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State-of-the-art machine learning algorithms (e.g., convolution neural networks, long

short term memory recurrent networks) have allowed human-driven analysis to be-

come completely automated. However, there is an increasing need for human super-

vision and intuition when automating these analyses. The objective of this thesis is

to analyze crowdsourcing and human computation in Human-Computer Interaction

(HCI) systems, which engage human participants to efficiently solve problems that

are hard for computers but intuitive for humans. This thesis addresses questions re-

lated to problems of data decomposition, visualization, and interpretation from the

perspective of HCI. Solution assembly strategies, as well as user motivation, will also

be explored.

First, to inform the design of HCI systems, data visualization techniques are ex-

plored. The goal of this project is to design HCI systems that are convenient for

humans and allow data to be easily interpreted. Genomics was a natural choice for

this study as the field explore complex data sets (e.g., Hi-C and Experimental ChIP-

Sequencing data) that require advance visualization to allow a user to interpret the

data. Here, we describe 3DGB, an interactive web-based 3D genome browser that is
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capable of visualizing and exploring 3D genome structures. 3DGB provides the user

with a simplified tool set that improves the interpretability for complex 3D genomic

data (like Hi-C), regardless of a user’s background knowledge in genomics.

Next, we address the problem of large-scale human collaboration by designing

and implementing a multiplayer, real-time simulation, called the ’Market game’. This

game-with-a-purpose creates a market simulation to investigate a competitive, yet col-

laborative, environment for players to solve classical graph theory problem. ’Market

game’ simulations have allowed us to develop multiple tools that promote and en-

hance collaboration within a large-scale HCI system.

Finally, an application of HCI techniques in cluster analysis is explored. Here, a

mobile online human computing game, called ‘Colony B’, is used to collect human

annotations of 2D clustering problems. Our work then characterizes the collection of

human-perceived 2D clusters relative to standard automated clustering techniques.

The results of this experiment demonstrate the specificity of aggregated human an-

notations and show that these clusters are approximately the same quality as those

produced by clustering algorithms. Colony B is designed to accommodate high di-

mensionality problems and allows us to address the curse of dimensionality. Finally,

we propose two crowdsourcing multidimensional clustering algorithms that partially

or entirely rely on aggregated human answers and benchmark them against state-of-

the-art fully-automated clustering algorithms.
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Methodes pour la visualisation de données et le crowdsourcing de l’analyse de

données complexes

par Alexander BUTYAEV

Des algorithmes d’apprentissage automatique de pointe (réseaux de neurones de con-

volution, réseaux récurrents à mémoire à court et long terme, par exemple) ont per-

mis à l’analyse de données manuelle de devenir complètement automatisée. Cepen-

dant, on observe un besoin croissant de supervision humaine et d’intuition lors de

l’automatisation de ces analyses. L’objectif de cette thèse est d’analyser le crowdsourc-

ing et le calcul humain dans les systèmes d’interaction homme-machine (IHM), qui en-

gagent les participants humains à résoudre efficacement des problèmes difficiles pour

les ordinateurs mais intuitifs pour les humains. Cette thèse aborde des questions liées

aux problèmes de décomposition, de visualisation et d’interprétation des données du

point de vue de HCI. Les stratégies d’assemblage de solutions, ainsi que la motivation

des utilisateurs, seront également explorées.

Tout d’abord, pour se familiariser avec la conception des systèmes HCI, nous avons

exploré les techniques de visualisation des données. Le but de ce projet est de con-

cevoir des systèmes HCI qui conviennent aux humains et permettent d’interpréter

facilement les données. La génomique était un choix naturel pour cette étude, car
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ce domaine couvre des ensembles de données complexes (par exemple, des données

de séquençage PIP et Hi-C expérimentales) qui nécessitent une visualisation avancée

pour permettre aux utilisateurs d’interpréter les données. Nous décrivons ici 3DGB,

un navigateur Web interactif pour le génome 3D, capable de visualiser et d’explorer

les structures du génome 3D. 3DGB fournit aux utilisateurs un ensemble d’outils sim-

plifiés qui améliorent l’interprétation des données génomiques 3D complexes (telles

que Hi-C), quelles que soient les connaissances de base de l’utilisateur en génomique.

Nous abordons ensuite le problème de la collaboration humaine à grande échelle

en concevant et en mettant en œuvre une simulation multijoueur en temps réel, ap-

pelée le «jeu du marché». Ce jeu de calcul (GWAP) crée une simulation de marché pour

étudier un environnement concurrentiel, mais collaboratif, permettant aux joueurs

de résoudre un problème classique de la théorie des graphes. Les simulations de

«jeux de marché» nous ont permis de développer de multiples outils qui favorisent

et améliorent la collaboration au sein d’un système HCI à grande échelle.

Enfin, nous finissons par une application des techniques HCI en analyse par grappe.

Ici, un jeu mobile en ligne d’informatique humaine, appelé «Colony B», est utilisé

pour collecter des annotations, écrites par l’homme, de problèmes de classification

2D. Notre travail caractérise ensuite la collection de clusters 2D perçus par l’homme

par rapport aux techniques de clustering automatisées standards. Les résultats de

cette expérience démontrent la spécificité des annotations humaines agrégées et mon-

trent que ces grappes ont approximativement la même qualité que celles produites

par les algorithmes de groupement. Colony B est conçu pour prendre en charge les

problèmes de haute dimensionnalité et nous permet de faire face à la malédiction de

la dimensionnalité. En conclusion, nous proposons deux algorithmes de clustering

multidimensionnels en crowdsourcing qui reposent partiellement ou entièrement sur

des réponses humaines agrégées et les comparons à des algorithmes de clustering de

pointe entièrement automatisés.
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1.1 Introduction

Over 50% of the human brain neural tissue and more than 2/3 of the electrical ac-

tivity is dedicated to sight and visual perception of information [1]. Thus, the visual

representation of information is essential for human comprehension.

Multiple models were proposed to study impact of visual representation. Card et

al. [2] proposed the Human Processor Model (HPM) that considers a person as an ac-

tive processor of data due to his or her ability to perceive, process, organize, store, and

also produce information. The HPM model introduces simplistic relations between

long-term and working memory; auditory and visual image storage, where percep-

tual memories will be stored, while encoded associated information will be moved to

the working memory section.

Rolls et al. [3] presented the neuronal mechanism that creates new associations

between visual stimuli and taste. While much work was dedicated to exploring the

reward and punishment system explaining an association between human behavior

vs. taste and/or smell [4, 5], Eng et al. [6] showed that visual working memory is

triggered by visual stimuli and degrades with its complexity. This study by Eng et

al. highlights the importance of visual representation of data in a simplistic way for

activating and engaging human working memory.

Although the effect of simplistic visual representation was scientifically observed

in 2005 [6], the idea of simplicity was proposed long before. This idea was first pre-

sented as a concept of Graphical User Interfaces (GUI) [7] and, afterward, it was

adopted as a key concept in the field of Human-Computer Interaction (HCI) [8].

HCI is a field of computational/psychological research that focuses on human

computer communication (i.e., the interface) [9]. Wickents et al. [10] described mul-

tiple HCI principles that enhance the usability of a system. These principles cover

visual interactivity, legibility, and simplicity with respect to the system and propose

minimizing the use of human working memory by introducing external, sometimes

redundant, info-related visuals.
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The thesis touches on multiple aspects of the HCI field. First, we describe the

major work in the area of Crowdsourcing and Human computing techniques, a well-

established strategy to engage broad audience of regular web and mobile consumers

for solving hard for a computer problem [11]. We review various applications of the

HCI systems with an emphasize on crowd effort to contribute to specific computa-

tional tasks. The major research in HCI utilizes human computing and crowdsourcing

techniques on a semantic understanding problem, which still can be ambiguous for

a computer program and often requires specific criterion for items comparison (e.g.,

data labelling and annotation, object grouping, ranking, etc). In particular, this thesis

investigates capabilities of a human worker in simple two-dimensional as well as high

dimensional data clustering. Thus, we review major approaches in the topic of data

clustering with the known and commonly used algorithms.

Moreover, the recent development in bio-technologies (e.g., 3C-techniques) en-

abled researchers to generate large amounts of complex data [12]. Although, the gen-

eration process of data becomes less an issue, its interpretation presents a challenge

for researchers. Complexity of genomic data and numerous supplementary param-

eters perplex the visualization model that should also follow the simplicity rule for

improved manual data analysis [13]. The thesis touches on genomic data visualiza-

tion topic. Thus, at last, we review most relevant work in the area.

1.2 Human Computing and Crowdsourcing

Despite the recent advances in algorithms, technologies, and growth of computational

resources, human intelligence is still required for many tasks that are still difficult for

computers [11]. Luis von Ahn et al. proposed ESP Game that uses computational

power of human to label images [14]. It identified the area where a human cannot be

replaced yet and initiated rapid development of various systems that employ collec-

tive intelligence.
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1.2.1 Shared Knowledge Systems

Shared Knowledge systems are among the most broadly used crowdsourcing plat-

forms [15, 16, 17]. Wikipedia [18] is an online encyclopedia that utilizes an open

collaboration model to create one of the largest multilingual knowledge databases.

Following the peer production model used in Wikipedia, Haklay et al. [19] proposed

the OpenStreetMap (OSM), the first community-generated street maps. A similar ap-

proach was used by TripAdvisor [20] to address the availability of travel-related con-

sumer knowledge. In contrast, StackOverflow is more specialized crowdsourcing sys-

tem that targets mainly applied computer science community [21]. It is a program-

ming "Question-Answer" web service that accumulates advice, solutions, and best

practices for coding challenges.

It is also interesting that shared knowledge concept was used in fiction writing to

create a shared creative space for wiki-novel writing [22]. However, later, the experi-

ment was announced to be unsuccessful due to a lack of control.

1.2.2 Crowdsourcing Marketplaces

Amazon Mechanical Turk (AMT) https://www.mturk.com/ is one of the first web

services (founded in 2005) that started to provide a great base of crowd workers for

solving microtasks regardless of its origin [23, 24]. A lot of research work was con-

ducted using AMT. Heer et al. explored human graphical perception in assessing vi-

sualization design [25]. Alonso et al. showed how crowdsourcing could be useful as

a relevance evaluation system [26]. Ott et al. address the problem of deceptive opin-

ion (spam) [27]. Shank suggested multiple applications of crowdsourcing in sociology

research [28].

Natural language annotation is also a very popular research topic on the AMT.

Snow et al. [29] explored the affect recognition, word similarity, and word sense dis-

ambiguation using the crowdsourcing effort, and showed that AMT users produce

labels comparable with expert gold standard annotations. Marge et al. [30] examined
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AMT in the context of human speech recognition tasks. Mohammad et al. built a dic-

tionary of phrases and words with emotional meaning [31]. In general, all the authors

found that collective intelligence gave quite accurate results.

There is a number of alternatives for AMT: Crowdcrafting (available until April,1

2019) [32], Microworkers [33], CrowdFlower [34] (renamed to Figure Eight inc.), Rapid-

Workers [35], MiniJobz [36], etc. While they introduce generic crowdsourcing plat-

form, Microworkers, MiniJobz, and RapidWorkers allocate primarily marketing re-

lated micro-tasks. Peer et al. compared crowd involvement the platforms and identi-

fied AMT and CrowdFlower to be clear leaders among others [37].

Most of the works placed on these systems suggest monetary compensation as

a main human motivation driver. It caused multiple concerns in the scientific soci-

ety such as gaming a system [38], demographics [39], cost-vs-quality question [40].

Ipeirotis et al. [41] analyzed the current (2010) state of the AMT marketplace includ-

ing datasets and payments, and provided guidelines for researchers to employ human

workers efficiently.

1.2.3 DIY Crowdsourcing

All crowdsourcing marketplaces provide researchers with API to design an experi-

ment. However, only a few researchers have access to resources as well as technical

background to launch a crowdsourcing system for their projects [42]. Multiple DIY

(Do-It-Yourself) crowdsourcing services were proposed that provide easy-to-launch

solutions. Crowdcrafting (available until April 1, 2019) [43] built on top of the crowd-

sourcing framework PyBossa (https://pybossa.com) offers easy to use platform with

pre-built solutions for Geo-coding, Transcribing documents, as well as Sound, Image,

and Video pattern recognition. Crowdcrafting was used to collect worldwide forest-

related data (ForestWatch https://www.globalforestwatch.org) and to investigate the

efficiency of new mosquito trapping technologies for malaria control (Rural GeoLoca-

tor [44]).
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Curio [42] (http://crowdcurio.com) is an alternative DIY crowdsourcing platform.

In contrast with Crowdcrafting that provides tools more suitable for simple annota-

tion and classification tasks, Curio allows more flexibility enabling researchers to in-

vestigate questions related to problem decomposition, incentive design, and quality

control. Besides, it employs mixed-expertise crowdsourcing paradigm that involves

both expert and amateur workers. This model was successfully used to collect data

for climate change studies [45].

It is interesting that Curio uses ’Fostering Curiosity Through Science’ as a slogan

for a platform. Indeed, Law et al. [46] studied retention of AMT human workers in the

experiment with the added curiosity element. Authors demonstrated that induced cu-

riosity increases the average number of tasks completed by participants without a loss

in accuracy. The study proposed curiosity as a competent driver for crowdsourcing

system and, thus, it was adopted by Curio.

1.2.4 Implicit Crowdsourcing

Another way of crowd engagement is to transform already existing (but unexploited)

routine into the computational system. Von Ahn et al. created an iteration of the

security system CAPTCHA [47] - the reCAPTCHA - the human computation system

to digitize the old newspapers or books that are not clear enough for optical character

recognition process (OCR) [48]. The system presents to a user a pair of words or short

phrases that are corrupted and often cannot be confidently interpreted by a computer

program. While one part of the text is known in advance and serves the purpose of

a not-a-robot verification test (Turing test) [47], another part is used to collect human

generated transcriptions. Similar to the visual data interpretation, reCAPTCHA also

allows a user to work with sounds.

Von Ahn also proposed the idea of a gamified human computational system Duolingo

that offers knowledge instead of monetary reward for implicit translating the web con-

tent of the internet to other languages [49].
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1.2.5 Disaster Response Systems

Often, a simple request or call for help is a very effective strategy to employ partic-

ipants. Crowdsourcing systems for disaster response are among the first tools that

provide needed information for emergency services. Zook et al. [50] showed the use

of collective effort to accumulate geographic crisis information mapped to the OSM

after the Haitian Earthquake (January 12, 2010). A similar approach was applied dur-

ing the earthquake in Northern Japan followed by a tsunami and Fukushima nuclear

disaster (March 11, 2011) [51]. Disaster management tools were also used to monitor

the spread of wildfire in Colorado, US (2012, 2013) [52].

1.2.6 Contest-Based Crowdsourcing

Lakhani et al. [53] found that a contest is a great way to engage (often skilled) peo-

ple into solving a particular problem. The author designs the TopCoder system, the

crowdsourcing platform for software development. Authors also illustrated the out-

standing results achieved by competitors in the two-week long competition of solving

the problem of complex sequence alignment [54]. Kaggle (https://www.kaggle.com)

is another crowdsourcing platform utilizing prize contests. In contrast to the Top-

Coder, it primarily targets data science problems [55, 56, 57, 58].

1.2.7 Games and Gamified Systems

The gamification has a very important niche in crowdsourcing and human comput-

ing field. Entertainment was shown to be a stronger motivator for a user than pay-

ment [59]. While the literature suggests multiple taxonomy of the human computing

games (e.g., casual/hard games [60]), we describe previous work based on the class of

targeted problem (data classification, multiple sequence alignment, and combinatorial

problems). It is also interesting that the problems of data classification and multiple

sequence alignment are peculiar to casual games, while serious games often inherit

more complex combinatorial problem.
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Data Classification and Annotation

Human computing games are broadly used by researchers to obtain manual data clas-

sification and annotation. Von Ahn and his colleagues were pioneers in creating a hu-

man computing system with an emphasis on the gamification process [61]. The ESP

game [14] searches for "an agreement on an image" and helps to identify the object

on the image, whereas the Peekaboom [62], in addition to the presence of the object,

collects its position on the image. Phetch game [63] is used to generate meaningful

image descriptions using a single "describer" and a group of "seekers" to find an im-

age that matches an image description given by a "describer". Law et al. proposed

TagATune, an online audio game that collects human-provided annotations for music

and sounds using the concept of the ESP game directly [64]. The Listen Game [65] also

provides audio annotations where a player has to choose the best and the worst tags

from specified ahead list, while competing against multiple people at the same time.

Human computing games also improve geotagging systems. The EyeSpy game [66]

provides textual and pictorial map annotations. The Geo-Zombie game [67] addresses

a problem of accessibility of urban areas, encouraging people to provide information

about barriers on the city streets while running away from a zombie.

Bioinformatics also contains multiple topics where human intelligence was proven

to be more efficient than a fully automated approach [60]. Computational Biology

research in antibody clustering, imputing gene expression data process demonstrated

significant performance gains when using crowdsourced approaches comparing to

established algorithms [68].

Mavandadi et al. [69] created a web-based crowdsourcing game to collect healthy

red blood cells or kill malaria-infected ones in the blood sample images. A similar idea

was proposed by Luengo-Oroz et al. [70] to utilize human intelligence for malaria

parasites quantification in the blood sample. Both studies reported highly accurate

results in their applications and, therefore, can be used in training computer vision

algorithms to enhance further automated image annotation tasks.
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Multiple Sequence Alignment

Besides from data labeling tasks, some games make use of human ability to detect

abstract object similarity. Kawrykow et al. [71] presented human computing game

Phylo, which approaches the problem of multiple sequence alignments by presenting

ambiguous segments of precomputed alignments to the player as a Tetris-style puzzle.

Players are asked then to align the blocks (encoded nucleotides) in order to achieve or

overcome the score predefined by the heuristic algorithm. Results from post process-

ing and final assembling stages showed that over 70% of original alignments were

improved. Kwak et al. [72] designed the Open-Phylo system, an open-access Phylo-

powered platform that allows any researcher to utilize gamers for solving the multiple

sequence alignment problem on custom data. Both Phylo and Open-Phylo were pro-

posed to be used within an educational process [73].

The games described above encapsulate some specific high-level problem into the

gamified interface so that even a player without any training or knowledge of the

problem can contribute.

Combinatorial problems

Problem of data clustering, ranking, or assignment of a finite set of objects to satisfy

specific conditions are known as combinatorial problems. Multiple research studies

describe human computing approach to address combinatorial problems in genomics

and proteomics.

The Foldit game [74] addresses the problem of protein structure prediction. It

shows a draft structure of a protein to the players and asks them to manually tweak

the structure or execute small automated moves on it while minimizing free energy

score. Just in three weeks, Foldit players were able to produce superior results in

modeling specific protein structure, whereas all the previous approaches had never

succeeded [75]. Later, the Foldit was transformed into a scientific tool for protein struc-

ture manipulation [76]. Inspired by Foldit model, the EteRNA game [77] integrates
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game players into the loop of laboratory trials for RNA secondary structure prediction

problem. The EteRNA players design RNA molecule (propose a set of rules) which

folds into the specific shape of interest. Best eight designs are then evaluated in the

laboratory with detailed feedback to the players in order to improve the design even

further.

The listed in the section games are considered as serious games that suggest indi-

vidual real-world problem accompanied by an intensive multilevel training session.

1.2.8 Data Clustering using Human Computing Technique

Recent advances in Machine Learning and Artificial Intelligence significantly improved

automated image classification process achieving near-human performance [78]. Tasks

that previously were considered as human-only domain - nowadays can be fulfilled

by a computer program and less frequently require human intervention.

In contrast, automated algorithms need human assistance to handle more context-

related or semantic data analysis. For example, entity resolution is a process of group-

ing synonymous objects (often words) together: choosing among {John F. Kennedy

International Airport, JFK Airport, and Kennedy Memorial Airport } is relatively easy

for a human [79]. Similarly, precise formulation of ranking and clustering problems

are known to be computationally intractable [80]. Many researchers applied crowd-

sourcing technique to cluster complex textual data [81, 82, 83, 84, 85]. The majority of

the work is focused on showing to the participants a fixed portion of data. This strat-

egy leads to incoherent results, which sometimes referred to as a redundancy prob-

lem. In contrast, the Alloy system [86] provides a global context through sampling

and searching the entire dataset (by request). Alloy allows the researcher to employ

crowd workers i) to identify text keywords for categorization, ii) to merge existing text

categories, and iii) to verify outlier text categories. The authors demonstrated that Al-

loy outperformed most of the automated and available crowdsourcing methods. Their
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analysis also illustrated the benefit of providing a user with a broader context of the

dataset.

While the topic of the text clustering gained a lot of interest from scientific society,

an application of human computation to abstract data clustering problem is poorly

described in the literature and yet to be studied.

Since this thesis touches on the abstract data clustering problem, in the following

section we provide a reader with a general background in this field.

1.3 Data Clustering

Data clustering process is a complex data analysis task which produces partitions of

a given dataset into groups. Each object is more similar to the object from the same

group than from the other. Yet, this definition is very broad. Similarity metrics can

be defined in several different ways, which redefines the whole problem of clustering

into application based sub-problems.

The field of data analysis splits the problem into multiple branches:

• Centroid-based clustering;

• Connectivity-based clustering;

• Density-based clustering;

• Model-based clustering;

• Graph-based clustering

Each branch has its own criterion for defining similarity metrics.

1.3.1 Centroid-based clustering

Centroid-based clustering contains the most commonly used set of clustering algo-

rithms due to its simplicity and, therefore, speed. This type of algorithms repre-

sents each cluster through a single point (centroid), that is treated as a center of a
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cluster. This point could be a point from a dataset (K-medoids [87], CLARA [88],

CLARANS [89], K-Harmonic Means [90]) or an average computed over the points in

a cluster (K-Means [91]). These algorithms are naturally capable of parallelism and

relatively fast (O(nkd)). Yet they are easily drawn to the local optimum and can be

affected by outliers.

Mean shift [92] is another centroid-based clustering algorithm that uses kernel den-

sity estimation function to identify centroids (modes) and then iteratively explores the

proximity of each point to shift the mean of the points until its convergence. While

this algorithm is slow(O(n2)), it can automatically determine the number of clusters

and is also parallelizable.

1.3.2 Connectivity-based clustering

The main assumption of a connectivity-based clustering method is that the objects’

similarity is proportional to the distance between the objects. Therefore, to build a

model, it uses distance-based connectivity, which often represents a hierarchy between

the objects. The algorithms usually employ either agglomerative (every data point is

defined as a cluster and then merges existing clusters based on the provided linkage)

or divisive strategy (partitions are made based in the context of the complete dataset).

Though, the main difference among the connectivity-based clustering algorithms then

is a linkage function used that serves as a criterion for merging or splitting previously

observed clusters. The most discussed in the literature are single [93], complete [94,

95], average [96], and Ward [97, 98] linkage. The algorithm has a high time O(n3) and

memory O(n2) complexity, which makes it often not feasible to use for a large dataset.

BIRCH [99] and CURE [100] algorithms address this problem by increasing memory

usage or performing clustering on a partition of a dataset.
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1.3.3 Density-based clustering

More sophisticated branch of clustering is density-based clustering, which utilizes

various heuristics to identify high-density regions in a dataset. For instance, DB-

SCAN [101] explores the ε-neighbourhood of a point to detect the specific number

of points to determine if a point belongs to a cluster. OPTICS [102] is an extension of

DBSCAN which records the number of points in a neighborhood and later adapts to

varying density of the clusters.

The main advantage of these algorithms is its ability to handle arbitrarily shaped

data as well as their speed (O(n ∗ log(n)) for low dimensional dataset). Nevertheless,

the results of these algorithms extremely depend on the choice of parameters. This

problem is addressed by several authors [101, 103].

1.3.4 Model-based clustering

Model-based clustering assumes that a dataset is generated by some model, and there-

fore it attempts to recover the original model. It uses the expectation maximization

algorithm [104], that iteratively approximates parameters of a statistical model. For

example, the Gaussian Mixture Model [105] assumes data to be generated by a finite

mixture-of-Gaussians. Although it is one of the fastest algorithms to identify the mix-

ture models, there is a chance it converges to an arbitrary bad local maxim even in

perfect conditions [106]. Therefore, it is recommended to run the algorithms multiple

times.

1.3.5 Graph-/Network-based clustering

Graph-based clustering algorithms utilize graph theory to perform the partitioning of

a dataset that is presented as a graph with vertices and edges denoting data points

and the relationship between them, respectively. This branch of clustering meth-

ods includes algorithms which operate on minimum spanning trees (Kruskal’s [107],

Prim’s [108]), or produces minimum s-t cuts (CLICK [109]).
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Clustering on graph also can be interpreted as a community search problem [110]

(in this context, it is common to see ’graph’, ’vertex’, and ’edge’ terms to be replaced

with ’network’, ’node’, and ’link’). To solve this problem, the algorithms optimize one

of the criteria: i) Clustering coefficient/Transitivity that computes the fraction of all

possible triplets of nodes (triangles) in a graph; ii) Modularity [111] that computers

a difference between the number of edges that fall within clusters and an expected

fraction of edges to be contained in a cluster given a random distribution of edges [112]

The major limitation of the structure evaluation method using Clustering coeffi-

cient is that it is heavily affected by the sparsity of a network, whereas the modularity

optimization problem was shown to be NP-hard problem [113]. However, there are

multiple heuristics proposed by the community: Louvain algorithm [114], Clauset,

Newman, and Moore (CNM) algorithm [115], Walktrap [116], and Wakita and Tsu-

rumi (WT) algorithm [117].

The Louvain algorithm detects communities in the network by maximizing recur-

sively the modularity gain while reattaching nodes to neighboring communities. In

contrast, CNM and WT merge entire communities using the expected improvement

of modularity. Besides, WT uses community size balancing technique which gives a

boost in speed but might have a negative effect on the modularity score of the final

partition [114]. Walktrap captures the community structure in a network using ran-

dom walks to measure the similarity between nodes.

1.3.6 Cluster validation

To compare the result of different clustering algorithms, it is common to use a clus-

ter validation index. This is a function that provides a numerical evaluation of the

clustering result.

Silhouette [118], Dunn [119], and SDbw [120] indices are among the most com-

monly used ones. Silhouette defines the total score through the average inter- and

intra-cluster distances. The Dunn index compares a diameter of each cluster with
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a minimal inter-cluster distance. In contrast, the SDbw index computes a scattering

(sum of standard deviations of each cluster over the standard deviation of the dataset)

and density at the midpoint of the cluster centers with respect to the cluster center

densities.

A cluster validation index evaluates a result of a clustering algorithm, however, it

is case-specific and should be thoughtfully chosen depending on the clusters property

to be highlighted [121].

1.3.7 Clustering in high dimensionality space

While the clustering algorithms discussed above are applicable to work with multi-

dimensional data, it is likely that their performance degrades with increasing dimen-

sionality [122]. This effect would most likely be caused by the curse of dimensional-

ity [123], where the distance function becomes less efficient at higher dimensionalities.

Multiple strategies have been proposed in the literature to manage the high dimen-

sional dataset [124, 125, 126], including feature selection, dimensionality reduction

techniques, and subspace clustering algorithms.

Feature selection [127, 128] is a simple computational technique to filter out non-

informative features (or dimensions) from a dataset using either internal properties

of the dataset (e.g., variance, mutual information, a correlation between features and

a target) or predictive models (Naive Bayes, SVM, Random Forest). Correlative ap-

proaches have shown to be very efficient and robust to overfitting and yet, these ap-

proaches tend to select redundant features. Predictive models, on the other hand, gen-

erally detect the relations between one or more variables and are sensitive to overfit-

ting. These models are extensively discussed in the literature for both supervised [129,

130, 131, 132] and unsupervised learning problems [133, 134, 135, 136].

Another commonly used technique is a feature transformation (or extraction) [124],

which is often referred to as a dimensionality reduction [124]. This techniques generate

a completely new set of features, which can be either linear (PCA [137], PCoA [138])
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or non-linear (Isomap [139], t-SNE [140], Autoencoder [141]) combinations of the orig-

inal features. While these techniques are expected to provide features relevant to the

original dataset, their results often lack interpretability [140].

While feature selection and extraction have proved to be efficient techniques, the

alternative approach of biclustering [142] was designed to primarily work with high

dimensional datasets. This algorithm simultaneously groups together samples and

features to produce a submatrix of the original data with elements found to be use-

ful. Biclustering has broadly been used in bioinformatics to explore gene expression

data [143, 144, 145, 146] and also extended to the other fields, including databases,

natural language processing and data mining. Subspace clustering [147, 126] is an

implementation of the biclustering algorithm that employs either Bottom-Up or Top-

Down subspace search techniques [148]. Bottom-Up compiles high dimensional clus-

ters from previously obtained clusters in lower dimensional subspaces and assumes

that if subspace S contains a cluster C then any lower dimensional subspace P ⊂ S
also includes C [149, 150, 151, 152]. In contrast, the Top-Down approach iteratively

finds an approximation of the clusters in a complete feature space and then refines di-

mensional weight to be used for the next iteration [147, 153]. In the literature Bottom-

Up and Top-Down subspace clustering methods are often referred to as ’subspace clus-

tering’ and ’projected clustering’ algorithms, respectively [148].

1.4 Visualization of genomic data

The text found in this section is taken from:

Jérôme Waldispühl, Eric Zhang, Alexander Butyaev, Elena Nazarova, and Yan

Cyr. "Storage, visualization, and navigation of 3D genomics data." Methods 142

(2018): 74-80.
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1.4.1 Contact maps and 2D representations

The release of the first draft of the human genome [154, 155] triggered enormous devel-

opment in the area of genomics. Recent advances in biochemistry and biotechnology

(e.g., high throughput technologies [12]) allowed the researchers to generate unseen

previously amount of data. Nevertheless, while data-driven research is very promi-

nent, data storage, searching, analysis, interpretation, and visualization are still an

open-ended problem [156, 157].

The most elementary level of genomics data available is inferred inter- and intra-

chromosomal contacts from 3C or ChiP-based experiments. The UCSC genome browser

integrates this information in a data type called longTabix that is shown as arcs con-

necting two indexes in a linear representation of the genomes [158]. A similar ap-

proach has been implemented in HiView [159], which allows mapping Genome-Wide

Association Study (GWAS) and Hi-C data (count data) on the top of linear genome

browser integrating UCSC and Ensembl annotations. Interestingly, recent software

such as HUGIn is still making use of linear representations (as histograms) to com-

pare virtual 4C data across tissues or cell lines [160].

My5C was among the first web tools developed to visualize Hi-C chromatin inter-

action maps as heatmaps [161]. Noticeably, it integrates several programs to analyze

these maps. The Hi-C Data Browser is another web tool that was initially developed

to display the first Hi-C data [162]. It evolved into a new software called Juicebox that

features a real-time zoom allowing users to smoothly adjust the resolution of the dis-

play [163], and include a toolbox to analyze Hi-C data [164]. A cloud-based version

has also been recently introduced, which enables easy integrations in third-party web

browsers [165].

The WashU epigenome browser provides another alternative to the visualization

of Hi-C heatmaps [166]. This browser, which has been initially developed to visualize

ENCODE data [167], provides an intermediate approach to explore 3D genomics data.

Genome annotations are represented using a linear model, but the viewer allows to
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map on histone modification profile ChIA-PET interactions and Hi-C heatmaps (Fig.

1.1a).

More recently, an efficient and versatile web tool named HiGlass (Fig. 1.1c) de-

signed for exploring Hi-C data generated by the 4DN consortium has been released [168].

Noticeably, HiGlass allows index searches, has multiscale capacities and features a

mechanism enabling simultaneous exploration of multiple independent or linked heatmaps.

It has also been used in HiPiler [169], another web tool facilitating the exploration and

comparison loops and domains. HiPiler expands the scope of techniques available to

analyze interaction matrices, that were previously primarily implementing statistical

analysis methods (See HiBrowse [170]). The genome contact map explorer is another

recent Desktop-based tool developed to analyze and compare Hi-C contact maps [171].

It has been implemented in Python and offers a broad variety of interfaces including

a command line and graphical interfaces and an API.

Nonetheless, new platforms are still being developed to answer specific needs.

For instance, the 3D genome browser incorporates heterogeneous 3D (e.g. 3C-based,

CHiA-PET) and omics datasets (e.g. RNA-seq), and allow queries to others popular

browsers such as the WashU epigenome browser [172]. The HiCExplorer [173] facili-

tates simultaneous analysis of Hi-C data and other genomics annotations (e.g. genes,

ChIP-seq). It has been implemented in Python and runs using a command line inter-

face. Finally, 3DIV integrates almost all features of previous visualization tools, but

has the advantage to be coupled with an up-to-date database of chromosomal interac-

tion and epigenomics datasets [174].

An alternate visualization approach was implemented in Capture Hi-C Plotter

(CHiCP) [175]. CHiCP uses a circular representation of the sequences, in which long-

range chromosomal interactions are represented with arcs (Fig. 1.1b). This display

appeared to be convenient to visualize 4C and virtual 4C data (i.e. the list of all interac-

tions with an explicit locus). Although circular representations were previously used

in genomics [176, 177, 178], CHiCP has been customized for Hi-C data and dynamic
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FIGURE 1.1: Overview of 3D genome visualization interfaces. (a) arc representation of ChIA PET interactions within the WashU

Epigenome browser, (b) Circular representation of chromosomal interactions and genomics annotations with CHiCP, (c) Hi-C

interaction matrix visualization with HiGlass, (d) upper triangular matrix representation of Hi-C data mapped on linear genomic

annotation tracks of a TAD region with the 3Disease browser, (e) 3D representation of a TAD region with TADkit, (f) immersive

3D exploration of full 3D genome reconstruction with 3DGB.
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manipulation of circular plots. Rondo is another web-based 3D genome browser us-

ing this layout [179], which in addition indexes the data to navigate maps at different

resolutions. Nonetheless, it is worth noting that the WashU epigenome browser [166],

HiBrowse [170] also feature circular genome representations.

1.4.2 3D genome structures

While the representation and manipulation of chromosomal contacts and interaction

matrices appear to reach maturity, the visualization and exploration of 3D genome

structures are still in its infancy. Many software such as Chimera [180] have been

previously developed to visualize 3D molecular structures, but none of them were

designed to address the challenges of 3D genomics, including multiscale modeling

and the management of numerous heterogeneous genomics annotations.

The 3Disease browser [181] includes partial 3D visualization functionalities. Beside

a comprehensive interface integrating multiple tracks showing gene annotations and

Hi-C interaction heatmaps (Fig. 1.1d), it can also display the 3D structures of TADs.

This platform has been specifically designed to study disease-associated chromosomal

rearrangements and integrates the ShRec3D algorithm used to build 3D models from

Hi-C data [182].

TADkit is another popular TAD viewer featuring similar functionalities [183] (Fig.

1.1e). It serves as the front-end of a powerful platform for automated analysis of 3D

genomics data named TADbit.

The first program specifically designed to explore complete 3D genome architec-

tures appears to be Genome3D [184]. It features multiscale capacities and supports

annotations from the UCSC genome browser [185]. However, Genome3D has been

implemented as a standalone application running on Windows Operating Systems,

which inevitably limits its distribution.

By contrast, GMOL is implemented in Java and offers an alternate, more universal,

solution for multiscale visualization of 3D genomes [186]. Is also includes additional
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functionalities such as a command line, scripting interpreter and a measurement tool

of physical distances.

Finally, 3DGB implements a distinct, web-based, strategy for the exploration of

complete 3D genomes [187] (Fig. 1.1f). Unlike the other 3D genome viewers intro-

duced above, 3DGB is implemented in Javascript and runs in a web browser. The

deployment of this technology was facilitated by the use of the 3DBG database sys-

tem, which reduces spatial query latency and thus permits the dynamic loading of the

data in the client browser. This infrastructure enables 3DGB to propose an immer-

sive exploration of 3D genome structures. 3DGB includes most of the tools mentioned

above (e.g. scripting, distance measurement) except the zoom functionality. It also in-

tegrates the Genome Maps web application [188] for navigating linear representations

of genome sequences.

This concludes the exert from Waldispühl et al. (2018).

1.5 Thesis Roadmap and Author Contributions

Crowdsourcing is a popular and well-established technique to perform a large num-

ber of repetitive tasks. The underlying assumption of the technique is that aggregat-

ing sufficiently large number of non-experts answers could approximate expert be-

haviors [77, 74]. Crowdsourcing strategies focus on efficiently engaging a crowd of

non-expert worker to produce useful input for a computational system, which would

unlikely be obtained otherwise. In combination with Human-Computer Interaction

(HCI) techniques, which study the design of interfaces between human and computer,

crowdsourcing touches on a large spectrum of various topics related to computational

system including a mechanism of human interacting with a system, players’ motiva-

tion to contribute to a specific problem, and strategies to aggregate human answers to

provide the final result.

Chapter 1 provides the reader with a general background in the three main research

topics covered in this thesis: i) crowdsourcing and human computation, ii) abstract
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data clustering, and iii) genomic data visualization and interpolation. Recent advances

in Artificial Intelligence (AI) allow human-driven analysis to become completely au-

tomated. Yet, there are many applications (e.g., ranking or cluster analysis [80]) where

AI computer programs require human guidance and intuition to obtain accurate re-

sults. Therefore, to overcome this limitation of AI, we provide an overview of major

studies in the area of crowdsourcing and human computation as motivation for our

human computing games (Chapter 3, Chapter 4) and algorithms that outperform AI

in Chapter 5. In thesis, we address the problem of data clustering (Chapter 4, Chap-

ter 5). Thus, we describe the major approaches in the field to this problem. Finally,

each chapter of the thesis, directly or indirectly, discusses the data visualization and

interpretation techniques. Therefore, the remainder of chapter 1 provides an overview

of the data visualization and interpretation techniques in the area of HCI, with a high

emphasis on genomic data.

Chapter 2 describes the problem of visualizing three-dimensional (3D) genomic

data in an interactive 3D space. To address this problem, we present 3D Genome

Browser (3DGB), an immersive web-based 3D Genome Browser interface that is built

upon a low latency database. 3DGB enables efficient data browsing of 3D genomic

data within any standard web-browser (i.e., Internet Explorer, Safari, Chrome, etc.).

Next, in Chapter 3, the specificity of human-computation systems are explored.

Specifically, this chapter aims to understand how humans collaborate, how this phe-

nomenon benefits a system, what incentives are needed to promote collaboration, and

how to make an interaction between participants more efficient. To address this prob-

lem, we develop the human computing game that simulates a market as the primary

tool for collaboration between participants. We examine its effect in context of clas-

sical graph theory problem (clique) and demonstrate the importance of a collabora-

tive/competitive environment in the human computation system. In addition to the

game environment, we also explore other motivators, such as game challenges and

skills, that help direct a player’s attention towards poorly explored part of the under-

lying problem.
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In Chapter 4, the application of HCI crowdsourcing techniques in cluster analysis

are then explored. We investigate how humans perceive simple two-dimensional (2D)

clusters. We describe the mobile online human computing game ‘Colony B’, a compu-

tational framework to collect human input (i.e., crowdsourced) for simple 2D cluster-

ing problems. Then, in Chapter 5, we extend our crowdsourced clustering approach to

work with higher dimensionality datasets. Two clustering algorithms (hubCLIQUE and

CloCworks) are proposed that use aggregated human solutions collected from Colony B

players to identify key features in male and female voice samples. Our results demon-

strate that the proposed algorithms outperform most automated clustering algorithms

considered. Finally, Chapter 6 provides a summary of the preceding four chapters and

discussion on possible future works.

This thesis includes the text and figures from several scientific articles. Each ar-

ticle has been published, submitted, or is in preparation for submission to a journal.

Alexander Butyaev is either first or co-first author for each article found in Chapter 2-5

and a co-author in Chapter 1. The articles are listed below in their order of appearance

throughout the thesis.

Chapter 1

Jérôme Waldispühl, Eric Zhang, Alexander Butyaev, Elena Nazarova, and Yan

Cyr. "Storage, visualization, and navigation of 3D genomics data." Methods 142

(2018): 74-80. doi: 10.1016/j.ymeth.2018.05.008

J.W. prepared the draft of the manuscript. E.Z., A.B., E.N. helped draft the manuscript.

Y.C. consulted for VR systems. All authors reviewed and approved the manuscript.

Chapter 2

Alexander Butyaev, Ruslan Mavlyutov, Mathieu Blanchette, Philippe Cudré-Mauroux,

and Jérôme Waldispühl. "A low-latency, big database system and browser for

storage, querying and visualization of 3D genomic data." Nucleic acids research 43,

no. 16 (2015): e103-e103. doi: 10.1093/nar/gkv476

A.B. and R.M. contributed equally to the development of the text. A.B. developed the 3D

Genome Browser (3DGB), performed computational analysis, helped with benchmarking
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of proposed approach against state-of-art methods, and helped draft the manuscript. R.M

implemented the database storage, performed the algorithms comparison, and prepared the

first draft of the manuscript. M.B consulted on the available 3D genomic data. P.C.M.

and J.W. coordinated the design of the systems and helped draft the manuscript.

Chapter 3

Olivier Tremblay-Savard, Alexander Butyaev, and Jérôme Waldispühl. "Collab-

orative Solving in a Human Computing Game Using a Market, Skills and Chal-

lenges." In Proceedings of the 2016 Annual Symposium on Computer-Human Interac-

tion in Play, pp. 130-141. ACM, 2016. doi: 10.1145/2967934.2968104

O.T.S. and A.B. contributed equally to the development of the text. A.B. developed the

computational back end and data management sections of the Market game, contributed

to the design of the front end of the game and data analysis, and helped to prepare draft

of manuscript. O.T.S. developed the front end of the game, arranged the game sessions,

outlined and performed data analysis, prepared the first draft of the manuscript. J.W. co-

ordinated the game design and computational analysis and contributed to the manuscript

development.

Chapter 4

Alexander Butyaev, Chris Drogaris, Elena Nazarova, Olivier Tremblay-Savard,

and Jérôme Waldispühl. "How do Humans Perceive 2D Clusters? Lessons From

a Mobile Crowdsourcing Human-Computing Game." In submission at Computer-

Supported Cooperative Work and Social Computing conference.

A.B. contributed to the design of the mobile application, developed server side of the

Colony B game and data management system, implemented the computational analy-

sis, and prepared a draft for the manuscript. C.D. designed the mobile application for the

Colony B game. E.N. designed the reward system (badges). O.T.S. conceived the original

idea of the game and helped draft the manuscript. J.W. contributed to the design of the

mobile application and coordinated the computational analysis.

Chapter 5
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Alexander Butyaev, Chris Drogaris, and Jérôme Waldispühl. "Colony B: Multidi-

mensional Data Clustering with Human." In preparation for submission at Human

Computation and Crowdsourcing conference.

A.B. contributed to the design of the mobile application, developed server side of the

Colony B game and data management system, implemented the computational analy-

sis, and prepared the first draft for the manuscript. C.D. designed the mobile application

for the Colony B game. J.W. contributed to the design of the mobile application and coor-

dinated the computational analysis.
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2.1 Preface

In biology, the genetic code dictates the rules by which the living cells exist [189]. Al-

though, the release of the first draft of the human genome [154, 155] was an outstand-

ing breakthrough in the area of genomics and gave a great momentum for a devel-

opment in the field, the primary structure of the genomes does not provide complete

information to decipher our genetic code [190].

Recent advances in biotechnologies, such as chromosome conformation capture

techniques [12], enabled researchers to grasp the importance of spatial genome organi-

zation and make a step toward better understanding of some regulatory mechanisms.

It also allowed to generate 3D models of the genomes of multiple living species [162,

191, 192].

While previously the area of genomics was operating with a variety of annota-

tions mapped to the one-dimensional sequence (reference genome) [193, 194], the 3D

genome data allowed scientists to identify hidden before relations between genome

elements. Current solutions for visualization and interpretation of such data are not

capable of providing primary and tertiary genome structure simultaneously. More-

over, often they are OS specific standalone applications that require to install numer-

ous external packages. Therefore, the field needs more user-oriented tools suitable for

explorative interaction with 3D genomic data.

This chapter describes the novel database storage 3DBG that efficiently manages 3D

genomic data. It introduces interactive web-based 3D genome browser 3DGB capable

of visualizing and exploring 3D genome structures served by 3DBG. It presents API to

access the database as well as a scripting tool that allows interacting with the database

using a web browser.

In this chapter, before designing crowdsourcing systems (Chapters 3,4,5) we aim

to gain experience with designing HCI systems that are convenient to use for humans

to interpret the data. We choose genomics as it seems a natural field for exploring

how to manipulate the data for its better visualization and, therefore, the following
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interpretation by a user.

The remainder of text found in this chapter is taken from:

Alexander Butyaev, Ruslan Mavlyutov, Mathieu Blanchette, Philippe Cudré-Mauroux,

and Jérôme Waldispühl. "A low-latency, big database system and browser for

storage, querying and visualization of 3D genomic data." Nucleic acids research

43.16 (2015).

A.B. and R.M. contributed equally to the development of the text. A.B. developed the 3D

genome browser (3DGB), performed computational analysis, helped with benchmarking of

proposed approach against state-of-art methods, and helped draft the manuscript. R.M im-

plemented the database storage, performed the algorithms comparison, and prepared the draft

of the manuscript. M.B consulted for available 3D genomic data. P.C.M. and J.W. coordinated

the design of the systems and helped draft the manuscript.
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2.2 Abstract

Recent releases of genome 3D structures have the potential to transform our under-

standing of genomes. Nonetheless, the storage technology and visualization tools

need to evolve to offer to the scientific community fast and convenient access to these

data. We introduce simultaneously a database system to store and query 3D ge-

nomic data (3DBG), and a 3D genome browser to visualize and explore 3D genome

structures (3DGB). We benchmark 3DBG against state-of-the-art systems, and demon-

strate that it is faster than previous solutions, and importantly gracefully scales with

the size of data. We also illustrate the usefulness of our 3D genome Web browser

to explore human genome structures. The 3D genome browser is available at http:

//3dgb.cs.mcgill.ca/.

Keywords: 3D genome | structure | database | genome browser

2.3 Introduction

2.3.1 Biological motivation

The release of the first draft of the human genome [154, 155] announced the beginning

of a data era in genomics. Gathering information does no longer appear as a major

bottleneck in molecular biology studies. However, by contrast, storing and mining the

massive amounts of data generated by genomics studies becomes increasingly diffi-

cult.

The development of efficient computing infrastructures to store and retrieve ge-

nomic information is thus an essential part of the discovery pipeline in genomic re-

search. The UCSC genome browser [185, 194] and the Ensembl genome browser [193,

195] were among the first systems specifically developed to address this issue and

opened the access of sequencing data to the whole scientific community.

Since then, the complexity and the nature of the data themselves has changed. In

particular, the primary structure of genomes does no longer appear to contain all the
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information required to decipher our genetic code. Indeed, recent studies suggest

that the three-dimensional (3D) structure of genomes is essential to understand some

regulatory mechanisms [190].

3D structures and Hi-C data sets of Human [162, 191] or Yeast genomes [192] are

now available. Viewers have been developed to visualize complete genome struc-

tures [184] and Hi-C data annotations have been integrated in classical genome browsers [166].

However, to date, there is no scalable solution to query simultaneously primary and

tertiary genome structures. Moreover, unlike classical human genome browsers, these

viewers are currently only available as Operating System (OS)-specific standalone ap-

plications that are not embedded into Web browsers.

In this paper, we aim to address these challenges and develop a complete solu-

tion for storing and analyzing 3D genomic data. More specifically, we develop a new

database system for storing and querying 3D genomic data, and a lightweight 3D

genome browser for real-time visualization and exploration of 3D genome structures.

We emphasize that the development of efficient database architectures is key for the

success of a novel generation of 3D genome browsers.

2.3.2 Database technology

There has been substantial related work on storing and querying 3D data in the context

of astronomy, remote-sensing, neurology or more broadly for the storage of spatio-

temporal data. Existing approaches can be broadly categorized along three axes:

• Index-based versus cluster-based. Most existing work builds a 3D index over

the raw data, but does not attempt to physically reorganize the raw data (index-

based) so that co-queried objects are stored near each other (cluster-based).

• Adaptive versus non-adaptive. Adaptive systems adjust storage structures based

on the query size and/or the data. They generally require less tuning and can

typically handle a broader range of data sets than non-adaptive systems.
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• On-line versus off-line. On-line systems change their storage representation as

data arrives, whereas off-line systems assume that the indexed data does not

change frequently and must recompute their storage layout from scratch as data

arrives.

The ‘classic’ database structure for indexing objects along multiple dimensions is

the R-Tree [196]. Unlike 3DBG, R-Trees do not per se cluster data and are optimized for

accessing arbitrary spatial objects, rather than large amounts of data organized along

3D trajectories. Of course, it is possible to attempt to physically co-locate (cluster)

objects in the same R-Tree rectangle together on disk. Even so, as R-Trees consider

nested bounding rectangles to index the objects, it is very likely that if there is much

data within a small area, there will be large overlaps in these bounding rectangles,

resulting in many I/Os to answer any query.

There have been many optimizations to R-Trees for spatio-temporal data, includ-

ing TB-Trees [197] and SEB-Trees [198]. TB-Trees are optimized R-Tree indices with

special support for temporal predicates. They also do not deal well with very long 3D

trajectories that tend to have very large bounding rectangles, and can include a high

number of I/Os per lookup. SEB-Trees segment space and time, but are not specifi-

cally designed for indexing trajectories. Research on TB-trees and SEB-trees does not

explicitly discuss how to cluster data, and both are non-adaptive (i.e. they do not

reorganize previously added pages as new data arrives).

To address the concern with very large 3D meshes or trajectories, several systems

have proposed segmenting the trajectories to reduce the sizes of bounding boxes and

group portions of trajectories that are near each other in space together on disk. Rasetic

et al. [199] propose splitting trajectories into a number of sub-trajectories, and then

indexing those segments in an R-Tree. They propose a formal model for the number

of I/Os needed to evaluate a query, and use a dynamic programming algorithm to

minimize the I/O for an average query size. 3DBG also includes an algorithm for
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optimally splitting 3D genomic meshes and their associated metadata, but in addition

physically clusters those segments rather than just indexing them.

SETI [200] also advocates a segmentation-based approach like 3DBG. It segments

incoming 3D meshes/trajectories into sub-trajectories, groups them into a collection of

‘spatial partitions’ and then runs queries over just the spatial partitions that are most

relevant to a given query. The principal differences between 3DBG and SETI are that:

(i) the SETI paper does not describe how the size or geometry of partitions is selected,

or whether it changes as inserts occur, which is a key contribution of 3DBG, and (ii)

SETI does not discuss metadata storage and clustering, read-optimized operations or

scalability features.

PIST [201] focuses on indexing individual points rather than 3D meshes. PIST is

similar in spirit to 3DBG in that it attempts to optimally partition a collection of points

into a variable-sized grid according to the density of the data and query size using a

quad-tree like data structure. Unlike 3DBG, PIST is off-line (i.e. it does not adapt to

new data being added dynamically).

A number of other systems, such as STRIPES [202], use a dual transformed space to

index meshes or trajectories. While such indices are very compelling when indexing

the future positions of moving objects, they are known to be suboptimal for answering

historical or ad hoc queries [203].

Spatial clustering has been extensively studied (21–23). These approaches focus on

generic methods to extract cluster information from large collections of ad hoc data

points. Our clustering problem is more specific, since we deal with series of points

ordered along 3D genes, and more importantly on the (potentially large) metadata

associated to the 3D models.

2.3.3 Contribution

In this paper, we introduce a complete efficient and scalable database system to query

genomes in space. The system includes two components: (i) a database 3DBG to store
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and query the 3D genomic data, and (ii) a web-based genome browser 3DGB to visu-

alize and navigate 3D genome structures. As far as we are aware, 3DBG is the first

database system that is online, adaptive and cluster-based. We designed 3DBG to opti-

mize the speed of searching and accessing genomic annotations from their 3D spatial

coordinates in genome structures. We also develop a lightweight 3D genome viewer

3DGB that is fully embedded in Web browsers and accessible to any web user who

wishes to browse and query 3D genome structures.

Our system aims to foster the discovery of spatial relationships between genomic

elements and accelerate the large-scale analysis of space-dependent regulatory mech-

anisms. Here, we map data from the 1000 genomes project [204] and experimental

Chip-Seq data [194] onto most recent 3D models of the Human genome [162, 191], and

use 3DBG to mine these data. We benchmark 3DBG against state-of-the-art systems,

and demonstrate that our database system is faster than previous solutions, and more

importantly that it scales better with the size of data. We also illustrate the usefulness

of our system and use our 3D genome Web browser to explore the 3D neighborhood

of the retinoblastoma gene (RB1) and identify potentially interesting genetic relation-

ships between retinoblastoma and sleep disorders.

Our system is freely available at https://github.com/mavlyutovrus/3d_genome_

browser and a sample deployment of our 3D genome explorer is accessible at http:

//3dgb.cs.mcgill.ca/.

2.4 MATERIALS AND METHODS

2.4.1 3D genome database

We have implemented a fully functional database based on YARN (http://hadoop.

apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html), currently one

of the most promising Big Data processing framework available. 3DBG takes advan-

tage of the lower-level distributed filesystem of YARN (HDFS) to store the data chunks
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over large clusters of commodity machines. Our system is based on three main com-

ponents:

• a 3D client, which allows the user to navigate through the 3D genomic space. It

dynamically retrieves high-resolution 3D data and genomic metadata from the

rest of the system as the user moves through the 3D space and makes queries

about certain 3D regions.

• a sparse, adaptive 3D index, which dictates how genomic metadata associated to

contiguous regions in the 3D space are co-located in the distributed filesystem.

The 3D index translates the 3D query posed by the user into a series of data

chunks that have to be retrieved from the distributed filesystem.

• immutable data chunks that compactly store genomic data and metadata in the

distributed filesystem.

Figure 2.1 gives an overview of our database. We implemented our own indices

and ancillary data structures to optimize all operations, and bypass the Hadoop Na-

meNode whenever possible to reduce the end-to-end latency of the queries. We do

not rely on higher-level Hadoop data structures such as those offered by Spatial-

Hadoop [205] or Impala (http://www.cloudera.com/content/cloudera/en/products-and-services/

cdh/impala.html), since these higher-level structures negatively impact the perfor-

mance of on-line queries. Along similar lines, we do not directly use large-scale batch-

processing features a la MapReduce, since they would introduce unreasonably high

latencies in our context, but could take advantage of such functionalities for off-line

operations such as batch updates or complex analytics.

A detailed description of each component of our database, as well as an explana-

tion on our query insertion and query execution techniques, is available as supple-

mentary material. The full codebase of our current implementation is available online

at https://github.com/mavlyutovrus/3d_genome_browser.
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2.4.2 Data and web services

We describe the data stored in our database and the syntax of web queries to access

them. Additional instructions and scripting packages for javascript users can be found

at http://3dgb.cs.mcgill.ca/scripting/.

3D structures

Currently, three complete models of human 3D genome structures are stored in our

database. We retrieve these data from [191, 184] and describe them in Table 2.1. It is

worth noting that [191] provides individual structures for each chromosome, but no

global relative arrangement of all chromosomes. For this reason, we provide indepen-

dently each chromosome structure.

Origin and description of the 3D models stored in 3DBG

The structures are interpolated with a finite number of points. This number of points

depends of the resolution of the model and therefore varies from one model to another.

The volume encompassing the genome structure is segmented in 3D cubic cells.

Spatial queries use the coordinates of a cube (starting and ending positions on the x, y

and z axis) as an input and return the coordinates of the interpolation points modeling

the DNA chains contained within this cell. In particular, it allows us to identify the

ranges of DNA subsequences within this volume.

The syntax of a query is http://1kgenome.exascale.info/<mode>?xstart=<x1>&xend=

<x2>&ystart=<y1>&yend=<y2>&zstart=<z1>&zend=<z2>, where <mode> should be

replaced by js_test to query the model from [184], or 3D to query the model from [191].

<x1> to <z2> indicate the spatial coordinate of the cell. Queries to the structure issued

from [191] should also include the chromosome number and the type of the cell (nor-

mal or leukemia). In that case, an example of a full query could be http://1kgenome.

exascale.info/3d?chr=19&m=normal&xstart=1&xend=2&zstart=1&zend=2&ystart=1&
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TABLE 2.1: Origin and description of the 3D models stored in 3DBG

Cell type Organism Type Scale #fragments Reference

K562 human simulated whole genome 1 [184]
B-cell GM06990 human real individual chromosomes 13 [191]
B-cell luekemia human real individual chromosomes 13 [191]

Data Node 42

Metadata Chunks

Hi-Res 3D Chunks

Client 12

key 4563 : value 12.1561
key 46773 : value 58.561

key 4873 : value 2.15
key 13563 : value 14.1561
key 45642 : value 14.1561
key 94563 : value 12.14531
key 45423 : value 14.1561

Metadata Hi-Res
3D Data

Spatial Browser

Adaptive 3D Index

Chunk ids (+ gene ranges 
or metadata types)

Chunk465 (Gene465 [4799:4913], 
Gene156 [56:413]);

Chunk466 (Gene465 [4913:5110], 
Gene156 [413:582]);

Chunk702 (Gene465 [5110: 5364], 
Gene156 [582:589]);

Data Node 78

Metadata Chunks

Hi-Res 3D Chunks Data Node 122

Metadata Chunks

Hi-Res 3D Chunks

3D Query
Chunk ids

Gene Metadata
and/or Hi-Res 3D Data

Horizontally-Scalable Distributed Filesystem
Octree Index

FIGURE 2.1: Overall architecture of 3DBG.
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yend=2. The output is represented as an array of arrays, which represent contiguous

chains within the volume.

Nucleotide sequences

We use GRCh38 assembly of the human genome from the UCSC genome browser as

our reference human sequence [185, 194]. Nucleotide sequences can be accessed from

their chromosomic location. The syntax of a query is http://1kgenome.exascale.info/

range?start=<start>&end=<end>&chrid=<chr> , where <start> and <end> are the first

and last index of the subsequence of interest, and <chr> is the chromosome number

(N.B.: X and Y chromosomes are identified using letters X and Y instead of numbers).

Single nucleotide polymorphism

We store the Single Nucleotide Polymorphism (SNP) data from the 1000 Genomes

Project [204]. Web users can retrieve SNPs data within a specific range of a chro-

mosome with the following query http://1kgenome.exascale.info/js_snp?chr=<chr>

&start=<start>&end=<end>, where <start> and <end> are the first and last index of

the subsequence of interest, and <chr> is the chromosome number.

A query returns an array of arrays showing information for each individual SNP

found within this interval. This information is represented as a 4-tuple including the

SNP position, the SNP ID and the two alleles.

Experimental ChIP-Sequencing data

We recorded experimental ChIP-Sequencing (Chip-Seq) data from the ENCODE project [206]

stored in the UCSC genome browser [185, 194]. These data help us to identify tran-

scription factors binding sites (TFBS).

ChIP-Seq data can be retrieved with a query to http://1kgenome.exascale.info/

chipseq?chr=<chr>&start=<start>&end=<end>&celline=<cellid>, where the variables

<start> and <end> are the first and last index of the subsequence of interest, <chr> is
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the chromosome number, and <cellid> is the cell line from which we obtained the ex-

perimental data. It is worth noting that in practice, Chip-Seq data may not always be

available for all 3D structures models and cell types.

The output of such query is an array of 7-tuples that contain basic information

on the Chip-Seq data. A 7-tuple stores the chromosome number, starting and ending

index of the Chip-Seq peak, the transcription factor name, a normalized value (ranging

from 1 to 1000) indicating the magnitude of the binding, the cell lines with similar

TFBS and a list of SNPs occurring in this binding site.

Determining single nucleotide 3D coordinates

A key feature of a system for querying genomes in space is its capacity to directly

access the 3D coordinates of any nucleotide. However, 3D genome structures are often

modeled with (sparse) discrete sets of points corresponding to enzyme cut sites. In

that case, it is useful to directly access the closest cut site (in each strand direction) of

a model.

This information is accessible with a web query to http://1kgenome.exascale.info/

chr_pos?chrid=<chr>&bp=<index>&m=<mode>, where <chr> is the chromosome num-

ber and <index> is the sequence index of the nucleotide. The variable <mode> should

be set at ’normal’ to query the GM06990 cell data or ’leukemia’ to query the leukemia

cell data (N.B.: these key words are subject to change for more precise acronyms with

the addition of new cell types). This argument can be simply ignored if the user wishes

to query the K562 data. The query returns an array of triplets indicating the 3D coor-

dinate of the closest interpolation points.

3D genome Web visualization interface

Web users can access and visualize data stored in our servers via a GUI accessible

at http://3dgb.cs.mcgill.ca/. Our client, based on dynamic Javascript, mostly al-

lows the user to navigate through the 3D structure in real-time, fetching genomic
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data as well as high-resolution 3D meshes representing the DNA backbone from the

server. It runs on most common web browsers (Firefox and Chrome). This contrasts

with previous viewers that were implemented as standalone applications for spe-

cific operating systems. The source code of our browser is freely available at https:

//github.com/mavlyutovrus/3d_genome_browser.

Before starting to explore 3D genome structures, the users must select a model.

The front page of 3DGB allows users to select which model they wish to use. Cur-

rently, three complete 3D data sets have been implemented in the database. The first is

a simulation of the complete diploid human genome by Asbury et al. [184], while the

second and third ones are recent reconstruction of individual chromosomes by Trieu

and Cheng [191] for normal B-cells (GM06990) and acute lymphoblastic leukemia cells,

respectively. New models will be added to the database as they appear in the litera-

ture.

Once a model is selected, users access a search engine that enables them to di-

rectly request specific genomic locations (i.e. chromosome number and position), tar-

get genes or arbitrary spatial coordinates. Queries re-direct the users to a 3D structure

viewer pointing at the desired location. From there, they can explore and navigate the

genome structure in real-time. The web client downloads all genomic and structural

data in the neighborhood of the query location. More data are dynamically loaded

when the user travels in the 3D space. This allows a smooth exploration of the 3D

genome structure on any computing device. A screenshot of the 3D genome browser

is presented in Figure 2.2.

Web tools

The viewer implements multiple features allowing its users to access and visualize

Human genome data stored in the database. At the core of 3DGB resides our ability to

define and query a 3D neighborhood, and thus to identify potential spatial relationship

between genomic elements. In our viewer, a cursor of points at the center of a box

representing a neighborhood to be explored. This neighborhood is represented by



2.4.
M

A
T

ER
IA

LS
A

N
D

M
ET

H
O

D
S

41

FIGURE 2.2: Sample screenshot of 3DGB.
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the red box in Figure 2. The size of the box is adjustable (by scrolling up or down),

allowing the users to tune the range of spatial relationships. Once a volume has been

selected (directly from a query or following an exploration of the genome structure),

the user can retrieve and download the list of all SNPs located within that box, or use

hyperlinks to directly access detailed information stored on the NCBI databases [207]

for each individual SNP. In addition, it is also possible to access the list of all genes

present in the query cell.

Alternatively, the users can switch to a linear mode. In that case, the neighborhood

of the query position is defined as a sequence interval. It is equivalent to the viewing

frame used in classical (i.e. one dimensional) genome browsers. This mode also allows

the users to retrieve all SNPs present in this one-dimensional neighborhood.

The third mode enables the users to highlight transcription factor binding sites in

the viewer. TFBSs are represented as colored regions of the DNA chain. The color

indicates the intensity of the Chip-Seq experiment (green for low and red for high).

The user can access detailed information about the Chip-Seq data by clicking on the

TFBS region, or access UCSC genome browser records through a hyperlink.

We linked 3DGB to a 2D genome map viewer [208] to help users navigating the

genome. Upon request, users can open a secondary window that displays a linear

representation of the genome. The latter highlights the closest 2D genomic position

to the center of the current 3D cell. The two windows are dynamically linked. A

change of 3D coordinates or 2D position in either window updates automatically the

position/coordinates in the other one.

Finally, we also implemented a distance calculation tool that enables the users to

automatically determine the physical distance between two points in space. We inten-

tionally did not use physical units, but instead rely on the model coordinates. Indeed,

the determination of physical distances requires to interpret experimental data and

make approximations which are often subject of discussions. By contrast, we believe

that arbitrary units allow the users to estimate relative differences and leave them the

freedom to interpret the experimental data used to obtain the 3D model.
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Visualization of custom genotyping data

An important feature of our viewer is to enable users to map their private genotyping

data onto reference 3D architectures, and allow them to visualize the data within our

browser. This functionality is intended to provide users with tools to identify geomet-

rical dependencies in custom genotyping data sets. The query interface allows users

to upload a local file containing genotyping data. In order to prevent any formatting

issues, we implemented a program to validate and convert most standard genotyping

data file.

Once uploaded, the users can browse and query the 3D genome as described above.

In addition to the reference data stored in our database, the users can now access si-

multaneously the reference SNPs collected from [204] together with those stored in

the local file. To prevent any privacy issues, user data are stored locally and not

transmitted to our server. A similar solution has been adopted by the UCSC genome

browser [209].

2.5 Results

2.5.1 Experimental setting

To evaluate the performance of our system, we used sequence read alignments of chro-

mosome 11 available from the 1000 Genomes project [204]. This data consists of short

(around 100 bases) DNA sequence reads, mapped onto the Human reference genome.

We used 1.5 billions of records, which constitute 250GB of raw data.

All data have been stored in a cluster (Hadoop version 2.2.0) of 10 machines. Worker

nodes were commodity machines with Quad-Core Intel i7-2600 CPUs @ 3.40GHz, 8GB

of DDR3-1600 RAM, 500GB Serial ATA HDD, running Ubuntu 12.04.2 LTS. The index

node was similar, but with 16GB RAM. The replication factor was set to 3.

The main metric we take into account is response time (latency). As a matter of

fact, execution time depends on the amount of records to be returned. In our context,
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we considered simple, uniform and fixed-size cube queries returning from 100 to 1000

records.

2.5.2 Benchmarking against the PostGIS database

The performance of storage systems can be characterized by their speed to access the

data (i.e. by the average time needed to execute a query) and the influence of the size

of the output on the time required for returning a response. In this section, we evaluate

the performance of 3DBG compared to the PostGIS database (http://postgis.net/) to

store and query 3D neighborhoods of a genome.

We uploaded in the database a data set of ~1.5 GB (gigabytes) that contains the

3D coordinates of reference points of a simulated model of the human genome [184].

All these positions were indexed in the database using the spatial index (the descrip-

tion of PostGIS’s spatial index can be found at http://revenant.ca/www/postgis/

workshop/indexing.html). Then, we measured the speed of reaching the data through

the Java application using the PostGIS JDBC driver, and the influence of the size of the

output (results of query) on the processing time.

In our experiments, we queried for all different reference points available in the

model from [184], and called the database to get all points that were stored in the cube

centered around the current reference point, with a constant edge size (100, 200, 300

and 400 base units). Our results are shown in Figures 2.3 and 2.4.

Figure 2.3 shows the speed of accessing the data. Here, PosGIS has on average a

query execution time well above 300 ms, and thus well above the time to gracefully

retrieve and visualize data dynamically for on-line 3D browsing. By contrast, when

we run the same experiment with 3DBG, the access time is clearly below this threshold.

This observation demonstrates that 3DBG performs satisfactorily to visualize the 3D

space at high resolution, while the latency of standard solutions such as PosGIS is too

high, even for relatively small data sets.



2.5. Results 45

FIGURE 2.3: Comparison of 3DBG and PostGIS query latencies. The x-axis shows the

number of records returned and the y-axis shows the latency in milliseconds (ms). Red

dots are 3DBG data and blue dots PostGIS data.

FIGURE 2.4: Dependencies of 3DBG and PostGIS latencies with query size. The x-axis

shows the number of records returned and the y-axis shows the latency in milliseconds

(ms). 3DBG data are represented with full lines, and PostGIS data with dotted lines.

The colors of the curves are associated with the different sizes of the query (edge sizes

of the cube varying from 100 to 400 base units). The latency threshold for real-time

visualization (200 ms) is indicated with a horizontal red line.
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Next, for each edge size (size of the neighborhood delimited by the cube query),

we plot in Figure 2.4 the relation between the processing time (i.e. latency), the size

of the neighborhood that we wish to explore and the number of records returned.

Experiments were repeated five times to obtain the variances. Here again, we ob-

serve that PostGIS yields unsatisfactory latencies, which rapidly grow as we retrieve

more data and increase the size of the query. In particular, PostGIS latencies for large

queries (edge size of 400 units) exceed the threshold required for real-time visualiza-

tion (~200 ms), while 3DBG performs satisfactorily. This is an important aspect be-

cause a comfortable browsing (volume and resolution of data retrieved) requires large

query (in our 3D genome browser 3DGB, we use cubes of 400 units for the 3D structure

from [184]). Finally, it is worth noting that the data returned by 3DBG are also already

sorted, which is not the case for PostGIS.

2.5.3 Benchmarking against the Hbase database

To compare the performance of our back-end solution with Hbase (http://hbase.apache.

org/), we installed an Hbase cluster (version 0.96.1) on our experimental infrastruc-

ture. We also split all data according to our index for HBase, but used a standard

HBase database rather than our own chunk storage. The caching for the Hbase cluster

was switched off to ensure valid results. Figure 2.5 shows the results. As can be ob-

served, the execution times of our system are much lower than those of HBase. 3DBG

outperforms HBase for relatively small queries (left of the graph), thus ensuring a

smooth navigation from the client side. Overall, both systems scale gracefully, thanks

to the indexing and clustering offered by our adaptive 3D index.

2.5.4 Using 3DGB to explore the 3D neighborhood of a gene

We illustrate the usefulness of 3DGB with an exploration of the 3D neighborhood of

the Retinoblastoma 1 gene (RB1) - a tumor suppressor gene that has been associated

with many types of cancer. This experiment does not necessarily intend to provide
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FIGURE 2.5: Comparison of 3DBG and HBase query latencies. The x-axis shows the

number of record returned and the y-axis the latency in milliseconds (ms).
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new insights into RB1 regulatory mechanisms, but aims to demonstrate what type of

novel information can be obtained with the use of 3DGB.

We started our investigation by exploring a 3D neighborhood centered on the pro-

moter of the RB1 gene in the 3D structure of chromosome 13 in normal B-cells (GM06990) [191].

We retrieved the list of SNPs found in the promoter region of RB1, and in other DNA

strands that are not in the immediate sequence neighborhood of RB1 promoter.

2.5.5 Distribution of SNPs in the 3D neighborhood of RB1

In addition to the promoter region, we found three other strands in the spatial vicinity

of RB1: S1(44762907, 45379923), S2(57184305, 57531250) and S3(58747059, 59087738).

These strands are located in a radius R = 0.2 of RB1 transcription start site, which

corresponds approximately to 88Å.

A total of 1199 SNPs were identified in this 3D neighborhood, for which we retrieve

their associated phenotype from [195]. A complete list of these SNPs with associated

phenotypes is available in the supplementary data. As expected we identified many

SNPs related to various types of cancer. However, another interesting finding has

been to detect the occurrence of one SNP (rs10492604) related to sleep disorders in

the strand S3. Importantly, we found only two SNPs related to sleep disorders in the

whole chromosome. Moreover, with a distance of 230 Åfrom RB1 transcription start

site (R = 0.53), this other SNP (rs10492507) is also in the vicinity of RB1 gene.

Previous studies have identified that children with hereditary retinoblastoma have

also an increased risk of developing trilateral retinoblastoma [210]. Trilateral retinoblas-

toma is the combination of retinoblastoma (usually bilateral) and pineoblastoma (a

tumor in the brain’s pineal gland). The pineal gland secretes multiple hormones (in-

cluding melatonin) that are implicated in the regulation of sleep patterns in seasonal

and circadian rhythms [211].

Although our finding does not imply any causation, it suggests possible interesting

genetic relationships between retinoblastoma and sleep disorders. The scripts used in
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this experiment are available at http://3dgb.cs.mcgill.ca/scripting.html.

2.6 DISCUSSION

We presented 3DBG, a novel storage paradigm and database system to store and query

genomic data in a 3D space, and developed a lightweight 3D genome browser to visu-

alize and navigate these data from any internet browser.

We compared 3DBG to existing systems and demonstrated that our technology en-

ables us to significantly lower the latency of spatial queries. Importantly, we also

showed that our system scales gracefully when handling more data. This technology

aims to develop the infrastructure needed to mine big data sets generated by new

large-scale genomic studies, and to prepare the next generation of genome browsers.

Although this paper focuses on the technical description of the database system

and the evaluation of its performances, we designed 3DBG to permit complex queries

in the 3D space. In particular, we also aim to use our system to extract spatial relation-

ship between genomic elements in genome-scale studies, for example using efficient

batch-oriented operations a la MapReduce on top of our data chunks (implementing

such features is easy, as our whole system is based on the lower levels of the Hadoop

/ Yarn stack). An example of such queries could be to retrieve all pairs of enhancers /

promoters that are co-localized in the the 3D genome structure.

Finally, even though we did not specifically tailor 3DBG to optimize the storage

space, 3DBG is already at least as efficient as existing systems. Further versions of the

database will integrate compression techniques in order to reduce the space require-

ments and further reduce query latencies.
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3.1 Preface

Data visualization helps users to understand and interpret data. Although, there exist

many semi-automated approaches for data mining [212, 213, 214], the task is still diffi-

cult for a computer program solely [11]. Combined with the recent growth of compu-

tational resources available for researchers, nowadays it is easier than ever to collect

a large amount of scientific data. For example, recent advances in high-throughput

genomics (e.g., Hi-C technique) allowed to generate enormous amount of genomic

data [215, 216]. Hence, the bottleneck is no longer gathering data but its processing.

While algorithms are yet helpful, there are many tasks where human still exceeds a

computer. Whereas expert data analysis is often preferred, a manual expert annota-

tion is not scalable to large datasets. In contrast, crowdsourcing provides a pool of

non-expert workers that individually contribute to the solution of a task. Yet, a better

understanding of how people collaborate on a large scale is needed.

Although, the crowdsourcing and human computation techniques are not novel

(e.g., Math Table Project, 1938 [217]), they gained momentum at the beginning of the

XIX century due to the rapid development of Internet that gave researchers an access

to its constantly growing active user base [80]. The techniques employ human work-

ers to fulfill the gap in capabilities of automated solutions using various motivators

to achieve the goal. While money was proved to be a very efficient stimulus for a

user [29, 27, 218, 28]; knowledge [49, 18], curiosity [42, 46], entertainment [74, 71, 77],

and the competition [53, 56, 58] were shown to improve the audience retention while

having a positive effect on the produced results. Besides, most of the crowdsourc-

ing and human computing systems follow the divide-and-conquer strategy (split a

problem to the microtasks and distribute it to participants) [80], which often fosters

groupthink [219] and rarely promote collaborative solving of the problem.

This chapter investigates the collaborative aspect of crowdsourcing systems. In

particular, we focus on understanding how humans collaborate, how this phenomenon

benefits a system, what incentives are needed to promote collaboration, and how to
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make an interaction between participants more efficient. We design the crowdsourcing

game that creates a collaborative environment for solving a predefined puzzle using

multiple gamified elements including a Market, Skills, and Challenges. It presents

qualitative and quantitative analyses of the players’ behavior during the game ses-

sions as well as their interaction both with other players and the game elements.

The remainder of text found in this chapter is taken from:

Olivier Tremblay-Savard, Alexander Butyaev, and Jérôme Waldispühl. "Collab-

orative Solving in a Human Computing Game Using a Market, Skills and Chal-

lenges." Proceedings of the 2016 Annual Symposium on Computer-Human Interaction

in Play. ACM, 2016.

O.T.S. and A.B. contributed equally to the development of the text. A.B. developed the back end

and data management sections of the Market game, contributed to the design of the front end of

the game and data analysis, helped to prepare draft of manuscript. O.T.S. developed the front

end of the game, arranged the game sessions, outlined and performed data analysis, prepared

the draft of the manuscript. J.W. coordinated the game design and computational analysis
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3.2 Abstract

Using a human computing game to solve a problem that has a large search space is

not straightforward. The difficulty of using such an approach comes from the follow-

ing facts: (i) it would be overwhelming for a single player to show him or her the

complete search space and at the same time, (ii) it is impossible to find an optimal

solution without considering all the available data. In this paper, we present a human

computing game that uses a market, skills and a challenge system to help the players

solve a graph problem in a collaborative manner. The results obtained during 12 game

sessions of 10 players show that the market helps players to build larger solutions. We

also show that a skill system and, to a lesser extent, a challenge system can be used to

influence and guide the players towards producing better solutions.

Keywords: Human computing | Collaboration | Crowdsourcing | Graph problem

| Game | Market | Trading game | Skills | Challenges

3.3 Introduction

Human-computation and crowd-sourcing are now perceived as valuable techniques

to help solving difficult computational problems. In order to make the best use of

human skills in these systems, it is important to be able to characterize the expertise

and performance of humans as individuals and even more importantly as groups.

Currently, popular crowd-computing platforms such as Amazon Mechanical Turk

(AMT) [220, 221] or Crowdcrafting [43] are based on similar divide-and-conquer ar-

chitectures, where the initial problem is decomposed into smaller sub-tasks that are

distributed to individual workers and then aggregated to build a solution. In par-

ticular, these systems prevent any interaction between workers in order to prevent

groupthink phenomena and bias in the solution [222].

However, such constraints are necessarily limiting the capacity of the system to

harness the cognitive power of crowds and make full benefit of collective intelligence.
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For instance, iterative combinations of crowdsourced contributions can help enhanc-

ing creativity [223]. The usefulness of parallelizing workflows has also been suggested

for tasks accepting broad varieties of answers [224].

The benefits of developing recommendation systems or coordination methods in

collaborative environments has been demonstrated [225, 226, 227]. Therefore, in order

to gain expressivity and improve their performance, the next generation of human-

computation systems will certainly need to implement mechanisms to promote and

control the collaboration between workers. Nonetheless, before transitioning to this

model, it is important to first estimate the potential gains in productivity, and quantify

the usefulness of the mechanisms and incentives to promote collaborative solving and

prevent groupthink.

Historically, computation on graphs has proven to be a good model to study the

performance of humans in solving complex combinatorial problems [228]. Experi-

ments have been conducted to evaluate the dynamics of crowds collaborating at solv-

ing graph problems [229] but still, little is known about the efficiency of the various

modes of interaction.

In this paper, we propose a formal framework to study human collaborative solv-

ing. We embed a combinatorial graph problem into a novel multiplayer game-with-a-

purpose [230, 231], which will be used to engage participants and analyze collective

performances. More precisely, we design a market game in which players can sell

and buy solutions or bits of information, and couple this platform with (i) a skills sys-

tem to enhance the efficiency of specific gaming strategies and (ii) a challenge systems

to guide the work of the crowd. We use this game to investigate the validity of the

following hypotheses.

3.3.1 Hypotheses

The development of the game with its three main features, i.e. the market, the skills

and the challenge system, was based on those four hypotheses:
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1. A market system will help the players build better solutions.

2. A skill system is useful to orient the players into doing specific actions that are

beneficial to the game and other players.

3. A challenge system is effective in encouraging the players to do a specific action

in the game.

4. The collected solutions are better when all the three features are present in a

game session, independently of the players’ personal skills.

To answer these questions, we conducted a study on 120 participants using differ-

ent variants of our market game. Our results confirm the benefits of using a trading

platform to produce better solutions. Interestingly, we also found that a skills system

helps to promote actions that are favorable to the collective solving process, but that

the efficiency of a skill is reduced if it is designed to help solve one of the primary

objectives of the game. Finally, we observed that a precise parametrization of chal-

lenges (i.e. finding an appropriate difficulty, nor too easy, nor too difficult) is required

to result in an improvement of the quality of the collective work.

Our game is freely available at URL:TBA, and can be used as a platform for further

independent studies.

3.4 Problem

The game was implemented to solve a graph problem, which is the problem of finding

maximal cliques in a multigraph. Let G(V, E) be a multi-colored graph, where each

vertex v ∈ V has a set of colors c(v). There is a colored edge e = (v, u) ∈ E between

the vertices v and u for every color in c(v) ∩ c(u) (i.e., one for every color that they

have in common). In other words, there is no colored edge between two vertices v

and u for which c(v) ∩ c(u) �= ∅. Let |C| be the total number of colors in the graph.

The problem is then the one of finding maximal cliques for each possible n number

of colors (where 1 ≤ n ≤ |C|), i.e. cliques in which all the edges (and vertices) have
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the same n colors. A simple exact algorithm can solve the problem in O(|V|2|C|). We

make the conjecture that it is also the worst time complexity of the problem.

This problem was chosen for two reasons. First, it can be solved quickly by a com-

puter when the number of colors is small, thus making it possible to compute the

exact solution and measure the percentage of the solution that is found by the players

in a game session. Second, this problem can easily be translated into a color matching

game, which takes advantage of the ability of human perception. Indeed, since the

colored edges between the vertices are given implicitly by the colors of the vertices,

it is possible to show the players only the colored vertices. To solve the problem, the

players have to find the largests sets of circles with colors in common, for all possible

subsets of colors.

Note that it is not our goal to compare the performance of players with the per-

formance of computers in solving this problem. With a limited number of colors (like

six in our tests), the exact algorithm can solve the problem in seconds. For this study,

we required a problem that was structured enough so that we could easily calculate

the optimal solution and evaluate the performance of the players depending on what

features were on or off and also the effect of the different features on the quality of

solutions.

3.5 Presentation of the game

3.5.1 Goal of the game

The main objective of the game is to build sequences (i.e. sets) of circles (circles represent

vertices of the graph) that (i) are as long as possible and (ii) contain as many colors in

common as possible. Circles used by the players to build the sequences either come

random packages bought from the system or they come from another player through

the market. The sequences can then be sold to the system for a certain amount of game
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money, which is determined by a scoring function that takes into account the length

and the number of colors in common of the sequence.

3.5.2 Scoring function

The score of a sequence sold to the system is equal to baseScoren ∗ seqLength2, where

baseScoren is a base score depending on the number of colors in common (see Table 3.1)

and seqLength is the length of the sequence. The base scores were calculated based on

the exact solution for the graph that was generated for the tests (see section Generat-

ing the graph for a description of the graph that was used) in such a way to give a

reward that is proportional to the difficulty of building the sequence. More precisely,

we calculated the average length Ln of all solutions for each n number of colors. The

base score is simply the reciprocal of this average (1/Ln) multiplied by a balancing

factor (505 in our case). The balancing factor was chosen in order to get a score of

500 for a sequence of length 10 with only one color in common, which is exactly the

price of two random packages of circles. Also notice that the value of a sequence is

exponential in relation to its length, which is to encourage players to build the longest

possible sequences.

3.5.3 Game interface

The game client and the server were built in Java 1.7. As shown in Figure 3.1, the game

interface can be divided into 3 parts: the player information panel, the game panel and

the market panel.

A: Player information panel

This panel simply contains information on the player’s wallet, the current level of the

player and has three buttons, allowing the player to open dialogs showing information

on the current challenge, the skills (see section Skills for a description of the available

skills) and the leaderboard. One experience point is given to the player for each game
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TABLE 3.1: Value of the base score depending on the number of colors in common

Number of colors Base score

0 0
1 5
2 14
3 26
4 40
5 55
6 72
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FIGURE 3.1: The game interface, separated in three panels. Panel A (inside the red

box) is the player information panel.Panel B (inside the green box) is the game panel.

Panel C (inside the orange box) is the market panel.
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dollar that he/she wins. The player can lose game money, but cannot lose experience

points (experience points can only go up). Every time a player levels-up, he/she gets

a skill point that can be used to improve any of the skills.

B: Game panel

The first component of the game panel is the ’My sequence’ panel, which shows the

current sequence that is being built by the player. The maximum size of a sequence

is 10. Colors in common in the sequence are indicated by a thick black border sur-

rounding the colors in the circles. Players can use the arrows to switch between the

different sequence slots (2 sequence slots are available at the start of the game). The

current value of the sequence is shown at the right, and the price for adding one more

circle with the same colors in common is shown right below in gray. Finally, the sell

button allows the player to sell the current sequence to the system: the sequence then

disappears and the money is given to the player. Selling a sequence is equivalent to

submitting a solution to the system.

The second component is the ’My hand’ panel, which can contain up to 20 circles.

Players can add a circle to the sequence by clicking on it. Circles are represented by

their colors and by a price label (in a black box). The price corresponds to the current

value of the circle on the market. Clicking on the price label sells the circle to the

highest bidder on the market. Circles that are bought from a random package or from

other players are sent to the hand.

The ’Awaiting to get sold’ is where the circles are sent just before being sold to the

highest bidder. If the bid disappears before the transaction is completed, the ’sold’

circle will stay there. The player can then click on it to cancel the selling and put it

back in the hand.

Finally, the bottom panel is a news feed, showing information on the game state,

like the remaining time to complete the challenge and the last transactions completed

by the player for example.
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C: Market panel

At the top of the market panel, buttons allow the player to create bids for circles or to

buy random packages (or bags) of circles. The ’Random bag’ costs $250 and contains

5 circles with fewer colors. The ’Premium bag’ costs $500 and contains 5 circles with a

higher chance of getting circles with many colors.

Right below the buttons is the ’Automatic bids’ panel, which allows the player to

get automatic bids for circles corresponding to the sequences that he or she is building.

A percentage of profit for the price of the automatic bids can be set with the slider. The

profit is defined as the money the player would make by adding one more circle with

the same colors in the current sequence (difference between the gray and black prices

above the Sell button).

The ’My bids’ panel shows all the bids that the player currently has on the market.

The bid price is shown below the circle (in the black box). On the right side of the

circle is the number of sequences with the same colors that the player can buy from

other players (in the blue box). Clicking on the blue box opens a window showing the

list of sequences that can be bought. Buying a sequence from another player is called

a ’buyout’ (see the following subsection for a more detailed description of buyouts).

Finally, the last panel at the bottom shows the last circle or sequence that was

bought by the player.

3.5.4 Market

The market has three functions: (i) allow the players to exchange circles through a

bidding system, (ii) allow players to buy sequences built and sold by other players so

that they can be improved, and (iii) merge together sequences of length 10 to create

super circles that are then put back in the game.

For every subset of colors, the server has a list of all the bids that are currently on

the market. The value of the highest bid on the market is shown below every circle
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under the possession of the players. When a circle is sold by a player, it is sent through

the server to the highest bidder.

Buyouts work differently. Players cannot bid on sequences, but the server holds

for two minutes all the sequence that have been sold by the players. During those two

minutes, other players can buy the sequences for a price that is equal to 150% of the

initial score of the sequence. When a buyout is made, the bonus game money is sent

to the player who initially sold the sequence to the system.

Finally, the game system creates a super circle every time a sequence of length 10 is

sold by a player. A super circle of level 2 (representing 10 circles) counts as two circles

when put in a sequence. Super circles can be of any level (a sequence of 10 super circles

of level 2 form a super circle of level 3, and so on). The idea behind the creation of the

super circles was to remove the limitation of the maximum sequence size imposed by

the game interface.

3.5.5 Skills

Four different skills were implemented in the game. One skill point is awarded to a

player when he or she levels up, which can then be put in any of the four skills. The

maximum level of each skill is equal to six (there are six levels of bonuses). Each skill

was put in the game as a way to guide the player in doing actions that are beneficial

to the system or to the other players:

• Buyout King: lowers the price of buying a sequence from another player (goal:

encourage buyouts);

• Color Expert: gives a bonus to selling sequences that have more than one color in

common (goal: push players to build more multicolored sequences);

• Sequence Collector: gives an additional sequence slot (goal: give more space to

encourage the creation of longer sequences with more colors in common);
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• Master Trader: gives a bonus to selling circles to other players (goal: promote the

selling of individual circles).

3.5.6 Challenge system

We implemented a challenge system that analyzes the recent actions of the players and

creates a new challenge every five minutes. The five challenge types are:

• Sell/buy circles: requires the players to sell or buy circles;

• Buyout sequences: requires the players to buy sequences from other players;

• Minimum number of colors: requires the players to sell sequences with at least a

certain number of colors in common;

• Minimum sequence length: requires the players to sell sequences with a minimum

sequence length;

• Specific colors in common: requires the players to sell sequences with a specific

subset of colors in common.

Basically, the system continuously monitors the activities of the players and de-

creases or increases the probabilities of each challenge type. The next challenge is then

selected using a multinomial sampling on these probabilities. The number of times T

that the challenge-related action must be completed is selected randomly between 2

and 4. The prize that is awarded for completing the challenge is equal to $1500 ∗ T.

3.6 Experiments

3.6.1 Independent and dependent variables

In the context of this study, there were three independent variables: the market (present;

not present), the skills (present; not present) and the challenges (present; not present).
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Instead of trying all 8 possible combinations of independent variables, we decided to

focus on four game conditions:

1. All features present (or A)

2. Everything except the market, hereafter referred to as “No Market” (or NM)

3. Everything except the skills, hereafter referred to as “No Skills” (or NS)

4. Everything except the challenges, hereafter referred to as “No challenges” (or

NC)

Focusing on those four playing conditions allowed us to repeat each experiment more

times with different groups of players. Moreover, the goal was to evaluate the impor-

tance of every game feature by removing them one at a time and evaluating the effect

on the results obtained by the players.

As for the dependent variables, we were interested in measuring the following:

1. Percentage of the problem solved

2. Total experience points earned by the players

3. Average sequence length of the sequences created by the players

4. Average number of colors in common of the sequences created by the players

5. Proportion of sequences of more than one color in common created by the play-

ers

6. Number of circles sold individually to another player

7. Number of sequences bought from other players (buyouts)

3.6.2 Game sessions

We recruited 120 people in total to test our game. We divided the participants into

groups of 10 and repeated three times each of the four game conditions presented

in the previous subsection. Each participant was playing the game for the first time,
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except for some people that were invited as replacements to deal with last minute

cancellations. Before starting each game session, the players were shown a document

explaining the rules of the game and the interface. They were also asked to fill in a

questionnaire so that we could get information on the participants, such as their age,

their abilities at puzzle solving and their experience with video games for example.

For all the experiments, the game session lasted 45 minutes.

3.6.3 Generating the graph

We generated one random colored multigraph that we used for all the 12 tests. Since

the edges in the graph depend entirely on the colors of the vertices, it is sufficient to

generate only the colored vertices. For the tests, a graph containing 300 vertices and

6 different colors was generated. To randomly select the number of colors for each

vertex, a geometric distribution of parameter p = 0.5 was used, so that the vertices

with a lot of colors are rarer. Once the number of colors was selected for the vertex,

the set of colors was selected uniformly.

3.7 Results and Discussion

3.7.1 Testing hypothesis 1: the efficiency of the market

The market system we implemented in the game allows the players to exchange circles

and partial solutions (in the form of buyouts). The main goal of the market is to help

the players in building longer sequences.

As shown in Figure 3.2, the three game sessions in which we had the lowest aver-

age of sequence lengths (for all the sequences sold by all the players) are the ones that

were played without the market, with averages of 4.40 for NM, 4.19 for NM-2 and 4.63

for NM-3. Even if we consider the super circles (the special circles that are actually 10

circles combined into one), the average sequence lengths for those three sessions are

still the lowest ones, with values of 4.90 for both NM and NM-2, and 5.40 for NM-3.
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FIGURE 3.2: Average sequence length for every game session, not considering the su-

per circles and considering the super circles (e.g. a super circle of level 2 in a sequence

represents 10 circles in the solution). ’A’, ’A-2’ and ’A-3’ represent the tests with all the

features on; ’NS’, ’NS-2’ and ’NS-3’ represent the tests without the skills; ’NM’, ’NM-2’

and ’NM-3’ represent the tests without the market; ’NC’, ’NC-2’ and ’NC-3’ represent

the tests without the challenges.
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Since the distribution of the lengths for all the sequences sold to the system dur-

ing a game session do not follow a normal distribution, we used a non-parametric

test (Kruskal-Wallis) to verify if the sequence lengths of the different game sessions

seem to come from the same distributions. The Kruskal-Wallis test revealed a sig-

nificant effect of the game conditions on the sequence lengths without considering

super circles (χ2(11) = 1391.7, p < 2.2E − 16) and also when considering super circles

(χ2(11) = 1388.4, p < 2.2E − 16).

We then made a post hoc test (Dunn’s test) to do pairwise comparisons between all

the groups. With or without considering super circles, all the game conditions were

shown to be significantly different (p < 0.01), except a few shown in table 3.2. Note

that the strongest similarities are found between the three ’All’ groups and the three

’No market’ groups. Some of the ’No skills’ experiments are found to be similar to the

’All’ groups, which could indicate that the presence of the skills have a very limited

effect on the sequence length. The NC experiment is found to be similar to two ’No

market’ groups, but that can be explained by the fact the players for the NC experiment

were very weak (as can be seen by the total experience gained during that session in

Figure 3.11).

3.7.2 Testing hypothesis 2: the benefits of a skill system

We implemented the skill system for two reasons: (i) to give the players more incentive

to accumulate experience points as fast as possible, because the reward for leveling-

up is an additional skill point, and (ii) to influence indirectly the players into doing

actions that are either improving the solutions collected by the system or helpful to

the other players (which in the end will also improve the solutions). In our game, two

skills were related to the market (Buyout King and Master Trader) and two skills were

related to building sequences (Color Expert and Sequence Collector). In the following

paragraphs, we will analyze how those four skills affected the strategies and actions

of the players. Note that when some players lost all their money in the game, they
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TABLE 3.2: Similar groups of sequence length distributions, as reported by Dunn’s

test. An ’n’ in the table represents a similar pair when not considering super circles,

and an ’s’ in the table represents a similar pair when considering super circles.

A-2 A-3 NS NS-2 NS-3 NM NM-2 NM-3

A n/s n n/s
A-2 n n/s
A-3 n/s
NC n n/s

NC-3 n/s
NM n/s n
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had to start a new game. In our results, we count both new games as if they were

played by different players, since the players who restart might choose a different set

of skills the second time. That explains why the total number of players is larger than

120. Players of the ’No skills’ game condition were considered and put automatically

in the without skill group.

Buyout King

The Buyout King skill allows the players to reduce the price of buying a sequence from

another player (which we call a buyout). The idea behind this skill was to encourage

the players to buy small sequences built by other players so that they could improve

them before selling them back to the system. In other words, a buyout is the action of

buying a partial solution made by another player in order to improve it.

Figure 3.3 shows statitics for the players who have put at least one skill point in the

Buyout King skill and the players who did not use the skill at all. We were interested

in the number of buyouts that the players with the skill were making compared to

the rest of the players. Note that since this skill is related to the market, we did not

consider the ’No market’ sessions for these results.

The median value for players who spent a skill point in the Buyout King skill is 15,

while the median value for the players without the skill is 1.5, indicating that half of

the players without the skill did not use the buyout at all or used it only once. Since

the distribution of the number of buyouts is not following a normal distribution (the

Shapiro-Wilk test rejected the null hypothesis with p = 2.6E − 10), we used a Mann-

Whitney’s U test to compare the medians of the two groups. We found a significant

effect of the presence of this skill on the medians (U = 1629.5, p = 0.004, effect size

r = 0.28).
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FIGURE 3.3: Boxplot of the number of buyouts made by players with (37 players) and

without (66 players) the Buyout King skill.
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Master Trader

The Master Trader skill allows the players to get bonus money in addition to the regular

market price for each circle they sell individually. This skill was put in the game in

order to increase the activity on the market by encouraging more players to send the

circles that they don’t need to players who need it the most.

Figure 3.4 shows statistics for the players who have put at least one skill point in

the Master Trader skill and all the other players. We were interested in comparing the

number of individual circles that were sold to another player for the two different

categories. Once again, since this skill depends on the presence of the market, we did

not consider the ’No market’ experiments in the results shown.

The median value for the players who had selected the Master Trader skill (73) is

more than three times larger than the one for the rest of the players (21.5). Since the

distribution of the number of circles sold individually is not following a normal dis-

tribution (the Shapiro-Wilk test rejected the null hypothesis with p = 5.3E − 13), we

used a Mann-Whitney’s U test to compare the medians of the two groups. We found a

significant effect of the presence of the Master Trader skill on the medians (U = 1633.5,

p = 7.2E − 4, effect size r = 0.33).

Color Expert

The Color Expert skill gives a bonus multiplier to the scoring function for sequences

with more than one color in common. This skill was implemented in order to give ex-

tra motivation to build sequences with many colors in common, since they are harder

to build. Indeed, more focus is needed from the player to match many circles with

more than one color in common.

In Figure 3.5, we show the comparison of the proportion of multicolored sequences

sold by players with the Color Expert skill and players without it. Interestingly, the

median values for both groups are almost identical: 0.317 (or 31.7%) for the players

with the skill and 0.313 (or 31.3%) for the players without the skill. The distribution
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FIGURE 3.4: Boxplot of the number of circles sold individually by players with (33

players) and without (70 players) the Master Trader skill.
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FIGURE 3.5: Boxplot of the proportion of sequences with more than one color in com-

mon sold by players with (94 players) and without (49 players) the Color Expert skill.
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of the proportion of multicolored sequences was not normal (the Shapiro-Wilk test

rejected the null hypothesis with p = 0.3E − 4), so we did a Mann-Whithney’s U test

to compare the medians. As expected, the test failed to reject the null hypothesis that

the values were sampled from the same distribution (p = 0.89).

We conclude that the Color Expert skill does not affect the behavior of the players.

This can be explained by the fact that one of the main goals of the game is to create

sequences with as many colors in common as possible, whether the player selects this

skill or not.

Sequence Collector

Every point in the Sequence Collector skill gives an additional slot to build a sequence.

Because of the limited size of the player’s hand and the limited number of sequence

slots, it’s hard to build long sequences with many colors in common. It is for both

the sequence length and the number of colors in common that we added the Sequence

Collector skill in the game.

We first compared the average sequence length of sequences built by players with

the Sequence Collector skill and the ones built by the rest of players (see Figure 3.6).

While the median value for the players without the skill (5.63) is a little bit larger than

the one for the players with the skill (5.12), the averages of both groups are actually

similar (5.61 and 5.56 in the same order). Since the distribution of the average sequence

lengths were not normal (the Shapiro-Wilk test rejected the null hypothesis with p =

0.0057), we did a Mann Whitney’s U test to compare the medians of both groups. The

test failed to reject the null hypothesis that the values were sampled from the same

distribution (p = 0.69). Thus, there is no evidence that the Sequence Collector skill helps

players build longer sequences. This tends to confirm what we mentioned earlier (in

Section Testing hypothesis 1): the presence of the skills in general does not seem to

affect the length of the sequences built by players. Once again, this can be explained

by the fact that selling long sequences is one of the two main goals of the game, and is

one of the main components of the scoring function.
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FIGURE 3.6: Boxplot of the average sequence length of sequences built by players with

(60 players) and without (83 players) the Sequence Collector skill.



3.7. Results and Discussion 77

●

●

●

●

●

●

With Without

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Sequence Collector

Presence of skill

Av
er

ag
e 

nb
 o

f c
ol

or
s 

in
 c

om
m

on

FIGURE 3.7: Boxplot of the average number of colors in common of sequences built by

players with (60 players) and without (83 players) the Sequence Collector skill.
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We then compared the average number of colors in common of the sequences built

by players with and without the Sequence collector skill (see Figure 3.7). The median

value for the players without the skill (1.58) is 12% lower than the one for the players

with the skill (1.80). Since the distribution of the average number of colors in common

is not following a normal distribution (the Shapiro-Wilk test rejected the null hypoth-

esis with p = 1.2E − 7), we used a Mann-Whitney’s U test to compare the medians

of the two groups and we found a significant effect of the presence of this skill on

the medians (U = 3113, p = 0.01, effect size r = 0.21). The Sequence collector skill is

thus helping players to build sequences with more colors, by allowing them to store

unfinished sequences of multiple colors in the additional slots until they are able to

complete them.

3.7.3 Testing hypothesis 3: the usefulness of the challenge system

The challenge system was implemented to analyze the current state of the game and

guide the players towards doing actions that are currently needed. As mentioned

previously, five different challenge types were implemented in the game (see Section

Challenge system for the complete list). In order to analyze the effect of the challenges

on the way the participants were playing, for each challenge type, we compared the

relevant statistics of the game during the challenge with the rest of the game session

(when a different challenge was available).

Note that we are considering here only the nine sessions in which the challenges

were present and that the Sell/buy and Buyout challenges were disabled during the

session without the market.

Minimum number of colors challenge

To measure the effect of the Minimum number of colors challenge on the game, we com-

pared the average number of colors of the sequences built by the players when the
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challenge was active and when it was not. The different averages for each game ses-

sion are presented in Figure 3.8. In all the game sessions except A-3 and NM, the

average number of colors in common is higher when the challenge is active.

The distribution of the averages of the number of colors in common for all the

game sessions considered here is normal (Shapiro-Wilk p = 0.79), allowing us to use a

Welch’s t-test to compare the means for both groups, i.e. 1.96 colors in common during

the challenge and 1.76 during the rest of the time. The test confirmed a significant

effect of the presence of the challenge on the average number of colors in common

(t(16) = 2.19, p = 0.04, Cohen’s d = 1.03).

Minimum sequence length challenge

In order to analyze the effect that the Minimum sequence length challenge had on the

game, we compared the average sequence length during the challenge and when a

different challenge was active for all the game sessions. As shown in Figure 3.9, the

presence of this challenge increased the average sequence length in all the game ses-

sions except the three sessions with all the features.

The means of all the average sequence lengths during the challenge and for the

rest of the time are 5.38 and 5.08 respectively. Since the distribution of the averages of

sequence lengths is normal (Shapiro-Wilk p = 0.27), we used a Welch’s t-test to com-

pare those means, but the test wasn’t able to prove that those means are significantly

different (t(16) = 0.79, p = 0.44).

Although there is not a statistically significant difference between the two groups,

we can generally see a small effect for six of the nine groups with challenges. The fact

that we observe the opposite effect in the three game sessions with all the features is

very surprising, but hard to explain. One possible explanation could be that when all

the features are present, the players have more to think about and check the challenges

a little bit less.
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FIGURE 3.8: Average number of colors in the sequences with and without the Min-

imum number of colors challenge active. ’A’, ’A-2’ and ’A-3’represent the tests with all

the features present, ’NS’, ’NS-2’ and ’NS-3’ represent the tests without the skills, and

’NM’, ’NM-2’ and ’NM-3’ represents the tests without the market.
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FIGURE 3.9: Average sequence length with and without the Minimum sequence length

challenge active. ’A’, ’A-2’ and ’A-3’ represent the tests with all the features present,

’NS’, ’NS-2’ and ’NS-3’ represent the tests without the skills, and ’NM’, ’NM-2’ and

’NM-3’ represents the tests without the market.
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Sell/buy challenge

For the Sell/buy challenge, we were interested in comparing the number of individual

circles sold on the market per minute when the challenge was active and when it was

not. The results, presented in Figure 3.10, don’t show a clear trend. Indeed, in half

of the game sessions, the number of circles sold per minute is higher during the chal-

lenge, while it’s the opposite for the other half of the game sessions.

Once again, the numbers of circles sold per minute in the six different game ses-

sions follow a normal distribution (Shapiro-Wilk p = 0.26), so we used a Welch’s t-test

to compare the means of both groups, which are 13.18 during the challenge and 12.73

during the rest of the time. The t-test failed to reject the null hypothesis that both

means are the same (t(10) = 0.11, p = 0.91).

We believe that the main reason why there doesn’t seem to be any difference be-

tween the two groups is that most people were able to complete this type of challenge

without really changing anything to their normal behavior. This challenge was simply

too easy, because most of the players are always selling or buying (through the bids)

at least 2 or 4 circles every five minutes (the length of a challenge).

Buyout challenge

The Buyout challenge appeared only once in total in all the three gaming session with

challenges and with the market. Thus, we don’t have a significant amount of data

to analyze the effect of this challenge. The reason why this challenge almost never

appeared is because players were always using the buyout, which greatly reduced the

probability of showing this challenge.

Specific colors in common challenge

The Specific colors in common challenge is also difficult to analyze because it was com-

pleted only 8 times in total during the nine sessions with challenges, despite appearing

11 times throughout those nine experiments. This can be explained by the fact that it



3.7. Results and Discussion 83

FIGURE 3.10: Number of individual circles sold on the market per minute with and

without the Sell/buy challenge active. ’A’, ’A-2’ and ’A-3’ represent the tests with all the

features present, and ’NS’, ’NS-2’ and ’NS-3’ represent the tests without the skills.
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was the hardest challenge. All the other challenges are more general and can be com-

pleted by doing actions that are not specific to a certain subset of colors. Even if the

market should be helpful in finding circles with the required subset of colors, it seems

highly probable that the players felt that this type of challenge was too hard and al-

most never tried to complete it.

3.7.4 Testing hypothesis 4: percentage of the problem solved as a

measure of the importance of different game features

One of the research goals was to measure the impact of each feature by analyzing how

much of the problem can be solved by the players in each of the game sessions. Our

initial hypothesis was that players who have access to all the game features should be

able to solve more of the problem.

Interestingly, we observed a larger than expected variance in the participants’ per-

sonal skills which made it sometimes difficult to compare one game session with an-

other in terms of the percentage of the problem that was solved. Indeed, some players

quickly understood all the rules of the game and how to maximize their score, while

others struggled to make points during the whole session, even with our help.

As shown in Figure 3.11, the percentage of the problem that was solved varies from

48% to 75% in all the different experiments. In particular, the differences observed for

experiments with the exact same game conditions (sometimes up to a 18% difference)

demonstrates that we cannot simply use the percentage of the exact solution found

as a way to measure the impact of a feature. Moreover, the top five sessions in terms

of percentage solved (all sessions with more than 65%) come from the four different

game conditions.

We used linear regression to test if the percentage of the problem solved is, to some

extent, directly proportional to the total experience points accumulated by all the play-

ers during a session, which is a good way to measure the skills of the players during
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FIGURE 3.11: Total game experience and percentage of the problem solved for each of

the 12 game sessions. ’XP’ represents experience points. ’A’, ’A-2’ and ’A-3’ represent

the tests with all the features on; ’NS’, ’NS-2’ and ’NS-3’ represent the tests without the

skills; ’NM’, ’NM-2’ and ’NM-3’ represent the tests without the market; ’NC’, ’NC-2’

and ’NC-3’ represent the tests without the challenges.
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each session. The linear function obtained (graph not shown) had a coefficient of cor-

relation r = 0.89 and a coefficient of determination r2 = 0.79, which shows a certain

level of correlation. The different game conditions are obviously creating some of the

observed variance. Another reason for the variance is the fact that, in the current state

of the game, players can be selling sequences that correspond to a solution that was

already found earlier. While it would be possible to lower the score of a solution (se-

quence) that already exists, it would be hard to explain to inexperienced players why

one sequence is worth less than another with exactly the same length and number of

colors in common. That is why we decided to not take into account the existing (i.e.

already found) solutions in the scoring function.

3.7.5 Understanding what makes a good player

Based on the questionnaire filled by the players before playing the game, and the

global leaderboard of all the players from all the sessions put together, we tried to

find similarities between the top players. Table 3.3 shows the most interesting differ-

ences between the top 12 players and the rest of the players. In the questionnaires,

players had to indicate their age category (between 21 and 25 for example), their own

evaluation of their puzzle solving abilities and a range of hours spent playing video

games every week.

The average age of the two groups of players was calculated by taking the middle

point of the age categories. The average age of the top 12 players was about 2.5 years

younger than the one of the other players. For the puzzle solving self evaluation, the

players could choose a level between 1 and 5 (5 being the strongest). The average level

of the top 12 players was 3.67, compared to 2.90 for the others. As we did with the

age categories, we computed averages of time spent playing video games every week

using the middle point of the categories. The top 12 players were playing roughly 2.5

times more every week than the rest of the players.
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TABLE 3.3: Average statistics on the top 12 players vs the others

Top 12 players Others

Age 23.42 25.99
Self evaluation 3.67 2.90

Game time 10.00 4.11
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3.8 Conclusion

We implemented a human computing game that uses a market, skills and challenges

in order to solve a problem collaboratively. The problem that is solved by the players

in our game is a graph problem that can be easily translated into a color matching

game. The total number of colors used in the tests was small enough so that we were

able to compute an exact solution and evaluate the performance of the players. We

organized 12 game sessions of 10 players with four different game conditions (three

times each).

Our tests showed without a doubt that the market is a useful tool to help players

build longer solutions (sequences, in our case). In addition, it also makes the game

a lot more dynamic and players mentioned that they really enjoyed this aspect of the

game.

Our results also showed that skills in general are helpful to influence and guide the

players into doing specific actions that are beneficial to the system and other players.

We have found that skills are more efficient in their role of guiding the players if they

are not directly related to the main goal of the game: the Color Expert skill for example

did not affect the proportion of multicolored sequences built by the players.

The results on the challenges indicate that they can be useful to promote an action

in the game (Minimum number of colors in common for example), but in order to be

effective, the difficulty needs to be well-balanced. Challenges that are too easy (Sell/buy

challenge for example) or too hard (Specific colors in common challenge for example) do

not affect the game significantly.

Although the great variability in the participants’ personal skills made it very dif-

ficult to make direct comparisons between the different game conditions in regards to

the percentage of the solutions found, we showed that the percentage solved is to a

certain extent proportional to the total experience gained by all players during a game

session. Therefore, the percentage of the problem solved is clearly not only dependent

on the features present in the game, but also on the participants’ ability to be good at
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the game.

Finally, it seems that younger players who play video games on a regular basis and

have a strong self evaluation of their puzzle solving skills are able to understand the

rules of the game and find winning strategies faster than the average participant.
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4.1 Preface

Law and von Ahn [232] define the term ’human computation’ as "the idea of using hu-

man effort to perform tasks that computers cannot yet perform, usually in an enjoyable man-

ner." During the first decade, the concept found great success in different applications

(e.g., image labeling [233], natural language annotation [29], sound annotation [65],

and spam detection [27]). Millions of reCAPTCHA queries are submitted as a mean of

security step daily in order to digitize the books [48]. Games are a particularly interest-

ing example of human computation. Powered by the human desire to be entertained,

it helps to solve an underlying problem efficiently [62, 74, 71, 69].

Such human computing systems generate large annotation databases that later will

be used to train ML models in solving a particular task. For example, the ESP game,

social computing game for image annotation, produced the dataset containing over

100,000 images with English labels [14], which later was used to build a multimodal

learning model [234]. In turns, the players of the crowdsourcing game TagATune cre-

ated the largest database of music annotations [64]. However, while using these anno-

tations as a training and testing dataset, Hamel et al. [235] demonstrated an approach

that performs accurate automatic sound annotation. Thus, recent advances in machine

learning allow human-driven analysis to become completely automated [236, 237].

While ESP game or TagATune addressed the classification problem, mathemati-

cally abstract problems (e.g., data ranking and data clustering) are still hard for a com-

puter but intuitive for a human [80]. Multiple human computing systems investigate

the problem of text clustering. Parent et al. [238] used AMT to cluster dictionary defini-

tions. The Cascade [83] and Deluge [85] systems were proposed to categorize text tips

and produce their taxonomy. Chang et al. [86] introduced Alloy, the hybrid approach

for text clustering, which combines human judgment with ML algorithms. Multi-

ple studies also approach image clustering problem. Gomes et al. [239] introduced

the term ’crowdclustering’ referring to image data clustering and then using the pro-

posed model by Gomes, Yi et al. [240] designed semi-crowdsourced clustering method
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that combines manual annotations with the low-level feature of an image. Kleiman et

al. [241] show an efficient crowdsourced image similarity estimation method.

However, in its most fundamental form, abstract data clustering is still an open-

ended problem. Since the term ’cluster’ does not have a precise definition, no uni-

versal clustering approach suits all clustering scenarios. There are a lot of clustering

algorithms that optimize different objective functions. Nevertheless, the presence (or

absence) of a cluster ultimately results from an agreement between multiple individ-

uals, and preferentially data analysis experts. Surprisingly, cluster analysis has not

adopted human computation techniques yet and therefore requires further investiga-

tion.

Human (in most of the cases) has binocular vision [242]: two eyes with an over-

lapping field of view help an individual to perceive depth and, therefore, single three-

dimensional picture. Nevertheless, human eyes contribute two distinct 2D images

that later will be processed in visual cortex and merged into the 3D representation of

the environment [243]. Therefore, the dimensionality of data is a main restricting fac-

tor of human’s visual perception. While high dimensional data is beyond the limits

of humans comprehension, their low-dimensional data analytical skills (e.g., cluster

analysis) create new opportunities for human computation systems [244].

This chapter explores the human perception of simple 2D clusters. It describes

the mobile human computing game Colony B as a framework to collect human player

solutions for 2D data clustering problem. It then proposes the human-based clustering

approach that utilizes accumulated game play data. Finally, the chapter discusses the

method’s application and reports its performance in comparison with conventional

clustering algorithms.

The remainder of text found in this chapter is taken from:

Alexander Butyaev, Chris Drogaris, Elena Nazarova, Olivier Tremblay-Savard,

and Jérôme Waldispühl. How do Humans Perceive 2D Clusters? Lessons From
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a Mobile Crowdsourcing Human-Computing Game. In submission at Computer-

Supported Cooperative Work and Social Computing conference.

A.B. contributed to the design of the mobile application, developed server side of the Colony B

game and data management system, implemented the computational analysis, and prepared a

draft for the manuscript. C.D. designed the mobile application for the Colony B game. E.N.

designed the reward system (badges). O.T.S. outlined an original idea of the game and helped

draft the manuscript. J.W. contributed to the design of the mobile application and coordinated

the computational analysis.
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4.2 Abstract

Abstract data clustering is a challenging computational task that involves identifying

groups within a distribution of data. Many algorithms and metrics have been devel-

oped to solve this problem, but the existence of clusters more naturally follows a col-

lective agreement between experts rather than a precise mathematical definition of dis-

tance or density. In this paper, we design a mobile crowdsourcing human-computing

game as a tool to collect 2D clustering data solutions from players. We analyze the

data collected through a large-scale year-long gaming session involving thousands

of volunteers that clustered real and simulated datasets. First, we present strategies

enabling us to circumvent biases observed in cluster annotations collected through

mobile devices. Then, we use a variety of cluster validation techniques to evaluate

the performance of our crowdsourcing system. Our results suggest that although the

quality of clusters generated by humans and computers is similar, clusters obtained

from aggregated human solutions are significantly larger than the ones generated by

computer programs.

Keywords: Data Clustering | Game | Crowdsourcing | Data Analysis

4.3 Introduction

Data clustering is a central task in many computer analysis techniques, that is rou-

tinely used in data mining and unsupervised machine learning. However, the defini-

tion of a cluster remains ambiguous and subject to interpretation. There is no single

universally accepted mathematical definition that unambiguously decides the exis-

tence of a cluster. Indeed, clusters may have very different shapes and densities within

and across datasets. Among the various measures previously introduced to estimate

the quality of a cluster annotation [245], Silhouette [118], Dunn [119], SDbw [120], and

Modularity [246] emerge as the most popular. This situation resulted in the devel-

opment of a broad variety of algorithms and metrics [247] but as mentioned above
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without consensus. The presence (or absence) of a cluster ultimately results from an

agreement between multiple individuals, and preferentially data analysis experts.

Unfortunately, a manual expert annotation is not scalable to large datasets. More-

over, it is unclear how human clustering annotation would compare to those obtained

from state-of-the-art algorithms.

Crowdsourcing is now a popular and well-established technique to perform a large

number of repetitive tasks, with the underlying assumption that the aggregation of a

sufficiently large number of answers from non-experts could approximate expert be-

haviors [77, 74]. Such an approach opens the doors to large-scale experiments allowing

us to calibrate the human perception of clusters against the performance and behavior

of most popular clustering algorithms.

In this paper, we developed a mobile application to crowdsource cluster annota-

tions performed by humans. We then compare these results to clusters calculated by

state-of-the-art algorithms using various popular metrics. Importantly, we address

a generic version of the clustering problem, where the data is represented as clouds

of point distributed on a 2D plane. This representation enables us to reduce contex-

tual/cultural bias and focus on the human perception of visual patterns.

Importantly, clustering algorithms generally optimize cost functions designed to

estimate the quality of the clusters [245]. However, cost functions might suffer of over-

fitting: the total error is minimized with large number of small clusters [91]. Conse-

quently, the results of the clustering algorithm often is not informative for the cluster

analysis. Although, researchers proposed some methods to address this issue (e.g., el-

bow method [248], average silhouette method [118], and gap statistics [249]), the size

of clusters generated by automated clustering algorithms can still be hard to interpret.

In this paper we also propose the hypothesis that the clusters aggregated from human

annotations are significantly bigger than the ones generated by automated clustering

algorithms and try to address it by conducting two experiments asking participants to

cluster simulated and real world datasets.

The paper is organized as follows. In section 4.4 we introduce the online human
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computing game that we designed primarily for clustering data collection of the hu-

man worker. Next, section 4.5 describes our methods, explains the design of multiple

scores and proposes the tool for measuring clusterability of a dataset. In section 4.6

we describe our experiment on simulated and real-world datasets. In particular, we

find that humans identify significantly larger clusters than automated methods at the

same level of accuracy. Moreover, although humans compare favorably to classical al-

gorithms on artificial datasets with clearly distinct clusters, their performance appears

to be more impacted by noisy datasets. Finally, section 4.7 concludes this manuscript

with a discussion of our results.

4.4 Mobile Human Computing Game

To address a problem of real-world data clustering, we implement online human-

computing game Colony B. It is a gamified environment that utilizes crowd intelli-

gence and intuition to tackle the problem of the relative positioning of data points on

the mobile screen. Since a manual expert annotation is not scalable to a large dataset,

in our approach regular player acts as an expert that manually annotates a partition

of the dataset. Then all accumulated human solutions are merged to obtain a single

annotation for the entire dataset.

Real-world dataset rarely has only two features (dimensions) so that it can be sam-

pled and showed to the user. We extend our game to deal with multidimensional data.

We use various techniques such as dimensionality reduction and random projection

techniques, to limit the amount of data to a series of 2D datasets, which then will be

played separately by the crowd.

The game is designed around an idea of simple actions from a player - encircling

a group of similar points (in context of the shown dataset at the screen) both on a

single screen or series of screens (the reference to multidimensional dataset). Thus,

the players are responsible for choosing their clustering criterion, which, in turns, can

be considered as a simplified data review process by an expert.
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Therefore, every game is a consecutive set of 2D screens. Each screen is a set of 2D

points, which are to be grouped/clustered together. An example of such a screen is

shown in Figure 4.1A. For each screen, a player is allowed to create a single group of

dots, which in the context of the given screen, is the best possible cluster (based on the

player’s judgment).

Since the process of solving puzzles might be monotonous, it requires various gam-

ified elements as well as game dynamics progression called the flow [250] to keep

players attention. While the latter is still an open-ended problem (we discuss it more

in the Conclusion section), we implement multiple engagement boosting features in

the game.

We introduce time-bonus (time slider on top of the screen Figure 4.1A) to speed

up gameplay and improve its dynamics. Our end game screen contains an animated

indicator of the progress towards the next thematic badge, total and accumulated per

game scores, the performance of the player with respect to the crowd (Figure 4.1B).

Colony B is also an educational game. We use thematic badges to grow the inter-

est of our players to microbiome studies as well as to provide score related rewards

(Figure 4.1C, 4.1E). Our badges are the most known bacteria (such as Escherichia coli,

Bifidobacterium longum, etc.) that become available when a player reaches a specific

milestone (score).

An essential part of the game is a leaderboard. We have noticed that new players

most of the time get discouraged when they compare a game score to (for example) the

top ten players. Thus, we created a system of leagues - partitions of the leaderboard

based on multiple score ranges (Figure 4.1E). A player starts from the reasonable dis-

tance from the leader of the league and when steps out from the initial league range,

goes to the next league.

One of the biggest challenges for any game-with-purpose is to provide enough

information for people to produce quality results [251]. We designed an interactive

tutorial (Figure 4.1F) that step by step explains each aspect of the game with immediate

feedback on every action of the player.
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FIGURE 4.1: Illustration of multiple scenes of Colony Bgame: A) clustering panel with

stage / total scores and puzzle progress; B) End game screen with a status in new

badge discovery; C) List of available thematic badges; D) Educational information

about badge; E) Leader board with multiple leagues; F)Interactive tutorial.



100 Chapter 4.

Although Colony B is an online game, it allows a player to play while offline and

access multiple puzzles, loaded during the last online gaming session.

Since our goal is to involve people in the gamified process of clustering regard-

less of their knowledge about the underlying problem, we made our game publicly

available on all major mobile platforms. Therefore, we do accept all players without

a selection process and give them a choice to register with email or start playing right

away as a guest user. In case of email registration, we do not store any personal infor-

mation. We explicitly guarantee the confidentiality of collected information and state

that it can only be used to enable a user to reset the password or send feedback about

player’s contribution to science. We describe the usage of the player’s solutions in the

mobile application (information tab) as well as on the official Colony B website.

The game consists of multiple stages (screens). At every stage (screen) user is al-

lowed to encircle single group of dots that is the most representative for clustering for

particular player in current situation. The main flow of the game (first two stages with

player’s actions and system reaction) is illustrated in the Figure 4.2.

4.4.1 Game Play Scoring

We design a scoring system as a tool for both providing a reward for a player’s ac-

tion and introducing a competition factor to the game as a boost for crowd engage-

ment [251]. Since such system must not bias a player towards particular solution we

compile our scoring function as a superposition of three different clustering validation

indices: (i) Silhouette index [118], (ii) SDbw index [120], and (iii) Dunn index [119]. All

three indices find cohesion and separation in its own way and then calculate a final in-

dex value. That is, Silhouette index computes inter / intracluster distances, while

Dunn index operates with diameters of each cluster as well as minimal inter-cluster

distance. In contrast, SDbw index computes scattering (sum of standard deviations of

each cluster over the standard deviation of the dataset) and density at the midpoint

of the cluster centers with respect to the cluster center densities. The maximum over
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FIGURE 4.2: The example of the game flow with first two stages and the process of puzzle solving. A) The player is presented

with initial stage data. B) The player makes selection of the most representative group of dots on the mobile screen. C) Feedback

from the game. D) The player is presented with the next stage data. It also shows in blue the points selected by the player on the

previous stage. The Player also encircles suitable group of dots on the screen. E) Feedback from the game.
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these three (normalized) values for particular screen will be denoted as its quality score

Qual(Si), where Si is a state of the game at ith screen.

Since a series of screens represents a dataset in different dimensions, we introduce a

conservation score Cons(Si,Si+1), the number of points conserved between two consec-

utive screens. To emphasize this feature in the game and show potential conservation

between screens we highlight points that were selected by a player in the previous

screen.

Thus, the preliminary score formula can take the following form:

QCScore(Si) = α ∗ Qual(Si) + (1 − α) ∗ Cons(Si−1,Si)

We use α = 0.8 to balance quality and conservation scores.

As a final step, we introduce a density correction coefficient DCC to shift a player’s

attention towards significantly dense areas. It also aims at reducing the spontaneous

behavior of a player. The final scoring function for a player’s stage evaluation is:

Score(Si) = QCScore(Si) ∗ 1 +DCC
2

To define DCC we utilize Kernel Density Estimation technique [252]. It is a non-

parametric estimation of probability density function (PDF) of a random variable to

the given screen dataset. Using PDF, we estimate density in every data point - value

in the range [0, 1] that can be used as a weight of each point.

Consider set of points P for screen Si. Denote Pselected as a set of selected points

and, oppositely, Pnotselected = P − Pselected . Let dk to be the densities of points in P ,

and �D is a vector of densities, |�D| = |P|. Following calculations assumes densities to

be in range [0, 1].

Define balance density nm = min(median(�D), mean(�D)), and transform densities as

follows dk := dk − nm. It splits a range of densities in positive and negative intervals,

which will be used as a base for award and penalization weights respectively. Finally,
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we can write Density Correction Coefficient as follows: DCC = Nom
Denom , where

Nom = ∑
pk∈Pselected

dk− : PC ∗ ∑
pk∈Pnotselected

dk

Denom = ∑
dk∈�D,dk>0

dk− : PC ∗ ∑
dk∈�D,dk<0

dk

where PC is a parameter controlling a strength of penalization in the functions. For

example, if the player’s selection contains two dense areas, then, according to DCC,

the densities of the most dense group of points will be balanced by the densities of the

least dense group of points (by the factor of PC). While we do not intend to penalize

significantly player’s score and want selection’s imperfections to contribute to a stage

score, we apply correction factor PC with small values (e.g., 0.1).

4.4.2 Human interaction with mobile device

The crowd interacts with a Colony B game using mobile application (available both

for iOS and Android devices). It speeds up data collection, and, therefore, improves

the quality of the solution.

However, it introduces a significant challenge to data representation. For example,

people holding a smartphone in right/left hand tend to keep paying more prominent

attention to the smaller area closer to a thumb [253]. To eliminate this problem we

randomly mirror screen datasets along X axis only, Y axis only, or combined X and Y

axes.

4.5 Methods

In this section, we describe our data analysis pipeline applied to the data accumulated

with the Colony B game. We consider data as a set of individual solutions. Instead of

analyzing distance, density, or other parameters in Euclidean space, we use the space

of solutions.
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Such space considers every solution as a data point where position vector is a bi-

nary vector of the same size as a dataset. Each element of the vector defines a state of

the particular point: 1 if the point is selected, 0 otherwise. In the following discussion

we use the following formalism: �Vi denotes an individual binary vector from set of all

solutions V ; �Vi,k is a kth binary vector of ith cluster.

To transform the multiclass output of regular clustering algorithms into the solu-

tion space, we use One-vs.-Rest [254] strategy. It results in a set of binary vectors, which

must be treated as stand-alone solutions.

In solution space, we group solution vectors and evaluate the strength of the ob-

tained consensus.

Finally, we compare the performance of our approach with multiple clustering al-

gorithms based on such metrics as Silhouette, Dunn, SDbw cluster validation indices.

Besides, we use modularity metrics [246] (measure commonly used to evaluate parti-

tion of the network as a tool for community search). It can be adapted to our situation

by sparsification - trimming the furthest edges (we choose 0.5 of the dataset diameter),

a simple transformation of resulted sparse distance matrix to the similarity matrix, and

then computing modularity.

4.5.1 Base Pipeline: Search of Vector Groups

Unlike most of the clustering algorithms, the key to our approach is a search of groups

of vectors in a set of vectors V . That is clustering in the space of solutions. Here we

propose a generic pipeline that can be applied to the general set of binary vectors:

(i) accumulate all binary vectors �Vi of V observed from processing particular dataset;

(ii) find the pairwise distance between binary vectors �Vi ∈ V (we use Manhattan

distance due to its simplicity);

(iii) given distance matrix, filter out outliers using Local Outlier Factor (LOF) tech-

nique [255]. In solution space, the outlier is a solution that is distant from the rest and

cannot be grouped with another solution;



4.5. Methods 105

(iv) given cleaned distance matrix (filtered outliers), use the community search ap-

proach to identify groups of binary vectors. This technique relies on the similarity

matrix, which can be obtained by using Radial Basis Function (RBF) kernel [256] or

simply subtracting elements of distance matrix from the all-ones matrix of an appro-

priate size. For community search algorithm we choose Louvain algorithm [114] due

to performance on relatively large networks (must be scalable with the number of so-

lutions).

The result of the pipeline described above is a set of vector groups that can be

explored independently. Next, we propose an alternative measure of clusterability of

a dataset as an additional step to the base pipeline.

4.5.2 Measure of Clusterability

Usually, clusterability is defined by measuring separation and cohesion of the clusters

in Euclidean space [257]. In this section, we design an alternative version of this mea-

sure, which is also suitable for indicating the presence of clusters in a given dataset.

As discussed above, we obtained distance matrix DM, clusters C = {C1..Cn},

where Ci is a set of binary vectors {�Vi,1, .., �Vi,k}. Every such vector �Vi,j has size P - num-

ber of data points in dataset. Let us define DMi as an intra cluster Ci distance matrix

and DMU
i - upper triangle of distance matrix DMi . We compute an average number

of points that been selected per cluster Sel(Ci) =
∑
|Ci |
k=1 sum{�Vi,k}

|Ci| , where sum{�Vi,k} is a

sum of all the elements of vector �Vi,k. Here, Sel(Ci) balances designed score to the av-

erage selection and explicitly control an importance of clusters with small / large ratio

of selected points. Thus, for particular cluster Ci individual score will take form:

iScore =mean(DMU
i )∗(

1+ : mult ∗
(

2 ∗ Sel(Ci)− P
P∗ : drop_point_ratio

):degree)
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Parameters mult, drop_point_ratio, and degree control the weight increase for the under-

/ over-represented clusters. Since we are interested in clusters with size in range [0.15,

0.85] of the dataset size - we choose the following values for parameter: 4, 0.85, and 12

respectively.

It is important to mention that the iScore function does not depend on the number

of solutions contributed to the cluster. To take into account the number of solutions,

we factor the iScore with a coefficient that weights down clusters with few solutions:

iqScore = iScore ∗
(

1 +
(

1− : qMult ∗ |Ci|
|V|

):qDegree)

Parameters qMult and qDegree control the degrading speed of the coefficient. We

choose 1 and 12 respectively to lower importance of clusters containing less than 20%

of vectors from V .

Since the primary purpose of the measure of clusterability is to indicate the pres-

ence of cluster for a given dataset, we argue that knowledge about the maximum value

of the iScore / iqScore overall existent clusters is enough to make a decision about a

particular dataset.

4.6 Experiments

In this section, we describe experiments arranged to illustrate the behavior of pro-

posed approach on two (artificially created and real world) datasets, compare its per-

formance with different clustering algorithms in terms of multiple cluster validation

indices as well as modularity and ground truth labels (for real-world dataset).

It is important to mention that since the game is open to all mobile device users,

we do not control the number of players participating in the experiments as well as

their knowledge of data clustering topic. Since puzzles were assigned randomly, we

explicitly report the number of the players contributed to a particular experiment.
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4.6.1 Evaluation Dataset

We test our approach on the artificially created dataset, which at the same time was

used to evaluate the performance of Colony B players. The dataset was compiled

manually suggesting 10 different datasets with 40 points that provide various cluster-

ing situations: different number of clusters of varying shape, density, size and location

on the mobile screen as well as simple noise dataset without clear clusters. The dataset

was played by 3188 participants with 5503 solutions submitted.

We compared the performance of our algorithm (denoted as "human") with multi-

ple clustering algorithms (Agglomerative [98], Gaussian Mixtures models (GMM) [105],

KMeans [91], DBSCAN [101], Louvain [114] and also explicitly designed accumulative

algorithm that collects all possible solutions for different clustering algorithms and

uses them as a stand-alone solution). We used the elbow method to identify the num-

ber of clusters as well as parameters of the algorithms (e.g., eps and min_samples for

DBSCAN). For comparison, we use four metrics: modularity and Silhouette, Dunn,

SDbw cluster validation indices. This experiment showed that according to the four

metrics used, the human-based approach is on a par with or outperformed other clus-

tering algorithms. The detailed description of the experiment can be found in Supple-

mentary Material: Evaluation Dataset section.

4.6.2 Voice Recognition Dataset

We also report performance on the real world dataset, Voice Recognition dataset [258]

(later, is referred as VRD) which initially contains 21 features, but was processed with

dimensionality reduction technique (Principal Component Analysis [259], variance re-

tained ration is 90% ) to six-dimensional dataset to fit requirements of our Colony B.

This dataset was played by 848 participants with over 350 players completing more

than ten games. In total, 15515 solutions were submitted with an average 100 games

per puzzle.
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We propose a hypothesis that players of Colony B and therefore human-based ap-

proach tends to select bigger clusters than other clustering algorithms. We also discuss

other hypotheses related to algorithms performance comparison on various size clus-

ters and clusterability of the data in Supplementary Materials.

We compare cluster sizes for human-based approach and clustering algorithms us-

ing four metrics discussed above. To proceed we filter results for stages where either

clustering algorithm finds multiple clusters with more than two data points, or hu-

man based approach evaluates it as clusterable. The result is shown in Figure 4.3. We

need to clarify that cluster size depends on the metric used as for every stage we select

representative cluster - cluster with the best score in particular metrics.

Since the distributions of the cluster sizes (all of them) are not following the normal

distribution (the Shapiro-Wilk test rejected the null hypothesis with p = 3.61621e −
6 as for human-based approach using SDbw metrics), we use Wilcoxon signed-rank

test to compare medians of two paired groups. For modularity, the significance test

rejected the null hypothesis comparing cluster sizes of human-based approach with

other clustering methods (p = 5.9058e − 10). A significant effect (p < 0.05) is found

with 2% of the samples for GMM, KMeans, Louvain, and multialgo algorithms (40);

and 5.5% of the samples for Agglomerative algorithm (110).

For Silhouette, Dunn and SDbw indices tests rejected the null hypothesis (p <

1.0e − 20). A significant effect (p < 0.05) is observed with 2% of all the samples (40).

This result supports our hypothesis 1 that human solutions in general and the re-

sults of human-based approach tends to make larger clusters.

We do not emphasize the results of testing the hypothesis 1 on Evaluation Dataset

as the dataset lacks a structure uncertainty and primarily targets the performance

comparison between human based algorithm and popular clustering algorithms us-

ing screens with clear clustering situation. As expected, the experiment does not show

any significant difference between these algorithms.
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FIGURE 4.3: Comparison of cluster sizes for VRD for human based approach and

clustering algorithms based on the 4 metrics: Modularity, Silhouette, Dunn, SDbw.
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4.6.3 Mobile Screen Bias

As discussed in section 4.4.2, the mobile device user interacts with smartphones in

several ways that can affect the result of our approach. Therefore, it is important to

test if each player groups data using the entire clustering panel.

To arrange this experiment, we analyzed individual solutions of every player that

completed at least ten games for VRD. We mirrored data as to oppose to actions de-

scribed in section 4.4.2 and first studied left and right partition of the dataset ([0, 0.45],

[0.55, 1] partitions of the screen along X axis). Let l be the number of hits in the left part

of the screen and r - in the right part. Then we are interested in the relative difference

of two sides |l − r|/(l + r). We found that the difference is at most 0.205 with average

0.047 ± 0.037. It indicates that there is practically no bias in clustering patterns along

the X axis for players caused by the usage of a mobile device.

We also analyzed the pattern along the Y axis in the same way. We found that

relative difference is in average 0.77 ± 0.26. This implies that there is a strong bias of

people using the lower part of the screen to perform clustering. This phenomenon

can be explained by the size of the screen of modern mobile devices as well as bad

reachability of top of the screen.

We report the results of the experiment as centre of mass of human clusters on a

mobile screen (Figure 4.4). The experiment shows a strong skew in the human cluster-

ing preferences towards the bottom of the screen.

This experiment suggests that user interface must be adjusted in such a way that

action panel is located on the bottom of the screen, and all the game stats are moved

to the top. It also justifies the necessity of mirroring data along the Y axis.

4.7 Conclusion

We implemented an online human computing Game Colony B as a complex frame-

work to collect human player input in order to solve the problem of data clustering.
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FIGURE 4.4: Centre of mass of human clusters on a mobile screen. Data point repre-

sents a measure of the clustering preference for each user. Color illustrates data point

density.
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We conducted a year-long experiment with over 4000 participants (in total) using two

different datasets: an artificially created evaluation set featuring various clustering

scenarios, and a real-world voice recognition dataset. Participants to this experiment

(i.e., gamers) performed single clustering annotation using a mobile application. The

players were rewarded using a simple point rewarding scheme.

We analyzed the collected data and proposed a pipeline that aggregates human

solutions. We compared the performance of our human-based approach with major

clustering algorithms such as Agglomerative, Gaussian Mixtures models, KMeans,

Louvain algorithm. We also compared performance with multialgo - a customized

algorithm that aims to mimic human behaviors using results from multiple runs of

various clustering algorithms instead of human solutions. It is worth noting that we

initially included the DBSCAN algorithm with automatic estimation of parameters

using Elbow method in our benchmark. However, this method performed poorly on

both datasets (either it identifies single cluster or treats the majority of data points as

noise), and thus we decided to exclude DBSCAN from our benchmark to as it was not

representative of the quality of the algorithm.

We discussed the performance of humans and algorithms using four popular met-

rics (Modularity, Silhouette, Dunn, and SDbw) on a simulated (i.e., reference) and

real-world datasets.

First, our result on the reference dataset demonstrates that the human annotation

outperforms (or is on a par with) other clustering algorithms. Importantly, this result

is obtained when users agree on the cluster.

By contrast, on the more noisy Voice Recognition dataset we observed that, accord-

ing to the four metrics used, the performance of humans is slightly more deteriorated

than those of computer algorithms. However, we showed that human-based approach

results in significantly larger clusters comparing to automated approaches. Besides, to

verify this result, we tried to detect some bias in the way how people are selecting

clusters. We used information about relative screen location of each player’s cluster in

combination with mirroring data statistics on the player screen and found that along
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the X axis there are no significant skews toward some parts of the screen. However, a

similar experiment with the Y axis showed a bias of players using mainly the bottom

part of the screen. This is expected behavior due to the size of the mobile device and

reachability of the top part of the screen and justifies our strategy of mirroring data

along the Y axis.

We noticed that a lot of accumulated solutions take up to 100% of the screen. Al-

though it might be caused by the noise of the data, it might be a drawback of the

designed scoring function and will be addressed in future work.

We also mentioned in the description of the game the need of the flow - a nat-

ural game progression that increases challenge level according to the skill level of

the player. Whereas we have added multiple game elements that advance with the

player’s level (score, leaderboard ranking, badges), this is still an open-ended problem

for the Colony B game (as well as for many games-with-purpose) since the underlying

problem has no distinct and clearly defined solution. In particular, ranking puzzles by

their complexity is an equally hard problem and will be studied further in future work.
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5.1 Preface

Clustering is a complex computational task of dividing datasets into groups of sim-

ilar objects while maximizing dissimilarity of objects between the groups. Objects

are usually represented as points in a multidimensional space, where each dimension

represents a distinct attribute describing the object. For instance, the attribute might

represent the spatial coordinate, the measurement of an experiment, the property of

the object represented by a point, etc.

Unlike the classification problem where objects in datasets are labeled in advance

so the accuracy of the algorithm can be evaluated from the labels, the data cluster-

ing problem is ambiguous since the term ’cluster’ does not have a precise defini-

tion. Steinbach et al. [122] lists five commonly used definitions, including center-

based, density-based, similarity-based, etc. These definitions assume a specific sim-

ilarity/dissimilarity function to be optimized. Many conventional clustering algo-

rithms use a distance or similarity measure to group together objects that are, in gen-

eral, close to each other. However, as the dimensionality of a dataset increases, the

distance or similarity function becomes less useful [260]. This loss in data usefulness

is commonly known as the curse of dimensionality (CoD). CoD is defined as the in-

crease in dataset sparsity caused by a dramatic increase in dimensionality [122].

Feature selection [127] and feature extraction [124] techniques are commonly used

strategies to address the problem as a data preprocessing step. While the former is

a computational technique to filter out non-informative features (or dimensions), the

latter projects a dataset to a lower dimensional space and, therefore, generates a com-

pletely new set of features. While both approaches might seem appealing, resulting

features can be non-informative or lack interpretability.

Besides, multiple methods have been proposed to address clustering in high di-

mensional space [149, 150, 147, 151, 152], including subspace and projected clustering

algorithms. The former employs bottom-up strategy first considering the primitive

subspaces and then exploring higher dimensionality subspaces. In contrast, the latter
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considers an entire set of dimensions and then searches for optimal partitions of the

feature set to represent the clusters.

Nevertheless, regardless of the dataset dimensionality, the presence of a cluster re-

sults from an agreement between multiple individuals. While it is preferred to have an

expert manually analyzing data, such a strategy is not scalable and often expensive. In

contrast, crowdsourcing is a well-established technique to engage non-expert workers

to solve (micro-)tasks that are still hard for a computer program. In particular, the

clustering problem has no precise definition and requires human assistance to assess

the problem [80].

Multiple studies have approached complex textual data clustering problem using

human computing techniques [83, 85, 86], including Cascade, DELUGE, and Alloy.

Crowdsourced image clustering was also explored in [240, 261]. Yet, an application

of human computation to abstract data clustering problem is poorly described in the

literature.

In Chapter 4, we described Colony B, a mobile human computing game that ap-

proaches the simple 2D clustering problem. Since the first release of the game in 2016,

over 130,000 puzzles were completed by over 4,400 unique players. Over 200 players

submitted more than 100 solutions each with a 10,000 solutions submitted by top three

players.

This chapter describes the Colony B game as a tool for data clustering in high di-

mensional space. It presents two crowdsourced clustering methods that accurately

compile collected human player solutions into multidimensional clustering results.

We also analyze microbiome data from American Gut Project [262] and give an intu-

ition on the game modifications that allow the system to use the human computing

technique more efficiently.

The remainder of text found in this chapter is taken from:
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Alexander Butyaev, Chris Drogaris, and Jérôme Waldispühl. Colony B: Multidi-

mensional Data Clustering Using Human Computing Techniques (2019) In prepa-

ration for submission to the Human Computation and Crowdsourcing (HCOMP) confer-

ence.

A.B. contributed to the design of the mobile application, developed server side of the Colony B

game and data management system, implemented the computational analysis, and prepared a

draft for the manuscript. C.D. designed the mobile application for the Colony B game. J.W.

contributed to the design of the mobile application and coordinated the computational analysis.
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5.2 Abstract

Clustering is a central task in many data analysis applications. However, a ’clus-

ter’ does not follow any precise mathematical formulation but results from a con-

sensus from several experts. The problem is even amplified when analyzing high-

dimensional data sets where classical distances become uninformative and an agree-

ment even harder to reach. In this paper, we design a mobile human-computing game

as a tool to collect human input for the multidimensional data clustering problem.

We propose two crowdsourcing multidimensional clustering algorithms that partially

or entirely rely on aggregated human answers. We report the results of two experi-

ments conducted on a synthetic and real-world data set. Using accumulated solutions,

we benchmark the proposed algorithms against most popular automated clustering

algorithms and demonstrate that our methods perform on par or better than fully-

automated clustering algorithms. We also analyze the microbiome dataset obtained

from the American Gut Project and draw some intuition on our game’s modification

needed for more effective use of crowdsourcing technique.

Keywords: Data Clustering | Crowdsourcing | Human computing | Game-with-

a-purpose | Algorithms | Multidimensional data

5.3 Introduction

Clustering is a complex computational task of dividing datasets into groups of simi-

lar objects while maximizing dissimilarity of objects between the groups. The prob-

lem definition is somewhat ambiguous since similarity/dissimilarity metrics signif-

icantly differ. Cluster analysis encounters many algorithms that emphasize the clus-

ter’s shape [97, 91, 87, 98], density [101, 102], or the underlying distribution model [105].

It also provides a number of cluster validation indices and metrics [247]. However,

none of them can guaranty to produce satisfying results and often require data expert

assistance.
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Furthermore, in the context of multidimensional data, traditional similarity met-

rics, which are used in conventional clustering approaches, are usually not meaning-

ful (i.e., the distance function becomes less efficient due to the curse of dimensional-

ity [123]). To address this problem, customized strategies such as subspace and pro-

jected clustering were proposed [150, 147, 153, 149]. Nevertheless, due to the complex-

ity of the task, expert supervision remains required.

Crowdsourcing is a well-known technique to employ human workers to perform

repetitive work in data annotation and interpretation which is still hard for a com-

puter [80]. Although the majority of participants are non-expert, sufficient amount

of aggregated answers were shown to produce the expert-level results in different

fields [263, 264]. Multiple systems address the text clustering problem using crowd-

sourcing techniques [83, 85, 86]. However, the abstract data clustering is yet to be

studied.

In this paper, we present Colony B, a human computing game [265], as a tool to

collect human input for multidimensional data clustering problem. We introduce two

clustering algorithms, hubCLIQUE and CloCworks that either assist with or entirely rely

on assembled crowd solutions to compile a clustering result. We arrange two short

term experiments using synthetic and real-world datasets. Using accumulated an-

swers of the Colony B players, we benchmark both algorithms against most popular

automated clustering methods and show that hubCLIQUE and CloCworks performed on

par with or outperformed other approaches. We also examine the microbiome data

from American Gut Project [262], one of the largest citizen science microbiome project,

and draw some intuition on the modification of the Colony B game for more effective

use of crowdsourcing technique.
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5.4 Colony B

Colony B is a mobile game that addresses the problem of real-world data clustering

using crowdsourcing and human computing techniques [265]. This mobile game in-

volves simple actions from a player to provide clustering of data points - encircling a

group of similar points (in context of the shown on the mobile screen dataset) both on

a single screen or series of screens (the reference to multidimensional dataset). Thus,

the clustering criteria is entirely dependent on player choices. Since typical approach

for the data clustering routine is an iterative process of data analysis by an expert, the

game can be considered as a simplified data review process by a human worker (not

necessary an expert).

Every game of Colony B consists of a consecutive set of 2D screens. Each in-game

screen is a set of 2D points that the player is able to be group/cluster together. The

player is only allowed to create a single group or cluster per screen, which is meant to

be the best possible cluster (based on the player’s subjective opinion).

Besides, Colony B also has multiple features that encourage crowd engagement

(interactive tutorials, theme badges, score, multilevel leaderboard) as well as monitor

the performance of the players and direct their efforts towards yet unsolved problems

(evaluation puzzles) [265].

5.5 Colony B in multidimensional space

Colony B was designed to capture a signal for any datasets regardless dimensional-

ity. In this section, we discuss specific features of the game that help to address the

problem of data clustering in multidimensional space.

5.5.1 Game Data Structure

To make data management and analysis more transparent in the case of a multidimen-

sional dataset, we propose the following data structure (listed in order of biggest to
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lowest structural unit):

Puzzle The portion of a multidimensional dataset that will be shown to a Colony B

player during their game session. Each multidimensional dataset usually con-

tains one or more ’Puzzles’.

Stage The formal term for the 2D screen used in Colony B and defines the 2D, or-

thogonal projections of the data encapsulated into the ’Puzzle’. Multiple ’Stages’

make up each ’Puzzle’.

Point An orthogonal projection of a multidimensional data point to 2D space (i.e.,

’Stage’). Each ’Stage’ is represented as a collection of multiple ’Points’.

Thus, we have defined and build a hierarchical structure for manipulating data found

within the game of Colony B. It is also important to note that the points from two

different Stages within a single ’Puzzle’ represent the same multidimensional data

points in different 2D orthogonal projections.

5.5.2 Data Adaptation and Interpretation

To create a Colony B Puzzle a researcher begins by uploading a multidimensional

dataset to our system. Here, we consider a dataset that contains N data points in

D dimensional space (i.e., represented as D features).

Since a mobile screen is used as an interface to interact with a player, the game

is limited to two dimensions (orthogonal projections) at a time. However, it is rarely

feasible to process all (D
2 ) distinct 2D projections of the dataset. After experimenting

with a different number of the stages per game, we found that the optimal number of

stages to be 15. Therefore, we limit dimensionality of the dataset to six.

To accommodate this restriction, many dimensionality reduction techniques (PCA [137],

PCoA [138]), feature selection techniques, or iterative random sampling of features ex-

ist to address multidimensional datasets. Though, the choice of the strategy must be

made in context of the nature of the data, distance metrics used, and other data related

properties.
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Since we target mobile platforms, we are limited by computational resources and

rendering capabilities of a mobile device. We pre-generate a set of ’Puzzles’, each of

them contains fixed number of randomly selected from a dataset points. We define the

number of points as maximum possible number that allows a user smoothly interact

with our mobile application using average mobile device. While single puzzle often

is a very sparse representation of a dataset, by adjusting the number of puzzles we

control its overall coverage.

5.5.3 Game Play Scoring

Each solution collected from a Colony B player contains human clustering result for

every stage of a puzzle. In this section, we design multi-phase scoring strategy that

takes into account individual stage solutions as well as information extracted from

transitions between stages. It is non-penalizing strategy enabling us to filter valid

clusters.

First, each stage is evaluated using three clustering validation indices: (i) Silhou-

ette [118], (ii) SDbw [120], and (iii) Dunn [119]. Since our scoring function requires

comparison of the indices, we propose a heuristic to normalize them. We observe dis-

tribution of values for each index while training on multiple available datasets (see

section Experiments) . This step is done once, so the produced distributions are then

available for all datasets uploaded to the Colony B system.

Thus, we evaluate human solution with three indices and using the reference dis-

tributions we determine the portion of the tests, which showed worse result than one

evaluated from a human solution. This procedure equally scales all three index mea-

sures in the interval [0, 1].

The best value obtained after normalization step is assigned to quality score Qual(Si)

for the stage Si. To incorporate dimensionality aspect in the score we introduce a con-

servation score Cons(Si,Si+1), the number of points conserved between two consecu-

tive stages. We use a density correction coefficient DCC to shift a player’s attention
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towards significantly dense areas. It also aims at reducing spontaneous behavior of a

player. The final scoring function for a player’s stage evaluation is:

Score(Si) =
(
α ∗ Qual(Si) + (1 − α) ∗ Cons(Si−1,Si)

) ∗ 1 +DCC
2

Where DCC is a shifted density value obtained using kernel density estimation [252].

The magnitude of a density shift defines the sensitivity of the score to multiple dense

areas within a single selection.

A final score is then summed across all the stages in a given ’Puzzle’.

5.6 Methods

In this section, two novel, semi-automated clustering algorithms for multidimensional

data are presented: i) human-based CLustering In QUEue (hubCLIQUE) algorithm and

ii) Clustering Of Crowd-sourced networks (CloCworks). hubCLIQUE supplements an

available dataset with an additional feature/dimension provided from a Colony B hu-

man player before performing subspace clustering. In comparison, CloCworks relies

entirely on networks resulting from Colony B player data and then partitions these

networks into clusters.

5.6.1 hubCLIQUE

Many clustering algorithms have shown to produce accurate results in low dimen-

sional space; however, only a few perform adequately in multidimensional space

where the curse of dimensionality becomes noticeable [266]. A subspace clustering

technique has often been found to yield the best results by identifying clusters that

are hidden in specific subspace(s) while presented with noise from other dimensions.

Thus, we designed hubCLIQUE as a bottom-up subspace clustering approach guided

by crowdsourced solutions collected from the Colony B game.
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As the core of our method, we chose to use one of the first subspace clustering algo-

rithms, CLIQUE (CLustering In QUEue) [149]. CLIQUE uses grid-based and density-

based approach to identify dense areas. Such a strategy has enough flexibility to in-

corporate additional information extracted from a human input.

CLIQUE adaptations

To adapt the CLIQUE algorithm to human input from Colony B, we define a primitive

subspace in 2D space (opposed to the 1D space defined by authors in the original

paper). We also extend the density term by supplying it with weights observed from

human solutions of the Colony B game.

We describe two generic ways to encode human input as points weights to affect

the density of data points:

Point Frequency Consider a set of multidimensional points x ∈ X. Denote a fre-

quency of players selecting a point x as fclustered(x) and the number of times a

point x appeared on a screen of a player as Nappeared(x). Then, we define the

weight of point x as

W(x) =
fclustered(x)

Nappeared(x)

Transition Conservation Frequency Define a frequency of players selecting a point x

in two consecutive (in a puzzle) stages as f A−→B
clustered(x) and the number of times a

point x appeared on two consecutive screens as NA−→B
appeared(x). Then the weight of

the weight x can be defined as

WA−→B(x) =
f A−→B
clustered(x)

NA−→B
appeared(x)

Within this paper, we refer to these alternations of CLIQUE algorithm as All Solu-

tions CLIQUE (asCLIQUE) and Conservation CLIQUE (consCLIQUE), respectively.
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Since there are many parameters we can extract from human solutions, we filter

out solutions from individuals that did not understand the instructions of the game.

Therefore, we can extend the asCLIQUE solution with the following filter criteria:

Confidence Level Evaluation puzzles are used to measure a given player’s level of

pattern recognition skill (confidence level) at specific moment. Then, we define

a player’s confidence level as the ratio of a player’s score obtained for the eval-

uation puzzle over its maximum possible score. Confidence levels are specific

to each evaluation puzzle. Game solutions are only retained when the player’s

confidence level exceeds a specified threshold.

Average Cluster Size During the development of Colony B, we observed many play-

ers selecting larger clusters. We believe players are assuming that there is a pro-

portional relation between the size of the cluster and a score. In actuality, this

relationship is somewhat the opposite. Therefore, to correct for this large clus-

ter bias, we estimate an average clusters size (ACS) over all solutions for each

player. Then, a player’s game solutions are filtered out based on the player’s

ACS.

These two algorithms are referred to as Confidence CLIQUE (confCLIQUE) and Average

Cluster Size CLIQUE (acsCLIQUE), respectively.

The list of criteria is not exhaustive. Using the same methodology, multiple filters

could be defined to filter solutions that come from players, which tend to select one

particular part of a screen, have a large ratio of requested puzzles over solved ones,

etc. Nevertheless, we do not recommend using some features as a restriction factor.

For example, a gameplay score introduces a bias towards a set of specific solutions;

the number of games played by a player shows a participation statistics and unlikely

demonstrates the quality of player’s solutions.

We note that asCLIQUE, consCLIQUE, confCLIQUE, and acsCLIQUE are strate-

gies to assign weights to data points, whereas hubCLIQUE is the complete algorithm
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that employs a particular weight identification tactic resulting in the final multidi-

mensional clustering vector.

After weights for all points of a ’Puzzle’ are computed, subspaces are generated

following the original CLIQUE strategy defined in [149]. The process produces mul-

tiple subspaces. Each K + 1 dimensional subspace has at most the same number of

points covered by dense areas preserved from each of the two K dimensional sub-

spaces. Therefore, for multidimensional subspaces, low coverage of data points is a

frequent phenomenon. This phenomenon makes it problematic to gather and inter-

pret results afterward. For instance, the original CLIQUE algorithm uses a Minimal

Description Length (MDL) Pruning [267] that searches for optimal split based on the

encoded coverage and its code length. Similarly to the MDL Pruning technique, it is

possible to use Elbow criterion [268] (which is often used to find the number of clus-

ters) on the coverage values to identify subspaces to be filtered.

Nevertheless, both strategies propose a set of subspaces and a set of clustering

vectors that rarely can represent a single clustering vector for a dataset. Thus, we

argue that to compile a final vector we should not prune subspaces with low coverage.

Despite the low coverage, high dimensional subspaces contain clusters that have their

extension in lower dimensional subspaces and, therefore, must be considered as a base

for a cluster compilation routine.

First, we extract single clusters from a set of collected clusters while preserving

information about its original dimensions. Then, we sort subspaces based on 1) the

number of dimensions and 2) size of the cluster in descending order. It helps to ini-

tiate the analysis from potentially the base of a cluster and significantly improves the

quality of the result.

We iteratively traverse a sorted list of subspaces to identify overlapping (in terms

of containing points) subspaces and then final clustering vector.

Consider a dataset that contains N data points, list S of sorted subspaces of length

L. Denote si an element of S that contains point information spoints
i as well as dimen-

sions of its origin saxes
i .
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The algorithm contains two phases. First, we search for the cluster candidates and

their maximum axes (dimensions) by measuring the overlap of each element si ∈ S

with the rest elements sj ∈ S, sj �= si . Then, we finalize the result. We iterate over

steadily decreasing set of cluster candidates and remove overlapping elements (if any)

from the following candidates. The remaining set of cluster candidates is sorted after

every iteration based on the number of dimensions, portion of points conserved be-

tween the base candidate (current) and other candidates, and the number of points cov-

ered by a non-base candidate. The algorithm terminates when the procedure passes

over the entire set of cluster candidates or the current candidate does not contain any

non-overlapping with previous candidates elements. Algorithm 1 illustrates our ap-

proach.

Our algorithm produces a single clustering vector that consists of labels of each

point in a dataset. Along with non-negative integers, it contains -1 label denoting

non-labeled data points.

5.6.2 CloCworks

Previously, we described hubCLIQUE- the clustering algorithm that supplements the

dataset with human input. By contrast, in this section, we propose CloCworks - cluster-

ing algorithm that leverages human cluster annotations to explore multidimensional

datasets. It does not require original dataset and therefore directly shows the behavior

of the crowd.

CloCworks operates with data represented as a network. It use community search

algorithm to find pseudo optimal partitions of the network (as it is NP hard prob-

lem [113] and requires heuristics). We choose Louvain community search algorithm [114]

mainly because of its performance (modularity score) and speed in comparison with

other related algorithms [115, 116].
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Result: Single Clustering vector
1 candidateClusters ← new List
2 candidateClustersAxes ← new List
3 Phase 1
4 for i ← 0 to L − 1 do
5 if si is used already then continue
6 mark si as used
7 pointCounter ← new Dictionary
8 updateUsageClusters ← new List
9 for j ← i + 1 to L do

10 if sj is used OR saxes
j not in saxes

i then continue

11 overlap ← spoints
i ∩ spoints

j
12 if len(overlap) > 0 then
13 pointCounter ← Count each point appearance in spoints

j

14 if len(overlap) > 0.8 ∗ len(spoints
j ) then mark sj as used

15 else add j to updateUsageClusters
16 if len(pointCounter) > 0 then
17 cutFreq ← average of ( values of pointCounter )
18 consensus ← keys of pointCounter s.t. value ≥ cutFreq
19 remove consensus points from Sk where k ∈ updateUsageClusters
20 append consensus to candidateClusters
21 append saxes

i to candidateClustersAxes

22 Phase 2
23 for i ← 0 to len(candidateClusters) - 1 do
24 current ← candidateClusters[i]
25 augmented ← new List
26 for j ← i + 1 to len(candidateClusters) do add len( current ∩

candidateClusters[j] ) to augmented
27 Sort candidateClusters[i+1 :] begin
28 let f ← index of element
29 1: candidateClustersAxes[i+1+f] (desc)
30 2:

(
len(current) + augmented[f]

)
/
(
len(current) +

len(candidateClusters[i+1+f])
)

(asc)
31 3: len(candidateClusters[i+1+f]) (desc)
32 for j ← i + 1 to len(candidateClusters) do
33 candidateClusters[j] ← candidateClusters[j] \ candidateClusters[i]
34 clusters ← new List(N)
35 fill clusters with -1
36 for clusterID ← 0 to len(candidateClusters) do clusters[

candidateClusters[clusterID] ] ← clusterID
37 return clusters
Algorithm 1: CLIQUE results are compiled into single clustering vector for
complete dataset.



130 Chapter 5.

Design

The algorithm first compiles a network for every pair of dimensions in a dataset from

Colony B players’ solutions. Each node of the resulted network is a data point whereas

an edge, and its weight represents similarity between pairs of points and its strength,

respectively.

Denote Si,j
k a stage in 2D space {i, j}. The algorithm analyzes all accumulated so-

lutions for Si,j
k and counts the frequency of two points being selected together by a

Colony B player over the number of times the stage was shown to a player. The result

is recorded as a similarity matrix. Then the procedure is repeated for all the stages in

{i, j} subspace. All resulting similarity matrices are averaged based on the frequency

of two points being assigned in the same stage (see Supplementary Materials: Fig. 5.5).

Next, we partition the resulted network using Louvain community search algo-

rithm. All partitions of networks (aggregated for each pair of dimensions) are consid-

ered as a list S of single clusters si. In contrast to the similar list operated by hubCLIQUE

(algorithm 1) that contains subspaces of different dimensionality, CloCworks utilizes

only 2D clusters. Thus, we modify the algorithm 1. Since we have less information

about consensus for higher dimensional subspaces, we relax the following conditions:

i) we iterate over S while non-used clusters exist, ii) after each iteration we sort S based

on the length(spoints
i ), iii) we use double deviation from the mean of the pointCounter

values as cutFreq. These modification allows us to take into account combinations

of clusters (if any) and later try to split them using supplementary information from

other projections.

CloCworks can be considered as a modification of the correlation clustering ap-

proach applied to general weighted graphs [269]. However, instead of ± labeled edges

with a weight denoting the confidence of the labeling, the proposed algorithm oper-

ates only with pairwise point similarities encoded as edge weights. Also due to very

sparse dataset coverage by puzzles of the Colony B game, very few network clustering



5.7. Experiments 131

algorithms can be used. For example, algorithms operating with the clustering coeffi-

cient and transitivity [270] will perform poorly since the chance of finding triangles in

the network observed from Colony B is very low. Also spectral clustering [271] algo-

rithm will generate multitude of small clusters that in our case is not representative.

5.7 Experiments

In this section, we benchmark our algorithm against standard clustering algorithms as

well as original CLIQUE algorithm. We use the synthetic dataset as well as the real-

world dataset to assess the accuracy of the proposed algorithm. Both datasets were

played by Colony B players for two weeks. Since the Colony B game can be played on

most mobile devices, we do not restrict or control both players’ registration and their

contribution to science. Therefore, the number of players played particular dataset

and the number of submitted solutions can vary and will be explicitly reported in the

description of experiments.

5.7.1 Synthetic dataset

First, we generate a synthetic dataset with high-density clusters in specific subspaces.

Unlike the "Synthetic data generation" procedure described in [149], we avoid using

predefined hyper-rectangles and their connectivity. Instead, we define dimensionality

(for simplicity we choose six to comply with requirements of Colony B game) and the

approximate size of a dataset, number of clusters, and ratio of additional noise. The

following procedure is randomized. For each cluster, it randomly (with replacement)

selects its dimensions from all the possible combinations of size in the range [2, 6] as

well as its size, coordinates of the center (mean), shape and orientation (covariance).

All these parameters are then used to draw random samples from a multivariate nor-

mal distribution. We restrict the minimum Manhattan distance between means of the

clusters that share at least one dimension:



132 Chapter 5.

TABLE 5.1: Synthetic Dataset information

Subspace Cluster ID Size
{0,3,4,5} 0 338
{1,2,4,5} 1 328
{0,1,3,4,5} 2 334
{0,1} 3 340
{0,4} 4 335
{0,4} 5 339

distMan( �mean1, �mean2) > distMan(�0,
√

�cov1 +
√

�cov2),

where �meanx and �covx are the mean and covariance vectors for elements of cluster x

in the shared subspace, respectively.

For our experiment, we choose to generate a 6D dataset with a size of approxi-

mately 2000 data points, which are randomly distributed over six clusters of various

dimensionality. Also, we added extra points (’noise’ points) randomly distributed

over the search space (5% of the dataset size). Table 5.1 shows generic information

about the synthetic dataset.

To measure the accuracy of the algorithm, we use F1 score with micro averag-

ing [272], which globally counts true positives false positives and false negatives rates

to compute the average metric. This approach allows us to understand which cluster-

ing result was the closest one to the true labels.

We compare the performance of four proposed extension of hubCLIQUE algorithm

(asCLIQUE, consCLIQUE, confCLIQUE, acsCLIQUE) as well as CloCworks with the

most popular clustering algorithms. Using Colony B game we collected human input

for the proposed algorithms: 25 players submitted over 400 solutions during two-

week period.

We include in the test three categories of algorithms: i) original CLIQUE [149] al-

gorithm; ii) algorithms that require a prespecified number of clusters (KMeans [91],

Affinity Propagation (AP) [273], Hierarchical clustering using Ward’s minimum vari-

ance method (Ward) [98], Gaussian Mixture Models (GMM) [105] ); iii) as well as those
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that do not (DBSCAN [101], MeanShift [92]).

We note that the GMM might converge to arbitrarily incorrect local maxima even

in perfect conditions [106]. Therefore, we report average of F1 score for 1000 runs

instead.

Since our hubCLIQUE algorithms do not require the number of clusters, for the sec-

ond category we assume two different cases: i) the number of clusters is estimated

using elbow method (4); ii) the correct number of clusters is given (6). We use the

former for the main comparison while the latter as a reference only.

Also our test dataset consists of clusters in both high and low dimensional sub-

spaces. Thus, we separately report the accuracy for both groups independently as

well as for whole dataset. Results are shown on Figure 5.1.

The underlying technique in all hubCLIQUE algorithms allows us to emphasize

multidimensional clusters since it does benefit from the solutions collected from var-

ious projections of the dataset. This is clearly illustrated in Fig. 5.1C. Point weights

obtained from human input help to eliminate points that otherwise get selected by

original CLIQUE algorithms, which, in turns, significantly improve the result (increase

of 12.3%, 13.4%, 12.5% and 6.5% in micro F1 score for asCLIQUE, consCLIQUE, conf-

CLIQUE, acsCLIQUE, respectively).

It is interesting that DBSCAN shows average performance for high dimensional

clusters, whereas it performs poorly for low dimensional ones. Detection of those

clusters is a very challenging task for all clustering algorithms since the process is

heavily affected by the imperfections of the data mapping on the subspaces that do

not include the clusters. hubCLIQUE algorithms show one of the best results among

the tested algorithms.

Our experiment also shows that the GMM in average demonstrates superior per-

formance for both cases. However, it yields not stable results (we report only average

score over 1000 runs) so that its accuracy can significantly degrade both for low and

high dimensional clusters.
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FIGURE 5.1: Performance comparison of the human-based algorithms with automated clustering approaches applied to the syn-

thetic dataset for A) all clusters; B) low dimensional clusters; C) High dimensional clusters. The color scheme is used to separate

groups of algorithms: human-based CLIQUE algorithms (red), automated CLIQUE (orange), CloCworks (purple), algorithms that

require known number of clusters/components (green), algorithms that do not require the known number of algorithms (cyan).

GMM is a special case for which we report average of the metric over 1000 runs. For algorithms that require known number of

clusters, we report the performance of an algorithm with number of clusters estimated by elbow heuristic (4). An asterisk (star)

shows its performance with correct number of clusters (6).
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Although, CloCworks significantly differs from the other algorithms and considers

human input as a main and only source of information about the dataset, it performs

on par with the best performers in this test for high dimensional clusters. For low

dimensional clusters, in contrast to the hubCLIQUE approaches, it shows a less accurate

result. Nevertheless, the algorithm detects the signal while suffering from the sparsity

of the networks as well as the imperfection of the human solution. Both aspects of the

algorithm will be addressed in future work.

5.7.2 Synthetic networks

Since CloCworks does not deal with dataset directly, it is challenging to compare its

accuracy with other clustering algorithms. Instead, we investigate its performance

within a controlled environment. We generate multiple sets of Colony B-style net-

works corresponding to various configurations (different distribution of edges and

their weights) using the Stochastic Block Models (SBM) [274] network generator. Sim-

ilar to [274], we consider n vertices, which are split into k communities of variable size.

We connect nodes independently with probability pi,j where i, j ∈ [k]. Instead of gen-

erating equally weighted edges, we assign the weights Wi,j ± σi,j where i, j ∈ [k] and

σi,j is an expected standard deviation.

Similar to the previous experiment, for each set we build 15 networks with the

same layout (Table 5.1). For each network, the weight distribution follows the rule

0.8 ± σ/0.4 ± σ/0.1 ± σ for intra-cluster, inter-cluster and noise-related edge, respec-

tively. We choose an expected standard deviation σx,y = 0.1 regardless the xy clusters

relationship. The only variable is the probability of observing the intra cluster edge

pintra, which varies in range [0.005, 1]. Inter cluster and noise-related edges are gener-

ated with probabilities pinter =
1
2 pintra and 0.2 (constant), respectively.

We also report performance of CloCworks for high dimensional clusters (Cluster ID

{0, 1, 2}), low dimensional clusters (Cluster ID {3, 4, 5}), as well as for entire dataset

(total score). The result of the experiment is shown in Figure 5.2.
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FIGURE 5.2: Analysis of the CloCworks algorithm’s performance applied to a series of

Colony B-style simulated networks using Stochastic Block Models (SBM) data gener-

ator. Networks were generated with the probability of observing intra-cluster edge

pintra in range [0.005, 1], inter-cluster edges - with probability pinter = pintra/2, and

noise-related edges - with probability pnoise = 0.2 (constant). The weight distribu-

tion follows the rule 0.8 ± σ/0.4 ± σ/0.1 ± σ for intra-cluster, inter-cluster, and noise-

related edges, respectively. σ is an expected standard deviation and is assigned to 0.1.

CloCworks was applied to every set of networks. Micro F1 score was used to estimate

total, low dimensional cluster, and high dimensional cluster scores.
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With pintra = 0.01 we can see F1 score of 0.88 for all three measures. This is expected

result since in this case for the abstract cluster containing 300 points (nodes) in average

each node would connect with only three other nodes. Reducing the intra-cluster

probability will cause an appearance of disjoint parts of networks, and, therefore, can

result in multitude of small false clusters. Such an accuracy shows that it is possible to

recover the majority of communities (clusters) from the dataset uploaded to Colony B

given that the game puzzles cover a dataset extensively.

5.7.3 Voice Recognition Dataset

To examine the performance of proposed algorithms applied to the real-world dataset,

we apply our techniques to a voice recognition dataset (VRD) [258], which consists of

over 20 measures of either male or female voice parameters.

As a preprocessing step, we use a random forest classifier [275] (fitting 25 trees) on

VRD dataset with predefined male/female labels as a target to identify six features that

can be used for the Colony B game. Extracted features (meanfun, IQR, Q25, sd, sp.ent,

and sfm) are then used to create Colony B puzzles. VRD related puzzles were played

by 75 volunteers with over 700 solutions submitted during a two-week period.

Similar to the synthetic dataset experiment, we benchmark our hubCLIQUE, CloC-

works approaches against CLIQUE, KMeans, Ward, GMM, and DBSCAN (Fig. 5.3).

We intentionally skipped AP and MeanShift due to their average performance in both

tests. For algorithms that require known number of clusters (green category) we re-

port an algorithm’s performance with the number of clusters estimated with elbow

method (3) as a bar value, and a metric value obtained with correct number of clus-

ters given (2) as an asterisk (star). We also used elbow method to find the required

DBSCAN parameters (eps and min_samples).

Our results show that hubCLIQUE approaches in general performs on par with

CLIQUE algorithm and also algorithms that were provided with correct number of

clusters. Though, we can see significant decrease in performance for Ward and KMeans
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FIGURE 5.3: Performance comparison of the human-based algorithms with auto-

mated clustering approaches applied to the Voice Recognition dataset (VRD). The

color scheme is used to separate groups of algorithms: hubCLIQUE algorithms (red),

automated CLIQUE (orange), CloCworks (purple), algorithms that require known num-

ber of clusters (green), algorithms that do not require the known number of algorithms

(cyan). For the green category the bar value shows an algorithm’s performance with

the number of clusters estimated with elbow method (3). An asterisk (star) marks the

metric value obtained using correct number of clusters (2).
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with the estimated number of clusters. In is interesting that GMM performed well in

both cases. The reason is that the misclassified points for the case of correct number of

clusters (2) were mostly redistributed in the extra cluster added in case of estimated

number (3).

By contrast, performance of DBSCAN is average. Mostly because it identified sin-

gle major cluster with a lot of outliers. This result illustrates that the density based

clustering approach, which considers a high dimensional dataset as is, might present

a challenge to identification of sub-optimal parameters for the algorithm to find de-

sired clustering result.

5.7.4 American Gut Dataset

Initially, we designed the Colony B game as a proof of concept of the usefulness of

human intelligence in multidimensional data clustering applied to the microbiome

dataset collected by the American Gut Project (AGP) [262]. AGP is a large citizen sci-

ence microbiome research that collects, compares, and analyzes human microbiome

specimens from all over the world [276]. Aiming to build a complete map of the hu-

man microbiome, it attempts to learn how lifestyle (later referred to as metadata) af-

fects gut microbiome (later referred to as microbiome data) using citizen science effort.

In contrast with our previous experiments, the dataset does not have given labels to

validate the performance of our approaches. However, recently McDonald et al. [262]

showed a positive correlation between microbiome data and metadata for 9,511 in-

dividual participant samples (weighted/unweighted UniFrac [277] effect sizes). This

result inspired us to explore the microbiome data given the top (in terms of effect size)

metadata attribute to be the clusters.

Due to the difficulty of interpretation of OTU [278] tables, we decided to work with

PCoA [138] reduced dataset provided by AGP, which is routinely used for their anal-

ysis [277]. We aimed to find the best set of dimensions that can be used for the Colony

B game. First, we filtered the best hundred dimensions based on the variance (data
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contains approximately 40% dimensions with zero variance). Then, following AGP

strategy, for every metadata attribute, we examine every pair of attribute values and

define their "separation" in the related microbiome data. For example, we explore the

’AGE_CAT’ attribute with values (’BABY’, ’CHILD’, ’TEEN’, ’20S’, ’30S’, ’40S’, ’50S’,

’60S’, ’70+’). For each pair of values, such as ’CHILD’ and ’60s’, we extract relevant

samples from microbiome data and explore the distinction of these two groups. To

achieve this, for every small experiment we employ random forest classifier as a bi-

nary classifier compiled with 500 individual trees. Using trained models, we extract

feature importance, estimate AUC score, and for those whose score is higher than 0.55

we find the most frequently used six dimensions. We suggest that the resulting di-

mensions are good candidates to explain the majority of the metadata attribute value

pairs.

Since the PCoA provides us with dimensions already sorted by importance, we

expected that the chosen dimensions to be the first six dimensions in the microbiome

dataset. Surprisingly, we observed the lack of strong domination of first dimensions

in microbiome data with a slight variability in the results (sorted by rank dimensions

[2, 1, 0, 8, 4, 6]).

Next, we eliminate (partially or completely) metadata attributes, whose values can-

not be explained by any of the resulting dimensions. We also try to filter out samples

that do not mainly operate with the preserved attribute values. Since the strict dele-

tion of points with unimportant attribute values would reduce any relevant data point

from the dataset, for each point we estimate the number of times it uses one of the pre-

served attribute values. We use the median value of the frequencies as a threshold to

filter out the points with only few preserved attribute values.

Then, we visually examined multiple top rated attributes ranked by AGP (based

on the effect size). One of the illustrations related to AGE_CAT metadata attribute is

presented in Figure 5.4. To visualize separation of the data (if any), we transformed the

6D to a 2D dataset using tSNE [140], mapped data points to the corresponding meta-

data attribute values. We chose distinct colors to represent the variety of the attribute
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values for AGE_CAT metadata attribute (Fig. 5.4A). The plot shows that there is close

to no separability between all the attribute values for particular metadata attribute. It

suggests that if the Colony B players are provided with (not transformed) microbiome

data orthogonal projections during the game (Fig 5.4B), apart from demotivating them,

collected cluster annotations will likely be random.

We also repeated the same analysis showing only two attribute values at the same

time. For the illustration, we chose ’CHILD’ and ’60S’ values of AGE_CAT metadata

attribute as AGP reported the strongest effect size for these attribute values (Fig 5.4C, 5.4D).

We tested our results for the separation of two groups of points (’CHILD’, ’60S’) us-

ing two tail Kolmogorov-Smirnov test [279]. The null hypothesis is that two samples

are drawn from the same distribution. For the tSNE-transformed dataset (Fig. 5.4C),

the test rejected the null hypothesis with p < 0.0015, where significant effect is ob-

tained with 8.5% of the samples (30). For the {0, 1} projection (Fig. 5.4D) of original

dataset, the test rejected the null hypothesis with p < 0.0002, where the effect is found

with 14.3% of the samples (50).

5.8 Discussion

In this paper, we implemented an online human computing game Colony B as a com-

plex framework to collect human player input in order to solve the problem of multi-

dimensional data clustering.

We introduced two crowdsourced multidimensional data clustering approaches

(hubCLIQUE and CloCworks) that utilize human pattern recognition skills to compile

final multidimensional clustering result. While the hubCLIQUE uses collected human

annotations as an assisting information for a density correction within CLIQUE sub-

space clustering algorithm, the CloCworks uses Louvain community search algorithm

to find pseudo optimal partition of the network built entirely on aggregated human

solutions.
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FIGURE 5.4: Separation of the microbiome data points for AGE_CAt metadata at-

tribute values. A) Distribution of the AGE_CAT attribute values shown on tSNE

(6D → 2D) transformed dataset; B) Distribution of the AGE_CAT attribute values

shown on the {0, 1} projection of the microbiome dataset; C) Distribution of two

AGE_CAT attribute values (’CHILD’, ’60S’) shown on tSNE (6D → 2D) transformed

dataset; D) Distribution of two AGE_CAT attribute values (’CHILD’, ’60S’) shown on

the {0, 1} projection of the microbiome dataset. ALL) Distinct colors represent dif-

ferent attribute values; if not specified, attribute values shown are ’BABY’, ’CHILD’,

’TEEN’, ’20S’, ’30S’, ’40S’, ’50S’, ’60S’, ’70+’.
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We conducted two short term experiments using synthetic dataset and real-world

dataset that involved 100 volunteers with over 1100 solutions submitted. Based on

the accumulated results we benchmark both our proposed algorithms against most

popular automated clustering algorithms.

For the synthetic dataset, we showed that the hubCLIQUE approach outperformed

its competitors in identifying both high and low dimensional clusters. The CloCworks

algorithm also showed competitive results for high dimensional clusters. It appeared

to be less efficient with low dimensional clusters. However, since the algorithm con-

siders human input as a main and only source of information about the dataset, it

performed on par with the rest algorithms. Besides, we observed similar results for

the real-world dataset for both hubCLIQUE and CloCworks.

We note that hubCLIQUE benefited from human input much more in case of the

synthetic dataset as the game stages showed less structural uncertainty.

As stated before, these results were observed using the data accumulated during

two-week period with out Colony B game. It illustrates that it is possible to analyze

a dataset using players with unknown knowledge of the underlying problem in very

short amount of time given that i) the game rules are transparent; and ii) the game

preserves a natural game progression balancing challenge level with the skill level of

the player [250].

Also, we tested CloCworks algorithm by applying it to a set of Colony B simulated

networks generated using Stochastic Block Model network generator [274]. We exam-

ined its performance on a wide variety of configurations of the networks (from sparse

to fully connected) and identified that the algorithm starts to misclassify data points in

very sparse networks (probability of observing intra-cluster edge pintra < 0.01). This

result confirms that the puzzles’ coverage of the data points in the Colony B game can

be rather sparse, yet, it still preserves a network structure for clustering in multidi-

mensional space.

Nevertheless, we found that the CloCworks algorithm is sensitive to the outliers and

can be confused by a misleading human solution. This limitation should be addressed
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in future work.

Besides, we analyzed datasets provided by the American Gut Project (microbiome

and metadata). We found that while microbiome data clustering still remains an open-

ended problem and states a challenge to extract data that can be refined by the Colony

B players, it is possible to separate pairs of metadata attribute values both on a data

projection as well as a tSNE transformed dataset.

This phenomenon inspired us for designing a prototype of the two-player mode

for the Colony B game (section 5.9.3). This concept will be implemented in future

iterations of the Colony B game and its effect should be further studied in future work.
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5.9 Supplementary Materials

5.9.1 Colony B: Normalization of Clustering Validation Indices

The Colony B scoring function, first, compares three clustering validation indices (Sil-

houette [118], SDbw [120], and Dunn [119]), and then chooses the best result as a qual-

ity score for a human solution. However, these indices can not be compared directly

as their mathematical definitions differ. We propose a simple heuristic to normalize

cluster validation indices.
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First, we modify indices in such a way that they monotonously increase with a

quality of a solution.

Silhouette score VSil := max(0, VSil), since negative value indicates that points from

different groups are more similar than points within the same group;

SDbw score VSDbw := 1/(1 + VSDbw), as the score is monotonously decreasing while

solution’s quality improves;

Dunn score remains unchanged because it satisfies our requirements

Then, the idea of our approach is to align distributions of the indices’ scores observed

from trials of multitude of various clustering situations. For a given index score Vindex

we use the probability of observing score worse than Vindex (Pindex(v < Vindex)) as a

normalized score. For a training purposes, we use available puzzles from the database

and their stages as datasets for KMeans [91] and Spectral clustering [280] algorithms

to provide various partitions of a data set. Each partition is then evaluated using all

three indices. Collected statistics for each index is then used as a reference distribu-

tion to evaluate Pindex(v < Vindex). Thus, this procedure equally scales all three index

measures in the interval [0, 1] and, therefore, enables us to compare different indices.

Example. Consider human solution Si. Let vSil, vSDbw, and vDunn are the measures

of Silhouette, SDbw and Dunn indices, respectively. Then, using previously obtained

reference distributions we identify the quality score of a solution as follows:

max
(

PSil(v < vSil), PSDbw(v < vSDbw), PDunn(v < vDunn)
)

.

5.9.2 CloCworks: Human Input Aggregation

Figure 5.5 illustrates CloCworks approach of generalization of Human annotations col-

lected with the Colony B game. First, human solutions (Fig. 5.5A) are transformed into
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networks, where the presence (or absence) of the edge between two nodes (points) de-

termines if the nodes appeared in the same selection. (Fig. 5.5B). Next, individual net-

works are averaged based on the frequency of two points being selected in the same

stage (Fig. 5.5C).

5.9.3 Colony B: Two-Player Mode

Inspired by our analysis of the AGP dataset (5.7.4) we design a prototype of a two-

player mode for the Colony B game.

We present to two players playing simultaneously one 2D dataset containing two

groups of points or any other thematic objects (related to the metadata attribute values)

colored red and blue. We also assign one of these colors to each player. The objective

of the game is then to catch as many points of the opponent’s color as possible with the

least possible number of player’s color. The players take turns and are limited by cir-

cular shape selection. During the game, players can be exposed to various restrictions

(e.g., based on time or the number of turns). We employ a simple scoring function: the

number of opponent’s points minus the number player’s points covered by a player’s

selection.
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FIGURE 5.5: CloCworks. The process of generalization of Human annotations collected

with the Colony B game. A) Set of human annotated clusters (orange), shown similar

to the in-game data representation style. B) Each human annotation is converted into a

network, where an edge between two points indicates points’ appearance in the same

cluster. C) Individual networks are averaged based on the frequency of two points

being assigned in the same stage.
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FIGURE 5.6: Series of screens for two-player mode of the Colony B game (concept): A)

the initiation of the game (player 1 is active); B) "catching" points of player 2 (player 1

is active); C) "catching" points of player 1 (player 2 is active); D) "catching" points of

player 2 (player 1 is active)
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Conclusion

Recent advances in machine learning allow human-driven analysis to become com-

pletely automated. However, computer programs increasingly need human guidance

and intuition to assess some problems (e.g., data ranking, clustering [80]).

Human computation is a well-established technique that helps researchers to en-

gage human participants efficiently to solve a given problem partially or entirely. In

part, this technique imposes data-related (e.g., problem decomposition, solution as-

sembly strategy) and human-related (e.g., player motivation, data visualization and

interpretation from the perspective of HCI) questions. Answers to those type of ques-

tions will help to create a more beneficial system for both researcher and a participant.

In this thesis, first, we present a novel 3D genomic data visualization strategy

(Chapter 2). Then, we explore human computing systems in the context of i) the player

motivation in collaborative solving (Chapter 3), ii)system design and problem decom-

position (Chapter 4), and iii) different assembly techniques for accumulated human

answers (Chapter 5).

6.1 Summary of Contributions

In Chapter 2 we describe the problem of visualizing three-dimensional (3D) genomic

data such that it is interactive in a 3D space. We present 3D Genome Browser (3DGB),

an immersive web-based 3D genome browser interface, which is built upon a low la-

tency database. 3DGB enables smooth data browsing of the 3D genomic structures



150 Chapter 6.

while in real-time obtaining high-resolution 3D meshes that represent the DNA back-

bone within any standard web-browser with support of dynamic Javascript (i.e., Inter-

net Explorer, Safari, Google Chrome, etc.). By request, 1D standard genome browser

[208] bound to the current representation is shown to a user for in-depth investiga-

tion of a particular segment of the human genome. Additionally, we design a system

to dynamically map custom genotyping data to the 3D structures available in 3DGB

and visualize it for further analysis. Besides, we describe multiple web-services that

provide with access to i) 3D structures, ii) nucleotide sequences, iii) nucleotide coordi-

nates, iv) single nucleotide polymorphisms, and v) experimental ChIP-Seq data. Then

we design the ’scripting’ user interface that allows a user to explore the data within

a web browser using JavaScript. We demonstrate the use case of 3DGB scripting tool

by exploring the 3D neighborhood of Retinoblastoma 1 gene (RB1) transcription start

site and identifying the only SNPs found previously in the chromosome 13 related to

sleep disorders.

Thus, the work presented in Chapter 2 describes a novel HCI visualization system

that provides with a set of tools to simplify access to the complex 3D genomic data. By

designing this system, we aim to gain an experience with designing HCI systems that

are convenient to use for humans to interpret the data.

Next, we focus on the design of human computing systems. In Chapter 3, we ap-

proach the problem of large scale collaboration in HCI human computational systems.

We present the ’Market game’, a multi-player game-with-a-purpose that uses market

simulation to create a competitive yet collaborative environment for players to solve a

classical graph theory problem (clique). This work aims to understand how humans

collaborate and what incentives are needed to promote collaboration within a human

computation system. We analyze the impact of the multiple game mechanisms on the

performance of the system. Our results highlight the importance of a collaborative en-

vironment in the game, as well as other motivators such as skills and challenges that

help to shift players’ attention towards underexplored parts of the underlying prob-

lem. By our knowledge, this study is the first application of real-time collaborative
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problem solving involving a large number of participants.

Next, we investigate an application of human computation techniques in cluster

analysis. In Chapter 4, we aim to characterize the collective perception of 2D clusters

by humans. To address this problem, we present Colony B, a mobile online human

computing game that is used as a framework to collect human annotations for 2D

clustering problems. We present strategies enabling us to circumvent biases observed

in cluster annotations collected through mobile devices. Also, we demonstrate that for

mobile human computing games due to the recent tendencies of smartphones with a

large screen, the interactive panel must be located at the bottom of the screen whereas

the relevant game information must be placed on top. We conduct a long-term ex-

periment asking hundreds of participants to cluster points from real and simulated

datasets. Our analysis shows that aggregated human solutions are significantly larger

than the ones generated by computer programs while providing approximately the

same quality of clusters.

Finally, in Chapter 5, we approach the problem of higher dimensionality data clus-

tering. We use our mobile human computing game Colony B to collect players’ clus-

tering solutions for simple 2D datasets, which are essentially a series of orthogonal

(axis-parallel) 2D projections of the original dataset. We present two clustering al-

gorithms (hubCLIQUE and CloCworks) that use aggregated human solutions collected

from Colony B players to identify key features in real-world and synthetic high dimen-

sional datasets. We conduct two small-scale experiments to collect human clustering

solutions and then to benchmark hubCLIQUE and CloCworks against conventional clus-

tering approaches. Our results demonstrate that the proposed algorithms perform on

par or better than most automated clustering algorithms considered. Moreover, we

analyze the high dimensional microbiome dataset obtained from the American Gut

Project [262] and discuss possible modifications of the Colony B game to use human

computation technique efficiently.
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6.2 Perspectives on Future Work

Several directions can be considered to improve for both genome visualization tool

and human computing approaches described in this thesis.

The current scope of data available for 3DGB to be visualized is somewhat lim-

ited [184, 191]. Recently multiple 3D genomic models were released [281], which can

be directly integrated into the database. Besides, 3D genome structure reconstruc-

tion algorithms, such as 3DMax [282] and LorDG [283], provide with a tool to utilize

available HiC generated datasets [284]. Similarly, the genome structure can also be

approximated from ChIA-Pet data using the approach proposed by Tang et al. [285].

Thus, these techniques might allow us to use raw experimental data instead of relying

on the previously compiled 3D genomic models. Moreover, a chromatin interaction

map presents a critical viewpoint on the genome architecture [172] and, therefore, is

an essential part of a 3D genome browser. Such a feature can be shown in 3DGB as an

alternative visualization mode available for a user.

Due to memory management, 3DGB has a limitation on the amount of information

shown to the user at a time. Space in 3DGB is represented as a cubed grid containing

spatial genomic information. Thus, a user is able to observe data within two cells from

the current cell, whereas outside of this neighborhood it is erased. While each model is

scaled manually for each portion of data to be informative, there is a lack of flexibility

in scaling the model (i.e., zoom in/out) that needs to be addressed.

Virtual Reality (VR) is an emerging technique that allows a user to explore genomic

structure from different angles in the immersive environment [286]. We are working

on VR mode for 3DGB [287] that will be available both as web-based and stand-alone

application.

The study presented in Chapter 3 shows the importance of a collaborative envi-

ronment in human computing systems using the market game. The game is designed

as a proof-of-concept and currently limited to offline use (i.e., during game sessions).

Also, since during our tests, we have noticed that having more players is beneficial to
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the system, an implementation of the online version of the game will allow reaching a

broader audience and thus improve the efficiency of the system.

The Colony B game described in chapters 4 and 5 makes two assumptions/limitations

on the underlying dataset. First, to explore all orthogonal (i.e., axis parallel) projec-

tions of the dataset, we reduce the number of dimension to six. While this arrange-

ment allows the system to examine a dataset the most, feature selection/extraction

technique might eliminate meaningful for signal detection dimensions. The consid-

eration of a entire feature set of a dataset during the game often is not feasible (the

number of ’Stages’ for a single game would be quadratic to the dimensionality of a

dataset). In Chapter 5 we showed that the human clustering results obtained during

a short term experiment are sufficient for exploring a portion of a dataset. Therefore,

iterative exploring a random six-dimensional projection of a dataset might provide

better coverage of a high dimensional dataset. The second limitation of the Colony B

game is a lack of global context in the game (i.e., a player sees only a random sample

of data points [86]). Increase the sample size, which implies optimizing the mobile

application, can help to eliminate cluster artifacts and consequently improve the ac-

curacy of collected results. Colony B also requires more elaborated game flow [250],

a game progression that balances challenge level with the skill level of a player. This

also raises an interesting question about the ranking of Colony B puzzles that need to

be addressed in future work.

In addition, in Chapter 5 we propose two-player mode for Colony B that presents

the same dataset to two players simultaneously. This mode will be used to promote

collaboration between Colony B players in solving the data clustering problem in the

context of supplementary metadata.

Taken together, the methods described in this thesis provide comprehensive anal-

yses of HCI systems in the context of genomic data visualization and interpretation as

well as of human computing techniques. While many questions in HCI and human

computation remain unexplored, proposed methods advance the field forward and

present new exciting challenges to be addressed in future work.
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Appendix A

Chapter 4: Supplementary Materials

A.1 Evaluation Dataset

We test our approach on the artificially created dataset, which was also used to evalu-

ate the performance of Colony B players. It contains ten screens with various cluster-

ing situations: different number of clusters of varying shape, density, size and location

on the mobile screen as well as simple noise dataset without clear clusters. Besides, it

has been labeled by the expert. We use it as a reference dataset to evaluate the perfor-

mance of a player of our Colony B. Also since the launch of the game, for this dataset,

we accumulated over 5000 solutions per stage.

To show performance of our approach (later referenced to as "human") we use the

following clustering algorithms to compare with: Agglomerative, Gaussian Mixtures

models, KMeans, DBSCAN, Louvain and also explicitly designed accumulative al-

gorithm that collects all possible solutions for different clustering algorithms (using

iterative approach for different parameters) and use them as a stand-alone solution. It

mimics our human-based approach with machine-based solutions. For clustering al-

gorithms, we process cluster labels using One-vs.-Rest technique, compute modularity

for each resulting binary vector and report the maximum one.

We note that DBSCAN is not shown in most report plots as it often groups the

majority of data points in a single cluster and, therefore, is not useful in our com-

parison (we use elbow heuristics to estimate ε and min_samples). We benchmark our
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approach against clustering algorithms using four metrics: modularity and Silhouette,

Dunn, SDbw cluster validation indices (Figure A.1).

For Modularity metric we are interested in comparison with Louvain approach

since it is based on modularity optimization process and therefore is expected to pro-

duce maximum result. Our results illustrate that human-based approach performs on

par with the Louvain algorithm (0.355 against 0.363). Besides, the drop in the mea-

sure for all approaches in our test can be explained by the presence of the stages with

unclear clustering structure.

For Silhouette and Dunn metrics, the human-based approach outperforms other

algorithms.

We note that SDbw metrics is reversed. That is an optimal clustering is assumed

to hit the minimum value of the index. In our test, on average, the human-based

approach performs similarly to the other clustering algorithms.

A.2 Voice Recognition Dataset

We propose two additional (to the main paper) hypotheses regarding the accumulated

data:

1. The human-based approach performs differently (in terms of the metrics dis-

cussed in the main paper) for stages where an "optimal" cluster (defined by used

metric) contains minor (< 50%) or major (> 50%) portion of the data points.

2. Clusterability defined in main paper is proportional to the consensus quality.

Of note, due to the noise in the dataset, we do not expect a stage to have clear and

meaningful clustering structure.

We also examine submitted solutions to understand if there is any bias in the size of

a player’s selection. We compute the diameter of a solution (distance between furthest

points in a player’s selection) and compare it against the diameter of the data shown

to a player (Fig. A.2). The result shows that there are three major sizes of the clusters:
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FIGURE A.1: Performance of different approaches for Evaluation Dataset based on the

4 metrics: Modularity, Silhouette, Dunn, SDbw.
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i) 55− 60%, ii) 80− 85%, and iii) 95− 100% of the screen. The latter can be ignored as it

signalizes that nearly full stage was selected and is not informative for our discussion.

Therefore, we split our discussion into two populations of solutions: 0 − 60% of the

screen selected, and 60 − 90% of the screen selected.

A.2.1 VRD. Population 1

In this section, we take into account only solutions that cover less than 60% of a mobile

screen (population 1).

First, we apply our pipeline as well as other clustering algorithms discussed above

to each stage dataset. Then, we calculate the ’optimal’ cluster size for each stage for a

particular metric. To do so, we find the maximum metric score among the scores found

by all approaches and identify the size of the cluster using the approach that gave the

maximum value. By no means, this solution must be considered as an optimal cluster-

ing partition for a stage, and it is used as a reference point only. Next, denote "small"

and "large" clusters the selections that contain less than 50% and more than 50% of

the points per stage, respectively. We employ this logic as a classification criterion for

stages with small/large ’optimal’ cluster (later referred to as SOC and LOC, respec-

tively). We expect to see the performance of human-based approach degrade with

the ’optimal’ cluster being small, whereas it should match or even outperform other

approaches otherwise.

Figure A.3 shows the performance comparison for both SOC (blue) and LOC (green).

For modularity section, since individual groups do not follow the normal distribution

(the Shapiro-Wilk test rejected the null hypothesis with p < 0.007), we use a Mann-

Whitney’s U test to compare medians of SOC and LOC groups. We primarily aim to

detect a change in the score for human-based algorithms. Significance test did not re-

ject the null hypothesis (p = 0.2333). This illustrates that there is no significant differ-

ence in modularity scores for the human-based approach. We observe similar results
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FIGURE A.2: Percentage of a mobile screen selected by the Colony B players for Voice

Recognition Dataset (VRD).
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FIGURE A.3: Performance comparison for small (blue)/large (green) ’optimal’ cluster

for VRD (population 1) using four metrics: Modularity, Silhouette, Dunn, and SDbw.
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for Silhouette metric, where Mann-Whitney’s U test did not reject the null hypothesis

(p = 0.0512).

In contrast, Dunn and SDbw related results for the human-based approach show

a significant difference between SOC and LOC groups. The Mann-Whitney’s U test

rejects the null hypothesis with p = 5.3758e − 08 and p = 0.0002, respectively. There-

fore, the values of the Dunn and SDbw indices for SOC and LOC groups support the

hypothesis that the performance of the human-based approach improves for stages

with larger clusters.

Comparing the human-based approach with other algorithms, for modularity met-

rics our approach performs on par with the other approaches (as expected, outper-

formed by Louvain algorithm), however for Silhouette, Dunn and SDbw metrics it

performs less efficient both for SOC and LOC stages.

A.2.2 VRD. Population 2

In this section, we consider only solutions that cover 60 − 90% of a mobile screen

(population 2). Then, we repeat the experiment described in the previous section.

First, we study the performances of all the algorithms for both SOC and LOC

groups of stages (Fig. A.4).

The result demonstrates that regardless of the metrics used, there is an improve-

ment in the score for LOC over SOC stages. Since the scores for SOC and LOC groups

observed using the human-based approach do not follow the normal distribution

(the Shapiro-Wilk test rejected the null hypothesis with p < 0.007), we use a Mann-

Whitney’s U test to compare medians of SOC and LOC group scores. The test rejects

the null hypothesis with p < 0.0028. Then, we measure the difference between the

medians of SOC and LOC groups for all metrics. Our results show 11.1%, 9.9%, 13.3%,

and −29.5% of growth from SOC to LOC stages for Modularity, Silhouette, Dunn, and

SDbw metrics respectively. This fact supports our hypothesis that regardless of the
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FIGURE A.4: Performance comparison for small (blue)/large (green) ’optimal’ cluster

for VRD (population 2) using four metrics: Modularity, Silhouette, Dunn and SDbw.
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FIGURE A.5: Correlation between clusterability (iScore) and quality of consensus mea-

sured with A) Modularity, B) Silhouette, C) Dunn, D) SDbw indices. Each point rep-

resents a consensus of the Colony B players’ solutions for a particular stage. Linear

regression line shows a direction of the correlation between the measure of cluster-

ability and a metric.



164 Appendix A. Chapter 4: Supplementary Materials

metric used, the performance of the human-based approach for LOC stages are higher

than one for SOC stages.

We also compare the performance of the human-based approach with other cluster-

ing algorithms both for SOC and LOC stages (Fig. A.4). For Modularity and Silhouette

metrics, the performance of the clustering algorithms mostly reduces between SOC

and LOC stages while opposite for the human-based approach. Thus, for LOC stages

the human-based approach performs on par with other algorithms. For Dunn and

SDbw metrics, our results show that despite the lack of the improvement for cluster-

ing algorithms between SOC and LOC stages, the proposed algorithm also performs

better on LOC than on SOC stages. Similar to the other metrics, the performance of

the human-based algorithm on LOC stages is on the same level with other algorithms.

Besides, since population 2, in general, performs in our tests better than popula-

tion 1, we choose this population to test hypothesis 2. We compare the measure of

clusterability (section 4.5.2) with a quality of the consensus of accumulated human

solutions.

According to the hypothesis 2 we expect clusterability to be somehow inversely

proportional to Modularity, Silhouette and Dunn metrics score (clusterability is in-

verse measure with the best value at 0), and proportional to SDbw metrics score. It is

important to mention that we do not expect a significantly strong correlation for any

of the metrics due to the differences in underlying criteria of evaluation. Nevertheless,

this experiment can provide us with an idea which metrics (or combination of metrics)

is able to approximate human behavior.

To filter out the noise of the VRD, we utilize ground truth labels (Male/Female).

We select only those stages, where the human-based approach was in the top three

methods to identify true labels for a particular stage. We illustrate correlation between

clusterability and each one of the metrics individually (Fig. A.5).

The results show that there is close to no correlation between the measure of clus-

terability and such metrics as Modularity (Spearman’s rank correlation is −0.19) and
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Dunn (Spearman’s rank correlation is −0.26). In contrast, Silhouette and SDbw met-

rics better correlate with iScore (Spearman’s rank correlation is −0.41 and 0.34). Also,

the signs of the correlations agree with the proposed earlier relations between mea-

sures. Thus, the result indicates that there is a distinguishable relationship between

the clusterability and some metrics discussed above.
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