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ABSTRACT

During the process of designing and fabricating electronic products, uncertainty

quantification is a significant component of numerical simulation that assesses the

designed devices in the early design phase. As the size of integrated circuits shrink-

ing continuously, the performance of existing simulation tools that designers using

to analyze uncertainties needs to be more effectively guaranteed. In the semicon-

ductor industry, designers customarily rely on the solvers that traditionally based

on the Monte Carlo algorithm. Despite of its ease of implementation, the Monte

Carlo approach is often time-consuming because of a vast number of simulations re-

quired. Indeed, the community has proposed many other stochastic solvers involving

Polynomial Chaos theory that becomes excellent alternatives to Monte Carlo, such

as the Stochastic Collocation method and Stochastic Galerkin method. However, as

the growth of the circuit complexity, the CPU cost of these stochastic methods hits

the bottleneck spontaneously. As a result, we further extend the Stochastic Collo-

cation method by integrating sensitivity analysis in the time domain to accelerate

the process of solving for polynomial chaos coefficients in this thesis. This would

directly allow the deterministic system constructed by this newly proposed method

to have a smaller dimension compared to Stochastic Collocation Method, i.e. use

fewer sampling points, and in turn, minimize the time consumption. Moreover, this

whole methodology will be evaluated at both linear and nonlinear transmission line

circuits, and compared to Monte Carlo and Stochastic Collocation method in terms

of accuracy and CPU cost, respectively.
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ABRÉGÉ

Durant le processus de la conception et de la fabrication des produits électroniques,

uncertainty quantification est une composante importante de la simulation numérique

qui évalue les appareils conçus dans la phase précoce de la conception. Étant donné

que la taille des circuits intégrés réduit continuellement, la performance des out-

ils de simulation que les concepteurs utilisent pour analyser les incertitudes doit

être plus efficace. Dans les industries de semi-conducteurs, les concepteurs utilisent

habituellement les solvers basés sur l’algorithme de Monte Carlo. Malgré sa fa-

cilité de mise en œuvre, l’approche Monte Carlo prend souvent beaucoup plus de

temps, car un grand nombre de simulations est requis. En effet, la communauté a

proposé de nombreux autres stochastic solvers impliquant la théorie du Chaos Poly-

nomial tel que la méthode de Stochastic Collocation et la méthode de Stochastic

Galerkin qui sont d’excellentes alternatives. Toutefois, comme les circuits deviennent

de plus en plus complexes, le coût CPU de ces méthodes est frappé par un goulot

d’étranglement. Pour cette raison, nous approfondissons la méthode Stochastic Col-

location en intégrant l’analyse de sensibilité dans le domaine temporel pour accélérer

le processus de résolution pour les coefficients de chaos polynomial dans cette thèse.

Cela permettra au système construit par cette nouvelle méthode proposée d’avoir

une dimension plus petite que la méthode de Stochastic Collocation. Par exemple,

cette méthode utilise moins de points d’échantillonnage et, par conséquent, le temps

requis est minimisé. De plus, cette méthodologie sera évaluée pour son circuit de
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transmission linéaire et non linéaire et elle sera aussi comparée à la méthode de

Monte Carlo et de Stochastic Collocation en termes de précision et de coût CPU.
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CHAPTER 1
Introduction

1.1 Background and Motivation

In a world full of technology, various devices play a significant role in almost

every corner of our daily lives. In order to match the rapid growth for demand

and productivity, the key to those devices, electronic systems are designed to be

denser and operate under higher frequency while sustaining the exactitude of chip

performance or attaining even higher. Nevertheless, manufacturing technology has

encountered a bottleneck that the physical limit is looming. Hence, actively seeking

for a cure is imminent. As things stand, enhancing the accuracy and diminishing the

computational cost in the design process, specifically in circuit simulation, becomes

an inevitable and hotspot topic in the semiconductor industry. Nowadays, compa-

nies and researchers devote themselves to promoting multiple new methods, which

include the Stochastic Galerkin method(SGM) [10], Stochastic Collocation(SCM)

method [5], other than Monte Carlo Algorithm(MCM) [2] for system-level circuit

simulation tools. Nevertheless, the trade-off between those methods is either feasi-

bility of different designs or the difficulty of implementation. The existing dilemma

leads to the necessity of choosing suitable methods for analyzing them during the

simulation process.

As the early stage of designing core systems, numerical simulation of the entire

integrated circuit is commonly employed by engineers before complex and expensive
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manufacturing processes [13]. Simulating the designed circuits or systems is to con-

struct a deterministic model with well-defined physical and geometrical parameters

except for MCM, which is a sampling-based method. However, the biggest chal-

lenge in simulating designed circuits is to precisely predict how the process variabil-

ity [7] [17] or parametric uncertainties [23] affect the overall performance of circuits.

Essentially, before diving deep into scrutinizing those impacts, we need to quantify

uncertainties accurately, where methods mentioned previously, e.g. SGM and SCM,

are introduced.

For decades, the semiconductor industry uses the MCM to simulate the statisti-

cal distribution of circuit performance. However, the computational cost, especially

for large and complex circuits or systems, is not acceptable due to the slow conver-

gence of Monte Carlo itself. Moreover, since MCM is a sampling-based method, the

optimization of itself is laborious. Therefore, alternative methods with Generalized

Polynomial Chaos(gPC) [21] involved have been proposed. The gPC framework is

capable of expanding the circuit response either in the frequency or time domain as

a series of orthogonal polynomials [9], where polynomials types are various so that

the statistical properties of different types of circuits can be estimated. In this the-

sis, Hermite Polynomials [18] will be adopted to model the stochastic process with

Gaussian random variables. Typically, the mainstream of stochastic analysis meth-

ods can be classified into two categories, which are intrusive and non-intrusive [20],

depending on whether circuit or system equations are modified or not. Specifically,

the non-intrusive solver is a sampling-based model that is easier to be implemented,

which has no modification on existing deterministic solver but needs a considerable
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amount of simulation times. In contrast, the intrusive solver will build a new deter-

ministic model that is orthogonal to each selected polynomial basis and only needs

to be solved once for the stochastic solution.

SCM [5] is one of the non-intrusive solvers which solves the circuit equation in

a decoupled manner. This method hugely reduces the computational cost compared

to MCM since Polynomial Chaos are used to determine the evolution of uncertainty

in circuits while MCM is a sampling-based method. However, with the growth of

the complexity of systems and circuits, expediting the design process is always in

demand. This thesis offers an approach called Sensitivity Integrated Stochastic Collo-

cation method(SSCM) to optimize the SCM further to lower the computational time

in terms of the number of sample points required while retaining the same accuracy.

In other words, we need fewer sampling points compared to the SCM criterion [21]

because sensitivity will be integrated into our method to substitute certain number

of the polynomial chaos expansion sequences.

1.2 Thesis Contributions & Organization

The main contribution of this thesis to the literature mainly embodies at pro-

viding a stochastic method with Polynomial Chaos involved called ‘Sensitivity In-

tegrated Stochastic Collocation method’(SSCM). As a result of a derivative based

method in the frequency domain is proposed in [15], we approach to the time do-

main. This SSCM analyze the parameters’ uncertainty of a circuit that solving in the

time domain by creating a modified deterministic matrix system that assisted with
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sensitivity to obtain the coefficients of expansion series with less computing effort

compared to SCM.

The rest of part of the thesis is organized as follows. Chapter 2 will explore and

review the mathematical background and some important concepts of circuit simu-

lation and stochastic analysis, including the preliminaries of both SCM and SSCM

in detail, as well as the truncation scheme. An elaborate introduction to numeri-

cal methods of sensitivity analysis in the time domain are presented in Chapter 3.

Chapter 4 inherits the knowledge from the previous chapters and illustrates how

SSCM is implemented in the time domain and its variation on solutions to linear

and non-linear circuits. Chapter 5 reports the testing verification for both linear and

non-linear transmission line circuits together with accuracy and time consumption

comparison between MCM, SCM and SSCM. Ultimately, Chapter 6 summaries the

work accomplished in this thesis, as well as outlooks for future research directions.
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CHAPTER 2
Literature Review

This chapter starts with introducing the basics of circuit simulation in the time

domain, followed by a brief review of several existing essential concepts and methods

utilized for our SSCM. Mainly, section 2.2 gives a brief introduction to stochastic

analysis. Section 2.4 explores the definition of Generalized Polynomial Chaos and its

concrete mathematical variations on univariate and multivariate cases with Hermite

Polynomial set in section 2.5. Section 2.6 presents two distinct ways of truncation ap-

plied to Polynomials Chaos Expansion. Moreover, several existing stochastic solvers

are introduced in section 2.7.

2.1 Transient Circuit Simulation in Time Domain

This thesis mainly proposes a new method to study how the transient circuit

response affected by the parameters’ uncertainty in the time domain [1]. To obtain

the transient response of a circuit in the time domain, we need to solve the circuit

equation represented in Modified Nodal Analysis(MNA) form. Equation 2.1 demon-

strates the general form of a circuit equation in the time domain, where G and C are

two matrices containing all memory-less and memory elements, respectively. ~x(t)

denotes the nodal voltages and branch current. f(~x(t)) is a vector that stores the

information of non-linear elements such as diodes. Besides, the independent input

source is stamped in b(t) as a vector form as well. The following two sections 2.1.1
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and 2.1.2 minutely introduce the solutions to both linear and nonlinear circuit equa-

tions in the time domain

G~x(t) + C
d~x(t)

dt
+ f(~x(t)) = b(t) (2.1)

2.1.1 Transient Solution to Linear Circuits

To simulate the circuit containing only linear elements or, in other words, solve

the linear MNA equation in the time domain, we consider using the Backward Euler

method because 2.1 is basically an ordinary differential equation, where f(~x(t)) is

all zero. With the definition of the Backward Euler method in 2.2 and substituting

it into 2.1, the system equation becomes the form represented in 2.3, where h =

tn+1 − tn is an adaptive time step size.

dx(t)

dt
=

x(tn+1) − x(tn)

h
(2.2)

G~x(tn+1) +
C

h
(~x(tn+1) − ~x(tn)) = b(tn+1) (2.3)

For convenience, let ~xn+1 = ~x(tn+1), ~xn = ~x(tn) and b(tn+1) = bn+1 used

in the following equations. We can directly apply LU decomposition to the matrix

within the parentheses of left side in 2.5, which is the organized form of 2.3.

G +
C

h
= LU (2.4)

Hereafter, with an initial guess to ~x0, normally a all zero vector is selected, and all

other known components of this equation, ~xn+1 at each time point can be solved
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iteratively, as 2.6 demonstrates.

(G +
C

h
)~xn+1 = bn+1 +

C

h
~xn (2.5)

~x1 = U−1L−1(bn+1 +
C

h
~x0)

~x2 = U−1L−1(bn+1 +
C

h
~x1)

...

~xn+1 = U−1L−1(bn+1 +
C

h
~xn)

2.1.2 Transient Solution to Nonlinear Circuits

The approach to solve nonlinear circuit equation is sightly different from linear

case with the presence of f(~x). To begin with, we need to apply the Newton’s

Iteration method to 2.6. Specifically, let R(~x) denotes the circuit equation 2.7.

Then the approximation to the roots can be represented by 2.8, where R′(~x) has a

form of G + C

h
+ J(~x), in which J(~x) is the Jacobian matrix of nonlinear vector

f(~x). Finally, similar to the linear case, we compute the change from ~xn to ~xn+1 at

each time point until convergence with an initial guess to ~x0. Generally, the breaking

condition of iterative loop for computing ∆~x is set to its normalization less than the

machine error.

(G +
C

h
)~xn+1 + f(~xn+1) = bn+1 +

C

h
~xn (2.6)

R(~x) = (G +
C

h
)~xn+1 + f(~xn+1) − (bn+1 +

C

h
~xn) (2.7)
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~xn+1 − ~xn = ∆x = −R(~x)

R′(~x)
(2.8)

2.2 Stochastic Analysis

Stochastic analysis is a commonly used tool in modelling complex engineering

problems involving uncertainties. Specifically, in the electronic design automation

area, stochastic analysis is an indispensable step that been done in the circuit simu-

lation process to help designers to foresee the possible errors that may occur during

the manufacturing process and therefore adjust accordingly. As such, manufacturing

vendors are able to ensure the quality of products and avoid the expensive cost for

re-fabrication. This particular step is also known as variability analysis [14]. As il-

lustrated in Figure 2–1, the system block is affected by the random variables, and the

output of this deterministic system is randomized, consequently concerning different

parameters.

Figure 2–1: Stochastic Process
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In terms of variability analysis in circuit simulation, let ~ξ = [~ξ1; ~ξ2; · · · ~ξm]

denotes the random variables set, the resulted MNA equation is presented in 2.9, in

which G(~ξi) = Gµ + ~ξiGσ. Particularly, Gµ and Gσ are mean value and standard

deviation of corresponding memory-less element, and same pattern applies to C.

f(~x, ξi) has a form of 2.10, e.g. a diode

G(~ξ)~x + C(~ξ)~̇x + f(~x, ~ξ) = b (2.9)

f(~x, ξi) =













(Is)µe
x

VT

0

0













+ ξi













(Is)σe
x

VT

0

0













(2.10)

Once the circuit equations are built up, we make use of different methods of interest

to solve 2.9 for statistical information.

2.3 Monte Carlo Method

There are existing distinct methods that can be used for stochastic analysis.

Among all of them, the Monte Carlo method is the most common and straightfor-

ward approach to the variability analysis due to its ease of implementation. However,

it is also time-consuming since it relies on repeatedly simulating circuits with differ-

ent sets of random parameters assigned to circuit elements. The values of random

parameters are generated by a specific probability density function. In this thesis,

we rely on the built-in function in MATLAB to generate the random points with
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Gaussian distribution. The main steps of performing MCM are summarized as the

following:

I Determine the domain of random parameters and their distribution.

II Generate sets of random parameters based on the domain and its distribution,

the resulted samples can be a multi-dimensional vector if multi-variate case is

considered.

III Repeatedly solve the circuit with each sample point generated at previous step

fitted into circuit equation, e.g. 2.9

IV Acquire the results of circuit simulation and analyze for statistical information.

Generally, we utilize the mean and variance value of MC simulations to estimate

the statistical information, i.e. random parameters. Assuming a MC simulation pro-

cess has N repeated simulations with a discrete set of random parameters obtained

by a random generator and its corresponding output set {yi}, the mean value µ can

be estimated as the expected value of y approximated by the population mean value

µ̃:

µ = E{y} ≈ µ̃ =
1

N

N
∑

i=1

yi (2.11)

This equation is used as a good estimator since it is unbiased, meaning that 2.11

establishes the equality between the expected value and the true value of the quantity

it estimates.

Similarly, let σ̃ denotes the standard deviation of a MC simulation, the estimator

of the variance of y is calculated as follow:

V ar(y) ≈ σ̃2 =
1

N

N
∑

i=1

(yi − µ̃)2 (2.12)
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Notably, σ̃2 is also a random variable since yi is randomly generated, and µ̃ has

different values with different MC simulations on the same system equations. Thus,

the expected value of unbiased variance σ2 can be represented as:

E{σ2} = E





1

N

N
∑

i=1

(

yi −
1

N

N
∑

j=1

yj

)2


 =
N − 1

N
σ̃2 (2.13)

and therefore the unbiased variance estimator:

σ2 =
1

N − 1

N
∑

i=1

(yi − µ)2 (2.14)

2.4 Generalized Polynomial Chaos Framework

To overcome the limitation of MCM, the proposed method is one of the poly-

nomial chaos approaches. Circuit responses can be modelled during the stochastic

process by a truncated series of orthogonal polynomials with certain distributed

random variables, so-called Polynomial Chaos Expansion. Generalized Polynomial

Chaos Expansion is extended from PC by Dr.Xiu [21] to various continuous and

discrete distributions using orthogonal polynomials from Askey-scheme to solve for

both Gaussian and non-Gaussian problems. The selection of different polynomials is

based on the probability distribution of random variables. The widespread distribu-

tion and corresponding orthogonal polynomials pairs are summarized in Table 2–1.

As mentioned previously, the random variables used in this thesis are Gaus-

sian distributed. Therefore, Hermite polynomials Expansion is chosen to model the
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Table 2–1: Popular distribution and orthogonal polynomials pairs of generalized
polynomial chaos

Orthogonal Polynomials Distribution of Random Variables
Legendre polynomials Uniform Distribution
Hermite polynomials Gaussian Distribution
Jacobi polynomials Beta Distribution

Laguerre polynomials Gamma Distribution

stochastic process correspondingly and used to explore other concepts in the follow-

ing several sections. The mathematical approximation of gPC is demonstrated in

Equation 2.15,

~x(~ξ) =
∑

~α

A~αH~α(~ξ) (2.15)

where ~x(ξ) is a vector of circuit responses that affected by random variables, H~α(~ξ)

is the Hermite polynomial basis in this case, and A is the corresponding coefficients

or weights. ~α is a set of selected index vectors, which will be further discussed in

later sections. The basis functions H are chosen in a special way in order to meet

the orthonormal condition, i.e. In a stochastic space S with a probability density

function ~ρ(ξ), we have

〈H~α(~ξ),H~β(
~ξ)〉

S,
~

ρ(~ )ξ
= δ~α,~β (2.16)

where δ~α,~β is a Delta function. The computation of Hermite Polynomial basis func-

tions is described in the following sections.
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2.5 Hermite Polynomials Expansion

Hermite Polynomials Expansion [18] has two different standardized types, which

are ‘probabilists’’ and ‘physicists’’. Considering a random variable as ξ, the poly-

nomials function Hn(ξ) of each type is defined as follow.

• Probabilists’ Polynomials

Hn(ξ) = (−1)ne
ξ2

2

dn

dξn
e−

ξ2

2 (2.17)

• Physicists’ Polynomials

Hn(ξ) = (−1)neξ2
dn

dξn
e−ξ2 (2.18)

In fact, each of these two is a re-scaling of the other with respect to different

weight functions. However, probabilists’ polynomial is used by this thesis because

the weight function of itself is the probability density function for Gaussian distribu-

tion with the expected value and standard deviation of 0 and 1 respectively, which

precisely fits the requirement of SSCM.

2.5.1 Derivation to Univariate Case of Hermite Polynomial

Hermite polynomials sequence satisfies three-term recurrence relation [4] with

initial condition H0 = 1 and H1 = ξ. See Equation 2.19.

Hn+1(ξ) = ξHn(ξ) − H
′

n(ξ) (2.19)

Where n > 1. As so, each term of the polynomials can be derived, and the first six

terms are shown in Table 2–2. As an orthogonal polynomial [9], the orthogonality of
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Hermite polynomials can be easily verified by Equation 2.20.

∫

∞

−∞

Hm(ξ)Hn(ξ)W (ξ)dξ =

∫

∞

−∞

Hm(ξ)Hn(ξ)e
−ξ2

2 dξ =
√
2πm!δmn

(2.20)

Where δmn is the Kronecker delta function.

Based on Equation 2.15, assuming a stochastic process with single Gaussian

random variable ξ, output as x and every single coefficient as an, the Hermite

polynomials expansion of this system is defined as:

x(ξ) = a0H0(ξ) + a1H1(ξ) + a1H1(ξ) + · · · =
∞
∑

n=0

anHn(ξ) (2.21)

Table 2–2: First 6 terms of Hermite Polynomials
Order Hermite polynomials

0 1
1 ξ
2 ξ2 − 1
3 ξ3 − 3ξ
4 ξ4 − 6ξ2 + 3
5 ξ5 − 10ξ3 + 15ξ

2.5.2 Derivation to Multivariate Case of Hermite Polynomial

The multivariate case can be generalized based on the univariate case. Consider-

ing a relatively more complex circuit with uncertainties from multiple elements, each

of the random variable set ~ξ = {~ξ1; ~ξ2; · · · ; ~ξm} of a size m can be constructed if

its members are mutually independent. The expansion under this circumstance is:

~x(~ξ) =
∑

~α

~A~αφ~α(~ξ) (2.22)
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Where φ~α is the multi-variable polynomial chaos defined as:

φ~α(~ξ) =
m
∏

i

H~αi
(~ξi) (2.23)

Furthermore, ~α is the index vector, in which every single entry, ~αi, points to each

univariate polynomial of the different degrees in the direction ξi with a one-to-one

relation, up until the highest degree p.

The multivariate Hermite polynomials Expansion also satisfies the orthogonal

property with respect to weighting function 2.25.

〈φ~α(~ξ), φ~β(
~ξ)〉 =

∫

Ω

φ~α(~ξ)φ~β(
~ξ)W (~ξ)d~ξ = δ~α,~β (2.24)

W (~ξ) =
√
2πm

−1
e

−‖ξ‖2

2 (2.25)

2.6 Truncation Scheme of Polynomial Sequence Expansion

As seen in Equation 2.21, the number of basis functions of Hermite Polynomials

Chaos Expansion can be extended to infinity, especially for multivariate cases due to

its multi-indices. It is meaningless to use as more as basis functions to expand the

random parameters since a finite number of functions can produce a highly accurate

result. As such, the concept of truncation [12] is introduced here to cut down the

number of functions in the expansion sequence. For example, given an order threshold

p, the Hermite Polynomials will only generate p + 1 terms since all terms with an

order higher than p is truncated.

As for the multi-indices situation, considering the degree selection set P and an

order p, the most two conventional approaches [23] to truncation are:
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• Total Degree Method : The degree of multivariate term φα in expansion that

satisfy the condition in Equation 2.26 will be included in P .

m
∑

i=1

αi ≤ p (2.26)

As a result, the number of basis functions N can be calculated by Equa-

tion 2.27.

N =
(m + p)!

m!p!
(2.27)

• Tensor Order Method : Term φα is included in set P only if its multi-indices

satisfy Equation 2.28.

0 ≤ αi ≤ p (2.28)

The total number of basis function N is derived from Equation 2.29.

N =
t
∏

i=1

(pi + 1)m (2.29)

Table 2–3 shows an example of using total degree method with m = 3 and

p = 3.
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Table 2–3: Truncation Example of using Total Degree method with m = 3 and
p = 3

Total Order Multi-indices Single Index of α
0 (0 0 0) 1
1 (1 0 0) 2
1 (0 1 0) 3
1 (0 0 1) 4
2 (2 0 0) 5
2 (0 2 0) 6
2 (0 0 2) 7
2 (1 1 0) 8
2 (1 0 1) 9
2 (0 1 1) 10
3 (3 0 0) 11
3 (0 3 0) 12
3 (0 0 3) 13
3 (0 1 2) 14
3 (0 2 1) 15
...

...
...
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2.7 Existing Stochastic Solver Exploration

This section provides a brief exploration into several popular stochastic solvers

involving polynomial chaos theory. As we mentioned before, there are two main cat-

egories of the techniques that used to analyze circuit variability, which are intrusive

and non-intrusive. Monte Carlo is one of the non-intrusive family since it uses a

fixed number of samples to directly solve the computational model 2.9 for statistical

information.

2.7.1 Stochastic Collocation Method

Stochastic Collocation method(SCM)[5] is the best-known non-intrusive stochas-

tic method, and our proposed method is improved based on SCM. The general idea

of SCM is to approximate the nodal voltage or branch current ~x with a deterministic

system, which essentially is a linear combination of polynomial chaos basis functions

shown in 2.30. Assuming there are M deterministic equations in total and each basis

function after applying truncation scheme has K terms, then the linear combination

H ∈ R
M×K with each row been filled with φ(~ξi), the polynomial chaos coefficients

A ∈ R
K , and the circuit response V ∈ R

M with V (k) = V (~ξi). Notably, the ~ξ

here denotes the random variable set or the collocation points chosen from random

space by a quadrature rule, e.g. Gaussian Quadrature Rule.

HA = V (2.30)

Similar to Monte Carlo, the circuit response is obtained by solving equation 2.9 with

~ξ fitted in. However, SCM requires fewer sample points than MCM, which makes it
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much faster in terms of convergence speed.

2.7.2 Stochastic Galerkin Method

Stochastic Galerkin method(SGM) is an intrusive spectral method that involving

gPC. Similar to SCM, it starts by generating random parameters with an appropriate

probability density function, and then construct Polynomial chaos basis function to

model the circuit response ~x. The hinge that makes SGM an intrusive method is

that it applies the Galerkin projection procedure [20] to aggregate a set of coupled

deterministic equations instead of using stochastic equations. Statistical information

can be obtained from the solution to the constructed system solved by an applicable

numerical method.

Whereas, the efficiency of SGM degrades expeditiously as the growth of number

of random parameters and the complexity of circuits since all deterministic equations

are solved in a coupled manner.

2.7.3 Stochastic Testing Method

Stochastic Testing method [23] is a generalized polynomial chaos-based intrusive

method, which varies from the interpolation-based stochastic collocation. The main

difference from SCM is that Stochastic Testing method directly solves a large-scaled

deterministic system for polynomial chaos coefficients without decoupling techniques

applied to the system itself. Instead, it computes the Jacobian matrix of difference

equation in 2.31 that can be decoupled during iterations. Moreover, this method

uses a point selection technique to reduce the number of quadrature points required.
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There are totally K samples selected from a set of (p + 1)m points generated by

a Gaussian-quadrature tensor product rule, where K ≪ (p + 1)m and p is the

highest total order of polynomial chaps basis functions. This particular algorithm

also inspires our proposed SSCM explained in the later chapter.

T (~x(~ξ)) = G̃~x(~ξ) + C̃~̇x(~ξ) + F̃ (~x(~ξ), ~ξ) − B̃ = 0 (2.31)

This method begins with approximating the exact solution ~x in MNA equa-

tion 2.9 by truncated generalized polynomial chaos expansion ~x(ξ) with selected

quadrature points fitted in, such as Hermite polynomials in 2.22. This operation

results in the equation in 2.31, where

G̃ =



















G(~ξ1)

G(~ξ2)

. . .

G( ~ξK)



















, C̃ =



















C(~ξ1)

C(~ξ2)

. . .

C( ~ξK)



















(2.32)

B̃ =



















b

b

...

b



















, F̃ =



















f(~ξ1, ~x(ξ)(~ξ1))

f(~ξ2, ~x(ξ)(~ξ2))

...

f( ~ξK, ~x(ξ)( ~ξK))



















(2.33)

Let λ̃ denotes the polynomial chaos coefficients, then 2.31 leads to the equation 2.34

with Backward Euler Integration as an example.

T (λ̃k, ~ξ) = G̃(λ̃k, ~ξ) +
1

h
(C̃(λ̃k, ~ξ)− C̃(λ̃k−1, ~ξ)) + F̃ (λ̃k, ~ξ)− B̃ = 0 (2.34)
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As a result, 2.34 can be solved directly with Newton Iteration as coupled structure

instead of block by block, i.e.

J(λ̃k, ~ξ)∆λ̃k = −T (λ̃k, ~ξ) (2.35)

where J(λ̃k, ~ξ) is the Jacobian matrix of T (λ̃k, ~ξ). Generally, we start with giving

an initial guess to λ̃0 and computed all coefficients until convergence. However,

the author of [23] proposed a specialized way by using a Vandermonde-like matrix

V ∈ R
k×k with V (i, k) = φk(~ξ

i) that only dependent on the sampling points and

polynomial basis functions to solve the system in a decoupled manner. The resulted

time complexity of this algorithm has a linear scale. As so, the Jacobian matrix can

be transformed into the following form

J(λ̃k, ~ξ) = J̃(λ̃k, ~ξ)(V ⊗ In) (2.36)

where In is an identity matrix of size n× n and operator ⊗ denotes the Kronecker

product. Afterwards, we first solve

J̃(λ̃k, ~ξ)∆Λ = −T (λ̃k, ~ξ)

iteratively and calculate the result by

∆λ̃k = (V −1 ⊗ In)∆Λ

simultaneously. Moreover, the computation of V −1 only requires once and can be

reused for all time points.
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This process hugely increases the efficiency of computing polynomial chaos coef-

ficients because after multiplying the Kronecker product part to the Jacobian matrix,

it turns into a spares matrix with a block-diagonal structure:

J̃(λ̃i
k,

~ξ) =













J(λ̃i
k,

~ξ1)

. . .

J(λ̃i
k,

~ξK)













(2.37)
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CHAPTER 3
Sensitivity Analysis

Before we run into the implementation of SSCM, we need to introduce the

sensitivity analysis [6], which is the fundamental part that makes our method un-

conventional and optimized. This chapter emphasizes on demonstrating approaches

to calculating sensitivity in the time domain with the presence of the deterministic

system.

3.1 Sensitivity Definition

Sensitivity analysis is the way to model the outcome of a system concerning

the effects of different sources of uncertainties in inputs. Notably, in the circuit

simulation area, the sensitivity is a significant metric to model the change of the

response of a circuit along with the variety of different electronic elements. In other

words, the sensitivity of a circuit is defined as the ratio of the change in node voltage

or branch current to the change in different electronic elements such as resistors,

capacitors and inductors. Mathematically, e.g., consider the circuit in Figure 3–1,

the sensitivity of voltage at node 2 with respect to the change of C1 is derived as

follows. Assuming C1 changes by ∆C1 and V2 accordingly changes by ∆V2, the

sensitivity is defined as:

∆V2

∆C1

→ ∂V2

∂C1

(3.1)
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as ∆C1 approaches to 0.

Figure 3–1: Example Circuit for introducing sensitivity

The definition we seen above is called absolute sensitivity. Considering the

circuit equation 2.1 in MNA form, it can be derived by:

D
x(t)
C1

=
∂x(t)

∂C1

(3.2)

with x(t) represents the circuit response at the output node. However, the disadvan-

tage of this definition is evident because it is not scaled free, which means comparison

for various elements concurrently is difficult. Therefore, we introduce another way

of finding sensitivity called relative or normalized sensitivity.

Relative Sensitivity:

S
x(t)
C1

=
∂ lnx(t)

∂ lnC1

(3.3)

It can be represented in term of absolute sensitivity:

S
x(t)
C1

=
∂ lnx(t)

∂ lnC1

=
C1

x(t)

∂x(t)

∂C1

=
C1

x(t)
D

x(t)
C1

(3.4)
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Generally, relative sensitivity will be chosen over absolute because it is related

to a unit percentage change in parameters’ value, and typically small values of elec-

tronic elements like capacitor and inductor used in circuits. Meanwhile, it is also

dimensionless and we can readily compare different elements at the same time.

3.2 Three Approaches to Deriving Sensitivity in the Time Domain

There are three approaches to calculate sensitivity. For later demonstration, let

us use the example circuit in Figure 3–1 and pick node 2 for analysis. To begin with,

considering the system equation 2.1 and denoting

S =
∂x2

∂ξ

as sensitivity output.

3.2.1 Perturbation Approach

Perturbation is a brute force way to derive sensitivity but also has the highest

computational cost among all three methods. Firstly, we need to approximate the

exact solution ~x(t) in 2.1 at one time point, e.g. for circuit in Figure 3–1, we have

~x =













x1

x2

x3













(3.5)

Then we add numerical variation into 2.1 based on random variable set ~ξ, i.e. 2.9,

and solve the new MNA equation again for ~x(~ξ). Upon having both ~x and ~x(~ξ),
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the corresponding sensitivity at node 2 with respect to C1 can be calculated by

S =
x2(~ξ) − x2

ξC1

(3.6)

Distinctly, this method requires solving system equations two times and com-

putes the sensitivity one by one at each node for each element. This process is very

time-consuming, and it scales up promptly with the growth of circuit complexity.

3.2.2 Differentiation Approach

Differentiation [3] is an improved method compared to perturbation in terms of

efficiency and time complexity. Specifically, the sensitivity of all nodes with respect

to one element only requires to simulate system once. Different from perturbation,

we approximate ~x(~ξ) with a random variable set ~ξ = [ξ1, ξ2, · · · , ξi] fitted into

MNA equation 2.9 as the first step. Meanwhile, we compute the derivative form

of 2.9. In this case, the derivative form we have is

∂

∂ξi

[

G(~ξ)~x
]

+
∂

∂ξi

[

C(~ξ)~̇x
]

+
∂

∂ξi

[

f(~x, ~ξ)
]

= 0 (3.7)

Then the sensitivity at all nodes with respect to one random parameter is computed

by evaluating ∂~x

∂ξi
. We repeat this process for each ξi in the ~ξ set to compute all the

sensitivities at one time point.

Overall, even though we need to solve the system equation twice, one for orig-

inal form and the other for derivative form, the LU decomposition applied to solve

for ~x can be inherited during the second computation for sensitivity, which hugely
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decreases the CPU cost.

3.2.3 Adjoint Approach

Adjoint Approach [22] aims to create the adjoint network and derives the sensi-

tivity of one output with respect to all random parameters at a time. This method

offers advantages on computational speed, as well as accuracy. However, this method

is not used in this thesis due to the unsolved difficulties in computing sensitivities in

the time domain, especially for nonlinear circuits. Details can be found in [19]. The

following part briefly introduces the adjoint network in the frequency domain as a

reference.

Considering a circuit equation in the frequency domain as

GX + sCX = B ⇒ AX = B (3.8)

we start by approximating the circuit response X with the presence of random

variable ~ξ. The difference is we denotes d as an index vector, such that the entry of

which has a value of 1 indicating the corresponding output node to be analyzed, e.g.

V2 =

[

0 1 0

]













V1

V2

V3













= dtX (3.9)

In this case, the adjoint network is defined as 3.10. The process to construct 3.10 is

shown below.

AtXa = −d (3.10)
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• Step one: Based on the definition of sensitivity incorporated with index vector

d, we have

∂V2

∂ξ
= dt

∂X

∂ξ
(3.11)

and by substituting ∂X

∂ξ
with equation 3.12,

A
∂X

∂ξ
= −∂A

∂ξ
X (3.12)

3.11 can be written as

∂V2

∂ξ
= −dtA−1

∂A

∂ξ
X (3.13)

• Step two: Given the following notation, we can readily observe the adjoint

network shown in 3.10.

(Xa)t = −dtA−1 ⇒ (Xa)tA = −dt (3.14)

In summary, we first solve the MNA equation 3.8 for X and then Xa from

adjoint network 3.10. The resulted sensitivity is computed by 3.15.

∂V2

∂ξ
= (Xa)t

∂A

∂ξ
(3.15)

3.2.4 Comparison between Three Approaches

In this thesis, the proposed method SSCM uses a differentiation approach to

calculating sensitivity due to its significant advantage on the computational cost

compared to the perturbation method because the obtained upper and lower matri-

ces by LU decomposition in circuit simulation step can be reused when solving for
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sensitivity. In other words, we need less computational efforts to obtain sensitiv-

ity with the differentiation approach. Details will be covered in Chapter 4. As for

perturbation method, it requires extra Lu decomposition and forward or backward

substitution to find the sensitivity, leading to large CPU cost. Moreover, it is hard

to determine the value for randomly parameters ξ since electronic elements generally

have a quite small value which indeed differs from each other. Any minute error will

lead to enormous variation in resulted sensitivity.
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CHAPTER 4
Sensitivity Integrated Stochastic Collocation Solver

This chapter presents the implementation of the proposed sensitivity integrated

stochastic collocation method(SSCM), for the variability analysis of circuits in the

time domain. This method extends the original SCM with sensitivity to construct a

different deterministic system for computing polynomial chaos coefficients. Precisely,

because of integrating the sensitivity to the new system, our method is capable of

using only a small portion of the generated quadrature points while SCM requires

all of them. Thus, the numerical process can be hugely accelerated.

4.1 Starting Point of Sensitivity Integrated Stochastic Collocation Method

Our proposed method computes the polynomial chaos coefficients by a new de-

terministic system. Due to the similarities between SCM and SSCM in terms of

constructing the deterministic system, we start with a demonstration with system

equation 2.30 used in SCM and extending to our method. The key to the construc-

tion of the deterministic system is generating the sampling points with the truncation

scheme applied to. The following section elaborates on the approach to randomly

generating truncated sampling points of interest. It should be noted that the follow-

ing method is outlined on the basis of multi-variate cases.
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4.1.1 Point Space Selection

First of all, we need to select the testing sample for our method as input. This

thesis benefits from the point selection method from Dr. Zhang’s paper [23]. The

method has two main steps. Firstly, assume n = p + 1 while p is the highest

total order of basis function φ(~ξ), and then apply Gaussian Quadrature rule [11] to

generate quadrature points for each random variable ξi, together with their Gaussian

weights. As a result, we have (p+1)m sampling points as a candidate pool assuming

~ξ = [~ξ1, ~ξ2, · · · , ~ξm]

. Secondly, we apply filtration to those points to choose onlyK points from them. To

selectK points from the pool, Dr.Zhang first sorts all the weights in descending order

and picks the point having the largest weight as the first sample point. Afterwards,

a vector space with i sample points selected is constructed as:

Vi−1 =



















φ(~ξ1)

φ(~ξ2)

...

φ(~ξi)



















(4.1)

The rest (K − i) points are selected based on the scheme that only if it has large

component orthogonal to this vector until a maximum K points are achieved with

a threshold scalar β. However, an alternative solution to this method is proposed

in [23] as generating and saving the candidate points becomes more and more ex-

pensive with the increment of parameters’ dimension m. Instead, the proposed new

solution only generate weight and corresponding index as a reference and then create
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the sample points without storing it at the first place. Only points that meet the

orthogonal condition will be stored as our final output. This approach significantly

improves efficiency and avoids the waste in space. The difference in our thesis is that

we define K based on the total degree method mentioned in section 2.6, which leads

to K = (p+m)!

p!m!
by the end.

4.1.2 System Construction

In order to formulate both sides of equation 2.30, first, we simulate circuit

equation 2.9 with K selected sample points for ~x from the previous section. This

gives us

~x = V =



















V o
1

V o
2

...

V o
m



















(4.2)

where o denotes the output node if the voltage is analyzed. Afterwards, we need to

set up the matrix H that containing the polynomial chaos basis function. To start

with, let us consider the example in Table 2–2 and represents the first five terms of

Hermite polynomial basis functions as a product of two matrices in 4.3.

























H0

H1

H2

H3

H4

























=

























1 0 0 0 0

0 1 0 0 0

−1 0 1 0 0

0 −3 0 1 0

3 0 −6 0 1

















































ξ0

ξ1

ξ2

ξ3

ξ4

























(4.3)
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In the second place, we accumulatively multiply the Hermite basis functions based

on the multi-variate case in 2.23 and apply the truncation scheme in section 2.6 to

which at the same time. As a result, we have


















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with a highest total order p, such that (a+b+c) ≤ p and there are three variables

in the set ~ξi. Finally, we perform the same pattern to the rest of ~ξi in ~ξ to obtain the

polynomial chaos basis function at each sample point and linearly combine all the

deterministic equations to form H . A detailed structure of this linear deterministic

system is given in 4.5, where ~ξm denotes the corresponding random variable along one

direction. Besides, k is the number of terms selected after applying the truncation

scheme. Upon obtaining the circuit responses V , polynomial chaos coefficients can

be computed with either a direct or an iterative solver.
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(4.5)

SCM has a considerable advantage in terms of computational cost compared to

the MCM since polynomial chaos is used to model stochastic process and thus fewer
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sample points are required with the deterministic system. However, as we can see

in 4.5, the cost of constructing and solving this system increases expeditiously as the

complexity of circuits and number of random variables growing.

4.2 Implementation of Sensitivity Integrated Stochastic Collocation Method

The SSCM proposed by this thesis progressively employs only a small portion

of the quadrature points to set up our advanced deterministic system, while SCM

requires all of them. Thus, our method provides extra speedup in terms of the solu-

tion in the time domain. The key to the method is done by integrating sensitivities

analyzed at the output node with respect to each random variable by the differen-

tiation approach in section 3.1. The deterministic system of our proposed SSCM is

shown below

H̄(φk( ~ξm))A = V̄ (4.6)

where H̄ ∈ R
m(k+1)×k denotes the new deterministic system with k random vari-

ables in each set ~ξi, A ∈ R
k represents the polynomial chaos coefficients, and

V̄ ∈ R
m(k+1) stores the circuit responses and sensitivities at desired output node

with respect to different parameters.

To construct the deterministic system in 4.6, we start with V̄ first as circuit

response ~x and corresponding sensitivity at one time point can be computed within

one iteration. However, approaches to calculating sensitivities vary in linear and

nonlinear circuits, as presented in the following section.

Linear Case : To begin with, we deduce the derivative of system equation 2.3

with respect to different random variables. One aspect to note is the type of element
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that containing a random variable leads to inconsistent forms of derivative functions.

Specifically, the derivative equations for computing sensitivity differ in G and C

matrices as far as MNA representation is concerned.

• Case G: Derivative of memory device

∂G

∂ξmk
~xn+1 + G

∂~xn+1

∂ξmk
+

C

h
(
∂~xn+1

∂ξmk
− ∂~xn

∂ξmk
) = 0 (4.7)

Since G = Gµ + ξmk Gσ, after simple organization, we have

(G +
C

h
)
∂~xn+1

∂ξmk
=

C

h

∂~xn

∂ξmk
− Gσ~xn+1 (4.8)

• Case C: Derivative of memoryless device

G
∂~xn+1

∂ξmk
+

∂C

∂ξmk

1

h
(~xn+1 − ~xn) +

C

h
(
∂~xn+1

∂ξmk
− ∂~xn

∂ξmk
) = 0 (4.9)

Similar to G, we rewrite it as

(G +
C

h
)
∂~xn+1

∂ξmk
=

C

h

∂~xn

∂ξmk
− Cσ

h
(~xn+1 − ~xn) (4.10)

Advantageously, (G + C

h
) has already been decomposed by LU in the previous

regression step for calculating circuit response. This means that the upper matrix

U and lower matrix L can be directly reused in 4.10, therefore significantly avoids

the additional increase in the time complexity of computing sensitivities.

Nonlinear Case : Likewise, the derivative of nonlinear MNA equation 2.6

embedded with Backward Euler method varies on different types of elements. Addi-

tionally, its solution depends on whether the nonlinear element is consolidated with

a random variable or not. For solely revealing the difference with the presence of
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f(~x, ~ξ), we assume G and C are not a function subject to ~ξ here. The derivative

form of 2.6 is

G
∂~xn+1

∂ξmk
+

C

h
(
∂~xn+1

∂ξmk
− ∂~xn

∂ξmk
) +

∂f

∂~xn+1

∂~xn+1

∂ξmk
+

∂f

∂ξmk
= 0 (4.11)

⇓

(G +
C

h
+ J(~xn+1, ξ

m
k ))

∂~xn+1

∂ξmk
=

C

h

∂~xn

∂ξmk
− ∂f

∂ξmk
(4.12)

where J(~x, ~ξ) is the Jacobian matrix of f(~x, ~ξ).

After concatenating the circuit response at output node and its sensitivities, V̄

is formed as:
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(4.13)

The next step is to build the linearly combined matrix H̄ . Accordingly, we need

to integrate the polynomial expansion of resulted sensitivities in V̄ . Based on 2.15,
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we have its variation on derivative form.

∂V

∂~ξ
=
∑

~α

A~α

∂φ~α(~ξ)

∂~ξ
(4.14)

The process of generating the derivative polynomial chaos basis function for mod-

elling sensitivity is the same as what we have done in the previous section. Af-

terwards, we concatenate the polynomial chaos basis function with their derivative

form for approximating sensitivities. Specifically, the functions after a row of Hermite

polynomial chaos expansion at one sample point until the next one is the derivative

form of current basis functions with respect to each random variable in the set ~ξm.

Thus, this leads to m(k + 1) linearly combined equations in total. Equation 4.15

illustrates the new system with sensitivity analysis involved.
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(4.15)

Like SCM, the desired polynomial chaos coefficientsA can be computed with a direct

solver or an iterative solver at each time point.
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In summary, the steps to implement SSCM is concluded in Algorithm 1.

Algorithm 1: Stochastic Collocation Method with Sensitivity Analysis

input : List of elements having uncertainties attached; Highest total
degree p; Output node; Time step h and end point T of transient
analysis range

output: Coefficients of Hermite Polynomial Chaos Expansion A at each
time point

begin
Choose K points from generated quadrature points pool;
Construct H matrix;
for each set of random variables do

Fit corresponding random variables into MNA equation;
Initialization of Circuit Simulation;
while t < T do

Solving for circuit response at current time point;
for each element in the element list do

Compute the derivative form of MNA equation based on the
current element type;
Calculate sensitivities at output node;

end
Concatenate circuit response at output node with its sensitivities
with respect to all random variables at current time point to
form V̄ ;
Compute polynomial chaos coefficients at current time point
by 4.6;
Increase t by h for next time point;

end

end

end
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CHAPTER 5
Example Evaluation

This chapter presents several examples to prove the enhancement of the proposed

SSCM in terms of time complexity while maintaining the accuracy compared to MCM

and SCM. MCM serves as the baseline for validating the accuracy since the time

consumption of MCM is prohibitively expensive for transient simulation and thus no

need to compare, while SCM is used for comparing time complexity to SSCM. The

following examples, both linear and nonlinear circuits, are based on the uni-conductor

or multi-conductor transmission line(MTL), which are the fundamental component

of high-speed interconnects. In Figure 5–1, an example of a conductor has a length

L = 2cm and can be coupled together to form the MTL sharing one reference node.

The data of crucial parameters of MTL, Resistance, Inductance, Capacitance and

Conductance, denoted as R, L, C and S respectively, are all defined in terms of

per-unit-length(PUL) parameter matrices. Each conductor is constructed with 100

sections of lumped RLCS segmentation.

Notably, in the following examples, uniform time step sizes are used for all three

methods as we are seeking for the statistical information of the time domain solution.

The time domain response is plotted with 400 time points based on the period of each

input source and its time step, which gives a complete period from one rising edge

to next with an initial delay interval. Moreover, all three methods have the same

100000 randomized Gaussian distributed testing samples with a mean and standard
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Figure 5–1: Illustration of a conductor with a length of 20cm

deviation of 0 and 1, respectively. MCM uses these testing samples as different sets

of random variables {ξ} and samples at each of them to obtain statistical informa-

tion. SCM and SSCM are tested with these 100000 testing samples after obtaining

the coefficients.

5.1 Exploration on Linear Circuits

5.1.1 Example 1: 7-Uniconductor Transmission Line Circuit

The linear transmission line circuit in Figure 5–2, also presented in [8], has 7

uni-conductors. The specification of conductors is included in Table 5–1. The signal

input in this circuit is an AC pulse wave voltage source with an initial and a peak

voltage of 0V and 5V, respectively. Let p denotes the highest total order of each

polynomial expansion term and N represents the number of elements that associated

with uncertainties, in this particular example, we have p = 3 and N = 10. As a

result, we have in total 286 sets of random variables for SCM based on the total
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degree method mentioned in section 2.6 and our SSCM only takes a twenty percent

of them, i.e. only 57 sets.

Figure 5–2: Schematic of a seven uni-conductor circuit with a pulse voltage source
of 5V

Table 5–1: Specification of the 7 uni-conductor circuit
Resistance Inductance Capacitance Conductance Length
(Ω/m) (nH/m) (pF/m) (mΩ−1/m) (m)

T1 8 60 120 5 0.03
T2 8 60 100 5 0.03
T2 8 60 100 5 0.03
T2 8 100 100 5 0.05
T2 8 60 120 5 0.03
T2 8 60 100 5 0.04
T2 8 100 150 5 0.02
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Before verifying the accuracy of the proposed SSCM, efficiently, we emphasize on

comparing the mean, variance and possibility density function between three methods

to evaluate the correctness of SSCM. In Figure 5–3, the mean values of these three

methods generating by 100000 identical testing samples have nearly the same results.

For further comparison, we see in the magnified portion that illustrating the mean

value within uniformly distributed time interval from 3.28443ns to 3.28445ns,

the error of SSCM is less than 2 × 10−5. Similar to mean values, the variance of

three methods showing in Figure 5–4 are substantially adjacent to each other, with

a divergence less than 2 × 10−8.
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Figure 5–3: Mean value comparison of Example 1 with SSCM, SCM at p = 3 and
N = 10 and MCM
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N = 10 and MCM

Figure 5–5 shows the probability distribution computed at two different time

points. Again, the results of MCM and SCM are generated as the baseline. As seen,

SSCM has the same observation as the baseline methods, whether at the center or

side areas.

In order to further statistically quantify the variance trend, we plot the 3-sigma

limits, known as 68–95–99.7 rule in statistics area [16], of the output of SSCM in

Figure 5–6. What is observed is that the circuit response all lies within the three

standard deviation of the mean, which gives a solid guarantee of the accuracy of our

proposed method.
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Figure 5–5: Probability density function comparison of Example 1 at time 7.5ns
and 13.125ns with SSCM, SCM at p = 3 and N = 10 and MCM

Apropos of the time consumption, to clarify, all three methods, MCM, SCM and

SSCM, are implemented to fit the requirements of the Parallel Computing Tool in

MATLAB with numbers of workers of 4 in order to save the time budget for testing

since a large number of simulations required in time domain solution, especially for

MCM. Moreover, all simulations are performed with a workstation with a processor

of 4GHz and 16GB RAM. The CPU time is calculated based on a scheme that:

starting from the beginning of the algorithm until the polynomial chaos expansion
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Figure 5–6: 3-Sigma limits of Example 1 with SSCM at p = 3 and N = 10

coefficients are obtained. With ten random variables in each set of {ξ}, SCM essen-

tially requires 10 mins and 28 secs to finish running while our SSCM only takes 2

min and 8 seconds and maintains the same accuracy simultaneously. Thus, SSCM

has almost 5 times the advantage in terms of time complexity compared to SCM

because it is capable of using fewer points but meanwhile ensures the same accuracy.

5.1.2 Example 2: One 8 Coupled MTL Circuit

This example considers the variability analysis with proposed SSCM of the cir-

cuit shown in 5–7, in which a MTL with 8 conductors coupled is presented. The
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whole circuit is excited by 4 pulse wave voltage sources with a peak of 5V and a pe-

riod of 10ns. In like manner, we choose the highest total order p of 3 and randomly

picks 12 elements associated with uncertainties. This leads to 455 sets of random

variables for SCM and 91 for SSCM competitively.

Figure 5–7: Schematic of an eight-coupled MTL circuit with 4 pulse voltage sources
of 5V

Like the previous example, we start by comparing the mean, variance and pos-

sibility density function of all three methods. Figure 5–8 shows the comparison

between mean values of MCM, SCM and SSCM. Evidently, in the magnified plot,

MCM and SCM have almost the same results, and the simulated error of SSCM to
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MCM at time 10.4063ns is less than 1 × 10−5. The variance comparison is illus-

trated in Figure 5–9. As expected, all three methods have the same trend variation,

and the difference between SSCM and the other two are within 5×10−7, which can

be neglected.
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Figure 5–10 illustrates the probability density function at two specific time

points as observed. At the time 7.5ns and 13.125ns, the values of our SSCM

lies in the same higher or lower probabilities regions as MCM and SCM. Corre-

spondingly, a plot of 3 sigma limits is evaluated for further verification. Figure 5–11

shows the 3-sigma band of this example.
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Figure 5–10: Probability density function comparison of Example 2 at time 7.5ns
and 13.125ns with SSCM, SCM at p = 3 and N = 12 and MCM
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Figure 5–11: 3-Sigma limits of Example 2 with SSCM at p = 3 and N = 12

As with the first linear example, the circuit is evaluated with 100000 test sam-

ples but requires a longer time to converge than that taken for the previous one since

we increase the number of random variables and the complexity of the circuit itself.

SCM takes 52 mins and 15 secs to obtain the voltage outputs at 400 fixed time points.

Whereas, the time for SSCM to acquire the results with the same accuracy is 12 mins

and 20 secs. In other words, SSCM is 4.3 times faster than SCM in terms of this case.
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5.2 Exploration on Nonlinear Circuits

5.2.1 Example 3: Two 2 Coupled MTL Circuit with diode

The nonlinear circuit in Figure 5–12 mainly consists of two 2-coupled multi-

conductor transmission line, and the left one is attached with two diodes as the

nonlinear part. Analogously, we use a 5V pulse wave voltage source to excite the

circuit and evaluate the response at the output node. Following the same pattern,

the number of collocation points used by SCM is 165 based on the number of random

variables N of 8 and highest total order p of 3, while SSCM only takes 33 sets of

points, which is one-fifth of that.

Figure 5–12: Schematic of a two-coupled MTL circuit with a pulse voltage source of
5V

To begin with, we compare the mean, variance and possibility density function

of the three methods as the previous examples. The mean value comparison in

Figure 5–13 shows that SSCM has nearly the same trend variation as the other two

under the equivalent numerical level. Additionally, in the magnified plot, the error

between SSCM and MCM has a value of less than 2 × 10−6 at a randomly chosen

time point. Similarly, the difference of variance between SSCM and MCM is within

acceptable limits, as illustrated in Figure 5–14.
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Figure 5–13: Mean value comparison of Example 3 with SSCM, SCM at p = 3 and
N = 8 and MCM
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Figure 5–14: Variance comparison of Example 3 with SSCM, SCM at p = 3 and
N = 8 and MCM
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Figure 5–15 illustrates the probability density function of example 3 at two

different time points of 7.5ns and 11.25ns, respectively. We see that in the first

subplot, the voltages have a value close to zero because the circuit is at the delay stage

at time 7.5ns while the second one lies in the rising edge. Overall, SSCM still has
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Figure 5–15: Probability density function comparison of Example 3 at time 7.5ns
and 11.25ns with SSCM, SCM at p = 3 and N = 8 and MCM

the graphically indistinguishable probability distribution as the other two methods.
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Figure 5–16 gives the 3-sigma limits of example 3. Upon combining Figure 5–13

to 5–16, we see that our SSCM does not have any significant loss but achieves the

similar level of accuracy, proving the validity in terms of nonlinear circuits.
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Figure 5–16: 3-Sigma limits of Example 3 with SSCM at p = 3 and N = 8

As we mentioned previously in linear case, we used Parallel Computing Tool

integrated in MATLAB with a number of workers of 4, and this is also applied to

nonlinear circuits. Under this circumstances, the time taken for the SCM to converge

is 13 mins and 23 secs, which is 3.6 times slower than SSCM of 3 mins and 43 secs.
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CHAPTER 6
Conclusion and Future Work

To sum up, this thesis has proposed an efficient approach called Sensitivity Inte-

grated Stochastic Collocation method to solving the variability analysis of integrated

circuits. This is done by first generating sampling points with Gaussian Quadrature

rule and selecting a certain number of them depending on the number of random

variables and the threshold within the algorithm motioned in section 4.1.1, then con-

structing the new deterministic system with differentiation form of Polynomial Chaos

Expansion sequence. Once the responses of circuit sampling with these selected sets

of points have been simulated and concatenated with sensitivity at a specific node

with respect to all random variables in a set, we can readily solve for coefficients.

What makes our approach advantageous is that SSCM requires quite a few sam-

pling points compared to the stochastic collocation method or linear regression, 20

percent in a general way, that in turn ease the pressure on the difficulty of computa-

tion. Such saving on time consumption is not only achieved by using fewer sampling

points but also the re-usability of LU decomposition during circuit simulation. More

importantly, SSCM maintains the same accuracy as Monte Carlo and Stochastic Col-

location, as summarized in Table 6–1. The table shows that with promising accuracy,

SSCM has an evident superiority in terms of CPU cost, whether linear or nonlinear

circuits, averaging four times faster than SCM.

56



Table 6–1: Examples Testing Summary
Arguments Example 1 Example 2 Example 3
Number of Random Variables 10 12 8
Number of Sampling points(SSCM) 57 91 33
Number of Sampling points(SCM) 286 455 165
Highest Total Order 3 3 3
Disparity between MC and SSCM 2× 10−5 1× 10−5 2× 10−6

Simulation time(secs) 128 738 223
Times faster than SCM 4.9 4.3 3.6

As for future work, one interesting point is that we can introduce the concept of

Model Order Reduction(MOR) to our method. As we can imagine, with the growth

of signal speed and the shrinking feature sizes in digital VLSI circuits, the resulted

deterministic system dimension could be massive. Therefore, MOR can be used

here for replacing the original RLC-interconnect network with reduced-order models

to further reduce the computational complexity. Another intriguing path would be

applying Shooting Newton method to work on the periodic steady-state analysis,

which is an indispensable component of design process.
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