i

Extensions to Aldat to Support

- Distributed Database Operations
With No Global Schema

Mélanie E. Gaudon |
School of Computer Science
McGill University
’ Montréal, Canada

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

~z

\‘ ——

Q , © M. Gaudon, November 1986



s

. Permission has been granted
"to the National Library of
Canada to microfilm this
thesis anhd to ‘lend or sell
copies of the film. .

)

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

ISBN 0-315-38242-2 . -~

L'autorisation a été accordée
a la Bibliothégque nationale
du Canada de microfilmer
cette thése et de préter ou
de vendre des exemplaires du
film.

L'auteur (titulaire du droit
d'auteur) se résetve les
autres droits de publication;
ni la thése ni de longs
extraits de celle-ci ne
doivent &tre imprimés ou
autrement reproduits sans son
autorisation écrite.

-

i



— ® " ABSTRACT ~

This th{sis introduces a new approach to distributed query progéssing in which

* individual hosts are 1ignorant of the location of remote data. To

-

solve distributed

‘queries. a host informs its neighbours of what data 1t is lackthg. The neighbours

'

recursively query their neighbours then respond.
¢ 1 :

' .- . This query processing strategy is used to explore extensions to the relational al-
’ gebra. Both data manipulation and distribution are managed within the framework
} of the relational model. To achieve this, techniques for the representation and ma-

nipulation of queries were developed, along with a canonical representation for.data.

These new techniques are generally applicable to metadata.

f ——
B Y * . f'
" - R
) -
\\ - b
N
“ . .
[} 3
.
.
k3 N .
N
- -
. . .
v
' . .
.
* + N
. LY
- v a
.
N R
o
. a
. .
.
’ §
3
" ‘\ b
» ¢ .
<
B
T
@ ’
, -
o
-1-
N Q
—~
- ” ~
- RN !
N Vi -
,
.
A ' 4 -



X

b

\Y

RESUME
~\

v

C'e mémoire présente une nouvelle approche pour le traitement des requétes dans
les bases des données reliées, dans lesquelles un hote individuel ignore 1'emplacement

des données a distance. Pour répondre a une requéte qui référe a des données a dis-

' W

“3
tance, un hote inforime ses voisins des données qui lui manquent. Ceux-ci transmettent

h .

récursivement la requéte & leurs voisins avant de répondre.

Clette stratégie de traitement des requétes est utilisée pour explorer des exten-

-
sions a l'algebre relationnelle. La manipulation et la distnbution des données sont
gérées dans le cadre du modele relationnel. Pour attemélro ce but, des techniques ont
été développées pour ']a.roprésontation et la manipulation des requétes, ainsi qu’une
représentation canonique des données. Ces nouvelles techniques sont généralement

&>

applicables aux métadonnées.

-1 -




* v . } ¢
+ ACKNOWLEDGEMENTS 5
» . - ' )
he guidancé and encouragement

I wish to express my sincere appreciation for tl
of my supervisor, Dr.T.H.Merrett of McGill University School of Computer Science.

While working on this thesis, 1 would always look forward to our weekly meetings,

£
which were a shtinued source of interest #nd motivation.
I am also grateful to Mr.Serge Hurtubise and Mr.S{:go LaBelle of Bell Northern
\ / . Research Limited. and Dr.Robert de B.Johnston of INRS Télécommumecations for, ’
* . arranging to finance my work through their orgamizations.
ff}le stafl of BNR and INRS were more than helpful when 1 required technical
: )

A‘q
a.ssistan(‘e and (l()(‘um(‘ntat 1011,

/
Leah Simkin was kind enough to edit and proofread the initial ve

To my friend and husband Paul Gaudon. thank you for everything.

o

v
.

o ) - 122 -
‘ -



' |
. (
(( N , ’
TABLE}OF CONTENTS .
. : J
ABSTRACT .05 . ......... S " [ ....... !
RESUME.. . ...; ST AT PO .. . "
ACKNOWLEDGEMENTS ... .oovv ... et b, i
" TABLE OF CONTENTS ..\ oo e \‘ e w
LIST OF FIGURES. e T T S n
Chapter 1 Introduction.................coiiiiiiiiiiin, S 1
1.1 Thesis Aims and Outhine ... .o viuri e oo e e et e 3
1.2 The Relational Mot?el .................... B7ALRARRNEERRRAE 4
1.3 Distributed Database Systems ....... P R S 6
1.3.1  SDD-1: A System for Distributed Databases.................. 7
1.3.2 Distributed INGRES . .. .ot e e, 8
133 RY o P 9
1.3.4  Other Homogeneous and Heterogeneous DDBMS ............ 10
Chapter'2 Aldat: The Algebraic Data Language ....... [ETTRTII 13
2.1  Relations, Data and Metadata ........ S EREREE R 13
2.2 Operations on relations .............. ... ... R ..h.. 15
. 2.2.1 Relational Assignments . ,...coov ittt 16
222 T-Selectors.................. e e e 17
223 JJOIMS L e e e ............... 18
2.2 T-JOMIS it e e e e e e e 21
" 2.3 The Domain Algebra . ... . PO 23
Chapter 3 Processing Queries on Data Shared Between Two 4
Hosts................. [P e e .26
3.1 chreser;ting Queries as Relations ......... e e 27
3.2 Decomposing Queries into Local and Remote Components .......... 30
3.3 The Query D)alogue ......... . . R, cee.. 34
Chapter 4 Executing Query Relations..!....... e 42
4.1 A Canonical Representation of Relations .............. EETTRR P 42
4.2 Extensionsto Aldat .. ... ... . i i ..... .. 43
4.3 Transforming Relations Between Representations ........... e 46
4.3.1 Converting Relations to Canonical Format-...... P 47
-2 - .

~



to q, -
< . p o, / ?
. R
. Q
, 4.3.2 R(‘stnr'inp, Relations to Their Onginal Format ... ... ... 51 -
;ﬁ 44 Converting Aldat Expressions to and from their Relational
- Representations..........c.ovvieen ... e hd
R . . e . * ]
. 4.4.1 Converting Aldat Expressions to QEXP Relations............ H
-4.4.2 Rebmldmg an Aldat Expression from a Ql‘\P \
- Relations.. ...t i e f e ho "
.. y . . . /
Chapter 5 Distributed Querqurocessmg in an Arbitrary
; Network..........c. i H8 ot
. .. 5.1 Query Propagation ............. U S SR 1
5.2 Local Participation in Query Processing...............orvoiun. .. 60 ’
5.2.1 Special Purpose Functions and Relations......... e .. 60
v 5.2.2 local Resp(mw to an Incoming QEXP Relation ............. 62
5.2.3 Local Rvsp‘onse to an Incoming REQUES' I‘W g T3
Ly
5.3 " Resolving Distributed Queries............... H P 73
. Chapter 8 Conclusion......... ... ... 7
6.1 Applications to Metadata and Metacode .......... ..ot ™
6.2 FutureWork ............. oot % e e [
REFERENCES........... | AU P 79
L4 ’ .
[} ) | & M
4 -— < ]
*
- _,/ - v
- < >
Y
o7 \
. v . ' .
. . i
o | ’ | |
. * v ‘
- ? ’



1.1
2.1
r2.2
2.3

3.6
3.7
J.8
3.9
3.10
3.11

3.12

3.13
3.14

LIST OF FIGURES

\ ~
3 ) i r

(70111[;arison of the discussed systems, ..............oiiiiiiiiiaan, 12
Four relations represented as tables. ... .. e e e 14
The Aldat assignment Operafors. . ......uoeiieeiierieneeiieennns 16
(‘OUNTRIES is obtained by projecting FILMS onto its N
COUNTRY attribute. .. ... i e i 17
Tuples deseribing Japanese F]LMQS are selected to creaththe
JAPAN FILMS relation. ... ... o o i e 18
A single. T-Selector expression cambines a selection operation
with a project to produce JAPAN FILMS2. ... ... ooat 18
The natural join of FILMS and CINEMAS. ..\ ooineennnnnn, 19
MALE ACTORS and FEMALE.ACTORS. .............. ... Ceee.. 20
The difference join of FILMS and CINEFILM. ... ...... ... .. ..., 20
The CINEFILM" and JAPAN_RILMY' relations are
.r<_*present(‘d th results of various o-joins are illustrated \
m(b)(c)and (). ... EEREETTN 22

An actualization of the virtual attribute PRICE. .... .. e V.24
The local schemas of hosts ‘A and B 27
Query expression 3 1. ............. A e I et 28
Query expression 3.2, ... . e e .29
Relational representation of expressions 3.1 and '32 ........ A 30
Intermediate results of query decompositign. ......... e, 33
Final resultsof query decomposition. ... ............... e 34
Local and remote results listed in RESULTS relation. .............. 35
Query expression 3.3. . ............. l .......... PP 36
QEXP relation with the addition of expression 3.3. ................ 37

Local de«impos;tion of QEXP relation in figure 3.9. .......... ‘;:;-“ 37
RESULTS relation (a) originally and (b) after elimination of o

redundant relations with FINAL_.RESULTS and

REDUNDANT RESULTS. ... o ot o, Neeeen 38

MQEXP is the portion of QEXP combining 10(:&1 and remote, . '
results. oL P

DAG representation of MQEXP. ............ e iieiisitiieaaa 40

Resulting REQUEST relation to be sefit to-Host B...ovvvvn... .. T4l

-m - .- -




~

4.1

4.7

4.3

5.9

- 5.10

5.11
5.12

- 6.1

6.2

'
» - ’ -

Executing QEXP relations on canonical data. ..... ........... ... 13
Relations CINEMAS and CINEFILM with their canonical

representalion.... ... ... .. i Teeeniann 44
Trace of first while loop of Original ‘C’anonical N ‘ '
(“CINEMAS ). ...l I 44
Trace of Original_Canonical ((CINEMAS") continued to

second while Toop. .. 7o o o o e 50

‘4.5 Trace of CINEMAS -- Canonical Original (‘CINEMAS"). ........ 53

A sample network.s ..o e HY
A spanning tree of the sample network. . . .’. e e e 60
Metadata relations at Host (.‘..1 T TP 61
(a) The incoming QEXY relation. (b) It graph

represenfation.... .. RERE R TR R R R I PP RS PEIERETERS 64
New relations created by Receive Query ..,............. . ..... &b

Trace of Receive Results. (a) Host F answers. (h)

"RECFEIVERS and RESULTS after first iteration. (cg Host H,

answers. (d) RECEIVERS and RESULTS ‘lﬁ( r s(-((m(l

Heration........ooeevuuiine .. e e e e 67
Relations created by Determine Request with the up(lat((l )
version of RESULTS ... ... ... ... .. .. . .. ... .. 68

Execution of Request_Relations on sample problem. (a)
The SITES relation (b) Result ofinitial pick. ’
c¢) REQUEST and TOLIST after first iteration. The
REQUEST relation has been sent o Host [
d) REQUEST and TOLIST after second iteration. The
REQUES'I relation has been sentto Host H. .. ... ... ............. 69

Execution of Receive ‘Relations on sample problem. (a) .

Host H responds with requested data. (b) SITES and CR after
first iteration. (c¢) Host H responds. (d) SITES and CR afte

second Meration. [ ... ... e 70
LQEXP and RESULTS produced by Merge. . ................... 71
FINAL RESULTS relation produced by Return Results. ... ..... 72
Trace of Process Request. (a) A REQUEST relation P
arrives from Host D. (b) Before entering loop. (¢) After first
iteration. (d) After second iteration. . ... .. e 74

An integrity constraint represem'e(l by a QEXP relation. ........... 76

PERSON is a generalization of ACTOR and DIRECTOR...... T T

. , .

/

- vt -

-



s - . o«

-
Chapter 1 — + Introduction .

. = —
-

-

The database approa¢h evolved from the ‘need for centralized control “over in-

formation resources. The initial tendency was to assemble all data at one location

P

-where a single database administrator would assure data intggrity and security. All

applications stored and retrieved data from the central database. This implicitly hi-

.-

erarchical structure of centrahzed databases conflicts with the decentralized nature of
many organizations. For example, a nianufacturing company with plants in various

» \ 1)
cities across the country may have a small computing center at each location main-

taining personnel and inventory files. The local files would be used at their location

of origin to-process pay checks and ke;‘p track of stock. Only occasionally, such as

when the head office is.drawing up a balance sheet or comparing plant productivity,

b4
is it necessary to have a global view. of data from all plants. -

A

The local files could be incorporated into a centralized database, however this

—

solution has its drawbacks: data would most often be stored away from its point of

origin; local applications would have to access the central database remotely, entailing
: o
. & b
high communications costs. Moreover, in case of failure at the central database loca-

tion, all applications would be suspended. Such shortcomings led to the development

14
o [ 4

A1)
: r\/ C/,/ o
. . \

>
/,
N




A Y 1
of distributed databases.
'

A distributed datiBase system allows each site to carry out applications on its

local data independently, while providing a global view of data when needed. As

o

a céntralized database expands it will evenritually reach capacity and nay have to
be replaced to allow further growth. Distributeddatabases may grow incrementally

r )
with the addition of new, relatively autonomous units, thus minimizing the impact

of expansion on the existing system.

-

» We define the database schema as the catalogue of available data. In a distriby ted

% .
database, a query may reference locally accessible data as well as data from a remote

site. At each site in a distributed database. a local schema should describe locally

available data! This assures that apphcations mvolving only local data can execute

=]

independently of any central control. Quenes referencing remote data need schema

~

information not available from the local'schema. The question of how they may

1

obtain this mformation is a major design issue in gistributed database management

systems (DDBMS ). i

One solution is to replicate a global schema at each host. However, if the local

'

host is a workstation accessing a very large distributed database, the global schema

1

may be too large to store locally. Also, when the schenta is replicated, any changes to
it necessitate a global update of all local copies. An alternative to having a copy of

the global schema at cach site is to designate one site to mamtain the global schema;

‘.

b=

all applications access the global schema via this location. This solugton climinates

———
T

many of the advantages of distributing the datgbase; a failure at the schema’s, site

cripples all processing and repeated accessing of the global schema creates a system

o 5.



(o]

-

bottleneck. A compromise between the above two strategies could also be considered.
N

In existing distributed database sy'stems, to our knowledge. all hosts maintain some

4 —

W

global schema information locally to access remote data. .

-

* 1.1 Thesis Aims and Outline

““In this thesis we propose a dialogue model for distributed query processing in
! [d

/
/ \

]

priori knowledge of the global schema. We attéipt to manage both data processing

. and distribution within the framework of the relational model. The strategy will be

illustrated using the Algebraic data language, Aldat [MER 84
The next-two sections of this chapter introdyce thie relational model and give

an overview of distributed database research. The research prototypes described are

. -

meant to be contrasted with the dialogue model presented in this work.

Chapter 2 defines relations and introduces the subset of the Aldat language that

‘/

" will be used in subsequent chapters. Hlustrative examples rather than formal defini-

tions will be emphasized.

In Chapter 3 we present the dialogue model in a network restricted to;two hosts.

—

A'relat}t‘\a] representation of queries is proposed which can be factored into local

and remote components. We show how a host lacking data to complete a query, can
engage in a dialogue with its neighbour to locate and obtain the necessary data.

A general execution program is discussed in chapter 4 to execute query relations on

a canonical data representation. Some extensions to Aldat are suggested to support

. ~
g
. 9.

4
\which independent proces®ors can cooperate to resolve distributed queries with no a

@




-

\
conversion between different representations of queties and data. "The conversion

algorithins illustrate the usefulness of the extensions.
The dialogue model 1s extended tp an arbitrary network in Chapter 5. Chapter

6 concludes the thesis and suggests topics for further research.

-

1.2 The Relational Model

-

First proposed as a database model by Codd in 1970 [C'OD 70{, the relational
model has become the basis of virtually all current database research. In 1979 Kim
[KIM 79} published a survey of Relational Database Management Systems (DBMS).
Fernandez [l“EI%N 80] added to this list of existing systewns in 1980, Together,

they enumerate over thirty diflerent systems. With the.advent of powerful micro

computers, numerous Relational DBMS have been amplemiented for personal ¢om
- . 3
puters. In 1983 a two day workshop orgamzed by the INRIA. France, was (l(-wm

%

design and implementation of Relational DBMS on micro-comnputers [INR 83].

’

The success of the relational model can be attributed fo its simplicify: all infor

v

mation is represented by a single data structure, the relation. With the relational

model, as opposed to previous database models, details of 1mplementation such as
access paths and indexing may be ignored. as they do not aflect the programmers’

view of data. This property 1s referred to as physical data tndependenc,
AY

From its conception, the relational model provided algebraic operators to manip- B
) e~

ulate relations [COD 70]. The relational algebra operators accept one or two relations

-

and produce a new relation as <:<\1josult. This property of closure allows nested re-

~

lational expressions: expressions in which operands are themselves expressions. As -

.
t

! ' SR N N



{

relations are manipulyffed as entities, the relational algebra is less procedural than

’
~

data mampulation languages requiring record by record loops. The relational algebra

is discussed tn more detail 1n Chapter 2.

o

" Another formalisin for manipulating relations. the relational calculus [("OD 72|, .

<

was proposed as even less procedural than the relational algebra. While the relational

PRS-

algebra provides a set of operators that may be apphed to achieve a final result, the ,
8

relational calculus describes the desired result: 1t is left up to the system’ to deters
mine the necessary operations. The relational calculus and algebra are fundamentally

. 4
equivalent as< any expression 1 one may be translated into an equivalent expressior |

“

in the other; for proof see [(COD 72" and ;ULL 82" Experiments conducted on the

ability of programmers 1o write complex quenies in languages differing primarily m
their procedurality [WEL 811, have shown a ligher success ratepamong those using
the more procedural language. A procedural language allows a programmer to de-
compose a complex problem mmto a series of simpler tasks. As Aldat as meant to deal

. ’

with the programming aspects of rélational database, the relational algebra has been ,
? 1 . -

p——)

adopted as the more suitable language model. .

s e

*In light of its enormous success 1n the area of administrativeadata processing.

researchers are extending the relational model to non-conventional applications. For

instance, the PROBE project [DAY 85] 1s developing a small set of useful extensions

to relational database managemeni systems to support knowledge representatioh,

v
N

processing of spatial and temporal data, and the representation and manipulation

of complex objects. The PROBE architecture provides an extendible DBMS that .

may interact with specialized hardware and software such as image processers or
- @

' 5

-5 -




Il

~—

Wy

keyword-based information retrieval systems. horth KO 86 incorporates new fea

tures into the relational model that include aspects of object onented and fundctional

N :
programming. These extensions have been apphied to the relational operating sy stem

H

interface, ROSI. which models all objects in a user’s environment as relations |[KOR

86). . :

- Do

1.3 Distributed Database Systems -

N

. The implementation of distributed database systems adds the problems of com-

e

. \
puting networhs to those inherént to database systems. Aspects of database man
5y

agement, such as concurrency and integnty control, hecome even more complex onee

-
y —_

v . "
the database 15 distributed. Distributed database systems may be homogengons or

heterogeneous: homogeneous systems integrate sites runmng the same DHBMS, wihale.

1

o

heterogeneous systems mcorporate various proceslors runmng dafferent DBMS sofi-

v .
ware. Systems also differ with respect to site autonomy. Most use the relational

model as its simplicity. facilitates data distnbution

To merit the appellation distributed, a DBMS should provide distribution trans

parency. 1.c., the user should not be concerned with the actual location of the data
- ,
He dccesses the database as 1f 1t were entirely local. The elimination of redundancy s

> .

a major motivation in centrahzed databases. however, redundancy 1s often desirable

in a distributed database. Multiple copies of data provide backups i case one copy

is destroyed. Performance-of read-only apphcati;m:» may be enhanced by allowing a

.
«

processor to choose the closest of several copies. In the event of site failyre, alterna-

an
-6 -



.

}

¢
e

) ’ . A .
tive sources of data are available. Redundancy complicates update apphications as all

-

copies must be modified. .

An overviev of commercial products providing aspects of distributed database
mamjgement 1s presented in [CCER 84]. Many more sophisticated systems are under
development. The following paragraphs briefly describe a representative sample of

DDBMS research prototypes. The discussion will focus on jocating remote data and

’ +

site autanomy. N

£

1.3.1 SDD-1: A System for Distributed Databases

1

Developed at the Computer Corporation of America, SDD-1 was the first dis-
3

tributed DBMS. Reference [ROT 80 troduces the general prin"é‘lples. The query

pr}‘)c(‘ssing‘ <frategy 1s described m [BER 81.b:.. SDD-1 supports the relational data

-

" model. Users interact with the database through-a high-level procedural language,

— /

Datalanguage Relations may be fragmented according to the rules outlined in [ROT

80] and fragiments may be replicated. The user has & global view of the entire.database

.

and is not affected by replicatjon.

The schema of an SDD-1 4latabase is provided by directory relations. Directories

are treated as any user data and may therefore be replicated and fragmented. A di-

reclory locator stored redundantly at ;%ach site serves as a global schema by indicating

where cach directory fragment 1s stored. \

The SDD-1 architecture is based on three relatively autonomous virfual machines:

data modules (DM), transaction’x.uodules (TM) and the reliable network. (RelNet). ‘

The DMs read, write and manipulate data in local workspaces. They can also move

7




%

- v

data from one local workspace to another. Each individual Datalanguage statement

‘ {
a : composes a separate transaction. The TMs translate the query, establish an aecess
o sl ~ .
- . plan, control concurrency and query execution. The RelNet provides guaranteed
’ delivery of messages, controls transactions, and momtors the network. .
L .

Transactions are execufed 1n tmm&s('s: read, execute, and write.  During

the read=phase, the TM at the site of origin uses the diectory locator to determine

what data will be accessed and where 1t 1s located It then broadcasts a command

s
* v

gy to the concerned sites to put the relevant data in local workspaces assigned to the

transaction. The TM, at thesite of origin controls the local DMs during the execution

. . .
* phase. The write phase updates all copres of modilied fragments and guarantees
4 La

database integrity.

1.3.2 Distributed INGRES

v
.

Distributed INGRES was developed at the University of ("ahfornia, Berkely, as an

STO 76]. The user mteracts

extension to the previously_oper'ﬂttive DBMS, INGRES

with a global view of the different databases in the network. Data may be replicated
~

and fragmented. As in SDD-1. the site at which the query originates controls the

. remote processes involved in the query processing.

-
m—

The INGRES system catalogue contains four types of information [STQ 76].
1. Relation names ;m(l locations
2. Parsing information (domain names, format, ete:)

. 3. Performance information (number of tuples. storage structure, etc.)

@ , 4. Consistency information (protection, integrity constraints etc.)

. _8_ .

‘
i
~

-

r
- A : N ““ o A,,_Q._J



=
N
A Y - .

c

The database contains two classes of relations: local, which are only accessible

s from the host at which they are located, and global. which are accessible throughout

. -

the database. Each site keeps systems catalogues for its local relatfons and global
relations residing at 1ts location. Type 1 catalogue information for all globﬁ]l relations

is stored redundantly at cach site- This constitutes a global schema. A new global

i

relation is created by broadcasting 1ts name and location to all sites in the network
Before query processing, types 2, 3. and 4 of catalogue information must be as-

sembled at the site where the query originates. The assembled data 1s saved locally

'

as.a working copy so that subsequent transactions need not request the information

A}
again. Working copies are not updated. and after atertain perniod of time they are

'

considered out of date and discarded. This strategy works well if the catalogue isrel-

atively static; however. run-time errors may occur because of inaccurate information

»

in the working catalogue.

1.3.3 R*
? .

+  The R* project [WIL 82] is the distributed version of the IBM System R rela-

1

tional database system. The commercral d?tabase product SQL/DS 1s an extension
\

of System R The R* system is intended to provide most of the features of SQL/DS

L]

i in a distributed environment. Site autonomy was a major considerationin the devel-

opment of R*; each site controls access toits own data, and local data1s mampulated

with a minimum of interference from other sites. The addition of new sites to the

network does. not alter global data structures or definitions. Some replication and
- -y

fragmentation of relations is supportcd.’

0

- 9.




-1
i

\ . . . .
The global schema 1s provided by system wide names (SWN). Users reference

H‘@ : data objects by local prinf names that are mapped onto corresponding SWN« by the

’

system. The SWN specifies the relation’s creator, the creator’s site, the relation's
name, and init‘i&“lsl?cation or birthsite. A relation’s actual location is dynamic and
*

i . . .
does not appoar/’n its name. Whene®er a relation moves from one site to another its

' ~
-

new location is indicated at its birthsite. Thus the SWN allows any relation to he
accessed in af most twd attempts. If the relation is not present at its birthsite, the
birthsite indicates 1ts current location.

’ The site at which a query onginates, referred to as the master, determines the
' .

system wide names of all relations mmvolved 1 a query and produces a global com

pilation of the query  All schema information s assembled at the master prior to

L 4

- - . @ - '
@ processing. Remote hosts involved in gquery processing are called apprentices. The

full global execution plan is distributed to all apprentices who may determine the

. . °
best strategy for mampulating their local data. : /

1.3.4 Other Homogeneous and Heterogeneous DDBMS

Descriptions of other DDBMS prototypes may be found in references |[CER 84,

¢

- -

[DEL 80], [BAG 85|, [SUZ 82| and [AND 82] The Genesis system [PAG 85} is of
particular interest as 1t is based on a distributed operating <ystem. The database
system is thus relieved of responsibility for locating remote data, as the operating

. system provides a global view. Tasks such as creation and control of remote task

@ execution, synchronization. recovery, etc.. may be implemented more efficently at

"L 10 -



:

the operating system level! The commercial Tandem/ENCOMPASS system for dis-

c tributed databases [BOR 81] is also based on_the concept of a distributed operating

° -

k4

7 system.

When a distfibuted database is to be implemented from scratch, it makes sense to

have the same DBMS software at each site. However often it is desirable to integrate

1

several existing databases with different DBMSs and perhaps even different data

. models. STRIUS-DELTA [FEHR 82] and Multibase [SMI 81} are both heterogencous

DDBMS prototypes. —-

(8

‘SIRIUS-DELTA 1s part®of a French nationwide project ‘on distributed databases.

A minimal set of functions called the pivot systcm is defined as a common reference.

a

‘

Each DBMS request 1s mapped into an equivalent request in the preot system. The

system architecture has two levels: global and local. The global level maintains a

global internal schema specifying how to rebuild global data from local data. The

glohal levels acts as a user of the local DBMSs. o .
Multibase is a Computer Corporation of America project which integrates pre-
existing, heterogeneous distributed databases. Each database has its own local host

schema (LHS). These schemata can correspond to different DBMS, data models, and

query languages. Each LHS is mapped onto a local schema (LS) corresponding to the

| Functional Data Model [SHI 79]. This provides a homogencous view of the different

Systems.  An mtegration schema (1S) describes a database contaming information

about mapping the inconsistent data models into a ;Jlobal schema (GS). The 1S and

' ,  LSs are ’combined to define th:GS. The GS 1s queried via the DAPLEX language

c {SHI 79). ,

- 11 -




N .
Remote Data Site Autonomy Replication and
Located Via: 1: high, 2: medium, Fragmentation
) 3: low - Transparency
SDD-1 Directory 3 yes
locator
Distributed Type 1 cataloguc. 3 yes
INGRES information
R* System Wide Names 1 yes
Genesis Operating System * 3 yes
SIRIUS-DELTA Global Intemnal 2 ‘yes
- Schema
Multibase Global and 2 yes
Integration Schemata
£

Fig. 1.1 Companson of the discussed systems.

2

~

The table 1n figure 1 '\rccapmx]ntoq the featuires of the diflerent systems we have
discussed. The methods by which remote data 1< located and accessed are summarized
in the first column. All systems use a global schema of some sort. The second

column indicates the level of site autonomy. The R* system dcmonstfatcs the most

~

site autonomy as local sites have control over access to their own data. The other

° n,

three homogenecous systems have limited site autonomy, as one process at the site at
which a query onginates controls slave processes al the other sites participatingin the
transa/ction. Individual sites‘in the heterogencous systems can have some control over
the mapping of their local data to the global schema. All of these systems support

>

some form of replication and fragmentation transparency.

—————




T Aldat:
- . Chapter 2 - ‘
: The ALgebraic Data Language

—-

The Aldat project, headed by Dr.T.H.Merrett at McGill University, explores ex-

~ o

tensions and applications of the relational algebra. The extensions have evolved

through a slow empirical process of-developing applications of the existing formal-
istn and extending only where necessary and only if the extension fits into a simple
conceptual framework. The basis of Aldat is described in [Pél’ER 84). After defining

relations, this chapter outlines the subset of Aldat used 1 this thesis. The syntax

used is that of [MER 84] with the exception {hat recursive assignment statements will

* be allowed. In following chapters we adopt Pascal-like constructs such as function and

\

L procedure headings, variable declarations, 2f statements and whale loops. This allows

us to write Aldat routines that interpret other Aldat statements. These functions

<

= and procedures will be referred to as metacode routines.

2.1 Relations, Data and Metadata -

Figure 2.1 represents four instances of relations containing data about .various
@“ films and the cinemas showing them.

.19 -




FILMS ( TITLE YEAR DIRECTOR COUNTRY) . .

Arigato-san 1936 H.Shimizu Japan
L'Avare 1980 L.de Funes France
Carefree 1938 M.Sandrich US.A
Hana Saku Minato 1943 K Kinoshita Japan
Miss Julie 1941 A.Sjoberg Sweden
Henry V 1944 L.Olivier GB.-
Medea 1970 P.P.Pasolini Italy
Swing Time 1936 G.Stevens US.A.
. Rembetiko 1983 . C.Feris Greece
ACTORS( ACTOR = TITLE ) CINEFILM( TITLE CINEMA SCREEN)
: : : Swing Time Roxy’ 1
g ?{me gwmg :{:'me Rembetiko Roxy 2
.Rogers . Swing Time .
K.Uehara Angato-san L'Avare . 0‘!?0" 1
E.Ozawa Hana Saku Minato Hana Sgku Minato B-pou - !
K.Uchara Hana Saku Minato , _ Ardgatosan  Bijou 2
S.Leonardou  Rembetiko Medea Bijou 3
F.Astaire Carefree Anga!o«san Cﬂph_ﬂl 1
. G.Rogers Carefree '
M.Callas Medea CINEMAS ( CINEMA ADDRESS SCREENS)
i de Punes iavare Roxy, 123 Main St. 2
L.Olivier Henry V - Odeon 987 Park Ave. !
» Bijou 645 Maple Rd. 3
R.Newton Henry V . Cepital 392 Union Blvd 1
ABjoik Miss Julie =t mion BVE -
U.Palme Miss Julie ' .

" Fig. 2.1 Four relations represented as tables.

”
- . A
© - .

When relations are represented as4ables, rows describe objects and ¢blumns cor?

_' “respond to properties of the objects. In all the relations we will consider, a single value

v

is associated with each row/column’intersection. Relations satisfying this criterion

x

are said to be normalized. The relation’s rows are called fu lcs, hence the definition
P

i

of a relation as a set of tuples. The columnns are called affributes. Each attribute

A

has a corresponding domain, a non-empty sel from which it takes its values. Each
tuple is unique within a relation and the order of tuples is completely arbitrary, just

3s elements in a set are unique and not ordered. As the.attributes are all labelled,

their order is also arbitrary. In other words, any permutation of rows and columns

~

L . - 14 -

~



-

e,
-

’ . .
in the tabular representation does not in any way alter the information contained in

- )

the relation.

A finite set of attribute names { Ay, A2, ..., Ap} is called a relational scheme (MAI

~

83). Each attribute has a corresponding set D,, its domain. We gvi]l formally define a

relatjon on the above relational scheme as a subset of the extended cartesian product

.

-~
R -

Dy ¥ Dy x ... x Dy [MER 84].
A relatjonal database is comprnsed of data and metadata. Data is represented by

relations such as those in figure 2.1. Metadata is data that describes or helps to inter-

A
pret other data [DAY 85]. In a relational database metadata includes: the names of

re]at‘ion,s and their corresponding attributes; types and domains of attnbutes; physi-

cal storage and access paths for relations; ete. Metadata may also be represented as

relations: In our metacode routines, metadata 1s accessed as any other data. Not all

A N o
[

environments allow users to access metadata.

-

-~
-

2.2 Operations on relations * .

P

While relations offer a means of representing data, the relational algebra provides
. —" /s
a means of manipulating data. Aldatis an extension of Codd’s relational algebra first

proposed in [("OD 70]. The unary operators, select and project become T-Selectors

(tuple selectors)in Aldat. Asrelations are generalizations of sets;;Aldat has relational

operations which are generalizations of set operations. The set-valued set operations

°

¥

(union, intersection, etc.) become the class. of y-joins. Logic-valued set operations

i

(inclusion, empty intersection, etc.) are extended to the class of o-joins. The natural

& g

‘]5‘~ ‘

AR

e




h
Q .
¢
’ LN
> il -
. . - g

Join is a special case of pjoins. Natural composition and relational division are special

. o cases of o-joins.

L

Aldat4ias two relational assignment operators. The expression, T «-R, replaces
o -
relation T with relation R. The incremental operator, T —t R, appends the tuples
of R to T. Figure 2.2 shows the results of several different assignment operations on
“ - »
sample relations.. : ’ .
Lo ' T .
INITIAL VALUES
/ T(B C A) R(A B C) S(A DE) oz
3 ° q r s . a b ¢ Xy 1z -
RESULT
ASSIGNMENT T(B C A)
. o _T<~R ) ) ‘ b c a
T[B,C,A<~A,ED}S x zy '
T<-+R ar s J
- b c a
* ' qr s
. T(B,C,A <=+ A,D,E]S, Xy z
. é \ . qr s
T [B,C, AN<—+ B, C,w] R b ¢ w
Fig. 2.2 The Aldat assignment operators.
1 ' >
) When attribute names are not specified in the assignment statement, the at-
tributes of the operand are implicitly assigned to attributes ‘with the same name in
‘ -~ the resulting relation.-"’l'ﬁ: corresponderce bet ween attributes in the operand relation
. ' " - 16 -



N -~

and attributes in the resulting relation may also be indicated explicitly.. Care must be
~ /

taken not to assign an attribute to another with a conflicting domain. lor instance,

» 0

a character valued attribute may not he assigned to an integer valued attribute.

2.5:2 T-Selectors

’

Projection operations 'specify a subsc{ of a relation’s attributes. A relation con-
taining only the countri;s present in the FILMS relation of figure 2.1 may be obtained .’
by projecting FILMS onto its attribute COUNTRY. This operation is expressed by:

COUNTRIES —COUNTRY in FILMS ;
The resulting ro}atioxn is shown in ’ﬁgurc 2.3. Note that FILM§ has nine tuples and
_COUNTRIES only has seven. This is because the values “Japan” and “USA™ appear

twice in the attribute COUNTRY of FILMS. The projection operation eliminates

s duplicate tuples in the resulting relation.

COUNTRIES (COUNTRY))

Japan

Fig. 2.3 COUNTRIES is obtained by projecting FILMS onto its "~ °

) COUNTRY attribute.
. ‘ ) . \ &
'Y ) - Selection operators extract a subset of a relation’s tuples satisfying a given criteria.

The tuples of FILMS pertaining to Japanese films may be selected into a relation

@ ' JAPANXILMS by the following select operation. N
. ‘ a

- ' : 517 -




&

JAPAN_FILMS ( TITLE YEAR DIRECTOR' COUNTRY )’

. Arigato-san 1936 H.Shimize Japan
HanaSaku(Mimlo 1943 K.Kinoshita ~" lapan
A

Fig. 2.4 Tuples describing .]apanqrac FILMS. are solegloél to -
create the JAPAN_FILMS relation,

4

JAPAN_FILMS —where CQUNTRY = ‘Japan'in FILMS ; ‘

LS

Figure 2.4 shows the result of this operation.

Aldat allows project and select operat ions to be combined in single T-Selector

]
- L)

cexpressions. For instance, if one wishes -to retrieve only the titles and directors of

Japanese films, the expression:

JAPAN FILMS2 — TITLE, DIRECFOR where COUNTRY - *Japan’in FILMS i

creates the relation shown in figure 2.5. :

, -

4

A

JAPAN FILMS2( TITLE DIRECTOR )
Angato-san H.Shimizu
. Hana SakuMinato K.Kinoshita

o

Fig. 2.5 A single T-Selector expression cmnbiﬁes a selection
operation with.a project to produce JAPAN _FILMS2.

Y\ e
2.2.3 pu-joins

v
Y

. The natural jomn is the most common member of the p-join Qfamily [COD 70].
The relation SHOWING in figure 2.6 is the natural join of relations FILMS and
CINEFILM. The natural join associates tuples of FILMS with tuples of CINEFILM

having the same value of TITLE, their.common attribute. The values of TITLE

- 18- >

%
» 1

¢

o
’
!



—~

SHOWING (& TITLE YEAR DIRECTOR COUNTRY CINEMA SCREEN )

Arigato-ssn 1936 H.Shimiz Japan Bijou - 2

L'Avare 1980 L.de Funes France Odeon 1

‘HansSaku Minato 1943  K.Kinoshita Japan Bijou 1

.Medea 1970  P.P.Pasolini Ttaly Bijou 3

Swing Time 1936  G.Stevens US.A. Roxy .1

Rembetiko 1983  C.Feris Greece Roxy 2

Arigato-san 1936 H.Shimiz Japan Capital 1

< * Fig. 2.6 The natural join of FILMS and CINEMAS. -

appearing in SHOWING are the intersection of TITLE in FILMS with TITLE in

CINEFILM. -

¢ . -

In Aldat the natural join is called the intersection join and is- designated by the

yoin operator. The expression:

SHOWING —FILMS ijoin CINEFILM ; :

c
¢

)
produces the result in figure 2.6. SHOWING would satis{y a request to know which

- films are currently showing at Zome cinema. The attributes participating in the

join (in this example, the attribute TITLE) are c"allcd the join attributés. As with

]

assigninent operators, join attributes may be specified implicitly or explicitly. The
'

natural join of relations on none of their attributes computes their cartesian product.

"

Two other p-joins, corresponding to set union and difference, will also be used in

our metacode routines. Imagine that the men and women -starring in the films are

listed separately in the relations MALE_ACTORS and FEMALE_ACTORS of figure

2.7.

The ACTORS relation of figire 2.? could be reconstructed by the following union

~

join. . Co )
ACTORS —MALE_ACTORS ujoin FEMALE_ACTORS ;

- 19.



MALE_ACTORS ( ACTOR

e =

<

4

TITLE ) FEMALE ACTORS( ACTOR TITLE )

\ ‘
F.Astwire  Swing Time

, K.Uechard Arigato-san
E.Ozawa Hana Saku Mmato

. K.Uchara Hana Saku Minato

G.Rogers  Swing Time
R S.Leonmrdou  Rembetiko

G.Rogers Crrefree

M.Callas Medea

F.Astaire: Carefree A.Bjork Miss Julie
" L.de Funes L'Avare o
M.Galabru L'Avare
L.Olivier Henry V
Ve RNewton . HemyV
U_Palme Miss Juhe

~ Fig. 2.7 MALEACTORS and FEMALE AC'TORS.

-~

The sef of tuples in ACTORS 1s the union of the operand relations.
A
The difference join selects tuples of the left oporand’lhnl do not participate in the
n:«\xtural join. It is actually the left difference join, however, since we do not use the
right difference join, we will simply refer to it as the diflerence jom The difference
join of FILMS with ‘(‘INI‘IFILM, shown 1 figure 2.8, 1s expressed as:

NOTSHOWING - - FILMS djom CINEFILM |

It may be interpreted as the films that are not showing at any cinema.

-

NOTSHOWING ( TITLE YEAR DIRECTOR COUNTRY) -

’ . Carefree 193  MSadrich  US.A
Miss Julie 1941 A Sjoberg Sweden .
Henry V 1944 L.Olivier G.B.

Fig. 2.8 ' The difference join of FILMS and CINEFILM.
« N :

¢ The join attribute is OnCé again TITLE. The set of valuesin the TITLE attribute

of NOT.SHOWING is the differencé between the set of values of TITLE in FILMS

. & .
and the set of values of TITLE in CINEFILM‘.

The family of p-joins is defined in [MER 84] in terms of three disjoint sets of

> - 20 -



$
tuples. For given operand relations, R(X.Y). S(Y.Z). these sets are defined on the

attributes (or attribute groups) X, Y, 7 as:

o

center A R ijoin §

et wmg ™ {(x.y,DC)|(x,y) € Rafd Vz((y,z) ¢ S}}

g

right wmq/\ {(DC,v,z)l(y,z) € Sand Vx({x,y) ¢ R}.
b -
* The tuples from R that ‘match no tuples of S, augmented by DC, form the Icft

\

wing. Similarly, the tuples from S that match no tuples of R, augmented by DC, form
P

the mght wmg. DC s a null value meamng Don’t C'ar (MER 84}.' The union and

‘

difference joins may now be defined as:” .
~

ISR AY
' Rujoin S = Ifl wing 1 ander U nightwmy

/
‘Rdjoin S 2 X.Yin left wing.

2.2.4 o-joins

The family of o-join operators are also called sef selcctors. They accept a value
of an attribute (or gro‘up of attributes) if the set of tuples associated with 1t satisfies
a specified condition. The condition 1s a set comparison. ’l‘l‘l(’ sets are the opérand
relations. We will 1llustrate four rr-join‘operations on the relations; CINEFILM’ and

JAPAN FILMS' of figure 2.9.a. These are the set subset selector. the set inclusion

selector. the null intersection set selector, and natural composition.
-~

(‘]NEFILM' 1s the projection of CINEFILM onto its CINEMA and TITLE at-

I3

tributes. JAPAN_FILMS' is JAPAN _FILMS projected onto TITLE. Each value of

4

the CINEMA attributein (‘]NEFILM' is associated with a set of values of the TITLE

attribute. These sets are labeled 1 to 4 in the illustration.

.97 -

¢

)



bt

&

L q

e ™

Suppose one wishes 1o select the cinemas showing all of the Japanese films mour

database. The JAPAN _FILMS' relation 1s the set of titles of all Japanese films, We
ﬁ .

need to select the caimemas such that the set of titles of the filns they are showing

contains the set of titles of all Japanese films. These values will be selected by the

st subset selector in the following expression. \v ‘ .
% .
ALL.JAPAN <JAPAN_FILMS' C CINEFILM',

The set inclusion selector will return the same result in the expression;

ALL_.JAPAN — CINEFILM > JAPAN FILMS ; .

The set inclusion selector 1s equivalent to relational division [COD 72|. ALL_JAPAN

»

is shown in figure 2.9.b.

1
CINEFILM' ( CINEMA "TITLE ) JAPAN FILMS'( TITLE )
Roxy Swing Time 1 An
. . gato-san |
onry  Rembeito 1 Hana Saku Minato
Bijou Hana Saku Minato -
Bijou Arngato-san 3
- Bijou Medea
Capital Angalo-san 4

(a)

ALL_JAPAN (CINEMA) -“NO_JAPAN(CINEMA) SOME_JAPAN (CINEMA )

Bijou Roxy Brjou
Odeon - Capital

(b) ' (c) (d) N

e

e

Fig. 2.9 The CINEFILM' and JAPAN _FILMS' relations are

represented i (a). The results of various o-joins are
illustrated m (b),(c), and (d).

Our user now wishes to select cinemas showing no Japanese films. The set of titles
5
associated with these cinemas will not intersect with the titlesin the JAPAN FILMS'

relation. The Tollowing null intersection set sclector will return the desired values.

.00,



[aN

‘ NO JAPAN - CINEFILM' () .lAi’/‘\ N FILMS .
The result of this operation can he viewed in figure 2.9.c.

The natural composition operation 1s the (‘()1;tr;xr} of the null intersection set
selector. Natural composition selects values if til(‘il‘ corresponding sets have a non-
Lmpty intersection with the reference set. Natural composition 15 equivalent to a
natural join followed by a projection onto all attributes except those participating in

the join. In our sample database; one can select the cinemas playing some Japanese

films with the following natural composition. ‘

SOME JAPAN - CINEFILM icomp JAPAN.FILMS' ;

SOME JAPAN i« illustrated in figure 2.9.d° .
] «

2.3 The Domain Algebra

The domain algebra defines wirtual aftributes which may be actualized when
needed. “When utilizéd to its full potential, the domadin algebra provides facilities
such as anthinetic, tota]mg.l ordering, etc. A thorough description of the domain
algebra may be found in [MER 84]. In this thesis we will use the domain algebra to
assigneconstant values to virtual attributes and to rename actual at‘t ributes.

Suppose that in our sample \daiabase all cinemas charge the same’a(lmissi()n price

to all films YWe can define a virtual attribute as follows:

. let PRICE be $5.50 ,
Virtual attributes are not associated with any relation until actualized, usually by’
N

projection. Virtual attributes must be actualﬂzed before being used by the relational

-

algebra. The following expression will produce the result in figure 2.10.

- 29

K




8

".

y CINEPRICE ( CINEMA ADDRESS PRICE )
8 Roxy 123 MainSt.  $5.50 )
Odeon 987 Park Ave. $5.50
Bijou 645 MaplcRd.  $5.50 -

Capital 392 Uruon Blvd.  $5.50
Fig. 2.10 An actualization of the virtual attnbute PRICE.

CINEPRICE - - CINEMA_ADDRESS, PRICE i CINEMAS ;
In this simple example m which the virtual attribute 1s defined as a constant

value, PRICE could be replaced by “a singleton unary relation; PRICE, with the at-
}

I3

tribute PRICE having the value $5.50. The result an figure 2.10 could have b‘(’(‘ll
obtained by performing the cartesian product of the relation PRICE with the pro-
jection of CINEMAS onto CINENA and ADDRESS. In more complex expressions
virtual attributes mray not be replaced by relations as their values are determined by

actualization. The necessary distinction hetween virtual attributes and relations will

&

become more apparent in chapter 4.

-

PRICE can be actualized on anv relation in the database. One meanmgful exam-
A \ B
i

ple would be to project the relation FILMS ontoits actual attributes as well as PRICE
to include the admission price in the representation. It would not be meaningful to
actualize price on the ACTORS relation.

L]

Attributes may be renamed by defining an equivalent virtual attribute. The Aldat

1

statement:

let NATIONALITY be COUNTRY ;
renames the COUNTRY attribute. A reference to the virtual attribute NATIONAL-

ITY refers to the actual attribute bOUNTRY. The utility of these constructs will be

.24 -



©




Processing Queries-on Data

«

Chapter 3 .
Shared Between Two Hosts

\ 7 ' .
We will now distribute the sample database between two processors, Host A and

‘

Host B. The relations will neither be fragniented nor rephicated The data distribution

must he transparent Jo the user. Therefore it s up to the DBMS inour case Aldat,
& ,

/s
to determine what portion of the query may be resolved locally and what portion

requitres remote data The hosts only have knowledge of theirlocal schemas, They :

.

commuanicate by exchanging messages in the form of relations. 1 -

The query execution algorithm is:

\
. 1

1. Decompose into local and remote subqueries.

pu—
\

2. In parallel : | _ \ _
. . 5 !

2.1 Execute local query.

. . 4 .
2.2 Transmit remote query and receive hist of remotely available data.

3. Determipe which remotely available data are needed to complete original query
and request that they be sent by neighbour. ‘

- 4. Once remote results have been received, merge with local results to obtain the
answer {o original query.

In the discussion of our distributed query processing strategy, we assume that the
\

*
network is reliable, i.e. all messages are received without error. Optimization has

) - 26 -



&
3

been neglected as we wish to present a feasible strategy before trying to optimize.

A} -

We will however mention it briefly in chapter 6., The database is assumed to be
- . ; ’
consistent, and as queries are read-only it will remain so.

. ‘

At cach host there is a metadata relation, SCHEM A | describing locally accessible
e‘ v

data. The SCHEMA relation lists all local relations in its RNAME field with their

<corresponding attributes in the DNAME field. Figure 3.1 shows how the database of

El
4

Chafﬁcr 2 could be distributed between the two hosts. o . ,

-4

SCHEMA ( RNAME DNAME)

. CINEMAS CINEMA
ADDRESS
SCREENS

Host B

 Host A

' Fig. 3.1 The local schemas of ho#ts A and B.

The remote subquery may be considered as the original query minus the local

\

schema. As the schema is represented as a relation, we will also represent the query as

a relation. The scherna may then be subtracted from the query using Aldat operators. -

. b

3.1 Representing Queries as Relations :

-

Consider the following query on the database of Chapter 2 and its Aldat repre-

sentation : )

- 97 -



- B

“Find the names and addresses of cinemas showing films starring Lee Marvin.”

LEE.FILMS -—— CINEMA. ADDRESS in 3.1
({ w hcro ACTOR = ‘Lee Marvin™ in ACTORS ijoin CINEFILM)
ijoin CINEMAS) ;

L)

)

Figure 3.2 represents the Aldat expression as a tree.

!

LEE_FILMS

[CINEMA, ADDRESS] in

T1 O ‘CINEFILM

ACTORS
Fig. 3.2 Query expression 3.1.

N -

’

‘The root node corre;ponds to the result, leaves are the operands. Other nodes

are temporary relations containing intermediate.results. A query is not necessarily a
v

tree but rather a directed acyclic graph (DAG). The expression:
“Find the films starring Fred Astaire but not Ginger Rogers.”

FRED ONLY —(TITLE where ACTOR = ‘Fred Astaire’in ACTORS) 3.2
djoin (TlTLE/wﬁere A(‘TOR = ‘Ginger Rogers’in ACTORS) ;



*  TITLE where ; TITLE where
, ACTOR = 'Fred Astaire’ \ ACTOR = ‘Ginger Rogers'

‘J ' Fig. 3.3 Query cxpression 3.2.

. is represented in figure 3.3. o
By .

Y
) [y

- edge. Attributes correspond to the source and destination: nodes. Additional at-

- 1

/
“tributes are needed to completely describe a query. The QEXP relation in figure 3.4

. e

(Ef represents expressions 3.1 and 3.2.

-

’ The RES And RNAME.attributes are the source and destination nodes of an
\ f

edge. Destination nodes are in fact the operands of a relational operation resulting
P , \

—

in a common source node. jAn operand may be a permanent data relationr or the

result of previous operations.'An OP attribute is required to specify which operation

" produces the result in RES. ORD identiﬁesﬁllle'operaﬁ'd in RNAME as left (L) or

. 1
G indicates whether RES is a resulting (R), temporary (T), permanent (P) or available

’ G
(A) relation. Initially, only the first three valuesappear in TYPE.
Each edge of theexpression DAG has a corresponding tuple. While writing code

to manii)ulate QEXP, it was found desirable to have an entry for each node in the RES

.99 .
L

A directed graph may be represented as a binary relation with a tuple for each

right (R) for binary operations, or as unique (U) for unary operations. Finally, TYPE

\




of expressions as DAGs.

~ QEXP( RES oP
e _ LEE_FILMS [CINEMA, ADDRESS] T3
T ijoin T2
T ijoin CINEMAS
- 2 ijoin T
T2 ijoin CINEFILM
T here ACTORS
ACTOR="Lee Marvin'
ACTORS id ACTORS
CINEFILM id ¥ cveFILM
CINEMAS id CINEMAS
FRED_ONLY djoin T4
FRED_ONLY djoin TS
T TITLE where ~ ACTORS
ACTOR='Fred Astaire’
TS TITLE where ACTORS

ACTOR="Ginger Rogers'

)

L
R
L
R
U

"R ~C CC

-ij-v-u-u\—l—l-l—l-l’

T

RNAME ORD TYPE )

LS

.

Fig. 3.4 Relational representation of expressions 3.1 and 3.2.

>

A

)

A

Components

'

- 30 -

4

3.2 Decomposing Queries into Local and Remote

s

-

- field. To achieve this, a tuple for each terminal nodeis added to QEXP with common
values for both RES and RNAME resulting from the identity (ud) operator. After ‘
this addition, QEXP, is no longer a true DAG as terminal nodes are unit cycles. We -

choose to ignore this discrepancy and continue referring to the graph represcntatlorfs

Several relations of the QEXP format may participate in a given application,
each containing one or many expressions. In our examples, names of QEXP télations

always terminate with “QEXP” to distinguish them easily from data relations.

As was stated in section 3.1, the terminal nodes of the expression DAG are the

L



3

»

operahd relations. - An operand is local if it 1s present in the -local schelna. A result
¢ ’ rendants
relation, either intermediate or final, can be computed locally if all of its descendants

are local or locally computable. A local subquery corresponds to any subgraph of the

corresponding DAG such tNat all terminal nodes in the subgraph are locally accessible.

/ CH the DAG is a tree the subgraph will be a subtree. A remote subquery corresponds

{ : : - :
to any subgraph of the corresponding DAG such that no nodes are locally accessible.

[ “+

<

Assume that queries 3.1 and 3.2 opiginate al Host A with relations CINEMAS

&,

and CINEFILM available locally. In the case of query 3.1, the subtree with root T1

is a remote subquery. ('INEMAS and CINEFILM are local 1o Host- A. Query 3.2 is
) . .

entirely remote. 0
o<

ux“

To obtain the local aﬂnd remote decox\épé‘i;sitions we compute the transitive closure
C ’ of RES and RNAME fields in QEXP. The transitive closure augments the DAG,
3
. adding new edges until each node has an edge to all of its descendants. Terminal '
nodes are viewed as descendants of themselves due to the 1d operation. The TRANS
relation in figure 3.5 is the transitive closure of the QEXP relation of figure 3.4.
An expression is remote if no part of it is in common with the local schema.
- Remote relations and results can be identified as values (')f the RES field i1.1 TRANS .
such that no associated RNAME values are part of the local schema. A -join com-
]
. puting the null intersection of TRANS and SCHEMA will select the values of RES
corresponding to remote RES values, namely those with no local descendants. The

. REMOTE relation in figure 3.5 is thenull intersection of TR ANS and the SCHEMA

of Host A. The rejxote subquery is the subgraph of QEXP with remote values in the

o RES field.

.81 - ,‘ '
\




iy

- Al
An expression is local if all operands are present m the local schema. While calen-
liting the local subexpression. temporary relations are not considered as operands as

they are themselves derived from other non-temporary operands and do not appear

in the schema. Local relations and results are computed using the TRANS! relation.
. Vo

TRANSis the subgraph of TRANS with temporary values removed from the operand

field, RNAME. (see figure 3.5).. In“l‘RANS’, cach node 1in RES 18 associated with all

of the operand relations from which it is derived. If a result is only assocrated waith

local operand relations. it may be computed locally, The set subset selbctor a-join of

’

TRANS' and SCHEMA computes the set of RES values such,that the corresponding,

RNAME values are'a subgraph of the schema. The LOCAL relation i figure 3.5 1s
’ »

the result of this join on the sample data. The tuples of QEXP with these values in

the RES field form the locally executable subquery.

The following Aldat code decomposes QEXP into its-local and remote compo-

nents. LQEXP and RQEXP. using the local schema.

» Procedure Decompose |,

¢ \ ~

Begin
{ Compute transitive closure of RES and- RNAME in (/Q'I',',\"l’ }

TRANS + (RES. RNAME in QEXP) ujon
TRANS [RES scomp RNAME] (RES, RNAME in QEXP) ;

{ RQEXP will coniain entirely remote subquery }

REMOTE - RES in TRANS @ SCHEMA : ¥
RQEXP — QEXP ijom REMOTE :

{ Eliminate témporary relations in RNAME attribute of TRANS } -

TEMP —RES where TYPE,-: ‘T in QEXP ;
TRANS' —TRANS {RNAME djon RES] TEMP ;

{ LQEXP will (ﬁtaixn entirely local subquery }
LOCAL — RES tu TRANS' C SCHEMA :

Q¢
- pogms



LQEXP «- QEXP ijoin LOCAL :

End Decompose ;

~

Figures 3.5 and 3.6 show the intermediate and final results of the above code on. -

the SCHEMA and QEXP rclations of figures 3.1 and 3.4.

TRANS ( ~ RES RNAME' ) TRANS'( RES * RNAME )
LEE_FILMS T 'LEE_LFILMS  CINEMAS
LEE_FILMS ™ . 'LEE_FILMS  CINEFILM
LEE_FILMS = CINEMAS LEE_FLMS  ACTORS
N LEE_FILMS 1 ' e CINEMAS
‘ LEE_FILMS  CINEFILM ™ CINEFILM
" LEE_FILMS  ACTORS T ACTORS
T T2 T T CINEFILM
o ™ | CINEMAS ™ ACTORS
T3 T ‘ TL  ACTORS
\ T CINEFILM ' ACTORS ACTORS
. — T3 ACTORS ** CINEFILM  CINEFILM
- T2 T . " CINEMAS  CINEMAS
T CINEFILM FRED_ONLY  ACTORS
£V ACTORS ) T4 " ACTORS
T1 ACTORS ) TS ACTORS
< ACTORS  ACTORS )
: " °  CINEFILM, CINEFIM = -
CINEMAS  CINEMAS
. FRED_ONLY T4 . . LOCAL ( RNAME (
- FRED ONLY ~ TS ) CINEFILM
FRED_ONLY ACT@RS - CINEMAS
T4 ACTORS .
TS ACTORS
REMOTE ( RNAME ) T .
T - T \
ACTORS
FRED_ONLY )
. -r4 . ‘ 'J
\ TS . - ; .

.
]

Fig. 3.5 Intermediate results of query decomposition.

1

.99 -




RQEXP(  RES or RNAME ORD TYPE )
‘ , S where ACTORS U T
. _ ACTOR="Lee Marvin'
. ’ *  ACTORS " id ACTORS U P
FRED_ONLY doin - T4 L R
FRED_ONLY djom TS R R
T4 TITLE where ACTORS U T
ACTOR="Ginger Rogers' .
L \ TS " TITLE where ACTORS U T

ACTOR="Fred Astarre’ -

@

Y

LQEXP( RES OP RNAME ORD TYPE )
’ CINEFILM id CINEFILM Uy _ P
CINEMAS id CINEM AS U P

Fig. 3.6 Final results of query decomposition.
L] AY /;
The quer} is assumed to originate at Host A. Note that the union of RQEXP\gmd

[

4

LQEXP does not cqual the original QEXP relation. This is because certain results

arc a combination of local and remote subexpressions.
¥

[ . ©
" 3.3 The Query Diali)gile' SRR

Once QEXP has l;‘&en decomposed, the local subquery can be executed. The

i . g
actual execution mechanism will not be discussed until the following chapter. For

the present it is as:umed that once an expression has heen executed, all results are
accessible at the host where the operation has been performed. A binary re(lation,
RESULTS, lists the names of rqsuliing relations in the RNAME attribute and the
origin of the results in the SITE attribute. All RES values of the LQEXI)’ appear
in RESULTS with the value “A” in SITE:as loc.al results originate frorl? Host A.

- 34 -



I
t .

r_———'——v——_——_—' Sy

RESULTS also contains permanent relations resulting from the «d operation.
While the local subguery is bemg processed. the remote subquery is sent i parallel

to the host’s neighbour, in this case Host B. The neighbour repeats the decomposition

——— ~

and local execution phases of query processing on the incoming query relation. In our
example Host B will be able to resolve the entire query sent by Host A in RQEXP. Tt

then sends Host A its RESULTS relation which 1s appended to Host A’s RESULTS

relation as illustrated in figure 3.7.

¢
v \-

RESULTS ( RNAME  SITE )
CINEMAS A .
CINEFILM
Tl
’ ACTORS
FRED_ONLY
o T4
Fig. 3.7 Local and remote results listed in RESULTS relation. .

\ '

/

D wwww >

\
»

Host. A may now ask Host B to send it the relations necessary to complete its
lznow]edge. Not all results are necessary. For instance, Host A does not need the -
relations, T4, T5 and ACTORS if it receiv;?s T1 and FRED.ONLY.

H(yav can Host A determine what resulfs it needs from its neighbour? Only those
needed for remaining operations should be eturned. At first glance it seems possible
to decide at Host B what must be returned and to send it directly. It seems logical
to return only the topmost results in the DAGs represen'ting the remote subquery.

In the given example this would work: T1 and FRED_éNLY would-be returned as

needed. However, suppose the original QEXP at Host A also contains the following
+ "

— !

- 35 .




exXpression-:

R

“Find the films playing at the Roxy as well as the actors starring in them™.

ROXY.STARS — TITLE where CINEMA = *Roay '’ in CINEFILM ' 13
‘ o ajom ACTORS ;

L]

s

The corresponding expression DAG and augmented QEXP are shown in figures 3.8

and 3.9.

! ' ROXY_STARS O
ijoin
T6 SN (O acrors .
»  TITLE where -

CINEMA = Roxy'

" ; CINEFILM
- Fig. 3.8 Query expression 3.3.

rTlm"]ocal and remote ’cmnponvnls of this expression are the relations T6 and
ACTORS respectively. The decomposition of this new QEXP llclation will preduce
the LQEXP relation shown in figure 3.10.

As ACTQRS already figures in RQEXP, the addition of expression 3.3 to QEXP
does not alt‘cr RQE However, ACTORS must now be returfied to Host. A in order
to compute ;hc relation ROXY.STARS. It is the “left over” part of QEXP at Host A,
combining local and remote subexpressions that determines what must be received
from Host B to complete the original query. This residual query will be computed in
the relation MQEXP (“M” }or merge).

- 306 -



QEXP ( RES or RNAME ORD TYPE )
LEE_FILMS [CINEMA, ADDRESS] T3 ] R
™ ijoin iv) L T
T ifoin CINEMAS R T
T ijoin T1 L T
™ ijoin CINEFILM R T
. Tl where ACTORS U T
° ACTOR="Lee Marvin'
ACTORS id ACTORS U P
CINEFILM id CINEFILM U P
CINEMAS id CINEMAS u" P
FRED_ONLY djoin T4 L R
. FRED_ONLY dpoin TS R R
T4 TITLE where ACTORS v T
» ACTOR=Fred Astairc’
TS TITLE where ACTORS U T
ACTOR='Ginger Rogers'
ROXY_STARS . ijorn T6 L R
. ROXY_STARS jjoin - ACTORS R R
T6 Title where CINEFILM ) U T
}EMA ='Roxy’'

Fig. 3.9 QEXP relation with the addition of expression 3.3.

LQEXP( RES ) op RNAME ORD TYPE ) -
CINEFILM d CINEFILM U P 1
CINEMAS id CINEMAS U P
Té6 TITLE where  CINEFILM U T
roual CINEMA = 'Roxy’ /

~

Fig. 3.10 Local decomposition of QEXP relation in figure 3.9.

L}

At this stage of query processing all relations in RESULTS are available, either
: -
locally or from Host B. Hence, the fourth possible value in the TYPE field of a query

. .
expression relation, “A” for available. Some of the relations listed in RESULTS may

°

‘ @, be final results such as FRED.ONLY in our example. Final results are identified and
\

,/'"\! i 37- o



!
\
.

listed in a separate relation, FINAL _RESULTS. as they need no longer he taken 1nto
account. FINAL. RESULTS is of the same format, as RESULTS. )

To obtain MQEXP, all tuples with values in the RES field equal to relations in
’ \\. N
RESULTS are removed from QEXP. This eliminates edges from the DAG pertain.
ing to operations which have already been executed. 'lf'hc relations in the RES field
of the remaining tuples are those which kave not yet been executed, as they are a
combination of local and remote data. Redundant results may now be identified as

. - . }'

those appearing neither as operands in the RNAME attribute of MQEXP, nér as

final results. Redéindant results are listed in the relation REDUNDANT _RESULTS.

Now, RESULTS may be updated by eliminating redundancy. The RESULTS rela-

tion of the given example is shown before and after elimination of redundancy with

FINAL_RESULTS in figure 3.11.

RESULTS ( RNAME SITE ) FINAL_RESULTS ( RNAME SITE )..
CINEMAS A FRED_ONLY B
CINEFILM A .

T6 A REDUNDANT RESULTS( RNAME SITE )
Tl B T4 B
ACTORS B . T B
FRED.ONLY B RESULTS ( RNAME SITE )
T4 B CINEMAS A
TS B "CINEFILM A
T6 A
T1 B
® ACTORS B ‘

; ®)
Fig. 3.11 RESULTS relation (a) origipally and (b) after
elimination of redundant relations with

FINAL_RESULTS and REDUNDANT RESULTS.

- 98 -

™

"2



MQEXP must then have a tuple appended toit for cach pertinent result relatjon,

4 ‘ .

C The relations m RESULTS may now be considered as terminal nodes in new expres-
sion DAGs. The new nodes will have i in the OP field and “A™ in the FYPE field.
Figure 3.12 shows the MQEXP resulting from the QEXP of figure 3.9, the RQEXP

" of figure 3.6 and the LQEXP of figure 3.10. Figure 3.13 1s the DAG representation of

_ MQEXP. ,
i q -
#  MQEXP( RES opP RNAME ORD TYPE ) .
LEE_FILMS' [CINEMA, ADDRESS] T3 U R
&) ijoin T2 L T
. ijoln  CINEMAS R T
T2 " ijoin T1 LT
V) tjoin CINEFILM R T
) ROXY_STARS tjoin Té L R
" ROXY_STARS . fjoin ACTORS R R
. , CINEMAS id CINEMAS A A
C . CINEFILM id CINEFLM A A
T6 id T6 A A
\ I TR T1 A A
: ACTORS id ACTORS A A

‘v

Fig. 3.12 '"MQEXP is the portion of QEXP combining local and

remote results.

Host A will ask Host B to send it any relations in RESULTS where SITE indi-

cates Host B. The tuples indicating these relations are selected into REQUEST A
REQUEST relation has a single attribute, RNAME. When a request relation is sent,
’ the receiving host understands}imt it must return the relations named in RNAME

to the sending host.
Determine_Request crea'tes: FINALﬂ..RESULTS by selecting tuples from RE-
@ ) SULTS such that the RNAME value doe; not appear in the RNAME attribute of

-39 .




} . LEE_FILM$ ROXY_STARS O

. [CINEMA, ADDRESS] in ijoin

T6 (O Acrors

- /,m\

O CINEMAS .

- : Fig. 3.13 DAG representation of MQEXP.

QEXP. In the DAG representation these values correspond to nodes with no pre-

- .
-

"E decessors. If the DAG is a forest, root nodes are séloctm.l. MQI‘IXI’ 1s mitiabized
by removing tuples idcr:tifyingxn relation 1n the RES atiribute that has already been
computed. Redundant results are then listed in I{Elﬂ)»UNl)AN"'I‘_R ESULTS. Although
redu’ndant results are of no more concern in this chapter, they will be ncéded when
'qgery processing is exténded to an arbitrary network. RESULTS is updated by re-

moving redundancy and used to complete MQEXP.

Procedure Determine _Request ;

Begin ’
FINAL.RESULTS —RESULTS djoin QEXP !
{ Eliminate operations that have already been executed }

MQEXP — QEXP [RES.djoin RNAME| RESULTS ;

" : « { Select results not needed as operands } '-"/\\'
- " REDUNDANT.RESULTS —(RESULTS djoin MQEXP) djom FINAL RESULTS ;
o { Eliminate redundant results from RESULTS }
- 40 -
~ "~ ] ﬁ’n

A



i

e

¢ »

RESULTS — RESULTS djoin REDUNDANT RESULTS ;
{ Complete MQEXP with id operation for terminal nodes '}

MQEXD [RES, OFP, RNAME, ORD. TYPE -+ 4
+ RNAME, 4d’, RNAME, ‘U, ‘A’ in RESU-LTS ;

s

End Determine_Request ;
- Host A now sends a REQUEST relation to Host B. REQUEST lists remote rela-

tions appearing in the updated RESULTS relation, with any final results available at

Host B. T'wo hnes of Aldat code suflice to create REQUEST.

REQUEST —RNAME where SITE # own 1n RESULTS ;
REQUEST — RNAME where SITE # ownl in FINA&RESULTS;

Here and in upcoming routines, a constant, oun refers to the name of the local
host. .In this case own has the value, “A”. Host B will return all relations listed

in REQUEST. Figure 3.14 shows the REQUEST relation derived from the given

example. . -
b
- -
_ REQUEST( RNAME )
- L Ti )
ACTORS
FRED_ONLY

Fig. 3.14 Resu]ling REQUEST relation to be sent to Host B. .

H

Assuming the query was correct and referred {o existing relations, Host A may

’ now execute the remaining operations in MQEXP. To, check that all necessary result

: \relatic;ns are indeed present, a call to Decompose with ‘MQEXP and RESULTS

as parameters will produce a new LQEXP that should- equal MQEXP. If not, the J

operations in MQEXP that do not appear in LQEXP are unresolvable as the data is

present neither locally nor remotely. .



~

! ~ Chapter 4 , ' Executing'Query Relations

&

X()n('e we have expressed queries as relations we must find a way to execute them.

QEXP relations offer a canomical format for representing arbitrary quenes. It we

\

also have a canonical representation of data relations, wo may bwld a general execu
tton program to execute QEXP relations on canomcal data. Another advantage of

canonical data is a constant format for transmtting and- recerving data relations,

Q . )

- The execution program may be implemented by adding a frontend to an existing
« Al M ’

4

Aldat interpreter such as Relix [LAL 86]. The frontend reconstructs operand relations

1 . - . e N
from their canonical format and reconstructs Aldat expressions from QEXP relations.

Aldat may then interpret the expressions as usual. Figure 4.1 llustrates this logie
This chapter will also explore the construction of the canonical relation from exasting

[
data relations and the convérsion of Aldat expressions to QEXP relations.

4.1 A Canonical Representation of Relations

A relational database may be represented in one relation of format:
A

’

B CR ( RNAME TID DNAME VAL )

v
-

-

Where RNAME is the name of the relation, TID identifies tuples, PNAME is the

- 42




(&)

QEXP — : - Canonical
\ ’ / X
. - . _
Reconstruct Aldat Reconstruct Data | )
Expressions from QEXP Relations from CR
Front-end
Aldat Infexpreter

v

Answers to ) . .
o - U

Fig. 4.1 Executing QEXP relations on canonical data.

name of an attribute and VAL 1s the attribute’s value for the given tuple. Figure 4.2

- shows the canonical representation, CR, of the CINEMAS and CINEFILM relations. -

Note that the projection of CR onto RNAME and DNAME equals th:r SCHEMA
as described in Chapter 3. The CR relation is actually data and schema in one.
Although TID is an integer field, it is only for identification and imposes no ordering,

as tuples in relations are unordered by definition.

4.2 Extension@ tP Aldat

The Relix implementation of Aldat imposes the relation’ as the unique unit of
data {LAL 86]. We propose the addition of scalar variables such as integer and string.

- 43




d

CINEFILM( TITLE CINEMA SCREEN) CR ( RNAME TID DNAME VAL, )

Swing Time  Roxy ! CINEMAS 1| CINEMA  Roxy
Rembetiko  Roxy 2 CINEMAS 1 ADDRESS 123 Main St
L'Avare  Odeon 1 CINEMAS 1 SCREENS 2
CINEMAS ' 2 CINEMA Odeon
CINEMAS (CINEMA ADDRESS SCREENS ) CINEMAS = 2 ADDRESS 987 Park Ave.
Roxy 123 Main St 2 CINEMAS 2 SCREENS 1
Odeon 987 Park Ave. 1 CINEFILM 1 TITLE  SwingTime
o~ 2 - CIN‘EFILM .1 CINEMA Roxy
CINEFILM 1| SCREEN )
. CINEFILM 2 ,TITLE  Rembetiko
\ \ CINEFILM 2 CINEMA Roxy
CINEFILM 2 SCREEN 2
' CINEFLM 3 TITLE  LAvare
CINEFILM 3 CINEMA Odeon
) CINEFILM 3 SCREEN 1

D
3

Fig. 4.2 Relations CINEMAS and CINEFILM with their

danonical representation.

In both the QEXP relations of Chapter 3 and the CR relation of section 4.1, names of

’

relations and attributes appear as attribute values. To execute a QEXP relation these

©

values must beé retrieved and used as operands in Aldat expressions. We therefore

L

propose to augment Aldat with two functions, Rick and Scalar, and with two more

types of scalar variables, rel_exp and dom_exp. C e

K]

The Pick function [MER 76] 1s logically equivalent to picking a tuple at random
from a relation without replacing 1t. Thus, a tuple is only picked once. It pro‘vides

a means of looping through a relation one tuple at a time. Random selection is

appropriate as tuples are not ordered within a relation. For example, the expression:

ATUP —Pick (CINEMAS) ;

assigns a unique tuple from CINEMAS to ATUP. As input, Pick accepts the name

- 44 -



o -

of a relation. It returns a singleton. which is a relation containing one tuple. The

!
) 0

same tuple will not be returned twice. A Reset procedure is required to initialize
a

the picking process on a given relation.

. The Scalar function accepts a relational expression idel(iying one attribute of
' a singleton and assi;.;ns. the value of the attrihite to a scalar variable. For example,
~ suppose the relation CINEMAS is as illustrated in figure 4.2. and the scalar variable,

2

i, is declared as an integer. The statement:

" i -- Scalar (SCREENS i Pick (where CINEMA = ‘Roxy’ in CINEMAS)) ;

: will assign the value “2” to variable i. The Pick function guaraniees the parameter
expression to be a singleton even if there is another Roxy cinema in the CINEMAS
: relation with a diflerent .number of screens. The, type of the scalar variable must not

conflict with the type of the attribute from which its value is being extracted.

°

Variables of type rel_exp may be assigned a character string corresponding to
v .
the name of an existing relation or to a valid relational expression. The following are

examples of valid assignments to a rel_exp variable, r. . .
r —‘TEMP’;
r —*‘CINEMAS ijoin CINEFILM’ ;

a

Variables of type dom_exp are assigned character strings containing the name of an

attribute or a list of attributes separated by commas. Some valid assignments to a-

dom_exp variable, d, are:  ~ .
’ d —‘ADDRESS";
d — ‘CINEMA. ADDRESS’ ;

1 . ‘ s

C When a rel_exp or dom_exb variable is encountered in an Aldat eipression, it

-

is replaced by its value. For example,

.
,
- 45- . . 4 .
A T
, .
\




&

0

" is equivalent {o

¢ ~

. o r - CCINEMAS® .
: d — ‘CINEMA. ADDRESS" :
= *  CINEADD —-dinr-

.
!
.

's

.

i

CINEADD —CINEMA, ADDRESS in CINEMAS :

These variables are used as formal parameters tosmetacode routines designed

s
°

o

to execute on arbitrary relations. In’ Chapter 3 ‘we mentioned that the Decompose
procedure is to be executed once using the QEXP and SCHEMA relations, then a;!:i\in
using the MQEXP and RESULTS re]a!.ionq:}. The procedure heading should therefore

specify two parameters of type rel .exp as follows:

-

Procedure Decompose ( gexp, schema - rel exp ).

. Note that the resulting relations. LQEXP and RQEXP are not parameters.  We

- M s v o 2 -
assume that relations are global and may be referenced by-any procedure or I'um[lion.

WY oa e
o
Decompose is first called with parameters: . . .
. . , v

" Decombpose (‘QEXP". “SCHEMA) ;.

' -

¢

then .with parameters:

Decompose ' (*MQEX P RESULTS') ; o

1)
[ ¢

4.3 'fI‘rz;nsfor_miné Relations ‘Between Representations

% s
-~ )
2

The extensions proposed in section 4.2 prove useful when converting relations

RS

¢

. to and from their canonical representations. Names of relations and attributes are

[y

extracted from the local schema while constructing (R, and from (R while rebuilding

the original relation. By first calling the appropfiate conversion routine, any data .

‘trelation may be manipulated in either its original or canonical representation.’

a . . ’
L) )
b

' " - 4(; ¢ A : ~

[y



-

4.3.1 Converting Relations to Canonical Format’

° ]

7

- 2

, .
.t To convert a relation from its original form to canonical form. it is negessary

to project onto each of its attributes in turn. A virtual attribute TID, containing

i
)

a unique value for cach tuple, is included in the projection to provide a means of
[3 . - . - .
“associating values of different attributes to form tuples. The high level description of -

N -
-

the algorithin is:

I. Uniquely identify each tuple with a virtual attribute TID.

‘

2. For each attribute:

N\

N

2.1 Project onto TID and attribute.
. 2.2 Append projection, relation name and attribute name to C'R.

~

¥ L]

\ The procedure Original Canonical converts a relation to canonigal format. H
A3

¥
receives a character string 1dentifying a relation in the local schema The rg{uh is

o

appended onio the canonical relation ('R."which initially may or may not be empty.
Original Canonicalis presented as a metacode procedure combining Aldat opera-

\l:)ons with the special functions and typed variables described in section 4.2.

rocedure Original _Canonical (relname : string) ;

Var .
r: rel.exp i d-dom.exp ;i: integer ; ’ .

Begin

R r — relname ; [ { r will refer to parameter relation }

{ Select subset lof schema pertaining to desired relation’} .
’ SCHEMA' — where RNAME = relname in SCHEMA :
{ Make a copy of parameter relation adding a TID attribute } ) ' ‘

iv-1:  let TID bei;
Reset'(r) ; ATUP —Pick (i) ;

{ ATUP controls iteration for every tuple of parameter relation }

~ ,,: I . 47_ .

‘ <




“}:.’. 3

While ATUP not empty
{ Append TID attzibute to tuple and add to COPY '}
COPY -+ AI'LP fjom (TID in ATUP) ; Y
R I Y
ATUP - Pick (r):
Fnd V.Hul_(‘ : \ ' ' . 1\
{ ATUP controls iteration for every Aiple of S('Hh‘,\l/\; relation }

Reset (SCHEMA') :
ATUP - Pick (SCHEMA') :

While ATUP not empty -
{ Extract attribute name from ATUP }
d --Scalar (DNAME in ATUP):
{ Praoject C"OPY onto TID and current attribute }
“ COLUMNS - [d, TID] m COPY .

°

{ Update canomcal relation }

CR (RNAME, TID. DNAME. VAL - + RNAME, TID, DNAME, d} n

«
, (ATUP jjoin COLUMNS) ;
ATUP - Pick (SCHEMA') : \
End While | \ IR
End Originial Canonical . )
Y

Figure 4.3 traces Original Canonical’s first wiile loop on the CINEM /\Sdhiln
tion of figure 4.2. Tuples are picked one at a time fromn the |mraum~l«-r‘r(-lu|i()[/n%n;?
r;)])ied with an additional attribute; TID. to the relation C'OPY. Note that the virtu
ual attribute TID must be actualizﬂed before it can participate in the natural jon. The
Pick function extracts the tuples into ATUP. When AT UP is empty 1t signifies that
there are no more tuples to be picked. TID takes its value from’ the scalar variable,
i, which is incremented at cach iteration. The natural join in this loop is actually
the cartesian prolduct as' the operands have mo common attnibutes. As both operands:
contain a single tuple, the cartesian product simply joins them together. In this way,

a uni.(iue value of TID is appended to each tuple of the parameter relation.

- 48 -



Before entering first while loop:
SCHEMA'( RNAME DNAME )
relname
CINEMAS CINEMA

- - *CINEMAS' ) CINEMAS ADDRESS
CINEMAS SCREENS

. \
: ATUP ( CINEMA ADDRESS SCREENS )
! ' _Roxy  123MainSt. 2
\ After first itcration : COPY ( CINEMA ADDRESS SCREENS TID )
Roxy 123 Main St 2 . 1
’ ‘ ATUP ( CINEMA ADDRESS SCREENS )
N 2 . Odeon 987 Park Ave. 1

After second and final iteration of first while loop :

COPY ( CINEMA ADDRESS SCREENS TID )

* . * Roay 123ManSt 2 1
L i Odeon 987 Park Ave. 1 2
’ ATUP ( CINEMA ADDRESS SCREENS )

Fig. 4.3 Trace of first whilc loop of Original_Canonical
(‘CINEMAS’). '

Figure 4.4 continues the trace. Original_Canonical’s second while loop ex-

tracts the attribute names of the parameter relation from SCHEMA', the subset

of SCHEMA pertaining to the parameter relation. SCHEMA' contains a tuple for

each attribute of the parameter relation. We loop through SCHEMA' with the Pick -

function as before. At each iteration, COPY 'is projected onto a different attribute

from SCHEMA' as well as TID. Once again a natural join is used to obtain a carte-

- 49 -

§‘m.—

sian product, this time of the siflg’le tuple relation, ATUP, containing RNAME and



¥

e

Before entering second while loop :
reiname . SCHEMA'( RNAME DNAME )
‘CINEMAS' x{ CINEMAS CINEMA~
CINEMAS  ADDRESS
. CINEMAS  SCREENS

’

ATUP (  RNAME DNAME )
CINEMAS  CINEMA

_ After first iteration : -

d COLUMNS ( CINEMA TID)
'CDIEP' 1 4 Roxy l
A Odeon 2

a

CR ( RNAME TID DNAME VAL ) ATUP( RNAME DNAME )

CINEMAS 1 CINEMA . Roxy CINEMAS ADDRESS
. CINEMAS 2 CWA Odeon

[

After second iteration :

«COLUMNS ( ADRESS TID)

d 123 Main St. 1
*ADDRESS’ 987 Park Ave. 2

1

CR (  RNAME TID DNAME VAL ) ATUP( RNAME DNAME )

ClNEM:g ; CINE:ZQ m CINEMAS  SCREENS
CINEMAS 1 ADDRESS 123 Main St. .
CINEMAS 2 ADDRESS 987 Park Ave, '

After third and final iteration of second while loop :

d COLUMNS ( SCREENS TID)

2 1
! 1 2

*SCREENS'

CR (  RNAME TID DNAME | VAL ) ATUP( RNAME DNAME )

CINEMAS 1 CINEMA Roxy, L -
CINEMAS 2 CINEMA Odeon
CINEMAS 1 ADDRESS 123 Main St.
. CINEMAS 2 ADDRESS 987 Park Ave.
CINEMAS 1  SCREENS 2 o . .
» CINEMAS 2 SCREENS 1 '

}

Flg 4.4 Trace of Ongmal _Canonical (¢ CINEMAS’ ) continued
‘ + %o second while loop.

: - 50 -



DNAME atttibutes, and the COLUMNS relation resulting from the previous projec-

tion. This serves to append RNAME and DNAME to cach tuple of columns. The

result is ready to append to the canonical relation.

/

4.3.2 Restoring Relations to Their Original Format

[

Relations are converted from their canonical representations to their original for-
mat using the Canonical Original function. A call to Canonical_Original to
restore CINEMAS to1ts onginal format looks like this:

e CINEMAS - Canonical _Original (‘CINEMAS’) :

The Canonical Original function accepts as a parameter, a character string con-
taining- the name ol a single relation in CR and returns the relation in its original
format. A call to Canonical _Original to convert the relation, CINEMAS, to its

ET . . . .
original format 1s traced in figure 4.5. The | operator signifies siring concatena-

tion.

Function Canonical Original ( relname : string ) : relation ;
Var
d, dd : dom_exp :
Begin
{ Extract relation in canonical format from CR }e'
('R' -~ where RNAME = relname 1 CR ;
{ Separate schema from data and i1dentify tuples}
SCHEMA' —RNAME, DNAME m CR';
{ Relation will be reconstructed m TEMP }
TEMP —TID in CR' ;
{ ATUP will hold a tuple for each attribute of relation }
ATUP —Pick (SCHEMA") ;

- 51 -




b

While ATUP not empts
{ Extract name of attrnbute }
d —Scalar (DNAME in ATUP) : ~ '
{ Append to list of attributes } -

if dd = *°
then dd  d
else dd - dd)|"."|d .

{ Select tuples pertaming to current attribute }

let d be VAL, )
TEMP' — TID. d where DNAME  Scalar (DNAME in ATUP) in C'R' |
{ Join attribute to reconstruction } - ’
TEMP — TEMP ijoin TEMP",
~ ATUP —Pick (SCHEMA') :
End While ;- ‘

{ Update local <chema. pru:;(*(*t oul TID, return result }

SCHEMA -+ SCHEMA' ;
Canonical Original - dd i TEMP , ‘ .

End Canonical. Original . )

The canonical representation of the parameter relation 15 selected into CR', then

projected onto RNAME and DNAME to obtain the relation’s schema. A relgtion,
\
TEMP is initialized to contain the TID attribute, The while loop iterates once for

each attribute of the relation being converted. The name of the current attnbute i

assigned to the dom exp variable, d. The current attribute name 1s appended to

“a list of attributes 1n another dom exp vanable, dd  TEMP' recetves the tuples of

CR’ relevant to the current attribute in ATUP The relation’s onginad representation

- &

is built up by joimng TEMP' with TEMP on their common attribute, TID. TEMP

gets wider at each iteration. When the loop terminates, the local schema 1s updated

[‘ 4
with information for the reconstructed relation. TEMP is projected onto all of its

attributes except TID and returned as the result.

£e)

-l -



Before entering loop:

CR'( RNAME TID DNAME VAL )

CINEMAS "1  CINEMA Roxy
ADDRESS 123 Main St *

CINEMAS 1
CINEMAS 1 SCREENS 2
CINEMAS 2 CINEMA Odeon -
CINEMAS 2 ADDRESS 987 Park Ave.
CINEMAS 2 SCREENS 1
Afier first itcration :
attr allatr ‘o d
'CINEMA’ 'CINEMA' ‘CINEMA'

- TEMP (TID CINEMA)
1 Roxy
2 Odeon

After second iteration :
attr allattr d

SCHEMA'( RNAME DNAME )

CINEMAS CINEMA
CINEMAS ADDRESS
CINEMAS SCREENS
TEMP(TIID)

.2
ATUP¢( RNAME DNAME )

CINEMAS CINEMA

TEMP' (TID CINEMA)

1 Roxy
2 Odeon

ATUP( RNAME DNAME )
CINEMAS ADDRESS

TEMP' (TID ADDRESS )

‘ADDRESS' ‘CINEMA, ADDRESS' 'ADDRESS'

1 123 Main St.

TEMP ( TID CINEMA ADDRESS )

1 Roxy 123 Main St.
2 Odeon 987 Park Ave.

* After third iteration :

2 987 Park Ave.
ATUP( RNAME DNAME )
CINEMAS SCREENS

"

altr allattr d TEMP (TID SCREENS )

b

‘SCREENS' ‘CINEMA, ADDRESS, SCREENS' "SCREENS’ 1 2

2 1

TEMP (TID CINEMA ADDRESS SCREENS)
1 Roxy 123 Main St. 2

2 Odeon 987 Park Ave. 1
Final result returned to CINEMAS relation :

CINEMAS (CINEMA ADDRESS
Roxy 123 Main St.

ATUP (RNAME DNAME )

SCREENS)
2

Odecon 987 Park Ave. 1

Fig. 4.5 Trace of CINEMAS ~Canonical_Original

(‘CINEMAS”).

. 59.




~

An entire CR relation may be comerted to data telations in their original format

by calling Canonical .Original for every RNAME valuein C'R. Reconstruct Relations

<

loops through C'R reconstructing all relations from their canonical format.

Procedure Reconstruct Relations ;
Begmn N 4 .

REL_LIST -~ RNAME in CR :
ATUP —Pick (REL LIST) :

While ATUP not pmipty

Scalar (ATUP) - €Canonical Original (Scalar (ATUP));
ATUP - Pick (REL LIST) .

End While ; ’ ~

ol

End Reconstruct Relations ; : . 4

4.4 Converting Aldat Expressions to and from their
Relational Representations

-~

In this section we call oh data structures and semantic analysis techmques de-
. .
scribed in [AHO 77] In the Relix Aldat implementation of Aldat [LAL 86}, an
unambiguous LALR-1 grammar is proposed and used to perform semantic analysis of
Aldat expressions and generate intermediate code executable by an interpreter. The
same grammar and semantic analysis techmques could be used to generate a QEXP

relation from an Aldat expression. The graphic representations of Aldat expressiony

- in Chapter 3 are very similar to parse trees. In fact, if common subexpressions are

.

considered as identical but distinct nodes, and the “id” operatar is omitted, expres-

I

sions are always trees.

4.4.1 Converting Aldat Expressions to QEXP-Relations

We wish to represent strings of the form:

- 54 -



new relation -+ Aldat expression :

as QEXP relations, where new relation 1s to hold the result of the Aldat expression

v on the right side of the assignment operator. The Aldat expression is parsed. When

the parser encounters a string of characters defining a relational operation without

nested eXpressions, it adds the operation to a QEXP relation. The parser calls four
basic procedures, Temp Name. Add Result, Replace and Complete. .

~ The Temp-Nixme function returns a system generated character string that is
used todentify 'mt{ rmediate results. In the examples of Chapter 3. these results had

nameés starting with *T7 for “Temp” such as “T1"and ~“T2". No two intermediate

¢

o - v - .
results contained in the same QEXP relation may have the same name.

-

Add Result takes two parameters: the first is the name of a result relation.

-
a

either intermediate or final; the second is the expression producing the result. The

expression is divided into gperator and operands and added to a QEXP relation.

The Replace procedure replaces its first parameter. which is a nested expres-

I

sion, with its second parameter. the name identifying the expression generated by

Temp Name. The third parameter is the expression in which the replacement is to

)()(‘cur. ' ,

-

Complete is called to add the “id” operations as described in section 3.1. A

&

high level description of the conversion algorithm follows. The Aldat expression being

scanned is 1n the character string, Aldat _exp. It is being assigned to a relation named

new._rel.

1. While there are nested expressions:

1.1 in a left to right scan find the first subexpression without nested ex-
pressions as arguments, assign it to sub_exp.

£l




¢

1.2 temp - Temp Name -
1.3 Add_Result (temp. sub exp) . ‘ .

1.4 Replace (sub_exp, temp, Aldat exp) . - . '
2. Add Result (new rel. Aldat exp)

3. Co.mplete

4.4.2 Rebuilding an Aldat Expression from a QEXP Relation

The QEXP relation contains fragments of Aldat expressions in the RNAME, OP

o

and RES fields. The ORD and TYPE fields indicate how fragments are related to -
each other. The origimal Aldat expression may bhe re('()nslmctg'(_] by pasting fragments
together with the addition of parentheses and the keyword ™in™.

The recursive function Build Exp returns an Aldat expression reconstricted

frow’its relational representation. The Scalar function is used to extract fragmenty

from the QEXP relation. The Card function accepts the name of-a relation and

-

returns its cardinalily as a scalar value. .

Function Build _[Exp (relname - string) : string;
Var
op. rr. 1l : string .
Begin
{ Select tuples defining operation giving parameter relation }
TEMP —where RES = relname in QEXP ;

{ Extract operator } - - b N

op —Scalar (OF in TEMP) ;

{ If operator is “id” return name o)irelation“} : : <o .
Ifop = 'id
then Build _Exp — relname . )
else
. 56 -



o

{ Recursive call for unary operations } _ / :
i Card (TEMP) = | - :
then rr — Scalar (RNAME in TEMP) .
Build. Exp —‘(’||lop|‘in’ || Build Exp (re )Y
{ Recursive call-for bijary operations }
Y else rr ~—Scalar (RNAME where ORD = ‘R’in TEMP) ;
) rl —Scalar (RNAME where ORD = ‘L’in TEMP) ;
Build Exp —(’||Build_Exp (r])||op ||Build _Exp (rr)||‘)’; .
End Build Exp ; ' ~ , .

The recursion -stops when the :d operation is encountered. The name of the re-
SO} P

. lation is returned to the caller. All paths in QEXP end with an identity operatot,

so the recursioncwill stop in all cases. When the parameter relation is produced by

a unary operation, tlie original cxpression may be reconstructed from QEXP by con-

‘ catc'naiing the string present in the OP field, followed by “in™. followed by the string

identifying the operand expression. As operands may themselves be expressions, they

4
v

are célllpute(l recursively. Similarly, an expression defining a binary operation may
be built ui) from QEXP by concatenating the left operand with the OP field and the
right operand. Expressions .are enclosed in paientheses to avoid any ambiguity with

respect to the order of evaluation.

W ‘

.57 -



Distributed Query Processing

Cb‘apter 5 N

.

a '
¢ . -

In Chapter 3 the database was restricted to two hosts, When a host lacked
) " .
sufficient data to answer a query. ifs only option was to send the remot e cum;linu?nl
N ‘15

J . T

to its neighbour, then wait and seec if the neighbour could copiplete the request. I

an arbitrary network, a host may have several neighbours  Aws=there 15 no global

s

schema, a host has no way of knowing which neighbour, if-any. ‘has the dataneeded:

to complete its knowledge. , , o .o
5.1° Query Propagation L ! ° ;
. ’» b
, Ly .2

Consider the nefwork of figure 5.1. Each node ro]')ure‘senta a host that has access
to a subset of the database. All edges represent two-way channels of communication

-

between hosts. When a host is unable 10 resolve a query it may send the remote
decomposition to all of its neighbours. The neighbourss may m turn send unresolved

¢ -

subqueries to their neighbours. Sucéessive, decompositions propagate frizin host to
‘{? : 1 i ¢ o )

host until the query is entirely resolved or until all hosts have been approached.

Imagine the following scefario. 4

,
L oss

N ——r

in an’ Arbitrary Network



ESar” 4o I e R0y Saensirg

-

T T
]

Fig. 5.1 A sample network.

+

A qt;ery originates at Host D. Unable to rcspon(i entirely, D forwards the remote
decomposition to hosts A, B, C, G and E. Neither, C nor G can completely resolve the

remote decomposition nor do they know 1fit has been resolved at another location. It

5

is therefore reasonable for them to send remote decompositions to their neighbours.

e

3

However, if both C and G query all neighbours, F and A will be queried redundantly.

Moreovet, it would not make sense for either of them to send a request -back to Host

3

D.

A

To ensure all hfodes are approached at most once, we impose a spanning’free on
the network as in figure 5.2. A host r;my pass remote subqueries to all of its neighbours
in the tree, excepty the one from which it received the request. The sending node is

. .
regarded as the i)arent of the receiving no;les m the tree’s hierarchy. Each node has
a single parent and therefore will only receive one subquery. . As there are no cycles

in a tree, the query propagation will stop at the leaves.

Note that the treé structure is entirely independent of the physical layout of the

.59 -

PE
-
<




° a

Fig. 5.2 A spanning trce of the sample network.

A °

Y

.
v

” > a
complete a query. The tree must be defined before processing a query, an as much as

C . . .

each host must knowwho its neighbours are., The tree structure neetl not be respected

-

. N 4

~_ for communications unrelated to query resolution. ,
o - . )
R ¢ &

‘8.2 Local Participation in Query Processing

'

) Query processing will now be explored ffom the point of view of an’individual
? = :

} .« .
host and its responses to diflerent events in the netWork. If-Aldat is augmented with

a mechahism that can react to network events, the relational framework can also deal

-
.

~with the distribution'of query processing. . -
‘ <5
5.2.1 Special Purpose Functions and Relations "

-

We. propose to have Aldat communicate with the network via a system relation,

FROM, and procedures Receive and Send. An Ex‘e\cute‘ procedure activates th¢c

N ’

- 60-

‘network. A “neighbour” is simply the address‘of a host that may be approached to -

a

~

-

[



general execution program (lis(‘ulsse(] in Chapter 4. The host knows its d;msihion in the
) network through a unary relation, NEIGHB()U'RS, containing in ifs attribute, SITE,
the uamuo.x of all nodes with yvhich a host may communicate. The neighbours rolnlioin
at Host G is shown in figure 5.3. A list of neighbours to which a remote decomposition
may be sent is ol).t ained by removing the sending neighbour from NEIGHBOURS. The

~ » , '
' sending neighbour is the one appearing in the SITE attribute of FROM, coupled with

a QEXP relation. ‘

When a host receives a relation from one of its neighbours, a tuple appears in
FROM. Its two attributes, SITE and RTYPE, refer to the name of the neighbour
sending the relation and the type of relation br;ing sent. RTYPE can contain four
values: QEXP for a q{mry relation, CR for a canonical relation, RESULTS for a
result relation, and REQUEST for a list of relations to be returned to the sending

host. Each type of relation prompts a different action. The FROM relation at Host

G is represented in figure 5.3. It is shown signaling the arrival of a QEXP relation

a

v

arriving from' Host D. ' )
v - SCHEMA (RNAME DNAME )
. . R2
D ’
NEIGHBOURS ( SITE)

D
F
H

' . F : H " FROM ( SITE RTYPE)
v : . D QEXP
: Fig. 5.3 Metadata relations at Host G.
3 B . »
@ .- ’ © 7

.61 -

- -
” /
.
-




+

FROM has some particular features: it never contains more than one tuple; and

the function Receive erases it. Receive integrates an incoming relation, deseribed
2

in FROM, with the local database Before dn incoming relation may be accessed

bl

it must be received. For example, when a tuple appears in FROM indiciting an

2

incoming QEXP relation, the statement: ; -

\ ‘QEXP -- Receive ; '
\

0
\

tells Aldat to receive the incoming relation and to name it “QEXP”.

The Send procedure sends a single relation to onue or wmore neighbours. Hs three

r

parameters are character strings. The first parameteris the name of the relation being

sent. Thesecond names a subset of the NEIGHBOURS relation listing the destination

A}

hosts. The third parameter specifies the type of the relation being sent. The types
‘ ul

correspond to those allowed in the RTY PE attnibute of FROM The FROM relation,,

L4

the Send procedure and the Receive function form Aldat’s network interface
Execute receves the name of a QEXP relation, reconstructs the corresponding

Aldat expressions an‘d executes them. Parameter relations must be locally available

in original or canonical format. Those in canonical format will be reconstructed as

described in Chapter 4.
a /d )

»

s

5.2.2 Local Respons‘e to an Incoming QEXP Relation

A single procedure will control query processing from the moment a QEXP rela-
tion arrivesin FROM until the list of results is réturned to the sender. When FROM

signals the arrival of a QEXP relation, Process_Query is activated to deal with the

request,

- . - 62 - n



Eveut : QEXP relation is signaled in FROM
Procedure Process Query :

Var local : boolean ,

Begin . L
local -- Receive Query : ’
If not local then

Receive Results ;

o Determine.Request : \
Request Relations , . .
Receive Relations ;

Merge ; N
Return Results : ~
End Process Query

The functions and procedures used in Process_Query are illustrated in a sce-
nario taking place at Host G. The local configuration is as shown in figure 5.3. Host G

-

is unaware that relation R} is located at Host F and relations R1 and R4 are located

C at Host H. *

One data relation, R2 is locally accessible. The neighbours relation shows that

G communicates with hosts D, F and H. The arrival of the QEXP relation signaled
in FROM triggers the call to Process Query. Figur;5.4 shows an example of the
incoming QEXP relation.

For the sake of simplicity we restrict network activity to the processing of one

/ original QEXP relation. This ensures that all messages pertain to the same applica-

tion.

5.2.2.1 Receive_Query —_—

63‘ Process_Query initiates the transaction with a call to Receive_Query.

- 63-




QEXP (RES OP RNAME ORD TYPE) .

TS ijoin T1 L T
- . T5 ijoin T2 R T
; Tl ujoin R} L T
Tl ujoin R2 R T
. T2 X,Y in R3 U T
R} id R1 U P
R2 id R2 U P
R3 id R3 U P
. T6 ijoin RS L T
T6 ijoin T4 R T
. RS id RS U P
' T4 djoin R1 L T
T4 djoin R4 R T
R4 id R4 U P
(a)

Qs _' OB >

N N

QO 11 join 2 Q&R don (Qm™

q project
1§
}S’% R1 ujoin R2 R3 R1 djoin

(b) ,
Fig. 5.4 (a) The incoming QEXP relation. (b) Its graph

representation.

.

4

- - Function Receive_Query : boolean ;
Begin ’ ,\
SENDER —SITE in FROM ;
QEXP —Receive ; .
Decompose (‘QEXP’, ‘SCHEMA’) ;
Execute (‘LQEXP’) ;
RESULTS [RNAME, SITE — RES, own] in LQEXP ;
if RQEXP is empty . l
then Receive_Query «true
else RECEIVERS, — NEIGHBOURS djoin SENDER ;
Send (‘RQEXP’, ‘RECEIVERS’, ‘QEXP’) ;
Receive_Query «false ;

-64 - x



End Receive Query ;
FFigure 5.5 shows the results of Receive-Query'on our example QEXP rcla'lion.
A SENDER relation is established listing the name of the hosi sending the QEXP
relation. The sender may be a neighbouring node or the local host itsell. The QEXP
s
relation is received in a relation called QEXP, then decomposed into local and remote
components. The local subexpression is execuled and the names of results are stored
in a RESULTS relation. If the remote decomposition were empty, Receive_Query
would return the boolean value, “true” signifyir.lg that the expression was entirely
local. As the remote decomposition is not empty, a RECEIVERS relation is assigned
| the names of the hosts who are to receive RQEXP. RQEXP is then sent to all sites
listed i“n RECEIVERS and Receive Query returns “false”.
When Receive_Query terminates, the boolean variable, local, is tested to de-.

termine if results are expected from neighbours. In this example local equals false so

control is passed to Receive_Results.

_ LQEXP(RES OP  RNAME ORD TYPE) SENDER ( SITE)
‘ R2 id R2 U P D

RQEXP (RES oP RNAME ORD TYPE) RESULTS ( RNAME SITE)

T2 X Yin, R3 Uu T R2  own
R1 id R1 Uu P

R3 y R3 o p RECEIVERS ( SITE )

T6 ijoin RS L T F

T6 ijoin T4 R T H

RS id RS u P

T4  djoin R1 L T . local

T4  djoin R4 R T

R4 i R4 U P false

Fig. 5.5 New relations created by Receive_Query.

- 65 -

ey



5.2.2.2 Receive Results

~

Once the remote decomposition has heen broadcast, 1]1;- local host mu.t wait for
each receiver to rcsp:m(l by returming a RESULTS relation indicating what results it
can coniribute to query execution. If a receiver can contribute nothing to the lqnm:y
processing. it returns an empty RESULTS relation.

The Receive_Results procedure assembles the list of available results in RE-

SULTS as responses are received from the different neighbours.

Procedure Receive _Results : b
Begin
While RECEIVERS not empty
Event : receiver responds
{ Delete responding host from RECEIVERS and receive response }

RECEIVERS —RECEIVERS djoin FROM
RESULTS — Receive .

End While :
End Receive Results ;

Figure 5.6 traces Receive Results on the current '('x;{mp]('. Initially the RE-
CEIVERS relationr is as shown in figure 5.5. As it is not empty the process wails
for a response. A response is signaled by a tuple appearing in FROM indicating
a RESULTS relation coming in from Host F. (sce figure 5.6.a) The answerimg host
is deleted from REC'EIVERS, leaving El;e names of neighbours from which answers
have not yet been received. The relation is received and appended to the existing
RESULTS relation. Figure 5.6.b shows the modified RECEIVERS and RESULTS
relations.

RESULTS is still not empty so the process, once again, waits for a receiver to

answer. This time FROM signals a RESULTS relation arriving from Host H. (see

- 66 -



FROM( SITE RTYPE )

F RESULTS
(a)
RECEIVERS (SITE ) P RESULTS (RNAME SITE) '~
H R2 own
R3 F v
T2 F
(b)
FROM( SITE RTYPE )
H RESULTS
(c)
RECEIVERS ( SITE ) RESULTS (RNAME SITE)
- R2 own
R3 F
T2 F
R1 H
R4 H
) — T4 H
(d)

}

Fig. 5.8 Trace of Receive_Results. (a) Host F answers. (b)
RECEIVERS and RESULTS after first iteration. (c)
Host H answers. (d) RECEIVERS and RESULTS after

second iteration. -

figure 5.6.c) Host H is deleted from RECEIVERS and the incoming relation is received

and appended to RESULTS as before. Figure 5.6.d shows relations RECEIVERS and

RESULTS after the second iteration. The empty RECEIVERS relation indicates that

all receivers have responded. Receive _Results is exited and Process_Query calls

Determine_Request.

5.2.2.3 Determine_Request

The Determine_Request procedure has already been discussed in section 3.3.

(o)

%, - 67-




-

It determines what results the local host needs to request from its neighbours, A
call to Determine_Request sets aside final results in FINAL RESULTS, places the
unresolved portion of the query in MQEX P, and removes redundancy from RESULTS.

Figure 5. shows the résults of Determine_Request on the sample data.

G

FINAL_RESULTS ( RNAME SITE ) MQEXP ( RES OP ©° RNAME ORD TYPE)
- TS ijoin T1 L T
REDUNDANT _RESULTS ( RNAME SITE ) 'ﬁ ::J;l.'.: g‘f ﬁ $
R3 F T1 vjoin R2 R T

R4 " H T6 ijoin RS L T *
RESULTS (RNAME SITE ) T6 ijoin T4 R T
: RS i RS U p
R2 own T4 id T4 U A
T2 F Rl id Rl U A
R1 H R2 i R2 U A
T4 H T2 i V3 u A

Fig. 5.7 Relations created by Determine_Request with the
updated version of RESULTS

«*

5.2.2.4 PReuest_Relations

The Request_Relations procedure requests relations needed to continue query

v

processing from neighbouring nodes. These relations appear in the RNAME attribute

\

of the updated RESULTS relation.

1

Procedure Request_Relations ;
Begin

SITES «SITE where SITE # own in RESULTS ; o
Reset (SITES) ;
TOLIST —Pick (SITES) ;

While TOLIST not empty
REQUEST —RNAME in TOLIST ijoin RESULTS ;
SEND (‘REQUEST’, ‘TOLIST’, ‘REQUEST’) ;

- 68 -



TOLIST - Pick (SITES) :
Ind While ; .

IEnd Request Relations,
Neighi)ours with needed results are selected into SITES. SITES is reset and a
tuple identifying one neighbour is picked into TOLIST. At each iteration, REQUEST

. receives the names of relations needed from the current host in TOLIST. REQUEST

is then sent to the host in TOLIST and another tuple is picked from SITES. Iteration
stops when TOLIST is empty, indicating that all sites have been picked and have
- heen sent a request.

%
Figure 5.8 traces Request_Relations on the samplé problem.

SITES ( SITE) TOLIST ( SITE )
F F
C - B
8 (8) ' (b)
REQUEST ( RNAME ) TOLIST ( SITE) REQUEST (RNAME) TOLIST ( SITE)
2 H | R1 -
T4 )
' (e) ' (d) .
Fig. 5.8 Execution of Request_Relations on sample problem.
‘ (a) The SITES relation. (b) Result of initial pick.
- (c) REQUEST and TOLIST after first iteration. The

REQUEST relation has been sent to Host F.
(d) REQUEST and TOLIST after second iteration.
The REQUEST relation has been sent to Host H.

5.2.2.5 Receive_Relations

G‘;\ Once requests have been sent, the Receive_Relations procedure waits for the

- 69-



7

neighbours to respond by returning the reguested relations 1n canomcal lormat.

(
Procedure Receive. Relations .

Begin ' ¥
While SITES not empty

Event : CR arrives in FROM- T
SITES — SITES djoin FROM ;
CR —+ Receive ; .

End While ; '

End Receive.Relations :

Arriving data is appended to a canonical relation, CR ;Nf\ich is initially einpty:
Each time a neighbour answers, its name is deleted from.the the SITES rclettion that
was created in Request_Relations. When SITES becc;nm empty, Receive_Relations
knows that all requested data has been received and terminates.

Figure 5.9 illustrates the execution of Receive_Relations in the current sce-

nario.

FROM ( SITE RTYPE) SITES (SITE) CR (RNAME ...)
' H CR F R1
(a) - ‘ (b) T4

FROM ( SITE RTYPE) SITES (SITE) CR (RNAME ...)
F CR ] R1
AL H
(¢) | - . T4
,(d) .

(a) Host H responds with requested data. (b) SITES
and CR after first iteration. (¢) Host H responds. (d)

i

|

Fig. 5.9 Execution of Receive_Relations on sample problem. - ‘ 1
SITES and CR after second iteration.

- 70 -



5.2.2.6 Merge

40

Now that more data is_locally available, Proc%ss-Query calls Merge to re-

compute a local decomposition using newly available relations. Available relations

are those appearing in RESULTS. The unresolved portion of QEXP was placed in

MQEXP when Determine-Requeét was called. Merge calls to Decompose with

MQEXP and RESULTS as parameters to obtain a new LQEXP relation to execute

locally. RESULTS 1s reset to contain the results of this latest execution.

Procedure Merge

Begin

[

Decompose (‘MQEXP’, ‘RESULTS’) ;

Execute (‘LQEXP’) ;

RESULTS [RNAME, SITE —RES, own}in LQEXP ;

End Merge

Figure 5.10 shows LQEXP and”RESULTS relations after Merge is executed on

the sample problem.

LQEXP ( RES

TS
TS5
—= 1T
Tl
T4
Rl
R2
T2

op
ijoin
ijoin
ujoin
é ujoin

w——m" -

id

id

id

RNAME ORD TYPE)

Tl
T2
R1
R2
T4
R1
R2
T2

5.2, eturn_Results’

o L T TS5
R T Tl
L T T4
R T R1
U A R2
U A T2 -
U A :
3] A

Fig. 5.10 LQEXP and RESULTS produced by Merge.

RESULTS (RNAME SITE )

own
own
own
own
own
own

\

The local host informs the sender that instigated the query proclessiﬂg of available

- 71 «




¢

mented with theresults of the Last local execition. If the query processing ongimated

0 ¢

o
¢

results. FINAL.RESULTS, anginally histing results of completed expressions, is ang-

locally, FINAL_RESULTS will be returned to the user. In section 3.3 we explained s

. \ .
that the local host has no way of knowing what results are required by the: sender.
- 3

7
o

If the query prodessing did not originate locally it 1s possible that certain results

1

considered as redundant locally may be needed by the sender In this case REDUN-

DANT_RESULTS is also appended to FINAL.RESULTS. Retéfrn_ReXults rcturns

. the augmented FINAL_RESULTS to the host identified in SENDER. SENDER is the

saifie relation created in Receive _Query.

/
Procedure Return Results ;
Var name : string ; ) > ’
Begin . . .

FINAL.RESULTS «—+ RHESULTS ;
name —Scalar(SITE i in SENDER)
If name # owu then
FINAL_.RESULTS — REDUNDANT_-RESULTS ;
Send ( ‘FINAL.RESULTS’, ‘SENDER’, ‘RESULTS’) ; IR

End Return_Results ;

Figure 5.11 shows the final results to be.returned to“Host D in our scenario,
L 4

FINAL_RESULTS (RNAME SITE)

TS own e
A | own )
. T4 own
a R1 own
o R2 - own
: T2 ~ own
L R3 F -
— R4 H \
Fi igi 5.11 FINAL. RESULTS relation produced by
‘ Return_Results .
. 72. A



K

5.2.3 Local Response to an Incoming REQUEST Relation

o !
A host must also deal with a neighbour’s request for data. A réquest takes the

F-e " form of a REQUEST type relation being signaled in FROM. When a local host re-

©
2

* ceives a REQUEST relation, 1t must asscmble the requested data in canonical format

e ® A\ ' q u
;i P and send it to the requesting node. Process_Request converts requested relations
I ' ) .
A 7 one at a time to canonical formmat, appending then to a CR relation which is in}tially
‘ 4
_'s,‘ ' empty. CR is then sent 1o the host yequesting the data. ,
'\ Event : REQUEST relation is signaled in FROM ¢ -
T’ " Procedure Process Request ;
-E Var relname : string :
» Begiii a L ) . )
E’ "TOLIST - SITE in FROM ; - '
REQUEST --Receive ; ‘ » o
- Reset (REQUEST),; = . ‘
. ATUP —Pick (REQUEST) ;
c CR -empty; . o
E . ! While ATUP not empty >
R relname «Scalar (RNAME in ATUP) ; T
] . Original_Canonical (relname) ; . L
E v ATUP —Pick (REQUEST) ; “
N o . C »
; . End While ; ! . t © o )
3 Send (‘CR’, “FOLIST", ‘CR") ; " ' ‘
; ' End 'Pro&cess-Ré'quest/; ‘ ‘ > # v
A ’ . ! . «
v ' -
> 0 . Figure 5.12 shows how Host G deals with a REQUEST relation arriving from -
., Host D. | “q J ‘ ‘ .

- +
9

5.3 Résolving Distributed Queries

The query processing strategy described.in this cha,’pte{ will resolve a distributed

“

query proifiding, that the query is correctly formulated and the network is one hundred .

' . -7 B

» =
> ]




I FROM (SHME  RTYPE )
S D REQUEST -
(a)
TOLIST (SITE ) | REQUEST (RNAME )
D . T4
. TS
‘ _ ATUP. (RNAME ) CR (RNAME...)
- T4 .
(b)
CR ( RNAME ...) ATUP (RNAME)
’ ™4 .. TS ) |
‘ ' (c) o

CR (RNAME ...) A’I’UP (RNAME)

T4 ... : .
. T5 -,
: . (d)

- \
Fig. 5.12 Trace of Process Request. (a) A REQUEST
relation arrives from Host D. (b) Before entering loop.
(c) After first iteration. (d) Mter second iteration.

percent reliable. Any syntactic errors in the query will be detected by the parser when
the query is converted to a QEXP relation. Logical errors, such as references to non-
existent relations, can not be detected until the query propagation has terminated

without having resolved the initial query. If a host fails to respond in the query

_dialogue the process will wait indefinitely. A time-out mechanism is required to tell

the host to stop waiting for a response after a reasonable delay.
If queries are to execute concurrently, each must be assoeiated with its own Pro-

cess_Query process. Messages must indicate to which process they pertain.

0
i
~ ! -

f

-7 -




)

Chapter 6 Conclusion

)

Y

A dialogue model of distributed query processing allows independent processors
to resolve distributed queries with no prior knowledge of a global schema. Query
processing 1s highly parallel in the dialogue model: subqueries may start executing

at several hosts before all of the data i actually located.

We used this distributed query processing strategy as a vehicle to ¢xplore the

applicability of Aldat. 1t appears that Aldat requires some extensions to be able

to deal with the data distribution. We do not propose to implement this system in
Aldat; a lower level language such as ¢ would be much more appropriate. However,
since Aldat is such a powerful formalism, it allowed us to illustrate the strategy in
relatively few lines of code. Moreover, ,this rather primitive attempt at dealing with
data distribution using the relational model gave us some valuable insight into the

representation and manipulation of metadata and the development of nietacode.

6.1 Applications to Metadata and Metacode

QEXP relations allow queries to be expressed and manipulated using the same

formalism with which we represent and manipulate data. Thus, queries may be stored

- 75 -




(M

. o | J

as data in the database. A canonical representation of queries motivated the study of

a canonical data representation. The canonical relation combimes data and metadata

in a single format to represent arbitrary relations. I relation-and attnbute names may
appear as data values, semantic inforination can be represented as metadata. Two

examples of semantic information are integrity constraints and laerarchical relations

'

among attributes. The QEXP relation eflectively elimmnates the distinction hetween

data and code.

Any integrity constraint can be represented as a query in a sufliciently powerful

query formahsm [MER 84]. For instance, in the sample database of Chapter 2, all filins
appearingin the TITLE attnbute of the ACTORS relation must have a corresponding

tuple in the FILMS relation. Tuples of ACTORS violating this constraint can be

»

detected by the Aldat query:

VIOLATIONS — ACTORS djoin FILMS ;

which in turn may be represented as the QEXP relation of figure 6.1.

™

Lo

QEXP( RES OP RNAME ORD TYPE )
VIOLATIONS dpin  ACTORS L R
VIOLATIONS dion  FILMS R R

ACTORS d ACTORS U P
FILMS 1d FILMS U P

Fig. 6.1 An integrity constraint represented by a QEXP relation.

A hierarchical relationship may be defined on the attributes ACTOR and DIREC-
TOR of the relations ACTORS and FILMS of figure 2.1. Both of these attributes

identify people. It is somelimes necessary to \distinguish between people who are

- 76 -

I4



i

actors and people who are directors. In other situations the person’s function may
he irrelevant and the user will refer to people in general. Relations can represent
such hierarchies In fact the expression DAGs represented in QEXP relations are also
hierarchies. The relation in figure 6.2 shows that an actor is a person and that a
director is a person. In [SMI 77) such abstractions are r(‘ferrcd‘to as generahzations.
The paper also discusses another useful data abstraction, aggregation.

»

GENERALIZATIONS ( SUBJECT 1ISA )
ACTOR PERSON

’ DIRECTOR PERSON
Fig. 6.2 PERSON is a generalization of ACTOR and : .
DIRECTOR. .

¢

Once data and code have a common represeniation, metacode can be written
to manipulate code. The Decompose procedure of Chapter 3 does precisely this.
One can go a step further and wnte self-modifying code. Such capabilities, in the

LISP language for example, have proven.to be an indispensable tool in many 4tiﬁcial

intelligence applications.

;
6.2 Future Work

It remains to study how much optimization can be introduced into the query di-
alogue. In the DBMSs discussed in Chapter 1, query processing is globally optimized
at the query’s site of origin. In some systems such as R*, local hosts can further

optimize access to their own data. Most global query optimization strategies assume

.77




?

o

¢

L
that the cost of transmission donmnates the cost ebdorat procesang and access to

secondary storage In any geographically dispersed network this assumption holds.

Global query optimization 1s therefore equivalent 1o miningzing data movements he
tween computers. Binary op(‘roatmns are often translated into semi-joms |BER 814l
to reduce data transfer  References [LAF X6l [lll_"l) 85, [CHU 84], [SEG &4 {CHE
84] and [YU 84] all deal with optimzing distributed query processing.

In the dialogue model for distributed query processing, the lack of a global schema
inhibits global optimization However, once a host has determmed the relations it

‘needs from a neighbour. the parrwise exchange may be optinmzed. It is possible
! i

)

that 1n some practical situations the cost of mamtaiming a global schema offsets the
savings generated by global optinnzation. It will be interesting toimplement a system
based on the dialogue model and compare its adtual performance with that of existing
DDBMS-<

The work 1in this thesis will also influence the evolution of the Aldat language
Neater formalisins must be found to handle the conversion between data and query
representations. The algorithin to convert Aldat oxpromon: to QEXP relations in

Chapter 4 will also have to be more precisely defined.

- 78 -




REFERENCES

[AHO 77  Aho A.V., and Ullman J.D. Prmciples of ('ompz‘ler Design, Addison-
Wesley Publishing Co., Reading, Massachusetts, 1977.

[AND 82] Andler S., Ding 1., Eswaran K., Hauser C'., Kim W., Mchl J. and
Williams R. “System D: A Distributed System for Availablity™, Proc.
Frwth International Conference onn Very Large Data Bases. Mexico
City, 1982, pp.33-44. :

[BER 81.a] Bernstein P.A. and Chiu D.W  “Using Semijoins to Solve Relational
Queries” . Journal of the ACM, Vol.28 No.1, (January 1981) pp.25-40.

[BER 81.h] Bernstein P.A., Goodman N., Wong E., Reeve C.L. and Rothnie J.B.
“Query Processing in a System for Distributed Databases (SDD-1)7,
ACM Transactions on Databasc Systems, Vol.6 No.4, (December 1981)
pp.0602-625.

BOR 81' Borr A.J. “Transaction Momtoring m ENCOMPASS: Reliable Dis-
|
tributed Transaction Processmg”, Sceenth International Conference
on Very Large Data Bases, Cannes, France, 1981.

CER 84 CenS and Pelagatti G. Distributed Databascs Princeples and Systans,
] 1) P
MecGraw-Hill Inc. New York, 1984.

[CHE 84]  Chen AL.P. and Li V.O.K. “Improvement Algornithms for Semijon
Query Processing Programs in Distributed Database Systems”, IEEE
Transactions on C'ompulers, Vol. ('-33, No.11. (November 1984 ) pp.959-
967.

[CHU ®4] Chung C.W. and Irani K.B. “A Semijoin Strategy for Distributed
Query Optimization”, Proc. Fourth International C'onference on Dus-
tributed Compuling Systems, San Francisco, California, May 1984,

[(COD 70)] Codd E.F. “A Relational Model of Data for Large Shared Data Banks”,
C'ommunications of the ACMNVol. 3, No. 6, (June 1970) pp. 377-387.

[COD 72] Codd E.F. “Relational Completeness of Data Base Sublanguages”,
Data Base Systems: Courant Computer Science Symposia Series, Vol 6,
Prentice Hall Publishing Co., Englewood Cliffs, N.J., 1972.

IDAT 86] Date C.J. An Infroduction to Databasc Systems Volume I, Fourth Ed:-
tion, Addison-Wesley Publishing Co., Reading, Massachusetts, 1986.

[DAY 85] Dayal U., Buchmann A., Goldhirsch D., Heiler S., Manola F.A ., Oren-
stein J.A. and Rosenthal A.S. PROBE - A Research Project in Knowledge-
Oriented Database Systems: Preliminary Analysis, CCA-85-02 Com-
( puter Corporation of America, Cambribge, Massachusetts, July 1985.

d

.79 .



¢-9

IDFL 80°
[FERN &0

[FERR 82

[HUD 85]

[INR 83

[KIM 79
'KOR 86|

'LAF 86,

[LAL 86]

[MAI 83

[MER 76)

IMER 34]

»

Delobel . and Litwvin W Iistributed Pala Bascs, North-Holland
Publishimg C'o., Amsterdam., 1980

Fernandez E.B. ACM Computing Surve ys. Vol.12, No.1, ( March 1980),
pp. 111-112. :

Ferrier A.and Stangret ', “Heterogeneity in the Distnibuted Database
Management System SIRIUS-DELTA™ Fughth Intcrnational Confer-
(nce on Very Large Dala Bases. Mexico City, 1982, pp.15-Hi.

Hudli, A.V. “A New Approach to Distributed Query Processing™,
Computer Science and Informatics, Vol. 15, No.1, 1985,

INRIA, France. Proccedings of Workshop on Relational DBAMS e
stgn,/Implementation,/Use on Microcompulers, February 1983, Toun
lonse France.

Kim W. “Relational Database Systems™ . ACM Computing Surveys,
Vol.11. No.3. (September 1979), pp.188-211.

Korth H.FF “Extending the Scope of Relational Languages”, 11 ET
Softwarc, Vol.3 No.l, (January 1986), pp.19-28.

Lafortune S. and Wong E. “A State Transition Model for Distributed
Query Processing”, AC'M Transactions on Dalabase Systems, Vol 11
No.3, {September 198G), pp.291-322,

Lahberté N. Design and Implementation of ¢ Promary Momory Vea-
swon of Aldat, Including Recursioe Relations. M.S¢ Thesis McGall Um
versity School of Computer Science, Montreal, Canada, Augnst 198G,

Maier D. The Theory of Relational Dalabases, Computer Science Press,
Rockville, Maryland. 1983.

Merrett T.H. “The Relational Subalgebra™, Course Notes for 308-6G17
Information Systems, McGill University School of Computer Science,

Montreal, Canada, 1976 .

Merrett T.H. Relational Information Systems, Reston Pubhshing Co

" Reston, Virginia, 1984.

'PAG 85]

[ROT 80]

Page T.W., Weinstein M.J. and Popek G.J. “Genesis: A Distributed
Database Operating System”, Proceedings of Intecrnational Confercnce:
on Management of Data, ACM SIGMOD Austin, Texas, 1985, pp 374-
387.

Rothnie J.B., Bernstein P.A , Fox S., Goodman N., Hammer M., Lan-
ders T.A., Reeve C., Shipman D.W. and Wong E. “Introduction to

- 80 -

:

—



(o

[SEG 84)
[SHI 79]

[SMI 81]

ISMI 77
ISTO 76)

1SUZ 82

[ULL 82]

[WEL 81]

[WIL 82)

(YU 84]

a System for Distributed Databases (SDD-1)". ACM Transactions on
Databasc Systoms, Vol.) No.l, (March 1980), pp.1-17.

o~ )
Segiv A. “Optinhzing Fragmented 2-Way Joins”, Proc. Fourth Inter-
national Conference on Distributed Compuling Systeins, San Fran-
cisco. California, May 1984.

Shipman D. “The Functional Data Model and the Data Language
DAPLEX”, Proccedings of International Conference on Management
of Data, ACM SIGMOD Boston, MA., 1979.

Smith J.M., Bernstein P.A., Dayal U., Goodman N.. Landers T.,
Lin K.W.T. and Wong E. “Multibase-Integrating Heterogencots Dis-
trnibuted Database Systems”, AFIPS (‘onference Procecdings, 1981,
pp.487-499.

Smith J.M. and Smith D.C.P. “Database Abstractions: Aggregation
and Generalization”, ACM Transactions on Database Systems, Vol.2
No 2, (June 1977), pp.105-133.

Stonebraker M. and Neuhold E. A Distributed Data Base Version olf
INGR ES, Memorandum No. ERL-M612 Enginecering Research Labon-
tory, University of California, Berkeley. September 1976.

Suzuki K., Tanaka T. and Hattori F. “lmplementation of a Distributed
Database Management System for Very Large Real-Time Applica-
tions™, Proceedings of Compuler Networks CCOMPCON 82 Twenty-
ffth TEEE Computer Society International (‘enference, Washington
DC'; 1982, pp.569-77.

Ullman J.D. Principles of Database Systems, Second Edition, Com-
puter Science Press, Rockville, Md., 1982.

Welty C. and Stemple D.W. “Human Factors Comparison of a Proce-
dural and a Nonprocedural Query Language”, ACM Transations on
Database Systems, Vol.6, No.4, (December 1981), pp.626-649.

Williams R., Daniels D., Haas L., Lapis G., Lindsay B., Ng P., Ober-
marck R., Selinger P., Walker A., Wilms P. and Yost R. “R*: An
Overview of the Architecture”, Proceedings of the Sccond Interna-
tional Conference on Databases: Improving Usability and Responsive-

ness, Jerusalem, Israel, 1982.

Yu C.T. and Chang C.C. “Distributed Query Processing”. ACM C'om-
puting Surveys, Vol.16, No.4, (December 1984).

- 81 -




