
Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Development of a Machine Vision-Based

Yield Monitoring System for Vegetable Crops

by

Amanda Boatswain Jacques

Bachelor of Engineering, McGill University, 2016

Thesis submitted in partial fulfillment of the requirements for the

Degree of Master of Science

Department of Bioresource Engineering

Macdonald Campus of McGill University,

Montreal, Quebec, Canada

July 17th, 2019

© Amanda Boatswain Jacques, 2019

ii

Abstract

Crop yield estimation and mapping are important tools that can help growers

efficiently use their available resources and have access to detailed representations of

their farm. Technical advancements in computer and machine vision have improved the

detection, quality assessment and yield estimation processes for crops including apples,

citrus, mangoes, maize, figs and many other fruits. However, similar methods capable of

exporting a detailed yield map for vegetable crops have yet to be fully developed. A

machine vision-based yield monitor was designed to perform identification, size

categorization and continuous counting of shallot onions in-situ during the harvesting

process. The system is composed of a video logger and a global navigation satellite

system (GNSS), coupled with computer software developed in Python. Computer vision

analysis is performed within the tractor itself while an RGB camera positioned directly

above the harvesting conveyor collects real time video data of the crops under natural

sunlight conditions. Vegetables are segmented using Watershed segmentation, detected

on the conveyor and then classified by size. Results showed that the system was able to

correctly detect 62.6% of onions in a subsample of the dataset and resulted in a linear

regression with a coefficient of determination (R2) of 0.49 between true and estimated

counts. The software was also evaluated on its ability to classify the onions into 3 size

categories (small, medium and large). A total of 55.9% of 271 analyzed onions were

correctly categorized, with the highest performance achieved in the large class (73.3%),

followed by the small class (58.7%) and medium class (44.4%). Based on the obtained

results, occasional occlusion of vegetables and inconsistent lighting conditions were the

main factors that inhibited performance. Finally, these geotagged images were used to

map the size distribution of the shallot onions on a small section of the onion field. Although

further enhancements are envisioned for the prototype system to improve overall detection

iii

and size classification, its modular and novel design allows it to be used to map a selection

of crops including carrots, shallot onions, Chinese radish and lettuce crops. The system

has the potential to benefit many producers of small vegetable crops by providing them

with useful harvest information in real time that can significantly improve current harvesting

logistics.

Keywords: Precision agriculture; yield estimation; machine vision; watershed

segmentation; shape detection; shallot onions; size estimation.

iv

Résumé

L'estimation et la cartographie du rendement des cultures sont des outils

importants qui peuvent aider les producteurs agricoles. Ils améliorent la gestion de leurs

ressources disponibles et donnent accès à des représentations détaillées de leur ferme.

Le progrès technique en vision artificielle a amélioré le processus de détection,

d’évaluation de la qualité et d’estimation du rendement des cultures, notamment pour les

pommes, les agrumes, les mangues, le maïs, les figues et plusieurs autres fruits. Malgré

cet avancement technologique, aucune méthode permettant d’exporter une carte détaillée

du rendement des cultures de légumes n’a encore été pleinement développée.

Dans ce projet, un capteur de rendement basé sur la vision artificielle a été conçu

pour effectuer l'identification, la catégorisation par taille et le recensement en continu des

échalotes françaises in situ pendant le processus de récolte. Le système est composé

d’un enregistreur vidéo et d’un système de positionnement par satellites, le tout jumelé

d’un logiciel informatique développé en Python. D’une part, l’analyse de la vision par

ordinateur est effectuée dans le tracteur, tandis qu’une caméra RGB positionnée

directement au-dessus du convoyeur récolte les données vidéo des cultures. Les images

sont recueillies en temps réel, grâce à la lumière naturelle du soleil. L’analyse informatique

permet d’identifier les légumes sur le convoyeur et de les classer par grandeur.

Une méthode de segmentation par ligne de partage des eaux a été utilisée pour

isoler les oignons dans les images. Dans un sous-échantillon de l’ensemble de données,

le système était capable de détecter correctement 62,6% des oignons. Les résultats ont

aussi montré que le système avait abouti à une régression linéaire avec un coefficient de

détermination (R2) de 0,49 entre les quantités réelles et estimées de légumes. Le logiciel

a également été évalué sur sa capacité à classer les oignons en trois catégories de taille

(petit, moyen et gros). Au total, 55,9% des 271 échalotes françaises analysées ont été

v

correctement classées. La meilleure prédiction a été obtenue pour la classe des gros

oignons avec 73,3% des oignons correctement classifiés, suivi des petits (58,7%) et

finalement des moyens (44,4%). D'après les résultats obtenus, l’obstruction occasionnelle

de légumes et les conditions d’éclairage irréguliers ont été les principaux facteurs limitant

la performance.

Les images géomarquées ont été utilisées pour cartographier la distribution des

oignons, en fonction de leur taille, sur une petite partie du champ de légumes. Bien que

l’amélioration des dispositifs de détection et de classification par taille soient envisagées

pour ce prototype, sa conception modulaire et innovante lui permet déjà d'être utilisé pour

cartographier les cultures suivantes: carottes, échalotes, radis chinois et laitue. Le

système pourrait bénéficier à de nombreux producteurs de petites cultures de légumes en

leur fournissant des informations utiles sur les récoltes, en temps réel. Ces informations

sont susceptibles d'améliorer considérablement la logistique des récoltes.

Mots-clés: Agriculture de précision; estimation du rendement; vision artificielle;

segmentation par ligne des eaux; détection de forme; échalotes françaises;

estimation de la taille.

vi

Dedication

This dissertation is dedicated to my mother, Sandra Boatswain. My mother has

worked hard to raise her children primarily on her own, while facing the challenges of her

turbulent and busy life. I am forever grateful for the sacrifices and unconditional love she

has provided to each one of my siblings and me. She has been my mentor, my confidante,

my best friend and forever a source of inspiration and admiration.

vii

Acknowledgements

I would first like to extend my most profound gratitude to Delfland, Inc. and its team

for their financial and technical support throughout the entire duration of this project. Their

assistance with the assembly and mounting of the yield mapping system truly was

invaluable. I would like to give special thanks to Guillaume Cloutier for his insight,

encouragement and patience, and allowing me to test the system on the company’s fields.

I would like to thank Mitacs Canada for their generous financial support throughout

this project in partnership with Delfland, Inc.

I would like to thank my colleagues in the Precision Agriculture and Sensor

Systems (PASS) research team for their great help, support and inspiration. Special

thanks are due to both Connor Miller and Maxime Leclerc for their help designing and

machining various components of the system, and to Roberto Mario Buelvas for

assistance with sensor setup and troubleshooting. I would also like to thank Md

Saifuzzaman and Dr. Jaesung Park for their help cleaning and processing the geographic

data reported in this paper. Thank you as well to Marie-Christine Marmette for her

encouragement and optimism when I encountered occasional hurdles during the redaction

of this dissertation.

Thank you to Trevor Stanhope and Bharath Sudarsan, past members of the PASS

research team, who took the time to answer my questions concerning machine vision and

valuable advice.

Thank you to Dr. James J. Clark, for providing his advice and expertise in computer

vision when needed.

viii

Thank you to my family: my mother, my father, my sisters, my brothers and my

aunts, who encouraged me and cheered me on every step of the way of this project. To

my boyfriend, for his undying support and wisdom.

Finally, I would like to express great gratitude and recognition to Dr. Viacheslav

Adamchuk for his supervision and guidance. His faith in me never faltered even when I

believed I was about to hit rock bottom. I am forever grateful for all the wonderful

opportunities he provided by allowing me to complete this Master of Science (publishing

papers, travelling to conferences, meeting exceptional scientists and presenting my

research at multiple occasions, being president of the robotics club under his supervision)

and pursue knowledge in one of the most exciting and novel fields of computer science

and robotics. I would like to thank him for his patience and undying enthusiasm, and for

the wonderful and hardworking environment that he has maintained in our research team.

ix

Contributions of the Authors

The research in this thesis has been submitted for publication in two conference

proceedings (2017 ASABE Annual International Meeting and 2018 ICPA). The author of

this thesis was responsible for the development of an algorithm for detecting shallot onions

using machine vision, and the integration of this algorithm in a full-fledged system to be

used in the field. The author also designed and carried out the experimental and analytical

work to meet the research objectives of this thesis and was responsible for the preparation

of the manuscript summarizing this research. Dr. Viacheslav Adamchuk, a professor in

the Department of Bioresource Engineering of McGill University, acted as the thesis

supervisor. He presented the research idea and continuously offered scientific advice and

technical guidance during the study. He is also responsible for editing and reviewing the

manuscript before final publication. Guillaume Cloutier was a representative of the partner

organization (Delfland, Inc.) funding this research and gave permission for testing the

system on the field. Dr. James J. Clark, who is a McGill professor in the department of

Electrical and Computer Engineering, provided scientific advice to the author regarding

the development of the computer vision algorithm. He also was a member of the author’s

graduate committee and helped with progress assessment. Maxime Leclerc and Connor

Miller provided technical assistance with machining components of the system and

fabrication of the machine vision system mounting bracket.

Publications related to this thesis:

1. Boatswain Jacques, A. A., Adamchuk, V. I., Cloutier, G., Clark, J. J., & Miller, C. (2018).
Development of a Machine Vision Yield Monitor for Shallot Onion Harvesters. In:
Proceedings of the 14th International Conference on Precision Agriculture, Montreal,

Quebec, 24-27 June 2018. International Society of Precision Agriculture (published
online at https://ispag.org/proceedings/?action=download&item=5401, 13 pages).

https://ispag.org/proceedings/?action=download&item=5401

x

2. Boatswain Jacques, A. A., Adamchuk, V. I., Cloutier, G., Clark, J. J., & Leclerc, M. (2017). A
Machine Vision Yield Monitor for Vegetable Crops. In: Proceedings of the 2017 American
Society of Agricultural and Biological Engineers Annual International Meeting, Spokane,
Washington, 17-19 July 2017. American Society of Agricultural and Biological Engineers
(published online at
https://elibrary.asabe.org/azdez.asp?JID=5&AID=50188&CID=spo2017&T=1&redirType=
techpapers.asp&confid=spo2017/, 10 pages).

https://elibrary.asabe.org/azdez.asp?JID=5&AID=50188&CID=spo2017&T=1&redirType=techpapers.asp&confid=spo2017/
https://elibrary.asabe.org/azdez.asp?JID=5&AID=50188&CID=spo2017&T=1&redirType=techpapers.asp&confid=spo2017/
https://elibrary.asabe.org/azdez.asp?JID=5&AID=50188&CID=spo2017&T=1&redirType=techpapers.asp&confid=spo2017/

xi

Format of Thesis

This dissertation is partially a reformatting of two conference papers that have

been prepared for publication. Following the general introduction in Chapter 1 and the

literature review in Chapter 2, Chapter 3 describes the development of a machine vision

algorithm for shallot onion detection and the implementation of this algorithm in a system

that performs yield mapping. Chapter 4 presents the results of a feasibility study as well

as the results obtained from field testing. Following this, a discussion section critiques the

findings of this research and offers future improvements. General conclusions (0),

references and appendices of supplemental materials complete this thesis.

xii

Table of Contents

Abstract ... ii

Résumé .. iv

Dedication .. vi

Acknowledgements ... vii

Contributions of the Authors ... ix

Format of Thesis .. xi

Table of Contents .. xii

List of Tables .. xiv

List of Figures.. xv

List of Acronyms ... xvii

Chapter 1. Introduction .. 1

 Yield Monitoring.. 1

 Computer Vision ... 3

 Research Objective .. 4

Chapter 2. Literature Review ... 5

 Digital Imagery ... 5

2.1.1. Computer Vision and Machine Vision ... 5

2.1.2. Camera Systems ... 6

 Applications of Computer Vision in Agriculture ... 9

 Machine Vision for Yield Determination .. 11

 Challenges of Machine Vision Applications .. 14

 Summary of Literature Review ... 15

Chapter 3. Materials and Methods... 17

 Feasibility Study ... 17

3.1.1. Image Acquisition ... 17

3.1.2. Software .. 18

Software Structure ... 18

Initial Algorithm .. 20

3.1.3. Distortion Correction .. 23

3.1.4. Conveyor Speed Calculation .. 25

3.1.5. Processing Unit .. 25

 Prototype System Design ... 26

3.2.1. System Components .. 26

3.2.2. Mounting Bracket Design ... 27

3.2.3. Electrical System Design ... 27

3.2.4. Segmentation ... 30

3.2.5. Definition of Vegetable Size Categories ... 32

3.2.6. Size Calibration .. 33

3.2.7. Statistical Analysis ... 34

xiii

Chapter 4. Results and Discussion ... 35

 General System Performance .. 35

4.1.1. Integrability .. 35

4.1.2. System Cost .. 36

4.1.3. System Assembly .. 36

4.1.4. Reliability ... 37

 Results of Feasibility Study .. 37

4.2.1. Segmentation Results .. 37

4.2.2. Onion Detection Performance .. 39

4.2.1. Conclusions of Feasibility Study ... 42

 Prototype Performance ... 43

4.3.1. Size Estimation .. 43

4.3.2. Segmentation Results .. 48

4.3.3. Onion Detection Results .. 49

4.3.4. Yield Map ... 55

 Future Improvements ... 57

Chapter 5. Conclusions ... 59

References ... 61

Appendix A: Python Code .. 65

A-1 Initial Version of Python Code (Feasibility Study) .. 65

A-2 Final Version of Python Code (Field Trial)... 67

Yield Monitor Class .. 67

Image Preprocessing ... 71

Config File Loading .. 76

GPS Sentence Parsing .. 76

Main File .. 77

Image Preprocessing (Updated post field trials) ... 78

Statistical Analysis ... 83

Appendix B: Hardware Specifications ... 84

Appendix C: Additional Figures ... 86

Appendix D: Definition of Performance Metrics.. 88

Appendix E: Additional Data .. 88

E-1 Size Prediction Results ... 90

E-2 Median-Filtered Onion Count Predictions.. 96

xiv

List of Tables

Table 3.1. Intrinsic camera parameters of the Nikon KeyMission 170. 24

Table 3.2. Computer specifications ... 28

Table 3.3. Shallot onion classes defined for the computer vision algorithm. 33

Table 4.1. Price Breakdown of the machine vision yield monitor by component. 36

Table 4.2. Kolmogorov-Smirnov test results for the small class 47

Table 4.3. Kolmogorov-Smirnov test results for the medium class 47

Table 4.4. Kolmogorov-Smirnov test results for the large class 47

Table 4.5. Summary of shallot onion detection results .. 50

Table 4.6. Summary of Type I and Type II error distribution for the Initial Method. 54

Table 4.7. Summary of Type I and Type II error distribution for the Watershed Method.
 ... 54

Table 4.8. Summary of detection performance metrics ... 54

Table B-1. Prototype Camera specifications………………………………………………...84

Table B-2. Solid state drive specifications …………………………………………………...84

Table B-3. GPS Sensor specifications……………………………………………………….85

Table E-1.1. Size prediction results for the small onion class……………………………...90

Table E-1.2. Size prediction results for the medium onion class…………………………..93

Table E-1.3. Size prediction results for the large onion class……………………………...95

Table E-2.1. Size prediction results and positioning for all onions…………………………96

xv

List of Figures

Figure 1.1. Shallot onion harvesting machine with trailer (a) and onion field (b). 4

Figure 2.1. Images of a CCD sensor (a) (Ahmed2IQ, 2009) and a CMOS sensor (b)
(Nyman, 2012). .. 7

Figure 2.2. An example of feature intensification using a date fruit. Original image (a),
thresholded image (b) and edge image (c). Reprinted from Al-Ohali (2011).
 ... 11

Figure 2.3. Apple yield map of an orchard block created using a computer vision algorithm.
Reprinted from Bargoti & Underwood (2017). See electronic version for
colours. .. 13

Figure 2.4. Result of splitting a region representing two different apples. Reprinted from
Wang et al. (2012). ... 15

Figure 3.1. Nikon KeyMission 170 action camera (Nikon, 2018). 17

Figure 3.2. Three views considered for the placement of the camera. 18

Figure 3.3. Software Flow Diagram. See electronic version for colors. 19

Figure 3.4. RBG (a) and HSV (b) color models (Datumizer, 2010a; 2010b). See electronic
version for colors. ... 21

Figure 3.5. Illustration of several types of radial lens distortion (OpenCV Documentation,
2018). ... 24

Figure 3.6. The distorted image (a) from the Nikon KeyMission 170 camera and the same
image that has been undistorted (b). The undistorted image was created
using the remapping function of OpenCV. .. 25

Figure 3.7. Diagram of the machine vision based yield mapping system. 26

Figure 3.8. Model of the machine vision camera bracket (left), (a) is a metal piece used
to deflect incoming onions from the camera (b), and (c) is the external light
source. The left image (d) shows the setup positioned on the farm
harvester. ... 27

Figure 3.9. System Assembly. .. 29

Figure 3.10. Determination of size classes for shallot onion classification. 32

Figure 3.11. Shallot onion size calibration results. .. 34

Figure 4.1. Hue intensity distribution of a sample image in the feasibility study. See
electronic version for colors. ... 38

Figure 4.2. Segmentation results. ... 39

Figure 4.3. Onion detection results. See electronic version for colors. 40

Figure 4.4. Onion detection accuracy of the current machine vision algorithm (top) and
accuracy obtained by doubling the output (bottom). 41

Figure 4.5. Shallot onions detected by the computer vision algorithm vs. manual count.
 ... 42

Figure 4.6. Color thresholded result of the calibration object (a) and detection of the ball
in the original image (rb). The diameter of the ball in pixel length is
determined using a CHT. ... 44

xvi

Figure 4.7. Manually determined onions sizes vs. predicted onion sizes from WST
algorithm. ... 45

Figure 4.8. Cumulative fraction plots of the predicted diameter and true diameter
distributions. ... 46

Figure 4.9. Size class distributions for the manual sorting vs. computer vision algorithm.
 ... 48

Figure 4.10. Segmentation Results. .. 49

Figure 4.11. Onion detection results. (a) shows final detection results for the initial
algorithm, and (b) shows results from the WST segmentation method. See
electronic version for colours. ... 51

Figure 4.12. Shallot onions detected by the computer vision algorithm vs. manual count.
Top shows results for the initial algorithm developed during the feasibility
study, and bottom shows the improved WST segmentation algorithm
results. ... 52

Figure 4.13. Shallot onions detected by the computer vision algorithm vs. manual count.
Top shows results for the initial algorithm developed during the feasibility
study, and bottom shows the improved WST segmentation algorithm
results. ... 53

Figure 4.14. Image showing the sampling points collected on the shallot onion field (a)
and the boundary of the entire study area (b) 55

Figure 4.15. Final yield maps for the small (a), medium (b), large (c) onion classes and
the total count (d) of the shallot onion field. .. 56

Figure C-1. Example image of the size calibration setup (section 3.2.6). 86

Figure C-2. Modification of the size classes for shallot onion classification. 87

xvii

List of Acronyms

ASABE American Society of Agricultural and Biological Engineers

CCD Charged-Couple Device

CHT Circular Hough Transform

CMOS Complementary Metal-Oxide-Semiconductor

CNN Convolutional Neural Network

CV Computer Vision

FN False Negative

FP False Positive

GNSS Global Navigation Satellite System

GPS Global Positioning System

HIS Hue-Saturation-Intensity

HSV Hue-Saturation-Value

ICPA International Conference on Precision Agriculture

IDW Inverse Distance Weighting

IFPRI International Food Policy Research Institute

IPS In-Plane-Switching

IR Infrared

KS Kolmogorov-Smirnov

LCD Liquid Crystal Display

MLP Multi-Layer-Perceptron

MV Machine Vision

PA Precision Agriculture

R2 Coefficient of Determination

RGB Red-Green-Blue

RMSE Root Mean Square Error

SVM Support Vector Machine

SSCM Site-Specific Crop Management

SSD Solid State Drive

TN True Negative

TP True Positive

WST Watershed Transformation

3D 3 Dimensional

xviii

1

Chapter 1. Introduction

 Yield Monitoring

Throughout history, agriculture has remained one of the most important industries as it

provides rich produce distributed in mass quantities. Traditionally, agricultural practices require

only a few personnel and yet, manage to sustain an unimaginable number of people. Despite the

continuous growth and industrialization of agriculture, farming practices have faced many

challenges in recent years. With the global population expected to reach 9 billion by 2050, the

agricultural field will need to double its productivity to meet this ever-growing demand (United

Nations Department of Economic and Social Affairs, 2017). However, with weather becoming

more unpredictable due to climate change, farmers need to consider more droughts, floods,

temperature fluctuations and weather disasters, rendering this task of expansion increasingly

more difficult.

Precision agriculture (PA), or site-specific crop management (SSCM), is a farming

management concept that relies on observation and sensing to include inter and intra-field

variability in crops or pasture management practices (McBratney, Whelan, & Ancev, 2005). It

aims to develop decision support systems that improve farm management by increasing the value

of returns while decreasing input costs. This can be done with the use of data mining systems

that gather detailed information to develop software capable of facilitating management practices.

According to the International Food Policy Research Institute (IFPRI), the adoption of PA practices

has been identified as one of the main drivers of yield increase, while promoting the sustainable

use of depleting resources, such as water and arable land (Aisenberg, 2017). Technological

advancements in sensing, computing power and robotic systems are gradually leading to potential

increases in productivity for commercial farmers, who are now turning to new, innovative tools

2

and methods to enhance their current practices while making them more precise, less wasteful

and more effective.

More specifically, crop yield estimation and mapping are important PA tools that can help

growers efficiently keep track of their available resources and have access to detailed

representations of their farm. Accurate yield estimation allows growers to efficiently manage their

harvest logistics, crop storage and sales, and account for losses in a timely manner (Nuske, et

al., 2014). Early and accurate predictions are also a key factor for market planning and trade

(Bargoti & Underwood, 2017; Cheng, Damerow, Sun, & Blanke, 2017).

However, commercial PA techniques for specialty crops such as fruits and vegetables,

including the existence of yield monitoring systems, have not been developed to their full potential.

This is mainly due to the large diversity in harvesting methods for specialty crops and those grown

for smaller market as compared to row crops. Currently, yield estimation for specialty crops is

often done by tedious manual sampling methods which are labor intensive, long and costly (Dorj,

Lee, & Yun, 2017; Nuske et al., 2014). Other methods rely heavily on imprecise historical or

empirical data which is then extrapolated (Cheng et al., 2017). Moreover, these calculations and

measurements performed by humans are often prone to bias and sparsity leading to false

predictions (Bargoti & Underwood, 2017). The adoption of automatic PA techniques could

substantially benefit specialty crops. This is because in comparison to field crops such as cereals,

cotton, hay and grain, specialty crops often require more resources and may be more sensitive

to sudden changes in growth conditions. Specialty crops are known to produce high value

products, and the development of accurate yield monitoring systems would help farmers keep

better track of crop quality and reduce their operating costs by adjusting their thinning practices

and the size of the harvest labor force (Patel, Jain, & Joshi, 2012).

3

 Computer Vision

Among the numerous sensing techniques used in PA, digital imaging is one which has

been adopted in various applications such as robotic harvesting, weed control, phenotyping,

pruning, seeding, spraying, thinning, sorting and packaging (Kapach, Barnea, Mairon, Edan, &

Ben-Shahar, 2012). In each of these applications, computational methods extract useful

information from digital images or videos with the help of computer vision (CV), allowing for the

automation of the tasks described previously. Moreover, these automatic tasks can be

accomplished in a non-destructive manner which is important for high value specialty crops

(Automated Imaging Association, 2014). More and more, CV is being employed as a substitute

for traditional visual observations, such as counting objects along a conveyor, detecting serial

numbers, searching for physical defects and sorting or grading. As a result, there has been a

significant reduction in labor requirements and processing time and yet, there is now better

consistency and uniformity in measurements (Sun, 2008). Recent advances in robotics and

automation allow the gathering of large amounts of visual data from different methods, including

simple camera systems (Blok, Barth, & Berg, 2016; Payne, Walsh, Subedi, & Jarvis, 2013; Pothen

& Nuske, 2016), unmanned ground vehicles (UGV’s) (Wang, Nuske, Bergerman, & Singh, 2012)

or unmanned aerial vehicles (UAV’s) equipped with color cameras that capture images of even

very large farms (Telledis & Levin, 2014). This data can also benefit from high spatial and temporal

resolution, which can be condensed and visualized using geospatial mapping software such as

ArcGIS1. Image processing techniques can be used to analyze this information and extract key

properties of the farm such as health, location of crops, spatial distribution and alternatively crop

yield.

1 Mention of a trade name, proprietary product, or company name is for presentation clarity and does not
imply endorsement by the authors, or McGill University, nor does it imply exclusion of other products that
may also be suitable.

4

 Research Objective

This study focuses primarily on the use of computer and machine vision (MV) to perform

detection, crop-yield estimation and yield mapping for the French grey shallot (Allium oschaninii).

Shallot onions grow in clusters, where bulbs rest on the surface of the soil (Figure 1.1b). They

are harvested uniformly using a windrower and a trailer. A conveyor belt (Figure 1.1a) collects

the onions from the ground using a paddle, and the onions are then deposited in a trailer which

stores them during harvest. Spatial variabilities in soil type, soil fertility and other cropping

conditions contribute to disparity in onion size, and onion size is an important limiting factor when

determining the percentage of harvest destined to external suppliers. Quality assessment and

sorting of shallots is traditionally done by human visual inspection, and usually only after

harvesting is fully completed. The research objective of this study was to develop a new yield

mapping technology for specialty crops capable of performing quantity and quality assessment.

Specific objectives were to 1) develop a low-cost prototype system that could be easily integrated

in agricultural harvesting practices and 2) to perform yield mapping of crop size distribution to

allow better management practices on the farm.

a) b)

Figure 1.1. Shallot onion harvesting machine with trailer (a) and onion field (b).

5

Chapter 2. Literature Review

 Digital Imagery

Digital imaging or digital image acquisition is a process whereby an image in the physical

world is captured by a sensor, such as a camera, and then quantized into a discrete data structure

capable of being understood by a computer. Image digitization corresponds to sampling color and

intensity values into a matrix form with several rows (M) and columns (N). The finer the sampling

(i.e. the larger the values of M and N), the more detailed the approximation of the analog image

will be. Each individual sampling point is called a pixel, and M and N indicate the dimensions of

the overall pixel grid (Sonka, Hlavac, & Boyle, 2015). A grayscale image consists of one single

channel where pixel intensities vary from a value of 0 (indicating the complete absence of light)

to 255 (full presence of light). If an image is presented in color, it will have multiple superimposed

channels. The most common format for color images is the Red-Green-Blue (RGB) format where

an image is decomposed into three channels where each one is equal to one of the primary colors

of light (Sonka et al., 2015).

2.1.1. Computer Vision and Machine Vision

CV is a process where computational methods are used to recreate the effect of human

vision, aiding computers to understand and perceive images. This is done through the creation of

mathematical models that relate the digitized input image to phenomena in the physical world.

These models are created using geometry, physics, statistics and learning theory (Huang, 1996;

Sonka et al., 2015). Machine vision (MV) uses CV technology and methods to create systems

which “see” steps along a production line. A MV system must be comprised of standard

components: a camera, computer software for the analysis and processing of images, a pattern

recognition module and an output component (monitor, robotic arm, etc.). A machine vision

6

system uses a camera to first view an image or video stream. CV algorithms then process the

image and extract valuable data from it, and finally, this data is used to control and activate other

components of the system. A MV system cannot function without the use of computer software,

differing from CV which can be used alone, and includes many technologies, software and

hardware products, integrated systems, actions, procedures and expertise (Graves & Batchelor,

2003; Sonka et al., 2015). It is important to understand the difference between these two

disciplines as they will be widely used throughout the redaction of this thesis.

2.1.2. Camera Systems

Some of the earliest CV studies made use of black and white (also referred to as

monochrome) cameras to perform fruit detection (Gongal, Amatya, Karkee, Zhang, & Lewis,

2015). Using a combination of geometric features, texture and reflectance, it was possible to

identify fruits such as melons or green immature oranges with relatively high accuracy (75-88.0%)

(see Appendix D for definition of performance metrics) using these simple systems (Cardenas-

Weber, Hetzroni, & Miles, 1991; Dobrusin, Edan, Grinshpun, & Peiper, 1992; Edan, Rogozin,

Flash, & Miles, 2000; Plá, Juste, & Ferri, 1993). However, after further analysis, it was noted that

with additional sensor data results could be improved further by adding another layer of data

beyond intensity, such as a color filter to amplify the contrast between a crop and the background.

Later studies integrated color cameras as the primary sensor. Color cameras with either

CCDs (charged-couple devices) or CMOS (complementary metal-oxide semiconductors) (Figure

2.1) have been widely used in research geared towards robotics and the automation of agricultural

practices and operations (Bac, Van Henten, Hemming, & Edan, 2014; Gongal, Amatya, Karkee,

Zhang, & Lewis, 2015; Mollazade, Omida, & Arefi, 2012). CCD devices convert light into an

electrical charge which must be transported across the chip without distorting the signal using a

special manufacturing process. An analog to digital converter translates every pixel value to a

7

digital value. These sensors can provide very high-quality images which are less susceptible to

noise. In CMOS cameras, light is converted to electrical signals using electronics which are

directly integrated on the surface of the sensor: Several transistors located at every pixel move

the electrical charge using a direct wire connection, rendering data transfer more rapid. CMOS

can also benefit from a higher dynamic range, allowing them to capture both high-lit regions and

shadowed areas in the same image. Moreover, these sensors are very inexpensive because

unlike CCD sensors, they are manufactured using traditional processes. CCDs are used in

applications that focus primarily on capturing high-quality images with a high number of pixels

and excellent light sensitivity.

Both sensors are equipped with a Bayer filter, which allows for the capture of three channel

RGB images. Therefore, color cameras provide additional layers of information when compared

to monochrome cameras. Moreover, in most cases of fruit detection, color is one of the most

prominent features of interest when estimating yield in canopies (Gongal et al., 2015). Color

segmentation is also possible when using color images, and it can be performed in different color

spaces including the RGB and Hue-Saturation-Value (HSV) color spaces (Gongal et al., 2016;

Hannan, Burks, & Bulanon, 2009; Linker, Cohen, & Naor, 2012; Wang et al., 2012). However,

Figure 2.1. Images of a CCD sensor (a) (Ahmed2IQ, 2009) and a CMOS sensor (b)
(Nyman, 2012).

a) b)

8

color sensing does come with disadvantages, the most predominant being its high sensitivity to

changes in lighting and motion. This is especially true in outdoor conditions, where natural light

may exhibit high variance in intensity on both the temporal and spatial scale. Despite this, existing

methods have been developed that manage to detect fruit, such as oranges and mangoes in

natural lighting conditions with accuracies within 74% and 90% (Hannan et al., 2009; Payne et

al., 2013; Sengupta & Lee, 2014).

Spectral cameras are another type of sensor which collect and process spectral

information, capturing objects of interest by analyzing their reflectance properties at different

wavelengths. This type of sensing has proved to be efficient predominantly when the color of the

fruit or vegetable of interest is like that of the surrounding background (Bulanan, Burks, &

Alchanatis, 2010; Wang & Li, 2015). Similarly, thermal cameras can also be used to differentiate

objects that have a similar color range as their surroundings. These sensors make use of the

infrared (IR) energy emitted by an object, which is also known as its heat signature. As an object

increases in temperature, it emits larger amounts of radiation, thus, simultaneously increasing its

heat signature. A thermal camera can create an electronic image by detecting small temperature

differences in an object and registering these as a spatial array. This is possible because an

object’s temperature will rarely be the same as that of the objects around it. A study performed

by Stajnko, Lakota, & Hočevar (2004) used thermal imaging to estimate the number and diameter

of apple fruits in an orchard. The algorithm was able to correctly determine the apple fruit count

with an accuracy between 83% and 88%, and the R2 values between the measured diameter of

the apples and the diameter determined by the algorithm were between 0.68 and 0.88.

Stereo vision systems are another alternative for object detection in 3-dimensional (3D)

space. These systems consist of two or more cameras separated by a small distance, mimicking

binocular human vision. Images of the same scene viewed from different angles are captured and

then matched to estimate the displacement (also known as disparity) of an object. Researchers

9

have used this method to both identify and locate objects such as apple fruit in a 3D space for

applications of robotic harvesting and high-resolution yield estimation and mapping (Mirbod,

Yoder, & Nuske, 2016; Wang et al., 2012). However, stereo vision is typically not favored due to

the method’s high complexity and long computation time (Hannan & Burks, 2004). Nonetheless,

recent advances in hardware development have contributed to an increase in stereo-vision based

applications.

 Applications of Computer Vision in Agriculture

The use of CV and MV has helped, through the automation of agricultural processes, to

increase productivity, reduce production costs, monitor and increase yield quality and reduce the

need for manual labour (Kapach et al., 2012; Sun, 2008). In earlier studies, MV was predominantly

applied in production lines to automate processes using image processing techniques and was

considered relatively easy to integrate in the various production and handling procedures of fruits

and vegetables. A typical machine vision system is composed of two primary modules: one for

image processing and another for pattern recognition. The image processing module analyzes

the composition of the image and proceeds by passing it to a pattern recognizer. This second

module classifies the image using one or multiple pre-defined quality categories that correspond

with the desired patterns within the image. These recognizable patterns, also known as features,

may represent blobs, edges, corners or lines (Al-Ohali, 2011; Stanhope, 2016).

Many MV algorithms have been developed for the classification of vegetables and fruits

on conveyor belts or similar apparatuses (Benalia, et al., 2016; Mizushima & Renfu, 2013; Wang

& Li, 2015). A first example of this would be the algorithm for automatic segmentation of color

images for apple sorting and grading developed by Akira Mizushima and Renfu Lu (2013). Using

a support vector machine (SVM) model and a set of training examples, an algorithm was

constructed to define the boundary between the pixel spaces corresponding to fruit and those

10

corresponding to background. The contours of the apples were extracted using binary images

that mapped these two distinct spaces. The SVM model, combined with the procedures of Otsu’s

method (1979), performed the segmentation process with an average segmentation error

(percentage of mislabeled pixels over correctly labeled pixels) between 3.31% and 25.5% for

several types of red apples. A similar methodology was applied by Wang and Li (2015) when

developing a multimodal machine vision system for the quality inspection of onions. Their results

showed that 88.9% of healthy and defective onions were identified correctly. Similarly, Al-Ohali

(2011) developed a CV-based system for sorting and grading dates on a conveyor belt. After

determining the key external features of good and substandard quality dates, the system

classified the dates into three grade categories using RBG images, where grade one dates

represented fruits of highest quality. Various mathematical algorithms were discussed to perform

the MV process known as feature description, where key features such as flabbiness, shape, size

and color intensity are all expressed using mathematical equations. This is done to convert

physical and visual properties into numerical constants and coefficients that could be used for

quality assessment (Figure 2.2). Although the system developed by Al-Ohali was capable of

sorting approximately 80% of the grade 2 dates correctly, this percentage was lower for grade 1

and grade 3 fruit. Misclassifications arose from the system occasionally miscalculating size, shape

and color distribution due to the overwhelming number of input features. It was therefore

concluded that using less input features yielded better quality results. In more recent models,

features are learned systematically with the use of neural networks and large amounts of data

(Kamilaris & Prenafeta-Boldu, 2018). Other later applications include methods for identifying

crops in the field. Blok et al. (2016) developed a MV algorithm for identifying broccoli heads on a

farm, which could eventually be integrated into a fully autonomous selective harvesting process.

A texture and color-based segmentation was used to isolate the heads from the background.

Results from the automatic segmentation method were compared with those obtained from two

human experts by comparing the spatial overlap of the predicted and true broccoli head regions.

11

The precision score of the segmentation was 99.5% and overall accuracy of the image

segmentation was 92.4%. Other studies include work by Kondo et al. (2009), who developed a

machine vision system for autonomous harvesting of tomato fruit clusters using stereo images of

tomatoes in a greenhouse. The images were converted to the Hue-Saturation-Intensity (HSI) color

space to generate chromacity distribution plots of H-versus-I. These plots were used to cluster

fruit region properties and develop a classifier. The research results showed a 73% success rate

in locating the stems of clusters.

 Machine Vision for Yield Determination

Major applications of CV in agriculture have been developed in fruit detection, where the

goal is to identify individual fruits, segment them from scenes with branches, foliage, sky, and

localize them in space for yield estimation or as an initial step to the development of robotic

harvesting systems (Kapach et al., 2012). Many of these applications are methods developed for

counting apple fruits using canopy images (Gongal et al., 2015; Linker et al., 2012; Wang et al.,

2012; Zhou, Damerow, Sun, & Blanke, 2012). Stajnko et al (2004) developed a method for

detecting apple fruit using thermal imaging. Images were collected at five time periods (June to

August) to model apple growth over the season. Images were taken late at night to capture a

more defined temperature gradient between apple fruits and foliage. Coefficients of determination

Figure 2.2. An example of feature intensification using a date fruit. Original image (a),
thresholded image (b) and edge image (c). Reprinted from Al-Ohali (2011).

a) b) c)

12

(R2) between manually detected apples and the estimated number of apples ranged from 0.83 to

0.88. It was also noted that more mature apples were easier to detect due to their ability to radiate

more heat. Wang et al. (2012) created a similar stereo vision-based system using a two-camera

stereo rig. This system was stationed on an autonomous orchard vehicle designed to work at

night with artificial lighting. It converted apples to the HSV color space, and then used color

segmentation and specular reflection to separate both red and green apples from foliage. The

error obtained for crop yield estimation was -3.2% for red apple trees, and 1.2% in green apple

trees with additional calibration due to significant fruit occlusion. Gongal et al. (2016) later

developed an over-the-row machine vision system using both an RGB and stereo camera which

captured dual images from both sides of the plant canopy and localized them in space. The

experiment was performed in a controlled environment using a covered system with artificial

lighting and a tunnel structure. Using image processing and clustering, apples were identified in

the images based on shape and color with an accuracy of 78.9%. More state-of-the-art methods

(Bargoti & Underwood, 2017) have adapted machine learning techniques, such as Multi-Layered

Perceptrons (MLPs) and Convolutional Neural Networks (CNNs), to perform pixel level fruit-

segmentation under natural sunlight in orchards. The binary images were processed using both

an image segmentation based on a Watershed Transform (WST) and a Circle Hough Transform

(CHT). The watershed algorithm was able to detect apples with an R2 value of 0.83 and output an

apple yield map for an orchard block using an on-board Novatel SPAN Global Positioning Inertial

Navigation System (GPS/INS) recording the vehicle position and pose with every image taken

(Figure 2.3).

13

Studies have also focused on the identification of citrus fruits in similar conditions (Dorj et

al., 2017; Sengupta & Lee, 2014). In these two studies, computer vision algorithms were

developed to count citrus fruits on trees using image processing and estimate early overall yield.

Sengupta and Lee (2014) used shape and texture analysis to detect immature green citrus fruit

in a canopy. Texture classification was performed using a Support Vector Machine (SVM), Canny

edge detection and a graph-based connect component algorithm and Hough line detection. The

algorithm accurately detected 80.4% of citrus fruit. The study by Dorj et al. (2017) was based

primarily on the color features of orange fruits. The algorithm consisted of converting the images

to the HSV color space, thresholding, orange color detection, removal of noise using a median

filter, watershed segmentation and counting. Overall, this algorithm obtained a high correlation

(R2 = 0.93) between the predicted count of oranges and human observation.

Figure 2.3. Apple yield map of an orchard block created using a computer vision algorithm.
Reprinted from Bargoti & Underwood (2017). See electronic version for colours.

Individually geo-referenced images are segmented, and fruit detection is performed to obtain a fruit
count per image (b). Examples of a high yield (a) and low yield (c) image are pictured.

a) b) c)

14

 Challenges of Machine Vision Applications

Although CV systems have proven to have high detection rates and show promising

results, the presence of many external factors in farm image data (variations due to illuminations,

occlusions, clustering, etc.) has often negatively influenced the results. Therefore, it is crucial that

algorithms remain invariant to these factors to provide a reliable outcome (Bargoti & Underwood,

2017). Moreover, farm image data is prone to large intra-class variations primarily due to variable

illumination conditions, occlusion by other crops or foliage, clustering of crops, camera view-point,

and seasonal maturity levels leading to crops of varying size, shape or color (Bargoti &

Underwood, 2017; Hannan et al., 2009; Sengupta & Lee, 2014). Changes in object reflectance

can cause object detection to be somewhat unreliable and may lead to incorrect or incomplete

segmentation due to a non-uniform distribution of light intensity (Gongal et al., 2016). This

problem can be addressed by creating a controlled, uniform lightning environment from which

visual data is taken. Examples of controlled lighting environments include an over the row platform

with integrated LED lights (Gongal, et al., 2016), a wooden box with a painted black interior (Al-

Ohali, 2011) or simply performing the experiment at nightfall (Nuske, et al., 2014; Wang et al.,

2012), Other alternative solutions include using additional cues such as a perimeter-based

detection method on top of basic color detection (Hannan et al., 2009; Payne et al., 2013) when

variable lighting conditions are unavoidable.

Other existing challenges are the multiple detection of the same object within sequential

images, or occlusion by other objects or fruits which can lead to miscounting in yield calculation

applications. Gongal et al. (2016) used a 2D and 3D imaging approach where apples identified in

multiple images were mapped together in a common coordinate system that correctly identified

and removed duplicates. The apples in the orchard were represented in a 3-dimensional space

where apples registered with the same X, Y and Z coordinates were considered as one fruit.

Wang et al. (2012) developed a similar software that calculated the distance between every two

15

apples, and then merged the apples as one whenever this distance was below a given threshold

(Figure 2.4). Hannan et al. (2009) used a centroid-based detection method to identify fruit clusters

as a single fruit, and a perimeter-based detection method to locate the individual fruits which had

a success rate of 93% and a false detection rate of 4%.

 Summary of Literature Review

Extensive work has been done to perform the detection of fruits in orchard environments

such as for apples (Gongal, et al., 2016; Linker et al., 2012; Wang et al., 2012; Zhou et al., 2012),

oranges (Dorj et al., 2017; Hannan et al., 2009), mangoes (Payne et al., 2013), and berries

(Nuske, et al., 2014; Pothen & Nuske, 2016). Sorting processes have also been developed for

fruits on conveyor systems (Al-Ohali, 2011; Sofu, Erb, Kayacan, & Cetis, 2016); however, none

have attempted to develop a system directly linked to industrial harvesters that can generate a

yield map. The initiative to develop better automated crop-estimation systems for vegetables,

such as a machine vision-based yield monitor for vegetable crops, is one that has yet to reach its

full potential. For this research project, applications of CV and MV are explored to develop a

system for the yield mapping and size characterization of shallot onions. Size needed to be

determined in terms of a standard 2D metric, and localization in space or even within the image

Figure 2.4. Result of splitting a region representing two different apples.
Reprinted from Wang et al. (2012).

16

was not essential. Therefore, after careful analysis, an RGB CMOS high-resolution camera was

chosen as the final sensor for this application. Size is an important property which can be

described mathematically by a selection of parameters such as volume, weight, length and

diameter (Moreda, Ortiz-Cañavate, García-Ramos, & Ruiz-Altisent, 2009). Many CV and MV

methods have been proposed to non-destructively measure the size of various specialty crops

including but not limited to apple, berries, citrus and dates (Al-Ohali, 2011; Gongal et al., 2016;

Mirbod et al., 2016; Sengupta & Lee, 2014). Although studies have been performed for quality

inspection of sweet onions (Shahin, Tollner, Gitaitis, Sumner, & Maw, 2002; Wang & Li, 2014;

Wang & Li, 2015), similar work facilitating the yield estimation of shallots remains scarce.

Therefore, an over-the-row MV system was created to accelerate the yield estimation process by

running visual inspection on the go during harvesting and perform real-time characterization of

crop quality.

17

Chapter 3. Materials and Methods

 Feasibility Study

A feasibility study was performed to determine whether a suitable algorithm for shallot

onion detection could be developed. This study consisted of mounting an RGB camera on the

conveyor to capture video data of the harvesting process. This video data would then be used to

create a software that would be integrated in the final yield mapping system. The following

sections describe the key components and processes that were involved during the feasibility

study.

3.1.1. Image Acquisition

A Nikon KeyMission 170 action camera (Nikon, Minato, Tokyo, Japan) was mounted on

each individual harvester using a magnetic mounting base which could easily be attached to any

of the existing harvesting machinery (Figure 3.1). The KeyMission was chosen due to its ability

to provide high resolution images and video, as well as its resistance to changes in outdoor

conditions such as wind, dust and even rain (Balletti et al., 2014). These traits were essential

given the nature of this project.

Figure 3.1. Nikon KeyMission 170 action camera (Nikon, 2018).

18

The data collected included videos of the harvesting process that were approximately 6 to

8 min long. This corresponded to the total time it took to harvest a single crop row. During

operation on the field, the video resolution was set to 1920 x 1080 pixels and a frame rate of 60

frames/s. Multiple positions for the camera were tested to find a location where an optimal view

of the vegetable crops would be attained. For the view to be considered optimal, the image

provided by the camera had to be clear and chances of miscounted vegetables needed to be low.

Figure 3.2 shows a representation of the multiple camera positions that were considered for the

system’s operation and the final position chosen.

3.1.2. Software

Software Structure

One of the main challenges of this study was to select appropriate, efficient and fast

methods for detecting, intensifying and classifying the characteristic traits of the onion bulbs. A

series of image-preprocessing steps were performed to extract regions of similar texture and

identify them as desirable objects within the image. Figure 3.3 shows a flow diagram of the basic

structure of the software and the aspects of the algorithm that were developed during the

feasibility study.

Figure 3.2. Three views considered for the placement of the camera.

The first (a) is a direct top view of the conveyor belt. The second (b) is a side view with the camera mounted
on one of the conveyor’s sides, and the third (c) is an interior view of the onions just before they are placed
on the conveyor belt. The direct top view was chosen for it provided the clearest image with the least amount
of shape distortion due to projection.

a) b) c)

19

Figure 3.3. Software Flow Diagram. See electronic version for colors.

START

Initialize video capture

Segmentation

Blob detection and
categorization

Initialize GPS tracking

Associate (x, y)
coordinates to every

image

Record sum of vegetable
count for every (x, y)

Evaluate size and sort

Continue

harvesting?

Adjust vegetable count for
each size category

END

TRUE

FALSE

Harvesting on?

Feasibility
Study

Image preprocessing

20

Initial Algorithm

Segmentation is a process where regions of interest are extracted from an image by

separating the foreground objects (shallot onions) from the background (conveyor). Accurate

segmentation is crucial since it is the starting point for the succeeding steps such as size

classification and counting (Bargoti & Underwood, 2017; Mizushima & Renfu, 2013). Challenges

including highly variable illumination and shadows can significantly affect the segmentation

process and make it ineffective. Performing data collection in a controlled lighting environment

(i.e. nightfall) can help achieve better segmentation results (Pothen & Nuske, 2016; Nuske, et al.,

2014; Wang et al., 2012). However, in practice, onion harvesting usually occurs in natural daylight

and incorporating cameras on tractors will be easier for growers if large experiments are

performed during normal operation times and conditions (Bargoti & Underwood, 2017).

Digital cameras typically capture images in the RGB format, where each channel

corresponds to the intensity of the three primary colors of light (red, green and blue). All colors

are then created by the additive reproduction process of various amounts of red, green and blue,

and brightness values ranging from 0 to 255 for each color. For example, red, green and blue

are defined by the vectors (255, 0, 0), (0, 255, 0), and (0, 0, 255), respectively. White can be

represented by combining all three components at their highest intensity (255, 255, 255), and

black is the absence of all colors in each channel (0, 0, 0). Figure 3.4a illustrates a model of the

cartesian RGB color space. The RGB model is not the most intuitive for discerning color from a

perceptual point of view as it is difficult to extract characteristics such as lightness and intensity

(Gongal et al., 2015; Wang et al., 2012). Therefore, images are converted to the HSV color space

illustrated in Figure 3.4b using the following conversion formulae (Nishad & Chezian, 2013).

21

• The hue (H) of a color is the pure color we are examining. All tones and shades of a given

color correspond to the same unique hue. Hues are defined using an angle ranging

between 0 and 360 along the horizontal cross-section of the cylinder.

• The saturation (S) of a color describes how much white is present within the color. A fully

saturated color is strong in pigment. For example, tints of red have saturations ranging

between 0 and less than 1, while white has a saturation of 0.

• The value (V) of a color describes its lightness, or how much black is present within the

color. A value of 0 would be black, where lightness increases gradually as value

approaches 1.

To convert an RGB color into the HSV space, we must first determine the maximum (𝑀) and

minimum (𝑚) intensities of each pixel, and the difference between them, also known as the

chroma (∆).

𝑀 = max(𝑅, 𝐺, 𝐵)

 𝑚 = 𝑚𝑖𝑛(𝑅, 𝐺, 𝐵) (3.1)

∆ = 𝑀 −𝑚

Figure 3.4. RBG (a) and HSV (b) color models (Datumizer, 2010a; 2010b). See
electronic version for colors.

22

𝐻 is represented by a piecewise function where the chromatic intensity is determined by

a two-color difference component. The function relies on the value of 𝑀, which gives the angular

position of the color on the cylinder. The hue is then normalized by adding a value of either 0, 2

or 4. The result 𝐻’ is then measured in degrees and has a value ranging from 0° to 360° (Agoston,

2005).

 𝐻′ =

{

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑖𝑓 ∆= 0
𝐺−𝐵

∆
 𝑚𝑜𝑑6, 𝑖𝑓 𝑀 = 𝑅

𝐵−𝑅

∆
+ 2, 𝑖𝑓 𝑀 = 𝐺

𝑅−𝐺

∆
+ 4, 𝑖𝑓 𝑀 = 𝐵

 (3.2)

𝐻 = 60° × 𝐻′

𝑉 is derived from the maximum colour component, 𝑀.

 𝑉 = 𝑀 (3.3)

Finally, to determine 𝑆, we divide ∆ by 𝑀.

 𝑆 = {
0, 𝑖𝑓 𝑉 = 0

∆

𝑀
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.4)

The color indices of the HSV space have proven to be more robust against multiple

external factors, such as varying lighting conditions. Standard indices such as HSV and

normalized RGB have also been used successfully for plant segmentation (Golzarian et al., 2012).

These color indices were obtained through experimentation with images from the test videos.

Based on the preliminary analysis, the best HSV pixels ranges for shallot onions were H[0:46],

S[40:180], and V[40:255]. The computer code related to this section can be found in Appendix

A-1.

Lastly, two morphological operations were applied using image filters. The first is an

erosion operation, which is done to eliminate unwanted boundary pixels or protrusions from the

23

objects. The second operation is dilation, which enlarges any objects in the image and fills small

holes within them. Object pixels in the original image that form a region defined as 𝑅 are eroded

by an operator 𝐴, producing a smaller region known as 𝑅’ in the new image. This operation is

often represented as:

𝑅’ = 𝑅 𝜃 𝐴 (3.5)

Where the symbol θ is read as “eroded by”. The matrix operator A can have any shape,

but typically symmetric erosion operators are most common. A single erosion that is followed by

a single dilation by the same 𝐴 is called an opening, and a dilation followed by an erosion by the

same operator is called a closing (Gose et al., 1996). These operations were applied using

OpenCV functions and an elliptic structuring kernel (12 x 12 pixels) known as 𝐴, adapting the

process for objects having more circularity. Following this, the image was then partitioned into

various segments corresponding to either a vegetable region or the background. Built-in OpenCV

functions were used to detect the blobs within the image and determine properties such as pixel

area, the diameter and position of the centroid for each blob.

3.1.3. Distortion Correction

Although the KeyMission provided a very high-resolution image, images displayed a large

amount of distortion, a phenomenon where lines which are straight in the real-world deviate from

their rectilinear projections in the image (Figure 3.5). This effect is due to the wide-angle lens of

the action camera which is designed to have a large field of view despite its small focal length.

The most predominant form of distortion observed was radially symmetric distortion or barrel

distortion. This distortion had to be corrected to extract quantitative measurements that

corresponded to real-world dimensions (Balletti et al., 2014). Correction was done using distortion

calibration methods in CV libraries such as OpenCV. A camera calibration process was performed

with a total of 25 pictures of a checkerboard pattern (13” x 9”) located at multiple positions within

24

the camera’s field of view to estimate the intrinsic parameters of the camera. These parameters

included the focal length of the lens (Fx, Fy), the coordinates of the center of projection of the

image (Cx, Cy), and the radial lens distortion coefficients (K1, K2, K3, K4, K5) which are all used to

create a distortion model (Balletti et al., 2014).

Table 3.1 shows the intrinsic camera parameters obtained for the KeyMission camera

during the calibration process. The average reprojection error in pixels was used to estimate the

accuracy of the calibration process and give an estimation of the precision of the calculated

parameters. The reprojection error should ideally by as close to zero as possible (Balletti et al.,

2014). For this set of parameters, the average reprojection error for the set of calibration images

was estimated at 0.046 pixels. An undistorted image from the data set is shown in Figure 3.6.

Table 3.1. Intrinsic camera parameters of the Nikon KeyMission 170.

Focal Length Principal Point Distortion Coefficients

Fx Fy Cx Cy K1 K2 K3 K4 K5

801.2 797.1 955.5 563.4 -3.006E-01 9.924E-02 -2.676E-03 2.766E-04 -1.586E-02

Figure 3.5. Illustration of several types of radial lens distortion (OpenCV Documentation, 2018).

Figure 3.5. shows an undistorted image (a), and two common types of radial distortion: barrel distortion (b)
which occurs typically then K1 > 0, and pincushion distortion (c) when K1 < 0.

a) b) c)

25

3.1.4. Conveyor Speed Calculation

The speed of the conveyor was calculated by using the distance travelled by one of the

conveyor paddles over time. The distance between two adjacent paddles was measured to be

33.0 cm, and the total time calculated for 20 paddles to be observed was equal to approximately

9 s. The paddle and conveyor speed were then found to be 0.711 m/s.

3.1.5. Processing Unit

For the feasibility study, all computer processing was done on a Lenovo Flex 4 laptop

computer (Lenovo Ltd, Quarry Bay, Hong Kong). Image processing and development of the

detection algorithm were performed using the Python (version 3.5.2) coding language (Python

Software Foundation, Wilmington, Delaware, USA) and the OpenCV (version 3.2.0) libraries

(Itseez, Inc., San Francisco, California, USA). The initial algorithm was designed to run on a 64-

bit PC with an Intel® Core™ i7-7500 CPU processor (Intel, Santa Clara, California, USA), with a

2.70 GHz clock speed and 8GB of RAM.

Figure 3.6. The distorted image (a) from the Nikon KeyMission 170 camera and the
same image that has been undistorted (b). The undistorted image was created using the

remapping function of OpenCV.

a) b)

26

 Prototype System Design

3.2.1. System Components

 Development of the system began in the winter of 2017, and since then, there have been

continuous improvements over a two-year period. Two main versions of the software have been

developed: the first relying solely on video data to recognize onions in images, while the second

has an integrated to enable yield mapping along with image analysis. The original concept of the

system with all its components is illustrated in Figure 3.7. A camera would continuously record

data of the shallot onion crops during harvesting and send each image to a computer software

capable of counting the total number of vegetables and finally classify them by size. This system

would allow the creation of a layered yield map showing the size distribution of the onions across

a field. A webcam was used instead of an action camera to allow for easier flow of images directly

to the software.

Figure 3.7. Diagram of the machine vision based yield mapping system.

The camera records continuous video of the crops being collected by the harvester. Each frame is coupled
with a location tag given by the GPS receiver. The data is analyzed using a computer vision software and
exports a yield map showing the size distribution of the crops.

27

3.2.2. Mounting Bracket Design

A customized bracket (Figure 3.8) provided a vertical camera orientation, capturing an

image where the camera is facing downwards and directly on the conveyor. The bracket was

positioned at the end of the harvester’s conveyor to help reduce the amount of onions falling

backwards and being detected more than once by the algorithm. An on-board positioning system

provided the geographic coordinates of every detected onion in the field. Shock absorbing pads

made of Sorbothane (Sorbothane, Kent, Ohio, USA) a synthetic viscoelastic urethane polymer,

were placed beneath all the top pieces of the bracket to reduce the vibration effects of the

conveyor and to help stabilize the camera.

3.2.3. Electrical System Design

A control box was designed to house all the electronics and computer hardware used by

the system (Figure 3.9). The main structure of the box was a complete watertight and crush

resistant Seahorse protective case (Seahorse, El Cajon, California, USA). Holes were machined

directly on the case to attach connectors for the devices integrated into the system. All key

processing components were placed within the box, while an ELP 1080P USB Camera Box (Ailipu

Figure 3.8. Model of the machine vision camera bracket (left), (a) is a metal piece used to
deflect incoming onions from the camera (b), and (c) is the external light source. The left

image (d) shows the setup positioned on the farm harvester.

(a)

(b)

(c)

(d)

28

Technology Co., Ltd, Shenzhen, Guangdong, China) and a Garmin 19x HVS NMEA 0183 GPS

sensor (Garmin Ltd., Olathe, Kansas, USA) were placed directly above the conveyor belt for

image and location acquisition. Power supplied to the devices originated from a 12-V power

socket located inside the tractor cab and supplied power to the MINIX NEO-Z83-4-PRO-VESA

computer (MINIX, Kowloon Bay, Hong Kong), Eyoyo 10 Inch IPS LCD monitor (Shenzhen Eyoyo

Tech. Co., Ltd., Los Angeles, California, USA) and a Logitech K400 Wireless Touch keyboard

(Logitech International S. A., Lausanne, Switzerland). A fuse was integrated in power source line

to prevent all sensors from damage in case of oversupply. Similarly, a fuse was also attached to

the voltage wire of the GPS sensor. Ground and voltage points of all devices were joined using a

screw terminal. The webcam was the only device powered separately through the computer using

one of the available USB ports. For the prototype, the main attributes required were a high enough

RAM and processor speed to allow the algorithm to run in real-time. The processor also needed

to be small enough to fit within the available space in the tractor cab while not inhibiting the driver.

Table 3.2 shows some of the main specifications for the MINIX computer.

Table 3.2. Computer specifications
Attribute Value

Brand Name MINIX

Series FBA_MINIX-NEO-Z83-4-PRO-VESA

Item Height 12.7 centimeters
Item Width 40 millimeters

Processor Type Intel Atom

Processor Speed 1.92 GHz
Number of Processors 4

Memory Size 4 GB

Memory Type DDR3 SDRAM
Hard Disk Size 32 GB

Hard Disk Interface Solid State

Wireless Standard 2.4 GHz Radio Frequency

Voltage 3 volts

Hardware Platform PC

Operating System Windows 10 Pro (64-bit)
Lithium battery Voltage 3 volts

Lithium battery Weight 0.12 grams

29

Figure 3.9. System Assembly.

Top: main assembly of the yield monitoring system including the (a) computer power line, (b) HDMI
input, (c) terminal block, (g) GPS sensor attachment, (d, e, f) 12-V power sockets, (h) MINIX
computer, (i) external solid state drive and (j) USB input for the webcam. Bottom: The computer from
the main assembly is controlled using a wireless keyboard (b) and the output is shown on a small
monitor (a).

(a)

(b)

(a)

(b)
(c)

(d)

(e)

(f) (g)

(h) (i) (j)

30

After the feasibility study was completed, a new camera was chosen to facilitate

integrability with the software. This camera was a 2.0 Megapixel resolution camera from ELP

which could connect to the computer using a USB 2.0 adapter. Video data was recorded at a

resolution of 640 x 480 pixels and a frame speed of 120 frames/s, and frames were saved to a

Samsung T5 portable external solid-state drive (SSD) (Samsung Electro-Mechanics, Suwon,

Gyeonggi-do, South Korea) every two seconds with a corresponding GPS position. Full

specifications of the camera, SSD and GPS sensor can be found in Table B-2, Table B-3 and

Table B-4 of Appendix B.

3.2.4. Segmentation

Once the images are converted to HSV, color thresholding was performed using three

methods. The first was Otsu’s (1979) thresholding selection method which has been largely used

in CV applications in agriculture (Gongal, et al., 2016; Mizushima & Renfu, 2013; Mollazade et

al., 2012). Otsu’s (1979) method automatically determines a threshold using the histogram of a

grayscale image. An image histogram can be defined as “a density function �̂�(𝑥) […] where the

range of variable 𝑥 is divided into a finite number of adjacent intervals that include all the data.

These intervals are also called cells or bins” (Gose et al., 1996). In image processing, the variable

𝑥 can correspond to intensity, color, or a given feature descriptor. Histograms are an essential

tool for representing tonal variance within an image and have many applications in image

thresholding, segmentation and edge detection. This threshold minimizes the weighted intra-class

variance 𝜎𝑤
2 and is defined as a weighted sum of variance of the two classes:

 𝜎𝑤
2(𝑡) = 𝜔0(𝑡)𝜎0

2(𝑡) + 𝑤1(𝑡)𝜎1
2(𝑡) (3.6)

where 𝜔0 and 𝜔1 are the probabilities of the two classes separated by a threshold t, and 𝜎0
2 and

𝜎1
2 are the variances of these two classes. To obtain proper segmentation, the image must have

an intensity histogram that is bi-modal. Otsu’s (1979) method was applied to the hue channel.

31

In the second method, the image was thresholded by applying a band pass filter to the

hue channel and a high pass filter on the saturation channel. The threshold values were

determined by analyzing the hue channel histogram and selecting the hue region where most of

the onions were located. Both methods were then followed by a second segmentation based on

texture properties using the magnitude of the red color intensity. This method is often used in

apple detection, since apple fruit have a very distinct red color when compared with the green

foliage of apple trees (Stajnko et al., 2009; Zhou et al., 2012). Canny edge detection (Canny,

1986) located the contour lines of the onions, and shape properties were extracted from the binary

image to identify regions corresponding to onions.

A third method was later adapted after the field trials to improve detection results even

further. Segmentation using a marker-based watershed transform (WST) was performed to

improve separation of regions that were adjacent and overlapping (Meyer & Beucher, 1990;

Vincent & Soille, 1991). In this segmentation approach, an image is interpreted as a topographical

surface where the gradient image magnitudes can be represented as elevations. Region edges

are equivalent to watershed boundaries and low-gradient region interiors are the catchment

basins. The watershed segmentation algorithm attempts to group all pixels belonging to the same

catchment basin using the distances of each binary pixel in the mask to the nearest 0-value

(background) pixel. Once these steps are completed, a marker-controlled watershed

segmentation is performed by labelling the regions that can be considered foreground with high

confidence (Sonka et al., 2015). Connected component analysis using 8-connectivity is performed

on these regions to label them as individual onions. Finally, properties of these regions, such as

size and circularity, were assessed before identifying them as identified onions and placing them

in the correct size category.

32

3.2.5. Definition of Vegetable Size Categories

The algorithm was further expanded by sorting the detected vegetables into various size

categories allowing producers to quantify the number of crops of a given size type. Samples of

shallot onions ranging within four size categories (small, medium, large and extra-large onions)

were analyzed by weighing each onion and taking their dimensions with a caliper. These

dimensions included an approximate circular diameter measured through the center of the onion,

and a major axis and minor axis for an elliptic approximation. Classes for the machine vision

algorithm were determined by plotting each of these defining traits versus onion weight. The

highest correlation was found between the minor axis parameter and weight (R2 = 0.93). Figure

3.10 shows the minor axis values for onions sorted by the conventional method (legend) and the

thresholds established after classifying the data using the model. A summary of these classes is

shown in Table 3.3.

y = -0.0018x2 + 0.528x + 23.749
R2 = 0.93

20

25

30

35

40

45

50

55

60

65

70

0 20 40 60 80 100 120 140

M
in

o
r

A
x
is

,
m

m

Shallot Onion Mass, g

Weight (g)

Small Class

Medium Class

Large Class

Extra Large Class

Thresholds

Poly. (Weight (g))

Figure 3.10. Determination of size classes for shallot onion classification.

S
m

a
ll

M

e
d

L
a

r
X

-L
a

rg
e

33

3.2.6. Size Calibration

Once size classes were defined, a method was developed to automatically calculate the

size of the onions in the images collected by the yield monitor. Previous research has made use

of systems integrating different types of imagery such as thermal (Stajnko et al., 2004) or stereo-

vision (Mirbod et al., 2016) to do this. Others have used sophisticated time-of-flight-based 3D

cameras (Gongal, et al., 2016) to perform size determination and precision mapping of fruits in

3D space. However, in this study, the requirement was to characterize onion size by generalizing

values within 3 to 4 size categories. Therefore, a simple size calibration method was chosen. Real

vegetable size can be estimated by calculating the area of the pixels occupied by the vegetable

itself within the image and then directly correlating it to their real-world dimensions by using a

reference object of known size (Al-Ohali, 2011; Stajnko et al., 2009). The reference object is

isolated and measured in each image, and then a suitable pixel to metric ratio (𝑃𝑚) is determined.

𝑃𝑚 is defined by taking the ratio of a pixel distance (𝑃𝑑) and the true value of this same distance

(𝑇𝑑) in a real-life metric unit of choice.

𝑃𝑚 =
𝑃𝑑

𝑇𝑑
⁄ (3.7)

It is important that the dimensions of the reference object remain known and that it is easy

to identify and segment from the image. To facilitate size calibration, this object could be placed

in the same location in every frame. A total number of 35 onions were analyzed by comparing

their true size measured with a caliper with that predicted by the algorithm. A standard 300 mm

ruler was used as the reference object for this test (Figure C-1 of Appendix C). Results showed

a very high correlation (R2 = 0.94) between the predicted results and the true size values, and a

standard error (SE) was 2.33 mm (Figure 3.11). Therefore, this method was deemed suitable for

the prototype during the in-field trials.

Table 3.3. Shallot onion classes defined for the computer vision algorithm.

Size Class Small Medium Large Extra Large

Minor axis range (mm) 25 - 45 45 - 50 50 - 55 > 55

34

3.2.7. Statistical Analysis

A two sample Kolmogorov-Smirnov (KS) test was applied to determine whether the

predicted diameter values for each size category would differ significantly from the manually

measured values. The KS test statistic is defined as the maximum distance 𝐷 between the two

curves and is given by:

𝐷 = max ((𝐹(𝑌𝑖) −
𝑖−1

𝑁
,
𝑖

𝑁
− 𝐹(𝑌𝑖))

1 ≤ 𝑖 ≤ 𝑁

 (3.8)

𝐹 is the theoretical cumulative distribution being tested and 𝑌𝑖 is a given observation within

the total number of observations 𝑁. To use the KS-test, the distribution must be continuous and

fully specified. A two-tailed test was performed with the following conditions:

𝐻0 ∶ 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑎𝑟𝑒 𝑑𝑟𝑎𝑤𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛.

𝐻1 ∶ 𝑇ℎ𝑒 𝑡𝑤𝑜 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑑𝑟𝑎𝑤𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. (3.9)

The KS statistic was computed using the two-sided asymptotic KS distribution.

y = 0.9972x
R² = 0.94

SE = 2.33 mm

20

30

40

50

60

70

80

20 30 40 50 60 70 80

T
ru

e
 M

in
o

r
A

x
is

 (
m

m
)

Predicted Minor Axis (mm)

Onion Size
Linear (Onion Size)

Figure 3.11. Shallot onion size calibration results.

35

Chapter 4. Results and Discussion

 General System Performance

Design of the yield monitoring system was completed under a set of constraints defined

by both the partner organisation and the research team. The primary constraints were the

following: (1) it needed to be easily integrated into the operator’s daily practices, (2) inexpensive,

(3) relatively easy to assemble and dismount from the harvester, (4) reliable and most importantly,

(5) it had to provide an accurate prediction of vegetable size. In the following sections, we assess

the performance of the system in terms of these initial constraints. Size prediction performance

will be discussed in section 4.3 together with the performance of the final detection algorithm.

4.1.1. Integrability

The system was designed to be easily operated by anyone within the tractor. To run the

yield monitoring program, the operator simply had to log into the computer, open a terminal and

run the following line of code:

 python main.py -c conf.json

This command initialized a python console and ran the yield monitoring program using a

preset JSON configuration file. In this configuration file, constants related to the settings of the

system were stored separately and called by name in the program. Such settings included the

baud rate of the GPS sensor, the path where the collected images would be stored on the external

drive and the location of the spreadsheet containing the yield predictions for all images in the data

set.

36

4.1.2. System Cost

Table 4.1 lists the components used to build the system and their respective suppliers

and prices. The total price of the yield monitoring system was $1,212 CAD (excluding

manufacturing and assembly costs), proving to be far less expensive than most farm equipment.

Table 4.1. Price Breakdown of the machine vision yield monitor by component.

Component Function Manufacturer Price ($CAD)

MINIX NEO Z83-4 Computer Vision Analysis MINIX 240
SAMSUNG T5 External SSD 250GB Image Storage Samsung 149
Garmin GPS 19x HVS NMEA 0183 GPS receiver Garmin 302
ELP Varifocal USB camera Image Acquisition ELP 124
Wireless Keyboard Command Entry Logitech 50
Display Monitor Display Eyoyo 97
USB Camera Mount Structural Wasserstein 20
Seahorse 300Protective Case Structural Seahorse 34
USB wires Data Transfer UGREEN 16
HDMI Cable Data Transfer UGREEN 15

Black 20CM FPV Flat HDMI Cable Data Transfer Permanent 21

USB Connectors Electrical Component Conec 26
8 Pin Connector and Receptacle Electrical Component Conxwall 32
HDMI Weathertight Connector Electrical Component Switchcraft 18
12-V Power Supply Sockets Electrical Component Foxnovo 42
Dual Row Terminal Block x2 Electrical Component Philmore-Datak 7
Silicone Insulated Wire Electrical Component N/A 8

RS-232 to USB adapter Signal Converter N/A
10

Total Cost 1212

4.1.3. System Assembly

Assembly of the system was feasible in less than one hour. During this time, the USB

camera was fixed on the bracket of the harvester using locknuts, bolts and washers. Once this

was completed, the next step was to connect the camera to the processor using two USB

extension plugs. The wires were then fixed onto the harvester and tractor using zip ties and were

run to the driver’s cab where all other hardware was located. The 12-V power source was

connected to the control box and powered all the devices including the GPS sensor. The USB

webcam was the only component that was powered by the computer itself since it required a 5-V

DC input. Although assembly of the system was somewhat time consuming, in practice, this task

37

would be completed only once per season: the device is mounted on the tractor at the beginning

of the harvesting season and then provides continuous data collection until the end of harvest.

The system is only dismounted once the data collection has been completed.

4.1.4. Reliability

One disadvantage of the system was the occasional disconnection of wires which would

unfortunately lead to a complete power loss. Under these circumstances, data collection would

come to a halt and the system would have to be rebooted. This may have been due to the type

of connectors used (12-V cigarette lighter adapters), which tended to move around in the sockets

and eventually disconnect while the tractor was running. To overcome this, special care needed

to be taken to ensure that all components were properly fixed during operation. To improve the

system, the next iteration would need to include more stable connectors, especially those

originating from the main power supply; ideally, these would have a type of security lock. This

would provide a constant stable connection resulting in a more reliable system.

 Results of Feasibility Study

4.2.1. Segmentation Results

The aim of the feasibility study was to determine whether onion detection and count could

accurately be done using a CV software. To properly isolate individual onions and count them, an

appropriate segmentation needed to be attained. The first segmentation method tried involved

converting the image to the HSV color space, and then obtaining a histogram of the hue

distribution. The second segmentation method was Otsu’s method, described previously by

equation 3.6.

Figure 4.1 shows a hue channel histogram of a sample image from the dataset. Since the

range 0 to 360 cannot be represented using only 8-bit integers in OpenCV, hue values range from

38

0 to 180. The high bin count at the value 121 corresponds to a shade of blue violet, representing

the surface behind the conveyor belt. The two modes in the histogram are located between 0-30

(left region) and 90-120 (right region). Otsu’s method determines an average threshold of 60,

situated roughly in the middle of the two peaks, where the left region represents the shallot onions

and the right region represents the light-green portions of the paddle and conveyor. The manually

determined threshold combined the left hue peak and the hue values from 165-180.

An original image of the onions on the conveyor and the results obtained from the various

segmentation methods is shown in Figure 4.2. A red color intensity texture image (Figure 4.2b)

was used to further extract regions that were high in red chroma after the initial global

thresholding. In most cases, Otsu’s method (Figure 4.2c) led to over segmentation, capturing not

Manually

determined
onion regions

Figure 4.1. Hue intensity distribution of a sample image in the feasibility study. See
electronic version for colors.

39

only the onion regions but also much of the conveyor system and stems. This may have been

due to the varying number of onion pixels in each image which affected the histogram

distributions, and in some cases, made it unimodal when onion counts were unusually low.

Combining the HSV color threshold with the red texture image reduces the number of false

positives as the algorithm first checks to determine if the object is within the proper color range,

and then analyses the image further and searches for a distinct red intensity.

4.2.2. Onion Detection Performance

To assess onion detection performance of the feasibility study algorithm, 34 random

screenshots were gathered to compare the algorithm’s number of detected shallot onions and the

true shallot onion count performed by manual observation. Examples of these screenshots are

shown in Figure 4.3. According to the results, the general onion detection rate for the feasibility

study proved to be relatively low: the mean number of manually counted onions was equal to

16.1, ranging from 4 to 37 onions in observed examples with a standard deviation of 6.16. The

mean from the automatically detected onions (i.e. algorithm) was 7.17, with ranges between 1

and 15 correctly observed onions and a standard deviation of 3.10. Performance of the algorithm

is summarized in Figure 4.4 (top). Although the algorithm underestimated the true crop load

Figure 4.2. Segmentation results.

Original conveyor image (a) and results of the image processing and segmentation algorithm. (b) is the
red color intensity image, (c) is the image segmented using Otsu’s method and (d) is the segmentation
performed using the manually selected hue and saturation thresholds.

 (a) (b) (c) (d)

40

(regression slope of 0.45), it is important to note that there was a high correlation between the

manual count and algorithm count, with an R2 value of 0.71.

By taking the automatically determined onion count and dividing it by 0.45, this increased

the efficiency of predictions dramatically, raising the detection regression slope to 0.99 (Figure

4.4, bottom). Figure 4.5 shows a stacked column graph of the detected shallot onions by the

algorithm and the difference between the automatic and true manual counts. The total number of

onions in the frame is given by adding the undetected onions and correctly detected onions

together. After careful analysis, it was noted that under low onion count the algorithm showed

better results, missing at most 3 onions per frame. The number of falsely detected onions

remained between 0 and 7 in all cases. High detection rates occurred when the onions were not

clustered together or superimposed which caused them to be segmented as a single object and

thereafter making them difficult to isolate. The algorithm also missed onions primarily located in

shadowy regions, as well as bulbs that were hidden by onion stems and occluded other

vegetables.

Figure 4.3. Onion detection results. See electronic version for colors.

Onions identified by the algorithm are located on the image using ellipses. Colors represent size
ranges. In this case, blue corresponds to small and green to medium sized onions. Size estimation
accuracy was not evaluated in this stage of the study.

 (a) (b) (c)

41

Figure 4.4. Onion detection accuracy of the current machine vision algorithm (top) and
accuracy obtained by doubling the output (bottom).

y = 0.99x
R² = 0.76

SE = 3.32 onions

0

5

10

15

20

25

0 5 10 15 20 25

E
s

ti
m

a
te

d
 O

n
io

n
 C

o
u

n
t

(C
V

 A
lg

o
ri

th
m

)

True Onion Count

Perfect Accuracy Line

Doubled Onion count

Linear (Doubled Onion count)

y = 2.16x
R² = 0.71

SE = 9.66 onions

0

5

10

15

20

25

0 5 10 15 20 25

E
s

ti
m

a
te

d
 O

n
io

n
 C

o
u

n
t

(C
V

 A
lg

o
ri

th
m

)

True Onion Count

Perfect Accuracy Line

Onion Count

Linear (Onion Count)

42

Other falsely detected onions corresponded to bulbs that were detected twice, which was

caused by improper boundary definition by edge detection. However, false detection was

relatively low (3 onions) and the average deviation between the algorithm and manual count was

8.88.

4.2.1. Conclusions of Feasibility Study

The goal of this study was to address the processes described in the feasibility study

section of Figure 3.3 and to use image processing techniques to develop an initial algorithm for

automatic onion detection. The main challenges encountered were primarily uneven

segmentation caused by either inconsistent lighting and occasional occlusion by stems or other

shallot onions. This created an incentive to rework the algorithm and improve detection for the

Figure 4.5. Shallot onions detected by the computer vision algorithm vs. manual count.

0

5

10

15

20

25

30

35

40

1 5 9 13 17 21 25 29 33

N
u

m
b

e
r

o
f

S
h

a
ll
o

t
O

n
io

n
s

Frame Number

Falsely Detected Onions

Correctly Detected Onions

Undetected Onions

43

final field testing. A fully functional system was therefore created and added to the machine vision

bracket to perform simultaneous image analysis and position tracking. Moreover, size estimation

using the method described in section 3.2.5 was integrated and evaluated.

 Prototype Performance

The system was mounted on a commercial shallot onion harvester (Univerco Inc.,

Napierville, Quebec, Canada) located on a farm in Napierville, Quebec. Images, onion counts,

and geographical coordinates were recorded and saved to a file. These results are reported and

analyzed in the following sections.

4.3.1. Size Estimation

A tennis ball was selected as the calibration object for the field trial due to its very distinct

bright yellow color which could easily be segmented using color thresholding in the field. Figure

4.6 shows the results from this segmentation (a) and the detection of the ball in a sample image

from the conveyor (b). Sections 3.2.5 and 3.2.6 describe the approach used to extract the size

information of the onions from the images following the segmentation step. OpenCV approximates

the ball using a CHT and extracts its diameter in pixel length. The value of 𝑃𝑚 is determined using

the diameter of the ball which was equal to 65.4 mm. For the field trial, the recorded 𝑃𝑚 was

roughly 3.38 pixels/mm per image. In the initial version of the software, an elliptical approximation

was set to characterize the shape of the shallot onions. However, after careful examination, it was

noted that this approximation gave poor results when predicting the true size distribution of the

onions. Almost all onions detected were labelled as being small which was incorrect. A circular

approximation was later selected and the new model of onion diameter vs. mass is depicted in

Figure C-2 of Appendix C. In the univariate quadratic polynomial that is fitted to the new model,

the coefficient of the second-degree variable is of a larger magnitude, making the curve of the

44

parabola sharper than the similar curve in Figure 3.10. The number of size categories was then

decreased to 3 instead of 4 (small, medium and large). Parts of the medium and large class are

merged, and the new thresholds are depicted in Figure C-2.

Within the dataset, a total of 92 images were randomly chosen to assess the performance

of the size prediction method. Within these images, 271 onions were analyzed by measuring the

diameter of the automatically detected boundary of the bulb and comparing it with the true

boundary of the onion. Results showed that the overall performance of this algorithm was very

poor (R2 =0.011) with 55.9% of onions correctly classified and a Root Mean Square Error (RMSE)

of 11.3 mm. Figure 4.7 shows the results obtained after performing a linear regression for each

of the 3 size categories. The lowest detection rate was found within the medium onion category

(44.4%). Size predictions of the onions within the small class were reasonably better with 88

correct predictions out of 150 small onions observed (58.6%). The best size classification

performance was within the large class (73.3%). The mean difference between the predicted and

true values of the medium class (1.68 mm) was lower in absolute value than that of both the small

(6.86 mm) and large classes (2.06 mm).

Figure 4.6. Color thresholded result of the calibration object (a) and detection of the ball in
the original image (rb). The diameter of the ball in pixel length is determined using a CHT.

 (a) (b)

45

 Following are results of the two sample KS test which was applied to determine whether

the predicted diameter values for each size category differed significantly from the manually

measured values. Cumulative fraction plots were created for each pair of observations to visualize

their respective distributions (Figure 4.8). The KS statistic was computed using the two-sided

asymptotic KS distribution. If the KS statistic was small or the given p-value was shown to be

high, then the null hypothesis could not be rejected. Results from the statistical analysis for each

size class are tabulated in Table 4.2, Table 4.3 and Table 4.4. According to these results, the

null hypothesis is rejected for both the small and medium classes but remains true for the large

class with a confidence interval of α = 0.05.

Figure 4.7. Manually determined onions sizes vs. predicted onion sizes from WST algorithm.

y = 1.07x
R² = 0.011

RMSE = 11.23 mm

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
re

d
ic

te
d

 D
ia

m
e
te

r
(m

m
)

True Diameter (mm)

All onions
Small Class
Medium Class

Large Class
Linear (All onions)

46

Figure 4.8. Cumulative fraction plots of the predicted diameter and true diameter distributions.

47

 Table 4.2. Kolmogorov-Smirnov test results for the small class

 Diameter (Predicted) Diameter (True)

Mean (mm) (N = 150) 43.87 37.00

Median (mm) 42.50 37.32

Min (mm) 29.32 23.40

Max (mm) 76.12 43.83

Standard Deviation (mm) 10.41 1.62

Mean Difference (mm) 6.86

KS Test Statistic 0.4199

P-Value 2.849E-12

 Table 4.3. Kolmogorov-Smirnov test results for the medium class

 Diameter (Predicted) Diameter (True)

Mean (mm) (N = 90) 49.46 47.78

Median (mm) 49.76 47.39

Min (mm) 29.91 44.13

Max (mm) 77.30 53.61

Standard Deviation (mm) 10.44 2.75

Mean Difference (mm) 1.68

KS Test Statistic 0.3222

P-Value 1.191E-4

 Table 4.4. Kolmogorov-Smirnov test results for the large class

 Diameter (Predicted) Diameter (True)

Mean (mm) (N = 30) 58.44 60.51

Median (mm) 58.20 57.01

Min (mm) 39.09 54.20

Max (mm) 74.93 87.67

Standard Deviation (mm) 8.12 8.79

Mean Difference (mm) -2.06

KS Test Statistic 0.2333

P-Value 0.3420

Finally, the onion size distribution obtained from the algorithm was compared to that

calculated after manual sorting of 15 shallot onion rows originating from the same shallot onion

field. Figure 4.9 shows the final output percentages for each size class. Predictions remained

accurate for the small and medium classes with a 0.41% and 4.19% difference from the observed

true percentages for the small class and medium class, respectively. However, there was a strong

deviation in results obtained from the extra-small, large and extra-large class (26.97%, 58.46%

and 66.14%, respectively).

48

4.3.2. Segmentation Results

Figure 4.10 illustrates the pipeline used to identify the onions and calculate their sizes.

Images were subject to variable lighting conditions, which affected the performance of

segmentation in some cases due to the presence of either shadowy or very bright regions. The

various preprocessing steps involved blurring the original image (Figure 4.10a) with a median

filter (9x9) to remove speckle noise, then blurring it once more with a 9x9 Gaussian filter (Figure

4.10b). The image was converted to the HSV color space and first segmented using color

thresholding. Color ROIs included the onion skin and areas on the onion that exhibited specular

reflection (Figure 4.10c). Morphological operations of opening (Figure 4.10d) and closing

(Figure 4.10e) were applied to refine the onion regions and remove noise from the objects of

interest. Segmentation using a marker-based watershed transform (WST) was performed using

the distance transform of each image Figure 4.10f), and these regions were individually labelled

(Figure 4.10g). Small onions were identified using blue contours, medium onions with green

contours and large onions with red contours (Figure 4.10h).

Figure 4.9. Size class distributions for the manual sorting vs. computer vision algorithm.

37.10%

38.40%

24.50%

True Size Distribution

Small Medium Large

23.71%

27.57%

48.71%

Predicted Size Distribution
(Algorithm)

Small Medium Large

49

4.3.3. Onion Detection Results

A summary of the final detection results obtained for both methods is reported in Table

4.5. Initially, the feasibility study algorithm was used to detect and count the shallot onions during

harvesting. Out of 1180 images collected during the trial, a subset of 246 images was selected to

evaluate the performance of the algorithm. In these 246 images, 1667 onions were manually

identified. The initial algorithm managed to detect a total of 713 onions, within these, 597 were

true onions (83.7%) and 116 were false detections. However, the total number of correctly

detected onions was relatively low compared to the true number of onions in the dataset (35.8%).

With the WST method, the total number of onions detected increased to 1467, and a total of 1115

of these detections corresponded to true onions (76.0%). There were 1782 onions manually

a) b) c) d)

e) f) g) h)

Figure 4.10. Segmentation Results.

The original image (a) is first preprocessed by blurring using a 9x9 median filter and 9x9 Gaussian filter
(b). The image is then converted to the HSV color space and thresholded using a predetermined
threshold value (c). Morphological operations of opening (d) and closing are applied (e), and the
distance transform (f) is computed. Watershed segmentation is performed on the image to isolate
individual onion regions (g) and identify and classify them in the original image (h).

50

identified in the dataset. The total number of large detections also increased drastically with the

WST method (from 12 to 390).

 Table 4.5. Summary of shallot onion detection results

Method
Total

Detected
Onions

Correctly
Detected
Onions

Correctly
Detected

Onions (%)

Mean (per
image)

Standard
Deviation

Standard Error
(Actual vs.
Correctly
Detected)

Initial 713 596 35.8 2.90 1.96 2.47
Watershed 1467 1115 62.6 5.64 2.99 1.98

Figure 4.11 shows screenshots of results obtained by the initial algorithm (a) and WST

algorithm (b). The WST segmentation method failed mostly when there were large reflective areas

present on the onion which would appear almost entirely white and that were not properly

captured by color thresholding. Bright spots in some images caused by inconsistent lighting also

led to false detections. In some extreme cases, the image was overly saturated making the onion

regions appear almost uniform. This would leave large holes within the onion which were not filled

even after noise removal with opening/closing, preventing the allocation of a single minimum to

that specific region. As with the initial method, the conveyor background would sometimes

mistakenly be identified as shallots and some onions would also be detected twice. As in the

feasibility study, onions missed by the initial algorithm were, for most cases, onions that were

partially visible and on the border of the image, onions occluded by larger bulbs or stems, or bulbs

that were present in shadowy regions. False detections corresponded to onions clustered in the

trailer that were visible through the conveyor paddles or onions that were improperly segmented

causing the same bulb to be identified twice. Detection did increase with the adaptation of the

WST method. However, this change also led to an increase in the number of false detections

which can also been seen in Figure 4.12 and Figure 4.13.

51

Linear regression was performed on the total number of onions detected by each method

vs. the actual (true manually detected) onion count. Looking at the two accuracy plots for both the

original method (Figure 4.12, top) and the watershed method (Figure 4.12, bottom), the

coefficient of determination obtained for the initial method was low (R2 = 0.33). The slope of the

trendline was also low, showing that the original algorithm could only detect about 41% of onions

present. As count remained low, the predictions were near the perfect accuracy line but as count

gradually increased beyond 4 onions, the algorithm began to miss more vegetables. Possibly,

this was due to the improper segmentation of onions that overlap when the image is more

cluttered. For the WST method, the estimated count has significantly improved and the correlation

between the automated count and true count was much higher (R2 =0.49). One downfall of this

was the increase of false detections from an average of 0.48 onions per image to 1.36 onions per

image (Figure 4.13).

Figure 4.11. Onion detection results. (a) shows final detection results for the initial algorithm,
and (b) shows results from the WST segmentation method. See electronic version for

colours.

(a) Initial Algorithm (b) WST Segmentation

52

y = 0.79x
R² = 0.49

RMSE = 3.24 onions

0

5

10

15

20

25

0 5 10 15 20 25

E
s
ti

m
a
te

d
 O

n
io

n
 C

o
u

n
t

(W
a
te

rs
h

e
d

 A
lg

o
ri

th
m

)

True Onion Count

Onion Count

Perfect Accuracy Line

Linear (Onion Count)

y = 0.42x
R² = 0.33

RMSE = 5.01 onions

0

5

10

15

20

25

0 5 10 15 20 25

E
s
ti

m
a
te

d
 O

n
io

n
 C

o
u

n
t

(I
n

it
ia

l
A

lg
o

ri
th

m
)

True Onion Count

Onion Count

Perfect Accuracy Line

Linear (Onion Count)

Figure 4.12. Shallot onions detected by the computer vision algorithm vs. manual count. Top
shows results for the initial algorithm developed during the feasibility study, and bottom shows

the improved WST segmentation algorithm results.

53

0

2

4

6

8

10

12

14

16

18

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

1
5

6

1
6

1

1
6

6

1
7

1

1
7

6

1
8

1

1
8

6

1
9

1

1
9

6

2
0

1

2
0

6

2
1

1

2
1

6

2
2

1

2
2

6

2
3

1

2
3

6

2
4

1

2
4

6

S
h

a
ll
o

t
O

n
io

n
 C

o
u

n
t

(I
n

it
ia

l
M

e
th

o
d

)

Frame Number

Actual Onions

Correctly Detected Onions

Falsely Detected Onions

0

2

4

6

8

10

12

14

16

18

1 6
1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1
1
0

6
1
1

1
1
1

6
1
2

1
1
2

6
1
3

1
1
3

6
1
4

1
1
4

6
1
5

1
1
5

6
1
6

1
1
6

6
1
7

1
1
7

6
1
8

1
1
8

6
1
9

1
1
9

6
2
0

1
2
0

6
2
1

1
2
1

6
2
2

1
2
2

6
2
3

1
2
3

6
2
4

1
2
4

6
2
5

1
2
5

6

S
h

a
ll
o

t
O

n
io

n
 C

o
u

n
t

(W
a
te

rs
h

e
d

 M
e
th

o
d

)

Frame Number

Actual Onions

Correctly Detected Onions

Falsely Detected Onions

Figure 4.13. Shallot onions detected by the computer vision algorithm vs. manual count.
Top shows results for the initial algorithm developed during the feasibility study, and

bottom shows the improved WST segmentation algorithm results.

54

The error was modelled to compare both results and select the method that performed the

best. To do this, the true positive (TP), false positive (FP) and false negative (FN) counts were

calculated from the visual observations. TPs corresponded to onions that were correctly detected,

FPs were other objects (background, stems, rocks) that were falsely classified as onions, and

FNs were onions that were missed by the detection algorithms. Results of this analysis are

featured in Table 4.6 and Table 4.7.

 Table 4.6. Summary of Type I and Type II error distribution for the Initial Method.

 Type I Error (Falsely Detected Onions) Type II Error (Missed Onions)

Total Sum 117 962
Mean (per frame) 0.475 3.91
Median 0 4
Standard Deviation 0.738 2.50
Max 4 13
Min 0 0

Table 4.7. Summary of Type I and Type II error distribution for the Watershed Method.

 Type I Error (Falsely Detected Onions) Type II Error (Missed Onions)

Total Sum 352 418
Mean (per frame) 1.35 1.61
Median 1 1
Standard Deviation 1.41 1.81
Max 8 8
Min 0 0

Results show that detection did improve with the adoption of the WST method. The total

number of false detections and missed onions in the initial method (1079) decreased to 770 using

the WST algorithm, although at the expense of a higher false detection rate. From Table 4.8, we

can see that adopting the Watershed Method allows for an increase in overall performance,

although it does cause a small decrease in precision. Stricter analysis will need to be done to

develop an improved algorithm that can help improve the resistance to type I error.

Table 4.8. Summary of detection performance metrics
 Initial Method Watershed Method

Precision 0.836 0.760
Recall 0.383 0.727
Overall Accuracy 0.356 0.592

Standard Deviation 1.41 1.81

55

4.3.4. Yield Map

The system was tested on a portion of the onion field equivalent to two full rows of shallot

onion crops. Issues related to the power supply caused data collection to halt midway. However,

enough data was collected create a map showing the distributions of the 3 size categories. The

full study area is pictured in Figure 4.14.

 A total of 871 data points was collected during the field trial. A median filter was applied

to the dataset by taking the median of the onion count values at every 10 points for each size

category, leaving a total of 88 points for mapping that were separated by an average distance of

23 m. Inverse distance weighting (IDW) was selected as the spatial interpolation method with a

weight power of 2 and search radius of 5. Although a small portion of the field was mapped, the

three maps did show similar trends (Figure 4.15). For example, the north side of the field reported

a high yield value for all three size classes. The edges of the field correctly report a low onion

count, which reflects the images on the sides of the field that pictured mostly the conveyor and

soil. Overall, the spatial variation between adjacent points was very high. Further analysis will

need to be done to determine an appropriate sample point density that would give the most

accurate representation of the shallot onion field and give more precise yield predictions.

Figure 4.14. Image showing the sampling points collected on the shallot
onion field (a) and the boundary of the entire study area (b) .

a)
b)

56

a) b)

c) d)

Figure 4.15. Final yield maps for the small (a), medium (b), large (c) onion classes and
the total count (d) of the shallot onion field.

57

 Future Improvements

Although the system was able to gather images and perform yield estimation on the go

during the harvesting process, there were some drawbacks during operation. One of these

drawbacks was related to the method of supplying power to the system. The yield monitor

received power directly from the tractor using a 12-V outlet. This outlet was then linked to the

control box using a 12-V cigarette lighter socket. Although the 12-V sockets did manage to supply

enough power to the box, the connector would occasionally detach from the cigarette lighter

receptacles, therefore, cutting off the power source for the entire system. Special care needed to

be taken to ensure that the connector would stay fixed within the socket during operation. A

solution to this could be the replacement of the cigarette lighter receptacles with lock tight

connectors for power and ground like those used for the GPS sensor, creating a more stable and

secure connection that could better withstand movement in the driver’s cab.

Another disadvantage of the system was related to the effectiveness of the size calibration

process. Once the yield monitoring program was started, calibration images had to be taken by

placing a tennis ball in front of the camera and recording a small set of frames that would later be

used to establish a pixel metric. However, the thresholds for the color segmentation of the tennis

ball were set using trial and error with previous images from a different run. Therefore, the

segmentation could sometimes be faulty depending on the existing lighting conditions of the

following run. A threshold setting method capable of being adjusted on the field would allow a bit

of play when establishing the color thresholds for segmentation. Another option could be to use

the distance between paddles to calibrate the size estimation algorithm, although this would

require the development of a new method to segment the paddles from the image.

Onions missed by the detection algorithm were, for most cases, onions that were partially

visible and on the border of the image, onions occluded by larger bulbs or stems, or bulbs that

were present in shadowy regions. False detections corresponded to onions clustered in the trailer

58

that were visible through the conveyor paddles or onions that were improperly segmented causing

the same bulb to be identified twice. Further enhancements of the algorithm must be made to

better separate individual onion regions and to increase overall accuracy. A way to enhance this

could be to develop a more resilient algorithm using a form of machine learning called semantic

segmentation. A convolutional neural network structure like that of Bargoti and Underwood (2017)

could potentially learn features that could accommodate for all variabilities in the appearance of

onions. These variations include examples of onions in clusters, in shaded areas or occluded by

stems.

Enhancements to the algorithm will also need to be made to improve overall detection

rates while maintaining a low number of false positives. This may be done by increasing the video

frame rate and analyzing sequential frames and monitoring them for onions that appear in multiple

frames. This may reinforce the possibility of an object being an onion by incorporating a visual

tracking algorithm.

59

Conclusions

Providing quality and quantity assessment of shallot onion crops during harvesting is

crucial for securing higher returns and establishing more efficient management practices. This

research focused on the use of computer vision as an alternative for yield estimation practices for

specialized vegetable crops.

A fully functional system was developed to record image and position data of shallot onion

bulbs during harvesting and create a geo-tagged image database for precision yield mapping.

Computer software was developed to detect shallot onions in images and determine their sizes.

The system was able to properly detect 62.6% of onions in a subsample of the dataset using a

Watershed segmentation method. The software also reliably categorized large sized shallots with

an accuracy of 73.3% but was limited when predicting small (58.6%) and medium (44.4%) onion

sizes. This was primarily due to improper boundary definition of bulbs that were either on the

border of the image or occluded by other bulbs or stems. There was also difficulty detecting onions

in shadowy regions. Despite this, it did correctly predict the percentages of the medium and small

classes when compared to post-harvest data for 15 rows of the examined field.

Hardware limitations will need to be properly revisited to develop a more reliable system

that can withstand harsh conditions of the agricultural environment. These would include more

stable power connections, a camera that is resistant to high amounts of dust and variable lighting.

Developing a new algorithm based on modern machine learning techniques and artificial

intelligence may also strengthen detection results. However, this system would most likely require

a more powerful processor which will increase its price.

The incorporation of computer vision into agriculture is growing. Although further

development is envisioned for this current system, it will help producers manage their harvesting

strategies more efficiently. It served as a low-cost initial prototype which managed to provide

60

insight regarding the feasibility and economic potential of such systems. More care will be taken

to produce a second prototype and increase the system’s reliability and deliver a better product

that could be used in the long term.

61

References

Agoston, M. K. (2005). Computer graphics and geometric modelling v.1: Implementation and Algorithms.

USA: Springer. doi:10.1007/b138805

Ahmed2IQ. (2009). [Photograph of a CCD sensor]. Wikipedia Commons. Retrieved March 2019, from
https://commons.wikimedia.org/wiki/File:CCD_sensor.JPG

Aisenberg, I. (2017, October). Precision farming enables climate-smart agribusiness. (I. F. Corporation,
Ed.) EMCompass, no. 46.

Retrieved from https://openknowledge.worldbank.org/handle/10986/30372

Al-Ohali, Y. (2011). Computer vision-based date fruit grading system: Design and implementation.
Computer and Information Science, 23(1), 29-36.

doi: https://doi.org/10.1016/j.jksuci.2010.03.003

Altman, D. G., & Bland, J. M. (2005). Standard deviations and standard errors. BMJ, 331(7521), 903. doi:
https://dx.doi.org/10.1136%2Fbmj.331.7521.903

Automated Imaging Association. (2014, October). Computer vision vs. machine vision. Retrieved from
Vision Online: https://www.visiononline.org/vision-resources-
details.cfm/visionresources/Computer-Vision-vs-Machine-Vision/content_id/4585

Bac, C., Van Henten, E., Hemming, J., & Edan, Y. (2014). Harvesting robots for high‐value crops: State‐of‐
the‐art review and challenges ahead. Journal of Field Robotics, 31(6), 888-911. doi:
https://doi.org/10.1002/rob.21525

Balletti, C., Guerra, F., Tsioukas, V., & Vernier, P. (2014). Calibration of action cameras for
photogrammetric purposes. Sensors, 14(9), 17471-17490.

doi: https://dx.doi.org/10.3390%2Fs140917471

Baratloo, A., Hosseini, M., Negida, A., & El Ashal, G. (2015). Part 1: Simple Definition and Calculation of
Accuracy, Sensitivity and Specificity. Emergency (Tehran), 3(2), 48-49.

Bargoti, S., & Underwood, J. (2017). Image segmentation for fruit detection and yield estimation in apple
orchards. Journal of Field Robotics, 34(6), 1039-1060. doi: https://doi.org/10.1002/rob.21699

Benalia, S., Cubero, S., Prats-Montalbán, J.-M., Bernardi, B., Zimbalatti , G., & Blasco, J. (2016). Computer
vision for automatic quality inspection of dried figs (Ficus carica L.) in real-time. Computers and
Electronics in Agriculture, 120, 17-25. doi: https://doi.org/10.1016/j.compag.2015.11.002

Blok, P., Barth, R., & Berg, W. (2016). Machine vision for a selective broccoli harvesting robot. IFAC-
PapersOnLine, 49(16), 66-71. doi: https://doi.org/10.1016/j.ifacol.2016.10.013

Buckland, M., & Gey, F. (1994). The relationship between recall and precision. Journal of the American
Society for Information Science, 45(1), 12-19. doi:https://doi.org/10.1002/(SICI)1097-
4571(199401)45:1%3C12::AID-ASI2%3E3.0.CO;2-L

Bulanan, D., Burks, T., & Alchanatis, V. (2010). A multispectral imaging analysis for enhancing citrus fruit
detection. Environmental Control in Biology, 48(2), 81-91. doi: https://doi.org/10.2525/ecb.48.81

Canny, J. F. (1986). A Computational Approach to Edge Detection. Institute of Electrical and Electronics
Engineers Transactions on Pattern Analysis and Machine Intelligence, 8(6), 679-698. doi:
https://doi.org/10.1109/TPAMI.1986.4767851

Cardenas-Weber, M., Hetzroni, A., & Miles, G. (1991). Machine vision to locate melons and guide robotic
harvesting. American Society of Agricultural Engineers. St. Joseph, Michigan: American Society of
Agricultural Engineers (Paper No. 91-7006).

https://commons.wikimedia.org/wiki/File:CCD_sensor.JPG
https://openknowledge.worldbank.org/handle/10986/30372
https://doi.org/10.1016/j.jksuci.2010.03.003
https://dx.doi.org/10.1136%2Fbmj.331.7521.903
https://www.visiononline.org/vision-resources-details.cfm/visionresources/Computer-Vision-vs-Machine-Vision/content_id/4585
https://www.visiononline.org/vision-resources-details.cfm/visionresources/Computer-Vision-vs-Machine-Vision/content_id/4585
https://doi.org/10.1002/rob.21525
https://dx.doi.org/10.3390%2Fs140917471
https://doi.org/10.1002/rob.21699
https://doi.org/10.1016/j.compag.2015.11.002
https://doi.org/10.1016/j.ifacol.2016.10.013
https://doi.org/10.1002/(SICI)1097-4571(199401)45:1%3C12::AID-ASI2%3E3.0.CO;2-L
https://doi.org/10.1002/(SICI)1097-4571(199401)45:1%3C12::AID-ASI2%3E3.0.CO;2-L
https://doi.org/10.2525/ecb.48.81
https://doi.org/10.1109/TPAMI.1986.4767851

62

Cheng, H., Damerow, L., Sun, Y., & Blanke, M. (2017). Early yield prediction using image analysis of apple
fruit and tree canopy features with neural networks. Journal of Imaging, 3(1), 6-19. doi:
https://doi.org/10.3390/jimaging3010006

Datumizer. (2010a). [Photograph of the RGB Cube Showing a Lowgamma Cutout]. Wikipedia Commons.
Retrieved March 2018, from
https://commons.wikimedia.org/wiki/File:RGB_Cube_Show_lowgamma_cutout_b.png

Datumizer. (2010b). [Photograph of the HSV color model mapped to a cylinder]. Wikipedia Commons.
Retrieved March 2018 from
https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder_saturation_gray.png

Dobrusin, Y., Edan, Y., Grinshpun, J., & Peiper, U. (1992). Real time image processing for robotic melon
harvesting. American Society of Agricultural Engineers. St. Joseph, Michigan: American Society of
Agricultural Engineers (Paper No. 92-3515).

Dorj, U.-O., Lee, M., & Yun, S.-S. (2017). A yield estimation in citrus orchards via fruit detection and counting
using image processing. Computers and Electronics in Agriculture, 14, 103-112. doi:
https://doi.org/10.1016/j.compag.2017.05.019

Edan, Y., Rogozin, D., Flash, T., & Miles, G. (2000). Robotic melon harvesting. Institute of Electrical and
Electronics Engineers Transactions on Robotics and Automation, 16(6), 831-835. doi:
https://doi.org/10.1109/70.897793

Golzarian, M.-R., Lee, M.-K., & Desbiolles, J. (2012). Evaluation of color indices for improved segmentation
of plant images. Transactions of the American Society of Agricultural and Biological Engineers,
55(1), 261-273. doi: http://dx.doi.org/10.13031/2013.41236

Gongal, A., Amatya, S., Karkee, M., Zhang, Q., & Lewis, K. (2015). Sensors and systems for fruit detection
and localization: A review. Computers and Electronics in Agriculture, 116, 8-19. doi:
https://doi.org/10.1016/j.compag.2015.05.021

Gongal, A., Silwal, A., Amatya, S., Karkee, M., Zhang, Q., & Lewis, K. (2016). Apple crop-load estimation
with over-the-row machine vision system. Computers and Electronics in Agriculture, 120, 26–35.
doi: http://dx.doi.org/10.1016/j.compag.2015.10.022

Gose, E., Johnsonbaugh, R., & Jost, S. (1996). Pattern recognition and image processing. New Jersey,
USA: Prentice Hall PTR.

Graves, M., & Batchelor, B. (2003). Machine vision for the inspection of natural products. London, England:
Springer.

Hannan, M. W., Burks, T. F., & Bulanon, D. M. (2009). A machine vision algorithm combining adaptive
segmentation and shape analysis for orange fruit detection. Agricultural Engineering International
XI: CIGR Journal, 9, Manuscript 1281.

Hannan, M., & Burks, T. (2004). Current developments in automated citrus harvesting. American Society
of Agricultural Engineers Annual International Meeting. St. Joseph, Michigan. doi:
http://dx.doi.org/10.13031/2013.16726

Huang, T. (1996). Computer vision: Evolution and promise. 19th CERN School of Computing (pp. 21–25).
Geneva, Switzerland: CERN.

Kamilaris, A., & Prenafeta-Boldu, F. (2018). Deep learning in agriculture: A survey. Computers and
Electronics in Agriculture, 147, 70-90. doi: https://doi.org/10.1016/j.compag.2018.02.016

Kapach, K., Barnea, E., Mairon, R., Edan, Y., & Ben-Shahar, O. (2012). Computer vision for fruit harvesting
robots – state of the art and challenges ahead. International Journal of Computational Vision and
Robotics, 3, 4-34. doi: https://doi.org/10.1504/IJCVR.2012.046419

Kondo, N., Yamamoto, K., Shimizu, H., Yata, K., Kurita, M., Shiigi, T., . . . Nishizu, T. (2009). A machine
vision system for tomato cluster harvesting robot. Engineering in Agriculture, Environment and
Food, 2(2), 60-65. doi: https://doi.org/10.1016/S1881-8366(09)80017-7

https://doi.org/10.3390/jimaging3010006
https://commons.wikimedia.org/wiki/File:RGB_Cube_Show_lowgamma_cutout_b.png
https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder_saturation_gray.png
https://doi.org/10.1016/j.compag.2017.05.019
https://doi.org/10.1109/70.897793
http://dx.doi.org/10.13031/2013.41236
https://doi.org/10.1016/j.compag.2015.05.021
http://dx.doi.org/10.1016/j.compag.2015.10.022
http://dx.doi.org/10.13031/2013.16726
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1504/IJCVR.2012.046419
https://doi.org/10.1016/S1881-8366(09)80017-7

63

Linker, R., Cohen, O., & Naor, A. (2012). Determination of the number of green apples in RGB images
recorded in orchards. Computers and Electronics in Agriculture, 81, 45-57. doi:
https://doi.org/10.1016/j.compag.2011.11.007

McBratney, A., Whelan, B., & Ancev, T. (2005). Future directions of precision agriculture. Precision
Agriculture, 6, 7-23. doi: https://doi.org/10.1007/s11119-005-0681-8

Meyer, F., & Beucher, S. (1990). Morphological segmentation. Journal of Vision Communication and Image
Representation, 1, 21-46.

Mirbod, O., Yoder, L., & Nuske, S. (2016). Automated measurement of berry size in images. IFAC-
PapersOnLine, 49(16), 79-84. doi: https://doi.org/10.1016/j.ifacol.2016.10.015

Mizushima, A., & Renfu, L. (2011). Cost benefit analysis of in-field presorting for the apple industry.
Transactions of the American Society of Agricultural and Biological Engineers, 21(1), 33-40. doi:
http://dx.doi.org/10.13031/2013.29638

Mizushima, A., & Renfu, L. (2013). An image segmentation method for apple sorting and grading using
support vector machine and Otsu’s method. Computers and Electronics in Agriculture, 94, 29–37.
doi: http://dx.doi.org/10.1016/j.compag.2013.02.009

Mollazade, K., Omida, M., & Arefi, A. (2012). Comparing data mining classifiers for grading raisins based
on visual features. Computers and Electronics in Agriculture, 84, 124–131. doi:
https://doi.org/10.1016/j.compag.2012.03.004

Moreda, G. P., Ortiz-Cañavate, J., García-Ramos, F. J., & Ruiz-Altisent, M. (2009). Nondestructive
technologies for fruit and vegetable size determination – a review. Journal of Food Engineering,
92(2), 119–136. doi: http://dx.doi.org/10.1016/j.jfoodeng.2008.11.004

Nikon. (2018, April). KeyMission 170. Retrieved from Nikon: https://en.nikon.ca/nikon-
products/product/action-camera/keymission-170.html

Nishad, P. M., & Chezian, R. (2013). Various colour spaces and colour space conversion algorithms.
Journal of Global Research in Computer Science, 4(1), 44–48.

Nuske, S., Wilshusen, K., Achar, S., Yoder, L., Narasimhan, S., & Singh, S. (2014). Automated visual yield
estimation in vineyards. Journal of Field Robotics, 31(5), 837-860. doi:
https://doi.org/10.1002/rob.21541

Nyman, B. (2012). [Photograph of a CMOS image sensor]. Retrieved March 2019, from
https://www.flickr.com/photos/bnsd/8186971124

OpenCV. (2018, November 15). Camera calibration and 3D reconstruction. Retrieved from OpenCV
Documentation:
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

Otsu, N. (1979). A threshold selection method from gray-level histograms. Institute of Electrical and
Electronics Engineers Transactions on Systems, Man, and Cybernetics, 9(1), 62–66. doi:
https://doi.org/10.1109/TSMC.1979.4310076

Patel, H. N., Jain, R. K., & Joshi, M. V. (2012). Automatic segmentation and yield measurement of fruit
using shape analysis. International Journal of Computer Applications in Technology, 45(7), 19-24.

Payne, A. B., Walsh, K. B., Subedi, P. P., & Jarvis, D. (2013). Estimation of mango crop yield using image
analysis – Segmentation method. Computers and Electronics in Agriculture, 91, 57–64. doi:
http://dx.doi.org/10.1016/j.compag.2012.11.009

Plá, F., Juste, F., & Ferri, F. (1993). Feature extraction of spherical objects in image analysis: An application
to robotic citrus harvesting. Computers and Electronics in Agriculture, 8(1), 57–72. doi:
https://doi.org/10.1016/0168-1699(93)90058-9

Pothen, Z., & Nuske, S. (2016). Automated assessment and mapping of grape quality through image-based
color analysis. IFAC-PapersOnLine, 49(16), 72-78. doi: https://doi.org/10.1016/j.ifacol.2016.10.014

https://doi.org/10.1016/j.compag.2011.11.007
https://doi.org/10.1007/s11119-005-0681-8
https://doi.org/10.1016/j.ifacol.2016.10.015
http://dx.doi.org/10.13031/2013.29638
http://dx.doi.org/10.1016/j.compag.2013.02.009
https://doi.org/10.1016/j.compag.2012.03.004
http://dx.doi.org/10.1016/j.jfoodeng.2008.11.004
https://doi.org/10.1002/rob.21541
https://www.flickr.com/photos/bnsd/8186971124
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1016/j.compag.2012.11.009
https://doi.org/10.1016/0168-1699(93)90058-9
https://doi.org/10.1016/j.ifacol.2016.10.014

64

Sengupta, S., & Lee, W. S. (2014). Identification and determination of the number of immature green citrus
fruit in a canopy under different ambient light conditions. Biosystems Engineering, 117, 51-61. doi:
http://dx.doi.org/10.1016/j.biosystemseng.2013.07.007

Shahin, M. A., Tollner, E. W., Gitaitis, R. D., Sumner, D. R., & Maw, B. W. (2002). Classification of sweet
onions based on internal defects using image processing and neural network techniques.
Transactions of the American Society of Agricultural Engineers, 45(5), 1613-1618. doi:
http://dx.doi.org/10.13031/2013.11046

Sofu, M. M., Erb, O., Kayacan, M. C., & Cetis, B. (2016). Design of an automatic apple sorting system using
machine vision. Computers and Electronics in Agriculture, 127(C), 395–405. doi:
https://doi.org/10.1016/j.compag.2016.06.030

Sonka, M., Hlavac, V., & Boyle, R. (2015). Image processing, analysis and machine vision (4th ed.).
Scarborough, Ontario, Canada: Cengage Learning.

Stajnko, D., Lakota, M., & Hočevar, M. (2004). Estimation of number and diameter of apple fruits in an
orchard during the growing season by thermal imaging. Computers and Electronics in Agriculture,
42(1), 31-42. doi: http://dx.doi.org/10.1016/S0168-1699(03)00086-3

Stajnko, D., Rakun, J., & Blanke, M. (2009). Modelling apple fruit yield using image analysis for fruit color,
shape and texture. European Journal of Horticultural Science, 74(6), 260-267.

Stanhope, T. (2016). Applications of low-cost computer vision for agricultural implement feedback and
control. Montréal, Québec: McGill University, Department of Bioresource Engineering.

Sun, D. (2008). Computer vision technology for food quality evaluation. New York, New York, USA: Elsevier
Inc.

Telledis, I., & Levin, E. (2014). Photogrammetric image acquisition with small unmanned aerial systems.
American Society for Photogrammetry and Remote Sensing 2014 Annual Conference. Louisville,
Kentucky: ASPRS. Retrieved from
https://www.asprs.org/a/publications/proceedings/Louisville2014/tellidis.pdf

United Nations Department of Economic and Social Affairs. (2017, May 28). World population projected to
reach 9.8 billion in 2050, and 11.2 billion in 2100. Retrieved from United Nations Department of
Economic and Social Affairs:
https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html

Vincent, L., & Soille, P. (1991). Watersheds in digital spaces: An efficient algorithm based on immersion
simulations. Institute of Electrical and Electronics Engineer Transactions on Pattern Analysis and
Machine Intelligence, 13(6), 583-598.

Wang, Q., Nuske, S., Bergerman, M., & Singh, S. (2012). Automated crop yield estimation for apple
orchards. Proceedings of the International Symposium on Experimental Robotics, (pp. 745-748).
Québec, Canada.

Wang, W., & Li, C. (2014). Size estimation of sweet onions using consumer-grade RGB-depth sensor.
Journal of Food Engineering, 142, 153–162. doi:
http://dx.doi.org/10.1016/j.jfoodeng.2014.06.019

Wang, W., & Li, C. (2015). A multimodal machine vision system for quality inspection of onions. Journal of
Food Engineering, 166, 291–301. doi: http://dx.doi.org/10.1016/j.jfoodeng.2015.06.027

Zhang, B., Huang, W., Lia, J., Zhao, C., Fan, S., Wu, J., & Liu, C. (2014). Principles, developments and
applications of computer vision for external quality inspection of fruits and vegetables: A review.
Food Research International, 62, 326-343. doi: http://dx.doi.org/10.1016/j.foodres.2014.03.012

Zhou, R., Damerow, L., Sun, Y., & Blanke, M. (2012). Using color features of cv. “Gala” apple fruits in an
orchard in image processing to predict yield. Precision Agriculture, 13(5), 568-580. doi:
https://doi.org/10.1007/s11119-012-9269-2

http://dx.doi.org/10.1016/j.biosystemseng.2013.07.007
http://dx.doi.org/10.13031/2013.11046
https://doi.org/10.1016/j.compag.2016.06.030
http://dx.doi.org/10.1016/S0168-1699(03)00086-3
https://www.asprs.org/a/publications/proceedings/Louisville2014/tellidis.pdf
https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html
http://dx.doi.org/10.1016/j.jfoodeng.2014.06.019
http://dx.doi.org/10.1016/j.jfoodeng.2015.06.027
http://dx.doi.org/10.1016/j.foodres.2014.03.012
https://doi.org/10.1007/s11119-012-9269-2

65

Appendix A: Python Code

A-1 Initial Version of Python Code (Feasibility Study)

1. # -*- coding: utf-8 -*-
2. """
3. Machine Vision Yield Monitor Program
4. @author: amanda
5. """
6.
7. import numpy as np
8. import cv2
9. import os
10. import math
11. import matplotlib.pyplot as plt
12.
13. # Creates an elliptical structuring element for the opening/closing operations
14. # Elliptical Kernel
15.
16. """
17. >>> cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))
18. array([[0, 0, 1, 0, 0],
19. [1, 1, 1, 1, 1],
20. [1, 1, 1, 1, 1],
21. [1, 1, 1, 1, 1],
22. [0, 0, 1, 0, 0]], dtype=uint8)
23. """
24.
25. ellipse_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(10,10))
26.
27. # Define range of Red onion color in HSV
28. # onions
29. upper_red = np.array([46,180, 255])
30. lower_red = np.array([0,40,40])
31.
32. def ellipse_perimeter(major_axis, minor_axis):
33. a = major_axis/2
34. b = minor_axis/2
35. h = math.pow((a-b), 2)/math.pow((a+b), 2)
36. perimeter = math.pi*(a+b)*(1+ 3*h/(10 + math.sqrt(4-3*h)))
37. return perimeter
38.
39. directory = 'C:/Users/amand/Desktop/Delfland Test 09152017/afternoon_test_09152017'
40.
41. for root, dirs, filenames in os.walk(directory):
42. for i, file in enumerate(filenames):
43. imgpath = os.path.join(root,file) # Reconstructs the file path using the

root_directory and current filename
44. print(imgpath)
45.
46. #while(cap.isOpened()):
47. #ret, frame = cap.read()
48. # Resize Images
49. img = cv2.imread(imgpath).copy()
50. # Resize Images
51. # Determines the new aspect ratio (r) and set the new dimensions for the im

age
52. r = 500/img.shape[1]

66

53. new_dim = (500, int(img.shape[0]*r))
54. img = cv2.resize(img, new_dim, interpolation = cv2.INTER_AREA)
55. # Convert the image to HSV colorspace
56. blur = cv2.GaussianBlur(img,(7,7),0)
57. img2 = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)
58. # Threshold the HSV image to get only blue colors
59. mask = cv2.inRange(img2, lower_red, upper_red)
60. #mask = cv2.inRange(img2, lower_red, upper_red)
61. opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, ellipse_kernel)
62. closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, ellipse_kernel)
63. closing = cv2.GaussianBlur(closing,(3,3),0)
64. # dilate makes the in range areas larger
65. closing = cv2.dilate(closing, None, iterations=3)
66.
67. # Bitwise-AND mask and original image
68. res = cv2.bitwise_and(img, img, mask = closing)
69. dst, contours, hierarchy = cv2.findContours(closing, cv2.RETR_TREE, cv2.CHA

IN_APPROX_SIMPLE)
70.
71. for c in contours:
72. moments = cv2.moments(c)
73. if moments['m00'] != 0.0:
74. cx = int(moments['m10']/moments['m00'])
75. cy = int(moments['m01']/moments['m00'])
76. centroid = (cx,cy)
77. if len(c) > 5:
78. ellipse = cv2.fitEllipse(c)
79. major_axis,minor_axis = ellipse[1]
80. if (major_axis < 110) and (minor_axis<110):
81.
82. print('major_axis: ')
83. print(major_axis)
84. print('minor_axis')
85. print(minor_axis)
86. perimeter = ellipse_perimeter(major_axis, minor_axis)
87. print('perimeter: ')
88. print(perimeter)
89. #if perimeter > 60: # Lobok
90. if (80 < perimeter) and (perimeter < 800): # Shallot onion

91. cv2.ellipse(img,ellipse,(0,0,255),2)
92. else:
93. pass
94.
95.
96. cv2.imshow('Final Result', img)
97. cv2.waitKey(1000)
98.
99. cv2.destroyAllWindows()
100.
101. # End of program

67

A-2 Final Version of Python Code (Field Trial)

Yield Monitor Class

1. # -*- coding: utf-8 -*-
2.
3. ## USAGE cd to final_code
4. # python YieldMonitor.py --conf conf.json
5.
6. """
7. Development of a Machine Vision Based Yield Monitor for Shallot Onions
8. Precision Agriculture and Sensor Systems Group (PASS)
9. McGill University, Department of Bioresource Engineering
10.
11. yield_monitor.py --- This is a yield monitoring program for the masters thesis of
12. Amanda Boatswain Jacques. This software detects onion shapes, classifies them by
13. size, and then exports them into a .CSV file with GPS data.
14. """
15.
16. # program Properties
17. __author__ = "Amanda Boatswain Jacques"
18. __version__ = 9.0
19.
20. # import the necessary python libraries
21. from datetime import datetime
22. import conf
23. import os
24. import pandas as pd
25. import serial
26. import sys
27. import time
28.
29. # computer vision
30. import cv2
31. import numpy as np
32. import preprocess_image
33. import size_calibration
34.
35. # create yield monitor class
36. class YieldMonitor:
37. def __init__(self, config):
38. # set current file path
39. self.current_dir = sys.argv[0]
40.
41. # load the configuration file
42. if conf is None:
43. raise ValueError
44.
45. else:
46. self.conf = conf.Conf(config)
47. sources = self.conf["camera_sources"]
48.
49. # initialize the camera
50. for source in sources:
51. try:
52. self.camera = cv2.VideoCapture(source)
53.
54. if self.camera.isOpened():

68

55. self.pretty_print("[INFO] CAMERA", "OK: Camera successfully opened"
)

56. self.pretty_print("[INFO] CAMERA", "Camera initialized!")
57.
58. except Exception as e:
59. self.pretty_print("[ERROR] CAMERA", "Error: %s" % str(e))
60. self.close()
61.
62. # create a directory for storing the images and .csv
63. self.path = self.conf["external_drive"]
64. date = datetime.strftime(datetime.now(), "%Y%m%d_%H%M" +"/")
65. self.image_directory = self.path + date
66. self.result_directory = self.image_directory + "result_images/"
67. self.pretty_print("[INFO] IMAGES", "Images will be saved in: " + self.image_dir

ectory)
68.
69. if not os.path.exists(self.image_directory):
70. os.makedirs(self.image_directory)
71. os.makedirs(self.result_directory)
72.
73. ### useful Functions
74. def pretty_print(self, task, msg):
75. # Pretty Print
76. date = datetime.strftime(datetime.now(), '%d/%b/%Y %H:%M:%S')
77. print('[%s] %s\t%s' % (date, task, msg))
78.
79. ### camera Functions
80. def capture_image(self, write=False, ramp_frames = 40):
81. """ Captures a single image from the camera and returns it in PNG format
82. read is the easiest way to get a full image out of a VideoCapture object."""
83.
84. #self.pretty_print("[INFO] CAMERA", "Capturing photo...")
85.
86. # let the camera stabilize for 40 frames
87. for i in range(ramp_frames):
88. try:
89. (retval, self.bgr) = self.camera.read()
90.
91. except Exception as e:
92. self.pretty_print("[ERROR] CAMERA", "Error: %s" % str(e))
93. self.close()
94.
95. if self.bgr is not None:
96. cv2.imshow("Captured Image", self.bgr)
97. cv2.waitKey(100)
98.
99. # save the image
100. if write == True:
101. date = datetime.strftime(datetime.now(), "%Y%m%d"+"_"+"%H%M%S")

102. #add directory here
103. self.filename = self.image_directory + date + ".png"
104. cv2.imwrite(self.filename, self.bgr)
105.
106. else:
107. pass
108.
109. return self.bgr
110.
111. # perform size calibration
112. def calibrate_monitor(self):

69

113. self.pixel_metric = size_calibration.calibrate(self.conf["calibration_di
rectory"])

114. self.pretty_print("[INFO] SIZE CALIBRATION", "Calibration completed.")
115.
116. return self.pixel_metric
117.
118. # perform image processing and detect the onions in an image
119. def find_onions(self, write=True):
120. original, preprocessed = preprocess_image.preprocess(self.bgr, resize=Fa

lse)
121. self.small_count, self.medium_count, self.large_count, self.result = pre

process_image.find_onion_contours(
122. preprocessed, original, self.pixel_metric)
123.
124. if write == True:
125. date = datetime.strftime(datetime.now(), "%Y%m%d"+"_"+"%H%M%S")
126. self.result_filename = self.result_directory + date + ".png"
127. cv2.imwrite(self.result_filename, self.result)
128.
129.
130. return(self.small_count, self.medium_count, self.large_count)
131.
132. def init_gps(self):
133. """ Initialize the gps sensor and set the baudrate. """
134. COMNUMS = self.conf["gps_ports"]
135. self.gps = serial.Serial()
136.
137. self.pretty_print("[INFO] GPS", "Initializing GPS... ")
138. # detect the active gps port and save it
139. for port in COMNUMS:
140. try:
141. self.gps = serial.Serial(port, timeout = 0.2)
142. self.gps_port = port
143. # explicit close 'cause of delayed GC in java
144. #self.gps.close()
145.
146. except serial.SerialException:
147. pass
148.
149. if self.gps.isOpen():
150. # set the gps baudrate
151. self.gps.baudrate = self.conf["gps_baudrate"]
152. self.pretty_print("[INFO] GPS", "GPS at port %s with baud %s! " % (s

elf.gps_port, self.gps.baudrate))
153.
154. else:
155. self.pretty_print("[ERROR] GPS", "GPS not found!.")
156. self.close()
157.
158.
159. def get_position(self):
160. """ Get the current position (latitude, longitude, speed) of the image.

"""
161. # retrieve only the RMC sentences
162. code = "RMC"
163.
164. while True:
165. try:
166. line = self.gps.readline()
167. line = line.decode("utf-8")
168. #print(line)

70

169.
170. if line.find(code) > 0:
171. break
172.
173. except UnicodeDecodeError:
174. pass
175.
176. gps_data = line.split(",")
177.
178. # only report GPS sentences if an active valid fix was received
179. #if gps_data[2] == "V":
180. if gps_data[2] == "A":
181. self.latitude = gps_data[3]
182. self.latitude_char = gps_data[4]
183. self.longitude = gps_data[5]
184. self.longitude_char = gps_data[6]
185. self.speed = gps_data[7]
186.
187. if self.speed is not None:
188. self.speed = float(gps_data[7])*1.852
189. self.speed = format(self.speed, ".3f")
190. else:
191. pass
192.
193. return (self.latitude, self.longitude, self.speed)
194.
195. def run(self):
196. """ Run the program continuously. Get captures,
197. analyze them, and then save the current position. """
198.
199. self.pretty_print("[INFO] RUNNING", "Running yield monitoring program. P

ress CTRL+C to exit.")
200.
201. # open the GPS port, give some time for GPS and camera to stabilize
202.
203. time.sleep(5)
204. self.data = []
205.
206. while (True):
207. try:
208. self.capture_image(write =True)
209. small, medium, large = self.find_onions()
210. lat, long, speed = self.get_position()
211. self.log = [small, medium, large, lat, long, speed]
212. columns = ['S', 'M', 'L', 'Latitude', 'Longitude', 'Speed (km/h)

']
213. cv2.putText(self.result, str(columns), (10, 40), cv2.FONT_HERSHE

Y_SIMPLEX, 0.8, (0,0,255), 2, cv2.LINE_AA)
214. cv2.putText(self.result, str(self.log), (10, 70), cv2.FONT_HERSH

EY_SIMPLEX, 0.75, (255,255,255), 2, cv2.LINE_AA)
215. cv2.imshow("result", self.result)
216. cv2.waitKey(100)
217.
218. if self.filename is not None:
219. self.log = [small, medium, large, lat, long, speed, self.res

ult_filename]
220.
221. self.data.append(self.log)
222.
223. print(self.log)
224.

71

225. except KeyboardInterrupt:
226. cv2.destroyAllWindows()
227. self.gps.close()
228. self.data = np.array(self.data)
229. if self.filename is not None:
230. self.df = pd.DataFrame(self.data, columns = ['Small Onions',

'Medium Onions', 'Large Onions', 'Latitude', 'Longitude', 'Speed', 'Filename'])
231. else:
232. self.df = pd.DataFrame(self.data, columns = ['Small Onions',

 'Medium Onions', 'Large Onions', 'Latitude', 'Longitude', 'Speed'])
233. print(self.df)
234.
235. break
236.
237. return self.df
238.
239. ### write everything to csv
240. def save_log(self):
241. time.sleep(2)
242. test_filename = input("Please enter the name of the results file (use on

ly numbers, letters and underscores): ")
243. self.pretty_print("[INFO] SAVING", "Saving results from test run as %s "

 % (test_filename + ".csv"))
244. self.df.to_csv(self.conf["log_file_path"] + test_filename + ".csv")
245.
246. ### close the program
247. def close(self):
248. # shut down the program and delete camera source
249. self.pretty_print("[INFO] WARN", "Shutdown triggered!")
250. time.sleep(5)
251. self.gps.close()
252. self.camera.release()
253. cv2.destroyAllWindows()
254.
255. sys.exit()
256.
257. # End of program

Image Preprocessing

1. # -*- coding: utf-8 -*-
2. """
3. Created on Thu Apr 26 13:09:08 2018
4. preprocess_image_updated.py
5.
6. @author: Amanda
7.
8. Machine Vision Yield Monitor Program
9. """
10.
11. """ Import Libraries """
12. # import the necessary python libraries
13. import numpy as np
14. import cv2
15. import os
16. import math
17. from skimage.feature import peak_local_max
18. from skimage.morphology import watershed
19. from scipy import ndimage

72

20. import size_calibration
21.
22. """ Define Functions and Variables """
23.
24. pixel_metric = size_calibration.calibrate("./calibration_images_undistorted/")
25. print("The pixel metric is: ", pixel_metric)
26.
27.
28. def ellipse_perimeter(major_axis, minor_axis):
29. a = major_axis/2
30. b = minor_axis/2
31. h = math.pow((a-b), 2)/math.pow((a+b), 2)
32. perimeter = math.pi*(a+b)*(1+ 3*h/(10 + math.sqrt(4-3*h)))
33. return perimeter
34.
35. def auto_canny(image, sigma=0.60):
36. # compute the median of the single channel pixel intensities
37. v = np.median(image)
38. # apply automatic Canny edge detection using the computed median
39. lower = int(max(0, (1.0 - sigma) * v))
40. upper = int(min(255, (1.0 + sigma) * v))
41. edged = cv2.Canny(image, lower, upper)
42. # return the edged image
43. return edged
44.
45. # creates an elliptical structuring element for the opening/closing operations
46. ellipse_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (12, 12))
47.
48. # define range of Red onion color in HSV
49. Lupper_red = np.array([50, 255, 255])
50. Llower_red = np.array([0,40,0])
51.
52. Uupper_red = np.array([180,255, 255])
53. Ulower_red = np.array([160,40,0])
54.
55. lower_white = np.array([0, 0, 240], dtype = "uint8")
56. upper_white = np.array([60, 30, 255], dtype ="uint8")
57.
58. image_directory = "C:/Users/Amanda/Documents/yield_monitor_results_copy/20180924_1411_u

ndistorted/"
59.
60. # original preprocessing method
61. def preprocess_original(image):
62.
63. #cv2.imshow("Original Image", image)
64. # perform Mean Shift Filtering
65. shifted = cv2.pyrMeanShiftFiltering(image, 14, 50)
66.
67. # convert the image to HSV colorspace and blur
68. blur = cv2.medianBlur(shifted, 9)
69. blur = cv2.GaussianBlur(blur, (9,9),0)
70. hsv = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)
71. h, s, v = cv2.split(hsv)
72.
73. """
74. ## perform mean subtraction normalization
75.
76. hue_mean = np.ones(h.shape, dtype=np.uint8)*np.mean(h)
77. hue_mean = hue_mean.astype(np.uint8)
78. subtracted_hue = cv2.subtract(h, hue_mean)
79.

73

80. sat_mean = np.ones(s.shape, dtype=np.uint8)*np.mean(s)
81. sat_mean = sat_mean.astype(np.uint8)
82. subtracted_sat = cv2.subtract(s, sat_mean)
83.
84. val_mean = np.ones(v.shape, dtype=np.uint8)*np.mean(v)
85. val_mean = val_mean.astype(np.uint8)
86. subtracted_val = cv2.subtract(v, val_mean)
87. subtracted = cv2.merge((subtracted_hue, subtracted_sat, subtracted_val))
88.
89. cv2.imshow("Mean Substracted Image", subtracted)
90. cv2.imshow("Mean Subtracted Hue Channel", subtracted_hue)
91. cv2.imshow("Mean Subtracted Saturation Channel", subtracted_sat)
92. cv2.imshow("Mean Subtracted Value Channel", subtracted_val)
93.
94. #subt_ret,subt_thresh = cv2.threshold(subtracted_hue,0,255,cv2.THRESH_BINARY+cv2.TH

RESH_OTSU)
95.
96. """
97. # threshold the HSV image to get only red colors
98. color_mask_lower = cv2.inRange(hsv, Llower_red, Lupper_red)
99. color_mask_upper = cv2.inRange(hsv, Ulower_red, Uupper_red)
100. color_mask_white = cv2.inRange(hsv, lower_white, upper_white)
101. color_mask = color_mask_lower + color_mask_upper +color_mask_white
102. color_opening = cv2.morphologyEx(color_mask, cv2.MORPH_OPEN, ellipse_kernel)

103. color_closing = cv2.morphologyEx(color_opening, cv2.MORPH_CLOSE, ellipse_ker

nel)
104. cv2.imshow("Color Segmentation", color_closing)
105.
106. ## chromacity calculations
107. # split the BGR channels
108. b, g, r = cv2.split(blur)
109. b = b.astype('float')
110. g = g.astype('float')
111. r = r.astype('float')
112.
113. # add the 3 channels together
114. merged = np.add(r, b)
115. merged = np.add(merged, g)
116.
117. # calculate red intensity
118. R_I = 3*r - b -g
119. R_I = R_I.astype('uint8')
120. cv2.imshow("Red Intensity Image", R_I)
121.
122. # calculate chromacity of the red channel
123. chro_r = np.divide(r, merged)*255
124. chro_r = chro_r.astype('uint8')
125. cv2.imshow("Chromacity Image", chro_r)
126.
127. # equalize red chromacity and apply a median blur, remove noise
128. equ = cv2.equalizeHist(chro_r)
129. equ = cv2.medianBlur(equ, 9)
130. grayscaled = R_I.copy()
131. grayscaled = cv2.equalizeHist(grayscaled)
132. grayscaled= cv2.GaussianBlur(grayscaled, (9,9),0)
133.
134. chro_edged = cv2.Canny(grayscaled, 180, 255)
135. #chro_edged = cv2.dilate(chro_edged, ellipse_kernel, iterations=1)
136. cv2.imshow("Chromacity Edged", chro_edged)
137. final_mask = cv2.bitwise_and(chro_edged, color_closing)

74

138. cv2.imshow("Final Mask", final_mask)
139.
140. small, medium, large, result = find_onion_contours(final_mask.copy(),
141. image.copy(), pixel_metri

c)
142. cv2.imshow("Final Result", result)
143. cv2.waitKey(2000)
144. return (small, medium, large), result
145.
146. def preprocess_watershed(image):
147. # create a copy of the image to draw on
148. clone = image.copy()
149. #cv2.imshow("Original", clone)
150. wts_result = np.zeros(image.shape, dtype=np.uint8)
151. # perform Mean Shift Filtering
152. #shifted = cv2.pyrMeanShiftFiltering(image, 14, 50)
153. #cv2.imshow("Mean Shift Filtering", shifted)
154. shifted = clone.copy()
155. # convert the image to HSV colorspace and blur
156. blur = cv2.medianBlur(shifted, 9)
157. blur = cv2.GaussianBlur(blur, (9,9),0)
158. cv2.imshow("Blurred Image", blur)
159. hsv = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)
160. h, s, v = cv2.split(hsv)
161.
162. # threshold the HSV image to get only red colors
163. color_mask_lower = cv2.inRange(hsv, Llower_red, Lupper_red)
164. color_mask_upper = cv2.inRange(hsv, Ulower_red, Uupper_red)
165. color_mask_white = cv2.inRange(hsv, lower_white, upper_white)
166. color_mask = color_mask_lower + color_mask_upper + color_mask_white
167. cv2.imshow("Color Mask", color_mask)
168. color_opening = cv2.morphologyEx(color_mask, cv2.MORPH_OPEN, ellipse_kernel)

169. cv2.imshow("Opening", color_opening)
170. color_closing = cv2.morphologyEx(color_opening, cv2.MORPH_CLOSE, ellipse_ker

nel)
171. cv2.imshow("Closing", color_closing)
172.
173. # sure background area
174. sure_bg = color_closing.copy()
175.
176. # Finding sure foreground area
177. dist_transform = ndimage.distance_transform_edt(sure_bg)
178. cv2.imshow("Distance Transform CV2", dist_transform/np.max(dist_transform[:,

:]))
179. thresh = color_closing.copy()
180.
181. # compute the exact Euclidean distance from every binary
182. # pixel to the nearest zero pixel, then find peaks in this distance map
183. localMax = peak_local_max(dist_transform, indices=False, min_distance=20,
184. labels=thresh)
185. # perform a connected component analysis on the local peaks,
186. # using 8-connectivity, then appy the Watershed algorithm
187. markers = ndimage.label(localMax, structure=np.ones((3, 3)))[0]
188. labels = watershed(-dist_transform, markers, mask=thresh)
189. print("[INFO] {} unique segments found".format(len(np.unique(labels)) - 1))

190. # loop over the unique labels returned by the Watershed
191. # algorithm
192.
193. total_small = int()

75

194. total_medium = int()
195. total_large = int()
196.
197. if (len(np.unique(labels)) - 1) >= 1:
198. for label in np.unique(labels):
199. # if the label is zero, we are examining the 'background'
200. # so simply ignore it
201. if label == 0:
202. continue
203. # otherwise, allocate memory for the label region and draw
204. # it on the mask
205. mask = np.zeros(color_closing.shape, dtype="uint8")
206. mask[labels == label] = 255
207. #cv2.imshow("Watershed Mask", mask)
208. #cv2.waitKey(300)
209. small, medium, large, wts_result = find_onion_contours(mask, clone,

210. pixel_metric)

211.
212. clone = wts_result.copy()
213.
214. total_small = total_small + small
215. total_medium = total_medium + medium
216. total_large = total_large + large
217.
218. if not wts_result.any():
219. wts_result = image.copy()
220.
221. #cv2.imshow("Final Result", wts_result)
222. #cv2.waitKey(500)
223.
224. return (total_small, total_medium, total_large), wts_result
225.
226. def find_onion_contours(mask, original, pixel_metric):
227. # initialize lists of all the onion types present in the image
228. small_onions = []
229. medium_onions = []
230. large_onions = []
231. dst, contours, hierarchy = cv2.findContours(mask, cv2.RETR_LIST,
232. cv2.CHAIN_APPROX_SIMPLE)
233. result = original.copy()
234.
235. for c in contours:
236.
237. moments = cv2.moments(c)
238. if moments['m00'] != 0.0:
239. cx = int(moments['m10']/moments['m00'])
240. cy = int(moments['m01']/moments['m00'])
241. centroid = (int(cx), int(cy))
242. ((x, y), radius) = cv2.minEnclosingCircle(c)
243.
244. if len(c) > 5:
245. #print("radius : ", radius)
246. #if (radius<60) and (radius>16):
247. ellipse = cv2.fitEllipse(c)
248. major_axis, minor_axis = ellipse[1]
249. width = radius/pixel_metric
250. #print("width in mm", width)
251.
252. try:

76

253. aspect_ratio = minor_axis/major_axis
254. #print("aspect ratio :", aspect_ratio)
255.
256. except ZeroDivisionError:
257. pass
258.
259. # filter the onions by size
260. if 15 <= width < 22: # small onion
261. color = (255, 0, 0) # Blue
262. small_onions.append(c)
263. if (width > 22) and (width < 27): # Medium Onion
264. medium_onions.append(c)
265. color = (0, 255, 0) # Green
266. if (width > 27) and (width < 40): # Large Onion
267. large_onions.append(c)
268. color = (0, 0, 255) # Red
269.
270. if any((small_onions, medium_onions, large_onions)):
271. if 15 <= width <= 40:
272. # draw the centroid of the circle as well as the onion b

order
273. cv2.circle(result, centroid, 3, (255, 255, 0), -1)
274. #cv2.ellipse(result, ellipse, color, 2)
275. cv2.circle(result, (int(x), int(y)), int(radius), color,

 2)
276. else:
277. pass
278.
279. # return the counts for each onion category
280. return len(small_onions), len(medium_onions), len(large_onions), result

Config File Loading

1. # import the necessary packages
2. from json_minify import json_minify
3. import json
4.
5. class Conf:
6. def __init__(self, confPath):
7. # load and store the configuration and update the object's dictionary
8. conf = json.loads(json_minify(open(confPath).read()))
9. self.__dict__.update(conf)
10.
11. def __getitem__(self, k):
12. # return the value associated with the supplied key
13. return self.__dict__.get(k, None)
14.

GPS Sentence Parsing

1. # -*- coding: utf-8 -*-
2. """
3. @author: Amanda
4. """

77

5.
6. import serial
7.
8. port ="COM7" # Add to config file
9. BAUDRATE = 38400 # Add to config file
10.
11. gps = serial.Serial(port)
12. gps.baudrate = BAUDRATE
13.
14. while True:
15. # flush the gps serial port
16. #gps.flushInput()
17. try:
18. line = gps.readline()
19. line = line.decode("utf-8")
20. gps_data = line.split(",")
21.
22. # retrieve only the RMC sentences
23. if gps_data[0] == "$GPRMC":
24. # only report GPS sentences if an active valid fix was received
25. #if gps_data[2] == "V":
26. if gps_data[2] == "A":
27. latitude = gps_data[3]
28. latitude_char = gps_data[4]
29.
30. longitude = gps_data[5]
31. longitude_char = gps_data[6]
32. speed = gps_data[7]
33. #speed = format(speed, ".3f")
34. #speed = str(speed)
35.
36. print('%s %s %s %s %s %s' % (latitude, latitude_char, longitude,
37. longitude_char, speed, "km/h"))
38.
39. print('%s %s %s %s ' % (latitude, latitude_char, longitude,
40. longitude_char))
41.
42. except KeyboardInterrupt:
43. gps.close()
44. break

Main File

1. # -*- coding: utf-8 -*-
2. """
3.
4. @author: Amanda
5. """
6. import YieldMonitor
7. import time
8. import argparse
9.
10. # construct the argument parse and parse the arguments
11.
12. ap = argparse.ArgumentParser()
13. ap.add_argument("-c", "--

config", required=True, help="path to the configuration file")
14. args = vars(ap.parse_args())
15.

78

16. YM = YieldMonitor.YieldMonitor(args["config"])
17. time.sleep(2)
18.
19. YM.pretty_print("[INFO] RUNNING", "Yield Monitor initialized!")
20. YM.calibrate_monitor()
21. time.sleep(2)
22. YM.init_gps()
23.
24. YM.run()
25. YM.save_log()
26.
27.
28. YM.close()

Image Preprocessing (Updated post field trials)

1. # -*- coding: utf-8 -*-
2. """
3. preprocess_image_updated.py
4.
5. @author: Amanda
6.
7. Machine Vision Yield Monitor Program
8. """
9.
10. """ Import Libraries """
11. # import the necessary python libraries
12. import numpy as np
13. import cv2
14. import os
15. import math
16. from skimage.feature import peak_local_max
17. from skimage.morphology import watershed
18. from scipy import ndimage
19. import size_calibration
20.
21. """ Define Functions and Variables """
22.
23. pixel_metric = size_calibration.calibrate("./calibration_images_undistorted/")
24. print("The pixel metric is: ", pixel_metric)
25.
26.
27. def ellipse_perimeter(major_axis, minor_axis):
28. a = major_axis/2
29. b = minor_axis/2
30. h = math.pow((a-b), 2)/math.pow((a+b), 2)
31. perimeter = math.pi*(a+b)*(1+ 3*h/(10 + math.sqrt(4-3*h)))
32. return perimeter
33.
34. def auto_canny(image, sigma=0.60):
35. # compute the median of the single channel pixel intensities
36. v = np.median(image)
37. # apply automatic Canny edge detection using the computed median
38. lower = int(max(0, (1.0 - sigma) * v))
39. upper = int(min(255, (1.0 + sigma) * v))
40. edged = cv2.Canny(image, lower, upper)
41. # return the edged image
42. return edged
43.

79

44. # creates an elliptical structuring element for the opening/closing operations
45. ellipse_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (12, 12))
46.
47. # define range of Red onion color in HSV
48. Lupper_red = np.array([50, 255, 255])
49. Llower_red = np.array([0,40,0])
50.
51. Uupper_red = np.array([180,255, 255])
52. Ulower_red = np.array([160,40,0])
53.
54.
55. lower_white = np.array([0, 0, 240], dtype = "uint8")
56. upper_white = np.array([60, 30, 255], dtype ="uint8")
57.
58. image_directory = "C:/Users/Amanda/Documents/yield_monitor_results_copy/20180924_1411_u

ndistorted/"
59.
60. # original preprocessing method
61. def preprocess_original(image):
62.
63. # perform Mean Shift Filtering
64. shifted = cv2.pyrMeanShiftFiltering(image, 14, 50)
65.
66. # convert the image to HSV colorspace and blur
67. blur = cv2.medianBlur(shifted, 9)
68. blur = cv2.GaussianBlur(blur, (9,9),0)
69. hsv = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)
70. h, s, v = cv2.split(hsv)
71.
72. """
73. ## perform mean subtraction normalization
74.
75. hue_mean = np.ones(h.shape, dtype=np.uint8)*np.mean(h)
76. hue_mean = hue_mean.astype(np.uint8)
77. subtracted_hue = cv2.subtract(h, hue_mean)
78.
79. sat_mean = np.ones(s.shape, dtype=np.uint8)*np.mean(s)
80. sat_mean = sat_mean.astype(np.uint8)
81. subtracted_sat = cv2.subtract(s, sat_mean)
82.
83. val_mean = np.ones(v.shape, dtype=np.uint8)*np.mean(v)
84. val_mean = val_mean.astype(np.uint8)
85. subtracted_val = cv2.subtract(v, val_mean)
86. subtracted = cv2.merge((subtracted_hue, subtracted_sat, subtracted_val))
87.
88. cv2.imshow("Mean Substracted Image", subtracted)
89. cv2.imshow("Mean Subtracted Hue Channel", subtracted_hue)
90. cv2.imshow("Mean Subtracted Saturation Channel", subtracted_sat)
91. cv2.imshow("Mean Subtracted Value Channel", subtracted_val)
92.
93. #subt_ret,subt_thresh = cv2.threshold(subtracted_hue,0,255,cv2.THRESH_BINARY+cv2.TH

RESH_OTSU)
94.
95. """
96. # threshold the HSV image to get only red colors
97. color_mask_lower = cv2.inRange(hsv, Llower_red, Lupper_red)
98. color_mask_upper = cv2.inRange(hsv, Ulower_red, Uupper_red)
99. color_mask_white = cv2.inRange(hsv, lower_white, upper_white)
100. color_mask = color_mask_lower + color_mask_upper +color_mask_white
101. color_opening = cv2.morphologyEx(color_mask, cv2.MORPH_OPEN, ellipse_kernel)

80

102. color_closing = cv2.morphologyEx(color_opening, cv2.MORPH_CLOSE, ellipse_ker
nel)

103.
104. ## chromacity calculations
105. # split the BGR channels
106. b, g, r = cv2.split(blur)
107. b = b.astype('float')
108. g = g.astype('float')
109. r = r.astype('float')
110.
111. # add the 3 channels together
112. merged = np.add(r, b)
113. merged = np.add(merged, g)
114.
115. # calculate red intensity
116. R_I = 3*r - b -g
117. R_I = R_I.astype('uint8')
118.
119. # calculate chromacity of the red channel
120. chro_r = np.divide(r, merged)*255
121. chro_r = chro_r.astype('uint8')
122.
123. # equalize red chromacity and apply a median blur, remove noise
124. equ = cv2.equalizeHist(chro_r)
125. equ = cv2.medianBlur(equ, 9)
126.
127. grayscaled = R_I.copy()
128. grayscaled = cv2.equalizeHist(grayscaled)
129. grayscaled= cv2.GaussianBlur(grayscaled, (9,9),0)
130.
131. chro_edged = cv2.Canny(grayscaled, 180, 255)
132. chro_edged = cv2.dilate(chro_edged, ellipse_kernel, iterations=1)
133. final_mask = cv2.bitwise_and(chro_edged, color_closing)
134. small, medium, large, result = find_onion_contours(final_mask.copy(),
135. image.copy(), pixel_metri

c)
136.
137. return (small, medium, large), result
138.
139. def preprocess_watershed(image):
140. # create a copy of the image to draw on
141. clone = image.copy()
142. wts_result = np.zeros(image.shape, dtype=np.uint8)
143. # perform Mean Shift Filtering
144. shifted = cv2.pyrMeanShiftFiltering(image, 14, 50)
145.
146. # convert the image to HSV colorspace and blur
147. blur = cv2.medianBlur(shifted, 9)
148. blur = cv2.GaussianBlur(blur, (9,9),0)
149. hsv = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)
150. h, s, v = cv2.split(hsv)
151.
152. # threshold the HSV image to get only red colors
153. color_mask_lower = cv2.inRange(hsv, Llower_red, Lupper_red)
154. color_mask_upper = cv2.inRange(hsv, Ulower_red, Uupper_red)
155. color_mask_white = cv2.inRange(hsv, lower_white, upper_white)
156. color_mask = color_mask_lower + color_mask_upper + color_mask_white
157. color_opening = cv2.morphologyEx(color_mask, cv2.MORPH_OPEN, ellipse_kernel)

158. color_closing = cv2.morphologyEx(color_opening, cv2.MORPH_CLOSE, ellipse_ker

nel)

81

159.
160. # sure background area
161. sure_bg = color_closing.copy()
162.
163. # Finding sure foreground area
164. dist_transform = ndimage.distance_transform_edt(sure_bg)
165. #cv2.imshow("Distance Transform CV2", dist_transform/np.max(dist_transform[:

,:]))
166. thresh = color_closing.copy()
167.
168. # compute the exact Euclidean distance from every binary
169. # pixel to the nearest zero pixel, then find peaks in this distance map
170. localMax = peak_local_max(dist_transform, indices=False, min_distance=20,
171. labels=thresh)
172. # perform a connected component analysis on the local peaks,
173. # using 8-connectivity, then appy the Watershed algorithm
174. markers = ndimage.label(localMax, structure=np.ones((3, 3)))[0]
175. labels = watershed(-dist_transform, markers, mask=thresh)
176. print("[INFO] {} unique segments found".format(len(np.unique(labels)) - 1))

177.
178. # loop over the unique labels returned by the Watershed
179. # algorithm
180.
181. total_small = int()
182. total_medium = int()
183. total_large = int()
184.
185. if (len(np.unique(labels)) - 1) >= 1:
186. for label in np.unique(labels):
187. # if the label is zero, we are examining the 'background'
188. # so simply ignore it
189. if label == 0:
190. continue
191. # otherwise, allocate memory for the label region and draw
192. # it on the mask
193. mask = np.zeros(color_closing.shape, dtype="uint8")
194. mask[labels == label] = 255
195. small, medium, large, wts_result = find_onion_contours(mask, clone,

196. pixel_metric)

197.
198. clone = wts_result.copy()
199.
200. total_small = total_small + small
201. total_medium = total_medium + medium
202. total_large = total_large + large
203.
204. if not wts_result.any():
205. wts_result = image.copy()
206.
207. return (total_small, total_medium, total_large), wts_result
208.
209. def find_onion_contours(mask, original, pixel_metric):
210. # initialize lists of all the onion types present in the image
211. small_onions = []
212. medium_onions = []
213. large_onions = []
214. dst, contours, hierarchy = cv2.findContours(mask, cv2.RETR_LIST,
215. cv2.CHAIN_APPROX_SIMPLE)

82

216. result = original.copy()
217.
218. for c in contours:
219.
220. moments = cv2.moments(c)
221. if moments['m00'] != 0.0:
222. cx = int(moments['m10']/moments['m00'])
223. cy = int(moments['m01']/moments['m00'])
224. centroid = (int(cx), int(cy))
225. ((x, y), radius) = cv2.minEnclosingCircle(c)
226.
227. if len(c) > 5:
228. #print("radius : ", radius)
229. #if (radius<60) and (radius>16):
230. ellipse = cv2.fitEllipse(c)
231. major_axis, minor_axis = ellipse[1]
232. width = radius/pixel_metric
233. #print("width in mm", width)
234.
235. try:
236. aspect_ratio = minor_axis/major_axis
237. #print("aspect ratio :", aspect_ratio)
238.
239. except ZeroDivisionError:
240. pass
241.
242. # filter the onions by size
243. if 15 <= width < 25: # small onion
244. color = (255, 0, 0) # Blue
245. small_onions.append(c)
246. if (width > 25) and (width < 45): # Medium Onion
247. medium_onions.append(c)
248. color = (0, 255, 0) # Green
249. if (width > 45) and (width < 50): # Large Onion
250. large_onions.append(c)
251. color = (0, 0, 255) # Red
252.
253. if any((small_onions, medium_onions, large_onions)):
254. if 15 <= width <= 65:
255. # draw the centroid of the circle as well as the onion b

order
256. cv2.circle(result, centroid, 3, (255, 255, 0), -1)
257. #cv2.ellipse(result, ellipse, color, 2)
258. cv2.circle(result, (int(x), int(y)), int(radius), color,

 2)
259. else:
260. pass
261.
262. # return the counts for each onion category
263. return len(small_onions), len(medium_onions), len(large_onions), result

83

Statistical Analysis

1. # -*- coding: utf-8 -*-
2. """
3. Created on Mon Feb 8 14:51:24 2019
4.
5. @author: Amanda
6. """
7.
8. import numpy as np
9. import matplotlib.pyplot as plt
10. import pandas as pd
11. from scipy import stats
12.
13. file_path = "C:/Users/Amanda/Documents/Thesis/Statistics/ks_data.xls"
14. print(file_path)
15.
16. data = pd.read_excel(file_path, sheet_name="large_class", names = ["Predicted Diameter

(mm)","True Diameter (mm)"])
17.
18. # create plot area
19. fig, ax = plt.subplots(figsize=(8, 4))
20.
21. n_bins = 50
22. predicted = np.asarray(data["Predicted Diameter (mm)"])
23. true = np.asarray(data["True Diameter (mm)"])
24.
25.
26. n, bins, patches = ax.hist(predicted, n_bins, density=True, histtype='step',
27. cumulative=True, label='Predicted Diameter')
28.
29. n, bins, patches = ax.hist(true, n_bins, density=True, histtype='step',
30. cumulative=True, label='True Diameter')
31.
32.
33. # Compute the Kolmogorov-Smirnov statistic on the 2 gathered samples.
34. rs_statistic, p_value = stats.ks_2samp(predicted, true)
35.
36. print("RS Statistic :", rs_statistic)
37. print("P Value:", p_value)
38.
39.
40. # tidy up the figure
41. ax.grid(True)
42. ax.set_title('Large Class: KS–

Test Comparison Cumulative Fraction Plot', fontname="Arial", fontsize = "large")
43. ax.legend(loc='right', prop={'size': 10})
44. ax.set_xlabel('Diameter (mm)', fontname="Arial", fontsize = "large")
45. ax.set_ylabel('Cumulative Fraction', fontname="Arial", fontsize = "large")
46.
47. plt.show()

84

Appendix B: Hardware Specifications

Table B-2. Prototype Camera specifications
Attribute Value

Brand Name ELP
Resolution
Sensor
Picture Format
USB
Exposure
White Balance

Effective pixels

Performance

2.0 Megapixel 1080P
1/2.7" CMOS
MJPEG or YUY2 optional
Protocal USB2.0 HS/FS
Auto exposure AEC Support
Auto white blance AEB Support

1920 (H) x 1080 (V) pixels
1280 (H) x 1024 (V) pixels
1280 (H) x 720 (V) pixels
1024 (H) x 768 (V) pixels
800 (H) x 600 (V) pixels
640 (H) x 480 (V) pixels
352(H) x 288 (V) pixels
320 (H) x 240 (V) pixels

1920 (H) x 1080 (V) pixels MJPEG 30fps YUY2 6fps
1280 (H) x 1024 (V) pixels MJPEG 30fps YUY2 6fps
1280 (H) x 720 (V) pixels MJPEG 60fps YUY2 9fps
1024 (H) x 768 (V) pixels MJPEG 30fps YUY2 9fps
800 (H) x 600 (V) pixels MJPEG 60fps YUY2 21fps
640 (H) x 480 (V) pixels MJPEG 120fps YUY2 30fps

Voltage DC 5-V/current 150mA
Size Size 32x32mm/38*38
Work Temperature DEGREES (-20~70)
Hardware Platform
Other Specifications

PC; Mac; Android OS
Adjustable parameters Brightness/Contrast/Color saturation
/Definition/Gamma/WB
Night vision optional, Support IR Cut and IR board for night vision

Table B-3. Solid state drive specifications

Attribute Value
Brand Name Samsung

Series T5

Color blue

Item Height 7.6 centimeter

Item Width 10 millimeters

Hard Disk Size 250 GB

Hard Disk Technology Portable

Hardware Platform PC;Mac;Android OS

85

Table B-4. GPS Sensor specifications

Attribute Value
Brand Name
Version
Dimensions (DxH)

Garmin
GPS 19x HVS (NMEA 0183)
3 19/32" x 1 15/16" (91.6 mm x 49.5 mm)

Weight 7.1 oz (201 g)
Cable length 30 ft (9.14 m)
Temperature Range -22° to 176° F (-30° to 80° C)
Compass-safe distance 5.9" (150 mm)
Power source input 8-33 Vdc, unregulated
Input current 40 mA at 12 Vdc

86

Appendix C: Additional Figures

Figure C-1. Example image of the size calibration setup (section 3.2.6).

87

y = -0.0025x2 + 0.6058x + 19.677
R² = 0.9035

24

29

34

39

44

49

54

59

64

0 20 40 60 80 100 120 140

C
ir

c
le

D
ia

m
e

te
r,

m

m

Shallot Onion Mass, g

Weight (g)
Small Class
Medium Class
Large Class
Extra Large Class
Thresholds
Poly. (Weight (g))

Figure C-2. Modification of the size classes for shallot onion classification.

L
a
rg

e

M
e

d
iu

m

S
m

a
ll

88

Appendix D: Definition of Performance Metrics

 Accuracy is the degree of similarity between a measurement of a given quantity and the

true value of that same quantity. Accuracy is an important metric for evaluating the performance

of a classification algorithm as it represents the algorithm’s capacity to correctly classify the cases.

It is calculated by summing the number of true positive (TP) and true negative (TN) classifications

and dividing by the total number of classifications (TP + TN + false positives (FP) + false negatives

(FN)), and like all metrics is often multiplied by 100 to yield a percentage. Although it is a powerful

indicator of overall performance, accuracy alone is not enough to determine the strength of the

algorithm and if it has correctly learned the task at hand (Baratloo et al., 2015).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝛴 𝑇𝑃+𝛴 𝑇𝑁

𝛴 𝑇𝑃+𝛴 𝐹𝑃+𝛴 𝑇𝑁+𝛴 𝐹 𝑁
 (D-1)

Precision, also referred to as positive predictive value (PPV), is used to determine the algorithm’s

capacity to correctly identify positive cases with respect to all the cases the algorithm has

classified as positive. It is calculated by dividing the number of true positives by the number of

predicted positives which itself is a sum of the true positives and false positives (Baratloo et al.,

2015).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝛴 𝑇𝑃

𝛴 𝑇𝑃+𝛴 𝐹𝑃
 (D-2)

Precision is an indicator of how reproducible and repeatable a measurement is under

unchanged conditions and is used to evaluate the exactness of a model. Accuracy and precision

are independent of each other, meaning that a set of values can be either accurate, precise, both

at the same time, or neither.

Recall is the fraction of relevant instances (TP) that have been correctly identified over the

total amount of relevant instances (TP and FN). Recall and precision are typically used in unison

to report the performance of a classification system. Precision indicates the quality of the positive

89

prediction capability of the model, while recall indicates the completeness or quantity of correct

predictions with respect to all positive instances present. High precision would mean that the

algorithm returned a greater amount of relevant results than irrelevant ones, while a high recall

value would mean that the algorithm returned most of the relevant results (Baratloo et al., 2015;

Buckland & Gey, 1994).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝛴 𝑇𝑃

𝛴 𝑇𝑃+𝛴 𝐹𝑁
 (D-3)

Standard error (SE) is calculated as the standard deviation of the distribution associated

with that error, or an estimate of that same standard deviation. For a sample, the standard error

is equivalent to the standard deviation 𝑠 divided by the square root of the sample size 𝑛 :

𝑆𝐸 =
𝑠

√𝑛
 (D-4)

SE is used to approximate the uncertainty around the estimate of the mean measurement,

and it is most useful as a means of calculating a confidence interval (Altman & Bland, 2005).

Root Mean Square Error (RMSE) is the standard deviation of the residuals or prediction

errors. RMSE is used to measure the difference between values predicted by a model and the

values observed.

 𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑖− 𝑦𝑖)

2𝑛
𝑖=1

𝑛
 (D-5)

Where:

𝑛 = number of observations,

�̂�𝑖 = predicted value for the ith observation,

yi = observed value.

90

Appendix E: Additional Data

E-1 Size Prediction Results

Table E-1.2. Size prediction results for the small onion class.

Predicted Diameter
(Pixels)

True Diameter
(Pixels)

Predicted
Diameter (mm)

True Diameter
(mm)

Difference
Predicted Size
Class

True Size
Class

116 79 34.36 23.40 10.96 SMALL SMALL
106 84 31.39 24.88 6.52 SMALL SMALL
104 85 30.80 25.17 5.63 SMALL SMALL
118 87 34.95 25.77 9.18 SMALL SMALL
142 91 42.06 26.95 15.10 SMALL SMALL
102 91 30.21 26.95 3.26 SMALL SMALL
147 92 43.54 27.25 16.29 SMALL SMALL
109 95 32.28 28.14 4.15 SMALL SMALL
110 96 32.58 28.43 4.15 SMALL SMALL
150 96 44.43 28.43 15.99 MEDIUM SMALL
121 98 35.84 29.02 6.81 SMALL SMALL
151 98 44.72 29.02 15.70 MEDIUM SMALL
128 101 37.91 29.91 8.00 SMALL SMALL
131 102 38.80 30.21 8.59 SMALL SMALL
117 103 34.65 30.51 4.15 SMALL SMALL
127 104 37.61 30.80 6.81 SMALL SMALL
195 104 57.75 30.80 26.95 LARGE SMALL
101 105 29.91 31.10 -1.18 SMALL SMALL
103 106 30.51 31.39 -0.89 SMALL SMALL
159 107 47.09 31.69 15.40 MEDIUM SMALL
171 107 50.64 31.69 18.95 MEDIUM SMALL
114 108 33.76 31.99 1.78 SMALL SMALL
136 108 40.28 31.99 8.29 SMALL SMALL
125 109 37.02 32.28 4.74 SMALL SMALL
160 109 47.39 32.28 15.10 MEDIUM SMALL
99 110 29.32 32.58 -3.26 SMALL SMALL
114 110 33.76 32.58 1.18 SMALL SMALL
132 111 39.09 32.87 6.22 SMALL SMALL
102 111 30.21 32.87 -2.67 SMALL SMALL
170 113 50.35 33.47 16.88 MEDIUM SMALL
149 113 44.13 33.47 10.66 MEDIUM SMALL
105 114 31.10 33.76 -2.67 SMALL SMALL
142 114 42.06 33.76 8.29 SMALL SMALL
123 114 36.43 33.76 2.67 SMALL SMALL
172 114 50.94 33.76 17.18 MEDIUM SMALL
142 115 42.06 34.06 8.00 SMALL SMALL
130 115 38.50 34.06 4.44 SMALL SMALL
164 115 48.57 34.06 14.51 MEDIUM SMALL
151 115 44.72 34.06 10.66 MEDIUM SMALL
136 116 40.28 34.36 5.92 SMALL SMALL
122 116 36.13 34.36 1.78 SMALL SMALL
106 116 31.39 34.36 -2.96 SMALL SMALL
162 116 47.98 34.36 13.62 MEDIUM SMALL
173 116 51.24 34.36 16.88 MEDIUM SMALL
146 117 43.24 34.65 8.59 SMALL SMALL

91

129 117 38.21 34.65 3.55 SMALL SMALL
159 117 47.09 34.65 12.44 MEDIUM SMALL
121 118 35.84 34.95 0.89 SMALL SMALL
109 118 32.28 34.95 -2.67 SMALL SMALL
146 118 43.24 34.95 8.29 SMALL SMALL
127 119 37.61 35.24 2.37 SMALL SMALL
147 119 43.54 35.24 8.29 SMALL SMALL
114 119 33.76 35.24 -1.48 SMALL SMALL
158 119 46.79 35.24 11.55 MEDIUM SMALL
168 119 49.76 35.24 14.51 MEDIUM SMALL
133 120 39.39 35.54 3.85 SMALL SMALL
121 120 35.84 35.54 0.30 SMALL SMALL
110 120 32.58 35.54 -2.96 SMALL SMALL
120 121 35.54 35.84 -0.30 SMALL SMALL
124 121 36.72 35.84 0.89 SMALL SMALL
127 122 37.61 36.13 1.48 SMALL SMALL
111 122 32.87 36.13 -3.26 SMALL SMALL
164 122 48.57 36.13 12.44 MEDIUM SMALL
191 122 56.57 36.13 20.44 LARGE SMALL
238 122 70.49 36.13 34.36 LARGE SMALL
181 123 53.61 36.43 17.18 MEDIUM SMALL
172 123 50.94 36.43 14.51 MEDIUM SMALL
198 123 58.64 36.43 22.21 LARGE SMALL
105 124 31.10 36.72 -5.63 SMALL SMALL
163 124 48.28 36.72 11.55 MEDIUM SMALL
211 124 62.49 36.72 25.77 LARGE SMALL
130 125 38.50 37.02 1.48 SMALL SMALL
121 125 35.84 37.02 -1.18 SMALL SMALL
150 125 44.43 37.02 7.40 MEDIUM SMALL
132 126 39.09 37.32 1.78 SMALL SMALL
139 126 41.17 37.32 3.85 SMALL SMALL
156 126 46.20 37.32 8.89 MEDIUM SMALL
215 126 63.68 37.32 26.36 LARGE SMALL
217 126 64.27 37.32 26.95 LARGE SMALL
120 127 35.54 37.61 -2.07 SMALL SMALL
125 127 37.02 37.61 -0.59 SMALL SMALL
130 128 38.50 37.91 0.59 SMALL SMALL
144 128 42.65 37.91 4.74 SMALL SMALL
146 130 43.24 38.50 4.74 SMALL SMALL
138 130 40.87 38.50 2.37 SMALL SMALL
163 130 48.28 38.50 9.77 MEDIUM SMALL
159 130 47.09 38.50 8.59 MEDIUM SMALL
140 131 41.46 38.80 2.67 SMALL SMALL
150 131 44.43 38.80 5.63 MEDIUM SMALL
257 131 76.12 38.80 37.32 LARGE SMALL
132 132 39.09 39.09 0.00 SMALL SMALL
144 133 42.65 39.39 3.26 SMALL SMALL
156 133 46.20 39.39 6.81 MEDIUM SMALL
184 133 54.49 39.39 15.10 LARGE SMALL
146 134 43.24 39.69 3.55 SMALL SMALL
132 134 39.09 39.69 -0.59 SMALL SMALL
104 134 30.80 39.69 -8.89 SMALL SMALL
151 134 44.72 39.69 5.03 MEDIUM SMALL
138 135 40.87 39.98 0.89 SMALL SMALL
143 135 42.35 39.98 2.37 SMALL SMALL
150 135 44.43 39.98 4.44 MEDIUM SMALL

92

179 135 53.01 39.98 13.03 MEDIUM SMALL
172 135 50.94 39.98 10.96 MEDIUM SMALL
247 135 73.15 39.98 33.17 LARGE SMALL
121 136 35.84 40.28 -4.44 SMALL SMALL
151 136 44.72 40.28 4.44 MEDIUM SMALL
205 136 60.71 40.28 20.44 LARGE SMALL
114 137 33.76 40.58 -6.81 SMALL SMALL
138 137 40.87 40.58 0.30 SMALL SMALL
131 137 38.80 40.58 -1.78 SMALL SMALL
173 137 51.24 40.58 10.66 MEDIUM SMALL
181 138 53.61 40.87 12.74 MEDIUM SMALL
180 138 53.31 40.87 12.44 MEDIUM SMALL
162 138 47.98 40.87 7.11 MEDIUM SMALL
250 138 74.04 40.87 33.17 LARGE SMALL
143 139 42.35 41.17 1.18 SMALL SMALL
150 139 44.43 41.17 3.26 MEDIUM SMALL
131 140 38.80 41.46 -2.67 SMALL SMALL
194 140 57.46 41.46 15.99 LARGE SMALL
137 140 40.58 41.46 -0.89 SMALL SMALL
152 140 45.02 41.46 3.55 MEDIUM SMALL
200 140 59.23 41.46 17.77 LARGE SMALL
143 141 42.35 41.76 0.59 SMALL SMALL
126 141 37.32 41.76 -4.44 SMALL SMALL
110 144 32.58 42.65 -10.07 SMALL SMALL
128 144 37.91 42.65 -4.74 SMALL SMALL
145 144 42.94 42.65 0.30 SMALL SMALL
206 144 61.01 42.65 18.36 LARGE SMALL
226 144 66.93 42.65 24.29 LARGE SMALL
221 144 65.45 42.65 22.80 LARGE SMALL
147 145 43.54 42.94 0.59 SMALL SMALL
139 145 41.17 42.94 -1.78 SMALL SMALL
123 145 36.43 42.94 -6.52 SMALL SMALL
161 145 47.68 42.94 4.74 MEDIUM SMALL
170 145 50.35 42.94 7.40 MEDIUM SMALL
226 145 66.93 42.94 23.99 LARGE SMALL
100 146 29.62 43.24 -13.62 SMALL SMALL
148 146 43.83 43.24 0.59 SMALL SMALL
133 146 39.39 43.24 -3.85 SMALL SMALL
117 146 34.65 43.24 -8.59 SMALL SMALL
159 146 47.09 43.24 3.85 MEDIUM SMALL
151 146 44.72 43.24 1.48 MEDIUM SMALL
151 146 44.72 43.24 1.48 MEDIUM SMALL
140 147 41.46 43.54 -2.07 SMALL SMALL
148 147 43.83 43.54 0.30 SMALL SMALL
147 147 43.54 43.54 0.00 SMALL SMALL
180 147 53.31 43.54 9.77 MEDIUM SMALL
181 147 53.61 43.54 10.07 MEDIUM SMALL
196 147 58.05 43.54 14.51 LARGE SMALL
142 148 42.06 43.83 -1.78 SMALL SMALL

93

Table E-1.3. Size prediction results for the medium onion class.

Predicted
Diameter (Pixels)

True Diameter
(Pixels)

Predicted
Diameter (mm)

True Diameter
(mm)

Difference
Predicted
Size Class

True
Size
Class

114 149 33.76 44.13 -10.37 SMALL MEDIUM

108 149 31.99 44.13 -12.14 SMALL MEDIUM

171 149 50.64 44.13 6.52 MEDIUM MEDIUM

151 149 44.72 44.13 0.59 MEDIUM MEDIUM

149 149 44.13 44.13 0.00 MEDIUM MEDIUM

145 150 42.94 44.43 -1.48 SMALL MEDIUM

144 150 42.65 44.43 -1.78 SMALL MEDIUM

141 150 41.76 44.43 -2.67 SMALL MEDIUM

173 150 51.24 44.43 6.81 MEDIUM MEDIUM

173 150 51.24 44.43 6.81 MEDIUM MEDIUM

197 150 58.35 44.43 13.92 LARGE MEDIUM

261 150 77.30 44.43 32.87 LARGE MEDIUM

214 150 63.38 44.43 18.95 LARGE MEDIUM

173 151 51.24 44.72 6.52 MEDIUM MEDIUM

156 151 46.20 44.72 1.48 MEDIUM MEDIUM

210 151 62.20 44.72 17.47 LARGE MEDIUM

220 151 65.16 44.72 20.44 LARGE MEDIUM

157 152 46.50 45.02 1.48 MEDIUM MEDIUM

141 152 41.76 45.02 -3.26 SMALL MEDIUM

155 152 45.91 45.02 0.89 MEDIUM MEDIUM

129 153 38.21 45.31 -7.11 SMALL MEDIUM

101 153 29.91 45.31 -15.40 SMALL MEDIUM

113 153 33.47 45.31 -11.85 SMALL MEDIUM

162 154 47.98 45.61 2.37 MEDIUM MEDIUM

159 154 47.09 45.61 1.48 MEDIUM MEDIUM

166 154 49.16 45.61 3.55 MEDIUM MEDIUM

195 154 57.75 45.61 12.14 LARGE MEDIUM

126 155 37.32 45.91 -8.59 SMALL MEDIUM

138 155 40.87 45.91 -5.03 SMALL MEDIUM

153 155 45.31 45.91 -0.59 MEDIUM MEDIUM

148 156 43.83 46.20 -2.37 SMALL MEDIUM

126 156 37.32 46.20 -8.89 SMALL MEDIUM

101 157 29.91 46.50 -16.59 SMALL MEDIUM

177 157 52.42 46.50 5.92 MEDIUM MEDIUM

157 157 46.50 46.50 0.00 MEDIUM MEDIUM

184 157 54.49 46.50 8.00 LARGE MEDIUM

168 158 49.76 46.79 2.96 MEDIUM MEDIUM

172 158 50.94 46.79 4.15 MEDIUM MEDIUM

168 159 49.76 47.09 2.67 MEDIUM MEDIUM

150 159 44.43 47.09 -2.67 MEDIUM MEDIUM

171 159 50.64 47.09 3.55 MEDIUM MEDIUM

210 159 62.20 47.09 15.10 LARGE MEDIUM

214 159 63.38 47.09 16.29 LARGE MEDIUM

185 159 54.79 47.09 7.70 LARGE MEDIUM

94

179 160 53.01 47.39 5.63 MEDIUM MEDIUM

191 160 56.57 47.39 9.18 LARGE MEDIUM

128 161 37.91 47.68 -9.77 SMALL MEDIUM

156 161 46.20 47.68 -1.48 MEDIUM MEDIUM

186 161 55.09 47.68 7.40 LARGE MEDIUM

251 161 74.34 47.68 26.66 LARGE MEDIUM

249 161 73.75 47.68 26.06 LARGE MEDIUM

239 161 70.78 47.68 23.10 LARGE MEDIUM

225 161 66.64 47.68 18.95 LARGE MEDIUM

194 161 57.46 47.68 9.77 LARGE MEDIUM

110 162 32.58 47.98 -15.40 SMALL MEDIUM

123 162 36.43 47.98 -11.55 SMALL MEDIUM

168 162 49.76 47.98 1.78 MEDIUM MEDIUM

143 163 42.35 48.28 -5.92 SMALL MEDIUM

152 163 45.02 48.28 -3.26 MEDIUM MEDIUM

174 164 51.53 48.57 2.96 MEDIUM MEDIUM

175 164 51.83 48.57 3.26 MEDIUM MEDIUM

169 166 50.05 49.16 0.89 MEDIUM MEDIUM

155 166 45.91 49.16 -3.26 MEDIUM MEDIUM

183 166 54.20 49.16 5.03 LARGE MEDIUM

149 167 44.13 49.46 -5.33 MEDIUM MEDIUM

101 168 29.91 49.76 -19.84 SMALL MEDIUM

113 168 33.47 49.76 -16.29 SMALL MEDIUM

142 169 42.06 50.05 -8.00 SMALL MEDIUM

166 169 49.16 50.05 -0.89 MEDIUM MEDIUM

195 169 57.75 50.05 7.70 LARGE MEDIUM

182 170 53.90 50.35 3.55 MEDIUM MEDIUM

108 172 31.99 50.94 -18.95 SMALL MEDIUM

180 172 53.31 50.94 2.37 MEDIUM MEDIUM

183 172 54.20 50.94 3.26 LARGE MEDIUM

158 173 46.79 51.24 -4.44 MEDIUM MEDIUM

208 174 61.60 51.53 10.07 LARGE MEDIUM

131 175 38.80 51.83 -13.03 SMALL MEDIUM

172 175 50.94 51.83 -0.89 MEDIUM MEDIUM

182 175 53.90 51.83 2.07 MEDIUM MEDIUM

183 175 54.20 51.83 2.37 LARGE MEDIUM

131 176 38.80 52.13 -13.33 SMALL MEDIUM

165 176 48.87 52.13 -3.26 MEDIUM MEDIUM

190 176 56.27 52.13 4.15 LARGE MEDIUM

152 177 45.02 52.42 -7.40 MEDIUM MEDIUM

220 177 65.16 52.42 12.74 LARGE MEDIUM

239 177 70.78 52.42 18.36 LARGE MEDIUM

152 178 45.02 52.72 -7.70 MEDIUM MEDIUM

195 178 57.75 52.72 5.03 LARGE MEDIUM

182 179 53.90 53.01 0.89 MEDIUM MEDIUM

174 181 51.53 53.61 -2.07 MEDIUM MEDIUM

95

Table E-1.3. Size prediction results for the large onion class.

Predicted
Diameter
(Pixels)

True
Diameter
(Pixels)

Predicted
Diameter
(mm)

True
Diameter
(mm)

Difference
Predicted
Size Class

True Size
Class

167 183 49.46 54.20 -4.74 MEDIUM LARGE

185 183 54.79 54.20 0.59 LARGE LARGE

186 183 55.09 54.20 0.89 LARGE LARGE

213 183 63.08 54.20 8.89 LARGE LARGE

132 184 39.09 54.49 -15.40 SMALL LARGE

206 184 61.01 54.49 6.52 LARGE LARGE

182 185 53.90 54.79 -0.89 MEDIUM LARGE

181 187 53.61 55.38 -1.78 MEDIUM LARGE

194 187 57.46 55.38 2.07 LARGE LARGE

184 189 54.49 55.98 -1.48 LARGE LARGE

197 190 58.35 56.27 2.07 LARGE LARGE

158 191 46.79 56.57 -9.77 MEDIUM LARGE

196 191 58.05 56.57 1.48 LARGE LARGE

205 192 60.71 56.86 3.85 LARGE LARGE

253 192 74.93 56.86 18.07 LARGE LARGE

222 193 65.75 57.16 8.59 LARGE LARGE

218 194 64.56 57.46 7.11 LARGE LARGE

175 196 51.83 58.05 -6.22 MEDIUM LARGE

212 196 62.79 58.05 4.74 LARGE LARGE

240 196 71.08 58.05 13.03 LARGE LARGE

200 198 59.23 58.64 0.59 LARGE LARGE

197 202 58.35 59.83 -1.48 LARGE LARGE

228 207 67.53 61.31 6.22 LARGE LARGE

242 209 71.67 61.90 9.77 LARGE LARGE

219 212 64.86 62.79 2.07 LARGE LARGE

144 233 42.65 69.01 -26.36 SMALL LARGE

185 257 54.79 76.12 -21.32 LARGE LARGE

185 260 54.79 77.00 -22.21 LARGE LARGE

219 276 64.86 81.74 -16.88 LARGE LARGE

195 296 57.75 87.67 -29.91 LARGE LARGE

96

E-2 Median-Filtered Onion Count Predictions

Table E-2.1 Size prediction results and positioning for all onions.
Small
(Median)

Medium
(Median)

Large
(Median)

Sum
(Median)

Latitude
(Median)

Longitude
(Median)

Speed (km/h)
(Median)

0 0 0 0 45.191998 -73.350543 1.259

0 0 0 0 45.191999 -73.350543 1.287

0 0 0 0 45.191990 -73.350547 0.398

1 0 0 1 45.192084 -73.350422 1.241

2 1 2 4 45.192089 -73.350416 1.287

3 1 1 5 45.192223 -73.350239 2.611

4 2 1 7 45.192382 -73.350009 2.982

1 1 2 3 45.192552 -73.349776 3.047

3 2 2 7 45.192713 -73.349544 3.065

2 0 2 4 45.192720 -73.349533 3.037

4 1 1 6 45.192893 -73.349311 3.028

3 2 1 5 45.193065 -73.349080 3.380

2 1 1 4 45.193258 -73.348824 3.464

3 1 2 6 45.193266 -73.348815 3.417

3 1 1 5 45.193455 -73.348568 3.380

2 2 1 5 45.193645 -73.348314 3.352

4 1 1 6 45.193825 -73.348056 3.463

4 2 2 8 45.194029 -73.347771 3.510

3 1 1 5 45.194038 -73.347759 3.676

2 1 3 6 45.194245 -73.347470 3.639

2 1 0 3 45.194455 -73.347192 3.676

2 1 1 4 45.194672 -73.346926 3.658

2 1 1 4 45.194680 -73.346914 3.565

2 1 1 4 45.194880 -73.346632 3.574

4 1 1 5 45.195080 -73.346341 3.714

1 1 2 4 45.195288 -73.346055 3.676

3 1 1 5 45.195296 -73.346042 3.667

3 0 1 4 45.195496 -73.345758 3.685

2 1 0 3 45.195698 -73.345492 3.667

1 1 2 4 45.195904 -73.345221 3.648

2 1 1 4 45.196111 -73.344945 3.630

2 1 1 4 45.196121 -73.344931 3.648

3 1 2 6 45.196333 -73.344655 3.528

2 1 2 5 45.196531 -73.344376 3.408

3 1 2 6 45.196739 -73.344093 3.602

4 1 1 6 45.196947 -73.343810 3.630

3 2 1 5 45.197156 -73.343521 3.547

4 2 1 7 45.197362 -73.343251 3.852

0 0 0 0 45.197661 -73.342782 4.195

2 0 0 2 45.197461 -73.342775 3.260

3 2 2 7 45.197315 -73.342968 3.149

2 1 1 4 45.197150 -73.343205 3.297

97

3 2 1 5 45.196994 -73.343454 2.815

2 1 2 5 45.196811 -73.343682 2.991

4 1 2 7 45.196634 -73.343917 3.028

1 1 3 5 45.196544 -73.344036 2.954

3 1 1 5 45.196455 -73.344154 3.111

3 1 1 5 45.196301 -73.344390 2.788

2 1 2 5 45.196295 -73.344397 2.936

3 2 2 6 45.196119 -73.344630 3.093

1 1 1 3 45.195960 -73.344865 3.139

2 1 2 5 45.195782 -73.345100 3.167

2 1 1 4 45.195778 -73.345109 3.102

2 1 2 5 45.195610 -73.345345 2.871

2 1 1 3 45.195454 -73.345561 2.917

2 1 1 4 45.195320 -73.345754 2.704

4 0 1 5 45.195245 -73.345859 2.964

2 1 2 4 45.195168 -73.345965 2.880

3 0 0 3 45.195014 -73.346173 2.778

2 1 1 3 45.194841 -73.346410 3.334

1 0 1 2 45.194668 -73.346650 3.093

3 2 1 5 45.194502 -73.346877 2.890

1 0 1 2 45.194401 -73.346993 2.945

2 1 1 4 45.194306 -73.347109 2.954

2 0 0 2 45.194133 -73.347351 3.065

2 1 1 3 45.193965 -73.347586 2.852

1 1 2 4 45.193799 -73.347813 2.963

0 1 1 2 45.193790 -73.347824 2.945

1 0 0 1 45.193618 -73.348037 2.954

3 1 1 5 45.193451 -73.348259 3.010

2 1 0 3 45.193268 -73.348509 2.843

2 0 1 3 45.193095 -73.348741 2.973

3 0 1 3 45.193085 -73.348752 3.001

2 0 0 2 45.192912 -73.348976 3.047

3 0 0 3 45.192747 -73.349234 2.982

2 0 1 3 45.192569 -73.349464 2.982

3 1 0 4 45.192486 -73.349582 3.093

1 1 1 3 45.192404 -73.349700 3.232

3 1 1 4 45.192234 -73.349923 3.047

2 1 0 3 45.192054 -73.350137 3.000

2 0 0 2 45.191914 -73.350341 1.315

2 1 1 4 45.192117 -73.350477 1.260

3 1 0 4 45.192153 -73.350429 1.269

1 1 1 3 45.192154 -73.350429 1.019

2 1 2 4 45.192294 -73.350226 2.436

4 1 1 6 45.192463 -73.350006 2.917

2 1 1 4 45.192630 -73.349753 3.001
2 2 1 5 45.192638 -73.349743 2.991

	Abstract
	Résumé
	Dedication
	Acknowledgements
	Contributions of the Authors
	Format of Thesis
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Chapter 1. Introduction
	1.1. Yield Monitoring
	1.2. Computer Vision
	1.3. Research Objective

	Chapter 2. Literature Review
	2.1. Digital Imagery
	2.1.1. Computer Vision and Machine Vision
	2.1.2. Camera Systems

	2.2. Applications of Computer Vision in Agriculture
	2.3. Machine Vision for Yield Determination
	2.4. Challenges of Machine Vision Applications
	2.5. Summary of Literature Review

	Chapter 3. Materials and Methods
	3.1. Feasibility Study
	3.1.1. Image Acquisition
	3.1.2. Software
	Software Structure
	Initial Algorithm

	3.1.3. Distortion Correction
	3.1.4. Conveyor Speed Calculation
	3.1.5. Processing Unit

	3.2. Prototype System Design
	3.2.1. System Components
	3.2.2. Mounting Bracket Design
	3.2.3. Electrical System Design
	3.2.4. Segmentation
	3.2.5. Definition of Vegetable Size Categories
	3.2.6. Size Calibration
	3.2.7. Statistical Analysis

	Chapter 4. Results and Discussion
	4.1. General System Performance
	4.1.1. Integrability
	4.1.2. System Cost
	4.1.3. System Assembly
	4.1.4. Reliability

	4.2. Results of Feasibility Study
	4.2.1. Segmentation Results
	4.2.2. Onion Detection Performance
	4.2.1. Conclusions of Feasibility Study

	4.3. Prototype Performance
	4.3.1. Size Estimation
	4.3.2. Segmentation Results
	4.3.3. Onion Detection Results
	4.3.4. Yield Map

	4.4. Future Improvements

	Conclusions
	References
	Appendix A: Python Code
	A-1 Initial Version of Python Code (Feasibility Study)
	A-2 Final Version of Python Code (Field Trial)
	Yield Monitor Class
	Image Preprocessing
	Config File Loading
	GPS Sentence Parsing
	Main File
	Image Preprocessing (Updated post field trials)
	Statistical Analysis

	Appendix B: Hardware Specifications
	Appendix C: Additional Figures
	Appendix D: Definition of Performance Metrics
	Appendix E: Additional Data
	E-1 Size Prediction Results
	E-2 Median-Filtered Onion Count Predictions

