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Abstract 

Finite-state automata and n.nite-state transducers have been extensively studied over 

the years. Recently, the theory of transducers has been generalized by Mohri for the 

weighted case. This generalization has allowed the use of n.nite-state transducers in a 

large variety of applications such as speech recognition. In this work, most of the al­

gorithms for performing operations on weighted n.nite-state transducers are described 

in detail and analyzed. Then, an example of their use lS gïven via a description of a 

speech recognition system based on them. 



Acknowledgment 

1 would like to thank my supervisor Gerald Ratzer for his guidance and encourage­

ment throughout my stay at McGill University. This has been greatly appreciated. 

I also truly thank Pierre Dumouchel who has accepted to co-supervise this work and 

allowed me to work on its relevant topic. The CRIM has provided me with a won­

derful research environment. 

I thank aU members of the speech recognition group at CRIM. More particularly, 

Michel Comeau, Gilles Boulianne and Pierre Ouellet for their comments and help 

in the writing of this thesis; with Gilles 1 have especially had various constructive 

discussions about this work and other topies. 

1 thank also Mare Boulé for his ecouragement and help on various topies. 



Résumé 

La théorie des machines à états finis et des transducteurs à états finis est un su­

jet qui a été étudié en détail depuis plusieurs années. Récemment, la théorie des 

transducteurs a été généralisée par Mohri au cas des transducteurs pondérés. Cette 

généralisation a permis l'utilisation des transducteurs à états finis dans une grande 

variété d'applications comme, par exemple, la reconnaissance automatique de la pa­

role. Dans ce travail, plusieurs algorithmes permettant la manipulation des transduc­

teurs à états finis pondérés sont décrits et analysés en détail. Ensuite, un exemple 

de leur utilisation est donné en présentant un sytème de reconnaissance de la parole 

basé sur les transducteurs. 
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Chapter 1 

Introduction 

Finite-state automata have been extensively studied over the years. Originally, au­

tomata theory had been proposed to model brain functions [24]. This model lS very 

useful for many other purposes and is now used in many important software such as 

compilers, speech recognition systems and bioinformatics. 

Finite-state transducers are a generalization of the theory of automata. An automa­

ton can be seen as a binary relation mapping a sequence of symbols to a binary value 

representing Hs acceptation value. Finite-state transducers generaHze this behaviour 

by producing a sequence of symbols instead of a single binary value. These symbols 

are combined together according to their nature. Thus, finite-state transducers de­

scribe also a binary relation mapping a sequence of symbols to another sequence of 

symbols. 

The use of finite-state machines ls motivated by their computational efficiency. The 

time efficiency lS achieved by using deterministic automata. In such machines, the 

generation of the output depends only on the length of the input sequence. From 

this point of view, sequential machines are considered optimaL The space efficiency 

lS achieved with the dassical minÏmization algorithm [1]. This algorithm ensures 

that the size of the automaton lS minimal according to the language described. The 

efficiency of such automata has been proven in applications such as compiler design 

[2]. 
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Several operations can be done on finite-state transducers. Some of them are borrowed 

from graph theory such as the shortest-path algorithm and depth-first search-based 

algorithms. Other operations are based on the more classic operations of automata 

theory. These operations have been generalized for weighted string-to-string trans­

ducers by Mohri. For example, the composition of transducers ia a generalization of 

the intersection of automata. Several operations are fully described in Chapt ers 3 

and 4. The running time of these algorithms 18 also analyzed. 

Automata theory lS widely used in traditional speech recognition sinee they represent 

efficient models for expressing language phenomena such as lexical mIes [4, 25, 17]. 

The recent generalization of transducers to the weighted case by Mohri allowed the 

use of them to build a speech recognition system. The main advantage of this sys­

tem over the traditional one is that aU speech knowledge IS expressed using the same 

transducer representation, allowing to make changes in the network without mod­

ifying the decoder [13]. Chapter 5 discusses how such recognition systems can be 

implemented. 

To begin with, the mathematical foundations related to finite-state machines are 

introduced in the following chapter. This chapter gives the formaI definition of many 

of the subjeds related to transducers theory. Particularly, the formaI definitions of 

the four types of transdueers considered in this work are given. Sorne of the operations 

described in the following chapters are also introduced in this chapter. 

2 



Chapter 2 

Basics of Finite-State Transducers 

This chapter presents a brief introduction to the world of finite-state automata and 

finite-state transducers. Far from being exhaustive, the intended aim is to lay down 

the basic concepts and to introduce the notation used throughout. The uninitiated in 

the field can, as a complement to this chapter, consult the excellent books of Hopcroft 

[24] or Sipser [32] who present a more thorough introduction to the subjects of au­

tomata and language processing. 

The first part of this chapter sketches the mathematical foundations of automata 

theory including language theorY1 the concepts of semirings and formaI power series, 

and finally the formaI description of automata. This part also introduces the reader 

to the terminology and notation used throughout this work. 

The second part presents automata operations such as the union of two automata 

and their composition. Each operation will be briefiy described; this will serve as 

a prelude to the next chapter in which algorithms performing these operations are 

presented and analysed. 

Let us begin with the basic notion of automata: languages. 
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291 Alphabets, Strings and Languages 

An alphabet ia a finite and non-empty set of symbols generally denoted by the Greek 

letter :E. Here are some examples of common alphabets: 

El - {O,I} 

:E2 {a, b, c, d, e, J, g, h, i,j, k, l, 'm, n, O,p, q, r, 8, t, 'U, V, W , X, y, z} 

A string (or word) W lS a finite sequence of symbols from a specified alphabet. For 

example, 010101 ls a string over :El while cat is a string over :E2 . 

The length of a string, written Iwl, is the number of symbols that it contains. An 

empty string has a length of 0 and is generally denoted as c. 

The set of aU strings of length k over an alphabet :E can be expressed using the 

exponential notation :Ek • For example, if:E = {D, 1} then :E2 = {DO, 01,10, lI} while 

:E3 = {OOO, 001, 010, 011,100,101,110,111}. E* denotes the infinite set of aH possible 

strings over E and is called the Kleene dosure of E. 

The binary operator . denotes the concatenation of two strings 81 and 82 performed 

by appending S2 ta SI. For example, if SI = 0'10"2"'O"n and 82 = WIW2 ... Wm then 

S1 . 82 = 0"10'2"'O'nWIW2",Wm' Sinee concatenation lS a kind of multiplication for 

strings, the nth power of a string w, written wn , IS obtained by concatenating w with 

itself n times. 

A language Lon E lS a set of strings chosen in E* for the specified alphabet E. 

2.2 Semiring 

A se mi ring i8 an algebraïc structure that can be used as an abstraction in the descrip­

tion of algorithms. Let us st art by defining a smaller structure called a monoid. The 

semiring definition i8 based on monoid8. A monoid M IS set together with a binary 

operation and a neutral element. 

4 



Definition 2.1. 

More formally, a monoid is a system M = (M, ®, ï) where : 

~ M lS a set, 

® ® is an associative binary operator: x ® (y ® z) = (x ® y) ® z, \Ix, y, z E M, 

® ï is an identity element over ® : x ® ï = ï ® x = x, \Ix E M. 

A monoid (M, ®, ï) IS said to be commutative if x 0 y = y 0 x for aH x and y in M. 

A monoid can be designated only by M when the binary operation and the identity 

element are known. 

An important monoid lS the free. monoid CE*,', E) where :E* IS generated over a set 

:E, . is the concatenation operator and E is the empty string. 

A semiring Je contains two binary operators associated with a set K and two constant 

elements from K having sorne particular properties. 

Definition 2.2. 

A semiring Je = (K, EB, 0,5, i) consists of two monoids such that: 

• (K, EB, 5) is a commutative monoid, 

• (K, 0, ï) 18 a monoid 

• 5 is an annihilator: x Q9 0 = 0 0 x = 0, \Ix E K. 

• Q9 distributes over EB on the right: x 0 (y EB z) = (x Q9 y) EB (x 0 z) and on the 

left (y ffi z) ® x = (y Q9 x) EB (z Q9 x), \Ix, y, z E K 

As lS the case for monoids, a semiring lS called a commutative semiring if x0y = yQ9X 

for every x and y in K. A semiring is said to be idempotent if x EB x = x for every x 

in K. 

There are three important semirings used in automata and transducers theory: the 

Boolean, the tropical and the string semiring. They are described as follows: 

5 



Boolean semiring 

The Boolean semiring has a set with only two elements: true or faise. The 

Boolean semiring is defined by B = ({ 0, 1}, V, 1\, 0, 1) where V denotes the "or" 

operation and 1\ denotes the "and" operation. 

tropical semiring 

The tropical semiring, presented in [29], lS also called the min-plus semiring and 

lS defined by T = (Rr U {oo}, min, +, 00, 0) where min denotes the classical 

minimum function and + denotes the usuai addition over real numbers. 

string semiring 

The string semiring defines operations on strings. The string semiring is defined 

as S = (:E* U {oo}, 1\, " 00, lé) where a 1\ b denotes the longest common prefix of 

a and b, . IS the concatenation of two strings, 00 is a new element not in I: such 

that the semiring properties are maintained and lé denotes the empty string. 

The cross-product of two semirings is also a semiring. Given two semirings ICI = 
(Kl , œI, 01, (h, Id and IC2 = (K2 , œ2, 02, Oz, 12), their cross-product lS defined as: 

2.3 Formal Power Series 

Consider the mapping function 0' : I:* ----+ K where E* is a monoid and K lS a 

semiring. This function is caHed a formaI power series and is denoted by: 

0' = L: O'(w)w 
wEI:* 

where a( w) is caHed the coefficient of w in a and w E I:* is the (noncommuting) 

variable. The set of aU power series is denoted K ( (I:*) ). 

The support of a lS the language defined by supp( a) = {w E I:* 1 a( w) :f. Ü}. Binee 

the concept of support is a language, it brings a natural interconnection between the 

theory of formaI power series and the theory of languages and thus, with automata. 
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2@4 Automata 

Automata are a way to describe a set of strings and thus, represent a language. A 

language is caUed a regular language if and only if it can be represented by a finite 

automaton. Figure 2.1 depicts a simple automaton. 

Figure 2.1: Finite automaton with two states 

This automaton has two states labelled qI and q2; the initial state 18 characterized 

by an arrow pointed to it from nowhere; the final state, also called accepting state, is 

represented by a double circle; the labelled arrOW8 connecting two states are called 

transitions. In this example, q1 is both the initial and the final state. 

An automaton processes an input string such as 1010 by following transitions from an 

initial state, depending on the symbols in the input string. Each symbol of the input 

string is consumed by the automaton from left to right. The output of the automaton 

is either to accept or ta reject the input string. The string lS accepted if after having 

processed aH symbols of the input string, the automaton lS in an accepting state. If 

not, the string 18 rejected by the automaton. 

Thus, in the example of figure 2.1, the state sequence for the input string 1010 will 

be qb qb Q2, q2, ql· Since the last state qi is a final state, the string lS accepted by this 

automaton. 

Another interpretation of an automaton IS to view it as a generator, rather than a 

consumer, of symbols: Starting from the initial state and following transitions pro­

duces a sequence of symbols, thus a string. The string lS vaUd if the last state visited 

IS a final state. 

In the example of figure 2.1 j the automaton accepts aU strings that have an even 

number of D's. Thus, the language lS the set: 

L(A1) = {w 1 w is the empty string f or has an even number of A' s} 
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Definition 2.3. 

More formally, a finite automaton A is a 5-tuple (Q, i, F,~, E), where: 

QI Q is a set of states, 

® i E Q is the initial state, 

® F ç Q is the set of final states, 

® ~ IS the alphabet of A, 

® E ç Q x ~ xQ is the set of transitions. 

Instead of a set of transitions, it IS common to have a transition function mapping a 

state q and a symbol a to a destination state. More formally, this function is defined 

as ~ : Q x ~ ---+ Q. Thïs function can be extended to Q x ~* using the following 

recurrence relation [17]: 

6*(q, wa) = 8(<5(q, w), a) Vq E Q, Vw E L:*, Va E ~ (2.1) 

Thus, a string w 18 accepted by A if and only if 0* (i, w) E F. 

Path in Automata 

A path 1[" l also denoted qi ""'-7 q2 lS a sequence of consecutive transitions from state q1 

to Q2. The length \11"1 of the path 1f IS the number of transition making up this path. 

Definition 2.4. 

More formally, a path 18 a sequence of transitions 11" = (qb a, qD'''(%rl-l' (J', %rl) such 

that q~ = qi+l, i = 1, ... , 111"1- L 

2.4.1 Weighted Automata 

Weighted automata, also called weighted acceptors, output a weight depending on 

the input string and not simply a rejectjaccept value. The weight carried by transi­

tions along the symbols are ffi-additionned according to a given weight semiring such 

as the tropical semiring or the log semiring. The choice of the semiring should re­

fiect the intended interpretation of the weights. Figure 2.2 shows a weighted acceptor. 
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Figure 2.2: Example of a string-to-weight transducer 

The weight associated with a string takes into account the output weights of transition 

but also a weight associated with the initial state and another weight associated with 

the final state. 

Definition 2.5. 

More formally, a weighted acceptor A over a semiring K is a 7-tuple (Q, i, F,:E, E, À, p), 

where: 

.. Q is the set of states, 

,. i E Q Îs the initial state, 

,. F ç Q is the set of final states, 

,. :E is the alphabet of the automaton, 

@ E ç Q x :E x K x Q i8 the set of transitions, 

,. À : i ---+ K is the initial weight function, 

.. p: F ---+ K i8 the final weight function. 

The set of transitions can be replaced by a transition function, as is the case for non­

weighted automata, and by an output function mapping astate q and a symbol a to 

a weight semiring. More formally, the output function is defined as Œ : Q x 1; ---+ K. 

As lS the case for the transition function, the fun ct ion can be extended to Q x 1;* 

using the following recurrence equation [17]: 

g*(q, wa) = g(q, w) . g*(8(q, w), a) Vq E Q,Vw E :E*,Va E:E (2.2) 

Thus, if the string w is accepted by A, its output will be g(i, w). 

9 



2.4.2 Epsilon Transitions 

An epsilon or nun transition IS one that does not consume any input symboL In the 

graph representation, the epsilon is denoted by the Greek symbol €. Figure 2.3 shows 

an example of an automaton with {-transitions. 

Figure 2.3: Automaton with {-transitions 

The language accepted by this automaton is {ab, b}. Since no input symbols are 

consumed when an f-transition IS taken, the language accepted by the automaton is 

not infiuenced by it. However, the creation of automata is often simplified by using 

epsilons. 

2.4.3 Determinism 

A finite-state automaton is called deterministic (DFA) if and only if for any input 

string 'W, the sequence of states is unique. Figure 2.4a shows a non-deterministic 

finite-state automaton (NDFA) sinee there are two transitions with the symbol a 

going out of state qo. Figure 2.4b shows a deterministic automaton accepting the 

same language as the automaton of Figure 2.4a. 

(a) 

(h) 

Figure 2.4: Non-deterministic and deterministic auto mata 

10 



Definition 2.6. 

More forrnally, an automaton (Q, i, F,:E, 8) is deterrninistic if: 

18*(q, w)1 ~ 1 Vq E Q, Vw E :E* 

Every language that can be described by a NDFA can also be described by a DFA 

[24, 32]. This property helps with the design of autornata since it is often easier to 

construct a new automaton as NDFA and then to transform it to a DFA. Since DFAs 

are computationally more efficient, this operation is very useful. 

2.4.4 Equivalence of Automata 

For a given language there exista an Infinite number of ways to construct autornata 

representing this language. These automata are said to be equivalent. 

Definition 2.7. 

More forrnally, two automata Al and A2 are equivalent if and only if L(A1) = L(A2 ). 

2.5 Finite-State Transducers 

Transduction 18 the proce8S which maps an input string Wi over the alphabet :Ei to 

an output string W a over the alphabet :Eo . 

Definition 2.8. 

A transduction is a mapping function defined as r : Ei -----t E~ where :Ei is the set 

of input strings and :E.~ i8 the set of output strings. 

Definition 2.9. 

A weighted transduction is a mapping function defined as 7: :Et -----t E~ x K where 

:Ei IS the set of input strings, E~ lis the set of output strings and K IS a weight semiring. 

Transducers are a type of automaton whose transitions carry an output syrnbol in 

addition to the input symbol. Thus, the output of a transducer ls a string over a 

given alphabet and not Just a weïght or a reject/accept value as with automata. 
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2.5.1 String-To-St:ring Transduce:rs 

A string-to-string transducer represents the function T : Ei ---t E~ where Ei and 2::~ 

are the sets of input and output strings" Figure 2.5 shows an example of a string-to­

string transducer. In this example, the string aa is mapped to the string cd while the 

string ba is mapped ta the string ec. AIl other strings are rejected by the transduceL 

Figure 2.5: Example of a string-to-string transducer 

Definition 2.10. 

More formally, a string-to-string transducer T over a semiring K ls a 6-tuple 

(Q, i, F, Ei' EOl E), where: 

® Q lS the set of states, 

® i E Q lS the initial state, 

® F ç Q is the set of final states, 

® Ei is the input alphabet of the automaton, 

® Eo IS the output alphabet of the automaton, 

® E ç Q X Ei X Eo x K x Q is the set of transitions. 

As IS the case for acceptors, the set of transitions can be replaced by a transition 

function and an ouput function. The transition function is the same as for acceptors 

while the ouput function becomes (J : Q X Ei ---t Eo. Bath functions can be extended 

using the recurrence relations expressed in equations 2.1 and 2.2. 
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2.5.2 Weighted String-To-String Transducers 

This kind of transducer is the most general finite-state automaton discussed in thi8 

work. It maps a pair consisting of an output string and a weight. 

More formally, the mapping function of a weighted string-to-string transducer 18 

T : :Et ---» :E~ x K where :E; and :E~ are the sets of input and output strings 

re8pectively and K is a weight semiring. Figure 2.6 shows a weighted string-to-string 

transducer. 

Figure 2.6: Example of a weighted string-ta-string transducer 

As 18 the case for weighted acceptors, a weighted string-to-string transducer a1so 

provides an initial and a final weight. 

Definition 2.11. 

A weighted string-to-string transducer T over a semiring K is a 8-tuple 

(Q, i, F, :Ei , :Ea , E, A, p), where: 

® Q is a set of states, 

® i E Q lS the initial state, 

o F ç Q lS the set of final states, 

o :Ei 18 the input alphabet of the automaton, 

o Ea is the output alphabet of the automaton, 

o E c Q X :Ei X EQ x K x Q lS the set of transitions, 

o À: i --t K lS the initial weight function, 

® p: F --t K is the final weight function. 
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As is the case for string-to-string transducers, the set oftransitions can be replaced by 

a transition function and an output function. The transition function lS identical to 

that of the string-ta-string transducer and the output function becomes (J : Q x:E i --+ 

:Eo x K. Both functions can be extended using the recurrence relations expressed in 

equations 2.1 and 2.2. 

2.5.3 Epsilon Symbols in String .. ToooString Transducers 

As 18 the case for automata, epsilon symbols are aUowed in string-to-string transducers 

both for input and output symbols. An input string and its corresponding output 

string do not necessarily have the same length. Thus, epsilons are used to fill the 

"blanks" . 

Figure 2.7: Example of a transducer using epsilons. 

Figure 2.7 shows a transducer using epsilons to map strings of different length. In 

a transducer, €-transitions are represented by a transition with an input and output 

epsilon. 

2.5.4 Sequential Transducers 

A transducer lS called sequential if it is deterministic from the point of view of its 

input. Figure 2.8a shows a non-sequential transducer sinee there are two transitions 

with the symbol a outgoing from state qIJ. Figure 2.8b shows a sequential transducer. 

(a) (b) 

Figure 2.8: A non-sequential and a sequential transducer 
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The empty string, namely E, is not aUowed as an input symbol in a sequential trans­

ducer. Sequential transducers are computationally efficient sinee the time require­

ments depend only on the size of the input string and not on the size of the trans­

ducer. This efficiency cornes from the fact that for a given input string, the output 

string is wriUen by following the only corresponding path. 

2.6 Operations on transducers 

As is the case for automata, many operations are available for working with trans­

ducers. This section will briefiy describe these operations. 

2.6.1 Union 

Union lS a basic operation in autornata theory. The union of two languages LI and 

L 2 IS the set of strings that are in either LI, L 2 or both. More formally, the union 

LI U L 2 = {xix E LI or x E L 2}. 

For transducers, this operation IS done by combining the initial states of both trans­

ducers. Figure 2.9 shows an example of the union of two simple transducers over a 

semiring K. 

(a) (b) 

(c) 

Figure 2.9: Example of weighted transducer union 

To be consistent with the weighting of original transducers, the initial weights of 

both transducers have been moved to outgoing transitions of the initial state using 

the 0-product. 
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2.6.2 Concatenation 

The concatenation of two languages LI and L 2 lS the set of strings formed by con­

catenation of aH strings in LI with strings of L 2 . More formally, the concatenation 

LI' L 2 = {x· ylx E LI and y E L 2 }. 

(a) (b) 

(c) 

Figure 2.10: Example of weighted transducer concatenation 

From the point of view of transducers, the concatenation of two transducers Tl and 

T2 is obtained by appending T2 to the end of Tl by merging the final state(s) of Tl 

with the initial state of T2• Figure 2.10 shows an example of the concatenation of 

two simple transducers over a semiring K. 

To be consistent, the final weight of the first transducer and the initial weight of the 

second transducer are moved to transitions going out of the states merged during the 

operation. These weights are combined with transition weights using the 0-product. 

2.6.3 Connection 

This operation rernoves from a given transducer aU unconnected states. Astate q is 

accessible if there exists a path from the initial state to q and is coaccessible if there 

exists a path from q to a final state. Astate IS said to be connected if it is both 

accessible and coaccessible. Figure 2.11a shows a transducer with a non-coaccessible 

(ql) and a non-accessible state (q4). Figure 2.llb shows the same transducer without 

these useless states. 

In the removal process, aU transitions going out from and going into an unconnected 

state are also de!eted. This operation is orten used ta clean up the result of other 

operations such as composition which leaves sorne unconnected states. 

16 



(a) 

(b) 

Figure 2.11: Example of trimming 

2.6.4 Reverse 

This operation consists of reversing aU transitions of the given transducer. The oper­

ation also transform final states into an initial state and the initial state into a final 

state. The reverse operation is denoted by Tres = T[n. Figure 2.12b shows the reverse 

of transducer of figure 2.12a. 

(a) 

(b) 

Figure 2.12: Example of transducer reversai 

Note that applying the reversaI operation twice on a transducer T produce a new 

transducer equivalent to T in which there is only one final state i.e. IFI = 1. 

17 



2.6.5 Removing Epsilons 

Transducers are often constructed with (-transitions, Unfortunately, these transitions 

decrease the cornputational effidency of FST sinee they rnake thern non-deterrninistic. 

This operation of epsilon rernoval pro duces an equivalent transducer with no {­

transitions. Figure 2.13 shows an exarnple of this operation on a transducer. 

(a) 

(b) 

Figure 2.13: Example of removing epsilons on a tmnsducer 

The deterrninization operation, which transforrn a non-deterrninistic transducer into 

a deterrninistic one, generally considers epsilons as an ordinary syrnbol and thus, 

deterrninization keeps (-transitions. For this reason, it 18 cornmon to remove epsilons 

before applying determinization to obtain a deterrninistic automaton or a sequential 

transducer. 
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2.6.6 Composition 

Composition is a generalization of the intersection operation for automata. This 

operation is very useful since it allows the construction of complex transducers from 

simpler ones. Figure 2.14 shows a cascade of two transducers. 

A B 

Figure 2.14: A cascade of two tmnsducers 

The transducer A maps Ei to D. *. Thus, the set D. * becomes the input of transducer 

B that maps D. * to E~. Therefore, the general behaviour of the cascade is: A 0 B = 

Ei -4: E~. The composition creates the transducer equivalent to this cascade. 

(a) (b) 

Figure 2.15: Example of tmnsducer composition 

Given a transducer A in which there is a path mapping sequence x to sequence y and 

a transducer B in which there is a path mapping sequence y to sequence z, the com­

position A 0 B has a path mapping x to z. The weight of this path is the 0-product 

of the weights of the corresponding path in A and B [19]. Figure 2.15 shows two 

simple transducers and the result of their composition. 

The composition lS a key operation in transducer based application sinee it lS used 

to construct complex transducers representing complex functions. For example, in 

the case of speech recognition, the composition ls used to construct the knowledge 

network needed by the recognition system. This network i8 con8tructed by the com­

position of different level of representation for which transdueers are associated. The 

construction of this network will be described in detaillater. 
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2.6.7 Determinization 

Deterministic automata and sequential transducers have already been defined. Any 

non-deterministic automaton has an equivalent deterministic one. Determinization lS 

the pro cess which takes a non-deterministic automata as input and produces a deter­

ministic one as output. Figure 2.16b shows a deterministic automaton constructed 

from the automaton of figure 2.16a. 

(a) 

(b) 

Figure 2.16: Example of transducer determinization 

Deterministic automata are computationally more efficient but in practice, the num­

ber of states involved is often greater than the equivalent non-deterministic coun­

terpart. In the worst case, the smallest deterministic automaton can have 2n states 

while the smallest non-deterministic automaton describing the same language has n 

states. 

The same operation can be applied to non-sequential transducers to obtain sequential 

ones. Unfortunately, this process do es not terminate for an transducers. This point 

will be discussed in the next chapter. 

2.6.8 Minimization 

Given the complete set of equivalent deterministic automata, there exists a unique 

automaton which has a minimum number of transitions and (arbitrarily labelled) 

states with respect to the implied language. Figure 2.17b shows the minimized version 

of the automaton of figure 2.16a. 
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(b) 

Figure 2.17: Example of transducer minimization 

The minimization for weighted transducers requires two steps. The first step is a 

reweighting operation called pushing. A transducer can be reweighted in an Infinite 

number of ways. The pushing operation moves the weights toward the initial state. 

The result is a transducer as seen on figure 2.17b, which contains some transitions 

having the same symbol and the same weight. The second step lS the classical mini­

mization pro cess that considers the symbol and the weight as a single symbol. Since 

the pushed transducer has some transitions with identical (symboI,weight) pair, it 

can be minimized. 

This procedure can be applied to string-to-string transducers but do es not necessarily 

yields the minimum transducer. However, the method can be useful for reducing the 

transducer's size and is caUed compaction in this case. 

The minimization of transducers lS performed by consecutively applying the deter­

minization, reverse, determinization and reverse operations. Mohri has proved the 

optimality of this algorithm in [17]. Unfortunately, not aU transducers can be deter­

minized. In that case, the only solution is to use compact ion sinee there does not 

exist a minimization algorithm that can be applied to non-determinizable transducers. 

Therefore, the minimization of transducers IS based on the classical minimization 

algorithm presented in [1]. This algorithm will not be described in this work sinee 

it ls a classical one. For any reader interested in it, the algorithm is presented in [1] 

and [24]. Moreover, the compaction has been fully studied by Zhang [35]. 
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2.6.9 Other Operations 

The major FST operations have been presented but there exists sorne other useful 

manipulations that can be done on a FST, and are briefly described here: 

Inversion 

Invert the transducer by swapping the input and output symbols on transitions. 

Arithmetic 

Apply sorne arithmetic operation (addition or multiplication) on weights of 

weighted FSM. 

Projection 

Convert a transducer to an acceptor by keeping either only the input or only 

the output symboL 

Beat paths 

Find the k paths of lowest weight from the initial state to a final state in a 

weighted FSM. 

Topological sort 

This operation numbers states such that for any transition from astate num­

bered i to astate numbered j, the condition i :::; j 18 respected. 

Algorithms for performing these operations will also be given in the next chapter. 

2.7 Summary 

This chapter has introduced sorne theorical aspects of weighted finite-state trans­

ducers in order to present the basic concepts and to introduce the notation used 

in the algorithm descriptions presented in the next chapters. The important points 

discussed in this chapter are: 

• The mathematical foundations of automata theory indu ding language theory, 

semiring and formaI power series. 

• The formaI definitions of the different kinds of transducers for which the al go­

rithms in the next chapters can be applied. 

• A brief overview of operations described and analyzed in greater detail in the 

next chapters. 
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Chapter 3 

asic Algorithms 

This chapter presents sorne basic algorithms applicable to finite-state transducers. It 

is divided into five sections. 

The first section presents the union operation, which is a fundamental operation in 

automata theory. In the second section will be presented another important opera­

tion in automata theory: the concatenation of two finite-state transducers. Both of 

these operations are discussed in aH introductory books to the automata theory. 

The third section will explore algorithms based on the depth-first search method, first 

introduced by Tarjan [33]. In particular, this section describes the topological sort 

algorithm, which sorts the states in a left to right order and the connection algorithm, 

which removes the unconnected states of a transducer. 

The fourth section concerns the shortest-path problem. A generic short est-distance 

algorithm will be presented. This algorithm is generic in the sense that it can be 

implemented with a large variety of semirings and queue disciplines. In the second 

part of the section, the classical shortest-path algorithm introduced by Dijkstra [8] 

will be presented in the context of transducers. A generalization of this algorithm, 

resolving the k-shortest-path problem, will also be described. 

The last section describes a pushing algorithm used to move weights along the paths 

toward the initial state. 
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3.1 Union 

The union of two languages LI and L 2 is a new language obtained by combining aH 

words of LI and L2 in a new set L3 denoted by LI U L 2 . 

Definition 3.l. 

More formally, the union of two languages LI and L 2 IS defined as: 

Regular languages are dosed under the union operation [32]. That means that if LI 

and L 2 are regular languages, then the union LI U L 2 is also a regular language. This 

property implies that the union can be applied to transducers which represent regular 

languages. 

Formally speaking, the union of transducer8 i8 obtained by combining their ini­

tial states. In practice, however, t-transition8 carrying initial weights are used to 

"merge" together both transducers as illustrated in Figure 3.1. Algorithm l shows 

the pseudocode of a procedure which makes the union of the two input transducers 

Tl = (QI, il, FI, Eil' EOl' ElJ ),'1, Pl) and T2 = (Q2' i 2, F2' Ei2' E02' E2' À2' P2). 

Algorithm 1 FST Union 
FSTUnion(TI, T2 ) 

1: q() +- newstate 
2: io +- qo 
3: Q() +- {%} U QI U Q2 
4: Eo +- ((q(), E, E, À1(i1), il), (q(), E, E, À2(i2), i 2)} U El U E2 

5: F() +- Fl U F2 

6: l'etul'u (Q(), il, Fo, En U Li2' 2::01 U L02' Ào, Po) 

The algorîthm works as follows. At Hnes 1-2, the initial state qo of the output trans­

ducer To 18 created. Then, the set of states Q1,Q2 and the new initial state are merged 

to create QO) the set of states of the output transducer. Line 4 creates transitions 

of To from transitions of both input transducers. Moreover, two new f-transitions, 

which connect q() to both initial states il and i2, are also added to T(). Note that sinee 

these new transitions do not carry symbols, the languages described by Tl and T2 are 

still correctly represented by T(). Finally, line 5 combines the accepting states of both 

input transducers and line 6 returns the new transducer createdo 
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(a) (b) 

(c) 

Figure 3.1: Result of the union of two transducer by FSTUnion. 

Note that the result is not exactly the same that shown in section 2.6.1. This lS 

because the algorithm described here uses €-transitions to simplify the construction 

of the resulting transducer. On the other hand, the result shown in Figure 2.9 can 

be obtained by removing E-transitions of the transducer created by FSTUnion. The 

algorithm performing this operation will be presented in the next chapter. 

Running Time Analysis 

The running time of this algorithm depends on how both state and transition sets 

are implemented. lndeed, using linked lista for these sets, the algorithm can mn in 

0(1) sinee, in this case, the union of sets corresponds to the concatenation of the lists. 

Other implementations use arrays to represent sets. In this case, the union of sets 

implies a loop which will pass through an the elements of both sets. Considering 

that, the union operation of Hne 3 will take 0(IQ11 + IQ21) time and the union of hne 

4 will take O(IE11 + IE2\)' Therefore, the running time of this algorithm is linear: 

O(IQI + lEI) 

where IQI = IQ11 + IQ21 + 1 and lEI = IEII + IE21 + 2 are respectively the number of 

states and transitions in the resulting transducer. 

25 



3.2 Concatenation 

RecaU that the concatenation of two words Wl and W2 is obtained by appending W2 

at the end of Wl. The concatenation of two languages LI and L 2 IS a new language 

obtained by appending every word of L 2 ai the end of every word of LI' This operation 

IS usually denoted by a dot. 

Definition 3.2. 

More formally, the concatenation of two languages LI and L 2 IS defined as: 

As 18 the case for the union operation, the regular languages are closed under the 

concatenation operation[32]. Therefore, the concatenation of two regular languages 

results in a third language which is also a regular language. It follows that the con­

catenation of two regular languages can also be represented by a transducer. 

From the perspective of transducers, the concatenation of two transducers Tl and T2 

is obtained by merging the initial state ofTz with aU the final states ofT!. In practice, 

it IS easier to use E-transitions to "connectll both transducers together as shown in 

Figure 3.2. Algorithm 2 shows the pseudo code performing the concatenation of trans­

ducers Tl = (QI,ibFI,:Eil,bol,EllÀl,Pl) and Tz = (Q2,iz,F2,Ei2,Eoz,E2,À2,P2) 

which are the input of the procedure. 

Algorithm 2 FST Concatenation 
FSTConcatenation(T1 , T2 ) 

1: Qo f- Ql U Q2 
2: Eo f- El U E2 

3: for each q E FI do 
4: Eo[q] f- Eo[q] U {(q, E, E, Pl (q) 0 À2 (id, il)} 
5: retu:rn (Qo, il, F2' Eil U Ei2 , E01 U E02' À1' P2) 

Lines 1-2 initialize the set of states and the set of transitions of the new transducer. 

The loop at Hnes 3-4 add a new E-transition from every final state q E FI to the initial 

state of T2 • The weight of every added transition corresponds to the 0-product of 

the acceptation cost of the final state from which the transition going out and the 

initial cost of T2• Line 5 returns the new transducer created. 
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Figure 3.2: Re:;mlt of the concatenation of two tmnsducer by FSTConcatenation. 

Figure 3.2 shows two transducers and their concatenation as computed by Algo­

rit hm 2. As is the case for the union operation previously described, the f-transitions 

can be removed to obtain the same result shown in figure 2.10. 

Running Time Analysis 

The running time of this algorithm depends on how the sets are implemented. Indeed, 

using a linked list for the sets of states and transitions allows an implementation of 

the concatenation operation in 0(1) tÏme. Therefore, Hnes 1-2 run in 0(1). The loop 

at lines 3-4 pass through aU final states. In the worst case, aH states of the transducer 

are final and thus, the running time of this Ioop is 0 (1 QI). The total running time is 

therefore O(IQI). 

In the case where the sets are implemented with data structure such as arrays, Hnes 

1-2 pass through each state and transition to copy them. Thus, the running time IS 

O(IQll + IQ21 for the union of state sets (Hne 1) and 0(IE11 + IE2 1) for the union of 

transitions set (Hne 2). The running Ume of the Ioop at Hnes 3-4 IS not affected by 

the sets' Implementations. Therefore, the total running time IS linear: 

O(IQI + lEI) 

where IQI = IQII + IQ21 and lEI = IEII + IE21 + IFll are, respectively, the number of 
states and transitions in the resulting transducer. 
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3.3 Depth-First Search Aigorithms 

Depth-First Search (DFS) is a simple algorithm for searching in a FST and lS used as 

a base for many other algorithms. The algorithm is similar to what is used in graph 

theory [33, 7, 30]. The strategy is, as its name impHes, to explore the transducer 

~'deeper" whenever it is possible. The search begins in state s which is marked as 

vlsited. Then, the search lS recursively applied to aH adjacent states to s. The 

pro cess continues until aH states in the transducer have been visited. Figure 3.3 

shows in which order states are visited by the DFS. 

Figure 3.3: Example of DFS execution 

The coloring method is used to mark states. White denotes astate which has not yet 

been visited. Grey denotes a state for which exploring adjacent states is in progress 

and black denotes a state for which aU adjacent states have been visited. 

Algorithm 3 Depth-First Search 
DFS(T) 

1: for aU q EQ do 
2: color[q] +- white 
3: for q E Q do 
4: if color[q] is white then 
5: DFS-Visit(T, q) 

DFS-Visit(T,q) 

1: color[q] +- Grey 
2: for each (q, (Ji, (JOl W , q') E E[q] do 
3: if color[q'] is white then 
4: DFS-Visit(T, q') 
5: color[q] +- Black 

Algorithm 3 depicts the pseudocode of the depth-first search algorithm in two proce­

dures. The input ofthis algorithm lS a transducer T = (Q,i,F,r:,i,"E.o,E,À.,p). 
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The algorithm works as followso Unes 1-2 initialize aH states by painting them white. 

Lines 3-5 visit aH white states using DFS-VisitOo In each caU to DFS-Visit, the state 

q is initially whiteo Line l paints it grey. Unes 2-4 recursively explore each white 

state adjacent to qo Finally, when aH adjacent states have been explored, Hne 5 paints 

it black 

Running Time Analysis 

The running time of loops on Hnes 1-2 and 3-5 of DFS depends on the number of 

states in T, thus DFS i8 O(IQI) when the caU to DFS-Visit is not taken into accounto 

The DFS-Visit procedure lS called exactly once for each state since the procedure is 

called only on white states and painting it grey is the first thing that DFS-Visit does. 

The loop on Hnes 2-4 of DFS-Visit is executed IE[qll times, thu8: 

o(E IE[q]l) = O(IEI). 
qEQ 

Therefore, the total running time of DFS is linear : O(IQI + IEl)o 

3.3.1 Topological Sort 

A topological sort of a transducer T is a linear ordering of aU its states such that 

for every transition (q,(Ji,(Jo,w,q'), q is smaller than q' i.e. q appears before Q'. By 

definition, a cyclic transducer cannot be to'pologically sorted since in a cycle, there is 

always a transition such that q > q'. 

Algorithm 4 shows the pseudocode for the topological sorto The algorithm input lS a 

transducer T = (Q, i, F, L: i1 L:o , E, À, p). The output lS a list of topologically ordered 

states. 

Two changes have been made in the original DFS procedure to construct the Topo­

logicalSort procedure. Firstly, a FIFO (first in, first out) list is initialized at hne l. 

Line 4 ensures that the ordering process will begin at the initial state so that the first 

state in the list 18 the initial state. 
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Algorithm 4 Topological sort 
TopologicalSort(T) 

1: LIST +- 0 
2: for aH q E Q do 
3: color[q] +- white 
4: DFS-Visit(T, T.I nitialState) 
5: for q E Q do 
6: if color[q] 18 white then 
7: DFS-Vi8it(T, q) 
8: return LIST 

DFS-Visit(T,q) 
1: color[q] +- Grey 
2: LIST +- q 
3: for each (q, (Ji, (Jo, 'W, q') E E[q] do 
4: if color[q'] is white then 
5: DFS-Visit(T, q') 
6: color[q] +- Black 

In the DFS-Visit procedure, the only change appears at Hne 2 and consists in insert­

ing the state q in the Hst. Note that if Hne 2 i8 moved after the loop of Hnes 3-5, the 

inverse topological order will be obtained. 

Note that in practice, the output Hst will be used to create a new transducer in which 

states will be inserted in the data structure representing the topologically ordered set 

of states. 

Running Time Analysis 

The running time of the TopologicalSort procedure, exduding the caU to DFS-Visit, 

lS the same as for the DFS procedure previously analyzed since the calI to DFS-Visit 

appearing before the loop of Hnes 5-7 does not change the fact that DFS-Visit lS 

called once per state. Thus, its complexity is also O(IQI). 

In the case of the DFS-Visit procedure, the inserting operation has to be taken into 

account. Since the Hst IS a FIFO data structure, a new element IS inserted in constant 

time; insertion is thus 0(1). Since the procedure differs from the original only by 

this operation, its running time is also O(IEI). Therefore, the topological sort runs 

in linear time : O(IQI + lEI). 
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3.3.2 Connection (Trimming) 

The aim of this algorithm IS to remove aH unconnected states from a tran8ducer. 

This operation 18 often used to dean up the result of other operations that yield 

unconnected states. Recall that astate q is connected if 

1. it is accessible: there exists a path from the initial state to q j 

2. it is coaccessible:there exists a path from q to a final state. 

Figure 3.4 shows a transducer with accessible and coaccessible states. In this figure, 

"a" denotes an accessible state and "c" a co accessible state. 

Figure 3.4: Transducer with accessible and coaccessible states. 

The intuitive way to implement this operation takes three steps. The first step con­

sists in performing a depth first-search from the initial state and marking aH reachable 

states as accessible. The second step 18 to perform another depth-first 8earch from 

the final states and marking an reachable states as coaccessible. FinaHy, the last step 

consists in removing aH states that are not simultaneously accessible and coaccessible. 

Note that transitions going out from and going into an unconnected state are also 

removed. 

In fact, the entire pro cess can be done in one depth-first search as shawn in AIgo­

rithm 5. The input of this algorithm is a transducer T = (Q, i, F, I:i , 1::0' E, À, p) with 

output T trimmed of aH unconnected states. 

The algorithm works as foHows. Lines 1-3 paint aIl states white and label them as 

unconnected. Line 4 st arts the depth-first search at the initial state to ensure that 

aU states which will be reached fulfill the first condition of a connected state. Lines 

5-7 remove aH unconnected states from Q. 
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Algorithm 5 Connection 
Connection (T) 

1: for each q E Q do 
2: color[q] +- white 
3: connected[q] +- faise 
4: DFS-Visit(T, T.I nitialState) 
5: for each q E Q do 
6: if connected[q] = faise then 
7: Remove q from Q 
8: return T 

DFS-Visit(T,q) 
1: color[q] +- Grey 
2: for each (q, ai, ao, W , q') E E[q] do 
3: if color[q'] IS white then 
4: DFS-Visit(T, qi) 
5: connected[q] +- connected[q] 1\ connected[q'] 
6: if q E F then 
7: connected[q] f- true 
8: color[q] +- Black 

The DFS-Visit procedure is used to find which states are connected. The algorithm 

first searches final states and marks them as connected (Hnes 6-7) since they are 

reachable from the initial state. Each time an adjacent state of q has been explored 

(Hne 4), its connection property IS propagated (Hnes 5) to the state itself. lndeed, 

the adjacent state has been marked connected only if a final state has been reached 

from it and thus, there exists a path from q to a final state (condition 2) and sinee q 

has been reached from the initial state (condition 1), q is connected. 

Applying this algorithm to the transducer of Figure 3.4 will pro duce the transdueer 

shown in Figure 3.5. 

Figure 3.5: Transducer without unconnected .states. 

Unfortunately, this algorithm does not work in the case of cyclic transducers. The 

problem stems from the fact that in a cyclic transducer astate can be connected but 
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the algorithm will label it as unconnected. Figure 3.6 shows an example of such a 

transducer in which a connected state will be erroneously removed. Indeed, the state 

q2 will be labelled unconnected even if it is connected sinee the algorithm will not 

find the path (q21 qo, qI) which leads to the final state. 

Figure 3.6: Example of cyclic transducer for which Algoritm 5 fails. 

For resolving this problem, the concept of strongly connected component will now be 

introduced. 

Definition 3.3. 

A strongly connected component (SCC) in a transducer T = (Q, i, F, :Ei1 1:0' E,.À, p) 
is a set of states Qsce ç: Q for which every state qv E Qsee can be reached from every 

state qu E Qsee· 

In Figure 3.6, the set {qo, q2} is a strongly conneeted component since q2 is reachable 

from qo and vice-versa. Strongly connected components of a transducer can be found 

using the Tarjan algorithm [33] which uses depth-first search algorithm. The following 

theorem uses the sec concept to solve the connection problem. 

Theorem 3.1. 

If astate q E Q sec is connected) then aU states in Q sec are also connected. 

Proof. Let q E Qsce be a connected state. By Definition 3.3, there exists a path from 

q to every state qv E Qsee- Sinee q 18 connected, there exists a path from the initial 

state to q and thus, from the initial state to every qv E Qsee (condition 1). 

The initial statement that q 18 a connected state implies a path from it to a final 

state. Sinee Definition 3.3 states that q can be reaehed from every state qv E Qsee, 

there exists a path from qv E Qsee to a final state (condition 2). Therefore, sinee both 

conditions are fulfilled for every state qv E Qsee, they are connected. 0 
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Aigorithm 6 Revisited Connection 
Connection (T) 

1: for each q E Q do 
2: orderNum[q] f- 0 
3: connected(q] f- faise 
4: visitCount f- 0 
5: DFS-Visit(T, TI nitialState) 
6: for each q E Q do 
7: if connected[q] = faIse then 
8: Remove q from Q 
9: return T 

D FS-Visit (T ,q) 

1: visitCount f- visitCount + l 
2: orderNum[q] f- visitCount 
3: oldestState f- visitCount 
4: STACKf-q 
5: 
6: for each (q, rYi, rYal W, q') E E[q] do 
7: if orderNum[q'] = 0 then 
8: old f- DFS-Visit(T, (/) 
9: if oId < oldestState then 

10: oldestState = old; 
11: else if orderNum[q'] < oldestState then 
12: oldestState f- orderNum(q'] 
13: connected[q] f- connected[q] A connected[q'] 
14: 

15: if q E F then 
16: connected[q] f- true 
17: 

18: if oldestState = orderNum[q] then 
19: repeat 
20: S f- STACK 
21: connected[s] f- connected[q] 
22: until s = q 
23: return oldestState 
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Algorithm 6 lS the Tarjan's algorithm, described in [33L for strongly connected com­

ponents with Hnes 13, 15, 16 and 21 added to find connected states, Note that in 

this algorithm, states do not have any coloT associated with them but rather numbers 

describing the order in which they have been discovered during the search process. 

This number is also referenced to be the anCÎentness of the state. The main goal of 

the algorithm IS to find the mot of strongly connected components. 

Definition 3.4. 

The mot of a strongly connected component lS the first state reached fmm the initial 

state in a depth-first search pmcess. 

The algorithm takes as input a transducer T = (Q, i, F, Eil 2::0' E, À, p). The Con­

nection procedure works as foUows. Lines 1-4 initialize aU states as not connected 

and their ancientness number as not visited. Line 5 initiates the depth-first search 

pro cess at the initial state, When the search pro cess lS completed, aH unconnected 

states are removed from the transducer (Hnes 6-8). 

Lines 1-4 of the DFS-Visit procedure assign the ordering number to the state which ls 

put in the stack. When q is reached, it lS guessed as the root of its component. Note 

that states in the stack are ordered according their ancientness. When an adjacent 

state lS processed (at Hnes 7-8), new mot candidates are obtained. If a candidate is 

oIder than the current root, ît becomes the new root of the component containing 

q (Hnes 9-12). Line 13 propagates the connection attribute from adjacent states. 

When aH adjacent states have been processed, the ancientness of q is equal to the 

ancientness of the root of its component if and only if q IS a root. In this case, aH 

states of components i. e. aH states having a greater ordering number, are removed 

from the stack (Hnes 18-22) and form a strongly connected component. If the root 

state is connected, then an states of the component must be set to connected (Hne 

21). The correctness of this operation is based on the following theorem: 

Theorem 3.2. 

The TOot state of a strongly connected component can be used ta determine if the 

component is connected or nat. 

Pra of. There are two cases to take into aœount. The first case oœurs when the root 

is connected which should imply that the strongly connected component is also con­

nected. This case is directly proved by Theorem 3.1. 
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The second case arises when the root state is unconnected. In this case, it must 

be proven that it lS impossible to set as connected a state in the component and 

then setting the root as unconnected in Algorithm tt The pro of is by contradiction. 

Suppose that the root state qr is not connected and astate qscc E Qsee ls. Since state 

qr is the first eomponent state diseovered, the path from it to qscc is known, which 

implies that the conneetion attribute of qsec will be propagated to qr' Therefore qr is 

also set as connected, contradicting the initial assumption. o 

Running Time Analysis 

The running time of the Conneetion procedure, without eonsidering the calI to the 

DFS-VisU procedure, depends on the number of states IQI in the input transducer 

sinee loops of lines 1-3 and 6-8 pass through aH states. Thus, the running time of 

this procedure is O(IQI). 

The DFS-Visit procedure is called at most one time per state q E Q sinee the function 

lS called only when its ancientness lS 0 and a new ancientness, different from 0, i8 

determined at the beginning of the procedure. In one execution pass of DFS-Visit, 

the loop of Hnes 6-13 has the same eomplexity as for a simple depth-first search and 

is thus O(lE\). The loop of Hnes 18-22 lS exeeuted at most IQI times sinee each state 

ean be pushed on the stack only once. Operations on the stack can be done in 0(1) 

time. Therefore, the running time of the connection algorithm lS linear: O(IQI + lEI). 

3.4 Shortest-Paths Algorithms 

Finding the shortest-path is a dassic problem in graph theory and network program­

ming and has been extensively studied over the years. The problem consïsts in finding 

in a given transducer, the successful path yielding the smallest cost. Recall that a 

successful path i8 a collection of consecutive transitions beginning at the initial state 

and ending at a final state. Typically, the cost of a path lS the sum of transition 

weights making up this path. 

Two categories of problems will be di8cussed in this section. The first one concerns 

the classic short est-distance problem presented in the general case of semirings. The 

second problem consists in finding the shortest-path and its generalization which 

consists in finding the k shortest-paths in transducers. 
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3.4.1 Shortest-Distance Algorithms 

The shortest-distance algorithm presented here is a generalization of the classical 

shortest-distance algorithms described in many computer science books. The classi­

cal algorithms cannot be used with non-idempotent semirings since they pro duce a 

wrong result. The generalization proposed by Mohri [18, 22] resolves this problem by 

allowing the use of non-idempotent semirings. Recall that a semiring (Je, EB, 0, 0, 1) 
IS idempotent if and only if x EB x = x, "'Ix E Je. 

Recall that in the general case of semirings, the cast w[7r] of a path 1f = el, ... , en lS 

the 0-product of transition weights making up this path: 

W 

and the short est-distance from astate s E Q to a final state q E F, denoted d[s], lS 

defined as 

d[s] = EB w[7r] 
'lrETI(q) 

where ll(q) = {7rl, ... , 1fn } lS the set of paths from q to F. When the tropical semiring 

S = (R+ U {oo}, min, +, 00, 0) i8 used, this definition of the shortest path coincides 

with the classical definition presented in books sinee the 0-product of transitions 

weights becomes the usual addition of costs and the EB-addition calculates the mini­

mum cost of an paths 8 "v? q. 

The algorithm i8 also general in the sense that any queue discipline, such as priority 

queue or DFS, can be used. Selected combinations of a semiring and of a queue dis­

cipline pro duce algorithms equivalent to those presented in the classic literature. For 

example, using a priority queue in conjunction with the tropical semiring in the Îm­

plementation of the generic algorithm coincides with the classical Dijktra's algorithm. 

Algorithm 8 shows the pseudocode of the generic single-source shortest-distance al­

gorithm presented by Mohri in [18] and [22]. The algorithm computes the short­

est distance from the source state s to a final state in the input transducer T = 

(Q, i, F, :Ei , :Eo , E, À, p). 
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Algorithm 7 Generic single-source shortest path 
SingleSourceShortestDistance (T ,8) 

1: for each q E Q do 
2: d{q] +- 0 
3: r[q] +- 0 
4: d[s] +- ï 
5: r[s] +- ï 
6: S +- {a} 
7: while S =1= Il) do 
8: q +- head( S) 
9: Dequeue(S) 

10: r +- r[q] 
11: r[q] +- 0 
12: for each (q, ai, a()j w, q') E E[q] do 
13: if d[ Q'] =1= d[ ql] El3 (r ® w) then 
14: d[q/] +- d[q'] El3 (r ® w) 
15: r[q'] +- r[q!] El3 (r ® w) 
16: if q' ~ S then 
17: S+-SU{q/} 
18: return œ d[q] 

qEF 

The algorithm works as foHoW8. For each state q E Q j the algorithm uses two at­

tributes: an estimate of the short est path from s to q, maintained in d[q] E lC; and 

r[q] E lC, the total weight $-added to d[q] sinee the last time q has been extracted 

from the queue. Both attributes are initialized at Hnes 1-5. 

At Hne 7, the queue is initialized with S, the state from where the seareh begins. This 

queue is used to maintain the set of states to be explored. At each pass through the 

loop of Hnes 7-17, astate q is extracted from the queue (Hnes 9-10). The r attribute 

of state q is stored and then reset to 0 (Hnes 10-11). The loop of Hnes 12-17 explores 

each transition of state q and updates the attributes of the destination state q' if it 

can be improved i.e. if the cost d[q'] is different than d[q] ®-multiplied by the weight 

of the transition. In the specifie case of the tropical semiring, that means that d[q'] 
will be updated if the new path, passing by q, has a smaller cost than the previous 

estimated shortest-path. In the literature, this step is often referred to as the relax­

ation of the transition (q, ai, a01 w, q'). If the transition has been relaxed and if the 

destination state q' i8 not in the queue, ql is inserted in. 
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Finally, Hne 18 returns the ffi-added cost of aH the final states in T. In the case 

of the tropical semiring, it i8 dear that each estimated path from s to q lS, when 

the algorithm terminates, the shortest one sinee q ls updated each time that a new 

shortest-distance is discovered. 

Running Time Analysis 

The running time of the algorithm depends on the semiring and the queue discipline 

considered. Ti will denote the worst cost for inserting astate q in S, Te the worst cost 

for extracting q from S, Nq the number of times that q has been inserted in S, T $ 

the time of a ffi-addition, T® the Ume of a 0-produd and Ta the time of an assignmenL 

The loop of Hnes 1-3 passes through aU states and thus, runs in O(IQI). The second 

loop depends of the number of times that states are inserted in the queue. Thus, its 

running time is 

O((1i + Te) L Nq ). 

qEQ 

The loop of Hnes 12-17 passes through aU transitions and performs sorne semiring 

operations and assignments. For each state, the loop lS executed iE[qll . Nq times. 

Thus, the running time of this loop lS 

O((T$ + T® + Ta} . L(IE[q]1 . Nq )). 

qEQ 

Therefore, the total running time, in general, for this algorithm IS 

O(IQI + (T$ + n~ + Ta) . L(IE[q]l' Nf}) + (Ti + Te) L Nq ). 

qEQ qEQ 

The Gene:ric Aigorithm and Dijkst:ra's Aigorithm 

Used with the tropical semïring S = (R+ U {oo}, min, +, 00, 0) and a priority queue, 

the generic algorithm coincides with Dijkstra's algorithm, a classic in the graph lit­

erature [7, 30]. 

Operations of the tropical semiring are quite simple; both semiring operations are 

done in 0(1) time. The cost of priority queue operations depends on its implemen-
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tation. Using a Fibonacci heap, insertion takes 0(1) time and the extraction of the 

smaller element takes O(logn) Ume. Finally, the priority queue ensures, by the op­

timality principle [15], that each state will be inserted in the queue at most once. 

Therefore, the running time is 

O(IEI + IQllog IQI)· 

Note that even though the Fibonacci heap lS the most used Implementation of prior­

ity queues in short est paths problems, the complexity can be further improved using 

a RAM priority queue [34]. 

In practice, if the algorithm is used only in the case of the tropical semiring and with 

a priority queue, the execution speed of the algorithm will be improved by stopping 

the search when a final state is reached. This optimization works since the priority 

queue, used in conjunction with the tropical semiring, ensures that there is no path 

from 8 to q with a smaller cost [7]. Therefore, when a final state 18 reached, the path 

from s to q E F is the sm aller one. This improvement does not change the complexity 

but, in practice, often leads to a faster search. 

K-Shortest-Distances Problem 

It can also be useful to obtain the k short est-distances from astate q to a final state. 

Fortunately, this problem can be solved using the generic algorithm presented here, 

implemented with the k-tropical semiring. 

Definition 3.5. 

The k-tropical semiring is a semiring defined as (K, E9, ®, 0, ï) where 

@ K = (14 U {oo})k, 

1& 0 = (00, ... ,00), 

@ 1 = (0, ... , 0), 
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Using this semiring, the algorithm ealculates, at each state, the k-shortest distances. 

Thus, at the end, the algorithm outputs the k-shortest distances from the source state 

to every state in the transducer. 

The complexity of the algorithm with the k-tropical semiring and using a best-first 

seareh queue discipline such as a priority queue lS thus: 

O(k . lEI + k . IQIlog IQI)· 

AH-Pairs Shortest-Distance 

The aH-pairs shortest-distance problem consists in finding the weight of the short est­

path between aH pairs of states in a transducer. A small modification of Algorithm 7 

allows to use it to compute the aH-pairs shortest-distance. This modification consists 

in returning d, the array containing the weights of shortest-paths between sand all 

other states, instead of only the short est distance. Applying this new algorithm to 

every state in T will compute the aH-pairs shortest-distance. 

Sinee Algorithm 7 is executed IQI times, the running time of the aU-pairs short est­

distance is 

O(IQI2 + IQI· (TEe + T® + Ta) . I)IE[q]l' Nq ) + IQI . (Ti + Te) L Nq). 

qEQ qEQ 

In the case where the algorithm is implemented in the tropical semiring and with a 

priority queue, the running time i8 

O(IQI . lEI + \Ql 2 log IQI)· 

3.4.2 Shortest-Paths Aigorithms 

The shortest-path algorithm described here is the famous Disjktra's shortest-path 

algorithm described in most computer science books, including [7] and [3D]. This 

algorithm has been originally designed to find the shortest-path in a weighted graph. 

However, transducers can be considered as direeted graphs sinee the additional sym­

bols carried by transitions in them are not taken into account in the short est path 

computation. Hence, the algorithm cau be direetly applied to them. 
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Algorithm 8 shows the pseudocode of Dijkstra's algorithm for transducers. A heap 

is used to maintain the set of states to be explored. The algorithm has two inputs: a 

transducer T = (Q, i, F, :Ei , :E01.E, À, p) and s, the state from which the search begins. 

Typically, this state is the initial state of T. 

AIgQ:rithm 8 Dijkstra's single-source shortest path 
SingleSourceShortestPath (T ,8) 

1: fQr each q E Q dOl 

2: d[q] +- 00 

3: 1r[q] +- NIL 
4: d[s] +- 0 
5: Heap.Insert(s) 
6: while S =1= 0 dû 
7: q +- Heap.HeadO 
8: if q E F then 
9: return 1r[q] 

10: fûr each (q, (J'i, (J'al W, Q') E E[q] dû 
11: if d[q'] > d[q] + w then 
12: d(q'] +- d[q] + w 
13: 1f[q'] +- q 
14: if q' ~ S then 
15: S +- Su {Q'} 
16: return NIL 

The algorithm works in the same way as when Algorithm 7 is implemented with the 

tropical 8emiring and priority queue. In this algorithm, d[q] is an estimation of the 

shortest-distance from s to q and 1f[q] denotes the predecessor state of q used to save 

the shortest-path associated with q. 

The first loop of the algorithm (Iines 1-3) initializes both d[q] and 7r[q]. At Hne 5, 

the state from which the search begins Is inserted in the heap. Line 7 extracts, from 

the heap, the state with the smallest d[q] value. The loop of Hnes 10-16 performs 

the relaxation step. This means that for each transition e = ((q, ai, (J'a, W, Q') E E[q], 
the path from s to ql lS updated if the weight of the new estimaie lS smaller than 

the previous one (Hnes 11-12). Lines 14-15 insert q' in the heap if it lS not already 

present. 
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Recall that the optimality principle, which 18 ensured by the priority queue and the 

relaxation step [7], states that when astate q is extraeted from the heap, the weight 

of the path s ~ q is the shortest of an existing paths between sand q. Renee, if 

a final state lS reached, the shortest-path s ~ F 18 found and the algorithm ean be 

halted. This optimization lS applied at Hnes 8-9. Finally, the algorithm returns NIL 

if no final state has been reached during the seareh (Hne 16). 

Running Time Analysis 

The first loop of the algorithm passes through aU states, thus takes O(IQI) time. In 

the loop of Hnes 6-15, astate q is extraded from the heap and each transition is 

explored. The extraction is done in O(log IQI) using a dassical heap implementation 

[7]. The loop of Hnes 10-15 lS executed IE[q]1 times and, in the worst case, the inser­

tion of O(log IQI) is done each time. Thus, the inside of the loop of Hnes 6-15 takes 

O(IE[q]l·log IQI) time. 

By the optimality principle, this loop is executed at most IQI times. Therefore, the 

total running time of this algorithm is 

O((lQI + lEI) . log IQI) 

The algorithm can be improved by using a Fibonacci heap. This Implementation 

of heap has an amortized cost of 0(1) for insertion of an element. Therefore, the 

running time becomes 

O(lEI + IQI . log IQI) 

The algorithm can yet be improved to O(IEI + IQI . log log IQI) by using a RAM 

priority queue [34]. 

K Shortest-Paths Problem 

The problem of finding the shortest, the second j the third, ... , the Kth short est path j 

for K 2 1, instead of finding only the short est one is another weIl studied problem 

in computer science. 

The algorithm presented here is an extension of Dijkstra's shortest-path algorithm 
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described earlier. In the original algorithm, two attributes are maintained for each 

state q: the weight of the short est path from the source state to q and its predecessor. 

The K-shortest paths problem can be resolved by maintaining, at each state, a totally 

ordered set of (p, w) pairs, where w Ï8 the weight of one of the k shortest-paths from 

sand Hs predecessor p. In this case, the core of the algorithm is stiU the same and 

thus, works in the same way. 

Algorithm 9 shows the pseudo co de of Dijkstra's algorithm extended to determine the 

k-shortest paths in a transducer. Note that it 18 assumed that the transducer contains 

only one final state. However, in the general case of IFI > 1, the algorithm lS not 

affected since E-transitions can be implicitly added in that case. The algorithm needs 

as its input the transducer T = (Q, i, F, :Ei , :Eo , E, A, p) in which the search will be 

done, the source state s and the number K of paths to find. 

Aigorithm 9 A generalization of Dijkstra's algorithm of the k-shortest paths 
SingleSourceKShortestPath (T ,s,K) 

1: fol' each q E Q do 
2: 7r[q] t- (/) 

3: c[q] t- 0 
4: 7r[s]t-(NIL,O) 
5: Heap.lnsert(s) 
6: while S #- (/) do 
7: q t- H eap.H eadO 
8: (p,W) f- min ?r[q] 
9: c[q] f- c[q] + 1 

10: if q E F and c[q] = K then 
11: l'etuI'n 7r[q] 
12: if c[q] ~ K then 
13: fol' each (q, (Ji, (Jo, W, q') E E[q] do 
14: 7r[ql] +- 7r[ql] U {( q, W + w)} 
15: if q' ri S then 
16: S t- S U {q/} 
17: 

18: ?T[q] +- 7f[q] - min 7r[q] 
19: if Id[q]l ?:: 1 then 
20: S +- Su {q} 
21: l'etuI'n NIL 

In this algorithm, 7r[q] denotes for the state q, the set of pairs (p,w) of a pre deces­

sor state p which describes a path and its associated weight w. The min operation 
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over the set 7r[q] returns the pair (p, w) such that w lS the smallest. The algorithm 

also maintains the attribute c[q] which contains the number of times that q has been 

extracted from the priority queue. These attributes are initialized at Hnes 1-5. The 

priority queue ordering is based on the smallest weight in 7r[q]. When astate q IS 

extracted, its associated pair containing the smallest weight is removed from 7r[q] and 

it lS inserted in the queue according the new smallest weight (Hnes 18-20). 

Each Ume through the loop 8-18, astate is extracted from the priority queue (Hne 7). 

For each transition e E E[q], a new pair (p, w) is added to the set of the destination 

state q' (Hnes 14). Note that the size of 7r[q] can be limited to K sinee q will be taken 

into account at most K times (Une 12). At Hnes 17-18, q' is added to the priority 

queue if it IS not already present. 

Since no more than K paths can pass through any state q, the search is limited to K 

extractions from the priority queue (Hne 12) and the algorithm terminates when the 

final state has been extracted from the priority queue K times (Hnes 10-11). 

Running Time Analysis 

The Ioop at Hnes 1-3 passes through aH states and thus runs in O(IQI) Ume. The 

loop oflines 6-20 will be executed while the priority queue IS not empty. However, the 

number of extractions per state is limited to K (by the optimality principle) and thus, 

the Ioop will be executed O(K -IQI) times. At each loop iteration astate is extracted 

from the priority queue, which takes O(logn) time when a heap is used. The Ioop of 

Hnes 13-16 passes through aU transitions exiting q and is therefore executed O(IE[q]l) 

times. In this loop, the insertion in the priority queue (Hne 16) takes O(log IQI) time. 

Thus, the running time of this loop lS O(IE[q]l' log IQI) and lS executed O(K . IQI) 
times. Therefore, the total running of this algorithm is 

O(K· (IQI + lEI) . log IQI) 
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Using a Fibonacci heap, the insertion is done in constant time. Therefore, the running 

time of the loop at Hnes 13-16 is O(lE[qJl). The total running time becomes 

O(K· lEI + K . IQI . log IQI) 

395 Weight Pushing 

It lS known that a weighted transducer can be reweighted in a Infinite number of 

ways. This means that an equivalent transducer can be obtained from an input one 

by modifying the weight distribution along the transitions without altering the de­

scribed language. The weight pushing is a special case of reweighting which consÎsts 

in pushing the weights toward the initial state. 

The weight distribution can improve sorne algorithms such as the Viterbi se arch used 

in speech recognition. To be efficient in a large vocabulary context, the Viterbi al­

gorithm employs pruning based on the combined weight from different prohahilities 

involved in speech recognition. Thus, the weight distribution may have an impact on 

the execution speed of the speech recognition system. Weight pushing is aiso used in 

the minimization of weighted automata. 

This section presents an algorithm performing weight pushing on any weighted trans­

ducer. This algorithm can he used with any weight semiring. In the case of speech 

recognition, the use of the log semiring considerably increases the recognizer's speed 

[22]. However, the tropical semiring 18 used in the weighted version of the minimiza­

tion algorithm. 

To see how weight pushing works, let us introduce a new function V : Q -+ Je called 

the potential function of states. This function maps astate q E Q to a weight W E Je 

where J( 18 a weight semiring. In the case presented here, where the weights have 

to be pushed toward the initial state, the potential V(q) is defined as the short est 

distance from q to a final state qf E F. The potential function is used to update the 
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initial weight, transition weights and the accepting costs as follows [22]: 

À +- À ® V(i) 

w +- V(q)-l ® w ® V(q'), V(q, (J'i, (J'o, W, q/) E E 

p(q) +- V(q)-l ® p(q), Vqf E F 

where V(q)-l should be interpreted as - V(q). Note that the potentials along any 

successful path, namelYl paths from the initial state to a final state, are added and 

then substracted. Hence, the weights associated to input strings are not affected by 

the reweighting. 

Aigorithm 10 shows the pseudo code of a weight pushing algorithm based on the 

reweighting rules previously presented. It uses the shortest distance algorithm, as 

mentioned before, to compute the potential function of states. The input is a trans­

ducer T = (Q, i, F, :Eil :EOl E, À, p) in which the weights will be pushed toward the 

initial state according to the implemented semiring. 

Algorithm 10 Weight-Pushing 
Push Weight(T) 

1: TR +- Reverse(T) 
2: V +- shortestDistance(TR, T R .1 nitialState) 
3: À(i) +- >'(i) 0 V(i) 
4: for each q E Q do 
5: if q E F then 
6: p(q) +- V(q]-l 0 p(q) 
7: for each (q, (J'i, (J'o, W, q') E E[q] do 
8: w +- V[q]-l ® W 0 V[q'] 

The first step of the algorithm consists in computing the short est distance from every 

state q E Q to a final state qf E F. An efficient way to perform that consists in 

applying the short est distance algorithm presented in Section 3.4 on the reverse of 

the transducer. The result ls the short est distance from every state to the final state 

under consideration in T. The loop of Hnes 3-7 applies the update rules presented 

before on each final state and on every transition of the input transducer. 
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(a) 

(b) 

Figure 3.7: Example of weight pushing 

Figure 3.7(a) shows a weighted transducer and Figure 3.7(b) shows the transducer 

obtained by pushing weights in the tropical semiring. This figure clearly shows that 

the weights have heen moved along the paths toward the initial state. Note that the 

weights associated to the original input string have not been altered by the algorithm. 

Running Time Analysis 

The algorithm will he divided into three parts for the complexity analysis. The first 

part lS the computation of the reverse of the input transducer. The corresponding 

algorithm will not be described in detail sinee it is straightforward. Basically, it con­

sists in passing through aH transitions of the transducer and reversing it hy swapping 

their origin and destination states. This computation involves a loop passing through 

aH transitions of aH states; the running time is linear : O(IQI + lEI). 

The second section concerns the short est distance algorithm. This algorithm has 

been presented and analysed in section 3.4. The third section applies the reweighting 

rules on aH transitions and aH final states aecording to the potential function previ­

ously computed. This calculation of new weights implies a loop that passes through 

aIl states and an transitions. The calculated weights depend on the complexity of 

the semiring operations. Therefore, the running time of this loop is O((IQI + lEI) ·T®. 
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It lS clear that the computation of the shortest distance dominates the running time 

of the other sections of the algorithm. Therefore, the complexity of this algorithm is: 

O(IQI + (Tœ + T® + Ta) . L:(!E[qll' Nq ) + (11 + Te) L: Nq ). 

~Q ~Q 

3.6 Summary 

This chapter has presented sorne basic algorithms applicable to finite-state transduc­

ers. These algorithms have been described in detaH and their complexity analyzed. 

The algorithms presented in this chapter are: 

El) The union operation which creates a new transducer representing the union of 

two languages. 

El) The concatenation operation which creates a new transducer representing the 

concatenation of two languages. 

.. Algorithms based on Depth-First Search techniques, including topological sort 

and connection algorithms. 

@ Shortest-Path algorithms allowing to find the path(s) of minimal cost in a trans­

ducer. 

• The weight pushing algorithm which shifts weights carried by transitions toward 

the initial state. 

These algorithms are fairly straightforward; presenting them has been a good intro­

duction for the more complex algorithms presented in the next chapter. 
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Chapter 4 

Advanced Algorithms 

This chapter introduces algorithms for three important operations to work with finite­

state transducers. 

The first algorithm implements the E-removal operation. This operation removes 

from a transducer an transitions for which the input and output symbols are E. The 

resulting transducer describes the same language but does not contain any of these 

transitions; this increases the computational efficiency of the transducer. 

The second algorithm concerns the determinization algorithm. This algorithm trans­

forms a non-sequential transducer to its equivalent deterministic counterpart. Unfor­

tunately, not an transducers admit a deterministic representation. This point ls a180 

discussed in this section. 

Finally, the composition algorithm lS described. As noted in Chapter 2, a transducer 

represents a binary relation between sequences of symbols. Thus, the composition of 

two transducers implements their relational composition. 
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4.1 Epsilon Removal 

Transducers produced by several applications are often the result of various eomplex 

operations introducing if-transitions in order to simplify them. Unfortunately, these 

transitions increase the computational load of transducers sinee they make them 

non-deterministic and in general, induce a delay in their use. Thus, the goal of this 

operation is to remove the if-transitions of a given transducer. 

Definition 4.1. 

An t-transition IS a transition e = (q, ai, ao , W, g') for which both ai and ao are the 

empty string t, as typified in Figure 4.1. 

Figure 4.1: Example of a transducer with E-transitions 

The é-removal algorithm mns in two steps. The first step consists in computing the 

E-closure of the input transdueer. The second step performs the t-removal itself. The 

description of the €-dosure algorithm will first be described. 

4.1.1 Epsilon-Closure 

The first part of the E-removal algorithm is the computation of the E-dosure of the 

input transducer. The t-closure of a transducer T lS another transducer Tc, contain­

ing only E-transitions such that for aH E-paths q""-+ q' in T, there exists a transition 

(q,E,E,wE,q') E Ec. 
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Figure 4.2 shows the {-dosure of the transducer of Figure 4.1. In this figure, transi­

tions already present in the input transducer are denoted by plain arrows and tran­

sitions added by the {-dosure are denoted by dashed arrows. 

Figure 4.2: Epsilon-Closure of transducer shown by Figure 4.1. 

Computing the {-dosure is equivalent to computing the aIl-pairs shortest-distances 

over the semiring K in T~ [18] where, T" denotes the transducer T in which aH non-{­

transitions have been removed . Thus, the algorithm involves the use of the short est­

distances algorithm described in Section 3.4. Algorithm 11 shows the pseudo code 

computing the {-dosure of an input transducer T = (Q, i, F, :Ei , :Eo , E, À, p). 

Algorithm Il Epsilon-Closure 
Epsilon-Closure(T) 

1: Tf t-- (Q, i, F, :Ei , :Eo , {(q, (Jï, (Jo, W, q') E E ai = E 1\ ao = E}, À, p) 
2: Ec t-- 0 
3: for each q E Q do 
4: dt-- SingleSourceShortestDistance(T€, q) 
5: for each ql E Q do 
6: if d[q'] =1= 00 then 
7: Ee t-- Ee U {(q, E, E, d[q'], q'n 
8: return (Q, i, F, :Ei , :Eo, Ee, À, p) 

The algorithm works as follows. The transducer TE containing only E-transitions of 

the input transducer is created at Hne 1. For each state q E Q, the shortest-distance 
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between q and aH q' E Q IS computed at Une 4. If there is no path q ~ q', the dis­

tance IS set to infinity. Therefore, since d contains weights for aH accessible states q' 

from q, creating transitions according to these values is equivalent to the E-closure of 

state q. This operation is done in the loop of Unes 5-7. The complete E-closure for the 

transducer lS accomplished by repeating this procedure for every state in Q (lines 3-7). 

Running Time Analysis 

It 18 already known that the running time for the shortest-distances algorithm is 

qEQ qEQ 

(see section 3.4 for more details). This algorithm is executed IQI times. The running 

time of the loop at Unes 5-7 is also O(IQI) since, in the worst case, the loop passes 

through aH states in T. Therefore, the running time of this algorithm lS: 

0(IQ21 + IQI· (T$ + T0 + Ta) . I)IE(q]\. Nq) + IQI· (Ti + Te) . L Nq ) 

qEQ qEQ 

Using the tropical semiring and the Fibonacci heap in the short est-distances algo­

rit hm , the running time is: 

O(IQI . lEI + IQI2 
• log IQI) 

4.1.2 Epsilon-Closure in AcycHc Case 

In the case where the transducer T does not contain any E-cycle, z. e. Tif; lS acyclic, 

the running time of the {-dosure algorithm can be significantly improved by visiting 

states in reverse topological order. 

This improvement is obtained by using the property of topologicaHy ordered trans­

ducers, which states that for any transition (q, (Yi, 0-0 , w, q'), q appears before q'. Since 

the transducer i8 acydic, the E-dosure of astate q depend8 only on f-closure of its 

adjacent states. The€-closure of adjacent states IS already computed since states are 

visited in reverse order. Therefore, it is possible to compute the E-closure by visiting 

each state once, thus in linear time. 
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Algorithm 12 shows the pseudocode of a procedure computing the E-dosure of a 

transducer T = (Q, i, F, 2: i , 2:0' El..x , p) in which there lS no E-cyde. 

Aigorithm 12 Epsilon-Closure-Acydic 
Epsilon-Closure-Acydic(T) 

1: Tf t-- (Q, i, F, 2:i1 2:0' {(q, (Ji, (Jo, W, q') E E 1 (Ji = E A (Jo = E},..x, p) 
2: 8 t-- Topological8ort(T,,) 
3: Ec +- {(q, (Ji, (Jo, W, q') E E 1 (Ji = E /\ (Jo = E} 
4: while 8 i= (/) do 
5: q +- tait (8) 
6: 8 +- 8 - {q} 
7: for each (q, E, E, Wl, q') E E[q] do 
8: for each (q',€,E,W2,q") E E[q'] do 
9: Ec t-- Ec U {(q, E, E, Wl @ W2, ql/)} 

10: return (Q,i,F,2: i ,L.o ,Ec,..x,p) 

The first step consista in stripping the transducer T of its non-E-transitions to produee 

Tf. (Hne 1). Line 2 initializes the Hst 8 by filling it with the topologically ordered set 

of states Q while Hne 3 initializes the set of transitions Ec with the {-transitions of T. 

As noted before, the E-dosure computation of q depends only on adjacent states for 

which the €-dosure has already been computed. Thus, the E-closure of q is computed 

by creating a transition t from q to every state reachable by its adjacent states (lines 

7-9). Sinee this operation always implies two transitions, the weight carried by t i8 

the @-product of the two transition weights involved (Hne 9). The Ioop of Hnes 4-9 

repeats the procedure for every state q E Q in reverse topological order. 

Running Time Analysis 

It is already known that the topological sort runs in linear time, i.e. O(IQI + lEI) 
(see section 3.3 for more details). The main Ioop passes through aIl states q E Q. 
For every state, transitions of q and those of its adjacent states are considered. Thus, 

the running Ume of this Ioop, in the worst case, 18 O(IQI + 2 . lEI) = O(IQI + lEI)· 
Therefore, the running time of the algorithm 18 linear : O(IQI + lEI). 
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4.1.3 Epsilon-Removal Algorithm 

This section will describe the second part of the E-removal algorithm which consists 

in creating new non-E-transitions from pairs made of a non-f and an f-transition. The 

resulting transducer will contain only non-E-transitions and will be equivalent to the 

original one. 

Algorithm 13 shows the pseudo co de of the E-removal algorithm for weighted trans­

ducers. Us input is a transducer T = (Q, i, F, Ei' Eo, E, À, p) and its output is T 

without E-transitions. Figure 4.3 shows the resulting transducer when the algorithm 

lS applied to the transducer of Figure 4.1. 

Aigorithm 13 Epsilon Removal 
RemoveEpsilon (T) 

1: Tc ~ E-closure(T) 
2: E ~ {(q, (Ji, (Jo, W o, Q') E E 1 (Ji =/:. E V (Jo =P f} 
3: for each q E Q do 
4: for each (q, E, 15, Wel ql) E Ec[q] do 
5: if q' E F then 

. 6: Po[q] ~ Po[q] Œ p[q'] 0 W e 
7: for each (q', (Ji, (Jo, W , ql/) E E[q'] do 
8: if 3(q, (Jil (JOl W o , ql!) E E then 
9: W o ~ W o Œ W e 0 W 

10: el se 
11: E ~ EU {(q, (Ji, (Jo, w€ ® w, Q"~)} 
12: return Ta 

This algorithm works in two steps. The first step consists in computing the f-closure 

of the input transducer (line 1), as previously described. The second step, which 

consists in removing E-transitions, works as follows. The algorithm considers pairs of 

transitions (Hnes 3-11). A pair is made up of two transitions (tr, t2) where tl lS an 

f-transition (q, f, E, W"" ql) E Ec[q] and t2 is a non-f-transition (ql, (Ji, (JOl W, ql!) E E[qT 
From every pair, a new transition (q, (Ji, (JOl W Œ W f , qll) is created. If the transition 

already exists in T, the weights are combined with the 0-product, otherwise the 

transition is inserted in T (Hnes 8-11). Lines 5-6 ensure that the final states are 

correctly handled. In the case where an E-transition leads to a final state q' E F, 

the originating state becomes also a final state for which the acceptation cost is the 

®-product of the E-transition weight and the acceptation cost of q', The Œ-addition is 

used to take into account the case where the originating state was already a final state. 
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Figure 4.3: Transdueer of figure 4.1 for which f-transitions have been removed. 

Running Time Analysis 

Let q be the state considered and q' be astate belonging to the E-closure of q. The loop 

at Hnes 7-11 considers an transitions in E[q'] and therefore is executed 0(1 E[q] 1) 
times. In the worst case, every state qP belongs to the t-dosure of q. Henee, the 

running time of the nested loops of Hnes 4-11 is O(IQI + lEI). These nested loops 

are executed IQI times (Hnes 3-11). Therefore, the running Ume of the second part 

of this algorithm (Hnes 2-11) is 

0(IQ12 + IQI· lEI). 

In the case where the algorithm i8 applied to an E-cyclic transducer, the total running 

time of the algorithm is dominaied by the f-closure, hence 18 

O(IQI . lEI + IQI2 log IQI) 

when the E-dosure lS computed over the tropical semiring with a Fibonacci heap. In 

the case of an E-acyclic transducer, the running Ume of the algorithm lS dominated 

by the E-removal section. Therefore, the running time is: 
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4.1.4 Improvements 

In practice, the algorithm can be improved by using a heuristic to reduce, in many 

cases, the number of {-transitions considered by the {-removal algorithm. Consider 

the transducer shown in Figure 4.4. In this figure, dashed transitions represent {­

transitions ereated by the {-dosure algorithm and plain transitions are the original 

ones. 

Figure 4.4: epsilon-dosme with useless transitions 

Let eij E E be a transition from state qi to state qj. At state 0, the algorithm will 

create a new transition e03 using the transitions-pair (e02' e23)' Then, the algorithm 

will explore the state ql using the {-transition eOl. However, this exploration is useless 

sinee there IS no non-E-transition going out from ql. In general, E-transitions going to a 

state without non-{-transitions can be ignored by the algorithm sinee they are useless. 

Now, consider the case of state ql. Note that this state does not have ingoing non­

E-transitions. Therefore, this state will be uneonneeted sinee it cannot be reached 

in the resulting transducer. However, a new transition e13 will be created from the 

transitions-pair (e12, e2S). This leads to useless computation since the state will be 

uneonnected and thus, will be eliminated. In general, astate without ingoing non-E­

transitions ean also be ignored by the algorithm. 

This hemistic does not change the complexity of the algorithm sinee in the worst 

case, aH (-transitions are useful to obtain the good result. However, in practice, the 

implementation of this heuristic can lead to a 20% improvement in the speed of the 

algorithm. 

4.1.5 Remarks 

At the end of the pro cess , sorne states may become inaccessible as previously men­

tioned . These states can be removed in linear time using the connection algorithm 

presented in section 3.3. 
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482 Determinization 

This section describes a determinization algorithm. This algorithm can be used to 

obtain a deterministic automaton from a non-deterministic one or a sequential trans­

ducer from a non-sequential one. 

An automaton is deterministic if and only if for any input string w, the sequence 

of states is unique. A transducer T = (Q,i,F,~i,~o,5,0',À,p), where 8 and 0' are 

respectively the transition function and the output fun ct ion such as defined in chap­

ter 2, lS said to be sequential if it is deterministic from its input point of view. More 

formally, T is sequential if and only if 

18(q, a)! ::s; 1, Vq E Q, Va E ~i 

where 18(q, a)1 is the number of transitions leaving the state q E Q with the input 

label a E "Ei • Figure 4,5 shows an example of sequential transducer, 

a:e/w 

Figure 4.5: Example of a sequential weighted transducer. 

Sinee in such transducers there is at most one transition labelled with any symbol 

of the input alphabet, sequential transducers are computationally very interesting, 

lndeed, using this kind of transducers ta perform a transduction implies that each 

input string follows a unique path. Hence, the computation of the transduction de­

pends only on the length of the input string and not on the number of states and 

transitions in the transducer. 

The definition of sequential transducers can be generalized by introducing the pos­

sibility of generating an output string in final states, This final string works in the 

same way as the accepting cost previously defined. Hence, the final output string is 

EB-added to the usuai output string of the transducer. Usually, the EB-addition refers 

to the concatenation of strings, This kind of transducer is called a subsequential 

transducers. An example of such a transducer is shown in Figure 4.6. 
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e 

Figure 4.6: Example of a subsequential transducer. 

A subsequential transducer with more than one final output string in a same final 

state 18 called p-subsequential, where p refers to the maximum number of final output 

strings in any final state. Henee, a p-subsequential transducer allows several output 

strings for a given input string. 

Note that a p-sequential transducer can be easily converted into a transducer without 

output strings. Indeed, a final output string scan be represented by a sequence of 

Is\ consecutive transitions (q" E, al, p{qr) , q2), (q2, E, a2, 0, q3),'" ,(qlsl-l, E, alsl, 0, Qlsl) 

where qlsl lS the new final state and qf is the oid final state transformed in a non­

final one. This new transducer is sequential up to the new transitions added in 

the conversion process. Figure 4.7 shows the subsequential transducer of Figure 4.6 

converted into a transducer without final string output. 

Figure 4.7: Transducer without final output string equivalent ta the one shawn in 
Figure 4.6. 

Note that only one final state has to be added for aH eonverted final output strings 

sinee aH sequences of transitions can reach the same final state. 

4.2.1 Determinization i\.lgorithm 

It is well known that any language described by a non-deterministic automaton can 

also be described by a deterministic one. Hence, any automaton admits an equiv­

aIent deterministic automaton. The procedure used to construct the deterministic 

automaton equivalent to a non-deterministic one is based on the subset construction 

method. This method constructs the set of states of the deterministic automaton 

with the power set of states of the input automaton. Then, transitions leaving these 

states are computed. Consider the automaton A = (Q, i, F,:E, 0) shown in Figure 4.8. 
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a 

Figure 4.8: Non-deterministic automaton A 

The first step in constructing the deterministic automaton AD = (Q', i', F', L:, JI) 

equivalent to A lS the construction of the set of states Q', which lS the power set of 

Q, denoted P(Q). 

Then, the initial state and the set of final states are defined. The initial state is the set 

of aH states reachable by é-transitions from the initial state of the non-deterministic 

automaton. In the example, the new initial state is i' = {qo}. The set of final 

states is defined as the set of aH subsets containing at least one final state in A, thus 

F = {{Q2}, {qo, Q2}, {qll q2}, {qI, q2, q3}} in the example. 

Finally, the transition function JI (or the set of transitions) IS computed by calculating 

for each set S ç: Q and for each symbol a E L: the transition function: 

61(8, a) = U J(q, a). 
"lES 

The resulting automaton, without unconnected states, 18 shown in Figure 4.9. This 

automaton describes the same language than A, i. e. the set of strings beginning by 

a finite number of as and ending by b or c. 

Figure 4.9: Deterministic automaton equivalent to A 

This construction is used to prove that any automaton admits an equivalent deter­

ministic one. A formaI pro of based on it lS given in [24]. 
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In eontrast to unweighted automata, not an transducers (including acceptors) admit 

an equivalent sequential transducer. lndeed, a sequential transduction does not allow 

unbounded delay [17]. For example, consider the transducer function f(w) which 

outputs a1wl when Iwl lS even and b1w! otherwise. It is impossible to begin to write 

the output string associated to the input one sinee its length is known only after the 

input string has been processed. 

Algorithm 14 shows the pseudo code of the determinization algorithm presented by 

Mohri in [17]. This algorithm is a generalization of the power set construction de­

scribed before. In the classic algorithm, states are defined as a subset of states of 

the input automaton. In the case of transducers (and acceptors), the subsets contain 

pairs (q, x) where q ls a state of the original transducer and x lS the residual output 

associated with q. 

The algorithm is presented in the general case of semirings, applicable to many types 

of transducers. For sim pli city, the algorithm will be described in the case where the 

output symbol carried by transitions i8 a single element such as string-to-weight trans­

ducers. Thus, the algorithm takes as its input a transducer T = (Q, i, F, :E, 0, a, ..\, p) 
and pro duces its sequential equivalent. 

Algorithm 14 Determinization 
Determinization(T) 

1: Fo +- 0 
2: ..\0 +- À 

3: io +- (i,O) 
4: Queue +-- {io} 
5: while Queue =1 (0 do 
6: qo +-- head[ Queue] 
7: if 3(q,x) E qo such that q E F then 
8: Fo +- Fa U {qo} 
9: p(qo) +- œ X 0 p(q) 

qEF,(q,x)EQo 

10: for eaeh a such that r(qo, a) =1 (/) do 
11: o"o(qo, a) +-- Et) [x 0 œ 

(q,x) Er(qo ,a) t=(q,a.u,'1') 

12: OO(qOl a) +-- U {(qU, ES [ao(qo, a)J-l 0 x 0 a(t))} 
'1'Ev(qo,a) (q,x,t)€'y(qo,a),n(t)=q' 

13: if <>0(%' a) is a new state then 
14: Queue +-- Queue U {oo(%, an 
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The notation used in this algorithm as described in [17], will now be presented. Given 

a transition t = (q, a, 0", Q'), O"(t) denotes the output labeljweight carried by t and n[t] 

denotes the destination state ql of the transition. Such as previously noted, astate 

qo is made of a subset of pairs (q,x). The set of pairs (q, x) E qo having transitions 

carrying the input label a is denoted by r(qol a). The set of triples (q, x, t) where 

(q, x) lS a pair in qo for which q admits a transition t with the input label a is denoted 

by 'Y(qz, a). And finally, the set of states fi that can be reached by transitions carrying 

the input label a leaving states qo states subset is denoted by v(qo, a). More formally, 

these sets are defined as 

r(qol a) 

'Y(qo, a) 

v(Qo, a) 

{(q, x) E qo 1 3t = (q, a, 0", Q') E E}, 

{(q,x,t) E qo x El t= (q,a,O",q') E E}, 

{Q' 1 3(q, x) E qo, 3t = (q, a, 0", Q') E E}. 

The algorithm constructs the sequential transducer To = (Qo, io, Fo, :Eo , 00 , 0"0' Ào, Po) 

as follows. The initial weight Ào IS the initial weight of T and the initial state io ls a 

subset of one pair {(i,O)} (Hnes 1-2). A queue is used to maintain the set of subsets 

qo waiting to be examined. This queue is initialized with the initial subset at line 3. 

Recall that states of the resulting transducer are the subsets qo. A subset qo lS a final 

state in the resulting transducer if qo contains at least one pair (q, x) such that q is 

a final state in T, i.e. q E F. The accepting weight of qo 18 the EB-addition of aH 

accepting weights of an final states in qo (lines 8-9). 

Then, for each symbol a E :E such that there exists at least one state q of the subset 

qo from which an outgoing transition carries the input symbol a, a new transition to 

leaving qo and carrying the input symbol a is created (Hnes 10-14). The output symbol 

carried by the transition lS computed as follows. For each transition t = (q, a, a, q'), 

the ®-product of 0" and the residual output associated with q lS calculated. These 

results are EB-added to form the output symbol carried by the new transition. 

The destination state of to lS a subset made of pairs (q', x') where ql lS a state of qo 

that can be reached by transitions carrying the input label a and x' is the residual 

symbol associated with q'. The value of the residual symbol lS the EB-addition of an 
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output symbols carried by transitions reaching q' from states in qo and carrying the 

input symbol a when they are combined by the ®-product. This operation is made 

at Hne 12. Finally, the newly created subset is inserted in the queue if it 18 a new 

state in Qo (Hnes 13-14). 

Figure 4.10a shows an example of non-sequential string-to-weight transducer admit­

ing an equivalent sequential one. This transducer is defined over the tropical semiring 

thus, the $-addition and the ®-product are respectively replaced in the pseudocode 

of Algorithm 14 by the min operation and by the usuai addition of real numbers. 

The resulting transducer 18 shown in Figure 4.10b. Note that the algorithm has 

produced a transducer accepting the same input strings accepted by the original 

one. However, only the smallest of weights associated with a given input string is 

produced by the sequential transducer. This is because the algorithm has removed 

the redundancies by combining the weights associated to the same input string. How 

weights are combined depends on over which semiring the transducer is defined. In 

the case of the tropical semiring, only the smallest one lS considered. 

(a) 

(b) 

Figure 4.10: A non-sequential transducer (a) and its sequential equivalent (b) 
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Running Tirne Ana.lysis 

The main loop of this algorithm (Hnes 5-14) is executed once for each state qo of the 

output transducer. Recall that qo is a subset of states of the original transducer. In 

the worst case, the output transducer will contain an possible subsets of Q, namely 

the power set of Q. Therefore, the loop will be executed, in the woret case, 21Q1 times. 

Hence, the running time of this algorithm is exponential to the number of states in 

the original transducer, therefore O(2 IQ1). 

4.2.2 Determinization of String-to-String Transducers 

As noted before, Algorithm 14 has been presented in the general case of semirings; 

therefore it can be appHed on transducers mapping strings to another type of output 

symbols. In particular, it can be used to determinize weighted string-to-string trans­

ducers defined over the cross-product of a weight semiring and the string semiring. 

RecaH that the cross-product of two semirings lS also a semiring. Figure 4.11a shows 

a non-sequential weighted string-to-string transducer defined over the cross-product 

of the tropical eemiring and the string semiring. 

Since such transducers output pairs of string and weight, subsets are made up of 

triplets (q,w,x) where q E Q IS a state in the original transducer, w E :E~ lS the 

residual string and x E J( IS the residual weight. This situation lS illustrated in Fig­

ure 4.11b, 

(a) 

a:El1 c:Ell 

(b) 

Figure 4.11: A non-sequential transducer (a) and its 2-subsequential equivalent (b). 
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4.2.3 Notes on Implementation 

To implement this algorithm efficiently, there are two critical points to take into ac­

count< 

The first one is the loop beginning at line 10. This loop considers every input label 

a such that there exists at least one state q in the subset qo from which there lS an 

outgoing transition labelled with a. This implies that the program has to search in 

transition sets of aH states in q2 to find both the next label to consider and aIl tran­

sitions labelled with it. This can be done by merging aH transitions in the same set 

and then sorting it with respect to the input labeL Thus, the problem is reduced to 

passing through the transitions composing this unique set. However, sorting an array 

takes O(nlogn) time, where n is the number of elements. In the worst case, a subset 

is made of aU states of the original transducer; sorting this set takes O(IEllog lEI) 

time. This procedure has to be repeated for aH states of the output transducer, i<e. 

0(2 IQ1) in the worst case. 

A more efficient way consists Ïn sorting an transition sets with respect to the input 

label, before performing the determinization algorithm. Since aU transition sets are 

sorted, they can be merged in O(n) time, where n IS the number of transitions in an 

states of the subset. Moreover, it is not necessary to perform the merge explicitly since 

passing through transitions in the same way as does the merging procedure leads to 

an efficient way of implementing the search of transitions carrying the input symbol a. 

The second critical point that must be taken into account occurs at Hnes 13-14, in 

which the new subset is inserted in the queue if it has not already been created. To 

ascertain that, aU subsets created so far have to be maintained in a Hst. A naive way 

to implement this is to use a data structure such as a linked Hst. However, to confirm 

that the subset does not exist, the new subset has to be compared to aU other subsets 

in the Hst. A more efficient structure for this problem lS a hashtable. Indeed, the 

hashing function will spread out the subsets over the buckets of the hashtable, which 

ensures that a manageable number of subsets will be compared to the new candidate. 

An efficient hashing function will take into account aIl triples in the subset and aIl 

elements of these triples. 
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4.2.4 Lazy Implementation 

This algorithm allows a lazy implementation, also called an on-demand implementa­

tion. In the context of transducers, lazy implementation means that transitions of a 

state in the resulting transducer are computed only when required. A lazy implemen­

tation of the determinization algorithm is possible sinee the creation of transitions 

depends only on the subset from which transitions leaves. lndeed, transitions are cre­

ated considering only with respect to transitions of states q belonging to the subset. 

Lazy Implementation is very advantageous when a large transducer is constructed 

but only a small part of it has to be eonsidered [27]. 

For example, eonsider the k-shortest paths algorithm presented in section 3.4. This 

algorithm outputs k-paths having the short est distance from the initial state to a 

final one. However, it is possible that sorne input strings associated with these paths 

are the same. In many applications sueh as speech recognition, it ls interesting to 

obtain the k-unique-shortest paths, namely the k-paths having the short est distance 

and describing a unique input string. This version of the k-shortest paths can be im­

plemented using the lazy implementation of the determinization algorithm. Indeed, 

since a sequential transducer does not have, by definition, two transitions sharing 

the same input label at the same state, applying the k-shortest path algorithms on 

a determinized transducer will pro duce a set of k shortest-paths having a one-to-one 

correspondence to the set of distinct input strings. 

As noted before, not aU transducers can be determinized and in that case, the deter­

minization algorithm do es not terminate and thus cannot be used as a pre-processing 

step. However, the shortest-paths algorithm explores only a finite part of the deter­

minized transducer and thus the lazy implementation can be used to expand those 

states that are needed to compute the k unique shortest-paths. More details about 

this approach can be found in [23]. 

Another advantage of the lazy implementation lB it can require less memory. Indeed, 

transitions are computed only when they are needed by the operation that requires 

them. Hence, when the operation does not use them any more, they can be deleted 

and re-computed if necessary. Since transitions are a big part of the memory space 

used by the transducer, the economy of memory can be substantiaL 
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4.3 Composition 

A transducer represents a bînary relation between sequences of symbols (Chapter 2) 

thus, the composition of two transducers computes their relational composition, Let 

Tl : El --t ~ * and T2 : ~ * --t E~ be two relations represented by transdueers in 

cascade as shown in Figure 4.12. 

1 

, 

Ti 
1 T2 l 

Figure 4.12: A cascade of two transducers 

This cascade can be interpreted as follows. The transducer Tl maps Et to ~ *. Thus, 

the set ~ '" becomes the input of transducer T2 which itself maps .6.* to E~. Henee, 

the general behaviour of the cascade i8 a new binary relation: Tl • T2 ; El --t E~. 

In general, given a transducer Tl in which there is a path mapping sequence x to 

sequence y and a transducer T2 in which there IS a path mapping sequence y to se­

quence z, the composition A e B has a path mapping x to z. The weight of this path 

lS the 0-product of the weights of the corresponding paths in Tl and T2 [19]. 

The composition ls a key operation in transducer-based applications. It IS used to con­

struct complex transducers representing complex functions. For example, in the case 

of speech recognition, the composition is used to construct the recognition network 

needed by the recognition system. This network lS constructed by the composition 

of different levels of representation with which transducers are associated. 

4.3.1 Composition Algorithm 

The composition algorithm lS a generalization of the classical construction of pairs of 

states computing the automata intersection [24]. Recall that the intersection of two 

languages LI and L 2 is defined as: 

Thus, the intersection of two automata Al n A2 is a new automaton accepting any 

string accepted by both the original automata. 
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Figure 4.13: Automata Al and A 2 

Consider two antomata Al = (Qb il, FI, E, 8d and A2 = (Q2l i 2, F2' E, (2) snch as 

those shown in Figure 4.13. In this figure, Al accepts aH strings containing at 

least one a and A2 accepts all strings containing at least one b. The intersection 

Al n A2 = (Q[, il, FIl E, DI) IS constructed considering pairs of states (p, q) where p 

and q are respectively states in Al and A2 . The construction of Al works as follows. 

The first step IS to define the set of states Qr. Since each state in AI is a pair (p, q), 
the set of states QI lS the set of aIl possible pairs of states. More formally, the set of 

states QI IS defined as QI = QI X Q2. 

The initial state of Ar IS the pair (il, i2 ). The set of final states mnst be defined snch 

that AI accepts if and only if both Al and A2 accept. Renee, the set of final states 

IS the set of pairs (p f, qf) snch that P f E FI and ql E F2 · 

Finally, the transition fnnction has to be defined snch that 8j((p, q), w) is an accepting 

state if and only if 8i(p, w) and 02(q, w) are also accepting states in Al and A2 • To 

achieve that, a state (P, q) has a transition carrying the symbol a and going to (T, s) if 

and only if there IS a transition carrying the symbol a from p to r in Al and another 

one from q to s in A2 • Therefore, only transitions appearing in both transdncers are 

considered. More formally, the transition fnnction of astate (q, p) is defined as 

0(( ) )={(Ol(p,a),02(q,a)) 
1 p,q, a 0 

if 01(P, a) =1 0 A 02(q, a) =1 0 
otherwise 

VaE ~. 

This construction is nsed in [24] to prove the correctness of the intersection. Fig­

ure 4.14 shows the antomaton resnlting from the intersection of Al and A2 when aH 

nnconnected states are removed. 
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b 

a,b 

Figure 4.14: Automaton Al obtained by the intersection of Al and A2 

As noted before, the composition of weighted string-to-string transducers lS a gener­

alization of state-pairs construction. The composed transducer TL • TR of two trans­

ducers TL = (QL' iL, FL' :EL,.6., EL, ÀL' PL) and TR = (QR' iR, FR,.6., ER, ER, ),R, PR) 
has pairs of states (l, r) and satisfies the following conditions [21]: 

• its initial state IS defined as (iR , iL), 

• the set of final states is defined as {(l, r) Il E FL and r E FR}, 

.. there IS a transition t from (l, r) to (l', r') for each pair of transitions tl and t T 

such that the output symbol of tl matches the input symbol of tr. 

Consider the transition te leaving the state-pair (tl, tr). The input symbol, output 

symbol and weight carried by te are respectively the input symbol of tl, the output 

symbol of tr and the 0-product of weights carried by tl and tr-

Algorithm 15 shows the pseudo code of the composition algorithm. In this algo­

rithm, transitions are combined using the 0-product associated with the semir­

ing over which the transducer is defined. The input of the algorithm are the two 

transducers TL and TR to be composed and its output is another transducer Te = 
(Qe, ie, Fe, :EL, ER, Ee, ),e, pe). 
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Aigorithm 15 Composition 
Composition (TL,T R) 

1: Fe +- 0 
2: Ee +- (/) 
3: ie +- (iL, iR) 
4: Àe +- ÀL ® ÀR 

5: Pc +- PL 0 PR 
6: Queue +- ie 
7: whHe Queue"# (/) do 
8: (l, r) +- head[Queue] 
9: if l E FL and T E FR then 

10: Fe +- Fe U (l, r) 
11: Pc +- PL ffi PR(r) 
12: 

13: for each (l, (fi, E, W, li) E E[l] do 
14: Ec[(l,r)] +- Ec[(l, r)] U ((l, r), (fi, E, W, ([l, r)) 
15: if (i', r) is a new atate then 
16: Queue +- Queue U (l', r) 
17: 

18: for each (T, E, (Jo, w, ri) E E[r] do 
19: Ec[(l, r)] +- Ec[(l, r)] U ((l, r), E, (Jo, W, (l, ri)) 
20: if (l, ri) is a new state then 
21: Queue +- Queue U (l, ri) 
22: 

23: for each (tl, tr) E W(l, r) do 
24: Ec[(l, r)] +- Ec[(l, r)] U ((l, r), O"i[td, (Jo[tr] , w[td 0 w[tr], (l', ri)) 
25: if (lI, ri) la a new state then 
26: Queue +- Queue U (l', r') 
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The notation used in Algorithm 15 will now be described. Given a transition t = 

(q, (Ji, (Jo, W, q'), (Ji[t] denotes the input symbol carried by t, (Jo[t) denotes the output 

symbol carried by t and w[t] denotes the weight carried by t. w(l, r) denotes the set 

of transitions pairs (tl l tl") such that (Jo[td = (Ji[tr], where tl is a transition in TL and 

tr is a transition in T R. More formally, this set i8 defined as 

The algorithm works as follows. Lines 1-5 initialize the resulting transducer. The 

initial weight of both input transducers are combined using the 0-product to obtain 

the initial weight of Tc. The initial state of Tc IS the pair of states (i!, il" ). States to 

be explored are maintained in a queue which lS initialized with the initial state (Hne 6). 

The loop of Hnes 7-26 is executed for each state in the resulting transducer. Recall 

that the states of Tc are the states-pair created by the algorithm. A state (l, r) is 

extracted from the queue at Hne 8. The state lS a final state in Tc if both land r 

are final in their respective transducers. The accepting cost of the final state lS the 

0-product of p(l) and p(r) (Hnes 9-11). 

Lines 13-16 deal with the case where state l has leaving transitions carrying an output 

€-label. Recall that an output E means that no output label is generated when the 

transition lS traversed. In the context of composition, this means that the transitions 

of r could be matched with transitions of i', the destination state of the transitions 

carrying an output E-label. Therefore, created transitions leaving (l, r) to (li, r) are 

identical to transitions carrying an output €-label in l. The state (lI, r) lS inserted in 

the queue if not already present. 

Lines 18-21 deal with the case where state r has transitions carrying an input E-label. 

Recall that an input t means that no symbol IS consumed when the transition lS tra­

versed. Thus, the transitions of l could be matched with those of ri, the destination 

state of transitions with an input E. Therefore, created transitions leaving (l, r) to 

(li, r) are identical to transitions carrying an output €-label in 1. The state (l', r) lS 

inserted in the queue if not already present. 
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Lines 23-26 consider aU pairs of transitions (tl, tr) such that the output symbol of tl 

matches the input symbol oftr. For every mat ching pair, a new transition from state 

(l, r) to state (LI, ri), carrying the input symbol of tl, the output symbol of tl" and the 

®-product of both weights is created. The state (lR, r') Ïs inserted in the queue if not 

already present. 

This procedure lS repeated until aU created states have been explored and expanded. 

Figure 4.15 shows two transducers. Their composition ls shown in Figure 4.16. 

Figure 4.15: String-to-string transducers TL and TR 

Note that several paths can used to reach the final state from the initial one. Each 

path represents a different way to deal with the E-transitions of the input transducers. 

Figure 4.16: Tmnsducer Tc, resulting of the composition of TL and TR 
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However, this composition ls incorrect in the case of weighted transducers since the 

weights associated to the possible successful paths could be added in as many times 

as the number of distinct successful paths [19]. For example, the shortest-distance 

algorithm, implemented in the real semiring, applied to the composition of the two 

involved transducers leads to a wrong result since many paths will be considered 

while there lS only one in the cascade made with the two original transducers. 

To solve this problem, only one of those paths should be kept. To choose it, a fiUer TF 

ls inserted between TL and TR - This fiUer has the effect of removing redundant paths. 

Figure 4.17 shows one possible flIter. In this figure, x denotes any symbol in the al­

phabet and d and E2 are special markers which have to be inserted in TL and TR [19]. 

E2:e1 e1:ei 

x:x 

Figure 4.17: Filter Transducer 

The fiIter works as follows. As long as the output symbol of TL matches the input 

symbol of TR , the flIter remains in state 0 and the transitions are matched. If there 

is an €-transition in TL, the fiUer moves to state 1. In this state, only E-transitions in 

TL are considered. The fiIter remains in this state until a possible match occurs and 

then returns in state O. Similarly, if there lS an €-transition in TR , the flUer moves to 

state 2. In this state, only E-transitions in TH are considered. The filter remains in 

this state until a possible match occurs and then returns in state O. 

In Figure 4.16, bold transitions den ote the transitions retained by the filter and 

dashed transitions denote those removed by the fiUer. Note that the resulting trans­

ducer contains only one successful path. 

This fiUer can be implicitly implemented in Algorithm 15 with a small modification. 

Instead of considering state-pairs, the algorithm could con si der triplets (l, r, 1) where 

land r are the states of the original transducers and f lS the filter state. Then, 
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according to the value of the flUer, E-transitions are created or not. For example, 

Hnes 13-16 should be replaced by: 

if f =1= 2 then 

for each (i, ai, E, w, li) E E[l] do 

Ec[(l, r)] ~ Ed(l, r)] U ((i, r), ai, E, w, (lI, r)) 
if (l', r) is a new state then 

Queue ~ Queue U (li, r , 1) 

In this example, E-transitions from TL are created only if the state extraeted from the 

queue IS not in state 2 of the filteL Then, the destination state of the E-transition is 

(l', r, 1) sinee an E-transition of TL lS created. 

Not an states of the resulting transducer are conneeted. Thus, the eonneetion algo­

rithm should be applied on it to remove useless states. 

Running Time Analysis 

In the worst case, aH state-pairs 0, r) will be ereated. Thus, the loop of Hnes 7-26 i5 

executed IQLI . IQRI times. In this loop, transitions are considered. The creation of 

E transitions is straightforward and depends only on the number of E-transitions in 

TL and TR . Thus the running time of both loops at Hnes 13-16 and Hnes 18-21 take 

respectively O(IEL.I) and O(IER.I) time. 

The running time of the loop at Hnes 23-26 depends on the time required for comput­

ing the set w. This IS a well known problem caHed the relation join. If the transitions 

ofTR are sorted with respect to the output label and transitions of TL are sorted with 

respect to the input label, this operation can be done in O(\ELllog 1ER\) if a binary 

search i8 used. Therefore, the running time of the algorithm is 
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4.3.2 Notes on Implementation 

There i8 one critical point in the implementation of the composition algorithm and 

it is the computation of the set of pairs of transitions which can be matchedo In 

the algorithm, this operation 113 denoted by '11(l, r)o This consists in computing the 

relational joïn between transitions in Edl] and those of ER[r]o The naive way to 

compute that is a nested Ioop to compare symbols of an possible pairs of transitionso 

The running time of this method lS O(IEdlH·IER[r]I). 

A more efficient method assumes that the transitions of TL are sorted with respect to 

the output symbol and transitions of T Rare sorted with respect to the input symboL 

This method consists in passing through aU transitions in EL[l] and performing a 

binary search in ER[r] to find matching transitions. Since the binary search runs in 

O(logn), the running time of this method 113 O(IEL[l]llog IER[r]!) 0 

In practice, the speed can yet be improved. Indeed, if the number of searches 18 mini­

mized, the speed of the algorithm will be improvedo Accordingly, if IEL[l]l ~ IER[rH, 
then it 113 more efficient to pass through transitions in EL[I] and searching in ER[rl 
On the other hand, if IEL[l]l ~ IER[rll, then it 18 more efficient to pass through tran­

sitions in ER[r] and searching in Edl]o 

Another critical point occurs when a new states-pair have to be inserted in the queue. 

This new pair is inserted in only if the state lS indeed a new one. To assess that, a11 

pairs created 80 far have to be kept in a set. A naive Implementation is via a data 

structure such as a linked lÏ8t. However, to ascertain that the pair does not already 

exist, it has to be compared to aU other pairs in the listo A more suitable and efficient 

structure for this purpose Is a hashtable. lndeed, the hashing function will spread out 

the pairs over the buckets of the hashtable, ensuring that a more reasonable number 

of pairs i8 compared with the new candidate. 

4.3.3 Lazy Implementation 

As is the case for determinization, the composition algorithm admits a lazy imple­

mentation, lndeed, the transitions leaving a state of the resulting transducer are 

computed only through the states-pair representing this stateo 
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4.4 Summary 

This section has presented three important operations to work with finite-state trans­

ducers: 

® Epsilon-removal which removes the E-transitions in a transducer resulting in 

a more efficient one since epsilons induce a delay in their use (recall that an 

epsilon does not consumejgenerate a symbol). 

® The Determinization which creates a new deterministic (or sequential) trans­

ducer. RecaH that a sequential transducer contains at most one sequence of 

states for any input string. Thus, the complexity depends only on the length 

of the input string and not on the size of the transducer. 

® The composition which is a generalization of the intersection in automata the­

ory. This operation is very important since it allows one to create complex 

transducers from simpler ones. 

These operations allow the creation of efficient and complex transducers which are 

applicable in many different areas of computer science. The next chapter gives an 

example of transducers applied to speech recognition. 
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Chapter 5 

Application of FST : Speech 

Recognition 

Traditional speech recognition systems such as HTK are constructed using weighted 

automata. In speech recognition, the recognition network has many levels of represen­

tation. For example, possible sentences are represented by sequences of words which 

are themselves represented by sequences of phonemes. In the context of automata, 

these different representations are implemented using the substitution operation. For 

example, in the graph of words, a transition for a given word W IS substituted by 

a subgraph representing its phonetic sequence. The major disadvantage of this ap­

proach lS that a change in the network (for example, the addition of a new level of 

representation) implies that the program performing the search in the recognition 

network also has to be updated. 

The composition operation allows FST to represent many levels of representations in 

a normalized way. Therefore, the recognizer can work on different recognition net­

works (with different levels of representation) without modifying the program itself. 

This chapter presents how weighted transducers are used to construct a speech recog­

nition system. The chapter begins by the description of each level of representation 

involved and how transducers implement them. Then, the method used to construct 

the knowledge network lS discussed. FinaUy, the results obtained by experimentations 

are given. 
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Speech recognition i8 the proce8S by which a computer identifies spoken words by 

analysing the speech signaL To achieve this, it is assumed that the speech signal is a 

sequence of symbols composing a message. These symbols are called speech vectors 

or observations and are extracted from the speech signal at regular intervals. The aim 

of speech recognition lS to map a sequence of vectors of observations to a sequence of 

symbols such as words, syllable8 or phonemes. 

Let 0 = {OI, 02, ... ,Ot} be a sequence of observations where 0t lS the speech vedor 

at time t. The speech recognition problem ls to find the message w that maximizes 

P(wIO). Since this probabHity 18 not directly computable, Bayes's Rule is used : 

P( '10) = P(Olw)P(w) 
w P(O) (5.1) 

where P{w) lS the probability associated to the language model and P(Olw) lS calcu­

lated using parametric models, the most commonly used in speech recognition being 

the Hidden Markov Model (HMM). Since P(O) is constant for a given sequence of 

observations and only the arg max matters, this probability is not considered. 

From the transducer's point of view, P(Olw) i8 a transduction between the message 

and observations. This transduction may involve several stages relating different lev­

els of representation. 

1 H 
1 

Acoustic MOdels 

1 

1 

C 

Phones 
COilstraints 

i 

1 
D 

1 

Dictionary 

G 

language 
Model 

Figure 5.1: Transducers involved in speech recognition 

Figure 5.1 shows the usuai cascade of transducers used in speech recognition. Other 

intermediate transducers can be added to the chain. For example, transducers rep­

resenting phonological rules should be added between transducers C and D. 

The meaning of each transducer will now be described. 
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5.1 Transducers lnvolved in Speech Recognition 

5.1.1 Transduce:r 0 

This string-to-weight transducer maps, for each observation Dt, every probability 

distribution function (PDF) di to the probability that di generates Dt. For each 

observation at a given time t, a set of transitions carrying a distribution identification 

di and the probability w that the observation was generated by this distribution, is 

created. Figure 5.2 shows how this acceptoI should be implemented. 

Figure 5.2: Observations transducer 

The calculation of the PDF can be done in many ways. For example, neural networks 

or support vector machines could be used to compute this probability. However, 

the most widely used procedure represents each distribution by Gaussian mixture 

densities. The probabiHty that Dt is generated by di, given a mixture of Gaussian 

densities, is given by: 

where M lS the number of Gaussians in the mixture, Cm lS the weight of the Gaussian 

m, !Ji lS the mean vector and Ei is the covariance matrix associated with distribution 

i. More details about Gaussian mixture densities and how they are computed can be 

found in [4] 

In practice, this transducer lS not really implemented. The recognition pro cess per­

forms an on-demand composition of transducer 0 and HCDG thus, transitions of 0 

(represented implicitly) are created only when they are required for composition. 
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5.1.2 Transducer H 

Transducer H represents the constraints imposed by modeling method used in speech 

recognition caHed, HMM for Hidden Markov Model. HMMs can be used to model 

phonemes, syllable, words or any larger speech unit. Usually, context-dependent 

phone mes are used as the speech unit. A triphone lS a phoneme modeled according 

its neighbours. Triphones are denoted a - b + c where b is the modeled phoneme, a 

and b are the neighbouring phonemes of b. 

Transducer H maps a sequence of distributions to a sequence of triphone models (or 

of any other speech unit). Each triphone is typically modeled with 3 HMM states. 

Transitions in a HMM carry a distribution index as an input symbol, the transition 

weight and no output symbol except for the transition leaving the HMM which caf­

ries the triphone model associated with the HMM. Figure 5.3 shows the transducer 

H which 18 the union of an triphone models. 

Figure 5.3: Observations to HMM transducer. 

In this figure, p denotes transition probabilities involved in HMMs, a - b + c is a 

triphone model and di is a distribution. 

Note that the self loop present on each state in the HMM can be omitted from the 

transducer and implemented implicitly in the decoder. 
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5.1.3 Transducer C 

In practice, the number of triphones to model can be very high. Indeed, in English, 

there are 36 phonemes and thus the number of possible triphones lS 363 , In order to 

avoid modelling an triphones, only sorne of them are modelled with a HMM. Mod­

elled triphones are called physical triphones and the others are referred to as logical 

triphones, 

Logical triphones are mapped to physical ones according to a set of rules. This proceS8 

is usually done using a decision tree, The first goal of transducer C i8 to implement 

this mapping. Figure 5.4 shows how this transducer is constructed, 

a-b+c:d-s+1 

Figure 5.4: Transducer mapping physical triphones ta logical anes, 

The transducer has a self Ioop transition for every triphone, The input symbol lS a 

triphone, physical or logical, and the output symbol 18 the physical triphone asso­

ciated with the input one, Thus, when the input triphone is a physical model, the 

output symbol is the same triphone. 

The second goal of transducer C is to map a sequence of triphones to a sequence of 

phonemes. However, not aU triphone sequences are allowed. A sequence of triphones 

A, B is aHowed if the terminal pair of triphone A matches the pair at the beginning 

of triphone B. For example, the sequence a - b + c, b - c + d, c - d + e is aHowed while 

a - b + c, c - d + e lS not, Figure 5.5 shows how this restriction IS implemented with 

a transducer. 

:c 
:a 

a-b+c:b 

:a 

:b 

Figure 5.5: Transducer implementing triphones constraints, 
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Each state of the transducer implements a "memory" of the two previous phonemes 

in the sequence. Transitions leaving a state are those for which the two first phonemes 

composing the input triphone correspond to the state memory. AU ingoing transitions 

of a state carry an input symbol such that the terminal pair coincides with the memory 

represented by this state. 

5.1.4 Transducer D 

In the context of speech recognition) the dictionary ls a lÏst of words with their 

phonetic transcriptions. Thus, the dictionary transducer implement the function 

D : p* ---+ w which maps sequence of phonemes p to words w. 

A string-to-string transducer is used to represent this relation. Figure 5.6 shows how 

this transducer is constructed, 

Figure 5.6: Dictionary Transducer 

In this figure, p is any phoneme and w is a word in the dictionary. The f-transition 

leaving the final state to the initial state has been added to allow sequences of words. 

However, this loop transition induces an unbounded delay in the transducer when 

two words have the same pronunciation (homophones). This point will be discussed 

later. 
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5.1.5 Transducer G 

Transducer G represents the language modeL The language model gives a priori in­

formation about the probability of sequence of words (P(w))o The transducer shown 

by Figure 5.7 implements a trigram mode!. In this model, the probahility of a word 

given the two preceding words in the sequence lS denoted p(w3IwIW2). 

However, it is possible that a triple of words was not in the text used to train the 

language modeL In this case, the probability of the word given the preceding word 

(p( w31w2)) added to a penalty 1/Jwlw2 caUed the back-off penalty is usedo Similarly, 

the unigram probability added to the back-off penalty is used when the bigram is 

also not availabk 

Figure 507: Language lvIodeZ Transducer 

In transducer G, each state encodes a "memory" oftwo, one or no words. Transitions 

leaving astate q carry a word and the probability of this word given the words in 

the memory of q. In Figure 5.7, rpwlw2 denotes the back-off penalty for going to a 

unigram state (state with only 1 word memory)o 

Transducers can be used to describe other N-gram models snch as bigram or 5-gram. 

They can also be used to describe other types of language models snch as grammar 

based syntactic structure. 

83 



5.1.6 Phonological Rules 

In natural language, some phonological phenomena at the boundary of words such 

as the deletion or the insertion of phonemes happen frequently, These phenomena 

can be modelled with a transducer which can be inserted in the chain of transducers. 

An example of a pholonological rule is that when the last phoneme of a word IS t 

and the first phoneme of the following word lS y, then t and y can be optionally 

replaced by the single phoneme ch. This rule appHes to words "got you" which can 

be pronounced in two ways: 

g aa t = Y uw 

g aa = ch uw 

where the symbol = denotes the word boundary. Figure 5.8 shows how this phono­

logical l'ule can be implemented by a phoneme-to-phoneme transducer. 

x:x 

y:ch 

Figure 5.8: Transducer representing a phonological rule. 

In thïs figure, the symbol x represents aIl phone mes in the language and the symbol 

= is the word boundary. This transducer can be described as follows. An sequences 

of phonemes are accepted by the transducer thanks to the self Ioop at the initial 

state. Moreover, the sequence t = Y lS replaced by the phoneme = ch since the tran­

sition leaving qo removes the phoneme t if it lS foUowed by a word boundary and the 

phoneme 'y i8 replaced by ch if it follows the phoneme t and the word boundary. Thus, 

both sequences are accepted by the transducer which represents the phonological rule. 

As noted before, phonological rules can easily be modelled in the recognition net­

work by adding the transducers describing them in the chain of transducers between 

transducer C and transducer D. 
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5,,2 Transducers combinat ion 

The transducer HCDG is constructed u8ing the composition operation. However, in 

the case of a large vocabulary system, the intermediate results grow very rapidly and 

there is not enough memory to perform the composition. The problem 18 solved by 

u8ing the determinization operation sinee in the case of transducers used in speech 

recognition, the determinization considerably decreases the number of states and 

transitions which is due to redundancy. 

Therefore, the creation of HCDG proceeds in several steps. The transducer DG lS 

obtained by the composition D. Gand it has to be determinized. RecaH that trans­

ducer D maps sequences of phonemes to words. The presence of homophones makes 

transducer DG not determinizable since an unbounded delay lS introduced. Indeed, 

The presence of homophones allows for two different words for the same sequence 

of phonemes. To make determinization possible, auxiliary phoneme symbols are in­

troduced to distinguish homophones. Figure 5.9 shows an example disambiguated 

dictionary. 

Figure 5.9: Disambiguated Dictionary Transducer 

Auxiliary symbols are denoted #i in the figure. Now, the transducer DG can be 

determinized and minimized. The next step IS the composition C Gl DG. However, 

the composition will fail since the auxiliary symbols added in D are unknown by C. 

Therefore, the markers have to be propagated along the cascade by adding to each 

state oftransducer C a selfloop (q,#i,#i,O,q) for aH i. 
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If the transducer C introduces new arnbiguities, other auxiliary syrnbols have to be 

used. The sarne operations are repeated for an steps of the construction of HCDG. 

Thus, the construction of HCDG is cornputed by 

HCDG = Min(Det(H @ Det(C @ Det(D @ G)))) 

where Min denotes the rninimization operation and Det 18 the determinization opera­

tion. Auxiliary symbols added during the construction of HCDG have to be removed 

at the end. The transducers shown in Figure 5.10 remove auxiliary symbols at the 

input and output by composing thern with HCDG as foUows: L@ HCDG @ R. 

x:x x:x 

Figure 5.10: Transducers used to remove auxiliary symbols 

In this figure, x denotes aU non-auxiliary symbols. 

5.3 Experiments 

An implementation of the algorithms described in earlier chapters has been used to 

construct the recognition transducer for a French vocabulary of 20000 words on the 

BREF database [9]. The transducer has been constructed as outlined before using 

these models: 

® Accoustic models of 6013 distributions each modeled with a mixture of 8 Gaus­

sians, speaker-independent and gender-independent. 

® 17997 models of context-dependent triphones. 

® Dictionary of 20000 pronunciations 

@ Trigram language model of 79845 trigram probabilities, 311131 bigram proba­

bilities and 20003 unigram probabilities. 
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Transducer Il # of states 1 # of transitions 1 

D 588518 6744116 
G 124587 1020488 

D@G 1439910 2903364 
Det(D ® G) 1108514 2268297 

C ®Det(D ®G) 1812045 5168839 
Det(C ® Det(D @ G)) 1885965 5571984 

H ® Det(C @ Det(D ® G)) 9148639 13278375 
Det(H ® Det(C ® Det(D ® G))) 8771686 , 11781976 

Min(Det(H ® Det(C ® Det(D @II G)))) 6095031 9073327 

Table 5.1: Size of transducers used to construct the recognition network 

Intermediate transducers have been determinized at each step of the construction of 

HCDG. Table 5.1 gïves the size in number of transitions and number of states of an 

intermediate and final transducers. 

The minimization operator is in fact the compaction of transducer such as described 

in Chapter 2. In order to increase the speed of the recognizer, the final transducer 

has been sorted topologically with respect to input E-transitions, and its weights have 

been pushed toward the initial state. 

5.3.1 Results 

The recognition network has been used to perform recognition on 576 sentences spo­

ken· by 87 different speakers. A beam of 130 has been used. The computer used was 

Pentium III running 700 MHz running under Linux. Results are gïven in Table 5.2. 

Accuracy on words 1 78.82 % 1 

X.' real-Ume 2x 

Table 5.2: Results of the recognition task 

These results correspond to those obtained with a traditional speech recognition sys­

tem [6]. However, the transducer-based system has several advantages compared to 

the traditional one. 
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First of aU, the transdueer approach lS more flexible since it represents a general 

framework. Indeed, aH speech knowledge is expressed with the same representation 

and thus, the decoder does not have to be modified when a new level of representation 

is added to the chain of transducers. This leads to a simpler implementation of the 

Viterbi decoder. Indeed, when a new level of representation is added in a traditional 

system, the decoder has to be modified to take it into account. 

Another advantage is that the optimization algorithms, such as determinization and 

minimization, are applied to the entire network whereas in traditional recognizer, 

optimizations are only applied to local parts of the network [13]. 

A disadvantage of transducers 18 that the recognition network construction requires 

lots of memory sinee it is entirely constructed. The intermediate transducers are 

often very big and thus the optimization operations take a lot of memory. In tradi­

tional systems, sorne parts are constructed statically and other parts are constructed 

during the recognition procedure which helps save memory sinee only sorne parts of 

automata have to be used. 

594 Summary 

This chapter has presented how finite-state transducers can be used to build a speech 

recognition system. The main points presented in this chapter are: 

.. Transdueers used to construct the knowledge network. 

@ How transducer operations can be used to construct and optimize the knowledge 

network. 

@ The advantages and disadvantages of the transducer approach over the tradi­

tionaI ones. 
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Chapter 6 

Conclusion 

The purpose of this work was to describe the algorithms implementing operations 

on weighted finite-state transducers. These algorithms have been described in the 

general case of semirings which permit their use with any transducer representing a 

binary relation mapping a sequence of input symbols to a sequence of output symbols 

associated with weights. 

The following important algorithms have been presented: 

Composition: 

Composition is an essential operation since it allows to construct complex trans­

ducers from smaller ones, each of which represents a different level of represen­

tation and whose sequence form a cascade of binary relations. The resulting 

transducer is equivalent to this cascade in the sense that its binary relation is 

the same as that represented by the cascade. 

Determinization 

Determinization can be used to decrease the transducer's size when it con­

tains redundancies. This operation ls also used to prepare the transducer for 

minimization which results in the smallest transducer describing the language. 

These operations are often used to optimize transducers in the composition 

process, which can le ad to considerable memory savings. 
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Epsilon-removal 

Transducers produced by several operations are often the result of various com­

plex operations introducing E-transitions. These transitions have the disadvan­

tage of indueing a delay in the input symbol proeessing, which ean lead to an 

explosion of transitions in the composition process. This operation 113 applied 

to remove these kinds of transitions without altering the language described by 

the transdueer. 

Weight-pushing 

In pruning-based applications, this optimization lS quite important sinee the 

distribution of weights along the paths have a big influence on their execu­

tion. The Viterbi decoder IS a good example of such an application sinee the 

distribution of weights ean lead to a 40% improvement in execution speed. 

An example of the use of these operations has been given via a description of a speech 

recognition system based on transducers. The accuracy obtained with this system lS 

comparable to that obtained with traditional systems. 

The major advantage of the transducer approach lS its fiexibility. Indeed, aU speech 

knowledge lS expressed with the same representation and thus, the decoder does not 

have to be modified when a new level of representation is added to the chain of trans­

ducers. This leads to a simpler Implementation of the Viterbi decoder. 

Another advantage lS that the optimization algorithms, such as determinization and 

minimization j are applied to the entire network whereas in traditional recognizers, 

optimizations are only applied to local parts of the network. This often leads to faster 

systems [13]. 
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Glossary 

Alphabet A finite set of symbols. 

Binary relation Function mapping a sequence of symbols to another sequence of 

symbols. 

Connected state Astate reachable from the initial state and which can reach a 

final state. 

Cycle A cycle is a path VI ~ Vz such that VI = V2' 

E-cycle An E-cycle is cycle containing only E-transitions. 

DFA Deterministic Finite-State Automaton. A FSA in which any input string has 

a unique sequence of states. 

DFS Depth-First Search. Search strategy which consists in exploring a transducer 

deeper whenever it is possible, 

Epsilon transition Transition for which no symbol lS consumed or generated. 

FSA Finite-State Automaton. Useful model used in computer science consisting of 

a finite set of states connected with transitions. 

FSM Finite-State Machine. See FSA. 

FST Finite-State Transducer. A FSA which outputs a string. Transitions in FST 

carry an output symbol in addition to the lisuaI input symbol of FSA transitions. 

HMM Hidden Markov Model. System used to make models in speech recognition. 

Language A set of strings. 

Language Model Model given a prîori information about sequences of words. 
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Monoid A set with a binary operator and a neutral element over this operator. 

NFA Nondeterministic Finite-State Automaton. A FSA which IS not deterministic. 

Path A sequence of states connected by consecutive transitions. 

Path weight Weight associated to a path. 

Phonological :rule Rule representing words boundary phenomena. 

see Strongly Connected Component. A SCC is a set of states in which there exists 

a path between an combination of states. 

Semiring A set together with two binary operators and two neutral elements. 

Set A group of elements represented as a unit. 

State States are the basic elements of FSA. There are three types of states: initial, 

final and normal states. 

String A sequence of symbols. 

Transduction Function mapping an input string to an output string. 

Transition A transition connects a source state to a destination state. It cardes an 

input symbol and should, in addition, carry either an output symbol, a weïght 

or both. 

Transitive dosure Extension of the transition function such that if there lS a tran­

sition between state qI and q2 and another one between q2 and qa then, there 

is a transition between ql and q3 in the extended transition function. 

E-t:ransitive dosu:re Transition dosure which takes into account only E-transitions. 

WFSA Weighted Finite-State Automaton. FSA which outputs a weight instead of 

a simple acceptjreject value. 

WFST Weighted Finite-State Transducer. Transducer which outputs a weight in 

addition to the output string. 
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