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Abstract

This thesis presents a structural study of Ni-Zr metallic glasses. It is the first

time that a careful complete and systematic investigation into the structure of a

glassy metallic system has been carried out. The results have improved our un­

derstanding of the structure of metallic glasses and clarified confusion in previous

studies. The total structure factors of melt-spun and sputtered amorphous Ni",Zrl_""

0.25 ~ :t: ~ 0.86, were obta.ined with an accuracy of 1-4%. Accurate partial structure

factors of Nio.33Zro.61 and Nio.61Zro.33 were obta.ined using x-ray and neutron diffrac­

tion while those of Nio.33Zro.61 were also obta.ined independently using isomorphous

substitution. The results confirmed the reliability of the isomorphous substitution

method for Ni-Zr glasses. We have found a strong correlation between the local

atornic structure and the electron transport properties of Ni-Zr glasses. No structural

difference between melt-spun and sputtered Ni-Zr glasses was found. Our results

show that the Faber-Ziman partial structure factors of Ni-Zr glasses is strongly com­

position dependent. The local topological o:àer in a.morphous Nio.33Zro.61 is found

to be quite similar to that in the BCT NiZr2 compound whereas a discrepancy in the

structure is found between a.morphous Nio.61Zro.33 and the FCC Ni2Zr compound.

Our results have also shown that the Ni-Zr glasses are an a.1most random mixture

of Ni and Zr atoms and that there is no correlation between the pre-peak in the

neutron structure factor and the chernical short-range order in the metallic glass.
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Résumé

Cette thèse présente une étude structurale des verres métalliques de Ni-Zr. Pour

la première fois, une investigation soignée, complète et systématique de la struc­

ture d'un système de verre métallique a été accomplie. Ces résultats ont amélioré

notre compréhension de la structure des verres métalliques et clarifiés la confusion

existant da.!ls les études précédentes. Les facteurs de structure totaux des système"

de NizZrl_z, 0.25 ::s z ::s 0.86, péparés par "melt-spinning" ou par grésillement,

ont été obtenus avec une précision de 1-4%. Des facteurs de structure partiels

précis du Nio.33Zro.67 et du Nio.67Zro.33 ont été obtenus par diffusion des rayons-x

et par diffusion de neutrons alors que ceux du Nio.33Zro.67 ont été aussi obtenus

indépendamment par substitution isomorphe. Les résultats confirment la sûreté de

la méthode de substitution isomorphe pour les verres de Ni-Zr. Nous avons trouvé

une forte corrélation entre la structure atomique locale et les propriétés de trans­

port électroniques des verres de Ni-Zr. Aucune différence structurale entre les verres

préparés par "melt-spinning" et par grésillement n'a été découverte. Nos résultats

montrent que le facteur de structure partiel de Faber-Ziman des verres de Ni-Zr

dépend directement de la composition. L'ordre topologique local du Nio.33Zro.67

amorphe est très similaire à celui que l'on trouve dans le composé tétragonal centré

de NiZr2 ~andis qu'une discordance est trouvé entre le Nio.67Zro.33 amorphe et le

composé cubique à face centrée de Ni2Zr. Nos résultats ont montré que les verres

de Ni-Zr sont presque des mélanges aléatoires d'atomes de Ni et de Zn et qu'il n'y a

aucune corrélation entre le pré-pic dans le facteur de structure obtenu par diffusion

de neutrons et l'ordre chimique à courte portée dans le verre métallique.
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Chapter 1

Introduction

Metallic glasses are alloys in which the atoms show no long range order. They are

also called amorphous alloys or non-crystalline alloys. The first report in which

amorphous alloys were claimed to have been made was by Kramer [1,2J. These al­

loys were made by vapor deposition. Brenner et al. [3] later claimed to have made

amorphous NiP alloys by electrodeposition. In 1960, Duwcz et al. discovered a

method of preparing amorphous alloys by dired quenching from the melt [4]. The

solidification occurs so rapid1:l' that the atoms are frozen in their liquid configu­

ration. As schematicallj· shown in figure 1.1, in both the liquid and amorphous

state, the atoms are randomly distributed in a nearly close-packed structure, and

the mean free path is short and comparable to the atomic size. This means that the

positional correlation of atoms is relatively strong within the near-neighbor region.

Unique mechanical, corrosion, electrical and magnetic beha,-ior results from this

short-range order structure [5J. For example, the electrical resistivities of these ma·

terials are three or four times higher than those of conventional polycrystalline iron

or iron-nickel alloys; the materials can be exceptionally hard and have extremely

high tensile strengths; 50me amorphous alloys are exceptionally corrosion resistant

while others behave as very soft magnetic materials. These properties individually

1
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and in combination have stimulated wide scientific and technological interest.

ln physics, amorphous solids can be thought of as a new state of matter, comple-

mentary to the traditional gas, liquid, and crysta.lline solid states. Although interest

in amorphous solids has increased considerably in recent years, due to their tech-

nological significance, the amorphous solid state is still very much less understood

at a microscopie level than the crysta.lline solid state. The lack of periodicity and

long range <'rder in an amorphous solid means that there is no simple structural

formalism which can be used in the calculation of microscopie properties. How­

ever, for a completely random system, the microstructure can be described by a one

dimensional probability function, ca.lled the atomic pOo" distribution function,

g(r) = p(r)
po

(1.1)

•

where p(r) is the atomic correlation function and Po is the average number density.

Therefore, g(r) shows the deviation from the average number density. One cao not

directly measure the g(r) function, bu~ its Fourier transform, the structure factor,

can be measured through x-ray, neutron, or electron diffraction experiments.

As with crysta.lline solids, the major structural probes for non-crysta.lline mate­

rials are x-ray and neutron diffraction. The deta.iled relation between the diffraction

data and the structure of non-crysta.lline systems has been previously discussed in

the literature [7-10J. The diffraction intensity 1(8) reveals the interference effects

between the radiation scattered by different atoms in the material. By normalizing

1(8) to the intra-atornic scattering intensity, < P >, a dimensionless quantity S(Q)



•
Chapter 1. Introduction 3

Gas
~

ri ~ 1 i----r-----

O~-'----,
(a)

Gas

OL-----
Q

(A)

Liquid

Q
(B)

Amorphous

o L-=::: _

o 1.«:.. _

Amorphous

'1 '
(b)

o '---.l.l- _

O'-/J---__

Liquid
2 - f\

.:. J 1--+:\-\-,~,,~
.. V

y
,... )...y )...y )...

~~~,J-;qr~y~l-l?6"l'-q.j.(~~~ _
-.::: ""'l:

Crystal

(B') Q

Crystal

Q
(C)

Figure 1.1: Schematic diagram of atomic distribution, pair distributionfunction g(r)
and structure factor S(Q) in the gas, liquid, amorphous, and crystal states (Taken
from reference [6]) .
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is obtained 1

S(Q) = 1(0)
<J2>

4

(1.2)

where, Q = 47rsinO/>', is the momentum transfer associated with the scattering

angle 20. S(Q) is called the "structure factor". Because the division by < F >, the

structure factor is determined entirely by the microscopie structure, independent of

the type of atoms in the material. The structure factor is related to the atomic pair

distribution function g(r) through the following Fourier transform:

S(Q) = 1 + po f'[g(r) - l]ezp( -iQr)dr (1.3)

Figure 1.1 shows schematically the structure factor S(Q) anc:! the atomic pair distri­

bution function g(r) for agas, liquid, and amorphous and crystalline ~olids. For a

multi-component system, this method of normalization results in th.. "total structure

factor", which is the summation of the "partial structure factors", Si.i(Q)

S(Q) = LWiiSii(Q)
i.j

(1.4)

where both i and j summations are taken over atom types, and the weighting factors

can be expressed as functions of atomic concentrations, Ci and ci, and the atomic

form factors, fi and /;:

(1.5)

•

It has become recognized that one of the most important quantities characterizing a

non-crystalline material are the partial structure factors. Their Fourier transforms

result in the partial atomic pair distribution functions, gii(r). Therefore, A accurate

1For simpücity, the definition due to Asheroft a.nd La.ngreth [11) is used here. Throughout this
work, howcver, two other definitions of the structure !actor &le used, one is due to Fa.ber and
Zima.n [12), a.nd the other due to Bhatia a.nd Thornton [13). For multi-component systems, these
threc formalisms give different sets of partial structure factors which ca.n be mutual!y tra.nsformed
by ünear relations.
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•

knowledge of the partial structure factors is essential for a quantitative understand­

ing of not only the structure, but also various other properties of non-crystalline

solids.

Recent advances in both diffraction theory and experimental techniques allow

a complete structural determination of non-crystalline solids in tenl1s of structure

factors [14,15). In addition to conventional x-ray and neutron diffraction, other rel­

atively new techniques have been used, such as anomalous x-ray scattering, time-o!­

flight (TOF) pulsed neutron scattering, neutron isotopic substitution, x-ray isomor­

phous substitution, and finally, extended x-ray absorption fine structure (EXAFS).

Almost all amorphous materials are multi-component systems. According to equa­

tion 1.2, the structure of a binary system is characterized by three partial structure

factors: two like atom pairs, Sii(Q) and Sjj(Q); and one unlike atom pair, Sij(Q). A

complete structural study of these materials involves the determination of three par­

tial structure factors. In order to determine these partial structure factors, at least

three independent diffraction experiments must be carried out so that the weighting

factors given by equation 1.5 can be changed independently. The following experi­

mental methods permit us to vary the scattering amplitude f; without affecting the

structure:

1. X-ray anomalous dispersion of the scattering amplitude [16-19J: Close to the

absorption edge of an element, the scattering amplitude is significantly changed

due to resonance effects;

2. Isomorphous substitution [20): One or both elements are partially or totally

replaced by physically and chemically sirnilar e1ements in the specimen;

3. Isotopic substitution [21-24]: In neutron diffraction experiments, the scatter-
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ing length of an element can be changed by using the appropriate isotopes;

6

•

4. Polarized neutrons: In ferromagnetic alloys, polarized neutrons will interact

with the magnetic moments of the atomsj

5. Three radiation experiments [25]: The scattering amplitudes are different for

x-ray, neutron, and electron diffraction.

In addition to the above methods, another method which is referred to as the con­

centration technique has been used to eva1uate the partial structure factors for some

binary systems. The basic assumption of this method is that the partial struc­

ture factors are independent of alloy composition, so that the weighting factors

in equation 1.5 can be varied by changing the concentration of the alloying con­

stituents. This method was first used by Halder and Wagner [26] in the study of

Ag-Sn alloys. lt gives useful information on the partial structure factors for some

systems. However, in principle, the partial structure factors are functions of the

alloy's composition, and the basic assumption of composition independence of the

partial structure factors is not satisfied as will be shown explicitly in this thesis.

The first attempt to separate the partial structure factors of a binary non­

crystalline system was made by Enderby et al. in 1966 [21] using isotope sub·

stitution. Waseda et al. then eva1uated the partial structure factors of liquid Ni-Si

using anomalous x-ray scattering, which was suggested by Ramesh and Ramaseshan

in 1971 [19]. O'Leary was the first one to eva1uate the partial structure factors of a

metallic glass, TbFe2' using the total structure factors by two different investigators

[27J. Since then numerous authors have studied the partial structure factors for a

variety of metallic glasses: metal-metalloid (e.g. Fe-B), simple metal-metal (e.g.

Mg-Zn), transition metal-transition metal (e.g. Ni-Zr). The experimental methods



applied in these previous studies are summerized in Table 1.1.

In principle, three independent experiments a.1low a complete eva1uation of the

partia.! structure factors for a binary system. However, a reliable eva1uation of the

partia.! structure factors depends on, the reliabilitJ" of the origina.! tota.! structure

factors, and the contrast among the tota.! structure factor measurements.

Accurate eva1uation of the tota.! structure factors is the first step in obtaining

reliable partia.! structure factors. In the last two decades, tota.! structure factors

have been studied for numerous amorphous materia.!s. While we may not know the

true structure factor of the materia.!, we do know that the experimenta.! structures

factors are suspicious if there are considerable differences between va.rious experi­

menta.! determinations on the same materia.!. In 1982, K. Dint et al. [46J made

a compa.rison of the previous sh'uctura.! studies on Fe-B meta.llic glasses. They

found significant disagreement between two independent but nomina.1ly similar x­

ray diffraction measurements: the genera.! form of the two x-ray tota.! structure

factor curves was different. These differences in the structure factors which arose

due to the errors and uncertainties in the experimenta.! methods and data ana.!ysis,

were shown to have considerable effects in the subsequent structura.! determinations.

It was suggested that these disagreements in the structure factors were hindering a

more complete understanding of the properties of meta.llic glasses. Unfortuna.tely,

their eomments did not receive too much attention. Later studies on similar systems

seem to tota.1ly ignore the previous discussion on the reliability of the experimenta.!

data and no further systema.tic structura.! study on Fe-B meta.llic glasses has been

reporled. In 1989, a careful survey made in reference [47J again revea.!s significant

discrepancies in the tota.! structure factors (as much as 30% at low Q) obtained from

independent studies on the same system. Since most of the authors do not display

•

•

Chapter 1. Introduction 7
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Table 1.1: Partial structure factor studies of metallic glasses.

Reference
[27J (1975)

[17] (1976)

[28] (1976)
[29J (1978)
[30] (1980)

[31] (1981)

[32] (1981)

[33] (1981)

[34] (1982)

[35] (1984)

[36] (1984)

[37] (1985)

[38] (1985)

[39] (1985)

[40] (1986)
[41] (1986)
[42J (1987)

[43] (1988)
[44] (1991)

[45] (1992)

Method
Nuclear and magnetic neutron diffraction of TbFe2 +
x-ray diffraction of GdFe2'
X-ray anomalous scattering using Mo-, Cu-, and Co-Ka
radiation.
X-ray nuclear and magnetic neutron scatteriIlg.
Neutron isotope substitution using the isotopes of Cu.
X-ray and neutron diffraction assuming the number­
concentration correlation to be negligible.
x = 82 & 64, x-ray and neutron diffraction assuming
Sss - O.
X-ray isomorphous substitution with Al assuming SGaGa

to be negligible.
X-ray diffraction and neutron diffraction using nat.Ni
and 5sNi.
X-ray and neutron scattering assuming the number­
concentration correlation = hard sphere calculation.
Isomorphous sub5titution of Zr by Hf in x-ray diffraction
and Ni by Co in neutron diffraction.
Neutron isotope substitution using nat.Ni, 58Ni, and
6llNi.
Variation of the Fe composition + isomorphous substi­
tution cf Zr with Hf.
Neutron isotope substitution using nat.Ni, 58Ni, and
6llNi.
X-ray and neutron diffraction assuming the number­
concentration correlation = hard sphere calculation.
Isomorphous substitution with 5, 25, 54% of Hf.
X-ray and neutron diffraction assuming SSiSi = O.
X-ray and neutron diffraction assuming the number­
concentration correlation to be negligible.
X-ray anomalous scattering (synchrotron source).
X-ray anomalous scattering using W-Lal, Au-La2, and
Mo-Kal
TOF neutron scattering using 58Ni, 6llNi, and °Ni.

Alloy

COS1 P19

CU51Zr43
CU35Ti65

Ni33Y61

Be43Zr51
Tis4Si16
Co25 Ti15

• Recent structura! studies on Ni-Zr amorphous aIIoys sre summerized in Tsble 1.2.•
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either the experimental raw data, or give the details of thei, data reduction, it is

rather difficult to trace the origin of these large discrepaucies. However, one cau

certainly conc1ude that the uncertainties in these total structure factors Me about

the level of these discrepaneies.

As discussed in reference [48J, in determining partial structure factors, the errors

in the total structure factors cau be greatly a.mplified when there is little contrast

among the measurements. Unfortunately, the changes in the weighting factors, Wij,

by any of the methods listed on page 5 are usually relatively small. For neutron

scattering, some favorable ca.ses exist when one of the aIloying elements has an

isotope of negative scattering length (e.g. 7Li, not-Ti, not-Mn, and .2Ni). But this

isotope-enrichment technique is not an easy method and at the present time the cost

of isotopes is usually prohibitive. Therefore, the low contrast of weighting factors

is a major problem in the determination of reliable partial structure factors. In

addition to the errors which are propagated from the total structure factors, large

uncertainties may arise from the various approximations which are made during the

data reduction. For exa.mple, when the changes in the weighting factors are too

small to yield physically meaningful functions, frequently, only two of the partial

structure factors are approximately determined (see Table 1.1). There is usually no

direct evidence to support these assumptions, and the uncertainties due to these

approximations are not discussed. In many cases, if three of the partial structure

factors were derived, the eva1uation procedures are not discussed even though the

three linear equations are obviously ill-conditioned.

As a consequence, large discrepancies are found a.mong the studies on the sa.me

system by different authors. For example, as shown in Table 1.2, many structural

studies have been made on amorphous Ni-Zr aIloys by different investigators [35,49-
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Ta.ble 1.2: Interatomic distances and partial coordination numbers of melt.spun Ni·

Zr glasses.

NizZrlOO_z Ni-Ni Ni-Zr Zr-Ni Zr-Zr

'" r (À) N r (À) N r (À) N r (À) N Reference
24.1 2.70 14.5 2.70 4.6 3.16 8.4 [49]
24.1 2.62 2.35 2.62 0.84 3.17 9.66 [50]

25.0 < 1.3 2.76 12.6 2.76 4.2 3.23 11.0 [51]
25.0 2.63 1.8 2.66 8.6 2.66 2.8 3.16 10.9 [52]

33.3 2.70 8.3 2.70 4.2 3.16 10.6 [49]
33.3 2.62 2.39 2.62 1.43 3.18 10.1 [50]

35.0 2.66 2.3 2.69 5.4 2.69 2.9 3.15 9.0 [35]
35.0 2.66 2.3 2.69 7.9 2.69 4.3 3.15 9.1 [53]

36.0 2.45 3.3 2.85 8.56 2.85 4.81 3.30 11.0 [54]

36.5 2.70 9.6 2.70 5.6 3.16 8.6 [49]
36.5 2.62 2.44 2.63 1.56 3.20 8.91 [50J

50.0 2.63 3.3 2.13 6.7 3.32 7.8 [55]

63.7 2.52 6.0 2.67 5.0 3.28 5.8 [56]
63.7 2.63 6.4 2.70 5.3 3.28 6.6 [57]'
64.0 2.52 6.0 2.66 5.0 3.26 5.0 [58J

• Reference [57} Ï8 entitled "Anomalous wide angle z-roy scattering of amorphou, Ni.Zr alloy·, but
in the tezt it ,aid that the ,ample was Cl piece of ribbon used in reference [56} which i.s Nie•.1Z,..•.•.
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53,55J, but the results for the most important structural parameters such as the

interatomic distances and the coordination numbers 2. are inconsistent. The same

situation is also found in the studies of other amorphous a1loys [48,59]. These

conflicting results can be misleading to theoretical mode!ing and the calculations

of various properties of these materials.

As a matter offact, when the partial structure factors of a non-crystalline system

were evaluated for the first time, J. E. Enderby et al. [21] found tha!., in addition

to the three neutron diffraction measurements with isotope substitutions, a fourth

meas'.lrement using x-ray diffraction was most valuable because it provided neces-

sary constraints to the ill-conditioned !inear equations from the neutron diffraction

experiments. They concluded that although theoretica1ly only three scattering mea-

sUIements are required, the difliculties of calibration and the general uncertainties

with the total structure factors make it important that the weighting factors of the

different measurements be widely spaced 3; otherwise at least four experiments are

required. Indeed, since the low contrast among the measurements means lack of

information, the ooly solution is to make systematic and mathematica1ly redundant

measurements. Unfortunate1y, this critical advice has not been widely followed. As

a consequence, large uncertainties and discrepancies are found in experimenta1ly

determiued structu!e factors.

Strongly motivated by the above discussion, a careful and comprehensive struc-

tUIal study on Ni-Zr metallic glasses is reported in this work. The amorphous Ni-Zr

2These structural pa.rameters are evaluated from the partial atomic distribution functions, which
are the Fourier tra.nsforms of the corresponding partial struclure f""tors (See chapter 2 for the
details). Extended x-ray absorption fine structure ca.n also provide this structural information.

'Note that in their worll:, the scattering length was changcd by about 60%, while that of many
later studies is only 10-20%
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system was chosen for tbis research for the following reasons:

12

•

1. An assortment of experimental methods are available for evaluating the partial

structure factors of this particular system, they are:

• Zr has an ideal isomorphous substituent, Hf. Previous studies on varions

properties of Ni-Zr and Ni-Hf alloys indicate that Hfis v~ry physically and

chemically similar to Zr [60,61]. Therefore, partially or totally replacing

Zr by Hf will probably change the scattering amplitude without affecting

the structure of the alloy;

• Ni has seo:eral isotops and one of them has a negative neutron scattering

length. Different combinations of the Ni isotope~ r.an be used to vary

the neutron scattering amplitudes with no change to the structure. One

can even obtain one of the partial structure factors directly from a single

experiment with the zero alloy·.

• The anomalous scattering method can be applied at the K-absorption

edges of both Ni and Zr, especially, at the k-edge of Zr, the scattering

length changes about 20% and the maximum value of Q can be as high

as 16 1-1•

2. Ni-Zr is an easy glass forming system, therefore, studies of the e1ectron trans-

port properties [62,63], the variation of the superconducting transition tem­

perature [63,64], magnetic susceptibility [63,65], and the crysta.llization tem­

perature [66-69] have becn carried out systematically. Interpretation of these

·With a.n isotope whieh has a negative scattering length, .ero seaUering length can result from
appropriate combination of the isotopes 50 that two of the thr.. weighting factors become .ero.
5ueh a al10y made especial1y for a neutron diffraction experiment is calIed a zero al/ay•
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experimental results would be greatly aided by an accurate knowledge of the

partial structure factors.

3. Thecr~tical modeling of the amorphous Ni-Zr system has made substantial

progress in recent years [70-73J. Comparison between the models and ex­

periment plays an important role in improving these models, and therefore,

accurate and systematic experimental studks of the structure of amorphous

Ni-Zr alloys are required.

4. Several structura! studies have been done on amorphous Ni-Zr alloys since

1982. However, as shown in Table 1.2, large discrepancies erist among the

results obtained by different authors. Further experimenta! study is required

to clarify the confusion in the previous studies and complete our understanding

of the structure of this system.

5. Amorphous Ni-Zr alloys can be produced in a wide composition range, from

NisoZr2o to Ni2oZrso. However, as Table 1.2 shows, the structura! studies have

concentrated only on the Zr-rich alloys. It has been found that various othcr

properties of these materia1s are composition dependent. Therefore, it is of

interest to study the structure factors as a function of composition;

This thesis presents the results of a careful and systematic structura! study on

the a.morphous Ni-Zr system. It aims to improve our understanding of the structure

of these important meta1lic glasses and clarify the confusion in the previous studies.

Amorphous ribbons of Ni.,(Zr~Hf,_~h_." x = 0.3, 0.33, 0.4, 0.45, 0.5, 0.6, 0.67 and

y = l, 0.9, 0.8, 0.6, 0.3, 0.15 0.0, were prepared using the melt-spinning technique.

Amorphous films of Ni.,Zr,_." x = 0.31, 0.36, 0.46, 0.53, 0.66, 0.75, 0.86, were pre­

pared using the DC magnetron sputtering technique. X-ray and neutron diffraction
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experiments were performed to obtain the total structure factors. A comparison

between the structures of melt-spun and sputtered Ni-Zr glasses is maC:;~ in terms of

the structure factor, S(Q), and the atomic pair distribution function, g(r), over a

wide range of composition. The partial structure factors of a.morphous Nio.33Zro.67

and Nio.67Zro.33 are evaluated, and the reliaElity of these partial structure factors

is discussed. The compositional depel'.den<'e of the Faber-Ziman partial structure

factors is then examined. The chemical50ort.range order in a.morphous Ni-Zr alloys

is discussed in terms of the Bhatia-Thornton partial structure factors.

A feasibility study using anomalous x-ray scattering was undertaken. The results

were somewhat disappointing. However refinement of our measuring technique as

described in Appendix B would make this a useful too! for partial structure factor

determination.
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Theoretical background

In non-crystalline materials, there is no overall regularity, such as the lattice struc-

ture found in crystalline solids. Instead, the atoms are randomly positioned in space.

Their microstructure can therefore be described with a one-dimensional probability

function, the atomic pair distribution function, g(r). One can not directly observe

the real space structure of these materials, but the Fourier transform of the atomic

pair distribution function, the structure factor, can be obtained from diffraction ex-

periments. In this chapter, the relation between diffraction data and the distribution

function is brielly described. Detailed descriptions can be found in the Iiterature

[7-10J.

2.1 Description of the structure ofnon-crystalline
systems

For a system with an average number density po = NIV, the atomic pair distribution

•

function is defined as [6J

g(r) = p(r)
po

15

(2.1)



where p(r) ;s the local atomic number density. Because the position corrdation

of atoms weakens with increasing distance, p(r) gradually approaches the average

number density Po at large values of r. This characteristic means that

•
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Iim g(r) =1'_00

16

(2.2)

On the other hand, due to the repulsion in the pair potential, the atoms do not

mutually approach within the atomic core diameter. Therefore,

Iimg(r) = 0._0 (2.3)

Basically, the atomic pair distribution function g(r) shows the deviation from the

average number density po.

The information given by g(r) is oo1y one-dimensional, but it does give quantita­

tive information about the non-crystalline system. For a multi-component system,

the relatively low information content of g(r) can be considerably enchanced if the

partial distribution functions, gi;(r), where i and j index the various types of atoms,

can be obtained.

Instead of the pair distribution function g(r), another function called the "ra­

dial distribution function" (RDF) is also frequently used in the discussion of non­

crystalline materials. The RDF(r) is defined as:

(2.4)

•

It corresponds to the number of atoms in the spherical shell between r and r + dr.

As the pair distribution funetion approaches unitY at large value of r, the radial

distribution function becomes close to the parabolic function 41l"r2po. Figure 1.1

shows schematic diagrams for g(r) and RDF(r). By definition, the average number
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0'------'---------
r
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•

r

Figure 2.1: Schematic diagram of the atomic pair distribution funetion g(r) and the
radial distribution funetion RDF(r) .



of atoms in a shell between rl and r2 can be estimated from the area under the•
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radial distribution function in the region between rl and r2:

l" l"N = 47rr2pog(r)dr = RDF(r)dr
~1 ~1

18

(2.5)

•

N is called the "coordination number". In particular, the coordination number of

nearest-neighbor atoms, Nt> can be obtained from the area under the first peak of

RDF. The quantity N1 has been frequent1y used to characterize a non-crystalline

system.

2.2 Relations between the distribution function
and the diffraction experiments

X-rays, neutrons, and e1ectrons have been widely used to determine the structure of

matter. In particular, x-ray diffraction is the most popular and the most important

method in the structural analysis of crystalline and non-crystalline materials. An x-

ray diffractometer is Iike a Fourier transform device. It records the Fourier spectrum

of the real space distribution of the atoms in the material as will now be shown.

Consider a system of randomly positioned atoms, let rk represent the instanta­

neous position of atom k, Qo and Q' represent the incident and scattered x-rays 1,

the coherent scattering intensity in e1ectron units is then given by

Icoh(Q) = L f;(Q)e-i(Q'-Qo)rj LMQ)e-i(Q'-Qo)rk = L L/;(Q)!k(Q)e-iQ(rj-r. ,

j k j k

(2.6)

Define the angle between the vectors Qo and Q' as 211 2 and let Q = Q' - Qo, one

obtains the re1ation

lThe discussion also applies to both thermal neutrons and e1ectrons.
229 is usually ealIed the &cattering angle•
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Q = IQ' - Qol = ~ sinB

19

(2.7)

where ). is the wavelength of the x-rays. Since each vector rjk = rj - rk takes ail

orientations, the average for each exponential term in equation 2.6 is given by

< e-iQrj' >=~ f" e-iQ'j,eo.4>27rr;ksintPdtP = sinQrjk (2.8)
47rrjk J4>=o Qrjk

Thus one can re-write the coherent scattering intensity in the fo~m

Ieoh(Q) = EEf;(Q)fk(Q)si~Qrjk
i k rjk

Equation 2.9 is often called the "Debye scattering equation" [9,74].

2.2.1 One-component systems

(2.9)

(2.11)

(2.12)•

For a one-component system of N atoms, the Debye scattering equation reduces to

the form

Ieoh (Q) = l(Q) E E sinQrjk (2.10)
j k Qrik

Since in performing the summation of equation 2.10 each atom in turn becomes the

origin atom, there are then N terms due to the interaction of each atom with itself.

Rence equation 2.10 may be written

Ieoh(Q) =Nf%(Q)(1 +E sinQrik )
j# Qrik

As discussed in the preceding section, the probability of finding another atom at

a distance r from an origin atom is expressed by the function p(r). Using this

function the distribution of atoms about any reference atom may now be regarded

as a continuous function, and hence the summation can be replaced by an integral

% 1"" sinQrIcoh(Q) = Nf (Q)[1 + 0 47rr%p(r) Qr dr]
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According to equation 2.1,

p(r) = p.g(r)

20

(2.13)

where g(r) is the atomic pair distribution function. Since for large values of r,

g(r) -t 1, one can re-write the above equation in the form

p(r) = po[g(r) - 1] + Po

Substitute equation 2.14 into equation 2.12,

(2.14)

The second integral of equation 2.15 is the central scattering, which has physical

significance only at extremely sma.ll angles. This term is frequently neglected in

praetical calculations.

Let I;'oh(Q) represents the coherent scattering intensity per atom:

The "structure factor", S(Q), is defined as [75J

S(Q) = I;'oh(Q)
J2(Q)

(2.16)

(2.17)

Following equations 2.15 and 2.16, the structure factor is related to the atomic pair

distribution function by

By means of the Fourier integral theorem, this expression can be transformed to

•

("" sinQr
S(Q) = 1+ Jo 47rr2po[g(r) -1] Qr dr

1 (""
rpo[g(r) -1] = 21l'2 Jo Q[S(Q) -1]sinQrdQ

(2.18)

(2.19)
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or

2r l ce
RDF(r) = 41rr2p(r) =4n2po +- Q[S(Q) - l]sinQrdQ

11" 0

21

(2.20)

In summary, equations 2.15 to 2.20 reveal the fa.,t that the expcrimcntal intcnsity

Icoh(Q) is indeed the Fourier transform of the atomic distribution function g(r).

2.2.2 Multi-component systems

For a n-component system, the structure factor derived from a diffraction exper­

iment is composed of ~n(n + 1) partial structure factors. The partial structure

factors are commonly defined using three different formalisms [11-13]. The essential

features of these different partial stft'dure factors and the relations between them

are summerized below.

The Ashcroft-Langreth particl structure factors

In 1967, Ashcroft and Langreth [11] proposed the fol1owing definition for the

partial structure factors of a multi-component non-crystalline system:

S;k(Q) = (N;N.)-1/2 < L L e-iQ(rj-r.) > -(N;N.t1/20Q,o
; . (2.21)

In this definition, the central scattering is exc1uded. Combining equation 2.6 with

equation 2.21, the coherent scattering per atom can he exprcssed as

•

I:oh(Q) = LL(c;CO)1/2f;(Q)f.(Q)S;.(Q)
; .

at large value of Q, the atoms independently scatter x-rays, therefore,

Qli~ I:oh(Q) = ~ 2;J1CQ) =< f2(Q) >
J

(2.22)

(2.23)
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and

Iim Sjk(Q) = Ojk
Q_oc

Thus the Ashcroft-Langreth total structure factor is given by

22

(2.24)

S(Q) = I~Oh(Q) = 2:2)c.c )1/2f;(Q)f·(Q)S' (Q) (2.25)
N<j2(Q» j. J. <J2(Q» J.

The number-density function pj.(r) is introduced to express the number ofj-type

atoms found at a radial distance r from a k-type atom:

(2.26)

where gjk(r) is the partial atomic palr distribution function. gj.(r) is re1ated to the

partial structure factor Sjk(Q) as follows:

(2.27)

The Faber-Ziman partial structure factors

In their work on the e1ectron transport properties of Iiquid binary alloys, Faber

and Ziman used a different expression for the partial structure factors [12]:

I:oh(Q) =< f2(Q) > - < f(Q) >2 +2: 2: Cjcdj(Q)fk(Q)Sjk(Q) (2.28)
j •

where, for a binary system

The term {< P(Q) > - < f(Q) >2} is called the Laue monotonie scattering term.

I~h(Q) approaches < P(Q) > as Q -> 00, therefore,

•

< P(Q) >= cdNQ) + cd;(Q)

Iim Sjk(Q) =1
Q_oc

(2.29)

(2.30)

(2.31)
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The Faber-Ziman total structure factor is then given by

S(Q) =

23

(2.32)

(2.33)

By this definition the total structure factor is normalized to unity at large value of

Q.

The Faber-Ziman partial structure factors are related to the corresponding par­

tial pair distribution function by the following:

and

41l"rpo[gjk(r) -1] = ~JQ[Sjk(Q) - IJsin(Qr)dQ

Bhatia-Thornton partial structure factors

(2.34)

(2.35)

•

In Bhatia-Thornton formalism, the total coherent scattering intensity per ..tom

is expressed by

where Snn(Q), the number-number partial structure factor, represents the number

density fluctuation; S..(Q), the concentration-concentration partial structure factor,

expresses the concentration fluctuation; and the Snc(Q), the number-concentration

partial structure factor, gives the correlation between the nurober density and con­

centration 3. From 2.36 the Bhatia-Thornton total structure factor is obtained:

"The Bhatia-Thornton partial structure fadors were original derived from the Fourier transform
of the loeal number density and concentration lIuctuations. ln the long wavelength limit the
Bhatis-Thornton partial structlUc factors direcUy relate to the thermodynamie porperti.. of a
binary alloy. Waseda has given erlensive discussion on Bhatis-Thornton partial structure factors
and their applications in the study of amorphous materials [76].



S(Q) = 1:""(Q) (2.37)
< f'(Q) >

= < f(Q) >' S (Q) + (ll.f(Q»' S (Q) + 2 < f(Q) > ll.f(Q) S (Q) (238)
< f'(Q) > NN < f'(Q) > cc < f'(Q) > NC .

•
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and

lim S(Q) = 1
0_00

Equations 2.38 and 2.39 suggest the following relations:

24

(2.39)

lim SNN(Q) - 1 (2.40)
0_00

lim Scc(Q) - C1 C2 (2.41)
0_00

lim SNC(Q) - 0 (2.42)
0-00

The Fourier transform of the Bhatia-Thornton partial structure factors give the

corresponding pair correlation functions:

The number-number pair correlation function Pnn(r)

2100

4?l"r[pnn(r) - Pol = - Q[SNN(Q) -l]sinQrdQ
.". 0

The concentration-concentration pair correlation function Pcc(r)

The number-concentration pair correlation function p",,(r)

2100

41l"rp",,(r) = - QSNc(Q)sinQrdQ
.". 0

(2.43)

(2.44)

(2.45)

•

The correlation function Pnn(r) describes the topological short-range order of the

system. The concentration correlation function, pec(r) characterizes the composi-

tion (or chemica.!) short-range order. The quantity p",,(r) expresses the correlation

between density and concentration fluctuation.



• Chapter 2.Theoretica! background 25

The three sets of partial structure factors cau be mutually trausformcd by lin­

ear relations. Each of them may be found supcrior to the other two under certain

circumstances. In principle, both the Ashcroft-Langreth and Faber-Ziman partial

structure factors are functions of the atornic concentration. Howevcr, the Ashcroft-

Langreth formalism is more sensitive to the composition of the system than the

Faber-Ziman formalism because the latter does not explicitly involve the composi­

tion [6]. In some cases, the Bhatia-Thornton partial structure factors are particularly

interesting not only because they directly relate to the thermodynamic properties

of the material, but also because there are several practical advantages in using

these partial structure factors in experimental studies. For example, in a neutron

diffraction experiment, if one of the constituent atoms has an isotope of negative

scattering length, the average scattering length of the alloy can be made zero by

appropriate isotop-enrichment. Such an a.I1oy is ca.l1ed a "zero a.I1oy". According to

equation 2.38, the partial structure factor S",,(Q) of a zero a.I1oy is directly obtained

from normalizing tl:e coherent scattering intensity as:

(2.46)

In this thesis, only Faber-Ziman and Bhatia-Thornton partial structure factors

are used. The !inear transformation between these two sets are given below:

•

SNN(Q) - C~Sn(Q) +C;S22(Q) +2(C1C2)S12(Q)

Scc(Q) = C1C2[1 +clc2(Sn(Q) +S22(Q) - 2Su(Q))]

SNC(Q) - C1C2[Cl(Sn(Q) - S12(Q)) - C2(S22(Q) - S12(Q))]

(2.47)

(2.48)

(2.49)
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The chemical short-range order in metallic
glasses

Since most metallic glasses are alloys, the state of mixing of the aIIoy components

is 8.Jl important parameter characterizing the system. In most =ases, a completely

random mixture is not attained, therefore, the chemical composition around each

type of atoms differs from the average composition. There then exists chemical

short-range order (CSRO) in the system. The CSRO as a function ofradial distance

i. best described with the composition :fluctuation atomic pair correlation function

pcc(r), which can be obtained from the Fourier transform of the Bhatia-Thornton

concentration-concentration structure factor Scc(Q) (see equ. 2.44).

The probability of finding an atom of any type a.t distance r from j-a.tom can be

expressed by

(2.50)

where j = 1 and 2. In term. of P12(r) and pj(r), pcc(r) can be expressed explicitly

by

(2.51)

The generalized Warren-Cowly chemical short-range order parameter 4, a(r) is de-

fined as [14,15]

a(r) = 1 _ P12(r)
C2[c2Pl(r) +clP2(r)]

Equation 2.51 can be then reduced to

(2.52)

(2.53)

•
<The Warren ehemi.aI short-range order parameter w... originally proposed for erystalline sub­

stitution'" solid solutions [9]. This parameler h... becn widely extended la deseribe the loe'"
ehemi.'" short-range arder in disorder materio.ls.



For a completely random mixture, Pl(r) = p:(r) = Po and pu(r) = C.Po, so that

a(r) = 0 and therefore, pcc(r) = o.
The quantity pu(r) represents the probability of finding an unlike atom from

the origin atom, while the term {c:Pl(r) + cIP:(r)} represents that of finding any

type of atom at distance r. Therefore, when a(r) < 0, or

•
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( ) ()
Pl:(r)

C:Pl r +CIP. r <-­
c:
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(2.54)

(2.55)

there exists a preference of unlike atoms, which means that short-range chemical

ordering exists in the system. On the other hand, a(r) > 0 is an indication of

like atoms c1ustering in the system. Note that the sign of pcc(r) goes with that

of a(r). pcc(r) modulates about zero; the minima (negative peaks) correspond to

the distances with preferred unlike atom pairs, whereas maxima (positive peaks)

indicate preference for like atom pairs.

In many cases, only the first peak in pcc(r) is weIl defined. Therefore, a(r) is

frequently reduced to the parameter:

al =1- Nu
c:(c:Nl + c1N:)

where, following equations 2.5 and 2.35,

and

with j = 1 or 2.

Ni = Nil +Ni:

(2.56)

(2.57)

•
It should be noted that Cargill et al. proposed another criterion to characterize

the chemical short-range order in amorphous a1loys [77J. It has been shown previ­

ously [78] that, to a first approximation, the chemical short-range order coefficient
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•

TJj~ defined by Cargill and Spaepen is equal but opposite in sign to the parameter

al'

In this work, the quantity a(r) and the parameter al are used in the discussion

of the chemical short-range order in metallic glasses.
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Chapter 3

Experimedtal Methods

3.1 Sample preparation

Amorphous a.1loys can be made using a variety of techniques. the method of me1t­

spinning has been widely used to produce amorphous ribbons. The narrow ribbons

(about 2mm wide) prepared in this work are convenient for e1ectric transport mea­

surements and neutron diffraction 1; but are not as convenient for x-ray diffraction

measurements which require a large flat-surface area. Thin plates of amorphous al­

loys can be made using magnetron sputtering and they are ideal for x-ray diffraction

experiments. In this work, the Ni-Zr glasses are prepared using both me1t-spinning

and RF magnetron sputtering. For Ni-Zr-Hf a.1loys, only melt-spun ribbons were

prepared because it is difficult to control the composition of a ternary a.1loy during

the sputtering. The composition of the melt-spun ribbons and sputtered films were

examined using an electron microprobe.

3.1.1 Melt-spun amorphous ribbons

Amorphous Niz(Zr.Hf1_.h_z (x = 0.67, 0.64, 0.60, 0.50, 0.40, 0.33 and 0.30; y =
1.0,0.9,0.8, 0.6, 0.3, 0.15) were prepared and characterized as described be1ow.

1A cylinder <an he made oC ligblly pa.cked ribbon.

29
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Small ingots of approximate1y 1 gram were prepared by arc me1ting appropri­

ate amounts of Ni (99.99% pure), 7: (99.95% pure), and Hf (99.99% pure) under

titanium-gettered argon. Each ingot was melted up to six times to ensure homo­

geneity. The weight loss due to the melting was found to be less than 1%. The

amorphous Ni-Zr anf Ni-Zr-Hf ribbons were prepared in a helium atmosphere using

the single roller melt spinning technique. Details of this procedure .:an be found in

references [66,79].

Figure 3.1 is a schematic diagram of the melt-spinning apparatus. A few small

ingots totalling 2 to 3 grams were used for each spin. The voltage applied to the

motor which drives the spinning wheel was about 20 volts, corresponding to a tan­

gential wheel speed of about 30 mlsec. The quartz crucible used in this work has

a re1ative1y large nozzle, diameter ~ 0.7 mm. The crucible can be cleaned with HF

acid and reused. The ribbons were about 2 mm wide, 30 p.m thick, and a few meters

long. The composition of the ribbons was measured using an electron microprobe.

The composition of the ribbons was the same as that of the ingots.

The as-quenched ribbons were determined to be amorphous by taking x-ray

diffraction patterns of each side. Since ribbons of the same composition from dif­

ferent spins may be used together in a diffraction experiment, differential scanning

calorimetry (DSC) analysis was conducted to further characterize the ribbons from

each spin. The crystallization enthalpy can be used as a measure of the disorder in

amorphous materials [68]. A low crystallization enthalpy indicates that some small

crystallites may exist in the material, which are not detected by x-ray diffraction.

In this work, amorphous Ni-Zr-Hf ribbons with the same composition from differ­

ent spins were found to have the same crystallization enthalpy (with a deviation of

~ 5%).
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Figure 3.1: Schema/ic diagram of the melt-spinning appara/us.
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3.1.2 Sputtering amorphous films

32

•

Amorphous Ni-Zr films were prepared by rf sputtering of the targets onto water­

cooled substrates in a triode sputtering apparatus' . To ensure the homogeneity of

the sputtered films, alloy targets were used.

The NizZrl_z (x =0.8,0.7,0.6,0.5,004,0.3,0.2) alloy targets were prepared by

arc melting appropriate amounts of Ni (99.99% pure) and Zr (99.8% pure) under

titanium gettered argon in a copper crucible. The crucible was 38 = in diameter

and 0.5 cm deep. Such an alloy target weighs about 70 grams. Films of the Ni­

Zr alloys were then prepared by RF sputtering of alloy targets onto water-cooled

substrates. The substrate materia! was Si(ll) with a coating of Pd. The coating

was to prevent the Zr from interacting with silicon and is less than 100Âthick, which

is too thin to cause any significant contamination to the Ni-Zr film. Figure 3.2 is

a schematic diagram of the sl'tup inside the sample chamber. Each deposition was

preceded by pumping the sample chamber to a base pressure of 7 - 8 X 10-8 Torr

before introducing the high-purity argon sputtering gas. Pre-sputtering up to 30

min. before each deposition served to clean the target surface and to getter residua!

impurities.

The sputtered films were determined to be amorphous using x-ray diffraction and

differentia! scanning ca!orimetry. The composition of the amorphous Ni-Zr films was

ana!ysed using the electron microprobe. Up to five points across the whole area of

a film were exarnined and the composition was found to be uniform over the film.

However, it was found that the composition of the films systematically differed from

that of the targets. As shown in Table 3.1, the films were nickel rich compared to

the target. This is explained by the fact that nickel has a higher sputtering rate

'Details of tm. procedure ca.n he found in the merature [sa] .
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Figure 3.2: Schematic diagram of the set-up in the RF sputtering sample chamber.
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Table 3.1: Composition of the sputtered Ni-Zr amorphous films.

34

Composition (Ni-Zr at%)
target
film

20-80 30-70
31.3-68.7 35.8-64.2

40-60 50-50 60-40
46.0-54.0 53.0-47.0 66.0-34.0

70-30 80-20
75.3-24.7 86.0-14.0

than zirconium.

3.1.3 Samples for diffraction experiments

The sputtered amorphous films are ideal for x-ray diffraction experiments. A sample

holder, mad<!O of aluminum, consists of two blocks with rectangular (50 x 15mm2 )

openings (see figure 3.3) Wa.> used to mount the films.

e e

•

Figure 3.3: Schematie diagram of the sample holder used in :z:-ray diffraction exper·
iments.

It is more challenging to prepare a fiat surfa.ce with desired area out of the

m<!Olt-spun amorphous ribbons. The as-made ribbons were first cut into pieces 5 cm



long. About twenty pieces of these ribbons were arranged para11e1 to one another

and the ends fixed on an aluminum frame using double sided tape. The ribbons

slightly overlap one another and hence there are no gaps between the pieces. The

homogeneity of these surfaces is examined using the method described in section

3.4.

•
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The neutron diffraction experiments require cylindrical samples. The samples

were prepared using bundles of melt spun Ni-Zr ribbons. The ribbons were cut into

pieces of - 7 cm long. A glass tube 7 mm in diameter was cut to be a bit shorter

than the ribbons. The ribbons were then inserted into the tube and the ends were

left out at one end of the tube. A long piece (- one meter long) of the same kind of

ribbon was used to tie up these ends and to wrap the ribbons tightly. The ribbons

were gently pulled out of the tube while they were wrapped and thus a solid bundle

7 cm long and - 0.7 cm thick was made. The bundles weighed 8 to 10 grams.

3.2 The x-ray diffraction experiments

The conventional x-ray diffractometer used in this research is an automated Nicolet­

StOe L11 powder diffractometer interfaced to an IBM PC. Silver Ka radiation was

used and the x-ray wavelength was 0.56 À. A schematic diagram of the apparatus

is given in figure 3.4.

The radius of the diffractometer is R = 179mm. The width of the source slit is

1.8mm, corresponding to an incident beam equatorial divergence of a = 1.8/179 =

0.6° (see figure 3.5). The detector slit was 0.2mm and the angular acceptance of the

detector was about 0.3°. Soller slits 1imit the axial divergence of the beam ..bout

3°. At the center of the diifractometer, the beam is about 10mm high. The width
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(3.1)

of the bea.m at the sample is given by (see figure 3.5):

W = R x sinasin9
cosacos29

where 29 is the scattering angle. The minimum value of 29 in these experiments was

4°. At this position, the beam at the sanlple has the maximum width: W - 38mm.

Aecordingly, ail the x-ray sa.mples were prepared to be 40mm wide with a height of

15mm which is greater than the bea.m height of 10mm.

Source slit = 1. 81I11I1

/~

_ Sample

•

Figure 3.5: Schematic diagram of the x-ray beam intersecting with the sample.

The detector-analyzer assembly includes a scintillating crystal, a phototube, and

graphite analyser crystal: The angle the analysing crystal makes with the incoming

diffracted beam may be adjusted. The scintillating crystal together with the pho­

totube may be easily rotated about the analysing crystal. When the detector slit

is set properly, the transmittance of the detector·;malyzer assembly is determined

by the band-pass function of the analysing crystal. The band-pass function of the

graphite crystal used in this researeh was measured using a high resolution double

crystal x-ray diffractometer (see section 4.1.1). A single channel analyzer (SCA)

was used to further select the Ka radiation in the diffracted bea.m.
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The 28 scanning method, i.e. the conventional diffractometer technique was used

to study the structure of amorphous Ni-Zr(Hf) alloys. The software used to control

the w and 28 goniometers and to count pulses from the single channel analyzer is

basically the same as that in reference [47]. A multiple scan procedure was used.

Each experiment includes 20 short (45 min.) 28 scans. For low angles (4° :5 28 :5

60°) stepwidths of 0.2° were used, for high angles (60° :5 28 :5 130°) stepwidths of

2° were used. The steptimes were adjusted so that the relative counting statistics

were the same at each angle. The error due to counting statistics is typically ­

0.8% . Including the time taken for the goniometers to move from angle to angle,

each experiment takes about 15 hours. Under the same experimental conditions,

the air scattering was measured with and without the empty sample holder. Since

the samples were prepared larger than the beam size, i.e. the opening of the sample

holder is larger than the beam size, the air scattering results are the same with and

without the sample holder 3.

3.3 Neutron diffraction experiments

The neutron diffraction experiments were performed using the C2 diffractometer

on the DUALSPEC beam station of the NRU reactor at AECL Research, Chalk

River, Canada. Figure 3.6 shows the experimental arrangement. The incident beam

monochromator is a Si single crystal. The refiection plane (511) was chosen to avoid

higher harmonie diffraction from the monochromator. The angle that the Si(511)

'In early experiments with Mo- or Ag-target, a "pre-peak" was found at 28 - 8°. It was
discovered later that this peak was eaused by some uuknown seattering from the right side of the
source .lit assembly and the len side of the goniometer. Therefore, the later experiments were
carried out with a sma1l picce of lead (- 20 x 20mm') shie1ding the right side of the source s1it
assembly, and a large pieee of lead (200 x 60mm') hanging beside the deteetor s1it assembly.
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Figure 3.6: Schematic diagram of the neutron diffractometer.
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planes make with the primary beam was adjusted to select neutrons of wave1ength

0.9..4. Since the spectrum of the primary beam is a Maxwellian distribution with the

maximum at - 1.54..4, the intensity of neutrons having wavelengths shorter than

- 0.9)1 is too low to be practical. The detector used on the C2 diffractometer is

a modern position sensitive detector with 800 independent channels. This detec­

tor counts 80· of diffraction angle simultaneously. Unfortunately, the highest 211

position is only about 110· because of hardware limitations. The exact position

of the detector together with the wavelength of the monochromatized beam were

calibrated using the diffraction pattern of a standard nickel rod.

The samples used in this research were bundles of amorphous Ni-Zr ribbons. The

211-scanning technique was used and the experiments were performed in a multiple

scan manner similar to that for the x-ray diffraction experiments, except that the

detector counted for the same amount of time at each 0.1·. For each short scan

(- 4 hours) the position sensitive detector first covered 211 from 10· to 90· and

then from 30· to 110·. The wide overlap range, 30· ~ 211 ~ 90·, was he1pful in

joining the two sections of data. At each position the detector counted for about 2

hours, co'rresponding to an incident beam monitor number of 108 neutrons. Up to 9

scans were carried out for each sample. The room temperature measurements were

performed in air. Without the sample the air scattering was measured under the

same experimental condition. Measurements were also performed at low tempera­

tures with amorphous ribbons in a vanadium can placed at the center of a cryostat.

These low temperature experiments were not very successful because of the irregular

Bragg refiections from the aluminum walls of the cryostat .
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3.4 Thickness measurements

The x-ray samples used in this research are thin foils. The thickness of the x-ray

samples is an important parameter in the ùata reduetion, therefore, it must be

known accurately. This section describes a method of measuring the thickness and

the thickness uniformity of a thin plate using the x-ray diffraetomc\er.

Usually, when the mass, surface area, and the density of a plate are known its

average thickness can be evaluated according to:

. ma""s
thtckness = ----;--,.,­

arca X density
(3.2)

When the absorption coefficient of the sample is knowll, the uniformity can be

evaluated using the x-ray diffractometer. As shown in figure 3.7, with the deteetor

placed at 29 =O· (an appropriate attenuator must be placed in front of the detector

!), the intensity versus w is measured for the range of w used in a regular 29 scan.

The intensity for such a scan is given by

pt
l(w) = l.exp(--.-)

Stnw
(3.3)

where I" is the ix:.cident beam intensity, Jl and tare, respeetive1y, the linear absorption

coefficient and the thickness of the sample. The above equation can be re-written

as

ln(I) = ln(I.) - Jlt_.
1
_

Stnw
(3.4)

•

Equation 3.4 reveals that, if the sample has a uniform thickness, a plot of In(!) vs.

l/sinw should be a straight line, and the slope of this line is equal to -Jlt. The

primary beam intensity 1. need not be known but must remain constant during the

experiments.
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Figure 3.7: Schematic diagram of the setup used to determine the uniformity of a
fiat plate sample.
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Since the mass absorption coefficient 1-' is proportional to ),3 a monochromatic

incident beam is required. When a conventional x-ray diffractometer, withoul in-

cident beam monochromator, is used a low voltage should be app!ied to the x-ray

tube to reduce the effect of the short wavelength bremsstrahlung tai\.

In this work, a molybdel1um target x-ray tube was used for the thickness mea-

surements and a Zr-filter 100 I-'m thick was placed in front of the source s!it '. The

source and detector s!its were the same as that in a regular diffraction experiment.

The accuracy of the thickness measurement with lhis experimenta! setup was tested

using a standard Fe filter film 151-'m thick. lt resulted in a perfect straighl !ine and

the measured thickness was 15 ± 11-'m. The results for all the x-ray samples made

of melt-spnn ribbons and sputtered films were found to be straight !ines. Figure 3.8

shows a typical result for the x-ray sample made of Nio.33ZrO.67 melt-spun ribbons.

The straight !ine indicates the satisfactory uniformity of the thickness. The slope

was found to be: p.t = 0.416, therefore, the average lhickness of this sampIe is:

iLt
t=-=

1-'

0.416
161.94 = 25.8iLm

•

where 1-' = 161.94 is the !inear absorption coefficient of Nio.33ZrO.67 for Mo-Ka x-rays.

Sirnilar experiments were also performed at the F3 beam station of CHESS. The

monochromatized beam was used and the outgoing beam was measured by an ion

chamber. The results were found to agree with those obtained using the conventiona!

x-ray diffractometer within 1%.

"The x-ray diffraction experiments weIe performed using silver targets , therefore, it would he
beUer to measure the thickness with the sUver tube. Unfortunately, the voltage settinga of the
Nicolet-Sto.: diffractometer are 20kV, 30kV, ... etc. 20kV is too 10w to excite the Ag-Ka radiation
while with 30kV, the short wavelength tai! is too strong and there wu no filter available for the
silver target.
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Figure 3.8: Results of the thicl.:ness measurement for the Nia.33ZrO.67 z·ray sample
made of melt-spun ribbons.
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Chapter 4

Data analysis

As discussed in chapter 2, the experimental structure factor is derived from the

coherent scattering intensity, I.oh ' In general, I.oh is not directly accessible from

the diffraction experiments. A number of corrections have to be applied to the

raw data depending on the radiation and geometry used in the experiment. In this

chapter, the reduction of x-ray diffraction, anomalous x-ray scattering, and neutron

diffraction data to obtain the total structure factors is described in detail. The

procedure for determining the partial structure factors and the partial atornic pair

distribution functions is then discussed.

4.1 Determination of the total structure factors

4.1.1 Reduction of x-ray diffraction data

The x-ray scattering intensity for amorphous systems is measured in arbitrary units.

To obtain the structure factor from the experimental intensity, several corrections

must be applied to the raw data. The observed x-ray scattering intensity may be

expressed as [16J

101>.(20) = NP[AI.oh(Q) +A'I.nc(Q) + I~w(Q)] + Io'r +h (4.1)

45
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where:

46

101>.
N
P
!"oh(Q)
A
I;",,(Q)
A'
Im..z(Q)
1.••
4

=

=

=

the obscrved x-ray intensity in arbitrary units;
the normalization factor;
the polarization factor;
the coherent scattering intensity in electron units;
the absorption correction for coherent scattering;
the incohcrent scattering intensity in e1ectron units;
the absorption correction for incoherent scattering;
the multiple scattering intensity in electron units;
the air scattering intensity;
the background.

As defined by equations 2.28 and 2.33, Icoh(Q) can be expressed as

l coh(Q) =< f(Q? > + (S(Q) -1) < f(Q) >2 (4.2)

(4.4)•

where S(Q) is the Faber-Ziman total structure factor. In terms of S(Q), equation 4.1

can be re-written as

101>.(29) = NP{A[< f(Q)2 > +(S(Q) -1) < f(Q) >2J + A'l.",,(Q) + Im..z(Q)}

+1••• + lb (4.3)

Based on this equation, the Faber-Ziman total structure factor can be derived from

the x-ray diffraction intensity. In the following paragraphs the various quantities in

equation 4.3 are discussed in detail.

The x-rays generated at the target are not polarized but become polarized after

scattering by the sample and the monochromator. The polarization factor depends

on how many times the beam is scattered in an experiment. For the diffraction

geometry used in this work the beam is scattered once at the sample and again at

the analysing crystal, therefore, the polarization factor P is given by [16]

P = 1 + cos(29M )2cos(29)2
2
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The quantity 28M is the scattering angle of the monochromator.

47

The absorption factor A in equation 4.3 is given by (see reference [7J, page SOI

and 360)
A = 1 - exp( -2JLt3in8)

2JLt
(4.5)

where JL is the linear absorption coefficient and t is the sample thickness. The

thickness and the thickness uniformity of ail the x-ray samples were measured using

the method described in section 3.4.

Due to ~he fact that Compton scattering modifies the radiation wavelength,

the absorption factor for incoherent scattering is slightly different from that for

coherent scattering. When the x-ray wavelength is far from the absorption edges, the

absorption coefficient JL is proportiona! to ),3. Therefore, the absorption coefficient

for the incoherent diffracted beam is

(4.6)

where ),' is the wavelength of the incoherently scattered beam [74]:

Thus the quantity A' is given by

A' = 1 - exp[-(JL +JL')t3in8J

(JL +JL')t

The linear absorption coefficient JL of the aIloy can be calculated by

(4.7)

(4.S)

(4.9)

•
where i is the type of atoms in the sample, d is the density of the aIloy, Wi and JL:"

are, respectively, the weight percentage and the mass-absorption coefficient of i type
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atom. Experimental values of the density of Ni-Zr amorphous alloys [63J are shown

in figure 4.1 and have been used in calculating p.. The values of the density is given

by d = (polynominalingraph).

In general the atomic scattering factor, f, can be expressed as

f(Q,E) = f.(Q) + l'(E) + if"(E)

where E is the x-ray energy and is related to the wavelength, À, by

E = hc/e = 12.399 (k V)
À À(À) e

(4.10)

(4.11)

The quantity f.(Q) is the scattering factor when the x-ray energy is far from any

absorption edge in the atom. f' and f" are, respectively, the rea! and imaginary

part of the dispersion correction.

The atomic scattering factor f. has been evaluated from the numerica! Hartree­

Fork wave functions and tabulated as a function of sin8/À [9,81]. Cromer et a! [82]

have also fitted f. of various elements and ions to the analytic funetion

sin8 ~ sin28
fo(T) = ~ aie:z:p[-bi"");2J + c

,=1
(4.12)

•

The coefficients ai, bi, and c have been tabulated in reference [82]. In this research,

the analytic expression was used to calculate the atomic scattering factors of Ni, Zr,

and Hf.

When the x-ray energy is far from the absorption edges of the ator.Jô in the sam­

pIe, both f'(Q) and f"(Q) are small and almost Q-independent. 1'herefore, they

have been evaluated and tabulated as constants for the Ka energy (wavelength)

of various commercial x-ray targets [83]. Table 4.1 gives the anomalous dispersion

factors l' and f" for Ni, Zr, and Hf at the wavelength of Ag-Ka.
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Figure 4.1: The density of amorphe-us Ni·Zr alloys. The polynomial jitting is shown
as the solid line through the data points.
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Table 4.1: The dispersion corrections at >. = Ag-KO!.

50

Ni
Z 28
f' 0.261
f" 0.724

Zr
40

-0.639
2.630

Hf
72

-0.890
4.164

The incoherent scattering intensity that the detector "sees" can be expressed as

(4.13)

where (>'f>")2 is the Breit-Dirac recoil factor [9J, C(Q) is the Compton scattering

intensity of the ailoy, and v(>") is the band·pass function of the detector.

The Compton scattering intensities of the elements have been theoreticaily cal­

culated by Cromer et al [82,84] and fitted to an analytic function [85]:

sinB s sin2B
C.(->.-) = z - ~ ajexp(-bj);2)

3=1

(4.14)

(4.15)

•

where Z is the atomic number ofthe element, and the coefficients aj and bj have been

tabulated in reference [85]. Using equation 4.14 the Compton scattering intensity

of Ni, Zr, and Hf were calculated, and the Compton scattering intensity of the ailoy

is calculated by

C(Q) = LCiC.(sinB)
• >.

where Ci and Ci are , respective1y, the atomic concentration and the Compton scat-

tering intensity of the type-i atom.

The band.pass function v(>') represents the transmittance of the analysing crys­

tal. As indicated pre\;ously, the analyzer used in this work is a graphite crystal,

which is actuaily a mosaic of crystallites aligned with each other within a angle (J'w,
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As a monochromator, such a pseudo single crystal has four to six times the refiec-

tivity of a single crystal such as LiF, and gives a uniforrnly distributcd diffraction

beam. The resolution of the analyzer is characterized by the width of the band-pass

function, which describes how weil the hexagonal basal planes are aligned in the

graphite crystal. The refiection plane of the monochromator is (220), corresponding

to a d-spacing of 1.75À. The rocking curve along [220] direction of the monochro­

mator was measured using the high resolution double crystal diffractometer '. The

resuIt is shown in figure 4.2, where the solid line through the data points is the best

fit to a Gaussian-function:

(4.16)

where N is the scaling factor and 17", is the width of the Gaussian function. It was

found that

17", =0.218° (4.17)

The monochromator was used in the experiments to eliminate the radiation of un­

wanted wavelength, therefore, it is useful to convert equation 4.16 into a function of

x-ray wavelength, >.. From the Bragg formula:

2dsinIJM =>.

it follows that

(4.18)

(4.19)

•

where IJM is the Bragg angle of the monochromator for planes with spacing d. From

geometry

(4.20)

'This experiment was ltindly performed by T. Q. Gu on the double crystal difl"radometer in
the Physies nepartment, McGiII University.
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Figure 4.2: Band-pass funetion of the :z:-ray monochromator. The Gaussian fitting
is shown as the solid line through the data points.
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Using equation 4.16, 4.19, and 4.20, one obtains

From 4.19 er~ = 2dcos8Mer.., and equation 4.21 becomes

(6..')2
G(w) = Ne"'p(---)

2er~

53

(4.21)

(4.22)

Thus, the band-pass funetion of the monochromator, II(À), can be represented by

the Gaussian function 4.22, i.e.

(À - À')'
1I(À') = e",p( - )

2er2
~

(4.23)

where À is the wavelength of the primary beam and À' = >. +0.0486sin28. Following

equation 4.17, the band-pass width for the silver target is:

ert--Ka = 0.0254À

In this research, the highest scattering angle is 28m .", = 1350
, which results in

the largest wavelength shift, 6.Àma"" for the Compton scattered radiation. Using 4.7

this gives 6.Àm .", = 0.0486sin265° = 0.03992À. Using Ag-KQ radiation one has:

(") ( 0.04
2

)
Il A....., = e",p - 2 x 0.02542 = 0.289 (4.24)

•

This means that the monochromator cuts the Compton scattering intensity by at

least 70% at 28 = 1350
• 2 Figure 4.3 shows the Compton scattering intensity,

C(Q), the total incoherent scattering intensity, I.",,(Q) = C(Q)II(>.'), compared

with the intra-atomic scattering intensity, < P > for Nio.33ZrO.67' Since the coherent

'Bec:ause of the defects in the analyser crystal, there are dilferences hetween the rneasured
band-pass function and the Gaussian function at the tails. Thererore, the Gaussian fitting wu
only used to evaluate the band-pass width. The incoherent scattering intensity wu calculated
using the rneasured band-pass function.
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Figure 4.3: The incoherent scattering of NÏ{,.33ZrO.67 compared with the intra-atomic
scattering intensity, < j2 >. Solid line: I,,,,,(Q), dashed line : C(Q) and dotted line:
< j2(Q) >.



scattering oscillates about < P(Q) > and is essentially equa.! to < P(Q) > at high

Q it can be seen ttat the diffracted beam monochromator significant1y reduces the

incoherent scattering correction for values of Q > 8.4-1
•

The "multiple scattering" contribution in equation 4.1 is due to x-rays which are

scattered more than once while passing through the sample. Multiple scattering of

x-rays is a comp!icated process, fortunate1y, the magnitude of the multiple scatter­

ing is small and it is sufficient to consider only double scattering [14]. The double

scattering intensity can be ca.!culated in terms of a double integra.! of the square of

the first order intensity [86-88), which includes Ieoh and 1;"". Since Ieoh oscillates

about < l' >, it is il. reasonable approximation for amorphous samples to replace

•
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(4.25)

•

Ieoh with < P > in the double integra.! [86]. A program has been written to ca.!culate

the x-ray double scattering intensity for both the refiection and transmission mode,

and it has been tested with the data provided in reference [9] (page 148). Figure 4.4

shows the ratio of double to single scattering intensities, Ru, for severa.! alloys used

in this researc1l. R" is found to be a.!ways less than 4%

The x-ray diffraction experiments in this research were carried out in air. At

low angles the scattering from air can be as much as 10% of the sample scattering.

Therefore it is necessary to subtract the air scattering intensity from the 101>.(211).

Since there exists an absorption difference with or without the sampie in the beam,

the air scattering contribution to equation 4.1 is given by [7J:

. 01>. ,1 1 tcosll ~
I· = l . (211)[- +(- - -)e- .... J... ... 2 2 Rf3

where l'j: is the air scatte:ing intensity measured in the absence of the sampie, t is

the thickness of the sample, fi- is the !inear absorption coefficient of the sampie, R

is the radius of the diffractometer, and f3 is the angle subtended at the sample by
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Figure 4.4: The ratio of double to single scattering intensity for NÎ{).33 (Zr"Hfl-,,)o.67'
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•

the deteetor slit.

The quantity lb, in equation 4.3 represents the background wlüch is mninly duc

to secondary fluorescence radiation. lb is uniformly distributed over the entire ang\!­

lar range (the angular dependence of the scattcring volume's size has been inc1udcd

in the absorption correction term). As discussed in reference [il (page 493), the fluo·

rescence effect is most severe when the atomic number of the target materia1, Z'.'.'"
is 2 or 3 larger than that of the elements in the sample, Z.z.~.nt. This is why the

data measured with Mo target is not used for this research (t.Z = ZMo - Zz, = 2).

In that case, the background is as high as 25% of the total intensity and resuits in

a serious reduction in the counting statistics. The fluorescent scattering is generally

small when t.Z > 4. Therefore, a silver target was used in this research (t.Z ~ il.

In this case, the background h is about 8% of the total scattered intensity. In

the literature, the background is sometimes measured by an additional experiment.

Here, h is treated as a fitting parameter.

Finally, the normalization factor, N, in equation 4.3 is proportional to the pri­

mary beam intensity, the total number of atoms in the sampie and the thickness of

the sample. Since the primary beam intensity is unknown, N remnins as another

fitting parameter.

From equation 4.1 and the above discussion it is apparent that Icoh(Q) can be

obtnined from the observed intensity once the parameters N an d lb are determined.

In the literature, several normalization methods have beeIl used to derive the total

structure factor from the experimental intensity [6,14,47]. In this research, both the

high-angle fitting procedure and the Krogh-Moe-Norman (KMN) method have been
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used to normalize the x-ray diffraction data.

At large vaiues of Q, which correspond to large vaiues of 28, the structure factor

has a limiting vaiue of unity. Therefore, at high 8 the right hand side of equation

4.1 becomes

(4.26)

By choosing different vaiues of N and lb a vaiue of 1/,,(28) may be caiculated.

//.,(28) may then be compared with lob. at high vaiues of 28. The optimum vaiues

of N and 1& can be determined by minimizing the quantity ;>;:', where

(4.27)

•

In equation 4.27, i is the index of data points, (7' is the experimentai error of lob. at

28,. This method of ~caling the diffraction intensity is called "the high-angle fitting

method", beca;.:: tlJe summation in equation 4.27 is usua1ly carried out in an ap-

propriate high-ansle range where /ob.(28) does not strongly oscillate about 1/,,(28).

Since the fitting function 1/,,(28) is actua1ly the asymptote of lob.(28), a minimized

;>;:' does not necessarily lead to correct vaiues of N and lb. In a limited range of 28

the solution to equation 4.26 may not be unique. Therefore, the range of 28 over

which the fitting procedure is performed plays an important role in determining

N and lb. As shown in figure 4.5, in the range of 800 .:s; 28 .:s; 130°, 1/.,(28) fits

weil to /ob.(28) and ;>;:' = 1.09. However,lJit apparently underestimates lob. in the

range 28 < 60°. In this case, the derived S(Q) oscillates above unity and begins to

modulate about unity only in the fitting range (see figure 4.6). In this research, the

parameters N and lb • are first determined by minimizing ;>;:' in equation 4.27 over

2Considering there may erist some unknown scattering from the abjects &round the goniometer,
lb was expressed by a polynomial: ao +a, x 29 + a. x (29)'. For ail the sampIes, a. was round to
he lero and a, is usually very small eompared to ao.
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Figure 4.5: Results of fitting the obserued intensity in a limited high angle region.
Note that the peak area above the fitting curue is much greater than that be/ow the
fitting curue. A correct fit would have the two areas about equal.

3 - N10•33Zr0.67 -
- :ll:-ray diffraction -

.-.. 2 - -
Of......
Cf.l

:j-~
-

1 ---=---- ---
-

0 2 4 6 8 10 12 14 16 18 20

Q 0.- 1)

Figure 4.6: The total structure factor resulting from a bad normalization.



the range 283 ::; 28 ::; 130·, where 283 is at the beginning of the third maximum of

101>.(28) curve. The KMN method was then used to refine these fitting parameters.

The KMN normalization method was first suggested by J. Krogh-Moe [89]. The

details of this method can be found in reference [89,90]. Its centra! formula can be

•
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obtained as follows.

From equation 2.19, one has

or

2r100

41l"r2 p.[g(r) - 1] = - Q[S(Q) -1]sin(Qr)dQ
11" •

(4.28)

(4.29)

The fact that atoms do not approach each other within the atomic core diameter

suggests that

limg(r) = 0._0
On the other hand, mathematically, one has

li
sinQr

m =1
,._0 Qr

Using 4.30 and 4.31, in the low-r range, 4.29 is reduced to

In Faber-Ziman formalism, one has

S(Q) _ 1 = lcoh- < j2(Q) >
< f(Q) >2

Let leor = (loi>. - lair - Ib)/AP, equation 4.1 becomes 4:

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

•
4The dill'erence between the absorption correction for coherent and incoherent scattering is less

than 1% and is neglectcd in equation 4.34•



where a is the reciprocai of the normalization factor N. From 4.33 and 4.34 it•
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follows that

S(Q) -1 = alcor - < F(Q) > -lmu/(Q) - l i",,(Q)
< f(Q) >2

Substituting 4.35 into 4.32 one has

61

(4.35)

(4.36)

Since the quantity < f(Q) >2 rapidly decreases with increasing Q, the errors in the

observed intensity or l cor can be greatly exaggerated by the factors Q2 and <J(bl>'

in 4.35. In order to reduce the enhancement, a damping factor e-~Q' is introduced

and 4.36 is re-written as

(4.37)

(4.38)

•

The parameter ï is typically less than 0.01 and does not have to be accurately

determined. In this work, the quantity h which is mainly due to the fluorescent

scattering is unknown, therefore, it is rather difficult to evaluate the normalization

parameter N by the KMN method s. However, equati'>n 4.38 provides a cross-check

on the uniqueness of the parameters determined by the high-angle fitting method.

For ail the samples, the quantity N and lb in equation 4.3 were first determined

using the high-angle fitting procedure. lb was then used in equation 4.38 to cal­

culate the parameter a. N and lb were slightly adjusted (the adjustment us'~ally

causes little change of the X2 ) so that a becomes consistent with -k within ±1%.

The damJling factor ï was typically - 0.01. As an example, the diffraction pattern

"In sorne previous work, 16 was obtained !rom additionai measurements and then the KMN
method was used to calculate the parameter Q •



and the correct fitting function of Nio,33ZrO,67 is shown in figure 4.7. The resulting

tota.! structure factor is shown in figure 4.8. It should be noted that the fitting•
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and refining procedure was carried out with the quantities in equation 4.3 and 4.27

being functions of 29. The structure factor was determined first as a function of 28.

S(29) wa.s then converted into S(Q) with equally spaced points in Q-space using a

cubic spline interpolation method. ~Q = O.05À-1 was chosen to correspond to the

experimenta.! resolution.

4.1.2 Reduction of neutron diffraction data

In conventiona.! neutron diffraction experiments, the observed intensity can be ex-

pressed in terms of the Faber-Ziman tota.! structure factor 6, S(Q), as [14]:

100.(28) = N A[< b~ > +(S(Q) - 1) < be >2 + < b: > +lmwl + lb (4.39)

where:

N =
A =
b2 -e

< be > -
< b'; > -,

1mw -
lb -

The normalization factor;
The absorption factor;
El' c,,(~)2, ~ is the neutron coherent scattering length of element Pi

E"c,,~;
El' c,,(1f;)2, If; is the neutron incoherent scattering length of e1ement Pi
The multiple scattering intensity;
The background.

•

"In a neutron diffraction experiment, energy transfer occurs between the neutron and the sys­
tem. Therefore, an integratcd intensity Î5 measurcd at a given angle 29. The integration over tile
energy transfer Î5 performcd by the deteetor 50 that an ell"eetive düferentiai stattering cross section
rather than a truc static cross section is measured [91]: r.., oc (~)'/J oc J:::'S/h f.S(Q,"')f( ... )d<.I
where E is the energy of the incident neutrons, Q' and Qo are the incident and difi'Iactcd wa.ve
numbers, and f( ... ) is the energy dependence of the deteetor. For neutrons of À - lÀ, the stattering
Î5 centered around the ela.stic value since the incident energy, E - 85meV, is considerably larger
than the energy tra.nsfer, lu.J < 10",eV. ln tbis case, the inelasticity (or the Pla.ezek correction)
cau be neglectcd, i.e. the 'static approximation' applies in which S(Q, ... ) reduces to S(Q) .
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Figure 4.7: A typical jitting result for evaluating the total structure factor.
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Figure 4.8: A typical result of accurately evaluated total structure factor.



The normalization factor, N, is a constant which is proportional to the primary

beam intensity and the number of scatterers.

The neutron scattering lengths bc and bi have been measured and tabulated in

reference [92J. Table 4.2 lists bc and bi and the absorption cross section, u., for Ni,

Zr, and Hf. It shows that Hf has a very large absorption cross section, therefore,

experiments using the samples containing Hf, e.g. Nio.33Hfo.67' need a much longer

time than that for Nio.33ZrO.67 to achieve reasonable statistics 7.

•
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Table 4.2: The neutron scattering length of Ni, Zr, and Hf.

bc (fIn)
bi (fIn)

u. (barn)

Ni
10.3
6.43
4.49

Zr
7.16
0.40
0.185

Hf
7.77
4.55

104.10

The multiple scattering intensity, Imul, is small in comparison with other quan­

tities in equation 4.39 [93]. As discussed in the literature [14,25,94], the ratio of

multiple to single scattering intensity is Q-independent, i.e. Imul ex (1... - Ib)/NA

(see 4.39). Therefore, the multiple scattering correction can be combined with the

norma.lization factor, N.

The quantity h can be measured in the absence of the specimen under the

same instrumental conditions. Figure 4.9 shows the measured lb together with the

diffraction pattern of Nio.33ZrO.67.

According to the discussion above, equation 4.39 can be re-written as

1...(29) = NIA[< b; > +(S(Q) -1) < bc >2 + < b~ >] +lb (4.40)

•
7Since the neutron coherent scattering lengths of Zr and Hf are almost the same, neutron

isomorphous substitution of Zr by Hf will not create significant changes in the weighting factors.
Thercforc, isomorphous substituion was Dot used in neutron diffraction experiments.



• Chapter 4. Data analysis

and

Iob.(28) Q-f N'A[< b; > + < bl >1 +h

65

(4.41)

Bere the normalization parameter, N', is the only unknown. N is determined using

the high angle fitting procedure deseribed in the preceding section, and the total

structure factor S(Q) is evaluated from equation 4.39. As a typical result, the S(Q)

of Nio.33ZrO.67 is shown in figure 4.10.

4.1.3 The reliability of S(Q)

Due to instrumental limitations and the accuracy with which the x-ray atomic scat­

tering factor, Compton scattering intensity, neutron scattering length are known,

various errors may be introduced in the determination of total structure factors.

As discussed in chapter l, sma.11 errors in the total structure factors can be great1y

enhanced in determini!lg the partial structure factors. Therefore, it is necessary to

analyze the residual uncertainties in the total structure factors and, if it is possible,

to minimize the errors before carrying out the evaluation of the partial structure

factors.

In some cases, the errors in S(Q) are best detected by distortions and the ap­

pearance of ghosts in the function:

2100

G(r) =- Q[S(Q) - l]sinQrdQ
11" 0

(4.42)

•

where G(r) is ca.11ed the "reduced atomic pair distribution function" and is re1ated

to the atomic pair distribution function, g(r) by

(4.43)
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The neutron diffraction pattern of NÎ<J.33ZrO.67 and the background.
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Figure 4.10: The neutron diffraction total structure factor of NÎ<J.33ZrO.67 .
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In the following paragraphes, the sources of error in the total structure factors are

analyzed in terms of the function G(r), and the reliability of S(Q) determined from

various experiments is discussed.

The increment tlQ

In a diffraction experiment, the intensity is usually measured at scattering angles

with equal increment, tl29. Since the fitting procedure is to fit the experimental

raw data, therefore the total structure factor is determined originally as a function

of scattering angle. Using the relation Q = 47rsin9J>', 5(29) is equivalent to a 5(Q)

with unequal increments of Q.

The numerical eva1uation of the Fourier integral which convert a structure factors

into the corresponding distribution function is commonly performed by computing

the equiva1ent summation

2: Q[5(Q) - 1]sinQrtlQ
Q_....

(4.44)

•

Practical considerations require that the increment tlQ be a constant. For an ac­

curate evaluation, there should be many increments tlQ per half cycle in sinQr.

Therefore, tlQ must be small enough so that rtlQ will also be small relative to the

period of sinQr (i.e. 27rJr). If there are n increments of rQ in the period then

nrQ = 2?r. If n is less than 10 then serious distortion appears in G(r) [7,95J. For

amorphous alIoys, it is usually desirable to obtain the atomic distribution informa­

tion up to r = 10À. In this case, tlQ = ~; = ;;' = O.053À -1 and a value of

tlQ = O.05À-1 is generally acceptable because n = 47r, i.e. there would still be

about 12 increments in tlQ per cycle in sin(Qr) for r - 10À.

In this research, the instrumental resolution SQ in various experiments is about



0.1 - 0.05À-1 8. The tota.! structure factor S(2/1) was convertcd into S(Q) with

t!>.Q = 0.05À-1 using the cubic spline interpolation.•
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•

Non-observable region

A universa.lly encountered source of uncertainty in S(Q) is the experimenta.lly

litnited Q-range, that is, S(Q) is evaluated over the range of Qmin to Qmaz, rather

than 0 to 00.

The lower lirnit Qmin exclud~s the sma.ll angle scattering intensity information,

which results in long-period oscillations in the Fourier transform [7]. Fortunately,

most amorphous a.lloys are homogeneous systems and therefore, the sma.ll-angle

scattering is rather weak. Further more, in the Fourier transform, the integrand is

Q[S(Q) - l]sinQr; and when Q is sma.ll, the integrand is also sma.ll. Under these

circumstances the scattering in the range 0 < Q < Qmin can be neglected [7,16,96].

The truncating of S(Q) at Q = Qmaz can be much more .erious than that at

Q = Qmin. It is known that when the amplitudes of S(Q) are still of appreciable

size at Qmaz, each major peak in the function G(r) is bracketed by severa! pairs of

diffraction ripples (ghosts). Fortunately, when Q,.."., is larger than - 8.0À-1, which

is true in this research, the truncating effect is not great. Furthermore, the ghosts

can be suppressed by applying a damping factor, e-..,q·, to S(Q) in the Fourier

integra.!. As indicated by Klug et al [7], a damping factor simply compensates the

exaggerating effeet of the factor <J.> to the errors in S(Q) (see equation 2.33). Both

the factors e-..,q' and <J,> exert their greatest influence at larger values of Q, which

accounts for the effectiveness of a damping funetion in suppressing spurious ripples

SIn the conventiona! x-ray diffraction experiments, the angular acceptance of the detector is
about 0.3· (see section 3.2). Since t!.Q = 471:co.9t!.9/>', >. = 0.56084À, t!.Q - 0.1 at 29 = 29m ,n =
4·, and t!.Q - 0.05 at 29 =29mo• = 130·. The angular aceeptanee of the detector slit in the
neutron diffraction expcriments is ~ 0.3".



arising from series termination. In tms work, the value of "1 is typically 0.01 - 0.005

for the Fourier integra! represented by 4.44. Figure 4.11 shows an exanlple of the

influence of the factor e-~Q' on the Fourier integra!.

•
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The reliability criterion

Since atoms do not approach each other within the atomic core diameter re the

value of g(r) must be zero for r ~ re. Hence one has the relation (see equation 4.43

and reference [6]) :

G(r) = -47rrpo (4.45)

i.e. In the low-r region, G(r) is a straight line with a slope equa! to -47rpo. As

discussed previously, the experimental G(r) often has wiggles in this region, due to

the truncating of S(Q) at Q = Qm.~ and the residual uncertainties in the S( Q).

However, one can draw a line through the curve from 0 to the first minimum of G(r)

and the slope of tms line gives an estimate of the average number density, Po (see

figure 4.12). The Po estimated tms way givea a reliability criterion for the accuracy

of S(Q). As shown in figure 4.12, the po values obtained using equation 4.45 agree

with those measured by Altounian et al witmn 5%.

The method proposed by Rahman [97] has been used to obtain an idea of the

residual uncertainty in S(Q) due to the errors in the normalization. Again, from

the fact that the atomic distribution function g(r) is zero witmn the atomic core

diameter re, for ail values of r less than re, equation 2.19 in chapter 2 can be re-

written as 9:

1 rQ
-··- Po = (-22 ) Q[S(Q) - l]sin(Qr)dQ

"K r JQ_i.
(4.46)

•
94.46 itself has also been frequently use<! as a reliability criterion. However, the value of the

right hand .ide of 4.46 dcpends on the integration limits and henee the left hand .ide of 4.46 ia nol
uniquely deline<! (see referenee (6]).
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Figure 4.12: The redueed atomie pair distribution funetion of Nio.33ZrO,67. The num­
ber density of the al/oy is estimated by the slope of the straight line in the low-r
range.



Multiplying both sides of equation 4.46 by ezp( -iur) (u is a dummy variable in

the integration) and integrating over r in a sphere of radius L, we get the following
•
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useful relation:

J,(vL) L (QM"
47rp.L3 vL =;; J

QM
;. Q[S(Q) - l][J.{(Q + v)L} - J.{(Q - v)L}]dQ (4.47)

where Ji is the ith spherical Bessel function 10, v is an arbitrary number with di·

mensions of À-" and L is a value less than the atomic core diameter. It has bcen

demonstrated [6,76,97] that 4.47 can be used as a reliability criterion for the exper·

imental structure factor of a non.crystalline system. The application of equation

4.47 to the analysis of liquid metal and various metallic glasses can also be found in

references [16,98,99].

Let Ô'h",.. and ô.zr> denote, respectively, the left and right hand side of equation

4.47, the values of Ô,I.<". and ô.zr> ha.ve been calculated with a variety of values of~'

and L for the total structure factors obtained in this work. The results for amor-

phous Nio.33ZrO.67, Nio.33(Zro.sHfo.• )0.67, and Nio.33Hfo.S7 are listed in Table 4.3, where

e is the correction factor to S(Q) 50 that the value of ô.zr> agrees with that of ô,J.,,,.,

within 1%. It is found that the typical values of le-II range from 0.01 to 0.04. This

means that the total uncertainty in the S(Q) is 1 to 4%.

In summary, the total structure factors were derived from the diffraction data

using the high angle and the KMN methods. The uncertainty in these total struc­

10The .pheries! Bessel funetion. Jo and J , are given hy:

Jo(;:)
.inz

=
;:

Jd;:)
.. inz - zco.z

= ;:2
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ture factors is examined using the method proposed by Rahman [97]. An accuracy

of better than 4% is achieved for all the total structure factors obtained in this work.

Table 4.3: Check on the normalization of S(Q) for Ni.33(Zr~Hfl-.J.67using the re-
lation proposed by A. Rahman [97J.

y L (A) v (A 1) êthcOf" ê ezp e
1.0 1.00 1.00 0.201 0.201 0.999

1.00 1.50 0.176 0.177 0.993
1.00 2.00 0.145 0.146 0.971
2.00 2.00 0.155 0.156 0.981

0.6 1.00 1.00 0.205 0.206 0.992
1.00 1.50 0.179 0.180 0.983
1.00 2.00 0.148 0.149 0.971
2.00 2.00 0.158 0.159 0.965

0.0 1.00 1.00 0.193 0.192 1.010
1.00 1.50 0.169 0.168 1.015
1.00 2.00 0.139 0.138 1.024
2.00 2.00 0.149 0.150 0.988

4 '")
• Jo< Evaluation of the partial structure factors

As discussed in chapter 2, ea"h total structure structure factor of a binary amorphous

system consists of three partial structure factors:

(4.48)

•

where Wij (iJ = 1 and 2) are the weigilting factors. In the Faber-Zima.n formalism,

one has

(4.49)

where Ci and fi a,e, respeetive1y, the atomic concentration and scattering factor of

i type atom. fi can be calculated using equa.tion 4.12 and < 1 >= Cili + C;fj
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can be evaluated. For a pseudo-binary system with isomorphous substitution,

e.g. Niz (Zr.Hf1_.h_z> the partial structure factors SNiZ.(Q) = SNiH/(Q) and

Sz.z.(Q) = SH/H/(Q), as far as the microstructure is concerned. Let i denote

Ni and i denote the mixture Zr.Hfl _., one has

fj = yfz. + (1 - y)fH/ (4.50)

and thus equation 4.48 and 4.49 are equally valid for the pseudo-binary alloy.

In principle, the partial structure factors cau be evaluated from three indepen.

dent measurements by solving the linear equations:

2 2

Sm(Q) = LLW:jSij(Q)
i=l ;=1

(m= 1,2,3) (4.51)

where m is the index of the measurements. However, a,,; discussed in chapter 1, there

is 1:.sually very little contrast between the measurements. As a consequence, equation

4.51 is often ill-conditioned. The results obtained by directly solving equation 4.51

are usually physically meaningless. The partial structure factors presented in the

literature aIe often said to be a least-square estimate of equation 4.51. However,

mathematically it has been proved that [100,10IJ for ill-conditioned linear equations

the least-square solution is expected to be a very poor representation of the true

quautities Sij(Q) in equation 4.51.

In fact, there always exist sorne uncertainties in the experimental data S(Q)

(~ 4% in this work). Therefore, the partial structure factors should be evaluated

from

where Em(Q) is the error in Sm(Q). 4.52 is a typical problem for which a biased

estirnate of Sij(Q) can be obtained using a mathematical treatment called "ridge•
2 2

Sm(Q) = L L W:jSij(Q) + Em(Q)
i=l ;=1

(m=I,2,3) (4.52)



regression analysis". This method minimizes the errors propagated from the Sm(Q)

to the Sij(Q) and gives an estimate of the uncertainties in the solution. The details

of the ridge analysis can be found in the Appendix A.

•
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For Nio.33ZrO.67, eight independent experimental total structure factors are avail­

able for evaluating the partial structure factors, seven from x-ray isomorphous sub­

stitution and one from neutron diffraction (see figure 4.14). The corresponding

weighting factors for the various total structure factors are Iisted in table 4.4.

Iosmorphous substitution is an attractive method because the experiments can

be carried out simply on a conventional x-ray diffractometer. The substitution of

Zr by Hf in metallic glasses has been wide1y used in previous studies, however, the

reliability of this method has not been carefully examined. In this work, the partial

structure structure factors of Nio.33ZrO.67 are evaluated from the total structure fac­

tors of Nio.33(Zr~Hfl_~)o.67,Y= 1.0, 0.6 and 0.0 using ridge analysis 11. The r~>ults

are shown in figure 4.13. The overall uncertainty in these partial structure factors

is - 4%. To examine the reliability of this evaluation, the results w"re then used to

synthesize ail the remaining experimental data. The results are shown in figure 4.14

The synthesized x-ray total structure factors agree very wei! with the experimental

data; the discrepancies being within the error bars of the Sij(Q) curves.

It is interesting to find that the S(Q) synthesized with the partial structure

factors obtained using x-ray isomorphous substitution is in good agreement with

that measured using neutron diffraction (see figure 4.14) except in the low-Q range

where the synthesis failed to reproduce an observed small "pre-peak" in the neutron

scattering.

IlThe mathematieal details of the calculation can he round in the Appendix A•
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Ta.ble 4.4: X-ray weighting factors of amorphous Nio.33(Zr.Hf,_.)o.67 aI/oys at Q =
0.00 A- l

• The last entry gives the neutron weighting factors for Nio.33ZrO.67.

y WNiNi WNiZ" Wz"z.,.
1.00 .0696 .3882 .5422
0.80 .0556 .3602 .5882
0.60 .0455 .3353 .6192
0.50 .0414 .3::40 .6346
0.30 .0348 .3032 .6620
0.15 .0308 .2891 .6801
0.00 .0274 .2762 .6964

neutrons 0.1750 .4867 .3383

Ta.ble 4.5: Weighting factors for the partial structcre factors of amorphous
Niu7ZrO.33 at Q = 0.0 A-l

•

WNiNi WNiZ" Wz,..z"
4Nio.67ZrO.33 .3386 .4864 .1750
4Nio.67Hfo.33 .1959 .4932 .3109
bNio.67ZrO.33 .5507 .3828 .0665

a) X-ray diffraction measurements;

b) neutron diffraction measurements.
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Figure 4.13: The partial structure factors of Nio.33ZrO.67. The length of tl:~ vertical
bars indicates the error in the partial structure factors .
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For various metal.l.ic glasses, a peak in the low-Q range Q < 2À-1) has been

frequently observed in the total structure factors obtained by neutron diffraction

but is absent in those obtained by x-ray diffraction. Such a pre-peak is usually

attributed to the chemical short-range order in the metal.l.ic glass [33,38,102-104],

however, as will be discussed in chapter 5, this attribution is found to be inconsistent

with the resu1ts of this work.

Tt has been suggested that there maybe small differences (of the order of 10%)

between the experimental data of x-ray diffraction and that of neutron diffraction

[6J. This is presumbaly due to the different scattering mechanisms. X-rays are

scattcred by elcctrons and the diffraction intensity depends upon both the ion-ion

and electron-e1ectron correlations; whereas neutron diffraction refiects on1y the ion­

ion correlation. However, the ion-ion, ion-elechon, and eleetron-electron corre1ations

in a non-crystal.l.ine material are not weil understood and may or may not account

for the pre-peak.

To further examine the reliability of the resu1ts shown in figure 4.13, the partial

structure factors of Nio.33Zro.67 were once again eva.luated from the x-ray total struc­

ture factors of Nio.33ZrO.67 and Nio.33Hfo.67, and the neutron total structure factor of

Nio.33Zro.67' The resu1ts are shown in figure 4.15 (the circ1es) in comparison with

the partial structure factors obtained using the isomorphous substitution method

(solid lines). As expected, the two sets of partial structure factors are in good agree­

ments except in the low Q range, where SNiNi and SNiZ. obtained with the neutron

measurements have a small pre-peak.

From the previous discussion, it is evident that:

•
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•
• Isomorphous substitution of Zr by Hf is a reliable method for eva.luating the

partial strudure factors of Ni-Zr glasses, provided that the smaller size of Hf
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Figure 4.15: A comparison of the partial structure factors of Ni<,.33ZrO.67 obtained
using x-ray isomorphous substitution (solid lines) and the combination of x-ray and
neutron diffraction (circ/es).
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is considered (see below);

80

•

• Accurate partial structure factors can be obtained from combining the x-ray

and neutron diffraction measurements.

Encouraged by the successful evaluation of the partial structure factors of Nio.33ZrO.67,

the partial structure factors of Nio.67ZrO.33 were obtained from the x-ray total struc­

ture factors of Nio.67ZrO.33 and Nio.67Hfo.33, and neutron total structure factors of

Nio.67ZrO.33' The weighting factors are listed in table 4.5 and the results are shown

in figure 4.16. The total uncertainty in these partial structure factors is - 3%.

The previous procedure, i.e. obtaining one set of Si;(Q) from more than one iso­

morphous substitution measurements and another set independently from combined

x-ray and neutron diffraction measurements, was not used for Nio.67ZrO.33' This is

because the change of the weighting factors due to the isomorphous substitution is

too smal1 for the Ni-rich al1oy. On the other hand, the neutron scattering length of

Ni is 30% larger than that of Zr. Therefore, in the neutron diffraction measurement

for Nio.67ZrO.33, not only the weighting factors were changed significantly, but also

a much better experimental statistics was achieved. Hence, a reliable evaluation of

the partial structure factors for Nio.67ZrO.33 was obtained from ccmbining the x-ray

and neutron diffraction measurements.

It should be indicated that the atomic ramus of hafnium is slightly smal1er than

that of zirconium, therefore, the total structure factors of Nio.33(Zr~Hfl_~)o.67 and

Nio.67(Zr~Hfl_~)O.33'y f:. 0, shouId be corrected for the atomic size difference. This

atomic size correction is found to be crucial in the evaluation of the partial structure

factors using the isomorphous substitution of Zr with Hf.
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Figure 4.16: The partial structure factors of N~o67ZrOo33' The length of the vertical
bars indicates !he error in f!.~ partial structure factors .
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The atornic size difference {3 can be expressed by

{3 = TZ. - TH!

TZ.

For amorphous Ni.(ZryHf1_y)1_. alloys, the correction in Q-space is

~Q
- = (3(l-y)
Q

82

(4.53)

(4.54)

•

It follows from equation 4.54 that ~Q > aif y :11. It is true that the peaks of the

total structure factors of Ni.(ZryHf1_ yh_., :t = 0.33 and 0.67, y :1 0, shift slightly

towards higher Q (see table 4.6). The importance of the atornic size correction

can be readily realized from figure 4.17, which shows the partial structure factors of

Nio.33Zro.67 obtained using the total structure factors of Nio.33(ZryHf1_ Y)O.67' y =La,

0.6 and 0.0, assurning {3 = 0.0. One can see the serious splitting in the first peaks of

the partial structure factors. Obviously, such a splitting in a partial structure factor

is physically untrue.

Table 4.6: Peak positions in the total structure factors of Nio.33(ZryHfl-y)o.67.

y Ql (A-1 ) Q2 (A-l) Q3 (A-1 ) Q4 (A-1 )

1.00 2.55 4.35 6.15 8.05
0.80 2.55 4.35 6.15 8.10
0.60 2.60 4.40 6.20 8.15
0.30 2.60 4.40 6.20 8.15
0.15 2.60 4.40 6.25 8.20
0.00 2.60 4.40 6.25 8.20

Since neither TZ. nor TH! are known accurately, the parameter {3 is adjusted

according to the following physical constraints:

1. The peak positions of Nio.33(ZryHfl_y)o.67, y :1 0.0, are made consistent with

those of Nio.33Zro.67;
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2. The total $tructure factors for y = 1.0 to 0.0 give the saille number density

estimate according to equation 4.46;
•
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•

3. No splitting appears in the partial structure factors;

This procedure results in a weil determined atocic size correction, t3 =0.0175, to

Hf in the pseudo-binary glasses Nio.33(Zr.Hf1_.)o.67 and Nio.67(Zr.Hf1_.)o.33, i.e. in

these metallic glasses, the Hf atom is 1.75% small that the Zr atom. The partial

structure factors shown in figure 4.13 and 4.16 are obtained with f3 = 0.017.5.

4.3 Summary

As indicated in chapter 1, a reliable eva1uation of the partial structure factors lies

in two factors: the reliability of the original total structure factors and the contrast

among the total structure factor measurements. In section 4.1 and 4.2 We have

demonstrated how to normalize the diffraction data accurately to obtained the to­

tal structure factors. We further carefully examined the reliability of the derived

total structure factors in section 4.1. An accuracy of better than 4% is found for all

the total structure factors. In section 4.2, the contrast among these total structure

factors is presented by the difference between their weighting factors. The contrast

between the x-ray and neutron diffraction data is as high as 80%. The partial struc­

ture factors of Nio.33Zro.s7 and Nio.67ZrO.33 are successfully eva1uated using combined

x-ray and neutron diffraction. The total uncertainty is ~ 4%. The difference be·

tween the weighting factors of the isomorphous substitution total structure factors

is 8 to 20%. '!:;:, ensure an accurate eva1uation of the partial structure factors, addi­

tional experin'ental data were used and hence the three partial structure factors of

Nio.33ZrO.67 were also evaluated independently from seven isomorphous substitut:on
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measurements. The results are consistent with the evaluati::>n using combincd x-ray

and neutron diffraction. lt is evident that accuratc partial structure factors can

be obtained using isomorphous substitution providetl that the slight size difference

betwecn the isomorphous substituents is considercd.
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Chapter 5

Results and discussion

It was pointed out in chapter 2 that the atomic ztructure of a metallic glass can be

described by the follcwing quantities:

• The Faber-Ziman total structure factor, S(Q), and the total radial distribution

function, RDF( r)j

• The Faber-Ziman partial structure factors, Sij(Q), and the partial radial dis­

tribution functions, RDFij(r).

• The Bhatia-Thornton partial structure factors, Sn,c(q) 1.

The S(Q) and RDF(r) for melt-spun NizZr1_z (x = 0.25, 0.33, 0.37, 0.45, 0.50, 0.67)

and sputtered NizZr1_z (x = 0.31, 0.36, 0.46, 0.53, 0.66, 0.75, 0.86) are obta.ined

from various diffraction experiments. The results are presented in section 5.1. Based

on the compositional dependence of the S(Q) and RDF(r), a comparison between

the atomic structure of me1t-spun and sputtered Ni-Zr glasses is made in section

5.2. The Sij(Q) and RDFij(r) for Nio.33Zro.67 and Nio.s·,Zro.33 obta.ined in this work

are presented in section 5.3. These results allow, for the first time, a discussion

1Though the Faber-Ziman and Bhatia-Thornton partial strudu« factors caa oe mutually trans­
formed by linear relations, the Sn,c(Q) are found superior to the S'j(Q) when dealing with the
chemica! short-range arder in amorphous materials.

86
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of the composition dependence of the Faber-Ziman partial structure factors. In

section 5.3.2, the RDF'j(r) of Ni-Zr glasses are compared with the local atomic

structure of the corresponding crystalline solids. The chemical short-range order in

Ni-Zr m"tallic glasses is discussed in section 5.4.1 using the Sn,.(Q) which have been

calculated from the S,jeQ). Finally, the relationship between the "pre-peak" and

thp. chemical short-range order is discussed in section 5.4.2.

It should be pointed out in advanced that no differences are observed between

the atomic structure of the melt-spun and sputtered Ni-Zr glasses as will be shown

in section 5.2. Therefore, in the discussions of this chz.pter, the melt-spun and

sputtered samples are not distinguished.

5.1 S(Q) and RDF(r)

5.1.1 The total structure factor S(Q)

The Faber-Ziman total structure factors of amorphous alloys Ni~Zr,_~, 0.25 $ :1: $

0.86, were obtained from x-ray diffraction measurements in the range 0.08 $ Q $

20À-1. Figure 5.1 shows the total structure factor S(Q) for each of the compositions

in the range 0 $ Q $ lOÀ-" since for all the compositions the S(Q) oscillates about

unity and becomes fiat when Q ~ 10À-1.

As can be seen from figure 5.1, the total structure factor features a relatively

strong first peak and a shoulder on the high-Q side of the second peak. A shoulder

on the second peak of the S(Q) is common in metallic glasses whereas it is usually

absent in liquid metals. It is interesting to note that for :1: = 0.86, i.e. the sample

contains almost one type of atoms, Ni, the shoulder remains pronounced. The third

peak is weak and aCter the third peak the amplitude becomes very small. It also
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should be mentioned that the valt:e of the total structure factor bt:fore the first peak

is almost constant and very small (S(Q) - 0.2).

Besidec the common features deseribed above, the S(Q) of Ni-Zr glasses exhibit

a clear compositional dependence. As one ca.'l see from figure 5.1, the oscillation

period of the S(Q) increases with increasing Ni concentration. As a result, the peaks

of the S(Q) shiit towards higher-Q due to the closer paciang ofthe smaller Ni atoms.

The height of the peaks also changes with composition but in a nonlinear fashion.

As shown in figure 5.1, the amplitude of oscillations becomes the lowest at :z: = 0.45.

Further evidence of the compositional dependence of S(Q) is that the shape of the

second peak changes dramatically with Ni concentration. For the Zr-rich samples,

the second peak looks almost like a single peak but with a small shoulder while

for the Ni-rich samples the second peak has a very pronounced shoulder. Around

the equiatomic composition, the second peak is broad and essentially fiat. For

:z: = 0.86, the position ratio of the two subpeaks is equal to 0.86 :::::: .../3/2. This

means that the shoulder is due to the two possible nearest neighbor configurations

of equal sized balls (see the diagram on page 93). Since Zr atoms are 30% larger

tl:a.n Ni atoms and the second peak of the S(Q) for Nio.86ZrO.14 is located at a

much higher Q position than that of the other compositions, the shoulder is clearly

attributed to the configuration of Ni atoms. This characteristic is not suprising

due to the predominace of Ni atoms in the Nio.ssZrO.14 glass. For:z: = 0.25, the

shoulder appearing in the second peak is clear enough to allow an estimate to be

made of the position ratio of the two subpeaks giving a value of - 0.88 :::::: .../3/2. In

analogy to the situation for Nio.8SZrO.14, this shoulder is due to the configuration of

Zr atoms in Nio.2sZro.75 glass. Thus, the dram,~tic change in the shape of the second

peak of S(Q) corresponds to a smearing caused by the different sized atoms in both
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configurations.

5.1.2 The total radial distribution functions RDF(r)
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The Fourier transform of the S(Q) gives the total radial distribution function RDF(r) =

47l"r2 p(r), where p(r) is the total atomic correlation function (sec chapter 2). The

nearest neighbor coordination number n, can be obtained from integrating the first

peak of the RDF(r). The quantities RDF(r) and n, provide a general insight into

the local topological order in amorphous materials.

Figure 5.2 shows the total radial distribution functions corresponding to each

of the S(Q) shown in figure 5.1. Three broad peaks are observed in the range

r ~ 8À. In general, only the first peak is useful for the analysis of the local atomic

configuration. It can be seen from figure 5.2 that for all the compositions except

:z: = 0.86, the first peak of the RDF(r) consists of two subpeaks, one at r - 2.75À

and the other at r - 3.2À. The atomic diameters of Ni and Zr atoms are about

2.5Â and 3.2Â, respectively. Therefore, the subpeak at 2.75Â is due to the first

atomic shell centered at Ni atoms and that at 3.2Â is attributed to the atomic shell

centered at Zr atoms. As a consequcnce, the height of the first subpeak increases

with increasing Ni concentration whereas the opposite holds for the second subpeak.

It is of interest to point out that these two subpeaks have the same height at :z: = 0,4 5

rather than at :z: = 0.50. For:z: = 0.86, the first peak of the RDF(r) is essentially

a symmetric single peak. The peak position which is at 2.6À is much lower than

the first subpeak of the RDF(r) for :z: ~ 0.86. This is c1early due to the doMinant

contributions to the RDF(r) from the Ni atoms. It indicates that in the alloys with

:z: ~ 0.86, the small number of Zr atoms have little effect on the RDF(r).
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Figure 5.2: The radial distribution junctions of melt-spun Ni.,~.Zrl_"~. (dashed
lines) and sputtered Ni.,••Zrl_"'•• (solid lines). The results are offset by 20 for each
composition.



Figure 5.4 shows the total nearest neighbor coordination number N, obtained

for each of the RDF(r) as a function 'Jf Ni concentration. Initial1y, N, increases

rapidly with Ni concentration. N, reaches a maximum value at :l: = 0.45. With

further increasing Ni concentration N, gradua!ly decreases. It is clear that NI has

a strong compositional depend~nce. The average value of N, is about 14.
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The above discussions on the compositional dependence of the S(Q), RDF(r),

and ni reveals that there is a structural turning point in Ni-Zr glasses for the al10y

with 45% Ni. This characteristic should have an influence on various properties

of the materia.1. Indeed, the electrical resistivity and thermoelectric power of Ni-Zr

glasses at room temperature measured by Altounian et al [62] show the Same feature

as shown in figures 5.5 and 5.6. Such striking similarity among the compositional

dependence of these three quantities suggests a close relationship between the near

neighbor atomic structure and the e1ectrical properties of Ni-Zr metallic glasses.

5.2 A comparison of the atomic structures of
melt-spun and sputtered Ni-Zr glasses

Melt-spinning and magnetron sputtering are two very different techniques of produc-

ing metallic glasses. With the me1t-spinning method the metallic glass is made from

a moIten al1oy; while with the sputtering technique an amorphous film is formed

from the gas phase. It is, therefore, interesting to examine whether the preparation

method influences the atomic structure of the as-made Ni-Zr metallic glasses.

Form figure 5.1 and 5.2 one can see that the S(Q) and RDF(r) of melt-spun

and sputtered samples with similar composition look almost identica.1. The main
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2r' = 2]3a

2r'/2r = 213a/4a = 13/2 = 0.866

Figure 5.3: The two possible nearest neighbor configurations of equal sized valls (a
= radius).
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peak of the S(Q) for melt-spun sample is a. few percent lower than that for the

corresponding sputtered sample. This is probably due to resolution effects. As

indicated in chapter 3, the ribbon: were arranged to overlap with each other to

make an x-ray diffraction sample. The overall uniformity of such a sample was

found to be satisfactory. However, due to the overlaps, the thickness variation along

the direction perpendicular to the beam slightly worsens the focus geometry and

results in reduced resolution of t'le diffraction intensity in comparison with the much

more uniform sputtered samples. As shown in figure 5.2, the RDF(r) is relatively

insensitive to this resolution effect.

More detailed structura! information can be found from the nearest neighbor

coordination number nI' As discussed in the previous sectie.n, nI is a function of

alloy composition. In figure 5.4, which shows nI versus composition :1:, the so!id

squares are from the meIt-spun samples and the circles are from sputtered films.

The excellent match between the squares and circles indicate that the melt-spun

an d sputtered amorphous Ni-Zr alloys prepared in this work have the same nedXest

neighbor coordination number.

The crystallization enthalpy can aIso be used as a measure of the similarity in

the structure of amorphous materiaIs (see chapter 3). The crystallization enthalpy,

ti.H, of the melt-spun and sputtered Ni-Zr metallic glasses has been measured using

differentia! scanning ea!orimetry (DSC). The results are shown in figure 5.7. AItou­

nian et al. [66J have systematically studi::d the crystallization behavior of melt-spun

Ni-Zr metallic glasses. Their results are shown in figure 5.7 along with the error

bars given in their measurements. As can be seen, our results are consistent with

those of A1tounian [66J for melt-spun ribbons and sputtered films.

The above discussion leads to the conclusion that there is no difference between

•

•
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the atomie structure of melt-spun and sputtered Ni-Zr glasses.

5.3.1 The Faber-Ziman partial structure factors Sij(Q)
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To gain a complete insight into the atomic structure of an amorphous aIloy the

partial structure factors must be obtained. The procedure for evaluating the Faber­

Ziman partial structure factors for Nio.33Zro.67 and Nio.67Zro.33 has been described in

detail in section 4.2. The reliability of these partial structure factors was carefully

examined. Figure 5.8 displays these two sets of Faber-Ziman partial structure factors

together, where the solid lines are for Nio.33Zro.67 and the dashed lines for Nio.67Zro.33.

The position and height of the first peak for each of the S;j(Q) are listed in table

5.2.

Table 5.2: Peak positions of the partial structure factors of NizZf)_z'

SN;N; SN;Z. Sz.z.
:z: 0.33 0.67 0.33 0.67 0.33 0.67

Q, 2.65 2.95 2.65 2.90 2.55 2.75
S;;(Q,) 2.24 3.38 2.34 2.59 2.88 2.57

Q, =the position of the first peak in A-1;

S'i(Q) =the height a( Q =Q,.

From figure 5.8 and table 5.2, it is seen that the partial structure factors of Ni-

Zr glasses have strong compositional dependence. As the composition changes from

Nio.33Zro.67 to Nio.67Zro.33, the position of the first peak shifts to higher Q by 11%,

10% and 9% for the Ni-Ni, Ni-Zr and Zr-Zr partial structure factors, respectively.

For the two aIloys, the height of the first peak in Ni-Zr and Zr-Zr partial structure
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factors is relatively the same. However, the height of the first peak in the Ni-Ni

partial structure factor shows a more than 30% increase as :l: changes from 0.33

to 0.67. The variations of SNiNi(Q), SNiZr(Q) and SZrZr(Q) with composition are

further discussed below.

i.SNiNi(Q): As shown in figure 5.8a, the SNiNi(Q) of Nio.33ZrO.67 has an asym­

metric first peak at 2.65À-1. The second peak is broad and fiat. The amplitude of

oscillations becomes a.1most zero for Q ~ 8À-1. The SNiNi(Q) of Nio.67Zro.33 looks

very different from that of Nio.33ZrO.67. It has a relatively strong symmetric first

peak at 2.95À-1. The second peak has a very pronounced shoulder on the high­

Q side. It is not surprising that such a shoulder appears in the partial structure

factor SNiNi of Nio.67Zro.33 glass. As mentioned in section 5.1.1, the total structure

factor for Nio.86Zro.14 is dominanted by the contributions from the Ni atoms. There­

fore, this alloy ean be approximately considered as a one-eomponent system, i.e. Ni

glass. There is a strong shoulder in the second peak of the total structure factor

for Nio.86Zro.14. The comparison of the SNiNi(Q) for Nio.67ZrO.33 and the S(Q) of

Nio.66Zro.14 is shown in figure 5.9. The similarity between the second peaks of the

two structure factors confirms that the shoulder feature is due to the Ni-Ni correla­

tion in the glass. This Ni-Ni correlation becomes weak as the Zr content increases.

ii.SZrZr (Q): The partial structure factors SZrZr(Q) for Nio.33Zro.67 and Nio.67Zro.33

are shown in figure 5.8c. For both the compositions, SZrZr(Q) has a relatively strong

and symmetric first peak and oscillates up to IGÀ -1. However, there are significant

differences between the SZrZr(Q) for :l: = 0.33 and 0.67. The oscillation period of

the SZrZr(Q) for Nio.33ZrO.67 is much greater than that for Nio.67ZrO.33. The second
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Figure 5.10: The Faber-Ziman partial structure factors SNiNi(Q) of Nio.33ZrO.67 corn·
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peak of the Sz,z,(Q) for x = 0.33 has a weak shoulder while that for x = 0.67 looks

essentia.lly symmetric. It is interesting to compare the Sz,z, (Q) for x =0.33 to the

total structure factor S(Q) of Nio.25ZrO.75 (see figure 5.10). Similar to the situation

for SNiNi(Q) of the Ni-rich sample, the Sz,z, (Q) of Nio.33ZrO.67 looks much the same

as the S(Q) of the Zr-rich sampIe, Nio.25ZrO.7S' Hence, the shoulder which appeares

in the second peak of the Sz,z,(Q) and the S(Q) of Zr-rich samples is due to the

correlation among the Zr atoms.
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iii.SNiZr (Q): In comparison to the other two partial structure factors, the SNiZ,(Q)

is reiatively less sensitive to composition. As shown in figure 5.8b, the SNiZ,(Q) fea­

ture. three maxima in the range Q ~ 8À-1. Beyond tàis range, the oscillation of

the SNiZ,(Q) becomes almost zero. The SNiZ,(Q) of Nio.67ZrO.33 looks sharper than

that of Nio.33ZrO.67, and the position of the first pea.l: silifts by about 10% from x =
0.33 to 0.67.

It is of interest to compare the partial structure factor SNiz.(Q) to the total

structure factor S(Q) of Nio.sZro.s. Figure 5.11 shows the SNiZ,(Q) of Nio.33ZrO.67

and Nio.67ZrO.33 together with the S(Q) of Nio.sZrO.5' The three curves look very

similar to each other. Since the compositions for the two partial structure factors

are symmetrica.lly distributed from x = 0.5, it is interesting to take the average

of the SNiz.(Q) for x = 0.33 and x = 0.67 and compare it with the S(Q) of

Nio.5Zro.s. The results ;5 shown in figure 5.12. One can see the dramatic similarity

hetween the two curves. This characteristic is probably due to the fact that the

SNiZ,(Q) is relatively insensitive to composition; on the other hand, as will be

shown later, a nearly random mixture of the constituent atoms is retained in Ni-Zr

glasses, therefore, in amorphous Nio.sZro.s, the S(Q) is dominated by the partial
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structure factor SN,Z.(Q). The average of the SNiN,(Q) and Sz.z.(Q) are shown

in figure 5.13. As can be seen the two curves have inverted maxima and minima.

Therefore, a synthesis using the average of the three partial structure factors of

Nio.33Zro.67 and Nio.67Zro.33 would give results similar to the average of the SNiZ.

only (sce figure 5.14). The discrepancy in the amplitude of the first peak in the

measured and synthesized S(Q) in figure 5.12 and 5.14 will be discussed later.

The composition dependence of S,j(Q) can also be seen by using the partial

structure factors of Nio.33Zro.67 to synthesize the total structure factor across the

entire range of composition. The equivalent synthesis can be done using the partial

structure factors for Nio.67Zro.33' The results of the synthesis are shown in figure 5.15.

As can be seen from the figure each set of partial structure factors yields an excellent

total structure factor for compositions near the composition of the partial structure

factors. The agreement becomes progressively worse with increasing compositional

difference. As shown in figure 5.4 there is a structural turning point at :z: - 0.45.

In figure 5.15, for the alloys contains about 45% Ni, the main peaks in the two

synthesized S(Q) appear on the each side of that in the measured S(Q), whereas for

the Ni-rich or Zr-rich alloys, the main peaks in bot" the synthesized S(Q) are found

to be at lower or higher Q than that in the measured S(Q). These results further

show the strong compositional dependence of the Faber-Ziman partial structure

factors of Ni-Zr glasses. To see whether this compositional dependence of Sij(Q)

is linear, the linear combination of the two sets of S,j(Q) is used to synthesize the

S(Q) for :z: = 0.5. The result is shown in figure 5.14. The large discrepancy in the

amplitude of the first peak betwcen the measured and synthesized S(Q) suggests

that there is a non-linear feature in the composition dependence of tl:e Faber-Ziamn
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partial structure factors of Ni-Zr glasses.
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As indicated in chapter 2, the Faber-Ziman structure factors do not explicit1y

involve the atornic composition. This is probably the reason that many prcvious

structural studies of metallic glasses used the concentration technique to derive the

Faber-Ziman partial structure factors. In this technique the weighting factors are

varied by changing the alloy composition c assurning that the partial structure fac­

tors are independent composition. However, from the discussion above, it is clear

that the partial structure factors of Ni-Zr metallic glasses have strong composi­

tional dependence. Therefore, it is inappropriate to use the concentration technique

to evaluated the partial structure factors in Ni-Zr glasses. In fact, it is probably

dangerous to use the concentration technique for any other system.

5.3.2 The partial radial distribution functions RDFij (T)

The partial radjal distribution function RDFij(r) corresponds to the number oC j­

type atoms in the spherical shell between r and r + dr centered at an i-type atom.

The RDF';j(r) is obtajned from the Fourier transform of the Sij(Q). The partial

coordination number nij in the nearest neighborhood can be obtajned by integrating

the first peak of the RDF';;(r). In this section, the atornic structure of amorphous

Ni-Zr glasses is discussed in terms of the partial radial distribution functions. The

results are also compared to the previous studies on the amorphous Nio.33Zro.e7 and

crystalline NiZr: and Ni:Zr compounds.

The partial radial distribution functions of Nio.33Zro.e7 and Nio.e7Zro.33 are shown

in Figure 5.16. The coordination number of Ni-Ni, Ni-Zr, and Zr-Zr atomic pajrs



in the nea~est neighbor shell are given in table 5.2. As discu8sed previously, the

partial structure factors are sensitive to the composition. Therefore, the partial

radial distribution functions are expected to be composition dependent. As shown
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in figure 5.1630, the magnitude of RDFNiNi(r) for Nio.33ZrO.61 is about 50% larger

than that for Nio.61ZrO.33 whereas that of RDFz.z.(r) for :1: = 0.33 is 30% to 50%

lower tha.D that for :1: = 0.67. The difference between the RDFNiz.(r) for the two

compositions is about 30%. These results indicate that the local ",tomic number

density depends strongly on the composition. From figure 5.16 one can see that

the height of the first peak in the RDFNiNi(r) and RDFz.z.(r) differs byabout

50% between the two compositions while that in the RDFNiz.(r) changes by 30%.

As a result, the nearest coordination numbers 7LNiNi, nNiZ., 7LZ.Ni and 7Lz.z. vary,

respectively, by about 56%, 36%, 62% and 35% with composition. Obviously, the

local atomic environment of both Ni and Zr are very sensitive to composition. It is

interesting to note, however, that the coordination distances (i.e. t!:le peak positions

of RDFij(r)) vary little with composition. As shown in table 5.2, the relative change

of the coordination distances with composition is less than 2%.

There has been no previous report on the partial raidal distribution functions

of amorphous Nio.33Zro.61 and Nio.61Zro.33 2. The atomic coordination numbers and

inter-atomic distances of Nio.33ZrO.61, however, have been evaluated by F. Paul et ai

using x-ray diffraction [49J and by R. Frahm et ai [50J using EXAFS. Their results

are listed also in table 5.2. In both of the studies, they were unable to obtain the

structural parameters of the Ni-Ni pair. In reference [50J, the inter-atomic distances

were determined by a one-shel1 fit to the EXAFS spectrum based on Zr neighbors

'Reference [57] is entitled "Anomalous wide angle x-ray scattering oC amorphous Ni,Zr alloy" ,
bul in Ihe lexl il said Ihal the sample was a piece oC ribbon used in reCerenee [56] which is
Nio....7Zr......
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Figure 5.16: The partial radial distribution funetions of Ni.Zrl_z, x = 0.33 and
0.67.
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Table 5.3: The nearest neighbor coordination numbers of Ni"Zrl_z/ x = 0.99 and
0.67.

Ni-Ni Ni-Zr Zr-Ni Zr-Zr
Phase x r (A) N r (A) N r (A) N r (A) N Reference

a 0.33 2.62 2.39 2.62 1.43 3.18 10.1 [50J
a 0.33 2.70 8.3 2.70 4.2 3.16 10.6 [49]
a 0.33 2.68 3.14 2.76 8.38 2.76 4.19 3.22 9.59 this work
c 0.33 2.63 2.00 2.74 8.00 2.74 4.00 °2.97 2.00 [105]

°3.07 2.00
°3.39 8.00

a 0.67 2.64 7.13 2.74 5.38 2.74 10.76 3.16 6.09 this work
c 0.67 2.45 6.00 2.87 6.00 2.87 12.00 2.99 4.00 [105]

a =amorphou$j C = cry8talline.

• Thr.. dif!'N:nt ,it.. of Zr in th. unit .el/.

only. It can be seen from table 5.3, their inter·atomic distances for Ni-Zr and Zr-Zr

pairs are generally 0.14Â smaller than those obtained in the present work. Our

results show that up to 30% of the nearest neighbors about a Ni or Zr atom are Ni

atoms. On the other hand, Ni atoms are 30% smaller than Zr atoms. Therefore,

neglecting the Ni-Ni pair contribution leads to a underestimate of the inter-atomic

distances of all the rest of the atomic paris. The coordination number of the Zr-Zr

pair, "z.z., which was evaluated in [50] agree with our result. However, the "mz.
and "Z.Ni are significantly different from our results. As extensivdy discussed in the

literature on the EXAFS investigation of amorphous alloys [50,106] this discrepancy

is probably due to the non-Gaussian pair distribution functions which are difficult

to investigate with EXAFS. In the study of Paul et al [49], only two x-ray diffraction

experiments were carried out. The coordination numbers and inter-atomic distances

of Ni-Zr, Zr-Ni, and Zr-Zr correlations were evaluated assuming the contribution of

the Ni-Ni pair was small. It can be seen from table 5.3, the coordination numbers



presented in [49] agree with our results but the interatomic distances were under

estimated because they neglected the Ni-Ni correlation.

From the above discussion, it is evident that sufficient and accurate structura!

parameters can only be obtained from complete eva1uations of the partial radial

distribution functions.

Though there is usually a discontinuity in the structure between amorphous and

crystalline states, it is often helpful to compare the structures of the amorphous

and the corresponding crystalline solids. In the next few ps.ragraphs, the atomic

structure of Nio.33Zro.67 and Nio.67Zro.33 metallic glasses are further analysed anri

compared to the crystalline NiZr2 and Ni2Zr phases.

For Nio.33Zro.67, there exists a stable intermetallic compound, NiZr2 [61]. It has

a body-centered tetragonal (BCT) structure 3. The coordination numbers and the

inter-atomic distances in the unit cell of BCT NiZr2 are Iisted in table 5.2. The

distributions of three types of atomic pairs in BCT NiZr2 are superimposed on the

radial distribution functions of amorphous Nio.33ZrO.67 in figure 5.17. As one can see

the distribution of the vertical bars are quite consistent with the RDFij(r) curves. A

Ni atom in the amorphous phase has 11 neighbors including 3 Ni atoms at 2.68À and

8 Zr atoms at a further distance, 2.76À. In crystalline NiZr2 a Ni atom has 10 near

:·~eighbors comprising 2 Ni atoms at 2.63Â. and 8 Zr atoms at 2.74Â.. A Zr atom

in Nio.33ZrO.67 has 14 neighbors including 4 Ni atoms at 2.76Â.and 9.6 Zr atoms at

3.16Â., while a Zr atom in BCT NiZr2 has 15 near neighbors comprising 4 Ni atoms

at 2.74Â. and 12 Zr atoms at three slightly different positions in the cell (see table

5.2). It is interesting that in the amorphous Nio.33ZrO.67 the inter-atomic distance

of Ni-Ni is larger, but that of Zr-Zr is smaller than the corresponding distances in

3The compound NiHf, ha> the same structure a> that of NiZr, •

•

•
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Figure 5.17: Comparison of the pc;rl.ial radial distribution functions of NÏ<:J.33ZrO.67
and the local atomic structures of c,.'stal/ine NiZ12. The curves are the RDFij(r)
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crystalline NiZr:, while the Ni-Zr inter-atomic distance is about the same in the

two phases. Nevertheless the local topological order is quite similar in amorphous

Nio.33ZrO.67 and in the crystalline compound NiZr:. In fact, in our DSC experiments

amorphous Nio.33ZrO.67 crystalizes directly into the equilibrium BCT NiZr: phase.

For Nio.67ZrO.33, the crystalli,,~ Ni:Zr phase is not indicated on the standard

equilibrium binary phase diagram. An FCC structure of Ni:Zr has been reported

[105]. However, the crystallization product of amorphous Nio.67ZrO.33 is a body­

centered-orthorhombic peritectoid [66]. Unfortunately, the detailed structure of this

phase is still unknown. Nevertheless, it is instructive to compare the amorphous

Nio.67ZrO.33 to the FCC Ni:Zr phase. The partial radial distribution functions of

Nio.67Zro.33 are compared to the local atomic structure of the FCC Ni:Zr in figure

5.18. As can be seen from figure 5.17a, the distribution of Ni-Ni pair in amorphous

Nio.67Zro.33 looks quite similar to that in FCC Ni:Zr. However, as shown in table 5.3,

each Ni atom in the amorphous phase has 7 Ni neighbors at 2.64Â whereas a Ni l'tom

in the crystalline phase has only 6 Ni neighbors at a much closer distance, 2.45Â. In

figure 5.18b, it is found that the inter-atomic distances of Ni-Zr pairs in FCC Ni:Zr

correspond quite weil to the maxima of the RDFN;Z.(r) except in the first shell. As

can be seen in table 5.3, the nearest neighbor coordination number nN;Z. is about

the same in the two ph.>ses but the inter-atomic distance in amorphous Nio.67Zro.33

is 0.13A smaller that that In FCC Ni:Zr. Such a difference is also found for the

Zr-Ni correlation. A Zr atom in the amorphous phase has about 11 Ni neighbors

at 2.74A and 6 Zr neighbors at 3.16A. A Zr atom in the FCC phase, however,

has 12 Ni neighbors at 2.87Â and only 4 Zr neighbors at 2.99Â. Though there are

similarities between the atomic structure of amorphous Nio.67ZrO.33 and FCC Ni:Zr,

the similarities are not as strong as those between Nio.33ZrO.67 and BCT NiZr:. This



113

108642

c) Zr-Zr

a) Ni-Ni

b) Ni-Zr

35 ~--'-----""---""---"rT""'----'

30

25

20

15

10

5

36 l-o<:::>....o.;.LJL-l..L--+-l--l---l.-+-....1-J.....L-fJ'-'-.l-....I....1.i

30

25

20

15

10

5

36 I----="+"----I...--+-...I.--.l.+---I...-'-+-'--'---'-I

30

25

20

15

10

5

0
0

c:
o

:;l
III
c:
.~

~..
o
o
u

........---......~
~
CIc::

Chapter 5. Results and discussion

•

r (A)

•
Figure 5.18: Comparison of the partial radial distribution junctions of NÏ;),67ZrO.33
and the local atomic structures of crystalline N~Zr. The curves are the RDFij(r)
of Nio,67Zro.33 and the verticle bars represents the local atomic coordination numbers
in crystalline Ni: Zr.
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is consistent with the fact that the crystallization product of amorphous Nio.67ZrO.33

is not the Fee Ni2Zr phase but a body-centered orthorhombic peritectoid whose

detailed structure has yet to be worked out [66].

5.4

5.4.1

The chemical short-range order in Ni-Zr glasses

The Bhatia-Thornton representation

•

As discussed in chapter 2, the Bhatia-Thornton partial structure factors, Snn(Q),

S",,(Q), and Scc(Q) are useful for examining the chemical short-range order in amor­

phous materials. The Snn(Q) and Scc(Q) correspond to the mean square fluctuations

in the number density and concentration, respectively, and S",,(Q) denotes the cross

term between these two fluctuations. The Snn(Q), S",,(Q) and Scc(Q) for Nio.33ZrO.67

and Nio.67ZrO.33 are obtained by a linear transformation of the Faber-Ziman partial

structure factors using relations 2.48, 2.49 and 2.49. Each of these Bhatia-Thornton

partial structure factors and the corresponding correlation functions are discussed

bellow.

i,Snn(Q): The number-number structure factor describes the topological short

range order in the amorphous materials. l t reflects the local atomic configuration

irrespective of the type of atom. Therefore, Snn(Q) is expected to look similar to

the total structure factor S(Q). Figure 5.19 and 5.20 show this feature of Snn(Q) for

Nio.33ZrO.67 and Nio.67ZrO.33 glasses. Snn(Q) varies with composition. As shown in

figure 5.21a, the Snn( Q) for Nio.33ZrO.67 has lower amplitude than that for Nio.67ZrO.33.

This means that the number density fluctuation is relatively weaker in the Zr-rich

sample.
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Figure 5.21: The Bhatia-Thornton partial structure factors of Nio.33ZrO.67 and
Nio.67ZrO.33. The solid lines are the Sn,e(Q) for :z: = 0.33 obtained using the iso­
morphous method while the dashed lines are that obtained using combined x-ray and
neutron diffraction. The dotted lines are the SnAQ) for:z: = 0.67.



The Fourier transform of Snn(Q) gives the number-number pair distribution func-•
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tion, Pnn(r), which is related to the partial atomic pair distribution functions by:

Pnn(r) = C1PIl(r) + c2P22(r) +P12(r)

= clPl(r) +c2P2(r)

where p,(r) = ~j p,j(r). Figure 5.22a shows the reduced number-number correlation

function Gnn(r) = 41rrpnn(r) for both compositions 4. The first peak of the Gnn(r)

for :>: = 0.33 is relatively broad with the maximum at 3.12À . There is a very

pronounced shoulder at low r side. It shows the contribution of the number density

around Ni, the small atoms. This contribution becomes very strong for:>: = 0.67

shown by the low r position of the first peak, r ~ 2.66À, and the large amplitude of

the Gnn(r) for Nio.67Zro.33' These cha.racteristics reflect the predominance of small

atoms in the number density in the Ni-Zr glasses.

ii.S",,(Q): The number-concentration structure factor describes the correlation

between density and concentration fluctuations. The oscillations of Snc(Q) around

zero reflects the size effect between the two types of atoms. As shown in figure

5.21b, in spite of the large difference in the atomic size of the two constituent

atoms, the amplitude of the Snc(Q) (dotted line) for the Ni-rich alloy remains low.

This indicates less size effect in the Ni·rich sample. For the Zr-rich alloy, however,

a stronger size effect is revealed by the large amplitude of the corresponding Snc(Q)

(solid line).

The Fourier transform pnc(r) of Snc(Q) is a measure of the difference in the

'In the Iiterature, the discussion is usually carrïed out in terms oC the reduced correlation
Cunctions. ThereCore, in figure 5.22 the Gn,e(r), rather than the l'nAr) are presented.
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atomic distribution function of two types of atoms:
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(5.1)

•

The reduced number-concentration correlation function G",,(r) = 4".rp",,(r) for both

compositions is shown in figure 5.22b. The two curves are relatively in phase, but

the Zr-rich sampIe has higher first positive and negative peaks. It indicates that the

density fluctuation in Ni-Zr glasses increases with the concentration of Zr (the big

atoms). Furthermore, the position of the first positive peak (r - 2.7.'1) and the first

negative peak (r - 3.2.'1) seems to be independent of composition. This means that

in Ni-Zr glasses the number density around Ni atoms at 2.7.'1 is always higher than

that around Zr atoms, and the opposite situation occurs at r - 3.2.'1.

iii.Scc (Q): The concentration-concentration structure factor oscillates about C1C2,

where Cl and C2 are the concentrations of the two constituents. Figure 5.2lc shows

the 8«(Q)/C1C2 for both Nio.33Zro.67 and Nio.67Zro,33' The first peak of the 8«(Q) for

:z: = 0.33 is positive at Q =2.4.'1-1 while that for :z: = 0.67 also has a positive first

peak but it appears at a much lower position, Q =1.7.'1-1
• A peak at Q ~ 2.'1-1 is

usually called pre-peak. Th.. pre-peak is often considered as an indication of strong

chemical short-range order in amorphous materials. This can be misleading. Further

discussion on the relationship between the pre-peak and the chemical short-range

order will be given section 5.4.2.

The Fourier transform of 8..(Q) yields the concentration-concentration correla­

tion function, P..(r), which tells how much the local chemical composition dilrers

from the average composition. The positive peaks of the Gce(r) -;orrespond to the

clustering of one type of atom while negative peaks show the tendency towards

segregation between unlike atoms. Figure 5.22c shows the reduced concentration-
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Figure 5.22: The number-concentration correlation functions of Ni.,Zf)_=, :z: = 0.99
and 0.67.



concentration correlation function G",,(r) = 4?rrp",,(r) for Nio.33Zro.e7 and Nio.e7Zro.33'

The two curves have inverted maxima and minima. It is clear that, for both compo-•
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sitions, the intensities of the positive peaks of G",,(r) balance those of the negative

peaks. This means that the local clustering effed of Ni or Zr atoms is cancelled out

by the segregation tendency between Ni and Zr atoms. This is evidence of smalI

chemical short range ordering in the Ni-Zr glasses. Indeed, the chemical short range

order parameter al (equation 2.55) for both the compositions is found to be smalI in

companson with that of other Ni containing metallic glasses (see table 5.3). Ni-Zr

glasses are therefore a quite random mixture of Ni and Zr.

Table 5.3: The chemical shor range order parameter of amorphous Ni-Zr compared
with other Ni containing glasses.

glass Nio.slBo.1B Nio.sPo.2 Nio.4Tio.e Nio.33y o.e7 Nio.33Zro.e7 Nio.e7ZrO.33
al -0.21 -0.23 -0.2 -0.15 -0.024 -0.047
ref. [103] [107J [36] [38] This work This work

5.4.2 Relationship between the "pre-peak" and the chem­
ical short-range order

It should be noted that the See(Q) of Nio.e7Zro.33 has a pronounced pre-peak at

Q = 1.7À-l. The S",,(Q) of Nio.33Zro.e7, however, has a first peak centered at

Q =2.45À-1. Based on the difference between the S",,(Q) of Nio.33Zro.e7 and that of

Nio.e7Zro.33, the relationship between the "pre-peak" and the chemical short range

ordering in amorphous materials is now discussed.

As indicated in chapter 4, for many metallic glasses, a pre-peak is often ob­

served in the neutron diffraction pattern which is absent in the x-ray curves [33,102-



104,108J. Sometimes, a weak pre-peak appears in the x-ray pattern and becomes

the main peak in the neutron pattern [30,109]. In the literature, the presence of a

pre-peak is often attributed to chemical shor-range ordering in the material. This

is probably because of the following:

• Only the partial structure factor 8..(Q) may have the first peak at Q < 2À-1 j
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•

• 8..(Q) represents the chemical short-range ordering in the materialj

• The weighting factor W nn for neutron diffraction is sometimes larger than that

for x-ray diffraction. When the neutron experiment is performed on a zero

a.Iloy, the total structure factor is identical to the quantity 8..(Q).

However, as indicated in reference [110J (1983), difficllities arise with the original

Bhatia-Thornton forma.lism in the interpretation of the structure factor of NisoNb4o.

For this system, a pre-peak is observed only in the neutron pattern, but the weighting

factor w.. for neutron diffraction is 60% sma.Iler than that for x-rays. Unfortunately,

this work seems to be ignored in subsequent structural studies of meta.Ilic glasses in

which a pre-peak observed in the neutron diffraction pattern is still simply explained

as an indication of chemical short range ordering without giving any further evidence.

In this work, the neutron diffraction patterns of Nio.33ZrO.67 and Nio.S7ZrO.33 both

show a pre-peak which is absent in the x-ray patterns of the corresponding Ni-Zr

or Ni-Hf sa.mples. However, as listed in table 5.5, the neutron weighting factor w..

is, in some cases, much sma.Iler than that of x-rays. The peak position is about the

sa.me for the two compositions (Q •.: 1.75À-1) but the intensity of Nio.33Zro.S7 is 10%

lower than that of Nio.S7ZrO.33'

For Nio.33ZrO.67, as shown in figure 5.21c, the 8..(Q) deduced from x-ray and neu­

tron diffraction data (dashed line) shows no pre-peak neither does that deduced from
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Table 5.4: Bhatia-Thornton weighting factors for NÏ<J.33ZrO.57 and NÏ<J.57ZrO.33' The
data for x-ray experiments are given at Q= 0.0.4:-1

measurement sample wnn W"" Wc<

x-ray Nio.33ZrO.57 0.9784 -0.6017 0.0216
.. Nio.33Hfo.57 0.8875 -1.3289 0.1125

neutron Nio.33ZrO.57 0.9685 0.7411 0.0315
x-ray Nio.57ZrO.33 0.9730 -0.6686 0.0270

.. Nio.57Hfo.33 0.8154 -1.6334 0.1846
neutron Nio.57ZrO.33 0.9750 0.3309 0.0250

from the x-ray isomorphous substitution data (solid line). On the other hand, the

Sce(Q) of Nio.57ZrO.33 (dotted line), which is obtained from x-ray and neutron diffrac­

tion data, has a strong peak at Q = 1.7À-1. Although the origin of the pre-peak in

the neutron pattern of Nio.33ZrO.67 is still unknown 5, it is evident that the pre-peak

is not necessarily a consequence of the modulations of the concentration fluctua-

tion term Sce( Q). The chemica.! short range ordering in the materia.! should only

be examined with the Sce(Q) itse1f and its Fourier transform, the concentration

fluctuation correlation function Pce(r).

SThe ratio of Ni and Zr scattering amplitudes is mueh smaller for x-rays than for neutrons.
Therefore, it seems ta be possible that the pre-peak which was only observed in neutron diffraction
is caused by the correlation between Ni-Ni atoms. This is, however, inconsistent with the results
presented in sections 5.3, 5.4.1.
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Chapter 6

Conclusions

This thesis presents a structural study of Ni-Zr metallic glasses. It is the first time

that a careful and systematic investigation into the structure of a glassy metallic

system has been carried out. The results have improved our understanding of the

structure of metallic glasses and c1arified confusion in previous studies.

The a.morphous a.IIoys Ni~Zrl_~' 0.25 ::; :z: ::; 0.86, were prepared using both

melt-spinning and sp·ùttering. The total structure factors of these a.IIoys were ob­

tained from x-ray and neutron diffraction, as weil as anomalous x-ray scattering. We

selected two compositions, Nio.33Zro.67 and Nio.67Zro.33, for a deta.iled study of the

partial structure factors. Isomorphous substitution (partia.lly or tota.lly replacing Zr

with Hf) and combined x-ray and neutron diffraction were employed to obtain these

partial structure factors.

We used both high-angle fitting and the KMN method together to normalize the

diffraction data. The resulting total structure factors have the accura.a.cy of 1-4%.

We also obtained the total radial distribution functions and the nearest neighbor

coordination numbers from the total structure factors. Our results show that these

quantities for Ni-Zr glasses have strong composition dependence. A structural turn­

ing point is found at Ni concentration of - 0.45. This characteristic is in good

123



agreement with the composition dependence of the e1ectrical resistivity and ther­

moe1ectric power of Ni-Zr glasses. It suggests a c1o~e relationship between the near

neighbor atomic structure and the electron transport properties of these alloys.

Based on our studies of the total structure factor, the total radial distribution

function, and the crystallization enthalpy in the whole range of composition, we

have shown that there is no difference between the atomic structure of melt-spun

and sputtered Ni-Zr glasses.

We obtained two independent sets of Faber-Ziamn partial structure factors for

Nio.33ZrO.e7 from seven independent isomorphous substitution measurements and

combined x-ray and neutron diffraction experiments. The two sets of results are in

agreement and the overall uncertainties of these partial structure factors is less than

4%. Our study confirmed the relability of the isomorphous substitution method in

evaiuating the partial structure factors of Ni-Zr(Hf) glasses. The Faber-Ziman par­

tial structure factors of Nio.67ZrO.33 were obtained using combined x-ray and neutron

diffraction with an accuracy better than 4%. The Faber-Ziamn partial structure fac­

tors are found to be strongly compositional dependent. Therefore, it is inappropriate

to use the concentration technique to evaluate the partial structure factors of metal­

lic glasses. The partial radial distribution functions ...-"re evaluated for Nio.33Zro.e7

and Nio.67Zr0.33. The results gave us a complete insight into the local atomic struc­

ture of these metallic glasses. The local topological order in amorphous Nio.33ZrO.67

is found to be quite similar to that in crystalline compound NiZrz. Unfortunatly

the structure of crystalline NizZr has not been completely worked out, therefore, a

similar comparison cannot be made for the Nio.e7ZrO.33 alloy.

We have also discussed the chemical short-range order in the Ni-Zr glasses in

terms of the Bhatia-Thorton partial structure factors. Our results show that, com-

•

•
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pared to other Ni containing metallic g1asses, a relatively random mixture is re­

tained in Ni-Zr glassy system. It is shown that the pre-peak observed in the neutron

diffraction pattern of metallic glasses in not necessarily due to the modulations of

the Bhatia-Thornton concentration fluctuation term Scc(Q). Our results reveal no

correlation between the pre-peak and chemical short range-order in Ni-Zr glasses.

Therefore, the chemical short-range ordering in amorphous materials should only

be examined with Scc(Q) and the concentration-concentration correlation function

pcc(r).

Suggestions for further research

Further studies should he carried out using the Reversible Monte-Carlo (RMC)

simulation to model the atomic structure of Ni-Zr glasses. The RMC modeling could

be used to extract the three dimentional informa.tion from our precisely measured

partial structure factors and provide further structural information, for example, the

physical configuration and the bond angle distribution in the Ni-Zr metallic glasses.

The accurate Faber-Ziman partial structure factors determined in this work could

also be used to calculate the electrical resistivity and thermoelectric power of Ni-Zr

metallic glasses and to examine the validity of the Faber-Ziman mode!.



•
Appendix A

The mathematics in the evaluation of the partial structure factors

In principle, the partial structure factors can be evaluated from three indepen.

dent measurements by solving the linear equations:

T(Q) = W(Q)P(Q)

where T(Q) is the vector of total structure factors:

T(Q) = [~:~~~=~]
Ss(Q) - 1

P(Q) is the vector of the partial structure factors:

[

S;;(Q) - 1 ]
P(Q) = Sij(Q) -1

Sjj(Q) - 1

and W(Q) is the matrix of the weighting factors:

[
1 1 1]W,i Wi; W;;

W(Q) = w?· w?· w~·
Il ., "

w~· w~· w~·
Il ., JJ

(7.1)

(7.2)

(7.3)

(7.4)

•

A unique solution is found if the determinant of W(Q) is different from zero, i.e.

if the three equations are linearly independent. Ma~hematically,the conditioning of

126
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a weighting factor matrix ~'.n be measured by the normalized determinant of the

weighting matrix:

IW,,(Q)I = IWii(Q)/{L:[Wii(QW}1/2\
i

(7.5)

A well-conditioned set of equations yield IW,,(Q)I of order ±1. It can be shown that,

for the metallic glasses whose three partial structure factors have been eva.1uated

so far, IW,,(Q)I is norma.lly very sa.mll (10-2 - 10-4 ) 1, i.e. the set of equations

(equation 7.1) is ill-conditioned.

Depending on the conditioning of the matrix W(Q) the solution of equation 7.1

may be obtained using one of the fol1owing methods:

1. The direct solution

2. The least square eva.1uation

P(Q) = [W'(Q)W(Q)t1W'(Q)T(Q)

3. The "ridge regression" eva.1uation

p.(Q) = [W'(Q)W(Q) + aIj-1W'(Q)T(Q)

(7.6)

(7.7)

(7.8)

•

where W'(Q) and W(Q)-1 are, respectively, the transpose and inverse of the matrix

W(Q). The parameter Cl: in equation 7.8 is an arbitrary number which will be

disscused later.

When W(Q) is ill-conditioned, the elements of the matrix W-1 are often very

large numbers. Therefore, in equation 7.6, the errors in the total structure factor

1WagneI has given the values of IW,,(Q)I fOI some p"evious studies in bis Ieview papeI in
refeIenee [5] .
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vector T(Q) are greatly a.mplified. As a consequence, the results given by p.(Q) is

usual1y physical1y meaningless.

The least-square solution 7.7 is a biased estimate of 7.1. It ha.as been proved

mathematical1y, that for ill-conditioned data, (e.g. IWn(Q)1 - 10-4
) the least­

square estimate is expected to be a very poor representation of the true vt:ctor

P(Q) in equation 7.1 [100,101]. Therefore, the accuracy of the least-square solution

must be exa.rnined with additiona.! experiments.)

Strictly speaking, there a.!ways exist some uncertainties in the experimenta.! data.

Thetefore, the partia.! structure factors should be eva.!uated from

T(Q) = W(Q)P(Q) + E(Q) (7.9)

where E(Q) is the error in the vector T(Q). Equation 7.9 is a typica.! problem for

which the solution can be obtained using ridge regression analysis [100,101]. Let

P'(Q) in equation 7.8 be the solution of 7.9, the error in vector T(Q) is then given

by

E'(Q) =T(Q) - W(Q)P'(Q)

and the variance in P'(Q) is given by

(7.10)

V(Q) = [W'(Q)W(Q) +aIj-l[W'(Q)W(Q)][Wa'(Q)W(Q) +aWl(T2:r., (7.11)

where (T is the statistical error in the tota.! structure factors and :r., is the iàentity

vector. Therefore, the tota.! error in P(Q) is given by

I:(Q) = E"(Q)E'(Q) +Tr[V(Q)] (7.12)

•
where Tr[V(Q)] is the trace of V(Q). Tt has proved that there exists a a > 0

(typical1y 10-4 to 1) such that the errors in P(Q), I:(Q), are minimized.
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It can be shown that the ridge analysis solutions are the linear combinations of

the ordinary solutions P.(Q):

PO(Q) = [W(Q)'W(Q) +aW'[W(Q)'W(Q)]Po(Q) = Z(Q)Po(Q) (7.13)

With ill-conditioned data, off-diagonal elements of Z(Q) are found not negligilbe.

This means that the ridge analysis solutions PO(Q) are the linear combinations of

p.(Q). Since the ridge regression results are biased estimate of the true partial

structure factors, is it necessary to renormalize the matrix Y(Q), such that

y;~(Q) = lii(Q)
'J ~i lii(Q)

(7.14)

This renormalization is equivalent to the physical constraint that Sii(Q) --+ 1 as Q --+

00 [35J. The solution of equation 7.8 is finally given by

PO(Q) = YO(Q)T(Q) (7.15)

and the 'mcertainty in the partial structure factor vector P(Q) can be estimated by:

(7.16)

•

The ridge analysis has been used by Wagner and his coworker to evaluate the

partial structure factors of metallic glasses [35,111]. In practice, it is desirable

to examine the ridge solution for a range of admissible values of a: with physical

constraints and additional experimental data. The computer program using the

ridge analysis to evaluate the Faber-Ziman partial structure factors in this work is

a..-ailable from the auther on request.
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Appendix B

Feasibility study using anomalous x-ray scattering.

Anomalous x-ray scattering experiments were performed at the F3 beam station .

of Comell High Energy Synchrotron Source (CHESS) Laboratory, Ithaca, New York,

U. S. A. The experimental arrangement is shown in figure BI. The intense white

radiation from th", storage ring was monochromatized by a pair of Sie111) single

crystals. The intrinsic bandpass of this monochromator assembly is LlE/ E = 1.3 X

10-(. The curvature of the reflection planes of these crystals can be changed so

that the incident beam energy can be adjusted. A Zr-foil was used to calibrate the

primary beam energy. The foil was 25JLm thick and the absorption edge is

Ex = 17.998keV

An ic:..:l chamber was placed after the source slit to monitor the incident beam in­

tensity.

The samples were the same as those used for the 211 scanning x-ray diffraction

experiments. They were mounted on a Huber four axis diffractometer. The w and

211 goniometers were aligned using a pin mounted at the center of the diffraetometer.

The experiments were performed in symmetrical transmission geometry. As shown

in figure 7, the transmittance of the sample was recorded using an ion chamber at

211 = 0° while the scattering intensity was measured with a phototube, scintillation

detector.

130



• Figure BI: A schematic diagram of the setup used in the anomalous x-ray scattering
experiments.
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•

The experiments were carried out at at severa.! energies around the K-absorption

edge of Zr. The energies were 17.45, 17.50, 17.675, 17.80, 17.90, 17.95, 17.975,

17.99, and 18.00keV. The software used to collect the diffraction data was sirnila.r

to that used in the conventiona.! x-rl>Y diffraction experiments. For 5° ~ 28 ~ 60°,

a stepwidth of 0.2° was used, for 60° ~ 28 ~ 120°, a stepwidth of 2.0° was used.

Since the storage ring is filled at about 60 minute interva.!s, each measurernent

(5° ~ 28 ~ 120°) was done in about 50 min.

The data reduction for the anoma.!ous x-ray scattering experirnents is simi!ar to

that for the conventiona.! x-ray diffraction measurements (see chapter 2). The tota.!

structure factor of Nio.33ZrO.67 was obta.ined for severa.! energies around the K-edge

of zirconium. However, these results were not used in this research for two reasons:

1. The subtraction of the Compton scattering intensity C(Q) from the raw data

lol>o often causes large uncerta.inties because, at large va.1ues of Q, C(Q) can

be as high or higher than the coherent scattering intensity. As shown in figure

4.3, C(Q) can be effective1y eliminated by a diffracted beam monochromator.

However, because of the space limit inside the F3 hut at CHESS, we could not

use an ana.!yzer crysta.! in the diffracted beam 2;

2. The incident beam fluctuates because of the natura.! decay of the current in

the storage ring. Although an e1ectronic feedback system was used to com-

pensate the ring current fluctuation, the measured intensity curves were not

reproducible.

The motivation of performing the anoma.!ous x-ray diffraction experiments is to

obta.in reliable partia.! structure factors independent of the eva.1uations using x-ray

'The 29 axis is horisontal. When an analYler erYltal wu mounted in the diffraded beam, the
position of the deteetor wu 1imited to 29 < 50° before the 29 arm hit the eeiling.
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•

isomorphous substitution or combinations of x-ray and neutron diffraction. Umor­

tunately, this could not be realized in this work. Nevertheless, it was worthwhile

learning a.bout the anomalous x-ray scattering technique. With x-rays of 17.5keV

and 17.95 keV, one could obtain the total structure factors with a contrast as high as

20%. It is believed that, given more beam time, one could overcome the present ex­

perimental difficcities and obtain accurate partial structure factors of Ni-Zr glasses

from the anomalous x-ray scattering measurements.
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