AN AUTOMATED VISION SYSTEM USING A FAST

2-DIMENSIONAL MOMENT INVARIANTS ALGORITHM

July, 1987

McGill Research Centre for Intelligent Machines Robotic Mechanical System Laboratory Department of Mechanical Engineering McGill University, Montreal

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Engineering.

Copyright©1987 by Marwan F. Zakaria

Title

Abstract

Abstract

Moment invariants can be used to describe features of object, so as to reduce ambiguity and difficulty of an recognition with a computer vision system. With contiguous images, certain higher order pixel, or picture element, moments. have been shown to be invariant with respect to translation, rotation, and scaling of the image. However, due to the iterative nature of the required calculations and to computational speed limitations, these moments cannot be computed in realtime, e.g., fast enough to serve the purpose of many industrial processes. To overcome this limitation a novel algorithm, the has *I* been devised and applied to a typical Delta Method, process. This simple, fast algorithm has_been implemented in a and · verified video/personal computer subsystem with experimental results using textile garment components, intended assembly. In this, and for many for *sautomated* other applications the Delta Method promises to greatly reduce the time complexity of the processing required to identify an object.

Résumé

<u>Résumé</u>

Les invariants de moment peuvent être utilisés pour décrire les caractéristiques d'un objet, de façon à réduire les ambiguités et les difficultés de reconnaissance d'un système de vision par ordinateur. Avec des images contigues, certains moments de pixel, ou élément d'une image, d'un ordre supérieur sont invariants par rapport à la translation, la rotation et Cependant, en 'raison de l'image. les dimensions des restrictions sur la vitesse des calculs, ces moments ne peuvent être calculés en temps réel, comme par exemple, d'une façon assez rapide pour satisfaire les besoins de plusieurs procédés industriels. Afin de surmonter cette restriction, un nouvel algorithme, la Méthode Delta, a été conçu et appliqué à un procédé typiqué. Cet algorithme, simple et rapide, a été introduit dans un sous-système vidéo/ordinateur personnel et vérifié expérimentalement en utilisant des pièces de tissus de vêtements devant être assemblées par automatisation. Dans cette application, comme dans plusieurs autres, la Méthode Delta promet de réduire considérablement la complexité du problème associé à la durée des calculs requis pour identifier un objet.

Acknowledgements

-. .

Acknowledgements

am very indebted to both Prof. Louis J. Vroomen and Prof. Paul J. Zsombor-Murray, my supervisors. They were not only the inspiration behind this work, but were of tremendous assistance in guiding and helping me throughout this thesis research. Their encouragement and constructive criticisms helped me enjoy this work and accomplish it with pride. I shall be eternally grateful to them for their help.

Hania A. Zakaria, my wife, for her tremendous love and moral support throughout my scholastic years at McGill.

All the members of our Robotic Mechanical System Laboratory, and especially Louis C. Vroomen for whom it seems there is no unsolvabale software problem.

iv

Table of Contents

Table of Contents

	· · · · · ·	,	· _	ľ	
,	Abstract		• • • • • • • • • • •	• • • • • • • • • • •	····
-	Resume	*****	₩	• • • • • • • • • • •	iii
*	Acknowledgeme	ents	W	• • • • • • • • • • • •	iv
	Table of Cont	ents.:	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • •	· · · · · · · · · · · · · · V
	Table of Figu	ires		• • • • • • • • • • •	vii
	Table of Symb	ol s	•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • •	ix
	-	,		*	· .
ò	Chapter 1	INTROD	UCTION AND T	THEORY	1
	1.1 Introduct	ion			1
•	1.2 Theoretic	al Considerat	tion of Mome	ent Invariar	nts 2
	· 1.2.1 A	Uniqueness 1	Theorem Conc	erning Mome	ents3
	√ 1.2.2 T	he Moment Ger	nerating Fun	ction	
	1.2.3 C	entral Moment	:s	••••••••••	
	1.2.4 F	undamental Th	neorem of Mo	ment Invari	.ant9
2 2	1.2.5 T	he Normalized	d Central Mo	ments	
-	1.2.6 T	he Seven Mome	ent Invarian	، ts	
			·	<i>(</i> .	• • '
` ,	Chapter 2	RELEVAL	NT LITERATUR	E SURVEY	
3		4 5			
,	Chapter 3	AN ALTH	- SRNATIVE APP	ROACH:	· · · · ·
-	• •	THE DE	LTA METHOD.		
	3.1 Introduct	ion	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , ,	
1	3.2 Detailed	Derivation of	the Algori	thm	
	· .		2		
	Chapter 4	DESCRIE	TION OF THE	IMAGING SY	STEM 38
	4.1 Introduct	ion			
	4.1.1 Ex	xperimental S	et-Up	• • • • • • • • • • •	
	4.2 The IDETT	X System	-		
-	*4.3 System Har	rdware		••••••	
-	4.3.1 Th	ne IDETIX Cam	era		
•			۔ ۔ ۔ ب	i	,
ţ	· 4.J.Z II	le Optickam			
in in	4.3.2 II 4.3.3 Th	ne OptickAM ne 63701 Micr	ocomputer	· · · · · · · · · · · · · · · · · · ·	·····42 ····44

.

Table of Contents

۵

١

4.4 System Software 44
4.5 Testing Environment 45
4.6 Lens Selection and Sample Calculations
4.6.1 Lens Selection
4.6.2 Sample Calculations
Chapter 5 APPLICATION SOFTWARE
5.1 The Straight-Forward Approach Program
5.2 The Delta Method Program 50
5.3 Complexity Analysis
5.3.1 Space Complexity54
5.3.2 Time Complexity
· · · · · · · · · · · · · · · · · · ·
Chapter 6 DISCUSSION AND RESULTS
6.1 Testing Results
6.2 Discussion of Results 88
- 6.2.1 Errors, Due to Hardware and the Edge Enhancement
Solution
6.2.2 Description of Results and their Sensitivity92
6.3 Criteria for Accepting a 'GOOD' Object
Chapter 7 LIGHTING CONSIDERATIONS
7.1 Introduction
7.2 Front Lighting
7.3 Back Lighting
Chapter 8 CONCLUSION
REFERENCES
APPENDIX I - LISTING OF THE FORTRAN-77 PROGRAM 100
APPENDIX II - LISTING OF THE TURBO PASCAL PROGRAM 103
APPENDIX III - LISTING OF THE DELTA METHOD PROGRAM 107

۰.

١

yi

Table of figures

Ľ

Table of Figures

•?

	Figure 2.1 Examples of "similar" patterns	
	Figure 2.2 Two Hebrew characters, d and r, differ only	
	in the sharpness of a corner	
	Figure 2.3 Sample contours	
	(a) input (derived from handprinted A's)	
	(b) normalized 17	
	Figure 2.4 Superimposed patterns	
	Figure 2.5 Six examples of simulated ship images 19	
	Figure 2.6 Typical images obtained with the experimental \bullet	
	image acquisition system	
	Figure-2.7 Rotation invariant error of a square image due	
	, to digitižation	
	Figure 2:8 Error due to numerical approximation	
	Figure 2.9 A 2-D digital filter structure for generating	
	linear combination of moments of an image29	
	Figure 2.10 (a) Circuit diagram of one-bit CMOS	
	transmission gate full adder used in column	
`	filters.	
	(b) Circuit diagram of the dinamic two-phase-	
	clock register.	
	٠(c̯) Block diagram of the moment generator's	
	timing circuit.	
	(d) Photomicrograph of the moment generator	
<u>.</u>	chip	
V	Figure 3.1 The Delta method	
	Figure 4.1 The Integrated Vision System	
	Figure 4.2 Hardware Block Diagram	
	Figure 4.3 Camera Head Drawing 41	
	Figure 4.4 IS256 OpticRAM whole chip	
	Figure 4.5 IS256 OpticRAM Topological Information 43	
	Figure 4.6 Simple Lens Equations	

vii

Table of Figures

. 7

a

3

١

Figure 5.1 The Information Displayed by The Delta Method
Interactive Program
Figure 5.2 The Time Complexity Ratio
Figure 6.1 Image # 1
Figure 6.2 Image # 2
Figure 6.3 Image # 3
Figure 6.4 Image # 4
Figure 6.5 Image # 5 62
Figure 6.6 Image # 663
Figure 6.7 Image # 764
Figure 6.8 Image # 8
Figure 6.9 Image # 9
Figure 6.10 Image # 10 67
Figure 6.11 Image # 11
Figure 6.12 Image # 12 69
Figure 6.13 Image # 13
Figure 6.14 Image # 14 71
Figure 6.15 Image # 15
Figure 6.16 Image # 16
Figure 6.17 Image # 17
Figure 6.18 Image # 18
Figure 6.19 Image # 19
Figure 6.20 Image # 20
Figure 6.21 Image # 21
Figure 6.22 Image # 22
Figure 6.23 Image # 23 80
Figure 6.24 Image # 24
Figure 6.25 Image # 25 82
Figure 6.26 Image # 2683
Figure 6.27 Image # 27
Figure 6.28 Image # 28
Figure 6.31 The Rotated Image as the Delta Method sees it
before Edge Enhancement

١ ،

viii

Table of Symbols

Table of Symbols

a · : vertical size of an object in mm.
b : horizontal size of an object in mm.

^Dh

: the percentage of the smallest horizontal distance to be detected.

 D_{v}

The percentage of the smallest vertical distance to be detected.

f(x,y) : density (or intensity) distribution function.

f(i,j) : discrete intensity distribution function.

 $g(r, \theta)$: intensity distribution function in polar coordinates.

J : The Jacobian of a transformation.

mpg : 2-D moments of order (p+q).

mpg,i : the contribution of row i to the nominals mpg.

,m_{pqr} : 3-D moments of order (p+q+r).

M : angular and radial moment invariant.

м*

: angular and radial moment invariant, invariant with respect to size.

M(u,v): 2-D moment generation function of f(x,y).

R_h : the horizontal resolution of the object.

R_v : the vertical resolution of the object.

R _ : the overall resolution (accuracy).

 $S_{\mathbf{R}}(\mathbf{x},\mathbf{y})$: rectangular sampling function.

 $S_{H}(x,y)$: hexagonal sampling function.

 X_{i} : the X-coordinate of the first pixel in row i. Y_{i} : the Y-coordinate of the first pixel in row i.

ix

'. Table of Symbols

4

1

١

~			
	α	:	weight of the algebraic invariant.
	β	;	constant of the translation matrix.
	r ,	:	constant of the translation matrix.
	δ	*:	the number of chained pixels in row i.
•	Δ.	:	determinant of a linear transformation matrix.
	Ωx .	:	sampling intervals.
	ΔY	:	sampling`intervals.
• •	η _{pq}	:	pormalized central moments of order (p+q).
	$\Phi_r(k,g)$:	radial and angular moment.
-	μ _{pq} [:]	:	central moments of order (p+q).
•	σ	:	constant of the translation matrix.
	T		constant of the translation matrix.
/	φ	:	moment invariant.

x

Ş

1.1 Introduction

Chapter 1

INTRODUCTION AND THEORY

1.1 Introduction

In the past two decades, there has been a considerable amount of work devoted to develop a computer-controlled robot with hands, eyes, and ears, or simply an intelligent robot. The demand for such a general purpose manipulator has originated primarily from the need to automate industrial processes, to explore and exploit environments hazardous to life, to handle radioactive and other dangerous materials, and to aid the handicapped and their therapists.

An intelligent robot might consist of a manipulator that is integrated with a vision system which represents the eyes camera) and the brains or the intelligence (the (the microprocessor and its application programs). 'Our concern in this research was to enhance the intelligence of a manipulator by developing a task-oriented control algorithm, using some of the known algorithms for edge detection and image processing, so the manipulator could "see" and then could compare images of objects intelligently. After considerable investigation, the method of Moment Invariants was chosen. This method has the ability to identify an object (image) independent of its using size, orientation position, and seven invariant parameters that describe a particular image. This means that for the purpose of comparison, only numerical seven

descriptors, rather than the entire digitized image, need be stored and compared .

This thesis deals with the design and testing of an automated vision system, using a fast algorithm for moment invariant generation. The algorithm was proven in a system designed for the identification and verification of textile components. The design of such a system involves two steps: Creating the appropriate algorithm to identify the object, then verifying 'that it is free of any defects. This algorithm would ultimately implemented in a combined robotic-vision system that will be analyze the data provided so as to recognize and reject defective objects while computing the registration correction for objects which are slightly misaligned. The system, using the delta method, is able to analyze the two-dimensional features of a textile component and to generate it's moment invariants with a considerable reduction of time over conventional methods. It will be shown that the delta moment method of "calculating, the moments both serves ĩn the identification and the verification process (see Chapter 3 for more details).

1.2 Theoretical Consideration of Moment Invariants

Moment invariants have been used as features in object recognition, image classification and scene matching [1-21]. These invariant features extracted from two-dimensional images are invariant under image translation, scaling and rotation. The use of moment invariants was first proposed by Hu [1-2] in 1962, for two-dimensional character recognition. The application of moment invariants to more "complex two-dimensional" scenes was extended by Sadjadi and Hall [11,14].

The concept of moment invariants is based on invariant algebra which deals with the properties of certain classes of algebraic expressions which remain invariant under general lin-'ear transformations.

1.2.1 A Uniqueness Theorem Concerning Moments

Any geometric pattern can always be represented by a density (or intensity) distribution function f(x,y), with respect to a pair of orthogonal axes fixed to the visual field.

The two-dimensional moments of order (p+q) of an image, computed from the continuous image intensity function f(x,y), are defined in terms of Riemann integrals as :

(1)

$$m_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{p} \cdot y^{q} \cdot f(x, y) \cdot dx \cdot dy$$

where $p, q \in \{0, 1, 2, ...\}$

If it is assumed that f(x,y) is a piecewise continuous therefore bounded function, and that it can have nonzero values only in the finite part of the xy plane; then moments of all orders exist and the following uniqueness theorem can be proven.

Uniqueness Theorem : The double moment sequence $\{m_{pq}\}$ is uniquely determined by f(x,y); and conversely, f(x,y) is uniquely determined by $\{m_{pq}\}$. Hence one may use $\{m_{pq}\}$ as a means of representing any two-dimensional pattern.

It should be noted that the finiteness assumption is important; otherwise, the above uniqueness theorem will not hold.

The computations of m_{pq} consist of multiplying the function f(x,y) by a nominal $x^{p}y^{q}$ and integrating the result. The nominals of order 3 or less are $x^{0}y^{0}$, $x^{0}y^{1}$, $x^{0}y^{2}$, $x^{0}y^{3}$, $x^{1}y^{0}$, $x^{1}y^{1}$, $x^{1}y^{2}$, $x^{2}y^{0}$, $x^{2}y^{1}$, and $x^{3}y^{0}$. These are sufficient to describe any two-dimensional object. Any higher order moment can be disregarded.

The moments of order p+q may also be interpreted as the response of an imaging system with the transfer function of, $x^{p}y^{q}$, and the input, f(x,y). Low order moments have intuitive relations to objects. For example, m_{00} is related to mass, m_{10} and m_{01} to centre of mass and m_{11} , m_{20} , and m_{02} to the principal axes.

1.2.2 The Moment Generating Function

. The moment generating function of f(x,y) may be defined as

 $M(u,v) = \int_{-\infty}^{\infty} \exp[ux+vy] \cdot f(x,y) \cdot dx \cdot dy$

If u and v are considered as complex variables, this expression is a two sided Laplace transform. For the invariant development both u and v are assumed to be real. This function can also be written in the form of :

 $M(u,v) = \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} m_{pq} \cdot \frac{(u)^{p}}{p!} \cdot \frac{(v)^{q}}{q!}$

where the exponential has been expanded by its Taylor series equivalent, assuming that moments of all orders exist. This equation shows that the moments may be determined from the derivatives of the moment generation functions evaluated at the origin.

1.2.3 Central Moments

The central moments of f(x,y) are defined as :

$$\mu_{pq} = \int_{-\infty-\infty}^{\infty} (x - \overline{x})^p \cdot (y - \overline{y})^q \cdot f(x, y) \cdot dx \cdot dy$$
(2)

where $x = m_{10}/\dot{m}_{00}$, $y = m_{01}/m_{00}$. The central moments μ_{pq} defined in, (2) may easily be shown invariant under translation and can also be expréssed in terms of the moments m_{pq} defined in (1).

For a digital image, the double integrals in m_{pq} and μ_{pq} can be approximated by double summations as follows :

$$m_{pq} = \sum_{i=0}^{M} \sum_{j=0}^{N} i^{p} \cdot j^{q} \cdot f(i,j)$$
 (1.1)

$$\mu_{pq} = \sum_{i=0}^{M'} \sum_{j=0}^{N} (i - \overline{i})^{p} \cdot (j - \overline{j})^{q} \cdot f(i, j)$$
(2.1)

where $i = m_{10}/m_{00}$, $j = m_{01}/m_{00}$. The summation limits *M* and *N* are the dimensions of the intensity matrix f(i,j) in which i and j are the discrete locations of the image pixels. For many industrial applications images can be represented in black and white. Only size, contour, resemblance and contiguity are important, not the color or the shade of the object. In this case the intensity function f(i,j) would only have the values 0 or 1.

The computations of m_{pq} consist of multiplying the function f(i,j) by a corresponding $i^p j^q$ and integrating the

results. In the case of a contiguous image, the function f(i,j) is always 1 inside the boundary of the object in the image, 0 for the background. The double-summations of the nominals of order 3 or less (i⁰j⁰, i⁰j¹,, i³j⁰) are:

$m_{00} = \sum_{i=0}^{M} \sum_{j=0}^{N}$	i ⁰ .j ⁰		(1.a)
$m_{01} = \sum_{i=0}^{M} \sum_{j=0}^{N}$	i ⁰ .j ¹	• -	(1.b)
$m_{02} = \sum_{i=0}^{M} \sum_{j=0}^{N}$	i ⁰ .j ²	•	(1.c)
$m_{\Omega 3} = \sum_{i=0}^{M} \sum_{j=0}^{N}$	i ⁰ .j ³	· .	- (1.d)
$m_{10} = \sum_{i=0}^{M} \sum_{j=0}^{N'}$	i ¹ .j ⁰	•	(1.e)
$m_{11} = \sum_{i=0}^{M} \sum_{j=0}^{N}$	i ¹ .j ¹	• - *	(1.f)
$m_{12} = \sum_{i=0}^{M} \sum_{j=0}^{N}$	i ¹ .j ²		(1.g)
$m_{20} = \sum_{i=0}^{M} \sum_{j=0}^{N}$	i ² .j ⁰ .	- 1	(1.h)
$m_{21} = \sum_{i=0}^{M} \sum_{j=0}^{N}$	i ² .j ¹	· ,	(1.1)
$m_{30} = \sum_{i=0}^{M} \sum_{j=0}^{N^{-1}}$	i ³ .j ⁰	۰ ۱	(1.j)

Computing these double-summations is lengthy due to the recursive nature of the falculations.

The detailed theory behind these derivations can be found in Elliot [23]. In this paragraph we proceed to use the above in calculating the central moments.

، ،

From (2.1), the central moments of order 3 are as follows:

$$\mu_{00} = \sum_{i=0}^{M} \sum_{j=0}^{N} (i - \bar{i})^{0} \cdot (j - \bar{j})^{0} \cdot f(i,j)$$
(2.a)

$$\mu_{01} = \sum_{i=0}^{M} \sum_{j=0}^{N} (i - \bar{i})^{0} \cdot (j - \bar{j})^{1} \cdot f(i,j)$$
(2.b)

$$\mu_{02} = \sum_{i=0}^{M} \sum_{j=0}^{N} (i - \bar{i})^{0} \cdot (j - \bar{j})^{2} \cdot f(i,j)$$
(2.c)

$$\mu_{03} = \sum_{i=0}^{M} \sum_{j=0}^{N} (i - \bar{i})^{0} \cdot (j - \bar{j})^{3} \cdot f(i,j)$$
(2.d)

$$\mu_{10} = \sum_{i=0}^{M} \sum_{j=0}^{N} (i - \bar{i})^{1} \cdot (j - \bar{j})^{0} \cdot f(i,j)$$
(2.e)

$$\mu_{11} = \sum_{i=0}^{M} \sum_{j=0}^{N} (i - \bar{i})^{1} \cdot (j - \bar{j})^{2} \cdot f(i,j)$$
(2.f)

$$\mu_{12} = \sum_{i=0}^{M} \sum_{j=0}^{N} (i - \bar{i})^{1} \cdot (j - \bar{j})^{2} \cdot f(i,j)$$
(2.g)

$$\mu_{20} = \sum_{i=0}^{M} \sum_{j=0}^{N} (i - \overline{i})^2 \cdot (j - \overline{j})^0 \cdot f(i, j)$$
(2.h)

$$\mu_{21} = \sum_{i=0}^{M} \sum_{j=0}^{N} (i - \overline{i})^2 \cdot (j - \overline{j})^1 \cdot f(i, j)$$
(2.i)

$$\mu_{30} = \sum_{i=0}^{M} \sum_{j=0}^{N} (i - \overline{i})^{3} \cdot (j - \overline{j})^{0} \cdot f(i, j)$$
(2.j)

From (2.1) page 5, it is quite simple to express the central moments in terms of the ordinary moments :

From (2.a), $\mu_{00} = m_{00}$ From (2.b), $\dot{\mu_{01}} = m_{01} - (m_{01}/m_{00}) \cdot m_{00} = 0$ From (2.c), $\mu_{02} = m_{02} - m_{01}^2 / m_{00} = m_{02} - \overline{y} \cdot m_{01}$ From (2.d), $\mu_{03} = m_{03} - 3 \cdot \overline{y} \cdot m_{02} \cdot + 2 \cdot \overline{y}^2 \cdot m_{01}$ From (2.d), $\mu_{10} = m_{10} - (m_{10}/m_{00}) \cdot m_{00} = 0$ From (2.f), $\mu_{11} = m_{11} - (m_{01}/m_{00}) \cdot m_{10}$ From (2.g), $\mu_{12} = m_{12} - 2 \cdot \overline{y} \cdot m_{11} - \overline{x} \cdot m_{02} + 2 \cdot \overline{y}^2 \cdot m_{10}$ From (2.h), $\mu_{20} = m_{20} - m_{10}^2 / m_{00} = m_{02} - \overline{x} \cdot m_{01}$ From (2.i), $\mu_{21} = m_{21} - 2 \cdot \overline{x} \cdot m_{11} - \overline{y} \cdot m_{20} + 2 \cdot \overline{x}^2 \cdot m_{01}$ From (2.j), $\mu_{30} = m_{30} - 3 \cdot \overline{x} \cdot m_{20} + 2 \cdot \overline{x}^2 \cdot m_{10}$

-8

1.2.4 Fundamental Theorem of Moment Invariant

To relate the moments to the theory of invariant algebra, one may first expand the exponential term in the moment generation function to obtain:

$$M(u,v) = \int_{-\infty-\infty}^{\infty} \int_{p=0}^{\infty} \frac{1}{p!} \cdot (ux+vy)^{p} \cdot f(x,y) \cdot dx \cdot dy$$

Now after using the binomial expansion and carrying out integration:

 $M(u,v) = \sum_{p=0}^{\infty} \frac{1}{p!} \cdot (\mu_{p0}, \dots, \mu_{0p},) (u,v)^{p}.$

Definitions :

<u>Invariants</u> - An invariant of a single quantic is such a function of the coefficients in that quantic, that it needs at most to be multiplied by a factor which is a function only of the coefficients in any scheme of linear transformation to be made equal to the same function. Similarly for an invariant of two or more quantics is such a function of the two or more «sets of coefficients in those quantics, that it needs at most to be multiplied by a factor which is a function only of the coefficients in any scheme of linear transformation, to be made equal to the same function.

Quantics or Forms - A function of any number of variables x, y, z, \ldots which is rational, integral and homogeneous in those variables is called a quantic in x, y, z, \ldots . If there are two variables, x, y, the quantic is called a binary quantic. If three, then it is called a ternary, if q, a q-ary form. The degree of a quantic in the variables x, y, z, \ldots is generally spoken of as its order. Quantics of the first, second, third, 'fourth, ... are called linear, quadratics, cubics, quatrics,

The following homogeneous polynomial of two variables u and v,

 $f = a_{p0} \cdot u^{p} + {\binom{p}{1}} \cdot a_{p-1,1} \cdot u^{p-1} \cdot v + {\binom{p}{2}} \cdot a_{p-2,2} \cdot u^{p-2} \cdot v^{2} + \dots$ $+ {\binom{p}{p-1}} \cdot a_{1,p-1} \cdot u \cdot v^{p-1} + a_{0p} \cdot v^{p}$

is called a binary algebraic form, or simply a binary form, φf order p. Using a notation introduced by Cayley, the above form may be written as:

 $f = (a_{po}; a_{p-1,1}; \dots; a_{1,p-1}; a_{0p})(u,v)^p$

a homogeneous polynomial f(a) of the coefficients a_{p0} , ..., a_{0p} is an algebraic invariant of weight α , if:

 $f(a'_{p0}, \ldots, a'_{0p}) = \Delta^{\alpha} f(a_{p0}, \ldots, a_{0p})$

where a'p0,....,a'Op are the new coefficients obtained from substituting the following general linear transformation into the original form.

$$\begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\beta} & \boldsymbol{\Gamma} \\ \boldsymbol{\sigma} & \boldsymbol{\tau} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix},$$

 $\Delta = \begin{vmatrix} \beta & \Gamma \\ \sigma & \tau \end{vmatrix} \neq 0.$

where

if $\alpha=0$ the invariant is called an absolute invariant; if $\alpha\neq0$ it is called a pelative invariant. The invariant defined above may depend upon the coefficients of more than one form.

<u>Theorem</u> : If the algebraic form of order p has an algebraic invariant,

$$f(a'_{p0},\ldots,a'_{0p}) = \Delta^{\alpha} f(a_{p0},\ldots,a_{0p})$$

then the moment of order p has an algebraic invariant

$$f(\mu'_{p0},\ldots,\mu'_{0p}) = |J| \bigtriangleup^{\alpha} f(\mu_{p0},\ldots,\mu_{0p})$$

where J is the Jacobian of the transformation.

The importance of this theorem is that an invariant function of moments can be found once a corresponding algebraic function exists.

A point which should be emphasized is the generality involved in linear transformations. The only restriction was $\Delta \neq 0$.

1.2.5 The Normalized Central Moments

Under the similitude transformation, i.e., the equal change of size in both the x and the y,

 $\begin{bmatrix} x'\\ y' \end{bmatrix} = \begin{bmatrix} \beta & 0\\ 0 & \beta \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}, \qquad \beta - \text{constant},$

each coefficient of any algebraic form is an invariant

 $a'_{pq} = \beta^{p+q} \cdot a_{pq'}$

For moment invariant we have:

$$\mu'_{pq} = \beta^{p+q+2} \cdot \mu_{pq'}$$

by eliminating β between the zeroth order relation,

$$\mu' = \beta^2 \cdot \mu$$

and the remaining ones, we have the following absolute similitude moment invariants:

$$\frac{\mu' pq}{\mu' (p+q)/2 + 1} = \frac{\mu pq}{\mu (p+q)/2 + 1} , \qquad p+q = 2,3, \ldots$$

and $\mu'_{10} = \mu'_{01} = 0$.

As shown previously, the central moments μ_{pq} are simple combinations of the moments m_{pq} . The normalized central moments, denoted by η_{pq} can now be defined as:

$$\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}(p+q)/2 + 1}, \quad p+q = 2, 3, \dots \quad (3)$$

n

These are invariant to size change as well as translation.

From (3) it is quite simple to express the normalized central moments in terms of the central moments :

$$\eta_{00} = \mu_{00} = m_{00} \qquad (3.a)$$

$$\eta_{01} = \frac{\mu_{01}}{\mu_{00}^{1/2} + 1} = 0 \qquad (3.b)$$

$$\eta_{02} = \frac{\mu_{02}}{\mu_{00} + 1}$$
(3.c)

$$\eta_{03} = \frac{\mu_{03}}{\mu_{00}^{3/2} + 1}$$
(3.d)

$$10 = \frac{\mu_{10}}{\mu_{00}^{1/2} + 1} = 0$$
 (3.e)

$$n_{11} = \frac{\mu_{11}}{\mu_{00} + 1}$$
(3.f)

$$\eta_{12} = \frac{\mu_{12}}{\mu_{00}^{3/2} + 1}$$
(3.g)

$$\eta_{20} = \frac{\mu_{20}}{\mu_{00} + 1}$$
 (3.h)

$$\eta_{21} = \frac{\mu_{21}}{\mu_{00}^{3/2} + 1}$$
(3.1)

$$\eta_{30} = \frac{\mu_{30}}{\mu_{00}^{3/2} + 1}$$
(3.j)

1.2.6 The Seven Moment Invariants

A set of seven invariant moments (ϕ) , invariant to translation, scale change and rotation, has been derived from the normalized central moments. Detailed description and derivation can be found in Hu [1,2]. They are :

$$\phi_{1} = \eta_{20} + \eta_{02}^{2}$$

$$\phi_{2} = (\eta_{20} - \eta_{02})^{2} + 4 \cdot \eta_{11}^{2}$$

$$(4.a)^{2}$$

$$(4.b)^{2}$$

$$(4.c)^{2}$$

$$(4.c)^{2}$$

$$\phi_4 = (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2 \qquad (4.d)$$

$$\phi_{5} = (\eta_{30} - 3.\eta_{12}) \cdot (\eta_{30} + \eta_{12}) \cdot [(\eta_{30} + \eta_{12})^{2} - 3.(\eta_{21} + \eta_{03})^{2}]^{2} + (3.\eta_{21} - \eta_{03}) \cdot (\eta_{21} + \eta_{03}) \cdot [3.(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}] \quad (4.e)$$

$$= (\eta_{20} - \eta_{02}) \cdot [(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2]$$

$$\phi_{7} = (3 \cdot \eta_{12} - \eta_{30}) \cdot (\eta_{30} + \eta_{12}) \cdot [(\eta_{30} + \eta_{12})^{2} - 3 \cdot (\eta_{21} + \eta_{03})^{2}]$$

$$(4.f)$$

+ $(3.\eta_{21}-\eta_{03}).(\eta_{21}+\eta_{03}).[3.(\eta_{30}+\eta_{12})^2-(\eta_{21}+\eta_{03})^2]$ (4.g)

The skew orthogonal invariant (ϕ_7) is used for distinguishing mirror images because it varies considerably under mirroring.

The method described in this section, can be generalized to accomplish pattern identification not only independent of position, size and orientation but also independent of parallel projection, see Hu [1,2] for derivations.

Chapter 2, RELEVANT LITERATURE SURVEY

34

Recognition of visual patterns and characters independent of position, size, and orientation in the visual field has been a research subject since 1962. In the following paragraphs a summary of this research is presented in chronological order :

Hu [1,2] : Reported in his paper, in 1962, the mathematical foundation of two-dimensional moment invariants and their applications to visual information processing. His results show that recognition schemes based on these invariants could be truly position, size and orientation independent, and also flexible enough to learn almost any set of patterns. Hu adapted the moment invariant method to visual pattern recognition. Other authors succeeding Hu extended his work only slightly, through specific applications. The moment invariants method was never considered for any industrial applications, because it is computationally very costly. Its use in defense applications are extensive, however. This thesis extends Hu's theory, an efficient simplification, through so as to make its industrial applications tractable.

Alt [3] : Applied Hu's results, in 1963, to the recognition of the letters and numerals of a particular printed font and simi-lar patterns.

١

Figure 2.1 Examples of "similar" patterns.

In comparing his system with others which have been proposed, we find both advantages and drawbacks. These other methods use either coincidence - the pattern to be read is matched with a standard pattern, and the requirement for agreement, within a specified tolerance, is imposed - or they concentrate upon certain local or topological properties of the character to be recognized, such as corners, branch points, and closed loops. An example of an instance where moment invariants fail 'is furnished by the modern Hebrew alphabet, in which, e.g., the characters corresponding to d and r differ only in that the former has a sharp corner where the latter is rounded. This difference would have no more effect on moments than some slight noise or change in type font. In fact, it is the kind of distinction which we wish to disregard; for in the Latin alphabet it is frequently meaningless (see Fig. 2.2).

Figure 2.2 Two Hebrew characters, d and r, differ only in the sharpness of a corner.

. - X

Lambert [4] : Performed experiments, in 1969, on the classifications of printed characters using moment invariant features with a reported accuracy of 95%, *i.e.*, 95% of characters read⁶ are correctly identified.

Casy [5] : Used moments, in 1970, as a preprocessing tool to normalize patterns of handprinted characters.

Figure 2.3 Sample contours: (a) input (derived from handprinted A's): (b) normalized.

Figure 2.4 Superimposed patterns.

Handprinted characters can be made to appear more uniform, if an appropriate linear i.e., more like machine print, transformation is performed on each input pattern. The transformation can be implemented electronically by programming a flying-spot raster-scanner to scan at a number of specified addition to scans along the principal angles in axes. Alternatively, curve-follower normalization can be achieved by transforming the coordinate waveforms in a linear combining network. Second order moments of the pattern are convenient properties to use in specifying the transformation. By mapping "the original pattern into one having a scalar moment matrix all variations can pattern be linear removed. Comparison experiments with three sets of handprinted numerals showed that error rates were reduced by integral factors if the patterns were normalized before scanning recognition (see Fig. 2.3 and 2.4 for normalized patterns).

Smith et al. [6] : Reported, in 1971, the results of a study undertaken to determine the feasibility of automatic interpretation of ship photographs using the spatial moments of the images as characterizing features. The photo interpretation consisted of estimating the location, orientation, dimensions, and heading of the ship. The study used simulated images in which the outline of the ship was randomly filled with black and white cells to give a low-resolution high-contrast image of the ship such as might be obtained by a high-resolution radar.

Figure 2.5 Six examples of simulated ship images.

Hall et al. [7-9] : Used spatial moments, in 1976, as one of the selected features in categorization of profusion of opacities in medical X-rays.

Dudani et al. [10] : Addressed in his paper, in 1977, the problem of the automatic interpretation of optical images of threedimensional scenes. He was specifically concerned with the automatic recognition of aircraft types from optical images. An experimental system was described in which certain features called moment invariants are extracted from binary television images and are then used for automatic classification. This experimental system has exhibited a significantly lower error rate than human observers in a limited laboratory test involving 132 images on six aircraft types. Preliminary indications were that this performance could have been extended to a wider class of objects.

-]

Figure 2.6 Typical images obtained with the experimental image acquisition system.

In his investigation, a recognition class consisting of only six aircraft types were used. It was difficult to arrive at any meaningful results regarding the relationship of recognition accuracy to the number of aircraft in the given class because of the fact that similarity or dissimilarity in shapes of aircraft under consideration greatly affects the recognition accuracy. However, for the aircraft used in the recognition class, the accuracy of correct classification did not increase significantly when lowering the number of aircraft in the recognition class to three.

Sadjadi et al. [11] : Extended, in 1978, the applications of the method of moment invariants to more complex two-dimensional images without changing the theory. His work was applied in space, spy satellites, and in the guidance systems of long range missiles. Although Sadjadi et al. tried to recognize

complex images, their work and applications were of a great value to this research thesis.

Sadjadi et al. **[14]** : Proposed, in 1980, the use of three-dimensional moment invariants as a tool for the recognition of three-dimensional objects independent of size, position and orientation.

The generalization of the result of 2-D moment invariants which had linked the 2-D moment invariants to binary quantics is done by linking 3-D moment invariants to ternary quantics. The existence and number of nth order moments in two and three dimensions is explored.

The three-dimensional moments of order p+q+r of a density (or intensity) function f(x,y,z) are defined in terms of the Riemann integrals as:

 $m_{pqr} = \int_{-\infty-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} x^{p} \cdot y^{q} \cdot z^{r} \cdot f(x, y, z) \cdot dx \cdot dy \cdot dz$

It is assumed that the function f(x,y,z) is piecewise continuous and therefore bounded and it is zero im \mathbb{R}^3 space except in a finite part. Based on this assumption it can be proven that the sequence $\{m_{par}\}$ determines uniquely f(x,y,z).

The moment generation function for three dimensional moments may be defined as:

$$M(u,v,w) = \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} \sum_{p=0}^{\infty} \exp(ux+vy+wz) \cdot f(x,y,z) \cdot dx \cdot dy$$

which can be expanded into a power series:

$$M(u,v,w) = \int_{-\infty-\infty-\infty}^{\infty} \int_{p=0}^{\infty} \frac{1}{p!} \cdot (ux+vy+wz)^{p} \cdot f(x,y,z) \cdot dx.dy.dz$$

The central moments μ_{par} are defined as:

$$\mu_{pqr} = \int_{-\infty-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} (x-\overline{x})^p \cdot (y-\overline{y})^q \cdot (z-\overline{z})^r \cdot f(x,y,z) \cdot dx \cdot dy \cdot dz$$

where $\bar{x} = m_{100}/m_{000}$, $\bar{y} = m_{010}/m_{000}$, $\bar{z} = m_{001}/m_{000}$

The normalized central moments are defined similarly, and the 3-D moment invariants are then derived (see Sadjadi [14] for detailed derivations). This generalization is not trivial because of the difficulties which are present in the derivation of general ternary quantic invariant forms upon which three dimensional moment invariant rely.

As a special but important subset of general ternary quantics, the class of ternary quadratic forms was explored and several geometrical interpretations of invariants were given. It was stated that every geometric property of a quadratic surface which remains invariant under rotation and translation can be presented in terms of its absolute forms.

Ihe 3-Dimensional moment invariants method proposed here could be of a great value to the continuation of this research

thesis since the Delta Method, proposed in chapter 3, could be ultimately expanded to handle the recognition of 3-D objects.

Reddi [16] : Presented, in 1981, radial and angular moments of images and showed the methods, for deriving moment functions that are invariant with respect to rotation, translation, reflection, and size change without the aid of the theory of algebraic invariants. Hu's invariants were expressed in terms of these radial and angular moments, and Reddi claimed that this facilitates visual inspection of invariance properties.

Let $g(r, \theta)$ be the intensity function in polar coordinates [i.e., $f(x,y) \equiv g(r, \theta)$] and define the following radial and angular moments (as defined in (1)):

$$\Phi_{r}(k,g) = \int_{0}^{\infty} r^{k} \cdot g(r,\theta) \cdot dr$$

 $\Phi_{\theta}(p,q,g) = \int_{-\pi}^{\pi} \cos^{p} \theta \cdot \sin^{q} \theta \cdot g(r,\theta) \cdot d\theta$

 $\Phi_{\Theta}(g) = \Phi_{\Theta}(0, 0, g) .$

$$\Theta(k,p,q,g) = \iint_{0-\pi}^{\infty} r^k g(r,\theta) .\cos^p \theta .\sin^q \theta .d\theta .dr. \quad (1')$$

Expressing μ_{pq} from (2) in polar coordinates we have

$$\mu_{pq} = \int_{0-\pi}^{\infty} r^{p+q+1} \cdot \cos^{p} \theta \cdot \sin^{q} \theta \cdot g(r,\theta) \cdot dr \cdot d\theta$$

$$= \Phi(p+q+1,p,q,g)$$

since $x=r.\cos \theta$, $y=r.\sin \theta$ and $dx.dy=r.dr.d\theta$.

The seven moment invariants ((4.1)-(4.7)) derived by Hu [1,2] could be then expressed in terms of angular and radial moment as follows :

$$M_{1} = \Phi_{r}(3, \Phi_{\theta}(g))$$

$$M_{2} = |\Phi_{r}(3, \Phi_{\theta}(g, e^{j2\theta}))|^{2}$$

$$M_{3} = |\Phi_{r}(4, \Phi_{\theta}(g, e^{j3\theta}))|^{2}$$

$$M_{4} = |\Phi_{r}(4, \Phi_{\theta}(g, e^{j\theta}))|^{2}$$

$$M_{5} = RP \{\Phi_{r}(4, \Phi_{\theta}(g, e^{j3\theta})), \{\Phi_{r}^{3}(4, \Phi_{\theta}(g, e^{-j\theta}))\}$$

$$M_{6} = RP \{\Phi_{r}(3, \Phi_{\theta}(g, e^{j2\theta})), \{\Phi_{r}^{2}(4, \Phi_{\theta}(g, e^{-j\theta}))\}$$

$$M_{7} = IP \{\Phi_{r}(4, \Phi_{\theta}(g, e^{j3\theta})), \{\Phi_{r}^{3}(4, \Phi_{\theta}(g, e^{-j\theta}))\}$$

Here RP and IP stand for real and imaginary parts, respectively. The functions M_1 through M_6 are invariant with respect to rotation and reflection, whereas M_7 changes sign under reflection.

The advantage of using radial and angular moments is that it is simple to write the invariants directly (without going through the theory of algebraic invariants as Hu does). Thus we may write:

 $|\Phi_{r}(k, \Phi_{\theta}(e^{jl\theta}))|^{2}$

as an invariant under rotation and reflection for any k and l since changing (θ) to ($\theta+\alpha$) or ($-\theta$) leaves the expression unchanged. Also instead of having a weighting function such as r^{k} , one can have exponentials and similar functions in r. For instance:

$$|\Phi_{r}(0,\Phi_{\theta}(e^{-\alpha r}.e^{jl\theta}))|^{2}$$

can be used as an invariant.

Radial and angular moments can be made invariant with respect to size in a simple manner. Let $g_{\alpha}=g(\alpha.r,\theta)$ denote the image contracted/expanded by α and M'_{i} denote the new ith moment function of g_{α} . Since

$$\Phi_{\mathbf{r}}(\mathbf{k},\mathbf{g}_{\alpha}) = \alpha^{-(\mathbf{k}+1)} \cdot \Phi_{\mathbf{r}}(\mathbf{k},\mathbf{g}),$$

we have:

$$M_{1}' = \alpha^{-4} \cdot M_{1}$$

$$M_{2}' = \alpha^{-8} \cdot M_{2}$$

$$M_{3}' = \alpha^{-10} \cdot M_{3}$$

$$M_{4}' = \alpha^{-10} \cdot M_{4}$$

$$M_{5}' = \alpha^{-20} \cdot M_{5}$$

$$M_{6}' = \alpha^{-14} \cdot M_{6}$$

$$M_{7}' = \alpha^{-20} \cdot M_{7}$$

and hence M_2 through M_7 can be made size invariant as follows:

$$M_2^* = M_2/M_1^2$$

 $M_3^* = M_3/M_1^{2.5}$
 $M_4^* = M_4/M_1^{2.5}$

$$M_5^* = M_5 \times M_1^5$$

 $M_6^{*'} = M_6 / M_1^{3.5}$
 $M_7^* = M_7 / M_1^5$

It may be noted that M_5^* is inversely proportional to the fifth power of M_1 thus making it very sensitive to variations in M_1 .

Although it is easier to derive the angular and radial moment invariants, it is, however, more time consuming to calculate them. Comparing the cartesian moments in (1) to the angular and radial moments in (1'), the amount of calculations to be performed for each pixel in the intensity matrix $g(r, \theta)$ is much greater than that in the f(x,y) matrix (compare calculating $x^{p}.y^{q}.f(x,y)$ in (1) to calculating $r^{k}.cos^{p}\theta.sin^{q}\theta.g(r,\theta)$ in (1')).

It is worth noting that the delta method derived in the next chapter could be expanded to apply to the radial and angular moment invariants.

Teh et al. [17] : Presented, in 1985, a better formulation of the moment invariants using the numerical integration approaches. The undersampling and digitizing effects of $a \rightarrow$ digital image as well as the quantization effect of the intensity levels on moment invariants were also presented.

The transformation of f(x,y) into its discrete version f(i,j) consists of sampling the continuous image function with an M X N array of points (pixels) and quantizing the continuous intensity function into K discrete levels. The sampling process can be viewed as multiplying f(x,y) by a sampling function s(x,y) to obtain f(i,j).
2. Relevant Literature Survey

Two different sampling functions were considered, the traditional rectangular sampling function and the hexagonal function, defined by : SI /

$$s_{\widehat{R}}(\overline{x}, y) = \sum_{\substack{M=-\infty \\ M=-\infty}} \sum_{\substack{m=-\infty \\ M=-\infty}} \epsilon \cdot (x-M \cdot \underline{x}, y-N \cdot \underline{y})$$

and

$$s_{H}(x,y) = \sum_{\substack{N=-\infty \\ M=-\infty}} \sum_{\substack{N=-\infty \\ e}} \frac{2M-N}{2} \cdot x, y-N \cdot y$$

respectively. Two sampled versions of the test image, $f_R(i,j)$ and $f_H(i,j)$, were then computed by

$$f_R(i,j) = f(x,y) \times s_R(x,y)$$

and

$$f_{H}(i,j) = f(x,y) X s_{H}(x,y)$$

respectively.

2. Relevant Literature Survey

Figure 2.7 Rotation invariant error of a square image due to digitization. Teh et al. [17].

The set of seven invariant moments given by Hu are invariant for the case of continuous image intensity function. For digital processing the image intensity needs to be quantized and the formulation approximated by summations, therefore, the moments are expected not to be invariant due to the error incroduced by the approximations.

Possible better approximation methods to calculate the moment invariants by numerical integration approaches were discussed and the plotted results are shown in Figure 2.8.

2. Relevant Literature Survey

The relevance of this work is diminished with the use of a new generation of digital cameras capable of handling considerably larger intensity matrices that would minimize the undersampling, quantization and digitization errors.

Hatamian [18] : Presented, in 1986, a fast algorithm and its single chip VLSI implementation for generating moments of twodimensional digital images in real-time image processing applications. The basic building block of the algorithm is a single-pole digital filter implemented with a single accumulator. These filters are cascaded together in both horizontal and vertical directions in a highly regular structure which makes it very suitable for VLSI implementation. The chip has been implemented in 2.5 μ CMOS technology, it occupies 6100 μ m X 6100 μ m of silicon area. The chip can also be used as a general cell in a systolic architecture for implementing 2-D transforms having polynomial basis structure.

Figure 2.9 'A 2-D digital filter structure for generating linear combination of moments of an image Hatamian [17].

(d) Photomicrograph of the moment generator chip.

· Hatamian (17].

3.1 Introduction

Chapter 3

AN ALTERNATIVE APPROACH: THE DELTA METHOD

3.1 Introduction

The computations of m_{pq} consist of multiplying the function f(i,j) by a corresponding $i^{p}j^{q}$ and integrating the results (see. (1)). In the case of a contiguous image, the function f(i,j) is always 1 inside the boundary of the object in the image, 0 for the background.

The identification and verification method should take into consideration important factors such as size, contour, resemblance and contiguity and not the color or the shade of the ply fabric. To eliminate differences resulting from the presence of stripes, colors, shades or patterns, a black and white image (0 or 1) has been deliberately chosen to represent the object. This supplies necessary sufficient information about the object, while rejecting superflous and confusing information.

For a contiguous image all bits are "on" (equal to 1) and therefore all bytes inside the boundaries contain the unsigned binary integer, 255 (except those on the left and right-hand boundaries). The idea of the delta algorithm is quite simple, instead of performing the lengthy computations of (1.a)-(1.j)for each pixel, a line of pixels is chained and the

are performed only once per line. This computations new algorithm simplifies the representation of the intensity matrix f(i,j), where f(i,j) could be represented now in bytes and programmed in a higher level language instead of bits which require low level language programming. It also reduced the scanning time by a factor of 8 since now bytes are scanned, instead of bits (see the straightforward approach [1-18]). For the first and the last byte of a given line of an image, up to 8 tests may have to be performed to determine the boundary (see subroutines BYTE-RIGHT and BYTE-LEFT and their description, in Appendix III). Once the boundaries have been established, an entire line of pixels is then considered as one entity, and the recursive (lengthy) calculations of the 2-D moments would be performed once per line rather than once per pixel (as in the straightforward approach), and if a hole is present the rest of the pixels in the line will be ignored to magnify the flaw.

In addition to these simplifications, the delta algorithm introduces great reduction in the time complexity of the computations resulting from its short-cut equations.

3.2 Detailed Derivation of the Algorithm

This algorithm utilizes new variables and subsequently new equations to represent the 2-D moments.

" The variables are defined as follows:

 δ : the number of chained pixels in row i. (see Figure 3.1) X_i: the x-coordinate of the first pixel in row i. Y_i: the y-coordinate of the first pixel in row i. m_{pq,i}: the contribution of row i to the nominals m_{pq}.

Figure 3.1 The Delta method.

Each $m_{pq,i}$ can be expressed in terms of X_i , Y_i , and δ . From (1.a), $m_{00} = 1 + 1 + 1 + 1 + \dots + 1 = \delta$ From (1.b), $m_{01} = Y_1 + Y_1 + Y_1 + \dots + Y_1 = \delta \cdot Y_1$ From (1.c), $m_{02} = Y_1^2 + Y_1^2 + Y_1^2 + \dots + Y_1^2 = \delta \cdot Y_1^2$ From (1.d), $m_{03} = Y_1^3 + Y_1^3 + Y_1^3 + \dots + Y_1^3 = \delta \cdot Y_1^3$ From (1.e), $m_{10} = X_i + (X_i + 1) + (X_i + 2) + (X_i + 3) + \dots + (X_i + \delta - 1)$ $= {}^{\delta} \delta \cdot X + (0 + 1 + 2 + 3 + 4 + 5 + \ldots + \delta - 1)$ $= \delta \cdot X_{i} + (0 + \delta - 1)/2 \cdot \delta$ $= \delta \cdot (\delta^2 - \delta)/2$ From (1.f), $m_{11} = X_1 \cdot Y_1 + (X_1 + 1) \cdot Y_1 + (X_1 + 2) \cdot Y_1 + \cdots$ + (; i+δ-1).Υ₁ $= Y_{i} \cdot [X_{i} + (X_{i} + 1) + (X_{i} + 2) + \dots + (X_{i} + \delta - 1)]$ The term inside the brackets equals m₁₀ therefore : $m_{11} = \sum_{i \in [\delta X_i + (\delta^2 - \delta)/2]}$ From (1.g), $m_{12} = Y_1 \cdot Y_1^2 + (X_1 + 1) \cdot Y_1^2 + (X_1 + 2) \cdot Y_1^2 + \dots$ + $x_{i}+\delta-1$). Y_{i}^{2}

= $Y_{i}^{2} \cdot [X_{i} + (X_{i} + 1) + (X_{i} + 2) + \dots + (X_{i} + \delta - 1)]$ = $Y_i^2 \cdot [\delta X_i + (\delta^2 - \delta)/2]$ From (1.h), $m_{20} = X_1^2 + (X_1 + 1)^2 + (X_1 + 2)^2 + \dots + (X_1 + \delta - 1)^2$ $= X_{i}^{2} + X_{i}^{2} + 2 \cdot X_{i}^{+1} + \cdots + X_{i}^{2} + 2(\delta - 1) \cdot X_{i}^{+} + (\delta - 1)^{2}$ By grouping terms and factoring out X_i , this becomes : $m_{20} = \delta \cdot X_i^2 + 2 \cdot (0 + 1 + 2 + 3 + 4 + \dots + \delta - 1) \cdot X_i + (0 + 1 + 4 + 9 + 1)$ + + $(\delta - 1)^2$) Using the polynomial theorem : δ-1 Σ $m_{20} = \delta \cdot X_i^2 + (\delta^2 - \delta) \cdot X_j +$ n=0 where the last term: $\sum_{\Sigma}^{\delta-1} n^2 = \delta^3/3 - \delta^2/2 + \delta/6$ So the total contribution from (1.h) is: $= \delta \cdot x_{i}^{2} + (\delta^{2} - \delta) \cdot x_{i} + \frac{1}{3} \delta^{3} - \frac{1}{2} \delta^{2} + \frac{1}{6} \delta$ From (1.i), $m_{21} = X_i^2 \cdot Y_i + (X_i+1)^2 \cdot Y_i + (X_i+2)^2 \cdot Y_i + \dots$ $+(X_{i}+\delta-1)^{2}.Y_{i}$ $= Y_{i} \cdot [X_{i}^{2} + (X_{i}+1)^{2} + (X_{i}+2)^{2} + \dots + (X_{i}+\delta-1)^{2}]$ = Y_i . [contribution from one row of m_{20}] = Y_{i} . [$\delta X_{i}^{2} + (\delta^{2} - \delta) X_{i} + 1/3 \delta^{3} - 1/2 \delta^{2} + 1/6\delta$ From (1.j), $m_{30} = X_i^3 + (X_i+1)^3 + (X_i+2)^3 + \dots + (X_i+\delta-1)^3$ $= X_{1}^{3} + X_{1}^{3} + 3 \cdot X_{1}^{2} + 3 X_{1}^{2} + 1 + X_{1}^{3} + 3 \cdot 2 \cdot X_{1}^{2} + 3 \cdot 2^{2} \cdot X_{1}^{2} + 1 \cdot 2^{3} +$ + + X_{i}^{3} + $3(\delta-1) \cdot X_{i}^{2}$ + $3(\delta-1)^{2}X_{i}$ + $(\delta-1)^{3}$ By grouping terms similar to m_{20} this becomes : $m_{30} = \delta \cdot X_1^{3+3} \cdot (0+1+2+3+4+ \dots + \delta-1) \cdot X_1^{2+3} \cdot (0+1+4+$ +9+ + $(\delta - 1)^2$). Xi+ $(0 + 1 + 8 + 27 + + (\delta - 1)^3)$

Using the polynomial theorem :

$$m_{30} = \delta \cdot X_{i}^{3} + 3 \cdot (\delta^{2} - \delta) / 2 \cdot X_{i}^{2} + 3 \cdot [\delta^{3} / 3 \frac{1}{2} \delta^{2} / 2 - \delta / 6] \cdot X_{i}$$

$$+ \frac{\delta^{-1}}{\Sigma} n^{3}$$

$$n=0$$
where the last term:
$$\frac{\delta^{-1}}{\Sigma} n^{3} = \delta^{4} / 4 - \delta^{3} / 2 + \delta^{2} / 4$$

$$n=0$$
So the total contribution from (1.j) is:
$$m_{30} = \delta \cdot X_{i}^{3} + 3 \cdot (\delta^{2} - \delta) / 2 \cdot X_{i}^{2} + 3 \cdot [\delta^{3} / 3 - \delta^{2} / 2 - \delta / 6] \cdot X_{i}.$$

$$+ \delta^{4} / 4 - \delta^{3} / 2 + \delta^{2} / 4$$
The above can be summarized as follows :
From (1.a), $m_{00,i} = \delta$
From (1.b), $m_{01,i} = \delta \cdot Y_{i}$
From (1.c), $m_{02,i} = \delta \cdot Y_{i}^{2}$
From (1.d), $m_{03,i} = \delta \cdot Y_{i}^{3}$
From (1.e), $m_{10,i} = \delta X_{i} + (\delta^{2} - \delta) / 2$

From (1.f), $m_{11,i} = Y_i \cdot [\delta X_i + (\delta^2 - \delta)/2]$ From (1.g), $m_{12,i} = Y_i^2 \cdot [\delta X_i + (\delta^2 - \delta)/2]$ From (1.h), $m_{20,i} = \delta \cdot X_i^2 + (\delta^2 - \delta) \cdot X_i + \delta^3/3 - \delta^2/2 + \delta/6$ From (1.i), $m_{21,i} = Y_i \cdot [\delta \cdot X_i^2 + (\delta^2 - \delta) \cdot X_i + \delta^3/3 - \delta^2/2 + \delta/6]$ From (1.j), $m_{30,i} = \delta \cdot X_i^3 + 3 \cdot (\delta^2 - \delta)/2 \cdot X_i^2 + 3 \cdot [\delta^3/3 - \delta^2/2 + \delta/6] \cdot X_i + \delta^4/4 - \delta^3/2 + \delta^2/4$

We define the following abbreviations for the sums :

$$S1 = \sum_{n=0}^{\delta-1} n = (\delta^2 - \delta)/2$$

Ŷ

$$S2 = \sum_{n=0}^{\delta-1} n^2 = (\delta^3/3 - \delta^2/2 + \delta/6)$$

$$S3 = \sum_{n=0}^{\delta-1} n^{3} = (\delta^{4}/4 - \delta^{3}/2 + \delta^{2}/4)$$

The mpg,i represent the contributions to mpg from each line of pixels, in another words:

$$m_{pq} = \sum_{i=0}^{N} m_{pq,i}$$

Using the §1, S2, and S3 simplifications, the $\rm m_{pq,i}$ calculations are reduced to :

$$m_{00,i} = \delta \qquad (1.a')$$

$$m_{01,i} = \delta \cdot Y_{i} \qquad (1.b')$$

$$m_{02,i} = \delta \cdot Y_{i}^{2} \qquad (1.c')$$

$$m_{03,i} = \delta \cdot Y_{i}^{3} \qquad (1.d')$$

$$m_{10,i} = \delta \cdot X_{i} + S1 \qquad (1.e')$$

$$m_{11,i} = Y_{i} \cdot [\delta \cdot X_{i} + S1] = Y_{i} \cdot m_{10,i} \qquad (1.f')$$

$$m_{12,i} = Y_{i}^{2} \cdot [\delta \cdot X_{i} + S1] = Y_{i}^{2} \cdot m_{10,i} \qquad (1.g')$$

$$m_{20,i} = \delta \cdot X_{i}^{2} + 2 \cdot S1 \cdot X_{i+} S2 \qquad (1.h')$$

$$m_{21,i} = Y_{i} \cdot m_{20,i} \qquad (1.i')$$

$$m_{30,i} = \delta X_i^3 + 3.81 X_i^2 + 3.82 X_i + 83$$
 (1.j')

.

Calculating the central moment (μ_{pq}) , the normalized central moments (η_{pq}) , and the moment invariants $(\phi's)$ is a simple task, which can be done quickly since these moments can all be represented as a linear combination of the 2-D moment (m_{pq}) , which has to be calculated only once.

4.1 Introduction

Chapter 4

DESCRIPTION OF THE IMAGING SYSTEM

4.1 Introduction

This thesis deals with the design and implementation of an automated vision system. The software and the hardware have been implemented and this chapter provides a detailed description of the integrated system.

4.1.1 Experimental Set-Up

The integrated system shown in the picture of Figure 4.1 is the result of research which achieved an industrially feasible, cost effective industrial vision system which combines a commercially available camera sub-system with a PC-AT. The system consists of of the following components:

1- Hewlett Packard PC Vectra (IBM AT compatible) equipped with an 80287 co-processor.

2- An IDETIX vision sub-system by MICRON TECHNOLOGIES INC. equipped with an IS256 OpticRAM, a 63701 microcomputer and a MOS digital camera.

3- 150 watt light source.

4.1 Introduction

4- An optical bench 1.5m in length and a 1m by 1m blackboard (for the background).

Figure 4.1 The Integrated Vision System.

4.2 The IDETIX System

The IDETIX is a simple, inexpensive solution to numerous applications requiring a low cost, all digital imaging subsystem. Its electro-optical system is suitable for use with any IBM PC/XT/AT compatible computer. The IDETIX has been designed to interface easily with customer-generated software.

The low cost of IDETIX is directly attributable to the technological advance represented by Micron's OpticRAM. In 4.2 The IDETIX System

terms of cost per pixel, the OpticRAM represents a 1000X reduction in price over earlier generation image-sensing chips such as the CCD (Charge Coupled Device).

Figure 4.2 Hardware Block Diagram. Micron Technologies Inc. [24].

4.3.1 The IDETIX Camera

'The OpticRAM, the heart of the system is, located in the camera head (see Figure 4.3 for the camera head drawing). The camera head and host computer are connected via an RS422 cable up to 100 feet in length.

4.3 System Hardware

語でいる

Ĉ

- _ ____. •

• `` • ``

Figure 4.3 Camera Head Drawing. Nicron Technologies Inc. [24].

2 The OpticRAM

The IS256 OpticRAM image sensor is a solid-state device capable of sensing an image and translating it to digital computer-compatible signals. Each of the four arrays on the chip contains 65,536 sensors arranged as 128 rows by 512 columns of sensors (Figure 4.4 for whole chip diagram and Figure 4.5 for array pair topological information). In our application we utilized only one of the arrays since the arrays are separated by an optical "dead zone" 87 microns wide. However, all arrays can be used.

- One array pair as illustrated in topological information Column decoder spacing between array pairs 3579µ
- B
- Rows 0 127 D
- Rows 128 255
- Rows 255-383
- Rows 384 511

Figure 4 . 4

IS256 OpticRAM whole chip. Micron Technologies Inc. [24]. 4.3 System Hardware

Figure 4.5 IS256 OpticRAM Topological Information. Micron Technologies Inc. [24].

43 ~

4.3 System Hardware

4.3.3 The 63701 Microcomputer

The 63701 microcomputer, a second source CMOS/EPROM, peripheral interface onboard version of the 6801 extended Motorola 6800, is only a part of the interface. It has one 8 bit port for data transfer between the PC host and the 63701 internal memory. This bus is also used to transfer data to the 4-bit microcomputer slices' internal dual port ram (see [24] for further details on the 63701 micro and its interface).

Communication between the PC/AT and the microcomputer is via an 18 byte command and data register set and a status register.

4.4 System Software

IDETIX is an intelligent machine vision subsystem. The MOS (Metal Oxide Semi-conductor) sensor based camera⁽head is connected via RS422 interface to the controller board. IDETIX drivers are supplied as a subroutine library coded in assembly language for efficiency. 4.5 Testing Environment

4.5 Testing Environment

Several hundred images were digitized and consequently their moment invariants computed in order to establish:

1) The best method of lighting,

2) The amount of light required to produce the best image, since three factors were involved:

a) changing the exposure time

b) changing the f-stop on the lens

c) changing the intensity of the light source

3) The best lens, given a maximum distance between lens and object of 1.5 m.

The combination of factors that produced the best image was then established and the selection is as follows:

Lens : Fl.6, 8.5mm (wide-angle)

Light : a combination of front lighting and elimination of spectral reflections using 150 Watt incandescent light-bulb (see the section on lighting considerations)

f-Stop:8

Exposure time : 500 msec.

Object : a 50mm X 250mm white object on a black background, or vice-versa. This size was chosen solely so that the image could be displayed on a CRT terminal with 200X640 resolution, so that the camera digitization is displayed on the CRT monitor. In a

4.5 Testing Environment

fully automated set-up, the CRT image is not required and larger objects can be digitized and recognized.

OpticRAM Physical Area Used : only rows 300 - 379 and columns 160 - 319 of array E (see Figure 4.4 of the OpticRAM chip) were used to minimize lens distortion, since wide-angle lenses suffer images with considerable edge distortion .

s'-Distance : a distance of 1.25m (less than the maximum of 1.5m) was used between the lens and the object. This distance allowed the object to fill 65% of the 80 X 640 matrix on the CRT monitor, leaving space for the object to be translated and rotated.

4.6 Lens Selection and Sample Calculations

4.6.1 Lens Selection

The lens supplied with the IDETIX system is an F1.6 16mm⁻ lens with adjustable f-stop and focus control. The f-stop controls the amount of light admitted through the lens while the focus control focuses the image on the surface of the OpticRAM. In our particular application a wide angle lens is required for close-up viewing.

The selection of a lens requires the consideration of many parameters such as lighting, edge sharpness of the scene, and distance from the camera to the scene. The lens provides a projection of the scene into the OpticRAM. This means if the lens is not selected properly or is misadjusted, the information that the OpticRAM sees will not adequately represent the scene.

The following equations represents basic lens optics:

Figure 4.6 Simple Lens Equations.

47 '

4.6 Lens Selection and Sample Calculation

4.6.2 Sample Calculations

Given the average distance S'=1250 mm, the magnification (M) required to project the object on the OpticRAM

M = (1250mm - 8.5mm) / 8.5mm = 146.

Accuracy is the degree to which the measurement represents the true value of the quantity being measured. Under ideal conditions, error in accuracy will not exceed the resolution of the measurement system. When measuring the distance between two edges of an image, the accuracy is equivalent to one element per edge when the optical image of the object's edge is sharp.

The resolution is equivalent to the least resolvable element or increment, i.e., one pixel, in this case. The scene resolution, on the other hand, is the pixel size multiplied by the lens magnification (element size is one pixel of 4.64μ X 4.64μ).

- R_h = The horizontal resolution of the object = M(magnification) X Horizontal Size = 146 X 4.64 X 10⁻³ = 0.677mm
- $D_{h} = The percentage of the smallest horizontal distance detected$

= (0.677mm / 250mm) X 100 = 0.2718

 $R_v =$ The vertical resolution of the object = M(magnification) X Vertical Size = 146 X 4.64 X 10⁻³ = 0.677mm

 $D_V = Tne \ percentage \ of \ the \ smallest \ vertical \ distance \ detected$ = (0.744mm / 50mm) X 100 = 1.35%

⁸4.6 L'ens Selection and Sample Calculation

Ţ

p.

Therefore the smallest area detected (in percentage) given a magnification (M) of 146 times and an object of 250mm by 50mm is equivalent to the resolution (or accuracy) R.

R = 0.271% X 1.345%

= 0.360% resolution (or accuracy).

In general, Given the magnification (M), and the size of the object (a and b), the resolution (R) could be calculated as follows:

 $R_{h} = M \times 4.64 \times 10^{-3}$ $R_{v} = M \times 4.64 \times 10^{-3}$ $D_{h} = \frac{R_{h}}{b} \times 100$ $D_{v} = \frac{R_{v}}{a} \times 100$ $R = D_{h} \times D_{v}$ $R = \frac{0.464^{2} \times M^{2}}{a \times b}$

5.1 The Straight-Forward Approach Program

Chapter 5

APPLICATION SOFTWARE

5.1 The Straight-Forward Approach Program

To verify the feasibility of using the moment invariants method and the running time required, implementation programs were written in both Turbo Pascal and Fortran-77, using a Hewlett Packard Vectra.

The FORTRAN-77 program starts by generating (simulating) a digitized image of size 256 X 256. It then calculates the 2-D moments in a recursive loop and ultimately the moment invariants. The program required much more than the pre-set limit of 1 second because of the recursive nature of the calculation, in fact for that size of matrix the running time reached one minute (see complete listings in APPENDIX I and time complexity analysis for the time spent).

5.2 The Delta Method Program

At first, the delta method was implemented in Turbo-Pascal to verify the feasibility and the running time. The input was a simulated image of 128 X 512 bits of information. This program took considerably less than one second (see APPENDIX II for a complete listing of the Turbo-Pascal program). 5.2 The Delta Method Program

Once satisfactory results had been achieved, an application program, that interacts with the IDETIX system and uses the delta method, was written. This program is listed in APPENDIX III and the following is a detailed description of the program :

Lines 001-690 : setting the IDETIX hardware parameters

Lines 700-720 : subroutine to reset the IDETIX parameters and/or stop the camera

Lines 1010-3240 : calling the camera driver system routines for image digitizing, image enhancement and display of image on CRT

Lines 4000-4100 : service the keyboard for interactive programming "c" will calculate moments and print results "C" will calculate moments and display the results. "L" or "l" will look at memory location APTR(5)+C, where the enhanced image is stored. "D" or "d" will calculate first the dimension of the object in pixels for further enhancing of the edges. Then it will store the seven invariants for later comparisons. This should be done before "c" or "C". "S" or "s" will stop the IDETIX camera. "R" or "r" only these keys will resume camera operation. "P" or "p" will print the image on an Epson printer. "Q" or "q" will quit the program.

Lines 5300-5313 : subroutine to set the parameters for enhancing.

Lines 6000-6200 : subroutine to calculate the number of white and black pixels.

Lines 40000-40011 : subroutine to print the image on an Epson printer.

- 5.2 The Delta Method Program

Lines 45000-45200 : subroutine CALCULATE 1, this subroutine will calculate the delta δ , X_{st} , Y_{st} (X_i and Y_i in Figure 3.1) and the $m_{pq's}$.

Lines 45310-45230 : subroutine BYTE-LEFT, this will find the left edge of the image.

Lines 45240-45280 : subroutime BYTE-RIGHT, this will find the right edge of the image.

Lines 45290-50460 : subroutine CALCULATE 2, this will calculate the seven invariants that represent the image.

Lines 55000-55070 ; subroutine LOOK, this will print or display the image in HEX numbers.

Lines 56000-57000 : the two subroutines that will calculate the size of the object and then store the first set of moment invariants for later comparisons.

5.2 The Delta Method Program

Figure 5.1 The Information Displayed By The Delta Method Interactive Program.

The delta method reduces the amount of recursive calculations needed to compute the moment invariants. Using an optimizing compiler the average running time for a program with a matrix of size 80 X 640 was 0.64 seconds. (see Figure 6.1 to 6.28 for running time).

5.3 Complexity Analysis

1

5.3 Complexity Analysis

5.3.1 Space Complexity

The advantages of the delta (δ) method over the straightforward (S) method, can be shown by a comparison of the time complexity (running time). The space complexity (space occupied by the data required for processing) of the two methods is similar.

5.3.2 Time Complexity

To compare worst case running time for both the δ method and the S method, assume that the image occupies the entire intensity matrix f(i,j).

In the S method a maximum of 10 additions and 20 multiplications is required for each pixel, over the entire image matrix $\dot{M} \times N$, as each 'on' pixel contributes to the m_{pq} 's (see (1.a)-(1.j)).

In the δ method a maximum of N+6 additions and 25 multiplications is required for each line of pixels, over the entire image matrix M X N, in order to calculate $m_{pq,i}$ for the corresponding line of pixels i. (see (1.a')-(1.j')).

To calculate the order of time complexity for the intensity matrix f(i,j) of size M X N :

54

<u>Stra</u>	ightforward	method	:				
# of	additions	=	10	X	M	Х	ł

(5.1)

5.3 Complexity Analysis

E

۰,

of multiplications = 20 X M \propto N (5.2)
<u>Delta method</u> :	•
of additions = $(N + 6) \times M$ (6.1)
# of multiplications = 25 X M	6.2)
. 5	
For an 80287-8 co-processor the average number of c	lock
cycles, for a single multiplication, (64 bit real), is	140,
cycles, and for a single addition the average is 110	(see
[22]).	•
•	
Combining (5.1) and (5.2), (6.1) and (6.2) gives:	
Straightforward method :	
Average # of clock cycles : 3900 X M X N	<u>(5)</u>
<u>Delta method:</u>	
Average # of clock cycles : M X (110 N + 4160)	(6)
The ratio of (5) over (6) for a reasonable large N is give	n°as
follows (see Figure 5.2):	
(3900 X N)	,
≈ 35	÷

,

Chapter 6

DISCUSSION AND RESULTS

6.1 Testing Results

In order to verify the resolution (accuracy) of the camera and the sensitivity of the moment invariants, an object was rotated, translated, punctured, truncated and distorted slightly by flawing and adding appendages to the edges.

The object shown in Figure 6.1 was digitized and its moment invariants calculated using the delta method. These moments were stored to be compared later by the next set of moments. The image was then rotated and in the same time translated in the X-direction and in the Y-direction (see Figure 6.2-6.10). In the next set of data the object was punctured using an ordinary paper punch with a hole diameter of 7mm (less than 0.40 % of the total area) (Figure 6.11-6.19), and different combinations of rotations and translations were applied.

The object was next distorted slightly by the addition of material, 1.2 % of the total area, in Figure 6.20-6.22 and 0.67 % in Figure 6.23-6.25.

Finally the object was cut diagonally in three different ways to simulate a situation when the robotic picker fails to pick up the piece of fabric properly (see Figure 6.26-6.28). Figure 6.29 summarizes the experimentation results and lists the ϕ 's and their percentage deviation from the original image.

C

Figure 6.1: Image # 1.

``a```

TO DESCRIPTION OF

0.833646D+07 0.277061D+09 0.114987D+11 M(0) M(1) æ -M(2) . 0.1149870+11 0.534412D+12 0.29,7239D+10 0.991478D+11 0.413192D+13 M(3) M(4) M(5) --M(6) M(7) M(8) -0,448702D+14 -0.151571D+16 -M(9) 0.617453D+15 -MU(1) 0.438104D+14 = 0.229063D+10 MU(2) -MU(3) -0.3609860+09 MU (4) 0.4935900+17 -MU (5) -Q.833931D+15 MU (6) -0.897078D+16 MU(7) 0.777310D+14 * ETA(1) = 0.6303970+00 0 ETA(2) = 0.3296030+04 ETA(3) = ETA(4) = ETA(5) = 0.5194300-05 0.2459870+00 0.415600D-02 ETA(6) = 0.447070D-01 ETA(7) = 0.3873830-03 PHI(1) = 0.6304300+00 PHI(2) = 0.397360D+00 PHI(3) = 0.7241580-01

PHI(4) = 0.6460500-01 0.4418420-02 PH1(5) = 0.42000BD-01 PHI(6) = PHI(7) = 0.1990250-02 TIM3 13106146 TIM1 13:06:45 TIM2 % CHANGE IN PHI(1) = 0.0% 0.0% % CHANGE IN PHI(2) = % CHANGE IN PHI(3) = 0.0% % CHANGE IN PHI(4) = % CHANGE IN PHI(5) = % CHANGE IN PHI(6) = 0.0% 0.0% % CHANGE IN PHI(7) = 0.0%

~ 58

•

Ů

Figure 6.2: Image # 2.

				1
		M(0)	=	0.8642970+07
		M(1)	10	0.277878D+09
		M(2)	-	0.114682D+11
		M(3)	=	0.531874D+12
•	•	M(4)	-	0,308586D+10
		M(5)	-	0.100090D+12
		M(6)	-	0.416881D+13
		M(7)	-	0.460096D+14
		M(8)	-	0.153647D+16
		M(9)	-	0.643713D+15
		MU(1)	W	0.449079D+14
		MU(2)	-	0.253424D+10
		MU(3)	-	0.876944D+09
	•	MU(4)	-	0.520651D+17
		MU(5)	-	0.810218D+15
		MU (6)	-	0.905393D+16
		MU(7)	*	0.729578D+14
		ETA(1)	-	0.601169D+00
		ETA(2)	-	0.3392520-04
		ETA(3)	-	0.1173940-04
		ETA(4)	-	0.237077D+Q0
		ETA(5)	-	0.368930D-02
``		ETA(6)		0.4122680-01
		ETA(7)	-	0.332211D-03

PHI(1) =

PHI (2) =

k

TIM1 13:08:24 TIM2 TIM3 13:08:25 7 CHANGE IN PHI(1) = -4.6%7 CHANGE IN PHI(2) = -9.1%7 CHANGE IN PHI(3) = -6.5% 47 7 CHANGE IN PHI(4) = -7.6%7 CHANGE IN PHI(5) = -15.0%7 CHANGE IN PHI(5) = -1.2%7 CHANGE IN PHI(7) = -17.4%

 $\begin{array}{rcl} \mathsf{PHI}\left(2\right) &=& 0.3613720+00\\ \mathsf{PHI}\left(3\right) &=& 0.662947D-01\\ \mathsf{PHI}\left(4\right) &=& 0.596954D-01\\ \mathsf{PHI}\left(5\right)^9 &=& 0.375503D-02\\ \mathsf{PHI}\left(6\right) &=& 0.415066D-01\\ \mathsf{PHI}\left(7\right) &=& 0.1644448D-02 \end{array}$

0.601203D+00

0.361372D+00

ς.

Figure 6.3: Image # 3.

		٤			
	M(O)		A 84	04070	+07
-	M(1)	-	0.70	74630 8564D	+09
	M(2)	-	0.11	48200	+11
	M (3)		0.53	32780	+12.
	M(4)	-	0.32	6879D	+10
	M(5)	-	0.10	2049D	+12
	M(6)	-	0.42	8687D	+13
	M(7)		0.48	7398D	+14
<u> </u>	M (B)	- 4	0.16	0095D	+16
	M(9)	=	0.48	8392D	+15
	MIL(1)		0.47	56490	+14
	MU(2)		0.27	4991D	+10
	MU(3)		0.19	2984D	+10
-	MU (4)		0.56	23230	+17
,	MU (5)	-	0.77	8742D	+15
	MU (6)	-	0.92	4667D	+16
	MÚ (7)	•	0.66	3782D	+14
	FTA(1)	-	0.57	50400	+00
	ETA(2)		0.35	6632D	-04
	ETA(3)		0.23	3310D	-04
	ETA(4)		0.22	5423D	+00
	ETA(5)	-	0.31	2262D	-02
-	ETA(6)	-	0.37	00840	-01
1	ETA (7)	-	0.26	6076D	-03
-	PHT (1)	-	0.57	5075D	+00 .
	PHI (2)	-	0.33	06650	+00 `
	PHI (3)	-	0.58	9872D	-01
1	PHI (4)	-	0.53	6272D	-01
	PHI (5)		0.30	1598D	-02
	PHI (6)	-	0.42	2793D	-01
	PHI (7)	=	0.12	7110D	-02
TIMI 13:10:12	TIM2 6			TIMB	1311011
x	CHANGE	IN I	PHI (ł) =	-8.9%
7.	CHANGE	IN I	PHI (2) = -	16.9%
χ.	CHANGE	IN F	ъні (3) = -	18.5%
7.	CHANGE	IN I	PHI (4	? = -	17.0%
%	CHANGE	IN I	PHI (5) = ~	31.7%
X	CHANGE	IN I	PHI (6) =	0.7%
, X	CHANGE	INI	РНІ (7) =	36.1%

3

-

Figure 6.4: Image # 4.

		**						
-	M(0) M(1) M(2) M(3) M(5) M(5) M(5) M(7) M(9)		0. 0. 0. 0. 0. 0. 0. 0. 0.	815 269 110 511 292 965 397 470 155 607	3881 0881 8351 1401 7271 7971 9791 7971 2911 5991	D+07 D+09 D+11 D+12 D+10 D+11 D+13 D+13 D+14 D+14 D+15		
	MU(1) MU(2) MU(3) MU(4) MU(5) MU(6) MU(7)		0.0.0000	, 220 374 464 809 880 744	2351 3311 6241 9081 7601 8361 3661	0+14 0+10 0+07 0+17 0+15 0+16 0+14		
	ETA(1) ETA(2) ETA(3) ETA(4) ETA(5) ETA(6)		00-0000	692 331 563 244 426 463	2310 3950 4650 9820 5260 9640	0+00 0-04 0-07 0+00 0-02 0-01		
•	PHI (1) PHI (2) PHI (3) PHI (4) PHI (5) PHI (6)		0.0.0000	492 479 731 842 440 414	2641 1381 2851 6331 4721 0921	0+00 0+00 0-01 0-01 0-02		
13:16:13 1	PHI(7) TIM2 CHANGE	= IN	о. РНІ	202 T (1)	6271 IM3 =	0-02 131 9.	16: 8%	14
	CHANGE CHANGE CHANGE CHANGE CHANGE	IN IN IN IN IN	PHI PHI PHI PHI PHI PHI	(2) (3) (4) (5) (6) (7)		20. 1. -0. -0. -1. 1.	6% 0% 5% 3% 4%	

61

TIMI

1

1 - 12

4

	•		' " \	
			V	
				an a
	-	•		Ange der Ansteinen Ansteinen Dar der Samer der
			`	and a second s
				27 49 102 29 49 29 49 29 49 29 49 29 49 49 29 49 49 29 49 49 20 40 20 40 20 40 20 40 20 40 40 40 40 40 40 40 40 40 40 40 40 40
			-	and a second sec
		э		
		•	•	
.'				
	2000 - 2000 - 2000 		Andreas and a second se	

$\begin{array}{rcl} M(0) &=& 0.848283D+07\\ M(1) &=& 0.296075D+09\\ M(2) &=& 0.128092D+11\\ M(3) &=& 0.619683D+12\\ M(4) &=& 0.306751D+10\\ M(5) &=& 0.106258D+12\\ M(4) &=& 0.459289D+13\\ M(6) &=& 0.459289D+13\\ M(7) &=& 0.498655D+14\\ M(8) &=& 0.169602D+16\\ M(9) &=& 0.642288DD+15\\ M(9) &=& 0.642288DD+15\\ M(1) &=& 0.487562D+14\\ M(2) &=& 0.247533D+10\\ MU(3) &=&807415D+09\\ MU(4) &=& 0.492332D+17\\ MU(5) &=& 0.949184D+15\\ MU(6) &=& 0.979006D+16\\ MU(7) &=& 0.916132D+14\\ ETA(1) &=& 0.6477561D+00\\ ETA(2) &=& 0.343994D-04\\ ETA(4) &=& 0.234913D+00\\ ETA(5) &=& 0.452896D-02\\ ETA(6) &=& 0.467125D-01\\ \end{array}$						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		MIO	=	0 848	7830+	07
$\begin{array}{llllllllllllllllllllllllllllllllllll$		MU	-	0.296	075D+	09
$\begin{array}{rcl} M(3) &=& 0.419483D+12\\ M(4) &=& 0.304751D+10\\ M(4) &=& 0.304751D+10\\ M(5) &=& 0.104259D+12\\ M(6) &=& 0.459289D+13\\ M(7) &=& 0.459289D+13\\ M(7) &=& 0.498635D+14\\ M(8) &=& 0.149402D+16\\ M(9) &=& 0.642288D+15\\ M(9) &=& 0.642288D+15\\ M(2) &=& 0.247533D+10\\ MU(2) &=& 0.247533D+10\\ MU(3) &=&807415D+00\\ MU(4) &=& 0.492332D+17\\ MU(5) &=& 0.979004D+16\\ MU(7) &=& 0.979004D+16\\ MU(7) &=& 0.979004D+16\\ MU(7) &=& 0.343994D-04\\ ETA(2) &=& 0.343994D-04\\ ETA(4) &=& 0.234913D+00\\ ETA(5) &=& 0.452896D-02\\ ETA(6) &=& 0.467125D-01 \end{array}$		M(2)	-	0.128	092D+	11
$\begin{array}{rcl} M(4) &=& 0.306751D+10\\ M(5) &=& 0.106258D+12\\ M(6) &=& 0.459289D+13\\ M(7) &=& 0.459655D+14\\ M(8) &=& 0.165602D+16\\ M(9) &=& 0.165602D+16\\ M(9) &=& 0.642288D+15\\ MU(1) &=& 0.247533D+10\\ MU(2) &=& 0.247533D+10\\ MU(2) &=& 0.247533D+10\\ MU(3) &=& -807415D+09\\ MU(4) &=& 0.492332D+17\\ MU(5) &=& 0.549184D+15\\ MU(6) &=& 0.979006D+16\\ MU(7) &=& 0.916132D+14\\ \end{array}$	•	M (3)	-	0.619	683D+	12
$ \begin{array}{rcl} M(5) &=& 0.104259D+12\\ M(6) &=& 0.459289D+13\\ M(7) &=& 0.459263D+14\\ M(7) &=& 0.498635D+14\\ M(7) &=& 0.642288D+15\\ M(7) &=& 0.642288D+15\\ M(7) &=& 0.642283D+10\\ M(3) &=&807415D+09\\ M(3) &=&807415D+09\\ M(3) &=&807415D+09\\ M(4) &=& 0.492332D+17\\ M(5) &=& 0.949184D+15\\ M(6) &=& 0.979006D+16\\ M(7) &=& 0.916132D+14\\ ETA(1) &=& 0.6477561D+00\\ ETA(2) &=& 0.343994D-04\\ ETA(4) &=& 0.2349130+00\\ ETA(5) &=& 0.452896D-02\\ ETA(6) &=& 0.467125D-01 \end{array} $		M(4)	-	0.306	751D+	10
$\begin{array}{rcl} M(4) &=& 0.457289D+13\\ M(7) &=& 0.457289D+13\\ M(7) &=& 0.498655D+14\\ M(8) &=& 0.169602D+14\\ M(9) &=& 0.642288D+15\\ \end{array}$ $\begin{array}{rcl} MU(1) &=& 0.487562D+14\\ MU(2) &=& 0.247533D+10\\ MU(3) &=&807415D+09\\ MU(4) &=& 0.492332D+17\\ MU(5) &=& 0.979006D+16\\ MU(7) &=& 0.979006D+16\\ MU(7) &=& 0.979006D+16\\ MU(7) &=& 0.979006D+16\\ MU(7) &=& 0.9716132D+14\\ \end{array}$ $\begin{array}{rcl} ETA(1) &=& 0.677561D+00\\ ETA(2) &=& 0.343994D-04\\ ETA(4) &=& 0.234913D+00\\ ETA(5) &=& 0.452896D-02\\ ETA(6) &=& 0.467125D-01 \end{array}$		M (5)	-	0.106	258D+	12
$ \begin{array}{rcl} M(7) &=& 0.478633D+14 \\ M(8) &=& 0.169602D+16 \\ M(9) &=& 0.642288D+15 \\ \end{array} \\ \begin{array}{rcl} M(9) &=& 0.642288D+15 \\ \end{array} \\ \begin{array}{rcl} M(1) &=& 0.487562D+14 \\ M(2) &=& 0.247533D+10 \\ M(2) &=& 0.247533D+10 \\ M(3) &=&807415D+09 \\ M(4) &=& 0.492332D+17 \\ M(4) &=& 0.492332D+17 \\ M(4) &=& 0.492332D+17 \\ M(6) &=& 0.979006D+16 \\ M(7) &=& 0.979006D+16 \\ M(7) &=& 0.9716132D+14 \\ \end{array} \\ \begin{array}{rcl} ETA(1) &=& 0.677561D+00 \\ ETA(2) &=& 0.343994D-04 \\ ETA(3) &=&112206D-04 \\ ETA(4) &=& 0.432896D-02 \\ ETA(6) &=& 0.467125D-01 \\ \end{array} $		M (6)	-	0.457	289D+	13 '
$\begin{array}{rcl} M(B) &=& 0.1494002D+14\\ M(9) &=& 0.642288D+15\\ \\ MU(1) &=& 0.642288D+15\\ \\ MU(2) &=& 0.247533D+10\\ \\ MU(2) &=& 0.247533D+10\\ \\ MU(3) &=&807415D+09\\ \\ MU(4) &=& 0.492332D+17\\ \\ MU(5) &=& 0.979006D+16\\ \\ MU(7) &=& 0.979006D+16\\ \\ MU(7) &=& 0.916132D+14\\ \\ \\ ETA(1) &=& 0.677561D+00\\ \\ ETA(2) &=& 0.343994D-04\\ \\ ETA(4) &=& 0.234913D+00\\ \\ ETA(5) &=& 0.452896D-02\\ \\ \\ ETA(6) &=& 0.467125D-01\\ \end{array}$		M(7)		0.478	655D+	14
M(9) = 0.642289D+15 $MU(1) = 0.487562D+14$ $MU(2) = 0.247533D+10$ $MU(3) =807415D+09$ $MU(4) = 0.492332D+17$ $MU(5) = 0.949184D+15$ $MU(6) = 0.979006D+16$ $MU(7) = 0.916132D+14$ $ETA(1) = 0.677561D+00$ $ETA(2) = 0.343994D-04$ $ETA(3) =112206D-04$ $ETA(4) = 0.234913D+00$ $ETA(5) = 0.452896D-02$ $ETA(6) = 0.467125D-01$		M(8)	-	0.167	602D+	16
$\begin{array}{rcl} MU(1) &=& 0.487542D{+}14\\ MU(2) &=& 0.247533D{+}10\\ MU(3) &=&807415D{+}09\\ MU(4) &=& 0.492332D{+}17\\ MU(5) &=& 0.949184D{+}15\\ MU(6) &=& 0.979004D{+}16\\ MU(7) &=& 0.916132D{+}14\\ \end{array}$		M(7)	-	0.642	288D+	15
$\begin{array}{rcl} MU(2) &=& 0.247533D+10\\ MU(3) &=&807415D+09\\ MU(4) &=& 0.492332D+17\\ MU(5) &=& 0.949184D+15\\ MU(6) &=& 0.979006D+16\\ MU(7) &=& 0.916132D+14\\ \end{array}$	-	MU(1)	_	0.487	562D+	14
$\begin{array}{rcl} MU(3) &=&807415D+09\\ MU(4) &=& 0.492332D+17\\ MU(5) &=& 0.949184D+15\\ MU(5) &=& 0.979004D+16\\ MU(7) &=& 0.916132D+14\\ \end{array}$ $\begin{array}{rcl} ETA(1) &=& 0.677561D+00\\ ETA(2) &=& 0.343994D-04\\ ETA(3) &=&112204D-04\\ ETA(4) &=& 0.234913D+00\\ ETA(5) &=& 0.452894D-02\\ ETA(5) &=& 0.467125D-01 \end{array}$		MU(2)	-	0.247	533D+	10
$\begin{array}{rcl} MU(4) &=& 0.492332D+17\\ MU(5) &=& 0.949184D+15\\ MU(6) &=& 0.979006D+16\\ MU(7) &=& 0.916132D+14\\ \end{array}$ $\begin{array}{rcl} ETA(1) &=& 0.677561D+00\\ ETA(2) &=& 0.343994D-04\\ ETA(3) &=& -112206D-04\\ ETA(4) &=& 0.234913D+00\\ ETA(5) &=& 0.452896D-02\\ ETA(5) &=& 0.467125D-01 \end{array}$		MLI (3)	-	807	415D+	09
$\begin{array}{rcl} MU(5) &=& 0.9491B4D+15\\ MU(6) &=& 0.979006D+16\\ MU(7) &=& 0.916132D+14\\ \end{array}\\ \begin{array}{rcl} ETA(1) &=& 0.677561D+00\\ ETA(2) &=& 0.343994D-04\\ ETA(3) &=& -112206D-04\\ ETA(4) &=& 0.234913D+00\\ ETA(5) &=& 0.452B96D-02\\ ETA(6) &=& 0.467125D-01 \end{array}$		MU (4)	=	0.492	332D+	17
$\begin{array}{rcl} MU(6) &=& 0.979006D+16\\ MU(7) &=& 0.916132D+14\\ ETA(1) &=& 0.677561D+00\\ ETA(2) &=& 0.343994D-04\\ ETA(3) &=&112206D-04\\ ETA(4) &=& 0.234913D+00\\ ETA(5) &=& 0.452B96D-02\\ ETA(6) &=& 0.467125D-01 \end{array}$		MU (5)	-	0.949	184D+	15
MU(7) = 0.916132D+14 ETA(1) = 0.677561D+00 ÉTA(2) = 0.343994D-04 ETA(3) =112206D-04 ETA(4) = 0.234913D+00 ETA(5) = 0.452B96D-02 ÉTA(6) = 0.467125D-01		MU (6)	=	0.979	006D+	16
ETA(1) = 0.677561D+00 ÉTA(2) = 0.343994D-04 ETA(3) =112206D-04 ETA(4) = 0.234913D+00 ETA(5) = 0.452B96D-02 ÉTA(6) = 0.467125D-01		MU(7)	-	0.916	132D+	14
ETA(1) = 0.677561D+00 ÉTA(2) = 0.343994D-04 ETA(3) =112206D-04 ETA(4) = 0.234913Ď+00 ETA(5) = 0.452896D-02 ÉTA(6) = 0.467125D-01					•	
ÉTA(2) = 0.343994D-04 ETA(3) =112206D-04 ETA(4) = 0.234913Ď+00 ETA(5) = 0.452896D-02 ÉTA(6) = 0.467125D-01		ETA(1)	-	0.677	561D+	00
ETA(3) =112206D-04 ETA(4) = 0.234913D+00 ETA(5) = 0.452896D-02 (ETA(6) = 0.467125D-01		ÉTA (2)		0.343	994D-	64
ETA(4) = 0.234913D+00 ETA(5) = 0.452896D-02 (ETA(6) = 0.467125D-01		ETA(3)	-	112	206D-	04
ETA(5) = 0.452896D-02 ETA(6) = 0.467125D-01		` ETA(4)	-	0.234	913Ď+	00
ETA(6) = 0.467125D-01		ETA(5)	-	0.452	876D-	02
		ÉTA(6)	=	0.467	125D-	01
ETA(7) = 0.437126D-03		ETA(7)	-	0.437	126D-4	03
•					_	
PHI(1) = 0.677596D+00	•	PHI (1)	=	0.677	596D+	00
PHI(2) = 0.459051D+00	•	PHI (2)	-	0.457	051D+	00
PHI(3) = 0.685013D-01		PHI (3)	-	0.685	013D-	01
PHI(4) = 0.595554D-01		PHI (4)	-	0,595	554D-0	01
PHI(5) = -0.3B0313D-02		PHI (5)	-	× 0.380	313D-	02
PHI(6) = 0.290361D-01		PHI (6)		0,290	361D~	01
PHI(7) = 0.179994D-02	-	PHI (7)	-	0.179	994D-0	02
TIM1 13:12:40 TIM2 TIM3 13:12:41	TIM1 13:12:40	TIM2		T	IM3 1	3:12:41
% CHANGE IN PHI(1) = 7.5%	^ %	CHANGE	IN	PH1(1)	-	7.5%
% CHANGE IN PHI(2) = 15.5%	X	CHANGE	IN	PHI (2)	- 13	5.5%
% CHANGE IN PHI(3) = -5.4%	7.	CHANGE	IN	PH1 (3)	- i	5.4%
% CHANGE IN PHI(4) = -7.8%	7.	CHANGE	IN	PHI (4)	= -;	7.8%
% CHANGE IN PHI(5) = -13.9%	γ.	CHANGE	IN	PHI (5)	13	5.9%
% CHANGE IN PHI(6) = -30.9%	7.	CHANGE	IN	PHI (6)	= ~30	0.9%
% CHANGE IN PHI(7) = -9.6%	7.	CHANGE	IN	PHI (7)		7.6%

-

ſ
t

Figure 6.6: Image # 6.

	M(0)	=	0.83	3748	0+07	
	MII	-	0.28	7502	0+09	
	M(2)	-	0.12	25371	0+11	
	M(3)	-	0.58	37721	0+12	
	M(4)		0.30	05331	0+10	
•	M(5)	-	0.10	29741	0+12	
	M(6)	-	0.43	84751	D+13	
4	M(7)	-	0.48	39461	D+14	
	M(B)	-	0.16	23561	D+16	
	M(9)	-	0.82	72221	0+15	
	MU(1)	*	0.47	31131	D+14	
	MU(2)	=	0.23	39711	0+10	
	MU (3)	-	65	74621	0+07	
:	MU (4)	-	0.48	25871	D+17	
	MU (5)	-	0.90	77051	0+15	
	MU (6)	-	0.94	43551	D+16	
	MU (7)	=	0.86	83321	0+14	
	ETA(1)	=	0.68	06021	00+0	
	ETA (2)	-	0.33	65841	004	
	ETA (3)	-	94	86811	0-05	
	ETA(4)	-	0.24	04301	00+0	
	ETA (5)	-	0.45	22281	0-02	
	ETA (6)	-	0.47	04871	0-01	•
	ETA (7)	-	0.43	26141	0-03	
•	PHI (1)		0.68	06391)+00	
· •	PHI (2)	2	0.46	31840	0+00	
	PHI (3)	2 5	0.71	26721	0-01	
· '	PHI (4)	-	0:62	25611	0-01	
	PHI (5)	-	0.41	46081	0-02	
	PHI (6)		0.32	07001	0-01	
	PHI (7)		0.19	45870	2-02	
IM1 13:14:16	TIM2		•	TIM3	13:14	117
ž	CHANGE	IN	PHIO	5 =	8.07	
Y.	CHANGE	IN	PHI (2) =	16.6%	
ž	CHANGE	IN	PHI (3) =	-1.67	
	CHANGE	IN	PHI (4) =	-3.6%	
X.	CHANGE	IN	PHI (5	> =	-6.27	
X	CHANGE	IN	PHI (6) = -	-23,6%	
7	CHANGE	IN	PHI (7) =	-2.27	

}

	1	, M(0)	-	0.B	514451	,)+07
		MILL	-	0.30	040B6	0+09
		M(2)		0.1	177791)+11
		M/T)	_	0.4	LOALT	+17
		M(A)	_	0.0	107401	A10
		11(4)	_	0.3	120/71	117
		m(a)	_	0.10	103371) T 4 Z) + 4 T
		m(6)		0.4	61321)+13
		M(7)	-	0.4	100201)+14
		M(B)	-	0.10	528631)+16
	•	M(4)	-	0.6	282831)+15
		M1171		0.4	150001	
		MUZZY	_	0.7		N+10
	-	110(22)	_	0.2	71//11	1410-
		MU(3)	-	0.4	37723L	1+0+
•		MU (4)	-	0.50	141331)+1/
		MU (5)	-	0.91	106231)+13
		MU (6)	-	0,9	793901)+16
		MU(7)		0.96	951721)+14 1
		ETA (1		0.40	117475	1+00
		ETACI		0.0	774021	-04
		EIM(2)		0.3	334771	
		EIAG	-	0.0	140041	J=03
		ETA(4)		0.24	106901)+00
	,	ETA (5) =	0.4(532621	3-02
		ETA (6)) =	0.46	529821	0-01
		ETA(7)) =	0.4	557151	0~03
				0.40	12051	1+00
		PHI (1)	ίΞ.	0.5		100
				.0.30		
		PHICS	. =	0.7	72421	
		PHI (4)		0.6	23/1/1	
		PHI (5) =	0.4	138081)-02
		PHI (6) =	0.3	741171	2-01
		PHI(7)) =	0.19	733201)-02
ттм1	13130150	TIMO			TIMS	13:30
1 4	10100100				, ., (0	
	7.	CHANGE	IN	PHIC	1) =	-4.6%
	. 7	CHANGE	IN	PHIC	2) 🗰	-9.0%
	X	CHANGE	IN	PHIC	3) =	-2.5%
	· X	CHANGE	IN	PHI (\$) -	-3.5%
	ž	CHANGE	IN	PHIC	5) =	-6.3%
	~	CHANGE	IN	PHI	5) =	-6.2%
	· //	CHANGE	TN	PHI (7) =	-7.97
	-	CULINIC	114	1.114 /		A. 7 / 1

50

Figure 6.8: Image # 8.

	M(0)	=	0.8	42724	D+07	
	M(1)	-	0.3	25405	D+07	
	M(2)	=	0.1	49463	D+11	
	M(3)	=	0.7	61131	D+12	
	M (4)	-	0.3	01762	D+10	
	M (5)	-	0.1	17114	D+12	
	M(6)	-	0.5	40942	D+13	
	M(7)		0.4	67289	D+14	
	M(R)	-	0.1	85007	0+16	
• • •	M(9)	• =	0.6	27989	D+15	
	MIL(1)	-	0.4	56484	D+14	
	MU(2)		0.2	38100	D+10	
	MU(3)		0.5	91505	D+09	
•	MU(A)	_	0.4	04922	0+17	
	MUZES	_	0.1	14784	D+16	
	MULLAN	-	0.1	04437	D+17	
	MU(7)	-	0 1	77740	D+15	
	10(77	-	V- 1.	20240	0.10	
	ETA(1)	-	0.6	42769	D+00	
	ETA (2)		0.3	35265	D-04	
	ETA(3)	-	0.8	32891	D-05	
	ETA (4)		0.2	40013	D+00	
	ETA(5)	-	0,5	54343	D-02	
	ETA(6)	=	0.5	16250	D-01	
`	ETA (7)	-	0.5	97777	D-03	
	PHI (1)	-	0.6	42802	D+00	,
	PHT (2)	=	0.4	13113	D+00-	
	PHT (3)		0.7	37014	D-01	
	PHT (4)	_	0.6	30253	D-01	
,	PHT (5)		0.4	29421	D-02	
	PHI (A)		0.4	40025	D-01	
	PHI (7)	-	0.2	12354	D-02	
		-	***			
TIM1 43:18:05	TIME			TIM3	13:18:	06
ź	CHANGE	IN	PHIC	1) =	2.0%	
· 7	CHANGE	IN	PHIC	2) =	4.0%	
	CHANGE	IN	PHI (3) =	1.8%	
. 2	CHANGE	IN	PHI	4) =	-2.4%	
ž	CHANGE	IN	PHI (5) =	-2.8%	
2	CHANGE	IN	PHI	5) =	4.8%	
× 2	CHANGE	IN	PHI (7) =	6.7%	
· · · · · · · · · · · · · · · · · · ·						

،

· : A

F.,-

Ĩ

ر ب

Ξ,

1

Į,

· .

Figure 6.9: Image # 9.

٢

	And in the same water, which provide an overfair in some of the same is the same of the	
	A MARGINE TO A MARGINE AND A	
	A ST AND ST	
	NEW-STREET.	
	1000 (150 (150 (150 (150 (150 (150 (150	
	Animates (Addits)	
	SADA AND	
	A STATE AND A STATE	
	and the second se	
	BIN ST	
	A CALL AND AND A REAL PROPERTY AND AND A REAL PROPERTY A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY	
	A STATE OF THE STA	
	The second s	
~		
	the second s	

		M(O)	_	6 0	77777	B+07	
		M(1)	_	0.3	70207	D+07	
		M(2)	=	0.1	82973	D+11	
		M(3)		0.9	96703	0+17	
		+ M (4)9		0.3	11923	D+10	
		M (5)	-	0.1	33349	D+12	
		M (6)		0.6	65350	D+13	
		-M(7)	-	0.4	60231	D+14	
		M(B)	-	0.2	01860	D+16	
,		M(9)	´-	0.6	52188	D+15	
0							
		MU (1)) =	0.4	49089	D+14	
		MU(2)		0.2	40305	D+10	
		MU(3)		0.1	11525	D+10	
		MU(4)	_	0.5	32139	D+17	
		MU(5)		0.1	42390	D+16	
		MU(A)		0.1	20438	D+17	
•		MU(7)		0.1	68994	0+15	
				~, .			
		ETA()) =	0\$50	98888	D+00	
		ETAC	2) =	0.3	41337	D-04	
		ETAC	() =	0.14	46741	n-04	
		ETA (4	i) =	0.2	36129	D+00	
		ETA (5) =	0.4	31835	D-02	
		ETA	,) =	0.5	35313	D-01	
		ETA (7	·) =	0.74	19885	D-03	
			•				
		PHI (1) =	0.56	38922	D+00	
		PHI (2	2) =	0.34	16762	D+00	
		PHI (3	5) m	0.72	27148	D-01	
•		PHI (4) =	0.6	7273	D-01	
		PHI (S	5) =	0.41	3407	0-02	
**	•	PHI (6) =	0.4	54913	D-01	
		PHI (7) =	0.21	0677	D-02	
TIMI	13:23:17	TIM2			TIM3	13:23	19
			2				
		CHANGE	IN	PHIC) =	-6.6%	
	7.	CHANGE	IN	PHI (2	2) = -	-12.7%	
	7.	CHANGE	IN	PHIC	5) =	0.4%	
	X	CHANGE	IN	PHI (4) =	-4.5%	
	X	CHANGE	IN.	PHI (S	5) =	-6.4%	
•	7.	CHANGE	: เท	PHI () =	8.3%	
	7.	CHANGE	IN	PHI (7	/) m	5.9%	

6

\$

66

× .

£`

Figure 6.10: Image # 10.

-			_	0.05	4070+07	
			-	0.700	7790+09	
		M(2)	_	0.181	A070+11	
		MIT)		0.007	6670-11	
		M(4).	_	0.747	7530+10	
		M(5)		0.140	1530+12	
		M(A)	_	0.499	2220+13	
		M(7)		0.527	6710+14	
		M(8)	-	0.225	861D+16	
		M(9)	-	0.742	601D+15	
		MU(1)	_	0.515	0270+14	
		MU (2)	=	0.347	454D+10	
)		MU (3)		0.388	1940+10	
		Mil(4)	-	0.608	B16D+17	
	•	MU (5)	-	0.135	643D+16	
		MU (6)	-	0.128	0340+17	
		MU(7)		0.146	179D+15	
		•	•			
		ETA(1)	-	0.563	0510+00	
		ETA(2)		0.379	8530-04	
		ETA(3)	-	0.424	3920-04	
		ETA(4)	-	0.215	2210+00	
		ETA(5)	-	0.479	508D+02	
		'ETA(6)	-	0.452	611D-01	
	•	ETA(7)	-	0.514	7530-03	
		PHI(1)	-	0.563	0890+00	
		PHI (2)	-	0.317	1020+00	7
		PHI (3)	-	0.586	319D-01	
		PHI (4)	-	0.505	0250-01	
		PHI (5)		0.274	742D-02	
		PHI (6)	-	0.540	866D-01	
		PHI (7)	-	0.134	439D- 02	
TIMI	13:25:49	TIM2		т	IM3 13:25	5:5
	%	CHANGE	IN	PHI (1)	= -10.7%	
	x	CHANGE	IN	PHI (2)	= -20.27	6
	χ.	CHANGE	IN	PHI (3)	n / −19.0%	
	%	CHANGE	IN	PHI (4)	- 21.87	
	7.	CHANGE	IN	PHI (5)	= -37.8%	
	7.	CHANGE	IN	PHI (6)	= 28.8%	
	y	CHANGE /	TN	PH1(7)	= -32.5%	

Figure 6.11: Image # 11.

	•						*	
	M(O)	10	٥.	649	8731	0+07		
	M(1)	=	٥.	249	7551	0+07		
	M(2)	-	ο.	112	9051	0+11,		
	M(3)	-	٥.	556	8331)+12		
	M(4)	=	٥.	213	1931)+10,	•	
	M(5)	-	٥.	834	418	D+11		
	M(6)		0.	382	2621	0+13		
	M(7)	_ =	٥.	321	890	0+14		
•	M (8)	"=	٥.	126	3441	0+16		
	M(9)	=	٥.	376	0941	0+15		
	MU (1)	*	ο.	314	8971	0+14		
	MU (2)	=	ο.	169	238	0+10		
	MU (3)		٥.	151	132	0+10		
	MU(4)		ο.	274	3020	+17	-	
	MU (5)		ο.	799	7471)+15	•	
	MU (6)		٥.	687	213	0+16		
	MU (7)		٥.	936	8231	0+14		
	ETA(1) =	٥.	745	563[0+00		
	FTA(2) =	ō.	400	6951	0-04		
	ETAT3) =	ο.	357	827	0-04		
	ETA (4)		o.	254	7560	0+00		
	ETA (5) =	٥.	742	7591	0-02		
	ETA (6) =	ο.	638	2441	0-01		
	ETA (7) =	ọ.	870	0680	0-03		
	PHT (1		o.	745	6031	0+00		
	PHI (2) =	ō.	555	8888	0+00		
	PHI (3) =	ο.	903	7351	0-01		
	PHI(4) =	ο.	729	2581	0-01		
	PHI (5) =	ο.	591	5781	0-02		
	PHI (6) =	٥.	879	0381	0-01		
	PHI (7) =	ο.	308	7581)-02		
50:39	TIM2			т	IM3	13:5	501	4(
v	CHANGE	τN	put	(1)	=	12.	52	
ý	CHANGE	TN	PH1	(2)	=	24.	5%	
ý,	CHANGE	TN	PHT	(3)		40.7	57	
	CHANGE	IN	PHT	(4)		36.5	7%	
y.	CHANGE	TN	PHI	(5)		89.7	1%	
ž	CHANGE	ĨN	PHT	(6)	-	74.6	5%	
ž	CHANGE	-IN	PHI	(7)		94.1	X	

Figure 6.12: Image # 12.

	-		"	/
	,			2
		M(O) =	0.6336	24D+07
		M(1) =	0.2397	75D+09
		M(2) =	0.1088	65D+11
		M(3) =	0.5397	65D+12
	•	M(4) =	0.2106	710+10
		M(5) =	0.8334	200411
		M(7)	0.3409	910+14
		M(R) =	0.1415	75D+16
		M(9) #	0.3835	250+15
				ц.
		MU(1) =	0.3339	86D+14
		MU(2) =	0.1812	97D+10
		MU(3) =	0.3820	170+10
		MU(4) =	0,2599	100+17
٢	•	MU(5)~	0,7002	440+14
Q		MU(0) **	0.8720	370+14
	•	10(77 -	01,0120	0,0,1
•		ETA(1) -	0.8318	890+00
		ETA(2) =	0,4515	74D-04
•		ETA(3) =	0.9515	24D-04
		ETA(4) =	0.2571	B4D+00
		ETA (5) =	0.7582	360-02
		ETA(6) =	0.6783	550-01
		ETA(7) =	0.8628	910-03
	•	PHT(1) .	0.8319	340+00
	· •	PHI (2) =	0.6925	580+00
	a	PHI (3) =	0.7602	520-01
		PHI(4) =	0.7482	070-01
	ı	PHI(5) =	0.6334	430-02
		PHI(6) =	0.1678	130+00
		PHI (7) 🛎	0.3310	590-02
ттмт	13:54:14	TIM2	TI	M3 13:54:1
1 4114	10104114			£
	7.	CHANGE IN	PHI (1)	= 25.5%
~	7.	CHANGE IN	PHI (2)	= 57.6%
	7.	CHANGE IN	PHI(3)	= 47.1%
	7.	CHANGE IN	PHI(4)	- 40.4%
	%	CHANGE IN	PHI(2)	- 103.1%
	7.	CHANGE IN	FML(0) '	= 108.27
	7.	CHHNOE IN	LUTIN .	- 100.4/

t.

Figure 6.13: Image # 13.

MU(2) -Q.180576D+10 MU(3) 0.1421320+10 -0.278779D+17 0.647268D+15 MU(4) -MU (5) -= °0.441101D+16 MU (6) MU (7) -0.9501790+14 0.704672D-01 ETA(1) = ETA(1) = 0.7070707070 ETA(2) = 0.443969D-04 ETA(3) = 0.349450D-04 0.271410D+00 0.630158D-02 ETA(4) = ETA(5) = 0.429441D-01 0.925061D-03 ETA(6) = ÊTA(7) = 0,705116D-01 0,503940D-02 0,801192D-01 PHI(1) = /PHI(2) = PHI(3) = 0,790483D-01 PHI(4) # 0.6290810-02 PHI(5) = PHI(6) = 0.331966D-01 PHI(7) = 0.271543D-02 TIM1 13:55:51 TIM2 -TIM3 13:55:51

M(O)

M(1) M(2)

M(3)

M(4)

M(5)

M(6)

M(7) M(8),

M(9)

MU(1)

% CHANGE IN PHI(1) = -89.4% % CHANGE IN PHI(2) = -98.9% % CHANGE IN PHI(3) = 24.4%
 X CHANGE IN FHI(3) = 23.4%

 X CHANGE IN PHI(4) = 48.4%

 X CHANGE IN PHI(5) = 101.7%

 X CHANGE IN PHI(5) = -34.1%

 X CHANGE IN PHI(5) = -77.

0,637755D+07

0.247801D+09

0.114341D+11

0.577665D+12

0.1687870+10

0:670040D+11

0.315369D+13

0.3312830+13 0.131809D+15

0.2426060+15 • 0.286612D+13

70

65

J.

15.

200 m. 4-45 7.25

مەزمانىيىمەر 10-1-1-2-1 10-1-12-20 s

Figure 6.14: image # 14.

		•						
		M(O)	=	0.563	091	D+07	7	
		M(1)	-	0.231	572	20+09	7	
		M(2)	M	0.116	036	3D+,1 3	1	-
÷		M(3)	-	0.638	646	D+12	2	
	-	M(4)	-	0.154	140)D+1()	
		M(5)	=	0.651	188	3D+11	L I	
		M(6)		0.335	525	5D+13	5	
		M(7)	-	0.605	669	2D+13	5	
		M(8)	=	0.227	875	7D+15	5	
		M(9)	-	Q.241	850	D+1	5	
	-	M12(1)		0.563	475	50+13	s -	
		MU(2)	_	0.208	032	p_{D+1}	5	
		MU(2)	_	0.172	RA 1	D+10	5	
		MU(A)	-	0 748	744	D+1	, ,	
	••			0 442	200	D+1	5	
		MU(A)	_	0.439	577	70+1/		
			-	A 00A	702	0110	,	
		MU(7)	-	0,774	/01		•	
		ETA(1)	-	0.177	712	2D+00)	
		ETA(2)	-	0.656	104	D-04	1	
		ETA(3)	=	0.545	116	D-04	ł	4
		ETA(4)	-	0,330	100	D+00) ,	
		ETA (5)		0.880	121	D-02	2	
		ETA(6)	-	0.582	854	D-01	L	
		ETA (7)	=	0.132	205	5D-02	2	
	•							
		PHI(1)	-	0.177	776	3D+00)	
		PHI (2)	-	0.317	531	D-01		
		PHI (3)	-	0.122	345	5D+00)	
		PHI (4)	-	0.118	407	'D+0()	
		PHI (5)	51	0.142	514	ID-01	ł	
		PHI (6)	-	0.919	397	'D-01	ι.	-
		PHI (7)	-	0.663	760	D-02	2	
1M1	13:57:25	TIM2		т	IM3	5 131	57:	26
	° 7.	CHANGE	IN	PHI(1)		-73.	2%	
	ž	CHANGE	IN	PHI (2)	=	~92.	8%	
	ž	CHANGE	IN	PH1 (3)		87.	9%	
	ž	CHANGE	IN	PH1 (4)	-	122.	3%	
	ÿ	CHANGE	IN	PHI (5)	· ** `	356.	9%	•
	ý	CHANGE	IN	PHI (6)	-	82.	6%	
				DUT (7)	-	317	77	

đ ;

Figure 6.15: Image # 15.

.

.

		同時時	il se	ولرقدهم	H. Lathan	a a a a a a a a a a a a a a a a a a a	$\{ \mathcal{L}_{i} \}$	
	ş	LUX.			1.1.1		ta na dia dia dia dia dia dia dia dia dia di	il in
			걸음	1. 建油油			前的	
				1 1	ný la	2.0		
		4.4	16-14	7.4.5				
		N 1 1 1				10.00	Ηf	dia an
		る時間	593		6.14	1.000		
		1.11						ALC: NO
					• •			
		12.2						ANS AL
								146 B
ŗ								4 4 4 4 5
						P		
								15.1
		1943 - 1958 1943 - 19			,			2
		£						
		£3.4						
		fil at						14-1-2-
		BE -						
								「新花」
								15.0.4
			-					12 41
								Era Zi
		100,004						
		4.4						1. A. S.
		1648						田福
		U HE					•	144
								15.27
		14.A						Linkska Marije
		44						
		1		•				ផ្លែ៍
		inertiti 같						E.
								Prasti Ling
				1	. 11			hit som
		5		P	N 41			Anthony
		10						胞等
		8.						H-F
		A MA	.	ិត ភ្នំដោះ •		1	11 537-	時代になってい
		M^{2}	Ę, į			1	- 2 - 0	1.1.1
		1			ىكەنچىت يەكىيىدى	64		1.12 B.
		14,237,25 5.22,252	\mathbf{n}^{*}		1	5 N	-	1999 19 25.1 - 1999 19 25.1 -

٥

,							
		M(0)	-	0.51	/3441)+07	
		M(1)	-	0.20	0774)+09	
		N(2)	=	0.96	2151)+10	
		M(3)'		0.50	61821)+12	
		M(4)		0.15	3516)+10	
		M(5)	=	0,61	35451)+11	
	•	M(6)	-	0.30	18351)+13	
		M(7)	=	0.16	30021)+14	
		M(B)	-	0.67	15011)+15	
		M(9)	=	0.25	27391)+15	
		MIL(1)	=	0.15	84501	+14	
	1	MU(2)	_	0.19	20771	+10	
			_	0.17	71041	110	
		PIC (37	_	0.17	70771	117	
		110 (4 J	- 2	0,20	77071	/**/ _ 1 =	
		MUCDI	-	0.38	73031	7713	-
		nu(6)	-	0.40	28311	1+10	
		MUCT	-	0.76	/9681)+14 \	
	~		_				
	1	ETACI	. •	0.39	2014	+00	
		ETA(2)	· #	0.68	36261)-04	
		ETA(3)	-	0.66	3918)-04	
		ETA(4)	-	0.33	42371	+00	
		ETA(5)	=	0.96	4748)-02	
		ETA (6)	-	0.74	38551)-01	
-		ETA (7)		0.12	61521)~02	
		PHI (1	. *	0.59	20831)+00	
		PHI (2)	- .	0.35	06891	+00	
•		PHI (3)	=	0.14	2444	+00	
		PHI (4)		0.12	39811	+00	
		PHT (5)		0.16	4724	-01	
~			_	0.17		, <u>,</u>	
				0.17	4 4 0 1 1	1-05	
		FUT ())	-	0.07	011	/ UZ	
TIMI	13:59:29	TIM2			TIM3	13:5	9129
	z	CHANGE	IN	PHI(1) = -	-10.7	7.
	ž	CHANGE	IN	PHI (2) = -	-20.2	7.
	7	CHANGE	TN	PHI (3) = 1	21.1	7.
		CHANGE	TN	PHILA	· · ·	32.7	7
	· · ·	CHANGE	TN) = 4	128.1	ž
	~	CHANGE	7.51	DUTIA	·) 	y
			TPI				Y N
	7.	CHANGE	1 N	LUT ()	, -		/-

3

Δ.,

.

.

(:

ø

0

Figure 6.16: Image # 16.

	31.948.27	11. 633.4			1.
	1.1		- 15 C	11.2	Rig-Kallinstein
	1.96		Sec. S	14 E 14	1000
	生的药			- Firence	12 X-7 T 1
	29 E				\$
	T. Sale			1.56.75	
		1. A. C. L.			the second second
					「「「「「「」」
					1. A.
	1724				A
		`			
	124				
	100		9	•	63.31
1	S.J.				11744
	the state				범론면
	10				
					医治热 型
	1				
	Cal			-	101.34
	Constant of				ANSES
			•		2 363-5
	F14	۲		1	6.64.44
	10.00				10. P.S. 1
					CANCE
			_	' /	
	18 (P				And an in
	G			•	AFA ANA
	20 H				Sector in
	19 m				
				•	D. D. A.L.
	G A				L. J. S.
'	1 . A			a	44.4
	alder -			-	14. 4. 4.
	E w		•		1 h.h
	i.		•		garent y
	5. S. I		9		• *
	34				54. E.
	31. ·				A
	eL)			1	19 6 5 10
					10.00
	1				الله الم المسلح الم
			-		Section + 14
					an ti a
	5 -				G
	i a a				فتا ليأتند يتق
	1-1				P.4.74
	EY.				
	2,41	۰.			1947
	1.2			,	
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				
- 1	똜쁥쁖퐄	3			- i.
- [E				
- 1	6 x				
					En L'
					6 5
	215				State Link
	27 S.	مورية المراجعة المراجع	Man-1	35.27	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	1. A.	Sec.		1.00	wer - dialan
	Fight -			111 1 S - CT	1 8 Martha Ta
	1.5	1 000 01	A	المربية وسلافة	د المراجع المرجع ال
	#A.851			2	1 2 2 3 2 3 2 3 5
	1.		5 J.L., #	white the	S KEY THE
	al she	JAN THE	14 238 34	4.4.2 3490	den maint i

		•	
			-
		M(0) =	0.6464250+07
•		M(1) =	0.259026D+09
		M(2) ==	0.117329D+11
		M(3) =	0.577463D+12
		M(4) =	0.211504D+10
		M(5) =	0.872177D+11
*** **	•	M(6) =	0.4038260+13
		M(7) #	0.3114730+14
		M(8) =	0.132942D+16
		M(0) =	0.376648D+15
		11(1) =	010/00/00/00
		-	0 3045530+14
		MU(2) =	0 1757430+10
		MU(2) =	0.100000110
		MU(3) =	0.2408/70+10
		mu(4) =	
		MU(5) =	0.8623870713
•		MU(6) =	0./123060+18
		MU(7) =	0.1056390+15
			-
		ETA(1) =	0.728830D+00
		ETA(2) =	0,3239400-04
		• ETA(3) =	0.5903320-04
		ETA(4) =	0.261363D+00
		ETA(5) =	0.811911D-02
		ETA(6) =	0.670458D-01
		ETA(7) =	0.994322D-03
		с, р	
	3	PHI(1) =	0.728863D+00
		PHI(2) =	0.531375D+00
		PHI(3) =	0.9622910-01
		PHI(4) =	0.7725030-01
		PHI(5) =	0.6654940-02
		PHI(6) =	0.120489D+00
		PHI(7) =	0.3506700-02
TIM1	14:03:34	TIM2	TIM3 14:03:35
	7.	CHANGE IN	PHI(1) = 9.9%
	Z	CHANGE , IN	PHI(2) = 20.9%
	%	CHANGE IN	PH1(3) = 49.4%
	X	CHANGE IN	PHI(4) = 45.0%
	x.	CHANGE IN	PHI(5) = 113.4%
	. Ÿ	CHANGE IN	PHI(6) = 139.3%
	<i>.</i>	CHANGE IN	PHI(7) = 120.5%

÷

Figure 6.17: Image # 17.

		保护可能保持法法	REP AND AND	
		AND ALL	l'Allana anna a	
		1000		
			A.W	SE SO DOWNER HOUSE
			A 200 1 10	
			2	
		199		
		新 起		A Republic State
				1.111
				國政 建 2013
		教室		A State State
				Bra.M
		17.4		
				distance.
		£24		a and
		1202		A STATE
		N. N.		11.2.1
		Stat		2012
		的 现在,		ALL ALL ALL
				and the second
				A TIME
		12.47		and the second
		10.43		k=== j
		1642		a state
		this .		
		The Local	-	
		読む		
		and in t		128.6
		12.1		
				and the second
		A CAL	~~t, °	
		1	<i>a</i> ;	Etnupha.
		1.1.1.1.1.1.1.1.1		·1
			• •	¥5-3#
		1-4		E Septist.
	٠	and and a second and		د چمنتن سنجانان د
		PER		شيشية
		_ ند هنه		، قار يد
		And an example		841 L
The set of a		here to a way		a.7
		Mathia Mar and a solar a		
		and shows a		2.4.5
the state of the s		S		Tante 4
		and the second sec		<u> </u>
		And a series		L a
		Maria N	•	د الحج و
		14. St 3 19. 1	1	
the state of the s		Louis and Maria	2732 * 8236; # * Add - 24	
A second se		E HARA	11 11 11 11 11 11 11 11 11 11 11 11 11	TERRITARIAN ATT
2. August Statut, and August and August Aug August August Augu		String and the	Turs and and the	2 Hat (1
and a second sec		The state of the	Real Man	THE R. LEWIS Y.
the state of the state shale wat a fait to fait.		With a state of the	THE PROPERTY AND A PARTY OF A PAR	
		an firitus : .	An Apat . Apat 1	at all is the said

,	M(0)	-	0.0	560	707	D+07	
¢.	M(1)		o.:	3018	359	D+09	
	M(2)	=	ō. :	1538	348	D+11	
	M(3)	`	0.6	3404	464	D+12	
0	M(4)	=	0.2	2238	915	D+10	
3	M(5)		o.	1027	723	D+12	
-	M(6)		0.	528	305		
•	M(7)	-	0.	350	386	D+14	
	M(8)	·	ō. :	1586	372	D+16	
ć	M(9)	-	0.4	4166	511	D+15	
	MU(1)		o.;	3421	806	D+14	
	MU(2)		0.	1593	792	D+10	
4	MU(3)	-	0.4	4990	074	D+09	
	MU(4)		0.3	3052	285	D+17	•
	MU (5)	=	0.1	118	593	D+16	
	MU(6)		0.1	378	118	D+16	
	MU(7)	-	ō. :	159	734	D+15	•
		,	• • •				
	ETA(1)	, a	0.7	7848	311	p+00	
a.	ETA(2)	-	0.	3658	323	D-0A	
*	FTA(3)		0.	114	257	D-04	
	ETA(4)	-	0.3	2710	B64	D+00	
	ETA (5)	-	0.	105	610	D-01	
e	ETA(6)	-	ō.:	7819	786	D-01	
	ETA (7)	-	0.	142	425	D-02	
,				704			
	PHICL	l, =	0.	/841	848	D+00	
	PHICZ	-	0.4	513	880	0+00	
	PHI (3)		0.1	1120	026	D+00	
	PHI (4)	-	0.8	3010	037	0-01	
	PHI (5)	-	0.0	344:	542	0-02	
	PHI (6)	-	0.	/44:	248	0-01	•
•	PHI (7)	, =	0,4	426	148	0-02	
TTM1 14.05.14	TIM2			т	тыз	14:	05:1
	1 1112			•			
*	CHANGE	TN	PHT	(1)	=	18.	4%
y Y	CHANGE	IN	PHT	(2)		40.	17
	CHANGE	7 M	рнт	$(\overline{3})$	-	73	9%
* *	CHANGE	TM	рнт	(4)	-	61 -	67
/* 	CHANGE	TN	PHT	(5)	-	170-	8%
/• ¥	CHANGE	TN	PHT	(6)	_	47.	9%
~ ~		TN		(7)	_	186	87
7.	CUMMOR	1.04	LUT			100.	5%

7

75.

Figure 6.19: Image # 19.

•			1			
``			8			
	M(0)	=	10.68	1.6170)+07 ^{,°}	
	M(1)	-	0.25	23080)+07	
	M(2)	-	³ 0.11	43910)+11	
	M(3)		0,57	43991)+12	
	M(4)	=	0.21	88941)+10	
	M(5)	-	0.87	17670)+11	
	(6) M	-	0.41	58120)+13	
	M(7)		0.33	36221)+14	
	M(8)	-	0.14	41431	+16	
	M(9)	-	0.35	05911)+15	
	MU(1)	-	0.32	265950)+14	
· · · ,	MÚ(2)		0.21	0234[)+10	
	MU (3)	*	0.61	74611)+10	
	MU (4)	-	0:26	01520)+17	
•	MU (5)	=	0.76	1393[)+15 '	,
	MU (6)	-	0.65	08230)+16	
	MU(7)	*	0.87	75411	0+14	
•	FTA(1)	, "	. 0. 70	25401	0+00	
	ETA(2)	-	0.45	522371	-04	
	ETA(3)	*	0.13	28220	0-03	
•	ETA(4)	-	0.21	43161)+00	
'	ETA(5)	=	0.62	272430)-02	
	ETA(6)	*	0.56	08690	0-01	
	ETA (7)	-	0.72	29271	0-03	
c	PHI (1)	-	0.70	25851	0+00	
•	PHI (2)	=	0.49	46550)+00。	
	PHI (3)	=	0.66	28870	0-01	
	PHI (4)		0.51	88671)-01	
`	-PHI (5)	-	0.30	39548)-02	
	PHI (6)	-	0.14	09991)+00	
•	PHI (7)	=	0.15	587221	0-02 .	
IM1 14:01:36	TIM2 ,	•	-	TIM3	14:01	:3
	CHANGE	IN	PHI (1) =	6.0%	
%	CHANGE	IN	PHI (2	2) =	12.6%	
У.	CHANGE	IN	PHI (3	5) =	2.9%	;
· 7.	CHANGE	IN	PHI (2) =	-2.6%	
; %	CHANGE	IN	PHI (5) =	~2.6%	
' X	CHANGE	IN	PHI (é) = 1	180.0%	
, %	CHANGE	IN	PHI (7	() =	-0.2%	

т

				2		
	•	MION	_	0 712	4100+07	
	3	M(1)	-	0.255	1100+09	
		M(7)	-	0.109	9560+11	•
		M(3)	-	0.527	662D+12	
		M(4)	-	0.262	0050+10	
		M(5)	-	0.967	050D+11	
	·	M(6)	=	0.426	030D+13	
		M(7)	-	0.525	804D+14	
		M(B)	-	0.198	802D+16	
	r	M(9)	-	0.530	332D+15	
		MU(1)	-	0.516	168D+14	
		MU(2)	-	0.186	041D+10	
	ì	MU(3)	-	0.288	381D+10	
-		MU(4)	-	0.332	371D+17	
		MU(5)	=	0.853	3580+15	
		MU(6)	-	0.886	718D+16	
		MU(7)	**	0.830	8970+14	
		ETA(1)		0.101	7000+01	
		ETA(2)	-	0.366	553D-04	
		ETA(3)	=	10.568	1920-04	
		ETA(4)	-	0.245	3490+00	
		ETA(5)	-	0.629	930D-02	
		ETA(6)	-	0.654	3360-01	
		ETA(7)	=	0.613	2200-02	1
1		PHI (1)	=	0.101	703D+01	
		PHI (2)	÷.	0.103	442D+01	
		PHI (3)	-	0.895	994D-01»	
		(4)	-	0.6/6	7190-01	<i>•</i> ,
		PHICO		0,020	307D-02	
		PHL (0)	- 2	0.121	8480-07	
	•	F (14 \ 7 /	-	0.107	1	
TIMI	14:17:23	TIM2		_, , т	IM3 [°] 14: 1	7:23
	7.4	CHANGE	IN	PHI(1)	- 53.4	7.
	۰۶.	CHANGE	IN	PHI (2)	= 135.4	7.
	χ.	CHANGE	IN	PHI (3)	= 39.1	7.
	7.	CHANGE	IN	PHI (4)	= 27.1	.7.
	%	CHANGE	IN	PHI (5)	- 68.7	7.
	X	CHANGE	IN	PHI (6)	= 142.0	17.
	. %.	CHANGE	IN	PH1())	= 07./	· /•

١

									•
		M(0)	-	· 0.	7128	3781) +07	,	
1		M(1)		Ō.	275	650	+09)	
	`	M(2)	=	· 0.	1243	3891)+11		
		M(3)	-	. ō.	620	5091	+12	•	
		M(A)	-	ň.	2123	KOAT	+10		
		M(S)	_	Ö.	9774	455			
		M(4)	_	, õ	32700	34 JL 34 4 F	_13		
		M(7)	_		1740	741	1 1 4	,	
		M(0)	_	<u> </u>	1/00	700			
1		11(8)	_	.0.	2272	002L			
		51(7)	-	υ.	33//	241	+13		
		MU (1)	-	٥.	1705	53D	+14		
	-	MU (2)	-	ο.	1817	'79Ď	+10		
		MU (3)	×	ο.	B1 70	860	+07		
`		MU (4)	-	ο.	3273	89D	+17		
		MU (5)	=	0.1	8034	500	+15		
		MU(A)	-	0.	6202	980	+16		
		MU(7)		ŏ.	1041	320	+15		
				•••					
		ETA (1)) =	0.3	3356	060	90t	<u>, </u>	
		ETA (2)) =	0.3	3576	94D	-04		
		ETA(3)) =	0.	1607	820	-04		
		ETA (4)) =	Ö.:	2412	83D	+00		
		ETA (5)) =	0.1	5921	350	-02		
	,	ETA (6)) ==	0.4	4571	54D	-01		
		ETA (7)		0.3	7674	40D	-02		
,	0								
		PHI (1)) =	0.3	3356	42D	+00		
		PHI (2)	-	• 0. 3	1126	25D	+00		
'		PHI (3)		0.0	5855	97D	-01		
		PHI (4)	-	0.6	5327	05D	-01		
		PHI (3)	ti an	0.4	4166	93D	-02		
		PHI (6)	· -	0.3	Ś188	94D	-01		
		PHI (7)	=	0.1	1784	82D	-02		-
TIMI	14:15:52	TIM2			TI	MЗ	14:1	15:	53
		*							
	2	CHANGE	IN	PHI	(1) -	= `	49.4	1%	
	7.	CHANGE	IN	PHI	(2) -	= -·`	74.4	1%	
	%	CHANGE	IN	PHI	(3)	*	6.4	17.	
	χ.	CHANGE	IN	PHI	(4)		18.6	37.	
	2	CHANGE	IN	PHI	(5) -	- 3	33.6	5%	
	7.	CHANGE	IN	PHI	(6)	:	36.7	7%	
	ž	CHANGE	IN	PHI	7		24.E	3%	•

ą,

3.4% 2.7%

-2.6%

82

ć

the second se

.

Figure 6.26: Image # 26.

	-											
<i>.</i> -	-											
	, _.						ı					
	· .	•								'	0	
			* **									
				~								
(MO	0)		i a	. 40	05	540	+0	7	
			MC	1)		• ŏ	. 15	5842	220	+0	9	
			MC	2)		• Ó	. 77	16	350	+10	ò	
			MC	3)		• Ó	. 42	2117	72D	+1:	ź	
			MC	4)	=	e Q	, 14	909	70D	+10	5	
			MC	5)	3	i Ö	. 59	957	74D	+1	1	
	•		MC	5)	-	• 0	. 29	958	53D	+13	3	
		*	MC	7)		0	. 34	462	27D	+14	4	
			MKE	зŚ	-	0	. 14	363	54D	+16	5	
			M (9	7)		0	. 26	145	55D	+15	5	
			MU	വാ		0.	. 33	907	'8D	+14	ŧ	
			MU	(2)	=	0.	. 14	506	6D	+10)	
			MU	(3)	=	0,	, 99	136	BD	+05	?	
			MU	(4)		0.	. 14	655	i8D	+17	,	
			MU ((5)		0.	. 59	241	0D	+12	5	
			MU	(6)	-	٥.	56	472	'9D	+1ć	3	
,	•		MU	(7)	=	٥.	. 62	945	SD.	+14	ł	
			ETA	1)1	> =	ο.	21	133	0D	+01		
			ETA	1(2) =	٥.	90	415	OD.	-04	ł	
			ETA	\$3) =	٥.	61	789	2D-	-04	ł	
	*		ETA	4)) =	0.	45	641	2D-	+00)	
			ETA	(5)) =	<u>o</u> .	18	448	9D-	-01		
			ETA	(6)) =	ο.	17	586	8D-	+00)	v
			ETA	(7)) =	0.	19	602	SD-	-02	2	
					_							
			PHI	(1)) ==	0.	21	134	70-	101		
÷			PHI	(2)) = •	0.	440	562	404	101		
			PHI	(3)) =	0.	43	/15	6D-	100		
			PHI	(4)		0.	23.		6D4	100		
,			PHI	10		0.	80.	199	10-	-01		
			PHI		-	0.	70	163.	201	-00		
			PHI	(7)	-	φ.	38.	/26	9D-	-01		
T7M1	14.51.	1.4	T 7 M 73				-			۸.	.	
1741	141211	14	111112					110	21	43	211	114
•		У	THAN	GF	τN	РЫТ	(1)		71	8.	87	
1		ž	CHAN	GE	TN	PHT	12		91	Α.	37	
		ž	CHAN	GF	TN	PHT	$\overline{3}$		57	A.	67	
		ž	CHAN	GF	TN	PHT	(4)		38	2.	62	
		x	CHAN	GE	TN	PHT	(5)	- 30	7	63	ō. (22
	1	z	CHAN	GE	IN	PHT	(6)		1	39	2.7	7%
		x	CHAN	GE	ÍN	PHT	(7)		2	33	5.0	22
									_			

Figure 6.27: Image

•	2		-
الله الم	•	۰ •	,
	• M(O) =	0 3984120+07	
	M(1) =	0.1739100+09	
	M(2) =/	0.9764740+10	
	M(3) =	0.6021130+12	
*	M(4) =	0.164792D+10	
	M(5) =	0.779715D+11	
•	M(6).=	0.455190D+13	
	M(7) =	0.3699600+14	
	M(B) =	0.189923D+16	
1	M(7) =	0.334869D+15	
ಬ	MU(1) =	0.363144D+14	
	MU(2) =	0.217293D+10	
	MU(3) =	0:603865D+10	
	MU(4) =	0.266019D+17	
	MU(5) =	0,797528D+15	
	MU(4) "=	0.783658D+16	
· · ·	MU(7) / #	0.8415330+14	
-	ETA(1) =	0,2287780+01	
	ETA(2) =	0.1368930-03	
	E(A(3)) =	0.3804300-03	· *
	E(M(4) =	0.2517100-01	
a		0.2317180-01	
	ETA(7) =	0.2473410+00	
		0.2836076-02	
	PHI(1) =	0.2287920+01	
	, PHI (2) =	0.5242790+01	
	PH1(3) =	0.1130510+01	
	PH1(4) =	0.8103600+00	•
	PHI(3) =	0.7734330+00	
•	PHI(0) ~	0.0708000+01	
		0.3760240400	
TIM1 14:19:24	TIM2	TIM3 14:	19:2
<u>y</u>	CHANGE TN	PHI(1) = 245.	17.
, Y	CHANGE IN	PHI(2) = 109	3.0%
,, X	CHANGE IN	PHI (3) = 165	4.9%
ž	CHANGE IN	PHI(4) = 142	1.1%
ž	CHANGE IN	PHI (5) = 246	95.4
X	CHANGE IN	PHI (6) =/ 137	17.5
	CHANGE IN	PHT (7) = 749	74 7

27.

Figure 6.28: Image # 28.

						-
		•				
	•					
	-					
					×	
					· 1	
				•		
		M(O)	. =	0.405:	520+07	
		M(1)	`=	0.1434	1900+07	
1		M(2)		0.6350	34D+10	
		M(3) -	-	0.3101	A20+12	
			_	0.0101	450410	
		11(4)	-	0.1381	630+10	
		M(5)		0.5076	3250+11	
		M(6)	-	. 0.2331	180+13	۱.
		M(7)	-	0.2903	588D+14	
		M(P)	-	0.115/	570D+1A	
		11(0)	_	A 107		
		M(9)	-	0.1973	3670+13	ъ.
		1				
		MU(1)	-	0.285	316D+14	
	•	MI(2)	-	40.127	326D+10	
			-	0 74.0	5410+10	
		nu (37	-	0.280	1410+10	
		_MU (4)	-	0.1024	4360+17	
		TMU(5)	=	0.432	7770+15	
€ _3	-	MU(A)		0.423	561D+16	
	-	MILCEN		0 454	2070+14	
	1	nu()/	-	0.436.		
		ETA(1)		0.173	7780+01	
		ETA(2)	-	0.774	1460-04	
		ETA(3)		0.1584	100-03	
		EINCOV	_	0.100	1400.00	
		EIAC	-	0.304.	2000700	
		ETA (5)		0.130	7220-01	
•		ETA(6)		0.1278	3790+00	
		FTA(7)	-	0.137	7350-02	
		E14())		0.107		
		PHI(1)		0.1/3	10+02	
		PHI (2)	-	0.302	1250+01	
		PHI (3)		0.2190	00+00C	
			-	0.120	510D+00	
			_	A 107	575D-01	
		PHICS	-	0.172.	3/30-01	
		PHI (6)	-	0.3840	0630+00	
		PHI(7)		0.8069	767D-02	
,						
TIMI	14.74.10	TIM2		т	[M3 14+]	24:10
1 7111	14124.10					
				DUT / 4 >	- 147	. ~
	7.	CHANGE	τN	HI(I)	- 102.	1 /4
-	7.	CHANGE	IN	PHI (2)	= 587.	5%
	Y.	CHANGE	IN	PHI (3)	= 240.0	° %0
	Ŷ	CHANGE	TN	PHI(4)	= 126	4%
	~	CHANCE	414			ay
-	7.	CHANGE	TU	FRI (3)		
	7.	CHANGE	IN	PHI(6)	= 105	7.9%
	7	CHANGE	TN	PH1(7)	= 407.	4%

ر ر

	1			X OF CH	ANGE		
		IMAGE # 1	IMAGE # 2	IMAGE # 3	IMAGE # 4	IMAGE # 5	IMAGE # 6
ø ₁	:	00.0 X	-4.6 %	-8.8 %	9.8 X	7.5 %	8.0 X
¢2	:	00.0 %	-9.1 %	-16.8 %	20.6 X	15.5 %	16.6 X
¢3	:	00.0 X	-8.5 [°] X	-18.5 %	1.0 %	-5.4 %	-1.6 X
¢4	:	00.0 %	-7.6 %	·17.0 %	-0.5 %	.7.8 %	.3.6 X
ø ₅	:	00.0 %	·15.0 %	-31.7 %	·0.3 %	-13.9 %	·6.2 X
¢ ₆	:	00.0 %	-1.2 X	0.7 %	-1.4 %	-30.9 %	·23.6 %
¢7	:	00.0 X	-17.4 %	-36.1 %	1.8 %	9.6 %	-2.2 %
β				2			

2

			•		X OF	CH	ANGE				•	
i I		IMAGE #	17	IMAGE # 8	IMAGE	# 9	IMAGE	#10	IMAGE	#11	IMAGE	#
•1	:	-4.6	x	2.0 X	-6.6	×	-10.7	× .	12.5	x	25.5	X
¢2	:	-9.0	×.	4.0 X	-12.7	x	-20.2	x	26.5	x	57.6	. x
¢3	:	·2.5	x	1.8 %	0.4	*	·19.0	x	40.3	x	49.1	×
\$4	:	·3.5	X	-2.4 🗙	4.5	×	-21.8	*	36.9) x	40.4	X
¢5	:	-6.3	*	-2.8 %	·6.4	x	·37.8	X	89.7	x	103.1	*
¢6	:	-6.2	×	4.8 %	8.3	×	28.8	x	74.6	×	233.2	×
\$7	:	·2.9	x	6.7 X	5.9	x	·32.5	x	94.1	x	108.2	x
	<u>^</u>				<u> </u>						•	

t

			•	<u> </u>				,				<u> </u>
		IMAGE #1	3 IMAGE	#14	IMAGE	#15	IMAGE	#16	IMAGE	#17	IMAGE	, # 18
¢1	:	-89.4 %	•73.	2 %	-10.7	7 X	9.9	x	18.4	x	·64.3	x
¢2	:	-98.9 %	·92.	8 %	-20.2	2 %	20.9	x	40.1	x	-87.3	*
¢3	:	24.4 %	89.	9 X	121.1	x	49.4	x	73.9	x	·11.9	×
¢4	:	48.4 X	122.	3 X	132.7	x	45.0	x	61.6	*	0.2	x
¢5	-	101.7 X	356.	9 X	¢428.1	X	113.4	x	170.8	*	-5.9	x
¢6	:	-34.1 %	82.	6 %	257.1	x	139.3	x	47.9	x _	•37.9	X
¢7	:	70.7 %	317.3	3 X	431.0	x .	120.5	X	186.8	x	•10.6	*
VG.	-0	66.8 %	162.	1 %	200.1	x	72.2	x	85.6	x	31.2	X

	X OF CHANGE													
		IMAGE #	¥19	IMAGE	#20	IMAGE	#21	IMAGE	#22	IMAGE	#23	IMAGE	#24	
ø ₁	:	6.2	x	; 41.0	×	·32.1	x	-51.9	* .	53,4	x	-49.4	x	
¢2	:	12.6	x	98.7	x	74.5	x	-76.9	x	135.4	x	-74.4	x	
.ø3	:	2.9	x	48.4	x	-7.4	x	·32.2	x	39.1	x	6.4	x	
¢4	:	·2.6	x	39.8	X	·24.2	x	-26.8	x	27.1	x	18.8	*	
¢ ₅	:	·2.6	x	101.5	*	.36.8	x	-48.4	×	68.7	×	33.6	*	
¢6	;	180., 0	*	, 59.7	* *	40.5	x	-45.3	x	142.0	x	·36.7	×	
\$ ₇	:	·0.2	x	104.3	x	-36.9	x	-47.8	x	69.7	×	24.8	x	
VG.	#	19.3	X	70.6	x	36.1	x	47.1	x	76.5	x	34.9	x	

Ø

87

Figure 6.29 Summary of Results and % of deviation.

6.2 Discussion of Results

6.2.1 Errors Due to Hardware and the Edge Enhancement Solution

Digital computers can not directly process continuous data. Integrals over infinite limits must be replaced by summations over finite range. (see eq.-1, 2, 1.1, and 2.1). This approximation introduces slight errors moment invariants. The seven moment invariants of the rotated image in Figure 10.2-10.10 show a relatively small percentage of change. These variations or deviation from the theory are due to three reasons other than digitization (approximation) error:

1- The raw data of a contiguous image is not contiguous itself, but looks like a checker-board. This is due to the fact that the IS256 OpticRAM has dead or inactive pixels covering more than 50% of its total area (see Figure 4.5). In order to apply the delta method on the digitized image, the raw image had to be enhanced. The first routine had to fill in the blank pixels and the second enhancing routine had to correct the aspect ratio in the X and Y coordinates (see [24] for a complete listings of the IDETIX subroutines). The resulting image is an enhanced image of 80 X 640. Its contour, however, has ragged edges (see Figure 6.1-6.28).

2- The distortion generated by the wide-angle lens is significant. A square object, for example, will not necessarily give a square image after translation and/or rotation. To minimize this distortion, the OpticRAM physical area used was rows 300 -379 which is in the centre of the OpticRAM chip (see Figure 4.5).

5

3- The delta method applied to an image such as shown in Figure 6.30 would eliminate six entire rows of pixels, as a black pixel circled means the end of a line.

This was verified by tracing the computations of the moments and the *delta method* eliminated six entire lines, as `shown in Figure 6.31.

Figure 6.30 Rotated Image.

This problem was corrected by further enhancing the image, by adding a special subroutine to the delta method program (lines 56000-57000). This subroutine will scan wertically, and calculate approximately the length of the object in the Ydirection (see Figure 3.1 for axis and APPENDIX III for the program) and store it in memory, under the variable LY (Length in Y), along with the first set of moment invariants.

During the regular scanning procedure, if a byte, on the edge of the image, has one bit "off", and the next byte is nonzero, this bit will be turned "on" and scanning will continue. This feature will still allow the program to detect holes in the fabric as the edge flag is not set and a single "off" bit in a line will cancel the remainder.

90

a

Figure 6.31 The Rotated Image as the Delta Method sees it before Edge Enhancement.

*

6.2.2 Description of Results and their Sensitivity

Results and their percentage deviation are summarized in the tables of Figure 6.29. The moment invariants of Figure 6.1-6.10 of the image after rotation and translation, show variations in the ϕ 's of up to 40% for a 'good' images (no holes or unwanted flaws are present) and a variation of up to 25% over the mean value of all the seven ϕ 's. The reason of these variations is contributed to the digitization and undersampling errors discussed earlier.

Creating a hole of 0.4% of the total area of the object changes the percentage deviation of the moment invariant enormously (see results of IMAGE #11 through IMAGE #20). The same magnitude of change took place when an extra amount of material of 0.67% or more was added to the original image.

Therefore the method is sensitive up to 99.6% for holes ' and discontinuities and up to 99.33% for other flaws. The sensitivity of the hardware (the vision-system) was calculated to be 99.64% (see section on sample calculations). This gives an overall sensitivity (accuracy) for the combined system (hardware/software) of more than 99.33%.

6.3 Criteria for Accepting a 'GOOD' Object

To compensate and rectify the error due to the hardware design discussed earlier, we will allow a 40% tolerance change in any ϕ and an overall change of 25% from the mean value of the seven ϕ 's before accepting a 'good' object. Therefore the criteria are as follows:

If any of the two following conditions are satisfied, the object is labeled 'BAD' or 'DEFECTIVE' : percentage deviation

<mark>، 9</mark>2

6.3 Criteria for Accepting A 'GOOD' Object

of any given ϕ is above 40% AND/OR percentage deviation from the mean value of all seven ϕ 's is above 25%.

93

. ñ *

7.1 Introduction _

Chapter 7

LIGHTING CONSIDERATIONS

7.1 Introduction

The IDETIX camera needs a high contrast scene in order to image the object into the OpticRAM. Unlike a TV camera which can respond to shades of gray, the OpticRAMs are digital chips where each picture element makes a black/white judgment based[®] on an arbitrary light level used as a threshold (trip light level). Portions of the scene that are lighter than the threshold level will be judged as black.

Doubling the exposure time is the same as opening the fstop by one (changing the f-stop to the next smaller number) or, in other words, doubling the amount of light. Contrast can now be defined as a minimum difference between adjacent threshold changes or slices.

7.2 Front Lighting

 \mathbf{V}

A front lit scene, where the camera is on the same side of the scene as the source light or ambient light, is usually low in contrast. In this case extreme care in setting up uniform lighting on the scene is necessary and the optimum trip light level needs to be used. Front lighting requires multiple diffused light sources such that the contrast in the scene is . increased.

7.3 Back Lighting

7.3 Back Lighting

For a backlit scene, the light comes from behind the scene so that the object being viewed is shadowed into the camera. Backlighting the object for maximum contrast will give the best repeatable results. Backlighting is recommended if the camera is used to measure the object. Other techniques of illuminating the object such as shadow imaging, spectral illumination, spectral elimination and collimated lighting are illustrated in Figure 7.1.

Figure 7.1 Illumination Techniques.

8. Conclustion

Chapter 8

CONCLUSION

The solution for the vision system, presented in this thesis, consists of the following parts:

The Hardware: An IDETIX vision system by MICRON TECHNOLOGIES INC. equipped with an IS256 OpticRAM, any IBM AT compatible Personal Computer equipped with an 80287 co-processor, running at 8 MHz.

The software: An application program that accepts a digitized image of size 80 X 640 pixels as an input, and calculates the moment invariants using the *delta method*, in real-time, spend-ing less than 0.64 second.

The sensitivity of the hardware (the vision system) is 99.64% and the experimental sensitivity of the combined hardware/software system is above 99.33%.

The economy in hardware and software, the execution speed and the achieved accuracy/sensitivity make this work and the resulting system implementation particularly suited to industrial application. Extension of this system; and the method it embodies, to 3-dimensional industrial recognition problems appears to be quite promising.

References

REFERENCES

F

- M. K. Hu, Pattern Recognition by Moment_@Invariants, Proc. IRE, 49, September 1961, pp. 1428
- 2. M. K. Hu, Visual Pattern Recognition by Moment Invariants, IRE Trans. Inform. Theory. Vol. IT-8, February 1962, pp. 179-187.
- 3. F.'Alt, Digital Pattern Recognition By Moments, Optical Character Recognition. (G. L. Fischer et al. Eds.) pp.153-179, Spartan. Washington, D.C., 1962; also published in J. ACM. 9, April 1962, pp.240-258.
- 4. P.F. Lambert, Designing Pattern Categorizers with External Paradigm Information, Methodologies of Pattern Recognition (S. Watanabe, Ed.), Academic Press, New York, 1969.
- 5. R.G. Casey, Moment Normalization of Handprinted Characters IBM J. Res. Develop. 14, September 1970, pp. 548-557.
- 6. F. W. Smith and M. H. Wright, Automatic Ship Photo Interpretation by the Method of Moments, *IEEE Trans. Computers* C-20, September 1971, pp. 39-46.
- 7. E.L. Hall, W.O. Crawford, and F.E. Roberts, Computer Classification of Pneumoconiosis from Radiographs of Coal Workers, IEEE Trans. Biomedical Engineering BME-22, Nov. 1975, pp. 518-527.
- E. L. Hall, R. P. Kruger, S. J. Dwyer, R. W. McLaren and G. S. Lodwick, A Survey of Preprocessing and Feature Extraction Techniques of Radio-graphic Images. *IEEE Tran. Comput.* 20, No. 9, pp. 1032-1044.
- 9. E.L. Hall and W. Frei. Invariant Features for Quantitative Scene Analysis. Final Rep., Contract F 08606-72-C-0008, Image Process. Inst. Univ. of Southern California, Los Angeles, 1976.
- 10. S. A. Dudani, K. J. Kenneth, and R. B. McGhee, Aircraft Identification by Moment Invariants, IEEE Trans. Computers C-26, January 1977, pp. 39-46.
- 11. F. A. Sadjadi and E. L. Hall, Numerical Computation of Moment Invariants for Scene Analysis, Proceedings of 1978 IEEE Conference on Pattern Recognition and Image Processing, Chicago. IL. 1978, pp. 181-187

References

- 12. S. Maitra, Moment Invariants, Proc. IEEE. 67, No. 4, April 1979, pp. 697-699.
- 13. E. L. Hall, Computer Image Processing and Recognition. Academic Press, 1979.
- 14. F. A. Sadjadi and E. L. Hall, Three-Dimensional Moment Invariants, IEEE Trans. Pattern Analysis and Machine Intelligence 2, No. 2, March 1980, pp. 127-136
- 15. T.C. Hsia, A Note on Invariant Moments in Image Processing IEEE Trans. System, Man, and Cyber. SMC-11, No. 12, Dec. 1981, pp. 831-834.
- 16. S.S. Reddi, Radial and Angular Moment Invariants for Image Identification, IEEE Trans. Pattern Analysis and Machine Intelligence 3, No. 2, March 1981, pp. 240-242.
- 17. Cho-Huak Teh and Roland T. Chin, On Digital Approximation of Moment Invariants, Proceedings of 1985 IEEE Conference on Pattern Recognition and Image Processing, San Francisco CA. 1985, pp. 640-642
- 18. M. Hatamian, A Real-Time Two-Dimensional Moment Generating Algorithm and Its Single Chip Implementation, IEEE Trans. on Acoustics, Speech, and Signal Processing, V. ASSP-34, No. 3, June 1986, pp. 546-553.
- 19. M.F. Zakaria, L.J. Vroomen, P.J. Zsombor-Murray and J.M.H. Van Kessel, Fast Algorithm For The Computation of Moment Invariants, Paper accepted for publications in *The Journal* Of Pattern Recognition Society, April, 1987.
- 20. M.F. Zakaria, L.J. Vroomen, P.J. Zsombor-Murray and J.M.H. Van Kessel, Real-Time Computations of Moment Invariants, Proceedings of The 5th Scandinavian Conference on Image Analysis, Stokholm June 2-5, 1987.
- 21. M.F. Zakaria, L.J. Vroomen, P.J. Zsombor-Murray and J.M.H. Van Kessel, A Fast Algorithm For Moment Invariants Generation, Proceedings of The IV International Conference on Image Analysis and Processing, Cefalu' Italy, September 23-25, 1987.
- 22. intel Corporation, Microsystem Components Handbook (Microprocessors Volume I), 1986, Santa Clara, CA, pp. 4.56-4.81
- 23. E. Ell'iot, Algebra of Quantics, Oxford University Press, 1913.
References

24. MICRON TECHNOLOGIES INC. User's Manual for the IDETIX system.

C

žı

ر ب

Ω

Ö

Ú

Appendix 1

DO 7 1=1,128 IF (F(I, 128).GT.10) THEN M×I GOTO 8 ENDIF CONTINUE 7 MM=256-M 8 DO 9 I=1,128 IF (F(128,1).GT.10) THEN N=I GOTO 91 ENDIF 9 CONTINUE 91 . NN=256-N DO 10 I=N, MM DO 10 J=N,NN I:IF=I*F(I,J)JJF=J+F(1,J)11=1*1 jj=j**≠j** MX(1)=MX(1)+F(I,J)MX(2)=MX(2)+JJFMX(3)=MX(3)+JJ*JJF MX(4) = MX(4) + 11FMX(5)=MX(5)+1*JJFMX(6)=MX(6)+I*IIF MX(7)=MX(7)+II*JJFMX(8)=MX(8)+11*11F MX(9)=MX(9)+JJ*IIF MX(10)=MX(10)+J*JJF10 CONTINUE XX=MX(4)/MX(1) YY=MX(2)/MX(1) MU(1)=NX(6)-XX*HX(4) MU(2)=NX(10)-YY*MX(2) MU(3)=MX(5)-YY*MX(4) MU(4)=MX(8)-3*XX*MX(6)+2*MX(4)*XX**2 MU(5)=MX(9)-2*YY*MX(5a-XX*MX(10)+2*YY**2*MX(4) MU(6)=MX(7)-2*XX*MX(5)-YY*MX(6)+2*XX**2*MX(2) MU(7)=MX(3)-3*YY*MX(10)+2*YY**2*MX(2) ETA(1)=HU(1)/(HX(1)**2) ETA(2)=HU(2)/(HX(1)**2) ETA(3)=HU(3)/(HX(1)**2) ETA(4)=HU(4)/(MX(1)**2.5) ETA(5)=HU(5)/(HX(1)**2.5) ETA(6)=HU(6)/(MX(1)**2.5) ETA(7)=MU(7)/(MX(1)**2.5) PH1(1)=ETA(1)+ETA(2) PHI(2)=(ETA(1)-ETA(2))**2+4*ETA(3)**2 PHI(3)=(ETA(4)-3*ETA(5))**2+(3*ETA(6)-ETA(7))**2 PHI(4)=(ETA(4)+ETA(5))**2+(ETA(6)+ETA(7))**2

```
PHI(5)=(ETA(4)-3*ETA(5))*(ETA(4)+ETA(5))*((ETA(4)+
    + ETA(5))**2-3*(ETA(6)+ETA(7))**2) +(3*ETA(6)-ETA(7)
    + )*(ETA(6)+ETA(7))*(3*(ETA(4)+ETA(5))**2-(ETA(6)+ETA(7))**2)
     'PHI(6)=(ETA(1)-ETA(2))*((ETA(4)+ETA(5))**2-(ETA(6)
    + +ETA(7))**2) + 4*ETA(3)*(ETA(4)+ETA(5))*(ETA(6)+
    + ETA(7)
     PHI(7)=(3*ETA(6)-ETA(7))*(ETA(4)+ETA(5))*((ETA(4)+
    + ETA(5))**2-3*(ETA(6)+ETA(7))**2) +
    + (3*ETA(5)-ETA(7))*(ETA(6)+ETA(7))*(3*(ETA(4)+
   +.ETA(5))**2-(ETA(6)+ETA(7))**2)
     CALL TIME (10, TIME3)
 500 FORMAT(' ',T15, '***** Starting Time 1: ',A10, '******',/
         - ' ',T15, '****** Today''s Date : ',Aj0, '******',/)
   +
 550 FORMAT (100A1/)
 600 FORMAT(' ',T15, ****** Starting Time 2: ',A10, **************//)
 700 FORMAT(' ',T15, '****** Ending Time 3: ',A10, '******'/)
1000 FORMAT(' ',T23,'PHI(',I1,') =',D25.14)
2000 FORMAT(' ',T23,'ETA(',11,') =',D25.14)
3000 FORMAT(' ',T23, 'HU(',11,') =',D25.14)
4000 FORMAT(' ',T23, 'MX(',12,') =',D25.14)
5000 FORMAT(' ',//)
6000 FORMAT(' ',T15,'M=',I3,' MM=',I3,' N=',I3,' NN=',I3//)
     DO 100 I=1,10
        WRITE(*,4000) 1,HX(1)
 100 CONTINUE
     WRITE(*,5000)
     DO 101 I=1,7
       WRITE(*,3000) 1;HU(1)
 101 CONTINUE
     WRITE(*,5000)
     DO 102 1=1,7
       WRITE(*,2000) 1,ETA(1)
 102 CONTINUE
     WRITE(*,5000)
     DO 103 I=1,7
       WRITE(*,1000) I,PHI(I)
 103 CONTINUE
     WRITE(*,5000)
     WRITE(*,500) TIME1, TESTDATE
     WRITE(*,600) TIME2
     WRITE (*,700)TIME3
     WRITE (*,6000) M, MM, N, NN
     STOP
     END
```

' 102

APPENDIX II - LISTING OF THE TURBO PASCAL PROGRAM

8 CALCULATION OF THE 2-DIMENSIONAL MOMENTS OF AN IMAGE USING THE DELTA METHOD Copyright (C) MR. MARWAN ZAKARIA ROBOTIC MECHANICAL SYSTEMS LABORATORY MCGILL UNIVERSITY, MONTREAL CANADA program linesc; • =array[0..9] of real; type Mar var'XST,YST,L :integer; M :Mar; Ρ :array[0..63,0..127] of byte; X,LE :integer; A,B,C,D :INTEGER; PROCEDURE Mnm_Update(XST,YST,L:integer;VAR M:Mar); VAR L2, X2, Y2 :real; \$1,\$2,\$3,L3 :real; M10,M20 :real; **s**4 :real; begin L2:=L*L; L3;=L2*L; X2:=XST*XST; Y2:=YST*YST; \$1:=(L2-L)/2; \$2:=(2*L3-3*L2+L)/6;

s4:=1; M[0]:=N[0]+L; ·M[1]:=N[1]+s4*L*YST;

\$3:=(L*'.3-2*L3+L2)/4;

M[2]:=N[2]+s4*L*Y2; M[3]:=N[3]+s4*L*Y2*YST;

Appendix 11

.

```
M10:=s4*L*XST+S1;

M[4]:=M[6]+H10;

M[5]:=N[5]+s6*YST*M10;

M[6]:=N[6]+s4*Y2*M10;

M20:=s64*L*X2+s64*2*S1*XST+S2;

M[7]:=N[7]+M20;

M[8]:=N[8]+s64*YST*M20;

M[9]:=N(9]+s64*L*X2*XST+s64*3*S1*X2+s64*3*S2*XST+S3;

END;
```

```
-
```

PROCEDURE BYTE_LEFT(V:BYTE;VAR AANT:INTEGER);

```
BEGIN
```

IF_V>15 THEN IF_V>63

d,

```
THEN IF V>127
THEN AANT:=8
ELSE AANT:=7
```

```
ELSE IF V>31
THEN AANT:=6
ELSE AANT:=5
```

```
ELSE IF V>3
```

```
, THEN IF V>7
```

```
THEN AANT:=4
ELSE AANT:=3
ELSE IF V>1
THEN AANT:=2
ELSE AANT:=1
```

```
END;
```

```
PROCEDURE BYTE_RIGHT(NUM:BYTE;VAR AANT:INTEGER);
```

```
VAR TMP:byte;
BEGIN
TMP:=255-NUM;
BYTE_LEFT(TMP,AANT);
AANT:=8-AANT;-
```

```
END;
```

```
PROCEDURE TIMER(VAR HOUR, MIN, SEC, FRAC: INTEGER);

TYPE

REGPACK = RECORD

AX, BX, CX, DX, BP, S1, D1, DS, ES, FLAGS: INTEGER;

END;
```

```
VAR REGS: REGPACK;
```

BEGIN

```
WITH REGS DO

BEGIN

-AX:=$2C00;

MSDOS(REGS);

HOUR:=HI(CX);

MIN:=LO(CX);

SEC:=HI(DX);

FRAC:=LO(DX);

END;

WRITELN(HOUR:3,MIN:3,SEC:3,FRAC:3);
```

END;

BEGIN

```
FOR YST:=0 TO 127 DO
BEGIN FOR XST:=0 TO 63 DO
BEGIN P[XST,YST]:=0;
END;
```

٢ ,

END;

```
FOR XST:=3 TO 60 DO BEGIN
FOR YST:=3 TO 125 DO BEGIN
P[XST,YST]:=255;
END;
END;
```

```
for XST:=0 to 9 do begin
M[XST]:=0; end;
```

```
TIMER(A,B,C,D);
```

```
FOR YST := 0 TO 127 DO
```

BEGIN X:=0;L:=0;

```
WHILE ((P[X,YST]=0) AND (X<64)) X:=X+1;

BEGIN IF X<64 THEN BYTE_LEFT(P[X,YST],LE);

XST:=8*X+8·LE;

X:=X+1;

L:=L+LE;

WHILE ((P[X,YST]=255) AND (X<64)) DO

BEGIN L:=L+8;

X:=X+1;

END:

IF X<64

THEN BEGIN BYTE_RIGHT(P[X,YST],LE);
```

L:≖L+LE; END;

```
Hnm_Update(XST,YST,L,N);
```

END;

Appendix 11

¥

Γ

END; TIMER(A,B,C,D); FOR A:=0 TO 9 DO BEGIN WRITELN(M(A]) END; END.

١

1.

APPENDIX III - LISTING OF THE DELTA METHOD PROGRAM

1 REM 2 REM 3 REM REAL-TIME CALCULATION OF THE MOMENT INVARIANTS 4 REM 5 REM FOR A CONTIGUOUS IMAGE USING THE DELTA "6" METHOD 6 REM 7 REM 8 REM 9 REM USING IS256 OPTIC RAN (IDETIX) 11 REM 1 12 REM 3 13 REM Copyright (C) MR. MARWAN ZAKARIA 14 REM ROBOTIC MECHANICAL SYSTEMS LABORATORY 15 REM 16 REM MCGILL UNIVERSITY, MONTREAL CANADA 17 REM 18 REM 19 REM 29 DEFINT A-Z:Width "LPT1:", "32 : REM ALL VARIABLES ARE INTEGERS UNLESS SPECIFIED OTHERWISE 32 CAMPORT=&H260 : REM CHANGE THIS IF YOU CHANGE THE SWITCH 50 KEY OFF 70 DIM APTR(14),CAM(29),PBC(6),FBUF(15),MOVS(5),SAV(8),LOD(8),BITM#(8), MU#(7), ETA#(7), PHI#(7), M#(10), PRN(3),P(80,80) 72 REM : REM APTR = SEGMENT AND OFFSET LIST FOR DRIVER ROUTINE 74 REM : REM CAM = PARAMETER LIST FOR CAMDRIVE - IDETIX H/W DRIVERS 76 REM : REM PBC = PARAMETER LIST FOR DMACALC - DMA XFER BUFFER SET UP 78 REM : REM FBUF = PARAMETER LIST FOR MKBUF - IMAGE ENHANCE ROUTINES : REM MOVS = PARAMETER LIST FOR MOVSCR - GRAPHICS DISPLAY ROUTINE 80 REM 305 OPEN "INSTBAS.DAT" AS #1 310 FIELD #1, 128 AS B\$ e 315 GET #1 316 CLOSE 320 K=1: FOR I=1 TD-14 325 APTR(1)=CV1(MID\$(B\$,K,2)) : REM SET UP SEGMENTS AND OFFSETS 330 K=K+2 : NEXT I 332 DEF SEG=APTR(3) : REM POINT AT DRIVER CODE SEGMENT : REM DMA SEGMENT = DRIVER DATA SEGMENT 334 PBC(1)=APTR(2) 336 PBC(2)=APTR(4) : REM DMA OFFSET = BITMAP ADDRESS 338 DMACALC=APTR(6) : REN DMA XFER BUFFER SETUP ROUTINE 340 CAMDRIVE=APTR(7) : REM IDETIX DRIVER ROUTINE 342 MKFBUF=APTR(8) : REM IMAGE ENHANCE ROUTINE " 344 HOVSCR=APTR(9) : REN GRAPHICS DISPLAY ROUTINE 346 PBC(5)=16384 : REM BUFFER SIZE = 128K PIXELS 347 HOVPRN=APTR(14) : REM MOVE PRINT ROUTINE 348 CALL ADSOLUTE(PBC(1), DMACALC) : REN DMA SETUP 350 IF PBC(4) THEN SWAP APTR(5), APTR(4) : GOTO 336 400 DEF SEG

: REN COMMAND REGISTER 610 CREG =&H1 : REM REFRESH START ADDRESS 612 CAM(2)=0 : REM REFRESH LAST ADDRESS 614 CAM(3)=255 : REM ROW START ADDRESS 616 CAM(4)=300 : REM ROW INCREMENT 618 CAM(5)=1 : REN ROW LAST ADDRESS 620 CAM(6)=379 : REM COL START ADDRESS 622 CAM(7)=160 : REN COL INCREMENT 624 CAN(8)=1 : REM COL LAST ADDRESS 626 CAM(9)=319 ROBE COUNT 628 CAM(10)=5 : REM ST : REM EXPOSURE TIME (IN .1 ms FOR LOW RANGE) 630 CAM(11)=500" : REM NO HEAD MPX 631 CAM(12)=&HF : REM IDETIX I/O PORT ADDRESS 632 CAM(13)=CAMPORT : REM DMA BUFFER POINTER 634 CAM(14)=PBC(6) : REN DMA PAGE 636 CAM(15)=PBC(5) : REM CHECK FOR TRANSFER COMPLETE 638 CAM(16)=0 : REM INITIALIZE THE DMA CONTROLLER 640 CAM(17)=1 : REM HANG INDICATOR IS ON 642 CAM(18)=0 : REM PIXEL COUNTER IS ON 644 CAM(19)=1 : REM PICTYPE 3 650 FBUF(1)=1 : FBUF(2)=1 PROCESS ENTIRE BUFFER 651 FBUF(3)=0 : FBUF(4)=0 : REM : REM POINTER TO BITMAP - INPUT 658 FBUF(10)=APTR(4) : REM POINTER TO WORKMAP - OUTPUT 660 FBUF(11)=APTR(5) : REM POINTER TO WORKMAP = FINAL IMAGE 676 MOVS(4)=APTR(5) : REM SCREEN, START OFFSET 678 MOVS(5)=0 680 PICTYPE=3 682 EXPRNG =0 : REM LOW RANGE : REM SINGLE FRAME 684 FMODE =1 : REM INITIALIZE PIXEL COUNTER 686 PIXC=0 : REM RESET THE IDETIX PROCESSORS 690 GOSUB 700 : GOTO 1010 ····· 700 REM SUBROUTINE TO RESET THE IDETIX PROCESSORS AND/OR STOP THE 701 REM 702 REM CAMERA (VIA SOFTWARE). L..... 703 REM 710 DEF SEG=0 : I=INP(CAMPORT+5) 711 FOR I=1 TO 1000 : NEXT I :REM TIME DELAY 713 IF ((INP(CAMPORT) AND 7) \leftrightarrow 7) THEN GOTO 710 :REM POINT AT DRIVER CODE SEGMENT 715 DEF SEG = APTR(3)720_RETURN : REM------J : REM 640 X 200 GRAPHICS MODE 1010 SCREEN 2 (015 CLS : STFLG=0 1000 EXPRNG=&HO 1682 CREG=(CREG AND &HFB) OR EXPRING 1-: REM FMODE=&H2 IS CONTINUOUS GRABBING OF IMAGE, =&H1 IS SINGLE IMAGE 1700 FM/DE=&H1 GRABBING AND &HFC) OR FMODE 1702 CREQ =(CREG 3000 GOSUB 200 : REM-----> TAKE A PICTURE <----: REM CLEAR THE SCREEN 3001 CLS 3010 EF=0 : REM ENHANCE THE PICTURE 3020 GOSUB 5300 time (ms) =":LOCATE 25,70 : PRINT CAM(11)/10; 3056 REN LOCATE 25,54: PRINT "

```
Appendix III
```

```
3100 CAM(19)=1 : CAH(1)=0 : CAH(16)=1 : CALL ABSOLUTE(CAH(1), CAHDRIVE)
3101 GOSUB 6000 : LOCATE 24,2 :PRINT USING " white pixels = ###### . black pixels = ######
                                                                                             Zuhite
pixels = ###.#% ";WPX,BPX,(WPX/(WPX+BPX))*100;
3102 CAM(1)=CREG :CAM(16)=0 :CAM(17)=1 :CALL ABSOLUTE(CAM(1),CAMDRIVE)
3103 FBUF(5)=CAM(23)/2
3104 FBUF(6)=CAM(24)
3110 FBUF(7)=CAM(23)
                                  : REM PASS INPUT BUFFER DESCRIPTOR TO MKFBUF
3120 FBUF(8)=CAM(22)
3130 FBUF(9)=CAM(24)
3200 CALL ABSOLUTE(FBUF(1), MKFBUF) : REM ENHANCE THE RAW DATA
3210 MOVS(1)=FBUF(12)
3220 MOVS(2)=FBUF(12)
                                  + IE MOVS(2) > 80 THEN MOVS(2)=80
3230 MOVS(3)=FBUF(13)-1
3240 CALL ABSOLUTE(MOVS(1), MOVSCR) : REM DISPLAY THE PICTURE
4000 REM
                                  : REM SERVICE THE KEYPRESSES
                                  : REM IF NO KEY IS PRESSED THEN A CONTINUOUS IMAGE IS GRABBED
4001 REM
                                 : REM C = CALCULATE MOMENT INVARIANTS AND DISPLAY ON SCREEN
4002 REM
4003 REM
                                  : REM L = LOOK AT MEMORY CONTENTS BEFORE PROCESSING
                                  : REM Q = QUIT THE CURRENT, PROGRAM AND PROMPT C>
4004 REM
4005 REM
                                  : REM P = PRINT THE IMAGE DISPLAYED ON THE SCREEN
                                  : REM S = STOP THE CONTINUOUS LOOP FOR IMAGE GRABBING (PAUSE)
4006 REM
4007 REM
                                  : REM R = RESUME, ONLY "R" CANCELS THE "S"COMMAND
`4010 KP$=INKEY$ : IF KP$="" THEN GOTO 3100 :REM TAKE A PICTURE CONTINUOUSLY
4015 JF KPS="C" OR KPS="C" THEN : GOSUB 700: GOSUB 45000: REM GOSUB 40000: CLS: SCREEN 2 : GOTO 4100
:REM CALCULATE
4017 IF KP$="L" OR KP$="L" THEN : GOSUB 700:GOSUB 55000:CLS:SCREEN 0,0,0 : GOTO 4100 :RÈM LOOK AT APTR(5)+C
MEMORY LOCATION
                                   9
4020 IF KPS="Q" OR KPS="Q" THEN :GOSUB 700:CLS :SCREEN 0,0,0:STOP :REM QUIT
4030 IF KP$="P" OR KP$="p" THEN : GOSUB 700: GOSUB 40000
                                                                :REM PRINT
4080 IF KP$="S" OR KP$="s" THEN :GOSUB 700 :XX$="":XX$=INKEY$:IF XX$<>"R" AND XX$<> "r" THEN 4080 :REM
***** STOP THE CAMERA BY PRESSING S, RESUME BY R. *****
4090 GOTO 4010
                                 : REM GET THE NEXT INPUT
                                  : REN START THE PROGRAM OVER AFTER CALCULATING THE PHI'S """
4100 RUN
5300 REM
                            SUBROUTINE TO SET THE PARAMETERS ON FOR THE ENHANCE/LAYOUT
5301 REM
5302 REM
            PICTURE. (PICTYPE 3)
            5303 REM
5310 FBUF(1)=1 : FBUF(2)=1 : MOVS(4)=APTR(5)
5312 IF(((CAM(9)-CAM(7)+1)/CAM(8))*((CAM(6)-CAM(4)+1)/CAM(5)))>32768# THEN EEE$="PIC
                                                                                       TYPE 3 OVER-
FIOW - REDUCE WINDOW SIZE" : EF=1
5313 RETURN:REM .....
6000 REM
            ·····
6001 REM
            SUBROUTINE TO CALCULATE THE NUMBER OF WHITE PIXELS, BLACK
            PIXELS AND THE PERCENTAGE OF WHITE PIXELS; USING COUNTERS
6002 REM
6003 REM
            FROM THE HARDWARE.
6004 REM
            6005 IF CAM(28)<0 THEN CAM(28)=0
6010 IF CAM(28)>&HFF00 THEN CAM(27)=CAM(27)-1
6020 JF CAM(27)<0 THEN CAM(27)=0
6030 IF CAM(25)<0 THEN CAM(25)=0
6040 WPX=(CAM(25)*&H100)+(CAM(26))
```

```
6050 BPX=(CAH(27)*&#100)+(CAH(28))
 6100 IF BPX=256 THEN BPX=1:WPX=32767
 6150 IF WPX=0 THEN WPX=1:BPX=32767
 6200 RETURN:REM------
 40000 REH
           r.....
 40001 REM
           SUBROUTINE TO PRINT THE IMAGE SHOWN ON THE SCREEN ON AN
 40002 REM
          FX80/85 COMPATIBLE DOT MATRIX PRINTER.
           L......
 40003 REM
 40009 PRN(1)=MOVS(1):PRN(2)=MOVS(2):PRN(3)=MOVS(3):PRN(4)=MOVS(4)
 40010 CALL ABSOLUTE(PRN(1), MOVPRN)
 45000 REM
           45001 REM
           SUBROUTINE CALCULATE 1 THIS SUBROUTINE CALCULATES THE
           DELTA "8", XST, YST AND THE mpg 'S. (FOR 80 X 640 HATRIX)
 45002 REM
45003 REM
45004 C=0
                                  : REM POINT AT DRIVER DATA SEGMENT
45005 DEF SEG=APTR(2)
45006 FOR I=0 TO 9:M#(I)=0:NEXT 1
                                 : REM INITIALIZE THESE VARIABLES
45007 REM LPRINT CHR$(27)"I"CHR$(4):WIDTH "LPT1:",160 LETTRIX #15,"10,199,85,C
45009 TIM1S=TIMES:LLY=LY
                                  : REM TAKE THIS TIME AS STARTING TIME1
45010 FOR YST=0 TO 79
45020
          L=0:C=YST*80: REM IF (X<80) THEN LPRINT " "
          FOR X=0 TO 79
45030
45035
                P(X,YST)=PEEK(APTR(5) + C) : C=C+1
                REM BYTES=HEXS(P(X,YST)):LPRINT USING "\\ \\";BYTES;
45037
45040
                 IF (P(X, YST) > 0) THEN GOTO 45060
45050
          NEXT X
          IF (X=80) THEN GOTO 45160 ELSE GOSUB 45210
45060
45070
          XST=8*X+8-LE
45080
          X=X+1
45090
          L=L+LE
45100
          FOR X1=X TO 79
45105
                P(X1,YST)=PEEK(APTR(5) + C) : C=C+1
45107
                REM BYTES=HEX$(P(X1,YST)):LPRINT USING "\\ \\";BYTE$;
45110
                IF (P(X1, YST) < 255) AND LLY>5 THEN GOTO 45130 ELSE L=L+8
45120
          NEXT X1
45130
          LLY=LLY-1:X=X1
45140
          IF (X=80) THEN GOTO 45150 ELSE GOSUB 45240 : L=L+LE
45150
          GOSUB 45290
45160 NEXT YST
45165 REM TIM2$=TIME$
45170 GOSUB 50215
45171 LINE (1,80)-(639,199), 8F
45172 LOCATE 13,1:FOR I=1 TO 7:PRINT SPACE$(62);:PRINT USING "phi(#)=##.###*****;I;PKI#(I):NEXT I
45173 LOCATE 13,1:FOR I=1 TO 7:PRINT SPACE$(40);:PRINT USING "eta(#)=##.###*****";1;ETA#(1):NEXT I ,
45174 LOCATE 13,1:FOR I=1 TO 7:PRINT SPACE$(20);:PRINT USING "mu(#)=##.###*****;I ;MU#(I):NEXT I
45175 LOCATE 13,1 :FOR I=0 TO 9:PRINT USING "m(#)=##.###***** ";1;H#(I):NEXT I
45180 LOCATE 21,35:PRINT USING "TIM1=\\-
                                      \\ TIM3=\\
                                                      \\";TIM1$,TIM3$
45200 RETURN:REM-------
45210 REM_ [.....
45211 REM SUBROUTINE BYTE-LEFT, WHEN THE PROGRAM ENCOUNTERS THE
```

FIRST NON-ZERO BYTE ON A GIVEN LINE BYTE-LEFT WILL TELL WHERE! 45212 REM THE EDGE EXACTLY IS BY MASKING THAT PARTICULAR BYTE. 45213 REM L..... 45214 REM 45215 V=P(X.YST) 45220 IF V>15 THEN IF V>63 THEN IF V>127 THEN LE=8 ELSE LE=7 ELSE IF V>31 THEN LE=6 ELSE LE=5 ELSE IF V>3 THEN IF V>7 THEN LE=4 ELSE LE=3 ELSE IF V>1 THEN LE=2 ELSE LE=1 45240 REM 45241 REM SUBROUTINE BYTE-RIGHT, WHEN THE PROGRAM ENCOUNTERS THE FIRST BYTE < 255 AT THE OTHER SIDE OF THE SURFACE IT USES 45242 REM BYTE-RIGHT TO TELL WHERE THE RIGHT-HAND EDGE EXACTLY IS. 45243 REM 1........... 45244 REM 45245 NUM=P(X ,YST) 45250 TMP=255-NUM 45260 V=TMP:GOSUB 45220 45270 LE=8.LE 45280 RETURN: REM ------45290 REM SUBROUTINE CALCULATE 2, THIS SUBROUTINE CALCULATES THE 45291 REM MU'S "#(p,q) ", ETA'S " ", AND PHI'S "" FOR THE GIVEN IMAGE. 45292 REM 45294 REM 45295 SS#=1:L2#=SS#*L*L 45300 L3#=L2#*L 45310 X2#=SS#*XST*XST 45320 Y2#=SS#*YST*YST 45330 \$1#=(L2#-L)/2 45340 S2#=(L3#*2-L2#*3+SS#*L)/6 45350 S3#=(L3#*L-L3#*2+L2#)/4 45360 M#(0)=M#(0)+L 45370 M#(1)=H#(1)+SS#*L*YST: 45380 H#(2)=H#(2)+Y2#*L 45390 H#(3)=H#(3)+Y2#*YST*L 45400 M10#=SS#*L*XST+S1# 45410 M#(4)=M#(4)+M10# 45420 M#(5)=H#(5)+M10#*YST 45430 H#(6)=H#(6)+Y2#*H10# 45440 M20#=X2#*L+S1#*2*XST+S2# 45450 M#(7)=M#(7)+M20# 45460 M#(8)=M#(8)+M20#*YST 45470 M#(9)=M#(9)+X2#*L*XST+S1#*3*X2#+S2#*3*XST+S3# 45480 RETURN:REM------10 50215 DEF SEG=APTR(3) 50220 XX#=M#(4)/M#(0) 50230 YY#=M#(1)/H#(0) 50240 HU#(1)=H#(7)-XX#*H#(4) 50250 HU#(2)=H#(2)-YY#*H#(1) 50260 HU#(3)=H#(5)-YY#*H#(4) 50270 MU#(4)=M#(9)-3*XX#*M#(7)+2*M#(4)*XX#*2 50280 MU#(5) H#(6) - 2*YY#*M#(5) - XX#*H#(2)+2*YY#*2*H#(4) 50290 MU#(6)=H#(8)-2*XX#*M#(5)-YY#*H#(7)+2*XX#²2*H#(1) 50300 HU#(7)=H#(3)-3*YY#*M#(2)+2*YY#*2*H#(1)

۳.

(

50310 ETA#(1)=HU#(1)/(H#(0) ²)
50320 ETA#(2)=HU#(2)/(H#(0)-2)
50330 ETA#(3)=HU#(3)/(H#(0)^2)
50340 ETA#(4)=MU#(4)/(M#(0)^2.5)
50350 ETA#(5)=MU#(5)/(H#(0)^2.5)
50360 ETA#(6)=MU#(6)/(H#(0)^2.5)
50370 ETA#(7)=MU#(7)/(H#(0)^2.5)
50380 PH1#(1)=ETA#(1)+ETA#(2)
50390 PH1#(2)=(ETA#(1)-ETA#(2)) [*] 2+4*ETA#(3) [*] 2
50400 PH1#(3)=(ETA#(4)-3*ETA#(5))^2+(3*ETA#(6)-ETA#(7))^2
50410 PHI#(4)=(EJA#(4)+ETA#(5))^2+(ETA#(6)+ETA#(7)) ³ 2
50420
+(3*ETA#(6)-ETA#(7)_)*(ETA#(6)+ETA#(7))*(3*(ETA#(4)+ETA#(5))^2-(ETA#(6)+ETA#(7))^2)
50430 PH1#(6)=(ETA#(1)-ETA#(2))*((ETA#(4)+ETA#(5))^2-(ETA#(6)+ETA#(7))^2) +
4*ETA#(3)*(ETA#(4)+ETA#(5))*(ETA#(6)+ETA#(7))
50440 PH1#(7)=(3*ETA#(6)-ETA#(7))*(ETA#(4)+ETA#(5))*((ETA#(4)+ETA#(5))^2-3*(ETA#(6)+ETA#(7))^2) +
(3*ETA#(5)-ETA#(7))*(ETA#(6)+ETA#(7))*(3*(ETA#(4)+ ETA#(5))^2-(ETA#(6)+ETA#(7))^2)
50450 TIM3\$=TIME\$
50460 RETURN:REMJ
55000 REM
55001 REM SUBROUTINE LOOK , THIS SUBROUTINE WILL LOOK AT MEMORY
55002 REM CONTENT STARTING AT LOCATION APTR(5) + 0 AND PRINT IT.
55003 REM L
55004 DEF SEG=APTR(2):C=0
55005 FOR YST=0 TO 79
55010 FOR X=0 TO 79
55020 P(X,YST)=PEEK(APTR(5) + C) : C=C+1
55030 BYTES=HEXS(P(X,YST)):LPRINT USING "&";BYTES;
55040 NEXT X
55050 NEXT YST
55060 DEF SEG=APTR(3)
55070 RETURN:REM
56000 DEF SEG=APTR(2):LY=0:LX=0
56005 FOR 11=40 TO 6320 STEP 80
56010 BYT=PEEK(APTR(5)+11)
56020 IF BYT>0 THEN LY=LY+1
56030 NEXT II
56040 FOR JJ=3200 TO 3280
56050 BYT=PEEK(APTR(5)+JJ)
56053 IF BYT>0 THEN LX=LX+8
56055 NEXT JJ
56060 DEF SEGWAPTR(3)
56070 RETURN 6
57000 FOR 1=1 TO 7:FI#(I)=PHI#(I):NEXT 1:RETURN
JIONA LAN TAI IN TELEVITALUTARITIENE ELECTRON

ą's,

112

0

. .