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PREFACE • • • •

iii

The representationà of Lie algebras have been considered

extensively, in the bibliography are listed references .ost

pertinent to this paper. In its treatment of the representation

of L1e algebras, this paper differs trom previous investigations

in the particular stress it places upon the interrelation of the

representation of the Lie algebra and the correspoading

representation it induces on an ideal.

This point of vie. leads to quite explicit forma for certain

representations of Lie algebras which the author believes to be

original. In particular, in chapter l the concept of matrices

ot invariance is developed for the representation of an ideal.

This concept permits us in chapter II to show that irreducible

representations of a Lie algebra, 1n an algebraically closed

field, can be expressed as a certain product whose factors are

associated with the representation 1nduced on an 1deal. Conversely,

1f one has such factors, it 1a shown that they can be PQt

together to produce an 1rreducible representat10n of the L18

algebra. A valuable guide to th1s work W&8 supplied bl a paper

of C11ffordS)- . In chapter III, us1ng the B1rkheff 1mbedd1ng

procedure2), a construction 1s given whereby an explicit

representation of a Lie algebra can be generated,in an algebraically

closed field of zero characterist1c,from certain representations

• The number in the bracket refers to the bibliography.
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of an ideal ln the radlcal. The degree of the representation

can be given. Furthermore, the construction is sufficlently

general to give representations which lnclude as components

the indecomposable components of any representation of finit.

degr.e. The theorem of Ado i8 proved as an application of the

construction. Wh1le this theorem has several proofs, the

present one has a value in its explicitness and in the fact

that the degree of the representation can be given.

All algebras, modules, and representations in this paper

are to be taken over a field F, if the field 18 not spec1f1cally

ment1oned.



1.

CHAPTER r

IlArRICES OF INVARIANCE

1. Erelim1narx conceRts. A #1e algebra L 1s an F-module

in wh1ch there 1s defined a un1que product aob , (a, b,aob E L) ,

8uch that

( 1 ) k ( &0b ) = (ka) ob = &0 (kb) , (k f. F)

(11) &o(b + e ) = aob + aoc, (b + c)oa = boa + coa, (0 EoL)

(111) aoa = 0,

(iv) ao(boo) + bo(coa) + co(aob) =0, (the Jacobi identity).

From (ii) and (iii) we obtain the ant1-commutative la.,

aob + boa = (a + b)o(a + b) - (aoa) - (bob) = O.

An F-module T, contained in a Lie algebra L, 18 called an

1deal of L 1f LoT çT. By the ant1-commutative la., ToL ç,~. Thus

anr ideal 18 t.o s1ded. Clearly, T 1s a180 a subalgebra.

If H 18 aDY assoc1at1ve hypercomplex algebra, then one

can replace the given product ab 1n H by the product aob

def1ned by aob = ab - ba. It 1s easily verified that stateaents

(i) to (1v) aboye are satisfied by th1s '0' multiplication.

Hence B, and every module 1n H closed under 'o' .~lt1plicat1on,

fora & Lie algebra w1th respect to '0' m~lt1p11cat10n

A œapp1ng & - a', wheré a 1a Mr element of a L1e algebra L



and a' 1s its unique image in a Lie algebra LI is called

a homoaorphism of L in L'if

a+b_a' .b',

ka-'>' ka' ,

aob --a' ob 1 ,

(k ~ F, the field of reference)

The images form a Lie algebra in LI. If the correspondence is

one-to-one, the mapping 18 called an !!!aorphilm.

The homomorphie œapping of L ioto an associat1ve algebra H

where aob-'Pa'ob' = a'b' - b'a.' is called a representati+,n of L.

This representation is faithful if the mapping ia an isomorpUi8m.

An F-module U is called a repres~ntation mo~!, or an

~F-.odule, of a. Lie algebra L, if there is defined a unique

produot au, (a f L, u E M), SUlch that au occurs in 14 and

a(u .. v) = au .. av, (a • b)v = av • bv, (v E: 14, b E. L)

(ka)u :: a(ku) = k(au), (k E F)

(aob)u • a(bu) - b(au).

Buch a module assigns to each element a of L a unique linear

transformation !(a) of M, detined by au= j(a)u, and the

correspondence a~Â(a) is a representation of L br linear

transformations of U. If M has the basis u
1,u2,

••• ,u
r,

then

!(a) can be assoc1ated with the œatrix ~(a) = (a
i j),

given br

the equat10ns

) [r!(a uJ = i=l ai j ui, j = l,2, ••• ,r.

This association is an isomorphis., consequently the correspondence

a ~A(a) i8 a representation of L by matrices. Conversely, a re-



presentation of L determ1nes a representat10n module of L by

tak1ng an F-module w1th a su1table number of basi8 elements, r .ay,

and def1ning

j = 1,2, ••• ,r.

An F-modu1e Ill, conta1ned in a representation module M of L,

i8 called an 1nTariant sub.~dule when Lm ~ Il, 1.e••hen III 1s also

a representation module. The factor module M/a is also a

repres'ntat1on module for wh10h a(u + .) =au + m. The usual

representat10n propert1es of equ1Talence, 1rreducib1lity, and the

various k1nds of reduc1b1l1ty can now be expressed for L~ algebras

in module terms.

2. Matrices of inTar1ance. Let an 1deal T, of a Lie algebra

L, have the representation Q, i.e. t~Q(t) is a representation

of T by matrices. If there is a matr1x C(a), corresponding to

an element a of L, such that

C{a)oQ(t) = Q(aot),

for all elements t in T, then we shall call C(a) a matrix ot

inTariance.lf to every element of L there corresponds a matrix

of 1nvariance, then Q will be called invariant under L.

Theorem 1.1 For an algebraically closed field of reference F,

the matrices of invariance , of an irreduc1ble repreaentat10n Q

of an 1deal T, corr.spond1ng to a particular element a of the

Lie algebra L, d1ffer only by multiples of the unit matr1x.
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Proof. Let C(a) and C'(a) be two matrices of inTariance for

a, then W6 have

Thus

C(a)oQ(t) = Q(aot),

C'(a)oQ(t) = Q(aot).

(t E- T)

C(a)oQ(t) - C'(a)oQ(t) = 0,

(C(a) - C'(a»oQ(t) =0,

(C(a) - C'(a»Q(t) - Qitl(C(a) C~(~ L ~~I _
- - --- - ---- - --- - --- - -

(C(&) - C'(a»Q(t) = Q(t)(C(a) - C'(a»,

for all t E: T. Sinee Q(t) 1s irreduc1b1e, Schur 1 s lemma- giTes

C(a) - C'(a) =c(a)l,

where e(a) E F, and l 19 the uDit matrix of the d1mensions of C(a).

Theore. 1.2. Let Q be an irreducib1e representation of an

1deal T of a Lie a1gebra L. Let 6 1 , e2 , ••• ,6r be a basis of T,

and 61,82, ••• ,er,er+l, ••• ,en' be a basis of L, with respect to

an algebraically closed f1eld F. If e l, ••• ,e possess matricesr+ n
of invarian~e, then each element a of L can be assigned a

unique matrix of invariance C(a).

Proof. From the matrices of inTariance of e l, ••• ,e,r+ n

select any particular set C(e 1)' C(e 2)' •••• , C(e ). Then wer+ r+ n

_ _ _ __ _ _ _defin~ C(~lh ~ (~21 ,- .~.-,- ~(~J:t, -bY- the_equations- - - - - - - - - - -

C(8 i ) = Q(ei ) , i = l,2, ••• ,r.

• In an algebraically closed field, the only matr1ces commuting with

an irreducible set of matrices are scalar multiples of th. unit

matrix.
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For a E- L, we have

e. = ['~=l kiei, (ki f F)

thus O(a) can now be constructed by setting

0(&) = ['~=l kiO(ei),

and

c(a) oQ(t) = ['~=l kiO(ei) oQ(t),

= [' ~=l k i Q(e1ot),

= ['~=l Q«k1e1)ot),

= Q«['~=l k1e1)ot) SIl Q(aot), as requ1red.

~e un1quene8& of Ota) follows trom the fact that e1'.2, ••• ,en,
1s a basis of L.

Corollary. The matrices of 1bvat'1ance .of the theorem

haTe the propert1es

e(a + b) • C(a) + e(b),

C(ka) III ka ( a) ,

ott) =Q(t).

Proot. Taking a = ['~=lk1e1' b =

e. + b =['~=lkiei + ['~=lkle1 =
Therefore

(a,b ~ L)

(k f: F)

c(a .. b) = ['~=l(k1 + ki)0 (e1 ) ,

= ['~=lk1C(ei) .. ['~=lklC(ei)'
=C(a) .. C(b).

Alsa
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C{ka) = L~=1(kk1)c(e1) = k L~=lk1c(e1) = kC(a).

F1nally

so tha.t

t = L~=lkle1' (t E: T)

C(t) = L~=lk1Q(e1) = Q( [I=lkiei) = Q(t).

3. Factor sets.a_

Iheorem 1.3. Let T be an ideal of a Lie algebra L. Let Q

be an irreducible representation of T in an algebraically

closed field F, invariant under L. If matr1ces of invariance

C(a), a EL, are S 0 chosen that C(a + b) = C(a) ... C(b), bEL,

C(ka) = kO (a), k E F, and C(t ) = Q( t), t E:T, then

C(aob) = C(a)oC(b) + c(a,b)I,

where c(a,b)é F, and l 1s the unit matrix of the dimensions of Ota).

Proof.By the Jacobi identity,

(aob)ot = ao(bot) - bo(aot).

Binee T la an ideal,(aob)ot,a.ot,bot, are elements of T;we

ha'Ye therefore

Q«aob)ot) = Q(ao(bot» - Q(bo(aot»,

C(aob)oQ(t) = C(a)oQ(bot) - C(b)oQ(aot),

= C(s)o(C(b)oQ(t» - C(b)o(C(s)oQ(t»,

= (C(a)oC(b»oQ(t),

sinee matrices, with respect toto· multiplication, satisty the

Jacobi identity. Thus

(O(aob) - (C(a)oC(b»)oQ(t) = 0,

or (O(a9b) - (O(a)oC(b»)Q(t) = Q(t)(C(aob) - (C(a)oC(b»),
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on replac1ng '0' multip11cation by ordinart multiplicat1on.

By Sch.r's lemaa,

C{aob) II: C(a)oC{b) + c(a,b)I,

where c(a,b)E F, and l 18 the unit matrlx of the dlaenslons of C(a).

Corollarx. The scalars c(a,b) of the th.ore. have the

propertles

(1)

(11)

(111)

(1v)

(v)

(tt)

(vll)

(T111)

c(a,t) = 0, (a E:L, tE T)

c(a,&) II: 0,

c(a,b) =- c(b,a), (b E:L)

c(a,bod) + c(b,doa) + c(d,aob) = O,(d EL)

c(a + 8,b + t) = c(a,b) (s E:T)

c(a + b,d) = c(a,d) + c(b,d),

c(a,b + d) II: c(a,b) + c(a,d),

c(ka,b) =c(a,kb) =kc(a,b).

Proo!. C(aot) =C(a)oQ(t) + c(a,t)I,

or Q(aot) = Q(aot) + c(a,t)I,

o =c(a,t)I,

and so c(a,t) =0, g1v1ng (1).

C(aoa) =C(&)oC(a) + c(a,&)I,

Q(O) =0 + c(&,&)1,

thus c(a,&) = 0, givlng (11).

C(aob) =C(a)oC(b) + c(a,b)I

C(boa) =C(b)oC(a) + c(b,a)I.
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Add1ng

C{aob + boa) • C{a)oC{b) + O{b)oC{a) + (c{a,b) + c{b,a»I.

Applying the ant1-commutatlY8 law,

Q{O) =0 + (c{a,b) + c(b,a»I,

and so c{a,b) =- c{b,a), giY1ng (111).

C{ao{bod» =C(a)oC(bod) + c{a,bod)I,

=C(a)o(C(b)oC(d» + c{b,d)(C(a)oI) + c(a,bod)I,

=C{a)o{C(b)oC(d» + c(a,bod)I.

Permutlng a, b, and d, cycllcly, addlng the correspondlng

equatlons, then applylng the Jacobi ldentlty, we haye

Q{O) =0 + (c{a,bod) + c(b,doa) + c(d,aob»I,

and so 0 =c(a,bod) + c(b,doa) + c(d,aob), glYlng (iy).

C{{a + s)o(b + t» • C(a + .)oC(b + t) + c(a + s,b + t)I,

or =C(aob) + C(aot) + C(sob) + C(sot).

Expandlng eacb of the expresslons and compar1ng glyes

c(a + 8,b + t) • c(a,b), property (y).

C({a + b)od) = O(a + b)oC(d) + c(a + b,d)I,

or =C(aod) + C(bod).

ExPanding .&ch expression and comparlng giye8

c(a + b,d) = c(a,d) + c(b,d), property (yi).

Slal1arly

c(a,b + d) =c(a,b) + c(a,d), property (Yll).

C(ao(kb)) = C(k(aob»,
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C(a)oC(kb) + c(a,kb}I • kC(aob),

C(a)okC(b) + c(a,kb)I 1: k (C(a) oC (b» + Jec(a,b)I,

k(C(a)oC(b» + c(a.,kb}I =k (C(a) oC (b) ) + kc(a,b)I,

glvlng c(a,kb) :II kc(a,b).

Slml1arly c(ka.,b) =kc(a,b}, givlng (vl1i).

The elementa c(a,b) of F, satlsfylng the propertles (1) to

(vil1), we shall call a factor set.

Br theorem 1.3 lt 1s shown that if matrices of invariance

are so chosen that C(a + b) =C(a) + C(b), C(Jea) =kC(a), and

C(t) =Q(t), then C(aob) =C(a)oC(b) + c(a,b)I, wher. c(e.,b) 18

a factor set. It 18 apparent, therefore, that the correspondenc.

a-'JC(a)

la almost a representatlonof L. Let us call such a correspondence

an L-RroJectlve representatlon, (L for Lle, and project1ve ,

because of the analogy w1th group theory). Theorea 1.2 shows

that we can construct such a representatlon whenever matrices

of invariance existe Furthermore, if we 'have an L-projectlve

representation of L, given by ,

(l,j =1,2, •• ,n)

where c i j (&) ~ F, the field of referenee, we can define

aU j = Q(a)u j = [~=lcij(a)u1' (j = 1,2, •• ,n)

for an F-module wlth the basis elements ul,u2, ••• ,un ta form

an L-projectlve representation module. It is e88111 ver1f1ed

that (1) a(u + v) =au + av,

(il) (a + b}u = au + bu,

(a EL)

[b E L)
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(111) (ka)u = a(ku) • k(au) , (k E- E)

(1T) (aob)u • a(bu) - beau) + c(a,b)u.

Conversely, 1f thera 1s an F-aodule 14 for which there 18

defined a unique product au in 14 for a E: L, a L1e algebra, u ~ 14,

such that properties (i) to (iv) are satisfied, then U assigas

an L-projective representation to L. We can define irreducibility

and reduc1b11ity in the u8ual .&y; namely, if U properly

contains an Fr8ubmodule invariant under L, then U and its

representation are reducible, otherw1se U and its representation

are irreduc1ble.

It the matr1ces C(e r 1}' O(e 2)' ••• , O(e ), of theorem 1.2,+ r+ n

are replaced by a second set C'(e 1)' Cite 2)' ••• , cac. ),r+ r+ n
then we can construct a second matrix of invariance Cita) for

each a EL. By tbeorem 1.1, Ota) - 0' (a) = o(a)I, c(a) E-F. Then

.e can prOTe -t~~ fol1ow1ng theorea.

Iheorea 1.i. The set of clements c(a) E F, a EL, has the

propert1es c(a + b) =c(a) + c(b),

cOca) =ke ( a) ,

c(t) = o.

(b f, L)

(k E. E)

Proof. Br the corol1ary of theorem 1.2,

C(a + b) =Ota) + O(b), C(ka) =kO(a), C(t) =Q(t).

Replac"lDg C in each expression by the corresponding valu.e



11.

ln C" we ha:,e

0 1 (80 ... b) ... c(e. of- b)l =C'(a) c(a)l ... C'(b) ... c(b)l,

giving c(a ... b) =c(a) c(b);

C' (ka) ... c(ka)l • k(C' (a) ... c(a)1),

therefore c(ka) • kc(a);

finally, C'(t) c(t)1 = Q(t),

Q(t) c(t)l :: Q(t),

and c(t) • o.

Theora. 1.5. Let Q be an irreducible representation of an

ideal T of a Lie algebra L in an algebraleally closed field F.

Let C(a) be a unique matrix of invariance for each a ~ L, auch

that C(~ ... b) :: C(a) ... C(b), C(ka) =kC(a), C(t) =Q(t),

(b ~L, k E:.F, tf:T). Then br theoralD 1.', there ia a factor set

c(a,b) such that C(aob) =C(a)oC(b) ... c(a,b)I. If there 1a a

second set of matrices of invariance C'(a) such that

C'ta) =C(a) - c(a)I,

where c(e. ... b) :: c(a) ... c(b), c(ka) =kc(a), c(t) :: 0, then

there 1a an associ8ote factor set c'(a,b) such that

C ' (aob ) :: C' (a) oC 1 (b ) ... c 1 (a, b ) l

and c'(a,b) =c(a,b) - c(aob).

Proo!. C'(a ... b) :: C(8o + b) - c(8o ... b)l,

:: C(8o) + C(b) - c(8o)1 - c(b)I,

:: CI(a) ... C'(b).

S1m11arly C'(ka) = kCI(a) ,

CI (t) :: Q( t) •
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Therefore, by theorem 1.3, there ls a factor set c'(a,b) sach that

C ' (aob ) = C' (a) oC ' (b) + C· (a,b )l •

Replacing C' in each expression by its equlvalent in 0, we haTe

C(aob) - c(aob) = (C(a) - c(a)I)o(C(b) - c(b)I} + c'(a,b)I,

=C(a)oC(b) - 0 - 0 + c'(a,b)I,

=C(aob) - c(a,b)I + c'(a,b)I,

g1v1ng c'(a,b) =c(a,b) - c(aob).

4. A sufficient condition for the existence of matrices

of invar1an~.

Theorem 1.6. Let T bè an idea1 of a Lie algebra • Let the

field of referenee F be arbltrary. Let M be an L-F-module and

m and m' T-F-submodules of Il. If Il = III of m', then eaeh a E- L

ean be ass1gned a matrix of 1nvariance C(8o), such that

C(a)oQ(t) = Q(aot), (t E-T)

where Q 1s the representation of T assigned br m.

Pro of • For any U E: M, we have U = "i + u2 ' where "i <=- m

and U2E m'. The components ul and u2 are unique sinee the sum

of m and m' is direct. Thus the correspondences

Hl: U --r "i = HlU ,

H2: u ----u2 =B2u ,

are homomorphisms of Il onto m and m' respect1vely. le

ean then lfrite

u = Hlu + H2u .

In part1cular, for y E: m,



av = HlaT + H2av, (a E-L)

then the operator Hla 1s clearly a 11near transformat1on

of m. For tt-T,

(aot)v = a(tv) - t(av),

=H1a(tv) + H2a(tv) - t(H1av + H2av).

Equat1ng components,

(aot)v =H1a(tv) - t(H1av).

Sett1ng the 11near transformat1on Hla =Q(a) and replac1ng

t by 1ts 11near transformation ~(t) of m, we have

S(~ot)v =Q(a)(~(t)v) - g(t)(Q(a)v),

or for the correspond1ng matrices of th.se linear transformations

Q(aot) =C(a)Q(t) - Q(t)C(a) = C(a)oQ(t).
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CHAPt'ER II

INDUCED REPRESENTATIONS

1. Induced reEresentations. Let U be a representation

module of a L1e algebra L lead1ng to the representat10n A

of L by matr1ces with coefficients 1n the field of reference F.

U will then serve as a representat10n module for any 1deal T

of L. For, if ul,ue, ••• ,us' is a bas1s of U over F and t éT,

then , since t~L, we have

~s .
tU j = i:: i=lk1 j u1, -il = 1,2, ••• ,s. (k1 j e:-F)

S1nce U 1s a representation module for L, the correspondence

has the propert1es

Q(t + t') = Q(t) + Q{t'),

Q(kt) :kQ(t),

Q{tot l ) = Q(t)oQ(t l ) ,

(t'E-T)

(k é F)

thus Q 1s a representat10n of T. We call it the reEresentation

indueed by A 1n T.

Theorem 2.1. Let A be an 1rreducible representat10n of a

Lie algebra L. ThtnA 1nduces in any 1deal T of L a representat10n

Q, wh1ch 1a irreducible, or 1a fully reduc1ble into equiYalen~

1rreducible components if these components are 1nyar1ant under

L, and conversely.
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~roof. Let U be an irreducib1e L-F-modu1e 1eading to

the representation A of L by matrices. Select any irreducib1e

T-F-module m(. U. Let m assign to T the representation Q,....

invariant under L.

If m =U, then A induc8s in T the irreducib1e

repreaentation Q.

If m ~., then there is an a "=:L, such that am ~ m,

otherwise U is reducible. Bince Q is invariant undee L, there

1s a matrix of invariance O(a) corresponding to a and,

consequently,a corresponding 1inear transformation Q(a) of m.

From am + m, form the 8et m2 of the elements

au - Q(a)u, (lU-Il) •

It la ea8i1y verified that m2 i8 an Frmodule. Further

t(au - Q(a)u) =t(au) - t(Q(a)u),

= (toa)u + a(tu) - t(g(a)u),

=3(toa)u + a(tu) - t(g(a)u),

= (3(t)og(a»u + a(tu) - t{Q(a)u),

=~t)(Q{a)u) - Q{a)(~{t)u) + a{tu)

- 3(t){~(a)u)

=a (tu ) - 2(a)( tu) € m2 •

Thus m2 i8 a T-F-module. The correspondence

u -.au - Q(a)u

ia then an operator homomorphism OTer F and r of m onto 11
2

•

But. ia irreducible, hence the homomorphism 1s an isomorphisa.

Binee m 1 m2, we have
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•m + am :: Il + 112 = m + 112 •

If Il .. m2 :: M, the theorem 1s proved. If m t 112 1 M, there

ex1sta b (;;.L sueh that e1 ther

or

Otherw1se

bm .. m.st Il ... 112 ,

bm2 ... Dl2 {/:Il .. 112 •

L(1l .. 112 ) = Lm ... Lm2 ç Lm ... m .. Lm2 ... 112 ~ Il .. 112 ,

mak1ng M reduc1b1e, contrary to assumption. Suppose bll2 ... m2 i8

not conta1ned in Il .. 11
2

• le then form the set of elements, Il, say,

bu - Q(b lu, (u~ IR2 )

and by replac1ng a,m,m2 1n our previous remarks by b'-2,m"

respect1ve1y, lt follows that

bll2 ... 112 =m2 .. Il, =112 ... m"

and m2 ~ Il,
OVer T. If m .. 112 t Il, :: U , the theorem is true; otherwlse

we can continue the process. In fact, 1f

then there exists g ~L such that

sm1 IIi J III .f. m2 JIn' (1 s 1 «n)

otherwlse, U ls reducible, alnce

gL~=l·i = L~=lgal ç L~=l (gml ... m1) ~ L~=1111 •
We can then torm the set Il l of the elellentsn+

gu - Q(g)u, [u f:.1I1 )

Then

and

sml ... m1 = ml ... IIn+1 = ml ~ ~...1'

. Dln+1 €: 111
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oyer T. Binee U 1s fini te and each addttioaa1 module is

non-zero, a fini te number of the above constructions w111

exhaust M. With the final module, -r S&1, we"have

U =ml ~ m2 ~ •••• +mr,

oyer T. Thus U cons1dered as a T-F-module 1s completely

reducible into 1rreduc1ble T-F-modules operator iso.orphic

to m; i.e. A induces on the 1deal T a representation Q

which 1s completely reduc1ble into equ1valent irreduc1ble.
components.

Proof of the conTer.e. Since A induces in r a representation

wh1ch is fully reduc1ble, the correspond1ng representation

module U, considered as a T module, caa be written in the fora

y =m1 + (ml + •• ~ m1_l + -1+1 + •• +mr)·

Theorem 1.6 then assures us of the existence of matr1ces

of invariance for the representation assigned to T by mi.

2. Product representations. In arder to cons1der the nature

of induced representat10ns 1n greater detail, we def1ne a

further matrix product, the Lie-Kroeecker product. Th1s product

1n the representation theory of L1e algebras has properties

comparable to those of the Kronecker product of matrices in

the representation theory of groups. If A and B are any square

matrices, not necessarily of the same dimensions, their Lie -..........
~ronecker Eroduc~, designated by AIB, 1s defined by the equation
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where 'x' ls the Kronecker product of matrlces, and lÀ' lB

are the unlt matrlces with the dlmensions of A and B,

respectively. Thls product can be derived in a natural way

by a consideration of product modules.

Let M and N be any F-modules. The Eroduct module, designated

by MN, is defined as the module generated by the formal products

uv, UE- M, v E:N, wlth the deflnlng relations

(1) U1V1 + u2v2 = u2v2 + ulvl' (ul ,u2 E- M, vl,v2 E N)

(li) u(v1 + v2) = uVl + UT2,

(lii) (ul + u2)v = ulv + U2T,

(iv) u(kv) = (ku)v. (k €- F)

we define sca1ar multiplication by the equation

k [ ~=l:!: ui vi = [~=1 (:!: kui)vi·

Since this definition preserves the relations (1) to (lv), MN

ls an Frmodule.

Let U and N be L-projective representation modules. We

can then deflne a linear transformation !(a) of the product

module UN by the equatlons

À(a}(uv} = (au)v + u(aT), (a Ec L)

.( )[h + [h +() [h +! a 1=1- UiTi = i=l- aU1 Tl + . i=l- u1(av1).
The linear transformation A(a) la unlquely determined by a, so

we define the product a(uv) by

a(uT) = l(a)(uv).

lheorem 2.~ Let M and N assign projectlve representatlons
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to the Lie a1gebra L, whose factor sets are c(a,b) and

d(a,b), respectively. Then the product module MN,for which

there i5 defined a left multiplication by elements of L as

above, assigna an L-projective representation to L with the

factor set c(a,b) + d(a,b).

Proof. Since the multiplication ia unique and clearly distrib

utive, we need on1y verity the remaining three propertiea tor

L-projective representation modules.

(i) (a + b)(uv) = «a + b)u)v + u«a + b)v),

= (au + bu)v + u(av + bv),

= (au)v + u(av) + (bu)v + u(bv),

= a(uv) + b(uv).

(ii) (ka)(uv) = «ka)u)v + u«ka)v),

= (k(au»v + u(k(av»,

=k{a(uv» =a{k{uv».

(ii1) (aob)(uv) = «aob)u)v + u{(aob)v),

= (a(bu) - beau) + c(a,b)u)v + u(a(bv) - b(av) + d(a,b)v),

= (a(bu) - b(au»v + u(a(bv) - b(av» + (c(a,b) + d(a,b»uv,

= (a(bu»T + (bu)(av) + (au)(bv) + u(a(bv»

- (b(au»v - (au)(bv) - (bu)(av) - u(b(av»

+ (c(a,b) + d(a,b»uv, (after insertion of su1table terms)

=a«bu)v + u(bv» - b«au)v + u(av» + (~(a,b) + d(a,b»uv,

=a(b(uv» - b(a(uv» + (o(a,b) + d{a,b»uv.
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Thus UN is an L-projective representation module of L and

assigns an L-projective representation with the factor set

c(a,b) ... d(a,b).

In order to exhibit a matr1x representation of L ass1gned

by UN, let u
l,u2, ••• ,un, be a bas1s of U, and vl,v2, ••• ,vr, a

basis of N. The pairs ui- j
' i =1,2, ••• ,n, j =1,2, ••• ,r, 1n

some fixed order, then fors a basis for UR. Let us take

Ulvl'U1V2,···,Ulvr,u2vl,···,u2'r,···,unvr'

as a basls for MN. Let C(a) = (c 1g) be the n x n matrix

assigned to a€- L by M, and U(a) = (d jh) b. the r x r matr1x

assigned to a by N, and A(a) the nr x nr matr1x assigned to a

by UN, then

a(UiT j) =(aui)v j ... ui{aT j ) ,

= ([:=lcg1Ug)T j ... Ui[~=ldhjVh'

= <[:=lCgiUg) [~=lOhjTh + ([:=l~giUg) [~=ldhjThl

la [~=l[~=l (Cgt0hj + Ôgidhj)UgTh· {Oij la (~ ~~~ i~1»
Arranging the coefficients, Cg10h j ... Ôg1dh j , 1n matr1x fora

as directed by the ch01ce of basis, we have

A( a.) ;;; C( a.)XIU ... le xU( a ) =C( a) au (a) •

Let us designate C{a)tU(a) by CIU(a), th.n if U and N induce

the L-project1ve representations C and U on L, UN induces the

L-project1ve repre.entation CiU on L. Let us observe that an

L-projectiT8 representation becomes an ord1nary representation

when its factor set 1s zero.

Theorem 2.'. Let A be an irreduc1ble representat10n of a
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Lie algebra L in an algebraicallyAfield F. Let A induce

1n an 1deal T of L a represen~at1on Q, completely reducible

to r 1rreduc1ble components equiTalent to a representat10n G.

A is then the Lie-Kronecker product of two 1rreducible

L-project1ve representations C and U of L, where Chas the

degree of G, U, the degree r, and their factor sets differ

only in signe U is actually an L-projectiTe representation

of the resddue class algebra L - T.

~roof. Let U and ~be the representation modules assigning

the representations A and G to L and T, respect1vely, then

and

u • • !• • ml + m2 + •••• ~ mr'

ml ~ mi' i = 2,3, ••• ,r,

over T. Let ai be the operator isomorphism between ml and mi'

i.e. the isomorphism ml ~ -i is accomplished by the correspond-

ance u -(1iu, (u cf:: Ill' cti u €: mi)

auch that for t E- T,k E- F, tu --'l'ai tu = tai U, ku--", C%iku • kaiu.

Let A(a) = (Aij(a», i,.1 = 1,2, ••• ,r, aE: L, where Ai j are

sublllatr1ces of the dimensions of G( t), tE:- T, then we have

ao,ju= [~=lai~ij(a)u, (u",ml)
where Aij(a) is the linear transformation of ml corresponding

to the matrix A1j(a). In the follo.ing calculations, we will omit

the bar under Aij(a); the context will indicate whether a linear

transformation or its matr1x 1s meant.

Bince T is an ideal, aot E: T, hence
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(aot)C1
j

U • "j«aot)u), (U f- ml)

a(taju) - t(auju) = aj«ao~)u),

a(CLj(tu» - t r=r.1Q,iAij(a)u =CLj«aot)u),

r=~=laiAij(a)(tu) - [~=1C1it(A1j(a)u) = [~=1a.161j«aot)u),

Ô (0 for i/j)
where ij = l for i=j • Thus

Replacing the element, t of r by its correspond1ng linear

transformation G(t),(omitting the bar), we haye

Bince U =ml + (-2 + ••• + mr)' theorem 1.6 assures us of

the invariance of Gunder L. Bence we can conatruct matrices

of invar1ance C(a), a", L, accord1ng to theorem 1.2, and then the

correspondence a ~ C(a) Ls an L-project1ve representa"tton.

Therefore we can wr1te our last equation 1n the fora

L~=lCLi(AiJ(a)oG(t) - 01 jC(a )oG( t » u • O.

Consequently

(~j(a). - ô1jc (a » OG(t ) = 0,

for all t E-T and i,j = 1,2, ••• ,r. Applying Bchur's lemma, after

replacing '0' multiplication by ordinary multiplication of

matrices, we have

IG belng the unit matrix with the dimensions of G,thus

~j(a) = ôijC(a) + Uij(a)IG,
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and so

A(a} • (~j(a}) • C(a}x1U + 1CxU(a},

=C(a) lU(a) ,

=cau(a},

where U(a) = (U~j~ and s1nee IC = I G•

AI C~ 1s a representat10n and C 1& an L-projeet1ve

representat10n, we haye

CIU(a + e) = O-IU(a) + CIU(o) 1

C(a + b)xIu + 1CxU(a + b) =C(a)X1U + 1cxU(a)

IcxU(a + b) • 1Cx(U(a) + U(O»,

thus U(a + b) =U(a) + U(b).

(a,o tL)

+ C(b)XIU + 1CXU(b),

S1m11arly expand1ng the express10ns 1n the equat10ns

and

we oota1n

caU(ka) =kcaU(a),

CIU(aob) = caU(a)ocau(o),

U(ka) =kU(a)

U(aob) = U(a)oU(b) - e(a,b)1,

where e(a,b) 1s the factor set belong1ng to the L-project1ye

representat10n C. Thus U ia an L-projective representat10n

of L with a factor set d1ffer1ng only in s1gn Iro. that of, C.

For t €: T, we haye A(t) =Q(t) • G(t)X1 , where l 1s the. r r
unit matrix of degree r. Also

thus

A(t) =C(t)X1u + 1cxU(t),

= G(t)X1 r + ICXU(t),

o =IcxU( t),
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giving U(t) ~ o.
Bence U gives a representation to the res1due class algebra L - t.

C and U are irreducible L-pro~ectiYe representations of L,

for suppose U is redueible. Let MC and Mu be the L-project1Te

representation modules assigning C and U to L, respectively, then

the product module MCMU assigns A to L. Binee U is reducible,

Yo contains an inTar1ant submodule -O. The product module

"c-U is then inTariant under L, and is contained in MCUO•

Thus A is redue1ble, contrary to its irreduc1bility. Thus U

is irreducible. Similarly C is irreducible.

3. The imbedding of irreducible representat1ons.

Theorel1 2.4 •. Let T be an ideal of a Lie algebra L. Let Q

be an irredueible representation of T invariant under L. Let

c(a,b}, (a,b E- L), be a factor set of an L-projective represeiltation

C of L. Then a necessary and suffie1ent condition that Q can

be imbedded in an irreducible representation of L is that the

factor set -c(a,b) can be realized by an Lrproject1ve represent

ation U. of L-T.

Eroot. The necessity of the condition is shown by theorem 2.3.

Tbe condition is also sufficient. For, taking an irreduc1ble

component U of the representation U., we set A. C.U. By

theorem 2.2, A 1s certainly a representation. To show A is

irreduc1ble we requ1re the follow1ng lemma.
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Lemma 2.1. Let L have the equivalent representations

CIU and C'IU', formed according to the theorem from an

irreducible representation Q of T. If C and C· are equivalent,

then U and U' are equivalent.

Proof.- For a. é:: L,1re ha.ve

XC'(a}IU'(a}I-l =C(a}eu(a},

y-lC' (a)Y =C(a) ,

conaequently,

x(yc(a)y-l}IU'(a)X-l =C(a}tU(a),

X{YC(a)y-lXIu, + IcXU'(a))x-1 =C(a)IU(a),

X{YXIu.){C(a}jU'(a})(y-1XIu,}X-1 =C(a}jU(a} ••••• (l}

Setting I{YXIu, ) =Z, and replacing a by tE:. T, the equatdon

becomes

or

Z(Q{t)XIU.)Z-l = Q(t}XIu

Z{Q(t)xIU) = {Q(t)XIU}2 for all t ~ T.

Applying Schur's lemma g1ves Z the form IQXW, where , is n6n

singular. Substituting this form of Z in (1) gives

C{a)xIU' + ICXWU'(a)I-
1 =C{a)XIU + lCxU{a}

lU' {a)w-1 = U(a),

proving the lemaa.

Réturning to the theorem, we can now proTe that the

representat10n A =CIU 1a irreduc1ble. Let a and n be the

modules assigntng the L-projectiTe reprasentat10ns C and U to L.

By theorem 2.2, M =an assigna the ordinary representation CAU
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to L. Further, sinee

A(t) = C(t) xIU + ICXU ( t) , (t €; T)

=Q(t)xIU'

Y, considered as a T-F-module is the direct sum of irreducible

T-F-Bod~les operator isomorphic to m, i.e.

M =ml ~ m2 ...... ~ ms' ml =m, -1 ~ mi over T.
17)

In this fora Meertainly has a Remak decomposition.

Let us assume that U is reducible, then M properly contains

an L-F-module UI. With suitably chosen subscripts we then

have

u =ut + mr +l + •••• + ms.

Since any submodule of a module with a Remak deeompositiDn has

a Remak decomposition and, furthermore, sinee different Remak

decompos1tion8 of the same module are etual in lengbh, and the

components are operator isomorphie in some order, we have

M = ml
l .. m2' .;.. ••• .. ml... ml';' ••• .. m ,r r+ 8

where mi ~ml ~ _j' i = 1,2, •• ,r, j = 1,2, •• ,8. These operator

isomorphisms assure us of the irreducibility of the mi. Let ai

be the operator isomorphism of mi onto mi, or mi if i ~ r+l.

Then for u ~ ml'

aagu = [~=lC1iAlg(a),
sinee MI is invariant under L. Also

aCthu = ['~=lC1iA-tg(a),

As in theorem 2.3, these equations lead to
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but with the further property that

I CU1k(a) =0, for k:~ r, '1 »r,

giving U1k{a) = 0, for k~ r, 1 >r.

Thus U'(a) = {U1k{a}} 1s a reduc1ble representation, making

A'(a) =C'(a)~U'(a) also reducible. Since there is an operator

isomorphism between the two Remak decompositions of M and also

between ml and ml it follows that the representati~n ceu is

equivalent to etau' and e is equivalent to C'. By the lemma

U 1s equivalent to U', contrary to U being irreducible. Thus

the assumption that U is reducible is contradicted.

4. Indeèom~osàble representations. As we have developed it,
1

the theory of induced representations for indecomposable

representations over an algebraically closed field is less

manageable than 1n the irreducible case because the commuting

matrices lie in a pr1mary ring, rather than being simply scalar

multiples of the unit matrix. However, with certain clearly

indicated changes of definition consistent with the nature of

the commuting matrices, the theorems of chapter l haye analogies

for indecomposable representations. For example, analogous to

theorem 1.1 we have:

lheorem 2.5. For an algebraically close. field of reference F,

the matrices of invarian'e of an indecomposable representation

Q of an ideal T, for a particular element a of a Lie algebra L,

differ only by matrices lying in a primary ring P.
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Proof. Let C(a) and C'(a) be matrices of invariance

corresponding to a, then

C(a)oQ(t) =Q(aot),

C'(a)oQ(t) =Q(aot).

Thus

(t ET)

(C(a) - Cl', (a) )oQ(t) = 0,

(C(a) - C'(a»Q(t) =Q(t)(C(a) - C'(a».

B1nce Q(t) is 1ndecomposable

C(a) - C'(a) = c*(a),

.here c*(a} 1s a matrix in a pr1mary ring P .ith the dimens10ns

ofC(a).

By replacing the matrices c(a)1 and c(a,b)1 of chapter l

* ...by the matrices c (a) and c (a,b) of P, theorems 1.2 aqd 1.3,

and ot course their corollaries, have analogous proofs for

indecomposable representations. Defining a factor set as the
...

set of matrices c (a,b) possass 'ing the properties of the corollary

*to theorem 1.3, with c replaced by c , the concept of L-projectiye

representation can be extended to indecomposable representations.

Theoreas 1.4, 1.5, and 1.6 are thèn Talid for indecomposable

representations. iith thase basic theorems available, we can

now consider how far the analogy extends to induced represeatat1onQ.

Theorem 2.6. Let A be any representation of a Lie algebra

L. Then A induces on any idea1 T of L a representation which

is indecomposable, or 1a 'acQ~pQ~~ble into indecoaposable

components. these components are invariant under L.
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Proof. Let U be the L-F-module assigning the representat10D

A ta L. As a Y-F-module, M 1s either a direct 8um of two

T-F-modules or not. If not, the theore. i8 true. If M 1s ~

d1rect sua, the summands are in turn e1ther d1rect sums or note

Binee U 1s f1nite th. process w111 teminate, g1ving

! • •
U =ml ~ -2 + ••• + ar'

where al' -2' ••• , ar' are inde~omposable T-F-modules. !hus

M considered as a T-F-module ass1gns a representation Q to T

wh1ch 1s decomposable into indecomposable components ~, the

representat10n assigned to T by -1' 1 =1,2, ••• ,r.

S1nce M cao be put 1n the fora

u =-1 .. (ml + .... m1_1 + m1+1 ...... Er)'

theorem 1.6 assures us that ~ 18 1nvar1ant under L.

Theorem 2.7. Let A be any representation of a L1e algebra L

in an algebra1cally elosed f1eld F. Let A induce 1n T a

representat10n Q, decomposable into the indecomposable

components Ql' ~, ••• , ~, then A(a) ean be part1tioned

so that A(a) = (A1j(a» w1th the properties
!If

~i (a) :: Ci (a) + c1 (a), (a t L)

Ai j ( a) Qi( t ) = ~i t)~ j (a), 1 -J j, (t G T)

where Ci 1s the L-project1ve representation w1th C
1(t)

=~(t),

•Ci (a) E. Pl' the c0DUl1ut1ng r1ng of ~.

Proof~ Let U be the representat10n moduleassigning the

representat10n A to L. Then U has the follow1ng deco.pos1tion
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M=-1 ~ -2 ~ ••• Jar'

where -1 ls lndecomposable and asslgns the representatlon ~

to T, 1 • 1,2, ••• ,r. For ul~ -l' we have(om1tt1ng bars from

linear transformations)

tU1 = "t (t) u1 E. -1' (t E: T)

aUi = L~=lA1J(a)ul'
where ~j(a)ul E: mj • Bence

a(tui) = a(~(t)ul)'

(aot)u1 + t(au1) = L~=lA1 j (a)(~ (t)ui),

Qi(aot)ui = L~=lAij(a)(~ (t)ui) - L~=lQj( t)(A1j(a)ui)·

Since the module sum is direct, the components are unlque, and

a comparison of these gives

~(aot) = A11(a)~(t) - ~(t)A11(a)

= A11 (a) oQl(t),

and

o = Âi j ( a. ) '1t (t ) - Qj"( t )Ai j ( a) , (j # 1)

By theore.(~.6, ~ ls invariant under L, hence we can construct

an L-projectlve representation C1 of L. Then we can put

~(aot) = À11(a)o~(t),

ln the fOrll

Ci(a)o~(t) = All(a)o~(t)J

givlng (01(a) - A11(a»~(t) = ~(t)(Ci(a.) - A1i(a».
Bence Ci (a) - -Ai i (a) = c~ (a),

1.e. an element of the pr'mary ring Pi of matrices commutlng

with Qi(t) for all tE T.



It ia clear trom thia theorem that the Lie-kronecker

product does not have an application to indecoaposable

representations, eccept in the very special case when the

~ are equ1valent and the reqUired eleaents ot the commuting

r1ng are multiples of the unit matrix. Bince the Lie-

Kronecker product .as essential to the formation of representations,

this aspect of 1ndecomposable - representations is left open

for further study.



CHAPTER III

GENERATED REPRESENTATIONS FOR ALGEBRAS

OF CHARACTERISTIC ZERO

1. The Birkhoff imbedding algebrà. Any Lie algebra having

the basis el,e2, ••• ,er, over any field F, can be imbedded in a

linear associative algebra H(L) according to the procedure of

G. Birkhoff as follows: since the ei form a basis of L,we have

eioe j = [~=lk~je(1' (i,j = 1,2, ••• ,r).

Furthermore, we can form an infinit,r of the expressions

• • • • •

• • • • • •

• • • • • • • •

These formal products will form the basis of a linear associative

algebra with respect to a multiplication defined by the equation

(ei ei ••••• ei )( e j e j ••• e j ) = [k (e e •••• e )
l 2 h l 2 s q ql q2 qf

where il=i2~ •• =ih, jl=j2~ •• ~js' ql~q2~ •• ~f' and the

sua is the result of rearanging the formal product



and the consequent products, so that the subscripts are

monotone decreasing, according to the rule
)'r a

ei 8 j = 8 j8i + ~a=lkijea'

the k~j being supplied by the corresponding product eioe j in L.

This multiplication can be shown to be independent of the

sequence of rearrangements employed, consequently it is unique

and associative. Let us add a principal unit element

000e = ei e .•••ei to the basis such that ea = ae = a for all
l J.2 h

elements a in the algebra, then we will designate the

resulting algebra with unit element by the symbol H(L).

Conversely, in any associative algebra H we can define a

product [ab] by the equation [ab] = ab - ba, (a,b EoH), then with

respect to this new multiplication H forms a Lie algebra, L(H)

say. Furthermore, every submodule of H, H' say, closed under the

new multiplication forms a Lie algebra L(H'). Thus from the

associative algebra H(L) we can form L(H(L». The module H'(L)

with the basis el,e2, ••• er , is closed under ' [ l' multiplication

for if i'~j, 18i8j1 = eie j - ejei = ei~j - (eie j + L~=lk~ieC1)

=L ~=lk~ie(1. Hence we can form L(H' (L) ). By the correspondence 8 1- ei
between L and L(H'(L» we have

ei + e j ~ ei + e j ,

ke i -ke i

giving L ~ L(H'(L». Thus replacing the symbol labl by aob, . ' 1 .

(a, b e L(H' (L» ), we can consider any element of L as also being



an element of H(L). Not1ce that a representat10n Â of L g1Tes

a representat10n to H(L) by the def1n1t1on

A(ei ei •••• e1 ) =A(e1 )A(e1 ) •••• A(e1 }.
1 2 r l 2 r

ConTersely, a representat10n A of H(L) g1ves a representation

to L since 1t gives a representat10n to L(BI(L».

2. Ig4qced and aenerated representat10B!. Let T be an 1deal

of a L1e algebra L OTer a ~1eld F. A T-F-module m generates an

*L-F-module U if U and m occur 1n the same L-F-module U and U

18 the 1ntersect1on *of al1 L-F-modules 1n U conta1n1ng m. The

U' 1s obtained as the

e:r

repreeentat10n asslgned to L by U 1s said to be generated by the

representat10n Q ass1gned to T by a. UI and its repre8entat1on

of L are sa~d to be lnduced by • and Q, respect1vely, 1f for

every L-F-modu1e U generated by m, there 1s an operator

homomorph1sm of U' onto U leav1ng each element of m 1nTar1ant.

To glTe U' an expllcit fOnD let e1,e2 , ••• ,e., be a basls of T,

and el,e2, •• ,es,es+l, •• ,er' a bas1e of L OTer a f1eld F. Then

d1rect sum of the forma1 powe~ products
nr_l na+

l
8 r _1 ••• 8 s +

1
m

taken OTer the po.ers, w1th the fol1ow1ng rules of computation:
n n n n n n

( ) [ r s+l [r s+l 1 )1 r. s+l1 er ••• eS +1 un+ er ••• eS+1 un =~er ••• eS+1 (Un+ ~),

(k E F)

•••

where Un depends on n , ••• ,n 1 and 18 ln m and wherer 8+

e
QS+1 )l n n 1

= ~e r ••• e s+ aa,n 1s obtalned by the Birkhoff



multiplication procedure and gives aa,n as an element ot the

~mbedding algebra of T, aa,n depending on ar, ••• ,as +l aad

nr,···,ns +l• If TeL, the induced representation is clearly of

inf1nite degree. That MI, so defined, is induced by • is

seen by obserTing that, if U is any L-F-module generated by m,

then U contains the F-module B(L)m whose generators are
nr DS+1

8 r •••• es+l u1 ' (i = l,2, •• ,q)

with the defining relations supplied by M, u1 , u2, ••• ,uq

being a basis of m. 5ince B(L). is 1nvar1ant under left

multiplication by elements of L, it 1s an L-F-modu1e. It follo••

that M• a(L)•• Uapping each bas1s element of Y'onto the

formally equal generator of Y then gives an operator homomorphis.

of U' onto U, as required. Further, the representations of L

generated by representations of Tare components of the induced

representation. In th1s chapter we consider the induced represent-

ation by determining a construction for its f1nite co.poDents,

namely fini te generated representations.

Let us notice that the representation of L given in the're. 2.4,

by U in which m ia imbedded, is generated by m ainee any

L-F-module in M generated by m must conta1n U itself otherwise

U 1s reducib1e.

3. A necessary condition for senerating representations.

If a representation of anidea1 T of a Lie algebra L is to

generate a representation of L, a necessary condition ls given

by
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Theore. 3.1. Any representation A of L in an algebraically

closed field of characteristic zero induces a nil representation

on the intersection of LoL and the radical R of L

Proof, Binee R is defined as the maximal solyable ideal

of Land, since LoL ia an ideal of L, Tl =LoL ia a solyable

ideal of L.

Binee A can always be redueed to a form w1th its irreducible

components along th' main diagonal and sinee our theorem concerns

only diagonal elements, there is no loss of generality in taking

A to be irreducible. Then A induces a representation on Tl which

ia irreducible or ls reducible to lrredueible components Al along

the main diagonal, with zeros below. Since Tl~~oL, we haye

trAi (t) = 0, t E. Tl. Binee Tl ia solvable in an algebraieally

close. field, by the theorem of Lle ~ is a matrix of degree one,

giving Ai =O. Thus A lnduces a nil representation on Tl.

4. !he generation ~f a representation ( special casel.

By the theorem of Levi, any Lie algebra over a field of character-

istic zero can be expressed in the form

L =V ... R,

where V is a semi-simple subalgebra and R is the radical of L.

Let T be an ideal such that

R ),.. T ),.. Tl = LoL n R.

Binee R is solvable, we can form the subalgebra L
l

=Fa ~ T,
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where a 1s a bas1s element of R not 1n T, and F 1s the field of

referenee. B1nee LoLl Ç,. LoR ~ Tl ç T cL1 , Ll 1s an 1deal of L. le

w1ll now show that any representat10n Q, of f1ntte degree, of T

wh1ch 1nduces a n11 representat10n on Tl generates a representat10n

of Ll of rinite degree.

Lemaa 3.1. W1thin H(t), let F(a) be the ring obta1ned by

the adjunction of the basis e1ement a to the field of referenee F,

then

Proof. Let.! be the regular representatio.n of .a, i.e. the

representat10n assigned to a by L as representation module

where !!ou = aou, (u ~L). Let L now be 1mbedded in the associatiTe

a1gebra H(L), then we can set

hoa. h~ 2 .hà. - ah, (hE:L).

•••• (1),( n ) n-l
+ •••• + n-l a h!

( ••• (hoa)oa) ••• )oa), a appear1ng

nL,! ~ Tl. Apply1ng th1s

(~)ah!!n-l
. n

and ha =-
n times. Sinee I.! = Loa Ç,. Tl' by induetion

property to equat10n (1), we have

hoan =tln) + (~)atin-l) + ••• + (n~l)an-ltil),

By induction

hoan = han +-

Consequently, for any polynom1alh t ( i ) ~ Til 2w ere 1 C l' = , ,••• ,n.

p(a) over the field F,

hop(a) E: F(a)Tl,

Lop(a) ~ F(a}Tl• or LoF(a} (. F(a)Tl•givlng

Let the characteristic equation for!!o, the regular represent-



ation of a, be

f(x) ~ k O + klx +

and let its roots be

•••••
n-l n

+ k lX • x ~ 0,n-

al' a2, •••• , an·

In the imbedding algebra H(L), let us now detine the function

t(S)(a) recursively, as follo.a:

t(O)(a) =e, the unit element,

r(l)(a) =a,

t(2)(a) =t(l)(a) r(l)(a-a
1

) t(l)(a-a
2) ••• r(l)(a_a ),

n

• • • • • • • • • • • • • • •

•••••••• r (s - l ) ( )
a-an •

Notice that r(2}(a) =at(a), where t(x) ia the characteristic

polynomial or a.-
(k~ E).

Proo!. .e have-
ho(a-k) =t l, (h ~ L, t l E Tl)

2 2ho(a-k) = tl~ + (l)(a-k)tl, and br induction,

• • • • • • • • • • •

ho(a_k)n+l =tl!n + (nrl) (a-k)tlan-l + ••••• + (n:l)(a_k)nt l•

Multiplying each of the rows by kO' kl, ••• , kn_1,
reapectiTely,

and adding

ho«a-k)r(a-k» = tlt~~~ + (a-k)(tin-1 )+ Pl(a)tln-2)+ .... Pn_l(a)t
l)(i) .

where t l E Tl and Pi(a) E-F(a), i = 1,2, ••• ,n-1, that 1a
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hor(2)(a-k) = 0 + r(1)(a_k)(tin-1) + •••• + Pn_1(a)t1).

Thus Lor(2) (a-k) ç r(l) (a-k)F(a)T
1•

Suppose now that the theorem 1a true ror s = q, 1.e.

Lof(q) (a-k) ~ r(q-l) (a-k)F(a)T
1,

then for h s L

hor(q+1) (a-k) =ho(r(q) (a-k)r(q)(a-k-a1) ••••r(q) (a-k-a
n»

=L~=Of(q) (a-k) ••• (htfr(q) (a-k-a1 » •••f(q) (a-k-a
n),

(0.
0

= 0)

=[~=Of(q) (a-k) ••• (f( q-1) (a-k-a1 )g1) • • •t( q) (a-k-an), (g1 E. F(a)T1)

• t(Q-l) (a_k)f(q-l) (a-k-a
1)

•••t(q-1) (a-k-a
n)

([~=mt-(q)(a-k) •••

. ()
•••g1 •••' q (a-k-an»,

where r(q)(a-k-a
j

) 18 the product

t(q)(a-k-a
j)

=f(q-1) (a-k-aj)t(q-1) (a-k-aj-a1) ••• t(q-l)(a-k-aj-a
n)

w1th the t1rst ractor absent. Thua

(q+l) ( ) (q)( )'l'n ~(q)() ~(q)( k )hof a-k = f a-k L 1=01" a-k •••gi •••r a- -an '

giv1ng

and

hof(q+1) (a-k) t t'(q) (a-k)F(a)T
1,

Lot(q+1) (a-k) ~ r(q) (a-k)F(a)T
1,

prov1ng the theorea.

Corollaz:z. LO(f(S) (a-k)F(a» ~ r(S-l) (a-k)F(a)T
l•

Proof. Let p(a) be a polynomial 1n F(a), then for h ~L

hO(f(S)(a_k)p(a» = (hor(S)(a_k»p(a) + f(S)(a_k)(hop(a»,
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=f(S-l)(a-k)(gl + }(s)(a-k)g2),
. .

where gl ~ F(a)T1 by the theorem, and g2 ~F(a)Tl by 1emma ~.l.

Thus LOf(S) (a-k)F(a) {, f(S-l)ls.-k)F(a)Tl•

Our a1m 1n develop1ng the propert1es of f(S)(a_k)F(a) is to

determ1ne a certa1n invar1ant s~b~lgebra B of H(Ll) such that

the d1fference algebra B(Ll) - B has a fin1te bas1s and B(\ Ll = O.

We then de termine a representation module wh1eh assigns the null

representation to B. Th1s module gives an expl1c1t representat10n

to Ll• To further our aim we now form a two sided 1deal 1n B(T).

B1nee T 1s 1n the radical R of L, T 1s solvable. By the

ord1nary theorem of Li., every irre·ducible representat10n of a

solvable L1e algebra 1s of degree one in an algebra1cally elosed

field. Consequently Q, the givën representat10n of T, for a

suitable choice of eoordinates, has the fOTm

Q(t) = •

•

*

where

where ql(t), q2(t), ••• , qs(t) are 1rreduc1ble representat10ns

of t of 'degréedne. Let Tl have the basis t6'\~'+1,••• ,th' whiCh

can be extended by t l , t 2, ••• ,t6_l,
to g1ve a bas1e of T. Let D

be the two sided ideal generated in H(T) by

h(tl), h(t2),···, h(t6_l), to' t o+l' ••• , th'

h(t1) = (t1 - ql(t1})(ti - q2(t1»···(t1
- qs(t

1
» ·
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• e notice that the representation assigned to H(T} by Q has

the property that the repreaentatiTe matr1x Q(t·}, (t'~ D),

is triangular w1th zeros along the main diagonal, i.e. is

properly triangular. Consequently Q(Ds} =QS(D} =0 Further

LoD ~ D, for let dEn. It is suffic1ent to consider d in the fOrll

d =t(1}t(2) ••• t(w)

h (1 ) 1 t (1 ) 1s aYI ere t ~ T, 1 = ,2, ••• ,w, and at least one of the

generator. Then for h f. L,

hod =[ ~=lt(l) •• (hot(j» •• t{w),

=[: ~=1t ( 1 ) •• tlJ) •• t ( .) ,

where tlJ )", T1Ç.D. Bince D 1a a two sided ideal, hodE:-D, giv1ng

LoD ~D.

With the function f{s)(a_k) and the 1dea1 D, we can no.

construct a two s1ded 1deal B of H(Ll), the 1mbedd1ng algebra

of the L1e algebra Ll = Fa +T. Let us set

Ci =f(1) (a-k)F{a),

DO=H(T),

Dl = D

n2 =DD, and s1m1larly for higher po.ers,

then

Th 3 4 B C no C Dl + C1DS
-

l + CODS
eore. •• = s + 8-1 + •••

1s a two sided ideal of H(Ll)

P~oof. It 1s sufficient to Terify the invariance of B under

left and right multiplication by T and a. le have



Thus

AIs 0

Further

and

g1v1ng

s ) 8 STCOD ~ (TOO O D + COTD ,

s S
<;'00T1D ... COD ,

a s
Ç-00D + COD ,

s
ÇOOD •

TB ç B.

C Ds-1T ( c DS
-

1 g1v1ng BT ç B.
1 ... 1 '

a.C nS- 1 ( C _ns - 1 1 1 aBC B1 -1. ,gvng .... ,

8-1 ( (S-1) s-1C
1
Da ... C1 D oa + C1aD ,

(C Ds - 1 C nS
-

1
.... 1 ... 1 '

<"0 nS
-

1
- 1 '

Ba Ç. B.
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B1nee H(L1) possesses a un1t element B 1s a subalgebra, hence

we ean fora the retdue class algebra H(LI) - B. An exam1nat1on

of the bas1s of H(L1) and of B shows th1s d1fference algebra

has a f1n1te bas1s. S1nce no element of LI 1s 1n B, the elements

of LI lie 1n d1terent res1due classes. Thus a~representat1on of

H(L1) - B w111 g1ve a
frepresentat10n

to LI • Us1ng the represent

at10n module m assigning the representation Q ta T, we can

construct a finite representat10n module for H(L
I)

- B. Let
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us set a = t h+l, then the basis of H(Ll) can be taken in the

form

where these haye the alternatiye form

Ja t. • ••• t
i

•
~h g

Let the module m, assigning Q to T, have the basis ul,u2, •••us•

Then any LI-F-module generated by m will have generators of the

jform a u1, i = 1,2, ••• ,s, J = 0,1, ••• , with certain defining

relations. These relations will be determined by finding

relations such that BU1 =0, i=1,2,.,s, at the same tlme leavlng

ul,u2, ••• ,us linearly independent. The 11nearly lndependent

generators will then form a basls of the LI-F-module • Ta

determine th1s bas1s we observe that

(i = 1,2, ••• ,a)

1a satisfied if

(a) ( )f a-k ui = 0

r(s-J)(a-k)DjU
i

= 0 (j =1,2, ••• ,s).

Let us first consider the nature of DjUi • B1nee m also serves

as a representation module for H(T), we haye

DJUi = Q(DJ)U
i

= QJ(D)U
1

,

and by the nature of D, the matr1x of Qj(D) w11l have the form

o ••••• 0

o
ds-ja

~
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Let us now determine a set of conditions sufficient for

(i :: l,2, ••• ,s)

• •••••• (1)

For j :: s,

f(O)(a-k)Dsu
i

:: f(O)(a_k)O :: 0, identically.

For j :: s-l, the only non-trivial equation is

f(l)(a_k)Ds-IU
s

=r{l) (a-k)d
1Su1

= 0,

which is satisfied by setting

f(1)(a-k)u
l

:: O.

(s) ( )• f a-k u =0,s= ••••

For j :: s-2, the only non-trivial equations are

f(2)(a_k)Ds-2U
s =f(2) (a-k) (dlsul + d2su2) =0,

(2) ) s-2 (2)()( )f (a-k D us_1• f a-k dls_lul • O.

Binee f{2)(a_k) contalns f(l)(a_k) as a factor, f(2)(a-k)u
l

= 0

now,by equation (1), thus the only new condition is

f(2) (a-k)d2Su2 = 0,

whieh ls satisfisd by setting

f(2){a-k)u2 :: O. • •••••• (2)

For j =s-3, sinee f(3)(a-k) contains f(2)(a_k) as a factor

and,with equations (1) and (2), the only new condition is

satisfied by setting

f(J)(a-k)u
3

:: O.

Continuing thus, we have

f(I)(a-k)u
l

=f(2)(a-k)u
2

as a set of sufficient conditions for

f(s-j) (a-k)DjU
i

= 0

and henee for

- ... 2
-k a - k a - kj2 jl jO
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then the given relations de termine a representat10n module

U of H(Ll ) - B with the basis

• • • • •
-2

a u
3 • • •

• •

• •

Ul
u2 •

aU2 •

••
w2- 1

a u2

•

•

•

•

•

•

•

•

•

•

• •

••

• •

• •

• •

• -1s
a us.

j =2,3, •• ,8,

To exhibit a representation assigned by U to L1 , let us f1x

the basia in the above order. Then applying t ET to each of the

basis elemanta, we have

tU j = [~=lq1j(t)U1 j=1,2, • • ,B

tau j = (toa)u j + atu j = (t~}Uj + a(tu j ) ,

=[' ~=1q1 j ( t~)ui + a[' ~=1q1 j ( t )u1 '

=['~=lq1j(t!)U1 + Q1j(t)k1ou1 +['~=2q1j(t)au1·

j = 2,3, •• ,s,

[ a (2) 2) 2
= 1=lqij t!' u1 +«1 qlj(t!}k10 + Q1j(t)k1o)u1

+ (i) [~=2Qij(t!)aui +['~=2 Qij(t)a
2u

i•
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Continuing thus the matrix representation of t can he determined

and it has the tollowing form

Q(t) 1Q'(t~2)

(i)iQ(t~)

iQ(t)

•

•

•

s-lQ(t )
s-l

where ~Q(t) is Q(t) w1th 1 rows from the top, and j columns

trom the left,absent. Q'(t) is Q(t) with certain additions to

1ts elements. To determine the matrix corresponding to a,

multiply each hasis element by a, using the relations

Wj wj - 1 2
a uj Z k

j Wj_1& u j + ••• + k j 2a u j + kjl&Uj + kjOU
j

,

then a corresponds to

kl O 0 O •• 0

o
••o 0 O •• 0

l
1

1

Thus , us1ng the regular representat10n of a, we have generated

from Q a representation, G2 .ay, of L1• Notice that if Q is

ta1thful then ~ 1s also taithful s1nee Q (t + k'a) =0 only
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if t = k'= O. le further obserTe thst our construction allo.s

us to assign one arbitrary eigen value to a, naaely k. The other

eigen values are then k + clal + c2a2 + ••• + cnan,where cl,c2,.·

••• ,c are zero or positive integers .hose maximum values depead
n

on the degree of the representation Q.

5. The generat10n of a represen~tion(~~ral case~.

If Ll of section 4 does not equal the radical of L, we can select

a bas1s element b in the radical not in Ll and form the subalgebra

L2 = lb .;. Ll•

L2 is an ideal since

LoL2 <;,. LoR ~ Tl ç. T ÇLl ~ L2 •

The representation ~ of Ll for an element t ET is triangular

for a choice of coord1nates mak1ag Q triaagular, since the

matrices ~Q(t) 11e along the main diagonal and all elements

below these are zero. Since Q 1nduces a n11 representat10n on

Tl = LoL (l R ~ T, the form of ~w11l cause i t to also 1nduce a

n1l representation on Tl- Hence we can repeat the procedure

of section 3, re,lacing Ll by L2, T by Ll, a by b, Q by Q2' m by U,

Tlrema1ning the same. With th1s repet1tion, we generate from

Q2 a representation Q3 of L2

Continuing, step by step, we finally exhaust R. At th1s

stage we will have a representation, ~ say, of the radical R.

In order to extend ~ to L itself, we assume Q 1s invariant

under V, the semi-simple subalgebra of L, then we can prove



Theorem 3.5. If T has a representation Q which, in

addition to lnduc1:ng a nil representation on LoL (\ R, is

lnvariant ubder V, where L =V ~ R, then ~, the representation

of L
l

generated by Q, ls invariant under V.

Proof. Je recall that Q ls asslgned by the module m and ~

by U. Since Q ls invariant under V, we have an L-projective

representation C such that

In module terms

C(v)oQ(t) =Q(vot). (tf-T, VE-V)

(vot)u = C(v)(tu) - t(C(v)u). (uE-m)

To prove our theorem it is necessary to define a linear

transformation C2 (v ) of M such that

(voh). :=; C
2

(v ){hw) - h(C
2

(v )w) (h E:Ll , W ~M)

and furthermore the relations

r(l}(a-k)u1 =r(2) (a-k)u2 = •••• =f(s) (a-k)us =0,

must be preserved under C2 (v ) .

Ta achleve the latter, we observe that the followlng

change in the basis of m can be assumed to have taken place

at the tlme of constructing D.

Let ml conslst of all elements u of m such that Q(d)u =0, (d ~ D)

then C(v)'(Q(d)u) - ~(d){C(v)u) • Q(vod), (uE-m1 )

glving 0 - Q(d)(C(v)u) = 0,

and so C(v)u t m , i.e. ml ls an F-module invariant under C(v) •
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Let m2 consist of all elements u of m such that Q(d)u ~ ml.

Then C(v)(Q(d)u) - Q(d)(C(v)u) = Q(vod)u. (utm2 )

Since ml is invariant under C(v), this equation givea C(v)uEm2 ,

i.e. m2 is an F-module invariant under C(v).

Continuing thus, we caa form an ascending series of modules

invariant under C(v) Which, since Q(d) is properly triangular,

will finally exhaust m, then

•••• ,us is a basis of m. This basis ls suitable

a = ma ( ml (m2 ••••••cmq == m • (q ~ s)

Notice that Q(d1m j ~mj_l by definition, thu8 Q(Tl)m
j

çm
j

_l•
le now choose a wasis ul,u2, ••• ,u

hi
~f ~and extend it by

uhl+1J ••• '~2 to form a basis for m2, and continue sa until

final extension

the

for our purpose.

Let us define C2(v) by the equation

C2(v)w = C2(v)[~=lPi(a)ui' (.E:1(, Pi(a) f.F(a»

= (![~clPi(a»)ui + ([~=lPi(a))(c(v)ui)'
where ! 1a the regular representation of v with respect to L.

Ta show tha~ the defining relations of U are invar1ant under

C2(v), we recall that f(i) (a-k)uj :: a for all j ~ i •• For the

relations

(i =1,2, ••• ,s)
we have

C2(V)t(i)(a-k)ui = (!f(i)(a-k»u
i

+ t(i}(a-k}(C(V}u
i),

= (vor(i) (a-k) }ui + t(i} (a-k) ['~=ikjUj' (k
j

f- F)
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f. F(a)f(1-1) (a-k)Q(T1)u1 + [~=1kjf(1) (a-k)U j

ÇF(a)f(1-1) (a-k) [~=1_1FUj + 0

= 0, as required.

To show the invariance of the representation assigned to ~

by M, it is sufficient to verify the invariance of (1) a and

(2} any t li: T.

(1) C2(v)(a.) - a(C 2(v).) (w E-U)

= C2(v)(a[~=lPi (a)ui - a(C 2(v) [~=lPi(a)u1) (Pi (a) E F(a»

= [~=1(C2(v)(aPi(a)ui) - a(C 2(v)Pi(a)ui » ,

=[~=l«!(aPi(a»ui + api(a)(C(Y)ui) - a«!P1(a»ui)- aPi(a)(C(v)ui»)
, .

= (voa)., as required.

(2) Replacing a by t EoT, a similar calculation giTes

By this theorem it is evident that if Q is invariant it

generates, step by step, an invariant representatiom of the

radical, the matrices of inTarianve being defined at each step.

le can now show that an invariant representation of the radical

can be extended to the whole Lie algebra without a change of

degree. For convenience, let us take the invariant representation

of the radical te be Q and the matrices of invariance, which
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are assigned, according to theorem 1.2, to each element d of

L to be cta) , Then the matrices C(v), v (;0 V, generate a Lie algebra V*

Theorea 3.6. The elements x of V. which annihilate Q(t), t E':R,

the radical, form an ideal Z of V*.

Proof• Binee xoQ(t) = 0, we have

(C(v)ox)oQ(t) = C(v)(xoQ(t» - xo(C(v)oQ(t» =0 ~ xoQ(vot) =O.

Thus C(v)ox ~ Z and C(v)oZ' Z, as reqL1ired.

Theorem 3.1. The algebra of residue classes V* - Z is

semi-s1JRple.

Proo!. For v',v" in V, we have

(C(v')oC(v") - C(v'ov"»oQ(t) = (C(v')oC(v"»oQ(t) - C(v'ov")oQ(t),

=(C(v')oQ(t»oC(v tl
) + C(v')o(C(v")oQ(t» - Cl(v'ov")ot),

=Q(v'ot)oC(v") + C(v')o,(v"ot) - Q«v'ov")ot),

=Q«v'ot)ov") + Q(v'o(v"ot» - Q«v'ov")ot),

= Q«v'ot)ov" + v'o(v"ot) - (Vf~V")ot) = Q(O) = O.

Thus C(v' )oC(v") = C(v'ov")modZ

and certainly kC(v') = C(kv')modZ,

C(v') + C(v") =C(v' + v")modZ.

It follows that the mapp1ng

v -+C (v )modZ

ls a homomorphism of V onto V.· - Z, Binee V Ls semi-slmple, the

kernel K of the mapping 1s sem1-s1mple, and also V-K. Then
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V* _ z, being iaomorph1c to V - K, 1a sea1-s1mple.

Iheorem ~.8. If V* - Z 1s aes1-simple, 1t has a representat1ve

algebra{an extension of the theorem of Lev1).

~roof. By the theorem of Levi, V* =W~ R(V.), R(V*) be1ng

the radical of V*. S1nce V* - Z 1s sem1-s1mple, Z (' R(V") •

Consequently, W = 'Il +- ',n z, where 1 nZ 1s an 1deal of 1. Thus

the d1fference algebra li - Wli Z has 'Il as a repreaentative

algebra. Also

W1a a representat1ve algebra of V" - R(V.) ,

thus "1 1a a representative algebra of (V. - R(V")) - W(\ Z,

and then 'Il 1s a representat1ve algebra of V. - z.

As a result of th1a theorem, for every v ~ V, there 1a a

C'(v) l:: il such that C(v) = Ct(v)modZ. On replac1ng e(v) by

e t (T ), we have

C ' ( Vt + v H ) = C t ( T') + C t ( vit ) ,

, ct (kv t) = kC' (v t ) 1

C ' ( Tt ov") = C' (v' )oC t ( VU) •

l'ith th1s replacement and sett1ng C' (r) = e(r) = Q,( r), r E;- R,

C' 1s an ordinary representat10n of L.

B!marks. We have now shown how, under certa1n cond1tions

a representat10n Q of an 1deal T, occur1ng 1n the radical,

generates a representation of the radical and this representat10n

can be extended to the .hole L1e algebra w1thout change of



degree. MoreOTer the construction of the representation is

such that it permits us to assign one arbitrary eigen value

ta each basis element of the radical not in T.The other eigen

values differ fr~. the assigned value by sums of lntegral

multiples of the characteristic roots of lts regular representation,

the multiplicity belng gOTerned by the degree of Q.

This flexibl1ity giTes the construction the ability ta

reproduce any indeco.posable representation , in an algebraically

closed field of characteristic zero, as a component of a

representation the construction assigns to the Lie algebra. For

hasif one an indecomposable representation in such a field, it

induces on the radical a representation such that the eigen

values of any basis element not in Tl differ only by s~ : of ~

multiples of the characteristic roots of its regular representation.

On Tl a nil representation must be induced whlch ls clearly

invariant under L. ~aking T to be Tl and Q as the nil represent

ation, our construction can reproduce the given cônditions but

not precisely, since more elgen values .ill be assigned to the

radical elements than the given ones. The possible extensions

of the representation to the whole algebra will include the

original extension, consequently our representation will include

the glven representation as a component.

6. The theorem of Ado. Blrkhofl~as shawn that every nil

potent Lie algebra has a faithful representation of finite

degree, namely the regular representatlon of the 1mbeddlng
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algebra modulo a certain invariant subalgebra. For a

suitable choice of basis this representation is prope'l1'

triangular. and so is a nil representatioa. Using this result

we can prove the theorem of Ado. which states that an1' Lie algebra

over an algebraically closed field of zero characteristie has

a faithful representation by matrices of finite degree.

Let L be a Lie algebra over an algebraicall1' closed field

of characteristie zero. Let its maximal nilpotent ideal be T

and the faithful nil representation by the Birkhoff procedure

be Q. le have L =V + R. where R is the radical of L and hence

contains T. q is already a nil representation, and sinee

Tl = LoL() R is nilpotent, Tl is contained in T and so Q induces

a nil representation on Tl. Yith the following theorem, all the

conditions are satisfied for determining, a representation of L

from Q by our construction.

Theorem ~~9. Q is invariant under V.

Proo~. We have that H(T) is a subalgebra of H(L). Also.

to v E V there corresponds the derivat10n D(v) of H(L) defined by

D( v }(X) =vl: - Iv (X ~ H(L) ) •

Binee D(v) (t) =vt - tv =vot E T

for all t in T. we have D(v) (T) STand also D(v) (H(T)) ç H(T).

Hence D(v) induees a derivation on H(T). Moreover, D(v) leaves

invariant the subalgebra B of H(T) generated br ••and so

leaves invariant S'W. Hence DCv) induces a derivat10n C(v) of
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the hypercomplex system H(T) - S". The repreaentation Q

is the regular representation of H(T) - S· with a suitable

value of the exponent ••

Binee C(v) ia a derivation ofH(T) - S·, for tET, uEH(T) - S·,

we have

or

C(y)(tU) = C(v)(t)u • tC(y)(u),

= (vot)u + tC(y)(u),

(vot)u =C(v)(tu) - tC{y){u)

Q{vot) = C(T)Q(t) - Q(t)C(v) = C(v)oQ(t),

50 Q is invariant under V.

The representatlon A of L determined from Q by our construction

is faithful over the radical R of L since Q is fa1thful. Let P

be the regular representation of L, then the representation

U =A ~ P ls faithful. Consider the elements x in L for which

U(x) = A(X) +p(x) = o. P(x) = 0 places x in the centre of L,

Le , Lox = o. The centre is nllpotent, therefore x <;. T. Binee

A ls faithfùl oyer T, A(x) = 0 gives x = O. Hence U 15 falthful

proving Ado's theorem.
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