
ln compliance with the
anadian Privacy Legislation

sorne supporting forms
may have been removed from

this dissertation.

hile these forms may be included
in the document page count,

their removal does not represent
any 1055 of content from the dissertation.

Finite-State Transducers and
Speech Recognition

School of Computer Science

McGill University,Montreal

A Thesis submitted to the faculty of Graduate Studies

and Research in partial fulfillment of the requirements

for the degree of Master of Science

Patrick Cardinal

March 2003

1+1 National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and
Bibliographie Services

Acquisisitons et
services bibliographiques

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-88170-9
Our file Notre référence
ISBN: 0-612-88170-9

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou aturement reproduits sans son
autorisation.

Abstract

Finite-state automata and n.nite-state transducers have been extensively studied over

the years. Recently, the theory of transducers has been generalized by Mohri for the

weighted case. This generalization has allowed the use of n.nite-state transducers in a

large variety of applications such as speech recognition. In this work, most of the al­

gorithms for performing operations on weighted n.nite-state transducers are described

in detail and analyzed. Then, an example of their use lS gïven via a description of a

speech recognition system based on them.

Acknowledgment

1 would like to thank my supervisor Gerald Ratzer for his guidance and encourage­

ment throughout my stay at McGill University. This has been greatly appreciated.

I also truly thank Pierre Dumouchel who has accepted to co-supervise this work and

allowed me to work on its relevant topic. The CRIM has provided me with a won­

derful research environment.

I thank aU members of the speech recognition group at CRIM. More particularly,

Michel Comeau, Gilles Boulianne and Pierre Ouellet for their comments and help

in the writing of this thesis; with Gilles 1 have especially had various constructive

discussions about this work and other topies.

1 thank also Mare Boulé for his ecouragement and help on various topies.

Résumé

La théorie des machines à états finis et des transducteurs à états finis est un su­

jet qui a été étudié en détail depuis plusieurs années. Récemment, la théorie des

transducteurs a été généralisée par Mohri au cas des transducteurs pondérés. Cette

généralisation a permis l'utilisation des transducteurs à états finis dans une grande

variété d'applications comme, par exemple, la reconnaissance automatique de la pa­

role. Dans ce travail, plusieurs algorithmes permettant la manipulation des transduc­

teurs à états finis pondérés sont décrits et analysés en détail. Ensuite, un exemple

de leur utilisation est donné en présentant un sytème de reconnaissance de la parole

basé sur les transducteurs.

Contents

1 Introduction

2 Basics of Finite-State Transducers

2.1 Alphabets, Strings and Languages.

2.2 Semiring .. " .. ""

2.3 FormaI Power Series

2.4 Automata " " . " .

2.4.1 Weighted Automata

2.4.2 Epsilon Transitions .

2.4.3 Determinism.....

2.4.4 Equivalence of Automata .

2.5 Finite-State Transducers

2.5.1 String-To-String Transducers

2.5.2 Weighted String-To-String Transducers

2.5.3 Epsilon Symbols in String-To-String Transducers

2.5.4 Sequential Transducers

2.6 Operations on transducers

2.6.1 Union

2.6.2

2.6.3

2.6.4

2.6.5

2.6.6

2.6.7

Concatenation "

Connection ."

Reverse

Removing Epsilons

Composition. . .

Determinization .

2.6.8 Minimization . .

2.6.9 Other Operations

2.7 Summary

1

1

3

4

4

6

7

8

10

10

11

11

12

13

14

14

15

15

16

16

17
18

19

20

20

22

22

3 Basic Algorithms

3.1 Union

3.2 Concatenation

3.3 Depth-First Search Algorithms .

3.3.1 Topological Sort

3.3.2 Connection (Trimming)

3.4 Shortest-Paths Algorithms ...

3.4.1 Shortest-Distance Algorithms

3.4.2 Shortest-Paths Algorithms

3.5 Weight Pushing

3.6 Summary

4 Advanced Algorithms

4.1 Epsilon Removal

4.1.1 Epsilon-Closure.........

4.1.2 Epsilon-Closure in Acyclic Case

4.1.3 Epsilon-Removal Algorithm

4.1.4 Improvements

4.1.5 Remarks

4.2 Determinization...........

4.2.1 Determinization Algorithm .

4.2.2 Determinization of String-to-String Transducers

4.2.3 Notes on Implementation.

4.2.4 Lazy Implementation ..

4.3 Composition............

4.3.1 Composition Algorithm ..

4.3.2 Notes on Implementation.

4.3.3 Lazy Implementation .

4.4 Summary

5 Application of FST : Speech Recognition

5.1 Transducers lnvolved in Speech Recognition

5.1.1 Transducer 0

5.1.2 Transducer H

5.1.3 Transducer C

5.1.4 Transducer D

11

23

24

26
28

29

31

36

37

41

46

49

50

51

51

53

55

57

57

58

59

64

65

66

67

67

75

75

76

77

79

79

80

81

82

5.1.5 Transducer G ... 83
5.1.6 Phonological Rules 84

5.2 Transducers combination . 85
5.3 Experiments . . 86

5.3.1 Results. 87
5.4 Summary 88

6 Conclusion 89

Glossary 91

References 93

lU

List of Figures

2.1 Finite automaton with two states .,."

2.2 Example of a string-to-weight transducer

2.3 Automaton with lé-transitions

2.4 Non-deterministic and deterministic automata

2.5 Example of a string-to-string transducer ...

2.6 Example of a weighted string-to-string transducer

7

9

10

10

12

13

2.7 Example of a transducer using epsilons. " . . . 14

2.8 A non-sequential and a sequential transducer . 14

2.9 Example of weighted transducer union. 15

2.10 Example of weighted transducer concatenation 16

2.11 Example of trimming 17

2.12 Example of transducer reversai 17

2.13 Example of removing epsilons on a transducer 18

2.14 A cascade of two transducer,c;. 19

2.15 Example of transducer composition .. 19

2.16 Example of transducer determinization 20

2.17 Example of transducer minimization 21

3.1 Result of the union of two transducer by FSTUnion. 25

3.2 Result of the concatenation of two transducer by FSTConcatenation. 27

3.3 Example of DFS execution 28

3.4 Transducer with accessible and coaccessible states. 31

3.5 Transducer without unconnected states. "

3.6 Example of cyclic transducer for which Algoritm 5 fails.

3.7 Example of weight pushing

4.1 Example of a transducer with f-transitions

4.2 Epsilon-Closure of transducer shown by Figure 4.1.

iv

32

33

48

51
52

4.3 Transducer of figure 4.1 for which E-transitions have been removed. 56

4.4 epsilon-dosme with useless transitions " 57

4.5 Example of a sequential weighted transducer. 58

4.6 Example of a subsequential transducer. 59

4.7 Transducer without final output string equivalent ta the one shown in

Figure 4.6. 59

4.8 Non-deterministic automaton A 60

4.9 Deterministic automaton equivalent to A 60

4.10 A non-sequential transducer (a) and its sequential equivalent (b) 63

4.11 A non-sequential transducer (a) and its 2-subsequential equivalent (b). 64

4.12 A cascade of two transducers.. 67

4.13 Automata Al and A2 . . • . . . ••.. 68

4.14 Automaton AI obtained by the intersection of Al and A2 69

4.15 String-to-string transducers TL and TR 72

4.16 Transducer Tc, resulting of the composition of TL and TR • 72

4.17 Filter Transducer 73

5.1 Transducers involved in speech recognition

5.2 Observations transducer

5.3 Observations to HMM transducer.

5.4 Transducer mapping physical triphones ta lagicai ones.

5.5 Transducer implementing triphones constraints.

5.6 Dictionary Transducer

5.7 Language Model Transducer

5.8 Transducer representing a phonological ruie.

5.9 Disambiguated Dictianary Transducer . ..

5.10 Transducers used ta remove auxiliary symbols

v

78

79

80
81

81

82

83

84

85

86

List of Algorithms

1 FST Union ~ " 8 a " 24
2 FST Concatenation , 26
3 Depth-First Search 28
4 Topological sort . , , 30
5 Connection & • • a ~ 32

6 Revisited Connection 34

7 Generic single-source shortest path 38
8 Dijkstrals single-source short est path 42

9 A generalization of Dijkstrals algorithm of the k-shortest paths . 44

10 Weight-Pushing , .. ', , 47
11 Epsilon-Closure 52

12 Epsilon-Closure-Acyclic . 54
13 Epsilon Removal 55

14 Determinization , 61
15 Composition . , . 70

vi

Chapter 1

Introduction

Finite-state automata have been extensively studied over the years. Originally, au­

tomata theory had been proposed to model brain functions [24]. This model lS very

useful for many other purposes and is now used in many important software such as

compilers, speech recognition systems and bioinformatics.

Finite-state transducers are a generalization of the theory of automata. An automa­

ton can be seen as a binary relation mapping a sequence of symbols to a binary value

representing Hs acceptation value. Finite-state transducers generaHze this behaviour

by producing a sequence of symbols instead of a single binary value. These symbols

are combined together according to their nature. Thus, finite-state transducers de­

scribe also a binary relation mapping a sequence of symbols to another sequence of

symbols.

The use of finite-state machines ls motivated by their computational efficiency. The

time efficiency lS achieved by using deterministic automata. In such machines, the

generation of the output depends only on the length of the input sequence. From

this point of view, sequential machines are considered optimaL The space efficiency

lS achieved with the dassical minÏmization algorithm [1]. This algorithm ensures

that the size of the automaton lS minimal according to the language described. The

efficiency of such automata has been proven in applications such as compiler design

[2].

1

Several operations can be done on finite-state transducers. Some of them are borrowed

from graph theory such as the shortest-path algorithm and depth-first search-based

algorithms. Other operations are based on the more classic operations of automata

theory. These operations have been generalized for weighted string-to-string trans­

ducers by Mohri. For example, the composition of transducers ia a generalization of

the intersection of automata. Several operations are fully described in Chapt ers 3

and 4. The running time of these algorithms 18 also analyzed.

Automata theory lS widely used in traditional speech recognition sinee they represent

efficient models for expressing language phenomena such as lexical mIes [4, 25, 17].

The recent generalization of transducers to the weighted case by Mohri allowed the

use of them to build a speech recognition system. The main advantage of this sys­

tem over the traditional one is that aU speech knowledge IS expressed using the same

transducer representation, allowing to make changes in the network without mod­

ifying the decoder [13]. Chapter 5 discusses how such recognition systems can be

implemented.

To begin with, the mathematical foundations related to finite-state machines are

introduced in the following chapter. This chapter gives the formaI definition of many

of the subjeds related to transducers theory. Particularly, the formaI definitions of

the four types of transdueers considered in this work are given. Sorne of the operations

described in the following chapters are also introduced in this chapter.

2

Chapter 2

Basics of Finite-State Transducers

This chapter presents a brief introduction to the world of finite-state automata and

finite-state transducers. Far from being exhaustive, the intended aim is to lay down

the basic concepts and to introduce the notation used throughout. The uninitiated in

the field can, as a complement to this chapter, consult the excellent books of Hopcroft

[24] or Sipser [32] who present a more thorough introduction to the subjects of au­

tomata and language processing.

The first part of this chapter sketches the mathematical foundations of automata

theory including language theorY1 the concepts of semirings and formaI power series,

and finally the formaI description of automata. This part also introduces the reader

to the terminology and notation used throughout this work.

The second part presents automata operations such as the union of two automata

and their composition. Each operation will be briefiy described; this will serve as

a prelude to the next chapter in which algorithms performing these operations are

presented and analysed.

Let us begin with the basic notion of automata: languages.

3

291 Alphabets, Strings and Languages

An alphabet ia a finite and non-empty set of symbols generally denoted by the Greek

letter :E. Here are some examples of common alphabets:

El - {O,I}

:E2 {a, b, c, d, e, J, g, h, i,j, k, l, 'm, n, O,p, q, r, 8, t, 'U, V, W , X, y, z}

A string (or word) W lS a finite sequence of symbols from a specified alphabet. For

example, 010101 ls a string over :El while cat is a string over :E2 .

The length of a string, written Iwl, is the number of symbols that it contains. An

empty string has a length of 0 and is generally denoted as c.

The set of aU strings of length k over an alphabet :E can be expressed using the

exponential notation :Ek • For example, if:E = {D, 1} then :E2 = {DO, 01,10, lI} while

:E3 = {OOO, 001, 010, 011,100,101,110,111}. E* denotes the infinite set of aH possible

strings over E and is called the Kleene dosure of E.

The binary operator . denotes the concatenation of two strings 81 and 82 performed

by appending S2 ta SI. For example, if SI = 0'10"2"'O"n and 82 = WIW2 ... Wm then

S1 . 82 = 0"10'2"'O'nWIW2",Wm' Sinee concatenation lS a kind of multiplication for

strings, the nth power of a string w, written wn , IS obtained by concatenating w with

itself n times.

A language Lon E lS a set of strings chosen in E* for the specified alphabet E.

2.2 Semiring

A se mi ring i8 an algebraïc structure that can be used as an abstraction in the descrip­

tion of algorithms. Let us st art by defining a smaller structure called a monoid. The

semiring definition i8 based on monoid8. A monoid M IS set together with a binary

operation and a neutral element.

4

Definition 2.1.

More formally, a monoid is a system M = (M, ®, ï) where :

~ M lS a set,

® ® is an associative binary operator: x ® (y ® z) = (x ® y) ® z, \Ix, y, z E M,

® ï is an identity element over ® : x ® ï = ï ® x = x, \Ix E M.

A monoid (M, ®, ï) IS said to be commutative if x 0 y = y 0 x for aH x and y in M.

A monoid can be designated only by M when the binary operation and the identity

element are known.

An important monoid lS the free. monoid CE*,', E) where :E* IS generated over a set

:E, . is the concatenation operator and E is the empty string.

A semiring Je contains two binary operators associated with a set K and two constant

elements from K having sorne particular properties.

Definition 2.2.

A semiring Je = (K, EB, 0,5, i) consists of two monoids such that:

• (K, EB, 5) is a commutative monoid,

• (K, 0, ï) 18 a monoid

• 5 is an annihilator: x Q9 0 = 0 0 x = 0, \Ix E K.

• Q9 distributes over EB on the right: x 0 (y EB z) = (x Q9 y) EB (x 0 z) and on the

left (y ffi z) ® x = (y Q9 x) EB (z Q9 x), \Ix, y, z E K

As lS the case for monoids, a semiring lS called a commutative semiring if x0y = yQ9X

for every x and y in K. A semiring is said to be idempotent if x EB x = x for every x

in K.

There are three important semirings used in automata and transducers theory: the

Boolean, the tropical and the string semiring. They are described as follows:

5

Boolean semiring

The Boolean semiring has a set with only two elements: true or faise. The

Boolean semiring is defined by B = ({ 0, 1}, V, 1\, 0, 1) where V denotes the "or"

operation and 1\ denotes the "and" operation.

tropical semiring

The tropical semiring, presented in [29], lS also called the min-plus semiring and

lS defined by T = (Rr U {oo}, min, +, 00, 0) where min denotes the classical

minimum function and + denotes the usuai addition over real numbers.

string semiring

The string semiring defines operations on strings. The string semiring is defined

as S = (:E* U {oo}, 1\, " 00, lé) where a 1\ b denotes the longest common prefix of

a and b, . IS the concatenation of two strings, 00 is a new element not in I: such

that the semiring properties are maintained and lé denotes the empty string.

The cross-product of two semirings is also a semiring. Given two semirings ICI =
(Kl , œI, 01, (h, Id and IC2 = (K2 , œ2, 02, Oz, 12), their cross-product lS defined as:

2.3 Formal Power Series

Consider the mapping function 0' : I:* ----+ K where E* is a monoid and K lS a

semiring. This function is caHed a formaI power series and is denoted by:

0' = L: O'(w)w
wEI:*

where a(w) is caHed the coefficient of w in a and w E I:* is the (noncommuting)

variable. The set of aU power series is denoted K ((I:*)).

The support of a lS the language defined by supp(a) = {w E I:* 1 a(w) :f. Ü}. Binee

the concept of support is a language, it brings a natural interconnection between the

theory of formaI power series and the theory of languages and thus, with automata.

6

2@4 Automata

Automata are a way to describe a set of strings and thus, represent a language. A

language is caUed a regular language if and only if it can be represented by a finite

automaton. Figure 2.1 depicts a simple automaton.

Figure 2.1: Finite automaton with two states

This automaton has two states labelled qI and q2; the initial state 18 characterized

by an arrow pointed to it from nowhere; the final state, also called accepting state, is

represented by a double circle; the labelled arrOW8 connecting two states are called

transitions. In this example, q1 is both the initial and the final state.

An automaton processes an input string such as 1010 by following transitions from an

initial state, depending on the symbols in the input string. Each symbol of the input

string is consumed by the automaton from left to right. The output of the automaton

is either to accept or ta reject the input string. The string lS accepted if after having

processed aH symbols of the input string, the automaton lS in an accepting state. If

not, the string 18 rejected by the automaton.

Thus, in the example of figure 2.1, the state sequence for the input string 1010 will

be qb qb Q2, q2, ql· Since the last state qi is a final state, the string lS accepted by this

automaton.

Another interpretation of an automaton IS to view it as a generator, rather than a

consumer, of symbols: Starting from the initial state and following transitions pro­

duces a sequence of symbols, thus a string. The string lS vaUd if the last state visited

IS a final state.

In the example of figure 2.1 j the automaton accepts aU strings that have an even

number of D's. Thus, the language lS the set:

L(A1) = {w 1 w is the empty string f or has an even number of A' s}

7

Definition 2.3.

More formally, a finite automaton A is a 5-tuple (Q, i, F,~, E), where:

QI Q is a set of states,

® i E Q is the initial state,

® F ç Q is the set of final states,

® ~ IS the alphabet of A,

® E ç Q x ~ xQ is the set of transitions.

Instead of a set of transitions, it IS common to have a transition function mapping a

state q and a symbol a to a destination state. More formally, this function is defined

as ~ : Q x ~ ---+ Q. Thïs function can be extended to Q x ~* using the following

recurrence relation [17]:

6*(q, wa) = 8(<5(q, w), a) Vq E Q, Vw E L:*, Va E ~ (2.1)

Thus, a string w 18 accepted by A if and only if 0* (i, w) E F.

Path in Automata

A path 1[" l also denoted qi ""'-7 q2 lS a sequence of consecutive transitions from state q1

to Q2. The length \11"1 of the path 1f IS the number of transition making up this path.

Definition 2.4.

More formally, a path 18 a sequence of transitions 11" = (qb a, qD'''(%rl-l' (J', %rl) such

that q~ = qi+l, i = 1, ... , 111"1- L

2.4.1 Weighted Automata

Weighted automata, also called weighted acceptors, output a weight depending on

the input string and not simply a rejectjaccept value. The weight carried by transi­

tions along the symbols are ffi-additionned according to a given weight semiring such

as the tropical semiring or the log semiring. The choice of the semiring should re­

fiect the intended interpretation of the weights. Figure 2.2 shows a weighted acceptor.

8

Figure 2.2: Example of a string-to-weight transducer

The weight associated with a string takes into account the output weights of transition

but also a weight associated with the initial state and another weight associated with

the final state.

Definition 2.5.

More formally, a weighted acceptor A over a semiring K is a 7-tuple (Q, i, F,:E, E, À, p),

where:

.. Q is the set of states,

,. i E Q Îs the initial state,

,. F ç Q is the set of final states,

,. :E is the alphabet of the automaton,

@ E ç Q x :E x K x Q i8 the set of transitions,

,. À : i ---+ K is the initial weight function,

.. p: F ---+ K i8 the final weight function.

The set of transitions can be replaced by a transition function, as is the case for non­

weighted automata, and by an output function mapping astate q and a symbol a to

a weight semiring. More formally, the output function is defined as Œ : Q x 1; ---+ K.

As lS the case for the transition function, the fun ct ion can be extended to Q x 1;*

using the following recurrence equation [17]:

g*(q, wa) = g(q, w) . g*(8(q, w), a) Vq E Q,Vw E :E*,Va E:E (2.2)

Thus, if the string w is accepted by A, its output will be g(i, w).

9

2.4.2 Epsilon Transitions

An epsilon or nun transition IS one that does not consume any input symboL In the

graph representation, the epsilon is denoted by the Greek symbol €. Figure 2.3 shows

an example of an automaton with {-transitions.

Figure 2.3: Automaton with {-transitions

The language accepted by this automaton is {ab, b}. Since no input symbols are

consumed when an f-transition IS taken, the language accepted by the automaton is

not infiuenced by it. However, the creation of automata is often simplified by using

epsilons.

2.4.3 Determinism

A finite-state automaton is called deterministic (DFA) if and only if for any input

string 'W, the sequence of states is unique. Figure 2.4a shows a non-deterministic

finite-state automaton (NDFA) sinee there are two transitions with the symbol a

going out of state qo. Figure 2.4b shows a deterministic automaton accepting the

same language as the automaton of Figure 2.4a.

(a)

(h)

Figure 2.4: Non-deterministic and deterministic auto mata

10

Definition 2.6.

More forrnally, an automaton (Q, i, F,:E, 8) is deterrninistic if:

18*(q, w)1 ~ 1 Vq E Q, Vw E :E*

Every language that can be described by a NDFA can also be described by a DFA

[24, 32]. This property helps with the design of autornata since it is often easier to

construct a new automaton as NDFA and then to transform it to a DFA. Since DFAs

are computationally more efficient, this operation is very useful.

2.4.4 Equivalence of Automata

For a given language there exista an Infinite number of ways to construct autornata

representing this language. These automata are said to be equivalent.

Definition 2.7.

More forrnally, two automata Al and A2 are equivalent if and only if L(A1) = L(A2).

2.5 Finite-State Transducers

Transduction 18 the proce8S which maps an input string Wi over the alphabet :Ei to

an output string W a over the alphabet :Eo .

Definition 2.8.

A transduction is a mapping function defined as r : Ei -----t E~ where :Ei is the set

of input strings and :E.~ i8 the set of output strings.

Definition 2.9.

A weighted transduction is a mapping function defined as 7: :Et -----t E~ x K where

:Ei IS the set of input strings, E~ lis the set of output strings and K IS a weight semiring.

Transducers are a type of automaton whose transitions carry an output syrnbol in

addition to the input symbol. Thus, the output of a transducer ls a string over a

given alphabet and not Just a weïght or a reject/accept value as with automata.

1l

2.5.1 String-To-St:ring Transduce:rs

A string-to-string transducer represents the function T : Ei ---t E~ where Ei and 2::~

are the sets of input and output strings" Figure 2.5 shows an example of a string-to­

string transducer. In this example, the string aa is mapped to the string cd while the

string ba is mapped ta the string ec. AIl other strings are rejected by the transduceL

Figure 2.5: Example of a string-to-string transducer

Definition 2.10.

More formally, a string-to-string transducer T over a semiring K ls a 6-tuple

(Q, i, F, Ei' EOl E), where:

® Q lS the set of states,

® i E Q lS the initial state,

® F ç Q is the set of final states,

® Ei is the input alphabet of the automaton,

® Eo IS the output alphabet of the automaton,

® E ç Q X Ei X Eo x K x Q is the set of transitions.

As IS the case for acceptors, the set of transitions can be replaced by a transition

function and an ouput function. The transition function is the same as for acceptors

while the ouput function becomes (J : Q X Ei ---t Eo. Bath functions can be extended

using the recurrence relations expressed in equations 2.1 and 2.2.

12

2.5.2 Weighted String-To-String Transducers

This kind of transducer is the most general finite-state automaton discussed in thi8

work. It maps a pair consisting of an output string and a weight.

More formally, the mapping function of a weighted string-to-string transducer 18

T : :Et ---» :E~ x K where :E; and :E~ are the sets of input and output strings

re8pectively and K is a weight semiring. Figure 2.6 shows a weighted string-to-string

transducer.

Figure 2.6: Example of a weighted string-ta-string transducer

As 18 the case for weighted acceptors, a weighted string-to-string transducer a1so

provides an initial and a final weight.

Definition 2.11.

A weighted string-to-string transducer T over a semiring K is a 8-tuple

(Q, i, F, :Ei , :Ea , E, A, p), where:

® Q is a set of states,

® i E Q lS the initial state,

o F ç Q lS the set of final states,

o :Ei 18 the input alphabet of the automaton,

o Ea is the output alphabet of the automaton,

o E c Q X :Ei X EQ x K x Q lS the set of transitions,

o À: i --t K lS the initial weight function,

® p: F --t K is the final weight function.

13

As is the case for string-to-string transducers, the set oftransitions can be replaced by

a transition function and an output function. The transition function lS identical to

that of the string-ta-string transducer and the output function becomes (J : Q x:E i --+

:Eo x K. Both functions can be extended using the recurrence relations expressed in

equations 2.1 and 2.2.

2.5.3 Epsilon Symbols in String .. ToooString Transducers

As 18 the case for automata, epsilon symbols are aUowed in string-to-string transducers

both for input and output symbols. An input string and its corresponding output

string do not necessarily have the same length. Thus, epsilons are used to fill the

"blanks" .

Figure 2.7: Example of a transducer using epsilons.

Figure 2.7 shows a transducer using epsilons to map strings of different length. In

a transducer, €-transitions are represented by a transition with an input and output

epsilon.

2.5.4 Sequential Transducers

A transducer lS called sequential if it is deterministic from the point of view of its

input. Figure 2.8a shows a non-sequential transducer sinee there are two transitions

with the symbol a outgoing from state qIJ. Figure 2.8b shows a sequential transducer.

(a) (b)

Figure 2.8: A non-sequential and a sequential transducer

14

The empty string, namely E, is not aUowed as an input symbol in a sequential trans­

ducer. Sequential transducers are computationally efficient sinee the time require­

ments depend only on the size of the input string and not on the size of the trans­

ducer. This efficiency cornes from the fact that for a given input string, the output

string is wriUen by following the only corresponding path.

2.6 Operations on transducers

As is the case for automata, many operations are available for working with trans­

ducers. This section will briefiy describe these operations.

2.6.1 Union

Union lS a basic operation in autornata theory. The union of two languages LI and

L 2 IS the set of strings that are in either LI, L 2 or both. More formally, the union

LI U L 2 = {xix E LI or x E L 2}.

For transducers, this operation IS done by combining the initial states of both trans­

ducers. Figure 2.9 shows an example of the union of two simple transducers over a

semiring K.

(a) (b)

(c)

Figure 2.9: Example of weighted transducer union

To be consistent with the weighting of original transducers, the initial weights of

both transducers have been moved to outgoing transitions of the initial state using

the 0-product.

15

2.6.2 Concatenation

The concatenation of two languages LI and L 2 lS the set of strings formed by con­

catenation of aH strings in LI with strings of L 2 . More formally, the concatenation

LI' L 2 = {x· ylx E LI and y E L 2 }.

(a) (b)

(c)

Figure 2.10: Example of weighted transducer concatenation

From the point of view of transducers, the concatenation of two transducers Tl and

T2 is obtained by appending T2 to the end of Tl by merging the final state(s) of Tl

with the initial state of T2• Figure 2.10 shows an example of the concatenation of

two simple transducers over a semiring K.

To be consistent, the final weight of the first transducer and the initial weight of the

second transducer are moved to transitions going out of the states merged during the

operation. These weights are combined with transition weights using the 0-product.

2.6.3 Connection

This operation rernoves from a given transducer aU unconnected states. Astate q is

accessible if there exists a path from the initial state to q and is coaccessible if there

exists a path from q to a final state. Astate IS said to be connected if it is both

accessible and coaccessible. Figure 2.11a shows a transducer with a non-coaccessible

(ql) and a non-accessible state (q4). Figure 2.llb shows the same transducer without

these useless states.

In the removal process, aU transitions going out from and going into an unconnected

state are also de!eted. This operation is orten used ta clean up the result of other

operations such as composition which leaves sorne unconnected states.

16

(a)

(b)

Figure 2.11: Example of trimming

2.6.4 Reverse

This operation consists of reversing aU transitions of the given transducer. The oper­

ation also transform final states into an initial state and the initial state into a final

state. The reverse operation is denoted by Tres = T[n. Figure 2.12b shows the reverse

of transducer of figure 2.12a.

(a)

(b)

Figure 2.12: Example of transducer reversai

Note that applying the reversaI operation twice on a transducer T produce a new

transducer equivalent to T in which there is only one final state i.e. IFI = 1.

17

2.6.5 Removing Epsilons

Transducers are often constructed with (-transitions, Unfortunately, these transitions

decrease the cornputational effidency of FST sinee they rnake thern non-deterrninistic.

This operation of epsilon rernoval pro duces an equivalent transducer with no {­

transitions. Figure 2.13 shows an exarnple of this operation on a transducer.

(a)

(b)

Figure 2.13: Example of removing epsilons on a tmnsducer

The deterrninization operation, which transforrn a non-deterrninistic transducer into

a deterrninistic one, generally considers epsilons as an ordinary syrnbol and thus,

deterrninization keeps (-transitions. For this reason, it 18 cornmon to remove epsilons

before applying determinization to obtain a deterrninistic automaton or a sequential

transducer.

18

2.6.6 Composition

Composition is a generalization of the intersection operation for automata. This

operation is very useful since it allows the construction of complex transducers from

simpler ones. Figure 2.14 shows a cascade of two transducers.

A B

Figure 2.14: A cascade of two tmnsducers

The transducer A maps Ei to D. *. Thus, the set D. * becomes the input of transducer

B that maps D. * to E~. Therefore, the general behaviour of the cascade is: A 0 B =

Ei -4: E~. The composition creates the transducer equivalent to this cascade.

(a) (b)

Figure 2.15: Example of tmnsducer composition

Given a transducer A in which there is a path mapping sequence x to sequence y and

a transducer B in which there is a path mapping sequence y to sequence z, the com­

position A 0 B has a path mapping x to z. The weight of this path is the 0-product

of the weights of the corresponding path in A and B [19]. Figure 2.15 shows two

simple transducers and the result of their composition.

The composition lS a key operation in transducer based application sinee it lS used

to construct complex transducers representing complex functions. For example, in

the case of speech recognition, the composition ls used to construct the knowledge

network needed by the recognition system. This network i8 con8tructed by the com­

position of different level of representation for which transdueers are associated. The

construction of this network will be described in detaillater.

19

2.6.7 Determinization

Deterministic automata and sequential transducers have already been defined. Any

non-deterministic automaton has an equivalent deterministic one. Determinization lS

the pro cess which takes a non-deterministic automata as input and produces a deter­

ministic one as output. Figure 2.16b shows a deterministic automaton constructed

from the automaton of figure 2.16a.

(a)

(b)

Figure 2.16: Example of transducer determinization

Deterministic automata are computationally more efficient but in practice, the num­

ber of states involved is often greater than the equivalent non-deterministic coun­

terpart. In the worst case, the smallest deterministic automaton can have 2n states

while the smallest non-deterministic automaton describing the same language has n

states.

The same operation can be applied to non-sequential transducers to obtain sequential

ones. Unfortunately, this process do es not terminate for an transducers. This point

will be discussed in the next chapter.

2.6.8 Minimization

Given the complete set of equivalent deterministic automata, there exists a unique

automaton which has a minimum number of transitions and (arbitrarily labelled)

states with respect to the implied language. Figure 2.17b shows the minimized version

of the automaton of figure 2.16a.

20

(b)

Figure 2.17: Example of transducer minimization

The minimization for weighted transducers requires two steps. The first step is a

reweighting operation called pushing. A transducer can be reweighted in an Infinite

number of ways. The pushing operation moves the weights toward the initial state.

The result is a transducer as seen on figure 2.17b, which contains some transitions

having the same symbol and the same weight. The second step lS the classical mini­

mization pro cess that considers the symbol and the weight as a single symbol. Since

the pushed transducer has some transitions with identical (symboI,weight) pair, it

can be minimized.

This procedure can be applied to string-to-string transducers but do es not necessarily

yields the minimum transducer. However, the method can be useful for reducing the

transducer's size and is caUed compaction in this case.

The minimization of transducers lS performed by consecutively applying the deter­

minization, reverse, determinization and reverse operations. Mohri has proved the

optimality of this algorithm in [17]. Unfortunately, not aU transducers can be deter­

minized. In that case, the only solution is to use compact ion sinee there does not

exist a minimization algorithm that can be applied to non-determinizable transducers.

Therefore, the minimization of transducers IS based on the classical minimization

algorithm presented in [1]. This algorithm will not be described in this work sinee

it ls a classical one. For any reader interested in it, the algorithm is presented in [1]

and [24]. Moreover, the compaction has been fully studied by Zhang [35].

21

2.6.9 Other Operations

The major FST operations have been presented but there exists sorne other useful

manipulations that can be done on a FST, and are briefly described here:

Inversion

Invert the transducer by swapping the input and output symbols on transitions.

Arithmetic

Apply sorne arithmetic operation (addition or multiplication) on weights of

weighted FSM.

Projection

Convert a transducer to an acceptor by keeping either only the input or only

the output symboL

Beat paths

Find the k paths of lowest weight from the initial state to a final state in a

weighted FSM.

Topological sort

This operation numbers states such that for any transition from astate num­

bered i to astate numbered j, the condition i :::; j 18 respected.

Algorithms for performing these operations will also be given in the next chapter.

2.7 Summary

This chapter has introduced sorne theorical aspects of weighted finite-state trans­

ducers in order to present the basic concepts and to introduce the notation used

in the algorithm descriptions presented in the next chapters. The important points

discussed in this chapter are:

• The mathematical foundations of automata theory indu ding language theory,

semiring and formaI power series.

• The formaI definitions of the different kinds of transducers for which the al go­

rithms in the next chapters can be applied.

• A brief overview of operations described and analyzed in greater detail in the

next chapters.

22

Chapter 3

asic Algorithms

This chapter presents sorne basic algorithms applicable to finite-state transducers. It

is divided into five sections.

The first section presents the union operation, which is a fundamental operation in

automata theory. In the second section will be presented another important opera­

tion in automata theory: the concatenation of two finite-state transducers. Both of

these operations are discussed in aH introductory books to the automata theory.

The third section will explore algorithms based on the depth-first search method, first

introduced by Tarjan [33]. In particular, this section describes the topological sort

algorithm, which sorts the states in a left to right order and the connection algorithm,

which removes the unconnected states of a transducer.

The fourth section concerns the shortest-path problem. A generic short est-distance

algorithm will be presented. This algorithm is generic in the sense that it can be

implemented with a large variety of semirings and queue disciplines. In the second

part of the section, the classical shortest-path algorithm introduced by Dijkstra [8]

will be presented in the context of transducers. A generalization of this algorithm,

resolving the k-shortest-path problem, will also be described.

The last section describes a pushing algorithm used to move weights along the paths

toward the initial state.

23

3.1 Union

The union of two languages LI and L 2 is a new language obtained by combining aH

words of LI and L2 in a new set L3 denoted by LI U L 2 .

Definition 3.l.

More formally, the union of two languages LI and L 2 IS defined as:

Regular languages are dosed under the union operation [32]. That means that if LI

and L 2 are regular languages, then the union LI U L 2 is also a regular language. This

property implies that the union can be applied to transducers which represent regular

languages.

Formally speaking, the union of transducer8 i8 obtained by combining their ini­

tial states. In practice, however, t-transition8 carrying initial weights are used to

"merge" together both transducers as illustrated in Figure 3.1. Algorithm l shows

the pseudocode of a procedure which makes the union of the two input transducers

Tl = (QI, il, FI, Eil' EOl' ElJ),'1, Pl) and T2 = (Q2' i 2, F2' Ei2' E02' E2' À2' P2).

Algorithm 1 FST Union
FSTUnion(TI, T2)

1: q() +- newstate
2: io +- qo
3: Q() +- {%} U QI U Q2
4: Eo +- ((q(), E, E, À1(i1), il), (q(), E, E, À2(i2), i 2)} U El U E2

5: F() +- Fl U F2

6: l'etul'u (Q(), il, Fo, En U Li2' 2::01 U L02' Ào, Po)

The algorîthm works as follows. At Hnes 1-2, the initial state qo of the output trans­

ducer To 18 created. Then, the set of states Q1,Q2 and the new initial state are merged

to create QO) the set of states of the output transducer. Line 4 creates transitions

of To from transitions of both input transducers. Moreover, two new f-transitions,

which connect q() to both initial states il and i2, are also added to T(). Note that sinee

these new transitions do not carry symbols, the languages described by Tl and T2 are

still correctly represented by T(). Finally, line 5 combines the accepting states of both

input transducers and line 6 returns the new transducer createdo

24

(a) (b)

(c)

Figure 3.1: Result of the union of two transducer by FSTUnion.

Note that the result is not exactly the same that shown in section 2.6.1. This lS

because the algorithm described here uses €-transitions to simplify the construction

of the resulting transducer. On the other hand, the result shown in Figure 2.9 can

be obtained by removing E-transitions of the transducer created by FSTUnion. The

algorithm performing this operation will be presented in the next chapter.

Running Time Analysis

The running time of this algorithm depends on how both state and transition sets

are implemented. lndeed, using linked lista for these sets, the algorithm can mn in

0(1) sinee, in this case, the union of sets corresponds to the concatenation of the lists.

Other implementations use arrays to represent sets. In this case, the union of sets

implies a loop which will pass through an the elements of both sets. Considering

that, the union operation of Hne 3 will take 0(IQ11 + IQ21) time and the union of hne

4 will take O(IE11 + IE2\)' Therefore, the running time of this algorithm is linear:

O(IQI + lEI)

where IQI = IQ11 + IQ21 + 1 and lEI = IEII + IE21 + 2 are respectively the number of

states and transitions in the resulting transducer.

25

3.2 Concatenation

RecaU that the concatenation of two words Wl and W2 is obtained by appending W2

at the end of Wl. The concatenation of two languages LI and L 2 IS a new language

obtained by appending every word of L 2 ai the end of every word of LI' This operation

IS usually denoted by a dot.

Definition 3.2.

More formally, the concatenation of two languages LI and L 2 IS defined as:

As 18 the case for the union operation, the regular languages are closed under the

concatenation operation[32]. Therefore, the concatenation of two regular languages

results in a third language which is also a regular language. It follows that the con­

catenation of two regular languages can also be represented by a transducer.

From the perspective of transducers, the concatenation of two transducers Tl and T2

is obtained by merging the initial state ofTz with aU the final states ofT!. In practice,

it IS easier to use E-transitions to "connectll both transducers together as shown in

Figure 3.2. Algorithm 2 shows the pseudo code performing the concatenation of trans­

ducers Tl = (QI,ibFI,:Eil,bol,EllÀl,Pl) and Tz = (Q2,iz,F2,Ei2,Eoz,E2,À2,P2)

which are the input of the procedure.

Algorithm 2 FST Concatenation
FSTConcatenation(T1 , T2)

1: Qo f- Ql U Q2
2: Eo f- El U E2

3: for each q E FI do
4: Eo[q] f- Eo[q] U {(q, E, E, Pl (q) 0 À2 (id, il)}
5: retu:rn (Qo, il, F2' Eil U Ei2 , E01 U E02' À1' P2)

Lines 1-2 initialize the set of states and the set of transitions of the new transducer.

The loop at Hnes 3-4 add a new E-transition from every final state q E FI to the initial

state of T2 • The weight of every added transition corresponds to the 0-product of

the acceptation cost of the final state from which the transition going out and the

initial cost of T2• Line 5 returns the new transducer created.

26

Figure 3.2: Re:;mlt of the concatenation of two tmnsducer by FSTConcatenation.

Figure 3.2 shows two transducers and their concatenation as computed by Algo­

rit hm 2. As is the case for the union operation previously described, the f-transitions

can be removed to obtain the same result shown in figure 2.10.

Running Time Analysis

The running time of this algorithm depends on how the sets are implemented. Indeed,

using a linked list for the sets of states and transitions allows an implementation of

the concatenation operation in 0(1) tÏme. Therefore, Hnes 1-2 run in 0(1). The loop

at lines 3-4 pass through aU final states. In the worst case, aH states of the transducer

are final and thus, the running time of this Ioop is 0 (1 QI). The total running time is

therefore O(IQI).

In the case where the sets are implemented with data structure such as arrays, Hnes

1-2 pass through each state and transition to copy them. Thus, the running time IS

O(IQll + IQ21 for the union of state sets (Hne 1) and 0(IE11 + IE2 1) for the union of

transitions set (Hne 2). The running Ume of the Ioop at Hnes 3-4 IS not affected by

the sets' Implementations. Therefore, the total running time IS linear:

O(IQI + lEI)

where IQI = IQII + IQ21 and lEI = IEII + IE21 + IFll are, respectively, the number of
states and transitions in the resulting transducer.

27

3.3 Depth-First Search Aigorithms

Depth-First Search (DFS) is a simple algorithm for searching in a FST and lS used as

a base for many other algorithms. The algorithm is similar to what is used in graph

theory [33, 7, 30]. The strategy is, as its name impHes, to explore the transducer

~'deeper" whenever it is possible. The search begins in state s which is marked as

vlsited. Then, the search lS recursively applied to aH adjacent states to s. The

pro cess continues until aH states in the transducer have been visited. Figure 3.3

shows in which order states are visited by the DFS.

Figure 3.3: Example of DFS execution

The coloring method is used to mark states. White denotes astate which has not yet

been visited. Grey denotes a state for which exploring adjacent states is in progress

and black denotes a state for which aU adjacent states have been visited.

Algorithm 3 Depth-First Search
DFS(T)

1: for aU q EQ do
2: color[q] +- white
3: for q E Q do
4: if color[q] is white then
5: DFS-Visit(T, q)

DFS-Visit(T,q)

1: color[q] +- Grey
2: for each (q, (Ji, (JOl W , q') E E[q] do
3: if color[q'] is white then
4: DFS-Visit(T, q')
5: color[q] +- Black

Algorithm 3 depicts the pseudocode of the depth-first search algorithm in two proce­

dures. The input ofthis algorithm lS a transducer T = (Q,i,F,r:,i,"E.o,E,À.,p).

28

The algorithm works as followso Unes 1-2 initialize aH states by painting them white.

Lines 3-5 visit aH white states using DFS-VisitOo In each caU to DFS-Visit, the state

q is initially whiteo Line l paints it grey. Unes 2-4 recursively explore each white

state adjacent to qo Finally, when aH adjacent states have been explored, Hne 5 paints

it black

Running Time Analysis

The running time of loops on Hnes 1-2 and 3-5 of DFS depends on the number of

states in T, thus DFS i8 O(IQI) when the caU to DFS-Visit is not taken into accounto

The DFS-Visit procedure lS called exactly once for each state since the procedure is

called only on white states and painting it grey is the first thing that DFS-Visit does.

The loop on Hnes 2-4 of DFS-Visit is executed IE[qll times, thu8:

o(E IE[q]l) = O(IEI).
qEQ

Therefore, the total running time of DFS is linear : O(IQI + IEl)o

3.3.1 Topological Sort

A topological sort of a transducer T is a linear ordering of aU its states such that

for every transition (q,(Ji,(Jo,w,q'), q is smaller than q' i.e. q appears before Q'. By

definition, a cyclic transducer cannot be to'pologically sorted since in a cycle, there is

always a transition such that q > q'.

Algorithm 4 shows the pseudocode for the topological sorto The algorithm input lS a

transducer T = (Q, i, F, L: i1 L:o , E, À, p). The output lS a list of topologically ordered

states.

Two changes have been made in the original DFS procedure to construct the Topo­

logicalSort procedure. Firstly, a FIFO (first in, first out) list is initialized at hne l.

Line 4 ensures that the ordering process will begin at the initial state so that the first

state in the list 18 the initial state.

29

Algorithm 4 Topological sort
TopologicalSort(T)

1: LIST +- 0
2: for aH q E Q do
3: color[q] +- white
4: DFS-Visit(T, T.I nitialState)
5: for q E Q do
6: if color[q] 18 white then
7: DFS-Vi8it(T, q)
8: return LIST

DFS-Visit(T,q)
1: color[q] +- Grey
2: LIST +- q
3: for each (q, (Ji, (Jo, 'W, q') E E[q] do
4: if color[q'] is white then
5: DFS-Visit(T, q')
6: color[q] +- Black

In the DFS-Visit procedure, the only change appears at Hne 2 and consists in insert­

ing the state q in the Hst. Note that if Hne 2 i8 moved after the loop of Hnes 3-5, the

inverse topological order will be obtained.

Note that in practice, the output Hst will be used to create a new transducer in which

states will be inserted in the data structure representing the topologically ordered set

of states.

Running Time Analysis

The running time of the TopologicalSort procedure, exduding the caU to DFS-Visit,

lS the same as for the DFS procedure previously analyzed since the calI to DFS-Visit

appearing before the loop of Hnes 5-7 does not change the fact that DFS-Visit lS

called once per state. Thus, its complexity is also O(IQI).

In the case of the DFS-Visit procedure, the inserting operation has to be taken into

account. Since the Hst IS a FIFO data structure, a new element IS inserted in constant

time; insertion is thus 0(1). Since the procedure differs from the original only by

this operation, its running time is also O(IEI). Therefore, the topological sort runs

in linear time : O(IQI + lEI).

30

3.3.2 Connection (Trimming)

The aim of this algorithm IS to remove aH unconnected states from a tran8ducer.

This operation 18 often used to dean up the result of other operations that yield

unconnected states. Recall that astate q is connected if

1. it is accessible: there exists a path from the initial state to q j

2. it is coaccessible:there exists a path from q to a final state.

Figure 3.4 shows a transducer with accessible and coaccessible states. In this figure,

"a" denotes an accessible state and "c" a co accessible state.

Figure 3.4: Transducer with accessible and coaccessible states.

The intuitive way to implement this operation takes three steps. The first step con­

sists in performing a depth first-search from the initial state and marking aH reachable

states as accessible. The second step 18 to perform another depth-first 8earch from

the final states and marking an reachable states as coaccessible. FinaHy, the last step

consists in removing aH states that are not simultaneously accessible and coaccessible.

Note that transitions going out from and going into an unconnected state are also

removed.

In fact, the entire pro cess can be done in one depth-first search as shawn in AIgo­

rithm 5. The input of this algorithm is a transducer T = (Q, i, F, I:i , 1::0' E, À, p) with

output T trimmed of aH unconnected states.

The algorithm works as foHows. Lines 1-3 paint aIl states white and label them as

unconnected. Line 4 st arts the depth-first search at the initial state to ensure that

aU states which will be reached fulfill the first condition of a connected state. Lines

5-7 remove aH unconnected states from Q.

31

Algorithm 5 Connection
Connection (T)

1: for each q E Q do
2: color[q] +- white
3: connected[q] +- faise
4: DFS-Visit(T, T.I nitialState)
5: for each q E Q do
6: if connected[q] = faise then
7: Remove q from Q
8: return T

DFS-Visit(T,q)
1: color[q] +- Grey
2: for each (q, ai, ao, W , q') E E[q] do
3: if color[q'] IS white then
4: DFS-Visit(T, qi)
5: connected[q] +- connected[q] 1\ connected[q']
6: if q E F then
7: connected[q] f- true
8: color[q] +- Black

The DFS-Visit procedure is used to find which states are connected. The algorithm

first searches final states and marks them as connected (Hnes 6-7) since they are

reachable from the initial state. Each time an adjacent state of q has been explored

(Hne 4), its connection property IS propagated (Hnes 5) to the state itself. lndeed,

the adjacent state has been marked connected only if a final state has been reached

from it and thus, there exists a path from q to a final state (condition 2) and sinee q

has been reached from the initial state (condition 1), q is connected.

Applying this algorithm to the transducer of Figure 3.4 will pro duce the transdueer

shown in Figure 3.5.

Figure 3.5: Transducer without unconnected .states.

Unfortunately, this algorithm does not work in the case of cyclic transducers. The

problem stems from the fact that in a cyclic transducer astate can be connected but

32

the algorithm will label it as unconnected. Figure 3.6 shows an example of such a

transducer in which a connected state will be erroneously removed. Indeed, the state

q2 will be labelled unconnected even if it is connected sinee the algorithm will not

find the path (q21 qo, qI) which leads to the final state.

Figure 3.6: Example of cyclic transducer for which Algoritm 5 fails.

For resolving this problem, the concept of strongly connected component will now be

introduced.

Definition 3.3.

A strongly connected component (SCC) in a transducer T = (Q, i, F, :Ei1 1:0' E,.À, p)
is a set of states Qsce ç: Q for which every state qv E Qsee can be reached from every

state qu E Qsee·

In Figure 3.6, the set {qo, q2} is a strongly conneeted component since q2 is reachable

from qo and vice-versa. Strongly connected components of a transducer can be found

using the Tarjan algorithm [33] which uses depth-first search algorithm. The following

theorem uses the sec concept to solve the connection problem.

Theorem 3.1.

If astate q E Q sec is connected) then aU states in Q sec are also connected.

Proof. Let q E Qsce be a connected state. By Definition 3.3, there exists a path from

q to every state qv E Qsee- Sinee q 18 connected, there exists a path from the initial

state to q and thus, from the initial state to every qv E Qsee (condition 1).

The initial statement that q 18 a connected state implies a path from it to a final

state. Sinee Definition 3.3 states that q can be reaehed from every state qv E Qsee,

there exists a path from qv E Qsee to a final state (condition 2). Therefore, sinee both

conditions are fulfilled for every state qv E Qsee, they are connected. 0

33

Aigorithm 6 Revisited Connection
Connection (T)

1: for each q E Q do
2: orderNum[q] f- 0
3: connected(q] f- faise
4: visitCount f- 0
5: DFS-Visit(T, TI nitialState)
6: for each q E Q do
7: if connected[q] = faIse then
8: Remove q from Q
9: return T

D FS-Visit (T ,q)

1: visitCount f- visitCount + l
2: orderNum[q] f- visitCount
3: oldestState f- visitCount
4: STACKf-q
5:
6: for each (q, rYi, rYal W, q') E E[q] do
7: if orderNum[q'] = 0 then
8: old f- DFS-Visit(T, (/)
9: if oId < oldestState then

10: oldestState = old;
11: else if orderNum[q'] < oldestState then
12: oldestState f- orderNum(q']
13: connected[q] f- connected[q] A connected[q']
14:

15: if q E F then
16: connected[q] f- true
17:

18: if oldestState = orderNum[q] then
19: repeat
20: S f- STACK
21: connected[s] f- connected[q]
22: until s = q
23: return oldestState

34

Algorithm 6 lS the Tarjan's algorithm, described in [33L for strongly connected com­

ponents with Hnes 13, 15, 16 and 21 added to find connected states, Note that in

this algorithm, states do not have any coloT associated with them but rather numbers

describing the order in which they have been discovered during the search process.

This number is also referenced to be the anCÎentness of the state. The main goal of

the algorithm IS to find the mot of strongly connected components.

Definition 3.4.

The mot of a strongly connected component lS the first state reached fmm the initial

state in a depth-first search pmcess.

The algorithm takes as input a transducer T = (Q, i, F, Eil 2::0' E, À, p). The Con­

nection procedure works as foUows. Lines 1-4 initialize aU states as not connected

and their ancientness number as not visited. Line 5 initiates the depth-first search

pro cess at the initial state, When the search pro cess lS completed, aH unconnected

states are removed from the transducer (Hnes 6-8).

Lines 1-4 of the DFS-Visit procedure assign the ordering number to the state which ls

put in the stack. When q is reached, it lS guessed as the root of its component. Note

that states in the stack are ordered according their ancientness. When an adjacent

state lS processed (at Hnes 7-8), new mot candidates are obtained. If a candidate is

oIder than the current root, ît becomes the new root of the component containing

q (Hnes 9-12). Line 13 propagates the connection attribute from adjacent states.

When aH adjacent states have been processed, the ancientness of q is equal to the

ancientness of the root of its component if and only if q IS a root. In this case, aH

states of components i. e. aH states having a greater ordering number, are removed

from the stack (Hnes 18-22) and form a strongly connected component. If the root

state is connected, then an states of the component must be set to connected (Hne

21). The correctness of this operation is based on the following theorem:

Theorem 3.2.

The TOot state of a strongly connected component can be used ta determine if the

component is connected or nat.

Pra of. There are two cases to take into aœount. The first case oœurs when the root

is connected which should imply that the strongly connected component is also con­

nected. This case is directly proved by Theorem 3.1.

35

The second case arises when the root state is unconnected. In this case, it must

be proven that it lS impossible to set as connected a state in the component and

then setting the root as unconnected in Algorithm tt The pro of is by contradiction.

Suppose that the root state qr is not connected and astate qscc E Qsee ls. Since state

qr is the first eomponent state diseovered, the path from it to qscc is known, which

implies that the conneetion attribute of qsec will be propagated to qr' Therefore qr is

also set as connected, contradicting the initial assumption. o

Running Time Analysis

The running time of the Conneetion procedure, without eonsidering the calI to the

DFS-VisU procedure, depends on the number of states IQI in the input transducer

sinee loops of lines 1-3 and 6-8 pass through aH states. Thus, the running time of

this procedure is O(IQI).

The DFS-Visit procedure is called at most one time per state q E Q sinee the function

lS called only when its ancientness lS 0 and a new ancientness, different from 0, i8

determined at the beginning of the procedure. In one execution pass of DFS-Visit,

the loop of Hnes 6-13 has the same eomplexity as for a simple depth-first search and

is thus O(lE\). The loop of Hnes 18-22 lS exeeuted at most IQI times sinee each state

ean be pushed on the stack only once. Operations on the stack can be done in 0(1)

time. Therefore, the running time of the connection algorithm lS linear: O(IQI + lEI).

3.4 Shortest-Paths Algorithms

Finding the shortest-path is a dassic problem in graph theory and network program­

ming and has been extensively studied over the years. The problem consïsts in finding

in a given transducer, the successful path yielding the smallest cost. Recall that a

successful path i8 a collection of consecutive transitions beginning at the initial state

and ending at a final state. Typically, the cost of a path lS the sum of transition

weights making up this path.

Two categories of problems will be di8cussed in this section. The first one concerns

the classic short est-distance problem presented in the general case of semirings. The

second problem consists in finding the shortest-path and its generalization which

consists in finding the k shortest-paths in transducers.

36

3.4.1 Shortest-Distance Algorithms

The shortest-distance algorithm presented here is a generalization of the classical

shortest-distance algorithms described in many computer science books. The classi­

cal algorithms cannot be used with non-idempotent semirings since they pro duce a

wrong result. The generalization proposed by Mohri [18, 22] resolves this problem by

allowing the use of non-idempotent semirings. Recall that a semiring (Je, EB, 0, 0, 1)
IS idempotent if and only if x EB x = x, "'Ix E Je.

Recall that in the general case of semirings, the cast w[7r] of a path 1f = el, ... , en lS

the 0-product of transition weights making up this path:

W

and the short est-distance from astate s E Q to a final state q E F, denoted d[s], lS

defined as

d[s] = EB w[7r]
'lrETI(q)

where ll(q) = {7rl, ... , 1fn } lS the set of paths from q to F. When the tropical semiring

S = (R+ U {oo}, min, +, 00, 0) i8 used, this definition of the shortest path coincides

with the classical definition presented in books sinee the 0-product of transitions

weights becomes the usual addition of costs and the EB-addition calculates the mini­

mum cost of an paths 8 "v? q.

The algorithm i8 also general in the sense that any queue discipline, such as priority

queue or DFS, can be used. Selected combinations of a semiring and of a queue dis­

cipline pro duce algorithms equivalent to those presented in the classic literature. For

example, using a priority queue in conjunction with the tropical semiring in the Îm­

plementation of the generic algorithm coincides with the classical Dijktra's algorithm.

Algorithm 8 shows the pseudocode of the generic single-source shortest-distance al­

gorithm presented by Mohri in [18] and [22]. The algorithm computes the short­

est distance from the source state s to a final state in the input transducer T =

(Q, i, F, :Ei , :Eo , E, À, p).

37

Algorithm 7 Generic single-source shortest path
SingleSourceShortestDistance (T ,8)

1: for each q E Q do
2: d{q] +- 0
3: r[q] +- 0
4: d[s] +- ï
5: r[s] +- ï
6: S +- {a}
7: while S =1= Il) do
8: q +- head(S)
9: Dequeue(S)

10: r +- r[q]
11: r[q] +- 0
12: for each (q, ai, a()j w, q') E E[q] do
13: if d[Q'] =1= d[ql] El3 (r ® w) then
14: d[q/] +- d[q'] El3 (r ® w)
15: r[q'] +- r[q!] El3 (r ® w)
16: if q' ~ S then
17: S+-SU{q/}
18: return œ d[q]

qEF

The algorithm works as foHoW8. For each state q E Q j the algorithm uses two at­

tributes: an estimate of the short est path from s to q, maintained in d[q] E lC; and

r[q] E lC, the total weight $-added to d[q] sinee the last time q has been extracted

from the queue. Both attributes are initialized at Hnes 1-5.

At Hne 7, the queue is initialized with S, the state from where the seareh begins. This

queue is used to maintain the set of states to be explored. At each pass through the

loop of Hnes 7-17, astate q is extracted from the queue (Hnes 9-10). The r attribute

of state q is stored and then reset to 0 (Hnes 10-11). The loop of Hnes 12-17 explores

each transition of state q and updates the attributes of the destination state q' if it

can be improved i.e. if the cost d[q'] is different than d[q] ®-multiplied by the weight

of the transition. In the specifie case of the tropical semiring, that means that d[q']
will be updated if the new path, passing by q, has a smaller cost than the previous

estimated shortest-path. In the literature, this step is often referred to as the relax­

ation of the transition (q, ai, a01 w, q'). If the transition has been relaxed and if the

destination state q' i8 not in the queue, ql is inserted in.

38

Finally, Hne 18 returns the ffi-added cost of aH the final states in T. In the case

of the tropical semiring, it i8 dear that each estimated path from s to q lS, when

the algorithm terminates, the shortest one sinee q ls updated each time that a new

shortest-distance is discovered.

Running Time Analysis

The running time of the algorithm depends on the semiring and the queue discipline

considered. Ti will denote the worst cost for inserting astate q in S, Te the worst cost

for extracting q from S, Nq the number of times that q has been inserted in S, T $

the time of a ffi-addition, T® the Ume of a 0-produd and Ta the time of an assignmenL

The loop of Hnes 1-3 passes through aU states and thus, runs in O(IQI). The second

loop depends of the number of times that states are inserted in the queue. Thus, its

running time is

O((1i + Te) L Nq).

qEQ

The loop of Hnes 12-17 passes through aU transitions and performs sorne semiring

operations and assignments. For each state, the loop lS executed iE[qll . Nq times.

Thus, the running time of this loop lS

O((T$ + T® + Ta} . L(IE[q]1 . Nq)).

qEQ

Therefore, the total running time, in general, for this algorithm IS

O(IQI + (T$ + n~ + Ta) . L(IE[q]l' Nf}) + (Ti + Te) L Nq).

qEQ qEQ

The Gene:ric Aigorithm and Dijkst:ra's Aigorithm

Used with the tropical semïring S = (R+ U {oo}, min, +, 00, 0) and a priority queue,

the generic algorithm coincides with Dijkstra's algorithm, a classic in the graph lit­

erature [7, 30].

Operations of the tropical semiring are quite simple; both semiring operations are

done in 0(1) time. The cost of priority queue operations depends on its implemen-

39

tation. Using a Fibonacci heap, insertion takes 0(1) time and the extraction of the

smaller element takes O(logn) Ume. Finally, the priority queue ensures, by the op­

timality principle [15], that each state will be inserted in the queue at most once.

Therefore, the running time is

O(IEI + IQllog IQI)·

Note that even though the Fibonacci heap lS the most used Implementation of prior­

ity queues in short est paths problems, the complexity can be further improved using

a RAM priority queue [34].

In practice, if the algorithm is used only in the case of the tropical semiring and with

a priority queue, the execution speed of the algorithm will be improved by stopping

the search when a final state is reached. This optimization works since the priority

queue, used in conjunction with the tropical semiring, ensures that there is no path

from 8 to q with a smaller cost [7]. Therefore, when a final state 18 reached, the path

from s to q E F is the sm aller one. This improvement does not change the complexity

but, in practice, often leads to a faster search.

K-Shortest-Distances Problem

It can also be useful to obtain the k short est-distances from astate q to a final state.

Fortunately, this problem can be solved using the generic algorithm presented here,

implemented with the k-tropical semiring.

Definition 3.5.

The k-tropical semiring is a semiring defined as (K, E9, ®, 0, ï) where

@ K = (14 U {oo})k,

1& 0 = (00, ... ,00),

@ 1 = (0, ... , 0),

40

Using this semiring, the algorithm ealculates, at each state, the k-shortest distances.

Thus, at the end, the algorithm outputs the k-shortest distances from the source state

to every state in the transducer.

The complexity of the algorithm with the k-tropical semiring and using a best-first

seareh queue discipline such as a priority queue lS thus:

O(k . lEI + k . IQIlog IQI)·

AH-Pairs Shortest-Distance

The aH-pairs shortest-distance problem consists in finding the weight of the short est­

path between aH pairs of states in a transducer. A small modification of Algorithm 7

allows to use it to compute the aH-pairs shortest-distance. This modification consists

in returning d, the array containing the weights of shortest-paths between sand all

other states, instead of only the short est distance. Applying this new algorithm to

every state in T will compute the aH-pairs shortest-distance.

Sinee Algorithm 7 is executed IQI times, the running time of the aU-pairs short est­

distance is

O(IQI2 + IQI· (TEe + T® + Ta) . I)IE[q]l' Nq) + IQI . (Ti + Te) L Nq).

qEQ qEQ

In the case where the algorithm is implemented in the tropical semiring and with a

priority queue, the running time i8

O(IQI . lEI + \Ql 2 log IQI)·

3.4.2 Shortest-Paths Aigorithms

The shortest-path algorithm described here is the famous Disjktra's shortest-path

algorithm described in most computer science books, including [7] and [3D]. This

algorithm has been originally designed to find the shortest-path in a weighted graph.

However, transducers can be considered as direeted graphs sinee the additional sym­

bols carried by transitions in them are not taken into account in the short est path

computation. Hence, the algorithm cau be direetly applied to them.

41

Algorithm 8 shows the pseudocode of Dijkstra's algorithm for transducers. A heap

is used to maintain the set of states to be explored. The algorithm has two inputs: a

transducer T = (Q, i, F, :Ei , :E01.E, À, p) and s, the state from which the search begins.

Typically, this state is the initial state of T.

AIgQ:rithm 8 Dijkstra's single-source shortest path
SingleSourceShortestPath (T ,8)

1: fQr each q E Q dOl

2: d[q] +- 00

3: 1r[q] +- NIL
4: d[s] +- 0
5: Heap.Insert(s)
6: while S =1= 0 dû
7: q +- Heap.HeadO
8: if q E F then
9: return 1r[q]

10: fûr each (q, (J'i, (J'al W, Q') E E[q] dû
11: if d[q'] > d[q] + w then
12: d(q'] +- d[q] + w
13: 1f[q'] +- q
14: if q' ~ S then
15: S +- Su {Q'}
16: return NIL

The algorithm works in the same way as when Algorithm 7 is implemented with the

tropical 8emiring and priority queue. In this algorithm, d[q] is an estimation of the

shortest-distance from s to q and 1f[q] denotes the predecessor state of q used to save

the shortest-path associated with q.

The first loop of the algorithm (Iines 1-3) initializes both d[q] and 7r[q]. At Hne 5,

the state from which the search begins Is inserted in the heap. Line 7 extracts, from

the heap, the state with the smallest d[q] value. The loop of Hnes 10-16 performs

the relaxation step. This means that for each transition e = ((q, ai, (J'a, W, Q') E E[q],
the path from s to ql lS updated if the weight of the new estimaie lS smaller than

the previous one (Hnes 11-12). Lines 14-15 insert q' in the heap if it lS not already

present.

42

Recall that the optimality principle, which 18 ensured by the priority queue and the

relaxation step [7], states that when astate q is extraeted from the heap, the weight

of the path s ~ q is the shortest of an existing paths between sand q. Renee, if

a final state lS reached, the shortest-path s ~ F 18 found and the algorithm ean be

halted. This optimization lS applied at Hnes 8-9. Finally, the algorithm returns NIL

if no final state has been reached during the seareh (Hne 16).

Running Time Analysis

The first loop of the algorithm passes through aU states, thus takes O(IQI) time. In

the loop of Hnes 6-15, astate q is extraded from the heap and each transition is

explored. The extraction is done in O(log IQI) using a dassical heap implementation

[7]. The loop of Hnes 10-15 lS executed IE[q]1 times and, in the worst case, the inser­

tion of O(log IQI) is done each time. Thus, the inside of the loop of Hnes 6-15 takes

O(IE[q]l·log IQI) time.

By the optimality principle, this loop is executed at most IQI times. Therefore, the

total running time of this algorithm is

O((lQI + lEI) . log IQI)

The algorithm can be improved by using a Fibonacci heap. This Implementation

of heap has an amortized cost of 0(1) for insertion of an element. Therefore, the

running time becomes

O(lEI + IQI . log IQI)

The algorithm can yet be improved to O(IEI + IQI . log log IQI) by using a RAM

priority queue [34].

K Shortest-Paths Problem

The problem of finding the shortest, the second j the third, ... , the Kth short est path j

for K 2 1, instead of finding only the short est one is another weIl studied problem

in computer science.

The algorithm presented here is an extension of Dijkstra's shortest-path algorithm

43

described earlier. In the original algorithm, two attributes are maintained for each

state q: the weight of the short est path from the source state to q and its predecessor.

The K-shortest paths problem can be resolved by maintaining, at each state, a totally

ordered set of (p, w) pairs, where w Ï8 the weight of one of the k shortest-paths from

sand Hs predecessor p. In this case, the core of the algorithm is stiU the same and

thus, works in the same way.

Algorithm 9 shows the pseudo co de of Dijkstra's algorithm extended to determine the

k-shortest paths in a transducer. Note that it 18 assumed that the transducer contains

only one final state. However, in the general case of IFI > 1, the algorithm lS not

affected since E-transitions can be implicitly added in that case. The algorithm needs

as its input the transducer T = (Q, i, F, :Ei , :Eo , E, A, p) in which the search will be

done, the source state s and the number K of paths to find.

Aigorithm 9 A generalization of Dijkstra's algorithm of the k-shortest paths
SingleSourceKShortestPath (T ,s,K)

1: fol' each q E Q do
2: 7r[q] t- (/)

3: c[q] t- 0
4: 7r[s]t-(NIL,O)
5: Heap.lnsert(s)
6: while S #- (/) do
7: q t- H eap.H eadO
8: (p,W) f- min ?r[q]
9: c[q] f- c[q] + 1

10: if q E F and c[q] = K then
11: l'etuI'n 7r[q]
12: if c[q] ~ K then
13: fol' each (q, (Ji, (Jo, W, q') E E[q] do
14: 7r[ql] +- 7r[ql] U {(q, W + w)}
15: if q' ri S then
16: S t- S U {q/}
17:

18: ?T[q] +- 7f[q] - min 7r[q]
19: if Id[q]l ?:: 1 then
20: S +- Su {q}
21: l'etuI'n NIL

In this algorithm, 7r[q] denotes for the state q, the set of pairs (p,w) of a pre deces­

sor state p which describes a path and its associated weight w. The min operation

44

over the set 7r[q] returns the pair (p, w) such that w lS the smallest. The algorithm

also maintains the attribute c[q] which contains the number of times that q has been

extracted from the priority queue. These attributes are initialized at Hnes 1-5. The

priority queue ordering is based on the smallest weight in 7r[q]. When astate q IS

extracted, its associated pair containing the smallest weight is removed from 7r[q] and

it lS inserted in the queue according the new smallest weight (Hnes 18-20).

Each Ume through the loop 8-18, astate is extracted from the priority queue (Hne 7).

For each transition e E E[q], a new pair (p, w) is added to the set of the destination

state q' (Hnes 14). Note that the size of 7r[q] can be limited to K sinee q will be taken

into account at most K times (Une 12). At Hnes 17-18, q' is added to the priority

queue if it IS not already present.

Since no more than K paths can pass through any state q, the search is limited to K

extractions from the priority queue (Hne 12) and the algorithm terminates when the

final state has been extracted from the priority queue K times (Hnes 10-11).

Running Time Analysis

The Ioop at Hnes 1-3 passes through aH states and thus runs in O(IQI) Ume. The

loop oflines 6-20 will be executed while the priority queue IS not empty. However, the

number of extractions per state is limited to K (by the optimality principle) and thus,

the Ioop will be executed O(K -IQI) times. At each loop iteration astate is extracted

from the priority queue, which takes O(logn) time when a heap is used. The Ioop of

Hnes 13-16 passes through aU transitions exiting q and is therefore executed O(IE[q]l)

times. In this loop, the insertion in the priority queue (Hne 16) takes O(log IQI) time.

Thus, the running time of this loop lS O(IE[q]l' log IQI) and lS executed O(K . IQI)
times. Therefore, the total running of this algorithm is

O(K· (IQI + lEI) . log IQI)

45

Using a Fibonacci heap, the insertion is done in constant time. Therefore, the running

time of the loop at Hnes 13-16 is O(lE[qJl). The total running time becomes

O(K· lEI + K . IQI . log IQI)

395 Weight Pushing

It lS known that a weighted transducer can be reweighted in a Infinite number of

ways. This means that an equivalent transducer can be obtained from an input one

by modifying the weight distribution along the transitions without altering the de­

scribed language. The weight pushing is a special case of reweighting which consÎsts

in pushing the weights toward the initial state.

The weight distribution can improve sorne algorithms such as the Viterbi se arch used

in speech recognition. To be efficient in a large vocabulary context, the Viterbi al­

gorithm employs pruning based on the combined weight from different prohahilities

involved in speech recognition. Thus, the weight distribution may have an impact on

the execution speed of the speech recognition system. Weight pushing is aiso used in

the minimization of weighted automata.

This section presents an algorithm performing weight pushing on any weighted trans­

ducer. This algorithm can he used with any weight semiring. In the case of speech

recognition, the use of the log semiring considerably increases the recognizer's speed

[22]. However, the tropical semiring 18 used in the weighted version of the minimiza­

tion algorithm.

To see how weight pushing works, let us introduce a new function V : Q -+ Je called

the potential function of states. This function maps astate q E Q to a weight W E Je

where J(18 a weight semiring. In the case presented here, where the weights have

to be pushed toward the initial state, the potential V(q) is defined as the short est

distance from q to a final state qf E F. The potential function is used to update the

46

initial weight, transition weights and the accepting costs as follows [22]:

À +- À ® V(i)

w +- V(q)-l ® w ® V(q'), V(q, (J'i, (J'o, W, q/) E E

p(q) +- V(q)-l ® p(q), Vqf E F

where V(q)-l should be interpreted as - V(q). Note that the potentials along any

successful path, namelYl paths from the initial state to a final state, are added and

then substracted. Hence, the weights associated to input strings are not affected by

the reweighting.

Aigorithm 10 shows the pseudo code of a weight pushing algorithm based on the

reweighting rules previously presented. It uses the shortest distance algorithm, as

mentioned before, to compute the potential function of states. The input is a trans­

ducer T = (Q, i, F, :Eil :EOl E, À, p) in which the weights will be pushed toward the

initial state according to the implemented semiring.

Algorithm 10 Weight-Pushing
Push Weight(T)

1: TR +- Reverse(T)
2: V +- shortestDistance(TR, T R .1 nitialState)
3: À(i) +- >'(i) 0 V(i)
4: for each q E Q do
5: if q E F then
6: p(q) +- V(q]-l 0 p(q)
7: for each (q, (J'i, (J'o, W, q') E E[q] do
8: w +- V[q]-l ® W 0 V[q']

The first step of the algorithm consists in computing the short est distance from every

state q E Q to a final state qf E F. An efficient way to perform that consists in

applying the short est distance algorithm presented in Section 3.4 on the reverse of

the transducer. The result ls the short est distance from every state to the final state

under consideration in T. The loop of Hnes 3-7 applies the update rules presented

before on each final state and on every transition of the input transducer.

47

(a)

(b)

Figure 3.7: Example of weight pushing

Figure 3.7(a) shows a weighted transducer and Figure 3.7(b) shows the transducer

obtained by pushing weights in the tropical semiring. This figure clearly shows that

the weights have heen moved along the paths toward the initial state. Note that the

weights associated to the original input string have not been altered by the algorithm.

Running Time Analysis

The algorithm will he divided into three parts for the complexity analysis. The first

part lS the computation of the reverse of the input transducer. The corresponding

algorithm will not be described in detail sinee it is straightforward. Basically, it con­

sists in passing through aH transitions of the transducer and reversing it hy swapping

their origin and destination states. This computation involves a loop passing through

aH transitions of aH states; the running time is linear : O(IQI + lEI).

The second section concerns the short est distance algorithm. This algorithm has

been presented and analysed in section 3.4. The third section applies the reweighting

rules on aH transitions and aH final states aecording to the potential function previ­

ously computed. This calculation of new weights implies a loop that passes through

aIl states and an transitions. The calculated weights depend on the complexity of

the semiring operations. Therefore, the running time of this loop is O((IQI + lEI) ·T®.

48

It lS clear that the computation of the shortest distance dominates the running time

of the other sections of the algorithm. Therefore, the complexity of this algorithm is:

O(IQI + (Tœ + T® + Ta) . L:(!E[qll' Nq) + (11 + Te) L: Nq).

~Q ~Q

3.6 Summary

This chapter has presented sorne basic algorithms applicable to finite-state transduc­

ers. These algorithms have been described in detaH and their complexity analyzed.

The algorithms presented in this chapter are:

El) The union operation which creates a new transducer representing the union of

two languages.

El) The concatenation operation which creates a new transducer representing the

concatenation of two languages.

.. Algorithms based on Depth-First Search techniques, including topological sort

and connection algorithms.

@ Shortest-Path algorithms allowing to find the path(s) of minimal cost in a trans­

ducer.

• The weight pushing algorithm which shifts weights carried by transitions toward

the initial state.

These algorithms are fairly straightforward; presenting them has been a good intro­

duction for the more complex algorithms presented in the next chapter.

49

Chapter 4

Advanced Algorithms

This chapter introduces algorithms for three important operations to work with finite­

state transducers.

The first algorithm implements the E-removal operation. This operation removes

from a transducer an transitions for which the input and output symbols are E. The

resulting transducer describes the same language but does not contain any of these

transitions; this increases the computational efficiency of the transducer.

The second algorithm concerns the determinization algorithm. This algorithm trans­

forms a non-sequential transducer to its equivalent deterministic counterpart. Unfor­

tunately, not an transducers admit a deterministic representation. This point ls a180

discussed in this section.

Finally, the composition algorithm lS described. As noted in Chapter 2, a transducer

represents a binary relation between sequences of symbols. Thus, the composition of

two transducers implements their relational composition.

50

4.1 Epsilon Removal

Transducers produced by several applications are often the result of various eomplex

operations introducing if-transitions in order to simplify them. Unfortunately, these

transitions increase the computational load of transducers sinee they make them

non-deterministic and in general, induce a delay in their use. Thus, the goal of this

operation is to remove the if-transitions of a given transducer.

Definition 4.1.

An t-transition IS a transition e = (q, ai, ao , W, g') for which both ai and ao are the

empty string t, as typified in Figure 4.1.

Figure 4.1: Example of a transducer with E-transitions

The é-removal algorithm mns in two steps. The first step consists in computing the

E-closure of the input transdueer. The second step performs the t-removal itself. The

description of the €-dosure algorithm will first be described.

4.1.1 Epsilon-Closure

The first part of the E-removal algorithm is the computation of the E-dosure of the

input transducer. The t-closure of a transducer T lS another transducer Tc, contain­

ing only E-transitions such that for aH E-paths q""-+ q' in T, there exists a transition

(q,E,E,wE,q') E Ec.

51

Figure 4.2 shows the {-dosure of the transducer of Figure 4.1. In this figure, transi­

tions already present in the input transducer are denoted by plain arrows and tran­

sitions added by the {-dosure are denoted by dashed arrows.

Figure 4.2: Epsilon-Closure of transducer shown by Figure 4.1.

Computing the {-dosure is equivalent to computing the aIl-pairs shortest-distances

over the semiring K in T~ [18] where, T" denotes the transducer T in which aH non-{­

transitions have been removed . Thus, the algorithm involves the use of the short est­

distances algorithm described in Section 3.4. Algorithm 11 shows the pseudo code

computing the {-dosure of an input transducer T = (Q, i, F, :Ei , :Eo , E, À, p).

Algorithm Il Epsilon-Closure
Epsilon-Closure(T)

1: Tf t-- (Q, i, F, :Ei , :Eo , {(q, (Jï, (Jo, W, q') E E ai = E 1\ ao = E}, À, p)
2: Ec t-- 0
3: for each q E Q do
4: dt-- SingleSourceShortestDistance(T€, q)
5: for each ql E Q do
6: if d[q'] =1= 00 then
7: Ee t-- Ee U {(q, E, E, d[q'], q'n
8: return (Q, i, F, :Ei , :Eo, Ee, À, p)

The algorithm works as follows. The transducer TE containing only E-transitions of

the input transducer is created at Hne 1. For each state q E Q, the shortest-distance

52

between q and aH q' E Q IS computed at Une 4. If there is no path q ~ q', the dis­

tance IS set to infinity. Therefore, since d contains weights for aH accessible states q'

from q, creating transitions according to these values is equivalent to the E-closure of

state q. This operation is done in the loop of Unes 5-7. The complete E-closure for the

transducer lS accomplished by repeating this procedure for every state in Q (lines 3-7).

Running Time Analysis

It 18 already known that the running time for the shortest-distances algorithm is

qEQ qEQ

(see section 3.4 for more details). This algorithm is executed IQI times. The running

time of the loop at Unes 5-7 is also O(IQI) since, in the worst case, the loop passes

through aH states in T. Therefore, the running time of this algorithm lS:

0(IQ21 + IQI· (T$ + T0 + Ta) . I)IE(q]\. Nq) + IQI· (Ti + Te) . L Nq)

qEQ qEQ

Using the tropical semiring and the Fibonacci heap in the short est-distances algo­

rit hm , the running time is:

O(IQI . lEI + IQI2
• log IQI)

4.1.2 Epsilon-Closure in AcycHc Case

In the case where the transducer T does not contain any E-cycle, z. e. Tif; lS acyclic,

the running time of the {-dosure algorithm can be significantly improved by visiting

states in reverse topological order.

This improvement is obtained by using the property of topologicaHy ordered trans­

ducers, which states that for any transition (q, (Yi, 0-0 , w, q'), q appears before q'. Since

the transducer i8 acydic, the E-dosure of astate q depend8 only on f-closure of its

adjacent states. The€-closure of adjacent states IS already computed since states are

visited in reverse order. Therefore, it is possible to compute the E-closure by visiting

each state once, thus in linear time.

53

Algorithm 12 shows the pseudocode of a procedure computing the E-dosure of a

transducer T = (Q, i, F, 2: i , 2:0' El..x , p) in which there lS no E-cyde.

Aigorithm 12 Epsilon-Closure-Acydic
Epsilon-Closure-Acydic(T)

1: Tf t-- (Q, i, F, 2:i1 2:0' {(q, (Ji, (Jo, W, q') E E 1 (Ji = E A (Jo = E},..x, p)
2: 8 t-- Topological8ort(T,,)
3: Ec +- {(q, (Ji, (Jo, W, q') E E 1 (Ji = E /\ (Jo = E}
4: while 8 i= (/) do
5: q +- tait (8)
6: 8 +- 8 - {q}
7: for each (q, E, E, Wl, q') E E[q] do
8: for each (q',€,E,W2,q") E E[q'] do
9: Ec t-- Ec U {(q, E, E, Wl @ W2, ql/)}

10: return (Q,i,F,2: i ,L.o ,Ec,..x,p)

The first step consista in stripping the transducer T of its non-E-transitions to produee

Tf. (Hne 1). Line 2 initializes the Hst 8 by filling it with the topologically ordered set

of states Q while Hne 3 initializes the set of transitions Ec with the {-transitions of T.

As noted before, the E-dosure computation of q depends only on adjacent states for

which the €-dosure has already been computed. Thus, the E-closure of q is computed

by creating a transition t from q to every state reachable by its adjacent states (lines

7-9). Sinee this operation always implies two transitions, the weight carried by t i8

the @-product of the two transition weights involved (Hne 9). The Ioop of Hnes 4-9

repeats the procedure for every state q E Q in reverse topological order.

Running Time Analysis

It is already known that the topological sort runs in linear time, i.e. O(IQI + lEI)
(see section 3.3 for more details). The main Ioop passes through aIl states q E Q.
For every state, transitions of q and those of its adjacent states are considered. Thus,

the running Ume of this Ioop, in the worst case, 18 O(IQI + 2 . lEI) = O(IQI + lEI)·
Therefore, the running time of the algorithm 18 linear : O(IQI + lEI).

54

4.1.3 Epsilon-Removal Algorithm

This section will describe the second part of the E-removal algorithm which consists

in creating new non-E-transitions from pairs made of a non-f and an f-transition. The

resulting transducer will contain only non-E-transitions and will be equivalent to the

original one.

Algorithm 13 shows the pseudo co de of the E-removal algorithm for weighted trans­

ducers. Us input is a transducer T = (Q, i, F, Ei' Eo, E, À, p) and its output is T

without E-transitions. Figure 4.3 shows the resulting transducer when the algorithm

lS applied to the transducer of Figure 4.1.

Aigorithm 13 Epsilon Removal
RemoveEpsilon (T)

1: Tc ~ E-closure(T)
2: E ~ {(q, (Ji, (Jo, W o, Q') E E 1 (Ji =/:. E V (Jo =P f}
3: for each q E Q do
4: for each (q, E, 15, Wel ql) E Ec[q] do
5: if q' E F then

. 6: Po[q] ~ Po[q] Œ p[q'] 0 W e
7: for each (q', (Ji, (Jo, W , ql/) E E[q'] do
8: if 3(q, (Jil (JOl W o , ql!) E E then
9: W o ~ W o Œ W e 0 W

10: el se
11: E ~ EU {(q, (Ji, (Jo, w€ ® w, Q"~)}
12: return Ta

This algorithm works in two steps. The first step consists in computing the f-closure

of the input transducer (line 1), as previously described. The second step, which

consists in removing E-transitions, works as follows. The algorithm considers pairs of

transitions (Hnes 3-11). A pair is made up of two transitions (tr, t2) where tl lS an

f-transition (q, f, E, W"" ql) E Ec[q] and t2 is a non-f-transition (ql, (Ji, (JOl W, ql!) E E[qT
From every pair, a new transition (q, (Ji, (JOl W Œ W f , qll) is created. If the transition

already exists in T, the weights are combined with the 0-product, otherwise the

transition is inserted in T (Hnes 8-11). Lines 5-6 ensure that the final states are

correctly handled. In the case where an E-transition leads to a final state q' E F,

the originating state becomes also a final state for which the acceptation cost is the

®-product of the E-transition weight and the acceptation cost of q', The Œ-addition is

used to take into account the case where the originating state was already a final state.

55

Figure 4.3: Transdueer of figure 4.1 for which f-transitions have been removed.

Running Time Analysis

Let q be the state considered and q' be astate belonging to the E-closure of q. The loop

at Hnes 7-11 considers an transitions in E[q'] and therefore is executed 0(1 E[q] 1)
times. In the worst case, every state qP belongs to the t-dosure of q. Henee, the

running time of the nested loops of Hnes 4-11 is O(IQI + lEI). These nested loops

are executed IQI times (Hnes 3-11). Therefore, the running Ume of the second part

of this algorithm (Hnes 2-11) is

0(IQ12 + IQI· lEI).

In the case where the algorithm i8 applied to an E-cyclic transducer, the total running

time of the algorithm is dominaied by the f-closure, hence 18

O(IQI . lEI + IQI2 log IQI)

when the E-dosure lS computed over the tropical semiring with a Fibonacci heap. In

the case of an E-acyclic transducer, the running Ume of the algorithm lS dominated

by the E-removal section. Therefore, the running time is:

56

4.1.4 Improvements

In practice, the algorithm can be improved by using a heuristic to reduce, in many

cases, the number of {-transitions considered by the {-removal algorithm. Consider

the transducer shown in Figure 4.4. In this figure, dashed transitions represent {­

transitions ereated by the {-dosure algorithm and plain transitions are the original

ones.

Figure 4.4: epsilon-dosme with useless transitions

Let eij E E be a transition from state qi to state qj. At state 0, the algorithm will

create a new transition e03 using the transitions-pair (e02' e23)' Then, the algorithm

will explore the state ql using the {-transition eOl. However, this exploration is useless

sinee there IS no non-E-transition going out from ql. In general, E-transitions going to a

state without non-{-transitions can be ignored by the algorithm sinee they are useless.

Now, consider the case of state ql. Note that this state does not have ingoing non­

E-transitions. Therefore, this state will be uneonneeted sinee it cannot be reached

in the resulting transducer. However, a new transition e13 will be created from the

transitions-pair (e12, e2S). This leads to useless computation since the state will be

uneonnected and thus, will be eliminated. In general, astate without ingoing non-E­

transitions ean also be ignored by the algorithm.

This hemistic does not change the complexity of the algorithm sinee in the worst

case, aH (-transitions are useful to obtain the good result. However, in practice, the

implementation of this heuristic can lead to a 20% improvement in the speed of the

algorithm.

4.1.5 Remarks

At the end of the pro cess , sorne states may become inaccessible as previously men­

tioned . These states can be removed in linear time using the connection algorithm

presented in section 3.3.

57

482 Determinization

This section describes a determinization algorithm. This algorithm can be used to

obtain a deterministic automaton from a non-deterministic one or a sequential trans­

ducer from a non-sequential one.

An automaton is deterministic if and only if for any input string w, the sequence

of states is unique. A transducer T = (Q,i,F,~i,~o,5,0',À,p), where 8 and 0' are

respectively the transition function and the output fun ct ion such as defined in chap­

ter 2, lS said to be sequential if it is deterministic from its input point of view. More

formally, T is sequential if and only if

18(q, a)! ::s; 1, Vq E Q, Va E ~i

where 18(q, a)1 is the number of transitions leaving the state q E Q with the input

label a E "Ei • Figure 4,5 shows an example of sequential transducer,

a:e/w

Figure 4.5: Example of a sequential weighted transducer.

Sinee in such transducers there is at most one transition labelled with any symbol

of the input alphabet, sequential transducers are computationally very interesting,

lndeed, using this kind of transducers ta perform a transduction implies that each

input string follows a unique path. Hence, the computation of the transduction de­

pends only on the length of the input string and not on the number of states and

transitions in the transducer.

The definition of sequential transducers can be generalized by introducing the pos­

sibility of generating an output string in final states, This final string works in the

same way as the accepting cost previously defined. Hence, the final output string is

EB-added to the usuai output string of the transducer. Usually, the EB-addition refers

to the concatenation of strings, This kind of transducer is called a subsequential

transducers. An example of such a transducer is shown in Figure 4.6.

58

e

Figure 4.6: Example of a subsequential transducer.

A subsequential transducer with more than one final output string in a same final

state 18 called p-subsequential, where p refers to the maximum number of final output

strings in any final state. Henee, a p-subsequential transducer allows several output

strings for a given input string.

Note that a p-sequential transducer can be easily converted into a transducer without

output strings. Indeed, a final output string scan be represented by a sequence of

Is\ consecutive transitions (q" E, al, p{qr) , q2), (q2, E, a2, 0, q3),'" ,(qlsl-l, E, alsl, 0, Qlsl)

where qlsl lS the new final state and qf is the oid final state transformed in a non­

final one. This new transducer is sequential up to the new transitions added in

the conversion process. Figure 4.7 shows the subsequential transducer of Figure 4.6

converted into a transducer without final string output.

Figure 4.7: Transducer without final output string equivalent ta the one shawn in
Figure 4.6.

Note that only one final state has to be added for aH eonverted final output strings

sinee aH sequences of transitions can reach the same final state.

4.2.1 Determinization i\.lgorithm

It is well known that any language described by a non-deterministic automaton can

also be described by a deterministic one. Hence, any automaton admits an equiv­

aIent deterministic automaton. The procedure used to construct the deterministic

automaton equivalent to a non-deterministic one is based on the subset construction

method. This method constructs the set of states of the deterministic automaton

with the power set of states of the input automaton. Then, transitions leaving these

states are computed. Consider the automaton A = (Q, i, F,:E, 0) shown in Figure 4.8.

59

a

Figure 4.8: Non-deterministic automaton A

The first step in constructing the deterministic automaton AD = (Q', i', F', L:, JI)

equivalent to A lS the construction of the set of states Q', which lS the power set of

Q, denoted P(Q).

Then, the initial state and the set of final states are defined. The initial state is the set

of aH states reachable by é-transitions from the initial state of the non-deterministic

automaton. In the example, the new initial state is i' = {qo}. The set of final

states is defined as the set of aH subsets containing at least one final state in A, thus

F = {{Q2}, {qo, Q2}, {qll q2}, {qI, q2, q3}} in the example.

Finally, the transition function JI (or the set of transitions) IS computed by calculating

for each set S ç: Q and for each symbol a E L: the transition function:

61(8, a) = U J(q, a).
"lES

The resulting automaton, without unconnected states, 18 shown in Figure 4.9. This

automaton describes the same language than A, i. e. the set of strings beginning by

a finite number of as and ending by b or c.

Figure 4.9: Deterministic automaton equivalent to A

This construction is used to prove that any automaton admits an equivalent deter­

ministic one. A formaI pro of based on it lS given in [24].

60

In eontrast to unweighted automata, not an transducers (including acceptors) admit

an equivalent sequential transducer. lndeed, a sequential transduction does not allow

unbounded delay [17]. For example, consider the transducer function f(w) which

outputs a1wl when Iwl lS even and b1w! otherwise. It is impossible to begin to write

the output string associated to the input one sinee its length is known only after the

input string has been processed.

Algorithm 14 shows the pseudo code of the determinization algorithm presented by

Mohri in [17]. This algorithm is a generalization of the power set construction de­

scribed before. In the classic algorithm, states are defined as a subset of states of

the input automaton. In the case of transducers (and acceptors), the subsets contain

pairs (q, x) where q ls a state of the original transducer and x lS the residual output

associated with q.

The algorithm is presented in the general case of semirings, applicable to many types

of transducers. For sim pli city, the algorithm will be described in the case where the

output symbol carried by transitions i8 a single element such as string-to-weight trans­

ducers. Thus, the algorithm takes as its input a transducer T = (Q, i, F, :E, 0, a, ..\, p)
and pro duces its sequential equivalent.

Algorithm 14 Determinization
Determinization(T)

1: Fo +- 0
2: ..\0 +- À

3: io +- (i,O)
4: Queue +-- {io}
5: while Queue =1 (0 do
6: qo +-- head[Queue]
7: if 3(q,x) E qo such that q E F then
8: Fo +- Fa U {qo}
9: p(qo) +- œ X 0 p(q)

qEF,(q,x)EQo

10: for eaeh a such that r(qo, a) =1 (/) do
11: o"o(qo, a) +-- Et) [x 0 œ

(q,x) Er(qo ,a) t=(q,a.u,'1')

12: OO(qOl a) +-- U {(qU, ES [ao(qo, a)J-l 0 x 0 a(t))}
'1'Ev(qo,a) (q,x,t)€'y(qo,a),n(t)=q'

13: if <>0(%' a) is a new state then
14: Queue +-- Queue U {oo(%, an

61

The notation used in this algorithm as described in [17], will now be presented. Given

a transition t = (q, a, 0", Q'), O"(t) denotes the output labeljweight carried by t and n[t]

denotes the destination state ql of the transition. Such as previously noted, astate

qo is made of a subset of pairs (q,x). The set of pairs (q, x) E qo having transitions

carrying the input label a is denoted by r(qol a). The set of triples (q, x, t) where

(q, x) lS a pair in qo for which q admits a transition t with the input label a is denoted

by 'Y(qz, a). And finally, the set of states fi that can be reached by transitions carrying

the input label a leaving states qo states subset is denoted by v(qo, a). More formally,

these sets are defined as

r(qol a)

'Y(qo, a)

v(Qo, a)

{(q, x) E qo 1 3t = (q, a, 0", Q') E E},

{(q,x,t) E qo x El t= (q,a,O",q') E E},

{Q' 1 3(q, x) E qo, 3t = (q, a, 0", Q') E E}.

The algorithm constructs the sequential transducer To = (Qo, io, Fo, :Eo , 00 , 0"0' Ào, Po)

as follows. The initial weight Ào IS the initial weight of T and the initial state io ls a

subset of one pair {(i,O)} (Hnes 1-2). A queue is used to maintain the set of subsets

qo waiting to be examined. This queue is initialized with the initial subset at line 3.

Recall that states of the resulting transducer are the subsets qo. A subset qo lS a final

state in the resulting transducer if qo contains at least one pair (q, x) such that q is

a final state in T, i.e. q E F. The accepting weight of qo 18 the EB-addition of aH

accepting weights of an final states in qo (lines 8-9).

Then, for each symbol a E :E such that there exists at least one state q of the subset

qo from which an outgoing transition carries the input symbol a, a new transition to

leaving qo and carrying the input symbol a is created (Hnes 10-14). The output symbol

carried by the transition lS computed as follows. For each transition t = (q, a, a, q'),

the ®-product of 0" and the residual output associated with q lS calculated. These

results are EB-added to form the output symbol carried by the new transition.

The destination state of to lS a subset made of pairs (q', x') where ql lS a state of qo

that can be reached by transitions carrying the input label a and x' is the residual

symbol associated with q'. The value of the residual symbol lS the EB-addition of an

62

output symbols carried by transitions reaching q' from states in qo and carrying the

input symbol a when they are combined by the ®-product. This operation is made

at Hne 12. Finally, the newly created subset is inserted in the queue if it 18 a new

state in Qo (Hnes 13-14).

Figure 4.10a shows an example of non-sequential string-to-weight transducer admit­

ing an equivalent sequential one. This transducer is defined over the tropical semiring

thus, the $-addition and the ®-product are respectively replaced in the pseudocode

of Algorithm 14 by the min operation and by the usuai addition of real numbers.

The resulting transducer 18 shown in Figure 4.10b. Note that the algorithm has

produced a transducer accepting the same input strings accepted by the original

one. However, only the smallest of weights associated with a given input string is

produced by the sequential transducer. This is because the algorithm has removed

the redundancies by combining the weights associated to the same input string. How

weights are combined depends on over which semiring the transducer is defined. In

the case of the tropical semiring, only the smallest one lS considered.

(a)

(b)

Figure 4.10: A non-sequential transducer (a) and its sequential equivalent (b)

63

Running Tirne Ana.lysis

The main loop of this algorithm (Hnes 5-14) is executed once for each state qo of the

output transducer. Recall that qo is a subset of states of the original transducer. In

the worst case, the output transducer will contain an possible subsets of Q, namely

the power set of Q. Therefore, the loop will be executed, in the woret case, 21Q1 times.

Hence, the running time of this algorithm is exponential to the number of states in

the original transducer, therefore O(2 IQ1).

4.2.2 Determinization of String-to-String Transducers

As noted before, Algorithm 14 has been presented in the general case of semirings;

therefore it can be appHed on transducers mapping strings to another type of output

symbols. In particular, it can be used to determinize weighted string-to-string trans­

ducers defined over the cross-product of a weight semiring and the string semiring.

RecaH that the cross-product of two semirings lS also a semiring. Figure 4.11a shows

a non-sequential weighted string-to-string transducer defined over the cross-product

of the tropical eemiring and the string semiring.

Since such transducers output pairs of string and weight, subsets are made up of

triplets (q,w,x) where q E Q IS a state in the original transducer, w E :E~ lS the

residual string and x E J(IS the residual weight. This situation lS illustrated in Fig­

ure 4.11b,

(a)

a:El1 c:Ell

(b)

Figure 4.11: A non-sequential transducer (a) and its 2-subsequential equivalent (b).

64

4.2.3 Notes on Implementation

To implement this algorithm efficiently, there are two critical points to take into ac­

count<

The first one is the loop beginning at line 10. This loop considers every input label

a such that there exists at least one state q in the subset qo from which there lS an

outgoing transition labelled with a. This implies that the program has to search in

transition sets of aH states in q2 to find both the next label to consider and aIl tran­

sitions labelled with it. This can be done by merging aH transitions in the same set

and then sorting it with respect to the input labeL Thus, the problem is reduced to

passing through the transitions composing this unique set. However, sorting an array

takes O(nlogn) time, where n is the number of elements. In the worst case, a subset

is made of aU states of the original transducer; sorting this set takes O(IEllog lEI)

time. This procedure has to be repeated for aH states of the output transducer, i<e.

0(2 IQ1) in the worst case.

A more efficient way consists Ïn sorting an transition sets with respect to the input

label, before performing the determinization algorithm. Since aU transition sets are

sorted, they can be merged in O(n) time, where n IS the number of transitions in an

states of the subset. Moreover, it is not necessary to perform the merge explicitly since

passing through transitions in the same way as does the merging procedure leads to

an efficient way of implementing the search of transitions carrying the input symbol a.

The second critical point that must be taken into account occurs at Hnes 13-14, in

which the new subset is inserted in the queue if it has not already been created. To

ascertain that, aU subsets created so far have to be maintained in a Hst. A naive way

to implement this is to use a data structure such as a linked Hst. However, to confirm

that the subset does not exist, the new subset has to be compared to aU other subsets

in the Hst. A more efficient structure for this problem lS a hashtable. Indeed, the

hashing function will spread out the subsets over the buckets of the hashtable, which

ensures that a manageable number of subsets will be compared to the new candidate.

An efficient hashing function will take into account aIl triples in the subset and aIl

elements of these triples.

65

4.2.4 Lazy Implementation

This algorithm allows a lazy implementation, also called an on-demand implementa­

tion. In the context of transducers, lazy implementation means that transitions of a

state in the resulting transducer are computed only when required. A lazy implemen­

tation of the determinization algorithm is possible sinee the creation of transitions

depends only on the subset from which transitions leaves. lndeed, transitions are cre­

ated considering only with respect to transitions of states q belonging to the subset.

Lazy Implementation is very advantageous when a large transducer is constructed

but only a small part of it has to be eonsidered [27].

For example, eonsider the k-shortest paths algorithm presented in section 3.4. This

algorithm outputs k-paths having the short est distance from the initial state to a

final one. However, it is possible that sorne input strings associated with these paths

are the same. In many applications sueh as speech recognition, it ls interesting to

obtain the k-unique-shortest paths, namely the k-paths having the short est distance

and describing a unique input string. This version of the k-shortest paths can be im­

plemented using the lazy implementation of the determinization algorithm. Indeed,

since a sequential transducer does not have, by definition, two transitions sharing

the same input label at the same state, applying the k-shortest path algorithms on

a determinized transducer will pro duce a set of k shortest-paths having a one-to-one

correspondence to the set of distinct input strings.

As noted before, not aU transducers can be determinized and in that case, the deter­

minization algorithm do es not terminate and thus cannot be used as a pre-processing

step. However, the shortest-paths algorithm explores only a finite part of the deter­

minized transducer and thus the lazy implementation can be used to expand those

states that are needed to compute the k unique shortest-paths. More details about

this approach can be found in [23].

Another advantage of the lazy implementation lB it can require less memory. Indeed,

transitions are computed only when they are needed by the operation that requires

them. Hence, when the operation does not use them any more, they can be deleted

and re-computed if necessary. Since transitions are a big part of the memory space

used by the transducer, the economy of memory can be substantiaL

66

4.3 Composition

A transducer represents a bînary relation between sequences of symbols (Chapter 2)

thus, the composition of two transducers computes their relational composition, Let

Tl : El --t ~ * and T2 : ~ * --t E~ be two relations represented by transdueers in

cascade as shown in Figure 4.12.

1

,

Ti
1 T2 l

Figure 4.12: A cascade of two transducers

This cascade can be interpreted as follows. The transducer Tl maps Et to ~ *. Thus,

the set ~ '" becomes the input of transducer T2 which itself maps .6.* to E~. Henee,

the general behaviour of the cascade i8 a new binary relation: Tl • T2 ; El --t E~.

In general, given a transducer Tl in which there is a path mapping sequence x to

sequence y and a transducer T2 in which there IS a path mapping sequence y to se­

quence z, the composition A e B has a path mapping x to z. The weight of this path

lS the 0-product of the weights of the corresponding paths in Tl and T2 [19].

The composition ls a key operation in transducer-based applications. It IS used to con­

struct complex transducers representing complex functions. For example, in the case

of speech recognition, the composition is used to construct the recognition network

needed by the recognition system. This network lS constructed by the composition

of different levels of representation with which transducers are associated.

4.3.1 Composition Algorithm

The composition algorithm lS a generalization of the classical construction of pairs of

states computing the automata intersection [24]. Recall that the intersection of two

languages LI and L 2 is defined as:

Thus, the intersection of two automata Al n A2 is a new automaton accepting any

string accepted by both the original automata.

67

Figure 4.13: Automata Al and A 2

Consider two antomata Al = (Qb il, FI, E, 8d and A2 = (Q2l i 2, F2' E, (2) snch as

those shown in Figure 4.13. In this figure, Al accepts aH strings containing at

least one a and A2 accepts all strings containing at least one b. The intersection

Al n A2 = (Q[, il, FIl E, DI) IS constructed considering pairs of states (p, q) where p

and q are respectively states in Al and A2 . The construction of Al works as follows.

The first step IS to define the set of states Qr. Since each state in AI is a pair (p, q),
the set of states QI lS the set of aIl possible pairs of states. More formally, the set of

states QI IS defined as QI = QI X Q2.

The initial state of Ar IS the pair (il, i2). The set of final states mnst be defined snch

that AI accepts if and only if both Al and A2 accept. Renee, the set of final states

IS the set of pairs (p f, qf) snch that P f E FI and ql E F2 ·

Finally, the transition fnnction has to be defined snch that 8j((p, q), w) is an accepting

state if and only if 8i(p, w) and 02(q, w) are also accepting states in Al and A2 • To

achieve that, a state (P, q) has a transition carrying the symbol a and going to (T, s) if

and only if there IS a transition carrying the symbol a from p to r in Al and another

one from q to s in A2 • Therefore, only transitions appearing in both transdncers are

considered. More formally, the transition fnnction of astate (q, p) is defined as

0(())={(Ol(p,a),02(q,a))
1 p,q, a 0

if 01(P, a) =1 0 A 02(q, a) =1 0
otherwise

VaE ~.

This construction is nsed in [24] to prove the correctness of the intersection. Fig­

ure 4.14 shows the antomaton resnlting from the intersection of Al and A2 when aH

nnconnected states are removed.

68

b

a,b

Figure 4.14: Automaton Al obtained by the intersection of Al and A2

As noted before, the composition of weighted string-to-string transducers lS a gener­

alization of state-pairs construction. The composed transducer TL • TR of two trans­

ducers TL = (QL' iL, FL' :EL,.6., EL, ÀL' PL) and TR = (QR' iR, FR,.6., ER, ER,),R, PR)
has pairs of states (l, r) and satisfies the following conditions [21]:

• its initial state IS defined as (iR , iL),

• the set of final states is defined as {(l, r) Il E FL and r E FR},

.. there IS a transition t from (l, r) to (l', r') for each pair of transitions tl and t T

such that the output symbol of tl matches the input symbol of tr.

Consider the transition te leaving the state-pair (tl, tr). The input symbol, output

symbol and weight carried by te are respectively the input symbol of tl, the output

symbol of tr and the 0-product of weights carried by tl and tr-

Algorithm 15 shows the pseudo code of the composition algorithm. In this algo­

rithm, transitions are combined using the 0-product associated with the semir­

ing over which the transducer is defined. The input of the algorithm are the two

transducers TL and TR to be composed and its output is another transducer Te =
(Qe, ie, Fe, :EL, ER, Ee,),e, pe).

69

Aigorithm 15 Composition
Composition (TL,T R)

1: Fe +- 0
2: Ee +- (/)
3: ie +- (iL, iR)
4: Àe +- ÀL ® ÀR

5: Pc +- PL 0 PR
6: Queue +- ie
7: whHe Queue"# (/) do
8: (l, r) +- head[Queue]
9: if l E FL and T E FR then

10: Fe +- Fe U (l, r)
11: Pc +- PL ffi PR(r)
12:

13: for each (l, (fi, E, W, li) E E[l] do
14: Ec[(l,r)] +- Ec[(l, r)] U ((l, r), (fi, E, W, ([l, r))
15: if (i', r) is a new atate then
16: Queue +- Queue U (l', r)
17:

18: for each (T, E, (Jo, w, ri) E E[r] do
19: Ec[(l, r)] +- Ec[(l, r)] U ((l, r), E, (Jo, W, (l, ri))
20: if (l, ri) is a new state then
21: Queue +- Queue U (l, ri)
22:

23: for each (tl, tr) E W(l, r) do
24: Ec[(l, r)] +- Ec[(l, r)] U ((l, r), O"i[td, (Jo[tr] , w[td 0 w[tr], (l', ri))
25: if (lI, ri) la a new state then
26: Queue +- Queue U (l', r')

70

The notation used in Algorithm 15 will now be described. Given a transition t =

(q, (Ji, (Jo, W, q'), (Ji[t] denotes the input symbol carried by t, (Jo[t) denotes the output

symbol carried by t and w[t] denotes the weight carried by t. w(l, r) denotes the set

of transitions pairs (tl l tl") such that (Jo[td = (Ji[tr], where tl is a transition in TL and

tr is a transition in T R. More formally, this set i8 defined as

The algorithm works as follows. Lines 1-5 initialize the resulting transducer. The

initial weight of both input transducers are combined using the 0-product to obtain

the initial weight of Tc. The initial state of Tc IS the pair of states (i!, il"). States to

be explored are maintained in a queue which lS initialized with the initial state (Hne 6).

The loop of Hnes 7-26 is executed for each state in the resulting transducer. Recall

that the states of Tc are the states-pair created by the algorithm. A state (l, r) is

extracted from the queue at Hne 8. The state lS a final state in Tc if both land r

are final in their respective transducers. The accepting cost of the final state lS the

0-product of p(l) and p(r) (Hnes 9-11).

Lines 13-16 deal with the case where state l has leaving transitions carrying an output

€-label. Recall that an output E means that no output label is generated when the

transition lS traversed. In the context of composition, this means that the transitions

of r could be matched with transitions of i', the destination state of the transitions

carrying an output E-label. Therefore, created transitions leaving (l, r) to (li, r) are

identical to transitions carrying an output €-label in l. The state (lI, r) lS inserted in

the queue if not already present.

Lines 18-21 deal with the case where state r has transitions carrying an input E-label.

Recall that an input t means that no symbol IS consumed when the transition lS tra­

versed. Thus, the transitions of l could be matched with those of ri, the destination

state of transitions with an input E. Therefore, created transitions leaving (l, r) to

(li, r) are identical to transitions carrying an output €-label in 1. The state (l', r) lS

inserted in the queue if not already present.

71

Lines 23-26 consider aU pairs of transitions (tl, tr) such that the output symbol of tl

matches the input symbol oftr. For every mat ching pair, a new transition from state

(l, r) to state (LI, ri), carrying the input symbol of tl, the output symbol of tl" and the

®-product of both weights is created. The state (lR, r') Ïs inserted in the queue if not

already present.

This procedure lS repeated until aU created states have been explored and expanded.

Figure 4.15 shows two transducers. Their composition ls shown in Figure 4.16.

Figure 4.15: String-to-string transducers TL and TR

Note that several paths can used to reach the final state from the initial one. Each

path represents a different way to deal with the E-transitions of the input transducers.

Figure 4.16: Tmnsducer Tc, resulting of the composition of TL and TR

72

However, this composition ls incorrect in the case of weighted transducers since the

weights associated to the possible successful paths could be added in as many times

as the number of distinct successful paths [19]. For example, the shortest-distance

algorithm, implemented in the real semiring, applied to the composition of the two

involved transducers leads to a wrong result since many paths will be considered

while there lS only one in the cascade made with the two original transducers.

To solve this problem, only one of those paths should be kept. To choose it, a fiUer TF

ls inserted between TL and TR - This fiUer has the effect of removing redundant paths.

Figure 4.17 shows one possible flIter. In this figure, x denotes any symbol in the al­

phabet and d and E2 are special markers which have to be inserted in TL and TR [19].

E2:e1 e1:ei

x:x

Figure 4.17: Filter Transducer

The fiIter works as follows. As long as the output symbol of TL matches the input

symbol of TR , the flIter remains in state 0 and the transitions are matched. If there

is an €-transition in TL, the fiUer moves to state 1. In this state, only E-transitions in

TL are considered. The fiIter remains in this state until a possible match occurs and

then returns in state O. Similarly, if there lS an €-transition in TR , the flUer moves to

state 2. In this state, only E-transitions in TH are considered. The filter remains in

this state until a possible match occurs and then returns in state O.

In Figure 4.16, bold transitions den ote the transitions retained by the filter and

dashed transitions denote those removed by the fiUer. Note that the resulting trans­

ducer contains only one successful path.

This fiUer can be implicitly implemented in Algorithm 15 with a small modification.

Instead of considering state-pairs, the algorithm could con si der triplets (l, r, 1) where

land r are the states of the original transducers and f lS the filter state. Then,

73

according to the value of the flUer, E-transitions are created or not. For example,

Hnes 13-16 should be replaced by:

if f =1= 2 then

for each (i, ai, E, w, li) E E[l] do

Ec[(l, r)] ~ Ed(l, r)] U ((i, r), ai, E, w, (lI, r))
if (l', r) is a new state then

Queue ~ Queue U (li, r , 1)

In this example, E-transitions from TL are created only if the state extraeted from the

queue IS not in state 2 of the filteL Then, the destination state of the E-transition is

(l', r, 1) sinee an E-transition of TL lS created.

Not an states of the resulting transducer are conneeted. Thus, the eonneetion algo­

rithm should be applied on it to remove useless states.

Running Time Analysis

In the worst case, aH state-pairs 0, r) will be ereated. Thus, the loop of Hnes 7-26 i5

executed IQLI . IQRI times. In this loop, transitions are considered. The creation of

E transitions is straightforward and depends only on the number of E-transitions in

TL and TR . Thus the running time of both loops at Hnes 13-16 and Hnes 18-21 take

respectively O(IEL.I) and O(IER.I) time.

The running time of the loop at Hnes 23-26 depends on the time required for comput­

ing the set w. This IS a well known problem caHed the relation join. If the transitions

ofTR are sorted with respect to the output label and transitions of TL are sorted with

respect to the input label, this operation can be done in O(\ELllog 1ER\) if a binary

search i8 used. Therefore, the running time of the algorithm is

74

4.3.2 Notes on Implementation

There i8 one critical point in the implementation of the composition algorithm and

it is the computation of the set of pairs of transitions which can be matchedo In

the algorithm, this operation 113 denoted by '11(l, r)o This consists in computing the

relational joïn between transitions in Edl] and those of ER[r]o The naive way to

compute that is a nested Ioop to compare symbols of an possible pairs of transitionso

The running time of this method lS O(IEdlH·IER[r]I).

A more efficient method assumes that the transitions of TL are sorted with respect to

the output symbol and transitions of T Rare sorted with respect to the input symboL

This method consists in passing through aU transitions in EL[l] and performing a

binary search in ER[r] to find matching transitions. Since the binary search runs in

O(logn), the running time of this method 113 O(IEL[l]llog IER[r]!) 0

In practice, the speed can yet be improved. Indeed, if the number of searches 18 mini­

mized, the speed of the algorithm will be improvedo Accordingly, if IEL[l]l ~ IER[rH,
then it 113 more efficient to pass through transitions in EL[I] and searching in ER[rl
On the other hand, if IEL[l]l ~ IER[rll, then it 18 more efficient to pass through tran­

sitions in ER[r] and searching in Edl]o

Another critical point occurs when a new states-pair have to be inserted in the queue.

This new pair is inserted in only if the state lS indeed a new one. To assess that, a11

pairs created 80 far have to be kept in a set. A naive Implementation is via a data

structure such as a linked lÏ8t. However, to ascertain that the pair does not already

exist, it has to be compared to aU other pairs in the listo A more suitable and efficient

structure for this purpose Is a hashtable. lndeed, the hashing function will spread out

the pairs over the buckets of the hashtable, ensuring that a more reasonable number

of pairs i8 compared with the new candidate.

4.3.3 Lazy Implementation

As is the case for determinization, the composition algorithm admits a lazy imple­

mentation, lndeed, the transitions leaving a state of the resulting transducer are

computed only through the states-pair representing this stateo

75

4.4 Summary

This section has presented three important operations to work with finite-state trans­

ducers:

® Epsilon-removal which removes the E-transitions in a transducer resulting in

a more efficient one since epsilons induce a delay in their use (recall that an

epsilon does not consumejgenerate a symbol).

® The Determinization which creates a new deterministic (or sequential) trans­

ducer. RecaH that a sequential transducer contains at most one sequence of

states for any input string. Thus, the complexity depends only on the length

of the input string and not on the size of the transducer.

® The composition which is a generalization of the intersection in automata the­

ory. This operation is very important since it allows one to create complex

transducers from simpler ones.

These operations allow the creation of efficient and complex transducers which are

applicable in many different areas of computer science. The next chapter gives an

example of transducers applied to speech recognition.

76

Chapter 5

Application of FST : Speech

Recognition

Traditional speech recognition systems such as HTK are constructed using weighted

automata. In speech recognition, the recognition network has many levels of represen­

tation. For example, possible sentences are represented by sequences of words which

are themselves represented by sequences of phonemes. In the context of automata,

these different representations are implemented using the substitution operation. For

example, in the graph of words, a transition for a given word W IS substituted by

a subgraph representing its phonetic sequence. The major disadvantage of this ap­

proach lS that a change in the network (for example, the addition of a new level of

representation) implies that the program performing the search in the recognition

network also has to be updated.

The composition operation allows FST to represent many levels of representations in

a normalized way. Therefore, the recognizer can work on different recognition net­

works (with different levels of representation) without modifying the program itself.

This chapter presents how weighted transducers are used to construct a speech recog­

nition system. The chapter begins by the description of each level of representation

involved and how transducers implement them. Then, the method used to construct

the knowledge network lS discussed. FinaUy, the results obtained by experimentations

are given.

77

Speech recognition i8 the proce8S by which a computer identifies spoken words by

analysing the speech signaL To achieve this, it is assumed that the speech signal is a

sequence of symbols composing a message. These symbols are called speech vectors

or observations and are extracted from the speech signal at regular intervals. The aim

of speech recognition lS to map a sequence of vectors of observations to a sequence of

symbols such as words, syllable8 or phonemes.

Let 0 = {OI, 02, ... ,Ot} be a sequence of observations where 0t lS the speech vedor

at time t. The speech recognition problem ls to find the message w that maximizes

P(wIO). Since this probabHity 18 not directly computable, Bayes's Rule is used :

P('10) = P(Olw)P(w)
w P(O) (5.1)

where P{w) lS the probability associated to the language model and P(Olw) lS calcu­

lated using parametric models, the most commonly used in speech recognition being

the Hidden Markov Model (HMM). Since P(O) is constant for a given sequence of

observations and only the arg max matters, this probability is not considered.

From the transducer's point of view, P(Olw) i8 a transduction between the message

and observations. This transduction may involve several stages relating different lev­

els of representation.

1 H
1

Acoustic MOdels

1

1

C

Phones
COilstraints

i

1
D

1

Dictionary

G

language
Model

Figure 5.1: Transducers involved in speech recognition

Figure 5.1 shows the usuai cascade of transducers used in speech recognition. Other

intermediate transducers can be added to the chain. For example, transducers rep­

resenting phonological rules should be added between transducers C and D.

The meaning of each transducer will now be described.

78

5.1 Transducers lnvolved in Speech Recognition

5.1.1 Transduce:r 0

This string-to-weight transducer maps, for each observation Dt, every probability

distribution function (PDF) di to the probability that di generates Dt. For each

observation at a given time t, a set of transitions carrying a distribution identification

di and the probability w that the observation was generated by this distribution, is

created. Figure 5.2 shows how this acceptoI should be implemented.

Figure 5.2: Observations transducer

The calculation of the PDF can be done in many ways. For example, neural networks

or support vector machines could be used to compute this probability. However,

the most widely used procedure represents each distribution by Gaussian mixture

densities. The probabiHty that Dt is generated by di, given a mixture of Gaussian

densities, is given by:

where M lS the number of Gaussians in the mixture, Cm lS the weight of the Gaussian

m, !Ji lS the mean vector and Ei is the covariance matrix associated with distribution

i. More details about Gaussian mixture densities and how they are computed can be

found in [4]

In practice, this transducer lS not really implemented. The recognition pro cess per­

forms an on-demand composition of transducer 0 and HCDG thus, transitions of 0

(represented implicitly) are created only when they are required for composition.

79

5.1.2 Transducer H

Transducer H represents the constraints imposed by modeling method used in speech

recognition caHed, HMM for Hidden Markov Model. HMMs can be used to model

phonemes, syllable, words or any larger speech unit. Usually, context-dependent

phone mes are used as the speech unit. A triphone lS a phoneme modeled according

its neighbours. Triphones are denoted a - b + c where b is the modeled phoneme, a

and b are the neighbouring phonemes of b.

Transducer H maps a sequence of distributions to a sequence of triphone models (or

of any other speech unit). Each triphone is typically modeled with 3 HMM states.

Transitions in a HMM carry a distribution index as an input symbol, the transition

weight and no output symbol except for the transition leaving the HMM which caf­

ries the triphone model associated with the HMM. Figure 5.3 shows the transducer

H which 18 the union of an triphone models.

Figure 5.3: Observations to HMM transducer.

In this figure, p denotes transition probabilities involved in HMMs, a - b + c is a

triphone model and di is a distribution.

Note that the self loop present on each state in the HMM can be omitted from the

transducer and implemented implicitly in the decoder.

80

5.1.3 Transducer C

In practice, the number of triphones to model can be very high. Indeed, in English,

there are 36 phonemes and thus the number of possible triphones lS 363 , In order to

avoid modelling an triphones, only sorne of them are modelled with a HMM. Mod­

elled triphones are called physical triphones and the others are referred to as logical

triphones,

Logical triphones are mapped to physical ones according to a set of rules. This proceS8

is usually done using a decision tree, The first goal of transducer C i8 to implement

this mapping. Figure 5.4 shows how this transducer is constructed,

a-b+c:d-s+1

Figure 5.4: Transducer mapping physical triphones ta logical anes,

The transducer has a self Ioop transition for every triphone, The input symbol lS a

triphone, physical or logical, and the output symbol 18 the physical triphone asso­

ciated with the input one, Thus, when the input triphone is a physical model, the

output symbol is the same triphone.

The second goal of transducer C is to map a sequence of triphones to a sequence of

phonemes. However, not aU triphone sequences are allowed. A sequence of triphones

A, B is aHowed if the terminal pair of triphone A matches the pair at the beginning

of triphone B. For example, the sequence a - b + c, b - c + d, c - d + e is aHowed while

a - b + c, c - d + e lS not, Figure 5.5 shows how this restriction IS implemented with

a transducer.

:c
:a

a-b+c:b

:a

:b

Figure 5.5: Transducer implementing triphones constraints,

81

Each state of the transducer implements a "memory" of the two previous phonemes

in the sequence. Transitions leaving a state are those for which the two first phonemes

composing the input triphone correspond to the state memory. AU ingoing transitions

of a state carry an input symbol such that the terminal pair coincides with the memory

represented by this state.

5.1.4 Transducer D

In the context of speech recognition) the dictionary ls a lÏst of words with their

phonetic transcriptions. Thus, the dictionary transducer implement the function

D : p* ---+ w which maps sequence of phonemes p to words w.

A string-to-string transducer is used to represent this relation. Figure 5.6 shows how

this transducer is constructed,

Figure 5.6: Dictionary Transducer

In this figure, p is any phoneme and w is a word in the dictionary. The f-transition

leaving the final state to the initial state has been added to allow sequences of words.

However, this loop transition induces an unbounded delay in the transducer when

two words have the same pronunciation (homophones). This point will be discussed

later.

82

5.1.5 Transducer G

Transducer G represents the language modeL The language model gives a priori in­

formation about the probability of sequence of words (P(w))o The transducer shown

by Figure 5.7 implements a trigram mode!. In this model, the probahility of a word

given the two preceding words in the sequence lS denoted p(w3IwIW2).

However, it is possible that a triple of words was not in the text used to train the

language modeL In this case, the probability of the word given the preceding word

(p(w31w2)) added to a penalty 1/Jwlw2 caUed the back-off penalty is usedo Similarly,

the unigram probability added to the back-off penalty is used when the bigram is

also not availabk

Figure 507: Language lvIodeZ Transducer

In transducer G, each state encodes a "memory" oftwo, one or no words. Transitions

leaving astate q carry a word and the probability of this word given the words in

the memory of q. In Figure 5.7, rpwlw2 denotes the back-off penalty for going to a

unigram state (state with only 1 word memory)o

Transducers can be used to describe other N-gram models snch as bigram or 5-gram.

They can also be used to describe other types of language models snch as grammar

based syntactic structure.

83

5.1.6 Phonological Rules

In natural language, some phonological phenomena at the boundary of words such

as the deletion or the insertion of phonemes happen frequently, These phenomena

can be modelled with a transducer which can be inserted in the chain of transducers.

An example of a pholonological rule is that when the last phoneme of a word IS t

and the first phoneme of the following word lS y, then t and y can be optionally

replaced by the single phoneme ch. This rule appHes to words "got you" which can

be pronounced in two ways:

g aa t = Y uw

g aa = ch uw

where the symbol = denotes the word boundary. Figure 5.8 shows how this phono­

logical l'ule can be implemented by a phoneme-to-phoneme transducer.

x:x

y:ch

Figure 5.8: Transducer representing a phonological rule.

In thïs figure, the symbol x represents aIl phone mes in the language and the symbol

= is the word boundary. This transducer can be described as follows. An sequences

of phonemes are accepted by the transducer thanks to the self Ioop at the initial

state. Moreover, the sequence t = Y lS replaced by the phoneme = ch since the tran­

sition leaving qo removes the phoneme t if it lS foUowed by a word boundary and the

phoneme 'y i8 replaced by ch if it follows the phoneme t and the word boundary. Thus,

both sequences are accepted by the transducer which represents the phonological rule.

As noted before, phonological rules can easily be modelled in the recognition net­

work by adding the transducers describing them in the chain of transducers between

transducer C and transducer D.

84

5,,2 Transducers combinat ion

The transducer HCDG is constructed u8ing the composition operation. However, in

the case of a large vocabulary system, the intermediate results grow very rapidly and

there is not enough memory to perform the composition. The problem 18 solved by

u8ing the determinization operation sinee in the case of transducers used in speech

recognition, the determinization considerably decreases the number of states and

transitions which is due to redundancy.

Therefore, the creation of HCDG proceeds in several steps. The transducer DG lS

obtained by the composition D. Gand it has to be determinized. RecaH that trans­

ducer D maps sequences of phonemes to words. The presence of homophones makes

transducer DG not determinizable since an unbounded delay lS introduced. Indeed,

The presence of homophones allows for two different words for the same sequence

of phonemes. To make determinization possible, auxiliary phoneme symbols are in­

troduced to distinguish homophones. Figure 5.9 shows an example disambiguated

dictionary.

Figure 5.9: Disambiguated Dictionary Transducer

Auxiliary symbols are denoted #i in the figure. Now, the transducer DG can be

determinized and minimized. The next step IS the composition C Gl DG. However,

the composition will fail since the auxiliary symbols added in D are unknown by C.

Therefore, the markers have to be propagated along the cascade by adding to each

state oftransducer C a selfloop (q,#i,#i,O,q) for aH i.

85

If the transducer C introduces new arnbiguities, other auxiliary syrnbols have to be

used. The sarne operations are repeated for an steps of the construction of HCDG.

Thus, the construction of HCDG is cornputed by

HCDG = Min(Det(H @ Det(C @ Det(D @ G))))

where Min denotes the rninimization operation and Det 18 the determinization opera­

tion. Auxiliary symbols added during the construction of HCDG have to be removed

at the end. The transducers shown in Figure 5.10 remove auxiliary symbols at the

input and output by composing thern with HCDG as foUows: L@ HCDG @ R.

x:x x:x

Figure 5.10: Transducers used to remove auxiliary symbols

In this figure, x denotes aU non-auxiliary symbols.

5.3 Experiments

An implementation of the algorithms described in earlier chapters has been used to

construct the recognition transducer for a French vocabulary of 20000 words on the

BREF database [9]. The transducer has been constructed as outlined before using

these models:

® Accoustic models of 6013 distributions each modeled with a mixture of 8 Gaus­

sians, speaker-independent and gender-independent.

® 17997 models of context-dependent triphones.

® Dictionary of 20000 pronunciations

@ Trigram language model of 79845 trigram probabilities, 311131 bigram proba­

bilities and 20003 unigram probabilities.

86

Transducer Il # of states 1 # of transitions 1

D 588518 6744116
G 124587 1020488

D@G 1439910 2903364
Det(D ® G) 1108514 2268297

C ®Det(D ®G) 1812045 5168839
Det(C ® Det(D @ G)) 1885965 5571984

H ® Det(C @ Det(D ® G)) 9148639 13278375
Det(H ® Det(C ® Det(D ® G))) 8771686 , 11781976

Min(Det(H ® Det(C ® Det(D @II G)))) 6095031 9073327

Table 5.1: Size of transducers used to construct the recognition network

Intermediate transducers have been determinized at each step of the construction of

HCDG. Table 5.1 gïves the size in number of transitions and number of states of an

intermediate and final transducers.

The minimization operator is in fact the compaction of transducer such as described

in Chapter 2. In order to increase the speed of the recognizer, the final transducer

has been sorted topologically with respect to input E-transitions, and its weights have

been pushed toward the initial state.

5.3.1 Results

The recognition network has been used to perform recognition on 576 sentences spo­

ken· by 87 different speakers. A beam of 130 has been used. The computer used was

Pentium III running 700 MHz running under Linux. Results are gïven in Table 5.2.

Accuracy on words 1 78.82 % 1

X.' real-Ume 2x

Table 5.2: Results of the recognition task

These results correspond to those obtained with a traditional speech recognition sys­

tem [6]. However, the transducer-based system has several advantages compared to

the traditional one.

87

First of aU, the transdueer approach lS more flexible since it represents a general

framework. Indeed, aH speech knowledge is expressed with the same representation

and thus, the decoder does not have to be modified when a new level of representation

is added to the chain of transducers. This leads to a simpler implementation of the

Viterbi decoder. Indeed, when a new level of representation is added in a traditional

system, the decoder has to be modified to take it into account.

Another advantage is that the optimization algorithms, such as determinization and

minimization, are applied to the entire network whereas in traditional recognizer,

optimizations are only applied to local parts of the network [13].

A disadvantage of transducers 18 that the recognition network construction requires

lots of memory sinee it is entirely constructed. The intermediate transducers are

often very big and thus the optimization operations take a lot of memory. In tradi­

tional systems, sorne parts are constructed statically and other parts are constructed

during the recognition procedure which helps save memory sinee only sorne parts of

automata have to be used.

594 Summary

This chapter has presented how finite-state transducers can be used to build a speech

recognition system. The main points presented in this chapter are:

.. Transdueers used to construct the knowledge network.

@ How transducer operations can be used to construct and optimize the knowledge

network.

@ The advantages and disadvantages of the transducer approach over the tradi­

tionaI ones.

88

Chapter 6

Conclusion

The purpose of this work was to describe the algorithms implementing operations

on weighted finite-state transducers. These algorithms have been described in the

general case of semirings which permit their use with any transducer representing a

binary relation mapping a sequence of input symbols to a sequence of output symbols

associated with weights.

The following important algorithms have been presented:

Composition:

Composition is an essential operation since it allows to construct complex trans­

ducers from smaller ones, each of which represents a different level of represen­

tation and whose sequence form a cascade of binary relations. The resulting

transducer is equivalent to this cascade in the sense that its binary relation is

the same as that represented by the cascade.

Determinization

Determinization can be used to decrease the transducer's size when it con­

tains redundancies. This operation ls also used to prepare the transducer for

minimization which results in the smallest transducer describing the language.

These operations are often used to optimize transducers in the composition

process, which can le ad to considerable memory savings.

89

Epsilon-removal

Transducers produced by several operations are often the result of various com­

plex operations introducing E-transitions. These transitions have the disadvan­

tage of indueing a delay in the input symbol proeessing, which ean lead to an

explosion of transitions in the composition process. This operation 113 applied

to remove these kinds of transitions without altering the language described by

the transdueer.

Weight-pushing

In pruning-based applications, this optimization lS quite important sinee the

distribution of weights along the paths have a big influence on their execu­

tion. The Viterbi decoder IS a good example of such an application sinee the

distribution of weights ean lead to a 40% improvement in execution speed.

An example of the use of these operations has been given via a description of a speech

recognition system based on transducers. The accuracy obtained with this system lS

comparable to that obtained with traditional systems.

The major advantage of the transducer approach lS its fiexibility. Indeed, aU speech

knowledge lS expressed with the same representation and thus, the decoder does not

have to be modified when a new level of representation is added to the chain of trans­

ducers. This leads to a simpler Implementation of the Viterbi decoder.

Another advantage lS that the optimization algorithms, such as determinization and

minimization j are applied to the entire network whereas in traditional recognizers,

optimizations are only applied to local parts of the network. This often leads to faster

systems [13].

90

Glossary

Alphabet A finite set of symbols.

Binary relation Function mapping a sequence of symbols to another sequence of

symbols.

Connected state Astate reachable from the initial state and which can reach a

final state.

Cycle A cycle is a path VI ~ Vz such that VI = V2'

E-cycle An E-cycle is cycle containing only E-transitions.

DFA Deterministic Finite-State Automaton. A FSA in which any input string has

a unique sequence of states.

DFS Depth-First Search. Search strategy which consists in exploring a transducer

deeper whenever it is possible,

Epsilon transition Transition for which no symbol lS consumed or generated.

FSA Finite-State Automaton. Useful model used in computer science consisting of

a finite set of states connected with transitions.

FSM Finite-State Machine. See FSA.

FST Finite-State Transducer. A FSA which outputs a string. Transitions in FST

carry an output symbol in addition to the lisuaI input symbol of FSA transitions.

HMM Hidden Markov Model. System used to make models in speech recognition.

Language A set of strings.

Language Model Model given a prîori information about sequences of words.

91

Monoid A set with a binary operator and a neutral element over this operator.

NFA Nondeterministic Finite-State Automaton. A FSA which IS not deterministic.

Path A sequence of states connected by consecutive transitions.

Path weight Weight associated to a path.

Phonological :rule Rule representing words boundary phenomena.

see Strongly Connected Component. A SCC is a set of states in which there exists

a path between an combination of states.

Semiring A set together with two binary operators and two neutral elements.

Set A group of elements represented as a unit.

State States are the basic elements of FSA. There are three types of states: initial,

final and normal states.

String A sequence of symbols.

Transduction Function mapping an input string to an output string.

Transition A transition connects a source state to a destination state. It cardes an

input symbol and should, in addition, carry either an output symbol, a weïght

or both.

Transitive dosure Extension of the transition function such that if there lS a tran­

sition between state qI and q2 and another one between q2 and qa then, there

is a transition between ql and q3 in the extended transition function.

E-t:ransitive dosu:re Transition dosure which takes into account only E-transitions.

WFSA Weighted Finite-State Automaton. FSA which outputs a weight instead of

a simple acceptjreject value.

WFST Weighted Finite-State Transducer. Transducer which outputs a weight in

addition to the output string.

92

eferences

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The design and analysis of computer

algorithms. Addison Wesley, 1974.

[2] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers Princip le, Techniques and

Tools. Addison Wesley, 1986.

[3] AT&T. FSM Library. http://www.research.att.comjswjtoolsjfsmjtech.htmL

[4] C. Becchetti and L.P. Ricotti. Speech Recognition, Theory and C++ Implemen­

tation. Wiley, 1999.

[5] R. Bellman. On a routing problem. Quaterly of Applied Mathematics, 1958.

[6] G. Boulianne and P. Dumouchel J. Brousseau, P. Ouellet. Le système de RAPT

du CRIM. In 12e Congrès francophone A FR IF-A FIA de Reconnaissance des

Formes et Intelligence Artificielle (RFIA 2000), 2000.

[7] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT

Press: Cambridge, 1992.

[8] E.W. Dijkstra. A note on two problems in connexion with graph. Numerische

Mathematik, 1959.

[9] J.M. Dolmazon, F. Bimbot, M. El Beze, J.C. Caerou, J.Zeiliger, and M. Adda­

Decker. ARC BI - Organisation de la première campagne AUPELF pour

l'évaluation des système de dictée vocale. JST97 FRANCIL, 1997.

[10] David Eppstein. Finding the k short est paths. In IEEE Symposium on Founda­

tions of Computer Science, pages 154-165, 1994.

[11] L.R. Ford and D.R. Fulkerson. Flows in network. Princeton University Press,

1962.

93

[12] J. Gross and J. Yellen. Graph Theory and its Application. Zipper Books, 1999.

[13] S. Kanthak, H. Ney, M. Riley, and M. MohrL A comparison of two LVR search

optimization techniques. In Proceedings of the International Conference on Spo­

ken Language Processing 2002 (ICSLP '02),2002.

[14] W. Kuich and A. Salomaa. Semirings, automata, languages. Number 5 in EATCS

Monographs on Theorical Computer Science, 1986.

[15] E.Q. V. Martins, M.M.B. Pascoal, and J.L.E. Dos Santos. The k shortest paths

problem. International Journal of Foundations of Computer Science, June 1998.

[16] E.Q.V. Martins, M.M.R Pascoal, and J.L.E. Dos Santos. A new improvement

for a k short est paths algorithm. Investigacao Operacional, 2000.

[17] M. MohrL Finite-state transducers in language and speech processing. Compu­

tational Linguistics, 1997.

[18] M. Mohri. Generic epsilon-removal algorithm for weighted automata. In Proceed­

ings of the Fifth International Conference on Implementation and Application

of Automata (CIAA '2000), 2000.

[19] M. Mohri, F. Co N. Pereira, and M. Riley. Weighted automata in text and speech

processing. In Proceedings of the 12th biennial European Conference on Arlificial

Intelligence (ECAI-96), Workshop on Extended finite state models of language,

1996.

[20] M. Mohri, F.C.N. Pereira, and M. Riley. Weighted finite-state transducers in

speech recognition. In Proceedings of the ISeA Tutorial and Research Workshop,

Automatic Speech Recognition: Challenges for the new Millenium (ASR2000),

2000.

[21] M. Mohri, F.C.N. Pereira, and M. Riley. Weighted finite-state transducers in

speech recognition. Computer and Speech Language, 2002.

[22] M. Mohri and M. Riley. A weight pushing algorithm for large vocabulary speech

recognition. In Proceedings of the 7th European Conference on Speech Commu­

nication and Technology (Eurospeech '01), 2001.

94

[23] M. Mohri and M. Riley. An efficient algorithm for the n-best-strings problem.

In Proceedings of the International Conference on Spoken Language Processing

2002 (ICSLP '02), 2002.

[24] J.E. Hopcroft R. Motwani and J.D. Ullman. Introduction to Automata Theory,

Languages f:j Computability Second Edition. Addisson-Wesley, 2000.

[25] D. O'Shaughnessy. Speech Communications. IEEE Press, 2000.

[26] F.C.N. Pereira and M.D. Riley. Finite State Language Processing, chapter Speech

Recognition by Composition of Weighted Finite Automata. MIT Press, 1997.

[27] M. Mohri F.C.N. Pereira and M. Riley. The design principles of a weighted

finite-state transducer library. Theoretical Computer Science, January 2000.

[28) W. Pijls and A. Kolen. A general framework for shortest path algorithms. In

Discussion Paper. Erasmus University Rotterdam, 1992.

[29] J-E. Pin. Tropical semirings. In Idempotency. Cambridge University Press, 1998.

[30] S. Sedgewick. Algorithms in C++ Part 5: graph Algorithms. Addison Wesley,

2002.

[31] M. Simon. Automata Th eory. World Scientific Publishing Co. Pte. Ltd, 1999.

[32] M Sipser. Introduction to the theory of computation. PWS Publishing Company,

1997.

[33] R.E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on

Computing, 1(2), 1972.

[34] M. Thorup. On RAM priority queues. In SODA: ACM-SIAM Symposium on

Discrete Algorithms (A Conference on Theoretical and Experimental Analysis of

Discrete A 19orithms) , 1996.

[35] S. Zhang. Weighted finite-state transducers in speech recognition: A compact ion

algorithm for non-determinizable transducers. Master's thesis, Université de

Montréal, To be submitted,2002.

95

