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Abstract 

Crop yield estimation and mapping are important tools that can help growers 

efficiently use their available resources and have access to detailed representations of 

their farm. Technical advancements in computer and machine vision have improved the 

detection, quality assessment and yield estimation processes for crops including apples, 

citrus, mangoes, maize, figs and many other fruits. However, similar methods capable of 

exporting a detailed yield map for vegetable crops have yet to be fully developed. A 

machine vision-based yield monitor was designed to perform identification, size 

categorization and continuous counting of shallot onions in-situ during the harvesting 

process. The system is composed of a video logger and a global navigation satellite 

system (GNSS), coupled with computer software developed in Python. Computer vision 

analysis is performed within the tractor itself while an RGB camera positioned directly 

above the harvesting conveyor collects real time video data of the crops under natural 

sunlight conditions. Vegetables are segmented using Watershed segmentation, detected 

on the conveyor and then classified by size. Results showed that the system was able to 

correctly detect 62.6% of onions in a subsample of the dataset and resulted in a linear 

regression with a coefficient of determination (R2) of 0.49 between true and estimated 

counts. The software was also evaluated on its ability to classify the onions into 3 size 

categories (small, medium and large). A total of 55.9% of 271 analyzed onions were 

correctly categorized, with the highest performance achieved in the large class (73.3%), 

followed by the small class (58.7%) and medium class (44.4%). Based on the obtained 

results, occasional occlusion of vegetables and inconsistent lighting conditions were the 

main factors that inhibited performance.  Finally, these geotagged images were used to 

map the size distribution of the shallot onions on a small section of the onion field. Although 

further enhancements are envisioned for the prototype system to improve overall detection 
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and size classification, its modular and novel design allows it to be used to map a selection 

of crops including carrots, shallot onions, Chinese radish and lettuce crops. The system 

has the potential to benefit many producers of small vegetable crops by providing them 

with useful harvest information in real time that can significantly improve current harvesting 

logistics.  

 

Keywords:  Precision agriculture; yield estimation; machine vision; watershed 

segmentation; shape detection; shallot onions; size estimation.   
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Résumé 

L'estimation et la cartographie du rendement des cultures sont des outils 

importants qui peuvent aider les producteurs agricoles. Ils améliorent la gestion de leurs 

ressources disponibles et donnent accès à des représentations détaillées de leur ferme. 

Le progrès technique en vision artificielle a amélioré le processus de détection, 

d’évaluation de la qualité et d’estimation du rendement des cultures, notamment pour les 

pommes, les agrumes, les mangues, le maïs, les figues et plusieurs autres fruits. Malgré 

cet avancement technologique, aucune méthode permettant d’exporter une carte détaillée 

du rendement des cultures de légumes n’a encore été pleinement développée. 

Dans ce projet, un capteur de rendement basé sur la vision artificielle a été conçu 

pour effectuer l'identification, la catégorisation par taille et le recensement en continu des 

échalotes françaises in situ pendant le processus de récolte. Le système est composé 

d’un enregistreur vidéo et d’un système de positionnement par satellites, le tout jumelé 

d’un logiciel informatique développé en Python. D’une part, l’analyse de la vision par 

ordinateur est effectuée dans le tracteur, tandis qu’une caméra RGB positionnée 

directement au-dessus du convoyeur récolte les données vidéo des cultures. Les images 

sont recueillies en temps réel, grâce à la lumière naturelle du soleil. L’analyse informatique 

permet d’identifier les légumes sur le convoyeur et de les classer par grandeur. 

Une méthode de segmentation par ligne de partage des eaux a été utilisée pour 

isoler les oignons dans les images. Dans un sous-échantillon de l’ensemble de données, 

le système était capable de détecter correctement 62,6% des oignons. Les résultats ont 

aussi montré que le système avait abouti à une régression linéaire avec un coefficient de 

détermination (R2) de 0,49 entre les quantités réelles et estimées de légumes.  Le logiciel 

a également été évalué sur sa capacité à classer les oignons en trois catégories de taille 

(petit, moyen et gros). Au total, 55,9% des 271 échalotes françaises analysées ont été 
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correctement classées. La meilleure prédiction a été obtenue pour la classe des gros 

oignons avec 73,3% des oignons correctement classifiés, suivi des petits (58,7%) et 

finalement des moyens (44,4%). D'après les résultats obtenus, l’obstruction occasionnelle 

de légumes et les conditions d’éclairage irréguliers ont été les principaux facteurs limitant 

la performance. 

Les images géomarquées ont été utilisées pour cartographier la distribution des 

oignons, en fonction de leur taille, sur une petite partie du champ de légumes. Bien que 

l’amélioration des dispositifs de détection et de classification par taille soient envisagées 

pour ce prototype, sa conception modulaire et innovante lui permet déjà d'être utilisé pour 

cartographier les cultures suivantes: carottes, échalotes, radis chinois et laitue. Le 

système pourrait bénéficier à de nombreux producteurs de petites cultures de légumes en 

leur fournissant des informations utiles sur les récoltes, en temps réel. Ces informations 

sont susceptibles d'améliorer considérablement la logistique des récoltes. 

 

Mots-clés:  Agriculture de précision; estimation du rendement; vision artificielle; 

segmentation par ligne des eaux; détection de forme; échalotes françaises; 

estimation de la taille.  
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Format of Thesis 

This dissertation is partially a reformatting of two conference papers that have 

been prepared for publication. Following the general introduction in Chapter 1 and the 

literature review in Chapter 2, Chapter 3 describes the development of a machine vision 

algorithm for shallot onion detection and the implementation of this algorithm in a system 

that performs yield mapping. Chapter 4 presents the results of a feasibility study as well 

as the results obtained from field testing. Following this, a discussion section critiques the 

findings of this research and offers future improvements. General conclusions (0), 

references and appendices of supplemental materials complete this thesis.  
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Chapter 1. Introduction 

  Yield Monitoring  

Throughout history, agriculture has remained one of the most important industries as it 

provides rich produce distributed in mass quantities. Traditionally, agricultural practices require 

only a few personnel and yet, manage to sustain an unimaginable number of people. Despite the 

continuous growth and industrialization of agriculture, farming practices have faced many 

challenges in recent years.  With the global population expected to reach 9 billion by 2050, the 

agricultural field will need to double its productivity to meet this ever-growing demand (United 

Nations Department of Economic and Social Affairs, 2017).  However, with weather becoming 

more unpredictable due to climate change, farmers need to consider more droughts, floods, 

temperature fluctuations and weather disasters, rendering this task of expansion increasingly 

more difficult.  

Precision agriculture (PA), or site-specific crop management (SSCM), is a farming 

management concept that relies on observation and sensing to include inter and intra-field 

variability in crops or pasture management practices  (McBratney, Whelan, & Ancev, 2005). It 

aims to develop decision support systems that improve farm management by increasing the value 

of returns while decreasing input costs. This can be done with the use of data mining systems 

that gather detailed information to develop software capable of facilitating management practices. 

According to the International Food Policy Research Institute (IFPRI), the adoption of PA practices 

has been identified as one of the main drivers of yield increase, while promoting the sustainable 

use of depleting resources, such as water and arable land (Aisenberg, 2017). Technological 

advancements in sensing, computing power and robotic systems are gradually leading to potential 

increases in productivity for commercial farmers, who are now turning to new, innovative tools 
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and methods to enhance their current practices while making them more precise, less wasteful 

and more effective.   

More specifically, crop yield estimation and mapping are important PA tools that can help 

growers efficiently keep track of their available resources and have access to detailed 

representations of their farm. Accurate yield estimation allows growers to efficiently manage their 

harvest logistics, crop storage and sales, and account for losses in a timely manner (Nuske, et 

al., 2014). Early and accurate predictions are also a key factor for market planning and trade 

(Bargoti & Underwood, 2017; Cheng, Damerow, Sun, & Blanke, 2017).  

However, commercial PA techniques for specialty crops such as fruits and vegetables, 

including the existence of yield monitoring systems, have not been developed to their full potential. 

This is mainly due to the large diversity in harvesting methods for specialty crops and those grown 

for smaller market as compared to row crops. Currently, yield estimation for specialty crops is 

often done by tedious manual sampling methods which are labor intensive, long and costly (Dorj, 

Lee, & Yun, 2017; Nuske et al., 2014). Other methods rely heavily on imprecise historical or 

empirical data which is then extrapolated (Cheng et al., 2017). Moreover, these calculations and 

measurements performed by humans are often prone to bias and sparsity leading to false 

predictions (Bargoti & Underwood, 2017). The adoption of automatic PA techniques could 

substantially benefit specialty crops. This is because in comparison to field crops such as cereals, 

cotton, hay and grain, specialty crops often require more resources and may be more sensitive 

to sudden changes in growth conditions. Specialty crops are known to produce high value 

products, and the development of accurate yield monitoring systems would help farmers keep 

better track of crop quality and reduce their operating costs by adjusting their thinning practices 

and the size of the harvest labor force (Patel, Jain, & Joshi, 2012). 
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 Computer Vision  

Among the numerous sensing techniques used in PA, digital imaging is one which has 

been adopted in various applications such as robotic harvesting, weed control, phenotyping, 

pruning, seeding, spraying, thinning, sorting and packaging (Kapach, Barnea, Mairon, Edan, & 

Ben-Shahar, 2012). In each of these applications, computational methods extract useful 

information from digital images or videos with the help of computer vision (CV), allowing for the 

automation of the tasks described previously. Moreover, these automatic tasks can be 

accomplished in a non-destructive manner which is important for high value specialty crops 

(Automated Imaging Association, 2014). More and more, CV is being employed as a substitute 

for traditional visual observations, such as counting objects along a conveyor, detecting serial 

numbers, searching for physical defects and sorting or grading. As a result, there has been a 

significant reduction in labor requirements and processing time and yet, there is now better 

consistency and uniformity in measurements (Sun, 2008). Recent advances in robotics and 

automation allow the gathering of large amounts of visual data from different methods, including 

simple camera systems (Blok, Barth, & Berg, 2016; Payne, Walsh, Subedi, & Jarvis, 2013; Pothen 

& Nuske, 2016), unmanned ground vehicles (UGV’s) (Wang, Nuske, Bergerman, & Singh, 2012) 

or unmanned aerial vehicles (UAV’s) equipped with color cameras that capture images of even 

very large farms (Telledis & Levin, 2014). This data can also benefit from high spatial and temporal 

resolution, which can be condensed and visualized using geospatial mapping software such as 

ArcGIS1. Image processing techniques can be used to analyze this information and extract key 

properties of the farm such as health, location of crops, spatial distribution and alternatively crop 

yield. 

                                                

1 Mention of a trade name, proprietary product, or company name is for presentation clarity and does not 
imply endorsement by the authors, or McGill University, nor does it imply exclusion of other products that 
may also be suitable. 



4 

 Research Objective   

This study focuses primarily on the use of computer and machine vision (MV) to perform 

detection, crop-yield estimation and yield mapping for the French grey shallot (Allium oschaninii).  

Shallot onions grow in clusters, where bulbs rest on the surface of the soil (Figure 1.1b). They 

are harvested uniformly using a windrower and a trailer. A conveyor belt (Figure 1.1a) collects 

the onions from the ground using a paddle, and the onions are then deposited in a trailer which 

stores them during harvest. Spatial variabilities in soil type, soil fertility and other cropping 

conditions contribute to disparity in onion size, and onion size is an important limiting factor when 

determining the percentage of harvest destined to external suppliers. Quality assessment and 

sorting of shallots is traditionally done by human visual inspection, and usually only after 

harvesting is fully completed. The research objective of this study was to develop a new yield 

mapping technology for specialty crops capable of performing quantity and quality assessment. 

Specific objectives were to 1) develop a low-cost prototype system that could be easily integrated 

in agricultural harvesting practices and 2) to perform yield mapping of crop size distribution to 

allow better management practices on the farm.  

 

a) b) 

Figure 1.1. Shallot onion harvesting machine with trailer (a) and onion field (b). 
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Chapter 2. Literature Review 

 Digital Imagery  

Digital imaging or digital image acquisition is a process whereby an image in the physical 

world is captured by a sensor, such as a camera, and then quantized into a discrete data structure 

capable of being understood by a computer. Image digitization corresponds to sampling color and 

intensity values into a matrix form with several rows (M) and columns (N). The finer the sampling 

(i.e. the larger the values of M and N), the more detailed the approximation of the analog image 

will be. Each individual sampling point is called a pixel, and M and N indicate the dimensions of 

the overall pixel grid (Sonka, Hlavac, & Boyle, 2015). A grayscale image consists of one single 

channel where pixel intensities vary from a value of 0 (indicating the complete absence of light) 

to 255 (full presence of light). If an image is presented in color, it will have multiple superimposed 

channels. The most common format for color images is the Red-Green-Blue (RGB) format where 

an image is decomposed into three channels where each one is equal to one of the primary colors 

of light (Sonka et al., 2015). 

2.1.1. Computer Vision and Machine Vision 

CV is a process where computational methods are used to recreate the effect of human 

vision, aiding computers to understand and perceive images. This is done through the creation of 

mathematical models that relate the digitized input image to phenomena in the physical world. 

These models are created using geometry, physics, statistics and learning theory (Huang, 1996; 

Sonka et al., 2015). Machine vision (MV) uses CV technology and methods to create systems 

which “see” steps along a production line. A MV system must be comprised of standard 

components: a camera, computer software for the analysis and processing of images, a pattern 

recognition module and an output component (monitor, robotic arm, etc.).  A machine vision 
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system uses a camera to first view an image or video stream. CV algorithms then process the 

image and extract valuable data from it, and finally, this data is used to control and activate other 

components of the system.  A MV system cannot function without the use of computer software, 

differing from CV which can be used alone, and includes many technologies, software and 

hardware products, integrated systems, actions, procedures and expertise (Graves & Batchelor, 

2003; Sonka et al., 2015). It is important to understand the difference between these two 

disciplines as they will be widely used throughout the redaction of this thesis.   

2.1.2. Camera Systems  

Some of the earliest CV studies made use of black and white (also referred to as 

monochrome) cameras to perform fruit detection (Gongal, Amatya, Karkee, Zhang, & Lewis, 

2015). Using a combination of geometric features, texture and reflectance, it was possible to 

identify fruits such as melons or green immature oranges with relatively high accuracy (75-88.0%) 

(see Appendix D for definition of performance metrics) using these simple systems (Cardenas-

Weber, Hetzroni, & Miles, 1991; Dobrusin, Edan, Grinshpun, & Peiper, 1992; Edan, Rogozin, 

Flash, & Miles, 2000; Plá, Juste, & Ferri, 1993). However, after further analysis, it was noted that 

with additional sensor data results could be improved further by adding another layer of data 

beyond intensity, such as a color filter to amplify the contrast between a crop and the background. 

Later studies integrated color cameras as the primary sensor. Color cameras with either 

CCDs (charged-couple devices) or CMOS (complementary metal-oxide semiconductors) (Figure 

2.1) have been widely used in research geared towards robotics and the automation of agricultural 

practices and operations (Bac, Van Henten, Hemming, & Edan, 2014; Gongal, Amatya, Karkee, 

Zhang, & Lewis, 2015; Mollazade, Omida, & Arefi, 2012). CCD devices convert light into an 

electrical charge which must be transported across the chip without distorting the signal using a 

special manufacturing process. An analog to digital converter translates every pixel value to a 
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digital value. These sensors can provide very high-quality images which are less susceptible to 

noise. In CMOS cameras, light is converted to electrical signals using electronics which are 

directly integrated on the surface of the sensor: Several transistors located at every pixel move 

the electrical charge using a direct wire connection, rendering data transfer more rapid. CMOS 

can also benefit from a higher dynamic range, allowing them to capture both high-lit regions and 

shadowed areas in the same image. Moreover, these sensors are very inexpensive because 

unlike CCD sensors, they are manufactured using traditional processes.  CCDs are used in 

applications that focus primarily on capturing high-quality images with a high number of pixels 

and excellent light sensitivity.  

 

Both sensors are equipped with a Bayer filter, which allows for the capture of three channel 

RGB images. Therefore, color cameras provide additional layers of information when compared 

to monochrome cameras. Moreover, in most cases of fruit detection, color is one of the most 

prominent features of interest when estimating yield in canopies (Gongal et al., 2015). Color 

segmentation is also possible when using color images, and it can be performed in different color 

spaces including the RGB and Hue-Saturation-Value (HSV) color spaces (Gongal et al., 2016; 

Hannan, Burks, & Bulanon, 2009; Linker, Cohen, & Naor, 2012; Wang et al., 2012). However, 

Figure 2.1. Images of a CCD sensor (a) (Ahmed2IQ, 2009) and a CMOS sensor (b) 
(Nyman, 2012).   

a) b) 
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color sensing does come with disadvantages, the most predominant being its high sensitivity to 

changes in lighting and motion. This is especially true in outdoor conditions, where natural light 

may exhibit high variance in intensity on both the temporal and spatial scale. Despite this, existing 

methods have been developed that manage to detect fruit, such as oranges and mangoes in 

natural lighting conditions with accuracies within 74% and 90% (Hannan et al., 2009; Payne et 

al., 2013; Sengupta & Lee, 2014).  

Spectral cameras are another type of sensor which collect and process spectral 

information, capturing objects of interest by analyzing their reflectance properties at different 

wavelengths. This type of sensing has proved to be efficient predominantly when the color of the 

fruit or vegetable of interest is like that of the surrounding background (Bulanan, Burks, & 

Alchanatis, 2010; Wang & Li, 2015).  Similarly, thermal cameras can also be used to differentiate 

objects that have a similar color range as their surroundings. These sensors make use of the 

infrared (IR) energy emitted by an object, which is also known as its heat signature. As an object 

increases in temperature, it emits larger amounts of radiation, thus, simultaneously increasing its 

heat signature. A thermal camera can create an electronic image by detecting small temperature 

differences in an object and registering these as a spatial array. This is possible because an 

object’s temperature will rarely be the same as that of the objects around it. A study performed 

by Stajnko, Lakota, & Hočevar (2004) used thermal imaging to estimate the number and diameter 

of apple fruits in an orchard. The algorithm was able to correctly determine the apple fruit count 

with an accuracy between 83% and 88%, and the R2 values between the measured diameter of 

the apples and the diameter determined by the algorithm were between 0.68 and 0.88.  

Stereo vision systems are another alternative for object detection in 3-dimensional (3D) 

space. These systems consist of two or more cameras separated by a small distance, mimicking 

binocular human vision. Images of the same scene viewed from different angles are captured and 

then matched to estimate the displacement (also known as disparity) of an object. Researchers 
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have used this method to both identify and locate objects such as apple fruit in a 3D space for 

applications of robotic harvesting and high-resolution yield estimation and mapping (Mirbod, 

Yoder, & Nuske, 2016; Wang et al., 2012). However, stereo vision is typically not favored due to 

the method’s high complexity and long computation time (Hannan & Burks, 2004). Nonetheless, 

recent advances in hardware development have contributed to an increase in stereo-vision based 

applications. 

 Applications of Computer Vision in Agriculture  

The use of CV and MV has helped, through the automation of agricultural processes, to 

increase productivity, reduce production costs, monitor and increase yield quality and reduce the 

need for manual labour (Kapach et al., 2012; Sun, 2008). In earlier studies, MV was predominantly 

applied in production lines to automate processes using image processing techniques and was 

considered relatively easy to integrate in the various production and handling procedures of fruits 

and vegetables. A typical machine vision system is composed of two primary modules: one for 

image processing and another for pattern recognition. The image processing module analyzes 

the composition of the image and proceeds by passing it to a pattern recognizer. This second 

module classifies the image using one or multiple pre-defined quality categories that correspond 

with the desired patterns within the image. These recognizable patterns, also known as features, 

may represent blobs, edges, corners or lines (Al-Ohali, 2011; Stanhope, 2016).   

Many MV algorithms have been developed for the classification of vegetables and fruits 

on conveyor belts or similar apparatuses (Benalia, et al., 2016; Mizushima & Renfu, 2013; Wang 

& Li, 2015). A first example of this would be the algorithm for automatic segmentation of color 

images for apple sorting and grading developed by Akira Mizushima and Renfu Lu (2013). Using 

a support vector machine (SVM) model and a set of training examples, an algorithm was 

constructed to define the boundary between the pixel spaces corresponding to fruit and those 
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corresponding to background. The contours of the apples were extracted using binary images 

that mapped these two distinct spaces. The SVM model, combined with the procedures of Otsu’s 

method (1979), performed the segmentation process with an average segmentation error 

(percentage of mislabeled pixels over correctly labeled pixels) between 3.31% and 25.5% for 

several types of red apples. A similar methodology was applied by Wang and Li (2015) when 

developing a multimodal machine vision system for the quality inspection of onions. Their results 

showed that 88.9% of healthy and defective onions were identified correctly. Similarly, Al-Ohali 

(2011) developed a CV-based system for sorting and grading dates on a conveyor belt. After 

determining the key external features of good and substandard quality dates, the system 

classified the dates into three grade categories using RBG images, where grade one dates 

represented fruits of highest quality. Various mathematical algorithms were discussed to perform 

the MV process known as feature description, where key features such as flabbiness, shape, size 

and color intensity are all expressed using mathematical equations. This is done to convert 

physical and visual properties into numerical constants and coefficients that could be used for 

quality assessment (Figure 2.2). Although the system developed by Al-Ohali was capable of 

sorting approximately 80% of the grade 2 dates correctly, this percentage was lower for grade 1 

and grade 3 fruit. Misclassifications arose from the system occasionally miscalculating size, shape 

and color distribution due to the overwhelming number of input features. It was therefore 

concluded that using less input features yielded better quality results. In more recent models, 

features are learned systematically with the use of neural networks and large amounts of data 

(Kamilaris & Prenafeta-Boldu, 2018). Other later applications include methods for identifying 

crops in the field. Blok et al. (2016) developed a MV algorithm for identifying broccoli heads on a 

farm, which could eventually be integrated into a fully autonomous selective harvesting process. 

A texture and color-based segmentation was used to isolate the heads from the background. 

Results from the automatic segmentation method were compared with those obtained from two 

human experts by comparing the spatial overlap of the predicted and true broccoli head regions.  
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The precision score of the segmentation was 99.5% and overall accuracy of the image 

segmentation was 92.4%. Other studies include work by Kondo et al. (2009), who developed a 

machine vision system for autonomous harvesting of tomato fruit clusters using stereo images of 

tomatoes in a greenhouse. The images were converted to the Hue-Saturation-Intensity (HSI) color 

space to generate chromacity distribution plots of H-versus-I. These plots were used to cluster 

fruit region properties and develop a classifier. The research results showed a 73% success rate 

in locating the stems of clusters. 

 Machine Vision for Yield Determination   

Major applications of CV in agriculture have been developed in fruit detection, where the 

goal is to identify individual fruits, segment them from scenes with branches, foliage, sky, and 

localize them in space for yield estimation or as an initial step to the development of robotic 

harvesting systems (Kapach et al., 2012).  Many of these applications are methods developed for 

counting apple fruits using canopy images (Gongal et al., 2015; Linker et al., 2012; Wang et al., 

2012; Zhou, Damerow, Sun, & Blanke, 2012). Stajnko et al (2004) developed a method for 

detecting apple fruit using thermal imaging. Images were collected at five time periods (June to 

August) to model apple growth over the season. Images were taken late at night to capture a 

more defined temperature gradient between apple fruits and foliage. Coefficients of determination 

Figure 2.2. An example of feature intensification using a date fruit. Original image (a), 
thresholded image (b) and edge image (c). Reprinted from Al-Ohali (2011). 

 

a) b) c) 



12 

(R2) between manually detected apples and the estimated number of apples ranged from 0.83 to 

0.88. It was also noted that more mature apples were easier to detect due to their ability to radiate 

more heat. Wang et al. (2012) created a similar stereo vision-based system using a two-camera 

stereo rig. This system was stationed on an autonomous orchard vehicle designed to work at 

night with artificial lighting. It converted apples to the HSV color space, and then used color 

segmentation and specular reflection to separate both red and green apples from foliage. The 

error obtained for crop yield estimation was -3.2% for red apple trees, and 1.2% in green apple 

trees with additional calibration due to significant fruit occlusion. Gongal et al. (2016) later 

developed an over-the-row machine vision system using both an RGB and stereo camera which 

captured dual images from both sides of the plant canopy and localized them in space. The 

experiment was performed in a controlled environment using a covered system with artificial 

lighting and a tunnel structure. Using image processing and clustering, apples were identified in 

the images based on shape and color with an accuracy of 78.9%. More state-of-the-art methods 

(Bargoti & Underwood, 2017) have adapted machine learning techniques, such as Multi-Layered 

Perceptrons (MLPs) and Convolutional Neural Networks (CNNs), to perform pixel level fruit-

segmentation under natural sunlight in orchards. The binary images were processed using both 

an image segmentation based on a Watershed Transform (WST) and a Circle Hough Transform 

(CHT). The watershed algorithm was able to detect apples with an R2 value of 0.83 and output an 

apple yield map for an orchard block using an on-board Novatel SPAN Global Positioning Inertial 

Navigation System (GPS/INS) recording the vehicle position and pose with every image taken 

(Figure 2.3).   
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Studies have also focused on the identification of citrus fruits in similar conditions (Dorj et 

al., 2017; Sengupta & Lee, 2014). In these two studies, computer vision algorithms were 

developed to count citrus fruits on trees using image processing and estimate early overall yield. 

Sengupta and Lee (2014) used shape and texture analysis to detect immature green citrus fruit 

in a canopy. Texture classification was performed using a Support Vector Machine (SVM), Canny 

edge detection and a graph-based connect component algorithm and Hough line detection. The 

algorithm accurately detected 80.4% of citrus fruit.  The study by Dorj et al. (2017) was based 

primarily on the color features of orange fruits. The algorithm consisted of converting the images 

to the HSV color space, thresholding, orange color detection, removal of noise using a median 

filter, watershed segmentation and counting. Overall, this algorithm obtained a high correlation 

(R2 = 0.93) between the predicted count of oranges and human observation.   

Figure 2.3. Apple yield map of an orchard block created using a computer vision algorithm. 
Reprinted from Bargoti & Underwood (2017). See electronic version for colours. 

Individually geo-referenced images are segmented, and fruit detection is performed to obtain a fruit 
count per image (b).  Examples of a high yield (a) and low yield (c) image are pictured. 

 

a) b) c) 
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 Challenges of Machine Vision Applications  

Although CV systems have proven to have high detection rates and show promising 

results, the presence of many external factors in farm image data (variations due to illuminations, 

occlusions, clustering, etc.) has often negatively influenced the results. Therefore, it is crucial that 

algorithms remain invariant to these factors to provide a reliable outcome (Bargoti & Underwood, 

2017). Moreover, farm image data is prone to large intra-class variations primarily due to variable 

illumination conditions, occlusion by other crops or foliage, clustering of crops, camera view-point, 

and seasonal maturity levels leading to crops of varying size, shape or color (Bargoti & 

Underwood, 2017; Hannan et al., 2009; Sengupta & Lee, 2014). Changes in object reflectance 

can cause object detection to be somewhat unreliable and may lead to incorrect or incomplete 

segmentation due to a non-uniform distribution of light intensity (Gongal et al., 2016). This 

problem can be addressed by creating a controlled, uniform lightning environment from which 

visual data is taken. Examples of controlled lighting environments include an over the row platform 

with integrated LED lights (Gongal, et al., 2016), a wooden box with a painted black interior (Al-

Ohali, 2011) or simply performing the experiment at nightfall (Nuske, et al., 2014; Wang et al., 

2012), Other alternative solutions include using additional cues such as a perimeter-based 

detection method on top of basic color detection (Hannan et al., 2009; Payne et al., 2013) when 

variable lighting conditions are unavoidable. 

Other existing challenges are the multiple detection of the same object within sequential 

images, or occlusion by other objects or fruits which can lead to miscounting in yield calculation 

applications. Gongal et al. (2016) used a 2D and 3D imaging approach where apples identified in 

multiple images were mapped together in a common coordinate system that correctly identified 

and removed duplicates. The apples in the orchard were represented in a 3-dimensional space 

where apples registered with the same X, Y and Z coordinates were considered as one fruit. 

Wang et al. (2012) developed a similar software that calculated the distance between every two 



15 

apples, and then merged the apples as one whenever this distance was below a given threshold 

(Figure 2.4). Hannan et al. (2009) used a centroid-based detection method to identify fruit clusters 

as a single fruit, and a perimeter-based detection method to locate the individual fruits which had 

a success rate of 93% and a false detection rate of 4%.  

  

 Summary of Literature Review  

Extensive work has been done to perform the detection of fruits in orchard environments 

such as for apples (Gongal, et al., 2016; Linker et al., 2012; Wang et al., 2012; Zhou et al., 2012), 

oranges (Dorj et al., 2017; Hannan et al., 2009), mangoes (Payne et al., 2013), and berries 

(Nuske, et al., 2014; Pothen & Nuske, 2016). Sorting processes have also been developed for 

fruits on conveyor systems (Al-Ohali, 2011; Sofu, Erb, Kayacan, & Cetis, 2016); however, none 

have attempted to develop a system directly linked to industrial harvesters that can generate a 

yield map. The initiative to develop better automated crop-estimation systems for vegetables, 

such as a machine vision-based yield monitor for vegetable crops, is one that has yet to reach its 

full potential. For this research project, applications of CV and MV are explored to develop a 

system for the yield mapping and size characterization of shallot onions. Size needed to be 

determined in terms of a standard 2D metric, and localization in space or even within the image 

Figure 2.4. Result of splitting a region representing two different apples. 
Reprinted from Wang et al. (2012). 
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was not essential. Therefore, after careful analysis, an RGB CMOS high-resolution camera was 

chosen as the final sensor for this application. Size is an important property which can be 

described mathematically by a selection of parameters such as volume, weight, length and 

diameter (Moreda, Ortiz-Cañavate, García-Ramos, & Ruiz-Altisent, 2009). Many CV and MV 

methods have been proposed to non-destructively measure the size of various specialty crops 

including but not limited to apple, berries, citrus and dates (Al-Ohali, 2011; Gongal et al., 2016; 

Mirbod et al.,  2016; Sengupta & Lee, 2014). Although studies have been performed for quality 

inspection of sweet onions (Shahin, Tollner, Gitaitis, Sumner, & Maw, 2002; Wang & Li, 2014; 

Wang & Li, 2015), similar work facilitating the yield estimation of shallots remains scarce. 

Therefore, an over-the-row MV system was created to accelerate the yield estimation process by 

running visual inspection on the go during harvesting and perform real-time characterization of 

crop quality. 
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Chapter 3. Materials and Methods 

 Feasibility Study   

A feasibility study was performed to determine whether a suitable algorithm for shallot 

onion detection could be developed. This study consisted of mounting an RGB camera on the 

conveyor to capture video data of the harvesting process. This video data would then be used to 

create a software that would be integrated in the final yield mapping system. The following 

sections describe the key components and processes that were involved during the feasibility 

study.  

3.1.1. Image Acquisition  

A Nikon KeyMission 170 action camera (Nikon, Minato, Tokyo, Japan) was mounted on 

each individual harvester using a magnetic mounting base which could easily be attached to any 

of the existing harvesting machinery (Figure 3.1). The KeyMission was chosen due to its ability 

to provide high resolution images and video, as well as its resistance to changes in outdoor 

conditions such as wind, dust and even rain (Balletti et al., 2014). These traits were essential 

given the nature of this project. 

Figure 3.1. Nikon KeyMission 170 action camera (Nikon, 2018). 
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The data collected included videos of the harvesting process that were approximately 6 to 

8 min long. This corresponded to the total time it took to harvest a single crop row. During 

operation on the field, the video resolution was set to 1920 x 1080 pixels and a frame rate of 60 

frames/s. Multiple positions for the camera were tested to find a location where an optimal view 

of the vegetable crops would be attained. For the view to be considered optimal, the image 

provided by the camera had to be clear and chances of miscounted vegetables needed to be low. 

Figure 3.2 shows a representation of the multiple camera positions that were considered for the 

system’s operation and the final position chosen.  

 

3.1.2. Software 

Software Structure  

One of the main challenges of this study was to select appropriate, efficient and fast 

methods for detecting, intensifying and classifying the characteristic traits of the onion bulbs. A 

series of image-preprocessing steps were performed to extract regions of similar texture and 

identify them as desirable objects within the image. Figure 3.3 shows a flow diagram of the basic 

structure of the software and the aspects of the algorithm that were developed during the 

feasibility study. 

 

Figure 3.2. Three views considered for the placement of the camera. 

The first (a) is a direct top view of the conveyor belt.  The second (b) is a side view with the camera mounted 
on one of the conveyor’s sides, and the third (c) is an interior view of the onions just before they are placed 
on the conveyor belt. The direct top view was chosen for it provided the clearest image with the least amount 
of shape distortion due to projection.  

a) b) c) 
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Figure 3.3. Software Flow Diagram. See electronic version for colors. 
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Initial Algorithm   

Segmentation is a process where regions of interest are extracted from an image by 

separating the foreground objects (shallot onions) from the background (conveyor). Accurate 

segmentation is crucial since it is the starting point for the succeeding steps such as size 

classification and counting (Bargoti & Underwood, 2017; Mizushima & Renfu, 2013). Challenges 

including highly variable illumination and shadows can significantly affect the segmentation 

process and make it ineffective. Performing data collection in a controlled lighting environment 

(i.e. nightfall) can help achieve better segmentation results (Pothen & Nuske, 2016; Nuske, et al., 

2014; Wang et al., 2012). However, in practice, onion harvesting usually occurs in natural daylight 

and incorporating cameras on tractors will be easier for growers if large experiments are 

performed during normal operation times and conditions (Bargoti & Underwood, 2017). 

Digital cameras typically capture images in the RGB format, where each channel 

corresponds to the intensity of the three primary colors of light (red, green and blue). All colors 

are then created by the additive reproduction process of various amounts of red, green and blue, 

and brightness values ranging from 0 to 255 for each color.  For example, red, green and blue 

are defined by the vectors (255, 0, 0), (0, 255, 0), and (0, 0, 255), respectively. White can be 

represented by combining all three components at their highest intensity (255, 255, 255), and 

black is the absence of all colors in each channel (0, 0, 0).  Figure 3.4a illustrates a model of the 

cartesian RGB color space. The RGB model is not the most intuitive for discerning color from a 

perceptual point of view as it is difficult to extract characteristics such as lightness and intensity 

(Gongal et al., 2015; Wang et al., 2012). Therefore, images are converted to the HSV color space 

illustrated in Figure 3.4b using the following conversion formulae (Nishad & Chezian, 2013).   
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• The hue (H) of a color is the pure color we are examining. All tones and shades of a given 

color correspond to the same unique hue. Hues are defined using an angle ranging 

between 0 and 360 along the horizontal cross-section of the cylinder. 

• The saturation (S) of a color describes how much white is present within the color. A fully 

saturated color is strong in pigment. For example, tints of red have saturations ranging 

between 0 and less than 1, while white has a saturation of 0.  

• The value (V) of a color describes its lightness, or how much black is present within the 

color. A value of 0 would be black, where lightness increases gradually as value 

approaches 1. 

To convert an RGB color into the HSV space, we must first determine the maximum (𝑀) and 

minimum (𝑚) intensities of each pixel, and the difference between them, also known as the 

chroma (∆). 

𝑀 = max(𝑅, 𝐺, 𝐵) 

                                                                                 𝑚 = 𝑚𝑖𝑛(𝑅, 𝐺, 𝐵)                                                        (3.1) 

∆ = 𝑀 −𝑚  

Figure 3.4. RBG (a) and HSV (b) color models (Datumizer, 2010a; 2010b). See 
electronic version for colors.  
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𝐻 is represented by a piecewise function where the chromatic intensity is determined by 

a two-color difference component. The function relies on the value of 𝑀, which gives the angular 

position of the color on the cylinder.  The hue is then normalized by adding a value of either 0, 2 

or 4. The result 𝐻’ is then measured in degrees and has a value ranging from 0° to 360° (Agoston, 

2005). 

                                                  𝐻′ =

{
 
 

 
 
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑖𝑓 ∆= 0
𝐺−𝐵

∆
 𝑚𝑜𝑑6, 𝑖𝑓 𝑀 = 𝑅

𝐵−𝑅 

∆
+ 2, 𝑖𝑓 𝑀 = 𝐺

𝑅−𝐺

∆
+ 4, 𝑖𝑓 𝑀 = 𝐵

                                                                   (3.2) 

𝐻 = 60° × 𝐻′ 

𝑉 is derived from the maximum colour component, 𝑀. 

                                                                                       𝑉 = 𝑀                                                                      (3.3) 

Finally, to determine 𝑆, we divide ∆ by 𝑀. 

                                                          𝑆 = {
0,  𝑖𝑓 𝑉 = 0

 
 
∆

𝑀
,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                           (3.4)       

The color indices of the HSV space have proven to be more robust against multiple 

external factors, such as varying lighting conditions. Standard indices such as HSV and 

normalized RGB have also been used successfully for plant segmentation (Golzarian et al., 2012). 

These color indices were obtained through experimentation with images from the test videos. 

Based on the preliminary analysis, the best HSV pixels ranges for shallot onions were H[0:46], 

S[40:180], and V[40:255].  The computer code related to this section can be found in Appendix 

A-1.   

Lastly, two morphological operations were applied using image filters. The first is an 

erosion operation, which is done to eliminate unwanted boundary pixels or protrusions from the 
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objects. The second operation is dilation, which enlarges any objects in the image and fills small 

holes within them. Object pixels in the original image that form a region defined as 𝑅 are eroded 

by an operator 𝐴, producing a smaller region known as 𝑅’ in the new image. This operation is 

often represented as:  

𝑅’ =  𝑅 𝜃 𝐴                                                                                    (3.5) 

Where the symbol θ is read as “eroded by”. The matrix operator A can have any shape, 

but typically symmetric erosion operators are most common. A single erosion that is followed by 

a single dilation by the same 𝐴 is called an opening, and a dilation followed by an erosion by the 

same operator is called a closing (Gose et al., 1996). These operations were applied using 

OpenCV functions and an elliptic structuring kernel (12 x 12 pixels) known as 𝐴, adapting the 

process for objects having more circularity. Following this, the image was then partitioned into 

various segments corresponding to either a vegetable region or the background. Built-in OpenCV 

functions were used to detect the blobs within the image and determine properties such as pixel 

area, the diameter and position of the centroid for each blob. 

3.1.3. Distortion Correction  

Although the KeyMission provided a very high-resolution image, images displayed a large 

amount of distortion, a phenomenon where lines which are straight in the real-world deviate from 

their rectilinear projections in the image (Figure 3.5). This effect is due to the wide-angle lens of 

the action camera which is designed to have a large field of view despite its small focal length. 

The most predominant form of distortion observed was radially symmetric distortion or barrel 

distortion. This distortion had to be corrected to extract quantitative measurements that 

corresponded to real-world dimensions (Balletti et al., 2014). Correction was done using distortion 

calibration methods in CV libraries such as OpenCV. A camera calibration process was performed 

with a total of 25 pictures of a checkerboard pattern (13” x 9”) located at multiple positions within 
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the camera’s field of view to estimate the intrinsic parameters of the camera. These parameters 

included the focal length of the lens (Fx, Fy), the coordinates of the center of projection of the 

image (Cx, Cy), and the radial lens distortion coefficients (K1, K2, K3, K4, K5) which are all used to 

create a distortion model (Balletti et al., 2014).  

  

Table 3.1 shows the intrinsic camera parameters obtained for the KeyMission camera 

during the calibration process. The average reprojection error in pixels was used to estimate the 

accuracy of the calibration process and give an estimation of the precision of the calculated 

parameters. The reprojection error should ideally by as close to zero as possible (Balletti et al., 

2014). For this set of parameters, the average reprojection error for the set of calibration images 

was estimated at 0.046 pixels. An undistorted image from the data set is shown in Figure 3.6. 

Table 3.1.  Intrinsic camera parameters of the Nikon KeyMission 170. 

Focal Length Principal Point Distortion Coefficients 

Fx Fy Cx Cy K1 K2 K3 K4 K5 

801.2 797.1 955.5 563.4 -3.006E-01 9.924E-02 -2.676E-03 2.766E-04 -1.586E-02 

Figure 3.5. Illustration of several types of radial lens distortion (OpenCV Documentation, 2018). 

Figure 3.5. shows an undistorted image (a), and two common types of radial distortion: barrel distortion (b) 
which occurs typically then K1 > 0, and pincushion distortion (c) when K1 < 0.  

 

a) b) c) 
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3.1.4. Conveyor Speed Calculation 

The speed of the conveyor was calculated by using the distance travelled by one of the 

conveyor paddles over time. The distance between two adjacent paddles was measured to be 

33.0 cm, and the total time calculated for 20 paddles to be observed was equal to approximately 

9 s. The paddle and conveyor speed were then found to be 0.711 m/s.   

3.1.5. Processing Unit 

For the feasibility study, all computer processing was done on a Lenovo Flex 4 laptop 

computer (Lenovo Ltd, Quarry Bay, Hong Kong).  Image processing and development of the 

detection algorithm were performed using the Python (version 3.5.2) coding language (Python 

Software Foundation, Wilmington, Delaware, USA) and the OpenCV (version 3.2.0) libraries 

(Itseez, Inc., San Francisco, California, USA).  The initial algorithm was designed to run on a 64-

bit PC with an Intel® Core™ i7-7500 CPU processor (Intel, Santa Clara, California, USA), with a 

2.70 GHz clock speed and 8GB of RAM. 

 

Figure 3.6. The distorted image (a) from the Nikon KeyMission 170 camera and the 
same image that has been undistorted (b). The undistorted image was created using the 

remapping function of OpenCV. 

a) b) 
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   Prototype System Design  

3.2.1. System Components  

 Development of the system began in the winter of 2017, and since then, there have been 

continuous improvements over a two-year period. Two main versions of the software have been 

developed: the first relying solely on video data to recognize onions in images, while the second 

has an integrated to enable yield mapping along with image analysis. The original concept of the 

system with all its components is illustrated in Figure 3.7. A camera would continuously record 

data of the shallot onion crops during harvesting and send each image to a computer software 

capable of counting the total number of vegetables and finally classify them by size. This system 

would allow the creation of a layered yield map showing the size distribution of the onions across 

a field. A webcam was used instead of an action camera to allow for easier flow of images directly 

to the software. 

Figure 3.7. Diagram of the machine vision based yield mapping system. 

The camera records continuous video of the crops being collected by the harvester. Each frame is coupled 
with a location tag given by the GPS receiver. The data is analyzed using a computer vision software and 
exports a yield map showing the size distribution of the crops.   
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3.2.2. Mounting Bracket Design  

A customized bracket (Figure 3.8) provided a vertical camera orientation, capturing an 

image where the camera is facing downwards and directly on the conveyor. The bracket was 

positioned at the end of the harvester’s conveyor to help reduce the amount of onions falling 

backwards and being detected more than once by the algorithm. An on-board positioning system 

provided the geographic coordinates of every detected onion in the field. Shock absorbing pads 

made of Sorbothane (Sorbothane, Kent, Ohio, USA) a synthetic viscoelastic urethane polymer, 

were placed beneath all the top pieces of the bracket to reduce the vibration effects of the 

conveyor and to help stabilize the camera.  

3.2.3. Electrical System Design 

A control box was designed to house all the electronics and computer hardware used by 

the system (Figure 3.9). The main structure of the box was a complete watertight and crush 

resistant Seahorse protective case (Seahorse, El Cajon, California, USA).  Holes were machined 

directly on the case to attach connectors for the devices integrated into the system. All key 

processing components were placed within the box, while an ELP 1080P USB Camera Box (Ailipu 

Figure 3.8. Model of the machine vision camera bracket (left), (a) is a metal piece used to 
deflect incoming onions from the camera (b), and (c) is the external light source. The left 

image (d) shows the setup positioned on the farm harvester. 

(a) 

(b) 

(c) 

(d) 
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Technology Co., Ltd, Shenzhen, Guangdong, China) and a Garmin 19x HVS NMEA 0183 GPS 

sensor (Garmin Ltd., Olathe, Kansas, USA) were placed directly above the conveyor belt for 

image and location acquisition. Power supplied to the devices originated from a 12-V power 

socket located inside the tractor cab and supplied power to the MINIX NEO-Z83-4-PRO-VESA 

computer (MINIX, Kowloon Bay, Hong Kong), Eyoyo 10 Inch IPS LCD monitor (Shenzhen Eyoyo 

Tech. Co., Ltd., Los Angeles, California, USA) and a Logitech K400 Wireless Touch keyboard 

(Logitech International S. A., Lausanne, Switzerland). A fuse was integrated in power source line 

to prevent all sensors from damage in case of oversupply. Similarly, a fuse was also attached to 

the voltage wire of the GPS sensor. Ground and voltage points of all devices were joined using a 

screw terminal. The webcam was the only device powered separately through the computer using 

one of the available USB ports. For the prototype, the main attributes required were a high enough 

RAM and processor speed to allow the algorithm to run in real-time. The processor also needed 

to be small enough to fit within the available space in the tractor cab while not inhibiting the driver.  

Table 3.2 shows some of the main specifications for the MINIX computer.  

 

 

Table 3.2. Computer specifications 
Attribute  Value  

Brand Name  MINIX 

Series FBA_MINIX-NEO-Z83-4-PRO-VESA 

Item Height 12.7 centimeters 
Item Width 40 millimeters 

Processor Type Intel Atom 

Processor Speed 1.92 GHz 
Number of Processors 4 

Memory Size 4 GB 

Memory Type DDR3 SDRAM 
Hard Disk Size 32 GB 

Hard Disk Interface Solid State 

Wireless Standard 2.4 GHz Radio Frequency 

Voltage 3 volts 

Hardware Platform PC 

Operating System Windows 10 Pro (64-bit) 
Lithium battery Voltage 3 volts 

Lithium battery Weight 0.12 grams 
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Figure 3.9. System Assembly. 

Top: main assembly of the yield monitoring system including the (a) computer power line, (b) HDMI 
input, (c) terminal block, (g) GPS sensor attachment, (d, e, f) 12-V power sockets, (h) MINIX 
computer, (i) external solid state drive and (j) USB input for the webcam. Bottom: The computer from 
the main assembly is controlled using a wireless keyboard (b) and the output is shown on a small 
monitor (a). 

 

(a) 

(b) 

(a) 

(b) 
(c) 

(d) 

(e) 

(f) (g) 

(h) (i) (j) 
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After the feasibility study was completed, a new camera was chosen to facilitate 

integrability with the software. This camera was a 2.0 Megapixel resolution camera from ELP 

which could connect to the computer using a USB 2.0 adapter. Video data was recorded at a 

resolution of 640 x 480 pixels and a frame speed of 120 frames/s, and frames were saved to a 

Samsung T5 portable external solid-state drive (SSD) (Samsung Electro-Mechanics, Suwon, 

Gyeonggi-do, South Korea) every two seconds with a corresponding GPS position. Full 

specifications of the camera, SSD and GPS sensor can be found in Table B-2, Table B-3 and 

Table B-4 of Appendix B.   

3.2.4. Segmentation  

Once the images are converted to HSV, color thresholding was performed using three 

methods. The first was Otsu’s (1979) thresholding selection method which has been largely used 

in CV applications in agriculture (Gongal, et al., 2016; Mizushima & Renfu, 2013; Mollazade et 

al., 2012). Otsu’s (1979) method automatically determines a threshold using the histogram of a 

grayscale image. An image histogram can be defined as “a density function �̂�(𝑥) […]  where the 

range of variable 𝑥 is divided into a finite number of adjacent intervals that include all the data. 

These intervals are also called cells or bins” (Gose et al., 1996). In image processing, the variable 

𝑥 can correspond to intensity, color, or a given feature descriptor. Histograms are an essential 

tool for representing tonal variance within an image and have many applications in image 

thresholding, segmentation and edge detection. This threshold minimizes the weighted intra-class 

variance 𝜎𝑤
2  and is defined as a weighted sum of variance of the two classes: 

                                                𝜎𝑤
2(𝑡) =  𝜔0(𝑡)𝜎0

2(𝑡) + 𝑤1(𝑡)𝜎1
2(𝑡)                                               (3.6) 

where 𝜔0 and 𝜔1 are the probabilities of the two classes separated by a threshold t, and 𝜎0
2 and 

𝜎1
2 are the variances of these two classes. To obtain proper segmentation, the image must have 

an intensity histogram that is bi-modal.  Otsu’s (1979) method was applied to the hue channel.  
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In the second method, the image was thresholded by applying a band pass filter to the 

hue channel and a high pass filter on the saturation channel. The threshold values were 

determined by analyzing the hue channel histogram and selecting the hue region where most of 

the onions were located. Both methods were then followed by a second segmentation based on 

texture properties using the magnitude of the red color intensity. This method is often used in 

apple detection, since apple fruit have a very distinct red color when compared with the green 

foliage of apple trees (Stajnko et al., 2009; Zhou et al., 2012). Canny edge detection (Canny, 

1986) located the contour lines of the onions, and shape properties were extracted from the binary 

image to identify regions corresponding to onions.  

A third method was later adapted after the field trials to improve detection results even 

further. Segmentation using a marker-based watershed transform (WST) was performed to 

improve separation of regions that were adjacent and overlapping (Meyer & Beucher, 1990; 

Vincent & Soille, 1991). In this segmentation approach, an image is interpreted as a topographical 

surface where the gradient image magnitudes can be represented as elevations. Region edges 

are equivalent to watershed boundaries and low-gradient region interiors are the catchment 

basins. The watershed segmentation algorithm attempts to group all pixels belonging to the same 

catchment basin using the distances of each binary pixel in the mask to the nearest 0-value 

(background) pixel. Once these steps are completed, a marker-controlled watershed 

segmentation is performed by labelling the regions that can be considered foreground with high 

confidence (Sonka et al., 2015). Connected component analysis using 8-connectivity is performed 

on these regions to label them as individual onions. Finally, properties of these regions, such as 

size and circularity, were assessed before identifying them as identified onions and placing them 

in the correct size category. 
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3.2.5. Definition of Vegetable Size Categories 

The algorithm was further expanded by sorting the detected vegetables into various size 

categories allowing producers to quantify the number of crops of a given size type. Samples of 

shallot onions ranging within four size categories (small, medium, large and extra-large onions) 

were analyzed by weighing each onion and taking their dimensions with a caliper. These 

dimensions included an approximate circular diameter measured through the center of the onion, 

and a major axis and minor axis for an elliptic approximation. Classes for the machine vision 

algorithm were determined by plotting each of these defining traits versus onion weight. The 

highest correlation was found between the minor axis parameter and weight (R2 = 0.93). Figure 

3.10 shows the minor axis values for onions sorted by the conventional method (legend) and the 

thresholds established after classifying the data using the model. A summary of these classes is 

shown in Table 3.3. 

y = -0.0018x2 + 0.528x + 23.749
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3.2.6. Size Calibration  

Once size classes were defined, a method was developed to automatically calculate the 

size of the onions in the images collected by the yield monitor. Previous research has made use 

of systems integrating different types of imagery such as thermal (Stajnko et al., 2004) or stereo-

vision (Mirbod et al., 2016) to do this. Others have used sophisticated time-of-flight-based 3D 

cameras (Gongal, et al., 2016) to perform size determination and precision mapping of fruits in 

3D space. However, in this study, the requirement was to characterize onion size by generalizing 

values within 3 to 4 size categories. Therefore, a simple size calibration method was chosen. Real 

vegetable size can be estimated by calculating the area of the pixels occupied by the vegetable 

itself within the image and then directly correlating it to their real-world dimensions by using a 

reference object of known size (Al-Ohali, 2011; Stajnko et al., 2009).  The reference object is 

isolated and measured in each image, and then a suitable pixel to metric ratio (𝑃𝑚) is determined. 

𝑃𝑚  is defined by taking the ratio of a pixel distance (𝑃𝑑)  and the true value of this same distance 

(𝑇𝑑) in a real-life metric unit of choice.   

𝑃𝑚 = 
𝑃𝑑

𝑇𝑑
⁄            (3.7) 

It is important that the dimensions of the reference object remain known and that it is easy 

to identify and segment from the image. To facilitate size calibration, this object could be placed 

in the same location in every frame. A total number of 35 onions were analyzed by comparing 

their true size measured with a caliper with that predicted by the algorithm. A standard 300 mm 

ruler was used as the reference object for this test (Figure C-1 of Appendix C). Results showed 

a very high correlation (R2 = 0.94) between the predicted results and the true size values, and a 

standard error (SE) was 2.33 mm (Figure 3.11). Therefore, this method was deemed suitable for 

the prototype during the in-field trials.   

Table 3.3. Shallot onion classes defined for the computer vision algorithm. 

Size Class Small Medium Large Extra Large 

Minor axis range (mm) 25 - 45 45 - 50 50 - 55 > 55 
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3.2.7. Statistical Analysis  

A two sample Kolmogorov-Smirnov (KS) test was applied to determine whether the 

predicted diameter values for each size category would differ significantly from the manually 

measured values. The KS test statistic is defined as the maximum distance 𝐷 between the two 

curves and is given by: 

𝐷 = max ((𝐹(𝑌𝑖) − 
𝑖−1

𝑁
,
𝑖

𝑁
−  𝐹(𝑌𝑖))

1 ≤ 𝑖 ≤ 𝑁

    (3.8) 

𝐹 is the theoretical cumulative distribution being tested and 𝑌𝑖 is a given observation within 

the total number of observations 𝑁. To use the KS-test, the distribution must be continuous and 

fully specified. A two-tailed test was performed with the following conditions: 

𝐻0 ∶ 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑎𝑟𝑒 𝑑𝑟𝑎𝑤𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 

𝐻1 ∶ 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑑𝑟𝑎𝑤𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛.              (3.9) 

The KS statistic was computed using the two-sided asymptotic KS distribution.  
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Chapter 4. Results and Discussion 

  General System Performance 

Design of the yield monitoring system was completed under a set of constraints defined 

by both the partner organisation and the research team. The primary constraints were the 

following: (1) it needed to be easily integrated into the operator’s daily practices, (2) inexpensive, 

(3) relatively easy to assemble and dismount from the harvester, (4) reliable and most importantly, 

(5) it had to provide an accurate prediction of vegetable size. In the following sections, we assess 

the performance of the system in terms of these initial constraints. Size prediction performance 

will be discussed in section 4.3 together with the performance of the final detection algorithm. 

4.1.1. Integrability  

The system was designed to be easily operated by anyone within the tractor. To run the 

yield monitoring program, the operator simply had to log into the computer, open a terminal and 

run the following line of code:  

 python main.py -c conf.json  

This command initialized a python console and ran the yield monitoring program using a 

preset JSON configuration file. In this configuration file, constants related to the settings of the 

system were stored separately and called by name in the program. Such settings included the 

baud rate of the GPS sensor, the path where the collected images would be stored on the external 

drive and the location of the spreadsheet containing the yield predictions for all images in the data 

set.                                         
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4.1.2. System Cost  

Table 4.1 lists the components used to build the system and their respective suppliers 

and prices. The total price of the yield monitoring system was $1,212 CAD (excluding 

manufacturing and assembly costs), proving to be far less expensive than most farm equipment. 

Table 4.1. Price Breakdown of the machine vision yield monitor by component. 

Component Function  Manufacturer  Price ($CAD) 

MINIX NEO Z83-4 Computer Vision Analysis  MINIX 240 
SAMSUNG T5 External SSD 250GB Image Storage Samsung 149 
Garmin GPS 19x HVS NMEA 0183 GPS receiver Garmin 302 
ELP Varifocal USB camera Image Acquisition ELP 124 
Wireless Keyboard Command Entry Logitech 50 
Display Monitor  Display Eyoyo 97 
USB Camera Mount Structural Wasserstein 20 
Seahorse 300Protective Case Structural Seahorse 34 
USB wires  Data Transfer UGREEN 16 
HDMI Cable  Data Transfer UGREEN 15 

Black 20CM FPV Flat HDMI Cable Data Transfer Permanent 21 

USB Connectors Electrical Component Conec 26 
8 Pin Connector and Receptacle Electrical Component  Conxwall  32 
HDMI Weathertight Connector Electrical Component Switchcraft 18 
12-V Power Supply Sockets Electrical Component Foxnovo 42 
Dual Row Terminal Block x2 Electrical Component Philmore-Datak 7 
Silicone Insulated Wire Electrical Component N/A 8 

RS-232 to USB adapter Signal Converter N/A 
10 

Total Cost       1212 

 

4.1.3. System Assembly  

Assembly of the system was feasible in less than one hour. During this time, the USB 

camera was fixed on the bracket of the harvester using locknuts, bolts and washers. Once this 

was completed, the next step was to connect the camera to the processor using two USB 

extension plugs. The wires were then fixed onto the harvester and tractor using zip ties and were 

run to the driver’s cab where all other hardware was located. The 12-V power source was 

connected to the control box and powered all the devices including the GPS sensor. The USB 

webcam was the only component that was powered by the computer itself since it required a 5-V 

DC input. Although assembly of the system was somewhat time consuming, in practice, this task 
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would be completed only once per season: the device is mounted on the tractor at the beginning 

of the harvesting season and then provides continuous data collection until the end of harvest. 

The system is only dismounted once the data collection has been completed. 

4.1.4. Reliability  

One disadvantage of the system was the occasional disconnection of wires which would 

unfortunately lead to a complete power loss. Under these circumstances, data collection would 

come to a halt and the system would have to be rebooted. This may have been due to the type 

of connectors used (12-V cigarette lighter adapters), which tended to move around in the sockets 

and eventually disconnect while the tractor was running. To overcome this, special care needed 

to be taken to ensure that all components were properly fixed during operation. To improve the 

system, the next iteration would need to include more stable connectors, especially those 

originating from the main power supply; ideally, these would have a type of security lock. This 

would provide a constant stable connection resulting in a more reliable system. 

 Results of Feasibility Study   

4.2.1. Segmentation Results 

The aim of the feasibility study was to determine whether onion detection and count could 

accurately be done using a CV software. To properly isolate individual onions and count them, an 

appropriate segmentation needed to be attained. The first segmentation method tried involved 

converting the image to the HSV color space, and then obtaining a histogram of the hue 

distribution. The second segmentation method was Otsu’s method, described previously by 

equation 3.6. 

Figure 4.1 shows a hue channel histogram of a sample image from the dataset. Since the 

range 0 to 360 cannot be represented using only 8-bit integers in OpenCV, hue values range from 
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0 to 180. The high bin count at the value 121 corresponds to a shade of blue violet, representing 

the surface behind the conveyor belt. The two modes in the histogram are located between 0-30 

(left region) and 90-120 (right region). Otsu’s method determines an average threshold of 60, 

situated roughly in the middle of the two peaks, where the left region represents the shallot onions 

and the right region represents the light-green portions of the paddle and conveyor. The manually 

determined threshold combined the left hue peak and the hue values from 165-180.  

 

An original image of the onions on the conveyor and the results obtained from the various 

segmentation methods is shown in Figure 4.2. A red color intensity texture image (Figure 4.2b) 

was used to further extract regions that were high in red chroma after the initial global 

thresholding. In most cases, Otsu’s method (Figure 4.2c) led to over segmentation, capturing not 

 
Manually 

determined 
onion regions 

Figure 4.1. Hue intensity distribution of a sample image in the feasibility study. See 
electronic version for colors.  
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only the onion regions but also much of the conveyor system and stems. This may have been 

due to the varying number of onion pixels in each image which affected the histogram 

distributions, and in some cases, made it unimodal when onion counts were unusually low.  

Combining the HSV color threshold with the red texture image reduces the number of false 

positives as the algorithm first checks to determine if the object is within the proper color range, 

and then analyses the image further and searches for a distinct red intensity.   

 

4.2.2. Onion Detection Performance   

To assess onion detection performance of the feasibility study algorithm, 34 random 

screenshots were gathered to compare the algorithm’s number of detected shallot onions and the 

true shallot onion count performed by manual observation. Examples of these screenshots are 

shown in Figure 4.3.  According to the results, the general onion detection rate for the feasibility 

study proved to be relatively low: the mean number of manually counted onions was equal to 

16.1, ranging from 4 to 37 onions in observed examples with a standard deviation of 6.16. The 

mean from the automatically detected onions (i.e. algorithm) was 7.17, with ranges between 1 

and 15 correctly observed onions and a standard deviation of 3.10. Performance of the algorithm 

is summarized in Figure 4.4 (top). Although the algorithm underestimated the true crop load 

Figure 4.2. Segmentation results.  

Original conveyor image (a) and results of the image processing and segmentation algorithm. (b) is the 
red color intensity image, (c) is the image segmented using Otsu’s method and (d) is the segmentation 
performed using the manually selected hue and saturation thresholds.  

    (a)     (b)     (c)     (d) 
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(regression slope of 0.45), it is important to note that there was a high correlation between the 

manual count and algorithm count, with an R2 value of 0.71. 

By taking the automatically determined onion count and dividing it by 0.45, this increased 

the efficiency of predictions dramatically, raising the detection regression slope to 0.99 (Figure 

4.4, bottom). Figure 4.5 shows a stacked column graph of the detected shallot onions by the 

algorithm and the difference between the automatic and true manual counts. The total number of 

onions in the frame is given by adding the undetected onions and correctly detected onions 

together. After careful analysis, it was noted that under low onion count the algorithm showed 

better results, missing at most 3 onions per frame. The number of falsely detected onions 

remained between 0 and 7 in all cases. High detection rates occurred when the onions were not 

clustered together or superimposed which caused them to be segmented as a single object and 

thereafter making them difficult to isolate. The algorithm also missed onions primarily located in 

shadowy regions, as well as bulbs that were hidden by onion stems and occluded other 

vegetables.  

Figure 4.3. Onion detection results. See electronic version for colors.  

Onions identified by the algorithm are located on the image using ellipses. Colors represent size 
ranges. In this case, blue corresponds to small and green to medium sized onions. Size estimation 
accuracy was not evaluated in this stage of the study.  

                  (a)                                            (b)                                                (c)  
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Figure 4.4. Onion detection accuracy of the current machine vision algorithm (top) and 
accuracy obtained by doubling the output (bottom). 
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Other falsely detected onions corresponded to bulbs that were detected twice, which was 

caused by improper boundary definition by edge detection. However, false detection was 

relatively low (3 onions) and the average deviation between the algorithm and manual count was 

8.88. 

4.2.1. Conclusions of Feasibility Study 

The goal of this study was to address the processes described in the feasibility study 

section of Figure 3.3 and to use image processing techniques to develop an initial algorithm for 

automatic onion detection. The main challenges encountered were primarily uneven 

segmentation caused by either inconsistent lighting and occasional occlusion by stems or other 

shallot onions. This created an incentive to rework the algorithm and improve detection for the 

Figure 4.5.  Shallot onions detected by the computer vision algorithm vs. manual count. 
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final field testing. A fully functional system was therefore created and added to the machine vision 

bracket to perform simultaneous image analysis and position tracking. Moreover, size estimation 

using the method described in section 3.2.5 was integrated and evaluated.   

 Prototype Performance                                                               

The system was mounted on a commercial shallot onion harvester (Univerco Inc., 

Napierville, Quebec, Canada) located on a farm in Napierville, Quebec. Images, onion counts, 

and geographical coordinates were recorded and saved to a file. These results are reported and 

analyzed in the following sections.  

4.3.1. Size Estimation 

A tennis ball was selected as the calibration object for the field trial due to its very distinct 

bright yellow color which could easily be segmented using color thresholding in the field. Figure 

4.6 shows the results from this segmentation (a) and the detection of the ball in a sample image 

from the conveyor (b). Sections 3.2.5 and 3.2.6 describe the approach used to extract the size 

information of the onions from the images following the segmentation step. OpenCV approximates 

the ball using a CHT and extracts its diameter in pixel length. The value of 𝑃𝑚 is determined using 

the diameter of the ball which was equal to 65.4 mm. For the field trial, the recorded 𝑃𝑚  was 

roughly 3.38 pixels/mm per image. In the initial version of the software, an elliptical approximation 

was set to characterize the shape of the shallot onions. However, after careful examination, it was 

noted that this approximation gave poor results when predicting the true size distribution of the 

onions. Almost all onions detected were labelled as being small which was incorrect. A circular 

approximation was later selected and the new model of onion diameter vs. mass is depicted in 

Figure C-2 of Appendix C. In the univariate quadratic polynomial that is fitted to the new model, 

the coefficient of the second-degree variable is of a larger magnitude, making the curve of the 
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parabola sharper than the similar curve in Figure 3.10. The number of size categories was then 

decreased to 3 instead of 4 (small, medium and large). Parts of the medium and large class are 

merged, and the new thresholds are depicted in Figure C-2. 

Within the dataset, a total of 92 images were randomly chosen to assess the performance 

of the size prediction method. Within these images, 271 onions were analyzed by measuring the 

diameter of the automatically detected boundary of the bulb and comparing it with the true 

boundary of the onion. Results showed that the overall performance of this algorithm was very 

poor (R2 =0.011) with 55.9% of onions correctly classified and a Root Mean Square Error (RMSE) 

of 11.3 mm. Figure 4.7 shows the results obtained after performing a linear regression for each 

of the 3 size categories. The lowest detection rate was found within the medium onion category 

(44.4%). Size predictions of the onions within the small class were reasonably better with 88 

correct predictions out of 150 small onions observed (58.6%). The best size classification 

performance was within the large class (73.3%). The mean difference between the predicted and 

true values of the medium class (1.68 mm) was lower in absolute value than that of both the small 

(6.86 mm) and large classes (2.06 mm).  

Figure 4.6. Color thresholded result of the calibration object (a) and detection of the ball in 
the original image (rb). The diameter of the ball in pixel length is determined using a CHT. 

    (a)     (b) 



45 

 Following are results of the two sample KS test which was applied to determine whether 

the predicted diameter values for each size category differed significantly from the manually 

measured values. Cumulative fraction plots were created for each pair of observations to visualize 

their respective distributions (Figure 4.8). The KS statistic was computed using the two-sided 

asymptotic KS distribution. If the KS statistic was small or the given p-value was shown to be 

high, then the null hypothesis could not be rejected. Results from the statistical analysis for each 

size class are tabulated in Table 4.2, Table 4.3 and Table 4.4. According to these results, the 

null hypothesis is rejected for both the small and medium classes but remains true for the large 

class with a confidence interval of α = 0.05. 

Figure 4.7. Manually determined onions sizes vs. predicted onion sizes from WST algorithm.  
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Figure 4.8. Cumulative fraction plots of the predicted diameter and true diameter distributions.  
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     Table 4.2. Kolmogorov-Smirnov test results for the small class 

 Diameter (Predicted) Diameter (True) 

Mean (mm) (N = 150) 43.87 37.00 

Median (mm) 42.50 37.32 

Min (mm) 29.32 23.40 

Max (mm) 76.12 43.83 

Standard Deviation (mm) 10.41 1.62 

Mean Difference (mm) 6.86  

KS Test Statistic 0.4199 

P-Value 2.849E-12 

 
                    Table 4.3. Kolmogorov-Smirnov test results for the medium class 

 Diameter (Predicted) Diameter (True) 

Mean (mm) (N = 90) 49.46 47.78 

Median (mm) 49.76 47.39 

Min (mm) 29.91 44.13 

Max (mm) 77.30 53.61 

Standard Deviation (mm) 10.44 2.75 

Mean Difference (mm)  1.68 

KS Test Statistic 0.3222 

P-Value 1.191E-4 

                    Table 4.4. Kolmogorov-Smirnov test results for the large class 

 Diameter (Predicted) Diameter (True) 

Mean (mm) (N = 30) 58.44 60.51 

Median (mm) 58.20 57.01 

Min (mm) 39.09 54.20 

Max (mm) 74.93 87.67 

Standard Deviation (mm) 8.12 8.79 

Mean Difference (mm) -2.06 

KS Test Statistic 0.2333 

P-Value 0.3420 

 

Finally, the onion size distribution obtained from the algorithm was compared to that 

calculated after manual sorting of 15 shallot onion rows originating from the same shallot onion 

field. Figure 4.9 shows the final output percentages for each size class. Predictions remained 

accurate for the small and medium classes with a 0.41% and 4.19% difference from the observed 

true percentages for the small class and medium class, respectively. However, there was a strong 

deviation in results obtained from the extra-small, large and extra-large class (26.97%, 58.46% 

and 66.14%, respectively).  
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4.3.2. Segmentation Results 

Figure 4.10 illustrates the pipeline used to identify the onions and calculate their sizes. 

Images were subject to variable lighting conditions, which affected the performance of 

segmentation in some cases due to the presence of either shadowy or very bright regions. The 

various preprocessing steps involved blurring the original image (Figure 4.10a) with a median 

filter (9x9) to remove speckle noise, then blurring it once more with a 9x9 Gaussian filter (Figure 

4.10b). The image was converted to the HSV color space and first segmented using color 

thresholding. Color ROIs included the onion skin and areas on the onion that exhibited specular 

reflection (Figure 4.10c). Morphological operations of opening (Figure 4.10d) and closing 

(Figure 4.10e) were applied to refine the onion regions and remove noise from the objects of 

interest. Segmentation using a marker-based watershed transform (WST) was performed using 

the distance transform of each image Figure 4.10f), and these regions were individually labelled 

(Figure 4.10g). Small onions were identified using blue contours, medium onions with green 

contours and large onions with red contours (Figure 4.10h). 

Figure 4.9. Size class distributions for the manual sorting vs. computer vision algorithm. 
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4.3.3. Onion Detection Results 

A summary of the final detection results obtained for both methods is reported in Table 

4.5. Initially, the feasibility study algorithm was used to detect and count the shallot onions during 

harvesting. Out of 1180 images collected during the trial, a subset of 246 images was selected to 

evaluate the performance of the algorithm. In these 246 images, 1667 onions were manually 

identified. The initial algorithm managed to detect a total of 713 onions, within these, 597 were 

true onions (83.7%) and 116 were false detections. However, the total number of correctly 

detected onions was relatively low compared to the true number of onions in the dataset (35.8%). 

With the WST method, the total number of onions detected increased to 1467, and a total of 1115 

of these detections corresponded to true onions (76.0%). There were 1782 onions manually 

a) b) c) d) 

e) f) g) h) 

Figure 4.10. Segmentation Results. 

The original image (a) is first preprocessed by blurring using a 9x9 median filter and 9x9 Gaussian filter 
(b). The image is then converted to the HSV color space and thresholded using a predetermined 
threshold value (c). Morphological operations of opening (d) and closing are applied (e), and the 
distance transform (f) is computed. Watershed segmentation is performed on the image to isolate 
individual onion regions (g) and identify and classify them in the original image (h). 
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identified in the dataset. The total number of large detections also increased drastically with the 

WST method (from 12 to 390).  

            Table 4.5. Summary of shallot onion detection results 

Method 
Total 

Detected 
Onions 

Correctly 
Detected 
Onions 

Correctly 
Detected 

Onions (%) 

Mean (per 
image) 

Standard 
Deviation 

Standard Error 
(Actual vs. 
Correctly 
Detected) 

Initial 713 596 35.8 2.90 1.96 2.47 
Watershed 1467 1115 62.6 5.64 2.99 1.98 

 

Figure 4.11 shows screenshots of results obtained by the initial algorithm (a) and WST 

algorithm (b). The WST segmentation method failed mostly when there were large reflective areas 

present on the onion which would appear almost entirely white and that were not properly 

captured by color thresholding. Bright spots in some images caused by inconsistent lighting also 

led to false detections. In some extreme cases, the image was overly saturated making the onion 

regions appear almost uniform. This would leave large holes within the onion which were not filled 

even after noise removal with opening/closing, preventing the allocation of a single minimum to 

that specific region. As with the initial method, the conveyor background would sometimes 

mistakenly be identified as shallots and some onions would also be detected twice. As in the 

feasibility study, onions missed by the initial algorithm were, for most cases, onions that were 

partially visible and on the border of the image, onions occluded by larger bulbs or stems, or bulbs 

that were present in shadowy regions.  False detections corresponded to onions clustered in the 

trailer that were visible through the conveyor paddles or onions that were improperly segmented 

causing the same bulb to be identified twice. Detection did increase with the adaptation of the 

WST method. However, this change also led to an increase in the number of false detections 

which can also been seen in Figure 4.12 and Figure 4.13.  
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Linear regression was performed on the total number of onions detected by each method 

vs. the actual (true manually detected) onion count. Looking at the two accuracy plots for both the 

original method (Figure 4.12, top) and the watershed method (Figure 4.12, bottom), the 

coefficient of determination obtained for the initial method was low (R2 = 0.33). The slope of the 

trendline was also low, showing that the original algorithm could only detect about 41% of onions 

present. As count remained low, the predictions were near the perfect accuracy line but as count 

gradually increased beyond 4 onions, the algorithm began to miss more vegetables. Possibly, 

this was due to the improper segmentation of onions that overlap when the image is more 

cluttered. For the WST method, the estimated count has significantly improved and the correlation 

between the automated count and true count was much higher (R2 =0.49). One downfall of this 

was the increase of false detections from an average of 0.48 onions per image to 1.36 onions per 

image (Figure 4.13).  

Figure 4.11. Onion detection results. (a) shows final detection results for the initial algorithm, 
and (b) shows results from the WST segmentation method. See electronic version for 

colours.  

(a) Initial Algorithm (b) WST Segmentation 
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Figure 4.12. Shallot onions detected by the computer vision algorithm vs. manual count. Top 
shows results for  the initial algorithm developed during the feasibility study, and bottom shows 

the improved WST segmentation algorithm results. 
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Figure 4.13. Shallot onions detected by the computer vision algorithm vs. manual count. 
Top shows results for  the initial algorithm developed during the feasibility study, and 

bottom shows the improved WST segmentation algorithm results. 
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The error was modelled to compare both results and select the method that performed the 

best. To do this, the true positive (TP), false positive (FP) and false negative (FN) counts were 

calculated from the visual observations. TPs corresponded to onions that were correctly detected, 

FPs were other objects (background, stems, rocks) that were falsely classified as onions, and 

FNs were onions that were missed by the detection algorithms. Results of this analysis are 

featured in Table 4.6 and Table 4.7.    

  Table 4.6. Summary of Type I and Type II error distribution for the Initial Method. 

 Type I Error (Falsely Detected Onions) Type II Error (Missed Onions) 

Total Sum 117 962 
Mean (per frame) 0.475 3.91 
Median 0 4 
Standard Deviation  0.738 2.50 
Max 4 13 
Min 0 0 

   

Table 4.7. Summary of Type I and Type II error distribution for the Watershed Method. 

 Type I Error (Falsely Detected Onions)  Type II Error (Missed Onions) 

Total Sum 352 418 
Mean (per frame) 1.35 1.61 
Median 1 1 
Standard Deviation  1.41 1.81 
Max 8 8 
Min 0 0 

 
Results show that detection did improve with the adoption of the WST method. The total 

number of false detections and missed onions in the initial method (1079) decreased to 770 using 

the WST algorithm, although at the expense of a higher false detection rate. From Table 4.8, we 

can see that adopting the Watershed Method allows for an increase in overall performance, 

although it does cause a small decrease in precision. Stricter analysis will need to be done to 

develop an improved algorithm that can help improve the resistance to type I error. 

Table 4.8. Summary of detection performance metrics 
 Initial Method Watershed Method 

Precision 0.836 0.760 
Recall  0.383 0.727 
Overall Accuracy 0.356 0.592 

Standard Deviation  1.41 1.81 
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4.3.4. Yield Map  

The system was tested on a portion of the onion field equivalent to two full rows of shallot 

onion crops. Issues related to the power supply caused data collection to halt midway. However, 

enough data was collected create a map showing the distributions of the 3 size categories. The 

full study area is pictured in Figure 4.14.  

  A total of 871 data points was collected during the field trial.  A median filter was applied 

to the dataset by taking the median of the onion count values at every 10 points for each size 

category, leaving a total of 88 points for mapping that were separated by an average distance of 

23 m. Inverse distance weighting (IDW) was selected as the spatial interpolation method with a 

weight power of 2 and search radius of 5. Although a small portion of the field was mapped, the 

three maps did show similar trends (Figure 4.15). For example, the north side of the field reported 

a high yield value for all three size classes. The edges of the field correctly report a low onion 

count, which reflects the images on the sides of the field that pictured mostly the conveyor and 

soil.  Overall, the spatial variation between adjacent points was very high. Further analysis will 

need to be done to determine an appropriate sample point density that would give the most 

accurate representation of the shallot onion field and give more precise yield predictions.  

Figure 4.14. Image showing the sampling points collected on the shallot 
onion field (a) and the boundary of the entire study area (b) . 

 

a) 
b) 
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a) b) 

c) d) 

Figure 4.15. Final yield maps for the small (a), medium (b), large (c) onion classes and 
the total count (d) of the shallot onion field.  
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 Future Improvements  

Although the system was able to gather images and perform yield estimation on the go 

during the harvesting process, there were some drawbacks during operation. One of these 

drawbacks was related to the method of supplying power to the system.  The yield monitor 

received power directly from the tractor using a 12-V outlet. This outlet was then linked to the 

control box using a 12-V cigarette lighter socket. Although the 12-V sockets did manage to supply 

enough power to the box, the connector would occasionally detach from the cigarette lighter 

receptacles, therefore, cutting off the power source for the entire system. Special care needed to 

be taken to ensure that the connector would stay fixed within the socket during operation. A 

solution to this could be the replacement of the cigarette lighter receptacles with lock tight 

connectors for power and ground like those used for the GPS sensor, creating a more stable and 

secure connection that could better withstand movement in the driver’s cab.  

Another disadvantage of the system was related to the effectiveness of the size calibration 

process. Once the yield monitoring program was started, calibration images had to be taken by 

placing a tennis ball in front of the camera and recording a small set of frames that would later be 

used to establish a pixel metric. However, the thresholds for the color segmentation of the tennis 

ball were set using trial and error with previous images from a different run. Therefore, the 

segmentation could sometimes be faulty depending on the existing lighting conditions of the 

following run. A threshold setting method capable of being adjusted on the field would allow a bit 

of play when establishing the color thresholds for segmentation. Another option could be to use 

the distance between paddles to calibrate the size estimation algorithm, although this would 

require the development of a new method to segment the paddles from the image.   

Onions missed by the detection algorithm were, for most cases, onions that were partially 

visible and on the border of the image, onions occluded by larger bulbs or stems, or bulbs that 

were present in shadowy regions.  False detections corresponded to onions clustered in the trailer 
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that were visible through the conveyor paddles or onions that were improperly segmented causing 

the same bulb to be identified twice. Further enhancements of the algorithm must be made to 

better separate individual onion regions and to increase overall accuracy. A way to enhance this 

could be to develop a more resilient algorithm using a form of machine learning called semantic 

segmentation. A convolutional neural network structure like that of Bargoti and Underwood (2017) 

could potentially learn features that could accommodate for all variabilities in the appearance of 

onions. These variations include examples of onions in clusters, in shaded areas or occluded by 

stems. 

Enhancements to the algorithm will also need to be made to improve overall detection 

rates while maintaining a low number of false positives. This may be done by increasing the video 

frame rate and analyzing sequential frames and monitoring them for onions that appear in multiple 

frames. This may reinforce the possibility of an object being an onion by incorporating a visual 

tracking algorithm.   
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Conclusions 

Providing quality and quantity assessment of shallot onion crops during harvesting is 

crucial for securing higher returns and establishing more efficient management practices. This 

research focused on the use of computer vision as an alternative for yield estimation practices for 

specialized vegetable crops.   

A fully functional system was developed to record image and position data of shallot onion 

bulbs during harvesting and create a geo-tagged image database for precision yield mapping.  

Computer software was developed to detect shallot onions in images and determine their sizes. 

The system was able to properly detect 62.6% of onions in a subsample of the dataset using a 

Watershed segmentation method. The software also reliably categorized large sized shallots with 

an accuracy of 73.3% but was limited when predicting small (58.6%) and medium (44.4%) onion 

sizes. This was primarily due to improper boundary definition of bulbs that were either on the 

border of the image or occluded by other bulbs or stems. There was also difficulty detecting onions 

in shadowy regions. Despite this, it did correctly predict the percentages of the medium and small 

classes when compared to post-harvest data for 15 rows of the examined field.  

Hardware limitations will need to be properly revisited to develop a more reliable system 

that can withstand harsh conditions of the agricultural environment. These would include more 

stable power connections, a camera that is resistant to high amounts of dust and variable lighting. 

Developing a new algorithm based on modern machine learning techniques and artificial 

intelligence may also strengthen detection results. However, this system would most likely require 

a more powerful processor which will increase its price.  

The incorporation of computer vision into agriculture is growing. Although further 

development is envisioned for this current system, it will help producers manage their harvesting 

strategies more efficiently. It served as a low-cost initial prototype which managed to provide 
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insight regarding the feasibility and economic potential of such systems.  More care will be taken 

to produce a second prototype and increase the system’s reliability and deliver a better product 

that could be used in the long term.  
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Appendix A: Python Code  

A-1 Initial Version of Python Code (Feasibility Study) 

1. # -*- coding: utf-8 -*-   
2. """  
3. Machine Vision Yield Monitor Program   
4. @author: amanda  
5. """   
6.    
7. import numpy as np   
8. import cv2   
9. import os   
10. import math   
11. import matplotlib.pyplot as plt   
12.    
13. # Creates an elliptical structuring element for the opening/closing operations    
14. # Elliptical Kernel   
15.    
16. """  
17. >>> cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))  
18. array([[0, 0, 1, 0, 0],  
19.        [1, 1, 1, 1, 1],  
20.        [1, 1, 1, 1, 1],  
21.        [1, 1, 1, 1, 1],  
22.        [0, 0, 1, 0, 0]], dtype=uint8)  
23. """   
24.    
25. ellipse_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(10,10))   
26.    
27. # Define range of Red onion color in HSV   
28. # onions    
29. upper_red = np.array([46,180, 255])   
30. lower_red = np.array([0,40,40])   
31.    
32. def ellipse_perimeter(major_axis, minor_axis):   
33.     a = major_axis/2   
34.     b = minor_axis/2   
35.     h = math.pow((a-b), 2)/math.pow((a+b), 2)   
36.     perimeter = math.pi*(a+b)*(1+ 3*h/(10 + math.sqrt(4-3*h)))   
37.     return perimeter   
38.        
39. directory = 'C:/Users/amand/Desktop/Delfland Test 09152017/afternoon_test_09152017'   
40.    
41. for root, dirs, filenames in os.walk(directory):   
42.         for i, file in enumerate(filenames):   
43.             imgpath = os.path.join(root,file) # Reconstructs the file path using the 

root_directory and current filename   
44.             print(imgpath)   
45.            
46.             #while(cap.isOpened()):   
47.             #ret, frame = cap.read()   
48.             # Resize Images                
49.             img = cv2.imread(imgpath).copy()   
50.             # Resize Images       
51.             # Determines the new aspect ratio (r) and set the new dimensions for the im

age   
52.             r = 500/img.shape[1]   



66 

53.             new_dim = (500, int(img.shape[0]*r))   
54.             img = cv2.resize(img, new_dim, interpolation = cv2.INTER_AREA)   
55.             # Convert the image to HSV colorspace    
56.             blur = cv2.GaussianBlur(img,(7,7),0)   
57.             img2 = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)   
58.             # Threshold the HSV image to get only blue colors   
59.             mask = cv2.inRange(img2, lower_red, upper_red)   
60.             #mask = cv2.inRange(img2, lower_red, upper_red)   
61.             opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, ellipse_kernel)   
62.             closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, ellipse_kernel)   
63.             closing = cv2.GaussianBlur(closing,(3,3),0)   
64.             # dilate makes the in range areas larger   
65.             closing = cv2.dilate(closing, None, iterations=3)   
66.                
67.             # Bitwise-AND mask and original image   
68.             res = cv2.bitwise_and(img, img, mask = closing)   
69.             dst, contours, hierarchy = cv2.findContours(closing, cv2.RETR_TREE, cv2.CHA

IN_APPROX_SIMPLE)   
70.                   
71.             for c in contours:   
72.                 moments = cv2.moments(c)   
73.                 if moments['m00'] != 0.0:   
74.                     cx = int(moments['m10']/moments['m00'])   
75.                     cy = int(moments['m01']/moments['m00'])   
76.                     centroid = (cx,cy)   
77.                     if len(c) > 5:   
78.                         ellipse = cv2.fitEllipse(c)   
79.                         major_axis,minor_axis = ellipse[1]   
80.                         if (major_axis < 110) and (minor_axis<110):   
81.                                
82.                             print('major_axis: ')   
83.                             print(major_axis)   
84.                             print('minor_axis')   
85.                             print(minor_axis)   
86.                             perimeter = ellipse_perimeter(major_axis, minor_axis)   
87.                             print('perimeter: ')   
88.                             print(perimeter)   
89.                             #if perimeter > 60: # Lobok    
90.                             if (80 < perimeter) and (perimeter < 800): # Shallot onion 

  
91.                                 cv2.ellipse(img,ellipse,(0,0,255),2)   
92.                     else:   
93.                         pass   
94.                        
95.    
96.             cv2.imshow('Final Result', img)   
97.             cv2.waitKey(1000)   
98.    
99. cv2.destroyAllWindows()   
100.            
101. # End of program    
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A-2 Final Version of Python Code (Field Trial)  

Yield Monitor Class 

1. # -*- coding: utf-8 -*-   
2.    
3. ## USAGE cd to final_code   
4. # python YieldMonitor.py --conf conf.json    
5.    
6. """  
7. Development of a Machine Vision Based Yield Monitor for Shallot Onions  
8. Precision Agriculture and Sensor Systems Group (PASS)  
9. McGill University, Department of Bioresource Engineering   
10.   
11. yield_monitor.py --- This is a yield monitoring program for the masters thesis of   
12. Amanda Boatswain Jacques. This software detects onion shapes, classifies them by   
13. size, and then exports them into a .CSV file with GPS data.   
14. """   
15.    
16. # program Properties    
17. __author__ = "Amanda Boatswain Jacques"   
18. __version__ = 9.0   
19.    
20. # import the necessary python libraries    
21. from datetime import datetime   
22. import conf   
23. import os   
24. import pandas as pd   
25. import serial   
26. import sys   
27. import time   
28.    
29. # computer vision   
30. import cv2   
31. import numpy as np   
32. import preprocess_image    
33. import size_calibration    
34.    
35. # create yield monitor class    
36. class YieldMonitor:   
37.     def __init__(self, config):   
38.         # set current file path   
39.         self.current_dir = sys.argv[0]   
40.            
41.         # load the configuration file   
42.         if conf is None:    
43.             raise ValueError   
44.                
45.         else:       
46.             self.conf = conf.Conf(config)   
47.             sources = self.conf["camera_sources"]   
48.                
49.         # initialize the camera        
50.         for source in sources:   
51.             try:    
52.                 self.camera = cv2.VideoCapture(source)   
53.                    
54.                 if self.camera.isOpened():   
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55.                     self.pretty_print("[INFO] CAMERA", "OK: Camera successfully opened"
)   

56.                     self.pretty_print("[INFO] CAMERA", "Camera initialized!")   
57.    
58.             except Exception as e:   
59.                 self.pretty_print("[ERROR] CAMERA", "Error: %s" % str(e))   
60.                 self.close()   
61.                    
62.         # create a directory for storing the images and .csv   
63.         self.path = self.conf["external_drive"]   
64.         date = datetime.strftime(datetime.now(), "%Y%m%d_%H%M" +"/")   
65.         self.image_directory = self.path  + date     
66.         self.result_directory = self.image_directory + "result_images/"   
67.         self.pretty_print("[INFO] IMAGES", "Images will be saved in: " + self.image_dir

ectory)   
68.        
69.         if not os.path.exists(self.image_directory):   
70.             os.makedirs(self.image_directory)   
71.             os.makedirs(self.result_directory)   
72.            
73.     ### useful Functions    
74.     def pretty_print(self, task, msg):       
75.         # Pretty Print    
76.         date = datetime.strftime(datetime.now(), '%d/%b/%Y %H:%M:%S')   
77.         print('[%s] %s\t%s' % (date, task, msg))   
78.    
79.    ### camera Functions        
80.     def capture_image(self, write=False, ramp_frames = 40):          
81.         """ Captures a single image from the camera and returns it in PNG format  
82.         read is the easiest way to get a full image out of a VideoCapture object."""   
83.    
84.         #self.pretty_print("[INFO] CAMERA", "Capturing photo...")   
85.         
86.         # let the camera stabilize for 40 frames    
87.         for i in range(ramp_frames):   
88.             try:   
89.                 (retval, self.bgr) = self.camera.read()   
90.                    
91.             except Exception as e:   
92.                 self.pretty_print("[ERROR] CAMERA", "Error: %s" % str(e))     
93.                 self.close()   
94.            
95.         if self.bgr is not None:   
96.             cv2.imshow("Captured Image", self.bgr)   
97.             cv2.waitKey(100)   
98.                
99.             # save the image    
100.             if write == True:   
101.                 date = datetime.strftime(datetime.now(), "%Y%m%d"+"_"+"%H%M%S") 

  
102.                 #add directory here    
103.                 self.filename = self.image_directory + date + ".png"   
104.                 cv2.imwrite(self.filename, self.bgr)   
105.                
106.             else:   
107.                 pass   
108.    
109.             return self.bgr       
110.        
111.     # perform size calibration    
112.     def calibrate_monitor(self):    
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113.         self.pixel_metric = size_calibration.calibrate(self.conf["calibration_di
rectory"])   

114.         self.pretty_print("[INFO] SIZE CALIBRATION", "Calibration completed.")   
115.            
116.         return self.pixel_metric   
117.        
118.     # perform image processing and detect the onions in an image    
119.     def find_onions(self, write=True):   
120.         original, preprocessed = preprocess_image.preprocess(self.bgr, resize=Fa

lse)   
121.         self.small_count, self.medium_count, self.large_count, self.result = pre

process_image.find_onion_contours(   
122.                 preprocessed, original, self.pixel_metric)   
123.            
124.         if write == True:   
125.             date = datetime.strftime(datetime.now(), "%Y%m%d"+"_"+"%H%M%S")   
126.             self.result_filename = self.result_directory + date + ".png"   
127.             cv2.imwrite(self.result_filename, self.result)   
128.            
129.            
130.         return(self.small_count, self.medium_count, self.large_count)   
131.            
132.     def init_gps(self):   
133.         """  Initialize the gps sensor and set the baudrate. """   
134.         COMNUMS = self.conf["gps_ports"]      
135.         self.gps = serial.Serial()   
136.            
137.         self.pretty_print("[INFO] GPS", "Initializing GPS... ")   
138.         # detect the active gps port and save it    
139.         for port in COMNUMS:   
140.             try:   
141.                  self.gps = serial.Serial(port, timeout = 0.2)   
142.                  self.gps_port = port   
143.                  # explicit close 'cause of delayed GC in java   
144.                  #self.gps.close()     
145.                
146.             except serial.SerialException:   
147.                 pass   
148.            
149.         if self.gps.isOpen():   
150.             # set the gps baudrate   
151.             self.gps.baudrate = self.conf["gps_baudrate"]   
152.             self.pretty_print("[INFO] GPS", "GPS at port %s with baud %s! " % (s

elf.gps_port, self.gps.baudrate))   
153.            
154.         else:   
155.             self.pretty_print("[ERROR] GPS", "GPS not found!.")   
156.             self.close()   
157.                
158.            
159.     def get_position(self):   
160.         """ Get the current position (latitude, longitude, speed) of the image. 

"""   
161.         # retrieve only the RMC sentences    
162.         code = "RMC"   
163.            
164.         while True:    
165.             try:   
166.                 line = self.gps.readline()   
167.                 line = line.decode("utf-8")   
168.                 #print(line)   
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169.                    
170.                 if line.find(code) > 0:   
171.                     break   
172.        
173.             except UnicodeDecodeError:   
174.                 pass   
175.    
176.         gps_data = line.split(",")   
177.            
178.         # only report GPS sentences if an active valid fix was received   
179.         #if gps_data[2] == "V":   
180.         if gps_data[2] == "A":   
181.             self.latitude = gps_data[3]    
182.             self.latitude_char = gps_data[4]           
183.             self.longitude = gps_data[5]   
184.             self.longitude_char = gps_data[6]           
185.             self.speed = gps_data[7]   
186.                
187.             if self.speed is not None:   
188.                 self.speed = float(gps_data[7])*1.852   
189.                 self.speed = format(self.speed, ".3f")    
190.         else:   
191.             pass   
192.                    
193.         return (self.latitude, self.longitude, self.speed)   
194.        
195.     def run(self):   
196.         """ Run the program continuously. Get captures,   
197.         analyze them, and then save the current position. """   
198.            
199.         self.pretty_print("[INFO] RUNNING", "Running yield monitoring program. P

ress CTRL+C to exit.")   
200.            
201.         # open the GPS port, give some time for GPS and camera to stabilize    
202.            
203.         time.sleep(5)   
204.         self.data = []   
205.            
206.         while (True):   
207.             try:   
208.                 self.capture_image(write =True)   
209.                 small, medium, large = self.find_onions()   
210.                 lat, long, speed = self.get_position()   
211.                 self.log = [small, medium, large, lat, long, speed]    
212.                 columns = ['S', 'M', 'L', 'Latitude', 'Longitude', 'Speed (km/h)

']   
213.                 cv2.putText(self.result, str(columns), (10, 40), cv2.FONT_HERSHE

Y_SIMPLEX, 0.8, (0,0,255), 2, cv2.LINE_AA)   
214.                 cv2.putText(self.result, str(self.log), (10, 70), cv2.FONT_HERSH

EY_SIMPLEX, 0.75, (255,255,255), 2, cv2.LINE_AA)   
215.                 cv2.imshow("result", self.result)   
216.                 cv2.waitKey(100)   
217.                    
218.                 if self.filename is not None:   
219.                     self.log = [small, medium, large, lat, long, speed, self.res

ult_filename]       
220.                        
221.                 self.data.append(self.log)   
222.                    
223.                 print(self.log)   
224.                
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225.             except KeyboardInterrupt:   
226.                 cv2.destroyAllWindows()   
227.                 self.gps.close()   
228.                 self.data = np.array(self.data)   
229.                 if self.filename is not None:   
230.                     self.df = pd.DataFrame(self.data, columns = ['Small Onions',

'Medium Onions', 'Large Onions', 'Latitude', 'Longitude', 'Speed', 'Filename'])   
231.                 else:    
232.                     self.df = pd.DataFrame(self.data, columns = ['Small Onions',

 'Medium Onions', 'Large Onions', 'Latitude', 'Longitude', 'Speed'])   
233.                 print(self.df)   
234.                    
235.                 break   
236.            
237.         return self.df   
238.        
239.     ### write everything to csv   
240.     def save_log(self):   
241.         time.sleep(2)   
242.         test_filename = input("Please enter the name of the results file (use on

ly numbers, letters and underscores):  " )   
243.         self.pretty_print("[INFO] SAVING", "Saving results from test run as %s "

 % (test_filename + ".csv"))   
244.         self.df.to_csv(self.conf["log_file_path"] + test_filename + ".csv")   
245.                
246.     ### close the program   
247.     def close(self):   
248.         # shut down the program and delete camera source    
249.         self.pretty_print("[INFO] WARN", "Shutdown triggered!")   
250.         time.sleep(5)   
251.         self.gps.close()   
252.         self.camera.release()   
253.         cv2.destroyAllWindows()   
254.            
255.         sys.exit()  
256.  
257. # End of program    

Image Preprocessing  

1. # -*- coding: utf-8 -*-   
2. """  
3. Created on Thu Apr 26 13:09:08 2018  
4. preprocess_image_updated.py  
5.   
6. @author: Amanda  
7.   
8. Machine Vision Yield Monitor Program   
9. """   
10.    
11. """ Import Libraries """   
12. # import the necessary python libraries    
13. import numpy as np   
14. import cv2   
15. import os   
16. import math   
17. from skimage.feature import peak_local_max   
18. from skimage.morphology import watershed   
19. from scipy import ndimage   
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20. import size_calibration    
21.    
22. """ Define Functions and Variables """   
23.    
24. pixel_metric = size_calibration.calibrate("./calibration_images_undistorted/")   
25. print("The pixel metric is: ", pixel_metric)   
26.    
27.    
28. def ellipse_perimeter(major_axis, minor_axis):   
29.     a = major_axis/2   
30.     b = minor_axis/2   
31.     h = math.pow((a-b), 2)/math.pow((a+b), 2)   
32.     perimeter = math.pi*(a+b)*(1+ 3*h/(10 + math.sqrt(4-3*h)))   
33.     return perimeter   
34.    
35. def auto_canny(image, sigma=0.60):   
36.     # compute the median of the single channel pixel intensities   
37.     v = np.median(image)   
38.     # apply automatic Canny edge detection using the computed median   
39.     lower = int(max(0, (1.0 - sigma) * v))   
40.     upper = int(min(255, (1.0 + sigma) * v))   
41.     edged = cv2.Canny(image, lower, upper)   
42.     # return the edged image   
43.     return edged   
44.    
45. # creates an elliptical structuring element for the opening/closing operations   
46. ellipse_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (12, 12))   
47.        
48. # define range of Red onion color in HSV    
49. Lupper_red = np.array([50, 255, 255])   
50. Llower_red = np.array([0,40,0])   
51.    
52. Uupper_red = np.array([180,255, 255])   
53. Ulower_red = np.array([160,40,0])   
54.      
55. lower_white = np.array([0, 0, 240], dtype = "uint8")   
56. upper_white = np.array([60, 30, 255], dtype ="uint8")   
57.    
58. image_directory = "C:/Users/Amanda/Documents/yield_monitor_results_copy/20180924_1411_u

ndistorted/"   
59.    
60. # original preprocessing method   
61. def preprocess_original(image):   
62.        
63.     #cv2.imshow("Original Image", image)   
64.     # perform Mean Shift Filtering   
65.     shifted = cv2.pyrMeanShiftFiltering(image, 14, 50)   
66.        
67.     # convert the image to HSV colorspace and blur    
68.     blur = cv2.medianBlur(shifted, 9)   
69.     blur = cv2.GaussianBlur(blur, (9,9),0)   
70.     hsv = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)   
71.     h, s, v = cv2.split(hsv)   
72.        
73.     """  
74.     ## perform mean subtraction normalization  
75.       
76.     hue_mean = np.ones(h.shape, dtype=np.uint8)*np.mean(h)  
77.     hue_mean = hue_mean.astype(np.uint8)  
78.     subtracted_hue = cv2.subtract(h, hue_mean)  
79.       
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80.     sat_mean = np.ones(s.shape, dtype=np.uint8)*np.mean(s)  
81.     sat_mean = sat_mean.astype(np.uint8)  
82.     subtracted_sat = cv2.subtract(s, sat_mean)  
83.       
84.     val_mean = np.ones(v.shape, dtype=np.uint8)*np.mean(v)  
85.     val_mean = val_mean.astype(np.uint8)  
86.     subtracted_val = cv2.subtract(v, val_mean)  
87.     subtracted = cv2.merge((subtracted_hue, subtracted_sat, subtracted_val))  
88.       
89.     cv2.imshow("Mean Substracted Image", subtracted)  
90.     cv2.imshow("Mean Subtracted Hue Channel", subtracted_hue)  
91.     cv2.imshow("Mean Subtracted Saturation Channel", subtracted_sat)  
92.     cv2.imshow("Mean Subtracted Value Channel", subtracted_val)  
93.       
94.     #subt_ret,subt_thresh = cv2.threshold(subtracted_hue,0,255,cv2.THRESH_BINARY+cv2.TH

RESH_OTSU)  
95.   
96.     """   
97.     # threshold the HSV image to get only red colors   
98.     color_mask_lower = cv2.inRange(hsv, Llower_red, Lupper_red)   
99.     color_mask_upper = cv2.inRange(hsv, Ulower_red, Uupper_red)   
100.     color_mask_white = cv2.inRange(hsv, lower_white, upper_white)   
101.     color_mask = color_mask_lower + color_mask_upper +color_mask_white   
102.     color_opening = cv2.morphologyEx(color_mask, cv2.MORPH_OPEN, ellipse_kernel)

   
103.     color_closing = cv2.morphologyEx(color_opening, cv2.MORPH_CLOSE, ellipse_ker

nel)   
104.     cv2.imshow("Color Segmentation", color_closing)   
105.        
106.     ## chromacity calculations   
107.     # split the BGR channels    
108.     b, g, r = cv2.split(blur)   
109.     b = b.astype('float')   
110.     g = g.astype('float')   
111.     r = r.astype('float')   
112.        
113.     # add the 3 channels together   
114.     merged = np.add(r, b)   
115.     merged = np.add(merged, g)   
116.        
117.     # calculate red intensity   
118.     R_I = 3*r - b -g    
119.     R_I = R_I.astype('uint8')   
120.     cv2.imshow("Red Intensity Image", R_I)   
121.     
122.     # calculate chromacity of the red channel    
123.     chro_r = np.divide(r, merged)*255   
124.     chro_r = chro_r.astype('uint8')   
125.     cv2.imshow("Chromacity Image", chro_r)   
126.        
127.     # equalize red chromacity and apply a median blur, remove noise   
128.     equ = cv2.equalizeHist(chro_r)   
129.     equ = cv2.medianBlur(equ, 9)   
130.     grayscaled = R_I.copy()   
131.     grayscaled = cv2.equalizeHist(grayscaled)   
132.     grayscaled= cv2.GaussianBlur(grayscaled, (9,9),0)   
133.        
134.     chro_edged = cv2.Canny(grayscaled, 180, 255)   
135.     #chro_edged = cv2.dilate(chro_edged, ellipse_kernel, iterations=1)   
136.     cv2.imshow("Chromacity Edged", chro_edged)   
137.     final_mask = cv2.bitwise_and(chro_edged, color_closing)   
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138.     cv2.imshow("Final Mask", final_mask)   
139.       
140.     small, medium, large, result = find_onion_contours(final_mask.copy(),    
141.                                                        image.copy(), pixel_metri

c)     
142.     cv2.imshow("Final Result", result)   
143.     cv2.waitKey(2000)   
144.     return (small, medium, large), result    
145.    
146. def preprocess_watershed(image):   
147.     # create a copy of the image to draw on   
148.     clone = image.copy()    
149.     #cv2.imshow("Original", clone)   
150.     wts_result = np.zeros(image.shape, dtype=np.uint8)   
151.     # perform Mean Shift Filtering   
152.     #shifted = cv2.pyrMeanShiftFiltering(image, 14, 50)   
153.     #cv2.imshow("Mean Shift Filtering", shifted)   
154.     shifted = clone.copy()   
155.     # convert the image to HSV colorspace and blur    
156.     blur = cv2.medianBlur(shifted, 9)   
157.     blur = cv2.GaussianBlur(blur, (9,9),0)   
158.     cv2.imshow("Blurred Image", blur)   
159.     hsv = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)   
160.     h, s, v = cv2.split(hsv)   
161.        
162.     # threshold the HSV image to get only red colors   
163.     color_mask_lower = cv2.inRange(hsv, Llower_red, Lupper_red)   
164.     color_mask_upper = cv2.inRange(hsv, Ulower_red, Uupper_red)   
165.     color_mask_white = cv2.inRange(hsv, lower_white, upper_white)   
166.     color_mask = color_mask_lower + color_mask_upper + color_mask_white   
167.     cv2.imshow("Color Mask", color_mask)   
168.     color_opening = cv2.morphologyEx(color_mask, cv2.MORPH_OPEN, ellipse_kernel)

   
169.     cv2.imshow("Opening", color_opening)   
170.     color_closing = cv2.morphologyEx(color_opening, cv2.MORPH_CLOSE, ellipse_ker

nel)   
171.     cv2.imshow("Closing", color_closing)   
172.        
173.     # sure background area   
174.     sure_bg = color_closing.copy()   
175.                
176.     # Finding sure foreground area   
177.     dist_transform =  ndimage.distance_transform_edt(sure_bg)   
178.     cv2.imshow("Distance Transform CV2", dist_transform/np.max(dist_transform[:,

:]))   
179.     thresh = color_closing.copy()   
180.        
181.     # compute the exact Euclidean distance from every binary   
182.     # pixel to the nearest zero pixel, then find peaks in this distance map   
183.     localMax = peak_local_max(dist_transform, indices=False, min_distance=20,   
184.                               labels=thresh)               
185.     # perform a connected component analysis on the local peaks,   
186.     # using 8-connectivity, then appy the Watershed algorithm   
187.     markers = ndimage.label(localMax, structure=np.ones((3, 3)))[0]   
188.     labels = watershed(-dist_transform, markers, mask=thresh)   
189.     print("[INFO] {} unique segments found".format(len(np.unique(labels)) - 1)) 

         
190.     # loop over the unique labels returned by the Watershed   
191.     # algorithm   
192.        
193.     total_small = int()   
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194.     total_medium = int()   
195.     total_large = int()   
196.        
197.     if (len(np.unique(labels)) - 1) >= 1:      
198.         for label in np.unique(labels):   
199.             # if the label is zero, we are examining the 'background'   
200.             # so simply ignore it   
201.             if label == 0:   
202.                 continue   
203.             # otherwise, allocate memory for the label region and draw   
204.             # it on the mask   
205.             mask = np.zeros(color_closing.shape, dtype="uint8")   
206.             mask[labels == label] = 255   
207.             #cv2.imshow("Watershed Mask", mask)   
208.             #cv2.waitKey(300)   
209.             small, medium, large, wts_result = find_onion_contours(mask, clone, 

   
210.                                                                    pixel_metric)

       
211.               
212.             clone = wts_result.copy()    
213.                    
214.             total_small = total_small + small   
215.             total_medium = total_medium + medium   
216.             total_large = total_large + large   
217.            
218.     if not wts_result.any():   
219.         wts_result = image.copy()   
220.        
221.     #cv2.imshow("Final Result", wts_result)   
222.     #cv2.waitKey(500)   
223.                
224.     return (total_small, total_medium, total_large), wts_result    
225.            
226. def find_onion_contours(mask, original, pixel_metric):   
227.     # initialize lists of all the onion types present in the image    
228.     small_onions = []   
229.     medium_onions = []   
230.     large_onions = []   
231.     dst, contours, hierarchy = cv2.findContours(mask, cv2.RETR_LIST,   
232.                                         cv2.CHAIN_APPROX_SIMPLE)                 
233.     result = original.copy()   
234.        
235.     for c in contours:   
236.    
237.         moments = cv2.moments(c)   
238.         if moments['m00'] != 0.0:   
239.             cx = int(moments['m10']/moments['m00'])   
240.             cy = int(moments['m01']/moments['m00'])   
241.             centroid = (int(cx), int(cy))               
242.             ((x, y), radius) = cv2.minEnclosingCircle(c)   
243.                    
244.             if len(c) > 5:   
245.                 #print("radius : ", radius)   
246.                 #if (radius<60) and (radius>16):     
247.                 ellipse = cv2.fitEllipse(c)   
248.                 major_axis, minor_axis = ellipse[1]   
249.                 width = radius/pixel_metric    
250.                 #print("width in mm", width)   
251.                    
252.                 try:   
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253.                     aspect_ratio = minor_axis/major_axis    
254.                     #print("aspect ratio :", aspect_ratio)   
255.                                
256.                 except ZeroDivisionError:   
257.                     pass   
258.                    
259.                 # filter the onions by size    
260.                 if 15 <=  width < 22: # small onion   
261.                     color = (255, 0, 0) # Blue   
262.                     small_onions.append(c)   
263.                 if (width > 22) and (width < 27): # Medium Onion   
264.                     medium_onions.append(c)   
265.                     color = (0, 255, 0) # Green   
266.                 if (width > 27) and (width < 40): # Large Onion   
267.                     large_onions.append(c)   
268.                     color = (0, 0, 255) # Red   
269.                        
270.                 if any((small_onions, medium_onions, large_onions)):    
271.                     if  15 <= width <= 40:    
272.                         # draw the centroid of the circle as well as the onion b

order    
273.                         cv2.circle(result, centroid, 3, (255, 255, 0), -1)   
274.                         #cv2.ellipse(result, ellipse, color, 2)   
275.                         cv2.circle(result, (int(x), int(y)), int(radius), color,

 2)                     
276.         else:   
277.             pass   
278.        
279.     # return the counts for each onion category    
280.     return len(small_onions), len(medium_onions), len(large_onions), result    

 

Config File Loading 

1. # import the necessary packages   
2. from json_minify import json_minify   
3. import json   
4.    
5. class Conf:   
6.     def __init__(self, confPath):   
7.         # load and store the configuration and update the object's dictionary   
8.         conf = json.loads(json_minify(open(confPath).read()))   
9.         self.__dict__.update(conf)   
10.    
11.     def __getitem__(self, k):   
12.         # return the value associated with the supplied key   
13.         return self.__dict__.get(k, None)   
14.        

GPS Sentence Parsing 

1. # -*- coding: utf-8 -*-   
2. """  
3. @author: Amanda  
4. """   
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5.    
6. import serial    
7.    
8. port ="COM7" # Add to config file    
9. BAUDRATE = 38400 # Add to config file   
10.    
11. gps = serial.Serial(port)   
12. gps.baudrate = BAUDRATE   
13.    
14. while True:      
15.     # flush the gps serial port    
16.     #gps.flushInput()   
17.     try:   
18.         line = gps.readline()   
19.         line = line.decode("utf-8")   
20.         gps_data = line.split(",")   
21.            
22.         # retrieve only the RMC sentences    
23.         if gps_data[0] == "$GPRMC":   
24.             # only report GPS sentences if an active valid fix was received   
25.             #if gps_data[2] == "V":   
26.             if gps_data[2] == "A":   
27.                 latitude = gps_data[3]    
28.                 latitude_char = gps_data[4]   
29.                    
30.                 longitude = gps_data[5]   
31.                 longitude_char = gps_data[6]   
32.                 speed = gps_data[7]   
33.                 #speed = format(speed, ".3f")   
34.                 #speed = str(speed)   
35.                    
36.                 print('%s %s %s %s %s %s' % (latitude, latitude_char, longitude,  
37.                       longitude_char, speed, "km/h" ))   
38.                    
39.                 print('%s %s %s %s ' % (latitude, latitude_char, longitude,  
40.                       longitude_char))   
41.       
42.     except KeyboardInterrupt:   
43.         gps.close()   
44.         break   

Main File 

1. # -*- coding: utf-8 -*-   
2. """  
3.   
4. @author: Amanda  
5. """   
6. import YieldMonitor    
7. import time    
8. import argparse   
9.    
10. # construct the argument parse and parse the arguments   
11.    
12. ap = argparse.ArgumentParser()   
13. ap.add_argument("-c", "--

config", required=True, help="path to the configuration file")   
14. args = vars(ap.parse_args())   
15.    
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16. YM = YieldMonitor.YieldMonitor(args["config"])   
17. time.sleep(2)   
18.    
19. YM.pretty_print("[INFO] RUNNING", "Yield Monitor initialized!")   
20. YM.calibrate_monitor()   
21. time.sleep(2)   
22. YM.init_gps()   
23.    
24. YM.run()   
25. YM.save_log()   
26.    
27.    
28. YM.close()   

Image Preprocessing (Updated post field trials) 

1. # -*- coding: utf-8 -*-   
2. """  
3. preprocess_image_updated.py  
4.   
5. @author: Amanda  
6.   
7. Machine Vision Yield Monitor Program   
8. """   
9.    
10. """ Import Libraries """   
11. # import the necessary python libraries    
12. import numpy as np   
13. import cv2   
14. import os   
15. import math   
16. from skimage.feature import peak_local_max   
17. from skimage.morphology import watershed   
18. from scipy import ndimage   
19. import size_calibration    
20.    
21. """ Define Functions and Variables """   
22.    
23. pixel_metric = size_calibration.calibrate("./calibration_images_undistorted/")   
24. print("The pixel metric is: ", pixel_metric)   
25.    
26.    
27. def ellipse_perimeter(major_axis, minor_axis):   
28.     a = major_axis/2   
29.     b = minor_axis/2   
30.     h = math.pow((a-b), 2)/math.pow((a+b), 2)   
31.     perimeter = math.pi*(a+b)*(1+ 3*h/(10 + math.sqrt(4-3*h)))   
32.     return perimeter   
33.    
34. def auto_canny(image, sigma=0.60):   
35.     # compute the median of the single channel pixel intensities   
36.     v = np.median(image)   
37.     # apply automatic Canny edge detection using the computed median   
38.     lower = int(max(0, (1.0 - sigma) * v))   
39.     upper = int(min(255, (1.0 + sigma) * v))   
40.     edged = cv2.Canny(image, lower, upper)   
41.     # return the edged image   
42.     return edged   
43.    
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44. # creates an elliptical structuring element for the opening/closing operations   
45. ellipse_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (12, 12))   
46.        
47. # define range of Red onion color in HSV    
48. Lupper_red = np.array([50, 255, 255])   
49. Llower_red = np.array([0,40,0])   
50.    
51. Uupper_red = np.array([180,255, 255])   
52. Ulower_red = np.array([160,40,0])   
53.    
54.    
55. lower_white = np.array([0, 0, 240], dtype = "uint8")   
56. upper_white = np.array([60, 30, 255], dtype ="uint8")   
57.    
58. image_directory = "C:/Users/Amanda/Documents/yield_monitor_results_copy/20180924_1411_u

ndistorted/"   
59.    
60. # original preprocessing method   
61. def preprocess_original(image):   
62.        
63.     # perform Mean Shift Filtering   
64.     shifted = cv2.pyrMeanShiftFiltering(image, 14, 50)   
65.        
66.     # convert the image to HSV colorspace and blur    
67.     blur = cv2.medianBlur(shifted, 9)   
68.     blur = cv2.GaussianBlur(blur, (9,9),0)   
69.     hsv = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)   
70.     h, s, v = cv2.split(hsv)   
71.        
72.     """  
73.     ## perform mean subtraction normalization  
74.       
75.     hue_mean = np.ones(h.shape, dtype=np.uint8)*np.mean(h)  
76.     hue_mean = hue_mean.astype(np.uint8)  
77.     subtracted_hue = cv2.subtract(h, hue_mean)  
78.       
79.     sat_mean = np.ones(s.shape, dtype=np.uint8)*np.mean(s)  
80.     sat_mean = sat_mean.astype(np.uint8)  
81.     subtracted_sat = cv2.subtract(s, sat_mean)  
82.       
83.     val_mean = np.ones(v.shape, dtype=np.uint8)*np.mean(v)  
84.     val_mean = val_mean.astype(np.uint8)  
85.     subtracted_val = cv2.subtract(v, val_mean)  
86.     subtracted = cv2.merge((subtracted_hue, subtracted_sat, subtracted_val))  
87.       
88.     cv2.imshow("Mean Substracted Image", subtracted)  
89.     cv2.imshow("Mean Subtracted Hue Channel", subtracted_hue)  
90.     cv2.imshow("Mean Subtracted Saturation Channel", subtracted_sat)  
91.     cv2.imshow("Mean Subtracted Value Channel", subtracted_val)  
92.       
93.     #subt_ret,subt_thresh = cv2.threshold(subtracted_hue,0,255,cv2.THRESH_BINARY+cv2.TH

RESH_OTSU)  
94.   
95.     """   
96.     # threshold the HSV image to get only red colors   
97.     color_mask_lower = cv2.inRange(hsv, Llower_red, Lupper_red)   
98.     color_mask_upper = cv2.inRange(hsv, Ulower_red, Uupper_red)   
99.     color_mask_white = cv2.inRange(hsv, lower_white, upper_white)   
100.     color_mask = color_mask_lower + color_mask_upper +color_mask_white   
101.     color_opening = cv2.morphologyEx(color_mask, cv2.MORPH_OPEN, ellipse_kernel)
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102.     color_closing = cv2.morphologyEx(color_opening, cv2.MORPH_CLOSE, ellipse_ker
nel)   

103.        
104.     ## chromacity calculations   
105.     # split the BGR channels    
106.     b, g, r = cv2.split(blur)   
107.     b = b.astype('float')   
108.     g = g.astype('float')   
109.     r = r.astype('float')   
110.        
111.     # add the 3 channels together   
112.     merged = np.add(r, b)   
113.     merged = np.add(merged, g)   
114.        
115.     # calculate red intensity   
116.     R_I = 3*r - b -g    
117.     R_I = R_I.astype('uint8')   
118.     
119.     # calculate chromacity of the red channel    
120.     chro_r = np.divide(r, merged)*255   
121.     chro_r = chro_r.astype('uint8')   
122.        
123.     # equalize red chromacity and apply a median blur, remove noise   
124.     equ = cv2.equalizeHist(chro_r)   
125.     equ = cv2.medianBlur(equ, 9)   
126.        
127.     grayscaled = R_I.copy()   
128.     grayscaled = cv2.equalizeHist(grayscaled)   
129.     grayscaled= cv2.GaussianBlur(grayscaled, (9,9),0)   
130.        
131.     chro_edged = cv2.Canny(grayscaled, 180, 255)   
132.     chro_edged = cv2.dilate(chro_edged, ellipse_kernel, iterations=1)   
133.     final_mask = cv2.bitwise_and(chro_edged, color_closing)   
134.     small, medium, large, result = find_onion_contours(final_mask.copy(),    
135.                                                        image.copy(), pixel_metri

c)            
136.        
137.     return (small, medium, large), result    
138.    
139. def preprocess_watershed(image):   
140.     # create a copy of the image to draw on   
141.     clone = image.copy()    
142.     wts_result = np.zeros(image.shape, dtype=np.uint8)   
143.     # perform Mean Shift Filtering   
144.     shifted = cv2.pyrMeanShiftFiltering(image, 14, 50)   
145.        
146.     # convert the image to HSV colorspace and blur    
147.     blur = cv2.medianBlur(shifted, 9)   
148.     blur = cv2.GaussianBlur(blur, (9,9),0)   
149.     hsv = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)   
150.     h, s, v = cv2.split(hsv)   
151.        
152.     # threshold the HSV image to get only red colors   
153.     color_mask_lower = cv2.inRange(hsv, Llower_red, Lupper_red)   
154.     color_mask_upper = cv2.inRange(hsv, Ulower_red, Uupper_red)   
155.     color_mask_white = cv2.inRange(hsv, lower_white, upper_white)   
156.     color_mask = color_mask_lower + color_mask_upper + color_mask_white   
157.     color_opening = cv2.morphologyEx(color_mask, cv2.MORPH_OPEN, ellipse_kernel)

   
158.     color_closing = cv2.morphologyEx(color_opening, cv2.MORPH_CLOSE, ellipse_ker

nel)   
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159.        
160.     # sure background area   
161.     sure_bg = color_closing.copy()   
162.                
163.     # Finding sure foreground area   
164.     dist_transform =  ndimage.distance_transform_edt(sure_bg)   
165.     #cv2.imshow("Distance Transform CV2", dist_transform/np.max(dist_transform[:

,:]))   
166.     thresh = color_closing.copy()   
167.        
168.     # compute the exact Euclidean distance from every binary   
169.     # pixel to the nearest zero pixel, then find peaks in this distance map   
170.     localMax = peak_local_max(dist_transform, indices=False, min_distance=20,   
171.                               labels=thresh)               
172.     # perform a connected component analysis on the local peaks,   
173.     # using 8-connectivity, then appy the Watershed algorithm   
174.     markers = ndimage.label(localMax, structure=np.ones((3, 3)))[0]   
175.     labels = watershed(-dist_transform, markers, mask=thresh)   
176.     print("[INFO] {} unique segments found".format(len(np.unique(labels)) - 1)) 

  
177.                
178.     # loop over the unique labels returned by the Watershed   
179.     # algorithm   
180.        
181.     total_small = int()   
182.     total_medium = int()   
183.     total_large = int()   
184.        
185.     if (len(np.unique(labels)) - 1) >= 1:      
186.         for label in np.unique(labels):   
187.             # if the label is zero, we are examining the 'background'   
188.             # so simply ignore it   
189.             if label == 0:   
190.                 continue   
191.             # otherwise, allocate memory for the label region and draw   
192.             # it on the mask   
193.             mask = np.zeros(color_closing.shape, dtype="uint8")   
194.             mask[labels == label] = 255   
195.             small, medium, large, wts_result = find_onion_contours(mask, clone, 

   
196.                                                                    pixel_metric)

       
197.                
198.             clone = wts_result.copy()    
199.                    
200.             total_small = total_small + small   
201.             total_medium = total_medium + medium   
202.             total_large = total_large + large   
203.            
204.     if not wts_result.any():   
205.         wts_result = image.copy()   
206.                
207.     return (total_small, total_medium, total_large), wts_result    
208.            
209. def find_onion_contours(mask, original, pixel_metric):   
210.     # initialize lists of all the onion types present in the image    
211.     small_onions = []   
212.     medium_onions = []   
213.     large_onions = []   
214.     dst, contours, hierarchy = cv2.findContours(mask, cv2.RETR_LIST,   
215.                                         cv2.CHAIN_APPROX_SIMPLE)                 
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216.     result = original.copy()   
217.        
218.     for c in contours:   
219.    
220.         moments = cv2.moments(c)   
221.         if moments['m00'] != 0.0:   
222.             cx = int(moments['m10']/moments['m00'])   
223.             cy = int(moments['m01']/moments['m00'])   
224.             centroid = (int(cx), int(cy))               
225.             ((x, y), radius) = cv2.minEnclosingCircle(c)   
226.                    
227.             if len(c) > 5:   
228.                 #print("radius : ", radius)   
229.                 #if (radius<60) and (radius>16):     
230.                 ellipse = cv2.fitEllipse(c)   
231.                 major_axis, minor_axis = ellipse[1]   
232.                 width = radius/pixel_metric    
233.                 #print("width in mm", width)   
234.                    
235.                 try:   
236.                     aspect_ratio = minor_axis/major_axis    
237.                     #print("aspect ratio :", aspect_ratio)   
238.                                
239.                 except ZeroDivisionError:   
240.                     pass   
241.                    
242.                 # filter the onions by size    
243.                 if 15 <=  width < 25: # small onion   
244.                     color = (255, 0, 0) # Blue   
245.                     small_onions.append(c)   
246.                 if (width > 25) and (width < 45): # Medium Onion   
247.                     medium_onions.append(c)   
248.                     color = (0, 255, 0) # Green   
249.                 if (width > 45) and (width < 50): # Large Onion   
250.                     large_onions.append(c)   
251.                     color = (0, 0, 255) # Red   
252.                        
253.                 if any((small_onions, medium_onions, large_onions)):    
254.                     if  15 <= width <= 65:    
255.                         # draw the centroid of the circle as well as the onion b

order    
256.                         cv2.circle(result, centroid, 3, (255, 255, 0), -1)   
257.                         #cv2.ellipse(result, ellipse, color, 2)   
258.                         cv2.circle(result, (int(x), int(y)), int(radius), color,

 2)                     
259.         else:   
260.             pass   
261.        
262.     # return the counts for each onion category    
263.     return len(small_onions), len(medium_onions), len(large_onions), result    
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Statistical Analysis  

1. # -*- coding: utf-8 -*-   
2. """  
3. Created on Mon Feb 8 14:51:24 2019  
4.   
5. @author: Amanda  
6. """   
7.    
8. import numpy as np   
9. import matplotlib.pyplot as plt   
10. import pandas as pd   
11. from scipy import stats   
12.    
13. file_path = "C:/Users/Amanda/Documents/Thesis/Statistics/ks_data.xls"   
14. print(file_path)   
15.    
16. data = pd.read_excel(file_path, sheet_name="large_class", names = ["Predicted Diameter 

(mm)","True Diameter (mm)"])   
17.    
18. # create plot area   
19. fig, ax = plt.subplots(figsize=(8, 4))   
20.    
21. n_bins = 50   
22. predicted = np.asarray(data["Predicted Diameter (mm)"])   
23. true = np.asarray(data["True Diameter (mm)"])   
24.    
25.    
26. n, bins, patches = ax.hist(predicted, n_bins, density=True, histtype='step',   
27.                            cumulative=True, label='Predicted Diameter')   
28.    
29. n, bins, patches = ax.hist(true, n_bins, density=True, histtype='step',   
30.                            cumulative=True, label='True Diameter')   
31.    
32.    
33. # Compute the Kolmogorov-Smirnov statistic on the 2 gathered samples.   
34. rs_statistic, p_value = stats.ks_2samp(predicted, true)   
35.    
36. print("RS Statistic :", rs_statistic)   
37. print("P Value:", p_value)   
38.    
39.    
40. # tidy up the figure   
41. ax.grid(True)   
42. ax.set_title('Large Class: KS–

Test Comparison Cumulative Fraction Plot', fontname="Arial", fontsize = "large")   
43. ax.legend(loc='right', prop={'size': 10})   
44. ax.set_xlabel('Diameter (mm)', fontname="Arial", fontsize = "large")   
45. ax.set_ylabel('Cumulative Fraction', fontname="Arial", fontsize = "large")   
46.    
47. plt.show()   
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Appendix B: Hardware Specifications 

Table B-2. Prototype Camera specifications 
Attribute  Value  

Brand Name ELP 
Resolution  
Sensor 
Picture Format 
USB 
Exposure 
White Balance 
 
Effective pixels 
 
 
 
 

 

Performance 

2.0 Megapixel 1080P 
1/2.7" CMOS 
MJPEG or YUY2 optional 
Protocal USB2.0 HS/FS 
Auto exposure AEC Support 
Auto white blance AEB Support 
 
1920 (H) x 1080 (V) pixels  
1280 (H) x 1024 (V) pixels  
1280 (H) x 720 (V) pixels  
1024 (H) x 768 (V) pixels  
800 (H) x 600 (V) pixels  
640 (H) x 480 (V) pixels  
352(H) x 288 (V) pixels  
320 (H) x 240 (V) pixels 
 
1920 (H) x 1080 (V) pixels MJPEG 30fps YUY2 6fps  
1280 (H) x 1024 (V) pixels MJPEG 30fps YUY2 6fps  
1280 (H) x 720 (V) pixels MJPEG 60fps YUY2 9fps  
1024 (H) x 768 (V) pixels MJPEG 30fps YUY2 9fps  
800 (H) x 600 (V) pixels MJPEG 60fps YUY2 21fps  
640 (H) x 480 (V) pixels MJPEG 120fps YUY2 30fps 

Voltage DC 5-V/current 150mA 
Size Size 32x32mm/38*38 
Work Temperature DEGREES (-20~70) 
Hardware Platform 
Other Specifications 

PC; Mac; Android OS 
Adjustable parameters Brightness/Contrast/Color saturation 
/Definition/Gamma/WB  
Night vision optional, Support IR Cut and IR board for night vision 

 

Table B-3. Solid state drive specifications 

Attribute  Value  
Brand Name Samsung 

Series T5 

Color blue 

Item Height 7.6 centimeter 

Item Width 10 millimeters 

Hard Disk Size 250 GB 

Hard Disk Technology Portable 

Hardware Platform PC;Mac;Android OS 
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Table B-4. GPS Sensor specifications 

Attribute  Value  
Brand Name  
Version  
Dimensions (DxH) 

Garmin 
GPS 19x HVS (NMEA 0183) 
3 19/32" x 1 15/16" (91.6 mm x 49.5 mm) 

Weight 7.1 oz (201 g) 
Cable length 30 ft (9.14 m) 
Temperature Range  -22° to 176° F (-30° to 80° C) 
Compass-safe distance 5.9" (150 mm) 
Power source input 8-33 Vdc, unregulated 
Input current 40 mA at 12 Vdc 
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Appendix C: Additional Figures 

 

 

 

 

Figure C-1. Example image of the size calibration setup (section 3.2.6). 
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Figure C-2. Modification of the size classes for shallot onion classification. 
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Appendix D: Definition of Performance Metrics 

 Accuracy is the degree of similarity between a measurement of a given quantity and the 

true value of that same quantity. Accuracy is an important metric for evaluating the performance 

of a classification algorithm as it represents the algorithm’s capacity to correctly classify the cases. 

It is calculated by summing the number of true positive (TP) and true negative (TN) classifications 

and dividing by the total number of classifications (TP + TN + false positives (FP) + false negatives 

(FN)), and like all metrics is often multiplied by 100 to yield a percentage. Although it is a powerful 

indicator of overall performance, accuracy alone is not enough to determine the strength of the 

algorithm and if it has correctly learned the task at hand (Baratloo et al., 2015). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝛴 𝑇𝑃+𝛴 𝑇𝑁

𝛴 𝑇𝑃+𝛴 𝐹𝑃+𝛴 𝑇𝑁+𝛴 𝐹 𝑁
                                                     (D-1) 

Precision, also referred to as positive predictive value (PPV), is used to determine the algorithm’s 

capacity to correctly identify positive cases with respect to all the cases the algorithm has 

classified as positive. It is calculated by dividing the number of true positives by the number of 

predicted positives which itself is a sum of the true positives and false positives (Baratloo et al., 

2015). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝛴 𝑇𝑃

𝛴 𝑇𝑃+𝛴 𝐹𝑃
                                                (D-2) 

Precision is an indicator of how reproducible and repeatable a measurement is under 

unchanged conditions and is used to evaluate the exactness of a model. Accuracy and precision 

are independent of each other, meaning that a set of values can be either accurate, precise, both 

at the same time, or neither. 

Recall is the fraction of relevant instances (TP) that have been correctly identified over the 

total amount of relevant instances (TP and FN). Recall and precision are typically used in unison 

to report the performance of a classification system. Precision indicates the quality of the positive 



89 

prediction capability of the model, while recall indicates the completeness or quantity of correct 

predictions with respect to all positive instances present. High precision would mean that the 

algorithm returned a greater amount of relevant results than irrelevant ones, while a high recall 

value would mean that the algorithm returned most of the relevant results (Baratloo et al., 2015; 

Buckland & Gey, 1994). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝛴 𝑇𝑃

𝛴 𝑇𝑃+𝛴 𝐹𝑁
                                                       (D-3) 

Standard error (SE) is calculated as the standard deviation of the distribution associated 

with that error, or an estimate of that same standard deviation. For a sample, the standard error 

is equivalent to the standard deviation  𝑠 divided by the square root of the sample size 𝑛 : 

𝑆𝐸 =
𝑠

√𝑛
                                                           (D-4) 

SE is used to approximate the uncertainty around the estimate of the mean measurement, 

and it is most useful as a means of calculating a confidence interval (Altman & Bland, 2005).  

Root Mean Square Error (RMSE) is the standard deviation of the residuals or prediction 

errors. RMSE is used to measure the difference between values predicted by a model and the 

values observed.   

  𝑅𝑀𝑆𝐸 =  √
∑ (�̂�𝑖− 𝑦𝑖)

2𝑛
𝑖=1

𝑛
                                               (D-5) 

Where: 

𝑛 =  number of observations, 

�̂�𝑖 = predicted value for the ith observation, 

yi = observed value. 
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Appendix E: Additional Data 

E-1 Size Prediction Results  

Table E-1.2. Size prediction results for the small onion class. 

Predicted Diameter 
(Pixels) 

True Diameter 
(Pixels) 

Predicted 
Diameter (mm)  

True Diameter 
(mm)  

Difference 
Predicted Size 
Class 

True Size 
Class 

116 79 34.36 23.40 10.96 SMALL SMALL 
106 84 31.39 24.88 6.52 SMALL SMALL 
104 85 30.80 25.17 5.63 SMALL SMALL 
118 87 34.95 25.77 9.18 SMALL SMALL 
142 91 42.06 26.95 15.10 SMALL SMALL 
102 91 30.21 26.95 3.26 SMALL SMALL 
147 92 43.54 27.25 16.29 SMALL SMALL 
109 95 32.28 28.14 4.15 SMALL SMALL 
110 96 32.58 28.43 4.15 SMALL SMALL 
150 96 44.43 28.43 15.99 MEDIUM SMALL 
121 98 35.84 29.02 6.81 SMALL SMALL 
151 98 44.72 29.02 15.70 MEDIUM SMALL 
128 101 37.91 29.91 8.00 SMALL SMALL 
131 102 38.80 30.21 8.59 SMALL SMALL 
117 103 34.65 30.51 4.15 SMALL SMALL 
127 104 37.61 30.80 6.81 SMALL SMALL 
195 104 57.75 30.80 26.95 LARGE SMALL 
101 105 29.91 31.10 -1.18 SMALL SMALL 
103 106 30.51 31.39 -0.89 SMALL SMALL 
159 107 47.09 31.69 15.40 MEDIUM SMALL 
171 107 50.64 31.69 18.95 MEDIUM SMALL 
114 108 33.76 31.99 1.78 SMALL SMALL 
136 108 40.28 31.99 8.29 SMALL SMALL 
125 109 37.02 32.28 4.74 SMALL SMALL 
160 109 47.39 32.28 15.10 MEDIUM SMALL 
99 110 29.32 32.58 -3.26 SMALL SMALL 
114 110 33.76 32.58 1.18 SMALL SMALL 
132 111 39.09 32.87 6.22 SMALL SMALL 
102 111 30.21 32.87 -2.67 SMALL SMALL 
170 113 50.35 33.47 16.88 MEDIUM SMALL 
149 113 44.13 33.47 10.66 MEDIUM SMALL 
105 114 31.10 33.76 -2.67 SMALL SMALL 
142 114 42.06 33.76 8.29 SMALL SMALL 
123 114 36.43 33.76 2.67 SMALL SMALL 
172 114 50.94 33.76 17.18 MEDIUM SMALL 
142 115 42.06 34.06 8.00 SMALL SMALL 
130 115 38.50 34.06 4.44 SMALL SMALL 
164 115 48.57 34.06 14.51 MEDIUM SMALL 
151 115 44.72 34.06 10.66 MEDIUM SMALL 
136 116 40.28 34.36 5.92 SMALL SMALL 
122 116 36.13 34.36 1.78 SMALL SMALL 
106 116 31.39 34.36 -2.96 SMALL SMALL 
162 116 47.98 34.36 13.62 MEDIUM SMALL 
173 116 51.24 34.36 16.88 MEDIUM SMALL 
146 117 43.24 34.65 8.59 SMALL SMALL 
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129 117 38.21 34.65 3.55 SMALL SMALL 
159 117 47.09 34.65 12.44 MEDIUM SMALL 
121 118 35.84 34.95 0.89 SMALL SMALL 
109 118 32.28 34.95 -2.67 SMALL SMALL 
146 118 43.24 34.95 8.29 SMALL SMALL 
127 119 37.61 35.24 2.37 SMALL SMALL 
147 119 43.54 35.24 8.29 SMALL SMALL 
114 119 33.76 35.24 -1.48 SMALL SMALL 
158 119 46.79 35.24 11.55 MEDIUM SMALL 
168 119 49.76 35.24 14.51 MEDIUM SMALL 
133 120 39.39 35.54 3.85 SMALL SMALL 
121 120 35.84 35.54 0.30 SMALL SMALL 
110 120 32.58 35.54 -2.96 SMALL SMALL 
120 121 35.54 35.84 -0.30 SMALL SMALL 
124 121 36.72 35.84 0.89 SMALL SMALL 
127 122 37.61 36.13 1.48 SMALL SMALL 
111 122 32.87 36.13 -3.26 SMALL SMALL 
164 122 48.57 36.13 12.44 MEDIUM SMALL 
191 122 56.57 36.13 20.44 LARGE SMALL 
238 122 70.49 36.13 34.36 LARGE SMALL 
181 123 53.61 36.43 17.18 MEDIUM SMALL 
172 123 50.94 36.43 14.51 MEDIUM SMALL 
198 123 58.64 36.43 22.21 LARGE SMALL 
105 124 31.10 36.72 -5.63 SMALL SMALL 
163 124 48.28 36.72 11.55 MEDIUM SMALL 
211 124 62.49 36.72 25.77 LARGE SMALL 
130 125 38.50 37.02 1.48 SMALL SMALL 
121 125 35.84 37.02 -1.18 SMALL SMALL 
150 125 44.43 37.02 7.40 MEDIUM SMALL 
132 126 39.09 37.32 1.78 SMALL SMALL 
139 126 41.17 37.32 3.85 SMALL SMALL 
156 126 46.20 37.32 8.89 MEDIUM SMALL 
215 126 63.68 37.32 26.36 LARGE SMALL 
217 126 64.27 37.32 26.95 LARGE SMALL 
120 127 35.54 37.61 -2.07 SMALL SMALL 
125 127 37.02 37.61 -0.59 SMALL SMALL 
130 128 38.50 37.91 0.59 SMALL SMALL 
144 128 42.65 37.91 4.74 SMALL SMALL 
146 130 43.24 38.50 4.74 SMALL SMALL 
138 130 40.87 38.50 2.37 SMALL SMALL 
163 130 48.28 38.50 9.77 MEDIUM SMALL 
159 130 47.09 38.50 8.59 MEDIUM SMALL 
140 131 41.46 38.80 2.67 SMALL SMALL 
150 131 44.43 38.80 5.63 MEDIUM SMALL 
257 131 76.12 38.80 37.32 LARGE SMALL 
132 132 39.09 39.09 0.00 SMALL SMALL 
144 133 42.65 39.39 3.26 SMALL SMALL 
156 133 46.20 39.39 6.81 MEDIUM SMALL 
184 133 54.49 39.39 15.10 LARGE SMALL 
146 134 43.24 39.69 3.55 SMALL SMALL 
132 134 39.09 39.69 -0.59 SMALL SMALL 
104 134 30.80 39.69 -8.89 SMALL SMALL 
151 134 44.72 39.69 5.03 MEDIUM SMALL 
138 135 40.87 39.98 0.89 SMALL SMALL 
143 135 42.35 39.98 2.37 SMALL SMALL 
150 135 44.43 39.98 4.44 MEDIUM SMALL 
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179 135 53.01 39.98 13.03 MEDIUM SMALL 
172 135 50.94 39.98 10.96 MEDIUM SMALL 
247 135 73.15 39.98 33.17 LARGE SMALL 
121 136 35.84 40.28 -4.44 SMALL SMALL 
151 136 44.72 40.28 4.44 MEDIUM SMALL 
205 136 60.71 40.28 20.44 LARGE SMALL 
114 137 33.76 40.58 -6.81 SMALL SMALL 
138 137 40.87 40.58 0.30 SMALL SMALL 
131 137 38.80 40.58 -1.78 SMALL SMALL 
173 137 51.24 40.58 10.66 MEDIUM SMALL 
181 138 53.61 40.87 12.74 MEDIUM SMALL 
180 138 53.31 40.87 12.44 MEDIUM SMALL 
162 138 47.98 40.87 7.11 MEDIUM SMALL 
250 138 74.04 40.87 33.17 LARGE SMALL 
143 139 42.35 41.17 1.18 SMALL SMALL 
150 139 44.43 41.17 3.26 MEDIUM SMALL 
131 140 38.80 41.46 -2.67 SMALL SMALL 
194 140 57.46 41.46 15.99 LARGE SMALL 
137 140 40.58 41.46 -0.89 SMALL SMALL 
152 140 45.02 41.46 3.55 MEDIUM SMALL 
200 140 59.23 41.46 17.77 LARGE SMALL 
143 141 42.35 41.76 0.59 SMALL SMALL 
126 141 37.32 41.76 -4.44 SMALL SMALL 
110 144 32.58 42.65 -10.07 SMALL SMALL 
128 144 37.91 42.65 -4.74 SMALL SMALL 
145 144 42.94 42.65 0.30 SMALL SMALL 
206 144 61.01 42.65 18.36 LARGE SMALL 
226 144 66.93 42.65 24.29 LARGE SMALL 
221 144 65.45 42.65 22.80 LARGE SMALL 
147 145 43.54 42.94 0.59 SMALL SMALL 
139 145 41.17 42.94 -1.78 SMALL SMALL 
123 145 36.43 42.94 -6.52 SMALL SMALL 
161 145 47.68 42.94 4.74 MEDIUM SMALL 
170 145 50.35 42.94 7.40 MEDIUM SMALL 
226 145 66.93 42.94 23.99 LARGE SMALL 
100 146 29.62 43.24 -13.62 SMALL SMALL 
148 146 43.83 43.24 0.59 SMALL SMALL 
133 146 39.39 43.24 -3.85 SMALL SMALL 
117 146 34.65 43.24 -8.59 SMALL SMALL 
159 146 47.09 43.24 3.85 MEDIUM SMALL 
151 146 44.72 43.24 1.48 MEDIUM SMALL 
151 146 44.72 43.24 1.48 MEDIUM SMALL 
140 147 41.46 43.54 -2.07 SMALL SMALL 
148 147 43.83 43.54 0.30 SMALL SMALL 
147 147 43.54 43.54 0.00 SMALL SMALL 
180 147 53.31 43.54 9.77 MEDIUM SMALL 
181 147 53.61 43.54 10.07 MEDIUM SMALL 
196 147 58.05 43.54 14.51 LARGE SMALL 
142 148 42.06 43.83 -1.78 SMALL SMALL 
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Table E-1.3. Size prediction results for the medium onion class. 

Predicted 
Diameter (Pixels) 

True Diameter 
(Pixels) 

Predicted 
Diameter (mm)  

True Diameter 
(mm)  

Difference 
Predicted 
Size Class 

True 
Size 
Class 

114 149 33.76 44.13 -10.37 SMALL MEDIUM 

108 149 31.99 44.13 -12.14 SMALL MEDIUM 

171 149 50.64 44.13 6.52 MEDIUM MEDIUM 

151 149 44.72 44.13 0.59 MEDIUM MEDIUM 

149 149 44.13 44.13 0.00 MEDIUM MEDIUM 

145 150 42.94 44.43 -1.48 SMALL MEDIUM 

144 150 42.65 44.43 -1.78 SMALL MEDIUM 

141 150 41.76 44.43 -2.67 SMALL MEDIUM 

173 150 51.24 44.43 6.81 MEDIUM MEDIUM 

173 150 51.24 44.43 6.81 MEDIUM MEDIUM 

197 150 58.35 44.43 13.92 LARGE MEDIUM 

261 150 77.30 44.43 32.87 LARGE MEDIUM 

214 150 63.38 44.43 18.95 LARGE MEDIUM 

173 151 51.24 44.72 6.52 MEDIUM MEDIUM 

156 151 46.20 44.72 1.48 MEDIUM MEDIUM 

210 151 62.20 44.72 17.47 LARGE MEDIUM 

220 151 65.16 44.72 20.44 LARGE MEDIUM 

157 152 46.50 45.02 1.48 MEDIUM MEDIUM 

141 152 41.76 45.02 -3.26 SMALL MEDIUM 

155 152 45.91 45.02 0.89 MEDIUM MEDIUM 

129 153 38.21 45.31 -7.11 SMALL MEDIUM 

101 153 29.91 45.31 -15.40 SMALL MEDIUM 

113 153 33.47 45.31 -11.85 SMALL MEDIUM 

162 154 47.98 45.61 2.37 MEDIUM MEDIUM 

159 154 47.09 45.61 1.48 MEDIUM MEDIUM 

166 154 49.16 45.61 3.55 MEDIUM MEDIUM 

195 154 57.75 45.61 12.14 LARGE MEDIUM 

126 155 37.32 45.91 -8.59 SMALL MEDIUM 

138 155 40.87 45.91 -5.03 SMALL MEDIUM 

153 155 45.31 45.91 -0.59 MEDIUM MEDIUM 

148 156 43.83 46.20 -2.37 SMALL MEDIUM 

126 156 37.32 46.20 -8.89 SMALL MEDIUM 

101 157 29.91 46.50 -16.59 SMALL MEDIUM 

177 157 52.42 46.50 5.92 MEDIUM MEDIUM 

157 157 46.50 46.50 0.00 MEDIUM MEDIUM 

184 157 54.49 46.50 8.00 LARGE MEDIUM 

168 158 49.76 46.79 2.96 MEDIUM MEDIUM 

172 158 50.94 46.79 4.15 MEDIUM MEDIUM 

168 159 49.76 47.09 2.67 MEDIUM MEDIUM 

150 159 44.43 47.09 -2.67 MEDIUM MEDIUM 

171 159 50.64 47.09 3.55 MEDIUM MEDIUM 

210 159 62.20 47.09 15.10 LARGE MEDIUM 

214 159 63.38 47.09 16.29 LARGE MEDIUM 

185 159 54.79 47.09 7.70 LARGE MEDIUM 
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179 160 53.01 47.39 5.63 MEDIUM MEDIUM 

191 160 56.57 47.39 9.18 LARGE MEDIUM 

128 161 37.91 47.68 -9.77 SMALL MEDIUM 

156 161 46.20 47.68 -1.48 MEDIUM MEDIUM 

186 161 55.09 47.68 7.40 LARGE MEDIUM 

251 161 74.34 47.68 26.66 LARGE MEDIUM 

249 161 73.75 47.68 26.06 LARGE MEDIUM 

239 161 70.78 47.68 23.10 LARGE MEDIUM 

225 161 66.64 47.68 18.95 LARGE MEDIUM 

194 161 57.46 47.68 9.77 LARGE MEDIUM 

110 162 32.58 47.98 -15.40 SMALL MEDIUM 

123 162 36.43 47.98 -11.55 SMALL MEDIUM 

168 162 49.76 47.98 1.78 MEDIUM MEDIUM 

143 163 42.35 48.28 -5.92 SMALL MEDIUM 

152 163 45.02 48.28 -3.26 MEDIUM MEDIUM 

174 164 51.53 48.57 2.96 MEDIUM MEDIUM 

175 164 51.83 48.57 3.26 MEDIUM MEDIUM 

169 166 50.05 49.16 0.89 MEDIUM MEDIUM 

155 166 45.91 49.16 -3.26 MEDIUM MEDIUM 

183 166 54.20 49.16 5.03 LARGE MEDIUM 

149 167 44.13 49.46 -5.33 MEDIUM MEDIUM 

101 168 29.91 49.76 -19.84 SMALL MEDIUM 

113 168 33.47 49.76 -16.29 SMALL MEDIUM 

142 169 42.06 50.05 -8.00 SMALL MEDIUM 

166 169 49.16 50.05 -0.89 MEDIUM MEDIUM 

195 169 57.75 50.05 7.70 LARGE MEDIUM 

182 170 53.90 50.35 3.55 MEDIUM MEDIUM 

108 172 31.99 50.94 -18.95 SMALL MEDIUM 

180 172 53.31 50.94 2.37 MEDIUM MEDIUM 

183 172 54.20 50.94 3.26 LARGE MEDIUM 

158 173 46.79 51.24 -4.44 MEDIUM MEDIUM 

208 174 61.60 51.53 10.07 LARGE MEDIUM 

131 175 38.80 51.83 -13.03 SMALL MEDIUM 

172 175 50.94 51.83 -0.89 MEDIUM MEDIUM 

182 175 53.90 51.83 2.07 MEDIUM MEDIUM 

183 175 54.20 51.83 2.37 LARGE MEDIUM 

131 176 38.80 52.13 -13.33 SMALL MEDIUM 

165 176 48.87 52.13 -3.26 MEDIUM MEDIUM 

190 176 56.27 52.13 4.15 LARGE MEDIUM 

152 177 45.02 52.42 -7.40 MEDIUM MEDIUM 

220 177 65.16 52.42 12.74 LARGE MEDIUM 

239 177 70.78 52.42 18.36 LARGE MEDIUM 

152 178 45.02 52.72 -7.70 MEDIUM MEDIUM 

195 178 57.75 52.72 5.03 LARGE MEDIUM 

182 179 53.90 53.01 0.89 MEDIUM MEDIUM 

174 181 51.53 53.61 -2.07 MEDIUM MEDIUM 
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Table E-1.3. Size prediction results for the large onion class. 

Predicted 
Diameter 
(Pixels) 

True 
Diameter 
(Pixels) 

Predicted 
Diameter 
(mm)  

True 
Diameter 
(mm)  

Difference 
Predicted 
Size Class 

True Size 
Class 

167 183 49.46 54.20 -4.74 MEDIUM LARGE 

185 183 54.79 54.20 0.59 LARGE LARGE 

186 183 55.09 54.20 0.89 LARGE LARGE 

213 183 63.08 54.20 8.89 LARGE LARGE 

132 184 39.09 54.49 -15.40 SMALL LARGE 

206 184 61.01 54.49 6.52 LARGE LARGE 

182 185 53.90 54.79 -0.89 MEDIUM LARGE 

181 187 53.61 55.38 -1.78 MEDIUM LARGE 

194 187 57.46 55.38 2.07 LARGE LARGE 

184 189 54.49 55.98 -1.48 LARGE LARGE 

197 190 58.35 56.27 2.07 LARGE LARGE 

158 191 46.79 56.57 -9.77 MEDIUM LARGE 

196 191 58.05 56.57 1.48 LARGE LARGE 

205 192 60.71 56.86 3.85 LARGE LARGE 

253 192 74.93 56.86 18.07 LARGE LARGE 

222 193 65.75 57.16 8.59 LARGE LARGE 

218 194 64.56 57.46 7.11 LARGE LARGE 

175 196 51.83 58.05 -6.22 MEDIUM LARGE 

212 196 62.79 58.05 4.74 LARGE LARGE 

240 196 71.08 58.05 13.03 LARGE LARGE 

200 198 59.23 58.64 0.59 LARGE LARGE 

197 202 58.35 59.83 -1.48 LARGE LARGE 

228 207 67.53 61.31 6.22 LARGE LARGE 

242 209 71.67 61.90 9.77 LARGE LARGE 

219 212 64.86 62.79 2.07 LARGE LARGE 

144 233 42.65 69.01 -26.36 SMALL LARGE 

185 257 54.79 76.12 -21.32 LARGE LARGE 

185 260 54.79 77.00 -22.21 LARGE LARGE 

219 276 64.86 81.74 -16.88 LARGE LARGE 

195 296 57.75 87.67 -29.91 LARGE LARGE 
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E-2 Median-Filtered Onion Count Predictions   

Table E-2.1 Size prediction results and positioning for all onions.  
Small 
(Median) 

Medium 
(Median) 

Large 
(Median) 

Sum 
(Median) 

Latitude 
(Median) 

Longitude 
(Median) 

Speed (km/h)  
(Median) 

0 0 0 0 45.191998 -73.350543 1.259 

0 0 0 0 45.191999 -73.350543 1.287 

0 0 0 0 45.191990 -73.350547 0.398 

1 0 0 1 45.192084 -73.350422 1.241 

2 1 2 4 45.192089 -73.350416 1.287 

3 1 1 5 45.192223 -73.350239 2.611 

4 2 1 7 45.192382 -73.350009 2.982 

1 1 2 3 45.192552 -73.349776 3.047 

3 2 2 7 45.192713 -73.349544 3.065 

2 0 2 4 45.192720 -73.349533 3.037 

4 1 1 6 45.192893 -73.349311 3.028 

3 2 1 5 45.193065 -73.349080 3.380 

2 1 1 4 45.193258 -73.348824 3.464 

3 1 2 6 45.193266 -73.348815 3.417 

3 1 1 5 45.193455 -73.348568 3.380 

2 2 1 5 45.193645 -73.348314 3.352 

4 1 1 6 45.193825 -73.348056 3.463 

4 2 2 8 45.194029 -73.347771 3.510 

3 1 1 5 45.194038 -73.347759 3.676 

2 1 3 6 45.194245 -73.347470 3.639 

2 1 0 3 45.194455 -73.347192 3.676 

2 1 1 4 45.194672 -73.346926 3.658 

2 1 1 4 45.194680 -73.346914 3.565 

2 1 1 4 45.194880 -73.346632 3.574 

4 1 1 5 45.195080 -73.346341 3.714 

1 1 2 4 45.195288 -73.346055 3.676 

3 1 1 5 45.195296 -73.346042 3.667 

3 0 1 4 45.195496 -73.345758 3.685 

2 1 0 3 45.195698 -73.345492 3.667 

1 1 2 4 45.195904 -73.345221 3.648 

2 1 1 4 45.196111 -73.344945 3.630 

2 1 1 4 45.196121 -73.344931 3.648 

3 1 2 6 45.196333 -73.344655 3.528 

2 1 2 5 45.196531 -73.344376 3.408 

3 1 2 6 45.196739 -73.344093 3.602 

4 1 1 6 45.196947 -73.343810 3.630 

3 2 1 5 45.197156 -73.343521 3.547 

4 2 1 7 45.197362 -73.343251 3.852 

0 0 0 0 45.197661 -73.342782 4.195 

2 0 0 2 45.197461 -73.342775 3.260 

3 2 2 7 45.197315 -73.342968 3.149 

2 1 1 4 45.197150 -73.343205 3.297 
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3 2 1 5 45.196994 -73.343454 2.815 

2 1 2 5 45.196811 -73.343682 2.991 

4 1 2 7 45.196634 -73.343917 3.028 

1 1 3 5 45.196544 -73.344036 2.954 

3 1 1 5 45.196455 -73.344154 3.111 

3 1 1 5 45.196301 -73.344390 2.788 

2 1 2 5 45.196295 -73.344397 2.936 

3 2 2 6 45.196119 -73.344630 3.093 

1 1 1 3 45.195960 -73.344865 3.139 

2 1 2 5 45.195782 -73.345100 3.167 

2 1 1 4 45.195778 -73.345109 3.102 

2 1 2 5 45.195610 -73.345345 2.871 

2 1 1 3 45.195454 -73.345561 2.917 

2 1 1 4 45.195320 -73.345754 2.704 

4 0 1 5 45.195245 -73.345859 2.964 

2 1 2 4 45.195168 -73.345965 2.880 

3 0 0 3 45.195014 -73.346173 2.778 

2 1 1 3 45.194841 -73.346410 3.334 

1 0 1 2 45.194668 -73.346650 3.093 

3 2 1 5 45.194502 -73.346877 2.890 

1 0 1 2 45.194401 -73.346993 2.945 

2 1 1 4 45.194306 -73.347109 2.954 

2 0 0 2 45.194133 -73.347351 3.065 

2 1 1 3 45.193965 -73.347586 2.852 

1 1 2 4 45.193799 -73.347813 2.963 

0 1 1 2 45.193790 -73.347824 2.945 

1 0 0 1 45.193618 -73.348037 2.954 

3 1 1 5 45.193451 -73.348259 3.010 

2 1 0 3 45.193268 -73.348509 2.843 

2 0 1 3 45.193095 -73.348741 2.973 

3 0 1 3 45.193085 -73.348752 3.001 

2 0 0 2 45.192912 -73.348976 3.047 

3 0 0 3 45.192747 -73.349234 2.982 

2 0 1 3 45.192569 -73.349464 2.982 

3 1 0 4 45.192486 -73.349582 3.093 

1 1 1 3 45.192404 -73.349700 3.232 

3 1 1 4 45.192234 -73.349923 3.047 

2 1 0 3 45.192054 -73.350137 3.000 

2 0 0 2 45.191914 -73.350341 1.315 

2 1 1 4 45.192117 -73.350477 1.260 

3 1 0 4 45.192153 -73.350429 1.269 

1 1 1 3 45.192154 -73.350429 1.019 

2 1 2 4 45.192294 -73.350226 2.436 

4 1 1 6 45.192463 -73.350006 2.917 

2 1 1 4 45.192630 -73.349753 3.001 
2 2 1 5 45.192638 -73.349743 2.991 

 


	Abstract
	Résumé
	Dedication
	Acknowledgements
	Contributions of the Authors
	Format of Thesis
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Chapter 1. Introduction
	1.1.  Yield Monitoring
	1.2. Computer Vision
	1.3. Research Objective

	Chapter 2. Literature Review
	2.1. Digital Imagery
	2.1.1. Computer Vision and Machine Vision
	2.1.2. Camera Systems

	2.2. Applications of Computer Vision in Agriculture
	2.3. Machine Vision for Yield Determination
	2.4. Challenges of Machine Vision Applications
	2.5. Summary of Literature Review

	Chapter 3. Materials and Methods
	3.1. Feasibility Study
	3.1.1. Image Acquisition
	3.1.2. Software
	Software Structure
	Initial Algorithm

	3.1.3. Distortion Correction
	3.1.4. Conveyor Speed Calculation
	3.1.5. Processing Unit

	3.2.   Prototype System Design
	3.2.1. System Components
	3.2.2. Mounting Bracket Design
	3.2.3. Electrical System Design
	3.2.4. Segmentation
	3.2.5. Definition of Vegetable Size Categories
	3.2.6. Size Calibration
	3.2.7. Statistical Analysis


	Chapter 4. Results and Discussion
	4.1.  General System Performance
	4.1.1. Integrability
	4.1.2. System Cost
	4.1.3. System Assembly
	4.1.4. Reliability

	4.2. Results of Feasibility Study
	4.2.1. Segmentation Results
	4.2.2. Onion Detection Performance
	4.2.1. Conclusions of Feasibility Study

	4.3. Prototype Performance
	4.3.1. Size Estimation
	4.3.2. Segmentation Results
	4.3.3. Onion Detection Results
	4.3.4. Yield Map

	4.4. Future Improvements

	Conclusions
	References
	Appendix A: Python Code
	A-1 Initial Version of Python Code (Feasibility Study)
	A-2 Final Version of Python Code (Field Trial)
	Yield Monitor Class
	Image Preprocessing
	Config File Loading
	GPS Sentence Parsing
	Main File
	Image Preprocessing (Updated post field trials)
	Statistical Analysis


	Appendix B: Hardware Specifications
	Appendix C: Additional Figures
	Appendix D: Definition of Performance Metrics
	Appendix E: Additional Data
	E-1 Size Prediction Results
	E-2 Median-Filtered Onion Count Predictions


