i− 1 coupons have already been

collected. So the ti are independent geometric random variables with parameters n−(i−1)
n

which sum to T1. Thus the expectation of T1 is
∑n

i=1 E(t
i) =

∑n
i=1

n
n−(i−1)

= n log n +

o (n log n) with variance
∑n

i=1Var(t
i) =

∑n
i=1

(

(

n
(n−(i−1))

)2

− n
(n−i−1)

)

= n2
∑n

j=1
1
j2

−
n
∑n

j=1
1
j
. Consequently, the variance is bounded above by π2

6
·n2. Applying Chebyshev’s

inequality then gives:

P

(

T1 ≤
1

2
n logn

)

≤ P

(

|T1 − E(T1) ≥ 1

3
n logn

)

≤ π2

6
(

1
3
log n

)2 =
3π2

2 log2 n

This proves VIII occurs almost surely as t ≥ T1 in the second phase.

Let Xi be the indicator of whether girl i has received at most 1
4
logn proposals after

t ≥ 1
2
n log n total proposals. Let Yi be the number of different proposals she has received

in that amount of time. Then, by Markov’s inequality:

P

(

n
∑

i=1

Xi ≥ n
9
10

)

≤ E(
∑n

i=1Xi)

n
9
10

= n
1
10 · P (X1 = 1) = n

1
10 · P

(

Yi ≤
1

4
log n

)

Since Yi is binomial and has expectation greater than 1
2
log n, applying a Chernoff bound
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gives:

P

(

Yi ≤
(

1− 1

2

)

1

2
log n

)

≤ e−
1
8
logn = n− 1

8

Thus,

P

(

n
∑

i=1

Xi ≥ n
9
10

)

≤ n
1
10

− 1
8 = n

−1
40

This proves that IX occurs almost surely.

Next let R denote the number of redundant proposals made in the first phase. We

know that, throughout the first phase, the set of girls that any boy has proposed to has

cardinality at most log4 n. Thus, the probability that any proposal is redundant is bounded

above by log4 n
n

. This implies that the expected number of redundant proposals is at most:

log4 n

n
· 5n logn = 5 log5 n

In particular, let RG be the number of girls who have received redundant proposals.

Clearly RG ≤ R. Thus, by Markov’s inequality:

P
(

RG ≥ √
n
)

≤ P
(

R ≥ √
n
)

≤ 5 log5 n√
n

This proves that X occurs almost surely.

Now let X be the set of girls who have received at least 1
4
log n distinct proposals. By

VIII and IX, no more than n
9
10 girls have received less than 1

4
log n proposals by the end

of the first phase. By X no more than
√
n of the remaining girls have received redundant

proposals. It follows that |X| ≥ n − √
n − n

9
10 . Recall, pSt is the probability the next

proposal being accepted and let ρi be the number of proposals received by gi at the end

of the first phase. So, when VIII to X occur:

pSt ≤ 1

n

∑

g∈G

1

ρg + 1
≤ 1

n

∑

g∈X

1

ρg + 1
+

√
n + n

9
10

n
≤ n− n

9
10 −√

n

n
· 1
1
4
log n+ 1

+n− 1
2+n

−1
10 ≤ 5

logn
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Similarly, by VII, at least n− log4 n girls have not received a proposal from the proposing

boy. This, along with IV, implies that when VIII to X occur pSt ≥ n−log4 n
n

· 1
21 logn+1

≥ 1
22 logn

.

Hence, XI occurs almost surely.

Finally, to show the last property, we modify the proof of Lemma 4.1.6 using the

bounds obtained from XI. Indeed, if t ≤ n
2

then the algorithm has not terminated. For

t ≥ n
2
, denoting Xt to be the number of accepted proposals in the second phase, applying

Lemma 3.3.4 with Lemma 3.3.3 for t ≤ 1
20
n logn gives:

P
(

Xt ≥
n

2

)

≤ P

(

Xt ≥
10

logn
t

)

≤ P

(

Bt, 5
log n

≥ 10

log n
t

)

≤ exp

(

−
t · 5

logn

3

)

= o(1)

Thus XII occurs almost surely.

4.2.3 Bounding the Probability of Missing a Rotation

We can complete the proof of our second main result in two steps. First, we show that

the probability of a maximal rotation of cardinality two existing is at least a constant. The

second step is then easy. If there is a maximal rotation of cardinality two then a random

coalition of cardinality at most (1 − ǫ) · n will not be a winning coalition with constant

probability.

Theorem 4.2.3. Let Z ′
t = 1 when the tth proposal of the second phases closes a rotation of size 2

and let Z ′ =
∑T2

t=1 Z
′
t. Then P (Z ′ ≥ 1) = Ω(1).

Proof. The tth proposal of the second phase ends a rotation of size 2 if the following five

events occur:

• Et
1: “The second phase has not ended and we are not in the first run of the second

phase.”

• Et
2: “The last proposal of the previous run was to a girl who hadn’t yet accepted a

proposal.”
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• Et
3: “The proposal is made to the optimal partner of the boy who started the previ-

ous run.”

• Et
4: “The proposal is not redundant.”

• Et
5: “The proposal is accepted.”

If 111 log2 n ≤ t ≤ 1
20
n log n, by V and by XII we have P (Et

1|St ∈ G ′) = 1.

Denote Et
(a,b) =

∧b
i=aE

t
i and let Gt be the set of girls who have accepted proposals in

the second phase. By XI the probability of a proposal being accepted is at most 5
logn

. On

the other hand, by IV the probability of a proposal being accepted by a girl who isn’t in

Gt is at least 1
n
· n
2
· 1
22 logn

= 1
44 logn

, since at least n
2

girls are not in Gt. Thus, the probability

of the proposal being accepted by a girl who isn’t in Gt, given that it was accepted, is at

least:
1

44 logn
5

logn

=
1

220

Therefore, P (Et
2|Et

1 ∧ St ∈ G ′) ≥ 1
220

. Now, clearly P (Et
3|Et

(1,2) ∧ St ∈ G ′) = 1
n

. Moreover,

by VII, P (Et
4|Et

(1,3) ∧ St ∈ G ′) ≥ 1− log4 n
n

and by IV:

P (Et
5|Et

(1,4) ∧ St ∈ G ′) ≥ 1

22 logn

Recall by VI, the first run contains at most 111 log2 n proposals. We may conclude that

for large enough n and t such that 111 log2 n ≤ t ≤ 1
20
n log n:

P (Z ′
t = 1|St ∈ G ′) = P

(

Et
(1,5)|St ∈ G ′) ≥ 1

220
· 1
n
·
(

1− log4 n

n

)

· 1

22 logn
≥ 1

5000n logn

Next denote the event to be E ′. Since
∑t

τ=1 Z
′
τ is a counter, by Lemma 3.3.3, we obtain
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the following bound:

P (Z ′ = 0) ≤
∑

S111 log2(n)

P (E ′) · P





1
20

n logn
∑

τ=111 log2(n)

Z ′
τ = 0 ∧ S 1

20
n logn ∈ G ′

∣

∣

∣

∣

∣

∣

S111 log2 n = S111 log2 n





≤
∑

S111 log2(n)

P
(

B 1
20

n logn−111 log2(n), 1
5000n logn

= 0
)

= P
(

S 1
20

n logn ∈ G ′
)

· P
(

B 1
20

n logn−111 log2(n), 1
5000n log n

= 0
)

By Lemma 4.2.2, P
(

S 1
20

n logn ∈ G ′
)

= 1− o (1). So it is enough to show that:

P
(

B 1
20

n logn−111 log2(n), 1
5000n log n

= 0
)

< 1− Ω(1)

This follows as

P
(

B 1
20

n logn−111 log2(n), 1
5000n log n

= 0
)

=

(

1− 1

5000n logn

) 1
20

n logn−111 log2(n)

≤
(

1− 1

5000n logn

)
1
21

n logn

≤ e−
1

105000

= 1− Ω(1)

We may now complete the proof of our second main result.

Proof of Theorem 3.3.2. The probability that in a random instance there is a rotation of size

2 is Ω(1) by Theorem 4.2.3. Given that there is a rotation of size 2, the following is the

probability that a random set of λn girls misses this rotation of size 2:

(

n−2
λn

)

(

n
λn

) =
(n− 2)!

(n− 2− λn)! · (λn)! ·
(n− λn)! · (λn)!

n!

=
n− λn

n
· n− 1− λn

n− 1

≥
(

1− λn

n− 1

)2

.
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So, if λ < 1− ε for any positive constant ε, then the probability of missing a rotation is

Ω(1) ·
(

1− λn
n−1

)2
= Ω(1).
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Chapter 5

Conclusion

We have evaluated the expected cardinality of the minimum winning coalition. We be-

lieve this result is of theoretical interest and that the techniques applied may have broader

applications for stable matching problems. In terms of practical value it is worth dis-

cussing the assumptions inherent in the model. The assumption of uniform and inde-

pendent random preferences, while ubiquitous in the theoretical literature, is somewhat

unrealistic in real-world stable matching instances. Furthermore, as presented, the model

assumes full information, which is clearly not realistic in practice. However, to implement

the behavioural strategy presented in this thesis, the assumption of full information is not

required. It needs only that a girl has a good approximation of the rank of her best stable

partner. But, by the results of Pittel [19], she does know this with high probability. Conse-

quently, a near-optimal implementation of her behavioural strategy requires knowledge

only of her own preference list! This allows for a risk-free method to output a matching

close in the lattice to the girl-optimal stable matching. Similarly, as discussed, although

our presentation has been in terms of a coalition of girls, each girl is able to implement

a near-optimal behavioural strategy independent of who the other girls in the coalition

may be or what their preferences are.

Since we know that unless we pick almost every girl, we have a non-trivial probability

of selecting a non-winning coalition, further work into this subject could involve getting

46



the expected rank of the partners in the matching obtained with a coalition of size λn for

λ ∈ (0, 1).
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