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Abstract

In this thesis we develop various multitarget tracking algorithms that can process measure-

ments from single or multiple sensors. The filters are derived by approximate application

of the recursive Bayes filter within the random finite set framework, which is used to model

the multitarget state and observations. The contributions of the thesis can be organized

into three main categories.

To provide a motivating application for the algorithms we develop, we first study the

problem of radio frequency tomography. We empirically validate a radio frequency tomog-

raphy measurement model when multiple targets are present within the sensor network.

We validate models for both indoor and outdoor environments. These models are then

used to perform multitarget tracking using various Monte Carlo filters on data gathered

from field deployments of radio frequency sensor networks.

Second, we develop auxiliary particle filter implementations of the Probability Hy-

pothesis Density filter and Cardinalized Probability Hypothesis Density filter when the

measurement model has a specific form, namely the superpositional sensor model. We

also derive Multi-Bernoulli filter and Hybrid Multi-Bernoulli Cardinalized Probability Hy-

pothesis Density filter for superpositional sensors and develop their auxiliary particle filter

implementations. These filters are evaluated for multitarget tracking using simulated radio

frequency tomography and acoustic sensor network models.

Third, we derive update equations for the General Multisensor Cardinalized Probability

Hypothesis Density filter when the measurement model has a specific form, namely the

standard sensor model. To overcome the combinatorial computational complexity of this

filter we develop a Gaussian mixture model-based greedy algorithm to implement the filter

in a computationally tractable manner. The filter is evaluated using simulated multisensor

measurements.
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Sommaire

Dans cette thèse nous développons différents algorithmes de pistage multicible qui peuvent

traiter les mesures d’un ou plusieurs capteurs. Les filtres sont obtenus par application

approximative du filtre de Bayes récursif dans le contexte d’ensemble fini aléatoire, contexte

qui est utilisé pour modélisé les états et les observations. Les contributions de la thèse

peuvent être organisées en trois parties.

Pour fournir une application motivante des algorithmes que nous développons, nous

étudions d’abord le problème de tomographie à radiofréquence. Nous validons empirique-

ment un modèle de mesure pour tomographie à radiofréquence lorsque plusieurs cibles sont

présentes à l’intérieur du réseau de capteurs. Nous validons des modèles pour des environ-

nements à la fois intérieurs et extérieurs. Ces modèles sont ensuite utilisés pour réaliser du

pistage multicible utilisant différents filtres de Monte Carlo sur les données capturées lors

de déploiements sur le terrain de réseaux de capteurs sans-fil.

En second lieu, nous développons des implémentations de filtres particulaires auxiliaires

pour le filtre “Probability Hypothesis Density” et le filtre “Cardinalized Probability Hy-

pothesis Density” lorsque le modèle de mesure possède une forme particulière, à savoir le

modèle superposé de capteur. Nous obtenons aussi un filtre multi-Bernouilli et un filtre

“Hybrid Multi-Bernoulli Cardinalized Probability Hypothesis Density” pour les capteurs

de modèle superposé et développons leurs implémentations de filtres particulaires auxili-

aires. Ces filtres sont évalués à des fins de pistage multicible en utilisant de la tomographie

à radiofréquence simulée et plusieurs modèles acoustiques de réseaux de capteurs.

En troisième lieu, nous dérivons des équations de mise-à-jour pour le filtre “General

Multisensor Cardinalized Probability Hypothesis Density” lorsque le modèle de mesure

possède une forme particulière, à savoir le modèle standard de capteur. Pour surmonter la

complexité combinatoire de ce filtre, nous développons un algorithme glouton avec mélange

de gaussiennes qui est effectivement traitable en temps fini. Le filtre est évalué en utilisant

des mesures simulées provenant de différents capteurs.
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Chapter 1

Introduction

Recent advances in sensing capabilities and electronics have led to variety of cheap, easy-

to-deploy sensors which can gather data about a wide range of quantities. However, data

gathered by these sensors is often imperfect and corrupted by noise. Efficiently extract-

ing useful information from noisy sensor network data coming from multiple sources, in a

timely manner, requires non-trivial processing techniques. Bayesian inference is a principled

approach to processing such data. But the Bayesian inference process is often computa-

tionally challenging. For practical feasibility, we require efficient, computationally tractable

and noise-robust algorithms to process sensor network data.

The goal of this thesis is to advance the state-of-the-art multitarget tracking algorithms

for processing multisensor data. Towards this goal we utilize the recently developed random

finite set framework which provides a mathematically elegant representation of system

variables and a unified approach for state estimation.

1.1 Motivation

1.1.1 Radio frequency tomography

Radio-frequency (RF) tomography is the process of monitoring an area to detect mobile

targets based on the additional attenuation and fluctuations they cause in wireless trans-

missions [5]. RF tomography systems have several desirable aspects. Wireless networks of

radio-frequency sensors can be easily deployed and are relatively inexpensive. Compared

to the other available alternatives such as infrared and video, RF measurements have the
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advantage that they can penetrate walls and other non-metallic obstacles. RF sensor net-

works can be used for military surveillance, search-and-rescue operations, through-the-wall

imaging and in healthcare environments.

In previous work, tracking using radio-frequency tomography principles has been pri-

marily limited to a single target [5–8]. Most practical applications where radio-frequency

tomography is used require tracking of multiple targets, and the number of targets is pos-

sibly unknown and time varying. The existing RF tomography systems have limitations

such as restricted sensor network deployment options, extensive training to learn model

parameters, and difficulty in tracking multiple targets. To address these issues, in this

thesis we develop RF tomography measurement models for multiple targets and validate

them by collecting experimental sensor network data. The sensor networks we study can be

deployed in both outdoor and indoor locations. The measurement model parameters can

be learned using a small amount of training data and are relatively robust across different

locations. We also implement various Monte Carlo filters that can perform multitarget

tracking in real-time.

1.1.2 Random finite set representation

Traditionally in the multitarget tracking literature, the unknown multitarget states and

the observed sensor measurements are modelled as realisations of random vectors. This

random vector representation is inefficient when the number of targets and/or the number

of measurements are unknown and change over time. A naive solution to this problem is

to process vectors of much higher dimensions than required but it comes at the cost of

increased algorithmic and computational complexity.

An elegant solution to this problem is the random finite set (RFS) representation [9]

which models the multitarget states and sensor measurements as realisations of random

finite sets. This modelling inherently allows uncertainty in the number of elements of the

set and the specific values they take. Several statistical filters can be derived based on

the random finite set representation. These operate in the single target state space and

are computationally efficient. In this thesis, we develop and implement several multitarget

tracking filters for different measurement models using the RFS representation.
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1.1.3 Filters for superpositional sensors

The measurements gathered by radio-frequency tomographic tracking systems [4], acoustic

sensor networks [10], and antenna arrays [11–13] have a specific likelihood form. We refer to

this specific likelihood model as the superpositional sensor model. Superpositional sensors

have the property that the contribution to a measurement due to multiple targets is equal

to the sum of contributions to that measurement from each of the targets when present

alone. The contributions of individual targets can potentially be a nonlinear function of

the target state. Many of the existing approaches that process superpositional sensors

transform the measurements into alternate forms which can lead to loss of information. To

accurately process these measurements we need to develop algorithms that can incorporate

the specific observation model of superpositional sensors.

The random finite set based filters such as the probability hypothesis density (PHD) filter

and the cardinalized probability hypothesis density (CPHD) filter [14] have been derived for

superpositional sensors but they are not practical because of their analytical intractability.

Closed form Gaussian mixture model-based implementations of these filters have been

proposed [15] but they suffer from high computational complexity and are limited to linear-

Gaussian models. In this thesis we derive approximate but computationally tractable

random finite set based filters that take into account the specific observation model of

superpositional sensors. We also develop particle filter implementations of these filters and

use them to perform multitarget tracking using simulated acoustic sensor networks and

radio-frequency sensor networks.

1.1.4 Filters for standard sensors

Another measurement model which has been frequently studied in the literature is the

standard sensor model. Measurements gathered by radar systems [16], sonar systems [17],

and range-and-bearing sensors [18] can be modelled using the standard sensor model. In

contrast to the superpositional sensor model, a sensor following the standard sensor model

gathers multiple measurements where each measurement is either associated with a target

or is a clutter measurement. Though a significant amount of multitarget tracking research

based on random finite set representation has focused on the standard sensor model, most of

it is limited to the case where a single sensor is making observations. Given the widespread

presence of sensor networks where using multiple sensors (possibly unreliable and of low-
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observability) can potentially provide more accurate tracking information, there is a need

for robust algorithms that can process these sensor measurements in a holistic manner.

Several algorithms have been proposed in the literature to process multisensor mea-

surements [19–21] but they have drawbacks restricting their applicability. The drawbacks

include (i) sensor order dependence - the tracking performance depends on the order in

which sensors are processed and the performance can severely deteriorate if unreliable sen-

sors are processed last; (ii) numerical instability; and (iii) computational intractability

- the multisensor multitarget tracking problem is inherently combinatorial in nature and

efficient filter implementations are required for practical usability. To address these is-

sues, in this thesis we derive a general multisensor CPHD filter for standard sensors. To

overcome its combinatorial complexity we propose a greedy implementation which (i) has

significantly reduced dependence on the order in which sensors are processed; (ii) has a

numerically stable implementation; and (iii) is computationally feasible with complexity

increasing linearly with the number of sensors.

1.2 Thesis organization and contributions

We now detail the organization of the thesis into chapters and summarize the major tech-

nical contributions:

� In Chapter 2 we provide background material required for the thesis. Specifically, we

state the multitarget tracking problem statement and provide a brief discussion of

the optimal multitarget Bayes filter. We introduce the concept of random finite sets,

their related statistics, and some common examples of random finite sets. We also

discuss the standard sensor model and the superpositional sensor model. An exten-

sive literature review discussing the state-of-the-art multitarget multisensor tracking

algorithms is also provided.

� In Chapter 3 we propose and validate empirical measurement models when multiple

targets are present for the radio-frequency passive localization sensor network. Models

are validated for both indoor and outdoor environments. We collect measurements

when multiple targets are present within the radio frequency sensor network and

process them offline to successfully demonstrate tracking of up to four targets in

outdoor environments and up to three targets in indoor environments.



1 Introduction 5

� In Chapter 4 we propose auxiliary particle filter based implementations of the PHD

and CPHD filters for superpositional sensors. These filter implementations are used

to estimate the number and location of targets in a simulated radio frequency sensor

network and a simulated acoustic sensor network.

� In Chapter 5 we derive update equations for the approximate multi-Bernoulli filter

and approximate hybrid multi-Bernoulli CPHD filter for superpositional sensors. We

also propose auxiliary particle filter based implementations of these approximate fil-

ters. Successful tracking of multiple time varying number of targets is demonstrated

using simulated radio frequency sensor network measurements and simulated acoustic

sensor network measurements.

� In Chapter 6 we derive update equations for the general multisensor CPHD filter for

standard sensors. Since the exact update equations have combinatorial computational

complexity, we propose a greedy algorithm for implementing the general multisensor

PHD and CPHD filters using Gaussian mixture models. We use simulated data to

verify the feasibility of the proposed algorithms and compare them with other ap-

proximate multisensor algorithms. An unscented Kalman filter based implementation

of the greedy algorithm is also proposed and verified using simulated data.

� In Chapter 7 we provide conclusions of this thesis. We also identify future research

directions to continue and improve on the algorithms developed in this thesis.

Published work

The following publications have resulted from the research work reported in this thesis.

The work has been conducted in collaboration with Prof. Mark Coates, Frederic Thouin,

Yunpeng Li, Yan Zeng, Prof. Bo Yang, Ronald Mahler, Prof. Michael Rabbat and Stephane

Blouin.

� Chapter 3

⋆ S. Nannuru, Y. Li, Y. Zeng, M. Coates, and B. Yang, “Radio frequency tomog-

raphy for passive indoor multi-target tracking”, IEEE Transactions on Mobile

Computing., vol. 12, pp. 2322-2333, Dec. 2013 [22].
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Experimental data collection was done by Yunpeng Li, Yan Zeng and I with

the help of other students at McGill University and by students at Beijing Uni-

versity of Posts and Telecommunications under the direction of Prof. Bo Yang.

Yunpeng Li and Yan Zeng are additionally responsible for verification of mea-

surement models using single link data and single target tracking. My role was

to implement different multitarget tracking algorithms and analyze them using

the collected field data.

⋆ S. Nannuru, Y. Li, M. Coates, and B. Yang, “Multi-target device-free track-

ing using radio frequency tomography”, in Proc. Int. Conf. Intelligent Sen-

sors, Sensor Networks and Information Processing, Adelaide, Australia, Dec.

2011 [23].

Yunpeng Li is responsible for measurement model verification using single link

data, providing help with experimental data collection at McGill University and

single target tracking. Prof. Bo Yang directed students at Beijing University of

Posts and Telecommunications for the data collection process. My role was to

implement different multitarget tracking algorithms and analyze them using the

collected field data.

� Chapter 4

⋆ F. Thouin, S. Nannuru, and M. Coates, “Multi-target tracking for measurement

models with additive contributions”, in Proc. Int. Conf. Information Fusion,

Chicago, IL, U.S.A., July 2011 [4].

Prof. Mark Coates derived the approximate PHD filter equations. Frederic

Thouin is responsible for developing its particle implementation. My role was

to implement the MCMC filter for comparison with the proposed PHD filter.

⋆ S. Nannuru, M. Coates, and R. Mahler, “Computationally-tractable approx-

imate PHD and CPHD filters for superpositional sensors”, IEEE Journal of

Selected Topics in Signal Processing, vol. 7, pp. 410-420, Jun. 2013 [24].

Ronald Mahler is responsible for derivation of the CPHD filter equations. I am

responsible for developing particle implementations of the different filters and

performing numerical studies.
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� Chapter 5

⋆ S. Nannuru and M. Coates, “Multi-Bernoulli filter for superpositional sensors”,

in Proc. Int. Conf. Information Fusion, Istanbul, Turkey, Jul. 2013 [25].

⋆ S. Nannuru and M. Coates, “Particle filter implementation of the multi-Bernoulli

filter for superpositional sensors”, in Proc. Int. Workshop on Computational

Advances in Multi-Sensor Adaptive Processing, Saint Martin, Dec. 2013 [26].

⋆ S. Nannuru and M. Coates, “Hybrid multi-Bernoulli CPHD filter for superpo-

sitional sensors”, Proc. SPIE Int. Conf. Signal Processing, Sensor Fusion and

Target Recognition, Baltimore, MD, U.S.A., May 2014 [27].

⋆ S. Nannuru and M. Coates, “Hybrid multi-Bernoulli and CPHD filters for super-

positional sensors”, accepted in IEEE Transactions on Aerospace and Electronic

Systems [28] (14 pages).

� Chapter 6

⋆ S. Nannuru, M. Coates, M. Rabbat, and S. Blouin, “General solution and ap-

proximate implementation of the multisensor multitarget CPHD filter”, Proc.

Int. Conf. Acoustics, Speech and Signal Processing, Brisbane, Australia, Apr.

2015 [29].

Prof. Michael Rabbat helped in developing the approximate filter implementa-

tion and provided technical feedback on numerical simulations. Stephane Blouin

provided editorial feedback on the manuscript. I am responsible for developing

approximate implementation of the filter and performing numerical simulations.

The following submission is currently under the review process.

� S. Nannuru, S. Blouin, M. Coates, and M. Rabbat, “Multisensor CPHD filter”, sub-

mitted to IEEE Transactions on Aerospace and Electronic Systems [30] (17 pages,

submission reference number: TAES-201500265, date of submission: April 13, 2015).

The majority of the content of Chapter 6 is based on this paper. Stephane Blouin

is responsible for providing the sea-trial data set and for editorial feedback on the

manuscript. Prof. Michael Rabbat helped in developing the approximate filter imple-

mentation and provided technical feedback on derivations and numerical simulations.
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I am responsible for deriving filter equations, developing approximate filter imple-

mentation, and performing numerical studies.

1.3 Scope of the thesis

The problem of multitarget multisensor tracking encompasses a broad range of topics and

techniques. In this section we will briefly discuss the scope of this thesis. The multisensor

multitarget tracking system under investigation is a centralized system. We assume that

observations from all the sensors are aggregated at a central computer which performs the

task of inference. This should be contrasted with decentralized tracking systems where the

individual nodes are capable of both collecting and processing the data.

The radio frequency tomography measurement models we develop are empirical models.

Study of radio frequency wave propagation and modelling using principles of physics is

beyond the scope of this thesis.

A significant amount of past literature has focused on multitarget tracking techniques

which simultaneously solve the problem of tracking and data association. Data association

refers to the problem of associating targets with measurements when standard sensors are

used. Examples of such filters are the joint probabilistic data association (JPDA) filter [31]

and the multiple hypothesis tracking (MHT) filter [32]. In this thesis we do not explicitly

consider the problem of data association and the focus is on developing algorithms which

do not require data association step.

In the thesis we consider linear-Gaussian target dynamics. We assume that each target

evolves independently, follows a Markov evolution model and does not interact with other

targets. Birth and death of targets is allowed but target spawning is not considered. Note

that though we restrict our study to linear-Gaussian target dynamics, several of the filters

we develop can be easily extended to account for non-linear non-Gaussian dynamics. Both

linear and non-linear sensor observation models are considered. For the standard sensors

we consider set-valued clutter noise and additive Gaussian noise when targets are detected.

For superpositional sensors we consider additive Gaussian noise.

The multitarget tracking algorithms studied and analyzed fall under the Bayesian fil-

tering paradigm. The knowledge about the system models is fused with the incoming

observations to update the multitarget state information using Bayes rule. The optimal

recursive Bayes filter in its original form is mathematically intractable in most cases of
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interest. Various parametric and non-parametric approximations of the Bayes filter are

considered. Filter implementations are constructed using Monte Carlo approximations or

Gaussian mixture model-based approximations.
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Chapter 2

Background and literature review

In this chapter we provide a brief background on the various concepts required in this thesis.

A detailed literature survey of the state-of-the-art in the multitarget multisensor tracking

research is also included. The organization of the chapter is as follows. In Section 2.1 we

describe the multitarget multisensor problem statement that we address in this thesis. An

introduction to random finite sets is given in Section 2.2. Examples of random finite sets are

given in Section 2.3. The superpositional sensor model and the standard sensor model are

discussed in Section 2.4. In Section 2.5 we provide prediction and update equations for the

recursive Bayes filter. In Section 2.6 we review some properties of Gaussian distributions

that will be used in this thesis. The metric used to compare different tracking algorithms is

provided in Section 2.7. Detailed literature reviews on radio-frequency tomography, filters

for standard sensors, and filters for superpositional sensors are provided in Sections 2.8,

2.9, and 2.10 respectively.

2.1 Multitarget tracking problem statement

We now specify the multisensor multitarget tracking problem. Let xk,i ∈ X be the state of

the ith target at time k. In most of the tracking literature X is chosen to be the Euclidean

space, X = Rnx , where nx is the dimension of the single target state. If nk ≥ 0 targets

are present at time k, the multitarget state can be either represented using a vector Xk =
[xk,1, . . .xk,nk

] or represented by a finite set Xk = {xk,1, . . .xk,nk
}, Xk ⊆ X . In this thesis we

mostly use the finite set representation and develop filters based on this representation. We

assume that each single target state evolves according to the Markovian transition function

2015/08/12
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tk+1∣k(xk+1,i∣xk,i). New targets can arrive and existing targets can disappear at each time

step. The survival probability of an existing target with state x at time k is denoted by

the function psv,k(x).
Multiple sensors make observations about the multiple targets present within the mon-

itored region. We discuss the specific form of the measurement model in later sections

of this chapter. Let the measurement at time step k be represented by the vector Zk

or the set Zk. The objective of the multitarget tracking problem is to form an esti-

mate X̂k or X̂k of the multitarget state at each time step k. This estimate is formed

using all the measurements up until time k which is denoted by Z1∶k = {Z1, Z2, . . . , Zk} or

Z1∶k = {Z1,Z2, . . . ,Zk}. More generally, we would like to estimate the posterior multitarget

state distribution fk∣k(Xk orXk∣Z1∶k orZ1∶k).

2.2 Random finite sets

Random sets are an extension of the concept of random variables and random vectors.

While random vectors are of a predefined dimension and have an ordering of their elements,

random sets can have uncertainty in the set dimension and there is no preferred ordering

of the elements of the set. We now give a very brief formal introduction to random finite

sets. For a detailed mathematical treatment of random finite sets readers are advised to

refer to the literature [33–36].

Let (Ω, σ(Ω), P ) be a probability space where Ω is the sample space, σ(Ω) is the σ-

algebra of subsets of Ω, and P is a measure defined over σ(Ω). Let E be a locally compact

Hausdorff separable space and let F(E) be the collection of finite subsets of E. A random

finite set Ξ on E is defined as a measurable mapping

Ξ ∶ Ω→ F(E). (2.1)

This mapping induces a probability law for Ξ that can be equivalently described us-

ing a probability distribution function PΞ or a belief mass function βΞ. The probability

distribution function PΞ(T ) is defined over the Borel subsets T ⊆ F(E). The belief mass

function βΞ(S) is defined over the closed subsets S ⊆ E. When it exists, a probability den-

sity function pΞ(W ) for the random finite set Ξ is given by the Radon-Nikodym derivative
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of its probability distribution function with respect to some dominating measure μ1

pΞ(W ) = dPΞ

dμ
(W ). (2.2)

Alternatively, a density function fΞ(W ) can also be defined using the set derivative2 of the

belief mass function as

fΞ(W ) = dβΞ

dW
(∅). (2.3)

where ∅ denotes the empty set. In [36] it has been shown that these two densities are

equivalent when units are ignored in the set derivative based density fΞ(W ). We also

refer to this probability density function fΞ(W ) as the multitarget density function or

the multitarget distribution function. The development of random finite set theory in

the tracking literature has focused on using the belief mass function formulation and the

corresponding finite set statistics (FISST). The FISST formulation allows an easy approach

for analysis and manipulation of multitarget densities and other statistical descriptors of

random finite sets without going into a detailed measure-theoretic description.

2.2.1 Set integral

Let Ξ be a random finite set on the space X and fΞ(W ) be its probability density function

where W ⊆ X . For a closed set S the integral (set integral) of fΞ(W ) is defined as

∫
S
fΞ(W )δW def= fΞ(∅) +

∞

∑
n=1

1

n! ∫Sn
fΞ({w1, . . . ,wn})dw1 . . . dwn (2.4)

= βΞ(S) , (2.5)

where Sn = S × S × . . . n times × S. The notation δW denotes set integration. Since fΞ(W )
is a probability density function it must integrate to one

∫
X
fΞ(W )δW def= fΞ(∅) +

∞

∑
n=1

1

n! ∫Xn
fΞ({w1, . . . ,wn})dw1 . . . dwn (2.6)

= 1 (2.7)

1For specific details about the measure μ for Borel subsets of F(E) please refer to [36].
2For definition and discussion on set derivatives please refer to [34, 35].
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where X n def= X × . . . n times × X .

Since the realizations of the random finite set Ξ are sets with variable number of ele-

ments, a cardinality distribution function can be associated with it. The cardinality distri-

bution function πΞ(n) of the RFS Ξ which has the multitarget density function fΞ(W ) is

given as

πΞ(n) = Prob(∣Ξ∣ = n) (2.8)

= ∫
∣W ∣=n

fΞ(W )δW (2.9)

= 1

n! ∫Xn
fΞ({w1, . . . ,wn})dw1 . . . dwn. (2.10)

Also let MΞ(y) be the probability generating function (PGF) of the cardinality random

variable ∣Ξ∣ and is given by

MΞ(y) =
∞

∑
n=0

yn πΞ(n). (2.11)

2.2.2 Probability generating functional

Similar to the probability generating function defined for a random variable, we can asso-

ciate an integral transform with the random finite set. Let u(w) be a function mapping

the state space X to [0,1]. The probability generating functional (PGFL) of an RFS Ξ

with multitarget density function fΞ(W ) is given as

GΞ[u] = ∫
X
uW fΞ(W )δW , (2.12)

where uW def= ∏
w∈W

u(w) and u∅ = 1. (2.13)

The PGFL is a functional and is a mapping from functions to reals. The PGFL charac-

terization of a random finite set is useful for calculating other statistical properties of the

random finite set and for deriving filter update equations.

2.2.3 Probability hypothesis density

Random variables are commonly characterized using their mean, variance and other higher

order moments. We would like to associate similar statistical quantities with the random
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finite set. For random variables, moments are defined using either summation or integra-

tion. Since the addition operation is not naturally defined on sets, defining the expectation

of an RFS in the traditional manner is not possible. An important and useful statistic of

the RFS which can be defined using a modified definition of the first moment [34] is the

probability hypothesis density (PHD) function. The PHD of an RFS Ξ with probability

density function fΞ(W ) is:

DΞ(x) = ∫
X
fΞ({x} ∪W )δW. (2.14)

Intuitively the value of the PHD function at x ∈ X is equal to the cumulative density of

all the sets which include the element x. Since the PHD function is defined over the single

element space X , it provides a compact characterization of the random finite set. When

the multitarget state is modelled as a random finite set, the peaks in its PHD function

correspond to the unknown target states. The PHD has the property that its integration

over the space X is equal to the expected cardinality

∫
X
DΞ(x)dx = E(∣Ξ∣) =

∞

∑
n=0

nπΞ(n). (2.15)

The second factorial moment can be similarly defined as

DΞ({x1,x2}) = ∫
X
fΞ({x1,x2} ∪W )δW. (2.16)

2.2.4 Change of variables formula

Let ζ be a function mapping finite dimensional sets to vectors in space Y . For a real-valued

function T and a multitarget distribution fΞ(X) we have the following change of variables

formula [33, Prop. 4, p. 180]

∫
X
T (ζ(W )) fΞ(W )δW = ∫

Y
T (y)QΞ(y)dy (2.17)

where QΞ(y) is the probability distribution of the random vector ζ(Ξ) induced by the

change of variables from the set W to the vector y, y = ζ(W ). Note that the left hand

side of (2.17) is a set integral whereas the right hand side is an ordinary integral. We

frequently use the above change of variables formula to convert the intractable set integrals
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into simpler ordinary integrals.

2.2.5 Campbell’s theorem

Let fΞ(X) be a multitarget density corresponding to the random finite set Ξ. Denote

the PHD function and the second factorial moment density function of Ξ by DΞ(x) and

DΞ({x1,x2}) respectively. Let g(x) be a real vector-valued function defined over the space

X . Now consider the vector ξ defined as ξ = ∑
x∈Ξ

g(x). Since Ξ is a random finite set,

the vector ξ is a random vector. Then according to the quadratic version of Campbell’s

theorem [37,38]

mξ = E[(ξ)] = ∫
X
g(x)DΞ(x)dx (2.18)

Σξ = E[(ξ −mξ)(ξ −mξ)T ] (2.19)

= ∫
X
g(x) g(x)TDΞ(x)dx + ∫

X
∫
X
g(x1) g(x2)T D̃Ξ({x1,x2})dx1dx2 , (2.20)

where D̃Ξ({x1,x2}) def=DΞ({x1,x2}) −DΞ(x1)DΞ(x2) (2.21)

Thus the mean mξ and covariance matrix Σξ, which represent the first and second order

statistics of the random vector ξ, depend on the PHD function and the second factorial

moment density function of the corresponding random set Ξ.

2.2.6 Union of mutually independent random finite sets

Let the random finite set Ξ be union of two statistically independent random finite sets Ξ1

and Ξ2 given as Ξ = Ξ1∪Ξ2. If fΞ1(W ) and fΞ1(W ) are multitarget densities of the random

finite sets Ξ1 and Ξ2, then the multitarget density fΞ(W ) of Ξ is given by the following

convolution relation [34],

fΞ(W ) = ∑
Y ⊆W

fΞ1(Y )fΞ2(W − Y ). (2.22)

The PGFLs and the PHDs of the corresponding random finite sets are related as

GΞ[u] = GΞ1[u]GΞ2[u] (2.23)

DΞ(x) =DΞ1(x) +DΞ2(x). (2.24)
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The above result can be easily proved using the properties of probability generating func-

tional and the basic rules for functional derivatives (Chap. 11, [34]). We also have the

result

D̃Ξ({x1,x2}) = D̃Ξ1({x1,x2}) + D̃Ξ2({x1,x2}) (2.25)

where D̃Ξ({x1,x2}) def=DΞ({x1,x2}) −DΞ(x1)DΞ(x2). (2.26)

2.3 Examples of random finite sets

2.3.1 Poisson RFS

A Poisson random finite set can be completely characterized by its probability hypothesis

density function DΞ(x). Let the mean cardinality of the Poisson RFS be μ, then

μ = ∫
X
DΞ(x)dx. (2.27)

The multitarget distribution of the Poisson random finite set is given by

fΞ(W ) = e−μ ∏
x∈W

DΞ(x). (2.28)

The cardinality distribution of the Poisson random finite set is Poisson with mean μ.

Samples of a Poisson RFS can be generated by first sampling the cardinality of the set

and then sampling elements of the set from the normalized PHD function sΞ(x) = DΞ(x)
μ .

The probability generating functional of a Poisson RFS is

GΞ[u] = e⟨DΞ,u⟩−μ , (2.29)

where for functions a(x) and b(x) the notation ⟨a, b⟩ is defined as

⟨a, b⟩ def= ∫
X
a(x) b(x)dx. (2.30)

The second factorial moment of a Poisson RFS is

DΞ({x1,x2}) =DΞ(x1)DΞ(x2). (2.31)
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2.3.2 Independent and identically distributed cluster RFS

An independent and identically distributed cluster (IIDC) RFS can be completely specified

using its cardinality distribution πΞ(n) and its PHD function DΞ(x). Let the mean car-

dinality of the IIDC RFS be μ and the normalized PHD function be sΞ(x) = DΞ(x)
μ . The

probability density function of an IIDC RFS is given by

fΞ(W ) = ∣W ∣!πΞ(∣W ∣) ∏
x∈W

sΞ(x). (2.32)

The IIDC RFS is a generalization of the Poisson RFS where the cardinality distribution is

allowed to be arbitrary. If MΞ(y) is the PGF of the cardinality distribution πΞ(n), then
the PGFL of an IIDC RFS is given as

GΞ[u] =MΞ(⟨sΞ, u⟩). (2.33)

The second factorial moment of an IIDC RFS can be calculated to be

DΞ({x1,x2}) = asΞ(x1) sΞ(x2) , (2.34)

where

a =
∞

∑
n=0

n(n − 1)πΞ(n). (2.35)

2.3.3 Bernoulli RFS

A Bernoulli random finite set Ξ can either be an empty set with probability 1 − r or a

singleton set {x} with probability r. The singleton element x when present is drawn from

the density function sΞ(x). The probability density function of a Bernoulli RFS is

fΞ(W ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 − r, if W = ∅

r sΞ(x), if W = {x}

0 otherwise.

(2.36)
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The probability generating functional of a Bernoulli RFS is given by

GΞ[u] = 1 − r + r ⟨sΞ, u⟩. (2.37)

The probability hypothesis density of a Bernoulli RFS is given by

DΞ(x) = r sΞ(x). (2.38)

Since a Bernoulli RFS can only be an empty set or a singleton set, its second and higher

order factorial moments are zero.

2.3.4 Multi-Bernoulli RFS

A multi-Bernoulli RFS Ξ is defined as the union of N independent Bernoulli random finite

sets, as Ξ = Ξ1∪Ξ2∪⋯∪ΞN , where the random finite sets Ξi are Bernoulli random finite sets

with parameters given by {ri, si(x)} for i = 1,2, . . . ,N . The probability density function of

a multi-Bernoulli RFS [39] is,

fΞ(W ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N

∏
j=1

(1 − rj), if W = ∅
N

∏
j=1

(1 − rj) × ∑
1≤i1≠⋯≠in≤N

n

∏
j=1

rij sij(xj)
1 − rij

, if W = {x1,x2...xn}, n ≤ N

0 otherwise.

(2.39)

The PGFL of the multi-Bernoulli RFS is given by

GΞ[u] =
N

∏
i=1

(1 − ri + ri ⟨si, u⟩). (2.40)

The PHD of the multi-Bernoulli RFS (Ex. 91, Chap. 16, [34]) is

DΞ(x) =
N

∑
i=1

ri si(x). (2.41)
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The second factorial moment of the multi-Bernoulli RFS can be calculated to be

DΞ({x1,x2}) =
N

∑
i=1

N

∑
j=1,j≠i

ri rj si(x1) sj(x2) (2.42)

=DΞ(x1)DΞ(x2) −
N

∑
i=1

r2i si(x1) si(x2). (2.43)

2.4 Sensor measurement models

In this thesis we consider two types of sensor measurement models. Following the nomen-

clature used by Mahler in [14], we refer to them as the standard sensor model and the

superpositional sensor model. We now discuss these two models and provide some exam-

ples of them.

2.4.1 Standard sensor model

A large number of sensors that have been studied in the literature fall under the category

of “standard” sensors. Measurements gathered by these sensors are either generated by

individual targets or by the clutter process.

Let Υk be the set of target generated measurements and let Λk be the set of clutter

measurements at time k. The complete set of measurements gathered by a standard sensor

at time k can be written as Zk = Υk ∪ Λk. Given the set of measurements Zk, the origin

of individual measurements within the set Zk is not known. Associated with each sensor

is its probability of detection function. If a target with state x is present, then the sensor

detects the target with probability of detection pd(x).
Let Zk = {z1,z2, . . .zm} be the set of measurements generated by a sensor at some time

instant k. The assumptions made by the standard sensor model are as follows:

1. Each target can generate at most one measurement.

2. Each measurement zi, i ∈ ⟦1,m⟧, is either associated with a target (i.e. zi ∈ Υk) or is

a clutter measurement (i.e. zi ∈ Λk).

3. A single target with state x is detected by the sensor with probability of detection

pd(x) or missed with probability 1 − pd(x).
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4. The measurements corresponding to targets are independent conditional on the mul-

titarget state.

5. The set of clutter measurements (Λk) and the set of target generated measurements

(Υk) are statistically independent.

When a target with state x is detected, the likelihood that it generates a measurement

z at time k is denoted by hk(z∣x). When multiple standard sensors are present, each of

them generate measurements following the assumptions listed above. Additionally, condi-

tional on the multitarget state, measurements generated by different sensors are assumed

independent.

Examples of sensor systems that can be modeled using this measurement model are

1. Radar systems [16],

2. Sonar systems [17],

3. Range-and-bearing sensors [18].

As a specific example consider a bearings-only measurement sensor that gathers angle

information about targets in the x−y plane. It records angle values in degrees in the range

[0,360) with respect to a reference axis. At some time step k assume that there are three

targets of which the bearings sensor detects two of them and records the target generated

measurement set as Υk = {11.2,56.5}. In addition let there be four clutter measurements

recorded by the sensor and are given by Λk = {102.1,33,270.8,140.1}. The combined mea-

surement set generated by the sensor is then given as Zk = {102.1,11.2,33,56.5,270.8,140.1}.
Note that the sensor records measurements in no particular order and there is no informa-

tion available about the generation mechanism (target-generated or clutter) of individual

measurements. The filtering algorithms we develop should consider this inherent uncer-

tainty in sensor measurements.

2.4.2 Superpositional sensor model

The standard sensors form an important class of sensors but are not exhaustive. Another

class of sensors that we study in this thesis are the “superpositional” sensors. In the

standard sensor model, the measurement generated by each sensor is modeled as a set. In
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the superpositional sensor model we assume that each sensor gathers a measurement vector

of fixed and known dimensions. Let Zk be the combined measurement vector obtained by

appending the measurement vectors of all the sensors together. The superpositional sensor

model makes the following assumptions:

1. Each measurement is affected by multiple targets in an additive fashion, i.e., the

contribution to a measurement due to multiple targets is equal to the sum of contri-

butions to that measurement from each of the targets when present alone.

2. Measurements gathered by different sensors are correlated because each target can

potentially affect any number of sensors.

Many sensors belong to the category of superpositional sensors. Examples include

1. Direction-of-arrival sensors for linear antenna arrays [11],

2. Antenna arrays in multi-user detection for wireless communication networks [12],

3. Multipath channel modeling in MIMO-OFDM channels [13],

4. Acoustic amplitude sensors [10],

5. Radio-frequency tomographic tracking systems [5].

If Xk is the multitarget state at time k, then the multisensor multitarget likelihood

function is denoted by hk(Zk∣Xk). In the case of superpositional sensors the likelihood

function hk(Zk∣Xk) has the following form,

hk(Zk∣Xk) = hk (Zk∣ζ(Xk)) (2.44)

= hk (Zk∣ ∑
x∈Xk

g(x)) (2.45)

where ζ and g are (potentially non-linear) functions mapping to vectors of reals. The

function ζ operates on the random finite set whereas the function g operates on the target

states that are members of the set.
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In this thesis we focus on the case where the likelihood function has the following

Gaussian form:

hk (Zk∣ ∑
x∈Xk

g(x)) = NΣz (Zk − ∑
x∈Xk

g(x)) (2.46)

where the notation NΣ(x) denotes evaluation at x of a zero-mean Gaussian distribution

with covariance matrix Σ. We will use the notation Σz throughout to denote the covari-

ance of the measurement noise. Although the Gaussian noise assumption is not essential

for deriving update equations, it is an important contributing factor for computationally

tractable approximations.

Example: Acoustic amplitude sensors

Acoustic sensor networks can be used for multitarget tracking based on the strength of the

emitted acoustic signals. In this thesis we adapt the acoustic amplitude sensor measurement

model discussed in [10]. It is an active tracking system in which each target emits an

acoustic signal of known amplitude A and all the sensors receive the signal. If a target at

location x emits the acoustic signal, a sensor located at dj receives the signal at a reduced

strength of gj(x) = A/max(∣∣x − dj ∣∣, d0)κ where ∣∣x∣∣ denotes the Euclidean norm of vector

x; κ is the path loss exponent and d0 is the threshold distance such that the received signal

amplitude saturates if the target is closer than distance d0 of the sensor. When multiple

targets are present, the strength of the combined signal received by each of the sensors

is the sum of the strength of the signals due to each of the individual targets. Thus the

measurement received by sensor j at time k, zjk, can be modelled as:

zjk = ζj(Xk) + vjk (2.47)

= ∑
x∈Xk

A

max(∣∣x − dj ∣∣, d0)κ
+ vjk (2.48)

where vjk is the zero-mean Gaussian measurement noise. A limitation of the above model is

that though the signal amplitude received by a sensor from a target saturates as the target

approaches the sensor, the combined signal strength received by a sensor can still be large

if multiple targets are in close vicinity. A more realistic model would be to saturate the

combined signal strength received by a sensor. For simplicity we use the model given by
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(2.48) in this thesis.

2.5 The Bayes filter

We solve the problem of sequential multitarget state estimation using the recursive Bayes

filter. The Bayes filter provides a framework for data fusion and state estimation but its

direct implementation is often analytically and computationally intractable. The various

contributions of this thesis are to develop approximations to the Bayes filter which are

analytically and computationally tractable. Although here we discuss the Bayes filter for

random sets [34], the filter equations for the case of random vectors [40] are similar where

instead of the set integrals we have vector integrals.

At time k, given all the measurements up to time k, the complete system state is

specified by the multitarget posterior distribution fk∣k(Xk∣Z1∶k). The Bayes filter solves

for the posterior distribution in a recursive manner. Let Θk+1∣k(Xk∣W ) be the multitarget

transition function at time k + 1. The prediction step of the filter incorporates the target

motion model and is given by the Chapman-Kolmogorov equation

fk+1∣k(Xk+1∣Z1∶k) = ∫
X
Θk+1∣k(Xk∣W )fk∣k(W ∣Z1∶k) δW . (2.49)

Let Lk+1(Zk+1∣Xk+1) be the multitarget multisensor likelihood function at time k + 1. The

update step of the filter uses the measurements at time k + 1, the multitarget likelihood

function and applies Bayes’ rule to obtain the posterior at time k + 1 as

fk+1∣k+1(Xk+1∣Z1∶k+1) =
Lk+1(Zk+1∣Xk+1)fk+1∣k(Xk+1∣Z1∶k)
∫X Lk+1(Zk+1∣W )fk+1∣k(W ∣Z1∶k) δW

⋅ (2.50)

In a traditional filter implementation the sets of the multitarget state Xk+1 and mea-

surements Z1∶k are modelled as vectors Xk+1 and Z1∶k, respectively, and the set integrals

in (2.49) and (2.50) are replaced with vector integrals. For both vector and set based

modelling the above equations involve evaluation of integrals which cannot be analytically

solved except for a few special cases.
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2.6 Gaussian distributions

We make a note of some results related to Gaussian distributions [41] which will be fre-

quently used in later parts of the thesis. Let x and z be vectors of possibly different

dimensions. Let mx be a mean vector and Σx and Σz be the covariance matrices of ap-

propriate dimensions. Let H be a matrix such that z and Hx have the same dimensions.

Then we have

NΣz(z −Hx) NΣx(x −mx) = NΣz+HΣxHT (z −Hmx)NΣ̃x
(x − m̃x), (2.51)

where m̃x =mx +K(z −Hmx) (2.52)

Σ̃x = (I −KH)Σx (2.53)

K = ΣxH
T (Σz +HΣxH

T )−1. (2.54)

In these equations HT denotes the transpose of matrix H and I is the identity matrix of

appropriate dimension. Let m1 and m2 be the means and Σ1 and Σ2 be the covariance

matrices of two Gaussian densities. Then we have

∫ NΣ1(x −m1)NΣ2(x −m2)dx = NΣ1+Σ2(m1 −m2). (2.55)

2.7 The error metric

In order to compare the performance of different multitarget tracking algorithms, we need

an error metric to quantify the difference between the sets of true multitarget state and

the estimated multitarget state. Since sets are involved, a root mean squared type of

metric cannot be applied. We use the optimal subpattern assignment (OSPA) error metric

developed by Schuhmacher et al. in [42]. This metric is specifically designed for performance

evaluation of multi-object filters. The OSPA metric penalizes the cardinality error in the

estimates using the cardinality penalty factor c. Let X = {x1, . . . ,xm} and Y = {y1, . . . ,yn}
be any arbitrary sets then, for n ≥m, the OSPA metric between the sets X and Y is defined



2 Background and literature review 25

as

d
(c)
p (X,Y ) def= (1

n
min
π∈Π

m

∑
i=1

d(c)(xi,yπ(i))p + cp(n −m))
1/p

, (2.56)

where d(c)(x,y) def=min{d(x,y), c} (2.57)

where Π is the set of possible permutations of the set {1,2, . . . , n}, d(x,y) is any distance

metric between the vectors x and y and p is a fixed parameter. When m > n, we calculate

the metric d
(c)
p (Y,X). The OSPA metric finds the best permutation of the larger set which

minimizes its distance from the smaller set and assigns a fixed penalty for each cardinality

error. In our evaluation of the OSPA metric we choose d(x,y) to be the Euclidean distance

metric.

2.8 Sensor networks for tracking

Simultaneous detection, localization and tracking of multiple humans has numerous ap-

plications in areas such as security, surveillance, and healthcare. Many different tracking

systems [43] have been developed to solve this problem which make use of different kinds

of sensor hardware. Some of the sensor measurement modalities that have been discussed

in the literature are optical images and video [44,45], infrared sensors [46,47], acoustic sen-

sors [48, 49], and radio sensors [5, 50, 51]. Many of the sensing methods require the targets

to carry a device which assists in the tracking procedure [50, 52] which may not be always

possible. In this thesis we are interested in device-free target tracking using radio-frequency

sensor networks.

Radio-frequency tomography is the process of monitoring an area to detect mobile

targets based on the additional attenuation and fluctuations they cause in wireless trans-

missions. It is a device-free method and the targets are not required to carry any additional

device for tracking purpose. A good overview of the challenges faced in realizing a device-

free system and the different techniques for target localization using RF sensor networks

can be found in the review paper [53]. In the next section we review various solutions that

have been proposed for target tracking using RF sensor networks.
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2.8.1 Radio-frequency based tracking

Zhang et al. developed an indoor multitarget tracking system for ceiling-mounted RF sen-

sor nodes based on the interference caused by moving objects [54–56]. These systems

achieve good tracking performance but require calibration and are restricted to the ceil-

ing deployment of sensors. This is not practical in several important scenarios such as

search-and-rescue operations and military surveillance.

Youssef et al. [57] proposed to use existing WiFi devices for device-free tracking in indoor

environments. They demonstrated single target detection and tracking [57, 58] based on

signal strength maps constructed during an offline training phase. Due to limited number

of devices the tracking accuracy is low and frequent system calibration may be required to

account for the dynamic multi-path effects in indoor environments.

Most previous RF tomography tracking techniques [5–8] have focused on single target

tracking. In [5, 6], Wilson and Patwari proposed an inverse imaging algorithm which first

obtains an attenuation map and then applies a Kalman filter to track the peak in the map.

A compressed sensing based imaging algorithm is proposed in [59] for inference in RF sensor

networks. Imaging algorithms have the drawback that the problem of inverse imaging is

in general computationally challenging and the monitoring region is divided into a grid

of pixels which limits its accuracy. Through-wall tracking is demonstrated in [6] using a

network of 34 RF sensor nodes. Li et al. introduced a new measurement model based on

experimental data and used it in a sequential Monte Carlo algorithm for tracking [7]. This

method incorporated online Expectation-Maximization so that model parameters could be

learned during the tracking task. This approach was extended in [8] to simultaneously

estimate the locations of the sensor nodes.

A multitarget extension of the RF tomography measurement model in [7,8] was proposed

by Thouin et al. [4]. The measurements are modelled to have a superpositional form (see

Section 2.4.2) and performance assessment was based entirely on simulation; no practical

experimentation was conducted.

Most of the experimental work in [5, 7, 8] has been restricted to outdoor environments.

A variance based algorithm was proposed in [6] for through-wall tracking but is limited

to moving targets and cannot accurately localize stationary targets. More recently in [60],

Wilson and Patwari developed a skew-Laplace signal strength model for indoor target track-

ing. Received signal-strength measurements are modeled using skew-Laplace distributions
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whose parameters are experimentally obtained through training measurements. The pa-

rameters change depending on whether the target is close to the line-of-sight between the

sensors. Successful tracking of two targets was reported in [60], but the case of an unknown

and time-varying number of targets was not addressed. The model parameters need to be

trained using a target with known position; Wilson and Patwari suggest that parameters

learned in one environment can be applied successfully in another.

2.8.2 Tracking algorithms

In Chapter 3, for performing RF tomography using real sensor network data, we assume that

the number of targets is known and the measurements are vectors of known dimension. In

this setup many of the existing multitarget tracking filter can be directly utilised. Because

of the highly non-linear measurement model, classical filters such as the Kalman filter [61],

the extended Kalman filter [40], and the unscented Kalman filter [62, 63] do not perform

well. Particle based filters such as sequential Monte Carlo methods [1, 64–68] and Markov

chain Monte Carlo methods [3, 69–71] can be used to propagate a particle approximation

of the posterior distribution. Particle filters have been used for RF tomography tracking

in [7, 8, 60].

As the number of targets increase the number of particles required to efficiently sample

the multitarget state space grows exponentially [72]. One of the strategies to avoid this

exponential growth is to use the multiple particle filter (MPF) [2] proposed by Bugallo

et al. which uses one low-dimensional particle filter for each target. Since each of the

particle filters operates in a much smaller dimension, fewer particles are required and the

increase in the number of particles is linear with increase in the number of targets. The

likelihood function in general can be a function of all the target states hence the different

particle filters need to interact to perform the weight update. The interactions allow the

filters to exchange information such as statistical moments or particles. Several extensions

and improvements of the MPF filter [73–77] have been developed which propose different

interaction mechanisms to improve the accuracy of the individual particle filters.

2.9 Multitarget tracking using standard sensors

The standard sensor model is discussed in Section 2.4.1. Since the observations in many

practical sensor systems [16,18,40,78] such as radar, sonar, and range-and-bearings sensor
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systems follow this measurement model, it has been well researched and numerous filters

have been proposed. We discuss the filters proposed in the literature within the traditional

filtering framework and the random finite set framework.

2.9.1 Traditional filters

The traditional approach to multitarget tracking using standard sensors has been to first

perform a measurement-to-target association and then apply the Kalman filter [61]. Some

of the successful filters are the joint probabilistic data association (JPDA) filter [18, 31]

and the multiple hypothesis tracking (MHT) filter [32, 78] and many of their variants.

The JPDA filter assumes fixed and known number of targets and calculates probabilities

for different possible associations between the measurements and targets. The average

of measurements with association probabilities as weights is used in the update stage to

obtain the posterior. The MHT filter [32,78] propagates a set of competing measurement-

to-target association hypothesis over time. The MHT filter can track a time varying number

of targets. Particle filter based solutions to the problem of data association and multitarget

tracking have also been developed in the literature [79–82]. Since the number of associations

grow exponentially with the number of targets, measurements and sensors, traditional filters

usually have high computational requirements. Heuristics such as gating are often used to

limit the computations.

2.9.2 Random finite set based filters: Single sensor

We now provide a background on random finite set based multitarget tracking filters which

do not require explicit measurement-to-target association. The random finite set framework

for multitarget tracking was introduced by Goodman et al. in [33]. A detailed treatment

of random finite set and the finite set statistics can be found in [33–35].

The majority of research based on random finite set theory has focused on single sensor

multitarget tracking. The optimal filter is the recursive Bayes filter discussed in Section 2.5.

But direct implementation of this filter suffers from analytical intractability and high com-

putational requirements. Some of the direct implementations of the recursive Bayes filter

are based on particle filter approximations [36,83–85] but they are only practical when very

few targets are present.
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Moment filters

Several approximate filters have been proposed in the literature that propagate some suffi-

cient statistics, such as the PHD and cardinality distribution, of the random finite set in-

stead of propagating the full multitarget density. The probability hypothesis density (PHD)

filter [86] propagates, over time, the probability hypothesis density function which is defined

over the single target state space. Improving on the PHD filter, the cardinalized probability

hypothesis density (CPHD) filter [87] propagates the distribution of the number of targets

(the cardinality) in addition to the probability hypothesis density function.

Multi-Bernoulli filters

Both the PHD and CPHD filter use a single PHD function to represent the multiple single

target states. In contrast, the multi-Bernoulli filter [34, 39] models each target state with

a Bernoulli random finite set. Thus each target has a scalar existence probability and a

state density function. This allows more accurate state representation and also provides

easy track maintenance [34]. Generalizations of the multi-Bernoulli filter have also been

proposed such as the labeled multi-Bernoulli filter [88] and the generalized labeled multi-

Bernoulli filter [89] which can track target labels over time.

Implementations

Various implementations of the PHD, CPHD and multi-Bernoulli filters have been proposed

in the literature. The Gaussian mixture-based implementations [39, 41, 90–94] provide

closed form filter equations under linear-Gaussian assumptions. Extensions to non-linear

models using extended Kalman filter and unscented Kalman filter approaches have also

been proposed [39, 41, 90]. For general non-linear models several sequential Monte Carlo

based implementations [36, 39, 95–98] have been proposed. Convergence results for the

various filter implementations have also been discussed in the literature [99–103].

Many improvements have been proposed for the sequential Monte Carlo implemen-

tations [104–107] to improve the filter performance. In [104, 106] explicit association is

maintained between particles and measurements to provide improvements in cardinality

and state estimates. Measurement-driven target birth intensity is used in [107] to improve

the estimation accuracy of PHD and CPHD filters. An auxiliary particle filter implemen-

tation of the PHD filter is proposed in [105] where proposal distributions are designed to
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efficiently migrate particles towards high likelihood regions.

These algorithms and their extensions have been successfully applied to the problem of

single sensor multitarget tracking in the presence of clutter using both simulated measure-

ments and real measurements. Specifically they have been used in direction-of-arrival track-

ing [11], sonar image tracking [17], audio signal processing [108], group target tracking [109],

ground moving target tracking [110], extended target tracking [111, 112], navigation and

map building [113,114], and visual image tracking [115–117].

All the above filters use a single kind of random finite set to model the multitarget

state. We can gain by modeling the multitarget state as a union of different kinds of

random finite sets. A hybrid of the multi-Bernoulli filter and the PHD filter is developed

by Williams [118, 119]. In [118, 119] a Poisson RFS is used to model new targets and

targets with low probability of existence. This results in fast track initiation and use of

fewer Bernoulli components. Pollard et al. in [120] used a hybrid combination of the MHT

filter and the Gaussian mixture CPHD (GM-CPHD) filter for multitarget tracking. The

GM-CPHD filter provides a robust cardinality estimate of the multitarget state which is

complemented by accurate state estimates from the MHT filter. A combination of the

MHT and PHD filter is utilized by Panta et al. to obtain track-valued estimates [121].

In [121] the PHD filter is used as a clutter filter by utilising its output to gate the input

for the MHT filter. Although hybrid filters have been developed in the literature for

multitarget tracking, they are restricted to the case of standard sensors and cannot process

superpositional observations.

2.9.3 Random finite set based filters: Multiple sensors

A review of the different multisensor multitarget tracking algorithms for the standard sensor

model based on random finite set theory can be found in [35, Ch. 10]. A multisensor

extension of the PHD filter was first derived for the case of two sensors by Mahler [19,20].

The filter equations were further generalized to include an arbitrary number of sensors by

Delande et al. [122]. Braca et al. [123] proved that asymptotically as the number of sensors

goes to infinity the PHD behaves like a mixture of Gaussians, with Gaussian components

centered at maximum likelihood target state estimates.

The exact filter update equations of the general multisensor PHD filter are not com-

putationally tractable except for a few simple cases. In [124, 125] Delande et al. simplify
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the filter update equations when the fields of view of different sensors have limited over-

lap. This reduces the computational complexity to some extent and a particle filter based

implementation is discussed by the authors. Jian et al. in [126] suggest to implement the

general multisensor PHD filter by repeated application of the two sensor PHD filter [19].

Implementation details for realizing the general multisensor PHD filter in this manner are

not provided and the numerical simulations are restricted to the case of two sensors.

To avoid the combinatorial computational complexity of the general multisensor PHD

filter, some approximate multisensor filters have been proposed in the literature. The

iterated-corrector PHD filter [20] processes multisensor information in a sequential manner.

A single sensor PHD filter processes measurements from the first sensor. Using the output

PHD function produced by this step as the predicted PHD function, another single sensor

PHD filter processes measurements from the second sensor and so on. As a result the final

output depends on the order in which sensors are processed [127]. This dependence on

the sensor order can be mitigated by employing the product multisensor PHD and CPHD

filters proposed by Mahler [21]. Although the final results are independent of sensor order,

Ouyang and Ji [128] have reported that Monte Carlo implementations of the product filters

are unstable and the problem worsens as the number of sensors increases.

In Chapter 6 we develop a trellis based greedy algorithm to implement the general

multisensor CPHD filter. Hence here we discuss other trellis based algorithms that have

been developed for target tracking. For single-sensor single-target tracking, the Viterbi

algorithm is applied over a trellis of measurements constructed over time in [129]. Each

column of the trellis is a measurement scan at a different time step. The Viterbi algorithm

is used to find the best path in the trellis corresponding to data associations over time. This

approach has been extended for multitarget tracking in [130] for a fixed and known number

of targets. The nodes of the trellis correspond to different data association hypotheses and

the transition weights are based on measurement likelihoods. The Viterbi algorithm was

also applied in [131], in conjunction with energy based transition weights, to identify the

K-best non-intersecting paths over the measurement trellis when K targets are present.

The update equations in the general multisensor PHD/CPHD filters are similar to

the update equations of the single sensor PHD/CPHD filters for extended targets [111,

132]. The similarity is in the sense that for extended targets the update equation requires

partitioning of the single sensor measurement set which can be computationally demanding.

Granstrom et al. [112] proposed a Gaussian mixture model-based implementation of the
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PHD filter for extended targets with reduced partitioning complexity. This is done by

calculating the Mahalanobis distance between the measurements and grouping together

measurements which are close to each other within a certain threshold. Orguner et al.

[132] used a similar method to reduce computations in the Gaussian mixture model-based

implementation of the CPHD filter for extended targets.

2.10 Multitarget tracking using superpositional sensors

The superpositional sensor model is discussed in Section 2.4.2. Examples of sensor systems

which generate superpositional observations are antenna arrays in wireless communication,

acoustic amplitude sensor networks, and radio-frequency sensor networks. The problem

of multitarget tracking using superpositional sensors is similar to the problem of signal

parameter estimation [133] from sensor array observations and is related to the class of

track-before-detect problems [78].

2.10.1 Traditional filters

In the signal parameter estimation problem, signals originating from multiple sources are

combined in a linear fashion and corrupted by noise. The objective is to estimate the num-

ber of sources and their parameters [133]. Many algorithms [133–136] have been developed

in the literature to solve this problem. These methods require some quasi-stationarity as-

sumption to hold in order to estimate the sample covariance matrix of the observations.

In the multitarget tracking setup which we investigate, the target states and hence the ob-

servations are constantly evolving over time and hence these algorithms cannot be directly

used.

Some algorithms perform a preprocessing step to convert superpositional or correlated

sensor measurements into appropriate standard sensor measurements [78]. These set-valued

measurements are then filtered using the numerous existing algorithms available to pro-

cess standard sensor measurements such as JPDA, MHT and particle filters. The track-

before-detect problem is to perform tracking directly on the raw measurements without

any preprocessing step. The preprocessing step typically involves extracting important

signal features and thresholding them to obtain set-valued measurements. Since the raw

observations are preprocessed, this approach can lead to information loss and result in poor

tracking performance especially when the signal-to-noise ratio is low.
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The multiple particle filters have been applied to the problem of superpositional sensors

in [73–76] but their applicability is limited because they require the number of targets to

be fixed and known.

2.10.2 Random finite set based filters

Particle implementations of the recursive Bayes filter based on RFS modelling have been

developed for the case of superpositional sensors [12,13,137–139]. A bootstrap particle filter

is used in [12, 137] for multi-user detection but simulations are limited to a maximum of

three active users. For higher number of users, the efficiency of the bootstrap particle filter

significantly reduces since sampling the space of finite sets is computationally expensive.

A Rao-Blackwellized particle filter implementation is used in [13,138] for estimating multi-

path channel state in wireless MIMO-OFDM systems. Although the Rao-Blackwellized

particle filter implementation is computationally more efficient than the bootstrap particle

filter implementation, it relies on the assumption that the system is conditionally linear

and Gaussian.

The random finite set based filters have also been extended to other non-standard

models such as extended target tracking [111,112,132], unresolved target tracking [140,141],

and tracking from pixelized images [116,142].

Moment filters

In [11,108,143] the superpositional measurements are converted to standard measurements

which are then processed by the PHD and CPHD filters for standard sensors. The mea-

surement model in [11], for direction-of-arrival tracking using sensor arrays, has a superpo-

sitional form but the measurements are converted into separable set-valued measurements

using Fourier spectrum analysis of observations. The PHD filter for standard sensors is

then applied for tracking. Similarly in [143] the acoustic sensor array observations have

a superpositional form but the acoustic measurements are first converted into direction-

of-arrival measurements using the multiple signal classification algorithm [133]. A grid

based particle implementation of the PHD and CPHD filters for standard sensors is used

to perform multitarget tracking.

The exact CPHD filter equations for superpositional sensors were first derived by

Mahler [14] but are computationally intractable. An analytically tractable closed form
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Gaussian mixture model-based implementation of the CPHD filter for superpositional sen-

sors was derived by Hauschildt [15]. Though analytically tractable, its direct implementa-

tion is computationally demanding. An approximate but computationally tractable PHD

filter for superpositional sensors was developed by Thouin et al. [4]. The derivation of

this approximate filter relied on Campbell’s theorem [37] and Gaussian approximation for

predicted observations. Building on this derivation approach, a computationally tractable

CPHD filter for superpositional sensors was derived by Mahler and El-Fallah in [38].

Multi-Bernoulli filters

Multi-Bernoulli filters have been developed for the related pixelized image observation

model [142]. Under the pixelized image observation model the likelihood has a separa-

ble form. This assumption is valid when the objects are non-overlapping. The developed

filter equations can be used for track-before-detect applications without the need for mea-

surement preprocessing. Hoseinnezhad et al. [116, 117] have used this filter for tracking

multiple targets in image sequences and for audio-visual tracking in [144]. Since measure-

ments corresponding to different targets are not allowed to overlap in the pixelized image

observation model, these filters cannot be directly applied to superpositional observations

without further approximation. Superpositional observations from phased array of acoustic

sensors [145, 146] are processed using this filter by approximating the likelihood function

with a multiple signal classification algorithm [133] based pseudo-likelihood function.

The recently developed labelled multi-Bernoulli RFS and generalized labelled multi-

Bernoulli RFS [88, 89] have been extended to perform multitarget tracking using non-

standard measurement models [141,147,148]. In [147], Papi and Kim have proposed a par-

ticle based multitarget tracking algorithm for superpositional measurements. They used

the approximate CPHD filter [24] update equations to design proposal distributions for

propagating labelled random finite sets over time. Labelled RFS based tracking has also

been applied for the case of merged measurements [141] where groups of closely spaced

targets can generate a single merged measurement. An approximation mechanism is devel-

oped in [148] for multitarget tracking using labelled random finite sets applicable to any

generic measurement model.
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2.11 Conclusions

In this chapter we introduced the relevant background material required for further reading

of this thesis. We also provided an extensive literature review which highlights some of the

limitations of the existing research work. For example, passive RF tomographic tracking has

mostly been applied for single target tracking and in outdoor environments. In Chapter 3

we demonstrate passive multitarget RF tomographic tracking in both outdoor and relatively

challenging indoor environments.

Traditional methods of processing superpositional measurements either require station-

arity assumptions or depend on approximations which can lead to loss of information. To

accurately perform sequential state estimation in a computationally tractable manner from

superpositional measurements , we develop various random finite set based filters and their

implementations in Chapter 4 and Chapter 5.

Although numerous filters and their implementations have been developed for standard

sensors, they are largely restricted to the case when a single sensor is making observations.

The existing multisensor filters suffer from drawbacks such as dependence on sensor order,

numerical instability, and high computational requirements. To address these limitations,

in Chapter 6 we propose a new multisensor filter and its greedy implementation which is

computationally feasible, stable, and has no significant dependance on the order in which

sensors are processed.
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Chapter 3

Radio frequency tomography

In “device-free” multitarget tracking, targets do not carry active or passive devices to as-

sist the tracking system. Applications of such a tracking system can be found in military

surveillance, search-and-rescue operations, through-the-wall imaging, and healthcare envi-

ronments [53, 58]. In the past couple of decades radio frequency (RF) measurements have

been increasingly used for localization and target tracking. Wireless sensor networks that

perform tracking using radio frequency sensors are attractive because

(a) radio frequency sensors are relatively inexpensive;

(b) sensor networks can be deployed easily and quickly;

(c) compared to the other alternatives such as infrared and video, RF measurements have

the advantage that they can penetrate walls and other non-metallic obstacles.

Radio frequency tomography is the process of monitoring an area to detect mobile

targets based on the additional attenuation and fluctuations they cause in wireless trans-

missions [5]. When a RF sensor network communicates through transmission of wireless

packets, the received signal strength (RSS) measurements on a link connecting sensor nodes

is affected by the distance between the sensors and the interference caused by static and

moving objects. When multiple links monitor a region, the relative RSS measurements

among the different links can be used to localize moving objects. The main contributions

of this chapter are to propose and experimentally validate models for RSS measurements

on RF links in presence of multiple targets and to demonstrate multitarget tracking using

field deployments of RF sensor networks in both outdoor and indoor environments.

2015/08/12
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This chapter is organized as follows: Section 3.1 describes a general radio frequency

sensor network setup. The empirical measurement models used to model the single-link

observations in the presence of multiple targets are discussed in Section 3.2. The multitar-

get tracking algorithms used for processing sensor network data are discussed in Section 3.3.

The data collection process and tracking results from outdoor and indoor deployment of ra-

dio frequency sensor networks are studied in Sections 3.4 and 3.5 respectively. Conclusions

are presented in Section 3.6.

3.1 Radio frequency sensor network

Radio frequency sensor nodes are distributed over the periphery of the region of interest.

Figure 3.1 shows an example of such a network with 20 nodes. The periphery can in general

have any shape and is not limited to a square. Each node successively broadcasts packets

at short time intervals and the other nodes measure the RSS. Each node pair constitutes a

bidirectional link and has two measurements, with one on each of the forward and reverse

links. The average of these two RSS measurement values is associated with the bidirectional

link. Links which include either sensor 1 or 12 are indicated by dashed lines in Figure 3.1.

For a wireless sensor network with R nodes there are nz = R(R − 1)
2

bidirectional links.

The measurements are then the RSS values of all bidirectional links stacked into a single

measurement vector γ of length nz. All the nodes in the network transmit their local

RSS measurements to a central receiving node which processes the data centrally. A single

measurement interval corresponds to the period required for all nodes to transmit.

Let the RSS value recorded on link j be denoted by γj. The RSS value γj can be split

into three main terms: γj = γ̄j + yj + wj. Here γ̄j is the average RSS on link j when no

target is present, yj is the change in RSS value on link j due to mobile targets, and wj

is the noise term affecting the measured RSS on link j. We assume that there is a time

period during which we can gather measurements on all links when no target is present in

order to estimate γ̄j.

3.2 Radio frequency measurement models

In this section we characterize the changes in received signal strength measurements for a

single RF link in presence of targets. We validate the proposed models using experimental
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Fig. 3.1 Radio frequency sensor network: RF links which include either
sensor 1 or 12 are indicated by dashed lines.

data.

3.2.1 Exponential model

A model for RSS attenuation on a single link in presence of a single target was proposed

by Li et al. in [7]. This model was based on experimental data from relatively uncluttered

outdoor regions. Let x be the position of the target affecting the link. The mean of the

attenuation on the link caused by the target at position x is modeled as

g(x) = φ exp(−λ(x)
σλ

) (3.1)

where φ and σλ are attenuation parameters based on physical properties of the targets and

sensors and λ(x) is defined as

λ(x) = d1(x) + d2(x) − d12 (3.2)

where d1(x) and d2(x) are the distances between the target and the two sensors and d12

is the distance between the sensors. λ(x) captures the notion of the distance between the
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target and the line-of-sight link between transmitter and receiver. Figure 3.2 graphically

demonstrates the elliptical distance measure λ(x). The ellipse corresponds to the collection
of points x such that λ(x) is constant.

1 2

x

d12

d1(x) d2(x)

λ(x) = d1(x) + d2(x) − d12

Fig. 3.2 The elliptical distance measure λ(x) between the target at location
x and the link formed by the sensors 1 and 2.

Let gj(x) be the RSS attenuation model for jth link and wj be the zero-mean Gaussian

noise affecting the link. Then the observed reduction in RSS value zj = γj − γ̄j on link j

due to target at position x is modeled as

zj = gj(x) +wj (3.3)

wj ∼ N(0, σ2
wj
). (3.4)

If there are nz unique links the observed noisy attenuation is modeled as z = g(x) +w,

where g = [g1, g2,⋯, gnz], and w is the additive zero-mean noise w ∼ N(0,Σw).

Thouin et al. proposed a multi-target extension of this model in [4]. The mean attenua-

tion caused by the presence of multiple targets is modeled as equal to the sum of the mean

attenuations due to each of the targets. Let set X be the collection of position of all the

targets present. Then the mean of the total attenuation on link j due to all of the targets

combined is modeled as:

ζj(X) = ∑
x∈X

gj(x) (3.5)

This model has the superpositional form discussed in the Section 2.4.2. The observed noisy
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attenuation vector is given by

z = ζ(X) +w (3.6)

where ζ = [ζ1, ζ2,⋯, ζnz] and w is the additive zero-mean noise w ∼ N(0,Σw). In the next

section we provide experimental support for this model.

3.2.2 Experimental validation: Outdoor data

We assess the validity of the additive attenuation model using outdoor single-link sensor

measurements when multiple targets affect the link. Our experiments are conducted for

a link with the sensors separated by 8 meters. The transceivers of the sensor nodes are

system-on-chip (SoC) TI CC2530 devices; each node has a monopole antenna and uses the

2.4 GHz IEEE 802.15.4 standard for communication. Figure 3.7 depicts the single link

outdoor experimental setup.
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Fig. 3.3 The figure illustrates the single link experiment setup. Markers on
LOS indicate different positions of stationary Target A. Arrows indicate path
of moving Target B.

In each experiment, Target A stands on the line-of-sight path between the sensor nodes
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(the positions are labeled “LOS marker” in Figure 3.7). Target B walks along a trajectory

perpendicular to the line-of-sight path, crossing close to the position of Target A. For each

experiment, Target B completes 10 crossings and approximately 22,000 RSS measurements

are measured by the receiving sensors. We also conduct similar experiments when only

Target A or Target B is present.

Figure 3.4 presents a scatter plot of the attenuation values after the background RSS

estimates have been subtracted. This figure also shows the average attenuations when

Target A is alone (dashed line) and when Target B is alone (blue line with square markers).

We compare the average attenuation of the two targets with the model in (3.1). In the

model we set φ for each target to the mean attenuation value when the target is alone and

choose σλ = 0.04, which has been observed to be a good fit for the outdoor environment [8].

The additive model provides a good explanation of the experimental average attenuation,

particularly in the region of interest (small λ).

Fig. 3.4 Signal attenuation levels versus parameter λ for the single target
and two targets case. Both experimental and model predicted attenuation
levels are plotted when two targets are present.
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Fig. 3.5 Validation of the error as Gaussian model. Top figure shows a
histogram of the model error and the corresponding best-fit Gaussian. The
bottom figure shows a quantile-quantile plot of the model error.

Figure 3.5 depicts a histogram of the differences between the attenuation values pre-

dicted by the model (3.5) and the measured values. These differences should be explained

by the additive Gaussian noise in (3.6). Superimposed is the best-fit Gaussian model. The

Gaussian fit has mean −0.029dB and standard deviation is 2.25dB. The fact that the mean

is close to zero is encouraging, but the histogram does not correspond to a Gaussian dis-

tribution. The quantile-quantile plot in Figure 3.5 shows significant discrepancy between

the sample quantiles and the standard normal quantiles. There are multiple measurements

where the observed attenuation is much higher than predicted by the model; the empiri-

cal distribution is skewed to the right and has a relatively heavy tail. The poor match is

confirmed by a Lilliefors test, Anderson-Darling test, and D’Agostino test, which all reject
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the null hypothesis that the differences are normally distributed (with significance 0.05).

Despite the poor fit of the Gaussian, we observe that using the Gaussian model still leads

to reasonably good tracking performance (see Section 3.4). It simplifies the computations

and since there are many hundreds of links it is important that log-likelihoods can be

evaluated relatively quickly.

3.2.3 Magnitude model

In an outdoor environment, a radio frequency link usually experiences attenuation when a

target is nearby. However, due to the multi-path effects caused by reflections from walls,

ceilings, furniture, etc. in the indoor environment, a link can experience either attenuation

or amplification when people move nearby. The single link measurement model outlined in

Section 3.2.1 which models the attenuation of RSS values does not capture amplification

effectively and performs poorly when used in an indoor setting.

To address this, we choose to model the magnitude of change in RSS values on link j,

zj = ∣γj − γ̄j ∣ using the model:

zj = gj(x) +wj (3.7)

Prob(zj ∣x) ∝ N(gj(x), σ2
wj
) for zj > 0 (3.8)

Here gj(xk) has the same form as in (3.1), but the parameter values are generally signifi-

cantly different for indoor and outdoor environments. In above formulation the noise term

wj has a truncated Gaussian density (normalized to one) as given by (3.8).

Similar to (3.5), we propose a multi-target extension to the magnitude model. The

magnitude of the change in RSS zj is modeled as:

zj = ζj(X) +wj (3.9)

Prob(zj ∣X) ∝ N(ζj(X), σ2
wj
) for zj > 0 (3.10)

where ζj(X) has the superpositional form given in (3.5). Thus the observed magnitude of

change in RSS is modeled as the sum of predicted changes in RSS caused by the individual

targets and corrupted by truncated Gaussian noise.
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3.2.4 Experimental validation: Indoor data

We first provide justification for the magnitude model for indoor data. Figures 3.6(a)

and 3.6(b) display box-and-whisker plots of the RSS attenuation and magnitude of change

in RSS respectively, for single target data recorded from Experiment 1 (see Section 3.5).

The data are binned according to the λ values; for each bin, the central box ranges from

the 25th to 75th percentile, the circle within the box indicates the median value, and the

circles beyond the whiskers indicate outliers. Overlaid are the exponential and magnitude

models, with parameters fitted using linear regression.

Both models achieve a relatively good fit to the means when λ is small, which is the

important region. However, the magnitude model has a higher slope (see inset figures) and

can thus more easily discern when the target is close to a link. For human targets, we have

observed that the best-fit model parameters are similar for multiple indoor environments

(with φ ranging from 3−7, and σλ ranging from 0.2−0.4). Tracking performance is relatively

robust to the choice of these parameters. Figure 3.6(b) illustrates that the magnitude of

change in RSS measurements are very noisy, with numerous outliers and heavy tails. The

Gaussian noise model does not capture the tails particularly accurately but it is sufficient

for tracking purposes and is more computationally tractable.

We now provide experimental support for the additive model when multiple targets are

affecting the indoor RF link. Data was collected from a single indoor link of 7 meters (a

representative link from Setup 2 in Section 3.5), comparing the cases where one target or

two targets obstruct the link along its line-of-sight. Target A stood at different locations

along the link and we recorded approximately 15,000 measurements of the resultant changes

in RSS values. The procedure was repeated for target B at slightly different locations. We

then made measurements with both A and B present at different combinations of the

locations. The observations are depicted in Figure 3.7. The mean magnitude of change

in RSS values are 2.78 and 2.74 for the individual targets, and 4.62 for the two targets.

The distribution of attenuation magnitude for a combination of targets has a significantly

heavier tail; a more sophisticated model could strive to capture this effect in addition to

the increased mean.
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Fig. 3.6 Box plots of the attenuation (top) and its magnitude (bottom) from
Experiment 1 (see Section 3.5). Overlaid are the exponential and magnitude
models.
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Fig. 3.7 Magnitude of RSS attenuation when one or two targets are present
along the line-of-sight of a single link; experiments were conducted for a link in
Setup 2 (see Section 3.5). Scattered points depict attenuation values averaged
over short intervals and the markers indicate the mean values.

3.2.5 Skew-Laplace model

In [60], Wilson et al. proposed the use of the skew-Laplace distribution to model RSS

attenuation zj = γj − γ̄j on link j. The skew-Laplace likelihood is defined as:

p(zj ∣x) = p(zj ∣x;a, b,ψ) (3.11)

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ab
a+be

−a(ψ−zj), if zj ≤ ψ

ab
a+be

−b(zj−ψ), otherwise
(3.12)

Here a and b represent the one-sided decay rates of the distribution for values less than or

greater than the mode ψ. The parameters a, b and ψ are modeled as linearly dependent on

the “fade level(F)” [60] for each link. The fade level quantifies the amount of fading when

no targets are present and is estimated using measurements performed during a training

period.

We conducted experiments in three different indoor locations (see Section 3.5) and

collected more than three million data points. Data is collected when a single target is
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moving inside the network and classified into training and testing data. Each experiment

is repeated multiple (8-10) times and half of the repetitions are used for training models.

Training data from all the experiments is combined and used to obtain model parameters.

Table 3.1 details the linear fit parameters for the quantities a, b and ψ obtained using this

training data. The linear fit models depend on whether the target is present on the line of

sight (LOS) or away from it, non line of sight (NLOS).

Parameter
Target location a b ψ

LOS -0.0005F+0.31 -0.008F+0.63 -0.19F-0.69
NLOS 0.09F+1.81 0.14F+2.59 -0.01F+0.09

Table 3.1 Parameter values for fitted skew-Laplace distributions as linear
function of fade level (F).

We observed that the RSS attenuation distributions vary as the value of the elliptical

distance λ changes. Modifying the model proposed in [60], we model the parameters a,

b, and ψ as linear functions of λ. For λ < 0.2, we divide the attenuation measurements

into bins of width 0.01 in terms of λ; conduct a grid-search to identify the best-fit skew-

Laplace parameters for each bin; and perform linear regression on these best-fit parameters

to obtain linear models. Figures 3.8(a) and 3.8(b) and Table 3.2 show the fits we obtain.

For λ > 0.2, the target location has little impact on the RSS attenuation and we model the

parameters as constant.

Parameter
Target λ a b ψ
0 < λ ≤ 0.2 0.78λ+0.41 1.40λ+0.24 -1.47λ+0.35
λ > 0.2 1.29 1.08 -0.01

Table 3.2 Parameter values for fitted skew-Laplace distributions.

The upward trends of parameters a and b indicate that the distribution tends to become

more peaky as λ increases (there are fewer large-magnitude attenuations/amplifications).

For the parameter ψ the trend is less noticeable, but exhibits a downward trend, reflecting

our observation that amplifications become rarer as λ increases. In later measurement

based simulations we will compare the original skew-Laplace model [60] and the modified

model proposed in this section.
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Fig. 3.8 Linear fits to the skew-Laplace parameters a and b obtained using
training data from all three single-target experiments described in Section 3.5.
The ⋆ and ⋅ markers show the best fit values for each λ bin.

3.3 Multitarget tracking algorithms

As seen from the previous section the measurement models in radio frequency tomography

are highly non-linear functions of the multitarget state. Algorithms such as the extended or

unscented Kalman filter do not perform well with these models. Hence we apply particle-

based multitarget tracking algorithms for radio frequency tomographic tracking.

Let there be N fixed and known number of targets. The multitarget state at time step k

is then represented by the vector Xk = [xk,1,xk,2, . . .xk,N] where xk,j is the nx dimensional

vector describing the state of the jth target. The individual targets evolve independent

of one another and let tk∣k−1(xk,j ∣xk−1,j) be the single target transition probability density.

The measurement vector at time step k is denoted zk and the collection of measurement

vectors up until time step k is denoted by z1∶k = [z1,z1, . . . ,zk].

3.3.1 Sequential Importance Resampling filter

The first filter we discuss is based on the principle of sequential importance resampling

(SIR) and is commonly known as the bootstrap particle filter [1] or the sequential Monte

Carlo filter. It approximates the multitarget posterior distribution f(Xk∣z1∶k) at each time
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step k using a weighted set of particles:

f(Xk∣z1∶k) ≈
Np

∑
i=1

w
(i)
k δ(X(i)k ) (3.13)

Np

∑
i=1

w
(i)
k = 1 (3.14)

where δ(X) is the Dirac delta function. A pseudo code for the SIR filter is given in

Figure 3.9.

1: Initialize N particle filters {w(i)0 ,X
(i)
0 }i=Np

i=1

2: for k = 1 to T do
3: for i = 1 to Np do
4: for n = 1 to N do
5: proposal: x

(i)
k,n ∼ tk∣k−1(xk,n∣x(i)k−1,n)

6: end for
7: weight update: w

(i)
k ∝ w

(i)
k−1 L(zk∣X

(i)
k )

8: end for
9: resample step: {w(i)k ,X

(i)
k }i=Np

i=1 → { 1
Np

,X
(i)
k }i=Np

i=1

10: state estimation: X̂k = 1
Np

∑Np

i=1X
(i)
k

11: end for

Fig. 3.9 Sequential Importance Resampling (SIR) filter [1].

The filter runs for T steps, processing one measurement vector at each time step. The

filter prediction step consists of generating samples from the prior distribution. In the

filter update step the weight of the particles is multiplied by the multitarget likelihood

L(zk∣Xk). Resampling (drawing a new set of unweighted particles from the weighted set)

is performed periodically to maintain diversity of the particle set. The multitarget state

estimate is obtained by performing a weighted average of the current particle set. We set

Np = N ×Nppt where Nppt is the number of particles per target. The SIR filter operates in

the N × nx dimensional space.

3.3.2 Multiple particle filter

The SIR filter can perform poorly when the state has high dimension, which occurs with

multiple targets. To address this, Bugallo et al. proposed the multiple particle filter
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(MPF) [2], which uses one low-dimensional particle filter for each target. The pseudo

code of the multiple particle filter is provided in Figure 3.10.

1: Initialize N particle filters {w(i)0,n,x
(i)
0,n}

i=Nppt

i=1

2: for k = 1 to T do
3: for i = 1 to Nppt do
4: for n = 1 to N do
5: proposal: x

(i)
k,n ∼ tk∣k−1(xk,n∣x(i)k−1,n)

6: end for
7: end for
8: for n = 1 to N do
9: predictive state estimate: x̃k,n = ∑i=Np

i=1 w
(i)
k−1,n x

(i)
k,n

10: end for
11: for n = 1 to N do
12: for i = 1 to Nppt do

13: weight update: w
(i)
k,n ∝ w

(i)
k−1,n L(zk∣x(i)k,n, X̃k,n)

14: end for
15: resample step: {w(i)k,n,x

(i)
k,n}

i=Nppt

i=1 → { 1
Nppt

,x
(i)
k,n}

i=Nppt

i=1

16: state estimation: x̂k,n = 1
Nppt

∑Nppt

i=1 x
(i)
k,n

17: end for
18: end for

Fig. 3.10 Multiple Particle Filter (MPF) [2].

For each of the N targets the MPF maintains a separate particle filter using Nppt

particles. We implement each of these as an SIR filter. The weight update step for the

individual filters cannot be performed independently of the other target states because

computing the measurement likelihood requires the combined state information. The MPF

uses an estimate for the other target states, X̃k,n = [x̃k,1 . . . x̃k,n−1, x̃k,n+1 . . . x̃k,N], where x̃k,j

is the predictive state estimate of the jth target obtained by performing a weighted average

of the current particles {x(i)k,j} using the weights from the previous time step {w(i)k−1,j}. Each
of the individual particle filters operate in the nx dimensional space.

3.3.3 MCMC filter

The third algorithm we discuss is the Markov chain Monte Carlo (MCMC) filter of [3].

Samples (particles) are drawn at each time step by sequentially traversing a Markov chain

which has the desired density function as its stationary distribution. We use a sequential
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implementation of the MCMC filter that approximates the posterior multitarget density

using a set of (unweighted) particles. The MCMC filter pseudo code is given in Figure 3.11.

1: Initialize particles {X(i)0 }i=Np

i=1

2: for k = 1 to T do
3: initialize MCMC chain: (X[0]k ,X

[0]
k−1)

4: for m = 1 to (Nburn +Np ×Nthin) do

5: joint draw: (X∗k,X∗k−1) ∼ q1(Xk,Xk−1∣X[m−1]k ,X
[m−1]
k−1 )

6: acceptance: (X[m]k ,X
[m]
k−1) = (X∗k,X∗k−1) with probability ρ1

7: for n = 1 to N do
8: refinement: x∗k,n ∼ q2(xk,n∣X[m]k ,X

[m]
k−1)

9: acceptance: x
[m]
k,n = x∗k,n with probability ρ2

10: end for
11: end for
12: for i = 1 to Np do

13: selection: X
(i)
k =X

[Nburn+i×Nthin]
k

14: end for
15: end for

Fig. 3.11 MCMC Filter [3]

Let the posterior multitarget density at time k−1 be approximated using an unweighted

set of particles as

f(Xk−1∣z1∶k−1) ≈
1

Np

Np

∑
i=1

X
(i)
k−1. (3.15)

The firs step of the algorithm is to generate samples from the joint density function

f(Xk,Xk−1∣z1∶k) which can be expressed as

f(Xk,Xk−1∣z1∶k) ∝ L(zk∣Xk) tk∣k−1(Xk∣Xk−1)f(Xk−1∣z1∶k−1) (3.16)

The joint draw step samples the joint vector (Xk,Xk−1) from the proposal distribution

q1(Xk,Xk−1∣X[m−1]k ,X
[m−1]
k−1 ) using the Metropolis-Hastings algorithm [149]. The superscript

[m] notation denotes the mth sample generated by the MCMC chain. The proposed sample
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(X∗k,X∗k−1) is accepted with probability ρ1

ρ1 =min
⎛
⎝
1,

f(X∗k,X∗k−1∣z1∶k)
q1(X∗k,X∗k−1∣X

[m−1]
k ,X

[m−1]
k−1 )

q1(X[m−1]k ,X
[m−1]
k−1 ∣X∗k,X∗k−1)

f(X[m−1]k ,X
[m−1]
k−1 ∣z1∶k)

⎞
⎠

(3.17)

We choose the proposal density q1 as:

q1(Xk,Xk−1∣X[m−1]k ,X
[m−1]
k−1 ) ∝

Np

∑
i=1

tk∣k−1(Xk∣X(i)k−1)δ(X
(i)
k−1) (3.18)

The refinement step uses Gibbs sampling [150] to sequentially refine the individual target

states. The marginal distribution for the nth target is given by f(xk,n∣Xk,n,Xk−1,z1∶k) where
Xk,n = [xk,1, . . . ,xk,n−1,xk,n+1, . . . ,xk,N]. If the sample x∗k,n is generated using the proposal

density q2(xk,n∣X[m]k ,X
[m]
k−1), it is accepted with probability ρ2 given by

ρ2 =min
⎛
⎝
1,

f(x∗k,n∣X
[m]
k,n ,X

[m]
k−1,z1∶k)

q2(x∗k,n∣X
[m]
k ,X

[m]
k−1)

q2(x[m]k,n ∣x∗k,n,X
[m]
k,n ,X

[m]
k−1)

f(x[m]k,n ∣X
[m]
k,n ,X

[m]
k−1,z1∶k)

⎞
⎠

(3.19)

We choose the proposal density q2 as:

q2(xk,n∣X[m]k ,X
[m]
k−1) = tk∣k−1(xk,n∣x[m]k−1,n) (3.20)

At every time step, the MCMC chain is initialized with a particle from the previous time

step that has the highest likelihood for the current observation. A burn-in of Nburn samples

and a thinning factor of Nthin reduce the correlation between the consecutive samples.

3.3.4 PHD filter

The final filter we assess is the Probability hypothesis density (PHD) filter (see Section 4.2).

The algorithms discussed earlier either try to sample from the multitarget posterior density

(SIR and MCMC) or from the individual target marginal posterior densities (MPF), but

the PHD filter samples from the first moment of the multitarget posterior density, also

called the Probability Hypothesis Density (PHD) [86]. The PHD is a function over the

single target state space. It is high in regions where targets are present and its integral

over the target state space is equal to the expected number of targets. Thus sampling

from the PHD populates particles in region where there is high probability of targets being
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present. The advantage of the PHD filter is that we do not have to sample from the high

dimensional space of multiple targets. Please see Section 4.2 for the update equations and

a detailed discussion on the PHD filter.

1: Initialize particles {w(i)0 ,x
(i)
0 }i=Np

i=1

2: for k = 1 to T do
3: for i = 1 to Np do

4: proposal: x
(i)
k ∼ t(xk∣x(i)k−1)

5: end for
6: μ̂k = ∑iw

(i)
k−1g(x

(i)
k )

7: Σ̂k = ∑iw
(i)
k−1g(x

(i)
k )g(x(i)k )T

8: for i = 1 to Np do

9: weight update: w
(i)
k = w

(i)
k−1

Nzk
(g(x

(i)
k
)+μ̂k,Σ̂k+Σ)

Nzk
(μ̂k,Σ̂k+Σ)

10: end for
11: resample step: {w(i)k ,x

(i)
k }i=Np

i=1 → { 1
Np

,x
(i)
k }i=Np

i=1

12: clustering: {x̂k,n}Nn=1 = cluster({x(i)k }i=Np

i=1 ,N)
13: end for

Fig. 3.12 PHD Filter [4]

The pseudo code of the particle filter (SIR) based implementation of the PHD filter,

assuming the number of targets is fixed and known, is given in Figure 3.12. The algorithm

approximates the normalized PHD function using a set of weighted particles. The statistics

μ̂k and Σ̂k are estimated using the proposed particle set which are required in the weight

update step. Resampling is performed to retain diversity of particles. We use the k-means

clustering algorithm to group the particles into clusters, each of which correspond to a

target. The centroids of these clusters are the target state estimates.

3.3.5 Algorithms for unknown target number

We now discuss an extension of the SIR and MCMC filters which allows them to address

the case where the number of targets is unknown and varies with time. Following [71],

we extend the single target state xk,n to include an indicator variable ek,n which indicates

the presence (ek,n = 1) or absence (ek,n = 0) of the target. In our analysis we assume that

the existence indicator variable evolves independently of the target location and velocity

and does so independently for each of the targets. This approach requires us to specify
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the maximum number of targets Nmax that can be present at any given time. The SIR

and MCMC algorithms presented above are easily modified; there is just an additional

propagation step for the indicator variable. Since the number of targets is unknown, we

need to estimate the number of targets as well as the target locations. We employ a simple

heuristic: at any time step we declare a target to be present if more than half of the

corresponding target particles have their indicator variable set to 1.

3.4 Processing outdoor sensor network data

3.4.1 Experiments and data collection

We perform multiple experiments to gather sensor network data in an outdoor environment.

Experiments are conducted using a network of 24 radio frequency sensor nodes deployed

in a 7m × 7m square layout in an empty grass field. The sensor network is graphically

depicted in Figure 3.13. Transceivers of the sensor nodes are system-on-chip (SoC) TI

CC2530 devices and they use 2.4 GHz IEEE 802.15.4 standard for communication. Sensor

network deployment and collection of data was done by students at BUPT.
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Fig. 3.13 Graphical representation of an outdoor sensor network consisting
of 24 RF sensor nodes (indicated as numbered circles) deployed in a square
layout and having M = 276 communication links. The dashed arrows indicate
the direction and the path of the targets in Exp. 1.
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A simple token ring protocol is used to control transmission. During each time interval

of 8.3ms, one node broadcasts a data packet. All of the other nodes receive this packet

and measure the RSS. The token is then passed to the next node. A complete set of

measurements, corresponding to a transmission from each of the 24 sensors, is thus collected

every 200ms. This constitutes one time step for the algorithms.

We perform three different experiments, repeating each ten times. In the first experi-

ment (Exp. 1) two targets move inside the sensor network along a square trajectory. The

targets start from diagonally opposite corners of the square and move in anti-clockwise

direction as indicated by the arrows in Figure 3.13. In second experiment (Exp. 2) two

targets move along a zigzag trajectory (see Figure 3.14(a)). In the third experiment (Exp.

3), four targets are present. Two targets move around a bigger square in an anti-clockwise

direction, starting in opposite corners. The other two other targets move around a smaller

square in a clockwise direction (see Figure 3.14(b)).

All of the targets are present for the entire duration of the experiment. Two rounds

of the trajectory are completed by each target in experiments one and two. Two rounds

of the outer square and four rounds of the inner square are completed by the targets in

experiment three. Visible markers are placed along the target trajectories and we record

the times when targets cross the marker locations to establish a ground-truth trajectory.

3.4.2 Simulation settings

We adopt a simple random walk model for the target motion. Our main motivation for the

simple model is to allow for very general movements (humans walking, stopping, turning).

The target state x is a 2-dim vector consisting of x and y coordinates of its position. The

single target state evolution equation is given as:

xk+1,n = xk,n + vk,n (3.21)

where vk,n is the process noise distributed according to the Gaussian distribution vk,n ∼
N(0, σ2

vI2×2). The targets are assumed to move independently of each other. We assume

that σv is a known constant, but online expectation-maximization based procedures [7]

could be incorporated to jointly track the targets and estimate the process noise variance.

The process noise standard deviation is set to σv = 0.2 in all our simulations. This value

effectively places a bound on the distance a target is likely to travel in 200ms (the mea-
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surement interval) and the value 0.2 reflects that we are trying to track walking human

targets.

We use the exponential model discussed in Section 3.2.1 for outdoor data processing.

The measurement model parameters are set to be φ = 5, σλ = 0.04. The sensor measurement

noise covariance matrix is modeled as Σw = σ2
wInz×nz with σw = 1. These values are selected

because they are the average values observed in many outdoor experiments. The tracking

performance is relatively robust to changes of these parameter values.

In the algorithms, we vary the number of particles per target over the range Nppt =
50,250,500. For the MCMC algorithm, the burn-in is Nburn = 1000 and the thinning factor

is Nthin = 3 which are standard values from the literature, observed to be sufficient in many

cases to substantially reduce correlation between samples. For all of the filters, the initial

set of particles for each target is independently drawn from a Gaussian distribution of unit

variance, centered around the actual target location. The number of targets is assumed to

be fixed and known by all the algorithms. The estimated target locations are obtained by

computing the weighted average of the particles.

We use the OSPA metric (see Section 2.7) to measure the error between the estimated

and the ground truth target locations. We use the value p = 2. The track estimates are

obtained by connecting over time the best possible association at every time step.

All the processing was conducted on a cluster machine running MATLAB Distributed

Computing Server. Distributed processing was used to speed up the simulations by dis-

tributing independent runs of the algorithm over different processors. The cluster machine

consists of eight cluster nodes all with the same configuration. Each cluster node has 8

processors (two Xeon 4-core 2.5GHz processors) with a shared memory of 14GB RAM.

3.4.3 Tracking results

We run each algorithm with 10 different random initializations. Since each experiment is

repeated 10 times, we compute an average error over all the 100 track-initialization pairs.

Table 3.3 presents the average error for the three different experiments obtained by varying

the number of particles per target as Nppt = 50, 250, and 500. The table also shows the

average computation time required per time step. Computational time is measured using

the tic, toc routines in MATLAB.

The results illustrate that the MPF requires only 50 particles per target to track ef-
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SIR MPF MCMC
Error Time Error Time Error Time

Experiment Nppt (m) (ms) (m) (ms) (m) (ms)

Exp. 1 50 0.42 20 0.20 17 0.23 1008
(Two targets) 250 0.21 101 0.20 88 0.20 1978

500 0.20 217 0.20 179 0.20 3374

Exp. 2 50 0.64 19 0.23 17 0.22 973
(Two targets) 250 0.23 95 0.22 84 0.22 1889

500 0.27 202 0.22 170 0.22 3137

Exp. 3 50 1.34 62 0.96 48 0.77 1709
(Four targets) 250 1.06 338 0.90 244 0.69 4333

500 0.88 803 0.91 493 0.63 7636

Table 3.3 Average OSPA error (in meter) and average computational time
(in milliseconds) per time step for different experiments using different algo-
rithms with Nppt = 50,250 & 500.

fectively and that it can execute in real-time (computational time is less than the 200ms

measurement interval). It significantly outperforms the SIR, which needs many more par-

ticles to achieve comparable accuracy. For the two target experiments both MPF and

MCMC have similar performance. For four targets, the MCMC filter is more accurate than

the MPF, but it is almost impossible to execute as a real-time system. The results for

the four-target experiment do illustrate that there is room for improvement over the MPF

algorithm. Interestingly, the accuracy of the MPF does not improve significantly as the

number of particles is increased, indicating that the extra error is probably due to the ap-

proximation employed in the algorithm during the weight update stage (see Section 3.3.2).

Sample tracking trajectories are shown in Figure 3.14(a) (two targets, MPF algorithm)

and Figure 3.14(b) (four targets, MCMC filter). The tracking is generally accurate, with

the occasional departure from the true trajectory. Figures 3.15(a) and 3.15(b) show box

and whisker plots of error as a function of time for the different algorithms. The SIR has

numerous outliers indicating frequent tracking errors. The MPF and MCMC filter have

fewer outliers and the worst-case errors are on the order of 0.6m for the two-target case

and 2.5m for the four-target case.
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0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

X, m

Y
, m

 

 

Target 1 Target 2 Target 3 Target 4

1

18

2

17

3

16

4

15

5

14

6

13

24

23

22

21

20

19

7

8

9

10

11

12

(b) Estimated tracks for Exp. 3

Fig. 3.14 The figures show the ground truth trajectory of two/four targets
as indicated by the dashed arrows. (a) Exp. 2: The estimated target tracks
obtained using the MPF algorithm withNppt = 500. (b) Exp. 3: The estimated
target tracks obtained using the MCMC algorithm with Nppt = 500.
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Fig. 3.15 Box and whisker plot of the error for experiments 2 & 3 as simula-
tion progresses for the algorithms SIR, MPF and MCMC with Nppt = 500. The
box ranges from 25th to 75th percentile and the line within the box indicates
the median value and the pluses indicate outliers.

3.5 Processing indoor sensor network data

3.5.1 Experiments and data collection

We performed multiple experiments at three different indoor sites and repeated each ex-

periment multiple (8-10) times. The first site is in the Trottier Building at McGill Uni-
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versity (Figure 3.16(b)). An area of 8m × 8m was monitored by 24 RF sensor nodes (Fig-

ure 3.16(a)). It is referred to as Setup1 henceforth. A concrete pillar lies within the network.

The second experiment site (Setup2) is the Computer Networks Lab of McGill University

(Figure 3.16(d)). An area of 9m × 9m is monitored by 24 sensor nodes (Figure 3.16(c)).

Numerous desks and chairs are present within the network and there are walls just outside.

The third experiment site (Setup3) is in the Beijing University of Posts and Telecommu-

nications (BUPT), China. Data was collected in a completely through-wall environment

(Figure 3.17(b)) using 28 nodes covering a 5.2m × 6.7m region (Figure 3.17(a)). A high

sensor density was used at this site because of the presence of walls within the sensor net-

work. The same RF sensor nodes as described in Section 3.4 are used in all our setups and

each time step corresponds to a measurement interval of 200ms.

Setup Experiment Description

Setup1
Exp. 1 single target 24 sensors in 8m × 8m,
Exp. 4 two target concrete pillar obstruction
Exp. 6 three target

Setup2
Exp. 2 single target 24 sensors in 9m × 9m,
Exp. 5 two target desks and chairs obstruction
Exp. 7 time varying target number

Setup3 Exp. 3 single target
28 sensors in 5.2m × 6.7m,
through-wall environment

Table 3.4 Description of the different indoor experimental setups and the
nature of the experiments used to collect data.

We performed multiple single and multi-target experiments to collect measurements

from the sensor network. The setup description and experiments are summarized in Ta-

ble 3.4. The single target experiments at Setup1, Setup2 and Setup3 are respectively

referred to as “Exp. 1”, “Exp. 2” and “Exp. 3”. The two-target experiments at Setup1

and Setup2 are called “Exp. 4” and “Exp. 5” respectively. The three-target experiment

performed at Setup1 is called “Exp. 6”. The time-varying number of targets experiment

at Setup2 is called “Exp. 7”. In this experiment either one or two targets are present at

any given instant.
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Fig. 3.16 Layouts and photos of experiments: (a), (b) Setup1, uncluttered
indoor environment; (c), (d) Setup2, cluttered indoor environment.

3.5.2 Simulation settings

The target dynamics are modeled using a jump-state Markov model in our simulations.

Jump-state Markov models are standard models for describing the dynamics of a maneu-

vering object [151, 152]. The model assumes that the target operates at each time step in

one of multiple modes of operation (represented as a discrete state variable). The discrete

state jumps/switches are independent of the target positions and are governed by a Markov

chain.

We adopt the following jump-state Markov model in our experiments. A single target
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Fig. 3.17 Layout and photo of Setup3, through-wall measurements.

state consists of its position x in the x-y plane, its current motion angle θ and a discrete state

variable u. Let the initial state distribution at time step k = 0 is modeled as p(u0, θ0,x0).
The target motion equations are then given as:

uk ∼ p(uk∣uk−1), (3.22)

θk = θk−1 + ν(uk) + sk, (3.23)

xk = xk−1 +m

⎡⎢⎢⎢⎢⎣

cos θk

sin θk

⎤⎥⎥⎥⎥⎦
+ vk. (3.24)

Here the discrete state variable can take values uk ∈ {0,1,2} which represents “no turn”

(ν(0) = 0), “left-turn” (ν(1) = 0.1 rad), and “right-turn” (ν(2) = −0.1 rad), respectively.

p(uk∣uk−1) is the transition probability matrix and sk ∼ N(0, σ2
s) and vk ∼ N(0, σ2

vI2×2) are
the innovation noise terms. The speed of the target is assumed to be constant m.

We set m = 0.1 in our experiments since it approximates the typical walking speed of

humans. We model the transition probabilities p(uk∣uk−1) as given in the table 3.5. The

transition probabilities are chosen to approximate typical human motion characteristics.

Higher values in the first row indicate a greater tendency to walk straight than to make

turns. Angle innovation noise variance σ2
s is set to 0.001 to model smooth target motion.

The tracking performance is robust to small changes in σ2
s , m and the table entries. The

parameter σv is set to 0.1, although we examine the impact of changing it to 0.2 for the
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uk−1

uk 0 1 2
0 0.75 0.65 0.65
1 0.125 0.3 0.05
2 0.125 0.05 0.3

Table 3.5 Transition probabilities p(uk∣uk−1) used in the simulations.

single-target case.

Observation model parameters were selected based on training phases performed at the

three experimental sites. The test data sets do not include any data from the training

phases. For the MCMC filter we use Nburn = 1000 and Nthin = 3. Some links exhibit large

variance in their RSS measurements even when the network is vacant. Those links have

severe impacts on the tracking results, as the variation of the RSS is not caused by the

targets. Thus we exclude the RSS measurements of any links whose variance is higher than

1 for the vacant network as a pre-processing step. All the processing is done in MATLAB

on the cluster machine described in Section 3.4.2.

3.5.3 Tracking results

To compare the algorithms we use the OSPA error metric when the number of targets

are known and fixed and the OSPA error metric when the number of targets is unknown

and changes over time. The reported tracking errors are calculated by averaging over

the multiple repetitions of the experiments and for each experiment running the tracking

algorithm with 10 different random initializations.

Single target tracking

The algorithms of SIR, MCMC and PHD are compared for the different single target

experiments. The MPF is identical to the SIR algorithm in the single target case. For

all filters, we set Np = 500 (larger values were observed to give minimal improvement and

smaller values lead to larger tracking error). Tracking is performed using the measurement

models discussed in Section 3.2: the magnitude model (Mag), modified skew-Laplace model

(SL) and original skew-Laplace model (SL [60]). The best-fit skew-Laplace parameters

are given in Tables 3.1 and 3.2. For the magnitude model, we use σw = 2, φ = 4 and

σλ = 0.2. Since the particle implementation of the PHD filter in [4] is obtained assuming
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the measurement noise to be Gaussian, we do not perform its skew-Laplacian analysis. The

tracking performance in terms of average OSPA error for the testing data set is summarized

in Table 3.6.

SIR MCMC PHD
Average error(m), σv = 0.1

Experiment Mag SL SL [60] Mag SL SL [60] Mag
Exp. 1 0.31 0.35 2.73 0.31 0.40 1.06 0.45
Exp. 2 0.41 1.01 3.10 0.37 0.46 1.50 0.50
Exp. 3 0.36 0.56 1.55 0.30 0.37 0.37 0.46

Average error(m), σv = 0.2
Exp. 1 0.35 0.38 0.54 0.32 0.40 0.34 0.53
Exp. 2 0.43 0.47 0.59 0.41 0.45 0.46 0.56
Exp. 3 0.34 0.45 0.41 0.30 0.36 0.29 0.54

Table 3.6 Single target: Average OSPA error (in meter) using different
tracking algorithms and different measurement models for Exp. 1, Exp. 2,
and Exp. 3. σv = 0.1,0.2. Error is reported for the testing data set.

Two different values of the innovation noise standard deviation, σv = 0.1 and σv = 0.2,

are considered to analyze the robustness of the measurement models. A higher value of σv

implies less confidence in the motion model; it also facilitates recovery from tracking errors.

Table 3.6 suggests the original skew-Laplace model performance is sensitive to the choice of

σv. In most cases the magnitude model has a lower error than the modified skew-Laplace

model, which in turn generally performs better than the original skew-Laplace model. The

magnitude model is relatively insensitive to the choice of σv for both the SIR and MCMC

algorithms. The SIR and MCMC have similar performance and both perform better than

the PHD filter. Figures 3.18(a), 3.18(b) and 3.18(c) plot sample target trajectories obtained

using the SIR filter and the magnitude model for the three different experiments. For

the most part the estimated target trajectories closely follow the true target trajectories

with accuracy dropping in presence of obstacles such as the region between the desks in

Figure 3.18(b).

Figure 3.19 shows the OSPA error over time using a box-and-whisker diagram for the

MCMC algorithm (σv = 0.1). Boxes range from the 25th to 75th percentile, the horizontal bar

within the box indicates the median value, and the red pluses indicate outliers. Using the

original skew-Laplace model there are multiple lost tracks leading to frequent outliers. For
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Fig. 3.18 Sample single target trajectories using the magnitude model in
different indoor environments. The small diamond indicates the start of tra-
jectory.

the modified skew-Laplace model the performance is comparable to the magnitude model.

The computational time requirements of the tracking algorithms also play an important

role in their practical applicability. Table 3.7 summarizes the average normalized processing

times of each of the algorithms with different measurement model combinations. The

normalized processing time is the ratio of time required to process the data to the duration
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of the experiment. A normalized time less than 1 indicates a real-time performance of the

algorithm. The SIR and PHD algorithms are computationally fast and can perform real

time tracking when a single target is present.
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Fig. 3.19 Box-and-whisker plot of the OSPA error over time for the Exp.1
data using the MCMC algorithm.

SIR MCMC PHD
Exp. Mag SL SL [60] Mag SL SL [60] Mag
Exp. 1 0.19 0.45 0.50 6.79 22.79 26.06 0.38
Exp. 2 0.11 0.24 0.37 13.19 22.70 25.11 0.63
Exp. 3 0.12 0.34 0.41 7.79 13.58 15.80 0.46

Table 3.7 Single target: Average normalized processing time using different
tracking algorithms and different measurement models for Exp. 1, Exp. 2,
and Exp. 3.

Multiple target tracking with known and fixed number of targets

We now consider tracking experiments in which there are multiple (two or more) targets

and the number of targets is fixed and known. Two-target experiments were performed

at Setup1 and Setup2 and a three-target experiment was conducted at Setup1. We exam-

ined the performance of the skew-Laplace measurement model for multiple targets but it
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frequently leads to lost tracks and has significantly higher average error for all algorithms.

Hence, in this section, we only report results for the multi-target magnitude measurement

model discussed in Section 3.2.3. We use the model parameters σw = 2, φ = 3 and σλ = 0.4.

Table 3.8 reports the average OSPA errors for the two-target experiments, Exp. 4 and

Exp. 5. To examine the effect of prior information on the overall tracking performance, we

consider two different initial particle distributions. For the “Informed Prior”, we initialize

the particles at the first time step according to a Gaussian distribution with variance 1,

centered at the true target locations. In the “Uniform Prior”, we initialize the particles

uniformly at random within the observation region.

Informed Prior Uniform Prior
Experiment Nppt SIR MPF MCMC PHD SIR MPF MCMC PHD
Exp. 4 100 1.46 1.00 0.86 0.93 1.63 1.78 1.06 0.96

250 1.05 0.79 0.83 0.86 1.27 1.58 1.00 0.89
500 0.92 0.67 0.80 0.88 1.06 1.44 0.97 0.91
750 0.80 0.62 0.80 0.88 1.01 1.36 0.92 0.91

Exp. 5 100 1.11 0.94 0.72 0.93 1.15 1.21 0.74 0.92
250 1.00 0.82 0.70 0.92 0.94 1.01 0.72 0.89
500 0.83 0.71 0.70 0.89 0.88 0.92 0.72 0.91
750 0.72 0.70 0.69 0.88 0.80 1.00 0.72 0.89

Table 3.8 Two targets: Average OSPA error (in meters) using different
algorithms with Nppt = 100,250,500 & 750 for Exp. 4 and Exp. 5.

The MPF performs best when the “Informed Prior” is used. For all the methods except

the PHD the average error reduces as the number of particles is increased. There is minimal

gain in accuracy for any algorithm if the number of particles per target is increased beyond

Nppt = 750. The error fluctuations for the PHD filter with respect to the number of particles

are due primarily to errors during the clustering stage. When the particles are initialized

using the non-informative “Uniform Prior”, the SIR and MPF algorithm performances

worsen significantly for Experiment 4. The MCMC algorithm is more robust with respect

to the prior information, and the PHD filter displays little sensitivity to the initialization.

Figures 3.20(a) and 3.20(b) show sample target trajectories obtained using the MPF

algorithm in Exp. 4 and Exp. 5 respectively. Figure 3.20(c) displays box-and-whisker

OSPA error plots for the Exp. 4 data for the four tracking algorithms. The median error

is lowest for the MPF algorithm. The computational requirements (normalized processing
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Fig. 3.20 (a), (b): Example target tracks estimated by the MPF algorithm
when two targets are present for Exp. 4 and Exp. 5. (c): Box-and-whisker
plot of OSPA error over time for Exp. 4 data.

time) of the different algorithms are displayed in Table 3.9. Results for both cases “Informed

Prior” and “Uniform Prior” were observed to be similar and hence we report only the latter.

The SIR, MPF (500 particles or less) and PHD filter (250 particles or less) can execute in

real-time. The MCMC algorithm has a major computational overhead and cannot execute

in real-time with the current implementation and processor.

Table 3.10 reports the average OSPA error for Exp. 6 data when three targets are
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Experiment Nppt SIR MPF MCMC PHD
Exp. 4 100 0.12 0.11 16.42 0.61

250 0.34 0.30 25.97 0.95
500 0.75 0.68 41.81 1.57
750 1.23 1.10 57.41 2.21

Exp. 5 100 0.12 0.11 16.37 0.56
250 0.34 0.30 25.90 0.88
500 0.76 0.67 41.78 1.44
750 1.21 1.10 57.68 2.02

Table 3.9 Two targets: Average normalized processing time using different
algorithms with Nppt = 100,250,500 & 750 for Exp. 4 and Exp. 5 (using
uniform prior).

simultaneously present. When using the “Informed Prior”, the MPF algorithm has the

lowest tracking error. When the “Uniform Prior” is used, the PHD filter performs notice-

ably better than the other algorithms. The PHD filter operates in the single-target state

space and hence increasing the number of targets has less impact on its performance. We

observe that there is a slight increase in error of the PHD filter as the number of particles

is increased. A similar trend was observed even after increasing the number of Monte Carlo

trials. A possible explanation for this behaviour could be that the additional particles dis-

proportionately populate the state space region corresponding to only some of the targets.

This can in turn introduce a bias in the mean vector and the covariance matrix which we

estimate using particles (see Figure 3.12).

Exp. 6 Informed Prior Uniform Prior
Nppt SIR MPF MCMC PHD SIR MPF MCMC PHD
100 1.94 0.75 0.90 0.75 2.08 1.20 0.98 0.76
250 1.34 0.58 0.89 0.76 1.56 1.07 0.92 0.77
500 1.04 0.56 0.84 0.80 1.09 0.96 0.97 0.83
750 0.91 0.54 0.83 0.83 0.95 1.03 0.91 0.84

Table 3.10 Three targets: Average OSPA error (in meters) for Exp. 6,
Setup1.

A sample target trajectory obtained using the MPF algorithm is shown in Figure 3.21.

The corresponding computational time requirements (normalized processing time) for the

algorithms are summarized in Table 3.11. Real-time tracking is possible with the SIR and
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MPF algorithms using 250 particles or less, but this involves some decrease in accuracy.

The PHD filter can execute in real time for 100 particles, but its accuracy is less sensitive

to the number of particles.
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Fig. 3.21 Three targets: Example target tracks estimated by the MPF al-
gorithm when three targets are present for Exp. 6, Setup1.

Nppt SIR MPF MCMC PHD
100 0.29 0.25 31.49 0.86
250 0.83 0.69 54.51 1.48
500 1.94 1.58 93.63 2.59
750 2.95 2.45 131.4 3.62

Table 3.11 Three targets: Average normalized processing time for Exp. 6,
Setup1 (using uniform prior).

Multiple target tracking with unknown and varying number of targets

We now address the most challenging indoor target tracking task of tracking a time varying

and unknown number of targets. We use the SIR and MCMC algorithms, adapted to

account for varying target number as discussed in Section 3.3, to track the targets. The

multi-target magnitude measurement model is used for likelihood computation. We assume

the maximum number of targets is Nmax = 4. The model parameters are σw = 2, φ = 5 and

σv = 0.1.
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Table 3.12 shows the average OSPA error values for the Exp. 7 data for different values

of the cardinality penalty c. We set the number of particles per target to Nppt = 500 and use

the “Informed Prior” particle initialization. When the cardinality penalty is small (c = 1),

the error is comparable to the two-target error when the number of targets is known,

indicating that the tracking performance of the algorithms is not significantly affected by

the missing information. Both the algorithms have similar error values for small c and

MCMC error increases slightly with c indicating the MCMC cardinality estimate is not as

robust as the SIR.

Exp. 7 Average OSPA error
Algorithm c = 1 c = 2.5 c = 5

SIR 0.60 0.91 1.32
MCMC 0.60 0.93 1.38

Table 3.12 Varying target number: Average OSPA errors for Exp. 7,
Setup2.

Figure 3.22 compares the actual number of targets to the SIR cardinality estimate.

Also shown is the corresponding error variation for c = 1 and c = 5. The algorithm makes

numerous cardinality estimation errors, particularly in the time-period 25-30s, when one of

the targets is in the region between the desks (Figure 3.16(c)) and hence is more difficult

to detect.
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Fig. 3.22 (a) Example of the true number of targets and the SIR cardinality
estimate (Exp. 7, Setup2). (b) Average OSPA error for c = 1 and c = 5.
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3.6 Conclusions

In this chapter we described the radio frequency tomography approach for multitarget track-

ing. We have presented measurement models for both outdoor and indoor environments.

Data collected from multiple outdoor and indoor locations was used to experimentally

validate the additive attenuation of multitarget measurement models. The experiments

indicated that the models adequately capture the average attenuation; the noise, although

close to zero-mean, is not well described by the Gaussian or truncated Gaussian model as

the observed heavy tails are not captured. This does not substantially compromise perfor-

mance in the reported experiments because the sensors are relatively densely deployed.

We compared four particle based multitarget tracking algorithms. Using data from

experiments at multiple sites representing a variety of measurement challenges, we demon-

strated that the algorithms can successfully track up to four targets in outdoor environment

and up to three targets in indoor environment. The system and algorithms can perform

well when sensors are deployed in uncluttered outdoor locations, inside a room with fur-

niture, or densely deployed outside a small, uncluttered room with thick concrete walls.

The algorithms can track a time-varying number of targets, but struggle to estimate the

number of targets accurately.



72

Chapter 4

Moment filters for superpositional

sensors

In the multitarget tracking problem often the number of targets and the number of ob-

servations are unknown and time varying. Representing the multitarget target state and

observations as vectors is inefficient in such scenarios. Tracking algorithms have to search

through a much larger space spanning multiple dimensions which make them slow and in-

accurate. Assuming that the order of elements is not a significant concern, a more suitable

representation in such a case is the finite set. This is the basis for the random finite set

(RFS) framework [9, 33] which represents target states and observations as realizations of

random finite sets.

Moment based filters developed using the random finite set theory propagate the first

and/or higher order moments of the multitarget density function over time. Examples

include the probability hypothesis density (PHD) filter and the cardinalized probability hy-

pothesis density (CPHD) filter. We study these filters in the context of superpositional

sensor measurement model discussed in Section 2.4.2. The general CPHD filter for super-

positional sensors was first derived by Mahler [14] but the filter equations are computation-

ally intractable. The computationally tractable PHD update equations were first derived

by Thouin, Nannuru and Coates in [4, 153]; the computationally tractable CPHD update

equations were first derived by Mahler and El-Fallah in [38]. For completeness, in this

chapter we first present the derivations of computationally tractable approximations of the

PHD [4,153] and CPHD [38] filters for superpositional sensors. As a novel contribution of

2015/08/12
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this thesis, later in this chapter we develop auxiliary particle filter based implementations

of the PHD and CPHD filters and perform numerical simulations.

This chapter is organized as follows. In Section 4.1 we introduce the moment filters and

outline the derivation methodology. In Section 4.2, we derive computationally tractable

approximate PHD filter update equations for superpositional sensors. Approximate up-

date equations for the CPHD filter are derived in Section 4.3. Section 4.4 discusses the

auxiliary particle filter based implementations of the PHD and CPHD filters. We conduct

performance analysis of the PHD, CPHD and MCMC filters using numerical simulations

in Section 4.5. Section 4.6 provides conclusions for this chapter.

4.1 Moment filters

The optimal Bayes filter solution (Section 2.5) for the multitarget tracking problem is

analytically intractable because the related set integrals cannot be evaluated except for

very few simple cases. One method to solve this problem is to make certain simplifying

assumptions or approximations about the involved multitarget distributions. Under these

assumptions it suffices to propagate the relevant sufficient statistics over time reducing the

complexity of the filter equations. This is the main idea behind the development of the

PHD and CPHD filters.

4.1.1 PHD filter

The PHD filter propagates the probability hypothesis density function (Section 2.2.3) over

time. When the multitarget distributions are Poisson (Section 2.3.1) the PHD filter is the

optimal filter since a Poisson random finite set can be completely characterized by its PHD

function. The PHD filter was first developed for standard sensors by Mahler [86]. The

general PHD filter equations for superpositional sensors were first derived by Mahler [14]

(the general CPHD filter equations are explicitly provided; PHD filter equations can be

derived as a special case). These equations are computationally intractable and are of very

limited practical importance. To overcome this limitation, approximate but computation-

ally tractable PHD filter equations for superpositional sensors were derived by Thouin,

Nannuru and Coates in [4, 153].
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4.1.2 CPHD filter

In the PHD filter, since only the probability hypothesis density function is propagated over

time, there is an inherent assumption that the cardinality distribution of the multitarget

set is Poisson. This is not a desirable assumption especially since the variance of the

Poisson distribution is equal to its mean implying that as the number of targets increases,

the error in its estimation becomes larger. To overcome this problem the cardinalized

probability hypothesis density filter was derived by Mahler [87] for standard sensors. The

CPHD filter assumes that the multitarget state can be modeled by an IIDC random finite

set (Section 2.3.2) and hence along with the the probability hypothesis density function

it also propagates the cardinality distribution over time. This provides more accurate

cardinality information about the multitarget state. The general CPHD filter equations

for superpositional sensors were first derived by Mahler in [14] and their computationally

tractable approximate versions were derived by Mahler and El-Fallah in [38].

4.1.3 Key steps of derivation

The primary steps in the derivations of computationally tractable approximations of the

PHD and CPHD filter update equations for superpositional sensors are the application of

a) Change of variables formula (Section 2.2.4);

b) Campbell’s theorem (Section 2.2.5); and

c) Gaussian approximation for intermediate distributions.

The PHD and CPHD filter update equations for superpositional sensors can be expressed

as set integrals, but these are computationally intractable. Application of suitable change

of variables formulae allows us to transform these set integrals into ordinary integrals.

Although much simpler, evaluation of the resultant ordinary integrals remains an un-

palatable computational challenge. Application of Campbell’s theorem (the linear case for

the PHD and the more general quadratic version for the CPHD) allows us to evaluate the

mean and variance of the intermediate distributions. We can then use a Gaussian approx-

imation of this distribution. When combined with Gaussian sensor noise assumption this

leads to approximate update equations that involve much less computational overhead.
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We note that the derivation approach we present of the approximate PHD and CPHD

filters in this chapter and the approximate multi-Bernoulli filters in Chapter 5 for superposi-

tional sensors is significantly different from that of the same filters for standard sensors [34].

The latter uses the probability generating functional based formulation of the multitarget

Bayes filter (Section 2.5), which cannot be easily applied for the superpositional observa-

tion model. The approximate approach developed in these chapters cannot be extended to

the standard observation model because the crucial step of applying Campbell’s theorem

can only be used when the observation model has a superpositional form.

4.2 PHD filter

Let X be the single target state space and let Y be the space of observations. If Zk is the

observation vector and Xk = {x1,k,x2,k, . . . ,xnk,k} is the multitarget state at time k then

we have xi,k ∈ X and Zk ∈ Y . We make the following modelling assumptions while deriving

the superpositional sensor PHD filter equations:

a) Target birth at time k + 1 is modelled using a Poisson random finite set.

b) The predicted multitarget distribution at time k + 1 is Poisson.

c) The sensor observation model is of the superpositional form as described in Section 2.4.2.

Let Dk+1∣k(x∣Z1∶k) and Dk+1∣k+1(x∣Z1∶k+1) be the predicted and posterior PHD functions

at time k + 1. They are related to the predicted and posterior multitarget densities as

follows

Dk+1∣k(x∣Z1∶k) = ∫
X
fk+1∣k({x} ∪W ∣Z1∶k) δW (4.1)

Dk+1∣k+1(x∣Z1∶k+1) = ∫
X
fk+1∣k+1({x} ∪W ∣Z1∶k+1) δW (4.2)

For brevity, in the following subsections, we drop the explicit notation of conditional de-

pendence on the observations. For example, we write:

Dk+1∣k(x) ≡Dk+1∣k(x∣Z1∶k), (4.3)

Dk+1∣k+1(x) ≡Dk+1∣k+1(x∣Z1∶k+1) (4.4)
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We also define the normalized predictive PHD sk+1∣k(x) as:

sk+1∣k(x) def=
Dk+1∣k(x)
μk+1∣k

(4.5)

μk+1∣k
def= ∫

X
Dk+1∣k(x)dx. (4.6)

Denote the superpositional sensor multitarget likelihood function as hzk+1(X). See Sec-

tion 2.4.2 for a more detailed discussion of this likelihood function.

4.2.1 Prediction step

The superpositional assumption on the likelihood model does not affect the time prediction

step of the filter. Hence we can apply Mahler’s general law of motion for PHDs to compute

the predictive PHD [86],

Dk+1∣k(x) = bk+1∣k(x) + ∫
X
psv,k+1(w)tk+1∣k(x∣w)Dk∣k(w)dw (4.7)

where psv,k+1(w) is the survival probability of target located at w at time k + 1; bk+1∣k(x)
is the PHD of the target birth process at x; and tk+1∣k(x∣w) is the single target Markovian

transition function. We do not consider spawning of new targets from existing targets in

our analysis.

4.2.2 Update step

We now derive the update formula for the PHD filter. By definition, the posterior PHD at

time k + 1 is given by

Dk+1∣k+1(x) = ∫
X
fk+1∣k+1({x} ∪W )δW (4.8)

Applying Bayes rule we have:

Dk+1∣k+1(x) = ∫
X

hzk+1({x} ∪W )fk+1∣k({x} ∪W )
f(zk+1∣Z1∶k)

δW (4.9)

= ∫Xhzk+1({x} ∪W )fk+1∣k({x} ∪W ) δW
∫X hzk+1(W )fk+1∣k(W )δW . (4.10)
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If we now assume that the predicted multitarget distribution fk+1∣k(W ) has a Poisson

distribution with the PHD function Dk+1∣k(x), we can write

fk+1∣k({x} ∪W ) = e−μk+1∣k Dk+1∣k(x) ∏
w∈W

Dk+1∣k(w) (4.11)

=Dk+1∣k(x)fk+1∣k(W ) (4.12)

Thus from (4.10)

Dk+1∣k+1(x) =Dk+1∣k(x)∫X
hzk+1({x} ∪W )fk+1∣k(W )δW
∫X hzk+1(W )fk+1∣k(W )δW (4.13)

=Dk+1∣k(x)Lzk+1(x) (4.14)

where we have defined the pseudolikelihood function Lzk+1(x) as

Lzk+1(x)
def= ∫Xhzk+1({x} ∪W )fk+1∣k(W ) δW

∫Xhzk+1(W )fk+1∣k(W ) δW (4.15)

Under the assumption of Gaussian sensor noise and the superpositional sensor model from

Section 2.4.2,

hzk+1(W ) = NΣz(zk+1 − ζ(W )) (4.16)

hzk+1({x} ∪W ) = NΣz(zk+1 − g(x) − ζ(W )) (4.17)

Lzk+1(x) =
∫XNΣz(zk+1 − g(x) − ζ(W ))fk+1∣k(W ) δW

∫XNΣz(zk+1 − ζ(W ))fk+1∣k(W ) δW (4.18)

Applying the change of variable y = ζ(W ) in the numerator and denominator and using

the formula in equation (2.17) for change of variables from Section 2.2.4 leads to:

Lzk+1(x) =
∫YNΣz(zk+1 − g(x) − y)Qk+1∣k(y)dy

∫YNΣz(zk+1 − y)Qk+1∣k(y)dy
(4.19)

To develop a computationally tractable update equation we approximate Qk+1∣k(y) using

a Gaussian distribution, Qk+1∣k(y) ≈ NΣk+1
(y −mk+1). The parameters mk+1 and Σk+1 can

be obtained using the Campbell’s theorem from Section 2.2.5. For the Poisson process

we have Dk+1∣k(x) = μk+1∣k sk+1∣k(x) and Dk+1∣k({x1,x2}) = Dk+1∣k(x1)Dk+1∣k(x2). Applying
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Campbell’s theorem gives

mk+1 = ∫
X
g(x)Dk+1∣k(x)dx (4.20)

= μk+1∣k ∫
X
g(x) sk+1∣k(x)dx (4.21)

= μk+1∣k m̂k+1 (4.22)

Σk+1 = ∫
X
g(x) g(x)TDk+1∣k(x)dx (4.23)

= μk+1∣k ∫
X
g(x) g(x)T sk+1∣k(x)dx (4.24)

= μk+1∣k Σ̂k+1 (4.25)

where

m̂k+1
def= ∫

X
g(x) sk+1∣k(x) (4.26)

Σ̂k+1
def= ∫

X
g(x)g(x)T sk+1∣k(x) (4.27)

The pseudo-likelihood Lzk+1(x) can then be approximated as:

Lzk+1(x) ≈
∫Y NΣz(zk+1 − g(x) − y)NΣk+1

(y −mk+1)dy
∫Y NΣz(zk+1 − y)NΣk+1

(y −mk+1)dy
(4.28)

= NΣz+Σk+1
(zk+1 − g(x) −mk+1)

NΣz+Σk+1
(zk+1 −mk+1)

(4.29)

The approximate update equation for the PHD filter is then

Dk+1∣k+1(x) ≈ Lzk+1(x)Dk+1∣k(x). (4.30)

Thus the update equation involves calculating the ratio of two Gaussian densities. The

main computational challenge is evaluating the integrals in (4.26) and (4.27) which require

numerical approximation.

Analysis of Gaussian approximation

The approximation Qk+1∣k(y) ≈ NΣk+1
(y−mk+1) has been introduced in order to analytically

evaluate the integrals in (4.19). Without this approximation the update equation would
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involve integrals which have to be numerically evaluated and it makes the filter implemen-

tation computationally demanding. A brief numerical analysis of the errors introduced in

the calculation of the integral and the pseudo-likelihood because of this approximation is

provided in Appendix A. To summarize, we observe that as the average number of targets

represented by the underlying random finite sets is increased the error between the original

and the approximated integral reduces significantly.

4.3 CPHD filter

The CPHD filter propagates both the probability hypothesis density and the cardinality

distribution over time. We make the following modelling assumptions while deriving the

superpositional sensor CPHD filter equations:

a) Target birth at time k + 1 is modelled using an IIDC random finite set.

b) The predicted multitarget distribution at time k + 1 is IIDC.

c) The sensor observation model is of the superpositional form as described in Section 2.4.2.

Let Dk+1∣k(x) and Dk+1∣k+1(x) be the predicted and the posterior PHD functions at

time k + 1. Let the predicted and posterior cardinality distributions at time k + 1 be

πk+1∣k(n) ≡ πk+1∣k(n∣Z[k]) and πk+1∣k+1(n) ≡ πk+1∣k+1(n∣Z[k+1]) respectively. Let sk+1∣k(x) be

the normalized predicted PHD and μk+1∣k be the mean predicted cardinality

sk+1∣k(x) def=
Dk+1∣k(x)
μk+1∣k

(4.31)

μk+1∣k
def=
∞

∑
n=1

nπk+1∣k(n) = ∫
X
Dk+1∣k(x)dx (4.32)

Denote the superpositional sensor multitarget likelihood function as hzk+1(X).

4.3.1 Prediction step

The PHD and cardinality prediction equations for superpositional sensors are the same as

those for standard sensors since the likelihood function has no role. The PHD function

prediction equation for the CPHD filter is the same as that for the PHD filter which we
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repeat here for completeness

Dk+1∣k(x) = bk+1∣k(x) + ∫
X
psv,k+1(w)tk+1∣k(x∣w)Dk∣k(w)dw (4.33)

where psv,k+1(w) is the survival probability of target located at w at time k + 1; bk+1∣k(x)
is the PHD of the target birth process at x; and tk+1∣k(x∣w) is the single target Markovian

transition function.

The cardinality distribution prediction equation is given by [87]:

πk+1∣k(n) =
n

∑
j=0

pb,k+1(n − j)
∞

∑
l=j

(l
j
)
⟨Dk+1∣k, psv,k+1⟩j ⟨Dk+1∣k,1 − psv,k+1⟩l−j

⟨Dk+1∣k,1⟩l
πk∣k(l) (4.34)

where pb,k+1(j) is the birth probability of j new targets at time k + 1. When the target

survival probability is constant at all times and at all locations, psv,k(x) = ps, the above

equation reduces to

πk+1∣k(n) =
n

∑
j=0

pb,k+1(n − j)
∞

∑
l=j

(l
j
)pjs(1 − ps)l−jπk∣k(l) (4.35)

For the derivations we assume that there exists some n0 ≥ 0 such that for all n > n0, we

have πk+1∣k(n) < 1/n. This assumption holds in the common case when there is a bound on

the maximum number of targets.

4.3.2 Update step

The CPHD filter propagates a probability distribution of the cardinality of the random set

representing the state of the system along with the PHD. The derivation of the approximate

CPHD filter update equations proceeds along similar lines as that of the PHD filter.

PHD update

As before from (4.10), the posterior PHD at time k + 1 is given by the expression:

Dk+1∣k+1(x) = ∫Xhzk+1({x} ∪W )fk+1∣k({x} ∪W ) δW
∫X hzk+1(W )fk+1∣k(W )δW (4.36)
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Assuming that the predicted multitarget density fk+1∣k(W ) corresponds to an IIDC random

finite set we have

fk+1∣k({x} ∪W ) = (∣W ∣ + 1)!πk+1∣k(∣W ∣ + 1) sk+1∣k(x) ∏
w∈W

sk+1∣k(w) (4.37)

= μk+1∣k sk+1∣k(x) ∣W ∣!
(∣W ∣ + 1)πk+1∣k(∣W ∣ + 1)

μk+1∣k
∏
w∈W

sk+1∣k(w) (4.38)

=Dk+1∣k(x)f o
k+1∣k(W ) (4.39)

where

f o
k+1∣k(W ) def= ∣W ∣!πo

k+1∣k(∣W ∣) ∏
w∈W

sk+1∣k(w) (4.40)

πo
k+1∣k(n)

def=
(n + 1)πk+1∣k(n + 1)

μk+1∣k

. (4.41)

From the above formulation f o
k+1∣k

(W ) is a multitarget density corresponding to an IIDC

RFS with density function sk+1∣k(x) and cardinality distribution πo
k+1∣k

(n) which is a valid

cardinality distribution since

∞

∑
n=0

πo
k+1∣k(n) =

1

μk+1∣k

∞

∑
n=0

(n + 1)πk+1∣k(n + 1) (4.42)

= 1

μk+1∣k

× μk+1∣k = 1. (4.43)

Thus from (4.36)

Dk+1∣k+1(x) =Dk+1∣k(x)
∫X hzk+1({x} ∪W )f o

k+1∣k
(W )δW

∫X hzk+1(W )fk+1∣k(W )δW (4.44)

=Dk+1∣k(x)Lo
zk+1

(x) (4.45)

where the pseudolikelihood function is now defined as

Lo
zk+1

(x) def= ∫X hzk+1({x} ∪W )f o
k+1∣k

(W ) δW

∫X hzk+1(W )fk+1∣k(W ) δW (4.46)
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Under the assumption of Gaussian sensor noise and the superpositional sensor model,

Lo
zk+1

(x) = ∫X NΣz(zk+1 − g(x) − ζ(W ))f o
k+1∣k

(W ) δW

∫X NΣz(zk+1 − ζ(W ))fk+1∣k(W ) δW (4.47)

Performing the change of variables yo = ζ(W ) in the numerator and y = ζ(W ) in the

denominator we get

Lo
zk+1

(x) = ∫Y NΣz(zk+1 − g(x) − yo)Qo
k+1∣k

(yo)dy

∫Y NΣz(zk+1 − y)Qk+1∣k(y)dy
(4.48)

Approximating the density functions Qo
k+1∣k

(yo) and Qk+1∣k(y) to be Gaussian, from Camp-

bell’s theorem we have,

Qo
k+1∣k(yo) ≈ NΣo

k+1
(y −mo

k+1) (4.49)

Qk+1∣k(y) ≈ NΣk+1
(y −mk+1) (4.50)

mo
k+1 =

a

μk+1∣k

m̂k+1 (4.51)

Σo
k+1 =

a

μk+1∣k

Σ̂k+1 −
⎛
⎝

a2

μ2
k+1∣k

− b

μk+1∣k

⎞
⎠
m̂k+1m̂

T
k+1 (4.52)

mk+1 = μk+1∣k m̂k+1 (4.53)

Σk+1 = μk+1∣k Σ̂k+1 − (μ2
k+1∣k − a) m̂k+1m̂

T
k+1 (4.54)

where

m̂k+1
def= ∫

X
g(x) sk+1∣k(x) (4.55)

Σ̂k+1
def= ∫

X
g(x)g(x)T sk+1∣k(x), (4.56)

a
def=
∞

∑
n=0

n(n − 1)πk+1∣k(n) (4.57)

b
def=
∞

∑
n=0

n(n − 1)(n − 2)πk+1∣k(n). (4.58)

The expressions for the parameters mo
k+1, Σ

o
k+1, mk+1 and Σk+1 are derived in Appendix B.
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Hence the approximate pseudo-likelihood function can be expressed as

Lo
zk+1

(x) ≈
NΣz+Σo

k+1
(zk+1 − g(x) −mo

k+1)
NΣz+Σk+1

(zk+1 −mk+1)
. (4.59)

Cardinality update

The posterior cardinality distribution is defined as:

πk+1∣k+1(n) = ∫
∣W ∣=n

fk+1∣k+1(W )δW (4.60)

= ∫∣W ∣=n hzk+1(W )fk+1∣k(W )δW
∫X hzk+1(W )fk+1∣k(W )δW (4.61)

= πk+1∣k(n)
∫X hzk+1(W )fn

k+1∣k
(W )δW

∫X hzk+1(W )fk+1∣k(W )δW (4.62)

where

fn
k+1∣k(W ) def= 1

πk+1∣k(n)
δ∣W ∣,nfk+1∣k(W ) (4.63)

where δ∣W ∣,n is the Kronecker delta function. The function fn
k+1∣k

(W ) is a valid multitarget

distribution as proved in Appendix B. The denominator of (4.62) can be simplified as

before. The numerator of (4.62) can be expressed using the superpositional sensor model,

Gaussian noise assumption and change of variables formula as

∫
X
hzk+1(W )fn

k+1∣k(W )δW = ∫
Y
NΣz(zk+1 − y)Qn

k+1∣k(y)dy (4.64)

We approximate the distribution Qn
k+1∣k

(y) using a Gaussian density function as

Qn
k+1∣k(y) ≈ NΣn

k+1
(y −mn

k+1). (4.65)

The parameters mn
k+1 and Σn

k+1 are obtained by applying the Campbell’s theorem as

mn
k+1 = nm̂k+1 (4.66)

Σn
k+1 = n (Σ̂k+1 − m̂k+1m̂

T
k+1). (4.67)
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The expressions for the parameters mn
k+1 and Σn

k+1 are derived in Appendix B. Thus the

approximate update expression for the cardinality distribution is

πk+1∣k+1(n) ≈ πk+1∣k(n)
∫Y NΣz(zk+1 − y)NΣn

k+1
(y −mn

k+1)dy
NΣz+Σk+1

(zk+1 −mk+1)
(4.68)

=K−1c πk+1∣k(n)
NΣz+Σn

k+1
(zk+1 −mn

k+1)
NΣz+Σk+1

(zk+1 −mk+1)
(4.69)

HereKc is a normalizing factor, included to ensure that the updated cardinality distribution

sums to 1. We have:

Kc = ∑
n≥0

πk+1∣k(n)
NΣz+Σn

k+1
(zk+1 −mn

k+1)
NΣz+Σk+1

(zk+1 −mk+1)
(4.70)

The assumption that there is an n0 ≥ 0 such that πk+1∣k(n) < 1/n for all n > n0 ensures that

the sum converges and Kc is finite [38].

4.4 Auxiliary particle filter implementations

Equations (4.30), (4.59) and (4.69) give approximate expressions for the time update of the

PHD and cardinality when new observation data become available. Although the equations

specify how the update should be performed, there are in general no explicit formulae to

express the PHD or cardinality at every time step in known standard forms which enable

easy computational processing. Hence we consider the particle based implementation of

the filters, propagating over time a weighted particle approximation of the PHD (which can

be seen as a scaled density). The basic bootstrap particle filter implementation struggles

when new targets arrive. We therefore implement an auxiliary particle filter, which, with

its look-ahead property, is able to address new target arrivals.

4.4.1 Particle implementation of PHD filter

At every time step k, the PHD is approximated by a weighted set of particles,

Dk∣k ≈
Np

∑
i=1

w
(i)
k δ(x − x

(i)
k ) (4.71)
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The particle PHD filter algorithm is described in Figure 4.1. The algorithm first calculates

N̂p,k, the number of particles used to track the targets that were identified at the previous

timestep. In line 3, this is set to the product of the estimated number of targets from the

previous timestep, N̂k−1 (with N̂0 = 0), and the number of particles allocated to each target,

Nppt (an algorithmic parameter).

The auxiliary particle filter implementation consists of the auxiliary proposal step and

the weight update step. In the auxiliary proposal step of the PHD filter, the existing

particles are propagated, with survival probability psv,k(x), according to the dynamics. In

addition, Jp new particles are added by drawing from an importance sampling distribution

γ1,k(x) (this distribution could depend on the measurements zk, but it is in general difficult

to construct a meaningful distribution for superpositional sensors). We assume that we

can specify a PHD function pb,k(x) for the spontaneous birth process. For the propagated

particles, the predictive weights wk∣k−1 are set to the weights from the previous timestep

multiplied by the survival probability, ps(x(i)k−1)wk−1 (line 6, Figure 4.1). The new particles

are assigned the importance weight
pb,k(x

(i)
k
)

Jpγ1,k(x
(i)
k
)
(line 9). Using these weighted particles, we

approximate the integrals in equations (4.56) and (4.55) (line 11) and estimate Σ̂k and m̂k.

These estimates are used to calculate the auxiliary particle weights (line 13).

The weighted particle set thus obtained is used to construct an alternative sampling

distribution γ2,k(x) for the particles associated with potential new targets (line 17). In our

simulations, we use a γ2,k formed by drawing particles with probability (1−p) from a prior

proportional to the birth intensity function pb,k, and with probability p from a Gaussian

mixture distribution, GM{w(i)
k∣k−1

,x
(i)
k ,Σv}i=N̂p,k+Jp

i=N̂p,k+1
formed by placing a weighted zero-mean

Gaussian with covariance matrix Σv at each particle location. The covariance matrix Σv

is typically diagonal with entries smaller than the process noise variance. The weights in

the mixture are the (normalized) particle weights obtained from the auxiliary step. The

parameters Σ̂k and m̂k are updated using the weighted particle set from the auxiliary step

(line 20). The final weight update is performed using equation (4.30) in line 22.

Since the PHD has the property that its integral over the complete observation space

is equal to the expected number of targets, we should have ∑Nk
i=1w

(i)
k ≈ E(∣Xk∣). Due to

the approximations made in order to arrive at a computationally tractable filter, however,

the error can be substantial. Hence to normalize the weights appropriately, we need to

estimate the number of targets from the particles. We use the Silhouette method [154] to
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1: Initialize particles {w(i)0 ,x
(i)
0 }i=Jpi=1

2: for k = 1 to T do
3: N̂p,k = N̂k−1 ×Nppt

4: Auxiliary proposal step

5: for i = 1 to N̂p,k do

6: proposal: x
(i)
k ∼ tk∣k−1(xk∣x(i)k−1), w

(i)
k∣k−1

= ps(x(i)k−1)w
(i)
k−1

7: end for
8: for i = N̂p,k + 1 to N̂p,k + Jp do

9: proposal: x
(i)
k ∼ γ1,k(x), w

(i)
k∣k−1

= pb,k(x
(i)
k
)

Jpγ1,k(x
(i)
k
)

10: end for
11: N̂k∣k−1 = ∑j w

(j)
k∣k−1

, m̂k = 1

N̂k∣k−1
∑j w

(j)
k∣k−1

g(x(j)k ), Σ̂k = 1

N̂k∣k−1
∑j w

(j)
k∣k−1

g(x(j)k )gT (x(j)k )
12: for i = 1 to N̂p,k + Jp do

13: weight update: w
(i)
k∣k−1

= w
(i)
k∣k−1

× NΣz+Σk
(zk−g(x

(i)
k
)−mk)

NΣz+Σk
(zk+1−mk)

14: end for
15: for i = N̂p,k + 1 to N̂p,k + Jp do

16: proposal: x
(i)
k ∼ γ2,k(x), w

(i)
k∣k−1

= pb,k(x
(i)
k
)

Jpγ2,k(x
(i)
k
)

17: end for
18: Normalize {w(i)

k∣k−1
}i=N̂p,k+Jp

i=N̂p,k+1

19: Weight update and state estimation

20: N̂k∣k−1 = ∑j w
(j)
k∣k−1

, m̂k = 1

N̂k∣k−1
∑j w

(j)
k∣k−1

g(x(j)k ), Σ̂k = 1

N̂k∣k−1
∑j w

(j)
k∣k−1

g(x(j)k )gT (x(j)k )
21: for i = 1 to N̂p,k + Jp do

22: weight update: w
(i)
k = w

(i)
k∣k−1

× NΣz+Σk
(zk−g(x

(i)
k
)−mk)

NΣz+Σk
(zk+1−mk)

23: end for
24: target number estimation: N̂k = Silhouette({w(i)k ,x

(i)
k }i=N̂p,k+Jp

i=1 )
25: resample step: {w(i)k ,x

(i)
k }i=N̂p,k+Jp

i=1 → {x(i)k }i=N̂k×Nppt

i=1

26: clustering step: {x̂k,n}N̂k
n=1 = cluster({x(i)k }i=N̂k×Nppt

i=1 , N̂k)
27: end for

Fig. 4.1 Auxiliary particle filter implementation of approximate PHD filter
for superpositional sensors.

obtain the target number estimate (line 24).

Given a set of particles partitioned into clusters, the Silhouette method evaluates the

appropriateness of the clusters. For the ith particle it calculates l1(i), the average distance
of i to other particles in its cluster and l2(i), the average distance of i to its neighboring
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clusters. The silhouette of the ith particle l(i) is then given by

l(i) = l2(i) − l1(i)
max(l1(i), l2(i))

⋅ (4.72)

The average silhouette of all the particles is used to measure the appropriateness of the given

partition. The k-means algorithm is used to cluster the particles into clusters. The number

of clusters is varied from 2 to N0. The partition which has the maximum average silhouette

is declared to be the cardinality estimate N̂k. The particles are then resampled (line 25)

to update the number of particles and clustering is performed to obtain target location

estimates (line 26). Other methods can be used to estimate the number of targets from

the particle set such as Bayesian information criteria [155] and the Elbow method [156].

These different methods were evaluated in [157] and the silhouette method performed the

best among them. Hence we use the silhouette method in our implementations.

4.4.2 Particle implementation of the CPHD filter

Summarized in Figure 4.2 is the particle implementation of the auxiliary CPHD filter.

The cardinality distribution is assumed to have a finite support with πk∣k(n) = 0, n >
N0. The implementation is much the same as the PHD filter, but we employ the weight

update equations for the CPHD filter and the cardinality distribution is also updated. The

maximum a posteriori (MAP) estimate of the cardinality is used as the estimate of the

number of targets (line 28, Figure 4.2).

4.4.3 Computational complexity

We obtain theoretical computational complexities for the PHD and CPHD algorithms.

The major steps in the algorithm implementation are particle propagation, weight update,

cardinality prediction and update, resampling and clustering.

For the PHD filter the dominant costs are the weight update and the identification

of the number of targets. The weight update involves estimating an M ×M covariance

matrix, which has complexity O(NpM2) (where Np is the number of propagated particles),

and computing its inverse, which has complexity O(M3). The Silhouette method, used

to estimate the number of targets, performs multiple k-means clusterings with complexity

O(Np) and calculates silhouettes with complexity O(N2
p ). If the maximum number of
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1: Initialize particles {w(i)0 ,x
(i)
0 }i=Jpi=1

2: for k = 1 to T do
3: N̂p,k = N̂k−1 ×Nppt

4: card. prediction: πc
k∣k−1(n) =

n

∑
j=0

pb(n − j)
⎛
⎝
∞

∑
l=j

(l
r
)pjs(1 − ps)l−jπc

k−1∣k−1(l)
⎞
⎠

5: Auxiliary proposal step

6: for i = 1 to N̂p,k do

7: proposal: x
(i)
k ∼ tk∣k−1(xk∣x(i)k−1), w

(i)
k∣k−1

= ps(x(i)k−1)w
(i)
k−1

8: end for
9: for i = N̂p,k + 1 to N̂p,k + Jp do

10: proposal: x
(i)
k ∼ γ1,k(x), w

(i)
k∣k−1

= pb,k(x
(i)
k
)

Jpγ1,k(x
(i)
k
)

11: end for
12: N̂k∣k−1 = ∑j w

(j)
k∣k−1

, m̂k = 1

N̂k∣k−1
∑j w

(j)
k∣k−1

g(x(j)k ), Σ̂k = 1

N̂k∣k−1
∑j w

(j)
k∣k−1

g(x(j)k )gT (x(j)k )
13: for i = 1 to N̂p,k + Jp do

14: weight update: w
(i)
k = w

(i)
k∣k−1

×
NΣz+Σ

o
k
(zk−g(x

(i)
k
)−mo

k)

NΣz+Σk
(zk−mk)

15: end for
16: for i = N̂p,k + 1 to N̂p,k + Jp do

17: proposal: x
(i)
k ∼ γ2,k(x), w

(i)
k∣k−1

= pb,k(x
(i)
k
)

Jpγ2,k(x
(i)
k
)

18: end for
19: Normalize {w(i)

k∣k−1
}i=N̂p,k+Jp

i=N̂p,k+1

20: Weight update and state estimation

21: N̂k∣k−1 = ∑j w
(j)
k∣k−1

, m̂k = 1

N̂k∣k−1
∑j w

(j)
k∣k−1

g(x(j)k ), Σ̂k = 1

N̂k∣k−1
∑j w

(j)
k∣k−1

g(x(j)k )gT (x(j)k )
22: for i = 1 to N̂p,k + Jp do

23: weight update: w
(i)
k = w

(i)
k∣k−1

×
NΣz+Σ

o
k
(zk−g(x

(i)
k
)−mo

k)

NΣz+Σk
(zk−mk)

24: end for

25: cardinality update: πk∣k(n) =K−1c πk∣k−1(n) ×
NΣz+Σ

n
k
(zk−nm̂k)

NΣz+Σk
(zk−mk)

26: target number estimation: N̂k = MAP(πk∣k(n))
27: resample step: {w(i)k ,x

(i)
k }i=N̂p,k+Jp

i=1 → {x(i)k }i=N̂k×Nppt

i=1

28: clustering step: {x̂k,n}N̂k
n=1 = cluster({x(i)k }i=N̂k×Nppt

i=1 , N̂k)
29: end for

Fig. 4.2 Auxiliary particle filter implementation of the approximate CPHD
filter.
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targets is N0, then the combined complexity of these operations is O(N2
0N

2
p ). Thus the

overall complexity for one iteration of PHD filter is O(NpM2 +M3 +N2
0N

2
p ).

The CPHD filter additionally propagates the cardinality, but the computational re-

quirements are minor. The CPHD weight update equations require computing multiple

covariance matrices and their inverse, which is O(NpM2 +M3). The CPHD cardinality

update involves multiple matrix inversion and is O(N0M3). Clustering is performed only

once using the k-means algorithm and has computational complexity O(N0Np). The over-
all complexity for one iteration of the CPHD filter is O(NpM2 +N0M3 +N0Np). From the

expressions it can be seen that the CPHD filter computation is dominated by matrix in-

versions and clustering, whereas the PHD filter has additional computational requirements

for estimation of the number of targets.

4.5 Numerical simulations

In this section we compare the PHD and CPHD filters using numerical simulations of mul-

titarget tracking in superpositional sensor environments. Specifically we compare the ap-

proximate PHD and CPHD filter implementations discussed in Section 4.4 with an MCMC

filter [3] (Section 3.3.3) that tracks the joint marginal posterior over time.

4.5.1 Target dynamics

For each target its dynamics are assumed to be independent of the other targets and their

dynamics. We represent the state of object i at time k, xk,i, by a four-dimensional vector:

position on the x-axis and y-axis, velocity on the x-axis and y-axis. The targets move within

the boundaries of the monitoring area according to the discrete nearly constant velocity

model [158]

xk+1,i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xk,i +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T 2

2 0

0 T 2

2

T 0

0 T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

ux

uy

⎤⎥⎥⎥⎥⎦
(4.73)

where T is the sampling period and ux, uy are zero-mean Gaussian white noise with re-

spective variance σ2
ux

and σ2
uy
. Targets can randomly appear and disappear within the
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monitored region. For simulating the reference target motion, the model parameters are

set to T = 0.25s, σ2
ux

= σ2
uy
= 0.35.
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Fig. 4.3 Two sets of tracks (a) Tracks 1 (b) Tracks 2 used in the simulations.
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Fig. 4.4 Plot of number of targets vs. time: (a) Tracks 1 (b) Tracks 2.

Two sets of target tracks are used in the simulations as shown in Figures 4.3(a) and 4.3(b)

and are henceforth referred to as Tracks 1 and Tracks 2 respectively. The simulation is
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run for 35 time steps covering a total duration of 35 × 0.25 = 8.75s. For these tracks the

evolution of target number over time is given in Figures 4.4(a) and 4.4(b). In Tracks 1, all

the targets are well separated in space at all times. In Tracks 2, two or more targets are

in close vicinity for some parts of the simulation. Specifically, the targets 1 and 2 and the

targets 3 and 4 approach each other and then diverge. Figure 4.5 illustrates the proximity

of the target pairs, showing the Euclidean distance as a function of time for the target pairs

1, 2 and 3, 4.
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Fig. 4.5 Plot of Euclidean distance vs. time for target pairs 1,2 and 3,4 in
Tracks 2. When either target in the pair is absent, the distance is indicated
as -1.

4.5.2 Algorithm settings

We now discuss the algorithm implementation choices. For practical purposes we need to

assume a limit on the maximum number of targets that could be present at any give time.

This limit can be chosen much higher than the true number of targets. We use a maximum

of N0 = 6 targets for the PHD and the MCMC filter and N0 = 9 targets for the CPHD

filter. A smaller value is used for PHD and MCMC filters as it significantly affects the

computational time required for their processing.
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We use the Silhouette method [154] to estimate the number of clusters for the PHD

filter. The number of clusters is varied from 2 to 6 and the choice which maximizes the

average silhouette gives the estimate of the number of targets present. The method cannot

identify when only a single target is present. The centroids of the clusters are the target

state estimates. Identifying the number of targets in the CPHD filter implementation is

much easier and maximum a posteriori (MAP) estimation is used. The peak in the car-

dinality distribution provides the target number estimate and computational requirements

are minimal. The k-means clustering technique is then applied to group the particles into

clusters and the centroids of the clusters are the target state estimates. For the MCMC

filter the single target state xk,i is extended to include a binary indicator variable ek,i which

indicates the presence or absence of the target. A target is said to be present if more than

half of the corresponding target particles have their indicator variable set to one. The mean

of the particles are used as target state estimates.

The filtering algorithms assume that the probability of survival of existing targets to

be uniform throughout the monitoring region with psv = 0.9. For the PHD filter the birth

process is assumed to be Poisson with mean cardinality of 0.2. For the CPHD filter the birth

process is assumed to be IIDC with cardinality distribution pb(n) to be Geometric with

parameter 0.2. The target birth intensity bk+1∣k(x) is uniform throughout the monitoring

region for position component of target state for both PHD and CPHD filters. For the

MCMC filter we assume that a new target can be born anywhere in the monitoring region

with uniform probability and the probability of birth of a new target is 0.2. The two

velocity components of the new particles are initialized using a standard normal distribution

N(0,1).
The number of particles per target is set to Nppt = 500 and the number of new particles

added to account for the birth process is Jp = Nppt. Increasing Nppt or Jp beyond 500 did

not give any significant improvement in the accuracy of filter performance. In the auxil-

iary implementation of filters, particles for the birth process are drawn from the auxiliary

distribution with probability p = 0.9. Since direct initialization of birth process particles

using the measurements is difficult for superpositional observation model, a high value of

p is used. A Gaussian jitter covariance of Σv = σ2
v ⋅ I2×2, where σ2

v = 0.25 is used to keep the

particle set sufficiently diverse. For the MCMC filter the burn-in is 1000 and the thinning

factor is 3 which are standard values from the literature, observed to be sufficient in many

cases to substantially reduce correlation between samples. The OSPA metric (Section 2.7)



4 Moment filters for superpositional sensors 93

is used to calculate the error between the true and estimated multitarget sets.

The simulations are repeated multiple times with different random initializations and

the average OSPA error is reported over all the simulations. The target trajectory is the

same for each random initialization. A set of 20 different measurements are generated and

each is processed with 5 different random initializations for all the algorithms. Thus the

average error is reported over 20 × 5 = 100 simulations in order to reduce the variability

introduced due to the stochastic nature of processing.

4.5.3 Acoustic amplitude sensors

The acoustic sensor likelihood model is discussed in Section 2.4.2. The moving targets are

monitored by 25 acoustic sensors distributed in a uniform grid. The targets emit a signal

which has amplitude A = 10 at unit distance from the target. The sensors have a path loss

exponent of κ = 1. When the targets lie within d0 = 0.2m distance of any sensor, the sensors

record the same amplitude of A/d0. This avoids any singularities in the measurements. The

sensors are assumed to have a Gaussian noise variance of σ2
z = 0.05.

The target tracks of Tracks 1 are used in this simulation. Table 4.1 presents the average

error over 100 random initializations. The methods of CPHD, PHD and MCMC are used

for tracking. The error values are reported for different values of cardinality penalty factor

(c = 1,2.5,5). The CPHD filter has the lowest OSPA error at all values of c indicating very

few cardinality errors and accurate target location estimates.

Tracks 1 OSPA error
Algorithm c = 1 c = 2.5 c = 5
CPHD 0.34 0.44 0.47
PHD 0.71 1.44 2.61

MCMC 0.50 0.80 0.99

Table 4.1 Acoustic amplitude sensors: average OSPA error.

Figure 4.6 shows the box-and-whisker plot of the error over time for the various methods.

The PHD filter has a high error when the number of targets is one because the Silhouette

method used to find the number of clusters from the particles cannot estimate a single

cluster. The accurate cardinality prediction using the CPHD filter is able to effectively

mitigate this problem. Figures 4.7(a) and 4.7(b) show the true target trajectories and

estimated target locations as obtained using the CPHD and MCMC filters.
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Fig. 4.6 Acoustic amplitude sensors: Box-and-whisker plot of the error over
time for the CPHD, PHD and MCMC methods with c = 5. Boxes indicate
25-75 interquartile range; whiskers extend 1.5 times the range and ‘+’ symbols
indicate outliers lying beyond the whiskers.
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Fig. 4.7 Acoustic amplitude sensors: True target tracks and target location
estimates (circles) obtained using the CPHD and MCMC methods.
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4.5.4 Radio frequency tomography

The radio frequency tomography sensor system is described in Section 3.1 and the mea-

surement model we simulate is discussed in Section 3.2.1. 24 radio frequency sensors are

placed on the periphery of the monitoring region to form a sensor network. The 24 sensors

give rise to a total of 276 unique bidirectional links. The measurement model parameters

are φ = 5 and σλ = 0.2. These parameter values are based on the empirical values observed

from experiments (Chapter 3). The Gaussian measurement noise has variance σ2
z = 0.25.

Track. 1 OSPA error
Algorithm c = 1 c = 2.5 c = 5
CPHD 0.16 0.20 0.23
PHD 0.57 1.29 2.48

MCMC 0.34 0.43 0.48

Table 4.2 Radio-frequency sensors: Average OSPA error.

We use the RF tomography sensor system simulations to analyse the performance of

filters using Tracks 2. The simulated observations are used to track the targets using the

CPHD, PHD and MCMC algorithms. A summary of the average OSPA error, performed

over 100 random simulations, is provided in Table 4.2. The error values are reported for

different values of cardinality error penalty (c = 1,2.5,5). Overlapping trajectories and

closely-spaced targets lead to higher average errors for all the algorithms, but the mea-

surement dimension and the signal-to-noise ratio are much higher for the RF tomography

setup, so the average errors are smaller than in the acoustic sensor case.

A detailed error behaviour over time can be seen from the box and whisker plot in the

Figure 4.8. At time = 6 we observe that the MCMC filter has a much higher error median

indicating difficulty in identifying the appearance of first target within the network. Also

since tracking in the joint target state domain is difficult the median error at subsequent

times is higher when compared with the CPHD filter. Figures 4.9(a) and 4.9(b) plot

example trajectory estimates using the different algorithms for the case of crossing targets.

4.5.5 Computational requirements

Table 4.3 summarizes the computational time required for processing a single observation

vector for each of the algorithms. All the simulations were performed using algorithms
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Fig. 4.8 Radio-frequency sensors: Box-and-whisker plot of error over time
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implemented in Matlab running on computers with two Xeon 4-core 2.5GHz processors and

14GB RAM. The CPHD filter is the fastest and also the most accurate filter. A significant

portion of the PHD filter computational time is spent towards identifying the number

of targets. This could certainly be reduced substantially by adoption of an alternative

technique, but in light of the good performance of the CPHD filter, we have not been

motivated to conduct further exploration beyond the examination of various methods that

was conducted in [157]. The MCMC filter is the slowest owing to the sequential nature of

the algorithm and the fact that it operates in multitarget state space.

Algorithm Acoustic sensors RF Tomography
CPHD 0.12 ± 0.01 0.70 ± 0.02
PHD 3.11 ± 0.19 9.73 ± 0.47

MCMC 10.01 ± 0.07 22.13 ± 0.18

Table 4.3 CPU time required in seconds for different algorithms.

4.6 Conclusion

We derived computationally-tractable approximations of the PHD and CPHD filters for

superpositional sensors in this chapter. The key steps in the filter derivations are the

application of a change of variables formula and Campbell’s theorem. The former allows

us to shift our analysis from random sets to random variables; the latter allows us to

express the first and second moments of the transformed random variables using the PHD

and the second factorial moment of the multitarget distribution. We proposed auxiliary

particle filter based implementations of the approximate filters and performed a simulation-

based analysis of the filters using models of acoustic amplitude sensors and radio-frequency

tomography sensor systems. The CPHD filter accurately tracks the target locations and

the number of targets, significantly outperforming the PHD filter which suffers from an

unreliable cardinality estimate. It also outperforms a more computationally demanding

joint-posterior MCMC filter. In common with most particle-based implementations of

PHD/CPHD filters, the algorithms presented here rely on a clustering procedure to form

a final estimate of the target states. This limitation motivates further investigation into

more elegant solutions. Towards this direction, multi-Bernoulli filters for superpositional

sensors will be discussed in the next chapter.
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Chapter 5

Multi-Bernoulli filters for

superpositional sensors

Chapter 4 discussed the PHD and CPHD filters for superpositional sensors. Though the

CPHD filter performs accurate multitarget tracking it is inherently limited by the fact that

a single density function is used to represent the states of multiple targets. The accuracy of

multitarget tracking can be potentially increased by using one density function to represent

each target. This can be achieved by modeling the multitarget state as realization of a multi-

Bernoulli random finite set. A multi-Bernoulli RFS is the union of multiple independent

Bernoulli random finite sets each of which is characterized using a probability of existence

and a state density function.

Motivated by this reasoning, in this chapter we develop multi-Bernoulli filters for su-

perpositional sensors. The novel contributions of the thesis in this chapter are

� derivation of approximate update equations for the multi-Bernoulli filter for super-

positional sensors,

� derivation of approximate update equations for the hybrid multi-Bernoulli CPHD

filter for superpositional sensors,

� development of auxiliary particle filter implementations of the multi-Bernoulli filter

and hybrid multi-Bernoulli CPHD filter.

The first filter we derive models the target birth process and the multitarget state of

existing targets as multi-Bernoulli random finite sets and is called the multi-Bernoulli filter.

2015/08/12
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This filter can suffer from difficulties in accurately identifying the the number of targets.

To overcome this we propose a second filter which models the target birth process as

independent and identically distributed cluster random finite set and the multitarget state

of existing targets as a multi-Bernoulli random finite set and is called the hybrid multi-

Bernoulli CPHD filter. It makes use of the accurate cardinality representation provided by

IIDC process to correctly identify the target number.

This chapter is organized as follows. In Section 5.1, we discuss an approximate PHD

update mechanism for a union of independent random finite sets. As special cases we

develop the multi-Bernoulli and the hybrid multi-Bernoulli CPHD filter update equations

in Section 5.2 and Section 5.3, respectively. The auxiliary particle filter implementation of

these filters is presented in Section 5.4. Section 5.5 compares these filters with the CPHD

filter in the context of multitarget tracking using acoustic sensor networks and the radio

frequency (RF) tomography measurement model.

5.1 Union of independent random finite sets

Consider an RFS Ξ which is the union of multiple independent random finite sets. Let

Ξ = ΞA ∪ΞB ∪ΞC ∪⋯ and the PHD function for each of the individual RFS components be

denoted by DA(x),DB(x),DC(x),⋯ respectively. Let the PHD of the RFS Ξ be denoted

D(x). Then we can show that

D(x) =DA(x) +DB(x) +DC(x) +⋯ ⋅ (5.1)

The above result can be easily proved using the properties of probability-generating func-

tional and the basic rules for functional derivatives (Chap. 11, [34]).

Let fA(W ) and fB(W ) be the multitarget probability densities of two independent

random finite sets ΞA and ΞB respectively. Let f(W ) be the multitarget probability density

of Ξ = ΞA∪ΞB. Then we have the following convolution relation between the densities (Sec.

11.5.3, Chap. 11, [34])

f(W ) = ∑
Y ⊆W

fA(Y )fB(W ∖ Y ) (5.2)

where the summation is over all subsets Y of W . The set (W ∖ Y ) is the difference set
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which includes elements from W not present in Y . Note that we can express densities

of random finite sets consisting of more than two independent random finite sets using a

similar convolution relation.

5.1.1 PHD update for the union of independent random finite sets

In this section we analyze the PHD update step when the multitarget state can be expressed

as union of multiple independent random finite sets. We limit our discussion to the case of

the union of two independent random finite sets but it can be easily extended to the case

where more than two independent random finite sets are present.

Let X denote the single target state space and Y denote the space of observations. Let

the predicted multitarget state at time k + 1 be modeled as a random finite set Ξ with

density fk+1∣k(W ) and PHD Dk+1∣k(x). Further assume that Ξ is the union of independent

random finite sets ΞA
k+1∣k

and ΞB
k+1∣k

with densities fA
k+1∣k

(Y ) and fB
k+1∣k

(Y ) respectively and

PHDs DA
k+1∣k

(x) and DB
k+1∣k

(x) respectively. Then we have

fk+1∣k(W ) = ∑
Y ⊆W

fA
k+1∣k(Y )fB

k+1∣k(W ∖ Y ) (5.3)

Dk+1∣k(x) =DA
k+1∣k(x) +DB

k+1∣k(x). (5.4)

Let fk+1∣k+1(W ) and Dk+1∣k+1(x) be the density and PHD of the posterior multitarget

state. Then we have

Dk+1∣k+1(x) = ∫
X
fk+1∣k+1({x} ∪W )δW. (5.5)

Let zk+1 be the measurement vector at time k + 1 and let hzk+1(W ) be the multitarget

likelihood function. Applying Bayes rule we get

Dk+1∣k+1(x) = ∫X hzk+1({x} ∪W )fk+1∣k({x} ∪W ) δW
fk+1(zk+1∣Z1∶k)

⋅ (5.6)
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From (5.3) we have

fk+1∣k({x} ∪W ) = ∑
Y ⊆W

fA
k+1∣k({x} ∪ Y )fB

k+1∣k(W ∖ Y ) +

∑
Y ⊆W

fB
k+1∣k({x} ∪ Y )fA

k+1∣k(W ∖ Y ) (5.7)

=DA
k+1∣k(x) ∑

Y ⊆W

fA
k+1∣k

({x} ∪ Y )
DA

k+1∣k
(x) fB

k+1∣k(W ∖ Y ) +

DB
k+1∣k(x) ∑

Y ⊆W

fB
k+1∣k

({x} ∪ Y )
DB

k+1∣k
(x) fA

k+1∣k(W ∖ Y ) (5.8)

=DA
k+1∣k(x) ∑

Y ⊆W

fAx

k+1∣k
(Y )fB

k+1∣k(W ∖ Y ) +

DB
k+1∣k(x) ∑

Y ⊆W

fBx

k+1∣k
(Y )fA

k+1∣k(W ∖ Y ) (5.9)

where fAx

k+1∣k
(Y ) and fBx

k+1∣k
(Y ) are defined as

fAx

k+1∣k
(Y ) =

fA
k+1∣k

({x} ∪ Y )
DA

k+1∣k
(x) , (5.10)

fBx

k+1∣k
(Y ) =

fB
k+1∣k

({x} ∪ Y )
DB

k+1∣k
(x) ⋅ (5.11)

These are valid multitarget densities which integrate to 1 from the definition of PHD in

Section 2.2.3. Now denote

f
A∗x
k+1∣k

(W ) = ∑
Y ⊆W

fAx

k+1∣k
(Y )fB

k+1∣k(W ∖ Y ) (5.12)

f
B∗x
k+1∣k

(W ) = ∑
Y ⊆W

fBx

k+1∣k
(Y )fA

k+1∣k(W ∖ Y ) (5.13)

which are valid multitarget densities. We note that the densities f
A∗x
k+1∣k

(W ) and f
B∗x
k+1∣k

(W )
are obtained by replacing fA

k+1∣k
(Y ) and fB

k+1∣k
(Y ) with fAx

k+1∣k
(Y ) and fBx

k+1∣k
(Y ) respectively

in (5.3). The density f
A∗x
k+1∣k

(W ) can be interpreted as the multitarget distribution of the

RFS which is the union of independent random finite sets with multitarget densities given

by fAx

k+1∣k
(Y ) and fB

k+1∣k
(Y ). In general, we denote by f

A∗x
k+1∣k

(W ) the multitarget density

obtained by replacing fA
k+1∣k

(Y ) with fAx

k+1∣k
(Y ) in the convolution expression for fk+1∣k(W ).
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This notation allows us to interpret the density f
A∗x
k+1∣k

(W ) in general when more than two

independent RFS components are involved. Using this notation we can write,

fk+1∣k({x} ∪W ) =DA
k+1∣k(x)f

A∗x
k+1∣k

(W ) +DB
k+1∣k(x)f

B∗x
k+1∣k

(W ). (5.14)

Substituting (5.14) in (5.6)

Dk+1∣k+1(x) =DA
k+1∣k(x)

∫X hzk+1({x} ∪W )fA∗x
k+1∣k

(W ) δW
fk+1(zk+1∣Z1∶k)

+

DB
k+1∣k(x)

∫X hzk+1({x} ∪W )fB∗x
k+1∣k

(W ) δW
fk+1(zk+1∣Z1∶k)

. (5.15)

Now define

DA
k+1∣k+1(x) =DA

k+1∣k(x)
∫X hzk+1({x} ∪W )fA∗x

k+1∣k
(W ) δW

fk+1(zk+1∣Z1∶k)
(5.16)

DB
k+1∣k+1(x) =DB

k+1∣k(x)
∫X hzk+1({x} ∪W )fB∗x

k+1∣k
(W ) δW

fk+1(zk+1∣Z1∶k)
⋅ (5.17)

We now assume that the posterior multitarget state at time k+1 is a union of indepen-

dent random finite sets ΞA
k+1 and ΞB

k+1. Also let DA
k+1∣k+1

(x) and DB
k+1∣k+1

(x) be their PHD

functions. Then from (5.15), (5.16) and (5.17) we have

DA
k+1∣k+1(x) +DB

k+1∣k+1(x) = DA
k+1∣k+1(x) + DB

k+1∣k+1(x). (5.18)

To derive an update mechanism for propagating the PHD over time, we make the following

separability assumption on the PHD of the different components

DA
k+1∣k+1(x) ≈ DA

k+1∣k+1(x) (5.19)

DB
k+1∣k+1(x) ≈ DB

k+1∣k+1(x). (5.20)

This one-to-one matching is an approximation and is based on the assumption that the

posterior multitarget state is also a union of independent random finite sets and that for

each component in the predicted multitarget state we have a corresponding component

of the same type in the posterior multitarget state. The above approximation is justified
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under the assumption that the supports of the PHD functions of the two components are

well separated. This is a good approximation if each component represents a single target

or a group of targets which are well separated in the state space.

This approximation allows us to relate the posterior and predicted PHD functions, using

(5.16) and (5.19), as follows

DA
k+1∣k+1(x) ≈DA

k+1∣k(x)
∫X hzk+1({x} ∪W )fA∗x

k+1∣k
(W ) δW

fk+1(zk+1∣Z1∶k)
. (5.21)

In general we can update the PHD of each individual RFS component of the multitarget

state using the above approximation. We apply this PHD update mechanism for two specific

cases: (i) when the multitarget state is modelled as the union of independent Bernoulli

RFS components, leading to the multi-Bernoulli filter; and (ii) when the multitarget state

is modelled as union of independent multi-Bernoulli RFS and IIDC RFS components,

leading to the hybrid multi-Bernoulli CPHD filter.

5.1.2 Approximate PHD update for the superpositional sensor model with

Gaussian sensor noise

In this section we further approximate the update equation in (5.21) for the case of the

superpositional sensor model under the assumption of Gaussian sensor noise. This approx-

imation leads to a computationally tractable update equation for the conditional PHD.

This result is applied for deriving the update equations for the multi-Bernoulli filter and

the hybrid multi-Bernoulli CPHD filter in later sections.

From (5.16) we have

DA
k+1∣k+1(x) =DA

k+1∣k(x)
∫X hzk+1({x} ∪W )fA∗x

k+1∣k
(W ) δW

fk+1(zk+1∣Z1∶k)
(5.22)

=DA
k+1∣k(x)

∫X hzk+1({x} ∪W )fA∗x
k+1∣k

(W ) δW

∫X hzk+1(W )fk+1∣k(W ) δW (5.23)

Using the Gaussian sensor noise assumption and the superpositional likelihood model from
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Section 2.4.2, we have:

DA
k+1∣k+1(x) =DA

k+1∣k(x)
∫X NΣz(zk+1 − g(x) − ζ(W ))fA∗x

k+1∣k
(W ) δW

∫X NΣz(zk+1 − ζ(W ))fk+1∣k(W ) δW (5.24)

We apply the transformation y∗ = ζ(W ) in the numerator and y = ζ(W ) in the denom-

inator. Using the formula for change of variables for set integrals from Section 2.2.4 we

have,

DA
k+1∣k+1(x) =DA

k+1∣k(x)
∫Y NΣz(zk+1 − g(x) − y∗)QA∗x

k+1∣k
(y∗)dy∗

∫Y NΣz(zk+1 − y)Qk+1∣k(y)dy
, (5.25)

where Qk+1∣k(y) and Q
A∗x
k+1∣k

(y∗) are the probability distributions of the random vectors y

and y∗ respectively. Using a Gaussian approximation for these densities,

Qk+1∣k(y) ≈ NΣk+1
(y −mk+1) (5.26)

Q
A∗x
k+1∣k

(y∗) ≈ N
Σ

A∗x
k+1

(y∗ −m
A∗x
k+1), (5.27)

we have

DA
k+1∣k+1(x) ≈DA

k+1∣k(x)
∫Y NΣz(zk+1 − g(x) − y∗)N

Σ
A∗x
k+1

(y∗ −m
A∗x
k+1)dy∗

∫Y NΣz(zk+1 − y)NΣk+1
(y −mk+1)dy

⋅ (5.28)

The above equation can be simplified using the result in (2.55) from Section 2.6. Combining

the approximations in (5.21) and (5.28), the approximate PHD update equation for the

superpositional sensor model with Gaussian sensor noise is

DA
k+1∣k+1(x) ≈DA

k+1∣k(x)
N

Σz+Σ
A∗x
k+1

(zk+1 − g(x) −m
A∗x
k+1)

NΣz+Σk+1
(zk+1 −mk+1)

(5.29)

where mk+1 and Σk+1 are the mean and covariance matrix of the distribution Qk+1∣k(y)
and m

A∗x
k+1 and Σ

A∗x
k+1 are the mean and covariance matrix of the distribution Q

A∗x
k+1∣k

(y∗).
These mean and covariance matrix parameters can be found using the quadratic version

of Campbell’s theorem (Section 2.2.5). By modeling the unknown multitarget state as a

union of statistically independent random finite sets, different tracking filters can be derived



5 Multi-Bernoulli filters for superpositional sensors 105

whose update equations are special cases of (5.29).

A brief analysis of the effect of the Gaussian approximation in equations (5.26) and

(5.27) on the integrals and the pseudo-likelihood evaluation is provided in Appendix A.

For different kinds of random finite sets the accuracy of the approximation varies. The

approximation is most accurate for Poisson/IIDC RFS, followed by union of multi-Bernoulli

and IIDC RFS, and is least accurate for the multi-Bernoulli random finite sets.

5.1.3 Example: Multi-Bernoulli RFS

In this example we develop the approximate PHD update expression we obtained above

when the predicted multitarget density at time k + 1 corresponds to a multi-Bernoulli

random finite set. Let Ξk+1∣k be a multi-Bernoulli random finite set with parameters

{ri, si(x)}
Nk+1∣k

i=1 . Thus from from (2.41) and (2.43) we have

Dk+1∣k(x) =
Nk+1∣k

∑
i=1

ri si(x) (5.30)

D̃k+1∣k({x1,x2}) =Dk+1∣k({x1,x2}) −Dk+1∣k(x1)Dk+1∣k(x2) (5.31)

= −
Nk+1∣k

∑
i=1

r2i si(x1)si(x2) (5.32)

Combining the above expressions and Campbell’s theorem, we get

mk+1 = ∫
X
g(x)Dk+1∣k(x)dx (5.33)

= ∫
X
g(x)

⎛
⎝

Nk+1∣k

∑
i=1

ri si(x)
⎞
⎠
dx (5.34)

=
Nk+1∣k

∑
i=1

ri ∫
X
g(x) si(x)dx (5.35)

=
Nk+1∣k

∑
i=1

ri qi , (5.36)
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where qi = ⟨si, g⟩, and

Σk+1 = ∫
X
g(x)g(x)TDk+1∣k(x)dx + ∫

X
∫
X
g(x1)g(x2)T D̃k+1∣k({x1,x2})dx1dx2 (5.37)

= ∫
X
g(x)g(x)T

⎛
⎝

Nk+1∣k

∑
i=1

ri si(x)
⎞
⎠
dx

− ∫
X
∫
X
g(x1)g(x2)T

⎛
⎝

Nk+1∣k

∑
i=1

r2i si(x1)si(x2)
⎞
⎠
dx1dx2 (5.38)

=
Nk+1∣k

∑
i=1

ri ∫
X
si(x)g(x)g(x)Tdx

−
Nk+1∣k

∑
i=1

r2i (∫
X
si(x1)g(x1)dx1)(∫

X
si(x2)g(x2)Tdx2) (5.39)

=
Nk+1∣k

∑
i=1

(ri vi − r2i qiq
T
i ) , (5.40)

where vi = ⟨si, ggT ⟩.
We now express the multi-Bernoulli RFS Ξk+1∣k as Ξk+1∣k = ΞA

k+1∣k
∪ ΞB

k+1∣k
where ΞA

k+1∣k

is the Bernoulli RFS with parameters {ri, si(x)} and ΞB
k+1∣k

is the multi-Bernoulli RFS

with the remaining parameter set {rj, sj(x)}j≠i. The random finite sets ΞA
k+1∣k

and ΞB
k+1∣k

are mutually independent. From (5.10) and Section 2.3.3, the density function fAx

k+1∣k
(W )

corresponds to an RFS which is empty with probability one and all its moments are zero.

Hence the parameters m
A∗x
k+1 and Σ

A∗x
k+1, using Campbell’s theorem, are

m
A∗x
k+1 = 0 +

Nk+1∣k

∑
j=1,j≠i

rj qj (5.41)

=mk+1 − ri qi (5.42)
def=mī

k+1 (5.43)

Σ
A∗x
k+1 = 0 +

Nk+1∣k

∑
j=1,j≠i

(rj vj − r2j qjq
T
j ) (5.44)

= Σk+1 − (ri vi − r2i qiq
T
i ) (5.45)

def= Σī
k+1 (5.46)

From these equations we see that the quantities m
A∗x
k+1 and Σ

A∗x
k+1 do not depend on x when
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ΞA
k+1∣k

is a Bernoulli RFS.

5.1.4 Example: Union of Multi-Bernoulli RFS and IIDC RFS

Let the RFS Ξk+1∣k be the union of a multi-Bernoulli RFS with parameters {ri, si(x)}
Nk+1∣k

i=1

and an IIDC RFS with parameters {sc(x), πc(n)} which are independent random finite

sets. Let μc be the mean cardinality of IIDC RFS. Using the expressions for PHD and

second factorial moments of IIDC and multi-Bernoulli random finite sets from Sections 2.3.2

and 2.3.4 and the results in equations (2.24) and (2.25) we have

Dk+1∣k(x) =
Nk+1∣k

∑
i=1

ri si(x) + μc sc(x) (5.47)

D̃k+1∣k({x1,x2}) =Dk+1∣k({x1,x2}) −Dk+1∣k(x1)Dk+1∣k(x2) (5.48)

= (a − μ2
c) sc(x1)sc(x2) −

Nk+1∣k

∑
i=1

r2i si(x1)si(x2) (5.49)

where a is defined from equation (2.35) as

a
def= ∑

n≥0

n(n − 1)πc(n). (5.50)

Combining the above expressions and Campbell’s theorem, we get

mk+1 = ∫
X
g(x)

⎛
⎝

Nk+1∣k

∑
i=1

ri si(x) + μc sc(x)
⎞
⎠
dx (5.51)

=
Nk+1∣k

∑
i=1

ri∫
X
si(x)g(x)dx + μc∫

X
sc(x)g(x)dx (5.52)

=
Nk+1∣k

∑
i=1

ri qi + μc qc (5.53)

where qi = ⟨si, g⟩ and qc = ⟨sc, g⟩, and
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Σk+1 = ∫
X
g(x)g(x)T

⎛
⎝

Nk+1∣k

∑
i=1

ri si(x) + μc sc(x)
⎞
⎠
dx

− ∫
X
∫
X
g(x1)g(x2)T

⎛
⎝

Nk+1∣k

∑
i=1

r2i si(x1)si(x2)
⎞
⎠
dx1dx2

+ ∫
X
∫
X
g(x1)g(x2)T (a − μ2

c) sc(x1)sc(x2) dx1dx2 (5.54)

=
Nk+1∣k

∑
i=1

(ri vi − r2i qiq
T
i ) + μcvc − (μ2

c − a)qcq
T
c (5.55)

where vi = ⟨si, ggT ⟩ and vc = ⟨sc, ggT ⟩.
Now, express the random finite set Ξk+1∣k as the union Ξk+1∣k = ΞA

k+1∣k
∪ ΞB

k+1∣k
∪ ΞC

k+1∣k

where ΞA
k+1∣k

is the Bernoulli RFS with parameters {ri, si(x)}, ΞB
k+1∣k

is the multi-Bernoulli

RFS with the parameter set {rj, sj(x)}j≠i, and ΞC
k+1∣k

is the IIDC RFS with parameters

{sc(x), πc(n)}. The random finite sets ΞA
k+1∣k

, ΞB
k+1∣k

, and ΞC
k+1∣k

are mutually independent.

Reasoning as before, the density function fAx

k+1∣k
(W ) corresponds to an RFS which is empty

with probability one and all its moments are zero. Hence the parameters m
A∗x
k+1 and Σ

A∗x
k+1

using Campbell’s theorem are

m
A∗x
k+1 = 0 +

Nk+1∣k

∑
j=1,j≠i

rj qj + μc qc (5.56)

=mk+1 − ri qi (5.57)
def=mī

k+1, (5.58)

and

Σ
A∗x
k+1 = 0 +

Nk+1∣k

∑
j=1,j≠i

(rj vj − r2j qjqjT ) + μcvc − (μ2
c − a)qcq

T
c (5.59)

= Σk+1 − (ri vi − r2i qiq
T
i ) (5.60)

def= Σī
k+1. (5.61)

Alternatively we can express the random finite set Ξk+1∣k as Ξk+1∣k = ΞA
k+1∣k

∪ΞB
k+1∣k

where

ΞA
k+1∣k

is the IIDC RFS with parameters {sc(x), πc(n)} and ΞB
k+1∣k

is the multi-Bernoulli
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RFS with parameter set {rj, sj(x)}
Nk+1∣k

j=1 . In this case the multitarget density fAx

k+1∣k
(W )

corresponds to the IIDC RFS with parameters {sc(x), (n+1)π
c(n+1)

μc
} with probability one.

This is because, when x ∉W (event with probability one), using the expressions for density

and PHD of an IIDC RFS from Section 2.3.2 we have

fAx

k+1∣k
(W ) =

fA
k+1∣k

({x} ∪W )
DA

k+1∣k
(x) (5.62)

= (∣W ∣ + 1)!πc(∣W ∣ + 1) s{x}∪Wc

μc sc(x)
(5.63)

= (∣W ∣ + 1)!πc(∣W ∣ + 1) sWc
μc

(5.64)

= ∣W ∣!(∣W ∣ + 1)πc(∣W ∣ + 1)
μc

sWc (5.65)

= ∣W ∣! π̃c(∣W ∣) sWc , (5.66)

where π̃c(∣W ∣) = (∣W ∣+1)π
c(∣W ∣+1)

μc
is a valid cardinality distribution as it sums to one. For the

cardinality distribution π̃c(n) we have

μ̃c =
∞

∑
n=0

n π̃c(n) (5.67)

=
∞

∑
n=0

n
(n + 1)πc(n + 1)

μc

(5.68)

= 1

μc

∞

∑
n=1

n (n − 1)πc(n) = a

μc

(5.69)

where a is defined in (2.35), and

ã =
∞

∑
n=2

n (n − 1) π̃c(n) (5.70)

=
∞

∑
n=2

n (n − 1) (n + 1)πc(n + 1)
μc

(5.71)

= 1

μc

∞

∑
n=3

n (n − 1) (n − 2)πc(n) = b

μc

, (5.72)
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where

b =
∞

∑
n=3

n (n − 1) (n − 2)πc(n). (5.73)

Thus applying the results in (2.24) and (2.25) for the union of independent random finite

sets and using Campbell’s theorem

m
A∗x
k+1 =

Nk+1∣k

∑
j=1

rj qj + μ̃c qc (5.74)

=
Nk+1∣k

∑
j=1

rj qj +
a

μc

qc (5.75)

def=mc̄
k+1, (5.76)

and

Σ
A∗x
k+1 =

Nk+1∣k

∑
j=1

(rj vj − r2j qjq
T
j ) + μ̃cvc − (μ̃2

c − ã)qcq
T
c (5.77)

=
Nk+1∣k

∑
j=1

(rj vj − r2j qjq
T
j ) +

a

μc

vc − (
a2

μ2
c

− b

μc

)qcq
T
c (5.78)

def= Σc̄
k+1. (5.79)

5.2 Multi-Bernoulli filter

The multi-Bernoulli filter models the multitarget state as the union of multiple independent

Bernoulli random finite sets. The scalar existence probability and the single target state

density for each Bernoulli component are propagated over time. The propagation is done in

two stages, prediction and update. The model for target dynamics accounts for the survival

of existing targets from the previous time step to the current time step and for the birth of

new targets. The single target motion model is used for propagation of surviving targets

in the prediction step. Target birth is modeled as a multi-Bernoulli RFS. The most recent

observation along with the superpositional sensor likelihood model is used in the update

step to propagate the Bernoulli parameters.
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5.2.1 Prediction step

The multi-Bernoulli prediction equations are derived in [34,142]. Since the superpositional

observation model does not play a role in the prediction step, the multi-Bernoulli prediction

equations remain the same. We briefly review these equations in this section.

Let the posterior existence probability and state density parameters of the Nk∣k targets

at time k be {rk∣k,i, sk∣k,i(x)}
Nk∣k

i=1 . At time k + 1 let there be Nk+1∣k predicted targets with

parameters ri ≡ rk+1∣k,i and si(x) ≡ sk+1∣k,i(x). Additionally, the predicted multi-Bernoulli

RFS parameters can be expressed as

{ri, si(x)}
Nk+1∣k

i=1 = {rPi , sPi (x)}
Nk∣k

i=1 ∪ {rBi , sBi (x)}
Nk+1∣k

i=Nk∣k+1
(5.80)

where {rPi , sPi (x)}
Nk∣k

i=1 are the parameters of targets propagated from the previous time step

and {rBi , sBi (x)}
Nk+1∣k

i=Nk∣k+1
are the parameters of newly born targets. The relation between the

the predicted target parameters at time k + 1 and the posterior target parameters at time

k is

rPi = rk∣k,i ∫
X
sk∣k,i(x)psv,k+1(x)dx (5.81)

= rk∣k,i ⟨sk∣k,i, psv,k+1⟩ (5.82)

sPi (x) =
∫X tk+1∣k(x∣w) sk∣k,i(w)psv,k+1(w)dw

⟨sk,i, psv,k+1⟩
, (5.83)

where psv,k+1(x) is the target survival probability and tk+1∣k(x∣w) is the Markov transition

kernel. Since the parameters {rBi , sBi (x)}
Nk+1∣k

i=Nk∣k+1
are used to model the new targets arriving

at time k + 1, they are initialized using the target birth model.

5.2.2 Update step

We assume that the posterior multi-target density also has the multi-Bernoulli form. For

the case of superpositional sensors, the measurements do not provide any direct information

about the number of targets. Hence no new Bernoulli components are added in the update

step and Nk+1∣k+1 = Nk+1∣k. Since the collective PHD of all the Bernoulli components can

completely specify the posterior multi-Bernoulli density, the update step consists of updat-

ing the PHD for each of the i = 1,2, . . . ,Nk+1∣k+1 Bernoulli components. Let {r′i, s′i(x)}
Nk+1∣k+1

i=1
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denote the parameter set of the posterior multi-Bernoulli density at time k +1. Combining

the parameters derived in Section 5.1.3 and the approximate PHD update expression from

(5.29), for the ith Bernoulli component

r′i s
′
i(x) ≈ ri si(x)

NΣz+Σī
k+1

(zk+1 − g(x) −mī
k+1)

NΣz+Σk+1
(zk+1 −mk+1)

(5.84)

where,

mk+1 =
Nk+1∣k

∑
i=1

ri qi (5.85)

Σk+1 =
Nk+1∣k

∑
i=1

(ri vi − r2i qiq
T
i ) (5.86)

mī
k+1 =mk+1 − ri qi (5.87)

Σī
k+1 = Σk+1 − (ri vi − r2i qiq

T
i ) (5.88)

qi = ⟨si, g⟩, vi = ⟨si, ggT ⟩. (5.89)

5.3 Hybrid multi-Bernoulli CPHD filter

The multi-Bernoulli RFS modeling of the multitarget state allows us to model each of the

targets individually and update its state information. Although this can be seen as an

improvement over the IIDC RFS modeling of the multitarget state which utilizes only one

state density function to model all of the targets, it does not have a robust cardinality

representation. Also, since the number of targets is changing over time, we need to add

multiple Bernoulli components at each time step to account for target births. Processing

a large number of Bernoulli components at each time step is not computationally efficient.

To address these drawbacks we propose to use a hybrid approach where the existing targets

are modeled using a multi-Bernoulli RFS and the newborn targets are modeled using the

IIDC RFS.

The hybrid multi-Bernoulli CPHD filter uses the following modeling scheme. The final

posterior distribution from the previous time step is modeled as a multi-Bernoulli RFS.

In the prediction step, the multi-Bernoulli component is propagated following the motion

model of surviving targets whereas to account for newborn targets an IIDC RFS compo-
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nent is initialized. The IIDC component is independent of the multi-Bernoulli component.

Thus the predicted distribution corresponds to the union of an IIDC random finite set and

a multi-Bernoulli random finite set and these sets are independent. The union is completely

represented by the PHD of the Bernoulli components, the PHD of the IIDC component and

the cardinality distribution of the IIDC component. The update step propagates all of these

quantities using Bayes’ rule. Hence the obtained posterior is the union of an IIDC com-

ponent and a multi-Bernoulli component. Since individual targets are better represented

using Bernoulli random finite sets, the updated IIDC component is then approximated us-

ing multiple Bernoulli components. Thus the final posterior distribution is modeled using

a multi-Bernoulli random finite set.

5.3.1 Prediction step

Let the parameters of the posterior Bernoulli components at time step k be denoted

{rk∣k,i, sk∣k,i(x)}
Nk∣k

i=1 as before. No new Bernoulli components are added in the prediction

step to account for the birth of new targets, hence Nk+1∣k = Nk∣k. The Bernoulli parameters

at the end of the prediction step are {ri, si(x)}
Nk+1∣k

i=1 and are given by equations (5.82) and

(5.83). Let πc
k+1∣k

(n) and sc(x) ≡ sk+1∣k,c(x) be the predicted cardinality distribution and

the predicted density function at time k + 1. Their exact forms depend on the specific

target birth model used. Let μc denote the expected cardinality of the predicted IIDC RFS

component.

5.3.2 Update step

The update step consists of updating the PHD for each of the Bernoulli components, the

PHD of the IIDC component and the cardinality distribution of the IIDC component. Let

the parameters of the posterior multi-Bernoulli and IIDC random finite sets be denoted by

{r′i, s′i(x)}
Nk+1∣k+1

i=1 and {s′c(x), πc
k+1(n)} respectively.

Combining the parameters derived in Section 5.1.4 and the approximate PHD update

expression from (5.29), the PHD update of the ith Bernoulli component is given by

r′i s
′
i(x) ≈ ri si(x)

NΣz+Σī
k+1

(zk+1 − g(x) −mī
k+1)

NΣz+Σk+1
(zk+1 −mk+1)

(5.90)
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where,

mk+1 =
Nk+1∣k

∑
i=1

ri qi + μc qc (5.91)

Σk+1 =
Nk+1∣k

∑
i=1

(ri vi − r2i qiq
T
i ) + μc vc − (μ2

c − a) qcq
T
c (5.92)

mī
k+1 =mk+1 − ri qi (5.93)

Σī
k+1 = Σk+1 − (ri vi − r2i qiq

T
i ) (5.94)

qi = ⟨si, g⟩, vi = ⟨si, ggT ⟩ (5.95)

qc = ⟨sc, g⟩, vc = ⟨sc, ggT ⟩ (5.96)

a =
∞

∑
n=2

n(n − 1)πc
k+1∣k(n). (5.97)

Similarly, combining the parameters derived in Section 5.1.4 and the approximate PHD

update expression from (5.29), the PHD update for the IIDC RFS component is

μ′c s
′
c(x) ≈ μc sc(x)

NΣz+Σc̄
k+1

(zk+1 − g(x) −mc̄
k+1)

NΣz+Σk+1
(zk+1 −mk+1)

(5.98)

where,

mc̄
k+1 =

Nk+1∣k

∑
j=1

rj qj +
a

μc

qc (5.99)

Σc̄
k+1 =

Nk+1∣k

∑
j=1

(rj vj − r2j qjq
T
j ) +

a

μc

vc − (
a2

μ2
c

− b

μc

)qcq
T
c (5.100)

b =
∞

∑
n=0

n(n − 1)(n − 2)πc
k+1∣k(n). (5.101)

The parameters mk+1 and Σk+1 are as given in (5.91) and (5.92) respectively.

IIDC component cardinality update

The main advantage of the IIDC component in the hybrid filter is that we can make use

of the accurate cardinality estimation of the CPHD filter. The cardinality distribution of
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the posterior IID cluster component is defined as

πc
k+1∣k+1(n) = ∫

∣W ∣c=n
fk+1∣k+1(W )δW (5.102)

= ∫∣W ∣c=n hzk+1(W )fk+1∣k(W )δW
∫X hzk+1(W )fk+1∣k(W )δW (5.103)

= πc
k+1∣k(n)

∫X hzk+1(W )f c,n
k+1∣k

(W )δW

∫X hzk+1(W )fk+1∣k(W )δW (5.104)

where f c,n
k+1∣k

(W ) = 1

πc
k+1∣k

(n)δ∣W ∣
c(n)fk+1∣k(W ) (5.105)

The multi-target density f c,n
k+1∣k

(W ) corresponds to the union of a multi-Bernoulli RFS and

the random finite set obtained by constraining the cardinality (∣W ∣c = n) of the IID cluster

RFS. Applying the approximations as before we get

πc
k+1(n) ≈ πc

k+1∣k(n)
NΣz+Σ

c,n
k+1

(zk+1 −mc,n
k+1)

NΣz+Σk+1
(zk+1 −mk+1)

(5.106)

where,

mc,n
k+1 =

Nk+1∣k

∑
i=1

ri qi + nqc (5.107)

Σc,n
k+1 =

Nk+1∣k

∑
i=1

(ri vi − r2i qiq
T
i ) + n(vc − qcq

T
c ) (5.108)

The parameters mk+1 and Σk+1 are as given in equations (5.91) and (5.92), respectively.

Note that in the above update equation there is no assumption made about the cardinality

of the multi-Bernoulli component. The multi-Bernoulli filter can be treated as a special

case of the hybrid multi-Bernoulli CPHD filter. Indeed, we obtain the multi-Bernoulli filter

update equations if we set the IIDC component to be the empty set in all of the equations

above.

5.4 Auxiliary particle filter implementations

We implement the proposed filters using a Monte Carlo approach. Approximate update

equations have been derived in this chapter but even they do not lead to a fully analytically
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tractable filter. Hence we develop particle filter based implementations of the filters. The

basic particle filter approach does not give a stable implementation because of the multiple

approximations employed to derive the filter equations. We propose auxiliary particle filter

implementations of the multi-Bernoulli filter and the hybrid multi-Bernoulli filter based on

the auxiliary particle filter implementation of the PHD filter discussed in [105].

The normalized posterior PHD corresponding to each Bernoulli component sk−1∣k−1,i(x),
and the IIDC component sk−1∣k−1,c(x) at time k−1 is approximated using a set of weighted

particles as follows

sk−1∣k−1,θ(x) ≈ ŝk−1∣k−1,θ(x) =
Np

∑
j=1

w
(j)
k−1,θ δ(x − x

(j)
k−1,θ) (5.109)

Np

∑
j=1

w
(j)
k−1,θ = 1 , (5.110)

where θ = i, i = 1 . . .Nk−1∣k−1 for Bernoulli components and θ = c for the IIDC component.

The probabilities of existence of the Bernoulli components are r̂k−1,i, i = 1 . . .Nk−1∣k−1 and

the cardinality distribution of the IIDC component is represented using a finite dimensional

vector π̂c
k−1(n) whose elements sum to one. For the hybrid multi-Bernoulli CPHD filter the

quantities ŝk−1∣k−1,c(x) and π̂c
k−1(n) are initialized using the birth process parameters. For

the CPHD filter these quantities are obtained from the previous time step. Thus one particle

filter is used for each Bernoulli component and one particle filter is used to approximate

the IIDC component. The pseudo-code for the auxiliary particle filter implementation of

the hybrid multi-Bernoulli CPHD filter are provided in Figures 5.1 and 5.2.

For each Bernoulli component, at time k, the auxiliary variables x̄
(j)
k−1,i are sampled

from a mixture of a re-weighted particle set pk−1,i(x) and the posterior from the previous

time step ŝk−1∣k−1,i(x). Similarly for the IIDC component the auxiliary variables x̄
(j)
k−1,c are

sampled from a mixture of a re-weighted particle set pk−1,c(x) and the posterior from the

previous time step ŝk−1∣k−1,c(x). The re-weighted particle set pk−1,θ(x) is given by

pk−1,θ(x) =
Np

∑
j=1

w̃
(j)
k−1,θ δ(x − x

(j)
k−1,θ), (5.111)

w̃
(j)
k−1,θ ∝ w

(j)
k−1,θ

⎛
⎜
⎝

NΣz+Σ̃θ̄
k
(zk − g(ψ(x(j)k−1,θ)) − m̃θ̄

k)
NΣz+Σ̃k

(zk − m̃k)
⎞
⎟
⎠

ε

, (5.112)
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where ∑Np

j=1 w̃
(j)
k−1,θ = 1; ψ(x(j)k−1,θ) = E(xk,θ∣x(j)k−1,θ); the quantities m̃k, m̃θ̄

k, Σ̃k and Σ̃θ̄
k are

calculated using (5.91)-(5.97) and (5.99)-(5.101) with particle approximations for qθ and vθ

evaluated using the particle set ψ(x(j)k−1,θ); and ε is the tempering factor [105] for stabilizing

the weights in the auxiliary particle filter. Regularization is performed by adding a small

zero-mean Gaussian jitter Δ
(j)
k,θ ∼ NΣreg(0) to the particles to maintain their diversity and

avoid particle degeneracy.

1: for k = 1 to T do

2: Sample auxiliary particles

3: Construct pk−1,θ(x) using (5.111), θ = i, c

4: for j = 1 to Np do

5: for i = 1 to Nk−1∣k−1 do

6: x̄
(j)
k−1,i ∼ αpk−1,i(x) + (1 − α) ŝk−1∣k−1,i(x)

7: Regularization: x̄
(j)
k−1,i = x̄

(j)
k−1,i +Δ

(j)
k,i

8: end for

9: x̄
(j)
k−1,c ∼ αpk−1,c(x) + (1 − α) ŝk−1∣k−1,c(x)

10: Regularization: x̄
(j)
k−1,c = x̄

(j)
k−1,c +Δ

(j)
k,c

11: end for

12: Proposal

13: for j = 1 to Np do

14: for i = 1 to Nk−1∣k−1 do

15: x
(j)
k,i ∼ tk∣k−1(x∣x̄(j)k−1,i)

16: end for

17: x
(j)
k,c ∼ tk∣k−1(x∣x̄(j)k−1,c)

18: end for

19: rk∣k−1,i = rk−1,i ps, i = 1,2, . . . ,Nk−1∣k−1

20: Update See Figure 5.2

21: Approximation and track management See Figure 5.2

22: end for

Fig. 5.1 Pseudo-code for the auxiliary particle filter implementation of the
hybrid multi-Bernoulli CPHD filter (auxiliary and proposal steps).
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1: Update

2: for j = 1 to Np do

3: for i = 1 to Nk−1∣k−1 do

4: w
(j)
k,i ∝ w

(j)
k−1,i

N
Σz+Σ

ī
k

(zk−g(x
(j)
k,i
)−mī

k)

NΣz+Σk
(zk−mk)

5: end for

6: w
(j)
k,c ∝ w

(j)
k−1,c

NΣz+Σ
c̄
k
(zk−g(x

(j)
k,c
)−mc̄

k)

NΣz+Σk
(zk−mk)

7: end for

8: weight compensation w
(j)
k,θ ∝

w
(j)
k,θ

w̃
(j)
k−1,θ

for auxiliary particles

sampled from re-weighted distribution

9: {x(j)k,i ,
1
Np
} = resample ({x(j)k,i , w

(j)
k,i }), i = 1 . . .Nk−1∣k−1

10: Update rk,i, i = 1 . . .Nk−1∣k−1 using (5.90)

11: Update π̂c
k(n) using (5.106)

12: Approximation and track management

13: Prune Bernoulli tracks with rk,i < r0, i = 1 . . .Nk−1∣k−1

14: N c
k = MAP (π̂c

k(n))
15: {x(j)k,i ,

1
Np
} = split ({x(j)k,c , w

(j)
k,c},N c

k∣k
), rk,i = 1,

i = Nk−1∣k−1 + 1 . . .Nk−1∣k−1 +N c
k∣k

16: Gate new Bernoulli components to check for duplicity

Fig. 5.2 Pseudo-code for the auxiliary particle filter implementation of the
hybrid multi-Bernoulli CPHD filter (update and approximation steps).

In the proposal (prediction) step the particles are propagated according to the target

transition model tk∣k−1(xk∣xk−1). For the update step the quantities mk, mθ̄
k, Σk and Σθ̄

k

are are calculated using (5.91)-(5.97) and (5.99)-(5.101). The PHD update step is realized

by performing an update of the particle weights using equations (5.90) and (5.98). For

the particles sampled from the re-weighted distribution pk−1,θ(x), weight compensation is

performed. For each Bernoulli component the weighted particle set is resampled to obtain

particles with equal weights. The existence probability is updated from (5.90) by using

a particle approximation for si(x). The cardinality distribution of the IIDC component

π̂c
k(n) is updated using (5.106)-(5.108).

Pruning of the Bernoulli components is performed in order to eliminate targets with
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low probability of existence (< r0). Bernoulli components with existence probability lower

than the existence probability at birth are pruned, i.e., r0 = rB. A low existence probability

threshold is chosen because it can identify individual targets even when they are in close

vicinity. An estimate of the number of newborn targets N c
k∣k

is obtained from the IIDC

cardinality distribution π̂c
k(n) using the maximum a posteriori (MAP) rule. The “split”

function partitions the set of particles representing the normalized IIDC PHD into N c
k∣k

clusters using the k-means algorithm and each cluster is used to initialize a new Bernoulli

component with existence probability 1. The new components created can sometimes corre-

spond to spurious copies of existing targets. Hence gating is performed so that new targets

starting within close vicinity of existing targets are pruned. The definition of “closeness”

between two targets is application dependent. For example, in our radio frequency tomog-

raphy application, we use the Euclidean distance measure between the centroids of the

two particle sets representing the target positions and eliminate the new component if the

distance is less than a meter. The pruned Bernoulli components are used for initialization

of the IIDC PHD along with the target birth model in the next time step. This can be

helpful in case of low detection probability or high noise variance.

The multi-Bernoulli auxiliary particle filter implementation is very similar to the pseudo-

code given in Figure 5.1. The major difference is that instead of the IIDC component,

multiple Bernoulli components are initialized in the prediction stage to account for target

births. In the update stages, the PHDs of the corresponding Bernoulli components are

updated. There is no clustering step required but the pruning and the gating steps are the

same. The CPHD auxiliary particle filter implementation is obtained by ignoring the steps

related to the multi-Bernoulli component in Figure 5.1. The normalized posterior PHD

is propagated to the next time step instead of approximating it with a multi-Bernoulli

component.

The implementations of the multi-Bernoulli filters using particle filters are similar to

that of the multiple particle filter (MPF) [159] in the sense that they all use one particle

filter per target. The MPF assumes the number of targets to be fixed and known but the

multi-Bernoulli filters automatically track the changing number of targets. The update

step in the MPF propagates the marginal posterior whereas the update step in the multi-

Bernoulli filters propagate the PHD of Bernoulli components.
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5.5 Numerical simulations

In this section we use numerical simulations to demonstrate successful application of the

proposed filters to the problem of multitarget tracking. We consider two examples of the

superpositional sensor model. The first is a radio frequency tomography application and

the second is an acoustic sensor network.

5.5.1 Target dynamics

We assume that for each target its dynamics are independent of the other targets and their

dynamics. Specifically, motion of each target when present within the monitoring region is

governed by the following approximately constant velocity model [36]:

xk+1,i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xk,i +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T 2

2 0

0 T 2

2

T 0

0 T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

ux

uy

⎤⎥⎥⎥⎥⎦
(5.113)

where T is the sampling period and ux, uy are zero-mean Gaussian white noise with re-

spective variance σ2
ux

and σ2
uy
. In this model, the state of each object i at time k, xk,i, is

represented by a four-dimensional vector: position on the x-axis and y-axis, velocity on the

x-axis and y-axis. Multiple targets can be simultaneously present and targets can appear

or disappear over time.

5.5.2 Algorithm settings

We compare the multi-Bernoulli (MBR) filter and the hybrid multi-Bernoulli CPHD (MBR-

CPHD) filter with the CPHD filter. The auxiliary particle filter implementations of these

filters are as discussed in Section 5.4. To compare the performance of different filters we use

the OSPA error metric described in Section 2.7. The multitarget state estimate is obtained

by averaging particles representing position for each existing Bernoulli component. For the

CPHD filter the state estimates are centroids of the clusters obtained by partitioning the

particle set using the k-means algorithm.

A single target survival probability is assumed to be constant throughout the monitor-

ing region and is equal to ps = 0.9. For the MBR filter four new Bernoulli components are
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added at each time step to account for target births. The probability of existence of these

new components are rB = 0.2 and their density functions are uniform within the monitoring

region. For the hybrid MBR-CPHD filter the birth process is IIDC with discrete uniform

cardinality distribution and the normalized PHD is assumed uniform within the monitoring

region. Rejected components from the current time step are also used to partially initialize

the PHD of the IIDC component in the next time step. This way, targets with low prob-

ability of existence which get erroneously eliminated can be reintroduced using the IIDC

component.

Gating is performed with a gating radius of rg to check for duplicity between the new and

existing targets. Bernoulli components with existence probability lower than the existence

probability at birth are pruned, i.e., r0 = rB = 0.2. We use Np = 1000 particles for each

particle filter which is a standard value used in the literature, sufficient for single target

tracking. In the auxiliary step we use α = 0.5 which gives equal weights to the auxiliary

and prior distributions. In the measurement models we study, the likelihood function can

get peaky. Hence we use a low value of tempering factor, ε = 0.3, to smooth the auxiliary

weights. Regularization of particles is performed to keep the particle set sufficiently diverse

with Σreg = σ2
regdiag(1,1,1,1).

5.5.3 Radio frequency tomography

Measurement model

The radio frequency tomography sensor system is described in Section 3.1 and the mea-

surement model we simulate here is discussed in Section 3.2.1. We simulate an RF sensor

network with Ns = 20 sensor nodes distributed uniformly on the periphery of the 20m×20m
square region as shown in Figure 5.3(a). This gives rise to a total of nz = 190 unique bidirec-

tional links. The observation model parameters are φ = 5 and σλ = 0.4. The measurement

noise variance is Σz = σ2
z Inz where σ2

z = 0.25 and Inz is the nz × nz identity matrix. These

parameter values are based on the empirical values observed from experiments (Chapter 3).

Target tracks and filter parameters

Figure 5.3(a) shows the target tracks we use for the simulations. The black cross (x)

indicates the starting location of the target. The variation of number of targets over time is

shown in Figure 5.3(b). The targets labelled with the numbers 7 and 8 in Figure 5.6 appear
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within the monitoring region at time steps 9 and 17 respectively. Target 8 disappears from

the monitoring region at time step 24. The targets in the above scenario evolve according

to the linear Gaussian dynamics given in Equation (5.113) with a time step of duration

T = 0.25s and the noise variance parameters of σ2
ux

= σ2
uy
= 0.35. We simulate 35 time steps

of target motion for a total of 35×0.25 = 8.75s. The standard deviation of the regularization

noise is set to σreg = 0.25 and the gating radius is set to rg = 1m.
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Fig. 5.3 RF tomography: (a) Target tracks used in the simulations. (b)
Variation of number of targets over time.

Simulation results

The average OSPA error metrics are calculated by repeating simulations multiple times

with different random initializations. The target tracks shown in Figure 5.3(a) are used for

all the Monte Carlo runs. A set of 20 different measurement sequences are generated and

each is processed with 5 different random initializations for all the algorithms. Thus the

average error is reported by running 100 Monte Carlo simulations. We ignore the first 5

time steps when calculating the average error to allow the filter estimates to stabilize. The

mean OSPA error is calculated for different values of the measurement noise parameter σz

and are shown in Figure 5.4 for c = 0.5 and c = 1. As the noise is increased from σz = 1

to σz = 2 the performance of all the filters deteriorates. When the measurement noise is
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Fig. 5.4 RF tomography: The average OSPA error as the measurement
noise standard deviation σz is increased from σz = 1 to σz = 2.
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small the hybrid MBR-CPHD filter has the lowest error among all the filters. For higher

measurement noise the CPHD filter and the hybrid MBR-CPHD filter have almost the

same performance.

The median cardinality estimates (over the 100 Monte Carlo simulations) and its 5th

and 95th percentiles for the different algorithms are shown in Figure 5.5 for σz = 1.5. The

multi-Bernoulli filter has low initial cardinality estimates because only a maximum of 4

new Bernoulli components are added at each time step. The MBR filter also significantly

underestimates the number of targets which is reflected as high average OSPA error as seen

from Figure 5.4. The CPHD filter has the most accurate cardinality estimate as its 5th and

95th percentiles coincide with the median cardinality at most of the time steps. The hybrid

MBR-CPHD filter makes significantly better cardinality estimates than the MBR filter.

The targets missed by the MBR-CPHD filter at the current time step are reintroduced by

input from the CPHD component at the next time step.

Since the average OSPA error for the CPHD filter and the MBR-CPHD filter are almost

the same and CPHD filter provides better cardinality estimates than the MBR-CPHD filter,

the MBR-CPHD filter provides more accurate target location information than the CPHD

filter. In fact, ignoring the errors in cardinality, the root-mean-square error averaged over

100 Monte Carlo simulations are 0.42m, 0.54m, and 0.32m for the CPHD, MBR and MBR-

CPHD filters respectively when the measurement noise is σz = 1.5. In this simulation the

targets approach reasonably close to each other (within a distance of one meter). Since

the approximate PHD update equation (5.21) is more accurate when the targets are well

separated, this might explain the cardinality errors made by the hybrid MBR-CPHD filter.

We expect these cardinality errors made by the MBR and hybrid MBR-CPHD filters to

increase if the targets cross each other as the underlying assumption no longer holds and

some of the components merge into a single component. Figure 5.6 depicts an example of

target location estimates obtained using the hybrid MBR-CPHD filter.

5.5.4 Acoustic amplitude sensors

Measurement model

The acoustic sensor likelihood model is discussed in Section 2.4.2. We simulate an acoustic

sensor network with Ns = 25 sensor nodes distributed in a 1000m × 1000m square region

in a grid format as shown in Figure 5.10. A wider observation region is chosen to evaluate
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Fig. 5.6 RF tomography: True target tracks and estimated target locations
obtained using the hybrid MBR-CPHD filter for σz = 1.5.

the robustness of the filters in a more challenging scenario. The measurement dimension

is nz = Ns = 25 and the measurement model parameters are A = 500, κ = 1 and d0 = 1. The

measurement noise variance is Σz = σ2
zInz .

Target tracks and filter parameters

The target dynamics discussed in Section 5.5.1 are used to simulate the target tracks.

The simulated target tracks are shown in Figure 5.7(a) and the target number variation

is shown in Figure 5.7(b). These tracks are simulated for 35 time steps using the process

noise parameters of σux = σuy = 25m and time step duration T = 0.25s. The standard

deviation of the regularization noise is set to σreg = 5. The gating radius is increased to

rg = 100m since the monitored region is considerably larger. We note that the gating is

used only for elimination of tracks spawning from existing targets and not for termination

of existing target tracks. A high value of gating radius is used in this simulation because
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the multi-Bernoulli filter gave rise to numerous spurious tracks for a smaller value of gating

radius.
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Fig. 5.7 Acoustic sensor network: (a) Target tracks used in the simulations.
(b) Variation of number of targets over time.

Simulation results

Figure 5.8 shows how the average OSPA error varies as a function of measurement noise

for c = 50 and c = 100. The averages are calculated using 100 Monte Carlo simulations.

The hybrid MBR-CPHD filter performs significantly better than the CPHD filter in this

setup and has the lowest average OSPA error for all values of σz. The median cardinality

and the 5th and 95th percentiles are shown in Figure 5.9 for σz = 1. The CPHD filter has

the most accurate cardinality estimates followed by the hybrid MBR-CPHD filter and the

MBR filter. Since the hybrid MBR-CPHD filter has lower average OSPA error than the

CPHD filter, for the targets that are correctly identified, the hybrid MBR-CPHD filter is

able to accurately track their locations in a much wider observation region. Figure 5.10

shows the true target trajectories and the estimated target locations obtained using the

hybrid MBR-CPHD filter for σz = 1.
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Fig. 5.8 Acoustic sensor network: The average OSPA error as the measure-
ment noise standard deviation σz is increased from σz = 0.5 to σz = 1.5.
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Fig. 5.10 Acoustic sensor network: True target tracks and estimated target
locations obtained using the MBR-CPHD filter for σz = 1.

Table 5.1 Average computational time required to process one observation
vector (in seconds) for σz = 1.

Average computational time (seconds)
Algorithm RF tomography Acoustic network
CPHD 3.76 0.73
MBR 2.54 0.63

MBR-CPHD 2.41 0.58

5.5.5 Computational requirements

Table 5.1 compares the average computational time required for the different algorithms to

process one observation vector. All the simulations were performed using algorithms im-

plemented in Matlab running on computers with two Xeon 4-core 2.5GHz processors and

14GB RAM. The time required to process one observation vector of the acoustic sensor

network is much smaller than compared to that of the radio frequency sensor network be-

cause the measurement dimension is much smaller and there are fewer targets. The hybrid



5 Multi-Bernoulli filters for superpositional sensors 129

MBR-CPHD filter is the fastest of the filters. The CPHD filter has higher computational

requirements because of the costly clustering step required at each time step and the MBR

filter has higher computational requirements because of the multiple additional particle

filters employed to account for new target arrivals. The hybrid MBR-CPHD filter saves

computation by initiating new particle filters only if the IIDC component indicates arrival

of new targets and the costly clustering step is required only when multiple new targets

arrive within the monitoring region in the same time step.

5.6 Conclusions

We studied the multi-Bernoulli filter and the hybrid multi-Bernoulli CPHD filter for the

superpositional sensor model in this chapter. The update equation derivation methodology

is similar for both the filters and is based on propagating the PHD of individual random

finite set components. The cardinality distribution is additionally propagated for the hybrid

multi-Bernoulli CPHD filter. We proposed auxiliary particle filter implementations of the

filters and conducted a numerical study using a simulated RF tomography setup and an

acoustic sensor network setup to perform multitarget tracking. The hybrid multi-Bernoulli

CPHD filter performed better than the multi-Bernoulli filter and better than or as well

as the CPHD filter when using the OSPA error metric. The hybrid filter was the least

computationally demanding.
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Chapter 6

Multisensor CPHD filter

In the previous chapters of this thesis we focused on superpositional sensors. In this chapter

we turn our attention to multitarget tracking using standard sensors. A detailed description

of the standard sensor model is given in Section 2.4.1. Many of the random finite set based

filters such as the PHD filter [86], CPHD filter [87], and multi-Bernoulli filter [34,39] were

first proposed for the case of standard sensors. But the majority of the research has focused

on developing filters where only one sensor is gathering measurements.

Several approximate as well as exact filters have been proposed that process measure-

ments from multiple sensors. But most of them suffer from drawbacks such as sensor order

dependence, numerical instability or high computational requirements. For example, the

iterated-corrector PHD filter [127] processes the measurements from different sensors in a

sequential manner but has a strong sensor order dependence. The approximate product

multisensor PHD and CPHD filters, though independent of the sensor order, are numer-

ically unstable and the problem worsens as the number of sensors increases. The exact

general multisensor PHD filter was derived by Mahler [19] for the case of two sensors and

generalized to include an arbitrary number of sensors by Delande et al. [122]. The ex-

act filter update equations of the general multisensor PHD filter are not computationally

tractable except for a few simple cases because of their combinatorial nature.

In this chapter we derive the update equations for the general multisensor CPHD filter.

The derivation method is similar to that of the general multisensor PHD filter [19, 122]

with the additional propagation of the cardinality distribution along with the probability

hypothesis density function. Similar to the general multisensor PHD filter it has combina-

2015/08/12
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torial complexity and an exact implementation is computationally infeasible. To overcome

this limitation we propose a two-step greedy approach based on a Gaussian mixture model

implementation. Each step can be realized using a trellis structure constructed using the

measurements from different sensors or measurement subsets for different Gaussian compo-

nents. The algorithm is applicable to both the general multisensor CPHD and the general

multisensor PHD filters.

Organization of this chapter is as follows. In Section 6.1 we provide a brief review of the

existing multisensor filters. In Section 6.2 we derive the update equations of the general

multisensor CPHD filter. We discuss a computationally tractable implementation of the

general multisensor PHD and CPHD filters in Section 6.3. A performance comparison of

the proposed filter with existing multisensor filters is done using numerical simulations in

Section 6.4. We provide conclusions in Section 6.5.

6.1 Review of multisensor filters

We will briefly review the iterated-corrector PHD/CPHD filters and the approximate prod-

uct PHD/CPHD filters in this section. The general multisensor PHD filter is derived as a

special case of the general multisensor CPHD filter in Section 6.2.2. Different filters differ

in the way observations are processed hence the update step is different. The prediction

steps are the same as those discussed in Sections 4.2.1 and 4.3.1. Hence we do not discuss

the prediction step of the various filters in this chapter.

The standard sensor observation process is discussed in Section 2.4.1. Assume that

there are s sensors, and conditional on the multitarget state, their observations are inde-

pendent. Measurements zj gathered by sensor j lie in the space Zj, i.e., zj ∈ Zj. Let

Zj
k = {z

j
1,k,z

j
2,k, . . . ,z

j
mj,k}, Zj

k ⊆ Zj be the set of measurements collected by the j-th sensor

at time step k. The measurement set can be empty. We assume that each target generates

at most one measurement per sensor at each time instant k. Each measurement is either as-

sociated with a target or is generated by the clutter process. Define Z1∶s
k = {Z1

k , Z
2
k , . . . , Z

s
k}

to be the collection of measurement sets gathered by all sensors at time k. The function

hj,k(z∣x) denotes the probability density (likelihood) that sensor j makes a measurement z

given that it detects a target with state x. Let X be the single target state space.
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The various multisensor PHD filters make the following modelling assumptions to derive

the update equations:

Assumption 1:

a) The predicted multitarget state is at time k + 1 is modelled using a Poisson random

finite set (Section 2.3.1).

b) Given a target with state x, the probability that sensor j detects the target is given by

pjd,k(x). Denote the probability of a missed detection as qjd,k(x) = 1 − pjd,k(x).

c) The target-generated sensor measurements are independent conditional on the multi-

target state Xk+1.

d) The sensor clutter processes are assumed to be Poisson. Let ck+1,j(z) be the clutter

spatial distribution and λj,k+1 be the clutter rate of the jth sensor.

Similarly, the various multisensor CPHD filters make the following modelling assump-

tions to derive the update equations:

Assumption 2:

a) The predicted multitarget state at time k + 1 is modelled using an IIDC random finite

set (Section 2.3.2). Let πk+1∣k(n) be the predicted cardinality distribution at time k + 1

and Mk+1∣k(y) be the probability generating function of πk+1∣k(n).

b) Given a target with state x, the probability that sensor j detects the target is given by

pjd,k(x).

c) The target-generated sensor measurements are independent conditional on the multi-

target state Xk+1.

d) The sensor clutter processes are assumed to be IIDC. Let ck+1,j(z) be the clutter spatial
distribution and Ck+1,j(y) be the PGF of the clutter cardinality distribution of the jth

sensor.

Denote the vth-order derivatives of the PGFs of the clutter cardinality distribution and

the predicted cardinality distribution as

C
(v)
j (y) = dvCj

dyv
(y) , M (v)(y) =

dvMk+1∣k

dtv
(y). (6.1)
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Let σm,i(y1, . . . , ym) denote the elementary symmetric function of degree i in m variables

defined as

σm,i(y1, . . . , ym) = ∑
1≤j1<j2⋅⋅⋅<ji≤m

yj1yj2 . . . yji . (6.2)

Let the predicted PHD at time step k + 1 be Dk+1∣k(x) and rk+1∣k(x) denote the nor-

malized predicted PHD function. Also let μk+1∣k be the average predicted cardinality.

rk+1∣k(x) =
Dk+1∣k(x)
μk+1∣k(x)

(6.3)

μk+1∣k = ∫
X
Dk+1∣k(x)dx = ∑

n≥0

nπk+1∣k(n) (6.4)

To keep the expressions compact we drop the time index and denote

ck+1,j(z) ≡ cj(z), Ck+1,j(y) ≡ Cj(y), pjd,k+1(x) ≡ pjd(x) (6.5)

Mk+1∣k(y) ≡M(y), qjd,k+1(x) ≡ qjd(x), rk+1∣k(x) ≡ r(x) (6.6)

hj,k+1(z∣x) ≡ hj(z∣x), mj
k+1 ≡mj, λj,k+1 ≡ λj, (6.7)

when the time is clear from the context. Note that abbreviated notation is used only for

convenience and the above quantities are in general functions of time. We use the notation

⟦1, s⟧ to denote the set of integers from 1 to s.

6.1.1 Iterated-corrector PHD and CPHD filters

The iterated-corrector PHD and CPHD filters process multisensor information in a sequen-

tial manner. A single sensor PHD filter processes measurements from the first sensor. Using

the output PHD function produced by this step as the predicted PHD function, another

single sensor PHD filter processes measurements from the second sensor and so on. In the

iterated-corrector CPHD filter along the the PHD function, each of the single sensor CPHD

filters also propagates the cardinality distribution to the subsequent single sensor CPHD

filter.
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Iterated-corrector PHD filter

Let D
[j]
k+1∣k+1

(x) be the output PHD after processing the observation set Zj
k+1 from the jth

sensor. Also denote D
[0]
k+1∣k+1

(x) = Dk+1∣k(x). Then the update equations for the iterated-

corrector PHD filter for j ∈ ⟦1, s⟧ are

D
[j]
k+1∣k+1

(x) = L
[j]

Zj
k+1

(x)D[j−1]
k+1∣k+1

(x) (6.8)

L
[j]

Zj
k+1

(x) def= qjd(x) + ∑
z∈Zj

k+1

pjd(x)hj(z∣x)
λjcj(z) + ⟨D[j−1]k+1∣k+1

, pjd hj(z)⟩
(6.9)

Equation (6.8) is the single sensor PHD update equation [86]. The PHD obtained after

processing all the s sensors is the final posterior PHD of the iterated-corrector PHD filter

Dk+1∣k+1(x) =D
[s]
k+1∣k+1

(x).

Iterated-corrector CPHD filter

Let D
[j]
k+1∣k+1

(x) and π
[j]
k+1∣k+1

(n) be the PHD and cardinality distribution after processing

the jth sensor. Let the normalized PHDs be denoted by r
[j]
k+1∣k+1

(x)

r
[j]
k+1∣k+1

(x) =
D
[j]
k+1∣k+1

(x)

∫X D
[j]
k+1∣k+1

(x)dx
(6.10)

Denote D
[0]
k+1∣k+1

(x) = Dk+1∣k(x), r[0]k+1∣k+1
(x) = rk+1∣k(x) and π

[0]
k+1∣k+1

(n) = πk+1∣k(n). We also

define the following quantities

γ[j]
def= ⟨r[j]

k+1∣k+1
, qjd⟩ (6.11)

σ
[j]
i (Zj

k+1)
def= σmj ,i

⎛
⎜
⎝

⟨r[j]
k+1∣k+1

, pjd hj(zj1)⟩
cj(zj1)

, . . . ,
⟨r[j]

k+1∣k+1
, pjd hj(zjmj)⟩

cj(zjmj)

⎞
⎟
⎠

(6.12)
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α
[j]
0

def=

mj

∑
i=0

C
(mj−i)
j (0)G(i+1)(γ[j])σ[j]i (Zj

k+1)

mj

∑
i=0

C
(mj−i)
j (0)G(i)(γ[j])σ[j]i (Zj

k+1)
(6.13)

α
[j]
z

def=

mj−1

∑
i=0

C
(mj−i−1)
j (0)G(i+1)(γ[j])σ[j]i (Zj

k+1 − z)

mj

∑
i=0

C
(mj−i)
j (0)G(i)(γ[j])σ[j]i (Zj

k+1)
(6.14)

The update equations for the iterated-corrector CPHD filter are then given by

D
[j]
k+1∣k+1

(x) = L
[j]

Zj
k+1

(x)D[j−1]
k+1∣k+1

(x) (6.15)

π
[j]
k+1∣k+1

(n) =
�
[j]

Zj
k+1

(n)π[j−1]
k+1∣k+1

(n)

∑
i≥0

�
[j]

Zj
k+1

(i)π[j−1]
k+1∣k+1

(i)
(6.16)

where

L
[j]

Zj
k+1

(x) def= α
[j]
0 (qjd(x)) + ∑

z∈Zj
k+1

pjd(x)hj(z∣x)α[j]z

cj(z)
(6.17)

�
[j]

Zj
k+1

(n) def=
min(n,mj)

∑
i=0

C
(mj−i)
j (0) n!

(n − i)! γ
n−i
[j] σ

[j]
i (Zj

k+1) (6.18)

6.1.2 Approximate product PHD and CPHD filters

The approximate product filters developed by Mahler process the multisensor information

in a single update step. Their derivation is based on the assumption that the multitar-

get distribution fk+1∣k+1(X ∣Zk+1,j), i.e., the distribution obtained by updating only the jth

sensor, corresponds to an IIDC process for each sensor j ∈ ⟦1, s⟧. The filters are called

product filters because the combined multisensor pseudo-likelihood function is a product

of the single sensor likelihoods with an additional scaling factor. We define the following

quantities for use in update equations of both the approximate product PHD and CPHD
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filters

γj
def= ⟨rk+1∣k, qjd⟩ (6.19)

σj
i (Z

j
k+1)

def= σmj ,i

⎛
⎝
⟨rk+1∣k, pjd hj(zj1)⟩

cj(zj1)
, . . . ,

⟨rk+1∣k, pjd hj(zjmj)⟩
cj(zjmj)

⎞
⎠

(6.20)

Approximate product PHD filter

We associate the following quantities with the jth sensor

Lj

Zj
k+1

(x) def= qjd(x) + ∑
z∈Zk+1,j

pjd(x)hj(z∣x)
λj cj(z) + ⟨Dk+1∣k, p

j
d hj(z)⟩

(6.21)

N j
k+1

def= ⟨rk+1∣k, Lj

Zj
k+1

⟩ (6.22)

�j
Zj
k+1

(n) def=
min(n,mj)

∑
i=0

λ
mj−i
j

n!

(n − i)!γ
n−i
j σj

i (Z
j
k+1) (6.23)

Note that Lj

Zj
k+1

(x) is the pseudo-likelihood function associated with the single sensor PHD

filter processing data from the jth sensor andN j
k+1 is the corresponding mean of the posterior

cardinality. Also define

ω
def=
∫X rk+1∣k(x)

s

∏
j=1

Lj

Zj
k+1

(x)dx

s

∏
j=1

N j
k+1

, φ
def=
∑
i≥0

(Nk+1∣kω)i
i!

s

∏
j=1

�j
Zj
k+1

(i + 1)

∑
i≥0

(Nk+1∣kω)i
i!

s

∏
j=1

�j
Zj
k+1

(i)
(6.24)

Then the PHD update equation for the approximate product multisensor PHD filter and

the multisensor pseudo-likelihood function are given as

Dk+1∣k+1(x) = LZ1∶s
k+1

(x)Dk+1∣k(x) , LZ1∶s
k+1

(x) def= φ

s

∏
j=1

Lj

Zj
k+1

(x)

s

∏
j=1

N j
k+1

(6.25)

The multisensor pseudo-likelihood function LZ1∶s
k+1

(x) is the scaled product of the individual

single sensor pseudo-likelihood functions Lj

Zj
k+1

(x).
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Approximate product CPHD filter

We define the following quantities associated with the jth sensor

αj
0

def=

mj

∑
i=0

C
(mj−i)
j (0)G(i+1)(γj)σj

i (Z
j
k+1)

mj

∑
i=0

C
(mj−i)
j (0)G(i)(γj)σj

i (Z
j
k+1)

(6.26)

αj
z

def=

mj−1

∑
i=0

C
(mj−i−1)
j (0)G(i+1)(γj)σj

i (Z
j
k+1 − {z})

mj

∑
i=0

C
(mj−i)
j (0)G(i)(γj)σj

i (Z
j
k+1)

(6.27)

Lj

Zj
k+1

(x) def= αj
0 q

j
d(x) + ∑

z∈Zj
k+1

pjd(x)hj(z∣x)αj
z

cj(z)
(6.28)

N j
k+1

def= ⟨rk+1∣k, Lj

Zj
k+1

⟩ (6.29)

�j
Zj
k+1

(n) def=
min(n,mj)

∑
i=0

n!

(n − i)!C
(mj−i)
j (0)γn−i

j σj
i (Z

j
k+1). (6.30)

Note that the above quantities Lj

Zj
k+1

(x) and �j
Zj
k+1

(n) are the pseudo-likelihoods associated
with the single sensor CPHD filter processing measurements from the jth sensor. Also

define

ω
def=
∫X rk+1∣k(x)

s

∏
j=1

Lj

Zj
k+1

(x)dx

s

∏
j=1

N j
k+1

, φ
def=
∑
i≥0

ωi (i + 1)pk+1∣k(i + 1)
s

∏
j=1

�j
Zj
k+1

(i + 1)

∑
i≥0

ωi pk+1∣k(i)
s

∏
j=1

�j
Zj
k+1

(i)
. (6.31)
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The PHD update equation for the approximate product multisensor CPHD filter and the

multisensor pseudo-likelihood function LZ1∶s
k+1

(x) are given as

Dk+1∣k+1(x) = LZ1∶s
k+1

(x) rk+1∣k(x) (6.32)

LZ1∶s
k+1

(x) def= φ

s

∏
j=1

Lj

Zj
k+1

(x)

s

∏
j=1

N j
k+1

. (6.33)

The cardinality update for the approximate product multisensor CPHD filter is

πk+1∣k+1(n) =
ωn πk+1∣k(n)

s

∏
j=1

�j
Zj
k+1

(n)

∑
i≥0

ωi πk+1∣k(i)
s

∏
j=1

�j
Zj
k+1

(i)
(6.34)

6.2 General multisensor CPHD filter

In this section we outline the main result of the general multisensor CPHD filter update

step. The derivation method is similar to the approach used to derive the general multi-

sensor PHD filter equations by Mahler [19] and Delande et al. [122]. The prediction step

is the same as that for the single sensor case and is discussed in Section 4.3.1.

6.2.1 CPHD update step

Let W ⊆ Z1∶s
k+1 such that for all j ∈ ⟦1, s⟧, ∣W ∣j ≤ 1 where ∣W ∣j = ∣{z ∈ W ∶ z ∈ Zj

k+1}∣. Thus

the subset W can have at most one measurement from each sensor. Let W be the set of all

such W . For any measurement subset W we can uniquely associate with it a set of pairs

of indices TW defined as TW = {(j, l) ∶ zjl ∈W}.
For disjoint subsetsW1,W2, . . .Wn, let V = Z1∶s

k+1∖(∪n
i=1Wi), so thatW1,W2, . . .Wn and V

partition Z1∶s
k+1. We can think of the setWi as a collection of measurements made by different

sensors, all of which are generated by the same target and the set V as the collection of

clutter measurements made by all the sensors. Let P be a partition of Z1∶s
k+1, constructed
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using elements from the set W and a set V , given by

P = {W1,W2, . . .W∣P ∣−1, V }, (6.35)

such that

∣P ∣−1

⋃
i=1

Wi ∪ V = Z1∶s
k+1, (6.36)

Wi ∩Wj = ∅, for any Wi,Wj ∈ P, i ≠ j (6.37)

Wi ∩ V = ∅, for any Wi ∈ P (6.38)

where ∣P ∣ denotes the number of elements in the partition P .

The partition P groups the measurements in Z1∶s
k+1 into disjoint subsets where each subset

is either generated by a target (the W subsets) or generated by the clutter process (the V

subset). Let ∣P ∣j be the number of measurements made by sensor j which are generated

by the targets and is given by

∣P ∣j =
∣P ∣−1

∑
i=1

∣Wi∣j. (6.39)

The number of measurements made by sensor j which are classified as clutter in the parti-

tion P is (mj−∣P ∣j). Let P be the collection of all possible partitions P of Z1∶s
k+1 constructed

as above. A recursive expression for constructing the collection P is given in Appendix C.1.

Denote the vth-order derivatives of the PGFs of the clutter cardinality distribution and

the predicted cardinality distribution as

C
(v)
j (t) = dvCj

dtv
(t) , M (v)(t) = dvM

dtv
(t). (6.40)

We use γ to denote the probability, under the predictive PHD, that a target is detected

by no sensor, and we thus have:

γ
def= ∫

X
r(x)

s

∏
j=1

qjd(x)dx . (6.41)

For concise specification of the update equations, it is useful to combine the terms

associated with the PGF of the clutter cardinality distribution for a partition P . Let us
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define the quantity

κP =
s

∏
j=1

C
(mj−∣P ∣j)
j (0). (6.42)

For a set W ∈ W and the associated index set TW define the quantities

dW
def=
∫
X
r(x)

⎛
⎝ ∏
(i,l)∈TW

pid(x)hi(zil ∣x)
⎞
⎠ ∏
j∶(j,∗)∉TW

qjd(x)dx

∏
(i,l)∈TW

ci(zil)
, (6.43)

ρW (x) def=

⎛
⎝ ∏
(i,l)∈TW

pid(x)hi(zil ∣x)
⎞
⎠ ∏

j∶(j,∗)∉TW

qjd(x)

∫
X
r(x)

⎛
⎝ ∏
(i,l)∈TW

pid(x)hi(zil ∣x)
⎞
⎠ ∏

j∶(j,∗)∉TW

qjd(x)dx
, (6.44)

where (j,∗) indicates any pair of indices of the form (j, l).
The updated probability hypothesis density function Dk+1∣k+1(x) can be expressed as

the product of the normalized predicted probability hypothesis density rk+1∣k(x) at time

k+1 and a pseudolikelihood function. The pseudolikelihood function can be expressed as a

linear combination of functions (one function for each partition P ) with associated weights

αP . The all-clutter partition P = {V } where V = Z1∶s
k+1 is not included in the collection P

and has an associated weight α0. Define

α0
def=

∑
P ∈P

(κPM
(∣P ∣)(γ) ∏

W ∈P

dW)

∑
P ∈P

(κPM
(∣P ∣−1)(γ) ∏

W ∈P

dW)
, (6.45)

αP
def=

κPM
(∣P ∣−1)(γ) ∏

W ∈P

dW

∑
Q∈P

(κQM
(∣Q∣−1)(γ) ∏

W ∈Q

dW)
. (6.46)

Note that the expression W ∈ P only includes W ∈ W and does not include the component

V ∈ V of P .
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Theorem 1. Under the conditions of Assumption 2, the general multisensor CPHD filter

update equation for the probability hypothesis density is

Dk+1∣k+1(x)
rk+1∣k(x)

= α0

s

∏
j=1

qjd(x) + ∑
P ∈P

αP ( ∑
W ∈P

ρW (x)) (6.47)

and the update equation for the posterior cardinality distribution is

πk+1∣k+1(n)
πk+1∣k(n)

=

∑
P ∈P
∣P ∣≤n+1

(κP
n!

(n − ∣P ∣ + 1)!γ
n−∣P ∣+1 ∏

W ∈P

dW)

∑
P ∈P

(κPM
(∣P ∣−1)(γ) ∏

W ∈P

dW)
, (6.48)

where the quantities α0, αP , ρW (x) and dW are given in (6.45), (6.46), (6.44) and (6.43).

The proof of Theorem 1 is provided in Appendix C.5. It requires the concepts of

functional derivatives and integral transform of the posterior multitarget density which are

revised in Appendices C.2 and C.3 respectively. The proof depends on an intermediate

result, Lemma 1, which is proved in Appendix C.4.

6.2.2 General multisensor PHD filter as a special case

In this section we show that the general multisensor PHD filter can be obtained as a special

case of the general multisensor CPHD filter. The assumptions made by the PHD filter are

given in Assumption 1 in Section 6.1. Since the multitarget state distribution is modelled

as Poisson it suffices to propagate the PHD function over time. Let the rate of the Poisson

clutter process be λj and let cj(z) be the clutter spatial distribution for the jth sensor. Let

μk+1∣k be the mean predicted cardinality at time k + 1. Using the Poisson assumptions for

the predicted multitarget distribution and the sensor clutter processes we have

M (v)(γ) = μv
k+1∣k e

μk+1∣k(γ−1) (6.49)

C
(v)
j (0) = λv

j e
−λj . (6.50)
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Using these in (6.45) we have the simplification α0 = μk+1∣k. We can also simplify the term

κPM (∣P ∣−1)(γ) as

κPM
(∣P ∣−1)(γ) = (

s

∏
j=1

C
(mj−∣P ∣j)
j (0)) M (∣P ∣−1)(γ) (6.51)

= (
s

∏
j=1

λ
mj−∣P ∣j
j e−λj) μ

∣P ∣−1
k+1∣k

eμk+1∣k(γ−1) (6.52)

= (eμk+1∣k(γ−1)−∑
s
j=1 λj)(

s

∏
j=1

λ
mj

j )
μ
∣P ∣−1
k+1∣k

(∏s
j=1 λ

∣P ∣j
j )

. (6.53)

Since the expression κPM (∣P ∣−1)(γ) appears in both the numerator and the denominator of

the term αP in the PHD update expression, we can ignore the portion that is independent

of P . Hence we have

κPM
(∣P ∣−1)(γ) ∝ μ

∣P ∣−1
k+1∣k

s

∏
j=1

λ
−∣P ∣j
j . (6.54)

From (6.43) and (6.54), we can write

κPM
(∣P ∣−1)(γ) ∏

W ∈P

dW ∝ ∏
W ∈P

d̃W (6.55)

where d̃W is defined as

d̃W
def=
μk+1∣k ∫

X
r(x)

⎛
⎝ ∏
(i,l)∈TW

pid(x)hi(zil ∣x)
⎞
⎠ ∏

j∶(j,∗)∉TW

qjd(x)dx

∏
(i,l)∈TW

λi ci(zil)
⋅ (6.56)

The PHD update equation then reduces to

Dk+1∣k+1(x)
rk+1∣k(x)

= μk+1∣k

s

∏
j=1

qjd(x) + ∑
P ∈P

(∏
W ∈P

d̃W) ∑
W ∈P

ρW (x)

∑
P ∈P

(∏
W ∈P

d̃W)
⋅ (6.57)
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This equation is equivalent to the general multisensor PHD update equation discussed in

the literature [19, 122].

6.3 Approximate implementation of the general multisensor

CPHD and PHD filters

In the previous section we derived update equations for the general multisensor CPHD filter

which propagate the PHD and cardinality distribution over time. Analytic propagation of

these quantities is difficult in general without imposing further conditions. In Section 6.3.1

we develop a Gaussian mixture-based implementation of the filter update equations. Al-

though the Gaussian mixture implementation is analytically tractable, it is computationally

intractable. In Sections 6.3.2 and 6.3.3 we propose greedy algorithms to drastically reduce

computations and develop computationally tractable approximate implementations for the

general multisensor CPHD and PHD filters.

6.3.1 Gaussian mixture implementation

We make the following assumptions to obtain closed form updates for equations (6.47)

and (6.48)

Assumption 3:

a) The probability of detection for each sensor is constant throughout the single target

state space; i.e., pjd(x) = pjd, for all x.

b) The predicted PHD is a mixture of weighted Gaussian densities.

c) The single sensor observations are linear functions of a single target state corrupted by

zero-mean Gaussian noise.

d) The predicted cardinality distribution has finite support; i.e., there exists a positive

integer n0 < ∞ such that πk+1∣k(n) = 0, for all n > n0.
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From the above assumptions we can express the normalized predicted PHD as a Gaussian

mixture model

r(x) =
Jk+1∣k

∑
i=1

w
(i)
k+1∣k

N (i)(x) (6.58)

N (i)(x) def= N(x;m(i)
k+1∣k

,Σ
(i)
k+1∣k

) (6.59)

where w
(i)
k+1∣k

are non-negative weights satisfying ∑Jk+1∣k
i=1 w

(i)
k+1∣k

= 1; and N (i)(x) is the Gaus-

sian density function with mean m
(i)
k+1∣k

and covariance matrix Σ
(i)
k+1∣k

. If Hj is the ob-

servation matrix for sensor j then its likelihood function can be expressed as hj(z∣x) =
N(z;Hjx,Σj). Then under the conditions of Assumption 3, the posterior PHD at time

k + 1 can be expressed as a weighted mixture of Gaussian densities and the posterior car-

dinality distribution has a finite support.

Since the probability of detection is constant we have γ = ∏s
j=1 q

j
d. For each partition P

the quantities M (∣P ∣−1) and M (∣P ∣) can be easily calculated since the predicted cardinality

distribution has finite support. The integration in the numerator of (6.43) is analyti-

cally solvable under Assumption 3 and using properties of Gaussian density functions [41].

Hence dW can be analytically evaluated. From these quantities we can calculate α0 and

αP from (6.45) and (6.46). For each measurement set W we can express the product

r(x)ρW (x) as a sum of weighted Gaussian densities using the properties of Gaussian den-

sity functions [41]. Thus from the update equation (6.47) the posterior PHD can be ex-

pressed as a mixture of Gaussian densities. Since the predicted cardinality distribution has

finite support, from (6.48), the posterior cardinality distribution also has finite support.

Similarly, under appropriate linear Gaussian assumptions, the posterior PHD in (6.57) can

be expressed as a mixture of Gaussian densities.

Note that for deriving analytically tractable filter equations we make the simplifying

assumption that the probability of detection pd(x) is a constant and does not depend on the

target state x. This requirement is not strictly necessary but is adopted in this thesis for

simplicity. For a more realistic approximation, following the discussion in [41] we can relax

this condition and model the probability of detection as a mixture of Gaussian densities

and we would still obtain analytically tractable filter equations.

The conditions of Assumption 3 allow us to analytically propagate the PHD and car-

dinality distribution but the propagation is still numerically infeasible. The combinatorial
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nature of the update step can be seen from (6.47), (6.48) and (6.57). Specifically, the exact

implementation of the general multisensor CPHD and PHD filters would require evalua-

tion of all the permissible partitions (i.e., all P ∈ P) that could be constructed from all

possible measurement subsets. The number of such partitions is prohibitively large and a

direct implementation is infeasible. We now discuss an approximation of the update step

to overcome this limitation.

The key idea of the approximate implementation is to identify elements of the collection

P which make a significant contribution to the update expressions. We propose the follow-

ing two-step greedy approximation to achieve this within the Gaussian mixture framework.

The first approximation step is to select a few measurement subsets W for each Gaussian

component that are best explained by that component. The second approximation step is

to greedily construct partitions of these subsets which are significant for the update step.

The following subsections explain these two steps in detail.

6.3.2 Selecting the best measurement subsets

A measurement subset is any subset of the measurement set Z1∶s
k+1 such that it contains

at most one measurement per sensor. The total number of measurement subsets that

can be constructed when the jth sensor records mj measurements is
s

∏
j=1

(mj + 1). When

there are many targets present and/or the clutter rate is high this number can be very

large. Since the size of the collection P depends on the number of measurement subsets, to

develop a tractable implementation of the update step it is necessary to limit the number

of measurement subsets. We achieve this by associating a score with each measurement

subset that correlates with its significance in the final update step. Instead of enumerating

all possible measurement subsets, they are greedily and sequentially constructed and only

a few are retained based on the scores associated with them.

Consider the measurement subset W and the associated set TW as defined earlier. For

the ith Gaussian component and the measurement subset W we can associate a score
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function β(i)(W ) defined as

β(i)(W ) def=
∫
X
N (i)(x)

⎛
⎝ ∏
(j,l)∈TW

pjd hj(zjl ∣x)
⎞
⎠
⎛
⎝ ∏
j∶(j,∗)∉TW

qjd
⎞
⎠
dx

∏
(j,l)∈TW

cj(zjl )
⋅ (6.60)

The above score function is obtained by splitting the dW term in (6.43) for each Gaussian

component. Intuitively, this score can be interpreted as the ratio of the likelihood that the

measurement subset W was generated by the single target represented by the ith Gaussian

component to the likelihood that the measurement subset W was generated by the clutter

process. The score β(i)(W ) can be analytically calculated since the integral is solvable under

Assumption 3 and using properties of Gaussian densities [36]. The score is high when the

elements of the set W truly are the measurements caused by the target associated with the

ith Gaussian component. We use β(i)(W ) to rank measurement subsets for each Gaussian

component and retain only a fraction of them with the highest scores.

For each Gaussian component, we select the measurement subsets by randomly ordering

the sensors and incrementally incorporating information from each sensor in turn. We retain

a maximum of Wmax subsets at each step. Figure 6.1 provides a graphical representation

of the algorithm in the form of a trellis diagram. Each column of the trellis corresponds to

observations from one of the sensors. The sensor number is indicated at top of each column.

The nodes of the trellis correspond to the sensor observations (z11,z12, . . . , z21,z22, . . . ) or the
no detection case (z1∅,z2∅, . . . ).

The process of sequential construction of measurement subsets can be demonstrated

using an example as follows. The solid lines in Figure 6.1 represent partial measurement

subsets retained after processing observations from sensors 1 − 3. Now consider the mea-

surement subset indicated by the thick solid line. It corresponds to the measurement subset

{z21,z31}. When the sensor 4 measurements are processed, this measurement subset is ex-

tended for each node of sensor 4 as represented by the dashed lines. The scores β(i)(W ) are
calculated for these new measurement subsets using the expression in (6.60) but limited to

only the first 4 sensors. This is done for each existing measurement subset in the sensor-

measurement space and Wmax measurement subsets with highest scores are retained and

considered at the next sensor. Although the process of constructing measurement subsets

is dependent on the order in which sensors are processed, we observe from simulations that
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z41

z42

z43

z51

Fig. 6.1 Trellis diagram for constructing measurement subsets for each
Gaussian component. Solid blue lines represent measurement subsets retained
after processing sensors 1 − 3. Dashed red lines correspond to extensions of
retained measurement subsets when processing measurements from sensor 4.

it has no significant effect on filter performance. Once the subsets have been selected, the

ordering has no further effect in the update process.

6.3.3 Constructing partitions

The algorithm to construct partitions from subsets is similar to the above algorithm used

to identify the best measurement subsets. Since the V component of a partition is unique

given the W components, it is sufficient to identify the W components to uniquely specify

a partition P . A graphical representation of the algorithm is provided in Figure 6.2. Each

column of this trellis corresponds to the set of measurement subsets {W i
1,W

i
2, . . .} identified

by the ith Gaussian component. The component number (i) is indicated at the top of each

column. The node W i
∅ represents the empty measurement subset W i

∅ = ∅ which is always

included for each component and it corresponds to the event that the Gaussian component

was not detected by any of the sensors. With each valid partition P we associate the score

dP = ∏
W ∈P

dW with d∅ = 1.

We greedily identify partitions of subsets by incrementally incorporating measurement

subsets from the different components. For example the solid lines in Figure 6.2 correspond

to the partitions that have been retained after processing components number 1−−3. The
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Fig. 6.2 Trellis diagram for constructing partitions. Solid blue lines repre-
sent partitions retained after processing Gaussian components 1-3. Red dashed
lines correspond to partition extension when incorporating measurement sub-
sets corresponding to the 4th Gaussian component.

existing partitions are expanded using the measurement subsets from the 4th component as

indicated by the dashed lines. Some extensions are not included as they do not lead to a

valid partition. We process the Gaussian components in decreasing order of their associated

weights. After processing each component, we retain a maximum of Pmax partitions cor-

responding to the ones with highest dP . These selected partitions of measurement subsets

are used in the update equations (6.47), (6.48) and (6.57) to compute the posterior PHDs

and cardinality distribution.

Dancing links algorithm

For the general multisensor PHD filter a slightly more exact implementation can be used.

After the first approximate step of identifying measurement subsets for each Gaussian

component, instead of the approximate partition construction discussed in this section, we

can find all possible partitions from the given collection of measurement subsets. This

problem of finding all partitions can be mapped to the exact cover problem [160]. An

efficient algorithm called Dancing Links has been suggested by Knuth [161] for solving this

problem. This implementation can be used when there are relatively few sensors and the

number of measurement subsets is small.
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6.4 Numerical simulations

In this section we compare different multisensor multitarget tracking algorithms developed

using random finite set theory. Specifically we compare the following filters - iterated-

corrector PHD (IC-PHD), iterated-corrector CPHD (IC-CPHD), product multisensor PHD

(P-PHD), product multisensor CPHD (P-CPHD), general multisensor PHD (G-PHD) and

the general multisensor CPHD (G-CPHD) filter derived in this chapter. The models used

to simulate multitarget motion and multisensor observations are discussed in Sections 6.4.1

and 6.4.2. The simulated observations are used by different algorithms to perform multitar-

get tracking. All the simulations were performed using algorithms implemented in Matlab

running on computers with two Xeon 4-core 2.5GHz processors and 14GB RAM.

6.4.1 Target dynamics

The single target state is a four dimensional vector x = [x, y, vx, vy] consisting of its position
coordinates x and y and its velocities vx and vy along x-axis and y-axis respectively. The

target state evolves according to the discretized version of the continuous time nearly

constant velocity model [158] given by

xk+1,i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xk,i + ηk+1,i (6.61)

ηk+1,i ∼ N(0,Ση) , Ση =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T 3

3 0 T 2

2 0

0 T 3

3 0 T 2

2
T 2

2 0 T 0

0 T 2

2 0 T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

σ2
η (6.62)

where T is the sampling period and σ2
η is the intensity of the process noise. We simulate

100 time steps with a sampling period of T = 1s and process noise intensity of ση = 0.25.

6.4.2 Measurement model

Measurements are collected independently by multiple sensors. When a sensor detects a

target, the corresponding measurement consists of the position coordinates of the target
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corrupted by additive Gaussian noise. Thus if a target located at (x, y) is detected by a

sensor, the measurement gathered by the sensor is given by

z =
⎡⎢⎢⎢⎢⎣

x

y

⎤⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎣

wx

wy

⎤⎥⎥⎥⎥⎦
(6.63)

where wx and wy are independent zero-mean Gaussian noise terms with standard deviation

σwx and σwy respectively. In our simulations we use σwx = σwy = 10. The probability

of detection of each sensor is constant throughout the monitoring region. The clutter

measurements made by each of the sensors is Poisson with uniform spatial density and

mean clutter rate λ.

6.4.3 Algorithm settings

For the different multisensor filters the PHD function is represented by a mixture of Gaus-

sian densities whereas the cardinality distribution is represented by a vector of finite length

which sums to one. This Gaussian mixture model approximation was first used in [41]

and [90] for multitarget tracking using single sensor PHD and CPHD filters respectively.

We perform pruning of Gaussian components with low weights and merging of Gaussian

components in close vicinity [41] for computational tractability. For the iterated-corrector

filters pruning and merging is done after processing each sensor since many components

have negligible weight and propagating them has no significant impact on tracking accu-

racy. For the general multisensor PHD and CPHD filters pruning and merging is performed

at the end of the update step since intermediate Gaussian components are not accessible.

The general multisensor PHD and CPHD filters are implemented using the two-step greedy

approach described in Section 6.3. In our simulations the maximum number of measure-

ment subsets per Gaussian component is set to Wmax = 6 and the maximum number of

partitions of measurement subsets is set as Pmax = 6. In later simulations we see that larger

values of Wmax and Pmax do not provide any advantage in terms of tracking performance.

For CPHD filters, the cardinality distribution is assumed to be zero for n > 20. This value

can be much higher than the true number of targets and can be tuned using an estimate

of the maximum number of targets to be tracked.

For the PHD filters, we estimate the number of targets by rounding the sum of weights

of the Gaussian components to the nearest integer. For the CPHD filters, we estimate
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the number of targets as the peak of the posterior cardinality distribution. For all the

filters, the target state estimates are the centres of the Gaussian components with highest

weights in the posterior PHD. To reduce the computational overhead, after each time step

we restrict the number of Gaussian components to a maximum of four times the estimated

number of targets. When the estimated number of targets is zero we retain a maximum of

four Gaussian components.

All the filters model the survival probability at all times and at all locations as constant

with psv = 0.99. The tracking performances of the different filters are compared using the

OSPA error metric discussed in Section 2.7. For the OSPA metric, we set the cardinality

penalty factor c = 100 and power p = 1. These values were used in [127] for comparing

different multisensor filters in a similar setup.

6.4.4 Simulation results

Experiment 1

In this experiment we generate tracks using the target motion model described in Sec-

tion 6.4.1. A maximum of four targets are present at any time instant. The target tracks

and the target number variation over time are shown in Figures 6.3(a) and 6.3(b) respec-

tively. All the targets originate from one of the following two locations (400m,400m) or

(−400m,−400m) and target motion is restricted to the 2000m × 2000m square region cen-

tered at origin. Target 1 is present in the time range k ∈ ⟦1,100⟧; target 2 for k ∈ ⟦21,100⟧;
target 3 for k ∈ ⟦41,100⟧; and targets 4 for k ∈ ⟦61,80⟧. For this experiment target birth in-

tensity is modelled as a Gaussian mixture with two components centered at (400,400,0,0)
and (−400,−400,0,0), each with covariance matrix diag([100,100,25,25]) and weight 0.1.

In our simulations we model target birth intensity to be a Gaussian mixture density with

centers at true target birth locations. In a more practical scenario where this information

is unavailable the Gaussian components can be initialized based on sensor measurements,

though this will result in an initial bias due to measurement noise. Target birth cardinality

distribution is assumed Poisson with mean 0.2.

Three sensors gather measurements about the targets. Two of the sensors have a fixed

probability of detection of 0.8. The probability of detection of the third sensor is variable

and is changed from 0.2 to 1 in increments of 0.1. The mean clutter rate of each of the

sensors is set to λ = 10. We consider two cases of sensor ordering where the sensor with
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Fig. 6.3 Target tracks for Experiment 1: (a) Evolution of target trajectories.
(b) Number of targets as function of time.

variable probability of detection is either processed first (Case 1) or last (Case 2).

We compare all the six filters in this setup. Additionally, since the number of targets

and sensors are relatively small, we also implement the general multisensor PHD filter

using the Dancing Links approach (G-PHD(DL)) described in Section 6.3.3. The generated

observation sequence is changed by providing a different initialization seed to the random

number generator. We generate 100 different observation sequences and the average OSPA

error obtained by running different multisensor filters over these 100 observation sequences

is reported.

Figure 6.4(a) shows the average OSPA error as the probability of detection is changed for

the two cases, Case 1 and Case 2. The approximate product filters P-PHD and P-CPHD

perform significantly worse than most of the filters. This is because of their unstable

nature as discussed in Section 6.1.2. For the IC-PHD filter Case 1, the accuracy improves

relative to Case 2 as the probability of detection is increased since the sensor with more

reliable information is processed towards the end. Figure 6.4(b) shows an enlarged portion

of Figure 6.4(a). The average OSPA errors for the two different implementations of the

general multisensor PHD filters are very similar. The error is slightly smaller for the G-

PHD implementation compared to the G-PHD(DL) implementation because many of the

non-ideal partitions get eliminated when using a greedy approach to construct partitions.

The G-CPHD filter has the lowest average OSPA error.
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Fig. 6.4 Experiment 1: (a) Average OSPA error versus the probability of
detection pd of the variable sensor. The solid and dashed lines correspond to
Case 1 and Case 2, respectively. (b) A zoomed-in version of the figure in (a)
focusing on the IC-CPHD, G-PHD, G-PHD(DL) and G-CPHD filters.

Experiment 2

In this experiment we consider a maximum of eight targets being simultaneously present.

Figures 6.5(a) and 6.5(b) show the target trajectories and the variation of number of targets

over time. All the targets originate from one of the following four locations (±400m,±400m)
and targets are restricted to the 2000m × 2000m square region centered at origin. Tar-

get birth intensity is modelled as a Gaussian mixture with four components centered at

(±400,±400,0,0), each with covariance matrix diag([100,100,25,25]) and weight 0.1. Tar-

get birth cardinality distribution is assumed Poisson with mean 0.4.

Six sensors gather measurements about the targets. Five of the sensors have a fixed

probability of detection of 0.5. The probability of detection of the sixth sensor is variable

and is changed from 0.2 to 1 in increments of 0.1. The mean clutter rate of each of the

sensors is set to λ = 10. We consider two cases of sensor ordering where the sensor with

variable probability of detection is either processed first (Case 1) or last (Case 2).

Since the number of sensors is large, the G-PHD(DL) filter implementation using the

Dancing Links algorithm becomes infeasible (both the memory and computational require-

ments). Hence we only use the greedy implementation for the general multisensor PHD

filter. The instability of the approximate product filters of P-PHD and P-CPHD becomes
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Fig. 6.5 Target tracks for Experiment 2 & 3: (a) Evolution of target trajec-
tories. (b) Number of targets as function of time.

more severe when the number of sensors is large. Hence we do not include them in our

discussion any further.

The average OSPA error is obtained by running different multisensor filters over 100

randomly generated observation sequences. The probability of detection of the sensor with

variable probability of detection is gradually increased from 0.2 to 1. Figure 6.6(a) shows

the average OSPA error as the probability of detection is changed for the two cases, Case

1 and Case 2. The IC-PHD filter performs significantly worse than all the other filters but

its performance improves in Case 1 as the probability of detection is increased.

Figure 6.6(b) shows a portion of Figure 6.6(a) enlarged for clarity. We observe that

for the G-PHD, IC-CPHD and G-CPHD filters there is very little difference between per-

formance for Case 1 and Case 2. Thus the IC-CPHD filter performance does not depend

significantly on the order in which sensors are processed. For the G-PHD and G-CPHD

filters the order in which sensors are processed to greedily construct measurement subsets

has little impact on the final filter performance. The G-CPHD filter is able to outperform

both the G-PHD and the IC-CPHD filters and has the lowest average OSPA error. A box

and whisker plot comparison of the G-PHD, IC-CPHD and G-CPHD filters is shown in

Figure 6.7. The median OSPA error and the 25 − 75 percentiles are shown for different

values of pd for the sensor with variable probability of detection.

We now examine the effect of the parameters Wmax and Pmax, i.e., the maximum num-
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Fig. 6.6 Experiment 2: (a) Average OSPA error versus the probability of
detection pd of the variable sensor. The solid and dashed lines correspond to
Case 1 and Case 2, respectively. (b) A zoomed-in version of the figure in (a)
focusing on the IC-CPHD, G-PHD and G-CPHD filters.
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ber of measurement subsets and the maximum number of partitions using the setup of

Experiment 2. Wmax is varied in the range {1,2,4,6,8,10} and Pmax is varied in the range

{1,2,4,6,8,10}. For this simulation we fix the probability of detection of all the six sensors

to be 0.5. All other parameters of the simulation are the same as before. We do tracking

using the same tracks as before and over 100 different observation sequences for each pair

of (Wmax, Pmax).
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Fig. 6.8 Experiment 2: Average OSPA error Vs Computational time ob-
tained by changing Wmax in the range {1,2,4,6,8,10} and Pmax in the range
{1,2,4,6,8,10}. Blue dashed curves correspond to G-PHD filter and red solid
curves correspond to G-CPHD filter.

Figure 6.8 plots the effect of changingWmax and Pmax on the average OSPA error and the

average computational time required. Each curve is obtained by fixing Pmax and changing

Wmax. Dashed curves correspond to G-PHD filter and solid curves correspond to G-CPHD

filters. For a given pair of (Wmax, Pmax) values both the filters require almost the same

computational time but the G-CPHD filter has a lower average OSPA error compared to

the G-PHD filter. We observe that for each curve asWmax increases the average OSPA error

reaches a minimum quickly (around Wmax = 2) and then starts rising. This is because as

Wmax is increased the non-ideal measurement subsets also get involved in the construction

of partitions leading to noise terms in the update. The computational time required grows

approximately linearly with increase in Wmax. As Pmax is varied the average OSPA error
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saturates at around Pmax = 4 and increasing it beyond 4 has very little impact. Increasing

Pmax does not significantly raise the computational time requirements of the approximate

G-PHD and G-CPHD filter implementations.

Experiment 3

To understand the scaling behavior of the approximate greedy implementations of the

G-PHD and G-CPHD filters we perform another set of simulations. The target tracks

described in Figures 6.5(a) and 6.5(b) are used for this experiment. We vary the number of

sensors and clutter rate of the sensors in this simulation. The number of sensors is changed

in the range {2,4,6,8,10}. The clutter rate is varied in the range {1,5,10,15,20} and is

the same for all the sensors. We fix the probability of detection of all the sensors to be

0.5. We set Wmax = 6 and Pmax = 6. All other parameters of the simulation are unchanged.

Figures 6.9(a) and 6.9(b) plot the average computational time and the average OSPA error

as the number of sensors is changed for different clutter rate values. Each curve is obtained

by fixing clutter rate and changing the number of sensors. Dashed curves correspond

to G-PHD filter and solid curves correspond to G-CPHD filters. From Figure 6.9(a) we

observe that for approximate greedy implementations of the G-PHD and G-CPHD filters

the computational requirements grow linearly with the number of sensors as well as the

clutter rate.

6.4.5 Extension to non-linear measurement model

In this section we extend the Gaussian mixture based filter implementation discussed in

Section 6.3 to include non-linear measurement models using the unscented Kalman filter [62,

63] approach. The unscented extensions to non-linear models when a single sensor is present

are discussed in [41] and [90] for the PHD and CPHD filters respectively. We implement the

unscented versions of the general multisensor PHD and CPHD filters by repeatedly applying

the equations provided in [41, 90]. Specifically, the equations are recursively applied for

each z ∈ W to evaluate the score function β(i)(W ) while constructing the measurement

subsets. Similarly, extended Kalman filter [40] based implementation of the filter proposed

in Section 6.3 can also be easily derived.

As an example, we consider the setup described in [162] based on at-sea experiments.

Two targets are present within the monitoring region and portions of their tracks are shown
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Fig. 6.9 Experiment 3: (a) Computation time required as a function of
increasing number of sensors. Blue dashed curves correspond to G-PHD filter
and red solid curves correspond to G-CPHD filter. (b) Average OSPA error
as a function of increasing number of sensors.

in Figure 6.10(b). The target state x = [x, y] consists of its coordinates in the x − y plane

and the filters model the motion of individual targets using a random walk model given

by xk+1,i = xk,i + ηk+1,i where the process noise ηk+1,i is zero-mean Gaussian with covariance

matrix Ση = σ2
η diag(1,1). In our simulations we set ση = 0.24km. Although we consider

linear target dynamics in this section, the unscented approach can be easily extended to

include non-linear target dynamics as well.

The targets are monitored using acoustic sensors which collect bearings (angle) mea-

surements. If sensor j is present at location [xj, yj] and a target detected by the sensor

has coordinates [x, y] then the measurement made by this sensor is given by

z = arctan(y − yj

x − xj
) +w (6.64)

where the measurement noise w is zero mean Gaussian with standard deviation σw and

‘arctan’ denotes the four-quadrant inverse tangent function. The sensor locations are as-

sumed to be known. The measurements z are in the range [0,360) degrees. Along with the

target related measurements the sensors also record clutter measurements not associated

with any target. Five sensors (which slowly drift over time) gather measurements and their
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approximate locations are indicated in Figure 6.10(b). To demonstrate the feasibility of the

proposed algorithms for non-linear measurement models, we consider true sensor deploy-

ments and true target trajectories with simulated measurements. We use simulated data

to avoid the issue of measurement model mismatch. All sensors are assumed to have same

σw and we vary σw in the range {1,2,3,4} (degrees) in our simulations. The probability

of detection of each sensor is uniform throughout the monitoring region and is same for

all the sensors. The probability of detection of the sensors is changed from 0.7 to 0.95 in

increments of 0.05. The clutter measurements made by each of the sensors is a Poisson

random finite set with uniform density in [0,360) and mean clutter rate λ = 5.

The general multisensor PHD and the general multisensor CPHD filters are used to

perform tracking in this setup. Most of the implementation details are the same as discussed

in Section 6.4.3. The target birth intensity is modeled as a two component Gaussian

mixture with components centered at the true location of the targets at time k = 1 and each

having covariance matrix diag([0.65,0.79]) and weight 0.1. The target birth cardinality

distribution is assumed to be Poisson with mean 0.2. We set Wmax = 6 and Pmax = 6. While

calculating the OSPA error we use the cardinality penalty factor of c = 2 and power p = 1.

The average OSPA error obtained by running the algorithms over 100 different ob-

servation sequences are shown in Figure 6.10(a). Each curve is obtained by varying the

probability of detection of the sensors from 0.7 to 0.95. As the probability of detection

increases there is gradual decrease in the average OSPA error. Different curves correspond

to different values of measurement noise standard deviation σw. As σw is increased the

average OSPA error increases as expected. For each σw the G-CPHD filter performs better

than the G-PHD filter. Estimated target locations obtained by the general multisensor

CPHD filter are shown in Figure 6.10(b) when σw = 2 and pd = 0.9. The tracks are obtained

by joining the closest estimates across time.

6.5 Conclusions

In this chapter we addressed the problem of multitarget tracking using multiple standard

sensors. Many of the existing approaches do not make complete use of the multisensor

information or are computationally infeasible. As our first contribution we derived update

equations for the general multisensor CPHD filter. These update equations, similar to the

general multisensor PHD filter update equations, are combinatorial in nature and hence
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Fig. 6.10 Non-linear measurement: (a): Average OSPA error Vs porbability
of detection of individual sensors. Different plots obtained by changing σw in
the range {1,2,3,4}. Blue dashed curves correspond to G-PHD filter and
red solid curves correspond to G-CPHD filter. (b): True target tracks (solid
red) and estimated target tracks (dashed with markers) obtained using the
G-CPHD filter when σw = 2 and pd = 0.9.

computationally intractable. Our second contribution is in developing an approximate

greedy implementation of the general multisensor CPHD and PHD filters based on Gaussian

mixture model. The algorithm avoids any combinatorial calculations without sacrificing

tracking accuracy. The algorithm is also scalable since the computational requirements

grow linearly in the number of sensors as observed from the simulations.
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Chapter 7

Conclusions and future work

In this chapter we provide concluding remarks for the thesis and discuss opportunities for

future research and enhancements.

We motivated the problem of multitarget multisensor tracking using the radio frequency

tomography application. Identifying the limitations of traditional filtering methods, we

migrated towards the random finite set framework for multitarget multisensor tracking.

We derived and implemented several approximations to the optimal Bayes filter within the

random finite set framework.

The superpositional sensor model generalizes the radio frequency tomography measure-

ment model. We developed particle filter implementations of the approximate PHD and

CPHD filters for superpositional sensors. We also derived multi-Bernoulli filter and hybrid

multi-Bernoulli CPDH filter for superpositional sensors and their particle filter implemen-

tations. Numerical studies were conducted to compare performances of these filters using

simulated radio frequency tomography and simulated acoustic sensor network observations.

Finally, we derived a general multisensor CPHD filter for standard sensors. A greedy

algorithm based on Gaussian mixture model-based approximation was proposed for com-

putational tractability. Numerical studies were conducted to compare the proposed filter

with other multisensor filters.

The work developed in this thesis can be extended in multiple directions, both theo-

retical and practical. In the following sections we discuss some of the limitations of our

research and provide directions for future exploration.

2015/08/12
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7.1 Radio frequency tomography

We proposed empirical measurement models for outdoor and indoor deployment of radio

frequency sensor networks. The observed heavy tails in the measurement noise are not

accurately captured by the Gaussian approximations we use, but are sufficient for tracking

since the measurement dimension is high. To reduce model mismatch and improve tracking

accuracy, more accurate likelihood models can be explored in future work.

Through-the-wall tracking was demonstrated but was limited to the case when a single

target is present and required relatively dense deployment of the sensors. Future research

can focus on developing algorithms with high robustness to noise that can perform multi-

target tracking with fewer sensors.

The current likelihood model assumes prior knowledge of the sensor locations. In chal-

lenging practical applications such as search-and-rescue operations this information may

not be available. Integrating a sensor localization system within the multitarget tracker

can solve this problem.

Although we demonstrated tracking of a time-varying number of targets, the estimate

of the number of targets was poor. It would be interesting to apply the more advanced

filters such as the PHD, CPHD, multi-Bernoulli and hybrid multi-Bernoulli CPHD filters

developed in Chapters 4 and 5 for tracking an unknown number of targets using field data.

7.2 Multitarget tracking using superpositional sensors

The approximation techniques developed in this thesis for deriving multi-Bernoulli filters

for superpositional sensors can be used for deriving other RFS based filters such as the re-

cent labelled RFS based filters [88,89,147]. We made Gaussian approximations and applied

Campbell’s theorem to derive computationally tractable update equations for superposi-

tional sensors. The analysis in Appendix A shows that this approximation is reasonable

but not entirely accurate. A better solution would be to use a Gaussian mixture approx-

imation. Finding parameters for the different Gaussian components remains a challenge

as Campbell’s theorem cannot be directly applied when multiple Gaussian components are

present.

We developed auxiliary particle filter based implementations of various filters for super-

positional sensors. We performed extensive numerical studies of these filters but they were
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limited to simulated radio frequency tomography and simulated acoustic sensor network

setups. Data collected from radio frequency sensor networks in Chapter 3 can be processed

using these algorithms for tracking a time varying number of targets. It would be inter-

esting to study the performance of these filters in other applications where measurements

have superpositional form. Some example applications are direction-of-arrival estimation

in antenna arrays and multi-path channel state estimation for MIMO-OFDM communi-

cation systems. In the problem of multi-path channel state estimation the noise is often

modelled as complex random variable and the approximate update equations we develop

in this thesis should be modified to account for this.

In many practical applications all the sensor measurements may not be available at a

central computing entity, but rather individual sensors can process measurements locally

and communicate with each other. Developing distributed algorithms to process superpo-

sitional sensor observations is a challenging problem of practical significance.

7.3 Multitarget tracking using standard sensors

We developed a greedy implementation of the general multisensor CPHD filter based on

a Gaussian mixture model representation for the PHD. Since many of the multisensor

filters have a combinatorial computational complexity, the greedy method for construction

of measurement subsets and partitions developed in this thesis can be potentially used in

other filters to reduce their computational requirements.

We extended the greedy implementation for bearings-only tracking using the unscented

Kalman filter approach. Though this leads to a computationally tractable filter, it is

expected to perform poorly if the measurement model is highly non-linear. Developing a

computationally tractable particle filter based implementation, which can handle highly

non-linear models, will be a challenging problem to study.

Our numerical study of the general multisensor CPHD filter is limited to simulated data.

Future work can analyse the behavior of this filter when there is mismatch between the data

and the assumed measurement models. For example, it was observed that true measurement

data from sea-trial experiments violate one of the important assumptions of the filter that

each target can generate at most one measurement at each sensor. This is because of the

extended nature of targets (ships) which can cause multiple sonar reflections leading to

multiple detections. Generalizing the filter to process such non-standard measurements is
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a challenging theoretical problem.

One limitation of the filters we develop in this thesis is that they lack the information

to connect the target state estimates over time and provide trajectories of individual tar-

gets. For surveillance and military applications, identification and classification of target

tracks is an important requirement. Recent work on labelled random finite sets [88,89,147]

provides an integrated approach to propagate state and label information of targets over

time. Developing labelled RFS based filters which can process multisensor information is

a problem of both theoretical and practical interest.
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Appendix A

A.1 Gaussian approximation for superpositional sensors

To derive computationally tractable approximate filters of PHD, CPHD,multi-Bernoulli

and hybrid multi-Bernoulli CPHD for superpositional sensors, one of the key steps is to

approximate the density of the predicted observation vector with a Gaussian distribution.

This approximation allows us to analytically simplify the integrals in the equations (4.19),

(4.48), and (5.25) and provide computational tractability. Here we analyze the error intro-

duced in the calculation of the integral and the pseudo-likelihood because of the Gaussian

approximation.

Let Ξ be a random finite set with multitarget density function fΞ(W ). Let the PHD and

second factorial moment of the random finite set Ξ be denoted by D(x) and D({x1,x2}).
The random vector y is a function of the random finite set Ξ and has the following super-

positional form

y = ζ(Ξ) = ∑
x∈Ξ

g(x). (A.1)

We are interested in the computation of the following set integral

I = ∫
X
NΣ0(y0 − ζ(W ))fΞ(W )δW. (A.2)

By applying the change of variables formula for set integrals (Section 2.2.4) we have the

following standard integral

I = ∫
Y
NΣ0(y0 − y)Q(y)dy (A.3)

2015/08/12
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where Q(y) is the probability density function of the random vector y. Even though in the

above form the integral is simpler to evaluate than the set integral, without making any

assumptions on the density function Q(y) the integral is analytically intractable. To make

the above integral tractable, we use the approximation that the density function Q(y) is

a Gaussian density function. The mean vector and the covariance matrix of this Gaussian

density function are obtained using Campbell’s theorem. If mQ and ΣQ are the mean and

covariance matrix then we have the approximation Q(y) ≈ NΣQ
(mQ−y). From Campbell’s

theorem we have

mQ = E[(y)] = ∫
X
g(x)D(x)dx (A.4)

ΣQ = E[(y −mQ)(y −mQ)T ] (A.5)

= ∫
X
g(x) g(x)T D(x)dx + ∫

X
∫
X
g(x1) g(x2)T D̃({x1,x2})dx1dx2 (A.6)

where D̃({x1,x2}) =D({x1,x2}) −D(x1)D(x2). (A.7)

Using this Gaussian approximation for the density function Q(y) we have the following
approximation for the integral I

I ≈ I1 = ∫
Y
NΣ0(y0 − y)NΣQ

(mQ − y)dy (A.8)

I1 = NΣ0+ΣQ
(y0 −mQ). (A.9)

A.1.1 Numerical analysis of approximate integral

In this section we do numerical simulations to test the validity of the approximation I ≈ I1

where I and I1 are given in expressions (A.3) and (A.9). To numerically evaluate the

integral I we first generate samples from the random finite set Ξ and use them to generate

samples of the random vector y using the relation in (A.1). We use Ns sample points of

the random finite set Ξ to evaluate the integral I.

To approximate the integral I1 we numerically compute mQ and ΣQ from (A.4) and

(A.6) by using particle approximations for D(x) and D̃({x1,x2}). Nv sample points are

used to evaluate the integral I1. Note that typically we need Ns to be much larger than Nv

since to efficiently sample a random finite set we need many more samples than to sample

from the single target state space.
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We consider a two dimensional state space x = [x; y] consisting of the x and y coordinates

of the target. For numerical analysis we consider the following linear measurement model

g(x) =Hx (A.10)

H =

⎡⎢⎢⎢⎢⎢⎢⎣

0.1 0.7

0.5 0.5

0.8 0.2

⎤⎥⎥⎥⎥⎥⎥⎦
(A.11)

We consider three types of random finite sets in our numerical analysis. The IIDC

random finite set, the multi-Bernoulli random finite set, and the union of an IIDC and a

multi-Bernoulli random finite set.

IIDC RFS

First consider Ξ to be an IIDC random finite set. Let the IIDC random finite set be

described by the following normalized PHD function

s(x) = 1

n0

n0

∑
i=1

NΣi
(x − μi). (A.12)

and let the cardinality distribution π(n) be Poisson with mean n0. For numerical simulation

purposes we truncate the Poisson at n = 15 and normalize the cardinality distribution so it

sums to 1. The above IIDC example models the case when n0 targets are present with each

target represented by a component in the Gaussian mixture. A sample of the IIDC random

finite set is obtained by first sampling the cardinality n and then sampling n elements from

the density function s(x). We generate Ns samples from the IIDC random finite set Ξ and

use it to calculate samples of the random vector y using the relation in (A.1).

The covariance matrix for each of the components is the same and is set to Σi =
diag(1,1), i = 1,2, . . . , n0. Also set Σ0 = 0.25diag(1,1,1) and y0 =H∑n0

i=1 g(μi). We vary n0

in the range {3,4,5,6,7,8}. For each value of n0 we run 25 different trials with the mean

of the different Gaussian components μi in the normalized PHD function s(x) randomly

distributed over the 20m × 20m region in each trial. For each trial the numerical integrals

of I and I1 are evaluated 25 times and averaged to obtain their estimates Î and Î1. For

evaluation of the integrals we use Ns = 500,000 and Nv = 10,000. The percentage error for
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each trial is calculated as follows

Percentage error = ∣̂I − Î1∣
Î

× 100. (A.13)

To understand the error introduced due to the approximation Q(y) ≈ NΣQ
(mQ −y) we

pictorially compare the normalized histograms of the elements of the random vector y with

their Gaussian density function approximations. The histograms and the approximated

Gaussian density functions are shown in Figure A.1. Histograms of each component of

the vector y are shown for three different cases, n0 = 4,6,&8. The histograms are plotted

by dividing the data into 1000 uniform bins. Ns = 500,000 samples are used to generate

the histograms. A Gaussian distribution function is overlaid on each histogram which has

mean and variance as computed from the Campbell equations. The mean and variance

are calculated using Nv = 10,000 sample points. As n0 is increased we observe that the

histograms better approximate the Gaussian distribution function.

The average percentage error (computed over 25 trials) is shown in Table A.1 as the

number of targets n0 is increased. We observe a decrease in the average percentage error

as the number of targets n0 is increased. An intuitive explanation for this decrease in error

and better Gaussian approximation of the histograms as n0 is increased can be given by

the application of the Central Limit Theorem to equation (A.1).

Table A.1 Average percentage error for IIDC RFS
n0 percentage error
3 66.83
4 47.63
5 27.52
6 10.72
7 4.90
8 5.29
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(a) Histograms and corresponding Gaussian density approximations for each of the three components of
random vector y (n0 = 4).
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(b) Histograms and corresponding Gaussian density approximations for each of the three components
of random vector y (n0 = 6).
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(c) Histograms and corresponding Gaussian density approximations for each of the three components of
random vector y (n0 = 8).

Fig. A.1 Histograms (blue) and corresponding Gaussian density approxi-
mations (red) for each of the three components of random vector y. The
three rows correspond to mean cardinality n0 = 4,6,and 8. Histograms are
calculated using 500,000 sample points from an IIDC random finite set.
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Multi-Bernoulli RFS

Now consider Ξ to be a multi-Bernoulli random finite set. Let there be n0 Bernoulli

components with parameters

{ri,pi(x)} , i = 1,2, . . . n0 (A.14)

pi(x) = NΣi
(x − μi) (A.15)

The above multi-Bernoulli random finite set example represents the case when n0 targets

are present, with probability of existence ri and each with a Gaussian density distribution.

In our simulations we set ri ∈ [0.2,1]. Samples of the multi-Bernoulli random finite set are

generated by sampling existence variable for each component and then sampling from the

corresponding density function if the component exists. The mean μi and covariance Σi

are same as those considered for the IIDC case.

The histograms of elements of the vector y are shown in Figure A.2. The individual

Bernoulli components have a Gaussian density function and there are 4,6 and 8 components

respectively in the three sub-figures. A Gaussian function is overlaid on each histogram

which has mean and variance as computed from the Campbell equations. The average

percentage error (computed over 25 trials) is shown in Table A.2 as the number of targets

n0 is increased.

Table A.2 Average percentage error for multi-Bernoulli RFS
n0 percentage error
3 76.04
4 77.24
5 76.84
6 74.73
7 71.55
8 66.84

Union of multi-Bernoulli and IIDC RFS

We now consider the random finite set which is union of a multi-Bernoulli RFS and an IIDC

RFS. For simulations we choose the multi-Bernoulli RFS with same parameters as above.

The IIDC component has a uniform discrete cardinality distribution and its normalized
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(c) Histograms and corresponding Gaussian density approximations for each of the three components
of random vector y (n0 = 8).

Fig. A.2 Histograms (blue) and corresponding Gaussian density approxi-
mations (red) for each of the three components of random vector y. The
three rows correspond to n0 = 4,6,and 8 Bernoulli components. Histograms
are calculated using 500,000 sample points from a multi-Bernoulli RFS.
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PHD is uniform over the 20m × 20m region under consideration. The sampling process is

as described earlier.

The histograms and the approximated Gaussian density functions are shown in Fig-

ure A.3. The average percentage error (computed over 25 trials) is shown in Table A.3 as

the number of targets n0 of the multi-Bernoulli component is increased.

Table A.3 Average percentage error for union of multi-Bernoulli and IIDC
n0 percentage error
3 80.61
4 65.22
5 47.47
6 30.92
7 16.38
8 10.23

A.1.2 Numerical analysis of approximate pseudo-likelihood

Let the random finite set Ξ be union of independent random finite sets ΞA and ΞB with

PHDs DA(x) and DB(x) and densities fΞA
(W ) and fΞB

(W ) respectively. For the case of

PHD and CPHD filter analysis the component ΞB is empty. All of the approximate PHD

update equations for superpositional sensors involve computation of the pseudo-likelihood

L(x) function of the form

L(x) = ∫X NΣ0(y0 − g(x) − ζ(W ))fA∗x
Ξ (W )δW

∫X NΣ0(y0 − ζ(W ))fΞ(W )δW , (A.16)

where

f
A∗x
Ξ (W ) = ∑

Y ⊆W

fΞA
({x} ∪ Y )
DA(x) fΞB

(W − Y ) (A.17)

Using change of variables the ratio L(x) can be expressed as

L(x) = ∫Y NΣ0(y0 − g(x) − y∗)QA∗x(y∗)dy∗

∫Y NΣ0(y0 − y)Q(y)dy (A.18)

Arguing as before, to make the above ratio tractable we approximate the densities Q(y)
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(a) Histograms and corresponding Gaussian density approximations for each of the three components
of random vector y (n0 = 4).
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(b) Histograms and corresponding Gaussian density approximations for each of the three components
of random vector y (n0 = 6).
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(c) Histograms and corresponding Gaussian density approximations for each of the three components
of random vector y (n0 = 8).

Fig. A.3 Histograms (blue) and corresponding Gaussian density approxi-
mations (red) for each of the three components of random vector y. The three
rows correspond to n0 = 4,6,and 8 Bernoulli components. Histograms are cal-
culated using 500,000 sample points from a union of a multi-Bernoulli and an
IIDC random finite set.
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and QA∗x(y∗) to be Gaussian and compute their mean and covariance matrix parameters

using Campbell’s theorem. Thus we have the approximation

L(x) ≈ L1(x) =
∫Y NΣ0(y0 − g(x) − y∗)N

Σ
A∗x
Q

(mA∗x
Q − y)dy∗

∫Y NΣ0(y0 − y)NΣQ
(mQ − y)dy (A.19)

L1(x) =
N

Σ0+Σ
A∗x
Q

(y0 − g(x) −m
A∗x
Q )

NΣ0+ΣQ
(y0 −mQ)

. (A.20)

To analyse the error introduced in the calculation of the pseudo-likelihood L(x) due

the Gaussian approximation we numerically evaluate L(x) and L1(x) for different values

of x and compute the correlation coefficient between these two quantities. We calculate

the pseudo-likelihoods for the multi-Bernoulli random finite set case when four components

are present

{ri,pi(x)} , i = 1,2,3,4 (A.21)

pi(x) = NΣi
(x − μi) , i = 1,2,3,4 (A.22)

Σi = diag(1,1) , i = 1,2,3,4. (A.23)

We perform simulations for 100 different sets of randomly distributed means μi, i = 1,2,3,4

over the 20m×20m region. For each set of means the pseudo-likelihoods L(x) and L1(x) are
numerically computed for 100 different values of x sampled from a Gaussian density cen-

tered around one of the means and with covariance matrix diag(2,2). Thus the correlation
coefficient is computed using 10,000 sample points.

Example 1: The probabilities of existence of the Bernoulli components are in the

range ri ∈ [0.2,1]. The correlation coefficient is 0.22. When the probabilities of existence

are increased and are in the range ri ∈ [0.5,1], the correlation coefficient increases to 0.44.

A bin plot of the quantities L(x) and L1(x) is shown in Figure A.4. The plot is generated

by dividing the data into 10 groups. The x-axis points indicate the mean of each group.

The red marker is the mean, the black marker is the median and the blue lines indicate 10-

90 percentiles. The blue diagonal line corresponds to the case L(x) = L1(x). The relatively
large spread of the 10-90 percentiles is captured by the low correlation coefficient of 0.44.

Example 2: We now consider the probabilities of existence of all the components to

be equal ri = r, i = 1,2,3,4 and increase them from r = 0.75 to r = 0.99 and compute the
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correlation coefficient for each case. The correlation coefficients are given in Table A.4. For

higher values of r the correlation coefficient is high indicating the approximation is more

accurate for larger values of r. A bin plot of the quantities L(x) and L1(x) when r = 0.95

is shown in Figure A.5. The 10-90 percentiles are narrower and the medians are closer to

the diagonal line.

Table A.4 Correlation coefficients between L(x) and L1(x)

r correlation coefficient
0.75 0.50
0.80 0.53
0.85 0.58
0.90 0.63
0.95 0.72
0.99 0.91

0.04 0.15 0.26 0.38 0.51 0.65 0.79 0.93 1.07 1.220
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Fig. A.4 Bin plot comparing the values of L(x) and L1(x) for the case
ri ∈ [0.5,1]. The red marker is the mean, the black marker is the median and
the vertical blue lines indicate 10-90 percentiles.
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Fig. A.5 Bin plot comparing the values of L(x) and L1(x) for the case
r = 0.95. The red marker is the mean, the black marker is the median and the
vertical blue lines indicate 10-90 percentiles.
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Appendix B

B.1 Application of Campbell’s theorem for the CPHD filter

Campbell’s theorem was applied to derive the parameters of the approximate update equa-

tions for the CPHD filter by Mahler and El-Fallah in [38]. We present this derivation here

for completeness.

The CPHD filter assumes that the predicted multitarget state is an IIDC process.

Let fk+1∣k(W ) be the predicted multitarget density; Dk+1∣k(x) be the predicted PHD; and

πk+1∣k(n) be the predicted cardinality distribution at time k + 1. Also let sk+1∣k(x) be the

normalized predicted PHD and μk+1∣k be the mean cardinality. For this IIDC process we

have

Dk+1∣k(x) = μk+1∣ksk+1∣k(x), (B.1)

Dk+1∣k({x1,x2}) = ask+1∣k(x1)sk+1∣k(x2), (B.2)

where a = ∑
n≥0

n(n − 1)πk+1∣k(n). (B.3)

Also,

D̃k+1∣k({x1,x2}) =Dk+1∣k({x1,x2}) −Dk+1∣k(x1)D(x2) (B.4)

= (a − μ2
k+1∣k)sk+1∣k(x1)sk+1∣k(x2). (B.5)
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B.1.1 Parameters for PHD update

Applying Campbell’s theorem we get

mk+1 = ∫
X
g(x)Dk+1∣k(x)dx (B.6)

= μk+1∣k ∫
X
g(x) sk+1∣k(x)dx (B.7)

= μk+1∣k m̂k+1, (B.8)

where m̂k+1
def= ∫

X
g(x) sk+1∣k(x)dx (B.9)

and

Σk+1 = ∫
X
g(x) g(x)TDk+1∣k(x)dx + ∫

X
∫
X
g(x1) g(x2)T D̃k+1∣k({x1,x2})dx1dx2

(B.10)

= μk+1∣k ∫
X
g(x) g(x)T sk+1∣k(x)dx

+ ∫
X
∫
X
g(x1) g(x2)T (a − μ2

k+1∣k)sk+1∣k(x1)sk+1∣k(x2)dx1dx2 (B.11)

= μk+1∣k ∫
X
g(x) g(x)T sk+1∣k(x)dx

+ (a − μ2
k+1∣k)(∫

X
g(x1)sk+1∣k(x1)dx1)(∫

X
g(x2)T sk+1∣k(x2)dx2) (B.12)

= μk+1∣k Σ̂k+1 + (a − μ2
k+1∣k)m̂k+1m̂

T
k+1, (B.13)

where Σ̂k+1
def= ∫

X
g(x) g(x)T sk+1∣k(x)dx. (B.14)

Now, the multitarget density f o
k+1∣k

(W ) in (4.40) corresponds to an IIDC RFS with

density function sk+1∣k(x) and cardinality distribution πo
k+1∣k

(n). Its corresponding statistics
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are

μo
k+1∣k = ∑

n≥0

nπo
k+1∣k(n) (B.15)

= ∑
n≥0

n
(n + 1)πk+1∣k(n + 1)

μk+1∣k

(B.16)

= a

μk+1∣k

, (B.17)

and ao = ∑
n≥0

n(n − 1)πo
k+1∣k(n) (B.18)

= ∑
n≥0

n(n − 1)
(n + 1)πk+1∣k(n + 1)

μk+1∣k

(B.19)

= b

μk+1∣k

, (B.20)

where b
def= ∑

n≥0

n(n + 1)(n + 2)πk+1∣k(n + 2). (B.21)

Thus applying Campbell’s theorem we get

mo
k+1 = μo

k+1∣k m̂k+1 (B.22)

= a

μk+1∣k

m̂k+1, (B.23)

and

Σo
k+1 = μo

k+1∣k Σ̂k+1 + (ao − (μo
k+1∣k)2)m̂k+1m̂

T
k+1 (B.24)

= a

μk+1∣k

Σ̂k+1 +
⎛
⎝

b

μk+1∣k

− a2

μ2
k+1∣k

⎞
⎠
m̂k+1m̂

T
k+1. (B.25)

B.1.2 Parameters for cardinality update

From (4.63) we have

fn
k+1∣k(W ) def= 1

πk+1∣k(n)
δ∣W ∣,nfk+1∣k(W ). (B.26)
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We now prove that fn
k+1∣k

(W ) is in fact a multitarget density function. Upon integration

we get

∫
X
fn
k+1∣k(W )δW = fn

k+1∣k(∅) +
∞

∑
j=1

1

j! ∫X j
fn
k+1∣k({w1,w2, . . . ,wj})dw1 . . . dwj (B.27)

= 1

n!

1

πk+1∣k(n) ∫Xn
fk+1∣k({w1,w2, . . . ,wn})dw1 . . . dwn (B.28)

= 1

n!

1

πk+1∣k(n)
× n!πk+1∣k(n) (B.29)

= 1. (B.30)

The PHD of the random finite set with density function fn
k+1∣k

(W ) is

Dn
k+1∣k(x) = ∫

X
fn
k+1∣k({x} ∪W )δW (B.31)

=
∞

∑
j=0

1

j! ∫X j
fn
k+1∣k({x} ∪ {w1,w2, . . . ,wj})dw1 . . . dwj (B.32)

= 1

(n − 1)!
1

πk+1∣k(n) ∫Xn−1
fk+1∣k({x} ∪ {w1,w2, . . . ,wn−1})dw1 . . . dwn−1 (B.33)

=
n!πk+1∣k(n)

(n − 1)!πk+1∣k(n)
sk+1∣k(x)∫

Xn−1
sk+1∣k(w1) . . . sk+1∣k(wn−1)dw1 . . .wn−1 (B.34)

= nsk+1∣k(x). (B.35)

The second factorial moment can be calculated as

Dn
k+1∣k({x1,x2}) = ∫

X
fn
k+1∣k({x1,x2} ∪W )δW (B.36)

=
∞

∑
j=0

1

j! ∫X j
fn
k+1∣k({x1,x2} ∪ {w1,w2, . . . ,wj})dw1 . . . dwj (B.37)

= 1

(n − 2)!
1

πk+1∣k(n) ∫Xn−2
fk+1∣k({x1,x2} ∪ {w1,w2, . . . ,wn−2})dw1 . . . dwn−2 (B.38)

=
n!πk+1∣k(n)

(n − 2)!πk+1∣k(n)
sk+1∣k(x1)sk+1∣k(x2)×

∫
Xn−2

sk+1∣k(w1) . . . sk+1∣k(wn−2)dw1 . . .wn−2 (B.39)

= n(n − 1) sk+1∣k(x1) sk+1∣k(x2). (B.40)
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Thus

D̃n
k+1∣k({x1,x2}) =Dn

k+1∣k({x1,x2}) −Dn
k+1∣k(x1)Dn

k+1∣k(x2) (B.41)

= n(n − 1) sk+1∣k(x1) sk+1∣k(x2) − nsk+1∣k(x1)nsk+1∣k(x2) (B.42)

= −nsk+1∣k(x1) sk+1∣k(x2). (B.43)

Applying Campbell’s theorem, the parameters mn
k+1 and Σn

k+1 for the Gaussian approxima-

tion in (4.65) are given by

mn
k+1 = ∫

X
g(x)Dn

k+1∣k(x) (B.44)

= ∫
X
g(x)nsk+1∣k(x) (B.45)

= n m̂k+1 , (B.46)

and

Σn
k+1 = ∫

X
g(x) g(x)TDn

k+1∣k(x)dx + ∫
X
∫
X
g(x1) g(x2)T D̃n

k+1∣k({x1,x2})dx1dx2 (B.47)

= n∫
X
g(x) g(x)T sk+1∣k(x)dx − n∫

X
∫
X
g(x1) g(x2)T sk+1∣k(x1) sk+1∣k(x2)dx1dx2

(B.48)

= n (Σ̂k+1 − m̂k+1m̂
T
k+1). (B.49)

2015/08/12
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Appendix C

This appendix provides background material and intermediate results required to prove

Theorem 1 of Chapter 6. A recursive expression for constructing the collection of all

possible partitions P is given in Appendix C.1. The concepts of functional derivatives

and integral transform of the posterior multitarget density are revised in Appendices C.2

and C.3, respectively. The proof of Theorem 1 depends on Lemma 1 which is proved in

Appendix C.4. Finally, combining these results, the proof of Theorem 1 is provided in

Appendix C.5.

C.1 Recursive expression for collection of partitions

Let P(�) be the collection of all possible partitions of the set Z1∶�
k+1 (1 ≤ � < s) where

partitions are as defined in the equations (6.35)-(6.38). Since the V component of a

partition is unique given the W components, we do not explicitly specify the V com-

ponent in the recursive expression. Let P ∈ P(�) be any partition of Z1∶�
k+1 which is given as

P = {W1,W2, . . . , ,W∣P ∣−1, V }. Let Z�+1
k+1 = {z�+11 ,z�+12 , . . . ,z�+1m�+1

}. Then we can express P(�+1)

using P(�) and Z�+1
k+1 as given by the following relation

P(�+1) = ⋃
P ∈P(�)

m�+1

⋃
n1=0

min(m�+1,∣P ∣−1)

⋃
n2=0

⋃
I1⊆⟦1,m�+1⟧
∣I1∣=n1

⋃
I2⊆⟦1,m�+1⟧
∣I2∣=n2

I1∩I2=∅

⋃
J⊆⟦1,∣P ∣−1⟧
∣J ∣=∣I2∣

⋃
B∈B(I2,J)

{{z�+1i1 }i1∈I1 ∪ {WB(i2),z
�+1
i2 }i2∈I2 ∪ {Wj}j∉J} (C.1)
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where B(I2, J) is the collection of all possible matchings 1 from set I2 to set J . The

above relation mathematically expresses the fact that for each partition P ∈ P(�) and given

Z�+1
k+1, a new partition belonging to P(�+1) can be constructed by adding some new singleton

measurement subsets from Z�+1
k+1 (i.e. {z�+1i1

}i1∈I1), extending some existing subsets in P by

appending them with measurements from Z�+1
k+1 (i.e. {WB(i2)∪z�+1i2

}i2∈I2) and retaining some

existing measurement subsets (i.e. {Wj}j∉J). By this definition we have P = P(s). As a

special case for � = 1,

P(1) =
m1

⋃
n=0

⋃
I⊆⟦1,m1⟧
∣I ∣=n

{{z1i }i∈I} . (C.2)

C.2 Functional derivatives

We now review the notion of functional derivatives which play an important role in the

derivation of filter update equations. A brief background is provided that is necessary

for the derivations; for additional details see [87], [34, Ch. 11]. Let F denote the set of

mappings from Y to R and let A be a functional mapping elements of F to R. Let u(y)
and g(y) be functions in F . For the functional A[u], its functional derivative along the

direction of the function g(y) is defined as [34]

∂A

∂g
[u] def= lim

ε→0

A[u + ε ⋅ g] −A[u]
ε

. (C.3)

We are specifically interested in the functional derivatives when the function g(y) is

the Dirac delta function δy1(y) localized at y1. In such case we use the following notation

for functional derivatives [34]

∂A

∂δy1

[u] ≡ δA

δy1

[u]. (C.4)

If the functional A[u] is of the form A[u] = ∫ u(y)g(y)dy then we have

δA

δy1

[u] = g(y1). (C.5)

1B(I, J) is the collection of all possible one-to-one mappings from set I to set J .
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We can also define higher order functional derivatives ofA[u]. For a set Y = {y1,y2,⋯,yn},
the nth order derivative is denoted by

δnA

δY
[u] def= δnA

δy1δy2 . . . δyn

[u]. (C.6)

We call δnA
δY [u] the functional derivative of A[u] with respect to the set Y .

Product rule

For functionals A1[u], A2[u] and A3[u], the product rule for functional derivatives [34,

Ch. 11] gives

δ

δY
{A1[u]A2[u]A3[u]} = ∑

Y1⊆Y

∑
Y2⊆Y

Y1∩Y2=∅

δA1

δY1

[u]δA2

δY2

[u] δA3

δ(Y − Y1 − Y2)
[u] (C.7)

=
∣Y ∣

∑
n1=0

∣Y ∣

∑
n2=0

∑
Y1⊆Y
∣Y1∣=n1

∑
Y2⊆Y
∣Y2∣=n2

Y1∩Y2=∅

δA1

δY1

[u]δA2

δY2

[u] δA3

δ(Y − Y1 − Y2)
[u]. (C.8)

As a special case, for the product of two functionals we have

δ

δY
{A1[u]A2[u]} =

∣Y ∣

∑
n=0

∑
Y1⊆Y
∣Y1∣=n

δA1

δY1

[u] δA2

δ(Y − Y1)
[u]. (C.9)

Chain rule

Let f(y) be a function mapping elements of R to R, then from the chain rule [34, Ch. 11]

we have

δ

δy
f(A[u]) = df

dy
(A[u]) δA

δy
[u]. (C.10)

PHD as functional derivative

Recall that for a random variable its moments are related to the derivatives of its PGF.

Similarly, the first moment or the PHD function of a random finite set is related to the

functional derivative of its PGFL. For the random finite set Ξ, its PHD function DΞ(x) is
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related [34] to the functional derivative of the PGFL GΞ[u] as follows

DΞ(x) =
δGΞ

δx
[1]. (C.11)

C.3 Integral transform of the posterior multitarget density

Let fk+1∣k(X ∣Z1∶s
1∶k) and fk+1∣k+1(X ∣Z1∶s

1∶k+1) be the predicted and posterior multitarget state

distributions at time k+1 and let Lk+1,j(Zj
k+1∣X) denote the multitarget likelihood function

for the jth sensor at time k + 1. Since the sensor observations are independent conditional

on the multitarget state, the update equation for the multitarget Bayes filter [34] is given

by

fk+1∣k+1(X ∣Z1∶s
1∶k+1) ∝ fk+1∣k(X ∣Z1∶s

1∶k)
s

∏
j=1

Lk+1,j(Zj
k+1∣X). (C.12)

We now define a multivariate functional which is the integral transform of the quantity in

the right hand side of the above equation. Under the conditions of Assumption 2 (Sec-

tion 6.1), we can obtain a closed form expression for this multivariate functional, which on

differentiation gives the PGFL of the posterior multitarget state distribution.

Let gj(z), j = 1,2, . . . , s be functions that map the space Zj to [0,1] where Zj is the

space of observations of sensor j. The intermediate functions gj(z) will be used to define

functionals and later set to zero to obtain the PGFL of the posterior multitarget distribu-

tion. Let u(x) be a function mapping the state space X to [0,1]. For brevity, denote the

vector of functions [g1, g2, . . . , gs] as g1∶s and define gZ
j

j
def= ∏z∈Zj gj(z) where Zj ⊆ Zj. We

define the multivariate functional F [g1, g2, . . . , gs, u] as the following integral transform

F [g1∶s, u] def= ∫
X
uX (

s

∏
j=1

Lk+1,j[gj ∣X]) fk+1∣k(X ∣Z1∶s
1∶k) δX, (C.13)

where Lk+1,j[gj ∣X] def= ∫
Zj

gZ
j

j Lk+1,j(Zj ∣X)δZj. (C.14)

Later we will relate the PGFL of the posterior multitarget distribution to the derivatives

of the functional F [g1∶s, u] with respect to the sensor observations Z1∶s
k+1. Recall that cj(z)

denotes the clutter spatial distribution and Cj(t) denotes the PGF of the clutter cardinality
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distribution for the jth sensor. Under Assumption 2 (Section 6.1) it can be shown that [86]

Lk+1,j[gj ∣X] = ∫
Zj

gZ
j

j Lk+1,j(Zj ∣X)δZj (C.15)

= Cj(⟨cj, gj⟩)φX
gj
, (C.16)

where φgj(x)
def= 1 − pjd(x) + pjd(x)pgj(x) (C.17)

pgj(x)
def= ∫

Zj
gj(z)hj(z∣x)dz. (C.18)

Let Gk+1∣k[u] denote the PGFL of the predicted multitarget distribution. Using the

above relations in (C.13) we have

F [g1∶s, u] = ∫
X
uX (

s

∏
j=1

Cj(⟨cj, gj⟩)φX
gj
) fk+1∣k(X ∣Z1∶s

1∶k) δX (C.19)

Since both u and φgj are functions defined over the space X , we can combine the product

of uX and ∏s
j=1 φ

X
gj

and write (u ∏s
j=1 φgj)X . Hence we have

F [g1∶s, u] = (
s

∏
j=1

Cj(⟨cj, gj⟩)) ∫
X
(u

s

∏
j=1

φgj)
X

fk+1∣k(X ∣Z1∶s
1∶k) δX (C.20)

= (
s

∏
j=1

Cj(⟨cj, gj⟩)) G[u
s

∏
j=1

φgj] (C.21)

= (
s

∏
j=1

Cj(⟨cj, gj⟩)) M(⟨r, u
s

∏
j=1

φgj⟩). (C.22)

The last two steps result from the definition of the PGFL and the assumption that the

predicted multitarget distribution fk+1∣k(X ∣Z1∶s
1∶k) is IIDC.

Let Gk+1∣k+1[u] be the PGFL of the multitarget density fk+1∣k+1(X ∣Z1∶s
1∶k+1), and let

Dk+1∣k+1(x) be the posterior PHD function. From [19,122] we have the following relation

Gk+1∣k+1[u] =

δF

δZ1∶s
k+1

[0,0, . . . ,0, u]

δF

δZ1∶s
k+1

[0,0, . . . ,0,1]
. (C.23)
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Since the PHD is the functional derivative of the PGFL, from (C.11)

Dk+1∣k+1(x) =

δF

δx δZ1∶s
k+1

[0,0, . . . ,0,1]

δF

δZ1∶s
k+1

[0,0, . . . ,0,1]
. (C.24)

Note that the differentiation δ

δZj
k+1

is with respect to the function variable gj and the differ-

entiation δ
δx is with respect to the function variable u. The general multisensor CPHD filter

update equation is derived by evaluating the functional derivatives of F [g1∶s, u] in (C.23)

and (C.24).

We now define a quantity Γ and the functionals ΨP [g1∶s, u] and ϕW [g1∶s, u]. The func-

tional derivatives of F [g1∶s, u] can be expressed in terms of these quantities. Let

Γ
def=

s

∏
j=1

⎛
⎜
⎝

∏
z∈Zj

k+1

cj(z)
⎞
⎟
⎠
, (C.25)

ΨP [g1∶s, u] def= (
s

∏
j=1

C
(mj−∣P ∣j)
j (⟨cj, gj⟩)) M (∣P ∣−1)(⟨r, u

s

∏
j=1

φgj⟩). (C.26)

For W ∈ W , let

ϕW [g1∶s, u] def=
∫
X
r(x)u(x)

⎛
⎝ ∏
(i,l)∈TW

pid(x)hi(zil ∣x)
⎞
⎠
⎛
⎝ ∏
j∶(j,∗)∉TW

φgj(x)

⎞
⎠
dx

∏
(i,l)∈TW

ci(zil)
⋅ (C.27)

With these definitions we can prove, via mathematical induction, the following lemma.

Lemma 1. Under the conditions of Assumption 2, the functional derivative of F [g1∶s, u]
with respect to the multisensor observation set Z1∶s

k+1 is given by

δF

δZ1∶s
k+1

[g1∶s, u] = Γ ∑
P ∈P

ΨP [g1∶s, u] ∏
W ∈P

ϕW [g1∶s, u] (C.28)

where Γ, ΨP [g1∶s, u] and ϕW [g1∶s, u] are as defined in (C.25), (C.26) and (C.27).

Lemma 1 is proved in Appendix C.4.
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C.4 Proof of Lemma 1

The derivation is based on the approach used by Mahler [19] to derive multisensor PHD

filter equations for the two sensor case and its extension by Delande et al. [122] for the

general case of s sensors.

Proof. Mathematical induction

We prove using mathematical induction on 1 ≤ � ≤ s the following result,

δF

δZ1∶�
k+1

[g1∶s, u] = Γ(�) ∑
P ∈P(�)

Ψ
(�)
P [g1∶s, u] ∏

W ∈P

ϕW [g1∶s, u] (C.29)

where,

Γ(�)
def=

�

∏
j=1

∏
z∈Zj

k+1

cj(z), (C.30)

Ψ
(�)
P [g1∶s, u] def= (

�

∏
j=1

C
(mj−∣P ∣j)
j (⟨cj, gj⟩))

⎛
⎝

s

∏
j=�+1

Cj(⟨cj, gj⟩)
⎞
⎠
M (∣P ∣−1)(⟨r, u

s

∏
j=1

φgj⟩), (C.31)

and for W ∈ W ,

ϕW [g1∶s, u] def=
∫
X
r(x)u(x)

⎛
⎝ ∏
(i,l)∈TW

pid(x)hi(zil ∣x)
⎞
⎠
⎛
⎝ ∏
j∶(j,∗)∉TW

φgj(x)

⎞
⎠
dx

∏
(i,l)∈TW

ci(zil)
⋅ (C.32)

Mathematical induction: case � = 1

We first establish the induction result for the base case, i.e. � = 1. Ignoring the time index

let the observation set gathered by sensor 1 at time k + 1 be Z1
k+1 = {z11,z12, . . . ,z1m1

}. We

have, for the case of s sensors

F [g1∶s, u] = (
s

∏
j=1

Cj(⟨cj, gj⟩)) M(⟨r, u
s

∏
j=1

φgj⟩). (C.33)
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Differentiating the above expression with respect to the set Z1
k+1 we get

δF

δZ1
k+1

[g1∶s, u] =
δ

δZ1
k+1

{(
s

∏
j=1

Cj(⟨cj, gj⟩)) M(⟨r, u
s

∏
j=1

φgj⟩)} (C.34)

= (
s

∏
j=2

Cj(⟨cj, gj⟩))
δ

δZ1
k+1

{C1(⟨c1, g1⟩)M(⟨r, u
s

∏
j=1

φgj⟩)} (C.35)

since the differential δ
δZ1

k+1
only differentiates the variable g1. If I ⊆ ⟦1,m1⟧ we can express

Y ⊆ Z1
k+1 as Y = {z1i ∶ i ∈ I} for some I. We also have Z1

k+1 − Y = {z1i ∶ i ∉ I}. Using the

product rule for functional derivatives from (C.9) we have

δ

δZ1
k+1

{C1(⟨c1, g1⟩)M(⟨r, u
s

∏
j=1

φgj⟩)}

=
m1

∑
n=0

∑
I⊆⟦1,m1⟧
∣I ∣=n

δ

δ{z1i }i∈I
M(⟨r, u

s

∏
j=1

φgj⟩)
δ

δ{z1i }i∉I
C1(⟨c1, g1⟩). (C.36)

Now we consider the derivatives of each of the individual terms in the above expression.

By application of the chain rule for functional derivatives from (C.10)

δ

δ{z1i }i∈I
M(⟨r, u

s

∏
j=1

φgj⟩) =M (n)(⟨r, u
s

∏
j=1

φgj⟩) ∏
i∈I

⟨r, u p1d h1(z1i )
s

∏
j=2

φgj⟩. (C.37)

Similarly applying the chain rule to the second derivative

δ

δ{z1i }i∉I
C1(⟨c1, g1⟩) = C

(m1−n)
1 (⟨c1, g1⟩) ∏

i∉I

c1(z1i ) (C.38)

= C
(m1−n)
1 (⟨c1, g1⟩)

Γ(1)

∏
i∈I

c1(z1i )
. (C.39)
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Using these derivatives (C.36) can be expressed as

δ

δZ1
k+1

{C1(⟨c1, g1⟩)M(⟨r, u
s

∏
j=1

φgj⟩)}

= Γ(1)
m1

∑
n=0

∑
I⊆⟦1,m1⟧
∣I ∣=n

⎧⎪⎪⎨⎪⎪⎩
M (n)(⟨r, u

s

∏
j=1

φgj⟩)C
(m1−n)
1 (⟨c1, g1⟩)∏

i∈I

⟨r, u p1d h1(z1i ) ∏s
j=2 φgj⟩

c1(z1i )

⎫⎪⎪⎬⎪⎪⎭
.

(C.40)

In the double summation above, each set I maps to a partition P of the form P = ⋃i∈I {z1i }
in P(1) and vice versa. Hence using the result from equation (C.2) of Appendix C.1 we

have

δF

δZ1
k+1

[g1∶s, u]

= Γ(1) ∑
P ∈P(1)

⎧⎪⎪⎨⎪⎪⎩
C
(m1−∣P ∣)
1 (⟨c1, g1⟩)(

s

∏
j=2

Cj(⟨cj, gj⟩))M (∣P ∣−1)(⟨r, u
s

∏
j=1

φgj⟩) ∏
W ∈P

ϕW [g1∶s, u]
⎫⎪⎪⎬⎪⎪⎭

(C.41)

= Γ(1) ∑
P ∈P(1)

Ψ
(1)
P [g1∶s, u] ∏

W ∈P

ϕW [g1∶s, u]. (C.42)

Hence the result is established for the case � = 1.

Mathematical induction: case � = b ≥ 1

Now assuming that the result is true for some � = b ≥ 1, we establish that the result holds

for � = b + 1 ≤ s. Let Zb+1
k+1 = {zb+11 , zb+12 , . . . ,zb+1mb+1

}. We can write

δF

δZ1∶b+1
k+1

[g1∶s, u] =
δ

δZb+1
k+1

{ δF

δZ1∶b
k+1

[g1∶s, u]} . (C.43)



Appendix C 191

Substituting the result for the case � = b we get

δF

δZ1∶b+1
k+1

[g1∶s, u] =
δ

δZb+1
k+1

⎧⎪⎪⎨⎪⎪⎩
Γ(b) ∑

P ∈P(b)

Ψ
(b)
P [g1∶s, u] ∏

W ∈P

ϕW [g1∶s, u]
⎫⎪⎪⎬⎪⎪⎭

(C.44)

= Γ(b)
⎛
⎝

s

∏
j=b+2

Cj(⟨cj, gj⟩)
⎞
⎠ ∑

P ∈P(b)

(
b

∏
j=1

C
(mj−∣P ∣j)
j (⟨cj, gj⟩))

× δ

δZb+1
k+1

⎧⎪⎪⎨⎪⎪⎩
Cb+1(⟨cb+1, gb+1⟩)M (∣P ∣−1)(⟨r, u

s

∏
j=1

φgj⟩) ∏
W ∈P

ϕW [g1∶s, u]
⎫⎪⎪⎬⎪⎪⎭
. (C.45)

Let I1 ⊆ ⟦1,mb+1⟧ and I2 ⊆ ⟦1,mb+1⟧ such that I1∩I2 = ∅. Then we can express Y1 ⊆ Zb+1
k+1

and Y2 ⊆ Zb+1
k+1 satisfying Y1∩Y2 = ∅ as Y1 = {zb+1i ∶ i ∈ I1} and Y2 = {zb+1i ∶ i ∈ I2} respectively.

Applying the product rule from (C.8) to the expression above we have

δ

δZb+1
k+1

⎧⎪⎪⎨⎪⎪⎩
Cb+1(⟨cb+1, gb+1⟩)M (∣P ∣−1)(⟨r, u

s

∏
j=1

φgj⟩) ∏
W ∈P

ϕW [g1∶s, u]
⎫⎪⎪⎬⎪⎪⎭

=
mb+1

∑
n1=0

min(mb+1,∣P ∣−1)

∑
n2=0

∑
I1⊆⟦1,mb+1⟧
∣I1∣=n1

∑
I2⊆⟦1,mb+1⟧
∣I2∣=n2; I1∩I2=∅

⎧⎪⎪⎨⎪⎪⎩

δ

δ{zb+1i1
}i1∈I1

M (∣P ∣−1)(⟨r, u
s

∏
n=1

φgn⟩)×

δ

δ{zb+1i2
}i2∈I2

(∏
W ∈P

ϕW [g1∶s, u])
δ

δ{zb+1i }i∉I1∪I2
Cb+1(⟨cb+1, gb+1⟩)

⎫⎪⎪⎬⎪⎪⎭
. (C.46)

The second summation above is restricted to the limit min(mb+1, ∣P ∣−1) because the deriva-
tives of ∏W ∈P ϕW [g1∶s, u] for n2 > ∣P ∣ − 1 are zero. Now considering each of the individual

derivatives above we have

δ

δ{zb+1i1
}i1∈I1

M (∣P ∣−1)(⟨r, u
s

∏
n=1

φgn⟩) =M (∣P ∣+n1−1)(⟨r, u
s

∏
n=1

φgn⟩) ∏
i1∈I1

ϕ{zb+1i1
}[g1∶s, u] cb+1(zb+1i1 ).

(C.47)
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Denote P = {W1,W2, . . . ,W∣P ∣−1, V } for notational convenience. Then we have

δ

δ{zb+1i2
}i2∈I2

(∏
W ∈P

ϕW [g1∶s, u])

= ∑
J⊆⟦1,∣P ∣−1⟧
∣J ∣=∣I2∣

∑
B∈B(I2,J)

⎧⎪⎪⎨⎪⎪⎩
(∏
j∉J

ϕWj
[g1∶s, u])(∏

i2∈I2

ϕWB
i2
[g1∶s, u] cb+1(zb+1i2 ))

⎫⎪⎪⎬⎪⎪⎭
(C.48)

where B(I2, J) is the collection of all possible matchings from set I2 to set J and we define

the measurement subset WB
i2

def=WB(i2) ∪ zb+1i2
. Also

δ

δ{zb+1i }i∉I1∪I2
(Cb+1(⟨cb+1, gb+1⟩)) = C

(mb+1−n1−n2)
b+1 (⟨cb+1, gb+1⟩) ∏

i∉I1∪I2

cb+1(zb+1i ). (C.49)

Combining the three derivatives into expression (C.45) we get

δF

δZ1∶b+1
k+1

[g1∶s, u] = Γ(b)
⎛
⎝

s

∏
j=b+2

Cj(⟨cj, gj⟩)
⎞
⎠
⎛
⎜
⎝

∏
zb+1∈Zb+1

k+1

cb+1(zb+1)
⎞
⎟
⎠
×

∑
P ∈P(b)

mb+1

∑
n1=0

min(mb+1,∣P ∣−1)

∑
n2=0

∑
I1⊆⟦1,mb+1⟧
∣I1∣=n1

∑
I2⊆⟦1,mb+1⟧
∣I2∣=n2; I1∩I2=∅

∑
J⊆⟦1,∣P ∣−1⟧
∣J ∣=∣I2∣

∑
B∈B(I2,J)

⎧⎪⎪⎨⎪⎪⎩
C
(mb+1−n1−n2)
b+1 (⟨cb+1, gb+1⟩)(∏

j∉J

ϕWj
[g1∶s, u])M (∣P ∣+n1−1)(⟨r, u

s

∏
n=1

φgn⟩)×

(
b

∏
j=1

C
(mj−∣P ∣j)
j (⟨cj, gj⟩))(∏

i1∈I1

ϕ{zb+1i1
}[g1∶s, u])(∏

i2∈I2

ϕWB
i2
[g1∶s, u])

⎫⎪⎪⎬⎪⎪⎭
.

(C.50)

Using result of Appendix C.1 we can simplify the multiple summation term and write

δF

δZ1∶b+1
k+1

[g1∶s, u] = Γ(b+1) ∑
P ∈P(b+1)

⎧⎪⎪⎨⎪⎪⎩
(
b+1

∏
j=1

C
(mj−∣P ∣j)
j (⟨cj, gj⟩))

⎛
⎝

s

∏
j=b+2

Cj(⟨cj, gj⟩)
⎞
⎠
×

M (∣P ∣+n1−1)(⟨r, u
s

∏
n=1

φgn⟩)( ∏
W ∈P

ϕW [g1∶s, u])
⎫⎪⎪⎬⎪⎪⎭

(C.51)

= Γ(b+1) ∑
P ∈P(b+1)

Ψ
(b+1)
P [g1∶s, u] ∏

W ∈P

ϕW [g1∶s, u]. (C.52)
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Hence we have established the result stated in (C.29) using the method of mathematical

induction. We obtain the result of Lemma 1 by substituting � = s in this result.

C.5 Proof of Theorem 1

Proof. For brevity denote ΨP [0,0, . . . ,0, u] = ΨP [u] and ϕW [0,0, . . . ,0, u] = ϕW [u]. Sub-

stituting gj ≡ 0 for j = 1,2, . . . , s in the result of Lemma 1 we get

δF

δZ1∶s
k+1

[0,0, . . . ,0, u] = Γ ∑
P ∈P

ΨP [u] ∏
W ∈P

ϕW [u]. (C.53)

PHD update

Differentiating equation (C.53) with respect to set {x} we have

δF

δxδZ1∶s
k+1

[0,0, . . . ,0, u] = δ

δx
{ δF

δZ1∶s
k+1

[0,0, . . . ,0, u]} (C.54)

= δ

δx
{Γ ∑

P ∈P

ΨP [u] ∏
W ∈P

ϕW [u]} (C.55)

= Γ ∑
P ∈P

(
s

∏
j=1

C
(mj−∣P ∣j)
j (0)) δ

δx
{M (∣P ∣−1)(⟨r, u

s

∏
j=1

qjd⟩) ∏
W ∈P

ϕW [u]} . (C.56)

Applying the product rule for functional derivatives from (C.9)

δ

δx
{M (∣P ∣−1)(⟨r, u

s

∏
j=1

qjd⟩) ∏
W ∈P

ϕW [u]}

= δ

δx
{M (∣P ∣−1)(⟨r, u

s

∏
j=1

qjd⟩)} ∏
W ∈P

ϕW [u] +M (∣P ∣−1)(⟨r, u
s

∏
j=1

qjd⟩)
δ

δx
{∏
W ∈P

ϕW [u]} .

(C.57)
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Evaluating the individual derivatives above and substituting the constant function u(x) ≡ 1,

we get

δ

δx
{M (∣P ∣−1)(⟨r, u

s

∏
j=1

qjd⟩)}
u≡1

=M (∣P ∣)(γ) r(x)
s

∏
j=1

qjd(x) (C.58)

δ

δx
{∏
W ∈P

ϕW [u]}
u≡1

= (∏
W ∈P

dW)( ∑
W ∈P

r(x)ρW (x)) (C.59)

where γ, dW and ρW (x) are defined in (6.41), (6.43) and (6.44) respectively.

Hence we have

δF

δxδZ1∶s
k+1

[0,0, . . . ,0,1] = Γ ∑
P ∈P

(
s

∏
j=1

C
(mj−∣P ∣j)
j (0))×

⎧⎪⎪⎨⎪⎪⎩
M (∣P ∣)(γ) r(x)

s

∏
j=1

qjd(x)(∏
W ∈P

dW) +M (∣P ∣−1)(γ)(∏
W ∈P

dW)( ∑
W ∈P

r(x)ρW (x))
⎫⎪⎪⎬⎪⎪⎭

(C.60)

= Γ ∑
P ∈P

(κPM
(∣P ∣) ∏

W ∈P

dW) (r(x)
s

∏
j=1

qjd(x)) + Γ ∑
P ∈P

(κPM
(∣P ∣−1) ∏

W ∈P

dW) ( ∑
W ∈P

r(x)ρW (x))

(C.61)

where κP is defined in (6.42). Substituting u(x) ≡ 1 in equation (C.53) we have

δF

δZ1∶s
k+1

[0,0, . . . ,0,1] = Γ ∑
P ∈P

κPM
(∣P ∣−1) ∏

W ∈P

dW . (C.62)

Dividing (C.61) by (C.62) and using the definition of PHD from (C.24), we get

Dk+1∣k+1(x) =

δF

δxδZ1∶s
k+1

[0,0, . . . ,0,1]

δF

δZ1∶s
k+1

[0,0, . . . ,0,1]
(C.63)

= r(x){α0

s

∏
j=1

qjd(x) + ∑
P ∈P

αP ( ∑
W ∈P

ρW (x))} (C.64)

where α0 and αP are as given in (6.45) and (6.46).
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Cardinality update

We now derive the update equation for the posterior cardinality distribution. Using the

expression for the posterior probability generating functional in (C.23) and the results

of (C.53) and (C.62) we have

Gk+1∣k+1[u] =
∑
P ∈P

ΨP [u] ∏
W ∈P

ϕW [u]

∑
P ∈P

κPM
(∣P ∣−1) ∏

W ∈P

dW
. (C.65)

The probability generating function Mk+1∣k+1(t) of the posterior cardinality distribution is

obtained by substituting the constant function u(x) ≡ t in the expression for Gk+1∣k+1[u].
Thus

Mk+1∣k+1(t) =
∑
P ∈P

ΨP [t] ∏
W ∈P

ϕW [t]

∑
P ∈P

κPM
(∣P ∣−1) ∏

W ∈P

dW
. (C.66)

For constant t we have

∏
W ∈P

ϕW [t] = t∣P ∣−1 ∏
W ∈P

dW (C.67)

ΨP [t] = (
s

∏
j=1

C
(mj−∣P ∣j)
j (0))M (∣P ∣−1)(tγ). (C.68)

Since Mk+1∣k+1(t) is the PGF corresponding to the cardinality distribution πk+1∣k+1(n),

πk+1∣k+1(n) =
1

n!
M
(n)
k+1∣k+1

(0) (C.69)

= 1

n!

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dn

dtn

∑
P ∈P

ΨP [t]t∣P ∣−1 ∏
W ∈P

dW

∑
P ∈P

κPM
(∣P ∣−1) ∏

W ∈P

dW

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭t=0

(C.70)

=
∑
P ∈P

(
s

∏
j=1

C
(mj−∣P ∣j)
j (0)) ∏

W ∈P

dW { dn

dtn
t∣P ∣−1M (∣P ∣−1)(tγ)}

t=0

n! ∑
P ∈P

κPM
(∣P ∣−1) ∏

W ∈P

dW
. (C.71)
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Evaluating the derivative we get

{ dn

dtn
t∣P ∣−1M (∣P ∣−1)(tγ)}

t=0

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if n < ∣P ∣ − 1
n!

(n − ∣P ∣ + 1)!M
(n)(0)γn−∣P ∣+1 if n ≥ ∣P ∣ − 1.

(C.72)

We also have M (n)(0) = n!πk+1∣k(n), hence

πk+1∣k+1(n) = πk+1∣k(n)

∑
P ∈P
∣P ∣≤n+1

n!

(n − ∣P ∣ + 1)! (
s

∏
j=1

C
(mj−∣P ∣j)
j (0)) γn−∣P ∣+1 ∏

W ∈P

dW

∑
P ∈P

κPM
(∣P ∣−1) ∏

W ∈P

dW
. (C.73)

We thus have

πk+1∣k+1(n)
πk+1∣k(n)

=

∑
P ∈P
∣P ∣≤n+1

(κP
n!

(n − ∣P ∣ + 1)!γ
n−∣P ∣+1 ∏

W ∈P

dW)

∑
P ∈P

κPM
(∣P ∣−1) ∏

W ∈P

dW
(C.74)

where κP is as defined in (6.42).
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