
THE APPLICATION OF STATISTICAL 

METHODS TO CIRCULAR DATA 

Robert c. May. 

A thesis submitted to the Faculty of 

Gradua te Studies and Research in partial 

fulfilment of the require.menta for the 

degree of Master of Science. 

Department of Mathematics, 

McGill University, 

Montreal. 

{® Robert G. May-1968 

August 1.967. 



THE APPLICATION OF STATISTICAL 

METHODS TO CIRCULAR DATA 

BY 

ROBERT C. MAY. 

Dept. of M. Sc. 

Mathematics. August 1967. 

In this thesis sorne recent methods of analysis of circular data are 

applied to some illustrations from published papers: also, sorne neVl' 

methods of estimating parameters of circular data ~re examined and their 

efficiency is verified by Monte Carlo techniques. These latter methods, 

also, are illustrated by examples from research papers. The three 

distributions used to describe circular data are: 

(1) The Circular Normal Distribution (Unllnodal) 

l 
f (9; K, 90 ) = ( ) exp(K cos(e - eo) 

2TIIo K 

(2) Distribution Bl (Bimodal with equally weighted modes 1800 apart) 

(3) Distribution B2 (Bimodal with unequally weighted modes 1800 apart) 

A 
f(e;A,K,90 ) = , 

~ ITlo(K) 

. (1 - A) 
exp(K cos(e - 90 »+2TII

o
(K) exp(K cos(e ~ eo+n» 

0' e < 2rr • 

An appendix also contains plots, lists of most d'Ita analysed, and 

tables of s ignificance points. 
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CHAPrER l 

INTRODUCTION 

1.1 Summary 

In this thesis some recent methods of analysis of circular data 

are applied to sorne illustrations from published papers; also, certain 

new methods of estimating parameters of circular data are examined 

and their efficiency i8 verified u.r Monte Carlo techniques. These 

latter methods, also, are illustrated by examples from l'esearch papers. 

Circular Data is the term used to describe observations which are 

recorded by an angle and by a distance from a certain point or origine 

Circular data arise frequently in the biological and earth sciences 

where the observations are represented as points on the circumference 

of a unit circle, as points on a polar diagram, or as unit vectors 

emanating from the origine In the past, clustered observations on 

the unit circle have often been analysed as though theywere a sample 

from the normal distribution. The problem of using the linear normal 

distribution and other linear distributions such as the wrapped normal 

distribution (see Batschelet (1965), stephens (1963a)) to describe 

circular data is that their analysis is difficult. The statistics used 

in their analysis, chiefly the mean and variance, are not invariant of 

the origin, that is, the computed values of these above statistics 

depend upon the pointdesignated as the origine 
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The object of statistical analysis is to describe the data, to 

estimate parameters, and totest ~potheses concerning the parameters. 

The three distributions used to describe circular data in this thesis 

are now summarised: 

(a) The Circular Normal (CN) Distribution is a unimodal distri

bution introduced b.Y Gumbel, Greenwood, and Durand (1953). 

The eN density function 'Wi th mode at 90 and antimode at 

90 + TT is 

f(9; K, 90 )- 1 exp(K cos (9 - 90 » 
21TIp (K) 

o ~ 9 (2TT , 

where e is the polar coordinate of a typical observation on the 

circumference of the unit circla and K ~O i8 a measure of 

dispersion. Io(K) is the imaginar,y Bessel function of arder 

zero and is tabulated for different v.alues of K, se~ for 

example Jahnke and Emde (1945). 

(b) Distribution Bl is an equally weighted bimodal distribution 

originating fram Breitenberger (1963) and analysed b.r Stephens 

(1966). Its density function is 

f(4J;~,'Po) = 21TI!()\) exp(Àcos 2'("V - 4Jo» 0 ~ \jJ< 2TI, 

where the modes occur a t 4J = ljJ 0 and·41 =4J 0 + TI and the 

antimodes at 4J =4-/0 ± TT /2. If ~ = K, 2'll - 9, and 24'0 = 90 

thèn distribution Bl reduces to CN(K, 90 ). Estimators of " 

and ~ 0' their properties, and a complete discussion of distri

bution Bl are found in Stephens (1966). 
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(c) Distribution B2 is a bimoda1 distribution composed of two weighted 

CN distributions with modes at 90 and 90 - TI respectivély'. 

Its density function is 

f(e;A,B,K~eo) • A. exp(K cos(e-9o»+ B exp(K cos(e-so+rr» 
2'''' Io(K) znlo(K) 

o ~ e < 2TT • 

B2 is a modification of a distribution pr~sedb.1 Gumbel (1954). 

A ~ 0 and B ~ 0 are the weights; A + B = 1, in order for B2 to 

integrate up to one. Note that K, the measure of dispersion, 

is assumed to be the sarne for the two weighted CN distributions. 

A swnmary of the chapters is now given: 

Chapter l indicates some areas where circular data arise and a1so 

reviews techniques tha t have a1ready been applied to such da ta • 

Some basic estimation procedures and some goodness of fit statistics 

are also discussed. 

Chapter II Some basic properties of the CN distribution are reviewed 

and five sets of unimoda1 data drawn from published papers ~re ana1ysed. 

Chapte~ Distributions BI and B2 are discussed in greater detail 

accompanied by the analysis of a number of sets of both artificial and 

real data. 

Chapter IV is devoted to Monte Carlo checks on estimation techniques. 

Chapter V reviews conclusions and presents some suggestions for further 

work. 
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Appendix contains the plots of da ta ana1ysed" tables of significance 

points for u2n and JE Vh, an extension of atab1e from Stephens (1963~)" 

and 1ists of most data ana~sed. 

The CN and B1 distribution have analogues on the unit sphere 

(see e.g. Fisher (1953), stephens {1967» but these are not discussed 

in this thesis. 

1.2~ Areas in which Circular Data arise, 

(a) Pebb1e Orientation and Cross Bedding Studies. Elongated rock 

fragments and grains tendto align themse1ves paral1e1 to the 

direction of river or ocean currents and therefore give an indication 

of the direction of flow and of a possible source area of the 

sediment transported. For a further discussion see Curray (1956) 1 

Krumbein (1939)1 Dapp1es and Rominger (1945)" KaUI'anne (1960)" 

Wade11 (1936)" West and Donner (1956). Inclined bedding planes 

also yield angular observations which are useful in determining 

the direction of transport. 'Ripp1e marks" oriented plant fragments" 

and e10ngated shel1s a1so provide infonnation that is useful in 

making poleogeographic reconstructions -- see Tanner (1955)" 

Crowel1 (1958)" Chenoweth (1952)" Land (1964) 1 Looff and Hubert 

(1964)1 McKee (1940)" Opdyke and Runcorn (1960). 

(b) Direction of Movement of Animals. Studies of the directions taken 

by birds" frogs" fish etc. are important in detennining the 
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animals' orientation mechanism -- see Bel1rose (1958), Eaton (1934), 

Griffin and Goldsmith (1953), Pratt and Thouless (1955), Schmidt

Koenig (1963). One experiment consists of releasing animaIs singly 

on both surnw and cloudy days and then determinmg trom their recorded 

directions whether they use the sun as a means of orientation. The 

directions (often bimodal) taken by turtles after being displaced 

inland are also useful inobtaining information on their homing 

mechanism, that is, to see if they do know the direction back to 

the sea -- see Gould (1957), Cutchis (1965). The orientation of 

the swimming directions of cèrtain marine animals to palarlzed 1ight 

has a1so b een investigated -- see Bainbridge and Waterman (1957, 

1958), Daumer, Jander, and Waterman (1963), Kalmus (1959). 

(c) OtherAreas. Measurements of the pleural angles of fossils give 

an indication of the size of the animal -- see Chronic (1952). 

Observations taken overtime such as the time(s) of peak activity 

of a marine organism during a twenty-four hour period or the 

monthly number of auto accidents in Canada observed over one year 

can be treated as circular variables -- see Gumbel (19~4), 

Batschelet (1965). 

1.3 Review of Fast Techniques applied ta Circular Data 

Reiche (1938) analysed the variability of n angles 91, ••• , 9n by 

calcula ting the magnitude R of their resul tant and forming the 

IIconsistency ratio" R/n which he said was inversely proporlional to the 

standard error. Reiche (1938) also determines êo (estimator of 80 ) and 
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the number of observations required for the ana~sis by graphically 

computing the "'flatness pointu -- the point at which the cmnulative 

curve of the resul tant vector fluctua tes less than 50. Krwnbein 

" (1939) computes 90 from the resultant but still applies the test 

statistics of linear nonnal theory. Chayes (1949) and Bainbridge 

and Waterman (1957) apply Pearson's X2 test for unifonnit,y -- often 

called randomness. Tuk~ (1954) uses a similar test andaLso detennines 

" 90 fram the resultant but gives no measure of variability. Chayes 

(1954) detennines a minimum variance ongin for the data. Greemvood 

and Durand (1955) introduce the Rayleigh test for randomness and 

Curray (1956) and Schmidt-Koenig (1963) use this test. Durand and 

Greenwood (1958) modified the Rayleigh test when 90 was known and 

produced a more powerful v-test. Gumbel, Greenwood, and Durand (1953) 

apply maximum likelihood techniques to the Von Mises (CN) distribution. 

A li st of references and a Surnrndry of these and othertechniques can be 

found in Steinmetz (1962) and Pincus (1953, 1956). 

1.4 Estimation 

Point estimation is a method of obtaining a scalar quantity as an 

estimate of a parameter. Let f(x;P) represent a density function where 

13 is assumed to be a vector of unknown parameters and x is a random 

variable. Xl' ···,;xn is a random sample of size n from f(x;~) if 

Xl' ••• , xn are independently and indentically distributed random 

variables with density f(x;~). The mathematical problem of estimation 
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is ta estimate the theoretical distribution based on a random sample 

from that distribution. A statistic is defined ta be any function of 

the random sample and any statistic used ta estimate a par.ameter i8 

called an estimator. An observed value of an estimator i8 called an 

estimate. Since any statistic can be considered ta be an estimator 

of P , some desirable properties of estima tors must be determined. 

(a) Unbiasedness. If T is an estimator of a parameter p and if 

E (T) = f3 then T is called an unbiased estimator of ~ , and 

an observed value of T based on a fixed samPle size is called 

an unbiased estimate of f3 • 

(b) Consistengy. Let Tn bo an estimator of ~ based on a sample 

ofsizen. Ifforany E ~ 0 limP[)Tn-~r~e] =Othen n_oo 

Tn is called a consistent estimator of p, and an observed 

value of Tn is called a consistent estimate of ~ • 

(c) Efficiency. Let Tl and T2 be ~vo estima tors of a parameter 

f3 based on a random sample of size n, then the relative efficiency 

of Tl with respect ta T2 is e = Var (T2). If n ~oo then e 
Var (Tl) 

is a measure of the asymptotic efficiency of Tl with respect 

(d) Minimum Variance. For any unbiased estimator of the parameter 

~ there exists a minimum variance bound given by 

62 _ 1 = m- . 2 
-n E [à~2 log f(x; p ~ 
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Three methods of estimation are now outlined: 

(1) The Method of Maximum LikeJ..ihood (MML). If xl' ••• , xn is an 

observed random sample then the likelihood function is defined 
n-

as L = f(xV ••• , xn; f3 ) = I!. fe x1j (3 ), the: joint 

probability function of the random sample. The xi , i = ~, ... , n 

are fixed, ~ is now regarded as the random variable and the. 

MML involves maximizing L with respect to ~. It is often 

convenient to maximize log L and the value of ~ that maximizes 

L (or log L) is called the l~ estimate of ~. Note that it i8 

the value of f3 which maximizes L that is required and not the 

maximum value of L. 

The MML do es not always give unbiased estima tors. Sometimes, 

however, upon examination of the estimators they can be made 

unbiased. ML estimators are consistent which implies that any 

bias i8 gradual~ removed as n increases, and they are 

asymptotical~ normally distributed with the theoretical minimum 

variance. 

(2) The Method of Moments. Given xl' ••• , xn' let the r th sample 
n 

moment about the origin be m~ = L x;.!n. (J. is then estim<lted by 
L=I f" 

equating as ma~ of the sample moments as is necessary to the 

corresponding population moments. 

(3) The Method of Minimizing a Goodnes8 of Fit Statistic. A good 

example of this method is the cla8sical Method of Minimum X2; 

however, the technique applies to any goodness of fit statistic 
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whose distribution is independent of the distribution being 

tested. The procedure invo1ved in (3) is to first obtain the 

initial point estimates of the unknown parameters from the 

given data; second1y, to ca1culate the goodness of fit 

statistic; and third1y, to var,y these initial estimates in 

such a~y that the ca1culated value of the statistic reaches 

a minimum. In the case of circular da ta an additiona1 

requirement i8 that the ca1cul.ated value of the goodness 

of fit statistic in question be independent of the origine 

1.5 Some Goodness of Fit Statistics 

Let Xl' ···,xn, be a random samp1e drawn from the distribution F(x). 

Assume Fo(x) is any fixed distribution tunction, then the prob1em of 

testing the ~pothesis Ho: F(x) = Fo(x) i8 known as a one samp1e good

ness of fit prob1em. Tests of fit are based on the samp1e distribution 

function x < X(l) 

X(r) ~ x .(. X(r +1) 

X(n) , x 

where X(l) ~ X(2) , ••• ~ X(n) are the ordered observations. 

Let Yi = XCi) i = l, ,n. Four goodness of fit statistics are 

now presented. 
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(a) Cramer, von Mises, Smirnov w2n • Smirnov (1936) proposed the 

statistic 

Anderson and Darling (1952) tabulated the as.ymptotic distribution 

derived by Smirnov, and Marshall (1958) found the exact 

distribution of w2
n, n=l, 2, 3. It is important to stress 

the tact that W2n does not depend on Fo(x) but, on the circle, 

~ depend upon the point at which one begins cumulating, that 

is, it is not independent of the origin of the polar coordinates. 

The Method of Minimum W2
n can not be used, therefore, since the 

choice of origin is arbitrary for circular data. 

Unless otheroise stated aIl values of l'f2n recorded in this 

" thesis are based on the origin as the point determined by 60 • 

(b) Pearson's X2 Pearson (1900) introduced the well knovm X2 

sta tistic K (O' ) 2 
X2 = L ~ - ei 

ial ei 
where K is the number of 

groups or classes into which the da ta is divided, ai is the 

observed number of observations in the i th class, and ei is 

the expected number of observations in the i th class (this is 

determined by the particular distribution considered). Under 

the null Qypothesis that the observations come from a particular 

distribution Fo(X)' that is, Ho: F(x) ... Fo(x), X2 has a chi-

squared distribution with K-r-l degrees of freedom, written 

X2--x2X_r_l, where r is the number of parameters that have 
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to be estimated. Two restrictions p1aced on this statistic are: 

(1) K must begreater than or equal to 5. 

(2) All the ei',i·= l, ••• , K must be greater than or equa1 to 5. 

The procedure of applying the classical X2 goodness of fit test 

to detennine whether a given set of data follows a particular 

distribution or not is outlined below. 

(i) Calculate X2 

(ii) With the appropriate degrees of freedorn v look in 

-x,2 tables to compare X2 with -X;.. (See for example 

Pearson and Hartley (1966». If X2 is too large, 

rej ect Ho at the. required significance level. 

Note that the calculated value of X2 depends upon the position 

of the group boundaries. 

(c) Kuiper's Vn• Kuiper (1960) proposed the statistic 

Vn =-!~Rao ~n (x) - F(X~ -_1~!~..,f!n (x) - F(X~ 

where Yi • XCi) 

and sh(JWed that the distribution of Vn under Ho: F{X)=Fo(X) was 

independent of F(x), and that the calcula ted value of Vn was 

independent of the origin if the observations were points on a 

circle. stephens (1965) gives the exact distribution of Vn and 

provides tables of significance points for both the lower and 

upper taUs. These tables are extended in the appendix for 

selected values of n up to 100. 

2 (d) Watson's Un. Watson (1961, 1962) proposed the statistic 
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_i12 + -L iJ 12n 

and found its as.ympto1ic distribution. Stephens (1963, 1964) 

gives tables of significance points for both the upper and 

lower talls. The lower tail is extended in the appendix. 

The distribution of U~, like that of Vn, is independent 

of the distribution being tested (Fo(X)), and, for circular 

data, the calculated value of U~, again like that of Vn, does 

not depend on the choice of origine 

It is evident then that for circular data the Method of Minimum 

Vn or U2
n can be used as criteria of good estimation -- see section 

1.4 (3). It is also toœ noted that the minimum value w2
n carl take 

is U2
n, that is U2

n = min W2n(xo) where Xo is the "ongin" on the 
~o 

circle -- Watson (1961) • 



CHAPTER II 

THE CIRCULAR NORMAL DISTRIBUTION 

2.1 Introduction 

Gumbe1~ Greenwood" and Durand (1953) introduced the CN distribution 
1 

This density function has a mode at 90 and an antimode at 90+TI.9 

is the polar coordinate of a typica1 observation on the circumference 

of the unit circle and K ~ ° is a measure of dispersion. For large 

K(K ~ 5) the density is highly clustered about the mode and for srna11 
1 

K(K< 1) the density becomes more near1y uniforme At K=O f(9;K,,9o)= 2"'fr ' 

the unifonn distribution. Io(K) is the imaginar,r Bessel function of 

order zero. Vlhen K is ver,r large 9 is approximate1y norma11y 

1 
distributed wi th mean zero and variance 1/K, written 9~ N(O, if)" 

see Gumbel, Greemvood, and Durdnd (1953), Stephens (1962). 

2.2 Estimation of Parameters 

The techniques of analysis have been developed b.1 Stephens 

(1962, 1966) and Watson and Williams (1956) and are given be1ow. 

The details are not presented but are similar to those given in the 

discussion of distribution B2, Chapter III. 
n 

Given ~, ' •• , en let 0= L cos 9i' 
i.OSI 

n 

n 

S=a L sin 9i 
i.=1 

X = L cos (9i - 90 ). Thel resultant is denoted by li and has magnitude 
i=1 

R = )02+ S2 • 
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The ML estimator of K, 90 known is (1) 

The ML estimator of K, 90 Unkndlm 'is 
A 

Il (K) R 
~= 
Io(K) n (2) 

The estimator of 60 is (3) 

The procedure for describing a set of circular da ta by the CN 

distribution when eo ia unknown is outlined below. 

'" Procedure (a) Given SJ., ••• , 9n calcula'teC, Sand hence obtain 60 

from (3) above. 

" (b) Calculate R/n and determine K from (2) -- tables 

'" for obtaining K are provided in Gumbel, Greenwood 

and Durand (1953), or Batschelet (1965). 

2.3 Analysis of Data, 

The above techniques are now illustrated by seven samples drawn 

from published papers and the fits obtained are also illustrdted by 

" ,.. plots in the appendix. Once 60 and K had been obtained by the procedur~ 

set down in section 2.2 the fit was improved by using the Method of 

Minimum U~ and following the procedure outlined belmv. The analysis 

of distribution B2 in Chapter III was undertaken first and the 

conclusions reached there b.1 observing the various plots comparing 

the Method of Minimum U2
n and the Method of Minimum rnVn prompted 

the use of the former here. The procedure used in improving the fit 
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once the initial estima tes of 90 and K had bean obtained was: 

/'''' 2 (a) 90 was varied, K held fixed, to find minimum U n-
,. ,. 

(b) Kwas varied, holding the 90 obtained from (a) fixed, to 

find minimum U2
n _ 

,. ,. 
90 was varied by single degrees and K by tenths about their respective 

initial values. 

A typical plot consists of: 

(1) The sa~ple distribution function or step function 

(2) The estimated theoretical cumulative distribution 

function Fo(X). 
. d 

(3) The estimated theoretical density function ~Fo(x) 
,.. 

Note that for each plot the angles have been revolved by 90 so 

that the resultant or estimated directional vector pointed North (9 = 0). 

The goodness of fit statisticsJ;nVn , u2
n ' and w2

n were then calculated 

and Pearson's classical X2 test was a=!.so applied to the revolved 

angles. Table 2.1 at the end of this chapter lists the sample sizes, 

the plot number, the number of cells of equal probability used for the 

X2 test, and all the aforementioned values of statistics. Note that 

only the initial fits produced by the ML estimates are plotted. The 

techniques of improv~ent are illustrated by plots in the treatment 

of distribution B2 in Chapter III. 
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CN Sample 2.1 is from Griffin and Goldsmith (1955) and represents 

the initial flight directions taken by birds. Previous analysis 

included estimating 90 by the sample mean of the observations (142°). 

Data on page A-l. 

(a) Initial Estimate&~o and K obtained as in section 2.2. 

See table 2.1. Plot 1. 

(b) Improvement. êo varied, K fixed, to find minimum" U~ • Table Z.1-

.... "-
(c) Improvement. K varied, 90 obtained from (b) held fixed, to find 

minimum u2
n• Table 2.1 

Discussion. The initial estima tes fram (a) produce a low value of U2n 

and from plot l it is seen that the fit is goad. The estimates obtained 

from (b) and (c) do not lower the value of U2n appreciably. 

CN Sample 2.2 is f~om Agterberg and Briggs (1963) and represents 

paleacurrent directions. Prcviaus ana1ysis included linear normal 

" a trcatment (60 = 14). Data on page A-l. 

(a) Initial Estimates. 
"- A 
60 and K obtained as in section 2.2 • 

See table 2.1. Plot 2. 

(b) Improv~ment. êo varied, K fixed, ta find minimum U2
n• See 

table 2.1 

(c) Improvement. 
,.. " K varied, 60 abtained fram (b) held fixed, ta 

find minimum U2n• Sce table 2.1. 

Discussion. The estima tes from (b) and (c) lower the initial value 

of U2n obtained from Ca). The change in value of U2n from (a) ta 

(b) was greater than its change from Cb) to (c) • 
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eN Samp1e 2.3 is from Kiersch (1950) and J,'epresents direct.ions of 

sloping lamination surfaces.· Previous ana1ysis fo11owed the methods 

of Reiche (1938), see section 1.3, and McKee(1940) who estimated 90 

b.1 se1ecting at random a portion of the total number of observations 

availab1e. The direction recorded pictoria11y in figure 1 page 924 

of Kiersch (1950) agress wèll with those recorded in table 2.1. 

Data on page A-1. 

" "-(a) Initial Estimates. 90 and K obtained as in section 2.2. See 

table 2.1. Plot 3. 

(b) Improvement. 
'" ,.. 
90 varied, K fixed, to find minimum U2n. See 

table 2.1 
A ,.. 

(c) Improvement. K varied, 60 obtained from (b) held fixed, to 

find minimum U2n. See table 2.1. 

Discussion. The estima tes of (b) and (c) have no effect on the initial 

value of u2
n obtained fram (a). 

eN Sarnple 2.4 is from Kiersch (1950). See eN Sample 2.3 for 

previous methods of analysis. The direction of about 2000 recorded 

pictorially in figure 1 page 924 Kiersch (1950) is approximately 300 

'" avray from the Bo giving the best fit in table 2.1. Data on page A-l. 

(a) Initial Estimates. 
A 1\ 

~o and K obtained as in section 2.2. 

See table 2.1. Plot 4 

(b) Improvement. êo varied, K fixed,to find minimum U2
n• See 

table 2.1. 

" "" (c) Improvement. K varied, 60 obtained from (b) held fixed, to 

find Ininimum U2
n• See table 2.1. 
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Discussion. Same as for eN Sample 2.2. 

eN Sample 2.5. Source and me'thods of analysis as in eN Sample 

2.3. The direction of about 1250 recorded pictorial~ in figure l 

page 924 Kiersch (1950) is approximately 100 away fram the êo giving 

the best fit in table 2.1. Data on page A-l. 

(a) Initial Estimates. 
/'> .t-
80 and K obtained as in section 2.2. See 

table 2.1. Plot 5. 

(b) Improvement. A '" 90 varied, K fixed, to find min~num U2n. See 

table 2.1 
~ ,.. 

Cc) Improvement. K varied, 90 obtained fram (b) held fixed, to 

find minimum U2 n. See table 2.1. 

Discussion. Same as for eN Sample 2.2. 

eN Sample 2.6 is from Harrison (1957-a). For previous analysis 

see B2 Sample 3.6, page 35. Data on page A-5. 

(a) Initial Estimates. 

table 2.1. Plot 6. 

,.. /'> 

90 and K obtained as in section 2.2. 

".. ,.. 

See 

(b) Improvcrnent. 80 varied, K fixed, to find minimum U2n. See 

table 2.1. 

(c) Improvement. 
,.. ,.. 
K varied, 90 obtained fram (b) held fixed,to 

find minimum u2
n • See table 2.1. 

Discussion. Sarne as eN Sample 2.1. 

eN Sarnple 2.7 was provided by Dr. Edwin Gould of the School of 

gygiene, the Johns Hopkins University, and represents the directions 
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taken by turtles. For another analysis see B2 Sample 3.7 on page 36 

Da ta on page A-6. 

(a) Initial Estimatès. " " 90 and K obtained as in section 2.2. See 

table 2.1. Plot 1. 

Cb) Improvement. 

table 2.1. 

r.'" 2 90 varied, K fixed, to find minimum U n See 

" A Cc) Improvement. K varied, 90 obtained from (b) fixed, to find 

.. U2 
mwJ.lIlUID n • See table 2.1. 

Discussion. The estimates of Cb) do not lower the initial value of 

U2n obtained fom (a), however the estimates of (c) lower this initial 

value of U2
n a great deal. 

Conclusions. Although the above procedure for improving the fit 

was not checked on Monte Carlo samples from the CN distribution a 

similar procedure was checked on Monte Carlo samples from the more 

gcneral distribution B2 in which there were three unknown parameters 

to be estimated. The results obtained fram Monte Carlo studies in 

Chapter IV tables 4.4 and 4.5 indicate that the procedure used above 

... " would be satisfactory. The varying of 90 holding K fixed usually 

had the greater effect in lowing the initial value of U2
n, but as ~as 

seen from samples 2.4 and especially 2.7, the varying of K may also be 

necessary to obtain an even lower value of U2 n. 
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"... ".. 2.4 The Effect of Var,ying 90 90 = 0 

"... . 
Case 1. Assume 90 1s var:i.ed by an amount + 69. 

(a) If 9i ~ [êo, êo i".ll9] for all i =-1, ••• , n" then the step 

function is shifted to the left by an amount b.9. 

(b) If 9i E [êo, êo + A9] for j of the 9i, 1 • l, ••• , nj 

j = 1" ••• , n, then the 9i is (are) shifted to the ext~eme 

upper portion of the step function with the end result being 

that the step function is shifted to the le ft by an amount ~9 

and dropped down by an amount j/n. 

Case 2. Assume êo i8 var:i.ed by an amount - ~9. 

(a) If 9i f [êo - bo9, êoJ for all i - l, ••• , ri, then the step 

function is shifted to the r:i.ght by an amount 69. 

for j of the 9i1 i • 1" ••• , nj 

j = l, ••• , n, then the 9i is (are) shifted from the extreme 

upper portion of the step function down to the initial portion 

with the end result being that the step function is shifted 

to the r:i.ght by an amount Do9 and raised by an amount, j/n. 

For example in Plot.s2 and 18 one could improve the fit by 

/'0 

increasing 90 as in case l(a), and in plot 27 one could 
"... 

improve the fit by decrcasing 90 as in case 2 (b) • 
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A .... 

2.5 The Effect of Changing K t 90 = 0 

Recalling that K is a measure of dispersion one can readily observe 

'" that the effect of increasing K is to make the initial and final 

portions more steep and to fla tten the central portion. The effect 
/1. 

of decreasing K has the opposite effect of the above. A recommended 

procedure for improving the fit after plotting the distribution 
1\ 

functions using the ML estimates is ta var.r 90 first and then" if 
1\ 

necessar.y-" to var.y- K. 

2.6 Discussion of the Goodness of Fit Statistics 

Recalling that U2n and .[fi Vn are independent of the origin and 

the distribution being tested (CN distribution in this Chapter)" one 

can use the Methods of Minimum [fi Vn and U2
n respectively to see 

which statistic produces the better fit. As is better exemplified in 

Chapter III the Method of Minimum U2
n produces the noticeably better 

fit. 
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TABLE 2.1 - UNlMODAL (ON) RESULTS 

,.. 
.Jn Vn U2 W2 X2 ON Samp1e Plot n 90 K cella n n 

2.1 (a) 1 11 142.06 6.842 .6753 .0216 .0316 
(b) 11 144 6.842 .7106 .0207 .0620 
(c) 11 144 8.0 .6407 .0181 .0595 

2.2(a) 2 11 14.64 4.154 .7998 .0294 .0476 
(b) 11 22 4.154 .• 7283 .0221 .0249 
(c) 11 22 3.5 .7033 .0189 .0212 

2.3 (a) ~ LI. , nn 42 1.067 1.0553 .0474 .0474 1.0 5 .., ...... "'77· 

(b) 44 200 1.067 1.0553 .0472 .0479 1.0 5 
(c) 44 200 1.1 1.0553 .0475 .0481 .773 5 

2.4(a) 4 34 216.04 1.326 1.2776 .0949 .0986 8.353 5 
(b) 34 231 1.326 1.0945 .0747 .0859 2.176 5 
(c) 34 231 1.2 1.0572 .0692 .0796 1.294 5 

2.5(a) 5 37 110.14 1.297 .8391 .0270 .0357 1.243 5 
(b) 37 116 1.297 .7088 .0210 .0298 1.243 5 
(c) 37 116 1.4 .7402 .0201 .0287 1.784 5 

2.6(a) 6 58 305.43 .6763 .9233 .0296 .0500 1.655 5 
Cb) 58 309 .6763 .9082 .0282 .0831 2.517 5 
(c) 58 309 .7 .8973 .0284 .0834 1.483 5 

2.7(a) 7 31 341.49 1.0679 .9801 .0543 .0544 2.065 5 
Cb) 31 339 1.0679 .9686 .0540 .0575 2.065 5 
(c) 31 339 .9 .8630 .0469 .0503 2.065 5 



CHAPTER III 

TWO BIMODAL DISTRIBUTIONS 

3.1 Distribution BI 

o ~ 41' 21T 

This distribution bas modes at 4J = \jJ 0 and 't'. ~ 0 + TI and antimodes 

at4J = ~o:!: n/2. If À= K, Z\fI::I 9, and 2\Vo = 90 then distribution 

BI reduces to CN(K,90). Estimators of ).. and 4'0' their properties, and 

a complete discussion of distribution BI are found in Stephens (1966). 

The procedure for estimating À and IVo is the following: 

Ca) Given 'fI' ••• , \.Pn calculate 

n 
G = ~ cos 2 41i' 

i=l 

n " l 
H = L sin 2 \Vi then 410 = 2' tan-l 

i=1 
,. 

(b) Calculate R/n and detennine À from Il(~) 
Io( À) 

R 
where R is 

n 

H 

G 

is the size of the r esultant of the doubJsd angles, that is, 

R = j G2+ H2. The tables mentioned in section 2.2(b) can be 
,. 

used to obtain ).. • 

3.2 Distribution B2 

_ A 
f(9;A,B,K,9o) - 2TTlo(K) 

B 
exp(K cos(e - 60 »+ 2TIl

o
(K) exp(K cos(9 - 90 +11) 

O~9<2rr 
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This distribution is composed of two weighted CN distributions with 

modes at 60 and 60 - TT respectively.B2 i9 a modification of a distri

bution proposed by Gumbe1 (1954). A 1; ° and B'i: ° are the weights; 

A + B = 1, in order for B2 to in~egrate up ta one. Note that K, the 
, 

measure of dispersion, is assum.ed to be the sarne for the two ,we;l.ghted 

CN distributions. 

Possible Unimodalit,y of B2. It is interesting to note that 

distribution B2 is unimoda1 with the mode at 60 + TI" for low values of 

K and A, or at 60 for low values of K.and 1-A. For convenience set 

60 • Oj then distributionB2becomes 

f(6jA,K,0) = A exp(K cos 6) + (l-A) exp(K cos (6 + TT» 
2 nlo(k) 2 n1o{K) 

Differentiating with respect to e one obtains 

, - A (l-A) 
f (ejA,K,O) = 2nI

o
(K) K sin e exp(K cos e) - 2TTI o(K) K sin(s+rr) exp(K cos(9+1T» 

Differentiating again with re~pect to e, 1etting e = 0, and setting 

the resu1t greater than zero one imposes the condition on K and A that 

distribution.J32 reaches a minimum. at e = ° (not a maximum). That is, 

fil (9jA,K,0) - _ A K exp(K) + (l-A) K exp(-K) > ° 
2nlo {K) 2mo (K) 

;> ~)')A exp(K) )l-A ~ A exp(2K)~1>A(1+exp(2K»~A <: 1 (). 
EpCp\K 1+ exp 2K 

This imp1ies the unimodalit,y of distribution B2 with minimum (antimode) 

at e • ° and maximum (mode) at e : TT. If the respective K and A values 



lie close to or within the bounds of table 3.1,that i8, distribution 

B2' appears to be or is unimodal respectively, then the unimodal ON 

distribution maybe used to describe the data. This procedure was carried 

out vdth B2 Samples 3.6 and 3.7 which subsequently were called ON 

Samples 2.6 and 2.7. For B2 Sample 3.6 compare plots 27-31 with ON 

plot 6. For B2 Sarnple 3.7 compare plots 32-33 with the ON plot 7. 

For various values of K the corresponding A's are determined in table 

3.1 

TABLE 3.1 

K .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 2.0 3.0 

A .27 .232 .198 .168 .142 .119 .0976 .083 .069 .057 .048 .018 .0025 

3.3 Estimation of PÔ'rameters : Distribution B2 

The two basic estimation procedures (MML and the Method of Moments) 

are app1ied to distribution B2 in an attempt to estimate 90 , K, and A. 

These procedures, it is shawn, 1ead to expressions that become difficult 

to solve or difficult to interpret and in an attempt to obtain initial 

estimates a variation of the Method of Moments is proposed. 

(a) ~. Let ~, ••• , en be n independent observations from 

distribution B2 and let fi = f(9i; A,K,9o); then the 1ikeli-

n 
hood function is L = TI fi· 

i=l 

n 
Considering log L .. L log fH 

i=l 

differentiating with respect to A,K, and 90 respectiv~, and 



1etting 

a = exP(K cos(9ï - 90 » 

b = exp(K cos(Si - 90 +Tr» 

c = 2TTlo (K) 

Il(K) 
d = Io(K) 

e = cos(9i ..;. 90 ) 

f = COS(~i - 90 +11) 

h = sin(9ï - 90 ""n) 

the following equations are obtained: 

t ~l·. (a - b) = 0 
i=l J. . 

f C~i (Aea ~ Ada + (1-A) fb + (l-A) db) = 0 
i-1 

f. 1 (AKga+ (l-A) Rbb) = O. 
i=l cfi 

26 

Putting "hats": on A,K, and 90 the above equations have to be 

,.." " solved forA, K, and 90 ; however, as Gumbe1 (1954) points out, 

the estimation- of the parameters_ A, K, and 90 in the case of 

different dispersions (KI and K2) and different modes (901 and 

90 Û in the linear normal distribution 1eads to an equa tion of 

the ninth degree deri ved by Pearson (1894). The MML therefore 

does not provide a practical·technique for obtaining estimators. 

(b) Methodof Moments. As was mentioned in section 1.1, equating 

the rth population moment to the correeponding r th samp1e 



1 
n 

moment for r = 1,2,3 rosul ts in the statistics, E(9r) = ~ ei
r 

, 
n 

which are not invariant (for circular observations) of the point 

one chooses for the origine Also when r = 1 E(a) = 'hl ai can 
n 

give a misleading estimate of the modal direction if the 

observations happen to fall 1800 apart in unequal~ weighted . 

clusters. 

(c) Method of Moments applied to cos(e -.90 ) and sin(e - 9g ) 

Following technique (c) the estimating equations are: 

o 

".. 

Il(R) • 
Io( ) 

= t..cos2 (91 - êo) 
n 

= tain (6:i - ~ol 
n 

(1) 

(2) 

(3) 

(4) 

Now equations (2) and (4) provide two estimators for K. Lctting 
n n 

g = !. L sin2 (9i - 90 ) and h =!. L.. C08
2 (9i - 90 ) one 

n i=l n i=l 

obtains lim Var(g) =.~ = 4 lim Var(h) 
K~o 2n k-.O 

For K = 10 Var(g) = 111.39 = .0396 
2811 n n 

Var(h) = 34.7 = ~ 
28lln n 
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and for K = 2 Var(g) ::1 .754 
2.28n 

- .0331 -- Var(h) = .2804 ~ 
2.28n n n 

Since the orâer of K is the same in both g and h it is concluded 

that Var(h) < Var(g) and so (2) is used as an estimator of K. 

Since this estiIna tor of Kwas deri ved fram the Method of Moments 
... 

it i8 denoted~. (1) provides an estimator forA which is 
... 

now denoted by Am. From (3) the Method of Moments suggests 
A . 

using 90 as the angle obtained from the resultant" however, 

this estimator for 90 can give misleading information as to 

the direction of the modes as one can ea8i~ see by observing 

that the resultant of a set of observations clusterod about 

10 and another set of similar size clustered about 1790 

points somœhere in the vicini ty of 900 • Therefore to 

determine an unbiased estimator for 90 one method suggested 

by Krumbein (1939), having no particular circular distribution 

in mind, is to double all the angles, ta find the resultant 

of these doubled angles, and then to half the angle determined 

by this resultant. This above estimator of 90 is denoted by 

'" 0oD. The proposed set of initial estimators for distribution 

B2 i8: 

'" (a)For 90 - use 90D. 
,. 

(b)For K - use Km determined from equation (2) 
,.. 

(c)ForA - use Am determined from equation (1) 
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3.4 Properties of Estimators : Distribution B2 

Exact properties of the estima tors are difficult to find but sorne 

approximate results can be obtained based on the fo11owing approxi-

mations: 

Il(K) 1 
(a) For K large (1) -) = 1 - -; when K - 5 this has accuracy 

Io(K 2K 

within 1% and when K = 3 within 3%. 

For K very large (2) I1(K) = 1 with accuracy within 5.5% for K = 10 
Io(K) , 

(b) For K small (1) Il (K) =! with accuracy just over 3% for K = .51 

Io(K) 2 

and just over 1% for K • .3 

(2) I1(K) • ~ - ~ with accuracy within 1% for 
Io(K) 2 10 

K = 1/2 and within 2.5% for K = 1. 

The approximate results are: 

For K large (1\)0 10) 

(K ~ 3) 

(K ~ 3) 

For K small (K ~ .5) 

~ + n - t.cos
2 

(Si - êo) 
K n 

,.. ~ n 
K " 

1 
" .!.A Q 2 

A 
K 

-t-jn(2D - n) 
2(n - D) 

n 

where D = 

"" A A 
2K ~ cOS(6i - 90 ) + (2K - l)n 

A 

n (2K - 1) 
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(K ~ .5) ""A • 1 ~2" 

"-For results on 90 see Chapter ri. 

3.5 Anaqsis of Monte Carlo Samples : Distribution Bl 

A search through rasearch papers furnished no ~nPles of recorded 

bimodal data that appeared at first sight to have equalJ,y weighted 

modes 1800 apart. For \Vo= 0 and À 11:1 1,2,3,samples of size 50, Bl 

samples 3.1, 3.2 and 3.3 respectively were drawn tram distribution Bl. 

The data is recorded in the appendix on page A-2 • The techniques of 

estimating ~ and~o outlined in section 3.1 were applied to each set 
A 1'-

of data. }.. ,410 and the relevant goodness of fit statistics are 

recorded in table 3.2 with plots 8, 9 and la respectively describing 

" the fit obtained fram the ML estimates. \lJ 0 was taken as the origine 

In Chapter Dl section 4.7 samples 3.1 and 3.2 are treated as t,hough they 

had came from distribution B2. 

The wo aspects of this thesis are to d escribe the techniques wi th 

reference to practical data, and to verify the accuracy of these 

techniques by Mont", Carlo methods. The fonner is now applied in the 

next section, and the latter in Chapter IV section 4.6. 
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3.6 Analysis of Data for Distribution B2 

The data analysed in this section was gathered fram published 

papers. 

Initial Procedure. 
,... A ,.. 

The initial estima tes 90D' Km, and Am were 

calculated as in section 3.3(c), and the goodness of fit statistics 

were also calculated and are recorcled in table 3.3. The sample 

distribution function and the estimated theoretical densit,r and 

distribution functions were plotted and appear in the appendix. 

Note th:J,t the origin in this procedure is taken to be the North Pole 
A 

after aIl angles had been revolved b.r 90 D so that the estimated 

directional vector pointed North. 

Improved Procedure. The Methods of Minimum U2n and Minimum rn V n 

were then applied to improve the fit with the general procedure being: 

(a) 

(b) 

(c) 

,.. ,.. ,.. 
To var,y SoD about its initial value, holding Am and Km fixed. 

,..,.. ,.. 
To vary 60D and Am, holding Km fixed. 

,..,.. ,.. 
To vary eoD' Am' and Km about their initial values. 

The values of the goodness of fit statistics were recorded and the 

'" minimum values noted: Unless otherwise stated or recorded, eoD was 
,.. ,.. 

varied by single degrees, Am by hundredths, and Km by tenths about 

their initial values. The origin used for this analysis was the North 
,.. 

Pole no matter where 60D pointed, that is, the angles were not revolved. 

Once a certain set of estimates was decided upon, the fit was illustrated 

by a plot of the respective cumulative distribution functions after all 
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,.. 

the angles were revolved by SoD 50 that the estimated directional vector 

pointed North. The goodness of fit statistics·were then calculated 

using this above North Pole as the origin and i t is these values that 

are recorded in table 3.3. The samples and_proceâu!'. of analysis are 

now described. Ali plots are found in the appendix. 

B2 Sample 3.1. This sample was provided· by Dr. Edwin Gould of the 

School of ~giene, TPe Johns Hopkins University, and represant the 

directions taken b.1 turtles. Previous analysis by Cutchis (1965) 

consisted of CN treatment (ao a 20.93~ ~ = .495) and tests for 
n ,.. 

randomness. For the doubled angles SoD was also calculated (23~930) 

Data on page A-3. 

(a) " " " Initial Estimates. SoD' Am' and Km obtained as in section 

3.3. Plot 11 

(b) Improvement. 
~ ,.." 
SaD varied, Am and Km fixed, ta f ind 

,..,.. ,.. 
Improvement. SaD' Am, and !Sn are a11 varied to find mininrum. (c) 

[fi Vn • Plot 13. 

Discussion. The estimates of (a) produced a value of U2
n that was very 

close to the minimum U2
n obtained (.0202) byva+,ting the threc initial 

estimates. The fit obtained from (b) appears as good as that from (c). 

B2 Sample 3.2. Barne source as B2 Samp1e 3.1. The data was previously 
. ,.. 0 

ana1yscd by Cutchis (1965) who app1ied CN treéltment (90 = 64.1) and who 

also calculated êOD = 62.573° and by Stephens (1966) who app1ied 

distribution Bl techniques and X2 tests. Both suggest that a weighted 
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bimodal distribution be used to de scribe the data. Data on page A-3. 

(a.) "" .... Initial Estimates.90D' Am' and Km obtained as in 

section 3.3. Plot 14. 

(b) 
,.. 

and Am ~ixed, to find Improvement. 

(c) 
,.. '" ,... 

Comparison. 90D" Km" Am are all V?oried to find 

minimum rn Vn • Plot 16. 

(d) " "'''' Comparison. 90D is varied, Km. and Am fixed" to seek minimum 

fo Vn• Plot 17. 

Discussion. The initial estimates (a) produce a ver,y good fit. Those 

of (b) produce a noticeably better fit close ta the minimwn value 

obtained by U2 n (.0182) from varying ail three initial estima tes. The 

fit obtained from (c) appears as go ad as that from (d). 

B2 Sample 3.3, was read from polar diagram 30 of Harrison (1957a) 

and represents pebble orientations. Previous analysis includes the 

" polar diagram and a test for unifonnity. The direction of 90 given 

by Harrison (1957a) in figure 5 page 283 appears ta .agree with ilihat 

tabulated in table 3.3 -- sample 3.3 (a). Data on page A-4. 

Ca) 
A... " Initial Estimates. SaD, Am' and Km obtained as in section 3.3. 

Plot 18. 

(b) 
~ ~ " 

Improvement. 90D and Ar.J. varied, Km fixed, to find minimum 

u2n and, as it turned out, minimum .rn Vn • Plot 19. 

(c) ,.. " " 2 COIilparison. SoD" Am' Km all varied ta f ind minimum U n and, 

as i t turned out, minimum fii Vn• Plot 20. 
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Discussion. The estimates of-Cb) produce a noticeably better fit tban 

those of Ca). (b) and (c) appear to be equally good. 

B2 Sample 3.4. was read from a polar diagram of Krumbein (1942) 

and represents pebble orientations. Previous analysis included 

linear nonnal treatment appli~d to the grouped data. The technique 

of doubling the angles etc. to estimate the orientation direction 

is applied to the gr.:>uped data only. The pictorially recorded 

direction of 900 in diagram 0-15 page 1387 in Krumbein (1942) agrees 

'" well with the results obtained for 90 in table 3.3. Data on page A-4. 

(a) Initial Estimates. 
,. '" ,.. 
90D' Am, and Km obtained as in section 3.3. 

;gI.ot 21. 

(b) 
" ,.,.. 

Comparison. 90D w~s varied, Km and Am fixed, to find min:iJnum 

J!i Vn• Plot 22. 

Discussion. The estimates of (a) produced a U2n value ver,r close to 

the minimum U2n value attained (.0197) by var,ring aIl three estimates. 

The estirnates of (b) produced the minimum [Jîvn; also, (a) and (b) 

appear to pro duce equally good fits. 

B2 Sample 3.5 was read fram a polar diagram of Krumbein (1940). 

Pranous analysis as in B2 Sample 3.4 with êo = 530• Data on page A"'. 

(a) Initial Estimates. ~OD, i m, and Km obtained as in section 3.3. 

Plot 23. 

(b) 
~ ~ A 

Improvement. 90D varied, Km and ~ t'ixed, to seek minimum 

U2
n o Plot 24. 



(c) Oomparison. 'êoDvaried, Êm and Am fixed, to seek mimimum 

[ri Vn• Plot 25. 
;0.. 

(d) Oomparison. SoD varied by sye after obseIVing plot 24 and 

following the technique of section 2.4 -- case l(a). 

Plot· 26. 
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Discussion. The estimates of (a) appear to give a better fit than those 

of (b) even though the latter has a lower U2
n value. (b) and (c) 

estima. tes produce equally good fi ts. The minimum U2n found by 

var,ring all three est:i.m:l.tes was .0224 and the minimum .[iï Vn was .6605. 

The next t\.vo samples, B2 Samples 3.6 and 3.7, were treàacl at first 

as though they had come trom distribution B2. Upon examination of the 

unimodal appearance of their respective density functioœhowever, a 

ON fit was attempted. The eN fit to B2 Sample 3.6 appeared to be 

as good as the B2 fit, and the eN fit to B2 Sampls 3.7 was much better 

than the B2 fit. 

B2 Sample 3.6 was read fram a polar diagram of Harrison (1957a). 

He records pictorially in figure 5 page 283 in Harrison (1957a) that 

the datahave a. mode at approximately 2800 , (U2n > .060). Vlhen 

distribution B2 techniques Viere applied the best fit was obtained 

when Bo = 3100 (U2 n - .0283), and Vlhen eN techniques were applied the 

best fit was obtained VIhan êo = 309()(U2n = .0282) -- see tables 3.3 

and 2.1 {Sarll.plœ 2.6) respectively. Data on page A-5. 

(a) "''' '" Ini 'Dial Estima tes. SaD' Am' and Km obtained as in section 

3.3. Plot 27. 



& 

(h) 

(c) 

(d) 

(e) 

Improvement. ,. "''' SoD varied, Km and Am fixed, to find mininrum 

u2 • Plot 28. 
n 

Comparison. A • A " 
SoD va~ed, Km and Am fixed, to find minimum 

"" 
,.. A 

to find minimum U2
n• Comparison. GoD, Km' and ~ varied 

Plot 30. 
A A ,.. 

Comparison. eoD ' Kzn., and ~ vaned to seek minimum 

JnVn• Plot 31. 
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Discussion. (a) est~tes produce a noticeably poor fit whereas the 

estimates from (d) and (b) yield good fits, much better than those 

obtained from (e) and (c). A qN distribution was then fitted to the 

data after observing the unimoclal appearance of the densi ty function 

in plots 27 and 28, and an equal~ good fit was obtained with the 

initial estimates of K and 90 -- see plot 6 and table 2.1 (CN Sample 

2.6) 

B2 Sample 3.7 Same source as B2 Sample 3.1. Previous analysis by" 

Cutchis (1965) was unavailable. Data on page A-6. 

(a) Initial Estimates. 
A A A 

90D' Am' and Km obtained as in section 3.3. 

Plot 32. 

(b) Improvement. êoD varied in 10
0 

intervals, Km and Am fixed, 

to find minimum u2 n and, as i t turned out, minimum .rn V n· 

Plot 33. 

Discussion. (a) estimates produce a ver,y poor fit whereas those of (b) 

produce a non significant U2
n and [nVn • A eN distribution was fitted 
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to the data after observing the- unimodal appearance of the estima.t.~d 

density function in plots 32 and 33 and a much better fit was obtained: 

see plot 7, table 2.1 (sample 2.7), 

Conclusions. The Method of Minimum U2n produces a much tighter 

:rit than the Method of Minimum [ri Vn but one 8hould al ways plot the 

theoretical andëm.pirical-distributions. to confirmthat,& law u2n 

value has not resulted from a shift in location. Very low values 

of U2
n and .[ii Vn may be obtained by varying only the estimate of 

90 obtained trom section 3.3(holding Am and Km fixed). êOD is 

varied by observing the plots drawn produced by the initial eatimates 

and following the procedure outlined in section 2.4. 

It is to be emphasized that the initial estimates usual~ provide 
, ~ 

quite a good fit. The above procedure of var.ring only 90D to obtain 

a good fit i8 tested on some Monte Carlo samples in Chapter IV 

section 4.6. 

3.7 The Effect of Changing 1 
,.. 
90 • 0 

i 

A is a rneasure of the weight attached to ea.ch CN distribution in 
,.. 

B2. The varying of A affects the cumulative distribution function in 
,.. ,.. ,.. 

much the sarne way as the changing of K does in section 2.5. A and K 

should not be varied until a good estimateof 60 is obtai~ed, and then, 
,.. 

if necessar.r, A could b" varied to obtain an'even better fit. Follawing 
,.. 

thé above procedure of improving the fit K appears to have a fairly 

wide range that will still produce excellent fits. One could change 
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both K and A so as to complement each other (increasing or decreasing 

both) or to_counteract each other (increasing one and decreasing the 

other) but such a procedure would require lengthy and multiple 

calculations with the end result in most cases being a fit which is 

not really too much better than that obtained by varying êo alone. 

,. 
3.8 Another Estimator for K{Ka) : K large - distribution B2 

stephens (unpublished) has suggested the following method for 

obtaining a rough estimate of K from independently distributed angles 

(a) Double aIl the angles andobtain the size R of the resultant 

of these doubled angles, and hence obtain KD from R/n. 
,.. 

(b) Find V2 from Kn using table A-l in the appendix. Calculate 

VI = V2/ 4. 
,... 

(c) Interpolate with VI - v2/4 in table A-l to get Ks. 

Theo51. If K is large then CN(O,K) ~ N(O,~ ) -- Gumbel, Greenwood, 

and Durand (1953). From Stephens (1963) -- let a point move in 

successive independent steps on the circumference of a unit circle, and 

let f t (9) be the density function of its polar co-ordinate after t 

steps. At each step assume e increases by an amount 0( having the 

distribution function p( oC. ); - n ~ cC 'TI. New if 

(a) The densi ty function of II(, becomes concentra ted a t zero 

for each step 

and Cb) The number of steps increases so that the final density 
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f'unction iV(S) has finite -variance 

then the density function of a point which starts at the North Pole 

and moves with Brownian diffusion is given by 

. 1 1 -. l 
fV(S) = -+- L cos me exp(- -. m2V} where V is a:measure of 

2TI TT m=l 2 

dispersion. 

If the point· starts at e • 0 and has the CN(O,K) then. 

1 1 f- Im(K) 
fl (S) - 2iT + fT L ...--n1'\ cos me. 

m-l .1.0\1\,) 

Putting m -.'1 in these -mo 

Fourier expansions, assuming K is large, one gets e-fl • Il (K) and 
L 1 1 Io{lt) 

thl!refore 1 - 2' + 1 - 2K =>V * if· 50 CN(O,Ki) ~ B(Vl) where 

B repre5ents a Brawnian distribution with VI III !. , as a parameter 
((i 

of dispersion. Since CN(O,K1) 9 N(O,t>·, doubling the observations 

in a normal distribution produces another normal distribution with 

the same mean and four times the original variance, and therefore 

CN(O,K2) ~ N(O,~) ~ B(V2) where V2 = 4\1 50 e-?N2 III e-2Vl 
2 

_ Il(K2) _ 1 
- I o(K2) =91 - 2Vl - 1 - 2~ ~Kl • 4K2 

A. 

3.9 AnotherEstimator for A (Ap) 

'" To obtain a quick estimate of A find So as in section 3.3 and thon set 

" no. of 6i in [êo - Y- :1 êo + Y-] Ap III __________________________ ___ 
i = l, •.• , n • 

n 

" One would expect Ap to be a reliable estima tor for large K. For a 

" further discussion of Ap see Chapter IV. 
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TABLE 3.2 

DISTRIBUTION B1 SAMFtES 

B1 /\ 
SAMPLE Plot n 4'0 X \jJo " rn Vn U2 

n W2 
n X2 ce11s 

--
3.1 8 50 0 1 7.63 .9267 .6263 .0182 .0473 1.0 5 

3.2 9 50 0 2 177.22 2.1549 1.0778 .0546 .0615 4.2 5 

3.3 10 50 0 3 1.29 3.0273 .8249 .0244 .0333 1.0 5 



TABLE 3.3 

DISTRIBUTiON B2 SAMPLES 

B2 
/' 1\ /' ifn SAMPLE Plot n 90 1(. A %Vn W2 X2 ce11s n 

-- -
3.1(a) 11 UL 23.94 4.1032 .785 .7238 .0205 .0856 2.05 , 5 

(b) 12 41 27.5 4.1032 .785 .6574 .0269 .0776 1.07 5 
(c) 13 41 27.1 3.7 .805 .6352 .0270 .084'7 1.81 5 

3.2(a) 14 76 62.57 3.1669 .8031 .7842 .0196 .0373 4.79 10 
(b) 15 76 G4.0 3~1669 .8031 .8137 .0184 ~02h' '-(,,79 JO 
(c) 16 76 61.1 3.0 .795 .6953 .0247 .0289 5.05 10 
(d)_17 76 61.5 3.1669 .8031 .7604 .0223 .0289 3.21 10 

3.3(a) 18 101 137.54 3.0843 .5609 1.5374 .1434 .2745 14.94 10 
(b) 19 101 142.0 3.0843 .5609 1.4777 .1366 .1391 13.75 10 
(c) 20 101 142.0 3.0843 .57 1.4640 .1362 .1382 15.14 10 

3.4(a) 21 100 85.73 1.7832 .288 .6644 .0199. .0261 4.0 10 
(b) 22 100 84.0 1.7832 .288 .6413 .0203 .0206 2.6 10 

3.5(a) 23 100 57.34 1.6409 .3055 .8409 .0362 .1141 2.2 10 
(b) 24 100 65.5 1.6409 .3055 .6812 .0233 .1141 6.6 10 
(c) 25 100 64.0 1.6409 .3055 .6685 .0238 .1478 5.4 10 
(d) 26 100 73.5 1.6409 .3055 .9515 .0356 .0365 10 

3.6(a) 27 58 151.84 .9492 .1651 1.2205 .0777 .2476 4.24 5 
(b) 28 58 130.0 .9492 .1651 .9049 .0300 .0450 .621 5 
(c) 29 58 136.0 .9492 .1651 .8777 .0336 .1091 1.483 5 
(d) 30 58 130.0 1.0 .15 .• 8761 .0283 .0435 .621 5 
(e) 31 58 136.0 1.1 .17 .8278 .0323 .1091 1.483 5 

3.7(a) 32 31 107.92 .8457 .1413 1.823 .2315 .8018 9.16 5 
(b) 33 31 160.0 .8457 .1413 1.285}~ .0839 .0992 5.94 5 



MONTE C1\RLO RFBULTS : DISTRIBUTION B2 

4.1 Introduction 

Aa was mentioned in Chapter III not only are properties of the 

estimators difficult to find, but also standard estimation techniques 

may sometimea 1ead to non-invariant estima tors as was exemplified 

when the Method of Moments suggested using êoR, the resultant 
,.. 

direction, as an estimator of So. SoD' was then .. proposed aa another 

,.. '" 
estimator of 60 • In Chapter III, a1so, t'Wo estimatora of K (Km and Ks) 

'" A 
and two estimators of A (Am and Ap) were introduced. still another 

" estimator of K denoted Kn is introduced in section 4.3. In order to 

ver.if.r the efficienc,y and to examine the accuracy of these three sets 

of estima tors Monte Carlo studies were undertaken. Sections 4~2 ta 
.,....".. ~ 

4.5 dea1 with studies concerning 60 , K, and A. It shou1d be noted 

tha t in theory the same Monte Carlo samp1es could have been used 

thoughout this chapter, however, section 4.3 was undertaken long before 

the others and subsequently new samp1es were drawn for sections .4. 2 and 

4.4. The same samp1es are used in sectioœ4.4 and 4.5. The genera1 

procedure of drawing and examining Monte Carlo Samp1es from distribution 

B2 is now outlined. For a fixed K, A, and 60 a set of 15 samp1es of 

size 25 drawn from distribution B2. The appropria te statistics 

(e ,.. ,... '" ,.. " ,.. 
eoR' eoD, Ka, Km, Kn' Ap, Am) were ca1culated for each of the 15 

sarnp1es wi thin the set and then the samp1e mean and the standard error 



we;re calculated for each set of 15. Again, the whole of the abovs 

procedure was repea ted wi th samples of size 50. The resul ts are 

recorded in tables 4.1 to 4.3. 

Up to this point in the thesis a procedure for describing bimoda1 

data with modes of unequal strengths lying 1800 apart has been 

. presented. The procsdure has been as fo1lows: 

(a) 
'" l' ,.. 

Initial estimates obtained from eoD~ Rin" and Am in section 

,.. l'" 
Fit improved by varying 90 D" holding Km and Am fixed, to find (b) 

minimum U2
n • 

50 far the data analysed by this procedure hd.s been drawn from 

published papers. The accuracy of the above procedure is now verified 

by testing i t on Monte Carlo samp1es drawn from distribution B2 and 

on those previous~ drawn from distribution Bl -- see sectiacs4.6 and 

4.7 respective~. 

. "'-Results concern~ng 90 

For a fixed K, A, and 90 ... 1800 a set of 15 samp1es of size 25 was 

'" drawn trom distribution B2. SoR, the angle detennined by the resultant 

of each sample, was calculated and the samp1e mean and standard error 

Vlora also calculated for èach set of 15. A was then varied, for fixed 
, ' 

K = 1,2,3,4,5" from .5(.1).9 and the above procedure_ l'las again app1ied 

1'lith the results being recorded in table 4.1(a). The above procedure 

was repeated for ~OD' the angle determined by halving the angle 

obtained from the resultant of the doublèd angles of each sample. 
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Again the whole of the above procedure was repeated with samples of 

size 50, and these results are recorded in table 4.1(b). From tables 
, A 

4.I(a) and (b) it is evident that 90D is an unbiased estimator of 90 

with much smaller standard deviation than BoR for aIl combinations of 

the A and K values above, except for very high values of A. It is 

like~ in practice that A will not be extreme, but if it is then the 

eN distribution may beused ta describe the data as was the case with' 

B2 Samples 3.6 and 3.7 which were subsequently treated as unimodal 

datq and ana~séd again as eN Samples 2.6 and 2.7. As is ta b e expected 
,.. '" 

for values of A close to ., and K' l 90n and 90R are subj ect ta 

great variation. Also the standard errors are consisteru.y less for 

the larger sample size. 

4.3 Nomogram for K 

For fixed K, A, and 90 = 0 l, samples of size 30 and 10 samples 

of size ,0 were drawn from distribution B2 where K varied fram 1(1)9 

and A fram .1(.1).,. The angles.obtained in each samplewere doubled 
,.. 

and the corresponding Kn value was found by treating the doublcd 

angles as though they were from a eN distribution. For each individual 

" K value the mean of each set of Kn's generated was calculated and 

subsequently 10 points were plotted at each of the above values of K. 

A cubic was fitted by orthogonal polyno~ to the 90 points thus 

obtained. The coefficients or the linear and quadra tic tanns were 

significant whereas that of the cubic term WclS note In order to improve 
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the fit for small values of K two more sets of 10 means werp. plotted 

against K = .5 and K = 1.5 alongwith the other 9 sets of 10 means 

corresponding to K = 1(1)9 respective~. A straight line and a 

quadratic, both restricted ta pass through the origin, were then 

fitted to the now 110 points by least-squares and the latterwas 

" plotted (Kn versus K).in figure 4.1. The equation of the straight 
. 1\ 

line through the origin i8 Kn - .3430 K, and that of the quadratic 

is ~. ::II .3909 K - ~0068 K2. The procedure for using the nomogram 

(figure 4.1) is now outlined: 

(a) Given~, ••• , en : double all these angles and compute 

R/n where R is the size of the resul tant of the doubled angles. 
A 

(b) Kn is obtained from tables by interpolation using R/n above. 

(c) 

See Gumbel, Greenwood, and Durand (1953) or Batschelet (1965) 

for the tables. 
1\ 

With this value of Kn one enters the left hand side of 

figure 4.1 and reads off the K value fram the curve. This 
,.. 

K value is now denoted by Kn -- the value of K read fram 

the nomogram. 

" 4.4 Results concerning K 

Samples were drawn as in section 4.1 wi th eo = O. 
,1\ 

Km, detennined 
,.. 

by the Method of Moments in section 3.3; Ks' detennined as in 

" section 3.8; and Kn determined as in section 4.3, were calculated for 

each sample and the sample Mean and t he standard error were computed 
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for each set as in section 4.2 and were recorded in tables4.2(a) and 
,. 

(0). For the smaller sample size of N - 25 ~, the val.ue of K 

read from the nomogram, is the best of the three estima tors of K. 
A ~ A 

Ks tends tû ûver"iistima te K more than Km does, and K;n also has the 

smallest standard error of the three estima tors for K ~ 3 and all 

values of A. For the larger sample size of N = 50 
A 

~ again 
A 

appears to be the best of the three estimators of K with Km almost 

~ 

as good. Ks again tends to overestimate K but does have the smallest 

standard errer of the three estimators for K' 3 and aIl values of A. 
,..,.. "-

Note the relatively large standard errors of Km, .. Kyj, a~d Ka suggest a 

large variation in the estimated values of K in each set of 15 samples. 

~ " One concludes then that Kn and Km are fairly:reliable estimators of 
~ ,.. 

K with ~ being a little be~t;er than Km. 

4.5 Results concerning A 

Samples were drawn fram distribution B2 as outlined in section 4.1. 

~, the estimate of A obtained from the Method of Moments in section 

" 3.3 and Ap' the estimate of A described in section 3.9 were calculated 

for each sample and the sample mean and standard errer were calcula ted 

for each set of 15 and recorded in tables 4.3(a) and (b). For lœr 

values of K (K ~ 3) and for all values of A (especially high values of' 

A) Am provides the better estimate of A. For larger values of K 

,. " 
(K> 3) and all values of A, Ap and Am appear to be equally good as 
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estimators of A, with the standard error of Ap slightly low'er than 

" ,.. that of Am. Ap, therefore, is a fairly reliable estimator of A that 

'" can b e calcula ted easily alter SoD has been obtained. Tables 4..5 (a) 

and (b) also veritY that the standard errora are consistently less 

for the larger sample size. 

4.6 Re sul ta from the Analysis of Distribution B2 Samples 

For aIl combinations of the following values of par.ameters --

sa - 0, K = 2,3,4,5 and A = .9,.8,.7,.6,.5 -- a sample of size 50 was 

drawn from distribution B2. These 20 samples were then analysed using 

the fOllowing procedure: 

(a) 

(b) 

(c) 

"," ,.. 
The initial estimates SaD' Km, and Am were calculated às in 

section 3.3. 
,.. ,.. ,.. " . 
SaD was varied, holding Km and Am fixed, to find minimum U-n. 
,..'" ,.. 2 
SoD' ~, and Am were aIl varied to find minim~ U n. 

For each of (a), (b), and (c) the relevant goodness of fit statistics 

were calculated and aIl the results are recorded in table 4.4. Note 

that the origin for aIl the ab ove calculations was taken to be the 

North Pole (the! observations were not revolved in any way). 

,.. " Table 4.4 -shows that the initial estimates Am and 60D estimate 

A and 60 quite weIl in almost aIl the 20 samples generated. The initial 

estima tes of K, however, are sometimes quite a distance fram the true 

value of K, see samples l, 2, 10, 13, and 17. The parametera 90 and 
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K are analogous to the mean (t') and variance (62) respectively in 

the linear nonnal distribution" and the confidence intervals for f 

are far smaller t hari those for 6 2• This fact helps to interpret the 
A 

sometimes distant values of K irClil K in table 4.4. Table 4.4 also 

shows tha t the estimates obtained from (b) and (c) .by" improving the 

fit by" the Method of Minimum U2
n are usually quite close to the 

initial estimates obtained from (a). 

4.7 B2 Estimation Techniques applied to Bl Samples 

Bl Samplos 1 and 2" section 3.5" are now treated as though the.y 

had come from distribution B2 and are analysed using the following 

procedure: 

(a) 

(b) 

(c) 

'".. /'> " 

Initial Estimates. SoD" Km" and Am were obtained as in 

section 3.3. 

Improvement. 

minimum U2 n. 

~ ~ A 
GoD is varied, ~ and Am held fixed, to find 

"-,, " 
Improvement. SoD' Km, and Am are all varied to find minimum 

U
2n • 

Only the results from (a) are plotted, plots 34 and 35}and all 

statistics are sllmffiarised in table 4.5. For (a) the origin is taken 

to be êoD but for (b) and (c) the origin was the North pole. 

"-From table 4.5 it is seen that as expected A is ver,r close ta .5 

for both the samples. Also K in the B2 distribution is seen ta be 

about 3 times the À in the BI distribution. 
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TÀBLE 4.1(a) 

,.. 
Ba: MONTE CARL.O R~ULTS· FOR 90 : SAMPLE SIZE = 25 

,.. ,.. 
soR SoD 

No. of Standard standard 
Samples K A Mean Error Mean Error 

15 .1 .9 178.86 23.11 183.06 50.82 
15 1 .8 192.15 23.79 178.87 36.39 
15 1 .7 181.64 39.04 177 .. 05 36.36 
15 1 .6 208.68 68.34 180.97 32.31 
15 1 .5 169.20 112.96 177.35 27.34 

15 2 .9 175.83 11.89 170.24 15.14 
15 2 .8 182.94 19.84 178.78 14.84 
15 2 .7 189.39 42.92 181.01 15.69 
15 2 .6 183.35 35.76 --173.69 12.66 
15 2 .5 183.18 117.77 179.41 19.34 

15 3 .9 178.78 7.87 181.51 6.70 
15 3 .8 183.89 10.76 180.37 9.03 
15 3 .7 180.09 22.47 182.89 7.65 
15 3 .6 155.82 63.34 180.19 9.39 
15 3 .5 194.52 105.13 178.58 10.02 

15 4 .9 180.97 6.94 180.39 6.81 
15 4 .8 177.97 11.57 181.35 7.09 
15 4 .7 183.53 16.53 179.10 5.44 
15 4 .6 181.80 43.13 179.31 4.18 
15 4 .5 121.98 125.73 179.72 4.62 

15 5 .9 178.28 7.85 179.14 5.91 
15 5 .8 181.90 7.16 180.85 4.85 
15 5 .7 173.27 15.45 179.92 5.11 
15 5 .6 180.51 58.28 177.52 6.14 
15 5 .5 188.34 126.31 180.32 3.24 
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TABLE 4.1(b) 

,. 
B2 MONTE CARLO RESULTS FOR 90 : SAMPLE SIZE :; 50 -

/'-. "... 

soR SOD 

No. of Standard Standard 
Samp1e K A Mean Error Mean Error 

15 1 .9 179.16 14.22 172.11 20.12 
15 1 .8 178.64 -16.20 184.68 20.13 
15 1 .7 181.92 37.61 180.68 35.72 
15 1 .6 164.82 64.68 174.32 30.92 
15 1 .5 211.48 101.22 174.79 34.52 

15 2 .9 181.04 10.99 179.03 9.97 
15 2 .8 180.67 13.07 178.90 8.77 
15 2 .7 176.88 30.35 183.17 7.13 
15 2 .6 175.85 29.36 177.03 10.28 
15 2 .5 211.70 89.37 180.62 15.55 

15 3 .9 177 .84 7.54 178.99 3.89 
15 3 .8 180.74 7.69 178.99 6.23 
15 3 .7 176.62 12.29 179.62 6.27 
15 3 .6 184.45 58.45 178.64 5.29 
15 3 .5 200.33 115.02 176.87 3.83 

15 4 .9 180.95 4.64 178.98 5.37 
15 4 .8 182.25 7.72 179.30 4.12 
15 4 .7 180.44 13.32 181.32 3.60 
15 4 .6 179.13 20.69 178.60 5.74 
15 4 .5 192.07 123.19 179.36 7.68 

15 5 .9 180.50 3.54 179.30 2.09 
15 5 .8 182.00 10.75 178.82 4.66 
15 5 .7 179.00 16.34 179.42 3.97 
15 5 .6 175.34 19.04 179.21 3.77 
15 5 .5 249.10 96.85 1130.28 4.72 
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TABLE 4.2(a) 

" B2 MONTE CARLO RESULTS FOR K : SAMPLE SIZE = 25 

,.. "- ".. 

Ks Km Kn 

No.of stâridâra stândâra Standard 
Sample K k Mean Errer Mean ErrOr Mean EITor 

15 1 .9 1.788 .437 1.427 .486 1.028 .543 
15 1 .8 1.598 eS7; 1.266 .529 .868 .559 
15 1 .7 1.995 .501 1.659 .554 1.288 .614 
15 1 .6 1.818 .640 1.472 .704 1.099 .771 
15 1 ., 1.682 .515 1.303 .582 .. 908 .631 

15 2 .9 2.431 .773 2.140 .859 1.818 ·.952 
15 2 .8 2.654 .849 2.388 .933 2.091 1.012 
15 2 .7 2.61.2 .711 2.344 .791 2.047 .882 
15 2 .6 2.512 .61.4 2.234 .686 1.929 .770 
15 2 .5 2.301 .800 2.061 .745 1.759 .809 

15 3 .9 3.574 .981 3.393 1.052 3.160 1.067 
15 3 .8 3.230 .907 3.019 .982 2.770 1.022 
15 3 .7 3.400 1.335 3.195 1.399 2.934 1.348 
15 3 .6 3.412 1.150 3.213 1.214 2.962 1.187 
15 3 .5 3.460 1.047 3.261 1.125 3.021 1.147 

15 ~ .9 4.571 1.191 4.450 1.253 4.196 1.208 
15 4 .• 8 4.512 1.127 4.389 1.180 4.144 1.121 
15 4 .7 4.628 1.048 4.513 1.096 4.267 1.039 
15 4 .6 4.166 1.301 4.022 1.356 3.782 1.274 
15 4 .5 4.188 .894 4.054 .937 3.837 .889 

15 5 .9 5.681 1.322 5.602 1.361 5.261 1.225 
15 5 .8 5.929 1.632 5.852 1.660 5.485 1.466 
15 5 .7 5.134 1.295 5.035 1.343 4.743 1.246 
15 5 .6 5.162 1.186 5.069 1.222 4.786 1.100 
15 5 .5 5.204 1.839 5.096 1.888 4.778 1.706 
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TABLE 4.2(b) 

" B2 MONTE CARLO RESULT S FOR K : SAMPLE SIZE a 50 

" 
,.. " Kil Kin Kr" 

No.of stândâra Standard standard 
Samptes. K:~ A Mean Enar Mean Error Mean Error 

15 1 .9 1.302 .704 1.078, .468 .678 .469 
15 1 .8 1.679 .394 1.310 .429 .902. .467 
15 1 .7 1.577 .319 1.195 .345 .775 .365 
15 1 .6 1.589 .406 1.243 .341 .829 .346 
15 1 .5 1.733 .391 1.370 .425 .969 .457 

15 2 .9 2.346 .662 2.084 .644 1.775 .700 
15 2 .8 2.330 .315 2.032 .355 1.708 .408 
15 2 .7 2.548 .527 2.275 .591 1.981 .668 
15 2 .6 2.513 .436 2.236 .487 1.935 .549 
15 2 .5 2.247 .459 1.938 .517 1.599 .589 

15 3 .9 3.277 .675 3.078 .737 2.851 .786 
15 3 .8 3.708 .697 3.545 .745 3.338 .746 
15 3 .7 3.257 .473 3.060 .515 2.845 .544 
15 3 .6 3.492 .663 3.313 .715 3.100 .737 
15 3 .5 3.495 .704 3.315 .759 3.099 .781 

15 4 .9 4.790 .705 4.690 .729 4.455 .664 
15 4 .8 4.366 .746 4.244 .785 4.027 .755 
15 4 .7 4.415 .717 4.298 .751 4.082 .711 
15 4 .6 4.219 .626 4.092 .661 3.887 .642 
15 4 .5 4.574 .692 4.465 .719 4.243 .669 

15 5 .9 5.400 1.113 5.318 1.137 5.018 1.014 
15 5 .8 5.653 .793 5.579 .812 5.260 .724 
15 5 .7 5.338 .982 5.252 1.008 4.961 .905 
15 5 .6 5.260 1.231 5.173 1.266 h.880 1.137 
15 5 .5 5.525 .818 5.451 .842 '5.143 .762 
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TABLE 4.3{a) 

,.. 
B2 MONTE CARLO RF..5ULTS FOR A : SAMPLE SIZE • 25 

,.. ,.. 
Am Ap 

No. of Standard Standard 
Samp1es K A Mean Error Mean Error 

15 1 .9 .803 .167 .699 .116 
15 1 .8 .779 .237 .656 .llO 
15 1 .7 .671 .160 .616 .099 
15 1 .6 .575 .140 .541 .081 
15 1 .5 .491 .136 .515 .091 

15 2 .9 .924 .014 .840 .081 
15 2 .8 .811 .115 .765 .083 
15 2 .7 .698 .080 .672 .074 
15 2 .6 .591 .094 .579 .069 
15 2 .5 .496 .090 .511 .073 

15 3 .9 .895 .050 .885 .048 
15 3 .8 .783 .083 .751 .010 
15 3 .1 .101 .063 .691 .058 
15 3 .6 .600 .109 .591 .099 
15 3 .5 .531 .096 .520 .094 

15 4 .9 .900 .054 .888 .057 
15 4 .8 .793 .079 .781 .074 
15 4 .7 .702 .090 .704 .083 
15 4 .6 .605 .127 .595 .122 
15 4 .5 .458 .102 .461 .104 

15 5 .9 .893 -.071 .893 .010 
15 5 .8 .843 - .071 .835 .074 
15 5 .7 .648 .092 .645 .091 
15 5 .6 .578 .099 .584 .097 
15 5 .5 .415 .108 .475 .109 
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. TABLE 4.3(b) 

" B2 MONTE CARLO RESULTS FOR A : SAMPLE SIZE • 50 

,.. ,.. 
A!!J. Ap 

No. of stândâra standanl 
Samp1e K A Mean Error Mean Error 

15 1 .9 .842 .215 .679 .120 
15 1 .8 .713 .083 .629 .050 
15 1 .7 .707 .100 .627 .065 
15 1 .6 .632 .131 .557 .068 
15 1 ., .519 .154 .520 .089 

15 2 .9 .925 .125 .824 .059 
15 2 .8 .828 .070 .773 .056 
15 2 .7 .692 .077 .665 .063 
15 2 .6 .,76 .088 .,71 .068 
15 2 .5 .502 .063 .513 .055 

15 3 .9 .911 .041 .887 .049 
:1.5 3 .8 .798 .063 .184 .058 
15 3 .7 .687 .080 .68) .074 
15 3 .6 .596 .079 .584 .069 
15 3 .5 .491 .075 .497 .066 

15 4 .9 .875 .035 .872 .034 
15 4 .8 .810 .048 .803 .051 
15 4 .7 .699 .067 .695 .069 
15 4 .6 .636 .073 .632 .074 
15 4 .5 .,01 .051 .504 .050 

15 5 .9 .887 .048 .885 .048 
15 5 .8 .809 .049 .807 .045 
15 5 .7 .711 .065 .708 .062 
15 5 .6 .,95 .083 .592 .079 
15 5 ., .461 .074 .461 .075 
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TABLE 4.4 

20 MONTE CARLO SAMPLES FROM DISTRIBUTION B2 

(a) denotes the results tram the initial estimates. 
(b) denotes the resul ts tram vaxying only '@cÇ~ 
(c) denotes the results trom var.ying all 3 initial estimates. 

,.. ,.. 
" ,fnvn U2 W2n X2 Sample n 90 K A 90 K A n cel1s 

l(a) 50 0 2 .9 17.17 3.146 .9246 1.1067 .0579 .3300 22 10 
(b) .16 3.146 .9246 1.0865 .0574 .3063 26.8 10 
(c) 16 2.9 .92 1.0864 .0495 .2459 20 10 

2(a) 50 0 2 .8 178.4 2.650 .2432 .5835 .0105 .0141 2.4 10 
(b) 179 2.650 .2432 .5818 .0104 .0125 2.4 10 
(c) 179 2.8 .24 .5677 .0097 .0120 2.0 10 

3(a) 50 0 2 .7 1.44 2.471 .7657 1.2061 .0678 .2039 4.4 10 
(b) 350 2.471 .7657 .8029 .0250 .0368 5.6 10 
(c) 349 2.5 .77 .7797 .0250 .0313 7.2 10 

4(a) 50 0 2 .6 0.237 1.553 .6966 1.0916 .0423 .0591 6.0 10 
(b) 8 1.553 .6966 1.0382 .0341 .0343 6.8 10 
(c) 8 1.8 .69 .9591 .0327 .0327 5.6 10 

5 (a) 50 0 2 .5 173.61 1.484 .48 .7454 .0212 .0351 4.0 10 
(b) 175 1.484 .48 .7446 .0212 .0328 3.2 10 
(c) 174 1.4 .49 .7548 .0205 .0323 3.2 10 

6(a) 50 0 3 .9 2.039 2.904 .9158 1.2746 .1061 .1061 9.6 10 
(b) 4 2.904 .9158 1.2453 .1043 .1075 14.0 10 
(c) 2 2.6 .89 1.1631 .095S .0955 14.4 10 

-
7(a) 50 0 3 .8 S.OSS 3.S072 .8072 1.1019 .0457 .0482 6.4 10 

(b) 2 3.S072 .8072 1.0750 .0428 .0624 10.0 10 
(c) 2 2.9 .83 .9252 .0339 ,0590 Il.6 10 
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TABLE 4.4 (continued) 
;-. '" '" u2 w2n X2 Sample n eo K A eg K A .In Vn cel1s 

l'J 

8(a) 50 0 3 .7 2.92 3.0814 .7807 .6634 .0124 .0127 2.4 10 
(b) 4 3.0814 .7807 .6293 .0123 .0128 2.4 10 
(c) 4 2.9 .78 .6736 .0121 .0123 2.4 10 

9(a) 50 0 3 .6 2.23 3.629 .5567 1.2340 .0798 .2177 5.6 10 
(b) 354 3.629 .5567 1.2530 .0732 .1202 10.4 10 
(c) 352 2.9 .6 1.3187 .0637 .0926 8.4 10 

10(a) 50 0 3 .5 176.70 3.64 .5479 .9405 .0353 .0776 6.4 ID 
(b) 178 3.64 .5479 .9541 .0350 .0821 4.0 10 
(c) 178 3.8 .54 .9157 .0345 .0790 5.2 10 

11(a) 50 0 4 .9 177.11 3.024 .1071 .9998 .0480 .0661 5.6 10 
(b) 175 3.024 .1071 1.0123 .0459 .0522 6.4 10 
(c) 175 3.7 .13 .8646 .0366 .0386 10.0 10 

12(a) 50 0 4 .8 170.28 4.139 .2378 1.2331 .0565 .0680 4.4 10 
(b) 164 4.139 .2378 .9486 .0304 .0319 3.6 10 
(c) 164 4.3 .24 .9305 .0299 •. 0328 4.4 10 

13(a) 50 0 4 .7 171.48 2.887 .2905 1.2081 .0591 .1296 5.6 10 
(b) 181 2.887 .2905 1.0846 .0408 .0420 4.4 10 
(c) 181 2.7 .3 .9816 .0376 .0390 2.8 10 

14(a) 50 0 4 .6 2.425 3.905 .498 .7604 .0175 .0353 .8 10 
(b) 4 3.905 .498 .7192 .0173 .0298 .4 10 
(c) 4 4.0 .51 .7278 .0170 .0277 .8 10 

15(a) 50 0 4 .5 .989 3.567 .5391 1.0864 .0515 .0530 6.4 10 
Cb) 1 3.567 .5391 1.0864 .0515 .0530 6.4 10 
(c) 3 3.7 .52 1.0812 .0505 .0561. 6.4 10 
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TABLE 4.4 (continued) 

'" A '" U2n w2n X2 Sample n 90 K A 90 K A rn Vn ce11s 

16(a) 50. 0 5 .9 178.61 5.761 .1452 1.2397 .0678 .3165 11.6 10 
(b) 173 5.761 .1452 1.0097 .0400 .1233 9.2 10 
(c) 173 5.4 .15 1.0364 .0387 .1361 7.6 10 

17(a) 50 0 5 .8 173.15 6.958 .1483 1.0150 .0426 .0742 8.0 10 
(b) 176 6.958 .1483 .• 8790 .0311 .0362 6.4 10 
(c) 176 7 .13 .82 .0301 .0361 9.2 10 

18(a) 50 0 5 .7 1.213 3.588 .6905 ,8773 .0290 .0355 7.2 10 
(b) 5 3.588 .6905 .7872 .0255 .0582 5.2 10 
(c) 5 3.3 .69 .76 .0235 .0520 4.4 10 

19(a) 50 0 5 .6 4.43 5.942 .4608 1.0263 .0479 .1093 1.6 10 
(b) 3 5.942 .4608 .9934 .0473 .1173 2.4 10 
(c) 3 5.7 .47 1.0122 .0466 .1155 2.0 10 

20(a) 50 0 5 .5 1.878 5.3254 .4536 .• 7792 .0209 .0310 4.4 10 
(b) 359 5.3254 .4536 .7345 .0189 .0359 4.0 10 
(c) 359 5.6 .44 .6997 .0175 .0347 4.0 10 



TABLE 4.5 

. .Bl SAMPLES 1 and 2 TREATED WITH B2 TECHNIQUES 

Bl 
Sampls n Plot 0 ~ '" 9-0 

l(a) 50 34 0 1 7.633 
(b) 5 
(c) 6 

2.(a) 50 35 0 2 177.22 
(b) - 180 
(c) 180 

1\ 
K 

2.7094 
2.7094 
2.8 

6.6174 
6.6174 
6.0 

" A 

.5249 

.5249 

.51 

.5392 

.5392 

.53 

.7157 

.7437 

.6735 

1.0678 .. 
1.0636 
1.0079 

u2 
n 

.0202 

.0196 

.0183 

.0442 

.0426 

.0401 
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w2 
n 

.0502 

.0200 

.0192 

.0490 

.2667 

.2612 
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CHAPTER V 

CONCLUSIONS 

2.1 Recommended Technique for Fitting Data to Distribution B2 

Given~, ••• , Sn, suspected to have unequally or equa11yweighted 

modes 1800 apart, the procedure of describing the data b.1 distribution 

B2 and for improving the fit is as fo11<7Ns: 

(a) 

Cb) 

~ ~ ~ . 
Obtain SoD' ~, and Am as in section 3.3 

Calculate U2n and compare these values with lower tail 

significance points at the appropriate level for the given 

sample size. Sma11 values of U2n mean a good fit. 

(c) Plot Fo(x) and Fn(x) 

(d) Improve the fit b.r observing the plots in (c) and var,ying 

~oD according to section 2.4 to ïind minimum U2n. 

(~) Plot the results obtained fram (d) ta sec if another sh1ït of 

location is required, as in B2 Sample 3.5 (compare plots 24 and 

26). 

5.2 Recommended ItQuick lt Technique for Fitting Data to Distribution B2 

Given ~, ···,en as above a quick procedure for obtaining initial 

. estimatcs of A, K, and 90 is: 

(a) 

(b) 

Obtain ~oD as in section 3.3 
" 

1\ ,.. KD " Obtain K either from (1) K = where KD is defined in 
.3430 

section 4.3 or from (2) Figure 4.1. 



(c) " Ob tain Ap from section 3.9. 

5.3 Best Qoodness of Fit Statistic 

Small values of U2
n produced a much tighter fit than did the 

corresponding small values of [nVn• The Method of Minimum U2
n 

was therefore preferred to the Method of Minimum .rn Vn- Low values 

61 

of U2
n almost always mean a good fit but the sample distribution 

Fnex) fUnction and the estimated theoretical cumulative distribution 

Fnex) should be plotted as a confinnation. For example the U2
n value 

of plot 24 is less than that of plot 26 yet plot 26 appears to produce 

the better fit. 

5.4 Suggestions for FurtherWork 

(a) For distribution B2 -- to develop better estima tors or to 

improve those suggested. 

(b) For distribution B2 -- to derive statistical tests concerning 

the parameters A, K, and 90 • 

(c) To develop a technique of analysing unequally weighted 

bimodal data with modes ~ :F1800 apart. 

(d) To develop a technique of treating data wi th more than two 

modes. 
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Page A-1 

DATA FROM RESEABCH PAPERS 

Samp1e 2.1 Page 16 161 127 165 180 
Table 2~1 151 137 90 124 

135 144 145 

Samp1e 2.2 Page 16 -5 25 16 -11 
Table 2.1 -30 64 :32 -33 

14 38 49 

Samp1e 2.3 Page 17 0 100 140 180 189 225 255 270 
Table 2.1 0 110 155 180 206 226 255 270 

0 113 165 180 209 230 260 
15 135 165 180 210 235 260 
45 135 169 180 214 245 260 
68 140 180 180 215 250 260 

Samp1e 2.4 Page 17 90 180 250 280 
Table 2.1 100 190 250 290 

115 190 253 290 
115 196 254 305 
130 200 254 
-135 205 255 
145 210 256 
160 225 261 
165 230 270 
170 245 27; 

Samp1e 2.5 Pa.ge 18 0 75 103 135 165 320 
Table 2.1 10 80 110 140 175 340 

10 90 110 140 180 
30 90 115 140 180 
65 92 120 143 195 
65 95 125 160 195 
65 "100 125 1&J 315 



Page A-2 

BI MONTE CARLO SAMPLFS . 

BI Sample 3.1 Page 30 3.7182 56.9236 167.6164 197.1887 319.9494 
Table 3.2 5.4026. 62.4757 168.2302 203.5842 320.6022 

5.7003 66.9130 172.5338 212.1515 326.5602 
9.6334 71.0545 173.1626 213.3146 338.0818 

14.3539 71.5664 184.2424 222.4545 338.8897 
16.0266 105.8336 185.3733 223.2531 340.0581 
23.4053 111.2761 185.4736 224.3081 342.3268 
3~.4892 130.2958 185.6501 248.5739 353.1798 
39.6699 155.5369 194.5911 281.8282 354.4481 
46.7687 167.3148 196.4118 309.1716 356.9899 

BI Sample 3.2 Page 30 1.1258 24.7522 155.6367 184.3212 223.7235 
Table 3.2 1.8580 27.4391 157.3156 184.88 316.4911 

4.1698 29.5057 163.8848 187.6001 319.3234 
ü.7939 34-.9770 163.9545 188.6241 322.2319 
6.6450 139.2687 1$.0068 1 S'O. 2954 328.2415 
6,8921 142.5484 171.2823 191.9801 340.5395 
8.3ù40 143.3416 172.2442 198.0043 340.6692 
9.1477 143.5618 177.0821 199.5030 345.4194 

12.6692 148.7608 183.5740 202.0601 350.sS'06 
21.1884 150.0679 183.6519 218.6103 359.8215 

B1 Sample 3.3 Page 30 .7572 24.2832 169.6922 184.2339 328.6209 
Table 3.2 1.5733 25.5807 171.4582 185.8403 338.4501 

2.3712 28.5941 173.3347 188.0936 344.9509 
3.3255 28.8413 177.8303 191.3320 345.7968 
5.9681 47.0242 177.8832 ·193.3874 346.0253 
7.6849 100.7673 178.3473 197.0109 354.8917 

10.3887 162.0068 181.!ià34 199.9409 355.3690 
13.0399 164.8599 181.4691 202.7441 356.5232 
14.0063 168.5845 182.9752 321.3066 359.0003 
18.9332 169.3744 184.1224 325.3334 359.2711 



Page A-3 

DATA FROM RESEARCH PAPERS 

B2 Samp1e 3.1 Page 32 2 27 52 224 357 
Table 3.3 2 29 56 227 

12 32 60 246 
12 34 77 295 
12 42 131 312 
20 42 165 344 
22 43 182 347 
26 45 193 350 
26 46 206 352 
26 50 213 355 

B2 Samp1e 3.2 Page 32,33 -156 8 48 65 95 
Table 3.3 -145 9 48 68 96 

-137 13 48 '10 98' 
-134 13 48 73 100 
-123 14 50 78 103 
-122 18 53 78 106 
-117 22 56 78 113 
-116 27 57 83 il8 " 
-110 30 58 83 138 
-109 34 58 88 148 
-103 38 61 88 153 
- 92 38 63 88 155 
- 75 40 64 90 
- 41 44 64 92 

-- 17 45 64 92 
- 10 47 65 93 



Page A-4 

DATA FROM RESEARCH PAPERS 

B2 Sample 3.3 Page 33 8 134 158 242 309 351 
Table 3.3 36 135 159 2 ..... / -313 ",0 

77 136 160 259 314 
82 136 164 261 314 
84 136 113 262 314 
92 131 175 271 314 

104 138 176 272 -317 
108 138 179 275 317 
110 138 182 286 319 
110 139 1"86 288 322 
113 III 189 294 328 
115 143 198 297 332 
116 143 199 300 332 
117 144 203 302 339 
120 145 203 302 340 
121 152 205 303 3liL 
124 154 209 305 342 
127 155 21t 306 343 
127 156 228 307 343 
128 156 229 308 356 

B2 Sample 3.4 Page 34 0 104 205 255 286 
Table 3.3 4 109 207 257 292 

4 109 214 257 297 
5 113 215 258 298 

14 115 218 259 299 
20 118 229 260 299 
24 120 229 261 304 
26 121 234 264 305 
Ll 127 234 264 308 
47 131 236 267 311 
55 138 237 268 312 
61 145 239 269 314 
63 149 242 271 315 
66 169. 242 272 316 
67 189 245 272 317 
71 193 246 274 320 
77 194 247 277 321 
92 198 248 278 322 
94 201 251 281 353 

100 201 254 285 358 



e, 

Page A-5 

DATA FROM RESEARCH PAPERS 

B2 Samp1e 3.5 Page 34,35 l3 76 192 236 277 
Table 3.3 15 79 194 237 278 

16 87 199 241 28'4 
17 88 203 244 286 
22 100 203 244 289 
25 109 208 245 291 
27 123 211 245 292 
31 128 212 246 297: 
33 143 216 247 301 
34 149 218 249 307 
43' -157 219 257 308 
44 162 221 261 310 
52 166 222 261 313 
53 167 222 262 314 
56 168 225. 264 315 
58 172 226 269 318 
62 180 227 269 320 
63 188 234 273 320 
74 189 234 275 333: 
74 192 236 276 355 

B2 Samp1e 3.6 . Page 35,36 9 176 271 329 
Table 3.3 13 184 273 332 

CN Sample 2.6 Page 18 25 196 278 334 
Table 2.1 30 201 280 340 

31 205 284 342 
39 206 285 344 
44 206 294 345 
59 213 300 346 
15 230 302 352 
86 230 315 356 
88 236 317 

uo 240 323 
116 260 324 
136 263 324 
146 265 325 
159 268 328 

-



Page A-6 

DATA FROM RESEARCH PAPERS 

B2 Sample 3.7 Page 36,37 0 43 252 317 
Table 3.3 4 46 284 325 

eN Sample 2.7 Page 18,19 6 90 288 336 
Table 2.1 7 105 290 353 

26 118 292 
27 123 295 
33 237 300 
34 251 308 
35 251 310 



Page A-7 

TABLE A-l (see page 38) 

K V K V K V 

.1 5.9940 3.8 .3125 -7.5 .1436 
.2 4.6151 3.9 .3027 7.6 .1415 
.3 3.8165 4.0 .2935 7.7 .1396 
.4 3.2582 4.1 .2848 1.8 .1316 
.5 2.8335 4.2 .2767 7.9 .1357 
.6 2.4947 4.3 .2690 8.0 .1339 
.1 2.2163 4.4 .2618 8.1 .1321 
.8 1.9827 4.5 .2549 8.2 .1304 
.9 1.1840 4.6 .2484 8.3 .1287 

1.0 1.6131 4.'{ .2422 8.4 .1271 
1.1 1.4650 4.8 .2364 8.5 .1255 
1.2 1.3358 4.9 .2308 8.6 .1~)9 
1.) 1.2225 5.0 .2255 8-.1 .1224 
1.4 1.1228 5.1 .2204 8.8 .1209 
1.5 1.0346 5.2 .2156 8.9 .1195 
1.6 .9564 5.3 .2109 9.0 .1180 
1.7 .8869 5.4 .2065 9.1 .1161' 
1.8 .8249 5.5 .2023 9.2 .1153 
1.9 .7694 5.6 .1982 9.3 .1140 
2.0 .7197 5.7 .1943 9.4 .1127 
2.1 .6751 5.8 .1905 9.5 .1114 
2.2 .6348 5.9 .1869 9.6 .1102 
2.3 .5985 6.0 .1834 9.7 .1090 
2.4 ' .5656 6.1 .1801 9.8 .1078 
2.5 .5358 6.2 .1769 9.9 .1067 
2.6 .5086 6.3 .1738 10.0 .1055 
2.7 .4839 6.4 .1708 1l.0 .0954 
2.8 .461.2 6.5 .1679 12.0 .08n 
2.9 .4405 6.6 .1651 13.0 .0801 
3.0 .4215 6.7 .1624 14.0 .0742 
3.1 .4040 6.8 .1598 15.0 .0690 
3.2 .3878 6.9 .1572 16.0 .0646 
3.3 .3728 1.0 .1548 17.0 .0606 
3.4 .3590 7.1 .1524 18.0 .0572 
3.5 .3461 7.2 .1501 19.0 .05lU 
3.6 .3341 7.3 .1479 20.0 .0513 
3.1 .3229 7.4 .1457 



Page A-8 

TABLE A-2 

U2
n Lower Tail Significance Points 

Significance levels expresseaas percentages 
N 15 10 -2... ..b2.... 1 ~ - -
7 .0395 .0348 .0295 .0257 .0220 .0200 
8 .0392 .• 0344 ._0291 .0254 .0218 .0198 
9 .0389 .0341 .0288 .0252 .0216 .0196 

10 .0387 .0339 .0286 .0250 .0215 .0195 
15 .03814, .0336 .0282 .0245 .0209 .0189 
20 .0382 .0335 .0280 .0242 .0206 .0185 
25 .0382 .0334 .0279 .0240 . .0204 .0184 
30 .0381 .• 0334 .0278 .0239 .0203 .0182 
35 .0381 .D333 .0277 .0239 .0202 .0181 
40 .0380 .0333 .0277 .0238 .0201 .0181 
60 .0379 .0332 .0276 .0237 .0200 .0179 
80 .0379 .0332 .0275 .0236 ' .0199 .0178 

100 .0379 .0332 .0275 .0236 .0199 .0178 



e· 
Page A-9 

TABLE A-3 

/fi. Vn Lower Tail Significance Points 

Significance levels expressed as percentages 
..1L 15 .10 ...L- &.L 1 ~ 

15 .905 .857 .791 .742 .691 .658 
.20 .913 .864 .798 .749 .696 .662 
25 .917 .870 .802 .754 .702 .665 
30 .923 .874 .807 .757 .703 .669 
35 .926. .877 .810 .760 .706 .672 
40 .929 .830 .813 .763 .709 .675 
45 .932 .883 .815 .765 .712 .678 
50 .934 .885 .817 .766 .714 .681 
55 .936 .887 .819 .768 .716 .683 
60 .937 .889 .821 .769 .717 .• 684 
65 .939 .890 .822 .771 .719 .686 
70 .940 .891 .823 .772 .720 .687 
75 .941 .892 .824 .773 0 .721 .688 
80 .942 0894 .826 .773 .722 .689 
85 .943 .895 .827 .774 .723 .690 
90 .9h4 .896 .828 .775 .724 .691 
95 .944 .896 .828 .776 .724 .691 

100 .945 .897 .829 .777 .725 .692 

00 .973 .9275 .8613 .8095 .7550 .7212 
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TABLE A-4 

[nVn Upper Tail Significance Points 

Significance ~evels expressed as percentages 
N .l:L 10 --L ~ 1 .:L-

15 1.448 1.532 1.650 1.700 1.887 1.978 
20 1.460 1.546 1.665 1.776 1.908 .1.998 
25 1.469 1.556 1.673 1.789 1.922 2.010 
30 1.476 1.562 1.684 1.797 1.930 -2.022 
35 1.481 1.567 1.690 1.803 1.936 2.029 
40 1.484 1.571 1.695 1.808 1.941- 2.034 
45 1.487 1.574 1.698 1.812 1.945 2.038 
50 1.490 1.576 1.701 1.815 1.949 2.042 
55 1.492 1.579 1.703 1.818 1.9152 2.045 
60 1.494 1.582 1.705 1.820 1.955 2.047 
65 1.496 1.584 1.706 1.822 1.957 2.049 
70 1.497 1.585 1. 707 1.824 1.959 2.051 
75 1.499 1.587 1.709 1.825 1.961 2.053 
80 1.5po 1.588 1.711 1.826 1.962 2.055 
85 1.501 1.589 1.712 1.827 1.963 2.056 
90 1.503 _1.589 1.714 1.829 1.965 2.058 
95 1.504 1.590 1.715 1.830 1.966 2.059 

100 1.505 1.590 1.716 1.831 1.967 2.060 
... ~ 

00 1.537 1.620 1.747 1.862 2.001 2.098 


