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In this thesis some recent methods of analysis of circular data are
applied to some illustrations from published papers: also, some new
methods of estimating parameters of circular data Aare examined and their
efficiency is verified by Monte Carlo techniques. These latter methods,
also, are illustrated by examples from research papers. The three
distributions used to describe circular data are:

(1) The Circular Normal Distribution (Unimodal)

£ (8; K, 8g) = exp(K cos(6 - 6,)) 0$0<2TT

3
2TTIo (K)

(2) Distribution Bl (Bimodal with equally weighted modes 180° apart)

-1
£(Ys A, Ll)o) = TRTLONT exp()\.cos 2(Y - \Yo) osyeom
(3) Distribution B2 (Bimodal with unequally weighted modes 180° apart)

L -4)

m exp(K cos(® = 8o +TT))

exp(K cos(6 - 85))+

A
£(034,K,0,) = T
<0

0406<2TT,

An appendix also contains plots, lists of most data analysed, and

tables of significance points,
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CHAPTER I

INTRODUCTION

l.l Summary

In this thesis some recent methods of analysis of circular data
are applied to some illustrations from published papers: also, certain
new methods of estimating parameters of circular data are examined
and their efficiency is verified by Monte Carlo techniques., These
latter methods, also, are illustrated by examples from research papers.

Circular Data is the term used to describe observations which are

recorded by an angle and by a distance from a certain point or origin.
Circular data arise frequently in the biological and earth sciences
where the observations are represented as points on the circumference
of a unit circle, as points on a polar diagram, or as unit vectors
emanating from the origin. In the past, clustered observations on

the unit circle have often been analysed as though they were a sample
from the normal distribution. The problem of using the linear normal
distribution and other linear distributions such as the wrapped noxmal
distribution (see Batschelet (1965), Stephens (1963a)) to describe
circular data is that their analysis is difficult. The statistics used
in their analysis, chiefly the mean and variance, are not invariant of
the origin, that is, the computed values of these above statistics

depend upon the point designated as the origin.



The object of statistical analysis is to describe the data, to
estimate parameters, and totest hypotheses concerning the parameters.
The three distributions used to describe circular data in this thesis
are now summarised:

(a) The Circular Normal (CN) Distribution is a unimodal distri-

bution introduced by Gumbel, Greemwood, and Durand (1953).
The CN density function with mode at 6y and antimode at

0o + TT is

£(85 K, )= ZTTli = exp(K cos (6 - 80)) 06 <2

where 6 is the polar coordinate of a typical observation on the
circumference of the unit circle and K>0 is a measure of
dispersion. Io(K) is the imaginary Bessel function of order
zero and is tabulated for different values of K, see for
example Jahnke and Emde (1945).

(b) Distribution Bl is an equally weighted bimodal distribution

originating from Breitenberger (1963) and analysed by Stephens

(1966). Its density function is

EWsAs¥o) =ﬁ—1%177 exp( hcos 2( W ~ '\Vo)) 0 ¢ Y < 2T,

where the modes occur at Y =@, and Y =y, + TT and the
antimodes at Y =, #T1/2. If A=K, 2y = 6, and 2y, = 6
then distribution BL reduces to CN(K, 6,)+ BEstimators of N\
and Y o, their properties, and a complete discussion of distri-

bution Bl are found in Stephens (1966).
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(c) Distribution B2 is a bimodal distribution composed of two weighted

CN distributions with modes at 6o and 6, =TT respectively.

Its density function is

£(634,B,K,80) = A . exp(K cos(8-0 B K cos(0-00+TT
P Lo g O) m p( ( O))+mexp( ( (o] ))

08 <21 .,

B2 is a modification of a distribution proposedby Gumbel (195L).
A2Q and B > 0 are the weights; A+B = 1, in order for B2 to
integrate up to one. Note that K, the measure of dispersion,

is assumed to be the same for the two weighted CN distributions.

A summary of the chapters is now given:
Chapter I indicates some areas where circular data arise and also
reviews techniques that have already been applied to such data.
Some basic estimation procedures and some goodness of fit statistics
are also discussed,
Chapter II Some basic properties of the CN distribution are reviewed
and five sets of unimodal data drawn from published papers are analysed.
Chapter TIT Distributions Bl and B2 are discussed in greater detail
accompanied by the analysis of a mumber of sets of both artificial and
real data. |
Chagter IV is devoted to Monte Carlo checks on estimation techniques.
Chapter V reviews conclusions and presents some suggestions for further

worke
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Appendix contains the plots of data analysed, tables of significance

points for U2n and fn Vn, an extension of atable from Stephens (1963a),

and lists of most data analysed.

The CN and Bl distribution have analogues on the unit sphere

(see e.g. Fisher (1953), Stephens (1967)) but these are not discussed

in this thesise.

l.2 Areas in which Circular Data arise.

(a) Pebble Orientation and Cross Bedding Studies. Elongated rock

(b)

fragments and grains tend to align themselves parallel to the
direction of river or ocean currents and therefore give an indication
of the direction of flow and of a possible scurce area of the
sediment transported. For a further discussion see Curray (1956),
Krumbein (1939), Dapples and Rominger (1945), Kauranne (1960),
Wadell (1936), West and Donner (1956). Inclined bedding planes
also yield angular obsérvations which are useful in determining

the direction of transport. 'Ripple marks, oriented plant fragments,
and elongated shells also provide information that is useful in
making poleogeographic reconstructions -~ see Tanner (1955),

Crowell (1958), Chenoweth (1952), Land (196L4), Looff and Hubert
(196L), McKee (1940), Opdyke and Runcorn (1960).

Direction 6f Movement of Animals. Studies of the directions taken

by birds, frogs, fish etc. are important in determining the
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animals! orientation mechanism - see Bellrose (1958), Eaton (193L),
Griffin and Goldsmith (1953), Pratt and Thouless (1955), Schmidt-k
Koenig (1963). One experiment consists of releasing animals singly
on both sunny and cloudy days and then determining from their recorded
directions whether they use the sun as a means of orientation. The
directions (often bimodal) taken by turtles after being displaced
inland are also useful in obtaining information on their homing
mechanism, that is, to see if they do know the direction back to
the sea -- see Gould (1957), Cutchis (1965). The orientation of
the swimming directions of cértain marine animals to pdlarized light
has also been investigated -~ see Bainbridge and Watermman (1957,
1958), Daumer, Jander, and Waterman (1963), Kalmus (1959).

(c) Other Areas. Mecasurements of the pleural angles of fossils give
an indication of the size of the animal -- see Chronic (1952).
Observations taken overtime such as the time(s) of peak activity
of a marine organism during a twenty-four hour period or the
monthly number of auto accidents in Canada observed over one year
can be treated as circular variables -- see Gumbel (1954),

Batschelet (1965).

1.3 Review of Past Techniques applied to Circular Data

Reiche (1938) analysed the variability of n angles ©3, °**, 8, by
calculating the magnitude R of their resultant and forming the
"consistency ratiot R/n which he said was inversely proportional to the

standard error. Reiche (1938) also determines éo (estimator of 6y) and




6
the number of observations required for the analysis by graphically
computing the ®flatness point" -- the point at which the cumilative
curve of the resultant vector fluctuates less than 5°, Krumbein
(1939) computes 30 from the resultant but still applies the test
statistics of linear nommal theory. Chayes (1949) and Bainbridge
and Waterman (1957) apply Pearson's X2 test for unifomity -~ often
called randomness. Tukey (195L4) uses a similar test anddlso determines
éo from the resultant but gives no measure of‘variability. Chayes
(195L) detemmines a minimum variance origin for the data. Greerwood
and Durand (1955) introduce the Rayleigh test for randomness and
Curray (1956) and Schmidt-Koenig (1963) use this test. Durand and
Greenwood (1958) modified the Rayleigh test when €, was known and
produced a more powerful V-test. Gumbel, Greemwood, and Durand (1953)
apply maximum likelihood techniques to the Von Mises (CN) distribution.
A list of references and a summary of these and othertechniques can be

found in Steirmetz (1962) and Pincus (1953, 1956).

1.4 Estimation

Point estimation is a method of obtaining a scalar quantity as an

estimate of a parameter. Let f(x;p) represent a density function where

B is assumed to be a vector of unknown parameters and x is a random

variable. X3, °**,.Xn is a random sample of size n from f(x;B) if
X715 °**, Xpn are independently and indentically distributed random

variables with density f(x;B). The mathematical problem of estimation
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is to estimate the theoretical distribution based on a random sample
from that distribution. A statistic is defined to be any function of
the randem sample and any statistic used to estimate a parameter is
called an estimator. An observed value of an estimator is called an
estimate., Since any statistic can be considered to be.an estimator
of B, some desirable properties of estimators must be determined.

(a) Unbiasedness. If T is an estimator of a parameter B and if
E (T) = P then T is called an unbiased estimator of B, and
an observed value of T based on a fixed sample size is called
an unbiased estimate of B .

(b) Consistency. Let Ty be an estimator of f based on a sample
of size n. If forany € » o limP [1T, =pI>€ =0 then
Tj, is called a consistent estimator of B, and an observed
value of Tp is called a consistent estimate of B o

(c) Efficiency. Let Ty and T be two estimators of a parameter
p based on a random sample of size n, then the relative efficiency
of T, with respect to Tp is e = “%g%))_ « If n=»oo then e
is a measure of the asymptotic efficiency of Tp with respect
to Ty &

(d) Minimum Variance. For any unbiased estimator of the parameter

B there exists a minimum variance bound given by

oz 1

-n E[XAPEZ log f(x-'*PSJ ) IT[E_-[%;l:cl)."g‘f(x; 2 ))2_‘, .




Three methods of estimation are now outlined:

(1) The Method of Maximum Likelihood (MML). If x5, °**, Xp is an

observed random sample then the likelihood function is defined

as LEf(x), "y xp5 )= ﬁl; f( x55 B), the joind
probability function of the random sample. The x; , 1 =1,'**, n
are fixed, ﬁ is now regarded as the random variable and the

ML involves maximizing L with respect to B . It is often
convenient to maximize log I and the value of ﬂ that maximizes
L (or log L) is called the MI, estimate of B e Note that it is
the value of B which maximizes L that is required and not the
maximum value of L.

The MML does not always give unbiased estimators., Sometimes,
however, upon examination of the estimators they can be made
unbiased. ML estimators are consistent which implies that any
bias is gradually removed as n increases, and they are
asymptotically nommally distributed with the theoretical minimum
variance,

(2) The Method of Moments. Given x3, ***, Xp, let the r th sample

moment about the origin be mp = :Z' Xi/n. B is then estimated by
equating as many of the sample moments as is necessary to the
corresponding population momentse

(3) The Method of Minimizing a Goodness of Fit Statistic. A good

exanmple of this method is the classical Method of Minimum X2;

however, the technique applies to any goodness of fit statistic
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whose distribution is independent of the distribution being
tested. The procedure involved in (3) is to first obtain the
initial point estimates of the unknown parameters from the
given data; secondly, to calculate the goodness of fit
statistic; and thirdly, to vary these initial estimates in
such a®my that the calculated value of the statistic reaches
a minimum. Inthe case of circular data an additional
requirement is that the calculated value of the goodness

of fit statistic in question be independent of the origin.

1.5 Some Goodness of Fit Statistics

Let x35 "*®,Xn, be a random sample drawn from the distribution F(x).
Assume F,(x) is any fixed distribution function, then the problem of

testing the hypothesis Hy: F(Xx) = Fo(x) is known as a one sample good-

ness of fit problem, Tests of fit are based on the sample distribution

function 0 X < X(1)
Fp(x) =4 r/n X(r)€ ¥ < X(r41)
1 X(n)¢X

where X(1) € X(2) § °*° € x(n) are the ordered observations.

Let y5 = x(4) i=1, ***, n. Four goodness of fit statistics are

now presented.




(a)

(b)

10

Cramer, von Mises, Smirnov'W%a. Smirnov (1936) proposed the

statistic 251 1

400 5 n 2
W = I[Fn(x) - F(x)|? aF(x) =Zl Fnbi)-55) + 135

Anderson and Darling (1952) tabulated the asymptotic distribution
derived by Smirnov, and Marshall (1958) found the exact
distribution of W, n=l, 2, 3. It is important to stress

the fact that Wl doc;s not depend on Fy(x) but, on the circle,
does depend upon the point at which one begins cunulating, that
is, it is not independent of the origin of the poiar coordinates,
The Method of Minimum'wzn can not be used, therefore, since the
choice of origin is arbitrary for circular data.

Unless otherwise stated all values of W3, recorded in this
thesis are based on the origin as the point determined by go.
Pearson's X2  Pearson (1900) irntroduced the well known G
statistic K 2
X2 = Z (Oi ~ e3)” where K is the mmber of

i=l €1
groups or classes into which the data is divided, Oi is the
observed number of observations in the ith class, and e; is
the expected number of obgervations in the ith class (this is
determined by the particular distribution considered). Under
the null hypothesis that the observations come from a particular
distribution Fy(x), that is, H,: F(x) = Fo(x), X2 has a chi-
squared distribution with K-r-l degrees of freedom, written

Xz"*rxzk—r-l where r is the rmumber of parameters that have
. R :
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to be estimated. Two restrictions placed on this statistic ares
(1) K must be greater than or equal to S.
(2) A1l the e;j,.1-= 1, **", K must be greater than or equal to 5.
The procedure of applying the classical X2 goodness of fit test |
to determine whether a given set of data follows a particular
distribution or not is outlined below.

(1) Calculate X°
(ii) Wwith the appropriate degrees of freedom v look in

2 with "X%, . (8ee for example

’Xz tables to compare X
Pearson and Hartley (1966))., If X2 is too large,
reject Hy at the required significance level.
Note that the calculated value of x? depends upon the position
of the group boundaries.

(c) Kuiper's V,. Kuiper (1960) proposed the statistic

Vy=swp [Fa(®) - F(x)] -inf [F@) - Fx]

-oo § XE O

- i (i-1)
= max |n = F(yy)| + max |F(yi) - 5 where y; = X(1)
ogLsn oftsn

and showed that the distribution of V, under Hy: F(x)=F,(x) was
independent of F(x), and that the calculated value of V, was
independent of the origin if the observations were points on a
circle. Stephens (1965) gives the exact distribution of V, and
provides tables of significance points for both the lower and
upper tails. These tables are extended in the appendix for
selected values of n up to 100.

(d) Watson's Uzn . Watson (1961, 1962) proposed the statistic
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=]
V]
]

o([Fate) - 2 - [ T - 200] )2 a0

n 24l 2 n F . 2
R N PR S

i=l
and found its asymptolic distribution. Stephens (1963, 196L)
gives tables of significance points for both the upper and
lower tails. The lower tail is extended in the appendix.
The distribution of U%l, like that of V,, is independent
of the distribution being tested (Fo(x)), and, for circular
data, the calculated value of U%m: again like that of V,, does

not depend on the choice of origin.

It is evident then that for circular data the Method of Minimum
Vy or U2n can be used as criteria of good estimation -~ see section
1.l (3)e It is also tobe noted that the minimum value Wen can take
is U2 , that is U%p = min Wn(x,) Where X, is the Morigin® on the

circle -- Watson (1961). .

v




CHAPTER II

THE CIRCULAR NORMAL DISTRIBUTION

2.1 Introduction .

Gunbel, Greemwood, and Durand (1953) introduced the CN distribution

£(03K,60) = exp(K cos(8-6,)) 040<2TT

—r
2TTIH(K)
This density function has a mode at 8y and an antimode at 6o+T1.9

is the polar coordinate of a typical observation on the circumference

of the unit circle and K»0 is a measure of dispersion. For large

K(K>5) the density is highly clustered about the mode and for small
K(K<1) the density becomes more nearly uniform. At K=0 £(8;K,8,)= -5}77- s
the uniform distribution. Io(K) is the imaginary Bessel function of

order zero. When K is very large 8 is approximately normally

1
distributed with mean zero and variance 1/K, written 8-+ N(O, E),

see Gumbel, Greemvood, and Durand (1953), Stephens (1962).

2.2 Estimation of Parameters

The techniques of analysis have been developed by Stephens
(1962, 1966) and Watson and Williams (1956) and are given below.
The details are not presented but are similar to those given in the
discussion of distribution B2, Chapter III.

n n
Given &y, ***, 0, let C= Z cos 65, S= Z sin 64
i=1 i=t
n ’ -
X = Z cos(83 = 8y). The resultant is denoted by R and has magnitude
i=l

R = Ic?-+ s?




1L
! (fb = & (1)

Io(K) n

The ML estimator of K, 6, known is

The ML estimator of K, ©, unknown is I (K) = R
Io(K) n (2)
. . ~ -1 S
The estimator of 6, is 8, = tan T (3)

The procedure for describing a set of circular data by the CN
distribution when 6, is unknown is outlined below,
Procedure (a) Given 6y, °***, 6, calculateC, S and hence obtain 80
from (3) above.
(b) Calculate R/n and detemine l'(\ from (2) -- tables
for obtaining ﬁ are provided in Gumbel, Greerwood

and Durand (1953), or Batschelet (1965).

2.3 Analysis of Data.

The above techniques are now illustrated by seven samples drawn
from published papers and the fits obtained are also illustrated by
plots in the appendix. Once ’éo and ?{ had been obtained by the procedure

set down in section 2.2 the fit was improved by using the KMethod of
Minimum U2n and following the procedure outlined below. The analysis
of distribution B2 in Chapter IIT was undertaken first and the
conclusions reached there by observing the various plots comparing
the lethod of Minimum U2n and the Method of Minimum mvn prompted

the use of the former here. The procedure used in improving the fit
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once the initial estimates of 65 and K had been obtained was:

(2) Bo was varied, K held fixed, to f£ind minimum UZ.

(b) K was varied, holding the 30 obtained from (a) fixed, to

£ind minimm U2 . "
60 was varied by single degrees and ﬁ by tenths about their respective
initial values.

A typical plot consists of:

(1) The sample distribution function or step function
Fp(x).

(2) The estimated theoretical cumulative distribution
function Fy(x).

(3) The estimated theoretical density function _:;Fo(x)

Note that for each plot the angles have been revolved by 60 so
that the resultant or estimated directional vector pointed North (8 = O){
The goodness of fit statistics [V, , U2n s and W2n were then calculated
and Pearson's classical X2 test was also applied to the revolved
angles, Table 2,1 at the end of this chapter lists the sample sizes,
the plot number, the number of cells of equal probability used for the
X2 test, and all the aforementioned values of statistics. Note that
only the initial fits produced by the ML estimates are plotted. The
techniques of improvement are illustrated by plots in the treatment

of distribution B2 in Chapter III.
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CN Sample 2.1 is from Griffin and Goldsmith (1955) and represents

the initial flight directions taken by birds. Previous amalysis
included estimating @, by the sample mean of the observations (142°),
Data on page A-1.
(a) Initial Estimates.go and K obtained as in section 2.2,
See table 2.1. Plot 1{

n

(b) Improvement. §_varied, X fixed, to find minimum U . Table 2.1.

o

(¢) Improvement. X varied, 60 obtained from (b) held fixed, to find
minimum Uzn. Table 2.1

Discussion. The initial estimates from (a) produce a low value of U2n

and from plot 1 it is seen that the fit is good. The estimates obtained

from (b) and (¢) do not lower the value of U2n appreciably.

CN Sample 2.2 is from Agterberg and Briggs (1963) and represents

paleocurrent directions. Previous analysis included linear normal
treatment (@o = 14,°). Data on page A-l.
(2) Initial Estimates. go and % obtained as in section 2.2 .
See table 2.1, Plot 2.
(b) Improvement. 60 varied, ﬁ fixed, to find minimum Uzn. See
table 2.1
(¢) Improvement. % varied, go obtained from (b) held fixed, to
find minimm U2,. Sce table 2.1.
Discussion. The estimates from (b) and (c) lower the initial value
of U2, obtained from (a). The change in value of U2, from (a) to

(b) was greater than its change from (b) to (c).
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CN Sample 2.3 is from Kiersch (1950) and cepresents directions of

sloping lamination surfaces.  Previous analysis followed the methods
of Reiche (1938), see section 1.3, and McKee (1940) who estimated 6o
by selecting at random a portion of the total number of observations
available. The direction recorded pictorially in figure 1 page 924
of Kiersch (1950) agress well with those recorded in table 2.1.
Data on page A-l.
(a) Initial Estimates. 8o and K obtained as in section 2.2. See
table 2.1, Plot 3.
(b) Improvement. O, varied, K fixed, to find minimum U2n. See
table 2.1
(¢) Improvement. X varied, go obtained from (b) held fixed, to
find minimum U2 . See table 2.1.
Discussion. The estimates of (b) and (¢) have no effect on the initial
value of U2n obtained from (a).

CN Sample 2.5y is from Kiersch (1950). See CN Sample 2,3 for

previous methods of analysise. The direction of about 2000 recorded
pictorially in figure 1 page 92l Kiersch (1950) is approximately 30°
away from the éo giving the best fit in table 2.1. Data on page A-l.
(a) Initial Estimates. 8, and X obtained as in section 2.2.
See table 2.1. Plot L
(b) Improvement. 60 varied, % fixed, to find minimum Uzn. See
table 2.1.
(c) Improvement. X varied, %o obtained from (b) held fixed, to

find minimum Uzn. See table 2.1.
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Discussion. Same as for CH Sample 2.2.

CN Sample 2.5. Source and methods of analysis as in CN Sample

2+3. The direction of about 1250 recorded pictorially in figure 1
page 924 Kiersch (1950) is approximately 10° away from the 60 giving
the best fit in table 2.1. Data on page A-l.
(a) Initial Estimates. 8 and % obtained as in section 2.2. See
tablé 2.1. Plot 5.
(b) Improvement. 8o varied, K fixed, to find minimm U2p. See
table 2.1 |
(¢) Improvement. I?varied, 50 obtained from (b) held fixed, to
find minimum Uzn. See table 2.1.

Discussion. Same as for CN Sample 2.2.

CN Sample 2.6 is from Harrison (L957-a). For previous analysis

see B2 Sample 3.6, page 35. Data on page A-5.
(2) Initial Estimates. 9, and K obtained as in section 2.2. See
table 2.1. Plot 6.
(b) Improvement. 60 varied, X fixed, to find minimum U2n. See
table 2.1.
(c) Improvement. ﬁvaried, 8o obtained from (b) held fixed,to
find minimum U2, . See table 2.1.

Discussion. Same as CN Sample 2.1,

CN Sample 2.7 was provided by Dr, Edwin Gould of the School of

Hygiene, the Johns Hopkins University, and represents the directions
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taken by turtles. For another analysis see B2 Sample 3.7 on page 36
Data on page A-6,
(a) Initial Estimates. 60 and K obtained as in section 2.2. See
table 2.1, Plot 7.
(b) Improvement. /éo varied, k fixed, to find minimum U2n . See
table 2.1.
(¢) Improvement. 'I\{varied, 50 obtained from (b) fixed, to find
minimum U2n‘ See table 2,1.
Discussion. The estimates of (b) do not lower the initial value of
U2, obtained form (a), however the estimates of (c) lower this initial
value of U%, a great deal.

Conclusions. Although the above procedure for improving the fit
was not checked on Monte Carlo samples from the CN distribution a
similar procedure was checked on Monte Carlo samples from the more
general distribution B2 in which there were three unknown parameters
to be estimated. The results obtained from Monte Carlo studies in
Chapter IV tables L.L and L.5 indicate that the procedure used above
would be satisfactory. The varying of éo holding Iﬁ fixed usually
had the greater effect in lowing the initial value of U2n, but as was
seen from samples 2.l and especially 2.7, the varying of K may also be

necessary to obtain an even lower value of Uan.
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2.4 The Effect of Varying 6o : 50 =0

Case 1. Assune 8, is varied by an amount + 8@,

(a) It ©; ¢ [ 8, 8o+06] forall i =1, +-+, n, then the step
function is shifted to the left by an amount A6.

(b) If 8; € [Bo, B,*A6] for j of the 83, i =1, ***, n;

J =1, ¢esy, n, then the 85 is (are) shifted to the extreme -
upper portion of the step function with the end result being
that the step function is shifted to the left by an amount A6
and dropped down by an amount j/n.

Case 2. Assunme 'éo is varied by an amount - A®.

(a) I ©; ¢ [Bo -A6, Bg] for all i =1, -+, n, then the step
function is shifted to the right by an amount A6,

() If 61 ¢ [8, -2, 8o] = for. j of the B3, i m 1, *++, n;
j =1, +++, n, then the 8; is (are) shifted from the extreme
upper portion of the step function down to the initial portion
with the end result being that the step function is shifted
to the right by an amount A6 and raised by an amount j/n.
For example in Plots2 and 18 one could improve the fit by
increasing §° as in case 1(a), and in plot 27 one could

improve the fit by decreasing 8, as in case 2(b).
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A
2.5 The Effect of Changing X & 8, = 0

Recalling that K is a measure of dispersion one can readily observe
that the effect of increasing ﬁ is to make the initial and final
portions more steep and to flatten the central portion. The effect
of decreasing I/E has the opposite effect of the above. A rccommendeﬂ
procedure for improving the fit after plotting the distribution
functions using the ML estimates is to vary 60 first and then, if

A
necessary, to vary K.

2.6 Discussion of the Goodness of Fit Statistics

Recalling that U2, and [A Vy are independent of the origin and
the distribution being tested (CN distribution in this Chapter), one
can use the Methods of Minimum {T Vy and U2, respectively to see
which statistic produces the better fit., As is better exemplified in
Chapter ITI the Method of Minimum U2, produces the noticeably better

fit.
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2.1 - UNIMODAL (CN) RESULTS

A
90

o

142,06

1bk

1Lk

1h.6L
22
22

199.L2
200
200

216,04
231
231

110.1k
116
116

305.43
309
309

341.L9
339
339

K

6.842
6.842
8.0

L.1sh
Lo15h
3.5

1,067
1.067
1.1

1.326
1.326
1.2

1.297
1.297
1.k

6763
6763
o7

1.0679
1.0679
9
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1.0945 0747 .0859 2,176 5
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.9082 .0282 .0831L 2.517 5
8973 L0284 .0834 1.483 &5
<9801 .0543 .05LL 2.065 5
8630 .0L69 L0503 2.065 5




- CHAPTER III

TWO BIMODAL DISTRIBUTIONS

3.1 Distribution Bl

£Ys AsY,) = exp( A cos 2(Y - Yy))  0¢Q@e2TT

21TIo( 2)
This distribution has modes at Y= Yo and Y= Yo +TT and antimodes
atY=\y,* TT/2, If A=K, 2Y=6, and 2y, = 6, then distribution
Bl reduces to CN(K,0,). Estimators of N and Yy, their properties, and
a complete discussion of distribution Bl are found in Stephens (1966).
The procedure for estimating A and Yo is the following:

(a) Given Y1, ***,\y, calculate

AL B
Zcos 2s, -Z sin 2\Y; then Y, =, tan=t G
i=1
s n\) _r
(b) Calculate R/n and determine A from —l-(-%:—)- = — where R is
' I, n

is the size of the resultant of the doublsd angles, that is,
R = ‘ G2+ H2 . The tables mentioned in section 2.2(b) can be

~
used to obtain A .

3.2 Distribution B2

£(9;4,B,K,8,) = exp(K cos(6 - @ exp(K cos(8 = 8o+™))

A B
ST Io(K) o)) ST

0€0<2TT
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This distribution is compésed of two weighted CN distributions with
modes at 8o and 8, - VT respectively, B2 is 4 modification of a distri-
bution proposed by Gumbel (1954)s A =20 and B= 0 are the weights;
A+B =1, in order for B2 to integrate up to one. Note that K, the
measure of dispersion, is assumed to be the same for the two .weighted
CN distributions.

Possible Unimodality of B2. It is interesting to note that

distribution B2 is unimodal with. the mode at 6o+ 1T for low values of
K and A, or at 85 for low values of K.and 1-A. For convenience set
Op = 0; then distribution B2 becomes
£(034,K,0) = P exp(K cos © (1-A)  exp(K cos (8 +TT
shally ST To(®) D )+TﬁmKT p( ( ))

Differentiating with respect to © one obtains

' o ==A . _A=A) '
£ (634,K,0) = ST o (K) K sin © exp(K cos 8) = 3 TTTq (K) K sin(®+1T) exp(K cos(0+))

Differentiating again with respet¢t to 6, letting © = 0, and setting
the result greater than zero one imposes the condition on K and A that
distribution_B2 reaches a minimum at 6 = 0 (not a maximum). That is,

£1(034,K,0) = - A K exp(X) + —{1A) K exp(-K) > O

1-A - 1
N AQL € e ®
= T'I-JTK)>A exp(K) —=1-A > A exp(2K)=31>A(1 +exp(2K)) =>4 T+ =0 ()

This implies the unimodality of distribution B2 with minimum (antimode)

at © = 0 and maximum (mode) at 6 = TT, If the respectivé K and A values
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lie close to or within the. bounds of table 3.1, that is, distribution
B2 appears to be or is unimodal respectively, then the unimodal CN
distribution maybe used todescribe the data. This procedure was carried
out with B2 Samples 3.6 and 3.7 which subsequently were called CN
Samples 2.6 and 2.7. For B2 Sample 3.6 compare plots 27-31 with CN
plot 6. For B2 Sample 3.7 compare plots 32-33 with the CN plot 7.

For various values of K the corresponding A's are detemined in table
3.1
TABLE 3.1
K o5 6 7 8 9 1.0 1.1 1.2 1.3 1l 15 2.0 3.0

A .27 4232 .198 168 142 L1119 L0976 .083 .069 .057 .O48 .018 .0025

3.3 Estimation of Perameters ¢ Distribution B2

The two basic estimation procedures (MML and the Method of Moments)
are applied to distribution B2 in an attempt to estimate 6,, K, and A.
These procedures, it is shown, lead to expressions that become difficult
to solve or difficult to interpret and in an attempt to obtain initial
estimates a. variation of the Method of Moments is proposed.

(a) MML. Let 6y, °*°, 8, be n independent observations from

distribution B2 and let f3 = £(85; A,K,60); then the likeli-

n n
hood function is L = ﬂfi. Considering log L = Z log £33
i=1 i=l

differentiating with respect to A,K, and 6, respectively, and
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letting

a = &Xp(K cos(6y - 8o)) e = cos(8i = 6g)

b = exp(K cos(6; - €,+7T)) f = cos(@; = 6o +T)
¢ = 2TTI,(K) . g = sin(®; - 9,)
d=%%— h=sin(65_-eo+‘rf)

the following equations are obtained:

i%rj-_-(a-b)=0

i=l

2‘: 2 (Aea + Ada+ (1-A) fb+ (1-A) db) = O
i=l

1 .
f of. (AKga+ (1=-A) Khb) = 0.
i=l 1
Putting "hats' on A,K, and © the above equations have to be

~ N N .
solved for A, K, and 8,3 however, as Gumbel (1954) points out,
the estimation of the parameters A, K, and 64 in the case of
different dispersions (Kj and X2) and different modes (6p1 and
8o2) in the linear normal distribution leads to an equation of
the ninth degree derived by Pearson (1894). The MML therefore
does not provide a practical bechnique for obtaining estimators.

(b) Method. of Moments. As was mentioned in section 1.1, equating

the rth population moment to the corresponding rth sample



(c)

7
n

.r
moment for r = 1,2,3 results in the statistics, E(6F) =EL9%_ »

which are not invariant (for circular observations) of the point
one chooses for the origin. Also when r =1 E(9) = ,.in.eﬂi_ can
give a misleading estimate of the modal direction if the
observations happen to fall 180° apart in unequally weighted

clusters.

Method of Moments applied to cos(6 =.8,) and sin(6 - 8,)

Following technique (c) the estimating equations are:

Ilé{\) A - ;cos(eL- @o)

E[—O-(ﬁ (24 - 1) n (1)

1.1 I (g‘l = 20052(% - 80) (2)
1. (K) n

0 - é:sin (gi - 8o) (3)

1 & . &sin?(e; - 8) U

K Io(K) n - )

Now equations (2) and (4) provide twoestimators for K. Letting

n n
g = 1 > sin? (85 - 6y) and h = 1 Z_: cosz(ei -~ 8,) one
noi=m o=

L

obtains lim Var(g) = = Ly 1lim Var(h)
K=o n K0

111.39 _ +0396 Var(h) = 247 = 20123

For K =10 Var(g) = 7z “%%n " n
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and for K = 2 Var(g) = 205k _ o L0331 Var(h) = 2200k =.0123

————t——

2.20n n 2.26n  n

Since the order of K is the same in both g and h it is concluded
that Var(h) <Var(g) and so (2) is used as an estimator of K,
Since this estimator of K was derived from the Method of Moments
it is denoted K. (1) provides an estimator for A which is

now denoted by ﬁm. From (3) the Method of Moments suggests
using 60 as the arigle obtained from the resultant, however,

this estimator for ©, can give misleading information as to

the direction of the modes as one can easily see by observing
that the resultant of a set of observations clustered about

1° and another set of similar size clustered about 179°

points somewhere in the vicinity of 90°, Therefore to
determine an unbiased estimator for 8, one mebhod suggested

by Krumbein (1939), having no particular circular distribution
in mind, is to double all the angles, to find the resultant

of these doubled angles, and then to half the angle determined
by this resultant. This above estimator of 8, is dendted by
SOD. The proposed set of initial estimators for distribution
B2 is:

(a)For 8, - use gop.

(b)For K ~ use I/Em determined from equation (2)

(c)For A - use Km determined from equation (1)
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341y Properties of Estimators : Distribution B2

Exact properties of the estimators are difficult to f£ind but some

approximate results can be obtained based on the following approxi-

mations:
(X

(a) For K large 1) 1) =1 - -l—; when K = 5 this has accuracy
Io(K) 2K

within 1% and when XK = 3 within 3%.

For K very large (2) 1L (K) o1 with accuracy within 5.5% for K = 10

I, (K)
(b) For K small (1) LK _K with accuracy just over 3% for K = .5,
(k) 2

and just over 1% for K -‘.3
y 1K) oK K3 N S atas e Y
2) 1 - 2. with accuracy within 1% for
(2) —mo % > ]-:g cy o

K = 1/2 and within 2.5% for K = 1,

The approximate results are:

2 A
For K large (K> 10) ;\: 2 n - gcos (6.~ ©0)
K n
A .0 -i—Jn 2D - n n
(X = 3) K = ( ) where D = Z cosz(ei - 30)
2(n - D) )
n
A
1 2K Z-:l cos(6y - 30) + (2? - 1)n
N o
> A =
(&> 3) ¢ 2 n(Zﬁ-l)
a A
A 2 Zcosz(ej_ -8) =-n
For K small (K ¢.5) K =4 i=]

2n
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L1 22c08(0s - Bo)w nk
®s.5) 1 3% D . .

For results on 60 see Chapter IV,

3.5 Analysis of Monte Carlo Samples : Distribution Bl

A search through research papers furnished no examples of recorded
bimodal data that appeared at first sight to have equally weighted
modes 180° apart. For W,= 0 and A = 1,2,3,samples of size 50, Bl
samples 3.1, 3.2 and 3.3 respectively were drawn from distribution Bl.
The data is recorded in the appendix on page A-2 . The techniques of
estimating \ and ), outlined in section 3.1 were applied to each set
of data. /5\ ,GJO and the relevant goodness of fit statistics are
recorded in table 3.2 with plots 8, 9 and 10 respectively describing
the fit obtained from the ML estimates. q.l o Wwas taken as the origin.
In Chapter IV section L.7 samples 3.1 and 3.2 are treated as though they

had come from distribution B2.

The two aspects of this thesis are to describe the techniques with
reference to practical data, and to verify the accuracy of these
techniques by Montr. Carlo methods. The former is now applied in the

next section, and the latter in Chapter IV section 4.6.
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3.6 Analysis of Data for Distribution B2

The data analysed in this section was gathered from published

papers. '
A ~
Initial Procedure. The initial estimates ’501), Kns and A were

calculated as in section 3.3(c), and the goodness of fit statistics
were also calculated and are recorded in table 3.3, The sample
distribution function and the estimated theoretical density and
distribution functions were plotted and appear in the appendix.

Note that the origin in this procedure is taken to be the North Pele
after all angles had been revolved by 601) so that the estimated
dirsctional vector pointed North.

Improved Procedure. The Methods of Minimum U2, and Minimm (@ V,

were then applied to improve the fit with the general procedure being:
(a) To vary 8op about its initial value, holding A and I?m fixed.
(b) To vary 6oD and ﬁm, holding ﬁm fixed,
(c) To vary ®ps Ap, and Ky about their initial values.
The values of the goodness of fit statistics were recorded and the
minimum values noted: Unless otherwise stated or recorded, éoD vias
varied by single degrees, A, by hundredths, and X by tenths about
their initial values. The origin used for this analysis was the North
Pole no matter where 6oD pointed, that is, the angles were not revolved.
Once a certain set of estimates was decided upon, the fit was illustrated

by a plot of the respective cumulative distribution functions after all
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the angles were revolved by ’éoD s0 that the estimated directional vector
pointed North. The goodness of fit statistics were then calculated
using this above North Pole as the origin and it is these values that
are recorded in table 3.3. The samples and procedurs of amalysis are
now described. All plots are found in the appendix.

B2 Sample 3.1. This sample was provided.by Dr. Edwin Gould of the

School of Hygiene, The Johns Hopkins University, and represent the
directions taken by turtles. Previous analysis by Cutchis (1965)
consisted of CN treatment (8o = 20.93% %= .1495) and tests for
randomness. For the doubled angles 60D wés also calculated (23.93°)
Data on page A-3. |
(a) Initial Estimates. ,éoD ) 'Am, and 'f{m obtained as in section
3.3. Plot 11
(b) Improvement. 60D varied, ﬁm‘ and ﬁm fixed, to find
minimum Jn v, Flot 12,
(c) Improvement. 60D’ ﬁm, and ﬁm are all varied to find minimum
J7 Vp. Plot 13.
Discussion. The estimates of (a) produced a value of U2n that was very
close to the minimum U2n obtained (.0202) by varying the three initial
estimates. The fit obtained from (b) appears as good as that from (c).

B2 Sample 3.2. Same source as B2 Sample 3.1. The data was previously

. [+]
analysed by Cutchis (1965) who applied CN treatment (50 = 6li.1) and who
also calculated goD = 62.573°and by Stephens (1966) who applied

distribution Bl techniques and X2 tests. Both suggest that a weighted
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bimodal distribution be used to describe the data. Data on page A=3.
(a) Initial Estimates. -6oD: ﬁm, and ﬁm obtained as in
section 3.3. Flot 1l.
(b) Improvement. 60D is varied, Iﬁm and Km fixed, to find
minimm U2,. Plot 15. |
(c) Comparison. 6013, f(m, ﬁm are all varied to find
minimm [ V. Plot 16,
(d) Compariscn. goD is varied, f{m and 'fxm fixed, to seek minimm
Jn Vne FPlot 17,
Discussion. The initial estimates (a) produce a very good fit. Those
of (b)_ produce a noticeably better fit close to the minimum value
obtained by U2n (,0182) from varying all three initial estimates. The
fit obtained from (c) appears as good as that from (d).

B2 Sample 3.3, was read from polar diagram 30 of Harrison (1957a)

and represents pebble orieni;ations. Previous analysis includes the
polar diagram and a test for uniformity. The direction of 'éo given
by Harrison (1957a) in figure 5 page 283 appears to agree with that
tabulated in table 3.3 —=- sample 3.3(a). Data on page A-l.

(a) Initial Estimates. é\oD: Km: and /ﬁm obtained as in section 3.3.

Plot 18.
(b) Improvement. 8. and Ay varied, Ky fixed, to find minimun
U2, and, as it turned out, minimm [T Vp. Plot 19,
(c) CMpaﬁson. §oD: ﬁm, ﬁm all varied to find minimum U2, and,

as it turned out, minimum fn Vp. Plot 20.
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Discussion. The estimates of-(b) produce a noticeably better fit than
those of (a). (b) and (c) appear to be equally good.

B2 Sample 3.4. was read from a polar diagram of Krumbein (1942)

and represents pebble orientations. Previous analysis included
linear nommal treatment applied to the grouped data. The bechnique
of doubling the angles etcs +0 estimate the orientation direction
is applied to the grouped data only. The pictorially recorded
direction of 90° in diagram 0=15 page 1387 in Krumbein (1942) agress
well with the results obtained for 8, in table 3.3. Data on page A=l.
() Initial Estimates. 8gp, Ay, and K, obtained as in section 3.3.
Flot 21.
(b) Comparison. B was varied, Ky and A fixed, to find minimm
Jn Vpe FPlot 22,
Discussion. The estimates of (a) produced a U2n value very close to
the minimum U2n value attained (.0197) by varying all three estimates.
The estimates of (b) produced the minimm [n V,; also, (a) and (b)
appear to produce egqually good fits,

B2 Sample 3.5 was read from a polar diagram of Krumbein (1540).

Previous analysis as in B2 Sample 3.l with 8, = 53°. Data on page A=S,
(a) Initial Estimates. ,éoD, ﬁm, and f(m obtained as in section 3.3.
Plot 23.
(b) Improvement, 'éoD varied, ?{m and ’ﬁ.m fixed, to seek minimum
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(¢) Comparison. 'éon_varied, f{m and Km fixed, to seek mimimum
{7 ¥y Plot 25. |
(d) Comparison. 601) varied by eye after observing plot 2l and
following the technique of section 2.l — case 1(a).
Plot 26.
Discussion. The estimates of (a) appear to give a better fit than those
of (b) even though the latter has a lower U2n value. (b) and (c)

estimates produce equally good fits. The minimum U2n found by

varying all three estimates was ,022 and the minimum Jn V, was +6605.

The next two samples, B2 Samples 3.6 and 3.7, were tredted at first
as though they had come from distribution B2. Upon examination of the
unimodal appearance of their respective density functions however, a
CN fit was attempted, The CN fit to B2 Sample 3.6 appeared to be
as good as the B2 fit, and the CN fit to B2 Sample 3.7 was much better
than the B2 fit.

B2 Sample 3.6 was read from a polar diagram of Harrison (1957a).

He records pictorially in figure 5 page 283 in Harrison (1957a) that
the datahave & mode at approximately 280°, (U2, > .060). Vhen
distribution B2 techniques were applied the best fit was obtained
when ’éo = 310° (U2n = ,0283), and when CN techniques were applied the
best fit was obtained when 8, = 309°(v?, = .0282) -~ see tables 3.3
and 241 {(Sample 2.6) respectively., Data on page A=5.

(a) Initial Estimates. ,éoD’ Km, and ﬁm obtained as in section

3.3. Plot 27.
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(b) Improvement. Bop varied, X, and Ap fixed, to find minimm
2 . Plot 28.
(c) Comparison. Bop varied, Kp and fxm fixed, to find minimum
Jn v,. Plot 29.
(d) Comparison. 60D: AKm, and ﬁm varied to f£ind minimum Uzn.
Flot 30.
(e) Comparison. /éoD’ ﬁm, and Km varied to seek minimum
- JAV,. Plot 3L,
ﬁiscﬁssf;.on. (a) estimates produce a noticeably poor fit whereas the
estimates from (d) and (b) yield good fits, much better than those
obtained from (e) and (c). A CN distribution was then fitted to the
data after observing the unimodal appearance of the density function
in plots 27 and 28, and an equally good fit was obtained with the
initial estimates of K and 6, -- see plot 6 and table 2.1 (CN Sample
2.5)
B2 Sample 3.7 Same source as B2 Sample 3.l. Previous analysis by

Cutchis (1965) was unavailable. Data on page A-6.
(a) Initial Estimates. @gp, Ap, and K, obtained as in section 3.3.
Plot 32.
2 R . o o N .
(b) Improvement. 6,p varied in 10 intervals, Ky and Ap fixed,
to £ind minimun U2 and, as it turned out, minimm J[7 V.
Plot 33.
Discussion. (a) estimates produce a very poor fit whereas those of (b)

produce a non significant U2n and [n V, - A CN distribution was fitted
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to the data after observing the-unimodal appearance of the estimatad
density function in plots 32 and 33 and a much better fit was obtained:
see plot 7, table 2.1 (sample 2.7),

Conclusions. The Method of Minimum U2n produces a much tighter
fit than the Method of Minimum {n V, but one should always plot the
theoretical and empirical-distributions.to confirm that a low U2,
value has not resulted from a shift in location. Very low values
of U2n and [n V, may he obtained by varying only the estimate of
8o obtained from section 3.3(holding Am and ﬁm fixed). 60D is
varied by observing the plots drawn produced by the initial estimates
and following the procedure outlined in section 2.l.

It is to be emphasized that the initial estimates usually provide
quite a good fit. The above procedure of varying only goD to obtain
a good fit is tested on some Monte Carlo samples in Chapter ‘IV

section L.6.

3.7 The Effect of Changingd : 6, = 0

A is a measure of the weight attached to eaéh CN diS't:ribution..in
B2, The varying of A affects the cumulative distribution function in
much the same way as the changing of f( does in section 2.5. K andlf(
should not be varied until a good estimate of 8, is obtaiped, and then,
if necessary, i could be varied to obtain an’even better fit., Following
the above procedure of improving the fit ﬁ appears to have a fairly

wide range that will still produce excellent fits. One could change
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both ?{ and K so as to complement each other (increasing or decreasing
both) or to counteract each other (increasing one and decreasing the
o’ohe‘r) but such a procedure would require lengthy and multiple
calculations with the and result in most cases being a fit which is

not really too much better than that obtained by varying 60 alone.

3.8 Another Estimator for K(EL) : K large - distribution B2

Stephens (unpublished) has suggested the following method for
obtaining a rough estimate of K from independently distributed angles
0, **, 8,

(a) Double all the angles and obtain the size R of the resultant

of these doubled angles, and hence obtain ’IED from R/n.
(b) Find Vo from I?D using table A-l in the appendix. Calculate
Vi = V2/ L.

(c) Interpolate with V; = Vo/l in table A-1 to get Kge

Theory. If XK is large then CN(0,K) = N(O,]K; ) =- Gumbel, Gréenwood,
and Durand (1953). From Stephens (1963) -~ let a point move in
successive independent steps on the circumference of a unit circle, and
let £y (8) be the density function of its polar co-ordinate after t
steps. At each step assume © increases by an amount « having the
distribution function p(=); =TT<x ¢77, Now if

(a) The density function of « becomes concentrated at zero

for each step

and (b) The number of steps increases so that the final density
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function fv(e) has finite variance
then the density function of a point which starts at the North Pole

and moves with Brownian diffusion is given by

1.1 v ‘ ) .
Fir(0) = e e cos mO exp(- = n<V where V is a:measure of
v®) = SRt mz;—; p(- 52
dispersion.

If the point starts at © = 0 and has the CN(0,K) then.

1_ .1 § In(K)
£1(0) = —3 Z cos m6., Putting m ='1 in these two
27T T & I (X)
-3 L
Fourier expansions, assuming K is large,one gets e a IlEK; and
. .1 s N
therefors 1 = 2% 2] - 1'23-{- =V TE" So CN(O,K]_) $ B(Vy) where

B represents a Brownian distribution with Vp BI]? s a8 a parameter

1
of dispersion. Since CN(0,K;) 7 N(O,f;:-)-, doubling the observations
in a normal distribution produces another normal distribution with

the same mean and four times the original variance, and therefore

. 1 [ -?' -
CN(0Kp) ¥ N(O,=) # B(Vp) where Tz = b, o e W2 4 07N
Il(KZ) 1
S =] - 27 1 - — =K, = K
Io(Kp) 1 2k, -1 2

349 Apother Estimator for A(Ap)

To obtain a quick estimate of A find 60 as in section 3.3 and then set

Qp no. of 84 in [@o—EL,§O+£L]

i:l’ ool,n .

n

One would expect I.A:p to be a reliable estimator for large K. For a

further discussion of ’A\.p see Chapter IV.
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TABLE 3.2

DISTRIBUTION Bl SAMPLES

SMMPIE Plot n Yo N (o

3.1 8
3.2 9
3.3 10

50

50

50

-

0

0

2

7463

177.22

1.29

A

¢ 9267

2.1549 1.0778

3.0273

fﬁ Vn Uzn w"gn
6263 L0182 L0473
L0546 L0615
8249 .o24L L0333

Lo

X2 cells
1.0 5
Le2 5

1.0 5.
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TABLE 3.3

DISTRIBUTION B2 SAMPLES

SAMPLE Plot n 9, 'q A omv, ¥ W %2 cels
3.1(2) 11 13 23.9% L.1032 .785 .7238 ,0205 ,0856 2,05 5
(®) 12 g 27.5 L.1032 .785 657 L0269 .0776 1.07 5
(e) 13 1 27.1 3.7 .805 .6352 L0270 .0847 1.81 5
3.2(a) 14 76 62,57 3.1669 .8031 .7842 .0196 .0373 L.79 10
(b) 15 76 G6h4.0 3.1669 .803L L8137 .OL8L .02A% 1,79 10
(¢) 16 76 6l 3.0 o795 6953 0247 .0289 5,05 10
(d) 17 76 61,5 3.1669 .8031 L760L L0223 ,0289 3.21 10
3.3(a) 18 101 137.54 3.0843 .5609 1.5374 .1L3Lh .2745 1L.Sh 10
(b) 19 101 142.0 3.08L3 <5609 1.L4777 .1366 .139L 13.75 10
(¢) 20 101 1h2.0 3.0843 .57 1.4640 1362 .1382 15.14 10
3.4(2) 21 100 85.73 1.7832 .288  .66LL L0199 L0261 L.,0 10
(b) 22 100 84,0 1.7832 .238 L6l13 ,0203 .0206 2.6 10
3.5(a) 23 100 57.34 1.6409 3055 .8409 .0362 .1lh1 2,2 10
(b) 24 100 65.5 1.6409 .3055 L6812 L0233 Lllld 6.6 10
(c) 25 100 6L4e0 1.6L09 .3055 L6685 L0238 L1478 5.4 10
(d) 26 100 T73.5 1.6409 3055 .9515 L0356 .0365 10
3.6(a) 27 58 151.84F .9492 L1651 1.2205 .O777 L2476 L.2L 5
(b) 28 58 130.0  .9492 L1651 .9049 .0300 .O4SO  .621 5
(c) 29 58 136.0 9492 .1651  .B777 .0336 .1091 1.483 5
(d) 30 58 130.0 1.0 .15 8761 .0283 .0L35 621 5
(e) 31 58 136.0 1.l 17 .8278 .0323 .1091 1.483 5
3,7(a) 32 31 107.92 8457 .1413 1.823 .2315 .8018 9.16 5
(b) 33 31 160.0 8457 1413 1.288) .0839 L0992 5.9 5



CHAPTER IV

MONTE CARLO RESULTS : DISTRIBUTION B2

L4e1 Introduction

As was mentioned in Chapter III not only are properties of the
estimators difficult to find, but also standard estimation techniques
may sometimes lead to non-invariant estimators as was exemplified
when the Method of Moments suggested using '60R: the resultant
direction, as an estimator of 8,. goD’ was then proposed as another
estimator of @,. In Chapter III, also, two estimators of K (R and Kg)
and two estimators of A (Xm and AAP) were introduced. Still another
estimator of K denoted 'zZn is introducsd in section 4.3. In order to
verify the efficiency and to examine the accuracy of these three sets
of estimators Monte Carlo studies were undertaken. Sections 4.2 to
4e5 deal with studies concerning /éo, ?{, andA. Tt should be noted
that in theory the same Monte Carlo samples could have been used
thoughout this chapter, however, section L.3 was undertaken long before
the others and subsequently new samples were drawn for sections L. 2 and
liehs The same samples are used in sections bl and Le5. The general
procedure of drawing and examining Monte Carlo Samples from distribution
B2 is now outlined. For a fixed K, A, and 8, a set of 15 samples of
size 25 drawn from distribution B2. The appropriate statistics
(Bops 8oD> ﬁs, ?{m, ﬁn’ XP’ ’Am) were calculated for each of the 15

samples within the set and then the sample mean and the standard error
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were calculated for each set of 15. Again, the whole of the above
procedure was repgated with samples of size 50. The results are
recorded in tables L.l to L.3.

Up to this point in the thesis a procedure for describing bimodal
data with modes of unequal strengths lying 180° apart has been
- presented. The procedure has been as followss
(a) Initial estimates obtained from 8, Ky» and Ap in section
3e3.
(b) Fit improved by varying op, holding X, and Ay fixed, to find
minimum U2 .
So far the data analysed by this procedure has been drawn from
published papers. The accuracy of the above procedure is now verified
by testing it on Monte Carlo samples drawn from distribution B2 and
on those previously drawn from distribution Bl -- see sectionsl.6 and

L7 respectively.

. A
.2 Results concerning 6,

For a fixed K, A, and 6, = 180° a set of 15 samples of size 25 was
drawn from distribution B2, 8oR, the angle determined by the resultant
of each sample, was calculated and the sample mean and‘standard error
were also ca;culated for each set of 15. A was then varied, for fixed
K =1,2,3,4,5, from .5(.1).9 and the above procedure was again applied
with the results being recorded in table L.l(a). The above procedure
was repeated for éoD’ the angle detemined by halving the angle

obtained from the resultant of the doubled angles of each sample.
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Again the whole of the above prOcedure was repeated with samples of
size 50, and these results are recorded in table h.l(b). From tables
Lol(a) and: (b) it is evident that gop' is an unbiased estimator of 6o
with much smaller standard deviation than /éoR for all combinations of
the A and K values above, except for very high values of A. It is
likely in practice that A will not be extreme, but if it is then the
CN distribution may be used to .describe the data as was the case with"
B2 Samples 3.6 and 3.7 which wers subsequently treated as unimodal‘
data and analysed again as CN Samples 2.6 and 2.7. As is tobe expected
for ¥#alues of A close to .5 and K<1 6oD and §°R are subject to
great variation. Also the standard errors are consistenly less for

the larger sample size,

Lke3 Nomogram for K

For fixed X, A, and 6, = 0 15 samples of size 30 and 10 samples
of size 50 were drawn from distribution B2 where K varied from 1(1)9
and A from 1(.1).5. The angles.obtained in each sample were doubled
and the correspondiﬁg ﬁD value was found by treating the doubled
angles as though they were from a CN distribution. For each individual
K value the mean of each set of ?{D's generated was calculated and
subsequently 10 points were plotted at each of the above values of K,
A cubic was fitted by orthogonal polynomidls to the 90 points thus
obtained., The coefficients of the linear and quadratic terms were

significant whereas that of the cubic term wus not. In order to improve
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the fit for small values of K two more seis of 10 means were plotted
against K = .5 and K = 1.5 along with the other 9 sets of 10 means
corresponding to K = 1(1)9 respectively. A straight line and a
quadratic, both restricted to pass through the origin, were then
fitted to the now 110 points by least-squares and the latter was
plotlted (ﬁD versus K).in figure L.l. The equation of the straight
line through the origin is Rp = .3430 K, and that of the quadratic
is ﬁD 3 ,3909 K - 70068 K2. The procedure for using the nomogram
(figure L.1) is now outlined:
(a) Given €y, ***, 6, : double all these angles and compute
R/n where R is the size of the resultant of the doubled angles.
(b) % is obtained from tables by interpolation using R/n above.
See Gumbel, Greerwood, and Durand (1953) or Batschelet (1965)
for the tables.
(c) With this value of ﬁD one enters the left hand side of
figure 4.1 and reads off the X value from the curve. This
K value is now denoted by ?{n -— the value of X read from

the nomogram.

L.li Results concerning ?{

A
Samples were drawn as in section L.l with 8, = 0. K, determined
by the lMethod of Moments in section 3633 f(s, determined as in
section 3.8; and f{n detemined as in section 4.3, were calculated for

each sample and the sample mean and the standard error were computed
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for each set as in section h.2} and were recorded in tables L.2(a) and
(b). For the smaller sample size of N = 25 ﬁn’ the value of X
read from the nomogram, is the best of the three estimators of K.

Xs tends to oversstimate K more than ’km does, and 'ﬁm also has the
smallest standard error of thethree estimators for K< 3 and all

values of A. For the larger sample size of N = 50 ’kn again

appears to be the best of the three estimators of K with ,ﬁm almost

as good. ﬁs again tends to overestimate K but does have the smallest
standard error of the three estimators for K€ 3 and all values of A.
Note the relatively large standard errors of ?(m, ﬁr’ agd ﬁs suggest a
large variation in the estimated values of K in each set of 15 samples.
One concludes then that ?{n and ﬁm are fairlyreliable estimators of

A ~
K with K, being a little bel.cer than Kp.

4.5 Results concerning Y

Samples were drawn from distribution B2 as outlined in section L.l.
AA.m, the estimate of A obtained from the Method of Moments in section
3.3 and ?xp, the estimate of A described in section 3.9 were calculated
for each sample and the sample mean and standard error were calculated
for each set of 15 and recorded in tables L.3(a) and (b). For low
values of K(K€ 3) and for all values of A (especially high values of
A) 3 provides the better estimate of A. For larger values of K

(K> 3) and all values of A, ﬁ.p and 'Em appear to be equally good as
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estimators of A, with the standard error of ﬁ slightly lower than

P
Il

that of Am. Kp, therefore, is a fairly reliable estimator of A that

canbe calculated easily after 8.y has been obtained. Tables L.5(a)

and (b) also verify that the standard errors are consistently less

for the larger sample size,

4.6 Results from the Analysis of Distribution B2 Samples

For ali combinations of the following values of parameters —-
8, = 0y, K=2,3,4,5and A = ,9,.8,.7,+6,.5 =—— a sample of size 50 was
drawn from distribution B2. These 20 samples were then analysed using
the following procedures

(a) The initial estimates 8yp; Kp, and Ay were calculated 4s in

section 3.3.

(b) 8,y was varied, holding Ky and Ap fixed, to find minimm UZn.

(c) 60D’ %h, and Rm were all varied to find minimum U2n.
For each of (a), (b), and (¢c) the relevant goodness of fit statistics
were calculated and all the results are recorded in table L.L4. Note
that the origin for all the above calculations was taken to he the
North Pole (the observations were not revolved in any way).

Table L.l shows that the initial estimates ﬁm and'gop estimate
A and 8, quite well in almost all the 20 samples generated. The initial

estimates of K, however, are sometimes quite a distance from the true

value of K, see samples 1, 2, 10, 13, and 17. The parameters 6, and
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K are analogous to the mean (,1) and variance ( 62) respectively in
the linear normal distribution, and the confidence intervals for H
are far smaller than those for €2, This fact helps to interpret the
sometimes distant vaiues of K fram K in table L., Table L.l also
shows that the estimates obtained from (b) and (c) by improving the
fit by the Method of Minimum U2n are usually quite close to the

initial estimates obtained from (a).

L.7 B2 Estimation Techniques applied to Bl Samples

Bl Samples 1 and 2, section 3.5, are now treated as though they
had come from disfribution B2 and are analysed using the following
procedure:

(a) Initial Estimates. .%OD’ iﬁ, and xm'were obtained as in

section 3.3.

(b) Improvement., 60D is varied, im and ﬁm held fixed, to find

minimum U2n‘

(c) Improvement. 8, Ky, and Ay are all varied to find minimum

U2y.
Only the results from (a) are plotted, plots 34 and 35,and all
statistics are summarised in table Lh.5. For (a) the o%igin is taken
to be ,goD but for (b) and (c) the origin was the North Pole.

From table 4.5 it is seen that as expected 1 is very close to .5

for both the samples. Also K in the B2 distribution is seen %o be

about 3 times the A in the Bl distribution.



B2 MONTE CARLO RESULTS FOR B, : SAMPLE SIZE = 25

TABLE L.l (a)

L9

Noe of _

Samples K A
15 il o9
15 1 8
15 1 .6
15 1 .5
15 2 9
15 2 .8
15 2 o7
15 2 .6
15 2 .5
15 3 o9
15 3 .8
15 3 o7
15 3 6
15 3 5
15 L 9
15 }4 L ] 8
15 N o7
15 N .6
15 l 5
15 5 o9
15 5 o8
15 5 .7
15 5 .6
15 5 5

~

eoR ’ eoD
Standard Standard

Mean Error Mean Error
178.86 23,11 183.06 50.82
192.15 23.79 178.87 36439
181.6L 39.04 177 .05 36.36
208.68 6843 180.97 32.31
169,20 112,96 177.35 27.3L
175483 11.89 170.2} 15.1L
182,94 19.8L 178.78 14.8L
189.39 L2.92 181.01 15.69
183.35 35.76 T 173.69 12.66
183.18 117.77 179.13 19.3L
178.78 7.87 181.51 6.70
183.89 10,76 180.37 9.03
180.09 2247 182.89 7+65
155,82 6334 180.19 9.39
194,52 105.13 178.58 10.02
180497 6.9 180.39 6481
177.97 11.57 181.35 7.09
183.53 16453 179.10 Selily
181.80 43.13 179.31 1,18
121.98 125.73 179.72 Lo 62
178.28 7.85 179,14 5.91
181.90 7.16 180.85 4.85
173.27 15.45 179.92 5.11
180.51 58.28 177.52 641hy
188,34 126.31 180.32 3.2



B2 MONTE CARLO RESULTS FOR 8, : SAMPLE SIZE = 50

TABLE L.1(b)

No. of
Sample K A
15 1 «9
15 1 8
15 1 o7
15 1 o6
15 1 .5
15 2 o9
15 2 .8
15 2 o7
15 2 .6
15 2 .5
15 3 o9
15 3 8
15 3 o7
15 3 .6
15 3 5
15 L .9
15 L .8
15 k o7
15 L 6
15 L 5
15 5 o9
15 5 .8
15 5 o7
15 5 +6
15 5 5

~ .

50

eoR edD
Standard Standard
Mean Error Mean Error
179.16 14,22 172.11 20,12
178.64 -16.20 184.68 20.13
181.92 37.61 180.68 35.72
164.82 6l.68 174.32 30.92
211.48 101.22 174.79 34.52
181,04 10.99 179.03 9.97
180.67 13.07 178.90 8.77
176.88 30.35 183.17 7.13
175.85 29.36 177.03 10.28
211.70 89.37 180.62 15.55
177.8L Te5h 178.99 3.89
180474 7.69 178.99 6.23
176.62 12,29 179.62 6427
184.45 58.45 178.6L 5¢29
200.33 115.02 176.87 3.83
180.95 L6l 178.98 5.37
182.25 7.72 179.30 Lel2
180.L4 13.32 181.32 3.60
179.13 20,69 178.60 574
192.07 123.19 179.36 T.68
180.50 3.5k 179.30 2,09
182.00 10.75 178482 lie66
179.00 16434 179.42 3.97
175.34 19,04 179.21 3.77
219,10 96435 180.28 Le72



NOQOf
Sample X K
15 1 .9
15 1 08
15 1 .7
15 1 L6
15 1 .5
15 2 .9
15 2 .8
15 2 .7
15 2 .6
15 2 .5
15 3 .9
15 3 .8
15 3 .7
15 3 .6
15 3 .5
15 L .9
15 4 .8
15 h .7
15 L4 .6
15 L .5
15 5 .9
15 5 .8
15 5 .7
15 5 .6
15 5 .5

51
TABLE .2 (a)
B2 MONTE CARLO RESULTS FOR K : SAMPLE SIZE = 25
~ A ’~
Ks Km - Kn
Standard Stangiard Standard
Mean Error Mean Error Mean "Error
1,788 U437 1.427 186 1,028 543
1.598 575 1.266 +529 368 .559
1.995 . 501 1.659 554 1,288 on
1.818 .6Lo 1472 .70 1,099 Nyl
1.682 .515 1.303 .582 .908 631
2.431 o773 2.140 859 1.818 .,952
2.65) 349 2.388 «933 2,091 1,012
2,612  L711 2.3L W71 2.047  .882
2.512 N 2.23L .686 1,929 - .770
2.301 .800 2,061 o 7hS 1.759 .809
34574 «981 3,393 1.052 3,160 1,067
3.230 « 507 3.019 .982 2,770 1,022
3.400 1.335 3.195 1.399 2.93h 1.348
3.412 1.150 3.213  1.21}4 2,962 1,187
3460  1.047 3.267 1.125 3,021 1.147
LhoSTL  1.191 - LJis0 1.253 h.196 1.208
heo512 1,127 L.389 1.180 Lelldy 1.121
Lh.628 1,048 L.513 1.096 L.267 1.039
LJa166  1.301 4.022 1.356 3.782 1.274
4.188 394 L.,05L « 937 3.837 .889
5,681 1.322 5,602 1.361 5,261 1.225
5,929 1.632 5.852  1.660 5.485 1.L466
5.3  1.295 5.035 1.343 Lo7h3  1.246
5.162 1.186 5.069 1,222 L4.786 1,100
5.204 1,839 5.096 1,888 L4.778 1.706




TABLE Le2(b)

B2 MONTE CARLO RESULTS FOR % s SAMPLE SIZE = 50

52

Kg K Kn
No.of Standard , Standard ~. Standard
Samples K. A Mean Error Mean Error Mean Error .
15 1 .9 1.302 . 704 1.078. 1468 .678 1169
15 1 .8 1.679 . «394 1.310 Ai29 6902 467
15 1 .7 1.577 «319 1,195 345 o775 0365
15 1 .6 1.589 106 1.243 3l 829 «3L6
15 1 .5 1.733 .391 1.370 1125 « 969 Ls7
15 2 .9 2.346 662 2.08L NI 1.775 «700
15 2 .8 24330 2315 2,032 355 1.708 108
15 2 .7 2.548 «527 2.275 591 1.981 .668
15 2 .6 2,513 436 2.236 87 1.935 549
15 2 .5 2.247 459 1.938 517 1.599 «589
15 3 .9 3.277 675 3.078 « 737 2.851 . 786
15 3 .8 3.708 . 697 3.545 745 3.338 +7L6
15 3 .7 3.257 .L73 3.060 515 2.845 .54
15 3 .6 3.492 663 3,313 .715 3.100 <737
15 3 .5 3.L495 704 3.315 759 3.099 . 781
15 L .9 4,790 705 L.690 . 729 L.L55 N
15 L .8 he366 «7L6 Le2Lh .785 L.027 755
15 L .7 LeLi15 JTLT7 L.298 «751 }.082 ak}
15 L .6 Le219 626 L.092 <661 3.887 <612
15 4 .5 Le57h 692 Lo 465 .T19 Le2L3 <669
15 5 .9 5.4,00 1.113 5,318  1.137 5.018 1.01}
15 5 .8 5.653 .793 5.579 .812 54260 .72
15 5 .7 5.338 «982 5.252 1.008 L.961 <905
15 5 .5 5.525 .018 5.451 B8U2 5.143 . 762
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TABLE )-103 (a)
B2 MONTE CARLO RESULTS FOR A : SAMPLE SIZE = 25
i hp
Standard Standard
Mean Error Mean Error
.803 167 699 o116
o779 .237 .656 110
677 o160 616 +099
.575 <140 547 .081
197 136 .515 051
.92 O7L 840 .081
817 .115 .765 .083
.698 .080 672 074
597 0% 579 069
1496 .090 517 .073
.895 .050 .385 .048
.783 .083 <757 .070
. 707 L] 063 . 691 [} 058
. 600 .109 597 .099
.531 096 520 094
« 900 .05} .888 .057
.793 079 .787 07l
.702 .090 .70L .083
0&5 '127 0595 0122
1458 .102 461 .104
0893 '0071 0893 0070
843 - 071 .835 07k
.68 2092 6L5 001
578 099 <584 097
U475 .108 475 109
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- TABLE L.3(b)

B2 MONTE CARLO RESULTS FORK : SAMFLE SIZE = 50

[l el g o wwwww N NN NN |l el

v

”~ A
A Ap
Standard Standard
A Mean Error Mean Error
.9 342 215 679 .120
.8 .713 .083 «629 «050
o7 .707 «100 . 627 .065
.6 632 - A3l «557  .068
.5 .519 154 .520 .089
.9 .925 125 .82} .059
.8 .328 .070 773 .056
o7 692 077 . 665 063
.6 576 .088 571 .068
5 .502 063 .513 .055
.9 LI11 Ol1 «887 0Lo
.8 .798 .063 « 784 .058
o7 687 .080 683 OT7h
.6 .596 079 584 .069
.5 o1 .075 1197 066
.9 875 .035 872 .03
.8 .810 T .0L8 .803 051
o7 «699 067 .695 069
6 636 .073 .632 074
.5 .501 .051 «50L .050
.9 887 .0L8 .885 048
.8 .809 0L9 .807 045
T 711 .065 .708 062
.6 595 .083 592 079
.5 61 07l L6l 075
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TABLE Lok

20 MONTE CARLO SAMPLES FROM DISTRIBUTION B2

(a) denotes the rasults from the initial estimates.
(b) denotes the results from varying only Sqpa
(c) denotes the results from varying all 3 initial estimates.

=2

Sample n 6o K. A 8, R omv, u2, W% 32 cells

1(a) 50 0 2 .9 17.17 3.146 .9246 1.1067 .0579 .3300 22 10

(b) .16 3.146 .9246 1.0865 L0574 .3063 26.8 10
(c) 16 2.9 .92  1.0864 .0495 L2459 20 10
2(a) 50 0O 2 .8 178.L  2.650 .2432 .5835 .0105 .OL41 2.4 10
(b) 179 2.650 .2432 .5618 .010L L0125 2.4 10
(c) 179 2.8 2L 5677 0097 .0120 2,0 10
3(a) 50 0 2 .7  lJibh 2,471 L7657 1.206L .0678 42039 L. 10
(b) 350 2.471  .7657 8029 .0250 L0368 5.6 10
(c) 349 2.5 7 JT797 L0250 L0313 7.2 10
b(a) 50 0 2 .6  0.237 1.553 .6966 1.09L6 .0423 L0591 6.0 10
(b) 8 1.553  .6966 1.0382 .03l1 .0343 6.8 10
(c) 8 1.8 .69 .9591 .0327 .0327 5.6 10
5(@) 50 0 2 .5 173.61L 1.484 .48 JThsk 0212 .0351 4.0 10
(b) 175 1.48L  .L8 JThh6 L0212 .0323 3.2 10
(c) 174 L.l U9 L7548 0205 .0323 3.2 10
6(a) 50 0 3 .9 2.039 2,904 .9158 1.27h6 .1061 L1061 9.6 10
(o) I 2.904  .9158 1.2453 .1043 L1075 1L.0 10
(c) 2 2.6 .89  1.1631 .0955 .0955 1h.L 10

7(a) 50 O 3 .8 5
(b) 2
(c) 2

3.5072 .8072 11,1019 .0557 0L82 6.4 10
3.5072 .8072 1.0750 .OL28 .062L4 10.0 10
2.9 .33 «9252 ,0339 ,L,0590 11.6 10



TABLE L.l (continued)

Sample n 8o K A 8, X T MV U2, Wy X2 cells
8(d) 50 0 3 7 2.92 3.0814 .7807 .663h .O12L L0127 2.4 10
(b) I 3.081L .7807 .6293 .0123 .0128 2.4 10
(c) N 2.9 .78 6736 .0121 L0123 2.4 10
9(a) 50 0 3 6  2.23 3.629 .5567 1.3340 .0798 .2177 5.6 10
(b) 35k 3.629 L5567 142530 L0732 1202 10.4 10
10(a) 50 O 3 .5 176,70 3¢6h 5479 9LOS .0353 L0776 6.4 10
(b) 178 3.6 L5479 L9541 .0350 .082L 4.0 10
(c) 178 3.8 Sh .957 .03L5 L0790 5.2 10
11(a) 50 0 L +9 177.11 3.024 L1071 .9998 .OLBO L0661l 5.6 10
(b) 175 3.024 ,1071 1.0123 .0459 .0522 6.} 10
(c) 175 3.7 .13 86L6 0366 .0386 10.0 10
12(a) 50 O L4 .8 170.28 L.139 .2378 1.2331 L0565 L0680 L. 10
(v) 16l L4139  .2378  .9486 .030L4 L0319 3.6 10
(c) 16l b3 2L .9305 .0299 .0328 L. 10
13(a) 50 O L4 .7 171.48 2.887 .2905 1.208L L0591 L1296 5.6 10
(b) 181 2.887 .2%05 1.,0846 .0LO8 .OL20 L.4 10
(c) 181 2.7 3 .9816 .0376 .0390 2.8 10

i(a) 50 0 L4 .6 2.425 3.905 U498 L7604 L0175 L0353 .8 10
(b) N 3.905 498 J7192 L0173 .0298 A 10
(c) L .51 7278 LOL70 .0277 8 10

3.567 .5391 1.086L L0515 L0530 6.4 10
3.567 5391 1,086L4 .0515 L0530 6.4 10
3.7 «52 1.0812 .,0505 .054L 6.4 10

15(a) 50 0 L .5 +989
(b) 1.
(c) 3
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TABLE L.4 (continued)

Sample n 6, K A 8, X I omv, U2y W, X2 cells
16(a) 50 0 5 .9 178.61 5.76L .1h52 1.2397 L0678 .3165 11.6 10
(b) 173 5.76L 1452 1.0097 .OLOO L1233 9.2 10
(c) 173 Sl A5 1,036 .0387 .1361 7.6 10
17(a) 50 0 5 .8 173.15 6.958 .1483 1.0150 .0L426 .07h2 8.0 10
(b) 176 6.958 .11483 ".8790 .0311 .0362 6. 10
(c) 176 7 .13 .82  .0301 .036L 92 10
18(a) S0 0 § .7  1.213 3.588  .6905 8773 .0290 .0355 7.2 10
(b) 5 3.588  .6905 7872 .0255 0582 5.2 10
(c) 5 3.3 .69 o76  .0235 .0520 L.y 10
19(a) 50 0 5 &6 L3 5.942 U608 1.0263 .OL479 L1093 1.6 10
() . 3 5.942 L4608  .993L4 L0473 1173 2.4 10
(c) 3 Se7 A7 1.0122 L0466 L1155 2.0 10
20(a) 50 O 5 .5 1.878 5.3254 U536 ..7792 .0209 L0310 L. 10
(b) 359 5.325L4 .h536  .7345 .0189 .0359 L.0 10
(c) 359 Se6 JLb 6997 L0175 L0347 L0 10



TABLE Lie5

- Bl SAMPLES 1 and 2 TREATED WITH B2 TECHNIQUES

Bl R N

Sample n Flot 0 X 8 % A mv, U2 w2,
1(a) 50 34 o0 1 Te633 2.709L  .5249 J7157 L.02C2 L0502
(b) - 5 2.7094  .5249 .7h37 .0196  .0200
(c) - 6 2.8 51 .6735 L0183 ,0192
2(a) 50 35 0 2 177.22 6.617h .5392 1.0678  .OLL42  .OLSO
(v) - 180 6,617 5392 1.,0636 0426  .2667
(c) - 180 6.0 .53 1.0079 .0L4OL .2612



. A
Nomogram - Ky versus K

Figure L.l
See pages Lk, U5 59
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CHAPTER V

CONCLUSIONS

5.1 Recommended Technique for Fitting Data to Distribution B2

Given €1, °**°, Op, suspacted to have unequally or equally weighted
modes 180° apart, the procedure of describing the déta by distributioﬁ
B2 and for improving the fit is as follows:

(a) Obtain 8, K, and A as in section 3.3

(b) Calculate U2, and compare these values with lower tail

significance points at the appropriate level for the given
sample size, O8mall values of U2n mean a good fit.

(¢) Plot Fofx) and Fp(x)

(d) Improve the fit by observing the plots in (¢) and varying

@oD according to section 2.)4 to find minimum U2n.

(8) Plot the results cbtained from (d) to seec if another shift of

location is required, as in B2 Sample 3.5 (compare plots 2l and

26).

5.2 Recommended "Quick" Technique for Fitting Data to Distribution B2

Given &y, °***,8, as above a quick procadure for obtaining initial

" estimates of A, K, and 6, is:
(a) Obtain B,y as in section 3.3 N
A A KD [T . .
(b) Obtain K either from (1) K = whers Kp is defined in

3430
section 4.3 or from {2) Figure L.l.
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(c) Obtain A, from section 3.9.

p

5.3 Best Goodness of Fit Statistic

Small values of 112n produced a rmuch tighter fit than did the
corresponding small values of /n V,. The Method of Minimum U2n
was therefore preferred to the Method of Minimum @ V,. Low values
of U2n almost always mean a good fit but the sample distribution
Fn(x) function and the estimated theoretical cuzﬁulative distribution
F(x) should be plotted as a confimation. For example the U%, value
of plot 24 is less than that of plot 26 yet plot 26 appears to produce

the better fit.

5.y Suggestions for Further Work

(a) For distribution B2 -~ to develop better estimators or to
improve those suggested.

(b) For distribution B2 -- to derive statistical tests concernming
the parameters A, K, and 6,.

(¢) To develop a technique of analysing unequally weighted
bimodal data with modes Y #180° apart.

(d) To develop a technique of treating data with morc than two

modes.,



BIBLIOGRAPHY

AGTERBERG, F.P. and BRIGGS, G. (L963) Statistical analysis of ripple
marks in Atokan and Desmoinesian rocks in the Arkoma Basin of East-
Central Oklahoma. J. Sed. Pet., V.33, p.393.

ANDERSON, T.W. and DARLING, D.A. (1952) Asymptolic theory of certain
"goodness of fit" criteria based on stochastic processes. Ann. Math.
Stato, V.23, p-193¢

BATNBRIDGE, R. and WATERMAN, T.H. (1957) Polarized light and the
orientation of two marine crustacea. dJ. Exp. Biol., v.3k, p.3L2.

BATSCHFELET, E. (1965) Statistical Methods.for the Analysis of Problems
~in Animal Orientation and certain Biological Rhythms. American
Institute of Biological Sciences Monograph.

BELLROSE, F.C. (1958) The orientation of displaced waterfowl in migration.
The Wilson Bulletin, v.70, p.20,

BREITENBERGER, E. (1963) Analogues of the normal distribution on the circle
and the sphere., Biometrika, v.50, p.8l.

CHAYES, F, (1949) Statistical analysis of two dimensional fabric diagrams:
in FATIRBAIRN, H.W. Structural petrology of deformed rocks. Cambridge,
Mass., iAddison-Wesley Press Inc. p.297-307.

CHAYES, F. (19511) Discussion: effect of change of origin on mean and
variance of two dimensional fabrics. Am. Jour. Sci., v.252, p. 567.

CHENOWETH, P.A. (1952) Statistical methods applied to Trentonian
stratigraphy in New York. Geol. Soc. Am. Bull., v.63, p.521.

CHRONIC, H. (1952) Molluscan fauna from the Permian Kaibab fomation,
Walnut Canyon, Arizona. Geol. Soc. Am. Bull., v.63, p.95

COURT, 4. (1952) Some new statistical techniques; in LANDSBIRG H.E{,
ed., Advances in Geophysics, v.l, New York, N.Y., Academic Pruss
Inco ] po—hSQ

CROWELL, JuC. (1955) Directional current structures from the prealpine
flysch, Switzerland. Geol. Soc. Am. Bull., v.66, p.1351.

CURRARY, J.R. (1956) The analysis of two-dimensional orientation data.
Jour. Geol., v.6l, p.117.




63

CUTCHIS, A.D. (1965) Statistical tests for orientation data in two
dimensions. Unpublished,

DAPPLES, E.C. and ROMINGER, J.F. (1945) Orientation analysis of fine
grained clastic sediments : A report of progress. Jour. Geol.,
v.53, pe.2Lb. '

DAUMER, K.; JANDER, R.; and WATERMAN, T.H. (1963) Orientation of the
" ghost~crab ocypode in polarized light. Zeits. vergl., Physiol,
v.h7, p.56.

DURAND, D. and GREENWOOD, J.A. (1958) Modification of the fiayleigh
tast for uniformity in analysis of two-dimensional orientation
data. Jour. Geol., v.66, p.229.

BATON, R.J. (193L4) The migratory movements of certain colonies of
herring gulls in Eastern North America. Bird Banding, v.5, p.70.

FISHER, R.A. (1953) Dispersion on a sphere. Proc. Roy. Soc. A, v.217,
pe295.

GOULD, E. (1957) Orientation in box turtles, Terrapene c. Carolina
(Linneaus). Biol. Bull., v.112, p.336.

GREENWOOD, J.A. and DURAND, D. (1955) The distribution of length and
components of the sum of n random unit vectors. Ann. Math. Stat,,
V026, pl233.

GRIFFIN, D.R. and GOLDSMITH, T.H. (1955) Initial flight directions
of homing birds. Biol. Bull., v.108, p.26L.

GUMBEL, E.J. (1954) Applications of the circular nomal distribution.
_t_]._c &u Sta‘t’o ASSOC., Voh9, p.2670

GUMBEL, E.J.; GREENWOOD, J.A.; and DURAND, D. (1953) The circular
nomal distribution : Theory and tables. J. Am. Stat. Assoc.,
Vohs, 1.).131-

HARRISON, P.W. (1957a) A clay-till fabric 'its character and origin.
Jour. Geol., v.65, p.275.

HARRISON, P.W. (1957b) New technique for three-dimensional fabric analysis
of $ill and englaci.il debris containing particles from 3 to 40 mm.
in size. Jour. Geol., v.65, p.98.




6L

JAHNKE, E. and EMDE, F. (1945) Tables of Functions with Formulae and
Curves, Dover,

KAIMUS, H., (1958) Orientation of animals to polarized light. Nature,
VolBh, p0228

KAURANNE, L.K. (1960) A statistical study of stone orientation in glacial
till. Bulletin de la Commission Geologigue de Finlande. no.188, p.87.

KENDALL, M.G. and STUART, A. (1961) The advanced theory of statistics,
v.2, Lond., Griffin,

KIERSCH, G.A. (1950) Small-scale structures and other features of Navajo
sandstone, northern part of San Rafael.Swell, Utah. Am. Assoc.

EE.E. GEOl., v.3h, po923.

KRUMBEIN, W.C. (1939) Preferred orientation of pebbles in sedimentary
deposits. Joure. Geol., v.47, p.673

KRUMBEIN, W.C. (1940) Flood gravel of San Gavriel Canyon, California.
Geol. Soc. Bull., V.51, pe639.

KRUMBEIN, W.C. Cl9h2) Flood deposits of Arroyo Seco, Los Angelos County,
California. Geol. Soc. Am. Bull., v.53, p.1355.

KRUMBEIN, W.C. (1952) Applications of statistical methods to sedimentary
rocks. J. Am. Stat. Assoce, v.17, p.5l.

KUIPER, N.H. (1960) Tests concerning random points on a circle. Proc,
Koninkl. Nedorl. Akad. van Wetenschappen, Series A, pe.333.

LAND, L.S. (196L) Eolian cross-bedding in beach dune enviromment Sapelo
Island, Georgia. dJour. Sed. Pet., v.3lL, p.389.

LOOFF, K.M. and HUBERT, J.F. (196}4) Sampling variability of paleocurrent
cross-bed data in the post-myrick station channel sandstone
(Pennsylvanian), fissouri. Jour. Sed. Pet., v.3h4, p.77hL.

MARSHALL, AW, (L958) The small-sample distribution of ni’p. im. Math
Stato, V029, p.307.

McKEE, E.D. (1940) Three types of cross lamination in Paleozoic rocks
of Northern Arizona. Am. Jour. Sci., v.238, p.81l.




6l

JAHNKE, E. and EMDE, F. (1945) Tables of Functions with Formilae and
Curves, Dover,

KAIMGS, H. (1558) Orientation of animals to polarized light. Nature,
v.18l, p.228 E—

KAURANNE, L.K. (1960) A statistical study of stone orientation in glacial
till. Bulletin de la Commission Geologigue de Finlande. no.188, p.87.

KENDALL, M.G. and STUART, A. (1961) The advanced theory of statistics,
Ve2, Lond., Griffin.

KIERSCH, G.A. (1950) Small-scale structures and other features of Navajo
sandstone, northemn part of San Rafael,Swell, Utah. Am. Assoc.
Pet. Geol., v.3L, p.923.

KRUMBEIN, W.C. (1939) Preferred orientation of pebbles in sedimentaﬁy
deposits. Jour. Geol., v.L7, p.673

KRUMBEIN, W.C. (1940) Flood gravel of San Gavriel Canyon, California.
Geol. SOC.V Bullo, VQSl, p0639o

KRUMBEIN, W.C. Cl9h2) Flood deposits of Arroyo Seco, Los Angelos County,
California. Geol. Soc. Am. Bull., V.53, p.1355.

KRUMBEIN, W.C. (1952) Applications of statistical methods to sedimentary
rocks. J. Am. Stat. Assoc., V.17, p.5l.

KUIPER, N.H. (1960) Tests concerning random points on a circle. Proc.
Koninkl, Nedorl, Akad. van Wetenschappen, Series A, p.383.

LAND, L.S. (196L) Eolian cross-bedding in beach dune environment Sapelo
Island, Georgia. Jour. Sed. Pet., v.3L, p.389.

1OOFF, K.M. and HUBERT, J.F. (196L) Sampling variability of paleocurrent
cross~bed data in the post-myrick station channel sandstone
(Pennsylvanian), ilissouri. Jour. Sed. Pet., v.3L, p.7Th.

MARSHALL, AW, (1958) The small-sample distribution of mPn. im, Math
State, ve29, p.307. T

McKEE, E.D. (1L940) Three types of cross lamination in Paleozoic rocks
of Northern Arizona. Am. Jour. Sci., v.238, p.811.




65

OFDYKE, N.D. and RUNCORN, S.K. (1960) Wind direction in the western
Uniged States in the late Paleozoic. Geol. Soc. Ame Bulle, V.71,
Pe959. . .

PEARSON, K. (1894) On the dissection of frequency curves. Philosophical
Transactions, Royal Society, 1854, p.7l.

PEARSON, K. (1900) On the criterion that a given system of deviations
from the probable in the case of a correlated system of variables
is such that it can be reasonably supposed to have arisen from random
sampling. - Phil. Mag., v.50, pel57.

PEARSON, E.S. and HARTLEY, H.O. (1966) Biometrika Tablss for Statisticians,
vel, Third Edition, Cambridge University Press.

PEARSON, E.S. and STEPHENS, i.A. (1962) The goodness of fit tests based
on'W'2n and U2n° Biometrika, v.50, pP.77.

PELLETIER, B.R. (1958) Pocono poleocurrents in Pennsylvania and
Maxylando Geol. Soce. éE’ Bull., Vr69’ p010330

PINCUS, H.J. (1953) The analysis of aggregates of orientation data in
the earth sciences. Jour. Geol., V.61, p.4B2.

PINCUS, Hod, (1956) Some vector and arithmetic operations on two-
dimensional orientation variates with applications to geologic data.
Jour, Geol., V.6li, pe533.

PRATT, J.G. and THOULESS, R.H. (1955) Homing orientation in pigeons in
relation to opportunity to observe the sun before release., J. Expl.
Biole, V.32, p.lL0.

REICHE, P. (1938) An analysis of cross lamination. The Coconino
Sandstone. J. Geol., VL6, p.905.

SCHMIDT-KOENIG (1963) On the role of the loft, the distance and site
of release in pigeon homing (the "cross-loft experiment). Biol,
Bull., v.125, p.l5L.

SWUIRNOV, N.V. (1936) Sur la distribution de We. C. Re Acad. Sci., Paris,
V0202, p.hh9.

STEINMETZ, J. (1962) Analysis of Vectorial Data. J. Sed. Pet., v.32,p.801.

STEPHENS, M.A. (1962) WThe statistics of diections: The von Mises and
Fisher distributions®. Ph.D. thesis, University of Toronto, 1962,




66

STEPHENS, M.Ae (19632) Random walk on a circle. Biometrika, V.50,
p.385. - ’

STEPHENS, M.A._él963b) The distribution of the goodness of fit
statistic U4, I. Biometrika, v.50, p.303.

STEPHENS, M.A. 5196&) The distribution of the goodness of fit
statistic U4, II. Biometrika, v.51, p.393.

STEPHENS, M.A. (1965) The goodness of fit statistic Vp: distribution
and significance points. Biometrika, v.52, p.309.

STEPHENS, M.A. (1966) The analysis of circular distributions. Unpublished.
STEPHENS, M.A. (1967) Tests for the dispersion, and for the modal vector,
of a unimodal distribution on a sphere. To appsar in Biometrika,
V.5, June 1967.

TANNER, W.F. (1955) Paleographic reconstructions from cross-bedding
studies. Am. Assoc. Pet. Geol. Bull., v.39, p.2L71.

TUKEY, J.W. (1954) Chi-squire test of orientation, comment no.l-A:
Earth Sciences Panel Review Group CSPS - ASA, unpublished
communication.,

VOWLES, D.M. (1954) The orientation of ants. Jo Exp. Biol., v.31, pe3Ll.

WADELL, H. (1936) Volume, shape, and shape position of rock fragments
in openwork gravel. Geografiska Annaler, v.18, p.Th.

WATSON, G.S. (1961) Goodness-of-fit tests on a circle. Biometrika,
V.hB, po109.

WALTSON, G.S. (1962) Goodness-of-fit tests on a circle II. Biometrika,
v.li9, p.57.

WATSON, G.S. and WILLIAMS, E.J. (1956) On the construction of significance
tests on the circle and thesphere. Biometrika, v.43, p.3Lh.

WEST, R.G. and DONNER, J.J. (1956) The glaciation of east anglia and
the east midlands: a differentiation based on stone orientation
measurcments of the tills. Quart. Jour. Geol. Soc. London, v.l1l2,

p.69.




APPENDIX

(l)PlotSoo.oooooooocooo---oo1-35
(2) Data . . . . L . . . L . . . L L . L 4 [ ] . L [ ] Pages A—l to A-6

(3) TAD1ES &« o« ¢« o « o s ¢ o o 6 ¢ o o 06 0 o o @ PageSA—'?tOA—lo



- Page 16 ‘Table 2il

r

_6Q 

330 3

| | '
150 léU 210 240 270 300

|
120




.1=*ag.é 16 Ta‘blelz;l C -

150 180 210 240

120



C ovsemsas
17 Taezd

300

350 -

330

180 210 240 270

1_50

60

30

‘1._0



| Fagelf Meble 2.l

1.0

60 90 120 150 180 210 240 270 300 330

30



P?'.gev 18 Table 2.1

a0

150 180 210 240 270 300 330 360

120

60

30




ON SAMPLE 2.6

'PQage 18 Table. é.l

| | | A 1 } | '
150 180 210 240 270 300 330 360

|
120

30

1.0



CN SAMFLE 2.7

Pages 18;19 Table 2.1

R B L e B A e s e e e
R, i FOtR 2 T PSRRI RN

| | t | AEREET B
210 240 270 300 330 360

{
180

l
150

l_
120

1.0



30




Page 30° Table 3.2

1.0

60 90 120 150 180 210 240 270 300 330 360

30



0 Page 30 Table 32

360

330

| : S |
150 180 210 240 270 300

120




B2 SMFLE 3l(a)

Page 32 Table 3.3

1.0

D
m v

60 a0 120 150 180 210 240 270 300 330 

30




| omeger 3.7 TWble3ss o

N

360

|
330

!
300

210

1
2u0

1 1 i
150 180 210

i
120

80




B2 SMFLE 3.1(c)

| Pa8632 T&‘ble_ 3.3 :

300, 330" 360, :

270

1 | g
120 150 180

30




| B2 SIMPLE 3.2(a)
Pages 32,33 Table 3.3

Cometw

| 1 ! | | | | :
150 180 210 240 270 300 330 360

!
120




B2 SAMPLE 320)

 Pages 32,33 Table 3.3

150 180 210 240 270 300 330 360

|
120

1.0



B2 SWPLE3.2(c)  Hlot16
Pages 32,33 Table 3.3

50 S0 120 150 180 210 240 270 300

30



o omsmE320) . Fotl? |

 Pages 32,33 Table 3.3 . R

330 -

-;-,L
240 270 300

210

180

i
150

!
120




B2 SMFLE 3.3(a) -
Pages 33,3} Table 3.3

: p]_otlg .. :

ﬁ\ .

| | | ! ! L |
150 180 210 240 270 300 330 360

|
120

1.0



B2 SAMPLE3.3(b) .
‘Pages 33,34 Table 3.3

 Rot 1y

330

360 -

60 a0 1200 150 180 210 240 270 300

30



)

B2 SANFLE 3.3(c)

‘1Vr“pagée.33,3u»*Tab;e.3,3"

" Plot. 20

60 90 120 150 180 210 240 270 300 330-360

30



e
Page 3\ Table 3.3 “ .

o ometa

! | | ! | 1 |
150 180 210 240 270 300 330

|
120

1.0



B SMELE3A®)
. Page 3 Table 3.3

360

..:
330

| ! ! | !
150 180 210 240 270

|
120

1.0




B2 SAMPLE 3.5(a)

Pages 34,35 Table 3.3

Plot. 23

| 1 | { 1 1 |
150 180 210 240 270 300 330 360

!
120

‘1.0



B2 SAMPLE 3.5(Db)

Pages 3,35 Table 3,3

Flot 24

570

330 360

300

60 90 120 150 180 210 240

30



B2 SAMPLE 3.5(c)
Pages 34,35 Table 3.3

Flot 25 .

1 ) I ' | I )
150 180 210 240 270 300 330 360

1
120

1.0



| B2 SKMPLE 3.5(d)

© Pages 3,35 Table 3.3

Fot 26

240

1
180

150

30

360

300

!
270

!
210

120

: .

!
330



B2 SAMPLE 3.6(a)

Pages 35,36 Table 3.3

_Plot 27

| 1 1 1 } | |
150 180 210 240 270 300 330

t
120

1.0



B2 SAMPLE 3.6(b)
Pages 35,36 Table 3.3

Flot 28

1 i | ] | | | '
150 180 210 240 270 300 330 36U

|
120

1.0



B2 SAMPLE. 3.6(c)

Pages 35,36 Table .

Flot 2§

1.0

60 a0 120 150 180 210 240 270 300 330 36U

30



B2 SAMPLE 3.6(d)

Pages 35,36 Table 3.3

Flot 30

360

!
330

1 i | 1 1 1
150 180 210 240 270 300

1
120




"'B2 SAMPLE 3.6(e)
Pages ‘35;36 Table 3.3

Plot 31

U0

1.0

300 330 360

270

60 a0 120 150 180 210

30



B2 SAMPLE 3.7(a)
Pages 36,37 Table 3.3

Plot 32

330

1.0

360

60 g0 120 150 180 210 240 270 300

30



B2 SAMPLE 3.7(Db)

Pages 36,37

Table 3 . 3

Piot 33

-1

360

60 a0 120 150 180 210 240 270 300 330

30



B SAMPLE 3.1 ~ B2 TEGHNIQUES APELIED

: .Pa.ge h8 V 'M‘Ta-"‘xn)le: h.S

-

1.0

| Plot 34

Q

(]
D)

EQ a0 120 150 180 210 =240 270 300 330

30



Bl SAMPLE 3.2 - B2 TECHNIQUES APPLIED  Flot 39

Page 48 = Table 4.5

330

300

270

240

150 = 180 210

120

60

1.0



Sample 2,1 Page 16
Table 2,1

Sample 2.2 Page 16
Table 2,1

Sample 2.3 Page 17

Table 2.1

Sample 2.l Page 17
Table 2.1

Sample 2.5 Page 18
Table 2.1

DATA FROM RESEABCH PAPERS

161
151
135

127
137
1Lk

25
N
38

100
110
113
135
135
140

180
190
190
196
200
205
210
225
230
245

75
80
90
90
92
95

100

165
90
145
16
232
L9

140
155
165
165
169
180

250
250
253
254
254
255
256
261
270
27T

103
110
110
115
120
125
125

180
124

-11
-33

180
180
180
180
180
180

280
290
290
305

135
140
140
140
143

160

189
206
209
210
21l
215

165
175
180
180
195
195
315

Page A~l

225
226
230
235
2L5
250

320

3ko

255
255
260
260
260
260

270
270



Bl Sample 3.1 Page 30
Table 3.2

Bl Sample 3.2 Page 30
Table 3.2

Bl Sample 3.3 Page 30
Table 3.2

Bl 1ONTA CARLO SAMPLES

3.7182

541026 .

5.7003

9.6334
14.3539
16,0266
23,4053
36,4892
39.6699
46,7687

1.1258
1.8580
111698
1.7939
6.6450
6,8921
8.3440
9. 1477
12,6692
21,188l

L7572
1.5733
2.3712
3.3255
5.9681
7.6849

10.3887
13,0399
14.0063
18.9332

56.9236
62.4757
6649130
71,0545
TL.566)
105.8336
117.2761
130.2958
155.5369
167.3148

2l.,7522
27.4391
29.5057
349770
139.2687
142,548l
143,.3416
143.5618
1,8.7608
150.0679

21142832
25.5807
28,5911
28.8)13
h7.0242
100.7673
162.0068
164.8599
168.5845
169,374k

167,616
168.2302
172.5338
173.1626
18L.2l2L
185.3733
185.4736
185.6501
194.5911
196.4118

155.6367
157.3156
163.38L8
163.9545
165,0068
171.2823
172.2442
177.0821
183.5740
183.6519

169.6922
171.4L582
173.3347
177.8303
177.8832
178.3473
181.53334
181.4691
182.9752
18L.122)

Page A-2

197.1887
203.5842
212,1515
213.3146
222.1545
223.2531
22);,3081
24845739
281.8282
309.1716

184.3212
184.88

187.6001
188, 6241
190,295)
191.9801
198.0043
199.5030
202.0601
218.6103

18L.2339
185.8403
188.0936
191.3320

119343874

197.01.09
199.9409
202. 7441
321.3066
325.333L

319.9494
320, 6022
326.,5602
338.0818
338.8897
340.0581
342.3268
353.1798
35L. 4481
356.9899

223,7235
316.4911
319.3234
322.2319
328.2115
340.5395
340.6692
345. 4194
350.5906
359.8215

328,6209
338.14501
3Lk. 9509
345.7968
346.0253
354.8917
355.3690
356.5232
359.0003
359.2711




DATA FROM RESEARCH PAPERS

B2 Sample 3.1 Page 32
Table 3.3

B2 Sample 3.2 Page 32,33
Table 303

12
12
12
20
22
26
26
26

-156
-145
~137
=13l
-123
~122
-117
=116
~110
-109
-103
- 52
- 75
- h]_
I ]_7
- 10

52
56
60
77
131
165
182
193
206
213

22l

- 227

246
295
312
3Lk
347
350
352
355

Page A-3

357




Page A-lL
DAT4A FROM RESEARCH PAPERS
B2 Sample 3.3 Page 33 8 134 158 2L2 309
Table 3.3 36 135 159 256 313
77 136 160 259 31h
82 136 164 261 31
8y . 136 173 262 - 314
92 137 175 271 314

104 138 176 272 307
108 138 179 275 317

110 138 182 286 319
110 139 186 288 322
113 ph] 189 29) 328
115 143 198 297 332
16 143 199 300 332
117 1Lk 203 302 339
120 145 203 302 340
121 152 205 303 3l
124 15} 20 305 342
127 155 1L 306 343
127 156 228 307 343

128 156 229 308 356

B2 Sample 3.4 Page 344 0 104 205 255 286
Table 3.3 L 109 207 257 292
L 109 21l 257 297
5 113 215 258 298
14 115 218 259 299 .
20 118 229 260 299
2l 120 229 261 304
26 121 234 264 305
i 127 23l 26l 308
L7 131 236 267 311
55 138 237 268 312
61 145 239 269 31y
63 1ho 242 271 315
65 169. = 242 272 316
67 189 2L5 272 317
Tx 193 2L6 274 320
77 19), 2h7 277 321
92 198 2L8 278 322
ol 201 251 281 353

100 201 254 285 358

357




DATA FROM RESEARCH PAPERS

B2 Sample 3.5 Page 34,35
Table 3.3

B2 Sample 3.6 Page 35,36
Table 3.3

CN Sample 2.6 Page 18
Table 2.1

13
15
16
17
22
25
27
31
33
3L

L3

Lk
52
53
56
58
62
63
7h
4

13
25
30
3
39

59
75
86
88
110
116
136
146
159

76
19
87
88
100
109
123
128
143
L9
157
162
166
167
168
172
180
188
189
192

176
184
196
201
205
206
206
213
230
230
236
240
260
263
265
268

192
194
199
203
203
208
211
212
216

218

219
221
222
222

225,

226
227
234
234
236

271
273
278
280
28l
285
294
300
302
315
317
323
32}
32l
325
328

Page A-S

329
332
334
340
3k
3Ll
3L5
3L6
352
356

277
278
284
286
289
291
292
297.
301
307
308
310
313
31h
315
318
320
320
335
355




Page A~6

DATA FROM RESEARCH PAPERS

B2 Sample 3.7 Page 36,37 0 L3 252 317
Table 3.3 g L L6 28) 325
CN Sample 2.7 Page 18,19 6 90 288 336
Table 2.1 7 105 290 353

26 118 292

27 123 295

33 237 300

3L 251 308
35 251 310



=

Page A-T7
TABLE A-l1 (see page 38)

<
=
<
=
<

* L . ® [ d . . .
W~ VLE W o -

. ® @ e & & s & & ¢ © o © o
~NNoVIE WO HOVOONONMIETWNHOWOW OOV WD H OV

WWWWWWWWNONNORNPONNNONNHHERR RS R

549940 3.8 .3125 75 1436
L.6151 3.9 3027 7.6 .1la5
3.2582 Ll .2848 7.8 .1376
2.8335 Le2 2767 7.9 .1357
2.L947 L3 «2690 8.0 .1339
2.2163 Lol +2618 8.1 1321
1.9827 L5 2549 842 .1304
1.78L0 L6 .2L48L 8.3 .1287
1.6131 Lot 2422 8.1 1271
1.4650 4.8 «236} 8.5 .1255
1.3358 Le9 .2308 8.6 1239
1.2225 5.0 .2255 8.7 122}
1.1228 5.1 .2204 8.8 .1209
1.0346 542 .2156 849 .1195
« 9564 5¢3 .2109 9.0 .1180
.8869 Sl «2065 9.1 1167
8249 5.5 .2023 9.2 .1153
. 7694 546 .1982 9.3 <110
<7197 5e7 .1943 9.L 1127
6751 5.8 .1905 9.5 J11L
.63l 5.9 .1869 9.6 1102
.5985 6.0 .1334 9.7 © .1090
.5656 6.1 .1801 9.8 .1078
.5358 6.2 L1769 9.9 .1067
.5086 6.3 .1738 10.0 1055
1839 6.l .1708 11.0 .095
4612 6.5 +1679 12.0 L0871
«LiLos 6.6 .1651 13.0  .0801
1215 6o 7 1621 1L.0 0742
.L0Lo 6.8 «1598 15.0 .0690
.3878 6¢9 .1572 16.0 .06L6
.3728 7.0 .1548 17.0 0606
«3590 7ol .152] 18.0 <0572
3461 72 .1501 19,0 .05k1
331 7.3 1479 20.0 .0513
$3229 T4 1457



.0395
.0392
.0389
«0387
0038h‘
.0382
.0382
.0381
.0381
.0380
.0379
»0379
0379

A2

TABLE

U2n Lower Tail Significance Points

Significance levels expressed as percentages
1

10

" .03L4
.0341
.0339
.0336
.0335
.033)

" .0334
.0333
.0333
.0332
.0332

5

.0295
0291
.0288
.0286
.0282

.0280

.0279
.0278
<0277
0277
0276
0275
.0275

2.5

.0257
025}
.0252
«0250
0215
0242

L0240

.0239
.0239
.0238
.0237

.0236"

.0236

Page A-8

.0220
.0218
.0216
.0215
0209
.0206
.020L
.0203
.0202
.0201
.0200
.0199

.0199"

2
0200
.0198
.0196
.0189
.018)
.0182
.0181
.0181
LOLT79
.0178
.0L78



A5

+905
913
W17
.923
<926
«929
<932
.934
»936
«937
L] 939
.40
oLl
.9L2
[ 3 9)43
«Shly
-9Llk
945

<973

v V, Lower Tail Significance Points

TABLE A-3

Page A-9

Significance levels expressed as percentages

10

857
86l
.870
874
877
.830
.883
.885
.887
.889
: 0890
891
.892
-89
.895
396
.896
.897

<9275

2

L] 7 91
o798
802
[ ] 807
.810
813
815
[ ] 817
819
.821
.822
.823
.82}
.826
.827
.828
.828
.829

.8613

2.5

JTU2
L] 7’-‘9
<754
757
«760
. 763
'Y 765
. 766
. 768
.769
. 771
73
773
. 77’4
775
776
ST

.8095

1

«69L
« 696
« 702
«703
. 706
. 709
.72
<71l
.716
«TL7
.79
. 720
721
. 722
. 723
.72
. 72h
725

- 7550




15

1.448
1.460
1.469
1.476
1.484
1.1487
1.490
1.492
1.494
1,496
1.497
1.499
1.500
1.501
1.503
1.504

© 1.509

1.537

J0 Vp Upper Tail Significance Points

TABLE A-}

Page A-10

Significance levels expressed as percentages

10

1.532
1.546
10556
1.562
1.567
1.571
1.574
1.576
1.579
10582
1.58Y4
1.585
1.587
10589
.1.589
1.590
1.590

1.620

5

1.650
1.665
1.673
1.68)4
1.690
1.695
1.698
1.701
1.703
1.705
la?Oé
1.707
1.709
l.711
1.712
1.7k
1.715
1.716

1.7h47

2.5

1.760
1.776
1.789
1.797
1.803
1.808
1.812
1.815
1.818
1.820
1.822
1.824
1.825
1.826
1.827
1.829
10830
1.831

1.862

1

1.887

1,908
1.922
1,930
1.936
1.90
1.945
1.949
1.952
1.955
1.957
1.959
1.961
1,962
1.963
1.965
1.966
10967

2,001

1.978

1.998

2,010

-2.022

2.029
2.03}
2.038
2.0L2
2.045
2,047
2.049
2,051
2.053
2.055
2.056
2.058
2.059
2.0&

2.098



