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Abstract

Autism Spectrum Disorder (ASD) presents with significant heterogeneity, which 

obscures our understanding of the neuroanatomical correlates of ASD. This may be why 

neuroimaging studies of the subcortical structures of the thalamus, globus pallidus and striatum 

have produced inconsistent and contradictory results. These structures are critical mediators of 

functions known to be affected in ASD, including sensory gating and motor function.

We examined both volumetric and fine-grained localized shape differences in ASD using 

a large (n=3145), cross-sectional dataset of T1-weighted structural MRI scans from 33 sites, 

including both males and females, while investigating three potentially important sources of 

neuroanatomical heterogeneity: sex, age, and intelligence quotient (IQ). To minimize the impact 

of site effects, all scans underwent rigorous motion and segmentation quality control and 

identical processing and segmentation using MAGeTBrain. All data was processed in site-wise 

batches. Linear models, including sex, age, IQ, and total brain volume as covariates, were 

computed per-site and then combined across sites using random-effects meta-analysis. To assess 

the importance of age, sex, and IQ, nested models were compared using the Akaike Information 

Criterion (AIC).

We observed no differences in thalamic, pallidal, or striatal volume in ASD (p > .26, |

Hedges’ g*| < 0.05 for all structures). Including age, but not sex, improved the fit for both the 

pallidum and striatum, but not for the thalamus. Repeating the analysis using best-fitting models 

did not alter the outcome, nor did conducting IQ- and age-centered analyses (age: p > 0.29 for all 

structures, IQ: p > 0.21), or sex-stratified analysis (p > 0.22). However, we did find a variety of 

localized shape differences in all three structures which were not apparent in the volumetric 

analysis. Also, age was an important variable across more than half of most surfaces. Age-
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centered shape analysis indicated a variety of age-dependent regional differences. We found no 

correlations between symptom severity and neuroanatomical alterations in ASD, though this 

portion of the study was significantly underpowered compared to other analyses.

Overall, our findings help confirm that the neurodevelopment of the striatum, globus 

pallidus and thalamus are affected in ASD, in a subtle location-dependent manner that is not 

reflected in overall structure volumes, and that is highly non-uniform across the lifespan. 
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Résumé

Les troubles du spectre de l’autisme (TSA) présentent une hétérogénéité significantive, 

laquelle voile notre compréhension des corrélats neuroanatomiques des TSA. Ceci pourrait 

expliquer pourquoi les études de neuroimagerie des structures sous-corticales du thalamus, 

globus pallidus et le striatum produisent des résultats inconsistants et contradictoires. Ces 

structures sont des médiatrices critiques de fonctions connus pour être affectées dans les TSA, 

incluant le déclenchement sensoriel et la fonction motrice. 

Nous avons examinés les différences de volumétrie et de forme localisée à grain fin dans 

les TSA en utilisant une large base de données (n=3145) transversale comportant des scans 

structurels IRM de séquences pondérés T1 provenant de 33 sites, incluant des hommes et des 

femmes, tout en enquêtant sur trois potentiellement importantes sources d’hétérogénétié 

neuroanatomique: le sexe, l’âge et le quotient intellectuel (QI). 

Afin de réduire l’impact de l’effet de site autant que possible, tous les scans ont été 

soumis a un rigoureux contrôle de qualité du mouvement et de la segmentation et soumis à un 

processus et une segmentation identique en utilisant MAGeTBrain. Toutes les données ont été 

transformées en lots par site. Des modèles linéaires, incluant le sex, l’âge, le QI et le volume 

cébébral total comme covariables, ont été caclulés par site et ensuite combinés à travers les sites 

selon une méta-analyse à effets aléatoires. Afin d’évaluer l’importance de l’âge, du sexe et du 

QI, des modèles imbriqués ont été comparés selon le Critère d’Information d’Akaike (CIA).

Nous n’avons observés aucunes différences dans les volumes thalamique, pallidal ou 

striatal dans les TSA (p > .26, |Hedges’ g*| < 0.05 pour toutes les structures). En incluant l’âge, 

mais non le sex, une amélioration de la correspondance a été observée pour le pallidum et le 

striatum, mais non pour le thalamus. Une répétition de l’analyse en utilisant les modèles les 
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mieux adaptés n’a pas changé la résultante, ni les analyses conduitent sur les mesures centrées 

sur le QI et l’âge (âge: p > 0.29 pour toutes les structures, QI: p > 0.21), ou les analyses 

stratifiées selon le sexe (p > 0.22). Toutefois, nous avons trouvé une variété de différences de 

forme localisée dans les trois structures, qui n’étaient pas apparentes dans l’analyse 

volumétrique. De plus, l’âge s’avère être une variable importante pour plus que la moitié de la 

surface pour la plupart des structures. Les analyses de forme centrées sur l’âge ont indiqués une 

variété de différences régionales dépendantes de l’âge. Nous n’avons pas trouvé de corrélation 

entre la sévérité des symptômes et les altérations neuroanatomiques dans les TSA, bien qu’une 

partie de cette étude manque significativement de puissance statistique comparée aux autres 

analyses. 

Dans l’ensemble, nos résultats aident à confirmer que le neurodéveloppement du 

thalamus, globus pallidus et du striatum sont impactés d'une manière subtile dépendant de 

l'emplacement dans les TSA. Par ailleurs, ces variations ne se reflètent pas dans les volumes 

globaux de la structure et ne sont pas vraiment pas uniformes tout au long de la durée de vie.
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1. Introduction and Statement of Problem

In the first English-language clinical report of Autism Spectrum Disorder (ASD), Leo 

Kanner (1943) suggested that the disorder might be something “inborn”. Theories of the cause, 

mechanism, and nature of ASD have shifted greatly in the intervening decades, including an 

unfortunate period in the mid 20th century, during which a psychoanalytic view was ascendant 

that placed the blame on inadequate parenting (Boucher, 2008). While the exact etiology has 

remained elusive, what has become clearer is that ASD is a biologically-based, highly heritable 

neurodevelopmental disorder with a significant genetic component (Chaste & Leboyer, 2012).

Estimates of the prevalence of ASD vary widely, with a worldwide median of about 62 / 

10 000, though there are reports of increasing prevalence (Elsabbagh et al., 2012; Levy et al., 

2009). Among children and youth in Canada, the prevalence is 1/66 (Ofner et al., 2018). As a 

spectrum disorder, symptom profiles are quite heterogeneous by definition, as is the degree of 

impairment an individual experiences. Some individuals pursue advanced education, marriage, 

children, and a career; in some cases diagnosis may not even come until adulthood. For other 

individuals, impairment may be severe, and life-long support may be required even with basic 

functions of self-care (Boucher, 2008).

There are, thus far, no biological criteria to identify ASD, and diagnosis relies entirely on 

the observation of behaviour. There is no single, definitive symptom; rather, a constellation of 

symptoms from two categories must be present for an ASD diagnosis. First, social interaction 

and communication must be impaired, in at least the contexts of nonverbal communication, 

maintaining and understanding relationships, and social-emotional reciprocity. Second, there 

must be “restricted, repetitive patterns of behaviour, interests, or activities,” which must include 

at least two of the following: stereotyped movements or speech; inflexible, routinized or 
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ritualized patterns of behaviour and an aversion to change; intense, fixated interest in a restricted 

set of topics; and/or sensory-perceptual hyper- or hypo-acuity and interest. These symptoms 

must be persistent, present early in development, and not be better explained by either global 

developmental delay or intellectual developmental disorder, and they must cause significant 

impairment in functioning. Specifiers, such as “with/without accompanying language 

impairment,” or “with/without accompanying intellectual impairment” may be added to the 

diagnosis to encode common features that are not diagnostically necessary, but that have a 

significant impact on functional outcomes (American Psychiatric Association, 2022). Language 

development is generally atypical, though whether that means that language function is impaired 

or even enhanced depends on the individual (Lai et al., 2014). While there are many common co-

morbidities, intellectual disability, anxiety, and the dysregulation of sleep, immune function, 

and/or gastrointestinal function are particularly common (Lai et al., 2014).

The presentation varies greatly by age, by sex, and by overall intellectual function (Lai et 

al., 2014). With appropriate primary care screening, ASD can be diagnosed within the first three 

years of life, though signs are often present even in the first year; nevertheless, in many cases, 

ASD diagnoses do not occur until children reach school age and teachers call attention to 

symptoms (C. P. Johnson et al., 2007). This is unfortunate, because the success of the available 

treatment options depends on the intervention beginning as early as possible. Though several 

forms of treatment exist, they generally involve behavioural interventions (Lai et al., 2014; Lord 

et al., 2020), and can be extremely expensive due to their time-intensive, one-on-one nature.

Studying the neurobiology of ASD has proven difficult for a number of reasons indicated 

above: there is a great deal of heterogeneity in symptom profiles and co-morbidities, the etiology 

is poorly understood, and there are no reliable biomarkers that indicate the presence of ASD. 
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ASD presentation varies greatly over the lifespan for reasons that are poorly understood, but that 

probably encompass both neurodevelopmental changes as well as learned behaviours (for 

example, compensatory strategies). It varies greatly by sex, and while it is prevalent in males at a 

rate three to four times higher than in females, females with ASD are more likely than males to 

be more severely affected (Boucher, 2008; C. P. Johnson et al., 2007; Lai et al., 2014). Even 

common comorbidities occur in different combinations in different individuals, and some, such 

as intellectual disability, can greatly affect the presentation. This heterogeneity at the behavioural 

level presumably indicates heterogeneous biology. In this case, we would expect to find a lack of 

agreement in the literature about the exact nature of the neurobiological alterations that are 

present in ASD, and, as outlined in Chapter 2, this is in fact the case. In this study, we attempt to 

address this by examining the neurobiology of ASD at the subcortical level, while accounting for 

three potential sources of neurobiological heterogeneity: sex, age, and full-scale intelligence 

quotient (FIQ), since variations along each of these dimensions has been associated with 

variations in both ASD symptom profiles and neurodevelopment.

16



2. Background Information and Relevant Literature

The subcortex is relatively understudied in comparison to the cortex, both in general 

(Alkemade et al., 2013) and in relation to ASD in particular. In both subcortical structures and 

the cerebral cortex, however, significant biological heterogeneity in ASD has made the task of 

studying its neurobiology more difficult. This is apparent in the literature reviewed below, which 

at times contains divergent and contradictory reports about the nature of the neuroanatomical 

differences associated with ASD.

As a neurodevelopmental disorder, ASD is characterized by alterations in normal 

trajectories of brain development. These alterations may be inconsistent across individuals. 

While the focus of the present study is on the subcortical neuroanatomy of ASD and not its 

genetics, neuroanatomical development is ultimately, largely controlled by genetics and so it 

may be helpful briefly to review some of the literature that explores these phenomena.

2.1 Genetic and Neurobiological Heterogeneity in ASD

Just as we would expect to find heterogeneous biology underlying the heterogeneous 

clinical presentations in ASD, we would expect to find wide variation in the genetic backgrounds 

on which that biology develops over the lifespan. Indeed this is the case, and while there has 

been a great deal of discussion about potential environmental risk factors for ASD (Gaugler et 

al., 2014), twin studies provided evidence of a strong genetic component as early as 50 years ago 

(Folstein & Rutter, 1977). However, no single genetic cause has been found. Loci across the 

genome, on nearly every chromosome, have been identified as contributing potential genetic risk 

factors of ASD (Müller, 2007), which suggests that ASD is polygenic in nature (Boucher, 2008). 
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Reviewing this state of affairs, Courchesne et al. (2019) proposed a set of 72 “high 

confidence,” relatively highly penetrant ASD genes. Over 90% of these genes are highly 

expressed during prenatal development, with 68% peaking prenatally and downregulated after 

birth, while the expression of the remaining 32% peaks during the first few postnatal years. Most 

such genes are pleiotropic, with expression in many different regions, and with functions focused 

on basic organizational processes of the central nervous system: proliferation, migration, neurite 

outgrowth, and synaptogenesis (Courchesne et al., 2019). What is striking is not only that these 

high confidence ASD genes play a role in a well-defined set of neurodevelopmental functions, 

but also that there are so many of them, converging on the same pathways. This lends support to 

the polygenic hypothesis, while also hinting at a wide potential degree of genetic heterogeneity 

in ASD: there are many possible combinations of mutations, many of them relatively common 

(Y. Zhang et al., 2021), in this set of genes that all converge on the same pathways, and may 

influence neurodevelopment in subtly different ways depending on the specific combination. In 

this sense, ASD is a diffuse disorder, in which many (or even all) brain systems are affected 

(Müller, 2007).

At the macroscopic level, abnormalities in both grey (Brieber et al., 2007) and white 

matter (Ameis & Catani, 2015) have been widely reported. There also appear to be differences in 

microstructure at the boundary of grey and white matter (Olafson et al., 2021). Early overgrowth 

of the whole brain, followed by a relative slowing of brain size growth, was observed over 20 

years ago (Courchesne et al., 2001). Just after birth, neonates who will go on to be diagnosed 

with ASD show no difference (or a small decrease) in brain volume when compared to their 

typically developing peers; however, by about age 3, autistic brains are about 10% larger than 

expected (Courchesne et al., 2005; Redcay & Courchesne, 2005). The relative overgrowth 
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normalizes by early adulthood, likely because the brains of typically developing children have 

been undergoing steady growth and have “caught up” in size to those of their autistic peers 

(Redcay & Courchesne, 2005). As with many topics in the neurobiology of ASD, some 

controversy surrounds even this oft-reported finding (Raznahan et al., 2013). While this may 

reflect phenotypic heterogeneity, it is also possible that sampling bias, including lack of 

representation of females and across the ASD severity spectrum, or other possibly related factors 

such as in-scanner motion, may contribute to conflicting findings (Bedford et al., 2019; 

Ducharme et al., 2016).

As noted above, the cortex has been studied with greater intensity than subcortical 

structures in ASD. As widely studied as the cortex is in ASD, however, even here there is 

disagreement about the specific nature of the differences, which may, in part be due to study 

methodologies that have not always been able to account for the significant neurobiological 

heterogeneity observed in ASD (Bedford et al., 2019). There are grounds to consider a number of 

subcortical structures as fruitful territory to explore in seeking an understanding of the 

neurobiology of ASD. Here we focus on three structures that play a central role in many of the 

functions and behaviours that are affected in ASD: the thalamus, the striatum and the globus 

pallidus.

2.2 The Thalamus

The thalamus has long been understood to serve as a key relay of sensory information in 

its journey from the periphery to the brain (Kandel et al., 2013; Steriade & Llinás, 1988). This 

makes it an interesting target of study in research on ASD, a disorder that often includes as a 

symptom sensory hypo- or hyper-acuity. There is another reason to be interested in the thalamus, 

19



however: it also mediates and modulates a great deal of cortico-cortical communication (Murray 

Sherman & Guillery, 2013). Aside from olfactory information, all sensory signals are channeled 

through the thalamus before reaching the cortex. Nevertheless, the thalamus is not a simple relay. 

In fact, only about 10% of the inputs to the thalamus are sensory (Sherman, 2005). At the most 

basic level, the thalamus can act on the sensory signals that it relays by either passing those 

signals on to the forebrain, or, as in the case of sleep, which is also often affected in ASD, the 

thalamus can suppress forebrain sensory input (Steriade & Llinás, 1988). However, in addition to 

acting as a direct relay, the thalamus performs two other distinct functions. 

First, in its role as sensory relay, the thalamus modulates the signals that it passes to the 

cortex, based on input from the cortex and brainstem (Sherman, 2005). For example, the lateral 

geniculate nucleus (LGN) receives retinotopic projections from the retina, and relays the 

information received to the primary visual cortex. However, only about 7% of the input to the 

relay cells of the LGN comes from the retina; the rest is composed mainly of afferents whose 

sources are more or less evenly divided between local interneurons, layer six of the primary 

visual cortex, and from parabrachial nucleus in the brainstem (Sherman, 2005). Anatomical and 

electrophysiological evidence indicates strongly that retinal afferents act to drive LGN relay 

cells, while the other 93% of input fibers act to modulate relay cell activity (reviewed in 

Sherman, 2005; and Sherman & Guillery, 2011).

This pattern repeats itself throughout the various nuclei of the thalamus, even in areas 

where there is no peripheral input. These nuclei are driven instead by cortical input arriving in 

axons from cortical layer five (Sherman & Guillery, 2011). Otherwise the structure and function 

of these nuclei seems to be analogous to those of the sensory nuclei: they receive modulatory 

input via feedback connections from layer six of the cortex, and send output to other areas of the 
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cerebral cortex in a generally topographical manner. These higher order nuclei are thought to 

provide another channel of cortico-cortical communication, by mediating and modulating 

connections between cortical areas (Sherman & Guillery, 2011). Alterations in thalamic structure 

and function can therefore affect not only the transmission of sensory information to the cortex, 

but communication between areas of the cortex as well. Behavioural data confirms this: focal 

strokes affecting the thalamus can affect a wide range of behaviours and cognitions, including 

mood, memory, attention, and language use (Carrera & Bogousslavsky, 2006). Disruptions in 

thalamocortical connectivity in ASD have been observed using both anatomical and functional 

connectivity measures (Nair et al., 2013).

2.3 The Basal Ganglia

Another set of structures plays a similarly central role in functions and behaviours that 

are affected in ASD: the basal ganglia. The principal structures in the basal ganglia are the 

striatum (composed of caudate nucleus and putamen) and the globus pallidus, and these are the 

structures we propose to examine. However, other smaller structures are considered to be part of 

the basal ganglia, including the substantia nigra and the subthalamic nucleus. The striatum and 

globus pallidus are central in a parallel set of processing loops that run from the cerebral cortex, 

through the striatum, then the globus pallidus, and finally through the thalamus and back to 

cerebral cortex (Alexander & Crutcher, 1990). These loops are directly involved in behaviours 

that are affected in ASD, as discussed below.

Four main loops have been described: the motor loop, the oculomotor loop, the 

prefrontal/associative loop(s), and the limbic loop, named both for their cortical regions of 

origin, as well as for their function (Alexander & Crutcher, 1990). With some simplification, the 
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motor loop originates in motor areas of the frontal cortex (primary motor cortex, premotor cortex 

and supplementary motor area), projects topographically to the putamen, which then projects to 

the globus pallidus (both internal and external segments). The globus pallidus projects to ventral 

portions of the thalamus, which then closes the loop through projections back to the motor areas 

of the cortex (Alexander et al., 1991). The structure of all other loops is similar. The oculomotor 

loop proceeds from frontal eye fields (FEF) to the caudate, through the globus pallidus to ventral 

and medial thalamus, then back to FEF. The associative loop runs from dorsolateral prefrontal 

cortex (DLPFC) and lateral orbitofrontal cortex (LOFC), via anterior caudate, globus pallidus, 

and ventral and medial thalamus, back to the DLPFC and LOFC. The limbic loop runs from 

anterior cingulate (ACA) and medial orbitofrontal cortex (MOFC), through the ventral striatum, 

globus pallidus, ventral and medial thalamus, and back to ACA and MOFC (Alexander et al., 

1991; Wichmann & DeLong, 2013). These loops have a stereotyped structure, each consisting of 

“direct”, permissive pathways and “indirect”, inhibitory pathways (Smith et al., 1998). In 

addition to these loops operating in parallel with each other, within each loop, projections are 

topographical in nature, are organized into segregated, parallel subcircuits, each of which may 

underlie a different aspect of behaviour (Alexander et al., 1991; Wichmann & DeLong, 2013). 

We can refine this highly simplified picture of these anatomical and functional loops a little more 

by noting that, while they terminate only in the locations indicated, they receive some 

supplemental input from widely distributed cortical regions from all lobes of the brain, as well as 

feedback connections from the thalamus (Wichmann & DeLong, 2013).

These loops do not act as simple relays. The signals in the striatum, for example, are 

highly modulated, by cholinergic and GABAergic interneurons and by dopaminergic, likely 

reward- and reinforcement-related neurons from other basal ganglia and midbrain structures 
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(Wichmann & DeLong, 2013). While the literature describing the function of these loops is vast, 

for the purposes of this study it may be sufficient to note that the evidence suggests a role in 

reinforcement learning, as well as selecting, initiating, executing, and evaluating behaviours, 

including movements and cognitive behaviours (Wichmann & DeLong, 2013).

Behaviours mediated by these basal ganglia circuits are known to be affected in ASD. 

For example, some verbal behaviours, as well as aspects of empathic behaviour and behaving in 

concert with social norms are mediated by the prefrontal loops, while the limbic loop has a role 

in motivated behaviour (Wichmann & DeLong, 2013). The oculomotor loop is responsible for 

regulating saccades, via the caudate nucleus and substantia nigra projections to the superior 

colliculus (Wichmann & DeLong, 2013). Saccadic eye movements are known to be affected in 

ASD, though it remains unclear to what extent these effects originate in the basal ganglia (B. P. 

Johnson et al., 2012; Schmitt et al., 2014).

2.4 The Thalamus and Basal Ganglia in ASD

There is ample evidence that both the structure and function of the striatum and globus 

pallidus are affected in ASD. For example, Langen et al. (2007) found larger caudate nucleus 

volumes, in a small sample of medication naive children, adolescents and adults. With a larger 

sample, the same group confirmed these findings and noted an altered developmental trajectory 

as well: caudate volumes continued to increase in children with ASD, when controlling for total 

brain volume, whereas in typically developing children this volume decreased over childhood 

and adolescence (Langen et al., 2009). Increased caudate volume was also found to be related to 

repetitive behaviours in individuals with ASD (Langen et al., 2014). Similar results have been 

found for the globus pallidus in adults and children (Turner et al., 2016).

23



Given the central role of the thalamus, striatum, and globus pallidus in behaviours known 

to be affected in ASD, and the evidence of structural and functional differences in ASD, it is not 

surprising that the neuroanatomy of these structures in ASD has been studied before, though they 

remain understudied in comparison to the cortex. Unfortunately, there has been very little 

agreement on the exact nature of the differences. For the thalamus, for example, there are reports 

that, compared to typically developing controls, the volume of the thalamus in individuals with 

ASD is larger (Lin et al., 2015), smaller (McAlonan et al., 2008; Sussman et al., 2016; Tsatsanis 

et al., 2003), and not significantly different (Estes et al., 2011; Haar et al., 2016; Schuetze et al., 

2016; Turner et al., 2016; W. Zhang et al., 2018). Similarly, the striatum has been reported to be 

larger (Hollander et al., 2005; 2007; Turner et al., 2016), smaller (McAlonan et al., 2008; van 

Rooij et al., 2018), and not significantly different (Estes et al., 2011; Haar et al., 2016; Schuetze 

et al., 2016; Sussman et al., 2016; W. Zhang et al., 2018). The findings vary as well for the 

globus pallidus (Estes et al., 2011; Haar et al., 2016; McAlonan et al., 2008; Schuetze et al., 

2016; Sussman et al., 2016; Turner et al., 2016; van Rooij et al., 2018; W. Zhang et al., 2018).

2.5 Potential Sources of Neuroanatomical Heterogeneity in ASD

Noting a similar phenomenon at the cortical level, Bedford et al. (2019) proposed three 

potential sources of this lack of concordance: heterogeneity within the ASD samples that had not 

been parsed, issues with data quality, and the use of gross volumetric measures that may obscure 

subtle, localized differences in structure area or shape. They parsed the heterogeneity by 

accounting for age, sex, and intellectual functioning as measured by IQ, adopted a rigorous 

quality-control protocol, and used a more sensitive vertex-based technique to uncover effects that 

varied over the surface of the brain.
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There is evidence, beyond the study mentioned above, that sex, age, and IQ contribute 

meaningfully to neuroanatomical differences in ASD. For example, in a study of high-

functioning children and adolescents on the ASD spectrum, Langen et al. (2009) found both a 

main effect of ASD on caudate volumes, and an age-by-diagnosis interaction, suggesting that the 

caudate developed along a different trajectory in ASD. The sample did not include adults, and, 

while it did include females, the male:female ratio was skewed ( ~10:1). Zhang et al. (2018) 

found an altered trajectory for the putamen volume, but only in females. Schuetze et al. 

(Schuetze et al., 2016) reported focal age-by-diagnosis interactions in the shape of the right 

globus pallidus and striatum in males with ASD, as well as a significant effect of IQ on striatal 

and thalamic morphology.

Data quality has been shown to be a significant factor affecting the outcome of MRI-

based neuroanatomical studies. Rigorous, manual quality control protocols to verify both scan 

quality (particularly motion) and downstream processing such as segmentation improves the 

sensitivity of various cortical measures (Bedford et al., 2019). In another study in which data 

samples with and without strong quality control were matched for power, cortical thickness 

trajectories detected in the data were highly dependent on data quality, with trajectories shifting 

towards higher-order (quadratic, cubic) trajectories in lower-quality data (Ducharme et al., 

2016). That said, the effect of motion is much better understood on cortical measures than on 

subcortical measures.
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3. Rationale for the Study, Hypotheses, and Specific Aims

The overarching goal of this project was to try to resolve the disagreements about the 

nature of subcortical anatomical differences in ASD, using spatially-sensitive techniques that 

account for variation due to age, sex, and IQ, in a rigorously quality-controlled, large, highly-

powered multisite dataset. In doing so, we hoped to parse some of the heterogeneity that may be 

interfering with finding clear results, and to reduce the effects of spurious, inter-site differences 

as much as possible.

Based on previous literature, we hypothesized that we would be able to find localized, 

regional differences in thalamic and basal ganglia morphometry that do not show up in global, 

volumetric comparisons. Furthermore, we expected to find that sex, age, and/or IQ would be 

significant contributors to heterogeneity in these measures.

Specific Aim 1: Determine whether the thalamus, striatum, and globus pallidus differ in volume 

in ASD, and whether sex, age, and IQ are important factors in explaining any 

such differences.

Specific Aim 2: Determine whether localized differences in morphometry are apparent in these 

same structures in ASD, that are not detected by the volumetric method above. 

Evaluate the role of sex, age, and IQ in any such differences.
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4. Methods

4.1 Dataset

Analysis was performed on a large, multisite dataset (n = 3145) of T1-weighted MRI 

scans of the head, consisting of a combination of open-source and closed-source data (Bedford et 

al., 2019; Olafson et al., 2021). The demographic composition of this dataset is detailed in Tables 

1 and 2, but in brief, it contains both male and female participants, both including individuals 

with ASD and developing typically, ranging in age from 2 to 65. Datasets include both releases 

of the multi-site ABIDE dataset (Di Martino et al., 2014, 2017), as well as data from the National 

Institute of Mental Health (USA), the Hospital for Sick Children (Canada), the Cambridge 

Family Study of Autism (UK), and the UK Medical Research Council Autism Imaging 

Multicentre Study (UK), comprising a total of 32 sites. Sites with fewer than 3 females in the 

ASD group after quality control were excluded from the analysis.

4.2 Visual Inspection and Preprocessing

Raw scans were inspected visually and rated by two independent raters, as described by 

Bedford et al. (2019). Scans with significant motion or other artefacts were processed but were 

excluded from analysis. All scans, regardless of quality, were preprocessed. Preprocessing was 

performed in site-wise batches, using the minc-bpipe-library pipeline 

(https://github.com/CoBrALab/minc-bpipe-library). This pipeline applies bias field correction, to 

remove artefactual, low-frequency inhomogeneity in image intensities, using the iterative N4 

algorithm (Tustison et al., 2010). Next, brain masks were generated and used to extract the brains 

from surrounding tissue (skull, fat, etc.), using the Brain Extraction based on nonlocal 

Segmentation Technique (BEaST; Eskildsen et al., 2012). Total brain volume (TBV) was 
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estimated using CIVET 1.1.12, by summing estimates of grey matter volume, white matter 

volume, and cerebrospinal fluid volume (Bedford et al., 2019; J. P. Lerch & Evans, 2005).

Adjustments were made to the preprocessing pipeline for some sites to maximize the 

amounts of usable data; the site-based, meta-analytic nature of the statistical analysis ensures that 

we did not introduce new site-based confounds by doing this. Scans from ABIDE I and II 

releases from New York University (NYU) were processed with blood vessel masking activated 

in CIVET. The UK-AIMS scans were subjected to an intensity standardization relative to the 

MNI ICBM 152 average brain template (Collins et al., 1994) using minc_nyul. Scans from both 

ABIDE releases from the Kennedy Krieger Institute (KKI) were pre-processed without brain 

masking or extraction. Scans from the ABIDE II release from the Institut Pasteur (IP) without 

bias field correction.

4.3 Segmentation and Volume Computation

Segmentation of the thalamus, striatum and globus pallidus was performed using the 

Multiple Automatically Generated Templates (MAGeT Brain) algorithm (Chakravarty et al., 

2013; Pipitone et al., 2014), in batches by site. MAGeT Brain makes use of five atlases in which 

voxels of the structures of interest are labeled. These labels were derived from serial histological 

data, fit to a single high-resolution MRI template (Chakravarty et al., 2006), then warped to five 

new high-resolution MRI atlas templates (Tullo et al., 2018). The 5 label sets were then 

propagated to a set of 21 template scans, drawn from the data in each batch, giving 105 label sets 

for each structure. These labels are then propagated to each scan in the batch, which produces 

105 candidate labels for each structure and for each scan in the dataset. These are merged into a 

final set of labels for each structure and each scan through a voxel-wise majority vote. Label 
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propagation from one image to another is performed at each step using the Advanced 

Normalization Tools (ANTs) library (Avants et al., 2014), by first performing an affine 

registration, then a non-linear registration between the two volumes, and then using the 

generated transforms to warp the labels into the space of the second volume. The volume of each 

structure, for each participant, was computed using the number of voxels in the label for that 

structure and the voxel volume. 

While other software exists to label and compute the volume of subcortical structures, 

including FreeSurfer (https://surfer.nmr.mgh.harvard.edu), and FSL-FIRST 

(https://fsl.fmrib.ox.ac.uk), MAGeT Brain has been shown to compute labels for these structures 

that more closely resemble the gold standard of manually generated labels created by expert 

raters (Makowski et al., 2018). All scans at each site were segmented, however only those scans 

that passed the motion quality control procedure described above were included in the 

downstream analyses.

All labels were inspected visually and rated for segmentation quality by one or more 

expert raters, and inaccurately labelled structures were excluded from downstream analysis.1 

Only individual structures that failed were excluded, meaning that successful segmentations from 

the same participant were included in the analysis. For this reason, the sample size varies 

somewhat between structures, as detailed in Section 5: Results.

To improve segmentation quality after the initial run (see Section 5: Results), two 

modifications were made to this workflow. First, to reduce over-segmentation of the striatum, 

which was a common failure, atlases with manually corrected striatal segmentations were used. 

Second, segmentation was performed on left and right hemispheres separately, and a subcortical 

1 Saashi Bedford, Mallar Chakravarty, Christina Kazazian, Emily Olafson, and the author all contributed to 
segmentation quality control at various stages. All segmentation quality control for the final segmentations was 
completed by the author.
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mask was applied to remove the cortex from the registration process. Only the results of this 

improved image-processing workflow are presented.

4.4 Morphometry

To capture shape differences, two morphometric measures - surface area and 

displacement - were computed by MAGeT Brain at each of many vertices across the surfaces of 

each structure, as described by Tullo et al. (2018) and other manuscripts from our group 

(Chakravarty et al., 2015; Raznahan et al., 2014; Shaw et al., 2016) and summarized here. For 

each structure, a model was created from all five atlas templates. These were registered to each 

other, first linearly and then non-linearly using ANTs (Avants et al., 2014), then averaged 

together. Using this average model atlas, surface meshes covering the individual structures (left 

and right striatum, thalamus, and globus pallidus) were computed using the marching cubes 

algorithm and manually smoothed. The surfaces were then re-meshed with vertex spacing 

corresponding to voxel size, resulting in model object surfaces with ~13 000 vertices per 

striatum, ~6 500 vertices per thalamus, and ~3 000 vertices per globus pallidus (Tullo et al., 

2018). 

The concatenation of the non-linear portion of the transformations used to generate the 

model, along with those used during registration steps outlined in the previous section, produces 

a deformation field that describes the shape of each subject structure in the dataset, relative to the 

model for that structure. The displacement of each vertex is determined by computing the dot 

product of the deformation at that point with the surface normal, resulting in a measure of 

expansion (positive displacement) or contraction (negative displacement) relative to the model 
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surface (Bussy et al., 2021; Makowski et al., 2018; Raznahan et al., 2014; Schuetze et al., 2016; 

Tullo et al., 2019).

To compute surface area at each vertex, the transforms described above are applied to the 

model mesh, bringing it into the subject space, and then merged using the median vertex 

position. The surface is tessellated using a Voronoi parcellation, by connecting the midpoints of 

the line segments joining each vertex to its neighbours in the mesh, creating a polygon around 

each vertex. The surface area at a given vertex is computed as the area of this polygon (J. P. 

Lerch et al., 2008; Shaw et al., 2014).

4.5 Statistical Analysis

The three metrics outlined above - structure-wise volume, vertex-wise displacement, and 

vertex-wise surface area - were computed for all scans in the dataset, however all data from 

scans which failed motion QC, or for structures with failed segmentation, were excluded from 

the analysis described here. However, because these measures were computed and retained, an 

extension to this project is possible in which we could evaluate the effect of rigorous quality 

control on the study outcome. This has been shown to be relevant at the cortical level (Bedford et 

al., 2019; Ducharme et al., 2016).

4.5.1 Statistical Analysis - Volumetric

4.5.1.1 Volumetric Case-Control Analysis

The volumes of the left and right thalamus, globus pallidus, and striatum were modeled 

using linear regression. In all models, diagnostic status (DX, either ASD or TD) was the 
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predictor, and total brain volume (TBV) was included as a covariate. In the initial model, sex and 

age were also included as covariates. 

To reduce the effect of non-biological variation between sites due to factors such as the 

use of different scanner hardware, software, and scanning protocols, models for each structure 

were computed for each site. Hedges’ g*, which is an unbiased effect size indicator based on the 

more familiar Cohen’s d, was computed for the effect of diagnosis in each model, and these 

effect sizes were combined across all sites using random-effects meta-analysis. Random-effects 

meta-analysis was chosen because it does not rely on the assumption that the effect sizes being 

modeled are the same for all sites (Borenstein et al., 2010).

The basic model (1) below was used for case-control volumetric analyses, where “struct” 

represents the left or right striatum, thalamus, or globus pallidus. This was then refit as model (2) 

with the addition of FIQ, for the subset of data for which FIQ data was available

Vstruct = β0 + β1Diagnosis + β2TBV + β3Age + β4Sex + εstruct (1)

Vstruct = β0 + β1Diagnosis + β2TBV + β3Age + β4Sex + β5FIQ + εstruct (2)

4.5.1.2 Volumetric Heterogeneity-Focused Analysis: Sex, Age, and FIQ

To determine whether sex, age, and FIQ are important contributors of volumetric 

heterogeneity (beyond the effect of total brain volume), a partially nested series of models was fit 

as described above, including the global model (3) containing all terms, models with sex and age 

terms removed (4, 5), and a model with only TBV as a covariate (6), and a model with no 

covariates (7). These were re-fit including FIQ for those participants for whom FIQ data was 

available.
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Vstruct= β0 + β1Diagnosis + β2TBV + β3Age + β4Sex + β5Age*Diagnosis + β6Sex*Diagnosis+ εstruct (3)

Vstruct= β0 + β1Diagnosis + β2TBV + β3Age + β5Age*Diagnosis + εstruct (4)

Vstruct= β0 + β1Diagnosis + β2TBV + β4Sex + β6Sex*Diagnosis + εstruct (5)

Vstruct= β0 + β1Diagnosis + β2TBV + εstruct (6)

Vstruct= β0 + β1Diagnosis + εstruct (7)

The relative fit of these models was estimated by computing the Akaike Information 

Criterion (AIC) for each (Akaike, 1974). This is a measure derived from information theory that 

provides relative measures of model fit that can be compared across nested models. Akaike 

weights were computed from the AIC for each model, which accounts for both goodness of fit 

and site size, and indicates the strength of evidence in favour of each of the models in a set 

(Burnham & Anderson, 2002), and weighted according to site size. Because some datasets did 

not include FIQ information, the analysis was first performed without including FIQ to maximize 

statistical power, then repeated on the smaller data set with FIQ included. Correction for multiple 

comparisons was applied after performing the meta-analysis, using the False Discovery Rate 

(FDR) method of Benjamini and Hochberg (1995).

4.5.2 Statistical Analysis - Morphometric

4.5.2.1 Morphometric Case-Control Analysis

Statistical analysis of the morphometric data was analogous to that of the volumetric data, 

except that it was performed at every vertex in each structure. Note that a random-effects meta-

analysis across sites was performed for each model, at each vertex. As with the volumetric 

analysis, models without FIQ were run to maximize statistical power, then the models 

controlling for FIQ were refit with the subset of data that includes FIQ. Due to the very large 
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number of linear models and meta-analyses, FDR was used for multiple comparisons correction. 

FDR correction is performed across all p-values generated across all vertices, for all structures, 

for a given model. Effect size measures for DX were then thresholded at FDR < .05, and plotted 

on the model surfaces. The basic models were analogous to those used in the volumetric study, 

as shown below. SAi and Dispi represent the surface area and displacement values, 

respectively, at vertex “i”.

SAi = β0(i) + β1(i)Diagnosis + β2(i)TBV + β3(i)Age + β4(i)Sex + εi (8)

Dispi = β0(i) + β1(i)Diagnosis + β2(i)TBV + β3(i)Age + β4(i)Sex + εi (9)

4.5.2.2 Morphometric Heterogeneity-Focused Analysis: Sex, Age, and FIQ

Model selection was performed somewhat differently than in the volumetric analysis. 

Vertex-wise models with and without the term of interest were fit by site, and compared in pairs. 

For example, to evaluate the importance of age in models of surface area, the following two 

models were compared at each vertex:

SAi = β0(i) + β1(i)Diagnosis + β2(i)TBV + β3(i)Age + β4(i)Sex + εi (10)

SAi = β0(i) + β1(i)Diagnosis + β2(i)TBV +                  β4(i)Sex + εi (11)

To do this, AIC was calculated for each model, for each site, and the model with the 

lowest AIC was selected. These were combined across sites using a winner-take-all approach, 

weighted by site size, resulting in vertex-wise maps indicating where on the surface of the 

structure the inclusion of age / sex improved fit. The analysis was then repeated including FIQ.
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4.6 Follow-up Analyses: Sex-Stratification, and Age/FIQ Centering

Where age or FIQ were found to be important explanatory variables, an age- or FIQ-

centered analysis was conducted to evaluate the interaction between ASD diagnosis and age/FIQ. 

This was done by repeating the case-control analysis described above, with an age- or FIQ-by-

diagnosis interaction term included in the models and computing the model with age centered at 

2-year intervals, or FIQ centered at 10-point intervals. This provided an indication of the effect 

of ASD on structure volume, vertex-wise surface area, and vertex-wise displacement at each age 

interval, without sacrificing statistical power by stratifying the dataset. FDR correction at 5% 

was done across all vertices, all structures, all age or FIQ intervals, and both measures. The 

models used are given below, where Xj represents the age in years. For FIQ, analogous models 

were used centering on FIQ and controlling for age and sex.

Vstruct = β0 + β1Diagnosis + β2TBV + β3(Age-Xj) + β4(Age-Xj)*Diagnosis + β5Sex + εstruct (12)

SAi = β0(i) + β1(i)Diagnosis + β2(i)TBV + β3(i)(Age-Xj) + β4(i)(Age - Xj) + β5(i)Sex + εi (13)

Dispi = β0(i) + β1(i)Diagnosis + β2(i)TBV + β3(i)(Age-Xj) + β4(i)(Age - Xj) + β5(i)Sex + εi (14)

4.7 Confirmatory Analyses: Linear Mixed Effects and ComBat Harmonization

For confirmation of our results and for homology with previous multi-site ASD literature, 

we repeated the case-control analyses using two different techniques that account for intersite 

differences. First, a mega-analysis was conducted using linear mixed effect models (Harrison et 

al., 2018), with site included as a random factor. Linear mixed models were computed using the 
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RMINC package in R (J. Lerch et al., n.d.), and were specified as follows, using a random 

intercept term for site:

Vstruct = β0 + β1Diagnosis + β2TBV + β3Age + β4Sex + β5FIQ + (1|site) + εstruct (15)

SAi = β0(i) + β1(i)Diagnosis + β2(i)TBV + β3(i)Age + β4(i)Sex + β5(i)FIQ + (1|site) + εi (16)

Dispi = β0(i) + β1(i)Diagnosis + β2(i)TBV + β3(i)Age + β4(i)Sex + β5(i)FIQ  + (1|site) + εi (17)

A second mega-analysis was conducted by first harmonizing volume, surface area, and 

displacement data across sites, while preserving variation due to age, sex, IQ, and total brain 

volume, then computing linear regressions on the entire dataset. Harmonization was completed 

using ComBat, a technique first used in genetics research that uses an empirical Bayes algorithm 

to remove variation due to batch effects while retaining variation due to biological factors (Fortin 

et al., 2017, 2018; W. E. Johnson et al., 2007). ComBat harmonization was performed with the 

neuroCombat library for R (Fortin et al., 2017, 2018), prior to multiple linear regression using 

the basic case-control comparison models described above. Structure volumes were harmonized 

with respect to site, using the default options, including using parametric priors as well as 

empirical Bayes-based shrinkage of location and scale parameters across features. For volumetric 

data, the six structure volumes (left and right globus pallidus, striatum and thalamus) comprised 

the features. For vertex-wise data, the surface area or displacement at each vertex comprised the 

set of features. TBV, Sex, and Age were included as biological covariates, to protect against the 

removal of variance explained by these variables.
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4.8 Symptom Severity

We assessed the relationship between our subcortical morphometry measures and ASD 

symptom severity, as measured by the Autism Diagnostic Observation Schedule Calibrated 

Severity Score (ADOS-CSS). This measure was only available for n=239 participants with ASD 

after motion QC (192 male, 47 female), across five sites (KKI, NYU, OHSU, SDSU, 

TORONTO, UM). The site-wise models used were as follows:

Vstruct = β0 + β1CSS + β2TBV + β3Age + β4Sex + εstruct (18)

SAi = β0(i) + β1(i)CSS + β2(i)TBV + β3(i)Age + β4(i)Sex + εi (19)

Dispi = β0(i) + β1(i)CSS + β2(i)TBV + β3(i)Age + β4(i)Sex + εi (20)

The semi-partial correlation between structure-wise volume, vertex-wise surface area, 

and vertex-wise displacement and ADOS-CSS, while controlling for TBV, age and sex (Aloe & 

Becker, 2012) was then computed from β1 at each site. These were pooled across sites using 

random-effects meta-analysis for each structure and vertex. FDR correction for multiple 

comparisons was done across all vertices, all structures, and both measures.

37



5. Results

5.1 Number of sites and individuals after quality control

Of the 3145 scans over 32 separate sites in the complete dataset, 1118 participants across 

20 sites were excluded because the sites did not have 4 or more females per group after quality 

control, and were therefore too small for statistical modelling. The NIMH dataset (130 

participants) was also excluded from analysis because of segmentation failure, perhaps due to the 

very young ages (range 1-9 years) of the participants, though it was included in previous studies 

that characterized this dataset at the cortical level and did not rely on subcortical segmentations 

(Bedford et al., 2019; Olafson et al., 2021). This left 1897 participants across 11 sites. Of these, 

1331 (342 M-ASD, 497 M-TD, 125 F-ASD, 367 F-TD) scans passed motion QC. All of the other 

excluded sites were in the ABIDE datasets. For details, refer to Tables 1 and 2.

The number of participants varied depending on the specific subcortical structure being 

examined, as segmentation quality control was performed on a per-structure basis. The most 

common failures were the over-segmentation of the caudate nucleus into the third ventricle, and 

the under-segmentation of the anterior caudate nucleus. These failures were reduced by using 

atlases with manually corrected striatal segmentations, by running left and right brains 

separately, and by using a subcortical mask. Quality control results are summarized in Table 3 

(original MAGeT Workflow) and Table 4 (corrected atlases, separate left/right runs, and 

subcortical mask). Table 4 also shows the number of participants with FIQ data.

5.2 No volume differences in ASD

We did not observe any significant volume differences in ASD in the thalamus, striatum, 

or globus pallidus, when controlling for TBV, age and sex (Figure 1). This was true both when
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Figure 1: Forest plots showing results of random-effects meta-analysis across sites for all structures. 
Hedges g* effect sizes are reported for main effect of diagnosis in model structure_volume ~ diagnosis + 
total_brain_volume + age + sex. No main effect of diagnosis was observed. Columns are: site name, 
forest plot, site weight, Hedges g* estimate and 95% confidence intervals. Site codes are: CAM - 
Cambridge Family Study of Autism; Cambridge - UKAIMS Cambridge site; IoP - UKAIMS Institute of 
Psychiatry site; IP - ABIDE Institut Pasteur; KKI - ABIDE Kennedy Krieger Institute; MAX_MUN - 
ABIDE Ludwig Maximilians University Munich; OHSU - ABIDE Oregon Health and Science 
University; SDSU - ABIDE San Diego State University; TORONTO - SickKids / University of Toronto; 
UM - ABIDE University of Michigan
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effect sizes were pooled across sites using random-effects meta-analysis, as well as within most 

sites, with two exceptions: reduced left striatal volume in ASD in the ABIDE OHSU site, and 

reduced right thalamic volume in ASD in the UKAIMS Institute of Psychiatry site. There were 

several nearly significant differences, including reduced right striatal volume at OHSU and left 

thalamic volume at IoP, increased left striatal volume at UKAIMS Cambridge, decreased left 

striatal volume at ABIDE UM, decreased left pallidal volume at IoP, increased left and right 

thalamic volume at ABIDE NYU, and decreased left thalamic volume at ABIDE UM. The 

results were similar when the analysis was repeated including FIQ as a covariate: we did not 

observe any significant volume differences in ASD in any of the six structures.

5.3 Role of age, sex, and IQ in volumetric models

Model selection using site size-weighted Akaike weights indicated that age, but not sex, 

improved model fit for both left and right striatum (Akaike weights 0.46 left, 0.51 right). There 

was somewhat weaker evidence that both age and sex improved model fit for both left and right 

thalamus (Akaike weight 0.42 left and right), and weak evidence that model fit was best when 

neither age nor sex were included for both left and right globus pallidus (Akaike weight 0.35 left, 

0.36 right). Akaike weights for all candidate models are shown in Figure 2. 

We did not observe any effect of ASD diagnosis on subcortical volumes in any of the 

structures when following up with sex-stratified, age-centered, or FIQ-centered analyses.

5.4 Localized effects alterations of surface area and shape in ASD

Although no volumetric effects of diagnosis were found, localized differences in both 

surface area and shape (relative displacement) were found in all structures following vertex-wise 
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Figure 2: Site-size weighted average of Akaike weights showing evidence for each of five candidate 
models for left and right striatum, globus pallidus, and thalamus. Red dots indicate maximum value 
across candidate models. Models are: DX (volume ~ diagnosis), TBV (volume ~ diagnosis + TBV), Sex 
(volume ~ diagnosis + TBV + Sex + DX*Sex), Age (volume ~ diagnosis + TBV + Age + 
diagnosis*Age), Global (volume ~ diagnosis + TBV + Age + diagnosis*Age + Sex + diagnosis*Sex)
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analysis (FDR < .05), as shown in Figure 3.

In the striatum, with the exception of a small, bilateral region of areal expansion on the 

anterior caudate surface and a very small region of areal contraction on the right dorsal caudate 

surface, all surface area and displacement effects were limited to the putamen. These mostly 

comprised a region of areal contraction on the central portion of the right dorsal putamen, and 

small, mainly anterior regions of areal expansion, as well as a left, anterior region of inward 

displacement (decreased convexity), near the nucleus accumbens, and two patches of outward 

displacement on the left antero-ventral and postero-dorsal putamen.

In the thalamus, the largest region of altered surface area was a bilateral region of 

increased surface area on the ventral posterior surface, approximately corresponding with the 

ventral surface of the pulvinar. There was also a fairly large region of positive displacement, 

approximately corresponding with the more lateral surface of the pulvinar and the ventral 

posterolateral nucleus.

No bilateral effects were observed in the globus pallidus. Surface area effects were mainly 

a patch of areal expansion on the left lateral surface, a patch of areal contraction on the right 

posterior medial surface. Displacement effects included a region of positive displacement on the 

central dorsal medial surface of the left pallidum, and a region of negative displacement on the 

left anterior ventral surface.
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Figure 3: Hedges’ g* main effect of ASD diagnosis on vertex-wise surface area and displacement in the 
left and right striatum, thalamus, and globus pallidus, when controlling for total structure volume, age, 
and sex. Warm colours indicate positive effects, cool colours indicate negative effects (g* range -0.3 to 
0.3). Surface area is the Voronoi area surrounding a vertex; displacement represents relative convexity 
(positive) or concavity (negative).
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5.5 Role of age, sex, and FIQ in morphometric models

Vertex-wise model selection analyses indicated that age contributes to the variation in 

surface-based measures, particularly for displacement, over the surface of most of the globus 

pallidus and lateral thalamus, as well as much of the striatum (Figure 4). Including FIQ does not 

improve fit when modeling surface area across most structures, with the exception of a small 

region on the anterior dorsal caudate. There are, however, regions on the surface of all three 

structures where FIQ improves the fit of models of displacement (Figure 5). The influence of sex 

in surface-area models was limited to a relatively small proportion of overall area, with few 

contiguous regions. Sex was important over somewhat larger regions in all three structures in 

models of displacement, but these regions still accounted for less than half of overall surface area 

(Figures 6, 7).

Because of the large proportion of vertices for which age was found to be an important 

explanatory variable, followup age-centered analyses were performed. A representative example 

is shown in Figure 8, for age-centered thalamic displacement, centered at intervals of five years. 

This shows large patches of relative increased convexity in ASD in the dorso- and medio-lateral 

right thalamus, as well as a region of the rostro-ventral thalamus roughly corresponding to the 

pulvinar, but only in childhood. These effects fade by adolescence. In adulthood, relatively little 

of the thalamus shows any shape effects of ASD, though a small region of decreased convexity 

in ASD on the left medial wall appears to be relatively stable throughout adulthood, while there 

is a patch of relative increased concavity appearing from middle age on, near the left pulvinar 

region.

The remainder of the age-centered results are shown in Supplementary Figures SF-1 

through SF-5. 
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Figure 4: Age maps: Regions on the surface of left and right striatum, thalamus, and globus pallidus in 
which the inclusion of age and age-by-diagnosis terms improved model fit, for linear models of surface 
area and displacement on diagnosis, when controlling for sex. Red indicates improved fit with age terms.
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Figure 5: FIQ maps: Regions on the surface of left and right striatum, thalamus, and globus pallidus in 
which the inclusion of FIQ and FIQ-by-diagnosis terms improved model fit, for linear models of surface 
area and displacement on diagnosis, controlling for age and sex. Red indicates improved fit with FIQ.
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Figure 6: Sex maps: Regions on the surface of left and right striatum, thalamus, and globus pallidus in 
which the inclusion of sex and sex-by-diagnosis terms improved model fit, for linear models of surface 
area and displacement on diagnosis, when controlling for age. Red indicates improved fit with sex terms.
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Figure 7: Proportion of vertices for which sex, age, and FIQ improved model fit across left (light) and 
right (dark) striatum (green), thalamus (blue), and globus pallidus (red). Linear models of main effect of 
ASD diagnosis on vertex-wise surface area (left column) and displacement (right column). Red line 
indicates 50%.
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Figure 8: Age-centered analysis, centered on five-year intervals from ages 6-61. Hedges’ g* main effect 
of ASD diagnosis on vertex-wise displacement in the left and right thalamus, when controlling for total 
structure volume and sex. Warm colours indicate positive effects, cool colours indicate negative effects 
(g* range -0.33 to 0.33). Displacement represents relative convexity (positive) or concavity (negative).
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5.6 Linear mixed model and ComBat-harmonized mega-analyses confirm results, are 

less sensitive

A linear mixed model mega-analysis, including site as a random effect, indicated only two 

small regions of significant effects of ASD diagnosis after multiple comparisons correction, 

which roughly comprise a subset of the regions of significant effects detected using meta-

analysis as described above. These were a region of reduced convexity around the left pulvinar, 

and a region of areal contraction around the right posterior pole of the globus pallidus. These 

results are shown in Figure 9.

Modeling the same data using linear models, after harmonizing across sites using ComBat, 

while preserving variation due to age and sex, as well as due to age, sex, and FIQ, reproduced the 

same general patterns, however none of the effects survived correction for multiple comparisons 

(Figures 10, 11).

5.7 No association between symptom severity and subcortical volumes or morphometry

No association was found between scores on the ADOS-CSS and subcortical volumes, 

vertex-wise surface area, or vertex-wise displacement (p > .05 for all structures). Only six sites 

(ABIDE-KKI, ABIDE-NYU, ABIDE-OHSU, ABIDE-SDSU, ABIDE-UM, Toronto) reported 

ADOS-CSS scores, so this analysis was performed with n=241 after motion QC and site 

exclusion.
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Figure 9: Linear-mixed model mega-analysis. Main effect of ASD diagnosis on vertex-wise surface area 
and displacement in the left and right striatum, thalamus, and globus pallidus, when controlling for total 
structure volume, age, and sex. Warm colours indicate positive effects, cool colours indicate negative 
effects (t-value range -5 to 5). Surface area is the Voronoi area surrounding a vertex; displacement 
represents relative convexity (positive) or concavity (negative). Thresholded at FDR < .05.
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Figure 10: Uncorrected for multiple comparisons, ComBat-harmonized mega-analysis without 
controlling for FIQ. Main effect of ASD diagnosis, on vertex-wise surface area and displacement in the 
left and right striatum, thalamus, and globus pallidus, when controlling for total structure volume, age, 
and sex. Warm colours indicate positive effects, cool colours indicate negative effects (Hedges’ g* range 
-0.3 to 0.3). Surface area is the Voronoi area surrounding a vertex; displacement represents relative 
convexity (positive) or concavity (negative). Thresholded at p < .05. No effects survived FDR multiple 
comparisons correction.
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Figure 11: Uncorrected for multiple comparisons, ComBat-harmonized mega-analysis, controlling for 
FIQ. Main effect of ASD diagnosis, on vertex-wise surface area and displacement in the left and right 
striatum, thalamus, and globus pallidus, when controlling for total structure volume, age, sex, and FIQ. 
Warm colours indicate positive effects, cool colours indicate negative effects (Hedges’ g* range -0.3 to 
0.3). Surface area is the Voronoi area surrounding a vertex; displacement represents relative convexity 
(positive) or concavity (negative). Thresholded at p < .05. No effects survived FDR multiple comparisons 
correction.
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6. Discussion

In this study we examined volumetric and morphometric features of the striatum, globus 

pallidus, and thalamus in a large, multi-site, cross-sectional MRI dataset containing both males 

and females, with individuals from 5 to 65 years of age. We found no volumetric differences 

between the ASD and TD groups in any of the structures, but did find several regions of altered 

surface area and convexity in all three structures. Furthermore, age was an important explanatory 

variable across more than 50% of all surfaces when considering convexity/concavity, and across 

more than 50% of the globus pallidus when considering surface area. Sex and FIQ were found to 

be important explanatory variables across 10-25% of vertices, when considering displacement, 

and across fewer than 10% of vertices when considering surface area. No association was found 

between symptom severity and of the volumetric or morphometric measures. Overall, our 

findings help confirm that the neurodevelopment of the striatum, globus pallidus and thalamus 

are affected in ASD, in subtle ways that are not consistent across space or time.

Our findings suggest that it is important to take age into account when looking for 

neuroanatomical differences associated with ASD, because it contributes to neuroanatomical 

heterogeneity. While we did not find volumetric differences in ASD in any of the structures 

across the lifespan, we did find a complex pattern of spatially localized group differences that 

were highly dependent upon age. Normative studies have shown that, in typically developing 

individuals, the thalamus, striatum, and globus pallidus do not undergo uniform growth, but 

rather show complex patterns of localized growth and contraction through childhood, 

adolescence, and adulthood (Raznahan et al., 2014; Tullo et al., 2019). Any effects that are 

detected may therefore be highly dependent on the age of participants in the sample, and this 

may, in part, explain why the literature on this question is so discordant. It may be that localized 
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expansion and contraction in different regions has a cancellation effect, such that overall volume 

changes may be very slight and may depend on the ages of the participants in any given sample. 

Also, these growth patterns differ between structures, and change over the lifetime. The volume 

of the striatum, for instance, tends to peak during childhood or adolescence and then decrease 

monotonically throughout adulthood, whereas thalamic volume can remain stable for decades 

(Dima et al., 2022; Tullo et al., 2019; Wierenga et al., 2014), though the timing of peak volume 

attainment can differ between the sexes (Raznahan et al., 2014).

Overall, although we found no group differences in volumes at any point in the lifespan, 

we did find that localized surface area and displacement group differences were more 

pronounced in childhood and adolescence, and attenuated and occupying different regions in 

adulthood. In the thalamus, the overall pattern was a shift from relatively more convex shape in 

ASD in childhood, to relatively less convex/more concave shape in ASD in later adulthood, as 

well as regions of relative areal contraction in ASD in childhood, particularly in the left anterior 

thalamus, which showed the reverse patterns beginning in late middle age (Figure SF-3). In the 

globus pallidus, the effects were quite asymmetrical, with regions of surface area expansion on 

the lateral face of the left globus pallidus in childhood, while the dominant pattern on the right 

was of relative areal contraction in ASD at the anterior and posterior poles during the same time 

period. Through adulthood, the right globus pallidus shows no diagnostic effects, while there is a 

region of relative areal expansion on the left medial wall. Nevertheless, none of these effects 

were sufficiently large to register as volumetric differences in ASD in any of the structures 

studied here. 

While the under-representation of females in ASD studies is improving, the low 

prevalence of females with ASD has led to the disorder being understudied in females, despite 
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evidence that sex modulates the effect of ASD diagnosis on neuroanatomy (Bedford et al., 2019; 

Lai et al., 2017). Consequently, there is very little evidence regarding sexual dimorphism in ASD 

in the structures studied here. One recent large study performed by the ENIGMA consortium 

found no sex-by-diagnosis interaction effect on the volumes of any of these structures (van Rooij 

et al., 2018), which is consistent with our results. The picture is less clear when looking at 

localized morphometry: including sex in the model did improve fit over between 5% and 10% of 

vertices when evaluating relative differences in surface area, and between 15% and 25% of 

vertices for relative displacement differences (see Figure 7). In particular, the medial caudate 

bilaterally, and much of the dorsolateral thalamus, when considering the effect of ASD on 

localized displacement, may exhibit qualitatively sexually dimorphic effects (Figure 6), despite 

the lack of evidence for a sex-by-diagnosis interaction in their volumes.

In addition to sex, FIQ is often unexamined in studies of ASD, despite evidence that 

differences in FIQ are associated with subcortical neuroanatomical differences. Various studies 

have found correlations between FIQ and regional volumes of both cortex and subcortical 

structures (Burgaleta et al., 2014; Colom et al., 2013; Grazioplene et al., 2015). We did not 

evaluate this directly in the structures under study, but rather asked whether accounting for FIQ 

improves our modelling of the effect of ASD on their volume and morphometry. We did not find 

any evidence that this is the case, which is consistent with several recent reports (Schuetze et al., 

2016; van Rooij et al., 2018).

We used the ADOS-2 CSS as a measure of symptom severity, to evaluate the relationship 

with our measures of subcortical volumes and morphometry. Unfortunately, there was no 

consistent measure available in all of the datasets: a variety of ADOS versions and modules were 

used. This resulted in a relatively underpowered study, with data from a maximum of n=241 
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participants. Our finding of no relationship in any of the structures is at odds with the findings of 

other groups, which have found associations between restricted, repetitive behaviours and 

pallidal surface area (Schuetze et al., 2016), as well as growth rates of the caudate (Langen et al., 

2014). However, the fact that our findings diverge from those in the literature may be due to the 

relatively low statistical power in this portion of the study, for which the available dataset 

comprised less than a fifth of data available for the other analyses reported here.

A number of limitations of this study should be considered. First, the data used was 

compiled from many smaller datasets, each collected for other purposes. There is therefore no 

harmonization between datasets in terms of sample characteristics, inclusion/exclusion criteria, 

MRI hardware, software, or acquisition parameters, or behavioural measures captured. To allow 

for meaningful statistical analysis, we used a meta-analytic technique that has been used 

successfully before (Bedford et al., 2019; Olafson et al., 2021), and followed up with two other 

commonly used data combination techniques: linear mixed models and ComBat harmonization. 

A related issue is the paucity of behavioural measures that were available across multiple sites, 

and the lack of other potentially relevant demographic information, such as socioeconomic 

status. There is some evidence that accounting for such behavioural and demographic 

heterogeneity improves the sensitivity of surface-based morphological measures, at least in small 

samples  (Qiu et al., 2010). Large datasets that include consistent behavioural measures, such as 

the Quebec 1000 Families cohort now underway (q1k.ca), will make possible large studies that 

account for behavioural heterogeneity in a more comprehensive way.

The cross-sectional nature of the data also limits to some degree the scope of 

interpretation of these results. While some datasets did include longitudinal scans, for the 

majority of participants only a single timepoint was available. This makes it difficult to draw any 
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direct conclusions about how neurodevelopmental trajectories may be altered in ASD. And, 

though the dataset includes participants from ages 5 to 65, it is heavily weighted towards the 

younger end of the spectrum, with relatively sparse representation in middle age and beyond. 

Finally, after quality control and removal of sites with too few females to allow for statistical 

analysis, we were able to retain between 31% and 40% of participants, depending on the 

structure. This is an unfortunately high rate of data attrition, however, given that including 

relatively poor quality scans can introduce artifactual effects (Bedford et al., 2019; Ducharme et 

al., 2016), it was a necessary step. That said, while the effect of motion on cortical measures is 

well documented, particularly at distal regions such as the orbitofrontal cortex and temporal 

poles, the effect on the subcortical morphometric measures used here are currently less well 

understood and, considering their central location in the brain, may not be as drastic.
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7. Conclusion

The subcortex remains understudied in ASD in relation to the cortical sheet, and yet 

subcortical structures like the basal ganglia and thalamus play a central role in a variety of 

behaviours that are common in ASD. Even when cortical systems are a target of study, the 

thalamus and basal ganglia are relevant because both mediate and modulate a large amount of 

cortico-cortical communication. Unfortunately, the results of neuroimaging studies of both 

cortical and subcortical structures in ASD have been discordant, and it has been difficult to find a 

consistent narrative. This may be due to biological heterogeneity that reflects the underlying 

genetic heterogeneity in ASD.

This study attempts to parse potential sources of this heterogeneity by examining the role 

of sex, age, and IQ in neuroanatomical alterations in the thalamus, striatum, and globus pallidus 

in ASD, using a combination of techniques from statistics and information theory. It does this 

using a large dataset that includes both males and females and that covers the lifespan from early 

childhood to the seventh decade. This dataset provides the power required to find subtle 

neuroanatomical differences, but presents certain technical challenges in combining data 

between sites while minimizing the effect of non-biological, inter-site differences. We overcame 

these challenges by using a prospective meta-analytic technique, allowing us first to model the 

effect of ASD within each site, and then combine the effects across sites.

This meta-analytic technique was used to examine subcortical volumes, then was 

extended and used in a series of surface-based, vertex-wise analyses that have been shown to be 

sensitive to localized alterations of shape that cannot be detected using global volumetric 

measurements. To our knowledge, this is the first time that this combination of techniques has 

been used to investigate subtle alterations in subcortical structure in ASD. We found no 
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volumetric differences in ASD in any of the structures. However, we found a number of 

localized surface area and shape differences in all three structures, which were not apparent in 

the volumetric analysis. Also, age was an important variable across more than half of most 

surfaces. Follow-up age-centered analysis indicated a variety of age-dependent regional 

differences. We found no correlations between symptom severity and neuroanatomical 

alterations in ASD, though this portion of the study was significantly underpowered compared to 

other analyses.

Overall, our findings help confirm that the neurodevelopment of the striatum, globus 

pallidus and thalamus are affected in ASD, in a subtle location-dependent manner that is not 

reflected in overall structure volumes, and that is highly non-uniform across the lifespan.
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Tables

Table 1: Demographics (Included Sites)

ASD Typically Developing

Male Female Male Female Age Range

ABIDE - IP 14 8 12 22 6-46

ABIDE - KKI 58 19 123 65 8-12

ABIDE - MAX 
MUN 21 3 29 4 7-58

ABIDE - NYU 135 19 107 28 5-39

ABIDE - OHSU 43 7 42 29 7-15

ABIDE - SDSU 39 8 39 8 7-18

ABIDE - UM 58 10 59 18 8-28

CAM 39 17 20 20 12-18

Cambridge 29 32 32 33 18-49

IoP 43 22 41 21 18-52

TORONTO 106 25 196 194 4-65

Subtotal
585 170 700 442

755 1142

Grand Total 1897

Demographic data for all sites that were included in statistical analysis. Site codes are: CAM - Cambridge 
Family Study of Autism; Cambridge - UKAIMS Cambridge site; IoP - UKAIMS Institute of Psychiatry 
site; IP - ABIDE Institut Pasteur; KKI - ABIDE Kennedy Krieger Institute; MAX_MUN - ABIDE 
Ludwig Maximilians University Munich; OHSU - ABIDE Oregon Health and Science University; SDSU 
- ABIDE San Diego State University; TORONTO - SickKids / University of Toronto; UM - ABIDE 
University of Michigan.
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Table 2: Demographics (Excluded Sites)

ASD Typically Developing

Male Female Male Female Age Range

ABIDE - BNI 29 0 29 0 18-64

ABIDE - CALTECH 15 4 15 4 17-56

ABIDE - CMU 11 3 10 3 19-40

ABIDE - EMC 22 5 22 5 6-10

ABIDE - ETH 13 0 24 0 13-30

ABIDE - GU 43 8 28 27 8-13

ABIDE - IU 16 4 15 5 17-54

ABIDE - KUL 28 0 0 0 18-35

ABIDE - LEUVEN 26 3 30 5 12-32

ABIDE - OLIN 17 3 14 2 10-24

ABIDE - ONRC 20 4 20 15 18-31

ABIDE - PITT 26 4 23 4 9-35

ABIDE - SBL 15 0 15 0 20-64

ABIDE - STANFORD 16 4 16 4 7-12

ABIDE - TCD 21 0 21 0 10-20

ABIDE - TRINITY 24 0 25 0 12-25

ABIDE - UCD 14 4 10 4 12-17

ABIDE - UCLA 63 7 50 11 7-17

ABIDE - USM 73 2 56 3 8-50

ABIDE - YALE 20 8 20 8 7-17

NIMH 68 17 29 16 1-9

Subtotal
580 80 472 116

660 588

Grand Total 1248

Demographic information for sites that were excluded from statistical analysis, due either to insufficient 
females in the ASD or control groups after quality control, or failed segmentation. Site codes are: BNI - 
Barrow Neurological Institute; CALTECH - California Institute of Technology; CMU - Carnegie Mellon 
University; EMC - Erasmus University Medical Center Rotterdam; ETH - ETH Zürich; GU - Georgetown 
University; IU - Indiana University; KUL - Katholieke Universiteit Leuven; LEUVEN - University of 
Leuven; OLIN - Olin, Institute of Living at Hartford Hospital; ONRC - Olin Neuropsychiatry Research 
Center, Institute of Living at Hartford Hospital; PITT - University of Pittsburgh School of Medicine; SBL 
- Social Brain Lab, BCN NIC UMC Groningen and Netherlands Institute for Neurosciences; 
STANFORD - Stanford University; TCD - Trinity Center for Health Sciences (Release 2); TRINITY - 
Trinity Center for Health Sciences (Release 1); UCD - University of California, Davis; UCLA - 
University of California, Los Angeles; USM - University of Utah School of Medicine; YALE - Yale 
Child Study Center; NIMH - National Institute of Mental Health
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Table 3: Quality Control Results, Original Workflow

Total
Motion
Passed

L Str
Passed

R Str
Passed

L GP
Passed

R GP
Passed

L Thal
Passed

R Thal
Passed

ABIDE - IP
56 39 26 31 38 38 38 38

ABIDE - KKI
265 156 119 117 156 156 156 156

ABIDE - MAX 
MUN

57 41 28 34 41 41 37 39

ABIDE - NYU
289 195 148 157 195 195 190 188

ABIDE - OHSU
121 98 77 76 98 98 96 95

ABIDE - SDSU
94 48 39 41 47 47 47 47

ABIDE - UM
145 66 44 46 66 66 62 63

CFSA
96 57 39 35 57 57 53 54

UKAIMS - 
Cambridge

126 117 82 81 114 114 109 110

UKAIMS - IoP
127 110 68 77 105 105 99 97

TORONTO
521 404 254 270 402 387 366 374

Total 1897 1331 924 965 1319 1304 1253 1261

Segmentation results for original MAGeT Brain workflow, showing the number of participants per site, 
including total number, number that passed motion QC, and number that passed segmentation QC for 
each structure. Only sites that were not excluded are shown.
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Table 4: Quality Control Results, Improved Workflow

Total
Motion
Passed

L Str
Passed

R Str
Passed

L GP
Passed

R GP
Passed

L Thal
Passed

R Thal
Passed

ABIDE - IP 56 39 35 37 38 38 38 37

ABIDE - KKI 265 156 118 101 156 156 155 155

ABIDE - MAX 
MUN

57 41 37 39 41 41 41 40

ABIDE - NYU 289 195 177 170 195 195 192 190

ABIDE - OHSU 121 98 79 76 98 98 95 97

ABIDE - SDSU 94 48 40 40 47 47 47 47

ABIDE - UM 145 66 56 53 66 66 65 65

CFSA 96 57 44 38 57 57 55 55

UKAIMS - 
Cambridge

126 117 94 86 114 114 109 109

UKAIMS - IoP 127 110 74 82 103 103 99 100

TORONTO 521 404 336 323 403 403 397 397

Total 1897 1331 1090 1045 1318 1318 1293 1292

w/FIQ 1220 1002 953 1216 1216 1194 1192

Segmentation results for improved MAGeT Brain workflow (left-right split runs and subcortical 
masking), showing the number of participants per site, including total number, number that passed motion 
QC, and number that passed segmentation QC for each structure. Only sites that were not excluded are 
shown. Last row indicates the number of participants with FIQ data available. Overall segmentation 
accuracy improved compared to the initial workflow (Table 3), particularly in the striatum.
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Supplementary Figures

Figure SF-1: Age-centered analysis, centered on five-year intervals from ages 6-61. Hedges’ g* main 
effect of ASD diagnosis on vertex-wise displacement in the left and right striatum, when controlling for 
total structure volume and sex. Warm colours indicate positive effects, cool colours indicate negative 
effects (g* range -0.33 to 0.33). Displacement represents relative convexity (positive) or concavity 
(negative).
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Figure SF-2: Age-centered analysis, centered on five-year intervals from ages 6-61. Hedges’ g* main 
effect of ASD diagnosis on vertex-wise displacement in the left and right globus pallidus, when 
controlling for total structure volume and sex. Warm colours indicate positive effects, cool colours 
indicate negative effects (g* range -0.33 to 0.33). Displacement represents relative convexity (positive) or 
concavity (negative).
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Figure SF-3: Age-centered analysis, centered on five-year intervals from ages 6-61. Hedges’ g* main 
effect of ASD diagnosis on vertex-wise surface area in the left and right thalamus, when controlling for 
total structure volume and sex. Warm colours indicate positive effects, cool colours indicate negative 
effects (g* range -0.33 to 0.33). Surface area is the Voronoi area surrounding a vertex.
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Figure SF-4: Age-centered analysis, centered on five-year intervals from ages 6-61. Hedges’ g* main 
effect of ASD diagnosis on vertex-wise surface area in the left and right striatum, when controlling for 
total structure volume and sex. Warm colours indicate positive effects, cool colours indicate negative 
effects (g* range -0.33 to 0.33). Surface area is the Voronoi area surrounding a vertex.
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Figure SF-5: Age-centered analysis, centered on five-year intervals from ages 6-61. Hedges’ g* main 
effect of ASD diagnosis on vertex-wise surface area in the left and right globus pallidus, when controlling 
for total structure volume and sex. Warm colours indicate positive effects, cool colours indicate negative 
effects (g* range -0.33 to 0.33). Surface area is the Voronoi area surrounding a vertex.
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