In compliance with the
Canadian Privacy Legislation
some supporting forms
may have been removed from
this dissertation.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the dissertation.

Finite-State Transducers and
Speech Recognition

School of Computer Science
McGill University, Montreal

A Thesis submitted to the faculty of Graduate Studies
and Research in partial fulfillment of the requirements
for the degree of Master of Science

Patrick Cardinal
March 2003

3

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

| Lol]

Canada

Your file Votre référence
ISBN: 0-612-88170-9
Our file Notre référence
ISBN: 0-612-88170-9

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

Abstract

Finite-state automata and finite-state transducers have been extensively studied over
the years. Recently, the theory of transducers has been generalized by Mohri for the
weighted case. This generalization has allowed the use of finite-state transducers in a
large variety of applications such as speech recognition. In this work, most of the al-
gorithms for performing operations on weighted finite-state transducers are described
in detail and analyzed. Then, an example of their use is given via a description of a

speech recognition system based on them.

Acknowledgment

I would like to thank my supervisor Gerald Ratzer for his guidance and encourage-
ment throughout my stay at McGill University. This has been greatly appreciated.

I also truly thank Pierre Dumouchel who has accepted to co-supervise this work and
allowed me to work on its relevant topic. The CRIM has provided me with a won-
derful research environment.

I thank all members of the speech recognition group at CRIM. More particularly,
Michel Comeau, Gilles Boulianne and Pierre Ouellet for their comments and help
in the writing of this thesis; with Gilles I have especially had various constructive
discussions about this work and other topics.

I thank also Marc Boulé for his ecouragement and help on various topics.

Résumeé

La théorie des machines A états finis et des transducteurs & états finis est un su-
jet qui a été étudié en détail depuis plusieurs années. Récemment, la théorie des
transducteurs a été généralisée par Mohri au cas des transducteurs pondérés. Cette
généralisation a permis I'utilisation des transducteurs a états finis dans une grande
variété d’applications comme, par exemple, la reconnaissance automatique de la pa-
role. Dans ce travail, plusieurs algorithmes permettant la manipulation des transduc-
teurs 3 états finis pondérés sont décrits et analysés en détail. Ensuite, un exemple
de leur utilisation est donné en présentant un sytéme de reconnaissance de la parole
basé sur les transducteurs.

Contents

1 Introduction 1
2 DBasics of Finite-State Transducers 3
2.1 Alphabets, Strings and Languages 4
2.2 Semiring o e 4
2.3 Formal Power Series 6
2.4 Automata e e e e e e e e e 7
2.41 Weighted Automata 8
2.4.2 Epsilon Transitions 10
2.43 DeterminiSm. e 10
2.4.4 Equivalence of Automata 11

2.5 Finite-State Transducers 11
2.5.1 String-To-String Transducers 12

2.5.2 Weighted String-To-String Transducers 13

2.5.3 Epsilon Symbols in String-To-String Transducers 14
2.5.4 Sequential Transducers 14

2.6 Operations on transducerso e e 15
26.1 Union e e 15
2.6.2 Comcatenation e 16
2.6.3 Connection i e 16
264 Reverse e e e 17
2.6.5 RemovingEpsilons 18

2.6.6 Composition e e 19
2.6.7 Determinization Lo Lo 20
2.6.8 Minimization 20
2.6.9 Other Operations 22

2.7 SUmmary e e e e e e e e e e e 22

3 Basic Algorithms
3.1 Union e e e e e e e e e e e
3.2 Concatenation e
3.3 Depth-First Search Algorithms.
331 TopologicalSort.
3.3.2 Connection (Trimming)
3.4 Shortest-Paths Algorithms
3.4.1 Shortest-Distance Algorithms
3.4.2 Shortest-Paths Algorithms
3.5 Weight Pushing
3.6 Summary e e e e e e e e e
4 Advanced Algorithms
4.1 Epsilon Removal e
41.1 Epsilon-Closure L.
4.1.2 Epsilon-Closure in AcyclicCase
4.1.3 Epsilon-Removal Algorithm
414 Improvements
415 Remarks
4.2 Determinization
4.2.1 Determinization Algorithm L
4.2.2 Determinization of String-to-String Transducers
4.2.3 Notes on Implementation.
424 Lazy Implementation
4.3 CompoSition i e e e e e e e
4.3.1 Composition Algorithm
4.3.2 Notes on Implementation.
43.3 Lazy Implementation
4.4 SUIMIATY . -« « v v o v e e e e e e e e e e e e e e e e
5 Application of FST : Speech Recognition
5.1 Transducers Involved in Speech Recognition
5.1.1 Transducer O JE S
512 Transducer H
513 Transducer C
514 Transducer D

ii

23
24
26
28
29
31
36
37
41
46
49

50
51
51
53
55
57
87
58
59
64
65
66
67
67
75
75
76

51.5 Transducer G i i e e e e e e e e e

5.1.6 Phonological Rules
5.2 Transducers combination

5.3 Experiments0 ce e oo i e s s e
531 Results. . . o . v o v i e e e e e e e e e e e e e e e
54 SUIMIMATY . v « ¢ ¢ o v v v o o e e e e e e e e e

8 Conclusion
Glossary

References

........................

uuuuuuuuuuuuuuuuuuuuuuuuu

il

89

91

93

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2

Finite automaton with two states
FEzample of a string-to-weight transducer
Automaton with e-transitions oo
Non-deterministic and deterministic outomata
Example of a string-to-string transducer
Ezample of a weighted string-to-string transducer
Ezample of a transducer using epsilons.
A non-sequential and a sequential transducer
Ezample of weighted transducer union
Ezxample of weighted transducer concatenation
Ezample of trimming
FExample of transducer reversal
Ezample of removing epsilons on a transducer
A cascade of two transducers
Ezample of transducer composition
Ezample of transducer determinization

Example of transducer minamization

Result of the union of two transducer by FSTUnion.
Result of the concatenation of two transducer by FSTConcatenation. .
Ezample of DFS execution,
Transducer with accessible and coaccessible states.
Transducer without unconnected states.
Ezample of cyclic transducer for which Algoritm 5 fails.
Ezample of weight pushing

Example of a transducer with e-transitions

Epsilon-Closure of transducer shown by Figure 4.1.

v

10
10
12
13
14
14
15
16
17
17
18
19
19
20
21

4.3
4.4
4.5
4.6
4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

Transducer of figure 4.1 for which e-transitions have been removed. . 56

epsilon-closure with useless transitions 57
Ezample of o sequential weighted transducer. 58
Ezample of a subsequential transducer. 59

Transducer without final output siring equivalent to the one shown in

Figure 4.6. L e e 59
Non-deterministic automaton A 60
Deterministic automaton equivalent to A 60
A non-sequential transducer {a) ond its sequential equivalent (b} . . . 63
A non-sequential transducer (a) and iis 2-subsequential equivalent (b). 64
A cascade of two transducers e o e e e e 67
Automate Ay and Ay L e e e e 68
Automaton Ay obtained by the intersection of Ay and Ay 69
String-to-string transducers Ty, andTgp 72
Transducer T, resulting of the composition of Tt and T 72
Filter Transducer i i i i it i et 73
Transducers involved in speech recognition 78
Observations transducer e e 79
Observations to HMM transducer. 80
Transducer mapping physical triphones to logical ones. 81
Transducer implementing triphones constraints. 81
Dictionary Transducer 0 e 82
Language Model Transducer 83
Transducer representing a phonological rule. 84
Disambiguated Dictionary Transducer 85
Transducers used to remove auziliary symbols 86

List of Algorithms

W W~ O O B W N

e el ek b ped e
Gt o 0 N = D

FST Union o e e e e e e e e e e e 24
FST Concatenation v i v v i it e it e e et u 26
Depth-First Search, 28
Topologicalsort e 30
Conmection i e e 32
Revisited Connection 34
Generic single-source shortest path e 38
Dijkstra’s single-source shortest path 42
A generalization of Dijkstra’s algorithm of the k-shortest paths 44
Weight-Pushing 47
Epsilon-Closure i i i it e e e e e 52
Epsilon-Closure-Acyclic., 54
Epsilon Removal e e e e e e e e e e e e e e e e 55
Determinization e e 61
Composition it e e e e e e e e e e .70

vi

Chapter 1

Introduction

Finite-state automata have been extensively studied over the years. Originally, au-
tomata theory had been proposed to model brain functions [24]. This model is very
useful for many other purposes and is now used in many important software such as
compilers, speech recognition systems and bioinformatics.

Finite-state transducers are a generalization of the theory of automata. An automa-
ton can be seen as a binary relation mapping a sequence of symbols to a binary value
representing its acceptation value. Finite-state transducers generalize this behaviour
by producing a sequence of symbols instead of a single binary value. These symbols
are combined together according to their nature. Thus, finite-state transducers de-
scribe also a binary relation mapping a sequence of symbols to another sequence of
symbols.

The use of finite-state machines is motivated by their computational efficiency. The
time efficiency is achieved by using deterministic automata. In such machines, the
generation of the output depends only on the length of the input sequence. From
this point of view, sequential machines are counsidered optimal. The space efficiency
is achieved with the classical minimization algorithm [1]. This algorithm ensures
that the size of the automaton is minimal according to the language described. The

efficiency of such automata has been proven in applications such as compiler design

2]

Several operations can be done on finite-state transducers. Some of them are borrowed
from graph theory such as the shortest-path algorithm and depth-first search-based
algorithms. Other operations are based on the more classic operations of automata
theory. These operations have been generalized for weighted string-to-string trans-
ducers by Mohri. For example, the composition of transducers is a generalization of
the intersection of automata. Several operations are fully described in Chapters 3

and 4. The running time of these algorithims is also analyzed.

Automata theory is widely used in traditional speech recognition since they represent
efficient models for expressing language phenomena such as lexical rules [4, 25, 17].
The recent generalization of transducers to the weighted case by Mohri allowed the
use of them to build a speech recognition system. The main advantage of this sys-
tem over the traditional one is that all speech knowledge is expressed using the same
transducer representation, allowing to make changes in the network without mod-
ifying the decoder {13]. Chapter 5 discusses how such recognition systems can be
implemented.

To begin with, the mathematical foundations related to finite-state machines are
introduced in the following chapter. This chapter gives the formal definition of many
of the subjects related to transducers theory. Particularly, the formal definitions of
the four types of transducers considered in this work are given. Some of the operations
described in the following chapters are also introduced in this chapter.

Chapter 2

Basics of Finite-State Transducers

This chapter presents a brief introduction to the world of finite-state automata and
finite-state transducers. Far from being exhaustive, the intended aim is to lay down
the basic concepts and to introduce the notation used throughout. The uninitiated in
the field can, as a complement to this chapter, consult the excellent books of Hopcroft
[24] or Sipser [32] who present a more thorough introduction to the subjects of au-

tomata and language processing.

The first part of this chapter sketches the mathematical foundations of automata
theory including language theory, the concepts of semirings and formal power series,
and finally the formal description of automata. This part also introduces the reader
to the terminoclogy and notation used throughout this work.

The second part presents automata operations such as the union of two automata
and their composition. Each operation will be briefly described; this will serve as
a prelude to the next chapter in which algorithms performing these operations are
presented and analysed.

Let us begin with the basic notion of automata: languages.

2.1 Alphabets, Strings and Languages

An alphabet is a finite and non-empty set of symbols generally denoted by the Greek
letter 2. Here are some examples of common alphabets:

T
)27}

{0,1}

{a’7b367d) e? f?g‘} h7i’j? k? va7n707p7‘.ZBr7 S7t7.u‘)v?w?$7y7 Z}

il

Il

A string (or word) w is a finite sequence of symbols from a specified alphabet. For
example, 010101 is a string over £, while cat is a string over 3.

The length of a string, written |wl, is the number of symbols that it contains. An

empty string has a length of 0 and is generally denoted as e.

The set of all strings of length k£ over an alphabet X can be expressed using the
exponential notation £*. For example, if & = {0, 1} then 22 = {00, 01, 10,11} while
%3 = {000,001,010,011, 100,101, 110, 111}. £* denotes the infinite set of all possible
strings over ¥ and is called the Kleene closure of X.

The binary operator - denotes the concatenation of two strings s; and s; performed
by appending se to s;. For example, if 54 = 0103...0, and s3 = wyiws...w;, then
81+ 89 = 0109...0,WiWs...Wm. Since concatenation is a kind of multiplication for
strings, the n** power of a string w, written w”, is obtained by concatenating w with
itself n times.

A language L on X is a set of strings chosen in 3* for the specified alphabet .

2.2 Semiring

A semiring is an algebraic structure that can be used as an abstraction in the descrip-
tion of algorithms. Let us start by defining a smaller structure called a monoid. The
semiring definition is based on monoids. A monoid M is set together with a binary
operation and a neutral element.

Definition 2.1.
More formally, a monoid is a system M = (M, ®, 1) where :

e M is a sef,
e ® is an associative binary operator: z Q@ (y®z2) = (z ®y) ® 2,Vz,y,2 € M,

e 1isan identity element over ® : 2 ®1=1® 2z = z,Vz € M.

A monoid (M, ®, 1) is said to be commutative f z Q@ y =y ® z for all z and y in M.
A monoid can be designated only by M when the binary operation and the identity
element are known.

An important monoid is the free monoid {I*,-, €} where X* is generated over a set

3, - is the concatenation operator and ¢ is the empty string.

A semiring XC contains two binary operators associated with a set K and two constant
elements from K having some particular properties.

Definition 2.2.
A semiring K = (K, ®, ®,0, 1) consists of two monoids such that:

e (K,®,0) is a commutative monoid,
e (K,®,1) is a monoid
¢ 0 is an annihilator: z@0=0z=0,vz € K.

e ® distributes over & on the right: Q@ (y®2) = (z Q@ ¥) ® (z ® z) and on the
left (y®2)@z={y¥Rz)®{2®x),Vz,y,2€ K

As is the case for monoids, a semiring is called a commutative semiring if zQ@y = y®x
for every z and y in K. A semiring is said to be idempotent if x @ x = z for every z
in K.

There are three important semirings used in automata and transducers theory: the
Boolean, the tropical and the string semiring. They are described as follows:

Boolean semiring
The Boolean semiring has a set with only two elements: true or false. The
Boolean semiring is defined by B = ({0,1},V, A,0,1) where V denotes the “or”
operation and A denotes the “and” operation.

tropical semiring
The tropical semiring, presented in [29], is also called the min-plus semiring and
is defined by 7 = (R, U {00}, min, +, 0o, 0) where min denoctes the classical
minimum function and + denotes the usual addition over real numbers.

string semiring
The string semiring defines operations on strings. The string semiring is defined
as 8 = (Z* U {oo}, A, -, 00,€) where a A b denotes the longest common prefix of
a and b, - is the concatenation of two strings, co is a new element not in X such

that the semiring properties are maintained and ¢ denotes the empty string.

The cross-product of two semirings is also a semiring. Given two semirings Ky =
(K1, ®1,®1,01,11) and Ky = (K3, Do, ®3, 03, 1), their cross-product is defined as:

]CI X K? - (Ki X KQ: (691: @2)7 (®17 ®2): (617 @2)3 (ih 12))

2.3 Formal Power Series

Consider the mapping function o : 2* —> K where ¥* is a monoid and K is a
semiring. This function is called a formal power series and is denoted by:

o= Z of{w)w

wEL*

where o(w) is called the coefficient of w in o and w € £* is the (noncommuting)
variable. The set of all power series is denoted K {(X*)).

The support of « is the language defined by supp(a) = {w € Z* | a(w) # 0}. Since
the concept of support is a language, it brings a natural interconnection between the
theory of formal power series and the theory of languages and thus, with automata.

2.4 Automata

Automata are a way to describe a set of strings and thus, represent a language. A
language is called a regular language if and only if it can be represented by a finite
automaton. Figure 2.1 depicts a simple automaton.

Figure 2.1: Finite automaton with two states

This automaton has two states labelled ¢, and go; the inifial state is characterized
by an arrow pointed to it from nowhere; the final state, also called accepting siate, is
represented by a double circle; the labelled arrows connecting two states are called
transitions. In this example, gl is both the initial and the final state.

An automaton processes an input string such as 1010 by following transitions from an
initial state, depending on the symbols in the input string. Each symbol of the input
string is consumed by the automaton from left to right. The output of the automaton
is either to accept or to reject the input string. The string is accepted if after having
processed all symbols of the input string, the automaton is in an accepting state. If
not, the string is rejected by the automaton.

Thus, in the example of figure 2.1, the state sequence for the input string 1010 will
be g1, ¢1, 92, @2, ¢1. Since the last state ¢; is a final staie, the string is accepted by this
automaton.

Another interpretation of an automaton is to view it as a generator, rather than a
consumer, of symbols: Starting from the initial state and following transitions pro-
duces a sequence of symbols, thus a string. The string is valid if the last state visited
is a final state.

In the example of figure 2.1, the automaton accepts all strings that have an even
number of 0’s. Thus, the language is the set:

L{A;) = {w | w is the empty string € or has an even number of (s}

7

Definition 2.3.
More formally, a finite automaton A is a 5-tuple (Q, 4, F, L, E), where:

e () is a set of states,

1 € (J is the initial state,

@

F C @) is the set of final states,

¥ is the alphabet of A,

E C @ x X xQ is the set of transitions.

Instead of a set of transitions, it is common to have a transition function mapping a
state ¢ and a symbol a to a destination state. More formally, this function is defined
as § : @ x ¥ — (. This function can be extended to) X ¥* using the following
recurrence relation [17]:

5*(g, wa) = 6{é(q,w}),a) VgeQ,Ywel " Vaek (2.1)
Thus, a string w is accepted by A if and only if §*(¢, w) € F.

Path in Automata

A path 7, also denoted ¢; ~ g9 is a sequence of consecutive transitions from state ¢

to gz. The length |m| of the path 7 is the number of transition making up this path.

Definition 2.4.
More formally, a path is a sequence of transitions 7 = (g1, 7, ¢})...(9jx|-1, 0, gjx)) such
that q; = qu;i = 1, vang iﬂ'; - 1.

2.4.1 Weighted Automata

Weighted automata, also called weighted acceptors, output a weight depending on
the input string and not simply a reject/accept value. The weight carried by transi-
tions along the symbols are @-additionned according to a given weight semiring such
as the tropical semiring or the log semiring. The choice of the semiring should re-
flect the intended interpretation of the weights. Figure 2.2 shows a weighted acceptor.

Figure 2.2: Ezample of a string-to-weight transducer

The weight associated with a string takes into account the output weights of transition
but also a weight associated with the initial state and another weight associated with
the final state.

Definition 2.5.
More formally, a weighted acceptor A over a semiring K is a 7-tuple (Q, 1, F, X, E, A, p),
where:

Q) is the set of states,

i € (Q is the initial state,

F C @ is the set of final states,

3 is the alphabet of the automaton,

EC@QxXxKx(Q is the set of transitions,

®) :1 —> K is the initial weight function,

p: F — K is the final weight function.

The set of transitions can be replaced by a transition function, as is the case for non-
weighted automata, and by an output function mapping a state ¢ and a symbol ¢ to
a weight semiring. More formally, the output function is defined as ¢ : @ X ¥ — K.
As is the case for the transition function, the function can be extended to @ x X*
using the following recurrence equation [17]:

o*(g,wa) = o(gq,w) - o*(6{g,w),a) VgeEQ,VweXl" VacX (2.2)

Thus, if the string w is accepted by A, its output will be o (i, w).

2.4.2 Epsilon Transitions

An epsilon or null transition is one that does not consume any input symbol. In the
graph representation, the epsilon is denoted by the Greek symbol ¢. Figure 2.3 shows
an example of an automaton with e-transitions.

Figure 2.3: Auiomaton with e-transitions

The language accepted by this automaton is {ab,b}. Since no input symbols are
consumed when an e-transition is taken, the language accepted by the automaton is
not influenced by it. However, the creation of automata is often simplified by using
epsilons.

2.4.3 Determinism

A finite-state automaton is called deterministic (DFA) if and only if for any input
string w, the sequence of states is unique. Figure 2.4a shows a non-deterministic
finite-state automaton (NDFA) since there are two transitions with the symbol a
going out of state gp. Figure 2.4b shows a deterministic automaton accepting the
same language as the automaton of Figure 2.4a.

(b)

Figure 2.4: Non-deterministic and deterministic automata

10

Definition 2.6.
More formally, an automaton (@), 4, F, L, §) is deterministic if:

0"(g,w)] <1 VYgeQ,YweX"

Every language that can be described by a NDFA can also be described by a DFA
[24, 32]. This property helps with the design of automata since it is often easier to
construct a new automaton as NDFA and then to transform it to a DFA. Since DFAs
are computationally more efficient, this operation is very useful.

2.4.4 Equivalence of Automata

For a given language there exists an infinite number of ways to construct automata

representing this language. These automata are said to be equivalent.

Definition 2.7.
More formally, two automata 4; and A, are equivalent if and only if L(A;) = L{A,).

2.5 | Finite-State Transducers

Transduction is the process which maps an input string w; over the alphabet 2; to
an output string w, over the alphabet 2.

Definition 2.8.
A transduction is a mapping function defined as 7 : £f — 27 where X} is the set
of input strings and 2} is the set of cutput strings.

Definition 2.9.
A weighted transduction is a mapping function defined as 7 : 2} — X7 X K where
¥} is the set of input strings, 2} is the set of output strings and K is a weight semiring.

Transducers are a type of automaton whose transitions carry an output symbol in
addition to the input symbol. Thus, the output of a transducer is a string over a

given alphabet and not just a weight or a reject/accept value as with automata.

11

2.5.1 String-To-String Transducers

A string-to-string transducer represents the function T' : £} — % where 27 and £},
are the sets of input and output strings. Figure 2.5 shows an example of a string-to-
string transducer. In this example, the string ac is mapped to the string cd while the
string ba is mapped to the string ec. All other strings are rejected by the transducer.

Figure 2.5: Ezample of o string-to-siring transducer

Definition 2.10.
More formally, a string-to-string transducer 7 over a semiring K is a 6-tuple
(Q: ia F) Ei: Eag E), where:

e () is the set of states,

i € () is the initial state,

F C () is the set of final states,

3; is the input alphabet of the automaton,

¥, is the output alphabet of the automaton,

EFC@QxX; x¥X,x K x(is the set of transitions.

As is the case for acceptors, the set of transitions can be replaced by a transition
function and an ouput function. The transition function is the same as for acceptors
while the ouput function becomes o : ¢} X &; — Z,. Both functions can be extended
using the recurrence relations expressed in equations 2.1 and 2.2.

12

2.5.2 Weighted String-To-String Transducers

This kind of transducer is the most general finite-state automaton discussed in this
work. It maps a pair consisting of an output string and a weight.

More formally, the mapping function of a weighted string-to-string transducer is
T : % — ¥ x K where 27 and X are the sets of input and output strings
respectively and K is a weight semiring. Figure 2.6 shows a weighted string-to-string
transducer.

Figure 2.6: Ezample of o weighted string-to-string transducer

As is the case for weighted acceptors, a weighted string-to-string transducer also
provides an initial and a final weight.

Definition 2.11.
A weighted string-to-string transducer 7 over a semiring K is a 8-tuple
(Q,i,F, %, 5,, B, A, p), where:

e (J is a set of states,

i € (J is the initial state,

F C () is the set of final states,

Y; is the input alphabet of the automaton,

¥, is the output alphabet of the automaton,

ECQx¥; xX, X K x(is the set of transitions,

e) :i—> K is the initial weight function,

p: F — K is the final weight function.

13

As is the case for string-to-string transducers, the set of transitions can be replaced by
a transition function and an output function. The transition function is identical to
that of the string-to-string transducer and the output function becomes o : X Z; —>
2, X K. Both functions can be extended using the recurrence relations expressed in
equations 2.1 and 2.2.

2.5.3 Epsilon Symbols in String-To-String Transducers

As is the case for automata, epsilon symbols are allowed in string-to-string transducers
both for input and output symbols. An input string and its corresponding output
string do not necessarily have the same length. Thus, epsilons are used to fill the
“blanks”.

Figure 2.7: Example of o transducer using epsilons.

Figure 2.7 shows a transducer using epsilons to map strings of different length. In
a transducer, e-transitions are represented by a transition with an input and output
epsilon.

2.5.4 Sequential Transducers

A transducer is called sequential if it is deterministic from the point of view of its
input. Figure 2.8a shows a non-sequential transducer since there are two transitions
with the symbol a outgoing from state gg. Figure 2.8b shows a sequential transducer.

Figure 2.8: A non-sequential and a sequential transducer

14

The empty string, namely ¢, is not allowed as an input symbol in a sequential trans-
ducer. Sequential transducers are computationally efficient since the time require-
ments depend only on the size of the input string and not on the size of the trans-
ducer. This efficiency comes from the fact that for a given input string, the output
string is written by following the only corresponding path.

2.6 Operations on transducers

As is the case for automata, many operations are available for working with trans-
ducers. This section will briefly describe these operations.

2.6.1 Union

Union is a basic operation in automata theory. The union of two languages L; and
L, is the set of strings that are in either L;, L, or both. More formally, the union
L1 ULQ = {iZT!IL' € L]_ oY T € Lz}

For transducers, this operation is done by combining the initial states of both trans-
ducers. Figure 2.9 shows an example of the union of two simple transducers over a
semiring K.

Figure 2.9: Ezample of weighted transducer union

To be consistent with the weighting of original transducers, the initial weights of
“ both transducers have been moved to outgoing transitions of the initial state using
the ®-product.

15

2.6.2 Concatenation

The concatenation of two languages Iy and L, is the set of strings formed by con-
catenation of all strings in L, with strings of Ly. More formally, the concatenation
Li-Ly={z-ylz € L, and y € Ly}

Figure 2.10: Ezample of weighted transducer concatenation

From the point of view of transducers, the concatenation of two transducers 77 and
T, is obtained by appending T3 to the end of 77 by merging the final state(s) of T}
with the initial state of 75. Figure 2.10 shows an example of the concatenation of
two simple transducers over a semiring K.

To be consistent, the final weight of the first transducer and the initial weight of the
second transducer are moved to transitions going out of the states merged during the

operation. These weights are combined with transition weights using the ®-product.

2.6.3 Connection

This operation removes from a given transducer all unconnected states. A state g is
accessible if there exists a path from the initial state to g and is coaccessible if there
exists a path from ¢ to a final state. A state is said to be connected if it is both
accessible and coaccessible. Figure 2.11a shows a transducer with a non-coaccessible
{g1) and a non-accessible state (g4). Figure 2.11b shows the same transducer without
these useless states.

In the removal process, all transitions going out from and going into an unconnected

state are also deleted. This operation is often used to clean up the result of other
operations such as composition which leaves some unconnected states.

16

(b)

Figure 2.11: Ezample of trimming

2.6.4 Reverse

This operation consists of reversing all transitions of the given transducer. The oper-
ation also transform final states into an initial state and the initial state into a final
state. The reverse operation is denoted by 7,., = T7,. Figure 2.12b shows the reverse
of transducer of figure 2.12a.

Figure 2.12: Example of transducer reversal

Note that applying the reversal operation twice on a transducer 7 produce a new
transducer equivalent to T in which there is only one final state i.e. |F| = 1.

17

2.6.5 Removing Epsilons

Transducers are often constructed with e-transitions. Unfortunately, these transitions
decrease the computational efficiency of FST since they make them non-deterministic.
This operation of epsilon removal produces an equivalent transducer with no e-

transitions. Figure 2.13 shows an example of this operation on a transducer.

(b)

Figure 2.13: Example of removing epsilons on a transducer

The determinization operation, which transform a non-deterministic transducer into
a deterministic one, generally considers epsilons as an ordinary symbol and thus,
determinization keeps e-transitions. For this reason, it is common fo remove epsilons
before applying determinization to obtain a deterministic automaton or a sequential

transducer.

18

2.6.6 Composition

Composition is a generalization of the intersection operation for automata. This
operation is very useful since it allows the construction of complex transducers from
simpler ones. Figure 2.14 shows a cascade of two transducers.

Figure 2.14: A cascade of two transducers

The transducer A maps X} to A*. Thus, the set A* becomes the input of transducer
B that maps A* to ¥}. Therefore, the general behaviour of the cascade is: Ao B =
X} — ¥%. The composition creates the transducer equivalent to this cascade.

a:b/w.@w,

()

Figure 2.15: Ezample of transducer composition

Given a transducer A in which there is a path mapping sequence z to sequence y and
a transducer B in which there is a path mapping sequence y to sequence z, the com-
position A o B has a path mapping = to z. The weight of this path is the ®-product
of the weights of the corresponding path in A and B [19]. Figure 2.15 shows two

simple transducers and the result of their composition.

The composition is a key operation in transducer based application since it is used
to construct complex transducers representing complex functions. For example, in
the case of speech recognition, the composition is used to construct the knowledge
network needed by the recognition system. This network is constructed by the com-
position of different level of representation for which transducers are associated. The

construction of this network will be described in detail later.

19

2.6.7 Determinization

Deterministic automata and sequential transducers have already been defined. Any
non-deterministic automaton has an equivalent deterministic one. Determinization is
the process which takes a non-deterministic automata as input and produces a deter-
ministic one as output. Figure 2.16b shows a deterministic automaton constructed
from the automaton of figure 2.16a.

(b)

Figure 2.16: Ezample of transducer determinization

Deterministic automata are computationally more efficient but in practice, the num-
ber of states involved is often greater than the equivalent non-deterministic coun-
terpart. In the worst case, the smallest deterministic automaton can have 2" states
while the smallest non-deterministic automaton describing the same language has n

states.

The same operation can be applied to non-sequential transducers to obtain sequential
ones. Unfortunately, this process does not terminate for all transducers. This point
will be discussed in the next chapier.

2.6.8 Minimization

Given the complete set of equivalent deterministic automata, there exists a unique
automaton which has a minimum number of transitions and (arbitrarily labelled)
states with respect to the implied language. Figure 2.17b shows the minimized version

of the automaton of figure 2.16a.

20

Figure 2.17: Ezample of transducer minimizaiion

The minimization for weighted transducers requires two steps. The first step is a
reweighting operation called pushing. A transducer can be reweighted in an infinite
number of ways. The pushing operation moves the weights toward the initial state.
The result is a transducer as seen on figure 2.17b, which contains some transitions
having the same symbol and the same weight. The second step is the classical mini-
mization process that considers the symbol and the weight as a single symbol. Since
the pushed transducer has some transitions with identical (symbol,weight) pair, it
can be minimized.

This procedure can be applied to string-to-string transducers but does not necessarily
yields the minimum transducer. However, the method can be useful for reducing the
transducer’s size and is called compaction in this case.

The minimization of transducers is performed by consecutively applying the deter-
minization, reverse, determinization and reverse operations. Mohri has proved the
optimality of this algorithm in [17]. Unfortunately, not all transducers can be deter-
minized. In that case, the only solution is to use compaction since there does not

exist a minimization algorithm that can be applied to non-determinizable transducers.

Therefore, the minimization of transducers is based on the classical minimization
algorithm presented in [1]. This algorithm will not be described in this work since
it is a classical one. For any reader interested in it, the algorithm is presented in [1]
and [24]. Moreover, the compaction has been fully studied by Zhang [35].

21

2.6.9 Other Operations

The major FST operations have been presented but there exists some other useful
manipulations that can be done on a FST, and are briefly described here:

Inversion

Invert the transducer by swapping the input and output symbols on transitions.

Arithmetic
Apply some arithmetic operation (addition or multiplication) on weights of
weighted FSM.

Projection
Convert a transducer to an acceptor by keeping either only the input or only
the output symbol.

Best paths
Find the k paths of lowest weight from the initial state to a final state in a
weighted FSM.

Topological sort
This operation numbers states such that for any transition from a state num-

bered ¢ to a state numbered 7, the condition ¢ < j is respected..

Algorithms for performing these operations will also be given in the next chapter.

2.7 Summary

This chapter has introduced some theorical aspects of weighted finite-state trans-
ducers in order to present the basic concepts and to introduce the notation used
in the algorithm descriptions presented in the next chapters. The important points
discussed in this chapter are:

e The mathematical foundations of automata theory including language theory,

semiring and formal power series.

e The formal definitions of the different kinds of transducers for which the algo-
rithms in the next chapters can be applied.

e A brief overview of operations described and analyzed in greater detail in the
next chapters.

22

Chapter 3

Basic Algorithms

This chapter presents some basic algorithms applicable to finite-state transducers. It
is divided into five sections.

The first section presents the union operation, which is a fundamental operation in
automata theory. In the second section will be presented another important opera-
tion in automata theory: the concatenation of two finite-state transducers. Both of

these operations are discussed in all introductory books to the automata theory.

The third section will explore algorithms based on the depth-first search method, first
introduced by Tarjan [33]. In particular, this section describes the topological sort
algorithm, which sorts the states in a left to right order and the connection algorithm,
which removes the unconnected states of a transducer.

The fourth section concerns the shortest-path problem. A generic shortest-distance
algorithm will be presented. This algorithm is generic in the sense that it can be
implemented with a large variety of semirings and queue disciplines. In the second
part of the section, the classical shortest-path algorithm introduced by Dijkstra [8]
will be presented in the context of transducers. A generalization of this algorithm,

resolving the k-shortest-path problem, will also be described.

The last section describes a pushing algorithm used to move weights along the paths
toward the initial state.

23

3.1 Union

The union of two languages L; and L, is a new language obtained by combining all
words of Ly and L2 in a new set Ly denoted by L; U Ls.

Definition 3.1.

More formally, the union of two languages L; and Ly is defined as:
L1UL2={ZE'$EL1V.’EEL2}

Regular languages are closed under the union operation [32]. That means that if L;
and L, are regular languages, then the union L; U L, is also a régular language. This
property implies that the union can be applied to transducers which represent regular
languages.

Formally speaking, the union of transducers is obtained by combining their ini-
tial states. In practice, however, e-transitions carrying initial weights are used to
“merge” together both transducers as illustrated in Figure 3.1. Algorithm 1 shows
the pseudocode of a procedure which makes the union of the two input transducers
Ty = (Q, 8, F1, L1, Zor, By, A, p1) and Ty = (Qg, ta, Fo, Dig, Lo, o, Ag, p2).

Algorithm 1 FST Union
FSTUnion(Ty, T3}
1: g, ¢ newstate

2: 1y ¢ Qo

3 Qo+ {GUQiUQs

4: Fo+ {(qa, €;€, Al(’ﬁ)g ’1;1)3 (qo, €, €,)\2(2"2), @2)} U E1 U Ez
5 F,+ Fy, U Fy

6: return (Qo, 11, Fo, iz U Lia, Loz U Loz, Aoy Po)

The algorithm works as follows. At lines 1-2, the initial state g, of the output trans-
ducer T, is created. Then, the set of states (J1,(J2 and the new initial state are merged
to create (),, the set of states of the output transducer. Line 4 creates transitions
of T, from transitions of both input transducers. Moreover, two new e-transitions,
which connect g, to both initial states 4, and i9, are also added to 7,. Note that since
these new transitions do not carry symbols, the languages described by 7} and T are
still correctly represented by T,. Finally, line 5 combines the accepting states of both
input transducers and line 6 returns the new transducer created.

24

(2) (b)

Figure 3.1: Result of the union of two trensducer by FSTUnion.

Note that the result is not exactly the same that shown in section 2.6.1. This is
because the algorithm described here uses e-transitions to simplify the construction
of the resulting transducer. On the other hand, the result shown in Figure 2.9 can
be obtained by removing e-transitions of the transducer created by FSTUnion. The
algorithm performing this operation will be presented in the next chapter.

Running Time Analysis

The running time of this algorithm depends on how both state and transition sets
are implemented. Indeed, using linked lists for these sets, the algorithm can run in

O(1) since, in this case, the union of sets corresponds to the concatenation of the lists.

Other implementations use arrays to represent sets. In this case, the union of sets
implies a loop which will pass through all the elements of both sets. Considering
that, the union operation of line 3 will take O(]@Q1|+ |@5]) time and the union of line
4 will take O(|E,| + |E|). Therefore, the running time of this algorithm is linear:

ol + 1E])

where |Q| = |Q1] + Q2| + 1 and |E| = |E1| + | Ea] + 2 are respectively the number of
states and transitions in the resulting transducer.

25

3.2 Concatenation

Recall that the concatenation of two words w; and w, is obtained by appending ws
at the end of w;. The concatenation of two languages L, and L, is a2 new language
obtained by appending every word of L, at the end of every word of L;. This operation
is usually denoted by a dot.

Definition 3.2.

More formally, the concatenation of two languages L; and L, is defined as:
Ll-Lzz{x-ylzeLiAyELg}

As is the case for the union operation, the regular languages are closed under the
concatenation operation[32]. Therefore, the concatenation of two regular languages
results in a third language which is also a regular language. It follows that the con-
catenation of two regular languages can also be represented by a transducer.

From the perspective of transducers, the concatenation of two transducers 7; and T3
is obtained by merging the initial state of T; with all the final states of 73. In practice,
it is easier to use e-transitions to “connect” both transducers together as shown in
Figure 3.2. Algorithm 2 shows the pseudocode performing the concatenation of trans-
ducers T3 = (Qu,%1, F1, Zi1, T, Br, A,y p1) and T = (Qa, iz, Fa, Tig, Loz, B, A2, p2)
which are the input of the procedure.

Algorithm 2 FST Concatenation
FSTConcatenation(Ty, T3)

: Qo A Ql U Qz

: By, B UE,

: for each g € I} do

Eolq] + E,lql U {(g,¢,¢, p1(q) ® Aa(i1), 1)}
return (Q,, i1, Fa, Xt U g, Lot U Lig, A, 02)

ok

Lines 1-2 initialize the set of states and the set of transitions of the new transducer.
The loop at lines 3-4 add a new e-transition from every final state ¢ € Fy to the initial
state of 7. The weight of every added transition corresponds to the ®-product of
the acceptation cost of the final state from which the transition going out and the
initial cost of 7. Line 5 returns the new transducer created.

26

Figure 3.2: Result of the concatenation of two transducer by FSTConcatenation.

Figure 3.2 shows two transducers and their concatenation as computed by Algo-
rithm 2. As is the case for the union operation previously described, the e-transitions
can be removed to obtain the same result shown in figure 2.10.

Running Time Analysis

The running time of this algorithm depends on how the sets are implemented. Indeed,
using a linked list for the sets of states and transitions allows an implementation of
the concatenation operation in O(1) time. Therefore, lines 1-2 run in O(1). The loop
at lines 3-4 pass through all final states. In the worst case, all states of the transducer

are final and thus, the running time of this loop is O(]|@|). The total running time is
therefore O(|Q)).

In the case where the sets are implemented with data structure such as arrays, lines
1-2 pass through each state and transition to copy them. Thus, the running time is
O(|Q1] + |Q2] for the union of state sets (line 1) and O(|Ey| + | Fs|) for the union of
transitions set (line 2). The running time of the loop at lines 3-4 is not affected by

the sets’ implementations., Therefore, the total running time is linear:
oQl+1&])

where |Q| = |Q1] + |Q2] and |E| = |E1| + |Es| + | Fy| are, respectively, the number of
states and transitions in the resulting transducer.

27

3.3 Depth-First Search Algorithms

Depth-First Search (DFS) is a simple algorithm for searching in 2 FST and is used as
a base for many other algorithms. The algorithm is similar to what is used in graph
theory [33, 7, 30]. The strategy is, as its name implies, to explore the transducer
“deeper” whenever it is possible. The search begins in state s which is marked as
visited. Then, the search is recursively applied to all adjacent states to s. The
process continues until all states in the transducer have been visited. Figure 3.3
shows in which order states are visited by the DFS.

Figure 3.3: Frample of DFS execution

The coloring method is used to mark states. White denotes a state which has not yet
been visited. Grey denotes a state for which exploring adjacent states is in progress
and black denotes a state for which all adjacent states have been visited.

Algorithm 3 Depth-First Search
DFS(T})

1: for allg €@ do

2: color[q] < white

3: for ¢ € Q@ do

4: if color[q] is white then

5: DFS-Visit(T), q)

DFS-Visit(T,qg}
color|g] < Grey
. for each {g,0;,0,,w,q") € Elg] do
if colorfq’] is white then
DFS-Visit(T, ¢')
color|q] + Black

Algorithm 3 depicts the pseudocode of the depth-first search algorithm in two proce-
dures. The input of this algorithm is a transducer T' = (Q, 4, F, Z;, 5y, B, A, p).

28

The algorithm works as follows. Lines 1-2 initialize all states by painting them white.
Lines 3-5 visit all white states using DFS-Visit(). In each call to DFS-Visit, the state
g is initially white. Line 1 paints it grey. Lines 2-4 recursively explore each white

state adjacent to ¢. Finally, when all adjacent states have been explored, line 5 paints
it black.

Running Time Analysis
The running time of loops on lines 1-2 and 3-5 of DFS depends on the number of
states in T, thus DFS is O(|Q!) when the call to DFS-Visit is not taken into account.

The DFS-Visit procedure is called exactly once for each state since the procedure is
called only on white states and painting it grey is the first thing that DFS-Visit does.
The loop on lines 2-4 of DFS-Visit is executed |E[g]| times, thus:

O _|Eld) = O(E).

geQ

Therefore, the total running time of DFS is linear : O(|Q] + |E]).

3.3.1 Topological Sort

A topological sort of a transducer T is a linear ordering of all its states such that
for every transition (g, o}, 0o, w, ¢'), ¢ is smaller than ¢’ i.e. g appears before ¢'. By
definition, a cyclic transducer cannot be topologically sorted since in a cycle, there is
always a transition such that ¢ > ¢'.

Algorithm 4 shows the pseudocode for the topological sort. The algorithm input is a
transducer T = (@,1, F, Z;, 25, E, X, p). The output is a list of topologically ordered
states.

Two changes have been made in the original DF'S procedure to construct the Topo-
logicalSort procedure. Firstly, a FIFO (first in, first out) list is initialized at line 1.
Line 4 ensures that the ordering process will begin at the initial state so that the first
state in the list is the initial state.

29

Algorithm 4 Topological sort
TopologicalSort(T)

: LIST « ¢
: for allg € § do
color[q] + white
: DFS-Visit(T, T.Initial State)
: forge @ do
if color(q] is white then
DFS-Visit(T, g)
return LIST

ek

1Y I A

DFS-Visit(T,q)
color(g] < Grey
: LIST + ¢
: for each (g, 0;,0,,w,q’) € Elg] do
if color[g’] is white then
DFS-Visit(T', ¢')
colorlg| « Black

A Y

In the DFS-Visit procedure, the only change appears at line 2 and consists in insert-
ing the state g in the list. Note that if line 2 is moved after the loop of lines 3-5, the
inverse topological order will be obtained.

Note that in practice, the output list will be used to create a new transducer in which
states will be inserted in the data structure representing the topologically ordered set
of states.

Running Time Analysis

The running time of the TopologicalSort procedure, excluding the call to DFS-Visit,
is the same as for the DFS procedure previously analyzed since the call to DFS-Visit
appearing before the loop of lines 5-7 does not change the fact that DFS-Visit is
called once per state. Thus, its complexity is also O(|Q}).

In the case of the DFS-Visit procedure, the inserting operation has to be taken into
account. Since the list is a FIFO data structure, a new element is inserted in constant
time; insertion is thus (O(1). Since the procedure differs from the original only by
this operation, its running time is also O{|E|). Therefore, the topological sort runs

Q|+ |E]).

in linear time : O(

30

3.3.2 Connection (Trimming)

The aim of this algorithm is to remove all unconnected states from a transducer.
This operation is often used to clean up the result of other operations that yield
unconnected states. Recall that a state ¢ is connected if

1. it is accessible: there exists a path from the initial state to g,

2. it is coaccessible:there exists a path from ¢ to a final state.

Figure 3.4 shows a transducer with accessible and coaccessible states. In this figure,
“a” denotes an accessible state and “c” a coaccessible state.

Figure 3.4: Transducer with accessible and coaccessible states.

The intuitive way to implement this operation takes three steps. The first step con-
sists in performing a depth first-search from the initial state and marking all reachable
states as accessible. The second step is to perform another depth-first search from
the final states and marking all reachable states as coaccessible. Finally, the last step
consists in removing all states that are not simultaneously accessible and coaccessible.
Note that transitions going out from and going into an unconnected state are also
removed.

In fact, the entire process can be done in one depth-first search as shown in Algo-
rithm 5. The input of this algorithm is a transducer T' = (Q, 1, F, i, Lo, E, A, p) with
output T trimmed of all unconnected states.

The algorithm works as follows. Lines 1-3 paint all states white and label them as
unconnected. Line 4 starts the depth-first search at the initial state to ensure that
all states which will be reached fulfill the first condition of a connected state. Lines
5-7 remove all unconnected states from Q).

31

Algorithm 5 Connection
Connection{T)
: for each g € () do
color{q] < white
connected[q] + false
: DFS-Visit(T, T.InitialState)
: for each g € @ do
if connected[q] = false then
Remove q from Q
return T

ek

SR =L U S

DFS-Visit(T,q)
colorlq] + Grey
. for each (g, 0;,0,,w,¢') € Elg] do
if color¢’] is white then
DFS-Visit(T, ¢)
connected|q] + connected|g] A connected]q’]
if g € F then
connected[qg] + true
color|q] < Black

The DFS-Visit procedure is used to find which states are connected. The algorithm
first searches final states and marks them as connected (lines 6-7) since they are
reachable from the initial state. Each time an adjacent state of ¢ has been explored
(line 4), its connection property is propagated (lines 5) to the state itself. Indeed,
the adjacent state has been marked connected only if a final state has been reached
from it and thus, there exists a path from ¢ to a final state (condition 2) and since ¢
has been reached from the initial state {condition 1}, ¢ is connected.

Applying this algorithm to the transducer of Figure 3.4 will produce the transducer
shown in Figure 3.5.

Figure 3.5: Transducer withoul unconnected states.

Unfortunately, this algorithm does not work in the case of cyclic transducers. The
problem stems from the fact that in a cyclic transducer a state can be connected but

32

the algorithm will label it as unconnected. Figure 3.6 shows an example of such a
transducer in which a connected state will be erroneously removed. Indeed, the state
ge will be labelled unconnected even if it is connected since the algorithm will not
find the path (g9, ¢s, ¢1) which leads to the final state.

Figure 3.6: Example of cyclic transducer for which Algoritm 5 fails.

For resolving this problem, the concept of strongly connected component will now be
introduced.

Definition 3.3.

A strongly connected component (SCC) in a transducer T = (@, 4, F, Z;, 5,, E, A, p)
is a set of states (). C @ for which every state g, € (Js.. can be reached from every
state gy € Qsce-

In Figure 3.6, the set {go, g2} is a strongly connected component since ¢, is reachable
from go and vice-versa. Strongly connected components of a transducer can be found
using the Tarjan algorithm [33] which uses depth-first search algorithm. The following
theorem uses the SCC concept to solve the connection problem.

Theorem 3.1.
If a state g € Qg 5 connected, then all states in Qs are also connected.

Proof. Let g € Qqc be a connected state. By Definition 3.3, there exists a path from
g to every state g, € QJsec. Since ¢ is connected, there exists a path from the initial
state to ¢ and thus, from the initial state to every g, € Qs (condition 1).

The initial statement that g is a connected state implies a path from it to a final
state. Since Definition 3.3 states that g can be reached from every state ¢, € Qsce,
there exists a path from g, € Q.. to a final state (condition 2). Therefore, since both
conditions are fulfilled for every state ¢, € (J,., they are connected. A O

33

Algorithm 6 Revisited Connection

Connection(T)

: for each g € ¢ do
orderNum|g] < 0
connected|q] « false

visitCount + 0

: DFS-Visit(T, T.Initial State)

: for each g € @ do

- if connected|q] = false then

Remove g from Q

return T'

jary

© 0N DU W

DFS-Visit(T,q)

1: visitCount < visitCount + 1

2: order Numl|q] + visitCount

3: oldestState visitCount

4: STACK g

5:

6: for each (g,0;,0,,w,¢") € E[g] do
7. if orderNumig’] = 0 then

8: old + DFS-Visit(7, ¢')

9: if old < oldestState then

10: oldestState = old;

11: else if orderNum(q'] < oldestState then
12: oldestState < orderNumig']
13: connected|q] + connected|g] A connected|q’]
14: :
15: if g € F then

16: connected|g] « true

17:

18: if oldestState = orderNumlq] then
19: repeat
20: s+ STACK
21: connected[s| < connected|q]
22: untils=g¢
23: return oldestState

34

Algorithm 6 is the Tarjan’s algorithm, described in [33], for strongly connected com-
ponents with lines 13, 15, 16 and 21 added to find connected states. Note that in
this algorithm, states do not have any coclor associated with them but rather numbers
describing the order in which they have been discovered during the search process.
This number is also referenced to be the ancientness of the state. The main goal of
the algorithm is to find the root of strongly connected components.

Definition 3.4.
The root of a strongly connected component is the first state reached from the initial
state in a depth-first search process.

The algorithm takes as input a transducer T = (Q,, F,Z;,5,, E, A, p). The Con-
nection procedure works as follows. Lines 1-4 initialize all states as not connected
and their ancientness number as not visited. Line 5 initiates the depth-first search
process at the initial state. When the search process is completed, all unconnected
states are removed from the transducer (lines 6-8).

Lines 1-4 of the DFS-Visit procedure assign the ordering number to the state which is
put in the stack. When ¢ is reached, it is guessed as the root of its component. Note
that states in the stack are ordered according their ancientness. When an adjacent
state is processed (at lines 7-8), new root candidates are obtained. If a candidate is
older than the current root, it becomes the new root of the component containing
g (lines 9-12). Line 13 propagates the connection attribute from adjacent states.
When all adjacent states have been processed, the ancientness of ¢ is equal to the
ancientness of the root of its component if and only if g is a root. In this case, all
states of components ¢.e. all states having a greater ordering number, are removed
from the stack (lines 18-22) and form a strongly connected component. If the root
state is connected, then all states of the component must be set to connected (line

21). The correctness of this operation is based on the following theorem:

Theorem 3.2.

The root state of a strongly connected component can be used to determine if the
component is connected or not.

Proof. There are two cases to take intoc account. The first case occurs when the root
is connected which should imply that the strongly connected component is also con-
nected. This case is directly proved by Theorem 3.1.

35

The second case arises when the root state is unconnected. In this case, it must
be proven that it is impossible to set as connected a state in the component and
then setting the root as unconnected in Algorithm 6. The proof is by contradiction.
Suppose that the root state g, is not connected and a state gz, € Qe iS. Since state
g- is the first component state discovered, the path from it t0 gy is known, which
implies that the connection attribute of g, will be propagated to g,. Therefore g, is
also set as connected, contradicting the initial assumption.]

Running Time Analysis

The running time of the Connection procedure, without considering the call to the
DFS-Visit procedure, depends on the number of states |@)] in the input transducer
since loops of lines 1-3 and 6-8 pass through all states. Thus, the running time of
this procedure is O(|Q)).

The DFS-Visit procedure is called at most one time per state g € (J since the function
is called only when its ancientness is 0 and a new ancientness, different from 0, is
determined at the beginning of the procedure. In one execution pass of DF'S-Visit,
the loop of lines 6-13 has the same complexity as for a simple depth-first search and
is thus O(|E|). The loop of lines 18-22 is executed at most |(}} times since each state
can be pushed on the stack only once. Operations on the stack can be done in O(1)
time. Therefore, the running time of the connection algorithm is linear: O(|Q|+|E}).

3.4 Shortest-Paths Algorithms

Finding the shortest-path is a classic problem in graph theory and network program-
ming and has been extensively studied over the years. The problem consists in finding
in a given transducer, the successful path yielding the smallest cost. Recall that a
successful path is a collection of consecutive transitions beginning at the initial state
and ending at a final state. Typically, the cost of a path is the sum of transition
weights making up this path.

Two categories of problems will be discussed in this section. The first one concerns
the classic shortest-distance problem presented in the general case of semirings. The
second problem cousists in finding the shortest-path and its generalization which
consists in finding the & shortest-paths in transducers.

36

3.4.1 Shortest-Distance Algorithms

The shortest-distance algorithm presented here is a generalization of the classical
shortest-distance algorithms described in many computer science books. The classi-
cal algorithms cannot be used with non-idempotent semirings since they produce a
wrong result. The generalization proposed by Mohri [18, 22] resolves this problem by
allowing the use of non-idempotent semirings. Recall that a semiring (K, ®,®,0,1)
is idempotent if and only if z ® v = z,Vz € K. '

Recall that in the general case of semirings, the cost w|r] of a path 7 = ey, ..., e, is
the ®-product of transition weights making up this path:

win] = ® w

(q’o'i To ,’w,q’)En’

and the shortest-distance from a state s €) to a final state ¢ € F', denoted d[s], is
defined as

#€li{g)

where II{g) = {71, ..., 7} is the set of paths from ¢ to F. When the tropical semiring
S = (R4 U {00}, min, +, 00,0} is used, this definition of the shortest path coincides
with the classical definition presented in books since the ®-product of transitions
weights becomes the usual addition of costs and the @-addition calculates the mini-
mum cost of all paths s ~ g.

The algorithm is also general in the sense that any queue discipline, such as priority
queue or DF'S, can be used. Selected combinations of a semiring and of a queue dis-
cipline produce algorithms equivalent to those presented in the classic literature. For
example, using a priority queue in conjunction with the tropical semiring in the im-

plementation of the generic algorithm coincides with the classical Dijktra’s algorithm.

Algorithm 8 shows the pseudocode of the generic single-source shortest-distance al-
gorithm presented by Mohri in [18] and [22]. The algorithm computes the short-
est distance from the source state s to a final state in the input transducer T =
(Q,4, F, 2,56, E, A, p).

37

Algorithm 7 Generic single-source shortest path
SingleSourceShortestDistance(T,s)

1: for each ¢ € Q do
2: d[q] 0
rlg] <0
dls] « 1
ris] + 1
S« {s}
while S # 0 do
g + head(S)
Degueue(S)
10: 7+ 7(g
11: 7rlg] « 0
12: for each (g,0;,0,,w,q') € Elg] do

13: if dl¢'] # dl¢'l @ (r @ w) then
14: dlg’] + dlg] & (r ®w)
15: [q] g1 ® (r @ w)
16: ifgdgs then
17 S« Su{d}
18: return @ d[q]
g€F

The algorithm works as follows. For each state ¢ € (), the algorithm uses two at-
. tributes: an estimate of the shortest path from s to g, maintained in dfg] € K; and
rlg] € K, the total weight ®-added to d[g] since the last time ¢ has been extracted
from the queue. Both attributes are initialized at lines 1-5.

At line 7, the queue is initialized with s, the state from where the search begins. This
queue is used to maintain the set of states to be explored. At each pass through the
loop of lines 7-17, a state ¢ is extracted from the queue (lines 9-10). The r attribute
of state ¢ is stored and then reset to O (lines 10-11). The loop of lines 12-17 explores
each transition of state ¢ and updates the attributes of the destination state ¢’ if it
can be improved i.e. if the cost d|q'] is different than d[g] ®-multiplied by the weight
of the transition. In the specific case of the tropical semiring, that means that d[¢']
will be updated if the new path, passing by ¢, has a smaller cost than the previous
estimated shortest-path. In the literature, this step is often referred to as the relax-
ation of the transition (g, 0y, 04, w,¢’). If the transition has been relaxed and if the
destination state ¢’ is not in the queue, ¢ is inserted in.

38

Finally, line 18 returns the @-added cost of all the final states in 7. In the case
of the tropical semiring, it is clear that each estimated path from s to ¢ is, when
the algorithm terminates, the shortest one since g is updated each time that a new
shortest-distance is discovered.

Running Time Analysis

The running time of the algorithm depends on the semiring and the queue discipline
considered. T; will denote the worst cost for inserting a state ¢ in S, T, the worst cost
for extracting ¢ from S, N, the number of times that ¢ has been inserted in 5, Ty
the time of a @-addition, Ty the time of a @-product and T, the time of an assignment.

The loop of lines 1-3 passes through all states and thus, runs in O(]Q]). The second.
loop depends of the number of times that states are inserted in the queue. Thus, its
running time is
O((T; +To) D N).
q9eqQ

The loop of lines 12-17 passes through all transitions and performs some semiring
operations and assignments. For each state, the loop is executed |Elg]| - N, times.
Thus, the running time of this loop is

O((To + To +Ta) - »_(1Elg)] - Ny)).
g€qQ

Therefore, the total running time, in general, for this algorithm is

0@+ (To + To +Tu) - 3 (1Bldll- N} + (T +T2)) No).

geq 9€Q
The Generic Algorithm and Dijkstra’s Algorithm

Used with the tropical semiring & = (R U {oo}, min, +, 00,0} and a priority queue,
the generic algorithm coincides with Dijkstra’s algorithm, a classic in the graph lit-
erature |7, 30}

.
3

Operations of the tropical semiring are quite simple; both semiring operations are

done in O(1) time. The cost of priority queue operations depends on its implemen-

39

tation. Using a Fibonacci heap, insertion takes O(1) time and the extraction of the
smaller element takes O(logn) time. Finally, the priority queue ensures, by the op-
timality principle [15], that each state will be inserted in the queue at most once.
Therefore, the running time is

O(1E] + Q| log Q).

Note that even though the Fibonacci heap is the most used implementation of prior-
ity queues in shortest paths problems, the complexity can be further improved using
a RAM priority queue [34].

In practice, if the algorithm is used only in the case of the tropical semiring and with
a priority queue, the execution speed of the algorithm will be improved by stopping
the search when a final state is reached. This optimization works since the priority
queue, used in conjunction with the tropical semiring, ensures that there is no path
from s to ¢ with a smaller cost [7]. Therefore, when a final state is reached, the path
from s to g € F is the smaller one. This improvement does not change the complexity
but, in practice, often leads to a faster search.

K-Shortest-Distances Problem

It can also be useful to obtain the k shortest-distances from a state ¢ to a final state.
Fortunately, this problem can be solved using the generic algorithm presented here,
implemented with the k-tropical semiring.

Definition 3.5.
The k-tropical semiring is a semiring defined as (K, ®, ®,0, 1) where

o K= (R:U{oo})",

e 0= {o0,..,00),

e 1=1(0,..,0),

® (xla <oy xk) ©® (yh ey yk) = 1&%@2@($iayi)s

® (T, Th) @ (Y1, oo, Ui} = kmmin (z; + ;).

1<,i<k

40

Using this semiring, the algorithm calculates, at each state, the k-shortest distances.
Thus, at the end, the algorithm outputs the k-shortest distances from the source state
to every state in the transducer.

The complexity of the algorithm with the k-tropical semiring and using a best-first
search queue discipline such as a priority queue is thus:

Ok - B+ k- Q| 1og|Q)).

All-Pairs Shortest-Distance

The all-pairs shortest-distance problem consists in finding the weight of the shortest-
path between all pairs of states in a transducer. A small modification of Algorithm 7
allows to use it to compute the all-pairs shortest-distance. This modification consists
in returning d, the array containing the weights of shortest-paths between s and all
other states, instead of only the shortest distance. Applying this new algorithm to
every state in 7' will compute the all-pairs shortest-distance.

Since Algorithm 7 is executed || times, the running time of the all-pairs shortest-
distance is

OUQP +1Q|- To +To +Tu) - 3 _(IEldll - N) +1Q1 - (T +T.) Y Ny).

g€Q qeq

In the case where the algorithm is implemented in the tropical semiring and with a

priority queue, the running time is
O(IQ - 1Bl + QI log [Q)).

3.4.2 Shortest-Paths Algorithms

The shortest-path algorithm described here is the famous Disjktra’s shortest-path
algorithm described in most computer science books, including [7] and [30]. This
algorithm has been originally designed to find the shortest-path in a weighted graph.
However, transducers can be considered as directed graphs since the additional sym-
bels carried by transitions in them are not taken into account in the shortest path
computation. Hence, the algorithm can be directly applied to them.

41

Algorithm 8 shows the pseudocode of Dijkstra’s algorithm for transducers. A heap
is used to maintain the set of states to be explored. The algorithm has two inputs: a
transducer T = {Q,1, F, %;, 5,, E, A, p) and s, the state from which the search begins.
Typically, this state is the initial state of T

Algorithm 8 Dijkstra’s single-source shortest path
SingleSourceShortestPath(T,s)

1: for each ¢ € ¢J do
2: dfg] + o0

n[gl + NIL
d[s] < 0
: Heap.Insert(s)
while S # 0 do

g + Heap.Head()

if g € F then

return 7lg)

10: for each (g,0;,0,,w,¢') € Elg] do

11: if dlg'l > dlg] + w then
12: dlg'] « dlg] + w

13: mlg] + ¢

14: if ¢ ¢ S then

15: S« Su{d}

16: return NI L

The algorithm works in the same way as when Algorithm 7 is implemented with the
tropical semiring and priority queue. In this algorithm, dlg] is an estimation of the
shortest-distance from s to ¢ and 7{g| denotes the predecessor state of ¢ used to save
the shortest-path associated with g.

The first loop of the algorithm (lines 1-3) initializes both d[g! and =[g]. At line 5,
the state from which the search begins is inserted in the heap. Line 7 extracts, from
the heap, the state with the smallest dlg| value. The loop of lines 10-16 performs
the relaxation step. This means that for each transition e = ((q, 0y, 0o, w, ') € Elq],
the path from s to ¢' is updated if the weight of the new estimate is smaller than
the previous one (lines 11-12). Lines 14-15 insert ¢’ in the heap if it is not already
present.

42

Recall that the optimality principle, which is ensured by the priority queue and the
relaxation step [7], states that when a state g is extracted from the heap, the weight
of the path s ~» ¢ is the shortest of all existing paths between s and ¢. Hence, if
a final state is reached, the shortest-path s ~ F' is found and the algorithm can be
halted. This optimization is applied at lines 8-9. Finally, the algorithm returns NI1L
if no final state has been reached during the search (line 16).

Running Time Analysis

The first loop of the algorithm passes through all states, thus takes O(]Q}|) time. In
the loop of lines 6-15, a state ¢ is extracted from the heap and each transition is
explored. The extraction is done in O(log|@]) using a classical heap implementation
[7]. The loop of lines 10-15 is executed |E{g]| times and, in the worst case, the inser-
tion of O(log|@)|) is done each time. Thus, the inside of the loop of lines 6-15 takes
O(]E[g]| - log|Q}) time.

By the optimality principle, this loop is executed at most |Q)| times. Therefore, the
total running time of this algorithm is

oIl + |E]) - 1og Q)

The algorithm can be improved by using a Fibonacci heap. This implementation
of heap has an amortized cost of O(1) for insertion of an element. Therefore, the
running time becomes

O(Bl +1Q| - 1og|Ql)

The algorithm can yet be improved to O(|E} + |@] - loglog{®]) by using a RAM
priority queue [34].

K Shortest-Paths Problem

The problem of finding the shortest, the second, the third,..., the K** shortest path,
for K > 1, instead of finding only the shortest one is another well studied problem
in computer science.

The algorithm presented here is an extension of Dijkstra’s shortest-path algorithm

43

described earlier. In the original algorithm, two attributes are maintained for each
state q: the weight of the shortest path from the source state to ¢ and its predecessor.
The K-shortest paths problem can be resolved by maintaining, at each state, a totally
ordered set of (p, w) pairs, where w is the weight of one of the k shortest-paths from
s and its predecessor p. In this case, the core of the algorithm is still the same and
thus, works in the same way. ’

Algorithm 9 shows the pseudocode of Dijkstra’s algorithm extended to determine the
k-shortest paths in a transducer. Note that it is assumed that the transducer contains
only one final state. However, in the general case of |F| > 1, the algorithm is not
affected since e-transitions can be implicitly added in that case. The algorithm needs
as its input the transducer T = (Q,1, F, Z;, 5,, E, A, p) in which the search will be
done, the source state s and the number K of paths to find.

Algorithm 9 A generalization of Dijkstra’s algorithm of the k-shortest paths
SingleSourceKShortestPath(T,s,K)

1: for each g € () do

2: 7r[q] 0

3: g+ 0

4: w[s] « (NIL,0)

5. Heap.Insert(s)

6: while § # 0 do

7. g+ Heap.Head()

8 (p,w) < min7|g]

9: clg] gl +1
10: if g € F and ¢fg] = K then

11: return 7q]

12 if ¢fg] < K then

13: for each (¢, 0;,0,,w,¢') € Elg] do
14: lg'] + mlgTU {{g,w + w)}
15: if ¢ € S then

16: S+ Su{d}
17

18 7lg] + wlg] — minx|q]
19: if |d[g]| > 1 then

20: S+ Su{q}

21: return N/L

In this algorithm, 7[g] denotes for the state g, the set of pairs (p,w) of a predeces-
sor state p which describes a path and its associated weight w. The min operation

44

over the set w[g] returns the pair (p,w) such that w is the smallest. The algorithm
also maintains the attribute ¢[g] which contains the number of times that ¢ has been
extracted from the priority queue. These attributes are initialized at lines 1-5. The
priority queue ordering is based on the smallest weight in #[g]. When a state ¢ is
extracted, its associated pair containing the smallest weight is removed from n{g| and
it is inserted in the queue according the new smallest weight (lines 18-20).

Each time through the loop 8-18, a state is extracted from the priority queue (line 7).
For each transition e € Elg}, a new pair {p,w) is added to the set of the destination
state ¢’ (lines 14). Note that the size of x[g] can be limited to K since ¢ will be taken
into account at most K times (line 12). At lines 17-18, ¢’ is added to the priority
queue if it is not already present.

Since no more than K paths can pass through any state g, the search is limited to K
extractions from the priority queue (line 12} and the algorithm terminates when the
final state has been extracted from the priority queue K times (lines 10-11).

Running Time Analysis

The loop at lines 1-3 passes through all states and thus runs in O(|@Q|) time. The
loop of lines 6-20 will be executed while the priority queue is not empty. However, the
number of extractions per state is limited to K (by the optimality principle) and thus,
the loop will be executed O(K -|Q}) times. At each loop iteration a state is extracted
from the priority queue, which takes O(logn) time when a heap is used. The loop of
lines 13-186 passes through all transitions exiting ¢ and is therefore executed O(|E[qgl})
times. In this loop, the insertion in the priority queue (line 16) takes O(log|Q|) time.
Thus, the running time of this loop is O(|Elg]| - log|Q]) and is executed O(K - |Q|)
times. Therefore, the total running of this algorithm is

OK - (IQ] + |E]) - log Q)

45

Using a Fibonacci heap, the insertion is done in constant time. Therefore, the running
time of the loop at lines 13-16 is O(|E[g]|). The total running time becomes

O(K - |E|+ K -|Q| - 1og|Q])

3.5 Weight Pushing

It is known that a weighted transducer can be reweighted in a infinite number of
ways. This means that an equivalent transducer can be obtained from an input one
by modifying the weight distribution along the transitions without altering the de-
scribed language. The weight pushing is a special case of reweighting which consists
in pushing the weights toward the initial state.

The weight distribution can improve some algorithms such as the Viterbi search used
in speech recognition. To be efficient in a large vocabulary context, the Viterbi al-
gorithm employs pruning based on the combined weight from different probabilities
involved in speech recognition. Thus, the weight distribution may have an impact on
the execution speed of the speech recognition system. Weight pushing is also used in
the minimization of weighted automata.

This section presents an algorithm performing weight pushing on any weighted trans-
ducer. This algorithm can be used with any weight semiring. In the case of speech
recognition, the use of the log semiring considerably increases the recognizer’s speed
[22]. However, the tropical semiring is used in the weighted version of the minimiza-
tion algorithm.

To see how weight pushing works, let us introduce a new function V : { — K called
the potential function of states. This function maps a state ¢ €) to a weight w €
where K is a weight semiring. In the case presented here, where the weights have
to be pushed toward the initial state, the potential V(g) is defined as the shortest
distance from ¢ to a final state g5 € F'. The potential function is used to update the

46

initial weight, transition weights and the accepting costs as follows [22]:

A~ 2@V
w + Vi ' ®uweV(d),Vg,oi0,wq)€E
olg) + Vig ' ®ple), Vg € F

where V{g)~! should be interpreted as —V'(g). Note that the potentials along any
successful path, namely, paths from the initial state to a final state, are added and
then substracted. Hence, the weights associated to input strings are not affected by
the reweighting.

Algorithm 10 shows the pseudocode of a weight pushing algorithm based on the
reweighting rules previously presented. It uses the shortest distance algorithm, as
mentioned before, to compute the potential function of states. The input is a trans-
ducer T' = (@,%, F,Z;,%,, E, A, p) in which the weights will be pushed toward the
initial state according to the implemented semiring.

Algorithm 10 Weight-Pushing
PushWeight(T)
: T® « Reverse(T)
: V + shortestDistance(T®, T® Initial State)
: A7)« Al @V (5)
: for each ¢ €) do
if ¢ € F then
plg) + Vg™ ® plg)
for each (g,0;,0,,w,¢) € Eig| do
w+ Vgt @we® Vi¢]

[

I -

The first step of the algorithm consists in computing the shortest distance from every
state ¢ € ¢ to a final state gy € F. An efficient way to perform that consists in
applying the shortest distance algorithm presented in Section 3.4 on the reverse of
the transducer. The result is the shortest distance from every state to the final state
under consideration in 7. The loop of lines 3-7 applies the update rules presented
before on each final state and on every transition of the input transducer.

47

(b)

Figure 3.7: Ezample of weight pushing

Figure 3.7(a) shows a weighted transducer and Figure 3.7(b) shows the transducer
obtained by pushing weights in the tropical semiring. This figure clearly shows that
the weights have been moved along the paths toward the initial state. Note that the
weights associated to the original input string have not been altered by the algorithm.

Running Time Analysis

The algorithm will be divided into three parts for the complexity analysis. The first
part is the computation of the reverse of the input transducer. The corresponding
algorithm will not be described in detail since it is straightforward. Basically, it con-
sists in passing through all transitions of the transducer and reversing it by swapping
their origin and destination states. This computation involves a loop passing through

all transitions of all states; the running time is linear : O(|Q| + |E}}.

The second section concerns the shortest distance algorithm. This algorithm has
been presented and analysed in section 3.4. The third section applies the reweighting
rules on all transitions and all final states according to the potential function previ-
ously computed. This calculation of new weights implies a loop that passes through
all states and all transitions. The calculated weights depend on the complexity of
the semiring operations. Therefore, the running time of this loop is O((|Q|+|E|) - Te-

48

It is clear that the computation of the shortest distance dominates the running time
of the other sections of the algorithm. Therefore, the complexity of this algorithm is:

O(!Q! + (TEB +Tg + Tu)) Z(!E[q” ’ NQ) + (T; + Te) ZNQ)

q€q qeQ

3.6 Summary

This chapter has presented some basic algorithms applicable to finite-state transduc-
ers. These algorithms have been described in detail and their complexity analyzed.
The algorithms presented in this chapter are:

e The union operation which creates a new transducer representing the union of
two languages.

e The concatenation operation which creates a new transducer representing the
concatenation of two languages.

e Algorithms based on Depth-First Search techniques, including topological sort
and connection algorithms.

e Shortest-Path algorithms allowing to find the path(s) of minimal cost in a trans-
ducer.

e The weight pushing algorithm which shifts weights carried by transitions toward
the initial state.

These algorithms are fairly straightforward; presenting them has been a good intro-
duction for the more complex algorithms presented in the next chapter.

49

Chapter 4

Advanced Algorithms

This chapter introduces algorithms for three important operations to work with finite-
state transducers.

The first algorithm implements the e-removal operation. This operation removes
from a transducer all transitions for which the input and output symbols are €. The
resulting transducer describes the same language but does not contain any of these

transitions; this increases the computational efficiency of the transducer.

The second algorithm concerns the determinization algorithm. This algorithm trans-
forms a non-sequential transducer to its equivalent deterministic counterpart. Unfor-
tunately, not all transducers admit a deterministic representation. This point is also
discussed in this section.

~ Finally, the composition algorithm is described. As noted in Chapter 2, a transducer

represents s binary relation between sequences of symbols. Thus, the composition of
two transducers implements their relational composition.

50

4.1 Epsilon Removal

Transducers produced by several applications are often the result of various complex
operations introducing e-transitions in order to simplify them. Unfortunately, these
transitions increase the computational load of fransducers since they make them
non-deterministic and in general, induce a delay in their use. Thus, the goal of this

operation is to remove the e-transitions of a given transducer.

Definition 4.1.
An e-transition is a transition e = (g, 6;, 0,, w, ¢’') for which both o; and o, are the
empty string €, as typified in Figure 4.1.

ofw,

Figure 4.1: Example of a transducer with e-transitions

The e-removal algorithm runs in two steps. The first step consists in computing the
e-closure of the input transducer. The second step performs the e-removal itself. The
description of the e-closure algorithm will first be described.

4.1.1 Epsilon-Closure

The first part of the e-removal algorithm is the computation of the e-closure of the
input transducer. The e-closure of a transducer T is another transducer 7T}, contain-
ing only e-transitions such that for all e-paths ¢ ~+ ¢' in T, there exists a transition
(g,€ ¢, w,¢') € E,.

o1

Figure 4.2 shows the e-closure of the transducer of Figure 4.1. In this figure, transi-
tions already present in the input transducer are denoted by plain arrows and tran-
sitions added by the e-closure are denoted by dashed arrows.

Figure 4.2: Epsilon-Closure of transducer shown by Figure 4.1.

Computing the e-closure is equivalent to computing the all-pairs shortest-distances
over the semiring K in T, [18] where, T, denotes the transducer T in which all non-e-
transitions have been removed . Thus, the algorithm involves the use of the shortest-
distances algorithm described in Section 3.4. Algorithm 11 shows the pseudocode
computing the e-closure of an input transducer T' = (@, 1, F, Z;, 5, E, A, p).

Algorithm 11 Epsilon-Closure
Epsilon-Closure(T)
T (Q,4, F 5, 5,,{(g,05,00,w, ¢} EE | 0; =€ Aoy =€}, A, p)
: Ec S @
: for each g € Q) do

d < SingleSourceShortest Distance(T,, q)

for each ¢' € () do

if d|¢'] # oo then
E.+ E. U{(q,¢¢,dld], ¢}

return (Q,1, F, %;, Z,, E,, A, p)

[y

@ > G Wy

The algorithm works as follows. The transducer 7. containing only e-transitions of
the input transducer is created at line 1. For each state g € (), the shortest-distance

82

between ¢ and all ¢’ € () is computed at line 4. If there is no path ¢ ~ ¢, the dis-
tance is set to infinity. Therefore, since d contains weights for all accessible states ¢’
from g, creating transitions according to these values is equivalent to the e-closure of
state g. This operation is done in the loop of lines 5-7. The complete e-closure for the
transducer is accomplished by repeating this procedure for every state in @ (lines 3-7).

Running Time Analysis

It is already known that the running time for the shortest-distances algorithm is

O(QI + (To + T + To) - O (Eldll- Np) + (T +T) S Ny)

q€Q geq

(see section 3.4 for more details). This algorithm is executed |@| times. The running
time of the loop at lines 5-7 is also O(|Q)|) since, in the worst case, the loop passes
through all states in 7. Therefore, the running time of this algorithm is:

O(IQ%| +1Q1- (Te + T + T.) - »_(1Blg]l - Np) + Q|- (L + T.) - 3 Ny)

geQ S8

Using the tropical semiring and the Fibonacci heap in the shortest-distances algo-
rithm, the rupning time is:

O(1Q1- 1B+ |QF - log Q)

4.1.2 Epsilon-Closure in Acyclic Case

In the case where the transducer T does not contain any e-cycle, i.e. T¢ is acyclic,
the running time of the e-closure algorithm can be significantly improved by visiting
states in reverse topological order.

This improvement is obtained by using the property of topologically ordered trans-
ducers, which states that for any transition (g, 0i, 04, w, ¢'), g appears before ¢'. Since
the transducer is acyclic, the e-closure of a state g depends only on e-closure of its
adjacent states. The e-closure of adjacent states is already computed since states are
visited in reverse order. Therefore, it is possible to compute the e-closure by visiting
each state once, thus in linear time.

53

Algorithm 12 shows the pseudocode of a procedure computing the e-closure of a
transducer T = (@, 3, F, Z;, Lo, E, A, p) in which there is no e-cycle.

Algorithm 12 Epsilon-Closure-Acyclic
Epsilon-Closure-Acyclic(T)
1 Te - (Qs ?;‘J F? Ei» Em {(q’ Ty Ogy W, ‘Zi) = E i O; =€ A Jp = E}?)‘7p)

2: S + Topological Sort(T,)

3 E.+ {{g,05,00,w,d) EE|0;=¢cA0,=¢€}
4: while S # § do

5 g < tail(S)

6: S 85— {q}

7: for each (g,¢,¢,w1,¢') € Elg| do

8: for each (¢',¢,€,wq, ¢") € El¢] do

9: Ec «— Ec U {(Qa € €, W1 @ Wy, q”)}
10: return (Q,1, F, Z;, 5,, E., A, p)

The first step consists in stripping the transducer T of its non-e-transitions to produce
T (line 1). Line 2 initializes the list S by filling it with the topologically ordered set
of states (7 while line 3 initializes the set of transitions E, with the e-transitions of T'.
As noted before, the e-closure computation of ¢ depends only on adjacent states for
which the e-closure has already been computed. Thus, the e-closure of g is computed
by creating a transition ¢ from ¢ to every state reachable by iis adjacent states (lines
7-9). Since this operation always implies two transitions, the weight carried by ¢ is
the ®-product of the two transition weights involved (line 9). The loop of lines 4-9
repeats the procedure for every state g € Q in reverse topological order.

Running Time Analysis

It is already known that the topological sort runs in linear time, i.e. O(|Q] + |E|)
(see section 3.3 for more details). The main loop passes through all states ¢ € Q.
For every state, transitions of ¢ and those of its adjacent states are considered. Thus,
the running time of this loop, in the worst case, is O(|Q| + 2 - |E|) = O(|Q] + |E}).
Therefore, the running time of the algorithm is linear : O(|Q) + |E]).

54

4.1.3 Epsilon-Removal Algorithm

This section will describe the second part of the ¢-removal algorithm which consists
in creating new non-e-transitions from pairs made of a non-e and an e-transition. The
resulting transducer will contain only non-e-transitions and will be equivalent to the
original one.

Algorithm 13 shows the pseudocode of the e-removal algorithm for weighted trans-
ducers. Its input is a transducer T = (Q,1, F,%;, 2, E, A, p) and its output is T
without e-transitions. Figure 4.3 shows the resulting transducer when the algorithm
is applied to the transducer of Figure 4.1.

Algorithm 13 Epsilon Removal
RemoveEpsilon(T)
1: T, + e-closure(T)
2: E + {(q,0i,00,w5,¢') € E | 0; # €V, # €}
3: for each g € @ do

4: for each (g,€,¢,w.,¢) € E gl do
5: if ¢ € F then
6 pold] = pola] @ pla’] ® we
7: for each (q',0;,0,,w,¢") € El¢’] do
8: if 3(q,0:, 00, w,,¢") € E then
9: Wo ¢ Wo B we ® W
10: else
11: E + EU{{g,0; 0, w.@w,g")}

12: return T,

This algorithm works in two steps. The first step consists in computing the e-closure
of the input transducer (line 1), as previously described. The second step, which
consists in removing e-transitions, works as follows. The algorithm considers pairs of
transitions (lines 3-11). A pair is made up of two transitions (¢;,%;) where ¢ is an
e-transition (g, €, €, we, ¢') € E.[q] and 5 is a non-e-transition (¢, 03, 0,, w, ¢") € El¢'].
From every pair, a new transition {g, 0;,0,, w ® w,, ¢") is created. If the transition
already exists in T, the weights are combined with the ®-product, otherwise the
transition is inserted in 7' (lines 8-11). Lines 5-6 ensure that the final states are
correctly handied. In the case where an e-transition leads to a final state ¢’ € F,
the originating state becomes also a final state for which the acceptation cost is the
®-product of the e-transition weight and the acceptation cost of ¢'. The @-addition is

used to take into account the case where the originating state was already a final state.

39

Figure 4.3: Transducer of figure 4.1 for which e-transitions have been removed.

Running Time Analysis

Let g be the state considered and ¢’ be a state belonging to the e-closure of g. The loop
at lines 7-11 considers all transitions in Elg’] and therefore is executed O(| Elg] |)
times. In the worst case, every state ¢ belongs to the e-closure of g. Hence, the
running time of the nested loops of lines 4-11 is O(|Q| + |E|). These nested loops
are executed |@| times (lines 3-11). Therefore, the running time of the second part
of this algorithm (lines 2-11) is

O(1QF +1Ql - 1E)).

In the case where the algorithm is applied to an e-cyclic transducer, the total running
time of the algorithm is dominated by the e-closure, hence is

O(1Q1 - 1B+ |@" 1og|Q))

when the e-closure is computed over the tropical semiring with a Fibonacci heap. In
the case of an e-acyclic transducer, the running time of the algorithm is dominated
by the e-removal section. Therefore, the running time is:

o(lQI* + Q! - 1&)

4.1.4 Improvements

In practice, the algorithm can be improved by using a heuristic to reduce, in many
cases, the number of e-transitions considered by the e-removal algorithm. Consider
the transducer shown in Figure 4.4. In this figure, dashed transitions represent e-
transitions created by the e-closure algorithm and plain transitions are the original

o1es.

Figure 4.4: epsilon-closure with useless transitions

Let e;; € F be a transition from state ¢; to state g;. At state 0, the algorithm will
create a new transition egs using the transitions-pair (egs, e23). Then, the algorithm
will explore the state ¢ using the e-transition eg;. However, this exploration is useless
since there is no non-e-transition going out from ¢;. In general, e-transitions going to a

state without non-e-transitions can be ignored by the algorithm since they are useless.

Now, consider the case of state g;. Note that this state does not have ingoing non-
e-transitions. Therefore, this state will be unconnected since it cannot be reached
in the resulting transducer. However, a new transition”elg will be created from the
transitions-pair {(ejs, €g3). This leads to useless computation since the state will be
unconnected and thus, will be eliminated. In general, a state without ingoing non-e-
transitions can also be ignored by the algorithm.

This heuristic does not change the complexity of the algorithm since in the worst
case, all e-transitions are useful to obtain the good result. However, in practice, the
implementation of this heuristic can lead to a 20% improvement in the speed of the
algorithm.

4.1.5 Remarks

At the end of the process, some states may become inaccessible as previously men-
tioned . These states can be removed in linear time using the connection algorithm
presented in section 3.3.

57

4.2 Determinization

This section describes a determinization algorithm. This algorithm can be used to
obtain a deterministic automaton from a non-deterministic one or a sequential trans-
ducer from a non-sequential one.

An automaton is deterministic if and only if for any input string w, the sequence
of states is unique. A transducer T = {(Q,1, F, %;, 5, 6,0, A, p), where ¢ and o are
respectively the transition function and the output function such as defined in chap-
ter 2, is said to be sequential if it is deterministic from its input point of view. More
formally, T is sequential if and only if

l6(g,a)l <1,VgeQ,Vae T,

where |6(g,a)| is the number of transitions leaving the state ¢ € () with the input
label a € ¥;. Figure 4.5 shows an example of sequential transducer.

Figure 4.5: Example of o sequential weighted transducer.

Since in such transducers there is at most one transition labelled with any symbol
of the input alphabet, sequential transducers are computationally very interesting.
Indeed, using this kind of transducers to perform a transduction implies that each
input string follows a unique path. Hence, the computation of the transduction de-
pends only on the length of the input string and not on the number of states and
transitions in the transducer.

The definition of sequential transducers can be generalized by introducing the pos-
sibility of generating an output string in final states. This final string works in the
same way as the accepting cost previously defined. Hence, the final output string is
@-added to the usual output string of the transducer. Usually, the @-addition refers
to the concatenation of strings. This kind of transducer is called a subsequential

transducers. An example of such a transducer is shown in Figure 4.6.

58

Figure 4.6: Ezample of a subsequentiol transducer.

A subsequential transducer with more than one final output string in a same final
state is called p-subsequential, where p refers to the maximum number of final output
strings in any final state. Hence, a p-subsequential transducer allows several output
strings for a given input string,.

Note that a p-sequential transducer can be easily converted into a transducer without
output strings. Indeed, a final output string s can be represented by a sequence of
|s| consecutive transitions (gy, €, 01, p(a1), @), (@2,€,02,0,43), -+ , (@s]-1, €, 0151, 0, js))
where g, is the new final state and gy is the old final state transformed in a non-
final one. This new transducer is sequential up to the new transitions added in
the conversion process. Figure 4.7 shows the subsequential transducer of Figure 4.6
converted into a transducer without final string output.

a:b/1

Figure 4.7: Transducer without final output string equivelent to the one shown in
Figure 4.6.

Note that only one final state has to be added for all converted final output strings

since all sequences of transitions can reach the same final state.

4.2.1 Determinization Algorithm

It is well known that any language described by a non-deterministic automaton can
also be described by a deterministic one. Hence, any automaton admits an equiv-
alent deterministic automaton. The procedure used to construct the deterministic
automaton equivalent to a non-deterministic one is based on the subset construction
method. This method constructs the set of states of the deterministic automaton
with the power set of states of the input automaton. Then, transitions leaving these
states are computed. Consider the automaton A = (Q, %, F, L, §) shown in Figure 4.8.

59

Figure 4.8: Non-deterministic automaton A

The first step in constructing the deterministic automaton Ap = (Q',¢, F', %, ")
equivalent to A is the construction of the set of states (', which is the power set of
Q, denoted P(Q).

Q= PQ) = {@e {%}a {%}5 {C]z}a {%a%}a {110; Q’z}, {Qh Q2}a {a1, ¢, q?,}} |

Then, the initial state and the set of final states are defined. The initial state is the set
of all states reachable by e-transitions from the initial state of the non-deterministic
automaton. In the example, the new initial state is ¢/ = {go}. The set of final
states is defined as the set of all subsets containing at least one final state in A, thus

F = {{&}, {90, @}, {01, %}, {q1, %, ¢s}} in the example.

Finally, the transition function &' {or the set of transitions) is computed by calculating
for each set S C @ and for each symbol ¢ € ¥ the transition function:

§(S,a) = U é(g,a).
geSs

\

The resulting automaton, without unconnected states, is shown in Figure 4.9. This
automaton describes the same language than A, i.e. the set of strings beginning by
a finite number of as and ending by & or ¢.

Figure 4.9: Deterministic automaton equivalent to A

This construction is used to prove that any automaton admits an equivalent deter-
ministic one. A formal proof based on it is given in [24].

60

In contrast to unweighted automata, not all transducers (including acceptors) admit
an equivalent sequential transducer. Indeed, a sequential transduction does not allow
unbounded delay [17]. For example, consider the transducer function f(w) which
outputs 6! when |w| is even and b*! otherwise. It is impossible to begin to write
the output string associated to the inputf one since its length is known only after the
input string has been processed.

Algorithm 14 shows the pseudocode of the determinization algorithm presented by
Mohri in {17]. This algorithm is a generalization of the power set construction de-
scribed before. In the classic algorithm, states are defined as a subset of states of
the input automaton. In the case of transducers (and acceptors), the subsets contain
pairs (g, z) where ¢ is a state of the original transducer and z is the residual output
associated with ¢.

The algorithm is presented in the general case of semirings, applicable to many types
of transducers. For simplicity, the algorithm will be described in the case where the
output symbol carried by transitions is a single element such as string-to-weight trans-
ducers. Thus, the algorithm takes as its input a transducer 7' = (@, 4, F, X, 6, 0, A, p)
and produces its sequential equivalent.

Algorithm 14 Determinization
Determinization{T)
1. F, +)]

Ao A
to + (3,0)
Queue + {i,}
while Queue # 0 do

go + head[Queue]

if I(g,z) € g, such that g € F then

F,+« F,U{g}

ple) <~ @D z®p(g)
quv{Q7$)640

10: for each a such that I'(g,,a) # 0 do
11: oot} — P 2@ G o

{g.2)€L(go,0) t==(g,2,0.4')

122 dolgea) = U {(d, D 00(g0, 0)] " ® 2 ® 0 (1))}
¢’ €v(go,a) (g,2.8)€7(go0,0),n(t)=¢

13: if 8,(go, @) is a new state then

14: Queuve +— Queue U {3,(g,,a)}

61

The notation used in this algorithm as described in [17], will now be presented. Given
a transition t = (g, a, 0, ¢'), o(t) denotes the output label/weight carried by ¢ and nt]
denotes the destination state ¢’ of the transition. Such as previously noted, a state
g, is made of a subset of pairs (g,x}. The set of pairs (g,z) € g, having transitions
carrying the input label ¢ is denoted by I'(g,,). The set of triples (g, z,t) where
(g, z) is a pair in g, for which ¢ admits a transition ¢ with the input label ¢ is denoted
by (g2, a}). And finally, the set of states ¢’ that can be reached by transitions carrying
the input label a leaving states g, states subset is denoted by v(g,, a). More formally,
these sets are defined as

I'(go,a) = {{g,z) €q |3t =(g,0,0,¢") € E},
Y(go,0) = {{g,z,t) € x E|t=(g,a,0,¢) € E},
v(go,a) = {¢'|3(g,2) €q,,Ft = (g,0,0,¢) € E}.

The algorithm constructs the sequential transducer T, = (Qo, o, Fo, Lo, b0, Ty Aoy F0)
as follows. The initial weight A, is the initial weight of 7" and the initial state ¢, is a
subset of one pair {(i,0)} (lines 1-2). A queue is used to maintain the set of subsets
g, waiting to be examined. This queue is initialized with the initial subset at line 3.

Recall that states of the resulting transducer are the subsets g,. A subset g, is a final
state in the resulting transducer if g, contains at least one pair (g, z) such that g is
a final state in T, i.e. ¢ € F. The accepting weight of g, is the ®-addition of all
accepting weights of all final states in g, (lines 8-9).

Then, for each symbol a € ¥ such that there exists at least one state g of the subset
g, from which an outgoing transition carries the input symbol a, a new transition %,
leaving g, and carrying the input symbol o is created (lines 10-14). The output symbol
carried by the transition is computed as follows. For each transition ¢t = (g, q,0,¢’),
the ®-product of o and the residual output associated with g is calculated. These
results are ®-added to form the output symbol carried by the new {ransition.

The destination state of t, is a subset made of pairs (¢/, 2") where ¢’ is a state of g,

that can be reached by transitions carrying the input label a and z’ is the residual
symbol associated with ¢/, The value of the residual symbol is the @-addition of all

62

output symbols carried by transitions reaching ¢’ from states in ¢, and carrying the
input symbol & when they are combined by the ®-product. This operation is made
at line 12. Finally, the newly created subset is inserted in the queue if it is a new
state in @, (lines 13-14).

Figure 4.10a shows an example of non-sequential string-to-weight transducer admit-
ing an equivalent sequential one. This transducer is defined over the tropical semiring
thus, the ®-addition and the ®-product are respectively replaced in the pseudocode
of Algorithm 14 by the min operation and by the usual addition of real numbers.

The resulting transducer is shown in Figure 4.10b. Note that the algorithm has
produced a transducer accepting the same input strings accepted by the original
one. However, only the smallest of weights associated with a given input string is
produced by the sequential transducer. This is because the algorithm has removed
the redundancies by combining the weights associated to the same input string. How
weights are combined depends on over which semiring the transducer is defined. In
the case of the tropical semiring, only the smallest one is considered.

Figure 4.10: A non-sequential transducer (a) and its sequential equivalent (b)

63

Running Time Analysis

The main loop of this algorithm (lines 5-14) is executed once for each state g, of the
output transducer. Recall that g, is a subset of states of the original transducer. In
the worst case, the output transducer will contain all possible subsets of {J, namely
the power set of (. Therefore, the loop will be executed, in the worst case, 29! times.
Hence, the running time of this algorithm is exponential to the number of states in
the original transducer, therefore O(2/91).

4.2.2 Determinization of String-to-String Transducers

As noted before, Algorithm 14 has been presented in the general case of semirings;
therefore it can be applied on transducers mapping strings to another type of output
symbols. In particular, it can be used to determinize weighted string-to-string trans-
ducers defined over the cross-product of a weight semiring and the string semiring.
Recall that the cross-product of two semirings is also a semiring. Figure 4.11a shows
a non-sequential weighted string-to-string transducer defined over the cross-product
of the tropical semiring and the string semiring. |

Since such transducers output pairs of string and weight, subsets are made up of
triplets (¢, w,z) where ¢ € () is a state in the original transducer, w € 7 is the
residual string and z € K is the residual weight. This situation is illustrated in Fig-
ure 4.11b.

Figure 4.11: A non-sequential transducer (o) and its 2-subsequential equivalent (b).

64

4.2.3 Notes on Implementation

To implement this algorithm efficiently, there are two critical points to take into ac-

count.

The first one is the loop beginning at line 10. This loop considers every input label
a such that there exists at least one state ¢ in the subset g, from which there is an
outgoing transition labelled with a. This implies that the program has to search in
transition sets of all states in ¢y to find both the next label to consider and all tran-
sitions labelled with it. This can be done by merging all transitions in the same set
and then sorting it with respect to the input label. Thus, the problem is reduced to
passing through the transitions composing this unique set. However, sorting an array
takes O(nlogn) time, where n is the number of elements. In the worst case, a subset
is made of all states of the original transducer; sorting this set takes O(|E|log|E|}
time. This procedure has to be repeated for all states of the output transducer, i.e.
(2191} in the worst case.

A more efficient way consists in sorting all transition sets with respect to the input
label, before performing the determinization algorithm. Since all transition sets are
sorted, they can be merged in O(n) time, where n is the number of transitions in all
states of the subset. Moreover, it is not necessary to perform the merge explicitly since
passing through transitions in the same way as does the merging procedure leads to

an efficient way of implementing the search of transitions carrying the input symbol a.

The second critical point that must be taken into account occurs at lines 13-14, in
which the new subset is inserted in the queue if it has not already been created. To
ascertain that, all subsets created so far have to be maintained in a list. A naive way
to implement this is to use a data structure such as a linked list. However, to confirm
that the subset does not exist, the new subset has to be compared to all other subsets
in the list. A more efficient structure for this problem is a hashtable. Indeed, the
hashing function will spread out the subsets over the buckets of the hashtable, which
ensures that a manageable number of subsets will be compared to the new candidate.
An efficient hashing function will take into account all triples in the subset and all
elements of these triples.

65

4.2.4 Lazy Implementation

This algorithm allows a lazy implementation, also called an on-demand implementa-
tion. In the context of transducers, lazy implementation means that transitions of a
state in the resulting transducer are computed only when required. A lazy implemen-
tation of the determinization algorithm is possible since the creation of transitions
depends only on the subset from which transitions leaves. Indeed, transitions are cre-
ated considering only with respect to transitions of states ¢ belonging to the subset.
Lazy implementation is very advantageous when a large transducer is constructed
but only a small part of it has to be considered [27].

For example, consider the k-shortest paths algorithm presented in section 3.4. This
algorithm outputs k-paths having the shortest distance from the initial state to a
final one. However, it is possible that some input strings associated with these paths
are the same. In many applications such as speech recognition, it is interesting to
obtain the k-unique-shortest paths, namely the k-paths having the shortest distance
and describing & unique input string. This version of the k-shortest paths can be im-
plemented using the lazy implementation of the determinization algorithm. Indeed,
since a sequential transducer does not have, by definition, two transitions sharing
the same input label at the same state, applying the k-shortest path algorithms on
a determinized transducer will produce a set of k shortest-paths having a one-to-one
correspondence to the set of distinct input strings.

As noted before, not all transducers can be determinized and in that case, the deter-
minization algorithm does not terminate and thus cannot be used as a pre-processing
step. However, the shortest-paths algorithm explores only a finite part of the deter-
minized transducer and thus the lazy implementation can be used to expand those
states that are needed to compute the k unique shortest-paths. More details about
this approach can be found in [23].

Another advantage of the lazy implementation is it can require less memory. Indeed,
transitions are computed only when they are needed by the operation that requires
them. Hence, when the operation does not use them any more, they can be deleted
and re-computed if necessary. Since transitions are a big part of the memory space
used by the transducer, the economy of memory can be substantial.

66

4.3 Composition

A transducer represents a binary relation between sequences of symbols {Chapter 2)
thus, the composition of two transducers computes their relational composition. Let
Ty : L — A% and T : A" — I be two relations represented by transducers in
cascade as shown in Figure 4.12.

Figure 4.12: A cascade of two transducers

This cascade can be interpreted as follows. The transducer 77 maps &} to A*. Thus,
the set A* becomes the input of transducer 75 which itself maps A* to . Hence,
the general behaviour of the cascade is a new binary relation: 77 e 73 : X7 — .

In general, given a transducer 77 in which there is a path mapping sequence z to
sequence ¥ and a transducer 75 in which there is a path mapping sequence y to se-
quence z, the composition A e B has a path mapping z to z. The weight of this path
is the ®-product of the weights of the corresponding paths in T} and T3 [19].

The composition is a key operation in transducer-based applications. 1t is used to con-
struct complex transducers representing complex functions. For exampie, in the case
of speech recognition, the composition is used to construct the recognition network
needed by the recognition system. This network is constructed by the composition
of different levels of representation with which transducers are associated.

4.3.1 Composition Algorithm

The composition algorithm is a generalization of the classical construction of pairs of
states computing the automata intersection [24]. Recall that the intersection of two
languages L; and L, is defined as:

LlﬂLQZ{WE'ZUELl/\’UJELQ}

Thus, the intersection of two automata A; N A is a new automaton accepting any
string accepted by both the original automata.

67

A Ay

Figure 4.13: Automata A; and A

Consider two automata A; = (Qy,41, F1,%,61) and Ay = (@, s, F5, T, 2) such as
those shown in Figure 4.13. In this figure, A; accepts all strings containing at
least one a and A, accepts all strings containing at least one 5. The intersection
A1 N Ay = (Qr, i1, F1, 2, 6;) is constructed considering pairs of states (p, g) where p
and q are respectively states in A; and A,. The construction of Ay works as follows.

The first step is to define the set of states Q7. Since each state in Ay is a pair (p, q),
the set of states (J; is the set of all possible pairs of states. More formally, the set of
states @y is defined as Q1 = @1 X @s.

The initial state of A; is the pair {iy,43). The set of final states must be defined such
that A; accepts if and only if both A; and A, accept. Hence, the set of final states
is the set of pairs (py, ¢5) such that p; € F; and ¢y € Fo.

Finally, the transition function has to be defined such that §7((p, ¢), w} is an accepting
state if and only if §7{p, w) and d%(g, w) are also accepting states in A; and A,. To
achieve that, a state (p, ¢) has a transition carrying the symbol a and going to (r, s) if
and only if there is a transition carrying the symbol a from p to r in A; and another
one from ¢ to s in A,. Therefore, only transitions appearing in both transducers are
considered. More formally, the transition function of a state (g, p) is defined as

(6:(p,a),02(q,a)) if S1(p,a) # O A da(g,a) # 0

) , Vae€?2l.
0] otherwise

61((p,q),0) = {

This construction is used in [24] to prove the correctness of the intersection. Fig-
ure 4.14 shows the automaton resulting from the intersection of A; and A, when all

unconnected states are removed.

68

Figure 4.14: Automaton A obtained by the intersection of Ay and A

As noted before, the composition of weighted string-to-string transducers is a gener-
alization of state-pairs construction. The composed transducer Ty e Ty of two trans-
ducers Ty = (Qr,tr, F1, 21, A, Ep, A, p1) and Tr = (Qr,ir, Fr, A, g, Er, Ar, Pr)
has pairs of states (I,7) and satisfies the following conditions {21]:

e its initial state is defined as (i, i),
e the set of final states is defined as {(I,r) |[€ F and r € Fg},

e there is a transition ¢ from (I,7) to (I, ') for each pair of transitions £; and ¢,
such that the output symbol of ¢; matches the input symbol of ¢,.

Consider the transition t, leaving the state-pair (i;,t,). The input symbol, output
symbol and weight carried by ¢, are respectively the input symbol of #;, the output
symbol of £, and the ®-product of weights carried by t; and ¢,.

Algorithm 15 shows the pseudocode of the composition algorithm. In this algo-
rithm, transitions are combined using the ®-product associated with the semir-
ing over which the transducer is defined. The input of the algorithm are the two

transducers 73 and Ty to be composed and its output is another transducer Ty =
(QCaiC7F07 ELazRv ECa’\C:pC’)-

69

Algorithm 15 Composition

Composition(Ty,Tg)
1. Fo ¢
2: Eg]

3: ic + (ir,iR)

4: Ao AL ® Ag

5: pc 4+ prL @ Pr

6: Queue + ic

7. while Queue # 0 do

8 (I,7) « head[Queue]

9: ifle Fy and r € F then

10: Fo+ Fo U (l,r)
11: pc — pr(D) ® pr(r)
12:

13: for each (I,04,¢,w,l') € E]l] do
14: Ecl(l,)] «+ Ec[{l, U (({,7),0i,¢6,w, (I',7))

15: if (I',r) is a new state then
16: Queue +— Queue U (', r)
17:

18: for each (r,¢,0,,w,r") € E[r] do
19: Ecl(l,r)] « EcliI, Nu((i,7),¢,05,w, (I,7"))

20: if {I,7'} is a new state then
21: Queue + Queue U (I,7')
22:

23: for each (#;,t,) € ¥(l,r) do

24: Ecl(l? ’F)] — E(;[(l, T)] U ((Z, T% O’i[tz]j O’O{tr], w[tl] & QU{TIT}, (li, Ti))
25: if (I',r') is a new state then

26: Queue + Queve U {I',7")

70

The notation used in Algorithm 15 will now be described. Given a transition ¢ =
(g,0:,00,w,¢"), 0;[t] denotes the input symbol carried by ¢, o,[t] denotes the output
symbol carried by ¢ and w{t] denotes the weight carried by t. ¥(l,r) denotes the set
of transitions pairs (%;,¢,} such that o,[t] = o;[t,|, where ; is a transition in Ty and

t, is a transition in Tgr. More formally, this set is defined as
‘1’(5,7‘) = {(tg,tr) ! i € EL{l},tr S ER[T] and O'O[tg] = Ui{iré}

The algorithm works as follows. Lines 1-5 initialize the resulting transducer. The
initial weight of both input transducers are combined using the ®-product to obtain
the initial weight of T, The initial state of T¢ is the pair of states (4,). States to

be explored are maintained in a queue which is initialized with the initial state (line 6).

The loop of lines 7-26 is executed for each state in the resulting transducer. Recall
that the states of T are the states-pair created by the algorithm. A state (I,7) is
extracted from the queue at line 8. The state is a final state in T if both [and r
are final in their respective transducers. The accepting cost of the final state is the
®-product of p(l) and p(r) (lines 9-11).

Lines 13-16 deal with the case where state [has leaving transitions carrying an output
e-label. Recall that an output ¢ means that no output label is generated when the
transition is traversed. In the context of composition, this means that the transitions
of r could be matched with transitions of I, the destination state of the transitions
carrying an output e-label. Therefore, created transitions leaving (I,7) to (I',r) are
identical to transitions carrying an output e-label in [. The state (I',r) is inserted in
the queue if not already present.

Lines 18-21 deal with the case where state r has transitions carrying an input e-label.
Recall that an input € means that no symbol is consumed when the transition is tra-
versed. Thus, the transitions of [could be matched with those of 7/, the destination
state of transitions with an input e. Therefore, created transitions leaving (I,7) to
(I',r) are identical to transitions carrying an output e-label in [. The state (I',r) is

inserted in the queue if not already present.

Lines 23-26 consider all pairs of transitions (¢, {,) such that the output symbol of ¥
matches the input symbol of {,. For every matching pair, a new transition from state
(I,7) to state (I', 7'}, carrying the input symbol of ¢;, the output symbol of ¢, and the
®-product of both weights is created. The state (I’,7') is inserted in the queue if not
already present.

This procedure is repeated until all created states have been explored and expanded.
Figure 4.15 shows two transducers. Their composition is shown in Figure 4.16.

Figure 4.15: String-to-string transducers T;, and Tg

Note that several paths can used to reach the final state from the initial one. Each
path represents a different way to deal with the e-transitions of the input transducers.

Figure 4.16: Transducer T¢, resulting of the composition of Ty, and Tx

72

However, this composition is incorrect in the case of weighted transducers since the
weights associated to the possible successful paths could be added in as many times
as the number of distinct successful paths [19]. For example, the shortest-distance
algorithm, implemented in the real semiring, applied to the composition of the two
involved transducers leads to a wrong result since many paths will be considered
while there is only one in the cascade made with the two original transducers.

To solve this problem, only one of those paths should be kept. To choose it, a filter Tx
is inserted between 73, and Tg. This filter has the effect of removing redundant paths.
Figure 4.17 shows one possible filter. In this figure, z denotes any symbol in the al-
phabet and €l and €2 are special markers which have to be inserted in Ty, and Tp [19].

£2:82 £2:e1 el:gl

Figure 4.17: Filter Transducer

The filter works as follows. As long as the output symbol of T; matches the input
symbol of T, the filter remains in state § and the transitions are matched. If there
is an e-transition in 77, the filter moves to state 1. In this state, only e-transitions in
Ty, are considered. The filter remains in this state until a possible match occurs and
then returns in state 0. Similarly, if there is an e-transition in Tg, the filter moves to
state 2. In this state, only e-transitions in T are considered. The filter remains in

this state until a possible match occurs and then returns in state 0.

In Figure 4.16, bold transitions denote the transitions retained by the filter and
dashed transitions denote those removed by the filter. Note that the resulting trans-
ducer contains only one successful path.

This filter can be implicitly implemented in Algorithm 15 with a small modification.
Instead of considering state-pairs, the algorithm could consider triplets (I, r, f) where
[and r are the states of the original transducers and f is the filter state. Then,

73

according to the value of the filter, e-transitions are created or not. For example,
lines 13-16 should be replaced by:
if f # 2 then
for each (I,0;,¢,w,!") € E[l] do
Ecl(l,r)] « Eci(l, U ({I,r), 0,6, w, (', 7))
if (I',r) is a new state then
Queuve + Queue U (', r,1)

In this example, e-transitions from 77, are created only if the state extracted from the
queue is not in state 2 of the filter. Then, the destination state of the e-transition is
(I',r,1) since an e-transition of T} is created.

Not all states of the resulting transducer are connected. Thus, the connection algo-
rithm should be applied on it to remove useless states.

Running Time Analysis

In the worst case, all state-pairs (I, 7) will be created. Thus, the loop of lines 7-26 is
executed |Qz| - |@Qr| times. In this loop, transitions are considered. The creation of
€ transitions is straightforward and depends only on the number of e-transitions in
Tp and Tg. Thus the running time of both loops at lines 13-16 and lines 18-21 take
respectively O(|Eyr.|) and O(|Eg,|) time.

The running time of the loop at lines 23-26 depends on the time required for comput-
ing the set W. This is a well known problem called the relation join. If the transitions
of Ty are sorted with respect to the output label and transitions of T, are sorted with
respect to the input label, this operation can be done in O(|Ey|log|Eg|) if a binary
search is used. Therefore, the running time of the algorithm is

O((1Qcl - 1Qrl) - (1Er|log | Erl))-

74

4.3.2 Notes on Implementation

There is one critical point in the implementation of the composition algorithm and
it is the computation of the set of pairs of transitions which can be matched. In
the algorithm, this operation is denoted by ¥(l,r). This consists in computing the
relational join between transitions in E{l] and those of Eg[r]. The naive way to
compute that is a nested loop to compare symbols of all possible pairs of transitions.
The running time of this method is O(JEL[l]] - |Eg[r]]).

A more efficient method assumes that the transitions of Ty, are sorted with respect to
the output symbol and transitions of Tg are sorted with respect to the input symbol.
This method consists in passing through all transitions in Er[l] and performing a
binary search in Eg[r| to find matching transitions. Since the binary search runs in
O(logn), the running time of this method is O(|EL[l]| log | Er[r]]).

In practice, the speed can yet be improved. Indeed, if the number of searches is mini-
mized, the speed of the algorithm will be improved. Accordingly, if |EL[l]] < |Eg[r]|,
then it is more efficient to pass through transitions in Ep[l] and searching in Eg[r].
On the other hand, if |EL[l]| > |Eglr]|, then it is more efficient to pass through tran-

sitions in Eg|r] and searching in Ey[l].

Another critical point occurs when a new states-pair have to be inserted in the queue.
This new pair is inserted in only if the state is indeed a new one. To assess that, all -
pairs created so far have to be kept in a set. A naive implementation is via a data
structure such as a linked list. However, to ascertain that the pair does not already
exist, it has to be compared to all other pairs in the list. A more suitable and efficient
structure for this purpose is a hashtable. Indeed, the hashing function will spread out
the pairs over the buckets of the hashtable, ensuring that a more reasonable number
of pairs is compared with the new candidate.

4.3.3 Lazy Implementation

As is the case for determinization, the composition algorithm admits a lazy imple-
mentation. Indeed, the transitions leaving a state of the resulting transducer are
computed only through the states-pair representing this state.

75

4.4 Summary

This section has presented three important operations to work with finite-state trans-
ducers:

e Epsilon-removal which removes the e-transitions in a transducer resulting in
a more efficient one since epsilons induce a delay in their use (recall that an
epsilon does not consume/generate a symbol).

e The Determinization which creates a new deterministic {or sequential) trans-
ducer. Recall that a sequential transducer contains at most one sequence of
states for any input string. Thus, the complexity depends ounly on the length
of the input string and not on the size of the transducer.

e The composition which is a generalization of the intersection in automata the-
ory. This operation is very important since it allows one to create complex
transducers from simpler ones.

These operations allow the creation of efficient and complex transducers which are
applicable in many different areas of computer science. The next chapter gives an
example of transducers applied to speech recognition.

76

Chapter

Application of FST : Speech

Recognition

Traditional speech recognition systems such as HTK are constructed using weighted
automata. In speech recognition, the recognition network has many levels of represen-
tation. For example, possible sentences are represented by sequences of words which
are themselves represented by sequences of phonemes. In the context of automata,
these different representations are implemented using the substitution operation. For
example, in the graph of words, a transition for a given word w is substituted by
a subgraph representing its phonetic sequence. The major disadvantage of this ap-
proach is that a change in the network (for example, the addition of a new level of
representation) implies that the program performing the search in the recognition
network also has to be updated.

The composition operation allows FST to represent many levels of representations in
a normalized way. Therefore, the recognizer can work on different recognition net-
works (with different levels of representation) without modifying the program itself.

This chapter presents how weighted transducers are used to construct a speech recog-
nition system. The chapter begins by the description of each level of representation
involved and how transducers implement them. Then, the method used to construct
the knowledge network is discussed. Finally, the results obtained by experimentations
are given.

77

Speech recognition is the process by which a computer identifies spoken words by
analysing the speech signal. To achieve this, it is assumed that the speech signal is a
sequence of symbols composing a message. These symbols are called speech vectors
or observations and are extracted from the speech signal at regular intervals. The aim
of speech recognition is to map a sequence of vectors of observations to a sequence of
symbols such as words, syllables or phonemes.

Let O = {01,032, - ,0:1 be a sequence of observations where o; is the speech vector
at time . The speech recognition problem is to find the message w that maximizes
P(w|0O). Since this probability is not directly computable, Bayes’s Rule is used :

P(O\w)P(w)
P(0)

where P(w) is the probability associated to the language model and P(O|w) is calcu-

P(w|0) = (5.1)

lated using parametric models, the most commonly used in speech recognition being
the Hidden Markov Model (HMM). Since P{O} is constant for a given sequence of

observations and only the arg max matters, this probability is not considered.

From the transducer’s point of view, P{O|w) is a transduction between the message
and observations. This transduction may involve several stages relating different lev-
els of representation.

D G

Phones
Constraints

Language

Acoustic Modeis Mode!

Digtionary

Figure 5.1: Transducers involved in speech recognition
Figure 5.1 shows the usual cascade of transducers used in speech recognition. Other
intermediate transducers can be added to the chain. For example, transducers rep-

resenting phonological rules should be added between transducers C and D.

The meaning of each transducer will now be described.

78

5.1 Transducers Involved in Speech Recognition

5.1.1 Transducer O

This string-to-weight transducer maps, for each observation o;, every probability
distribution function (PDF) d; to the probability that d; generates o;. For each
observation at a given time £, a set of transitions carrying a distribution identification
d; and the probability w that the observation was generated by this distribution, is
created. Figure 5.2 shows how this acceptor should be implemented.

djw d,/w d/w

i i
1 H
i i
| i
i i
| i
i i

Figure 5.2: Observations transducer

The calculation of the PDF can be done in many ways. For example, neural networks
or support vector machines could be used to compute this probability. However,
the most widely used procedure represents each distribution by Gaussian mixture
densities. The probability that o; is generated by d;, given a mixture of Gaussian
densities, is given by:

Oﬂd) —$(0s—)2 (04— p13)

—e
E MV 2vr>niz "
where M is the number of Gaussians in the mixture, ¢, is the weight of the Gaussian
m, i; is the mean vector and Z; is the covariance matrix associated with distribution

i. More details about Gaussian mixture densities and how they are computed can be
found in [4]

In practice, this transducer is not really implemented. The recognition process per-
forms an on-demand composition of transducer O and HCDG thus, transitions of O
(represented impiicitly) are created only when they are required for composition.

79

5.1.2 Transducer H

Transducer H represents the constraints imposed by modeling method used in speech
recognition called, HMM for Hidden Markov Model. HMMs can be used to model
phonemes, syllable, words or any larger speech unit. Usually, context-dependent
phonemes are used as the speech unit. A triphone is a phoneme modeled according
its neighbours. Triphones are denoted a — b + ¢ where b is the modeled phoneme, o
and b are the neighbouring phonemes of 5.

Transducer H maps a sequence of distributions to a sequence of triphone models (or
of any other speech unit). Each triphone is typically modeled with 3 HMM states.
Transitions in 3 HMM carry a distribution index as an input symbol, the transition
weight and no output symbol except for the transition leaving the HMM which car-
ries the triphone model associated with the HMM. Figure 5.3 shows the transducer
H which is the union of all triphone models.

d s:p d;elp d elp

Figure 5.3: Observations to HMM transducer.

In this figure, p denotes transition probabilities involved in HMMs, o — b+ c is a
triphone model and d; is a distribution.

Note that the self loop present on each state in the HMM can be omitted from the
transducer and implemented implicitly in the decoder.

80

5.1.3 Transducer C

In practice, the number of triphones to model can be very high. Indeed, in English,
there are 36 phonemes and thus the number of possible triphones is 36%. In order to
avoid modelling all triphones, only some of them are modelled with a HMM. Mod-
elled triphones are called physical triphones and the others are referred to as logical
triphones.

Logical triphones are mapped to physical ones according to a set of rules. This process
is usually done using a decision tree. The first goal of transducer C is to implement

this mapping. Figure 5.4 shows how this transducer is constructed.

a-b+c:d-e+f

Figure 5.4: Transducer mapping physical triphones to logical ones.

The transducer has a self loop transition for every triphone. The input symbol is a
triphone, physical or logical, and the cutput symbol is the physical triphone asso-
ciated with the input one. Thus, when the input triphone is a physical model, the
output symbol is the same triphone.

The second goal of transducer C is to map a sequence of triphones to a sequence of
phonemes. However, not all triphone sequences are allowed. A sequence of triphones
A, B is allowed if the terminal pair of triphone A matches the pair at the beginning
of triphone B. For example, the sequence ¢ —b-+¢,b—c+d,c—d-+e is allowed while
a—b+c,¢c—d+eis not. Figure 5.5 shows how this restriction is implemented with
a transducer.

Figure 5.5: Transducer implementing triphones constraints.

&1

Each state of the transducer implements a "memory” of the two previous phonemes
in the sequence. Transitions leaving a state are those for which the two first phonemes
composing the input triphone correspond to the state memory. All ingoing transitions
of a state carry an input symbol such that the terminal pair coincides with the memory
represented by this state.

5.1.4 Transducer D

In the context of speech recognition, the dictionary is a list of words with their
phonetic transcriptions. Thus, the dictionary transducer implement the function

D : p* — w which maps sequence of phonemes p to words w.

A string-to-string transducer is used to represent this relation. Figure 5.6 shows how
this transducer is constructed.

Figure 5.6: Dictionary Transducer

In this figure, p is any phoneme and w is a word in the dictionary. The e-transition
leaving the final state to the initial state has been added to allow sequences of words.
However, this loop transition induces an unbounded delay in the transducer when
two words have the same pronunciation (homophones). This point will be discussed
later.

82

5.1.5 Transducer G

Transducer G represents the language model. The language model gives a priori in-
formation about the probability of sequence of words (P(w)). The transducer shown
by Figure 5.7 implements a trigram model. In this model, the probability of a word
given the two preceding words in the sequence is denoted p{ws|w;ws).

However, it is possible that a triple of words was not in the text used to train the
language model. In this case, the probability of the word given the preceding word
(p(ws|ws)) added to a penalty 9,102 called the back-off penalty is used. Similarly,
the unigram probability added tc the back-off penalty is used when the bigram is
also not available.

Woln(w, i W, W}

elq)w'éwz

Figure 5.7: Language Model Transducer

In transducer G, each state encodes a ”"memory” of two, one or no words. Transitions
leaving a state ¢ carry a word and the probability of this word given the words in
the memory of g. In Figure 5.7, ¢4z denotes the back-off penalty for going to a
unigram state (state with only 1 word memory).

Transducers can be used to describe other N-gram models such as bigram or 5-gram.

They can also be used to describe other types of language models such as grammar
based syntactic structure.

83

5.1.6 Phonological Rules

In natural language, some phonological phenomena at the boundary of words such
as the deletion or the insertion of phonemes happen frequently. These phenomena
can be modelled with a transducer which can be inserted in the chain of transducers.
An example of a pholonological rule is that when the last phoneme of a word is ¢
and the first phoneme of the following word is y, then ¢ and y can be optionally
replaced by the single phoneme ch. This rule applies to words ”got you” which can
be pronounced in two ways:

gaail =y uw
g aa = ch uw

where the symbol = denotes the word boundary. Figure 5.8 shows how this phono-
logical rule can be implemented by a phoneme-to-phoneme transducer.

XX

y:ch

Figure 5.8: Transducer representing a phonological rule.

In this figure, the symbol = represents all phonemes in the language and the symbol
= 1is the word boundary. This transducer can be described as follows. All sequences
of phonemes are accepted by the transducer thanks to the self loop at the initial
state. Moreover, the sequence ¢ = y is replaced by the phoneme = ch since the tran-
sition leaving go removes the phoneme £ if it is followed by a word boundary and the
phoneme y is replaced by ch if it follows the phoneme 7 and the word boundary. Thus,
both sequences are accepted by the transducer which represents the phonological rule.

As noted before, phonological rules can easily be modelled in the recognition net-

work by adding the transducers describing them in the chain of transducers between
transducer C and transducer D.

84

5.2 Transducers combination

The transducer HCDG is constructed using the composition operation. However, in
the case of a large vocabulary system, the intermediate results grow very rapidly and
there is not enough memory to perform the composition. The problem is solved by
using the determinization operation since in the case of transducers used in speech
recognition, the determinization considerably decreases the number of states and
transitions which is due to redundancy.

Therefore, the creation of HCDG proceeds in several steps. The transducer DG is
obtained by the composition D e G and it has to be determinized. Recall that trans-
ducer D maps sequences of phonemes to words. The presence of homophones makes
transducer DG not determinizable since an unbounded delay is introduced. Indeed,
The presence of homophones allows for two different words for the same sequence
of phonemes. To make determinization possible, auxiliary phoneme symbols are in-
troduced to distinguish homophones. 'Figure 5.9 shows an example disambiguated
dictionary.

Figure 5.9: Disambiguated Dictionary Transducer

Auxiliary symbols are denoted #° in the figure. Now, the transducer DG can be
determinized and minimized. The next step is the composition C @ DG. However,
the composition will fail since the auxiliary symbols added in D are unknown by C.
Therefore, the markers have to be propagated along the cascade by adding to each
state of transducer C a self loop (g, #%, #, 0, ¢q) for all 5.

85

If the transducer C introduces new ambiguities, other auxiliary symbols have to be
used. The same operations are repeated for all steps of the construction of HCDG.
Thus, the construction of HCDG is computed by

HCDG = Min{Det(H e Det{C e Det(D e G))))

where Min denotes the minimization dperation and Det is the determinization opera-
tion. Auxiliary symbols added during the construction of HCDG have to be removed
at the end. The transducers shown in Figure 5.10 remove auxiliary symbols at the
input and output by composing them with HCDG as follows: Le HCDG e R.

XX XX

Figure 5.10: Transducers used to remove auziliory symbols

In this figure, denotes all non-auxiliary symbols.

5.3 Experiments

An implementation of the algorithms described in earlier chapters has been used to
construct the recognition transducer for a French vocabulary of 20000 words on the
BREF database [9]. The transducer has been constructed as outlined before using
these models:

e Accoustic models of 6013 distributions each modeled with a mixture of 8 Gaus-
sians, speaker-independent and gender-independent.

e 17997 models of context-dependent triphones.
e Dictionary of 20000 pronunciations

e Trigram language model of 79845 trigram probabilities, 311131 bigram proba-
bilities and 20003 unigram probabilities.

86

Transducer || # of states | # of transitions |
D 588518 6744116
G - 124587 1020488
De(d 1439910 2903364
Det(D e G) 1108514 2268297
C e Det(DeG) 1812045 5168839
Dei(C o Det(D » G)) 1885965 5571084
He Dei(C o Dei(D s Q) 9148639 13278375
Det(H o Det(C o Det(D ¢ G))) 8771686 11781976
Min(Dei(H o Dei(C e Dei(D e G)))) | 6005081 9073327

Table 5.1: Size of transducers used to construct the recognition network

Intermediate transducers have been determinized at each step of the construction of
HCDG. Table 5.1 gives the size in number of transitions and number of states of all
intermediate and final transducers.

The minimization operator is in fact the compaction of transducer such as described
in Chapter 2. In order to increase the speed of the recognizer, the final transducer
has been sorted topologically with respect to input e-transitions, and its weights have
been pushed toward the initial state.

5.3.1 Results

The recognition network has been used to perform recognition on 576 sentences spo-
ken by 87 different speakers. A beam of 130 has been used. The computer used was
Pentium III running 700 MHz running under Linux. Results are given in Table 5.2.

Accuracy on words | 78.82 %
x- real-time 2z

Table 5.2: Results of the recognition task

These results correspond to those obtained with a traditional speech recognition sys-
tem [6]. However, the transducer-based system has several advantages compared to
the traditional one.

87

First of all, the transducer approach is more flexible since it represents a general
framework. Indeed, all speech knowledge is expressed with the same representation
and thus, the decoder does not have to be modified when a new level of representation
is added to the chain of transducers. This leads to a simpler implementation of the
Viterbi decoder. Indeed, when a new level of representation is added in a traditional
system, the decoder has to be modified to take it into account.

Another advantage is that the optimization algorithms, such as determinization and
minimization, are applied to the entire network whereas in traditional recognizer,
optimizations are only applied to local parts of the network [13].

A disadvantage of transducers is that the recognition network construction requires
lots of memory since it is entirely constructed. The intermediate transducers are
often very big and thus the optimization operations take a lot of memory. In tradi-
tional systems, some parts are constructed statically and other parts are constructed
during the recognition procedure which helps save memory since only some parts of
automata have to be used.

5.4 Summary

This chapter has presented how finite-state transducers can be used to build a speech

recognition system. The main points presented in this chapter are:

e Transducers used to construct the knowledge network.

e How transducer operations can be used to construct and optimize the knowledge
network.

e The advantages and disadvantages of the transducer approach over the tradi-
tional ones.

88

Chapter 6

Conclusion

The purpose of this work was to describe the algorithms implementing operations
on weighted finite-state transducers. These algorithms have been described in the
general case of semirings which permit their use with any transducer representing a
binary relation mapping a sequence of input symbols to a sequence of output symbols
associated with weights.

The following important algorithms have been presented:

Composition:
Composition is an essential operation since it allows to construct complex trans-
ducers from smaller ones, each of which represents a different level of represen-
tation and whose sequence form a cascade of binary relations. The resulting
transducer is equivalent to this cascade in the sense that its binary relation is
the same as that represented by the cascade.

Determinization
Determinization can be used to decrease the transducer’s size when it con-
tains redundancies. This operation is also used to prepare the transducer for
minimization which results in the smallest transducer describing the language.
These operations are often used to optimize transducers in the composition

process, which can lead to considerable memory savings.

89

Epsilon-removal
Transducers produced by several operations are often the result of various com-
plex operations introducing e-transitions. These transitions have the disadvan-
tage of inducing a delay in the input symbol processing, which can lead to an
explosion of transitions in the composition process. This operation is applied
to remove these kinds of transitions without altering the language described by
the transducer.

Weight-pushing
In pruning-based applications, this optimization is quite important since the
distribution of weights along the paths have a big influence on their execu-
tion. The Viterbi decoder is a good example of such an application since the
distribution of weights can lead to a 40% improvement in execution speed.

An example of the use of these operations has been given via a description of a speech
recognition system based on transducers. The accuracy obtained with this system is
comparable to that obtained with traditional systems.

The major advantage of the transducer approach is its flexibility. Indeed, all speech
knowledge is expressed with the same representation and thus, the decoder does not
have to be modified when a new level of representation is added to the chain of trans-
ducers. This leads to a simpler implementation of the Viterbi decoder.

Another advantage is that the optimization algorithms, such as determinization and
minimization, are applied to the entire network whereas in traditional recognizers,
optimizations are only applied to local parts of the network. This often leads to faster
systemns [13].

90

Glossary

Alphabet A finite set of symbols.

Binary relation Function mapping a sequence of symbols to another sequence of
symbols.

Connected state A state reachable from the initial state and which can reach a
final state.

Cycle A cycle is a path v; ~» vy such that v; = vs.
e-cycle An e-cycle is cycle containing only e-transitions.

DFA Deterministic Finite-State Automaton. A FSA in which any input string has
a unique sequence of states.

DFS Depth-First Search. Search strategy which consists in exploring a transducer

deeper whenever it is possible.
Epsilon transition Transition for which no symbol is consumed or generated.

FSA Finite-State Automaton. Useful model used in computer science consisting of
a finite set of states connected with transitions.

FSM Finite-State Machine. See FSA.

FST Finite-State Transducer. A FSA which outputs a string. Transitions in FST
carry an output symbol in addition to the usual input symbol of FSA transitions.

HMM Hidden Markov Model. System used to make models in speech récognition.
Language A set of strings.

Language Model Model given a priori information about sequences of words.

91

Monoid A set with a binary operator and a neutral element over this operator.
NFA Nondeterministic Finite-State Automaton. A FSA which is not deterministic.
Path A sequence of states connected by consecutive transitions.

Path weight Weight associated to a path.

Phonological rule Rule representing words boundary phenomena.

SCC Strongly Connected Component. A SCC is a set of states in which there exists
a path between all combination of states.

Semiring A set together with two binary operators and two neutral elements.
Set A group of elements represented as a unit.

State States are the basic elements of FSA. There are three types of states: initial,
final and normal states.

String A sequence of symbols.
Transduction Function mapping an input string to an output string.

Transition A transition connects a source state to a destination state. It carries an
input symbol and should, in addition, carry either an output symbol, a weight
or both.

Transitive closure Extension of the transition function such that if there is a tran-
sition between state q; and g and another one between ¢; and g3 then, there

is a transition between ¢; and ¢z in the extended transition function.
e-transitive closure Transition closure which takes into account only e-transitions.

WESA Weighted Finite-State Automaton. FSA which outputs a weight instead of
a simple accept/reject value.

WEST Weighted Finite-State Transducer. Transducer which outputs a weight in
addition to the output string.

92

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The design and analysis of computer
algorithms. Addison Wesley, 1974.

[2] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers Principle, Technigues and
Tools. Addison Wesley, 1986.

(3] AT&T. FSM Library. http://www.research.att.com/sw/tools/fsm/tech.html.

[4] C. Becchetti and L.P. Ricotti. Speech Recognition, Theory and C++ Implemen-
tation. Wiley, 1999. "

{5] R. Bellman. On a routing problem. Quaterly of Applied Mathematics, 1958.

[6] G. Boulianne and P. Dumouchel J. Brousseau, P. Ouellet. Le systeme de RAPT
du CRIM. In 12e Congrés francophone AFRIF-AFIA de Reconnaissance des
Formes et Intelligence Artificielle (RFIA 2000), 2000.

[7} T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT
Press: Cambridge, 1992.

[8] E.W. Dijkstra. A note on two problems in connexion with graph. Numerische
Mathematik, 1959.

[9] J.M. Dolmazon, F. Bimbot, M. El Beze, J.C. Caerou, J.Zeiliger, and M. Adda-
Decker. ARC Bl - Organisation de la premiére campagne AUPELF pour
Vévaluation des systéme de dictée vocale. JST97 FRANCIL, 1997.

[10] David Eppstein. Finding the k shortest paths. In IEEE Symposium on Founda-
tions of Computer Science, pages 154-165, 1994.

[11] L.R. Ford and D.R. Fulkerson. Flows in network. Princeton University Press,
1962.

93

[12] J. Gross and J. Yellen. Graph Theory and its Application. Zipper Books, 1998.

[13] S. Kanthak, H. Ney, M. Riley, and M. Mohri. A comparison of two LVR search
optimization techniques. In Proceedings of the International Conference on Spo-
ken Language Processing 2002 (ICSLP ’02), 2002.

[14] W. Kuich and A. Salomaa. Semirings, automata, languages. Number 5 in EATCS
Monographs on Theorical Computer Science, 1986.

[15] E.Q. V. Martins, M.M.B. Pascoal, and J.L.E. Dos Santos. The k shortest paths

problem. International Journal of Foundaiions of Computer Science, June 1998.

[16] E.Q.V. Martins, M.M.B. Pascoal, and J.L.E. Dos Santos. A new improvement
for a k shortest paths algorithm. Investigacdo Operacional, 2000.

[17] M. Mohri; Finite-state transducers in language and speech processing. Compu-
tational Linguistics, 1997.

118] M. Mohri. Generic epsilon-removal algorithm for weighted automata. In Proceed-
ings of the Fifth International Conference on Implementation and Application
of Automata (CIAA’2000), 2000.

[19] M. Mohri, F. C. N. Pereira, and M. Riley. Weighted automata in text and speech
processing. In Proceedings of the 12th biennial European Conference on Artificial
Intelligence (ECAI-96), Workshop on Extended finite state models of language,
1996.

[20] M. Mohri, F.C.N. Pereira, and M. Riley. Weighted finite-state transducers in
speech recognition. In Proceedings of the ISCA Tuiorial and Research Workshop,
Automatic Speech Recognition: Challenges for the new Millenium (ASR2000),
2000.

[21] M. Mohri, F.C.N. Pereira, and M. Riley. Weighted finite-state transducers in
speech recognition. Computer and Speech Language, 2002.

[22] M. Mohri and M. Riley. A weight pushing algorithm for large vocabulary speech
recognition. In Proceedings of the 7th European Conference on Speech Commu-
nication and Technology (Eurospeech ’01), 2001.

94

[23] M. Mohri and M. Riley. An efficient algorithm for the n-best-strings problem.

In Proceedings of the International Conference on Spoken Language Processing
2002 (ICSLP '02), 2002.

[24] J.E. Hopcroft R. Motwani and J.D. Ullman. Iniroduction to Automata Theory,
Languages & Computability Second Edition. Addisson-Wesley, 2000.

[25] D. O’Shaughnessy. Speech Communications. IEEE Press, 2000.

126] F.C.N. Pereira and M.D. Riley. Finite State Language Processing, chapter Speech
Recognition by Composition of Weighted Finite Automata. MIT Press, 1997.

[27] M. Mohri F.C.N. Pereira and M. Riley. The design principles of a weighted
finite-state transducer library. Theoretical Computer Science, January 2000.

[28] W. Pijls and A. Kolen. A general framework for shortest path algorithms. In
Discussion Paper. Erasmus University Rotterdam, 1992.

[29] J-E. Pin. Tropical semirings. In Idempotency. Cambridge University Press, 1998.

[30] S. Sedgewick. Algorithms in C++ Part 5: graph Algorithms. Addison Wesley,
2002. |

[31] M. Simon. Automata Theory. World Scientific Publishing Co. Pte. Ltd, 1999.

[32] M Sipser. Introduction to the theory of computation. PWS Publishing Company,
1997. '

[33] R.E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2}, 1972.

[34] M. Thorup. On RAM priority queues. In SODA: ACM-SIAM Symposium on
Discrete Algorithms (A Conference on Theoretical and Ezxperimental Analysis of
Discrete Algorithms), 1996.

[35] S. Zhang. Weighted finite-state transducers in speech recognition: A compaction
algorithm for non-determinizable transducers. Master’s thesis, Université de
Montréal, To be submitted,2002.

95

