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Abstract 

We introduce a weighted model of random trees and analyze the asymptotic properties 

of their heights. Our framework encompasses most trees of logarithmic height that 

were introduced in the context of the analysis of algorithms or combinatorics. This 

allows us to state a sort of "master theorem" for the height of random trees, that covers 

binary search trees (Devroye, 1986), random recursive trees (Devroye, 1987; Pittel, 

1994), digital search trees (pittel, 1985), scale-free trees (Pittel, 1994; Barabasi and 

Albert, 1999), and all polynomial families of increasing trees (Bergeron et al., 1992; 

Broutin et al., 2006) among others. Other applications include the shape of skinny 

cells in geometric structures like k-d and relaxed k-d trees. 

This new approach sheds new light on the tight relationship between data struc­

tures like trees and tries that used to be studied separately. In particular, we show 

that digital search trees and the tries built from sequences generated by the same 

memoryless source share the same stable core. This link between digital search trees 

and tries is at the heart of our analysis of heights of tries. It permits us to derive 

the height of several species of tries such as the trees introduced by de la Briandais 

(1959) and the ternary search trees of Bentley and Sedgewick (1997). 

The proofs are based on the theory of large deviations. The first order terms 

of the asymptotic expansions of the heights are geometrically characterized using 

the Cramér functions appearing in estimates of the tail probabilities for sums of 

independent random variables. 





Résumé 

Nous présentons un modèle d'arbres aléatoires pondérés et analysons les propriétés 

asymptotiques de leur hauteur. Notre modèle couvre la plupart des arbres de hau­

teur logarithmique qui apparaissent dans le contexte de l'analyse des algorithmes et 

en combinatoire. Ceci nous permet de formuler une sorte de "master theorem" pour 

la hauteur des arbres aléatoires qui recouvre les arbres binaires de recherche (De­

vroye, 1986), les arbres récursifs (Devroye, 1987; Pittel, 1994), les arbres digitaux 

de recherche (Pittel, 1985), les arbres "scale-free" (Pittel, 1994; Barabasi and Albert, 

1999), et toutes les familles polynomiales d'arbres croissants (Bergeron et al., 1992; 

Broutin et al., 2006). Certaines applications sont moins directement reliées à la hau­

teur des arbres. Par exemple, nous étudions la forme des cellules dans les structures 

de données géométriques telles que les arbres k-dimensionnels. 

Cette nouvelle approche fait aussi la lumière sur les liens intimes qu'entretiennent 

les arbres et les tries, qui ont, jusqu'à présent, été étudiés de manière disjointe. En 

particulier, nous montrons que les arbres digitaux de recherche et les tries construits 

à partir de séquences générées par la même source sans mémoire partagent la même 

structure interne que nous appelons le "core". Ce lien entre les arbres digitaux de 

recherche et les tries est à l'origine de notre analyse de la hauteur des tries. Il permet, 

en outre, d'obtenir la hauteur des arbres introduits par de la Briandais (1959) et des 

arbres ternaires de recherche de Bentley and Sedgewick (1997). 

Les preuves sont basées sur la théorie des grandes déviations. Le premier terme 

du développement asymptotique de la hauteur est caractérisé géométriquement grâce 

aux fonctions de Cramér intervenant dans les estimations des queues des distributions 

lU 
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de sommes de variables aléatoires. 
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Chapter 1 

·Introduction 

In this chapter, we motiva te the topic of the entire document by placing the study of ran­

dom trees and their heights in the necessary context. This includes, among other fields, 

combinatorics, computer science, and mathematical physics. 
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2 CHAPTER 1. INTRODUCTION 

1.1 Down with determinism 

No longer than eighty years ago, Einstein was, "at any rate, still convinced that He 

do es not throw dice". It seems now that even if Einstein's God did not throw dice, 

he made sure that we would. Quantum mechanics is but one example of the ubiq­

uity of probability in science and engineering, whether the reason be that the world 

is really random, or only that it appears so to us. From statistical physics to op­

erations research, or economics, probability theory has proved useful in modeling, 

understanding, and making a better use of the world we live in. Even our everyday 

life is literally surrounded by chance, through its use in weather forecast for instance, 

with "probability of precipitation" deliberately provided to the public. Within math­

ematics, even in pure "deterministic" branches like number theory or geometry, major 

successes have been obtained using tools such as Erdos' probabilistic method (Pach 

and Agarwal, 1995; Alon et al., 2000). Recently, Arora and Safra (1998) proved a new 

characterization of the celebrated complexity class NP in terms of Probabilistically 

Checkable Proofs (PCP), op'ening a breach in deterministic complexity theory. 

The increasing quantity of data involved is arguably one of the reasons of the 

advent of probability in today's science. It is known that the amount of data is 

growing at an increasing pace. DNA sequencing, high definition video, data mining 

are only some of the many examples illustrating this tendency. Believing Spinoza's 

maxim that "nature ab hors a vacuum", Kryder's law, the storage analog of the well­

known Moore's law, surely accounts for this facto The now phenomenal volume of 

information makes it not only relevant, but also necessary to step back in order to 

look at data at a larger scale: finding a macroscopic structure in the microscopie 

(apparent?) chaos. Large quantities justify a statistical approach that focus on 

obtaining a glance of the big picture. This observation alone justifies the use of 

probability together with its modern machinery. 
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1.2 Randomness and computing 

Historically, both computational problems and the algorithms solving them have been 

studied for the worst case input. In other words, one wanted to make sure that a 

problem admitted a method to find the solution, or that an algorithm was efficient for 

any possible input. Then, it is no surprise that the complexity classes P and NP were 

the first to be introduced (see Garey and Johnson, 1979). However, when studying 

algorithms, one quickly notices that they behave usually very nicely for "standard" 

inputs, and may fail or run longer on sorne particularly nasty inputs -in particular, 

the ones used to build gadgets and prove hardness. Although there is great value in 

worst-case analysis, since these extreme cases can happen, there is probably as much 

value in an analysis telling quantitatively what willlikely happen and what should not 

happen in general. One can make the notion of "standard input" (a bit) more precise 

by agreeing that most inputs should be standard. One can require that an algorithm 

(Monte-Carlo) should be efficient on aU inputs, and correct on most inputs: this gives 

rise to the class BPP (bounded error, probabilistic, polynomial time). Or, one can 

require that it be correct on most inputs, and efficient on average (Las Vegas): this is 

RP (randomized, polynomial time) , and ZPP (zero-error, polynomial time) (see, e.g., 

Sipser, 2005; Papadamitriou, 1993). In this latter case, an algorithm is also aUowed 

to work very slowly (non-polynomiaUy) on sorne inputs, but it should be polynomial 

on average. Such an approach is also justified by the fact that many algorithms are 

rarely used on a single input: in the long term, that is, if one runs the algorithm a 

large number of times on difJerent inputs, one may expect that the nasty cases occur 

very rarely, and thus that on average the algorithm runs much faster than on the 

worst possible input. 

In the early seventies, under the impulse of Knuth (1973a,b,c), a community of 

mathematicians and computer scientists took this point of view and started to analyze 

efficient algorithms on average. They were pioneers of what is now known as the 

analysis of algorithms. Of course, one needs first to define what they mean by on 

average, and thus to define the model of randomness. However, it is usuaUy natural, 
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and unless one expects some particular pattern in the input (because it is generated 

by some other algorithm, for instance) it may be considered relatively mndom (under 

a model of randomness to be specified). If it is not the case, one can often cope 

with the non-randomness by preprocessing the input to make it random at litt le cost 

(applying some sort of permutation, for example). 

One of the most celebrated results of the analysis of algorithms concerns Hoare's 

Quicksort algorithm (Hoare, 1961, 1962), which recursively sorts a collection of n 

entries. It is known to run in time 8(n2
) in the worst case. However, if one either 

randomizes the algorithm (or, equivalently, permutes randomly the input), then it 

runs in time O( n log n) on average, which makes it optimal within a multiplicative 

constant (Sedgewick, 1975; Sedgewick and Flajolet, 1996). The particular appeal 

of the questions arising and the connections with other fields of mathematics (like, 

for instance, complex analysis or information theory) attracted many researchers in 

the footsteps of the pioneers of analysis of algorithms. Researchers now succeed 

in deriving detailed information about, among other things, the running times or 

storage space required by most important algorithms: not only the mean, variance 

and other moments, but also limit distributions and tail probabilities are sought after 

(Vitter and Flajolet, 1990; Devroye, 1998a). A deep understanding of the phenomena 

underlying the behavior of algorithms made it possible to design efficient algorithms 

that take advantage of these observations (e.g., Flajolet, 2004). 

1.3 Of the importance of trees 

There is no doubt that trees are ubiquitous when dealing with algorithms, either for 

storing, manipulating or even representing data (Cormen et al., 2001). Whether the 

data should be organized as a priority queue (heaps, Fredman and Tarjan (1987)), 

a dictionary (search trees, Sleator and Tarjan (1985)), a collection of mergeable sets 

(link-cut trees, Tarjan (1983)), or a compact representation of proximity (minimum 

spanning trees or Steiner trees, Barthélemy and Guénoche (1991)) the most efficient 
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structures are often based on trees. AIso, the branching structure of algorithms is 

arguably one of the main reasons for studying trees to understand how algorithms 

behave. 

Even outside of the field of computing sciences, trees are of prime importance. 

Computer science is still young, and it is not surprising that branching structures have 

appeared and been studied first in fields that are as various as biology, physics as well 

as social sciences. Sorne of the most surprising examples of the use of trees include 

literature, politics and scotch tasting! We shall only give a few examples that should 

convince the reader of the wide range of applications of tree structures. Probably one 

of the earliest applications of trees to a concrete problem is that of Galton (1873) 

and his famous study of the pool of family names in England. We shall look at 

this example more carefully later in Chapter 3. In biology, phylogenetic trees have 

been used to study the spread of epidemics and the evolution of species (Barthélemy 

and Guénoche, 1991). Phylogenetic trees have also been used in literature to study 

formally the work of authors such as Shakespeare and Giraudoux (Barthélemy and 

Luong, 1987). Such analysis reveals not only the usually accepted classifications but 

open also new directions of investigation. 

As a consequence, judging from the ubiquity of trees in all the fields of research, 

there is no doubt that a better understanding of tree structures will some day be of 

sorne interest to a researcher or another, whether he be a mathematician, a physicist, 

a linguist or just happened to be caught be the beauty of trees. 

1.4 Random trees and their heights 

1.4.1 A model of randomness 

We claimed that useful information can be derived from the analysis of random ver­

sion of trees, but we have not yet told anything about the model of randomness. 

There are many natural models of interest. For instance, one could consider a tree 
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taken uniformly at random in the set of trees of a certain class (binary trees, rooted 

trees, rooted plane trees, etc.). This approach has been taken by Flajolet and Odlyzko 

(1982) who managed to capture asymptotics of the heights of a large class of trees 

using a single method. Such random trees have typical heights and widths of order 

8( vin). The trees arising under this model of randomness appear mostly in combi­

natorics (Cayley trees, simply generated trees), probability theory (Galton-Watson 

trees conditioned on the size) , or statistical physics. They have been cast away from 

computing applications, for a good reason: their lengthy branches make them usually 

inefficient when one has to traverse the structure. 

A model of randomness that is sometimes more pertinent is to construct the tree 

sequentially from random inputs (we will explain what we mean by this shortly), and 

then study the tree obtained. The trees built by such a procedure are typically of 

logarithmic height. So, they are bushier and more compact that the uniform trees 

of the previous paragraph. This is why they often appear when analyzing efficient 

data structures and algorithms. One should also observe that a randomization of the 

inputs seems more natural when dealing with algorithms than a randomization of the 

trees themselves. We are interested in this latter class of models. Our objective is 

to devise a unifying approach for analyzing the heights of such trees. In this sense, 

our project can be seen as complementing that of Flajolet and Odlyzko (1982) for 

uniform trees. In what follows, we consider those random trees with a logarithmic 

height only. 

1.4.2 A canonical example 

We now introduce the main concepts we will deal with using a celebrated example, 

namely binary search trees (BST). Consider a set of n distinct keys {Xl, X2, ... , Xn} 

that one wants to store in a tree to handle search queries. The keys need to be 

comparable, and without loss of generality (use their ranks), we can assume they 

are elements of {1, 2, ... ,n}. The binary search tree associated with the sequence 

{ Xl, ... , Xn} consists of anode storing the first key Xl, and of two subtrees. The 
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left and right subtrees are the binary search trees (recursively built) associated with 

the sequences {Xi: Xi < xd and {Xi: Xi > Xl}, respectively. Figure 1.1 shows a 

binary se arch tree on {1, 2, ... ,9}. If the input is a uniform random permutation 

{ Xl, ... , Xn} of {1, 2, ... , n}, the tree is called a random binary search tree. 

2 

. ~ 

Figure 1.1: A binary search tree of build on the sequence {l, 2, ... , 9}. 

One can construct a random binary search tree incrementally instead of recursively. 

This is done by assigning the keys Xi to the nodes of a complete infinite binary tree 

T 00' The first tree Tl consists of a single node storing Xl' Let Ti be the tree built from 

the sequence of keys {Xl,"" Xi}' Let i ~ 2 and assume Ti-l has already been built. 

To insert Xi, we start from the root and go down the tree by moving left at anode 

if the key it stores is greater than Xi, and right otherwise. We place Xi in the first 

empty no de we find. The first node on each path down the root is called external. 

Note that at each step, the next no de Xi is placed in a no de of the fringe of Ti, the 

set of external nodes (see Fig. 1.2). The resulting random binary search tree consists 

precisely of those nodes that have been assigned a key. 

In spite of their remarkably simple definition, random binary search trees are at 

the heart of analysis of algorithms. It is interesting to note that random binary 

se arch trees are distributed like the branching structure of a randomized version of 

Quicksort. Another reason for their success is the fact that they concentrate many of 
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Figure 1.2: The binary search tree of Figure 1.1 with its fringe (also called the external 
nodes) represented with square boxes. 

the central questions of analysis of algorithms in one of the simplest, yet interesting 

models. Let us illustrate this fact by going back the the incremental growing process. 

The time to build the tree is (the number of nodes plus) the sum of the depths of 

the nodes, or the path length. The height of the tree (the largest depth of anode) is 

the maximum time it takes to insert anode. Equivalently, if one then uses the tree 

for queries, the average depth of a node in the tree is the average cost of a successful 

search; the height is the maximum cost of such a search. So the height of the random 

tree corresponds to the worst case cost in sorne average sense. It happens that, in 

this average sense, the worst case time is still O(logn) and it is much better than the 

deterministic worst case of 8(n). 

1.4.3 The height of binary search trees 

Pinning down the height H n of a random binary search tree of size n was one of the 

central problems in analysis of algorithms. The hunt for the asymptotic properties 

of Rn has tied many profound bonds between the analysis of algorithms, statistical 

physics, and the theory of branching processes. Robson (1979) was the first to prove 

the upper bound: for c = 4.311 ... , the unique solution greater than 1 of clog(2ejc) = 

1, for any é > 0, P {Hn ~ (c + é) logn} ~ 0 as n ~ 00. Robson (1982) then realized 
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that EHn rv ,log n as n ~ 00, and his experimental simulations seemed to indicate 

that c was the best candidate for the limit constant. 

One of the crucial ideas is due to Pittel (1984) who provided the connection be­

tween the height of binary search trees and branching random walks that paved the 

road to the solution. Pittel's ide a is better explained using the incremental construc­

tion of random binary search trees we have described in Section 1.4.2. It is based 

on the following observation: since {XI, X 2 , •.. , Xn} is a random permutation of 

{1, 2, ... , n}, the rank (position in the ordered list) of X n is uniform in {l, ... , n}. 

Therefore, X n is equaly likely to be stored in any of the n external nodes of Tn _ l , 

the tree built from {XI, ... , X n - l }. This evolution pro cess can be simulated using 

random docks. Given Tn - l with the right distribution, if the edges leading to the 

external nodes have random docks, and any of them is equaly likely to tick first, then 

putting X n at the corresponding position yields a tree distributed as Tn. Adding X n 

creates two new external nodes that, in turn, would be equaly likely to be picked 

thanks to similar random docks. 

We have to make sure that, at any stage of the process, the next dock to tick 

is uniformly random, and independent of the time when the dock came into play. 

There is a well-know way to achieve this, which uses exponential random variables 

and their memoryless property. Let {T(t), t ~ a} be the continuous-time branching 

pro cess that will eventually be used to embed Tn . At time Tl = 1, T(Tl) consists of 

a single node, together with two independent docks on the edges to the fringe. One 

of the docks ticks at time T2 and gives birth to anode U2. Any dock stops once it 

has ticked. Assume now that at time t, the tree consists of n - 1 nodes and n docks 

(on the edges to potential future nodes). A uniformly random dock ticks at time Tn , 

giving birth to Un and its two new docks. Then, for every n ~ 1, T(Tn ) is distributed 

as Tn . AIso, the height of Tn is the maximum number of edges on a path down the 

root, and this corresponds to the maximum number of ticks that occured on the same 

line of descent before Tn . 
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The process described above may be seen as first-passage percolation on Too . 

First put down aIl the exponential docks we may ever need: Assign independent 

and identically distributed (Li.d.) exponential(l) random variables to the edges, say 

{ Ee, e E T oo}. Let 11"( u) denote the set of edges on the unique path from u to the 

root. Anode u is born at time Bu = LeE7r(u) Ee. For t ~ 0, let T(t) be the subtree 

of T 00 consisting of the nodes born before time t: 

T(t) = {u E Too : Bu ::; t}. 

Then, at the random time Tn = inf{t: IT(t)1 ~ n}, the tree T(Tn) is distributed as Tn 

with probability one. By tweaking the model, and introducing a litt le dependence in 

{Ee, e E Too }, one can make Tn ::; logn < Tn+1 deterministicaIly, hence yielding the 

property that T(logn) = Tn in distribution (Devroye, 1986). 

Then, asking for the height of Hn reduces to finding k such that there is a no de in 

the k-th generation that is born before time log n, but none in the (k+ 1)-st one. Or, 

turning the question upside down, one only needs to characterize the random time of 

the first birth of anode at level k. Using his continuous embedding and subadditive 

arguments, Pittel proved that there exists 'Y > 0 such that Hn rv 'Y log n almost 

surely, as n ~ 00. Taking advantage of the Hammersley-Kingman-Biggins theorem 

(Hammersley, 1974; Kingman, 1975; Biggins, 1977) about the first-birth problem in 

branching random walks, Devroye (1986) finally showed that Robson's upper bound 

was indeed tight. 

Theorem 1.1 (Devroye 1986). Let Hn be the height of a random binary search tree 

of size n. Then, Hn rv clog n in probability, where c is the unique solution greater 

than 1 of clog(2ejc) = 1. 

Theorem 1.1 is far from being the end of the st ory. Robson (1982) noticed that, 

when simulated experimentaIly, Hn exhibited very little variance and conjectured 

that it has bounded variance, VarHn = 0(1). Robson's variance conjecture became 

the next hot topic. Pushing his branching pro cesses techniques further, Devroye 

(1987) proved that VarHn = O(Jlognloglogn). The bound was later improved 
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by Devroye and Reed (1995) who showed using the second moment method that 

Var Rn = O( v/log log n). In the mean time, Drmota (2001) derived an alternative 

pro of of Theorem 1.1 using analytic tools and generating functions, giving new credit 

to Robson's conjecture: using his novel point of view, he observed that aIl central 

moments of Rn might be bounded as weIl. Finally, Robson's conjecture was proved by 

Reed (2000), Reed (2003) and Drmota (2003) and it is now known that VarRn = 0(1) 

and 
3 

ERn = clogn - 2Iog(c/2) loglogn + 0(1). 

1.4.4 Towards unification 

The first moment of the height of random binary search trees remained a question of 

interest. For instance, slight modifications in the pro of of Devroye (1986, 1987) proved 

successful in obtaining asymptotic properties of other random trees like random re­

cursive tres (Devroye, 1987; Pittel, 1994), m-ary search trees (Devroye, 1990; Pittel, 

1994), pyramids (Mahmoud, 1994; Biggins and Grey, 1997). It seemed apparent that 

the branching pro cesses arguments were suit able to un if y aIl these scattered results, 

see Devroye (1987), Pittel (1994), Biggins and Grey (1997) and Devroye (1998b). 

It is interesting to note that researchers also worked at generalizing the theorems 

about higher moments as weIl. In particular Chauvin and Drmota (2007) proved, 

as in the binary case, the height of m-ary se arch trees has the distribution of a 

travelling wave. This is closely related to a finer analysis of the first-birth problem 

and the work of Bramson (1978) and Bachmann (2000). Drmota (2006) has proved 

that increasing trees (a class of random trees that encompasses binary search trees, 

and random recursive trees) exhibit a similar behavior, although the average height 

is not characterized. Very recently, using a deep connection with generalized ballot 

theorems, Addario-Berry and Reed (2006) proved that for a large class of branching 

random walks, the average height is of the form alogn - ,Bloglogn + 0(1) (see 

Addario-Berry, 2006; Addario-Berry and Reed, 2007). Results on higher moments 

follow easily from the precise position of the mean. 
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Although there are beautiful connections arising in the analysis of the distribution 

of the heights of random trees, there is still much to be done about the average value. 

The kind of generalization we are after is one that would allow a large class of trees 

to be dealt with a unique framework. 

1.4.5 What about tries? 

While tries are part of the .class of random trees of logarithmic height, they have 

usually been studied separately. We try here to (1) exhibit the very reason why they 

were put aside, and (2) reconcile them with the rest of the class of trees of logarithmic 

height. But we shall first introduce them and review the previous work on the heights 

of tries. 

Tries are data structures used to manipulate and store strings by taking advantage 

of the digital character of words. They were introduced by de la Briandais (1959). 

Apparently, the term of trie was coined by Fredkin (1960) as a part of the word 

"retrieval". Their properties and uses are reviewed by Knuth (1973c) and more re­

cently by Szpankowski (2001). Consider n sequences of characters (or strings) from a 

countable alphabet A. Each one of the sequences carves an infinite path in an infinite 

rooted position tree Tr~o where the children of each no de are labeled with the char­

acters of A: starting from the root, the characters are used in order to move down 

the tree. If aIl the sequences are distinct, the corresponding paths in T 00 are distinct 

as weIl. The trie Tn is defined to be the smaIlest subtree of T 00 such that the paths 

corresponding to the sequences are distinct within Tn . A trie on the binary alphabet 

{O, 1} is shown on Figure 1.3. When the sequences are the successive suffixes of the 

same string, the trie is called a suffix tree. Suffix tree are particularly important 

in lossless data compression like Lempel-Ziv algorithms (see Ziv and Lempel, 1977, 

1978), and their tight relationship with tries build from independent sequences should 

suffice to motivate the study of the latter trees. 

Random tries can be built by using random sequences as an input. Many models 
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Figure 1.3: The trie built from 
the words 0000 ... , 0001 ... , 11 ... , 
10110 ... , 011 ... , 010 ... , and 10111 .. .. 

of randomness have been considered to fit with the statistical properties of the data 

used in practice. We can cite, in particular, memoryless sources (independent coin 

flips) , Markovian sources (the successive states of a Markov chain), the so-caIled 

density model, or even continued fraction expansions and dynamical sources. For 

more information, we refer the reader to the textbook of Szpankowski (2001) and the 

recent survey by Flajolet (2006). 

We now consider only the tries built using memoryless sources, that is when the 

sequences are independent sequences of Li.d. coin flips. The average height has been 

studied by Devroye (1984), Pittel (1985) and Szpankowski (1991) (under a slightly 

more general model). Results on the limit distributions can be found in Flajolet 

(1983), Jacquet and Régnier (1986), and Pittel (1986). Devroye (2002, 2005) ana­

lyzes the concentration properties of many parameters of tries and gives strong tail 

inequalities. We aim at sorne kind of generalization of these results. Recently, Park, 

Hwang, Nicodème, and Szpankowski (2006) have unified the analysis of many param­

eters related to tries via the number of nodes at each level, also caIled the profile (see 

also Hwang, 2006). On the other si de of the spectrum, the generalization provided by 

Clément et al. (1998, 2001) deals with very general sources, as weIl as many different 

trie structures, including the trees of de la Briandais (1959) and the ternary search 
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trees (TST) of Bentley and Sedgewick (1997). The question of height of these two 

latter structures has been left open. In any case, the proofs are based on an analysis 

of the longest corn mon prefix of a pair of sequences. So, the techniques are based on 

words and information theory rather than the trees themselves and it is not surprising 

to observe that the theory of branching pro cesses appears useless in this case. 

As for the case of trees based on branching pro cesses , our goal is to devise a 

framework that would encompass a large class of trie structures. In particular, our 

class should coyer the trees of de la Briandais (1959) and the TST. 

1.5 Thesis contributions 

In this document, we develop a general framework to analyze heights of trees. We 

distinguish two classes of trees: whether the height is bounded or not. We say that 

Tn has bounded height if there exists a deterrninistic function 'IjJ such that the height 

Hn :::; 'IjJ(n). Tries do not have bounded height since the trie built from two identical 

sequences is an infinite path. We shall refer to the class of branching structures with 

bounded height as trees as opposed to tries (although, sensu stricto, tries are trees 

as well). The bounded-height property is not a mere remark, and we think it is the 

main reason that has prevented researchers from unifying the heights of tries and 

other trees of logarithmic heights. In sorne sense, we distinguish trees from tries, 

because they ought to be distinguished. However, we aspire at unifying both parts, 

and the glue should consist in a mix of profiles and large deviation theory. In the 

entire document, we always aim at emphasizing the geometric representations of the 

phenomena, as well as making explicit the underlying intuition. 

CHAPTER 5: WEIGHTED HEIGHT OF RANDOM TREES. We start by introducing 

a model of ideal trees. This is just a slight generalization of branching random walks. 

Analyzing the height of ideal trees is directly related to the first-birth problem. We 

then rely on the intuition given by this idealized model to develop a general model 

of weighted random trees. The model allows to capture the properties of the heights 
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of many known random trees with bounded heights including binary search trees, 

median-of-(2k+l) trees, random recursive trees, scale-free trees, random increasing 

trees, digital search trees, and a pebbled version of ternary search trees and list-tries. 

This first part is based on joint papers with L. Devroye, E. McLeish and M. de la 

Salle. 

CHAPTER 6: WEIGHTEP HEIGHT OF RANDOM TRIES. We then extend the results 

for certain classes of weighted tries. The ideas are based on the study of the profiles of 

these trees. The profile is indeed the connection between the tree of bounded heights 

like digital search trees and PATRICIA, and their trie counterparts. In particular, if 

the sequences are generated using the same source, the profile of the trie is a slight 

modification of that of the corresponding digital search tree. The modification is 

very simply described geometrically. This allows us to capture asymptotic properties 

of the heights of the trees of de la Briandais (list-trie) and of ternary search trees 

(BST-trie). This part is joint work with L. Devroye. 





Chapter 2 

Probability and Large Deviations 

We recall here the probabilistic background necessary to understand this thesis. For a 

comprehensive account of probability theory, see Crimmett and Stirzaker (2001). For 

a measure theoretic point of view we refer the reader to Billingsley (1995). The two 

volumes of the treatise of Feller (1968, 1971) are also wonderful references. It turns 

out that the first order asymptotics of the heights of random trees with logarithmic 

heights is tightly captured by large deviations for sums of random variables. We stan 

by giving some intuition using basic probabilistic tools. We then present in more detail 

the theorems of Cmmér and Ciinner-Ellis. Finally, we give some useful propenies 

of the rate functions involved. For a more complete treatment of large deviations and 

its applications, see Ellis (1985), Deuschel and Stroock (1989), Dembo and Zeitouni 

(1998), or den Hollander (2000). 
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2.1.1 Basic notations 
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Throughout the document, we let lR and N denote the set of real and natural numbers, 

respectively. We use log for the natural logarithm in place of ln; for a > 0, loga 

stands for the logarithm in base a. For nonnegative sequences Xn and Yn, we describe 

their relative arder of magnitude using Landau's 0(') and 0(-) notation. We write 

X n = O(Yn) if there exist N E N and C > 0 such that Xn :::; CYn for aU n ~ N. 

OccasionaUy, we write Xn = O(Yn) ta mean that there exists N ~ 0 and C > 0 

such that for aU n ~ N, Xn ~ CYn. If X n = O(Yn) and X n = O(Yn), the we write 

X n = 8(Yn). If Xn converges to x as n go es ta infinity, then we write X n ---7 x, as 

n ---7 00. An equivalent notation for xn/Yn ---7 0 as n ---7 00 is Xn = o(Yn). We write 

X n l'V Yn when xn/Yn ---7 1 as n ---t 00. 

For a function J, we write VI for its domain {x : IJ(x)1 < oo}. The interior of a 

set r is denoted by r o
. Thederivative of J at a point Xo is denoted 

2.1.2 Probability 

We let P {A} denote the probability of an event A, Le., a measurable set defined on 

sorne probability space. We usuaUy do not make explicit reference ta the probability 

space since it is usuaUy clear ta which one we are referring. We say that an event 

A ho Ids almost surely (a.s.) if P {A} = 1. The random variables considered in this 

document take values in lR or lRd for sorne dEN. The expected value of a real 

valued random variable X is denoted by EX or E [X], its variance by Var [X]. The 
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expected value o.f X co.nditional o.n A is written E [ X 1 A]. The indicato.r functio.n o.f 

an event A is o.f particular interest, it is deno.ted by l[A] and we have El[A] = P {A}. 

Co.nsider a sequence o.f rando.m variables X n , n ~ o. We say that X n co.nverges 

to. X in probability if fo.r any E > 0, P {IXn - XI ~ E} ---+ 0, as n ---+ 00. We write 

X n '" an in pro.bability if Xn/ an ---+ 1 in pro.bability, as n ---+ 00. The sequence X n 

co.nverges to. X almost surely if P {limn -+oo X n = X} = 1. We say that Xn co.nverges 

to. X in distribution, and we write X n ~ X if P {Xn :::; x} ---+ P {X :::; x}, as n ---+ 00, 

fo.r all po.ints o.f co.ntinuity o.f the distribution function F : x I---? P {X :::; x}. 

2.2 Rare events and tail probabilities 

The classical limit theo.rems in pro.bability theo.ry deal with sums o.f independent and 

identically distributed (Li.d.) rando.m variables, So. it is no.t a bad idea to. intro.duce 

o.ur co.ncepts using these well kno.wn settings. Our presentatio.n is largely inspired o.f 

the insightful intro.ductio.n o.f Dembo. and Zeito.uni (1998). Co.nsider a sequence o.f 

i.i.d. rando.m variables {Xi' i ~ 1}. Let Sn deno.te the sequence o.f their partial sums. 

So. 

If EIX11 < 00, then Ko.lmo.go.rov's stro.ng law o.f large numbers asserts that Sn/n ---+ 

EXl almo.st surely, as n ---+ 00. So. we expect Sn/n to. be clo.se to. EX1. The next 

natural interesting questio.n arising is: "how close?". A first simple answer is given 

by Chebychev's inequality: fo.r any t > 0, 

Var [Xl] 
P {Sn - nEX 1 ~ nt} :::; nt . (2.1) 

As a co.nsequence, if Var [Xl] < 00, the probability that Sn exceeds its mean by 

a linear amo.unt decays at least po.lyno.mially in the number o.f variables. The tail 

pro.bability in the left-handside o.f (2.1) is called a large deviatio.n tail probability. 

The bo.und given in (2.1) is usually far fro.m tight. To. understand why, assume 

that Xl, ... , X n are independent Gaussian rando.m variables with mean zero. and unit 
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variance. Then, Sn is also a Gaussian random variable, with mean zero and variance 

n. In other words, Sni vn is a standard Gaussian random variable, and for aIl t E lR, 

P {Sn ~ nt} = P { S; ~ tvn} = ~ 100 

e-
x2

/
2dx. 

yn y21r t,fii 

It is now clear from (2.2) that, as n ~ 00, 

So, under our assumptions, we expect that the large deviation tails for sums of 

LLd. Gaussian random variables be exponential in the number of variables. This is 

the kind of tail bound we are interested in because they are the ones that are relevant 

when studying the heights of random trees. It can be proved in a far more general 

setting that such exponential tail bounds hold, and are tight. 

2.3 Cramér's Theorem 

Although Cramér's theorem (Cramér, 1938; Chernoff, 1952) is the easiest of the theo­

rems dealing with large deviations, it is still a powerful tool. We consider a sequence 

of Li.d. random variables {Xi, i ~ 1} distributed like X, taking values in R Write 

Sn = L~=l Xi. We are interested in proving exponential bounds for the (right) tail 

probability P {Sn ~ tn} when t ~ EX, as n ~ 00. Similar results are easily derived 

for left tails by considering {-Xi, i ~ 1}. The upper bound provided by Chernoff's 

bounding method (Chernoff, 1952) turns out to be the tight bound we are looking 

for. Let À > 0, then 

It follows using Markov's inequality that 
n 

e-Àtn 
• II EeÀxi , 

i=l 

(2.2) 

since the variables Xi are independent. The cumulant generating function, defined by 

A(,~) = log E [eu], plays an important role. Rewriting (2.2) using A, we obtain 
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So optimizing our choice of À, we see that 

p {Sn ~ tn} :::; (inf e-Àt+A(À})n ~f e-nA*(t), 
À>O 

21 

(2.3) 

where A*(t) = sUPÀ pt - A(À)} is the Fenchel-Legendre (convex) dual of A (see, e.g., 

Rockafellar, 1970). The upper bound (2.3) is tight, as claimed by Cramér's theorem 

(Cramér, 1938). 

Theorem 2.1 (Cramér). Assume that A(À) < 00 for some À > O. Let t ~ EX. 

Then, as n -t 00, 

p {Sn ~ tn} = e-nA*(t}+o(n}. 

Cramér's version of the theorem was restricted to random variables on lR having 

densities. The generalization is due to Chernoff (1952). See Petrov (1975) for more 

information. A complete proof can be found in Dembo and Zeitouni (1998). 

The rate function A * describing the tail probability in Theorem 2.2 is thus of great 

importance. Indeed, the behaviour of P {Sn ~ tn} relies directly on its properties. 

For instance, Theorem 2.2 would be useless if one cannot prove that A * ~ 0 and not 

identically zero. We review most useful properties of A* in section 2.5. But first, we 

focus our attention to the generalizations of Cramér's theorem that we will need in 

the course of the proofs. 

2.4 From Cramér to Gartner-Ellis 

This section is devoted to large deviations between the value of a sum of random 

vectors and its expected value. We are interested in the case of extended random 

vectors, that is, whose components may also take (only) one of the values 00 or -00. 

We now focus on this slight generalization. 

Let {Xi,l :::; i :::; n} be a family of i.i.d. extended random vectors Xi = (Zi, Ei) 

distributed like X = (Z, E). Assume Z E [-00,00) and E E [0,00]. Set p = 
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P {Z > -00, E < oo}. For a and p real numbers, we are interested in the tail prob­

ability 

P { t, Zi > an, t, Ei < pn } , (2.4) 

whose magnitude is characterized in Cramér's theorem. We shall introduce the cu-

mulant generating function A of an extended random vector X. For À, {L E lR, it is 

defined by 

A(À, {L) = logE [éZ+J.LE 1 Z> -00, E < 00] + logp. (2.5) 

Observe that if Z and E are a.s. real, then A(À,{L) = E [eÀZ+J.LE], which matches the 

usual definition. The tail probability in (2.4) is characterized using A*, the Fenchel­

Legendre dual of A (see RockafeIlar, 1970): for a, p E lR, we define 

A*(a,p) = suppa + {LP - A(À,{L)}. 
À,J.L 

Theorem 2.2 (Cramér). Assume that {Xi, i 2: 1} are i. i. d. random vectors dis­

tributed like X. Assume that 0 E VA. Let 1(a,p) = inf{A*(x,y) : x > a,y < p}. 

Then for any a, p E lR, 

1 { n n } !~~;: 10gP ~ Zi > an, ~ Ei < pn = -1(a, p). 

Moreover, the foUowing explicit upper bound holds for aU n 2: 1, and a, p E lR: 

P {t, Z, > an, t, E, < pn} :s; e-nI(o,p). 

Remarks. (a) It is possible that A* = 00 everywhere except in one point, and 

consequently l may be infinite as weIl. 

(b) Observe that the inequalities in Theorem 2.2 are strict. The result is false if 

one allows equality (see Groeneboom et al. (1979) or Dembo and Zeitouni (1992, 

Exercise 2.2.37) for a counterexample built by taking (a, p) on the boundary of VA). 

This technicality may be avoided if one enforces (a, p) EVA> (see Lemma 2.2). 

(c) The explicit upper bound is analogous to the Chernoff bound (Chernoff, 1952) 

and holds because the quadrant (a, (0) x (O,p) is a convex set (see Exercise 2.2.38, 

p. 42, Dembo and Zeitouni, 1998). 
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Proo! The quadrant (a,oo) x (-oo,p) is a convex open set in IR2. Henee Theo­

rem 6.1.8 of Dembo and Zeitouni (1992) applies when P{Z = -00 or E = oo} = 0 

(thus, p = 1). We now show the details in the extended case. Let Fn = {Zi > 

-00, Ei < 00, 1 :s; i :s; n}. It is the case that 

{
n n } {n n 

P 8Zi > an'8Ei < pn = P 8Zi > an'8Ei < pn 

The classical form of Cramér's theorem applies to the first factor, and hence, writing 

Ac = (À, f.l) ~ log E [ e)..z+l.tE 1 Z > -00, E < 00 J, the cumulant generating function 

of (Z, E) conditioned on {Z '> -00, E < oo}, and A~ for its dual, 

1 { n n } ;~~ ~ logP 8Zi > an, 8Ei < pn = -inf{A~(x,y) : x > a,y < p} + logp. 

However, A = Ac + logp, and therefore A* = A~ -logp, which finishes the pro of. 0 

The constraint that {Xi, i ~ O} be identically distributed may be relaxed, and we 

will need such an extension in Chapter 5. The case where the random variables are not 

identically distributed is treated by the Gartner-Ellis theorem (Gartner, 1977; Ellis, 

1984) (actually the random variables need not be independent either). We will only 

use the upper bound. We shall first state the classical version of the Gartner-Ellis 

theorem, and then extend it slightly to fit our needs. 

Theorem 2.3 (Gartner-Ellis). Let {( Zn' En), n > 1} be random vectors taking 

values in IR x [0,00). Assume that for all À, f.l E IR, 

exists as an element of (-00,00]. We assume that A is the cumulant generating 

function of some random vector X. If 0 EVA, then 

limsup-IogP I:Zi > an, I: Ei < pn :s; -I(a,p), 1 { n n } 

n->oo n i=1 i=1 

where I(a,p) = inf{A*(x, y) : x > a,y < pl, and A* is the Fenchel-Legendre trans­

form of A. 
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A complete proof of Theorem 2.3 may be found in Dembo and Zeitouni (1998). 

Observe that Theorem 2.3 only requires pointwise convergence of the moment gen­

erating functions. We wish to extend the result slightly in order to handle extended 

random vectors, and obtain an explicit bound that do es not involve limits. We shall 

also relax the assumption in order to require only asymptotic bounds on the gener­

ating function of the cumulants. 

Theorem 2.4 (Gartner-Ellis). Let {( Zn' En), n ~ 1} be random vectors taking 

values in [-00,00) x [O,ooJ. Let Fn = {Zi > -oo,Ei < 00,1 ~ i ~ n}. Let 

Am' m ~ ° be an arbitrary sequence of events. Assume that for all (>-., IL) E JR2, and 

5> 0, there exists M = M(À, IL, 5) su ch that 

We suppose that A is the cumulant generating function of some vector X. Let r be 

a closed set such that { -oo} x [0, ooJ U [-00, +00) x {oo} t/. r. Assume that ° E VA' 
Then, for any 'Y > 0, there exists M' such that 

limsup .!.logP {.!. t(Zi' Ei ) E r, AMI} ~ - min {lh, inf A*(a,p) - 'Y}, 
n->oo n n i=1 . (o,p)Er 

where A * is the convex dual of A. 

In particular, when the set of interest is a quadrant, we have: 

Corollary 2.1. Let {( Zn' En), n ~ 1} be random vectors and Am' m ~ 1 be events 

satisfying the conditions of Theorem 2.4. Then for every (a, p) E VA, and 'Y > 0, 

there exists M' such that 

where I(a,p) = inf{A*(x,y): x > a,y < p}, and A* is the convex dual of A. 

Praof of the Giirtner-Ellis theorem (Theorem 2.4). The prooffollows roughly the lines 

of that presented by Dembo and Zeitouni (1998). Let 'Y > O. Observe first that, since 
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{-oo} x [O,ooJ U [-00, +00) x {oo} ri. r, we have, for aIl M, 

p { ~ ~(Z" E,) E r,AM } = P { ~ ~(Zj, E,) E r, AM, Fn}. (2.7) 

REDUCING r TO A COMPACT SET. The first step consist in bounding (2.7) ta a 

similar probability involving a compact set. Since 0 EVA, there exists À and /-L > 0 

and A > 0 such that A(À, /-L) < A. For any r > 0, we have 

Applying assumption (2.6) for this À and /-L, for aIl M ~ Ml large enough, since 

A(À, /-L) :::; A, 

P {~ÀZ' + l'E, > m,AM, Fn} '" elA+'-.)n. 

Therefore, for r = A + t5 + 1;', writing C = {(x, y) : Àx + /-LY :::; r}, and r' = r n C 

we see that, for M ~ Ml, 

P {~(Z"E,) E r,AM,Fn} < P {~(Zi' E,) E r',AM,Fn} 

+P {~(Zi' E,) E C", AM, Fn }, 

and hence, for M ~ Ml, 

COVERING r' WITH SMALL SETS. We now proceed by covering r' with a finite set 

of balls. For any w = (xw, Yw) E JR2, there exists (Àw, /-Lw) such that 

. {1 2'Y * . 'Y } Àwxw + /-LwYw - A(Àw, /-Lw) > mm :y + 3' A (xw, Yw) - '3 . 

For aIl w E JR 2, there exists an open baIl Bw such that for aIl (x, y) E Bw, 1 Àw (x -

xw) + /-Lw(Y - Yw)1 :::; 'Y/3. Rence we have 

inf {Àwx + /-Lw y} ~ A(Àw, /-Lw) - 13 + min {~ + 2'Y, A*(xw, Yw) - 1} . (2.9) 
(x,y)EBw 'Y 3 3 
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The set {Bw,w E 1l~.2} covers JR2 but is uncountable. However r' is contained in a 

compact set, and it can be covered by {Bw,w E Cl, where C is finite. Thus, by the 

union bound, 

p {~(Zi' Ei) E nr', AM, F. } < P {~t(Zi,Ei) E U Bw,AM,Pn} 
t=l wEC 

< L P {~t(Zi,Ei) E Bw,AM,Fn}. 
wEC t=l 

Consider one term in the sum above. Note that 

n n 

L(Zi' Ei ) E Bw 
i=l 

::::} L ÀwZi + /-LwEi ~ inf {Àwx + /-Lw y}. 
i=l (x,Y}EBw 

Then, using assumption (2.6) with Àw and /-Lw and 0 = ,/3, there exists M2 = M2(W) 

such that for aIl M ~ M2' 

Then, recalling the bound (2.9), we obtain for aIl M ~ M2(W), 

FinaIly, plugging the bound above in (2.8), and observing that inf{A*(x, y) : (x, y) E 

r} = 1(0:, p), for aIl M ~ max{M1, M2(W) : w E C} 

P { ~ ~(Zi' Ei) Er, AM} oS (1 + ICI)· exp ( -n' min {~,I(",p) - 'Y}) . 

Taking logarithms completes the pro of. o 

2.5 About A, A * and 1 

The functions A, A* and l are weIl understood (Dembo and Zeitouni, 1992). They 

will be the corner stone of the characterization of first order asymptotic properties 

of the height of random trees. This is why we collect here their main properties. 
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Consider a mapping f : IR2 ~ (-00,00]. RecaU that Df is its domain: Df = {(a, p) : 

f(a,p) < oo}, and Di is the interior ofDf. 

The mapping f is said to be convex if, for aU Xl, X2 E IR2
, and 0 E [0, 1], we 

have f(OXl + (1 - O)X2) ::; Of(Xl) + (1 - O)f(X2), where it is understood that if 

the left-hand side is 00, then either f(Xl) = 00 or f(X2) = 00. If the level sets 

'l! f(C) = {x : f(x) ::; C} are closed for aU CE IR, we say that fis lower semicontinuous, 

and caU f a rate function. The mapping f is said to be a good rate function if its 

level sets are compact. 

THE FUNCTION A(·, .). The cumulant generating function is the link between the 

random variables and the rate functions, and its properties imply those of A* and J. 

Lemma 2.1. The function A(·,·) 

(a) takes values in (-00,00] if P = P {Z > -00, E < oo} > 0; 

(b) is convex on IR2
, and continuous in D'A. 

Praof. (a) By definition, \/À, IL E IR, we have 

A(À, IL) = logp + log E [ eAZ+p.E 1 Z > -00, E < 00 ] . 

Both Z and E are real on {Z > 00, E < oo}, and hence E [eAZ+p.E] > O. Since p > 0, 

this yields A(À, IL) > -00. 

(b) The convexity foUows from Hûlder's inequality. The continuity in D'A is a straigh­

forward consequence of the convexity. For details see Dembo and Zeitouni (1992). 0 

THE FUNCTION A*(·, .). The level sets of A* are of particular interest, and we write 

'l! = 'l! A'. lndeed, as we will see in Chapters 4 to 6, the heights will be characterized 

using optirnizations of sorne objective functions on the level sets of A*. 

Lemma 2.2. The function A*(·,·) is 

(a) convex on IR2 ; 

(b) continuo us on D'A,; 
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'P 

Figure 2.1: An increasing family 
of level sets lJ!(i) for the function 
A * corresponding to the study of k­
d trees (Section 5.7.12) 

(c) a good rate function if 0 E VA. 

Proo! (a) The convexity of A* is a direct consequence of its definition: for t1, t2,.\ E 

IR2 and 0 E [0,1], using . to denote the standard inner product, 

A*(Ot1 + (1 - 0)t2) sup{À· (Ot 1 + (1- 0)t2) - A(.\)} 
.ÀEIR2 

< sup {O.\ . t 1 - OA(.\)} + sup {(1 - 0).\ . t2 - (1 - O)A(.\)} 
.ÀEIR2 .ÀEIR2 

OA*(tt) + (1 - 0)A*(t2). 

(b) Since A* is convex, it is continuous on VA'. 

(c) Let e 2:: o. For r 2:: 0, let 'lfr = {(x, y) E IR2 : Jx2 + y2 2:: r}. Since 0 EVA' there 

exists a baIl B, centered at the origin with radius <5 > 0, and A < 00 such that for aIl 

(.\, IL) E B, A(.\, IL) ::; A. For any r 2:: 0 and (a, p) E '1fT) 

A*(a,p) =sup{.\a+ILP-A(.\,IL)} 2:: sup {Àa+ILP-A(.\,IL)} 2:: <5 ·r-A. 
~ ~~~ 

As a consequence, for R large enough, 'lfR does not intersect \lI(e), proving that \lI(e) 

is bounded. 

We now show that \li (e) is closed (A * is lower semicontinuous). It suffices to prove 

that \lI(t') contains aIl its accumulation points: for any (a, p) E IR2 such that there 

exists (an, Pn) E \lI(t') with (an, Pn) -- (a, p), we should have (a, p) E 1J!(t'). For any 

.\, IL E IR, 
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As a result, 

Hence, A*(a, p) ~ € and (a, p) E w(€), which proves that w(€) is closed. o 

THE FUNCTION J(., .). The function that appears in the Cramér and Gartner-Ellis 

theorems is J(., .). This is why information about tail probabilities rely on properties 

of J. 

Lemma 2.3. For a,p E JR2, let J(a,p) '!;! inf{A*(x,y): x > a,Y < p}. Then 

(a) (a,p) ~ J(a,p) is non-decreasing in a, and non-increasing in p; 

(b) for (a,p) E D'A*, J(a,p) = inf{A*(x,y): x;::: a,Y ~ p}. 

Proof. (a) This is clear from the definition as an infimum. 

(b) Clearly inf{A*(x,y) : x ;::: a,y ~ p} ~ J(a,p). So we prove that J(a,p) < 

inf{A*(x, y) : x ;::: a, y ~ p}. Consider a sequence (xn, Yn) E DA* such that 

lim A*(xn, Yn) = inf{A*(x, y) : x ;::: a, y ~ p}. 
n-oo 

We build an auxiliary sequence (x~, y~), n ;::: 1. Let k ;::: 1. If Xk =1= a and Yk =1= p, then 

(x~, y~) = (Xk, Yk). Assume now that Xk = a or Yk = p. Then we construct a new 

point (x~, yU such that A*(x~, y~) < A*(Xk, Yk) + l/k where x~ > a and y~ < p. This 

construction is done in the following way. Assume at first that for small enough E > 0 

there exists a baIl Hl centered at (Xk, Yk) with radius E contained within D'A*. In this 

case, by the continuity of A*, we find a point (x~, yU E Hl with Xk > a, Yk < p such 

that A*(x~,YD < A*(Xk,Yk) + l/k. In the second case, no such baIl exists for any E, 

which means in particular (Xk, Yk) lies on the boundary of DA*. Consider the region 

Rl = Hl n D'A* n {(a, (0) x (-00, p)}. Since (a, p) E D'A>, an open convex set, this 

region is non-empty. Let (3 = infdO sup{A*(x, y) : (x, y) E Rl \ (Xk, Yk)}. Assume for 

a contradiction that (3 > A*(Xk, Yk). Then there exist (x, y) such that the line joining 

(x, y) to (Xk, Yk) lies below A*, contradicting the convexity of A*. Hence (3;::: A*(Xk, Yk) 

and, for E small enough, there exist (x~, y~) in Rl such that A*(x~, y~) ~ A*(Xk, Yk). 
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Therefore, using the auxiliary sequence, we see that inf{A*(x, y) : x > a, y < p} ::; 

limn_ooA*(x~,y~) = inf{A*(x, y) : x 2:: a,y::; pl. This finishes the pro of. 0 

A*(Œ,p) J(o:, p) 

p p 

Figure 2.2: ThefunctionsA*(a,p) (left), I(a,p) (right) for the example of the Gaussian 
random variables. 

Example: Gaussian random variables. We now just work out an easy example 

to emphasize the differences between A, A* and J. Assume that (Z, E) is distributed 

as (NI, N2 ), where NI and N2 are independent standard Gaussian random variables 

N(O, 1). Then, for aIl À, J.L E lR, 

Furthermore, 

A similar statement holds clearly about E. It follows that 

Then, the optimum in the definition of A*(a, p) is obtained for À = a and J.L = p, and 

we have 
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The definition of I(a, p) then depends on where (a, p) lies with respect ta (0,0): 

A*(a, p) a> O,p < 0, 

I(a, p) = 
a2j2 a> O,p > 0, 

p2j2 a < O,p < 0, 

° a < O,p > o. 

Figure 2.2 shows the functions A*(a, p) and I(a, p) for this example. 





Chapter 3 

Branching Processes 

In this chapter, we introduce the theory of branching processes. The Galton-Watson process 

is the simplest of all branching processes. We review bran ching random walks since most of 

the work in this thesis is tightly connected to a generalized version of the first-birlh problem. 

For further information, see the textbooks of Harris (1963), Athreya and Ney (1972), Jagers 

(1975). Devroye (199Sa) surveys their applications in analysis of algorithms. 

Trees are sanctuaries. lVhaever knaws haw ta talk ta them, 

whaever knaws haw ta listen ta them, can learn the truth. 

- Hermann Hesse 
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3.1 The Galton-Watson pro cess 

3.1.1 Definition and main results 

In the late nineteenth cent ury, F. Galton became interested in the decay of family 

names in England (Kendall, 1966). He was mainly concerned with "men of the note". 

He formalized his problem mathematically and communicated it in the following way 

Galton (1873): 

A large nation, of whom we will only concern ourselves with adult males, N in 

number, and who each bear separate surnames, colonise a district. Their law of 

population is such that, in each generation, ao per cent of the adult males have no 

male children who reach adult life; al have one such male child; a2 have two; and so 

on up to a5 who have flve. 

Find (1) what proportion of the surnames will have become extinct after r genera­

tions; and (2) how many instances there will be of the same surname being held by 

m persons. 

He was not pleased with the only solution he was proposed and urged Reverend 

H.W. Watson, whom he was corresponding with, to take up the matter. Watson 

made use of generating functions and functional iterations to tackle the problem. The 

following approach is essentially his. If we write Pk for Galton's ak, and remove the 

restriction that k ::; 5, we can define the probability generating function f associated 

with the distribution {Pi, i ~ O} by 

00 

f(8) = Z:=Pk8k , 
k=O 

for 8 E [0,1]. AIso, if we introduce the n-fold convolution of f with itself, il = f, 

fn+! = f 0 fn = fn 0 f, then the coefficients of the power series for fn are the terms of 

the probability distribution for the number of males in the n-th generation. Galton 

observed that the probability of extinction by the n-th generation, qn, satisfies the 

following equations ql = Po, qn+! = f(qn) and if qn -+ q, then f(q) = q. This last 

equation accepting always 1 as a root, Galton inferred incorrectly that the male line's 

extinction was inevitable (see Galton and Watson, 1874). 
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The problem reappearedapparently independently in the late 1920s and Haldane 

(1927) and Steffensen (1930) finaUy stated correctly the Criticality Theorem. In 

today's words, we can define a Galton-Watson (GW) pro cess in the foUowing way. 

There is a single ancestor who gives birth to a random number Z of new individuals 

according to a specified probability distribution. Further, any individu al of the pro cess 

reproduces similarly and independently. For k :2: 0, write Pk = P {Z = k}. Then the 

reproduction generating function used by Watson is simply defined by 

f(s) = E [SZ] = LPksk, 
k20 

for s E [0,1]. This function is convex (as a sum of convex functions), strictly convex 

if Pl =1= 1, and increases from 0 to 1 for s E [0,1]. This function concentrates aU the 

information of the distribution of Z. In particular, the expected number of children 

EZ is 

'm ~EZ = Lkpk = 1'(1). 
k20 

If we let Zn denote the number of individuals present in generation n, then, fn(s) = 

EsZn. The extinction probability is defined by 

q = P {::In: Zn = a} . 

Theorem 3.1. Consider a Galton-Watson process with offspring distribution Z. 

Then q is the smallest fixed point of the reproduction generating function in [0,1]. 

In particular, q < 1 if and only if m = EZ > 1 or EZ = 1 and Pl = 1. 

This leads to the classification of Galton-Watson processes in three groups de­

pending on the value of m: a pro cess is caUed subcritical, critical, or supercritical if 

m < 1, m = 1 or m > 1 respectiveIy. It is aiso very use fuI to observe that if the 

pro cess does not become extinct, then size of the generation grows to infinity. In 

other words, with probability 1, Zn does not oscillate. This is one of the key results 

used in sorne of our Iower bounds. 
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f(t) f(t) 

1 1 

a ~----------------+--- a ~~---------------r--+ 
a 1 t a q 1 

Figure 3.1: The generating functions for a subcritical (le ft) and supercritical (right) G W 
processes are shawn. In the subcritical case, 1 is the only root of f(t) = t in [0,1]. In the 
supercritical case, there is q E [0,1) such that f(q) = q. 

Theorem 3.2. Let Zn be the number of individuals in the n-th genemtion of a Galton­

Watson process with offspring distribution Z. Assume that Pl = P {Z = 1} < l. 

Then limn->oo Zn E {a, oo} almost surely. 

By a simple conditioning argument, one sees that EZn = m n . Indeed, clearly, 

EZo = 1 and proceeding by induction on n, 

It actually turns out that Zn behaves roughly like mn. Doob's limit law (see 

Harris, 1963) characterizes more precisely the behavior of Zn' 

Theorem 3.3. Let m be jinite. Then, Wn = Zn/mn forms a martingale with EWn = 

1 and Wn - W almost surely, as n - 00, where W is a nonnegative mndom variable. 

The distribution of W is not known. However, one can obtain fairly precise infor­

mation on W, and the pro cess behaves exactly as one expects (EW = 1, P {W = a} = 

q) if and only if the x log x moment of Z is finite, as stated by the following theo­

rem, due to Kesten and Stigum (1966), which pins down the asymptotic properties 

of supercritical Galton-Watson processes. 
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Theorem 3.4 (Kesten and Stigurn, 1966). Let Zn the number of individuals in the 

n-th generation of a supercritical Galton-Watson process with progeny distribution Z. 

The following statements are equivalent: 

(a) lirnn->oo EIWn - WI = 0 ; 

(b) E [Zlog(l + Z)] < 00 ; 

(c) EW = 1 ; 

(d) P {W = O} = q. 

3.1.2 Bounding the extinction probability 

Apart frorn the standard results we have just presented, we will need to bound the 

extinction probabilities of sorne Galton-Watson processes to boost sorne of our lower 

bounds. 

Theorem 3.5. Let d ;::: 1 be a fixed integer. Consider a sequence of Galton-Watson 

processes with progeny distributions Z(x) on {O, 1, ... , d}, EZ(x) = /-lx, and extinc­

tion probabilities qx, x E IR. Assume that there exists Xo and 6 > 0 su ch that 

infx~xo EZ(x) ;::: 1 + o. IfP {Z(x) = O} ~ 0, as x ~ 00, then qx ~ O. 

Remarks. Before we proceed with the proof, observe that the result is best possible. 

Indeed, if either the support of Z(x) is unbounded or EZ(x) is not uniforrnly bounded 

away frorn 1, one can construct distributions Z(x) for which the result does not hold. 

Write Pi = Pi(X) = P {Z(x) = il, and let f(x) be the associated probability generating 

function: Vs, f(x)(s) = ~i~oPiSi. 

(a) We first build Z(x) such that EZ(x) > 1 for aIl x ;::: 2, and yet qx ft O. Let 

1 
Po = 2x' 

2 
Pl = 1--, 

x 
3 

P2 = 2x' 

Then EZ(x) = 1 + l/x > 1, for aU x;::: 2. But qx is the srnaIlest solution of f(x) (qx) = 

qx. Thus for aU x ;::: 2, qx = 1/3 ft O. 
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(b) For the case of distributions with unbounded support, we consider, for x > 2 

taking integer values only, 

1 
Po =-, 

x 

2 
Pl = 1--, 

x 
1 

Px =-. 
x 

Then for aU x 2: 4, EZ(x) = 2 - 2/x 2: 3/2. However, qx is the smaUest solution of 

1 - 2qx + q~ = 0, and henceqx ~ 1/2 as x ~ 00. 

The praof of Theorem 3.5 is based on the foUowing Lemma providing an explicit 

bound on the extinction probability. 

Lemma 3.1. Let d 2: 1 be a fixed integer. Consider a Galton-Watson pracess with 

prageny distribution Z on {O, 1, ... , d} and extinction prabability q. Let J-l = EZ and 

Pi = P {Z = i}, 0 ::; i ::; d. Assume that Pl < 1. Then, 

{ 

2po 
l:=-! 

q ::; ~o + 2 

if 
2po 1 ---'---:- < 1 - 1/.- d-l 

+ l:=-! r" 
Po 2 

otherwise. 

Praof. The proof is based on an analysis of the probability generating function. We 

know that q satisfies f(q) = q. Observe that 

i~2 i~2 

If I-L ::; 1 then q = 1 by Theorem 3.1 and the result clearly holds. We assume now 

that I-L > 1 and Po + Pl < 1. Define the auxiliary generating function 

() f (s) - Po - Pl S 
9 s = ----'---'------

1- Po - Pl ' 

and note that g(s) ::; 8
2 for aIl 8 E [0,1], and g(O) = O. Now, 

g(q) = f(q) - Po - Plq = q(1 - pd - Po ::; q2. 
1 - Po - Pl 1 - Po - Pl 

We rewrite the ab ove equation in order to obtain a bound that is more useful 

q < q2. 1 - Pl - Po + ~ < q2 + Po < 2 + Po 
- 1 - Pl 1 - Pl Po + 2:i>1 Pi q Po + ~ 
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FinaIly, we see that 

2 Po def 2 h Po q ::; q + -1 = q + 0: W ere 0: = -1 . 
po+y po+y 

If 40: 2: 1, then clearly q ::; 1 ::; 40:. Otherwise, 40: < 1 and this implies either 

1 - VI - 40: 
q::; 2 

1 + VI - 40: 
or q 2: 2 . 

For aIl x E [0, 1], we have vr=x 2: 1 - x and thus, we can conclude that, when 

40: < 1, either 

or q 2: 1 - 20:. (3.1) 

We now assume that q =f. 0, otherwise, the result trivially holds. Note that, in 

this case, since q = f(q), q ::; 2:1=1 ipiqi-1. By monotinicity, for the solution r of 

1 = 2:1=1 iPiri - 1
, we have q ::; r. Observe also that 2:1=1 iPi = J-L, which we have 

assumed greater than 1. As a consequence, r ::; 1 and 

d d 

1 = L iPiri - 1 2: r d
-

1 L iPi = J-Lrd
-

1
, 

i=l i=l 

1 1 
so q ::; r ::; J-L- d-l. Recalling (3.1), if 1 - 20: > J-L- d-l, then we must have q ::; 20:. 

This proves the lemma. o 

We are now ready to prove Theorem 3.5 which is, in fact, an easy corollary of 

Lemma 3.1. 

Proof of Theorem 3.5. IfP {Z(x) = O} = 0, theresultisclear. AssumingP {Z(x) = O} > 

0, recall Lemma 3.1. We have, for x 2: Xo, 

As a consequence, since Po = P {Z(x) = o} - 0, for x large enough, 

2P~/ < 4~o < c. 
Po+ 2 - u .. 

Therefore, for x - 00, we have qx = O(po) = 0(1), which completes the pro of. 0 
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3.1.3 Beyond Galton-Watson pro cesses 

In the course of the proofs, we will need the following technical lernrna. One should 

see it as a tool to deal with branching processes for which the progeny distribution 

rnay depend on the node. It asserts that if there is a deterrninistic lower bound 

for the reproduction distribution function, then one can find a subprocess that is a 

proper Galton-Watson process, that is, for which every node has the sarne progeny 

distribution. 

Lemma 3.2. Let N be a random positive integer, and given N = n, let Z be a random 

variable distributed like z(n), where, 

infP {z(n) ~ k} ~ tk 
n 

and tk l 0 as k -+ 00. Then one can find a random variable Y su ch that Y ~ Z and 

P {Y ~ k} = tk for all k. 

Proof. Let W be a randorn variable with tail distribution tk: P {W ~ k} = tk. Let 

Fn be the distribution function of z(n) and G be the distribution function of W. Let 

U be uniforrnly distributed on [0,1], then we couple W and {z(n),n ~ O} using the 

inverse transforrn technique (Billingsley, 1995; Grirnrnett and Stirzaker, 2001) 

It is easy to see that with probability one, W ~ z(n) for aIl n and thus W ~ Z. 0 

3.2 The first-birth problem 

The first-birth problern is at the heart of the probabilistic branching processes tech­

niques used in problerns about the heights of trees. We rnake a brief overview of the 

main results, and present sorne theorerns that will be use fuI later. 
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3.2.1 Discrete time branching random walks 

The branehing random walk (BRW) is one of the branehing processes that models the 

growth of random trees. As its name indieates, it has a tree structure, with branehing 

at eaeh generation. Every individu al bears a position on the real line R, and every 

path in the tree is a random walk on R 

More formaIly, there is an initial individual eaIled the ancestor. The ancestor gives 

birth to an offspring with positions given by a real point process Z. Let {Z~l), r ~ 1} 

be the positions of the individuals in the first generation. For n ~ 1, assume we 

know the positions of aIl individuals up to the n-th generation. Then eaeh one of 

these individuals reproduees in the same way as the aneestor, and independently of 

one another and of the pasto More precisely, an individual with position x gives birth 

to new individuals in the next generation, and their positions are distributed like 

{x + Z~l), r ~ 1}. We write {z~n), r ~ 1} for the positions of the people in the n-th 

generation. If Z is eoncentrated on [0,00) one ean easily interpret the positions as 

time and eonsider the individuals that were born before sorne time t. One ean keep 

this definition even if the walks down the ancestor are not monotonie, Le., if Z is not 

eompeIled to be nonnegative. Let U be the set of aIl individuals that are barn and 

Ut the set of those born before time t. 

FIRST-BIRTHS AND HEIGHTS. Asking about the height of a tree reduces to asking 

how big the tree needs to be for the first node to appears in sorne fixed generation. 

For the branehing random walk, the related question is slightly different, and is just to 

ask how mueh time does one need to wait ta see an individual in the n-th generation. 

This leads to introduce Bn = inf{ z~n), r ~ 1} the time of the first birth in the n-th 

generation. This question is at the origin of the branching pro cess techniques to find 

the heights of random trees. Writing Ht for the number of generations in Ut, the main 

link is 

Ht = sup{n : Bt ::; t} and Bn = inf{t: Ht ~ n}. 

It has been addressed by Hammersley (1974) when aIl the displaeements from a 
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parent are a.s. identical, i.e., for the BeUman-Harris pro cess (Athreya and Ney, 

1972). Kingman (1975) dealt with the case where Z is concentrated on [0,00) and 

Biggins (1976, 1977) treated its more general form. To state the theorem, we-need to 

introduce more notations. The results are based on large deviations, but the settings 

used by the authors of the cited papers are slightly different from ours, and we may 

use notations that are close to the historical ones. 

A LAW OF LARGE NUMBERS. Let m be the Laplace-Stieltj~ transform of Z, defined 

by, for 0 E IR, 

The function m is very close to our moment generating function, it just handles aU 

the children in the mean time instead of taking one at random (which, in general, 

cannot be as we do it since their number may be infinite). We assume that m(O) < 00 

for sorne 0 > O. This implies in particular that F(t) = EZ( -00, t) < 00 for aU t and 

one can then write 

One then defines the increasing function 11, for a E IR, by 

This is the equivalent of our Cramér function in multiplicative settings. One can then 

state the following law of large numbers for Bn. 

Theorem 3.6 (Biggins 1976, 1977). Let 'Y = inf{a : l1(a) > 1}. Let S be the event 

that the process survives. Then, almost surely on S 

Theorem 3.6 is the result that Devroye (1986) used in his seminal paper on the 

height of binary search trees .. In our opinion, its great value lies mostly in its generality 
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and the breadth of its applications. We shall pursue similar goals in this thesis, that 

is, trying to find results that are widely applicable. 

FURTHER RESULTS. More precise theorems have been proved about the minimal 

displacements of a branching random walk. Until recently, they were restricted to 

very special cases. Precise results about the behavior of Bn include the theorem by 

Bramson (1978) on the branching Brownian motion, Durrett (1983), and Bachmann 

(2000). Addario-Berry (2006) and Addario-Berry and Reed (2006) have proved that 

for a fairly general class of branching random walks, there exists 1 and {3 such that 

EBn = ln + {3logn + 0(1). 

See also the related work of Chauvin and Drmota (2007) on the heights of m-ary 

search trees, and the recent manuscripts by Bramson and Zeitouni (2006) and Hu 

and Shi (2007). 

3.2.2 Continuous time branching random walks 

A continuous time version of Theorem 3.6 can be found in Biggins (1995, 1996). The 

presentation here follows the lines of the latter papers. Partial results had appeared 

in Biggins (1980). As before, a single ancestor is born at the origin at time O. For 

convenience, we label the individuals using their line of descent in the Ulam-Harris 

way: xy denotes the y-th child of an individual x. We now let the individu ais be 

characterized by not only their position Px, but also the time {Ix at which they were 

born. In these settings, Z is now a spatial point process in lR X lR+. Each point will 

correspond to a child. The first coordinate is the deviation from the parent's position 

and the second the age of the parent when it was born. Let Zx denote the copy of 

the point process associated to x, with points {(zxy, Txy ), Y ~ 1}. Then 

Pxy = Px + Zxy and 

The fact that T ~ 0 ensures that the children are born after their parents. Let U 

denote the set of individu ais that were born. 
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THE SPREAD OF A BRW. We are now interested in the position of the rightmost 

individual alive at time t, so it is natural to introduee the point pro cess Nt giving the 

positions at time t 

Nt = L 5(px) . l[O"x :::; tl, 
xEU 

where 5(p) is a point at position p. The position of the rightmost point at time t is 

given by 

Et = sup{Px : x E U,O"x :::; t}. 

We caU J-l the intensity measure of Z, and m( e, cI» is Laplace-Stieltjes transform: 

For supereritieal processes, m(a, a) > 1, and then one ean define 

a(e) = inf{cI>: m(e,cI»:::; 1}. 

Since m is a eonvex funetion, a is itself eonvex. Only e < a has to be eonsidered 

sinee we only deal with right extreme points, and henee right tails. The main result 

of Biggins (1995) is stated as foUows: 

Theorem 3.7 (Biggins 1995). Suppose that Z is supercritical, nonlattice. Assume 

further that E [SUPt e-a(O)t] < 00 and that a(e) < 00 for some e < a. Then, 

Et . { T ---> 1 = mf a: a*(a) < a}, 

as t ---> 00, where a* defined by a*(x) = inf{xe + a(e), e < a} is the concave dual of 

the convex function a. 

Remarks. (a) Observe that the funetions m(·,·) and a* are similar (but not equiva­

lent) to our A(·,·) and A*(·, .), respeetively. The rate funetion A*(·,·) happens to be 

eonvex beeause of the differenee in the definition. 

(b) One ean also express the li mit 1 in the foUowing way: 

1 = inf {a: inf{ -logm(e, -ae)} < a} , 
0<0 
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which may be easier to compute in concrete cases (Biggins, 1980). It seems that 'Y 

may be interpreted as sorne kind of slope in a diagram showing m. We will see later 

that it indeed is a slope, but this will be easier to see with our settings. 

THE GROWTH OF A BRW. The second parameter that has sorne interest when 

comparing branching random walks to random trees is the number of individuals alive 

at time t. Indeed, in most applications, it is of little interest to find the constant 'Y 

characterizing the limiting behaviour of Bt if one does not know how many individuals 

are alive in the process at time t. This issued has been dealt with by Jagers (1975), 

Nerman (1981), Cohn (1985) and Biggins (1995, 1996). Let ç(t) be the number of 

individu aIs alive at time t, Le., that were born before t: 

ç(t) = Hx EU: ax ::; t}1 = 2:: l[ax ::; tl· 
xEU 

We are after asymptotic estimates for ç(t). Clearly, one only needs to deal with the 

time coordinates of the point process. So we may ignore the spatial elements of the 

point processes. Let [L be the intensity measure of the point pro cess Z, the projection 

of Z on the time axis, and ih its Laplace transform. We have 

ih(cp) = / e-</>r J-l(dT) = E [/ e-</>r Z(dT)] . 

The asymptotic size of the branching process depends on the Malthusian parame ter 

defined by 

ct = inf{cp: ih(cp) ::; 1}. 

The next theorem is not the strongest one can state about the size ç(t) of the tree, 

but it will be good enough for our purposes. It finds its origins in the much st ronger 

results of Nerman (1981) about the almost sure convergence of a suitably rescaled 

version of ç (t) to a nondegenerate random variable. 

Theorem 3.8. Let ç(t) be the size of a supercritical branching process with Malthusian 

parame ter ct. If the process survives, then 

log ç(t) 
---'----'-'--'- -+ ct 

logt 

almost surely, as t -+ 00. 
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Remarks. This model of continuous time branching random walk is very close to 

the ideal trees we present in the next chapter. In particular, Theorem 3.7 is in a 

certain sense the dual of our theorems on the height of ideal trees. The purpose of 

Chapter 4 is mostly to introduce our notations and interpretations of the asymptotic 

characterization of the heights. 



Chapter 4 

An Ideal Model of Random Trees 

In this chapter, we describe an ideal model of random trees. It is tightly related to bran ch­

ing random walks and will help us explain the intuition behind the more general model of 

Chapter 5. We also prove here the main properties of the geometric interpretation of the 

height. This is based on part of the work in Broutin et al. (2007) and the early ideas have 

appeared in Broutin and Devroye (2006). 
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4.1 Ideal trees: the model 

Let TeX) be an infinite rooted d-ary tree (with dk nodes at every level k), and let r be 

its root. Let 71'( u) be the set of edges on the unique path from anode u up to the 

root. We assign independently to each node of TrXJ a vector 

where Vi ;::: 0, L..t=l Vi = 1 and Zi E [-00,00). The components are dependent in a 

quite arbitrary way, in particular we do not assume any independence between the 

Vi's and the Zï's. If an edge e connects u with its i-th child, then, for convenience, 

we define li" = Vi and Ze = Zi. 

THE SHAPE OF THE TREE. With each node u E T 00 we can associate an interval of 

length Lu. We set Lr = 1. oThe children of u have intervals of lengths Lu . VIl ... , 

Lu . Vd so that the total length L..t=l Lu Vi = Lu is preserved. In this model, the sums 

of the lengths of the intervals at each level of T 00 remain 1. The tree thus describes 

a random sequence of nested partitions. The length of the interval of anode u is 

Lu = TIeE7r(u) lI". The ideal tree with parameter n, Tn , consists of the nodes u E Too 

for which Lu > l/n: 

Tn = {u E Too : Lu > l/n}. 

THE WEIGHTS. The Zi 's represent edge lengths. More specifically, the lengths of 

the edges connecting u to its children 1, ... ,d are ZIl" . ,Zd' In sorne applications we 

may have negative values, and in general, the range of each extended random variable 

Zi is [-00,00). We define the weighted depth of anode u E T 00 by Du = L..eE7r(u) Ze. 

Alternatively, we can see the tree as a birth process. The random vector of interest 

associated with anode u is then Xu = (Xl, ... , X d ), with Xi = (Zi, Ei) and Ei = 

-log Vi, if Vi > 0; if Vi = 0, we define Ei = 00. The time at which u is born is 

Bu = L..eE7r(u) Ee. In particular, the root is born at time O. Then, Tn consists of the 

nodes of T 00 that are born before time log n. We are interested in the weighted height 
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Since we deal with heights, we may assume without loss of generality that the corn po­

nents Xl, X 2 , ... , Xd of Xu are identically distributed. Indeed, randomly permuting 

them does not affect Hn. So, in the sequel, we write V, E and Z for the typical 

distributions of components of ((Zl, ~), ... , (Zd, Vd)) or Xu , and define X = (Z, E). 

THE FAIR PORTION OF THE TREE. In general, it is possible that for an edge e, 

1f" = 0, Ee = 00 or Ze = -00. This ensures that for any u such that e E 7l"(U) , 

Lu = 0, Bu = 00, or Du = -00, respectively. So, in either case, the node u cannot 

contribute to the height. Thus we calI a no de fair if Lu > 0, Bu < 00 and Du > -00. 

The fair portion of the tree is the largest tree rooted at the root of T 00 consisting of 

fair nodes only. 

We now discuss sorne constraints on V, E and Z. Their supports have already been 

mentioned: V E [0,1], E E [0,00] and Z E [-00, (0). Recall that (Zi, Ei), 1 ~ i ~ d 

are identically distributed. Also, 2::1=1 Vi = 1, which implies that EV = 1/d. The 

other conditions, whose relevance is discussed in Section 4.4, are: 

(i) P {:Ji: Zi > -00, Ei < oo} = 1: Every fair no de u has almost surely (a.s.) at 

least one fair child. 

(ii) dP {Z > -00, E < oo} > 1: The fair portion of the tree is not a trivial path. 

(iii) ° E VA. This implies that logE [e>'z 1 Z> -00, E < 00] < 00 for sorne À> 0, 

and in particular we have that E [ Z 1 Z> -00, E < 00] < 00. 

(iv) E [ Z 1 Z > -00, E < 00] ~ O. Since we study the maximal weighted depth, it 

seems a natural condition to impose on Z. 

(v) E [E 1 Z> -00, E < 00] > O. This prevents E from being identically ° on the 

fair portion of T 00. In particular, as Ei = - log Vi and 2::i Vi = 1, this ensures 

P{E=O}<l/d. 
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Remark. If K = P {Z > -00, E < oo} = 1, then T 00 is fair. Then, we only need 

o E VA' EZ 2: 0 and EE > o. 

U nder these constraints, the first term of the asymptotic expansion of the weighted 

height can be characterized by an implicit equation involving large deviation rate 

fun ct ions A * = Ax (see Chapter 2). 

Theorem 4.1. Let Tn be an ideal tree built from X and let Hn be its weighted height. 

Let A* = Ax. Assume that the conditions (i) to (v) hold. Then 

Hn = clogn + o(logn) 

in probability, as n ---t 00, where c = sup{ajp: A*(a,p):::; logd}. 

Remarks. (a) Note that, under conditions (i) to (v), P = 0 is never possible in the 

supremum defining c (see Lemma 4.1). This is always the case every time we write 

such a supremum. 

(b) If Z and E are independent and do not take infinite values, then A*(a, p) = 

AZ(a) + Aè(p), where AZ(a) and Aè(p) are defined as the usual Fenchel-Legendre 

transforms of AZ(À) = logE [e..\Z] and AE (/1) = logE [elLE], respectively. Hence 

Theorem 4.1 agrees with the result of Broutin and Devroye (2006) which claims that 

c is the maximal value of a j p in {A Z( a) + AE(p) :::; log d}. ActuaUy, under their 

assumptions, the optimal value is attained at a point in {AZ(a) + Aè(p) = logd}. 

The model of ideal trees is clean in the sense that aU nodes receive an independent 

copy of the same random vector, and the description of Tn is done in a very natural 

way from that of T 00 by pruning the branches. In most cases, the number of nodes 

of Tn is random, although one expects that it should be close to n. However, most 

concrete applications have random trees of deterministic size. Broutin and Devroye 

(2006) deal with this by proving that if E is in a specified class of random variables, 

namely exponentials, the number of nodes of Tn is indeed n1+o(l) in probability. Re­

marks about what cou Id be a more natural (or useful) definition for the size of Tn can 

be found in Section 5.6. 
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4.2 Discussions and interpretations 

THE DEFINITION OF THE CONSTANT c. Before we praceed to proving Theorern 4.1, 

we shall take it for granted and work on the characterization itself. Indeed, there 

is rnuch to say about the constant c. Recalling about the level sets of A*, w(t') = 

((a,p) E]R2: A*(a,p) ~ t'}, we have 

c = sup{a/p: A*(a,p) ~ logd} = sup{a/p: (a,p) E W(logd)}. 

We should also pave the road in preparation of the pro of, and gather sorne alternative 

definitions for c. In the sequel, we let (ZC, EC) be distributed as (Z, E) conditional 

on {Z > -00, E < oo}. We first argue about the definition of c itself. 

Lemma 4.1. Assume 0 E VA and /'l, = P{Z > -oo,E < oo} 2: l/d. 

(a) If (EZC,EEC) E w(logd) =f 0, then c = sup{a/p : A*(a,p) S logd} is well 

defined. 

(b) If furthermore, EZ 2: 0 then c 2: o. 
(c) IfP {E = o} < l/d, then there exists cS> 0 su ch that 

c ~ sup{a/p: A*(a,p) ~ logd + cS} < 00. 

Praof. Note that since 0 EVA' by Lernrna 2.2 (c), (EZC, EEC) E ]R2. 

(a) For any À,11 E ]R, by Jensen's inequality, 

It follows that ÀEZc + I1EEc - A(À, 11) ~ -log /'l, and thus, A *(EZC, EEC) ~ -log /'l,. 

Since /'l, 2: l/d, (EZC,EEC) E {(a,p): A*(a,p) ~ logd} =f 0. 

(b) If EZc 2: 0 we have c 2: EZc /EEc 2: 0, potentially infinite if EEc = O. 

(c) For aIl cS > 0, c ~ sup{a/p : A*(a,p) ~ logd + cS}, so we need only prave that 

the right-hand side is finite for sorne cS. Since P {E = O} < 1/ d, we can pick cS > 0 

such that P {E = O} < e-<Ï Id. By Lernrna 2.2 (c), A* is a good rate function, and 

hence the level sets W(·) are compact. As a consequence, it suffices to prove that 
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{p = 0}n\ll(logd+8) = 0. We show that infaElRliminfp!oA*(o::,p) 2: logd+8, which 

would prove the claim. For aIl 0::, p E IR, 

A*(o::, p) = sup po:: + /LP - A(À, /L)} 2: sup{/LP - A(O, /L)} = AÊc(p) -log K. 
À,I'ElR l'ElR 

Let q = P {EC = O}. Then, 

AEc(/L) = logE [el'E
C
] = log (q + (1- q). E [el'EC 1 E C > 0]). 

For pn 10, 

sup {/LPn -log (q + (1 - q)E [ el'Ec 1 EC > O])} 
l'ElR 

> - 5n - log (q + (1 - q) E [ e - E
C 

/ yP;; 1 EC > 0]) ~ - log q. 

So lim infn --+oo AÊc (Pn) 2: -log q. Therefore, for any 0:: E IR, 

lim inf A *( 0::, p) 2: -log P {EC = O} - log K = -log P {E = O} > log d + 8, 
p!O 

and in fa lim infp!O A *(0::, p) 2:" log d + 8, which completes the proof. o 

A GEOMETRIe INTERPRETATION. Now that we know that c is well-defined and finite 

under the constraints we have imposed, let us try to characterize it geometrically. 

Observe that in a diagram where we plot 0:: against p, 0::/ pis the slope of a line with 

one end at the origin and the other one at (0::, p). In such a diagram, \li (log d) is a 

compact set by Lemma 2.2. This set happens to be convex, but this is irrelevant for 

our point. Then, if one imagines that \li (log d) is embossed, c is the just the slope 

of the line with a joint at the origin that would be dropped from the vertical. This 

is illustrated by Figure 4.1. One can also picture of a three-dimensional diagram in 

which the value of A*(o::,p) or I(o::,p) is plotted against (o::,p). We emphasize this 

three-dimensional approach since it will be helpful in seeing the parallels between 

random trees and random tries later. See Figure 4.2. 

The following alternate expressions for the constant c will be use fuI in the proofs, 

and makes the parallei between A*(·,·) and 1(·, .). To understand what is going on 

in Lemma 4.2, see Figure 4.1. 
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Figure 4,1: Typicallevel sets for A * and 
lare shown. The shaded region is the set 
w(logd) = {A*(a,p) ::; logd}. The thick 
line is the border of {I(a, p) ::; logd}. We 
also show three points together with the 
lines of interest. The steepest is used for 
the upper bound, the most gentle for the 
lower bound. The intermediate one is the 
optimal line. 

Figure 4.2: The three-dimensional 
representation. For reasons that will 
become clear in the next chapters, we 
have represented the positive portion 
oflog(d)-A*(a,p). The optimalline 
{a = cp} in the horizontal plane go­
ing through the origin is also shown. 

Lemma 4.2. Suppose that 0 EVA, P {Z > -oo,E < oo} ~ lld and P {E = O} < 

lld. Let c '!;! sup{alp: A*(a,p) ~ logd}. Then 

(a) c = inf,>o sup{alp: A*(a,p) ~ logd + E}. 

(b) c = sup{alp: I(a,p) ~ logd}. 

(c) c = sup{ al p : (a, p) E 'l1(1og d) n VA'}' 

Proof. Observe that Lemma 4.1 ensures that 'l1(logd) f= 0 and that c is weH-defined. 

(a) Since {A*(a,p) ~ logd} ç {A*(a,p) ~ logd + E} for aH d ~ 1 and E > 0, it 

is straightforward that sup{alp : A*(a,p) ~ logd} ~ inf,>osup{alp : A*(a,p) ~ 

logd + E}. 

For n ~ 1, write Cn ~f sup{alp : A*(a,p) ~ logd + lin}. By Lemma 4.1 (c), 

there exists no large enough that en < 00 for aH n ~ no. Let 0 > O. For n ~ no, let 

(an, Pn) E 'l1(log d + lin) be a sequence of points such that anl Pn ~ en - O. Clearly 
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(an, Pn) E 'IF (log d + lino) for aU n ~ no and since 'IF (lpg d + lino) is compact, there 

exists a subsequence {(an, Pn), n ~ no} that converges to (aoo , Poo) E 'IF (log d + lino) 

as n --t 00. For each n ~ no in the subsequence we have that A*(an,Pn) ~ logd+l/n, 

and since A* is continuous in 'IF(logd+l/no) (since it is compact), then A*(aoo,poo) ~ 

logd. Thus aoo/poo ~ sup{a/p: A*(a,p) ~ logd}. AIso, since an/Pn ~ Cn - 6 for aU 

n ~ no, then a oo / Poo ~ limn->oo Cn - 6 = infoo sup{ a/ p : A *(a, p) ~ log d + E} - 6. 

Taking c5 --t 0 condudes the proof. 

(b) RecaU that the rate function 1 is defined by I(a, p) = inf{A*(x, y) : x > a, y < p}, 

for a,p E IR. We fist show that sup{a/p: A*(a,p) ~ logd} ~ sup{a/p: I(a,p) ~ 

log d}. For any E > 0, we can pick ao < a and Po > p such that ao/ Po > a/ p - E. 

Then (ao,po) E 'IF[(logd), implying that sup{a/p : A*(a,p) ~ logd} ~ sup{a/p : 

I(a,p) ~ logd} + E. Since E is arbitrary, sup{a/p : A*(a,p) ~ logd} ~ sup{a/p : 

I(a, p) ~ log d}. 

Next, we show that sup{a/p : I(a,p) ~ logd} ~ sup{a/p : A*(a,p) ~ logd}. 

Assume that (a, p) is accounted in the left-hand side, or (a, p) E 'IF [(log d). Then by 

definition, there exist (x, y) such that x > a, y < p and A*(x, y) ~ log d. Clearly, 

(x,y) E 'IF(logd) and x/y> a/p, which proves the daim. 

(c) Since A * is finite on 'IF (log d), we see that 'IF (log d)O C 'IF (log d) n 'DA * C 'IF (log d). 

By Lemma 4.1, {p = O} n 'IF(1og d) = 0, and hence a/pis continuous on 'IF (log d). 

Accordingly, sup{a/p: (a,p) E 'IF(logd)O} = sup{a/p: (a,p) E 'IF(1ogd)}. The 

result foUows. o 

Lemma 4.3. Assume 0 E 'DA' Let K, = P{Z > -oo,E < oo}. Then 'IF(-logK,) C 

{( a, p) : a ~ Eze, p ~ EEe}, where (ze, Ee) denotes a random vector distributed as 

(Z, E) conditioned on {Z > -00, E < oo}. 

Proof. We have A* = A(ZC,EC) - log K,. So it suffices to prove the daim when K, = 1, 

and hence (Z, E) = (ze, Ee) almost surely. Assume that a > Eze. For any p E lR, 

we have A*(a, p) = sup>',I'Pa + J.Lp - A(À, J.L)} ~ sUP>. pa - A(À, O)}. Since 0 E 'DA' 
A is differentiable at 0 and A(À,O) = ÀEze + o(À), as À --t O. As a consequence, 
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>.a - A(>', 0) = >.(a - EZC) + 0(>.) t'V >.(a - EZC) by the assumption. It follows that 

there exist >. > 0 such that >.a - A(>', 0) > 0, and hence A *(a, p) > 0, hence proving 

that (a, p) f/. W(O) if a > EZC. The case when p < EEC is treated in a similar 

way. 0 

AROUND THE OPTIMAL VALUE. To prove Theorem 4.1, we shall need to show that, for 

E > 0, P {Hn ~ (c + E) logn} = 0(1), and P {Hn ~ (c - E) logn} = 1- 0(1). In other 

words, taking for granted the link between these tail probabilities and A*(·,·) and 

1(·, .), we need sorne information about the behavior of the curves around {a = cp}. 

This is why the next lemma is the key to proving the upper and lower bounds of 

Theorems 4.1. 

} 
de! 

Lemma 4.4. Assume 0 E VA and K, = P {Z > -00, E < 00 > l/d. Let c -

sup{ a/ p : A *(a, p) :S log dl. 
(a) \::lE > 0, there exists (a, p) E JR2 such that l(a, p) < log d, and c - E < a/ p < c. 

(b) If P {E = O} < l/d, then, for any E > 0, inf{A*(x, y) : x/y ~ c + E} > logd. 

Proof. Lemma 4.1 ensures that w(logd) =1= 0. 

(a) Let E > o. By definition, we can pick (ao, Po) such that A *(ao, Po) :S log d and 

ao/ Po > c - E/2. Consider the region W(log d) n B n VA' where B is a non-empty open 

ball centered at (ao, Po) for which all points (x, y) E B satisfy x/y> c - E. Since A* 

is convex and A * (EZC, EEc)' = - log K, < log d, this implies that A * (x, y) < log d for 

sorne (x, y) E W (log d) n B n VA'. Furthermore, we can pick such an (x, y) such that 

x/y < c. Next, pick (a,p) E w(logd) n B such that a < x and p > y (and hence 

a/ p < c). Since A*(x, y) < log d, then l(a, p) < log d, and c - E < a/ p < c. 

(b) Let E > 0 and assume for a contradiction that inf { A * (a, p) : a / p ~ c + t:} :S log d. 

Then, for any 0> 0, there exist (a,p) such that A*(a,p):S logd+o and a/p ~ c+t:. 

As a consequence, \::10 > 0, sup{ a/ p : A *( a, p) :S log d + o} ~ c + E. This implies that 

info>o sup{ a/ p : A *(a, p) :S log d + o} ~ c + E. By by Lemma 4.2 (b), we have that 

info>osup{x/y: A*(a,p):S logd} = c, and therefore a contradiction. 0 
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4.3 The height of ideal trees 

4.3.1 The upper bound 

We are interested in bounding P {Rn> c'log n} from above, where c' = c + E, E > O. 

We have 

P {Rn> c'logn} = P {:3v E Tn : Dv > c'logn}. 

Let 2'k be the set of nodes k levels away from the root. Then, by the union bound 

over the levels k, 

P {Rn> c'logn} ~ LP {::Iv E 2'k: Dv > c'logn, v E Tn}. 
k?O 

Let Uk be the no de in 2'k down the left-most path from the root in T 00' Using now 

the union bound on the nodes in generation k, 

P {::Iv E Tn : Dv > c'logn} ~ Ldk . P {Duk > c'logn,uk E Tn}. (4.1) 
k?O 

Consider now a single term of (4.1), and observe that 7r(Uk) contains k edges: 

P{Duk > c'logn,uk E Tn } = P { L Ze > c'logn, L Ee < 10gn}. 
eE1I"(Uk) eE1I"(Uk) 

We now distinguish two cases depending on the value of k. Let K ~ 1 to be chosen 

later. 

THE LOW RANGE. If k ~ K, there are few edges in 7r(Uk), and hence it is unlikely 

that DUk is large. Since EeÀz < 00 for sorne À > 0 because 0 EVA' we have, for this 

À, by Markov's inequality, 

It follows that, for sorne constant A = max{l, EeÀZ
}, 
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and hence, 

(4.2) 

THE DEEP RANGE. We now deal with values of k such that k 2: K. Let r = {(x, y) : 

c'y:::; x}. Then, We have 

P{Duk >c'logn,ukETn } < p{( L Ze, LEe) Ek.r} 
eE7r(Uk) eE7r(Uk) 

by Cramér's theorem. We have 

< exp (-k inf [(x, y) + O(k)) , 
(x,y)Er 

inf [ ( x, y) 2: inf A * ( x, y) 2: log d + ,8, 
(x,y)Er (x,y)Er 

for sorne ,8 > 0, by Lemma 4.4. Therefore, using the lower bound above, 

L P {3v E 2'k : Dv > c'log n, v E Tn } :::; L dke-k(!3+1ogd)+o(k) = 0 (e- K f3/2) . 
k?K k?K 

FINISHING UP. Plugging the latter bound and (4.2) in (4.1) yields, 

The first term on the right-hand side above can be made as small as we want by 

picking K large enough. However, since c 2: 0, Àc' > O. Thus, K being fixed, the 

second term is made arbitnirily small by letting n go to infinity. This finishes the 

pro of. 

4.3.2 The lower bound 

The proof of the lower bound relies on the construction of a surviving Galton-Watson 

tree (see Chapter 3). The key ide as are those used in most branching processes proofs 

of the heights of trees (Devroye, 1986, 1998a) and can be traced back to Biggins 

(1977). 
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FINDING DEEP NODES. We start by proving that deep nodes appear in Tn with 

probability bounded away from zero. Our aim in this section is the following lemma: 

Lemma 4.5. For aU E > 0, there exists no 2: 0 such that 

inf P {:lu E Tn : Du 2: (c - E) logn} 2: 1- q > O. 
n:;::no 

Proof. If E 2: c, the result is trivial. We assume now that c - E > O. By Lemma 4.4, 

there exists a and p such that a/p = c' 2: c - E/2 and I(a,p) < logd. Fix such a 

and p. Consider the following branching process defined on Too • Let e be an arbitrary 

integer. We call a node v good if either it is the root, or v lies e levels below a good 

node u and we have Lv > Lu' e-lp and Dv > Du + fa. The set of good nodes form 

a branching process. Since {Xu , u E T oo} is a family of i.i.d. random variables, all 

individu ais reproduce independently and in the same way. Therefore, the tree of good 

nodes we have just built is a Galton-Watson tree. As we have seen in Chapter 3, 

one determines the behavior of such a pro cess by 100 king at the average size of the 

progeny Ye of an individual. By linearity of expectation, writing 7l'( u, v) for the set of 

edges on the unique path from u to v, 

and by definition of D and L, 

EYe = dl . P { L Ze > af, L Ee < pel . 
eE11"(u,v) eE11"(u,v) 

In the above equation, the right-hand side is exactly the tail probability for a sum 

of LLd. random vectors, as studied in Chapter 2. Since 0 E VA by assumption (iii), 

using Cramér's Theorem (Theorem 2.2), we see that 

EYe = dle-I(a,p)l+o(l) = ellogd-lI(a,p)+o(l) ----t 00, 

l-oo 

by our choice of a and p. Thus, there exists eo large enough such that EYeo > 1. 

With this choice for eo, by Theorem 3.1, the Galton-Watson pro cess survives with 
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positive probability 1 - q. In the case of survival, for every integer k, there exists a 

node v E 2k such that Dv > aRok and Lv > e-piok . In particular, for 

k = llOgnJ ' 
pRo 

and starting the process at the root node of T 00, there exists v E 2k such that 

Dv > c'logn - aRo and Lv > l/n. In particular, since c' 2:: c - E/2, it happens that 

Dv > (c - E) log n, for n large enough. As a consequence, for aU n large enough, 

P {::Iv E Tn : Dv > (c - E) log n} 2:: 1 - q > O. o 

Lemma 4.5 above proves the existence of deep nodes in Tn with positive probability. 

We intend to show that such deep nodes appear in Tn with probability 1 - 0(1) as 

n ~ 00. We want to use a standard boosting argument, and run multiple independent 

copies of the pro cess described in the proof of Lemma 4.5 by starting at 2f. However, 

not aU dt such nodes are suitable as starting individuals. 

THE NICE PORTION OF THE TREE. A good starting individual u must at least be 

fair, Le., satisfy Du > -00 and Bu < 00. Because E can take the value 00 or Z the 

value -00 with positive probability, we cannot ensure that aU nodes at level t 2:: 1 

in Too are fair. However, under our assumptions, enough of them are. We prove this 

using a second branching process argument. 

Let a, b be arbitrary constants to be chosen later. Let anode u E T 00 be caUed 

nice if every edge e E 7r(u) satisfies Ze > a, and Ee < b. Let Rt denote the number of 

nice nodes at level t. Again, {Rt, t 2:: D} is a Galton-Watson process. By assumption 

(ii), P {::Ii: Zi > -00, Ei < oo} = 1. Hence, P {::Ii: Zi > a, Ei < b} ~ 1, as a ~ -00 

and b ~ 00. AIso, by (i), P {Z > -00, E < oo} > l/d. Thus, there exist 0 > 0, ao 

and bo such that for aU a :s: ao and b 2:: bo, P {Z > a, E < b} > l/d+o. Therefore, for 

aU a :s: ao and b 2:: bo, we have ERt 2:: 1 + do. By Theorem 3.5, the pro cess survives 

with probability at least 1 - q', and q' = q' (a, b) can be made as smaU as we want by 

choice of a and b. 
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If the pro cess survives, then by Theorem 3.2, Rt ---? 00 as t ---? 00 with probability 

one. Accordingly, for any integer r 2: 1, conditioning on survival, there exists to such 

that 

P {Rto ~ r 1 Rt > 0, Vt 2: O} ~ 1/r. (4.3) 

To put it differently, we can control the probability that the the number of nice nodes 

in 2t is smaU. 

BOOSTING THE SURVIVAL PROBABILITY. Let E > O. Consider {Too(Vi), 1 ~ i ~ 

Rto}, the family the subtrees of T 00 rooted at the nice nodes {Vi, 1 ~ i ~ Rto} in 2to' 

By Lemma 4.5, there is no large enough such that, for aU i, 1 ~ i ~ Rto, we have 

P {:lu E Too(Vi) : Du - DVi > (c - ~) log m, Bu - BVi < logm} 2: 1- q, (4.4) 

for aU m 2: no. RecaU that Vi is nice, and hence DVi 2: ato and BVi ~ bto, for aU 

1 ~ i ~ Rto. Let n be large enough. Let m be such that log m = log n - bto. If we can 

find anode u as in (4.4) in any of Too(Vi) , 1 ~ i ~ Rto, then Bu < logm+Bvi < logn 

and 

Du 2': ato - (c - ~) tob + (c - ~) log n 2': (c - E) log n 

for n large enough. Therefore, u E Tn and Hn 2': Du 2': (c - E) logn. AIso, for n 2': no, 

P {Hn ~ (c - E) log n} < P {Rto ~ r} + P {Hn ~ (c - E) log n 1 Rto 2': r} 

< P {Rto = O} + P {1 ~ Rto ~ r} + qr, 

by independence of Too(Vi) , 1 ~ i ~ Rto' Therefore, 

1 
P {H n ~ (c - E) log n} ~ q' + _ + qr. 

r 

This can be made as smaU as we want by choice of q' = q'(a, b) (via a and b) and r, 

independently of n. This completes the pro of of the lower bound of Theorem 4.1. 

4.4 Special cases 

We have imposed constraints (i) to (v) on our random trees. We now discuss sorne of 

the cases when they don't hold, and see what happens with the weighted height Hn. 



4.4. Special cases 61 

THE FAIR PORTION OF THE TREE IS FINITE. Intuitively, if the fair portion of the 

tree is fini te, then, the unweighted height is finite, and the weighted height should be 

finite as weIl. This is formalized in the following lemma. 

Lemma 4.6. Suppose that 0 E VA. Assume that P {Z > -00, E < oo} < 1/ d or that 

P{Z> -oo,E < oo} = l/d and P{::Ii: Zi > -oo,Ei < oo} < 1. Then Hn = 0(1) 

in probability, as n ---+ 00. 

Proo! The tree consisting of fair nodes, {u E TeXJ : Du > -00, Bu < oo}, is dis­

bributed as a Galton-Watson process. The expected number of children of an indi­

vidual is dP {Z > -00, E < oo}. So, either the process is subcritical or it is criti­

cal and not degenerated to a path. In both cases, the tree of fair nodes is almost 

surely finite. If follows easily that the weighted height is bounded in probability since 

E [ Z 1 Z > -00, E < 00 1 < 00. D 

THE FAIR PORTION OF THE TREE IS A PATH. This is the degenerate case where 

where, in essence, we have a random walk instead of a branching random walk. The 

weighted height can be characterized by following the lines of the pro of of Theorem 4.1 

in this special case. 

Lemma 4.7. Write (ze, Ee) for the distribution of (Z, E) conditioned on {Z > 

-00, E < oo}, and assume that we have P {::Ii: Ei < 00, Zi > -oo} = 1 and K, = 

P {E < 00, Z > -oo} = l/d. Then, as n ---+ 00 

(
Eze ) 

H n =EEe + o( 1) . log n in probability. 

Proo! Recall that anode u is fair if Du > -00 and Bu < 00. The tree consisting of 

fair nodes is distributed as a Galton-Watson tree. The expected number of children 

of an individual is dP {Z > -00, E < oo} = 1, hence the pro cess is critical. AIso, 

since P {::Ii: Ei < 00, Zi > -oo} = 1, there is a.s. a fair child, and the tree consists 

of a single infinite path. Let this path be {Vi, i ~ 1}, characterized by the pairs 

{(Zy,Ef),i ~ 1}, from the root down. So, for any a, 

P {Hn;" a};" s~pP {t,z~;" n, t,Ef < IOgn}. 
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Set é > 0, Œ = (EZC - é) log n, and 

k = llOgn J. 
EEc+é 

Then, by the law of large numbers, P {Hn ~ (EZC - é) logn} -t 1, as n -t 00. 

It remains to find a matching upper bound. By analogy with the general case, let 

c = EZc /EEc ~ O. Let K ~ 1. On the one hand, the nodes with Du -t 00 cannot 

lie at constant distance from the root: 

P{3k:<: K: D., > (c+ ,)logn) < K ~~~P {t,z~ > (c+ ')IOgn} 

< K sup kEZC = 0 ( K
2 

), (4.5) 
k~K (c + é) logn logn 

by Markov's inequality. On the other hand, for the nodes Vk with k ~ K, by Cramér's 

theorem (Theorem 2.2), 

P {D., > (c + ,) logn} = P {t, Z~ > (c+ ,) log n, t, E;' < IOgn} 

< exp (-k inf A*(x,y) - k log d) , 
X~(C+E)y 

since the rate functions for (ZC, EC) and (Z, E) are translate from one another by 

log d. We can define c in a similar fashion as used in Theorem 4.1. Indeed, by 

Lemma 4.3, W(logd) = W(-logK) C {(Œ,p) : Œ ~ EZc,p ~ EEC}, and hence 

c = SUp{Œ/p : A*(Œ,p) ~ -logK} = SUp{Œ/p : A*(Œ,p) ~ logd}. Thus byan 

argument similar to that of Lemma 4.4, there exists f3 > 0 independent of k or n such 

that inf{A*(x, y) : x ~ (c + é)Y} > logd + f3. Then, by the union bound, 

P {:lk ~ K: DVk > (c + é) logn} ~ L e-f3k = 0 (e-f3K
) . (4.6) 

k~K 

Putting (4.5) and (4.6) together, and since Tn C {vk,k ~ O} a.s., we obtain 

P {:lu E Tn, Du > (c + é) logn} ~ 0 C~2n) + 0 (e-f3K/2) . 

First picking K large enough, and then letting n tend to infinity proves the upper 

bound. o 
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POSITIVE HEIGHTS AND NEGATIVE WEIGHTS. FinaIly, we conclude this section with 

a remark on the sign of c. One could think that when the weights are mostly negative, 

c should be negative as weIl. This is not the case, as shown by the following example. 

Lemma 4.8. There exist independent random variables Z and E su ch that 

E[ Z 1 Z> -oo,E < 00] < 0 and P{Z> -oo,E < oo} > l/d, 

and yet Rn = O(logn) in prabability. 

Praof. Consider a binary tree. Let (Vi, V2 ) = (1/2,1/2). Then Tn is a complete binary 

tree with llog2 nJ levels. Now, let (Zl, Z2) = (-2,1). Clearly, with the symmetrized 

random variables (Z, E), P {Z > -00, E < oo} = 1 and E [ Z 1 Z > -00, E < 00] = 

EZ = -1 < O. However, there exists a path from the root to a leaf of Tn not contaning 

any negative Z, and hence Rn = llog2 n J. 0 

4.5 The effective size of a tree 

In sorne applications, one wants to express the height of the tree in terms of the 

number of significant nodes. Only the fair portion of the tree is significant for the 

height, and we shall define the effective size #Tn of Tn as the size of its fair portion: 

#Tn = I{u E Tn :Du > -00}1. 

When P {Z = -(X)} = 0, the effective size is just the number of nodes ITnl. The only 

difference between the height Rn and that of a tree of effective size n is essentially a 

scaling factor. 

Theorem 4.2. Assume (i) to (v) hold. Let Tn be an ideal tree of (random) effective 

size Sn = #Tn. Then, its height satisfies Rn = E.log Sn + o(log sn) in prabability, as 
i 

n -- 00, where c = sup{ a/ p : A*(a, p) ::; log d} and "y = - sup{ </> : Ay(</» ::; -log d}, 

with Y = E + 00 ·l[Z = -00]. 

Theorem 4.2 follows easily from the following estimation of the effective size of 

Tn . It is just a transcription of Theorem 3.8 in our notation. 
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Lemma 4.9. Assume (i) to (v) hold. Let Tn be an ideal tree build from the random 

vector (Z,E). Let 'Y = -sup{cP: Ay(cP) ~ -logd}. Then, as n ---t 00, 10g#Tn rv 

'Y log n in prabability. 

Praof. The effect of Z = -00 is to eut down a subtree. We introduce a modified time 

random variable Y producing the same effect: Y = E + 00 . l[Z = -00]. Because 

the proofs rely on the renewal theorem, Biggins (1996) assumes the distributions 

are nonlattice. However, this is only an issue due to the pro of technique, and the 

theorems can be proved true in the lattice case as weIl (Nerman, 1981; Biggins, 1996). 

Theorem 3.8 can be used without modification, provided we translate it to our setting. 

We use the cumulant generating function Ay defined by 

Ay(cP) = logE [e4>Y] + 10gP {Y < oo}, 

for cP E IR.. The M althusian parameter 

'Y = - sup{ cP: Ay(cP) ~ -logd} 

is the quantity of interest. Here, it turns out that, for aIl cP, 

Ay( cP) = log P {Z > -00, E < oo} + log E [ e4>E 1 Z > -00, E < 00 ] . 

AIso, Ay(O) = 10gP{Z > -oo,E < oo} > -logd by assumption. Hence, 'Y > 0 

(which just means that the pro cess is supercritical). We clearly have that SUPt e--yt < 

00 which implies by Theorem 3.8 that log #Tn rv 'Y log n on the surviving set. How­

ever, by (i) the pro cess survives with probability 1. As a consequence, we have 

log #Tn rv 'Y log n a.s. and thus in probability. 0 

Remark. Lemma 4.9 can also be proved using properties of recursive equations in 

distribution and the contraction method (see RosIer, 1992; Rachev and Rüschendorf, 

1995; RosIer and Rüschendorf, 2001). 
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Praof of Theorem 4.2. The proof is straightforward. By Theorem 4.1, Rn = clogn+ 

o(log n) in probability as n ---7 00. AIso, by Lemma 4.9, Sn = #Tn rv 'Y log n in 

probability, as n ---7 00. Now, 

Rn 
-- ---7 C 
logn 

and 
logn 1 
-- ---7-

log Sn 'Y 

in probability, as n ---7 00. Therefore, the product converges as weIl. This can be 

proved formally but tediously using the following characterization of convergence in 

probability: every subsequence contains a further subsequence that converges almost 

surely, or see Exercise 20.20 on p. 272 of Billingsley (1995). o 





Chapter 5 

Weighted height of random trees 

We introduce a general model model of weighted random trees based on the ideal trees of 

Chapter 4. This models permits to obtain the height of pebbled tries, pebbled ternary search 

tries, d-ary pyramids, and to study geometric properties of partitions generated by k-d trees. 

The chapter is based on Broutin et al. (2007) and uses earlier ideas of Broutin and Devroye 

(2006) and Broutin et al. (2006). 
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5.1 Introduction 

The model is largely inspired by that of ideal trees presented in the previous chapter. 

Again, every no de is associated with two random vectors, Z, describing the lengths 

of the edges to the children, and V, describing the size of the subtrees of the children. 

However, for the model to be useful and directly applicable to a large number of 

random tree models, we generalize earlier results in two ways. First, we introduce 

the notion that only the limiting vectors (as the size of a subtree grows) are relevant. 

This idea has been used by Broutin et al. (2006) in the unweighted settings. Second, 

we allow the two random vectors Z and V to be dependent. We prove that under 

sorne mi Id conditions on the random vectors, the height of a random tree of size n is 

asymptotic to c log n in probability. We characterize c uniquely as the only solution 

of an (often implicit) equation involving large deviation rate functions, as in the case 

of ideal trees of Chapter 4. 

5.2 A model of random trees 

Weighted random trees can be constructed using a variety of methods, also called 

embeddings. An embedding emphasizes an underlying structure consisting of inde-
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pendent random variables. The model that we propose describes one embedding. It 

is of such generality that many important brands of random trees can be captured by 

it. Examples follow at the end of this chapter. 

DIFFERENT TYPES OF NODES. Consider a family {Xm , m ;::: a} of random vectors, 

where x m = ((Zi, Ei), ... , (z:r, E:r)). Assume that for all m, and 1 ::; i ::; d, 

m exp( - Ei) is almost surely integer-valued, and Ei ;::: a. Assign independently a 

copy of the sequence {Xm
, m ;::: a} to each one of the nodes of an infinite d-ary tree 

Too . The different elements of the sequence {Xm, m ;::: a} allow to describe different 

behavior for the nodes. In a sense, we have different types of nodes, one for each 

natural integer. 

BUILDING RANDOM TREE ON n ITEMS. Given an integer n and the copies of 

{Xm
, m ;::: a}, we build a sequence {(Du, Bu), U E Too } of weighted depths and birth 

times of the nodes of Too . Observe that although the dependence is not explicitly 

written, {(Du, Bu),u E Too } depends on n. The construction is made easier by using 

the auxiliary sequence { Nu, U E T oo}, w here Nu is the cardinality of anode u, that is 

the number of items in its subtree. Let n ;::: a and consider ((Zr, Er), ... , (Z:J, E:J)), 

the copy of x n at the root of Too . The children Ul, ... , Ud of the root are assigned 

cardinalities NUi = nexp( -En EN, 1 ::; i ::; d. Given the values of Nul' ... ' Nud , the 

sequences {Nv : v E Too(ui)}, 1 ::; i ::; d, describing the trees rooted at Ui, 1 ::; i ::; d 

are recursively built in the same way, unless 1 ::; NUi ::; b or NUi = a. Here b is the 

number of items that anode can contain. 

Using {Nu, U E Too }, and the copies of {Xm, m ;::: a}, we now assign random 

variables (Ze, Ee) to the edges of Too . Let e be the i-th edge out of anode U E Too . 

We set 

Recall that 7r( u) denotes the set of edges on the path from U up to the root in T 00. As 

for the case of ideal trees, we define the weighted depth of anode u, Du = I:eE7r(u) Ze 

and the birth time of anode u, Bu = I:eE7r(u) Ee. This finishes the construction of 
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{(Du, Bu),u E Too } which fully describes our random weighted tree. Then we have 

Tn <!;f {u E Too : Nu > O} = {u E Too : Bu < logn}. 

We are interested in the weighted height Hn = max{ Du : u E Tn} of the random 

tree Tn . Again, it is sufficient to consider the trees for which the components of X n 

are identically distributed. We have the following conditions: 

• PERMUTATION INVARIANCE. For any integer n, and any permutation (J, the 

vector ((Z;(l)' E;(l))'···' (Z;(d) , E;(d))) is distributed as ((Zr, Er),···, (Z:l, E:l)). 

• CONVERGENCE. There exists a random vector XOO such that the cumulant 

generating functions of the vectors xn and XOO satisfy Axn -t Axoo ~ 00 

everywhere as n -t 00 and 0 E V Axoo . 

• BOUNDED HEIGHT. There exists a deterministic function 'IjJ such that for aIl n, 

Hn ~ 'IjJ(n). 

Remarks. (a) Observe that since 0 E V Aoo , Ax -t Axoo implies that X -t XOO in 

distribution (see Billingsley, 1995, p. 390). 

(b) We can slightly relax the constraint that the height be bounded. For instance, 

subexponential tails for the height would suffice: for aIl M 2: 1, there exists a function 

f with j(t)jt -t 00 as t -t 00 such that 

sup ef(t)p {Hn 2: t} ~ 1. 
n'5,M 

Ordinary tries violate this condition, and will be treated separately in Chapter 6. 

It is also clear from the construction that: 

Lemma 5.1. Let Tn be a random tree as defined above. Then we have 

• CONDITIONAL INDEPENDENCE. For any node u, the (J-algebras generated by the 

variables associated with edges in the subtrees rooted at the children Ul, ... , Ud 

are independent, conditioned on the sizes NUI' ... , N ud • 
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• SIZE-DEPENDENT DISTRIBUTION. Conditioning on Nu = k, the subtree rooted 

at u, Tn ( u), is distributed as Tk. 

As in the case of ideal trees of Chapter 4, the height may be characterized using 

large deviation functions. ActuaIly, it turns out that under these constraints, the 

heights of Tn and an ideal tree buiIt using the vector XOO are asymptoticaIly compa­

rable in probability. We first recaIl the assumptions for the model of ideal tree. Let 

A be the cumulant generating function associated with a typical (uniformly random) 

component of Xoo = (ZOO, Eoo) of Xoo. Then, we require that 

(i) P {::Ji: Zr > -00, Er < oo} = 1. 

(ii) P{Zoo > -oo,Eoo < oo} > 1jd. 

(iii) 0 E DA' 

(iv) E [ ZOO 1 ZOO > -00, EOO < 00 1 ~ o. 

(v) E [E 1 ZOO > -00, EOO < 00 1 > o. 

See Chapter 4 for more information about the conditions above. The main result of 

this chapter, and indeed this thesis, is the foIlowing theorem. Let A be the generating 

function of the cumulants of (ZOO, Eoo), and let A* be its convex dual (see Chapter 2). 

Theorem 5.1. Let Tn be the random tree defined above and let Rn be its weighted 

height. Suppose that (i) to (v), together with the above conditions hold for XOO. Let 

c = sup{ajp : A*(a,p) ~ logd}. Then Rn = clogn + o(logn) in probability, as 

n -t 00. 

The heights of many known trees faIl within the scope of Theorem 5.1. These 

include binary search trees (Devroye, 1986), bounded degree increasing trees (Berg­

eron et al., 1992; Broutin et al., 2006), random recursive trees (Devroye, 1987; Pittel, 

1994), plane-oriented trees (pittel, 1994), scale-free trees (Pittel, 1994; Barabasi and 

Albert, 1999) pyramids (Mahmoud, 1994; Biggins and Grey, 1997), and most models 
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captured by the less general result of Broutin and Devroye (2006). Many applications 

are treated in section 5.7. 

5.3 Relying on ideal trees 

In the pro of of Theorem 5.1 we approximate depths in random trees by those in a suit­

able ideal tree. We now introduce the following coupling. By assumption, x n 
--t X OO 

in distribution as n --t 00, hence by Skorohod's theorem (see, e.g., Billingsley, 1995), 

we can find a coupling for which the convergence is almost sure. In the following, we 

let x n be the copies of the random variables such that x n 
--t X OO almost surely. If 

we use copies of this cou pied sequence {Xm , m ~ O} to build the random trees, we 

obtain a coupled sequence {Tn , n ~ O}. Since the convergence of x n to X OO is almost 

sure, each no de has a copy of XOO as well. These copies, in turn, define a proper ideal 

tree with split vector XOO. This latter tree is called the ideal tree associated with the 

coupled sequence {Tn , n ~ O}. 

Lemma 5.2. Consider the coupled sequence of random trees {Tn , n ~ O}, and the 

associated ideal tree. Let C be a fixed positive integer. Let VI, V2, •.. ,Vk be the set of 

k = dl nodes in generation C of T 00 • Then, as n --t 00, 

a.s., where Dr:;: and Br:;: are the weighted depth and birth time of Vi in an ideal tree 

built from the limit vector XOO . 

Proof. Since xn --t XOO a.s., each node has an independent copy of the limit as 

well. These limit random variables are used to define {(D:, B:), u E Too }, which 

characterizes fully a coupled ideal tree. Assume for now that, for all U E Too , 

(D~, B~) -t (D':, B':) almost surely. (5.1) 
n-->oo 

This implies that 
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almost surely, as n ~ 00. Therefore, to prove the lemma, it suffi ces to show that 

(5.1) holds for aU U E Too . 

Let A be a set of probability 1 on which, for aU u, X;: ~ X:,. We prave by 

induction on the (unweighted) depth that 

Vw E A (D~(w), B~(w)) ~ (D:'(w), B:;:(w)). 

For the sake of simplicity, we drap the w and simply write (D~, B~) and (D:;, B:), 

remembering that, in fact, these values are deterministic and taken at the point w. 

If u is the root, then (D~, B~) = (0,0) = (D:;, B:). Otherwise, u is the i-th child 

of sorne no de v. The induction hypothesis tells us that (D~, B~) ~ (D::', B::;:') as 

n ~ 00. Let the components of XOO be (Zi, Ei), 1 ~ i ~ d. Assume first that 

B::;:' = 00, then B: = B::;:' + Ei(v) = 00. As B~ ~ B~, it foUows that B~ ~ B:. 

If B::' < 00, we have N~ = nexp(-B~) rv nexp(-B::') ~ 00 as n ~ 00. As a 

consequence, 

D~ = D~ + zt~(u) ----? D;:' + Zi(v) = D:', and 
n->oo 

B~ B~ + Et~(v) ----? Br: + Ei(v) = B:;:. 
n->oo 

Therefore, (D~, B~) ~ (D:;, B:), as n ~ 00, which completes the proof. 0 

Important remark. Praving Theorem 5.1 amounts to showing that a property 

holds in prabability. As a consequence, we can use the cou pIed sequence of trees we 

have just described. In the remaining of the chapter, the trees we consider are always 

taken from this coupled sequence. In particular, there always exists a coupled ideal 

tree to rely on, and it does make sense to condition on events happening on this ideal 

tree to study random variables in Tn . We let Zoo, Eoo, Doo, and Boo be the variables 

associated with the cou pied ideal tree, so for anode u E T 00 the variables of interest 

in the ideal tree are 

D:'= L Z~ and 
ee7r(U) 
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5.4 The upper bound 

Let An denote de cumulant generating function of a typical component (zn, En) of 

x n . Let 2"k be the set of nodes k levels away from the root in T 00' Let Uk be the 

left-most no de in 2"k. We introduee the event Fk defined by 

The upper bound is based on the Gartner-Ellis theorem (Theorem 2.4). The following 

result proves that the conditions for its application hold, with the event AM being 

Nu 2: M. 

Lemma 5.3. Let À, /-l E IR. For any 0 > 0, there exists M large enough that 

sup {~log E [ l[Fk , NUk 2: Ml . exp (ÀDuk + /-lBUk ) 1 Nuo = n l} ~ A(À, /-l) + O. 
n,k 

Proof. In order to improve the readability of the equations, and for the course of this 

proof only, let us reindex the random vectors (Ze, Ee) on the left-most path to Too 

as {(Zi, Ei), i 2: 1}, where the indices increase with the distance from the root. In 

the same spirit, for i 2: 0, write Ni, Di and Bi for NUil DUi and BUil respectively. If 

n < M, we clearly have l[Nk 2: Ml = ° and the result holds. With our new notations, 

Dk = 2::=1 Zi and Bk = 2::=1 Ei' so proving the results reduces to bounding 

C def E [ l[Fk , Nk 2: Ml . eÀDk+J1B
k 1 No] 

= E [ l[Fk , Nk 2: Ml . e2:7=1 ÀZi+J1Ei 1 No] . 

The random vectors (Zi, E i ) are not independent. Rowever, by conditioning on NI, 

C = E [E [ l[H,Nk 2: Ml· e2:7=lÀZi+J1E; 1 NI] 1 No] . 

Let F'f be the event that {Zi, Ei E lR, 2 ~ i ~ k}. Then, given No and NI, the 

random variables l[Ff, Nk 2: Ml exp('L:=2 ÀZi + /lEi) and l[FI l exp(ÀZI + p,EI ) are 

independent. Renee 

NI] ·E [ l[Ffl' eÀZl+J1El 1 NI] 
, 
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where we used I[NI 2:: Ml :S 1 in the second factor. The first factor can be bounded 

by 

l :S !~~ E [ I[Ff, Nk 2:: Ml· e2:~=2ÀZi+/lEi 1 NI = m] , 
which is independent of NI and No. Let 8 > 0 and let M be large enough that for all 

m 2:: M, Am p.., J-l) ~ A(>', J-l)'+ 8. Then 

A < sup E [1[Ff, Nk 2:: Ml· e2:7=2 ÀZ;+/lEi 1 NI = m] . é(À,/l)+o 
m?M 

sup E [ I[Fk- b Nk- I 2:: Ml· e2::~ll ÀZi+/lEi 1 No = m] . é(À,/l)+o. 
m?M 

An easy induction then shows that 

sup E [ I[Fk , Nk 2:: Ml· eÀDk+/lBk 1 No = n] ~ éA(À,/l)+ko. 
n?M 

Since 8 was arbitray, the proof is complete. o 

The proof of the upper bound of Theorem 5.1 is similar to that of Theorem 4.1 in 

its structure. Let E > O. Let c' = c + E, where c = sup{ al p : A*(a, p) :S log d} is the 

constant defined in the statement of Theorem 5.1. By definition, 

P{Hn>c',1ogn} = P{:JVETn:Dv>c'logn}. 

Recall that 2'k denotes the set of nodes at level k in Too . The union bound yields 

P {Hn > c' log n} :S L P {:Jv E 2'k : Dv > c' log n, v E Tn} . 
k?O 

Using a second union bound over the nodes in each level, 

P{Hn > c'logn} :S Ldk ·P{Duk > c'logn,uk E Tn}. (5.2) 
k?O 

In order to further bound (5.2), we first restrict our attention to the case NUk 2:: M. 

We have 
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where r = {(X, y) E JR2 : X ~ c'y}. By Lemma 5.3, and sinee 0 E V'A, the upper 

bound of Gartner-EUis theorem (Theorem 2.4) holds: for any , > 0, there exists Ml 

such that for aU M ~ Ml, 

limsuP-k110gp{Duk >c'logn,Nuk ~M} ~ -min{.!., inf A*(X,y)-,}. 
k-->oo , (x,y)Er 

By Lemma 4.4, there exists /3 > 0 such that inf{A*(x,y): (x,y) E r} ~ logd+/3. 

Then, choosing , < /3/2, we have 

Ldk ·P{Duk ~ c'logn,Nuk ~ M} ~ L dk ·e-k(,B/2+1ogd) ~ CI ·e-K ,B/2, (5.3) 
k?K k?K 

for aU K ~ KI large enough' and sorne constant Cl = C1(KI ), 

As in the pro of of Theorem 4.1, we treat the values of k ~ K using Markov's 

inequality. Let À > 0, such that (À,O) E V'A. There exists C2 ~ 0 and M2 > 0 such 

that sup{An(À, 0) : n ~ M 2 } ~ C2 < 00. Then, for this value of À, by Lemma 5.3, 

P {D > c'logn N > M} < ekC2-Àc'logn. Uk _ 'Uk _ 2 _ 

Therefore, by the union bound, 

Let now M3 = max{ Ml, M2}. We have obtained bounds on the terms of (5.3) for 

every k when NUk ~ M3' It remains to deal with the nodes at the bottom of the tree 

for which N < M3. RecaU that by assumption, P {Hn ~ 'l/I(n)} = O. 

P{Hn ~ (c+2E)logn} <. P{:Jv E Tn : Dv ~ (c+2E)logn-'l/I(M3),Nv ~ M3} 

< P{:Jv E Tn : Dv ~ (c+E)logn,Nv ~ M3}' 

Renee, putting (5.3) and (5.4) together, 

As Àc' > 0, this can be made as smaU as we want by first choosing K and next letting 

n go to infinity. Since E was arbitrary, this finishes the pro of of the upper bound. 
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5.5 The lower bound 

The aim of this section is to build a surviving Galton-Watson pro cess that ensures 

that nodes with large weighted depth exist in Tn with probability 1 - 0(1). We split 

the construction of this pro cess into stages. The pro of is similar to that for ideal trees 

presented in Chapter 4. We rely on Lemma 5.2 and the pro of of Theorem 4.1 to show 

that deep nodes do occur with positive probability, before we boost the probability 

of their existence to 1 - o( 1 ). 

SKIMMING THE TREE. Our aim here is to find nodes of sufficiently large weighted 

depth in Tn . Recall that we use the coupled sequence of trees built in section 5.3. 

We st art by finding nodes with large weighted depth in the ideal tree, and then prove 

that the corresponding nodes in Tn are also sufficiently deep. 

Lemma 5.4. Let Tn be a random tree as described in Section 5.2. Let c = sup{ 0./ p : 

A * (a, p) ~ log d}. For all E > 0, there exists no such that 

inf P {::lu E Tn : Du 2: (c - E) log n} > O. 
n~no 

Proof. Let E > O. By Lemma 4.4, there exists a and p such that a/ p = d and 

1 (a, p) < log d, for sorne c' such that c - E /2 < c' < c. Let a and p be fixed. Let f be 

an arbitrary positive integer to be chosen later. A no de v E T 00 is called ideally good 

if either it is the root, or v lies f levels below an ideally good no de u and we have 

The set of ideally good nodes forms a Galton-Watson tree. Let yoo be the size of 

the progeny of u in this Galton-Watson process. By linearity of expectation, writing 

7r(u, v) for the set of edges on the unique path from u to v in the ideal tree, with v 

lying P levels below u, 

EYOO = dl. P {Dr: - D':' 2: af, Er: - Er: ~ pf} 

dl. P { L Zr; 2: af, L Er; 5:. pel . 
eE'71'( u, v) eEll'( u, v) 
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By Cramér's theorem (Theorem 2.2), and because of our choice for Ct and p, we have 

EYOO = dl . e-I(a,p)l+o(l) = eflogd-eJ(a,p)+o(l) ----+ 00. 
l-+oo 

Thus, there exists f. large enough such that EYoo > 1. This choice makes the pro cess 

supercritical. Let f. now be fixed. 

Consider now the coupled random trees Tn , with size-dependent vectors. Anode 

v E T 00 is caUed good if either it is the root, or it lies f. levels below a good node u 

and we have 

The set of good nodes is a branching process. However, the progeny distribution Yu 

of anode u now depends on u and the pro cess is not a Galton-Watson process. We 

deal with this minor issue using Lemma 3.2. By Lemma 5.2, we have 

liminfP {Yu 2: t 1 Nu = n} 2: P {yoo 2: t}, 
n-+oo 

for aU 0 :S t :S dl. Since EYoo > 1, there exists M large enough that for aU n 2: M, 

Now, by Lemma 3.2, there exists a random variable y' such that, for aU t, 

( 
1- EYoo ) 

P {yI 2: t} = max P {yoo 2: t} + 2df. ,O. 

Further, there exist coupled copies of Y', {Y~, u E Too } such that have Y~ :S Yu if 

Nu 2: M. The Galton-Watson pro cess with progeny distribution y' is supercritical: 

dl 

E [Y'] = L P {yI 2: t} 
t=l 
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Therefore, it survives with probability 1 - q > O. Note that the garantee y~ :::; Yu 

only occurs if Nu ~ M. In particular, it is not true that every node u in the coupled 

Galton-Watson process with progeny distribution y' is also a good node. 

However, in the case of survival, either (a) there is an infinite path of good nodes u 

with Nu ~ M, or (b) there is sorne good no de w with Nw < M. Now, if (a) happens, 

for every integer k, there exists a no de v such that Dv ~ a€k and Nv ~ M. So in 

particular, with 

k1 = llO:t J ' 
Dv ~ c'logn-a€, and v E Tn since Nv ~ M ~ 1. In case (b), consider the shallowest 

good no de w such that Nw <. M. Then, w is part of sorne generation k2 of the pro cess 

(at level k2€ in Tex,). Since w is good, M > N w ~ n exp( - pk2€), and hence, 

k > logn -logM 
2 - p€ 

It follows that Dw ~ c'log n - c' log M. As a consequence, in both cases, for n large 

enough, there exists anode u E Tn with Du ~ (c - E) log n, and this happens with 

probability at least 1 - q > O. o 

It rernains to show that the nodes with large weighted depth found in the previous 

section do appear in Tn with probability 1 - 0(1) as n - 00. Again, we intend to use 

the standard boosting technique: we run multiple copies of the branching pro cess to 

increase the chance that one survives. Instead of using the root as a first individual, 

we want to use sorne of the d! nodes at level t as starting individu aIs of independent 

processes. However, as for the case of ideal trees, not aIl such nodes are suitable as 

starting individuals. 

THE NICE PORTION OF THE TREE. Since P{ Z = -00, E = oo} rnay be posi­

tive, we cannot expect in general that all d! nodes at level tare good starting 

individuals. Indeed, sorne rnay not even be fair. In spite of this fact, we daim 

that under the constraints (i) and (ii), Le., P {3i : Zr' > -00, Er' < oo} = 1 and 

P {Zoo> -00, EOO < oo} > 1/ d, there are enough of thern. In order to prove this 

daim, we use a second branching pro cess defined on the top t levels. 
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We look first at the ideal tree. Let v E T 00 be called ideally nice if either it is the 

root, or it is linked to an ideally nice node by an edge e and we have 

Z,:, > a and E':' < b. 

Let Rf: be the number of ideally nice nodes in ~, the set of nodes t levels away 

from the root in Too . Then {Rf:, t ~ O} is a Galton-Watson process. By hypoth­

esis (ii), P {Zoo> -00, Eoo < oo} > l/d, hence there exist <5 > 0, ao and bo such 

that for all a ::; ao and b ~ bo, P {Zoo> a, Eoo < b} > l/d + <5. Now, by assump­

tion (i), P{~i: Zi > -oo,Ei < oo} = 1, and thus P{~i: Zi > a,Ei < b} ---t 1, 

as a ---t -00 and b ---t 00. By Theorem 3.5, the process survives with probabil­

ity at least 1 - q', and q' = q' (a, b) can be made as small as we want by choice 

of a and b. If Rf: > 0 for all t ~ 0, then by Theorem 3.2 ~oo ---t 00 as t ---t 00 

with probability one. As a consequence, for any integer r, there exists to such that 

P { R~ ::; r 1 Rf: > 0, Vt ~ O} ::; 1/ r. 

Let us now go back to the non-ideal random trees, with size-dependent distribu­

tions. In the random tree Tn, anode at level t is called nice if Du ~ at and Bu ::; bt. 

By Lemma 5.2, the number Rto of nice nodes u at level to satisfies, for n large enough, 

P {Rto ::; r 1 R'(' > 0, Vt ~ O} ::; 2/r. (5.5) 

Observe in particular that the conditioning is meaningful since we consider the coupled 

sequence of trees. Equation (5.5) gives us the handle we need on the number of nodes 

we can used as starting individual in the boosting step. 

BOOSTING THE SURVIVAL PROBABILITY. Let € > O. Let {Too (Vi),1 ::; i ::; Rto} be 

the family of su btrees of T 00 rooted at the nice nodes {Vi, 1 ::; i ::; Rto}. The pro cesses 

of good nodes described in the proof of Lemma 5.4 evolve independently in every 

Too(Vi)' Furthermore, by Lemma 5.4, there is no such that for alll ::; i ::; Rto and for 

all m ~ no, 

P {:lu E Too(Vi): Du - DVi ~ (c-~) log m, Bu - BVi < logm} ~ 1- q. (5.6) 
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By construction, we have D,!l; ~ ato and EVi :S bto, for 1 :S i :S Rto' Let n be large 

enough, and let m be such that log m = log n - bto. If one can find anode u in T oo( Vi) 

as described in (5.6), then 

Du ~ ato - (c - ~) tob + (c - ~) log n ~ (c - E) log n, 

for n large enough. Such anode u is called a deep node. Moreover, Bu < logm+Bvi :S 

logn so u E Tn and Rn ~ Du ~ (c - E) logn. 

If no deep no de exists, then one of the following must occur: either {Rt, t ~ O} 

dies, or it survives but Rto :S r, or we cannot find a deep node in any of the Rto ~ r 

independent trees Too(Vi)' As a consequence, for n large enough, 

P {Rn :S (c - E) logn} < P {Rto < r} + P {Rn :S (c - E) logn 1 Rto ~ r} 

< P {3t ~ 0 : Rt = O} + P {1 :S Rto < r} + qr, 

by independence of T 00 ( Vi)' 1 :S i :S Rto' l t follows that 

2 
P {Rn :S (c - E) log n} :S q' + _ + qr. 

r 

This can be made as small as we want by choice of q' = q' (a, b) and r. This completes 

the proof of the lower bound. 

5.6 The height of trees of effective size n 

In our model of random tree, we have allowed Ze = -00 with positive probability. 

When this happens for sorne edge e, then we have Du = -00 for aIl u E T 00 such 

that e E 1T'( u). The effect of Ze = -00 is to cut a subtree, exactly as Ee = 00 does. 

In sorne applications, one is interested in the height of a random tree in terms of its 

effective size #Tn , Le., the number of nodes that are significant for the height: 

#Tn = I{u E Tn : Du > -00}1. 

The only difference with the height Rn consists in a scaling factor. 



82 CHAPT ER 5. WEIGHTED HEIGHT OFRANDOM TREES 

Theorem 5.2. Let Tn be a random tree as described in Section 5.2, of (random) effec­

tive size Sn = #Tn . Then, its height satisfies Hn = ~ log Sn +o(log Sn) in prabability, as 

n ~ 00, where c = sup{ a/ p : A*(a, p) :::; log d} and 'Y = - sup{ <p : Ay(<p) :::; -log d}, 

with Y = E + 00' l[Z = -00]. 

Theorem 5.2 follows easily from the the following lemma about the effective size 

of Tn . This is a generalization of Lemma 4.9 of the previous chapter. 

Lemma 5.5. Let Tn be a random tree as defined in Section 5.2. Let (Z, E) be the 

limit vector. Then, as n ~ 00, log #Tn rv 'Y log n in prabability, where 'Y = - sup{ <p : 

Ay(<p) :::; -logd}. 

Praof. The modified size-dependent time random variables are now {ym, m ~ O} 

where ym = Em + 00 . l[zm = -00]. Upper and lower bounds on #Tn may be 

obtained by respectively lower, and upper bounding yn so as to have Li.d. variables, 

and then using Lemma 4.9. We now describe the upper bound, and omit the proof 

of the lower bound since it follows the same Hnes. We have, for aIl <p E IR, 

Aym(<p) = 10gP{zm>-00,Em<00}+Am(0,<p) 

~ 10gP{Z>-00,E<00}+A(0,<p), 

as m ~ 00. Since 0 E V'A, ym ~ y in distribution (see Billingsley, 1995, p. 390). We 

use a coupling argument. Let Fm and F be the distribution functions of ym and Y, 

respectively. Let GM(x) = sup{Fm(x), m ~ M}. The function CM is the distribution 

function of a proper random·variable W. By the dominated convergence theorem, we 

have Awh + E) ~ Ah + E) < logd. As a consequence, there exists M large enough 

that Awh + E) :::; logd. 

Now, for m ~ M, ym stochastically dominates WM . Let U be a [O,l]-uniform 

random variable. Let c'iJ be the inverse of CM, i.e., the function such that for aIl xE 

IR, Ci) 0 CM(x) = X. By the inverse transform technique (Grimmett and Stirzaker, 

2001), for each no de u E Tao, F(Yu) is a [0, l]-random variable, and C'iJ oF(Yu) :::; Yu 

is distributed as W. Let Tf:! be the subtree of Tn consisting of nodes u with Nu ~ M. 



5.7. Applications 83 

There are at most #T: . d hanging subtrees with Nu < M, each one of effective size 

at most M. It follows that #Tn :S #T: (1 + dM) and 

1
. log #Tn l' log #T: + log(l + dM) 
Imsup < Imsup :S 1 + E, 
n-+oo log n - n-+oo log n 

where the last inequalities follows from the choice of M and Lemma 4.9. Since E was 

arbitrary, the proof is complete. o 

5.7 Applications 

We now present sorne applications of Theorem 5.1. Our goal is to emphasize the wide 

range of problems that may be handled, even if they apparently are very far from 

heights of random trees. 

5.7.1 Variations on binary search trees 

Binary search trees probably provide the easiest example of application for Theo­

rem 5.1. Recall that binary search trees (Knuth, 1973c) are search trees built on a 

set of keys {l, 2, ... , n}. Given a permutation {al, 0'2, ••. , an} of the keys, the first 

element al is stored at the root of a binary tree. The set of keys is then partitioned 

according to their values into {ai : ai < al} and {ai : ai > al}. Both subsets are 

then treated recursively to form the left and right subtrees of the root, respectively. 

If the permutation is taken uniformly at random from the set of permutations 

of {l, ... , n}, the tree is called a random binary search tree. This model is of great 

interest, particularly because of its ubiquity in computer science as, e.g., the tree 

emerging from the branching structure of quicksort (Hoare, 1962). In this model of 

randomness, al is an e1ement of {l, ... , n} taken uniform1y at random and hence the 

sizes of the 1eft and right subtrees are distributed as Bin(n-1, U) and Bin(n-1, 1-U), 

respectively, where U is a [O,l]-uniform random variable. More precisely, writing 

(NI, N2 ) for a vector that is distributed as a multinomia1(n - 1; U, 1- U), the vector 
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of interest is 

X n = ( (1, -log (~I) ) , (1, -log (~2) ) ) . (5.7) 

One can show that the conditions required to apply Theorem 5.1, are satisfied. In 

particular: 

Lemma 5.6. Let xn be defined by (5.7). Let X = ((1, -log U), (1, -log(l - U))). 

Then, Axn --t Ax everywhere. 

Proof. The weights are irrelevant here, and we consider 

(E~, E2) = (log n -log NI, log n -log N2 ) 

only. Observe that (NI, N2 ) is distributed as (lnUJ ,ln(l - U)J), where U is a [0,1]­

uniform random variable. For aIl /-lI, /-l2 E IR, 

We have, for aIl /-lI, /-l2 E IR 

almost surely. Therefore, if /-lI < 1 and /-l2 < 1, by the bounded convergence theorem, 

If, on the other hand, either /-lI ~ 1 or /-l2 ~ 1, then by Fatou's Lemma (see, e.g., 

Billingsley, 1995), 

Thus, we have convergence everywhere in IR U { +00 }, which completes the proof. 0 

Remark. In the following, we will not prove the convergence of the cumulant gener­

ating functions any more, and only refer to Lemma 5.6. 

Renee, for this model, E = - log U and Z = 1. The random variable E is then 

distributed as an exponential with mean 1 and Theorem 5.1 immediately implies the 

following theorem of Devroye (1986). 
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Theorem 5.3 (Devroye 1986). Let Tn be a random binary search tree. Let Hn be its 

height. Then Hn '" clog n, in probability as n --t 00, where c = 1/ Po = 4.311 ... and 

Po = inf{p: p - l-logp::; log2}. 

The value 4.311 ... log n is fairly large compared to llog2 n J, the height of a com­

plete binary tree with n nodes. As this value represents the worst case search time, 

various methods have been used to shrink it and hence obtain more efficient search 

trees. Sorne use splits that are more balanced towards (1/2,1/2). One way to achieve 

more balanced splits is to use the median of 2k+ 1 keys as a pivot (Van Emden, 1970). 

When k is fixed, the split at every node is still given by (5.7) but now (NI, N2 ) is 

distributed as a multinomial (n -1; Uk , 1- U k ) and Uk is a beta(k + 1, k + 1) random 

variable. Again, we see that for X = ((1, -log Uk ), (1, -log(l - Uk))), Axn --t Ax 

everywhere as n --t 00. This suffices for the hypothesis of Theorem 5.1 to hold. 

Theorem 5.4 (Devroye 1993). Let Tn be a binary search tree built with the medians 

of2k+ 1 keys as pivots. Then the height Hn ofTn satisfies Hn '" Ck log n in probability 

as n --t 00, where Ck is the unique solution of 

2k+1 

: + L log (1- ~) = log 2, 
k i=k+1 

and s is implicitly defined by 

1 2k+1 1 

Ck = L i - s' 
i=k+I 

If k is fixed, we can make Ck close to 1/ log 2. However, for each k we have Ck > 

1/ log 2. One can improve this by taking values of k that depend on the number of keys 

stored in asubtree. If k --t 00 as n --t 00, we see that xn --t X = ((1,log2), (1,log2)) 

a.s. as n --t 00. Theorem 5.1 then implies that Hn '" log2 n, in probability as n --t 00. 

This strengthens the theorem of Martlnez and Roura (2001) which asserts that the 

average depth, in this case, is asymptotic to log2 n (see also Van Emden, 1970). 



86 CHAPT ER 5. WEIGHTED HEIGHT OF RANDOM TREES 

5.7.2 Random recursive trees 

The random recursive tree is one of the simplest random trees (Meir and Moon, 1978). 

One way to describe its construction is by successive insertions of nodes. A recursive 

tree of size one consists of a single node VI. At each further step i a new vertex Vi is 

added to the tree and tied to a uniformly random no de from {VI, V2, ... , Vi-l }. This 

is sometimes called a Yule process. Various functionals of this tree have been studied 

in the literature (Smythe and Mahmoud, 1995). We are particularly interested in its 

height Hn wh en n goes to infinity. 

Theorem 5.5 (Devroye 1987, PitteI1994). The height Hn of a random recursive tree 

with n nodes is asymptatic ta e log n in probability as n goes ta infinity. 

Random recursive trees have unbounded degree, and it seems that Theorem 5.1 

will be of litt le help. However, one can look at the sequence of depths in a random 

recursive tree as weighted depths in a related binary tree (Figure 5.1). Recall that a 

random binary search tree can be built by choosing, at each step, an external node 

uniformly at random, and replacing it with an internaI one. Therefore, building an 

auxiliary binary search tree in which the external nodes represent the nodes of our 

random recursive tree solves the issue of the uniform choice. 

This leads to a construction that maps the nodes of a rooted tree to the exter­

nal nodes of a binary tree. Consider a rooted tree 7,. on n vertices. Let M 2 = 

{ dl, d2 , ... , dn } be a multiset of numbers that represent the distances from the nodes 

to the root in 7,.. To make the mapping more visual, we also describe the construction 

of a weighted binary tree Tn on n external vertices together with Mn' the sequence 

of distances in Tn (see Figure 5.1) . 

• 7i consists of a single node and Ml = {D}. Appending anode yields a tree on 

two nodes and M 2 = {D, 1}. Let T2 be the binary tree with two external nodes. 

Let e and f be its edges. Label them with Ze = 1 and Z f = D. Consider the 

labels as distances. Then T2 has distance sequence M2 = {D, 1} = M 2 . 
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• Suppose now that we are given T.-. and the corresponding Tn . They match the 

distance sequence Mn = {dl, d2 , ... , dn}. Appending V to anode u means that 

we define Mn+! = Mn U {d + 1}, where d EMis the distance from u to the 

root in both T.-. and Tn . In terms of trees, we replace the external no de u in Tn 

by an internaI no de x. There are two new external nodes associated with x, and 

the edges e and f out of x are labeled Ze = 1 and Z f = O. We mayas weIl label 

the new external vertices v (such that e = xv) and u (with f = xu). Then we 

clearly have Mn+l = Mn U {d + 1}, and the sequences Mn+! and Mn+! match, 

as required. 

Figure 5.1: A rooted tree and the corresponding binary tree. The white nodes have been 
added for the sake of the construction. Solid lines correspond ta edges with Z = 1 and 
dashed ones ta those with Z = O. Therefore, 1 is equivalent ta the root (as the root distance 
is zero), 2 ta the first child of the root (distance one), and sa on. 

Replacing deterministic labels by random variables makes this model fit for our 

framework. For the same reason as in binary search trees, E = exponential(I). Since 

on any path 7r from the root in Toc, each edge e is as likely to be labeled with 0 as 

with 1, we have Z = BernouIli(I/2). 

From Theorem 5.1, we have Hn '" clogn, where c = sup{a/p: A*(a,p) ::; log2}. 

Here (Dembo and Zeitouni, 1998), we have 

A *(a, p) = a log a + (1 - a) log(1 - a) + log 2 + P - 1 -log p, 
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which yields, since the optimum is clearly reached for equality, 

c = sup {~ : 0: log 0: + (1- 0:) log(l- 0:) + p -logp = 1}. (5.8) 

The slope p(o:) of the curve in (5.8) satisfies 

dp logo:-log(l-o:) 

do: 1/ P - 1 
(5.9) 

Recalling the geometric interpretation shows that the optimal 0: verifies 

dp 
do: . 0: = p. 

Straightforward manipulations using (5.9) give 0: log 0: - 0: log(l- 0:) = 1- p. Taking 

the value for 1-p in the equation (5.8) finally gives the desired result, that is, 0:/ p = e. 

a' 

p 
0' 

Figure 5.2: A portion of the level set of interest for random recursive trees w(log2) = 
{(p,a) : aloga + (1- a) log(1- a) + p -logp ~ 1}. 

5.7.3 Random lopsided trees 

In information theory, researchers are interested in building codes that are optimal 

with respect to various measures. Prefix-free codes are particularly interesting because 

they can be decoded directly by following a path in a tree, and output a character 

corresponding to the codeword when reaching a leaf. In such trees, anode u represents 
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a prefix p, and its children the words that can be built by appending a symbol to 

p. In digital applications, characters are usually encoded with bits and therefore, 

processing each symbol has the same cost. We can think of costs by assigning lengths 

to the edges in the tree. In this case, they would aIl have equallengths. But for sorne 

codes the length of codewords is variable. These are called Varn codes (Varn, 1971). 

Such encodings lead to trees whose edges have non-equallengths. The corresponding 

trees are called lopsided (see Kapoor and Reingold, 1989; Choi and Golin, 2001). 

Let Zl :::; Z2 :::; ... :::; Zd, be fixed positive real numbers. Then a tree is said to 

be lopsided if it is d-ary rooted, and for each node, the edge to the i-th child has 

length Zi. We now define a model of random lopsided trees, and show that their 

heights follow from Theorem 5.1. As for random recursive trees, we use a sequential 

process: start with a tree Tl on single internaI node. To build a random tree Tn+l 

with n + 1 (internaI) nodes, take an instance of Tn , pick an external no de uniformly 

at random, and replace it with an internaI node, exactly as we did in section 5.7.2. 

The weights of the d child-edges of that internaI no de are Zl, Z2, •• . ,Zd. We assume 

that the {Zi' 1 :::; i :::; d} are not aIl equal. In this model, E is exponential and Z = Z[, 

where 1 is uniform on {l, ... ,d}. 

Theorem 5.6. The height Hn of a random d-ary lopsided tree with n nodes built with 

the cost sequence {Zl' Z2, ... , Zd} satifies 

c 
Hn = d:...- 1 ·logn + o(logn) in probability, 

as n ---+ 00, where 

c = sup { ~ ; "t(,,) + log" - log ( ~ z;e"') + p - 1 - log p " 0 } , 

and t( a) is uniquely defined by 

d 

2:)a - zi)etzi = o. 
i=l 

(5.10) 

(5.11) 
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Remark. Theorem 5.6 does not formally apply to the case of equal zï's. However, it 

is easy to verify that when Zl = Z2 = ... = Zd = 1, we are led to 

Hn rv -d C logn in probability, 
-1 

as n ---7 00, where c = 1/ p, and p is the unique solution greater than 1 of p-1-1og p = 

log d. In particular, for d = 1, c = 4.311 ... since the tree is then a binary search tree. 

Our random lopsided trees may also be used when we replace a random node 

by a fixed deterministic tree. The growing pro cess is as follows. Start with a grey 

node. Each step sees the replacement of uniformly selected random grey no de by a 

deterministic tree consisting of k nodes (see, e.g., Figure 5.3). In this replacement 

tree, aIlleaves, as weIl as none, sorne or aU of the internaI nodes are painted grey (if 

the root is grey, then the no de just replaced may be selected again), for a total of € ::; k 

grey nodes. If we are interested in standard distances to the root, and in the classical 

definition of the height, then we can imagine another tree in which the replaced no de 

receives a number € of children, with edge weights equal to the distances to the root 

in the replacement tree. The original tree has sizes given by 1 + s( k - 1) for s integer, 

and the new imagined tree has sizes given by 1 + s€ for s integer: they are linearly 

related. The weighted height in the new tree corresponds to the standard height in 

the original tree. We work out two examples. 

Example. In Figure 5.3, we replace a randomly picked grey node by a subtree with 

five nodes, two of which two grey nodes, at distances 1 and 3 from their roots. This 

corresponds to a random lopsided tree (modulo a proportionality constant in the size 

of the tree) with weights (1,3), and fanout d = 2. The slope of the tangent going 

through the origin is 9.3389 ... , implying Hn rv 9.3389 ... log n in probability, as 

n ---7 00. 

Example. In Figure 5.4, we have the same replacement, but paint aIl five nodes grey. 

This yields the random lopsided tree with fanout d = 5 and cost vector (0,1,1,2,3). 

The slope of the optimal tangent is 20.966 ... , which gives the height after renormal­

ization: Hn rv 5.241 ... log n in probability, as n ---7 00. 
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p 

Figure 5.3: The pattern tha~ replaces a grey node and the portion of interest of w(log2) 
together with the optimal tangent when the set of costs is {l, 3}. The nodes are labeled with 
their depth. 

p 
0.1 0.2 0.3 0 . .5 0.6 0.1 0.8 0.9 1.0 

Figure 5.4: With the set of costs {a, 1, 1,2, 3}, one can think of a uniform grey node being 
replaced by the tree pattern on the left. 

Praof of Theorem 5.6. In this model, external nodes are picked uniformly at random 

and E is expoential. Since on a path to the root, each edge is equally likely to have 

any cost in {Zl' ... , Zd}, and by independence of Z and E, 

A(À, /-l) = logE [eÀZ+1LE] = log L etzi -logd + logE [ellE] . 
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U sing the definition for A *, we see that we see that the optimal value is obtained for 

which is equivalent to (5.11). The value t(a) is unique as long as at least two of the 

z/s are distinct. The constraint (5.10) follows immediately from Theorem 5.1. 0 

5.7.4 Plane oriented, linear recursive and scale-free trees 

Plane oriented trees (or plane recursive trees or PORTs) are an ordered version of 

recursive trees due to Szymanski (1987). They may be obtained using successive 

insertions as weIl. The difference lies in that a parent is no longer chosen uniformly, 

but rather with probability proportional to one plus its outdegree. This is also the 

preferential attachment model used by Barabasi and Albert (1999) to represent the 

web, and a particular case of the more general recursive trees of Pittel (1994). 

Plane oriented trees (PORTs) are rooted trees in which the children of every node 

are oriented. A random PORT with n nodes is defined as a tree taken uniformly at 

random from the set of (n - 1)! plane oriented trees with n nodes. The depths of 

nodes in random PORTs have been studied by Mahmoud (1992a) and the height by 

Pittel (1994). An interesting property of PORTs is their recursive description: one 

can view a random PORT with n nodes as a random PORT with n - 1 nodes, to 

which we add anode unifoquly at random in the set of slots available. Nodes have 

labels 1 through n in order of àddition, and therefore, the labels are always increasing 

on paths down from the root. The slots are the positions in the tree that lead to 

different new trees. Because of the order, each node with k children has k + 1 slots 

(external nodes) attached to it as described in Figure 5.5. 

We may consider them as linear recursive trees, a more general model of Pittel 

(1994), which has also been dealt with by Biggins and Grey (1997). For this kind 

of tree, each node u has a weight Wu, and when growing a random linear recursive 

tree, a new node is added as a child to anode u picked at random with probability 
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,~o 
cfJ ~ ........ ~ 

fI+1 

Figure 5.5: A PORT with the slots represented by squares on the left and the tree pattern 
on the right, representing the replacement of an external node. The labels on the edges are 
the costs of crossing them. 

proportional to wu' For linear recursive trees, we have Wu = 1 + ,8degU) where degu 

denotes the number of children of u and ,8 ~ 0 is called the parameter. We can obtain 

the same distribution on trees by taking external nodes uniformly at random and with 

a suitable number of external nodes for each vertex, at least when ,8 is integer (see 

below). 

Assume that ,8 is integer-valued. It is easily seen that when we pick a uniform 

external node at depth d, and replace it by ,8 + 2 new external nodes, ,8 + 1 at depth 

d and one at d + 1, then· this may be seen as replacing a uniform external no de by 

the fixed tree pattern of Figure 5.5. The values of Z for the ,8 + 2 child-edges of 

anode consist of one 1 and (,8 + 1) O's. Therefore, a typical Z is distributed like 

Bernoulli(lj(,8+2)). One may apply our result on random lopsided trees with fanout 

,8 + 2 to find a new pro of of Pittel's theorem on the height of linear recursive trees. 

Theorem 5.7 (Pittel 1994). Assume that ,8 is integer-valued. The height Hn of a 

mndom linear recursive tree with pammeter ,8 and n nodes is such that 

Hn c 
----.+--.-
log n n->oo ,8 + 1 

in probability, as n ~ 00 where 

c = sup { ~ : a log a + (1 - a) log (~ ~ ~) + P - 1 - log p = 0 } . 
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The special case of random recursive trees is obtained for j3 = 0 and plane oriented 

trees for j3 = 1 yielding an asymptotic height of 1.7956 ... log n. 

5.7.5 Intersection of random trees 

We can also apply Theorem 5.1 to the intersection of random trees. One can take k 

independent copies of a certain kind of random d-ary tree on n nodes and ask about 

the height of the intersection (a node is in the intersection if it is present in aIl k 

trees). This model was treated by Baeza-Yates et al. (1992) for random binary search 

trees in the context of tree matching properties arising in the tree shuffie algorithm 

(Choppy et al., 1989). The authors were in particular interested in the size of the 

intersection of two random binary search trees. We will consider the intersection of 

k binary search trees, and of k plane oriented trees. 

Let Ck,n be a collection of k independent copies of identically distributed random 

trees with n nodes, and let Tk,n be their intersection. Recall that the shape of the ran­

dom tree in our framework is related to the random variables Ee in aIl k copies. The 

random variables E of Thecirem 5.1 are now k-vectors of independent random vari­

ables. From now on, we write E for a coordinate of this vector, and this corresponds 

to the random variable describing one of the random trees. By independence of the k 

trees in Ck,n the rate function that corresponds to the presence of a node in Tn,k is kAÊ. 

We obtain that the rate function to be considered is A*(O'.,p) = AZ(O'.) + k· Aê(p), 

where E and Z are the random variables describing one single random tree. As an 

example, this yields the following result. 

Proposition 5.1. The height Hk,n of the intersection Tk,n of k independent copies of 

(a) mndom binary search trees is asymptotically CBST(k) log n, in probability, where 

CBST(k) = sup {~: p -1-1ogp::; IO~2}; 

(b) plane oriented trees is asymptotically (CPORT(k)/2) log n, where 

CPORT(k) = sup { ~ : a log 0'.+ (1 - a) log (1 ~ a) + k(p - 1 -log p) ::; o} . 
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Remark: Note that Tk,n is likely to contain fewer than n nodes, and the height is 

not given as a function of the size of Tk,n. 

Table 5.1 gives numerical values of Cl and C2 for certain values of k. The limit values 

as k ---+ 00 can also be derived. 

k 

2 5 10 50 100 

CBST 2.62729 ... 1.78088 ... 1.48726 ... 1.18680 ... 1.12760 ... 

CPORT 2.03950 ... 1.39752 ... 1.20841 ... 1.05078 ... 1.02788 ... 

Table 5.1: Some numerical values of the asymptotic height ofTk,n. 

Proposition 5.2. There exist limits of both constants CBST(k) and CPORT(k) as k 

goes to in finit y and 

lim CBST(k) = lim CPORT(k) = 1. 
k--.oo k--.oo 

Remark. Observe in particular that the height of the intersection does not converge 

to the fi11 up level for binary search trees, which may appear surprising at first glance. 

Praof of Proposition 5.2. For random binary search trees, this is easily seen since 

{A* (1, p) = p - l-log p = log 2/ k} is the intersection of two explicitly defined curves. 

By continuity of A*(l, p) on V A<, p ---+ 1 as k ---+ 00. 

Consider now PORTs. From the geometric properties of {A*(a,p) ::; log3}, p ~ 

Pmin, where Pmin is the value at a = EZ = 1/3, and 

log 3 
Pmin - 1 - log Pmin = -k-' 

giving that Pmin ---+ 1 as k ---+ 00. As a consequence, we need only look at a. Now, 

the li ne .6. going through the origin and (p,a) = (1,1) crosses {A*(a,p) ::; log3/k} 

because of its convexity and horizontal tangent at P = 1. Therefore, the slope of the 

tangent T at the optimal point (p, a) is greater than 1. Writing (Pmin, a~) for the 
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intersection of .6. and {p = Pmin} (Figure 5.6), we get that Œ ;::: Œ6 = Pmin, yielding 

CPORT ~ 1 as k ~ 00. 

pmin 

Figure 5.6: w(log3/k) together with the 
optimal tangent T and the line Ll through 
the origin and (1,1). 

5.7.6 Change of direction in random binary search trees 

o 

Consider Tn a rooted binary tree on n nodes. For anode u E Tn , let Du be the 

number of changes of direction in on 7l'(u), the unique path from the root down to 

the u. If we let 0 and 1 encode a move down to the left and to the right, respectively, 

then the no de u whose path is encoded by 0100101 will have Du = 5, that is, a count 

of each occurrence of the patterns 01 and 10. We are interested in the maximal value 

over an the paths of the tree Hn = max{Du : u E Tn}. When Tn is a random binary 

search tree, this turns into a random variable that may be handled by our framework. 

It suffices to notice that if we take a left step, the next move will increase D only if 

we go right. We have of course something similar when the first step was to the right. 

Thus, we label the edges as follows. For each level k ;::: 2 of edges, we form the word 

(OllO)k-l, and map the binary characters to the edges from left to right. Then, for a 

no de u, Du corresponds exactly to the sum of these labels along 7l'(u) (Figure 5.7). 

This means that for the tree to match our model we need Z to be Bernoulli(1/2), 

and E exponential(l), because the underlying tree is a binary search tree. Therefore 
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1 0 

db 
Figure 5.7: The path consisting of grey 
nodes is the one with the maximum num­
ber of change of direction. Note that the 
number of changes of direction is the sum 
of the labels along the path. 
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the maximum number of changes of directions along a path in a random binary se arch 

tree is asymptotic to the height of random recursive trees. 

Proposition 5.3. The maximal number Hn of change of direction along a path in a 

random binary search tree is asymptotic to e log n in probability, as n -; 00. 

5.7.7 Elements with two lifetimes 

Consider a binary tree in which elements have two independent exponential(l) life­

times, Z and E, and let Du and Bu keep their meaning. In the tree Tn , that is, the 

tree of aU nodes u with Bu ~ n, it is interesting to ask about the maximal value of Du 

when measured with respect to the second lifetimes (Z). Sinee Z and E have similar 

Cramér functions, and both have mean one, we have by Theorem 5.1, 

Proposition 5.4. The maximal age Du of any node u in the tree of two lifetimes 

described above, cut off at date of birth Bu ~ n is Hn. We have 

Hn 
- --t C = 5.82840157 ... 
n n~oo 

in probability, where the constant c is defined by 

c = sup { ~ : p - 1 - log p + a - 1 - log a ~ log 2} . 
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Thus, in spite of the fact that, when measured by first lifetimes, aIl have age less 

than n, there exist elements whose age, when measured in the other time scale, is 

almost six times as large! 

5.7.8 Random k-coloring of the edges in a random tree 

Assume that we randomly color the edges of a random binary search tree of size 

n with k colors, and that we ask for the maximal number Hn of similar colors on 

one path from a root to a leaf. This is equivalent, when k is constant, to studying 

the maximum number of red colored edges on such paths. But then, this can be 

studied by attaching to edges independent copies of Z where Z = 1 with probability 

l/k and Z = 0 otherwise. That is, Z is Bernoulli(l/k). We have seen already the 

rate functions for Bernoulli and exponential random variables (Dembo and Zeitouni, 

1998). Then, A*(a,p) = AZ(a) + AE(p), where AE(p) = p -l-logp and 

(
1- a) A~(a) = a log(a) + (1 - a) log k _ 1 + log k, 

and we have Hn '" c log n, where 

c = sup { ~ : a log( a) + (1 - a) log (~ = ~) + P - 1 - log p ::; log (~) } , 

Note that for k = 2, or p = 1/2, we have a situation not unlike that of the 

maximum number of sign changes in random binary search trees, or the random 

recursive tree, where the asymptotic maximum value is e log n. AIso, clearly, the 

maximal number of identical colors on a path decreases with the number of colors. 

For k = 1 and 2 we have the known results for the height of the random binary 

search trees and random recursive trees, respectively, as one can check in Table 5.2. 

Clearly, we may even introduce p values not equal to l/k, and ask on which path 

we have most red-blue co loi- changes, for example, where red and blue occur with 

probabilities p and q respectively. 
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k 

1 2 3 4 5 

Ck 4.3110 ... 2.7182 ... 2.1206 ... 1.7955 ... 1.5869 ... 

k 

6 7 8 9 10 

Ck 1.4397 ... 1.3292 ... 1.2426 ... 1.1725 ... 1.1148 ... 

Table 5.2: Some numerical values of Ck. 

Remark. To study the maximal number of colors of one kind (among k colors) in a 

mndom recursive tree instead, it takes just a moment to see that it suffices to take 

Z = Bernoulli(l/k)x Bernoulli(1/2). In other words, Z is Bernoulli(1/(2k)). 

5.7.9 The maximum left minus right exceedance 

Let the difJerential depth of .a node u be 

Du = L L(e) - R(e), 
eE7I'(u) 

where L(e) is the indicator of e being a le ft edge and R(e) is the indicator of e being 

a right edge. We want to study the extreme value (differential height) Hn of Du, 

when u ranges over the nodes of a random binary search tree of size n. We have seen 

that for a random binary search tree, E is an exponential random variable with mean 

one, so AE(p) = p - 1 - log p. For this purpose, we may make Z = 1 or -1 with 

probability 1/2. Note that for our Z, 

And we obtain the Cramer function associated to Z, 

Az(a) 
{ ;IOg G~~) + log 2 -log ( J:"::' + J:~~) O:Sa<1. 
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Then, A*(a,p) = AZ(a) + p - 1 -logp. Theorem 5.1 allows to conclude that 

there exists a constant c such that Rn rv clog n in probability as n tends to infinity. 

Numerical tools allow to determine c = 2.07345 .... 

5.7.10 Digital search trees 

This example is similar to the one of Broutin et al. (2006). We consider tries on 

a finite alphabet A = {1, 2, ... , d} with the Bernoulli model of randomness: each 

datum consists of an infinite sequence Ai = Ai, A~ ... of Li.d. random elements of A 

(Fredkin, 1960; Szpankowski, 2001). A string Ai corresponds to an infinite path in a 

d-ary tree defined in the following way: from the root, take the Ai-th first child, next 

the A~-th, and so forth. We prune the subtrees of each no de that contain only one 

single string. The remaining tree is the trie associated with the n strings. 

For tries, there is no deterministic bound on the height of a trie built from n or 

even two strings: Neither Theorem 4.1 nor Theorem 5.1 applies to tries. Various 

techniques have been used to shrink the height of tries such as PATRICIA (Morrison, 

1968) and digital search trees (Coffman and Eve, 1970; Konheim and Newman, 1973). 

See also the recent survey by Flajolet (2006). We now focus on digital search trees. 

First, the term of digital search tree seems misleading to us, since digital search trees 

are not search trees, where a search query is carried over using the values stored in the 

nodes. We pre fer the term pebbled tries, to emphasize the trie structure: a string (a 

"pebble") is assigned to each no de in the tree instead of to each leaf. In this "pebbled" 

version of tries, a string, taken at random, is associated to the root. Then, the n - 1 

remaining strings are distributed to the k subtrees depending on the value of their 

first character. The tree is then built recursively. 

In a computer, the characters are coded in binary. The cost of a character in 

terms of bit comparisons is then the length of its binary code. The model of pebbled 

tries has been studied by Broutin et al. (2006) in the case where aIl k characters have 

the same cost. However, if one uses an optimal code (one that minimizes the costs of 
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the characters), the lengths of the codewords depend on the char acter , and hence the 

costs of characters vary. AIs,O, in such a code, the length of a codeword is obviously 

dependent of the probability that the corresponding character occurs (prefix codes 

of Huffman, 1952). Hence, this model of pebbled tries built with Huffman coded 

characters is a perfect application for Theorem 5.1. Compare with the lopsided trees 

of section 5.7.3. 

Let Pi be the probability that character i occurs at sorne fixed position of a string. 

Let fi be the length of the binary codeword for character i. Then, at anode u with 

Nu = n + 1, the split Vn is distributed as a multinomial(n,Pl, P2, ... ,Pd) random 

vector. The weights (Zl, . .. , Zd) are deterministic and equal to (fl, f 2, .. . , fd). Now, 

V n 
---t (Pl, P2, ... , Pd) almost surely, and hence it is easily checked that the required 

conditions on the random variables are satisfied with X = (fK,PK) where K is uniform 

in {1, ... , d}. It foIlows that 

A(À, /,) ~ - log k + log (t e",-pl""" ) . 

AIso, since for aIl i, fi > 0 and log Pi < 0 (or there is a.s. only one character in the 

alphabet and the tree is degenerate), eA+logd is a sum of positive convex functions 

whose gradient spans (0,00)2. As a result, for a, p E (0,00), there exist À and Jl for 

which sUP..v,I',p'a + Jl' P - A(N, Jl')} = Àa + JlP - A(À, Jl) which are given implicitly 

by 

and 
-,,~ logp·e>"l,p-:-I' L..n=l • • 

Then, by Theorem 4.1, the height of the pebbled trie is asymptotic to clogn in 

probability, where c the maximum value of al p along the curve 

Numerical values can easily be obtained for every set of parameters {(Pi, fi), 0 ~ i ~ 

dl· 
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5.7.11 Pebbled TST 

In the same vein, we can siudy the height of a pebbled version of ternary search 

tries (TST). The (non-pebbled) TST structure introduced by Bentley and Sedgewick 

(1997) uses early ideas of Clampett (1964) to improve on array-based implementations 

of tries. If an array is used to implement the branching structure of a node, the number 

of null pointers can become an issue when the alphabet is large. In TSTs, instead of 

the usual array, the node structure consist of a binary se arch tree (BST), therefore 

forcing small branching factors and limiting the amount of null pointers. So the TST 

is a hybrid structure combining tries and binary search trees. The high level structure 

is still that of a trie. Only the structure of a no de and the way character matching 

are handled changes. TSTs have been studied by Clément, Flajolet, and Vallée (1998, 

2001). 

1 2 3 4 
1 

5 6 
~ ~ , ~ ,. ~ 

1 , , , , 
1 \ , 1 1 1 , 

1 , 1 f 
, , , 

JI' If , ~ " 
1 1 , , 
\ .-\ 1 

1 1 1 , 1 \ , \ \ 

t • ; 

Figure 5.8: The structure of a node in an array-based trie (le ft) and TST (right) over the 
alphabet {a, b, c, d, e, f}. The pointers used for the high level trie structure are dashed. 

We now describe the modified pebbled version. Let {Al, A2 , .•• , An} be the set of 

strings, with Ai = Ai A~ ... , for aIl i. We distinguish the nodes of the trie structure 

from the slots of the local binary search trees. As shown in Figure 5.8, each no de 

contains k slots. The nodes at distance the same j from the root are said to be at level 

j. At level j, the key used for the comparisons is the j-th character of the sequences. 

The tree is built by assigning the sequences to the first empty slot as they come 

along in order Al , A 2 , . . .. The first string Al is stored in the first slot of the root of 
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the TST, and partitions the following sequences with respect to their first characters 

a, whether a < At, a = At or a > At. Given the TST built from the first m - 1 

sequences, Am moves down the tree as indicated by the sequences stored in the slots 

encountered, the comparisons being done on the j-th character at level j. It changes 

level only upon finding a matching character, in the other cases, it moves in the 

slots of the same node until it eventually finds either an empty slot, or a matching 

character. 

Figure 5. g: The outer structure of trie (left) and the expanded binary search tree structure 
of the nodes of a TST on an alphabet of size four. The nodes are shown as circles whereas 
the slots are represented by squares. 

We now assume that the strings are independent sequences of LLd. characters 

where a character a E {l,.;., d} has probability Pa > O. We are interested in the 

height of a pebbled TST built from n of these independent sequences. Consider a 

node u who se subtree stores n + 1 strings. As in the previous section, the split vector 

at u, (Nb N2 , •.. , Nd), is clearly multinomial(n,Pl, ... ,Pd). Looking at the high level 

trie structure, the edges may be seen as being weighted by the number of edges in the 

local binary search tree structure (Figure 6.11). Clearly, the cost of the edge leading 

to a character a is the 1 plus the depth of the node labeled a in the BST of the node 

considered. Let Z;: be the random variable accounting for this value. Then the vector 

of interest is 
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The random variable Z;: has been studied by Clément et al. (1998) and Archibald 

and Clément (2006). In particular they studied the expected values and variances 

of {Z;:, 1 ~ a ~ d}. However, we need information about the distributions of Z;: 

and their limits as n -- 00. Let T be the smallest n for which {Ai, 0 ~ i ~ n} 

contains a copy of each character. Then, for each n 2: T, the distribution of Z;: is 

that of Za = Z;, independent of n. The random variable T is a stopping time and 

P {T 2: n} ~ (l-min{Pi, 1 ~ i ~ d} )n. This proves that T is a.s. finite and that Z;: -­

Za, in distribution. Then, with X distributed as ((Zl, -IOgPI), ... , (Zd, -logpd)), 

one can show that Axn -- Ax everywhere as n -- 00. 

This is sufficient for Theorem 5.1 to apply. The height of the pebbled TST is 

asymptotic to c log n in probability, where c is the the maximum value of alpin 

{(a,p) : A*(a,p) ~ logd}, and A* is the Cramér function associated with X = 

(Z K, - log PK) where K is uniform in {l, ... , d}. N umerical values can be obtained 

for examples of {Pi, 1 ~ i ~ d}. 

Remark. The height of the non-pebbled version of TST requires more care and is 

treated in Chapter 6. 

5.7.12 Skinny cells in k-d trees 

We consider the k-d tree introduced by Bentley (1975). This geometric structure 

generalizes binary search trees to multidimensional data sets. Given a set V of d­

dimensional data points {yI, y2, ... , yn}, where yi = (yi, ... , y~) for all i, we re­

cursively build the following binary tree structure partitioning the data set using 

comparisons of sorne of their components. The first datum yI is stored at the root. 

The remaining of the data are processed as follows: {yi : i 2: 2, yi ~ yl} and 

{yi : yi > yt} are assigned respectively to the left and right subtrees, and both 

subtrees are recursively built using the same method. The comparisons are done in a 

cyclical way depending on the depth of the no de at which they occur: the key used at 

anode at depth f is the (fmodd+ l)-st component of a vector. For a more complete 
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account on k-d trees see Gonnet and Baeza-Yates (1991) or Samet (1990a,b). 

l 1---
r-

t-

r-- [r- f-----L 

T-
r-
I--

-'--
f= 

- '---

~ -L- e---

rL 
f0-

l 

t-
r-- r----' 

r- r--

r-

f-

f Figure 5.10: A (randomly generated) 
k-d tree on 150 points uniformly dis­
tributed in [0, 1]2. 

When the data points are i.i.d. [0, l]d-uniform random variables, one can see a k-d 

tree as a random refining partition of [O,I]d. The root represents [O,I]d, and more 

generally, anode u represents the set of points x E [0, l]d that would be stored in its 

subtree if they were data points inserted after u. Therefore, each cell is split into two 

along a dividing line, on which lies one of the points yi, and whose direction changes 

in a cyclical way. The cells are obviously rectangular. Let Cu be the cell associated 

with anode u. Let Ll(U),L2(U), ... ,Ld(U) be the its lengths with respect to the d 

dimensions. We are interested in the worst case ratio of two dimensions of a cell. For 

example, if d = 2, this is the worst case ratio length over width. By symmetry, since 

d is bounded, we can always consider the worst case of the first two dimensions, LI 

and L2 . Such a parameter is of great importance in applications. lndeed, for partial 

match queries, the running times of algorithms depend on the shape of the cells, and 

in particular on how close they are to squares (Flajolet and Puech, 1986; Martfnez 

et al., 2001; Devroye et al., 2001). We prove the following: 

Theorem 5.8. Let Tn be a k-d tree built from n i.i.d. [0, l]d-uniform random points. 

Let 

de! {Ll(U) } Rn = max L
2 
(u) : U E Tn . 
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Then Rn = nCd+o(l) in probability, as n -t 00. Furthermore, Cd is the maximum value 

of a/pin the set {(a, p) : ),a + ILP+ log ((1 - IL? - ),2) + (d - 2) log(l- IL) ::; dlog 2}, 

where 

and ), _ -a. d(d - 2) - 2p(d - 1)(1 - IL) 
- (p2 - a 2 )(p(1 - IL) - (d - 2))· 

In particular, Cd < 1 for all d 2: 2. 

d 

2 3 5 10 40 100 

Cd 0.86602... 0.79047.·.. 0.71246... 0.63483... 0.54976 ... 0.52442 ... 

Table 5.3: Some numerical values for the constant Cd describing the asymptotic values of 
Rn in a d-dimensional k-d tree. 

Proof. We intend to express the maximum ratio as a weighted height. Since in k-d 

trees, not an the levels in the tree are equivalent, we proceed in two stages: we first 

only consider the levels with depth 0 mod d; next we only need to consider the levels 

1 mod d since for the other d - 2 levels, the ratio LI! L2 is not modified. 

If we group the levels by bunches of d, then an bunches behave similarly. We 

obtain a 2d-ary tree. In this tree, each node corresponds to a rectangular region 

of [O,l]d, and its children are the result of its split into 2d subregions. The points 

come uniformly at random, and hence the probability that a region is hit is its area. 

Figure 5.11 illustrates the way we turn the question about the ratio into the weighted 

height of sorne tree. 

The area of a rectangle is the product of [0, l]-uniform random variables determin­

ing the splits, and the ratio LI! L2 is the ratio of two products of sorne of these random 

variables. More precisely, let Ui , 1 ::; i ::; d be LLd. [0, l]-uniform random variables. 

Taking the logarithms of the areas and of the ratios, we see that the increments are 

distributed like 

d 

E = - I)ogUi and Z = -log Ul + log U2 • 

i=l 
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.. 

~·u, 1 

Figure 5.11: The way anode is interpreted when d = 2. 

To use Theorem 5.1, we need to compute A* associated with X = (Z, E). We start 

with the moment generating function: for any real numbers >. and 11, by independence, 

E [e>Z+pE] ~ E [Uï'-P. U;-p g u,-p] ~ E [Uï,-pl· E lUi-pl· g E [u,-P]. 

As a consequence, 

if >. ~ 1 - 11 or >.::; 11 - 1, 

otherwise. 

It follows that 

A(>',I1) = 
{

oo 

-log ((1 -11)2 - >.2) - (d - 2) 10g(1 -11) 

if >. ~ 1 - 11 or >. ::; 11 - 1, 

otherwise. 

So VA = {(>',11) : >. < 1-11,>' > 11 -1}. To compute A*, we find the maximum of 

(>',11) I-t >.0: + I1P - A(>', 11), which is achieved for>. and 11 such that 

{ 

0: - 8A(>',I1) _ 2>. and 
- 8>' - (1 - 11)2 - >.2 

P = 8A(>',I1) = 2(1 -11) + d - 2 (5.12) 

811 (1 - 11)2 - >.2 1 - 11' 

if such a point exists. For d ~ 2, such a point does exist and the system ab ove has 

solution 

{ : 1 _ ,-p(.:....d_-_1....:...)_±_V-::-.:....p2_+-::--0:
2_d....:...( d_----.:..2) 

p2 _ 0:2 
2p(11 - 1)(d - 1) + d(d - 2) 

p(11 - 1) + d - 2 

(5.13) 
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Observe that the mere fact that this is a solution of (5.12) ensures that (>., J.L) EVA. 

Hence, we have VA- = JR2, and by Theorem 5.1, c is the maximum of alp with (a,p) 

in the set 

llJ(dlog2) = {(a,p) : Àa + J.Lp + log ((1- J.L)2 - À2) + (d - 2) log(1- J.L) :s; dlog2}, 

where À and J.L are defined by (5.13). Since this only accounts for the levels whose 

depths are 0 mod d, this gives only a lower bound on the actual weighted depth of the 

tree. However, one can find a matching upper bound easily. Indeed, to account for 

the levels 1 mod d, it suffices to group the levels starting at level 1. Doing this, the 

distribution for E and Z remains unchanged, but the ratio LI! L 2 is now off by one 

single multiplicative factor of 11U. It follows immediately that the weighted height 

on the levels 1 mod d is also c log n, which finishes the proof of Theorem 5.8. 0 

p 

Figure 5.12: The sets ((p,a) : A*(a,p) ~ dlog2} together with the lin es of maximum 
slopes for the maximum ratio of two dimensions of a cell in a k-d tree in]R2 and]R5. 

Corollary 5.1. For d = 2, we have C2 = .;3/2. 

Proo! If d = 2, J.L and À simplify and we have 

2p 
J.L=1- 2 2 

P -a 
and À= 20. 

p2 _ 0.2. 

The condition J.L - 1 < -IÀI is equivalent to p > 10.1, so the set to consider is {(a, p) : 

p> 10.1}. It follows that 

20.
2 

2p2 (2À) A*(a,p)= 2 2+ P - 2 2+ log - =p-2+210g2-log(p2- a 2). 
p-a p-a a 
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Therefore, we need to find the maximum value of 0'./ p subject to p- 2 ~ log(p2 - 0'.2). 

The optimum is clearly obtained on the boundary of the set, i.e., for p - 2 = log(p2-

0'.2). Then, we have 

~ -/1- e
P

-

2 

p - p2 ' 

which is maximum when the derivative vanishes: 

d () -eP-
2 (? - ~) 

dp ~ = 2. /1 _ eP- 2 

V p2 

=0. 

This happens when p = 2 and then a/p = .../3/2. (Note that p > 10'.1.) o 

Remark. We have limd-->oo Cd = 1/2. Indeed, the optimal point is at p = d. Using 

a rv cd, we have 

So, 

1 
1 - J-l = - + 0(1) 

1-c 
and 

1 
À= -+0(1). 

1-c 

cd d 
A*(a,p) = 1-c +d-

1
_

c 
-dlog(l-c)+o(d). 

Finally, if c = 1/2, we have A*(a, p) = dlog2 + o(d). 

5.7.13 Skinny cells in relaxed k-d trees 

The model of k-d trees described above is a bit constrained due to the cyclical way 

in which the components of a vector are used as keys. In particular, k-d trees are 

data structures that are mostly static: they are built once, and then used to perform 

multiple queries on the same data. To cope with the issue of updating k-dimensional 

search structures, Duch and Martfnez (2002) introduced a randomized data structure 

that is similar to k-d trees, but that do es not suffer the same constraints. The 

symmetry is reintroduced by chosing the index of the component used as a key at 

random when anode is inserted in the structure. This tree structure is naturally 

called relaxed k-d tree. The structure leads to easy to present update algorithms, but 

it is not known whether the structure is indeed efficient. 
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Theorem 5.9. Let Tn be a relaxed k-d tree built fram n i.i.d. [0, 1]2-uniform mndom 

points. Let 

~ = max { ~: ~ ~ ~ : U E Tn } . 

Then ~ = nl+o(l) in prabability, as n -+ 00. 

Figure 5.13: A (randomly generated) 
relaxed k-d tree on 150 uniformly dis­
tributed points in [0,1]2. One can no­
tice in at the first glance that the cells 
look skinnier than those shawn in Fig­
ure 5.10. 

Remark. The cells of 2-dimensional relaxed k-d trees are skinnier than those of k-d 

trees. This explains why partial match queries are more costly for relaxed k-d trees 

(Duch and Martinez, 2002; Duch, 2004) than for k-d trees (Flajolet and Puech, 1986). 

Praof of Theorem 5.9. Consider a cell that do es not contain any data point. In the 

tree, it corresponds to an external node u. A new incoming point falls in this cell 

with probability Ll(U) . L2 (u). If this happens, two new cells are created. Clearly, 

the cell gets divided uniformly. Let U be a [0, 1]-uniform random variable. Then, if 

the number Nu of nodes contained in the subtree rooted at u is n, the sizes of the 

subcells are distributed as a multinomial(n - 1, U, 1 - U) random vector. 

As in the case of k-d trees, the ratio Ld L 2 is either multiplied or divided by U. 

Each of this cases happens with probability 1/2 at every split, so with the additive 

formalism, the increase in 10g(Ld L 2 ) is 

{ 

-logU 
Z(U) = 

logU 

w.p. 

w.p. 

1/2 

1/2. 
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Again, xn -+ ((Z(U), -log U), (Z(l - U), -log(l - U))) almost surely as n -+ 00. 

Renee we have X = (Z(U), -log U), and for À, J-l E lR, 

E [eÀZ+JlE] = ~E [U-À-Jl] + ~E [UÀ-Jl] . 
2 2 

Therefore, we have 

if À ~ 1 - J-l or À::; J-l - 1 

otherwise. 

1 t follows that 

A(À, J-l) = 
{

(X) if À ~ 1 - J-l or À::; J-l - 1 

log(l - J-l) -log ((1 - J-l)2 - À2) otherwise. 

The maximum of (À, J-l) ~ Àa + J-lP - A(À, J-l) is aehieved for À and J-l, with J-l - 1 ::; 

À ::; 1 - J-l, satisfying 

if sueh a point exists. This implies in partieular that 

for J-l - 1 ::; À ::; 1 - J-l. Then, provided lai < Ipl, the solution is given by 

and (5.14) 

If lai ~ Ipl, then A*(a, p) == 00. Indeed, assume that a = p +~, for sorne ~ > 0 (a 

symmetrie argument holds when a = - p - ~). Let 10 > 0, and write Ào = 1 - J-l- 100 ::; 

1 - J-l. Then, 

A *(a, p) > Àoa + J-loP - A(Ào, J-lo) 

= Ào~ + P - plO + log 2 + lOgE + O(l/Ào) -+ 00 

as Ào -+ 00. It follows by Theorem 5.1 that c is the maximum value of alpin the set 

'l1(log2) = pa + J-lp -log(l- J-l) + log ((1- J-l)2 - À2) ::; log2}, 
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p 

where À and J1 are defined in (5.14). 

Figure 5.14: The set {(p, a) : 
A * (a, p) ::; log 2} and the line of max­
imum slope for the maximum ratio of 
two dimensions of a cell in a relaxed 
k-d tree in JR2. 

Now, since VA' C {lai ~ Ipl}, it is clear that c ~ 1, so we only need to prove that 

c 2: 1. In particular, it suffices to find points (a,p) E w(log2) with ajp arbitrarily 

close to 1. Because J1 and hence A * is not properly defined for a = p, we consider 

A*(1 - E, 1) for E E (0,1). One can verify that, as E --7 0, 

A * (1 - E) = log 2 - V2E + 0 ( v'€) , 

and therefore, (1 - E, 1) E w(log 2) for E srnall enough. This proves that c 2: 1 - E for 

any srnall enough E > ° and hence, by Theorern 5.1, that log Rn rv log n in probability 

as n --7 00. 0 

5.7.14 d-ary pyramids 

Allowing Z = -00 can be useful when one needs to exclude sorne tree paths in the 

definition of the height. Let us look at pyrarnids (Bhattacharya and Gastwirth, 1983; 

Gastwirth and Bhattacharya, 1984). These trees are built incrernentally as follows: a 

d-ary pyrarnid of size 1 is a single node; given a d-ary pyrarnid of size n, pick anode 

u uniforrnly at randorn arnong those that have degree at rnost d - 1. The next no de 

becornes a child of u. The height of a 2-ary pyrarnid has been studied by Mahrnoud 

(1994). Biggins and Grey (1997) obtained it for d 2: 2. 
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Theorem 5.10 (Mahmoud 1994; Biggins and Grey 1997). The height Hn of a d-ary 

pyramid of size n is Hn rv lognJ(-ypo) in pmbability, as n --t 00, where"j is given by 

d 1 

~ (1 + "j)i = 1, (5.15) 

and Po is defined as the smallest mot of 

where 
L~=l i(l - J1)-i-l 

P = ,,~ (1 - ) -i ' 
L.. ... =l J1 

(5.16) 

where J1 < 1. Numerical values are given in Table 5.4. 

2 

0.6180339880 .. . 
0.4056580492 .. . 
3.988664818 .. . 

3 

0.8392867552 ... 
0.3759749401. .. 
3.169061969 ... 

d 

5 10 

0.9659482366 .. . 0.9990186327 .. . 
0.3684055189 .. . 0.3678801695 .. . 
2.810088635 .. . 2.720946695 .. . 

Table 5.4: Some numerical values for the height of d-ary pyramids of effective size n. It 
is not surprising ta observe that (-ypo) ~ lie as d ~ 00, since the height of the random 
recursive tree is asymptotic ta e log n. 

We der ive Theorem 5.10 using a our framework. Random recursive trees (Smythe 

and Mahmoud, 1995) are oo-ary pyramids. A random recursive tree of size one 

consists of single node. A random recursive tree of size n + 1 is built from one of 

size n by picking a uniform random node u, and adding a new node as a child of u. 

Clearly, conditioning on the new node being a child of an unsaturated node u, u is 

still uniform among the unsaturated nodes. Henee, one can see a d-ary pyramid as 

the subtree of a random recursive tree consisting only of the first d children of any 

no de (Figure 5.15). 

This gives a simple way to obtain the height of d-ary pyramids: build a random 

recursive tree in which the first d children of any node have an edge of weight 1 to their 

parent, and the others a weight of -00: (Zl, ... , Zd, ZdH, . .. ) = (1, ... , 1, -00, ... ). 

One can verify (see, e.g., Broutin and Devroye, 2006) that the (infinite) split vector 
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6 
11\', 
'1 \" 

1 1'" 
, 1 \ .. 

" : " '\ GObO 

Figure 5.15: A 2-ary pymmid seen as 
the subtree of a mndom recursive tree con­
sisting of the first two children of any 
node. The black vertices are part of the 
2-ary pymmid. 

(VI, V2 , ... , Vi, ... ) for a random recursive tree is distributed like 

where {Ui , i ~ 1} is a family of Li.d. [0, 1]-uniform random variables. Since our result 

only holds for trees of bounded degree, we can rewrite the split vector by collecting 

the children with index greater than d + 1 in a single "bin": 

(5.17) 

and (Zl,Z2, ... ,Zd+d = (1, ... ,1,-00). Write Ek = -logVk . The height is not 

affected by a random permutation of the children, so the random variable of interest 

is X = (Z, E) = (ZK, EK), where K be taken uniformly at random in {1, ... , d + 1}. 

Then, according to the definition of A, we have that 'for aB À and p real numbers, 

A(À, p) = log E [e>'+JLEK 1 K ~ d] + log d -log(d + 1). 

Using the definition (5.17) for the split vector (~, ... , Vd+1), we find that, 

and therefore, 

if p~1 

otherwise. 
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We have VA = {(À, JL) : JL < 1}. It follows that the optimum value for JL = JL(p) is 

obtained for 

and (5.18) 

The function f defined on (0, (0) by 

d d 

X f-t L iX-i
-

1 
/ L x-i 

i=l i=l 

is continuous, limx .... oo f(x) = 0 and limx!o f(x) = 00. Therefore, (5.18) admits a 

well-defined solution JL(p) for aIl P > O. By Theorem 5.2, one needs a rescaling factor 

, to express the height of d-ary pyramids of size n. The constant , is given by 

d 1 

~ (1 + ,)i = 1. 

Then, the height of a d-ary pyramid is asymptotic to log n/(,po) , where Po satisfies 

which proves (5.16) since À cancels. 





Chapter 6 

Weighted height of tries 

We define a general model for weighted random tries. We analyze the weighted heights of 

such trees, using a link between the profile of a "core" of the trie. In particular, we apply our 

main result to the worst-case search time in trees introduced by de la Briandais (1959) and 

the ternary search trees of Bentley and Sedgewick (1997). The chapter is based on Broutin 

and Devroye (2007c) and Broutin and Devroye (2007b). 
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6.1 Introduction 

In this chapter, we are interested in tries. We have introduced tries in section 1.4.5. 

For now, recall simply that they are tree-like data-structures used to store strings. 

Here, the alphabet is {1, ... , d}. The strings are stored in the leaves, which may 

each contain one or more of them. We assume that the sequences are built using a 

memoryless source: each string is an infinite sequence of i.i.d. symbols distributed 

like A E {1, ... , d}, where P {A = i} = Pi, 1 :::; i :::; d. Also, without loss of generality 

Pl ~ P2 ~ ... ~ Pd > O. A useful quantity under this model is the probability that b 

independent characters are identical 

(6.1) 
i=l 

It is well known that the height Rn of a trie built from n independent such sequences 

satisfies (Régnier, 1981; Devroye, 1984; Pittel, 1985; Szpankowski, 1991,2001) 

Rn 2 
--~ in probability. 
log n n->oo -log Q(2) 

(6.2) 

This holds for ordinary tries, Le., if every leaf contains only one string. If the leaves 

can store up to b sequences, the tree is called a b-trie and its height Rn,b is such that 

Rn b+ 1 
--~ in probability. 
logn n->oo -logQ(b + 1) 

Park, Hwang, Nicodème, and Szpankowski (2006) have recently reproved (6.2) via 

the profile of the tree (number of nodes at each level). The results of this chapter are 

proved using a similar approach based on the profile. 
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The trie is only an abstmct data structure, that is, it does not specify the impIe­

mentation (see Clément et al., 1998, 2001). Depending on the implementation, the 

worst-case se arch time and the height of the trie may be different. This happens in 

particular when the implementation of a no de relies on a linked-list or a search tree 

(de la Briandais, 1959; Bentley and Sedgewick, 1997) instead of an array. Our aim in 

this chapter is (1) to make a link between the worst-case search time and the weighted 

height of a tree that would hold for many implementations, and (2) to characterize 

the height, and hence the worst-case search time of these data structures. 

The chapter is organized as follows. In Section 6.2, we describe a model of random 

weighted trie and state our main result concerning the weighted height of such trees. 

The proof of the main theorem is based on an analysis of the internaI structure of the 

trie, and the notion of a core (see Broutin and Devroye, 2007a). We describe the core 

of the weighted trie in section 6.3, and the behavior of the trees hanging from the 

core in Section 6.4. The properties are then used in section 6.5 to prove Theorem 6.l. 

FinaIly, we give sorne applications in Section 6.6. In particular, we show that the 

heights of the trees of de la Briandais (1959), and the ternary search trees of Bentley 

and Sedgewick (1997) follow from Theorem 6.l. 

6.2 A model of random tries 

Consider the distribution {Pl, ... , Pd} over a finite alphabet A {1, ... ,d}. We 

assume without loss of generality that 1 > Pl ~ P2 ~ ... ~ Pd > O. We are given n 

independent infinite sequences of i.i.d. characters of A generated using {Pl, ... ,Pd}. 

Let T 00 be an infinite d-ary position tree. Let b ~ 1 be a natural number. 

THE SHAPE OF THE TRIE. Each string defines an infinite path in Too . Let the 

cardinality Nu of anode u E T 00 be the number of strings whose path in T 00 intersect 

u. Then, for a natural number b ~ 1, the b-trie Tn,b is constructed by pruning aIl 

the edges down any no de of cardinality at most b. The sequences are distinct with 

probability one, and the strings define distinct paths in T oo . Therefore, the trie Tn,b 
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is almost surely fini te. The tree Tn,b constitutes the shape of the weighted trie. We 

define Ei = -log Pi. For the edge e between u and its i-th child we let Pe = Pi and 

Ee = -logPe. 

There are 2d types of nodes, each type being characteristic of the branching struc­

ture of the node. The branching structure of every node u E Tn is described by a 

d-vector Tu: if Ul, ... ,Ud are the d children of u, then we define 

The vector Tu indicates which one of the d edges down U are part of sorne path in Tn,l. 

As in Chapter 5, we consider random tries that may be built using an embedding. 

Our construction emphasizes an underlying structure consisting of inde pendent ran­

dom variables. However, in the coupled tries built from the embedding, the random 

variables are dependent in general because of the construction process. Observe that 

our embedding is only one way to build tries with the desired distribution. We will 

show in Section 6.6 that many tries of interest are covered by this model. 

THE WEIGHTS. We now describe the way in which the weights are assigned. Consider 

a sequence ofrandom vectors {zr, TE {a, l}d}, where zr = (Zr, ... , ZJ). For a fixed 

type T E {a, l}d, the components Zr, ... , ZJ of zr may be dependent. We assume 

that for aU TE {a, l}d, zr has non-negative components and is bounded. Each node 

of T 00 is assigned an independent copy of the whole sequence. The weights are then 

associated with the edges of T 00 based on the types of nodes they link. Consider a 

node u E Too , and its sequence {zr,T E {O,l}d}. The edge ei between u and its i-th 

child in T 00 is given the weight 

Ze; = Z;u = L Z;· l[Tu = Tl· 
rE{O,l}d 

We use the notations Z[ and Ze interchangeably. It should always be clear whether a 

subscript refers to an index or an edge. Let 1l'(u) be the set of edges on the path from 

u up to the root in Too . The weighted depth of anode u is defined by Du = L:eE1r(u) Ze. 
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Observe that weighted depths are associated to every node in TrXJ' We are interested 

in the weighted height of Tn,b defined by 

Surprisingly, the first asymptotic term of Hn,b depends on four parameters only: 

• the capacity b of the leaves, 

• the distribution {Pl, ... ,Pd}, 

• zc ~f Z(l, ... ,l) and , 

• zs defined in the following way: there are d permutations of (1,0, ... ,0). Let 

(Ji be the one with the one in position i. Then, we let ZS = (Zr, ... , ZJ) with 

In particular, the first order .asymptotics of Hn,b stay the same if we modify {zr, T E 

{O, l}d} in such a way that both ZC and zs remain unchanged. This is easier under­

stood by thinking of the structure of the shape of a trie. 

THE CORE OF A TRIE. The profile of a trie can be explained by distinguishing a 

so-called core, that constitutes the bulk of the trie, and spaghetti-like trees hanging 

from the core (Broutin and Devroye, 2007a). The core of the trie is defined to be the 

set of nodes u E Too for which Nu 2: m(n), for m(n) --t 00 and m(n) = o(logn). The 

core is denoted by C. The spaghettis are the trees remaining when pulling out aIl the 

nodes of the core. It is shown by Broutin and Devroye (2007a) that the core is very 

stable and is barely affected by the choice of the sequence m(n). AIso, since m --t 00, 

we expect a node in the core to be of type T = (1, ... , 1) with probability 1 - 0(1). 

As a consequence, in a weighted trie, the distribution of weights in the core should 

be closely approximated by ZC (where the superscript stands for "core"). 

HANGING SPAGHETTIS. Let oC be the no de boundary of the core C, that is, the set of 

nodes in T 00 \ C with a parent in C. The trees rooted at every node in oC contribute a 

large amount to the height (for instance, half of it in a symmetric trie). We calI these 
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trees the spaghettis. The spaghettis lie in the part of the trie where the nodes do not 

have d children any more: the types of the nodes may take aU the values in {O,I}d. 

However, the weighted height of a long spaghetti is close to the weighted height it 

would have if we discard the nodes that are truly branching. To see this, observe that 

the nodes in Be have cardinality at most m(n) = o(logn), and each spaghetti stores 

at most m(n) sequences. Each time the type T is not a permutation of (1,0, ... ,0), at 

least one string is put aside from the longest path. This can happen at most o(log n) 

times, and hence the heights with and without the branching nodes differ by at most 

o(logn). If the weighted he~ght is 8(logn), as is the case for the highest ones, the 

difference is negligible. This explains why zs (the superscript stands for "spaghetti") 

only matters in the weighted heights of spaghettis. 

Figure 6.1: The structure of a trie: the 
bulk is the core. Sorne spaghetti-like trees hang 
down frorn the core. Both the core and the 
spaghettis contribute significantly to the height 
of the trie. Observe also that the height may 
not be explained by a spaghetti born at one of 
the deepest nodes of the core. This latter fact 
will become clear later. 

Both the core and the spaghettis contribute significantly to the height of a weighted 

trie. By figuring out what the core looks like, we can determine when the spaghettis 

take over. Roughly speaking, we then know if an edge's weight can be approximated 

by a component of ZC or rather zs. The shape of the core is the very question 

addressed by Broutin and Devroye (2007a) in the unweighted case, i.e., with aU the 

weights equal to one. We shaU rely on similar ide as here. The arguments are based 
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on an analysis of the logarithmic profile 

A.( ) l' log EPm(t logn, a log n) 
'1' a, t = lm ---=---'-:--"'---'---=--":'" 

n->oo logn 
Vt,a > 0, (6.3) 

where Pm(k, h) denotes the,number of nodes u, k levels away from the root with 

Nu ~ m(n) and Du ~ h. Let Zb have the following distribution: 

b { ZÂ Z = 
-00 

w.p. Q(b + 1) 
(6.4) 

otherwise, 

where A E {1, ... ,d} is a character generated by the memoryless source with prob­

ability distribution {Pl, .. , ,PÛ. The main result of this chapter is the following 

theorem. 

Theorem 6.1. Consider a weighted b-trie built from n independent sequences defined 

as above. Let Hn,b be its weighted height. Let c/J(a, t) be the logarithmic weighted 

profile of the core of Tn,b. Let Ab be the rate function associated with Zb. Let 

'Yb = supb: p' A~ bjp)::; 1,'Y > O,p > O}, (6.5) 

and Cb = sup {a + 'Yb' c/J(a, t) : a, t > O}. Then Hn,b = Cb logn+o(logn) in probability, 

as n --t 00. 

Remarks. (a) The contributions of the core and spaghettis are a and 'Yb • c/J(a, t), 

respectively. Both contributions are significant. Moreover, the joint of core and the 

spaghettis on the longest path, Le, the level at which the longest path leaves the core 

is far from the bottom of the bottom of the core. See Figure 6.8. 

(c) The definition of Cb given makes it dear that Cb > 0 is weIl and uniquely defined. 

We will see later that Cb < 00. 

Before going further, we formalize our daim about the types of nodes that may 

influence the first order term of the height Hn,b. Here, the weights are irrelevant. 

Lemma 6.1 below is at the heart of the distinction between the core and the spaghettis. 

We prove: 
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Lemma 6.1. Let Tn,b be a random b-trie. There exists w - 00, as n - 00, such that 

on every path down the root, 

(a) the number of nodes of the core not having d children is o(logn) with probability 

1 - n-w , and 

(b) the number of nodes outside the core having at least two children is at most m = 

o(1og n). 

Proof. The number of nodes with degree at least 2 in any spaghetti is at most m(n) = 

o(1og n) and (b) follows. Therefore, we need only consider the portion of the paths 

that lie in the core and prove (a). We distinguish two regions of the core: the set of 

nodes u such that Nu 2: log2 n, and the rest. The top of the core, consisting of nodes 

u with Nu 2: log2 n, is very likely to be free of any node with less than d children: in 

this region, with probability 1 - 0(1), all the nodes have d children. For any no de u, 

we have 

Moreover, the number of such nodes is polynomial in n. Let 2'k be the set of nodes at 

level k in T 00' Indeed, at distance k = rlogl/P1 n l from the root, for n large enough, 

< dnlogl/pl d • e-! log2 n , 

by Chernoff's bound. Therefore, by the union bound, 

(6.6) 

for sorne Wl - 00 as n - 00. 

There is also a number of layers of nodes u with men) ~ Nu < log2 n. There are 

only o(1og n) such layers. To see this, let 1/ = 1/( n) - 00 to be chosen later, and look 

at a no de v lying r ~ log n l levels away from u with Nu ~ log2 n. Then, 

(} {
. 2 1lOgn) } P {Nv 2: m n) ~ P Bm(1og n,pl 2: m . (6.7) 
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The expected value of the binomial random variable ab ove is 

2 llogn 2 II f = log n· Pl = log n· n v ogpI ---t 0, (6.8) 
n ...... oo 

for 1/ = o(log ni log log n). In particular, for n large enough, f ~ m/2. By the Chernoff 

bound for binomial random variables (see, e.g., Janson et al., 2000), 

P {Bin(log2 n,pt IOgn) ~ m} ~ exp ( -f<p (~)) , (6.9) 

where <p(x) = (1 + x) 10g(1 + x) - x. Using (6.8), we see that, as n ---t 00, 

f<p(~) = '(f+;)log(l+~)-; 
rv m . log (m) 

2 2f 

rv ; log (;) - m log log n - ~ logp1logn 

rv ;: log (:J log n, 

for 1/ = o(log ni log log n). We now choose 1/ such that, in addition, 1/ = o(m) so 

that, by (6.7) and (6.9), P {Nv ~ m} decreases faster than any polynomial in n. The 

number of potential nodes v is polynomial in n since they lie 0 (log n) away from 

the root. It follows that the maximum number of levels between anode u with 

Nu ~ log2 n and v such that Nv ~ m is OeO~n) = o(1og n) with probability at least 

1 - n-W2
, for sorne W2 ---t 00 as n ---t 00. With (6.6), this proves the daim with 

o 

6.3 The core of il weighted trie 

6.3.1 Asymptotic behavior 

Consider a weighted b-trie defined as in Section 6.2. We consider m = m(n) ---t 00 

with m( n) = o(log n). Let 2"k be the set of nodes k levels away from the root in 

Too . Let Pm(k,h) be the number of nodes u E 2"k with Du ~ h and Nu ~ m. Since 

m ---t 00, for n large enough, we have m ~ band 

Pm(k, h) = L 1[Nu ~ m, Du ~ hl· 
uE2k 
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The first step in characterizing the profile is to study its expected value, we then use 

sorne concentration arguments. 

The asymptotic properties of the expected profile are directly tied to large de­

viation theory (see Chapter 2). The random vector of interest here is (ZC, E) ~f 

(ZK' -log PK), where K is uniform in {l, ... , d} and ZC = (Zf, ... , Zd)' Here, 

P {ZC = -00, E = +oo} = 0 and for .x, /-L E IR, the associated generating function 

of the cumulants is 

Recall that the definition of the convex dual A* of A: for x, y E IR, 

A*(x,y) = suppx + /-Ly - A(.x,/-L)}, 
À,J.L 

(see Chapter 2), and 

I(x, y) = inf{ A*(x' , y') : x' > x, y' < y}. 

Theorem 6.2. Let m = m( n) ---t 00 with m = o(log n). Let k '" t log n and h '" 

a log n for sorne positive constants t and a. Let 

</;(a, t) = t log d - t . l ( ~, ~) . (6.10) 

If </;(a, t) > -00, then EPm(k, h) = n4>(a,t)+o(l) , as n ---t 00. Moreover, for any E > 0, 

there exists n large enough that, uniformly in any compact subset of {(a, t) : t > 

0, </;(a, t) > -a}, for any a > 0, 

Remarks. (a) Observe that Theorem 6.2 justifies the definition of </;C·) in (6.3). 

(b) The constraint that m(n) is o(logn) is only used in the lower bound. However, 

the main reason why we choose m = o(log n) is for the spagghettis to contain each a 

number of nodes of degree at least two of order o(log n). The lower bound actually 

holds for m as large as no(l) .. This has no effect on the upper bound. 
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(c) Theorern 6.2 is actually an easy extension of the results in Chapter 5. Indeed, for 

the rnodel treated there, only {(a, t) : 4>(a, t) = a} rnatters, and we did not bother 

cornputing the entire profile. 

Unlike the profile of unweighted tries (Devroye, 2002, 2005; Park et al., 2006), that 

of weighted tries do es not seern concentrated. However, it is log-concentrated in the 

sense of the following theorern. 

Theorem 6.3. Let m = m(n) --t 00 as n --t 00 su ch that m = o(logn). Let 

k = l t log n - 3 log log n J and h = a log n for some positive constants t and a su ch 

that 4>(a, t) > o. Then, for ail € > 0, as n --t 00, 

P {Pm(k, h) ~ nq,(t,a)-<} ~ o. 
n-+oo 

If the convergence of hl log n --t a and k 1 log n --t t, as n --t 00 is uniform in a 

compact subset C of {(a,t): a,t > O,4>(a,t) > -a} for some a> 0, for aU n large 

enough, 

sup P {Pm(k, h) ~ nq,(t,a)+<} ~ n-</2. 
(a,t)EC 

Before we proceed with the pro of, we shall derive sorne useful properties of the 

logarithrnic profile 4>(., .) and describe its geornetry. 

Lemma 6.2. Let 4>(.,.) be the logarithmic profile as defined in (6.10). Then, 

(a) 4>(-,.) is concave, 

(b) for ail a E IR, the level set ~q,(a) '!;! {(a, t) : a, t > 0, 4>(a, t) > a} is bounded, and 

(c) 4>(',.) is continuous on ~q,(a), for aU a E IR. 

Proof. We refer the reader to Chapter 2 for properties of A*(-,·) and 1(·, .). 

(a) Recall in particular that A*(·,·) and 1(·,·) are convex. The functions (t, a) ~ ait, 

and (t, a) ~ lit are convex as weIl. It follows that (a, t) ~ I(alt, lit) is convex and 

the result follows. 

(b) We show that {(a,t): a,t > O,A*(alt, lit) ~ logd} is bounded. This is based 

on an upper bound for A(À, J-l): for À > a and J-l < a 
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It foIlows that for aIl a, t such that ait> IIZlloo or lit < -log Pd, 

by choice of À ~ 00 and J1 ~ -00. Therefore, since A * is continuous where it is finite 

(Lemma 2.2), for aIl a E lR 

( IIZlIoo] ( 1] ~q,(a)={(a,t):a,t>O,cjJ(a,t»a}C 0, l x 0, l ' 
. - OgPd - OgPd 

which is bounded. Observe in particular that {(a, t) : a, t > 0, cjJ(a, t) > -oo} is 

bounded as weIl. 

(c) This is straightforward from (a) and (b). o 

Example: asymmetric randomized list-tries. Consider asymmetric tries on 

{1,2} with Pl = P > 1/2 and P2 = q = 1 - p. The no de structure is implemented 

using a linked-list. A fair coin is flipped independently at each no de to decide whether 

1 or 2 is first in the list. Therefore, the vector Z = (ZI, Z2) of search-costs is such 

that Zl and Z2 take values 1 or 2 with equal probability. The variables E and 

Z are independent. They are both linear functions of Bernoulli random variables 

(see Dembo and Zeitouni, 1998, section 4.2 on transformations of large deviation 

functions). If we write f(x) = xlogx + (1- x)log(l- x) + log 2, then A*(a,p) = 

Az(a) + Aè(p) , where 

Az(a) = f (a - 1) and A * (p) = f ( p + log P ). 
E logp -logq 

Here, A* is of the form f(x) + f(y). The change of coordinates in cjJ(.,.) implies that 

the level sets of cjJ are triangles. The logarithmic profile shown in Figure 6.5 is taken 

from this example. 

The definition of cjJ(a, t) involves the function 1(·,·) that is slightly more compli­

cated than A * (', .). In general, it is easier to study 

(6.11) 
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The value of cp(o., t) only differs from CPo(o., t) when 0. :S tEZ and tEE :S 1. For such 

values of 0. and t, cp(o., t) = Oogd. 

Remark. Although we will not prove it, it is interesting to note that CPo(o., t) is the 

logarithmic profile counting the number of nodes at level k "" t log n with Nu mughly 

m and Du mughly h "" 0. log n. Proving this would require the equivalent of the 

Bahadur and Rao (1960) theorem for large deviations tail probabilities. See Broutin 

and Devroye (2007a) for a proof of this daim in the unweighted case. 

Before we look at the two-dimensional version, we warm up and analyze the un­

weighted case. 

THE UNWEIGHTED CASE. Here we assume Ze = 1 almost surely for every edge e. In 

this paragraph only, we write A*(t), I(t) and cp(t) since the 0. variable is irrelevant. 

We have seen in Chapter 2 that A * (t) is convex and looks like the function shown on 

Figure 6.2. 

A*(p) 

logd~------------------~------

E logd EE p 

Figure 6.2: The function A* corre­
sponding to the distribution {. 9, .1 } . 

However, the logarithmic profile cp(t) is defined in terms of 

. * { A*(p) l (p) = mf {A (x) : x < p} = 0 
if p:S EE 

otherwise. 

Finally, we have (see Figure 6.3), 

cp(t) = { tlogd - tA*(ljt) 

tlogd 

if t ~ E1E 

otherwise. 
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So, </>(t) is linear to the left of l/EE. Also, </>(t) is maximum at t = l/E, where 

E = - 2::=1 Pi . logpi is the entropy associated with the distribution. The following 

lemma gives the main properties of </>. 

Lemma 6.3. We have the following: 

(a) A*(EE) = 0 and, for ail tE V A*, A*(t) E [O,lnd], 

(b) if (Pl, . .. ,Pd) =1= (l/d, ... ,1/d), 

8</>(t) 1 =logd. 
al t=l/EE 

Proof. (a) This is clear since E has just d equiprobable masses, -log Pi, 1 :S i :S d. 

For aIl p E [-logpb -lOgPdJ, A*(p) E [O,logd]. Outside this interval, A* = +00. 

(b) If there exists an i such that Pi =1= 1/ d, E is not degenerate and EE lies in the 

interior VA *. Then A * is differentiable at EE and 

8A*(p) 1 = O. 
8p p=EE 

It follows that 

8cjJ(t) 1 = 8</>o(t) 1 = logd + ~ . 8A*(p) 1 - A*(EE) = logd. 0 
al t=l/EE 8t t=l/EE t 8p p=EE 

The function </>(.) can be characterized as the lower envelope of a set of lines. Let 

us define the generalized entropy function: 

d 

E(b) = - I)OgPi' p~. 
i=l 

So, we have E(l) = E. The following lemma explains the geometry of </>(.). 

Lemma 6.4. Let b > O. Assume that (Pl, ... ,Pd) =1= (l/d, ... , l/d). Let to = to(b) = 

Q(b)jE(b). The line of support of </> at to has equation b + t log Q(b). Hence, we have 

In particular, </>(l/E) = 1 and the tangent of </>(t) at t = l/E is horizontal. 
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b 

rjJ(t) 

1 
EE 

1 
l 

2ill 
e(b) 

-1 
logpl 
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-b t 
logQ(b) 

Figure 6.3: The logaritmic unweighted profile cP associated with the binary distribution 
Pl = .9 and P2 = .1. 

Proof. We only need to verify that the slope of <jJ(t) at to is 10gQ(b). Consider first 

t 2: l/EE. Then A*(l/t) = I(l/t), and we have <jJ(t) = tlogd - tA*(l/t). So, 

ô<jJ(t) =logd-A*(l/t)+~. ôA*(p) 1 . 

ôt t ôp p=l/t 

AIso, A*(p) = >..p - A(>"), where >.. = >..(p) is defined by 

ôA(>") 
p = ----w:-' 

For t = to, we have>.. = >"(l/to) = -b and 

ô<jJ(t) 1 = 
ôt t=to 

logd - A* (l/t) + ~ . ôA*(p) 1 

t ôp p=l/to 

= logd - ( -b ~~~ -logdQ(b)) 

+ E(b) (-b + E(b) ôÀ(p) 1 _ E(b) ôÀ(p) 1 ) 

Q(b) Q(b) ôp p=l/to Q(b) ôp p=l/to 

log Q(b). 

This is also Lemma 2.2.5 (c) of Dembo and Zeitouni (1998). Now, observe that the 



132 CHAPTER 6. WEIGHTED HEIGHT OF TRIES 

line of support of cp(.) at to hits the vertical axis at 

If, on the other hand t ~ l/EE, we have cp(t) = tlogd. Since cp(-) is concave, it is 

the lower envelope of its Hnes of support. This completes the proof. o 

THE WEIGHTED CASE. In the general case, since cp(o:, t) is in terms of l(o:/t, l/t), one 

can picture cp(" .) by considering diagonal slices cp( xt, t), when x > O. In particular, 

cp(xt, t) = cp(EZt, t) for aIl x ~ EZ. Sorne of the main properties of A*(-,.) and cp(.,.) 

are given in the next lemma. Typical curves are shown in Figures 6.4 and 6.5. 

I(a,p) 

p 

Figure 6.4: A typical rate function 
1(·,·) (the one fram the example of gaus­
sians in Chapter 2). 

Lemma 6.5. For ail 0: > 0 and t > 0, cp(o:, t) ~ 1. 

Although the result is clear if we take Theorem 6.2 for granted, we prove it from 

the first principles. Indeed, it is needed in the proof of our main result. 

Proof. If Pl = ... = Pd = l/d, the result is clear. We now assume that Pi i= l/d, for 

sorne i, 1 ~ i ~ d. In such a case, A* is differentiable in 1YA* which is not empty. 

Again, we consider the case cp(t) = CPo(t) first. Recall that, then, 

cp(o:, t) = CPo(o:, t) = tlogd - tA* (T' ~) . 
Also, for any x, y, A *(x, y) = Àx + J-lY - A(À, J-l) where À = À(x, y) and J-l = J-l(x, y) 

satisfy 
ôA(À, J-l) 

x= ôÀ and 
ôA(À, J-l) 

y = âJ-l . (6.12) 
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For any 0:, t, let Ào and /-lo be the values of À(x, y) and /-l(x, y) at (x, y) = Uf, t). We 

have 

ô<Po(o:, t) = t. ~ . ôA*(x, y) 1 = Ào 
ôo: t ôx (x,Y)=(!r,t) , 

by the definition of A* and (6.12). Also, as for the partial derivative with respect to 

t: 

= logd - A* (~ ~) - t. ôA*(!f, t) 
t' t ôt 

= <Po(o:, t) + ~ . ôA*(x, y) 1 + ~ . ôA*(x, y) 1 

t t ôx (x,Y)=(!r,t) t ôy (x'Y)=(!r't) 

<Po (0:, t) . ~. À ~ . 
t + t 0 + t /-lo· 

Recall that 

( ) 0: /-lo * (0: 1 ) A Ào, /-lo = -Ào + - - A -, - . 
t t t t 

Renee, we obtain 

At the maximum of <Po(o:, t), the first partial derivatives with respect to 0: and t both 

vanish. Rence, Ào = ° and -logd = A(O,/-lo) = logdQ(-/-lo), which implies /-lo =-l. 

As consequence, for aIl 0:, t > 0, such that <p(o:, t) = <Po(o:, t), 

In the case when <p( 0:, t) =1= <Po (0:, t), we have tEE ~ 1 and thus t log d ~ l~~. Rowever, 

by Jensen's inequality , 

1 d (1 d ) 
EE = d· B -IOgPi 2: -log d BPi = logd. 

Renee t log d ~ 1. This completes the pro of. o 

6.3.2 The expected logarithmic profile: Proof of Theorem 6.2 

We first prove the upper bound of Theorem 6.2: 
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Figure 6.5: A typical logarithmic profile. The thick black lines represent cjJ(O, t) and 
cjJ(tEZ, t). For to constant, cjJ(a, to) is constant for a E [0, toEZ]. 

Lemma 6.6. Let m = m(n) ---t 00. Let k rv tlogn and h rv alogn for some positive 

constants t and a. Let cjJ(a, t) be given by (6.10). If cjJ(a, t) > -00, then 

EPm(k, h) ~ n<p(o,t)+o(l) , 

asn ---t 00. Moreoverifthe convergence of(k/logn,h/logn) is uniform in a compact 

subset r of ~<p( -a) = {(a, t) : t > 0, cjJ(a, t) > -a} for some a > 0, then for any 

E > 0, there exists n large enough that 

uniformly in r. 

The ideas are similar to those we used in Chapter 4. The variables are not quite 

i.i.d. as in ideal trees. However, Lemma 6.1 gives us a good handle on the number of 

variables that are not of the expected type (1, ... , 1) in the core. 

Praof of Lemma 6.6. It suffices to prove the result on ~(-a) for an arbitrary a > O. 

Consider a uniformly mndom path {uo, Ut, .. . ,Uk,"'} in Too : Uo is the root, and, for 
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every i 2:: 0, Ui+1 is a uniform random child of Ui. This implies that for aIl k 2:: 0, Uk 

is a uniform no de in 2 k , the set of nodes k levels away from the root in T 00' Let 

(6.13) 

By definition of Pm(k, h), we have 

The randomness coming from the binomial random variables is irrelevant for the order 

of precision we are afteL Indeed, for any 6 E [0, 1], we have 

EPm(k,h)::; dk.p{Luk2::6,Duk2::h}+dk.supP{Bin(n,ç)2::m}. (6.14) 

In particular, if we set 
md-k / m 

6 = en1+a/ m ' 

~~Et 

the second term of (6.14) is easily bounded as follows 

(m
n ) Clm < (enmÇ1)m sup P {Bin(n, ç) 2:: m} ::; P {Bin(n, 6) 2:: m}::; ." 

~~Et 

As a consequence, by definition of DUk and (6.13), 

EPm(k,h) ::; dk·P { L Ze 2:: h, L Ee::; -IOg6} + ~a' 
eE1r(Uk) eE1r(Uk) 

(6.15) 

(6.16) 

We shaH now focus on the first term of (6.16). This kind oftail probability is treated by 

the theory of large deviations presented in Chapter 2. Recall that b.",( -a) is bounded 

by Lemma 6.2. So, there exists a constant A > 0 such that, for aIl k ::; t log n and 

h::; cdogn with (a, t) E b.",(-a), we have, by (6.15), 

- log 6 = (1 + :) log n + 1 - log m + ~ log d < log n (1 + ~) , 

for n large enough. Hence, rewriting (6.16), we have 
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By assumption, {Ee, e E 7r( Uk)} is a family of Li.d. random variables. It is not the 

case for {Ze,e E 7r(Uk)}, and hence, not for {(Ze,Ee),e E 7r(Uk)} either. However, 

by Lemma 6.1, the maximum number of nodes with less than d children lying on a 

path down the root with N ~ m( n) is o(log n) with probability at least 1 - n -w, for 

sorne w ---t 00 as n ---t 00. It follows that for Li.d. random vectors (Zi, Ei ), i ~ 1, 

distributed like (ZC, E), for k rv t log n and h rv 0:: log n, for any 8 > 0, and n large 

enough, 

Therefore, by Theorem 2.2, we have, for any 8 > 0, and n large enough, 

( (
0:: 1 ) ) d

k 
1 EPm(k,h) ~ exp klogd-kI --8,-+8 +-+-. 

t t nW na 

Moreover, if 

I
-h -0::1 ~ ° and log n n--+oo 

---t ~o 
1 

k 1 logn n--+oo 

uniformly in a compact set, we can find n large enough for any 0:: and t in the same set. 

Now, by definition, </J(o::, t) > -a on ~<p(a) and hence 1(·,·) is finite and continuous 

at U~, t), by Lemma 6.2 (see also Dembo and Zeitouni, 1998). Thus, since 8 was 

arbitrary, for every E > 0, there exists n large enough that 

EPm(k,h) ~ eXP(kl~gd-kI(T'~)+~) = n<P(O,t)+€/2+:
a 
~ n<p(o,t)+\ 

uniformly in any compact subset of ~<p(-a) = ((o::,t): t > O,</J(o::,t) > -a}, where, 

as in (6.10), 

</J(o::, t) = tlogd - tI (T' ~) . 
This proves the lemma and the upper bound of Theorem 6.2. D 

We now focus on the lower bound and prove: 

Lemma 6.7. Let m = m(n) ---t 00 with m = o(logn). Let k rv tlogn and h rv o::logn 

for some positive constants t and 0::. Let </J(o::, t) be given by (6.10). If </J(o::, t) > -00, 

then EPm(k, h) ~ n<p(o,t)+o(l), as n ---t 00. 
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We could handle the lower bound using techniques that are very similar to the 

ones we used in the case of weighted trees of Chapter 5. However, here, Lemma 6.1 

permits to simplify the pro of. 

Praof. Recall that Uk is a random node in 2'k, the set of nodes k levels away from 

the root in Too . We have 

Let Au be the event that all the nodes on the path from U up to the root have d 

children. Then, if U E 2'k, P {Au 1 Nu} ~ 1- dk(l - Pd)k. Moreover, if Au occurs, 

all the weights on the path 7r(u) are LLd. by construction, and we can use Cramér's 

theorem. We have 

where D~ counts the depths using the variables zc = Z(l, ... ,l) of the embedding. 

Moreover, 

EPm(k,h) > dk .P{NUk ~ m,D~k ~ h} .P{Au 1 NUk ~ m,D~k ~ h} 

dk 
• P {NUk ~ m, D~k ~ h} . P {Au 1 NUk ~ m} 

By definition NUk is distributed as Bin(n, L Uk ), where LUk is defined in (6.13). As a 

consequence, for any 6, 

Choosing 6 = m/n, we see that 

inf P {Bin(n, ç) ~ m} 
Q:6 

and it follows that 

P {Bin(n,6) ~ m} 

> P {Bin( n, 6) ~ EBin( n, 6)} = no(l), 

(6.19) 
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Therefore, it suffices to study P {Luk 2:: 6, D~k 2:: h}. Let (Zi, Ei ), i 2:: 1, be LLd. 

vectors distributed like (ZC, E). Then, by the definitions of D~k and LUk' 

P {Lu, ~ 6,D~, ~ h} ~ P {t z: ~ h, tE." (1+ O(l))lOgn}, 

since -log6 = (l+o(l))logn. By Cramér'stheorem (Theorem 2.2) and (6.19), this 

yields, 

EPm(k, h) 2:: dk
• exp ( -kI (T' 1 ~ E) + O(k)) . n°(1) , 

for any E >, 0 and n large enough. Since E is arbitrary and 1(·,·) is continuous where 

it is finite, the claim is proven: 

E D (k h) > n4>(a,t)+o(l) .rm , , 

where cjJ(a, t) is given by (6.10). o 

6.3.3 Logarithmic concentration: Proof of Theorem 6.3 

The upper bound is straightforward using Markov's inequality and the uniform state­

ment of Theorem 6.2. lndeed, by assumption, the convergence of (hl log n, kl log n) 

is uniform in a compact set r C Ô4>( -a). For aU n large enough, and uniformly in 

the set r, EPm(k, h) :::; n4>(a,t)+f/2, i.e., 

EPm(k, h) -f/2 
sup < n 

(a,t)Er n4>(a,t) -

Hence 

We now focus on the lower bound. We first prove a weaker version that will be 

boosted: 

Lemma 6.8. Let E > O. Let a, t > 0 such that </J(a, t) > O. Then, for k 

ltlogn - 3tloglognJ, and h rv alogn, 

lim sup P {Pm(k, h) :::; n4>(a,t)-f} < 1. 
n---+oo 
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Praof. In the previous section, one of the crucial arguments relies in the eonditioning 

on the event Au that aU the nodes along 7r(u) are have d ehildren. Then, given Au, 

we ean use Cramér's theorem instead of the Gartner-EUis theorem. We use a similar 

argument, to relate Pm(k, h) to a Galton-Watson process. By Lemma 6.1, we aU the 

nodes sueh that Nu ~ log2 n have degree d with probability 1 - nw(n). This is why we 

construct our Galton-Watson tree using the variables (ZC, E) of the embedding. 

Let Bu = -log Lu = ftE'7r(u) Pe. Let I! be a natural number to be chosen later. 

The individuals of the Galton-Waton pro cess will be nodes of 2se, s ~ O. Anode u 

is caUed good if either it is the root, or it lies I! levels below a good node v and 

Dc DC cd - >-
u v t and 

The set of good nodes is a Galton-Watson proeess. Let Cs be the number of good 

nodes in the s-th generation,or at level sI! in TrXJ' Let Y denote the progeny of an 

individual of the Galton-Watson process. Then, the expected progeny is 

Henee, by Cramér's theorem (Theorem 2.2), 

By assumption, r/J(a, t) > 0 and I(alt, lit) < logd. Then, for f3 > 0 small enough, 

there is I! large enough such that 

EY ~ exp (I! log d - I!I ( T' t) - f31!) > 1. (6.20) 

Then, the pro cess {Cs, s ~ O} of good nodes is supercritical. 

Let A be the event that aU the nodes with Nu ~ log2 n are of type (1, ... ,1). Let 

F be the event that aU the nodes with nLu ~ 2log2 n have Nu ~ log2 n. We have 
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If both A and F occur, then, the nodes with nLu > 2log2 n aIl have d children. 

Writing r = r( n) = d- f . log2 n, 

On the event A, aIl the variables influencing Pr(k, h) are distributed as (ZC, E). AIso, 

by defini tion of k = l t log n - 3 log log n J, for any good node u at level f l k j f J, nLu 2: 

2 log2 n for n large enough. Renee, if k = 0 rnod f, G L k/ fj is a lower bound on Pr (k, f) if 

F occurs. If k =1= Ornodf, the subtree of every good no de lying at levellkjfJ contains 

at level k anode with Nu 2: r. Thus, sinee the weights are non-negative, for any 

k 2: 0, C Lk/ fj is a lower bound for Pr(k, h) on AnF. As a consequence, 

P {Pm(k, h) ::; n<l>(O,t)-f, A, F} < P {Pr(k, h) ::; n<l>(O,t)-f, A, F} 

< P {GLk/fj ::; n<l>(O,t)-f, A, F} 

< P { G Lk/fj ::; n<l>(O,t)-f} . 

Now, by Lernrna 6.1, for n large enough, P {A} ::; n-w , for sorne w ~ 00, as n ~ 00. 

AIso, by the union and Chernoff's bounds, 

P {P} ::; dk . P { Bin ( n, ~ log2 n) ::; log2 n} ::; dke-~ log2 n ::; e-fo log2 n, 

for n large enough. It foIlows that 

as n ~ 00. Therefore, proving the clairn reduces to show that the first terrn is strictly 

lower than one. For this purpose, we take advantage of asyrnptotic properties of 

supercritical Galton-Watson properties. 

By Doob's lirnit law (see Chapter 3), there exists a randorn variable W such that 

Cs 
E
' G ~ W alrnost surely. 

s s~(X) 

The equation above gives us a handle on CLk/fj via the lirnit distribution W. In 

particular, for any € > 0, we have 
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sinee EG Lk/iJ 2: n<p(t)+o(l). As a consequence, 

The random variable W is characterized by the Kesten-Stigum theorem (Theo­

rem 3.4). In particular, writing Y for the distribution of the progeny, E [Y log( 1 + Y) J < 

00 since Y is bounded, and hence, P {W = O} = q, the extinction probability of the 

coupled Galton-Watson process. Since the proeess is supercritical by (6.20), we have 

q < 1. o 

We now intend to boost the bound given by Lemma 6.8. Consider 2l, the set 

of nodes f levels away from the root, for f = f(n) = LloglognJ. Eaeh one of Nu, 

u E 2l is distributed as a binomial Bin(n, çu) with Çu 2: p~. Let Ji be the good event 

that for eaeh u E 2l, Nu 2: ni, where ni = np~/2. Using the union bound, and then 

Chernoff's bound for binomial random variables (Chernoff, 1952; Janson et al., 2000), 

we see that 

Let T 00 (u) be the subtree of T 00 rooted at u. Given the values of the first f symbols 

of eaeh string, the subtrees Too(u), u E 2l are independent. Moreover, eonditioning 

on Ji, eaeh one of these trees behave like a weighted trie with Nu 2: ni sequenees. Let 

P::,m(k, h) be the number of nodes v E 2'k n Too(u) sueh that Nv 2: m and Dv 2: h. 

Sinee the weights are non-negative, we have 

P {P::,m(k, h) :::; n<P(t,a)-<} < P {Pnt,m(k - f, h) :::; n<P(a,t)-<} 

< P {Po (k - f h) < n<P(a,t)-<+O(l)} nt,m ,- i , 

sinee n / ni = 2P110g 
log n J. Renee, for n large enough, sinee k - f rv t log n and h rv 

alogn, 
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by Lemma 6.8. However, if P::',m(k, h) is large for any of the nodes u E 21, then 

Pm(k, h) is large as weIl: 

by independence. This finishes the pro of of Theorem 6.3. 

6.4 How long is a spaghetti? 

6.4.1 Behavior and geometry 

The behavior of the spaghettis is radically different from the one observed in the 

core. This is because the number of sequences each one of them stores is at most 

m( n). There are two main questions of interest about the spaghettis. Of course, in 

preparation for the proof of Theorem 6.1, we shall study their maximum weighted 

height. But in order to acquire a deeper understanding of the situation, we will first 

look at the profile, not of a single trie, but of a forest of independent tries. 

Let Tl, T 2 , ... ,Tn be n independent b-tries. We assume that Ti is a weighted 

b-trie on mi = mi(n) sequences generated by a memoryless source with distribution 

{Pl, ... ,PÛ· AIso, we assume that for aIl i, m/d ~ mi ~ m. The roots of Ti, 

1 ~ i ~ n, aIl lie at level zero. Then, we let PS(k, h) count the number of nodes u 

lying at level k in any Ti and such that Du ~ h. Since Ti is a b-trie, we only count 

the nodes for which Nu ~ b + 1. For now, we are only interested in EpS(k, h), when 

k l'V P log n and h l'V , log n. The behavior of the spaghettis is tightly related to that 

of (b + l)-tuples of strings. Recall that Q(b + 1) = 2:~=1 p~+1 is the probability that 

b + 1 characters generated by the source {Pl, ... ,Pd} are identical. This is why the 

random variable of interest here is 

b { ZÂ Z = 
-00 

w.p. Q(b + 1) 
(6.21) 

otherwise, 

where A E {l, ... , d} is a random character generated by the memoryless source 

with probability distribution {Pb ... ,Pd}, Recall that the vector zs = (Zî, ... , ZJ) 
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is distributed as (Zf\ ... , Z;d) where (Ji the permutation of (1,0, ... ,0) E {O, l}d 

with the one in the i-th position. Let AbU be the rate function associated with the 

variable Zb, and recall that VA * is the interior of the domain where it is finite. 
b 

Theorem 6.4. Let Ti, 1 ::;. i ::; n, be a forest of n independent tries. Let Ti store 

mi = mi(n) sequences. Assume that m/d::; mi ::; m for aUl ::; i ::; n. Let k rv plogn 

and h '" 'Y log n, as n ~ 00, for positive constants p and 'Y- If 'Y / p E V A*, then, 
b 

as n ~ 00, where 'l/Jb,p) = 1 - phb/p), AbU is the rate function associated with 

the variable Zb, and h(x) = inf{A*(x') : x' > x}. 

The logarithmic profile of our forest of tries is shown of Figure 6.6. Observe in 

particular that the logarithmic profile decreases linearly along any fixed direction 'Y/p, 

In other words, the point (0,0,1) casts a cone of projections on the horizontal plane. 

There is a preferred direction, corresponding to ('Yb, Pb, 0) such that 

'Yb = sup b: 'l/Jb,p) ~ O}. 
"Y,p>O 

This point is especially important since it characterizes the maximum weighted height 

of Tl, ... , Tn. Let Hl, ... , Hn be the weighted heights of Tl, ... , yn, respectively, and 

define 

1 - pA.(-r!p) 

Sn,b = max{Hi 
: 1 ::; i ::; n}. 

-. p 

Figure 6.6: The profile genemted by n in­
dependent tries on roughly m( n) = o{log n) 
sequences each. We also show lb. 
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Theorem 6.5. Assume that Pl < l. Assume that m(n) ---+ 00 and m(n) = o(logn). 

Let 

'Yb '!;! sup b : 'l/Jh, p) 2: O} = sup b : pAb h j p) ~ 1}. (6.22) 
-y,p>O -y,p>O 

Then, Sn,b '" 'Yb log n in probability, as n ---+ 00. Furthermore, for every E > 0, there 

exists 0 > 0 such that, as n ---+ 00, 

(6.23) 

The condition in the definition (6.22) of 'Yb reduces to finding the largest 'Y such 

that there exists p satisfying Ab (p) ~ p j 'Y. In other words, if we plot p 1--+ A * (p), 

then 1 j'Yb is the slope of the most gentle line going through the origin and hitting the 

graph of A*(-), as shown on Figure 6.7. This yields the following characterization of 

'Yb: 

Lemma 6.9. Let Ab be the rate function associated with Zb defined in (6.21). Let 

'Yb = sup-y,pb: pAbhjp) ~ 1}. We have 

'Yb = sup { 'Y::3p Ab(p) ~ ~} 

sup { 'Y ::3p h(p) ~ ~} 

inf { 'Y : \;/ p Ab (p) > ~ } . 

Proof. The proof of the first inequality follows the lines of Lemma 4.2 and is not 

reproduced here. We have just proved the second equality. The third one follows 

from the min-max principle. o 

Using this alternate defin,ition of 'Yb, we can characterize the value of 'Yb. 

Lemma 6.10. Let Ab be the rate function associated with Zb defined in (6.21). Let 

'Yb = sup-y,pb: pAbhjp) ~ 1}. Assume that ZS is not almost surely null. IfQ(b) < 1, 

then 'Yb E (0, (0). Otherwise, 'Yb = 00. 
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Figure 6.7: The constant l/'"Yb is the slope 
of the line going through the origin that is tan­
gent to the curve {(p, A *(p))}. 

Praof. RecaU from Chapter 2 that infpAb(p) = -logP{Zb > -oo}. If Q(b) < 

1, then inf p A * (p) = - log Q (b) > a. Moreover the infimum is reached at p = 

E [ Zb 1 Zb> -00] > a. The result foUows (see Figure 6.7). On the other hand, 

if Q(b) = 1, then infp A*(p) = a and Ihb = a. 0 

6.4.2 The profile of a fore st of tries: Proof of Theorem 6.4 

In this section, we prove Theorem 6.4. We also define the notation that will be used 

in the proof of Theorem 6.5. The pro of relies on the analysis of (b + l)-tuples of 

sequences. Let "p > a such that ,/ p E VA *. Let k and h be such that h '" ,log n, 
b 

k '" plogn, as n -700. 

Consider any one of the n tries. More particularly, consider a (b + 1)-tuple of 

sequences generated by the source, A 1 ,A2 , ••. ,Ah+l, where Ai = {A;,j 2: a} for 

1 ~ i ~ b + 1. Let u be anode at level k in any of the tries. When taking a step 

one level down from u, we look at the next set b + 1 of characters. Either they are 

identical, and the strings have foUowed the same path, or they are not and a (b + 1)­

tuple has been split. In the latter case, since we consider a b-trie, aU the sequences 

are now stored in the nodes. In particular, this split (b + 1)-tuple does not appear at 

levels deeper than k. Let H be the event that an the characters in k-th position in 
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the (b + 1)-tuple are identical. Then, the (b + 1)-tuple appears after level k only if aH 

Fj, 1 ::; j ::; k occur. 

N ow, taking one step down the trie also means that we have foHowed a weighted 

edge. The random weights are not Li.d. on the path defined a string, since other 

(b + 1)-tuples may interact and modify the type of the nodes. However, the influence 

of the interaction is negligible here. Indeed, as we have already seen, there are at 

most m( n) = o (log n) nodes in a trie (Lemma 6.1). As a consequence, in a single trie, 

the number of nodes whose type is not a permutation of (1,0, ... ,0) is o(logn). In 

particular, since Z is bounded, their influence is o(logn), which is negligible compared 

to h = 'Y log n for 'Y > 0 (see Lemma 6.1). 

Anode u E Ti lying k levels away from the root is counted in PS(k, h) if Du ~ h 

and u E Ti. This happens if there is at least one (b + 1)-tuple stored in the subtree 

rooted at u, and the weighted depth is at least h. In other words, for aH i, and anode 

u at level k, 

P {D. ? h,u E 'r'} < inl>+'· P {t Z~J + o(logn) ? 7 1og n , ,D, F; } 

~ ml>+'· p {t (Z~J - COI!1'j!) + o(Iogn) ? 7 10g n }. 

The summands on the right-hand side above are precisely distributed as Zb defined 

in (6.21). It foHows that 

(6.24) 

where zj, 1 ::; j ::; k are Li.d. copies of Zb. A lower bound is obtained by considering 

a single (b + 1)-tuple for the trie Ti. This is possible since mi ~ m/d --t 00, and 

hence, for n large enough, mi ~ b + 1 for aH i. Then, 

(6.25) 
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Let 8 > a be arbitrary. There is n large enough such that 

,logn - o(logn) > 1_ 8 
k - p 

and ,logn + o(logn) < 1 + s: 
-'----"'----:-k--=---=---'- - pu. 

Use Cramér's Theorem in both (6.24) and (6.25), and observe that m b+1 = no(l) = 

eo(k) to obtain 

as n ---t 00. We have n of these tries, and h is continuous at ,/p E V A*. Renee, 
b 

as n ---t 00. This completes t.he pro of of Theorem 6.4. 

6.4.3 The longest spaghetti: Proof of Theorem 6.5 

THE UPPER BOUND. Let E > a be arbitrary, and write " = ,b + E. We want to upper 

bound Sn,b. Observe that the tries Tl, ... , Tn are not quite identically distributed. 

lndeed, their number of strings may vary slightly. We do not assume that the weighted 

height increases in the number of strings. By the union bound, 

P {Sn,b 2: ,'log n} ::; nm sup P {Hi 2: ,'log n} . 
1::;i::;n 

(6.26) 

Consider now any one of the n tries. More particularly, consider a (b + 1)-tuple of 

sequences generated by the source, A1,A2, ... ,Ab+1, where Ai = {A;,j 2: a} for 

1 ::; i ::; b + 1. Let W be the weighted height of the common path of this particular 

set of strings. By the same arguments we used in section 6.4.2: 

W :; l}':.r{t (Z~J - 00 IIFjJ) } + o(1ogn), (6.27) 

where Zj, j 2: 1, are i.i.d. copies of ZS defined in section 6.2. The summands in (6.27) 

are precisely Li.d. copies of Zb defined by (6.21). Using the union bound, we see that 

for any i, and for n large enough, 

P {Hi> ,'log n} ::; mb+1. P {31: : t ZJ 2 ,'log n} , 
)=1 
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where {Zj,j ~ 1} is a sequence of i.i.d. copies of Zb. Note that the upper bound 

above is independent of i. Using (6.26) and the union bound once again, we obtain 

P {Sn,b > ,'logn} ::; n· mb+2. L P {t ZJ ~ "lOgn}, 
e~l j=l 

Apply Cramér's theorem or Chernoff's bound (Theorem 2.2) to each one of the sum­

mands, and observe that mb+2 = no(l): 

We now split the sum on the right-hand side of (6.28) into two pieces, and then bound 

each one of them separately. 

When e is large, what prevents the sum to be large is the increasing probability 

that the path has been split. Recall that P {Zb > -oo} = Q(b + 1), and hence 

infp h(p) = -log Q(b + 1). Let 6 > 0 to be fixed later. Let 

1+6 
K = K(n) = -logQ(b+ 1) ·logn. 

We have 

Now for the low values of e, we have to deal with the weights. Observe first that, 

by definition of ,b, there exists f3 > 0 such that 

We now choose 6 small enough that 6 < f3/2. Then, since K = O(logn), 

nl+O(l)~exp(_eh("I~gn)) ::; Kn-{3/2 = O(n-{3/4). (6.30) 

Note that min{6/2,f3/4} = 6/2. Plugging both (6.29) and (6.30) in (6.28) proves that 
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which completes the proof of the upper bound (6.23). 

THE LOWER BOUND. Let E > 0 and write 'Y" = 'Yb - E. By assumption, m(n) ---+ 00, 

and hence, there exists n large enough that m( n) / d 2: b + 1. We only consider one 

tuple from the each b-trie. We then have n independent realizations of the random 

variable W described in the previous section. We now have the lower bound 

(6.31) 

where Zj, j ~ 1 are LLd. copies of zs defined in section 6.2. The largest of the 

n independent copies of W is a lower bound on Sn,b (see remark next page). Let 

Xi, 1 ~ i ~ n denote the sequence of indicators that the i-th realization is at least 

'Y" log n. Let M = 2::1 Xi. We intend to prove that M 2: 1 with probability tending 

to one as n ---+ 00. For this purpose, we use the second moment method (see, e.g., 

Alon et al., 2000). We have, 

EM = n· P {W 2: 'Y" log n} . 

Let {zj,j 2: 1} be a sequence of Li.d. copies of Zb defined by (6.21). Then, 

EM = n· P {::Jt': t ZJ 2: 'Y"lOg n } 2: n· P {t. ZJ 2: 'YIIlOg n } , 
J=1 J=1 

for any t'a 2: 1. By the alternate definition of 'Yb provided by Lemma 6.9, there exists 

P such that 

(
'Y") p'h P <1. 

In particular, if we set t'a = r p log n l, by Cramér's theorem, 

We now use the second moment method. By Chebychev's inequality, 

Var[M] 
P{M=O} ~ P{M-EM~EM} ~ (E[M])2' 
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However, M is a sum of i.i.d. random variables, and we have EM = nEXI and 

Var [M] = nVar [Xl]' AIso, Var [Xl] = EXI - (EXI )2. It follows that 

1 1 
P {M = O} < - - - --+ O. 

- EM n n-+oo 

As a consequence, with probability tending to one as n -+ 00, M ~ 1, which completes 

the pro of of the lower bound. 

Remark. Note that we have never used the fact that the weighted height of a trie is 

increasing in the number of sequences. In the lower bound, this is made possible since 

the random variable W accounts only for the weights of edges tied to non-branching 

nodes, Le., whose a type is a permutation of (1,0, ... ,0). Enforcing the fact that the 

weighted height be increasing in the number or strings would not affect any of our 

main applications (see section 6.6). However, for binary tries, where 

{

(l, 1) if T = (1,1), and 

ZT = (2,2) if TE {(l, 0), (0, l)}, 

the weighted height is not increasing. Yet, Theorems 6.1 and 6.5 still hold. 

6.5 The height of weighted tries 

6.5.1 Projecting the profile 

Recall the definitions of the core and spaghettis. Let m = m( n)· -+ 00 with m = 

o(logn). The core C of a b-trie Tn,b is the set of nodes U E Tn,b such that Nu ~ m. 

When removing C from Tn , we obtain a forest of trees, the spaghettis (see Figure 6.1). 

Each one of these trees is rooted at anode u E BC, the external node-boundary of C 

in Tn,b' In other words, the nodes u E BC are the children of sorne no de v in the core, 

but are not themselves in the core. Recall that Cb = sup { 0: + Tb<P( 0:, t)}, where 

Tb = sup b : pA~ (r / p) :S 1, T > 0, P > O} . 

Alternate definitions of Tb are given in Lemma 6.9. 
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Theorem 6.1 can be interpreted as follows. Consider a point (a, t, </J(a, t)). This 

point is mapped on the horizontal plane going through the origin via a projection. 

The direction of the projection is given by the vector (1,0, -lhb). The direction 

along the t-axis is actually irrelevant, and any direction (1, x, -1/ib) gives the same a­

coordinate for the image of (a, t, </J(a, t)). The constant Cb is then largest a-coordinate 

of these projections. 

The projection is not a mere interpretation of the formula for Cb. Indeed, The­

orem 6.4 shows that a set of Pm(k, h) tries on about m(n) sequences each has a 

logarithmic profile that decays linearly in every direction. We can also note that the 

actual profile induces a preferred direction of projection (1, -1/Pb, -lhb), as shown 

of Figure 6.6. The projection of points (a, t, </J(a, t)) using this preferred direction is 

depicted in Figure 6.8. 

Figure 6.8: A geometric interpretation for the height: each point (a, t, 4J(a, t)) of the 
logarithmic profile of the core throws a line whose direction is given by (l,-l/pb,-l/'Yb). 
The line intersects the plane 4J = 0 at (a + 1'b4J(a, t)), t + pb4J(a, t), 0). The constant Cb is 
the largest coordinate of one of these point along the a-axis. 

The definition of Cb above follows from the pro of. For the applications, it is useful 

to simplify it slightly. 
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Proposition 6.1. We have Cb = sup{a + 'Yb' <po(a, tn, where <Po("') is defined by 

<po(a,t) =tlogd-A* (T'~)' 
Proof. Clearly, since <p(.,.) is concave, only the points (a, t) for which <p(a, t) ~ 0 

matter. By definition, 

l ( T'~) = inf { A * (x, y) : x > T' y < ~ } . 

The function A*(·,·) is continuous at every point (a/t,l/t) such that <p(a, t) ~ O. 

Hence for every such a point, <po(a, t) ::; <p(a, t). As a consequence 

Cb = sup{ a + 'Yb<P(a, tn ~ sup{ a + 'Yb<Po(a, tn· (6.32) 

To devise the other inequality, we need only consider the points for which <p(a, t) =1= 

<po(a, t), that is (a, t) such that tEE::; 1 and a ::; tEZ. It turns out that these points 

do not matter in the supremum since the value they account for is always dominated 

by sorne other one. Observe that EE ~ e, and by Lemma 6.2, <Ph .) is concave and 

maximum at (a, l/e), a ::; eEZ. Therefore, for aU a and t such that tEE::; 1 and 

a ::; tEZ, 

EZ (EZ 1) a + 'Yb<P(a, t) ::; T + 'Yb<P T'E . 

It foUows that the points for which <p(a, t) and <po(a, t) differ are irrelevant. Each single 

one of the relevant points in sup{ a + 'Yb<P(a, tn is also present in sup{ a + 'Yb <Po (a, tn. 

Thus, Cb ::; sup{a + 'Yb<Po(a, tn. With (6.32), this completes the praof. 0 

6.5.2 Proof of Theorem 6.1 

Put together, Lemmas 6.11 and 6.12 prave Theorem 6.1. 

Lemma 6.11. Let Tn,b be a b-trie as defined in section 6.2. Let Hn,b be its height. 

Then, for any E > 0, P {Hn,b ~ (Cb + E) logn} ---+ 0 as n ---+ 00. 

Proof. Let E > 0 and write é = Cb + E. Let Wu denote the weighted height of the 

subtree rooted at u. RecaU that C denotes the core. We have 

P {Hn,b ~ c'log n} ::; P f3u E C : Du + Wu ~ c'log n} . 
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Let Ck = C n 2'k, where 2'k is the set of nodes k levels away from the root in Too . 

Then, 

P {Hn,b ~ c'log n} ::; P {:lk, u E Ck : Du + Wu ~ c'log n} . 

We can immediately restrict the range of k. Indeed, when k is too large, it is unlikely 

that there is even one node u in the Ck • By Lemma 6.2, {(a,t) : 4J(a,t) ~ -E} 

is contained in a bounded set. Pick t large enough that 4J(O, t) :::; -E < O. Let 

K = K(n) = rtlognl Then, 

P {:lk ~ K, u E Ck : Du + Wu ~ c'logn} < P {ICKI > O} 

< EPm(O,K) 

< n-e+o(l) , 

by Theorem 6.2. Let Ck(h) = {u E Ck : Du ~ hl. By the union bound, 

P {Hn,b ~ c'logn} :::; L P {:lu E Ck : Du + Wu ~ c'logn} + 0(1) (6.33) 
k'5.K 

L P {:lh : Ck(h) =1= 0, h + max Wu ~ C'IOgn} +0(1). 
k<K , UECk(h), 

- v 
R(k) 

Let k :::; K, and consider the corresponding term R( k) in the sum above. Let Fk be 

the O"-algebra generated by the first k symbols of the n strings. Then, 

R(k) = E [p {:lh : Ck(h) =1= 0, h + max Wu ~ c'logn 1 Fk}] . 
UECk(h) 

However, given Fk, max{Wu : u E Ck(h)} is distributed like the longest of Pm(k, h) 

independent weighted tries, each on at most m( n) sequences. Therefore, by Theo­

rem 6.5, for any f3 > 0 there exists 8 > 0 such that 

where lb defined by (6.22). This bound is weak when Pm(k, h) is small. In such a 

case, we shall rather use 
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when Pm(k, h) :::; nf/4. It follows that, in any case, and for {3 :::; 'Yb, 

We now bound the first term of (6.34). The full range for k and h is obtained by 

setting k = Lt log n J and h = a log n, and letting t and a vary. By definition of 

Cb = sup{ a + 'YbcP(a, tn, we have for aIl h = a logn and k = Lt lognJ, 

P {
log Pm(k, h) 1 ( ) E/2} P {lOg Pm(k, h) 'YbcP(a, t) + E/2} 
-=:'_-'--~ > -- Cb - a + -- < > . 

log n - 'Yb + {3 'Yb + {3 - log n - 'Yb + {3 

The weights are bounded and there exists A such that for aIl k :::; to log n, h :::; A log n. 

A bound that is uniform on compact sets is given by Theorem 6.3, and for {3 > 0 

small enough, 

P {
log Pm(k, h) > 1 ( ) + E/2 } < f/(4"Yb)+o(1) sup -- Cb-a -- n . 

t9o,h:9 log n - 'Yb + {3 'Yb + {3 -

As a consequence, recalling (6.33) and (6.34), 

p {Hn,b 2': c/logn} < 
k~to log n,h~A log n k~to logn,h~A logn 

This completes the proof of the upper bound. o 

Lemma 6.12. Let Tn,b be a b-trie as defined in section 6.2. Let Hn,b be its height. 

Then, for any E > 0, P {Hn,b :::; (Cb - E) logn} ---70 as n ---7 00. 

Proof. Let E > O. Recall that, by definition, Cb = sup {a + 'Yb . cP(a, t) : t, a> O} . 

Therefore, there exists (ao, to) such that 

Let ao and to now be fixed. Let k = Ltologn - 3to log lognJ (in order to use Theo­

rem 6.3) and h = ao log n. Let Fk be the a-algebra generated by the first k characters 

of the n strings. Consider the N' = Pm(k, h) nodes u at level k for which Nu 2': m, 
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Figure 6.9: The structure of the lower 
bound: find some level k such that the trees 
starting at ~k are tall enough. Only those 
(colored) are considered, the others are ig­
nored. 

Du ~ h. Conditioning on :Fk, the Pm(k, h) trees rooted at these nodes are indepen­

dent. Let SN',b be the weighted height of the tallest of these trees. We want to show 

that h + SN',b is a good enough lower bound on Hn,b' 

So it suffices to lower bound SN',b' We are in the situation we have studied in 

Section 6.4, and we intend to apply Theorem 6.5. Let fJ > 0 and n' = n<p(oo,to)-J. The 

idea of the lower bound is pictured in Figure 6.9. We have 

p { l~;'~' :S 'Yb - fJ 1 :Fk} :S P { 1~;~1 :S 'Yb - fJ 1 :Fk, Pm(k, h) ~ n<p(Oo,to)-J} 

+l[Pm(k, h) :S n<p(oo,to)-Jj. 

Taking expected values, we obtain 

P {l~;'~' :S 'Yb - fJ} :S P {l~;'~' :S 'Yb - fJ} + P {Pm(k, h) :S n<p(oo,to)-J}. (6.35) 

It only remains to bound both terms on the right-hand side of the equation (6.35). 

By Theorem 6.3 and the definition of k and h, P {Pm(k, h) :S n<p(t,o)-J} = 0(1). AIso, 

by Theorem 6.5, 

{
Sn' b } P --' :S 'Yb - fJ ~ O. 
log n' n--+oo 

Therefore, with probability 1 - 0(1), 
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We have not specified 5 yet, and we pick 5 small enough that 

The weighted height of Tn,b is at least h + SN',b. It follows that, with probability 

1 - 0(1), 

I
Hn,b ~ ao + (-Yb - 5) . (4;(ao, ta) - 5) ~ Cb - E, 
ogn 

by our choice of 5. This completes the pro of of the lower bound. 

6.6 Applications 

6.6.1 Standard b-tries 

o 

We shall first consider simple well-known examples. We start with the case of stan­

dard, Le. unweighted, tries. We show that the following theorem follows from Theo­

rem 6.1. 

Theorem 6.6. Consider an unweighted b-trie Tn,b on n independent sequences of 

characters of {1, ... ,d} generated by a memoryless source with distribution Pl > 

... ~ Pd > O. Let Hn,b denote the height of Tn,b. Then, 

Hnb b + 1 
--' ~ ---:----=-:-::-----:-
logn n-oo -logQ(b+ 1) 

in probability, as n ---t 00. 

Theorem 6.6 is due to Szpankowski (1991). The case b = 1 was proved by Pittel 

(1985). See also Devroye et al. (1992). 

Remark. Theorem 6.6 has first been proved by considering the longest prefix of (b+ 

1)-tuples of sequences, which is exactly what we do for the analysis of the spaghettis. 

It is interesting to note that for this case, one can obtain tight bounds on the height 

without distinguishing the core from the spaghettis. One of the reasons is that the 

weights are identical for all the edges. 
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Proof. Here, we assume that Z = 1 almost surely. Then, cp( a, t) is just the logarithmic 

profile studied by Park et al. (2006) in the binary case, or Broutin and Devroye 

(2007a). 

THE CORE OF THE TRIE. We can compute the generating function of the cumulants: 

for any À, J-l E IR, 

d 

A( À, J-l) = log E [e ÀZ
+I'E] = À + log L pil' - log d. 

i=l 

Then, the associated convex dual A * is given by 

It foUows that A*(x, y) is infinite unless x = 1. Writing J-l = J-l(Y) for the unique 

solution of 
~d 1 -1' 
L.Ji=l og Pi . Pi 

Y = ~d -1' ' 
L.Ji=l Pi 

we have 
d 

A*(I, y) = J-lY -log LPil' + logd. 
i=l 

By Proposition 6.1, it suffices to study CPo instead of the more complicated cp. By 

definition, 

d 

cpo(a,a) = aIOgd-aA*(I,~) = J-l(I/a)+aIOg~Pil'(1/0). (6.36) 

THE BEHAVIOR OF SPAGHETTIS. In an unweighted trie, we have ZS = 1, and Zb = 1 

almost surely. Therefore, for aU À, 

and hence Ab(x) is infinite unless x = 1, in which case, we have Ab(l) = -log Q(b+ 1). 

Then, Lemma 6.9, we c1early have 

,b = sup {., ::Jp Ab(p)::; ~ } = -log d(b + 1)" 
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THE OVERALL CONTRIBUTION. Now by Theorem 6.1, the height Hn,b of a random 

b-trie is asymptotic to Cb log n in probability, where 

{ 
<p(a, a) } 

Cb = ~~~ a + _ log Q (b + 1) . 

This reduces to finding ao such that 

Ô<P~~ a) 10=00 = log Q(b + 1). 

By Lemma 6.4, ao = Q(b + l)/ê(b + 1), where 

d 

ê(b + 1) = LP~+llogpi. 
i=l 

Lemma 6.4 also implies that' 

b+1 
Cb = . 

-logQ(b + 1) 

This completes the proof of Theorem 6.6. For an illustration of this case, see Fig-

ure 6.3. D 

Example: symmetric b-tries. When Pl = P2 = ... = Pd = l/d, the functions 

A*(·,·) and <poe·) are degenerate. Our framework works in this case. In particular, 

<po(a, t) is degenerate: <po(a, t) = -00, unless a = 1/ log d and t = 1/ log d, where 

<po(a, t) = 1. In this case, logQ(b + 1) = -b log d. It follows that 

Hn,b rv CO~d + -log~(b+ 1)) logn = (1 +~) logd n 

in probability, as n ~ 00. In such a case, the contribution of the spaghettis is l/b 

times that of the core. For iI1stance, with ordinary tries, b = 1 and the contribution of 

spaghettis is equivalent to that of the core. This result was first obtained by Régnier 

(1981) in the case of a Poisson number of sequences. Flajolet and Steyaert (1982) and 

Flajolet (1983) obtained the limit distribution. See also Devroye (1984) and Pittel 

(1985). 
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b 

1 2 3 10 50 100 

cb(2) 2.88539 ... 2.16404 ... 1.92359 ... 1.58696 ... 1.47154 ... 1.45712 ... 
cb(3) 1.82047 ... 1.36535 ... 1.21365 ... 1.00126 ... 0.92844 ... 0.91934 ... 
cb(lO) 0.86858 ... 0.65144 ... 0.57905 ... 0.47772 ... 0.44298 ... 0.43863 ... 

Table 6.1: Some numerical values for Cb = cb(d) the height of symmetric ordinary tries, 
as b varies and d E {l, 2, ID}. 

6.6.2 Efficient implementations of tries 

The usual implementation of a trie uses an array for the branching structure of a 

node (Fredkin, 1960). Although this always ensures 0(1) shunting of the strings, 

the space required may become an issue for large alphabets: many pointers would 

be left unused. To avoid this, one solution is to replace the array by variable size 

structures. The oldest solution due to de la Briandais (1959) uses a linked-list, and 

we shall call the implementation a list-trie. More recently, a second elegant solution 

has been proposed by Bentley and Sedgewick (1997), which uses binary search trees. 

It is known as the bst-trie, ternary search trie or TST for short. 

Both structures aim at a trade-off between the storage space and the speed. In 

particular, the access time to children is no longer constant, and may even not be 

0(1) when the alphabet is infinite. In this sense, list-tries and the TST may be seen 

as high-level tries whose edges are weighted to reflect the internaI low-level structure 

of anode (see Figure 6.10). This point of view has been taken by Clément, Flajolet, 

and Vallée (1998, 2001) who analyzed thoroughly these hybrid implementations of 

tries under various models of randomness (see also Clément, 2000). In particular, 

they analyzed the average size and average depth. The question of the height of 

hybrid-tries was left open. We show that the heights of both the list-trie and TST 

follow from Theorem 6.1. 

Let A = {l, ... ,dl be the alphabet. Let {A i ,l :::; i :::; n} be the n strings. In 

ordinary tries, that is, with the array implementation, the order of the sequences 
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is irrelevant. This is not the case any more in either the list-trie or the TST. In 

the following, we distinguish the nodes that constitute the high-Ievel trie structure 

from the stots which make the low-Ievel structure of anode, whether this latter be a 

linked-list or a binary search tree. 

We now describe the way the internaI structure of anode is constructed, in both 

list-tries and TSTs. Consider anode u. The subtree rooted at u stores a subset of 

the sequences Ai, 1 ~ i ~ n. Let Nu C {l, ... , n} be the set of their indices. So, in 

particular, the cardinality of u is Nu = INul. The internaI structure of the no de is 

built using the sequences in increasing order of their index (see Figure 6.10). For a 

no de u at level k in TrX), only the k-th characters of each sequence are used. Only the 

distinct characters matter. Let Au C A be the set of distinct characters appearing 

at the k-th position in the sequences Ai, i E Nu. The characters in Au are ordered 

by first appearance, and this induces a permutation (Iu of Au. The internaI structure 

of the no de u is built by successive insertions of the elements of (Iu into an originally 

empty linked list, or binary search tree. 

Both the list-tries and ternary search trees are built using the process we have 

just described. We shall now study each one of them more precisely. 

1 2 3 4 
1 

5 6 • ~ , • , • \ 1 \ , 1 , \ , , , 1 1 
1 , , 

f 
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~ 
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JI JI , ~ 

, 
-' , , 

\ , 1 , , \ 1 \ 
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f 1 
, , 1 1 
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1 , , , 
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~ JI JI ~ 1 \ \ 

; • 1 

Figure 6.10: The different node structures used for the standard (top-Ieft) , list (bottom­
left) and bst-trie (right) when the order of appearance of the characters is 3, 5, 4, 1, 2 and 
6. The dashed arrows represent the pointers to funher levels of the trie. 
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6.6.3 list-tries 

In the list-trie of de la Briandais (1959), the cost of branching to a char acter a is just 

the index of a is the permutation {Iu. For every no de u, for which Au = A, {Iu is 

distributed as the sequence (in order) of first appearance of characters in an infinite 

string generated by the source. This fuIly describes the distribution of Z. That is, 

we have Zi is the index of i in {I, and Z = ZK, where K is uniform in {1, ... , dl. 
Observe that when IAul = 1, we have Z = 1. 

Theorem 6.7. Let Hn,b be the weighted height of a list-trie on n sequences. Let Z be 

as described above. Then, Hn,b '"'" Cb log n in probability, as n --t 00, where 

{ 
cP(a, t) } 

Cb = sup a + 1 Q(b 1) , 
Q,t>O - og + 

and cP(·, .) is the logarithmic profile of the trie weighted with Z. 

The theorem explains and characterizes the first term of the asymptotic expansion 

of the height for aIl distributions Pl, ... ,Pd for d < 00. For general distributions, it 

seems difficult to obtain a ciosed form for the height. However, Z is a non uniform 

random draw of an element of {1, ... , dl, and maybe there is an other way to see the 

random variable that would lead to the a better description of cP(a, t) and Cb. We 

shaIl obtain more concrete results for specifie example. 

Example: symmetric list-tries. In this case, for aIl i, we have Pi = l/d and Zi is 

uniform in {1, ... ,d}. Therefore, for any À, Ji- E IR., 

A(,I, l') = logE [eÀZ
] + l' log d = log (t, e;À) + (1' - 1) logd. 

For x E [1, dl, there exists À = À(x) such that 

x _ _8 A_(:,-À.;...;.' Ji-~) 1 

- 8À (À(x),l) 

Then, we have 

",d iÀ· 
wi=l e 

{ 

Àx - log (2::~=1 eiÀ
) + log d 

A*(x,y)= 00 
if x E [1, dl, Y = log d 

otherwise. 

(6.37) 
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As for ordinary tries, in the range of interest, 

,;,( _1_)=1_ '( 1 d) A(>.(alogd),l) 
'1' a, logd a/\ a og + logd ' (6.38) 

where >.(.) is defined in (6.37). In essence, cjJ(a, t) is a function of a only. And we now 

write cjJ(a) = cjJ(a, t) and A(>') = A(À, 1). By Theorern 6.7, looking for the constant 

Cb boils down to finding ao such that 

8~~a) 10=00 = logQ(b + 1) = -blogd, 

and for this aa, we have 

(6.39) 

In other words, we have 

8cjJ(a) 1 = 
8a 0

0 

_>'( 1 d)- 8>.(a log d) 1 _1_. 8A(>.(alog d)) 1 
ao og a 8 + 1 d 8 a 00 og a 0 0 

= ->.(aologd) _ a 8>.(a log d) 1 + _1_. 8A(>') 1 . 8>.(a log d) 1 

8a 00 log d 8>' À(Oo logd) 8a 0 0 

= ->.(ao log d), 

by (6.37), and hence >.(aologd) = blogd. Renee, by (6.38) and (6.39), 

1 A(blogd) 
Cb = -- + ----'-----r~ 

b log d b log2 d 

Observe that this characterizes fully Cb and holds for any syrnrnetric weighted trie. 

For our case of syrnrnetric list-tries, we obtain 

log (2::=1 dln
) d 

Cb = Cb (d) = 2 "" -1 d' . blog d og 

for large d. Sorne nurnerical values can be found in Table 6.2. 

6.6.4 Ternary search trees 

In the ternary search trees introduced by Bentley and Sedgewick (1997), the irnple­

rnentation of a no de uses a binary search tree. Rence, the cost of branching to a 
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b 1 2 3 10 50 100 

cb(2) 3.28661. .. 2.67491. .. 2.52441. .. 2.44289 ... 2.44215 ... 2.44206 ... 
cb(3) 3.12515 ... 2.86870 ... 2.83088 ... 2.82022 ... 2.81969 ... 2.81963 ... 

cb(10) 4.92852 ... 4.90959 ... 4.90850 ... 4.90723 ... 4.90680 ... 4.90675 ... 

Table 6.2: Some numerical values of Cb = cb(d) characterizing the height of symmetric 
list-tries. 

character i E A at anode u is the depth of i in the binary search built from the (non­

uniform) random permutation O'u. When the node u is of type Tu = (1, ... ,1), the 

permutation O'u is distributed as the ordered list of first appearances of characters in 

an infinite string generated by the memoryless source with distribution {Pl, ... ,Pd}, 

Let Zi be distributed as the depth of i in the binary search tree built from 0'. 

Then, Z is distributed as (Zl, ... , Zd) and Z = ZK, where K is uniform in {l, ... , dl. 
When u is a non-branching node, Le., Tu is a permutation of (1,0, ... ,0), then the 

depth of the unique child is always one: zs = 1 almost surely. By Theorem 6.1, we 

obtain: 

Theorem 6.8. Let Hn,b be the weighted height of a b- TST on n sequences. Let 0' 

be a permutation of {l, ... , d} built by sampling with replacement from {l, ... , d} 

according to Pl, ... , Pd. Let Z be the depth of a random node in a binary search tree 

built from 0'. Let 

{ 
4>(Ci,t)} 

Cb = sup Ci + l Q(b ) , 
a,t>O - og + 1 

where 4>(Ci,t) is the logarithmic profile defined in (6.10). Then, Hn,b f"V cblogn in 

probability, as n ---+ 00. 

The random variable Z is complicated to describe in other terms for general dis­

tributions Pl, ... ,Pd. Sorne parameters like the average value and the variance of Zi, 

1 ::; i ::; d, have been studied by Clément et al. (1998, 2001) and Archibald and 

Clément (2006). For this case, describing Z and 4>(Ci, t) in a way that would lead to 

Cb seems way more difficult than for list-tries. 
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Figure 6.11: A standart trie and the corresponding TST. 

Example: Symmetric TS~. We assume here that Pl = P2 = ... = Pd. In this case, 

the permutation a is just a uniform random permutation. Hence, Zi is the depth of 

the key i in a random binary search tree. Observe that unlike in the case of list-tries, 

Zi, 1 :S i :S d, do not have the same distribution. This is easily seen, since, for 

instance as d ~ 00, EZI rv log d whereas EZLd/2J rv 2 log d. However, we are only 

interested in the distribution of Z, that is, the depth of a uniform random node. This 

distribution is known exactly for random binary search trees, and is due to Brown 

and Shubert (1984): 

2k-1 d [dl 
p {Z = k} = d. d! L . ' 

j=k J 
(6.40) 

where [:] denotes the Stirli~g number of the first kind with parameter n and k, that 

is the number of ways to divide n objects into k nonempty cycles (see Sedgewick and 

Flajolet, 1996; Mahmoud, 1992b). Using (6.40), it is possible to compute the cumulant 

generating function A, and cjJ(a, t). Numerical values for the constant Cb = cb(d) such 

that Rn rv Cb log n in probability as n ~ 00 are given in Table 6.3. Observe that the 

when d = 2, TST are equivalent to list-tries. In general, using the computations we 
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did in the case of symmetric list-tries, 

c = c(d) = + log '" '" li' 1 1 (d d 2
i
-

1 [dl ,) 
logd log2 d 7=t f=: d· d! j 

1 1 ( (2d) . (2d + 1) ... (3d - 1) - d!) 
= --+--log 

logd log2 d d!(2d - 1) 
d(3 log 3 - 2 log 2) 

'" log2 d 

(see, e.g., Mahmoud, 1992b, p. 79). Numerical values for the constant c = c(d) are 

given in Table 6.3. 

b 1 

3.28661. .. 
2.90777 ... 

2 

2.67491. .. 
2.66010 ... 

3 

2.52441. .. 
2.65121. .. 

10 

2.44289 .. . 
2.65118 .. . 

50 100 

2.44215. . . 2.44206 .. . 
2.65117. . . 2.65116 .. . 

Table 6.3: Some numerical values of Cb = cb(d) characterizing the height of symmetric 
ternary search trees. 





Chapter 7 

Conclusion: Shedding light on trees 

This thesis provides generalizations of the theorems about the asymptotic behavior 

of the heights of random trees. In Chapter 5, we showed 

• that the study of heights of random trees benefits from the introduction of 

weighted versions of the standard branching pro cess along the lines first sug­

gested by Biggins (1977), and 

• that, if there is an upper bound on the height, only the subtrees that contain a 

large number of items contribute significantly to the height. 

This permits us to treat many kinds of trees using the same theorem (Theorem 5.1). 

AIso, several new applications follow. In Chapter 6, we introduce an analogous 

weighted version of random tries. We proved that the height can be explained by 

• the contribution of the core of the tree that behaves as weighted random split 

trees, and 

• an additional term coming from long spaghetti-like trees. 

These terms have comparable asymptotic growth, and in general, neither is negligible. 

The main result of Chapter 6, Theorem 6.1, allows us to devise new proofs for the 

heights of tries. New applications include the characterization of the asymptotic 

167 
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heights of the trees of de la Briandais (1959) and the ternary search tree of Bentley 

and Sedgewick (1997). 

The analysis exhibits a strong link between random trees and random tries. The 

link lies in the core of the trees. We shaH explain it using a concrete example. Consider 

n sequences of characters generated by a memoryless source. The expected cores of 

the digital search tree (Chapter 5) and trie (Chapter 6) built from such sequences 

are similar. The trie differs in that the trees hanging down the core have height of 

order 8(10gn). The heights of both trees may be explained by the cane of shadow 

cast by the logarithmic profile fjJ(., .) describing the core. In the case of digital search 

tree, the bulb should be located far away in the direction (0,0,1). In the case of tries, 

one should put the light at (-'Yb, -Pb, 1) . x, for sorne specifie positive 'Yb and Pb, and 

x - 00, So, in sorne sense, digital search trees and tries, appear as the same object 

seen from two different angles. 

EXTENSIONS AND OPEN PROBLEMS. AH the trees in the thesis have bounded degree, 

or are reduced to bounded degree. The theorems can be extended to the unbounded 

case, using the point process approach of Biggins (1995, 1996). Also, we only charac­

terized the first order terms in the asymptotic expansion of the height. It would be 

interesting to see how general a theorem one can obtain about asymptotics that are 

precise to 0(1). We think in'particular of the case of increasing trees (Bergeron et al., 

1992; Broutin et al., 2006; Drmota, 2006) that may benefit from the new approach of 

Addario-Berry (2006) and Addario-Berry and Reed (2006). 
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