The Role of Leucine-Rich Repeat Proteins Amigo1 and Slitrk1 in the Formation and Maintenance of Nervous System Circuits

Reesha Raja

Integrated Program in Neuroscience
Montreal Neurological Institute
McGill University
Montreal, Quebec, Canada

August 2020

A thesis dissertation submitted to the Department of Graduate and Postdoctoral Studies of McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Neurological Sciences

© Reesha Raja, 2020
Table of Contents

Abstract ... 6
Résumé .. 7
List of Figures ... 9
List of Abbreviations ... 10
Acknowledgements ... 12
Author Contributions ... 13

Chapter 1: General Introduction .. 14

I. Preface ... 14

II. Introduction Part 1 – Slitrk family members and their roles in synaptogenesis 15

 1. Steps to synapse formation and the role of LRR-containing proteins 16
 2. The Slitrks ... 18
 3. Objectives for Manuscript 1 (Chapter 2) .. 24

III. Introduction part 2 .. 26

 1. Amigo1 ... 26
 2. Axon guidance and target selection in the mouse olfactory system 29
 3. Rationale and objectives for Manuscript 2 (Chapter 3) .. 35
 4. Mossy fiber projections of the Hippocampal Circuit .. 35
 5. Objectives for Manuscript 3 (Chapter 4) .. 48

Chapter 2: Slitrk1 is localized to excitatory synapses and promotes their development .. 49

I. Preface ... 49

II. Acknowledgements ... 50

III. Abstract .. 50

IV. Introduction .. 51

V. Results ... 53
1. Slitrk1 is preferentially localized at excitatory synapses. ... 53
2. Overexpression of Slitrk1 and Slitrk2 in neurons increases synapse density. 56
3. Knockdown of Slitrk1 reduces synapse number in hippocampal neuron cultures. 59
4. The second leucine-rich repeat of Slitrk1 is necessary for its homophilic interaction at the cell surface. ... 62

VI. Discussion ... 67

VII. Materials and Methods .. 69
1. cDNA constructs .. 69
2. Antibodies ... 70
3. Cell culture .. 70
4. Slitrk1 knockdown .. 71
5. Transfection and immunocytochemistry .. 71
6. Image acquisition and quantification ... 72
7. Production of PTPδ-Fc protein .. 72
8. Cell surface binding assay ... 72
9. Crosslinking ... 73
10. Synaptosomal fractionation ... 73
11. Cell surface biotinylation .. 73
12. Immunoprecipitation and Western Blotting ... 74

Chapter 3: Amigo1 is expressed specifically in ventrolateral olfactory epithelium but is dispensable for olfactory receptor neuron targeting in the mouse olfactory system 75

I. Preface... 75
II. Acknowledgements ... 75
III. Abstract ... 76
IV. Introduction ... 77
V. Results .. 79
1. Amigo1 is enriched in ventrolateral ORNs. .. 79
2. Insertion of a neomycin selection cassette in the Amigo1 locus disrupts development of ventrolateral ORNs. .. 83
3. Defects to ventral glomeruli formation are caused by decreases in the numbers of ventrolateral ORN populations ... 94
4. Gene transcription is altered in the OE of Amigo1^{neo/neo} mice 100

VI. Discussion ... 107
1. Mechanisms underlying the loss of OR identity in ventrolateral ORNs in Amigo1^{neo/neo} mice .. 107
2. Potential factors influencing region-specific effects on OR expression and ORN development. .. 109

VII. Materials and Methods .. 112
1. Animals ... 112
2. In situ hybridization and RT-PCR .. 113
3. Western Blot .. 115
4. Immunohistochemistry ... 115
5. Imaging and Image Analysis ... 116
6. RNASeq ... 117

Chapter 4: Amigo1 is required in the development and maintenance of hippocampal mossy fiber projections to CA3 ... 118

I. Preface .. 118
II. Acknowledgements ... 118
III. Abstract ... 119
IV. Introduction ... 119
V. Results .. 121
1. Amigo1 is differentially expressed in populations of cells of various brain regions... 121
2. Loss of Amigo1 expression leads to altered development of the infrapyramidal mossy fiber bundle ... 125
3. Loss of Amigo1 expression leads to perturbed mossy fiber fasciculation and altered presynaptic terminal formation .. 128

VI. Discussion .. 134

VII. Materials and Methods ... 138
1. Animals .. 138
2. In situ hybridization .. 138
3. Immunohistochemistry ... 139
4. 5-Bromo-4-Chloro-3-Indolyl β-D-Galactopyranoside (X-Gal) Staining 140
5. Timm staining ... 140
6. Imaging and Image Analysis ... 141

Chapter 5: General Discussion .. 143

I. Summary .. 143

II. Slitrks in Synaptogenesis ... 144
1. A place for Slitrk1 in the network of synaptic adhesion molecules 144

III. Amigo1 in axonal fasciculation .. 148
1. Amigo1 as a cell adhesion molecule ... 149
2. Amigo1 as a regulator of neuronal activity ... 150

IV. Conclusion .. 153

References .. 154
Abstract

The functional assembly of the nervous system requires the organization of billions of neurons growing axons to connect to one another in remarkably precise patterns. These connections are formed by the orchestration of many developmental processes, from neurogenesis, to neurite outgrowth, axon guidance, target selection and synaptogenesis. Each of these individual processes are mediated by thousands of molecules expressed in precise locations and developmental time points, accuracy of which is crucial for proper nervous system functionality. One family of molecules involved in these processes are the leucine-rich repeat (LRR) containing proteins. The LRR domains are known to mediate homophilic or heterophilic protein interactions, providing the proteins with the ability to serve in diverse functions such as cell-cell interaction or adhesion. Importantly, several neurological disorders have been linked by genetic studies to mutations in the genes encoding LRR family members. Herein, we use both in vitro and in vivo methods to provide evidence for roles of two LRR proteins in multiple developmental processes crucial for proper nervous system development. First, we identify a role for Slitrk1 in excitatory synapse formation and characterize roles for its LRR domains in mediating protein interactions. Second, we show differential requirement for the LRR and Ig domain-containing Amigo1 in mouse nervous system development. While Amigo1 is dispensable for the targeting of olfactory sensory axons to their targets, it is crucial for proper targeting of hippocampal mossy fibers in fasciculated tracts. In addition to identifying a function for Amigo1 in axonal fasciculation, our in vivo analyses revealed potential off-target effects associated with the insertion of an antibiotic resistance selection gene in the mouse genome, thereby serving as a cautionary tale for the interpretation of phenotypes in genetically-targeted mouse models. Taken together, our results show that Slitrk1 and Amigo1 both contribute in spatially and temporally specific ways in nervous system development.
Résumé

Le développement du système nerveux nécessite l’organisation précise de milliards de neurones. Ces neurones communiquent via leur axone et leurs dendrites pour ainsi former un réseau bien précis. Cet assemblage complexe nécessite l’orchestration de différents processus développementaux incluant la neurogénèse, la croissance des neurites, la guidance axonale, le choix de la cible et finalement la formation de synapses. Chacun de ces processus est contrôlé par l’expression spatio-temporelle précise de milliers de molécules, et l’exactitude de ce code moléculaire est essentiel au bon fonctionnement du système nerveux. Une des familles de molécules impliquées dans ces processus sont les protéines à motifs LRR (leucine-rich repeat). Ces domaines LRR sont connus pour médier les interactions homophiliques et hétérophiliques entre protéines, ce qui permet à ces protéines d’avoir des fonctions d’intérations et d’adhésions entre cellules. Il est intéressant de noter que des mutations dans certains gènes codants pour ces protéines-LRR ont été impliquées dans plusieurs maladies neurologiques d’origine génétique.

Dans nos études, nous utilisons des méthodes in vitro et in vivo afin de démontrer la fonction de 2 protéines de cette famille dans des processus essentiels au développement du système nerveux. Premièrement, nous décrivons un rôle pour Slitrk1 dans la formation de synapses excitatrices et nous caractérisons un rôle spécifique pour chacun de ses motifs LRR dans la promotion d’intéractions entre protéines. Ensuite, nous démontrons qu’Amigo1 est important pour le développement du système nerveux chez la souris. Amigo1 semble essentiel pour la fasciculation et la guidance de certains axones provenant de neurones situés dans l’hippocampe, appelés les mossy fibers. Il n’est toutefois pas nécessaire pour guider les axones des neurones olfactifs vers leur cible, le bulbe olfactif. En plus d’identifier un rôle pour Amigo1 dans la fasciculation axonale, nos analyses in vivo ont révélées certains problèmes reliés à l’utilisation de modèles génétiques.
provenant de la recombinaison homologue et de l’insertion de gènes de résistance aux antibiotiques dans le génome de la souris, servant ainsi de mise en garde pour l’interprétation de phénotypes chez des souris produites à l’aide de cette méthode. En résumé, nos résultats montrent que Slitrk1 et Amigo1 contribuent de façon spécifique au développement du système nerveux.
List of Figures

Chapter 1

Figure 1: Structures of Slitrk and Amigo1 ... 25
Figure 2: Two-step targeting of olfactory sensory axons to the OB 34
Figure 3: Organization of the Hippocampal Circuit ... 37

Chapter 2

Figure 1: Localization of Slitrk1 at the synapse... 55
Figure 2: Overexpression of Slitrk1 and Slitrk2 in cultured neurons increases the amount of presynaptic excitatory and inhibitory contacts ... 57
Figure 3: Knockdown of Slitrk1 by shRNA in cultured neurons reduces synapse density 60
Figure 4: Slitrk1 molecules have the ability to interact at the cell surface 64
Figure 5: Determination of the LRR domain required for homophilic binding 65

Chapter 3

Figure 1: Amigo1 is expressed in the ventrolateral region of the olfactory epithelium........ 81
Figure 2: Knockout of Amigo1 ablates transcription of amigo1 mRNA and production of Amigo1 protein... 84
Figure 3: Amigo1neo/neo but not Amigo1−/− mutants show defects in the targeting of MOR28-positive axons to the olfactory bulb... 87
Figure 4: Presence of the neomycin cassette in Amigo1neo/neo animals disrupts glomerular size exclusively in ventral OB ... 90
Figure 5: Presence of the neomycin cassette in Amigo1neo/neo animals disrupts glomerular formation exclusively in ventral OB ... 92
Figure 6: The decrease in the size of ventral OB glomeruli is associated with a concomitant decrease in the size of ventrolateral ORN populations in the OE ... 95
Figure 7: The decrease in number of ORNs of ventrolateral populations is not due to alteration rates of proliferation, maturation, or cell death ... 98
Table 1: List of differentially expressed genes from RNA sequencing data 102
Table 2: List of olfactory receptor genes from RNA sequencing data with known zone indices.. 105
Table 3: Continuation of table 2.. 106

Chapter 4

Figure 1: Amigo1 is expression patterns are recapitulated by X-gal staining 122
Figure 2: Differential expression of Amigo1 is developmentally regulated in various brain structures ... 124
Figure 3: Loss of Amigo1 disrupts the length of infrapyramidal bundle during development, which is restored by 2 months .. 127
Figure 4: Loss of Amigo1 disrupts the mossy fiber fasciculation 130
Figure 5: Loss of Amigo1 results in the formation of ectopic mossy fiber boutons in CA3 ..132
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADHD</td>
<td>Attention deficit hyperactivity disorder</td>
</tr>
<tr>
<td>AMIGO</td>
<td>Amphoterin-induced gene and ORF</td>
</tr>
<tr>
<td>BACE1</td>
<td>Beta-secretase 1</td>
</tr>
<tr>
<td>BCIP</td>
<td>5-bromo-4-chloro-3-indolylphosphate</td>
</tr>
<tr>
<td>BDNF</td>
<td>Brain-derived neurotrophic factor</td>
</tr>
<tr>
<td>CA</td>
<td>cornu ammonis</td>
</tr>
<tr>
<td>CAM</td>
<td>cell adhesion molecule</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CCAC</td>
<td>Canadian Council on Animal Care</td>
</tr>
<tr>
<td>CIHR</td>
<td>Canadian Institutes for Health Research</td>
</tr>
<tr>
<td>CHL1</td>
<td>Close homolog of L1</td>
</tr>
<tr>
<td>CNG</td>
<td>Cyclic nucleotide-gated</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>DCC</td>
<td>Deleted in colorectal carcinoma</td>
</tr>
<tr>
<td>DEPC</td>
<td>diethyl pyrocarbonate</td>
</tr>
<tr>
<td>DG</td>
<td>dentate gyrus</td>
</tr>
<tr>
<td>DIV</td>
<td>days in vitro</td>
</tr>
<tr>
<td>DM</td>
<td>dorsomedial</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>E</td>
<td>embryonic day</td>
</tr>
<tr>
<td>EC</td>
<td>entorhinal cortex</td>
</tr>
<tr>
<td>EGFP</td>
<td>Enhanced green fluorescent protein</td>
</tr>
<tr>
<td>FAK</td>
<td>Focal adhesion kinase</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma aminobutyric acid</td>
</tr>
<tr>
<td>GC</td>
<td>granule cells</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GPC4</td>
<td>Glypican 4</td>
</tr>
<tr>
<td>GPCR</td>
<td>G-protein-coupled receptor</td>
</tr>
<tr>
<td>GPI</td>
<td>Glycosylphosphatidylinositol</td>
</tr>
<tr>
<td>HC</td>
<td>Hippocampus</td>
</tr>
<tr>
<td>HEK</td>
<td>Human embryonic Kidney</td>
</tr>
<tr>
<td>HSPG</td>
<td>Heparan sulfate proteoglycan</td>
</tr>
<tr>
<td>IPB</td>
<td>infrapyramidal bundle</td>
</tr>
<tr>
<td>IRIC</td>
<td>Institute for Research in Immunology and Cancer</td>
</tr>
<tr>
<td>KOMP</td>
<td>Knockout Mouse Project</td>
</tr>
<tr>
<td>LAMP</td>
<td>Limbic-associated membrane protein</td>
</tr>
<tr>
<td>LAR</td>
<td>Leukocyte common antigen-related protein</td>
</tr>
<tr>
<td>LMT</td>
<td>large mossy terminals</td>
</tr>
<tr>
<td>LMT-C</td>
<td>LMT complexes</td>
</tr>
<tr>
<td>LRR</td>
<td>leucine-rich repeat</td>
</tr>
<tr>
<td>LRRRTMs</td>
<td>Leucine-rich repeat transmembrane neuronal proteins</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MF</td>
<td>mossy fiber</td>
</tr>
<tr>
<td>MFB</td>
<td>mossy fiber bouton</td>
</tr>
<tr>
<td>MFS</td>
<td>mossy fiber sprouting</td>
</tr>
<tr>
<td>mIPSC</td>
<td>mini postsynaptic inhibitory current</td>
</tr>
<tr>
<td>MNI-ACC</td>
<td>Montreal Neurological Institute Animal Care Committee</td>
</tr>
<tr>
<td>NBF</td>
<td>neutral buffered formalin</td>
</tr>
<tr>
<td>NBT</td>
<td>nitro-bluetetrazolium chloride</td>
</tr>
<tr>
<td>NCAM</td>
<td>Neural cell adhesion molecule</td>
</tr>
<tr>
<td>NGL</td>
<td>Netrin-G ligand</td>
</tr>
<tr>
<td>Nrp1</td>
<td>Neuropilin-1</td>
</tr>
<tr>
<td>Nrp2</td>
<td>Neuropilin-2</td>
</tr>
<tr>
<td>OB</td>
<td>olfactory bulb</td>
</tr>
<tr>
<td>OCD</td>
<td>Obsessive-compulsive disorder (OCD)</td>
</tr>
<tr>
<td>OE</td>
<td>olfactory epithelium</td>
</tr>
<tr>
<td>OMP</td>
<td>Olfactory marker protein</td>
</tr>
<tr>
<td>OR</td>
<td>olfactory receptor</td>
</tr>
<tr>
<td>ORN</td>
<td>olfactory receptor neuron</td>
</tr>
<tr>
<td>P</td>
<td>postnatal day</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate-buffered saline</td>
</tr>
<tr>
<td>PFA</td>
<td>paraformaldehyde</td>
</tr>
<tr>
<td>PHH3</td>
<td>Phospho-histone H3</td>
</tr>
<tr>
<td>PSA-NCAM</td>
<td>Polysialic acid-neural cell adhesion molecule</td>
</tr>
<tr>
<td>PSD-95</td>
<td>Postsynaptic density protein 95</td>
</tr>
<tr>
<td>RGM</td>
<td>Repulsive guidance molecule A</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>Robo-2</td>
<td>Roundabout-2</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxidative species</td>
</tr>
<tr>
<td>RPTPs</td>
<td>Type IIA receptor-type protein tyrosine phosphatases</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse transcription polymerase chain reaction</td>
</tr>
<tr>
<td>SALMs</td>
<td>Synaptic adhesion-like molecule</td>
</tr>
<tr>
<td>shRNAs</td>
<td>short hairpin RNA</td>
</tr>
<tr>
<td>SPB</td>
<td>suprapyramidal bundle</td>
</tr>
<tr>
<td>SSC</td>
<td>saline sodium citrate</td>
</tr>
<tr>
<td>SynCAM</td>
<td>Synaptic cell adhesion molecule</td>
</tr>
<tr>
<td>TA</td>
<td>terminal arborization</td>
</tr>
<tr>
<td>TBST</td>
<td>tris buffered saline with tween</td>
</tr>
<tr>
<td>TE</td>
<td>thorny excrescence</td>
</tr>
<tr>
<td>TS</td>
<td>Gilles de la Tourette’s syndrome</td>
</tr>
<tr>
<td>VGAT</td>
<td>Vesicular GABA transporter</td>
</tr>
<tr>
<td>VGLUT</td>
<td>Vesicular glutamate transporter</td>
</tr>
<tr>
<td>VL</td>
<td>ventrolateral</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-Bromo-4-Chloro-3-Indolyl β-D-Galactopyranoside</td>
</tr>
<tr>
<td>β-gal</td>
<td>β-galactosidase</td>
</tr>
</tbody>
</table>
Acknowledgements

Starting graduate school as a master’s student and then transferring to the Ph.D. program were both daunting ideas for me. I would not have taken these steps were it not for my Professor, Dr. Jean-Francois Cloutier who believed in me from the beginning. JF, through my 10 years of being a part of the Cloutier lab, you have offered input, advice, and encouragement every step of the way. You have provided me with generous opportunities to grow as a scientist (and as a rock climber). I could not have asked for a better mentor! Thank you, JF.

I am indebted to my senior lab mates for everything that they have done for me. Emilie, a heartfelt thank you for being my strongest support through it all, from helping troubleshoot experiments, to always being positive and patient with me - I could not have done it without you, and I will miss you dearly! To Janet, having you first as a senior lab mate and role model and now as a friend, I have always been able to count on you for advice and support, and entertaining stories to keep me going. To Francois, thank you for teaching me so much science, for trusting me with the Slitrk project after you graduated, and for motivating me to “be a better version of me”. To Jin, thank you for the knowledge you’ve passed on and for being a model of an amazing scientist!

Looking back at the friends I’ve made along the way, I want to especially mention Joseph Kam, Alex Brignall and our ‘post-5p.m.-discussions’; Allen Scholl for weekly (*daily) coffees; Chris for the endless puns; Neelima for making sure I stay hydrated; Sab for appreciating my fashion sense; and Sydney for being such a cool ‘mini’ prep. To all former and current lab members for your endless support and motivation. My sincerest thank you. From designing Halloween costumes in lab, to heart-to-heart conversations and fun banter, I will cherish the many memorable moments.

From neighbouring labs, those who have made a lasting impression: Zahraa Chorghay, Sejal Davla, Karen Fung, Stephanie Harris, Camille Juzwik, Lawrie Shahbazian, Shannon Swikert. All the research technicians from the MP and BTRC labs who have shared their expertise along the way – you have been awesome.

My gratitude extends to my respected committee members, Dr. Tim Kennedy and Dr. Don Van Meyel who supported the ups and downs of my thesis projects, and to those who have imparted their knowledge and guidance, namely Mitra Cowan, Dr. Stefani Stifani, Dr. Keith Murai, Dr. Ed Ruthazer and Dr. Josephine Nalbantoglu.

To my roots: Mom and Dad, who lovingly keep me grounded, encourage me to shine and who find their happiness in me finding mine. To my brother Sheil, who has always been a source of inspiration and support not only through this endeavor, but through life. My late grandfather and my living grandparents, who have set the stage for strength and success. My cousins who are my forever-cheerleading squad, thank you for all the phone calls and reassurance! For the valuable friendships outside of lab, both old and new, that have supported me in this journey, I am forever grateful.

And finally (I have been waiting a decade to say this): Adios, “Amigos”!
Author Contributions

Chapter 1: General Introduction

Reesha Raja wrote all the material and prepared all figures

Chapter 2: Slitrk1 is localized to excitatory synapses and promotes their development

This chapter was published in Scientific Reports in 2016.

R.R., F.B., and J.-F.C. conceived the experiments.
R.R. and F.B. performed the experiments and analyzed the results.
T.E.K. and A.E.F provided reagents and technical insight.
R.R., F.B., and J.-F.C. wrote the manuscript and all authors provided comments.

Chapter 3: Amigo1 is expressed specifically in ventrolateral olfactory epithelium but is dispensable for olfactory receptor neuron targeting in the mouse olfactory system

R.R., E.D. and J.-F.C. conceived the experiments.
R.R. performed the experiments and analyzed the results.
E.D. maintained mouse colonies and bred mouse strains.
R.R. wrote the manuscript and J.-F.C. edited the manuscript. All authors provided comments.

Chapter 4: Amigo1 is required in the development and maintenance of hippocampal mossy fiber projections to CA3

R.R., T.E.K. and J.-F.C. conceived the experiments.
R.R. performed the experiments and analyzed the results.
E.D. maintained mouse colonies and bred mouse strains.
R.R. wrote the manuscript and J.-F.C. edited the manuscript. All authors provided comments.

Chapter 5: General Discussion

Reesha Raja wrote all the material
I. Preface

To create a functioning nervous system is a process that is at once complex yet ordered, random yet programmed. During development, a neural tube is formed from which neurons are generated based on stochastic levels of Notch signalling between cells. However, following this somewhat random process is a series of precise events: from neurogenesis, to neurite outgrowth, axon guidance, target selection and synaptogenesis. All these events come together in a highly complex and regulated manner to create one of the most intricate biological systems known: the nervous system. Both brain and periphery connect with one another by way of neurons that extend axons throughout the body and communicate via chemical signals. Each step of nervous system development requires the coordination of countless proteins working together with precise spatial and temporal accuracy. Failure to accurately perform these steps can compromise proper circuit formation and lead to neurodevelopmental disorders such as autism or epilepsy. Furthermore, failure of proteins to maintain correct circuitry can also lead to debilitating neurodegenerative disorders like Alzheimer’s or Parkinson’s. Many such disorders have been now shown to be linked to genetic mutations in genes that encode proteins involved in the processes of neural circuit formation like axon guidance and synapse formation or maintenance. It is therefore crucial to understand the normal function of these proteins in the healthy brain in order to discover potential therapeutic targets to treat neurological disorders.

One family of proteins implicated in neurodevelopmental processes are the leucine-rich repeat-containing transmembrane cell adhesion molecules (CAMs). The leucine-rich repeat (LRR) is a
protein-protein interaction motif, and CAMs containing this domain are involved in most aspects of nervous system development. Notably, LRR-containing CAMs have been implicated in multiple neurological diseases, highlighting the importance of studying proteins of this family as potential therapeutic targets for disease treatment (Winther and Walmod, 2014). My thesis will explore the function of two cell-surface LRR-containing proteins, Slitrk1 and Amigo1, in regulating various processes that occur during the development and maintenance of neural circuits. This introductory chapter is designed to provide the necessary background on these molecules as well as the model systems and processes used to study their function. The first section of the introduction will provide an overview of synaptogenesis and of the Slitrk family of LRR domain-containing proteins. The second section of the introduction will outline what is currently known about Amigo1 and will describe the two in vivo systems that I have used to study the function of Amigo1 in the mouse brain.

II. Introduction Part 1 – Slitrk family members and their roles in synaptogenesis

Brain function is completely reliant on communication between neurons in circuits, and there is strong evidence that defects in the formation, maintenance or plasticity of synapses are associated with behavioural phenotypes reminiscent of neuropsychiatric disorders (Aruga and Mikoshiba, 2003; Banerjee et al., 2014). This association is exemplified by the trans-synaptic Neurexin complex. In vitro studies of human neurons carrying NEUREXIN gene mutations linked to clinical presentations shed light on the function of Neurexin in synaptic transmission, and mouse Neurexin1α knockout studies provide further evidence for the association of these mutations with behavioural phenotypes reminiscent of those in psychiatric disorders (Etherton et al., 2009; Grayton et al., 2013; Dachtler et al., 2015; Esclassan et al., 2015; Pak et al., 2015; Südhof, 2017).
Similarly, mutations in several genes associated with Neurexin signalling, such as the Neuroligins, the Shanks and CASK, have also been implicated in conditions like intellectual disabilities and autism spectrum disorders (Südhof, 2017). Moreover, proteins of the leucine-rich repeat (LRR) superfamily are also linked to such disorders and to synapse development (Matsushima et al., 2005; Ko, 2012).

Accordingly, the Slitrk family of LRR domain-containing transmembrane proteins are involved in playing roles at the synapse, having differential effects on excitatory and inhibitory synapse formation and associated links to neuropsychiatric disorders. However, the detailed mechanisms of Slitrk function at the synapse are still being clarified, including the structure-function relationship and their localization to excitatory and inhibitory synapses.

1. **Steps to synapse formation and the role of LRR-containing proteins**

The formation of synapses in the central nervous system (CNS) requires a series of precise and coordinated events. Firstly, after cell fate determination and axon outgrowth, a neuron must identify its target cell, establish adhesive contact with that cell, initiate a program for differentiation of the pre and postsynaptic sides, and finally undergo synapse maturation. These processes require timely expression of molecules on both growing axons and developing dendrites and the correct signalling of intracellular pathways to initiate synapse differentiation (Batool et al., 2019). While various mechanisms of the timing of these events have been proposed, much evidence supports the idea that initial clustering of synaptic machinery is intrinsic to the growing axon and nascent synaptic terminal, while synapse specificity and promotion of mature functional synapses through recruitment of additional presynaptic molecules occurs with stabilization of the pre and postsynaptic sites by synaptic adhesion molecules (Kurshan and Shen, 2019)
Synaptic adhesion molecules play a major role in synapse formation, both in anchoring the contact between axon and dendrite and in promoting differentiation of the pre and postsynaptic sides into a functional synapse (Yamagata and Fukai, 2019). Specifically, synaptic adhesion molecules, such as members of the CAM superfamily or the LRR superfamily, interact in trans in synaptic adhesion complexes to allow stabilization of the presumptive synapse structure and allow for downstream signalling to mediate synapse differentiation (Kurshan and Shen, 2019; Yamagata and Fukai, 2019). The combinatorial expression of individual synaptic adhesion proteins hence confers synapse type specificity (Roppongi et al., 2020).

On the presynaptic side, Neurexins and type IIa receptor-type protein tyrosine phosphatases (RPTPs) mediate synapse formation by extracellular binding in trans to post synaptic adhesion molecules and by intracellular signalling via liprins and CASK to recruit presynaptic machinery (Han et al., 2016, 2018; Roppongi et al., 2020). Neurexins bind the scaffold protein CASK and link to synaptic vesicles through synaptotagmin binding (Hata et al., 1993; Biederer and Südhof, 2000; Graf et al., 2004). The members of the RPTP family, PTPδ, PTPσ, and leukocyte common antigen-related protein (LAR), interact with presynaptic liprin-α, a crucial organizer of the synaptic vesicle pool which also binds CASK (Spangler et al., 2013; Han et al., 2016). It is now thought that Neurexins and RPTPs can form complexes and act as hubs to mediate the differentiation of the presynaptic side (Südhof, 2017; Roppongi et al., 2020).

Postsynaptic adhesion molecules are more numerous and bind with different affinities to the multitudes of alternative splice forms of each of the Neurexin and RPTP family members (Südhof, 2017). These postsynaptic organizers are primarily of the LRR and CAM superfamilies such as the Neuroligins, Netrin-G ligand (NGL), Synaptic Adhesion-Like Molecules (SALMs), Leucine-Rich Repeat Transmembrane Neuronal proteins (LRRTMs) and Slitrks (Südhof, 2017).
diversity of synaptic adhesion complexes can confer immense specificity in mediating levels of excitatory and inhibitory synapse formation. For example, the Neuroligins 1, 3 and 4 localize to glutamatergic synapses and bind presynaptic β-Neurexin to form excitatory synapses while Neuroligin 2 can localize to GABAergic synapses and mediate inhibitory synapse formation (Graf et al., 2004).

In addition to the prominent Neuroligin family of CAMs, LRR-domain containing proteins make for useful protein-protein interaction domains due to the curvature formed by the LRR motif tandem repeats (Ko, 2012), and can serve to provide structural stability at a developing synapse (Won et al., 2019). Over the years, LRR genes have been associated with neurodevelopmental and neuropsychiatric disorders, and their encoded proteins have become known as important players in neurodevelopmental processes, including synapse formation (Matsushima et al., 2005).

2. The Slitrks

Slitrk family members, structure

The Slitrks comprise a family of six LRR domain-containing transmembrane proteins. All Slitrk members contain two LRR motifs in their extracellular region, with high homology to the Slit family proteins which are secreted LRR-containing molecules involved in axon guidance (Brose and Tessier-Lavigne, 2000; Aruga and Mikoshiba, 2003). Each LRR module contains six LRR motif repeats capped by cysteine-rich domains (Aruga et al., 2003; Won et al., 2019). This structure suggests they are involved in protein-protein interactions. Indeed, it has been shown that Slitrks’ most N-terminal LRR domain (LRR1) domain binds to the RPTP family in trans (Takahashi et al., 2012; Yim et al., 2013; Um et al., 2014). While less is known about the LRR2 domain, we and others have evidence to show that this second LRR domain of Slitrk1 mediates homophilic interactions in cis to allow for Slitrk dimerization at the surface (Figure 1A)(Um et al., 2014;
Beaubien et al., 2016). On their intracellular side, the Slitrks contain several conserved tyrosine residues that are putative tyrosine phosphorylation sites similar to those in the Trk neurotrophin receptor proteins, although they do not have a kinase activity. Nonetheless, it is possible that Slitrks could be involved in intracellular signalling modulated through the phosphorylation of their intracellular domain (Aruga and Mikoshiba, 2003). Interestingly, Slitrk1 has the shortest cytoplasmic tail of the family and does not contain the conserved tyrosine residues found in other Slitrk family members. This difference may contribute to the differential function of Slitrk1 in promoting neurite outgrowth in vitro in comparison to the other Slitrks which act to inhibit neurite outgrowth (Aruga and Mikoshiba, 2003).

Slitrks in neuropsychiatric disorders

Human genetic studies have revealed sequence variations in several Slitrks for specific neuropsychiatric disorders such as Gilles de la Tourette’s syndrome (TS) and obsessive-compulsive disorder (OCD) (Katayama et al., 2010; Mah et al., 2010; Shmelkov et al., 2010; Proenca et al., 2011; Ozomaro et al., 2013; Zhang et al., 2015; Melo-Felippe et al., 2019; Liu et al., 2020). Gilles de la Tourette’s syndrome is characterized by motor and vocal tics and tends to show comorbidity with OCD and attention deficit hyperactivity disorder (ADHD). Several human patient genetic studies of this complex disorder have found conflicting evidence linking mutations in *SLITRK1* to TS (Abelson et al., 2005; Deng et al., 2006; Geddes, 2006; Züchner et al., 2006; Speed et al., 2008; O’Roak et al., 2010; Proenca et al., 2011). For example, *de novo* mutations causing frameshifts or variations in the 3’ untranslated region of *SLITRK1* were found in some patients, so *SLITRK1* was proposed as a candidate gene in TS etiology (Abelson et al., 2005). While not all further human patient studies of different populations were able to associate mutations in *SLITRK1* with TS (Pasquini et al., 2008; Zimprich et al., 2008; Miranda et al., 2009),
it should be noted that the rarity of this variation could make it more difficult to detect an association even with sample sizes up to one thousand (O’Rourke et al., 2009; Karagiannidis et al., 2012). Interestingly, Slitrk1 expression in corticostriatal and thalamocortical circuits is aligned with the etiology of TS being linked to these pathways (Stillman et al., 2009). Hence, further study of this gene is required for a more definitive linkage of Slitrk1 to TS (Miranda et al., 2009).

In support of the human patient data of rare variants of the Slitrk gene to neuropsychiatric disorders, some groups have studied the role of Slitrks in vivo using rodent models. Slitrk1 null mice show a variety of neuropsychiatric-like phenotypes such as increased anxiety in an elevated plus maze and increased depression in a forced swim task, thus demonstrating a role for this protein in neuropsychiatric conditions (Katayama et al., 2010; Proenca et al., 2011).

Slitrk1 is not the only Slitrk member to show genetic variations in human neuropsychiatric patients and behavioural phenotypes in mutant mouse models. Slitrk5 null mice also show increased anxiety and repetitive behaviours like excessive grooming. Excessive grooming was accompanied by overactivity in the orbitofrontal cortex, which has also been observed in human OCD patients (Mah et al., 2010; Shmelkov et al., 2010; Song et al., 2017). Alterations in striatal volume and decreased spine density were also found in Slitrk5 null mice. All together, many features of OCD are represented in Slitrk5 mice (Mah et al., 2010; Shmelkov et al., 2010). Slitrk2 was identified as a candidate gene mutated in human patients with schizophrenia, and knockdown of the Slitrk2 gene in mice causes hyperactivity (Salesse et al., 2020). Slitrk3 null mice have increased seizure susceptibility and decreased inhibitory marker staining in the hippocampus, correlating with reduced inhibitory transmission (Takahashi et al., 2012). In summary, the Slitrks represent a family of candidate genes involved in the etiology of neurological disorders with supporting evidence in rodent knockout models.
Expression of Slitrks in nervous system

Slitrk1, Slitrk2 and Slitrk4 are expressed during embryogenesis beginning around embryonic day (E) 11.5-12.5, and by adulthood their expression is restricted to the CNS (Aruga et al., 2003). By E18, the Slitrks are expressed widely but in distinct patterns around the mouse brain, except for Slitrk6, which has an expression pattern restricted primarily to the thalamus. Importantly, Slitrk1 is expressed highly and broadly throughout the brain, in both embryonic development and postnatally at day 10, with prominent expression in cortex, throughout hippocampus and in the anterior lobes of the cerebellum amongst other regions by postnatal day (P) 10 (Beaubien and Cloutier, 2009). The regional differences in expression patterns between the Slitrks could suggest they play different roles in CNS development at different developmental time points.

Overview of Slitrk function

The Slitrk family was discovered in a screen for genes misregulated in neural tube closure defects in mice. In the same study, Slitrk1 was found to induce neurite outgrowth in PC12 cells in vitro while Slitrk2 and 3 acted to suppress neurite outgrowth (Aruga and Mikoshiba, 2003). Since then, many publications have helped elucidate the function of Slitrks in the developing brain. Neurite outgrowth promotion by Slitrk1 was found to be mediated by interaction of the Slitrk1 intracellular region with 14-3-3 proteins, a regulator of multiple cellular processes (Kajiwara et al., 2009). Most prominently, the Slitrk family members have gained increased recognition as synaptic adhesion complexes that can work differentially to induce excitatory and inhibitory synapse formation. Over the years, both in vitro and in vivo evidence using genetic knockdown or overexpression models as well as human patient mutation studies have implicated Slitrks in synaptic development and in the etiology of neuropsychiatric disorders (Proenca et al., 2011; Ko, 2012; Won et al., 2019). As it is well established that changes to neural connections, or synapses, can underlie many
neuropsychiatric disorders (Jamain et al., 2003; Durand et al., 2007; Toro et al., 2010; Guilmatre et al., 2014), understanding the molecular role of Slitrks at the synaptic level will provide valuable perspective into mechanisms contributing to neuropsychiatric disorders.

Slitrk function at the synapse

The molecular evidence combined with human genetic studies of Slitrk mutations support a function for Slitrks in synapse formation in normal brain function and in the prevention of neuropsychiatric disorders. Over the last decade, we (Chapter 2) and others have demonstrated roles for several of the Slirtk family members at the developing synapse.

Slitrks are expressed postsynaptically and can induce presynaptic differentiation. Heterologous synapse formation assays in which COS cells are co-cultured with hippocampal neurons showed that all Slitrks can induce presynaptic clustering of inhibitory presynaptic machinery such as vesicular GABA transporter (VGAT), but only Slitrks 1, 2, 4, 5, and 6 could induce excitatory presynaptic differentiation (Takahashi et al., 2012). Thus, Slitrk3 was found to be an inducer of specifically inhibitory synapses. Slitrk3 null mice showed a decrease in the presynaptic marker GAD65 in the hippocampus, which was accompanied by a decrease in mini inhibitory postsynaptic current (mIPSC) frequency (Takahashi et al., 2012). In contrast to the heterologous synapse formation system, overexpression of the Slitrk members 1 to 5 in hippocampal cultures showed more specificity in the induction of excitatory and inhibitory synapses between Slitrk family members. While overexpression of Slitrks 1, 2, 4 and 5 led exclusively to an increase in the number of excitatory synapses, Slitrk3 overexpression explicitly promoted inhibitory synapse formation (Yim et al., 2013). This discrepancy between these two studies could possibly be explained by different levels of overexpression of the Slitrk proteins in COS cells versus neurons. Furthermore, COS cell expression of Slitrks could test their synaptic induction capability while overexpression
in hippocampal neurons would more accurately mimic their specific endogenous localization and roles at excitatory or inhibitory synapses.

A screen for candidate trans-synaptic binding partners of Slitrks identified the RPTP family of type-IIa receptor protein tyrosine phosphatases as candidates (Takahashi et al., 2012; Yim et al., 2013). Their structure consists of three Ig-like domains and eight fibronectin type III-like domains extracellularly, followed by a transmembrane domain and two intracellular PTP domains (Pulido et al., 1995). Interestingly, single amino acid mutations of Slitrk1 linked to human patients with schizophrenia or Tourette’s syndrome were studied in co-culture assays and shown to disrupt its interaction with PTP and its synapse-inducing function (Kang et al., 2016). Differential trans-synaptic binding of Slitrk family members to the RPTPs appears to determine the nature of the synapse, whether excitatory or inhibitory, that is formed. The RPTP family is comprised of 3 members: leukocyte common antigen relater (LAR), PTPδ and PTPσ. The three members have known functions in synapse formation at both excitatory and inhibitory synapses via trans-synaptic interactions with various synaptogenic molecules such as the SALMs, NGL, ILRAPL1, TrkC and IL1RacP (Um and Ko, 2013; Han et al., 2016). With numerous interacting proteins and various splice forms mediating differential downstream signalling processes, including interaction with liprin-α (Pulido et al., 1995; Han et al., 2016), the RPTP family can contribute greatly to synapse specificity. Cell aggregation assays demonstrated that the Slitrks can bind both PTPδ and PTPσ, but PTPδ and PTPσ knockdown experiments identified a requirement for PTPσ in Slitrk-mediated excitatory synapse formation and for PTPδ in Slitrk3-induced inhibitory synapse formation (Yim et al., 2013). In addition to cell aggregation and co-culture studies, the crystal structure of the Slitrk-PTP interaction has been elucidated (Um et al., 2014; Yamagata et al., 2015). These studies determined the precise binding sites between the pre and postsynaptic counterparts of this adhesion
complex and identify the PTPδ and PTPσ splice variants that interact with Slitrks. Specifically, the Slitrk LRR1 domain interacts with the Ig1-2 domain of PTPδ and σ, but only with those PTP splice forms containing a critical arginine residue within mini exon B (meB). This meB is a lengthened linker between Ig2 and Ig3 such that the Ig3 domain does not interfere with Slitrk LRR1 binding to PTP Ig1-2 (Um et al., 2014; Yamagata et al., 2015). These results provide further indication that alternative splice forms of the PTP family confer binding specificity to postsynaptic partners and allow for accurate excitatory and inhibitory synapse development.

3. Objectives for Manuscript 1 (Chapter 2)

Our studies aimed to address some of the unresolved questions of the role of Slitrk1 in synapse formation. Firstly, we generated a Slitrk1-specific antibody to determine the relative localization of endogenous Slitrk1 to excitatory versus inhibitory synapses. We also sought to resolve the discrepancy between two studies providing conflicting data regarding the ability of Slitrk1 to induce excitatory and inhibitory synapses when overexpressed (Takahashi et al., 2012; Yim et al., 2013). Finally, while the first LRR domain of Slitrk1 was shown to be required for binding to presynaptic RPTP (Um et al., 2014; Yamagata et al., 2015), we identified a potential role for the second LRR domain whose requirement is yet unknown. Our results shed light on a possible mechanism whereby Slitrks undergo lateral interactions and clustering to promote synapse formation as is the case with Neuroligins (Shipman and Nicoll, 2012; Um et al., 2014).
Figure 1: Structures of Slitrk1 and Amigo1

(A) Structure of Slitrk1 protein. Slitrk1 is a transmembrane protein containing two extracellular LRR domains. Each domain contains six leucine-rich repeat modules (purple) and flanking amino (dark grey) and carboxy (light grey) terminus cysteine-rich regions. The N-terminal-most LRR domain (LRR1) is required for binding to its presynaptic partner PTPσ while its LRR2 domain mediates homophilic dimerization. Blue badge indicates area known to be involved in lateral clustering (Um et al., 2014). X’s indicate general locations of mutated residues associated with the human disease TS (green) and the obsessive hair-pulling disorder trichotillomania (TTM, orange).

(B) Structure of Amigo1 protein. Amigo1 is a transmembrane protein containing one extracellular LRR (purple) and one Ig (green) domain. The LRR domain contains six leucine-rich repeat modules (purple) and flanking amino (dark grey) and carboxy (light grey) terminus cysteine-rich regions. Blue badge indicates that the concave side of the LRR domain is important for dimerization of the protein.
III. Introduction part 2

Precise synapse formation is only one of the crucial developmental processes underlying nervous system development. This step must be preceded by accurate guidance and targeting of axons to their synaptic partners, and it must also be followed by the establishment of mechanisms to maintain synaptic integrity and allow for synaptic plasticity. These other steps also rely on LRR-containing proteins, which can act as guidance molecules or mediate axonal fasciculation important for axonal targeting and can promote transmission at synapses for maturation and maintenance of neural connectivity (Kim et al., 2006; Wang et al., 2008; Yamagishi et al., 2011; Bando et al., 2012; Winther and Walmod, 2014).

Manuscripts 2 and 3 of my thesis aim to understand the in vivo roles for Amigo1, an LRR-containing surface receptor, in axon target selection and in the maintenance of neural circuits. In Chapter 3, we use the mouse olfactory system as a model for studying axon guidance and the role of Amigo1 as a cell adhesion molecule involved in regulating axon target selection during development. Conversely, we turned to the hippocampal circuit in Chapter 4 as a good model to examine the role of Amigo1 in the maintenance of neural circuits, where we specifically study mossy fiber projections from the dentate gyrus, which can be compromised due to changes in axon targeting and neural activity.

1. Amigo1

Amigo1 was identified in 2003 as a gene whose transcript is upregulated in an assay of amphoterin-induced hippocampal neurite outgrowth (Kuja-Panula et al., 2003; Chen et al., 2012). It is a member of the Amphoterin induced gene and ORF (AMIGO) family of three cell-surface adhesion proteins, AMIGO (Amigo1), AMIGO2 and AMIGO3, expressed in various tissues, however, of the three members, Amigo1 has the most nervous system-specific expression (Kuja-Panula et al.,
While there is differing evidence regarding Amigo1’s subcellular localization to axons or dendrites, western blot analysis examining temporal expression shows that it is upregulated during development, and expression levels are sustained throughout life (Kuja-Panula et al., 2003; Chen et al., 2012).

Amigo1 Function in Cell Adhesion

Amigo1 encodes for a transmembrane protein with an extracellular region containing an LRR domain with six LRRs and a single Ig domain (Figure 1B), but no known functional domain encoded by its short intracellular region (Kuja-Panula et al., 2003). Leucine-rich repeats and Ig domains are typical features of cell adhesion molecules, and they are well-known to be involved in protein-protein interactions. Many extracellular Ig- and LRR-containing transmembrane proteins play important roles in nervous system development, including axon fasciculation and target recognition. A few *in vitro* studies support a role for Amigo1 in various functions typical of cell adhesion molecules such as cell adhesion, neurite outgrowth and axon fasciculation (Kuja-Panula et al., 2003; Kajander et al., 2011; Zhao et al., 2014). Crystal structure analysis revealed that Amigo1 forms homomeric dimers via the LRR domain, and it is thought that dimerization is necessary for its expression at the cell surface as well as its function in cell-cell adhesion (Kajander et al., 2011). *In vitro* data has provided evidence for Amigo1 in homophilic interactions, and both homophilic and heterophilic interactions occur between the three family members as shown by co-immunoprecipitation (Kuja-Panula et al., 2003). Protein-protein interactions in cell adhesion are important for developmental processes such as axon pathfinding and synapse stabilization (Chen et al., 2006). Indeed, Amigo1 has been demonstrated to promote hippocampal neurite extension *in vitro* (Kuja-Panula et al., 2003). In addition to a role for CAMs in cellular interactions, other Ig domain containing CAMs such as Neural cell adhesion molecule (NCAM) and L1 influence cell
survival (Loers et al., 2005; Chen et al., 2006; Ditlevsen et al., 2007). Similarly, it has been demonstrated that Amigo1 can protect SH-SY5Y cells in culture from factors that induce apoptosis, thus indicating a role for Amigo1 in cell survival as well (Chen et al., 2012).

Amigo1 Function in Neuronal Activity

Intriguingly, apart from canonical roles for CAMs in neurite outgrowth and fasciculation, Amigo1 acts as an auxiliary subunit of the voltage-gated potassium channel, Kv2.1, and can modulate the gating and current flow through the channel (Peltola et al., 2011). Specifically, knockdown of Amigo1 affects the channel gating properties such that the channels need stronger depolarization to open (Peltola et al., 2011). Furthermore, not only were these results were confirmed in Amigo1 null mice, but these mice also have decreased levels of Kv2.1 protein (Peltola et al., 2016). Delayed rectifier currents through Kv2.1 play a critical role in the repolarization of an action potential and are known to regulate intrinsic neuronal excitability in an activity-dependent manner (Du et al., 2000; Mohapatra et al., 2009). Loss-of-function studies of Kv2.1 demonstrate a role for these channels in regulating action potential width and repetitive firing, thus contributing to membrane excitability (Palacio et al., 2017). The alteration in gating properties of Kv2.1 with loss of Amigo1 could lead to a broadening of the action potential (Palacio et al., 2017) and in turn, cause increased neuronal activity or hyperexcitability. Thus, while Amigo1 is structurally a canonical cell adhesion molecule, there is evidence to suggest that it also acts to affect neuronal activity by mediating ion channel dynamics.

In summary, the LRR and Ig domain-containing structure identifies Amigo1 as a cell adhesion molecule with various proposed functions, including neurite outgrowth, cell adhesion and ion channel physiology (Kuja-Panula et al., 2003; Chen et al., 2006; Kajander et al., 2011; Peltola et al., 2011; Zhao et al., 2014).
2. **Axon guidance and target selection in the mouse olfactory system**

Once a neuron is born, it begins to extend its axon which will sample the environment using receptors expressed on its leading edge, or growth cone, to detect guidance cues in the surrounding tissue. Generally, secreted ligands from a distance or membrane-linked ligands in the proximity of a growing axon can be detected by receptors expressed on the growth cone in specific ligand-receptor pairs. A ligand-receptor binding event can trigger either attraction or repulsion of the growth cone towards or away from the source of the ligand. In this way, the array of receptors on a growing axon will bind the appropriate ligand cues in the environment to allow the axon to grow to its correct target zone (Bellon and Mann, 2018). Once the target zone is reached, guidance cues that act at a shorter range as well as axon-axon interactions allow for specific target neuron selection (Stoeckli, 2018). Good examples of where axon guidance is crucial for proper nervous system development are the sensory systems. Whether it be a spatial map of the visual field, a tonotopic map of sound pitch, or a somatotopic map of touch, order must be maintained from the sensory neuron in the periphery to the second order neurons in the brain for an accurate representation of the organism’s environment.

The mouse main olfactory system is commonly used to study mechanisms of axon guidance and circuit formation. It consists of the main olfactory epithelium (OE), housing the primary sensory neurons, and the main olfactory bulb (OB), where the projection neurons reside (Ressler et al., 1994a). Primary sensory neurons, called olfactory receptors neurons (ORNs), extend dendritic cilia expressing olfactory receptors (ORs) to the surface of the epithelium to detect odorant molecules from the environment. These neurons project a single axon towards the OB to form synapses with dendrites of mitral and tufted projection neurons as well as interneurons in neuropil structures termed glomeruli (Reed, 1992; Vassar et al., 1994; Mori et al., 1999). Interestingly, each ORN
expresses one receptor gene from a gene family encoding for over 1000 ORs via stochastic activation of one OR gene in a mono-allelic fashion and subsequent negative feedback to other OR genes (Buck and Axel, 1991; Serizawa et al., 2000, 2003; Zhang and Firestein, 2002). Neurons expressing a given OR are spatially restricted to one of the distinct yet overlapping regions along the dorsomedial-ventrolateral axis of the OE, and they are randomly distributed within that region (Reed, 1992; Vassar et al., 1994; Miyamichi et al., 2005). Classically, the OE could be divided into four of these overlapping regions, however a more recent study has shown an even more precise definition of up to nine spatially restricted regions along the dorsomedial to ventrolateral and anterior to posterior axes (Zapiec and Mombaerts, 2020). In a remarkable instance of targeting specificity, neurons from an individual OR population project and converge their axons into one medial and one lateral glomerulus at stereotypic locations on the surface of the OB (Ressler et al., 1994a; Vassar et al., 1994; Mombaerts et al., 1996; Mori and Sakano, 2011). There is a strong correlation between the regional positioning of the neuron in the OE and its projection site along the dorsal-ventral axis the OB. Thus, a map is formed whereby each glomerulus is innervated by a homogenous population of ORN axons whose cell bodies are spatially distributed in a particular region of the OE. Interestingly, each OR is tuned to recognize a variety of odorant molecules with different affinities, and multiple ORs can recognize the same odorant molecule (Malnic et al., 1999; Meister and Bonhoeffer, 2001; Mori and Sakano, 2011). The range of odor molecules greatly outnumbers the number of ORs, hence, an odor can be represented in the brain as the pattern of activation of a set of glomeruli in the OB (Imamura et al., 1992; Vassar et al., 1994).

Olfactory map formation during development: Establishing coarse topography

The OE and OB share a sense of direct mapping along one axis, where the dorsomedial (DM)-ventrolateral (VL) position of an OR subpopulation correlates with the dorsal-ventral positioning
of its target glomerulus in the OB. In contrast, the anterior-posterior location of a glomerulus is determined by neuronal activity rather than spatial positioning in the OE (Mori and Sakano, 2011).

Along the dorsal-ventral axis of the OB, axons target glomeruli with the help of two sets of ligand-receptor pairs: Slits and Roundabout-2 (Robo-2), and Semaphorin (Sema) 3F and Neuropilin-2 (Nrp2), both of which function by repulsive signalling. The Robo-2 receptor is expressed in a DM-high to VL-low manner in the OE. During development, dorsomedial Robo2-positive ORNs project their axons to the dorsal bulb first, since they are repelled by Slits expressed in the ventral OB, and they secrete Sema3F in this dorsal region. Late-arriving, ventrolateral axons express Nrp2 and are repelled away from Sema3F to target more ventral areas of the bulb (Cho et al., 2007, 2012; Takeuchi et al., 2010). Thus, the combination of these guidance ligands and receptors help to establish a dorsal to ventral topography in the OB (Figure 2A).

While dorsal-ventral patterning of glomeruli in the OB is determined by anatomical locations of ORNs in the OE, topography along the anterior-posterior axis is controlled by levels of OR activity. ORs are G-protein-coupled receptors (GPCRs) that signal odor-binding events by interacting with the G-protein G_{olf} to initiate cyclic adenosine monophosphate (cAMP) signaling (Jones and Reed, 1989; Buck and Axel, 1991). In the absence of ligand binding during early development, the ORs generate a baseline level of cAMP via interaction with G_{s} and activation of adenylyl cyclase III, and this level of activity varies by OR type (Nakashima et al., 2013). The baseline level of GPCR activity and cAMP signalling together regulate the differential expression of Neuropilin-1 (Nrp1) in subsets of ORNs (Imai et al., 2006). ORNs producing low levels of cAMP express low levels of Nrp1 and project to anterior regions of the OB while those generating high levels of cAMP highly express Nrp1 and project to the posterior OB (Imai et al., 2006).
In summary, general topography in the olfactory bulb is established both by dorsal-ventral patterning based on anatomical locations of ORNs within the OE, and by anterior-posterior patterning, driven by differential cAMP activity between ORN populations (Imai et al., 2006; Imai and Sakano, 2009; Mori and Sakano, 2011). After coarse sorting of axons to their destination, axons use other cues, such as cell adhesion molecules, to segregate and converge onto appropriate glomeruli.

Olfactory map formation during development: Refinement of the glomerular map

Studies examining the mechanisms by which ORNs converge their axons into individual glomeruli have provided growing evidence for axon-axon interactions in regulating the process of discrete map formation (St John et al., 2003; Imai and Sakano, 2011). Similar to ORN activity-dependent expression of axon guidance molecules involved in anterior-posterior targeting, neuronal activity also modulates the expression of cell adhesion molecules involved in axon-axon interactions to allow axons to recognize one another and converge onto appropriate glomeruli (Figure 2B) (Serizawa et al., 2006; Imai and Sakano, 2011). However, rather than intrinsic baseline GPCR activity, the expression of cell adhesion molecules is based on ligand-dependent activation of ORs, canonical signalling through Go, and subsequent cyclic nucleotide-gated (CNG) channel activity (Serizawa et al., 2006; Nakashima et al., 2013). Kirrel2, and EphA are positively regulated by neuronal activity while Kirrel3, ephrin-A5 and BIG-2 are negatively regulated by neuronal activity (Serizawa et al., 2006; Kaneko-Goto et al., 2008). In Kirrel 2 or 3 transgenic mouse lines, which express different levels of Kirrel 2 or 3 within a single OR type, axons expressing the same receptor but different levels of Kirrel segregate into two neighbouring glomeruli in the OB. Therefore, levels of Kirrel appear to instruct coalescence of homotypic axons for specific glomerular targeting in a dose-dependent manner (Serizawa et al., 2006; Imai and Sakano, 2011). A more recent study
demonstrated a requirement for Kirrel2 in the targeting of ORN axons and showed variability in the requirement for Kirrels in axonal coalescence between ORN populations (Vaddadi et al., 2019). In addition, EphA5 and ephrin-A5 may play a role in local sorting of axons via contact-mediated repulsion between heterotypic axons (Serizawa et al., 2006). Finally, BIG-2 is another cell adhesion molecule involved in local axon sorting in the OB, and its expression also correlates with neural activity (Kaneko-Goto et al., 2008). Loss of BIG-2 expression results in the innervations of ectopic glomeruli by specific OR populations, and BIG-2-AP binding assays suggest that BIG-2 has a heterophilic binding partner also expressed in ORN axons (Kaneko-Goto et al., 2008). Further studies of these CAMs in mediating the precise targeting of specific ORN populations is necessary, as implicated by the varied requirement of Kirrels between ORN populations (Vaddadi et al., 2019). As such, there are likely other CAMs that are necessary to specify coalescence of subsets of ORNs.
Figure 2: Two-step targeting of olfactory sensory axons to the OB

Depiction of a coronal section of OE and a coronal section of OB and the targeting of two populations of ORN axons to the bulb.

(A) ORNs are expressed in populations organized along the dorsomedial (DM) to ventrolateral (VL) axis. They are guided by axon guidance molecules to regions along dorsoventral (D-V) and anterior-posterior (A-P) axes of the olfactory bulb.

(B) Once they reach their general target zone, the expression of CAMs on the ORN axons allow them to coalesce into appropriate glomeruli.
3. Rationale and objectives for Manuscript 2 (Chapter 3)

Thus far, only a few sets of adhesion molecules have been shown to play a putative role in refined glomerular map formation. These few molecules are unlikely to be sufficient to sort the axons of over 1000 types of ORN populations into their proper glomerular targets. Hence, we were interested in identifying other cell adhesion molecules that may facilitate local axon sorting or play a role in the targeting of ORN axons to the OB to allow for accurate neuronal wiring and odor processing. Based on its structure as a CAM and its known roles in neurite outgrowth and fasciculation, we chose to examine the function of Amigo1 in the precise formation of the olfactory glomerular map, and these results will be described in Chapter 3.

4. Mossy fiber projections of the Hippocampal Circuit

The hippocampal formation

The hippocampus is a vastly studied brain structure located on the medial aspect of the brain’s hemispheres. It is known to be crucial for memory formation and learning, both for long- and short-term memory. As such, high levels of plasticity also make this structure more vulnerable to degenerative conditions such as ischemia, epilepsy, and neurodegenerative diseases, such as Alzheimer’s (Khalaf-Nazzal and Francis, 2013; Bartsch and Wulff, 2015). It is therefore of interest to many researchers to study the mechanisms involved in the formation and maintenance of proper hippocampal circuitry. The hippocampal formation is composed of the dentate gyrus (DG) and the cornu ammonis (CA) subfields, CA1-CA3. These structures, along with the adjacent entorhinal cortex (EC), form the well-known trisynaptic circuit (Schultz and Engelhardt, 2014; Knierim, 2015). In this circuit, cells of the entorhinal cortex receive input from surrounding brain regions and project excitatory output to the dendrites of granule cells located in the thin granule cell layer of the DG. Granule cells then project axons in the form of mossy fiber bundles to the proximal
apical and basal dendrites of pyramidal cells in area CA3 (Figure 3A). The synapses formed at this junction are large structures composed of the mossy fiber boutons (presynaptic terminals) and the elaborate multi-headed postsynaptic dendritic spiny structures called thorny excrescences (TEs, Figure 3B) (Amaral et al., 2007). CA3 pyramidal cells in turn project their axons, termed the Schaffer collaterals, to CA1 pyramidal cells, which finally project back to deep layers of the entorhinal cortex for output back to cortex (Figure 3A) (Vago and Wallenstein, 2014). Within this circuit, the mossy fiber projections from the dentate gyrus to CA3 provide an invaluable model to study the mechanisms of axonal guidance to lamina-specific target structures, and the large highly plastic mossy fiber terminals allow for the study of synapse formation and maintenance.
Figure 3: Organization of the Hippocampal Circuit

(A) Diagram of the flow of information through the hippocampal trisynaptic circuit. Dentate gyrus (DG) granule cells (orange) receive information from entorhinal cortex (EC, grey) and send their axons towards CA3. These axons form large terminals called mossy fiber boutons (MFBs) onto the proximal apical and basal dendrites of CA3 pyramidal neurons (green). They synapse specifically onto large complexes of spine heads called thorny excrescences (TEs) of the proximal CA3 neuron dendrites. CA3 pyramidal cells then send their axons to CA1 (purple) which relay information back to CA3.

(B) Laminar organization of the CA3 subfield. Mossy fiber boutons synapse on the proximal apical dendrites in stratum lucidum and on the proximal basal dendrites in stratum oriens. CA3 pyramidal cells project distal dendrites into stratum radiata.

(C) Laminar organization of the dentate gyrus. Granule cells reside in the granule cell layer and project dendrites into the inner and outer molecular layers. Entorhinal axons (grey) synapse onto dendrites of the outer molecular layer. Granule cell axons project through the dentate hilus before traversing to CA3.

Not shown: dentate hilar cells receiving mossy fiber input also synapse back onto granule cell dendrites in the inner molecular layer.
Development of the hippocampus

Neurogenesis in the different subfields of the hippocampus (HC) does not occur at equal rates. CA1 and CA3 neurons are generated from E10 to E15 (Angevine, 1965; Stanfield and Cowan, 1979; Khalaf-Nazzal and Francis, 2013). Neurogenesis of dentate gyrus granule cells, on the other hand, begins at E10, with most cells being generated in the first post-natal week. Uniquely, neurogenesis of granule cells continues throughout adult life in rodents (Bayer, 1980a, 1980b; Amaral and Dent, 1981; Reznikov, 1991). It is thought that adult granule cell neurogenesis can contribute to learning and memory (Deng et al., 2010). Rates of adult neurogenesis can be modulated by environmental factors such as environmental enrichment and exercise (Kempermann et al., 1997; van Praag et al., 1999). How it contributes to the cognitive improvements with these environmental factors remains unclear (van Praag et al., 1999; Meshi et al., 2006; Deng et al., 2010), however neural activity plays a role in regulating survival and integration of newly born granule cells into existing circuitry (Ramirez-Amaya et al., 2006; Kee et al., 2007; Deng et al., 2010). Furthermore, adult-born dentate granule neurons that experience neural activity when young tend to have enhanced responses to neural activity when older (Jessberger and Kempermann, 2003; Trouche et al., 2009), suggesting that plasticity and learning is thought to be localized more to newer born dentate granule cells while mature granule cells could preserve existing information (Deng et al., 2010).

Axon Guidance

Once generated, granule cells of the dentate gyrus project axons, termed mossy fibers (MFs), to CA3 pyramidal cells. MFs project to CA3 in two to three bundles in the developing HC that travel above, within or below the pyramidal cell layer. The infrapyramidal bundle (IPB), travelling below the pyramidal layer, arises from granule cells in the lower (infrapyramidal) dentate gyrus blade. In proximal CA3, the suprapyramidal bundle (SPB) arises from axons of granule cells located in the
suprapyramidal and crest of the dentate blade, but distally the infrapyramidal bundle crosses over the pyramidal cell layer to join the SPB (Claiborne et al., 1986). There exists as well an intrapyramidal bundle in some genetic mouse strains that travels within the pyramidal CA3 layer proximally, but distally also joins the SPB (Blaabjerg and Zimmer, 2007).

The initial polarization of granule cells relies on local environmental cues, orienting their dendrites towards the dentate molecular layer and axons towards the dentate hilus (Figure 3C) (Kim et al., 2004). Peak development of the mossy fiber tract occurs within the first 3 postnatal weeks (Gaarskjaer, 1986), and their highly cell-specific targeting requires specific recognition of the individual CA3 cells (Kim et al., 2003). Furthermore, the guidance mechanisms of mossy fiber projections are developmentally regulated within this period (Nguyen et al., 1996). Evidence using in vitro explant co-cultures discovered that early in development (P0), diffusible cues from CA3 could attract MFs, with contact-dependent cues allowing for final targeting, a mechanism requiring precise orchestration of localization and timing of ligand and receptor expression (Skutella and Nitsch, 2001; Koyama et al., 2004b). Moreover, newly generated granule cells (GCs) can project their mossy fiber axons to the CA3 using already established MF projections to guide them (Nguyen et al., 1996; Koyama et al., 2004b).

Repellent cues are crucial to prevent the outgrowth of DG axons to non-CA3 areas. The Robo1 and 2 receptors respond to the Slit family of ligands and are prominent axon guidance molecules regulating the development of many CNS pathways. In the hippocampus, Slit2 expressed by entorhinal neurons repel the axons of DG neurons away from the entorhinal cortex and dendritic molecular layer (Ba-Charvet et al., 1999). Additionally, the Slit2 ligand may also function to repel mossy fiber axons from crossing the midline to contralateral hippocampus (Ba-Charvet et al., 1999). Elegant hippocampal slice culture experiments have demonstrated that blockage of cAMP
signalling in DG cells allows for growth of their axons into the CA3 region (Mizuhashi et al., 2001). These results imply that a repellant cue could act on DG axons and signal downstream through cAMP to mediate growth cone retraction (Mizuhashi et al., 2001).

Several groups have demonstrated the importance of the Neuropilin-Semaphorin family of axon guidance molecules in mediating mossy fiber attraction towards CA3. Neuropilin-1 and -2 are strongly expressed in the hippocampus both in development and in adult, and secreted class 3 Semaphorins can repel Neuropilin-expressing hippocampal axons (Chédotal et al., 1998; Skutella, 1999). Sema3A has been shown to repel Neuropilin-1 expressing cells of DG, CA3 and CA1, and its expression in the DG was hypothesized to prevent mossy fiber innervation of the DG molecular layer. Sema3A mutant animals however fail to show misguidance of these axons, suggesting other mechanisms of guidance of mossy fibers towards CA3 (Catalano et al., 1998; Steup et al., 2000). In contrast, Neuropilin-2 is highly expressed in dentate gyrus and in CA3, and loss of Neuropilin-2 in Nrp2 null mice results in an increase in mossy fibers projecting deep into stratum pyramidale of CA3 and into stratum oriens, creating a longer infrapyramidal mossy fiber bundle that extends further towards CA1 (Chédotal et al., 1998; Chen et al., 2000; Giger et al., 2000). These results were shown to be mediated by Neuropilin’s strong binding partner, Sema3F, and the expression of Sema3F in CA3 was thus suggested to restrict Neuropilin-2-expressing granule cell axons to stratum lucidum (Chédotal et al., 1998; Giger et al., 2000).

Apart from long range axon guidance cues, contact-dependent cues can instruct the more precise layer-specific targeting of DG axons. One mechanism demonstrates that Plexin-A2 expression in CA3 proximal pyramidal cell dendrites attenuates the effects of Sema6A repulsion to allow axons to be guided to the stratum pyramidale. This model suggests that the balance between repulsive
and attractive cues regulates MF trajectory to the correct layer of CA3 (Suto et al., 2007; Tawarayama et al., 2010, 2018).

While guidance cues contribute to the directed growth of axons to CA3, cell adhesion molecules can promote fasciculation to help axons coalesce into the thin target layer. For example, Limbic system-associated membrane protein (LAMP) is expressed in DG axons and CA3 pyramidal cells (Keller et al., 1989; Zacco et al., 1990). In rats treated with LAMP antibody to block endogenous LAMP-mediated homophilic adhesion, MF axon trajectories became diffuse and aberrantly projected into stratum pyramidale, oriens and radiatum, implicating LAMP as an important mediator of mossy fiber fasciculation in CA3 (Pimenta et al., 1995).

Additionally, several molecules involved in axon guidance and neurite outgrowth and synapse formation have recently been shown to be targets of Beta-Secretase 1 (BACE1)-mediated cleavage, including the cell adhesion molecules L1 and Close homolog of L1 (CHL1) (Hemming et al., 2009; Zhou et al., 2012). It was hypothesized that BACE1-mediated cleavage would cause deficiency in the function of these guidance and cell adhesion molecule substrates. Indeed, BACE1 null mice show defects in guidance of olfactory receptor neurons to the OB as well as of mossy fiber projections to CA3 (Rajapaksha et al., 2011; Cao et al., 2012; Hitt et al., 2012). Specifically, loss of BACE1 causes premature crossover of infrapyramidal MF axons to the suprapyramidal bundle and shortened IPBs. Interestingly, this phenotype mimics that seen in CHL1 null mice, confirming that CHL1 cleavage by BACE1 is important for proper neurite development exemplified in olfactory and hippocampal systems (Hitt et al., 2012).

Finally, the environment itself can support MF outgrowth. For example, digestion of KSPGs in the extracellular matrix resulted in a failure of axons to fasciculate upon exiting the dentate gyrus and entering stratum lucidum in hippocampal slices, suggesting that KSPGs contribute to
coalescence of mossy fibers (Butler et al., 2004). Furthermore, initially projecting MF axons serve as guidance scaffolds to mediate contact-dependent guidance of subsequently arriving MF axons (Koyama et al., 2004b). Polysialic acid-neural cell adhesion molecule (PSA-NCAM) is an Ig superfamily molecule important for cell-cell interactions. Mossy fibers express high levels of PSA-NCAM and removal of the PSA or of NCAM results in significant defasciculation of MF axons and ectopic mossy fiber bouton formation (Muller et al., 1994; Cremer et al., 1997, 2000; Seki and Rutishauser, 1998; Seki and Arai, 1999).

Synapse formation

Once they reach CA3, MFs form a unique type of synaptic structure composed of the mossy fiber bouton (MFB; also called large mossy terminal, LMT) and the postsynaptic thorny excrescences (TEs), which are elaborate clustered spines on the proximal dendrites of glutamatergic pyramidal cells. Interestingly, each mossy fiber forms only 11 to 18 mossy fiber boutons onto individual CA3 pyramidal cells (Blaabjerg and Zimmer, 2007). The mossy fiber boutons also extend filopodia to synapse onto GABAergic interneurons to regulate feedforward inhibition (Torborg et al., 2010). The MFB can grow up to 100 times larger than a typical presynaptic terminal (Williams et al., 2011), encompassing both excitatory and inhibitory neuron targets, yet there is still very little information regarding the molecular mechanisms controlling the formation of these two synapse types. Cell adhesion molecules have started to emerge as players in this process. Synapse formation between the mossy fibers and CA3 pyramidal dendrites was identified to be regulated by the cell adhesion molecule Cadherin-9. Expression analysis found that both *in vivo* and *in vitro*, Cadherin-9 was expressed exclusively in the DG and CA3 cell types of the hippocampus, and knockdown studies discovered a requirement in *trans* for Cadherin-9 in preferential synapse formation between the MF terminals and CA3 pyramidal cell dendrites (Williams et al., 2011).
Thus, this cell adhesion molecule is shown to regulate the differentiation of this specific synapse in the developing HC. Additional Cadherins such as Cadherin-8 and N-Cadherin also regulate mossy fiber targeting to CA3 pyramidal cell dendrites. While Cadherin-8 is important for growth of MF axons, N-cadherin plays a strong role in dendritic elaboration of CA3 pyramidal cells, and both Cadherins interact with β-catenin ultimately regulating the formation of mossy fiber terminals (Bekirov et al., 2008). Recently, the homophilic adhesion molecule Kirrel3 was found to be an essential target-specific cue in inhibitory synapse formation (Martin et al., 2015; Taylor et al., 2020). Specifically, Kirrel3 regulates the development of synapses between MF terminals and GABAergic interneurons. Kirrel3 is expressed in both DG neurons as well as GABAergic CA3 interneurons but not CA3 pyramidal cells, and knockout of the Kirrel3 gene causes reductions in mossy fiber filopodia size and number, resulting in fewer GABAergic synapses and higher CA3 pyramidal cell excitability (Martin et al., 2015, 2017). Adult Kirrel3 null mice show a variety of altered behaviours, including hyperactivity, which may be attributable to an excitatory versus inhibitory imbalance as seen at the neuronal level in the hippocampus (Choi et al., 2015; Hisaoka et al., 2018; Völker et al., 2018).

The heparan sulfate proteoglycan (HSPG) Glypican 4 (GPC4) is another synaptic organizing protein found to be expressed in the hippocampal circuit. At the EC-DG synapse, glycosylphosphatidylinositol (GPI)-anchored GPC4 binds in cis to the presynaptic LAR and in trans to postsynaptic LRRTM4 to mediate synaptogenesis in the dentate gyrus molecular layer (DeWit et al., 2013; Siddiqui et al., 2013; Ji et al., 2015). More recently, it was found that GPC4 in the mossy fiber terminal binds to the postsynaptic orphan receptor GPR158 on CA3 pyramidal cells, and this interaction is required for the input specific regulation of excitatory MF-CA3 synapse organization (Condomitti et al., 2018).
Maturation, Maintenance and Plasticity of mossy fiber projections

Hippocampal mossy fiber terminals exhibit a strong amount of plasticity even in adult animals, with neural activity being important in regulating structural plasticity of synapses (Chierzi et al., 2012).

IPB axons undergo significant pruning in the 3rd and 4th postnatal week, by a mechanism involving Semaphorins, Neuropilin-2, and Plexin-As, resulting in a shortened IPB by adulthood (Chen et al., 2000; Bagri et al., 2003; Liu et al., 2005; Suto et al., 2007). Draxin, a repellant axon guidance cue and an inhibitor of dentate granule cell apoptosis (Zhang et al., 2010) was recently shown to also mediate the balance between projections of mossy fibers along the infra- and supra pyramidal bundle. Draxin null mice show a significant reduction in the length of the infrapyramidal bundle due to more immediate crossover of infrapyramidal axons to the suprapyramidal tract (Tawarayama et al., 2018).

Individual large mossy terminals (LMTs) and LMT complexes (LMT-C), containing a central terminal with additional surrounding small satellite terminals, get larger with age and experience (Galimberti et al., 2006), with one LMT-C of a mossy fiber providing the largest increase in total LMT volume. Hippocampal-dependent learning tasks show correlation between performance and mossy fiber projection size (Pleskacheva et al., 2000; Ramirez-Amaya et al., 2006). As well, environmental enrichment causes an increase in the complexity of LMT-Cs and TE lengths (Galimberti et al., 2006) while long-term stress can cause reductions in mossy fiber terminal complexity (Sandi et al., 2003; Galimberti et al., 2006). With age and experience, there is a large shift in the distribution of LMT sizes to results in many small LMTs with a concomitant increase in the size of one LMT-C complex, comprising one large core LMT and many connected satellite LMTs. This characteristic complex has been termed Terminal Arborization (TA) in adult animals.
by Galimberti and colleagues in 2010, and most mature mossy fibers possess a single TA per mossy fiber. It was found that the TA position of each mossy fiber was positioned along the proximo-distal CA3 axis in a topographic manner relative to the position of the GC body in the DG (Galimberti et al., 2010). This topography is mediated by EphA4 expressed in a gradient form along the DG blades. Furthermore, EphA4 signalling and PSA-NCAM were both shown to regulate plasticity of TAs during a critical period in juvenile mice, allowing the selection of one prominent TA per mossy fiber neuron (Galimberti et al., 2010; Khalaf-Nazzal and Francis, 2013). EphA4 regulates TE spine morphology by binding ephrin-A3 and inhibiting integrin function (Murai et al., 2003; Bourgin et al., 2007; Klein, 2009).

Contact mediated cues are also important for continuous maintenance of the circuit even with the addition of adult born GC axons. As such, cell adhesion molecules allowing newly born granule cells to extend axons along existing fiber tracts may continue to be important throughout adulthood to maintain correct circuit trajectory (Koyama et al., 2004b).

Mossy Fiber Sprouting/epilepsy

The high degree of plasticity in the hippocampus is conducive for learning and memory, but also makes it vulnerable to the abnormal remodelling of the circuit known as mossy fiber sprouting (MFS), a common phenomenon in models of temporal lobe epilepsy (Koyama et al., 2004b). In epilepsy, there tends to be pathologically increased levels of mossy fiber sprouting whereby granule cell axons sprout new branches outside stratum lucidum of CA3 or even back into the inner molecular layer of the DG where they synapse back onto granule cell dendrites (Okazaki et al., 1999). This recurrent excitatory pathway of sprouted mossy fibers is thought to contribute to seizure susceptibility (Koyama and Ikegaya, 2005). Mechanisms underlying MFS are not fully known, but it has been suggested to be triggered by seizure activity, granule cell deafferentation,
or neuron loss in the hilus of the dentate gyrus (Buckmaster, 2012). These triggers presumably lead to a disruption of molecular mechanisms of axon growth and guidance, resulting in pathological synaptic reorganization (Koyama and Ikegaya, 2005). Furthermore, establishment of aberrant circuitry could be exacerbated by the projection of newborn GC axons that follow the existing sprouted trajectories (Koyama et al., 2004b).

The mechanisms of mossy fiber sprouting are beginning to be better understood, and the possibility of focusing on mossy fiber sprouting as a therapeutic target of temporal lobe epilepsy continues to be investigated (Koyama and Ikegaya, 2005).

Brain-derived neurotrophic factor (BDNF) signalling through the Trk receptor has been identified as a probable mechanism underlying mossy fiber sprouting. Seizure induction causes increases in BDNF, and BDNF overexpression can activate mossy fiber branching (Scharfman et al., 2002; Danzer et al., 2009), while heterozygous BDNF knockout mice showed decreased sprouting levels after seizure induction (Vaidya et al., 1999). Thus, it was initially suggested that BDNF is both necessary and sufficient to cause axonal branching which can lead to mossy fiber sprouting (Koyama et al., 2004a). Subsequent studies challenged these results, with either transgenic overexpression of BDNF or BDNF infusion unable to induce mossy fiber sprouting. Hence, while not sufficient (Vaidya et al., 1999; Qiao et al., 2001), BDNF might be required for DG cell axonal branching leading to mossy fiber sprouting (Koyama et al., 2004a). Subsequently, it was found that Netrin-1 signalling through Unc5 also plays a role in sprouting of mossy fibers. Under normal conditions, Deleted in Colorectal Carcinoma (DCC)-expressing DG axons are repelled away from Netrin-1 expression in the DG. However, neuronal hyperactivity causes upregulation of Unc5 on DG cell axons, thereby strengthening attraction to Netrin-1 in the DG molecular layer instead of repulsion (Muramatsu et al., 2010).
Another example of mossy fiber sprouting came from cultured hippocampal slices, in which recombinant repulsive guidance molecule A (RGMa) application inhibited mossy fiber sprouting normally induced by hyperexcitability, suggesting that this guidance molecule also controls axonal branching of mossy fibers (Shibata et al., 2013). In a pentylenetetrazole kindling model, RGMa levels were reduced with concomitant increases in focal adhesion kinase (FAK) phosphorylation and Ras activation which mediate cytoskeletal changes involved in neurite outgrowth. These changes correlated with the progression of mossy fiber sprouting (Song et al., 2015b). Conversely, administration of RGMa in the pentylenetetrazole kindling model restored FAK phosphorylation, diminished mossy fiber sprouting, and suppressed seizure activity (Chen et al., 2017; Song et al., 2019).

Importantly, the misguidance and sprouting of mossy fiber axons has been shown to correlate with alterations to neuronal activity, which may link to changes in cognition or memory formation. Cognitive impairments observed in conditions such as schizophrenia are suggested to involve abnormal hippocampal neural transmission (Tamminga et al., 2010). For example, the alpha-isofrom of calcium/calmodulin-dependent protein kinase II (CAMKIIα) is an important regulator of neurotransmitter release important for maintaining proper neural transmission (Hinds et al., 2003). CAMKIIα heterozygote mice have working memory deficits and hyperlocomotion reminiscent of impairments in psychiatric conditions (Yamasaki et al., 2008). These heterozygous mice display an increased number of mossy fiber axons projecting aberrantly into stratum oriens, likely caused by the reduction in Semaphorin expression observed in CA3 (Nakahara et al., 2015, 2018). These findings provide good examples of neuronal activity-induced disruptions to axon guidance mechanisms.
Together, these studies provide ample evidence that both development and maintenance of hippocampal circuitry is vital for normal brain function. Further studying the role of axon guidance and cell adhesion molecules will help elucidate the complex mechanisms of mossy fiber circuit formation and maintenance.

5. **Objectives for Manuscript 3 (Chapter 4)**

Cell adhesion functions and neural activity regulation are common requirements of MF projection formation and maintenance and thus make Amigo1 a good candidate for regulating the projections of this part of the HC circuit. In Chapter 4, we characterize the expression of Amigo1 in various brain regions, including the hippocampus, and we investigate a function for Amigo1 in the regulation of mossy fiber projections. We chose to examine its role in both the development and maintenance of these projections using an Amigo1 null mouse model.
Chapter 2:
Slitrk1 is localized to excitatory synapses and promotes their development
François Beaubien1,2,*, Reesha Raja1,2,*, Timothy E. Kennedy1,3, Alyson E. Fournier1,3 & Jean-François Cloutier1,3

1 Montreal Neurological Institute, Montreal, Quebec, Canada.
2 Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
3 Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
*These authors contributed equally to this work.

I. Preface

This chapter was published in Scientific Reports in 2016. In this manuscript, we study the role of Slitrk1 in synaptogenesis using an \textit{in vitro} approach, where we grow hippocampal neurons in culture, followed by overexpression or knockdown of Slitrk1 in order to assess its ability and necessity in regulating the formation of excitatory or inhibitory synapses. I am co-first author on this manuscript with Dr. François Beaubien, a former graduate student who initiated and contributed to this study. A version of this story was first submitted for publication to The Journal of Biochemistry following its inclusion in the Doctoral Thesis of Dr. François Beaubien. The manuscript underwent major revisions for publication in Scientific Reports, including all new figures and datasets that I have generated. Thus, I have acquired and performed the analysis of all data included in the final published manuscript. Some overlap in the text of the introduction and methods sections exist between the published paper and the early version of the manuscript included in Dr. Beaubien’s thesis.
II. Acknowledgements

We thank Dr. Keith Murai and members of the Cloutier lab for critical comments on the manuscript. We thank Dr. Emma Jones, Carolin Madwar, Ricardo Sanz, and Andrew Kaplan for technical insight and help. J.-F.C. held a Canada Research Chair in developmental neurobiology and is an FRQ-S Senior Scholar. R.R. held a Vanier Studentship from the Canadian Institutes for Health Research (CIHR). This research was supported by CIHR and the Brain and Behavior Research Foundation (NARSAD).

III. Abstract

Following the migration of the axonal growth cone to its target area, the initial axo-dendritic contact needs to be transformed into a functional synapse. This multi-step process relies on overlapping but distinct combinations of molecules that confer synaptic identity. Slitrk molecules are transmembrane proteins that are highly expressed in the central nervous system. We found that two members of the Slitrk family, Slitrk1 and Slitrk2, can regulate synapse formation between hippocampal neurons. Slitrk1 is enriched in postsynaptic fractions and is localized to excitatory synapses. Overexpression of Slitrk1 and Slitrk2 in hippocampal neurons increased the number of synaptic contacts on these neurons. Furthermore, decreased expression of Slitrk1 in hippocampal neurons led to a reduction in the number of excitatory, but not inhibitory, synapses formed in hippocampal neuron cultures. In addition, we demonstrate that different leucine rich repeat domains of the extracellular region of Slitrk1 are necessary to mediate interactions with Slitrk binding partners of the LAR receptor protein tyrosine phosphatase family, and to promote dimerization of Slitrk1. Altogether, our results demonstrate that Slitrk family proteins regulate synapse formation.
IV. **Introduction**

One of the key steps in the development of the nervous system is the formation of new connections between different neurons. This process, referred to as synaptogenesis, also plays a critical role in the mature brain where the dynamic modification of circuitry has a profound effect on functions such as learning and memory. Multiple families of cell adhesion molecules have been implicated in various aspects of synapse formation, such as the formation of initial contacts and synapse maturation. Members of the Neuroligin (Ichtchenko et al., 1995; Scheiffele et al., 2000), Neurexin (Ichtchenko et al., 1995; Graf et al., 2004), LRRTM (DeWit et al., 2009; Ko et al., 2009; Linhoff et al., 2009), synaptic cell adhesion molecule (SynCAM) (Biederer et al., 2002; Robbins et al., 2010), Netrin G-ligand (NGL) (Kim et al., 2006), SALM (Mah et al., 2010), and EphB (Kayser et al., 2006) families of cell surface proteins are examples of such molecules involved in these processes. It has been suggested that defects in neural connectivity or synaptic patterning underlie many neurodevelopmental disorders including autism and schizophrenia (Wright and Washbourne, 2011). For example, familial forms of autism-spectrum disorders have been linked to mutations in Neuroligin and Neurexin (reviewed by Bourgeron, 2009) as well as in SynCAM and Cadherin (Zhiling et al., 2008; Wang et al., 2009). Another family of transmembrane proteins that has been implicated in the etiology of brain disorders is the Slitrks. *SLITRK1* was proposed as a susceptibility gene for Gilles de la Tourette Syndrome (Abelson et al., 2005; Zimprich et al., 2008; Miranda et al., 2009) and for the OCD spectrum disorder trichotillomania (Züchner et al., 2006; Chattopadhyay and Chatterjee, 2012), while variants of the *SLITRK2* gene have been found in patients with schizophrenia (Piton et al., 2011). Mutations in Slitrk6 have been associated with myopia and deafness, and Slitrk family members may also associate with bipolar disorder (Smith et al., 2009; Greenwood et al., 2013; Tekin et al., 2013).
The Slitrks form a family of six structurally similar proteins that contain two leucine-rich repeat (LRR) domains in their extracellular portion and a cytoplasmic region that varies in size between members of the family (Aruga and Mikoshiba, 2003). LRR domains are protein-protein interaction regions commonly found in synaptogenic proteins (Ko and Kim, 2007). Despite some overlap in their expression, the Slitrks display mostly distinct patterns of expression in the developing murine nervous system suggesting they may play specific roles in different regions of the brain (Beaubien and Cloutier, 2009). In keeping with this possibility, gene ablation studies in mice for different Slitrk family members have yielded distinct phenotypes. While ablation of Slitrk1 leads to increased anxiety-like behaviour (Katayama et al., 2010), Slitrk5 mutant mice display obsessive compulsive-like behaviors (Shmelkov et al., 2010), and Slitrk3 mutant mice exhibit increased susceptibility to seizures (Takahashi et al., 2012). In contrast, Slitrk6-knockout mice display specific defects in development of the inner ear, including disorganized innervation and neuronal loss (Katayama et al., 2009). Based on the structure of Slitrks and the nature of phenotypes observed in some Slitrk mutant mice, Slitrks were proposed to regulate synapse formation in the central nervous system. Recent evidence has shown that Slitrk3 is specifically required for the formation of inhibitory synapses both in vitro and in vivo, and that other members of the Slitrk family can promote excitatory synapse formation (Linhoff et al., 2009; Takahashi et al., 2012; Yim et al., 2013).

Here we have examined the function of two members of the Slitrk family, Slitrk1 and Slitrk2, in synapse formation. We show that Slitrk1 is preferentially localized to excitatory synapses. Overexpression of Slitrk1 or Slitrk2 can promote the formation of both excitatory and inhibitory synapses in cultures of hippocampal neurons. However, inhibition of Slitrk1 expression reduces the number of excitatory, but not inhibitory, synapses formed between hippocampal neurons in
culture. We also demonstrate that the first LRR domain of Slitrk1 mediates interactions with the receptor tyrosine phosphatase PTPδ, while the second LRR domain is necessary for dimerization of Slitrk1 at the cell surface. Taken together, our results demonstrate that Slitrk1 and Slitrk2 contribute to synapse formation and suggest that dimerization of Slitrk family members could be implicated in this process.

V. Results

1. Slitrk1 is preferentially localized at excitatory synapses.

The Slitrks are predominantly expressed in neural tissues at embryonic ages and postnatally (Aruga and Mikoshiba, 2003; Aruga et al., 2003; Beaubien and Cloutier, 2009). More specifically, their localization at the synapse has been recently suggested based on the presence of tagged recombinant versions of these proteins at synaptic sites in cultured neurons. While Slitrk3 was localized to inhibitory synapses, other members of the Slitrk family appear localized to excitatory synapses (Shmelkov et al., 2010; Takahashi et al., 2012; Yim et al., 2013). To examine whether endogenous Slitrk1 is found at excitatory or inhibitory synapses, dissociated hippocampal neuron cultures were immunostained with an antibody against the Slitrk1 extracellular N-terminal region (Slitrk1-N) that does not recognize other Slitrk family members (Fig. 1a,b,e). In confocal images of these neurons, Slitrk1 signal was detected in a punctate pattern on hippocampal processes with a majority of these puncta colocalizing with VGLUT1- and PSD-95-positive excitatory synapses (Fig. 1a). A large proportion of VGLUT1- and PSD-95-positive clusters (57.23 ± 4.76%) were apposed to Slitrk1-positive puncta, while only 16.74 ± 4.09% of VGAT- and Gephyrin-positive clusters overlapped with Slitrk1 puncta (Fig.1a–c). To further characterize the localization of Slitrk1 at the synapse, we examined its distribution in subcellular fractions generated from 3-4-week-old mouse hippocampi using a specific antibody against the intracellular domain of Slitrk1
(Slitrk1-C). These analyses revealed that a portion of Slitrk1 protein is found in synaptic membrane fractions (Fig. 1d). As previously described, expression of Slitrk1 in an heterologous cell system leads to the detection of two closely migrating bands that likely represent differentially glycosylated forms of Slitrk1 (Fig. 1e) (Kajiwara et al., 2009). The Slitrk1-C and Slitrk1-N antibodies we have generated detect both forms of Slitrk1 proteins, but not other members of the Slitrk family (Fig. 1e). Taken together, our results indicate that Slitrk1 is localized to synapses and may thus play a role in synaptogenesis.
(a,b) Subcellular localization of Slitrk1 in dissociated hippocampal neurons. Neurons at DIV15 were fixed and stained for Slitrk1-N (N-terminal antibody, green) with pre- (red) and post-synaptic (blue) excitatory (a) or inhibitory (b) markers. Slitrk1 staining is punctate and colocalizes mostly with excitatory synaptic puncta, as well as some inhibitory synaptic puncta. (c) Quantification of average number of Slitrk1-positive synapses per neuron. Mean ± s.e.m.: Excitatory, 57.23 ± 4.76, n = 6 neurons; Inhibitory, 16.74 ± 4.09, n = 5 neurons. Endogenous Slitrk1 localizes mainly to excitatory synapses in cultured hippocampal neurons. (d) Distribution of Slitrk1 in subcellular fractions of hippocampi isolated from 3-4-week old mouse brain. Note that Slitrk1 is detected in synaptic fractions including P2, P2* and the postsynaptic densities (PSD). PSD-95 and synaptophysin were probed for comparison. H, homogenate; P1, crude nuclear fraction; S2, supernatant after P2 precipitation; P2, crude synaptosomes; P2*, purified synaptosomes; PSD1, pellet after the first Triton X-100 extraction; PSD2, pellet after the second Triton X-100 extraction. (e) Characterization of Slitrk1 antibodies. Lysates of HEK293T cells expressing HA-tagged Slitrk family proteins were immunoblotted with Slitrk1-C (C-terminal antibody), Slitrk1-N and HA antibodies. Slitrk1 antibodies specifically recognize Slitrk1.
2. **Overexpression of Slitrk1 and Slitrk2 in neurons increases synapse density.**

To determine whether Slitrk1 and another Slitrk family member, Slitrk2, can promote synaptic differentiation in neurons, we overexpressed Slitrk1 or Slitrk2 in hippocampal neurons. Cultured hippocampal neurons were transfected at 13 days *in vitro* (DIV) with two different amounts of vector DNA (1μg or 2μg) expressing either EGFP, or EGFP-tagged Slitrk1 or Slitrk2. Cultures were immunostained two days later with antibodies against markers of glutamatergic excitatory synapses, VGLUT1 and PSD-95, or against markers of inhibitory GABAergic synapses, VGAT and Gephyrin, and the number of synapses was quantified. In agreement with previously published observations (Yim et al., 2013), overexpression of either Slitrk1 or Slitrk2 induced a robust increase in excitatory synaptic differentiation in contacting axons, as measured by the number of VGLUT1-PSD-95 clusters (Fig. 2a,c). In contrast to previous observations where overexpression of Slitrk1 and Slitrk2 did not have an effect on inhibitory presynaptic differentiation (Yim et al., 2013), we observed a significant increase in the number of inhibitory synaptic contacts as measured by the number of VGAT-Gephyrin-positive clusters (Fig. 2b,d, *grey bars*) on hippocampal dendrites. However, this effect appeared to be dependent on high levels of overexpression of Slitrk1 or Slitrk2 as transfecting these neurons with smaller amounts EGFP-tagged Slitrk1- or Slitrk2-expressing vectors led to increased numbers of excitatory, but not inhibitory, synapses (Fig. 2b,d, *white bars*). Hence, overexpression of either Slitrk1 or Slitrk2 can promote the formation of excitatory synapses in dissociated hippocampal cultures. Furthermore, they are capable of promoting inhibitory synapse formation when expressed at high enough levels.
Figure 2: Overexpression of Slitrk1 and Slitrk2 in cultured neurons increases the amount of presynaptic excitatory and inhibitory contacts.

a. EGFP, VGLUT1, PSD-95, Merge

<table>
<thead>
<tr>
<th></th>
<th>EGFP</th>
<th>VGLUT1</th>
<th>PSD-95</th>
<th>Merge</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 μm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 μg EGFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slitrk1-EGFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slitrk2-EGFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 μg EGFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slitrk1-EGFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slitrk2-EGFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. EGFP, VGAT, Gephyrin, Merge

<table>
<thead>
<tr>
<th></th>
<th>EGFP</th>
<th>VGAT</th>
<th>Gephyrin</th>
<th>Merge</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 μm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 μg EGFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slitrk1-EGFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slitrk2-EGFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 μg EGFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slitrk1-EGFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slitrk2-EGFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c. Number of excitatory synapses per 50 μm

- EGFP
- Slitrk1-EGFP
- Slitrk2-EGFP

d. Number of inhibitory synapses per 50 μm

- EGFP
- Slitrk1-EGFP
- Slitrk2-EGFP

- 2 μg transfection
- 1 μg transfection
Cultured hippocampal neurons were transfected with either 1 or 2 μg of EGFP alone, Slitrk1 EGFP, or Slitrk2 EGFP at 13 DIV and immunostained for VGLUT1/PSD-95 (a) or VGAT/Gephyrin (b) at 15 DIV. (c,d) Quantification of the results from (a,b) respectively. (c) Average number of excitatory synapses per 50 μm, for 2 μg and 1 μg transfections Mean ± s.e.m. (Vector EGFP 2 μg, 9.58 ± 0.710, n = 36; Slitrk1 EGFP 2 μg, 18.47 ± 1.859, n = 36; Slitrk2 EGFP 2 μg, 14.83 ± 1.069, n = 36; From 3 separate experiments; ****p < 0.0001 *p < 0.05, One-way ANOVA and Vector EGFP 1 μg, 7.26 ± 0.745, n = 23; Slitrk1 EGFP 1 μg, 12.52 ± 1.142, n = 23; Slitrk2 EGFP 1 μg, 14.92 ± 1.473, n = 24; From 2 separate experiments; **p < 0.01 ****p < 0.0001 One-way ANOVA). (d) Average number of inhibitory synapses per 50 μm, for 2 μg and 1 μg transfections Mean ± s.e.m. (Vector EGFP 2 μg, 4.47 ± 0.642, n = 36; Slitrk1 EGFP 2 μg, 7.78 ± 0.649, n = 36; Slitrk2 EGFP 2 μg, 7.22 ± 0.600, n = 36; From 3 separate experiments; ***p < 0.001 **p < 0.01 One-way ANOVA and Vector EGFP 1 μg, 5.171 ± 0.646, n = 35; Slitrk1 EGFP 1 μg, 5.889 ± 0.533, n = 36; Slitrk2 EGFP 1 μg, 6.64 ± 0.876, n = 36; From 3 separate experiments; ns, p > 0.05 One-way ANOVA).
3. **Knockdown of Slitrk1 reduces synapse number in hippocampal neuron cultures.**

To test whether endogenous Slitrk1 is required for excitatory or inhibitory synapse formation, we used RNA interference to knock down expression of Slitrk1 in hippocampal neurons. We generated two lentiviral vectors expressing individual shRNAs targeting Slitrk1 and infected dissociated hippocampal neuron cultures. These two independent shRNA constructs reduced the expression of endogenous Slitrk1 by 82.7% and 70.5% in hippocampal neurons (Fig. 3a,b). Knockdown of Slitrk1 significantly reduced the number of VGLUT1- and PSD-95-positive excitatory synapses (Fig. 3c,e) but did not affect the number of VGAT- and Gephyrin-positive inhibitory synapses (Fig. 3d,f), indicating that Slitrk1 specifically contributes to excitatory synapse differentiation.
Hippocampal neurons in culture were infected at 3 DIV with Slitrk1-shRNA lentivirus. At 10–11 DIV, cell lysates were immunoblotted for Slitrk1 to test knockdown. (a) Western blot analysis of Slitrk1 knockdown efficiency by shRNA #1 and #2. (b) Quantification of knockdown efficiency. Ratio of Slitrk1 to β-Actin band intensity normalized to untreated cells. Mean ± s.e.m. (Untreated, 1 ± 0.00; Control shRNA, 0.966 ± 0.226; Slitrk1 shRNA #1, 0.167 ± 0.098; Slitrk1 shRNA #2, 0.285 ± 0.128; From 3 separate experiments; *p < 0.05, One-way ANOVA). (c,d) Cultured hippocampal neurons were infected with Control, Slitrk1 shRNA #1 or Slitrk1 shRNA #2 at 3 DIV and immunostained at 10–11 DIV for VGLUT and PSD-95 (c) or VGAT and Gephyrin (d) to label excitatory or inhibitory synaptic puncta, respectively. (e) Average number of excitatory synapses per 50 μm, Mean ± s.e.m. (Control siRNA, 17.76 ± 0.96 n = 75; Slitrk1 siRNA #1, 14.84 ± 0.781 n = 80; Slitrk1 siRNA #2, 14.56 ± 0.857 n = 73; From 5 separate experiments; *p < 0.05, One-way ANOVA). (f) Average number of inhibitory synapses per 50 μm, Mean ± s.e.m. (Control siRNA,
11.28 ± 0.649 n = 47; Slitrk1 siRNA #1, 12.31 ± 0.760 n = 36; Slitrk1 siRNA #2, 12.42 ± 0.629 n = 33; Done in 3 separate experiments; One-way ANOVA).
4. The second leucine-rich repeat of Slitrk1 is necessary for its homophilic interaction at the cell surface.

The extracellular region of Slitrk1 contains two leucine-rich repeats, which are domains that can mediate protein-protein interactions and dimerization of cell surface receptors (Bella et al., 2008; Kajander et al., 2011). To examine whether Slitrk1 molecules can interact in cis at the cell surface, we used a chemical cross-linking approach to promote the maintenance of cis-interacting complexes at the plasma membrane. V5-tagged Slitrk1 was expressed in HEK293T cells, and native plasma membrane complexes were preserved through covalent cross-linking. The SDS-PAGE migration of Slitrk1 corresponded to two bands at molecular weights of approximately 85 and 120kDa. While the band migrating at 120kDa represents the mature form of Slitrk1 expressed at the surface (Fig. 4a), the lower molecular weight band likely represents an immature form of Slitrk1 (Kajiwara et al., 2009). After cross-linking, the majority of Slitrk1 immunoreactivity appeared as a single band corresponding to an approximate molecular weight of 260kDa, suggesting that it may be composed of Slitrk1 homodimers (Fig. 4a, arrowhead). Furthermore, V5- and Myc-tagged Slitrk1 molecules can be co-immunoprecipitated from lysates of HEK293T cells expressing these two proteins (Fig. 4b). Taken together, these two results indicate that Slitrk1 molecules have the ability to interact with each other at the cell surface, possibly forming homodimers.

Since leucine-rich repeats have been implicated in the dimerization of cell surface receptors, we examined the requirement of the two LRR domains of Slitrk1 for this interaction. V5-tagged Slitrk1 molecules containing deletions of either the first (Slitrk1ΔLRR1) or second (Slitrk1ΔLRR2) LRR domains (Fig. 5a) were expressed in HEK293T cells with a Myc-tagged full-length Slitrk1 to perform co-immunoprecipitation experiments. Both Slitrk1 deletion proteins were expressed at the cell surface at similar levels to the wild-type Slitrk1 (Fig. 5b). While deletion of
the first LRR domain did not affect the co-immunoprecipitation of this mutant with Slitrk1, we observed a robust decrease in the interaction of Slitrk1ΔLRR2 with Slitrk1, indicating that the second LRR contributes to Slitrk1-Slitrk1 interactions (Fig. 5c). Interestingly, removal of the second LRR did not affect the binding of Slitrk1 to PTPδ in a cell binding assay, indicating that improper folding of this deletion mutant is unlikely to account for the lack of interaction with full length Slitrk1 (Fig. 5d). In contrast, removal of the first LRR prevented Slitrk1 binding to PTPδ, confirming this previously published observation (Fig. 5d) (Yim et al., 2013). Taken together, these results demonstrate that Slitrk1 can form homodimers at the cell surface and that the LRR2 domain is necessary for this interaction to take place.
Figure 4: Slitrk1 molecules have the ability to interact at the cell surface.

(a) Slitrk1 exists in a complex at the cell surface. Western blot of cross-linked (+) or mock-treated (−) HEK293T cells transfected with Slitrk1-V5. Cross-linked sample reveals a protein complex containing Slitrk1-V5 that migrates above 245kDa (arrowhead). (b) Slitrk1 forms homophilic complexes. HEK293T cells were transfected with either Slitrk1-V5 alone, Slitrk1-myc alone, or co-transfected with both tagged vectors. Protein lysates were immunoprecipitated with V5 antibodies and western blots were performed using myc and V5 antibodies. These results indicate that Slitrk1 can form homophilic complexes when expressed in HEK293T cells. IP, Immunoprecipitation; WB, Western Blot.
Figure 5: Determination of the LRR domain required for homophilic binding

(a) Diagram of Slitrk1 mutant constructs. Mutants, Slitrk1ΔLRR1 and SlitrkΔLRR2, are missing the coding region for leucine-rich repeat domain 1 and 2, respectively. Full length and mutant constructs are C-terminally V5-tagged. NTS, n-terminal sequence; LRR, Leucine-rich repeat domain; TM, Transmembrane domain; ICD, intracellular domain. (b) Expression of full length and mutant V5-tagged Slitrk1 protein at the cell surface. COS cells were transfected with Slitrk1-V5 or mutant variants. Cell-surface proteins were isolated by incubating cells with biotin, followed by immunoprecipitation with avidin-conjugated beads. Biotinylated cell surface Slitrk1-V5 was
detected by blotting with a V5 antibody. The intracellular protein Akt was not detected in these immunoprecipitates. Expression of the Slitrk1 mutants at the cell surface is similar to that of full length Slitrk1. I, Input; S, Surface protein. (c) Analysis of interaction between Slitrk1 full length and mutant constructs by co-immunoprecipitation. HEK293T cells were either transfected with Slitrk1-myc or Slitrk1-V5 alone, or co-transfected with Slitrk1-myc and one of the Slitrk1-V5 full length or mutant constructs. Lysates were immunoprecipitated with V5 antibodies and blotted with myc and V5 antibodies. These results indicate that the LRR2 domain of Slitrk1 is required for homophilic Slitrk1 interactions. (d) Cell surface binding assay performed on COS cells transfected with V5-tagged Slitrk1 variants. Cells were treated with purified PTPδ-Fc protein and analyzed by immunofluorescence for PTPδ-Fc binding (red) and V5 (green). These results demonstrate that the LRR1 is required for the binding of PTPδ to Slitrk1.
VI. Discussion

Members of the Slitrk family of proteins have been implicated in the etiology of multiple neuropsychiatric disorders (Abelson et al., 2005; Züchner et al., 2006; Zimprich et al., 2008; Miranda et al., 2009; Smith et al., 2009; Piton et al., 2011; Chattopadhyay and Chatterjee, 2012; Greenwood et al., 2013). Here, we show that Slitrk1 is present in postsynaptic density fractions isolated from mouse hippocampi and that Slitrk1 is preferentially localized to excitatory synapses in hippocampal neurons, supporting a role for these proteins in regulating synapse formation. We also demonstrate that overexpression of Slitrk1 or Slitrk2 in hippocampal neurons promotes the formation of both excitatory and inhibitory synapses, which is consistent with the previously reported observation that Slitrk1 can promote presynaptic clustering of both VGLUT1 and VGAT in a mixed-culture assay (Takahashi et al., 2012). However, considering that Slitrk1 is preferentially localized at excitatory synapses (Fig. 1a–c) and that its overexpression has been shown to specifically enhance the formation of excitatory synapses (Yim et al., 2013), it is somewhat surprising that we also observe an increase in inhibitory synapse formation in our experiments. It is therefore likely that the enhanced number of inhibitory synapses we observe in these neuronal cultures results from high overexpression of Slitrk1 in our system leading to its ectopic localization to inhibitory synapses. In keeping with this possibility, transfecting hippocampal neurons with lower amounts of EGFP-tagged Slitrk1 vector promotes formation of excitatory synapses but not inhibitory synapses (Fig. 2). Decreased expression of Slitrk1 in hippocampal neurons reduced the number of excitatory, but not inhibitory, synapses formed, demonstrating that endogenous Slitrk1 specifically contributes to excitatory synapse formation (Fig. 3). Taken together, our observations and previously published results indicate that Slitrk1 has
the potential to promote presynaptic differentiation of both excitatory and inhibitory synapses, but that its localization restricts its effect to excitatory synapses.

Slitrk3 has been identified as a specific inducer of inhibitory presynaptic differentiation by binding to the receptor protein tyrosine phosphatase, PTPδ, on the presynaptic side of the cleft (Takahashi et al., 2012). Ablation of Slitrk3 in mice leads to specific reductions in both inhibitory synapse density and synaptic transmission in the hippocampus (Takahashi et al., 2012). In contrast to the specific role that Slitrk3 plays in regulating inhibitory synapse formation, other Slitrk family members have been shown to modulate excitatory synapse formation by interacting with PTPσ (Yim et al., 2013). Our results demonstrate for the first time that endogenous Slitrk1 proteins are localized to excitatory synapses and confirm that Slitrk1 contributes to the formation of these synapses in vitro.

The presence of two LRR domains in the extracellular region of Slitrk molecules suggests that protein-protein interactions play a critical role in their functions. Indeed, the most N-terminal LRR domain (LRR1) of Slitrk1 is essential to mediate its interaction in trans with RPTPs and for its ability to promote synapse formation (Fig. 5d) (Um et al., 2014). Interestingly, this domain is also necessary for the interaction of another Slitrk family member, Slitrk5, with a cell surface receptor in cis to regulate its cell surface expression. The LRR1 domain of Slitrk5 was recently shown to mediate interactions with the receptor tyrosine kinase TrkB and to regulate its trafficking inside the cell. The binding of BDNF to TrkB promotes an interaction between Slitrk5 and TrkB, outcompeting PTPδ binding (Song et al., 2015a). In contrast to the LRR1 domain, binding partners for the second LRR2 domain of Slitrks remain to be identified. Our observation that Slitrk1 molecules can form complexes at the cell surface through interactions between their LRR2 domains when expressed in HEK293T cells suggests that other Slitrk family members may also
be capable of forming homodimers at the surface. While it remains unclear whether dimerization of Slitrk1 is required for its function at the synapse, dimerization and lateral interactions of other synaptogenic proteins have been implicated in their ability to promote synapse formation (Fogel et al., 2011; Shipman and Nicoll, 2012). For example, the dimerization of Neuroligin is necessary for its synaptogenic activity and has been proposed to regulate the trans-synaptic clustering of Neurexin in the presynaptic terminal during synapse assembly (Shipman and Nicoll, 2012). While dimerization of Slitrk1 does not appear to be necessary for its binding to PTPδ (Fig. 5d), it may serve to promote the lateral assembly of LAR-RPTP-Slitrk complexes that has been proposed to take place at the synapse (Um et al., 2014). Future studies should shed light on the role of Slitrk1 dimerization through LRR2 for its function at the synapse.

VII. Materials and Methods

1. cDNA constructs

Full-length human Slitrk1 (aa 1–696) and human Slitrk2 (aa 1–845) were sub-cloned into the pEGFP-N1 vector (Clontech). For C-terminal V5- or MYC-tagged Slitrk1 constructs, full-length human Slitrk1 (aa 1–696) was sub-cloned into the pcDNA3.1 MYC-His A vector and the pcDNA3.1 V5-His A vector (Invitrogen), respectively. Slitrk1 mutants lacking either of the LRR domains (Slitrk1ΔLRR1 (Δ aa 18–264) and Slitrk1ΔLRR2 (Δ aa 304–599)) were also each sub-cloned into the pcDNA3.1 V5-His A vector. For knockdown of Slitrk1 in hippocampal neurons, shRNA sequences targeting nucleotides against rat Slitrk1 (Target #1: nucleotides 1222–1242; Target #2: nucleotides 2214–2234) were cloned into pcDNA6.2/GW-EmGFP-miR plasmid (gifted by Dr. Peter S. McPherson). PTPδ-Fc and HA-tagged Slitrk1 to Slitrk6 constructs were gifted to us by Dr. Hideto Takahashi and Dr. Ann Marie Craig, respectively.
2. Antibodies

A rabbit polyclonal antibody recognizing the intracellular portion of Slitrk1 (referred to as Slitrk1-C) was generated against the peptide DGSHRVYDCGSHS (aa 680–693 of the mouse sequence) and purified against the same epitope. Another Slitrk1 rabbit polyclonal antibody (namely Slitrk1-N) was obtained from an animal immunized with the complete extracellular portion of the protein (aa 2–600). The other antibodies were obtained commercially; Akt (rabbit, New England Biolabs); β-Actin (mouse, Abcam); Gephyrin (mouse, SynapticSystems); GFP (rabbit, Invitrogen); HA (mouse, Sigma); myc (goat, Abcam); PSD-95 (mouse, NeuroMab); Synaptophysin (Mouse, SynapticSystems); V5 (rabbit, Invitrogen); VGAT (guinea pig, SynapticSystems); VGLUT1 (guinea pig, SynapticSystems).

3. Cell culture

All procedures involving the use of animals were approved by the animal care committee of the Montreal Neurological Institute and performed in accordance with the approved guidelines. Embryonic day (E) 18-19 rat embryos were obtained from Sprague Dawley females (Charles River). Cultures of hippocampal neurons were prepared from the embryos according to previously described protocols (Kaech and Banker, 2006). Briefly, hippocampi were isolated from the embryos, Cells were trypsinized for 15–20 minutes in 0.25% Trypsin-EDTA (gibco, Life Technologies), washed in Neurobasal media (Invitrogen, Life Technologies) supplemented with L-Glutamine (gibco, Life technologies), Pen/Strep (gibco, Life technologies), and B-27 (gibco, Life Technologies), triturated using flamed glass pasteur pipettes, and then plated onto Poly-L-lysine-coated (Sigma) coverslips (Fisherbrand, 12CIR-1D) in 24-well plates and grown at 37°C, 5% CO2.
4. Slitrk1 knockdown
Lentiviral shRNA vectors targeting Slitrk1 contained the following nucleotide sequences: Slitrk1shRNA#1, 5′-AGCACCCTACCTGCTAATGTA-3′; Slitrk1shRNA#2, 5'-TAAGCTCAGTCTGCACAATAA-3'. Lentiviral vectors and virus was produced according to Allaire et al. (Allaire et al., 2010). Oligonucleotide sequences targeting Slitrk1 were cloned into the lentiviral expression vector pRRLsinPPTeGFP. HEK293T cells were then transfected with this vector, together with pMD2.g and pRSV-Rev and pMDLg/pRRE which encode necessary viral genes. Media was collected at 24, 36, and 48hrs post-transfection and concentrated by centrifugation. Hippocampal neurons were infected at 3 DIV with control or shRNA lentivirus and were either fixed for immunostaining or lysed at 10–11 DIV. Knockdown efficiency was verified by Western blotting of hippocampal neuron lysates with the Slitrk1-C antibody.

5. Transfection and immunocytochemistry
HEK cells and cultured hippocampal neurons were transfected using Lipofectamine2000 Reagent (Invitrogen, Life Technologies). For HEK cell transfections, DNA to Lipofectamine2000 ratios were used as recommended by manufacturer’s guidelines. Cultured neurons were transfected at 13 DIV for 15 minutes with 1 or 2μg DNA and 0.5μL Lipfectamine2000 per well. Cells were fixed with 4% paraformaldehyde/4% sucrose (vol/vol) at 15 DIV, and permeabilized with 0.2% Triton X-100 (vol/vol) in phosphate-buffered saline (1×PBS, pH= 7.4). All cells undergoing immunocytochemistry were blocked in 5% FBS diluted in 1×PBS and then incubated with the appropriate primary antibodies overnight at 4°C, followed by Alexa-488-, Alexa-546-, Alexa-647-conjugated species-specific secondary antibodies (1:400; Invitrogen). Coverslips were mounted onto microscope slides using Fluoromount-G (Southern Biotech).
6. Image acquisition and quantification

Images were acquired using a confocal microscope with a 63× oil objective (LSM710; Zeiss). The settings were kept constant for all scanning in each experiment. The number of pre- and post-synaptic puncta were counted along 50μm lengths of axons. All values are presented as mean±s.e.m., and significance of the quantification was determined by ANOVA followed by Tukey’s multiple comparisons test.

7. Production of PTPδ-Fc protein

Soluble PTPδ-Fc was purified as previously described (Takahashi et al., 2012). HEK293T cells were first transfected with the PTPδ-Fc plasmid. Secreted protein was purified by affinity chromatography using protein G-sepharose 4 Fast Flow beads (GE Healthcare), eluted with 100mM Glycine, pH 2.7 (immediately neutralized with 1M Tris pH 9.0), and concentrated using Amicon Ultra centrifugal filter units (30kDa cutoff, Millipore).

8. Cell surface binding assay

COS cells were grown on Poly-L-Lysine-coated coverslips and transfected with Slitrk1-V5 full length or mutant variants (Slitrk1ΔLRR1-V5 and Slitrk1ΔLRR2-V5), or the V5 vector alone as a control. Binding was performed as previously described (Takahashi et al., 2012). Cells were grown for 48 hours, then washed with extracellular solution (168mM NaCl, 2.4mM KCl, 20mM HEPES pH 7.4, 10mM D-glucose, 2mM CaCl₂, 1.3mM MgCl₂) with 200 ug/mL BSA (ECS/BSA). Cells were then treated with purified PTPδ-Fc for 1 hour at room temperature and fixed for 12 minutes in 4% paraformaldehyde (PFA) in 1×PBS. After blocking in 3% BSA, 5% FBS in 1×PBS, cells were incubated with Alexa546-conjugated Donkey anti-Human IgG for one hour at room temperature, stained for nuclei using Hoechst 33342 (1:7500, Molecular probes), and mounted onto microscope slides using Fluoromount-G (Southern Biotech).
9. Crosslinking

HEK293T cells were transfected with full length V5-tagged Slitrk1 plasmid. 48 hours post-transfection, cells were treated with 1.0mM bis[sulfosuccinimidyl] suberate (BS3, Thermo Scientific) for 30 minutes at 4°C. Cross-linker reaction was quenched with 15mM Tris pH 8.0 for 15 minutes at RT. Cells were then lysed in lysis buffer (1% SDS, 5mM EDTA, 50mM Tris, 150mM NaCl), sonicated and run on an SDS-page gel for Western Blotting analysis using the V5 antibody.

10. Synaptosomal fractionation

PSD fractionation was performed on hippocampi isolated from 3-4-week-old mouse brain as described (Fallon et al., 2002) with some minor modifications: a purified P2 pellet was incubated in 0.5% Triton X-100, 40mM Tris-HCl (pH 8.0) and then centrifuged at 32,000×g to generate the PSD1 fraction. This fraction was then further extracted with 0.5% Triton X-100, 40mM Tris-HCl (pH 8.0), and subsequently centrifuged at 200,000×g to isolate the PSD2 fraction. Samples were subject to Western Blotting analysis.

11. Cell surface biotinylation

COS cells were transfected with the different plasmids for 48 hours, washed 3 times with 1× PBS, incubated with EZ-Link Sulfo-NHS-LC-Biotin 1mg/ml (Thermo Scientific Pierce) at 4°C for 30 minutes, and washed 3 times with 1×PBS + 100mM glycine to quench the biotin reagent. The cells were then lysed, and surface proteins were isolated using streptavidin agarose beads (Thermo Scientific Pierce) prior to running samples on an SDS-page gel for Western Blotting analysis.
12. Immunoprecipitation and Western Blotting

For immunoprecipitation, HEK293T cells were doubly transfected with Slitrk1-myc (full length Slitrk) as well as Slitrk1-V5 or V5-tagged Slitrk1 variants. 750μg cell lysates were incubated with anti-V5 for 2 hours at 4°C and then incubated with Protein A/G Plus Agarose beads (Santa Cruz) for 2 hours at 4°C. Beads were then washed and immunoprecipitate was eluted using sample buffer and β-mercaptoethanol and heated for 10 minutes at 95°C. Samples were run alongside initial protein lysate (input) on an SDS-page gel. Proteins were transferred onto PVDF membranes, blocked with 5% milk in 1×TBST (Tris Buffered Saline with Tween) before probing with antibodies.
Chapter 3:
Amigo1 is expressed specifically in ventrolateral olfactory epithelium but is dispensable for olfactory receptor neuron targeting in the mouse olfactory system

Reesha Raja1,2, Emilie Dumontier1, Alina Phen1, Jean-François Cloutier1,2,3

1 Montreal Neurological Institute, Montreal, Quebec, Canada.
2 Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
3 Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada

I. Preface

This chapter is in preparation for submission for publication. As discussed in Chapter 1, the process of axon guidance is complex, requiring integration of many guidance cues to allow for proper establishment of neuronal circuitry in a system consisting of billions of neurons (Stoeckli, 2018). However, mechanisms regulating the targeting of specific populations of neurons at a more precise level are still being elucidated. The main objective of this project was to identify new molecules and mechanisms of circuit formation in the main olfactory system of mouse. Here, we identify Amigo1 to be differentially expressed within the olfactory epithelium and find it dispensable for targeting of olfactory receptor neurons to the olfactory bulb.

II. Acknowledgements

We thank Dr. Donald Van Meyel and Dr. Timothy Kennedy and members of the Cloutier lab for helpful discussions on the development of this project.

We are grateful to Patrick Gendron (Institute for Research in Immunology and Cancer of the Université de Montréal) for bioinformatic analysis on the RNA sequencing data. We are thankful
to Dr. Heiki Rauvala and Dr. Zhihua Zou for cDNA clones and to Dr. Stefano Stifani for sharing antibody.

This work was supported by CIHR. J.-F.C. held an FRQ-S Senior Scholar Award. R.R. held a Vanier Studentship from CIHR.

III. Abstract

During development, billions of neurons connect to one another in a highly specified and precisely organized manner. Sensory systems provide a good example of this organization, whereby the composition of the outside world is represented in the brain by neuronal maps. Establishing correct patterns of neural circuitry is crucial, as inaccurate map formation would lead to severe disruptions in sensory processing. In rodents, olfactory stimuli modulate a wide variety of behaviours, including predator avoidance and food foraging. The formation of the olfactory glomerular map is dependent on cues that guide olfactory receptor neuron axons to the olfactory bulb and on cell adhesion molecules that promote their sorting into specific synaptic units in this structure. Here, we investigate the role of the cell adhesion molecule Amigo1 in the precise targeting of olfactory receptor neurons to their targets on the olfactory bulb using a genetic loss-of-function approach in mice. We demonstrate that Amigo1 is expressed in a subpopulation of olfactory receptor neurons but is not required for proper axonal targeting of these neuronal processes. Interestingly, we observed that insertion of a neomycin resistance cassette in the Amigo1 locus, as part of the process of generating the Amigo1 null mouse line, leads to off-target effects, including altered expression of several additional genes and disruptions to the targeting of axons projecting from specific subsets of olfactory receptor neurons. Our results highlight the necessity of removing antibiotic resistance cassettes from genetic loss-of-function mouse models to prevent the study of phenotypes caused by off-target effects of the gene targeting procedure.
IV. Introduction

The nervous system is made up of an immensely complex network of neurons that must develop and connect to one another in intricate and precise patterns. The formation of these connections is essential for the establishment of sensory neural maps that provide a representation of the outside world. The development of olfactory maps is especially important for the interpretation of environmental and social cues necessary for survival in rodents. The mouse main olfactory system comprises the main olfactory epithelium (OE), housing primary olfactory receptor neurons (ORNs), expressing a single olfactory receptor gene from a repertoire of over 1000 genes (Buck and Axel, 1991; Chess et al., 1994; Ishii et al., 2001; Zhang and Firestein, 2002; Serizawa et al., 2003; Godfrey et al., 2004). Axons of ORNs expressing a given olfactory receptor (OR) project to the olfactory bulb (OB) where they coalesce into a small number of neuropil structures termed glomeruli, within which they synapse with dendrites of second order mitral and tufted cells for further codification of the olfactory signal and for higher order processing (Ressler et al., 1994a, 1994b; Vassar et al., 1994; Mombaerts et al., 1996). Most mature ORNs express a single type of OR, and each OR is expressed in a subset of cells located within a given subregion of the OE, which has been historically divided into four semi-overlapping regions along the dorsomedial to ventrolateral axis (Ressler et al., 1994b; Vassar et al., 1994; Sullivan et al., 1996; Miyamichi et al., 2005). More recently, the division of the OE has been shown to be more complex, with the classification of OR expression into nine zones (Zapiec and Mombaerts, 2020). Nevertheless, the mechanisms modulating OR gene choice and zonal expression remain poorly understood. Newly differentiated immature ORNs can express multiple ORs until a functional OR protein elicits the expression of downstream signalling molecules and activates negative feedback to repress gene expression of other ORs (Dalton et al., 2013). Islands of epigenetically marked OR enhancer
sequences in the genome can regulate the probability of a given OR or cluster of OR genes to be expressed and may contribute to zonal expression of ORs within the OE (Lomvardas et al., 2006; Degl’Innocenti and D’Errico, 2017; Monahan et al., 2019). From regulation of single OR gene expression in each ORN, to ORN maturation, axon guidance towards the bulb, and finally target selection of the appropriate glomerulus, a complex system of signalling molecules is necessary to ensure accuracy in map formation. Indeed, axons from over 1000 types of different ORN populations must self-organize and coalesce into roughly 2000 glomeruli on the OB. While several families of axon guidance molecules direct ORN axons to broad regions of the OB, cell adhesion molecules (CAMs) promote coalescence of these axons into specific glomeruli.

A few cell adhesion molecules belonging to the leucine-rich repeat (LRR) and Ig families of CAMs are implicated in ORN axon sorting into glomeruli at the level of the OB, such as Kirrels (Öztokatli et al., 2012; Vaddadi et al., 2019), ephrins (Cutforth et al., 2003; Serizawa et al., 2006), protocadherins (Hasegawa et al., 2008; Lee et al., 2008), and BIG-2 (Kaneko-Goto et al., 2008). These few molecules alone, however, are likely insufficient to regulate the organization of such a complex map. In an effort to identify additional molecules involved in accurate olfactory map development, we examined the involvement of the CAM Amigo1 in mouse olfactory system development. Amigo1 is one of three members of the Amigo family, which is a part of the LRR-domain containing super family of adhesion molecules. Of the three Amigo family members, Amigo1 expression is most restricted to the nervous system and it can promote axonal fasciculation and neurite outgrowth in vitro (Kuja-Panula et al., 2003). It has also been implicated in the regulation of axonal fasciculation of catecholaminergic neurons in zebrafish (Zhao et al., 2014). Interestingly, Amigo1 can regulate neuronal activity through association with the voltage-gated potassium channel Kv2.1, and it has been proposed to promote cell survival (Kajander et al., 2011;
Peltola et al., 2011, 2016; Chen et al., 2012; Bishop et al., 2018). The evidence for roles of Amigo1 in homophilic and heterophilic interactions, neurite outgrowth, and cell survival has led us to hypothesize that Amigo1 is involved in regulating the growth and targeting of ORN axons from the OE to the OB.

Here, we show that Amigo 1 expression is enriched in the ventrolateral region of the OE during development, but the mRNA expression of other Amigo family members could not be detected. While loss of Amigo1 expression in mice did not affect the development of the olfactory system, the targeted insertion of a neomycin expression cassette within the Amigo1 allele selectively disrupted the development of ORNs in the ventrolateral region of the OE. Mice containing the neomycin cassette insertion showed reduced numbers of ORNs positive for ventrolaterally-expressed ORs, such as MOR28, and smaller glomeruli in the ventral part of the OB. These defects were specific to the ventrolateral region as ORN development in other regions of the OB was unaffected. These region-specific defects were associated with misregulation of gene expression in these mice, including several ORs, likely caused by the presence of the neomycin selection cassette in the Amigo1 allele. Our results provide evidence that genomic insertion of a neomycin-resistance cassette can have region-specific effects on the development of ORNs and provides an additional cautionary tale of the effects of neomycin cassette-induced gene misregulation in the study of gene function through gene-targeting.

V. Results

1. Amigo1 is enriched in ventrolateral ORNs.

To begin to examine the function of Amigo1 in olfactory system development, we characterized the expression of Amigo family members in the main olfactory system of the mouse. In situ hybridization experiments using cRNA probes against amigo1, amigo2 and amigo3 were
performed on coronal sections of the olfactory epithelium (OE). While \textit{amigo2} and \textit{amigo3} had very low to no expression in the epithelium (Figure 1D,G), \textit{amigo1} appeared to have enriched expression in the ventrolateral region of the OE at embryonic day (E) 16.5, when ORN axons are projecting to the OB (Figure 1A). This pattern of enriched expression persisted into early postnatal development at postnatal day (P) 7 (Figure 1J). To assess whether the enriched \textit{amigo1} expression correlated with previously described zones of the OE (Miyamichi et al., 2005), we compared the expression of \textit{amigo1} at P7 with the localization of region-specific ORN populations. The enriched expression of \textit{amigo1} in the ventrolateral OE correlated with the expression of \textit{mor28}, an OR gene expressed by a subpopulation of ORNs in the ventrolateral-most region, often referred to as zone 4, but did not correlate with the more intermediate region OR population \textit{p2} (Figure 1J-L), indicating that Amigo1 may specifically regulate the development of ventrolateral ORNs.
(A-I) Expression of Amigo family members in the olfactory epithelium of E16 by in situ hybridization using probes targeting *amigo1* (A-C), *amigo2* (D-F), and *amigo3* (G-I) mRNA. (A,D,G) Coronal sections of E16 olfactory epithelium showing enriched expression of *amigo1* but not *amigo2* or *amigo3* in the OE. Scale bars: 200 μm.
(B,E,H) Positive control regions for antisense in situ probes showing an area of high expression (trigeminal ganglia at P7 for amigo1 (B) and amigo3 (H), and the medial habenula at E16 for amigo2 (E)). Antisense probes detect the high levels of expression of amigo1-3 in these tissues. Scale bars: 200μm.

(C,F,I) Sense probes for the same regions as a negative control show no non-specific staining.

(J-L) Comparison of amigo1 pattern of expression to OR gene expression. In situ hybridization on coronal sections of P7 OE using probes against amigo1 (J), mor28 (K) and p2 (L) mRNA. Amigo1 is expressed in a region of the OE that correlates with the localization of cells expressing mor28, but not with the region of p2-positive cells. Scale bars: 100μm
2. Insertion of a neomycin selection cassette in the *Amigo1* locus disrupts development of ventrolateral ORNs.

In vitro and zebrafish *in vivo* evidence have suggested that Amigo1 can promote axon fasciculation, indicating that it may regulate the projection of ventrolateral ORN axons to the OB (Kuja-Panula et al., 2003; Zhao et al., 2014). To determine whether Amigo1 plays a role in axonal fasciculation and glomerular targeting in the mouse olfactory system, we generated an *Amigo1* null mouse and examined the projection of MOR28-expressing ORN axons to the OB in these mice. The null allele was generated using embryonic stem (ES) cells containing the modified *Amigo1* allele, *Amigo1*tm1(KOMP)Vlcg created by the trans-NIH Knock-Out Mouse Project (KOMP) (Figure 2A).

The resulting knockout allele comprised a replacement of the Amigo1 coding region with a lacZ gene and a neomycin selection cassette (termed *Amigo1neo*), which completely ablated expression of Amigo1 (Fig. 2D). *Amigo1neo* mice were crossed with a reporter mouse line expressing tau-GFP in a specific population of ORNs located in the ventrolateral region of the OE (*MOR28-IRES-tau-GFP*) to visualize axonal projections of these neurons (Figure 2B).
Figure 2: Knockout of Amigo1 ablates transcription of *amigo1* mRNA and production of Amigo1 protein.
(A) Knockout strategy used by the KOMP repository. The Amigo1 coding region is replaced by a lacZ gene cassette followed by a floxed neomycin resistance gene cassette. The modified allele (Amigo1^{tm1(KOMP)Vlcg}) is referred to as Amigo1^{neo}.

(B) Mice containing the Amigo1^{neo} allele were crossed with a reporter mouse line which expresses the fusion protein tau-GFP in cells that express the mor28 OR gene (MOR28-GFP).

(C) Mice containing the Amigo1^{neo} allele were crossed with a CMV-Cre mouse line to excise the floxed neomycin cassette from the Amigo1^{neo} allele, resulting in the complete Amigo1[−] allele containing only the lacZ gene cassette. These mice were then crossed to the MOR28-GFP line to allow expression of tau-GFP in MOR28-expressing cells of Amigo1 mutant mice.

(D) Characterization of ablation of Amigo1 expression by RT-PCR and Western Blot. [Left] RT-PCR amplifying amigo1 mRNA sequence from cDNA prepared from adult Amigo1^{+/neo} and Amigo1^{neo/neo} tissue. Gapdh was used as a control. B: Brain; OB: olfactory bulb; OE: Olfactory epithelium; VNO: Vomeronasal organ. [Right] Western Blot of whole brain lysate from wild type, heterozygous and homozygous Amigo1 mutants. Blots were probed with Amigo1 antibody to confirm the knockout and with β-actin antibody as a loading control.
We assessed glomerular targeting of axons from the MOR28-positive neurons to the OB and found that adult Amigo1neo/neo mice had a drastic reduction in the size of the MOR28 glomeruli when compared to control animals, as observed by GFP fluorescence in a whole-mount preparation of the ventral side of the OB (Figure 3A). While the MOR28 glomeruli were smaller, their location appeared unchanged in Amigo1neo/neo mice. As the presence of a neomycin selection cassette in a genomic allele has previously been shown to cause unexpected misregulation of gene expression outside the targeted locus (Fiering et al., 1993; Pham et al., 1996), we excised the floxed neomycin cassette by crossing the Amigo1neo mice with a mouse expressing Cre in the germline (CMV-Cre), resulting in Amigo1+/− mice (Figure 2C). Interestingly, we found that the MOR28 glomeruli had normal volumes in adult Amigo1+/− mice, suggesting that the glomerular phenotype observed in the Amigo1neo/neo mice is likely caused by the presence of the neomycin cassette within the Amigo1 locus, rather than from the loss of Amigo1 protein (Figure 3B). We therefore decided to investigate the glomerular phenotype observed in the Amigo1neo line further as a method to potentially uncover novel genes or mechanisms underlying ORN development.
Figure 3: *Amigo1*^{neo/neo} but not *Amigo1^{−/−}* mice show defects in the targeting of MOR28-positive axons to the olfactory bulb.

(A) Ventral views of the olfactory bulb to examine MOR28-positive glomeruli visible by endogenous fluorescent signal from the tau-GFP in MOR28-positive axons. Neomycin-containing *Amigo1* mutants show a drastic reduction in the size of the glomerular target. Arrows point to the MOR28-positive glomeruli.

(B) Ventral views of the olfactory bulb to examine MOR28-positive glomeruli visible by endogenous fluorescent signal from the tau-GFP in MOR28-positive axons. Neomycin-lacking *Amigo1* mutants show no obvious defects in their MOR28 glomeruli.
To determine whether the ORN targeting defects observed are specific to the ventrolateral region of the OE or are more widespread, we examined the axonal projections of two additional populations of ORNs that project to dorsal or intermediate regions of the OB using reporter mice (MOR174-9-IRES-tau-GFP and P2 P2-IRES-tau-lacZ, respectively) crossed to the Amigo1^{neo} line. Sections of OB from adult control and Amigo1^{neo/neo} animals were stained for GFP and β-galactosidase (β-gal) to label the MOR174-9, P2 and MOR28 glomeruli, and glomerular volumes were measured. While we observed a robust decrease in the size of both the medial and the lateral MOR28-positive glomeruli in the Amigo1^{neo/neo} mice, the size of MOR174-9- and P2-positive glomeruli remained unchanged when compared to controls (Figure 4A-G). To assess whether reduced size is a general hallmark of glomeruli in the ventral region of the OB in Amigo1^{neo/neo} mice, we measured the area of glomeruli surrounding the MOR28-GFP glomerulus on sections of adult OB, which allowed us to get an estimate of the average size of glomeruli in this region of the OB. As observed for MOR28-positive glomeruli, the average size of glomeruli in the ventral region of the OB was reduced in Amigo1^{neo/neo} mice (Figure 4J,M,N). In contrast the average size of glomeruli surrounding the MOR174-9 and P2-positive glomeruli in the dorsal and intermediate regions of the OB, respectively, was unchanged in these mice (Figure 4H-I, K-L, N). These findings demonstrate that reduced glomerular size is observed throughout the ventral part of the OB, yet it is restricted to this region, suggesting that presence of the neomycin resistance cassette in the Amigo1 locus specifically affects the development and/or maintenance of ventrolateral ORNs in the OE. To assess whether improper glomerular development underlies the defects observed in Amigo1^{neo/neo} mice, we analyzed the size of MOR28-GFP glomeruli at an early developmental time point, P7, when MOR28 glomeruli have recently formed and are being refined (Zou et al., 2004; Kerr and Belluscio, 2006). We found a similar reduced size of the MOR28 but
not of the MOR174-9 or P2 glomeruli in these mice, indicating that the defects are due to an effect on development, rather than on maintenance, of the glomeruli (Figure 5A-I). Taken together, these results support a notion that the development of glomeruli in the ventral-most zone are specifically affected in Amigo1neo/neo mice.
Figure 4: Presence of the neomycin cassette in Amigo1neo/neo animals disrupts glomerular size exclusively in ventral OB

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amigo1neo/neo</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(A-F) Representative coronal sections of OB stained with GFP and β-gal antibodies to show MOR174-9-(A,D), P2- (B,E) and MOR28- (C,F) positive glomeruli from control (A-C) and Amigo1neo/neo (D-F) mice. Insets show magnified (2x) glomeruli from the same section as shown...
by the outlined boxes. MOR28 glomeruli but not MOR174-9 or P2 glomeruli appear smaller in size in the Amigo1neo/neo OBs. Scale bar: 200μm

(G) Quantification of glomerular volume estimated by calculating the sum of the area of each section containing a labelled glomerulus, multiplied by the section thickness. Data shown as average ± s.e.m. (MOR174-9 medial (units: μm³): control 423944.7 ± 15134.45 n=4 OBs, Amigo1neo/neo 530975 ± 70866.38 n=6 OBs; MOR174-9 lateral: control 430499.4 ± 71451.94 n=3 OBs, Amigo1neo/neo 371522 ± 68387.36 n=4 OBs; P2 medial: control 783145.1± 79701.2 n=8 OBs, Amigo1neo/neo 745176 ± 85432.9 n=8 OBs; P2 lateral: control 575237.8 ± 125103.1 n=4 OBs, Amigo1neo/neo 802952 ± 162159 n=6 OBs; MOR28 medial: control 1044657 ± 102565.1 n=8 OBs, Amigo1neo/neo 124447 ± 26242.75 n=5 OBs; MOR28 lateral: control 933811.8 ± 169297.5 n=7 OBs, Amigo1neo/neo 147536 ± 45577 n=7 OBs) 2-way ANOVA with Sidak’s multiple comparisons test for genotype, **** p < 0.0001.

(H-M) Representative coronal sections of OB stained with GFP and β-gal antibodies, and Hoechst used for measuring glomeruli surrounding MOR174-9 (H,K), P2 (I,L) and MOR28- (J,M) positive glomeruli from control (H-J) and Amigo1neo/neo (K-M) mice. Ventrolateral glomeruli adjacent to the MOR28 glomeruli but not glomeruli adjacent to MOR174-9 or P2 appear smaller in size in the Amigo1neo/neo OBs. (H’,I’, J’, K’, L’, M’) Traces of surrounding glomeruli of the corresponding antibody-stained panels. Scale bar: 100μm

(N) Quantification of average area of glomeruli in dorsomedial, intermediate and ventral regions of the OB. Data shown as average ± s.e.m (Dorsomedial glomeruli (units: μm²): control 5319.7 ± 443.2 n=8 OBs, Amigo1neo/neo 5252 ± 114.69 n=8 OBs; Intermediate: control 5079 ± 407 n=7 OBs, Amigo1neo/neo 4864.9 ± 245.16 n=9 OBs; Ventrolateral: control 6756.4 ± 435.02 n=12 OBs, Amigo1neo/neo 4256.5 ± 391.38 n=7 OBs) 2-way ANOVA with Sidak’s multiple comparisons test for genotype, **** p < 0.0001.
Figure 5: Presence of the neomycin cassette in $Amigo^{neo/neo}$ animals disrupts glomerular formation exclusively in ventral OB

<table>
<thead>
<tr>
<th>Lateral OB</th>
<th>MOR174-9</th>
<th>P2</th>
<th>MOR28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOR174-9</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOR28</td>
<td>G</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Glomerular volume (μm3)

<table>
<thead>
<tr>
<th>Lateral OB</th>
<th>MOR174-9 medial</th>
<th>MOR174-9 lateral</th>
<th>P2 medial</th>
<th>P2 lateral</th>
<th>MOR28 medial</th>
<th>MOR28 lateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$Amigo^{neo/neo}$</td>
<td>400,000</td>
<td>300,000</td>
<td>200,000</td>
<td>100,000</td>
<td>400,000</td>
<td>300,000</td>
</tr>
</tbody>
</table>

Average number of MOR28 cells per section

<table>
<thead>
<tr>
<th>Lateral OB</th>
<th>Control</th>
<th>$Amigo^{neo/neo}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOR28 lateral</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

A' A'' B' B'' A'' A'''

\[G \]

\[H \]

\[I \]

\[L \]
(A,B) Lateral view of control and $Amigo1^{neo/neo}$ OBs at P7 to showing MOR174-9- and MOR28-positive glomeruli visible by endogenous fluorescent signal from tau-GFP in the axons. Glomerular size deficits for the MOR28 glomeruli are also seen at this age. (A', B') Zoom-in of the lateral MOR174-9 glomerulus. (A'', B'') Zoom-in of the lateral MOR28 glomerulus.

(C-H) Representative images of sections of OB stained with GFP and βgal antibodies to show MOR174-9-(C,F), P2- (D,G) and MOR28- (E,H) positive glomeruli from P7 control (C-E) and $Amigo1^{neo/neo}$ (F-H) mice. MOR28 glomeruli but not MOR174-9 or P2 glomeruli appear smaller in size in the $Amigo1^{neo/neo}$ OBs even at P7. Scale bar: 100μm

(I) Quantification of glomerular volume estimated by calculating the sum of the area of each section containing a labelled glomerulus, multiplied by the section thickness. Data shown as average ± s.e.m (MOR174-9 medial (units: μm3)): control 80643.5 ± 12153.36 n=8 OBs, $Amigo1^{neo/neo}$ 72589.6 ± 12053.1 n=5 OBs; MOR174-9 lateral: control 77374.4 ± 9391.94 n=9 OBs, $Amigo1^{neo/neo}$ 91209.1 ± 29484.04 n=3 OBs; P2 medial: control 113601.9 ± 18892.41 n=7 OBs, $Amigo1^{neo/neo}$ 105162.8 ± 17385.84 n=4 OBs; P2 lateral: control 78386.21 ± 11873.382 n=6 OBs, $Amigo1^{neo/neo}$ 154924.5 ± 15270.48 n=11 OBs; MOR28 medial: control 286126.5 ± 33997.19 n=15 OBs, $Amigo1^{neo/neo}$ 69685.1 ± 18090.44 n=10 OBs; MOR28 lateral: control 336692.5 ± 32529.08 n=15 OBs, $Amigo1^{neo/neo}$ 78145.66 ± 11152.10 n=11 OBs) 2-way ANOVA with Sidak’s multiple comparisons test for genotype, **** p < 0.0001

(J-K) Representative coronal sections of P7 OE stained with GFP and OMP antibodies, and Hoechst used for counting GFP-positive MOR28 cells (J’, K’) Single channel image showing GFP-positive puncta. There appear to be far fewer GFP-positive MOR28 cells in $Amigo1^{neo/neo}$ OE (K) compared to controls (J). Scale bar: 200μm

(L) Quantification of average number of MOR28-positive cells per section in the OE from control and $Amigo1^{neo/neo}$ mutant animals. Data shown as average ± s.e.m (Control: 35.11 ± 3.433 n=4 OEs, $Amigo1^{neo/neo}$ 8.64 ± 0.84 n=3 OEs) Unpaired t-test, ** p < 0.01
3. Defects to ventral glomeruli formation are caused by decreases in the numbers of ventrolateral ORN populations

We next sought to determine why ventral OB glomeruli are smaller in the OBs of Amigo1\(^{neo/neo}\) mice. We considered the possibilities that either outgrowth or guidance of ORN axons is affected, so that fewer axons were reaching their final glomerular target, or that there were fewer ORNs expressing ventrolateral ORs in the OE (Bressel et al., 2016). Counts of MOR28-GFP-positive cells in the OE of control and Amigo1\(^{neo/neo}\) mice at P7 revealed a drastic reduction in the number of MOR28-positive cells in the OE of mutant mice compared to controls (Figure 5J-L). Using an in situ hybridization approach, we examined the size of other OR populations throughout the OE of Amigo1\(^{neo/neo}\) mice. We found that while several populations of ORNs in the ventrolateral regions of the OE were reduced in numbers, ORN populations in other regions of the OE appeared unchanged in the Amigo1\(^{neo/neo}\) mutants compared to controls (Figure 6A-O). To further confirm that the specific decrease in the number of ORNs expressing ventrolateral-specific ORs is due to a defect in early development of the olfactory map rather than in its maintenance, we counted cells expressing mor174-9, i7 and mor28 in newborn mice (P0). Once again, we found a specific effect in the ventrolateral OR population sizes in the Amigo1\(^{neo/neo}\) mice (Figure 6Q-W). Together, these results confirm that the presence of the neomycin cassette in the Amigo1\(^{neo/neo}\) animals causes a developmental defect leading to a reduction in the size of the ORN populations expressing ventrolateral ORs and consequently, the formation of smaller glomeruli in the ventral region of the OB.
Figure 6: The decrease in the size of ventrally located OB glomeruli is associated with a concomitant decrease in the size of ventrolateral ORN populations in the OE

(A-N) Representative coronal sections of P7 control and Amigo1neo/neo OE stained by in situ hybridization with probes against different OR genes to count the number of positive cells of each ORN population. ORN populations from dorsomedial (mor174-9: A-B; m72: H-I), intermediate (p2: C,J), and ventrolateral (i7: D,K; mor252-1: E,L; m50: F,M; mor28: G,N) regions were counted. Dotted lines represent approximate divisions of these regions. DM: dorsomedial; IM: intermediate; VL: ventrolateral. Examples of positively stained cells are indicated by arrows of different colours according to OE region (blue: dorsomedial, yellow: intermediate; pink: ventrolateral). Scale bar: 200μm

(O) Quantification of data from (A-N). Graph displays average number of positive cells per section in the OE from control and Amigo1neo/neo mutant animals for each ORN population. Data shown as
average ± s.e.m (MOR174-9: control 11.47 ± 1.53 n=7 OEs, Amigo1^{neo/ne} 11.30 ± 1.85 n=5 OEs; M72: control 12.74 ± 1.94 n=5 OEs, Amigo1^{neo/ne} 12.75 ± 1.81 n=5 OEs; P2: control 21.15 ± 2.29 n=6 OEs, Amigo1^{neo/ne} 18.88 ± 2.41 n=6 OEs; I7: control 18.27 ± 1.74 n=4 OEs, Amigo1^{neo/ne} 9.34 ± 2.20 n=4 OEs; MOR252-1: control 48.58 ± 2.51 n=6 OEs, Amigo1^{neo/ne} 30.57 ± 3.16 n=6 OEs; M50: control 26.62 ± 0.94 n=4 OEs, Amigo1^{neo/ne} 15.52 ± 2.10 n=4 OEs; MOR28: control 49.85 ± 6.87 n=6 OEs, Amigo1^{neo/ne} 15.88 ± 3.90 n=5 OEs) Unpaired Student’s t-tests * p < 0.05, ** p < 0.01

(P) Graph representing log2-fold change of expression of ORs between Amigo1^{neo/ne} and Amigo^{-/-} mRNA extracted from P7. Data from RNA Sequencing results. Data from ORs with known zone indices from Miyamichi et al., 2005 were used for this plot. Positive values represent increases in gene expression in Amigo1^{neo/ne} and negative values represent downregulation of genes in the neomycin-containing tissue. Linear regression line: Y = 0.4002X + 1.113. R² = 0.6857. Zone indices (ZI) and zonal identity as follows: ZI 1 ≤ Zone 1 < ZI 2 ≤ Zone 2 < ZI 3 ≤ Zone 3 < ZI 4 ≤ Zone 4 ≤ ZI 5.

(Q-V) Representative coronal sections of P0 control and Amigo1^{neo/ne} OE stained by in situ hybridization with probes against different OR genes to count the number of positive cells of each ORN population. ORN populations from dorsomedial (mor174-9: Q,T), and ventrolateral (i7: R,U; mor28: S,V) regions were counted. Dotted lines represent approximate divisions of these regions. DM: dorsomedial; VL: ventrolateral. Examples of positively stained cells are indicated by arrows of different colours according to OE region (blue: dorsomedial, pink: ventrolateral). Scale bar: 200μm

(W) Quantification of average number of positive cells per section in the OE from control and Amigo1^{neo/ne} mutant animals for each ORN population. Data shown as average ± s.e.m (MOR174-9: control 1.96 ± 0.1 n=6 OEs, Amigo1^{neo/ne} 2.15 ± 0.17 n=6 OEs; I7: control 4.62 ± 0.45 n=6 OEs, Amigo1^{neo/ne} 2.48 ± 0.50 n=6 OEs; MOR28: control 15.30 ± 0.89 n=6 OEs, Amigo1^{neo/ne} 5.20 ± .59 n=6 OEs) Unpaired Student’s t-tests * p < 0.05, **** p < 0.0001
A decrease in the size of the OR populations within the ventrolateral region of the OE could suggest an alteration in the total number of ORNs in this zone, due to cell proliferation or survival defects. Alternatively, ORNs in this region of the OE may be produced and survive normally but fail to express an olfactory receptor. Given that the total epithelial thickness is related to the number of neuronal cells (Mackay-Sim et al., 1988), if there is a decrease in the total number of ORNs in the ventrolateral region of the OE, we would expect to observe a decrease in either the thickness of the mature olfactory marker protein (OMP) layer or total OE thickness in this region relative to other parts of the OE. Immunohistochemical analysis of OMP staining in the OE at P7, however, revealed that there was no difference in the thickness of the OMP layer nor a difference in the total thickness of the OE by Hoechst staining in any region of the OE between control and neomycin-containing Amigo1 mutants (Figure 7A-G). Furthermore, we could not detect significant changes in the number of proliferating cells or of cells undergoing apoptosis in the ventrolateral region of the OE in newborn Amigo1neo/neo mice (Figure 7H-M). Taken together, our results indicate that the presence of a neomycin resistance cassette within the Amigo1 locus disrupts the development of ventrolateral ORNs in the OE, possibly by altering expression of specific sets of ORs.
Figure 7: The decrease in number of ORNs of ventrolateral populations is not due to an alteration in rates of proliferation, maturation, or cell death

<table>
<thead>
<tr>
<th>Region</th>
<th>Dorsomedial</th>
<th>Intermediate</th>
<th>Ventrolateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(A-F) Representative images of P7 control (A-C) and Amigo1neo/neo (D-F) OE with mature OSNs labelled using an OMP antibody and cell nuclei stained with Hoechst. Defined areas of dorsomedial (A,D), intermediate (B,E), and ventrolateral (C,F) OE were used to measure the thickness of the OE and of the OMP layers. Scale bar: 50μm
(G) Quantification of (A-F) showing average OE thickness [left] and average OMP layer thickness [right] in 3 different regions of the OE. Data shown as average in μm ± s.e.m. (Full OE thickness: DM control 83.75 ± 2.06 n=3 OEs, Amigo1neo/neo 93.56 ± 3.27 n=3 OEs; IM control 95.68 ± 7.40 n=3 OEs, Amigo1neo/neo 83.38 ± 6.45 n=3 OEs; VL control 60.93 ± 3.09 n=3 OEs, Amigo1neo/neo 65.88 ± 1.91 n=3 OEs. OMP layer thickness: DM control 30.19 ± 1.53 n=3 OEs, Amigo1neo/neo 34.93 ± 1.15 n=3 OEs; IM control 29.57 ± 4.99 n=3 OEs, Amigo1neo/neo 27.21 ± 0.57 n=3 OEs, VL control 24.31 ± 0.57 n=3 OEs, Amigo1neo/neo 26.29 ± 0.61 n=3 OEs) 2-way ANOVA with Sidak’s multiple comparisons test for genotype. No significant changes detected.

(H,I) Example OE section from control (H) and Amigo1neo/neo (I) P0 mice stained for the proliferation marker Phosphohistone-H3 (PHH3). Boxed areas show OE without Hoechst to see individual PHH3-positive cells. Scale bar: 100μm

(J) Quantification from (H,I) showing average number of PHH3-positive cells per section of P0 OE. White bars display the average number of stained cells throughout the OE while shaded areas define the subset of stained cells in the ventrolateral region. Data shown as average ± s.e.m. (Full OE: control 22.39 ± 1.11 n=3 OEs, Amigo1neo/neo 21.51 ± 0.20 n=3 OEs. Ventrolateral OE: control 2.62 ± 0.25 n=3 OEs, Amigo1neo/neo 3.04 ± 0.13 n=3 OEs) 2-way ANOVA with Sidak’s multiple comparisons test for genotype. ns = non significant

(K,L) Example OE section from control (K) and Amigo1neo/neo (L) P0 mice stained for the marker of apoptosis Cleaved Caspase-3 (CC3). Boxed areas show OE without Hoechst to see individual CC3-positive cells. Scale bar: 100μm

(M) Quantification from (K,L) showing average number of CC3-positive cells per section of P0 OE. White bars display the average number of stained cells throughout the OE while shaded areas define the subset of stained cells in the ventrolateral region. Data shown as average ± s.e.m. (Full OE: control 20.79 ± 3.69 n=5 OEs, Amigo1neo/neo 28 ± 4.40 n=5 OEs. Ventrolateral OE: control 3.01 ± 0.23 n=3 OEs, Amigo1neo/neo 4.46 ± 0.50 n=3 OEs) 2-way ANOVA with Sidak’s multiple comparisons test for genotype. ns = non significant
4. Gene transcription is altered in the OE of Amigo1neo/neo mice.

There is evidence that the presence of a neomycin cassette in a specific gene locus can cause or modify phenotypes independently of the gene of interest that is knocked-out (Kim et al., 1992; Fiering et al., 1993, 1995; Rijli et al., 1994; Hug et al., 1996; Olson et al., 1996; Meier et al., 2010; Maguire et al., 2014; Han et al., 2016; Pan et al., 2016). It has been proposed that insertion of the neomycin cassette with its own exogenous promoter at the locus of the gene of interest acts to modify the regulation of additional clusters of genes surrounding the insertion locus at both short and long ranges (Pham et al., 1996; West et al., 2016). To determine whether the presence of a neomycin cassette in the Amigo1 locus could alter gene expression in the OE, we performed RNA sequencing (RNAseq) analyses on cDNA generated from the OE of Amigo1−/− and Amigo1neo/neo animals at P7. Comparing gene expression in these two samples allows us to identify genes that are misregulated due to the presence of the neomycin cassette in the Amigo1 locus, rather than due to loss of Amigo1 expression. Such genes could represent candidate genes important for the regulation of ORN development and OR gene expression.

RNAseq analyses revealed that several genes differed in expression between the two groups of mutant mice, including multiple genes that are located near the Amigo1 locus, such as psma5, cyb561d1, and atxn7l2 (Table 1). To note, Amigo2 and Amigo3 levels were unchanged between the mutant groups, suggesting no compensatory change in the expression of other Amigo family members with the presence of the neomycin cassette. Other groups of genes that were misregulated were found in clusters around the genome. Gene ontology analysis suggested that several differentially expressed genes in the Amigo1neo/neo mice may be involved in modulating oxidoreductase activity, such as Cyb561d1, Gpx3, Atxn7l2, Carns1, Ggt7 and Aldh1l2. Gpx3, for example, is a major reactive oxidative species (ROS) scavenger that is downregulated 2-fold in
Amigo1_{neo_{neo}} (Brigelius-Flohé, 2006; An et al., 2018). While changes in oxidative stress could affect survival of ORNs, our observation that there is no change in the survival rates of ORNs in Amigo1_{neo_{neo}} mice make it unlikely that alterations in expression of these genes underlie the specific defects in development of ventrolateral ORNs observed in these mice.
<table>
<thead>
<tr>
<th>Gene Name</th>
<th>log2FoldChange</th>
<th>p-value</th>
<th>padj</th>
<th>Location</th>
<th>Localization</th>
<th>Chromosome</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>EnsemblID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sult1c1</td>
<td>10.7212</td>
<td>0.0005</td>
<td>0.2265</td>
<td>chr11:58954685-58956830</td>
<td></td>
<td>11</td>
<td>58954</td>
<td>58956</td>
<td>125</td>
<td>ENSMUSG00000028238.6</td>
<td>Sult1c1</td>
</tr>
<tr>
<td>Mepe</td>
<td>9.8830</td>
<td>0.0005</td>
<td>0.1967</td>
<td>chr6:147075060-147087032</td>
<td></td>
<td>6</td>
<td>14707</td>
<td>14708</td>
<td>1228</td>
<td>ENSMUSG00000027603.15</td>
<td>Mepe</td>
</tr>
<tr>
<td>St3gal1</td>
<td>9.7384</td>
<td>0.0005</td>
<td>0.0362</td>
<td>chr2:111320615-111322832</td>
<td></td>
<td>2</td>
<td>11132</td>
<td>11132</td>
<td>2218</td>
<td>ENSMUSG00000029661.16</td>
<td>St3gal1</td>
</tr>
<tr>
<td>Cd109</td>
<td>88.6421</td>
<td>0.0005</td>
<td>0.0001</td>
<td>chr10:24637914-24712159</td>
<td></td>
<td>10</td>
<td>24637</td>
<td>24712</td>
<td>7746</td>
<td>ENSMUSG00000029797.13</td>
<td>Cd109</td>
</tr>
<tr>
<td>St3gal1</td>
<td>9.7384</td>
<td>0.0005</td>
<td>0.0362</td>
<td>chr2:111320615-111322832</td>
<td></td>
<td>2</td>
<td>11132</td>
<td>11132</td>
<td>2218</td>
<td>ENSMUSG00000029661.16</td>
<td>St3gal1</td>
</tr>
<tr>
<td>Cd109</td>
<td>88.6421</td>
<td>0.0005</td>
<td>0.0001</td>
<td>chr10:24637914-24712159</td>
<td></td>
<td>10</td>
<td>24637</td>
<td>24712</td>
<td>7746</td>
<td>ENSMUSG00000029797.13</td>
<td>Cd109</td>
</tr>
</tbody>
</table>

Table 1: List of differentially expressed genes from RNA sequencing data.

- **log2FoldChange**: The log2 fold change represents the ratio of expression levels between Amigo1-/- and Amigo1neo/neo.
- **p-value**: The p-value indicates the statistical significance of the difference in expression levels.
- **padj**: The adjusted p-value after multiple testing correction.
- **Location**: The genomic location of the gene.
- **Localization**: The localization sequence of the gene.
- **Chromosome**: The chromosome on which the gene is located.
- **Start**: The start position of the gene.
- **End**: The end position of the gene.
- **Length**: The length of the gene.
- **EnsemblID**: The Ensembl gene ID.
- **Description**: The description of the gene.
Padj (column 2) from bioinformatics analysis was used to identify genes expressed at significantly different levels between Amigo1neo/neo and Amigo1+/- mice. Bars in column 3 are a visual representation of p-value with larger bar representing smaller p-value. Columns 8 and 9 contain values and bars representing log2-fold change between the two groups. Positive values (red cells) represent genes downregulated in the Amigo1neo/neo group while negative values (green cells) represent overexpressed genes in the neomycin-containing samples. Gene names highlighted in blue are of genes around the Amigo1 locus on chromosome 3. Gene names highlighted in brown have gene ontology terms related to oxidative stress or oxidation-reduction. Gene names highlighted in yellow are olfactory receptor genes.
Since a reduced number of ORNs expressing ventrolateral ORs is observed in $Amigo1^{neo/neo}$ mice, we examined more closely ORs expression in our RNAseq data set. Interestingly, out of the 68 protein-coding differentially expressed genes, 9 were ORs. Amongst these, 5 are known to be expressed in the ventrolateral region of the OE and show decreased expression in $Amigo1^{neo/neo}$ mice. To further examine the relationship between the spatial location and changes in expression levels of OR expression in these mice, we plotted ORs with previously described zone indices (Miyamichi et al., 2005; Zapiec and Mombaerts, 2020) against their fold change in expression between the $Amigo1^{-/-}$ and $Amigo1^{neo/neo}$ mice, regardless of the significance of the change. We observed a clear trend from dorsomedial to ventrolateral showing a decrease in the expression levels of ORs located in the ventrolateral OE in $Amigo1^{neo/neo}$ tissue (Figure 6P, Table 2 & 3). This lower level of expression correlates with in situ data from which we find a significant decrease in the number of cells expressing OR genes in this region of the OE. Together, the RNA sequencing and in situ hybridization data provide evidence that several ventrolateral ORs are downregulated, and that the downregulation seen by RNA sequencing is likely related to a decrease in the total number of cells expressing those ORs.
<table>
<thead>
<tr>
<th>chrom</th>
<th>start</th>
<th>end</th>
<th>gene</th>
<th>log2FoldChange</th>
<th>pvalue</th>
<th>padj</th>
<th>Image</th>
<th>Related sequences</th>
<th>Change</th>
<th>pvalue</th>
<th>padj</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>chr2:</td>
<td>111264946-111274106</td>
<td>0.9184</td>
<td>0.0190</td>
<td>Olfr322</td>
<td>3.4297</td>
<td>72.9</td>
<td>0.3816</td>
<td>35.36168</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr9:</td>
<td>20298532-20303599</td>
<td>0.1804</td>
<td>0.0009</td>
<td>ENSMUSG00000096703.4</td>
<td>3.4297</td>
<td>72.9</td>
<td>0.3816</td>
<td>35.36168</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr2:</td>
<td>89825311-89841555</td>
<td>0.3430</td>
<td>0.0065</td>
<td>ENSMUSG00000042774.8</td>
<td>3.4297</td>
<td>72.9</td>
<td>0.3816</td>
<td>35.36168</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr11:</td>
<td>73979967-73990407</td>
<td>0.2510</td>
<td>0.0065</td>
<td>ENSMUSG00000049168.9</td>
<td>3.4297</td>
<td>72.9</td>
<td>0.3816</td>
<td>35.36168</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr2:</td>
<td>90136273-90142296</td>
<td>0.4249</td>
<td>0.0065</td>
<td>ENSMUSG00000043529.4</td>
<td>3.4297</td>
<td>72.9</td>
<td>0.3816</td>
<td>35.36168</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr2:</td>
<td>37101706-37117910</td>
<td>1.2204</td>
<td>0.0065</td>
<td>ENSMUSG00000049674.7</td>
<td>3.4297</td>
<td>72.9</td>
<td>0.3816</td>
<td>35.36168</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr2:</td>
<td>89573406-89578447</td>
<td>0.8172</td>
<td>0.0065</td>
<td>ENSMUSG00000049674.7</td>
<td>3.4297</td>
<td>72.9</td>
<td>0.3816</td>
<td>35.36168</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr2:</td>
<td>111417842-111423115</td>
<td>0.3430</td>
<td>0.0065</td>
<td>ENSMUSG00000095156.2</td>
<td>3.4297</td>
<td>72.9</td>
<td>0.3816</td>
<td>35.36168</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr2:</td>
<td>90136273-90142296</td>
<td>0.4249</td>
<td>0.0065</td>
<td>ENSMUSG00000043529.4</td>
<td>3.4297</td>
<td>72.9</td>
<td>0.3816</td>
<td>35.36168</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr2:</td>
<td>89825311-89841555</td>
<td>0.3430</td>
<td>0.0065</td>
<td>ENSMUSG00000042774.8</td>
<td>3.4297</td>
<td>72.9</td>
<td>0.3816</td>
<td>35.36168</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: List of olfactory receptor genes from RNA sequencing data with known zone indices.

Icons in column 2 represent whether the gene is significantly differentially expressed between the two groups based on the p-value. A red "x" indicates no significance. A green "✓" indicates a differentially expressed gene. Columns 7 and 8 contain values and bars representing log2-fold change between the two groups. Positive values (red cells) represent genes down-regulated in the Amigo neo group while negative values (green cells) represent overexpressed genes in the neomycin-containing samples. Alternate OR gene names are indicated in column 11 along with zone index and zone in columns 12 and 13, respectively. This table contains OR genes with zone indices smaller than 3. Table is continued on next page (table 3)
| Gene | Start (bp) | End (bp) | ORGOID | ENSMUSG00000047868.6 | ENSMUSG00000043529.4 | ENSMUSG00000044897.3 | ENSMUSG00000049168.9 | ENSMUSG00000048425.3 | ENSMUSG00000063549.4 | ENSMUSG00000051313.1 | ENSMUSG00000051952.5 | ENSMUSG00000061561.5 | ENSMUSG00000045306.3 | ENSMUSG00000045075.2 | ENSMUSG00000068806.5 | ENSMUSG00000043087.5 | ENSMUSG00000050763.4 |
|------------|------------|----------|----------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Olfr1349 | chr2:89143508-89151560 | 232-9 | 0.2137 | 2.5 | 4 | 105.1419 | | | | | | | | | | |
| Olfr167 | chr2:89021336-89032065 | 109.1859 | Olfr821 | 159.783 | 0.0763 | 95.28007 | Olfr308 | 12.03781 | 155.78 | 158.0214 | 40.49083 | Olfr167 | 1.5 |
| Olfr770 | chr7:102491466-102499573 | 8.087841 | Olfr878 | 200.3828 | 132.2449 | 94.02115 | Olfr399 | 221.9024 | 4.2750 | -0.0534 | 4.3351 | 5.4390 | Olfr714 | 44.20737 |

List of olfactory receptor genes from RNA sequencing data with known zone indices. Icons in column 2 represent whether the gene is significantly differentially expressed between the two groups based on the p-value. A red “×” indicates no significance. A green “✓” indicates a differentially expressed gene. Columns 7 and 8 contain values and bars representing log2-fold change between the two groups. Positive values (red cells) represent gene downregulation in the *Amigo*

[Table 3: (continuation of table 2)](image)
VI. Discussion

We have identified Amigo1 as a cell adhesion molecule preferentially expressed in ORNs of the ventrolateral region of the developing OE. Insertion of a neomycin resistance cassette in the Amigo1 locus to ablate Amigo1 expression specifically altered the development of ventrolateral ORNs, leading to reduced numbers of ORNs that express ventrolateral ORs. In contrast, loss of Amigo1 expression in the absence of the neomycin resistance cassette was not sufficient to adversely affect the development of ventrolateral ORNs, indicating that Amigo1 is not necessary for their proper development. These results represent a new example of the potential deleterious effect insertion of a neomycin resistance cassette in the genome can have on very selective cell populations that normally specifically express the original gene-of-interest, and how such effects can lead to misinterpretation of protein function. Hence, they highlight the importance of removing selection cassettes in mouse models generated by this strategy.

While unexpected, the defects we observed in the Amigo1neo/neo animals became of interest to study in the development of the mouse main olfactory system map. We made use of this neomycin-containing mouse line to attempt to uncover novel mechanisms contributing to zonal OR identity and ORN development. Our results provide the first instance to postulate that ORNs in Amigo1neo/neo mice might not be attaining an OR identity due to misregulation of OR gene expression.

1. Mechanisms underlying the loss of OR identity in ventrolateral ORNs in Amigo1neo/neo mice

OR genes reside in gene clusters around the genome (Sullivan et al., 1996; Niimura et al., 2014). The expression of a single OR in mature ORNs appears to be regulated by both epigenetic mechanisms and OR signalling. The expression of multiple ORs or switching of OR genes can
occur until a functional OR gene is more strongly expressed, its signalling promoting type 3 adenyl cyclase expression, thereby eliciting a feedback mechanism causing repression of other OR gene loci (Dalton et al., 2013). OR gene choice also depends on the silencing of all OR loci in newly born ORNs followed by the demethylation of epigenetic marks from a single OR allele (Magklara et al., 2011; Clowney et al., 2012). OR elements which are regulatory sequences similar to enhancers can influence the probability of a given OR gene to be transcribed (Lomvardas et al., 2006; Degl’Innocenti and D’Errico, 2017; Monahan et al., 2019). For example, the H element is a genetic region that regulates a cluster of OR genes known as the MOR28 cluster. Knockout of the H cluster reduces the size of the ORN population expressing ORs from its neighbouring MOR28 cluster (Fuss et al., 2007; Markenscoff-Papadimitriou et al., 2014). Furthermore, DNA footprinting and 4C chromatin capture have revealed enrichments in multiple enhancer elements around specific OR gene locus, suggesting interchromosomal enhancer interactions being important for stable OR gene expression (Markenscoff-Papadimitriou et al., 2014; Monahan et al., 2019). It is possible that the presence of the neomycin cassette in the Amigo1 locus can cause disruptions to enhancer interactions and chromatin structure important for controlling OR gene choice. Insertion of a neomycin resistance gene cassette in several genes has been shown on multiple occasions to cause misregulation of gene expression of genes both locally and at long range, and to affect co-regulation of genes in clusters (Fiering et al., 1995; Pham et al., 1996; Müller, 1999; Coleman et al., 2015; West et al., 2016). These effects have been suggested in part to be due to the exogenous promoter in the neomycin cassette (West et al., 2016). Our RNA sequencing data comparing gene expression in the OE Amigo1neo/neo and Amigo1−/− mice identified trends for ORs within a cluster to be similarly either upregulated or downregulated in the samples isolated from Amigo1neo/neo mice.
This observation suggests that the neomycin cassette may be interfering with enhancer interaction networks and thus modifying OR gene expression.

Our observation that there is a reduced number of ORNs expressing ventrolateral ORs in Amigo1neo/neo mice suggests that OR gene choice is indeed affected in these ORNs. Since the survival of ORNs and the thickness of the OE is unaffected in these mice, it is possible that many ORNs in the ventrolateral region of the OE remain without an OR identity and do not express an OR. This prospect is quite surprising as much evidence points towards a mechanism whereby immature ORNs express multiple ORs or undergo OR gene switching until stabilization of the expression of a single OR takes over (Lewcock and Reed, 2004; Serizawa et al., 2004; Shykind et al., 2004; Lomvardas et al., 2006; Young et al., 2011). It remains to be confirmed whether many individual cells in the ventrolateral region of Amigo1neo/neo OE indeed lack OR expression completely or just express low levels of multiple OR genes, below the detection sensitivity of our ISH probes. To establish whether these cells are indeed not expressing any OR, or instead expressing low levels of multiple ORs, single cell reverse transcription polymerase chain reaction (RT-PCR) or RNAseq could be performed on cells isolated from the ventrolateral region of the OE of Amigo1neo/neo mice (Malnic, 2013).

2. **Potential factors influencing region-specific effects on OR expression and ORN development.**

The insertion of the neomycin-resistance cassette in the Amigo1 locus may specifically alter expression of clusters of OR expressed in the ventrolateral region of the OE, as suggested by our RNAseq data. However, it remains possible that there are fundamental differences in the development of ORNs across the OE that modulate their sensitivity to the effects exerted by the insertion of the neomycin cassette in the Amigo1 locus. Differences in properties of ORNs across
the dorsomedial to ventrolateral regions of the OE have been identified over the years. Class I ORs are phylogenetically different from class II ORs and are expressed exclusively in the most dorsomedial region of the OE (Zhang et al., 2004; Miyamichi et al., 2005; Niimura and Nei, 2005, 2007; Tsuboi et al., 2006). It is also known that the generation of ORNs proceeds in a graded manner from dorsomedial to ventrolateral. Cells expressing ventrolateral ORs, such as I7 and MOR28, are produced at late embryonic stages, with highest rates of production of MOR28-positive ORNs at P0 (Ihara et al., 2017). Furthermore, ORN turnover rates are lower in dorsomedial versus ventrolateral OE (Vedin et al., 2009). These differences may be attributable to levels of retinoic acid signalling in the OE, which have been shown to have an effect on ORN progenitor cell fate (Paschaki et al., 2013), ORN survival (Hägglund et al., 2006) and recovery after trauma (Peluso et al., 2012). The retinoic acid inactivating enzyme, Cyp26B1 is normally expressed in a dorsomedial to ventrolateral gradient in the OE, which results in different levels of retinoic acid signalling in ORNs depending on their zonal location. Genetic overexpression of Cyp26B1 in all ORNs alters OR expression and ORN turnover, and reduce BACE1 expression, which is required for normal ORN axon guidance and glomerular formation (Rajapaksha et al., 2011; Login et al., 2015b, 2015a). Retinoic acid metabolism is also involved in regulating levels of guidance molecules such as Neuropilin-1 and Kirrel2 as well as altering CNG channel activity important for neuronal survival (Öztokatli et al., 2012). It is thus possible that the inherent differences between dorsomedial and ventrolateral ORN turnover or retinoic acid signalling might contribute to the sensitivity of ventrolateral neurons to the gene expression changes caused by the presence of the neomycin cassette in the Amigo1 locus.

Our RNAseq analyses also showed that several genes implicated in oxidative stress pathways are misregulated in the OE of Amigo1^{neo/neo} mice, raising the possibility of increased oxidative stress
in the OE. A recent study suggested that ORNs located in different regions of the OE have different sensitivities to oxidative stress, which can affect their development (Tuerdi et al., 2018). Hence, it is possible that different cellular mechanisms regulate oxidative stress in dorsal and ventral zones of the OE and that these intrinsic differences could cause ventral neurons to be more susceptible to changes in expression levels of oxidation-related genes caused by the presence of the neomycin cassette. Further studies looking specifically at oxidative stress markers, such as 8-OHdG (Vaishnav et al., 2007; Tuerdi et al., 2018), by immunohistochemistry could help elucidate whether ventrolateral cells of the OE exhibit higher levels of oxidative stress in the Amigo1neo/neo mice. It also remains to be investigated whether changes in oxidative stress in ORNs can influence OR gene expression.

Finally, we must also consider the possibility that the loss of Amigo1 expression in ventrolateral ORNs, where we have shown it is specifically expressed, combined with the presence of the neomycin cassette in the Amigo1 locus, may render ventrolateral ORNs more susceptible to the changes in gene expression observed in Amigo1neo/neo mice, causing significant defects in OR identity and axonal projections. Both spontaneous and evoked activity are required for proper establishment and maintenance of the olfactory sensory map and contribute greatly to promotion of cell survival and OR stabilization (Song and Poo, 2001; Yu et al., 2004; Zou et al., 2004; Imai et al., 2006; Kerr and Belluscio, 2006; Serizawa et al., 2006; Kaneko-Goto et al., 2008). Furthermore, Amigo1 has been implicated in the regulation of neuronal activity through the Kv2.1 voltage-gated potassium channel in cortical and hippocampal neurons and could also modulate neuronal activity by altering channel gating properties in ORNs (Kajander et al., 2011; Peltola et al., 2011, 2016). Loss of Amigo1 expression in ventrolateral ORNs of the Amigo1neo/neo mice could alter neural activation, which, combined with the misregulation of OR gene caused by the presence
of the neomycin cassette in the *Amigo1* locus, could preclude these neurons from stabilizing OR gene choice and establishing correct axonal projections to the OB. Unfortunately, the presence of the neomycin resistance cassette in the *Amigo1* gene coding region makes it difficult to separate the direct effects of the cassette insertion on ORN development from the combined effects of the cassette insertion and loss of Amigo1 expression.

Future studies aimed at examining how ventrolateral OR gene expression is affected in the *Amigo1*^{neo/neo} mice should provide additional insight in identifying key enhancer interaction networks that can specifically regulate expression of these genes during the development and maturation of ORNs.

VII. Materials and Methods

1. **Animals**

Animals were housed and handled in strict accordance with the guidelines set by the Canadian Council on Animal Care (CCAC), and protocols and procedures were approved by the Montreal Neurological Institute Animal Care Committee (MNI-ACC). For *in situ* hybridization experiments using embryonic tissue, animals were acquired from timed-pregnant CD1 female mice purchased from Charles River Laboratories. Embryonic day corresponds to the number of days since the date of vaginal plug. For postnatal analysis, day of birth was considered P0. Embryonic stem cells containing the targeted disruption of the *Amigo1* gene (*Amigo1^{tm1(KOMP)Vlcg}*) were purchased from the KOMP Repository (Knockout Mouse Project, US Davis). The whole coding region of *Amigo1* (GRCm38 Chr3:108,187,190-108,188,665) was replaced with the ZEN-Ub1 cassette containing the lacZ gene and a floxed neomycin coding sequence under the control of the human ubiquitin C protomer (http://velocigene.com/komp/detail/10669). Embryonic stem cells were injected in to CD1 blastocysts to produce chimeras. Heterozygotes produced by germline transmission were
crossed to CMV-Cre mice to remove the neomycin selection cassette (https://www.jax.org/strain/006054). Amigo1_{<i>neo</i>} and Amigo1_{<i>+</i>} mouse lines are maintained in a C57Bl/6 mice background. MOR174-9-ires-tau-GFP (Cho et al., 2011), P2-IRES-tau-lacZ (Mombaerts et al., 1996), and MOR28-IRES-tau-GFP (Shykind et al., 2004) mice have been described previously. All analyses included male and female mice.

2. <i>In situ</i> hybridization and RT-PCR

Digoxigenin-labeled cRNA probes were prepared by <i>in vitro</i> transcription using the DIG labeling mix (Roche). pBluescript vector containing cloned Amigo1 cDNA was a kind gift from Dr. Heiki Rauvala, and pBluescript containing m50 cDNA was a kind gift from Dr. Zhihua Zou. DNA fragments of the coding sequences for olfactory receptor probes were PCR amplified from C57Bl/6 genomic DNA and cloned into the pBluescript vector. mRNA sequences of amigo2 and amigo3 were PCR amplified from wild type cDNA and cloned into the pBluescript vector. Primer sets used for cloning are as follows:

<table>
<thead>
<tr>
<th>Gene</th>
<th>Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amigo2</td>
<td>F: 5'-TAATACGACTCACTATAGAGCTTATCCATATTAGGCTGCTGTA-3'</td>
</tr>
<tr>
<td></td>
<td>R: 5'-AATTAACCTCTACTAAAGGGCTTCGAGGCTGTTGAACACACGAAAG-3'</td>
</tr>
<tr>
<td>Amigo3</td>
<td>F: 5'-TAATACGACTCACTATAGAGCTTATCCATATTAGGCTGCTGTA-3'</td>
</tr>
<tr>
<td></td>
<td>R: 5'-AATTAACCTCTACTAAAGGGCTTCGAGGCTGTTGAACACACGAAAG-3'</td>
</tr>
<tr>
<td>MOR174-9</td>
<td>F: 5'-AGATGAAATCACGATGGG-3'</td>
</tr>
<tr>
<td></td>
<td>R: 5'-CACAGAGGCCACTTTTACCG-3'</td>
</tr>
<tr>
<td>M72</td>
<td>F: 5'-CCGAATTCGAGGGCTAATTACAGA-3'</td>
</tr>
<tr>
<td></td>
<td>R: 5'-CAGATTCGAGGGCTAATTACEGAC-3'</td>
</tr>
<tr>
<td>P2</td>
<td>F: 5'-TGTCAGGGAATTTATCC-3'</td>
</tr>
<tr>
<td></td>
<td>R: 5'-AGGCTTCACCTCATT-3'</td>
</tr>
<tr>
<td>17</td>
<td>F: 5'-CTGCGGAGCGTACTATAT-3'</td>
</tr>
<tr>
<td></td>
<td>R: 5'-TGGATTTGCGTCCTG-3'</td>
</tr>
<tr>
<td>MOR252-1</td>
<td>F: 5'-TTCGCCCGGTTTCCCGGTTGACTTTG-3'</td>
</tr>
<tr>
<td></td>
<td>R: 5'-ATACCCGGAGAGATCTGAGGAGCAC-3'</td>
</tr>
<tr>
<td>MOR28</td>
<td>F: 5'-GGAAAAGCTGCTCCATCA-3'</td>
</tr>
<tr>
<td></td>
<td>R: 5'-GGTTCAGCAGAGGGTAT-3'</td>
</tr>
</tbody>
</table>
In situ hybridization staining was performed as described previously (Pasterkamp et al., 1998). Briefly, sections were fixed for 20 minutes in 4% paraformaldehyde (PFA) followed by washes in 1× phosphate-buffered saline (PBS) treated with Diethyl pyrocarbonate (DEPC). Sections were then deacetylated in 0.25% acetic anhydride in 0.1M triethanolamine and underwent prehybridization in hybridization buffer (50% formamide, 5×Denhardt’s solution, 5×Saline Sodium Citrate (SSC), 250 μg/ml bakers’ yeast tRNA) before hybridizing with DIG-labelled probes for incubation overnight at 60°C. The following day, stringency washes in 5×SSC, 2×SSC, and 50% formamide in 0.2×SSC were done at 60°C and in 0.2×SSC at room temperature. Sections were then blocked in Blocking Reagent (Roche) at room temperature and probed with an AP-conjugated α-Digoxigenin antibody (Fab fragments, 1:3000, Roche) for 2.5-3 hours at room temperature before visualization of antibody binding using a colorimetric enzymatic reaction with NBT/BCIP stock solution (nitro-bluetetrazolium chloride (NBT) 5-bromo-4-chloro-3-indolylphosphate (BCIP), Roche).

For RT-PCR, 2.5μg of total RNA from tissue samples of adult Amigo1+/neo and Amigo1neo/neo were treated with DNaseI (Amplification Grade, Invitrogen) and reverse transcribed using SuperScriptII Reverse transcriptase (Invitrogen) along with dNTPs (PCR Grade, Invitrogen), OligodT (Invitrogen), 5× First Strand Buffer (Invitrogen) and dithiothreitol. The following primer sets for PCR were used:

<table>
<thead>
<tr>
<th>Gene</th>
<th>Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>amigo1</td>
<td>F: 5’-AGATAGCCTCAGCTTTCTCT-3’</td>
</tr>
<tr>
<td></td>
<td>R: 5’-GTATCAGAAAAGACCGAGCT-3’</td>
</tr>
<tr>
<td>gapdh</td>
<td>F: 5’-GCCTCCTGCACCAACTG-3’;</td>
</tr>
<tr>
<td></td>
<td>R: 5’-CCGACGCTGTTCACCACCTTCT-3’</td>
</tr>
</tbody>
</table>
3. **Western Blot**

Mouse brain homogenates from *Amigo1*+/+, *Amigo1*+/neo and *Amigo1*neo/neo animals were prepared using HEPES-sucrose buffer (20mM HEPES, 320mM sucrose pH 7.4) with protease inhibitors (1μg/mL aprotinin, 1μg/mL leupeptin, 1mM PMSF). After centrifugation (1000xg 10 minutes at 4°C), supernatants were loaded onto an SDS-PAGE gel and transferred to PVDF membrane (Immobilon-P, Millipore). Membranes were blotted with α-Amigo1 (1:5, monoclonal mouse clone L86/37, supernatant, NeuroMab) and α-β-actin (1:20,000 donated from Dr. Stefano Stifani) antibodies to show relative amount of Amigo1 protein compared to the control β-actin.

4. **Immunohistochemistry**

Mouse tissue was fixed by transcardial perfusion with 4% PFA in 1×PBS followed by a 30-minute post fix for adults or fixed by immersion of embryonic and postnatal brains in 4% PFA in 1×PBS. Tissue was cryoprotected in a 30% sucrose solution in 1×PBS and then embedded in OCT (TissueTek, Cedarlane) for storage at -80°C. 20μm cryostat sections of tissue samples were collected onto Superfrost® Plus microscope slides (Fisherbrand). Sections were rehydrated in 1×PBS, blocked with 10% fetal bovine serum (FBS) and 0.5% Triton ×100 for 1 hour at room temperature and incubated overnight at 4°C with primary antibodies. After rinsing with 1×PBS, primary antibodies were detected with Alexa-Fluor conjugated secondaries for 1 hour at room temperature, and the cell nuclei were stained for 5 minutes with Hoechst 33342 (1:20,000, Molecular Probes).

The primary antibodies used were as follows: α-GFP (1:1000, mouse, Molecular probes A11120), α-β-galactosidase (β-gal) (1:1000, rabbit, MP Biochemicals (Cappel), 559762), α-OMP (1:1000, goat, WAKO 544-10001), α-Cleaved caspase 3 (1:1000, rabbit, D175, Cell Signalling 9661S), α-Phosphohistone H3 (PHH3) (1:1000, rabbit, Ser10, D2C8, Cell Signalling 9701S)
The secondary antibodies used were: Donkey α-Mouse Alexa-Fluor-488 (1:500 IgG (H+L), Invitrogen), Donkey α-Rabbit 546 (1:500 IgG (H+L), Invitrogen), Donkey α-goat Alexa-Fluor-546 (1:500 IgG (H+L), Invitrogen).

5. Imaging and Image Analysis

Images of wholemount preparations were taken on the Zeiss Stereoscope Discovery.V20 with the Zeiss AxioCam MRc camera.

Immunohistochemical sections were imaged using the Zeiss Axiocam 503 mono on the Zeiss Axio Imager.M1 microscope.

The volume measurement of glomeruli was taken by measuring the area of GFP or β-gal signal in each section containing the labelled glomerulus. The sum of the area of all sections in μm², multiplied by the section thickness (20μm) gave an estimate of the total glomerular volume in μm³.

In situ hybridization or GFP immunofluorescence was used to quantify the number of cells for each olfactory receptor population. 20μm coronal sections of the entire olfactory epithelium were collected onto alternating slides. Each slide was probed for a different marker (either cRNA OR probes for *in situ* hybridization or GFP antibody for the MOR28-GFP population), and the number of cells on each section was counted for each probe. Results were presented as the average number of positive cells per section.

Similar methods were used to analyse the number of apoptotic cleaved caspase3-positive and proliferating PHH3-positive cells in the OE at P0.

To measure the thickness of the mature olfactory receptor neuron layer in different zones, sections of coronally sliced olfactory epithelium at P7 containing endoturbinates I and II and ectoturbinate I (Barrios et al., 2014) were collected and stained for OMP. The thickness of the full OE and of
the OMP layer was measured at specific dorsomedial to ventrolateral locations corresponding undoubtedly to dorsomedial, intermediate, and ventrolateral regions of the OE. All results presented as average ± s.e.m

6. RNAseq

Total RNA was collected from 3 Amigo1neo/neo OE and 3 Amigo1−/− OE using the RNeasy mini kit (QIAGEN) and sent for RNA sequencing and Bioinformatics at the Genomics Platform at the Institute for Research in Immunology and Cancer (IRIC) where it was processed using Nextseq 500, 0.5 Flowcell High Output, 75 cycles Single-End reads. Sequences were trimmed for adaptor sequences and low-quality reads using Trimmomatic version 0.35 and then mapped to mouse reference genome GRCm38 using STAR version 2.5.1b. Read counts from STAR were used to obtain gene expression levels and DESeq2 version 1.18.1 was used to normalize the read counts and perform sample clustering and identify differentially expressed genes (DEGs).

From sequencing and normalized read count data, OR genes with known zone indices (Miyamichi et al., 2005; Zapiec and Mombaerts, 2020) were plotted in order of zone index against log2 fold change between the two groups.
Chapter 4:
Amigo1 is required in the development and maintenance of hippocampal mossy fiber projections to CA3

Reesha Raja1,2 Emilie Dumontier1, Timothy E. Kennedy1,2, Jean-François Cloutier1,2

1 Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
2 Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
3 Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada

I. Preface

This chapter is a manuscript in preparation for submission for publication. In characterizing the expression of Amigo1 in the olfactory system, we became interested in the expression pattern of Amigo1 in other brain regions and whether this protein plays a role in axonal development in these regions. Over the last 10 years, roles for Amigo1 in fasciculation and neural excitability have been proposed. Furthermore, cell adhesion molecules and neuronal activity have been implicated in the proper development of hippocampal mossy fiber projections, making Amigo1 an excellent candidate to investigate its potential role in regulating proper targeting of these projections. We provide evidence that proper fasciculation and prevention of ectopic synapse formation are controlled in part by Amigo1.

II. Acknowledgements

We thank Dr. Donald Van Meyel and members of the Cloutier lab for helpful discussions on the development of this project.

We are grateful to Dr. Stephanie Harris and Celina Cheung for technical insights.
This work was supported by CIHR. J.-F.C. held an FRQ-S Senior Scholar Award. R.R. held a Vanier Studentship from CIHR.

III. Abstract

Memory-encoding and learning are functions strongly associated with the hippocampus. The hippocampal formation is known as a brain region associated with high levels of plasticity which can mediate learning, and the generation of new granule cells integrated into the hippocampal circuit is thought to play a role in memory formation. Thus, understanding the complex mechanisms underlying both the formation and maintenance of hippocampal circuitry is important for understanding the problems underlying neurological disorders associated with memory. Specifically, the mossy fibers projections from the hippocampal dentate gyrus can undergo synaptic reorganization. Here, we provide evidence that the cell adhesion molecule Amigo1, which can regulate neural excitability, contributes to the development and maintenance of mossy fiber projections in the mouse. We show that loss of Amigo1 expression leads to the defasciculation of mossy fiber bundles during development and to the formation of ectopic mossy fiber boutons in the adult hippocampus.

IV. Introduction

During development of various systems within the brain, cells must connect to one another in precise manners, and they often make use of various cell adhesion molecules (CAMs) to target precisely. Gradients or differential patterns of expression of axon guidance molecules and cell adhesion molecules underlie a common mechanism by which axons can sense their environment and gain orientation. The organization of a multitude of brain subregions rely on regional and spatial differences in the expression of CAMs that control axonal fasciculation and synapse formation and maintenance (Dufour et al., 2003; Price et al., 2006; Walz et al., 2006; Cho et al.,
The hippocampus, specifically the mossy fiber projections to CA3, provides a well-established system to study the projection of axonal tracts and the formation and maintenance of synapses (Henze et al., 2000). The projections of mossy fibers to CA3 are oriented along the proximo-distal CA3 axis rather than septo-temporally, which allows visualization of full axonal projections of individual mossy fibers in transverse hippocampal slices. The synapses formed by each mossy fiber onto excitatory pyramidal cells are few (10-15) and yet very large in size, making them easily identifiable by various staining techniques, such as the Timm staining method (Galimberti et al., 2006). Finally, as a brain structure majorly involved in memory formation, it is also of large benefit to understand the complex mechanisms of the development, maintenance, and plasticity of the hippocampus as they contribute to the etiology of neurological brain disorders involving memory defects.

As observed in other regions of the brain, CAMs have been implicated in regulating circuitry formation and maintenance in the hippocampus. For example, Limbic-associated membrane protein (LAMP) is an Ig superfamily member that has been shown to be involved in proper targeting of mossy fiber projections (Pimenta et al., 1995). NCAM is highly expressed on axons projecting from dentate gyrus granule cells, and its ablation leads to defasciculation and premature termination of mossy fibers (Cremer et al., 1997). The post-translational modification of NCAM with polysialic acid (PSA) has also been proposed to modulate synaptic plasticity as removal of PSA causes decreases in plasticity and increases in the number of ectopic mossy fiber boutons (Seki and Rutishauser, 1998; Galimberti et al., 2010). Finally, the CAM Kirrel3 has been implicated particularly in target-specific selection and synapse formation at the mossy fiber terminal (Martin et al., 2015, 2017).
Our examination of the spatio-temporal patterns of expression of Amigo1 in the brain has revealed that Amigo1 is expressed in specific populations of cells in several regions of the brain, including in the olfactory epithelium (Chapter 3) and in the developing cortex and cerebellum. Interestingly, we have found that Amigo1 expression in the hippocampus is restricted to the dentate gyrus during development, suggesting a role for Amigo1 in the dentate granule cells and their projections to CA3. We find that genetic loss of Amigo1 causes changes to the organization of mossy fiber bundles during development and leads to ectopic mossy fiber terminal formation in distal CA3 in ageing animals.

V. Results

1. Amigo1 is differentially expressed in populations of cells of various brain regions.

To examine the expression of Amigo1 in the developing brain, we used heterozygous gene-targeted Amigo1 animals in which the Amigo1 allele is replaced by the lacZ gene. In this mouse, β-galactosidase (β-gal) is expressed in the cells in which the Amigo1 promoter is active. We first characterized this mouse line to verify that the expression of β-gal protein, detected by X-gal staining, could represent the expression of Amigo1 as seen by in situ hybridization and immunohistochemistry in specific regions of the nervous system. X-gal staining in Amigo1+/− mice recapitulated the patterns of expression observed by in situ hybridization in the olfactory epithelium and trigeminal ganglia (Figure 1A-D), as well as Amigo1 protein expression in the developing cortex of wild-type animals (Figure 1E-F). These results indicate that expression of the lacZ gene in these animals mimics endogenous Amigo1 expression and could be used as a reliable reporter for Amigo1 expression in the developing brain.
Figure 1: Amigo1 is expression patterns are recapitulated by X-gal staining

(A, B) Representative expression of *amigo1* on coronal sections of the olfactory epithelium (OE) (A) and trigeminal ganglion (TG) (B) of wild type embryonic day (E) 16 mice by *in situ* hybridization using probes targeting *amigo1* mRNA (A, B). Scale bars: 100μm

(C, D) Representative expression of *amigo1* on coronal sections of the olfactory epithelium (OE) (C) and trigeminal ganglion (TG) (D) of E16 *Amigo1*+/- mice by X-gal staining. X-gal staining recapitulates the pattern of Amigo1 expression in these structures. Scale bars: 100μm

(E, F) Expression of Amigo1 protein in wild type adult cortex by immunohistochemistry using an antibody against Amigo1 (E), recapitulated by representative X-gal staining of Adult *Amigo1*+/- cortex (F). Scale bars: 100μm
We used this approach to investigate the expression pattern of Amigo1 during development in three regions of the nervous system: the hippocampus, cortex, and cerebellum. In early development at embryonic day (E) 16 and postnatal day (P) 0, very few cells of the hippocampus were positive for β-gal (Figure 2A-B). In contrast, β-gal expression was specifically observed in the dentate gyrus by P7 and was maintained at later ages (Figure 2C-D). The expression of Amigo1 in the cortex also evolved over developmental time points. At early stages, from E16 into P7, expression was restricted to the more basal layers of cortex (Figure 2E-G). At E16, some cells of layer 1 were also detected to be X-gal-positive. However, by P21, X-gal staining was detected throughout the width of cortex, with stronger staining in the more superficial layer 2/3 (Figure 2H). Overall, the frequency of cells in the superficial-most layer 1 seemed to decrease with age. Finally, X-gal staining in the cerebellum looked rather intriguing since Amigo1 seemed to be expressed specifically in the Purkinje cells of lobe X, with fewer labeled cells in lobe IX and extremely sparse expression in the rest of the cerebellum. This pattern of expression was especially notable at P7 but persisted into P21 (Figure 2J-K). At P0, the cerebellum is not yet developed, however staining was detected in the deep cerebellar nuclei (Figure 2I). These results exemplify how specific brain regions have Amigo1 enrichment in subsets of cells and that these expression patterns of Amigo1 change over development, suggesting that Amigo1 could function differently in both development and in the more mature brain.
Figure 2: Differential expression of Amigo1 is developmentally regulated in various brain structures

<table>
<thead>
<tr>
<th>Time Point</th>
<th>Hippocampus</th>
<th>Cortex</th>
<th>Cerebellum</th>
</tr>
</thead>
<tbody>
<tr>
<td>E16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(A-D) X-gal staining representative of Amigo1 expression at developmental time points E16 (A), P0 (B), P7 (C) and P21 (D) in the hippocampus cut transversely to show the structures in the hippocampal circuit, dentate gyrus (DG), cornu ammonis (CA) subfields, CA1 and CA3 as shown in (D). Amigo1 is enriched in the DG in the first postnatal week (*pink arrowheads*). Scale bars: 200μm.

(E-H) X-gal staining representative of Amigo1 expression at developmental time points E16 (E), P0 (F), P7 (G) and P21 (H) in the cortex. Amigo1 is enriched in basal layers during development and sparsely in the apical-most layer (*yellow arrowheads*, E,F) and upregulated in the upper layers of cortex by P21 (*pink arrowheads*, H). Roman numerals I-VI in (H) define cortical layers. Scale bars: 100μm.

(I-K) X-gal staining representative of Amigo1 expression at developmental time points P0 (I), P7 (J) and P21 (K) in the cerebellum. Newborn animals show Amigo1 expression in the deep cerebellar nuclei (*pink arrowhead*, I). During early postnatal development, Amigo1 is expressed in many Purkinje cells of lobe X of the cerebellum which is maintained into P21 (*pink arrowheads*, J, K). Sparse labelling of Purkinje cells is also detected in other lobes postnatally (*yellow arrowheads*, J, K) MCL: Molecular cell layer; PCL: Purkinje cell layer; GCL: Granule cell layer; WM: White matter. Roman numerals IX and X in (K) and dotted outlines show the IXth and Xth lobes of the cerebellum, respectively. Scale bars: 200μm. Arrowheads point to key areas of Amigo1 expression (*pink: prominent expression; yellow: sparser expression*)
2. **Loss of Amigo1 expression leads to altered development of the infrapyramidal mossy fiber bundle**

The restricted expression of Amigo1 in the dentate gyrus (DG) of the hippocampus during development led us to investigate its role in the mossy fiber projections to the CA3 region using mice carrying a germline deletion of the Amigo1 gene. Several decades of research into the circuity and function of the hippocampus gave way to the development of numerous histochemical techniques to visualize mossy fibers. For example, neuropeptides such as dynorphin are specifically expressed by mossy fibers (Khachaturian et al., 1982; McGinty et al., 1983; Blaabjerg and Zimmer, 2007), however rely on the accessibility of good antibodies. Anterograde tracing techniques and the Golgi staining method have also been used (West et al., 1982; Frotscher and Zimmer, 1983), but these methods do not stain all mossy fibers. Alternatively, the Timm sulfide silver method (Laurberg and Zimmer, 1981) stains the chelatable zinc that are present at high levels in mossy fiber terminals. It is a relatively simple, yet very sensitive, method to label the population of mossy fiber projections (Blaabjerg and Zimmer, 2007). We thus employed Timm staining to visualize mossy fiber projections in the hippocampi of control and Amigo1/− mice.

Mossy fibers travel through the dentate hilus and then through CA3 to synapse with the proximal apical and basal dendrites of pyramidal cells. In this way, they form the suprapyramidal bundle (SPB) in stratum lucidum and infrapyramidal bundle (IPB) in stratum oriens, respectively. More distally, the infrapyramidally projecting axons will cross over the pyramidal cell layer to join the suprapyramidal tract in stratum lucidum. By the fourth postnatal week, hippocampal circuitry is generally established, and the ratio of axons traversing suprapyramidally versus infrapyramidally is refined (Amaral and Dent, 1981; Bagri et al., 2003). We thus examined the projections of mossy fiber bundles in hippocampi of control and Amigo1/− animals at one month of age to test our
hypothesis that the loss of Amigo1 would affect the development of the two separate mossy fiber bundles. We examined mid-septotemporal sagittal sections in Timm-stained hippocampi and found a decrease in the length ratio between the IPB and SPB (Figure 3J), caused by a decrease in the length of the IPB in the mutant animals (Figure 3A-C, K). To then assess whether this defect was exclusive to development or persisted into adulthood and ageing, we examined the IPB to SPB ratio in mice of 2 and 5 months of age (Figure 3D-I, L-M). Interestingly, lengths of IPB and SPB and their ratios were similar between control and mutant animals both at 2 and 5 months, suggesting that this defect was due to a role for Amigo1 in pruning or in activity- or adhesion-dependent guidance solely during development (Bagri et al., 2003; Römer et al., 2011; Tawarayama et al., 2018).
Figure 3: Loss of Amigo1 disrupts the length of infrapyramidal bundle during development, which is restored by 2 months

(A-I) Timm-stained mossy fibers reveal projections of dentate gyrus axons to CA3 along suprapyramidal and infrapyramidal bundles in control (A,D,G), Amigo1+/− (B,E,H), and Amigo1−/− (C,F,I) mice at 1 (A-C), 2 (D-F), and 3 (G-I) months of age. Scale bar: 200μm

(J) Diagram depicting strategy used to measure bundle ratios. Dotted pink and yellow lines show where the infrapyramidal and suprapyramidal bundles were traced, respectively. The grey line joins the two tips of the dentate gyrus blades and serves as the starting point of bundle length measurements. The ratio of bundle lengths was calculated as the length of the infrapyramidal bundle divided by the length of the suprapyramidal bundle. SPB: Suprapyramidal bundle. IPB: infrapyramidal bundle.

(K-M) Quantification of IPB/SPB length ratios in control and heterozygous and homozygous Amigo1 mutants at 1 (K), 2 (L), and 5 (M) months of age. Data shown as average ± s.e.m. (1 month (K): Amigo1+/+ 0.64 ± 0.014 n=3 HCs; Amigo1+/− 0.62 ± 0.034 n=4 HCs; Amigo1−/− 0.44 ± 0.030 n=5 HCs. 1-way ANOVA with Dunnett’s multiple comparisons test for each mean with Amigo1+/+; 2 months (L): Amigo1+/+ 0.56 ± 0.058 n=3 HCs; Amigo1+/− 0.64 n=1 HC; Amigo1−/− 0.59 ± 0.031 n=5 HCs. Unpaired Student’s t-test between Amigo1+/+ and Amigo1−/−. Additional Amigo1+/− animals will be needed for statistical assessment; 5 months (M): Amigo1+/+ 0.46 ± 0.013 n=3 HCs; Amigo1+/− 0.65 ± 0.012 n=3 HCs; Amigo1−/− 0.55 ± 0.093 n=4 HCs. 1-way ANOVA with Dunnett’s multiple comparisons test for each mean with Amigo1+/+). ** p < 0.01, ns = non significant
3. **Loss of Amigo1 expression leads to perturbed mossy fiber fasciculation and altered presynaptic terminal formation**

In our analysis of the stained hippocampi, however, we noticed that the organization of the supra and infrapyramidal axon mossy fiber axon bundles seemed more disorganized in the Amigo1−/− mice. In the proximal CA3 of Amigo1−/− mice, more fibers appeared to be projecting between the two main bundles. Measurement of the staining intensity of a 20μm track between the two bundles along the CA3 pyramidal area (Figure 4J) revealed increases in Timm staining in the Amigo1−/− mice when compared to controls, inferring that more axons are traversing the inter-bundle space and suggesting that Amigo1 is required for normal fasciculation of mossy fiber bundles (Figure 4A-M). Furthermore, the thickness of the suprapyramidal bundle was unchanged in the mutant animals, implying that the defasciculation could be due to aberrant projection of the more plastic infrapyramidal axons (Schwegler et al., 1981; Crusio et al., 1989). Importantly, this defect was present at all ages analysed (Figure 4N-P).

In the more distal regions of CA3, individual mossy fiber boutons (MFBs) in the pyramidal cell layer adjacent to the suprapyramidal bundle could be identified as small Timm-stained puncta, which were not visible in more proximal CA3 due to the high density of fiber bundles. To quantify these individual boutons, we divided CA3 into 6 regions beginning from the tip of the suprapyramidal DG blade and ending at the CA3-CA2 border. We then analysed the numbers of MFBs in the pyramidal layer of the three distal-most areas of CA3, regions 4, 5, and 6 (Figure 5J). In wild-type 5-month-old animals, a low density of MFBs was observed in all three regions of the CA3, while a significant increase in MFB density was observed in regions 4 and 5 of hippocampi from the age-matched mice lacking either Amigo1+/− or Amigo1−/− mice, suggesting that lower levels of Amigo1 expression are not sufficient to prevent ectopic MFB formation in the ageing hippocampus (Figure 5G-I, M). Interestingly, these effects could be observed in mutant animals
as early as 2 months of age but not in animals of one month of age (Figure 5A-F, K-L). Thus, we conclude that Amigo1 is required for both the development and maintenance of normal fasciculation of mossy fiber bundles and for the prevention of ectopic mossy fiber bouton formation in adult mice.
Figure 4: Loss of Amigo1 disrupts the mossy fiber fasciculation

(A-I) Zoom-in images of Timm-stained mossy fibers projecting into proximal CA3 along suprapyramidal and infrapyramidal bundles in control (A,D,G), Amigo1+/− (B,E,H), and Amigo1−/− (C,F,I) mice at 1 (A-C), 2 (D-F), and 3 (G-I) months of age. Area of zoom in is depicted by box in (J) Scale bar: 100μm.

(J) Diagram depicting strategy used to measure inter-bundle Timm stain intensity. Transparent thick yellow line (X) depicts the mid-bundle trace used for analysis. The grey line joins the two tips of the dentate gyrus blades and serves at the starting point of mid-bundle trace. The staining intensity measured with mean grey value (MGV) was normalized to background using an unstained region (pink circle, “W”) and to the dark positively-stained region in the dentate hilus (green circle, labelled “B”). MGV: Mean grey value

(K-M) Quantification of Timm staining intensity between intrapyramidal and suprapyramidal bundles in control and heterozygous and homozygous Amigo1 mutants at 1 (K), 2 (L), and 5 (M)
months of age. Data shown as average ± s.e.m in arbitrary units (au). (1 month (K): Amigo1+/+
27.83 ± 11.76 n=3 HCs; Amigo1+/− 58.20 ± 5.698 n=4 HCs; Amigo1− 58.30 ± 5.195 n=5 HCs. 1-
way ANOVA with Dunnett’s multiple comparisons test for each mean with Amigo1+/−; 2 months
(L): Amigo1+/+ 54.42 ± 12.78 n=3 HCs; Amigo1+/− 48.91 n=1 HC; Amigo1− 88.81 ± 7.17 n=5 HCs.
Unpaired Student’s t-test between Amigo1+/+ and Amigo1−. Additional Amigo1+/+ animals will be
needed for statistical assessment; 5 months (M): Amigo1+/+ 34.95 ± 9.003 n=3 HCs; Amigo1+/−
61.47 ± 12.04 n=3 HCs; Amigo1− 70.49 ± 6.591 n=4 HCs. 1-way ANOVA with Dunnett’s
multiple comparisons test for each mean with Amigo1+/+). * p < 0.05.
(N–P) Quantification of the width of the suprapyramidal bundle between control and heterozygous
and homozygous Amigo1 mutants at 1 (N), 2 (O), and 5 (P) months of age. Data shown as average
± s.e.m in (μm). (1 month (N): Amigo1+/+ 64.22 ± 5.383 n=3 HCs; Amigo1+/− 61.42 ± 2.713 n=4
Hcs; Amigo1− 63.07 ± 3.720 n=5 HCs. 1-way ANOVA with Dunnett’s multiple comparisons test
for each mean with Amigo1+/−; 2 months (O): Amigo1+/+ 69.89 ± 7.319 n=3 HCs; Amigo1+/− 57.67
n=1 HC; Amigo1− 69.93 ± 6.245 n=5 HCs. Unpaired Student’s t-test between Amigo1+/+ and
Amigo1−. Additional Amigo1+/+ animals will be needed for statistical assessment; 5 months (P):
Amigo1+/+ 69.38 ± 1.601 n=3 HCs; Amigo1+/− 72.84 ± 5.607 n=3 HCs; Amigo1− 72.75 ± 3.58 n=4
Hcs. 1-way ANOVA with Dunnett’s multiple comparisons test for each mean with Amigo1+/+.)
ns = non significant.
Figure 5: Loss of Amigo1 results in the formation of ectopic mossy fiber boutons in CA3

(A-I) Zoom-in images of Timm-stained mossy fibers projecting into distal CA3 and forming mossy fiber boutons in control (A,D,G), Amigo1+/+ (B,E,H), and Amigo1−/− (C,F,I) mice at 1 (A-C), 2 (D-F), and 3 (G-I) months of age. Area of zoom-in is depicted by box in (J) Regions are indicated in pink text (A). Scale bar: 100μm.
Diagram depicting strategy used to measure ectopic mossy fiber bouton density. The suprapyramidal dentate gyrus blade and the beginning of CA2 were used as delimiters to split CA3 into 6 parts radially (dotted green lines). The number of mossy fibers in regions 4, 5, and 6, were counted in the pyramidal cell layer (red outlines), and density of synapses per μm² were calculated for each region. Black box shows located of images in (A-I).

Quantification of Timm staining intensity between intrapyramidal and suprapyramidal bundles in control and heterozygous and homozygous Amigo1 mutants at 1 (K), 2 (L), and 5 (M) months of age. Data shown as average ± s.e.m. (1 month (K)): Region 4: Amigo1+/+ 0.0064 ± 0.0011 n=3 HCs; Amigo1+/− 0.0096 ± 0.0012 n=4 HCs; Amigo1−/− 0.0102 ± 0.0028 n=5 HCs; Region 5: Amigo1+/+ 0.0019 ± 0.0004 n=3 HCs; Amigo1+/− 0.0037 ± 0.0005 n=4 HCs; Amigo1−/− 0.0042 ± 0.0014 n=5 HCs; Region 6: Amigo1+/+ 0.0009 ± 0.0001 n=3 HCs; Amigo1+/− 0.0021 ± 0.00314 n=4 HCs; Amigo1−/− 0.0041 ± 0.0026 n=5 HCs; 2-way ANOVA with Tukey’s multiple comparisons test. 2 month (L): Region 4: Amigo1+/+ 0.0059 ± 0.0012 n=3 HCs; Amigo1+/− 0.0089 n=1 HC; Amigo1−/− 0.0162 ± 0.0014 n=5 HCs; Region 5: Amigo1+/+ 0.0047 ± 0.0015 n=3 HCs; Amigo1+/− 0.0034 n=1 HC; Amigo1−/− 0.0086 ± 0.0015 n=5 HCs; Region 6: Amigo1+/+ 0.0044 ± 0.0016 n=3 HCs; Amigo1+/− 0.0019 ± 0.0026 n=5 HCs; Amigo1−/− 0.0053 ± 0.0012 n=5 HCs; 2-way ANOVA with Tukey’s multiple comparisons test; Additional Amigo1+/− animals will be needed for statistical assessment. 5 month (M): Region 4: Amigo1+/+ 0.0066 ± 0.0009 n=3 HCs; Amigo1+/− 0.0130 ± 0.0012 n=3 HCs; Amigo1−/− 0.0112 ± 0.0009 n=4 HCs; Region 5: Amigo1+/+ 0.0024 ± 0.0003 n=3 HCs; Amigo1+/− 0.0076 ± 0.0011 n=3 HCs; Amigo1−/− 0.0059 ± 0.0008 n=4 HCs; Region 6: Amigo1+/+ 0.0020 ± 0.0003 n=3 HCs; Amigo1+/− 0.0025 ± 0.0004 n=3 HCs; Amigo1−/− 0.0032 ± 0.0004 n=4 HCs; 2-way ANOVA with Tukey’s multiple comparisons test) * p < 0.05; ** p < 0.01; *** p < 0.001; ns = non significant
VI. Discussion

Mossy fibers are unique projections in that they form few but large synapses onto postsynaptic CA3 cells, with each terminal providing strong excitatory information to both postsynaptic excitatory pyramidal cells and inhibitory interneurons. The combination of firing frequency of the mossy fibers and level of the feedforward inhibition provided by the inhibitory interneurons allow for a small number of mossy fiber terminals to elicit transmission of information through the hippocampal network (Henze et al., 2002; Galimberti et al., 2006). At a higher level, this synapse is thought to play a key role in memory formation and learning, especially with concepts such as pattern separation (GoodSmith et al., 2017). Therefore, understanding the molecular mechanisms regulating formation, maintenance and plasticity of these synapses can help in elucidating deficits in memory and learning that are dependent on accurate information passage within the hippocampal circuit. In this study, we identify a role for the cell adhesion molecule Amigo1 in the precise development of mossy fiber tracts to CA3, and in the maintenance of these fibers in adult and ageing mice.

In normal IPB development, the IPB begins as a long bundle extending to the apex of CA3. Around 3-4 weeks of age, the IPB is dramatically pruned by Semaphorins in CA3 acting on the Plexin-A3 receptor to induce mossy fiber retraction (Bagri et al., 2003). The disruption of normal mossy fiber projections along the IPB in our 1-month-old Amigo1−/− mice could be due to enhanced pruning of this IPB bundle, but experiments would need to test whether loss of Amigo1 affects the expression of these signalling molecules involved in pruning. Importantly, whether the IPB is indeed pruned away or just does not form properly needs to be determined by experiments looking at bundle lengths in even younger animals. Conversely, Amigo1 could act as an axon guidance molecule attracting a subset of mossy fibers to the infrapyramidal bundle. For example, the reduced IPB
lengths seen in *Draxin* knockout mice were attributed to loss of repulsive or attractive cues within CA3 lamina (Tawarayama et al., 2018). However, a similar mechanism seems unlikely for the *Amigo1* mice since members of the Amigo1 family (that can bind homo- or heterophilically to Amigo1) are not expressed in CA3 at this age (data not shown + Hitti and Siegelbaum, 2014; Bishop et al., 2018). Finally, the length of the infrapyramidal bundle is known to be plastic, changing between genetic backgrounds and with spatial learning tasks (Schwegler et al., 1981; Crusio et al., 1989; Blaabjerg and Zimmer, 2007). It is thus possible that changes in intrinsic neural activity can explain the altered bundle length in the *Amigo1*−/− animals as described below.

Importantly, anatomical-behavioural correlations have been shown whereby the length of the IPB correlates positively with spatial learning ability. As such, shorter IPBs in the young *Amigo1*−/− mice could impair their learning performance on spatial tasks as shown by studies by Crusio’s group, and it would be important to test these behavioural paradigms our mice (Crusio et al., 1987, 1993; Jamot et al., 1994).

In contrast, the length of the infrapyramidal bundles were unchanged in older *Amigo1*−/− mice. The absence of these defects in mice 2 months and older could be explained by compensatory mechanisms of other molecules involved in guiding projections to the IPB and SPB.

In all age groups, we found evidence of defasciculation of mossy fiber axons. Whether this defasciculation is caused by impaired targeting of the bundles in early development or by re-routing of existing fibers remains to be determined by examining these bundles in the first few postnatal weeks. The axons that are defasciculated could also be from more newly generated granule cells. Studies have provided strong evidence that newly born neurons preferentially innervate the infrapyramidal bundle and contribute to the high levels of plasticity within that bundle (Schwegler et al., 1981; Crusio et al., 1989; Römer et al., 2011). Since there are no
differences in the thickness of the suprapyramidal bundle, the model that it is the younger neurons that are misguided in Amigo1 null animals is an attractive one and can be tested by examining staining of PSA-NCAM-positive mossy fibers, which specifically label adult-born granule cell axons and dendrites (Seki and Arai, 1999).

The increase in crossover of axons between infra and suprapyramidal bundles in our Amigo1−/− animals is reminiscent of defects seen in mice deficient for the cell adhesion molecule CHL1 (Montag-Sallaz et al., 2002; Heyden et al., 2008). CHL1- and BACE1-deficient mice both show similar mossy fiber fasciculation defects, and the defects in BACE1 mice were suggested to be representative of the effect of loss of CHL1 since BACE1-mediated CHL1 cleavage is necessary for its adhesive function in this system (Montag-Sallaz et al., 2002; Heyden et al., 2008; Hitt et al., 2012; Ou-Yang et al., 2018). The similarity of this phenotype leads us to infer that Amigo1 has a role in axonal adhesion of dentate mossy fibers. However, we cannot rule out the possibility of a role for Amigo1 in the regulation of neural activity. Recently, it was found that BACE1 mediates the expression of the voltage-gated potassium channel, Kv3.4, important in repolarization of the action potential (Hartmann et al., 2018). BACE1 levels gradually decline in the adult central nervous system except for high expression in the mossy fibers (Willem et al., 2006; Hartmann et al., 2018). It enhances surface levels of Kv3.4 in mossy fibers and targets this channel to the presynaptic terminal where it can have a stronger impact on synaptic transmission (Hartmann et al., 2018). BACE1 has been shown to regulate neural excitability through alteration of ion channel dynamics, likely by cleavage of auxiliary subunits (Kim et al., 2007, 2011; Sachse et al., 2013; Lehnert et al., 2016). Interestingly, Amigo1 is a cell adhesion molecule that is also an auxiliary subunit of the voltage-gated potassium channel, Kv2.1, a crucial component of the delayed rectifier current in an action potential (Murakoshi and Trimmer, 1999; Peltola et al., 2011). Amigo1
extensively co-localizes with Kv2.1, and Amigo1 null mice have decreased Kv2.1 expression (Peltola et al., 2016; Bishop et al., 2018). Experiments in vivo using Amigo1 null mice and in vitro administering RNAi against Amigo1 have both demonstrated altered gating properties of the Kv2.1 channel such that stronger depolarization is required to activate current through the channel, making neurons more prone to hyperexcitation (Peltola et al., 2011, 2016). Thus, it is highly plausible that the similarity in phenotypes between BACE1 null and Amigo1 null mice could also be attributed to modifications in neural excitability rather than adhesion. Furthermore, it has been suggested that increases in the sprouting of mossy fibers could be due to an increase in intrinsic neuronal excitability (Sutula et al., 1988; Qiao et al., 2013) triggering changes in axon guidance events or channel and receptor composition at the synapse which may explain the ectopic formation of mossy fiber boutons in Amigo1+/− mice. Examination of Timm-stained mossy fibers to determine whether similar defects exist in Kv2.1−/− mice could reinforce this notion. Furthermore, Kv2.1 null mice are hyperactive, show behavioural deficits in spatial learning and have increased seizure progression (Speca et al., 2014), providing good rationale for testing these behaviours in our Amigo1 null animals. Taken together, our results lend support to the idea that loss of Amigo1 in mice causes changes in axon stabilization or guidance leading to aberrant mossy fiber growth and ectopic synapse formation, triggered either by loss of cell adhesion or by modulation of intrinsic neuronal activity. Similarity in phenotypes to other mouse models lead us to believe that the hippocampal mossy fiber deficits in the Amigo1 null mice could be associated with changes in behaviour in terms of learning and hyperactivity or seizure susceptibility.

In conclusion, we demonstrate a role for Amigo1 in the development and maintenance of mossy fiber projections. These findings provide a strong base to further elucidate mechanisms of Amigo1 function as a cell adhesion molecule and/or regulator of neural activity and to further understand
how these functions contribute to the formation, maintenance, and plasticity of mossy fibers within the hippocampal circuit.

VII. Materials and Methods

1. Animals

Animals were housed and handled in strict accordance with the guidelines set by the Canadian Council on Animal Care (CCAC), and protocols and procedures were approved by the Montreal Neurological Institute Animal Care Committee (MNI-ACC). For in situ hybridization experiments using embryonic tissue, animals were acquired from timed-pregnant CD1 female mice purchased from Charles River Laboratories. Embryonic day corresponds to the number of days since the date of vaginal plug. For postnatal analysis, day of birth was considered P0. Embryonic stem cells containing the targeted disruption of the Amigo1 gene (Amigo1^{tm1(KOMP)Vlcg}) were purchased from the KOMP Repository (Knockout Mouse Project, US Davis). The whole coding region of Amigo1 (GRCm38 Chr3:108,187,190-108,188,665) was replaced with the ZEN-Ub1 cassette containing the lacZ gene and a floxable neomycin coding sequence under the control of the human ubiquitin C protomer (http://velocigene.com/komp/detail/10669). Embryonic stem cells were injected into CD1 blastocysts to produce chimeras. Heterozygotes produced by germline transmission were crossed to CMV-Cre mice to remove the neomycin selection cassette (https://www.jax.org/strain/006054).

2. In situ hybridization

Digoxigenin-labeled cRNA probes were prepared by in vitro transcription using the DIG labeling mix (10x conc., Roche) of Amigo1 cDNA in the pBluescript vector, a kind gift from Dr. Heiki Rauvala. In situ hybridization staining was performed as described previously (Pasterkamp et al., 1998). Briefly, sections were fixed for 20 minutes in 4% paraformaldehyde (PFA) followed by
washes in 1×phosphate-buffered saline (PBS) treated with DEPC. Sections were then deacetylated in 0.25% acetic anhydride in 0.1M triethanolamine and underwent prehybridization in hybridization buffer (50% formamide, 5×Denhardt’s solution, 5×SSC, 250 μg/ml bakers’ yeast tRNA) before hybridizing with DIG-labelled probes for incubation overnight at 60°C. The following day, stringency washes in 5×SSC, 2×SSC, and 50% formamide in 0.2×SSC were done at 60°C and in 0.2×SSC at room temperature. Sections were then blocked in Blocking Reagent (Roche) at room temperature and probed with an AP-conjugated α-Digoxigenin antibody (Fab fragments, 1:3000, Roche) for 2.5-3 hours at room temperature before visualization of antibody binding using a colorimetric enzymatic reaction with NBT/BCIP stock solution (nitrobluetetrazolium chloride (NBT) 5-bromo-4-chloro-3-indolylphosphate (BCIP), Roche)

3. Immunohistochemistry

Adult mice were fixed by transcardial perfusion with 4% PFA in 0.1M sodium phosphate buffer, pH 7.4. Brains were dissected out of the head and cryoprotected in a 30% sucrose solution before embedding in OCT (TissueTek, Cedarlane) for storage at -80°C. 20μm cryostat sections of tissue samples were collected onto Superfrost® Plus microscope slides (Fisherbrand). Sections were rehydrated in 1×PBS, blocked with 10% fetal bovine serum (FBS) and 0.5% Triton×100 for 1 hour at room temperature and incubated overnight at 4°C with primary antibody against Amigo1 (1:300, purified monoclonal mouse clone L86/37, NeuroMab). After rinsing with 1×PBS, primary antibody was detected with an IgG-specific Alexa-Fluor-conjugated secondary antibody (1:500 Goat α-Mouse IgG2b, Alexa-Fluor-488; Invitrogen) for 1 hour at room temperature, and the cell nuclei were stained for 5 minutes with Hoechst 33342 (1:20,000, Molecular Probes).
4. **5-Bromo-4-Chloro-3-Indoly1 β-D-Galactopyranoside (X-Gal) Staining**

For X-Gal staining, tissue was immersion-fixed in 4% PFA in 1×PBS for 7 minutes (E16) or 45 minutes (P0, P7 tissue). P21 mice were perfused with 10-15mL of 4% PFA in 1×PBS, and brain was dissected out. All tissue was cryoprotected in 1×PBS containing 30% sucrose before embedding in OCT (TissueTek, Cedarlane). 20μm sections mounted on Superfrost® Plus microscope slides (Fisherbrand) were incubated in Buffer A (0.1M PO₄ buffer, pH 7.4, 2mM MgSO₄, 5mM EGTA) and then Buffer B (0.1M PO₄ buffer, pH 7.4, 2mM MgSO₄, 0.01% Na Deoxycholate, 0.02% NP-40). Sections were subsequently kept in X-gal reaction solution (Buffer B with 5mM K₃Fe(CN)₆, 5mM K₄Fe(CN)₆ and 1mg/mL X-gal (Bioshop)) at 37°C until the development of the colour reaction became saturated (Mombaerts et al., 1996), after which slides were dehydrated in an ethanol series (70%-100%) and Xylene and then coverslipped with Permount (Fisher Scientific).

5. **Timm staining**

Timm staining was performed based on a previously described protocol (Sloviter, 1982). Animals were transcardially perfused first with a 0.37% sulfide perfusate (0.0487M Na₂S·9H₂O (Sigma), 0.0862M NaH₂PO₄·H₂O (Sloviter, 1982)) and subsequently with 10% neutral buffered formalin (NBF). Brains dissected out of the skull were post fixed in 10% NBF and then dehydrated in a series of graded EtOH solutions (70% to 100%), Xylene and final clearing in chloroform before cutting brain down the midline into two hemispheres and incubating in Paraffin wax at 60°C, followed by embedding in fresh Paraffin. Thus, each half-brain was separately embedded so that the flat surface of the midline served to align the sagittal plane of sectioning. 10μm sagittal sections were cut using a rotary microtome, floated on a warm water bath (~53°C) and then collected onto glass slides to dry. Sections chosen for staining from each control-mutant pair were processed.
simultaneously using a slide rack immersed into the different staining solutions. Slides were
deparaffinized in Xylene, rehydrated with an ethanol series and water before developing at room
temperature for 45 minutes and then at 60°C for 12 minutes in the Timm’s solution (30mL Gum
Arabic solution [500g Gum Arabic and 1L milli-Q water], 5mL citrate buffer [5.1g citric acid,
monohydrate, 4.7g sodium citrate, dihydrate in 20mL milli-Q water], 15mL hydroquinone [0.85g
hydroquinone in 15mL milli-Q water], 250μL silver nitrate solution [0.17g silver nitrate in 1mL
milli-Q water]). Slides were finally once again dehydrated with ethanol and Xylene and
coverslipped with Permount (Fisher Scientific).

6. Imaging and Image Analysis

All analyses were done using the ImageJ software (National Institutes of Health).

Three sagittal sections from the midpoint of the hippocampus along the septo-temporal axis
(medial-lateral) were chosen for analysis. The centroid of the curvature in the dentate fissure was
used as the focal point to divide CA3 into six parts. The distal end of CA3 was determined
anatomically by the end of the mossy fiber staining and the change in layer thickness at the CA2
border. The proximal end of CA3 was cut off at the level of the tip of the suprapyramidal dentate
blade. These two boundaries were then used to divide CA3 into six equal parts radially from the
focal point (Figure 5J). The 3 most distal regions labelled 4, 5 and 6 were used for analysis. The
number of mossy fiber boutons (black puncta) were counted using the “Find Maxima” function in
ImageJ for each of these 3 areas in the pyramidal cell layer, which was delimited by the brown
staining of stratum oriens (basally) and black mossy fiber staining of stratum lucidum (apically)

For the tracing of intra and suprapyramidal bundles, a line was first made to join the two tips of
the dentate gyrus blades. The IPB was traced along the border between stratum pyramidal and
stratum oriens starting from this line. This line also served as the starting point to trace the SPB
along the border between stratum lucidum and stratum radiatum. The ratio of the length of the IPN to the length of the SPB was used for statistical analysis (Figure 3J).

To measure the level of crossover between infra and suprapyramidal layers, the mean gray value of a 20μm-thick line traversing the clearest CA3 pyramidal path from the end of the dentate blades to the limit of the infrapyramidal bundle was measured. This value was normalized to background staining levels of stratum pyramidal of CA3 and to strongest staining levels in the dentate hilus (Figure 4J).
Chapter 5: General Discussion

I. Summary

The primary objective of this thesis was to examine the roles of Leucine-Rich Repeat (LRR) domain containing proteins in the processes of nervous system development, from axon guidance to synapse formation and maintenance. While several major families of proteins have been implicated in generalized mechanisms underlying these processes, the more fine-tuned and intricate complexities of subsystems within the brain call for a much more complex integration of a range of protein functions and families (Batool et al., 2019). Differential expression of many proteins within the families of membrane-associated or secreted guidance cues, transmembrane cell adhesion molecules, and intracellular signalling proteins can confer a much more nuanced modulation of cellular processes for the development of neural networks amongst the multitudes of neuronal subpopulations. The molecular mechanisms underlying target cell identification and synapse development and plasticity remain to be fully understood (Harris and Littleton, 2015). The results presented in this thesis identify the role of two LRR proteins, Slitrk1 and Amigo1, in two specific developmental processes: synapse formation and axon fasciculation.

Chapter 2 of this thesis examines the role of Slitrk1 in the development of synapses. We used in vitro techniques to overexpress and downregulate Slitrk1 expression in dissociated hippocampal neurons to identify the sufficiency and necessity of Slitrk1 in the formation of excitatory synapses. Furthermore, we provided evidence for a structure-function mechanism whereby Slitrk1 dimerization at the cell surface requires its second LRR domain while binding to its presynaptic binding partner requires its first extracellular LRR domain.
In Chapters 3 and 4 of this thesis, we turned to study the role of Amigo1 in the development of neuronal circuits \textit{in vivo} using the mouse olfactory system and hippocampal system as models. In Chapter 3, we showed that while Amigo1 has expression restricted to the most ventrolateral region of the olfactory epithelium, it is dispensable for the targeting of olfactory receptor neurons from this region to their specific glomeruli at the surface of the olfactory bulb. In contrast, we show in Chapter 4 that Amigo1 expression in the dentate gyrus during development is essential for the formation of the infrapyramidal mossy fiber bundle. In adult, Amigo1 is required for the maintenance of axonal fasciculation of the mossy fibers and in the prevention of their ectopic bouton formation in the hippocampal trisynaptic circuit.

Together, our results provide novel insight into the roles these two LRR-domain containing proteins play in specific neuronal processes. While many molecules several molecules have already been found to play roles in excitatory synapse formation, in mossy fiber fasciculation and bouton formation, the identification of additional players in this process can provide a starting point towards understanding the integration of signalling between ensembles of proteins and the more subtle modulations required for the development and maintenance of numerous circuits within the brain.

II. Slitrks in Synaptogenesis

1. A place for Slitrk1 in the network of synaptic adhesion molecules

The formation of synapses is not restricted to the developmental period. Brain plasticity requires the retraction of non-functional synapses and the development of new synapses constantly throughout life to enable learning and adaptation in response to changing environments and behaviours. Some major regulators of synapse development such as the Neurexins and Neuroligins have been shown to be important mediators of synaptogenesis, however additional genes are
required to modulate the major pathways to enable synapse specification. Thus, a model whereby a myriad of interactions between cells and their signalling pathways act cooperatively to regulate the synaptogenic program is emerging (Batool et al., 2019). Our data, combined with several additional studies from other labs in the field, have contributed to defining the role of Slitrks in modulating synaptic development.

Specification of synapses by cooperative function of synaptogenic proteins could be mediated by differential spatial and temporal patterns of expression of these molecules between neuron populations. As well, binding interactions between different combinations of proteins and their splice forms can impart information on neuronal identity and promote diversification of synapse types. We and others have independently shown multiple lines of evidence that the Slitrks are mediators of synapse formation. Together, these data suggest that the Slitrk proteins are good candidates to contribute to synapse specificity due to: (1) their differential patterns of expression throughout the brain, and (2) their differential binding abilities to presynaptic partners.

Differential patterns of Slitrk expression in the brain

The broad but differential patterns of expression of Slitrks in the brain could speak to the idea that different populations of neurons express different combinations of Slitrk family members and other synaptogenic proteins, and that the combinatorial molecular code provides instruction for the specific development, maturation, and plasticity of synapses. For example, in the cerebellum of 10-day old mice, *Slitrk1, 3, 4, 5* and *6* but not *Slitrk2* are expressed in the Purkinje cell layer. Interestingly, *Slitrk1* is expressed inner granule cells of the anterior cerebellar lobe while *Slitrk5* on the other hand has enriched expression in the molecular layer of the posterior lobe. *Slitrk2* and *4* are enriched in the granule cell layers as well, while *Slitrk6* mRNA is restricted to the Purkinje cells (Beaubien and Cloutier, 2009). Moreover, *Slitrk6* expression is strikingly restricted to limited
regions in the central nervous system compared to the broader expression patterns of the other Slitrks. It is most highly upregulated in the thalamus and hypothalamus. Finally, a recent study demonstrated opposing requirements for Slitrk2 and Slitrk5 in dopaminergic synapse formation, whereby Slitrk2 promotes excitatory synapse formation while Slitrk5 promotes inhibitory synapse formation onto dopaminergic neurons (Salesse et al., 2020). Together, the differential expression data and evidence of differential requirements of Slitrks within brain structures highlights the importance of precise protein expression at both spatial and temporal levels. More studies of the differential expression of the Slitrks in excitatory and inhibitory neuron populations can provide an additional layer of understanding of their function not only at the synapse, but in the overall modulation of excitatory and inhibitory circuits.

Slitrk interactions at the synapse
The Slitrks, with differential expression patterns throughout the nervous system, can also work in combination with other spatiotemporally-regulated synaptogenic proteins to confer synapse type. As such, the Slitrks have been shown to bind differentially to their presynaptic binding partners, the type IIa receptor protein tyrosine phosphatases (RPTPs) (Takahashi et al., 2012; Yim et al., 2013). All Slitrks function to promote excitatory synapse formation through PTPσ except for Slitrk3 which binds instead to PTPδ to regulate inhibitory synapse formation (Takahashi et al., 2012; Yim et al., 2013). We and others have identified the N-terminal LRR domain (LRR1) of Slitrk1 as the interface binding to presynaptic PTP (Um et al., 2014; Beaubien et al., 2016). Furthermore, just as the postsynaptic family members show differential binding to presynaptic partners, members of the RPTP family of presynaptic transmembrane proteins are prominent synaptogenic adhesion molecules have varying binding affinities to various postsynaptic partners (Han et al., 2018). Specifically, PTPδ was shown to interact with Slitrk1 and 2 only if it contained the splicing insert meB (Um et al., 2014; Yamagata et al., 2015). In this way, splicing variants can
confer a more precise molecular code for the specificity of synapse type by regulation through different levels and binding affinities to post-synaptic molecules (Li et al., 2015; Yamagata et al., 2015; Choi et al., 2016; Won et al., 2017; Won and Kim, 2018). In addition to binding in trans to mediate signalling between presynaptic and postsynaptic sides, it is expected that Slitrks are important for activating intracellular signalling pathways. Such a model has been shown for PTPσ where a combination of extracellular and intracellular signalling components is required for excitatory synapse development (Han et al., 2018). Similarly, many postsynaptic adhesion molecules like Neuroligins, NGL-2 and SALMs also bind to intracellular scaffolding proteins to mediate downstream signalling (reviewed in Jang et al., 2017). Recently, Slitrk2 was shown to bind the scaffold proteins PSD-95 and Shank3, and this interaction was crucial for excitatory synapse development and regulation of spine density (Han et al., 2019; Loomis et al., 2020). The other Slitrks do not bind PSD-95, however, further supporting a notion that differential intracellular signalling between Slitrk members can also promote diversity in synapse development (Han et al., 2019). Binding of Slitrks to other postsynaptic adhesion molecules can also be a method by which combinatorial CAM expression confers synaptic identity. Presynaptic Neurexins, for example, use coreceptors to transduce their trans-synaptic signalling cascades (Gokce and Südhof, 2013). Lateral assembly of SynCAM trans-synaptic complexes also been shown to increase adhesion at the synaptic cleft (Fogel et al., 2011). The Slitrk3 LRR2 domain binds to Neuroligin 2, an interaction that is required for differentiation of GABAergic synapses (Li et al., 2017). Similarly, our studies show that the LRR2 domain is involved Slitrk1 homophilic interaction at the surface, and we posit that this lateral interaction is important for clustering of the Slitrk/PTP complexes. As such, further experiments could test the model that homophilic or heterophilic lateral interactions of Slitrks and other synaptic adhesion molecules can cooperatively
bind to distinct postsynaptic scaffolding molecules and recruit neurotransmitters and other intracellular signalling molecules for synapse diversification and regulation of spine formation and density.

Finally, future studies looking at the synaptogenic role of Slitrk1 in vivo in specific regions of the brain would help elucidate combinatorial mechanisms by which synaptic adhesion molecules work together to orchestrate synapse specificity. For example, FLRT2, LRRTM1 and Slitrk1 are all expressed in CA1 and have been shown to differently affect transmission at input synapses (Schroeder et al., 2018). While the current in vitro knockdown studies of Slitrks demonstrated a role for Slitrks in synapse development, shRNA experiments to downregulate Slitrks in mature cultures would help identify a role for Slitrks in synapse maintenance. Moreover, in vivo studies using conditional knockout approaches to knockout Slitrk1 in spatially or temporally restricted areas can provide more precise insight into the spatiotemporal requirements for Slitrk1 in nervous system development and can complement the data showing behavioural changes associated with Slitrk1 deficiency (Katayama et al., 2010).

III. Amigo1 in axonal fasciculation

Our data demonstrate that Amigo1 contributes to promoting axonal fasciculation in the hippocampus but is dispensable for the fasciculation and coalescence of ORN axons in the main olfactory system. These observations suggest that Amigo1 may have differential roles in the development of circuits in specific brain regions. Alternatively, a contribution of Amigo1 to axonal fasciculation in the olfactory system may be masked by the expression of additional cell adhesion molecules, such as Kirrels, that compensate for the loss of Amigo1 in these cells. Although other Amigo family members are not expressed in ORNs, loss of Amigo1 could alter their expression in ORNs leading to compensation. However, an examination of the expression of amigo2 and amigo3
mRNA in the olfactory epithelium of Amigo1−/− mice did not reveal any change in their expression (data not shown). The modulation of axon fasciculation by Amigo1 in the hippocampus can be attributed to its putative role in cell adhesion or in neural excitability, as discussed in the following sections.

1. **Amigo1 as a cell adhesion molecule**

Thus far, *in vitro* studies have shown a role for Amigo1 in cell adhesion through its LRR domains (Kajander et al., 2011). The only *in vivo* data to support this notion was reported by Zhao et al. in 2014 where morpholino knockdown of Amigo1 or the application of the Amigo1 ectodomain to block endogenous homophilic interactions caused fiber tract fasciculation defects in zebrafish central nervous system (Zhao et al., 2014). Here, we report the first example of fasciculation defects in a full Amigo1 knockout model. Crystal structure data have proposed that dimerization of Amigo1 allows its cell surface expression and, through the LRR interface, can be involved in cell-cell adhesion (Kajander et al., 2011), leading us to believe that the defasciculation defects seen in the Amigo1−/− mice in mossy fiber projections could be due to a role for Amigo1 in cell adhesion. Furthermore, we found Amigo1 to have differential expression patterns in other subregions of the brain, including cerebellum, where it seems to be enriched specifically in lobe X. As far as we can tell, this finding is the first to identify a molecule with this type of specific enhancement in the flocculonodulus of the cerebellum. Examining whether loss of Amigo1 affects fasciculation of the projection of Purkinje cells or of other cell populations in the brain where it is highly expressed will help elucidate the more regulated functions for Amigo1 at different developmental time points. Our findings provide a basis for further studies into the role of Amigo1 in cell adhesion *in vivo*. Point mutations specifically targeting the LRR interaction interface could be introduced by
Cripsr-Cas9 technology, for example, to determine whether the effect of Amigo1 on mossy fiber fasciculation could be attributed to cell adhesion.

2. **Amigo1 as a regulator of neuronal activity**

While the loss of fasciculation could be due to loss of cell adhesion in the hippocampus of Amigo1 null mice, Amigo1 may instead influence fasciculation through a distinct mechanism. For example, Sema3D was shown to regulate axon fasciculation by an indirect mechanism involving the regulation of expression of another cell adhesion molecule, L1 (Wolman et al., 2007). Therefore, we must consider the possibility that Amigo1 affects axonal fasciculation through its role in modulating neuronal activity.

Amigo1 is an auxiliary subunit of the voltage-gated potassium (Kv) channel Kv2.1 (Peltola et al., 2011). The Kv2.1 channel is a potent suppressor of neural activity and mediates the delayed rectifier current of an axon potential (Misonou et al., 2006). Currents through Kv channels thus play an important role in mitigating neuronal excitability (Du et al., 2000; Misonou et al., 2005b). Importantly, the Kv2.1 phosphorylation level regulates its voltage-dependent activation, providing a mechanism for homeostatic plasticity (Surmeier and Foehring, 2004; Misonou et al., 2005a, 2006). Kainate-induced seizures and ischemia both can elicit dephosphorylation and de-clustering of Kv2.1, resulting in diffuse localization and suppressed neuronal activity (Misonou et al., 2004, 2006). Amigo1 was shown to act as an auxiliary subunit of Kv2.1 and affect the channel dynamics by regulating its voltage-dependent activation (Peltola et al., 2011). Loss of Amigo1 protein caused downregulation of Kv2.1 and shifted the current density curve such that neurons deficient for Amigo1 in culture required stronger depolarization to elicit potassium current (Peltola et al., 2011, 2016). These studies together define a function for Amigo1 in the proper expression of Kv2.1 and identify its ability to alter neuronal excitability through this channel. Intrinsic neuronal excitability
is thought to influence axonal growth and sprouting during development as well as control refinement of circuits (Catalano and Shatz, 1998). For example, intrinsic activity in olfactory receptor neurons regulate the expression of axon guidance and cell adhesion molecules (Imai et al., 2006; Serizawa et al., 2006; Nakashima et al., 2013). Thus, changes to neural activity caused by loss of Amigo1 could instigate modifications to axon guidance and cell adhesion signals causing the defasciculation defects that we observed in hippocampal mossy fiber projections. Furthermore, altered levels of neural activity could also mediate synaptic changes leading to the destabilization of mossy fiber terminals and/or sprouting of ectopic boutons seen in the pyramidal cell layer of CA3.

The Kv2.1 gene, KCNB1, has been associated with strong susceptibility to schizophrenia, and schizophrenia-related behaviours such as hyperactivity accompanied the electrophysiological changes to neuronal excitability via the Kv2.1 channel in Amigo1 null mice (Peltola et al., 2016). These mice were characterized for a multitude of behavioural tests, including spatial memory tasks. Pre-pulse inhibition of startle response was reduced in Amigo1 null mice, similar to BACE1−/− mice, which show similar mossy fiber fasciculation defects as our Amigo1 mutant mice (Hitt et al., 2012; Peltola et al., 2016; Weber et al., 2017; Ou-Yang et al., 2018). In a patrolling task testing behavioural flexibility and working memory, Amigo1 null mice performed worse than wild type littermates. However, the Amigo1 null mice tested for behaviour by Peltola and colleagues in 2016 seem to have been generated without the removal of the neomycin gene on the targeted allele (Peltola et al., 2016, Supplemental Figure 1). Presence of the neomycin gene insertion can have off-target effects, as we have described in Chapter 2, so it would be important to confirm these behavioural deficits in our Amigo1−/− animals, or to examine whether Timm-stained mossy fibers in the Amigo1neo/neo mice have similar phenotypes to those in Amigo1−/−.
animals. Furthermore, the Amigo1 mice tested by Peltola et al. began behavioural testing at only 2 months of age. Considering that changes to the IPB are related to spatial memory and learning tasks, it would be worth examining spatial learning paradigms such as the Morris Water Maze or Radial Maze in both our young (1-month old) and ageing (>5-month old) Amigo1 mice to determine any behavioural outcomes of defasciculated and ectopic mossy fibers (Blaabjerg and Zimmer, 2007; Peltola et al., 2016). Importantly, Kv2.1 mice also show behavioural deficits that fit with what we would expect for our Amigo1 null animals with hippocampal connectivity problems. Kv2.1 mice are hyperactive and show deficits in the Morris Water Maze spatial learning task. Furthermore, they have accelerated seizure progression, which could be a result of a lack of homeostatic regulation of neuronal hyperexcitability due to loss of this channel (Speca et al., 2014). Finally, the triple transgenic mouse model of Alzheimer’s disease exhibits a reduction in functional Kv2.1 channels with concomitant current density changes (Frazzini et al., 2016), implicating this channel in the pathology of this memory disease. The strong link between Amigo1 and Kv2.1 in the regulation of neuronal excitability and the alteration in Kv2.1 channel functioning with loss of Amigo1 lead us to believe that we would see similar behavioural deficits in our Amigo1 mice as in the Kv2.1 null mice and that these deficits could be at least in part attributed to the changes in mossy fiber projections observed.

Finally, mossy fiber sprouting, comprising the sprouting of abnormal axon collaterals and synaptic reorganization of mossy fibers, including their targeting back onto granule cell dendrites in the dentate molecular layer, is a common hallmark of epileptic brains (Scheibel et al., 1974). Seizure-induction using kindling models to promote mossy fiber sprouting and neural hyperexcitability have widely been used as models to study the epileptic brain (Cavazos and Sutula, 1990; Kokaia et al., 1995; Buckmaster, 2012). While there is no detectable mossy fiber sprouting in the inner
molecular layer, the evidence of increased plasticity and synaptic reorganization with the ectopic mossy fiber boutons and defasciculation in the Amigo1 mice makes it worth testing whether these mice are more susceptible to seizure induction or seizure progression as seen with the Kv2.1 mice (Speca et al., 2014). Furthermore, Golgi staining of individual CA3 pyramidal cells to visualize the size and distribution of thorny excrescences, the excitatory post-synaptic counterpart of mossy fiber boutons, or ultrastructural analysis of inhibitory interneurons in the pyramidal layer of CA3 at various proximo-distal levels would help elucidate whether an increase in mossy fiber bouton density is accompanied by concomitant increase in excitatory or inhibitory post-synaptic sites.

IV. Conclusion

Although many questions remain to be addressed, our results contribute to the understanding of LRR proteins in the processes of neural circuit development, from axon targeting to synapse formation and maintenance. Our data from studying Amigo1 in the olfactory system define the importance of examining both expression pattern and function within a system to determine its requirement, however conclusions made from one model might not always be translatable to other systems, as we found for the hippocampus. This notion speaks to the idea that the formation of different nervous system circuits is extremely complex, and that molecules expressed differentially both in space and time likely act synergistically in highly orchestrated manners for proper development, with certain players being more important than others in a subsystem-dependent manner. Further study of this important LRR superfamily of molecules will offer insight into how malfunctions of these proteins can lead to debilitating neurological diseases and also help in directing the development of strategies for their treatment.
References

Gaarskjaer FB (1986) The organization and development of the hippocampal mossy fiber system.

Mori K, Sakano H (2011) How is the olfactory map formed and interpreted in the mammalian brain? Annual Review of Neuroscience 34.

Gilles de la Tourette syndrome not linked to the SLITRK1 gene. Psychiatry research 161:109–111.

Peltola MA, Kuja-Panula J, Lauri SE, Taira T, Rauvala H (2011) AMIGO is an auxiliary subunit of the Kv2.1 potassium channel. EMBO Reports 12:1293–1299.

Stanfield BB, Cowan WM (1979) The development of the hippocampus and dentate gyrus in normal and reeler mice. Journal of Comparative Neurology 185.

Young JM, Luche RM, Trask BJ (2011) Rigorous and thorough bioinformatic analyses of olfactory receptor promoters confirm enrichment of O/E and homeodomain binding sites but reveal no new common motifs. BMC Genomics 12.

