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Abstract

We introduce a weighted model of random trees and analyze the asymptotic properties
of their heights. Our framework encompasses most trees of logarithmic height that
were introduced in the context of the analysis of algorithms or combinatorics. This
allows us to state a sort of “master theorem” for the height of random trees, that covers
binary search trees (Devroye, 1986), random recursive trees (Devroye, 1987; Pittel,
1994), digital search trees (Pittel, 1985), scale-free trees (Pittel, 1994; Barabasi and
Albert, 1999), and all polynomial families of increasing trees (Bergeron et al., 1992;
Broutin et al., 2006) among others. Other applications include the shape of skinny

cells in geometric structures like k-d and relaxed k-d trees.

This new approach sheds new light on the tight relationship between data struc-
tures like trees and tries that used to be studied separately. In particular, we show
that digital search trees and the tries built from sequences generated by the same
memoryless source share the same stable core. This link between digital search trees
and tries is at the heart of our analysis of heights of tries. It permits us to derive
the height of several species of tries such as the trees introduced by de la Briandais

(1959) and the ternary search trees of Bentley and Sedgewick (1997).

The proofs are based on the theory of large deviations. The first order terms
of the asymptotic expansions of the heights are geometrically characterized using
the Cramér functions appearing in estimates of the tail probabilities for sums of

independent random variables.






Résumé

Nous présentons un modele d’arbres aléatoires pondérés et analysons les propriétés
asymptotiques de leur hauteur. Notre modele couvre la plupart des arbres de hau-
teur logarithmique qui apparaissent dans le contexte de I’analyse des algorithmes et
en combinatoire. Ceci nous permet de formuler une sorte de “master theorem” pour
la hauteur des arbres aléatoires qui recouvre les arbres binaires de recherche (De-
vroye, 1986), les arbres récursifs (Devroye, 1987; Pittel, 1994), les arbres digitaux
de recherche (Pittel, 1985), les arbres “scale-free” (Pittel, 1994; Barabdsi and Albert,
1999), et toutes les familles polynomiales d’arbres croissants (Bergeron et al., 1992;
Broutin et al., 2006). Certaines applications sont moins directement reliées & la hau-
teur des arbres. Par exemple, nous étudions la forme des cellules dans les structures

de données géométriques telles que les arbres k-dimensionnels.

Cette nouvelle approche fait aussi la lumiére sur les liens intimes qu’entretiennent
les arbres et les tries, qui ont, jusqu’a présent, été étudiés de maniére disjointe. En
particulier, nous montrons que les arbres digitaux de recherche et les tries construits
a partir de séquences générées par la méme source sans mémoire partagent la méme
structure interne que nous appelons le “core”. Ce lien entre les arbres digitaux de
recherche et les tries est a l'origine de notre analyse de la hauteur des tries. Il permet,
en outre, d’obtenir la hauteur des arbres introduits par de la Briandais (1959) et des

arbres ternaires de recherche de Bentley and Sedgewick (1997).

Les preuves sont basées sur la théorie des grandes déviations. Le premier terme
du développement asymptotique de la hauteur est caractérisé géométriquement grace

aux fonctions de Cramér intervenant dans les estimations des queues des distributions
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de sommes de variables aléatoires.
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do Pelagii,

pamietam sie i ucyce sie.
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Chapter 1

Introduction

In this chapter, we motivate the topic of the entire document by placing the study of ran-
dom trees and their heights in the necessary context. This includes, among other fields,

combinatorics, computer science, and mathematical physics.

Auprés de mon arbre, je vivais heureux,
Jaurais jamais di le quitter des yeus.

- G. Brassens
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2 CHAPTER 1. INTRODUCTION

1.1 Down with determinism

No longer than eighty years ago, Einstein was, “at any rate, still convinced that He
does not throw dice”. It seems now that even if Einstein’s God did not throw dice,
he made sure that we would. Quantum mechanics is but one example of the ubig-
uity of probability in science and engineering, whether the reason be that the world
is really random, or only that it appears so to us. From statistical physics to op-
erations research, or economics, probability theory has proved useful in modeling,
understanding, and making a better use of the world we live in. Even our everyday
life is literally surrounded by chance, through its use in weather forecast for instance,
with “probability of precipitation” deliberately provided to the public. Within math-
ematics, even in pure “deterministic” branches like number theory or geometry, major
successes have been obtained using tools such as Erd6s’ probabilistic method (Pach
and Agarwal, 1995; Alon et al., 2000). Recently, Arora and Safra (1998) proved a new
characterization of the celebrated complexity class NP in terms of Probabilistically

Checkable Proofs (PCP), opening a breach in deterministic complexity theory.

The increasing quantity of data involved is arguably one of the reasons of the
advent of probability in today’s science. It is known that the amount of data is
growing at an increasing pace. DNA sequencing, high definition video, data mining
are only some of the many examples illustrating this tendency. Believing Spinoza’s
maxim that “nature abhors a vacuum”, Kryder’s law, the storage analog of the well-
known Moore’s law, surely accounts for this fact. The now phenomenal volume of
information makes it not only relevant, but also necessary to step back in order to
look at data at a larger scale: finding a macroscopic structure in the microscopic
(apparent?) chaos. Large quantities justify a statistical approach that focus on
~obtaining a glance of the big picture. This observation alone justifies the use of

probability together with its modern machinery.
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1.2 Randomness and computing

Historically, both computational problems and the algorithms solving them have been
studied for the worst case input. In other words,‘one wanted to make sure that a
problem admitted a method to find the solution, or that an algorithm was efficient for
any possible input. Then, it is no surprise that the complexity classes P and NP were
the first to be introduced (see Garey and Johnson, 1979). However, when studying
algorithms, one quickly notices that they behave usually very nicely for “standard”
inputs, and may fail or run longer on some particularly nasty inputs —in particular,
the ones used to build gadgets and prove hardness. Although there is great value in
worst-case analysis, since these extreme cases can happen, there ié probably as much
value in an analysis telling qﬁantitatively what will likely happen and what should not
happen in general. One can make the notion of “standard input” (a bit) more precise
by agreeing that most inputs should be standard. One can require that an algorithm
(Monte-Carlo) should be efficient on all inputs, and correct on most inputs: this gives
rise to the class BPP (bounded error, probabilistic, polynomial time). Or, one can
require that it be correct on most inputs, and efficient on average (Las Vegas): this is
RP (randomized, polynomial time), and ZPP (zero-error, polynomial time) (see, e.g.,
Sipser, 2005; Papadamitriou, 1993). In this latter case, an algorithm is also allowed
to work very slowly (non-polynomially) on some inputs, but it should be polynomial
on average. Such an approach is also justified by the fact that many algorithms are
rarely used on a single input: in the long term, that is, if one runs the algorithm a
large number of times on different inputs, one may expect that the nasty cases occur
very rarely, and thus that on average the algorithm runs much faster than on the

worst possible input.

In the early seventies, under the impulse of Knuth (1973a,b,c), a community of
mathematicians and computer scientists took this point of view and started to analyze
efficient algorithms on average. They were pioneers of what is now known as the
analysis of algorithms. Of course, one needs first to define what they mean by on

average, and thus to define the model of randomness. However, it is usually natural,
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and unless one expects some particular pattern in the input (because it is generated
by some other algorithm, for instance) it may be considered relatively random (under
a model of randomness to be specified). If it is not the case, one can often cope
with the non-randomness by preprocessing the input to make it random at little cost

(applying some sort of permutation, for example).

One of the most celebrated results of the analysis of algorithms concerns Hoare'’s
Quicksort algorithm (Hoare, 1961, 1962), which recursively sorts a collection of n
entries. It is known to run in time ©(n?) in the worst case. However, if one either
randomizes the algorithm (or, equivalently, permutes randomly the input), then it
runs in time O(nlogn) on average, which makes it optimal within a multiplicative
constant (Sedgewick, 1975; Sedgewick and Flajolet, 1996). The particular appeal
of the questions arising and the connections with other fields of mathematics (like,
for instance, complex analysis or information theory) attracted many researchers in
the footsteps of the pioneers of analysis of algorithms. Researchers now succeed
in deriving detailed information about, among other things, the running times or
storage space required by most important algorithms: not only the mean, variance
and other moments, but also limit distributions and tail probabilities are sought after
(Vitter and Flajolet, 1990; Devroye, 1998a). A deep understanding of the phenomena
underlying the behavior of algorithms made it possible to design efficient algorithms

that take advantage of these observations (e.g., Flajolet, 2004).

1.3 Of the importance of trees

There is no doubt that trees are ubiquitous when dealing with algorithms, either for
storing, manipulating or even representing data (Cormen et al., 2001). Whether the
data should be organized as a priority queue (heaps, Fredman and Tarjan (1987)),
a dictionary (search trees, Sleator and Tarjan (1985)), a collection of mergeable sets
(link-cut trees, Tarjan (1983)), or a compact representation of proximity (minimum

spanning trees or Steiner trees, Barthélemy and Guénoche (1991)) the most efficient
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structures are often based on trees. Also, the branching structure of algorithms is
arguably one of the main reasons for studying trees to understand how algorithms

behave.

Even outside of the field of computing sciences, trees are of prime importance.
Computer science is still young, and it is not surprising that branching structures have
appeared and been studied first in fields that are as various as biology, physics as well
as social sciences. Some of the most surprising examples of the use of trees include
literature, politics and scotch tasting! We shall only give a few examples that should
convince the reader of the wide range of applications of tree structures. Probably one
of the earliest applications of trees to a concrete problem is that of Galton (1873)
and his famous study of the pool of family names in England. We shall look at
this example more carefully later in Chapter 3. In biology, phylogenetic trees have
been used to study the spread of epidemics and the evolution of species (Barthélemy
and Guénoche, 1991). Phylogenetic trees have also been used in literature to study
formally the work of authors such as Shakespeare and Giraudoux (Barthélemy and
Luong, 1987). Such analysis reveals not only the usually accepted classifications but

open also new directions of investigation.

As a consequence, judging from the ubiquity of trees in all the fields of research,
there is no doubt that a better understanding of tree structures will some day be of
some interest to a researcher or another, whether he be a mathematician, a physicist,

a linguist or just happened to be caught be the beauty of trees.

1.4 Random trees and their heights

1.4.1 A model of randomness

We claimed that useful information can be derived from the analysis of random ver-
sion of trees, but we have not yet told anything about the model of randomness.

There are many natural models of interest. For instance, one could consider a tree
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taken uniformly at random in the set of trees of a certain class (binary trees, rooted
trees, rooted plane trees, etc.). This approach has been taken by Flajolet and Odlyzko
(1982) who managed to capture asymptotics of the heights of a large class of trees
using a single method. Such random trees have typical heights and widths of order
©(y/n). The trees arising under this model of randomness appear mostly in combi-
natorics (Cayley trees, simply generated trees), probability theory (Galton-Watson
trees conditioned on the size), or statistical physics. They have been cast away from
computing applications, for a good reason: their lengthy branches make them usually

inefficient when one has to traverse the structure.

A model of randomness fhat is sometimes more pertinent is to construct the tree
sequentially from random inputs (we will explain what we mean by this shortly), and
then study the tree obtained. The trees built by such a procedure are typically of
logarithmic height. So, they are bushier and more compact that the uniform trees
of the previous paragraph. This is why they often appear when analyzing efficient
data structures and algorithms. One should also observe that a randomization of the
inputs seems more natural when dealing with algorithms than a randomization of the
trees themselves. We are interested in this latter class of models. Our objective is
to devise a unifying approach for analyzing the heights of such trees. In this sense,
our project can be seen as complementing that of Flajolet and Odlyzko (1982) for
uniform trees. In what follows, we consider those random trees with a logarithmic

height only.

1.4.2 A canonical example

We now introduce the main concepts we will deal with using a celebrated example,
namely binary search trees (BST). Consider a set of n distinct keys {z1,za,...,2n}
that one wants to store in a tree to handle search queries. The keys need to be
comparable, and without loss of generality (use their ranks), we can assume they
are elements of {1,2,...,n}. The binary search tree associated with the sequence

{z1,...,zn} consists of a node storing the first key z;, and of two subtrees. The
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left and right subtrees are the binary search trees (recursively built) associated with
the sequences {z; : z; < 1} and {z; : ; > 1}, respectively. Figure 1.1 shows a
binary search tree on {1,2,...,9}. If the input is a uniform random permutation

{X1,...,Xn} of {1,2,...,n}, the tree is called a random binary search tree.

»
>

Figure 1.1: A binary search tree of build on the sequence {1,2,...,9}.

One can construct a random binary search tree incrementally instead of recursively.
This is done by assigning the keys z; to the nodes of a complete infinite binary tree
Tw. The first tree 77 consists of a single node storing z;. Let T; be the tree built from
the sequence of keys {z1,...,2;}. Let i > 2 and assume T;_; has already been built.
To insert z;, we start from the root and go down the tree by moving left at a node
if the key it stores is greater than z;, and right otherwise. We place z; in the first
empty node we find. The first node on each path down the root is called external.
Note that at each step, the next node z; is placed in a node of the fringe of T;, the
set of external nodes (see Fig. 1.2). The resulting random binary search tree consists

precisely of those nodes that have been assigned a key.

In spite of their remarkably simple definition, random binary search trees are at
the heart of analysis of algorithms. It is interesting to note that random binary
search trees are distributed like the branching structure of a randomized version of

Quicksort. Another reason for their success is the fact that they concentrate many of
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Figure 1.2: The binary search tree of Figure 1.1 with its fringe (also called the external
nodes) represented with square bozes.

the central questions of analysis of algorithms in one of the simplest, yet interesting
models. Let us illustrate this fact by going back the the incremental growing process.
The time to build the tree is (the number of nodes plus) the sum of the depths of
the nodes, or the path length. The height of the tree (the largest depth of a node) is
the maximum time it takes to insert a node. Equivalently, if one then uses the tree
for queries, the average depth of a node in the tree is the average cost of a successful
search; the height is the maximum cost of such a search. So the height of the random
tree corresponds to the worst case cost in some average sense. It happens that, in
this average sense, the worst case time is still O(logn) and it is much better than the

deterministic worst case of ©(n).

1.4.3 The height of binary search trees

Pinning down the height H,, of a random binary search tree of size n was one of the
central problems in analysis of algorithms. The hunt for the asymptotic properties
of H, has tied many profound bonds between the analysis of algorithms, statistical
physics, and the theory of branching processes. Robson (1979) was the first to prove
the upper bound: for ¢ = 4.311..., the unique solution greater than 1 of clog(2e/c) =
1, for any € > 0, P{H, > (c+¢€)logn} — 0 as n — co. Robson (1982) then realized
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that EH, ~ «vlogn as n — oo, and his experimental simulations seemed to indicate

that ¢ was the best candidate for the limit constant.

One of the crucial ideas is due to Pittel (1984) who provided the connection be-
tween the height of binéry search trees and branching random walks that paved the
road to the solution. Pittel’s idea is better explained using the incremental construc-
tion of random binary search trees we have described in Section 1.4.2. It is based
on the following observation: since {Xj, Xs,...,X,} is a random permutation of
{1,2,...,n}, the rank (position in the ordered list) of X,, is uniform in {1,...,n}.
Therefore, X,, is equaly likely to be stored in any of the n external nodes of T),_;,
the tree built from {Xi,...,X,_1}. This evolution process can be simulated using
random clocks. Given T,y with the right distribution, if the edges leading to the
external nodes have random clocks, and any of them is equaly likely to tick first, then
putting X, at the corresponding position yields a tree distributed as 7,,. Adding X,
creates two new external nodes that, in turn, would be equaly likely to be picked

thanks to similar random clocks.

We have to make sure that, at any stage of the process, the next clock to tick
is uniformly random, and independent of the time when the clock came into play.
There is a well-know way to achieve this, which uses exponential random variables
and their memoryless property. Let {T(t),t > 0} be the continuous—ti}ne branching
process that will eventually ‘be used to embed 7T,,. At time 73 = 1, T'(11) consists of
a single node, together with two independent clocks on the edges to the fringe. One
of the clocks ticks at time 7, and gives birth to a node uy. Any clock stops once it
has ticked. Assume now that at time ¢, the tree consists of » — 1 nodes and n clocks
(on the edges to potential future nodes). A uniformly random clock ticks at time 7,
giving birth to u, and its two new clocks. Then, for every n > 1, T(7,) is distributed
as T,,. Also, the height of T, is the maximum number of edges on a path down the
root, and this corresponds to the maximum number of ticks that occured on the same

line of descent before T7,.



10 CHAPTER 1. INTRODUCTION

The process described above may be seen as first-passage percolation on 7.
First put down all the exponential clocks we may ever need: Assign independent
and identically distributed (i.i.d.) exponential(1) random variables to the edges, say
{E.,e € Tw}. Let m(u) denote the set of edges on the unique path from u to the

root. A node u is born at time B, = ) E.. For t > 0, let T(t) be the subtree

e€m(u)

of T, consisting of the nodes born before time ¢:
T(t)={u € Tw: B, < t}.

Then, at the random time 7,, = inf{¢ : |T'(¢)| > n}, the tree T'(r,,) is distributed as T,
with probability one. By tweaking the model, and introducing a little dependence in
{E.,e € Ty}, one can make 7, < logn < 7,41 deterministically, hence yielding the

property that T'(logn) = T,, in distribution (Devroye, 1986).

Then, asking for the height of H,, reduces to finding & such that there is a node in
the k-th generation that is born before time log n, but none in the (k+1)-st one. Or,
turning the question upside down, one only needs to characterize the random time of
the first birth of a node at level k. Using his continuous embedding and subadditive
arguments, Pittel proved that there exists v > 0 such that H, ~ ylogn almost
surely, as n — co. Taking advantage of the Hammersley-Kingman-Biggins theorem
(Hammersley, 1974; Kingman, 1975; Biggins, 1977) about the first-birth problem in
branching random walks, Devroye (1986) finally showed that Robson’s upper bound
was indeed tight.

Theorem 1.1 (Devroye 1986). Let H,, be the height of a random binary search tree
of size n. Then, H, ~ clogn in probability, where ¢ is the unique solution greater

than 1 of clog(2e/c) = 1.

Theorem 1.1 is far from being the end of the story. Robson (1982) noticed that,
when simulated experimentally, H, exhibited very little variance and conjectured
that it has bounded variance, VarH, = O(1). Robson’s variance conjecture became
the next hot topic. Pushing his branching processes techniques further, Devroye

(1987) proved that VarH, = O(\/lognloglogn). The bound was later improved
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by Devroye and Reed (1995) who showed using the second moment method that
VarH, = O(y/loglogn). In the mean time, Drmota (2001) derived an alternative
proof of Theorem 1.1 using analytic tools and generating functions, giving new credit
to Robson’s conjecture: using his novel point of view, he observed that all central
moments of H, might be bounded as well. Finally, Robson’s conjecture was proved by
Reed (2000), Reed (2003) and Drmota (2003) and it is now known that VarH,, = O(1)
and

EH, = clogn — loglogn + O(1).

3
2log(c/2)

1.4.4 Towards unification

The first moment of the height of random binary search trees remained a question of
interest. For instance, slight modifications in the proof of Devroye (1986, 1987) proved
successful in obtaining asymptotic properties of other random trees like random re-
cursive tres (Devroye, 1987; Pittel, 1994), m-ary search trees (Devroye, 1990; Pittel,
1994), pyramids (Mahmoud, 1994; Biggins and Grey, 1997). It seemed apparent that
the branching processes arguments were suitable to unify all these scattered results,

see Devroye (1987), Pittel (1994), Biggins and Grey (1997) and Devroye (1998b).

It is interesting to note that researchers also worked at generalizing the theorems
about higher moments as well. In particular Chauvin and Drmota (2007) proved,
as in the binary case, the height of m-ary search trees has the distribution of a
travelling wave. This is closely related to a finer analysis of the first-birth problem
and the work of Bramson (1978) and Bachmann (2000). Drmota (2006) has proved
that increasing trees (a class of random trees that encompasses binary search trees,
and random recursiQe trees) exhibit a similar behavior, although the average height
is not characterized. Very recently, using a deep connection with generalized ballot
theorems, Addario-Berry and Reed (2006) proved that for a large class of branching
random walks, the average height is of the form alogn — Bloglogn + O(1) (see
Addario-Berry, 2006; Addario-Berry and Reed, 2007). Results on higher moments

follow easily from the precise position of the mean.
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Although there are beautiful connections arising in the analysis of the distribution
of the heights of random trees, there is still much to be done about the average value.
The kind of generalization we are after is one that would allow a large class of trees

to be dealt with a unique framework.

1.4.5 What about tries?

While tries are part of the class of random trees of logarithmic height, they have
usually been studied separately. We try here to (1) exhibit the very reason why they
were put aside, and (2) reconcile them with the rest of the class of trees of logarithmic
height. But we shall first introduce them and review the previous work on the heights

of tries.

Tries are data structures used to manipulate and store strings by taking advantage
of the digital character of words. They were introduced by de la Briandais (1959).
Apparently, the term of trie was coined by Fredkin (1960) as a part of the word
“retrieval”. Their properties and uses are reviewed by Knuth (1973c) and more re-
cently by Szpankowski (2001). Consider n sequences of characters (or strings) from a
countable alphabet A. Each one of the sequences carves an infinite path in an infinite
rooted position tree T, where the children of each node are labeled with the char-
acters of A: starting from the root, the characters are used in order to move down
the tree. If all the sequences are distinct, the corresponding paths in T, are distinct
as well. The trie T,, is defined to be the smallest subtree of T,, such that the paths
corresponding to the sequences are distinct within 7;,. A trie on the binary alphabet
{0,1} is shown on Figure 1.3. When the sequences are the successive suffixes of the
same string, the trie is called a suffix tree. Suffix tree are particularly important
in lossless data compression like Lempel-Ziv algorithms (see Ziv and Lempel, 1977,
1978), and their tight relationship with tries build from independent sequences should

suffice to motivate the study of the latter trees.

Random tries can be built by using random sequences as an input. Many models
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2. Figure 1.8:  The trie built from

the words 0000..., 0001..., 11...,
10110..., 011..., 010..., and 10111....

101 87 101 1

of randomness have been considered to fit with the statistical properties of the data
used in practice. We can cite, in particular, memoryless sources (independent coin
flips), Markovian sources (the successive states of a Markov chain), the so-called
density model, or even continued fraction expansions and dynamical sources. For
more information, we refer the reader to the textbook of Szpankowski (2001) and the

recent survey by Flajolet (2006).

We now consider only the tries built using memoryless sources, that is when the
sequences are independent sequences of i.i.d. coin flips. The average height has been
studied by Devroye (1984), Pittel (1985) and Szpankowski (1991) (under a slightly
more general model). Results on the limit distributions can be found in Flajolet
(1983), Jacquet and Régnier (1986), and Pittel (1986). Devroye (2002, 2005) ana-
lyzes the concentration properties of many parameters of tries and gives strong tail
inequalities. We aim at some kind of generalization of these results. Recently, Park,
Hwang, Nicodéme, and Szpankowski (2006) have unified the analysis of many param-
eters related to tries via the number of nodes at each level, also called the profile (see
also Hwang, 2006). On the other side of the spectrum, the generalization provided by
Clément et al. (1998, 2001) deals with very general sources, as well as many different

trie structures, including thé trees of de la Briandais (1959) and the ternary search
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trees (TST) of Bentley and Sedgewick (1997). The question of height of these two
latter structures has been left open. In any case, the proofs are based on an analysis
of the longest common prefix of a pair of sequences. So, the techniques are based on
words and information theory rather than the trees themselves and it is not surprising

to observe that the theory of branching processes appears useless in this case.

As for the case of trees based on branching processes, our goal is to devise a
framework that would encompass a large class of trie structures. In particular, our

class should cover the trees of de la Briandais (1959) and the TST.

1.5 Thesis contributions

In this document, we develop a general framework to analyze heights of trees. We
distinguish two classes of trees: whether the height is bounded or not. We say that
T, has bounded height if there exists a deterministic function v such that the height
H, < ¢(n). Tries do not have bounded height since the trie built from two identical
sequences is an infinite path. We shall refer to the class of branching structures with
bounded height as trees as opposed to tries (although, sensu stricto, tries are trees
as well). The bounded-height property is not a mere remark, and we think it is the
main reason that has prevented researchers from unifying the heights of tries and
other trees of logarithmic heights. In some sense, we distinguish trees from tries,
becéuse they ought to be distinguished. However, we aspire at unifying both parts,
and the glue should consist in a mix of profiles and large deviation theory. In the
entire document, we always aim at emphasizing the geometric representations of the

phenomena, as well as making explicit the underlying intuition.

CHAPTER 5: WEIGHTED HEIGHT OF RANDOM TREES. We start by introducing
a model of ideal trees. This is just a slight generalization of branching random walks.
Analyzing the height of ideal trees is directly related to the first-birth problem. We
then rely on the intuition given by this idealized model to develop a general model

of weighted random trees. The model allows to capture the properties of the heights
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of many known random trees with bounded heights including binary search trees,
median-of-(2k+1) trees, random recursive trees, scale-free trees, random increasing
trees, digital search trees, and a pebbled version of ternary search trees and list-tries.
This first part is based on joint papers with L. Devroye, E. McLeish and M. de la
Salle.

CHAPTER 6: WEIGHTED HEIGHT OF RANDOM TRIES. We then extend the results
for certain classes of weighted tries. The ideas are based on the study of the profiles of
these trees. The profile is indeed the connection between the tree of bounded heights
like digital search trees and PATRICIA, and their trie counterparts. In particular, if
the sequences are generated using the same source, the profile of the trie is a slight
modification of that of the corresponding digital search tree. The modification is
very simply described geometrically. This allows us to capture asymptotic properties
of the heights of the trees of de la Briandais (list-trie) and of ternary search trees

(BST-trie). This part is joint work with L. Devroye.






Chapter 2

Probability and Large Deviations

We recall here the probabilistic background necessary to understand this thesis. For a
comprehensive account of probability theory, see Grimmett and Stirzaker (2001). For
a measure theoretic point of view we refer the reader to Billingsley (1995). The two
volumes of the treatise of Feller (1968, 1971) are also wonderful references. It turns
out that the first order asymptotics of the heights of random trees with logarithmic
heights is tightly captured by large deviations for sums of random variables. We start
by giving some intuition using basic probabilistic tools. We then present in more detail
the theorems of Cramér and Gértner—FEllis. Finally, we give some useful properties
of the rate functions involved. For a more complete treatment of large deviations and
its applications, see Ellis (1985), Deuschel and Stroock (1989), Dembo and Zeitouni
(1998), or den Hollander (2000).

Alea jacta est.

~ J. Cesar.
Contents
21 Generalities . ... ... .. ... ... . . e 16
2.1.1 Basicnotations . . . ... ... ... .. ... ... 16
2.1.2 Probability . . . .. ... . ... e 16
2.2 Rare events and tail probabilities . . . . ... ... ........ 17
23 Cramér's Theorem . .. .. ... ... . ... ..o, 18



18 CHAPTER 2. PROBABILITY AND LARGE DEVIATIONS

2.4 From Cramér to Géartner—Ellis . . . . ... ............. 19

25 About A, A*and ]l . . ... . . 24

2.1 Generalities

2.1.1 Basic notations

Throughout the document, we let R and N denote the set of real and natural numbers,
respectively. We use log for the natural logarithm in place of In; for a > 0, log,
stands for the logarithm in base a. For nonnegative sequences z,, and y,, we describe
their relative order of magnitude using Landau’s o(-) and O(-) notation. We write
Zn, = O(yy) if there exist N € N and C > 0 such that z, < Cy, for all n > N.
'Occasionally, we write z, = Q(y,) to mean that there exists N > 0 and C > 0
such that for all n > N, z, > Cy,. If z, = O(y,) and z, = Q(y,), the we write
Zn = O(yn). If z,, converges to = as n goes to infinity, then we write z,, — z, as

n — 00. An equivalent notation for z,/y, — 0 as n — oo is z, = o(y,). We write

Tn ~ Yo When z,/y, — 1 as n — 0.

For a function f, we write Dy for its domain {z : |f(z)] < co}. The interior of a

set I' is denoted by I'°. The derivative of f at a point z, is denoted

of(z)
Ox

T=To

2.1.2 Probability

We let P {A} denote the probability of an event A, i.e., a measurable set defined on
some probability space. We usually do not make explicit reference to the probability
space since it is usually clear to which one we are referring. We say that an event
A holds almost surely (a.s.) if P {A} = 1. The random variables considered in this
document take values in R or R? for some d € N. The expected value of a real

valued random variable X is denoted by EX or E [X], its variance by Var [ X ]. The
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expected value of X conditional on A is written E[ X | A]. The indicator function of

an event A is of particular interest, it is denoted by 1[A] and we have E1[A] = P {A}.

Consider a sequence of random variables X,,,n > 0. We say that X,, converges
to X in probability if for any € > 0, P {|X,, — X| > ¢} — 0, as n — oo. We write
Xn ~ ay, in probability if X,/a, — 1 in probability, as n — oco. The sequence X,
converges to X almost surely if P {lim,_ X, = X} = 1. We say that X, converges
to X in distribution, and we write X, 4 XifP {Xn S z} - P{X <z}, asn — oo,

for all points of continuity of the distribution function F :z +— P {X < z}.

2.2 Rare events and tail probabilities

The classical limit theorems in probability theory deal with sums of independent and
identically distributed (i.i.d.) random variables, so it is not a bad idea to introduce
our concepts using these well known settings. Our presentation is largely inspired of
the insightful introduction of Dembo and Zeitouni (1998). Consider a sequence of
i.i.d. random variables {X;,i > 1}. Let S,, denote the sequence of their partial sums.

So .
Sn = Z Xi.
i=1

If E|X1| < oo, then Kolmogorov’s strong law of large numbers asserts that S,/n —
EX; almost surely, as n — co. So we expect S,/n to be close to EX;. The next
natural interesting question arising is: “how close?”. A first simple answer is given

by Chebychev’s inequality: for any ¢ > 0,

P {S, — nEX; > nt} < YL‘%X—” 1)

As a consequence, if Var[X;] < oo, the probability that S, exceeds its mean by
a linear amount decays at least polynomially in the number of variables. The tail
probability in the left-hand side of (2.1) is called a large deviation tail probability.
The bound given in (2.1) is usually far from tight. To underétand why, assume

that X, ..., X, are independent Gaussian random variables with mean zero and unit



20 CHAPTER 2. PROBABILITY AND LARGE DEVIATIONS

variance. Then, S, is also a Gaussian random variable, with mean zero and variance
n. In other words, S,/1/n is a standard Gaussian random variable, and for all ¢ € R,

S 1 ® 2
P{S,>nt} =P -izt\/ﬁ}=—/ e~ ?dg.
{ } {\/ﬁ Ver tv/n

It is now clear from (2.2) that, as n — oo,

P {Sn > Tlt} — e—nt2/2+o(n).

So, under our assumptions, we expect that the large deviation tails for sums of
i.i.d. Gaussian random variables be exponential in the number of variables. This is
the kind of tail bound we are interested in because they are the ones that are relevant
when studying the heights of random trees. It can be proved in a far more general

setting that such exponential tail bounds hold, and are tight.

2.3 Cramér’'s Theorem

Although Cramér’s theorem (Cramér, 1938; Chernoff, 1952) is the easiest of the theo-
rems dealing with large deviations, it is still a powerful tool. We consider a sequence
of i.i.d. random variables {X;,7 > 1} distributed like X, taking values in R. Write
S, =Y., Xi. We are interested in proving exponential bounds for the (right) tail
probability P {S,, > tn} when t > EX, as n — oo. Similar results are easily derived
for left tails by considering {—X;,¢ > 1}. The upper bound provided by Chernoff’s
bounding method (Chernoff, 1952) turns out to be the tight bound we are looking
for. Let A > 0, then
P{S,>tn} =P {e* > M},

It follows using Markov’s inequality that
P{S,>1tn} < en.Ee*" = M. HEe’\X‘, (2.2)
=1

since the variables X; are independent. The cumulant generating function, defined by

A()) = logE [¢*X], plays an important role. Rewriting (2.2) using A, we obtain

P {Sn 2 tn} S e—)\tn-H\()\)n'
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So optimizing our choice of A\, we see that

P{S,>tn} < (infe-*t“‘(*)) Ll gt ), (2.3)

A>0

where A*(t) = sup,{At — A(\)} is the Fenchel-Legendre (convex) dual of A (see, e.g.,
Rockafellar, 1970). The upper bound (2.3) is tight, as claimed by Cramér’s theorem
(Cramér, 1938).

Theorem 2.1 (Cramér). Assume that A(X) < oo for some A > 0. Lett > EX.
Then, as n — 00,

P {Sn > tn} = A O+,

Cramér’s version of the theorem was restricted to random variables on R having
densities. The generalization is due to Chernoff (1952). See Petrov (1975) for more

information. A complete proof can be found in Dembo and Zeitouni (1998).

The rate function A* describing the tail probability in Theorem 2.2 is thus of great
importance. Indeed, the behaviour of P {S, > tn} relies directly on its properties.
For instance, Theorem 2.2 would be useless if one cannot prove that A* > 0 and not
identically zero. We review most useful properties of A* in section 2.5. But first, we
focus our attention to the generalizations of Cramér’s theorem that we will need in

the course of the proofs.

2.4 From Cramér to Gartner—Ellis

This section is devoted to large deviations between the value of a sum of random
vectors and its expected value. We are interested in the case of extended random
vectors, that is, whose components may also take (only) one of the values co or —oo.

We now focus on this slight generalization.

Let {X;,1 < i < n} be a family of i.i.d. extended random vectors X; = (Z;, E;)
distributed like X = (Z,FE). Assume Z € [~o0,00) and E € [0,00]. Set p =
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P{Z > —00, F < oo}. For a and p real numbers, we are interested in the tail prob-

ability
P{ZZ,->om,ZEi<pn}, (2.4)
=1 i=1

whose magnitude is characterized in Cramér’s theorem. We shall introduce the cu-
mulant generating function A of an extended random vector X. For A\, u € R, it is
defined by

A\, p) =1ogE [eM*#E | Z > —00, E < o0] + logp. (2.5)

Observe that if Z and F are a.s. real, then A(A\,u) = E [e’\Z+“E], which matches the
usual definition. The tail probability in (2.4) is characterized using A*, the Fenchel-
Legendre dual of A (see Rockafellar, 1970): for a, p € R, we define

A (e, p) = SAup{/\a +pp — AN )}
M

Theorem 2.2 (Cramér). Assume that {X;,i > 1} are i.i.d. random vectors dis-
tributed like X. Assume that 0 € D}. Let I(a,p) = inf{A*(z,y) : > a,y < p}.
Then for any a,p € R,

1 n n
lim ElogP {ZZ" > an,ZEi < pn} = —I(a, p).
i=1 i=1

Moreover, the following explicit upper bound holds for alln > 1, and a,p € R:

P {i Z; > an,zn:Ei < pn} < g nlen),

i=1 i=1

Remarks. (a) It is possible that A* = oo everywhere except in one point, and
consequently / may be infinite as well.

(b) Observe that the inequalities in Theorem 2.2 are strict. The result is false if
one allows equality (see Groeneboom et al. (1979) or Dembo and Zeitouni (1992,
Exercise 2.2.37) for a counterexample built by taking («, p) on the boundary of D,).
This technicality may be avoided if one enforces (a, p) € D3. (see Lemma 2.2).

(c) The explicit upper bound is analogous to the Chernoff bound (Chernoff, 1952)
and holds because the quadrant (e, 00) x (0, p) is a convex set (see Exercise 2.2.38,

p. 42, Dembo and Zeitouni, 1998).
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Proof. The quadrant (o, 00) x (o0, p) is a convex open set in R?. Hence Theo-
rem 6.1.8 of Dembo and Zeitouni (1992) applies when P {Z = —oco or E =00} =0
(thus, p = 1). We now show the details in the extended case. Let F, = {Z; >
—00, E; < 00,1 <i <n}. It is the case that
P {ZZi > an,ZE,- < pn} =P {ZZ,- > an,ZE,- < pn Fn} -p".
i=1 i=1 i=1 i=1

The classical form of Cramér’s theorem applies to the first factor, and hence, writing

Ac = (\p) — logE [ e*2FHE | Z > —00, E < 00|, the cumulant generating function
of (Z, E) conditioned on {Z > —o0, E < oo}, and A} for its dual,

lim llogP {ZZi > an,ZE,- < pn} = —inf{AX(z,y) : = > a,y < p} + logp.
i=1 =1

n—oo n

However, A = A, + logp, and therefore A* = A} — log p, which finishes the proof. O

The constraint that {X;,7 > 0} be identically distributed may be relaxed, and we
will need such an extension in Chapter 5. The case where the random variables are not
identically distributed is treated by the Gartner-Ellis theorem (Gértner, 1977; Ellis,
1984) (actually the random variables need not be independent either). We will only
use the upper bound. We shall first state the classical version of the Gartner—Ellis

theorem, and then extend it slightly to fit our needs.

Theorem 2.3 (Gértner-Ellis). Let {(Z,, E,),n > 1} be random vectors taking
values in R x [0,00). Assume that for all A\, u € R,

’ 1 n
A\ p) = lim ElogE {eziﬂ(’\z"”E‘)]
erists as an element of (—oo,00]. We assume that A is the cumulant generating
function of some random vector X. If 0 € D3, then
1 n n
limsup — log P {Z Zi > an,ZEi < pn} < —-I(a,p),

n—co T i=1 i=1

where I(a, p) = inf{A*(z,y) : ¢ > a,y < p}, and A* is the Fenchel-Legendre trans-
form of A.
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A complete proof of Theorem 2.3 may be found in Dembo and Zeitouni (1998).
Observe that Theorem 2.3 only requires pointwise convergence of the moment gen-
erating functions. We wish to extend the result slightly in order to handle extended
random vectors, and obtain an explicit bound that does not involve limits. We shall
also relax the assumption in order to require only asymptotic bounds on the gener-

ating function of the cumulants.

Theorem 2.4 (Gértner-Ellis). Let {(Z,, E,),n > 1} be random vectors taking
values in [—o00,00) x [0,00]. Let F,, = {Z; > —o0,E; < 00,1 < i < n}. Let
Am,m > 0 be an arbitrary sequence of events. Assume that for all (A, 1) € R2, and
d > 0, there exists M = M(\, u,8) such that

1
sup — log E
nzrl)n &

<AMp)+6< 0. (26)

1[F,,, Ap] - exp (Z A + /JEi>

i=1

We suppose that A is the cumulant generating function of some vector X. Let T be
a closed set such that {—oo} x [0, 00] U [—00,+00) X {00} ¢ T'. Assume that 0 € DY.
Then, for any v > 0, there erists M’ such that

n—oo

1 1«
. 1 1 e N P . N _
hmsupnlogP {n E (Z?,E,) €l Ay } < mln{l/'y, (al,fal)fEI‘A (a, p) 'y},

i=1

where A* is the convex dual of A.
In particular, when the set of interest is a quadrant, we have:

Corollary 2.1. Let {(Z,, E,),n > 1} be random vectors and A,,, m > 1 be events
satisfying the conditions of Theorem 2.4. Then for every (a,p) € D3, and v > 0,
there exists M' such that

n—oo

1 n n
li —log P i ’ Ei aA 10 S — in{1 ) 3 - )
imsup ~ log {ZZ > an Z < pn M} min{1/~, I{e, p) — v}

i=1 t=1

where I(a, p) = inf{A*(z,y) : £ > o,y < p}, and A* is the convexr dual of A.

Proof of the Gartner-Ellis theorem (Theorem 2.4). The proof follows roughly the lines
of that presented by Dembo and Zeitouni (1998). Let v > 0. Observe first that, since
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{00} x [0, 00] U [—00,4+00) x {o0} & T, we have, for all M,

1 ¢ 1
P {E Z(Zi,Ei) € F,AM} =P {E Z(Zi,Ei) € F,AM,Fn} . (2.7)
i=1 i=1 :

REDUCING I' TO A COMPACT SET. The first step consist in bounding (2.7) to a

similar probability involving a compact set. Since 0 € D3, there exists A and x> 0

and A > 0 such that A(A, u) < A. For any r > 0, we have

1{Ay, F,) - exp (Z AZ; + u&)

i=1

e ™.

P {Z AZ; + uE; > rn,AM,Fn} < E

i=1

Applying assumption (2.6) for this A and y, for all M > M, large enough, since
A(d p) < 4,

p {Z A+ pE; > rn, Ay, Fn} < elAté=rin

i=1
Therefore, for r = A+ 6 + 1/7, writing C = {(z,y) : Az +py <r},and ' =T'NC
we see that, for M > M, |

P{Z(ZuEz)EF7AM7Fn} S P{Z(ZuEz)EFI,AMan}

i=1 i=1
+P {Z(z,-, E)e CC,AM,FH} :
i=1

and hence, for M > M,

P {Z(ZhEz) € F)AM)FH} =P {Z(ZHEl) € FI,AM1FR} +e—n/'y. (28)

i=1 i=1

COVERING I WITH SMALL SETS. We now proceed by covering IV with a finite set

of balls. For any w = (z,,y.) € R?, there exists ()., i) such that

1 2 '
Ay + Holw — A(’\w’ﬂ’w) > min 4§ — + _'7, A*(zw yw) - Z .
v 3 3
For all w € R?, there exists an open ball B, such that for all (z,y) € B., |A(z —

Z,) + oy — Yo)| < /3. Hence we have

. Y {1 2y 5
f w w 2 wy Mw ) T Y - _,A* wYw) — = ¢ - 2.
it Do) 2 A) 3+mm{7+ LINER 3} (2.9)
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The set {B,,w € R?} covers R? but is uncountable. However I" is contained in a
compact set, and it can be covered by {B,,w € C}, where C is finite. Thus, by the
union bound,

P {Z(Zi,Ei) € nr',AM,F,,}

n

P{%Z(Z“Ell) € UBwvAMaFn}

i=1 wel

> P {% i(z,., E)) € B,,, Ay, F,,} .
weC

i=1

IA

i=1

IN

Consider one term in the sum above. Note that

n

Z,E)eB, = AZi+u E; > inf {Aox+ poyt.
> (2., Ey) > " it { sy}

i=1 i=1
Then, using assumption (2.6) with A, and pu, and § = v/3, there exists My = My (w)
such that for all M > M,

. , < - — .
P { E (Z;, E;) € B, AM} exp <nA()\w,,uw) + nz n(z,;r)lefm{/\wm + uwy}>

i=1

Then, recalling the bound (2.9), we obtain for all M > M,(w),

n 2y ) 1 2y Y
P . . s < _— . — —, * , - = .
{ E (Z:,E;) € B AM} exp (n 3 n mln{ + 3 AN (2o, yo) 3})

i=1
Finally, plugging the bound above in (2.8), and observing that inf{A*(z,y) : (z,y) €
I'} = I(a, p), for all M > max{M;, My(w) : w € C}

n

p {% S (2, E) € r,AM} < (14]C]) - exp <—n - min {%,I(a,p) - 7}) .

i=1

Taking logarithms completes the proof. O

2.5 About A, A* and ]

The functions A, A* and I are well understood (Dembo and Zeitouni, 1992). They
will be the corner stone of the characterization of first order asymptotic properties

of the height of random trees. This is why we collect here their main properties.
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Consider a mapping f : R? — (—00,00]. Recall that Dy is its domain: Dy = {(a, p) :
f(a,p) < o}, and D is the interior of Dy.

The mapping f is said to be convez if, for all z;,z, € R?, and 6 € [0,1], we
have f(f0z, + (1 — 0)z,) gv 0f(z1) + (1 — ) f(z2), where it is understood that if
the left-hand side is oo, then either f(z;) = oo or f(zg) = co. If the level sets
Us(l) = {x: f(z) < £} are closed for all £ € R, we say that f is lower semicontinuous,
and call f a rate function. The mapping f is said to be a good rate function if its

level sets are compact.

THE FUNCTION A(-,-). The cumulant generating function is the link between the

random variables and the rate functions, and its properties imply those of A* and I.

Lemma 2.1. The function A(-,")
(a) takes values in (—oo0,00] if p=P{Z > —00, E < o0} > 0;

(b) is convez on R?, and continuous in D3.
Proof. (a) By definition, VA, 4 € R, we have
A(A p) =logp+IlogE [1#F | Z > —00,E < 0] .

Both Z and E are real on {Z > 00, E < 00}, and hence E [e’\Z+"E] > 0. Since p > 0,
this yields A(A, u) > —oo.
(b) The convexity follows from Holder’s inequality. The continuity in Dg is a straigh-

forward consequence of the convexity. For details see Dembo and Zeitouni (1992). O

THE FUNCTION A*(+,-). The level sets of A* are of particular interest, and we write
¥ = U,.. Indeed, as we will see in Chapters 4 to 6, the heights will be characterized

using optimizations of some objective functions on the level sets of A*.

Lemma 2.2. The function A*(-,-) is
(a) convezr on R? ;

(b) continuous on D3.;
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I I
ol

I

Figure 2.1: An increasing family
of level sets U(€) for the function
A* corresponding to the study of k-
d trees (Section 5.7.12)

b

it

(c) a good rate function if 0 € DY.

Proof. (a) The convexity of A* is a direct consequence of its definition: for ¢;,t2, A €

R? and 6 € [0, 1}, using - to denote the standard inner product,

A*(gtl + (1 - e)tg) = Sup{)\ . (0t1 + (1 - e)tg) - A()\)}

AeR?

sup{OX-t; — AN} + suug){(l -t — (1 —6)AN)}
AeR? A€R2
= OA*(t1) + (1 — )A*(t2).

IA

(b) Since A* is convex, it is continuous on D§..
(c) Let £>0. For r >0, let %, = {(z,y) € R?: \/22 + 42 > r}. Since 0 € D3, there
exists a ball B, centered at the origin with radius § > 0, and A < oo such that for all
(A p) € B, A(A,pu) < A. For any r > 0 and (o, p) € G,
AN (a,p) = sup{da+ pup — A(A, p)} = sup {da+up—A(Ap)}=6é-r— A

A (Au)eB
As a consequence, for R large enough, ¢z does not intersect ¥(¢), proving that ¥(¢)
is bounded.

We now show that ¥(¢) is closed (A* is lower semicontinuous). It suffices to prove
that ¥(¢) contains all its accumulation points: for any (a,p) € R? such that there
exists (an, pn) € V(£) with (an, pn) — (@, p), we should have (a, p) € ¥(¢). For any
Au € R,

liminf A*(a,, pn) 2 liminf{Aa, + pp, — AN\, 1)} = da + pp — A(A, p).

n—oo
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As a result,
lim inf A*(aw, pn) > sup{Aa + pp — A\, 1)} = A* (e, p).
n—oo Ap
Hence, A*(a, p) < £ and (o, p) € ¥(¢), which proves that ¥(¥¢) is closed. a

THE FUNCTION I(-,-). The function that appears in the Cramér and Gértner—Ellis

theorems is I(-,-). This is why information about tail probabilities rely on properties

of I.

Lemma 2.3. For a,p € R?, let I(a, p) li:efinf{A*(x,y) 1z > a,y < p}. Then

(a) (a, p) — I(a, p) is non-decreasing in «, and non-increasing in p;

(b) for (@, p) € D}., I(a, p) = inf{A*(z,9) : 2 2 0,y < p}-

Proof. (a) This is clear from the definition as an infimum.
(b) Clearly inf{A*(z,y) : ¢ > a,y < p} < I{a,p). So we prove that I(a,p) <
inf{A*(z,y) : £ > o,y < p}. Consider a sequence (z,,yn) € Da+ such that

lim A*(z,,y.) = inf{A*(z,y) 1 2 > a,y < p}.
n—o0

We build an auxiliary sequence (z),,,), n > 1. Let k > 1. If ;, # o and yx # p, then
(%%, Yi) = (Zk,yx). Assume now that zx = a or yx = p. Then we construct a new
point (z},¥;) such that A*(z}, y;.) < A*(zk, yx) + 1/k where z}, > a and y}, < p. This
construction is done in the following way. Assume at first that for small enough ¢ > 0
there exists a ball B, centered at (z, yx) with radius € contained within D%.. In this
case, by the continuity of A*, we find a point (z},y;) € Be with = > a,yx < p such
that A*(z}, y.) < A*(xk, yx) + 1/k. In the second case, no such ball exists for any ¢,
which means in particular (zx,yx) lies on the boundary of Dy«. Consider the region
Re = B.ND}. N {(a,00) x (—o0,p)}. Since (a, p) € D3., an open convex set, this
region is non-empty. Let § = infjosup{A*(z,y) : (z,y) € Re \ (zx,yx)}. Assume for
a contradiction that 8 > A*(zk, yx). Then there exist (z,y) such that the line joining
(x,y) to (zk, yx) lies below A*, contradicting the convexity of A*. Hence 8 > A*(xk, yx)
and, for € small enough, there exist (2}, y,) in R such that A*(z},y.) < A*(Tk, Yk).
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Therefore, using the auxiliary sequence, we see that inf{A*(z,y) : ¢ > a,y < p} <
lim, 00 A*(z,,y,,) = inf{A*(z,y) : £ > o,y < p}. This finishes the proof. O

A* (e, p)

Figure 2.2: The functions A*(a, p) (left), I(a, p) (right) for the example of the Gaussian
random variables.

Example: Gaussian random variables. We now just work out an easy example
to emphasize the differences between A, A* and I. Assume that (Z, F) is distributed
as (N, Np), where N; and N, are independent standard Gaussian random variables

N(0,1). Then, for all A\, € R,
A\, p) = logE [e*?] + 1og E [e*F] .

Furthermore,

1 oo 1 o0
E [e,\z] = Wor / 2y = Wir / e~ N2 A2y = N2,
-0 \Y% —0oQ

A similar statement holds clearly about E. It follows that

/\2 2
A =5+ 5‘2—

Then, the optimum in the definition of A*(«, p) is obtained for A = @ and u = p, and

we have

a?

-+

o,

A*(aa p) =
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The definition of I(c, p) then depends on where (a, p) lies with respect to (0,0):

{
A(a,p) a>0,p<0,
2
a’/2 a>0,p>0,
M) =9 :
p°/2 a<0,p<0,
0 a<0,p>0.

\

Figure 2.2 shows the functions A*(a, p) and I(a, p) for this example.






Chapter 3

Branching Processes

In this chapter, we introduce the theory of branching processes. The Galton—Watson process
is the simplest of all branching processes. We review branching random walks since most of
the work in this thests is tightly connected to a generalized version of the first-birth problem.
For further information, see the textbooks of Harris (1963), Athreya and Ney (1972), Jagers

(1975). Devroye (1998a) surveys their applications in analysis of algorithms.

Trees are sanctuaries. Whoever knows how to talk to them,
whoever knows how to listen to them, can learn the truth.

— Hermann Hesse
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3.1 The Galton—Watson process

3.1.1 Definition and main results

In the late nineteenth century, F. Galton became interested in the decay of family
names in England (Kendall, 1966). He was mainly concerned with “men of the note”.
He formalized his problem mathematically and communicated it in the following way

Galton (1873):

A large nation, of whom we will only concern ourselves with adult males, N in
number, and who each bear separate surnames, colonise a district. Their law of
population is such that, in each generation, ag per cent of the adult males have no
male children who reach adult life; a1 have one such male child; as have two; and so
on up to as who have five.

Find (1) what proportion of the surnames will have become extinct after r genera-

tions; and (2) how many instances there will be of the same surname being held by

m persons.

He was not pleased with the only solution he was proposed and urged Reverend
H.W. Watson, whom he was corresponding with, to take up the matter. Watson
made use of generating functions and functional iterations to tackle the problem. The
following approach is essentially his. If we write px for Galton’s ai, and remove the
restriction that k < 5, we can define the probability generating function f associated

with the distribution {p;,¢ > 0} by
f(S) = Zpksk’
k=0

for s € [0,1]. Also, if we introduce the n-fold convolution of f with itself, f; = f,
fn+1 = fo fo = fnof, then the coefficients of the power series for f, are the terms of
the probability distribution for the number of males in the n-th generation. Galton
observed that the probability of extinction by the n-th generation, ¢,, satisfies the
following equations ¢; = pg, gn+1 = f(¢n) and if g, — ¢, then f(q) = ¢. This last
equation accepting always 1 as a root, Galton inferred incorrectly that the male line’s

extinction was inevitable (see Galton and Watson, 1874).
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The problem reappeared apparently independently in the late 1920s and Haldane
(1927) and Steffensen (1930) finally stated correctly the Criticality Theorem. In
today’s words, we can define a Galton—Watson (GW) process in the following way.
There is a single ancestor who gives birth to a random number Z of new individuals
according to a specified probability distribution. Further, any individual of the process
reproduces similarly and independently. For k > 0, write p, = P {Z = k}. Then the

reproduction generating function used by Watson is simply defined by

f(s)=E["] =) ps",
k>0
for s € [0,1]. This function is convex (as a sum of convex functions), strictly convex
if p1 # 1, and increases from 0 to 1 for s € [0,1]. This function concentrates all the
information of the distribution of Z. In particular, the expected number of children

EZ is
m¥EZ =3 kp = f(1).

k>0
If we let Z, denote the number of individuals present in generation n, then, f,(s) =

Es?». The extinction probability is defined by
g=P{3n: 2, =0}.

Theorem 3.1. Consider a Galton-Watson process with offspring distribution Z.
Then q s the smallest fized point of the reproduction generating function in [0, 1].

In particular, g < 1 ifand onlyif m=EZ >1 orEZ =1 and p, = 1.

This leads to the classification of Galton—Watson processes in three groups de-
pending on the value of m: a process is called subcritical, critical, or supercritical if
m < 1, m =1 or m > 1 respectively. It is also very useful to observe that if the
process does not become extinct, then size of the generation grows to infinity. In
other words, with probability 1, Z, does not oscillate. This is one of the key results

used in some of our lower bounds.
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e ——— - - —— i ——

0 0 v

t 0 ¢ 1 t

ot - ———— - —

0

Figure 8.1: The generating functions for a subcritical (left) and supercritical (right) GW
processes are shown. In the subcritical case, 1 is the only root of f(t) =t in [0,1]. In the
supercritical case, there is q € [0,1) such that f(q) = q.

Theorem 3.2. Let Z,, be the number of individuals in the n-th generation of a Galton-
Watson process with offspring distribution Z. Assume that py = P{Z =1} < 1.

Then lim,_,o, Z, € {0,00} almost surely.

By a simple conditioning argument, one sees that EZ, = m"™. Indeed, clearly,

EZy = 1 and proceeding by induction on n,
EZ,=EE|(Z,| Zun-1) =E[mZ,_1| =m™.

It actually turns out that Z, behaves roughly like m™. Doob’s limit law (see

Harris, 1963) characterizes more precisely the behavior of Z,.

Theorem 3.3. Let m be finite. Then, W,, = Z,/m™ forms a martingale with EW,, =

1 and W,, — W almost surely, as n — oo, where W is a nonnegative random variable.

The distribution of W is not known. However, one can obtain fairly precise infor-
mation on W, and the process behaves ezactly as one expects (EW =1, P{W =0} =
g) if and only if the zlogz moment of Z is finite, as stated by the following theo-
rem, due to Kesten and Stigum (1966), which pins down the asymptotic properties

of supercritical Galton—Watson processes.
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Theorem 3.4 (Kesten and Stigum, 1966). Let Z,, the number of individuals in the
n-th generation of a supercritical Galton—Watson process with progeny distribution Z.
The following statements are equivalent:

(a) lim, .. E|W, - W|=0;

(b) E[Zlog(l+ Z)] < o0 ;

(c) EW =1 ;

(d) P{W =0} =q.

3.1.2 Bounding the extinction probability

Apart from the standard results we have just presented, we will need to bound the
extinction probabilities of some Galton—Watson processes to boost some of our lower

bounds.

Theorem 3.5. Let d > 1 be a fized integer. Consider a sequence of Galton—Watson
processes with progeny distributions Z@® on {0,1,...,d}, EZ®@ = pu,, and extinc-
tion probabilities q., x € R. Assume that there exists xo and 6 > 0 such that

infz550 EZ® > 146, IfP{Z® =0} -0, as  — oo, then g, — 0.

Remarks. Before we proceed with the proof, observe that the result is best possible.
Indeed, if either the support of Z(*) is unbounded or EZ® is not uniformly bounded
away from 1, one can construct distributions Z® for which the result does not hold.
Write p; = p;(z) = P {Z(® =i}, and let f® be the associated probability generating
function: Vs, f)(s) = Y_,5gpis'.

(a) We first build Z®) such that EZ® > 1 for all z > 2, and yet ¢, /4 0. Let

1 2 3
p0_2x’ = .’E, P2—2x

Then EZ@® = 1+1/z > 1, for all z > 2. But g, is the smallest solution of f®)(g,) =
¢z Thusforallz > 2, ¢, =1/3 A 0.
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(b) For the case of distributions with unbounded support, we consider, for z > 2
taking integer values only,

1 1
= m=1-3  p=-
T T z

Po=
Then for all z > 4, EZ®) = 2 — 2/z > 3/2. However, ¢, is the smallest solution of

1 —2¢; +¢? =0, and hence'q, — 1/2 as z — oo.

The proof of Theorem 3.5 is based on the following Lemma providing an explicit

bound on the extinction probability.

Lemma 3.1. Let d > 1 be a fized integer. Consider a Galton—-Watson process with
progeny distribution Z on {0,1,...,d} and extinction probability q. Let p = EZ and
pi=P{Z =1}, 0<i<d. Assume that p; < 1. Then,

2po . 2po 1
T if ——g <1—p 7T,
g<{ p+52 po+ 5
1 otherwise.

Proof. The proof is based on an analysis of the probability generating function. We
know that ¢ satisfies f(q) = q. Observe that
p=pi+ Y ip>p+2) p
' i>2 i>2
If p <1 then ¢ = 1 by Theorem 3.1 and the result clearly holds. We assume now

that 4 > 1 and pg + p1 < 1. Define the auxiliary generating function

f(8) —po—ms
1—po—m

g(s) =

and note that g(s) < s? for all s € [0,1], and g(0) = 0. Now,

9(q) = f(Q)—Po—qu — Q(l—Pl)—Po < qz.
1—po—pm 1-po—m

We rewrite the above equation in order to obtain a bound that is more useful

2. l-Pm—po P o Po < 2 Po

g < ¢ <gq < ¢+ —--
1-p 1-pm Po+ D o1 Pi po + B2
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Finally, we see that

QSQ2+——po d=6fq2—i-a where a =

po+ &1

Po
Po + %1
If 4a > 1, then clearly ¢ < 1 < 4a. Otherwise, 4a < 1 and this implies either
1-v1-4a 1++/1-4a
g ———— or g2 ———.
2 2
For all z € {0,1], we have /1 —z > 1 — z and thus, we can conclude that, when
4a < 1, either
qg<2a or g>1-2a. (3.1)

We now assume that g # 0, otherwise, the result trivially holds. Note that, in
this case, since ¢ = f(g), ¢ < 3¢, ipig"~. By monotinicity, for the solution r of
1= Y2 dpsi-!, we have ¢ < r. Observe also that 37, ip; = u, which we have

assumed greater than 1. As a consequence, r < 1 and

d d
il d—1 . d~1
1 = _5_ iprtT > 1 E ip; = pur*",
=1 i=1

sog<rc< ,u_ﬁ. Recalling (3.1), if 1 — 2a > ,u'd—i'f, then we must have ¢ < 2a.

This proves the lemma. O

We are now ready to prove Theorem 3.5 which is, in fact, an easy corollary of

Lemma 3.1.

Proof of Theorem 8.5. If P {Z @ = 0} = 0, the result is clear. Assuming P {Z @) = 0} >

0, recall Lemma 3.1. We have, for z > z,

def

_ 1
1—p™D > 1-(1+6) =1 ¥ ¢>0.

As a consequence, since pp = P {Z® =0} — 0, for z large enough,

2po _ __2po < 4po <€
p2+%*1 p0+6/2 ) )

Therefore, for £ — oo, we have g, = O(po) = 0(1), which completes the proof. O
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3.1.3 Beyond Galton—-Watson processes

In the course of the proofs, we will need the following technical lemma. One should
see it as a tool to deal with branching processes for which the progeny distribution
may depend on the node. It asserts that if there is a deterministic lower bound
for the reproduction distribution function, then one can find a subprocess that is a
proper Galton-Watson process, that is, for which every node has the same progeny

distribution.

Lemma 3.2. Let N be a random positive integer, and given N = n, let Z be a random

variable distributed like Z™, where,
inf P{Z™ >k} > t,

and tr, | 0 as k — oco. Then one can find a random variable Y such that Y < Z and

P{Y >k} =t for all k.

Proof. Let W be a random variable with tail distribution t,: P {W > k} = t;. Let
F, be the distribution function of Z™ and G be the distribution function of W. Let
U be uniformly distributed on [0, 1], then we couple W and {Z™,n > 0} using the
inverse transform technique (Billingsley, 1995; Grimmett and Stirzaker, 2001)

Z™ = F~Y(U), and Y =G Y(U).

It is easy to see that with probability one, W < Z for all n and thus W < Z. O

3.2 The first-birth problem

The first-birth problem is at the heart of the probabilistic branching processes tech-
niques used in problems about the heights of trees. We make a brief overview of the

main results, and present some theorems that will be useful later.
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3.2.1 Discrete time branching random walks

The branching random walk (BRW) is one of the branching processes that models the
growth of random trees. As its name indicates, it has a tree structure, with branching
at each generation. Every individual bears a position on the real line R, and every

path in the tree is a random walk on R.

More formally, there is an initial individual called the ancestor. The ancestor gives
birth to an offspring with positions given by a real point process Z. Let {zﬁl), r>1}
be the positions of the individuals in the first generation. For n > 1, assume we
know the positions of all individuals up to the n-th generation. Then each one of
these individuals reproduces in the same way as the ancestor, and independently of
one another and of the past. More precisely, an individual with position x gives birth
to new individuals in the next generation, and their positions are distributed like
{z +2%,r > 1}. We write {z™,r > 1} for the positions of the people in the n-th
generation. If Z is concentrated on [0,00) one can easily interpret the positions as
time and consider the individuals that were born before some time ¢. One can keep
this definition even if the walks down the ancestor are not monotonic, i.e., if Z is not
compelled to be nonnegative. Let U be the set of all individuals that are born and

U, the set of those born before time ¢.

FIRST-BIRTHS AND HEIGHTS. Asking about the height of a tree reduces to asking
how big the tree needs to be for the first node to appears in some fixed generation.
For the branching random walk, the related question is slightly different, and is just to
ask how much time does one need to wait to see an individual in the n-th generation.
This leads to introduce B, = inf{z{™,r > 1} the time of the first birth in the n-th
generation. This question is at the origin of the branching process techniques to find
the heights of random trees. Writing H; for the number of generations in U;, the main
link is

Hy=sup{n: B, <t} and B,=inf{t: H, > n}.

It has been addressed by Hammersley (1974) when all the displacements from a
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parent are a.s. identical, i.e., for the Bellman-Harris process (Athreya and Ney,
1972). Kingman (1975) dealt with the case where Z is concentrated on [0, 00) and
Biggins (1976, 1977) treated its more general form. To state the theorem, we-need to
introduce more notations. The results are based on large deviations, but the settings
used by the authors of the cited papers are slightly different from ours, and we may

use notations that are close to the historical ones.

A LAW OF LARGE NUMBERS. Let m be the Laplace-Stieltjes transform of Z, defined

by, for 8 € R,
=E [ / e“”dZ(t)] :

The function m is very close to our moment generating function, it just handles all

m(f)=E

Z exp (——6zﬁl))

r2>1

the children in the mean time instead of taking one at random (which, in general,
cannot be as we do it since their number may be infinite). We assume that m(f) < oo
for some 6 > 0. This implies in particular that F(t) = EZ(—o0,t) < oo for all ¢ and

one can then write

m(8) = / e taR ().

-0

One then defines the increasing function yu, for a € R, by
p(a) = inf {?*m(6) : 6 > 0} .

This is the equivalent of our Cramér function in multiplicative settings. One can then

state the following law of large numbers for B,,.

Theorem 3.6 (Biggins 1976, 1977). Let v = inf{a : u(a) > 1}. Let S be the event

that the process survives. Then, almost surely on S

B,
_——
7 n—ooo

Theorem 3.6 is the result that Devroye (1986) used in his seminal paper on the

height of binary search trees. In our opinion, its great value lies mostly in its generality
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and the breadth of its applications. We shall pursue similar goals in this thesis, that

is, trying to find results that are widely applicable.

FURTHER RESULTS. More precise theorems have been proved about the minimal
displacements of a branching random walk. Until recently, they were restricted to
very special cases. Precise results about the behavior of B, include the theorem by
Bramson (1978) on the branching Brownian motion, Durrett (1983), and Bachmann
(2000). Addario-Berry (2006) and Addario-Berry and Reed (2006) have proved that

for a fairly general class of branching random walks, there exists v and 3 such that
EB, = yn + Blogn + O(1).

See also the related work of Chauvin and Drmota (2007) on the heights of m-ary
search trees, and the recent manuscripts by Bramson and Zeitouni (2006) and Hu

and Shi (2007).

3.2.2 Continuous time branching random walks

A continuous time version of Theorem 3.6 can be found in Biggins (1995, 1996). The
presentation here follows the lines of the latter papers. Partial results had appeared
in Biggins (1980). As before, a single ancestor is born at the origin at time 0. For
convenience, we label the individuals using their line of descent in the Ulam-Harris
way: zy denotes the y-th child of an individual z. We now let the individuals be
characterized by not only their position p., but also the time o, at which they were
born. In these settings, Z is now a spatial point process in R x R*. Each point will
correspond to a child. The first coordinate is the deviation from the parent’s‘ position
and the second the age of the parent when it was born. Let Z, denote the copy of

the point process associated to z, with points {(24y, 7zy),y > 1}. Then
Pry = Pz + Zay and Ogy = Oz + Tay.

The fact that 7 > 0 ensures that the children are born after their parents. Let U

denote the set of individuals that were born.
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THE SPREAD OF A BRW. We are now interested in the position of the rightmost
individual alive at time t, so it is natural to introduce the point process N; giving the

positions at time ¢

Ni=3 8(p:) 1o, <t),

zeU

where §(p) is a point at position p. The position of the rightmost point at time ¢ is
given by
B =sup{p, : z € U,0, < t}.

We call i the intensity measure of Z, and m(6, ¢) is Laplace-Stieltjes transform:

m(6,¢) = /e”az‘d’ru(dz,dT) =E [/ e‘ez"”TZ(dz,dT)] .

For supercritical processes, m(0,0) > 1, and then one can define

a(f) = inf{¢: m(6,4) < 1}.

Since m is a convex function, « is itself convex. Only 6 < 0 has to be considered
since we only deal with right extreme points, and hence right tails. The main result

of Biggins (1995) is stated as follows:

Theorem 3.7 (Biggins 1995). Suppose that Z is supercritical, nonlattice. Assume
further that E [sup,e=*®*] < co and that a(f) < co for some 6§ < 0. Then,

B
Tt — v =inf{a: a*(a) < 0},

as t — oo, where o* defined by o*(x) = inf{z0 + a(6),0 < 0} is the concave dual of

the convez function a.

Remarks. (a) Observe that the functions m(-,-) and o* are similar (but not equiva-
lent) to our A(-,-) and A*(-,-), respectively. The rate function A*(-,-) happens to be
convex because of the difference in the definition.

(b) One can also express the limit v in the following way:

v = inf {a : },Llf){‘ logm(6, —af)} < 0} ,
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which may be easier to compute in concrete cases (Biggins, 1980). It seems that ~
may be interpreted as some kind of slope in a diagram showing m. We will see later

that it indeed is a slope, but this will be easier to see with our settings.

THE GROWTH OF A BRW. The second parameter that has some interest when
comparing branching random walks to random trees is the number of individuals alive
at time ¢. Indeed, in most applications, it is of little interest to find the constant
characterizing the limiting behaviour of B; if one does not know how many individuals
are alive in the process at time ¢. This issued has been dealt with by Jagers (1975),
Nerman (1981), Cohn (1985) and Biggins (1995, 1996). Let £(t) be the number of
individuals alive at time ¢, i.e., that were born before t:

(t)=HzeU:o, <t} =) 1o, < 1.

xzelU

We are after asymptotic estimates for £(¢t). Clearly, one only needs to deal with the
time coordinates of the point process. So we may ignore the spatial elements of the
point processes. Let fi be the intensity measure of the point process Z, the projection

of Z on the time axis, and 7 its Laplace transform. We have

m(¢) = / e u(dr) =E { / e-¢fZ(dr)] :
The asymptotic size of the branching process depends on the Malthusian parameter

defined by

a = inf{¢ : m(¢) < 1}.
The next theorem is not the strongest one can state about the size £(¢) of the tree,
but it will be good enough for our purposes. It finds its origins in the much stronger

results of Nerman (1981) about the almost sure convergence of a suitably rescaled

version of £(¢) to a nondegenerate random variable.

Theorem 3.8. Let £(t) be the size of a supercritical branching process with Malthusian

parameter a. If the process survives, then
logé(t) _,
logt

almost surely, as t — oo.
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Remarks. This model of continuous time branching random walk is very close to
the ideal trees we present in the next chapter. In particular, Theorem 3.7 is in a
certain sense the dual of our theorems on the height of ideal trees. The purpose of
Chapter 4 is mostly to introduce our notations and interpretations of the asymptotic

characterization of the heights.



Chapter 4

An ldeal Model of Random Trees

In this chapter, we describe an ideal model of random trees. It is tightly related to branch-
ing random walks and will help us ezplain the intuition behind the more general model of
Chapter 5. We also prove here the main properties of the geometric interpretation of the
height. This is based on part of the work in Broutin et al. (2007) and the early ideas have

appeared in Broutin and Devroye (2006).

The tree which moves some to tears of joy is
in the eyes of others only a green thing that
stands in the way. Some see Nature all ridicule
and deformity, and some scarce see Nature at
all. But to the eyes of the man of imagination,

Nature is Imagination itself.
- William Blake, 1799, The Letters
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4.1 Ideal trees: the model

Let T, be an infinite rooted d-ary tree (with d* nodes at every level k), and let r be
its root. Let m(u) be the set of edges on the unique path from a node u up to the

root. We assign independently to each node of T, a vector

(21, W), (22,V2), - .., (Za, Va)),

where V; > 0, }:Ll Vi =1 and Z; € [-00,00). The components are dependent in a
quite arbitrary way, in particular we do not assume any independence between the
V:’s and the Z;’s. If an edge e connects u with its i-th child, then, for convenience,

we define V, =V, and Z, = Z,.

THE SHAPE OF THE TREE. With each node u € T, we can associate an interval of
length L,. We set L, = 1. The children of u have intervals of lengths L, - Vi, ...,
L, - V4 so that the total length Z:'i=1 L,V; = L, is preserved. In this model, the sums
of the lengths of the intervals at each level of T,, remain 1. The tree thus describes
a random sequence of nested partitions. The length of the interval of a node u is
L,= Heew(u) Ve. The ideal tree with parameter n, T, consists of the nodes u € T
for which L, > 1/n:
’ T,={u€Tw:L,>1/n}.

THE WEIGHTS. The Z;’s represent edge lengths. More specifically, the lengths of
the edges connecting u to its children 1,...,d are Z), ..., Z;. In some applications we
may have negative values, and in general, the range of each extended random variable

Z; is [—00,00). We define the weighted depth of a node u € Ty, by D, = Zee,r(u) Ze.

Alternatively, we can see the tree as a birth process. The random vector of interest
associated with a node u is then Xy = (Xu,...,X4), with X; = (Z;,E;) and E; =
—logV;, if V; > 0; if V; = 0, we define E; = oco. The time at which u is born is
B, = Zee”(u) E,. In particular, the root is born at time 0. Then, T,, consists of the

nodes of T, that are born before time logn. We are interested in the weighted height
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H, of T,:
H, = max{D, :u € T,}

Since we deal with heights, we may assume without loss of generality that the compo-
nents X, Xo,..., X4 of X, are identically distributed. Indeed, randomly permuting
them does not affect H,. So, in the sequel, we write V, F and Z for the typical
distributions of components of ((Z1,V1),...,(Z4, Vy)) or X,, and define X = (Z, E).

THE FAIR PORTION OF THE TREE. In general, it is possible that for an edge e,
Ve =0, B, = o0 or Z, = —oo. This ensures that for any u such that e € w(u),
L, =0, B, = o0, or D, = —00, respectively. So, in either case, the node u cannot
contribute to the height. Thus we call a node fair if L, > 0, B, < oo and D, > —o0.
The fair portion of the tree is the largest tree rooted at the root of T, consisting of

fair nodes only.

We now discuss some constraints on V, F and Z. Their supports have already been
mentioned: V € [0,1}, E € [0,00] and Z € [—00,00). Recall that (Z;,E;), 1 <i<d
are identically distributed. Also, Z?zl V; = 1, which implies that EV = 1/d. The

other conditions, whose relevance is discussed in Section 4.4, are:

(i) P{3i:Z; > —00, E; < o0} = 1: Every fair node u has almost surely (a.s.) at

least one fair child.
(i) dP{Z > —00, E < o0} > 1: The fair portion of the tree is not a trivial path.

(i) 0 € DR. This implies that logE [ e’ | Z > —00, E < 00| < oo for some A > 0,

and in particular we have that E(Z | Z > —00, E < 0] < 00.

(iv) E{Z | Z > -0, E < 00} > 0. Since we study the maximal weighted depth, it

seems a natural condition to impose on Z.

(v) E[E| Z > ~00,E < 00] > 0. This prevents E from being identically 0 on the
fair portion of To. In particular, as E; = —logV; and ), V; = 1, this ensures

P{E =0} < 1/d.
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Remark. If Kk = P{Z > —00, E < o0} = 1, then T, is fair. Then, we only need
0€ D3, EZ >0 and EE > 0.

Under these constraints, the first term of the asymptotic expansion of the weighted
height can be characterized by an implicit equation involving large deviation rate

functions A* = A% (see Chapter 2).

Theorem 4.1. Let T,, be an ideal tree built from X and let H,, be its weighted height.
Let A* = A%. Assume that the conditions (i) to (v) hold. Then

H, = clogn + o(logn)
in probability, as n — oo, where ¢ = sup{a/p: A*(a, p) < logd}.

Remarks. (a) Note that, under conditions (i) to (v), p = 0 is never possible in the
supremum defining ¢ (see Lemma 4.1). This is always the case every time we write
such a supremum.

(b) If Z and E are independent and do not take infinite values, then A*(a,p) =
A% {a) + A%(p), where A%(a) and Aj(p) are defined as the usual Fenchel-Legendre
transforms of Az(A) = logE [e*?] and Ap(u) = logE [e*F], respectively. Hence
Theorem 4.1 agrees with the result of Broutin and Devroye (2006) which claims that
c is the maximal value of a/p in {A%(a) + Ap(p) < logd}. Actually, under their

assumptions, the optimal value is attained at a point in {A%(a) + A%(p) = logd}.

The model of ideal trees is clean in the sense that all nodes receive an independent
copy of the same random vector, and the description of T;, is done in a very natural
way from that of T, by pruning the branches. In most cases, the number of nodes
of T,, is random, although one expects that it should be close to n. However, most
concrete applications have random trees of deterministic size. Broutin and Devroye
(2006) deal with this by proving that if E is in a specified class of random variables,
namely exponentials, the number of nodes of T, is indeed n'*°(}) in probability. Re-
marks about what could be a more natural (or useful) definition for the size of T,, can

be found in Section 5.6.
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4.2 Discussions and interpretations

THE DEFINITION OF THE CONSTANT c. Before we proceed to proving Theorem 4.1,
we shall take it for granted and work on the characterization itself. Indeed, there
is much to say about the constant c. Recalling about the level sets of A*, ¥(¢) =
{(a, p) € R%: A*(a, p) < E},’we have

¢ =sup{a/p: A*(a,p) < logd} = sup{a/p: (o, p) € ¥(logd)}.

We should also pave the road in preparation of the proof, and gather some alternative
definitions for ¢. In the sequel, we let (Z¢, E°) be distributed as (Z, E') conditional

on {Z > —o0, E < 0o}. We first argue about the definition of ¢ itself.

Lemma 4.1. Assume 0 € D} and k =P {Z > —o0, E < o0} > 1/d.

(a) If (EZ°,EE°) € ¥(logd) # &, then ¢ = sup{a/p : A*(a,p) < logd} is well
defined.

(b) If furthermore, EZ > 0 then ¢ > 0.

(c) If P{E =0} < 1/d, then there exists § > 0 such that

¢ <sup{a/p: A*(a, p) < logd + 4} < oo.

Proof. Note that since 0 € D}, by Lemma 2.2 (c), (EZ¢, EE®) € R2.
(a) For any A\, 1 € R, by Jensen’s inequality,

A\ p) =logE [e’\ZC“‘Ec] +logk > AEZ + pyEE° + log k.

It follows that AEZ¢ + pEE° — A(A, 1) < —log k and thus, A*(EZ¢, EE°) < —log k.
Since k > 1/d, (EZ°,EE®) € {(a, p) : A (e, p) < logd} # @.

(b) If EZ¢ > 0 we have ¢ > EZ¢/EE* > 0, potentially infinite if EE® = 0.

(c) For all 6 > 0, ¢ < sup{a/p : A*(a,p) < logd + 8}, so we need only prove that
the right-hand side is finite for some 6. Since P {E =0} < 1/d, we can pick § > 0
such that P {E =0} < e7°/d. By Lemma 2.2 (c), A* is a good rate function, and

hence the level sets U(-) are compact. As a consequence, it suffices to prove that
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{p=0}NV¥(logd+6) = @. We show that inf,eg liminf,jo A*(a, p) > logd+ 4, which
would prove the claim. For all a, p € R,

A(a,p) = AsupR{/\a +pp — A(A, )} 2 sg{ﬂp = A0, )} = Age(p) — logs.
HHE H

Let ¢ = P {E° = 0}. Then,
Age(p) = logE [e*F] =log (g + (1 —q)-E[e*F" | E°>0]).
For p, | 0,

Be(pn) = sup{ppn —log (g + (1 - q)E [ | E°>0])}
"

> —\pn—log(qg+(1—qE[e /v | E°>0]) — —logg.
So liminf, oo A%(pn) > —logq. Therefore, for any a € R,
lim“i)an*(a,p) > —logP{E°=0} —logk = —logP {FE =0} > logd + 6,
p

and inf, liminf,)0 A*(a, p) > logd + 6, which completes the proof. O

A GEOMETRIC INTERPRETATION. Now that we know that c is well-defined and finite
under the constraints we have imposed, let us try to characterize it geometrically.
Observe that in a diagram where we plot a against p, a/p is the slope of a line with
one end at the origin and the other one at (a, p). In such a diagram, ¥(logd) is a
compact set by Lemma 2.2. This set happens to be convex, but this is irrelevant for
our point. Then, if one imagines that VU(logd) is embossed, ¢ is the just the slope
of the line with a joint at the origin that would be dropped from the vertical. This
is illustrated by Figure 4.1. One can also picture of a three-dimensional diagram in
which the value of A*(a, p) or I(e,p) is plotted against (a, p). We emphasize this
three-dimensional approach since it will be helpful in seeing the parallels between

random trees and random tries later. See Figure 4.2.

The following alternate expressions for the constant ¢ will be useful in the proofs,
and makes the parallel between A*(-,-) and I(-,-). To understand what is going on

in Lemma 4.2, see Figure 4.1.
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Figure 4.1: Typical level sets for A* and
I are shown. The shaded region is the set
U(logd) = {A*(e,p) < logd}. The thick
line is the border of {I{c, p) < logd}. We
also show three points together with the
lines of interest. The steepest is used for
the upper bound, the most gentle for the
lower bound. The intermediate one is the
optimal line.

logd - A*(a, p)

Figure 4.2: The three-dimensional
representation. For reasons that will
become clear in the next chapters, we
have represented the positive portion
of log(d)—A* (e, p). The optimal line
{a = cp} in the horizontal plane go-
ing through the origin is also shown.

Lemma 4.2. Suppose that 0 € D}, P{Z > —00,E < 00} > 1/d and P {F =0} <
1/d. Letc ?—ffsup{a/p : A*(a, p) <logd}. Then

(a) ¢ = infesosup{a/p: A*(a, p) <logd + €}.

(b) c=sup{a/p: I(a,p) <logd}.

(c) c=sup{a/p: (a,p) € ¥(logd) N D3.}.

Proof. Observe that Lemma 4.1 ensures that ¥(log.d) # @ and that c is well-defined.
(a) Since {A*(a,p) < logd} C {A*(a,p) < logd+ €} foralld > 1and e > 0, it
is straightforward that sup{a/p : A*(a,p) < logd} < infegsup{a/p : A*(a,p) <
logd + €}.

For n > 1, write ¢, & sup{a/p : A*(a,p) < logd + 1/n}. By Lemma 4.1 (c),
there exists ny large enough that ¢, < oo forall n > ng. Let § > 0. Forn > no, let

(an, pn) € Y(logd + 1/n) be a sequence of points such that a,/p, > ¢, — §. Clearly
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(0, pn) € ¥(logd + 1/ny) for all n > ng and since ¥(logd + 1/ng) is compact, there
exists a subsequence {(an, pn),n > no} that converges to (e, Poo) € ¥(logd + 1/ng)
as n — oo. For each n > ng in the subsequence we have that A*(ay, pn) < logd+1/n,
and since A* is continuous in ¥(log d+1/ng) (since it is compact), then A* (@0, Poo) <
logd. Thus ae/poo < sup{a/p: A*(a, p) < logd}. Also, since a,/pn = ¢, — 6 for all
n 2 g, then te/poo > iMoo ¢n — § = infosup{a/p : A*(a,p) < logd + €} — 4.
Taking § — 0 concludes the proof.

(b) Recall that the rate function I is defined by I(a, p) = inf{A*(z,y) : 2 > o,y < p},
for a, p € R. We fist show that sup{a/p : A*(a, p) < logd} < sup{a/p: I(a,p) <
logd}. For any € > 0, we can pick ag < a and po > p such that ap/po > a/p — €.
Then (ag, po) € V¥ (logd), implying that sup{a/p : A*(a,p) < logd} < sup{a/p:
I{a,p) < logd} +e. Since € is arbitrary, sup{a/p : A*(a, p) < logd} < sup{a/p:
I(a, p) < logd}.

Next, we show that sup{a/p : I(a,p) < logd} < sup{a/p : A*(a,p) < logd}.
Assume that (o, p) is accounted in the left-hand side, or (e, p) € ¥[(logd). Then by
definition, there exist (z,y) such that £ > «, y < p and A*(z,y) < logd. Clearly,
(z, y)r € ¥(logd) and z/y > a/p, which proves the claim.

(c) Since A* is finite on ¥(logd), we see that ¥(logd)° C ¥(logd) N D3. C ¥(logd).
By Lemma 4.1, {p = 0} N ¥(logd) = @, and hence a/p is continuous on ¥(logd).
Accordingly, sup{a/p : (a,p) € ¥(logd)’} = sup{a/p : (a,p) € T(logd)}. The

result follows. d

Lemma 4.3. Assume 0 € D}. Let K = P{Z > —00, E < 00}. Then ¥(—logk) C
{(a,p) : & < EZ¢ p > EE°}, where (Z¢, E°) denotes a random vector distributed as
(Z,E) conditioned on {Z > —o0, E < o0}.

Proof. We have A* = Az goy —log k. So it suffices to prove the claim when x = 1,
and hence (Z, E) = (Z¢, E°) almost surely. Assume that o > EZ°. For any p € R,
we have A*(a, p) = sup, ,{Aa + pp — A(A, 1)} > supy{Aa — A(A,0)}. Since 0 € D,
A is differentiable at 0 and A(A,0) = AEZ° + o()\), as A — 0. As a consequence,
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Aa — AN, 0) = Ma —EZ¢) + o(A) ~ AMa — EZ€) by the assumption. It follows that
there exist A > 0 such that Aa — A(),0) > 0, and hence A*(a, p) > 0, hence proving
that (a,p) ¢ ¥(0) if @ > EZ°. The case when p < EE° is treated in a similar
way. O

AROUND THE OPTIMAL VALUE. To prove Theorem 4.1, we shall need to show that, for
e>0,P{H, > (c+e)logn} =0(1),and P {H, > (c —€)logn} =1 —o(1). In other
words, taking for granted the link between these tail probabilities and A*(-,-) and
I(-,-), we need some information about the behavior of the curves around {a = cp}.
This is why the next lemma is the key to proving the upper and lower bounds of

Theorems 4.1.

Lemma 4.4. Assume 0 € D} and k = P{Z > —00,E <o} > 1/d. Let c &f

sup{a/p : A*(a, p) < logd}.
(a) Ve > 0, there ezists (o, p) € R? such that I{a, p) < logd, andc—e < a/p<c.
(b) If P{E =0} < 1/d, then, for any € > 0, inf{A*(z,y) : z/y > c+ €} > logd.

Proof. Lemma 4.1 ensures that U(logd) # @.

(a) Let € > 0. By definition, we can pick (o, po) such that A*(ao, po) < logd and
ap/po > c—¢€/2. Consider the region ¥(log d) NBND3. where B is a non-empty open
ball centered at (a, po) for which all points (z,y) € B satisfy z/y > ¢ — €. Since A*
is convex and A*(EZ¢,EE°) = —log k < logd, this implies that A*(z,y) < logd for
some (z,y) € Y(logd) N BN D{.. Furthermore, we can pick such an (z,y) such that
z/y < c. Next, pick (a,p) € ¥(logd) N B such that @ < z and p > y (and hence
a/p < c¢). Since A*(z,y) < logd, then I(a,p) <logd,andc—e< a/p<ec.

(b) Let € > 0 and assume for a contradiction that inf{A*(a, p) : a/p > c+ ¢} < logd.
Then, for any § > 0, there exist (a, p) such that A*(a, p) <logd+4d and a/p > c+e.
As a consequence, V6 > 0, sup{a/p: A*(a, p) < logd + 8} > ¢ + €. This implies that
infssosup{a/p : A*(a,p) < logd + 6} > c+e. By by Lemma 4.2 (b), we have that
infss0sup{z/y : A*(a, p) < logd} = ¢, and therefore a contradiction. a
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4.3 The height of ideal trees

4.3.1 The upper bound

We are interested in bounding P {H, > ¢’logn} from above, where ¢ = c¢+¢, € > 0.
We have

P{H, > dlogn} =P{Fv e T,: D, > ' logn}.

Let % be the set of nodes k levels away from the root. Then, by the union bound

over the levels k,
P{H, > c'logn} < ZP{EIv €% :D,>clogn,veT,}.
k20

Let vy be the node in .%; down the left-most path from the root in T,. Using now

the union bound on the nodes in generation k,
P{FveT,: D, >logn} < Zd’“ -P{D,, > logn,u, € T,}. (4.1)
k>0

Consider now a single term of (4.1), and observe that m(uy) contains k edges:

P{D,, >dlogn,u,€T,} = P Z Ze > c logn, Z E. <logn

e€m(ug) eem(ug)

We now distinguish two cases depending on the value of k. Let K > 1 to be chosen

later.

THE LOW RANGE. If k < K, there are few edges in 7(ux), and hence it is unlikely
that D,, is large. Since Ee*? < oo for some A > 0 because 0 € D%, we have, for this
A, by Markov’s inequality,

(B7)*

P{D,, >clogn} <P {e’\D"k > e’\clbg"} < 7

It follows that, for some constant A = max{1, Ee*?},

rup{ (89"} < 4%,
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and hence,

K AX
RV

> d*-P{D,, > dlogn,u € T} <
k<K

(4.2)

THE DEEP RANGE. We now deal with values of k such that k > K. Let T’ = {(z,y) :
c'y < z}. Then, We have

P{D,, > dlogn,u; € T,,}

IA

P ( >z, > Ee>ek-1‘

ec€m(ug) e€m(uk)
< exp|—k inf I(z,y)+o(k)],
(z,y)€r

by Cramér’s theorem. We have

inf I{z,y) > inf A*(xz,y) > logd+ [,
(M)GF( y) ot (z,y) 2 logd+ 8

for some 8 > 0, by Lemma 4.4. Therefore, using the lower bound above,
Z P{ve % :D,>logn,veT,} < Z dke K Btlogd)+olk) — (e‘Kﬂ/2) )
k>K k>K

FINISHING UP. Plugging the latter bound and (4.2) in (4.1) yields,

KBX )

nAe

P{H, > (c+¢)logn} <O (e ¥y + 0 (

The first term on the right-hand side above can be made as small as we want by
picking K large enough. However, since ¢ > 0, A\d > 0. Thus, K being fixed, the
second term is made arbitrarily small by letting n go to infinity. This finishes the

proof.

4.3.2 The lower bound

The proof of the lower bound relies on the construction of a surviving Galton-Watson
tree (see Chapter 3). The key ideas are those used in most branching processes proofs
of the heights of trees (Devroye, 1986, 1998a) and can be traced back to Biggins
(1977).
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FINDING DEEP NODES. We start by proving that deep nodes appear in T,, with

probability bounded away from zero. Our aim in this section is the following lemma:
Lemma 4.5. For all € > 0, there exists ng > 0 such that

inf P{JueT,:D,>(c—¢€)logn}>1-¢>0.

n>ng

Proof. 1If € > ¢, the result is trivial. We assume now that ¢ — ¢ > 0. By Lemma 4.4,
there exists a and p such that a/p = ¢ > ¢ —¢/2 and I(a,p) < logd. Fix such o
and p. Consider the following branching process defined on T¢,. Let ¢ be an arbitrary
integer. We call a node v good if either it is the root, or v lies ¢ levels below a good
node v and we have L, > L, - e~% and D, > D, + fa. The set of good nodes form
a branching process. Since {X,,u € Ty} is a family of i.i.d. random variables, all
individuals reproduce independently and in the same way. Therefore, the tree of good
nodes we have just built is a Galton-Watson tree. As we have seen in Chapter 3,
one determines the behavior of such a process by looking at the average size of the
progeny Y; of an individual. By linearity of expectation, writing 7 (u, v) for the set of

edges on the unique path from v to v,
EY,=d"-P{D,— D, > o, L,/L, > e "},

and by definition of D and L,

EY;=d"P{ > Ze>al, Y E.<pl

e€m(u,v) ecm(u,v)
In the above equation, the right-hand side is exactly the tail probability for a sum
of i.i.d. random vectors, as studied in Chapter 2. Since 0 € Dj by assumption (iii),
using Cramér’s Theorem (Theorem 2.2), we see that

EY, = dle—I(a,p)€+o(€) — ellogd—ll(a,p)+o(8) - 0,
—00

by our choice of o and p. Thus, there exists ¢, large enough such that EYz, > 1.
With this choice for 4y, by Theorem 3.1, the Galton-Watson process survives with
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positive probability 1 — g. In the case of survival, for every integer k, there exists a

node v € %, such that D, > afok and L, > e~?%*. In particular, for

log nJ
k= ,
|_ plo

and starting the process at the root node of T, there exists v € % such that

D, > cdlogn — afy and L, > 1/n. In particular, since ¢ > ¢ — €/2, it happens that

D, > (¢ —€)logn, for n large enough. As a consequence, for all n large enough,

P{weT,:D,>(c—¢€)logn} > 1-¢>0. O

Lemma 4.5 above proves the existence of deep nodes in 7, with positive probability.
We intend to show that such deep nodes appear in 7;, with probability 1 — o(1) as
n — 0o. We want to use a standard boosting argument, and run multiple independent
copies of the process described in the proof of Lemma 4.5 by starting at .%;. However,

not all d* such nodes are suitable as starting individuals.

THE NICE PORTION OF THE TREE. A good starting individual » must at least be
fair, i.e., satisfy D, > —o0 and B, < oo. Because E can take the value oo or Z the
value —oo with positive probability, we cannot ensure that all nodes at level ¢ > 1
in T, are fair. However, under our assumptions, enough of them are. We prove this

using a second branching process argument.

Let a,b be arbitrary constants to be chosen later. Let a node u € Ty, be called
nice if every edge e € 7(u) satisfies Z, > a, and E, < b. Let R; denote the number of
nice nodes at level ¢. Again, {R;,t > 0‘} is a Galton—Watson process. By assumption
(i), P{3i: Z; > —00,E; < o0} = 1. Hence, P{3i: Z; > a,E; < b} > 1,as a —> —00
and b — oo. Also, by (i), P{Z > —00, E < 00} > 1/d. Thus, there exist § > 0, ao
and bg such that for all a < ag and b > by, P{Z > a, E < b} > 1/d+46. Therefore, for
all a < ag and b > by, we have ER; > 1+ dd. By Theorem 3.5, the process survives
with probability at least 1 — ¢’, and ¢’ = ¢/(a, b) can be made as small as we want by

choice of a and b.
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If the process survives, then by Theorem 3.2, R, — o0 as t — oo with probability
one. Accordingly, for any integer r > 1, conditioning on survival, there exists £, such
that

P{RtOSTI Rt>0,\7t20}§1/r (43)
To put it differently, we can control the probability that the the number of nice nodes

in .%, is small.

BOOSTING THE SURVIVAL PROBABILITY. Let ¢ > 0. Consider {Too(v;),1 < ¢ <
Ry, }, the family the subtrees of T, rooted at the nice nodes {v;,1 <i < Ry} in .%,.

By Lemma, 4.5, there is ng large enough such that, for all 4, 1 <7 < Ry, we have
P {Elu € Too(vs) : Dy — Dy, > (c - %) logm, B, — B,, < logm} >1-gq, (4.4)

for all m > my. Recall that v; is nice, and hence D,, > at; and B,, < btg, for all
1 €17 < Ry,. Let n be large enough. Let m be such that logm = logn — btg. If we can
find a node u as in (4.4) in any of T (v;), 1 <% < Ry, then B, < logm+ B,, < logn
and

D, > aty— (c-— %) tob + (c— g) logn > (c—¢)logn

for n large enough. Therefore, u € T,, and H,, > D, > (c— ¢€)logn. Also, for n > ny,

P{H,<(c—¢€)logn} < P{Ry <r}+P{H,<(c—¢€)logn| Ry, >}
< P{R,=0}+P{1<R, <r}+7q,

by independence of Too(v;), 1 < ¢ < Ry,. Therefore,
P{H,<(c—€)logn} < (J’+-71:+qr.

This can be made as small as we want by choice of ¢ = ¢/(a,b) (via a and b) and 7,

independently of n. This completes the proof of the lower bound of Theorem 4.1.

4.4 Special cases

We have imposed constraints (i) to (v) on our random trees. We now discuss some of

the cases when they don’t hold, and see what happens with the weighted height H,,.
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THE FAIR PORTION OF THE TREE IS FINITE. Intuitively, if the fair portion of the
tree is finite, then, the unweighted height is finite, and the weighted height should be

finite as well. This isv formalized in the following lemma.

Lemma 4.6. Suppose that 0 € D3. Assume that P {Z > —00, E < oo} < 1/d or that
P{Z>-00,E<oo} =1/d and P{3i: Z; > —00,E; < o0} < 1. Then H, = O(1)

in probability, as n — oo.

Proof. The tree consisting of fair nodes, {u € T, : D, > —00,B, < o0}, is dis-
bributed as a Galton-Watson process. The expected number of children of an indi-
vidual is dP {Z > —o0, E < 00}. So, either the process is subcritical or it is criti-
cal and not degenerated to a path. In both cases, the tree of fair nodes is almost
surely finite. If follows easily that the weighted height is bounded in probability since
E{Z| Z>-00,F <] < . O

THE FAIR PORTION OF THE TREE IS A PATH. This is the degenerate case where
where, in essence, we have a random walk instead of a branching random walk. The
weighted height can be characterized by following the lines of the proof of Theorem 4.1

in this special case.

Lemma 4.7. Write (Z¢, E°) for the distribution of (Z,E) conditioned on {Z >
—00, E < o0}, and assume that we have P{3i: E; < 00,Z; > —o0} = 1 and k =
P{F <00,Z > —00} =1/d. Then, asn — oo

EE-

Proof. Recall that a node u is fair if D, > —oo and B, < co. The tree consisting of

EZ¢
H,= ( + o(l)) -logn in probability.

fair nodes is distributed as a Galton-Watson tree. The expected number of children
of an individual is dP {Z > —o0, E < 0o} = 1, hence the process is critical. Also,
since P {3i : E; < 00, Z; > —o0} - 1, there is a.s. a fair child, and the tree consists
of a single infinite path. Let this path be {v;,i > 1}, characterized by the pairs
{(Z¢, Ef),i > 1}, from the root down. So, for any «,

k k
P{H, > a} >supP Z; 2 a E; <logn .
(1,2 0> mpp {32272 03 o < g

i=1 i=1
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Set € > 0, a = (EZ°¢ — €) log n, and

k= logn
T |EEc+4¢]’

Then, by the law of large numbers, P {H,, > (EZ° —¢€)logn} — 1, as n — oo.

It remains to find a matching upper bound. By analogy with the general case, let
c=EZ°/EE° > 0. Let K > 1. On the one hand, the nodes with D, — 0o cannot
lie at constant distance from the root:

k
P{3k<K:D, > (c+elogn} < KsupP{ZZf>(c+e)logn}
k<K i=1

kEZ¢ K?
< ————————— it — .
- ng}g (c+¢€)logn 0 <logn)  (45)

by Markov’s inequality. On the other hand, for the nodes v, with k¥ > K, by Cramér’s
theorem (Theorem 2.2),

k k
P{D, > (c+e)logn} = P {Z Z: > (c+e) logn,ZEf < logn}
i=1

i=1

< exp <—k inf A*(z,y) — klog d) ,

z2(cte)y
since the rate functions for (Z¢, E¢) and (Z, E) are translate from one another by
logd. We can define ¢ in a similar fashion as used in Theorem 4.1. Indeed, by
Lemma 4.3, ¥U(logd) = ¥(—logk) C {(a,p) : a < EZ%p > EE°}, and hence
¢ = sup{a/p : A*(a,p) < —logk} = sup{a/p : A*(a,p) < logd}. Thus by an-
argument similar to that of Lemma 4.4, there exists # > 0 independent of & or n such
that inf{A*(z,y) : 2 > (¢ + €)y} > logd + 8. Then, by the union bound,
P{3k>K:D, >(ct+elogn} <D e =0(e"¥). (4.6)
E>K
Putting (4.5) and (4.6) together, and since T;, C {vk, k > 0} a.s., we obtain
K2
ogn

P{3ueT,, D, > (c+e¢)logn} 50(1 > +O(e‘ﬂK/2),

First picking K large enough, and then letting n tend to infinity proves the upper
bound. a
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POSITIVE HEIGHTS AND NEGATIVE WEIGHTS. Finally, we conclude this section with
a remark on the sign of c. One could think that when the weights are mostly negative,

¢ should be negative as well. This is not the case, as shown by the following example.

Lemma 4.8. There exist independent random variables Z and E such that
E{Z|Z>-00,E<0]|<0 and P{Z > —o0,E < o0} > 1/d,

and yet H, = Q(logn) in probability.

Proof. Consider a binary tree. Let (V, Vo) = (1/2,1/2). Then T, is a complete binary
tree with |log, n| levels. Now, let (Z;, Z2) = (—2,1). Clearly, with the symmetrized
random variables (Z,E), P{Z > —c0,E< o0} =1and E[Z| Z > —o0,E < 0| =
EZ = —1 < 0. However, there exists a path from the root to a leaf of T}, not contaning

any negative Z, and hence H, = |log, n|. a

4.5 The effective size of a tree

In some applications, one wants to express the height of the tree in terms of the
number of significant nodes. Only the fair portion of the tree is significant for the

height, and we shall define the effective size #7T,, of T,, as the size of its fair portion:
#T,, = {u € T, : Dy > —00}|.

When P {Z = —oo} = 0, the effective size is just the number of nodes |T,|. The only
difference between the height H, and that of a tree of effective size n is essentially a

scaling factor.

Theorem 4.2. Assume (i) to (v) hold. Let T,, be an ideal tree of (random) effective
size s, = #T,. Then, its height satisfies H, = Slogsn + o(log s,) in probability, as
n — 0o, where ¢ = sup{a/p : A*(a, p) <logd} and v = —sup{¢ : Ay(¢) < —logd},
withY = E+00-1[Z = —o0].

Theorem 4.2 follows easily from the following estimation of the effective size of

T,. It is just a transcription of Theorem 3.8 in our notation.
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Lemma 4.9. Assume (i) to (v) hold. Let T, be an ideal tree build from the random
vector (Z,E). Let v = —sup{¢ : Ay(¢) < —logd}. Then, as n — oo, log #T,, ~
vlogn in probability.

Proof. The effect of Z = —o0 is to cut down a subtree. We introduce a modified time
random variable Y producing the same effect: Y = E + 0o - 1[Z = —o0]. Because
the proofs rely on the renewal theorem, Biggins (1996) assumes the distributions
are nonlattice. However, this is only an issue due to the proof technique, and the
theorems can be proved true in the lattice case as well (Nerman, 1981; Biggins, 1996).
Theorem 3.8 can be used without modification, provided we translate it to our setting.

We use the cumulant generating function Ay defined by
Ay(¢) =10gE [e?'] +1og P {Y < oo},
for ¢ € R. The Malthusian parameter
7= —sup{¢: Ay(¢) < —logd}
is the quantity of interest. Here, it turns out that, for all ¢,
Ay(¢) =1ogP{Z > —00,E < 0} +1ogE [e*F | Z > —00, E < 0].

Also, Ay(0) = logP{Z > —o0, E < o0} > —logd by assumption. Hence, v > 0
(which just means that the process is supercritical). We clearly have that sup, e™" <
oo which implies by Theorem 3.8 that log #7,, ~ ylogn on the surviving set. How-
ever, by (i) the process survives with probability 1. As a consequence, we have

log #T,, ~ vlogn a.s. and thus in probability. a

Remark. Lemma 4.9 can also be proved using properties of recursive equations in
distribution and the contraction method (see Rosler, 1992; Rachev and Riischendorf,

1995; Rosler and Riischendorf, 2001).
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Proof of Theorem 4.2. The proof is straightforward. By Theorem 4.1, H,, = clogn +
o(logn) in probability as n — oo. Also, by Lemma 4.9, s, = #7, ~ ~vlogn in

probability, as n — oo. Now,

il —c and logn — 1
logn logs, «

in probability, as n — oco. Therefore, the product converges as well. This can be
proved formally but tediously using the following characterization of convergence in
probability: every subsequence contains a further subsequence that converges almost

surely, or see Exercise 20.20 on p. 272 of Billingsley (1995). a






Chapter &

Weighted height of random trees

We introduce a general model model of weighted random trees based on the ideal trees of
Chapter 4. This models permits to obtain the height of pebbled tries, pebbled ternary search
tries, d-ary pyramids, and to study geometric properties of partitions generated by k-d trees.
The chapter is based on Broutin et al. (2007) and uses earlier ideas of Broutin and Devroye

(2006) and Broutin et al. (2006).

Down with bushes! Hail to the trees!

— Common Sense
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5.1 Introduction

The model is largely inspired by that of ideal trees presented in the previous chapter.
Again, every node is associated with two random vectors, Z, describing the lengths
of the edges to the children, and V), describing the size of the subtrees of the children.
However, for the model to be useful and directly applicable to a large number of
random tree models, we generalize earlier results in two ways. First, we introduce
the notion that only the limiting vectors (as the size of a subtree grows) are relevant.
This idea has been used by Broutin et al. (2006) in the unweighted settings. Second,
we allow the two random vectors Z and V to be dependent. We prove that under
some mild conditions on the random vectors, the height of a random tree of size n is
asymptotic to clogn in probability. We characterize ¢ uniquely as the only solution
of an (often implicit) equation involving large deviation rate functions, as in the case

of ideal trees of Chapter 4. -

5.2 A model of random trees

Weighted random trees can be constructed using a variety of methods, also called

embeddings. An embedding emphasizes an underlying structure consisting of inde-
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pendent random variables. The model that we propose describes one embedding. It
is of such generality that many important brands of random trees can be captured by

it. Examples follow at the end of this chapter.

DIFFERENT TYPES OF NODES. Consider a family {X™, m > 0} of random vectors,
where X™ = ((Z*, ET"),...,(Z}, ET)). Assume that for all m, and 1 < ¢ < d,
mexp(—E™) is almost surely integer-valued, and E* > 0. Assign independently a
copy of the sequence {X™,m > 0} to each one of the nodes of an infinite d-ary tree
Tw. The different elements of the sequence {X™, m > 0} allow to describe different
behavior for the nodes. In a sense, we have different types of nodes, one for each

natural integer.

BUILDING RANDOM TREE ON n ITEMS.  Given an integer n and the copies of
{X™, m > 0}, we build a sequence {(Dy, By),u € T} of weighted depths and birth
times of the nodes of T,,. Observe that although the dependence is not explicitly
written, {(Dy, By),u € T} depends on n. The construction is made easier by using
the auxiliary sequence {N,,u € T}, where N, is the cardinality of a node u, that is
the number of items in its subtree. Let n > 0 and consider ((Z}, E}), ..., (2}, EY)),
the copy of X™ at the root of Tw. The children u,,...,uq of the root are assigned
cardinalities V,, = nexp(—E7) € N, 1 < ¢ < d. Given the values of N,,, ..., N,,, the
sequences {N, : v € Too(u;)}, 1 < i < d, describing the trees rooted at u;, 1 <i<d
are recursively built in the same way, unless 1 < N,, < bor N,, = 0. Here b is the

number of items that a node can contain.

Using {N,,u € T}, and the copies of {X"‘.,m > 0}, we now assign random
variables (Z,, E.) to the edges of T,,. Let e be the i-th edge out of a node u € T,..
We set

Z.=2zZM and E,=EM.

Recall that 7(u) denotes the set of edges on the path from u up to the root in T,. As
for the case of ideal trees, we define the weighted depth of a node u, D, = Zeew(u) Z,
and the birth time of a node u, By = ¢ () Fe- This finishes the construction of
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{(Du, Bu),u € To} which fully describes our random weighted tree. Then we have

T, & {u€Tw:N,>0} = {u€Tw: B, <logn}.

We are interested in the weighted height H, = max{D, : u € T,} of the random
tree T,,. Again, it is sufficient to consider the trees for which the components of A™

are identically distributed. We have the following conditions:

e PERMUTATION INVARIANCE. For any integer n, and any permutation o, the
vector ((Z7): Ejyy), - o (Z3 ), Ega))) is distributed as ((Z7, ET), . . ., (23, E})).

g o

e CONVERGENCE. There exists a random vector X® such that the cumulant
generating functions of the wvectors A™ and X satisfy Ay — Axe <

everywhere asn — oo and 0 € D3, ...

¢ BOUNDED HEIGHT. There exists a deterministic function 1 such that for all n,
H, < ¢¥(n).

Remarks. (a) Observe that since 0 € D3, Ax — Axe implies that X — X in
distribution (see Billingsley, 1995, p. 390).
(b) We can slightly relax the constraint that the height be bounded. For instance,
subexponential tails for the height would suffice: for all M > 1, there exists a function
f with f(t)/t — oo as t — oo such that
sup e/ P {H, >t} < 1.
<M

Ordinary tries violate this condition, and will be treated separately in Chapter 6.

It is also clear from the construction that:
Lemma 5.1. Let T,, be a random tree as defined above. Then we have

e CONDITIONAL INDEPENDENCE. For any node u, the o-algebras generated by the
variables associated with edges in the subtrees rooted at the children uy, ..., uq

are independent, conditioned on the sizes Ny, ..., Ny,.
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e SIZE-DEPENDENT DISTRIBUTION. Conditioning on N, = k, the subtree rooted

at u, T,(u), is distributed as Tk.

As in the case of ideal trees of Chapter 4, the height may be characterized using
large deviation functions. Actually, it turns out that under these constraints, the
heights of T, and an ideal tree built using the vector X*° are asymptotically compa-
rable in probability. We first recall the assumptions for the model of ideal tree. Let
A be the cumulant generating function associated with a typical (uniformly random)

component of X = (Z*, E*) of X’*°. Then, we require that
(i) P{Fi:2* > —00,EX <0} =1.

(i) P{Z°® > —00, E® < 0;3} > 1/d.

(iii) 0 € 3.

(iv) E[ 2% | Z%° > —00, E® < 00] > 0.

(vy E[E]| Z®° > —00, E® < 0] > 0.

See Chapter 4 for more information about the conditions above. The main result of
this chapter, and indeed this thesis, is the following theorem. Let A be the generating

function of the cumulants of (Z*°, E*°), and let A* be its convex dual (see Chapter 2).

Theorem 5.1. Let T, be the random tree defined above and let H, be its weighted
height. Suppose that (i) to (v), together with the above conditions hold for X*°. Let
c = sup{a/p : A*(e,p) < logd}. Then H, = clogn + o(logn) in probability, as

n — O0.

The heights of many known trees fall within the scope of Theorem 5.1. These
include binary search trees (Devroye, 1986), bounded degree increasing trees (Berg-
eron et al., 1992; Broutin et al., 2006), random recursive trees (Devroye, 1987; Pittel,
1994), plane-oriented trees (Pittel, 1994), scale-free trees (Pittel, 1994; Barabasi and
Albert, 1999) pyramids (Mahmoud, 1994; Biggins and Grey, 1997), and most models
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captured by the less general result of Broutin and Devroye (2006). Many applications

are treated in section 5.7.

5.3 Relying on ideal trees

In the proof of Theorem 5.1 we approximate depths in random trees by those in a suit-
able ideal tree. We now introduce the following coupling. By assumption, ™ — &'
in distribution as n — oo, hénce by Skorohod’s theorem (see, e.g., Billingsley, 1995),
we can find a coupling for which the convergence is almost sure. In the following, we
let X™ be the copies of the random variables such that X" — X*° almost surely. If
we use copies of this coupled sequence {X™, m > 0} to build the random trees, we
obtain a coupled sequence {T,,,n > 0}. Since the convergence of X™ to X is almost
sure, each node has a copy of X’* as well. These copies, in turn, define a proper ideal
tree with split vector X*. This latter tree is called the ideal tree associated with the

coupled sequence {T,,n > 0}.

Lemma 5.2. Consider the coupled sequence of random trees {T,,,n > 0}, and the
associated ideal tree. Let ¢ be a fired positive integer. Let v1,vs, ...,V be the set of

k = d* nodes in generation € of Ts,. Then, as n — 00,

(D1, Buy) Dy, Buy) -, (D, Bu)) = (D3, B3Y), (Dgy, By, - (Diy, BiY))

vy v? V!

a.s., where Dy? and B? are the wetghted depth and birth time of v; in an ideal tree

built from the limit vector X'>°.

Proof. Since X™ — X as., each node has an independent copy of the limit as
well. These limit random variables are used to define {(D2°, B®),u € T}, which

characterizes fully a coupled ideal tree. Assume for now that, for all u € T,

(D, B.) —— (D, B%) almost surely. (5.1)

n—oo

This implies that

((D:m le;l), sy (D;k’

B,.)) — (D2, BY),..., (D, BY))

v1? Vi) v
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almost surely, as n — oo. Therefore, to prove the lemma, it suffices to show that

(5.1) holds for all u € Ty,

Let A be a set of probability 1 on which, for all u, X} — A*°. We prove by
induction on the (unweighted) depth that

Vwe A (Dyw), B,(w)) = (DF(w), BY (w))-

For the sake of simplicity, we drop the w and simply write (D., B.,) and (D, BY),
remembering that, in fact, these values are deterministic and taken at the point w.
If u is the root, then (D., B,) = (0,0) = (D, B®). Otherwise, u is the i-th child
of some node v. The induction hypothesis tells us that (D., B.) — (D, B°) as
n — 00. Let the components of X be (Z{°, E*), 1 < i < d. Assume first that
B = oo, then B® = B® + E{°(v) = oo. As B, > B,, it follows that B, — BJ°.
- If BP® < oo, we have N, = nexp(—B]) ~ nexp(—B®) — o0 as n — o0. As a

consequence,

u

D, = D.+2zMu) — D®+ Z*(v) = D®, and

B, = B,+E"(v) — B® + E®(v) = B>.

u

Therefore, (D, B,) — (D, BX), as n — oo, which completes the proof. o

Important remark. Proving Theorem 5.1 amounts to showing that a property
holds in probability. As a consequence, we can use the coupled sequence of trees we
have just described. In the remaining of the chapter, the trees we consider are always
taken from this coupled sequence. In particular, there always exists a coupled ideal
tree to rely on, and it does make sense to condition on events happening on this ideal
tree to study random variables in T;,. We let Z*°, E*°, D>, and B*® be the variables
associated with the coupled ideal tree, so for a node u € T, the variables of interest

in the ideal tree are

D= Y Zz* ad BF= ) E.

e€n(u) een(u)
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5.4 The upper bound

Let A™ denote de cumulant generating function of a typical component (Z*, E™) of
X", Let % be the set of nodes k levels away from the root in T,. Let u; be the
left-most node in .%;. We introduce the event F} defined by

def

Fy ={Z > —0, E, < 00,Ve € m(u)}.

The upper bound is based on the Gartner—Ellis theorem (Theorem 2.4). The following
result proves that the conditions for its application hold, with the event Ajs being

N,> M.
Lemma 5.3. Let A\, u € R. For any § > 0, there exists M large enough that

1 :
sup {ElogE[ 1[Fi, Ny, > M| - exp (ADy, + pBy,) | Ny = n]} < A(A p) +6.
n,k

Proof. In order to improve the readability of the equations, and for the course of this
proof only, let us reindex the random vectors (Z., E,) on the left-most path to T,
as {(Z;, E;),i > 1}, where the indices increase with the distance from the root. In
the same spirit, for ¢ > 0, write N;, D; and B; for N,,, D,, and B,,, respectively. If
n < M, we clearly have 1[Ny > M] = 0 and the result holds. With our new notations,
Dy = 2?:1 Z; and By = Zle E;, so proving the results reduces to bounding

c o E [ 1[F, Ny > M]- PH#Be | N ]
= E [ 1[Fk’Nk > M] . eEf:] AZi+pE;

Nol.
The random vectors (Z;, E;) are not independent. However, by conditioning on Ny,
C=E[E|1[F, Ny > M] - eZt20tuB: | M| ‘ No].

Let F? be the event that {Z;,E; € R,2 < i < k}. Then, given Ny and Nj, the
random variables 1[F2, Ny > M]exp(3.%_, AZ; + uE;) and 1[F]exp(AZ; + uE,) are

independent. Hence

C<E|E [ 1[F2 Ny > M] - oLt AZi+uE; I Nl] E [1[F} - eh+ub | N | Mo,

“v*

I
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where we used 1[N; > M] < 1 in the second factor. The first factor can be bounded
by
I< sup E [ 1[F]?,Nk > M] . eZLzz\ZH#tEi ' N, = m] ,

m>M
which is independent of N; and Ny. Let § > 0 and let M be large enough that for all
m > M, A™(\, pu) < A\ p)+ 6. Then

A < supE [ 1[F%, N, > M| - X iza AZi+uEs ' N, = m] . ghAm)+o

m>M

= sup E [ 1[Fy-1, Nk-1 > M] - eZint MtE:

m>M

Ny = m] . eAAWFS
An easy induction then shows that

sup E [ 1{F,, Ny > M] - A Di+uBi I No=n] < RAOR)+HRS
n>M

Since d was arbitray, the proof is complete. a

The proof of the upper bound of Theorem 5.1 is similar to that of Theorem 4.1 in
its structure. Let € > 0. Let ¢ = ¢ + ¢, where ¢ = sup{a/p : A*(a, p) < logd} is the

constant defined in the statement of Theorem 5.1. By definition,
P{H,>dlogn} = P{IveT,:D,>clogn}.
Recall that % denotes the set of nodes at level k in T,,. The union bound yields

P{H,>dlogn} < ZP{BUG,%:Dv>c’logn,v€Tn}.
k>0
Using a second union bound over the nodes in each level,
P{H,>clogn} < de -P{D,, > dlogn,u;r € T,}. (5.2)
: k>0

In order to further bound (5.2), we first restrict our attention to the case N,, > M.

We have

P{D,, >clogn,N, > M} < P{(Dy,Bu.)€ET, N, >M},
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where T' = {(z,y) € R? : z > cy}. By Lemma 5.3, and since 0 € D3, the upper
bound of Gértner-Ellis theorem (Theorem 2.4) holds: for any v > 0, there exists M,
such that for all M > My,

. 1 , 1 N

limsup =~ log P {D,, > c'logn,N,, > M} < —mins—, inf A*(z,y)—7,.

k—00 k Y (z.y)er

By Lemma 4.4, there exists § > 0 such that inf{A*(z,y) : (z,y) € '} > logd + 8.
Then, choosing v < /2, we have

> d* P {Dy, >clogn, N, > M} <D db-e MO8 < 0. eKP2 - (53)

k>K k>K

for all K > K large enough and some constant C; = C1(K}),

As in the proof of Theorem 4.1, we treat the values of k¥ < K using Markov’s
inequality. Let A > 0, such that (A,0) € D§. There exists C; > 0 and M, > 0 such
that sup{A™(\,0) : n > Mz} < Cy < 00. Then, for this value of A, by Lemma 5.3,

P {Duk 2 d log n, Nuk > MQ} < ekcz_)‘c'k’gn_

Therefore, by the union bound,

KdKeKO

ZP{HUE,%:D,,ZC’Iogn,NvZMz}S 7

k<K

(5.4)

Let now M3 = max{M;, M,}. We have obtained bounds on the terms of (5.3) for
every k when N, > Mj. It remains to deal with the nodes at the bottom of the tree
for which N < Mj3. Recall that by assumption, P {H, > ¢(n)} = 0.

P{H, > (c+2€)logn} < P{3veT,:D,>(c+2€)logn— (M), N, > Ms}
< P{IweT,:D,>(c+e)logn,N, > Ms}.

Hence, putting (5.3) and (5.4) together,

KdKeKC
P {H, > (c+2¢)logn} < ——T—V\—i'— + Cye K82,

As A’ > 0, this can be made as small as we want by first choosing K and next letting

n go to infinity. Since ¢ was arbitrary, this finishes the proof of the upper bound.
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5.5 The lower bound

The aim of this section is to build a surviving Galton—Watson process that ensures
that nodes with large weighted depth exist in T;, with probability 1 — o(1). We split
the construction of this process into stages. The proof is similar to that for ideal trees
presented in Chapter 4. We rely on Lemma 5.2 and the proof of Theorem 4.1 to show
that deep nodes do occur with positive probability, before we boost the probability

of their existence to 1 — o(1).

SKIMMING THE TREE. Our aim here is to find nodes of sufficiently large weighted
depth in 7;,. Recall that we use the coupled sequence of trees built in section 5.3.
We start by finding nodes with large weighted depth in the ideal tree, and then prove

that the corresponding nodes in T,, are also sufficiently deep.

Lemma 5.4. Let T, be a random tree as described in Section 5.2. Let ¢ = sup{a/p:

A*(a, p) < logd}. For all € > 0, there exists ng such that

inf P{3ueT,:D,>(c—¢)logn}>0.

n>ng

Proof. Let ¢ > 0. By Lemma 4.4, there exists o and p such that a/p = ¢ and
I(a, p) < logd, for some ¢’ such that ¢ —€/2 < ¢ < c. Let @ and p be fixed. Let £ be
an arbitrary positive integer to be chosen later. A node v € T, is called ideally good

if either it is the root, or v lies ¢ levels below an ideally good node u and we have
DY > D +4fa and E° < EX +{p.

The set of ideally good nodes forms a Galton—Watson tree. Let Y be the size of
the progeny of u in this Galton-Watson process. By linearity of expectation, writing
7(u,v) for the set of edges on the unique path from u to v in the ideal tree, with v

lying ¢ levels below u,
EY® = d' - P{D®—- D> >al,EX — E® < pl}

= d-PS > ZP>al, Y, E<pt

e€m{u,v) e€m(u,v)
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By Cramér’s theorem (Theorem 2.2), and because of our choice for a and p, we have

EY®™ = dl? . e—-I(a,p)H—a(l) — ellogd—H(a,p)-{-o(ﬂ) 0.
£—00

Thus, there exists £ large enough such that EY* > 1. This choice makes the process
supercritical. Let £ now be fixed.

Consider now the coupled random trees T,,, with size-dependent vectors. A node
v € Ty is called good if either it is the root, or it lies £ levels below a good node u
and we have

E,<E,+p¢l and D,>D,+al.

The set of good nodes is a branching process. However, the progeny distribution Y,
of a node u now depends on u and the process is not a Galton—-Watson process. We

deal with this minor issue using Lemma 3.2. By Lemma 5.2, we have

liminf P{Y, >t| N,=n} > P{Y*>t},

for all 0 < t < d%. Since EY™ > 1, there exists M large enough that for all n > M,

1-EY®

P{Y.2t| No=n} 2 P{Y®21}+-—

Now, by Lemma 3.2, there exists a random variable Y’ such that, for all ¢,

P{Y’zt}=max<P{Y°°zt}+%,o).

Further, there exist coupled copies of Y’, {Y,,u € T} such that have Y, <Y, if

N, > M. The Galton—-Watson process with progeny distribution Y’ is supercritical:

. dt
E[Y] = Y P{Y'>t}
t=1
d’ 1 - Ey®
> P{Y® >t} 4+ ——
2 D (pozn i)
_ 00
_ Ey«q%
14+ EY®™
= T S

2
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Therefore, it survives with probability 1 —- ¢ > 0. Note that the garantee Y, < Y,
only occurs if N, > M. In particular, it is not true that every node u in the coupled

Galton—Watson process with progeny distribution Y’ is also a good node.

However, in the case of survival, either (a) there is an infinite path of good nodes u
with N, > M, or (b) there is some good node w with N,, < M. Now, if (a) happens,

for every integer k, there exists a node v such that D, > afk and N, > M. So in

logn
ki = |——
' { pl J ’
D, > clogn—af, and v € T,, since N, > M > 1. In case (b), consider the shallowest

particular, with

good node w such that N,, < M. Then, w is part of some generation k, of the process
(at level kof in T,,). Since w is good, M > N,, > nexp(—pk2f), and hence,

S logn — log M .

Z =

It follows that D, > ¢'logn — ¢’ log M. As a consequence, in both cases, for n large

ke

enough, there exists a node u € T,, with D, > (¢ — €)logn, and this happens with
probability at least 1 — ¢ > 0. a

It remains to show that the nodes with large weighted depth found in the previous
section do appear in T,, with probability 1 — o(1) as n — oco. Again, we intend to use
the standard boosting technique: we run multiple copies of the branching process to
increase the chance that one survives. Instead of using the root as a first individual,
we want to use some of the d* nodes at level ¢ as starting individuals of independent
processes. However, as for the case of ideal trees, not all such nodes are suitable as

starting individuals.

THE NICE PORTION OF THE TREE. Since P{Z = —o0, F = oo} may be posi-
tive, we cannot expect in general that all d® nodes at level ¢ are good starting
individuals. Indeed, some may not even be fair. In spite of this fact, we claim
that under the constraints (i) and (ii), i.e., P{3i: Z° > —o00, E® < 00} = 1 and
P{Z* > —00, E® < 00} > 1/d, there are enough of them. In order to prove this

claim, we use a second branching process defined on the top t levels.
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We look first at the ideal tree. Let v € T, be called ideally nice if either it is the

root, or it is linked to an ideally nice node by an edge e and we have
ZF¥>a and EX <b.

Let R{® be the number of ideally nice nodes in %, the set of nodes ¢ levels away
from the root in Ti,. Then {R{°,¢ > 0} is a Galton-Watson process. By hypoth-
esis (ii), P {Z%* > —o00, E® < 00} > 1/d, hence there exist § > 0, ag and by such
that for all @ < ap and b > by, P{Z®° > a, E® < b} > 1/d + 6. Now, by assump-
tion (i), P{3i: Z° > —00, E° < o0} = 1, and thus P {3 : Z° > a0, E° < b} — 1,
as a —» —oo and b — oo. By Theorem 3.5, the process survives with probabil-
ity at least 1 — ¢/, and ¢ = ¢/(a,b) can be made as small as we want by choice
of a and b. If R® > 0 for all ¢ > 0, then by Theorem 3.2 R® — oo as t — oo
with probability one. As a consequence, for any integer r, there exists o such that

P{RP <r| R >0,vt>0} <1/r.

Let us now go back to the non-ideal random trees, with size-dependent distribu-
tions. In the random tree T}, a node at level ¢ is called nice if D, > at and B, < bt.

By Lemma 5.2, the number R;, of nice nodes u at level ¢, satisfies, for n large enough,
P{Ry, <r| R >0,Vt >0} <2/r. (5.5)

Observe in particular that the conditioning is meaningful since we consider the coupled
sequence of trees. Equation (5.5) gives us the handle we need on the number of nodes

we can used as starting individual in the boosting step.

BOOSTING THE SURVIVAL PROBABILITY. Let € > 0. Let {Too(v;),1 < ¢ < Ry} be
the family of subtrees of Tt rooted at the nice nodes {v;,1 < ¢ < Ry, }. The processes
of good nodes described in the proof of Lemma 5.4 evolve independently in every
Teo(v;). Furthermore, by Lemma 5.4, there is ng such that for all 1 < ¢ < R,, and for

all m > ng,

P {3u € Tu(v:) : Du - Dy, > (¢ 5)togm, By By <logm} 21-g. (5:0)

i =
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By construction, we have D,, > aty and B,;, < btg, for 1 < i < Ry,. Let n be large
enough, and let m be such that logm = logn — bty. If one can find a node u in Too (v;)

as described in (5.6), then
€ €
> — —_ = - > _
D, > aty (c 2) tob + (c, 2) logn > (c—¢€)logn,

for n large enough. Such a node u is called a deep node. Moreover, B, < logm+B,, <

logn sou € T,, and H, > D, > (c — ¢€) logn.

If no deep node exists, then one of the following must occur: either {R;,¢t > 0}
dies, or it survives but R, < r, or we cannot find a deep node in any of the Ry, > r

independent trees To,(v;). As a consequence, for n large enough,

P{H,<(c—¢€)logn} < P{R, <r}+P{H,<(c—€)logn| Ry, 2T}
< P{EtZORt=0}+P{1§RtO<7”}+qT,

by independence of Teo(v;), 1 < i < Ry,. It follows that
' 2 ™
P{H,<(c—¢€)logn} <gq +;+q .

This can be made as small as we want by choice of ¢’ = ¢’(a,b) and r. This completes

the proof of the lower bound.

5.6 The height of trees of effective size n

In our model of random tree, we have allowed Z, = —oo with positive probability.
When this happens for some edge e, then we have D, = —oo for all u € Ty, such
that e € m(u). The effect of Z, = —o0 is to cut a subtree, exactly as E, = oo does.
In some applications, one is interested in the height of a random tree in terms of its

effective size #7T,, i.e., the number of nodes that are significant for the height:
#T, = |{u € T, : D, > —c0}|.

The only difference with the height H,, consists in a scaling factor.
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Theorem 5.2. Let T,, be a random tree as described in Section 5.2, of (random) effec-
tive size s, = #Tn. Then, its height satisfies Hn, = £ log snto(log s,,) in probability, as
n — oo, where ¢ = sup{a/p : A*(a, p) < logd} and v = —sup{¢d : Ay(¢) < —logd},
withY = E + o0 - 1[Z = —o0)].

Theorem 5.2 follows easily from the the following lemma about the effective size

of T;,. This is a generalization of Lemma 4.9 of the previous chapter.

Lemma 5.5. Let T,, be a random tree as defined in Section 5.2. Let (Z,E) be the
limit vector. Then, as n — oo, log#T,, ~ vlogn in probability, where v = —sup{¢ :

Ay(¢) < —logd}.

Proof. The modified size-dependent time random variables are now {Y™,m > 0}
where Y™ = E™ + 00 - 1[Z™ = —o0]. Upper and lower bounds on #7, may be
obtained by respectively lower, and upper bounding Y™ so as to have i.i.d. variables,
and then using Lemma 4.9. We now describe the upper bound, and omit the proof

of the lower bound since it follows the same lines. We have, for all ¢ € R,

Aym(@) = logP{Z™ > —00, E™ < 00} + A™(0, ¢)
— logP{Z > ~0, E < 00} + A(0, ¢),

asm — 00. Since 0 € D3, Y™ — Y in distribution (see Billingsley, 1995, p. 390). We
use a coupling argument. Let F,;, and F' be the distribution functions of Y™ and Y,
respectively. Let Gy (z) = sup{Fm(z), m > M}. The function Gy, is the distribution
function of a proper random-variable W. By the dominated convergence theorem, we
have Aw(y +¢€) — A(y+¢€) < logd. As a consequence, there exists M large enough
that Aw(y+€) <logd.

Now, for m > M, Y™ stochastically dominates Wjs. Let U be a [0, 1]-uniform
random variable. Let G;,,l be the inverse of Gy, i.e., the function such that for all z €
R, G3f o Gy(z) = z. By the inverse transform technique (Grimmett and Stirzaker,
2001), for each node u € Ty, F(Y,) is a [0, 1]-random variable, and G3; o F(Y,) <Y,
is distributed as W. Let T'M be the subtree of T}, consisting of nodes u with N, > M.
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There are at most #7 . d hanging subtrees with N, < M, each one of effective size

at most M. It follows that #T, < #TM(1 + dM) and

M
lim sup log #7T, < limsup log #T," + log(1 + dM) <

7+ €,
n—oo  lOgN n—oo logn

where the last inequalities follows from the choice of M and Lemma 4.9. Since € was

arbitrary, the proof is complete. a

5.7 Applications

We now present some applications of Theorem 5.1. Our goal is to emphasize the wide
range of problems that may be handled, even if they apparently are very far from

heights of random trees.

5.7.1 Variations on binary search trees

Binary search trees probably provide the easiest example of application for Theo-
rem 5.1. Recall that binary search trees (Knuth, 1973c) are search trees built on a
set of keys {1,2,...,n}. Given a permutation {oy,0,...,0,} of the keys, the first
element o, is stored at the root of a binary tree. The set of keys is then partitioned
according to their values into {o; : 0; < 01} and {o; : 0; > 01}. Both subsets are

then treated recursively to form the left and right subtrees of the root, respectively.

If the permutation is taken uniformly at random from the set of permutations
of {1,...,n}, the tree is called a random binary search tree. This model is of great
interest, particularly because of its ubiquity in computer science as, e.g., the tree
emerging from the branching structure of quicksort (Hoare, 1962). In this model of
randomness, 0 is an element of {1,...,n} taken uniformly at random and hence the
sizes of the left and right subtrees are distributed as Bin(n—1, U) and Bin(n—1,1-U),
respectively, where U is a [0, 1]-uniform random variable. More precisely, writing

(N1, Ny) for a vector that is distributed as a multinomial(n — 1;U, 1 — U), the vector
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(@) () o

One can show that the conditions required to apply Theorem 5.1, are satisfied. In

of interest is

3

X

particular:

Lemma 5.6. Let X" be defined by (5.7). Let X = ((1,—1logU), (1, —log(1 — U))).

Then, Axn — Ax everywhere.
Proof. The weights are irrelevant here, and we consider
(ET, E3) = (logn — log N1, log n — log N»)

only. Observe that (Ny, Np) is distributed as (|nU], {n(1 — U)]), where U is a [0, 1]-

uniform random variable. For all 1, 2 € R,

(o)™ (lntis U)J)"“] .
We have, for all uy, ug € R

()™ (=AY . pyen

M(pr, p2) € E [e1Brtis] = B

n n n—oo

almost surely. Therefore, if 43 < 1 and ug < 1, by the bounded convergence theorem,
Mn(,ul,ug) —E [U—#l . (1 - U)_”z] .

If, on the other hand, either y; > 1 or s > 1, then by Fatou’s Lemma (see, e.g.,
Billingsley, 1995),

liminf My (py, ) 2 E [U™ - (1 = U)™] = o0.
Thus, we have convergence everywhere in RU {400}, which completes the proof. O

Remark. In the following, we will not prove the convergence of the cumulant gener-

ating functions any more, and only refer to Lemma, 5.6.

Hence, for this model, £ = —logU and Z = 1. The random variable E is then
distributed as an exponential with mean 1 and Theorem 5.1 immediately implies the

following theorem of Devroye (1986).
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Theorem 5.3 (Devroye 1986). Let T,, be a random binary search tree. Let H, be its
height. Then H, ~ clogn, in probability as n — oo, where ¢ =1/p, = 4.311... and

po=1nf{p: p—1—logp < log2}.

The value 4.311...logn is fairly large compared to |log, n|, the height of a com-
plete binary tree with n nodes. As this value répresents the worst case search time,
various methods have been used to shrink it and hence obtain more efficient search
trees. Some use splits that are more balanced towards (1/2,1/2). One way to achieve
more balanced splits is to use the median of 2k +1 keys as a pivot (Van Emden, 1970).
When £ is fixed, the split at every node is still given by (5.7) but now (Ny, Np) is
distributed as a multinomial (n — 1; Uk, 1 — Ug) and Uy, is a beta(k + 1,k + 1) random
variable. Again, we see that for X = ((1, ~logUy), (1, —log(1 — Uy))), Axn — Ax

everywhere as n — oco. This suffices for the hypothesis of Theorem 5.1 to hold.

Theorem 5.4 (Devroye 1993). Let T,, be a binary search tree built with the medians
of 2k+1 keys as pivots. Then the height H, of T, satisfies H, ~ cilogn in probability

as n — 0o, where ci is the unique solution of

2k+1

S s
—+ Z log (1 — —,) =log 2,
Ck ke ¢
and s is implicitly defined by
2k+1
1 Z 1
G Gt

If k£ is fixed, we can make ¢ close to 1/log2. However, for each k we have ¢, >
1/log 2. One can improve this by taking values of k¥ that depend on the number of keys
stored in a subtree. If kK — oo as n — oo, we see that X” — X = ((1,log 2), (1,log 2))
a.s. as n — oo. Theorem 5.1 then implies that H, ~ log, n, in probability as n — oc.
This strengthens the theorem of Martinez and Roura (2001) which asserts that the

average depth, in this case, is asymptotic to log, n (see also Van Emden, 1970).
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5.7.2 Random recursive trees

The random recursive tree is one of the simplest random trees (Meir and Moon, 1978).
One way to describe its construction is by successive insertions of nodes. A recursive
tree of size one consists of a single node v;. At each further step 7 a new vertex v; is
added to the tree and tied to a uniformly random node from {vy,vs,...,v;—1}. This
is sometimes called a Yule process. Various functionals of this tree have been studied
in the literature (Smythe and Mahmoud, 1995). We are particularly interested in its
height H,, when n goes to infinity.

Theorem 5.5 (Devroye 1987, Pittel 1994). The height H,, of a random recursive tree

with n nodes is asymptotic to elogn in probability as n goes to infinity.

Random recursive trees have unbounded degree, and it seems that Theorem 5.1
will be of little help. However, one can look at the sequence of depths in a random
recursive tree as weighted depths in a related binary tree (Figure 5.1). Recall that a
random binary search tree can be built by choosing, at each step, an external node
uniformly at random, and replacing it with an internal one. Therefore, building an
auxiliary binary search tree in which the external nodes represent the nodes of our

random recursive tree solves the issue of the uniform choice.

This leads to a construction that maps the nodes of a rooted tree to the exter-
nal nodes of a binary tree. Consider a rooted tree 7,, on n vertices. Let My =
{d1,ds,...,d,} be a multiset of numbers that represent the distances from the nodes
to the root in 7;,. To make the mapping more visual, we also describe the construction
of a weighted binary tree T,, on n external vertices together with M, the sequence

of distances in 7, (see Figure 5.1).

e 7; consists of a single node and M; = {0}. Appending a node yields a tree on
two nodes and My = {0, 1}. Let T3 be the binary tree with two external nodes.
Let e and f be its edges. Label them with 2z, = 1 and zy = 0. Consider the
labels as distances. Then 75 has distance sequence M, = {0,1} = M,.
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e Suppose now that we are given 7,, and the corresponding 7,,. They match the
distance sequence M,, = {d;,ds,...,d,}. Appending v to a node u means that
we define M3 = M, U{d + 1}, where d € M is the distance from u to the
root in both 7, and T,,. In terms of trees, we replace the external node v in T,
by an internal node z. There are two new external nodes associated with x, and
the edges e and f out of z are labeled z, = 1 and zy = 0. We may as well label
the new external vertices v (such that e = zv) and v (with f = zu). Then we
clearly have M,4+; = M, U {d + 1}, and the sequences M,,;; and M, match,

as required.

. v
‘ \
\ '
' ‘
' \
. 1y
. v

Figure 5.1: A rooted tree and the corresponding binary tree. The white nodes have been
added for the sake of the construction. Solid lines correspond to edges with Z = 1 and
dashed ones to those with Z = 0. Therefore, 1 is equivalent to the root (as the root distance
is zero), 2 to the first child of the root (distance one), and so on.

Replacing deterministic labels by random variables makes this model fit for our
framework. For the same reason as in binary search trees, F = exponential(1). Since
on any path 7 from the root in T, each edge e is as likely to be labeled with 0 as

with 1, we have Z = Bernoulli(1/2).

From Theorem 5.1, we have H, ~ clogn, where ¢ = sup {a/p : A*(a, p) < log2}.
Here (Dembo and Zeitouni, 1998), we have

A(a,p) =aloga+ (1 — a)log(l —a) +log2+ p—1 —logp,
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which yields, since the optimum is clearly reached for equality,

c= sup{% caloga+(1—a)log(l—a)+p—logp = 1}. (5.8)

The slope p(a) of the curve in (5.8) satisfies

dp loga —log(l—a)
da 1/p—1

(5.9)

Recalling the geometric interpretation shows that the optimal « verifies

dp
az'a—p.

Straightforward manipulations using (5.9) give aloga — alog(l —a) = 1 — p. Taking
the value for 1—p in the equation (5.8) finally gives the desired result, that is, a/p = e.

Figure 5.2: A portion of the level set of interest for random recursive trees U(log2) =
{(p,a) :aloga+ (1 —a)log(l ~a)+p—logp < 1}.

5.7.3 Random lopsided trees

In information theory, researchers are interested in building codes that are optimal
with respect to various measures. Prefix-free codes are particularly interesting because
they can be decoded directly by following a path in a tree, and output a character

corresponding to the codeword when reaching a leaf. In such trees, a node u represents
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a prefix p, and its children the words that can be built by appending a symbol to
p. In digital applications, characters are usually encoded with bits and therefore,
processing each symbol has the same cost. We can think of costs by assigning lengths
to the edges in the tree. In this case, they would all have equal lengths. But for some
codes the length of codewords is variable. These are called Varn codes (Varn, 1971).
Such encodings lead to trees whose edges have non-equal lengths. The corresponding

trees are called lopsided (see Kapoor and Reingold, 1989; Choi and Golin, 2001).

Let z; < 29 < -+ < z4.be fixed positive real numbers. Then a tree is said to
be lopsided if it is d-ary rooted, and for each node, the edge to the i-th child has
length z;. We now define a model of random lopsided trees, and show that their
heights follow from Theorem 5.1. As for random recursive trees, we use a sequential
process: start with a tree 7} on single internal node. To build a random tree T, ;
with n + 1 (internal) nodes, take an instance of T,,, pick an external node uniformly
at random, and replace it with an internal node, exactly as we did in section 5.7.2.
The weights of the d child-edges of that internal node are 2y, 2,...,24. We assume
that the {z;,1 < i < d} are not all equal. In this model, F is exponential and Z = z;,

where [ is uniform on {1,...,d}.

Theorem 5.6. The height H,, of a random d-ary lopsided tree with n nodes built with
the cost sequence {21, 2s, . . ., z4} satifies
H, = ﬁ -logn + o(logn) in probability,

as n — 00, where

¢ = sup {% : at(a) + log a — log (Z zietz‘) +p—1-logp < 0} , (5.10)

and t(a) is uniquely defined by

d
D (= z)e™ =0. (5.11)
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Remark. Theorem 5.6 does not formally apply to the case of equal z;’s. However, it

is easy to verify that when 2y = 20 = --- = 23 = 1, we are led to

H, ~ logn in probability,

c
d—1
asn — 0o, where c = 1/p, and p is the unique solution greater than 1 of p—1—logp =

logd. In particular, for d = 1, ¢ = 4.311. .. since the tree is then a binary search tree.

Our random lopsided trees may also be used when we replace a random node
by a fixed deterministic tree. The growing process is as follows. Start with a grey
node. Each step sees the replacement of uniformly selected random grey node by a
deterministic tree consisting of k nodes (see, e.g., Figure 5.3). In this replacement
tree, all leaves, as well as none, some or all of the internal nodes are painted grey (if
the root is grey, then the node just replaced may be selected again), for a total of £ < k
grey nodes. If we are interested in standard distances to the root, and in the classical
definition of the height, then we can imagine another tree in which the replaced node
receives a number £ of children, with edge weights equal to the distances to the root
in the replacement tree. The original tree has sizes given by 1+ s(k— 1) for s integer,
and the new imagined tree has sizes given by 1 + s¢ for s integer: they are linearly
related. The weighted height in the new tree corresponds to the standard height in

the original tree. We work out two examples.

Example. In Figure 5.3, we replace a randomly picked grey node by a subtree with
five nodes, two of which two grey nodes, at distances 1 and 3 from their roots. This
corresponds to a random lopsided tree (modulo a proportionality constant in the size
of the tree) with weights (1,3), and fanout d = 2. The slope of the tangent going
through the origin is 9.3389..., implying H, ~ 9.3389...logn in probability, as

n — Q.

Example. In Figure 5.4, we have the same replacement, but paint all five nodes grey.
This yields the random lopsided tree with fanout d = 5 and cost vector (0,1, 1,2, 3).
The slope of the optimal tangent is 20.966 . .., which gives the height after renormal-

ization: H, ~ 5.241...logn in probability, as n — oo.
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Figure 5.3: The pattern that replaces a grey node and the portion of interest of ¥(log 2)

together with the optimal tangent when the set of costs is {1,3}. The nodes are labeled with
their depth.

Figure 5.4: With the set of costs {0,1,1,2,3}, one can think of a uniform grey node being
replaced by the tree pattern on the left.

Proof of Theorem 5.6. In this model, external nodes are picked uniformly at random
and F is expoential. Since on a path to the root, each edge is equally likely to have

any cost in {z1,...,24}, and by independence of Z and E,

A\ p) = logE [e*+#E] = logZet"" —logd + log E [e*F] .



92 CHAPTER 5. WEIGHTED HEIGHT OF RANDOM TREES

Using the definition for A*, we see that we see that the optimal value is obtained for

_ D ciet™

B et

which is equivalent to (5.11). The value t(«) is unique as long as at least two of the

(67

z;’s are distinct. The constraint (5.10) follows immediately from Theorem 5.1. O

5.7.4 Plane oriented, linear recursive and scale-free trees

Plane oriented trees (or plane recursive trees or PORTSs) are an ordered version of
recursive trees due to Szymarnski (1987). They may be obtained using successive
insertions as well. The difference lies in that a parent is no longer chosen uniformly,
but rather with probability proportional to one plus its outdegree. This is also the
preferential attachment model used by Barabési and Albert (1999) to represent the

web, and a particular case of the more general recursive trees of Pittel (1994).

Plane oriented trees (PORTS) are rooted trees in which the children of every node
are oriented. A random PORT with n nodes is defined as a tree taken uniformly at
random from the set of (n — 1)! plane oriented trees with n nodes. The depths of
nodes in random PORTSs have been studied by Mahmoud (1992a) and the height by
Pittel (1994). An interesting property of PORTS is their recursive description: one
can view a random PORT with n nodes as a random PORT with n — 1 nodes, to
which we add a node uniformly at random in the set of slots available. Nodes have
labels 1 through n in order of addition, and therefore, the labels are always increasing
on paths down from the root. The slots are the positions in the tree that lead to
different new trees. Because of the order, each node with k children has k + 1 slots

(external nodes) attached to it as described in Figure 5.5.

We may consider them as linear recursive trees, a more general model of Pittel
(1994), which has also been dealt with by Biggins and Grey (1997). For this kind
of tree, each node u has a weight w,, and when growing a random linear recursive

tree, a new node is added as a child to a node u picked at random with probability
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AN
7oL

B+1

Figure 5.5: A PORT with the slots represented by squares on the left and the tree pattern
on the right, representing the replacement of an external node. The labels on the edges are
the costs of crossing them.

proportional to w,. For linear recursive trees, we have w, = 1 + fdeg,, where deg,
denotes the number of children of u and G > 0 is called the parameter. We can obtain
the same distribution on trees by taking external nodes uniformly at random and with
a suitable number of external nodes for each vertex, at least when 3 is integer (see

below).

Assume that 3 is integer-valued. It is easily seen that when we pick a uniform
external node at depth d, and replace it by § + 2 new external nodes, 8+ 1 at depth
d and one at d + 1, then this may be seen as replacing a uniform external node by
the fixed tree pattern of Figure 5.5. The values of Z for the 3 + 2 child-edges of
a node consist of one 1 and (8 + 1) 0’s. Therefore, a typical Z is distributed like
Bernoulli(1/(5+2)). One may apply our result on random lopsided trees with fanout

B + 2 to find a new proof of Pittel’s theorem on the height of linear recursive trees.

Theorem 5.7 (Pittel 1994). Assume that 3 is integer-valued. The height H, of a

random linear recursive tree with parameter 3 and n nodes is such that

H, oc
logn n—eo B+1

in probability, as n — oo where

1-—
c=sup{%:aloga+(1— )Iog( >+p—1—logp O}

B+1
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The special case of random recursive trees is obtained for 3 = 0 and plane oriented

trees for 8 = 1 yielding an asymptotic height of 1.7956. . .logn.

5.7.5 Intersection of random trees

We can also apply Theorem 5.1 to the intersection of random trees. One can take k
independent copies of a certain kind of random d-ary tree on n nodes and ask about
the height of the intersection (a node is in the intersection if it is present in all k
trees). This model was treated by Baeza-Yates et al. (1992) for random binary search
trees in the context of tree matching properties arising in the tree shuffle algorithm
(Choppy et al., 1989). The authors were in particular interested in the size of the
intersection of two random binary search trees. We will consider the intersection of

k binary search trees, and of k plane oriented trees.

Let Ci be a collection of k£ independent copies of identically distributed random
trees with n nodes, and let T} ,, be their intersection. Recall that the shape of the ran-
dom tree in our framework is related to the random variables F, in all k£ copies. The
random variables E of Theorem 5.1 are now k-vectors of independent random vari-
ables. From now on, we write E for a coordinate of this vector, and this corresponds
to the random variable describing one of the random trees. By independence of the k
trees in Cy,, the rate function that corresponds to the presence of a node in Ty, 1 is kA%
We obtain that the rate function to be considered is A*(a, p) = A%(e) + k - A%(p),
where E and Z are the random variables describing one single random tree. As an

example, this yields the following result.

Proposition 5.1. The height Hy ,, of the intersection Ty, of k independent copies of

(a) random binary search trees is asymptotically cpsr(k)logn, in probability, where
1 log 2
cpst(k) = sup {; ip—1—logp < —i——} ;

(b) plane oriented trees is asymptotically (cport(k)/2) logn, where

cporr(k) = sup{% raloga+ (1 —a)log (1—;—2> +k(p—1-logp) < 0}.
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Remark: Note that T}, is likely to contain fewer than n nodes, and the height is

not given as a function of the size of T .

Table 5.1 gives numerical values of ¢; and ¢, for certain values of k. The limit values

as k — oo can also be derived.

k
2 ) 10 30 100
cgst 2.62729... 1.78088... 1.48726... 1.18680... 1.12760...
cport 2.03950... 1.39752... 1.20841... 1.05078... 1.02788...

Table 5.1: Some numerical values of the asymptotic height of Ty .

Proposition 5.2. There ezist limits of both constants cgst(k) and cporr(k) as k
goes to infinity and

lim CBST(k) = lim CPORT(k) =1.
k—oo k—o0

Remark. Observe in particular that the height of the intersection does not converge

to the fill up level for binary search trees, which may appear surprising at first glance.

Proof of Proposition 5.2. For random binary search trees, this is easily seen since
{A*(1,p) = p—1~log p = log2/k} is the intersection of two explicitly defined curves.
By continuity of A*(1, p) on D3., p — 1 as k — oo.

Consider now PORTs. From the geometric properties of {A*(e, p) < log3}, p >
Pmin, Where ppin is the value at a = EZ = 1/3, and

Pmin — 1 — 108 pmin =

?

log 3
k

giving that pnin, — 1 as k — 0. Asa consequence, we need only look at a. Now,
the line A going through the origin and (p, @) = (1,1) crosses {A*(e, p) < log3/k}
because of its convexity and horizontal tangent at p = 1. Therefore, the slope of the

tangent 7 at the optimal point (p,a) is greater than 1. Writing (pmin, @a) for the
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intersection of A and {p = ppin} (Figure 5.6), we get that @ > aa = pmn, yielding

CPQRT-*].a,SkﬁOO. O

Figure 5.6: U(log3/k) together with the
optimal tangent 7 and the line A through
the origin and (1,1).

Pmin

5.7.6 Change of direction in random binary search trees

Consider T;, a rooted binary tree on n nodes. For a node u € T,, let D, be the
number of changes of direction in on m(u), the unique path from the root down to
the u. If we let 0 and 1 encode a move down to the left and to the right, respectively,
then the node u whose path is encoded by 0100101 will have D,, = 5, that is, a count
of each occurrence of the patterns 01 and 10. We are interested in the maximal value
over all the paths of the tree H, = max{D, : u € T,}. When T,, is a random binary
search tree, this turns into a random variable that may be handled by our framework.
It suffices to notice that if we take a left step, the next move will increase D only if
we go right. We have of course something similar when the first step was to the right.
Thus, we label the edges as follows. For each level k > 2 of edges, we form the word
(0110)*~1, and map the binary characters to the edges from left to right. Then, for a

node u, D, corresponds exactly to the sum of these labels along 7(u) (Figure 5.7).

This means that for the tree to match our model we need Z to be Bernoulli(1/2),

and E exponential(1), because the underlying tree is a binary search tree. Therefore



5.7. Applications 97

Figure 5.7: The path consisting of grey
nodes is the one with the mazimum num-
ber of change of direction. Note that the
number of changes of direction is the sum
of the labels along the path.

the maximum number of changes of directions along a path in a random binary search

tree is asymptotic to the height of random recursive trees.

Proposition 5.3. The mazimal number H,, of change of direction along a path in a

random binary search tree is asymptotic to elogn in probability, as n — oo.

5.7.7 Elements with two lifetimes

Consider a binary tree in which elements have two independent exponential(1) life-
times, Z and F, and let D, and B, keep their meaning. In the tree T,,, that is, the
tree of all nodes u with B, < n, it is interesting to ask about the maximal value of D,
when measured with respect to the second lifetimes (Z). Since Z and E have similar

Cramér functions, and both have mean one, we have by Theorem 5.1,
Proposition 5.4. The mazimal age D, of any node u in the tree of two lifetimes
described above, cut off at date of birth B, < n is H,. We have

Hn | . 582840157...

n n—ooo

in probability, where the constant c is defined by

c=sup{%:p—l—logp—f-a—l—logaglogQ}.
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Thus, in spite of the fact that, when measured by first lifetimes, all have age less
than n, there exist elements whose age, when measured in the other time scale, is

almost six times as large!

5.7.8 Random k-coloring of the edges in a random tree

Assume that we randomly color the edges of a random binary search tree of size
n with k colors, and that we ask for the maximal number H, of similar colors on
one path from a root to a leaf. This is equivalent, when k is constant, to studying
the maximum number of red colored edges on such paths. But then, this can be
studied by attaching to edges independent copies of Z where Z = 1 with probability
1/k and Z = 0 otherwise. That is, Z is Bernoulli(1/k). We have seen already the
rate functions for Bernoulli and exponential random variables (Dembo and Zeitouni,

1998). Then, A*(a, p) = A%(a) + Ag(p), where AL(p) = p— 1 — log p and

l—«

A%Z(a) = alog(a) + (1 — a)log <m> + log k,

and we have H, ~ clogn, where

l1—-a

(% 2
C—Sllp{ aog(a)+(1 a)log(k 1)+p 1 lng 10g<l)}’

Note that for £ = 2, or p = 1/2, we have a situation not unlike that of the
maximum number of sign changes in random binary search trees, or the random
recursive tree, where the asymptotic maximum value is elogn. Also, clearly, the

maximal number of identical colors on a path decreases with the number of colors.

For k =1 and 2 we have the known results for the height of the random binary
search trees and random recursive trees, respectively, as one can check in Table 5.2.
Clearly, we may even introduce p values not equal to 1/k, and ask on which path
we have most red-blue color changes, for example, where red and blue occur with

probabilities p and q respectively.
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k
1 2 3 4 5
¢ 4.3110... 2.7182... 2.1206... 1.7955... 1.5869...

k
6 7 8 9 10
c 1.4397... 1.3292... 1.2426... 1.1725... 1.1148...

Table 5.2: Some numerical values of cy.

Remark. To study the maximal number of colors of one kind (among & colors) in a
random recursive tree instead, it takes just a moment to see that it suffices to take

Z = Bernoulli(1/k)x Bernoulli(1/2). In other words, Z is Bernoulli(1/(2k)).

5.7.9 The maximum left minus right exceedance

Let the differential depth of a node u be

D,= Y L(e) - Re),
eem(u)

where L(e) is the indicator of e being a left edge and R(e) is the indicator of e being -
a right edge. We want to study the extreme value (differential height) H, of D,,
when u ranges over the nodes of a random binary search tree of size n. We have seen
that for a random binary search tree, E is an exponential random variable with mean
one, so AL(p) = p— 1 — logp. For this purpose, we may make Z = 1 or —1 with
probability 1/2. Note that for our Z,

Az(X) =log (e* + ) — log 2.
And we obtain the Cramer function associated to Z,

>1

oo a >
%log(}%z-)+log2—log(,/%‘f—f‘;+\/-{;—g) 0<a<l.
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Then, A*(a,p) = A%(a) + p— 1 —logp. Theorem 5.1 allows to conclude that
there exists a constant ¢ such that H, ~ clogn in probability as n tends to infinity.

Numerical tools allow to determine ¢ = 2.07345. ...

5.7.10 Digital search trees

This example is similar to the one of Broutin et al. (2006). We consider tries on
a finite alphabet A = {1,2,...,d} with the Bernoulli model of randomness: each
datum consists of an infinite sequence A* = A%, A, ... of i.i.d. random elements of A
(Fredkin, 1960; Szpankowski, 2001). A string A* corresponds to an infinite path in a
d-ary tree defined in the following way: from the root, take the Ai-th first child, next
the Aj-th, and so forth. We prune the subtrees of each node that contain only one

single string. The remaining tree is the trie associated with the n strings.

For tries, there is no deterministic bound on the height of a trie built from n or
even two strings: Neither Theorem 4.1 nor Theorem 5.1 applies to tries. Various
techniques have been used to shrink the height of tries such as PATRICIA (Morrison,
1968) and digital search trees (Coffman and Eve, 1970; Konheim and Newman, 1973).
See also the recent survey by Flajolet (2006). We now focus on digital search trees.
First, the term of digital search tree seems misleading to us, since digital search trees
are not search trees, where a search query is carried over using the values stored in the
nodes. We prefer the term pebbled tries, to emphasize the trie structure: a string (a
“pebble”) is assigned to each node in the tree instead of to each leaf. In this “pebbled”
version of tries, a string, taken at random, is associated to the root. Then, the n — 1
remaining strings are distributed to the k& subtrees depending on the value of their

first character. The tree is then built recursively.

In a computer, the characters are coded in binary. The cost of a character in
terms of bit comparisons is then the length of its binary code. The model of pebbled
tries has been studied by Broutin et al. (2006) in the case where all k characters have

the same cost. However, if one uses an optimal code (one that minimizes the costs of



5.7. Applications 101

the characters), the lengths of the codewords depend on the character, and hence the
costs of characters vary. Also, in such a code, the length of a codeword is obviously
dependent of the probability that the corresponding character occurs (prefix codes
of Huffman, 1952). Hence, this model of pebbled tries built with Huffman coded
characters is a perfect application for Theorem 5.1. Compare with the lopsided trees

of section 5.7.3.

~ Let p; be the probability that character i occurs at some fixed position of a string.
Let ¢; be the length of the binary codeword for character i. Then, at a node u with
N, = n + 1, the split V" is distributed as a multinomial(n,pl,p% ...,pq) random
vector. The weights (Z1, ..., Z4) are deterministic and equal to (¢;,4,,...,£,). Now,
V* — (p1,pe,...,pq) almost surely, and hence it is easily checked that the required
conditions on the random variables are satisfied with X = ({x, px) where K is uniform

in {1,...,d}. It follows that

d
A(A py= —logk +log (Z e'\fi—#logm) )

i=1
Also, since for all ¢, ; > 0 and logp; < 0 (or there is a.s. only one character in the
alphabet and the tree is degenerate), e**'°8¢ is a sum of positive convex functions
whose gradient spans (0,00)2. As a result, for o, p € (0,00), there exist A and yu for
which supy, ,{Na + pw'p - AN, 1)} = Ao+ pp — A(A, ) which are given implicitly
by

O =

Z?:l Lierip and p= - 2?:1 log pietip
d — = d - :
> i1 et iz e
Then, by Theorem 4.1, the height of the pebbled trie is asymptotic to clogn in

probability, where ¢ the maximum value of a/p along the curve
d .
Ao+ pp = log (Z e’\”"“bg”") )
i=1

Numerical values can easily be obtained for every set of parameters {(p;, 4;),0 < ¢ <

d}.
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5.7.11 Pebbled TST

In the same vein, we can study the height of a pebbled version of ternary search
tries (TST). The (non-pebbled) TST structure introduced by Bentley and Sedgewick
(1997) uses early ideas of Clampett (1964) to improve on array-based implementations
of tries. If an array is used to implement the branching structure of a node, the number
of null pointers can become an issue when the alphabet is large. In TSTs, instead of
the usual array, the node structure consist of a binary search tree (BST), therefore
forcing small branching factors and limiting the amount of null pointers. So the TST
is a hybrid structure combining tries and binary search trees. The high level structure
is still that of a trie. Only the structure of a node and the way character matching

are handled changes. TSTs have been studied by Clément, Flajolet, and Vallée (1998,

2001).
3

1\
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Figure 5.8: The structure of a node in an array-based trie (left) and TST (right) over the
alphabet {a,b,c,d,e, f}. The pointers used for the high level trie structure are dashed.

We now describe the modified pebbled version. Let {A!, A%, ... A"} be the set of
strings, with A* = AYAS ..., for all i. We distinguish the nodes of the trie structure
from the slots of the local binary search trees. As shown in Figure 5.8, each node
contains k& slots. The nodes at distance the same j from the root are said to be at level

Jj. At level j, the key used for the comparisons is the j-th character of the sequences.

The tree is built by assigning the sequences to the first empty slot as they come

along in order A', A2,.... The first string A! is stored in the first slot of the root of
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the TST, and partitions the following sequences with respect to their first characters
a, whether a < A}, a = Al or a > Al. Given the TST built from the first m — 1
sequences, A™ moves down the tree as indicated by the sequences stored in the slots
encountered, the comparisons being done on the j-th character at level j. It changes
level only upon finding a matching character, in the other cases, it moves in the
slots of the same node until it eventually finds either an empty slot, or a matching

character.

sEam o
SHOD)
L) WYV IEN /) N N

Figure 5.9: The outer structure of trie (left) and the ezpanded binary search tree structure
of the nodes of a TST on an alphabet of size four. The nodes are shown as circles whereas
the slots are represented by squares.

We now assume that the strings are independent sequences of i.i.d. characters
where a character @ € {1,.:.,d} has probability p, > 0. We are interested in the
height of a pebbled TST built from n of these independent sequences. Consider a
node u whose subtree stores n + 1 strings. As in the previous section, the split vector
at u, (N1, Na, ..., Nyg), is clearly multinomial(n, py, ..., ps). Looking at the high level
trie structure, the edges may be seen as being weighted by the number of edges in the
local binary search tree structure (Figure 6.11). Clearly, the cost of the edge leading
to a character a is the 1 plus the depth of the node labeled a in the BST of the node

considered. Let Z7 be the random variable accounting for this value. Then the vector

o (mom () - (5 ()

of interest is
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The random variable Z? has been studied by Clément et al. (1998) and Archibald
and Clément (2006). In particular they studied the expected values and variances
of {Z7,1 < a < d}. However, we need information about the distributions of Z}
and their limits as n — co. Let 7 be the smallest n for which {4i,0 < i < n}
contains a copy of each chafacter. Then, for each n > 7, the distribution of Z7 is
that of Z, = Z], independent of n. The random variable 7 is a stopping time and
P {r > n} < (1—min{p;,1 < i < d})". This proves that 7 is a.s. finite and that Z? —
Z,, in distribution. Then, with X distributed as ((Z1, —logp:),...,(Z4, — logpa)),

one can show that Ay» — Ay everywhere as n — oo.

This is sufficient for Theorem 5.1 to apply. The height of the pebbled TST is
asymptotic to clogn in probability, where ¢ is the the maximum value of a/p in
{(a,p) : A*(a,p) < logd}, and A* is the Cramér function associated with X =
(Zk, —logpk) where K is uniform in {1,...,d}. Numerical values can be obtained

for examples of {p;,1 <i < d}.

Remark. The height of the non-pebbled version of TST requires more care and is

treated in Chapter 6.

5.7.12 Skinny cells in k-d trees

We consider the k-d tree introduced by Bentley (1975). This geometric structure
generalizes binary search trees to multidimensional data sets. Given a set D of d-
dimensional data points {Y!,Y?2,...,Y"}, where Y = (¥i,...,y!) for all i, we re-
cursively build the following binary tree structure partitioning the data set using
comparisons of some of their components. The first datum Y? is stored at the root.
The remaining of the data are processed as follows: {Y* : i > 2,38 < yl} and
{Y* : y¢ > y}} are assigned respectively to the left and right subtrees, and both
subtrees are recursively built using the same method. The comparisons are done in a
cyclical way depending on the depth of the node at which they occur: the key used at

a node at depth £ is the (¢ mod d + 1)-st component of a vector. For a more complete
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account on k-d trees see Gonnet and Baeza-Yates (1991) or Samet (1990a,b).

Figure 5.10: A (randomly generated)

| ] :[: TT 1 T k-d tree on 150 points uniformly dis-

tributed in [0,1]2.

,i_

When the data points are i.i.d. [0, 1}%-uniform random variables, one can see a k-d
tree as a random refining partition of [0,1]¢. The root represents [0, 1]¢, and more
generally, a node u represents the set of points z € [0, 1]¢ that would be stored in its
subtree if they were data points inserted after u. Therefore, each cell is split into two
along a dividing line, on which lies one of the points Y, and whose direction changes
in a cyclical way. The cells are obviously rectangular. Let C, be the cell associated
with a node u. Let Li(u), La(u), ..., Ls(u) be the its lengths with respect to the d
dimensions. We are interested in the worst case ratio of two dimensions of a cell. For
example, if d = 2, this is thq worst case ratio length over width. By symmetry, since
d is bounded, we can always consider the worst case of the first two dimensions, L;
and Ls. Such a parameter is of great importance in applications. Indeed, for partial
match queries, the running times of algorithms depend on the shape of the cells, and
in particular on how close they are to squares (Flajolet and Puech, 1986; Martinez

et al., 2001; Devroye et al., 2001). We prove the following:

Theorem 5.8. Let T,, be a k-d tree built from n i.i.d. [0, 1]¢-uniform random points.

Let
def Li(u) |
R, = max{Lz(u) .ueTn}.
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Then R, = n%*°() in probability, as n — oco. Furthermore, ¢ is the mazimum value
of a/p in the set {(a, p) : Aa+pp+log (1 — p)? — X2) +(d —2) log(1 — u) < dlog2},

where

pA-1)+pi+a?dd-2) . dd—2)—2(d-1){1-p)
p* —a? (0* —o?)(p(1 = p) — (d - 2))

In particular, cq < 1 for all d > 2.

p=1=

2 3 5 10 40 100
cqg 0.86602... 0.79047... 0.71246... 0.63483... 0.54976... 0.52442...

Table 5.3: Some numerical values for the constant ¢y describing the asymptotic values of
R, in a d-dimensional k-d tree.

Proof. We intend to express the maximum ratio as a weighted height. Since in k-d
trees, not all the levels in the tree are equivalent, we proceed in two stages: we first
only consider the levels with depth 0 mod d; next we only need to consider the levels

1 mod d since for the other d — 2 levels, the ratio L;/L, is not modified.

If we group the levels by bunches of d, then all bunches behave similarly. We
obtain a 2%ary tree. In this tree, each node corresponds to a rectangular region
of [0,1]%, and its children are the result of its split into 2¢ subregions. The points
come uniformly at random, and hence the probability that a region is hit is its area.
Figure 5.11 illustrates the way we turn the question about the ratio into the weighted

height of some tree.

The area of a rectangle is the product of [0, 1]-uniform random variables determin-
ing the splits, and the ratio L/ L, is the ratio of two products of some of these random
variables. More precisely, let U;, 1 < i < d be i.i.d. [0,1]-uniform random variables.
Taking the logarithms of the areas and of the ratios, we see that the increments are

distributed like

d
E=—ZlogU,- and Z = —logU; +logUs.
i=1
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L
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L, U,

>
LUy

Figure 5.11: The way a node is interpreted when d = 2.

To use Theorem 5.1, we need to compute A* associated with X = (Z, E). We start

with the moment generating function: for any real numbers A and p, by independence,

d d
E [e'\Z+“E] —E Ul—/\—;t . U2f\—ll H Ui—# -F [U;A—#] i D) [Ué\‘l‘] . HE [Ui"/‘] .
i=3 =3

As a consequence,
00 . if A>21—pu or A<pu-1,
E [ e/\Z+pE] _ 1 1

. herwise.
A—pf—2 (-pi otherwise

It follows that

00 if A>2l—porA<pu—1,
A\ p) =

—log ((1 — p)2 = A?) — (d — 2)log(1l — p) otherwise.
So Dy = {(\ ) : A<1—pu,A>p—1}. To compute A*, we find the maximum of
(A, 1) = Aa + pp — A(A, ), which is achieved for A and p such that

AA(M, 1) 2

= = and
) - p)? -\
_ oAy _ 21 d-2 (512)
P7 e T a-pwr-RTIow

if such a point exists. For d > 2, such a point does exist and the system above has

solution

p(d—1) £ /p* + a2d(d - 2)

o 2Mufﬁéidy+ad—m (5.13)

P2—a? plp—=1)+d~2

po= 1=
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Observe that the mere fact that this is a solution of (5.12) ensures that (A, ) € Da.
Hence, we have Dy« = R?, and by Theorem 5.1, ¢ is the maximum of a/p with (a, p)

in the set
¥(dlog2) = {(a, p) : Ao+ pp +log ((1 — p)? — A?) + (d — 2) log(1 — p) < dlog2},

where A and p are defined by (5.13). Since this only accounts for the levels whose
depths are 0 mod d, this gives only a lower bound on the actual weighted depth of the
tree. However, one can find a matching upper bound easily. Indeed, to account for
the levels 1 modd, it suffices to group the levels starting at level 1. Doing this, the
distribution for E and Z remains unchanged, but the ratio L;/L, is now off by one
single multiplicative factor <;f 1/U. 1t follows immediately that the weighted height

on the levels 1 mod d is also clogn, which finishes the proof of Theorem 5.8. d

1 3
e 1> Jr

o

Figure 5.12: The sets {(p,a) : A*(a,p) < dlog2} together with the lines of mazimum
slopes for the mazimum ratio of two dimensions of a cell in a k-d tree in R? and R°.

Corollary 5.1. Ford = 2, we have c; = \/5/2

Proof. If d =2, u and A simplify and we have

2p 2a
e and A= —p2 —

p=1-

The condition u — 1 < —|A| is equivalent to p > |a|, so the set to consider is {(a, p) :
o> |al}. It follows that

2 22

2a 0 2\
A* — _ — n — —_ 2 __ o2 N
(a, p) g +p ppmp +log(a) p—2+2log2 —log(p® — a®)
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Therefore, we need to find the maximum value of a/p subject to p—2 < log(p? — a?).
The optimum is clearly obtained on the boundary of the set, i.e., for p— 2 = log(p® —

a?). Then, we have
a er~2

p p*’

which is maximum when the derivative vanishes:

d <a> 2 (%~ 3) e

This happens when p = 2 and then a/p = v/3/2. (Note that p > |a].) O

Remark. We have lim;_,., ¢4 = 1/2. Indeed, the optimal point is at p = d. Using

a ~ cd, we have

l—p= +0o(1) and A=

1-c¢

So,

cd
d—
1—c+ l1-c¢

Finally, if ¢ = 1/2, we have A*(q, p) = dlog2 + o(d).

A*(a’ P) =

—dlog(1 — ¢) + o(d).

5.7.13 Skinny cells in relaxed k-d trees

The model of k-d trees described above is a bit constrained due to the cyclical way
in which the components of a vector are used as keys. In particular, k-d trees are
data structures that are mostly static: they are built once, and then used to perform
multiple queries on the same data. To cope with the issue of updating k-dimensional
search structures, Duch and Martinez (2002) introduced a randomized data structure
that is similar to k-d trees, but that does not suffer the same constraints. The
symmetry is reintroduced by chosing the index of the component used as a key at
random when a node is inserted in the structure. This tree structure is naturally
called relaxed k-d tree. The structure leads to easy to present update algorithms, but

it is not known whether the structure is indeed efficient.
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Theorem 5.9. Let T, be a relazed k-d tree built from n i.i.d. [0, 1]?-uniform random

points. Let
Ll (U)
Ly(u)

Then R, = n't°M) in probability, as n — oo.

anmax{ :uETn}.

Figure 5.13: A (randomly generated)
relazed k-d tree on 150 uniformly dis-
tributed points in [0,1]2. One can no-
tice in at the first glance that the cells
look skinnier than those shown in Fig-
ure 5.10.

Remark. The cells of 2-dimensional relaxed k-d trees are skinnier than those of k-d

trees. This explains why partial match queries are more costly for relaxed k-d trees

(Duch and Martinez, 2002; Duch, 2004) than for k-d trees (Flajolet and Puech, 1986).

Proof of Theorem 5.9. Consider a cell that does not contain any data point. In the
tree, it corresponds to an external node u. A new incoming point falls in this cell
with probability L;(u) - Le(u). If this happens, two new cells are created. Clearly,
the cell gets divided uniformly. Let U be a [0, 1]-uniform random variable. Then, if
the number N, of nodes contained in the subtree rooted at u is n, the sizes of the

subcells are distributed as a multinomial(n — 1,U, 1 — U) random vector.
As in the case of k-d trees, the ratio L,/Ls is either multiplied or divided by U.

Each of this cases happens with probability 1/2 at every split, so with the additive

formalism, the increase in loé(Ll /L2) is

—logU w.p. 1/2

Z(U) =
logU w.p. 1/2.
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Again, X* — ((Z(U),—1logU),(Z(1 = U),—1log(1 — U))) almost surely as n — oo.
Hence we have X = (Z(U), —logU), and for A\, u € R,

B [%5] = B (U] + ;B[]
Therefore, we have

o0 if A>21—p or AZpu-1
E [ e/\Z+uE] — 1— 4

—————— otherwise.
= pp -

It follows that

A ) 00 if A21—p or A<u—1
1) =
log(1 — p) —log (1 — p)? — A?) otherwise.

The maximum of (A, u) — Aa + pp — A(A, ) is achieved for A and p, with g —1 <
A <1 — u, satisfying

_0A(\p) 2) _0Ap) . 20-p) 1
R Sl ey s e VR ¢ Jy S Ry

if such a point exists. This implies in particular that

PRI () 1 4 _ 42 I S
(T=p) =22 (1-p? QA-pP-2 ((1-pP-2)2 (1-p?
for £ —1 <A <1— p. Then, provided |a| < |p|, the solution is given by
u=1——\/ﬁ and ,\=p2f‘a2-1+(11_u)p. (5.14)
If |a| > |p|, then A*(c, p) = co. Indeed, assume that o = p + 4, for some § > 0 (a
symmetric argument holds when o = —p—4). Let € > 0, and write A\ = 1 —pu—¢p <
1 — p. Then,

A(a,p) = doa+ pop — Ao, o)
= XAd+p—pe+log2+loge+ O(1/ ) — o0

as Ag — oo. It follows by Theorem 5.1 that ¢ is the maximum value of a/p in the set

¥(log2) = {Aa + up — log(1 — ) +log (1 — p)* = A%) < log2},
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Figure 5.14: The set {(p,)
A (e, p) <log2} and the line of maz-
imum slope for the mazimum ratio of

two dimensions of a cell in a relazed
k-d tree in R2.

where A and p are defined in (5.14).

Now, since Da- C {|a] < |p|}, it is clear that ¢ < 1, so we only need to prove that
¢ > 1. In particular, it suffices to find points (a, p) € ¥(log?2) with a/p arbitrarily
close to 1. Because pu and hence A* is not properly defined for a = p, we consider
A*(1 —¢,1) for € € (0,1). One can verify that, as € — 0,

A (1 —¢) =log2 — v2¢ + 0 (Ve),

and therefore, (1 —¢,1) € ¥(log?2) for € small enough. This proves that ¢ > 1 — ¢ for
any small enough € > 0 and hence, by Theorem 5.1, that log R, ~ logn in probability

as n — o0. d

5.7.14 d-ary pyramids

Allowing Z = —o0 can be useful when one needs to exclude some tree paths in the
definition of the height. Let us look at pyramids (Bhattacharya and Gastwirth, 1983;
Gastwirth and Bhattacharya, 1984). These trees are built incrementally as follows: a
d-ary pyramid of size 1 is a single node; given a d-ary pyramid of size n, pick a node
u uniformly at random among those that have degree at most d — 1. The next node
becomes a child of u. The height of a 2-ary pyramid has been studied by Mahmoud
(1994). Biggins and Grey (1997) obtained it for d > 2.
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Theorem 5.10 (Mahmoud 1994; Biggins and Grey 1997). The height H, of a d-ary

pyramid of size n is H, ~ logn/(ype) in probability, as n — oo, where 7 is given by

Z 6 iv)" =1, (5.15)

i=1

and po ts defined as the smallest root of

d d —i—1
: 1-—
p-u=log ( ! i) where p = E“dl Ul —, (5.16)
= (1-p) 21— p)

where pu < 1. Numerical values are given in Table 5.4.

2 3 5 10

v 0.6180339880. .. | 0.8392867552... 0.9659482366... 0.9990186327...
Po 0.4056580492... 0.3759749401... 0.3684055189... 0.3678801695...
(7po)™! 3.988664818...  3.169061969...  2.810088635...  2.720946695...

Table 5.4: Some numerical values for the height of d-ary pyramids of effective size n. It
is not surprising to observe that (ypp) — 1/e as d — oo, since the height of the random
recursive tree is asymptotic to elogn.

We derive Theorem 5.10 using a our framework. Random recursive trees (Smythe
and Mahmoud, 1995) are oco-ary pyramids. A random recursive tree of size one
consists of single node. A random recursive tree of size n + 1 is built from one of
size n by picking a uniform random node u, and adding a new node as a child of u.
Clearly, conditioning on the new node being a child of an unsaturated node u, u is
still uniform among the unsaturated nodes. Hence, one can see a d-ary pyramid as
the subtree of a random recursive tree consisting only of the first d children of any

node (Figure 5.15).

This gives a simple way to obtain the height of d-ary pyramids: build a random
recursive tree in which the first d children of any node have an edge of weight 1 to their
parent, and the others a weight of —oo: (Z3,...,Z4, Zay1,...) =(1,...,1,—00,...).
One can verify (see, e.g., Broutin and Devroye, 2006) that the (infinite) split vector
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Figure 5.15: A 2-ary pyramid seen as
the subtree of a random recursive tree con-
sisting of the first two children of any
node. The black vertices are part of the
2-ary pyramid.

(W1, Va,..., Vi, ...) for a random recursive tree is distributed like

(Ul,(l—U1U2, H(1—» )

where {U;, ¢ > 1} is a family of i.i.d. [0, 1]-uniform random variables. Since our result
only holds for trees of bounded degree, we can rewrite the split vector by collecting

the children with index greater than d + 1 in a single “bin™

(Vi,Vay ..., Vap) = (Ul,(l — U, .. H(l - Ud,H(l - U)) (5.17)

and (Z1,Zs,...,2441) = (1,...,1,—00). Write Ey = —logVi. The height is not
affected by a random permutation of the children, so the random variable of interest
is X =(Z,F) = (Zk, Ex), where K be taken uniformly at random in {1,...,d+ 1}.

Then, according to the definition of A, we have that for all A and y real numbers,
A(X ) =logE [ *F¢ | K < d] +logd — log(d + 1).

Using the definition (5.17) for the split vector (V3,..., Vi41), we find that,

=1

d
A\, p) = A +log (ZE [Ul_“]z) — log(d + 1),
and therefore,

if pu>1

A\ p) = ;
A+ log (Zle(l - u)") —log(d + 1) otherwise.
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We have Dp = {(A, p) : p < 1}. It follows that the optimum value for p = u(p) is

obtained for

. d 1 \—i-1
W A _0AAp) _ E-:;l(l D (5.18)

oA T T L a-w
The function f defined on (0, 0c0) by

d d
I — E ix""l/ E ™"
i=1 i=1

is continuous, lim,_ f(z) = 0 and lim,jo f(z) = oo. Therefore, (5.18) admits a
well-defined solution p(p) for all p > 0. By Theorem 5.2, one needs a rescaling factor

7 to express the height of d-ary pyramids of size n. The constant v is given by

LI |
— (1+7)

=1

Then, the height of a d-ary pyramid is asymptotic to logn / (vpo), where pg satisfies

A+ p(po)po — A(A, p(po)) = log(d + 1),

which proves (5.16) since A cancels.






Chapter 6

Weighted height of tries

We define a general model for weighted random tries. We analyze the weighted heights of
such trees, using a link between the profile of a “core” of the trie. In particular, we apply our
main result to the worst-case search time in trees introduced by de la Briandais (1959) and
the ternary search trees of Bentley and Sedgewick (1997). The chapter is based on Broutin
and Devroye (2007c) and Broutin and Devroye (2007b).

Everything you see, I owe to spaghetti.
— Sophia Loren
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6.1 Introduction

In this chapter, we are interested in tries. We have introduced tries in section 1.4.5.
For now, recall simply that they are tree-like data-structures used to store strings.
Here, the alphabet is {1,...,d}. The strings are stored in the leaves, which may
each contain one or more of them. We assume that the sequences are built using a
memoryless source: each string is an infinite sequence of i.i.d. symbols distributed
like A € {1,...,d}, where P {A =i} = p;, 1 <i < d. Also, without loss of generality
P12 p2 > -+ 2 pg > 0. A useful quantity under this model is the probability that b

independent characters are identical

Q) = k. (6.1)

It is well known that the height H,, of a trie built from n independent such sequences

satisfies (Régnier, 1981; Devroye, 1984; Pittel, 1985; Szpankowski, 1991, 2001)

H,
logn n—oco —logQ(2)

in probability. (6.2)

This holds for ordinary tries, i.e., if every leaf contains only one string. If the leaves

can store up to b sequences, the tree is called a b-trie and its height H, is such that
H, b+1

logn noeo —log@Q(b+1)

Park, Hwang, Nicodeme, and Szpankowski (2006) have recently reproved (6.2) via

in probability.

the profile of the tree (number of nodes at each level). The results of this chapter are

proved using a similar approach based on the profile.
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The trie is only an abstract data structure, that is, it does not specify the imple-
mentation (see Clément et al., 1998, 2001). Depending on the implementation, the
worst-case search time and the height of the trie may be different. This happens in
particular when the implementation of a node relies on a linked-list or a search tree
(de la Briandais, 1959; Bentley and Sedgewick, 1997) instead of an array. Our aim in
this chapter is (1) to make a link between the worst-case search time and the weighted
height of a tree that would hold for many implementations, and (2) to characterize

the height, and hence the worst-case search time of these data structures.

The chapter is organized as follows. In Section 6.2, we describe a model of random
weighted trie and state our main result concerning the weighted height of such trees.
The proof of the main theorem is based on an analysis of the internal structure of the
trie, and the notion of a core (see Broutin and Devroye, 2007a). We describe the core
of the weighted trie in section 6.3, and the behavior of the trees hanging from the
core in Section 6.4. The properties are then used in section 6.5 to prove Theorem 6.1.
Finally, we give some applications in Section 6.6. In particular, we show that the
heights of the trees of de la Briandais (1959), and the ternary search trees of Bentley
and Sedgewick (1997) follow from Theorem 6.1.

6.2 A model of random tries

Consider the distribution {pi,...,ps} over a finite alphabet A = {1,...,d}. We
assume without loss of generality that 1 > p; > py > --- > pg > 0. We are given n
independent infinite sequences of i.i.d. characters of A generated using {py,...,pa}

Let T, be an infinite d-ary position tree. Let b > 1 be a natural number.

THE SHAPE OF THE TRIE. Each string defines an infinite path in Ti. Let the
cardinality N, of a node u € T, be the number of strings whose path in T, intersect
u. Then, for a natural number b > 1, the b-trie T, is constructed by pruning all
the edges down any node of cardinality at most . The sequences are distinct with

probability one, and the strings define distinct paths in T,. Therefore, the trie T,
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is almost surely finite. The tree T, constitutes the shape of the weighted trie. We
define E; = —logp;. For the edge e between u and its i-th child we let p. = p; and
E, = —logpe.

There are 2¢ types of nodes, each type being characteristic of the branching struc-
ture of the node. The branching structure of every node u € T,, is described by a

d-vector 7,: if uy,...,uq are the d children of u, then we define
Ty = (1[Ny, 2 1), 1[Ny, > 1],..., 1[Ny, > 1]).
The vector 7, indicates which one of the d edges down u are part of some path in T, ;.

As in Chapter 5, we consider random tries that may be built using an embedding,.
Our construction emphasizes an underlying structure consisting of independent ran-
dom variables. However, in the coupled tries built from the embedding, the random
variables are dependent in general because of the construction process. Observe that
our embedding is only one way to build tries with the desired distribution. We will

show in Section 6.6 that many tries of interest are covered by this model.

THE WEIGHTS. We now describe the way in which the weights are assigned. Consider
a sequence of random vectors {27, 7 € {0,1}%}, where Z7 = (Z7],..., Z]). For a fixed
type 7 € {0,1}¢, the components Z7, ..., ZJ of Z” may be dependent. We assume
that for all 7 € {0, 1}¢, Z7 has non-negative components and is bounded. Each node
of T, is assigned an independent copy of the whole sequence. The weights are then
associated with the edges of T, based on the types of nodes they link. Consider a
node u € T, and its sequence {Z7,7 € {0,1}¢}. The edge e; between u and its i-th
child in T, is given the weight

Z.,

1

= ZZ-" = Z Z:l[TuzT]

T7€{0,1}4
We use the notations Z] and Z, interchangeably. It should always be clear whether a

subscript refers to an index or an edge. Let m{u) be the set of edges on the path from

u up to the root in To. The weighted depth of a node u is defined by Dy = 3 ¢y Ze-
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Observe that weighted depths are associated to every node in T,,. We are interested

in the weighted height of T, defined by
H,p=max{D, :u € T}
Surprisingly, the first asymptotic term of H,; depends on four parameters only:
e the capacity b of the leaves,
e the distribution {p,...,pa},
o Z° def 20l and

e Z° defined in the following way: there are d permutations of (1,0,...,0). Let
g; be the one with the one in position i. Then, we let Z°* = (Z3,...,Z3) with

Z: =72,

In particular, the first order asymptotics of H, stay the same if we modify {Z7,7 €
{0,1}¢} in such a way that both Z¢ and Z° remain unchanged. This is easier under-

stood by thinking of the structure of the shape of a trie.

THE CORE OF A TRIE. The profile of a trie can be explained by distinguishing a
so-called core, that constitutes the bulk of the trie, and spaghetti-like trees hanging
from the core (Broutin and Devroye, 2007a). The core of the trie is defined to be the
set of nodes u € T, for which N, > m(n), for m(n) — oo and m(n) = o(logn). The
core is denoted by C. The spaghettis are the trees remaining when pulling out all the
nodes of the core. It is shown by Broutin and Devroye (2007a) that the core is very
stable and is barely affected by the choice of the sequence m(n). Also, since m — oo,
we expect a node in the core to be of type 7 = (1,...,1) with probability 1 — o(1).
As a consequence, in a weighted trie, the distribution of weights in the core should

be closely approximated by Z¢ (where the superscript stands for “core”).

HANGING SPAGHETTIS. Let 8C be the node boundary of the core C, that is, the set of
nodes in T, \ C with a parent in C. The trees rooted at every node in dC contribute a

large amount to the height (for instance, half of it in a symmetric trie). We call these
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trees the spaghettis. The spaghettis lie in the part of the trie where the nodes do not
have d children any more: the types of the nodes may take all the values in {0, 1}.
However, the weighted height of a long spaghetti is close to the weighted height it
would have if we discard the nodes that are truly branching. To see this, observe that
the nodes in AC have cardinality at most m(n) = o(logn), and each spaghetti stores
at most m(n) sequences. Each time the type 7 is not a permutation of (1,0,...,0), at
least one string is put aside from the longest path. This can happen at most o(logn)
times, and hence the heights with and without the branching nodes differ by at most
o(logn). If the weighted height is ©(logn), as is the case for the highest ones, the
difference is negligible. This explains why Z* (the superscript stands for “spaghetti”)
only matters in the weighted heights of spaghettis.

Figure 6.1: The structure of a trie: the
bulk is the core. Some spaghetti-like trees hang
Y T 11 { Y doun from the core. Both the core and the
spaghettis contribute significantly to the height
) 5 of the trie. Observe also that the height may
l not be explained by a spaghetti born at one of
| l\ l J
} |

the deepest nodes of the core. This latter fact
will become clear later.

b

Both the core and the spaghettis contribute significantly to the height of a weighted
trie. By figuring out what the core looks like, we can determine when the spaghettis
take over. Roughly speaking, we then know if an edge’s weight can be approximated
by a component of Z¢ or rather Z°. The shape of the core is the very question
addressed by Broutin and Devroye (2007a) in the unweighted case, i.e., with all the

weights equal to one. We shall rely on similar ideas here. The arguments are based
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on an analysis of the logarithmic profile

é(a,t) = lim log EP,,(tlogn, alogn)

Vt,a > 0, (6.3)
n—co logn

where P,,(k,h) denotes the number of nodes u, k levels away from the root with

N, > m(n) and D, > h. Let Z% have the following distribution:

zZs5  wp. QOb+1)

—00 otherwise,

Zb = (6.4)
where A € {1,...,d} is a character generated by the memoryless source with prob-
ability distribution {pi,...,pq}. The main result of this chapter is the following

theorem.

Theorem 6.1. Consider a weighted b-trie built from n independent sequences defined
as above. Let Hy, be its weighted height. Let ¢(a,t) be the logarithmic weighted
profile of the core of T,p. Let A} be the rate function associated with Z®. Let

Y =sup{y:p-A;(v/p) < 1,7>0,p> 0}, (6.5)

and ¢, = sup {a + v - ¢(a,t) : a,t > 0}. Then H,p = cp logn+o(log n) in probability,

asn — oo,

Remarks. (a) The contributions of the core and spaghettis are a and -y, - ¢(a, t),
respectively. Both contributions are significant. Moreover, the joint of core and the
spaghettis on the longest path, i.e, the level at which the longest path leaves the core
is far from the bottom of the bottom of the core. See Figure 6.8.

(c) The definition of ¢, given makes it clear that ¢, > 0 is well and uniquely defined.

We will see later that ¢, < 0.

Before going further, we formalize our claim about the types of nodes that may
influence the first order term of the height H,,. Here, the weights are irrelevant.
Lemma 6.1 below is at the heart of the distinction between the core and the spaghetitis.

We prove:



124 CHAPTER 6. WEIGHTED HEIGHT OF TRIES

Lemma 6.1. Let T, be a random b-trie. There ezists w — 00, as n — oo, such that

on every path down the root,

(a) the number of nodes of the core not having d children is o(logn) with probability
1—-n", and

(b) the number of nodes outside the core having at least two children is at most m =

o(logn).

Proof. The number of nodes with degree at least 2 in any spaghetti is at most m(n) =
o(logn) and (b) follows. Therefore, we need only consider the portion of the paths
that lie in the core and prove (a). We distinguish two regions of the core: the set of
nodes u such that N, > log?n, and the rest. The top of the core, consisting of nodes
u with N, > log®n, is very likely to be free of any node with less than d children: in
this region, with probability 1 — o(1), all the nodes have d children. For any node u,
we have -

P{r#(1,...,1)| N,>1log’n} <d(1 — pa)en.

Moreover, the number of such nodes is polynomial in n. Let %} be the set of nodes at

level k in T Indeed, at distance k = [log; /,, n] from the root, for n large enough,

P{3ue€ % : N, >log’n} < d°8n™1.P {Bin(n,p}) > log’n}

1 10e2
< dnbgl/m d e_§1°g n,

by Chernoff’s bound. Therefore, by the union bound,

P{3u: N, >log’n, 7 # (1,...,1)} < dn'Bm?. (2(1 —py)lE " e'%l°g2">

S n_WIa (66)

for some w; — 0o as n — oo.

There is also a number of layers of nodes u with m(n) < N, < log?n. There are
only o(logn) such layers. To see this, let v = v(n) — oo to be chosen later, and look

at a node v lying [% log n] levels away from v with N, < log®n. Then,

P{N, 2 m(n)} < P {Bin(log’n, pr ™Y > m}. (6.7)
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The expected value of the binomial random variable above is

8" = log?n - nrlen 0, (6.8)

1
£=log’n - p¥ to —

for v = o(logn/loglogn). In particular, for n large enough, £ < m/2. By the Chernoff

bound for binomial random variables (see, e.g., Janson et al., 2000),
. 2 Llogn m
v < — —_— .
P {Bm(log n,p; ) > m} < exp ( Lo (25)) , (6.9)

where p(z) = (1 + z) log(1 + z) — z. Using (6.8), we see that, as n — o0,

w3) - (o))
m m
~ 5 o (3)
~ —gt-log<ﬁ;-)—mloglogn—%logpllogn
m
T ow

1
log { — ] logn,
& (Pl) &

for v = o(logn/loglogn). We now choose v such that, in addition, » = o(m) so
that, by (6.7) and (6.9), P {N, > m} decreases faster than any polynomial in n. The
number of potential nodes v is polynomial in n since they lie O(logn) away from
the root. It follows that the maximum number of levels between a node u with
N, < log?n and v such that N, < m is O(l—‘lﬁﬂ) = o(log n) with probability at least
1 — n™2, for some wy — 00 as n — oo. With (6.6), this proves the claim with

w = min{wy,ws }/2. a

6.3 The core of a weighted trie

6.3.1 Asymptotic behavior

Consider a weighted b-trie defined as in Section 6.2. We consider m = m(n) — o
with m(n) = o(logn). Let % be the set of nodes k levels away from the root in
Tw. Let P, (k,h) be the number of nodes u € % with D, > h and N, > m. Since
m — 00, for n large enough, we have m > b and

Pp(k,h)= > 1[N, >m,D, > h].

u€Z
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The first step in characterizing the profile is to study its expected value, we then use

some concentration arguments.

The asymptotic properties of the expected profile are directly tied to large de-
viation theory (see Chapter 2). The random vector of interest here is (Z¢, E) &f
(Z, —logpk), where K is uniform in {1,...,d} and 2¢ = (Zf,...,Z5). Here,
P{Z¢= -0, E = +o0} = 0 and for A\,u € R, the associated generating function
of the cumulants is

A\ p) =logE [e)‘ZC“‘E] .

Recall that the definition of the convex dual A* of A: for z,y € R,
AN (z,y) = le,lf{/\x +puy — A(A, )},
(see Chapter 2), and
I(z,y) = inf{A*(z',y) : 2’ > z,¥' < y}.

Theorem 6.2. Let m = m(n) — oo with m = o(logn). Let k ~ tlogn and h ~
alogn for some positive constants t and o. Let

¢(a,t)=tlogd—t-l(%,%). (6.10)
If ¢(a,t) > —o0, then EP,,(k, h) = n®@t+o) a5 n — 0o. Moreover, for any € > 0,
there exists n large enough that, uniformly in any compact subset of {(a,t) : t >

0, ¢9(a,t) > —a}, for any a > 0,

EP,(k, h) < nt@t+e,

Remarks. (a) Observe that Theorem 6.2 justifies the definition of ¢(-,-) in (6.3).

(b) The constraint that m(n) is o(logn) is only used in the lower bound. However,
the main reason why we choose m = o(logn) is for the spagghettis to contain each a
number of nodes of degree at least two of order o(logn). The lower bound actually

holds for m as large as n"(l)._ This has no effect on the upper bound.
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(c) Theorem 6.2 is actually an easy extension of the results in Chapter 5. Indeed, for
the model treated there, only {(a,t) : ¢(a,t) = 0} matters, and we did not bother

computing the entire profile.

Unlike the profile of unweighted tries (Devroye, 2002, 2005; Park et al., 2006), that
of weighted tries does not seem concentrated. However, it is log-concentrated in the

sense of the following theorem.

Theorem 6.3. Let m = m(n) — oo as n — oo such that m = o(logn). Let
k = |tlogn — 3loglogn] and h = alogn for some positive constants t and a such

that ¢(a,t) > 0. Then, for all e > 0, as n — oo,

P {P.(k,h) < n?t9=<} — 0.

If the convergence of h/ log.n — a and k/logn — t, as n — oo is uniform in a
compact subset C of {(a,t) : o,t > 0, ¢(a,t) > —a} for some a > 0, for all n large
enough,

sup P {Pn(k,h) > n¢(t’“)+e} <n"2,
(a,t)eC

Before we proceed with the proof, we shall derive some useful properties of the

logarithmic profile ¢(-,-) and describe its geometry.

Lemma 6.2. Let ¢(:,-) be the logarithmic profile as defined in (6.10). Then,

(a) &(-,-) is concave,

(b) for all a € R, the level set Ay(a) & {(a,t) : o, t > 0,¢(, t) > a} is bounded, and
(c) ¢(-,-) is continuous on Ay(a), for all a € R.

Proof. We refer the reader to Chapter 2 for properties of A*(-,-) and I(-,-).

(a) Recall in particular that A*(-,-) and I(:, ) are convex. The functions (¢, o) — a/t,
and (t, ) — 1/t are convex as well. It follows that (o, t) = I(a/t,1/t) is convex and
the result follows.

(b) We show that {(a,t) : a,t > 0,A*(a/t,1/t) < logd} is bounded. This is based
on an upper bound for A(A, u): for A\>0and <0

A(M\ 1) = log E [} +#F] < log E [eMZlleo=rloerd] = A|| Z||o, — plog pa.
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It follows that for all «,t such that a/t > ||Z||« or 1/t < — log pa,

al « 1
* - = > - _ -
A <t,t) _/\(t ||Z||°°)+u(t+logpd> — o0

by choice of A — 0o and u — —oco. Therefore, since A* is continuous where it is finite

(Lemma 2.2), for all a € R

) | 4™ 1
Ag(a) = {(et) : a,t > 0,¢(ax,t) > a} C (0’ _Ing;} 8 (0’ _logpj ’

which is bounded. Observe in particular that {(a,t) : a,t > 0,¢(a,t) > —oo} is

bounded as well.

(c) This is straightforward from (a) and (b). O

Example: asymmetric randomized list-tries. Consider asymmetric tries on
{1,2} with p; = p > 1/2 and p; = ¢ = 1 — p. The node structure is implemented
using a linked-list. A fair coin is flipped independently at each node to decide whether
1 or 2 is first in the list. Therefore, the vector Z = (Z;, Z;) of search-costs is such
that Z; and Z, take values 1 or 2 with equal probability. The variables E and
Z are independent. They are both linear functions of Bernoulli random variables
(see Dembo and Zeitouni, 1998, section 4.2 on transformations of large deviation
functions). If we write f(z) = zlogz + (1 — z)log(1 — z) + log2, then A*(a,p) =
A% (a) + Ag(p), where
M) =fla=1)  ad  Ap() = (e El).

Here, A* is of the form f(z) + f(y). The change of coordinates in ¢(-,-) implies that
the level sets of ¢ are triangles. The logarithmic profile shown in Figure 6.5 is taken

from this example.

The definition of ¢(a,t) involves the function I(-,-) that is slightly more compli-

cated than A*(-,-). In general, it is easier to study

al

¢o(a,t) =tlogd — A* (?, ?) . (6.11)
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The value of ¢(c,t) only differs from ¢,(c,t) when a < tEZ and tEE < 1. For such
values of a and ¢, ¢(a,t) = tlogd.

Remark. Although we will not prove it, it is interesting to note that ¢,(a,t) is the
logarithmic profile counting the number of nodes at level k ~ tlogn with N, roughly
m and D, roughly h ~ alogn. Proving this would require the equivalent of the
Bahadur and Rao (1960) theorem for large deviations tail probabilities. See Broutin

and Devroye (2007a) for a proof of this claim in the unweighted case.

Before we look at the two-dimensional version, we warm up and analyze the un-

weighted case.

THE UNWEIGHTED CASE. Here we assume Z, = 1 almost surely for every edge e. In
this paragraph only, we write A*(t), I(t) and ¢(t) since the a variable is irrelevant.

We have seen in Chapter 2 that A*(¢) is convex and looks like the function shown on

Figure 6.2.
A*(p)
log d ¢+ »
Figure 6.2: The function A* corre-
sponding to the distribution {.9,.1}.
+— o
£ logd EE P

However, the logarithmic profile ¢(t) is defined in terms of

A if p<EE
I(p)=inf{A*(z) :z < p} = (°) =
otherwise.
Finally, we have (see Figure 6.3),
tlogd —tA*(1/t) if t> g5
tlogd otherwise.
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So, ¢(t) is linear to the left of 1/EE. Also, ¢(t) is maximum at ¢ = 1/€, where
E=-— E:Ll p; - log p; is the entropy associated with the distribution. The following

lemma gives the main properties of ¢.

Lemma 6.3. We have the following:
(a) A*(EE) =0 and, for all t € Dy, A*(t) € [0,1nd],
(b) if (p1,...,pa) # (1/d,...,1/d),

6¢_(t) = logd.

o | 1/ee
Proof. (a) This is clear since E has just d equiprobable masses, —logp;, 1 < ¢ < d.
For all p € [—logp:, —logpa], A*(p) € [0,logd]. Outside this interval, A* = 4o00.
(b) If there exists an i such that p; # 1/d, F is not degenerate and EF lies in the
interior Dj«. Then A* is differentiable at EE and

9A*(p) _0
6,0 p=EFE
It follows that
220 _ 9%o(t) —togd+ L. MO A EE) —10gd. O
ot |y JEE at t=1/EE t 9p p=EE

The function ¢(-) can be characterized as the lower envelope of a set of lines. Let

us define the generalized entropy function:

d
E®)=—) logp;-p}.
i=1
So, we have £(1) = £. The following lemma explains the geometry of ¢().

Lemma 6.4. Let b > 0. Assume that (p1,...,pq) # (1/d,...,1/d). Lett, = t,(b) =
Q(b)/E(b). The line of support of ¢ at t, has equation b+tlog Q(b). Hence, we have

b(t) = Iig[f){b— tlog (ﬁ) }

In particular, $(1/€) =1 and the tangent of ¢(t) at t = 1/€ is horizontal.
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B(¢)
b4
1 1 Qb -1 —b t
EE g ?(SIT)l log p1 Tog Q(5)

Figure 6.3: The logaritmic unweighted profile ¢ associated with the binary distribution
p1=.9 and p = .1.

Proof. We only need to verify that the slope of ¢(t) at ¢, is log Q(b). Consider first
t > 1/EE. Then A*(1/t) = I(1/t), and we have ¢(t) = tlogd — tA*(1/t). So,

9% =logd — A*(l/t)+

1 9A*(p)
dp

p=1/t .
Also, A*(p) = Ap — A(A), where A = A(p) is defined by

AN
P="ox

For t = t,, we have A = A(1/t,) = —b and

99(t)
ot

1 9A*(p)
= logd—A*(1/t) +
t=to t ap

p=1/t,
- logd—< (()) long<b))

E®) [, E(b) 9X(p)
+Q(b)< "+ 20 o
= log Q(b).

£(b) 0A(p)
p=1/t, Q(b) ap

p—l/to>

This is also Lemma 2.2.5 (c) of Dembo and Zeitouni (1998). Now, observe that the



——

132 CHAPTER 6. WEIGHTED HEIGHT OF TRIES

line of support of ¢(-) at ¢, hits the vertical axis at

o) -1 201 __om@)

Ot |, B O |mipt,
If, on the other hand t < 1/EE, we have ¢(t) = tlogd. Since ¢(-) is concave, it is

the lower envelope of its lines of support. This completes the proof. O

THE WEIGHTED CASE. In the general case, since ¢(e, t) is in terms of I(a/t, 1/t), one
can picture ¢(-,) by considering diagonal slices ¢(zt,t), when z > 0. In particular,
ozt  t) = ¢(EZt,t) for all z < EZ. Some of the main properties of A*(-,-) and (-, )

are given in the next lemma. Typical curves are shown in Figures 6.4 and 6.5.

I (e, p)

Figure 6.4: A typical rate function
I{-,-) (the one from the ezample of gaus-
sians in Chapter 2).

Lemma 6.5. For alla> 0 and t > 0, ¢(a,t) < 1.

Although the result is clear if we take Theorem 6.2 for granted, we prove it from

the first principles. Indeed, it is needed in the proof of our main result.

Proof. If py = --- = pg = 1/d, the result is clear. We now assume that p; # 1/d, for
some i, 1 <14 < d. In such a case, A* is differentiable in D{. which is not empty.
Again, we consider the case ¢(t) = ¢,(t) first. Recall that, then,
at) = ofant) = tlogd —a* (4,7,
Also, for any z,y, A*(z,y) = Az + py — A(\, ) where A = A(z,y) and pu = u(z,y)
satisfy
_OA(A\ p) _0AQ )

L=y and y= o (6.12)
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For any a,t, let )\, and p, be the values of A(z,y) and u(z,y) at (z,y) = (2,1). We

have
Bgolest) _, 1 N (z,) _,
Oa B R
by the definition of A* and (6.12). Also, as for the partial derivative with respect to
t:
Odo(cr, t) fal OA*(2, 1)
o T led=M{gg )t
$o(a,t)  a OA(z,y) 1 9A*(z,y)
= T T To
t ¢ T ey=cs.} N I EIEE
do(a,t) = « 1
= 22 At
£ T T
Recall that
a Ho Mol
Aoy tto) = =X+ — —A"{ —, = |.
Portio) = 320+ 5 (t t)

Hence, we obtain

O0po(a,t) 1ogd+A()\o,,u,,)

ot t t

At the maximum of @,(a,t), the first partial derivatives with respect to a and ¢ both
vanish. Hence, A, = 0 and —logd = A(0, ;) = log; Q(—1,), which implies p, = —1.
As consequence, for all a,t > 0, such that ¢(e,t) = ¢,(a, t),

¢(a,t) = ¢o(a,t) = thgd — tA* (%, %—) < —po = 1.

In the case when ¢(a, t) # ¢o(c,t), we have tEE < 1 and thus tlogd < %EEE-. However,

by Jensen’s inequality ,

d d
1 1
= - —_ ;> - - 1 = .
EFE y §= logp; > —log ( 7 ;=1 p,) logd

i=1

Hence tlogd < 1. This completes the proof. O

6.3.2 The expected logarithmic profile: Proof of Theorem 6.2

We first prove the upper bound of Theorem 6.2:
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Figure 6.5: A typical logarithmic profile. The thick black lines represent ¢(0,t) and
S(tEZ,t). Fort, constant, ¢(a,t,) is constant for a € [0,t,EZ].

Lemma 6.6. Let m = m(n) — oo. Let k ~ tlogn and h ~ alogn for some positive

constants t and a. Let ¢(a,t) be given by (6.10). If p(a,t) > —o0, then
EP,(k h) < n¢(a,t)+0(1)’

as n — oo. Moreover if the convergence of (k/logn, h/logn) is uniform in a compact
subset T of Ay(—a) = {(a,t) : t > 0,¢(a,t) > —a} for some a > 0, then for any

€ > 0, there exists n large enough that
EP,(k,h) < né@t+e,
uniformly in I

The ideas are similar to those we used in Chapter 4. The variables are not quite
i.i.d. as in ideal trees. However, Lemma, 6.1 gives us a good handle on the number of

variables that are not of the expected type (1,...,1) in the core.

Proof of Lemma 6.6. It suffices to prove the result on A(—a) for an arbitrary a > 0.

Consider a uniformly random path {ug,uy,...,us,... } in T ug is the root, and, for
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every ¢ > 0, u;4; is a uniform random child of u;. This implies that for all & > 0, uy

is a uniform node in %, the set of nodes k levels away from the root in 7. Let
H Pe = H e Ee, (6.13)
e€n(ug) e€m(ug)

By definition of P,,(k, ), we have
EP.(k,h) = d*-P{Bin(n, L,) > m,D,, > h}.

The randomness coming from the binomial random variables is irrelevant for the order

of precision we are after. Indeed, for any &; € [0, 1], we have

EP,(k,h) < d*-P{L,, > &,Dy > h}+d*-supP {Bin(n,£) >m}. (6.14)

<6

In particular, if we set
md—k/m
enlta/m’

S (6.15)

the second term of (6.14) is easily bounded as follows

sup P {Bin(n,§) > m} < P{Bin(n,&)>m} < (;)flm < (%)m _ d’k'

£<é m ne

As a consequence, by definition of D,, and (6.13),

EP,(k,h) < d*.P { Z Z.>h, Z E, <—log§1}+— (6.16)

e€n(ug) e€m(ug)

We shall now focus on the first term of (6.16). This kind of tail probability is treated by
the theory of large deviations presented in Chapter 2. Recall that Ay4(—a) is bounded
by Lemma 6.2. So, there exists a constant A > 0 such that, for all k¥ < tlogn and
h < alogn with (a,t) € Ay(—a), we have, by (6.15),

—log& = ( )logn+1—logm+ k logd < logn(1+§>,

for n large enough. Hence, rewriting (6.16), we have

A 1
< dF. > < = —. (6.
EP.(k,h) < d P{ > Z.zh Y. Ee_logn<1+m)}+na (6.17)

e€m(uk) e€m(uk)
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By assumption, {F,,e € m(ug)} is a family of i.i.d. random variables. It is not the
case for {Z.,e € w(ux)}, and hence, not for {(Z., E),e € m(ux)} either. However,
by Lemma 6.1, the maximum number of nodes with less than d children lying on a
path down the root with N > m(n) is o(logn) with probability at least 1 — n™, for
some w — 00 as n — oo. It follows that for i.i.d. random vectors (Z¢, E;), i > 1,
distributed like (Z°¢, E), for k ~ tlogn and h ~ alogn, for any § > 0, and n large

enough,

EP,(k,h) < d* - P {ch (3 —5) kzk:E < (1+6> k} cE L (61s)
t = t nvY no
Therefore, by Theorem 2.2, we have, for any é > 0, and n large enough,
EP,(k,h) < exp (klogd kI (— -9, +6>> + %‘I; + ;11;

Moreover, if

h
-«

k -t
logn

0
logn

»0 and

n—ooo n—o0

uniformly in a compact set, we can find n large enough for any « and ¢ in the same set.
Now, by definition, ¢(a, t) > —a on Ay(a) and hence I(:,-) is finite and continuous
at (2,1), by Lemma 6.2 (see also Dembo and Zeitouni, 1998). Thus, since § was
arbitrary, for every ¢ > 0, there exists n large enough that

EPn(k,h) < exp (klogd kI (‘t’ 1) +§> = n¢(°"t)+e/2+% < péledte

uniformly in any compact subset of Ay(—a) = {(o,t) : t > 0, ¢(a,t) > —a}, where,
as in (6.10),

1
t)=tlogd—-tI|—,-
olast) = tioga—11 (2,3).
This proves the lemma and the upper bound of Theorem 6.2. a

We now focus on the lower bound and prove:

Lemma 6.7. Let m = m(n) — oo with m = o(logn). Let k ~ tlogn and h ~ alogn
for some positive constants t and . Let ¢(a,t) be given by (6.10). If p(a,t) > —o0,
then EPy,(k,h) > n(® t)+"(1) as n — oo.
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We could handle the lower bound using techniques that are very similar to the
ones we used in the case of weighted trees of Chapter 5. However, here, Lemma 6.1

permits to simplify the proof.

Proof. Recall that uy is a random node in %, the set of nodes k levels away from

the root in T,,. We have
EP,(k,h) = d*-P{N, >m,D,, >h}.

Let A, be the event that all the nodes on the path from w up to the root have d
children. Then, if u € %, P {A. | Nu} > 1 — dk(1 — pa)*. Moreover, if A, occurs,
all the weights on the path 7(u) are i.i.d. by construction, and we can use Cramér’s

theorem. We have
EP,(k,h) > d*-P{N, >m,D, >hA}
= d* - P{N,, >m, D >h,A},

where D¢ counts the depths using the variables Z¢ = Z(1-»1) of the embedding.

Moreover,

EPn(k,h) > d*-P{N, >m,D; >h} -P{A,| Ny, >m,D; >h}
= d*-P{Ny, >2m,D; >h} P{A,| Ny, >m}
> d*-P{N, >m,D; >h} n0.

By definition N, is distributed as Bin(n, L, ), where L,, is defined in (6.13). As a

consequence, for any &,
EPn(k,h) 2 d*-P{Ly, 2 &, D, 2 h}- inf P{Bin(n,¢) 2> m}- n°®,
) 282
Choosing &, = m/n, we see that

inf P{Bin(n,§) >m} = P {Bin(n,&) 2 m}
> P{Bin(n,&) > EBin(n, &)} = nW,

and it follows that

EP.(k,h) > d*-P{L, >&,D; >h} -n°0. (6.19)
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Therefore, it suffices to study P {L,, > &, DS, 2 h}. Let (Zf, E;), ¢ > 1, be i.id.
vectors distributed like (Z¢, E). Then, by the definitions of Df, and L.,

k k
P{Ly > & D 2h} = P{ZZfzh,ZEis(1+o<1))logn},
i=1 i=1

since —log &, = (14 0(1)) logn. By Cramér’s theorem (Theorem 2.2) and (6.19), this
yields,

EP,(k,h) > d*-exp (—k[ (% 1 - 6) n o(k)) - no®,

for any € > 0 and n large enough. Since € is arbitrary and I(-,-) is continuous where

it is finite, the claim is proven:
EPn(k,h) 2 nfed+el)

where ¢(a, t) is given by (6.10). O

6.3.3 Logarithmic concentration: Proof of Theorem 6.3

The upper bound is straightforward using Markov’s inequality and the uniform state-
ment of Theorem 6.2. Indeed, by assumption, the convergence of (h/logn,k/logn)
is uniform in a compact set I' C Ay(—a). For all n large enough, and uniformly in
the set ', EP,,(k, h) < n"’("“;)“/?, ie.,

EPn(kh) _ o

SUD — Slan) =

(ent)el’

Hence
< EBnlkh) o

P {Pm(kv h) > n¢(t,a)+6} nolat)+e —

We now focus on the lower bound. We first prove a weaker version that will be

boosted:

Lemma 6.8. Let ¢ > 0. Let a,t > 0 such that ¢(a,t) > 0. Then, for k =
|tlogn — 3tloglogn|, and h ~ alogn,

limsup P { Pn(k, h) < n®@0=¢} < 1.

n—00
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Proof. In the previous sectiqn, one of the crucial arguments relies in the conditioning
on the event A, that all the nodes along w(u) are have d children. Then, given A,,
we can use Cramér’s theorem instead of the Gartner-Ellis theorem. We use a similar
argument, to relate P,,(k, h) to a Galton—Watson process. By Lemma 6.1, we all the
nodes such that N, > log?n have degree d with probability 1 — n*®. This is why we
construct our Galton-Watson tree using the variables (Z¢, E) of the embedding.

Let B, = —log L, = Hee,,(u) pe. Let £ be a natural number to be chosen later.
The individuals of the Galton—-Waton process will be nodes of %, s > 0. A node u

is called good if either it is the root, or it lies £ levels below a good node v and

Dﬁ—Df,>aT£ and Bu—Bv<§.

The set of good nodes is a Galton-Watson process. Let G, be the number of good
nodes in the s-th generation, or at level s in T,,. Let Y denote the progeny of an

individual of the Galton—Watson process. Then, the expected progeny is

EY = dP{ ) Zg>0‘7€, > Ee<§

e€m(ue) e€m(ug)

Hence, by Cramér’s theorem (Theorem 2.2),

EY > d°-exp (—EI <%,%) +o(£)) = exp (ZIogd— 74 (%, %) +0(£)> :

By assumption, ¢(a,t) > 0 and I(a/t,1/t) < logd. Then, for 8 > 0 small enough,
there is £ large enough such that

EY > exp (mogd I (% %) - ﬁe) > 1. (6.20)
Then, the process {G,, s > 0} of good nodes is supercritical.

Let A be the event that all the nodes with N, > log® n are of type (1,...,1). Let
F be the event that all the nodes with nL, > 2 log2 n have N, > log2 n. We have

P {Pn(k,h) < n#@*0=} <P{Pn(k,h) < n®@< A F} + P {A} +P{F}.
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If both A and F occur, then, the nodes with nL, > 2log®n all have d children.
Writing 7 = r(n) = d~¢ - log®n,

P {Pn.(k,h) < n®@=< A F} <P {P.(k,h) <n?@D=< A F}.

On the event A, all the variables influencing P,(k, h) are distributed as (Z¢, E). Also,
by definition of k = |tlogn — 3loglogn|, for any good node u at level ¢|k/¢], nL, >
2log? n for n large enough. Hence, if k = 0mod ¢, G k/¢) is a lower bound on P,(k, ¢) if
F occurs. If k # 0mod ¢, the subtree of every good node lying at level | k/£] contains
at level £ a node with N, > r. Thus, since the weights are non-negative, for any

k >0, G|xse; is a lower bound for F,(k,h) on AN F. As a consequence,

IA

P {Pn(k,h) < n¥>0=< A F} P {P.(k,h) < n®@D=¢ A F}

IA

P {Glijey < n*97, A, F}

< P{Gsy < nP@7<},

Now, by Lemma 6.1, for n large enough, P {A} < n=*, for some w — oo, as n — oo.
Also, by the union and Chernoff’s bounds,

L1

P{F}<d".P {Bin (n, % log® n) < log2n} < dbemslo8’n < gmrolog’n
for n large enough. It follows that
P {Pn(k,h) < n¥*97} <P {Gjy < 097} +0(1),

as n — oo. Therefore, proving the claim reduces to show that the first term is strictly
lower than one. For this purpose, we take advantage of asymptotic properties of

supercritical Galton-Watson properties.

By Doob’s limit law (see Chapter 3), there exists a random variable W such that

G
B G, - W almost surely.

The equation above gives us a handle on G|x/ via the limit distribution W. In

particular, for any € > 0, we have

P {Gije) < n*@D7} = P{Gly < EGise -n°V¢},
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since EG |/ > n#®+°(). As a consequence,

_ Glk/e
P (P (k h) < nfe0-€) < p{¢=01 }_,p W =0},
{ ( )— } - EGLk/gJ () k—o00 { }

The random variable W is characterized by the Kesten—Stigum theorem (Theo-
rem 3.4). In particular, writing Y for the distribution of the progeny, E [Y log(1 + Y)] <
oo since Y is bounded, and hence, P {W = 0} = g, the extinction probability of the
coupled Galton—Watson process. Since the process is supercritical by (6.20), we have

g <1l d

We now intend to boost the bound given by Lemma 6.8. Consider .%;, the set
of nodes ¢ levels away from the root, for £ = ¢(n) = |loglogn|. Each one of N,
u € %, is distributed as a binomial Bin(n, &,) with &, > p%. Let J; be the good event
that for each u € %, N, > ng, where n, = npf;,/ 2. Using the union bound, and then
Chernoft’s bound for binomial random variables (Chernoff, 1952; Janson et al., 2000),

we see that
1-P{J} = P{HGIE)NILSW} < d-P{Bin(n,p)) < n} < dt-e™/2
ueLy

Let Too(u) be the subtree of T, rooted at u. Given the values of the first £ symbols
of each string, the subtrees To.(u), u € % are independent. Moreover, conditioning
on Jg, each one of these trees behave like a weighted trie with N, > n, sequences. Let
P} .(k,h) be the number of nodes v € % N Too(u) such that N, > m and D, > h.

Since the weights are non-negative, we have

P {Py(k,h) <n?t®=} < PPy, m(k —£,h) < nf97¢}

< P{Pum(k—4,h) < nfe0er0},

since n/ny = 2pt'8™ Hence, for n large enough, since k — £ ~ tlogn and h ~

alogn,

P{P, . (k,h) <neh=c} < P {Pn,,m(k —¢,h) < n;f’(t"")‘zf} < g<1,
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by Lemma 6.8. However, if PY, (k, h) is large for any of the nodes u € %, then
P,.(k,h) is large as well:

P {Pom(k,h) < n?t9=} < P {Vu€ %, P (k,h) < n?t9=¢} < ¢ =o(1),

by independence. This finishes the proof of Theorem 6.3.

6.4 How long is a spaghetti?

6.4.1 Behavior and geometry

The behavior of the spaghettis is radically different from the one observed in the
core. This is because the number of sequences each one of them stores is at most
m(n). There are two main questions of interest about the spaghettis. Of course, in
preparation for the proof of Theorem 6.1, we shall study their maximum weighted
height. But in order to acquire a deeper understanding of the situation, we will first

look at the profile, not of a single trie, but of a forest of independent tries.

Let T, T?,...,T" be n independent b-tries. We assume that T* is a weighted
b-trie on m; = m;(n) sequences generated by a memoryless source with distribution
{p1,...,pa}. Also, we assume that for all i, m/d < m; < m. The roots of T
1 <4 < n, all lie at level zero. Then, we let P°(k, h) count the number of nodes u
lying at level k in any T* and such that D, > h. Since T" is a b-trie, we only count
the nodes for which N, > b+ 1. For now, we are only interested in EP*(k, h), when
k ~ plogn and h ~ «ylogn. The behavior of the spaghettis is tightly related to that
of (b + 1)-tuples of strings. Recall that Q(b+ 1) = Z:Ll pt*! is the probability that
b+ 1 characters generated by the source {p,...,pa} are identical. This is why the
randdm variable of interest here is
zZsy  wp. QOb+1)

-0 otherwise,

zb = (6.21)

where A € {1,...,d} is a random character generated by the memoryless source

with probability distribution {pi,...,ps}. Recall that the vector Z¢ = (Z5,...,Z3)
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is distributed as (Z7*,...,Z35%) where o; the permutation of (1,0,...,0) € {0,1}¢
with the one in the i-th position. Let Aj(-) be the rate function associated with the

variable Z°, and recall that Dy, is the interior of the domain where it is finite.

Theorem 6.4. Let T%, 1 <-i < n, be a forest of n independent tries. Let T* store
m; = m;(n) sequences. Assume thatm/d < m; <m foralll <i<n. Letk ~ plogn

~and h ~ ylogn, as n — oo, for positive constants pand~y. Ify/p € D,‘(;, then,
EP*(k,h) = n¢(1,p)+0(1),

as n — oo, where Y(v,p) =1 — ph(v/p), A;(-) is the rate function associated with
the variable Z°, and Iy(z) = inf{A*(z') : 2’ > z}.

The logarithmic profile of our forest of tries is shown of Figure 6.6. Observe in
particular that the logarithmic profile decreases linearly along any fixed direction v/p.
In other words, the point (0,0, 1) casts a cone of projections on the horizontal plane.
There is a preferred direction, corresponding to (7, ps, 0) such that

= 3350{7 t9(v,p) 2 0}.
This point is especially impotrtant since it characterizes the maximum weighted height
of TY,...,T™. Let H!,..., H" be the weighted heights of T, ..., T™, respectively, and
define

Spp =max{H':1<i<n}.

1-pA(v/p)

Figure 6.6: The profile generated by n in-
dependent tries on roughly m(n) = o(logn)
sequences each. We also show 7.
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Theorem 6.5. Assume that p; < 1. Assume that m(n) — oo and m(n) = o(logn).

Let

de *
v = sup {7 :9(,p) 2 0} = sup {y: pA} (v/p) < 1}. (6.22)
7,p>0 7,p>0

Then, Spp ~ 7o logn in probability, as n — oo. Furthermore, for every € > 0, there

exists & > 0 such that, as n — oo,

Snb 5
— > = . 2
P{logn_%_'_ﬁ} O (n™°) (6.23)

The condition in the definition (6.22) of +, reduces to finding the largest « such
that there exists p satisfying A}(p) < p/7. In other words, if we plot p — A*(p),
then 1/~ is the slope of the most gentle line going through the origin and hitting the

graph of A*(-), as shown on Figure 6.7. This yields the following characterization of

Yo

Lemma 6.9. Let A} be the rate function associated with Z° defined in (6.21). Let
Vs = sup,, {7 : pA;(7/p) < 1}. We have

Y% = sup{vrﬂp AZ(/})S%}

sup {7:311 Ib(p)sg}
_ . « P
= inf {’y.\?’p Ay (p) > :y-}

Proof. The proof of the first inequality follows the lines of Lemma 4.2 and is not
reproduced here. We have just proved the second equality. The third one follows

from the min-max principle. O

Using this alternate definition of 4, we can characterize the value of ~,.

Lemma 6.10. Let A} be the rate function associated with Z° defined in (6.21). Let
¥ = sup, {7 : pPA;(v/p) < 1}. Assume that Z° is not almost surely null. If Q(b) < 1,
then v, € (0,00). Otherwise, v, = 00.
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Ag(p)

Figure 6.7: The constant 1/, is the slope

of the line going through the origin that is tan-
gent to the curve {(p, A*(p))}.

Proof. Recall from Chapter 2 that inf, Aj(p) = —logP {Z° > —oc0}. If Q(b) <

1, then inf, A*(p) = —log@(b) > 0. Moreover the infimum is reached at p =
E[Z"| Z*> —oc0] > 0. The result follows (see Figure 6.7). On the other hand,
if Q(b) = 1, then inf, A*(p) =0 and 1/, = 0. O

6.4.2 The profile of a forest of tries: Proof of Theorem 6.4

In this section, we prove Theorem 6.4. We also define the notation that will be used
in the proof of Theorem 6.5. The proof relies on the analysis of (b + 1)-tuples of
sequences. Let v, p > 0 such that v/p € 'Dj’\;. Let k and h be such that h ~ ylogn,

k ~ plogn, as n — oo.

Consider any one of the n tries. More particularly, consider a (b + 1)-tuple of
sequences generated by the source, A', A?,..., A%, where A* = {4},j > 0} for
1 <7< b+ 1. Let u be a node at level k£ in any of the tries. When taking a step
one level down from u, we look at the next set b+ 1 of characters. Either they are
identical, and the strings have followed the same path, or they are not and a (b + 1)-
tuple has been split. In the latter case, since we consider a b-trie, all the sequences
are now stored in the nodes. In particular, this split (b + 1)-tuple does not appear at

levels deeper than k. Let F}, be the event that all the characters in k-th position in
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the (b+ 1)-tuple are identical. Then, the (b+ 1)-tuple appears after level k only if all
F;, 1< j <k occur.

Now, taking one step down the trie also means that we have followed a weighted
edge. The random weights are not i.i.d. on the path defined a string, since other
(b+ 1)-tuples may interact and modify the type of the nodes. However, the influence
of the interaction is negligible here. Indeed, as we have already seen, there are at
most m(n) = o(logn) nodes in a trie (Lemma 6.1). As a consequence, in a single trie,
the number of nodes whose type is not a permutation of (1,0,...,0) is o(logn). In
particular, since Z is bounded, their influence is o(log n), which is negligible compared

to h = ylogn for v > 0 (see Lemma 6.1).

A node u € T" lying k levels away from the root is counted in P*(k,h) if D, > h
and u € T*. This happens if there is at least one (b + 1)-tuple stored in the subtree
rooted at u, and the weighted depth is at least h. In other words, for all 7, and a node

u at level k,

P{D,>hueT} < m't. {Z l+ologn >'ylogn ﬂ FJ}

1<j<k

k
= mt.p {E (qu - oollF}"]) +o(logn) > 7108”} :

=1

The summands on the right-hand side above are precisely distributed as Z° defined

n (6.21). It follows that

k

P{D,>hue T'} < mttl . P {Z Z}’ + o(logn) > 'ylogn} , (6.24)
j=1

where Z?, 1 < j < k are i.i.d. copies of Z°. A lower bound is obtained by considering

a single (b + 1)-tuple for the trie 7°. This is possible since m; > m/d — oo, and

hence, for n large enough, m; > b+ 1 for all . Then,

P{D,>h uET’}>P{ZZb—ologn)>'ylogn} (6.25)

ij=1
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Let § > 0 be arbitrary. There is n large enough such that

710gn—ko(10gn) > % 5 and 'ylogn-l;co(logn) < Y4

Use Cramér’s Theorem in both (6.24) and (6.25), and observe that mb*! = n°() =

e°®) to obtain

- e~k (v/p+8)+o(k) <P {Du >hue Ti} < e—klb(7/P—5)+0(k),
as n — 00. We have n of these tries, and I, is continuous at v/p € DKE' Hence,
EP*(k, h) = nl—pr(v/P)+0(1),

as n — oo. This completes the proof of Theorem 6.4.

6.4.3 The longest spaghetti: Proof of Theorem 6.5

THE UPPER BOUND. Let € > 0 be arbitrary, and write 4 = v, +¢. We want to upper
bound S, ;. Observe that the tries T%,...,T" are not quite identically distributed.
Indeed, their number of strings may vary slightly. We do not assume that the weighted
height increases in the number of strings. By the union bound,

P {Snp > 7'logn} <nm sup P {H' > +'logn}. (6.26)

1<i<n

Consider now any one of the n tries. More particularly, consider a (b + 1)-tuple of
sequences generated by the source, A', A?,..., A", where A* = {4,j > 0} for
1 <¢< b+ 1. Let W be the weighted height of the common path of this particular
set of strings. By the same arguments we used in section 6.4.2:

¢
W< max{z (Zﬁx; —00- l[ch])} + o(log n), (6.27)

20 | 4
where Z7, j > 1, are i.i.d. copies of Z? defined in section 6.2. The summands in (6.27)
are precisely i.i.d. copies of Z® defined by (6.21). Using the union bound, we see that
for any 7, and for n large enough,

¢
P{H'>+'logn} < m"*!.P {Elé : ZZ;’ > 'y'logn},

=1
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where {Z%,7 > 1} is a sequence of i.i.d. copies of Z°. Note that the upper bound
J P

above is independent of i. Using (6.26) and the union bound once again, we obtain
e
P {8, >'logn} < n-m"*?. ZP {Z Z;.’ 2> 'y’logn} ,
21 j=1

Apply Cramér’s theorem or Chernoff’s bound (Theorem 2.2) to each one of the sum-

mands, and observe that m*+? = no():

!
P {S.s>7'logn} < nit®. Zexp <—€Ib ('7 lcggn)) . (6.28)

£>1

We now split the sum on the right-hand side of (6.28) into two pieces, and then bound

each one of them separately.

When ¢ is large, what prevents the sum to be large is the increasing probability
that the path has been split. Recall that P {Z® > —oo} = Q(b + 1), and hence
inf, I(p) = —log Q(b + 1). Let § > 0 to be fixed later. Let

1446
:K = —_— . .
K () —logQ(b+1) logn

We have

140(1) 7' logn 140(1) log Q(b+1)K —8/2
n Z exp | =41 7 =0(n e )=0(n"?). (6.29)
K

Now for the low values of ¢, we have to deal with the weights. Observe first that,

by definition of -,, there exists § > 0 such that

. ¢ v . o
mf{logn Ib<f/logn)} = ;gg{p Ib(p>} t+p

We now choose § small enough that § < 3/2. Then, since K = O(logn),

!
o) Zexp (—Ub (’)’ ltzg n)) < Kn#? = O (n"oM). (6.30)
<K :

Note that min{d/2, 5/4} = §/2. Plugging both (6.29) and (6.30) in (6.28) proves that

P {Snp > 7' logn} = O (n™%%) + O(n~#/*) = O (n~%7?),
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which completes the proof of the upper bound (6.23).

THE LOWER BOUND. Let € > 0 and write 4 = -, — e. By assumption, m(n) — oo,
and hence, there exists n large enough that m(n)/d > b+ 1. We only consider one
tuple from the each b-trie. We then have n independent realizations of the random

variable W described in the previous section. We now have the lower bound

€20

e
W > max {Z Zfﬂ —00-1[3k, K : Af # A;“l]} — o(logn), (6.31)
=1 7

where Z7, 7 < 1 are i.i.d. copies of Z° defined in section 6.2. The largest of the
n independent copies of W..is a lower bound on S,, (see remark next page). Let
Xi, 1 €1 < n denote the sequence of indicators that the i-th realization is at least
v"logn. Let M =37 | X;. We intend to prove that M > 1 with probability tending
to one as n — oo. For this purpose, we use the second moment method (see, e.g.,

Alon et al., 2000). We have,
EM = n-P{W >+"logn}.

Let {Z%, 5 > 1} be a sequence of i.i.d. copies of Z® defined by (6.21). Then,
J

14 o
EM = n.P{Ew:ZZJ'-’ 27"logn} > n-P{ZZJI-’ 27"logn},
=1

j=1

for any £y > 1. By the alternate definition of 7, provided by Lemma 6.9, there exists

7//)
p- I (— < 1.
"\p

In particular, if we set £, = [plogn]|, by Cramér’s theorem,

£y "
EM>n-P {Z Zi > 4" logn} =n-exp (—EOII, (770—) + o(éo)) — 00.

n—00
Jj=1

p such that

We now use the second moment method. By Chebychev’s inequality,

Var [M]

P{M=0} < P{M—EM<EM} < E
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However, M is a sum of i.i.d. random variables, and we have EM = nEX; and

Var [M] = nVar [X;]. Also, Var [X;] = EX; — (EX;)2. It follows that

1 1
P{M = < - )
{ 0} — EM n n-o 0

As a consequence, with probability tending to one as n — oo, M > 1, which completes

the proof of the lower bound.

Remark. Note that we have never used the fact that the weighted height of a trie is
increasing in the number of sequences. In the lower bound, this is made possible since
the random variable W accounts only for the weights of edges tied to non-branching
nodes, i.e., whose a type is a permutation of (1,0,...,0). Enforcing the fact that the
weighted height be increasing in the number or strings would not affect any of our

main applications (see section 6.6). However, for binary tries, where

(1,1) if r=(1,1), and
(2,2) if 7€ {(1,0),(0,1)},

2T =

the weighted height is not increasing. Yet, Theorems 6.1 and 6.5 still hold.

6.5 The height of weighted tries

6.5.1 Projecting the profile

Recall the definitions of the core and spaghettis. Let m = m(n) — oo with m =
o(logn). The core C of a b-trie T, is the set of nodes u € T, ; such that N, > m.
When removing C from T,,, we obtain a forest of trees, the spaghettis (see Figure 6.1).
Each one of these trees is rooted at a node u € 9C, the external node-boundary of C
in Ty, 5. In other words, the nodes u € OC are the children of some node v in the core,

but are not themselves in the core. Recall that ¢, = sup {a + w¢(e, t)}, where

v =sup{y:pA; (v/p) <1,7>0,p > 0}.

Alternate definitions of 4, are given in Lemma 6.9.
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Theorem 6.1 can be interpreted as follows. Consider a point (a,t, #(a,t)). This
point is mapped on the horizontal plane going through the origin via a projection.
The direction of the projection is given by the vector (1,0,—1/v). The direction
along the t-axis is actually irrelevant, and any direction (1, z, —1/+,) gives the same a-
coordinate for the image of (a, ¢, ¢(a,t)). The constant c; is then largest a-coordinate

of these projections.

The projection is not a mere interpretation of the formula for c,. Indeed, The-
orem 6.4 shows that a set of P,(k,h) tries on about m(n) sequences each has a
logarithmic profile that decays linearly in every direction. We can also note that the
actual profile induces a preférred direction of projection (1,—1/ps, —1/7), as shown
of Figure 6.6. The projection of points («,t, ¢(a,t)) using this preferred direction is
depicted in Figure 6.8.

a+ vpd(a,t)

Figure 6.8: A geometric interpretation for the height: each point (a,t,¢(c,t)) of the
logarithmic profile of the core throws a line whose direction is given by (1,—1/pp, —1/7).
The line intersects the plane ¢ = 0 at (a + wd(e, 1)), t + ppd(a,t),0). The constant cp is
the largest coordinate of one of these point along the a-axis.

The definition of ¢, above follows from the proof. For the applications, it is useful

to simplify it slightly.
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Proposition 6.1. We have ¢, = sup{a + v - ¢.(a, t)}, where @,(-,-) is defined by

do(a,t) = tlogd — A* (9, l) ,

Proof. Clearly, since ¢(-,-) is concave, only the points (a,t) for which ¢(a,t) > 0

matter. By definition,

a l ) . ) a 1
I(;,;)—mf{A (z,y) x> t,y< t}'

The function A*(:,-) is continuous at every point (a/t,1/t) such that ¢(a,t) > 0.

Hence for every such a point, ¢,(a,t) < ¢(c,t). As a consequence

ey = sup{a + d(a,t)} > sup{a + vd.(a, )} (6.32)

To devise the other inequality, we need only consider the points for which ¢(a,t) #
¢o(a, t), that is (e, t) such that tEE < 1 and a < tEZ. It turns out that these points
do not matter in the supremum since the value they account for is always dominated
by some other one. Observe that EE > £, and by Lemma 6.2, ¢(:,-) is concave and
maximum at (o, 1/€), @ < EEZ. Therefore, for all @ and ¢ such that tEE < 1 and
a<tEZ,

a+ (e, t) < 22 4 g (EZ 1).

£ £E
It follows that the points for which ¢(«, t) and ¢,(«, t) differ are irrelevant. Each single
one of the relevant points in sup{a + 1¢(a, t)} is also present in sup{a + v@,(c, t)}.

Thus, ¢, < sup{a + vepo(e, t)}. With (6.32), this completes the proof. O

6.5.2 Proof of Theorem 6.1

Put together, Lemmas 6.11 and 6.12 prove Theorem 6.1.

Lemma 6.11. Let T, be a b-trie as defined in section 6.2. Let H,; be its height.
Then, for any e >0, P {H,, > (¢, + €)logn} — 0 as n — oo.

Proof. Let € > 0 and write ¢ = ¢, + €. Let W, denote the weighted height of the

subtree rooted at u. Recall that C denotes the core. We have

P{H,, > logn} < P{FueC:D,+W,>clogn}.
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Let C, = C N %, where % is the set of nodes k levels away from the root in T,.
Then,
P{H,,>clogn} < P{3k,u€Cx:D,+ W, >logn}.

We can immediately restrict the range of k. Indeed, when £ is too large, it is unlikely
that there is even one node u in the Cx. By Lemma 6.2, {(a,t) : ¢(a,t) > —€}
is contained in a bounded set. Pick t large enough that ¢(0,f) < —e < 0. Let
K = K(n) = [tlogn]. Thén,

P{3k>K,ueC:D,+ W, >logn} < P{|Ck|>0}

IA

EP,(0, K)

n—e+o(1)’

IA

by Theorem 6.2. Let Cx(h) = {u € Cx : D, > h}. By the union bound,

P{Hn.,>clogn} < Y P{IueC:D,+W,2>c logn} +0(1) (6.33)
k<K
= ZP{E!h:Ck(h)aé(D h+ max, W >clogn} o(1).
k<K u€Ch( 3
R(k)

Let k < K, and consider the corresponding term R(k) in the sum above. Let Fy be
the o-algebra generated by the first £ symbols of the n strings. Then,

f}]

However, given Fi, max{W, : u € Cx(h)} is distributed like the longest of P, (k, h)

R(k)=E[ {Bh Ce(h) #0,h + max, W, > dlogn

u€Ci(h

independent weighted tries, each on at most m(n) sequences. Therefore, by Theo-

rem 6.5, for any 4 > 0 there exists § > 0 such that

P{ max W, > (7b+,3) logP (k’h) l ].‘k} < e—tslong(k,h)’
u€C(h)

where ~, defined by (6.22). This bound is weak when P, (k,h) is small. In such a

case, we shall rather use

P{ max W, > —logn
u€Cx (k)

}-k} < -9/ m+49)
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when P,,(k, h) < n¢/. It follows that, in any case, and for 8 < v,
R(k) <P {3h . h+ (v + B) log Pu(k, k) > (c,, + %) 1ogn} 4 noEm) | (6.34)

We now bound the first term of (6.34). The full range for k¥ and h is obtained by
setting k = |tlogn| and h = alogn, and letting ¢t and o vary. By definition of
cp = sup{a + 1¢(a, t)}, we have for all h = alogn and k = [tlogn],

p {long(k, h) > 1 N €/2 } <P {long(k, h) > Td(a, t) +6/2}.
logn Yo+ B YW+ B logn Yo+ B

The weights are bounded and there exists A such that for all &k < t,logn, h < Alogn.
A bound that is uniform on compact sets is given by Theorem 6.3, and for § > 0
small enough,

log Pn(k, h) 1 €/2 4
P ) a4 2\ o pelamyron)
o PR e o)+ <

As a consequence, recalling (6.33) and (6.34),

P{H,;>clogn} < > n =€/ (w)tol) 4 3 n—0¢/(4m)

k<tologn,h<Alogn k<t,logn,h<Alogn

< O (n /W iogin) + O (n=%/“m) Jog? n) .

This completes the proof of the upper bound. a

Lemma 6.12. Let T, be a b-trie as defined in section 6.2. Let H,p be its height.
Then, for any € >0, P {H,p < (¢ — €)logn} — 0 as n — oo.

Proof. Let € > 0. Recall that, by definition, ¢, = sup {a + 7, - ¢(a, ) : t,a > 0}.

Therefore, there exists (a,, t,) such that
G+ Y- ¢(aoa to) > cp— 6/2

Let o, and t, now be fixed. Let k = |t,logn — 3t,loglogn] (in order to use Theo-
rem 6.3) and h = o, logn. Let Fj be the o-algebra generated by the first k characters
of the n strings. Consider the N’ = P,,(k, h) nodes u at level & for which N, > m,
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Figure 6.9: The structure of the lower
bound: find some level k such that the trees

% | ‘ starting at % are tall enough. Only those
& (colored) are considered, the others are ig-

L | | | U LUA nored.

D, > h. Conditioning on Fi, the P, (k,h) trees rooted at these nodes are indepen-
dent. Let Snvp be the weighted height of the tallest of these trees. We want to show

that h + Sy is a good enough lower bound on H,, .

So it suffices to lower bound Sy/;. We are in the situation we have studied in
Section 6.4, and we intend to apply Theorem 6.5. Let § > 0 and n’ = n#@eto)=8 The
idea of the lower bound is pictured in Figure 6.9. We have

SETPN Sy

Frp < P <-4
logn'

+1[Pm(k, h,) S n¢(a07to)—6].

Fiey Pm(k, h) > nd’("‘ov‘a)—ﬂ}

Taking expected values, we obtain

Snip Sn b -
2 < _ < 2 < _ < P(ao,to)—6 . .
P{logn’ < 5} _P{logn, < 6}+P{Pm(k,h) <n ). (6.35)

It only remains to bound both terms on the right-hand side of the equation (6.35).
By Theorem 6.3 and the definition of k and h, P { P, (k, h) < n¢®®)=%} = o(1). Also,

by Theorem 6.5,
Sn’ b
P — < 7 — — 0.
{logn’ =" 6} n—oo 0

Therefore, with probability 1 — o(1),

Snip = (w—0)logn' = (7 —9) - (¢, to) — 6) - logn.
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We have not specified § yet, and we pick ¢ small enough that

('Yb - 5) ) (¢(ao:to) - 5) > 'Yb¢(a07 to) - €/2

The weighted height of T, is at least h + Sy/p. It follows that, with probability
1-0(1),

H.p
=7 > — . — > —_
ogn > o+ (1 —0) - (¢(ao, to) = 6) > cp—¢,

by our choice of §. This completes the proof of the lower bound. d

6.6 Applications

6.6.1 Standard b-tries

We shall first consider simple well-known examples. We start with the case of stan-
dard, i.e. unweighted, tries. We show that the following theorem follows from Theo-

rem 6.1.

Theorem 6.6. Consider an unweighted b-trie T, on n independent sequences of
characters of {1,...,d} generated by a memoryless source with distribution py >
o+ 2>pg > 0. Let H, denote the height of T,,5. Then,

Hn,b b+1
logn n—ec —logQ(b+1)

in probability, as n — oo.

Theorem 6.6 is due to Szpankowski (1991). The case b = 1 was proved by Pittel
(1985). See also Devroye et al. (1992).

Remark. Theorem 6.6 has first been proved by considering the longest prefix of (b+
1)-tuples of sequences, which is exactly what we do for the analysis of the spaghettis.
It is interesting to note that for this case, one can obtain tight bounds on the height
without distinguishing the core from the spaghettis. One of the reasons is that the

weights are identical for all the edges.
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Proof. Here, we assume that Z = 1 almost surely. Then, ¢(a, t) is just the logarithmic
profile studied by Park et al. (2006) in the binary case, or Broutin and Devroye
(2007a).

THE CORE OF THE TRIE. We can compute the generating function of the cumulants:

for any A, 4 € R,
d
A(X, p) = logE [+#E] = X +1og > p;* — logd.
=1
Then, the associated convex dual A* is given by

d
A*(z,y) = sup {/\(:v ~ 1)+ py - logzpi_“} + logd.
A :

i=1
It follows that A*(z,y) is infinite unless x = 1. Writing ¢ = p(y) for the unique

solution of 4
21:1 log p; 'pi_#
d —
e P; g

d
A*(1,y) = py —log Y _ p;* +logd.

i=1

y:

b

we have

By Proposition 6.1, it suffices to study ¢, instead of the more complicated ¢. By

definition,

d
do(a,a) = alogd — aA* (1, é) = p(l/a) + alogZpi—”(l/a). (6.36)

i=1

THE BEHAVIOR OF SPAGHETTIS. In an unweighted trie, we have Z° =1, and Z% =1

almost surely. Therefore, for all A,
Ap(X) = logE [e*] +log Q(b + 1),

and hence Af(z) is infinite unless z = 1, in which case, we have A}(1) = —log Q(b+1).

Then, Lemma 6.9, we clearly have

x P 1
= : K<—p=—
¥5 = sup {:7 3o Ajp) < 7} "oz 00T 1)
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THE OVERALL CONTRIBUTION. Now by Theorem 6.1, the height H,; of a random
b-trie is asymptotic to ¢, logn in probability, where

_ ¢, @)
a=suplo+ 5

This reduces to finding o, such that

0d(a, )

oo

=log Q(b+1).

a=Qo

By Lemma 6.4, a, = Q(b+1)/E(b+ 1), where

d
Eb+1)=> pilogp:.
i=1

Lemma 6.4 also implies that

o= b+1

*T “log Qb+ 1)
This completes the proof of Theorem 6.6. For an illustration of this case, see Fig-
ure 6.3. O
Example: symmetric b-tries. When p; = p; = --- = py = 1/d, the functions

A*(-,-) and ¢,(:,-) are degenerate. Our framework works in this case. In particular,
do(a, t) is degenerate: ¢,(a,t) = —oo, unless @ = 1/logd and t = 1/logd, where
®o(ax,t) = 1. In this case, log Q(b + 1) = —blogd. It follows that

1 1 1
H,p ~ 1 ={1+-]1
’ <logd+—logQ(b+1)> cen (+b) o8t

in probability, as n — oco. In such a case, the contribution of the spaghettis is 1/b

times that of the core. For instance, with ordinary tries, b = 1 and the contribution of
spaghettis is equivalent to that of the core. This result was first obtained by Régnier
(1981) in the case of a Poisson number of sequences. Flajolet and Steyaert (1982) and
Flajolet (1983) obtained the limit distribution. See also Devroye (1984) and Pittel
(1985).
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1 2 3 10 50 100

c(2) 2.88539... 2.16404... 1.92359... 1.58696... 1.47154... 1.45712...
(3) 1.82047... 1.36535... 1.21365... 1.00126... 0.92844... 0.91934...
c(10) 0.86858... 0.65144... 0.57905... 0.47772... 0.44298... 0.43863...

Table 6.1: Some numerical values for cy = cp(d) the height of symmetric ordinary tries,
as b varies and d € {1,2,10}.

6.6.2 Efficient implementations of tries

The usual implementation of a trie uses an array for the branching structure of a
node (Fredkin, 1960). Although this always ensures O(1) shunting of the strings,
the space required may become an issue for large alphabets: many pointers would
be left unused. To avoid this, one solution is to replace the array by variable size
structures. The oldest solution due to de la Briandais (1959) uses a linked-list, and
we shall call the implementation a list-trie. More recently, a second elegant solution
has been proposed by Bentley and Sedgewick (1997), which uses binary search trees.

It is known as the bst-trie, ternary search trie or TST for short.

Both structures aim at a trade-off between the storage space and the speed. In
particular, the access time to children is no longer constant, and may even not be
O(1) when the alphabet is infinite. In this sense, list-tries and the TST may be seen
as high-level tries whose edgés are weighted to reflect the internal low-level structure
of a node (see Figure 6.10). This point of view has been taken by Clément, Flajolet,
and Vallée (1998, 2001) who analyzed thoroughly these hybrid implementations of
tries under various models of randomness (see also Clément, 2000). In particular,
they analyzed the average size and average depth. The question of the height of
hybrid-tries was left open. We show that the heights of both the list-trie and TST

follow from Theorem 6.1.

Let A = {1,...,d} be the alphabet. Let {A%,1 < i < n} be the n strings. In

ordinary tries, that is, with the array implementation, the order of the sequences
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is irrelevant. This is not the case any more in either the list-trie or the TST. In
the following, we distinguish the nodes that constitute the high-level trie structure
from the slots which make the low-level structure of a node, whether this latter be a

linked-list or a binary search tree.

We now describe the way the internal structure of a node is constructed, in both
list-tries and TSTs. Consider a node u. The subtree rooted at u stores a subset of
the sequences A*, 1 < i < n. Let M, C {1,...,n} be the set of their indices. So, in
particular, the cardinality of u is N, = |N,|. The internal structure of the node is
built using the sequences in increasing order of their index (see Figure 6.10). For a
node u at level k in T, only the k-th characters of each sequence are used. Only the
distinct characters matter. Let A, C A be the set of distinct characters appearing
at the k-th position in the sequences A%, i € N,. The characters in A, are ordered
by first appearance, and this induces a permutation o, of A,. The internal structure
of the node u is built by successive insertions of the elements of o, into an originally

empty linked list, or binary search tree.

Both the list-tries and ternary search trees are built using the process we have

just described. We shall now study each one of them more precisely.

3

112](314]5[6 *

e 2 Pi8ir] / !

K b v ¥ 1 ; 5

AN
3 5 4 1 2 6 ': % 3 | 3
', 1 ’, > " ] " ] . > Q‘ :' .: I': _‘. :.‘ ,,‘
v ¥ X & A B T B
y 14 v v \ | |

Figure 6.10: The different node structures used for the standard (top-left), list (bottom-
left) and bst-trie (right) when the order of appearance of the characters is 3, 5, 4, 1, 2 and
6. The dashed arrows represent the pointers to further levels of the trie.
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6.6.3 List-tries

In the list-trie of de la Briandais (1959), the cost of branching to a character a is just
the index of a is the permutation o,. For every node u, for which A, = A, o, is
distributed as the sequence (in order) of first appearance of characters in an infinite
string generated by the source. This fully describes the distribution of Z. That is,
we have Z; is the index of ¢ in ¢, and Z = Zk, where K is uniform in {1,...,d}.

Observe that when |A,| = 1, we have Z = 1.

Theorem 6.7. Let H,; be the weighted height of a list-trie on n sequences. Let Z be

as described above. Then, H,p ~ cylogn in probability, as n — oo, where

$(a t) }
—logQ(b+1) )’

and ¢(-,-) is the logarithmic profile of the trie weighted with Z.

Cp = Sup § @+
a,t>0

The theorem explains and characterizes the first term of the asymptotic expansion
of the height for all distributions p,,...,pq for d < co. For general distributions, it
seems difficult to obtain a closed form for the height. However, Z is a non uniform
random draw of an element of {1,...,d}, and maybe there is an other way to see the
random variable that would lead to the a better description of ¢(a,t) and c;,. We

shall obtain more concrete results for specific example.

Example: symmetric list-tries. In this case, for all 7, we have p; = 1/d and Z; is

uniform in {1,...,d}. Therefore, for any A, u € R,

d
A\ p) = logE [e] + pulogd = log (Z e“) + (1 —1)logd.
i=1

For z € [1,d], there exists A = A(z) such that

OA(A, )

d . i\
.1 1€
5 _ Zz—l (637)

=i
Q@) 2im €2

Then, we have

Az —log (Z?=1 ei’\) +logd ifze€[l,d,y=Ilogd

00 otherwise.

A(z,y) =
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As for ordinary tries, in the range of interest,

A(Malogd),1)

1
) <a, @> =1-—alalogd) + Togd , (6.38)

where A(-) is defined in (6.37). In essence, ¢(a,t) is a function of a only. And we now
write ¢(a) = ¢(a,t) and A(A) = A(A,1). By Theorem 6.7, looking for the constant

¢p boils down to finding «, such that

9¢(a) _ _
B =logQ(b+1) = —blogd,

a=a,e

and for this a,, we have

_ é(a,)
Cp =0+ logd . (6.39)
In other words, we have
0d(c) _ dX(alog d) 1 O0A(Malogd))
da |, Maologd) —a do |, + logd O o
_ _Maulogd) — o O (alog d) 1 9A(N) ~ 0A(alogd)
O w0 1084 0N |y 10gq) Jo

= —Ma,logd),

by (6.37), and hence A(a,logd) = blogd. Hence, by (6.38) and (6.39),

1 A(blogd)
~ blogd ' blogd

Cy

Observe that this characterizes fully ¢, and holds for any symmetric weighted trie.

For our case of symmetric list-tries, we obtain

8 (Zhe)
@=ald) = — 1T " lgd

for large d. Some numerical values can be found in Table 6.2.

6.6.4 Ternary search trees

In the ternary search trees introduced by Bentley and Sedgewick (1997), the imple-

mentation of a node uses a binary search tree. Hence, the cost of branching to a

Qo
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b 1 2 3 10 50 100

cs(2) 3.28661... 2.67491... 2.52441... 2.44289... 2.44215... 2.44206...
c(3) 3.12515... 2.86870... 2.83088... 2.82022... 2.81969... 2.81963...
c(10) 4.92852... 4.90959... 4.90850... 4.90723... 4.90680... 4.90675...

Table 6.2: Some numerical values of ¢, = cp(d) characterizing the height of symmetric
list-tries.

character ¢ € A at a node u is the depth of ¢ in the binary search built from the (non-
uniform) random permutation ¢,. When the node u is of type 7, = (1,...,1), the
permutation o, is distributed as the ordered list of first appearances of characters in

an infinite string generated by the memoryless source with distribution {py,...,pa}.

Let Z; be distributed as the depth of 7 in the binary search tree built from o.
Then, Z is distributed as (21, ..., Z3) and Z = Zg, where K is uniform in {1,...,d}.
When u is a non-branching node, i.e., 7, is a permutation of (1,0,...,0), then the
depth of the unique child is always one: Z* = 1 almost surely. By Theorem 6.1, we

obtain:

Theorem 6.8. Let H,; be the weighted height of a b-TST on n sequences. Let o
be a permutation of {1,...,d} built by sampling with replacement from {1,...,d}

according to py,...,pq. Let Z be the depth of a random node in a binary search tree

B #(a,t)
o= sup {ar o)

where ¢(a,t) is the logarithmic profile defined in (6.10). Then, H,p ~ cylogn in

built from o. Let

probability, as n — oo.

The random variable Z is complicated to describe in other terms for general dis-
tributions py,...,ps. Some parameters like the average value and the variance of Z;,
1 < i < d, have been studied by Clément et al. (1998, 2001) and Archibald and
Clément (2006). For this case, describing Z and ¢(a,t) in a way that would lead to

¢y seems way more difficult than for list-tries.
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Figure 6.11: A standart trie and the corresponding TST.

Example: Symmetric TST. We assume here that p; = p; = --- = ps. In this case,
the permutation ¢ is just a uniform random permutation. Hence, Z; is the depth of
the key ¢ in a random binary search tree. Observe that unlike in the case of list-tries,
Ziy 1 < i < d, do not have the same distribution. This is easily seen, since, for
instance as d — oo, EZ; ~ logd whereas EZ|4/5) ~ 2logd. However, we are only
interested in the distribution of Z, that is, the depth of a uniform random node. This
distribution is known exactly for random binary search trees, and is due to Brown

and Shubert (1984):

2k—1
d-d

P{Z=k}= ‘f , (6.40)

d
j=k |J

where [:] denotes the Stirling number of the first kind with parameter n and k, that
is the number of ways to divide n objects into k£ nonempty cycles (see Sedgewick and
Flajolet, 1996; Mahmoud, 1992b). Using (6.40), it is possible to compute the cumulant
generating function A, and ¢(«a,t). Numerical values for the constant ¢, = c;(d) such
that H, ~ cylogn in probability as n — oo are given in Table 6.3. Observe that the

when d = 2, TST are equivalent to list-tries. In general, using the computations we
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+1)---(3d—1) —d!
di(2d - 1) )

did in the case of symmetric list-tries,

) = 1 [ 2t |d
=) = igatiogd |\ X 2T |

1 1 (2d) - (2
logd + log?d log (
d(3log3 — 2log2)

log?d

~

(see, e.g., Mahmoud, 1992b,' p. 79). Numerical values for the constant ¢ = c¢(d) are
given in Table 6.3.

b 1 2 3 10 a0 100

cp(2) 3.28661... 2.67491... 2.52441... 2.44289... 2.44215... 2.44206...
c(3) 2.90777... 2.66010... 2.65121... 2.65118... 2.65117... 2.65116...

Table 6.3: Some numerical values of ¢y = cp(d) characterizing the height of symmetric
ternary search trees.






Chapter 1

Conclusion: Shedding light on trees

This thesis provides generalizations of the theorems about the asymptotic behavior

of the heights of random trees. In Chapter 5, we showed

e that the study of heights of random trees benefits from the introduction of
weighted versions of the standard branching process along the lines first sug-

gested by Biggins (1977), and

e that, if there is an upper bound on the height, only the subtrees that contain a

large number of items contribute significantly to the height.

This permits us to treat many kinds of trees using the same theorem (Theorem 5.1).
Also, several new applications follow. In Chapter 6, we introduce an analogous

weighted version of random tries. We proved that the height can be explained by

e the contribution of the core of the tree that behaves as weighted random split

trees, and
e an additional term coming from long spaghetti-like trees.

These terms have comparable asymptotic growth, and in general, neither is negligible.
The main result of Chapter 6, Theorem 6.1, allows us to devise new proofs for the

heights of tries. New applications include the characterization of the asymptotic

167
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heights of the trees of de la Briandais (1959) and the ternary search tree of Bentley
and Sedgewick (1997).

The analysis exhibits a strong link between random trees and random tries. The
link lies in the core of the trees. We shall explain it using a concrete example. Consider
n sequences of characters generated by a memoryless source. The expected cores of
the digital search tree (Chapter 5) and trie (Chapter 6) built from such sequences
are similar. The trie differs in that the trees hanging down the core have height of
order O(logn). The heights of both trees may be explained by the cone of shadow
cast by the logarithmic profile ¢(-, -) describing the core. In the case of digital search
tree, the bulb should be located far away in the direction (0,0,1). In the case of tries,
one should put the light at (—v,, —ps, 1) - z, for some specific positive 4, and p;, and
x — 0. So, in some sense, digital search trees and tries, appear as the same object

seen from two different angles.

EXTENSIONS AND OPEN PROBLEMS. All the trees in the thesis have bounded degree,
or are reduced to bounded degree. The theorems can be extended to the unbounded
case, using the point process approach of Biggins (1995, 1996). Also, we only charac-
terized the first order terms in the asymptotic expansion of the height. It would be
interesting to see how general a theorem one can obtain about asymptotics that are
precise to O(1). We think inparticular of the case of increasing trees (Bergeron et al.,
1992; Broutin et al., 2006; Drmota, 2006) that may benefit from the new approach of
Addario-Berry (2006) and Addario-Berry and Reed (2006).
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