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PREFACE « « o o

The representations of Lie algebras have been considered
extensively, in the bibliography are listed references most
pertinent to this paper. In its treatment of the representation
of Lie algebras, this paper differs from'previous investigations
in the particular stress it places upon the interrelation of the
representation of the Lie algebra and the correspomding
representation it induces on an ideal,

This point of view leads to quite explicit forms for certain
representations of Lie algebras which the author believes to be
original. In particular, in chapter I the concept of matrices
of invariance is developed for the representation of an ideal.
This concept permits us in chapter 1II to show that irreducible
representations of a Lie algebra, in an algebraically closed
field, can be expressed as a certain product whose factors are
associated with the representation induced on an ideal. Conversely,
if one has such factors, it is shown that they can be put
together to produce an irreducible representation of the Lie
algebra, A valuable guide to this work was supplied by a paper
of Clifford5)*. In chapter 111, using the Birkheff imbedding

procedurez)

» & construction is given whereby an explicit
representation of a Lle algebra can be generated, in an algebraically

closed field of zero characteristic,from certain representations

* The number in the bracket refers to the bibliography,



iv
of an ideal in the radical. The degree of the representation
can be given, Furthermore, the construction is sufficiently
general to give representations which include as components
the indecomposable components of any representation of finite
degree, The theorem of Ado is proved as an application of the
construction. While this theorem has several proofs, the
present one has o value in its explicitness and in the fact
that the degree of the representation can be given.

All algebras, modules, and representations in this paper
are to be taken over a field F, if the field is not specifically

mentioned,
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CHAPTER I
MATRICES OF INVARIANCE

1. Preliminary concepts. A Lie algebra L is an F-module

in which there is defined a unique product aob, (a,b,aobe L),

such that
(1) k(e20b) = (ka)ob = ao(kb), (ke F)
(41) ao(b + ¢) = aob + aoc, (b + c)oa = boa + coa, (e eL)

(1i1) ao0a = 0,
(iv) ao(boc) + bo(coa) + co(aob) = 0, (the Jacobi identity).
From (ii) and (1ii) we obtain the anti-commutative law,

aob + boa = (a + b)o(a + b) - (aca) - (bob) = 0.

An F-module T, contained in s Lie algebra L, is called an
ideal of L if LoT (T. By the anti-commutative law, ToL (T. Thus

any ideal is two sided. Clearly, T is also a subalgebra.

If H is any assoclative hypercomplex algebra, then one
can replace the given product ab in H by the product aob
defined by aob = ab -« ba. It is eésily verified that statements
(1) to (iv) above are satisfied by this 'o' multiplication.

Hence H, and every module in H closed under 'o!' multiplication,

form a Lie algebra with respect to 'o! muyltiplication

A mapping a —a', where a is any element of a Lie algebra L



2.
and a' is its unique image in a Lie algebra L' is called

a homomorphism of L in L' if

a+b_—-at+b!,
ka_-ka', (kcF, the field of reference)
aob —a'odb!,
The images form a Lie algebra in L'. If the correspondence is

one-to-one, the mapping is called an iseomorphism.

The homomorphic mapping of L into an associative algebra H
where aob—>a'ob' = a'd' - b'a' is called a representatién of L.

This representation is faithful if the mapping is an isomorpliism.

An F-module M is called a representation module, or an

l-F-module, of a Lie algebra L, if there is defined a unique
product au, (acL, uc M), sach that au occurs in M and

a(u +v) =au+av, (a+b)ly =avs+bdv, (veM, bel)

(ka)u = a(ku) = k(au), (k ¢ F)
(aob)u = a(bu) - b(au).

8uch a module assigns to each element a of L a unique linear
transformation A(a) of M, defined by au = A(a)u, and the
correspondence a-—»g(a) is a representation of L by linear
transformations qf M. If M has the basis UpslUsyeeayll, then
A(a) can be associated with the matrix A(a) = (aiJ), giveh by

the equations

N
-— r p
A(a’)u'j - Li=1 &ijui, J - 1,2,0.0,1‘0
This association is an isomorphism, consequently the correspondence

a—>A(a) is a representation of L by matrices. Conversely, a re-
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presentation of L determines a representation module of L by
taking an F-module with a suitable number of basis elements, r say,
and defining

au = é(a.)u.J = Zi___l 8y 44y J = 1,2,000,T,
) .

where a—(a

iJ

An F-module m, contained in a representation module M of L,

is called an invariant submodule when Lm( W, i.e. when m is also

a representation module. The factor module M/m is also a

represéntation module for which a{(u + m) = au + m., The usual
representation properties of equivalence, irreducibility, and the
various kinds of reducibility can now be expressed for Lis algebras

in module terms.

2. Matrices of invariance. Let an ideal T, of a Lie algebra

L, have the representation Q, i.e. t—>Q(t) is a representation
of T by matrices. If there is a matrix C(a), corresponding to
an element a of L, such that

C(a)oq(t) = Q(aot),
for all elements t in T, then we shall call C(a) a matrix of
invariance.If to every element of L there corresponds a matrix

of invariance, then Q will be called invariant under L.

Theorem 1.1 For an algebraically closed field of reference F,

the matrices of invariance , of an irreducible repregentation Q
of an ideal T, corrésponding to a particular element a of the

Lie algebra L, differ only by multiples of the unit matrix.
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Proof. Let C(a) and C'(a) be two matrices of invariance for
a, then we have
C(a)oQ(t) = Q(act), (teT)
c'(a)oQ(t) = Q(aot).
Thus
c(a)oq(t) - c'(a)oq(t) = 0,
(C(a) - C'(a))oq(t) =0,
(C(a) - C'(a))Q(t) - q(t)(c(a) - C'(a)) =0,
(c(a) - c'(a))Q(t) = Q(t)(c(a) - C'(a)),
for all t ¢T. Since Q(t) is irreducible, Schur's lemma* gives
C(a) - C'(a) = c(a)I,

where c(a) ¢ F, and I is the umit matrix of the dimensions of C(a).

Theorem 1.2. Let Q be an irreducible representation of an

ideal T of a Lie algebra L. Let e Y RRRTAM be a basis of T,

1°®

and €11855 00,8 1eees€ s be a basis of L, with respect to

r"r+l
an algebraically closed field F. If €417 %1% possess matrices
of invariance, then each element a of L can be assigned a

unique matrix of invariance C(a).

Proof. From the matrices of invariance of €., 1? 28y
select any particular set C(er+l), C(er+2),...., C(en). Then we
define C(e,), C(ez), coey C(en), by the equations

C(ei) = Q(ei), i=1,2,00.,r.

* In en algebraically closed field, the only matrices commuting with

an irreducible set of matrices are scalar multiples of theé unit

matrix,
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For ac L, we have

AR ¢ |
& = 2_,i=1 Kiess (k; ¢ F)

thus C(a) can now be constructed by setting

C(a) = ) T k;Cley),

and

C(a)oQ(t)

]

1 1 1C(ei)oQ(t),
11 iQ(eiot).
) 3.1 ke, )ot),
Q((Z;;l kiei)ot) = Q(aot), as required.

The uniqueness of C(a) follows from the fact that ©11855 00,8

n’
is a basis of L.

Corollary. The matrices of invariance,.of the theorem
have the properties |
C(a + b) = C(a) + C(b), (a,becl)
C(ka) = kC(a), | (keF)
c(t) = Q(t).

Broof. Taking a = ) J ke, b = ) i-1k{eys we have
n
& +b Z::i_l 183 *+ ?:fi -1k = z:21=1(k1 + kje,.

Therefore

c(a + b) 1220k + Ki)c(e,),

) i-akaCley) + 2::?=1ki°(°1)’
C(a) + C(b).

Also

n
=k Zi_l 1°1 = Zi:l(kki)ei' hence
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Clia) = ) B (kk,)C(e;) =k ) 5 _jk,Cley) = ke(a).

Finally

t = Ziﬂkiw - (teT)
so that c(t) = z::;=lkgq(ei) = Q( 2_J§=lk;°i) = Q(t).

3. Factor sets.

Theorem 1.3. Let T be an ideal of a Lie algebra L. Let Q

be an irreducible representation of T in an algebraically
closed field F, invariant under L. If matrices of invariance
C(a), a <L, are so chosen that C(a + b) = C(a) + C(b), bel,
C{ka) = kC(a), k ¢ Fyand C(t) = Q(t), t €T, then

C(aob) = C(a)oC(b) + c(a,b)I,

where c(a,b)c F, and I is the unit matrix of the dimensions of C(a).

Proof.By the Jacobi identity,
(aob)ot = ao(bot) - bo(aot).
Since T is an ideal,(aob)ot,aot,bot, are elements of Tjwe
have therefore
Q((aob)ot) = Q(ao(bot)) - Q(bo(act)),
C(aob)oQ(t) = C(a)oQ(bot) - C(b)oQ(aot),
C(a)o(C(b)oq(t)) - C(b)o(C(a)oq(t)),
(c(a)oc(b))oq(t),

since matrices, with respect to'o! multiplication, satisfy the

Jacobi identity. Thus
(C(aob) - (C(a)oC(b)))oQ(t) = O,
or (C(agb) - (C(a)oC(b)))Q(t) = Q(t)(C(acb) - (C(a)oC(b))),
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on replacing 'o! multiplication by ordinary multiplication.
By Schur's lemma,
C(aob) = C(a)oC(b) + c(a,b)I,

where c(a,b)c F, and I is the unit mairix of the dimensions of C(a).

Corollary. The scalars c(a,b) of the theorem have the

properties
(1) c(a,t) = 0, (acL, teT)
(11) c(a,a) = 0,
(4ii) c(a,b) = - ¢(b,a), (bel)

(iv) c¢(a,bod) + ¢(b,doa) + c(d,ao0db) = O, {(del)

(v) (2 +8,b+t)=clab) (s eT)

(rt) c(a + b,d) = ¢c(a,d) + ¢(b,d),
(;ii) c(a,b + d) = c(a,b) + c(a,d),
(viii) c(ka,b) = c(a,kb) = kc(a,b).

Proof. C(aot) = C(a)oQ(t) + c(a,t)I,

or Q(aot) = Q(aot) + c(a,t)I,
0 = c(a,t)I,
and so c(a,t) = 0, giving (1).

C(aca) = C(a)oC(a) + c(a,a)I,
Q(0) = 0 + e(a,a)I,

thus c(a,a) = 0, giving (ii).

C(aob) = C(a)oC(b) + c(a,b)I

C(boa) = C(b)oC(a) + ¢(b,a)I.
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Adding
C(aob + boa) = C(a)oC(b) + C(b)oC(a) + (c(a,b) + ¢(b,a))I.
Applying the anti-commutative 1aw;
Q(0) = 0 + (c(a,b) + e(b,a))I,
and so c¢(a,b) = - ¢(b,a), giving (1ii).

C(ao(bod)) = C(a)oC(bod) + c(a,bod)I,

]

C(a)o(C(b)oc(d)}) + c(b,d)(C(a)oI) + ¢(a,bod)I,

C(a)o(C(b)oC(d)) + c(a,bod)I.

Permuting a, b, andrd, cycliclj, adding the corresponding

equations, then applying the Jacobi identity, we have
Q(0) = 0 + (c(a,bod) + c¢(b,doa) + c¢(d,aob))I,

and so 0 = c(a,bod) + c(b,doa) + c(d,aodb), giving (iv).

C{(a + 8)o(b + t)) =C(a + 8)oC(b + t) + ¢(a + 8,b + %)I,
or = C(aob) + C(aot) + C(sob) + C(sot).
Expanding each of the expressions and comparing gives

c(a + 8,b + t) = ¢{a,b), property (v).

C((a + b)od) = C(a + b)oC(d) + c(a + b,d)I,
or = C(aod) + C(bod).
Expanding each expression and comparing gives
c(a + b,d) = ¢(a,d) + c(b,d), property (vi).
Similarly
c(a,b + d)

c(a,b) + ¢(a,d), property (vii).

C(ao(kb))

C(k(aob)),
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c(a)oC(kb) + c(a,kb)I = kC(aob),
c(a)okC(b) + ¢(a,kb)I = k(C(a)oC(b)) + ke(a,b)I,
k(C(a)oC(b)) + c(a,kb)I = k(C(a)oC(b)) + ke(a,b)I,
giving c(a,kb) = ke(a,b).
Similarly c{ka,b) = ke(a,b), giving (viii).

The elements c(a,b) of F, satisfying the properties (i) to
(viii), we shall call a factor set.

By theorem 1.3 it 1s shown that if matrices of invariance
are so chosen that C(a + b) = C(a) + C(b), C(ka) = kC(a), and
c(t) = Q(t), then C(aob) = C(a)oc(b) + ¢(a,b)I, where c(a,b) is
a factor set., It is apparent, therefore, that the correspondenco
a—C(a)
is almost a representation of L. Let us call such a correspondencs

an L-projective representation, (L for Lie, and projective

because of the analogy with group theory). Theorem 1.2 shows
that we can construct such a representation whenever matrices
of invariance exist. Furthermore, if we have an L-projective
" representation of L; given by -
a—=C(a) = (cid(a)), (1,3 = 1,2,..,n)

where ciJ(a)e:F, the field of reference, we can define

au, = g(a)gi = E::§=1°ij(a)ui’ (j =1,2,..yn)
for an F-module with the basis elements Upstoyeee,ly to form
an L-prdjective-representation module. It is easily verified
that (1) a(u + v) = au + av, (a<€L)

(i1) (a + b)u

L}

au + bu, (bel)
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(111) (ka)u = a(ku) = k(au), (k ¢ F)

(iv) (aob)u = a(bu) - b(au) + c(a,b)u.

Conversely, if there is an F-module M for which there is
defined a unique product au in M for a <L, a Lie algebra, ucM,
such that properties (i) to (iv) are satisfied, then M assigas
an L-projective representation to L. We can define irreducibility
and reducibility in the usual way; namely, if M properly
contains an Fr8ubmodule invariant under L, then M and its
representatién are reducible, otherwise M and its representation

are irreducible.

If the matrices C(er+1), C(er+2), cnoy C(en), of theorem 1.2,
are replaced by a second set C'(er+1), C'(er+2), cens C'(on),
then we can construct a second matrix of invariance C'(a) for
each a <L, By theorem 1.1, C(a) - C'(a) = e¢(a)I, c¢(a) <F. Then

we can prove -the following theorem,

Theorem 1.4. The set of elements c{(a) < F, a cL, has the

properties c(a + b) = c(a) + c(b), (bel)
c(ka) = ke(a), (keF)
c(t) = 0.

Proof. By the corollary of theorem 1.2,
C(a + b) =C(a) + C(b), C(ka) = kC(a), C(t) = Q(t).

Replacing C in each expression by the corresponding value
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in C', we have
C'(a +b) +c(a #b)I =C'(a) + c(a)Il + C'(b) + c(b)I,
giving c(a + b) = c(a) + c(b);
C'(ka) + o(ka)I = k(C'(a) + c(a)I),

therefore c(ka) = kc(a);

finally, cr(t) + e(t)I = Q(t),
Qt) + e(t)I = Q(t),

and c(t) = 0.

Theorem l1.5. Let Q be an irreducible representation of an
ideal T of a Lie algebra L in an algebraically closed field F.
Let C(a) be a unique matrix of invariance for each a <L, such
that C(a + b) = C(a) + C(b), C(ka) = kC(a), C(t) = Q(t),
(beclL, keF, t&T). Then by theorem 1.3, there is a factor set
c(a,b) such that C(aob) = C(a)oC(b) + c(a,b)I. If there is a
second set of matrices of invariance C'(a) such that

C'(a) =C(a) - ¢c(a)I,
where c(a + b) = c(a) # c(b), ¢(ka) = ke(a), c(t) = 0, then
there is an associate factor set c'(a,b) such that
C'(aob) = C*'(a)oC*(b) + ¢'(a,b)I

and ct(a,b) = ¢(a,b) - c(aob).

Proof, C'(a + b) =C(a + b) - c(a + b)I,
C(a) + C(b) - c(a)I - c(b)I,

C'(a) + C'(b),

Similarly C'(ka)

kC'(a) ,

C'(t) = Q(t).
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Therefore, by theorem 1.3, there is a factor set c¢'(a,b) such that
C1(aob) = C'(a)oC'(b) + c¢'(a,b)I.
Replacing C! in‘each expression by its equivalent in C, we have

C(aob) - c(aob) = (C(a) - c(a)I)o(C(b) = c(b)I) + c'(a,b)I,

¢(a)oC(b) - 0 = 0 + ¢'(a,b)I,

c(aob) - c(a,b)I + c'(a,b)I,

giving c'(a,b) = c(a,b) = c(aob).

4. A sufficient condition for the existence of matrices

of invariance.

Theorem 1.6. Let T be an ideal of a Lie algebra . Let the

field of reference F be arbitrary. Let M be an L-F-module and

m and m' T-F-submodules of M. If M = m § m', then each ac<L

can be assigned a matrix of invariance C(a), such that
C(a)oQ(t) = Q(aot), (teT)

where Q i1s the representation of T assigned by m,

Proof., For any ueM, we have u = u; + Uy, where u,cm
and uze-m'. The components uy and u, are unique since the sum
of m and m' is direct. Thus the correspondences

Hl: u—u, = Hlu,
H2: u—u, = Bzu,
are homomorphisms of M onto m and m' respectively. ¥We

can then write

u = Hlu + qu.

In particular, for vc¢m,
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av = Hyav + Hyav, (aclL)
then the operator Hla is clearly a linear transformation
of m. For t¢T,
(aot)v = a(tv) - t(av),
= Hla(tv) + Hza(tv) - t(Hla.v + Hzav).
Equating components,
(aot)vy = Hla.(tv) - t(Hlav).
Setting the linear tra.nsforma.tion.Hla. = C(a) and replacing
t by its linear transformstion Q(t) of m, wé have
g(sot)y = C(a)(Q(t)v) - g(t)(c(a)v),
or for the corresponding matrices of thése linear transformations

Q(aot) = C(a)Q(t) - Q(t)c(a) = C(a)o(t).
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CHAPTER 11
INDUCED REPRESENTATIONS

1. Induced representations. Let M be a representation

module of a Lie algebra L leading to the representation A

of L by matrices with coefficients in the field of reference F.
M will then serve as a representation module for any ideal T
of L. For, if Ug gy esesllyy is a basis of M over F and t «T,

then , since te%L,'we have
—

8
§ = Loi=1Kig%s0
Since M is a representation module for L, the correspondence

t —(ky,) = Q(t)

tu .d= 1,2,000’30 (kZiJ&F)

has the properties

Qt + t') = q(t) + Q(t'), (t'eT)
Qkt) = kQ(t), (keF)
Q(tot?) = Q(t)oQ(t'),

thus Q is a representation of T. We call it the representation

induced by A in T.

Theorem 2.1. Let A be an irreducible representation of a

Lie algebra L. Then A induces in any ideal T of L a representation
Qs which is irreducible, or is fully reducible into equivalent
irreducible components if these components are invariant under

L, and conversely.
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Proof. Let M be an irreducible L-F-module leading to

the representation A of L by matrices. Select any irreducible
T-F-module m ( M. Let m assign to T the representation Q,

invariant under L.

If m = M, then A induces in T the irreducible

representation Q.

If m £ M, then there is an a <L, such that am & m,
otherwise M is reducible. Since Q is invariant undee L, there
is & matrix of invariance C(a) corresponding to a and,
consequently,a corresponding linear transformation g(a) of m.
From am + m, form the set m, of the elements

au - C(a)u, (uem) o

It 15 easily verified that m, is an Femedule. Further

t(au - C(a)u) = t(au) - t{c(a)u),

(toa)u + a(tu) - t(C(a)u),

8(toa)u + a(tu) - t(c(a)u),
(8(t)ogc(a))u + a(tu) - t(c(a)u),
8(t)(c(a)u) - c(a)(Q(t)u) + a(tu)
- 8(t)(e(a)u)

a(tﬁ) - C(a)(tu)e My

Thus m, is a T~-F-module. The correspondence

u—au - C(a)u
is then an operator homomorphism over F and T of m onto m,.
But i is irreducible, hence the homomorphism is an isomorphism.

Since m # m,, we have
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m+am=n+m, =0 + m,.
Ifm ¢ m, = M, the theorem is proved. If m + m, £ M, there
exists b <L such that either
bm+m¢m-ﬁ-m2,
or bm2+m2¢'min2.
Otherwise
Lim $my,) =ILm + Lm, (lm+m + ln, + m, Cm 4 m,
meking M reducible, contrary to assumption. Suppose bm2 + m, is
not contained in m § m, . FWe then form the set of elements, By say,
bu - C(b)u, (ué,mz)
and by replacing a,m,m, in our previous remarks by b,nz,m3,
respectively, it follows that

bm, + m, = m, + my = m, . Wy

u

and m2 m

3
over T. If m 4 m, . 3 my = M, the theorem is true; otherwise

we can continue the process. In fact, if

my 4 R, + «oo0 dm, Z M,

m=ml§’n2§oooo ;nn’

then there exists g <L such that

gu, +my £m dmy deeeedm, (leicn)

otherwise, M is reducible, since

3Z?=1“1 = ZLlS’i < E?-_-J.(G“i +my) < 2111-31“1 .

#e can then form the set mn+1 of the elements
gu - c(g)u, (uem,)
Then gy +my =my +m g o=my 2 B0

and ~mn+1 = mi
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over T. Since M is finite and each additiomal module is
non-zero, a finite number of the above constructions will
exhaust M. With the final module, m, say, we have

Mﬂnl“na"oooo#mr,

S

ml.-:!z:

sece = mr,
over T. Thus M considered as a T-F-module is completely
reducible into irreducible T-F-modules operator isomorphic
to m; i.e. A induces on the ideal T a representation Q
which is cqmpletely reducible into equivalent irreducible

components.

Proof of the converse. Since A induces in T a representation

which is fully reducible, the corresponding representation

module M, considered as a T module, cam be written in the form
M=mn + (ml 4 .. 4 m, 5 4 B, 4 .. 4 nr).

Theorem 1.6 then assures us of the existence of matrices

of invariance for the representation assigned to T by m, .

2. Product representations. In order to consider the nature

of induced representations in greater detail, we define a
further matrix product, the Lie-~Kromecker product. This product
in the representation theory of Lie algebras has properties
comparable to those of the Kronecker product of matrices in

the representation theory of groups. If A and B are any square

matrices, not necessarily of the same dimensions, their Lie =

e

Kronecker product, designated by A#B, is defined by the equation

ASB = AxIB + IAXB,
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where 'x' is the Kronecker product of matrices, and I*, IB
are the unit matrices with the dimensions of A and B,
respectively, This product can be derived in a natural way

by a consideration of product modules.

Let M and N be any F-modules. The product module, designated

by MN, is defined as the module generated by the formal products
uv, ue M, v ¢N, with the defining relations
(1) UV UT, = UV, 4 UV, (ul,uze»M, ViaV,€ N)
(11) u(vl + 72) = uv, + uv,,

(1ii) (u1 + uz)v = UV 4+ u,v,

(iv) u(kv) (ku)v. (k ¢ F)

we define scalar multiplication by the equation
h + h +
k) 121" Y41 = Ei:l(- kg )vy .
Since this definition preserves the relations (i) to (iv), MN

is an F-module.

Let M and N be L-projective representation modules. We
' can then define a linear transformation A(a) of the product
module MN by the equations
A(a)(uv) = (au)v + u(av), (acl)
aa)) % uv, LI L '2111.-.5 u; (avy).
The linear transformation A(a) is.uniquely determined by a, so

we define the product a(uv) by
a{uv) = A(a)(uv).

Theorem 2.2 Let M and N agsign projective representations
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to the Lie algebra L, whose factor sets are c(a,b) and
d(a,b), respectively. Then the product module MN,for which
there is defined a left multiplication by elements of L as
above, assigns an L-projective representation to L with the

factor set c(a,b) + d(a,b).

Proof. Since the multiplication is unique and clearly distrib-
utive, we need only verify the remeining three properties for
L-projective representation modules,

(1) (e + b)(uv) = ((a + b)u)v + u((a + b)v),

(au + bu)v + u(av + bv),

(au)v + u(av) + (bu)v + u(bv),

a(uv) + b(uv),

(11) (ka)(uv) = ((ka)u)v + u((ka)v),

(k(au))v + u(k(av)),
k{a(uv)) = a(k(uv)).

(1ii) (aob)(uv) = ((aob)u)v + u((aob)v),
= (a(bu) - b(au) + c(a,b)u)v + u(a(bv) - b(av) + d(a,b)v),

(a(bu) - b(au))v + u(a(bv) - b(av)) + (c(a,b) + d(a,b))uv,

= (a(bu))v + (bu)(av) + (au)(bv) + u(a(bv))
- (b(au))v - (au)(bv) - (bu)(av) - u(b(av))

+ (c(a,b) + d(a,b))uv, (after insertion of suitable terms)

a{(bu)v + u(bv)) - b((au)v + u(av)) + (c.(a,b) + d(a,b))uv,

a(b(uv)) - b(a(uv)) + (c(a,b) + d(a,b))uv.
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Thus MN is an Le-projective representation module of L and
| assigns an L-projective representation with the factor set

c(a,b) + d(a,b).

In order to exhibit a matrix representation of L assigned
by MN, let ul,uz,...,un, be a basis of M, and vl,vz,...,vr, a
basis of N. The palirs “i!j’ i1 =21,2,000yn; §J =1,2,000,r, 1in
some fixed order, then form a basis for MN. Let us take

ulvl,ule’ e e Q,ulvr’uzvl’ LN J .,uzyr, e O’unvr’

as a basis for MN. Let C(a) = (cig) be the n x n matrix
agssigned to a<L by M, and U(a) = (th) be the r x r matrix
assigned to a by N, and A(a) the nr x nr matrix assigned to a
by MN, then

a(uivJ) = (aui)vJ +u, (av )

AR ¢!
= (Lg 1%g1% 175 * “1211 19h3n?
= () g=1 gl g)Lh 1°n3"n * (Z:g 1 giug)Eh 1th h?

n f i
= T =1Zh 1(°gi hj * sgi n3)%"n (61,1 = (1 fg; 153))

Arranging the coefficients, c ishg th, in matrix form
as directed by the choice of basis, we have

Ala) = C(a.)xIU + chU(a.) = C(a)B8U(a).
Let us designate C(a)fU(a) by Cf2U(a), then if M and N induce
the L-projective repfesentations C and U on L, MN induces the
L-projective reprementation CfU on L, Let us observe that an

L-projesctive representation becomes an ordinary representation

when its factor set is zero.

Theorem 2.3. Let A be an irreducible representation of a
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Lie algebra L in an algebraicallyAfield F. Let A induce ¢ leed
in an ideal T of L a representation Q, completely reducible

to r irreducible components equivalent to a representation G.

A is then the lie~Kronecker product of two irreducible
L-projective representations C and U of L, where C has the

degree of G, U, the degree r, and their factor sets differ

only in sign. U is actually an L-projective representation

of the residue class algebra L - T,

Proof. Let M and nlbe the representation modules assigning
the representations A and G to L and T, respectively, then
M sml+m2+ cnce "mr’
a.nd ml g mi’ i = 2’3’000,1‘,
over T. Let ay be the operator isomorphism between my and m,
i.e, the isomorphism my g m is accompligshed by the correspond-
ence u—>a,u, (ueml, aiuemi)

such that for t<T,k¢F, tu-—-)aitu = taiu.ku—e aiku = kaiu.

Let A(a) = (AIJ(S'))' 1, = 1,2,..0yr, ac L, where Aj_'j are
submatrices of the dimensions of G(t), t<T, then we have
a'qjua E;.:lai_d.ij(a)u, (ueml)
where _éij(a,) is the linear transformation of ml corresponding
to the matrix Ai,j(a)' In the following calculations, we will omit
the bar under Aij(a); the context will indicate whether a linear

transformation or its matrix is meant.

Since T is an ideal, aotc¢ T, hence
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(aot)a,u = ad((aot)u), (ueeml)

J

a(ta u) - t(ausu) = aJ((aot)u),

J
a(ad(tu)) - t}::§=laiAiJ(a)u = aJ((aot)u),

L ooty glad(tu) = ) T joitiay(a)u) = ) 1a038y((a0t)u),

0 for if}
where &, , = (] for iaj

Z:;.‘f-lai(AiJ(a)(tu) - t(AiJ(a)u)) = Zi=la15ij((aot)u).

)+ Thus

Replacing the element: t of T by its corresponding linear

transformation G(t),(omitting the bar), we have
r r
L 1-104(Ayy(a)oc(t))u = ) 1101 (8;8(a0t) Ju. /

Since M = my + (mz + oo ¥ mr), theorem 1.6 assures us of
the invariance of G under L. Hence we can construct matrices
of invariance C(a), acL, according to theorem 1.2, and then the
correspondence a — C(a) is an L-projective representation.

Therefore we can write our last equation in the form

J 3105 (A 5(8)06(t) - 6, C(a)oa(t))u = 0.

Consequently

(4;,(a) - &, C(a))oG(t) = O,
for all t¢T and 1,j = 1,2,...;r. Applying Schuf's lemma, after
replacing 'o' multiplication by ordinary multiplication of
matrices, we have

Aij(a) - &136(3) = Uij(a)IG9 (UiJ(a)e-F)
IG being the unit matrix with the dimensions of G, thus

Aij(a) = 6iJC(a) + Uij(a)IG’
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and so
A(a) = (Aij(a)) = C(a)xI; + I;xU(a),
= C(a)8U(a),
= C8U(a),

shere U(a) = (Uf%» and since I, = I;.

A8 CgU 1s a representation and C is an L-projective
representation, we have
CeU(a + b) = CRU(a) + CRU(D), (a,b €L)
Ca + b)xI;, + IoxU(a + b) = C(a)xIy + chU(a) + C(b)xI; + chU(b),
chU(a +b) = ch(U(a) + U(bv)),
thus U(a + b) = U(a) + U(b).

Similarly expanding the expressions in the equations

CeU(ka) = kC8U(a),
and C8U(aob) = CRU(a)oCRU(D),
we obtain
U(ka) = kU(a)
- U(aob) = U(a)oU(b) - e¢{a,b)I,

where c(a,b) is the factor set belonging to the L-projective
representation €. Thus U is an L-projective representation

of L with a factor set differing only in sign from that of C.

For t<T, we have A(t) = Q(t) = G(t)xIr, vhere I is the
unit matrix of degree r. Also
A(t) = c(t)xIU + chU(t),
= G(t)xI_ + I xU(t),
thus 0 = IoxU(t),
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giving U(t) = 0.

Hence U gives a representation to the resldue class algebra L - T.

C and U are irréducible L-projective representations of L,
for suppose U is reducible., Let uc and “U be the L-projective
representation modules assigning C and U to L, respectively, then
the.product module MCMU assigns A to L. Since U is reducible,

“U contains an invarisnt submodule B;. The product module
uch is then invariant under L, and is contained in MCHU.
Thus A 1s reducible, contrary to its irreducibility. Thus U

is irreducible. Similarly C is irreducible.

3¢ The imbedding of irreducible representations.

Theorem 2.4. Let T be an ideal of a Lie algebra L. Let Q

be an irreducible representation of T invariant under L. Let
¢{a,b), (a,bc L), be a factor set of an L-projective representation
C of L. Then a necessary and sufficient condition that Q can
be imbedded in an irreducible representation of L is that the

factor set -c¢(a,b) can be realized by an L-projective represent-

ation U* of LT,

Proof. The necessity of the condition is shown by theorem 2,3.
The condition is also sufficient. For, taking an irreducible
component U of the representation Us, we set A = CR2U. By
theorem 2,2, A is certainly a representation. To show A is

irreducible we require the following lemma.
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Lemms 2.1. Let L have the equivalent representations
CRU and C'RU', formed according to the theorem from an
jrreducible representation Q of T. If C and Ct are equivalent,

then U and U! are equivalent.

Proof. For ac«L, we have
XC'(a)80' (a)X™F = C(a)2U(a),
y~1ct(a)Y = C(a),
consequently,
x(ve(a)y ™ )eut(a)x™t = c(a)eu(a),
X(YC(a)Y ™ xIy, + chU'(a))X-l = C(a)8U(a),
X(YxIU,)(C(a)ﬁU'(a))(Y'lxIU,)X-l = C(a)fU(a)e +osall)

Setting X(YxIU,) = Z, and replacing a by t¢T, the equation
becomes

2(a()xL,) 27 = Q(e)arg

or Z(Q(t)xIU) = (Q(t)xIU)Z for all t&T,.
Applying Schur's lemma gives Z the form IQx', where W is nén-
singular. Substituting this form of 2 in (1) gives

C(a)xIy, + I xWU'(a)¥™t = C(a)xIy + I5xU(s)

C
IU'(a)T'l = U(a),

proving the lemma.,

Réturning to the theorem, we can now prove that the
representation A = C8U is irreducible. Let m and n be the
modules assigning the L-projective repre&sentations C and U to L.

By theorem 2.2, M = mn assigns the ordinary representation C#U



26,

to L. Further, since
A(t) = C(t)xIy + I,xU(t), (t eT)
= Q(t)xIU,
M, considered as a T-F-module is the direct sum of irreducible
T-F-modules operator isomorphic to m, i.e.
M=m . m, oo ¥ By, ®) =@, B €m, over T,

1l
In this form M certainly has a Remak decomposition.7)

| Let us assume that M is reducible, then M properly contains

an L-Femodule M'. With suitably chosen subscripts we then

have |

M=M4$m . $ eeee dm,

Since any submodule of a module with a Remak decomposition has
a Remak decomposition and, furthermore, since different Remak
decompositions of the same module are egual in length, and the
components are operator isomorphic¢ in some order, we have

M:miimé"'ooo"'m""m 'a’ooo'!'ms,

r r+l

where mi S’mi %’nJ, i=1,2y00yry jJ =1,2,..,8., These operator

isomorphisms assure us of the irreducibility of the mi. Let ay
be the operator isomorphism of mi onto mi, or my if 1, r+l.
Then for uem]",
r
B0 U = Zi:laiAié(a)’ (aecl, g¢r)
since M!' is invariant under L. Also
r
agu = Z:jizlaiAig(a)’ (s >h >r).

As in theorem 2.3, these equations lead to

Al (a) = C'(a)81k+ 1uy(a),



27.

but with the further property that

ICU:{k(a) = 0, for kgr, i>r,
giving U{k(a) = 0, for k¢r, 1>r.
Thus U'(a) = (Uik(a)) is a reducible representation, making
A'(a) = C'(a)®U'(a) also reducible. Since there is an operator
isomorphism between the two Remak decompositions of M and also
between m, and m!

1 1
equivalent to C'8U' and C is equivalent to C', By the lemma

it follows that the representatien CRU is

U is equivalent to U', contrary to U being irreducible. Thus

the assumption that M is reducible is contradicted.

4., Indecomposable representations. As we have developed it,

the theory of induced representations for indecomposable
representations over an algebraically closed field 1is less
manageable than in the irreducible case because the commuting
matrices lie in a primary ring, rather than being simply scalar
multiples of the unit matrix, However, with certain clearly
indicated changes of definition consistent with the nature of
the commuting matrices, the theorems of chapter I have analogies
for indecomposable representations. For example, analogous to

theorem 1.1 we have:

Theorem 2.5. For an algebraically closed field of reference F,
the matrices of invarianfée of an indecomposable representation
Q of an ideal T, for a particular element a of a Lie algebrs L,

differ only by matrices lying in a primary ring P.
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Proof. Let C(a) and C'(a) be matrices of invariance
corresponding to a, then
C(a)oQ(t) = Q(aot), (t eT)
c'(a)oq(t) = Q(aot).
Thus
(C(a) - c"(a))oq(t) = 0,
(c(a) = C'(a))a(t) = Q(t)(c(a) - c*(a)).
Since Q(t) is indecomposable
C(a) - C'(a) = ¢*(a),
where c*(a) is a matrix in a primary ring P with the dimensions

of C(a.) .

By replacing the matrices ¢(a)l and c¢(a,b)I of chapter I
by the matrices c*(a) and c*(a,b) of P, theorems 1.2 apd 1.3,
and of course their corollaries, have analogous proofs for
indecomposable representations. Defining a factor set as the
set of matrices c*(a,b) possessing the properties of the corollary
to theorem 1.3, with ¢ replaced by c*, the concept of L-projective
representation can be extended to indecomposable representations.
Theorems 1.4, 1.5, and 1.6 are thén valid for indecomposable
representations., With these basic theorems available, we can

now consider how far the analogy extends to induced represemtations.

Theorem 2.6. Let A be any representation of a Lie algebra

L. Then A induces on any ideal T of L a representation which
is indecomposable, or is decompesable into indecomposable

components. These components are invariant under L.
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Proof. Let M be the L-F-module assigning the representation
A to L. As a T-F-module, M is either a direct sum of two
T-F-modules or not, If not, the theorem is true. If M is g
direct sum, the summénds are in turn either direct sums or not,
Since M is finite thé process will teminate, giving
M= m 4 m, 4 eee 4 m.,
where By Byy ooy B, are indecomposable T-F-modules. Thus
M considered as a T~-F-module assigns a representation Q to T

which ls decomposable into indecomposable components Qi’ the

representation assigned to T by m, 1 =21,2,0eeyre
Since M can be put in the form
u:mi" (m1+ o.“‘mi_li’ni*l‘ oo'l'lr),

theorem 1.6 assures us that Q1 is invariant under L.

Theorem 2,7. Let A be any representation of a Lie algebra L

in an algebraically ciosed field F. Let A induce in T a
representation Q, decomposable into the indecomposable
components Q;, Qyy +es Q. then A(a) can be partitioned
so that A(a) = (Aij(a)) with the properties
Ay;(8) = ¢(a) + ej(a), (aeL)
Aij(a)Qi(t) = Qg(t)‘ij(a)’ 143 (ter)
where C; is the L-projective representation with Ci(t) = Qi(t)’

*
ci(a)e;Pi, the commuting ring of Qe

Proof. Let M be the representation module assigning the

representation A to L. Then M has the following decomposition
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with respect to T,
M=m : 2 m, $ .0,
where m, is indecomposable and assigns the representation Q1
to Ty 1 = 1,2,s0e,re For u,cmy, we have(omitting bars from

linear transformations)

tu, Qi(t)uieni, (teT)

au, = 2:33;1A13<a)“1'
where Aij(a)uie mye. Hence
a(tyy) = a(qy(t)y),
(aot)u; + tleuy) = ) 5 14 5(a)(Q(t)uy),

Qu(aot)uy = ) Y 1A ,(a)(Q(E)uy) =) T ,Q,(8) (4 4(a)yy).
Since the module sum is direct, the components are unigue, and
a comparison of these gives

Q (aot) = 4,,(a)Q (t) - Q;(t)a;,(a)
A (a)oqy(t),

and
By theoren!?.G, Q; is invariant under L, hence we can construct

ean L-projective representation C, of L. Then we can put

i
Qs(aot) = A,,(a)oQ,(t),
in the form
C,(a)oQ (t) = A, (a)oq,(t),
giving (C,(a) - Ay, (8))Q(t) = Q (£)(C,(a) - Ay, (a)).
Hence Ci(a) - Aii(a) = c:(a),
i.e. an element of the prﬁmary ring P1 of matrices commuting

with Qi(t) for all teT,
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It is clear from this theorem that the Lie-Kronecker
product does not have an application to indecomposable
representations, except in the very special case when the
Q1 are equivalent and the required elements of the commuting
ring are multiples of the unit matrix., Since the Lie-
Kronecker product was essential to the formation of representations,
this aspect of indecomposable representations is left open

for further study.
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CHAPTER III
GENERATED REPRESENTATIONS FOR ALGEBRAS

OF CHARACTERISTIC ZERO

1. The Birkhoff imbedding algebra. Any Lie algebra having

the basis €11€5rec 09, OVEr any field ¥, can be imbedded in a
linear associative algebra H(L) according to the procedure of

G. Birkhoff as follows: since the e, form a basis of L,we have

i

r
eiOeJ = Ea’—"lkg'dea, (i,J = 1,2,...,1‘).

Furthermore, we can form an infinity of the expressions

er’ er-l, ....’ el’
e e e »
rr? ©r r-1? °°*°°? €8y,
e e
r=1%p-12°°2%r_1%1
* * * L d *
e, e
11’
e e 6
r8rpr €.8.8. 15 cecece, €6 €,
e
1%1%1
L J [ ] L ] ® [ ] ® [ L ]

These formal products will form the basis of a linear associative

algebra with respect to a multiplication defined by the equation

(eileiz..... eih)(ejlejz... eJ ) = qu(eqleqzoooo eqf)

where 112122 oo aih, Jlajzz oo ajs, 91=4,= o =Qp) and the

sum 1s the result of rearanging the formal product

e, € secsecel, € & seee€
il 12 1h Jl J2 JS
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and the consequent products, so that the subscripts are
monotone decreasing, according to the rule

ey e =ejo, + Z:: _1 iJ o?

the kij being supplied by the corresponding product e,o0e

in L.
J
This multiplication can be shown to be independent of the
sequence of rearrangements employed, consequently it is unique
and associative. Let us add a principal unit element

e = eg eq ...eg to the basis such that ea = se = a for all

i
172 h
elements a in the algebra, then we will designate the

resulting algebra with unit element by the symbol H(L).

Conversely, in any associative algebra H we can define a
product [abl] by the equation {ab] = ab - ba, (a,b ¢H), then with
respect to this new multiplication H forms s Lie algebra, L(H)
say. Furthermore, every submodule of H, H' say, closed under the
new multiplication forms a Lie algebra L(H'). Thus from the
associative algebra H(L) we can form L(H(L)). The module H'(L)
with the basis €13€5y 00y is closed under ' }' multiplication

for if 1% j, ]§1351 = eje; - eje; =eje, - (e1 ] z::d 1
=z:j;=1k§iea' Hence we can form L(H'(L)). By the correspondence e

6

i1

between L and L(H'(L)) we have
eioeJ éq{eiei],
oy + 05 >ey +ey,
kei «-—»kei
giving L £ L(H'(L)). Thus replacing the symbol [ab] by aob,

(a,be¢ L(H'(L)) ), we can consider any element of L as also being
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an element of H(L). Notice that a representation A of L gives
a representation to H(L) by the definition

esee = A A (XX N A( )o
A(eil 1, e r) (e ) (e1 ) ey 1

Conversely, a representation A of H(L) gives a representation

to L since it gives a representation to L(H'(L)).

2. Induced and generated representations. Lel T be an ideal

of a Lie algebra L over a field F. A T-F-module m generates an

L-F-module M if M and m occur in the same L-F-module u* and M
is the intersection of all L-F-modules in uf containing m. The
representation assigned to L by M 1s sald to be generated by the
representation Q assigned to T by m. M' and its representation

of L are said to be induced by m and Q, respectively, if for

every L-F-module M generated by m, there is an operator
homomorphism of M' onto M leaving each element of m invariant.,
To give M' an explicit form let €1185900050, be a basis of T,

and ©11853099€4,8 geeye , 8 basis of L over a field F. Then

s+l r

M' is obtained as the direct sum of the formal power products
n_. n n
s+l

r r-1
r r-l o000 °s+1

e e
taken over the powers, with the following rules of computation:

n n n n
2 : r s+1 z:: A5l Z‘ r. 8+l
(1) er Xy es+1 u, -f coe eS-I—l ur'l = Qr coe es+l (un+ ul'l)’

. n n n n
r 8+l r S+l
(11) kzer *e0 84 Yn T Zer o0 es+I (kun)’ (k ¢ F)
n n n n
r s+l _ r s+l
(111) azer ceene Os.'l un = Eer see .8+1 aa,nua ’

where u, depends on nr""'ns+1 and is in m and where

a a n n

T s+l r s+l
86 T .ee e =) efi.e a, , 18 obtained by the Birkhoff
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multiplication procedure and gives ad,n as an element of the

imbedding algebra of T, ad,n depending on Gpoeseslg g and

DrLyecesBg .y, If TC L, the induced representation is clearly of
infinite degree. That M', so defined, is induced by m is
seen by observingvthat,vif M is any L-F-module generated by m,
then M contains the F-module H(L)m whose generators are

n

eroooo esi.{l ui, (1 = 1,2,0.,(1)

with the defining relations supplied by M, ul,uz,...,uq
being a basis of m, Since H(L)m is invariant under left
multiplication by elements of L, it is an L-F-module. It follows
that M = H(L)m. Mapping each basis element of M'onto the

formally equal generator of M then gives an opefator homomorphism
of M' onto M, as required. Further, the representations of L
generated by representations of T are components of the induced
representation. In this chapter we consider the induced represent-

ation by determining a construction for its finite components,

namely finite generated representations.

Let us notice that the representation of L given in thebrem 2.4,
by M in which m is imbedded, is generated by m since any
L-F~module in M generated by m must contain M itself otherwise
M 1s reducible,

3. A necessary condition for generating representations.

If a representation of an ideal T of a Lie algebra L is to
generate & representation of L, a necessary condition is given

by
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Theorem 3.l. Any representation A of L in an algebraically

closed field of characteristic zero induces a nil representation

on the intersection of LoL and the radical R of L

Proof, Since R is defined as the maximal solvable ideal
of L and, since LoL is an ideal of L, Tl = LoL is a solvable

ideal of L.

Since A can always be reduced to a form with its irreducible
components along thé main diasgonal and since our theorem concerns
only diagonal elements, there 1s no loss of generality in taking
A to be irreducible. Then A induces a representation on Tl which
is irreducible or is reducible to irreducible components Ai along
the main diagonal, with zeros below. Since T; ( Lok, we have
trAi(t) = 0, teaTl. Since T, is solvable in an algebraically
closed field, by the theorem of Lie Ai is a matrix of degree one,

giving Ai = 0. Thus A induces a nil representation on Tl.

4. The generation of a representation ( special case).

By the theorem of Levi, any Lie algebra over a field of character-
istic zero can be expressed in the form

L=V4R,
where V is a semi-simple subalgebra and R is the radical of L.

Let T be an ideal such that
RZT2T1=ImLﬂR.

Since R is solvable, we can form the subalgebra L, = Fa 4 T,

1
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where a 18 a basis element of R not in T, and F is the field of
reference. Since Long LoRng ¢T ng, Ll is an ideal of L. Ve
will now show that any representation Q, of finite degree, of T
which induces a nil representation on Tl generates a representation
of Ll of finite degree,

Lemma 3.l. Within H(L), let F(a) be the ring obtained by
the adjunction of the basis element a to the field of reference F,

then LoF(a) QF(a)Tl.

Proof. Let a be the regular representatien of a, i.e. the
representation assigned to a by L as representation module
where au = aou, (ucL)., Let L now be imbedded in the associative
algebra H(L), then we can set
hoa = ha = hda - ah, (hel).

By induction

noa” = ha® + (Mang® L 4 tevu v (e e el (1),
where hoa™ = ho(a") and hg.n = (see(hoa)oa)...)0a), a appearing
n times. Since Lg = Loa(T;, by induction La" ¢ T,. Applying this
property to equation (1), we have _

hoa” = t](_n) + (;‘)at](.n'l) 4+ eee + (nl_ll)an'ltil),

where t](.i)e T, 1 =1,2,.0.yn. Consequently, for any polynomial

1
p(a) over the field F,
hop(a) ¢ F(a)T;,

giving Lop(a) ¢ F(a)'rl, or LoF(a) ¢ F(a.)Tl.

Let the characteristic equation for a, the regular represent-
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ation of a, be
£(x) =Ky + K X + eenes k3" 42" a0,
and let its roots be
Ay Gpy eosey Oy

In the imbedding algebra H(L), let us now define the function

f(s)(a) recursively, as follows:

£{9)(a) = e, the unit element,
f(l)(a)
£2)(a) = £ (a) £H)(aua)) £V (amgy) wee £H (e,

a,

[} o L] [ ° * L] [ [} [ ] [ ] [ ] ] [ ]

£8)(a) = 2B (a) £lE-V (g ) Lol 2BV (aa ),

Notice that f(z)(a) = af(a), where f(x) is the characteristic

polynomial of a.
Theorem 3.3. Lof(’)(a-k) C f(s"l)(a-k)F(a)cr1 (ke F).

Proof. We have

ho(a-k)2 = tlg + (i)(a-k)tl, and by &nduction,

] L L] L] L] [ ] e . L [ L)

ho(a-k)™! = t8" + (") (a-k)t8™ L 4 L.l s (") (a-k)"t,
Multiplying each of the rows by ko, kl, ceny kn 1? respectively,

and adding

ho((a-k)f(a-k)) = t f(&) + (&-k)(t(n 1), P, (a)t(n 2) s p,_;(a)t;)
n-

where t{ )e Tl and pi(a)é:F(a), i =121,2,e0eyn=1, that is
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hot(?) (ack) = 0 + £V (aie) (4{P ) 4 Ll v p (a)t).

Thus Lof(z)(a-k)g:f(l)(a-k)F(a)Tl.

Suppose now that the theorem is true for s = g, i.e.
Lo£{?) (ak) gf‘q‘l)(a-k)F(a)rl,
then for helL
hof(Q+1)(a-k) = ho(f(Q)(a-k)f(Q)(a-k-al)....f(Q)(a-k-an))
=z::2=of(Q)(a-k)...(hof(Q)(a-k-ai))...f(Q)(a-k-an), (ao = 0)
=z::2=of(Q)(a-k)...(f(q'l)(a-k-ai)gi)...f(Q)(a-k-an), (g; € Fla)T,)
- f(q'l)(a-k)f(q-l)(a-k-al)...f(q'l)(a-k-an)(i:j?=Q§(Q)(a—k)...

cooByen () (a-k-a )),

where f(Q)(a-k-dJ) is the product

f(Q) (a—k-aj) = f(q'l) (a.-k-aJ)f(q-l) (a—k-ad-o.l) .o .f(q'l) (a-k-uJ-an)

with the first factor absent. Thus

hoe{a+) (o i) o f(Q)(a-k)I::?=of(Q)(a-k)...gi...f(Q)(a-k-cn),
giving
hof(Q+l)(a-k)e:f(Q)(a-k)F(a)Tl,

and Lof(Q+l)(a-k) gf(Q)(a-k)F(a.)Tl, proving the theorem.
Corollary. Lo(f(s) (a=k)F(a)) ¢ f(s'l)(a-k:)F(a)'l‘l.

Proof. Let p(a) be a polynomial in F(a), then for h cL

no(£{%) (a-k)p(a)) = (noz{®) (akc))p(a) + £¢5) (ak) (hop(a)),

= f(s'l)(a-k)gl + f(s)(a-k)s2
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= 208 (ack) (g, + }5)(a-k)g,),
where glg:F(a)Tl by the theérem,-and gzégF(a)Tl by lemma 3F.l.

Thus Lo£'®) (a-k)F(a) ¢ f(s'l)'('a,v.k)F(a)Tl.

Our aim in developing the properties of f(s)(a-k)F(a) is to
determine a certain invariant subalgebra B of H(Ll) such thgt
the difference algebra H(Ll) -~ B has a finite basis and BAaL, = 0.
We then determine a representation module which assigns the null
representation to B. This module gives an explicit representation

to Lj« To further our aim we now form a two sided ideal in H(T).

Since T is in the radical R of L, T is solvable. By the
ordinary theorem of Lie, every irreducible representation of a
solvable Lie algebra is of degree oﬁe in an algebraically closed
field. Consequently Q, the givén representation of T, for a

sultable choice of coordinates, has the form

—

4, (t) .
q,(t)
Q(t) = °

] 2g(t)
where ql(t), qz(t), sony qs(t) are irreducible representations

of t of 'degree dne. Let Tl have the basis td’t6+l""’th’ which
can be extended by tl’t2""’t6-1’ to give a basis of T, Let D

be the two sided ideal generated in H(T) by
h(tl), h(tz),-QQ, h(t6-1), té, td'l’l, LI th,

where h(ti) = (t1 - ql(ti))(ti - q2(ti))...(ti - qs(ti)).
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We notice that the representation assigned to H(T) by @ has
the property that the representative matrix Q(t'), (t'e¢ D),
is triangular with zeros along the main diagonal, i.e. is
properly triangular. Consequently Q(D°) = Q®(D) = O Further

LoD ¢D, for let d€D., It is sufficient to consider d in the form
a = t(1)¢(2) | ¢(m)
where t{1)e T, 1 21,2,...,w, and at least one of the t‘1) is a

generator. Then for he¢lL,

hod = ;=lt(l)..(hot(‘j))...t,('),

w (1) L(J) .(w)
EE ngt oatl oot [}
where tgj)e T, (D. Since D is a two sided ideal, hod ¢ D, giving

LoD ¢ D.

¥ith the function f(s)(a-k) and the ideal D, we can now
construct a two sided ideal B of H(L,), the imbedding algebra
of the Lie algebra L,= Fa 4 T. Let us set
¢, = £'%) (ak)F(a),
= H(T),

D

bl’\) Ul‘-‘ U(D -
u

= DD, and similarly for higher powers,

then

0 1l S<1 S
Theorem 3.4. B = CsD + cs-ID ¥ eos + ClD + COD

is a two sided ideal of H(Ll)

Proof, It is sufficient to verify the invariance of B under

left and right multiplication by T and a. We have
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i

Since H(Ll) possesses a8 unit element B is a subalgebra, hence

we can form the reddue class algebra H(Ll) - B. An examination

of the basis of H(Ll) and of B shows this difference algebrs

has a finite basis. Since no element of L

of L

H(Ll) - B will give a representation to L

1

1

is in B, the elements

1 lie in different residue classes. Thus & representation of

o Using the represent-

ation module m assigning the representation Q to T, we can

construct a finite representation module for H(Ll) - B. Let
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us set a = t, ,, then the basis of H(Ll) can be taken in the

form ti ti ....ti

1 i g’ (11>/12>,...>,i)

8
where these have the alternative form

J
a't, esseet, o
i, ig
Let the module m, assigning Q to T, have the basis UpgUsyecelye

Then any Ll-F-module generated by m will have generators of the
form adu,, 1 = 1,2,...,8, § = 0,1,..., with certain defining
relations., These relations will be determined by finding
relations such that Bui = 0, 1=1,2,.48, at the same time leaving
UgsUoyeeeyly linearly independent. The linearly independent
generators will then form a basis of the Ll-F-module « TO

determine this basis we observe that

=0 (1 1,2,.0.,5)
is satisfied if

f(s)(a.-k)u1 =0

8=
f( J)(a-k)DJui = 0 (J = 1,2,000,3)0
Let us first consider the nature of Djui. Since m also serves
as a representation module for H(T), we have
DJui = Q(Dj)ui = Q?(D)ui,

and by the nature of D, the matrix of QJ(D) will have the form

o ®eo0 00 o le+1 *
0 44,2
0 d34.3
0
0
ds-Js
0
0
L g
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Let us now determine a set of conditions sufficient for

f(s-J)(a-k)Djui =0, (4 = 1,2,400,8)
For J =8,
f(o)(a-k)DBui = £00) (ak)0 = 0, identically,
For j = 8-1l, the only non-trivial equation is
f(l)(a-k)Ds'lus = f(l)(a-k)dlsul =0,
which is satisfied by setting
£(1) (ak)u, = o, ceeeena(l)

For j = s-2, the only non-trivial equations are
(2) s-2 _ .(2) _
£'°/(a-k)D u, = f (a-k)(dlsu1 + d25u2) = 0,

f(z)(a.-k)Da-zus = f(z)(a-k)(d ) = 0.

Since f(z)(a-k) contains f(l)(a-k) as a factor, f(z)(a-k)ul =0

now,by equation (1), thus the only new condition is

(2) -
£'% (a-k)d, u, = 0,
which 1is satisfied by setting
f(Z)(a’-k)uz = 00 .oooooo(Z)

For j = 8-3, since f(3)(a—k) contains f(z)(a-k) as a factor
and,with equations (1) and (2), the only new condition is
satisfied by setting

f(”(a-k)u3 = 0,
Continuing thus, we have

f(l)(a-k)ul = f(z)(a-k)u2 Z eeee = f(s)(a-k)us = 0,

as a set of sufficient conditions for

f(s'J)(a-k)DJui =0
and hence for Bu

w w,=1
Let f(j)(a-k) = a J J - eees =K 8'2- k a =k

-k
J'J-la j2 Jj1 jo
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then the given relations determine a representation module

M of H(Ll.) -~ B with the basis

ul u2 . . . . . * us
a.u2 ° . . ‘ ) ° . au
awz-lu a'z"lu
2 * . 'y ° 'y g
w w
a u3 . ° . a us
L) [ X ]
w
s=-1
a us
w_ -1
a us 'Y

To exhibit a representation assigned by M to Ll’ let us fix
the basis in the above order. Then applying t ¢T to each of the
basis elements, we have

o= ) §oaa (b =128 (R(E) = (qy,(t)) ).

J

tauJ = (toa)uj + atuj = (1:_:;)u.1 + a(tuj), J = 2,3504,e8,
=Zi=lqij(t-a-')ui + aZ:LﬂiJ(t)ur
=Zi=1‘113(t§)“1 + qq 4(t)kyquy "'Z?.:Zqij(t)a‘ui'

tazuj = “9-2)“3 + (i)a(tg_.ud) + az(tuJ), 3= 253,00,8,

=) 119 40ta%)uy +((§)qu(te)klo s qu(t)kio)ul

2
+ (L Tpalteany +) 1, o (t)au,.
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Continuing thus the matrix representation of t can be determined

and i1t has the following form

R(t) Q' (te)  5Q'(ta®) .
Lty (lacte)
1
19(¢)
i ::IQ(tﬂ

where 3Q(t) is Q(t) with i rows from the top, and j columns
from the left,absent. Q'(t) is Q(t) with certain additions to
its elements. To determine the matrii corresponding to a,
multiply each basis element by a, using the relations

w w.,-1 2

J J
e uJ = kJ' -12 uJ + oee + kaa uJ + kjlauj + kJOuJ’

then a corresponds to

kjg 0 0 4.0
0
6 0 0..0
1
1
1

Thus , using the regular representation of a, we have generated

from Q a representation, Q2 say, of Ll. Notice that if Q is

faithful then Q, 1s also faithful since Q (t + k'a) = 0 only
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jf t = k'= 0. We further observe that our construction allows
us to assign one arbitrary eigen value to a, namely k. The other
eigen values are then k + C0; + CUy + oo + cnan,where Cy3Cp90e
e+eyC, Bre zero or positive integers whose maximum values depend

on the degree of the representation Q.

5 The generation of a representation(general case).

If L. of section 4 does not equal the radical of L, we can select

1l
a basis element b in the radical not in Ll and form the subalgebra

L2 is an ideal since

LoL, (¢ LoRCT, < T <L

2= 17
The representation Q2 of L

1Sy o

1 for an element t €T is triangular

for a choice of coordinates makimg Q triamgular, since the

matrices gQ(t) lie along the main diagonal and all elements

below these are zero. Since Q induces a nil representation on

T1 = LOLOR (T, the form of Q2w111 cause it to also induce a

nil representation on Tl. Hence we can repeat the procedure

of section 3, replacing Ll by L2, T by Ll, a by b, Q by Q2, B by M,

Tlremaining the same., With this repetition, we generate from

Qz a representation Q3 of L2
Continuing, step by step, we finally exhaust R. At this

stage we will have a representation, Qr say, of the radical R.

In order to extend Qr to L itself, we assume Q is invariant

under V, the semi-simple subalgebra of L, then we can prove
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Theorem 3.5. If T has a representation Q which, in

addition to inducing a nil representation on LoLnR, is
invariant uhder V, where L = V $ R, then Q'Z’ the representation

of L, generated by Q, is invariant under V,

1

Proof. We recall that Q is assigned by the module m and Q,
by M. Since § is invariant under V, we have an L-projective
representation C such that

C(v)oQ(t) = q(vot). (teT, vev)
In module terms
(vot)u = C(v)(tu) = t{C(v)u). (uem)

To prove our theorem it is necessary to define a linear
transformation Cz(v) of M such that

(voh)w = cz(v)(hw) - h(Cz(v)w) (hel,, WweM)

1
and furthermore the relations
f(l)(a-k)ul = f'(z)(a,-k)u.2 = eeee = f(s)(a.-k)us = 0,

must be preserved under Cz(v).

To achieve the latter, we observe that the following
change in the basis of m can be assumed to have taken place

at the time of constructing D.

Let m) consist of all elements U of m such that Q(d)u = 0,(d D)
then C(vi(Q(a)u} - Q(a)(c(v)u) = Q(vod), (uem

giving 0 - Qa)(c(v)u) = 0,

1)

and so C(v)uém , i.e. m_ is an F-module invariant under C(v).

1
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Let m, consist of all elements u of m such that Q(d)ue:ml.

2
Then C(v)(Q(d)u) - Q(d)(C(v)u) = Q(vod)u. (ueemz)

Since m, is invariant under C(v), this equation givea C(v)ue;ma,

1l
i.e. m, is an F-module invariant under C(v)e.

Continuing thus, we cam form an ascending series of modules
inveriant under C(v) which, since Q(d) is properly triangular,
will finally exhaust m, then

0=m0(mlcm2 seeseesCD =M . (Q_SS)

q

Notice that Q(dImJ m by definition, thus Q(ft:l)mJ (m

j-1 3-1°

We now choose & Wbasis ul’“2""’uhi Qf mlrand extend it by
uhl+l"”’uh2 to form a basis for m,, and continue so until the
final extension EETFL is a basis of m, This basis is suitable

for our purpose,

Let us define Cz(v) by the equation
Cy(v)w = C,y(v)) 5 oy (a)uy, (weM, p,(a) cF(a))
= (xZLlpi(a))ui + (Zi=1pi‘a))(°(’)“1)'

where v is the regular representstion of v with respect to L,

To show that the defining relations of M are invariant under
Cz(v), we recall that f(i)(a-k)uJ = 0 for all j<i..For the
relatlions

i
f( )(&-k)ui = 0, (i = 1,2’000’8)
we have
(1) 1
€ (amk)uy = (2t (a))u, + £01) (acie) (c(v)u
i) (1) 1
= (vof( (a=k))u, + f a-k
i ( )Eijj

s

5y (kyeF)
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é.F(a)f(i-l)(a-k)Q(Tl)ui + }:ikj

(p(a)el N (amk)) 3 jFuy 40

= 0, as required.

f(i)(a.-k)uj

To show the invariance of the representation assigned to L1
by M, it is sufficient to verify the invariance of (1) a and

(2) any teT,

(1) C,(v)(aw) - a(Cy(v)w) (weM)
= c,(v)(a) 3 py(a)uy = a(Cy(v)) 5 pi(a)y)  (py(a) € Fla))

= ) 9 _1(C,(v)(ap (a)uy) - a(C,(v)py(aluy)),
=) 5 alx(ep;(a))uy + ap;(a)(C(v)uy) - al(xpy(a))uy)- apy(a)(C(vIuy))
=z::i=l((70a)(Pi(a)ui) + a((vop, (a))u,) - a((vop,(a))u,))

= (voa)w, as required.

(2) Replacing a by t ¢T, a similar calculation gives

Gz(v)(tw) - t(cz(v)w) = (vot)w, as required.

By this theorem it is evident that if @ is invariant it
generates, step by step, an invariant representatiom of the
radical, the matrices of invarianse being defined at each step.
We can now show that an invariant representation of the radical
can be extended to the whole Lie algebra without a change of
degree. For convenience, let us take the invariant representation

of the radical to be Q and the matrices of invariance, which
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are assigned, according to theorem 1.2, to each element 4 of

L to be C(d). Then the matrices C(v), ve¢V, generate a Lie algebra V#

Theorem 3.6. The elements x of V* which annihilate Q(t), t <R,

the radical, form an ideal Z of Vv*,
Proof. Since x0Q(t) = 0, we have
(c(v)ox)oQ(t) = C(v)(xoQ(t)) - xo(C(v)oQ(t)) = 0 ~ xoQ(vot) = O.

Thus C(v)ox < Z and C(v)oZ2 (Z, as required.

Theorem 3.7. The algebra of residue classes V¥ - Z is

semi-simple.

Proof. For v',v" in V, we have
(C(vt)oC(v") = C(v'ov"))oQ(t) = (C(v')oC(v"))oQ(t) - C(v'ov")oQ(t),
=(C(v1)oQ(t))oC(v") + C(v!)o(C(v*)oq(t)) - Qv'ov")ot),
= Q(vtot)oC(v") + C(v')oQ(v"ot) ~ Q((v'ov")ot),

Q((v'ot)ov") + Q(v'o(v*ot)) - Q((v'ov")ot),

Q((v'pt)ov“ + v'o(v"ot) - (v'ov")ot) = Q(0) = O.
Thus C(vt)oC(¥") = C(v'ov")modz
and certainly kC(v') = C(kv')modZ2,
C(v') + C(v") = C(v' + v")modZ.
It follows that the mapping
v—C(v)mod2z
is a homomorphism of V onto Vﬁ - Z, Since V is semi-simple, the

kernel K of the mapping is semi-simple, and also V - K. Then
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V¢ -~ 2, being isomorphic to V - K, is semi-simple.

Theorem 3.8. If V¢ - 2 is semi-simple, it has a representative

algebra(an extension of the theorem of Levi).

Proof. By the theorem of Levi, V* = W R(V*), R(V*) being
the radical of V#. Since V* - 2 is semi-simple, Z (R(V*).
Consequently, W = W, 3 Wn2, where WNZ is an ideal of W. Thus
the difference algebra W - W 2Z has Wl as a representative
algebra. Also
W is a representative algebra of V* - R(V#*),

thus ¥, is a representative algebra of (V* = R(V¢)) - WaZ,

1

and then W, is a representative algebra of V¥ - Z,

1l

A8 & result of this theorem, for every veV, there is a
C'(v)eewl such that C(v) = C*(v)modZ. On replacing C(v) by

Ct(v), we have

CH(v' + v*) =C'(v') + C'(v"),
"C'(kv') = kC*(v'),
C'(vtov®) = C'(v*)oC'(¥v").
With this replacement and éetting C'(r) = ¢(r) = Q(r), reR,

C!' is an ordinary representation of L.

Remarks. We have now shown how, under certain conditions
a representation @ of an ideal T, occuring in the radical,
generates a representation of the radical and this representation

can be extended to the whole Lie algebra without change of
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degree. Moreover the construction of the representation is
such that it permits us to assign one arbitrary eigen value
to each basis element of the radical not in T.The other eigen
values differ from the assigned value by sums of integral
multiples of the characteristic roots of its regular representation,

the multiplicity being governed by the degree of Q.

This flexibility gives the construction the ability to
reproduce any indecomposable representation , in an algebraically
closed field of characteristic zero, as a component of a
representation the construction assigns to the Lie algebra. For
if ongagn indecomposable representation in such a field, it
induces on the radical a representation such that the eigen
values of any basis element not in T, differ only by sums: of
multiples of the characteristic roots of its regular representation.
On Tl a nil representation must be induced which is clearly
invariant under L. Taking T to be Tl and Q as fhe nil represent-
ation, our construction can reproduce the given cenditions but
not precisely, since more eigen values will be assigned to the
radical elements than the given ones. The possible extensions
of the representation to the whole algebra will include the
original extension, consequently our representation will include

the given representation as a component,

6. The theorem of Ado. Birl_chofIZ)ha.s shown that every nil-
potent Lie algebra has a faithful representation of finite

degree, namely the regular representation of the imbedding
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algebra modulo a certain invariant subalgebra. For a
suitable choice of basis this representation is propezly
triangular, and so is a nil representatiom., Using this result
we can prove the theorem of Ado, which states that any Lie algebra
over an algebraicelly closed field of zero characteristic has

a faithful representation by matrices of finite degree.

Let L be a Lie algebra over an algebralcally closed field
of characteristic zero. Let its maximal nilpotent ideal be T
and the faithful nil representation by the Birkhoff procedure
be Q. We have L = V 4+ R, where R is the radiecal of L and hence
contains T. Q is already a nil representation, and since
Tl = LoLaoR 1is nilpotent, Tl is contained in T and so Q induces
a nil representation on Tl. With the following theorem, all the

conditions are satisfied for determining a representation of L

from Q by our construction.

Theorem 3.9, Q is invariant under V.

Proof. We have that H(T) is a subalgebra of H(L). Also,
to veV there corresponds the derivation D(v) of H(L) defined by
D(v)(X) = vX =~ Xv (X «H(L)).
Since D(v)(t) = vt - tv = vote T
for all t in T, we have D(v)(T) < T and also D(v)(H(T)) CH(T).
Hence D(v) induces a derivation on H(T). Moreover, D(v) leaves
invariant the subalgebra S of H(T) generated by T,and so

leaves invariant S'. Hence D(v) induces a derivation C(v) of
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the hypercomplex system H(T) - s". The representation Q
is the regular representation of H(T) - s¥ with a suitable

value of the exponent w.

Since C(v) is a derivation of H(T) - s¥, for teT, ueH(T) - S',

we have
C(v)(tu) = C(v)(t)u + tC(v)(u),
= (vot)u + tC(v)(u),
(vot)u = C(v)(tu) - tC(v)(u)
or Q(vot) = C(v)Q(t) - Q(t)c(v) = C(v)oQ(t),

80 Q is invariant under V.,

The representation A of L determined from Q by our construction
is faithful over the radical R of L since Q is faithful. Let P
be the regular representation of L, then the representation
U =A3P is faithful. Consider the elements x in L for which
U(x) = A(x) % P(x) = 0. P(x) = O places x in the centre of L,
ies Lox = 0., The centre is nilpotent, therefore x ¢ T. Since
A is faithful over T, A(x) = 0 gives x = O, Hence U is faithful

proving Ado's theorem,
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