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Abstract

The deformation of the lranian platcau subject to the convergence of the Arabian
shield and Eurasian plate. s studied by the "thin viscous sheet” numerical model. The
lithosphere is approximated by a thin layer having a uniform initial thickness, and the
flow of material is assumed to be governed by a power law rheology.  The solutions
are calculated for velocity fields. crustal thickness distributions. stress and strain rate
fields. and topography variations. The cffects of the physical parameters (rheology.
density etc) are investigated through two non-dimensional parameters: n. the power faw
exponent in the constitutive relation betwceen stress and strain rate, and Argand number
Ar. which is a measure of the relative importance of the buoyancy force to the viscous
force. The lack of deformation in central Iran and the southern Caspian block. is
considered. by including lateral heterogencities in the rheology of the lithosphere, The
results show that heterogeneous models with non-Newtonian materials for n greater than
3and 1 < Ar < 10 can best approximate tectonic features of Iran. The models are
successful in providing reasonable agreement between the estimates of crustal thickness
and strain rates, obtained from seismic observations. and thosc predicted from the
theory. The topography pattern and the style of faulting in differcnt parts of the
plateau, are explained through the effect of boundary conditions and lateral

heterogeneities.

v



Résume

l.es défarmations subies par le platcau iranien. soumis a la convergence des
plagues arabique ¢t curasicnne. sont étudides a 'aide d un modéle numérique de type
"plaque finc visqueuse”.  La lithosphére est modélisée par une plaque fine dont
I"Cpaisseur est initialement uniforme et 1a rhéologic gouvernée par une loi de puissance.
Le modele permet de déterminer les champs de vitesse, de contrainte et de taux de
déformation. ainst que la distribution des épaisseurs crustales et les variations de
topographie. Lcffet des paramétres physiques (rhéologie. densité. etc...) est étudié par
I"intermédiaire de deux paramétres sans dimension: n. I'exposant de la loi de puissance
constitutive reliant contraintes et taux de déformation. et Ar. le nombre d”Argand. qui
mesure ['importance relative des forces de flottabilité par rapport aux forces visqueuses.
L absence de déformation dans les blocs d'Iran central et Sud-Caspien est prise en
compte par 'adjonction d hétérogeéneités latérales dans la rhéologie de la lithosphére.
Les modéles hétérogénes a rhéologic non-newtonienne pour n supérieur & 3 et Ar
compris entre 1 et 10 prédisent le mieux les caractéres tectoniques de I'lran. Ces

modéles conduisent a un accord raisonnable avec les épaisseurs crustales et les taux de
déformation dérivés des observations sismiques. La topographie et le type de failles
observés dans les différentes parties du plateau sont expliqués par I'effet des conditions

aux limites et d hétérogéneités latérales.
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Introduction

This study is concerned with the deformation of continental lithosphere in the
Iranian plateau. and makes use of the cquations governing the flow of a continuous
medium, to investigate the characteristics of such deformation. Plate tectonics describes
the structure of the lithosphere as a number of'rigid plates in relative motion. interacting
only at their edges. With this description. one could predict that ail of the deformation
must be happening on narrow bands on the common boundarics of the plates. In fact
this theory does provide a satisfactory portrait of the processes involved in the
deformation of oceanic lithosphere. Almost all of the deformation in the mid-occanic
ridges. takes place on zones of 10 to 20 km width to the sides of the ridge. However
deformation of the continents shows a dramatic difference from that predicted by plate
tectonics. The collision of continental plates leads to an enormous crustal deformation.
distributed over horizontal distances that far exceed the plate thickness. 1t produces
considerable amounts of crustal thickening (e.g. the Tibetan plateau with 70-80 km
thickness), and develops large scale positive gravity anomalies and scismic zoncs ol
diffuse nature. The distribution of topography and seismicity in two of the largest
continental collision zones. India and central Asia. and the Afro-Arabian plate and
Eurasia in the Mediterranean region. clearly shows that scismicity and crustal thickening
stretch up to 2000 km inland central Asia, and a belt of active deformation with a width
of 1000 km develops in western Asia (England & Jackson 1989).

The Iranian plateau as a part of this broad zone of continental
deformation, is a highly elevated region (with an average elevation of about 1.5 km),

located in the convergence zone between the Arabian continental mass and the Eurasian



plate. It is characterized by intense compressional movements. crustal shortening and
active taulting. and is considered as one of the most tectonically and seismically active
continental collision zones in the world (Berberian 19762). It is noticeable that like
many other collision zones. most of the deformation in the plateau. is taken up oy a
large number of reverse faults. rather than a few number of larger faults. These
simultancously active faults are distributed over the entire belt. indicating that the
dcformation occurs more or less uniformly throughout the region.

In order to explain the nature of the deformation of the continents. several
approaches have been made. One way which attempts to keep the discussion in the
framework of plate tectonics. considers the deformation as the result of interaction of
a number of small rigid plates or "micro-continents”.  Studies of seismicity and
deformation of continental arcas show that. althougzh deformation is scatiered over some
broad zones. this distribution is not homogencous. There are regions such as the
Acgean sea. central Turkey. central Iran and the Tarim basin, which have less seismic
activity and lower and flatter topography than their neighbouring regions. One may
presume these relatively stable blocks as the rigid microplates. which their function is
to take up the strain as they move relative 1o cach other in response to the forces arising
at their cdges. However this approach has many disadvantages. The boundaries of
these blocks arc difficult to determine. and as England & Jackson (1989) point out in
the case of the Mediterrancan and the Middle East, the relative motions of them bear
no obvious relation to those of the major plates bounding them. i.e. the Eurasian and
Afro-Arablan plates. Furthermore. it is impossible to dctermine the style of the
deformation from relative motions of the microplates (England & Jackson 1989). A
good example is the deformation in Iran. The convergence between Arabia and central
Iran is accommodated mainly by thrust faulting along the Zagros with northeastward

direction. While the convergence between central Iran and Eurasia in the same

()



direction. 1s controlled by a combination of thrusting and strike-slip motion.  Although
the direction of relative velocities predicted from plate tectonices are the same in the
Zagros and northeastern Iran. they do not unigquely determiine  the steain within the
deforming zonecs. Another ebjection to this approach is that, the ascismic regions may
not always remain strong during the period of deformation (England & Jackson 19893,
For instance. the southern Acgean sea and the Tibetan platean in the present day look
largely ascismic. Nonetheless in the past few million years. both have experienced a
significant amount of deformation. 1If a region is relatively strong now. it does not
necessarily mean it was initially strong. or it will remain strong. Many factors such as
temperature variations during the deformation. can affect the strength of a part of the
lithosphere.

The observations mentioned above, have pointed to a new way of viewing the
deformation in the continental regions. The new approaches assume the strain rate and
not the stress, as the basic constituent controlling the motion of the material, and treat
the deformation in terms of mechanics of a continuous mediun. subject to forces and
velocities applied at the boundaries, as well as forces arising within the interior. The
investigations carried out in the past 10 to 15 years have demonstrated that, the
continuum approaches are capable of providing a satisfactory description flor the difTusc
nature of continental deformation. and producing acceptable quantitative estimates of
the stresses and rates of deformation. involved in the collisional precesses.

It is in pursuit of the above discussion that this study has been conducted: to
investigate in the context of continuum mechanics. the effects of the forces arising {rom
the convergence of Arabia on the tectonics of Iran, and to assess the role of internal
processes such as the development of buoyancy forces and the presence of lateral

heterogeneities on the evolution of the deformation within the Iranian lithosphere.



Chapter 1

Geology and tectonics of Iran

I.1 A brief history of geological and tectonic evolutior of Iran

The Iranian plateau is considercd as a part of the Alpine-Himalayan orogenic belt
(Figure 1.1). Despite the high rate of recent tectonic activity. the plateau has relatively
simple history of deformation. and geological features are mostly young. Geological
evidence (Takin 1972, Stdcklin 1974, Sengdr & Kidd 1979. Berberian & King 1981)
suggest that during the Paleozoic era, southern and central parts of Iran along with some
other regions in the Middle East. formed a part of the northern edge of the Afro-
Arabian continent, bordered by the Paleo-Tethys ocean in the north. While northern
Iran and the Caucasus were to the north of the Paleo-Tethys. as a part of Eurasia. The
southern Caspian oceanic block might be a relict of this ocean.

During the Hercynian orogeny in the late Paleozoic-early Mesozoic. when the
ocecanic crust between Gondwana and Eurasia was being consumed. central Iran and the
neighbouring regions travelled across the ocean as continental fragments and connected
themselves to the southern margins of Eurasia, leaving the Zagros region behind to
become the northern shelf of the Arabian plate. As a result. the tectonic style of Iran
during this period was divided into two regions; in the north the subduction of the
Paleo-Tethys underneath Eurasia was taking place, although the continental fragments

might had been separated from Eurasia until the middle Cenozoic (Sengér & Kidd



Figure 1.1 A map showing the major tectonic units of Iran and adjacent regions

discussed in the text (after Berberian 1981).
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1979). and in the south the structural featurcs were dominated by extensional
movements and opening of a rift along the present day " main Zagros thrust line .
Later in the Triassic. this rifting developed to what is trequently referred to as, the "
Neo-Tethys ocean ".

Later probably in the middle Triassic. the subduction shitted from north to south
of central Iran and continued during the carly Alpine orogeny 0 the end of the
Mesozoic. The result was underthrusting of the Neo-Tethyvs ocean beneath central Iran
(possibly along the main Zagros thrust). formation of a metamorphic belt (the Sanandaj-
Sirjan belt) and exposition of an ophiolitic belt in the southern margin of central Iran,
and numercus phases of extension which ultimately caused the thinning of the crust in
central Iran. During the samc period when central Iran was subject to unstable
sedimentary environments. the Arabian continental shelf was the site of progressive
subsidence, and a uniform thick. mainly carbonaceous marine sedimentation (Berberian
& King 1981).

The northward drift of the Afro-Arabian plate eventually led to the closure of
the Neo-Tethys ocean at the end of the Cretaccous (65 muy. ago). and a new
compressional environment bezan to dominate the whole region. The onset of the late
Alpine orogeny was in the laie Miocene. It was accompanied by the continental
collision of Arabia and Asia and the main Zagros thrust is belicved to be located on the
boundary of the two plates (Stocklin 1968, Falcon 1974). Since that time, Iran has
undergone a progressive phase of crustal thickening and shortening by lolding and
reverse faulting. The deformation reached its peak during the late Pliocene-carly
Quaternary, when the mountain ranges gained a considerable height. In fact the
Cenozoic features comprise most of the geological outcrops in Iran. The convergence
between Arabia and Asia is still taking place at a rate of 4-5 cmy™' (LePichon 1968,

McKenzie 1972), and crustal thickening currently has an estimated value of 1 mmy™



{Snvder & Burazangi 1986). The only place in Iran where occan-continent convergence
is still happening is the Maxran coast in the southcast (Farhoudi & Karig 1977.
Kadinsky-Cade & Barazangi 1982). It is separated in the west from the Zagros
collision zone by a northward trending structural lincament called "the Oman line’.
This subduction zone is associated with a post-cretaccous accretionary prism with an
cast-west trend. and the oceanic slab of the Oman sea is subducting northwards with

a rate of 5 cmy™' (Farhoudi & Karig 1977. Berberian 1981).

1.2 Active tectonics and recent scismicity

The convergence between the rigid blocks of Arabia and Asia. is the most
prominent factor in the active deformation of Iran. The Iranian plateau is a relatively
weak zone. entrapped between the two blocks. The fault plane solutions of earthquakes
(Figure 1.2) indicate that most of the seismic deformation is taking place by reverse
faulting along the mountain ranges (McKenzie 1972, Berberian 1981). The dominance
of reverse faulting indicates that in Iran. unlike many other continental regions such as
central Asia and western United States, sideways motion away from the convergence
zone ts almost impossible due to the presence of rigid boundaries on the wesiern and
castern sides of the deforming zone, and uplifting and thickening is the major style of
deformation (Berberian 1981). A less amount of strike-slip motion allows minor
sideways movement of material along the strike of the Zagros in northwestern Iran and
castern Turkey. and some structural rotations in eastern Iran (Jackson & McKenzie
1984).

Studies of recent as well as historical seismicity in Iran and in the Middle East
(Nowroozi 1976. Berberian 1981, Ambraseys & Melville 1982, Jackson & McKenzie

1984). show that seismic activity is not limited to some small number of active faults



Figure 1.2 Map of active faults and selected fault plane solutions in Iran and
neighbouring regions (after Berberian 1981). The abbreviations, Do, Db and Ku refer

to Doruneh, Dasht-e-Bayaz and Kuh-Banan faults in eastern Iran, respectively.
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Table 1.1 Rotation poles and the rates for the relative motion between major aseismic

blocks (Jackson & McKenzie 1988).



Latitude Longitude Rate®/10°yr  Source

Eurasia-Turkey 14.6 Ko 6.43 Jackson & McKenne (1981)
Eurasia-Africa 29.2 -23.5 1.42 Chase (1978)
Eurasia-Arabia M9 7.2 4.93 Chase (1978)

Africa=-Turkey 9.3 4.7 5N Jackson & McKenzic (1984}
Arabia-Turkey ~20.6 68.9 340 Jackson & McKenzic (1984)
Iran-Eurasia 7.5 65.8 5.60 Jackson & McKenzie (1984)
Arabia-Iran s 39.8 9.55 Jackson & McKenzic (1984)
Eurasia=-Adriatic 46.0 10.2 unknown Anderson & Jackson (1987)
Acgean-Africa 45.0 18.0 -23.10 Le Pichon & Angelier (1979)




or narrow bands of few Kilometres in width on the boundaries of rigid plates, but rather
is spread out over the whole region.  Nevertheless this distribution s not quite
homogencous. A closer look at the seismicity maps. reveals that the carthquakes mostly
occur within the belts of 100-400 km wide such as. eastern Turkey. the Caucasus,
Zagros., Alborz, Kopet Dagh and castern Iranian mountains, which in turn surround less
deforming and less seismically active arcas of central Turkey. central Tran, and the
southern Caspian block. The relatively high rigidity of these blocks allows one 1o
describe their motion by rotations about poles. Table 1.1 (Jackson & MceKenzie 1988)
gives the rotation poles and rates of relative motion for the major aseismic blocks in the
Mediterranean and the Middle East.

Based on seismicity. topography and deformation patterns. iran can be divided
into several tectonic elements. In the following. scismotectonics and active deformation

of each of these clements is briefly discusscd:

1.2.1 The Zagros mountains

The Zagros range is located on the convergence zone of the Arabian shicld and
central Iran. It has a strike of roughly N45°W and is extended from castern Turkey in
the northwest to the strait of Hormoz in the south of [ran. The estimated total thickness
of the sedimentary column in the Zagros is 6-12 km. including a thick layer (about 1
km) of infra-Cambrian evaporitic deposits at the bottom (Berberian & King 1981). The
Zagros main thrust, a northeastward dipping plane., marks the northern margin of the
Arabian continental shelf.

The Zagros mountains is the most active seismic zone of Iran, and much of the
convergence between Arabia and Eurasia is taken up in this part of country. Scismicity

maps of Iran (e.g. Berberian 1976b. Ni & Barazangi 1986) show that carthquake

10



epicentres in the Zagros are distributed over 2 200-300 km wide zone along the belt.
Scismicity s immediately cut oft in the northeast of the main thrust. Also there is a
considerable quicscence of carthquake activity in the cast of the Oman line. which
separates the Zagros from the Makran region (Jackson & McKenzie 1984). In general.
seismicity increases from northwest to southeast. Most of the earthquake mechanisms
in the central and southeastern Zagros. are indicative of shortening of the crust
perpendicular to the strike. along many high angle (30°-6C") reverse basement faults
{Berberian 1981, Jackson & Fitch 1981). except for the region near the strait of Hormoz
where the penctration of the Musandam peninsular. a2 southern promontory of the
Arabian shicld. in to Iran. causes a movement of material along the strike of the
mountain ranges (Jackson & McKenzie 1984). In the northwestern Zagros. fault plane
solutions show a right lateral strike-slip motion along an active fault zone which follows
the trace of the main Zagros thrust (Jackson & McKenzie 1984). The estimated value
of slip rates in this part of the Zagros is about 1.5 cmy™. The slip rates increase
southeastward and reach a maximum value of about 3 emy™” in the southem end
(Jackson & McKenzie 1984).

All the work done on the seismotectonics of the Zagros (e.g. Nowroozi 1976.
Jackson & Fitch 1981, Jackson & McKenzie 1984, Ni & Barazangi 1986) suggest that
the depth of the seismogenic layer is limited to 20 km and majority of the earthquakes
occur below the sedimentary cover. There is no substantial evidence for subcrustal
scismicity in the Zagros. The relative steepness of the fault planes and their similarity
to normal faults in regions of crustal extension. has led some of the workers (e.g.
Jackson et al. 1981) to argue that a considerable portion of the seismic activity in the
Zagros is taking place on some reactivated reverse faults. which during the past crustal
stretching phases in the Mesozoic. were acting as normal faults,

Studies of seismic strain rates on the historical and recent earthquakes

il



(Ambraseys and Melville 1982, Shoja-Taheri & Niazi 1981, Jackson & MceKenzie 19SS,
Ekstrém & England 1989} show that the ship vectors caleulated from carthquake data
are less than 10% of those predicted by plate tectonic theory. In other words, seismicity
in the Zagros is responsible for as little as 10% of deformation.  The rest is being
accomplished by creep processes. This evidence along with the lack of surtace Lwlting
in the Zagros (Berberian 1981) and presence of a salt laver at the top of the basement
suggest that. this plastic laver is probably acting as a detachment surtace. separating the
deformation of the basement from that of the overlving sediment.  Therefore the
tectonic stresses produced in the basement do not efficiently transmit to the upper
layvers. and while the basement undergoes brittle deformation. the sedimentary column

deforms by aseismic foiding.

1.2.2 Northwestern Iran and the Caucasus

In the Caucasus. major geological structures have a northwest-southeast trend.
The region is bounded by the oceanic crusts of the Black sca in the west and the
southern Caspian sea in the east. Seismicity in the Caucasus most of the time, follows
the regional trends. The majority of the earthquakes have thrust mechanism with north
or slightly northeastward dipping nodal planes. Some lateral motions along the strike
of the mountains at both ends of the region as inferred from fault plane solutions,
suggest that the Caucasus might be overriding the Black sca and southern Caspian
oceanic slabs (Jackson & McKenzie 1984). The seismic zone of the Caucasus
continues to southeast across the Caspian sea into the Kopeh Dagh mountains.

In northwestern Iran. most of the available focal mechanisms indicate right
lateral strike-slip motion. with some normal faulting. Jackson and McKenzie (1984)

conclude that, this kind of deformation is a result of the castward expulsion of eastern



Turkey away from the collision zone in central Turkey. which extends into northwestern
[ran. ‘Therefore northwestern [ran has a castward motion relative to Eurasia. A part of
this region shows a lack of seismicity both in historical and recent record. Some
authors (c¢.g. Jackson & McKenzie 1984) regard this area as onc of the aseismic regions
in Iran.

Much of the well recorded carthquakes in northwestern Iran and the Caucasus.
have focal depths shallower that 50 km. and no reliable evidence supports the existence
ol subcrustal seismicity. Also calculations of seismic strain rate tensors (Jackson &
McKenzic 1988) show that like the Zagros. most of the deformation in the Caucasus

is taking place ascismically.

1.2.3 The southern Caspian block

Deep seismic studies (Berberian 1983) suggest that in the southern Caspian sea
a relatively thick (13-25 km) column of sedimentary material directly overlies a basaltic
basement of 15-20 km thick. The evidence for lack of granitic layer is also supported
by the efficient propagation of s, and poor propagation of L, waves across the basin
(Kadinsky-Cade et al. 1981). The southern Caspian is a relatively stable block with
feeble seismicity and minor deformation, surrounded by active fold belts and reverse
basement faults. It is currently underthrusting towards south beneath the northern
ranges of [ran. It is believed (e.g. Berberian 1983) that, it might be a piece of an old
occanic crust, perhaps as old as late Paleozoic. and has survived the convergence of the
Afro-Arabian plate towards Eurasia. Based on fault plane solutions in the Caucasus and
the slip vectors in the Alborz and Kopeh Dagh. Jackson & McKenzie (1984) have

calculated a northward motion of the southern Caspian relative to Eurasia.



1.2.4 The Alborz and Kepeh Dagh mountains

The Alborz and Kopeh Dagh mark the site of the crustal compression ol central
Iran against Eurasia. Scismicity in these regions is not as intense as it is in the Zagros,
Nonctheless a great amount of shortening and thickening is currently taking place in
these arcas. The Alborz mountains is an arcuate range. bordered by the southern coast
of the Caspian sca. Deformation in the Alborz is characterized by serics of thrust
faulting. In the northern part of the range. faults are dipping southward. possibly
indicative of underthrusting of the southern Caspian block. In the southern sections the
reverse faults dip northward. as a result of compression agamnst the northern boundaries
of Iran. In the east of the Alborz. fault plane solutions indicate some left lateral strike-
slip mechanism (Jackson & McKenzie 1984). Although surface faulting in the Alborz
is more visible than it is in the Zagros. fault planes are still difficult to be determined.

The structures in the Kopeh Dagh have a northwest-southeast trend and are
bordered from the stable block of Turkamenistan in the north. by a fault zone called
"the main fault zone" (Tchalenko 1975). Seismicity is diminished immediately to the
northeast of this fault zone. Most of the fault planc solutions indicate thrust faulting
with left lateral slip in the west. and right lateral slip in the cast.  All this along with
the topographic variations. suggest that northeastern Iran is involved in a considcrable
crustal shortening and thickening in the northeast direction.

The predicted magnitude of the slip rates from poles of rotations in northern
Iran is about 1-1.5 cmy”. Comparison of this velocity with those calculated from
seismic moment release rates (Jackson & McKenzie 1988, Eksirom & England 1989)
implies that most of the deformation in thc Alborz and Kopeh Dagh, is occurring

seismically.
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1.2.5 Central and castern Iran

Seismicity in central Iran is sporadic and discontinuous. Historical records
(Ambrascys & Melville 1982) also show a relative quiescence of earthquake activity in
this part of country. Most of the cpicentres are located along the mountain bordering
reverse faults (Berberian 1981). The major carthquakes in the northern part of central
Iran are involved in thrust {aulting and left lateral strike-slip with a northeastward slip
veetor (Jackson & MceKenzie 1984). These carthquakes are associated with several
major left lateral strike-stip faults such as Dorunch and Dasht-¢-Bayaz faults (see Figure
1.2). which run from cast to west. To the south of these faults, is another system of
faults striking north-south. These faults are subordinate to the first set and do not
intersect them.  The north-south trending faults extend to the Makran region in the
southeast and dominate the morphology of eastern Iran. They mark the boundaries of
the Lut block. a relatively asecismic region in eastern Iran. sometimes considered as a
small micro-continent in the litcrature (e.g. Nowroozi 1976, Arkani-Hamed &
Strangway 1986). Some of the north-south trending fualts such as Kuh-Banan fault (see
Figurc 1.2). are active and have historical record of activity (Ambraseys & Melville
1982). Most of these faults have a dominant right lateral sense of motion with some
thrust faulting towards ecast.

Scismicity decreases dramatically in the east of Iran-Afghanistan border (Shoja-
Taheri & Niazi 1981) and the structures in eastern Iran are directed towards the south
as Iran is being compressed against the western Afghanistan stable block.

The combination of a dominant east-west left lateral faulting with a subordinate
system of north-south right lateral faults in northeast and eastern Iran. and thrust
faulting with northwesterly strike in northeastern Iran. has led Jackson & McKenze

(1984) to propose that, the eastern parts of Iran are experiencing some structural



rotations as Iran is being compressed at its northern and castern boundaries,  They
suggest that the rotation results in a fateral movement of material away [rom the
compression zone towards south to the Makran region on the strike-slip faults, The
possibility of structural rotations in castern Iran is also supported by paleomagnetic data
(Conrad et al. 1981). These data indicate an anticlockwise rotation of 90" since the

Miocene in the southern Lut block.

1.2.6 The Makran region

In contrast to the Zagros. the Makran region shows a feeble and scattered
seismicity. The focal depths of carthquakes increase from very shallow ( < 10 km) at
the coast of the Oman sca. to intermediate depths (80 km) inland (Berberian 1981).
There are only two earthquakes located at depths greater that 100 km. Nevertheless this
few evidence of intermediate seismicity has not prevented some workers (e.g. Farhoudi
& Karig 1977) from proposing a subduction model for the Makran. The sporadic
nature of the seismicity has been accounted for the very shallow angle (about 17 as
proposed by Farhoudi & Karig 1977) of the subducting slab. Fault plane solutions
suggest two different types of earthquakes (Berberian 1981). The first group is shallow
earthquakes associated with east-west trending and northward dipping reverse faults,
which characterize the deformation of the scdimentary cover. The second group is
intermediate earthquakes accompanied with normal faulting produced during the
deformation of the subducting oceanic crust. The predicted slip vectors in the Makran

are directed N10°-15°E. with a magnitude of 4 cmy™ (Jackson & McKenzic 1984).
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Chapter 2

Modelling the continental deformation

2.1 A bricf introduction to the continuum approach

One of the first attempts in continuum medium modelling of the deformation.
taken by those working on the Himalayan collision zone (e.g. Tapponnier & Molnar
1976). was to compare the patterns of strain with the slip line fields produced during
the indentation of a rigid-plastic thin plate. by a rigid indentor. Specifically, central Asia
was taken as the thin plate with a highly nonlinear viscoplastic rheclogy, and the Indian
subcontinent was assumed as the indentor. One of the main arguments of this model
was that, the major strike-slip fault zones in the central Asian collision site, correspond
to the slip lines developed in the deforming plate. This model assumed a plane
horizontal strain condition and the deformation was controlled by the regional stress
fields applied by the indentor.

Although this approach can explain the large scale deformation and is relatively
successful in matching the calculated slip lines with the orientation of major faults, it
has many limitations, as England & McKenzie (1982) and Tapponnier & Molnar
themselves have mentioned. First. in the regions of excessive crustal thinning or
thickening. the condition of plane horizontal strain fails. since considerable amount of
deformation takes place in the vertical direction. Second, forces due to the gravitatonal

potential differences between columns of lithospheric material. have no role in this
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model.  Third. the calculated slip lines are appropriate only for the beginning stages of
indentation.  They change direction as the deformation proceeds.  Furthermore this
model predicts a uniform stress field. while the nonuntform distribution of the fault
zones in central Asia, is indicative of existence of a nonunilorm stress {icld.

New approaches (c.g. Bird 1978, Bird & Piper 1980, England & MceKenzie
1982, England & Houscman 1986. Vilotte et al. 1982, 1984, 1986) cmphasize on the
importance of the kinematic constraints, in the deformation of continents, and reason
that the deformation is controlled by strain rate and not stress. These models take the
advantage of numerical techniques. 1o include the effects of crustal thickness variations,
buoyancy forces. different rheologics and more realistic boundary conditions.  These
techniques have been significantly successful in providing reasonable descriptions for
deformational processes in the continents. both quantitatively and qualitatively. ‘The
thin viscous sheet model essentially developed by Bird & Piper (1980). England &
McKenzie (1982). and Vilotte et al. (1982, 1984, 1986). is onc of the most successtul
of these. This model has been able to carry out quantitative mcasurcments on stress
and strain rate fields in the Himalayan collision zone., with results which are fairly in
agreement with the observations. In the current study. this model has been taken as a
basis to investigate the deformation history in the Iranian plateau. In the following. the

mechanical formulation of the thin viscous sheet model is presented:

2.2 The thin viscous shect model

The fundamental idea of the thin viscous sheet model is that the deformation of
the continents, is the response of a viscous medium to the forces applied at its
boundaries. and to the buoyancy forces arising within the medium from elevation

contrasts. A quasi-three-dimensional plane stress condition is adopted and buoyancy

18



forces are taken into account by allowing strain in vertical direction. The buovancy
forces are halanced against the ambient stress field deforming the viscous medium. The
numerical approach permits the calculation of the time dependent deformation. stress
and strain rate ficlds and the crustal thickness development in time. By applving
different stress-strain rate constitutive laws and different viscosities, the effect of
rheology on the deformation can be studied. Also the relation between the calculated
stress, strain and strain rate at cach stage of deformation. with the styles of the observed
discontinuous dcformation can be investigated. A detailed description of the thin
viscous sheet model is given by England & McKenzie (1982, 1983). In the following.

a summary of the assumptions and formulation of the model is presented:

2.2.1 Assumptions

1. The lithosphere is approximated by a thin sheet. with a horizontal expansion
of at least ten times the thickness of the plate, overlyving an inviscid medium. This
assumption is based on the fact that the lithosphere is underlain by an asthenosphere
much weaker than itself. As a result. the shear stresses on the top and bottom of the
sheet are assumed to be negligible.

2. If the gradient of crustal thickness, i.e. the topography gradient is small, the
vertical variation of horizontal velocity within the thickness of the
lithosphere will be insignificant.

3. The deformation of the lithosphere is assumed to be governed by rheological
properties of its strongest portion. presumably the upper mantle or the lower crust.
Therefore the discontinuous behaviour of deformation of the upper crust is ignored.
The reasons for neglecting the role of faulting in the deformation are a) the nature of

the continuum approach does not allow us to take into account the brittle deformation
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of the lithosphere and b) although faults are outstanding features of the surtace of the
carth, fracturing is restricted to the upper 20 km of the crust.  We assume here that
faulting in the upper crust passively follows the ductile deformation in the decper parts.

4. A few reliable measurements on the rheological propertics of the lithospheric
matcrial are available (Goetze 1978). Nevertheless this little information suggests that
the upper mantle is probably the strongest part of the lithosphere. under the temperature
and pressure conditions existing in the collision zones. Hence by accepting a vertically
averaged over the thickness of the lithosphere, rather than a detail rheology. we assume
that rheological properties of the lithosphere is controlled by those of olivine, the
dominant constituent of the upper mantle. Studies on the deformation of the carth
materials at laboratory scales (e.g. Goetze 1978) show that steady state creep of most

materials obeys a law of the form:
¢ = C(o, - a,)"exp (-Q/Rd) 2.1

where € is the strain rate. C. Q and n are experimentally determined constants of
materials, ¢, and o, arc the greatest and the least principal stresses. R is the gas
constant and © is the absolute temperature. By vertical averaging on material propertics

and the deviatoric stress and strain rate. a more uscful constitutive law is obtained:

_ > (lin=1) « 2.2
Ty = BE &;

where B represents all temperature dependent terms in equation (2.1). throughout the

lithosphere. and 7; and £; are the components of the deviatoric stress and strain rate

tensors, respectively. The strain rate tensor is defined by:

. _ 1, 9w Oy ) 23
T3 &

where v; is the component of velocity vector along the ith coordinate axis. E in



equation (2.2) is the sccond invariant of the strain rate tensor:

E - (&,8)" 2.4

Equation (2.2) is the constitutive relation between stress and strain rate. For Newtonian
materials n is unity, and viscosity is constant and strain rate is proportional to stress.
When n is greater than unity. the material is called non-Newtonian or power law. and
viscosity (= BE'"""") is strain rate dependent. In most geological situations where
condition of shear thinning holds. viscosity decreases with increasing stress. and the
flow of material tends to concentrate in the regions of highest stress.

5. The flow of the material is considered to be incompressible in three

dimensions;

v.u = g, * Eyy + e = 0 2.5

ir which u is the velocity vector.

2.2.2 Mathematical formulation

Because of very high viscosity of the lithosphere. the acceleration term in the
force balance equation is negligible. and the components of the Navier-Stokes equation

become:

do do do,

XX vX
ox dy oz
do do do,

o, 2w, Ty oo 2.6
ox dy az
do,, do,, do,

= - =+ 2= = [+F4

ox ay az
where o is the stress tensor. p is the density and g is the gravitational acceleration.

With the assumptions of zero shear stress at the top and bottom of the sheet, and
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negligible topography gradient at the surface. gradients of o, and o, are negligible and
the third component of cquation (2.6) will reduce to:

do_.

oz

= pg. 2.7

indicating that o, is a principal stress. and equal to the lithostatic pressure within the

lithosphere.  The stress tensor is defined by:

_ _ )
9, = Ty 6,.J.P 28

where 1;; are the ¢lements of deviatoric stress tensor and P = -%(o + 6,, + 6,,) is the
pressure, It is assumed that the condition of isostatic cquiltbrium holds for the crustal
thickness variations. Figure 2.1 shows a sketch of the lithosphere.  Below the depth of
compensation the horizontal gradient of o,, is taken as zero. At the base of the
lithosphere (z = 0). o, is chosen to be equal to -P, (compressional stress is assumed to
be negative). The top of the lithosphere having crust. is at a level of z = L -+ h, where
L is the thickness of the lithosphere without crust. Normal stress at the top is zero.

Equations (2.7) and (2.8) vield:

~ =

o.=t.-P=g f P pdz + f2,¥). 2.9

Using the conditions;

0::(2 =0) = -PO’

2.10
o.(z=L+h) =0,

and isostatic equilibrium. the normal stress at the basc of the lithosphere is given as:

Lk
fxy) = -P, = -g[ " pdz = -p,Lg. 2.11

Substituting for ¢ in the first two of equation (2.6) from equation (2.8) yields;

(%
to



Figure 2.1 A sketch of vertical structure of the lithosphere.
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All the z-dependent terms are omitted since 6, =6, =6, =6, = 0.
The next step is to adopt a vertical averaging over the thickness of the
lithosphere. of the pressure and deviatoric stress. Using equations (2.9) and (2.11). the

averaged pressure p,, . is obtained as:

P =T = P - [ gt [ pa 2.13

ave 34 P L+hdo

where T,, is the average of normal stress. The condition of isostatic equilibrium gives:

h ==s(1 -p.fp,) 2.14

with p, and p,, as the crust and mantle densities respectively. and s is the crusial
thickness. With the help of equation (2.14) and assuming h < L. equation (2.13) after

dropping the subscript and the bar from P and t,, becomes:

[&]
H

[d
th

Pez -+ 8p.s7(1 - plpn) | 8Pl
= 2L 2

Putting for t; and P in equation (2.12) from equations (2.2) and (2.15) and using the

continuity equation (2.3) vields:

a - n- - a o n- - .
_[BE(” l)cnp] - a_x_[BE(” 1)(exx+ e_v}‘)] = gpcs . 2.16

axn
a,p=1,2

with summation convention over the repeated a and f indices. The right hand side
represents the horizontal gradients of forces due to the weight of material. and the terms

in the left hand side. show the gradients of forces arising from the ambient strain rates.
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Equation (2.16) can bhe written in the non-dimensional form using the normalization

factors:
(x'.s) = (x.8)/L. w =ufu. ot =1L, .17

where t1s time and u, is a characteristic velocity. taken o be the collision velocity.

The final non-dimensionalized force balance equation is:

5, dx, v ax )

-.i[é(”"-”éau] - BEMmIGE g 3] = Ars s €.f - 1.2 218
where the Argand number. Ar. is defined by:

Ar

- ge L(1 - po_/p,)

2.19
B(u,/L)""

which signifies the relative importance of buovancy forces duc to crustal thickness
contrasts. and viscous forces required to deform the medium.

Equation (2.18) gives the spatial variation of velocity field at cach instant of
deformation. Once the velocity ficld is determined. the temporal variation of crustal

thickness can be obtained. using the non-dimensionalized continuity equation;

85 _ -V.(su). 2.20
ar

Equation (2.18) shows that. for a given set of boundary conditions. the flow of
material is controlled by two factors: the exponent n in the power law rheology. and the
Argand number Ar (England & McKenzie 1982). When Argand number is small, c.g.
the viscosity of the lithosphere is large. deformation is controlled by the kinematic
constraints imposed at the boundaries. On the other hand. large Argand number
indicates that the lithosphere is weak, and it can not sustain apprcciablc; crustal

thickness differences.



2.2.3 The results of the model in central Asia

The formulation mentioned above was used by several authors to model the
history of deformation in the collision zone of central Asia. since the beginning 30-40
m.y. ago. In all of these works velocity field. principal stress and strain rate fields. and
crustal thickness distributions at various stages of deformation for different sets of
boundary conditions and rheologies have been calculated. England & Mckenzie (1982)
carried out finite difference technique on geometries of fixed boundaries. Houseman
& England (1986) and Vilotte ct al. (1984.1986) used finitc element method with more
realistic boundary conditions. by choosing a moving boundary. as an effect of a rigid
indentor. Also. the effect of lithospheric heterogeneities was studied by Vilotte et al.
(1984. 1986) and England & Houseman (1985). The main achicvements of these
experiments can be outlined as follows:

- All the models have been successful in simulating the diffuse nature of the
deformation. The calculated crustal thicknesses span over regions with dimension at
least as great as the collision boundary.

- The significance of buoyancy forces in the flow even when the lithosphere is
capable of supporting large shear stresses is confirmed. For small Argand numbers, the
deformation tends to focus near the influx boundary. producing large elevation
contrasts. While for large Argand numbers. the influence of buoyancy forces increases.,
and deformation shows a more diffuse nature and extends to greater distances away
from the indenting boundary. producing smaller elevation contrasts. For Newtonian
materials. the scale of sideways flow exceeds the dimension of the influx boundary,
while in the case of power law materials, the flow is more restricted and its lateral
extension is comparable to the size of the indentor. The models predict that a power

L]

law material of n equal to 3 or larger. and Argand number between 1 and 10 can
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approximate the present day tectonic settings and crustal structure in central Asia,

_ The values for stresses and strain rates obtained in these experiments, are in
accord with those obtained from other observations in the collision zones.

_ These models also notice the development of the large along-strike extensions
in the regions of substantial crustal thickening, a phenomenon which seems w0 be g
prominent feature in the last stages of detormation of the Tibetan plateau.

Before proceeding to model the deformation of Iran, 1 tested the continental
collision of central Asia. with the gcometrics and boundary conditions used by England
& McKenzie (1982, 1983) and Houseman & England (1986). using the computer
program | designed. The results agree with those of the above mentioned authors to
better than 5 percent. In Figurc 2.2 the velocity ficlds and crustal thickness
distributions for some of the calculations. carried out for the model of Houseman &

England (1986). are illustrated.



Figure 2.2 Plots of velocities and crustal thickness distributions after 40 m.y. of
deformation in Asia, calculated for the models given by Houseman and England (1986).
The dimension of the box is 5000 km in each direction. The position of the indenting
rigid plate is drawn in the lower left corner of the box. (a) velocity field for a model
with n = 1. Ar = 1. (b} crustal thickness distribution forn = 1. Ar =1, (c) velocity
field for n = 3. Ar = 1. (d) crustal thickness for n = 3. Ar = 1. (¢) velocity field for

n = 3. Ar = 3. (f) crustal thickness for n = 3. Ar = 3.
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Chapter 3

Numerical modelling of deformation in the Iranian plateau

3.1 Initial assumptions

The Iranian plateau is considered as a nearly wedged shape piece of lithospheric
plate, located in the convergence zone of the Arabian shield and Eurasian plate. All the
numerical studies have been restricted to the investigation of deformation of Iran during
the Himalayan-type collision of Arabia and Eurasta, spanned from the Miocene period
to the present day. a time interval of 15 million years. It is assumed that the
deformation is exclusively controlled by the northeastward motion of Arabia in
southwest.  Although the importance of all the pre-Neogene deformations is quite
cvident in the geology of Iran, due to insufficient information on the structure of the
crust in the past periods of time. and also to avoid complexity in the models, all the
previous orogenic phases have been ignored. and the lithosphere is modelled as a thin
flat plate having a uniform initial crust on top. The crust is assumed to be in isostatic
compensation. which is supported by the presence of negative Bouguer anomalies (-100
to -200 mGal) over the plateau (Basavaiah et al. 1991).

In order to asscss the influence of lateral heterogeneities in lithospheric strength
on the tectonics of the plateau., greater rheologies have been assigned to the less
deforming blocks of central Iran and southern Caspian. Although some of the smaller

features such as the Lut block, could be of significance in smaller scale deformations,



again. it is attempted to keep the lithospherie structure as simple as possible.  The
evidence for greater rigidity in central Iran is supported by the topographic distributions.
and seismic and geopotential studics. In the southern Caspian block. the existenee of

a basaltic oceanic crust has been inferred through seismic studies.
3.1.1 Gceometry of the modcls

The final geometry of the region of interest is taken to be a pentagonal body
surrounding Iran. eastern Turkey. the Caucasus and the southern Caspian block (Figure
3.1a). The Arabian plate has been excluded from the model. It shows only minor
deformation (which is not relevant to the current convergent motion) and no seismicity
(Nowroozi 1971). It can cffectively transmit the forces produced at the Red sea oceanice
rift. to the deforming zones in southwestern Iran and castern Turkey. Therefore instead
of placing the southern boundary of the mesh at the Red sea axis. southwestern [r:;n is
taken as the boundary of the grid. where it is the site of the contact ol a rigid mass and
a deforming belt.

The southern boundary consists of two scgments. The longer sepment runs
almost paralle] to the southern foothills of the Zagros mountains and stretches rom the
vicinity of the conjunction of the northern and castern Anatolian faults in castern
Turkey. to nearby the strait of Hormoz in the Persian gulf. The shorter segment lies
on the southern border of the Makran ranges along the northern coast of the Oman sea.
The eastern boundary is a south-north trv.;nding linc parallel to the fault zones of western
Pakistan, and marks the boundary between the western Afghanistan block and castern
Iranian ranges. The northemn boundary draws the border between the Eurasian plate in
the north, and Kopeh Dagh, southern Caspian block and Caucasus in the south. Finally

the western boundary is taken as a line in the direction of shortening in the Caucasus,
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Figure 3.1 (a) The geometrical configuration of the finite element grid and its location
on the geographic map. The two polygons inside the mesh, correspond to the central
Iran and southern Caspian inclusions. (b) The finite element grid and the velocity
boundary conditions on each side of the mesh. Each triangle consists of four three-node
triangular elements. The grid has a total number of 855 nodes. and 1616 elements. At
each boundary all the velocity boundary condition sets are defined. The lines AA™ and
BB® arc used to draw profiles of velocity and crustal thickness. In the subsequent
figures the x and y components of the coordinate system are in west-east and south-

north direction. respectively,
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and separates it from central Turkey and the Black sea.

The initial shape of the mesh is then constructed. by stretching the southern and
western boundaries, back to their position in 15 m'llion vears ago. assuming that the
convergence has had a constant rate over the deformation period. This assumption is
supported by the data derived from magnetic strip anomalies (Mohajer-Ashjai et al.
1975). In Figure 3.1a the actual location of the mesh before and after deformation. is
depicted on the geographic map. For heterogeneous models the shape and dimensions
of central Iran and the southern Caspian block. are inferred from topography patterns
and carthquake epicenter distribution in Iran. Both regions show low relief topography
and sparse carthquake activity. Central Iran is bounded by some major fault zones
(Takin 1972) such as Doruneh fault in the north., and Naiin fault in the west and

southwest (sce Figure 1.2).
3.1.2 Imitial and boundary conditions

All the boundary conditions in the models are given- in terms of prescribed
boundary velocities and crustal thicknesses. The estimated convergence rate between
Arabia and Eurasia ranges from 5 cmy™ (Ni & Barazangi 19865 to 4 cmy™ (DeMets et
al. 1990) in the north-northeast direction. Here, a constant ve;locity of 4 cmy” in the
N45°E direction along the southern boundary (the Zagros part) is taken, and it is
assumed that velocity does not change during the time of deformation. As for the
Makran subduction zone. although the rate of subduction is at least equal to the rate of
continental convergence in the Zagros, nevertheless since there is no flow of continental
material inland Makran, the boundary velocity is assumed to be linearly decreasing to -
zero towards the eastern end. On the eastern side, two possible boundary conditions

are considered: a) fixed boundary with zero velocities and b) free slip with zero normal

(2]
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velocity along the boundary. [he second choice is assumed. in order to study the
possible effects of north-south trending strike-slip zones in the cast of lran (Jackson &
McKenzie 1984). The northern boundary is kept fixed (i.e. zero prescribed velocity)
where it is believed to be the site of compression of northern [ran and the Caucasus
against Eurasia. As for the western boundary. again. two ditferent boundary conditions
are investigated: a) zero motion normal to the boundary and preseribed tangential
velocity linearly decreasing to zero towards the northern end. and b)) [ree-stress
condition. The logic behind the first option comes from the observation that most of
the motion in the Caucasus is taken up in the form of folding and thrust faulting in the
northeast direction. The second option is chosen to examine the influence of
overthrusting of the Caucasus on the Black sea. on the stress ficlds in the western part
of the models. In Figure 3.1b all the boundary condition scts are specified.

For all of the numerical experiments a constant initial crustal thickness ol 35 km

everywhere in the mesh is selected. and is assumed to be fixed on all the boundaries.

3.1.3 Physical parameters

The characteristic parameters which govern the deformation with a given
boundary conditions are n, the exponent in the power law rheology and non-
dimensional Argand number, Ar. In this study the influence of different values of n
and Ar on the deformation is systematically studied. The choices of nare 1, 3.5 and
10 and those of Argand number are 0, 1. 3. 10 and 30. [n the hetcrogencous models,

the rheology contrast of the inclusions are expressed in terms of Argand numbers;

R=Ar,|Ar, 3.1

where R is the rheology contrast, and numbers 1 and 2 stand for the finite clements

33



associnted with the inclusions and the rest of the mesh. respectively. Having all other
physical paramcters constant. smaller Argand number means stronger  lithosphere.
Rheology contrasts of factor of 2 and 5 arc examined in the experiments.

In addition to power law exponent and Argand number. other physical

parameters used are:

Lithospheric thickness. (L = 100 km).

crustal density. (p.= 2950 kg m™).
mantle density., (p,= 3300 kg m™) and
gravitational acceleration. (2 =9.81 ms?).

3.2 Recsults of numerical experiments

The finite element formulation of equations of flow are discussed in detail in the
Appendix. The finite element mesh representing the lithosphere consists of 855 nodes
and is divided into 1616 three-node triangular elements. For each experiment, the flow
ficld. crustal thickness variation. rate of vertical deformation. principal stresses,
maximum shear stress and strain rate fields, and surface topography maps and profiles
in various stages of deformation are calculated. The results are presented as isovalue
contour maps. vector maps and cross sections. Velocities and crustal thicknesses are
calculated at the nodal points of the grid. and all the stresses and strain rates are
calculated at the elemental Gaussian quadrature integration peoints. Only some of the
elements are considered. to avoid crowding on the symbol maps.

In the following. the results of calculations for homogeneous and heterogeneous
models with different values of parameters n and Ar and different boundary conditions,

arc presented and discussed.



3.2.1 Homogencous modcls

3.2.1.1 Models with Ar =4

When Argand number is zero. the viscosity of the medium is undetined. and the
effects of crustal thickness contrasts on the deformation are neglected.  Under these
circumstances, equations (2.18) and (2.20) decouple. and the 1low will be controlled
only by velocity boundary conditions. and will be independent of time (provided the
boundary conditions do not change in time). Incompressibility of the material however,
will produce crustal thickness differences, as a result of variations in the gradients off

flow in the medium.

Velocity ficld

In Figure 3.2 the velocity fields for fluids with different values of n. different
boundary conditions. and at different stages of deformation are illustrated.  The Figure
implies that even in the initial time steps. the extent of deformation reaches the northern
boundary. and the choices of large numbers of power law exponent do not prohibit the
deformation in the areas far from the indenting (i.c. southern) boundary. This can be
due to the fact that the length of the indenting boundary is much larger than the width
of the deforming zone. There are two factors that contro! the {low ficld: the boundary
conditions, and rheology. with the first one being the dominant one. The effect of each
of these factors on the velocity patterns is described separately. N
The general sense of motion in all models is a southwest-northeast direction

arising from south. with a monotonic decrease in magnitudc towards the northern

boundary. As it is expected, both components of the velocity vector vanish at the fixed
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Ficure 3.2 Velocity fields for homogeneous models with Ar=0att=0and t = 15
m.y.. (a)-(b) velocity field for a Newtonian material and boundary condition set 1. (¢)-
(d) velocity field for a non-Newtonian material (n = 3) and boundary condition set 1.
(e)-(f) velocity ficld for a non-Newtonian material (n = 5) and boundary condition set
1. (2)-(h) velocity field for 2 non-Newtonian material (n = 10) and boundary condition
set 1. (i)-(j) velocity tield for a non-Newtonian material (n = 3) and boundary condition
set 2. (K)-(1) velocity ficeld for a Newtonian material and boundary condition set 3. The

veloeity vector at the southern boundary is equal to 4 cmy™.
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northern boundary. In the castern boundary. replacing the fixed boundary with a slip-
frce one. produces a northward flow of material along the boundary (compare the
directions and magnitudes of veloeity vectors in the viaaity of the castern boundary in
Figures 3.2h and 3.21 with those in Figure 3.2j).  Unlike the castern end where the
intfluence of different boundary conditions is restricted to the eastern part of the mesh,
the choice of stress-free side on the western boundary has a profound effect on the
entire flow field (Figure 3.2k-1). The fixed boundaries in the cast and north, cause a
divergence of the velocity vectors towards west. allowing the fluid to escape through
the western boundary. The velocity vectors in the middle part of the mesh are generally
in N45°E direction. Towards the western end of the mesh, the y-component (in the
south-north direction) of the velocity gradually increases. resulting in an anti-clockwise
rotation in the velocity ficld.

In Figure 3.3 profiles of absolute velocity and its two components along the lines
AA™ and BB’ in Figure 3.1b. for differcnt boundary conditions and diflerent rheologies
at time t = 0, are shown. On the AA’ line. the profiles have more or less similar
shapes. In the case of boundary condition sct 3. the magnitude of x-component of
velocity is decreased (about 0.2-0.4 cmy” for highly non-Newtonian materials)
compared to that of the v-component. which is the result of westward rotation and
outflow of material through the western boundary. On the BB® line, the cllect of
boundary conditions on the velocity field is morc visible. For experiments with
boundary condition sets 1 and 2. the magnitudes of the two components of velocity in
most parts of the mesh (the region between 500-2500 km from the western boundary),
are almost equal and both fall in the range of 0.5 to 1.0 emy”'. Whereas for the
boundary condition set 3. the profiles have different shapes, and there is a significant
decline in the magnitude of x-velocity (0.3-0.5 cmy™') while the absolute magnitude of

y-velocity remains almost unchanged. All these differences in the velocity ficld, result



Figure 3.3 Vclecity profiles for homogeneous materials with different rheologies and
boundary condition sets along the profiles AA™ and BB’ in Figure 3.1b., (a) models
with boundary condition set 1. (b) models with boundary condition set 2. (¢) models

with boundary condition set 3.
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in greater gradients of crustal thickening in the western side of the deforming mesh.
The velocity fleld is also affected by rheology of the medium through the
exponent n. The effect of nonlinearity is similar for all kinds of boundary conditions.
Figure 3.3 (profiles along AA™) shows that. as n increases from 1 to 0. the flow of
material progressively concentrates in front of the southern boundary. For Newtonian
material the viscosity of the medium is independent of stress and constant everywhere
(putting n equal to unity in cquation (2.18) reduces the viscosity to a constant number).
However when n is greater than unity. viscosity becomes a function of stress. As a
result, viscosity decrcases with increasing stress. and deformation tends to concentrate
in the regions of highest stress. Therefore, for increasing values of n the gradient of
velocity becomes steeper near the southern boundary where stress is at maximum. The
shapes of velocity profiles along the line BB™ can be explained in a similar way. Near
the castern and western boundarics where shear stresses are large. gradients of velocity
are also large. With increasing distancc from the boundaries, shear stresses decrease
and the medium becomes highly viscous in the center of the mesh, resulting in
smoother gradient of velocity and flatter curves for large values of n. As a general
conclusion. as the viscosity becomes morc dependent on the stress field, the flow of

material becomes more concentrated around the boundaries of the mesh.

Strain rate ficlds

Figures 3.4-3.6 show the time evolution of the vertical strain rate, £,
(instantaneous rate of thickening or thinning) and maximum shear strain rate fields, for
different rheologies and boundary conditions. The patterns of instantaneous vertical
detormation in Figure 3.4 are almost similar for boundary condition sets 1 and 2. The

main difference is that for the free-slip boundary in the east. the greater velocities along



Figure 3.4 Vertical strain rates for homogenecous models with Ar = 0, at time steps of
5 m.y. All the contours are in units of 107%™, (a)-(d) non-Newtonian material (n = 3)
with boundary condition set 1, (e)-(h) non-Newtonian material (n = 3) with boundary

condition set 2. (i)-(I) non-Newtonian material (n = 3) with boundary condition set 3.
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the boundury lead to pronounced moton of crustal material towards the north.
Thercfore. striin rates become greater and have smoother gradients along the boundary.

The thickening of the crust at all times tends to concentrate around the southern
boundary, and in the narrower part of the mesh near the western boundarv. The
smallest rate of thickening occurs close to the northeastern corner of the mesh. where
the flow rate has the lowest magnitude. As time proceeds. the rate of crustal thickening
in all of the models shows a steady increase everywhere in the mesh. The location of
the maximum thickening rate seems to be in front of the hinge point on the southern
boundary. This is due to the nature of the boundary condition at that point. The reason
for greater rate of thickening in the western part is that, as the southern boundary
advances northward. the horizontal area of the mesh decreases faster in this part than
in the other parts of the mesh. Therefore there is increasingly less space for horizontal
{Tow and more chance for vertical deformation. A reverse process takes place when the
western boundary is free to move outward (Figure 3.4i-1). In this case the absence of
a confining boundary makes the buoyancy forces strong enough to prevent the crust
from extensive thickening.

The effect of rheology on the verticul rate of deformation is depicted in Figure
3.5. in which contours of vertical strain rate are plotted at t = 15 m.y., for four different
values of n and boundary condition set 1. The same as the velocity fields. the transition
from Newtonian material to a highly non-Newtonian, results in progressive
concentration of deformation around the indenting boundary. However as the
nonlincarity decreases. horizontal variations of vertical strain rate within the mesh
become smoother., and the regions far from the indenting boundary (e.g. northeastern
parts). cxperience more crustal thickening.

The maximum shear strain rate fields are presented in the form of isovalue

contour maps. Figure 3.6 shows the results of calculations for experiments with n= 1.
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Figure 3.5 Vertical strain rates at t = 15 m.y. for homogeneous models with Ar =0

and boundary condition set 1. (@) n=1. (b)yn=3, (¢yn=235, (d) n=10. Contours

are in units of 107%™,






Figure 3.6 Shear strain rates at t = 15 m.y. for homogeneous models with Ar = 0 and
boundary condition set 1, (a)n=1. (byn=3, (¢)n=35, (d) n =10. Contours are

in units of 10'%s™.






3.5 and 10. Similar patterns to those of the vertical strain rate can be seen in these
plots. Most of the shearing happens near the moving boundaries in the south and west,
The maximum is along the smaller segment ot the southern boundary, where there is
a major gradient of velocity along the boundary. In the region immediately in front of
the ‘n boundary, purc shear strain tends to increase.  This s because, the
advancement of the boundary produces a greater amount of compressive shortening in
southwest-nortinwest  direction and a less amount of extension i northwest-southeast
direction. Comparison of the results for different values of n reveals that, the gradients
of maximum shear tend to deveiop in northwest-southeast  dircetion, for smaller
numbers of n. whercas shear strain rate in this direction for larger values of n, is more
uniform and the gradients are in the direction of flow. This is in accord with the
velocity ficlds described in the previous section. It can be scen that, power law
materials have gentler gradients in the middic of the mesh along the profile BB'.
Shear strain rates in general, increase as deforrnation proceeds. The extent of
the deforming mesh in the northwest-southcast dicectton remains almost unchanged
during the deformation. while therc is a persistent shortening in the direction of {low.
Thus the difference between horizontal principal strain rates continues to increase in
time. and greater shear delormation develops. This is best seen in the western part of
the mesh in the cases of a fixed boundary (boundary condition scts | and 2), where the
rate of shortening is at the maximum. On the other hand. a free boundary signilicantly
decreases the rate of northcastward cofnprcssion and. subscquently. the rate of shearing

along the western boundary.
Crustal thickness

The crusta! thickness variations follow., but do not exactly match, the vertical
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Figure 3.7 Crustal thickness development at time intervals of 5 m.y.. for homogeneous
models with Ar = 0 and boundary condition set 1. (a)-(¢) n=1. (d)-(f) n = 3. (g)-()

n= 5. (§)-() n = 10. Contours are in units of 1 km.

45



e R/







strain rate field.  This 1s because 1) the vertical strain rate is a measure of the
instantancous vertical deformation while crustal thickness is the integral of the total
deformation stnee the time zero. each carries different information about the evolution
of the deformation. and b) the continuity equation (2.20) is solved in Lagrangian
description. and the time variation of the crustal thickness is calculated with respect to
the moving points within the flow. rather than to a point fixed relative to the mesh.

In Figure 3.7 the crustal thickness development of the mesh at time intervals off
5 m.y.. for four values of n and boundary condition set 1. is illustrated. The Figure
suggests that. although the lithosphere is chosen to be arbitrarily strong. the extent of
deformation quickly reaches to the northern edge of the mesh. even when n has very
large value. The area of maximum thickened crust is located in front of the southern
boundary at all times. and the intensity of thickening in this arca increases as n is
increased. The maximum thickness after 15 m.y. ol deformation in the southern
boundary. increases from 34 km forn =1 to 63 km lor n = 10.

The choice of a fixed castern boundary (boundary condition set 2), creates some
differences in the gradients of crustal thickness in the custern parts ol the mesh. The
effect is the formation of a thicker crust in the south. and a thinner crust in the north,
since the northward transport of material is diminished compared to the case of free-slip
boundary. As for the free boundary in the west, the westward escape of the material
causes an overall reduction in crustal thickening. which at t = 5 m.y.. is in the range

of 3 km (for a Newtonian material).

3.2.1.2 Models with Ar >0

The influence of Argand number on the deformation can be discussed in terms

of two parameters, the effective viscosity of the lithosphere. and density contrast

46



between the crust and the mantle. When Argand number is small. there are two
possibilities: cither the viscosity of the medium is too high. in which case great amount
of viscous forces will develop, or the density difference between the crust and the
mantle is not large enough to build up sufficient amount of gravity forces during the
process of isostatic compensation to overcome the viscous deformation. Very large
Argand numbers on the other hand. imply that the lithosphere is too weak even to
support modest gravity lorces, or the buoyvancy forces are so large that are capable of
relaxing very high viscous flows. For a normal lithosphere where viscous and gravity

forces are of the same order. the role of buovancy forces is of considerable importance.
Velocity ficld

The effect of Argand number on the velocity field is to some extent
overshadowed by the geometrical dimensions of the mesh. Regardless of the choice of
Ar. the flow of material always reaches the northern edge of the mesh. and the profiles
ol the velocity are quite similar to those with zero Argand number. However some
features are recognizable. Figure 3.8 shows the velocity fields for models with
boundary condition sets ! and 3. n = 1 and 3. and Argand values of 1, 3. 10 and 30.
For larger Ar values. buoyancy forces become stronger in the medium and exert a
driving force on the material towards the eastern parts, where the crust has not
thickened significantly. The castward rotation of velocity vectors for large Argand
numbers is the result of this process. The effect of higher Argand numbers is most
noticeable in the case of free-velocity boundary condition on the western side. As the
strength of the lithosphere decreases. more material is diverted towards west and the
rate of escape of material through the boundary increases (compare the area of the

portion of the mesh to the left of the western boundarSr. for different values of Ar).
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Figure 3.8 Velocity ficlds for homogeneous models with Ar> 0 att= 15 m.y. (a)-(d)
models with boundary condition set 1 and non-Newtonian material (n = 3). (a) Ar = 1,
(b) Ar =3, (¢) Ar=10, (d) Ar = 30, (¢) boundary condition sct 3, n = 1, Ar = 3,
(f) boundary condition set 3. n = 1. Ar = 10. The velocity vector at southern boundary

is equal 10 4 cmy™.
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Figure 3.9 Time evolution of the vertical strain rates at time intervals of 5 m.y. for
homogeneous models with boundary condition sct 1 and n = 3 and different Ar values,
(a)-(c) Ar=1, (d)-(f) Ar=3. (g)-(i) Ar=10. (§)-(I) Ar =30, Contours ar¢ in units
of 107%™, In (1). a zone of negative strain rate develops inside the contour 5 x 107"
[t is not shown here since the rate of crustal thinning is one order of magnitude smaller

than that of crustal thickening.
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Strain rate fields

The patterns of vertical strain rates are similar to those described in the previous
section fer Ar - 0. However as Ar is increased gravity forces introduce some
ditferences.  In Figure 3.9 the time evolution of vertical strain rates for models with
boundary condition set 1. n =3 and Ar = 1.3, 10. and 30 is presented.  In all cases
verlical strain rates tend to localize in front of the southern boundary. and there seems
{0 be no limit on the thickening of crust as time procceds. However as Ar is increased.
an clongated zene with smaller rate of thickening is produced parallel to the advancing
boundary. For Ar = 30 and at t = 13 m.y.. the rate of thickening in this zonc becomes
negative, and an area of net extension develops. As a result. a trough-like structure
with a thinner crust is produced towards the end of deformation. The effect of increase
in the strength of buovancy forces for large Argand numbers is also scen in the
northwest-southeast  gradient of vertical strain rates. As Argand number is increased.
the lithosphere becomes less capable of supporting great crustal thicknesses in the
western side of the mesh. and vertical deformation expands towards eastern parts.
resclting in more uniform crustal thickening inside the mesh.

The effect of Argand number on the shear strain rate has been studied. and the
results of some of the experiments are shown in Figure 3.10. As Ar is increased from
1 10 30, the lower viscosity of the medium allows more material to move instde the
mesh.,  This will result in a progressive increase in the gradient of velocity vectors
normal to the influx direction. Consequently. greater shear zones will develop on the
southern part of the mesh. The strain rate fields have been caiculated for other values
of n (1. 5 and 10). They are not presented here since they lead to similar conclusions.
The effects of different boundary conditions also. resemble those discussed in the

previous section,



Figure 3.10 Shear strain rates at t = 15 m.y.. for homogencous models with boundary
condition set 1 and n = 3. () Ar=1. (b) Ar = 3. (c) Ar = 10. (d) Ar = 30.

Contours are in units of 107%™,
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Figure 3.11 Crustal thickness distributions at t = 15 m.y.. in homogencous models with
Ar > 0 and boundary condition set 1. (a)-(d) non-Ncwtonian material with n = 3, (a)
Ar=1, (b) Ar=3, (c¢) Ar=10, (d) Ar = 30, (e)-(h) Newtonian material, (¢) Ar =
1. (f) Ar=3. (g) Ar=10. (h) Ar = 30. Contours are in units of 1 km.









Crustal thickness

Figure 3.11 shows the crustal thickness distribution for different rheologies and
different Argand numbers at t = 15 m.y. As the strength of the lithosphere is decreased
(larger Ar values) the gradients of the thickness in the castern direction diminish
{compare the results with those with zero Argand number, where substantial thickness
variations ¢xist in this direction). This is best visible in the case of Newtonian material,
where the flow has greater tendency to extend into the interior of the mesh.

For large Argand numbers the crustal thickness immediately in front of the
southern boundary. shows rather large values. which is not expected. This is probably
duc to the choice of fixed crustal thickness boundary condition which leads to large

gradients near the boundary (England & McKenzie 1982).
Stress ficlds and style of faulting

The stress field can be used to assess the style of faulting in the deforming
mesh. It is assumed here that two of the principal stresses always lie on the horizontal
planc. Although the calculated stress field. prevails in the strongest part of lithosphere
where the velocity field is continuous. as mentioned in the previous chapter. it is
accepted that there are sufficient number of randomly distributed preexisting faults in
the upper crust. Therefore the response of the brittle crust to the underlying continuous
stress ficld is isotropic (McKenzie & Jackson 1983, Houseman & England 1986).

The horizontal principal deviatoric stresses for n =3 and 5, and Ar = 1, 3, and
10. calculated at t = 0 and t = 15 m.y. and for boundary condition set 1 are illustrated
in Figure 3.12. The magnitude of the stress field for a fixed Argand number increases

as the nonlinearity of the flow increases. For example. the maximum compressional
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Figure 3.12 Plots of the principal horizontal deviatoric stress axes. att= Qand t = 15
m.y. for homogencous models with boundary condition sets 1 and 3. Thick lines
correspond to tensional stress. and thinner lines to compressional stress. The small bars
on the upper right corner of the boxes are the scales of the magnitudes of the stresses.
Superimposed on the plots are the contours of the quantity tan’'(£,/8,) separating arcas
of different styles of faulting, where €, and g, are the principal horizontal strain rates.
TT refers to thrust faulting on planes striking parallel to each principal axis. TS, thrust
faulting striking perpendicular to the major principal axis with minor strike slip faulting,
ST. strike slip faulting with minor thrusting. A full discussion of calculation of styles
of faulting is given in Houseman & England (1986). (a)-(f) modcls with boundary
conditionset 1andn=3, (@ t=0,Ar=1, (b)1t=15my, . Ar=1, (c)t=0, Ar =
3. @t=1my.Ar=3, ()t=0, Ar=10, (ft=15 my.. Ar = 10, (2)-()
models with boundary condition land n=35, (g t=0,Ar=3, (h)t =15 m.y., Ar
=3, @))t=0, Ar=10. (§) t = 15 m.y.. Ar = 10. (k)-(I) model with boundary

condition set 3 and Newtonian material, (k) t=0. Ar=3. () t= 15 m.y., Ar = 3.
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stress at t 15 muy. for models with Ar = 1 increases from 30 MPa forn= 1,10 120
MPa for n = 3. and to 155 MPa fer n = 5. This is expected since for highly nonlincar
materials viscosity strongly depends on the strain rate. The magnitude of the stress for
a {ixed power law rheology decreases as Argand number increases (i.c. effective
viscosity decreases).  For example. the maximum compressional stress at t = 15 m.y.
for models with n = 3, decreases from 120 MPa for Ar = 1 1o 40 MPa for Ar = 3. and

o 10 MPa for Ar = 10,

!

The major principal deviatoric stress 1s always compressional and oriented along
the direction of flow. It has a monotonic gradient towards the northeastern corner of
the mesh. The minor principal deviatoric stress. however. has magnitudes far less than
those of the major principal stress (most of the time at least one order of magnitude)
and shows more complicated patterns. Several distinctive regions in the stress field are
recognizable, In the western part of the mesh, the minor principal stress is tensional and
the tension as well as compression increases as the deformation proceeds. In front of
the southern boundary in the center. a state of uniaxial contraction or isotropic
contraction endurcs.  Tensional stress does not develop in this region unless the
lithosphere is too weak (Ar > 10). Further to the east. again a tensional field in the
northwest-southeast direction develops as a consequence of large velocity gradients in
the castern direction.  From center of the mesh towards the northeastern corner. both
principal stresses become compressional. with a gradt-r:l increase in the magnitude of
the minor principal stress relative to that of the major principal stress. The development
ol contraction regime in this part is because of the convergence of the velocity field
towards the northeast.

Based on the stress ficld described above. and relative magnitudes of the
principal horizontal strain rates. the deformation in the mesh can be divided into three

distinct regions regarding the styles of fauiting. In Figure 3.12 the contour lines
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separating the arcas ot different types of [aunlting are superimposed on the stress ficlds.
Each of the symbols on the plots refers to o different region of discontinuous
deformation: 1) in the west and northwest. deformation is accomplished mainly by
thrust faulting on planes striking in northwest-southeast direction, accompanied by some
minor strike-slip faulting (stvle T8).  2) in the south. center and northeast, thrust
faulting in planes parallel to both principal axes (stvle T'D) takes up the entire erustal
thickening. In the case of very weak lithosphere where lateral components of {Tow are
of relative importance. some strike-slip motion exerted by buoyvancy forces, oceurs in
the direction normal to the tlow. and 3) in the southeast the motion is taken up along
the predominant thrust faulting in cast-northeast direction along with some strike-slip
motion parallel to the thrust faults (style TS). The amount of strike-slip motion in this
part is at the maximum in the mesh.

The styles of laulting are also inferred from the variations ol the maximum shear
stress.  The greatest shear zones are localized in the western and southeastern parts of
the mesh (Figure 3.13). where principal stresses are of opposite sighs. For very stilf
lithosphere (n = 3 and Ar = 1), shear stress can reach 1o as much as 100 MPa.  For very
weak lithosphere (n = 1 and Ar = 30) it is of the order of T MPa.

With the boundary condition set 3. the state ol stress drumatically changes. In
this case while the major horizontal principal stress is still compressional in the
direction of shortening. pure compression is confined to a small region in the northeast,
and tension along the minor principal axis dominates the western and southern parts of
the mesh. This I=ads to an enhancement of the strike-slip component of deformation,
especially in the west. and shearing becomes more important in {ront of the southern
boundary. The extension in the west can reach up to one third of compression in

magnitude.
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Figure 3.13 Maximum shear stresses at t = 15 m.y. in homogeneous models. (a)-(d)

models with boundary condition set 1 and non-Newtonian materials: (a) n =3, Ar =
. BMn=3 Ar=3.(c)n=5 Ar=1, (d) n=35. Ar=3. (e)-(f) boundary condition

set 3 and Newtonian material: (¢)n=1, Ar=3. (ffn= 1. Ar=10. Contours are in

units of 1 MPa.






3.2.2 Heicrogencous models

In this section the effects of two heterogencous inclusions shown in Figure 3.1,
are discussed. The inclusions are defined by assigning a greater vatue of ctfective
viscosity to them. compared to that of the surroundings. The results show that, even
a strength contrast of factor of 2, has profound cffects on the stress and strain rate
fields. In the following. models with one inclusion (1.e. central lran) as well as two
inclusions arc presented. It should be mentioned that the Caspian inclusion is
considered fixed to the northern boundary. Othenwise the presence of a narrow zone

of deformation between the inclusion and boundary. lcads to a huge gradient of crustal

thickness which ultimately causes numerical instability.

Velocity field

Figure 3.14 shows the velocity field and the final geometries of the two
inclusions for models with n =3, and different Argand numbers and rheology contrasts.
It is easily seen that although the rheology contrast is not very high. the inclusions
deform almost like a rigid body and the gradient of velocity inside them is very minute.
While the corresponding regions in the homogeneous models (Figure 3.8) experience

shear deformation and larger gradient of velocity.

Strain rate fields and crustal thickness

The presence of the heterogeneities significantly changes the patterns of the rate
of thickening. The main feature is that crustal thickening is inhibited within the strong

regions. whereas it is enhanced in the other parts. Figures 3.15 and 3.16 show the
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Figure 3.14 Velocity fields at t = 15 m.y. for heterogeneous models with boundary
condition set 1 and a non-Newtonian material (n=3): (@) Ar=3,R=2, (b) Ar=3.
R=35. (¢) Ar=10.R=2. (d) Ar=10. R=35. The final shapes of the inclusions are

shown in the figures,
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Figure 3.15 Vertical strain rates at t = 15 m.y.. for heterogeneous models with
boundary condition set 1 and Ar=3: (a)n=3.R-2. (b)n=3.R=35. (c) a one-
inclusion (central Iran) model with n = 3. R = 2, (d) a one-inclusion model with n =

30R=5 (¢)n=5R=2 (ffn=5 R=35. The contours are in units of 10",

60



n=3
One incl.

n=3
One incl.




Figure 3.16 Crustal thickness distributions at t= 15 m.y. for heterogeneous models.

All the parameters are as same as those in Figure 3.15. Contours are in units of 1 km.
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verticul strain rate and crustal thickness of three heterogencous experiments with n =
3.Ar=3and R = 2. 5. A comparison of these figures with those of a corresponding
homogencous model (Figures 3.9 and 3.11) indicates that in addition to the arca of
intense thickening in the southern boundary. vertical deformation is significantly
increased in the region between the two inclusions, while there is much less thickening
inside the inclusions. Maximum crustal thickening in front of the southern boundary
for R = 5 reaches up to 75% and for R = 2 to 68%. the thickening of the homogeneous
model never exceeds 60%. In the region between the inclusions, the total thickening
is now 15% morc than that of 2 homogeneous model. In the innermost parts of the
inclusions, the initial thickness. cven after 15 m.y. of deformation. is retained (in cases
of highly nonlinecar materials or very stiff inclusions. the inclusions may even
experience some slight crustal thinning). In the one-inclusion models (Figure 3.16¢ and
3.16d). the second region of intense vertical deformation to the northeast of the
inclusion. is still noticeable. The intense thickening in this region. is partly due to the
discrete nature of the finite elements at the corner of the inclusion. The development
of crustal thickening beyond the central Iran inclusion is because of two factors; 1) the
transmission of horizontal stresses by the rigid inclusion to the northern parts and 2) the
compression of material in the narrow region in between the inclusions, or in the case
of one-inclusion models, between central Iran and the northern boundary. The presence
of lateral heterogeneities (especially the Caspian block) also affects the crustal thickness
gradient in the western side of the mesh. The direction of the gradient. changes from
northwest-southeast, to southwest-northeast.

In order to reduce the steep slopes of crustal thickness in the areas surrounding
the central Iran inclusion. which is not supported by observed topography. a transitional
rheology structure has been considered. A zone of intermediate viscosity has been

placed in between central Iran and the neighbouring regions. For the case of R =35, the
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Figure 3.17 Time development of the crustal thickness in a heterogeneous model with
boundary condition set 1, n = 3, Ar = 3, and an intermediate rheology between the
central Iran inclusion and its surroundings. The initial geometry of the model is
depicted in (a), where R, = 1.5 refers to the rheology contrast between the intermediate
zone and the medium. Crustal thickness is shown in times; (b) 5 m.y., (c) 10 m.y,,

(d) 15 m.y.






viscosity of this zone is assumed to Ue half of that of the inclusion. Figure 3,17 shows
the configuration of this model and the resulting crustal thickness, Although the slopes
arc somewhat smoother and the arca of less thickening has expanded by this
modification. the maximum crustal thickness is increased both in the south and north
of central Iran. mostly due to the fact that the arca of the weakest lithosphere is
diminished. and horizontal deformation becomes more restricted.  Nevertheless the
patterns of tcpugraphy resulted from ihis crustal thickness distribution are closer to
reality. than those from the other models.

The effect of Argand number on the crustal thickness is studied through the
profiles of thickness along the line AA’ in Figure 3.1b. The profiles are shown in
Figure 3.18. As Ar increases. thickening in regions both in iront and behind the central
Iran depression decrease, while the depression itself is shortened and undergoes a
slightly more thickening. The areas ncar the boundaries of the depression show greater
rate of thickening, since these parts are the site of maximum compression against the
rigid inclusion. In the north., maximum compression gradually moves towards the
northern boundary as time proceeds. and so does the area of maximum thickened crust.

The patterns of shear strain rate are also strongly affected by the heterogencities
(Figure 3.19). Zones of strong shearing begin to develop. as a result of cxtrusioh of
material from regions between southern boundary and central Iran. and central Iran and
the Caspian block (see Figure 3.14). whereas shearing is reduced inside the central Iran
inclusion, due to its rigid body deformation. In comparison to a homogeneous model,

shearing near the southern boundary in heterogencous models (R = 5) is raised by 50%.
Stress fields and style of faulting

The effects of the power law exponent and Argand number on the stress fields,
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Figure 3.18 Profiles of crustal thickness for heterogeneous models, along the line AA’
in Figure 3.1b, at time intervals of 3 m.y. A rheology contrast of 5 is chosen for the
central Iran inclusion. The slight increase in the crustal thickness, in the south of the

(left in the profiles) inclusion is due to the intermediate rheology in this part (R, = 2.3).
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Figure 3.19 Maximum shear strain in a heterogeneous model with boundary condition
setl.n=3 Ar=3and R=2 attimes: (a)t=0. (b)t=35my. (c) t=10 m.y.,

(d) t =15 m.v. Contours are in units of 10"'%s",
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are similar to those in the homogencous models. However the heterogeneitics brin

03

about several significant changes to the stress patterns which result in different styles
of faulting other than those of the homogencous models (Figure 3.20). These changes
could be described in terms of three major effects: 1) The magnitudes of stresses are
increased inside the inclusions and in their immediate vicinity. For example. for a
model with n = 3. Ar = 3 and R = 5. thc maximum stress at t = 15 m.y. is about twice
that of a corresponding homogencous model. and is located in the Caspian inclusion
rather than in front of the southern boundary. 2) There is some rotation of the principal
stress axes near the inclusions, which is resulted from the changes in the gradient of
velocity field. induced by the presence of the inclusions. 3) The velocity gradient also
affects the styles of the principal stresses (especially the minor principal stress)
throughout the mesh. Figure 3.20 shows that. tensional stress in the direction of minor
principal axis. is increased in the swrroundings of the rigid inclusions. which in an
otherwise homogencous plate would be the site of essentially uniaxial compression
(Figure 3.12).

The flow fields. ultimately affect the style of surface faulting. The comparison
of contour lines separating regions with different styles of faulting. in Figures 3.20 and
3.12. reveals major differences between the heterogeneous and homogeneous models.
In the homogenecous models, the predominant style of faulting in the west is thrust
faulting plus minor strike-slip (style TS) and it remains so for all times. In the
heterogencous models. however. thrust faulting on both principal planes (style TT)
dominates the western part of the mesh. but the extend of the area under the style TT
decreases slightly as time proceeds. The increase in strike-slip faulting in the western
parts at the final stages of deformation. is more tangible when the viscosity contrast
benween the inclusions and the mesh, or the Argand number is increased. The

dominance of style TT in the west could be attributed to the fact that the rigid
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Figure 3.20 Plots of principal horizontal deviatoric stress axes and contours of styles
of faulting for heterogeneous models. (a)-(d) the time variations of the stress ficld for
a model with boundary condition set l.n=3, Ar=3and R=5, (a)t=0, (b)t=5
my.. (¢} t=10m.y.. (d)t=15 my. (¢)-(h) stress ficlds at t = 5 m.y. for models
with boundary condition set 1 and different parameters; (¢) n = 3. Ar=3, R =2, ()
n=3.Ar=10,R=35, (@2 n=35.Ar=3.R =35, (h) one-inclusion model with n =3,

Ar = 3, R = 2. All the symbols on the plots are as same as those in Figure 3.12.
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inclusions act as some barriers. confining the flow to the western regions and preventing
the muaterial to move towards the cast. Indeed. the examination of the velocity fields
shows that there is less castward component of velocity in heterogeneous models than
it is in a homogencous one. This obscrvation is affirmed if one of the inclusions (i.e.
the Caspian inclusion) is removed (Figure 3.20h).

In the southern. central and northeastern regions. thrusting is the principal form
of faulting in the homogencous models. However. in the heterogeneous models. the
regions surrounding the inclusions undergo some strike-slip faulting (style TS) and
thrust faulting is concentrated inside the inclusions. The proportion of strike-slip
motion in the south of the Caspian block is so high. that at early stages of deformation
style ST (strike-slip faulting plus minor thrusting) develops in that region. The better
development of a strike-slip zone to the east of the central Iran inclusion in models with
larger rheological contrast. is due to the fact that the rigid body rotation of a stronger
inclusion causes more slip along its boundary, and therefore the stress patterns become
less uniform inside and outside the inclusion.

The enhancement of strike-slip motion in the heterogeneous models is also
visible in the plots of maximur shear stress. Figure 3.21 shows that strong shear zones
develop around the inclusions as the convergence proceeds. The growth of shear zones
in the region between the two inclusions, and in the southwest of the central Iran
inclusion is attributed to the lateral extrusion of material away from the zone of intense
thickening. In the east of central Iran, the shearing is the result of rotation of the rigid
inclusion. The rheology contrast also affects the intensity of the shearing, the greater

the ratio R. the greater the shear stress becomes.
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Figure 3.21 Time development of the maximum shear stress in a heterogencous model
with boundary condition set . n=3. Ar=3and R=2,at(a)t=0, (b) t=5 m.y.,

(¢)t=10m.y., (d)t= 15 m.y. Contours are in units of 1 MPa.
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Chapter 4

Discussion and conclusions

4.1 Comparison of results with tectonic obscrvations in Iran

In this chapter attempts are made to compare the results of numerical
experiments derived in the previous chapter, with the obscrvations of topography.
crustal structure, fault plane solutions and rates of deformation. calculated {rom scismic
and gravity studies in the Iranian Platean. It should be mentioned that the numerical
results of the models presented here. are the outcome of numcrous simplifications on
the physical properties and geometry of the lithosphere. For cxample. the effect of
vertical variations in the lithosphere (rheology. temperature profiles ctc) on the
deformation has been ignored, and lateral heterogeneities are kept at the simplest level.
The role of previous phases of orogeny and the pre-Miocene crustal structure of Iran
are neglected. Erosion and faulting in the upper crust and friction at the basc of the
lithosphere are not accounted for, and the resolution of the finite clement grid is such
that, the resolution of the results is not better than 70 km. Therefore these results do
not simulate the fine details of tectonic characteristics of Iran. However, there is a
reasonable agreement between the calculations and observations in the scales of
hundreds of kilometers, and the discussion will be confined to comparisons in such
large scales. and to point out the influence of different parameters on the deformational

Processes.
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4.1.1 Crustal thickness and topography

Although the knowledge of crustal thickness distribution in the Iranian plateau
is not comprehensive, the few investigations carried out so far, have resulted in more
or less parallel information. The study of phase velocity dispersion of surface waves
and P-wave velocity data in Iran (Asudeh 1982) shows that. the crust in southwestern
Iran has a thickness of about 43 km. and thickens by about 10 km in the north-northeast
direction across the Zagros mountains. A gravity modelling by Snyder & Barazangi
(1986) supports the results of other seismic studies (e.g. Asudeh 1982) that the Moho
dips about 1" to the northeast beneath the folded belt of Zagros. and increases in dip to
5* near the main Zagros thrust (MZT); the depth of the Moho increases from 40 km in
the southwestern edge of the Zagros. to 58-65 km beneath the MZT. Seismic refraction
studics (Geise ct al. 1983) estimate the crustal thickness in the Zagros to be around 55-
60 km. The results of all these investigations are suggestive of presence of a
northeastward thickening crust in western and southern Iran, and a thickness of 65 km
is an upper limit. Table 4.1 shows the average crustal thickness in the region of the
mesh corresponding to the Zagros mountains, and the maximum crustal thickness at the
northeastern border of the Zagros for homogencous and heterogeneous models with
difterent values of parameters n and Ar. This table and the crustal thickness plots in
Figures 3.12 and 3.16. and the observations mentioned above reveal that all the
homogeneous models fail to reproduce an acceptable crustal structure in the Zagros
mountains. The average crustal thickness in the homogeneous models is 51-53 km,
which is about 5 km less than the estimated thickness. Furthermore, these models
predict that the thickness of the crust is decreased in the northeast direction, rather than
being increased. Heterogeneous models. on the other hand. result in crustal structures

that are closer to observations. both in average thickness and the gradient of thickening.

72



Table 4.1 Calculated crustal thicknesses in the Zagros region. The average thickness
in the Zagros are in the third column. The fourth column presents the thickness of the

crust on the border of the Zagros and central Iran.
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n Argand Number crustal thickness in the Zagros (km)

average NE border

Homogeneous models

| 1 505 52
3 1 53 525
3 3 52 52
3 10 50 31
5 1 54 33
5 10 52 51
10 I 56 33
Heterogencous models

i 3 35 35
3 ! 58 60
3 3 59 60
3 10 33 53
5 1 62 63
5 3 59 60

10 1 63 65



The average thickness in the Zagros mountains predicted by Ieterogencous models is
53-63 km. and in most of the models. the crust thickens toward northeast. able 4.1
tmplies that. the parameter range best capable of reproducing the observed crustal
thickness distribution in the Zagros is. n between 3 and 3. and Argand number between
1 and 3. Newtonian materials or very weak lithosphere (Ar ~ 10) are unlikely 10
produce the sufficient crustal thickness bencath the Zagros mountaing, and strongly
power law materials (n > 3) in heterogencous models result in thicknesses which exceed

the observations. As for the parameter R. rheology contrasts greater than 2 result in
extensive crustal thickening in the regions of intense compression.

To the north of central Iran in the region of northern ranges ol fran, crustal
thickness is estimated to be around 46 km (Asudch 1982). The thicknesses predicted
by both homogencous and heterogencous models in this region, fall in the range of 47-
53 km. with those of heterogencous models of slightly greater values. In central lran
however the thicknesses calculated from the heterogencous models. are considerably
less than those inferred from the observations. The thickness of the crust in most of
the models even when rheology contrast is not too large. docs not exceed 40 km, This
suggests that the contrast between the rigidities of central Iran and the deforming belts
could be of much less value than is used in the numerical experiments. [t should be
mentioned that the final evolution of the crust is subject to many uncertainties in the
initial assumptions of the problem. for example uncertainty in the initial thickness, or
uncertainty in the time period and rate of convergence. Any modification in these

parameters, may produce significant differences in the crustal thicknesses.

The change in the topography is related to the change in crustal thickness by:
(e - ) = (S -85X1 -p.le,) 4.1

where e, S. e,. and S, are the final and initial surface topography and crustal thickness,
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and p_and p,, are the crustal and mantle densities. respectively. A crust of thickness
ol’ 35 km is assumed 1o produce zero elevation. With this assumption and the density
values given in chapter 3, the corresponding topography map for various heterogencous
models is obtained from cquation 4.1, The results of calculations and a 1opography
map of Iran are shown in Figures 4.1, Most of the heterogencous models with two
inclusions are capable of reproducing the surface clevation distribution in the Iranian
platcau similar to the observed topography. The regions of highest clevation in the
plateau include the central and southern parts of the Zagros. and the central part of the
Alborz ranges. located to the southwest and north of central Iran. respectively. The
effect of the two rigid inclusions on the topography distribution of the models. is clearly
evident {rom the presence of two distinet clevated regions around the inclusions. The
models have also been successful in predicting the low relief topography in central Iran.
and the less clevated Kopeh Dagh mountains and the eastern ranges. The choice of
boundary conditions especially in the western side. significantly alters the topography
patterns.

Although there are many similarities between the results of the experiments and
the patterns of observed topography. the amount of surfece elevation predicted by most
of the models is somewhat greater than the observed. For models with strong
lithosphere (e.g. n = 5. Ar = 1) the average topography in the region of highest
clevation in the southern part of the mesh is as much as I km more than the average
clevation in the Zagros mountains. The average topography is still 300 m above the
average elevation in western Iran when the lithosphere is very weak (e.g. models with
n = 3. Ar > 10). Again. it should be emphasized that the initial assumptions and the
choices of physical parameters. can significantly change the results of the calculations.
For example. with the densities adopted. a difference in crustal thickness of 9.4 km can

produce 2 surface elevation of 1 km. Thus if an initial crustal thickness of 30 km had



Figure 4.1 Plots of surface elevation at t = 15 m.y.. (@) surface clevation map of Iran
estimated over 0.5° x 0.5° elements. (b) topography map for a homogencous model
with boundary condition set 1. n =3, Ar =3, (c)-(f) topography map for heterogencous
models with boundary condition set 1. (¢)n=3.Ar=1,R=5, (dyn=3. Ar=3, R

=5. (@n=5Ar=1.R=35. (Pn=5.Ar=3,. R =35, Contours are in units of ! km.
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Figure 4.2 A three dimensional topography map of heterogeneous model with

boundary condition set 1, n=3, Ar=3 and R = 5.
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been used. the average elevation in the models would have been 330 m less than that

in the present models.

4.1.2 Strain rates and vertical deformation

In this scction the calculated horizontal and vertical strain rates, along with the
rate of crustal thickening and the rate of uplift of the surface. are compared with the
observed strain rates in Iran and the Caucasus. Jackson & McKenzie (1988) examined
the relation between seismic moment rate tensors in the region of distributed
deformation in the Mediterranean and the Middle East. and calculoted the strain rate
tensor and overall velocities for the region. They divided the region in to several sub-
regions (e.g. Zagros, northeastern Iran. Caucasus. ctc). In cach sub-region. the summed
seismic moment rate tensor was calculated from 70 year scismicity data. and compared
with the moment rate tensor obtained trom slip directions and relative velocity
magnitudes predicted by global plate motions. Jackson & McKenzie suggested that in
the Zagros and Caucasus sub-regions seismic deformation can account for only 10-20
percent of the total motion, whereas in northeastern Iran most of the deformation (more
than 50%) in the upper crust is accommodated seismically. In table 4.2a the strain rates
calculated by Jackson & McKenzie (1988) from scismic moment rate tensors (referred
to, as the matrix,. M by the authors) in three sub-regions., the Zagros mountains,
northeastern Iran (including the Alborz. Kopeh Dagh and castern Iran), and the
Caucasus and eastern Turkey. are listed. Also presented in the table, are the strain rates
calculated from the moment rate tensor, predicted from plate motions (matrix N) by
Jackson & McKenzie. The latter values of strain rates are calculated. to show, what the
range of the strain rates would be, if all of the deformation were taken up ascismically.

In Figure 4.3 the horizontal components of the strain rate field for the final time
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Table 4.2 Scismic and overall deformation in Iran and the Caucasus (taken from
Jackson & McKenzie 1988). (a) In the first column. the magnitudes of the horizontal
normal components of the seismic moment rate tensor, M for each region are given.
The horizontal normal components of the strain rate. calculated from M, are given in
column 2. In columns 3 and 4. the components of the matrix N and the corresponding
calculated strain rate are listed. respectively. The moment rates are in units of 10%
dyncmy”. and the strain rates are in units of 107%™, (b) The uplift rates (v,) and
crustal thickening rates (v,.) in units of mmy. calculated from the vertical component

of the matrix M. at different areas of the deforming zone.
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(2)

M g N
Whole Zagros
XX 1.40 250 -6.75
A -3.61 -6.30 -29.79

Central Zagros

XX -0.07 -0.13 -5.29
vy -0.90 -1.60 -12.29
Northeast Iran

XX -1.8} -1.93 -3.82

yy -5.80 -6.20 -9.01
Eastern Turkey and the Caucasus

XX 1.54 1.0 0.00

Yy -1.67 -0.90 -16.20
(b)

Central Zagros ~ NE Iran
\A 0.21 1.01
v, 0.04 0.17

¥
[
I

-4.10
-9.62

0.00
-11.90

Caucasus and E Turkey
<0.27

< 0.05



step of some of the models are plotted. The time step is of order of 100-300 thousand
years, and the strain rates arc assumed to be constant over the time step. Although it
is difficult to relate the short term seismic deformation to deformation over geological
time spans, comparison of the figures in table 4.2a with the plots of Figure 4.3.
provides several valuable points: First of all, the moment rate tensors and the strain
rates calculated from both seismicity data and plate motions, show an overall
compression and thickening throughout the Iranian plateau. a feature that is consistently
arrived at. by the stresses and strain rates obtained from the numerical models. Second.
the magnitudes of the strain rates derived from the models are in reasonable agreement
with thosc calculated from the moment rate tensor N. and. as Shoja-Taheri & Niazi
(1981). Ambrascys & Melville (1982). Jackson & McKenzie (1988) and Ekstrém &
England (1989) concluded there is in fact a shortage of seismic deformation in the
Zagros and the Caucasus. The typical values of £, and &, in the regions of extensive
deformation. for most of the models are about, 5-10 x 107 s, which fall in the range
of strain rates calculated from the tensor N, and far greater than those calculated from
seismic moment rates. It can be seen that, strain rates in the Zagros, obtained from the
tensor N have greater values than those calculated from the models. This could be due
to the fact that the width of the seismogenic layer in the Zagros. chosen by Jackson &
McKenzic (1988). is considerably less (200 km) than the width of the region of
deformation in front of the southern boundary of the numerical models (400 km). Still
the strain rates from the models are at least an order of magnitude greater than the
observed seismic strain rates in the Zagros mountains. Also noticeable is that the
values of the seismic strain rates in the Caucasus and eastern Turkey are suggestive of
crustal thinning. This is because the shortening in the Caucasus and normal faulting
in eastern Turkey are considered together. The strain rate field of a model with free

boundary in the west (Figure 4.3e-f ) clearly shows that the sideway motion of material
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Figure 4.3 Horizontal components of strain rate (£, and £,) at t = 15 m.y. for
different models. (a)-(b) £,, and &, respectively. for a heterogeneous model with
boundary condition set 1.n=3, Ar=1and R=35. (¢)-(d) §, and &,, respectively. for
a heterogeneous model] with boundary condition set 1. n=3. Ar=3 and R = 5. (e)-(f}
¢, and £, respectively. for a heterogeneous model with boundary condition set 3,

Newtonian material. Ar = 3 and R = 2. Contours are in units of 107'%',
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normal to the dircction of thickening. could result in thrust faulting with strike-slip
motion in the Caucasus, and crustal extension further in the south,

The moment rate tensors can also be used to determine the present day vertical
strain rates and velocities in the crust. Table 4.2b shows the thickening rate of the crust
(taken to be 40 km) and the corresponding rate of surface uplitt caleulated by Jackson

& McKenzie (1988). The rate of surface uplitt is obtained from:
v, = (1 - p.lp,) V. 4.2

where v, and v, are the rates of surface uplift and crustal thickening. respectively. In
Figure 4.4 the distribution of v, and v, for some of the heterogencous models are
illustrated. The average rate for crustal thickening in the models is about 2 mmy™, and
for that of surface clevation. around 0.2 mmy™'. Again, the results show that in the
Zagros and Caucasus seismic deformation can not produce more than 10% of the
thickening and surface uplift. while there is no serious discrepancy between the seismic
observations and numerical modelling in northcastern Iran. Increasing the crustal
thickness to 55 km (which is observed in most of the numcrical models). and adopting
a smaller crustal density. will increase the vertical thickening in the scismic caleulations
at most by a factor of 2.5. which is still not satisfactory. However, the numerical
results are not perfectly in accord with geological measurements. The rate of Holocene
uplift in the strait of Hormoz is measured. 1.8-6.6 mmy™' (Vita-Finzi, 1982), and the
estimated average uplift rate in the Zagros since the early Pliocene is about 1 mmyr™

(Falcon 1974). These rates are four times greater than those shown in Figure 4.4.

4.1.3 Tectonic styles and fault planc solutions

As it was discussed before, although the continuum approach adopted in this



Figure 4.4 uplift rate (v.) and crustal thickening rate (v) at t = 15 m.y. for
heterogeneous models with boundary condition set 1. (@)-(b) n=3. Ar=1.R=3,

(¢)~(d) n = 3. Ar = 3. R=3. Contours are in units of 1 mmy".






study. does not account for discontinuities in the crust. there are many parallel features
between the deformation of the viscous lithospheric material. and that of the overlyving
brittle crust. Comparison of the stress fields calculated from the models with the P axes
obtained from carthquake data shows some of these similarities.  Figure 4.5 shows the
direction of the horizontal projection of the P axes of some of the ecarthquakes in the
period of 1970-1981 (Jackson & McKenzie 1984). on a topographic map. Also shown
are the distribution of the principal horizontal stresses at t = 15 m.y.. superimposed on
the contours of topography for two heterogeneous models withn=3. Ar=1. R =2
and n = 5, Ar= 3. R = 2. There is a generai correspondence between the orientations
of the P axes. and the directions of the steepest gradient of topography. The same
feature is seen in the numerical models. the principal compressive stress axes are in
general aligned in the direction of gradient of topography. and in most regions (the
Zagros. Caucasus. Alborz and Kopeh Dagh) their orientations agree to within 20° with
those of the P axes. The major disagreement between the calculations and observations
occur in the Makran region in southeastern iran, where the trends of the P axes are
considerably towards the ncrth. whereas the numerical models yield eastward
compression, This is most likely due to the boundary condition assumed in the
southeastern part of the models. which predict more eastward gradients of motion in
eastern Iran.

The credibility of the results of the numerical models, can alse be examined
through the qualitative comparison of the style of faulting derived in the previous
chapter. with the available earthquake focal mechanisms. In Figure 1.2 a seismicity
map of Iran and the region between the Caspian and Black seas is shown. which
includes the fault plane solutions of some of the large earthquakes in the region. as well
as the direction of motion on the major fault lines. The principal features of this map

was discussed in more detail in chapter 1. As mentioned the Iranian plateau is the site
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Figure 4.5 (a) Comparison of the orientations of the horizontal i)rojcclion of the P-axes
of some of the large earthquakes in Iran, during the time interval of 1970-1981 (taken
from Jackson & McKenzie 1984), and the sprface clevation. The final boundarics of
the numerical models is shown on the map. (b)-(c) the principal compressional axes
superimposed on the topography plots for two of the heterogencous models with

boundary condition set 1, Ar=3,R=35; (b)n=3, (¢jn=>5.
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of dominant shortening and thickening.  Strike-slip motion is subordinate o thrust
faulting. and takes place to some extent in the northwest Zagros. castern Alborz,
northern Caucasus and to the cast and north of central fran. The style of faulting in
Figure 3.20 reveals major characteristics of the Iranian tectonics, In the central and
southern Zagros style TS (thrusting in the northeast direction with minor strike-slip
parallel to the strike) for all values of n. Ar and R. is the dominant form of
deformation. and the fault plane solutions in this region support this conclusion. In the
northwestern Zagros however. the style of faulting is more dependent on the choice of
lithospheric strength. Decrease in the viscosity of the medium (i.c. increase in Ar).
causes the weaker material 1o move more casily away from the impinging zone in the
west. Therefore. it appears that greater Argand numbers can better explain the strike-
slip motions in northwestern Iran and the Caucasus. Also. smaller rigidity contrast
between the inclusions and the deforming zones allows for more sideways motion in
the western part of the region.

In the region between the Caspian block and central Iran. and to the northeast
and east of central Iran. the fault plane solutions show thrust faulting with some strike-
slip motion. Thrust faulting takes place on the planes striking northwest-southeast. and
strike-slip motion happens on two sets of faults, the first sct runs from cast to west and
has left lateral sense of motion, and the second set is right lateral faults stretching in the
north-south direction. These features can be traced in the models. Figure 3.20 shows
that while the motion inside the rigid mass of central Iran is taken up by pure thrust
faulting, the stress concentrations on its edges arising from rigidity contrasts, lead to
appreciable extensions along its boundaries. Consequently, narrow zones of strike-slip
motion develop in the east and north of central Iran. The strike-slip motion is more
profound in the region between the rigid inclusions, since the stress concentration

around the Caspian block contributes to the total strike-slip motion. However the
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scismicity data do not show significant amount of strike-slip motion in the Alborz and
this could be suggestive of less compression in northern Iran than that calculated by the
models. The strike-slip motion in castern Iran is greatly affected by the viscosity of the
deforming zones and the rigidity of central fran and the Caspian. For moderate rigidity
contrasts of R = 2. the strike-slip zone may not develop at all, unless the medium is too
weak.  Argand numbers greater than 3 and rheology contrasts greater than 2. produce
results which are in better agreement with the surface faulting in eastern Iran. [t is also
noticcable that the presence of a rigid central Iran also affects the strike-slip faulting in
the central Zagros, The intense compression between the Arabian shield and central
Iran drives the material away from the zone of thickening. in the direction of the strike
ol shortening. This process is enhanced by larger rheology contrasts, and is best seen

when n = 5.

4.2 Conclusions

The thin viscous sheet model used in this study. can provide reasonable
explanations for many of the tectonic processes involved in the Iranian plateau. The
results of the numerical experiments imply that, indeed the deformation of Iran is
primarily controlled by the northward convergence of Arabia. Perhaps it is one of the
main achievements of this study. to show that the deformation of northern Iran, is the
direct result of convergence in the south, and central Iran has a considerable capability
in transmitting the deformation from the south to the north. The role of buoyancy
forces arising from crustal thickness contrasts is shown to be of importance. However,
the effect of buoyancy forces especially in the last stages of the deformation may not
be as profound as that in central Asia. suggested by many authors (e.g. England &

McKenzie 1982, England & Houseman 1986. Vilotte et al. 1986). The distribution of
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instantancous rate of thickening. shows that the arca of maximum vertical deformation
even when the lithosphere is too weak. always remains close to the boundary of the
Arabian Shicld. in the Zagros. and there is no indication of northward shift of this zone
into central and northern parts of Iran. This indicates that the Zagros, is still the region
of maximum rate of uplift in Iran,

The scales of deformation predicted by the models are in accord with the actual
crustal (topography) distribution in Iran. The models show that regardless of the values
of the rheological parameters. the extent of the deformation quickly reaches the northern
parts of Iran. and crustal thickening takes place over the entire plateau.  This indicates
that the geometrical configuration of the platcau. has a great influence on the amount
of crustal shortening in the north. and perhaps overshadows the effect of rheology.

In the formulation of the thin viscous shect model. the vertically averaged
rheology is presented in the form of two non-dimensional parameters, n and Ar, The
numerical models show that for some range of paramecters the results of caleulations
could better approximate the obscrved crustal deformation. It appears that, while for
the homogeneous models highly nonlincar materials (n ~ 10) can produce crustal
thicknesses that are close to the thickness of the crust in the Zagros. in the
heterogeneous cases smaller nonlinearities such as n =3 or n = 5 can producc the same
amount of crustal thickness. In general, nonlinear materials with n = 3 to 10 and
Argand number between 1 to less than 10, are preferred.

For the range of parameters selected above, the shear stress sustained by the
medium for most heterogeneous models is of the order of 5 MPa for n = 3, Ar = 10,
t0 20 MPa for n=3, Ar = 3. to 100 MPa for n = 5, Ar= 1. The typical vertical strain
rate is about 5-15 x 10'%s™, and vertical rate of crustal uplift is around 2.5 mmy™'.

The orientations of the principal compressive stress axes calculated from the

models are in good agreement with the observed present day axes of compression in
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fran. The models are also successful in describing the tectonic styles in different
regions ol the plateau.  The overall shortening and thickening along the northwest-
southeast trending reverse faults are clearly observed. and the absence of any normal
faulting in the models is in {air agreement with the observations. Also the development
of the shear zones in castern and northeastern Iran and the low relief topography in
central Iran, is explained through the effects of lateral heterogeneities in the strength of

the lithosphere.

4.3 Future work

The study of the deformation in Iran can be improved. by applying more
sophisticated mechanical formulations. Two dimensional modelling does not account
for the vertical variations in stress and material properties. or the kinematic detachment
at the base of the crust (Bird 1989). Threc dimensional models can provide means to
incorporate these features in the calculations. The discussions in the previous chapters
showed that morc accuracy is achievable. by adding more complexity to the structure
of the lithosphere. Therefore by applying more realistic geometries and boundary
conditions, more viable results can be obtained. Furthermore, the thermal evolution of
the lithosphere as the deformation proceeds. can be evaluated by solving the heat
transfer equation. The thermal states can have substantial effects on the rheology of the

deeper parts of the crust and the uppermost mantle.
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Appendix

Numerical solutions of the equations

The coupled equations (2.18) and (2.20). are solved numerically. using a finite
element technique. In the following. after a bricf description of the finite clement

method. the numerical formulation of both equations is presented.
A.1 The finite element method, a general background

The prime conception of the finite clement method is o replace a set of
differential equations with an equivalent. but approximated. sct of algebraic cquations.,
where the unknown variables are evaluated at some specific points. There are several
distinct steps which are to be pursued (sec Hughes, 1987 for dctails):

1. The first step is to establish a weak or variational form of the problem., which
converts a differential equation to an integral equation. Two scts of functions are
characterized in the weak form. The first set called the trial solutions, is to satisfy the
velocity boundary conditions. The derivatives of the trial solutions must be square
integrable. The second set called the weighting functions, possesses all the properties
of the trial solutions except that they vanish on the part of thc boundary where the
velocity is prescribed. The weak form obtained by multiplying the weighting functions
to both sides of the differential equation, and integrating all the terms over thc domain,

using the divergence theorem to reduce the order of the derivatives of velocity under
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the integrals.

2. The second step is 1o obtain an approximate solution to the weak statement.
This process involves discretization of the domain of the problem and constructing
finite dimensional approximation for the trial and weighting functions. The resulting
cquation is known as the "Galerkin approximation” which is an example of the so called
weighted residual methods.

3. The next step is to subdivide the region of the analysis in to a finite number
of appropriately shapud clements. cach with a number of nodes. Some or all of the
nodes are interconnected to those of the neighbouring elements. The physical variables
of the problem (e.g. velocity) are determined at the nodes.

4. The solution to the Galerkin problem is sought by approximating the
weighting and trial functions in the elemental level. This is done by some interpolation
functions which are smooth in the interior and continuous across the boundaries of the
clements. insuring that the integrals are well defined. The interpolation functions are
usually simple polynomials, expressed in terms of the value of the variables at the

nodes. The polynomial presentation of the weighting function w; is of the form:
Nrmde
w, = E N, v, Al
A=1

where N, 1S the number of nodes in each element. N, is the polynomial called the
shape function which is only position dependent, v,, is the velocity at node A, and the
subscript i stands for the ith component of the Cartesian coordinate system. The
elemental matrix is constructed by substituting the polynomials in the Galerkin formula.
The size of the matrix is Ny, X N Where N,y is the degree of freedom of the
physical variables at the nodes {e.g. equal to 2 for two dimensional flow problems).

6. The integration is carried out numerically, the Gaussian integration rules are

91



often used to fulfil this task.

7. Once the elemental matrices are obtained. they have o be assembled 1o the
global matrix. The numbcring of the clements should be carried out in a proper way
in order to achicve the maximum saving in the computation.

8. The last step is to solve the global matrix for the physical parameters,

A.1.1 Finite clement formulation of the force balance cquation

Equation (2.18) allows us to make usc of a constitutive relation of the  form:
= = 2
Oup = Nadap * Nt «.p = 1.2, A2

with effective viscosity and the strain rate tensor as:

_ p(la-1) . _ _ 1 aun aul\ A3
n_E » e“p-u(“-p)_i(axp*.a_xu“

respectively. Equation (2.18) then can be written in a simpler form:

do
—ub Ars.-a_.‘?_’ Q’B =1,2 Ad
9x, ox,

The weak statement is formulated by multiplying each component of equation (A.4) by

components of the weighting function w. and integrating both sides over the domain:

8 d
fw %ax , P2 |40 =fwars-a—s.
a | ax dy 2 ox

do da as
yx ¥y -
fgwy[w + a_y]dQ fnwyArs—ay.

Using the divergence theorem to reduce the order of differentiation on the velocity

functions yields;
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1]

ow ow
f xg” . xa” aQ - f w o n - c"nv)dr‘ f WArS——dQ
o\ dx dy " 3x e

aw 3s
f [ T a,, }dQ f w (o, n ~ o‘ynv)dl" -faw“_Arsé;dQ.

in which n is the unit vector normal to the boundary. Substituting for stress from

formula (A.2) and discretizing the velocity function as:

u" = + g el AT

\,
0+ el,

the x and v components of the Galerkin statement of the problem become:

ow, av . ow, [ dv, v, de
dx ax o Jy ay ax
ag
=2 - il x
2 fr.wxhx dr - | w, Ar dQ ~dQ
d d d ow, o
_fn_‘&[ﬁ“ﬁ]dg_-,h % 40,
Q" dy\ dy dx dx dy
A.s
aw, [ dv, avx dw, dv,
af i =22 2[ n—=2—2d0
av ay dx \ ox ay e Jdy ox
6 y @
= 2 w,hdr - fwAras de - 4f n 22240
T, a ﬂ y ay

ow, (9 0 dw, d
- w[ S __gﬁ]dQ _ofn__&dg
ax dax dy dy dx

The superscript h in formula (A.7) (dropped in equation (A.8) for convenience) refers
to the characteristic length of the discretized domain. In equation (A.8) g; is the ith
component of a given function satisfying the velocity boundary condition. and h, and

h, are components of the prescribed traction at the boundary.



A.1.2 Finite clement formulation of the continuity cquation

The Lagrangian description of the equation of continuity is as:

Ds . _svau. A9
Dt

The technique of solving this problem is to calculate the unknown function s at time

™', from the known values of s and u at time ", The weak form of cquation (A.9) is;

fnw:;-dQ = -fnwsV.udQ, A0

where § is the Lagrangian time derivative of s. and w is the set of crustal thickness
weighting functions. w. s and u are represented through the interpolating functions and
are known at time t". The equation is solved for the time derivative of the crustal
thickness at the nodal points. using the same techniques discussed in the previous

section. Once $ is calculated. the crustal thickness at time (™' is obtained by:

§= A.ll

A.2 Computer programming techniques

The solution domain in Figure 3.1b is divided into 1616 triangular ¢clements, and
w, u, g and s functions are approximated by bilinear polynomials. All the finite
integrals are calculated by Gaussian quadrature rule with four integration points inside
the elements (Figure A.1). The accuracy of the results was ascertained by running the
computer program with a coarser mesh, and also using interpolating functions of higher
orders. In the models involving nonlinearities in the rheology, the velocity field is

solved iteratively. A simple iteration scheme is used, where the entries of the global
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Figure A.1 A sketch of a triangular element with four integration points.
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matrix at cach iteration step are calculated from the velocities at the previous step. For
a model with n = 3. about § to 10 iterations were required.

The total time of the deformation is divided to relatively small steps. For the
size of time steps. the criterion given by Houseman & England (1986) was used. where

the maximum strain in any clement at cach time step should not exceed 10%. i.c..
¥

crustal thickness is kept unchanged. Once the velocity field is determined. the grid is

Jdu,
dx

du,

a

J -10% . A.l2
max

At cach time step. the cquation of motion is solved for the velocity ficld. while

updated. and the crustal thickness is calculated for the new configuration using the
continuity equation. The matrix in the left hand side of equation (A.10) is converted
into & lumped mass matrix in order to reduce the computer storage requirements. The
structure of the FORTRAN program developed in this study. has been adopted from a
finite clement code called DLEARN, written by Hughes (1987) for structural mechanics

problems. The computer program is given in the following pages.
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Ly el

e THIN VISCOUS SHEED MODEL ==

L3 s}

common hpoint’ miirstmiastmtotipree
common af LOLN00)

miirst - 1

mtot = 1000000
mlast - miot
ipree = 2

7]

open(S.ile="thin.dat")
opent9.tile="thir.out’)
open(7.file="thin.vel")
open( 10.43le="thin.ctstM
open(i 1.lile="thin.xy ")
opent 1 2.{ile="thin.plotv™)
open(13.4Tle="thin.cnc’)

L r]

call tlow

close(8)
close(9)
close(T}
close(10)
clase(11})
close(12)
close(13)

end

[rIN ]

subroutine flow

. ndof’ = no, of degrees of freedom  numap = no. of nodes
. nsd = no. of dimensions nume! = no. of ¢lements

npoe

character*4 title.ciag

common /bpoint/ miirst.mlsst.mtotiprec

common /cothte/ neg.negs

common finfo / iexec.ipnin,nsd.ndofinumnp.anlvectnivecs
common /spoint/ mpd.mpg.mpx.mps.mpid.mpEmpdiag.mprzm.
t mpalhs.mpbrhs.mptim.mpdpre.mpdigs,

1 ' mpalss.mpbrss.mpids.mpeps.mpsdot

common Aitlee/ 1itle(20)

common afl)

data cing/ *end”/

... input phase
<
t00 continuc

read (8.1000) title
ift (title(]) .eq. ciag) retum
read (8.2000) iexec.iprtin.nsd.ndofinumnp.alvectnlvecs
write{9.3000) title.iexec.iprtin
write(9,4000) nsd.numnp.ndofinlvect

n

. initinlization phasc
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cudl ot (neganegs)

C
cooomput miti] crustal thicknesses
[N
il erust tatmps pnumnpipring
[
¢,.. input ¢lement dita
[
call clemnt Cinput __ "atmpngrp))
¢
c... allocate memory for global equation system
<
citll egset {neg.negs,numnpanalhs.nalssy
C
¢... solutivn phase
¢
i fiexee Leq. 1) call driver {neg.aneqgs.nalhs)
¢
¢... print memory pointer dictionary
¢
call pride
¢
go to [00
¢

[0 format(20ad)
2000 format( §015)
3000 formang " 1. 20040/ .
PEXECUTION CONTROL INFORMATION /5x,

1" EXECUTION CODE .............. (IEXEC ) = "i5//5x.

1" EQ. 0. DATA CHECK OI5N,

1" EQ. I, EXECUTION /A

PINPUT DATAPRINTCODE ...l 0 (IPRTIN) = "i5//5x,

1" EQ. 0, PRINT NODAL. AND ELEMENT INPUT DATA I

I EQ. 1. DO NOT PRINT NODAL AND ELEMENT INPUT DATA . /5x)
JOMY Tormat(5x.

1" NUMBER OF SPACE DIMENSIONS ,....... (NSD ) = ".i5//3x.
1" NUMBER OF NODAL POINTS .......... (NUMNP ) = "i5//3x,
1" NUMBER OF NODAL DEGREES OF FREEDOM . ... (NDOF )= "i5/5x.
1" NUMBER OF LOAD VECTORS .......... (NLVECT) = “i5//5x)
¢
end
¢
¢
subroutine addlhs (alhs.clefim.idiag.Imnee}
¢
C.. program to add clement stiffoess matrix to globa! matrix
¢
implicit double precision (ash.os2z)
dimension aths(D.eleftin(nee. 1 .idiag(1).Im(1)
¢

do 200 j=1.nce

k= Imip)

ir (k .gt. 0) then

do 100 i=1§

m = Im(i)

il (m .gt. 0 then

if (k .pe. m) then
e idiag(k) -k +m

clse

| = whagm) -m+ k

endit’

alhs(!} = alhs() + clelm(ij)
endil’
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100 ¢continue

endif’
. 200 comtinue
C
retum
end

subrovtine adlhss (athss.eles.ims.nem

implicit double precision {a-h.o-2)
dimension alhssgDaeles{1ms(1)

Lr]

do 100 i = lanen

k = Imst)

iRk .zt O alhss(Ry = alhss(R) + clestid
100 continue

[¢]

retum
end
C
¢
subroutine addrhs (brhs.elresfimanee)
¢
C.. program to add clement residual forece vector to rhas vector
c
implicit double precision (ashw-z)
dimension brhs(D.elresf{NIm(1)
¢

do 100 j = Linee

Kk = Insf)

il (k .gt. 0) brhs(k) = brhs(k) + elrestij)
100 continue

¢
retum
end
c
¢
subroutine adrhss (brhss.clrhslm.nen)
¢
€. program to add e¢lement residoal force vector to rhs vector
¢
implicit double precision (ash.o-2)
dimension brhss(1).elths(1)Im(1)
c

do 100 j=1.nen

k= Im(j)

if (k .gt. 0) brhss(k) = brhss(k) + elrhs(G)
100 continue

¢
return
end
c
c
subroutine adtiime (lime)
¢
€. program to calculate total elapsed time
c
implicit double precision (a-h.0-z)
dimension time (1)
c

time(2) = time(2) + time(1)
write(™,1000) 2.5*time(2)



return

LOHY tormatCelapsed time 0707 ML)
end

¢

{
subroutine back rablidiag.ney)

¢

¢ progrm o perform forwiard reduction and back substitution

implicit double precision ta-h.o-2)
dimension af )b 1 )idiag(1)

C... lonvard reduction

i

do 100 j- Lneg

dilast i

I = idiagg)

jeotht - ji - jilast

i Geolht ot 1)

[h(j) = Bij) - coldottaijilast+1)bij-jeolhi+ [ )jcolhi-1)
10 continue

(o]

. diagonal sealing

oe

do 200 j=Lneq

afj = afidiag())

i (agp e 0.0 bijY = bjVaj
200 continue

. back substitution

66

il (neq .cq. 1) retum

finext = idiag(neg)

do 400 j=neq.2.-1

i = jjnext

finext = idiapgj-1)

jeolht = jj - jinext

if" (jeollt .pt. 1) then

bi =b()

istat = j - jeolht + |

jlemp = jinext - istart + |

do 300 i=mstartj-1

bty = b(i) -afjtemp+i)*bj
300 continue

endil’
400 continue
¢
retumn
end
v
¢
subroutine bond (id.idsndof.numnp.neq.neqs.ipriin)
¢

¢... program to read and generate boundary condition data and
... establish equation numbers

¢... n = number of first node in sequence
¢.. e = number of last node in sequence
¢.. Ng = generttion increment

C.. ib{ndotin) = d.o.f ndof boundary code for node n, 1 = specificd

¢.. velocity, 0= unspecified velocity
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dimension idindol Didst1Libi3)
togical pilag

call iclear (idandot™numnapy
call ielear (ids.numnp)

<

100 ¢ontinue

read(8,1000) nnenglib(i) i Lodoh
it n g, 0) go w0 30
it (ng .¢q. 0) then
ne =n
ng =1
else
ne = ne - mod(ne-n.ng)
end if

do 200 i = nneang

call imove (id{ 1.iib.ndoD
200 continue

go to 100

. read s boundary condition duta

Lea C ]

50 continuc
read(8.1000) n.ac.ng.ib(!)
it (n .eq. 0} go to 70
if (ng .eq. 0) then
ne=n
ng =1
clse
ne = ne = mod(ne-n.ng)
cnd if

do 250 i = n.ne.ng
call imove (ids(i)ib.1}
250 continue

go to 50
c
70 if (iprtin .cq. 0) then
nn =0
do 400 n = 1,numnp
pilag = .false.
¢

do 300 i = | ,ndof
if (1d(i.n) .ne. 0) pflag = .true.
300 continue

c
il (pfag) then
nmm=nn+1
if (mod(nn.50) .eq. 1) write(9.2000) (i.i=1.ndol)
write(9.3000) n.(id(i.n).i=l.ndof)
endif

400 continue

endif’

¢

c... establish equation numbers

<

neq =0

do 600 n = L.numnp
do 500 i = l.ndof

if (id(i.n) .eq. Q) then
neq = neq + 1

tn



iy ney
che
winy 0
endit’
SO0 continye
600 continue

<
negs 0
do 650 0 Lnumnp
il Gidstn} Leq. 0) then
negs  negs + |
Ws(n)  negs
else
idstn) 0
enchil

650 continue

¢

retutn

100 Format6is)

2000 format("l’” NODAL BOUNDARY CONDITION
IC O D E S TS NODE NOSISOGOX DOE 1)

3000 format(6x.03,5x.6(3x.i5))

[\

end
(&
[

subroutine btdb (stitlbdb.necnrowb.nstr)
[\
¢... program o multiply BCT)*DB, taking account of symmetry
¢.. and accumulate into ¢lement stiffness matrix
¢

implicit double precision {a-h.0-2)

dimension stilfines. 1 )L.b(hrowb. 1 ).db{nrowb,1)
[

do 200 j=l.nee

do 100 i=1nee

stifih) = sifiig) + coldat(b(1.i).db{1,j)nstr)
100 continue
200 continue

¢
retum
end
€
¢
suhrouting clear (m)
N
C... program to clear a tloating point amay
¢
tmplicit double precision {a-h.o-2)
dimension a(1)
C

do 100 i=l.um
ag) = 0.0
100 continue

¢
return
end
¢
¢
function coldot (a.bn)
<
¢... program to compute dot product of vectors stored column-wise
<
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implicit double precision (a-h,0-21
dimension atlvb(

coldot - 0.0
do 100 i=1.n
cotdot - coldot = w)*bi)
100 continue
¢
retum
end

L]

[ #1

subrotting colht (idiagJm.ned.nennumeh

. program to compute column beights in global lefl hand side malrix

o o6

dimension iding(Dumined.nen,))
common /colhte/ neg.negs

do 3500 k=1.numel
min = neq
do 200 j=1.nen
do 100 i=1l.ned
num = Im(i,j.k)
it {num .gt. 0) min = minO{min.num)
100 contihue
200 continue
do 400 j=l.nen
do 300 i=l.ned
num = lm(ij.k)
if (num .gt. 0) then
m = hum ~ min
if (m .gt. idiag(num)) iding(hum) = m
endif
300 continue
400 continue
500 continug

c
retum
end
¢
¢
subroutine compar (d.dpre.flg.ndof.numnp)
¢
¢... program to caleulate “(d - dpre)d’
¢
implicit double precision (a-h.o-2}
dimension d{ndof.1).dpre(ndof.1)
logical flg
c
flg = .true.
p=0.0

do 200 j = l.numnp
do 100 i = l.ndol
ift (dpre(ij) .eq. 0.) go to 100
relerr = abs((d(ij) - dpre(i,))dG4))
if (relerr gt p) p = relerr

100 continuc

200 continuc
if (relerr .iL .01) flg = .false.

retum
end
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suhroutine comphe Gdiids deeps.p tndofnumnpanlvectnly ces)
C... progrmm o compute velocity boundary conditions

implicit double precision {a-h,o-2)
dimension idendol, Dadstdindof, Dgtndod, Depst),
! {indolnumnp, 1)

ntot  nlveet + nlvecs
do 400 i {.ndof
do 300 ) lL.numnp

Loty
ik .pt 0) go to 200
val 0.0

do 100 Iv  Linlvect
val  val + fligv)
10 continue
digy - val
lij) = val
200 continue
300 continue
00 continue
¢
do 500 = Lnumnp
Kk == ids()
it (k .zl 0) go to 600
vitl = (L0
do 700 {v = nlvect + Lntot
val = val + ft1Llv)
700 continue
eps(j) = val
600 continue
500 continue

¢
return
end
¢
<
subrouting crust(s.numnp.ipriin)
¢
C... program lo store initinl crustal thicknesses
¢
implicit double precision (a-ho-2)
dimension s(1)
¢

do 1080 i = 1.numnp
sy = .35
160 continue

I
ifliprin Leq. OF write(9,1000) s(1)*100,
¢
return
1000 format(#," INITIAL CRUSTAL THICKNESS = "16.2" Km")
end
¢
<
subroutine detnry (namendimindim2.ndim3, mpoint.ipr.mlast)
c
€. Progrum to store pointer information in dictionary
¢

dimension name(2)
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common (1)

mlast - mlast = 7
trmast+1} - name(l)
tmiast+2) © pamet2)
m{mlast+3}  mpoint
infmlast=4) - ndiml
iatmlastr3) - ndim?2
intmlastr6) = ndim3
iafmlast+7) = ipr

¢
relumn
end
¢
¢
subroutine dettim (time, tim)
<
C... progrmam to compare the total time with clipsed time
¢
implicit double precision (a-h.o-2)
dimension time{ 1)
logical ftim
c
flim = .true,
i (time(2) .ge. tme(3) ftim = false.
c
return
end
<
c
subroutine diag (idiag.neq.n)
c

C... program to compute diagonal addresses of lell hand side matrix
dimension idiag(1)

n=1

idizg(l) = 1

if (neq 0q. 1) retum

do 100 i = 2ineq

idiag(i) = idiag(i} + idiog(i-1) + 1
100 continue

n = idiag(neq)

c
retum
end
€
c
subroutine driver{neq.negs.naths)
c
... solution driver program
e
logical flg.{tim
character* | ans
common /info / iexec.iprtinnsd.ndofinumnp.nivectnlvecs
common /spoint mpd.mpg.mpx.mps.mpid.mplimpdiag.mpngm,
1 mpalhs.mpbrhs,mptim.mpdpre.mpdigs,
1 mpalss,mpbrss,mpids.mpeps.mpsdot
common a{l)
jans = 2
¢
¢
c AN ART AT NN AE NS AN AN E RN AP ARSI AN AP SN NN AN AN NP RN OO
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¢ THIL STATIC EQUATION

call clear Gitmpd ) ndol™® numnpy
call ¢lear talmpgndof™numnp)

¢
¢.. compute the velocity boundiry conditions
¢
call comphe (atmpid pagmpids Ladmpdiatmpsdot)atmpg ha(mpladol
1 Jumnpalvecetalvees)
¢
call cleartafmptim).3)
¢
<. read total time
<
catl rdtime {atmptim})
¢

print*. "Is this a nonlincar problem 7 (v/n)
10 read(*. () ans

if tans weq vy duns 1

if tans e 7Y dans - 0

it (ians . 2) then

print*. "Re-enter the answer, (/n)’

o to 10

end il
-
v assign the dnitial value of velocity to the nodes (nonlincar case)
[
il (ians weq. 1) call intinl (a(mpd).a{mpid).ndol.numnp)
¢
¢... loop on time steps
<
itime = |
200 continue
<
print®, itime, “th time step &
primt®*, ~
<
¢.. ileration for nonlinear case
C
iter = 1
100 continue
¢
it Gans .eq. 1) call move (a(mpdpre).aimpd).ndo®*numnp)
call clear (a(mpalhs)naths)
¢
¢... lorm the stiffness matrix
c
catll elemnt (form_ths" a(mpngrp))
c
¢.. perform factorization of the stiffhess matrix
<
call factor (a{mpalhs)a{mpdiag).neg)
v
call ¢leur (2(mpbrhs)aeq)
c
¢... lorm element contribution to residual force vector
I
call clemnt (torm_rhs”.a(mpngmp))
[
C.. solve the equation svstem, forward reduction, back substitution
<

call back (a(mpalhs)a(mpbrhs)a(mpdiaglneg.iter)
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catl iterup (ampidiagmpdlagmpbrh<indolaumnpy
il (ians .eq. b)Y then

print*iter.th  ileration completed”

iter - iter + 1

e... compare the velocities with the previous ongs

calt compar (@(mpdlagmpdpreltle.ndotnamnm
it (not. {ig) go to 101

end it
¢
il (tans weq. 1) go o 100
c
c L LY T LR YL LR LR LY Rl LS IR RSN
¢
c EQUATION OF CONTINUITY
¢
¢... determine the time intenval
¢
101 continue
¢
call elemnt ("det_time™a(mpngm))
¢
c.. update the grid
¢
call update (a(mpx)a(mpdla(mptimlnsdindolnumnn)
c
c... add the last time interval to the total time
¢
call adtime (a(mptim))
¢
¢... solve the continuity equation
¢
call clear (mmpalss)negs)
cali clear (a(mpbrss).negs)
call elemnt (“solv_con a(mpogm))
call solves (a(mpalss)ampbrss)a(mpeps)negs)
call expo (a{mps)a(mpids)a{mpbrss)aimpsdot).almptim).numnp)
¢
prim®, * Litimeth time step completed®
c
¢... decide wether 10 stop the time stepping or not
¢
call dettim (a(mptim).fRim)
if (.not. ftim) go to 300
itime = itime + |
go to 200
¢
€... write crustal thickness and velocity date
[

300 continue
call printc (a{mps).numap)
call printv (2(mpd).a(mptim),ndof.numnp}

¢
retum
cnd
c
¢
subroutine cleard (hpar)
c
C.. program to read clement control curd
¢
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dinension nparf 1)

C
read (8, 1000) {oparfi). 1 1.3)
write(9,20081)

¢
refum

10U formaa 16i5)

2000 formatt" 1V FLEMENT DATA it}
end

¢

¢
subroutine elemnt (task.ngm)

¢

C... program to calewlate element task number

¢
character*S sk cltask(6)
dimension ngpt 1)

¢
common /info 7 {exec,ipriinansd.andolinumnpanivectnlvecs
common iatl)
data ntask.ettasksSinput_ Ctorm_ths"fonm_rhs”,
1 det_time’,solv_con’/

¢

Jo 100 = Lntask
it (ask Leq. eltask(i)) itask =

JEH) continue

it (itask .eq. 1) then

mpnpar = mpoint'npar " 16,0.0.1)
ngrp(l} = mpnpar

eall eleard (i(mpnpar))

clse

mpnpar = neml)

endil’

call elmlib (mpnpar.itask)

retum
end

L r)

)

66 e

subroutine clmlib (mpnpar.itask)

. program o call element routines

comunon 2(1)
call quade (iska(mpnpar).a(mpnpart 16))

relum
el

subroutine eyset (neg.negs.numnpanathsnalss)

. progrm to allocate storage for global equation system

character*d title
common /bpoint miistmlastmtolipree
common /spoint/ mpd.mpg.mpx.mps.mpid.mplmpdiag.mpngrp,

! mpalhs.mpbrhs.mptim.mpdpre.mpdigs.
| mpalss,mphrss.mpids.mpeps.npedot

common Aitlee! title(20)
common a(l) :
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¢ determine addresses of diagonals in fett hand side matris

call diag Gumpdiaghoeg.nalhs)

mpalhs = mpeintalhs nels 00 prec)
mpbrbs - mpointCbrhs e JOdLipree)
mpalss = mpointCathss Cnegsdhipree)

mpbrss - mpointChrhss CinegsUipree)
meanbw = nathsney

nwords - oatot - mlast + omfiest - |

¢
¢ Write equution system daty
c
write(9.1000) titlenegnalhsmeanbw.awords
retum
1000 Format("1°.2004///
PFEQUATION SYSTEM DATA tOABN,
" NUMBER OF EQUATIONS . ... ....... (NEQ ) - "asiSx,
1" NUMBER OF TERMS IN LEFT HAND SIDE MATRIN  (NALHS ¥ Ca8/3x,
P MEAN HALF BANDWIDTH . .......... (MEANBW)Y - "as#/3x,
1" TOTAL LENGTH OF BLANNK COMMON REQUIRED . (NWORDS)
end
¢
¢
subroutine expo (s.ids.brss.sdottime,numnp)
¢
¢... program to calculate s trom ds/dt (eps) mt nodes
c

implicit double precision (i-h.o-7)
dimension s{1)ids( D.sdot{ D.brss( 1 time(1)

do 100 i = T.numnp

k = ids(i}

it (k .gt. 0) sdot(i) = brss(K}
[00 continue

¢

do 200 i = l.numnp

s(1) = time{1)*sdoi{i) + s(i)
200 continuce

¢
return
end
c
¢
subroutine factor (a.idiag.neq)
¢
C... program to perform Crout fhctorization on a, A = UCH)*D*U
c

implicit double precision (a-h.o-z)
dimension a(1).idiag(1)

i=0

do 300 j=l.neq
plust = jj

§ = idiag()
jeolht = jj - jjlast

i’ (jeolht gL 2) then

n

. for column j and i .le. j-1. replace afij) with d(iLi)®u(ij)

istart = j - jeolht + 2
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r.

n oo

el ve 1
" et + 2
no a1
oo 10 sttt
[THN AR T
no dnenn
wellit 0« nlast
neth e an
length mumibicolht- 1) Inethn
it tlengthy ot oy
atip oty = coldottatit-lengthatg-lengthn length)
TR TR
100 continue
emdit

! {jeollt pel 2y then
torm column | and i Qe j-1. replace afijy with ulip

pemp |- 4
don 20000 jast + Lj -1
o idiagdjremp e iy
i cadit) ne, 04 then
temp  ati)
atip)  lempain
atiiy  atgi) - emp*ulij)
endil’

200 continuge
endil’

300 ¢continue

retsm
end

subroutine tormbm (idadsaendm. ims.ndolned.nen.numel)

program to lorm the clemental LA amay
Im{ned.nen, b} - location matris

dimension idindof, 1) jentnenb). Imined.nen.ids(1)
! Imstnen. 1)

da 300 k=1.numel
do 200 j=l.nen
node = iengiky
Ims(ik) = ids(node)
Jo 100 i= | andoef
miijk) = diinode)

100 continue

200 continue

300 eontinue

c

retum

vod
¢
¢

subrowtine fhnienicn.nenaumel)
I\
<. progoam to construct TIENT amy
¢
¢ dennennumeld = element nodes army
¢... numel = number of clements
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tmplicit double precivion (a-a.0-7)
dimension femnen. i}

do 1601 Lnumel
readd (1310000 Kgiengih o Lnem
100 continue
retum
C
TOO0 format(4is)

end
v
¢

subroutine genel Cietumatnen,numelumat)
<
C... program to generale clement nodes and niaterial numbers
¢ len{nennumel) - element node numbers
Co. mattnumel) = clement material numbens
<

dimension denfnen. Janat D
c

call frmien {icn.nenanumel)
¢

do 100 n=1.numel
mat{n) = 1

100 continue
il (numat .cq. 1) relum

¢

200 continue
read(3.1000) alisstalastmatnun:
if{nfirst .eq. 0) return

do 300 j = nlirstnlast
mal(j) = matnum
300 continue
go to 200
¢
1000 format(3i3)
end

[r]

(1]

subroutine genfl (a.nm)

program to read and generste floating point nodal data
a = input amay

nra number of rows in u

n node number

numgp = number of generation points

ninc{i) = number of increments for direction i

inc(i) = increment for direction 3

npooao

no

¢

implicit double precision (a<h,0-2)
dimension a(nra, 1).emp(6.20)ninc(2)inc(2),5h(20)

read(8,*) n.aungpllemp(i.l), i=lom)
il (n .eq. 0} retumn

call move (a(l.n).tlemp.nra}
ift (numgp .ne. 0) then
do 100 j = 2.numgp

read(.*) mimgen(temp(ij). i=i.nm}
il (mgen .ne. 0) call move {(temp(1.jLa{l.m)nr)
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i contifie

©

readdS.2000) (ninctipancin, + 1L2)
¢
coooopt L penerition along a line
L 2. peneration slong a surtice
¢

iclpl 2

i fninel2y g iopt 1
v

dr 00

ds 00
I

Wninct iy oo O) dr 2.0minci )

il tninct2y e ) ds 240/minet2)
¢

it ety |1

i minct2y + |l
<

T

ngon
I

5 =)

do 300§ L

r - =10

do 200 Lt
call gensh (rssh.numgp.ioplt)
call multab (tempsha( Lni)a200manumep.anmd. gy
ni - nt o+ oine(l)
rr+dr
200 continue
n - nj + ing(2}
ni - 0
8 -n s
300 continue

endit’
retum
<
1000 fonnat(2is.6f10.00
2000 formak 16i5)

<
end
¢ —
¢
subroutine gensh (cxshonumgp.iopt)
<
¢... program to call shape function routine for isoparametric
C.. pencntion
¢
impiicit double precision (a-h.o-z)
Jdimension sh(l)
¢
go to (100.200),iont
¢
100 call gensh! (rshaumep)
neturh
200 call gensh2 (rshuaumep)
relum
¢
cnd
¢
C



subrautine genshl (rshand

¢
Co Progrm 1o compule 1D shape functions for isopunimetric
.. generation
N
implicit duuble precision a-l,o-0
dimension shil)
C
sh2) - 0.5*r
shtl) - 05 - sl
M2 - 035 - shi2)
(n.eq. 3) then
shi3) - 1.0 - =2
shiiy = shily - 0.3%sh(3)
she2y - sh2) - 0.5*sh(3)
endil’
¢
relum
end
N
C
subrautine gensh2 {rsshan)
¢
C... program to compule 213 shape functions for isoparunetric

on

. gencration

implicit double precision {i-h.o-2}
dimension shil)

t2 = 0.5%r

1l =05-12
=05+
82 = 053

8l = 0.3 =82
$2 = 0.5 + 52
si(l) = ri"s]
sh(2) = r2*sl
sh(3) = 2*s2
sh(4) = ri=s2
il (n .eq. 4) retumn

t3 = 1.0 - p**2

83 = 1.0 - 5**2

shis) = r3=sl

shi6) = s3*r2

sh(7) = r3*s2

sh(g) = s3*r!

sh(!) = sh(1) - 0.5"(sh{5) + sh(8)
sh(2) = sh(2) « 0.5(sh{6) + sh(5))
sh(3) = sh(3) - .5"(sh{7) + sh(6))
sh{4$) = sh(4) - 0.5%(sh(8) + sh{7)

1

relurn
end

subroutine grid (x.nsd.nemnp.iprin)

program to construct a rectangular grid

... nsd = number of space dimensions
. numnp = number of nodes in the grid
. x{nsd.numnp) = nodal coordinute amuy

b3



i

imphicst double precision fu-h.o-2}
dimension sinsd, )

I
oo read prid punsncters
<

do 160+ Lnumnp
readf11.%) Kxglbxedn
100 conlinue

i Giprtin weq. 1) retum
do 20 0 Lnumnp
i tmodtn. S0 eq. 1) writef,30003 (L 1 Lasd)
write(V.4000) ninCan) i Lansd)
200 continue
¢
retum
FO fonmat(2010.5)
2000 fonm(5,010.4.016.4)
3000 format’ ' NODAL COORDINATE DATA W
1" NODE NOS20038 L7000
SO0 Tormun(6x,15.6x.2(115.3.1x))

end
¢
¢
subroutine iclear (ia.m)
<
¢.. prognnn to clear an integer army
¢
dimension (1)
<

do 100 i~i.m
i) = 0
[O0 contines:

¢
mtum
end
¢
¢
subroutine imove (iadb.an)
c
€. PROGRIM 10 Move an inteper array
¢
dimeasion iaf])ib{!1)
¢
do 100 j=ln
i) = ih{i)
100 continue
<
return
end
¢
<
subroutine intial (d.id.ndof,numnp)
e -
c.. progrum lo input initial velocities
¢
implicit double precision (a-h.o-2)
dimension Jdindof1)id(ndofi1}
¢
¢... tead the initial value
¢

primt*, ‘Input "Guess™. the initial veloecin:’
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rrad( ) puess

del - 4
Jdo 2007 - Loumap
Jo 1001 - Ladof
i (L) e, 00 Ji) - poess - del
del o del = 000
100 ¢ontinue
200 continue

¢
return
end
¢
¢
subroutine input (Cndofnumnpg.niveetnlvees.iprtin
¢
€.. program to read, generate and write nodal input data
C... findofinumnponnlvect) = prescribed forees/ Kinematie dat j - 0
C... = initial veloeities, j = |
¢
implicit double precision {(u-h.o-7)
logical leero
dimension f{ndolnumnp.)
3
ntol = nlvect + nlvees
call clear (fntot* numnp®ndol)
c
do 100 nlv=1.nlvect
call genfl (U1 Lnlv)ndol)
call ztest (f(1, Laiv).ndol® numnp,lzcro)
c
100 continue
c

do 200 nlv = alveet + Lot
call gentl (1{1.1.nlv).1)
200 continue

c
return
end
c—
¢
subroutine sterup (id.d.brhs.ndolnumnp)
<
¢... program lo move the nodal velocitics to "D° amay
<
implicit double precision (a-h.o-2)
dimension id(ndof.])d(ndof.1).brhs( 1)
¢

do 200 i=1.ndof

do 100 j=].numnp

k = id(i)

il (k .et 0) d(iyj) = brhs(k)
100 continue
200 continue

¢
retum
end
¢
c
subroutine local (ienx.xlacnnrowx.nrowxl)
c
¢... program to localize a global array
<
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mphicst dowhle precision fa-huo-z)
dimension ientLatnrows, Lalinrows 1)

oy 2000} 1nen
node dend))
do 10000 nrowx!
xlthg)  Afinode)
i) continue
200 continue

¢
returh
end
<
¢
subroutine locall (ienx.shoen)
C

c... program to localize a global army

implicit double precision {a-h.o-2)
dimension ten( XX

do 100 ) lnen

node - ienj}

xlg) - Ninode)
[0 continue

¢
return
end
Y
¢
subroutine matadd (ab.c.miumb.me.m.naiopt)
¢
¢ program to add rectangular nutrices
<
implicit double precision (a-h.o-2)
dimenston a(ma, 1).b(mb, 1)e(me. )
¢
go 1o (1000,2000.3000).iopt
¢
C.. dopt = 1, add entire matrices
¢

1000 do 1200 j=in
do 100 i=l.m
e(ig} = aij) + b(y)
1100 continue
1200 continue
reurn

1]

c.. dopt = 2, add lower thangular and diagonsl matrices

Lo}

2000 do 2200 j=1.0

do 2100 i=j.m

e(i) = alig) + hiiy)
2104 continue
2200 continue

retumm

L

C.. iopt = 3. add upper triangular and diagonal elements

L]

3000 do 3200 j=1.n

do 3100 i=1

e(iyj) = atiy) + bui,j)
3100 continue
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32600 condinue

return
¢
end
-
¢
subrouting move {ab.n
¢
¢ rogram to move o floating point arra
<
implicit double precision (a-ho-2)
dimension a(lL1)
¢
do 108 i=1.n
a(i) = (i)
16V} continue
¢
retum
end
¢
¢
function mpoint (nume.ndim Loadim2.ndim3.ipr)
c
c.. progrum lo calculate storage pointer
¢
dimension name(2)
common fbpoint/ miirstmlastmtotipree
¢
mpoint = mfirst
if (iprec .¢q. 2 .2nd. mod{mpeint.2) .ey. 0} mpoint = mpoint + 1
call dewnry (name.ndimi.ndim2 ndim3.mpointipr.mlast)
miirst = mpoint + ndim!*max0(L.ndim2)*max0( Ladim3 y*ipr
il (mfirst .ge. miast) call serror (name.mbisst-milast)
c
return
end
c
¢
subroutine multab (ab.c.mamb.me.lm.niopt)
¢

¢.. program to multiply two matrices
... | = range of dot-praduct index

c.. m = number of active rows in C
¢... n = number of active columns in C

[
implicit double precision (ash,0-2)
dimension a{ma. ! J.bh{mb.!)e(me.1)
c
2o to (1000,2000.3000.4000).iopt
Cc
.. iopt=1 ¢c=a*b
c

1000 do 1200 j=im
do 1100 j=1.n
¢(ig) = redot(afi.1).b(1).mal)
1100 continue
1200 continue
returmn
c
C.. iopt=2 ¢ = a(ty*b
c
2000 do 2200 i=l.m
do 2100 j=1.n

17



L
v
v
3000 do 32007 Lan

[
...

C

Cinpr  coldotiad bl )

2100 continue
2200 continue

return

iopt 3 ¢ a*hit}

do 300 L
elij)  rowdtlati ) )bl mamb,l)

3100 continue
1200 continue

return

pt d ¢ Dbl

4000 do 4200 1 ILm

do JH0 g I
clig)  redotb(i ) aililmb])

100 continue
G200 cantinue

<

-~

L)

<

return
emd

subroutine prine {s.p)

. program to ¢aleulate principal values

implicit double precision (a-h.o-2)
dimension s(1,p(1)

X = 5% s(1) + s(2)

v = 0.5%s(1) - s(2)

ros Sqrtfy* 2 - s3ye2)
ph=x+r
p2y=x-r

relturn
end

subroutine printe(s.numnp)

. program to print crustal thicknesses

implicit double precision (a-h.o-z)
dimension s(1)

do 100 n=!.numnp
il (mod{n.50) .eq. 1) write(9.1000)
wrile(9.2000} n.s(ny* 100,

100 continue

retum

1000 tomua"1/F CRUSTAL THICKNESSES™//

1" NODE NO. THICKNESS #5x)

2000 format( IN.i5.4x.117.8)

<

end

subroutine printv(aLtime.ndolnumnp)
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<o program o oprint crustal thicknesses

implicit Jouble precision (a-lLo-z)
dimension a(ndaot, 1) lime(2)
= tmeg2)* 2.8
write (9.1000) t
do 100 n=!numnp
i (mod{n30) eq. 1) write(9.2000)
write(9.3000) nain), i = Ladob)
100 continue
¢
relum
TR00 tormat* U7 TIMLE @ 05207 MILLION YEARS™
2000 format(/” VELOCITIES Y
1" NODE NO, DOIF1 DOy
3000 format( 1x.05.5x2(115.8.2x)
end
¢
c

subroutine pratel (matien.nennumel)

. program to print data for clement with "nen” nodes

oo

dimension ma(1).ien(nen.t}

do 100 n=1.numel
i’ (mod(n.50) .eq. 1) write(9.1000) (i. i=1.nen)
write (9.2000) n.mat(n).(ien{i.n), i=l.nen)

100 continue

¢

return

100G Tormat{"1°//
"ELEMENT DATA /SN

1" ELEMENT MATERIALLG( NODE “il..2x)/5x.
I" NUMBER NUMBER')
2000 format{6x.i5,7(5x.15))

end
¢
¢
subroutine prop2d (ar.rumat)
c
C... program to read, write and store material properties
[+

implicit double precision (u-lhuo-2)
dimension ar(l)

<
do 100 n=1.numat
if (mod(n.50) .eq. 1) write(9.1000) numat
c
C.. read & write viscosities
<

read(8,*) m.anm)
write(9.3000) m.ar{m)
100 continue
c
return
1000 formai("1'/r MATERIAL SET DATA Ii5x,

1 ' NUMBER OF MATERIAL SETS .. .. .. MNUMAT) =5

1 SET 5% ARGAND NUMBER'™.)
3000 format(5x.i5.5x.1pe10.4)
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end

S
C
subroutiie priuc
N
G program to print memony pointer dictionary
¢
common/bpoint/mtirstmbistmtotipree
common infl)
¢
no (ol - mlasyy/7
1 miot ¢}
¢
do 1IN0 i In
imod(i.50) g, By write (9,1000)
1 1-7
¢

call prade P Ri(e2 pia+3 Liagi+<aagj 3 )ia+6))

100 continue

¢

retum

1000 format(™1" /7
1" DYNAMIC STORAGE ALLOCATION. *  INFORMATION/
H2IXCARRAY NOU. Sx. "ARRAY™ | 8x, "ADDRESS “.6x. "DIMI “.6x,
'DIM2 “6xDIM36xPREC, D

end
I
¢

subroutine pride! (Liname.izsdd.ndimlndim2.ndim3.ipr)
<

¢.. Program o print memory pointer information for an amay

dimension iname(2)
Nive neg
data netparletths npare’alhs’/
irdoeg. 1) neg = §
il" (iname( 1) eq. nelpar) then
write(9. 1000} neg
neg = nep + 1
endif’
il (inme( 1) .cq. ictths) write(9.2000)
write(9.3000) iiname.indd.ndim §.ndim2.ndim3.ipr
¢
retum
LO0D formmat(/14x.****" 7x,"BEGIN ELEMENT GROUP NUMBER"iS/" *)
2000 format(/14x,"***** 7 END  ELEMENT GROUP DATA™S 7}
000 format{ [4x,i5.7x.20d, 1x,6110)

end
¢
<
subroutine prs2d (xintstress.strainnn.nntot.nelint)
[
C.. program to print stress and streain mates
¢
implicit double precision (a-ho-2)
dimension xint{2).stress(3).strain(3)
¢
nno=nn + |
it (mod(nn.nntot) .eq. 1) write(9,1000)
write(9.2000) nellinLxintstress.strain
<

netum
1000 formay 1707
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FPELEMUENT STRESSIS X STRAIN AN
1.
1" ELENMENT INT. P, N1 X2 T,
1" STRESS  STRESS  STRESN
1" NUMBER  NUMBER "3,
1 i1 22 12 7 Ak,
1 SERATE ST, RATE ST RALTE Ao,
1" 11 22 129
2000 Toematl 22X 5.6x0 28520 I Ipe T LSS 3 pe 1 2.4 3223 (I pei 2
end

<

subroutine gdeb (sha.barowsharowbaen)

"~
i

. program to set up the smain e velociny matrix "h"

implicit double precision (a-h.o-z)
dimension sheinrowsh, L Lb{nrowb,1)

do 100 j=l.nen

2 = 2

j2ml =j2 -1

M1 i2m1} = she(lj)

b1 =00

b(2j2ml) = 0O

b(2,j2) = shp(2,)})

b(3.j2m1) = sha2h

h(342) = shg(l))
100 continue

c
retum
¢nd
¢
<
subroutine qdebod (w.detshgslelnestavork.constm.nen.nint.ned,
| nrowsh,nel)
c
¢... program to form body forces
c
implicit double precision {a-h.o~z)
dimension w{l).det(D.shg(nrowsh.nen, Dciresft Dsl().
| work( !}
c
c... loop over integration points

do 300 I = L.nint

temp = consim®*w(l)*det(l)

call multeb (she(l.LDslworkanrowsh.nennrowshaen.nrowsh, 1.1)

work(1} = 0.

work(2) = 0.

work(3) = 0,

do 50 j = l.nen

work(l) = work(1l) + shg(1.3.1)*sI{})

work(2) = work(2) + shg(24.0)*sl()

work(3) = work(3) + shg(3j.0)*sl(j)
50 continue

¢

do 200 j = l.nen

do 100 i = l.aoed

ip=ned*(j~ 1) +i

elrestlip) = elresilip) + emp™work(i)*work(3)"shg(nrowsh,j.l}
c

100 continue



200 continue
W continug

I
return
el
[N
¢
subroutine gdekiw detshz bodlstruindmatdboatilleonst,
| expnennintnesd.arowshnrowbonsteneenely
¢
C..o program to set np the local stiltess matrix
C
C... stflineenee)  local stifTaess matrix
C
implicit double precision {a-ha-2)
dimension dett (] shgtnrowshaen, ! binrowb, 1rdI(],
1 diettorowh, [ idbinrowb, Lstitlinee, §straing D)
¢
c... loop on integrition points
¢
do 160 1= Enint
temp - const*w(l)*det(l)
<
C.. setoup strian rate - velocity matrix "B’
c
call gdeb (she(l.Lbarowshnrowb.anen)
¢
C.. caleulate stmin mies at the integration points
<
cull multab ¢hdlsiminnrowb, nee.nstrnee.nstr1,1)
¢
€... set up the constitutive matrix
¢
call setupd (dmatstrintemparowb.exp)
¢
¢... multiply D*B
c
call mulizb (dmat.b.db.nrowb.nrowb,nrowb.nstr.nstr.nee, I}
¢
¢... multiply B(T)*DB, taking account of symmetry and put in sufl’
¢

call htdb (stillb.dbneenrowb,.nstr)
100 ¢continue

N
netum
end
¢
¢
subroutine gdekd (w.detsheb.glstraindmacstress.work,
l elrestidldbstiffconstexp.
| nenmint.arowsh.nesd.nrowb.nee.nsir)
¢
¢.. program to [orm intemal force (-K*D)
¢
implicit double precision (a-h.o-2)
dimension w(ldel(!she(nrowshanen, | ).b(nrowh. 1).21(1).
| strain( D), stress( Dawork Dielresi DI,
1 db{nrowb, 1 stiflinee. 1)
<
€. loop on integration points
¢

Jdo 100 1=1nim
lcmp = -cl.'lﬂ.\‘l‘\\'{n-di:“n
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Co.setup strian rte - selociy matrix Y

call gqded Gsha(Lbhbaarowshoaorowboen
.ocleulite struin mies at the inteprtion points

cuall multab (b.dlstrmin.nrow bhoneensienee.nste L5

C... sk up the constitutive mateix

©
call setupd (dmatstrin temp.nrowh.exp)
¢
¢ multiply DB
call multab (dnathadbarowb nrowh. nrowbanstenste.onee. D
¢

¢

. multiply B(T"DB, taking account ol symmetny and put in sdll’

(7]

call btdb (s1ifl.b.db.nee.nrowb.nstr)
100 continue
call multab(stittpLelrestineencence.neenee. 1)

C
relumn
end

¢

[
subroutine qderst” (ielne.iside press.shearnsurl)

<

€.. pragram lo read write and store surface foree data

¢
implicit double preeision (a-ho-z)
dimension iclno(! Liside(]).press(3. Dhshean 3. 1)

¢
do 100 n=1nsurl
iimod(n.50) .eq. 1) write(9.1000) nsurl’
read(3.2000) iclno(n)isidetn).press( Lankpress(2.n).press(3.n).
1 shear( L.n)shear(2.n)shear(3.n)
write(9.3000) iclno(n).iside(n).press(1.n).press(2n).press(3.n),
1 shear(Ln)shear(2.n)shear3.0)

100 continue

¢

return

1000 lforma(*1",
I'ELEMENT SURFACE FORCLES DATA "JiSx,
1" NUMBER OF SURFACE FORCE CARDS . ....... (NSURS) = s
I5x." ELEMENT  SIDE " 3(" PRESSURE ).
13C SHEAR W/
15%,3C NUMBER "3(" NODE 1 NODEJ NODE K "))
2000 format(2i5.6110.0)
3000 format{6x.i5.5x.i2.2x,6(1x.e12.4))
end

[

[¢]

subroutine qdeshg (xlLdetshlshg.nintnen.nel}

. program to calculnte plobai derivatives of shape functions and
. Jacobian determinants

. xl(.1) = global courdinates

. det(l) = Jacobian determinant

. shg(lil) = global "x" derivative of shape functions
c... she(2.il) = global "y derivative of shape functions

ponnaonoo
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N sinsv ol elebal shupe hunchon
N st bagobian mairn
L nit nuraber of ntesralion pomnts

inplicit donble precistion Gi-boes)
dmmension shlinen, Drsheinen, s 2.20det a2y

call muse tshgshl 3 nen ninty

dio oo LT gt

dJodony 12

Jo 3 12

e reosdottshigd Lhadk).3. 20
MU continue
JO0 continue

I

detth sl sty - AL 22D
v

il detth Lle. .03 then

write{*, 10O} tel

slop

endil’
I

do 00 1.2

do 45040 1.2

asify astigrdet(h
450 continue
SO0 ¢ontinue

do 350 1 Lhen
temp - 8s(2.2)7sha( 1D - NsU1L2y she(2000)
shp(2ad) = -xs2 esheeLid) + xseh D she2a0
shg(Lil) - temp

550 continue

600 continue

©

retum
1000 formaC SHG, NON-POSITIVE DETERMINANT IN ELEMENT NUMBER

end

N

<
subroutine qdeshl (shLw.nen.nint)

¢

¢.. proprmm to calculate integration - rule weights, shape functions

Coo i Jocal derivatives tor six-node triangular clement

¢

c.. s = local elemenm coordinates

shi(hi) = local "st™ derivative of shape function
shi(2.i.y = local “eta” derivative of shape function
shi{3iD = local shape function

wil) = integration - rule weight

i~ local node number

! = integintion node number

nint = number of integration points ( cg. o 3)

Hen

neann

implicit double precision (i=h.e-2)
dimension shi{3,nen, oD ragd)sa4)

[ 1]

Jatr mv=305, 5.5 5.-5,.5..8
oo sl

w(l) = 1.
w2y =1,
w(d) = |
w(d) = 1,
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L]

L]

Gn6 6

[ )

do 2000 lnint
£ a*nuh

»ooatsalh

Jdo gy 13

tempr - it
temps - salyTs
shicLLDy  miy*temps
shlit2a tempresad)
shIGLD - tempretemps

5
$

100 continue

tempr - = m-r
temps - L5 = osad)ts
shiCLAd) = shlgh3D « m-htemps
shit25.0) = shlitZ3E0 ~ tempresad)
shi(3.3.0) = shli3 30 ~ temprewemps

]
5

200 continue

returm
end

subroutine gdesut Gielnodenx.xbiside.pressashearelrest,
! brhs.m.nsurtnennsd.nesdaned.neey

. progmm to comptte consistant surlace loads,
. three-point guassian quadraure is emploved

implicit double precision (a-h.o-z)

dimension #(2)work(2)ielno( 1 ieninen. H.x(nsd, 1,
1 xlinesd. ] Liside( 1).press(3.1Lshean(3. 1),

1 clresiined. 1).brhs( Dm(ned.nen. )

21} = - 1.0%qr3.0)
22 = i)

do 300 I=]l.nsurt

nel = felno(l)

call local Giend Laehx.xknennsd.nesd)
call clear (elrestinee)

1= iside(h)

k=i+1

if(kweq Hk=1

j = | + 4

dx = xI(1.k) = Al1.D)

dy = xI(2.k) - xI2.0)

do 200 m=12

shi = 0.3"x(m)*(x(m) - 1.0)

shk = 0.5%*2(m)*(z(m) + 1.0)

shj = 1.0 - #{m}*z(m)

p = (shi*press(1.I} = shk*press(3.0) + shj*press(2.0)
s = (shi*shear( 1.1} + shk*shear(3.0) = shj*shear(21y)

work(1l) = 0.5%(-p*dy + s*dx)
work(2} = 0.5%( p=dx - s"dy)

do 100 n=1.2 -
elrestind) = elrestinad) ~ shi*work(n}
clresfink) = clrestink) + shk®"work(n)



clecadtng) clresding) -+ shi®worktn)
1O continee
2 continye

¢
call addrhis thrhs,elrestimi L inclhnee)
30U continue
¢
return
end
¢
I
subromtine gdet! ishi w Mmoo ar Lien
1 mat Lid o JIm Liding delno
] tsade press shear |
1 s bms
| numg! numat nsort pinl nrowsh,
H nrowh nen  ndof Lned  Liprting
v

C.o. program o red generate and write date for nine-node clement

implicit double precision {a-ha-z)
dimension shltnrowshoaen, 1w Dawm( (1),

1 ientnen. Damat( | id{ndot. ) Im(ned.nen, hidiag(1).
] ictnof § Liside(] Lpress(3. 1 shear(3.1).,
1 idst L Ims(nen.1)
¢
write(9. 1000 numelnumit,nsurf
call gdeshl (shlw.nennint}
<
call prop2d (ar.numat)
¢
call penel {ien.mat.nen.numel.numat)
<
i ¢iprin .cq. O) call protel (maticn.nen.numel)
¢
call formlim (id.ids.ienlm ms.ndotined.nen.numet)
v
call colht (idiag.tm.ned.nen,numel)
¢
it nsurt” gt 0) call qderst (iclno.iside,press.shear.nsurf)
C
relum
1000 forma/” NINE_NODE °,
I" RECTANGULAR ELEMENTS, N5x.
1" NUMBER OF ELEMENTS . ......... (NUMEL) = "i5/5x.
1" NUMBER OF ELEMENT MATERIAL SETS ... (NUMAT) = ".i5/5x.
1" NUMBER OF SURFACE FORCE CARDS ... .. (NSURF) = ".i5/)
end
<
<
subrouting qde2 (cleffmien X xI d Wl
| det shl shg w b .
! stindmat b aths Lidiag Jm
! argand.mat tim
! numel neesq nen .nosd  anesd nint
1 nrowshindol” .ned  .nrowb .nstr nee)
¢
<. progrm w calculate stittness matrix for the six node trianguiar
c.. clement and assemble into global left_hand _side matrix

[0}

implicit Jouble-precision (i-h.o-2)
dimension clettingnee.Daien(nen. Da(nsd. Dx(nesd, 1),
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Le]

- n o

o o

Lr)

[

G

dett Dushlinrowshonen, Dashginrowshoaen d bwy
bnrow b dindol Dadlined. Dastranu D,
dratinrow b | rdbmrow b Dalhsg Dadiagg b,
Im¢ned.nen, Darzandt Damat d vtim D

exp - unus)
do 100 nel - Lnumnel

call clear (eleftmaneesg)
call focal (ient Taellxalnen.nsd.nesd)
call local (tent Lneh.d.dlnenndolned)

form stittness matrix

cail qdeshy (xLdetshlshenintnennel)
m = matinel)

const = argand(m)

call gdek (w.detshpbdlstraindmat.dbelefm.constesp.
! nennintnesd.nrowsh.nrowb,astenee.nel)

.. assemble clement stitfness matrix into global stillness mutrix

call addths (alhs.elefimidingIm{ 1. L.nehnee)

100 conlinue

retum
end

[

c6onon

subroutine qdet3 {ien 2 .2l elreslx

xI et shl oshg w b
strmindmat  stressawork Lbrhs Jm
iclno iside press shear ot s
sl arpanddl b elefimud
tim

numel Jned  .nen ndof wnee  nesd |
nsd it arowsharowb nstr nsur’ )

.

O

. program to caleulate residual force vector and assemble into
. rhs vector

implicit double precision (a-h.osz)

logical zerod

dimension ien(nen.) ).gl{ned, D helresfU hxnsd. 1),
xl(nesd. 1).det(1 hshitnrowsh.nen, | shglarowsh.nen. 1),
work(1)aw(1).b(nrowb. 1.strain ! hs(1)s1 D.argandi 1),
stress{ 1rbrhs( D m{nednen. D.dmat(nrowb. Damat( £ ).

iclno( 1 hiside(1),press(3, shear(3. ).a(ndof ) tim( 1),
dindof . 1).di{ned. 1).db{nrowb, 1 ).eleltm(nee. 1)

—— e e e—

exp = tim(38)

do 100 nel= l.numel

call local (ien(nel)g.glnenandolned)
call clear (elresfinec)

call clear (cleffm.nee*nee)

call local (ien( l.nel).x.xlnen.nsdnesd)
call local (ien(l.ael)ddlnenned.ndof)
call localt {icn(!.ncl).s.sl.nen)

call qdeshg (xlLdetshlshg.nintnen.nel)
call west (gl.nee.zerod)



Lol Y

neon

[

<o

[}

[

lorm mtermal furee

tt Lot serod) then
m o nutinel)
const argandim)

cull gdehd (wdetshp b glstraindmatstressawork.elrestidLdb,
l clellneanstexpaenainLarowsh.oesd. nrowb, nee.nstry

etudit
torm haody loree

catll quebod Tw detshpaslelresCwork constinanen.nintned,
1 nrowsh, nely

axsemble to the rhs, vector

cill addrhs (hrhselrestimi 1. Lnelinee)

100 continue

lorm surlpee lorce

il (nsurt” el )
Teall gdesut (ielnodien.x.xLiside press.shearelnesCbrhs,
! I nsurtnen.nsd.nesd.nednee)

return
end

e}

ceon

[ 3

(o e

[}

L)

4

<

subroutine gdetd (ien 4 Wl shl she b

I SN XD dime det
! aumel nen ndof Lned  arowshoarowb
} nee st nsd  nesd Lpint

program to determine the time interval

implicit double precision (a-h.o-z)

dimension ien{nen, ! ).d(ndof. 1).dl{ned. 1),

] shi(nrowsh.nen.sha(nrowsh.nen. ) b{nrowb. 1),
1 xtnsd, Dxltnesd, Dusteaind Diatime(1).det(1)

data det?0,075/

st] = 0.0
s12 = 00

find the max [abs{du/dx) + abs(dv/dy)} in the grid

do 200 nel = Laumet

call local (ien(neh.ddinen.ndolned)
cull local (ien(lnelx.xhoennsd,nesd)
call qdeshg (xldetshlshg.nintnen.ned

do 00! = Lnen

call qdeb (shg( L arowsh.nrowb.nen)

call muliab (b.dlLstrainarowdb.acenstnncensi.1.4)
il (abs(strain{ 1) gt st stl = abs(strain({1))

il (abs(strain(2)) gt $12) $12 = abs(strain(2))

100 continue

200 continue

st= sl +s12
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C.. criterion tor time interval for time sep itime

time(l) = det'st

if rime( D) L 0004 imet ) 004

i tmet ) gt 4 dme(ly 4

iF gimet D) gt timetd) - tme2) tmedly  timeidy - tme2)
write(*. J OO time( 1)

Lr]

refum
1000 formatt, time interval 0747 Mah
end

«

subroutine gdetS (eles Jden x xl W
dl s sl et skl shg
wo time b strnalhss |
Ims  Lelrhs brhss eps Lepsl
numel nen ansd onesd  ndot oned
nint .arowshoarowh nee  aste )

— o — —

o0

. program to solve the time dependent equation with Tumiped mass
. matrix

an

implicit double precision (a-h.o-z}

dimension eles{ D) den{nen, xinsd, Dawork( Khowork 1(10).
1 xl(nesd. dindotl hdigned. Das(Brsi Duadet(.
1 shi{nrowsh.nen. D.shpinrowshaoen, Das (D htimet 1.
1 bnrowb, D .straing [ Lathss( D ms(nen, 1),
| elrhs( 1 Lbrhss(Deps(d hepsi(D)

do 400 nel = Lnumel

call clear (eles.nen)

call clear {clrhs.nen)

call clear (work.nen)

call clear (work L.nen)

call local (ien(Lnel}lx.xLnennsd.nesd)
call local (ien( L.nel)d.dl.nen.ndofined)
cali locall (ien{t.nel).s.slnen)

call lecall (ien(1.nelleps.cpslnen)

. form the "N” and "a" matrices

a66

call gdeshg (xlLdetshlshe.nintnen.nel)
dsum = Q.

totmas = 0,

divy = 0,

do 200 | = { nimt

n

. calculate diverpence of velocity at integration points

call qdcb (shg(l.1.).b.arowshnrowb.nen)
call mulab (b.dlstrain.nrowb.nee.nstrncenstr, 1,1}
divv = strin(]) + strain(2) g
ss = 0,
do 50 j = l.nen
ss = 55 + shg(3,5.1*sl()
50 continuc

wempl = wly*do' 3
totmas = totmas + lempl
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(HERE LU BF R R T

temp2  templ®shpnrowshjhee2

doume dsum » temp2

workijp  work{jy - temp2

clrhintj)  chehatf) - templ =shginrowsh ) D= disy"ss
100 continug
200 continue

c... suale dingonal
tweanpl  totmasidsum
Jdo 3060 ) Taen
clestiy — templ *work())
300 continue

¢... add the the global nuwss natrix and rhas vector

call adlhss {alhsswelesmst Loelhnen)
call adrhss (brhss.elrhsdms( L nel).nen)

“
04 continue
<
retum
end
¢
<
subroutine quirde (itask.anparanp)
¢
c.. program fo sct storge and call wsks for the nine-node clement
¢
dimension npart1.mp(1)
common /point/ miistmlast.mtotiprec
common finfo / icxec.iprinnsd.ndofnumnp.nlvect.nivecs
common /spoint mpd.mpg.mpx.mps.mpid.mplimpdiag.mpngrp.
1 mpathsmpbrhs.mptim.mpdpre.mpdigs.
1 mpitiss.mpbrss.mpids.mpeps.mpsdot
conmumon afl)
<
mw =1
mdet =2
mshl = 3
mshg =4
mar = 5
micn =6
nuuwt =7
mlm = §

miclno = 9

miside = 10
mpress = 11
mshear = 12
meletm = 13

msl =W
mwork = 13
mb = 16
idme = |7
mdb = 18
melres = |9
mdl =20
mstm = 21
mstes = 22



o 66

enenn

mal 23

mgl = 24
mpwr - 25
misd - 26
meles = 27
mims - 28
melths - 29
nwm o - 30
mepsl 31
mpstm = 32
mpsirs = 33

aumel = npar( D)
numitt = npar(2)
nsurf’ = npar3)

.oset element parameters

h
neesq = nee*nee
nrowh =

nint = 4

if (itask q. 1) then

. Set memory pointers
. the mp armay is storted after the npar amy
. begining at location mpnpar + 16

Junk = mpoint(‘mp 33 00 0 n
mp{mw ) = mpoint('w nint W00 L0 Lipree)
mp(mwm )} = mpoint('wm nen 0 0 ipree)

mp(mdet ) = mpoint(*det  “amint 0 0 prec)
mp(mshl ) = mpoint('shl  “.prowsh .nen nimt ipree)
mp{mshg ) = mpoint(’shg  “nrowsh .nen  pint iprec)
mp(mar ) = mpoint(argand  “.numat 0 0 Liprec)
mp{micn ) = mpoint(‘icn “aen aumel O D)
mp{mmat ) = mpoint({'mat humel O 00 )
mp(mim )} = mpoint(*im “oed  Jnen Lnumet 1)
mp(mlms ) = mpoint('Ims  “.nen numel 0 L)
mp(micino) = mpoini(ielno  “nsurl’ 0 O 1)
mp(miside) = mpoimt(tiside “nsur’ O 0 1)
mp(mpress) = mpoinl(‘press 3 Lsurf O iprec)
mp{mshear) = mpoint('shear .3 asurt 0 Liprec)

mp(melefm) = mpoint('eleffm  “nee  mee 0 ipreg)
mp{meles ) = mpoint(‘eles  “nen 0 0 Liprec)

mp(mx! ) = mpoini(x! “nesd men 0 pree)
mp(mwork } = mpoint("work 18 R 0 Jdprec)
mp{mb ) = mpoinu‘b “nrowb mee 0 Lipree)

mp(mdmat ) = mpoint(‘’dmat  “.nrowb .nrowb 0 dprec)
mp(mdb ) = mpoint("db arowb .nee 0 iprec)
mp({melres) = mpoint(‘elresl “nee 0 W0 Liprec)
mp(melrhs) = mpoint(elrths  “nen 0 .0 iprec)
mp(mdl ) = mpoint(’d] aed  anen 0 iprec)
mp(mstm } = mpoint(’strain “nrowb 0 .0 iprec)
mp(mstrs ) = mpoini(stress “arowb (0 0 iprec)
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e e

L

u

L.

S

<

mpimpstrn) - mpeintCpsten. Carowh 80

mphepstes)  mpoaniCpstrs. “nrowh 0 ]
mpfmsl 1 wrpointisl nen 00
mptmepsl ) mpoimtCeps] Coen 00
mptmgl ) mpointi gl “ned  aen L0

mptmpwr ) mpantpowr - Cnen 0 0
mptmisd ) mpoint(isd “aumel )0

endif’

. taskocalls

i fitask .21 3) return
20 to (100200, 300.400.500).itask

1M continug

input ¢lement data Cinput__7)

Jprecy
Jprech

.iprec)

Aprec)
Apree)

Jdprec)
1)

call qdet! (dmpimshl atmpimw )hatmp{mwm ),

] aimpimar  Na(mpimien  a{mpimmat ).
H a{mpid almpimlm  Nagmpdiag ).
! aimp{miclno)Latmpmiside)almp(mpress)).
l afmp{msheur)).,

l Wmpids atmpimims ),

l numel numak nsurl nint erowshoaarowb |
| nen  .ndol’ .ned  Liprtin)

relum

200 continue

oo

e

[

eft hand side matrix  (“form_Ihs™)

call qdet2 (a(mp(melefm)).a(mp{micn  Ya(mpx

— et et e e

aimp{mxl  Na{mpd Yaimp(mdl
almp{mdet almpimshl

aimp(mshg Na(mp(mw  Namp(mb
a(mp{mstrn )haimpimdmat a(mp(mdb

agmpaths  dalmpdiag  da(mp(mlim
aimp{mar  Ya(mp(mmat )a(mptim

. form clement stillness matrix and assemble into global
-

2
0

0.
n
M
|3

numel neesq nen onsd pesd aim

ntowshndol ned  nrowb .nstr nee

etum

300 continue

<

e

oo

}

form clement residual forge vector and assemble into
global right hand side vector

— et et s den den B g - e —

call gde3 (a(mpiatien  Na(mpg
almp(melres)alimps Vo{mp(mxl

Jagmp(mel

N

ampmdet  Naimpimshl  Nalmp(mshg ).
ampimw  Naimpimb  Nalmp(mstn ).
atmpimdmat Dafmp(mstes Naimp{mwork )
aimpbrhs  datmpimim  Na(mp{miclno)),
almp{misideNalmp(mpress)L.a(mpimshear)),

aimp{mmat  ).a(mps Ya{mp{msl

aimpimar Natmpimdl  Dampmdb

s(mp{meletim))a{impd h
almptim I ’

numel gied  nen ndot’ nee  nesd

.
N
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l nsd o nrowshoarowh aste nsurh)
retum
¢
400 ¢continue
¢
¢ determine the time intenval
¢

cull gdetd (agmp{micn  Nagmpd Yapnpundl ),

i agmpimshl Nagmptmshe Dagmpimb - 0,
] afmpimstm Jhamps ragmpimxl
1 Fmptim ampimdet ),
! nuemel nen ndol’ ned  nrowshoarowh |
1 nee  astr oasd nesd Lnint
returmn

¢

500 continue

¢

C... solve the time dependent equation

¢
call qdetd {almp(meles Naimp(mien
1 a(mpx yaimpimx!  haimpd )
1 agmpimdl - Nagmps yampimsl N,
l aimp(mdet Na{mp(mshl  Naimp(mshg M,
1 amptmw ))aimptim ampimb ),
1 a(mp(mstm Yaimpaiss ).
1 aimp(mims  Na(mp(melrhs)aimphrss )
[ a{mpeps Ya(mp{mepsl )
! numel en asd aesd ndott ned
I nint .nrowsh,nrowb .nec st )

c
return
end

c

c
function redot{a,b.ma.n)

¢

¢.. program 1o compute the dot-product of i vector stored row-wise

¢... with a vector stored column-wise

c
implicit double precision (a-h.0-2)
dimension alma.l)b(l)

c

redot = 0.0

do 100 i=l.n

redot = redot + a(l.0)*b(i)
100 continue

c
retum
end
¢
c
subroutine rdtime {time)
¢
... program to read total time
c
implicit double precision (a-h.o-z)
dimension time(1)
c
print*, “Enter the total time of the problem, (million years)’
read (*.®) totime
time(3) = totime*0.4
c

return
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crud

tunction rowdot {abamambn)
¢ progrun e compute the dol product ot vectors stored row=wise

nphicit douhle precision Ge-hoo-z}
dimension atmal Lbimbh.1)

rowdat (LD

do 100 In

rowdol  rowdol » ag iy bl
104 continue

<
reium
end
¢
¢
suhrouting serror (name.i)
¢

€. program lo print error message i available storage is exceeded

dimension name(2)

¢
call prtde
wrile(9.1000) i,name
stop

<

OO0 format {15 L STORAGE EXCEEDED BY .10,
I WORDS IN ATTEMPTING TO STORE ARRAY 2~
end

(B

subroutine setupd (dmatstminconstarowb.exp)

LD

program w0 calculite the D matrix

[r]

implicit donble precision (a-h.o-2)
dimension dantt{nrowb. 1).strrin(1)

p = 05 L0exp - 1.0)

stmin{3) = 0.5"string3)

ctha = 2.0%stmin(1)**2 + strain(2)**2 + simin(3)**2 + stmin(1)
1*strin(2)

ctha = ctha**p

ctha = etha*const

dmat(1.1) = J.0%ctha
dma(1.2) = 2.0%¢tha
dmat(1.3) = 0.0
dmay 2. = 2.0%ctha
dmay2.2) = 4.0*ctha
dmar(2.3) = 0.0
dmat3. = 0.0
dmat(3.2) = 0.0
dmar(3.3) = 1.0*ctha

return
end

Lr]

subroutine smult (a,b,c.mb,me,m.n.iopt}



Co. progrun o pertonn sealar multiplication of e

implicit double precision (a-h.o-2)
dimension bimb, D.e(me. 1)

2o {o (TO00. 200030007 jopt
C.. opt - I, multiply entire matrix

1000 do 1200 j=1.n
do 1100 i=lm
c(if) = a*b(ip

1100 continue

1200 continue
relum

[ ¢}

c.. dopt = 2. multiply lower trianghe amd disgonal clemenis
c

2000 do 2200 j=1.n
do 2100 isj.m
clig) = a*blip)

2100 continue

2200 continue
retum

Lo

c.. iopt = S.multiply upper triangle and disgonal ¢lements
c

3000 do 3200 j=1.n
do 3100 i=1j
c(ig) = a*bli))

3100 continue

3200 continue

<
returmn
end
¢
c
subroutine solves (alhss.brivss,.cps.negs)
<
... program 1o solve the lumped “s° matrix
<
implicit double precision {a-h.0-7)
dimension athss(1).brhss(1).eps(1)
[+

do 100 i = Linegs
brhss(i} = (1./alhss(i))* behss()
100 continue
<
resum
end

[£)

subrouting statin (neq.negs)

O

program Lo set memory pointers for data arrays and call associsted
input routines

aps

common /bpoint miist.mlast.mtotipree

common /info / iexcc,iprtin.nsd.ndof.numnpanlvectnivecs
common /spoint/ mpd.mpg.mpx.mps.mpid.mpi.mpdiag.mpngmp.
1 mpalhs.mpbrhs.mptim.mpdpre.mpdigs,

t mpalss,mpbrss.mpids.mpeps,mpsdot
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LB r I

program to determine il any amay contiuins only sero entries

implicit double precision (a-lo-2)
dimension a1}
logical lrero

lzero true.

do 100 Tn

ilatey .ne. 0.0 then
lrero Llalse,
retum

endit’

100 ¢ontinue
I

retum
end
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