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Abstract

The primary objective of this research was to employ data-driven techniques to predict and

optimize the mechanical properties of microalloyed steels during the thin slab direct rolling

process. The data for this study were sourced from Algoma Steel Inc., located in Ontario,

Canada, and the work was divided into two main parts.

In the first part, Deep Neural Network (DNN) models were developed to predict the

mechanical properties, specifically Ultimate Tensile Strength (UTS) and Lower Yield

Strength (LYS), of Nb-based microalloyed hot-rolled strips. To introduce explainability into

the DNN models, Game theory-based SHapely Additive exPlanations (SHAP) were

utilized. The SHAP values provided insights into the combined effects of chemical

composition and thermomechanical processing parameters. The influence of chemical

composition was corroborated by physical metallurgy theory, and correlations were

established with the empirical relationship of the No-recrystallization temperature (Tnr)

from existing literature. Additionally, the data were analyzed using SIMS Mean Flow

Stress (MFS) against the inverse temperature, with comparisons across different gauges

and compositions to support the model explanations and suggest underlying metallurgical

mechanisms. This segment of the study highlighted significant opportunities for

optimization of alloy composition, which led to the second part of the research.

The second part aimed to develop a data-driven framework for alloy design, considering
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the processing schedules of the rolling mill. Initially, seven different supervised machine

learning (ML) algorithms were employed to model UTS and % Elongation for V-based

microalloyed steel. Global feature importance were derived from SHAP values for these

models. Model-agnostic conformal predictions were implemented to quantify uncertainty,

enhancing the reliability of predictions. Given the challenges of inverse design in industrial

contexts—such as multiple objectives, non-unique solutions, and large search spaces—the

problem was approached as a multi-objective optimization (MOO) task focusing on the

trade-off between strength and ductility, i.e. generating the best combination of strength

and ductility. The best performing ML models for UTS and % Elongation were utilized as

objective functions in MOO, with the Non-dominated Sorting Genetic Algorithm II

(NSGA-II) employed to derive optimized Pareto front solutions. The thermomechanical

processing parameters were integrated as strict constraints in the decision variable space of

the NSGA-II. To visualize the solutions, t-distributed Stochastic Neighbor Embedding

(t-SNE) was used to map them along with original rolling data into a two-dimensional

space, which was then clustered using the K-means algorithm. Select representative

solutions from each cluster were chosen to identify unique alloys. This research provides

key applications in developing online property prediction tools, enhancing process

understanding and aiding in both process control, and alloy design.
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Résumé

L’objectif principal de cette recherche était d’utiliser des techniques axées sur les données

pour prédire et optimiser les propriétés mécaniques des aciers microalliés lors du processus

de laminage direct de minces dalles. Les données pour cette étude provenaient d’Algoma

Steel Inc., situé en Ontario, Canada, et le travail était divisé en deux parties principales.

Dans la première partie, des modèles de réseaux de neurones profonds (DNN) ont été

développés pour prédire les propriétés mécaniques, spécifiquement la résistance à la

traction ultime (UTS) et la limite d’élasticité inférieure (LYS), des bandes laminées à

chaud microalliées à base de niobium. Pour introduire l’explicabilité dans les modèles

DNN, des explications additives SHapely basées sur la théorie des jeux (SHAP) ont été

utilisées. Les valeurs SHAP ont fourni des insights sur les effets combinés de la composition

chimique et des paramètres de traitement thermomécanique. L’influence des composition

chimique a été corroborée par la théorie de la métallurgie physique, et des corrélations ont

été établies avec la relation empirique de la température de non-recristallisation (Tnr) issue

de la littérature existante. De plus, les données ont été analysées en utilisant le Stress

Moyen d’Écoulement (MFS) par rapport à la température inverse, avec des comparaisons

entre différentes épaisseurs et compositions pour soutenir les explications des modèles et

suggérer des mécanismes métallurgiques sous-jacents. Ce segment de l’étude a mis en

évidence d’importantes opportunités pour l’optimisation de la composition des alliages, ce
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qui a mené à la deuxième partie de la recherche.

La deuxième partie visait à développer un pipeline axé sur les données pour la

conception d’alliages, en tenant compte des calendriers de traitement du laminoir.

Initialement, sept algorithmes d’apprentissage automatique supervisé différents ont été

utilisés pour modéliser l’UTS et le % d’Allongement pour l’acier microallié à base de

vanadium. L’importance globale des caractéristiques a été dérivée des valeurs SHAP pour

ces modèles. Des prédictions conformes indépendantes du modèle ont été mises en œuvre

pour quantifier l’incertitude, améliorant ainsi la fiabilité des prédictions. Étant donné les

défis de la conception inverse dans les contextes industriels—tels que les objectifs multiples,

les solutions non uniques et les grands espaces de recherche—le problème a été abordé

comme une tâche d’optimisation multi-objectifs (MOO) se concentrant sur le compromis

entre la résistance et la ductilité. Les meilleurs modèles d’apprentissage automatique pour

l’UTS et le % d’Allongement ont été utilisés comme fonctions objectifs dans le MOO, avec

l’Algorithme Génétique de Tri Non Dominé II (NSGA-II) employé pour dériver des

solutions optimales du front de Pareto. Les paramètres de traitement thermomécanique ont

été intégrés comme contraintes strictes dans l’espace des variables de décision du NSGA-II.

Pour visualiser les solutions, l’incorporation stochastique de voisins par t-distribution

(t-SNE) a été utilisée pour mapper ces solutions ainsi que les données de laminage

originales dans un espace bidimensionnel, qui a ensuite été regroupé en utilisant

l’algorithme de clustering K-means. Des solutions représentatives de chaque groupe ont été
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choisies pour identifier des alliages uniques. Cette recherche offre des applications clés dans

le développement d’outils de prévision des propriétés en ligne, améliorant la compréhension

des processus et aidant à la fois dans le contrôle des processus et la conception des alliages.
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Chapter 1

Introduction

The commercial development of microalloyed steel began in 1958 when the Great Lakes Steel

Corporation in the USA demonstrated significant improvements in strength by adding small

amounts of Niobium (0.005-0.03%) to carbon-manganese steels. For instance, GLX-60-W,

a carbon-manganese grade steel with an initial yield strength of 300 MPa, saw its strength

increase to an impressive 415 MPa with these "micro" Niobium additions (1). Since this

development, researchers have made substantial advancements in both the composition and

rolling strategies of microalloyed steels, also known as high-strength low-alloy (HSLA) steels

(2). These steels now constitute about 12% of global steel production (3) and are extensively

used in applications such as bridges (4), structural components (5), transportation (6), and

the oil and gas sectors (7).

The microalloying elements Nb, Ti, and V primarily contribute to steel strengthening

through three mechanisms : austenite conditioning, precipitation hardening, and solid

solution strengthening (8; 9). Among these, austenite conditioning is perhaps the most

crucial, involving strain-induced precipitation within the austenite phase that hinders

further recrystallization. This mechanism retains work hardening from deformation in the

low-temperature austenite region, leading to the formation of pancaked grains and
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deformation bands. Consequently, this creates more nucleation sites for phase

transformation, promoting the development of a fine-grained ferrite microstructure (10).

In addition to microalloying elements, several other alloying elements present in steel,

as detailed in Table 1.1, interact with the Thermomechanical Controlled Processing

(TMCP) parameters as well. This huge number of influencing parameters and their

inter-relationships complicates the study of their influence on mechanical properties

through experiments or isolated trials, which can be costly as well as time-consuming.

Therefore, this complexity underscores the necessity for a "model" that can accurately

represent and optimize the coupled effects of composition and TMCP. The conventional

method for modeling material properties has largely relied on mathematical modeling

rooted in empirical relationships (11; 12). Consider the dynamics of static recrystallization,

which is well-understood to involve nucleation and growth mechanisms (13) ; researchers

typically model these processes using the Avrami equation (14). However, the coefficients

derived from these equations can vary widely between studies. Furthermore, parameters

calibrated under controlled laboratory conditions do not always translate well to industrial

conditions. Similarly, the structure-property relationship for yield stress is frequently

modeled using an extended Hall-Petch equation, which accounts for various strengthening

mechanisms. Yet, extending such an approach to predict other mechanical properties such

as Ultimate Tensile Strength (UTS) or Percent Elongation, is far from the obvious. The use

of multiple sub-models in this framework can amplify errors, leading to unreliable final
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predictions, as each layer of the model introduces potential inaccuracies.

Element wt-% in steel Influence

C <0.25 Strengthener
Mn 0.5–2.0 Delays austenite decomposition during accelerated cooling ;

Decreases ductile to brittle transition temperature ; Strong
sulphide former

Si 0.1–0.5 Deoxidiser in molten steel ; Solid solution strengthener
Al <0.02 Deoxidiser ; Limits grain growth as AlN
Nb 0.02–0.06 Very strong ferrite strengthener as Nb(C,N) ; Delays γ → α

transformation
Ti 0–0.06 γ grain size control by TiN ; Strong ferrite strengthener
V 0–0.10 Strong ferrite strengthener by V(C,N)
Zr 0.002–0.05 γ grain size control [Zr(C,N)] ; Strong sulphide former
N <0.012 Forms nitrides and carbonitrides
Mo 0–0.3 Promotes bainite formation ; Ferrite strengthener
Ni 0.5 Increases fracture toughness
Cu 0–0.55 Improves corrosion resistance ; Ferrite strengthener
Cr 0.1–1.25 With Cu, increases atmospheric corrosion resistance
B 0.0005 Promotes bainite formation

Table 1.1 – A summary of common alloying elements used in microalloyed steels and their
influence (15).

With these challenges in mind, there is a strong incentive to investigate alternative

methods, especially in industries like hot rolling, where there is ample stored data to

support more flexible and dynamic approaches. Machine learning offers an obvious solution

with its ability to learn from data and provide iterative improvement.
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1.1 Thesis Objectives

This thesis is driven by two primary objectives :

(I) Development of Predictive Models : To develop machine learning models capable

of predicting the mechanical properties of hot rolled microalloyed steel. A crucial

aspect of this objective is to use these models to derive and enhance metallurgical

understanding of the processes involved.

(II) Alloy Design : To integrate machine learning models with evolutionary genetic

algorithms to establish a comprehensive framework for alloy design, tailored to

specific processing schedules. The focus is on proposing alloys that exhibit superior

strength-ductility combinations. The study also aims to incorporate tools that

enhance the explainability and reliability of the developed frameworks, ensuring

their practical applicability and acceptance in the field.

1.2 Thesis Structure

This manuscript-based thesis is organized into five chapters, each designed to

systematically address the research objectives outlined above. The first and current chapter

introduces the broader research context, motivation and establishes the rationale for the

study. Chapter 2 discusses the key background concepts of Thin Slab Direct Rolling
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Figure 1.1 – General workflow proposed for alloy design in Chapter 4. The ML framework
captures the crux of objectives outlined in the thesis.

(TSDR), theory of hot deformation, key metallurgical events, and basics of machine

learning. Chapters 3 and 4 are the manuscripts which consist of the results and discussion

of the work. In Chapter 3, we address the first objective by developing machine learning

models to predict mechanical properties and assess the effect of thermomechanical

controlled processing and the composition. Chapter 4 expands the scope to alloy design,

detailing the integration of machine learning with NSGA-II, an evolutionary genetic

algorithm. Graphic abstract of chapter 4 is presented in figure 1.1. The final and

concluding chapter synthesizes the key findings, suggests industrial applications, and

proposes directions for future research.
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In order to avoid redundancy, the background of specific ML methods, optimization

algorithms, explainability and uncertainty quantification methods is not discussed in the

2nd chapter i.e., Background. In the manuscripts (chapters 3rd & 4th), these methods are

discussed and their literature survey related to the field of this work is summarized as well.
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Chapter 2

Background

2.1 Thin Slab Direct Rolling

The use of Thin Slab Direct Rolling (TSDR) technology in steel production has brought

remarkable improvements in efficiency, cost, and environmental impact. TSDR was first

introduced at Nucor, Crawfordsville, USA in 1989 based on Compact Strip Casting (CSP)

technology developed by the SMS company. The key idea was to cast steel directly into thin

50 mm slabs, which are directly fed to the hot rolling mill, preserving a significant amount of

heat from the casting phase (1). There have been several developments and hence variants of

this technology since then. Here we only discuss the general idea behind it with focus on the

TSDR mill installed at Algoma Steel Inc., Ontario, Canada (DSPC). The figure 2.1 depicts

the schematic of the mill.

2.1.1 TSDR Process Overview

This process encompasses several stages, the key sections of which are discussed below

(2; 3) :
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Figure 2.1 – Schematic of the TSDR mill at Algoma Steel Inc., Ontario, Canada (2)

2.1.1.1 Continuous Caster

The continuous caster is essential for solidifying molten steel into thin slabs about 70-80

mm in thickness and 800-1600 mm in width. Steel flows from a ladle into a tundish, which

then feeds it into a water-cooled mold. This setup facilitates rapid solidification, crucial for

achieving the desired upstream slab macrostructure for further rolling. Enhanced cooling

rates and dynamic soft reduction techniques are employed to minimize internal defects and

achieve uniformity in the cast slab. Macrostructure control in TSDR becomes more important

given the lack of long reheating times in the process, hence plays a key role in the final

property of the strip.

The as-cast slab is cut using the pendulum shear and further passed through a rotary

descaler, which produces a scale-free slab surface.
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2.1.1.2 Tunnel Furnace

The tunnel furnace serves to reheat and homogenize the temperature of the slab to obtain

the desired flow behaviour for subsequent rolling. Typically, the average residence times are

approximately 20 minutes, varying based on the chemistry. By regulating the oxygen % in

the furnace, the roller hearth furnace can control the slab temperature. Oxygen % is also

important for controlled growth of secondary scales. The shuttle section of the furnace is

utilized to deliver the homogenized slabs to the roughing mill as quickly possible.

2.1.1.3 Roughing Mill

Before the roughing mill, the slab is passed through secondary descaling unit and vertical

edger. The edgers provide width control of the slab before rolling and improves the yield of

tapered slabs. The roughing stand here is a single pass and non-reversing mill. The main

purpose is to drastically reduce the slab to a transfer bar about 30-45 mm thick, ideal to

feed the finishing mill.

2.1.1.4 Finishing Mill

The transfer bar from the roughing mill is passed through a heated transfer table, a third

descaling unit to ensure surface cleanliness, and a rotary drum crop shear. This prepares the

bar for rolling in a six-stand finishing mill. The key focus of the finishing mill is to ensure

tight dimensional tolerance of the product. This is unarguably the most interesting section
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where the majority of metallurgical action occurs. The strain and strain rate applied at the

subsequent stands drives metallurgical reactions like recrystallization or precipitation, which,

in-turn, play a key role in the final mechanical property of the rolled strip.

2.1.1.5 Runout Table and Coiler

The steel strip is rapidly cooled to a coiling temperature with tight temperature tolerance

along the strip on the runout table following the finishing mill. The importance of accelerated

cooling and the cooling stop temperature lies in its ability to obtain a uniform and refined

microstructure, giving the mechanical properties needed for specific applications.

Following this the strip is coiled in the downcoiler. This coil can either be dispatched in as-

hot-rolled condition or further processed downstream. The mechanical properties discussed

in this work are experimentally measured by sampling from these as-hot-rolled coils.

2.2 Basic Theory of Rolling

The theory of rolling developed by Orowan (4) is comprehensive as it considers both the

inhomogeneous distribution of deformation across the roll gap and friction at the material-

roll interface, aspects previously ignored by other theories. He highlighted the variability

in frictional conditions within a single pass, shifting from the Coulomb condition, where

the interfacial shear stress τ is equal to µs (µ being the friction coefficient and s the local

pressure), to conditions where τ equals the shear yield stress of the material. He introduced
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an inhomogeneity factor to account for this variability in deformation, moving away from

the simplistic assumption of "plane sections remain plane."

Figure 2.2 – Schematic of Roll and Strip Geometry during Hot Deformation. (5)

To incorporate the non-uniform deformation and the temperature and strain rate

dependencies of the yield stress, Orowan used numerical integration, a method complex

enough for practical applications that later researchers sought simpler solutions. Alexander

(6) left out the inhomogeneity factor and used a fourth order Runge-Kutta technique to

determine the normal pressure distribution and then the roll force. Sims (7) made still

more simplifying assumptions to Orowan’s theory to obtain an analytical solution, which is

still widely accepted.

We first consider the differential equation 2.1 as the base which is basically derived from

considering the equilibrium of a thin segment of unit width bounded by planes parallel to

the roll axes planes.

s(tan θ ± µ)R′ dθ − 1
2 d(ty) = 0 (2.1)
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In this equation, s represents the normal roll pressure, which is the pressure exerted by

the rolls perpendicular to the surface of the metal. The angular coordinate θ measures the

position along the arc of contact in the roll gap, and µ is the coefficient of friction between

the rolls and the metal. The term R′ indicates the deformed radius of the work roll given by

Hitchcock’s formula (8), taking into account the flattening effect due to the rolling pressure.

The differential element dθ represents a small change along the angle θ, and d(ty) signifies

the differential change in the product of the horizontal stress t of the rolled material and its

thickness y.

Sims considered that sticking friction occurs between the work roll and the workpiece,

simplifying the calculation process. This approach is commonly utilized due to its simplicity

and ability to derive analytical results. Two key assumptions are made : firstly, sticking

friction µs = k
2 is assumed to prevail over the entire arc, and secondly, the angle θ in hot

rolling is considered so small that we can approximate sin θ = tan θ = θ, cos θ = 1, and

(1 − cos θ) = θ2

2 . Under these assumptions, the equation transforms to :

dT

dθ
= 2R′sθ + R′k, (2.2)

where T is the horizontal force per unit width acting on the strip, and k is the yield stress

of the material under plane compression.

Sims also adopted the assumption from Orowan that the rolling process resembles

deformation between two inclined plates, an idea initially proposed by Nadai (9). This
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leads to :

T = y(s − π

4 k), (2.3)

Substituting Equation 2.3 into the simplified model, we derive :

d[y(s − π
4 k)]

dθ
= 2R′sθ ± R′k, (2.4)

Considering geometry and using the small angle approximation, the relation for y

becomes :

y = h + R′θ2, (2.5)

where h is the thickness of the rolled strip. Substituting Equation 2.5 into Equation 2.4,

and assuming k remains constant over the arc of contact, we establish :

d(s/k − π
4 )

dθ
= R′πθ

2(h + R′θ2) ± R′

(h + R′θ2) , (2.6)

Finally, solving for the above equation 2.6 for exit side from the neutral plane, we obtain :

s+/k = π

4 loge

(
y

h

)
+ π

4 +
√

R′

h
tan−1

√R′

h

 , (2.7)
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and for the entry side, the relationship becomes :

s−/k = π

4 loge

(
y

H

)
+ π

4 +
√

R′

h
tan−1

√R′

h

α −
√

R′

h
α −

√
R′

h
tan−1

√R′

h

 θ. (2.8)

To determine the plane of intersection in the rolling process, we can solve for the point

where the solutions for the entry and exit sides converge. This results in the following

equation :

π

4 loge(1 − r) = 2
√

R′

h
tan−1

√R′

h

ϕ −
√

R′

h
tan−1

(√
r

1 − r

)
(2.9)

The difference between the normal roll pressure and the vertical pressure becomes

minimal when the angular coordinate θ is small, assuming that plane deformation occurs.

Under these conditions, the specific roll load can be expressed as :

P = R′
∫ α

0
s dθ, (2.10)

Substituting from equations 2.7 and 2.8 into equation (2.10), the expression for P becomes
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more complex, involving the integration of several terms :

P = R′k

{∫ ϕ

0

π

4 loge

(
y

H

)
+ π

4 +
√

R′

h
tan−1

√R′

h

α −
√

R′

h
α −

√
R′

h
tan−1

√R′

h
θ

 dθ

+
∫ α

ϕ

π

4 loge

(
y

h

)
+ π

4 +
√

R′

h
tan−1

√R′

h

 dθ

}
.

(2.11)

After simplification and integration, the specific roll force is obtained as :

P = R′k

π

2

√
h

R′ tan−1
(√

r

1 − r

)
− πα

4 − loge

(
y

H

)
+ 1

2 loge

(
H

h

) , (2.12)

where r = δ
H

represents the reduction ratio, δ is the draft (difference between the entry and

exit thickness), H is the entry thickness, and h is the exit thickness. This equation can be

rearranged to obtain SIMS mean flow stress (MFS) formulae after accounting for a factor of

2√
3 to allow for plane strain.

2.3 Metallurgical Events During Hot Rolling

2.3.1 Plastic Deformation

The initial and visible effect of applying strain during rolling is plastic deformation of

the material. This results in the generation and subsequent movement of dislocations

leading to work hardening, or strain hardening. As the deformation continues, an increase
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in dislocation density leads to increased interactions among dislocations themselves and

with existing grain boundaries. These interactions impede the movement of dislocations,

requiring higher stresses to sustain further deformation (10). Hence, the work hardened

material experiences an increase in strength.

2.3.2 Recovery

Recovery is a softening mechanism which serves to release the strain energy stored

within the material due to dislocation multiplication. This can be either static i.e.

post-deformation or dynamic i.e. during-deformation. Recovery does not involve grain

boundary motion but rather the local annihilation and rearrangement of dislocations into

lower energy configurations. Both annihilation and rearrangement are achieved by glide,

climb, and cross-slip of dislocations. The process may consist of a series of steps as detailed

in figure 2.3

Apart from the strain and temperature, the most important parameter affecting recovery

is the stacking fault energy (SFE) of the material which determines the rate of dislocation

climb and cross slip. Hence, for high SFE materials like Al, BCC-Fe recovery is favourable

unlike for low SFE materials like FCC-Fe (11).

Note that, recovery and recrystallization are competing processes. For medium and low

SFE materials the slow kinetics of recovery promotes dislocation density increase, facilitating

recrystallization.
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Figure 2.3 – Schematic showing various stages in the recovery of a plastically deformed
material (11)

2.3.3 Static Recrystallization

Static recrystallization (SRX) involves the migration of high-angle boundaries, which

effectively annihilates dislocations and thereby releases the stored energy within the material.

Typically occurring between passes, particularly after deformation and during the interpass

time in hot rolling, the driving force behind SRX is the strain energy previously stored in
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the material in the form of dislocations (12).

SRX follows a nucleation and growth transformation. Nucleation of new grains takes

place at sites with highest local deformation. These sites can be grain boundaries,

deformation bands, and inclusions. Nucleation is a thermally activated process. The

mechanism of nucleation may involve subgrain growth, or subgrain coalescence, or strain

induced grain boundary migration. In subgrain growth, dislocations rearrange themselves

as low angle grain boundaries in the area of high deformation. The subsequent interaction

of dislocations with subgrain boundaries leads to increased misorientation and hence results

in formation high angle grain boundaries. In subgrain coalescence, rotation of subgrain to

reduce misfit strain with its neighbour results in nucleation. The common grain boundary

disappears and high angle grain boundaries are created. In strain induced grain boundary

migration, the grain boundaries between low-strain and high-strain subgrains bulges out to

form a coarser grain. As a result of the difference in strain of neighbouring grains, the

dislocations are swept away during bulging and leads to a strain free area (11; 13). Once a

high angle boundary is formed, the growth process follows. The growth of new grains will

depend on the boundary mobility and and net driving force on the boundary (11).

SRX being a nucleation and growth process, its kinetics can be described by the Avrami

(14) equation. The transformation kinetics are represented by the equation :

X = 1 − exp(−btn) (2.13)
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where X is the fraction transformed, b is a constant dependent on the nucleation and growth

rates, t is the time, and n is the time exponent. Equation 2.13 will describe a sigmoidal-type

curve typical of nucleation and growth transformations under isothermal conditions (11). For

practical purposes, the recrystallization kinetics are defined in terms of 50% recrystallization

time and hence the recrystallized fraction can be obtained from the Avrami equation.

2.3.4 Dynamic Recrystallization

Dynamic Recrystallization or DRX is a rapid softening mechanism occuring during

deformation when the applied strain exceeds a critical strain, ϵc. This critical strain

corresponds to a critical dislocation density which is more favourable to reach in low SFE

materials such as austentite (γ − Fe). There exists a characteristic peak strain (ϵp) in

stress-strain plot which denotes the maximum flow stress reached before eventually

reaching a steady state (15).

The ϵp parameter is represented as :

ϵp = BDm
0 Zp (2.14)

where, B, m and p are material dependent coefficient, D0 is the initial grain size, and Z

is the Zener-Hollomon parameter given by the equation :
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Z = ϵ̇ exp
(

Qdef

RT

)
(2.15)

where, ϵ̇ is the strain rate, Qdef is the apparent activation energy for deformation, R is

the gas constant (8.31 J/mol · K), and T is the absolute temperature. The critical strain can

then be represented as (16) :

ϵc = k.ϵp (2.16)

Figure 2.4 depicts the typical stages involved in DRX. New grains typically nucleate along

the high-angle grain boundaries ; which may be the original grain boundaries, boundaries

of dynamically recrystallized grains, or high-angle boundaries associated with deformation

bands or deformation twins. However, with continued material deformation, these new grains

accumulate dislocations. This accumulation diminishes the driving force necessary for further

grain growth, eventually limiting the growth of recrystallizing grains. The growth of these

new grains may be further constrained by the nucleation of additional grains along the

migrating boundaries. If there is a large difference between the initial grain size and the

recrystallized grain size, the "necklace" structure can be observed (11).
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Figure 2.4 – Schematic showing various stages of grain evolution in the dynamic
recrystallization. (11)

2.3.5 Metadynamic Recrystallization

Metadynamic recrystallization (MDRX) is actually post-dynamic recrystallization. After

deformation stops, the nuclei initiated by dynamic recrystallization continues to grow which

is called as MDRX. Hence, MDRX does not require any incubation time as the nuclei are

already formed from DRX. This also explains the rapid kinetics in MDRX (11). As a result,

DRX microstructures rapidly change post-deformation which results in coarser grain size

(17). This can be favoured in hot rolling process schedules where the strain applied exceeds
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the peak strain (ϵp) but never reach the steady state region.

In MDRX, the strain rate, rather than the strain itself, determines the kinetics. Higher

strain rates would mean higher steady state stress which may result in a higher dislocation

density and, therefore, a stronger driving force (18).

2.3.6 Grain Coarsening

Grain coarsening follows the completion of recrystallization. Note that it is not the growth

stage of recrystallization, hence the use of the word ’coarsening’. In grain growth, the grain

boundary area is reduction is the driving force, which therefore results in coarser grains.

The high temperature conditions of hot rolling favours the same (5). The general empirical

equation can be written as (11) :

Dn = Dn
R + ct exp

(
−Qg

kT

)
(2.17)

where c, n, and Qg are constants.

Since grain coarsening takes place in fully recrystallized regions, some authors consider

95% recrystallization time as the time when grain coarsening is initiated (5; 19).

2.3.7 Precipitation

Microalloying additions such as Nb, V, or Ti in the solution precipitate as carbides,

nitrides or complex carbonitrides. Precipitation can be accelerated, either strain induced or
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transformation induced.

Strain induced precipitates are generally incoherent do not contribute to strength but

can retard recrystallization (20). The retention of work hardening occurs due to

deformation in the low temperature austenite region, results in the formation of pancaked

austenite grains and deformation bands. Thus, more sites for the γ to α transformation are

created, encouraging the formation of a fine-grained ferrite microstructure. Since, strain

induced precipitation is also a nucleation and growth mechanism, its kinetics can be

studied empirically using the well-known Avrami equation (14). In mathematical

modelling, it is commonly assumed that if precipitation begins, represented by 5%

precipitation time, before recrystallization is complete during the interpass time, it

becomes the controlling mechanism and hinders further recrystallization (21).

Strengthening of the matrix occurs when coherent precipitates are formed during or

after transformation. Strengthening occurs as the motion of dislocations is impeded by

precipitates. When a dislocation encounters a precipitate, it can react in two possible ways.

If the precipitate is impenetrable, the dislocation may form a loop around the particle,

which is called the Orowan mechanism (22). On the other hand, the dislocation might pass

through the precipitate and shear it (23). The equations below describe the increase in

strength resulting from particle looping and particle cutting (24) :

σprec ∝ f 1/2

r
(particle looping) (2.18)
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σprec ∝ (fr)1/2 (particle cutting) (2.19)

where f is the volume fraction and r is the radius of the precipitates.

2.3.8 Phase Transformation

The primary goal in processing microalloyed steels is to maximize the number of ferrite

grains derived from a single austenite grain, effectively increasing the ferrite nucleation rate

(25). Nucleation begins at corner sites, the junctions between four grains, then at edge sites

where three grains meet, and finally at grain surfaces between two adjacent grains (26).

In fully recrystallized austenite structure, ferrite nucleation primarily occurs at

recrystallized grain boundaries. The higher grain boundary area per unit volume

accelerates the transformation and leads to a significant refinement of the ferrite structure.

Alternatively, if precipitates impede recrystallization, austenite undergoes significant

deformation, resulting in ‘pancaking’ and the creation of many intragranular nucleation

sites, thereby increasing the ferrite nucleation rate in comparison to fully recrystallized

austenite (27).
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2.4 TMCP in TSDR

The final mechanical property of the rolled material is reflected through its

microstructure. Hence, it is essential to understand the microstructure evolution during the

process and the mechanisms/reactions driving them. Figure 2.5 shows the different

metallurgical events that happen during the TSDR process.

Figure 2.5 – Metallurgical mechanisms and reactions at different stages of TSDR process.
(28)

The as-cast macrostructure of the slabs in TSDR has very coarse austenite grain size when

compared with the traditional hot rolling process. In direct charging there is no reheating

times ; hence no austenite to ferrite transformation during slab cooling post-casting and

hence, no ferrite to austenite transformations during reheating which can refine the as-cast

macrostructure (28).

Each rolling pass can be characterized by its strain, strain rate, temperature and the
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interpass time between stands. The inter-relationship between them decide which mechanism

dominates. The mechanisms involved have been discussed in the previous section. For a more

detailed quantitative modelling in TSDR, an interested reader can follow Uranga et. al (21).

2.5 Microalloying

Niobium

Nb has three fold impact : grain size refinement during TMCP, lowering the phase

transformation temperature and precipitation hardening. The primary reason niobium aids

in grain refinement is because Nb in form of carbonitride precipitates can impede or delay

recrystallization before finish rolling by pinning austenite grain boundaries. By inhibiting

recrystallization, austenite develops flattened grains and a high dislocation density,

promoting the formation of ferrite. In addition, Nb reduces the γ to α transformation

temperature (Ar3), leading to increased ferrite nucleation rate and decreased grain growth.

A combination of these mechanisms creates a fine-grained transformation structure

(29; 30).

Titanium

The role of Ti is of austenite grain refinement as well as precipitation hardening by

forming nitrides, carbides and carbonitrides. In TSDR process, fine precipitates of TiN and
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TiC—often existing as Ti(C, N) with varying C/N ratios—have been observed to precipitate

in austenite along strain-induced precipitates during rolling. These precipitates retain their

fine size due to the rapid cooling rates, avoiding coarsening. Ti-precipitates, mainly TiN,

refine grains by pinning austenite grain boundaries and delay the recrystallization kinetics

of austenite (31). Ti is often used in combination with Nb and V (32; 33).

Vanadium

Vanadium exhibits higher solubility in austenite compared to titanium or niobium,

enabling it to stay dissolved until the austenite-to-ferrite transformation occurs. This

enhances its role in strengthening through the formation of fine carbides, nitrides, or

carbonitrides, which contribute via precipitation hardening. VC is highly effective due to

its lower temperature precipitation in ferrite and finer granularity compared to VN. VC

and VN have markedly different solubility products, with VN being about two orders of

magnitude lower than VC. Hence, Nitrogen plays a crucial role in vanadium-microalloyed

steels by controling driving force for precipitation. The interaction of V with other

microalloying elements often results in the formation of mixed carbonitrides, which further

reduces the amount of vanadium dissolved in austenite (34; 35).
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2.6 Machine Learning

Machine learning (ML) focuses on two key interrelated questions : How can computer

systems automatically improve through experience, and what are the fundamental laws

governing all learning systems, including computers, humans, and organizations ? The area

of ML answers these fundamental questions and aids in the development of highly practical

applications across different fields (36). The call for such automated methods for data

analysis becomes important as we enter the era of big data. Formally, ML can be defined as

a set of methods that can automatically detect patterns in data and then use them for

future predictions to aid in decision-making under uncertainty. ML methods can be broadly

classified into three categories : supervised learning, unsupervised learning, and

reinforcement learning (37). We will only touch upon the first two categories briefly, as

they have been utilized in this work. To prevent repetition, we refrain from discussing the

specific methods used in the thesis since they have already been explained in their

respective manuscripts.

2.6.1 Supervised Learning

Supervised learning involves learning a function that maps an input to an output based

on example input-output pairs. Let X be the input space and Y be the output space. Given

a training dataset D = {(xi, yi)}n
i=1, where xi ∈ X and yi ∈ Y , the goal is to learn a function
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f : X → Y that can predict the output y for a given input x. Here, we assume that the

output y can be predicted from the input x using a function f such that (38) :

y = f(x) + ϵ (2.20)

where ϵ is the error term representing the noise or randomness in the relationship between x

and y. The function f is typically parameterized by a set of parameters θ, so we write f(x; θ).

To learn the parameters θ, we define a loss function L(y, ŷ), which measures the difference

between the true output y and the predicted output ŷ = f(x; θ). Common loss functions

include mean squared error (MSE) and cross-entropy loss for regression and classification

tasks respectively. The objective is to find the parameters θ that minimize the expected loss

over the training dataset which is achieved using optimization algorithms. After training, it

becomes essential to evaluate its performance over a separate test-set to ensure generalization

to unseen-data. Common evaluation metrics include :

— For regression : Mean Absolute Error (MAE), Root Mean Squared Error (RMSE)

— For classification : Accuracy, Precision, Recall, F1-score, ROC-AUC

In this work, two supervised ML algorithms, namely Neural Networks and XGBoost,

were utilized to model mechanical properties. Detailed explanations of these algorithms can

be found in section 3.3.2 and 4.2.3.1 respectively.
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2.6.2 Unsupervised Learning

Unsupervised learning involves finding hidden patterns or intrinsic structures in input

data without labeled outputs. Let X = {xi}n
i=1 be the input data. The goal is to model the

underlying distribution or structure of the data (39). Unsupervised learning can be broadly

classified into two categories : dimensionality reduction and cluster analysis (40).

Dimensionality reduction involves representing data in a more simplified form. For

instance, the most basic form of such a method is Principal Component Analysis (PCA).

PCA transforms the data into a new coordinate system such that the greatest variance by

any projection of the data comes to lie on the first coordinate (principal component), the

second greatest variance on the second coordinate, and so on (41). Given a dataset X , the

method finds the principal components by solving the eigenvalue problem :

Cv = λv (2.21)

where C is the covariance matrix of X , λ are the eigenvalues, and v are the eigenvectors.

The eigenvectors corresponding to the largest eigenvalues form the principal components.

A more advanced version of dimensionality reduction technique is t-SNE, which is used in

chapter 4, and hence described therein (section 4.2.7.1).

Clustering algorithms aim to partition the dataset into groups (clusters) such that data

points within the same cluster are more similar to each other than to those in other clusters.
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One of the most popular clustering methods is K-means clustering. Given K, the number of

clusters, the K-means algorithm aims to minimize the within-cluster sum of squares (WCSS)

(42) :

min
C,µ

K∑
k=1

∑
xi∈Ck

∥xi − µk∥2 (2.22)

where Ck is the set of points in cluster k and µk is the centroid of cluster k. A more involved

discussion of the K-means algorithm can be found in section 4.2.7.2.
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Chapter 3

Neural Network Prediction of the Effect of

Thermomechanical Controlled Processing on

Mechanical Properties

The current chapter addresses the first objective of the thesis i.e. to develop machine

learning models to predict mechanical properties of microalloyed steel. To add more confidence

in the developed ML models, explainability was introduced in combination with analysis based-

on physical metallurgy.

This paper is published in Machine Learning with Applications, appeared as :

Sinha, S., Guye, D., Ma, X., Rehman, K., Yue, S., & Armanfard, N. (2024). Neural network

prediction of the effect of thermomechanical controlled processing on mechanical properties.

Machine Learning with Applications, 100531.
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Abstract

The as-rolled mechanical properties of microalloyed steels result from their chemical

composition and thermomechanical processing history. Accurate predictions of the

mechanical properties would reduce the need for expensive and time-consuming testing. At

the same time, understanding the interplay between process variables and alloy

composition will help reduce product variability and facilitate future alloy design. This

paper provides an artificial neural network methodology to predict lower yield strength

(LYS) and ultimate tensile strength (UTS). The proposed method uses feature engineering

to transform raw data into features typically used in physical metallurgy to better utilize

the artificial neural network model in understanding the process. SHAP values are used to

reveal the effect of thermomechanical controlled processing, which can be rationalized by

physical metallurgy theory.

3.1 Introduction

Microalloyed steels constitute about 12% of global steel production (approximately 200

million tonnes) and play a dominant role in industries such as oil and gas extraction,

construction, and transportation. They remain an attractive material for these industries

due to their low cost, good combination of mechanical properties, and weldability (1).

Microalloyed steels possess high strength through the micro-additions of, e.g. niobium and
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titanium, which form metal carbonitride precipitates that lead to grain refinement (2).

Since these steels are typically used in their as-rolled condition, an improved understanding

of alloying and the response to hot rolling have resulted in substantial strength increases

over the past 40 years (3). To control the hot rolling process, considerable efforts have been

made to develop mathematical models.

For a given steel composition, two mathematical models will be required for the

prediction of mechanical properties from hot rolling schedules : (i) a process-structure

model that uses kinetic and thermodynamic models to predict the as-hot-rolled

microstructure ; (ii) a structure-property model that uses the predicted microstructure to

determine the corresponding mechanical properties. Such models are primarily empirical,

developed through experimental studies, with authors frequently proposing new equations

or equation modifications to account for the addition of new alloying elements. Moreover,

the laboratory models need to be tuned to fit industrial operations, indicating gaps in the

industrial process’s metallurgical understanding or modelling. Thus, typical mathematical

models comprise many submodels, each containing errors and assumptions. A reduction of

these submodels would likely be an improvement. Moreover, if laboratory experiments can

be eliminated using data from industrial processing, this would also be beneficial. An

obvious way to do this is to develop a model that directly predicts properties from the

process without resorting to a microstructure-property model. However, going directly from

processing to property without predicting the microstructure is not possible for a model
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based on metallurgical principles. Therefore, a prediction not based on metallurgical

principles is the logical alternative, with machine learning (ML) based models being an

obvious choice.

Figure 3.1 shows the typical configuration of a direct strip processing complex (DSPC).

The as-cast thin slab (70-80 mm) enters the tunnel furnace for a short interval (15-20 mins)

directly from the caster primarily to obtain temperature homogeneity before rolling. Then the

as-cast slab is passed through the edger for width control and subsequently to the roughing

stand where it undergoes large deformation to form a transfer bar (35-40 mm). Hence, the

transfer bar travels to the finishing stands where it is sequentially deformed in several stages,

in this case, six, to achieve the final thickness and tight tolerances of the final geometry. In the

final stage, the rolled sheet undergoes accelerated cooling before being coiled. In conventional

hot strip mills (HSM) the cast slab is much thicker (∼200 mm) and is cooled after casting and

then fed to reheating furnaces where the slabs spend a longer time (3-3.5 hrs) before being

fed to the roughing mill. The higher slab thickness in conventional HSM necessitates higher

overall reduction especially multiple passes in the roughing stage to shape the transfer bar

for subsequent finishing stages. Hence, the key distinction in thermomechanical processing

between the DSPC route and conventional HSM lies in the reduced opportunities for grain

refinement due to the fewer number of passes in the DSPC route (4).
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Figure 3.1 – Schematic of Direct Strip Processing Complex

3.2 Neural Network Approaches

Given various non-linear and complex mechanisms contributing to the strengthening via

thermomechanical processing (5), ANN has been a successful method to model these

processes. Singh et al. (6) used neural networks to predict mechanical properties after hot

plate rolling utilizing 108 input variables, including factors such as slab reheat

temperature, slab length, slab gauge (thickness), composition, and rolling parameters

(“screw settings,” the delay between passes, time of each pass). The dataset consisted of

1892 examples. A Committee (or ensemble) model was applied. Instead of using the single

best model obtained from the training procedure, the average of multiple good models was

used to make a prediction and yielded a lower error. This is similar to the approach taken

by Yang et al. (7), where an ensemble of 10 neural networks was used as it allowed for the

determination of error bounds. Korczak et al. (8) applied neural networks to a hot plate

rolling process, where 14 nodes were used to input chemical composition, microstructure,

and rolling parameters with four output nodes to give ferritic grain size, hardness, yield

strength, and tensile strength. However, in this case, only five examples were mentioned in
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the article, with no mention of a validation set to test for overtraining of the model.

Prediction of properties over the length of the coil during thermo-mechanical processing

using deeper neural networks has also been performed (9). Using data from the run-out

table, an average prediction of four DNN models was used to predict mechanical properties

at different points along the coil’s length. Hwang et al. (10) used artificial neural networks

to predict roll force using Steckel mills. Here, the model is proposed as a hybrid model as it

computes typical parameters from classical mathematical models and uses these as input

features. Improvement of the model is expected by using domain-specific knowledge to

provide essential insights into the processes. Deeper neural networks have been applied to

the entire hot rolled plate production process, from continuous casting unit operation to

leveling (11). Using 11,101 data points, models were trained to predict mechanical

properties like lower yield strength, ultimate tensile strength, and elongation. Xie et al.

(11) performed a detailed investigation of pre-processing and gradient descent optimization

algorithm, concluding that z-score pre-processing and the Adam optimization algorithm

were most suitable for their application. Here, the finish cooling temperature after

equalization and the niobium content were determined as important factors for predicting

yield strength, while the finish cooling temperature after equalization and Mn content were

the two most influential parameters in predicting UTS. In terms of elongation, niobium,

chromium, and vanadium were the three most influential compositional parameters.

Mohanty et al. (12) used artificial neural networks and the NSGA-II optimization
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algorithm for optimal microalloyed steel design and then compared these with

thermodynamic simulations for the formation of strengthening precipitates. Multiobjective

optimization was used to optimize Nb, Ti, V, and N levels to provide better mechanical

properties.

3.3 Modeling Methods

While there is a wealth of literature discussing the application of neural network (NN)

methods to analyze the mechanical properties of hot-rolled strips, as discussed in the

previous section, there is a notable dearth of studies specifically addressing the use of these

methods for the Direct Strip Processing Center (DSPC) route. Additionally, in the existing

body of literature utilizing NN methods, there is a noteworthy absence of efforts to

interpret and explain the models, based on our current knowledge. This work aims to

produce a suitable model for predicting UTS and LYS at a reasonable level of accuracy and

use a combination of model interpretation and metallurgical analysis to provide insight into

the combined importance of deformation and chemical composition in thermomechanical

controlled processing (TMCP). Building on the success of NN-approaches in modeling

similar thermomechanical processes, the methodology employed in this work involved

utilizing a neural network for predicting mechanical properties based on alloy composition

and TMCP inputs. The neural network model has no predefined relationships between

input data and mechanical properties and relies on learning relationships by exposure to
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training data. If complex relationships exist between input data and mechanical properties

that are not typically modelled in empirical microstructural models, a large enough neural

network could capture them to produce a better prediction. The data-driven approach here

utilizes A) Preprocessing, B) Prediction, and C) Model interpretation.

3.3.1 Preprocessing

The approach outlined in this study involves preprocessing the features to obtain strain

and strain rate, which are commonly used in physical metallurgy. This preprocessing step

enables a direct comparison of observations with existing physical metallurgy theory and

aligns with previous research emphasizing the performance improvement achieved by

applying domain-specific knowledge (10).

To compute the Von Mises effective strain (εeff) for each rolling stand, Equation 3.1 is

utilized (13) :

εeff = 2√
3

ln
(

H

h

)
(3.1)

Here, H represents the entry thickness at each stand (in millimeters) and h denotes the

exit thickness at each stand (in millimeters).

The average strain rate (ε̇) can be expressed using Equation 3.2, which calculates the

ratio of the effective strain to the time of strain application (tdef) (13) :
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ε̇ = εeff

tdef
(3.2)

The value of tdef is determined using Equation 3.3 :

tdef = α

2π × 60/U
(3.3)

Here, U represents the roll speed at each stand (in revolutions per minute), and α signifies

the portion of the roll in contact with the strip, i.e., the roll/strip interface where reduction

occurs in the roll bite. The unit of tdef is seconds. The calculation of α is performed using

Equation 3.4 :

α = cos−1
(

1 − H − h

2R

)
(3.4)

In this equation, R denotes the roll radius of each stand (in millimeters).

The physical deformation parameters obtained are then combined with the chemical

composition and temperature of the strip at each stand to form the set of features used

for training the artificial neural network. Therefore, the input data for the artificial neural

network model comprise the strain and average strain rate at each pass of deformation,

the temperature at each pass of deformation, and the chemical composition of each strip.

This study uses 50 and 60 Ksi Nb-based HSLA data from the DSPC rolling mill of Algoma

Steel Inc (Ontario, Canada). A total of 5930 instances were available and 20% of data were
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randomly split as test set for evaluating the performance of the fully trained model. In total,

there are thirty-eight features. To ensure consistent scaling, the features are normalized using

mean and standard deviation. The mechanical properties of interest in this study are the

ultimate tensile strength (UTS) and lower yield strength (LYS). It should be noted that any

examples with missing or null values have been excluded from the analysis.

3.3.2 Prediction

Acknowledging the various non-linearities that exist in the literature regarding the

mechanisms that act to reduce grain size and the prior application of neural networks to

the prediction of mechanical properties in steel, artificial neural networks (ANN) present

an exciting tool for TMCP strategy design. Graupe (14) likens the ability of neural

networks to make predictions to the decision-making process in animals, where complex

mathematical problems are not solved ; rather, a collection of neurons with a simple

structure is able to adapt to fit the problem at hand. An artificial neural network is a

collection of algorithms loosely modeled on the animal brain. The nodes are arranged in

layers, with each type of layer having a specific function. Feedforward neural networks are

the simplest type of neural network and consist of an input layer, one or many hidden

layers, and an output layer. The input layer takes in attributes descriptive of the process.

Information from the input layer is passed to the nodes in the hidden layer, where a

mathematical function is applied to them. A weight is assigned as the variable is passed
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between layers to control the strength of the influence of each input (14). The output of

hidden nodes can be represented as Equation 3.5 :

hi
1 = f(W T

1 x + b0) (3.5)

Here, hi
1 is the output of the i-th node of the first hidden layer. f represents the activation

function. The activation function determines whether a node is active or not. W T
1 is the

weight vector associated with the first hidden layer, and b0 is the bias of the first hidden

layer. In the case of multiple hidden layers, the output of the first hidden layer is passed to

the next hidden layer. The output from the second layer of hidden nodes can be calculated

using Equation 3.6 :

hi
2 = f(W T

2 × f(W T
1 x + b0) + b1) (3.6)

In this equation, hi
2 represents the output of the i-th node of the second hidden layer.

W T
2 is the weight vector associated with the second hidden layer, and b1 is the bias of the

second hidden layer. The output from the output layer is computed in a similar manner to

the output of the hidden layers.

Individual neural networks were used to predict the ultimate tensile strength (UTS) and

lower yield strength (LYS) using single output neurons. In a supervised context, weights

are assigned between nodes to determine the contribution of each input to the final output
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value. These weights are initially randomly assigned and tuned during the recursive training

process by exposing the network to training data. The modeling was performed using the

open-source Python library PyTorch (15).

1) Implementation Details : K-fold cross-validation was used to optimize the

hyperparameters of the model. The data were shuffled and divided into k folds, where k is

an integer greater than 1. Each fold contains the same number of examples. k − 1 folds

were used for model training, and 1 fold was held out as validation data. The fold held out

for validation changes sequentially until all folds have been used for validation (16). In this

work, 5-fold cross-validation was performed. 500 epochs and an exponential scheduler with

step size 0.995 were used for training each network. The loss function used was mean

squared error (MSE) along with ridge regularization represented by Equation 3.7 :

L(θ) = 1
2N

N∑
i=1

(yi − ŷi)2 + λ
p∑

j=1
θ2

j (3.7)

Here, L(θ) is the loss function, N is the number of data points, yi is the observed value,

ŷi is the predicted value, θj are model parameters, p is the parameter count, and λ is the

regularization parameter. The Adam optimization algorithm was applied as the optimization

algorithm. For the prediction of UTS and LYS, the activation function was ReLU. The

number of nodes were varied between 100 to 4000, and regularization parameter(λ) was

varied between 0 to 0.1 to select the optimized hyperparameters.

2) Evaluation Metrics : In addition to mean squared error (MSE), the predictive ability of
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the model (PAM) is also selected as the quantification metric for the prediction performance

and is defined by Equation 3.8 :

PAM = NCP
NP × 100% (3.8)

Here, NP is the number of predictions, and NCP is the number of ‘correct’ predictions.

A ‘correct’ prediction is one in which the difference between the predicted value and the

measured value is ‘small’. Two levels of ‘small’ are chosen : (i) less than 5% of the true

value or (ii) less than 2.5% of the true value. The number of ‘correct’ predictions (NCP) is

calculated using Equation 3.9 :

NCP =
∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣ < 5% or 2.5% (3.9)

Here, ŷi represents the predicted mechanical property, and yi is the true (i.e., final

measured) mechanical property value. The individual metrics produced using these

equations are referred to as PAM 5% and PAM 2.5%.

3.3.3 Model Interpretation

For a given alloy composition, TMCP controls the strip’s microstructure and

subsequent mechanical properties. In addition to the final mechanical properties, the strips

produced must achieve the desired final product thickness (gauge). Recall that the rolling
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process illustrated in Fig 3.1 consists of sequential rolling stands to provide the desired

shape control. The consequence of this sequential rolling process is the coupled nature of

TMCP inputs in the model. For example, increasing strain at the earlier processing stands

must be compensated for by reducing the strain at later processing stands. Such changes in

strain will lead to changes in temperatures and strain rates at all subsequent stands.

Assessing the effect of processing on mechanical properties is essential if the processing is

to be used to compensate for variations in the alloy composition. As the dataset does not

contain an abundance of examples of different TMCP parameters with the same alloy

composition, the effect of TMCP must be separated from the influence of alloy

composition.

In this work, the SHAP (Shapley Additive exPlanations) method (17) is used as an

explanation model to isolate the effect of inputs on the model output. An explanation model

is a simpler model approximating the original model and is interpretable by humans (17).

The SHAP method belongs to a class of additive feature attribution methods that rely on

simplifying the inputs such that a mapping function is used to map them to the original inputs

(17). The explanation model is then proposed based on these simplified inputs to approximate

the original model. Using such model interpretation methods allows for understanding the

predictions made by the neural network model. Kernel SHAP explainer was used which

is a model-agnostic method that uses a special weighted linear regression to calculate the

contribution of each feature. The outputs of the SHAP method are SHAP values, which are
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approximations of Shapley values and are the attributed change in the fully trained model’s

prediction for each feature of each instance. The explanation model approximates the neural

network prediction for each instance, starting with a base value. The base value, in this case,

determined using the training data, is the predicted value if no features are known for the

current output.

3.4 Results

The results of varying hyperparameters are presented here, and models for predicting UTS

and LYS are selected. Initially, a grid search was performed for a single hidden layer model

with various nodes and activation functions. ReLU performed better than tanh, logistic, and

sigmoid. Two hidden layer models were used with the ReLU activation function to improve

the model performance further.

Figures 3.2 and 3.3 show the initial results of varying model complexity (log-scale) and

regularization strength for two hidden layer neural network models. Model complexity is

the number of parameters in the network. 5-fold cross-validation reports model

performance, and error bars represent the standard deviation. In the context of the

conducted search, it was found that increasing model complexity did not lead to overfitting,

as evidenced by the convergence of both the validation error and the PAM metrics to a

plateau. Including regularization did not yield a significant difference in performance,

indicating that the models could generalize well to the data without overfitting. Hence, all
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(a) (b)

Figure 3.2 – Hyperparameter grid search for the neural network model with varying model
complexity and regularization strength for predicting UTS. (a) Training Error and Validation
Error, (b) PAM 5% and 2.5%. The model selected is the neural network trained with (3000,
100) nodes and no regularization.

trained models were considered to evaluate the best model for UTS and LYS. The

evaluation process involved sorting the models according to their performance in the three

metrics : minimizing the validation error, maximizing the PAM 5% metric, and maximizing

the PAM 2.5% metric. The neural networks with selected hyperparameters were trained on

the entire training data, and the performance was observed on the test set. The model

chosen for UTS scored validation MSE of 5.2%, PAM 5% of 99%, and PAM 2.5% of 89%.

The selected model for LYS achieved validation MSE of 7.6%, PAM 5% of 94%, and PAM

2.5% of 81%. The performance of the selected neural network models for UTS and LYS for
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(a) (b)

Figure 3.3 – Hyperparameter grid search for the neural network model with varying model
complexity and regularization strength for predicting LYS. (a) Training Error and Validation
Error, (b) PAM 5% and 2.5%. The model selected is the neural network trained with (3000,
2000) nodes and no regularization.

the test data is shown in Figure 3.4. On the x-axis is the measured mechanical property

from plant data, while the y-axis is the neural network predicted mechanical property.

Figure 3.5 shows the residual (%) for the prediction by the neural network model of

(a) UTS and (b) LYS. None of the predictions have a residual that exceeds ±10% for both

UTS and LYS. Observing both figure 3.4 and figure 3.5, it is apparent that the neural

networks can predict the strengths of hot-rolled sheets with reasonable accuracy compared

to other similar works in literature (11; 18; 19).Given the absence of a standardized dataset

and the utilization of diverse thermomechanical processes in literature, direct comparisons
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of accuracy are challenging. However, our evaluation criteria are notably stringent and we

confidently assert that this work stands on par with recent advancements in this field.

The SHAP method calculates the effect of features observed in the dataset. The output

of the SHAP method are SHAP values. The SHAP values give the impact of each feature on

model output for each instance. The SHAP values of individual features are not studied in

this work but rather the combination of SHAP values of groups of features. The combined

effects of the groups of interest are calculated by Eq 3.10 and Eq 3.11. The combined impact

of TMCP and chemistry is interpreted here as the influence of a set of parameters on strength.

Combining the SHAP values(s) in this way allows for observing mechanical property variation

predicted by the model against the plant data.

s(TMCP) =
F 6∑

i=R1
s(εeff)i +

F 6∑
i=R1

s(ε̇)i +
F 6∑

i=R1
s(T )i (3.10)

In this equation 3.10, s(TMCP) represents the combined effect of thermomechanical

parameters, s(εeff) represents the SHAP values of strain, s(ε̇) represents the SHAP values of

strain rate, and s(T) represents the SHAP values of temperature.

s(chemistry) =
16∑

i=1
s(element)i (3.11)

In the equation 3.11, s(chemistry) represents the combined effect of all the chemical

composition, and s(elements) is the shap values of an element.
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Figure 3.6 (a) shows the combined effect of TMCP on UTS on the y-axis. On the x-axis,

the gauge is shown. The gauge here has been normalized between 0 and 1 such that the

smallest gauge has a value of 0 and the largest gauge has a value of 1. Measured UTS is

indicated as the color scale. The combined effect of TMCP on UTS has a range of 200 MPa.

In Figure 3.6 (a), it can be observed that the change in UTS decreases with an increasing

gauge that can be attributed to TMCP. From a metallurgical point of view, this may be

rationalized by increased pancaking related to the amount of strain. Figure 3.6 (b) shows

the combined effect of chemistry on UTS on the y-axis. The combined effect of chemistry

on UTS ranges from about 100 MPa. On comparing both Figure 3.6 (a) and 3.6 (b), one

can observe that for thin gauges where the effect of TMCP is high, the effect of chemistry

is relatively less, while for thick gauges where there is not enough reduction, the effect of

chemistry is higher. This iterates that HSLA steel is relatively richly alloyed in industrial

practice to obtain a similar strength for thicker gauges, with insufficient opportunity for

microstructure strengthening through TMCP. It is also worth noting from figure 3.6 (b)

that the highest strength is obtained for steel where the alloying is high and has a high

reduction.Figure 3.7 shows a similar effect for LYS as explained for UTS. The combined

effect of chemistry on LYS appears to be greater than that on UTS, especially for thicker

gauges.
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(a)

(b)

Figure 3.4 – Prediction by neural network models with selected hyperparameters of (a)
UTS and (b) LYS
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(a)

(b)

Figure 3.5 – Residual plot for the prediction of selected Neural Networks. (a) Residual plot
for UTS, (b) Residual plot for LYS.
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(a)

(b)

Figure 3.6 – Effect of TMCP parameters on UTS. (a) Shows the combined effect of TMCP
on UTS against the relative gauge, and (b) shows the combined effect of chemistry on UTS
against the relative gauge
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(a)

(b)

Figure 3.7 – Effect of TMCP parameters on LYS. (a) Shows the combined effect of TMCP
on LYS against the relative gauge, and (b) shows the combined effect of chemistry on LYS
against the relative gauge
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3.5 Discussion

The combined effect of TMCP and chemical composition on the model is explained

using SHAP, which shows a good opportunity for process control and alloy design. But

for a steelmaker, it is necessary to understand metallurgical influence on the mechanical

property. We discuss the effect of TMCP and chemistry using mean flow stress analysis to

add confidence in neural network prediction and model explainability.

The mean flow stress at each stand is essentially the ’average’ value flow stress of the

steel as it flows through the roll gap. The mean flow stress (MFS) during hot rolling can be

obtained from roll force by Equation 3.12, given by Sims (20) :

MFSSims = P
2√
3w
√

R′(h0 − hf )Q
(3.12)

where P is roll force (N), w is the width of the strip (m), h0 and hf are the entry and exit

strip thicknesses respectively (m), R′ is the radius of curvature due to work roll flattening

(m), and Q is a geometric factor for which details of computation can be found by consulting

Sims (20).

The subsequent data points in the figure 3.8, corresponding to varying thicknesses, denote

the SIMS mean flow stress at successive rolling stands. For simplicity in qualitative analysis,

the data is divided into two parts based on Nb composition, i.e., Low Nb (≤0.03%) and
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High Nb (0.03-0.06%). To avoid repeatability only the Low Nb case is presented here for

three thickness to present different processing conditions. In direct strip production of Nb-

based HSLA steels, the strength is primarily influenced by three main mechanisms : solid

solution strengthening, grain refinement, and work hardening (21). For a fully recrystallized

austenite, the MFS determined from the rolling loads will depend on solute strengthening

and grain size. If recrystallization is stopped, then the MFS will have contributions from

other strengthening mechanisms. The observed slope deviation in the MFS plots can serve

as indicative measures for distinct microstructural transformations occurring within the feed

during rolling. A pronounced incline in the MFS slope can suggest a strengthening effect,

such as work hardening or precipitation. While, a negative change in slope can be inferred

as softening mechanism, such as recrystallization (22).

A clear transition is discernible between finishing stands 3 and 4 for gauges 3.4 mm and

4.5 mm. In these instances, a clear sign of softening is apparent, while such an effect is not

observed for the 6.2 mm gauge. This difference may signify a missed opportunity for grain

refinement in higher thicknesses, attributed to the limited deformation available.

Figure 3.9(a) illustrates the flow stress behaviour of two different alloy compositions

with a mean gauge of 3.0-3.5 mm. The low Nb composition exhibited average Lower Yield

Strength (LYS) and Ultimate Tensile Strength (UTS) values of 388 MPa and 465 MPa,

respectively, while the high Nb composition displayed average LYS and UTS values of 450

MPa and 522 MPa, respectively. The flow stress behaviour observations indicate that the
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Figure 3.8 – SIMS MFS Plot for low Nb composition in different thickness

higher MFS of the high Nb composition can be attributed to solid solution strengthening.

Figure 3.9(b) presents the variation of the estimated no recrystallization temperature (Tnr)

based on changes in chemical composition with mean gauge. Tnr, obtained from the empirical

relationship proposed by F. Boratto and Jonas (23), provides a rough estimate based on an

empirical relation of chemical composition but it is also influenced by factors such as grain

size, strain, and strain rate. Interestingly, Figure 3.9(b) exhibits similarities to the SHAP

plots depicting the combined effect of chemical composition. A higher Tnr facilitates increased
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dislocation generation and work hardening of austenite grains, serving as nucleation sites for

ferrite during transformation and leading to a finer grain structure. For a more comprehensive

understanding of the importance of Tnr in modern HSLA steels, further insights can be found

in the work of Vervynckt et al. (24).

Strength variations can arise because of variations in alloy composition and rolling

schedule. Regarding alloy composition control, the variations seen in the dataset represent

the best control that can be achieved in the melt shop (i.e., in steelmaking). However, the

rolling schedule is not designed to account for any variations in alloy composition ; the

rolling schedule is chosen based on the target alloy composition and the gauge. Therefore,

there is an opportunity to reduce the effect of alloy variation by customizing the rolling

schedule to compensate for alloy variations.
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(a)

(b)

Figure 3.9 – (a) Flow stress behaviour of two different Nb compositions with mean gauge
4.5 mm. (b) Variation of estimated no recrystallization temperature (Tnr) with mean gauge
based on changes in chemical composition.
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(a)

(b)

Figure 3.10 – Predicted effect of variation in strength due to chemical compositions
observed in the dataset using a single deformation schedule on (a) UTS and (b) LYS. Note
that the axes in (a) and (b) are different.



67

Figure 3.10 assesses the variation in strength produced by actual alloy composition

variation observed in the dataset over a single deformation schedule using the

process-property model. The process-property model predicts UTS and LYS using the alloy

compositions from all instances paired with a single rolling schedule for the most frequently

produced gauge (4.5 mm). The bimodality in the distribution comes from different

chemical compositions of 50 and 60 Ksi grades. The chemical compositions observed in the

dataset produced an approximately 100 MPa variation in the prediction of both UTS and

LYS. TMCP was shown to be responsible for an effect of 200 MPa for UTS and LYS, so

alloy compositional variations could be offset by designing the appropriate deformation

schedules. However, recall that this variation due to processing can only be achieved by

changing the gauge and the effect of changing the deformation pattern ; the variation for a

given gauge is much smaller, depending on the gauge.

3.6 Conclusion

Thirty-eight features representing strain at each rolling stand, strain rate at each rolling

stand, the temperature at each rolling stand, and the chemical composition of each strip

are used to predict ultimate tensile strength (UTS) and lower yield strength (LYS). The

selected model for UTS predicted 99% of data points within ±5% error and 89% of data

points within ±2.5% while the model chosen for LYS predicted 94% of data points within

±5% error and 81% of data points within ±2.5%. SHAP analysis shows that for UTS and
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LYS, the combined effect of TMCP is around 200 MPa and the combined effect of chemical

composition is around 100 MPa. Mean flow stress analysis shows that for thinner gauges

there is enough opportunity for grain refinement and hence results in a finer ferrite grain

size. But for thick gauges, SHAP plots indicate that there is a good opportunity for process

control to obtain consistent properties. The effect of chemical composition is to increase the

solid state strengthening and increase the no-recrystallization temperature to promote a finer

ferrite grain size.

Beyond property predictions and process understanding, these models hold promise for

applications in alloy design as well as process optimization. However, the concern about

certain predictions deviating significantly from true values raises concern and underscores

the need for a focused effort to understand these deviations.
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Chapter 4

An Interpretable and Reliable Framework for Alloy

Discovery in Thermomechanical Processing

In this chapter, we conduct experiments using various supervised ML algorithms to

create models for mechanical property prediction. This research further expands to address

the second objective of the thesis i.e., to develop a ML-framework for alloy design. To

increase trust in the use of ML-frameworks in industries, uncertainty quantification is

incorporated along with model explainability.

This manuscript is under preparation :

Sinha, S., Ma, X., Rehman, K., Armanfard, N., & Yue, S., (2024). An Interpretable and

Reliable Framework for Alloy Discovery in Thermomechanical Processing.
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Abstract

In thermomechanical controlled processing, both the alloy composition and the

processing strategy shape the mechanical properties of metals. In this study, we present a

data-driven approach to discover alloys with optimized strength-ductility trade-off in the

thin slab direct rolling process. We evaluate seven different supervised machine learning

algorithms to predict two mechanical properties, namely Ultimate Tensile Strength and %

Elongation. SHapely Additive exPlanations (SHAP) augments interpretability to the best

performing models. NSGA-II, an evolutionary genetic algorithm, is employed with ML

models as objective functions to obtain the optimal Pareto Front solutions. Further, we

incorporate manifold learning and unsupervised clustering to screen the Pareto Front and

to select a few unique solutions which can facilitate added analysis for implementation.

Furthermore, we introduce the application of conformal predictions for uncertainty

quantification, ensuring reliability of the framework. Overall, the proposed approach

enables interpretable and reliable property prediction, thus accelerating alloy design in

thermomechanical processing.

4.1 Introduction

Thermomechanical controlled processing (TMCP) of metals is crucial in modern

manufacturing processes. Its success largely stems from its ability to shape metals into
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desired forms and simultaneously achieve their mechanical properties (1). In response to

escalating demands for cost-effective high-quality products in today’s global economy,

achieving precise and error-free manufacturing has become more important than ever (2).

The high-temperature and rapid-paced nature of TMCP industries restricts in-situ control,

requiring post-production testing and corrections, escalating costs. In line with the

‘right-first-time’ approach, it becomes necessary to predict and optimize the variables in

advance (3). The conventional semi-empirical approach in such large-scale industries

encounters significant challenges. The sheer magnitude of parameters involved along with

the complex, non-linear relationships between them hinders meaningful analysis through

isolated parameter variations during trials.

Machine-learning approaches have emerged as the obvious choice to address the issue

(4; 5; 6). ML methods are designed to automatically detect patterns in data, unlike

traditional computational and experimental approaches in materials science, which are

mostly studied empirically. This shift breaks away from the traditional

composition-process-structure-property paradigm by directly relating data—specifically,

composition and process variables—with labels representing properties. Supervised ML

algorithms excel in solving such relationships by accurately learning underlying patterns,

making them relatively trivial. For example, in hot rolling, they have been effectively used

to predict the mechanical properties of as-rolled products (7; 8; 9; 10). Other applications

also involve predicting roll force (11; 12; 13), bending force (14; 15), microstructure



76

evolution (16), rolling schedule (17), width deviation (18; 19), crown (20; 21), defect

detection (22; 23), oxide scale thickness (24), among others.

However, the real challenge lies in tackling inverse problems, wherein ML is leveraged to

discover alloys based on desired properties (25). Some of the major challenges in inverse

design problems are multiple objectives, non-unique solutions, and large search space

leading to combinatorial explosion (26; 27). The common practice among researchers

involves employing a trained machine learning model as the optimization objective

function, integrated with evolutionary algorithms such as Genetic Algorithm (GA) (28),

Particle Swarm Optimization (PSO) (29; 30), Strength Pareto Evolutionary Algorithm 2

(SPEA2)(31), Non-dominated Sorting Genetic Algorithm II (NSGA-II) (32; 33),

Multi-objective Evolutionary Algorithm Dominance and Decomposition (MOEA/DD)

(34; 35) etc. In this work, we employ a similar approach which involves ML models as

objective functions coupled with a multi-objective optimization algorithm to optimize the

strength-ductility trade-off of hot-rolled steels. Adding to the optimization framework, we

also analyze the Pareto front to select unique alloy solutions using a combination of

manifold learning and unsupervised clustering.

Machine learning frameworks often face skepticism from metallurgists regarding their

interpretability and reliability. Interpretability, or the ability to understand how a model

makes decisions, is crucial for transparency. Simple models like linear regression or

low-depth decision trees are easy to understand and offer high transparency but might not
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effectively capture data patterns. More complex models, such as neural networks or

gradient boosted trees, can handle intricate data but are harder to interpret. According to

Lipton et al.(36), a machine learning model is interpretable if it meets three criteria : it

must be transparent across the entire model (simulatability), in its individual components

(decomposability), and in its training algorithm (algorithmic transparency). Hence, there is

a trade-off between model complexity and model interpretability (37). Typically,

researchers categorize interpretable methods into two types : ante-hoc and post-hoc.

Ante-hoc methods involve models that are intrinsically interpretable, like linear regression,

where the rationale behind each decision is clear from the beginning. Post-hoc methods

focus on deciphering the decision-making processes of "black-box" models after training.

For a more comprehensive overview of these methods in materials science, readers can refer

to recent studies detailed in the literature (38; 39). The aim here is to implement methods

that preserve the representation power of ML models while improving their transparency.

Shapely Additive exPlanation (SHAP) (40) is one such post-hoc tool which has garnered

widespread attention, including its successful application in steel alloy design (41; 42; 43).

We propose the use of TreeSHAP, a method in the SHAP library, to add a layer of

interpretability to our models. Section 4.2.5 presents a detailed discussion of the rationale

and theoretical underpinnings of using TreeSHAP.

As mentioned above, another key concern in machine learning frameworks is their

reliability. Reliability refers to the trustworthiness or confidence in the predictions made by
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ML algorithms, which is critical for real-world applications where understanding the

associated risk is essential. Providing a single metric of predictive performance, like RMSE

or MAE, is insufficient for such applications. Instead, one needs access to uncertainty

quantification (UQ) to make well-informed decisions (44). A common approach to achieve

this would be through probabilistic machine learning methods, such as Gaussian Processes

and Bayesian Neural Networks. These methods inherently learn probabilistic distributions

and can make predictions with associated uncertainty. Unfortunately, they are often

computationally expensive, particularly working with high-dimensional industrial datasets.

Alternative computationally feasible methods have been developed within neural network

architectures such as variational inference, deep ensembles, and Monte Carlo (MC)

dropouts. Lately, these UQ methods have caught the attention of metallurgists as well

(45; 46; 47; 48). An avid reader can find a more comprehensive explanation of these

methods in a recently published tutorial (49). To highlight, these methods are

model-specific, and hence, puts additional constraints on the choice of modelling method.

We propose the use of conformal predictions using Jackknife+(50) which is a

model-agnostic framework for UQ with a mathematical guarantee of marginal convergence

on predictive intervals (51). Recently, researchers have successfully applied the conformal

predictions based UQ in domains such as cyclone forecasting (52), rockburst assessment

(53), and various other reliability systems (54; 55). To the best of the author’s knowledge,

it has not been tried in materials discovery or property predictions. We have described the
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theoretical background and implementation in section 4.2.4

In essence, we propose an interpretable and reliable framework designed for both property

prediction and inverse alloy design. Additionally, we aim to implement the framework using

computationally inexpensive, open-access and compatible Python libraries, which will allow

users to implement it with minimal effort.

4.2 Methodology

4.2.1 Dataset Background

This study uses historical data from V-based grades rolled in the Thin Slab Direct

Rolling (TSDR) mill of Algoma Steel Inc. (Ontario, Canada). In conventional hot rolling,

slabs (∼200 mm) are reheated to be fed into the rolling mill, which includes 5-7 roughing

passes and subsequently 6-7 finishing passes to get the desired strip thickness. TSDR

employs a streamlined continuous process where high-speed cast thin slabs (∼70-80 mm)

are directly hot rolled into strips involving 1 roughing pass and subsequent finishing pass,

six here. This eliminates the need for intermediate cooling and reheating, as compared to

traditional hot rolling process. It simplifies the material flow, significantly reduces energy

consumption, and enhances the production efficiency (56). TMCP variables, along with the

alloy composition, determine the final mechanical property of the strip. In this work,

strength-ductility optimization is achieved through alloy composition optimization.
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4.2.2 Pre-processing

Features were chosen based on domain knowledge to accurately reflect the causal

relationship with properties. From the raw dataset, 8,313 data instances could be compiled

after removing duplicate, erroneous, and missing data values and incorrect data types. The

3-sigma rule criterion with scatter plot visualization was used to remove global outliers

from the dataset. Mathematically, it is expressed as :

Outliers are points where x < µ − 3σ or x > µ + 3σ

Finally, 6995 data instances were obtained, the descriptive statistics of which is presented in

table 4.1. The dataset was shuffled and split into train and test sets in the ratio of 3 :1. The

test data was never seen by any models during hyperparameter optimization or training.

Min-Max Normalization was applied to both features and target variables :

xscaled = x − min(x)
max(x) − min(x) (4.1)

where x is an original value, min(x) is the minimum value in the dataset, max(x) is the

maximum value, and xscaled is the normalized value. The transformation scales the values of

x to a fixed range of [0, 1]. The normalization statistics were computed from the training

dataset which were then used to scale both the training and testing datasets to prevent
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information leakage.

4.2.3 Predictive Modelling

We propose the use of eXtreme Gradient Boosting (XGBoost) (57) as the primary

modeling method, which is detailed in Section 4.2.3.1. In the past, XGBoost has been

succesfully used by several researchers in predictive modeling of similar datasets

(58; 59; 60). We also compare the performance of the proposed method with six other

standard supervised machine learning algorithms, namely, k-Nearest Neighbors (KNN),

Kernel Ridge Regression (KRR), Random Forest (RF), Light Gradient Boosting Machine

(LightGBM), Support Vector Regression (SVR), and Multi-Layer Perceptron (MLP).

4.2.3.1 XGBoost

XGBoost (eXtreme Gradient Boosting) is a decision-tree-based model designed to

improve speed and performance in predictive modeling. It builds decision trees sequentially

in an ensemble, with each tree correcting the errors of the previous ones. The final

prediction model is a linear combination of several trees. Mathematically, the prediction for

any data point xi at iteration t can be written as :

ŷ
(t)
i =

t∑
k=1

fk(xi), (4.2)

where fk denotes the k-th decision tree in the sequence.
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XGBoost optimizes an objective function that combines a differentiable loss function like

Mean Squared Error (MSE) and a regularization term to control overfitting :

L(ϕ) =
n∑

i=1
l(yi, ŷi) +

K∑
k=1

Ω(fk), (4.3)

where l(yi, ŷi) measures the difference between the actual values yi and the predictions ŷi,

and Ω(fk) represents the regularization term for the k-th tree.

The regularization term is important to prevent overfitting and promotes generalization :

Ω(fk) = γTk + 1
2λ

Tk∑
j=1

w2
j , (4.4)

where Tk is the number of terminal nodes in tree k, wj are the weights on the leaves, γ adds

a penalty for the number of leaves, and λ is the L2 penalty on the leaf weights.

For training, XGBoost uses an additive approach by adding new trees to minimize the

errors of the existing model, using a second-order Taylor expansion of the loss function. The

expansion includes both the gradient and the Hessian (second derivative), allowing for better

optimization :

ŷ
(t)
i = ŷ

(t−1)
i + ηft(xi), (4.5)

where η is the learning rate (shrinkage parameter) that controls the impact of each new tree.

When training, the model uses a metric called gain to evaluate possible data splits and



83

determine the extent of improvement achieved through each split, as measured by loss

reduction :

Gain = 1
2

[
G2

L

HL + λ
+ G2

R

HR + λ
− G2

H + λ

]
− γ, (4.6)

where GL, GR, and G are sums of gradients in the left, right, and entire node respectively,

and HL, HR, and H are the corresponding sums of Hessians. If the gain is less than γ, it’s

best to not include the branch i.e. pruning. The overall quality of a tree can be assessed using

the structure score, which calculates how well it fits the data compared to its complexity :

S(f) = −1
2

T∑
j=1

[
G2

j

Hj + λ
+ γ

]
, (4.7)

where Gj and Hj are the gradient and Hessian calculations for each leaf j.

In addition to the components discussed above, XGBoost includes several

hyperparameters that can influence model performance. A breif summary of all the

hyperparameters used in this work is presented in the table 4.2.
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Features Description Mean Std Dev Min Max
Al Aluminium 0.025283 0.003414 0.0142 0.0366
B Boron 0.000024 0.000055 0.00 0.0002
C Carbon 0.053050 0.003265 0.0423 0.0641
Ca Calcium 0.003958 0.001020 0.0007 0.0073
Cr Chromium 0.026005 0.006908 0.0103 0.0535
Cu Copper 0.030594 0.010539 0.0017 0.0684
Mn Manganese 0.770181 0.359122 0.3527 1.5531
Mo Molybdenum 0.013385 0.018543 0.00 0.0584
Nb Niobium 0.004771 0.002559 0.00 0.0099
Ni Nickel 0.015506 0.005445 0.0043 0.0453
P Phosphorus 0.009391 0.002491 0.0031 0.0179
S Sulphur 0.002791 0.001142 0.0001 0.0069
Si Silicon 0.077896 0.098426 0.0036 0.2971
Sn Tin 0.001136 0.000632 0.00 0.0035
Ti Titanium 0.000808 0.000435 0.00 0.0024
V Vanadium 0.064459 0.035584 0.0243 0.1545
N Nitrogen 0.013504 0.002844 0.00805 0.02205
CS Avg. Casting Speed 3.28 0.15 2.78 3.61
ST Superheat 18.16 4.02 5.87 30.19
Width Final Width 1348.27 150.82 1031.0 1616.0
Gauge Final Thickness 3.29 0.996 1.58 6.20
HT Holding Time 18.65 2.75 9.10 56.90
F6RS F6 Roll Speed 3.73 0.967 1.66 6.67
RET Roughing Entry Temp. 1118.71 6.33 1096.0 1140.0
FET FM Entry Temp. 1021.82 9.07 992.0 1050.0
FT Finishing Temp. 879.35 19.89 833.0 906.0
CT Coiling Temp. 603.71 4.99 578.0 629.0
UTS (MPa) Ultimate Tensile Strength 542.13 74.82 422.66 734.02
Elong (%) 2" Elongation 27.68 3.47 18.00 38.00

Table 4.1 – Descriptive statistics of the dataset
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Hyperparameter Description
lambda L2 regularization term on weights, helps control overfitting by

penalizing large weights.
alpha L1 regularization term, encourages sparsity in the leaf weights,

useful for feature selection.
colsample_bytree Fraction of features used per tree. A lower value provides more

regularization.
subsample Fraction of instances used per tree. A technique to reduce

overfitting and variance.
learning_rate Step size shrinkage used to prevent overfitting. Lower values

require more boosting rounds.
n_estimators Number of trees. More trees can improve accuracy but may

lead to overfitting.
max_depth Maximum depth of a tree. Controls overfitting as higher depth

will allow model to learn relations very specific to a particular
sample.

min_child_weight Minimum sum of instance weight (hessian) needed in a child.
Higher values prevent a model from learning overly specific
patterns, thus controlling overfitting.

Table 4.2 – Summary of XGBoost hyperparameters tuned in this work.
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4.2.3.2 Evaluation Metrics

To assess the performance of the regression models, three different metrics are employed

which include Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the

coefficient of determination (R2).

Root Mean Squared Error (RMSE) RMSE is a widely accepted measure for

evaluating the accuracy of models in predicting numerical data. Formally, it is defined as

the square root of the average of the squares of the differences between predicted and

actual values. Mathematically, RMSE is given by :

RMSE =
√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (4.8)

where yi are the actual values, ŷi are the predicted values, and n is the number of

observations.

Mean Absolute Error (MAE) MAE calculates the average magnitude of errors in

predictions, regardless of their direction. It assigns equal importance to all individual

differences, making it a linear score. It is calculated as :

MAE = 1
n

n∑
i=1

|yi − ŷi|, (4.9)

where |yi − ŷi| denotes the absolute error between the actual and the predicted values.

Coefficient of Determination (R2) The R2 metric gauges the model’s goodness of fit
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and predicts how accurately unseen samples will be predicted. The optimal score is 1.0 and

can be negative if the model is arbitrarily worse. If a model predicts the average y without

considering the input features, its R2 score would be 0.0. R2 is defined as :

R2 = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − y)2 , (4.10)

where y is the mean of the observed data :

y = 1
n

n∑
i=1

yi. (4.11)

4.2.4 Uncertainty Quantification

Conformal Prediction (CP) is a statistical method that adds a layer of probabilistic

interpretation to machine learning predictions. The prediction intervals guarantee coverage

of the true response variable with a probability of 1 − α or higher. The mathematical

foundation of CP is based on the notion of exchangeability, assuming future data is

exchangeable with training data. For every instance, the method computes a conformity

score αi that measures its deviation from typical instances observed in the training data.

For regression, the conformity scores can be calculated based on residuals. For a new

prediction ŷnew, the prediction interval is constructed so that it covers the true target value

ynew with a confidence level of 1 − α, based on the empirical distribution of the conformity
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scores calculated from a calibration set (50). While there are various methods for

constructing predictive confidence intervals within CP, we focus on the Jackknife+ (51)

method in this work.

Jackknife+ builds upon the Jackknife resampling technique in conformal prediction to

generate more robust prediction intervals. Unlike the classical Jackknife, Jackknife+ takes

into account the dependence between the training set and the test instance to avoid

uncertainty underestimation. The approach requires calculating predictions for each data

point in the training set by leaving one out. A prediction is made for each omitted data

point by training a new model on the remaining data. This results in an ensemble of

predictions from which uncertainty estimates can be derived :

ŷ−i = f−i(xi), (4.12)

where ŷ−i is the prediction for the i-th instance when it is left out during training, and

f−i represents the model trained on the dataset excluding the i-th instance.

The prediction interval for a new instance xnew is then adjusted according to the

variability observed in these leave-one-out predictions. Specifically, the bounds of the

interval are set to capture the proportion 1 − α of these adjusted predictions :

PI =
[
Qα/2({ŷ−i − ϵi}), Q1−α/2({ŷ−i + ϵi})

]
, (4.13)
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Algorithm 1 Conformal Prediction with Jackknife+
1: Initialize :
2: Split Dtrain into K subsets (using K-fold cross-validation or leave-one-out strategy)
3: for k = 1 to K do
4: Dtraink

= Dtrain \ k-th subset ▷ Train set excluding the k-th subset
5: Train the model M on Dtraink

6: Predict the response for instances in the k-th subset using model M
7: Calculate absolute residuals for each prediction :
8: residualsk[i] = |yi − ŷi|
9: end for

10: Aggregate residuals :
11: Combine residuals from all K subsets into a single list : allresiduals
12: Determine the empirical quantile of the residuals :
13: Compute the (1 − α) quantile, q, of allresiduals
14: Retrain the model M on the entire Dtrain
15: Predict the response ŷnew for xnew using the fully trained model M
16: Construct the prediction interval :
17: ylower = ŷnew − q
18: yupper = ŷnew + q
19: return Prediction interval [ylower, yupper]
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where Q denotes the quantile function, and ϵi are the residuals yi − ŷ−i. Another

approach, based on cross-validation (CV+), can be used to reduce computational time

instead of the leave-one-out approach. Analogous to the Jackknife+ method, the training

set is split into K-disjoint subsets. The Jackknife+ method can be seen as a special case of

the CV+ method, with K being equal to the number of samples. In cases where the

Jackknife+ method is not computationally feasible, the CV+ method provides a

conservative yet reasonable compromise for large datasets. A pseudocode for UQ

calculation using Jackknife+ is presented in algorithm 1.

4.2.5 TreeSHAP : Model Interpretability

Before discussing TreeSHAP, we must mention that there are three different metric

options i.e. by weight, cover and gain to calculate feature importance given by the

XGBoost library itself. But these methods are inconsistent which implies that a model can

shift its reliance towards a specific feature, even if the assigned importance estimate for

that feature decreases (61).

Shapley values are derived from cooperative game theory, which assigns a fair payout to

players based on their contribution to the total game outcome. In a predictive model, the

features function as players, and the payout is the deviation of the prediction from the mean.
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The Shapley value for feature i is formally defined as :

ϕi =
∑

S⊆N\{i}

|S|!(n − |S| − 1)!
n! [f(S ∪ {i}) − f(S)] , (4.14)

where N is the set of all features, S is a subset of features excluding i, n is the total number

of features, f(S) is the model prediction with features in S, and f(S ∪ {i}) is the prediction

with feature i added to S.

SHAP uses Shapley values to explain the impact of features in ML models ensuring

local accuracy and consistency in attributions across different predictions. TreeSHAP is a

model-specific variant of SHAP method which optimizes the evaluation of Shapley values

for tree-based models by utilizing their structural properties. The calculation involves

conditional expectations based on the paths through the decision trees unlike

model-agnostic approaches like KernelSHAP which rely on marginal expectations. As

TreeSHAP is a local explanation technique, it comes with the theoretical guarantees of

local accuracy and consistency. These local explanation can be further used to build

consistent global explanations as well. For example, the mean |SHAP| value, a measure of

overall feature importance across all predictions can be defined as :

mean|SHAP| = 1
n

n∑
i=1

|ϕi|, (4.15)

where ϕi are the SHAP values for feature i across all instances. This provides an average



92

magnitude of impact, indicating how much, on average, each feature shifts the model output

from the base value.

4.2.6 Multiobjective Optimization

Multiobjective optimization (MOO) involves simultaneously optimizing multiple

objectives, often conflicting, subject to certain constraints. It aims to find a set of solutions

called Pareto-optimal solutions, rather than a single optimal solution like single-objective

optimization (62). Mathematically, a multiobjective optimization problem can be expressed

as follows :

min
x

F(x) = (f1(x), f2(x), . . . , fk(x)), (4.16)

where x = (x1, x2, . . . , xn) represents the vector of decision variables within the feasible

region defined by the constraints :

gj(x) ≤ 0, j = 1, 2, . . . , m, (4.17)

and

hk(x) = 0, k = 1, 2, . . . , p. (4.18)

Generating the exact pareto set is computationally intractable, given the combinatorially
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large search space. Hence, we employ a search strategy based on evolutionary algorithm

(EA). In this approach, a population of candidate solutions is maintained, and selections

are made from it for mating. The combinations of these selections create new potential

solutions. This process mimics natural evolution, with candidates resembling individuals in

a population. EAs use mutation and crossover to introduce variability and recombination.

Selection pressures gradually enhance the population towards optimal solutions, guided by

fitness evaluations ranking individuals based on objective fulfillment (63).

NSGA-II (Non-dominated Sorting Genetic Algorithm II) is an evolutionary algorithm

developed by Deb et al. (64; 65) for MOO problems. It is known for its efficient

non-dominated sorting method that categorizes the population using dominance criterion.

Each subsequent front consists of individuals dominated by the preceding front. The

algorithm incorporates two primary genetic operators : crossover and mutation. Crossover

creates new offspring by merging elements from two parent solutions, promoting population

diversity while retaining the qualities of the top solutions. Mutation helps maintain genetic

diversity and prevents premature convergence to local optima by introducing random

changes to individual solutions. NSGA-II also incorporates a crowding distance mechanism

to maintain diversity in the Pareto front. The mechanism calculates solution density

around an individual and favors less crowded regions, promoting an even distribution

across the Pareto front. A pseudocode of the NSGA-II algorithm is presented in algorithm

2.
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Algorithm 2 NSGA-II : Non-dominated Sorting Genetic Algorithm II
1: Input : Population size N , number of generations G
2: Output : Pareto-optimal set
3: Initialize population P0 randomly
4: Evaluate fitness of P0
5: for g = 1 to G do
6: Perform non-dominated sorting on Pg

7: Calculate crowding distance for each individual in Pg

8: Perform selection based on fitness and crowding distance
9: Apply crossover and mutation to generate Qg

10: Combine Pg and Qg to form Rg

11: Perform non-dominated sorting on Rg

12: Select the top N individuals from Rg to form Pg+1
13: Evaluate fitness of Pg+1
14: end for
15: return Non-dominated individuals from PG

4.2.7 Post-Pareto Analysis

4.2.7.1 t-SNE

t-SNE (66) is a commonly used method for dimensionality reduction and visualizing

high-dimensional datasets. It transforms data point similarities into joint probabilities and

seeks to minimize the Kullback-Leibler divergence between the joint probabilities of the

low-dimensional embedding and the high-dimensional data. This technique can effectively

capture the local structure and global patterns in high-dimensional data. Mathematically,

t-SNE begins by calculating the conditional probability pj|i that represents the probability

of selecting xj as a neighbor of xi :
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pj|i = exp(−∥xi − xj∥2/2σ2
i )∑

k ̸=i exp(−∥xi − xk∥2/2σ2
i ) , (4.19)

where σi is the variance of the Gaussian centered at data point xi. This incorporates a

notion of directional similarity of point j to i. The symmetrized probabilities pij are then

defined as :

pij = pj|i + pi|j

2n
, (4.20)

where n is the number of data points. In the low-dimensional space, t-SNE uses a

Student’s t-distribution to model the pairwise affinities qij :

qij = (1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yk − yl∥2)−1 , (4.21)

where yi and yj are the low-dimensional representations of xi and xj respectively. The

Kullback-Leibler divergence between the distribution P in the high-dimensional space and

Q in the low-dimensional space is minimized :

C = KL(P∥Q) =
∑
i ̸=j

pij log pij

qij

. (4.22)

There are three main parameters related to t-SNE algorithm optimization. Perplexity

can be regarded as an estimate of the number of nearby neighbors for each point. It plays
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an important role in the balance between local and global structure of the data, influencing

σi. Learning rate determines the size of each step taken during iteration to minimize the

cost function. If too high, the map may become chaotic ; if too low, the optimization might

get trapped in local minima. Iterations directly influence the cost function optimization.

Improved convergence stability can be achieved by increasing the number of iterations,

although this comes at the expense of computational time.

4.2.7.2 K-Means Clustering

K-Means (67) is a widely used unsupervised ML method to partition observations into k

clusters of equal variance. The algorithm approaches this problem by first randomly selecting

k centroids, one for each cluster. The next step involves assigning each data point to the

nearest centroid. After all points have been assigned, the positions of the k centroids are

recalculated. This process is repeated until the centroids are stable, indicating convergence.

The objective function in K-means aims to minimize the total intra-cluster variance by

summing the squared distances between data points and their nearest cluster center :

J =
n∑

i=1
min
µj∈C

(
∥xi − µj∥2

)
(4.23)

where µj is the centroid of cluster Cj. Proper initialization of the centroids is crucial for

the algorithm to converge. In order to handle this issue, we can opt for the K-means++

initialization scheme instead of random initialization. Better convergence is achieved in K-
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means++ by initializing distant centroids. K-means is not purely unsupervised since the

algorithm requires the optimal value of k to be given (68). Two commonly used methods to

determine the optimal k are the Silhouette Score (69) and the Elbow Method (70).

The Silhouette Score evaluates an object’s resemblance to its cluster in comparison to

other clusters. The Silhouette Score for a set of samples is given by :

s = b − a

max(a, b) (4.24)

where a is the mean distance between a sample and all other points in the same cluster,

and b is the mean distance between a sample and all other points in the nearest cluster that

the sample does not belong to. s can take a value between -1 and +1, with a high value

suggesting a good match to its own cluster and a poor match to neighboring clusters. The

final score is the mean of Silhouette Score calculated for each sample.

The Elbow Method involves plotting the total Within-Cluster Sum of Squares (WSS),

also known as inertia, as a function of the number of clusters :

WSS(k) =
k∑

i=1

∑
x∈Ci

∥x − µi∥2 (4.25)

where Ci is the set of points in cluster i and µi is the centroid of cluster i. Inertia measures

how tightly packed the clusters are and represents the overall variance within them. When

plotting inertia (WSS(k)) against k, we usually see an arm like curve, and the “elbow”
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(inflection point on the curve) is seen as a sign of optimal number of clusters. The underlying

assumption here is that it’s not beneficial to increase the number of clusters unless there is

a substantial increase in explained variance.

4.2.8 Implementation Details

This study was carried out using a suite of open-source Python libraries, ensuring that

the proposed framework is easily replicable. We employed XGBoost (57) and LightGBM

(71) by their respective libraries. All other machine learning models, including KNN, KRR,

RF, SVR, and MLP, were implemented using the Scikit-learn library (72). For Bayesian

hyperparameter optimization, we used Optuna (73). Uncertainty quantification was

conducted through the MAPIE library (74). SHAP library (61) provided feature

importance analysis for model interpretability. Multiobjective optimization was performed

using Pymoo (75), which provides easy access to various optimization algorithms including

NSGA-II. For post pareto data visualization, t-SNE and K-means were also implemented

via Scikit-learn. Plots were generated using Matplotlib and Seaborn library in Scikit-learn

library. All computations were performed on a MacBook Pro with an Apple M1 Pro chip,

equipped with 16GB of RAM and a 512GB hard disk.
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4.3 Results and Discussion

4.3.1 Predictive Modelling

The comparison of the performance of seven ML models on the test dataset can be

found in table 4.3. The hyperparameters for all models were tuned on train dataset using

5-fold cross validation strategy and Bayesian optimization. The ML models will serve as the

objective functions in the optimization process. Beginning with the initial question : How do

we determine the suitable model ? In the existing literature, there is no fixed guide to choose

UTS Elongation

Model RMSE MAE R2 RMSE MAE R2

KNN 13.1616 9.9097 0.9682 1.3382 1.0147 0.8467
KRR 13.6417 10.4024 0.9658 1.3814 1.0409 0.8366
RF 13.2910 10.0665 0.9675 1.3240 0.9980 0.8499
LightGBM 12.8392 9.7332 0.9697 1.3115 1.0079 0.8528
XGBoost 12.0169 9.2157 0.9738 1.2927 0.9823 0.8613
SVR 14.1967 10.8506 0.9629 1.4389 1.0861 0.8228
MLP 14.8649 11.5660 0.9594 1.3975 1.0436 0.8328

Table 4.3 – Performance Metrics for various ML models for UTS and Elongation (Test
Set).

the modeling method for objective functions in MOO. Selecting the best machine learning

algorithm is non-trivial because of the "No Free Lunch" Theorems (76; 77), which state that

no model is universally superior across all applications. On average, all models have similar
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performance across various data distributions, and no single model performs the best in

every scenario. As a result, we find it fitting to designate the best performing models as the

objective functions. Recently, studies have demonstrated that decision tree-based algorithms

are superior to other algorithms for medium-sized tabular datasets (less than 10k instances),

such as ours, due to their distinctive characteristics (78; 79). This could clarify why tree-

based models like RF, LightGBM, and XGBoost perform exceptionally well. The XGBoost

model is clearly superior to all other models for both, UTS and Elongation, and thus our

choice for objective functions. It could be easily noted that predicting UTS is simpler than

Elongation. The Elongation values, being pseudo-continuous and limited to integer values,

pose a challenge for regression algorithms designed for continuous data prediction.

4.3.2 Uncertainty Quantification

The predictions of the selected XGBoost models are displayed in Figure 4.1. The colour

contrast in the scatters reflects the uncertainty derived from conformal predictions using

Jackknife+ strategy. To digress from the flow, it would be apt to discuss another suitable

application of these conformal predictive models. The testing protocol in the rolling mill

can be streamlined by using uncertainty-aware predictive models. A strategy could be

developed to prioritize high-risk specimens of rolled products and minimize random

sampling using these models. As a result, excessive manual testing would be reduced,

leading to cost, materials and man-hours saving and thus improved production efficiency. It
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(a)

(b)

Figure 4.1 – Performance of predictive models with uncertanity as colour mapping. (a)
True vs Predicted for UTS , (b) True vs Predicted for Elongation.
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should be noted that this method does not distinguish between different types of

uncertainty, such as aleatoric and epistemic, which is not the focus of this research.

4.3.3 Model Interpretability

Figure 4.2 displays the top 10 features according to their contribution. The plots are

presented on a normalized scale for proper comparison. In both the properties, Vanadium,

Silicon, and Manganese comes out as top three features but on different scales of impact

and have opposing effect on UTS and Elongation. This gives an impetus to this work

showing ample opportunity for alloy composition optimization. While we concentrate on

global significance using mean SHAP values, other local and global attributions can be

effortlessly visualized with the SHAP library.

4.3.4 Multiobjective Optimization

Now that we have chosen our ML models, we reformulate the MOO description for our

problem in hand : We aim to minimize the objective functions (ML Models)

f1(x) = -UTS(x) and f2(x) = -Elongation(x). The NSGA-II algorithm, being designed for

minimization, requires us to reformulate the objectives as their negatives. So, we minimize

F(x) = [f1(x), f2(x)], with the objective space defined by R2. The decision variables

x ∈ R27 represent the features of our ML models i.e., chemical compositions and processing

parameters, each typically bounded within a defined range xmin,i ≤ xi ≤ xmax,i for



103

(a)

(b)

Figure 4.2 – Feature Importance plot based on the selected XGBoost Models and mean
shap values (a) For Ultimate Tensile Strength (b) For Elongation.
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i = 1, 2, . . . , 27. It’s important to mention that TMCP variables in the decision space have

narrower bounds to accommodate the rolling mill schedule. The rolling schedule is

determined according to the the target thickness of the strip. Since ML models struggle to

generalize beyond the distribution, the general constraints ensures that the predicted

properties stay within acceptable limits :

g1(x) = −UTS(x) ≤ 0, (UTS minimun) (4.26)

g2(x) = UTS(x) − 1 ≤ 0, (UTS maximum) (4.27)

g3(x) = −Elongation(x) ≤ 0, (Elongation minimum) (4.28)

g4(x) = Elongation(x) − 1 ≤ 0. (Elongation maximum) (4.29)

The initial population consisted of 1000 individuals and each generation had 200 offspring.

For crossover, Simulated Binary Crossover (SBX) operator and for mutation, Polynomial

Mutation (PM) operator were used with their default hyperparameters from the Pymoo

library. To ensure convergence, the algorithm was executed for 500 generations. Convergence

was tracked using objective functions and hypervolume. The convergence of the NSGA-II

algorithm with respect to the objective functions is shown in Figure 4.3a. Figure 4.3b displays

the pareto front resulting from the above formulation with confidence interval (in green)

obtained by applying the Jackknife+ UQ framework to the optimized solution population.
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(a)

(b)

Figure 4.3 – NSGA-II results (a)Convergence of Objectives over generations , (b) Optimized
Pareto Front with 95% Confidence Interval. The actual distribution is also presented in the
background for comparison.
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The optimized solution with CI incorporates risk assessment which is invaluable for process

engineers to make informed decisions. Consider an alloy chosen from the pareto front, which

shows a strength-elongation combination of 476 MPa UTS and 33% Elongation. We can

assert, with 95% certainty, that it surpasses 446 MPa UTS and 30% Elongation as determined

by lower bound in the CI. Since optimized solutions are out-of-distribution samples, there is

no theoretical guarantee on the coverage, but it can be considered a conservative estimate. For

future work, it would be beneficial to perform a study comparing the coverage of Jackknife+

with various probabilistic approaches for out-of-distribution optimized solutions.

4.3.5 Post-Pareto Analysis

Our aim now is to visually represent the pareto-optimal solutions and specifically identify

a small subset of unique solutions from the resulting pareto set for further analysis. High

dimensional datasets, like ours, make it nearly impossible to understand patterns or structure

within data. The initial solution could be to incorporate multiple 2D or 3D plots, which is

not easily summarized. Next strategy could be to try Principal Component Analysis (PCA),

but it cannot preserve the non-linearity in the data structure. Therefore, we utilize a mix

of manifold learning (t-SNE) and unsupervised clustering (K-means), which is explained

briefly in the section 4.2.7. We start by experimenting the t-SNE embedding on our train

dataset to check if it works for our case. We follow an approach similar to Kobak et. al

(80) to optimize the t-SNE hyperparmeters. Learning rate is ∼ n/12, early exagerration is
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(a)

(b) (c)

Figure 4.4 – Overview of clustering results and analysis : (a) Clustered Pareto fronts using
t-SNE and K-means, background is t-SNE compressed train data, (b) Selection of optimal
number of clusters using elbow method for inertia, (c) Cluster statistics to understand the
distinct characteristics of each cluster.
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4, perplexity is ∼ n/100, and with PCA initialization. The PCA initialization, rather than

random, helps in reproducibility and preserving global aspects of the data. We use the Barnes-

Hut approximation to reduce the computational complexity of t-SNE. By employing the

above approach, the train dataset could be effectively organized into clusters that correspond

to different rolling practices utilized in the rolling mill. This gives us the confidence that the

optimized t-SNE can effectively capture the global structure the data. Consequently, we

implement t-SNE embedding on the combined dataset, which consists of train data and our

pareto-optimal solutions. The figure 4.4a shows the combined dataset (train + PF) in two-

dimensional embedding using t-SNE. The train dataset is represented in light grey. The PF

solutions are colour-coded to represent different clusters obtained using K-means algorithm.

The optimal number of clusters, five, are obtained using the silhouette score and inertia as

shown in figure 4.4b. The statistics of the clusters are presented in figure 4.4c. Here, we can

make the inference that the clusters truly represent unique solutions with different levels

of UTS and Elongation. From the clusters we can select a small set of unique solutions

which represent the entire PF. We employ an approach which selects the individual nearest

to each cluster centroid. An alternative strategy would be to choose solutions with a lean

composition, minimizing costly alloying elements like Vanadium. These unique solutions with

risk assessment can be further analyzed thermodynamically and with domain experience for

implementation.
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4.4 Conclusion

In this work, we have systematically implemented data-driven methods to discover alloys

with optimized mechanical properties. Our conclusions are as follows :

(I) Tree-based prediction algorithms, including XGBoost, demonstrated superior

performance for our dataset compared to SVM, KNN, KRR, and MLP. XGBoost

achieved an R2 of approximately 0.97 for UTS and 0.86 for % Elongation. The

prediction of elongation was particularly difficult due to its pseudo-continuous

nature.

(II) TreeSHAP, in combination with XGBoost, provided a model-specific explanation

method that enabled the global feature importance, adding a layer of interpretability.

(III) To increase the trustworthiness of our ML framework, we integrated conformal

predictions using the Jackknife+ approach. The same can also be implemented to

reduce the need for extensive manual testing by focusing on strategic testing of

high-risk specimens.

(IV) The decision variable space of the NSGA-II algorithm was utilized to encode the

process schedule for obtaining geometry-specific optimized compositions. The resultant

Pareto Front, coupled with conformal predictions, can facilitate informed decision-

making in alloy design.

(V) Manifold learning techniques such as t-SNE, in combination with K-means clustering,
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were employed for post-Pareto analysis. This approach allowed us to extract a few

representative unique solutions that can be further analyzed for implementation.

(VI) The proposed framework is not only applicable to the steel industry but can also be

translated to other TMCP industries. We have ensured the reproducibility of our

methods by utilizing computationally inexpensive, open-access and compatible

libraries, encouraging adaptation within the broader scientific and industrial

community.

(VII) This work has primarily focused on discovering alloys, and it has displayed promising

potential for improvement. For future work, it would be intriguing to explore both

composition and process schedule together. The incorporation of a process schedule

would involve adopting a hierarchical modeling and optimization approach, given the

continuous nature of the process dependent on principles of mass and energy flow.
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Chapter 5

Conclusion

This thesis developed data-driven frameworks to predict and optimize the mechanical

properties of microalloyed steels. The general conclusion are presented in three sections

below :

5.1 Global Discussion and Conclusions

(I) In Chapter 3, deep neural networks were utilized to model two mechanical

properties—Ultimate Tensile Strength (UTS) and Lower Yield Strength (LYS)—for

Nb-microalloyed steel. The models achieved R2 accuracies of 0.88 and 0.86,

respectively. It was noticed that certain instances proved more difficult to predict

than others. The lack of data during casting and coiling in the mill could explain the

observation.

Accordingly, this data was included in Chapter 4, where V-microalloyed steel was

modeled. Though no direct quantitative comparisons can be made on separate

datasets, R2 values for UTS were 0.97 and 0.95 using XGBoost and Neural Network

models respectively—a significant enhancement over the previous result of 0.88.
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(II) From chapter 4, another key observation is the lower R2 scores for %Elongation models,

ranging from 0.83 to 0.86 across all the seven evaluated ML models. The pseudo-

continuous nature of the target i.e., % Elongation data, posed challenges for ML

algorithms designed for continuous data prediction.

(III) The combined effect of TMCP parameters, as analyzed through SHAP values and

SIMS Mean Flow Stress (MFS) plots, indicates that thicker gauges have limited

opportunities for grain refinement, thus receiving less strength contribution from

TMCP parameters. However, the contribution of chemical composition is

significantly noted, especially in thicker gauges, where richer alloying compensates

for strength losses attributed to TMCP limitations. A correlation with the

no-recrystallization temperature provides insights into the rolling strategy of the

studied microalloyed steels.

(IV) For V-based microalloyed steel, global feature importance identified Vanadium, Silicon,

and Manganese as the top influencing elements for both UTS and Elongation, each

having opposing effects on strength and ductility. This finding supports our strategy of

optimizing mechanical properties through alloy design while maintaining the original

processing schedules.

(V) In chapter 4, a systematic approach is proposed for using ML models in conjunction

with evolutionary genetic algorithms for alloy design in thermomechanical processing.

By setting TMCP parameters as strict bounds in the decision variable space, the search
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for alternative compositions that yield improved strength-ductility combinations can

be streamlined.

(VI) A novel approach utilizing manifold learning and unsupervised clustering facilitates

post-Pareto analysis, which is otherwise challenging with high-dimensional industrial

datasets. This method allows the selection of a few unique representative solutions

for further analysis using thermodynamic calculations and experimental trials. An

example strategy to select solutions could involve choosing cost-effective alloys with

lower levels of expensive alloying elements such as Vanadium.

5.2 Proposed Applications

(I) The ML models, enhanced with explainability tools, provide a deeper understanding

of physical metallurgy processes and aid in process control.

(II) These models enable reliable and explainable online predictions of the mechanical

properties of as-rolled steels, potentially reducing the need for extensive manual testing

and hence, enhanced operational efficiency.

(III) The developed approach facilitates the discovery of new alloys within the existing

compositional ranges with superior strength and ductility combinations, or allowing

for the selection of leaner compositions to achieve current strength and ductility

combinations.
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5.3 Future Work

Building on the current work, the following are four possible areas of future work :

(I) It would add confidence to the alloy design methodology if the finally chosen alloy

solutions are validated based on thermodynamic calculations for critical

temperatures like no-recrystallization temperature (Tnr) and phase transformation

temperature (Ar3).

(II) It would be interesting to compare other UQ approaches like probabilistic models,

ensemble methods etc. with conformal predictions used in this work. For online

application it is required that the proposed methodology should be robust to

out-of-distribution (OOD) data as for commercial industries mass produce a limit

number of unique product types. The OOD samples can be highlighted as high-risk

specimen for manual testing.

(III) A Bayesian approach may be explored for multi-objective optimization as well.

Among many advantages, the ability to naturally quantify uncertainty of the

optimized solutions would be most important for high risk associated situations like

in industries.

(IV) The primary emphasis of our work has been on optimizing the chemical composition to

achieve improvement. To take a more comprehensive approach, we may consider both

composition and the process schedule. Given that process schedules are determined
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by the flow of mass and energy in continuous processes, a different approach would

be needed. To address this, one possible solution could be to integrate hierarchical

modeling, enabling sampling based on physical principles.

To conclude, this thesis presents a strong case for the incorporation of ML-based tools in hot

rolling and other TMCP industries. Additionally, this work emphasizes the need for reliable

and trustworthy ML frameworks, crucial for wider adoption and successful implementation

in industries.
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