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ABSTRACT

A survey of the minimal realization theory of Arbib and Manes for
"state-behavior” machines in a category is given, and how the closed
category machinss of Goguen are included in the above machines is
discussed in detail. A survey of the non-deterministic treatment due to
Arbib and Manes is given. A study of C-machines in a closed category for
amonoid C is given in both the deterministic and the non-determinisfic
cases. A notion of u-machine in a topos for a morphism of monoids u is
introduced and studied. A discussion of the category of H-valued sets as a
topos is given and finally some of the concepts of automata theory for the
deterministic case are investigated in this context, regarding the category
of H-valued sets as a closed category and especially when H is a finite
chain.
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RESUME

On donne une révision de la théorie de réalisation minimale d'Arbib
et Manes des machines "state-behavior" dans une catégorie. Un traitement
approfondi de comment les machines de Goguen sont comprises dans les
antérieures a été effectué. On donne une révision de ["approche
non-déterministe d”Arbib et Manes. On a étudié¢ des C-machines dans une
catégorie fermée pour un monoide C dans les cadres déterministe et non-
déterministe. Une notion de u-machine a été introduite ct étudiée dans un
topos pour un morphisme de monoides 1. On donne une description de la
catégorie des ensembles H-valorisés en tant que topos; enfin, unc
investigation, dans ce contexte, de divers concepts de la théorie des
automates dans le cadre déterministe est donnée, en considérant la
catégorie des ensembles H-valorisés comme une catégorie fermce et plus
spécialement lorsque H est une chaine finie.
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INTRODUCTION

The aim of this thesis 1s to discuss in some detail certain aspects of
automata theory (or the theory of machines) in a category and in a closed
category, following the pioncering work of Aibib & Manes [2, 4, 5, 6],
Bainbridge [8], Ehrig [ 18], and Goguen [22], to mention a few.

A topos is a special kind of category [27], and a particularly
illuminating example of a topos in connexion with logic 1s a topos of H-
valued sets for a complete Heyting algebra /1, introduced by Higgs [25].
After discussing the concepts in general, they are then studied n this type
of category, for the deterministic case, in order to gamn some ntuition for
the type of generality afforded by the categorical approach.

Automata theory pre-dates digital computers and 1s today a basic
tool in the newest theories of concurrent computation. The main point of
the categorical machine theory was to give a unified treatment of
important concepts arising from system theory and automata theory. The
present thesis uses mainly as a framework of discussion the Arbib-Manes
formulation of the categorical machian2 theory and the origins of that
formulation lie in the elements traced n1 what follows .

The hinear systems had a module-theorctic approach in the work
due to Kalman [28] 1in 1969, however its origins lic m the theory of
continuous-time hinear dynamical systems. Arbib and Zeiger showed [7]
that a number of Kalman’s concepts were special cases of notions
developed 1n automata theory and they suggested the use of category
theory in the study of this new perspective; Goguen's machines in a closed
category |22] formahized this much. The works done by Arbib & Manes
[2] and Bainbnidge ;8] followed shortly. Before Dyn(X) (see 1.1.1) was
introduced to study categorical automata, 1t was very closely studied by
the Prague school [1] involving Addmek, Trnkovd, Reiterman and others
in the years 1970-74. Another element of influence was the development
of triples (or monads) 1n the sixties.

The non-deterministic case was subsequently treated by Arbib and
Manes mn {4] and {32] and elements that played an important role on that
development were the triples, the work done by Beck on distributive laws
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[11], the Kleisli categories [29], and the notion of "scoop” mtroduced by
Ehrig [ 18] and modificd by Arbib and Manes.

As mentioned before a special kind of category used m this thesis 1s
that of a topos [27]. Topos theory has its origins m two different areas of
mathematical rescarch in the sixties. Firstly the word "topos” was used by
Grothendieck in the context of algebraic gecometry to denote categories
satisfying certain conditions; these kind of categones are called at present
Grothendieck toposes. Secondly Lawvere attempted to aviomatise the
category of sets and later, in 1969 Lawvere and Tremey  began o
investigate the consequences of taking the existence of a subobject
classifier as an axiom and the outcome was the mote general notion of
(elementary) topos. In words of M. Bunge [16], "A topos may be viewed
as a universe of variable sets, as a generahzed topological space, and as a
semantical universe for higher order intuttionistic logic” A generalised
concept of "set” as consisting of a collection of (partial) elements with a
measure of the degree of equality of these elements admits an axiomatic
treatment in particular toposes, namely the toposes ot /{-valued sets for a
complete Heyting algebra £125].

The preliminaries of this thesis contain somce basie notions of
automata theory that are generalized 1 the categonical approach

Chapter 1 contains, 1 section .1, a survey of the minimal
realization theory of Arbib and Manes for "stote-behavior” machmes i a
category [2. 5, 32]. Section 1.2 deals with the closed category macihines of
Goguen [22] and contains a detailed discussion of the known tact ot therr
inclusion in the "state-behavior” machimes. The chapter ends with a survey
of the treatment given by Arbib and Manes of the non-deterministic case
(4, 32].

Chapter 2 mcludes inoats section 201 a detanled discussion of
C-machines 1 a closed category for a monoid C, following section 1.1 as
a guide and making use of the notion of right actton of a monord on an
object. Section 2.2 extends the approach of the C-machmes m a closed
category of section 2.1 to the non-determmistic case following section
1.3 as a framework Section 2.3 deals with a notton of w-machine
in a topos for a morphism of monoids «, this notion has been obtained
from the ideas related to the machines i the hyperdoctrine (cat, Set) of
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Bainbridge [R]; this approach extends the one given in section 2.1 when
the closed category is also a topos.

Chapter 3 contains in section 3.1 a description, without proofs, of
the category of H-valued sets as a topos following the work due to Higgs
[25] and then, a detailed description of the exponentiation, the coproduct
and the "free monoid" on an object in that category arc given. In section
3.2 the concepts of reacnability, response map, run map, and observability
arc investigated for a machine in the category of //-valued sets, regarding
1t as a closed category, and especially when /1 is a finite chain.

In addition to a detailed and unified description of developments
which are given in the literature quoted n the references, the present
thests contains some origmal work, as follows. In 2.2.8. the notion of a
"d-machine” 15 introduced and this. i turn. 15 employed in order to
transport the non-determnistic case to the context of the machmes in a
closed category for a monoid C. In 2.3 the 1deas related to the concept of
machme n the hyperdoctrine (car, Set) of [8] are used to introduce and
study the notion of w-machine in a topos relative to a morphism of
monoids 1, giving 1 this conteat a correspondmg "minmmal realization
thecorem™. For [/l-valued sets, a detailed descuption of the notions
involved in the theory of muachines for the deternministic case 1s given,
regarding the latter as a closed category. FFinully, the meaning of these
concepts 15 made precise in the case of 4 topos of fl-valued sets for a
finite cham /1.




PRELIMINARIES

These preliminaries contain some basic concepts of automata theory
that are generalized in the categorical approach.

Sequential machine. One may imagine a machme that can be m any
one of a finite number of mternal configurations or states, receive any
one of a finite number of mputs, and enmit any one of a fimte number of
outputs. One may think of it as receiving mputs, changing states, and
emitting outputs once every "cycle” of some clock which tinies its activity.
Such a system may be represented as follows |6, p. 93] :

A sequential machine s a sextuple M = (X, 0. 0, go. Y. ) where
X0, Q.and Y are sets ( called the set of tnnurs, states, and outputs
respectively), goe Q s the mitial state, and 6 OxXNg —» Q0 and
B: OXXy — Q are functions ( called the neve-seare function or dynamics
and owutput map respectively ). M s said to be finre 1t Xo, QO ind Y oare
all finite scts.

Taking the "cycle time” of M7 "clock™ as the unit on the time scale,
one can mmagime M as representing a system which starts in ostate g at
time O, and which 15 such that 1f 1t 1s 1 state (1) € QO at time ¢, and then
receives mput (). it will ennt output (v (£) = Brgr)) € ¥ and then settle
into state ¢(t+1) = dq(r), (1)) € @ by tme r+]

Run map. Given a sequential machine A, a4 smgle input v e Xo  sends
M from state ¢ to state &y. x) . from which a second input " sends M
to state S(O(g. v), x'), from which a third mput v sends M to state
6(S((qg, x), ), vy, and so on In gencral. let X" be the free monoid
generated by Xg. one defines mductively 0" OxX¢™ » () by:

5 g, A) = ¢ forall g e QO wheie A denotes the umit ot Xo*,

O (g, wy) = 0(S (g, w), v) forall e O, we Xo™. ve Xo.
6 is caelled the run map of the dynamics & OxXg —> Q ot M
(16, p. 97] and (2, p. 165]).

Reachability and observability. Two important questions 1 automata
theory (|6, pp. 97-100] and 132, p. 293]) are the following .
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Reachability : Given a state ¢ of a sequential machine M does
there exist a sequence of inputs which will drive M from its initial state
go to that state ¢ ?

Observability . Given a sequential machine M which may be in
either state ¢ or ¢, does there exist a sequence of mputs, M’s response to
which will enable someconce to tell the two states apart ?

The reachabiity map of M 15 the map 1 : X9 — Q that sends w
to 8*(qo.w). M is said to be reachable if 1 is a surjective map, i.e. if
cvery state of 0 1s reachable from ¢q. The input/output response 0. M
is the map [: Xo* > Y defmed by f=fB-r

The observability map of M 1sthe map o: Q — YXy' that sends
the state ¢ to My wheie M, (w) = B(6™(¢. w)). My 1s the input/output
response which would result 1if ¢ ( rather than ¢¢ ) were the initial state.
M is sard to be observable f o 15 an injective map, r.e. it distinct states
have distinet responses.

Realization A basic concept of automata theory is that of realization:
An arhitrary tunction f: Xo* — Y is called a response, and a sequential
machine M=(Xq, Q. 8, qo, Y. p) 15 called a realization  of f if its
mput/output response comncides with £ It is intuttively clear that optimal
rcalizations of / must be at least reachable and observable. A reachable
and observable realization of f always exists [32, p. 293].



1. MACHINES IN A CATEGORY : A SURVEY.
1.1. Machines in an arbitrary category.

(1.1.1) Let € bea category. A process in C is an endofunctor
X :C— C . The category Dyn(X) of X-dvnamics has as objects all
pairs (Q, 6) where Q 15 an object of C and §:XQ — Q isa
C-morphism, and as morphisms, X-dynamorphisms, f :(Q, 8) — (Q ", §)
all C-morphisms f:Q — @ such that :

)
XQ —» (0

Xfl lf

XQ'———» Q-
6/

commutes. Composition and identities are defined as in C. [2, p. 177].

For example, considering the category Set of sets and maps and a
fixed set X, one has the functor -xXq:Set— Set that scnds
f:Q - Q7 to fxl:0OxXo— Q%Xg, and an (-xXg)-dynamics 15 just
a map O : OxXqg — Q. the next-state function of a sequential
machine.[5, pp. 315-316].

(1.1.2) Let (Q.d) be an object of Dyn(X), [/, Y objects of C:
7:1-> Q. B:Q — Y morphisms in C. A machine i C for the
process X isa O-tuple M =(Q, 6,1, .Y, B). O, 1, Y are called
respectively the state object, intnal object and output object; T 15 the
initial state, and B is the owpur morphusm. (12, p. 177] and {32, pp. 294-
295])).

For example, considering the above process -xX(: Set - Set ,
6:0xX0— Q, qo:1 = Q (viewing the arrow as an clement gy e )
and a map B:Q — Y, the 6-tuple M=(X), 0.8 q¢0 Y B is
a sequential machine . |5, pp. 313-314].

(1.1 1




(1.1.3) X is called an input process if the forgetful functor
U : Dyn(X)-»> C has a left adjoint. The free dynamics over @ with
respect to U will be denoted by (X@Q, upoQ ), nQ). The unique
dynamorphic extension of the initial state 7:/ — Q 1s called the
reachability map r: (X@I, upl ) = (Q, 8) of M :

nl Uol
| —» X9 XX® —— _» X@
, Er Xrl lr
 /

The response map of M is defined to be the C-morphism
Br:X@ —» Q — Y. Amap f:X@ — Y iscalled a response
and if a machine M has as response map f, one says that M is a
realization of f. (|32, p. 295] and {2, p. 179]).

The torgetful functor U : Dyn( -%xX() — Set has a left adjoint :
Given a set Q. the free dynamics over (@ with respect to U is
(QxX0o*, 1o0). nQ) wheie Xo* is the free monoid generated by Xo,
HOQ  (OXXp)xXg = OxXog*  sends  ((¢,w),x) to (g, wx) and
nQ : Q - OxXo™ sends ¢ to (4, A), where A denotes the unit of Xg™.

Given &6 1 Q%Xp—- Q" and f:Q — Q7 the two diagrams :

nQ Ho Q .
Q —» QxXO* (Q xXO*)xXO — O x X,
) E f# f¥x i
\J
0 Q,XXO____(S_’___, 0’

give, by recursion,
g, A =f(q)
f#(q, wx) =8 (f*q, w), x)

(1.1) 2



The reachability map of M = (Xo, O, 8, ¢y, Y. B) is the unique
dynamorphic extension of the initial state ¢,:1 — Q anditis given by :

r(1, A) =gq,
r(1, wx) = 6(r (1, w), x)

And their response map is the composition S-r: IxXo* = Q = Y. (|2,
p. 176] and 32, pp. 293-296]).

(1.1.4) X is called an output process if the fo:zetful functor
U: Dyn(X) - C has a right adjoint. The cofree dynamics over Q with
respect to U  will be denoted by (X@Q, LO). AQ). The unique
dynamorphic coextension of the output morphism B: Q -> Y is called
the observability map o :(Q, 8) » (XY, LY) of M :

AY LY
Y «— XY XXV —» XpY
A
B EO‘ XO'T TO’
Q X0 —6’ Q

32, p. 295].

The forgetful functor U : Dyn(-xX¢g) — Set has a right adjoint :
Given a set @ , the cofree dynamics over (0 with respectto U is
((QXo™, LO), AQ) where QX(™ is the set of all maps from Xo*to Q,
LO : OXg'xXp* — 0Xo~ sends (¢,x) to  gl, where
Ly: X" Xo™ sends w 1o xw and AQ:0X)"— O sends g to
g(A). Given 6 :0xXg—> Q" and [f:Q — Q, the two diagrams :

(1.1) 3




AQ X()* X()* LQ XO*
QO «+— ( Q0 xX,—/» 0

\?f# f#xlT Tf#
0’

0’ xX ,—> 0
6/
give, by recursion,
[ fa(g)I(A) =f(q")
[ fi(g )] (xw) = [ f#(87 (q", X)) (W)

(32, pp. 295-296).
The observability map of M = (X0, Q, 6, ¢,. Y. B) is the unique

dynamorphic coextension of the output map B:Q — Y and it is given
by : '
o(g) = Mq € YX()

where My(A) = B(g) and Mgy (xw) = M§ (g, x)(w). (6, pp.99-100].

(1.1.5) X is called a state-behavior process if it is both an input
and an output process. |5, p. 318]. Hence the process -xX¢ :Set — Set

is state-behavior.

(1.1.6) Let X be an input process in C , for each object (Q, ) of
Dyn(X), the run map of (Q, d) is the unique dynamorpbic extension
& . (X@Q, noQ) — (0, 0) of lg:

no Mo @
o—— X@p X X9 ——» X €0
\ I
5@ xs@l la@
lQ +
Q X0 —-—6—" 0

12, p. 179].
(1.1) 4




The run map of (Q, 6) for the process -xX(:Set — Set is
& 1 (OxXo*, uoQ) — (O, é) where :
8*(q, A =q
8 (g, wx) = 8(6*(q, w). x)
[6, p. 97].

(1.1.7)  An image factorization system for a category C is a pair
(E, M), where E and M are classes of morphisms in C satisfying the
following axioms :

(1) E and M are subcategorics of C.

(i) E is included in the class of epimorphisms of C and M is
included in the class of monomorphisms of C.

(ii1) If f is an isomorphismin C, then fe E and fe M.

(iv) Every morphism f:A— B in C has an E-M factorization
which is unique up toisomorphism. More precisely, there exist a
pair (e, m) and an object (denoted by f(4)) such that
e:A—>f(A), m:f(A)> B, eec E, me M and f=nme;
moreover, if (¢e’,m") and [/ (A" are  such that

A A, mifA))" >B, ¢eE, me M and

f=m"e” then there exists an isomorphism y : f(A) — [f(A)]’

such that makes the following diagram commute:

fCA)

~N

14

-

/\

N S

m’

S~
~

)

In Set, the pair (E,M) where E ={ surjective maps } and
M = { injective maps} is an image factorization system. (5, p. 322].

(1.1) S




(1.1.8) ( Diagonal fill-in Lemma [5, p. 323] ). Let (E, M) be an
image factorization system for a category C . Given a commutative
square g-¢ = m-f

with e€ E and m e M, there exists a unique 4 with h-e =f and
mh =g,

(1.1.9)  ( Dynamorphic image Lemma [5, pp. 325-327] ). Let
h (O, 8 — (@, 8) be a dynamorphism and let e:Q —> Q7
m:Q° " — Q° bean E-M factorization of /. Then if either X
preserves E or X@ preserves E, there exists a unique dynamics 0" on
Q" such that ¢ :(Q, 8) = (Q”, 6) and m :(Q”, &) = (Q", &) are
dynamorphisms.

In the proof, for the case in which X@ preserves E, the following
facts are used :
- N1 X > X@ defined by n1A = ppA-XnA : XA — XX@A — X@A
for each object A of C, is a natural transformation.
- If &2 isthe run map of (Q, 8) then J¢-n1Q = 4.

- Ith:(Q, 8 — (Q°. &) isadynamorphism then /1:8% = §@. X@p,

(1.1.10) ¢« Cancellation LLemma (S, pp. 327-328] ). Let
e: (0,8 — (Q°, §) be adynamorphism with ee E, let (Q”, 67
be a dynamics and let f: Q" — Q" be an arrowin C such that
fe 1 (0, 8) — (Q, 6°°) is a dynamorphism. Then if either X
preserves E or X@ preserves E, f: (0, 8) > (07, 87) isa
dynamorphism.

(1.1.11) Let (E,M) be an image factorization system in C and
let M =(Q, 6,1, 1Y, B) beamachine; if X is an input process, M is
said to be reachable if r:X@I — Q isin E; if X is an output

(1.1) 6




process, M issaid to be observable if o:0 — XY isin M. [32, p.
303].

(1.1.12) Fixing / and Y, but letting Q vary, let X-mach be the
category whose objects are machines M =(Q, 6,/, 7. Y, ). and whose
morphisms are simulations y :M — M~ ic. dynamorphisms

v:(Q,8 — (Q, 6) such that:

1N
\/‘ﬁ

Let X be an input process in C, if w: M — M" is a simulation of
X- machines then M and M~ have the same response. |5, pp. 323-324].

(1.1.13) ( Minimal realization theorem [32, pp. 303-304] ). Let
X :C — C be a state-behavior process and let (E, M) be an image
factorization system in C such that either X preserves E or X
preserves E then :

For any response f: X@/ — Y there exists a rcachable and
observable realization My = (Qy, 65, 1, 1, Y, By) of f. Any such My is
a terminal object in the category of reachable realizations of [ and
simulations and any such My is an imtial object in the category of
observable realizations of f and simulations; thus My is unique up to
isomorphism.

Diagonal fill-in lemma, dynamorphic image lemma and cancellation
lemma are crucial points in the proof of the above theorem.

(1.1) 7




1.2. Machines in a closed category with countable coproducts,
relative to an object X,

(1.2.1) A monoidal category C =(C,®,E, o, A, p) consists of
a category C, a bifunctor ® : CxC — C , an object E of C, and

three natural isomorphisms a, 4, p. Explicitly,
oA B,C  ARB®C) = (A®B)®C

is natural for all objects A, B, C of C, and the diagram

o a
ARBR(CA®D)) —» (ARB)X(CRD) —» ((ABB)RC)®D

ou | o

AR((BR®C)®D) » (A®BEC)®D
04

commutes for all objects A, B,C,D of C. Asa:E®A = A and
pA : AQFE = A are natural for all objects A of C, the diagram

194
ARE®RC) —» (ARE)RC

1®/1\; A/p®l

A®C

commutes for all ohjects A, C of C, and Ap=pr: EQF — E.
The above data imply also the commutativity of the diagrams :

o (94
E®(B®C) —» (EQB)®C A®(B®FE) —» (A®B)®E
TN 2T 1®p T~ A/p
B®C A®B

(1.2) 8




The monoidal category C is called a strict monoidal category if,
further, «, 4, p are all equalities.

Any category with finite products is monoidai 1f onc takes A®B to
be (any chosen) product of the objects A, B and # to be a terminal
object, while o, A and p are the unique isomorphisms which commute
with the respective projections. [31, pp. 157-159].

(1.2.2) A monoid in the monoidal category (C,®, E, a, A, p)
is an object C of C together with two arrows u:(C®C — C,
n:E — C suchthat:

o U®1
CRO(CRC) —» (CRC)®C —p C&C

oy o

CxC » C

(associative law)

n®1 1®n
EQRC —» (®OC 44— COF

N

C

(unitary laws)

A merphism  f: (S, i, n) - (C7, ', ") of monoids is an grrow
in C f:C —> C’ suchthat:

C® C —» C E -——,—’—-b C

e f f ) ]

C}@)C'——» i ! \C$
u




The category of monoids in C is denoted by Monc .(|31, pp. 166-
167]).

(1.2.3)  If the monoidal category C has countable coproducts and for
cach object B of C, the functors B®- and -®B : C — C preserve
them, then for cach object A of C one has a "free monoid"”
(A*, 1, 19). In  fact (31, pp. 168-169] the forgettu! functor
U: Mon¢ — C has a left adjoint. Here is a construction of (A%, u, ip) :

Let A be anobject of C, for each nawral number n  one defines
the object A7 recursively as follows :

AO=F Al =4, Antl= A®An for n 21.

Now let (1 : A" — ® 5, A = A™), N be acoproductin C,
since -®A" preserves it one has that (i, ®1 : A @AN — A*®AnN),, is
also a coproduct. Morcover, since (1, : A — A*), s a coproduct in C,
one has that :

((U®uy ) (1, ®1) : AN AN — A*®AN — A* @A™ )y =
=y D1y AN DA — AT@A* Jin,n
is a coproduct in C.

Now, for any natural numbers m, n one defines the isomorphisms

Cmon T AMAN — Am+n g, follows :
For n =0:

Cm, 0 :AMQE — Am =p
For n 21:

CO o E®@AN 5 An =)

Clon TA®AN o A”+] =1
Cm +l, n= (1®(']n,” )O( —1: (A@A"l )®A” — A@(A'” ®A” ) —> A@A”l+?l
form > 1.

Now, since (i ®iy: AMm QAN —» A"®A™),.n is a coproduct,
defining g : A*®A™ —» A* by :

(1.2) 10



one has that (A*, g, ip) is a monoid :
- The diagram

[0 L ®]
AT (AT @A) — (A0 A" ) AT —A T w A

o] |,

A e A” » A"

commutes :
First, from the definitions of ¢, , one has that for any natural

numbers &, m, n the diagrams

k @ k Cam ® ! A+
m n m m n
A gla @A ) — (a4 g4 lga —» ® A
l 1® Cmon (‘k+m. n
k m+n k+m+n
CA, m+n

commute as can be shown by induction on 4.
Now, since (ix ®(i;m, ®iy ) : Ak AM @A) - ATOA™®A *))k,m,n

is also a coproduct in C, the fact follows from the commutative
diagrams :

! (1.2) 11




ik@('m@‘n) o #@1
k * * * * * * * *
A@(A'"®A")__,A B(A @ A*) g (A9 A )G A" —pAT®A

\ @l ®l
a n
\ k+r)1 /
(A QAMY@A™" A/x+m®An
1® ¢ k.m®1
e Ck+nn
" p
Ak®Am+n > Ak+m+n
, . Ck,m+n
" i I .
k®(n® ty) lk®lm+n lk+m+n
v v
AT®(A"®A") —p ATeA" > AT
I ®u u

- The diagram

commutes because the commutativity of the following ones :

l® 1 z()®l

n

E®@ A" __ g E® A" g A'e® AT
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- The diagram

AYe AT o AT ® E
“l
A*

commutes because the commutativity of the following ones :

m m ® I . le l() . .
A ® E —» A ® FE - A ® A
Ln® 1
\ //
lm ® 1 }l
Cm, 0 =P A" Ly
* \ *
A ® F P A

Therefore, given any object A of C, the triple (A*, u, ip) is a
monoid.®

(1.2.4) A monoidal category (C,®, E, a. 4, p) is called symmetric
if there are isomorphisms

SAB:AQB = BQ®A
natural in A and B for each pair of objects A, B of C, such that the

diagrams
SB.A SB.1
B®A —» A®B B —p OB
1\ A/“A,B PB\ //13
B®A B
(1.2) 13




(44 A
A®BRC) —» (AGB)®C —p CR(A®B)

1®s l l o

AR(C®B) —p» (AQC)®B —p (CRA)Y®B
o s®1

commute.

A monoidal category (C,®, E, a, A, p) where ® is the
categorical product is symmetric when s:AXB = BxA is taken to be
the (canonical) isomorphism which commutes with the projections.

A closed category C  is a symmetric monoidal category in which,
for any object A of C, the functor -®A : C — C has a right adjoint
(-¥:C — C ; e foreachobject B of C there is a morphism
ev:BA — B, called evaluation, such that for any object C of C and
any morphism f: C®A — B there is a unique morphism y:C — BA
such that makes the following diagram commute :

RA®A

A
Vel -\:‘v

CéA —» B
f
((31,p. 180] and [1b,p.63 ).

(1.2.5) Let (C,®,E «a, A, p,s) be a closed category with

countable coproducts, an X-monadic algebra [22,p.777] in C isan
arrow 0 :Q®X —» Q in C ; and a morphism f: 8 — 6  of such
algebras is a morphism f: Q — QO such that :
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o
O®X —» 0

f®1 l lf

Q"R —» 0
6/
Goguen denotes by MonaX the resulting category. In the terminology of
definition (1.1.1) this is in fact the category Dyn(-®X).

(1.2.6) Let C be a closed category with countable coproducts, then
the forgetful functor U : Dyn(-®X) — C h.s a left adjoint. ( A more
general result is given in [5, p. 319] ). A proof follows :

The terminology of (1.2.3) is used through this proof. L.et Q be an
object of C, if one takes the dynamics
(O®X*, (10 )-(1®(1 @) a1 :(Q®X")®X -5 Q®X™)
and the C-morphism (1®10)-p-1:0 - O®F — O®X* the only thing
remains to show is that given a dynamics (Q7, ") and a C-morphism
f:0Q — Q7 then there exists a unique dynamorphism
S O®X*, (10u)-(1(1®i1)-a 1) = (07, §)

such that
P'] Il ®ig
Q —» 0E —p» (0 X~
\ l f#’
f ’
0
commutes.

For each natural number n one defines f, : Q®X" — O~ as
follows :
fo=fp:Q®E - Q> Q°
f1=0"(f®1): 0®X - Q' ®X - Q’
and
fo+1: QX1+l 5 OR(XN®X ) = (QRXM)®X - Q®X - O for
n 21 isthe arrow givenby §°(f, ®1)-o¢-(1®c -1, ).

(12) 15



Now, since (I®i, : Q®X" —» Q®X*), is a coproduct in C, one
can define an arrow f# by :

¥*

®
>

®
i
Q

0 ®Xx "

7
=
Q € -=m-----

It is routine to check that this f#* works. ®

(1.2.7) Let C be aclosed category with countable coproducts, then
the forgetful functor U : Dyn(-®X) — € has a right adjoint. [18, p.
68]. A proof follows :

Let L:X®X* — X* be defined by :

i X ®X* . XeoX™=
1 ®ig 1 ®i, .
: /:
X®E : X®Xn=Xn+1 :
\ v L v L
] ]
pox . |
\6 ln+l v
i
X * X *
(n=0) (n>0)

Let Y be an object of C , define LY : YX*®X — YX* by :
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y X g x*

*
®
A ev
]
LY | ,
]
]

X* X * X *
® X)® X* —» Y ® (X ® X*) - Y ® X¥ -9 Y
o I1eL ev

(Y

then (YX*, LY) is an object of Dyn(-®X).
Consider also the C-morphism AY : YX*— Y given by :
AY = ev-(I®ig)p -1 : YX*5 YX*®QFL — YX*®X* » Y
The only thing remains to show is that given a dynamics (Q, 8) and

a C-morphism f:Q — Y then there exists a unique dynamorphism
f# 1 (Q, &) = (YX*, LY) such that

N Y

commutes.

For each natural number »n one defines 6, : Q®X» — Q as
follows :

d=p:0®F - @
01=0:00X —» Q
and
Snil = 8, (8®1)at: QRX®XN) — (QRX JRXA — QRXN — ()
forn 2 1.
Now, one defines & : Q®X * = O by
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Py

] 0 ®X*
1®z,,/' .
0ex"” 55*
\ '
On 0
and fi by
y " o x*
A
i cv
fe® 1,

0® X* —» Q0 —» 7
5" f

It is routine to check that this f@ works. @

As a remark, given (Q, &) the &, defined in the above proof for
each natural number n have another expression :
b =p:Q®E—(Q
01 =06:0®X - (0
Sn+1= 0(5n®)a-(1®c1, 1): O®X®X") — Q for n 21, as can
be shown by induction, and hence & : Q®X* — ( can be considered as
the unique dynamorphic extension of 1¢ , the run map.

The above points (1.2.6) and (1.2.7) show thatif C is a closed
category with countable coproducts then the process -®X :C — C is
state-behavior for any object X of C.

(1.2.8) Let (C,®,E «a, A,p,s) be a closed category with
countable coproducts and let X be a fixed object in C , a machine
( relative to the object X ) is a 6-tuple M =(Q, 6,1, 7, Y, B) where
6: 0®X —» Q isan X-monadic algebra in C; [, Y, are objects of C
and 7:/—> Q,B:Q — Y are C-morphisms [22, p.778]. In the
terminology of definition (1.1.2) this is in fact an (-®X)-machine and
the minimal realization theorem (1.1.13) applied to this case is as follows:
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Let (C,®,E, a, A,p2,5) be a clesed category with countable
coproducts and let (E, M) be an image factorization system in C, if either
-®X or -®X* preserves E then :

For every response f:/®X™*— Y there exists a reachable and
observable realization My = (0f, 8f I, 11, Y, Bf) of f. Any such Mf
is a terminal object in the category of reachable realizations of f and
simulations and any such My is an mitial objcct in the category of
observable realizations of f and simulations; thus M 1s umque up to
isomorphism.

1.3. Non-deterministic machines in an arbitrary category.

(1.3.1) A triple (or monad ) 7T = (T, e, m) ina category C
consists of a functor 7:C — C and two natural transformations

e:lc »T , m:TTr—-T
which make the following diagrams commute

Te eT T m
T —» T «——T TIT —» T1
m T m
1\ ‘ ‘//l " ¢ ¢
T 1T ——— T
m

e is called the wnit and m the multiplication of the triple.

Every adjunction (F,G, n,¢):C — D gives rise toa triple
(GF, n, GeF) in C, called the triple defined by the adjunction
(F, G, n,&.[31,pp. 133-135].

(1.3.2) Let 7=(T, e, m) beatriplein C. A T-algebra (Q, &)

is a pair consisting of an object Q of C and an arrow &:7TQ — Q
satisfying :
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T
Q—-»TQ TTQ-—-é—pTQ

DWERS Y

0 ——» C

S

A morphism f:(Q, &) — (R, 0) of T-algebras (T-homomorphism)
is a morphism f:Q — R such that:

The category of T- algebras and 7- homomorphisms is denoted by
CT ., (31, p. 136].

(1.3.3)  The forgetful functor U:C¥ — C has a left adjoint
F —I U which defines the triple T; F:C — CT is given by the rule
that sends f:Q —> R to Tf:(TQ, mQ) — (TR, mR) , the unit of the
adjunction is e and the counit assigns to each 7-algebra (Q, &) the
T- homomorphism & : (TQ, mQ) — (Q, &). {31, p. 136-137].

As a remark and because the adjunctior, given any 7- algebra
(R, &) and any arrow f:Q — R in C , the unique 7- homomorphic
extension f*:(TQ, mQ) — (R, &) of f
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is givenby f* = &ETf :TQ — TR -» R.

(1.3.4) Let X :C — C be a functor and let 7 = (T, ¢, m) be a
triple in C . A distributive law of X over 7 is a natural
transformation A : XT — TX such that makes the following diagrams
commule :

A AT TA
XT —» TX XTT — TXT —» TTX
\ / Xm l l mX
Xe eX
X XT » X
A

[32, pp. 311-312].

As an example let P = ( P, e, m ) be the union triple in Set ; i.ec.
P :Set — Set sends the set X to the powerset PX and f-X - Y
to the map Pf: PX — PY suchthat (P)(S)={f(x):xe S} for cach
subset § of X.

e:lSet — P assignstoaset X the map eX : X — PX which
sends x to {x}.

m: PP — P assigns to aset X themap mX : PPX — PX which
sends T to UT={x:xeyel forsome yel }.

Then for any set X¢o, A: (-xXqg) P — P (-xXq) defined for
each Q by AQ :PQOxXg — P(QxXg) which sends (S, x) to
{ (q.x):qgeS ) is adistributive law of -xX( over *. [4, pp. 178 and
182].

From now on and till the end of section 1.3 a process X:C — C,
a triple T = (T, e, m) and a distributive law A : XT — TX of X over
T are fixed.

(1.3.5) A A- algebra is atriple (Q, 8, &) where (Q, 6) is an
X- dynamics and (Q, &) is a 7-algebra such that & (TQ, T6-AQ) — (Q, 6)
is a dynamorphism, i.e. the following diagram commutes :
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A0 T8
XTQ —— TXQ ——» TQ

o) |
X0 » O

A A-homomorphism f:(0,8, & — (Q°, 6,.&")  between
A- algebras is a simultaneous dynamorphism and 7-homomorphism. The
category of A-algebras is denoted by CA. [32, p. 315].

let T=(T, e, m) be the identity triple in € (ie., TQ =0,
eQ =1g,mQ =1g)andlet A : XT — TX be the idenuty distributive
law (ie., A= lx ), since (Q, &) isa 7T-algebra if and only if &= 1p,
C4 is isomorphic to Dyn(X). Therefore the theory of A-algebras
generalizes Dyn(X). [32, p. 316].

If C has an initial object O then for arbitrary 7 =(T, ¢, m) and
X:C — C definedby XA =0, Xf=1¢ ,the A: XT — TX defined
by AA =¢0 1is a distributive law of X over 77 and the category of
A- algebras may be identified with C~. {4, p. 189].

(1.3.6)  The forgetful functor U :CA — Dyn(X) has a left adjoint,
a free A-algebra over (Q, 8) is given by ((TQ, T6-AQ, mQ) , eQ) , and
given any A-algebra (Y, ¥, 6) and any dynamorphism f:(Q, 6) = (Y, p)
the unique A-homomorphic extension p#:(TQ, Té-A0, mQ) — (Y, 7, 0)
of B

eQ)

ﬁ\‘iﬂ#

Y ,7r)

is givenby B#¥=0TB:TQ —» TY - Y. [4, pp. 191-193].
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A

(1.3.7) If X:C — C is an output piocess, then the forgetful functor
U:C* — CT has a right adjoint; a cofree A-algebra over (Y, 6) s
given by ((X@V, LY, 6#), AY) and given any A-algebia (Q, 6, &)
and any T-homomorphism  f : (@, &) > (Y, 6)  the unique
A-homomorphic coextension y: (Q, §,&) — (XaY, LY. 04) of f

AY
Y, ,0) «a—&— (X @Y 04)
A
-
(Q.¢)

is given by the unique dynamorphic coextension of f:

AY
Y «—0o Xg5Y

\f‘/’
p

Q

Here 601 :(TX@Y, TLY-AX@Y ) = (X@Y, LY) is the unique
dynamorphic coextension of (AY)# = O-TAY : TXeoV - TY > Y

Y <—-——X@Y

A
. 0
(AY ) O

(1.3.8) A A -machine ( or A-automaton ) is a 7T-tuple
M=(0,9d,1,17Y, 6, B) where (¥, 0) isa T-algebra and 7:/ — TQ,
6:XQ > TQ, B:Q—->Y are C-morphisms. The definition of a
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A -machine is independent of A but its response is not. [32, p. 313].

As an example, if one takes the process -xXq :Set — Set, the
union triple 2 = (P, ¢, m), the distributive law A : (-xX0)P — P (-xX0)
given by AQ PO xXg— P(QxXg) that  sends (S, x) to
{(q, x):qe S}, the “-algebra ({0, 1}, max) the singleton [ =1, and
the maps 7:1 - PQ, §:0xXo— PO, B:0Q — {0, 1}, one has that
M=(Q, 6 I, 1, {0, 1}, max, B) is a usual non-deterministic sequential
machine. 1t is usual in automata theory to simulate such a non-
deterministic sequential machine by the (deterministic) sequential machine
(PQ, 8° 1,7, {0, 1}, B#) wheie 8°:PQxXyp— PO is defined by
0°(S, x) = U ges{0(q, )i qelS | = (6% A0 XS, x). ( [4, pp. 173-175]
and [32,p. 311}).

Generalizing the above fact to the general theory, one has :

(1.3.9) The A-machine M =(Q, 6.1, 1. Y, 6, B) has an associated
X-machine M° =(TQ, 6° 1, 1. Y, B*) where :

0 =0"AQ  XTQ — TXQ — TQ

If X is an input process, the response of the A -machine
M=, 6,1 1Y 6 B is the response of the X-machine
Me°= (TQ, &°,1, 1, Y, B#), ie.is the C-morphism [#r: X@] —» TQ —Y
where »: (X@/, upl) — (TQ, 6°) is the unique dynamorphic extension of
T:

nl
I —» X @y

T v

170
(32, p. 313].

The following concept generalizes the M° of (1.3.9) ( see
(1.3.12) ) and permits to give a generalization of the "minimal
rcalization theorem" stated in (1.1.13) ( see (1.3.15) ).
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(1.3.10) An implicit A-machine (or implicit A-automaton ) is a
8-tuple M =(Q,6,&,1,t.Y,0,8) where (Q0.&) is a
A-algebra, 77 :1 — Q7 isa C-morphism, and 7 :(Q.&) — (Y,0) is
a T-homomorphism. [32, p. 323].

When T is the identity triple and A = id, "mplicit A -machine”,
and "A -machine" coincide with "X -machine”.

(1.3.11) If X isan input process, the X-reachability map of the
implicit A - machine M~ is the unique dynamorphic extension
r:(X@l, upl) —» (Q7, 67) of 7

nl
I —» X

O\

The reachability map of M~ is the unique A-homomorphic
extension r# : (TX@[, Tupl-AX@[, mX@l) — (@7, 67,&") of r:

@y

2

v
-

e X@
(X@I, pogl) — (T X® . T ugl AXCI)

'
Q.8 )

The response of M~ is the composition f~r: X@l — Q" =Y,
i.e. it is the response of the X-machine (Q7, 61, 77, Y, 7).

If X is an output process, the observability map of M~ is the
unique A-homomorphic coextension o:(Q7, 67, &) = XY, LY, O4)

of f7:
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(Y,0) «=—— (X g

(32, pp. 323-324].

The next two results say that A-machines and implicit A-machines
compute the same responses.

(1.3.12) Let M = (0, 6,1,1,Y,0,B) be a A-machine. Then
M° =(TQ, &, mQ, 1, 1,Y,0, f#) where &=06%AQ is an implicit
A-machine and the response of M is the response of M°. [32, p. 324].

(1.3.13) Let (Q-, &) bea T-algebra. A scoop of (Q7, &) isa
triple (Q, i, ¢) where i:Q — Q and ¢:Q~ — TQ are morphisms
such that i#.c=1p--(Q7, 1p-,eQ™ ) is always a scoop of (07, &).
[32, p. 325]. ( This notion of scoop is a modification of the one introduced
by Ehrig [ 18] ).

Let M =(Q°,6,&.1,1,Y,0, ) beanimplicit A-machine
and let (Q,i,¢) be any scoop of (Q7, &7). Then the A-machine
M=, 61 17,86 B) where :

0= 6 Xi: XQ » XQ" > Q" - TQ
7= -7 :1 - Q" - TQ
f= pi:Q0 > Q0 =Y
has the same response as M™. [32, pp. 325-326 |.

The following is a generalization of the dynamorphic image lemma
stated in (1.1.9).

(1.3.14) Let h:(Q, 8, & — (Q, 8,&) bea A-homomorphism
andlet ip:Q —>> Q" >—> @’ bean E-M factorization of 4 in
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C (C is supposed to have an image factorization system (E, M)). Then,
if TX@ preserves E, there exist unique &6 : XQ " = Q" and
72 TQ” —» Q7 such that p:(Q.8.& — Q7.8 and

i: Q707 E)—> (Q. 8, &) are A-homomorphisms. [32]. A proof

follows :

For each A define 124 to be the arrow :
MA = eX@A-upA-XNA 1 XA - XX@CA —» X@A — TX@A =
=eX@ANA XA - X@A — TX@A
where 1y is given in (1.1.9). Then n2:X — TX@ is a natural
transformation.
Now, consider the following diagram :

Xp
Q » XQ,,

X
11 nz‘Q'/
TX@[ Xi

Tx@ > TXCQ

o TX @, ,
‘4 XQ
Q /

Q- » O

From the facts stated in (1.1.9), one has the commutativity of :

XQ

w‘
S 771\Q\ L’X@Q

X0 —» X €9

5@
v »%

A
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and hence, I commutes. II and III commute since 772 is a natural
transformation, IV commutes by the same reason as 1.

Commutativity of V :

Also, from the facts stated in (1.1.9) one has that
h-6@ = §@X@h, To show that h-(6@)* = (6°@)*.TX@h but since

TY@h (TX@Q, mX@Q) —» (TX@Q', mX@Q")
1S a T-homomorphism , suffices to show that
h-(5@)#.eX@Q = (§@)#. TX@J1.eX@Q , but h(5@)*-¢X@Q = h-6@ and
(5 @W.TX@h.eX@Q = (5 @)#.eX@QQ " X@) = §°@X@h = h-5. Therefore
V commutes.

Now, by diagonal fill in there exists a unique C-morphism
v:TX@Q"" — Q° such that makes A and B commute. Defining
0= ymQ" one has  that p:(Q, 6 — Q706 and
(07, 67> (Q, §) are dynamorphisms.

Now consider the following diagram :

I” commutes since the following diagram
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TQ

l70
& ™Q

0 «¥——TX@Q
(59)*

II” and III” commute since 1 is a natural transformation, 1V’ by the
same reason as [”, and V' is the same as V. Define &= wTnQ””

(Q", £ is a T-algebra , i.e. the following diagrams (i) and (ii)
have to commute :

o e
o o~ 10~ o

(i 1Q\Alé (iD) Ql IS
o .

(i) : Since { is mono suffices to show that  {-&"eQ” =i ; but
EeQ” = ENTieQ = i #eQ” =
(ii) : Since ¢ is mono suffices to show that (-&"~TE""=1-&"mQ ", but
since m is a natural transformation and (Q",§") is a 7-algebra one has
respectively that mQ “TTi =TimQ "~ and &-TE =&EmQ” hence :
PETE = EVTITE = EVTETTI = E-mQ"TTi = E-TimQ"" =
= iEmQ

Therefore, p: (Q, &) = (QE") and i:(Q ") = (Q°.&)
T-homomorphisms.

Q7,6 &) isa A-algebra :

Only remains to show that the diagram

=™

re
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commutes; and since i is mono suffices to show that -&"“T8A0"" =
= {-6"XE. But since (Q, 6,&) is a A-algebra one has
that £-T6-AQ = 8-XE" . Hence :
LETSAQ T = ENTI TS AQ" = ETS  TXiAQ™" =

=ETS - AQ XTi = 8§ XEXTi=8"XiXE =1i-6"XE

Then,
p (@68 - Q678 and i (Q7,67¢) > (Q°,87,&) are
A -homomorphisms.

Uniqueness of 6”7 and £ follow since i is mono. ®

(1.3.15) Let (E, M) be an image factorization system in C , and X
a state-behavior process in C such that TX@ preserves E. Let / and
(Y, 6) be fixed. Then for every f:X@] — Y there exists an implicit
A-machine M~ =(Q", 67, &1, t7,Y, 6, B7) such that the response of
M~ is f, the reachability map ## :TX@/ — Q~ isin E, and the
observability map 0: Q™ — XgVY isin M. If M7 also satisfies these
three conditions then M~ and M~ are isomorphic, i.e. there exists an
isomorphism y:(Q7, 67, &) — (07, 07, &) of A-algebras such that
w-1" =1 "and By = B7.[32, p. 326-327]. Here is a proof that is a
development of the condensed one given in [32] :

Let fu: (X@[, upl/) - (X@Y,LY) be the unique dynamorphic

coextension of f:
AY

Yq__—X@Y

A
vf\!f

x @
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and let f~ = (f)* : (TX@I, Tuol- AX@[, mX @y — (Xa@V. LY. 8) be
the unique A-homomorphic extension of f :

e X @
(X@r, uyl ) ——— (rx@;, Tuyl- AX€1
! #
v fa)
fu ﬁ
(X Y, LY)

@@

Now consider i1 E-M factorization of f:
o-rft  TX@] —>> Q7 >—> XY

By (1.3.14) there exist unique 0" : XQ —> Q  and & :TQ — Q°
such that  r#: (TX@[, Tupl-AX@l, mX@l) — (Q°, 8, &) and

Q,6,&) —» (XaY,LY,6s) arc A -homomorphisms,

Now, define r : (X@[, upl) — (Q7, §) to be the dynamorphism
r=rteX@[ 7 :] - Q" tobe the C-morphism 7 = rnl and
B :(Q,&) - (Y, 0) tobe the "-homomorphism S~ = AY-0.

h

TX @

(w
eX @ ?
X @
ni f
__> Q”

T ,B'

Therefore, M =(Q7,6.,¢&,1,1.,Y,6,8) is an implicit
A-machine  with  response  equal to  fB7r = AY.0r*eX@/ =
= AY-feX@] = AY- fy = f, reachability map equal to r# and
i obseivability map equal to ©.
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Now suppose that M~ =(Q"", 6, &, 1, t", Y, 6, 7)) is another
implicit A -machine such that its response is f, its reachability map r*#
is in E and its observability map ¢~ isin M.

First one has that ¢™r# =f":

The diagram

ex @1
X@ 5 TX @

\ E O_,.'/#
fH )

X @Y

commutes if the following one does

and this is true since AY.-c-r #.eX@[ = By = f.
Now, there exists a unique isomorphism w:Q  — Q7 with
yrf=r" and o y=0:
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v (07, 87) » (Q7 6§ is a dynamorphism because in the
following the exterior and bottom diagrams commute and, since o is
mono, also does the top one :

5
XQ" ——» O

v v

X" ———» Q| ©

o o]

XXeY —  p XaV
LY

Xo

In a similar form it can be shown that y:(Q7, &) — (07, &)
isa T-homomorphism.

Therefore, y:(Q7,6,&) — (Q7, 6§77, &) is an isomorphism
of A-algebras.

Moreover since 77°= rnl = r#eX@lnl = yrt-eX@lyl =
=yrnl =yt and P =AY-c=AY-c-y= "y the following
diagram commutes :
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2. MACHINES IN CLOSED CATEGORIES AND 1IN
TOPOSES.

2.1. Machines in a closed category for a monoid C.

(2.1.1) Let (C,®,E, a, A4, p) be a moncidal category, a right
action of a monoid (C, u, 17) on an object A is an arrow v:A®C — A
of C such that the following diagram commutes :

o —1 1®u 1®n
ARC)RC —p» AR(CR®C) —» ASOC «4— ARE

Vol ¢ ) iv‘/p

A morphism f:v — v’ of right actions of C 1isanarrow f:A — A’
in C such that the following diagram commutes :

1%
AR®C —p A

oy g

AQ®C —» A’
v

The category of right actions of (C, i, 1) is denoted by ~Ract. ( {31, p.

170] for the similar left actions ).

(2.1.2) The forgetful functor U : CRact — has a left adjoint
F :C — ~Ract which sends each object A of € to the right action

(1QuU )l 1 (ARCYRC — AR(CO®C) — AR®C. ( (31, p. 170] for left
actions ). A proof follows :

It is straightforward to show that
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A®w-orl 1 (ARC)®C - AR(CRC) — ARC

is a right action.

F on arrows is defined by

F(f:A>A)=(f®1:A®C - A ®C);
the unit 1~ of the adjunction is
NA={®n)p-1:4A-AQE - ARC
for each object A of C and the counit £ is
v = v:B®C — B

for each right action v .

It is routine to check that the above data satisfy the conditions of an

adjunction. @

The free right action over an object A of C is given by :
((I®u)-al: (A®C)®C — ARC, (191n)-p-1:A - ARQC ) and given any
right action v:B®C — B and any arrow f:A — B the unique
morphism of right actions
v (1Qu) o l:(ARC)®C — A®C) — (v : B®C — B) such that makes
the following diagram commute

p-l 1®n
A —p AQE —p A®C

\vw
! B

isgivenby = €Vv-Ff = v-(f®]): A®C - BR®C - B .

®

Following the remark given in [18, p 94] one has the followmng :
(2.1.3)  Let € be a closed category and let (C, g, 17) be a monoid in

C, then the forgetful functor U:-Ract — € has a right adjoint
G:C — Ract. A proof follows :

Given A anobject of C, define GA = vA : ACQC — AC where
VA is given by :
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ACeC
A (#AY
vVA® 1,
(AC®C)®C > C@(C ®C) — A Coc —» A
a ! 1®ou ev

Now, G is defined on arrows as follows : let ¢ - A —> A’ be an
arrow in C
G(g:A>A )=¢C:(vA :AC®C - AC) - (VA":AC®C — AC)
where gC is given by :

A "e®C
A ev
g Cor1 !
§
AC®C —_— A ——p A

ev g

The unit and couinit of the adjunction are defined respectively as
follows :

For each right action v:B ®C — B define the arrow
nv:B — BC by :

B scC

A\
nTvel,

BeC ——» B
1%

Nv:i(v:B®C >B ) - (vB :BC®C - BC) is an arrow in
Ract.
C

For each object B in C define the arrow & B :BC — B by:
€B=ev(l®n)p-1:BC - BC®E - BC®C — B
It is routine to check that the above data satisfy the conditions of an

adjunction. @
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The cofree right action over an object A of C is given by :
(VA 1 AC®C—AC, €A =ev-(101)-p 11 AC 5 ACOE 5ACRC —A)
where VA is defined by :

A Coc

u4®ﬂ~\\\\\\\fl\\\\\\\\\*

(ACec)oCc » Ao (coCc ) > AC®C — A
ol l®u QY

Moreover, given any right action v:B®C — B and any arrow
g :B - A, the unique morphism of  rnight  actions
p:(v:B®C - B) - (VvA:AC®C — AC ) such that makes the
following diagram commute

ev 1®n p!
A «—A‘®Ca—ACOL <— A

C

\ 4
g '

B

is givenby ¢ = Gg-n"v=g¢Cn7v:B - BC 5 AC where 177
and ¢C are defined respectively by :

¢

BC®C 1CmC
. A ev A ev
1" v ®l g C®1 !
B®C — » B B®C —» B —» A
1% ¢V 8

or,
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ACecC

p®1,

B®C » B » A
|4 8

IFrom now on and till the end of section 2.1 a closed category
(C,®,FE, a, A, p,s) and a monoid (C, u, 17) in it are fixed.

Following the remark given in [18, p. 94] and imitating definitions
from (1.1.2) to (1.1.4) one has :

(2.1.4) A (C,un)-machine isa6-tuple M =(Q, v, I, 1,7, B)
where v:Q®C — O is aright actionand 7:/ > Q, B: 0 — Y are
morphisms in C. Q, [, Y are called respectively the state object ,
initial object  and output object ; T isthe initial state and B is the
output morphicm.

The reachability map of M is the unique morphism of right actions
ro((I®u)al : (1 ®C)B®C - IR(CA®C ) —» IRC ) — (v: 0®C— Q)
such that makes the following diagram commute :

p! 1®n
[ — QL —[®C

T

ie. r = v(1®l1): I®C —» 0®C — 0

The response map is the C-morphism fr: I®C — Q0 — Y.

A map f:I®C—Y iscalled a response and if a (C,u,n)-machine
M has as response map f, one says that M is a realization of f.

The observability map of M is the unique morphism of right
actions o (v:Q0®C > Q) — (v :0¢®C — QC ) such that makes
the following diagram commute :

2

Y
0
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ev 1®1] p'1
’ C C - C
Y «—Y " ®Ca—Y "QF 4V

\
)

Q

i.e. o is also defined by the following diagram :

yCocC
A ev
c® 1,

Q(LDC—»Q———-»Y

v B

Now, imitating the points (1.1.9) to (1.1.13) one has the following
(2.1.5) to (2.1.9) :

(2.1.5)  Suppose that C has an image factorization system (E,M) such
that -®C preserves E. Let h:(v:0®C — Q) - (v :Q'®C — Q)
be a morphism of right actions and let mee:Q—>> Q7' >>0"
be an E-M  factorization of /4. Then  theie  exists  a
unique right action v Q7®C — Q" on Q7 such that
e (v:00C - Q) —» (v :Q07® - @7 ) ad
m: (v’ :0® - Q7)) —» (v :0®C —» Q) are
morphisms of right actions.

Proof : Since /#:v — v~ is a morphism of right actions one has

that A-v = v-(h®1). Now, since e®1 isin E, by diagonal fill in
define v’
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bl

e® 1
QoC —»p» 070 C

v + '.’." + me 1
Q T opec

4
.’ e .
e * R v ‘ 1%
Y -4

QU Q,
m

The only thing remains to show is that v“” is a right action but

since m is mono this fact follows from a routine diagram. @

(2.1.6)  Suppose that C has an image factorization system (E,M) such
that -®C preserves E. let ¢:(v:Q®C—->Q)-> (v : Q0" ®C - Q")
be a morphism of right actions with e € E, let v : Q7" ®C —» Q7
be a right action and let f: Q" — Q°" be an arrow in C such that
fe:(v:Q®C ->Q)—> (v ' :Q7®C — @) isa morphism of right
actions. Then f: (v : Q' ®C - Q') > (v7':Q7"®C — Q") isa
morphism of right actions.

Proof : Consider the following diagram :

1%
Qe®C —» 0

e®1* ‘e
v

0 ®C —»

ol l lf
Vo

0" ®C \ 0"

The perimeter and the top square commute, and since ¢ ®1 is epi, the

bottom square also commutes. @
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(2.1.7) Let (E, M) be an image factorization systemin € and
M=, v, 1Y, B) a (Cumn-machine, M is said to be reachable if
r:1®C — Q isin E,and M is said to be observable if o:Q — YC is
in M.

(2.1.8) Fixing I and Y, butletting Q vary, let (C,u,n)-mach be
the category whose objects are (C,u,n)-machines M =(Q, v. 1, 1. Y, B);
and whose morphisms are simulations y: M — M~ i.c. morphisms of
right actions y: (v:0®C - Q) — (v : Q' ®C —» Q) which make the
following diagram commute :

~

/'W/
B

/

N

T

’

O 4+=—0

If w:M — M’ is a simulation of (C,u,n)-machines, then since
the following diagram commutes :

[ ®7 vy
\J
~1

M and M’ have the same responses.

Now one has in this context of (C,u,17) - machines the analogous to
the " minimal realization theorem" stated in (1.1.13) :

(2.1.9) Let (E, M) be an image factorization system in € such that
-®C preserves E. Then, for every response f:/®C — Y there exists a
reachable and observable realization My =(Qp vi. [ 14, Y, By of f.
Any such My is a terminal object in the category of reachable
realizations of f and simulations and any such My 1s an imtial object in
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the category of observable realizations of f and simulations; thus Mris
unique up to isomorphism. Here is a proof that is similar to the one given
by Manes of the fact stated in (1.1.13) :

Given f:/®C — Y let fy be the arrow
(1Qu)-o-1: (I®CYBC—-IR(CRC) —»IBC )) — (VY YCRC—YC) ie.
the unique coextension of f:

ev 1®r, p
Y @«—Y 0 Ca4—7Y ©® L a—

Consider an E-M factorization of fg:
oprf : 1I®C —>> Qf >—> YC

By (2.1.5) there exists a unique right action v on Qy such that :
rf o ((A®u)-orl: (| ®CYRC— I®(CRC ) — I®C )) — (vr:0r®C— Qr)
and of: (vf: Qr®C — Q) — (VY YC®C —YC ) are morphisms of
right actions.

Now define 7r=rr-(1®1)-p-1 and fr = ev-(1®n)-p-l-of.

fy
1 ®C » Y€
o
1®77 c
YyCe E
r
I®E f Of v'en
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Therefore Mg= (Qf, vy, |, 7. Y, Bp) is a reachable and observable
realization of f.

Now suppcse that M = (Q, v, I, 1, Y, B) is a reachable realization
of f. First one has that o7 =f# by uniqueness of coextensions :
(ev-(181)-p )-o:r = B-r =f. By diagonal fill in there exists unique
y:Q — Qf with

Q
TN
1 ®C E.,/ y ¢
Xv Gf
Qs

y:(v:00C 5 Q) - (v:Q@®C — Q) is a morphism of right
actions because (2.1.6); also since r=rf (1®n)-p-l=yr (1®n)-p-1 =
=y-7 and B =ev-(1®n)pl-oc =ev-(1®N)p-lopy =Py the
following diagram commutes :

Q
If/vlw\AﬁY
>Qf/;f

Hence w:M — My is a simulation.

Analogously suppose that M =(Q, v, I, 7, Y, B) is an obscrvable
realization of f, as before o-r =fs. By diagonal fill in there cxists
unique @ : ¢ — 0 with
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©Q

/
O ---ma--
Q

@: (v 1 Q®C — Q) = (v:Q®C — Q) is a morphism of
right actions because (2.1.6); also since 7T =r (1®@n)p-l =
= @rp(1®n)pt = @1 and Br = ev-(1®@n)plos =
= ev(l®n)-p-l-cp = B¢ the following diagram commutes :

Hence ¢ :M; — M isasimulation. ®

The next point shows a relationship between the approach given in
this section and the one given in section 1.2 :

(2.1.10) Let C be a closed category with countable coproducts and
let X be an object of C then one has the monoid (X*, u, ig) given in

(1.2.3). If by one hand one considers the process -®X :C — C and the
category Dyn(-®X) and by the other hand the category (x«yRact then

both categories are isomorphic [22, p. 778] : and then also, fixing [/ and
Y objects of C, the categories (-®X)-mach and (X*, y, ig)-mach are
isomorphic. A proof follows.
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- The functor @ : Dyn(-®X) — y=Ract

Let (Q, 8) be an object of Dyn(-®X) and let & : O®X* — O be
defined as in the proof of (1.2.7), then &* 1s a nght action.

Now, define D((Q.0)) = (5 :00X" — Q) and if
f:(Q,8) - (0, &) isadynamorphism, @ (f) = f. f is a morphism
of right actions and @ is a functor.

- The functor ¥: yxyRact — Dyn(-®X)

Let v:Q®X"™ — (Q be a right action, define Sy : Q®X —
to be the arrow v (I®i1) : 0®X — Q0®X* —» Q and
PY(v:00X* - 0)= (Q, ).

Given f:(v:0®X* > Q) = (v :0'®X* > Q) a
morphism of right actions define ¥ (f) = /. / is a dynamorphism and
VY is a functor.

Finally one has that ¥-&® is the identity on Dyn(-®X) and ®-¥
is the identity on (y«)Ract. @

2.2. Nen-deterministic C-machines.

In the following points (2.2.1) to (2.2.4) C represents an
arbitrary category.
(2.2.1) Let S =(S n,u) and 7= (T, ¢, m) be triples in the

category C; a distributive law of C over ™ ( Beck, I11] ) is a natural
transformation d : ST — TS such that:

d dr Td
ST —» TS SIT — TST —— TTS
Se\ /eS Sm ‘ ‘ msS
S ST » 1S
d
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d Sd dS

ST —»TS SST —p STS —» TSS
T ST y » 1S

If d:ST — TS is a distributive law of S over T a d-algebra
is (0,7 & where (Q,7 is an S-algebra and (Q,¢&) is a
T-algebra subject to the d-law :

N4

STQ — % SO

dQl

TSQ %

Tyl
]

9 ——» 0

S

[32, p. 334-335].

(2.2.2) Let X:C - C be an input process  then
Xe =(X@, n, up@) where pp@Q is the run map of (X@Q , uopQ)
defines a triple in C . [32, p. 299].

(2.2.3) Let 7 =(T, e, m) beatriplein C, X:C — C an input

process and A : XT — TX a distributive law of X over T . Then
de’ining for each Q in C, dQ as the unique morphism such that :
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]

nTQ HoTQ
TQ ——» X @10 X X190 — % X@71Q
T~ i XdQl ldQ
Tne ™~V
T X@Q XT X €0 — T X@Q

T ugQ-1x “Q

d:X@T — TX@ is a distributive law of X@ over 7 .( From
exercise 6(a) of [32, p. 335]).

Proof : TQ is an object of C and (TX@QQ ,TupQ -AX@Q) is a
dynamics , dQ is defined asto bethe unique dynamorphic extension
dQ : (X@CTQ , uoTQ) — (TX@CQ , TupQ -AX@Q Yof TnQ : TQ —TX@().
- d:X@T — TX@ is a natural transformation :
Given f:Q — Q" one has to show that the following diagram

commutes :
dQ
X1 —— T X%

x @rf l l'l’ X @y

X1Q" — T X%
dQ’

Now TX@f: TXQ — TX@Q’ is a dynamorphism since :

Ax @9 T 10
XTX®Q — 9 TXX®Q —p 71X
XTX@fl l’l’XX(“f l 7Y @y
XTXCQ0 — 9 TXX®PQ —p TXx “
AX @ o T 1oQ°
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-

By definition of dQ one has:

n1Q
0 ———» X @TQ

\\de

T X @
l TX @f

T x €0’

Then, by uniqueness of the dynamorphic extension, it suffices to
show that the following diagram commutes :

nTQ
9 —» X %10

LY

Tx ®0 x ©®10°

X @G *dQ

T X @0

This follows from the equality X@f-nQ =nQ " f and from the
diagram :

n1Q
) —» X @710

@
75 W R

TQ" —% y @pp-

o

T X @Q,




Therefore d: X@T — TX@ is a natural transformation.
- Foreach Q the following diagram

dQ .
X9 —» TX%p

X@e;\ /:X@Q
X @9

commutes :

From (1.3.6) eX@Q :(X@Q , upQ) — (TXCQ, TupQ-AX@Q) isa
dynamorphism.

By one hand one has that :

yle, 5
Q —p» X((“Q

L’Q¢ lX@t'Q

nrQ @
9 —» X°T10

\ l dQ
nQ

T x@p

and, by uniqueness of the dynamorphic extension, it suffices to show that
the following diagram commutes :

no \
0 —» X“Q

eQ l l eX@Q

0 —» TX ©9
T nQ

and this diagram commutes since ¢ is a natural transformation.
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- Foreach @ the following diagram

drQ TdQ
X110 —— TX910 — 1T X @9
X@mQ ‘ *mX@Q
X @10 » TX %
dQ

commutes :
mX@Q-TdQ : (TX@TQ, TupTQ-AX@TQ) » (TX@Q, TupQ-AX@Q) is a
dynamorphism :

A X @710 T u o TQ
XT X@1Q ___p TXX@TQ » T X@TQ
XTdQ l lTXdQ leQ
AT X @Q T AX@Q T p, 0
XTT X©®0 __ 5 TXT X®Q _p TTXX@Q _ 1T X @Q
XmX@Ql lmX X@Q lmX@Q
XT X @ » TXXC) __ o TX@Q
/’LX@Q T/»loQ

Now one has :
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nrrQ nre

T — 3 X @170 TTQ . X @ IIQ
m | | x¢mo \TQ drQ

0 —» X @10 m X ro
\ ¢ T an TdQ

d
rag ¥ x
0 T X“Q
T nQ lm X®@g
T X®0

and by uniqueness of the dynamorphic extension the morphisms
dQ-X@mQ and mX@Q-TdQ-dTQ are equal.
- For each O the following diagram

d N
X @rQ ._Q, TX @@

nT;\ o /T' no

commutes. ( This is by definition of dQ ).
- Foreach Q the following diagram

X @40 X \ dX @ \
XCx@Cr0 o XCTx€o _____ g T X©XxCp

() 0

X @ 10 » 1 X%
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commutes :
1o@Q is the unique dynamorphic extension of 1x@q :

nX@Q uOX@Q
X@o __p X@x@9 XXxX@xepg_ o X@x@g
L rlo xklo 1o
1 ' 0 0 0
Xx®Q XXC0 — p» x@9¢
My Q

Tuo@Q : (TX@X@Q, TupX@Q-AX@X@Q) — (TX@Q, TupQ-AX@Q) is a
dynamorphism :

Ax€x@g T/,t()X@Q
XT X@x@p ___ o TXX®x@o__5 Tx®x @y

X7 po@Ql T X #O@Ql lT yO@Q

XT X@ ___ 5 TXX@Q 5 TX@Q
Ax%g T 1oQ

Now one has :
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nX@T1Q n X@ro
X@T10 __» X@x@7p X1 . X@x@7(
u @10 dQ X @40
1 0 nl X« Q
X®rQ TX®) _p Xx©rx@g

‘tiQ

T X@g

\n X©Q ld X@Q

T X@x@go

T u®o
frase

T X((I)Q

and by uniqueness of the dynamorphic extension the morphisms
dQ-po@TQ and Tup@Q-dX@Q-X@dJdQ are equal. @

(2.2.4) In the context of (2.2.3) the category of A-algebras 1s
isomorphic to the category of d-algebras. (From exercise 6(b) of |32,
p. 335)D).

Proof: C4% has as objects (Q, 6, &) where (Q, 8) is an X-dynamics
and (Q, &) a T-algebra such that &:(TQ.TS-AQ)— (O, ) is a
dynamorphism :

X¢
XTQ ——» XQ

AQl

TXQ o

Tél




and as morphisms f:(Q, 6, &) — (Q’, 6°, &) a simultaneous
dynamorphism and 7-homomorphism.
Cd has as objects (Q, % &) where (Q, P is such that y: X@Q -0
verifies :
xev
Q—-—»X@Q X®x€0 — » x€9

\W/ ”0@Q¢ ‘y

X9 ——» 0
Y

(Q, &) is a T-homomorphism and the diagram

X@
X9 —» x@9
@\
T X @9 Y

Ty*

Q —m»

4

has to commute.

Cd has as morphisms f:(0.7.& — (Q,, 7. &) where
00,8 — Q&) isa T-homomorphism and also the diagram

X0 — » 0

X@fl lf

X@o ___p 0
i
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commutes.
Now define F: CA— Cd and G : Cd —» C* by the following
rules :
F(f:(0.68) > (Q,8,8)) = (f:(Q.80,8 —» (Q". 8§@LY))
where @ is the run map of (Q, 9).
G(g:(Qrd —» ©@.7.&))=
=8: (@, vymQ:XQ -Q,8) - @7, ymQ@ :XQ - 0",&N
where 771 :X — X@ | as in (1.1.9), is defined for each Q as
HOQ-XNQ : XQO — XX@Q — X@Q and given any dynamics (Q, ) is
d@-me =94.
The remaining details, i.e. F and G are well defined functors,
G-F=1ci,and F-G = 1¢d can be checked casily. @

Monoidal and closed categories will be trcated again .

(2.2.5) If (C,®,E, a, A p) isamonoidal category and (C, i, )
is a monoid in it one can consider {32, pp.214-215] the triple
(-®C,n",u") on C given by :

-®C:C —» C

n’:l¢ — -®C is the natural transformation that assigns to each
object A the  arrow nNA:A - ARC defined by
nA = (®N)pl:A - ARE — A®C

L :(-®C)(-®C) —» (-®C) is the natural transformation that
assigns to each object A the arrow U4 : (AQC)®C — A®C defined
by H'A=(1®u-al: (ARC)RC — A®(CR®C) - AQC.

Hence to have a distributive law of (-®C,n", u’) over
T'=(T, e,m) (both triples on the monoidal catcgory C ) means to have
a natural transformation

d:(-®C)»T —» T(-®C)
such that for each object A of C the following diagrams commute :
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dA dTA TdA
TA®C —» T(ARC) TTA®C —» T(TA®C) —» TT(A®C)

eA®:\ /e(A@C) lmA ®1 m (A ®C) l

A®C TA®C » T(A®C)
dA

dA dA®I d(A®C)
TARC » T(ARC) (TARC)RC w» (T(ARC)®C - TH(ABCO)RC)

n’TA\ /Tn’A l u'TA T wA l
TA

TA®C » T(AKC)
dA

And a d-algebra will be (Q, v,&) where v:0®C - Q isa
(-®C ,n’, u’)-algebra ( that is the same as to say that v is a right
action ) and (Q, &) a T-algebra such that the following diagram

commutes

dQ Tv
TO®C —» T(Q®C) —p TQ
§®1l l £
O®C » O
vV

A d-homomorphism f:(Q, v,& — (@, v, &) willbe a
simultaneous morphism of right actions and T-homomorphism. The
corresponding category will be denoted again by Cd.

Similarly to (1.3.5) if T =(T,e, m) is the identity triple and
d:(-®C )T — T-(-®C) is the identity distributive law, C9 is
isomorphic to ~Ract. Therefore the theory of d-algebras generalizes
cRact.
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From now on and till the end of section 2.2 C will be a closed
category, (C, 4, 1) a monoid init, (-®C , n’, ") the associated triple;
T=(T, e, m) another triple in C and d a distributive law of
(-®C,n,u") over T.

In a similar manner to (1.3.6) one has :

(2.2.6)  The forgetful functor U :Cd — ~Ract has a left adjoint. A
free d-algebra over v :0®C — Q is g’ enby (TQ.Tv-dQ, mQ), eQ);
and given any d-algebra (Y, %, 6) and any morphism of right actions
B:(v:Q®C >Q) — (y:Y®C > Y ) the unique d-homomorphic
extension B# . (TQ ,TvdQ ,mQ) — (Y, 60) of B is given by
p* = 8TB:TQ — TY — Y. Here is the proof:

Let v:Q0®C — @ be a right action then the arrow
Tv-dQ :TOQ®C — T(Q®C) — TQ is also a right action :

a’ 1®u
(TQ ®C )®C p TQ®CAOC) » 1Q®C

dQ ®! L l 0
d(Q®C) T al T (1®y)
(TQOCNIC —-T (Q®C )YOC )—T (Q®(C ®C )) —w> T (0 ®C)

T v®l ¢ ‘T(v@l) lTV

TO®C — —p T(Q®C) » 10
do Tv
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1on
TO®(C = TO®E

" ¥
dQ
T(1®Nn)

>
TQE®C) «—T Q®E) p

e

TQ

Now follows the remainder of the proof that is similar to the proof
given by Arbib and Manes of the fact stated in (1.3.6) :
-(TQ ,TvdQ ,mQ) is a d-algebra :

The only thing that remains to show is the commutativity of the
following diagram, and this is obvious from the definitions :

drQ TdQ TT v
TIQ8C — 9T TQOC) ——pp TT (Q®C ) e TTQ

mQ ®| l lm (Q &C) lmQ

TQ®C » 7T(08C) —p TQ
dQ Tv

-eQ (v:0®C > Q) » (TvdQ : TO®C —» TQ ) is a morphism of
right actions :

‘/I
Q®C » 0

¢Q ®1 ‘ *eQ

08C ———»T((Q®C) —» 10
dQ Tv
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- Suppose given (Y, 7 6 an  object of Cd and
B:(v:0®C — Q) - (y:Y®C — Y) a morphism of right actions,
since U:CT — C has a left adjoint there exists a unique

T-homomorphism Bt (TQ ., mQ) — (Y.6) given by
6TB:TQ — TY — Y such that the following diagram commutes :

e
Q —» /0

N

Y

That B#: (TvdQ :TO®C - TQ ) — (y:Y®C - Y ) isa
morphism of right actions follows from the diagram :

T08C —(—i?——>T(Q®C) —i—\—> 10
Tpely VT Ben v
TY8C — e T (Y OC) —pp 1Y
pery 4 'y g
Y ®C > ¥

In a similar manner to (1.3.7) one has :

(2.2.7)  The forgetful functcr U :C4d — €7 has aright adjoint. A
cofree d-algebra over (Y, 6) is given by ( (YO, vY, 0), €77Y) , and
given any  d-algebra (Q,v. & and  any  T-homomorphism
Q.8 - (Y, 0, the unique d-homomorphic coextension
vi(Q, v, — (YU, vy, 84 of f is given by the unique morphism
(@, v) = (YO, vY) of right actions that makes the following
diagram commute :
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Here O : ( TvYdYC :TYC®C — TYC) — (vY :YC®C — YO) is
the unique morphism of right actions such that :

£

N<
h<

/

y C
A
Oy
(6"Y)# :

TyYF€

where (7Y W=0TeY:TYC — TY — Y. Here is a proof that is
similar to the one given by Arbib and Manes of the fact stated in (1.3.7) :

Let (Y, 8) be an object of C~. From (2.1.3) one knows that
U: cRact > C has aright adjoint G: C — ~Ract and that the cofree

right action over an object A of C is given by
(VA :AC®C — AC, g A=cv-(1ON)pl1:AC - A). Consider
Y :¥YC 5 C = ev(I®N)pl:YC - YCR®E - YC®C — Y
and the unique 7 - homomorphic extension

(7Y W (TYC , mYC)y 5 (Y, 0) of 7Y

eYC
Y ¢ o TYC

\ L (e Yt
7Y  /

(&YW = 0Te Y. TYC 5 TY - Y =
=0T ev-T(1@N) Tp-1: TYC —» T(YC®E) - T(YC®C) > TY— Y.

'.<
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Now given the right action vY :YC®C — YO, fiom (2.2.6)
TvYdYC :TYC®C —» T(YC®C ) — TYC s also a right action and
considering (7Y ¥ .TYC — Y as an  antow  in C et
O# : (TvY-dYC . TYC®C — TYC) — (vY : YC®C — YC) be the
unique morphism of right actions such that :

e7Y

Ty ¢
- (YC, 04) isa T-algebra :
One has to show that :
eYC T 0#
YC¢ g TYC T1YC e TYC
- & : y ¢ 6
(i) \l # (i1) " l l !
y ¢ TY¢ — ¥y ¢
HH
The diagram
. eYC
Yy € » Y
0 #
€Y ¢ T cf“Y/ \
Y _, TY y ¢

T /»

commutes, then the morphisms of right actions  g-eYC and lyc are
equal followed by €777, and hence equal. Therefore (1) commutes.
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Now, consider the diagram

TYC O » Y€
\\\\;jyc T8 eve
| TTYC ___i..TYC "///
im}’c ig# Y
TyC.__ii_, y ¢ —y
\\\ Y
€ y)* =y

The 7 -homomorphisms (&77Y #mYC and (7Y )#.TOy are
equal preceded by ¢TYC ., and hence equal.

Now the morphisms of right actions 64704 and 85mYC are
equal followed by €777 and so are equal. Therefore (11) commutes.
- (YO, VY, Oy) 15 a d-algebra :

Since Oy (TvY-dYC : TYCRC -TYC) — (vY : YC®C — YC)
is a morphism of right actions :

dy¢€ TvY
TYCo@C — 9T (yCgC) —» TYC

9#®1$ *9#
y €

Y Co C -
vY

- €Y (YC, 88) — (Y, 0) isa 7 -homomorphism :
The diagram
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commutes since O-Te™Y =(e7Y ) and €Y -0y = (7Y )#.

- Now suppose given a d-algebra (Q, v, &) and a “-homomorphism
[:(Q.8) - (Y, 0).Let w:(v:00C —>0Q) — (YC,vY) be the
unique morphism of right actions such that

7Y
Y 4—— ¢
A
\ v
0

It suffices to show that w (0, & — (YC,0y) v a
“-homomorphism, i.e. that the following diagram commutes :

4
5

rg —» ¢

vh g

TYC __ 5 Y

6 #
Consider the diagram :
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The exterior part commutes since f is a T -homomorphism.
64Ty and w-& are morphisms of right actions that are equal followed

by €7Y , and hence equal. @
Now the concept of d-machine is introduced :

(2.2.8) A d-mauchine isa T-tuple M=(Q, 81, 1Y, 6,3 where
(Y, 0) is a T-algebra, 7:/ > TQ and [:0Q — Y are C-morphisms
and 6: Q®C - TQ isa C -morphism such that :

-1
a I®u 1®n

o®1
| I
r'd

109C —» 7(Q€C) —w TTQ — 10~
dQ Té mQ

If M =(Q.61 17,6 pB) is a d-machine, a routine diagram
shows that &= §-dQ TOQ®C — T(Q®C ) — TQ is a right action.

Now, trying to translate (1.3.9) to (1.3.15) to the present
sttuation, the following (2.2.9) to (2.2.15) have been obtained.
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(2.2.9)  Associated with the d-machine M =((0, 96,1, 1, Y, 6, B) 1s
the (C, u, n)-machine M°=(7'Q, &, 1, 1, Y, p¥) where :

0°=&*dQ = mQ-TSdQ : TOXC — T(ORC)— TO and

p¥ = 6TR:TQ — TY — Y.

The response of the d-machine M =(Q, d,1, 1. Y, 6, B) is the
response of the (C, y, n)-machine M° = (1Q, 6°. 1, 1. Y, B%), ie. it1s
the C-morphism :

ptr. I®C - TQ — Y
where
r:((I®u)-al: (I®CYRC — I®(CRC) — I®C) — (. TQ®CHTQ)
is the unique morphism of right actions such that :

pt 1®1

| —— | ®F ——p | ®C

\v

ro

(2.2.10) An implicit d-machine Is a 8-tuple
M =(Q,v.E&,1,1,Y,0,67) where (O, v, &) s a d-algebra,
T:1 - Q° is a C-morphism, and f:(Q.&) — (¥, 0) is a
T-homomorphism.

When 7 is the identity triple and d = id, " mplicit  -machine "
and " d -machine " comcide with " (C, g, nm)-machme "

(2.2.11) The (C, u, ny-reachability map of the imphicit d-machine

M- 1s the unique morphism of right actions
r:(I®C, (1®u)-orly — (Q7, v7) such that :

p -l 1®n '
| —— | QF ——p [ ®C

\ ‘:'r
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The reachability map of M~ is the unique d-homomorphic
extension
r#: (TURC), TI(1®U)-0-1]-dI®C), m (| ®C)) > (Q7, v, &) of r:

e (I ®C)
(U ®C, (1®u)-ays(T U &CLT (1@ -a]-dd &C))

Er#
r v

(Q~.v7)

The response of M~ is the composition B7r : I®C —» Q"> Y,
re. is the response of the {C, u, n)-machine (Q~, v~ /1, 7,7, B7).

The ohbservability map of M~ is the unique d-homomorphic
coextension o :(Q~ v, &) — (YO, vY, 6) of B

7Y c

(Y .0) «4=—m (Y =, 6 ,)
A

:0’
B - :

(Q - . &)

The next two results show that d-machines and . Hlicit d-machines
compute the same responses.

(2.2.12) Let M= (0.6,1,1.Y,06 B) be a d-machine.
Then M°=(TQ. 8°.mQ, I, 1, Y, 0, p%), where 6°=6%dQ ,is an
implicit d-machine and the response of M 1s the response of M°.

Proot : (TQ, 6°, mQ) is a d -algebra :
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dTQ Td) TS
TTQ®C —_pTTQO®C) __pTT(Q®C) —p 110

mQ ®1 l l m(Q®C) l m¢?

TO ®C » 1 (Q®C)—p 10
dQ 5 #

The rest of the proof follows immediately from the definitions. &

(2.2.13) Let M =, v, &1, 1.Y,6, ) be an implicit
d-machine. Then the  d-machine M=, 0,1 tY, 6 3) where
0=eQ Vv :0®C - Q > TO and t=¢Q 1 : 1> Q0 > TQO has
the same response as M7 Here is the proof

- A routine diagram shows that M v a d-machine.

- M and M~ have the same responses :

Since the response of the dJ-machine M 1y the response of the
(C, i, m)-machine  M°=(TQ", 861, t. Y B #) where 8°= 6#dQ =
=mQ"TédQ =mQ ~TeQ -Tv-dQ =Tv-dQ and B # =61, and the
response of the mplicit d-machine M~ 15 the response of the
(C, u, m-machine M~ =(Q", v, I, 7, Y, B, 1 sutfices to construct a
simulation y:M° — M~

But  since (Q°,v,&) is a d-algebra one  has  that
E(TQ™ 8°) — (Q. v) is a morphism of right actions.

Finally, since the following diagram commutes

] TQ - B -
LQ_/' \7)’ 0
i A

:/Q\ S Y
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one has that & is a simulation. @

(2.2.14) Let h:(Q,v.&) — (Q°, v, &) bea d-homomorphism
andlet i-p:Q —>> Q">—> Q7 bean E-M factorization of h in
C ( C 1s supposed to have an image factorization systemm ( E, M) ).
Then, if T-(-®C) preserves E, there exist unique v : Q7®C — Q"

and £7:TQ"> Q" suchthat p:(Q. v.E) = (@Q", v’ &)

Qv EY > (Q, v, &) are d-homomorphisms.

Proof : Consider the diagram

p ®l1
0 eC p 07 OC
\‘E(Q(’DC) I G(Q”®C)/
T (p ®1 1@l
v I T(Q&C) (e T (Q @C)
. 111
0 ‘/v# T e Q" ec
A et e(Q®C)
p .-V T(Q’®C)/ y
-t B v
' ‘—"‘ V’N
0 » 0O

I commutes by definition of v*.

I and Il commute since ¢ is a natural transformation.
IV commutes by definition of v*#,

V commutes because the following diagram :

(2.2)
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T (p®l) Tu®l
TQ®C) ——peT(Q®C) ——pp T(Q®C)
T v l\ « l,l. v
T (h®1) -
Qo » 107

J PR

Q ————mp Q7
P !

Now, by diagonal fill in, there exists a unique C-morphism
v .T(Q '®C) - Q7" such that makes the diagrams A and B
commute.

Define v = y-e(Q'®C) and using the fact that 1 is a
monomorphism a routine diagram shows that v : Q" ®C — Q7 isa
right action.

Then p:(Q.v) » (Q°, v') and 1:(Q", v') - (Q, v
are morphisms of right actions.

Consider now the diagram

Tp ‘
TQ >,I(),,

T((]@n)p'l) T ((1@]’)1)‘1)/
S T(p®l) T 4

T(Qo&C) » T (Q 7eC)

0« ,—"'rwx)lY (o n) p1)TQ

-

oo /
P e T (Q ®C)

Jyy
N

and define & = yT((1®n)-p-1).
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The rest of the proof is analogous to the proof of (1.3.14). @

(2.2.15) Let (E, M) be an image factorization system in C and
suppose that T-(-®C) preserves E. Let I and (Y, 8) be fixed.
Then for every f:I®C — Y there exists an implicit d-machine
M~ =(Q°, v, &1, 1,7,6, B) such that the response of M~ is f, the
reachability map r#:T(/®C) — Q~ isin E, and the observability map
c:0Q - YC isin M. If M~ also satisfies these three conditions
then M~ and M~ are isomorphic (i.e., there exists an isomorphism
y:(Q,v,E) » (Q7, v, &) of d-algebras such that w17 =777
and By = 7).

Proof: Let

fe: () -a ! (I®C)®C — IR(CRC) — I ®C) — (VI: YCRC — YC)

be the unique morphism of right actions coextension of f:

and let
=) (TURC), T((1®u)-o-1)-d(I®C), m(I®C)) — (YC, vY, 64) be
the unique d-homomorphic extension of f.

Now consider an E-M factorization of f™:

ort : TIR®C) —>> Q™ >—> YC

By (2.2.14) there exist unique v :Q®C — Q™ and E7:TQ"— O~
such that
r* o (TURC), T(1®u)-aH-d(I®C), m(I®C)) — (07, &7, v?) and
o:(Q.&E.v) > (YC,vY, 0y) are d-homomorphisms.

Now define r: (I®C, (1®u)-a'l) — (Q7, v") to be the morphism
of right actions r=r#e(I®C) and 17:1 — Q° to be the
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C-morphism 77=r-(1®7n)-p-! and B :(Q°B) - (V. 6) 1o
be the T-homomorphism = ev-(1®1)-p-1-6. Then one has the
following commutative diagram :

f-
T(I®C)

e(l®C)?
18®cC

1en *

I ®F

The rest of the proof is similar to the proof of (1.3.15). @

(2.2.16) Let (C,®,E o, 4, p,s) be a closed category with countable
coproducts and let X be an object of C, then one can consider the
monoid (X *, u, i) given in (1.2.3). The triple in C that gives rise the
functor -®X in the sense of (2.2.2) and the triple that gives rise the
monoid (X 7, 11, ig) in the sense of (2.2.5) are the same one:
(-®X 7, ip",u") where in" Q= (1®ip)pl: 0 - O0RE - O®X* and
HO=(10u)al: (Q®X")®X*—> OR(X*®X*) > O®X* for each
object O of C.

Now let 7" = (T, e, m) be a wipe m C and
Ai(-®X )T — T-(-®X ) a distributive law of -®X over T.
Following (2.2.3) the distributive law A gives rise to a distributive law
d:(-®X")T > T-(-®X*) of (-®X* 19, 1) over ~

Then, in that context, by one hand one can consider the category of
implicit A-machines and by the other hand the category of implicit
d-machines because (2.2.4) the category of A-algebras is 1somorphic to
the category of d-algebras and hence both categories of implicit machines
are 1somorphic,

(2.2) 71




2.3. u-machines in a topos for a morphism of monoids u.

(2.3.1) A category K that verifies the following three conditions is
called an ( elementary ) topos :

(1) K has all finite limits.

(1) K 1s cartesian closed | i.e. for each object A of K there is an
exponential - functor ( -)A : K — K  which is right adjoint to the
functor -xA .

(i) K has a subobject classifier , i.e. there 15 an object €2 and a
morphism ¢ : 1 — £ such that, for each monomorphism j:B8>—> A
in K , there is a unique X+ A — £ making the following diagram a

pullback :

B ——m—» |

;I lQ,

A —  »

4,

In a topos a monic arrow (respectively epi) is an equalizer
( respectively coequalizer ). A topos is balanced: i.e. a morphism which
is both mono and ep1 is an isomorphism. A topos has finite colimits and
an image factorization systemr <iven by the epis and monos. [27, pp. 23-
41].

(2.3.2)  Let C be a category with finite hmits. An internal category
m C i1s Z=(Cp Cy.do.dy.1,m) where :

()  Copand C1 are objects of C, called respectively the object of
objects and the object of morphisms of C.

(i1)  four morphisms dg:Cy — Co, d1:C1 = Cy, i: Cyp— Cy, and
m:Car— Cy where Cp =C1xc,C 1 represents the pullback :
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(iii)  such that  doi=d;1 = lcy. dom=donmy. dym=dym,
m-(1xm) = m-(mx1) : C3 = CixcoCixe,C1 —» Ch, and
m-(I1xi) = m-(i xl) = Ic,.

( Whenever 'y appears as one factor of a pullback over Cg. 1t 1s
written on the left ( respectively, on the night ) of the symbol X, 1 1t 1
considered with the structure map dy ( respectively, dy ) ).
An anternal - functor  ( or morphism of mternal categories )
f:2 = 2 s a pair of morphisms fy Co— Do . f1 :C1 = Dy
commuting with do. d1,7,and m  The category of mternal categories
and functors of C 15 denoted by cal(C).
An object T of cat (C) such that Cq 1s the termmal object 1 1s
called a monoid .
Let Z be an object of caC) . An internal diagram F on 2
consists of an object y,: Fy— Co of C /Co. and a morphism
e F1=Foxcy)C1 — Fo  such that Yo =di-ma, e (Ixt) = lp,, and
e-(ex1) = e-(1xm) : F2 = Foxc,Cixc,C1 — Fo. |
A morphism of internal diagrams  f:F - G is a morphism
Fo— Go over Co . commuting with the structure morphisms ¢
The category of mternal diagrams on = 1s denoted by €7
The catcgories cayC) and C-  have fumte hmits and of
f: T —= I isamorphism of cat(C) then the pullback functor :
e (Cy/ 2 — cauC )/
induces a functor /" : C- — C°C.
If K 1satoposand 7 isan object of cat(K) then KZ isa
topos and, given f:Z — 2 a morphism of caK), the functor
ff:CP — €T has both left and right adjoints. Also one has that the

following diagrar commutes :
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ul lu
K/Do'—: K/Co

fo

where U denotes the forgetful functors. |27, pp. 47-56].

In [106, pp. 226-227] the concept of left Z-object is given,
( analogous to the one of internal diagram ) as a triple (A, @, y) where
p:A—>Co, and yw: AL -5 A where A] denotes the fiber product
[ (ga):aeA, geCy and ¢ (a)=dp(g) | for which a list of conditions
have to be satisfied  Again CY denotes the category of left Z -objects
( with the appropiate morphisms ).

If K isatoposandif f:2 — 7 isa morphism in cat(Z), the
induced functor f*: K" — K<, that has left and right adjoints, may
be defined on objects by stipulating that f¥ (A", @', W) =(A, @, V)
where A =[(c . a’):fec=¢a’], ¢ is the first projection, and
v (g (¢ w')) (where necessarilly do(g)=c¢ and ¢’a’= fc ) must
be (di(g). w(f (g). ). [10, p. 230].

(2.3.3) In view of (2.3.2) one can consider the following : Let K
be a topos and let (C, i, 1) be a monoid in it in the sense of definition
(1.2.2) and with resoect to X, that monoid may be viewed as an internal
catecgory in K with object of objects the terminal object I, and
then K(C 4.0 (n the notation of (2.3.2) ) is the category of right
actions of (C, u, 1). Hence, if f:(C, u, 1) - (C°, u’, 1) isa
morphism of monoids, the functor :
7 cRact — Ract
that sends ¢ (VA AXC"—> A) > (vg:BxC - B) to
8 (W A(IX): AXC — AXC” —> A) > (v'p-(I1xf): BXC — BxC’— B)
has left and right adjoints :
S, Iy © cRact — cRact; X — J° —I Iy
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The 1deas contamned in (2.3.4) and (2.3.5) have been obtamned
from the machme theory that E. S. Bambrdge [8] gives i the
hyperdoctrine (cat ., Set) .

(2.3.4) Let K be atopos and let (£, m, ¢) and (C, u, 1) be
monoids in1t. I w (K, m, ¢) — (C, ¢, 1) 15 a morphism of monoids
then following (2.3.3) onc has a functor «*, that will be denoted by
sub . ( of substitution ), sub w : ¢Ract -» ;Ract that has a left
adjoint %, and aright adjomnt 11, When one takes (£, m, ¢) to be
(LIXET—=1)and . (1L IXI, L= 1) = (C, 4,0, Ract can be
identified with K and sub n with U : cRact — K and one 1ecovers
the determimistic approach given m (2 1) for the case of a topos K

(2.3.5) Let K be a topos. fix two monoids (£, m, ¢) and (C, i, 1)
in it and a morphism « : (£, m, ¢) — (C, 11, 1) between them. Then one
has the corresponding functor sub w: ¢Ract — jRact that has a left
adjoint X, and a right adjomt 1, A w-machme 15 a S-taple
M =@ vp) (U op. t,Y, wy), 3 ) where (O, Vo) osoa
C-right action, ([, wr) and (Y, wy) we FE-nght actions,  and
T:(, o) — subu(Q.vp) and S :subu(Q. vp) -> (Y, wy) arc
morphisms in gRact.

The  reachability map  of M s the unique morphism
r:Z2y, wr) - (0, Vo) such that:

nel ,o ;)
WENONY » (subu )X (] .w;)
E (subuw ) r
T v
(subu ) (Q V)
(n istheunitof %, —1 subu ).
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The  response map of M is the morphism in gRact
Btsubuyr @ (subuw )X, ) = (subuw) (Q, vp) — (Y, wy).

A morphism  f: (subuw) Xy (I, ;) — (Y, wy) 1is called a
response and if a w-machme M has as response map f, M is said to
be a realization of .

The  observabiliey map of M is the unique morphism
o: (Q,vp) = I, (Y, wy) suchthat:

e(Y, wy)

(Y ,0oy) ®«——— = (subu ) Il , (Y, wy)

: (subu ) o
[3 1
(subu ) (Q . vy)

( € 1s the counit of  subuw —I I, ).
The machine M is said to be reachable 1f (subw)r isepi and
M s said to be observable if (sub u) o is mono.

(2.3.6) Let K be a topos andlet (C, u, 1) be a monoid in
it. Let ¢ : (0, v) = (Q, v) bea morphism of right actions such
that ¢ : Q —>> Q" isepiin K, let (Q°7, v'") be aright action and let
v :Q — Q7 be amorphism in K such that y-¢@:(Q, v) - (Q7, v")
1s a morphism of rieht actions. Then y: (D, v) — (@7, v7) isa
morphism of right actions.

Proof: Since ¢:Q —>> Q" isepiand the functor -XC : K — K has
a right adjoint, it preserves colimits ( in particular coequalizers ) then,
@ X1 : OXC —>> Q'%C is also epi.

The rest of the proof is like in (2.1.6). @
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(2.3.7)  Fixing (/. w;) and (Y. wy). but letng (Q | vp) vary,
Jet u-mach be the category whose objects are w - machines
M =((Q, vp). (U o, t. (Y, wy), B ). and whose morphisms are
simulations v M — M e morphisms ot C-right actions

v (Q,vQ) = (Q7. v ) such that

(subuw ) (Q ,\'Q)
S 4
(/I ,0 ) (subu )y (} [ w,

(subuw )(Q "~ v n)

The following is the analogous, 1 the present context, to the
"minimal realization theotem” stated in (1.) 13) :

(2.3.8) With the above notation, let f - (sub )y X (1, wyp) — (Y, wy)
be a response, then there exists a reachable and observable realization
Mp=((Qf. v U wp). 14 (Y, wy). Bf) ot f. Any such My isa
terminal object m the category of reachable reahizations of / and
simulations and any such My is an mitial object i the category of
observable realizations of f and sumulations; thus A7, 1< unique up to
isomorphism.

Proot : Given f: (sub u) X, (I, w;) — (Y, wy), let
S Xy, wr) — 11, (Y, wy) be the unique morphism such that :

e (Y, ©,)
(Y LWy ) I R EN V1 T )][u()’. wy )
A
:(\uhu Y ]y

.
(sub e ) 2 “(/, m;)
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and now consider an epr-mono factotization of f m ¢Ract ( thatis a
topos ) .
op-ry Xy, op) —>> (Qy, v >=> 11, (Y, wy)

Define 77 and fy respectively as tollows
(subw)ry-n(, wp) : U, @) — (sub )X, (I, wpy —>>0ub u)(Qf, Vf)
£ (Y, wy)(sub u)oy ub u)(Qy . vy >—> (sub ), (Y, oy)—> (Y, wy)
( smece sub e has a lelt and night adjoint it preserves limits and colimits
and in particular monos ( equalizers ) and epis ( coequalizers ), since
cRact and jRact are toposes )

Therefore, My=((Qf. v (L, o), 7. (Y, wy), ;) is a reachable
and observable realization ot .

Now suppose that A = ((Q, vp), (I, wp), 1. (Y, wy), B) isa
reachable rcalhization of /. Fust one has that or = f4.

Now, by diagonal fill in in gRact, one has a unique y such that :

(subu ) Q, v )

(mbu)/V'

(subu))_‘u(l, Wy Y (subuw ) 17 y (Y, wy)

(sub uN A) O'f

]

\ |
(sut Y
suw)(Qf \/)

Q

\;uh )y o

Now, w:Q — Qf is a morphism m K such that
wer=rp 0 E (o) = (Qf. vy 1s amorphism of  C-right actions
and r isepiin K then, by (2.3.6), v :(Q, vo) — (Qf. vy 1sa
morphism of C-right actions; also the diagram




(sub w ) Q. vo)

(1, w;) (subu)v/: Y Y, wy)

\/

S
( sub u )(Q vf

commutes since :
T = (subu)y rp-nUl, wp) = y(subw)yr-nd, w) =yt
B = (Y, wy)(sub ) o =¢€(Y, wy)(ub u o -y = By
Hence, y:M — My 1s asimulation.

Analogously if M = ((Q. vp). (. wp), T.(Y, wy), B ) is an

observable realization of f, there is a unique smulation @ . My — M . @

(2.3)

79



3. MACHINES IN CATEGORIES OF HEYTING ALGEBRA
VALUED SETS.

3.1. A discussion of H -valued sets as a topos.

(3.1.1)  An equivalent defimtion for a category K 1o be a topos is
that K has to venly :

(1) K has all finite limats.

(ii)  Forevery object X of K, there exists a power object PX and a
subobject ey >—> “XxX such that, for every object Y and every
subobject R >—> YxX .| there exists aunique r:Y — “X such that

R —» €%

l '

YxX —p XXX
rX1

is a pullback. |27, p. 43].

(3.1.2)  Let 71 bea complete Heyting algebra where the smallest and
largest elements will be denoted respectively by 0 and 1. An H-valued
set s apait (X, x) where X 1sasetand k:XxX — [{ is a map such
that :

Ay, V) = Ry, ) torall v, v X o and

K(v, A7) A K0, v 7)< k(y, v7) forall v x x™ in X

Given (N, n) and (Y, vy [/-valued sets (the x -functions are not
distinguished notationally) an H-valued mapping f: (X, ) — (¥, k) is
amap f:XxXY — I such that :
(1) ALY A S ) S

fee ) A KOS ) < (v )

forall v, x " mX; v, v in Y.
(1) e A y)S Ay, y) forall x in X vy inY.
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(i) \/ flx,y) = Ky, v)

y

( k(x, x) will be denoted by &(x) forall v X ).

A consequenc> of (ii) and (i) 1s that f(x, v) € £(0) A €(v) fon
all x in X, yin Y.

Let f:(X,x) —» (Y, k) and g : (Y, ) — (£ &) bell-valued
mappings, then (g-f ) : (Y, ¥) — (Z, x) 1is defined by :

(g N, 2)=\/ Hx, ) A gl
y

To each H-valued set (X, k) is associated an H-valued mapping
the “identity" l(x x»): (X, x) — (X, k) given by «.

The above data give a category : The category H-Set ot [{-valued
sets.

The sigmficance 1s that (X, k) may contain clements only partially,
the degree of membership of x 15 mesured by ¢(v) = ~(v, 1), and the
degree of equality between x and v7 in (X, &) is mesured by x(a, ),
For an H-valued mapping f (X, ) = (¥, n) the signtficance of
f(x, y) is that it gives the degree of equahty between v and the image of
x by f.[25, pp. 4-5].

(3.1.3) Let (X, ) and (Y, &) be H-valued sets and f0:X — Y be
a map, defining f: XxY — I by f(x, v) = e(v) A K(1(x), ), il f isa
morphism from (X, &) to (¥, 1) one says that [0 represents . In
particular 1y represents Iy x) for cach H-valued set (X, K).

A function U X -> ¥ aepiesents @ morphism from (X, &) 10
(Y, ¥) it «(v, v7) < k(UL Oy forall ot X

If f:(X, k) — (Y, x) and g (Y, k) - (£, K)  are morphisms and
f is represented by /0 then (g+f My, 2) = £(X) A e (fU(x), z); m
particular if ¢ is also represented by a map ¢V then ¢/ 15 represented
by ¢040. {25, p. 6]
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(3.1.4) The object ({e}, k) where {e} is a singleton and x (e, ¢) =1
is a terminal object in the category H-Set. Given any object (Q, ), the
unique morphism ((Q, x¥) = ({e}, x) is represented by the unique map
0 — {e}. 125, p. 7]

(3.1.5) Let (X, k) and (Y, k) be objects of //-Set, a product of
them is given by (XXY, ) where K((x, y), (xy)) =
= k(x, x) A K(y,y), and the projections pri (XxY, k)= (X, ),
pr2 (XxY, k) — (¥, k) that are r1epresented by the corresponding
projections XXY - X, XxY oY mn Set . Moreover, if
f:(Z x) - X,x) and g :(Z k) — (X, x¥) aic morphisms, the
unique morphism /i that makes the following dizgram commute

(X xY, k)
])I’l/é\]))?_
(X k) 'h (Y .x)
7\'/'

_ 8
(Z,Kx)

is given by fi(z, (v, ) = flz, x) A ¢g(z, v). (25, pp. 7-8].

(3.1.0) Let (X, k) be an /l-valued set, consider the set P(X, ) =
={a:X—> H o) <el)and a(v )ak(x,x’) < a(x’) for all x, x"in X}.
Il e P(X, k), defining kg : XXX > H by:

Koy, v7) = (x) A K(y, v°)
one has that (X, K)g = (X, xy) is an [l-valued set and
Ko (X, K)o — (X, K) 1s a morphism 1epresented by 1y . [25, p. 8].

(3.1.7) * A morphism f:(X,x) = (Y, x) is mono iff
flx, Wy A fie’, ) < a(x, v) torall v, v“in X; y in Y.
« Amorphism [ (X, k) = (¥, x) iscpi iff

e(y) < \/ flx, v)

X
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forall y in Y.
 If morphisms f, g «(X, ) = (Y, &) satisfy f(x, ¥) < g(x, v) for
all x in X, y in Y, then f=g.
e If f: (X, x¥) — (Y, k) is both a monomorphism and an
epimorphism, then it is an isomorphism. [25, pp. 8-10].

(3.1.8) Let f:(X, k) — (¥, k) be a morphism, defining a in
P(Y, ) by

afy)=\/ flx, »)

X

then f: (X, k) —>> (Y, K‘)af is an epimorphism, and

(X, x) —-—————-p Y,

~

(Y, K)(x

commutes.

The subobjects of an H-valued sct (X, k) are m bijective
correspondence with the elements of P(X, k) : To g : (Z, k) >> (X, K)
corresponds Ay and  to o i P(X, k) corresponds
Ko ' (X, K)ag >—> (X, ¥).

[t is a consequence of this result that the intersection of two
subobjects of an /-valued set (X, k) always exists 1 it & and B arc in
P (X, k) then o A B, defined pointwise. 15 also in P(X, k) and
obviously describes the intersection of the subobjects corresponding to o
and 3.

Together with the tact that /{/-Set has finite products, this implies
that //-Set has all finite limits. |25, pp. 10-11]
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(3.1.9) (Power objects). For each H-valued set (X, x),
€ (X, k) >—> PX, ©)x (X, x)

is defined as follows :

P(X, x) =( P(X, ), x) where x(a, B)= /\ o(x) &> B(x)

X

In particular, &a)=1 forall a in P(X, k).
Let € in P(P(X, K)X(X, x)) be given by € (&, x) = a (x); then :
€ X, x) = (PX, XX, K))e and
€ (X, ) >> (X, XX, K) 1s the mono ke .
If (Y, x) is an H-valued set, the subobjects of (Y, K)X(X, x) =
= (¥YxX , k) are bijective with the functions ¥ in P(YXX , k). The
condition that

8
(Y xX.x) > €y

, K)

K‘), K¢

(Y , k) x(X ,xkx) —» P (X ,x)x(X ,x)
h x1

is a pullback for some g defines a bijection, F say, from the set M of
morphisms 72: (Y, k) — Z(X, ¥) tothe set P =P(YxX, k) :

F)e.y) = \/  h(y,B)aBx) and

fe PX, K)
F-1(p:(, ¥)— (X, x) is the morphism represented by the map
v Uy, -).
Therefore, the category H-Set is a topos. |25, pp. 11-12].

(3.1.10) Let (X, x) and (Y, x) be [l-valued sets. Then every
morphism 4 : (Y, ¥) = (X, k) is represented by a unique function
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h0:Y — P(X, ) such that hO(y)(x) < e(y) forall.x in X and y in
Y . Infact WO(y) = Ay, -) where y=F(h) (sce 3.1.9). |25, p. 13].

(3.1.11) Let (X, k) be an H-valued set, a predicate of type (X, K)
is a subobject of (X, x). Then one can identify the predicates of type
(X, ) with the corresponding elements of P(X, k).

Given (X, x¥), € : P(X, &)xX — H that sends (a,x) to a(x) is a
predicate of type ~(X. K)X(X, k).

Given (X, x) and (Y, x), @ : P(XXY, k) > Hl that sends f to

DN = A [ afie,y)— k)| a A [z‘(r)a\/ fix, y)il

x,yy \

is a predicate of type F(XXY, k).
If fisin P(XXY, k) and g in P(YXZ, x¥) where (X, x), (Y, ),
(Z, ) are H-valued sets, g-f defined by

(N2 =N/ e, ) A gy, 2)

)

isin P(XXZ, k). [25, pp. 14-17].

(3.1.12) (Exponentiation). Given (X, x) and (Y, k) H-valued sets,
the subobject ( P(XXY , K)o of #(XXY , k) determined by @ is
denoted by

(Y, k)X, x)
it being the thing which makes H-Set cartesian closed. {25, p. 18]

If one defines ev: (Y, K& Mx(X, &) > (Y, k) as the map
(P(XXY, K)xX Y — H that sends ((f, 1), v) 10 (fHnf(x, y),.
given (Z, K) and g2 KxX(X, Ky = (Y, K) the  umique
g (Z, k) = (Y, X &) such that makes the following diagram
commute




|
|

(v, ) T x )

A ev
g#Xll

:

X

(Z,x) (X , k) ——» (Y, k)
8

is represented by the map g0:Z — P(XxY,x) which sends z to
g ((Z ’ -)’ ')a and g#(z af) = 8(:) AN K(D( X((-’-’ » '), ')9./) =
= 8(2) A K( 8((2 ’ ')’ ')’f)‘

Proof: (P(XXY, k)¢ = (P(XXY, K), x¢p) where kp(f, g) =
D(f) A x(f, g).
- ev is a morphism :
(1) k(. f) AKX x)Aflx,y) A OF) <
S Ko (L ) AfX ) AD(f) = Q) A k(f [ A flx” y) S
SOU)Af(xy) forall x, x" in X; £, f in P(XXY, ). (The
last inequality follows since @ and e are predicates).
* ev((f, ), Y) A K, ¥) =P Aflx, y) A K(y, y) <
SO Aflx,y) for all x in X; y y in Y; f in
P(XXY , x).
() ev((f, x), y) Aev((f, x),y) = D) Aflx, Y) A D) Aflx, y) =
= flx, ) A flx, y) A

A ED AR Y)Y 5 KO AN [8 ) =V flx, y)}s

’ y
x,y,)’ X

S Y) A YD) A fey) A fix, y) = k(y, )1 < k(y, y°) for
all x in X; y,y"in Y; f in P(XXY, k). (The last inequality follows
sincein H, an(a - b)<b forany a, b in II).

(iii) \/ ev((f, x), y) = &(f, x) forall x in X; fin P(XX Y, x):
y
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<) V flx, y) A @) < elx) A @) = &f, x)
y

>2) €f x) = O() A elx) £ D(f).
One also has that  €(f, x) = O(f) A &x) =

=e)n A U6 Afly) - kG, ¥ A A [S(x) -V fx, y)]S

. y
X0y X

< e alex)->\/ fl,n| £\ Axy)
y y
- g0:Z —» P(XXY,k) represents a morphism from (Z, x) to

(Y, K¥)X.6) :
First one has the following inequalities :

y

¢)) e(z)S/\ l:e(x)—-a\/ g((z, x), y):| forall z in Z.
X

) k(z,2°) < /\ [g((z, x), y) <> g(z’, x), y)] forall z, z” in Z.

X,y

(1) : Since g is a morphism one has that

V gz x),y) = &z, x) = &) A &x)

y
and the certainty of the inequality &(x) A &(z) < &(x) A &z) implies the
certainty of &(z) < &x) — &) A £(z). Then one has inequality (1).
(2) : Since g is a morphism, g((z, x), y) A K(z, z) < g((z’, x), y)
and hence x(z, z") < g((z, x), ) = g((z’, x), y). Analogously «x(z, z") <
< gz, x),y) = g((z, x),y). And then,
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e ]

K(z, 2) < g((z, x),y) & g((z’, x), y) forall x, v . Therefore one
has (2).

Now from (1) and (2) one has :

K(z,z)=€(z)AK(z, 20 &
AN [E(X) -V (@, x), y):l AN (G0 o e 0 )=

X Y X,y

= A (8@ 0,9 A gz, 0, ¥) = Ky, )] A

X0y
AN [S(x)——> vV g((z,x),y)]/\ A\ [8(Gv, ) o g, 0, )=
y
X

X,y

= @(g((z ))) A K(g((z -)), g((z"),-) = kol £9(z), £9(:")).
One has used the fact that :

A L@y gz 0.9) - Ky =1

Ny

since  g((z, x), ) A g((z, x), y) < Ky, ¥).
Now,
g¥(z. f) = £(2) A ka(g0(2), f) = €(2) A K(g((z , -), ), f) =
= &(z) A D(g((z 7)) A K(g((z ,-)-), N = €(2) A x(g((z -), -), )
( The last inequality follows since &(z) < d(g((z , -), -)) ).
- ev-(g¥x1) = g
g1 : (Z, XX, K) - (Y, ©)X, Ox(X, k) is represented by the map
ZxX — P(XXY, K)xX that sends (z, x) to (g9(z), x), hence :
[ ev-(g#XD)]((z, x ), ¥) = &(z, v) A ev((g0(2), x), y) =
= &(z) A €(x) A D(g0(2)) A (gOE))(x, y) =
= &(z) A &(x) A D((2)) A g((z, x), v ) = g((z, X), y)
- Uniqueness of g :
Suppose that /i1:(Z, k) = (Y, )& %) is a morphism such that
ev(hx1) =g .Then h = g# has to be shown .
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First, one has the following formula :

(3) N hzfHAafix,y) =gz, x),y) foral x in X;y in Y;
f

z in Z:
g((z, x), y) = [ ev-(hXx1) [((z, x), y) =

= \/ (tx D)z, %), (f, x)) A ev((f, ), y) =
fLx

= \/ hz, ) A x(x, x) A D) A flx",y) =
Lx

= \/ hzHar @) Aflx,y) =\/ hz.P)Aealf) Aflx,y) =
f f

= \/ hiz, /) ~ flx, y)

f
Hence (3) follows.
Now consider
g# Ko
(Z.x) —— 2, 0% 0 o pP(XxY, K
h

and since k¢ is mono suffices to show that k¢-h = xp-g¥.
Now, from (3.1.10), the morphism k¢-h :(Z, ¥) > P(XXY, K) is
represented by a map /10 :Z — P(XXY, k) where h0(z )= Yz, -) and

Nz, (x5, 1)) = \/ (Kah)(z, f) A flx,y) =
f
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=V (V hiz, ) r Ko DA FL D) =
f f

= \/ hiz, ) A flx, y) = g((z, ¥), V)

f
( The last equality is the formula (3) ).
Hence xq@-h is represented by the map =z — g¢((z, -), -) and
K@-g# s also represented by z — g((z , -), -) , therefore onc has that

Ko-h = kpg#. @

(3.1.13) Let {(X,,x)}, es beatamily of objects in / -Set , then a
coproduct of this family is given by :
[ij :(Xj yK) > (@ ,er X K) ) jel

where @, ¢ X;,={(x,,0):iel} is the disjoint union in Set,
K . ®iel X)) )X(®; e1Xi) > H Is  the map that sends
((xis i), (x5 ) to k(x,, ) if j=i and to O otherwise and the
injections i; are represented by the corresponding injections
Xji > ®,¢1 X, in  Set. Moreover, given a  family
(fi:Xj, ) - (X, K)} ;es of morphisms in H -Set the unique
morphism f: (® ;e 7 Xi,K) = (X, k) such that makes the following
diagrams commute for each je [,

is given by f((x;, /), x) =/ (x;, x) forall (x;,)) in ® ,¢7X, 1 x in
X.
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The proof is straightforward. @

(3.1.14) Given (X, x) an object of H-Set, the "free monoid on
(X, x)" given following (1.2.3) is (X%, x), 4, ig) w.tere :
. X* = ®,¢ NX" (the disjoint union in Set ).
. K:(®pe NX")X(® e NX*") > H is the mup that sends the
element ((x1,....x0 1), (x1°,...xm " m) o K(x1,X1) A ..AKXn,Xxm")
if m=n and to 0 if m#n ( in particular if m = n = 0,
k((e, 0), (¢,0)) =1).
. o (XK, x(X*, k) = (X*, x¥) is the morphisn. represented
by the map X*XX* — X* that sends ((x1,...,xn , 1), (X17,.. Xm , 1)) to
(X1, Xn, X1 50", n + m).
. iv:({e}. ¥) > (X* x) isthe O-injection.

The proof is straightforward following the construction given in

(1.23). @

3.2. An analysis of some concepts of automata theory in the
context of H-valued sets, especially when H is a finite chain.

Given (X, x) an object of FH-Set one can consider the
process -X(X, k) : [{-Set — H-Set and the category Dyn(-X(X, x)),
then the study of the machines in a closed category of (1.2) applies to this
case :

(3.2.1) An (X, x)-machine will be a 6-tuple
M = ((Q. x), 06 U x), 1, (Y, x), ) where (Q, x), (I, ¥) and (Y, )
are H-valued sets ( the state object, initial object and output object
respectively), & : (Q, K)X(X, k) = (@, k) an H-valued mapping ( the
dynamics ) and 7:(/, &) = (Q, k), B:(Q, ) > (Y, k) H-valued
mappings ( imtial state and output morphism respectively ).

Following the significance of the f/-valued sets such a machine may
be thought as to have an input object (X, k) that may contain "inputs"
only partially and a degree of equality between any two "inputs" x and
x” is given.The same significance for the state object (Q, ), initial object
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(I, x) and output object (Y, k). For the transition map, &((q. x), q)
gives the degree of equality between the "new statc” that results by
application of "input” x to “state" ¢ and any "state" ¢~ of Q. For the
output morphism, B(g, y) gives the degrece of equality between the
“output emitted” by "state" ¢ and any "output” y of Y . Analogously
for the initial state.

From now on some of the concepts will be interpreted in the
particular case of H to be a finite chain with

1 ifa<b
b otherwise

a—)b={

[23, p. 187].

(3.2.2)  The reachability map of M , that is the unique dynamorphic
extension 7 : (I, K)X(X*, K¥) — (Q, k) of 7, will be given by :
G, (x50, 1), q) =

= v T(l7 (11) A 6(((11’ xl)’ (]2) AYERYAN 5(((/Il-l~ -\'n-l)s (In) A &(qn» xn)» ‘I)

qy > qn
( inthe case n=0, r((i, (e, })), q) = i, q) ).

Proof : Going to the proof of (1.2.6) one has :
=1p:U X({e}, k) = (I, x) — (Q, k), then (i, e), g) =
=&, e) A T, q) = i, q).
71 = 0(1x1) : (I, K)X(X, K) = (Q, K)x(X, k) = (O, ), then

(i, x), = \/ (T 1), %), (¢, ) A Slg", x), q) =
q’,x
=N T, q¢) AKX, ) A g, X)), q)= N 7, q) A 8g°, x), q)
X »
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7= o(Tixl ) : (I, K)x((X, K)x(X, K)) —
= (I, XX, KX, k) = (Q. K)X(X, k) = (Q, )
then 72((, (x1,x2)), ¢) =
= &((f, (x1, x2))) A (O(TIX1))(((1, x1), X2), @) =
= (& (i xD)(((E, x1), x2), q) =

=\/ (1 x DG, x1), ¥2), (g7, x)) A (g7, x). q) =
x
=N/ 7 (U, x1), ¢) A klx2, X)) A S(g", X7), q) =
q,x
=\/ nlli,x), ¢) A 8q", x2), q) =
q’

= \/ NV T, g )adlg”, x), )| A 8(qg’, x2), q) =
-

=\/ wW.q)YAdqg7.x),q)A g, x2),q) =
g

=\ T q1) A 8(q1, x1), g2) A (g2, ¥2), )

qi, 42
Now by induction can be shown that :

Tn (0, (x1,..., ¥n)), q) =

1l

N/ i, q) A 8(qr, x1) q2) A A S(Gnats Xna1)s Gn) A 8(Gny X), @)

qu LY qn

Now, r: (I, KX(X™ ) — (Q, k) is defined by :
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Now, the reachability map may be thought as follows : Begining in
i and  applying the ‘“sequence of inputs" = (xy,....v, 1),
r((t, (x1,....xp, '1)), ¢) says the degree in which ¢ is reached.

If H is the finite chain, the fact that ¢ be reached n degree a € H
means that there exists a sequence ¢ i.....gy such that :

(L, g1) A O((g1, X1), ¢2) A 8(g2, x2), g3)IA...AS((Gn . Xp ). g) = a

i.e. the degree in which 7 sends i to ¢y isatleast « ; the degree in
which & sends (¢, v)) to ¢+ is atleast a, 1 <j <n -1; the degree m
which & sends (¢, x;) to ¢ is at least « ; and at least one of those
degrees has to be exactly « .

M is reachable if r isepi, ie. if foreach ¢ in Q is

V (i, (x1,e00, 1), ¢) = &(q)

i, (xla* --vxlh ,l)

that, in the case H is the finite chain, means that there exist an [ and
two sequences X 1,....ty , { I,....¢n such that:
™, q1) A 6(q1, X1), 42) A 8((q2, x2). q3) A...A S(gn . xn ), ) = €(q)
(if n =0 itmeans simply that T/, ¢) = €(g) )
i.e. the degree in which ¢ is reached is the maximum possible since &(g)
indicates the degree of membership of ¢ to (Q, k).

The response map of M, that will be
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for (I, X(X*, ) > (Q,K) > (Y, k) is given by

(ﬁr)((l9 (xl,“-’xn’ 'l)), )’) = v r((iv (xl&"-’xn ’ 'l)), q) A B((I» ,V)

q

that may be thought as follows : it measures the degree in which,
beginning with [ and after apply the "sequence of inputs” (x 1,...,x, ,n),
the machine will emit "output” y .

It i is the finite chain, to say that
(B-r ), (x1,...,x5, m)), ¥) =a € H means that there exists ¢ in Q
that is reached, from (i, (x1,....xy . n)), in degree at least a and the
degree in which ¢ emits y by B isalso at least a; moreover at least
one of those degrees has to be exactly « .

(3.2.3)  The run map of ((Q, ), d),that is the unique dynamorphic
extension 8" :(Q, K)X(X*, k) = (Q, k) of 1(p, k) will be given by :

n=0: 5 (¢, (e, 0)), ¢") = Klq, ¢

n=21: 0 ((q, (x1,...,xm, 1)), ¢) =
- o((q, x1). q1) ~ (g1, x2), g2) A+ A
A (-2 Xn-1)s Gn-1) A 6(Gn-1, Xn), G°)
q1s -« 4n

( when n=1: 8(W(q, (x, 1), q¢") =g, x),q) ).

The proof can also be obtained from (1.2.6) in a similar manner
to the one given in (3.2.2). ®

The run map may be thought as follows :6%((g, (x1,...,Xn, 1)), q°)
measures the degree in which, after applying (x1,...,xp, 1) to g, the
dynamics assumes "state” ¢”.

If H is the finite chain to say that
(g, (X1so.sXyn 1), ¢)=ae H means that there exists a sequence
g 1,.-.¢n -1 such that:

8((q, x1), q1) A &(q1, x2), q2) A...AO(gn -1, Xn), ) = a
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whose significance may be thought as follows : when applying the
"sequence of inputs" (x i,...,x;, 1) to ¢, the dynamics "goes from ¢
to ¢1" in degree at least «, from ¢, to g¢j+1 indegree at least a
forl1 <j <n -2, from ¢, -1 to ¢ indegree at least « , moreover at
least one of those degrees has to be exactly « . |

(3.2.4) The observability map of M , that is the unique
dynamorphic coextersion o :(Q, x¥) — (¥, K)X*. 5 of B will be the

morphism represented by the map Q — P(X*xY, k) which sends ¢ to 1
(B-6")(q ,-),-) where & is the run map.

Proof : Going to the proof of (1.2.7) one has that ¢ is defined by : {

(v k) YX %) o ox T k) |
A

cv

o x 1

~a

(O, k) x (X*, k) —p (0.k) —» Y . x)

*

) B

and by (3.1.12) one has that o is represented by the map
Q — P(X*XY,x) which sends ¢ to (B-8N(g.-).-). @ |

The observability map may be thought as follows : (B-6%)(q. -), -)
gives the "response emitted” by the machine beginmg in "state” ¢, and
o(q, f) measures the degree of equality between the above "response”
and f.

If H is the finite chain, to say that o(qy, f) = ¢« € I1 means that :
8((1) A K@(ﬁ'é*(((/! _)a -)a/> = E((I) A ’\‘(ﬁ'(s*(((l, -)s -)’f) =

= &g) A /\ ([3-5*)(((/, ), e fixt,y) = a
(x*,y)e X" xY
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i.c. that for all pairs (x*, y) one has that :
&(g) A [(B-6%)((q, x*), y) = fx*, )] A (¥, ) = (B-6) (g, x*), y)] 2 a
and the equality has to hold for at least one pair (x*, v).

That means that  &g¢)=2a and for each pair (%, y)
(B-8")(q, x*), y) = f(x",y) or (B-6")(g,x"), y) A f(x*,y) 2 a , and
morcover  &g) = « or for at least one pair  (x¥,y),

(B-8")(q, x*), y) A f(x*, ) = a.

M is observable if ¢ is mono, i.e. if for any ¢, g in Q is:
&lq) nelg) A ko (B-6)(q,-),-), (B8N -).-) ) =
= &(q) nelg) A K (B-6")(q.-), =), (B (g " -)-) ) < K(g, g)

For any ¢, ¢ in @, the degree in which (B-6%)((g, -), -) and
(B-6")((¢7, -), -) are equal, minimum tha degree of membership of ¢
and ¢, has to be less or equal than the degree of equality tetween g and

q’.
(3.2.5) Finally, since the machines ( relative to the object (X, ) )

are a special case of the ones given in (1.2) one has that the "minimal
realization theorem" works.
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