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Abstract

This thesis presents a structural study of Ni-Zr metallic glasses. It is the first
time that a careful complete and systematic investigation into the structure of a
glassy metallic system has been carried out. The results have improved our un-
derstanding of the structure of metallic glasses and clarified confusion in previous
studies. The total structure factors of melt-spun and sputtered amorphous Ni;Zr; _.,
0.25 < z < 0.86, were obtained with an accuracy of 1-4%. Accurate partial structure
factors of Nig33Zrpe7 and Nigg7Zrg 33 were obtained using x-ray and neutron diffrac-
tion while those of Nig 33Zrj g7 were also obtained independently using isomorphous
substitution. The results confirmed the reliability of the isomorphous substitution
method for Ni-Zr glasses. We have found a strong correlation between the local
atomic structure and the electron transport properties of Ni-Zr glasses. No structural
difference between melt-spun and sputtered Ni-Zr glasses was found. Our results
show that the Faber-Ziman partial structure factors of Ni-Zr glasses is strongly com-
position dependent. The local topological order in amorphous Nig 33Zrg 67 is found
to be quite similar to that in the BCT NiZr, compound whereas a discrepancy in the
structure is found between amorphous Nige7Zre 33 and the FCC Ni;Zr compound.
Our results have also shown that the Ni-Zr glasses are an almost random mixture
of Ni and Zr atoms and that there is no correlation between the pre-peak in the

neutron structure factor and the chemical short-range order in the metallic glass.
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Résumé

Cette these présente une étude structurale des verres métalliques de Ni-Zr. Pour
la premiere fois, une investigation soignée, complete et systématique de la struc-
ture d’un svstéme de verre métallique a été accomplic. Ces rés;ﬂtats ont ameliore
notre compréhension de la structure des verres métalliques ot clarifiés la confusion
existant dans les études précédentes. Les facteurs de structure totaux des systémes
de NizZri-., 0.25 < z < 0.86, péparés par “melt-spinning” ou par grésillement,
ont été obtenus avec une précision de 1-4%. Des facteurs de structure partiels
précis du NigasZroer et du NiggrZross ont été obtenus par diffusion des rayons-x
et par diffusion de neutrons alors que ceux du Nig33Zroer ont été aussi obtenus
indépendamment par substitution isomorphe. Les résultats confirment la sireté de
la méthode de substitution isomorphe pour les verres de Ni-Zr. Nous avons trouvé
une forte corrélation entre la structure atomique locale et les propriétés de trans-
port électroniques des verres de Ni-Zr. Aucune différence structurale entre les verres
préparés par “melt-spinning” et par grésillement n’a été découverte. Nos résultats
montrent que le facteur de structure partiel de Faber-Ziman des verres de Ni-Zr
dépend directement de la composition. L'’ordre topologique local du NigazZrge7
amorphe est trés similaire & celui que l’on trouve dans le composé téiragonal centré
de NiZr, ‘andis qu’une discordance est trouvé entre le NiggrZroas amorphe et le
composé cubique A face centrée de Ni;Zr. Nos résultats ont montré que les verres
de Ni-Zr sont presque des mélanges aléatoires d’atomes de Ni et de Zn et qu’il n’y 2
aucune corrélation entre le pré-pic dans le facteur de structure obtenu par diffusion

de neutrons et ’ordre chimique a courte portée dans le verre métallique.
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Chapter 1

Introduction

Metallic glasses are alloys in which the atoms show no long range order. They are
also called amorphous alloys or non-crystalline alloys. The first report in which
amorphous alloys were claimed to have been made was by Kramer {1,2]. These al-
loys were made by vapor deposition. Brenner et al. {3] later claimed to have made
amorphous NiP alloys by electrodeposition. In 1960, Duwez et al. discovered a
method of preparing amorphous alloys by direct quenching from the melt {4]. The
solidification occurs so rapidly that the atoms are frozen in their liquid configu-
ration. As schematically shown in figure 1.1, in both the liquid and amorphous
state, the atoms are randomly distributed in a nearly close-packed structure, and
the mean free path is short and comparable to the atomic size. This means that the
positional correlation of atoms is relatively strong within the near-neighbor region.
Unique mechanical, corrosion, electrical and magnetic behavior results from this
short-range order structure [5]. For example, the electrical resistivities of these ma-
terials are three or four times higher than those of conventional polycrystalline iron
or iron-nickel alloys; the materials zan be exceptionally hard and have extremely
high tensile strengths; some amorphous alloys are exceptionally corrosion resistant

while others behave as very soft magnetic materials. These properties individually
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and in combination have stimulated wide scientific and technological interest.

In physics, amorphous solids can be thought of as a new state of matter, comple-
mentary to the traditional gas, liquid, and crystalline solid states. Although interest
in amorphous solids has increased considerably in recent years, due to their tech-
nological significance, the amorphous solid state is still very much less understood
at a microscopic level than the crystalline solid state. The lack of periodicity and
long range order in an amorphous solid means that there is no simple structural
formalism which can be used in the calculation of microscopic properties. How-
ever, for a completely random system, the microstructure can be described by a one
dimensional probability function, called the atomic par distribution function,

o(r) = &2 (11)
Po
where p(r) is the atomic correlation function and p, is the average nwmnber density.
Therefore, g(r) shows the deviation from the average number density. One can not
directly measure the g() function, but its Fourier transform, the structure factor,
can be measured through x-ray, neutron, or electron diffraction experiments.

As with crystalline solids, the major structural probes for non-crystalline mate-
rials are x-ray and neutron diffraction. The detailed relation between the diffraction
data and the structure of non-crystalline systems has been previously discussed in
the literature [7-10]. The diffraction intensity I(#) reveals the interference effects
between the radiation scattered by different atoms in the material. By normalizing

I(8) to the intra-atomic scattering intensity, < f? >, a dimensionless quantity S
g ¥
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Figure 1.1: Schematic diagram of atomic distribution, pair distribution function g(r)

and structure factor S(Q) in the gas, liguid, amorphous, and crystal stales (Taken
from reference [6]).
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is obtained !

s(@) = 8L (12)

< f2>
where, Q = 4nsinf/A, is the momentum transfer associated with the scattering
angle 26. S(Q) is called the “structure factor”. Because the division by < f? >, the
structure factor is determined entirely by the microscopic structure, independent of
the type of atoms in the material. The structure factor is related to the atomic pair

distribution function g(r) through the following Fourier transform:

S@) =1+p. [ lo(r) = Uezp(~iQr)dr (1.3)

Figure 1.1 shows schematically the structure factor S(Q) and the atomic pair distri-
bution function g(r} for a gas, liquid, and amorphous and crystalline colids. For a
multi-component system, this method of normalization results in the “total structure

factor”, which is the summation of the “partial structure factors”, S5;;(Q)
5(Q) = 2 wi5i5(Q) (1.4)
ij

where both i and j summations are taken over atom types, and the weighting factors
can be expressed as functions of atomic concentrations, ¢; and ¢;, and the atomic
form factors, f; and f;:

wi; = wij(ei ¢, i, f5) (1.5)
It has become recognized that one of the most important quantities characterizing a
non-crystalline material are the partial structure factors. Their Fourier transforms

result in the partial atomic pair distribution functions, g;;(r). Therefore, A accurate

1For simplicity, the definition due to Ashcroft and Langreth [11] is used here. Throughout this
work, however, two other definitions of the structure factor are used, one is due to Feber and
Ziman [12], and the other due to Bhatia and Thornton [13]. For multi-component systems, these
three formalisms give different sets of partial structure factors which can be mutually transformed
by linear relations.
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knowledge of the partial structure factors is essential for a quantitative understand-
ing of not only the structure, but also various other properties of non-crystalline
solids.

Recent advances in both diffraction theory and experimental techniques allow
a complete structural determination of non-crystalline solids in terms of structure
factors [14,15]. In addition to conventional x-ray and neutron diffraction, other rel-
atively new techniques have been used, such as anomalous x-ray scattering, time-of-
flight (TOF) pulsed neutron scattering, neutron isotopic substitution, x-ray isomor-
phous substitution, and finally, extended x-ray absorption fine structure (EXAFS).
Almost all amorphous materials are multi-component systems. According to equa-
tion 1.2, the structure of a binary system is characterized by three partial structure
factors: two like atom pairs, 5;;(Q) and S;;(Q); and one unlike atom pair, 5;;(Q). A
complete structural study of these materials involves the determination of three par-
tial structure factors. In order to determine these partial structure factors, at least
three independent diffraction experiments must be carried out so that the weighting
factors given by equation 1.5 can be changed independently. The following experi-
mental methods permit us to vary the scattering amplitude f; without affecting the

structure:

1. X-ray anomalous dispersion of the scattering amplitude [16-~19]: Close to the
absorption edge of an element, the scattering amplitude is significantly changed

due to resonance effects;

2. Isomorphous substitution [20]: One or both elements are partially or totally

replaced by physically and chemically similar elements in the specimen;

3. Isotopic substitution [21-24): In neutron diffraction experiments, the scatter-
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ing length of an element can be changed by using the appropriate isotopes;

4. Polarized neutrons: In ferromagnetic alloys, polarized neutrons will interact

with the magnetic moments of the atoms;

5. Three radiation experiments [25]: The scattering amplitudes are different for

x-ray, neutron, and electron diffraction.

In addition to the above methods, another method which is referred to as the con-
centration technigue has been used to evaluate the partial structure factors for some
binary systems. The basic assumption of this method is that the partial strue-
ture factors are independent of alloy composition, so that the weighting factors
in equation 1.5 can be varied by changing the concentration of the alloying con-
stituents. This method was first used by Halder and Wagner [26] in the study of
Ag-Sn alloys. It gives useful information on the partial structure factors for some
systems. However, in principle, the partial structure factors are functions of the
alloy’s composition, and the basic assumption of composition independence of the
partial structure factors is not satisfied as will be shown explicitly in this thesis.
The first attempt to separate the partial structure factors of a binary non-
crystalline system was made by Enderby et al. in 1966 [21] using isotope sub-
stitution. Waseda et al. then evaluated the partial structure factors of liquid Ni-Si
using anomalous x-ray scattering, which was suggested by Ramesh and Ramaseshan
in 1971 {19]. O’Leary was the first one to evaluate the partial structure factors of a
metallic glass, TbFe;, using the total structure factors by two different investigators
[27]. Since then numerous authors have studied the partial structure factors for a
variety of metallic glasses: metal-metalloid (e.g. Fe-B), simple metal-metal (e.g.

Mg-Zn), transition metal-transition metal (e.g. Ni-Zr). The experimental methods
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applied in these previous studies are summerized in Table 1.1.

In principle, three independent experiments allow a complete evaluation of the
partial structure factors for a binary system. However, a reliable evaluation of the
partial structure factors depends on, the reliability of the original total structure
factors, and the contrast among the total structure factor measurements.

Accurate evaluation of the total structure factors is the first step in obtaining
reliable partial structure factors. In the last two decades, total structure factors
have been studied for numerous amorphous materials. While we may not know the
true structure factor of the material, we do know that the experimental structures
factors are suspicious if there are considerable differences between various experi-
mental determinations on the same material. In 1982, K. Dint et al. [46] made
a comparison of the previous stiuctural studies on Fe-B metallic glasses. They
found significant disagreement between two independent but nominally similar x-
ray diffraction measurements: the general form of the two x-ray total structure
factor curves was different. These differences in the structure factors which arose
due to the errors and uncertainties in the experimental methods and data analysis,
were shown to have considerable effects in the subsequent structural determinations.
It was suggested that these disagreements in the structure factors were hindering a
more complete understanding of the properties of metallic glasses. Unfortunately,
their comments did not receive too much attention, Later studies on similar systems
seem to totally ignore the previous discussion on the reliability of the experimental
data and no further systematic structural study on Fe-B metallic glasses has been
reported. In 1989, a careful survey made in reference [47] again reveals significant
discrepancies in the total structure factors (as much as 30% at low Q) obtained from

independent studies on the same system. Since most of the authors do not display
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Table 1.1: Partial structure factor studies of metallic glasses.

e —

Alloy

Method

Reference

TbFe,
NiygSizs
Cos1 P1o
CugrZrys
CuasTies
Ni.Bioo-=
LagoGaap
NigoNbyp
NizsTigs
*NigsZres
NigoTieo
FesyZrre
NiazYer
Bejr s Tiga.
BeysZrgr
TissSiye
Cozg Tizs

Cu;;;;Zru
MSTOZnso

NiyNbse

Nuclear and magnetic neutron diffraction of TbFe, +
x-ray diffraction of GdFe,.

X-ray anomalous scattering using Mo-, Cu-, and Co-Ka
radiation.

X-ray nuclear and magnetic neutron scatterirg.
Neutron isotope substitution using the isotopes of Cu.
X-ray and neutron diffraction assuming the number-
concentration correlation to be negligible.

x = 82 & 64, x-ray and neutron diffraction assuming
Sgp ~ 0.

X-ray isomorphous substitution with Al assuming Sgega
to be negligible.

X-ray diffraction and neutron diffraction using nat.Ni
and ®8Ni.

X-ray and neutron scattering assuming the number-
concentration correlation = hard sphere calculation.
Isomorphous substitutior of Zr by Hf in x-ray diffraction
and Ni by Co in neutron diffraction.

Neutron isotope substitution using nat.Ni, *®Ni, and
0Ni.

Variation of the Fe composition + isomorphous substi-
tution of Zr with Hf.

Neutron isotope substitution using nat.Ni, *®Ni, and
SONi.

X-ray and neutron diffraction assuming the number-
concentration correlation = hard sphere calculation.
Isomorphous substitution with 5, 25, 54% of Hf.

X-ray and neutron diffraction assuming Ss;s; = 0.
X-ray and neutron diffraction assuming the number-
concentration correlation to be negligible.

X-ray anomalous scattering (synchrotron source).
X-ray anomalous scattering using W-Lai, Au-Lay, and
MO—KC!I

TOF neutron scattering using 58Ni, ®Ni, and °Ni.

[27] (1975)
[17] (1976)
(28] (1976)
[29] (1978)
[30] (1980)
[31] (1981)
(32] (1981)
(33] (1981)
(34] (1982)
[35] (1984)
[36] (1984)
37} (1985)
[38] (1985)
[39] (1985)
[40] (1986)
[41] (1986)
[42] (1987)

[43] (1988)
[44] (1991)

[45] (1992)

* Recent structural studies on Ni-Zr amorphous alloys are summerized in Table 1.2.

——
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either the experimental raw data, or give the details of thei data reduction, it 1s
rather difficult to trace the origin of these large discrepancies. However, one can
certainly conclude that the uncertainties in these total structure factors are about
the level of these discrepancies.

As discussed in reference [48], in determining partial structure factors, the errors
in the total structure factors can be greatly amplified when there is little contrast
among the measurements. Unfortunately, the changes in the weighting factors, w;;,
by any of the methods listed on page 5 are usually relatively small. For neutron
scattering, some favorable cases exist when one of the alloying elements has an
isotope of negative scattering length (e.g. 7Li, "**Ti, "**Mn, and ®*Ni). But this
isotope-enrichment technique is not an easy method and at the present time the cost
of isotopes is usually prohibitive. Therefore, the low contrast of weighting factors
is a major problem in the determination of reliable partial structure factors. In
addition to the errors which are propagated from the total structure factors, large
uncertainties may arise from the various approximations which are made during the
data reduction. For example, when the changes in the weighting factors are too
small to yield physically meaningful functions, frequently, only two of the partial
structure factors are approximately determined (see Table 1.1). There is usually no
direct evidence to support these assumptions, and the uncertainties due to these
approximations are not discussed. In many cases, if three of the partial structure
factors were derived, the evaluation procedures are not discussed even though the
three linear equations are obviously ill-conditioned.

As a consequence, large discrepancies are found among the studies on the same
system by different authors. For example, as shown in Table 1.2, many structural

studies have been made on amorphous Ni-Zr alloys by different investigators [35,49-
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Table 1.2: Interatomic distances and partial coordination numbers of melt-spun Ni-

Zr glasses.

Ni.Zrio—.  NiNi Ni-Zr Zr-Ni Zr-Ir
T r (A) N r(A) N r(A) N r(A) N  Reference
24.1 270 145 270 46 316 84 [49]
24.1 262 235 262 084 317 9.66  [50]
25.0 <13 2.7 126 27 42 323 11.0 [51]
250 263 1.8 266 86 266 28 3.16 109  [52]
33.3 270 83 270 42 316 10.6  [49]
33.3 2.62 239 262 143 318 101 [50]
35.0 2.66 23 269 54 269 29 315 9.0 (35]
350  2.66 23 269 7.9 269 43 315 91  [53]
36.0 2.45 3.3 2.85 856 285 4.81 3.30 110 [54]
36.5 270 96 276 56 3.16 8.6 [49]
36.5 2.62 244 263 156 3.20 891  [50]
500  2.63 33 273 6.7 332 78 [53]
63.7 252 6.0 267 50 328 58  [56]
63.7 2.63 6.4 2.70 5.3 3.28 6.6 [57)*
640 252 6.0 266 5.0 326 50  [58)

* Reference [57] is entitled “Anomalous wide angle z-ray scatiering of amorphous NizZr alloy”, but
in the tezt it said that the sample was & piece of ribbon used in reference [56] which is Nigg 7Zrse.5.



Chapter 1. Introduction 11

53,55], but the results for the most important structural parameters such as the
interatomic distances and the coordination numbers ?. are inconsistent. The same
situation is also found in the studies of other amorphous alloys [48,59]. These
conflicting results can be misleading to theoretical modeling and the calculations
of various properties of these materials.

As a matter of fact, when the partial structure factors of a non-crystalline system
were evaluated for the first time, J. E. Enderby et al. [21] found that, in addition
to the three neutron diffraction measurements with isotope substitutions, a fourth
measurement using x-ray diffraction was most valuable because it provided neces-
sary constraints to the ill-conditioned linear equations from the neutron diffraction
experiments. They concluded that although theoretically only three scattering mea-
surements are required, the difficulties of calibration and the general uncertainties
with the total structure factors make it important that the weighting factors of the
different measurements be widely spaced ; otherwise at least four experiments are
required. Indeed, since the low contrast among the measurements means lack of
information, the only solution is to make systematic and mathematically redundant
measurements. Unfortunately, this critical advice has not been widely followed. As
a consequence, large uncertainties and discrepancies are found in experimentally

determined structure factors.

Strongly motivated by the above discussion, a careful and comprehensive struc-

tural study on Ni-Zr metallic glasses is reported in this work. The amorphous Ni-Zr

#These structural parameters are evaluated from the partial atomic distzibution functions, which
are the Fourier transforms of the corresponding partial structure factors (See chapter 2 for the
details}. Extended x-ray absorption fine structure can also provide this structural information.

3Note that in their work, the scattering length was changed by about 60%, while that of many
Iater studies is onrly 10-20%
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system was chosen for this research for the following reasons:

1. An assortment of experimental methods are available for evaluating the partial

structure factors of this particular system, they are:

o Zr has an ideal isomorphous substituent, Hf. Previous studies on various
properties of Ni-Zr and Ni-Hf alloys indicate that Hf is very physically and
chemically similar to Zr [60,61]. Therefore, partially or totally replacing
Zr by Hf will probably change the scattering amplitude without affecting

the structure of the alloy;

o Ni has several isotops and one of them has a negative neutron scattering
length. Different combinations of the Ni isotopes can be used to vary
the neutron scattering amplitudes with no change to the structure. One
can even obtain one of the partial structure factors directly from a single

experiment with the zero alloy*.

o The anomalous scattering method can be applied at the K-absorption
edges of both Ni and Zr, especially, at the k-edge of Zr, the scattering
length changes about 20% and the maximum value of Q can be as high
as 16 A-1.

2. Ni-Zr is an easy glass forming system, therefore, studies of the electron trans-
port properties {62,63], the variation of the superconducting transition tem-
perature [63,64], magnetic susceptibility [63,65], and the crystallization tem-

perature [66-69] have been carried out systematically. Interpretation of these

‘With an isotope which has a negative scattering length, sero scattering length can result from
appropriate combination of the isotopes so that two of the three weighting factors become zero.
Such a alloy made especially for a neutron diffraction experiment is called a zero alloy.
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experimental results would be greatly aided by an accurate knowledge of the

partial structure factors.

3. Thecretical modeling of the amorphous Ni-Zr system has made substantial
progress in recent years [70-73]. Comparison between the models and ex-
periment plays an important role in improving these models, and therefore,
accurate and systematic experimental studics of the structure of amorphous

Ni-Zr alloys are required.

4. Several structural studies have been done on amorphous Ni-Zr alloys since
1982. However, as shown in Table 1.2, large discrepancies exist among the
results obtained by different authors. Further experimental study is required
to clarify the confusion in the previous studies and complete our understanding

of the structure of this system.

5. Amorphous Ni-Zr alloys can be produced in a wide composition range, from
NiggZrag to NizgZrgs. However, as Table 1.2 shows, the structural studies have
concentrated only on the Zr-rich alloys. It has been found that various other
properties of these materials are composition dependent. Therefore, it is of

interest to study the structure factors as a function of composition;

This thesis presents the results of a careful and systematic structural study on
the amorphous Ni-Zr system. It aims to improve our understanding of the structure
of these important metallic glasses and clarify the confusion in the previous studies.
Amorphous ribbons of Ni (Zr,HBf;_,);.., x = 0.3, 0.33, 0.4, 0.45, 0.5, 0.6, 0.67 and
y =1,0.9,0.8, 0.6, 0.3, 0.15 0.0, were prepared using the melt-spinning technique.
Amorphous films of Ni,Zr;_,, x = 0.31, 0.36, 0.46, 0’.53, 0.66, 0.75, 0.86, were pre-

pared using the DC magnetron sputtering technique. X-ray and neutron diffraction
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experiments were performed to obtain the total structure factors. A comparison
between the structures of melt-spun and sputtered Ni-Zr glasses is made in terms of
the structure factor, S(Q), and the atomic pair distribution function, g(r), over a
wide range of composition. The partial structure factors of amorphous Nig.33Zrgg67
and NigerZrp3s are evaluated, and the reliakility of these partial structure factors
is discussed. The compositional deperdence of the Faber-Ziman partial structure
factors is then examined. The chemical shori-range order in amorphous Ni-Zr alloys
is discussed in terms of the Bhatia-Thornton partial structure factors.

A feasibility study using anomalous x-ray scattering was undertaken. The results
were somewhat disappointing. However refinement of our measuring technique as
described in Appendix B would make this a useful tool for partial structure factor

determination.



Chapter 2

Theoretical background

In non-crystalline materials, there is no overall regularity, such as the lattice strue-
ture found in crystalline solids. Instead, the atoms are randomly positioned in space.
Their microstructure can therefore be described with a one-dimensional prebability
function, the atomic pair distribution function, g(r). One can not directly observe
the real space structure of these materials, but the Fourier transform of the atomic
pair distribution function, the structure factor, can be obtained from diffraction ex-
periments. In this chapter, the relation between diffraction data and the distribution
function is briefly described. Detailed descriptions can be found in the literature

[7-10).

2.1 Description of the structure of non-crystalline
systems

For a system with an average number density p, = N/V, the atomic pair distribution

function is defined as [6]

_ A0
g(r) = p (2-1)

(-]

15
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where p(r) is the local atomic number density. Because the position correlation
of atoms weakens with increasing distance, p(r) gradually approaches the average

number density p, at large values of r. This characteristic means that

lim g(r) =1 (2.2)

=00

On the other hand, due to the repulsion in the pair potential, the atoms do not

mutually approach within the atomic core diameter. Therefore,
lim g(r) = 0 (2.3)

Basically, the atomic pair distribution function g(r)} shows the deviation from the
average number density p,.

The information given by g{(r) is only one-dimensional, but it does give quantita-
tive information about the non-crystalline system. For a multi-component system,
the relatively low information content of g(r) can be considerably enchanced if the
partial distribution functions, g;;(r), where i and j index the various types of atoms,
can be obtained.

Instead of the pair distribution function g(r), another function called the “ra-
dial distribution function” (RDF) is also frequently used in the discussion of non-
crystalline materials. The RDF(r}) is defined as:

RDF(r) = 4nr?p,g(r) (2.4)

It corresponds to the number of atoms in the spherical shell between r and ¢ + dr.
As the pair distribution function approaches unity at large value of r, the radial
distribution function becomes close to the parabolic function 4xr%p,. Figure 1.1

shows schematic diagrams for g(r) and RDF(r). By definition, the average number
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gir}

RDF, 4nrtp,gtr)

Figure 2.1: Schematic diagram of the atomic pair distribution function g(r) and the
radial distribution function RDF(r).
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of atoms in a shell between r; and r; can be estimated from the area under the

radial distribution function in the region between =, and rs:
I 2
N = f 4xr2pog(r)dr = [ RDF(r)dr (2.5)
r1 r1

N is called the “coordination number”. In particular, the coordination number of
nearest-neighbor atoms, N, can be obtained from the area under the first peak of
RDF. The quantity N; has been frequently used to characterize a non-crystalline

system.

2.2 Relations between the distribution function
and the diffraction experiments

X-rays, neutrons, and electrons have been widely used to determine the structure of
matter. In particular, x-ray diffraction is the most popular and the most important
method in the structural analysis of crystalline and non-crystalline materials, An x-
ray diffractometer is like a Fourier transform device. It records the Fourier spectrum
of the real space distribution of the atoms in the material as will now be shown.
Consider a system of randomly positioned atoms, let r; represent the instanta-
neous position of atom k, Q, and Q' represent the incident and scattered x-rays 1,

the coherent scattering intensity in electron units is then given by

La(Q) = 3 £5(Q)e Y=Y £(Q)e Q)i = 37T £5(Q) fi(Q)e YU
J k ik
’ 26)
Define the angle between the vectors Q, and Q' as 28 ? and let Q = Q' — Q,, one

obtains the relation

}The discussion also applies to both thermal neutrons and electrons.
228 is usually called the scaliering angle.
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Q=|Q' -Q,|= —smB (2.7

where A is the wavelength of the x-rays. Since each vector rj = r; - ry takes all

orientations, the average for each exponential term in equation 2.6 is given by

-Qr_, = 1 f‘r —1Qr pcond 2 — ‘,inerk
< e s 47";]‘ . e 275 singdd ___“QT;‘I: (2.8)
Thus one can re-write the coherent scattering intensity in the form
str
l(Q) = L2 A(QMQ) 5,25 (29)

Equation 2.9 is often called the “chye scattering equation” [9,74].

2.2.1 One-component systems

For a one-component system of N atoms, the Debye scattering equation reduces to

the form
La(@) = FQ T T TR ‘““Q"’“ (2.10)
J

Since in performing the summation of equation 2.10 each atom in turn becomes the
origin atom, there are then N terms due to the interaction of each atom with itself.

Hence equation 2.10 may be written

La(Q) = NAA(Q)(1 + X 228, (2.11)

itk Q Tik
As discussed in the preceding section, the probability of finding another atom at

a distance r from an origin atom is expressed by the function p(r). Using this
function the distribution of atoms about any reference atom may now be regarded
as a continuous function, and hence the summation can be replaced by an integral

.sanr

L(Q) = NA@ + [ mrp(r) 25 ar] (2.12)
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According to equation 2.1,
p(r) = pog(r) (2.13)

where g{r) is the atomic pair distribution function. Since for large values of r,

g(r) — 1, one can re-write the above equation in the form

p(r) = polg(r) = 1} + po (2.14)

Substitute equation 2.14 into equation 2.12,

arez ° ., sinQr ©° o sinQr
Lor(Q) = NF@H1+ [ 4mrpulo(r) - UG5 dr + [ 4mr*p, = mdr} (2.15)

The second integral of equation 2.15 is the central scattering, which has physical
significance only at extremely small angles. This term is frequently neglected in
practical calculations.

Let I, (Q) represents the coherent scattering intensity per atom:

IL(Q) = -——-—I”'_;\(TQ) (2.16)

The “structure factor”, 5(Q), is defined as [75]

5(Q) = -——_I;;'Eg) (2.17)

Following equations 2.15 and 2.16, the structure factor is related to the atomic pair

distribution function by

sinQr

Qr

5(Q)=1+ j " dmrp,(g(r) — 1222 4, (2.18)

By means of the Fourier integral theorem, this expression can be transformed to

rols(r) — 1) = 5= [ QIS(Q) - Usin@rdQ (219)
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or

RDF(r) = d4xr?p(r) = dxrip, + %r:/w Q[S(Q) — 1]}sinQrdQ (2.20)

In summary, equations 2.15 to 2.20 reveal the fact that the experimental intensity

Ion(Q) is indeed the Fourier transform of the atomic distribution function g(r).

2.2.2 Multi-component systems

For a n-component system, the structure factor derived from a diffraction exper-
iment is composed of in(n + 1) partial structure factors. The partial structure
factors are commonly defined using three different formalisms [11-13]. The essential
features of these different partial strvcture factors and the relations between them

are summerized below,

The Ashcroft-Langreth partizl structure factors
In 1967, Ashcroft and Langreth [11] proposed the following definition for the

partial structure factors of a multi-component non-crystalline system:
Si(Q) = (N;Ni)™M? < 37577 ™) > —(N;NW) ™ 26q,0 (2.21)
i &

In this definition, the central scattering is excluded. Combining equation 2.6 with

equation 2.21, the coherent scattering per atom can be expressed as

(@) = zZk:(ca-ck)”’f:'(Q)f:.(Q)Sjk(Q) (2.22)

at large value of @, the atoms independently scatter x-rays, therefore,

I (@ = F L@ =< F(@)> (223)
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and
Qli_l:nw S,k(Q) = 5:';, (2.24)
Thus the Ashcroft-Langreth total structure factor is given by

_IEeMQ) o /2 fH{ Q@) o
S(Q)= N<F(0)> ;;(C: )Y < 0> Si(Q) (2.25)

The number-density function p;x(r) is introduced to express the number of j-type

atoms found at a radial distance r from a k-type atom:
pik(r) = crpogin(r) (2.26)

where g;.{r) is the partial atomic pair distribution function. g;i(7) is related to the

partial structure factor S;,(Q) as follows:

Si(@) = 631+ (cse) po [ lasnlr) — e~ ¥ ar (2:27)

The Faber-Ziman partial structure factors
In their work on the electron transport properties of liquid binary alloys, Faber

and Ziman used a different expression for the partial structure factors [12]:
Ia(@) =< Q) > - < f(Q) > +;;c,-ckf,-(cz)f:.(a)5ﬁ(62) (2.28)
where, for a binary system
< fA(Q) >= afi(Q) + 2 £3(Q) (2.29)
< f(Q) >= a1 1(Q) + c2£2(Q) (2.30)

The term {< f3(Q) > — < f(Q) >?} is called the Laue monotonic scattering term.

T2, (Q) approaches < f2(Q) > as Q@ — oo, therefore,

Jm 5i(@) =1 (2.31)
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The Faber-Ziman total structure factor is then given by

2a(@) = (< Q) > - < f(Q)>?)

5(Q) ZHO) > (2.32)
_ cioefi(@)fu(@) o
= z):; <A@ Sik(Q) (2.33)

By this definition the total structure factor is normalized to unity at large value of
Q.
The Faber-Ziman partial structure factors are related to the corresponding par-

tial pair distribution function by the following:

Si(@) =1+ Po/[gjk(f) - l]e"Q'dr (2.34)
and

srrpofasn(r) - 1] = = [ QISA(Q) - 1lsin(Qr)dQ (2.35)

Bhatia-Thornton partial structure factors
In Bhatia-Thornton formalism, the total coherent scattering intensity per atom

is expressed by

I2%(Q) =< f(Q) >? 5an(Q) + (AF(Q))*Scc(Q) + 2 < £(Q) > AS(Q)Snc(Q) (2.36)

where Snn(Q@), the number-number partial structure factor, represents the number
density fluctuation; S..(Q), the concentration-concentration partial structure factor,
expresses the concentration fluctuation; and the §,..(Q), the number-concentration
partial structure factor, gives the correlation between the number density and con-

centration 3. From 2.36 the Bhatia-Thornton total structure factor is obtained:

3The Bhatia-Thornton partial structure factors were original derived from the Fourier transform
of the local number density and concentration fluctuations. In the long wevelength limit the
Bhatia-Thornton partial structure factors directly relate to the thermodynamic porperties of a
binary alloy. Waseda has given extensive discussion on Bhatia-Thornton partial structure factors
and their applications in the study of amorphous materials [76].
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1°MQ)

S(Q) <05 (2.37)
IO sun(@)+ S sco(e)+ LD 250 0) 230
and

Jim §(@) =1 (2.39)

Equations 2.38 and 2.39 suggest the following relations:
fim Si(Q) = 1 (2.40)
lim Scc(@) = e (2.41)
Jim Svo(Q) = 0 (2.42)

The Fourier transform of the Bhatia-Thornton partial structure factors give the
corresponding pair correlation functions:

The number-number pair correlation function pnn(r)
2 pee Vs
477 [pan(r) — po] = - /; QSwn(Q) — 1)sinQrdQ (2.43)

The concentration-concentration pair correlation function pe.(r)

trrpe(r) = % [ QiSce(@) - cxcslsingrag (2.44)

The number-concentration pair correlation function p..(r)

txrpoc(r) = % [ @5nc(Q)singraQ (2.45)

The correlation function pn.(r) describes the topological short-range order of the
system. The concentration correlation function, p..(r) characterizes the composi-
tion (or chemical) short-range order. The quantity p..(r) expresses the correlation

between density and concentration fluctuation.
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The three sets of partial structure factors can be mutually transformed by lin-
ear relations. Each of them may be found supernior to the other two under certain
circumstances. In principle, both the Ashcroft-Langreth and Faber-Ziman partial
structure factors are functions of the atomic concentration. However, the Asheroft-
Langreth formalism is more sensitive to the composition of the system than the
Faber-Ziman formalism because the latter does not explicitly involve the composi-
tion [6]. In some cases, the Bhatia-Thornton partial structure factors are particularly
interesting not only because they directly relate to the thermodynamic properties
of the material, but alsoc because there are several practical advantages in using
these partial structure factors in experimental studies. For example, in a neutron
diffraction experiment, if one of the constituent atoms has an isotope of negative
scattering length, the average scattering length of the alloy can be made zero by
appropriate isotop-enrichment. Such an alloy is called a “zero alloy”. According to
equation 2.38, the partial structure factor S..(Q) of a zero alloy is directly obtained

from normalizing tie coherent scattering intensity as:

- S(Q) _ Icoh(Q)
Se(@)= Ry < 75 = (Aby

(2.46)

In this thesis, only Faber-Ziman and Bhatia-Thornton partial structure factors

are used. The linear transformation between these two sets are given below:

Svn(Q) = Cfsn(Q) + 63522(Q) + 2(61C2)512(Q) (2.47)
Scc(@) = acl+ crea(511(Q) + 522(Q) — 25:12(Q))] (2.48)
Sne(@) = cac[a(S1(Q) — 512(Q)) — c2(522(Q) — 512(Q))]  (2.49)
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2.3 The chemical short-range order in metallic
glasses

Since most metallic glasses are alloys, the state of mixing of the alloy components
is an important parameter characterizing the system. In most cases, a completely
random mixture is not attained, therefore, the chemical composition around each
type of atoms differs from the average composition. There then exists chemical
short-range order (CSRO) in the system. The CSRO as a function of radial distance
is best described with the composition fluctuation atomic pair correlation function
pee(r), which can be obtained from the Fourier transform of the Bhatia-Thornton
concentration-concentration structure factor S..(Q) (see equ. 2.44).
The probability of finding an atom of any type at distance r from j-atom can be
expressed by
pi(r) = pa(r) + pja(r) (2.50)
where j = 1 and 2. In terms of p12(r) and pj(r), pec(r) can be expressed explicitly
by
pulr) = apalr) + cpa(r) ~ 227 (2.51)

The generalized Warren-Cowly chemical short-range order parameter 4, a(r) is de-

fined as [14,15]

1 prz(r)
) = 1= Com®) + ar (2.52)

Equation 2.51 can be then reduced to

pec(r) = [e2p1(r) + c1p2(r)]a(r) (2.53)

4The Warren chemical short-range order parameter was originally proposed for crystalline sub-
stitutional solid solutions [9]. This parameter has been widely extended to describe the local
chemical short-range order in disorder materials.
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For a completely random mixture, p(r) = p2(r) = p, and p13(r) = cap,, so that
a(r) = 0 and therefore, p () = 0.

The quantity py2(r) represents the probability of finding an unlike atom from
the origin atom, while the term {e;p:(r) + c1p2(r)} represents that of finding any

type of atom at distance r. Therefore, when a(r) < 0, or

c2pi(r) + a1pa(r) < (2.54)

p12(7)
C2

there exists a preference of unlike atoms, which means that short-range chemical
ordering exists in the system. On the other hand, a(r) > 0 is an indication of
Like atoms clustering in the system. Note that the sign of p..(r) goes with that
of a(r). pec(r) modulates about zero; the minima (negative peaks) correspond to
the distances with preferred unlike atom pairs, whereas maxima (positive peaks)
indicate preference for like atom pairs.

In many cases, only the first peak in p.(r) is well defined. Therefore, afr) is

frequently reduced to the parameter:

N1z

=1- 2.5
a1 ca(e2 Ny + o N) ( )

where, following equations 2.5 and 2.335,
Nip = fﬁ dxripya(r)dr (2.56)

1
and

Nj = Nﬂ + N_,'z (2.57)

with j =1 or 2.
It should be noted that Cargill ef al. proposed another criterion to characterize
the chemical short-range order in amorphous alloys [77]. It has been shown previ-

ously [78] that, to a first approximation, the chemical short-range order coefficient
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n,% defined by Cargill and Spaepen is equal but opposite in sign to the parameter

axy.

In this work, the quantity a{r) and the parameter a, are used in the discussion

of the chemical short-range order in metallic glasses.
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Experimeutal Methods

3.1 Sample preparation

Amorphous alloys can be made using a variety of techniques. the method of melt-
spinning has been widely used to produce amorphous ribbons. The narrow ribbons
(sbout 2mm wide) prepared in this work are convenient for electric transport mea-
surements and neutron diffraction !; but are not as convenient for x-ray diffraction
measurements which require a large flat-surface area. Thin plates of amorphous al-
loys can be made using magnetron sputtering and they are ideal for x-ray diffraction
experiments. In this work, the Ni-Zr glasses are prepared using both melt-spinning
and RF magnetron sputtering. For Ni-Zr-Hf alloys, only melt-spun ribbons were
prepared because it is difficult to control the composition of a ternary alloy during
the sputtering. The composition of the melt-spun ribbons and sputtered films were

examined using an electron microprobe.

3.1.1 Melt-spun amorphous ribbons

Amorphous Ni(Zr Hf,_ ), (x = 0.67, 0.64, 0.60, 0.50, 0.40, 0.33 and 0.30; y =
1.0, 0.9, 0.8, 0.6, 0.3, 0.15) were prepared and characterized as described below.

1A cylinder can be made of tightly packed ribbons

29
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Small ingots of approximately 1 gram were prepared by arc melting appropri-
ate amounts of Ni (99.99% pure), 7 (99.95% pure), and Hf (99.99% pure) under
titanium-gettered argon. Each ingot was melted up to six times to ensure homo-
geneity. The weight loss due to the melting was found to be less than 1%. The
amorphous Ni-Zr anf Ni-Zr-Hf ribbons were prepared in a helium atmosphere using
the single roller melt spinning technique. Details of this procedure can be found in
references [66,79].

Figure 3.1 is a schematic diagram of the melt-spinning apparatus. A few small
ingots totalling 2 to 3 grams were used for each spin. The voltage applied to the
motor which drives the spinning wheel was about 20 volts, corresponding to a tan-
gential wheel speed of about 30 m/sec. The quartz crucible used in this work has
a relatively large nozzle, diameter > 0.7 mm. The crucible can be cleaned with HF
acid and reused. The ribbons were about 2 mm wide, 30 ym thick, and a few meters
long. The composition of the ribbons was measured using an electron microprobe.
The composition of the ribbons was the same as that of the ingots.

The as-quenched ribbons were determined to be amorphous by taking x-ray
diffraction patterns of each side. Since ribbons of the same composition from dif-
ferent spins may be used together in a diffraction experiment, differential scanning
calorimetry (DSC) analysis was conducted to further characterize the ribbons from
each spin. The crystallization enthalpy can be used as a measure of the disorder in
amorphous materials [68]. A low crystallization enthalpy indicates that some small
crystallites may exist in the material, which are not detected by x-ray diffraction.
In this work, amorphous Ni-Zr-Hf ribbons with the same composition from differ-
ent spins were found to have the same crystallization enthalpy (with a deviation of

< 5%).
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3.1.2 Sputtering amorphous films

Amorphous Ni-Zr films were prepared by rf sputtering of the targets onto water-
cooled substrates in a triode sputtering apparatus?. To ensure the homogeneity of
the sputtered films, alloy targets were used.

The Ni.Zr;.. (x = 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2) alloy targets were prepared by
arc melting appropriate amounts of Ni (99.99% pure) and Zr (99.8% pure) under
titanium gettered argoun in a copper crucible. The crucible was 38 mm in diameter
and 0.5 cm deep. Such an alloy target weighs about 70 grams. Films of the Ni-
Zr alloys were then prepared by RF sputtering of alloy targets onto water-cooled
substrates. The substrate material was Si(11) with a coating of Pd. The coating
was to prevent the Zr from interacting with silicon and is less than 100Athick, which
is too thin to cause any significant contamination to the Ni-Zr film. Figure 3.2 is
a schematic diagram of the setup inside the sample chamber. Each deposition was
preceded by pumping the sample chamber to a base pressure of 7 — 8 x 102 Torr
before introducing the high-purity argon sputtering gas. Pre-sputtering up to 30
min. before each deposition served to clean the target surface and to getter residual
impurities.

The sputtered films were determined to be amorphous using x-ray diffraction and
differential scanning calorimetry. The composition of the amorphous Ni-Zr films was
analysed using the electron microprobe. Up to five points across the whole area of
a film were examined and the composition was found to be uniform over the film.
However, it was found that the composition of the films systematically differed from
that of the targets. As shown in Table 3.1, the films were nickel rich compared to

the target. This is explained by the fact that nickel has a higher sputtering rate

?Details of this procedure can be found in the literature [80].
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Figure 3.2: Schematic diagram of the set-up in the RF sputlering sample chamber.
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Table 3.1: Composition of the spultered Ni-Zr amorphous films.

Composition (Ni-Zr at%)

target | 20-80 30-70 40-60 50-50 60-40 70-30 80-20
film | 31.3-68.7 35.8-64.2 46.0-54.0 53.0-47.0 66.0-34.0 75.3-24.7 86.0-14.0

than zirconium.

3.1.3 Samples for diffraction experiments

The sputtered amorphous films are ideal for x-ray diffraction experiments. A sample
holder, made of aluminum, consists of two blocks with rectangular (50 x 15mm?)

openings (see figure 3.3) was used to mount the films.

Figure 3.3: Schematic diagram of the sample holder used in z-ray diffraction ezper-
iments.

It is more challenging to prepare a flat surface with desired area out of the

melt-spun amorphous ribbons. The as-made ribbons were first cut into pieces 5 cm
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long. Aboui twenty pieces of these ribbons were arranged parallel to one another
and the ends fixed on an aluminum frame using double sided tape. The ribbons
slightly overlap one another and hence there are no gaps between the pieces. The
homogeneity of these surfaces is examined using the method described in section
3.4.

The neutron diffraction experiments require cylindrical samples. The samples
were prepared using bundles of melt spun Ni-Zr ribbons. The ribbons were cut into
pieces of ~ 7 cm long. A glass tube 7 mm in diameter was cut to be a bit shorter
than the ribbons. The ribbons were then inserted into the tube and the ends were
left out at one end of the tube. A long piece (~ one meter long) of the same kind of
ribbon was used to tie up these ends and to wrap the ribbons tightly. The ribbons
were gently pulled out of the tube while they were wrapped and thus a solid bundle

7 cm long and ~ 0.7 cm thick was made. The bundles weighed 8 to 10 grams.

3.2 The x-ray diffraction experiments

The conventional x-ray diffractometer used in this research is an automated Nicolet-
Stoe L1l powder diffractometer interfaced to aa IBM PC. Silver K, radiation was
used and the x-ray wavelength was 0.56 A. A schematic diagram of the apparatus
is given in figure 3.4.

The radius of the diffractometer is R = 179mm. The width of the source slit is
1.8mm, corresponding to an incident beam equatorial divergence of a = 1.8/179 =
0.6° (see figure 2.5). The detector slit was 0.2mm and the angular acceptance of the
detector was about 0.3°. Soller slits limit the axial divergence of the beam about

3°. At the center of the diffractometer, the beam is about 10mm bigh. The width
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of the beam at the sample is given by (see figure 3.5):

W = R x sinasinf (3_1)

cosacos28

where 28 is the scattering angle. The minimum value of 28 in these experiments was
4°, At this position, the beam at the sample has the maximum width: W ~ 38mm.
Accordingly, all the x-ray samples were prepared to be 40mm wide with a height of

15mm which is greater than the beam height of 10mm.

Source s8lit = 1.8mm

= T e T 1 T T T T O T T T T T T T T T W e S, | - Sample
T
HI ——— ihi
H

Figure 3.5: Schematic diagram of the z-ray beam intersecting with the sample.

The detector-analyzer assembly includes a scintillating crystal, a phototube, and
graphite analyser crystal: The angle the analysing crystal makes with the incoming
diffracted beam may be adjusted. The scintillating crystal together with the pho-
totube may be easily rotated about the analysing crystal. When the detector slit
is set properly, the transmittance of the detector-analyzer assembly is determined
by the band-pass function of the analysing crystal. The band-pass function of the
graphite crystal used in this research was measured using a high resclution double
crystal x-ray diffractometer (see section 4.1.1). A single channel analyzer (SCA)

was used to further select the Ko radiation in the diffracted beam.
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The 28 scanning method, i.e. the conventional diffractometer technique was used
to study the structure of amorphous Ni-Zr(Hf) alloys. The software used to control
the w and 20 goniometers and to count pulses from the single channel analyzer is
basically the same as that in reference [47]. A multiple scan procedure was used.
Each experiment includes 20 short (45 min.) 26 scans. For low angles (4° < 26 <
60°) stepwidths of 0.2° were used, for high angles (60° < 26 < 130°) stepwidths of
2° were used. The steptimes were adjusted so that the relative counting statistics
were the same at each angle. The error due to counting statistics is typically ~
0.8% . Including the time taken for the goniometers to move from angle to angle,
each experiment takes about 15 hours. Uader the same experimental conditions,
the air scattering was measured with and without the empty sample holder. Since
the samples were prepared larger than the beam size, i.e. the opening of the sample
holder is larger than the beam size, the air scattering results are the same with and

without the sample holder 3.

3.3 Neutron diffraction experiments

The neutron diffraction experiments were performed using the C2 diffractometer
on the DUALSPEC beam station of the NRU reactor at AECL Research, Chalk
River, Canada. Figure 3.6 shows the experimental arrangement. The incident beam
monochromator is a Si single crystal. The reflection plane (511) was chosen to avoid

higher harmonic diffraction from the monochromator. The angle that the Si(511)

SIn early experiments with Mo- or Ag-target, a “pre-peak” was found at 26 ~ 8°, It was
discovered later that this peak was caused by some unknown scattering from the right side of the
source slit assembly and the left side of the goniometer. Therefore, the later experiments were
carried out with a small piece of lead (~ 20 x 20mm?) shielding the right side of the source slit
assembly, and a large piece of lead (200 x 60mm?) hanging beside the detector slit assembly.
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Figure 3.6: Schematic diagram of the neutron diffractometer.
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planes make with the primary beam was adjusted to select neutrons of wavelength
0.9A. Since the spectrum of the primary beam is a Maxwellian distribution with the
maximum at ~ 1.54A4, the intensity of neutrons having wavelengths shorter than
~ 0.94 is too low to be practical. The detector used on the C2 diffractometer is
a modern position semsitive detector with 800 independent channels. This detec-
tor counts 80° of diffraction angle simultaneously. Unfortunately, the highest 28
position is only about 110° because of hardware limitations. The exact position
of the detector together with the wavelength of the monochromatized beam were
calibrated using the diffraction pattern of a standard nickel rod.

The samples used in this research were bundles of amorphous Ni-Zr ribbons. The
26-scanning technique was used and the experiments were performed in a multiple
scan manner similar to that for the x-ray diffraction experiments, except that the
detector counted for the same amount of time at each 0.1°. For each short scan
(~ 4 hours) the position sensitive detector first covered 28 from 10° to 90° and
then from 30° to 110°. The wide overlap range, 30° < 26 < 90°, was helpful in
joining the two sections of data. At each position the detector counted for about 2
hours, corresponding to an incident beam monitor number of 10° neutrons. Up to 9
scans were carried out for each sample. The room temperature measurements were
performed in air. Without the sample the air scattering was measured under the
same experimental condition. Measurements were also performed at low tempera-
tures with amorphous ribbons in a vanadium can placed at the center of a cryostat.
These low temperature experiments were not very successful because of the irregular

Bragg reflections from the aluminum walls of the cryostat.
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3.4 Thickness measurements

The x-ray samples used in this research are thin foils. The thickness of the x-ray
samples is an important paramecter in the data reduction, therefore, it must be
known accurately. This section describes 2 method of measuring the thickness and
the thickness uniformity of a thin plate using the x-ray diffractometer.

Usually, when the mass, surface area, and the density of a plate are known its

average thickness can be evaluated according to:

mass
thick = 3.2
CRNEIS = rea % density (3:2)

When the absorption coefficient of the sample is known, the uniformity can be
evaluated using the x-ray diffractometer. As shown in figure 3.7, with the detector
placed at 28 = 0° (an appropriate attenuator must be placed in front of the detector
1), the intensity versus w is measured for the range of w used in a regular 28 scan.
The intensity for such a scan is given by

I() = Leap(——

stnw

) (3.3)

where I, is the incident beam intensity, u and t are, respectively, the linear absorption
coefficient and the thickness of the sample. The above equation can be re-wrntten
as

In(I) = in(l,) — ut

- (3.4)
sinw

Equation 3.4 reveals that, if the sample has a uniform thickness, a plot of In(I) vs.
1/sinw should be a straight line, and the slope of this line is equal to -ut. The

primary beam intensity I, need not be known but must remain constant during the

experiments.
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Figure 3.7: Schematic diagram of the setup used to determine the uniformity of a
flat plate sample.
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Since the mass absorption coefticient p is proportional to A* a monochromatic
incident beam is required. When a conventional x-ray diffractometer, without in-
cident beam monochromator, is used a low voltage should be applied to the x-ray
tube to reduce the effect of the short wavelength bremsstrahlung tail.

In this work, a melybdenum target x-ray tube was used for the thickness mea-
surements and a Zr-filter 100 pm thick was placed in front of the source slit 4. The
source and detector slits were the same as that in a regular diffraction experiment.
The accuracy of the thickness measurement with this experimental setup was tested
using a standard Fe filter film 15um thick. It resulted in a perfect straight line and
the measured thickness was 15 £ 1um. The results for all the x-ray samples made
of melt-spun ribbons and sputtered films were found to be straight lines. Figure 3.8
shows a typical result for the x-ray sample made of Nig31Zrg g7 melt-spun ribbons.
The straight line indicates the satisfactory uniformity of the thickness. The slope

was found to be: ut = 0.416, therefore, the average thickness of this sample is:
t="—=—— =25.8um (3.5)

where p = 161.94 is the linear absorption coefficient of Nig 33Zrp 67 for Mo-Ka x-rays.

Similar experiments were also performed at the F3 beam station of CHESS. The
monochromatized beam was used and the outgoing beam was measured by an ion
chamber. The results were found to agree with those obtained using the conventional

x-ray diffractometer within 1%.

4The x-ray diffraction experiments were performed using silver tazgets, therefore, it would be
better to measure the thickness with the silver tube. Unfortunately, the voltage settings of the
Nicolet-Stoe diffractometer are 20kV, 30kV, ... etc. 20kV is too low to excite the Ag-Ka radiation
while with 30kV, the short wavelength tail is too strong and there was no filter available for the
silver target.
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Figure 3.8: Results of the thickness measurement for the Nig33Zrosr z-ray sample
made of melt-spun ribbons.
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Data analysis

As discussed in chapter 2, the experimental structure factor is derived from the
coherent scattering intensity, Jon. In general, I, is not directly accessible from
the diffraction experiments. A number of corrections have to be applied to the
raw data depending on the radiation and geometry used in the experiment. In this
chapter, the reduction of x-ray diffraction, anomalous x-ray scattering, and neutron
diffraction data to obtain the total structure factors is described in detail. The
procedure for determining the partial structure factors and the partial atomic pair

distribution functions is then discussed.

4.1 Determination of the total structure factors

4.1.1 Reduction of x-ray diffraction data

The x-ray scattering intensity for amorphous systems is measured in arbitrary units.
To obtain the structure factor from the experimental intensity, several corrections
must be applied to the raw data. The observed x-ray scattering intensity may be

expressed as {16]

Iobo(za) = NP[AIcoh(Q) + A‘IIM(Q) + Imul(Q)] + Im'r + Ib (4.1)

45
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where:
Tos, = the observed x-ray intensity in arbitrary units;
N = the normalization factor;
P = the polarization factor;
Loa(Q) = the coherent scattering intensity in electron units;
A = the absorption correction for coherent scattering;
La(Q) = the incoherent scattering intensity in electron units;
A’ = the absorption correction for incoherent scattering;
Inu(Q) = the multiple scattering intensity in electron units;
Lair = the air scattering intensity;
I, = the background.

As defined by equations 2.28 and 2.33, I.ox(Q) can be expressed as

Laa(Q) =< f(Q)* > + (5(Q) - 1) < f(Q) >* (4.2)
where 5(Q) is the Faber-Ziman total structure factor. In terms of S(@Q), equation 4.1

can be re-written as
15,(28) = NP{A[< f(@) > +(5(Q)-1) < f(Q) > + A'Line( Q) + Imu(Q)}
+lair + I (4.3)

Based on this equation, the Faber-Ziman total structure factor can be derived from
the x-ray diffraction intensity. In the following paragraphs the various quantities in

equation 4.3 are discussed in detail.

The x-rays generated at the target are not polarized but become polarized after
scattering by the sample and the monochromator. The polarization factor depends
on how many times the beam is scattered in an experiment. For the diffraction
geometry used in this work the beam is scattered once at the sample and again at

the analysing crystal, therefore, the polarization factor P is given by [16)

1 + cos(26xr)?cos(26)?
2

P= (4.4)
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The quantity 26a¢ is the scattering angle of the monochromator.

The absorption factor A in equation 4.3 is given by (sce reference [7], page 801
and 360)
_ 1 — exp(~2ptsinb)
- 2ut

A

(4.5)

where p is the linear absorption coefficient and ¢ is the sample thickness. The
thickness and the thickness uniformity of all the x-ray samples were measured using
the method described in section 3.4.

Due to the fact that Compton scattering modifies the radiation wavelength,
the absorption factor for incoherent scattering is slightly different from that for
coherent scattering. When the x-ray wavelength is far from the absorption edges, the
absorption coefficient x is proportional to A3. Therefore, the absorption coefficient

for the incoherent diffracted beam is
Al
I_[,' = (T)SP (4.6)
where A’ is the wavelength of the incoherently scattered beam [74]:
A= X + 0.0486sin?8 (4.7)

Thus the quantity A’ is given by

_ 1 —ezp[—(p + p')tsind]

A’ 4.8
G+ ) (45)

The linear absorption coefficient y of the alloy can be calculated by
p=dy wip, (4.9)

where 7 is the type of atoms in the sample, d is the density of the alloy, w; and g,

are, respectively, the weight percentage and the mass-absorption coefficient of i type
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atom. Experimental values of the density of Ni-Zr amorphous alloys [63] are shown
in figure 4.1 and have been used in calculating x. The values of the density is given
by d = (polynominalingraph).

In general the atomic scattering factor, f, can be expressed as

f(Q,E) = fo(Q) + f(E) +if"(E) (4.10)

where E is the x-ray energy and is related to the wavelength, A, by

_hc/e 12399

E =37 = gy (keV) (4.11)

The quantity f,(Q) is the scattering factor when the x-ray energy is far from any
absorption edge in the atom. f' and f” are, respectively, the real and imaginary
part of the dispersion correction.

The atomic scattering factor f, has been evaluated from the numerical Hartree-
Fork wave functions and tabulated as a function of sinf/) [9,81]. Cromer et al [82]

have also fitted f, of various elements and ions to the analytic function

: 4 ‘o
R0 = S aiempl -6 4 e (£12)

=1

The coefficients a;, b;, and ¢ have been tabulated in reference [82]. In this research,
the analytic expression was used to calculate the atomic scattering factors of Ni, Zr,
and Hf.

When the x-ray energy is far from the absorption edges of the ator:z in the sam-
ple, both f'(Q) and f"(@Q) are small and almost Q-independent. Therefore, they
have beer evaluated and tabulated as constants for the Ka energy (wavelength)
of various commercial x-ray targets {83]. Table 4.1 gives the anomalous dispersion

factors f' and f” for Ni, Zr, and Hf at the wavelength of Ag-Ke.



Chapter 4. Data analysis 49

T T T ] .

8.0+ -

- 7.6 -
£
3)
~
2

o 7.2¢ ‘ .

6.8 -

1 | | 1
20 30 40 50 60 70
Ni (at.%)

Figure 4.1: The density of amorpheus Ni-Zr alloys. The polynomial fitting is shown
as the solid line through the data points.
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Table 4,1: The dispersion corrections at A = Ag-Ke

Ni Zr Hi
Z| 28 40 72
f10.261 -0.639 -0.890
f" 10724 2.630 4.164

The incoherent scattering intensity that the detector “sees” can be expressed as
A 2 r
@) = (2)0(@)(¥) (4.13)

where (A/X’)? is the Breit-Dirac recoil factor [9], C(Q) is the Compton scattering
intensity of the alloy, and v(X'} is the band-pass function of the detector.
The Compton scattering intensities of the elements have been theoretically cal-

culated by Cromer et al [82,84] and fitted to an analytic function [85]:

5 sin*f
=2 - Ea,-ea:p(—b,-—AT) (4.14)

1=1

sinf
C';(T
where Z is the atomic number of the element, and the coefficients a; and b; have been
tabulated in reference [85]. Using equation 4.14 the Compton scattering intensity
of Ni, Zr, and Hf were calculated, and the Compton scattering intensity of the alloy
is calculated by

sinf

cR) =23 &Ci(—-) (4.15)
where ¢; and C; are , respectively, the atomic concentration and the Compton scat-
tering intensity of the type-i atom.

The band-pass function v()) represents the transmittance of the analysing crys-
tal. As indicated previously, the analyzer used in this work is a graphite crystal,

which is actually a mosaic of crystallites aligned with each other within a angle o,
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As a monochromator, such a pseudo single crystal has four to six times the reflec-
tivity of a single crystal such as LiF, and gives a uniformly distributed diffraction
beam. The resolution of the analyzer is characterized by the width of the band-pass
function, which describes how well the hexagonal basal planes are aligned in the
graphite crystal. The reflection plane of the monochromator is (220}, corresponding
to a d-spacing of 1.75A. The rocking curve along [220] direction of the monochro-
mator was measured using the high resolution double crystal diffractometer . The
result is shown in figure 4.2, where the solid line through the data points is the best

fit te a Gaussian-function:
w?
G(w) = Nezp(~— oz ) (4.16)

where N is the scaling factor and o, is the width of the Gaussian function. It was

found that

0o = 0.218° (4.17)

The monochromator was used in the experiments to eliminate the radiation of un-
wanted wavelength, therefore, it is useful to convert equation 4.16 into a function of

x-ray wavelength, A\. From the Bragg formula:
2dsinfy = A (4.18)

it follows that

2dcosfp Abyr = AX (4.19)

where s is the Bragg angle of the monochromator for planes with spacing d. From
geometry

w = Aby (4.20)

1This experiment was kindly performed by T. Q. Gu on the double crystal difiractometer in
the Physics Department, McGill University.
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Figure 4.2: Band-pass function of the z-ray monochromator. The Gaussian fitting
13 shown as the solid line through the data points.
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Using equation 4.16, 4.19, and 4.20, one obtains

(AN)?
=N —
G(w) = Nezp| 2(20!(20591““%),] (4.21)
From 4.19 o, = 2dcosfyo, and equation 4.21 becomes
AN
G(w) = Nezp(— ( 202) ) (4.22)

A
Thus, the band-pass function of the monochromator, ¥()), can be represented by

the Gaussian function 4.22, i.e.

(h = \)?

Y(N) = ezp(= 2
A

) (4.23)

where A is the wavelength of the primary beam and A’ = A 4+ 0.0486sin?8. Following

equation 4.17, the band-pass width for the silver target is:

ofo-Ka _ 0.02544

In this research, the highest scattering angle is 26,,,. = 135°, which results in
the largest wavelength shift, AA...z, for the Compton scattered radiation. Using 4.7
this gives Admaz = 0.04865in%65° = 0.03992A4. Using Ag-Ka radiation one has:

, 0.042

This means that the monochromator cuts the Compton scattering intensity by at
least 70% at 26 = 135°. ? Figure 4.3 shows the Compton scattering intensity,
C(Q), the total incoherent scattering intemsity, Lin.(Q) = C(Q)v(}), compared

with the intra-atomic scattering intensity, < f? > for Nig.3aZro.67. Since the coherent

3Because of the defects in the analyser crystal, there are differences between the measured
band-pass function and the Gaussian function at the tails. Therzefore, the Gaussian fitting was
only used to evaluate the band-pass width. The incoherent scattering intensity was calculated
using the measured band-pass function.
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Figure 4.3: The incoherent scattering of Niga3Zrs 7 compared with the intra-atomic
scattering intensity, < f2 >. Solid line: I;,.(Q), dasked line : C(Q) and dotted line:

< fA(Q) >.
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scattering oscillates about < f*(Q) > and is essentially equal to < f2(Q) > at high
() it can be seen tkat the diffracted beam monochromator significantly reduces the
incoherent scattering correction for values of Q > 841,

The “multiple scattering” contribution in equation 4.1 is due to x-rays which are
scattered more than once while passing through the sample. Multiple scattering of
x-rays is a complicated process, fortunately, the magnitude of the multiple scatter-
ing is small and it is sufficient to consider only double scattering [14]. The double
scattering intensity can be calculated in terms of a double integral of the square of
the first order intensity [86-88], which includes I..n and L. Since I oscillates
about < f? >, it is a reasonable approximation for amorphous samples to replace
Ion with < f2 > in the double integral [86]. A program has been written to calculate
the x-ray double scattering intensity for both the reflection and transmission mode,
and it has been tested with the data provided in reference [9] (page 148). Figure 4.4
shows the ratio of double to single scattering intensities, Rz, for several alloys used

in this research. R;2 is found to be always less than 4%

The x-ray diffraction experiments in this research were carried out in air. At
low angles the scattering from air can be as much as 10% of the sample scattering.
Therefore it is necessary to subtract the air scattering intensity from the I.,(28).
Since there exists an absorption difference with or without the sample in the beam,

the air scattering contribution to equation 4.1 is given by [7]:

'_ b 1 l_tcosB 2
e = 13003 + (5 ~ 522038 (4.29

where I’ is tke air scattering intensity measured in the absence of the sample, ¢ is
the thickness of the sample, p is the linear absorption coefficient of the sample, R

is the radius of the diffractometer, and 8 is the angle subtended at the sample by
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the detector slit.

The quantity I, in equation 4.3 represents the background which is mainly due
to secondary fluorescence radiation. I, is uniformly distributed over the entire angu-
lar range (the angular dependence of the scattering volume’s size has been included
in the absorption correction term). As discussed in reference [7] (page 493), the fluo-
rescence effect is most severe when the atomic number of the target material, Zio,get,
is 2 or 3 larger thar that of the elements in the sample, Z.temen:- This is why the
data measured with Mo target is not used for this research (AZ = Zpy, - Z2z, = 2).
In that case, the background is as high as 25% of the total intensity and results in
a serious reduction in the counting statistics. The fluorescent scattering is generally
small when AZ > 4. Therefore, a silver target was used in this research (AZ > 7).
In this case, the background I, is about 8% of the total scattered intensity. In
the literature, the background is sometimes measured by an additional experiment.

Here, I, is treated as a fitting parameter.

Finally, the normalization factor, N, in equation 4.3 is proportional to the pri-
mary beam intensity, the total number of atoms in the sample and the thickness of
the sample. Since the primary beam intensity is unknown, N remains as another

fitting parameter.

From. equation 4.1 and the above discussion it is apparent that I.,,(Q) can be
obtained from the observed intensity once the parameters N and ], are determined.
In the literature, several normalization methods have been used to derive the total
structure factor from the experimental intensity [6,14,47]. In this research, both the

high-angle fitting procedure and the Krogh-Moe-Norman (KMN) method have been
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used to normalize the x-ray diffraction data.
At large values of Q, which correspond to large values of 24, the structure factor
has a limiting value of unity. Therefore, at high & the right hand side of equation

4.1 becomes
NP{A < f(Q)® > +A'L;in(Q) + fmu(Q)} + Joir + I = I1:0(26) (4.26)

By choosing different values of N and I, a value of I;:(28) may be calculated.
I,;,(28) may then be compared with Iu, at high values of 26. The optimum values

of N and I can be determined by minimizing the quantity x?, where

X' = Z C—,l‘_;[Ioa.(ze.-) — Iya(26:) (4.27)
In eyuation 4.27, 1 is the index of data points, o? is the experimental error of I, at
26;. This method of scaling the diffraction intensity is called “the high-angle fitting
method”, becat:2 the summation in equation 4.27 is usually carried out in an ap-
propriate high-angle range where I;,(26) does not strongly oscillate about Iy:.(26).
Since the fitting function I;;(26) is actually the asymptote of I,(26), 2 minimized
x? does not necessarily lead to correct values of N and J;. In a limited range of 26
the solution to equation 4.26 may not be unique. Therefore, the range of 28 over
which the fitting procedure is performed plays an important role in determining
N and I,. As shown in figure 4.5, in the range of 80° < 28 < 130°, Iy,(26) fits
well to I.4,(26) and x* = 1.09. However, Ij; apparently underestimates I, in the
range 28 < 60°. In this case, the derived S(@Q) oscillates above unity and begins to
modulate about unity only in the fitting range (see figure 4.6). In this research, the

parameters N and J; ? are first determined by minimizing x? in equation 4.27 over

3Considering there may exist some unknown scattering from the objects around the goniometer,
Iy was expressed by a polynomial: a, + 61 x 26 + a3 x {26)%. For all the samples, a3 was found to
be sero and a, is usually very small compated to a..
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Figure 4.5: Results of filting the observed intensity in a limited high angle region.
Note that the peak erea above the filting curve is much greater than that below the
fitting curve. A correct fit would have the two areas about equal.
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Figure 4.6: The total structure factor resulting from a bad normalization.
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the range 265 < 26 < 130°, where 20, is at the beginning of the third maximum of
I4,(28) curve. The KMN method was then used to refine these fitting parameters.

The KMN normalization method was first suggested by J. Krogh-Moe [89]. The
details of this method can be found in reference [89,90]. Its central formula can be
obtained as follows.

From equation 2.19, one has

srrplo(r) = 1) = 2 [ QIS(Q) - 1sin(Qr)dQ (4.28)
2 I AP sin(Qr)
2rplo(r) -1 = [ Q 5(Q) ~ 1}=5 4@ (4.29)

The fact that atoms do not approach each other within the atomic core diameter

suggests that
lin:tl'g(r) =0 (4.30)

On the other hand, mathematically, one has

. sinQr
’]:I_I.I.“l) or = 1 (4.31)
Using 4.30 and 4.31, in the low-» range, 4.29 is reduced to
- 2w, = [ QYS(Q) - 1dQ (4.32)
In Faber-Ziman formalism, one has
Toon— < Q) >
S@Q)—-1= 4,33
() < f(Q@) >? (433)

Let Teor = (It — Ioir — It)/AP, equation 4.1 becomes *:

leor = Teon(Q) + Tmut(Q) + Line(Q) (4.34)

4The difference between the absorption correction for coherent and incoherent scattering is less
than 1% and is neglected in equation 4.34.
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where « is the reciprocal of the normalization factor N. From 4.33 and 4.34 it
follows that

_ al..— < fz(Q) > = Inw(Q) — Iin(Q)
S(Q) -1l= < f(Q) >2 (435)

Substituting 4.35 into 4.32 one has

ip = had 2aIcor_ < fz(Q) > - muI(Q) - Imc(Q)
2n%p, = [ Q O dQ  (436)

Since the quantity < f(Q) >? rapidly decreases with increasing Q, the errors in the
observed intensity or I, can be greatly exaggerated by the factors Q? and 2-7(}55,-

in 4.35. In order to reduce the erhancement, a damping factor e=79" is introduced

and 4.36 is re-written as

2 - o Qemas 2 I...
R A O |
_-[Qmu Q=< fz(Q) > 8_1Q’ - ImuI(Q) — I'M(Q)

Qmin < f(Q) >?

The parameter -y is typically less than 0.01 and does not have to be accurately

e~ 19 (4.37)

dQ  (4.38)

determined. In this work, the quantity I, which is mainly due to the fluorescent
scattering is unknown, therefore, it is rather difficult to evaluate the normalization
parameter N by the KMN method ®. However, equation 4.38 provides a cross-check
on the uniqueness of the parameters determined by the high-angle fitting method.

For all the samples, the quantity N and [ in equation 4.3 were first determined
using the high-angle fitting procedure. I, was then used in equation 4.38 to cal-
culate the parameter a. N and I, were slightly adjusted {(the adjustment usually
causes little change of the x?) so that a becomes consistent with & within %1%.

The damping factor v was typically ~ 0.01. As an example, tke diffraction pattern

51z some previous work, Iy was obtained from additional measurements and then the KMN
method was used to calculate the parameter a.
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and the correct fitting function of Nig 3321967 is shown in figure 4.7. The resulting
total structure factor is shown in figure 4.8. It should be noted that the fitting
and refining procedure was carried out with the quantities in equation 4.3 and 4.27
being functions of 26. The structure factor was determined first as a function of 26.
5(28) was then converted into S(@) with equally spaced points in {Q-space using a
cubic spline interpolation method. AQ = 0.05A~! was chosen to correspond to the

experimental resolution.

4.1.2 Reduction of neutron diffraction data

In conventional neutron diffraction experiments, the observed intensity can be ex-

pressed in terms of the Faber-Ziman total structure factor ¢, $(Q), as [14]:

I (20) = NA[< B2 > +(S(Q) - 1) < b. >* + < ] > +Iad] + 1 (4.39)

where:
N = The normalization factor;
A = The absorption factor;
b2 = ¥, c(8)?, b is the neutron coherent scattering length of element p;
<b> = Z,5b;
<bl> = T, (¥, B is the neutron incoherent scattering length of element p;
Inug = The multiple scattering intensity;
I = The background.

°In a neutron diffraction experiment, energy transfer occurs between the neutron and the sys-
tem. Therefore, an integrated intensity is measured at a given angle 28, The integration over the
energy transfer is performed by the detector so that an effective differential sca.tteri’ng cross section
rather than a true static cross section is measured [91): Jops o (22)esy o ffj?lh %S(Q,w)f(w)dw
where E is the energy of the incident neutrons, Q' and @, are the incident and diffracted wave
numbers, and f(w) is the energy dependence of the detector. For neutrons of A ~ 14, the scattering
is centered around the elastic value since the incident energy, E ~ 85meV, is considerably larger
than the energy transfer, hw < 10meV. In this case, the inelasticity {or the Placzek correction)
can be neglected, i.e. the ‘static approximation’ applies in which $(Q,w) reduces to S(Q).
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Figure 4.7: A typical fitting resull for evaluating the total structure factor.
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Figure 4.8: A typical resull of accurately evaluated total structure factor.
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The normalization factor, N, is a constant which is proportional to the primary
beam intensity and the number of scatterers.

The neutron scattering lengths b. and b; have been measured and tabulated in
reference [92). Table 4.2 lists b. and &; and the absorption cross section, o,, for Ni,
Zr, and Hi. It shows that Hf has a very large absorption cross section, therefore,
experiments using the samples containing Hf, e.g. Nip33Hf 67, need 2 much longer

time than that for Niga3Zroer to achieve reasonable statistics ?.

Table 4.2: The neutron scattering length of Ni, Zr, and Hf.

Ni Zr Hf

b. (fm) |10.3 7.16 7.77

b; (fm) 16.43 040  4.55
o, (barn) | 449 0.185 104.10

The multiple scattering intensity, Jmu, is small in comparison with other quan-
tities in equation 4.39 [93). As discussed in the literature [14,25,94], the ratio of
multiple to single scattering intensity is Q-independent, i.e. Ty & (Jooe — Is)/NA
(see 4.39). Therefore, the multiple scattering correction can be combined with the
normalization factor, N.

The quantity Iy can be measured in the absence of the specimen under the
same instrumental conditions. Figure 4.9 shows the measured I, together with the

diffraction pattern of Nig33Zro.e7.

According to the discussion above, equation 4.39 can be re-written as

L (26) = N'A[< B2 > +(5(Q) 1) < b. > + < B >]+1  (4.40)

?Since the neutron coherent scattering lengths of 2r and Hf are almost the same, neutron
isomorphous substitution of Zr by Hf will not create significant changes in the weighting factors.
Therefore, isomorphous substituion was not used in neutron diffraction experiments,
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and

Los(26) =5 NA[< B2 > + < B2 S|+ ], (4.41)

Here the normalization parameter, N', is the only unknown. N is determined using
the high angle fitting procedure described in the preceding section, and the total
structure factor 5(Q) is evaluated from equation 4.39. As a typical result, the S(Q)

of Nig33Zro g7 is shown in figure 4.10.

4.1.3 The reliability of S(Q)

Due to instrumental limitations and the accuracy with which the x-ray atomic scat-
tering factor, Compton scattering intensity, neutron scattering length are known,
various errors may be introduced in the determination of total structure factors.
As discussed in chapter 1, small errors in the total structure factors can be greatly
enhanced in determining the partial structure factors. Therefore, it is necessary to
analyze the residual uncertainties in the total structure factors and, if it is possible,
to minimize the errors before carrying out the evaluation of the partial structure
factors.

In some cases, the errors in 5(Q) are best detected by distortions and the ap-

pearance of ghosts in the function:

G(r) = % [7 Q15(@) - 11sin@raQ (4.42)

where G(r) is called the “reduced atomic pair distribution function” and is related

to the atomic pair distribution function, g(r) by

G(r) = 4dmrp.g(r) — 1] (4.43)
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Figure 4.9: The neutron diffraction patlern of Nig33Zrosr ond the background.

3 3 1 ¥ L)

Nig 332rp.g7
Neutron diffraction

Q 371

Figure 4.10: The neutron diffraction total structure factor of Nig 33270.67.
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In the following paragraphes, the sources of error in the total structure factors are
analyzed in terms of the function G(r), and the reliability of S(Q) determined from

various experiments is discussed.

The increment AQ

In a diffraction experiment, the intensity is usually measured at scattering angles
with equal increment, A28. Since the fitting procedure is to fit the experimental
raw data, therefore the total structure factor is determined originally as a function
of scattering angle. Using the relation Q = 4xsinf/), S5(26) is equivalent to a S{Q)
with unequal increments of Q.

The numerical evaluation of the Fourier integral which convert a structure factors
into the corresponding distribution function is commonly performed by computing
the equivalent summation

Qman

> Q[S(Q) — 1]sinQrAQ (4.44)

Qmin
Practical considerations require that the increment AQ be a constant. For an ac-
curate evaluation, there should be many increments AQ per half cycle in sinQr.
Therefore, AQ must be small enough so that rAQ will also be small relative to the
period of sinQr (i.e. 2x/r). If there are n increments of rQ in the period then
nr@@ = 2x. If n is less than 10 then serious distortion appears in G(r) [7,95]. For
amorphous alloys, it is usually desirable to ebtain the atomic distribution informa-
tion up to » = 10A. In this case, AQ = 2= = 2= = 0.06347" and a value of
AQ = 0.05A~! is generally acceptable because n = 4r, i.e. there would still be
about 12 increments in AQ per cycle in sin(Qr) for r ~ 10A.

In this research, the instrumental resolution 6@ in various experiments is about
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0.1 — 0.054~1 8. The total structure factor $(26) was converted into S(Q) with

AQ = 0.05A~" using the cubic spline interpolation.

Non-observable region

A universally encountered source of uncertainty in 5(@) is the experimentally
limited Q-range, that is, S(Q) is evaluated over the range of Qmin t0 Qmaz, rather
than 0 Zo co.

The lower limit Qmin excludes the small angle scattering intensity information,
which results in long-period oscillations in the Fourier transform [7]. Fortunately,
most amorphous alloys are homogeneous systems and therefore, the small-angle
scattering is rather weak. Further more, in the Fourier transform, the integrand is
Q[S(Q) — 1]sin@r; and when Q is small, the integrand is also small. Under these
circumstances the scattering in the range 0 < @ < @min can be neglected [7,16,96).

The truncating of S(Q) at @ = Qms: can be much more serious than that at
Q@ = Qmin. It is known that when the amplitudes of S(Q) are still of appreciable
size at Qmaz, €ach major peak in the function G(r) is bracketed by several pairs of
diffraction ripples (ghosts). Fortunately, when Qma- is larger than ~ 8.047%, which
is true in this research, the truncating effect is not great. Furthermore, the ghosts
can be suppressed by applying a damping factor, e™9°, to S(Q) in the Fourier
integral. As indicated by Klug et al [7], 2 damping factor simply compensates the
exaggerating effect of the factor 2—%—; to the errors in §(Q) (sce equation 2.33). Both
the factors e=7?" and ::_fl*; exert their greatest influence at larger values of @, which

accounts for the effectiveness of a damping functior in suppressing spurious ripples

8In the conventional x-ray diffraction experiments, the angular acceptance of the detector is
about 0.3° (see section 3.2). Since AQ = 4xcosfAG/], A = 0.560844, AQ ~ 0.1 at 28 = 26, =
4°, and AQ ~ 0.05 at 26 = 20,,; = 130°. The angular acceptance of the detector slit in the
neutron diffraction experiments is < 0.3°,
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arising from series termination. In this work, the value of v is typically 0.01 - 0.005

for the Fourier integral represented by 4.44. Figure 4.11 shows an example of the

influence of the factor e=79" on the Fourier integral.

The reliability criterion

Since atoms do not approach each other within the atomic core diameter r, the
value of g(r) must be zero for r < r.. Hence one has the relation (see equation 4.43
and reference [6]) :

G(r) = —4rnrp, r<r, (4.45)

i.e. In the low-r region, G(r) is a straight line with a slope equal to —47p,. As
discussed previously, the experimental G(r) often has wiggles in this region, due to
the truncating of S(Q) at Q@ = Qma- and the residual uncertainties in the S(Q).
However, one can draw a line through the curve from 0 to the first minimum of G(r)
and the slope of this line gives an estimate of the average number density, p, (see
figure 4.12). The p, estimated this way gives a reliability criterion for the accuracy
of 5(@). As shown in figure 4.12, the py values obtained using equation 4.45 agree
with those measured by Altounian et ol within 5%.

The method proposed by Rahman [97] has been used to obtain an idea of the
residual uncertainty in S(Q) due to the errors in the normalization. Again, from
the fact that the atomic distribution function g(r) is zero within the atomic core
diameter r,, for all values of r less than r,, equation 2.19 in chapter 2 can be re-

written as ?:

) 127 QIS(Q) ~ 1]sin(Qr)dQ (4.46)

— —( 1
Po = 2727 JQumin

94,46 itself has also been frequently used as a reliability criterion. However, the value of the
right hand side of 4.46 depends on the integration limits and hence the left hand side of 4.46 is not
uniquely defined (see reference [6]).
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r (&)

Figure 4.11: The effect of the damping factor to the Fourier integral. The circles
represents the result with v = 0. The solid line (which is identical to that shown in
figure {.12) is obtained with 4 = 0.0081.
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Figure 4.12: The reduced atomic pair distribution function of Nig33Zrge7. The num-
ber density of the alloy is estimated by the slope of the straight line in the low-r
range.
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Multiplying both sides of equation 4.46 by ezp(—iur) (u is a dummy variable in

the integration) and integrating over r in a sphere of radius L, we get the following

useful relation:

irpu i BED) _ L fome

- Qrmin

QIS(Q) — 1IJ{(Q@ + »)L} — Jo{(Q — v)L}]dQ (4.47)

vD TV

where J; is the ith spherical Bessel function !°, v is an arbitrary number with di-
mensions of A~!, and L is a velue less than the atomic core diameter. It has been
demonstrated [6,76,97] that 4.47 can be used as a reliability criterion for the exper-
imental structure factor of a non-crystalline system. The application of equation
4.47 to the analysis of liquid metal and various metallic glasses can also be found in
references [16,98,99].

Let €iheor and e.qp denote, respectively, the left and right hand side of equation
4.47, the values of €ipeor and €cop have been calculated with a variety of values of v
and L for the total structure factors obtained in this work. The results for amor-
phous Nig 33Zz0.67, Nip.a3(ZrosHip.4)o.67, and NigasHf, g7 are listed in Table 4.3, where
e is the correction factor to S(7) so that the value of e.., agrees with that of £,
within 1%. It is found that the typical values of |¢ — 1| range from 0.01 ¢0 0.04. This
means that the total uncertainty in the S(Q) is 1 to 4%.

In summary, the total structure factors were derived from the diffraction data

using the high angle and the KMN methods. The uncertainty in these total struc-

10The spherical Bessel functions Jo and J; arc given by:

sinz

Jo(z)

J;(z)

x
SINT — ICOSZT

22
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ture factors is examined using the method proposed by Rahman {97]. An accuracy

of better than 4% is achieved for all the total structure factors obtained in this work.

Table 4.3: Check on the normalization of S(@Q) for Nisa(ZryHfi_,)er using the re-
lation proposed by A. Rehman [97].

y L{(A) v(A™) Eteor Eezp €

1.0 1.00 1.00 0.201 0.201 0.999
1.00 1.50 0.176 0.177 0.993
1.00 2.00 0.145 0.146 0.971
2.00 2.00 0.155 0.156 0.981
0.6 1.00 1.00 0.205 0.206 0.992
1.00 1.50 0.179 0.180 0.983
1.00 2.00 0.148 0.149 0971
2.00 2.00 0.158 0.159 0.965
0.0 1.00 1.00 0.193 0.192  1.010
1.00 1.50 0.169 0.168  1.015
1.00 2.00 0.139 0.138  1.024
2.00 2.00 0.149 0.150  0.988

4.2 Evaluation of the partial structure factors

As discussed in chapter 2, each total structure structure factor of a binary amorphous

system consists of three partial structure factors:

S$(Q) = w1511 (Q) + 2w12512(Q) + w22522(Q) (4.48)

where w;; (ij = 1 and 2) are the weignting factors. In the Faber-Ziman formalism,

one has

= 'céf}f;:;- (4.49)

where ¢; and f; ave, respectively, the atomic concentration and scattering factor of

1 type atom. f; can be calculated using equation 4.12 and < f >= & fi + ¢;f;
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can be evaluated. For a pseudo-binary system with isomorphous substitution,
e.g. Ni(Zr Hfy_y)1-z, the partial structure factors Syiz.(Q) = Swiws(Q) and
Sz.2:{(Q) = Suyuy(Q), as far as the microstructure is concerned. Let i denote

Ni and j denote the mixture Zr,Hf;_,, one has

fi=vfzr + (1 = v)fuy (4.50)

and thus equation 4.48 and 4.49 are equally valid for the pseudo-binary alloy.

In principle, the partial structure factors can be evaluated from three indepen-
dent measurements by solving the linear equations:

2 2
Sm(@=0L e (m=129 (4.51)

where m is the index of the measurements. However, as discussed in chapter 1, there
1s tsually very little contrast between the measurements. As a consequence, equation
4.51 is often ill-conditioned. The results obtained by directly solving equation 4.51
are usually physically meaningless. The partial structure factors presented in the
literature are often said to be a least-square estimate of equation 4.51. However,
mathematically it has been proved that [100,101] for ill-conditioned linear equations
the least-square solution is expected to be a very poor representation of the true
quantities 5;;(Q) in equation 4.51.

In fact, there always exist some uncertainties in the experimental data S(Q)
(£ 4% in this work). Therefore, the partial structure factors should be evaluated

from

2 2
Sm(@) =33 wlS5:;(Q) + En(Q) (m=1,2,3) (4.52)

i=1j=1

where E,(Q) is the error in 5,(Q). 4.52 is a typical problem for which a biased

estimate of §;;(Q) can be obtained using a mathematical treatment called “ridge
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regression analysis”. This method minimizes the errors propagated from the 5,,(Q)
to the S5;;(Q) and gives an estimate of the uncertainties in the solution. The details

of the ridge analysis can be found in the Appendix A.

For Nig1Zro.e7, eight independent experimental total structure factors are avail-
able for evaluating the partial structure factors, seven from x-ray isomorphous sub-
stitution and one {rom neutron diffraction (see figure 4.14). The corresponding
weighting factors for the various total structure factors are listed in table 4.4.

Iosmorphous substitution is an attractive method because the experiments can
be carried out simply on a conventional x-ray diffractometer. The substitution of
Zr by Hf in metallic glasses has been widely used in previous studies, however, the
reliability of this method has not been carefully examined. In this work, the partial
structure structure factors of Niya3Zroe7 are evaluated from the total structure fac-
tors of Nigaa(Zr Hif;- )67, ¥ = 1.0, 0.6 and 0.0 using ridge analysis . The rvsults
are shown in figure 4.13. The overall uncertainty in these partial structure factors
is ~ 4%. To examine the reliability of this evaluation, the results were then used to
synthesize all the remaining experimental data. The results are shown in figure 4.14
The synthesized x-ray total structure factors agree very well with the experimental
data; the discrepancies being within the error bars of the S;;(Q) curves.

It is interesting to find that the S({Q) synthesized with the partial structure
factors obtained using x-ray isomorphous substitution is in good agreement with
that measured using neutron diffraction (see figure 4.14) except in the low-Q range
where the synthesis failed to reproduce an observed small “pre-peak” in the neutron

scattering.

11The mathematical details of the calculation can be found in the Appendix A.
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Table 4.4: X-ray weighting factors of amorphous Niga3(Zr Hfi_, Josr alloys at @ =
0.00 A=1. The last entry gives the neutron weighting factors for Nig.asZro.er.

Y WNINi WNiZr WZeZe
1.00 0696 .3882 5422
0.80 .0556 3602 5882
0.60 .0455 3293 6192
0.50 0414 3240 .6346
0.30 .0348 3032 .6620
0.15 .0308 .2891 .6801
0.00 0274 2762 .6964

neutrons | 0.1750 4867 .3383

Table 4.5: Weighting factors for the partial structure factors of amorphous
Nigg1Zro3s at Q = 0.0 A-1.

WNiNi WNiZr WZrZr
aNio‘s'rZro,ss -3386 .4864 .1750
*Nipe7Hfo33 [ .1959 4932 3109

bNio_e'rZIo_g,;; 9507 .3828 .0665

a) X-rey diffractior measurements;
b) neutron diffraction measurements.
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For various metallic glasses, a peak in the low-Q range Q < 24~%) has been
frequently observed in the total structure factors obtained by neutron diffraction
but is absent in tkose obtained by x-ray diffraction. Such a pre-peak is usually
attributed to the chemical short-range order in the metallic glass [33,38,102-104],
however, as will be discussed in chapter 5, this attribution is found to be inconsistent
with the results of this work.

It has been suggested that there maybe small differences {of the order of 10%)
between the experimental data of x-ray diffraction and that of neutron diffraction
(6). This is presumbaly due to the different scattering mechanisms. X-rays are
scattered by electrons and the diffraction intensity depends upon both the ion-ion
and clectron-electron correlations; whereas neutron diffraction reflects only the ion-
ion correlation. However, the ion-ion, ion-electron, and electron-electron correlations
in a non-crystalline material are not well understood and may or may not account
for the pre-peak.

To further examine the reliability of the results shown in figure 4.13, the partial
structure factors of Nig 33Z10.67 Were once again evaluated from the x-ray total struc-
ture factors of Nig 3321067 and Nig33Hip g7, and the neutron total structure factor of
Nig.33Zroer. The results are shown in figure 4.15 (the circles) in comparison with
the partial structure factors obtained using the isomorphous substitution method
(solid lines). As expected, the two sets of partial structure factors are in good agree-
ments except in the low ¢} range, where Sy;y: and Sy;z, obtained with the neutron
measurements have a small pre-peak.

From the previous discussion, it is evident that:

¢ Isomorphous substitution of Zr by Hf is a reliable method for evaluating the

partial structure factors of Ni-Zr glasses, provided that the smaller size of Hf



Chapter 4. Data analysis 79

3.5 ¥ ] L] T
3.0
2.5

2.0
1.5
1.0
0.5
8.0
3.0
2.5
2.0
1.5
1.0
0.5
6.6
3.0
2.5
2.0
1.5
1.0
0.5
0.0

55(@

Q &7

Figure 4.15: A comparison of the partial structure factors of Nig33Zroer obtained
. using z-ray isomorphous substitution (solid lines) and the combination of z-ray and
neutron diffraction (circles).
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is considered (see below);

e Accurate partial structure factors can be obtained from combining the x-ray

and neutron diffraction measurements.

Encouraged by the successful evaluation of the partial structure factors of Nig.a3Zro.e7,
the partial structure factors of Nigg7210.23 were obtained from the x-ray total struc-
ture factors of Nigg7Zro23 and NiggrHfp 32, and neutron total structure factors of
Nigg7Zrg.a3. The weighting factors are listed in table 4.5 and the results are shown
in figure 4.16. The total uncertainty in these partial structure factors is ~ 3%.

The previous procedure, i.e. obtaining one set of S;;(@Q) from more than one iso-
morphous substitution measurements and another set independently from combined
x-ray and neutron diffraction measurements, was not used for NiggrZrgss. This is
because the change of the weighting factors due to the isomorphous substitution is
too small for the Ni-rich alloy. On the other hand, the neutron scattering length of
Ni is 30% larger than that of Zr. Therefore, in the neutron diffraction measurement
for Nigg7Z10.33, not only the weighting factors were changed significantly, but also
a much better experimental statistics was achieved. Hence, a reliable evaluation of
the partial structure factors for NiggrZrp 33 was obtained from combining the x-ray

and neutron diffraction measurements.

It should be indicated that the atomic radius of hafnium is slightly smaller than
that of zirconium, therefore, the total structure factors of Nigs3(Zr, Hf;_ )07 and
Nipe7(Zr Hf;_,)o.33, ¥ # 0, should be corrected for the atomic size difference. This
atomic size correction is found to be crucial in the evaluation of the partial structure

factors using the isomorphous substitution of Zr with Hf.
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The atomic size difference 8 can be expressed by

p="2_TES (4.53)
rzZy
For amorphous Ni.(Zr, Hf; .y )1 alloys, the correction in Q-space is
A
& =80y (4.54)

It follows from equation 4.54 that AQ > 0if y 5 1. It is true that the peaks of the
total structure factors of Niy(ZryHfi_ )h1—ey = = 0.33 and 0.67, y # 0, shift slightly
towards higher @ (see table 4.6). The importance of the atomic size correction
can be readily realized from figure 4.17, which shows the partial structure factors of
Nig.a3Zrger obtained using the total structure factors of Nigas(Zr Hf;_y)os7, ¥ = 1.0,
0.6 and 0.0, assuming 8 = 0.0. One can see the serious splitting in the first peaks of
the partial structure factors. Obviously, such a splitting in a partial structure factor

is physically untrue.

Table 4.6: Peak positions in the total structure factors of Nigas{Zry,Hfi—y )o.67-

Yy [Q (A7) Q(47%) Qs(A7h) Q. (47
1.00 | 2.55 4.35 5.15 8.0
0.80 | 2.55 4.35 6.15 8.10
0.60 | 2.60 4.40 6.20 8.15
0.30 { 2.60 4.4 6.20 8.15
0.15 | 2.60 4.40 6.25 8.20
0.00 | 2.60 4.40 6.25 8.20

Since neither rz, nor rgy are known accurately, the parameter 8 is adjusted

according to the following physical constraints:

1. The peak positions of Nig33(Zr Hf;_;)os7, ¥ # 0.0, are made consistent with

those of NigasZrger;
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Figure 4.17: The partial structure factors of Nig 33 Zr ¢z evaluated assuming 3 = 0.0.
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2. The total structure factors for y = 1.0 to 0.0 give the same number density

estimate according to equation 4.46;
3. No splitting appears in the partial structure factors;

This procedure resulis in a well determined atomic size correction, g = 0.0175, to
Hf in the pseudo-binary glasses Nigas(Zr,Hf;_,)oer and Niggr(ZryHf;_,)o.53, ice. in
these metallic glasses, the Hf atom is 1.75% small that the Zr atom. The partial
structure factors shown in figure 4.13 and 4.16 are obtained with 8 = 0.0175.

4.3 Summary

As indicated in chapter 1, a reliable evaluation of the partial structure factors lies
in two factors: the reliability of the original total structure factors and the contrast
among the total structure factor measurements. In section 4.1 and 4.2 we have
demonstrated how to normalize the diffraction data accurately to obtained the to-
tal structure factors. We further carefully examined the reliability of the derived
total structure factors in section 4.1. An accuracy of better than 4% is found for all
the total structure factors. In section 4.2, the contrast among these total structure
factors is presented by the difference between their weighting factors. The contrast
between the x-ray and neutron diffraction data is as high as 80%. The partial struc-
ture factors of Nip.33Zrpe7 and NigerZroas are successfully evaluated using combined
x-ray and neutron diffraction. The total uncertainty is ~ 4%. The difference be-
tween the weighting factors of the isomorphous substitution total structure factors
is 8 t0 20%. T ensure an accurate evaluation of the partial structure factors, addi-
tional experiniental data were used and hence the three partial structure factors of

Nig 3321067 were also evaluated independently from seven isomorphous substitution
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measurements. The results are consistent with the evaluatisn using combined x-ray
and neutron diffraction. It is evideni that accuratec partial structure factors can
be obtained using isomorphous substitution provided that the slight size difference

between the isomorphous substituents is considered.



Chapter 5

Results and discussion

It was pointed out in chapter 2 that the atomic struciure of a metallic glass can be

described by the follewing quantities:

o The Faber-Ziman total structure factor, 5(Q), and the total radial distribution

function, RDF(r);

o The Faber-Ziman partial structure factors, 5i;(@Q), and the partial radial dis-

tribution functions, RDFj;(r).
o The Bhatia-Thornton partial structure factors, S..(g) !.

The $(Q) and RDF(r) for melt-spun Ni_Zr,_, (x = 0.25, 0.33, 0.37, 0.45, 0.50, 0.67)
and sputtered Ni,Zr,_. (x = 0.31, 0.36, 0.46, 0.53, 0.66, 0.75, 0.86) are obtained
from various diffraction experiments. The results are presented in section 5.1. Based
on the compositional dependence of the S{Q) and RDF(r), a comparison between
the atomic structure of melt-spun and sputtered Ni-Zr glasses is made in section
5.2. The §;;(Q) and RDF;;(r) for Nig33Zrps7 and Nipg¢Zrg 33 obtained in this work

are presented in section 5.3. These results allow, for the first time, a discussion

!Though the Faber-Ziman and Bhatia-Thornton partial structure factors can be mutually trans-
formed by linear relations, the S, (Q) are found superior to the 5;;(Q) when dealing with the
chemical short-range order in amorphous materials.

86
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of the composition dependence of the Faber-Ziman partial structure factors. In
section 5.3.2, the RDF;;(r) of Ni-Zr glasses are compared with the local atomic
structure of the corresponding crystalline solids. The chemical short-range order in
Ni-Zr metallic glasses is discussed in section 5.4.1 using the Snc(@) which have been
calculated from the S;;(Q). Finally, the relationship between the “pre-peak” and
the chemical short-range order is discussed in section 5.4.2.

It should be poinied out in advanced that no differences are observed between
the atomic structure of the melt-spun and sputtered Ni-Zr glasses as will be shown
in section 5.2. Therefore, in the discussions of this chapter, the melt-spun and

sputtered samples are not distinguished.

5.1 S(Q) and RDF(r)
5.1.1 The total structure facter S{Q)

The Faber-Ziman total structure factors of amorphous alloys NizZr;.., 0.25 €z <
0.86, were obtained from x-ray diffraction measurements in the range 0.08 < @ <
20A-1. Figure 5.1 shows the total structure factor §(Q) for each of the compositions
in the range 0 £ @ < 104, since for all the compositions the S(Q) oscillates about
unity and becomes flat when Q > 10471,

As can be seen from figure 5.1, the total structure factor features a relatively
strong first peak and a shoulder on the high-@Q side of the second peak. A shoulder
on the second peak of the S(Q) is common in metallic glasses whereas it is usually
absent in liquid metals. It is interesting to note that for z = 0.86, i.e. the sample
contains almost one type of atoms, Ni, the shoulder remains pronounced. The third

peak is weak and after the third peak the amplitude becomes very small. It also
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Figure 5.1: The Faber.Ziman total structure factors of melt-spun Ni,_ ,Zri_,,.,
(dashed lines) and sputtered Ni., Zr,
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should be mentioned that the value of the total structure factor before the first peak
is almost constant and very small (S(Q) ~ 0.2).

Besides the common features described above, the $(Q) of Ni-Zr glasses exhibit
a clear compositional dependence. As one can see from figure 5.1, the oscillation
period of the S(Q) increases with increasing Ni concentration. As a result, the peaks
of the S(Q) shift towards higher-@ due to the closer packing of the smaller Ni atoms.
The height of the peaks also changes with composition but in a nonlinear fashion.
As shown in figure 5.1, the amplitude of oscillations becomes the lowest at z = 0.45.
Further evidence of the compositional dependence of S(Q) is that the shape of the
second peak changes dramatically with Ni concentration. For the Zr-rich samples,
the second peak looks almost like a single peak but with a small shoulder while
for the Ni-rich samples the second peak has a very pronounced shoulder. Around
the equiatomic composition, the second peak is broad and essentially flat. For
z = 0.86, the position ratio of the two subpeaks is equal to 0.86 =~ +/3/2. This
means that the shoulder is due to the two possible nearest neighbor configurations
of equal sized balls (see the diagram on page 93). Since Zr atoms are 30% larger
tkan Ni atoms and the second peak of the S(Q) for NiggeZro14 is located at 2
much higher @ position than that of the other compositions, the shoulder is clearly
attributed to the configuration of Ni atoms. This characteristic is not suprising
due to the predominace of Ni atoms in the NiggeZro14 glass. For z = 0.23, ihe
shoulder appearing in the second peak is clear enough to allow an estimate to be
made of the position ratio of the two subpeaks giving a value of ~ 0.88 ~ v/3/2. In
analogy to the situation for NipgeZro.14, this shoulder is due to the configuration of
Zr atoms in Nig 35Z1g.75 glass. Thus, the dramatic change in the shape of the second

peak of S5(Q) corresponds to a smearing caused by the different sized atoms in both
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configurations.

5.1.2 The total radial distribution functions RDF(r)

The Fourier transform of the S{Q) gives the total radial distribution functior RDF(r) =
4xr?p(r), where p(r) is the total atomic correlation function (sce chapter 2). The
nearest neighbor coordination number n, can be obtained from integrating the first
peak of the RDF(r). The quantities RDF(r) and n, provide a general insight into
the local topological order in amorphous materials.

Figure 5.2 shows the total radial distribution functions corresponding to each
of the S(Q) shown in figure 5.1. Three broad peaks are observed in the range
r < 8A. In general, only the first peak is useful for the analysis of the local atomic
configuration. It can be seen from figure 5.2 that for all the compositions except
z = .86, the first peak of the RDF(r) consists of two subpeaks, one at r ~ 2.754
and the other at » ~ 3.24. The atomic diameters of Ni and Zr atoms are about
2.5A and 3.2A, respectively. Therefore, the subpeak at 2.75A is due to the first
atomic shell centered at Ni atoms and that at 3.2A is attributed to the atomic shell
centered at Zr atoms. As a consequence, the height of the first subpeak increases
with increasing Ni concentration whereas the opposite holds for the second subpeak.
It is of interest to point out that these two subpeaks have the same height at z = 0.45
rather than at z = 0.50. For z = 0.86, the first peak of the RDF(r) is essentially
a symmetric single peak. The peak position which is at 2.64 is much lower than
the first subpeak of the RDF(r) for z £ 0.86. This is clearly due to the dominant
contributions to the RDF(r) from the Ni atoms. It indicates that in the alloys with

z > 0.86, the small number of Zr atoms have little effect on the RDF(r).
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Figure 5.2: The radial distribution functions of melt-spun Ni. ,Zri_.., (dashed
lines) and sputtered Ni., Zr,_.,, (solid lines). The results are offset by 20 for each

composition.
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Figure 5.4 shows the total nearest neighbor coordination number N, obtained
for each of the RDF(r) as a function of Ni concentration. Initially, N, increases
rapidly with Ni concentration. N; reaches a maximum value at z = 0.45. With
further increasing Ni concentration N; gradually decreases. It is clear that N; has

a strong compositional dependence. The average value of N, is about 14,

The above discussions on the compositional dependence of the S(Q), RDF(r),
and n; reveals that there is a structural turning point in Ni-Zr glasses for the alloy
with 45% Ni. This characteristic should have an influence on various properties
of the material. Indeed, the electrical resistivity and thermoelectric power of Ni-Zr
glasses at room temperature measured by Altounian et al [62] show the same feature
as shown in figures 5.5 and 5.6. Such striking similarity among the compositional
dependence of these three quantities suggests a close relationship between the near

neighbor atomic structure and the electrical properties of Ni-Zr metallic glasses.

5.2 A comparison of the atomic structures of
melt-spun and sputtered Ni-Zr glasses

Melt-spinning and magnetron sputtering are two very different techniques of produc-
ing metallic glasses. With the melt-spinning method the metallic glass is made from
a molten alloy; while with the sputtering technique an amorphous film is formed
from the gas phase. It is, therefore, interesting to examine whether the preparation
method influences the atomic structure of the as-made Ni-Zr metallic glasses.
Form figure 5.1 and 5.2 one can see that the $(Q) and RDF(r) of melt-spun

and sputtered samples with similar composition look almost identical. The main
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peak of the S(Q) for melt-spun sample is a few percent lower than that for the
corresponding sputtered sample. This is probably due to resolution effects. As
irdicated in chapter 3, the ribbon: were arranged to overlap with each otzer to
make an x-ray diffraction sample. The overall uniformity of such a sample was
found to be satisfaciory. However, due to the overlaps, the thickness variation along
the direction perpendicular to the beam slightly worsens the focus geometry and
results in reduced resolution of t'ie diffraction intensity in comparison with the much
more uniform sputtered samples. As shown in figure 5.2, the RDF(r) is relatively
insensitive to this resolution effect.

More detailed structural information can be found from the nearest neighbor
coordination number n;. As discussed in the previous secticn, n; is a function of
alloy composition. In figure 5.4, which shows n; versus composition z, the solid
squares are from the melt-spun samples and the circles are from sputtered films.
The excellent match between the squares and circles indicate that the melt-spun
and sputtered amorphous Ni-Zr alloys prepared in this vork have the same nearest
neighbor coordination number.

The crystallization enthalpy can also be used as a measure of the similarity in
the structure of amorphous materials (see chapter 3). The crystallization enthalpy,
AH, of the melt-spun and sputtered Ni-Zr metallic glasses has been measured using
differential scanning calorimetry (DSC). The results are shown in figure 5.7. Altou-
nian et al. [66] have systematically studizd the crystallization behavior of melt-spun
Ni-Zr metallic glasses. Their results are shown in figure 5.7 along with the error
bars given in their measurements. As can be seen, our results are consistent with
those of Altounian [66] for melt-spun ribbons and sputtered films.

The above discussion leads to the conclusion that there is no difference between
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Figure 5.7: Enthalpy associated with crystallization for Ni-Zr glasses. Solid cir-
cles: melt-spun ribbons; open circles: sputtered filmes; triangles: taken from refer-

ence [66].
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the atomic structure of melt-spun and sputtered Ni-Zr glasses.

5.3 S;;(Q) and RDF;(r)
5.3.1 The Faber-Ziman partial structure factors S;;(Q)

To gain a complete insight into the atomic structure of an amorphous alloy the
partial structure factors must be obtained. The procedure for evaluating the Faber-
Ziman partial structure factors for Nig.33Zrg g7 and Nigg7Z10 33 has been described in
detail in section 4.2. The reliability of these partial structure factors was carefully
examined. Figure 5.8 displays these two sets of Faber-Ziman partial structure factors
together, where the solid lines are for Nig 3321067 and the dashed lines for Nig g7Z1¢ 3.
The position and height of the first peak for each of the §;;(@Q) are listed in table
5.2.

Table 5.2: Peak positions of the partial structure factors of NizZry_,.

SNiNi Sniz, Sz.2-

z 0.33 | 0.67 | 0.33 | 0.67 | 0.33 | 0.67
@ 2.65 | 2.95|2.65|290 | 2.5512.75
S:(@1) | 2.24 | 3.38 | 2.34 | 2.59 | 2.88 | 2.57

Q; = the position of the first peak in A~1;
5;;(Q) = the height at @ = Q,.

From figure 5.8 and table 5.2, it is seen that the partial structure factors of Ni-
Zr glasses have strong compositional dependence. As the composition changes from
Nip.a3Zroer to Nig.erZro.as, the position of the first peak shifts to higher Q by 11%,
10% and 9% for the Ni-Ni, Ni-Zr and Zr-Zr partial structure factors, respectively.

For the two alloys, the height of the first peak in Ni-Zr and Zr-Zr partial structure
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Figure 5.8: The partial structure factors of Ni,Zr,_.. solid lines: z = 0.38; dashed
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factors is relatively the same. However, the height of the first peak in the Ni-Ni
partial structure factor shows a more than 30% increase as = changes from (.33
to 0.67. The variations of Syini(@), Sniz.(Q) and Sz,z,(Q) with composition are

further discussed below,

i.SN,'N;(Q): As shown in figure 5.8a, the Syin:(Q) of NigaaZroer has an asym-
metric first peak at 2.65A~1. The second peak is broad and flat. The amplitude of
oscillations becomes almost zero for @ > 8A~1. The Syini(Q) of Nigg7Zr0.33 looks
very different from that of Niga3Zrger. It has a relatively strong symmetric first
peak at 2.9547!. The second peak has a very pronounced shoulder on the high-
Q side. It is not surprising that such a shoulder appears in the partial structure
factor Snin; of Nige7Zro.3s glass. As mentioned in section 5.1.1, the total structure
factor for Nig geZrg.14 is dominanted by the contributions from the Ni atoms. There-
fore, this alloy can be approximately considered as a one-component system, i.e. Ni
glass. There is a strong shoulder in the second peak of the total structure factor
for NioseZto.14- The comparison of the Sy;ni(Q) for NioerZross and the S(Q) of
Nig.ssZrp.14 is shown in figure 5.9. The similarity between the second pezks of the
two structure factors confirms that the shoulder feature is due to the Ni-Ni correla-

iion in the glass. This Ni-Ni correlation becomes weak as the Zr content increases.

3.5z.7, (Q) The partial structure factors Sz, 7, (@) for Nig.33Zr¢ .67 and Nig 721033
are shown in figure 5.8¢. For both the compositions, Sz,z,(Q) has a relatively strong
and symmetric first peak and oscillates up to 16A~!. However, there are significant
differences between the Sz,z.(Q) for z = 0.33 and 0.67. The oscillation period of

the Sz,z.(Q) for Nip 3321067 is much greater than that for NiggrZro.33. The second
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Figure 5.9: The Faber-Ziman partial structure factors Snini(Q) of NigerZross com-
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peak of the §z,2.(Q) for z = 0.33 has a weak shoulder while that for z = 0.67 looks
essentially symmetric. It is interesting to compare the Sz.z.(@Q) for = = 0.33 to the
total structure factor S(Q) of Nig 52175 (see figure 5.10). Similar to the situation
for Sy;ni(@Q) of the Ni-rich sample, the Sz,z,(Q) of Nig.35Z10.67 looks much the same
as the $(Q) of the Zr-rich sample, Nig2sZro 5. Hence, the shoulder which appeares
in the second peak of the 5z,27.(Q) and the S(Q) of Zr-rich samples is due to the

correlation among the Zr atoms.

i1.Sy;iz, (Q) In comparison to the other two partial structure factors, the Sn;z.(Q)
is relatively less sensitive to composition. As shown in figure 5.8b, the Sn;z.(Q) fea-

tures three maxima in the range Q < 84-). Beyond this range, the oscillation of
the Sxiz.(Q) becomes almost zero. The Sy:z, (@) of Nigg7Zrg a3 looks sharper than

that of Nig3Zro¢7, and the position of the first peal saifts by about 10% from z =

0.33 to 0.67.

It is of interest to compare the partial structure factor Sniz,(Q) to the total
structure factor S(Q) of NigsZros. Figure 5.11 shows the Sn;z.(Q) of NipasZroer
and NigerZro.3; together with the S(Q) of NigsZro5. The three curves look very
similar to each other. Since the compositions for the two partial structure factors
are symmetrically distributed from z = 0.5, it is interesting to take the average
of the Sniz,(Q) for = = 0.33 and = = 0.67 and compare it with the S{(Q) of
NigsZrgs. The results is shown in figure 5.12. One can see the dramatic similarity
between the two curves. This characteristic is probably due to the fact that the
Swiz.(Q) is relatively insensitive to composition; on the other hand, as will be
shown later, a nearly random mixture of the constituent atoms is retained in Ni-Zr

glasses, therefore, in amorphous NiggZrog, the S(Q) is dominated by the partial
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structure factor Siiz,(Q). The average of the Syini(Q) and Sz.z.(Q) are shown
in figure 5.13. As can be seen the two curves have inverted maxima and minima.
Therefore, a synthesis using the average of the three partial structure factors of
Nio.33Zro.e7 and NiggrZro3s would give results similar to the average of the Sy;z,
only (see figure 5.14). The discrepancy in the ampiitude of the first peak in the
measured and synthesized S(Q) in figure 5.12 and 5.14 will be discussed later.

The composition dependence of S;;(Q) can also be seen by using the partial
structure factors of NigssZroer to synthesize the total structure factor across the
entire range of composition. The equivalent synthesis can be done using the partial
structure factors for Nig grZro.33. The results of the synthesis are shown in figure 5.15.
As can be seen from the figure each set of partial structure factors yields an excellent
total structure factor for compositions near the composition of the partial structure
factors. The agreement becomes progressively worse with increasing compositional
difference. As shown in figure 5.4 there is a structural turning point at =z ~ 0.45.
In figure 5.15, for the alloys contains about 45% Ni, the main peaks in the two
synthesized S(Q) appear on the each side of that in the measured $(Q), whereas for
the Ni-rich or Zr-rich alloys, the main peaks in bot* the synthesized 5(Q) are found
to be at Jower or higher Q than that in the measured S(Q). These results further
show the strong compositional dependence of the Faber-Ziman partial structure
factors of Ni-Zr glasses. To see whether this compositional dependence of 5;;(Q)
is linear, the linear combination of the two sets of S;;(Q) is used to synthesize the
S(Q) for z = 0.5. The result is shown in figure 5.14. The large discrepancy in the
amplitude of the first peak between the measured and synthesized S(Q) suggests

that there is a non-linear feature in the composition dependence of tke Faber-Ziamn
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Figure 5.12: The measured Faber-Ziman total structure factors of Nig.sZro.s compar-
ing to the average of the Syiz,(Q) for Nig33Zro g7 and NigerZroas (i.e. 50% Snize
for z=0.38 + 50% Skirr for z=0.67).
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partial structure factors of Ni-Zr glasses.

As indicated in chapter 2, the Faber-Ziman structure factors do not explicitly
involve the atomic composition. This is probably the reason that many previous
structural studies of metallic glasses used the concentration technique to derive the
Faber-Ziman partial structure factors. In this technique the weighting factors are
varied by changing the alloy composition ¢ assuming that the partial structure fac-
tors are independent composition. However, from the discussion above, it is clear
that the partial structure factors of Ni-Zr metallic glasses have strong composi-
tional dependence. Therefore, it is inappropriate to use the concentration technique
to evaluated the partial structure factors in Ni-Zr glasses. In fact, it is probably

dangerous to use the concentration technique for any other system.

5.3.2 The partial radial distribution functions RDF;;(r)

The partial radial distribution function RDF;;(r) corresponds to the number of j-
type atoms in the spherical shell between r and » + dr centered at an i-type atom.
The RDF;;(r) is obtained from the Fourier transform of the S;;(@Q). The partial
coordination number n;; in the nearest neighborhood can be obtained by integrating
the first peak of the RDFj;(r). In this section, the atomic structure of amorphous
Ni-Zr glasses is discussed in terms of the partial radial distribution functions. The
results are also compared to the previous studies on the amorphous Nig 33Zrg ez and
crystalline NiZr, and Ni;Zr compounds.

The partial radial distribution functions of Nig33Zrq.e7 and Nige7Zrg 33 are shown

in Figure 5.16. The coordination number of Ni-Ni, Ni-Zr, and Zr-Zr atomic pairs
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in the nearest neighbor shell are given in table 5.2. As discvssed previously, the
partial structure factors are sensitive to the composition. Therefore, the partial
radial distribution functions are expected to be composition dependent. As shown
in figure 5.16a, the magnitude of RD Fyn:(r) for NigasZroer is about 50% larger
than that for Nigg7Zrg 33 whereas that of RDFz,z.(r) for z = 0.32 is 30% to 50%
lower thap that for z = 0.67. The difference between the RD Fy;z,(r) for the two
compositions is about 30%. These results indicate that the local atomic number
density depends strongly on the composition. From figure 5.16 one can see that
the height of the first peak in the RDFn;yi(r) and RDFz,z.(r) differs by about
50% between the two compositions while that in the RDFy;z.(r) changes by 30%.
As a result, the nearest coordination numbers ny;y;, ~Nizr, nZeN: 20d nz.7, Vvary,
respectively, by about 56%, 36%, 62% and 35% with composition. Obviously, the
local atomic environment of both Ni and Zr are very sensitive to composition. It is
interesting to note, however, that the coordination distances (i.e. the peak positions
of RDF;;(r)) vary little with composition. As shown in table 5.2, the relative change
of the coordination distances with composition is less than 2%.

There has been no previous report on the partial raidal distribution functions
of amorphous Niga3Z1ge7 and Nigg¢rZross 2. The atomic coordination numbers and
inter-atomic distances of Nig 33Zro.e7, however, have been evaluated by F. Paul et af
using x-ray diffraction [49] and by R. Frahm et a! [50] using EXAFS. Their results
are listed also in table 5.2. In both of the studies, they were unable to obtain the
structural parameters of the Ni-Ni pair. In reference [50], the inter-atomic distances

were determined by a one-shell fit to the EXAFS spectrum based on Zr neighbors

IReference [57] is entitled “Anomalous wide angle x-ray scattering of amorphous NizZr alloy”,
but in the text it said that the sample was a piece of ribbon used in reference [56] which is
Nip.es.7Zr3s.3.
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Figure 5.16: The partial radial distribution functions of Ni.Zri_;, z = 0.33 and
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Table 5.3: The nearest neighbor coordination numbers of Ni.2r,_;, z = (.38 and
0.67.

Ni-Ni Ni-Zr Zr-Ni Zr-Zr
Phase =z |r(A) N r(Ad) N r(A) N r(A) N Reference
a 0.33 262 239 262 143 3.18 10.1 [50]
a 0.33 270 83 270 4.2 3.16 10.6 [49]
a 033} 268 314 276 838 276 419 3.22 9.59 this work
¢ 033|263 2.00 274 8.00 274 4.00 °2.97 2.00 [105]
*3.07 2.00
*3.39 8.00

a 0.67| 264 7.13 274 5.38 274 10.76 3.16 6.09 this work
c 0.67 | 245 6.00 2.87 6.00 287 12.00 2.99 4.00 [105]

a —amorphous; ¢ = crystalline,
* Three different sites of Zr in the unit cell,

only. It can be seen from table 5.3, their inter-atomic distances for Ni-Zr and Zr-Zr
pairs are generally 0.14A smaller than those obtained in the present work. Our
results show that up to 30% of the nearest neighbors about a Ni or Zr atom are Ni
atoms. On the other hand, Ni atoms are 30% smaller than Zr atoms. Therefore,
neglecting the Ni-Ni pair contribution leads to a underestimate of the inter-atomic
distances of all the rest of the atomic paris. The coordination number of the Zr-Zr
pair, nz.z,, which was evaluated in [50] agree with our result. However, the ny:z,
and nz,n; are significantly different from our results. As extensively discussed in the
literature on the EXAFS investigation of amorphous alloys [50,106] this discrepancy
is probably due to the non-Gaussian pair distribution functions which are difficult
to investigate with EXAFS. In the study of Paul et al [49], only two x-ray diffraction
experiments were carried out. The coordination numbers and inter-atomic distances
of Ni-Zr, Zr-Ni, and Zr-Zr correlations were evaluated assuming the contribution of

the Ni-Ni pair was small. It can be seen from table 5.3, the coordination numbers
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presented in [49] agree with our results but the interatomic distances were under
estimated because they neglected the Ni-Ni correlation.

From the above discussion, it is evident that sufficient and accurate structural
parameters can only be obtained from complete evaluations of the partial radial
distribution functions.

Though there is usually a discontinuity in the structure between amorphous and
crystalline states, it is often helpful to compare the structures of the amorphous
and the corresponding crystalline solids. In the next few paragraphs, the atomic
structure of Nig33Zroer and NiggrZro.as metallic glasses are further analysed and
compared to the crystalline NiZr, and Ni;Zr phases.

For Nig.a3Zro g7, there exists a stable intermetallic compound, NiZr; [61]. It has
a body-centered tetragonal (BCT) structure 3. The coordination numbers and the
inter-atomic distances in the unit cell of BCT NiZr, are listed in table 5.2. The
distributions of three types of atomic pairs in BCT NiZr, are superimposed on the
radial distribution functions of amorphous Nipa3Ztge7 in figure 5.17. As one can see
the distribution of the vertical bars are quite consistent with the RDF;;(7) curves. A
Ni atom in the amorphous phase has 11 neighbors including 3 Ni atoms at 2.68A and
8 Zr atoms at a further distance, 2.76A. In crystalline NiZr, a Ni atom has 10 near
..eighbors comprising 2 Ni atoms at 2.63A and 8 Zr atoms at 2.74A. A Zr atom
in NigssZtper has 14 neighbors including 4 Ni atoms at 2.76Aand 9.6 Zr atoms at
3.16A, while 2 Zr atom in BCT NiZr; has 15 near neighbors comprising 4 Ni atoms
at 2.74A and 12 Zr atoms at three slightly different positions in the cell (see table
5.2). It is interesting that in the amorphous NigasZrger the inter-atomic distance

of Ni-Ni is larger, but that of Zr-Zr is smaller than the corresponding distances in

3The compound NiHf; has the same structure as that of NiZr,.
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crystalline NiZr,, while the Ni-Zr inter-atomic distance is about the same in the
two phases. Nevertheless the local topological order is quite similar in amorphous
Nip.33Zro6r and in the crystalline compound NiZr;. In fact, in our DSC experiments
amorphous Nig33Zrg g7 crystalizes directly into the equilibrium BCT NiZr; phase.
For NipgrZrgaa, the crystaliine Ni;Zr phase is not indicated on the standard
equilibrfium binary phase diagram. An FCC structure of Ni;Zr has been reported
[105]. However, the crystallization product of amorphous NigerZrgas is a body-
centered-orthorhombic peritectoid [66]. Unfortunately, the detailed structure of this
phase is still unknown. Nevertheless, it is instructive to compare the amorphous
Nigg7Zro.2a to the FCC Ni:Zr phase. The partial radial distribution functions of
Nigg72ro.33 are compared to the local atomic structure of the FCC Ni;Zr in figure
5.18. As can be seen from figure 5.17a, the distribution of Ni-Ni pair in amorphous
Nip.g7Zr0.23 looks quite similar to that in FCC Ni,Zr. However, as shown in table 5.3,
each Ni atom in the amorphous phase has 7 Ni neighbors at 2.64A whereas a Ni atom
in the crystalline phase has only 6 Ni neighbors at a much closer distance, 2.45A. In
figure 5.18b, it is found that the inter-atomic distances of Ni-Zr pairs in FCC NiyZr
correspond quite well to the maxima of the RDFjy;z.(r) except in the first shell. As
can be seen in table 5.3, the nearest neighbor coordination number ny;z. is about
the same in the two phases but the inter-atomic distance in amorphous NipgrZro.aa
is 0.13A smaller that that in FCC Ni;Zr. Such a difference is also found for the
Zz-Ni correlation. A Zr atom in the amorphous phase has about 11 Ni neighbors
at 2.74A and 6 Zr neighbors at 3.16A. A Zr atom in the FCC phase, however,
has 12 Ni neighbors at 2.87A and only 4 Zr neighbors at 2.99A. Though there are
similarities between the atomic structure of amorphous Nig ¢7Zr9.33 and FCC Ni,Zr,

the similarities are not as strong as those between Nig33Zrg¢7 and BCT NiZr;. This
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is consistent with the fact that the crystallization product of amorphous Nigg7Zrp 33
is not the FCC Ni,Zr phase but a body-centered orthorhombic peritectoid whose

detailed structure has yet to be worked out [66].

5.4 The chemaical short-range order in Ni-Zr glasses

5.4.1 The Bhatia-Thornton representation

As discussed in chapter 2, the Bhatia-Thornton partial structure factors, 5,..(Q),
Sne(@), and S..(Q) are useful for examining the chemical short-range order in amor-
phous materials. The S,.(Q) and S..(Q) correspond to the mean square fluctuations
in the number density and concentration, respectively, and S,.(Q) denotes the cross
term between these two fluctuations. The S,,(Q), Sne(@) and S..(Q) for Nig.aaZroer
and Nigg7Zrg 33 are obtained by a linear transformation of the Faber-Ziman partial
structure factors using relations 2.48, 2.49 and 2.49. Each of these Bhatia-Thornton

partial structure factors and the corresponding correlation functions are discussed

bellow.

i.S,m(Q): The number-number structure factor describes the topological short
range order in the amorphous materials. It reflects the local atomic configuration
irrespective of the type of atom. Therefore, S,.(Q) is expected to look similar to
the total structure factor $(Q). Figure 5.19 and 5.20 show this feature of 5,.(@Q) for
Nig.33Zr0.67 and NiggrZrgas glasses. Sn.(Q) varies with composition. As showr in
figure 5.21a, the S, (Q) for Nig.a3Z10 67 has lower amplitude than that for Nig g7Zr0 3a.
This means that the number density fluctuation is relatively weaker in the Zr-rich

sample.
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Figure 5.21: The Bhatia-Thornton partial structure factors of NigzzZrper and
Nio672r0.33. The solid lines are the S5,.(Q) for ¢ = 0.33 oblained using the iso-
morphous method while the dashed lines are that obtained using combined z-ray and
neutron diffraction. The dotted lines are the S, .(Q) for z = 0.67.
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The Fourier transform of S..(Q) gives the number-number pair distribution func-

tion, pnn(r), which is related to the partial atomic pair distribution functions by:

pran(r) = c1pua(r) + c2pza(r) + pra(r)

ap(r) + copa(r)

where pi(r) = T; pi;(r). Figure 5.222 shows the reduced number-number correlation
function Gun(r) = 4xrppa(r) for both compositions 4. The first peak of the Gnn(r)
for z = 0.33 is relatively broad with the maximum at 3.12A . There is a very
pronounced shoulder at low r side. It shows the contribution of the number density
around Ni, the small atoms. This contribution becomes very strong for z = 0.67
shown by the low r position of the first peak, r ~ 2.664, and the large amplitude of
the Gnn(7) for NiggrZross. These characteristics reflect the predominance of small

atoms in the number density in the Ni-Zr glasses.

1i.5p.(@): The number-concentration structure factor describes the correlation
between density and concentration fluctuations. The oscillations of S,.(@) around
zero reflects the size effect between the two types of atoms. As shown in figure
5.21b, in spite of the large difference in the atomic size of the two constituent
atoms, the amplitude of the S,.(Q) (dotted line) for the Ni-rich alloy remains low.
This indicates less size effect in the Ni-rich sample. For the Zr-rich alloy, however,
a stronger size effect is revealed by the large amplitude of the corresponding S..(Q)
(solid line).

The Fourier transform pn.(r) of S.(Q) is a measure of the difference in the

*In the literature, the discussion is usually carried out in terms of the reduced correlation
functions. Therefore, in figure 5.22 the G, c(r), rather than the p, () are presented.
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atomic distribution function of two types of atoms:

pre(r) = crea[pi(r) = pa(r)] (5.1)

The reduced number-concentration correlation function G, (r) = 4rrp,.(r) for both
compositions is shown in figure 5.22b. The two curves are relatively in phase, but
the Zr-rich sample has higher first positive and negative peaks. It indicates that the
density 8uctuation in Ni-Zr glasses increases with the concentration of Zr {the big
atoms). Furthermore, the position of the first positive peak (r ~ 2.74) and the first
negative peak (r ~ 3.24) seems to be independent of composition. This means that
in Ni-Zr glasses the number density around Ni atoms at 2.74 is always higher than

that around Zr atoms, and the opposite situation occurs at r ~ 3.24.

ﬁi.SCC(Q): The concentration-concentration structure factor oscillates about ¢;¢3,
where ¢; and ¢, are the concentrations of the two constituents. Figure 5.21c shows
the S..(@)/¢,¢z for both Nig 33Zro.67 and NigerZross. The first peak of the S..(Q) for
z = 0.33 is positive at Q = 2.44~? while that for z = 0.67 also has a positive first
peak but it appears at a much lower position, Q = 1.7A™!. A peak at Q < 2471 is
usually called pre-peak. The pre-peak is often considered as an indication of strong
chemical short-range order in amorphous materials. This can be misleading. Further
discussion on the relationship between the pre-peak and the chemical short-range
order will be given section 5.4.2.

The Fourier transform of S..(Q) yields the concentration-concentration correla-
tion function, p.(r), which tells how much the local chemical composition differs
from the average composition. The positive peaks of the G..(r) correspond to the
clustering of one type of atom while negative peaks show the tendency towards

segregation between unlike atoms. Figure 5.22c shows the reduced concentration-
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Figure 5.22: The number-concentration correlation functions of Ni.Zm_., z = 0.88
and 0.67.
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concentration correlation function Gec(r) = 4xrp.(r) for Nig 3321067 and Nig g7Zr0.33.
The two curves have inverted maxima and minima. It is clear that, for both compo-
sitions, the intensities of the positive peaks of G..(r) balance those of the negative
peaks. This means that the local clustering effect of Ni or Zr atoms is cancelled out
by the segregation tendency between Ni and Zr atoms. This is evidence of small
chemical short range ordering in the Ni-Zr glasses. Indeed, the chemical short range
order parameter «; (equation 2.55) for both the compositions is found to be small in
comparison with that of other Ni containing metallic glasses (see table 5.3). Ni-Zr
glasses are therefore a quite random mixture of Ni and Zr.

Table 5.3: The chemical shor range order parameter of amorphous Ni-Zr compared
with other Ni containing glasses.

glass | Nipg1Boyy NipsPo2 Nio4Tioe NigasYoer NiossZTosr NiosrZToss
(a3} -0.21 -0.23 -0.2 -0.15 -0.024 -0.047
ref. [103] [107) [36] [38] This work  This work

5.4.2 Relationship between the “pre-peak” and the chem-
ical short-range order

It should be noted that the S..(Q) of NiggrZross has a pronounced pre-peak at
Q = 1.7A"'. The 5.(@Q) of NigasZroer, however, has a first peak centered at
Q= 2.45A~!. Based on the difference between the S.e(Q) of NigasZrg 67 and that of
Nig e7Zr0.23, the relationship between the “pre-peak” and the chemical short range
ordering in amorphous materials is now discussed.

As indicated in chapter 4, for many metallic glasses, a pre-peak is often ob-

served in the neutron diffraction pattern which is absent in the x-ray curves [33,102-
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104,108). Sometimes, a weak pre-peak appears in the x-ray patiern and becomes
the main peak in the neutron pattern {30,109]. In the literature, the presence of a
pre-peak is often attributed to chemical shor-range ordering in the material. This

is probably because of the following:
e Only the partial structure factor S..(Q) may have the first peak at Q < 247%;
® 5.(Q) represents the chemical short-range ordering in the material;

e The weighting factor w,, for neutron diffraction is sometimes larger than that
for x-ray diffraction. When the neutron experiment is performed on a zero

alloy, the total structure factor is identical to the quantity S..(Q).

However, as indicated in reference [110] (1983), difficuities arise with the original
Bhatia-Thornton formalism in the interpretation of the structure factor of NigoNbyo.
For this system, a pre-peak is observed only in the neutron pattern, but the weighting
factor w.. for neutron diffraction is 60% smaller than that for x-rays. Unfortunately,
this work seems to be ignored in subsequent structural studies of metallic glasses in
which a pre-peak observed in the neutron diffraction pattern is still simply explained
as an indication of chemical short range ordering without giving any further evidence.

In this work, the neutron diffraction patterns of Nig 33Zro.¢7 and Nigg7Zrg.33 both
show a pre-peak which is absent in the x-ray patterns of ihe corresponding Ni-Zr
or Ni-Hf samples. However, as listed in table 5.5, the neutron weighting factor w,.
is, in some cases, much smaller than that of x-rays. The peak position is about the
same for the two compositions (Q == 1.75/'4‘1) but the intensity of Nig 33Zrg.67 is 10%
lower than that of Nigg7Zrg.23.

For Nig.33Zr0.67, as shown in figure 5.21¢, the S..(Q) deduced from x-ray and neu-

tron diffraction data (dashed line) shows no pre-peak neither does that deduced from
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Table 5.4: Bhatia-Thornton wetghting factors for NigsszZrogr and NiggrZroas. The
data for z-ray ezperiments are given at Q = 0.04™!

measurerment sample Wnn Whe Wee
xX-ray NiO.SSZID.GT 0.9784 -0.6017 0.0216
- NigasHfosr | 0.8875 -1.3289 0.1125
neutron NigszZrogr | 0.9685 0.7411 0.0315
X-Tay NigerZross | 0.9730 -0.6686 0.0270
. NipgrHfgss | 0.8154 -1.6334 0.1846
neutron Nio_67zro.33 0.9750 0.3309 0.0250

from the x-ray isomorphous substitution data (solid line). On the other hand, the
See(@) of Nig g7Z1r.33 (dotted line), which is obtained from x-ray and neutron diffrac-
tion data, has a strong peak at @ = 1.7471. Although the origin of the pre-peak in
the neutron pattern of Nips3Zro.e7 is still unknown %, it is evident that the pre-peak
is not necessarily a consequence of the modulations of the concentration fluctua-
tion term S.(Q@). The chemical short range ordering in the material should only
be examined with the S..(Q) itself and its Fourier transform, the concentration

fluctuation correlation function pe.(r).

5The ratio of Ni and Zr scattering amplitudes is much smaller for x-rays than for neutrons.
‘Therefore, it seems to be possible that the pre-peak which was only observed in neutron diffraction
is caused by the correlation between Ni-Ni atoms. This is, however, inconsistent with the results
presented in sections 5.3, 5.4.1.
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Conclusions

This thesis presents a structural study of Ni-Zr metallic glasses. It is the first time
that a careful and systematic investigation into the structure of a glassy metallic
system has been carried out. The results have improved our understanding of the
structure of metallic glasses and clarified confusion in previous studies.

The amorphous alloys Ni.Zr;_., 0.25 < z < 0.86, were prepared using both
melt-spinning and sputtering. The total structure factors of these alloys were ob-
tained from x-ray and neutron diffraction, as well as anomalous x-ray scattering. We
selected two compositions, NigaszZrger and Nigg7Zro.ss, for a detailed study of the
partial structure factors. Isomorphous substitution (partially or totally replacing Zr
with Hf) and combined x-ray and neutron diffraction were employed to obtain these
partial structure factors.

We used both high-angle fitting and the KMN method together to normalize the
diffraction data. The resulting total structure factors have the accuraacy of 1-4%.
We also obtained the total radial distribution functions and the nearest neighbor
coordination numbers from the total structure factors. Our results show that these
quantities for Ni-Zr glasses have strong composition dependence. A structural turn-

ing point is found at Ni concentration of ~ 0.45. This characteristic is in good

123
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agreement with the composition dependence of the electrical resistivity and ther-
moelectric power of Ni-Zr glasses. It suggests a close relationship between the near
neighbor atomic structure and the electron transport properties of these alloys.

Based on our studies of the total structure factor, the total radial distribution
function, and the crystallization enthalpy in the whole range of composition, we
have shown that there is no difference between the atomic structure of melt-spun
and sputtered Ni-Zr glasses.

We obtained two independent sets of Faber-Ziamn partial siructure factors for
Nigs3Zroe7 from seven independent isomorphous substitution measurements and
combined x-ray and neutron diffraction experiments. The two sets of results are in
agreement and the overall uncertainties of these partial structure factors is less than
4%. Our study confirmed the relability of the isomorphous substitution method in
evaluating the partial structure factors of Ni-Zr(Hf) glasses. The Faber-Ziman par-
tial structure factors of Nig g7Zrp 33 were obtained using combined x-ray and neutron
diffraction with an accuracy better than 4%. The Faber-Ziamn partial structure fac-
tors are found to be strongly compositional dependent. Therefore, it is inappropriate
to use the concentration technique to evaluate the partial structure factors of metal-
lic glasses. The partial radial distribution functions were evaluated for Nig33Zrg a7
and NiggrZroas. The results gave us a complete insight into the local atomic struc-
ture of these metallic glasses. The local topological order in amorphous NigasZrger
is found to be quite similar to that in crystalline compound NiZr,. Unfortunatly
the structure of crystalline Ni,Zr has not been completely worked out, therefore, a
similar comparison cannot be made for the Nig g7Zro 33 alloy.

We have also discussed the chemical short-range order in the Ni-Zr glasses in

terms of the Bhatia-Thorton partial structure factors. Qur results show that, com-
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pared to other Ni containing metallic glasses, a relatively random mixture is re-
tained in Ni-Zr glassy system. It is shown that the pre-peak observed in the neutron
diffraction pattern of metallic glasses in not necessarily due to the modulations of
the Bhatia-Thornton concentration fluctuation term S..(@). Our results reveal no
correlation between the pre-peak and chemical short range-order in Ni-Zr glasses.
Therefore, the chemical short-range ordering in amorphous materials should only

be examined with S..(Q) and the concentration-concentration correlation function

Pec(T)-

Suggestions for further research

Further studies should be carried out using the Reversible Monte-Carle (RMC)
simulation to model the atomic structure of Ni-Zr glasses. The RMC modeling could
be used to extract the three dimentional information from our precisely measured
partial structure factors and provide further structural information, for example, the
physical configuration and the bond angle distribution in the Ni-Zr metallic glasses.
The accurate Faber-Ziman partial structure factors determined in this work could
also be used to calculate the electrical resistivity and thermoelectric power of Ni-Zr

metallic glasses and to examine the validity of the Faber-Ziman model.



Appendix A

The mathematics in the evaluation of the partial structure factors
In principle, the partial structure factors can be evaluated from three indepen-

dent measurements by solving the linear equations:

T(Q) = W(Q)P(Q) (7.1)

where T(Q) is the vector of total structure factors:

5(Q) -1
T(Q) = | 5(Q) -1 (7.2)
S3(Q) -1
P(Q) is the vector of the partial structure factors:
Sq(@) -1
P(@) = | Si(Q)-1 (13)
Si(@) -1
and W(Q) is the matrix of the weighting factors:
wy wy W
W(Q) = [wf' wl?,- wf-j ‘ (7.4)
i

A unique solution is found if the determinant of W(Q) is different from zero, i.e.

if the three equations are linearly independent. Mathematically, the conditioning of

126



Appendix A 127

a weighting factor matrix e~n be measured by the normalized determinant of the
weighting matrix:
(Wa(Q)l = |mj(Q)/{>;[M5(Q)]2}ml (7.5)
A well-conditioned set of equations yield |[W,(Q)| of order 1. It can be shown that,
for the metallic glasses whose three partial structure factors have been evaluated
so far, |[Wn(Q)| is normally very samll (10~% — 1074) !, i.e. the set of equations
(equation 7.1) is ill-conditioned.
Depending on the conditioning of the matrix W(Q) the solution of equation 7.1

may be obtained using one of the following methods:

1. The direct solution
P,(Q) = WHQ)T(Q) (7.6)

2. The least square evaluation
P(Q) = [(W(QW(Q)]"W'(Q)T(Q) (7.7)
3. The “ridge regression” evaluation

P(Q) = [WI(Q)W(Q) + o] "W'(Q)T(Q) (7.8)

where W/(Q) and W(Q)™? are, respectively, the transpose and inverse of the matrix
W(Q). The parameter a in equation 7.8 is an arbitrary number which will be
disscused later.

When W(Q) is ill-conditioned, the elements of the matrix W1 are often very

large numbers. Therefore, in equation 7.6, the errors in the total structure factor

'Wagner has given the values of |[W,(Q)| for some previous studies in his teview paper in
reference [5].
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vector T(Q) are greatly amplified. As a consequence, the results given by P,(Q) is
usually physically meaningless.

The least-square solution 7.7 is a biased estimate of 7.1. It haas been proved
mathematically, that for ill-conditioned data, (e.g. |W.(@Q)| ~ 107*) the least-
square estimate is expected to be & very poor representation of the true vector
P(Q) in equation 7.1 [100,101]. Therefore, the accuracy of the least-square solution
must be examined with additional experiments.)

Strictly speaking, there always exist some uncertainties in the experimental data.

Therefore, the partial structure factors should be evaluated from

T(Q) = W(Q)P(Q) + E(Q) (7.9)

where E(Q) is the error in the vector T(Q). Equation 7.9 is a typical problem for
which the solution can be obtained using ridge regression analysis [100,101]. Let
P*(Q) in equation 7.8 be the solution of 7.9, the error in vector T(Q) is then given
by

E*(Q) = T(Q) - W(Q)P*(Q) (7.10)
and the variance in P*(Q) is given by
V(Q) = [W(Q)W(Q) + oI [W(Q)W(Q)][W2(Q)W(Q) + o] 'o’L  (7.11)

where o is the statistical error in the total structure factors and I, is the identity

vector. Therefore, the total error in P(Q) is given by

(@) = E"(Q)E*(Q) + Tr[V(Q)] (7.12)

where Tr[V(Q)] is the trace of V(Q). It has proved that there exists 2 @ > 0
(typically 10~* ¢o 1) such that the errors in P(Q), £(Q), are minimized.
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It can be shown that the ridge analysis solutions are the linear combinations of

the ordinary solutions P,(@):

P*(Q) = [W(Q)YW(Q) + oI [W(Q)W(Q)IPo(Q) = Z(Q)Po(Q)  (7.13)

With ill-conditioned data, off-diagonal elements of Z(Q) are found not negligilbe.
This means that the ridge analysis solutions P*(Q) are the linear combinations of
P,(Q). Since the ridge regression results are biased estimate of the true partial

structure factors, is it necessary to renormalize the matrix Y(Q), such that

Q) = i}%%)@ (7.14)

This renormalization is equivalent to the physical constraint that 5;;(Q) — 1as Q —

oo [35]. The solution of equation 7.8 is finally given by

PY(Q) =YY (Q)T(Q) (7.15)

and the 1ncertainty in the partial structure factor vector P(Q) can be estimated by:

AP(Q) =" IY*(Q)Y™(Q)] (7.16)

The ridge analysis has been used by Wagner and his coworker to evaluate the
partial structure factors of metallic glasses [35,111]. In practice, it is desirable
to examine the ridge solution for a range of admissible values of a with physical
constraints and additional experimental data. The computer program using the
ridge analysis to evaluate the Faber-Ziman partial structure factors in this work is

available from the auther on request.



Appendix B

Feasibility study using anomalous x-ray scattering.

Anomalous x-ray scattering experiments were performed at the F3 beam station -
of Cornell High Energy Synchrotron Source (CHESS) Laboratory, Ithaca, New York,
U. S. A. The experimental arrangement is shown in figure B1. The intense white
radiation from the storage ring was monochromatized by a pair of Si(111) single
crystals. The intrinsic bandpass of this monochromator assembly is AE/E = 1.3 x
10~*. The curvature of the reflection planes of these crystals can be changed so
that the incident beam energy can be adjusted. A Zr-foil was used to calibrate the

primary beam energy. The foil was 25um thick and the absorption edge is
Ex = 17.998keV

An ica chamber was placed after the source slit to monifor the incident beam in-
tensity.

The samples were the same as those used for the 28 scanning x-ray diffraction
experiments. They were mounted on a Huber four axis diffractometer. The w and
20 goniometers were aligned using a pin mounted at the center of the diffractometer.
The experiments were performed in symmetrical transmission geometry. As shown
in figure 7, the transmittance of the sample was recorded using an ion chamber at
26 = 0° while the scattering intensity was measured with a phototube, scintillation

detector.
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The experiments were carried out at at several energies around the K-absorption
edge of Zr. The energies were 17.45, 17.50, 17.675, 17.80, 17.90, 17.95, 17.975,
17.99, and 18.00keV. The software used to collect the diffraction data was similar
to that used in the conventional x-ray diffraction experiments. For 5° < 28 < 60°,
a stepwidth of 0.2° was used, for 60° < 28 < 120°, a stepwidth of 2.0° was used.
Since the storage ring is filled at about 60 minute intervals, each measurement
(5° < 26 < 120°) was done in about 50 min.

The data reduction for the anomalous x-ray scattering experiments is similar to
that for the conventional x-ray diffraction measurements (see chapter 2). The total
structure factor of Nig33Zr¢.¢7 Was obtained for several energies around the K-edge

of zirconium. However, these results were not used in this research for two reasons:

1. The subtraction of the Compton scattering intensity C(Q) from the raw data
Is, often causes large uncertainties because, at large values of Q, C(Q) can
be as high or higher than the coherent scattering intensity. As shown in figure
4.3, C(Q) can be effectively eliminated by a diffracted beamn monochromator.
However, because of the space limit inside the F3 hut at CHESS, we could not

use an analyzer crystal in the diffracted beam 3;

2. The incident beam fluctuates because of the natural decay of the current in
the storage ring. Although an electronic feedback system was used to com-
pensate the ring current fluctuation, the measured intensity curves were not

reproducible.

The motivation of performing the anomalous x-ray diffraction experiments is to

obtain reliable partial structure factors independent of the evaluations using x-ray

3The 20 axis is horisontal. When an analyser crystal was mounted in the diffracted beam, the
. position of the detector was limited to 28 < 50° before the 28 arm kit the ceiling.
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isomorphous substitution or combinations of x-ray and neutron diffraction. Unfor-
tunately, this could not be realized in this work. Nevertheless, it was worthwhile
learning about the anomalous x-ray scattering technique. With x-rays of 17.5keV
and 17.95 keV, one could obtain the total structure factors with a contrast as high as
20%. It is believed that, given more beam time, one could overcome the present ex-
perimental difficulties and obtain accurate partial structure factors of Ni-Zr glasses

from the anomalous x-ray scattering measurements.
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