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ABSTRACT 

Background: Drug poisoning (overdose) is an important public health crisis, particularly among 

people living with HIV and hepatitis C (HIV-HCV) co-infection. Direct-acting antivirals result 

in high HCV cure rates, successfully reducing liver-related mortality. However, increased rates 

of drug poisoning deaths will negate these benefits. Investigating the potential predictors for drug 

poisoning could help to reduce mortality by identifying groups most at-risk.  

Objective: The objective of this thesis was to predict six-month drug poisoning mortality among 

people with HIV-HCV coinfection using socioeconomic, behavioural, and clinical factors, 

including factors that are routinely measured in clinical practice, as well as those recorded for 

research purposes. 

Methods: Data from the Canadian Co-infection Cohort (CCC) were used. Participants were 

followed up at six-month intervals when they completed questionnaires on socio-demographic, 

behavioural and clinical factors. Participants were eligible for analysis if they ever reported 

injection or non-injection drug use between 2003 and 2023. The outcome was death due to drug 

poisoning within six months of a participant’s cohort visit. We selected a total of 40 predictors. 

We used a supervised machine learning model, random forest, to develop a classification 

algorithm. Due to imbalanced data, we used a stratified random forest approach with 

undersampling. Predictors of drug poisoning were ranked in order of importance and odds ratios 

(OR) and 95% confidence intervals (CIs) were generated using a generalized estimating equation 

(GEE) regression with the top five important predictors. Four sensitivity analyses were 

conducted. 

Results: Of 2,132 total CCC participants, 1,998 met the eligibility criteria for this analysis. Of 

those eligible, 1,764 (88.3%) reported ever using injection drugs and 1,807 (90.4%) reported 
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ever using non-injection drugs. From a total of 94 drug poisoning deaths, 53 occurred within six 

months of a participant’s last visit. When applied to the out-of-bag sample, the model had an area 

under the curve (AUC) of 0.61 (95% CI: 0.54, 0.68), indicating poor performance. When applied 

to the entire sample, the model performed better with an AUC of 0.9965 (95% CI: 0.9941, 

0.9988). When ranking the predictors by importance, the top five variables were: addiction 

therapy in the past six months (6m), history of sexually transmitted infection, smoking (6m), 

ever being on prescription opioids, and non-injection opioid use (6m). However, the mean 

decrease in accuracy was low for all variables, indicating that no predictor was very strong. 

Additionally, the ORs generated by the GEE of the top important variables were close to the null, 

and almost all 95% CIs associated with these ORs crossed the null, preventing any definitive 

conclusions to be made on the direction of the association. 

Discussion: Ranking variables by importance pointed to some interesting clues as to who might 

be at risk for fatal drug poisonings, however, due to the challenges we faced in prediction, these 

results must be interpreted with caution. Our model performed poorly when withholding a 

sample of the data, and even the most important predictors had little impact on the overall 

accuracy. These results suggest that drug poisoning deaths may be a random event within the 

cohort and could reflect the toxicity of the drug supply. Alternatively, the low number of events 

and imbalanced data would benefit from exploring alternative approaches to investigate this 

question. 

Conclusion: Understanding the predictors of short-term risk of drug poisoning is an important 

first step for developing clinical tools to target at-risk patients. However, our model performed 

relatively poorly. As we are unable to identify specific predictors of who is most at risk, efforts 

need to be placed elsewhere, such as interventions to reduce the toxicity of the supply. 
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RÉSUMÉ  

Contexte: L’intoxication médicamenteuse (surdose) est une crise de santé publique, en 

particulier chez les personnes avec co-infection de VIH et l'hépatite C (VIH-VHC). Les 

antiviraux à action directe entraînent des taux élevés de guérison du VHC. Cependant, 

l’augmentation des taux de décès par intoxication médicamenteuse annulera ces avantages. 

L'étude des facteurs prédictifs d'intoxication médicamenteuse pourrait contribuer à réduire la 

mortalité. 

Objectif: L'objectif de cette thèse était de prédire la mortalité par intoxication médicamenteuse à 

six mois chez les personnes avec une co-infection de VIH-VHC en utilisant des facteurs 

sociodémographique, comportementaux et cliniques. 

Méthodes: Les données de la Cohorte canadienne sur la co-infection (CCC) ont été utilisées. Les 

participants ont été suivis à intervalles de six mois et ont rempli des questionnaires sur des 

facteurs sociodémographiques, comportementaux et cliniques. Les participants étaient éligibles à 

l’analyse s’ils avaient consommé des drogues entre 2003 et 2023. Le résultat d’intérêt était un 

décès dû à une intoxication médicamenteuse dans les six mois suivant la visite de cohorte d’un 

participant. Nous avons sélectionné un total de 40 prédicteurs. Nous avons utilisé un modèle 

d'apprentissage automatique supervisé, la forêt aléatoire, pour développer un algorithme de 

classification. En raison du déséquilibre des données, nous avons utilisé une forêt aléatoire 

stratifiée avec sous-échantillonnage. Les prédicteurs d'intoxication médicamenteuse ont été 

classés par ordre d'importance et les rapports de cotes (OR) et les intervalles de confiance (IC) à 

95 % ont été générés à l'aide d'une régression par équation d'estimation généralisée (GEE) avec 

les cinq prédicteurs les plus importants. 
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Résultats: Sur un total de 2 132 participants au CCC, 1 998 répondaient aux critères d'éligibilité 

pour cette analyse. Parmi les personnes admissibles, 1 764 (88,3 %) ont consommé des drogues 

injectables et 1 807 (90,4 %) des drogues non injectables. Sur un total de 94 décès par 

intoxication médicamenteuse, 53 sont survenus dans les six mois suivant la visite d’un 

participant. Lorsqu'il est appliqué à l'échantillon hors sac, le modèle présentait une aire sous la 

courbe (AUC) de 0,61, ce qui indique de mauvaises performances. Lorsqu’il est appliqué à 

l’ensemble de l’échantillon, le modèle a obtenu de meilleurs résultats avec une AUC de 0,9965. 

Lors du classement des prédicteurs par importance, les cinq principales variables étaient: la 

pharmacothérapie, les infections sexuellement transmissibles, le tabagisme, les opioïdes sur 

ordonnance et la consommation d'opioïdes sans injection. Cependant, la diminution moyenne de 

l’exactitude était faible pour toutes les variables. De plus, les OR générés par le GEE des 

variables les plus importantes étaient proches de la valeur nulle, et presque tous les IC à 95 % 

associés à ces OR croisent la valeur nulle. 

Discussion: Le classement des variables par importance a révélé des indices intéressants sur les 

personnes à risque d'intoxication médicamenteuse. En raison des nombreux défis auxquels nous 

avons été confrontés lors de la prévision, ces résultats doivent être interprétés avec prudence. 

Notre modèle a donné de pauvres résultats lors de la rétention d'un échantillon de données, et 

même les prédicteurs les plus importants ont eu peu d'impact sur la précision globale. Ces 

résultats suggèrent que les décès par intoxication médicamenteuse pourraient être un événement 

aléatoire au sein de la cohorte, ou le nombre d’événements et les données déséquilibrées ont posé 

trop de défis. 

Conclusion: Comprendre les prédicteurs du risque d'intoxication médicamenteuse est une 

première étape pour développer des outils cliniques visant à cibler les patients à risque. 
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Cependant, notre modèle a peu fonctionné. Il est possible que des efforts doivent être déployés 

ailleurs, par exemple redoubler les efforts visant à réduire la toxicité de l’approvisionnement. 
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1. INTRODUCTION 

1.1. Rationale 

There are approximately 39.9 million people living with human immunodeficiency virus (HIV) 

around the world, and around 63,000 in Canada (1,2). HIV primarily affects the human immune 

system by weakening the body’s defense mechanism, and without adequate treatment can 

progress into the more advanced acquired immunodeficiency syndrome (AIDS) (3). Although 

HIV does not have an available cure, effective and safe treatment options exist. Antiretroviral 

therapy (ART) is the leading treatment option and works by reducing the amount of HIV in the 

blood (4). ART has successfully helped to decrease rates of AIDS, hospitalization, and mortality 

among people living with HIV. HIV is transmitted through direct contact with contaminated 

blood or bodily fluids and therefore belongs to the category of sexually transmitted and blood 

borne infections (STBBI) (5). This includes sharing drug injection equipment. In Canada, the 

highest incidence rates of HIV in 2022 were among people who inject drugs (PWID) (6).  

 

Hepatitis C virus (HCV) is a common co-infection among individuals living with HIV. HCV 

primarily affects the liver, and like HIV is an STBBI because it is transmitted through sexual 

contact or exposure to infected blood (7). Sharing drug equipment is a particularly high-risk 

activity for HCV transmission. An HCV infection can be classified as acute or chronic (7). The 

duration of the infection determines this classification, with infections lasting less than six 

months considered to be acute, and those lasting longer considered to be chronic. It is estimated 

that 50 million people are living with chronic HCV infection around the world (8). 

Advancements in treatment options have transformed HCV into a curable infection. Direct-

acting antivirals (DAAs) are the primary treatment option for HCV in Canada and are safe and 
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effective, curing upwards of 95% of all infections (9). DAAs are also effective among 

individuals with HIV-HCV co-infection (10,11). 

 

HIV-HCV co-infection occurs in approximately 20-30% of individuals living with HIV in 

Canada (12). Individuals living with HIV-HCV co-infection often experience an accelerated and 

worsened progression of HCV infection (13). Fortunately, existing treatments such as ART and 

DAAs have improved the quality of life and increased the life expectancy of individuals living 

with HIV-HCV co-infection. Despite these improvements, harms related to drug use in this 

population, such as drug poisonings, are an ever-growing concern.  

 

Drug poisonings, also known as overdose, are an important public health concern in Canada. 

Between 2016 and 2023, there were more than 44,000 opioid-related drug poisoning deaths 

reported across the country (14). Although opioids are the most common substance involved in 

drug poisonings, stimulant-related drug poisonings are also cause for concern. Drug poisonings 

among individuals living with HIV and HCV are a public health threat as rates of drug use in this 

population are high. According to the World Health Organization, over half of the 2.3 million 

HIV-HCV co-infections around the world occur in PWID (15). 

 

To better understand the drug poisoning epidemic, and to try to reduce the number of deaths, 

researchers have attempted to predict drug poisonings, often with the use of machine learning 

(16,17). Machine leaning is a branch of artificial intelligence that allows machines to learn from 

existing data without explicitly being programmed (18). It has seen success in several fields, 

including healthcare (19). Machine learning is a powerful tool that could help combat the drug 
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poisoning epidemic occurring in the country. To date, there are no studies that have attempted to 

predict drug poisoning deaths in an HIV-HCV co-infected population. In this thesis, I attempt to 

accomplish this using data from the Canadian co-infection cohort (CCC), one of the largest and 

longest-running cohorts focused on individuals living with HIV-HCV co-infection (20). 

 

1.2. Research objective 

The objective of this thesis is to develop a predictive model for drug poisoning deaths among 

individuals with HIV-HCV co-infection within six months of a participant’s cohort visit using 

socioeconomic, behavioural, and clinical variables. These variables include a mix of factors 

routinely measured in clinical practice and those recorded in a research context. 
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2. LITERATURE REVIEW 

2.1. Human immunodeficiency virus 

HIV is a virus of the Retroviridae family that primarily affects the human immune system, 

weakening the body’s defense mechanism against infections (3). HIV is a lifelong infection that 

can progress into AIDS, which is more severe, without proper treatment (3). HIV belongs to the 

category of STBBIs, which are classified by their similar mode of transmission (21). HIV is 

transmitted through direct contact with infected blood, semen, vaginal fluid, rectal fluid, and 

human milk (3).  

 

Symptoms of early HIV infection include flu-like symptoms such as chills, fever, fatigue, joint 

pain, sore throat, headache, and muscle aches (3). These symptoms typically last a few days to a 

few weeks and can resolve on their own. Many people infected with HIV are asymptomatic and 

may not be aware that they have been infected until several years later, often when they are 

experiencing symptoms of AIDS (3). HIV infection results in progressive immune damage 

increasing the risk of acquiring several other illnesses, also referred to as opportunistic infections 

and malignancies. Opportunistic infections include tuberculosis, pneumocystis jiroveci 

pneumonia, and toxoplasmosis (22–24). However, due to effective HIV treatment, AIDS is less 

common among people living with HIV today. 

 

2.1.1. Risk factors and key populations for HIV 

HIV can affect anyone, however there are certain risk factors that increase someone’s chances of 

acquiring the virus. Sexual risk factors such as condomless anal or vaginal sex, a history of 

another sexually transmitted infection, and harmful use of drugs and alcohol during sexual 
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activity are important facilitators of HIV transmission (25). Situations where an individual can 

come into contact with another person’s blood, such as sharing drug paraphernalia including 

needles, syringes, and other injection equipment, and accidental needle injuries can increase 

one’s risk of HIV. Finally, receiving unsafe medical care, such as injections, blood transfusions, 

or transplants using unsterilized or dirty medical equipment pose an increased risk of infection 

(25). Due to these risk factors, there are key populations that have a disproportionate burden of 

HIV infection. These key populations include gay, bisexual, and other men-who-have-sex-with-

men (gbMSM), transgender people, sex workers, people who use drugs (PWUD), PWID, and 

people in the prison system (26). 

 

2.1.2. HIV screening and diagnosis 

In Canada, laboratory testing and rapid testing are used to screen for HIV. Both laboratory and 

rapid testing require blood samples (27). Results from laboratory testing are typically received 

after one to two weeks, while results from rapid testing are received in minutes. If a laboratory 

test or rapid test produces a positive test, a second test known as a confirmatory test must be 

conducted. This confirmatory test will confirm an HIV diagnosis (27).  

 

The two types of rapid testing in Canada are point-of-care (POC) testing and self-testing. POC 

testing is conducted by a trained professional while self-testing is done by oneself. Rapid tests 

have the potential to reach those who remain undiagnosed or who are at risk of acquiring HIV 

(28). A scoping review investigating the use of POC testing in Canada identified a variety of 

settings where rapid tests were offered such as addiction facilities, dental offices, prisons, 

commercial sex markets, and on the street through street outreach (29). Early testing is the best 
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way to ensure diagnosis before progression to AIDS, decrease the risk of transmission, and 

reduce complications of infection (30). A recent cohort study of men who have sex with men 

(MSM) in Taiwan found that those who were diagnosed early with HIV experienced a net gain 

of 8.28 quality-adjusted life years compared to those diagnosed late, in the context of universal 

access to ART treatment (31).  

 

2.1.3. HIV treatment and prevention 

There is currently no cure for HIV, however effective treatments exist. ART drugs stop the virus 

from replicating, reducing the amount of HIV (also known as the viral load) in the blood to 

undetectable levels, and slows the spread of the virus in the body (3,25). There is no risk of 

sexual transmission when people take ART and have an undetectable viral load. Consequently, 

ART is a cornerstone of HIV prevention. The U=U (Undetectable = Untransmissible) campaign 

aims to spread this message and reduce the stigma, discrimination, and misinformation around 

HIV infection (3,32). Many other forms of prevention exist such as condoms and other physical 

barriers during sex, HIV pre-exposure prophylaxis (PrEP), HIV post-exposure prophylaxis 

(PEP), safe injecting and smoking supplies, supervised consumption sites, opioid agonist 

therapy, and safer tattooing and piercing practices (33). 

 

2.1.4. Epidemiology of HIV 

According to the Joint United Nations Programme on HIV/AIDS (UNAIDS), it is estimated that 

39 million people were living with HIV in 2022 (34). Globally, there were an estimated 1.3 

million new HIV infections, and 630,000 AIDS-related deaths in 2022. In Canada, there were 

approximately 63,000 people living with HIV, and 1,520 new HIV infections in 2020 (35). Of 
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these new infections in Canada, the majority occurred among key populations, with 43.8% 

occurring among gbMSM, and 19.8% occurring among PWID (35). 

 

In 2014, UNAIDS committed to ending the AIDS epidemic by 2030, and set the 90-90-90 HIV 

targets, which were subsequently updated in 2020 to the 95-95-95 HIV targets, in order to 

achieve this goal (36). The 90-90-90 targets represent the following goals: 90% of people living 

with HIV knowing their status, 90% of people who know their status accessing treatment, and 

90% of people on treatment having a suppressed viral load. In 2022, the Public Health Agency of 

Canada released a report on their progress towards the 90-90-90 targets, and stated that Canada 

had achieved both the first and third of the three targets by 2020 (2). As of 2023, several 

countries have already reached, or are close to reaching the 95-95-95 targets (37,38). As the 

deadline is approaching, many resources and efforts are still needed to end the epidemic. 

 

2.2. Hepatitis C virus 

HCV is a virus in the Flaviviridae family that primarily affects the liver (39). HCV is an 

enveloped virus with a single-stranded RNA genome and measures around 50 nanometers in 

diameter (40). It is transmitted through direct contact with blood from an infected individual and 

like HIV, it is considered an STBBI. HCV infection can be described as acute or chronic. 

Symptoms of acute HCV infection include fatigue, fever, nausea, jaundice, muscle pain, and 

joint pain, however many people will not have any symptoms (39). Some acute HCV infections 

will clear spontaneously, however, in about 50%-85% of cases it will progress to chronic HCV 

without access to proper treatment (39). Chronic HCV can cause liver complications such as 
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liver disease, cirrhosis, liver failure, or liver cancer. Fortunately, due to advancements in HCV 

treatment options, namely DAAs, HCV is now a curable infection (41). 

 

2.2.1. HCV risk factors and key populations  

The risk factors for HCV are very similar to those of HIV due to shared routes of transmission. 

Similar to HIV, coming into contact with infected blood can increase the risk of transmission 

(41). Sharing drug paraphernalia such as needles and syringes, using unsterilized medical 

equipment, and getting unsafe blood transfusions all pose a risk of HCV transmission (7). HCV 

can also be transmitted sexually through condomless sex, particularly when blood is involved. 

HCV has a disproportionately high burden among certain key populations. These populations 

include PWID, PWUD, people from countries where HCV is endemic, people in the prison 

system, Indigenous Peoples, and gbMSM (7). Clearance of HCV does not confer immunity from 

repeat infection; therefore, individuals can become reinfected if they are re-exposed to the virus 

after cure. Rates of reinfection are highest among individuals who continue to engage in high 

risk activities, particularly injection drug use (42). 

 

2.2.2. HCV screening & diagnosis 

In Canada, individuals are recommended to be screened for HCV using a risk-based approach 

(7). Risk factors include using shared drug equipment, exposure to non-sterile medical 

equipment, sexual activity where blood may be involved, living or visiting a country with high 

HCV prevalence, and being born to a person with HCV. All currently approved HCV tests in 

Canada require a blood sample. A first test detects the presence of antibodies to HCV indicating 

previous exposure to the virus (41). A second test detects the virus in the blood, typically with an 
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RNA test or a core antigen test, which is required to confirm chronic infection (41). If a 

screening test is negative, no further testing is required, unless there are ongoing risk factors. 

After HCV cure, HCV RNA test will become negative however, the antibody test remains 

positive lifelong. Detecting reinfections requires repeated HCV RNA testing. 

 

2.2.3. HCV treatment & prevention 

DAAs are the current treatment for HCV infection in Canada (41). In order for an individual 

with HCV to be cured, they must achieve sustained virological response (SVR), where a negative 

or undetectable HCV RNA test is obtained. DAAs are highly effective and can cure upwards of 

95% of people living with HCV infection. In addition to the high cure rates, DAAs are also 

beneficial in reducing liver-related complications, such as fibrosis progression, portal 

hypertension, and end-stage liver disease (ESLD), as well as several non liver-related 

complications (43,44). DAAs have also reduced mortality among people living with HCV, 

increasing life expectancy in this population (45). In an American cohort study following 

individuals seeking HCV care, a significant decrease in mortality was observed among 

individuals who had previously completed DAA treatment compared to individuals who did not 

receive DAA treatment (45). 

 

Harm reduction is an important form of prevention for HCV infection, particularly among the 

key populations of PWID and PWUD (41). This includes, but is not limited to, access to clean 

drug equipment, education, and supportive environments. Condoms and other physical barriers 

during sex, safer tattoo and piercing practices, and avoiding sharing drug equipment are other 

recommended prevention practices (41).  
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2.2.4. Epidemiology of HCV 

It is estimated that 50 million people worldwide are living with chronic HCV infection (8). There 

are approximately 1 million new HCV infections globally every year. In 2022, it was estimated 

that 242,000 people died from chronic HCV infection (8). In Canada, it is estimated that 204,000 

people were living with chronic HCV infection in 2019 (46). There were 9,470 new cases of 

HCV infection in Canada in the same year. In 2016, the World Health Assembly of the WHO set 

the goal of eliminating viral hepatitis as a major public health threat by 2030 (47). To achieve 

this goal, the targets of reducing new chronic viral hepatitis infections and deaths by 90% and 

65% respectively between 2016 and 2030 were established (47).  

 

2.3. HIV-HCV co-infection 

People living with HIV are at an increased risk of HCV infection. HIV and HCV have similar 

modes of transmission and key populations. HIV-HCV co-infection is greatest among PWID 

(48). It is estimated that there are over 2 million people worldwide living with HIV-HCV co-

infection, and approximately 14,000 in Canada (48,49). A meta-analysis conducted by Platt et al. 

found that people living with HIV are six times more likely to be infected with HCV than their 

HIV-negative counterparts (48). Additionally, HCV disease progression occurs faster among 

those with HIV compared to those without. Higher HCV viral load, increased risk of chronic 

HCV infection, more rapid progression to liver fibrosis and cirrhosis, are features of co-infection 

(13). Fortunately, DAAs work equally as well for those with HIV-HCV co-infection as those 

with HCV monoinfection (10,11,50). Additionally, DAAs have reduced both liver and non-liver 

related outcomes in this population. An Italian retrospective observational study observed high 

efficacy and safety rates of DAAs among the co-infected population, while a retrospective 
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analysis of clinical data in Spain found that co-infected individuals treated with DAAs 

experienced similar improvements in survival and the onset of comorbidities compared to 

individuals with HCV monoinfection treated with DAAs (11,51).  

 

Advancements in effective treatment options for both HIV and HCV have led to gains in life 

expectancy among these populations. The introduction of ART has turned HIV into a 

manageable chronic condition, while DAAs have provided a cure for HCV. Prior to these 

advancements, liver-related mortality was the most important cause of death among the HIV-

HCV co-infected population (52). However, drug poisonings, also known as overdose, have 

become a rapidly growing cause of death among individuals living with HIV-HCV. In the 

Canadian Co-infection Cohort, a multicenter prospective cohort study following individuals with 

HIV-HCV co-infection across Canada, drug poisoning was identified as the most common cause 

of death overall (52). Additionally, a retrospective cohort conducted in British Columbia found 

that the drug poisoning epidemic decreased the life expectancy of people living with HIV, 

reducing the life expectancy of a 20 year old with HIV by over three years between 2014 and 

2017 (53). Drug poisoning deaths threaten to overshadow the gains made in life expectancy due 

to HIV and HCV treatment in this population.  

 

2.4. Drug poisoning (overdose) 

Drug poisoning, also known as overdose, occurs when an individual “takes one or more drugs in 

a quantity or combination that exceeds what their body can handle” (54). Drug poisonings 

caused by central nervous system depressants (such as opioids) are often characterized by the 

following symptoms: unresponsiveness, shallow or irregular breathing, slowed heart rate, 
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seizures, and vomiting. Drug poisonings caused by central nervous system stimulants (such as 

amphetamines) are characterized by the following: tremors, flushed skin, headaches, panic, 

paranoia, confusion (54). In the most severe cases, drug poisonings can result in death; these are 

considered fatal drug poisonings. 

 

In recent years, the rate of fatal drug poisonings in Canada has been increasing at an alarming 

rate. In 2016, British Columbia declared a public health emergency in response to the massive 

increase in drug poisonings and drug poisoning deaths (55). April 2024 marked the eighth 

anniversary of this declaration, and the emergency is still ever-present (56). In a statement 

released by the Public Health Agency of Canada, opioid-related harms in the first three quarters 

of 2023 were similar to those in the peak of the COVID-19 pandemic in 2021, the highest 

recorded since the start of collection in 2016 (57). There have been 44,592 opioid poisoning 

deaths across the country between January 2016 and December 2023 (14). Although opioids are 

responsible for most fatal drug poisoning events, psychostimulants also contribute an important 

portion of these events (14).  

 

2.4.1. Risk factors associated with drug poisonings 

There are several factors that can increase someone’s risk of experiencing a drug poisoning 

event. A change in tolerance due to reduced or no drug consumption can lead someone to use a 

higher dose than they are used to (58). This can occur after an individual has been in jail for an 

extended period or has recently completed an addiction therapy program (59,60). A change in the 

drug supply can lead an individual to use a drug that has been cut with another drug that they had 

not initially intended to take. Evidence suggests that border closures during the peak of the 
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COVID-19 pandemic affected the availability of drugs, which caused an increase in drug 

alterations (61). Altering drugs by adding foreign substances and other drugs pose a serious risk 

to the health of PWUD. This is known as unintentional polysubstance use. The intentional 

mixing of drugs, known as intentional polysubstance use, is also a risk factor for drug poisonings 

(62). Central nervous system depressants, known as “downers” are often mixed with central 

nervous system stimulants, known as “uppers” which is an especially fatal mix. Mixing these 

two types of drugs can modify, and often mask, the effect of the drugs, making it easier to 

experience a drug poisoning event (63). A history of past drug poisoning events is also a risk 

factor associated with a fatal drug poisoning event. A study investigating risk factors for fatal 

drug poisonings using data from two prospective cohorts in Vancouver, British-Columbia found 

that experiencing a non-fatal drug poisoning posed an elevated risk of experiencing a fatal drug 

poisoning (64). The authors also found that the greater the number of non-fatal drug poisoning 

events, the greater the risk of fatal drug poisoning. Additional factors that have been identified in 

the literature to be associated with drug poisonings include homelessness, previous experience in 

the prison system, low income, gender, age, race, unmet mental health needs, polysubstance drug 

use, history of opioid prescription, and opioid use disorder treatment discontinuation (65–68). 

 

2.4.2. Drug poisonings, HIV, and HCV 

Due to the large number of individuals living with HIV-HCV co-infection who are also PWUD, 

drug poisonings are an important public health threat to this population. Several studies have 

investigated drug poisonings among people living with HIV and people living with HCV. 

Current evidence suggests that people living with HIV are at a greater risk of experiencing a drug 

poisoning event (59,69). A systematic review and meta-analysis conducted by Green et al. found 
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a positive association between positive HIV status and drug poisoning (59). The literature 

suggests that this relationship may be explained by the high rate of chronic pain among 

individuals living with HIV, leading to an increased likelihood of receiving prescribed opioids 

(69). Additionally, the risk of both HIV and overdose are highest among those who face 

discrimination at a social and structural level (70). 

 

The literature also suggests that people with HCV are more likely to experience a drug poisoning 

event than those not infected with HCV (71,72). In a cohort in British Columbia investigating 

drug-related deaths among people living with HCV and their HCV-negative counterparts, drug-

related deaths were higher among those with HCV (71). The drug poisoning mortality trends 

among people with HCV also appear to reinforce this (72). A study investigating the trends in 

mortality for HCV and alcoholic liver disease in the United States between 2009 and 2018 found 

the age-standardized drug overdose mortality increased at an annual rate of 3% among people 

with HCV (72). A cross-sectional study in Tennessee found that the prevalence of HCV was 

24.5% among drug poisoning deaths from all drugs and 35.4% among methamphetamine and 

opioid-related drug poisoning deaths (73). This evidence highlights the drug poisoning crisis 

among people living with HCV.    

 

Authors Perlman & Jordan describe HIV, HCV, opioid misuse and overdose as a syndemic (74). 

In short, a syndemic is defined as two or more co-occurring diseases/health conditions in a 

population that interact and negatively exacerbate the other due to underlying biological, social, 

economic, or environmental conditions (74). The relationship between HIV, HCV, and drug 
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poisoning is very complex and multilayered. However, it is evident that it is an important public 

health issue that requires many resources to combat. 

 

2.4.3. Harm reduction 

Harm reduction is an important initiative to reduce drug poisonings and other harms caused by 

drug use. At its core, the goal of harm reduction is not necessarily for PWUD to stop or reduce 

their substance use, but instead to minimize the health and/or social harms related to substance 

use and addiction (75). In Canada, harm reduction includes, but is not limited to, safe 

consumptions sites, overdose prevention services, naloxone distribution, and drug checking (76). 

Harm reduction also helps to reduce both HIV and HCV transmission. Evidence compiled in a 

review by Palmateer and colleagues in 2022 suggests that opioid agonist therapy (OAT) reduces 

HIV and HCV transmission, while needle and syringe programs reduce HIV transmission, and a 

combination of OAT and needle and syringe programs reduces HCV transmission (77). There 

are many benefits of harm reduction that can be leveraged for PWUD in the context of drug 

poisonings and STBBIs such as HIV and HCV. With reduced use of harm reduction services, the 

risk of HCV infection, HIV infection, and drug poisoning is greater. 

 

2.5. Machine learning 

Machine learning, under the larger umbrella of artificial intelligence, is a branch of computer 

science that has gained popularity in recent years in part due to the increased availability and 

accessibility of data (78). Machine learning is defined broadly as giving computers the ability to 

learn and function intelligently without being explicitly programed (79). It is used in many 

industries and sectors such as cybersecurity, agriculture, finance, and healthcare (79). Machine 
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learning relies on data to learn the patterns of individuals, businesses, and events, thus the better 

the data, the better the model will perform (79,80). Machine learning algorithms range from 

simple and straightforward to very complex. One popular machine learning algorithm is random 

forest, which combines the output of several classification trees to inform one final result (81). 

Classification trees, also known as decision trees, are used to predict an outcome using a series of 

binary decisions that split data into smaller and smaller partitions based on various input 

variables (78). By combining the output of several classification trees, the results of the random 

forest are typically considered to be more accurate and generalizable compared to a single 

classification tree (81). 

 

2.5.1. Machine learning and artificial intelligence in a healthcare context 

Artificial intelligence and machine learning have become increasingly popular in healthcare 

settings and they have shown to be helpful in several aspects of the field such as medical 

imaging, diagnosing, and disease prediction (82). A systematic review found that among nine 

studies comparing artificial intelligence to medical experts in disease diagnosis, artificial 

intelligence had comparable performance to the human experts (83). Healthcare data and their 

sources vary widely, offering ample opportunities to successfully incorporate machine learning 

into everyday clinical practice (84). Data from electronic medical records, genomics, and 

medical imaging have been utilized to develop machine learning algorithms (84). For example, 

an American study used electronic health records and emergency department triage data to 

develop an machine learning algorithm to predict hospital admission at the time of emergency 

department triage (85).  
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Although there have been many successes when incorporating machine learning in a healthcare 

context, there have also been several hurdles. For instance, artificial intelligence and machine 

learning algorithms used for identifying skin diseases have been criticized for underperforming 

on darker skin tones (86). Researchers warn that ethical concerns, transparency, and 

interpretability must be considered when generating machine learning algorithms for a healthcare 

context (87).  

 

2.5.2. Predicting drug poisoning 

The overwhelming number of deaths due to drug poisoning have prompted several researchers to 

attempt to predict these events in an effort to prevent future deaths. The narrative review by 

Tseregounis & Henry identified articles that generated clinical prediction models for opioid drug 

poisonings (88). The c-statistic, a measure of the goodness of fit, of the 12 included studies 

ranged from 0.69 (fair) to 0.95 (excellent). Existing literature on predicting drug poisoning has 

used a variety of methods such as random forest, least absolute shrinkage and selection operator 

(LASSO), logistic regression, and cox proportional-hazards model (88). Almost all included 

studies reported high negative predictive values and low positive predictive values, resulting in a 

high number of false positives. This was due to drug poisoning being a rare event amongst the 

datasets used (88), which can create distinct challenges in accurate classification of the minority 

class. In particular, when the minority class (drug poisonings) are very rare, a model can appear 

“highly accurate” even if all predicted outcomes were made as “not drug poisoning” since only a 

small fraction of the total outcomes would be misclassified. These issues are discussed in greater 

detail in the methods section of the manuscript. 
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2.6. Summary 

In this chapter, I reviewed the epidemiology of HIV and HCV, and discussed the risk factors, 

key populations, screening methods, treatment options, and prevention strategies associated with 

these infections. I also touched on the details of HIV-HCV co-infection. I reviewed the current 

state of drug poisonings in Canada, harm reduction strategies, and drug poisonings among people 

living with HIV-HCV co-infection. Finally, I explored the topic of machine learning, including 

the benefits of machine learning in healthcare settings, and leveraging it to predict drug 

poisoning events. This chapter touched briefly on challenges that have been observed in the 

literature studying prediction of drug poisonings; many core issues of this topic will be further 

addressed in the methods section of chapter 3, which contains details of the dataset and analytic 

methods used in the manuscript.  
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3. PREDICTING FATAL DRUG POISONING AMONG PEOPLE LIVING WITH HIV-

HCV CO-INFECTION 

3.1. Preamble 

Drug poisoning is a serious public health concern that is affecting the lives of many Canadians, 

including individuals who are living with HIV-HCV co-infection (14,52). The use of machine 

learning algorithms, such as random forest, to attempt to predict fatal drug poisoning events 

could help to combat the high death rates and help to uncover the characteristics of individuals 

who are especially at-risk. A previous narrative review identified studies that have developed 

predictive models to predict drug poisoning events with a range of success, however, no existing 

studies focus on predicting these events within the HIV-HCV co-infected population (88). In this 

manuscript, I developed a random forest classification algorithm using data from the Canadian 

Co-infection Cohort to predict fatal drug poisonings among individuals with HIV-HCV co-

infection. I also conducted several sensitivity analyses to attempt to predict drug poisoning 

events in different contexts. The results of this thesis are presented in one manuscript. This 

manuscript is to be submitted for publication in the Canadian Liver Journal.  
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Structured abstract (250 words) 

Background: Drug poisoning (overdose) is a public health crisis, particularly among people 

living with HIV and hepatitis C (HCV) co-infection. Identifying potential predictors of drug 

poisoning could help decrease drug-related deaths.  

Methods: Data from the Canadian Co-infection Cohort were used to predict death due to drug 

poisoning within six months (6m) of a cohort visit. Participants were eligible for analysis if they 

ever reported drug use. Supervised machine learning (stratified random forest with under-

sampling to account for imbalanced data) was used to develop a classification algorithm using 40 

sociodemographic, behavioural and clinical variables. Predictors were ranked in order of 

importance and odds ratios and 95% confidence intervals (CIs) were generated using a 

generalized estimating equation regression.   

Results: Of 2,175 study participants, 1,998 met the eligibility criteria. There were 94 drug 

poisoning deaths, 53 within 6m of a last visit. When applied to the entire sample, the model had 

an area under the curve (AUC) of 0.9965 (95% CI, 0.9941, 0.9988). However, the false positive 

rate was high resulting in a poor positive predictive value (1.5%). Our model did not generalize 

well out of sample (AUC 0.6, 95% CI 0.54, 0.68). The top important variables were addiction 

therapy (6m), history of sexually transmitted infection, smoking (6m), ever being on prescription 

opioids, and non-injection opioid use (6m). However, no predictor was strong.   

Conclusions: Despite rich data, our model was not able to accurately predict drug poisoning 

deaths. Larger datasets and information about changing drug markets could help improve future 

prediction efforts. 

 

Keywords: HIV-HCV co-infection, drug poisoning, overdose, random forest, machine learning 
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Lay summary (Recommended length around 300 words) 

Drug poisoning, also known as overdose, is a public health threat that affects the lives of many 

Canadians. Drug poisonings have been on the rise since 2016, with a notable increase observed 

following the COVID-19 pandemic. Drug poisoning deaths have also been increasing among 

people who are co-infected with HIV and hepatitis C (HCV). In an attempt to identify those at 

higher risk of harm from drug poisoning, the goal of this analysis was to predict drug poisoning 

deaths within an HIV-HCV co-infected population. Data from the Canadian Co-infection Cohort 

were used, a study that follows over 2,000 people living with HIV-HCV co-infection. A machine 

learning method, known as random forest, was used to predict drug poisoning deaths using 

information collected on participants’ sociodemographic, clinical, and behavioural factors. While 

our model appeared to perform well when run on the entire data set, it was not able to accurately 

to predict drug poisoning deaths on a subset of data and its predictive value was poor. Potential 

predictors were ranked by their importance, and the top five important variables were: addiction 

therapy in the past six months, history of sexually transmitted infection, smoking in the past six 

months, ever being on prescription opioids, and non-injection opioid use in the past six months. 

However, none of these variables were very strong predictors. Although our study provides clues 

as to factors that might predict drug poisonings among people with HIV-HCV co-infection, 

accurately predicting these events was difficult. Working with larger datasets and having access 

to detailed information about changing drug markets could help improve future prediction 

efforts. 
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Introduction 

Hepatitis C virus (HCV) infection is a common co-infection among people living with HIV due 

to shared routes of transmission (1). People co-infected with HIV-HCV experience more rapid 

HCV disease progression than those with HCV monoinfection, resulting in increased risks of 

liver fibrosis, cirrhosis, liver cancer, and death (2). Advances in treatment options have 

transformed HCV into a curable disease. Direct-acting antivirals (DAAs), introduced in the early 

2010s, are now widely available in Canada and have cure rates of over 95% (3). A population-

based study found that increased access to DAAs in 2014 led to a decrease in overall HCV-

related hospitalizations and an increase in life expectancy among those living with HCV in 

Canada (3).  

 

Although DAAs have successfully reduced liver-related mortality, deaths due to drug 

poisonings, also known as overdose, pose an increasing threat to people with HIV-HCV co-

infection. A large majority of those living with HIV-HCV co-infection are people who inject 

drugs (PWID) (1). According to the World Health Organization, over half of the 2.3 million HIV-HCV 

co-infections around the world occur in PWID (4). In the Canadian Co-infection Cohort (CCC), an 

open prospective cohort study following individuals living with HIV-HCV co-infection, drug 

poisoning surpassed end-stage liver disease (ESLD) as the most common recorded cause of 

death during the period of 2013-2017 (5). 

 

Drug poisoning is an important public health issue in Canada. A notable increase in drug 

poisoning deaths began in 2016, rising substantially with the onset of the COVID-19 pandemic, 
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and have remained high ever since (6,7). Between January 2016 and December 2023 there were 

44,592 apparent opioid-related drug poisoning deaths across Canada (8).  

 

In recent years, artificial intelligence and machine learning methods have been used in healthcare 

settings to assist with diagnosis, medical imaging, and disease prediction (9). These technologies 

can help to speed up processes and reduce the number of errors compared to humans. Predictive 

analytics, the concept of predicting future outcomes based on previously collected data, is an 

especially useful aspect of machine learning and has been used in clinical trials and healthcare 

operations (10). To reduce the high number of drug poisoning deaths, researchers have turned to 

machine learning to predict these events, with the aim of ultimately preventing deaths. A recent 

review identified 12 studies that developed clinical prediction models to predict opioid drug 

poisoning events, with a range of model performance from fair to excellent (11). However, none 

of the included studies focused on HIV-HCV co-infected populations or substances other than 

opioids (e.g. stimulants such as methamphetamine and sedatives such as xylazine) which are 

increasingly implicated in drug poisoning deaths (8). 

 

The objective of this study was to use machine learning to predict drug poisoning mortality 

among people with HIV-HCV co-infection. We used a large array of socioeconomic, 

behavioural, and clinical factors, including variables that are routinely measured in clinical 

practice, as well as those recorded for research purposes. 
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Methods 

Data source 

The CCC is an open prospective cohort study following participants living with HIV-HCV co-

infection from 18 sites across six provinces since 2003 as described previously (12). Briefly, 

participants must be ≥ 16 years old, have a documented HIV infection, and have either chronic 

HCV infection or evidence of HCV exposure. Participants are followed at six-month intervals 

when they complete questionnaires on socio-demographic, behavioural, substance use and 

clinical factors. Clinical data are collected from medical chart reviews and blood tests are 

performed at every visit.   

 

Study population 

Participants from the CCC were eligible for this analysis if they ever reported injection drug use 

or non-injection drug use, excluding cannabis, between April 2003 and July 2023. Drug use was 

assessed at the baseline visit and at every six-month follow-up visit. Thus, participants could 

become eligible for analysis if their first report of drug use occurred after baseline. Only visits 

occurring on and after the first report of drug use were included in the analysis. 

 

Outcome  

The primary outcome of interest was death due to drug poisoning (overdose) within six months 

of a participant’s last visit. Since participants are followed at six-month intervals, similar to 

standard clinical care, the rationale behind predicting the outcome within this interval was that, if 

successful, a healthcare worker would be able to intervene at any given visit if the risk at that 

visit was high. In the context of this work, we used the Canadian Mental Health Association’s 
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definition of overdose: “taking one or more drugs in a quantity or combination that exceeds what 

their body can handle” (13). Causes of death were categorized using the Coding of Death in HIV 

(CoDe) system (14). Information on deaths was collected in a standardized form reviewed by 

two independent reviewers. These forms include clinical information as well as information from 

autopsy and coroner’s reports, when available. 

 

Predictors 

We used socio-demographic, behavioural, and clinical variables collected in the CCC as 

predictors. We initially selected 93 potential predictors based on the literature and expert 

opinion. However, after conducting cross-tabulations of each potential predictor and the 

outcome, several of the variables had fewer than five participants in at least one of the cells, such 

that any analyses including these variables would exhibit unstable estimates. When possible and 

substantively meaningful, variables were collapsed based on similar categories (i.e., combining 

drugs considered stimulants). However, this was not always possible; in such cases, variables 

where data were too sparse were omitted from the list of potential predictors. Following this 

process of removing variables with sparseness, there remained 40 potential predictors for 

consideration in our predictive model; these are detailed in Table 1.  

 

Table 1. – Candidate predictors used in the predictive model (random forest classifier) 

Category Predictors 
Socio-demographic Sex, transgender identity, education, race/ethnicity, age, sexual 

orientation, employment status, income 
Clinical End stage liver disease, on antiretroviral therapy, low CD4 cell 

count (<200 cells/μl), detectable HIV RNA, detectable HCV RNA, 
sexually transmitted infection (ever), on prescription 
benzodiazepines (ever), on prescription opioids (ever) 
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Behavioural Alcohol use (6m), hazardous alcohol use (6m), incarceration 
(6m/ever), sex work (ever), cigarette smoking (6m), cannabis use 
(6m), age at first injection drug use, injection drug use (6m/ever), 
sharing injection drug equipment (6m), use of clean needle 
exchange program (6m), being in therapy or program for addiction 
(6m), injection opioid use (6m/ever), injection stimulant use (6m), 
injection polysubstance use (6m), non-injection drug use (6m/ever), 
age at first non-injection drug use, non-injection opioid use 
(6m/ever), non-injection polysubstance use (6m), non-injection 
stimulant use (6m) 

*6m = in the past six months 

 

Predictive model: Random forest 

We used a random forest model classifier to predict drug poisoning events. Random forest is an 

ensemble machine learning technique that combines the outputs of multiple classification trees to 

inform one final outcome (15). Classification trees use information from various input variables 

to predict an outcome using a series of binary choices (16). In a classification tree, all data starts 

at the top of the tree in what is called the root node, and the decision rules split the data based on 

a specific feature, creating smaller and smaller nodes until a stopping criterion is reached. 

Relying on the results of a single classification tree may be inaccurate in the sense of having 

poor generalizability, as a single tree is prone to overfitting; taking the majority vote of several 

classification trees (hence the term “forest”) typically yields more reliable results in the sense of 

better out-of-sample prediction (15). A key feature of the random forest method is bootstrap 

aggregation, also known as bagging. The main idea of bootstrap aggregation is that the 

classification trees are fit (“trained”) using a subsample of the data that is resampled with 

replacement. In other words, certain samples will appear more often than others in individual 

classification trees. This helps to avoid overfitting, as the classification trees are not being fit on 

the entire sample (15). Additionally, random forests also use feature bagging, an approach in 
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which not every input variable is considered at each split in the classification tree, but rather a 

random subset. Feature bagging has been shown to result in more diversity and less correlation 

between trees (15). The random forest was chosen for this analysis because it is a powerful 

machine learning algorithm that is accurate, relatively robust to outliers and noise, and not prone 

to overfitting (15,17). 

 

There are three key parameters in the random forest that can be tuned to maximize the model’s 

performance: the number of variables randomly sampled at each node split, the number of 

classification trees in the random forest, and the minimum size of the terminal node (i.e., the 

smallest number of observations allowed in a node).  

 

Handling imbalanced data 

Imbalance in data is a common challenge for random forests using classification algorithms 

because the standard implementation of random forest prioritizes the prediction accuracy of the 

majority class (18). Imbalance can be severe with rare events such as deaths, and this was indeed 

a challenge in our analysis: in the CCC, only 0.3% of events were drug poisoning deaths. Due to 

the rareness of the outcome, it is very likely that any given bootstrap resample will contain very 

few or no drug poisoning events. One approach that has been proposed to address outcome class 

imbalance in random forest is to use stratified sampling with under sampling of the majority 

class (in this case, no drug poisoning) to improve model performance. Stratified sampling is a 

technique that partitions the population into strata based on a certain characteristic (typically the 

outcome class), and random sampling for the bootstrap is then conducted in each strata (19). We 
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opted to under sample the majority class such that there were an equal number of drug 

poisonings and non-drug poisonings in each bootstrap iteration. 

 

All analyses were conducted using R version 4.4.0, RStudio 2023.12.1+402 and R packages 

Caret and randomForest to develop and evaluate the algorithm (20–22). Missing data were 

imputed using the rfImpute function from the randomForest package in R (20).  

 

Model tuning 

The random forest model was tuned using 10-fold cross-validation to select model parameters. 

The model was trained and tested on the entire dataset; data were not split into separate training 

and testing datasets to avoid further reducing the already low event rate, and instead we relied on 

out-of-bag (OOB) error estimates. OOB error estimates and 10-fold cross-validation were used 

to tune the hyperparameters of the model. We used the accuracy metric to tune the three 

hyperparameters: the number of variables at each split, the number of trees to fit, and the 

minimum size of the terminal node. We used the following ranges for the candidate values of the 

tuning parameters, where p represents the number of candidate predictors: the number of 

variables at each split: sqrt(p) to p/2, the number of trees: 100 to 1500, the minimum size of the 

terminal node: 1 to 10. In the case where the lower bound of the number of variables at each split 

produced the best accuracy, we reduced the range to 3 to see if the accuracy was improved. We 

selected the candidate values of the tuning parameters that generated the highest accuracy. In the 

case where there was little or no difference in the accuracy, we opted for the recommended 

defaults. The recommended defaults for a classification random forest are a number of variables 
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at each split equal to the square root of the number of candidate predictors, a minimum size of 

the terminal node of 1, and the number of trees of 500 (20). 

 

Results reported 

Results from the random forest classifier are reported in terms of model accuracy, area under the 

curve (AUC), positive predictive value (PPV), and sensitivity of the final model. We generated 

variable importance plots, and we conducted a generalized estimating equation (GEE) regression 

of the top five important variables to provide an interpretable description of the direction and 

strength of the association between drug poisonings and those identified as important predictors 

by the classifier. We chose to use a GEE regression with a logistic link and an exchangeable 

correlation structure to account for the correlation between visits of the same individual. 

 

Sensitivity analysis 

Four sensitivity analyses were conducted. First, all drug poisoning deaths up to one year after a 

participant’s last visit were included, allowing for a greater number of drug poisoning outcomes. 

Second, to take into account the changing drug landscape caused by the opioid epidemic, only 

visits that occurred in 2016 or later (8) were included in the analytic set. Since this reduced the 

number of drug poisoning events, certain variables now had fewer than five participants in at 

least one of the cells, and these additional candidate predictors were eliminated for this analysis, 

leaving a total of 34 potential predictors. Third, only active drug users were included, defined as 

participants who had indicated using drugs within the last six months at any visit. Finally, any 

deaths by an unknown cause within six months of a participant’s last visit were reclassified as a 

drug poisoning death. Although this allowed us to consider more predictors, we focused only on 
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the 40 predictors identified in the primary analysis. Unknown deaths make up the largest 

proportion of deaths in the CCC and given that drug poisonings often are not well documented or 

investigated, it is plausible that many may be due to drug poisoning. 

 

Results 

Study population 

Of 2,175 study participants, 1,998 met the eligibility criteria and were included in the analysis. 

The 1,998 participants contributed a total of 17,837 visits. There were 94 drug poisoning deaths, 

of which 53 occurred within six months of a participant’s last visit. Of the eligible participants, 

1,764 (88%) reported ever using injection drugs, and 1,807 (90%) reported ever using non-

injection drugs at their first eligible visit. These increased to 1,799 (90%) and 1,879 (94%) 

respectively at final visits. The median age of the included participants at the first included visit 

was 45 years (IQR 38, 51). Eligible participants were primarily male (70%) and white (70%). 

Most eligible participants were unemployed (70%) and had a monthly income less than $1500 

CAD per month (78%). Few participants had end stage liver disease (9%) or a CD4 cell count 

less than 200 cells/μl (16%). Among those who experienced a fatal drug poisoning, individuals 

were more likely to be female, white, unhoused, a current smoker, have lower income, and have 

a detectable HIV viral load compared to those who did not experience a fatal drug poisoning 

event. 
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Table 2 – Baseline characteristics of participants at first eligible visit (N=1,998) 

 Total 
(N=1998) 

No drug poisoning 
within six months 

(N=1945) 

Drug poisoning 
within six months 

(N=53) 

Age (years)    

Median (IQR) 45 (38, 51) 45 (38, 51) 45 (41, 51) 
Sex - Female 569 (29%) 552 (28%) 17 (32%) 
Transgender 16 (1%) 15 (1%) 1 (2%) 
Race / Ethnicity    

 White 1391 (70%) 1351 (69%) 40 (75%) 
 Black 48 (2%) 46 (2%) 2 (4%) 
 Asian 26 (1%) 26 (1%) 0 (0%) 
 Hispanic/Latino 29 (1%) 27 (1%) 2 (4%) 
 Indigenous* 557 (28%) 545 (28%) 12 (23%) 
High school education or higher 1491 (75%) 1453 (75%) 38 (72%) 
Monthly income <$1500 CAD 1555 (78%) 1509 (78%) 46 (87%) 
Unemployed 1400 (70%) 1362 (70%) 38 (72%) 
Unhoused 228 (11%) 216 (11%) 12 (23%) 
Current smoking 1568 (78%) 1521 (78%) 47 (89%) 
Hazardous drinking 629 (31%) 613 (32%) 16 (30%) 
CD4 levels <200 cells/μl 323 (16%) 311 (16%) 12 (23%) 
HIV detectable viral load 467 (23%) 449 (23%) 18 (34%) 
End stage liver disease 177 (9%) 169 (9%) 8 (15%) 
STI ever 1135 (57%) 1106 (57%) 29 (55%) 
Injection drug use ever 1764 (88%) 1713 (88%) 51 (96%) 
Non-injection drug use ever 1807 (90%) 1756 (90%) 51 (96%) 
Injection drug use current 983 (49%) 955 (49%) 28 (53%) 
Non-injection drug use current 951 (48%) 921 (47%) 30 (57%) 
Non-injection opioid use current 354 (18%) 338 (17%) 16 (30%) 
Prescription opioids ever 661 (33%) 640 (33%) 21 (40%) 

Addiction therapy current 421 (21%) 405 (21%) 16 (30%) 

*Indigenous Peoples self-identified as First Nations (23%), Metis (5%), or Inuit (0.2%) 
IQR = Interquartile range; STI = Sexually transmitted infection 
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Random forest model  

Following the tuning procedure described above, the parameters used to fit the final random 

forest classifier were six for the number of variables randomly sampled at each node split, 500 

for the number of classification trees in the random forest, and a minimum size of one for the 

terminal node. When applied to the entire sample, the model had excellent prediction with an 

AUC of 0.9965 (0.9941, 0.9988), an accuracy of 80.7%, a PPV of 1.5% and sensitivity of 100%. 

However, the model generated many false positives, as demonstrated by the low PPV (1.5%). As 

anticipated, OOB performance, which is considered to be more reliable, was poorer with an 

AUC of 0.61 (0.54, 0.68), an accuracy of 80.2%, a positive predictive value (PPV) of 0.4%, and 

a sensitivity of 28.3%.  

 

Important predictors 

We ranked variables by importance (see Figure 1) according to the mean decrease in 

classification accuracy. The top five most important variables were receiving addiction therapy 

in the past six months, sexually transmitted infection other than HIV or HCV (STI) ever, 

cigarette smoking in the past six months, being on prescription opioids ever, and non-injection 

opioid use in the past six months. However, the most important predictor only affected the mean 

accuracy by at most approximately seven points; that is, omitting the most important variable 

would misclassify, on average, approximately seven additional outcomes. The output of a GEE 

regression fitting drug poisoning as a function of the top predictors is listed in Table 2. Four of 

the five variables, addiction therapy (6 months), smoking (6 months), prescription opioids (ever), 

and non-injection opioid use (6 months) were associated with an increased odds of experiencing 
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the outcome; the confidence intervals for the associated odds ratios were wide and, with the 

exception of smoking, included the null value, thus precluding definitive conclusions.  

 

Figure 1 – Variable importance plot of the top 10 variables 

 

 

Table 3 – Association between the five most predictive variables, as measured by variable 

importance in the random forest, and drug poisoning deaths as captured via a GEE  

Variable Point estimate Robust S.E. Odds ratio (95% CI) 
Addiction therapy 0.17  0.35 1.19 (0.60, 2.34) 
STI (ever) -0.08  0.28 0.93 (0.54, 1.60) 
Cigarette smoking (6 months) 1.01  0.50 2.75 (1.03, 7.36) 
Prescription opioids (ever) 0.36  0.32 1.43 (0.76, 2.68) 
Non-injection opioid use (6 
months) 

0.55  0.33 1.73 (0.91, 3.29) 

 

Sensitivity analysis 

The model details of all sensitivity analyses can be found in Appendix 1. We ranked variables by 

importance for all sensitivity analyses and, to be consistent with the primary analysis, focused 

attention on the five top-ranked variables by importance. GEE regression models with a logistic 

Mean Decrease in Accuracy 
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link and an exchangeable correlation structure were again fit using the five most predictive 

variables to provide a sense of the direction and magnitude of the association with drug 

poisoning; see Appendix 1. The results of all sensitivity analyses were similar to the main model. 

There was no improvement in precision, and no variable demonstrated strong predictive power.  

 

There were 27 fatal drug poisoning events (8,093 non-events) for the analysis of the opioid era, 

70 events (17,767 non-events) for the analysis including drug poisoning deaths up to one year, 

90 events (17,747 non-events) for the analysis including unknown deaths, and 50 events (16,290 

non-events) for the analysis of active users. 

 

The predictors that consistently appeared in the top five most important predictors across all 

sensitivity analyses and the primary model were prescription opioids (ever) and addiction 

therapy (6 months). Both prescription opioids (ever) and addiction therapy (6 months) were 

associated with increased odds of experiencing an event; however, almost all 95% confidence 

intervals associated with these odds ratios were wide and crossed the null, reflecting the small 

numbers of drug poisonings in the CCC.  

 

Discussion 

We developed a random forest algorithm to predict drug poisoning deaths within six months of a 

cohort visit among people living with HIV-HCV co-infection using 40 candidate predictors 

drawn from socio-demographic, clinical, and behavioural data. Although the algorithm 

performed well (AUC = 0.9965) in-sample, the out-of-sample performance suggested results 

may not generalize well (OOB AUC = 0.61). The most important predictors of fatal drug 
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poisoning were recent (in last 6 months) addiction therapy, non-injection opioid use, and 

smoking and ever receiving prescription opioids or having an STI. Recent addiction therapy and 

ever receiving prescription opioids were also identified as predictors across all four sensitivity 

analyses. However, most of these predictors were weak. Our aim was to develop a tool for 

clinical use to flag at-risk patients and prevent drug poisoning deaths, however our results 

suggest that, at least within our cohort, drug poisoning deaths were difficult to predict. Poor 

predictive accuracy may have been due to the relatively small number of events. It is also 

possible that drug poisoning is driven more by external factors such as changing patterns of drug 

exposure and the increasingly toxic drug supply and their associated risk of drug poisoning over 

time than by individual patient-level factors. 

 

Previous studies that have developed clinical prediction tools for drug poisonings, such as the 

ones identified in a review by Tseregounis & Henry, also used machine learning methods 

including random forest, deep neural network, and gradient boosting machine, and those with the 

best performance used clinical predictors (11). However, these studies had access to very large 

datasets (>25,000 individuals) with the majority including more than 100,000 individuals (11). 

As in our study, the prevalence of drug poisonings among these studies was quite low, ranging 

from 0.05% to 9.1% (11) however, given the larger datasets, the total number drug poisoning 

events was higher. It is possible we may have seen greater predictive accuracy with a larger 

dataset, as more data can improve a model’s performance, especially when it is high quality data 

(23).  
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Although prediction was difficult, the top predictors we identified may provide clues to those 

most at risk. Certain predictors were consistent with previous studies. For example, prescription 

opioid use has been identified as an important predictor of drug poisoning events in several 

studies (24–27), including an increased risk associated with an increased dose (28). 

 

Engaging in addiction therapy within the last 6 months might seem counterintuitive as an 

important predictor. Existing evidence suggests that retention in an addiction therapy program, 

such as opioid agonist therapy (OAT) reduces the risk of mortality (29). Such programs have 

seen considerable success in the context of harm reduction. However, studies have also found 

that in the period immediately following termination of a addiction treatment program, the risk 

of drug poisoning mortality is heightened (30–32). Additionally, individuals who access 

treatments such as OAT typically have more problematic substance use to begin with, namely 

opioid use disorder (OUD), and may be at heightened risk (33). A 2020 predictive modeling 

study identified the use of addiction treatment as an important predictor of experiencing an 

opioid drug poisoning (34). As it is not possible to determine when a CCC participant may have 

stopped an addiction therapy program following their last cohort visit, it is possible that it is not 

necessarily addiction therapy but perhaps stopping addiction therapy that is the important 

predictor. 

 

Tobacco smoking and tobacco use have been identified as important predictors of drug poisoning 

(24,26,35). Smoking is highly prevalent among people who use drugs (36,37). A recent study 

investigating predictors of suicide or drug poisoning among individuals with any smoking 

exposure found that current smoking was associated with a risk of suicide/drug poisoning (38). 
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Although this study focused on both suicide and drug poisoning deaths, 56 of the 63 deaths were 

due to drug poisoning.  

 

The existing literature on drug poisonings tends to focus on the injection route of administration 

due to its increased risks of harms, such as the risk of sexually transmitted and blood borne 

infection (STBBI) transmission (39). Our results suggest that the non-injection route should not 

be overlooked. In fact, the United States Centers for Disease Control and Prevention (CDC) 

reported that smoking was the leading route of drug use among drug poisoning deaths that 

occurred in 2022 (40). Non-injection prescription opioid use has also been identified as a risk 

factor for non-fatal drug poisonings among Canadian youth (41).  

 

Finally, ever having experienced an STI appeared to be an important predictor in the random 

forest classifier, however the strength of the association was weak and the direction uncertain. It 

is possible that it is simply a marker of increased risk-taking behaviour.  

 

Although the important predictors we identified in our analysis were also mentioned in several 

other studies, variables that were not available to us for this analysis such as a history of nonfatal 

drug poisonings and a diagnosis of opioid use disorder or substance use disorder have previously 

been identified as important predictors of drug poisonings across various studies (26,34,42–44). 

 

Our study spanned a period of 20 years, a time during which drug use patterns have changed 

substantially in Canada (45) and within our cohort (46). Most previous studies have examined 

recent time periods of no longer than five years duration (11). Our model which restricted visits 
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to those in the “opioid era” (after 2016) performed best in the OOB sample (AUC 0.70). This 

may reflect a greater homogeneity of drug exposure and causes of drug poisoning, as drug use 

patterns of Canadians closer in time are more similar than those further apart (45). It may also 

reflect the changing landscape of toxic drug use patterns in Canada. Synthetic opioids such as 

fentanyl have completely transformed the illicit drug market, making it much deadlier (47). 

However, these did not become readily available in the street drug market until the early 2010s, 

with the first report of fentanyl in western Canada recorded in 2011 (47). This speaks to the 

potential randomness of drug poisonings in the cohort, as the composition of illicit street drugs is 

extremely variable. Other drugs such as stimulants, psychostimulants, and benzodiazepines have 

been on the rise in recent years (45,46,48). In addition, the drug poisoning epidemic has not 

impacted the entire country equally, with certain drugs being more prominent in western and 

northern Canada (46,47).  

 

Strengths and limitations 

Our study is the first to focus on predicting drug poisoning deaths within an HIV-HCV co-

infected population. People living with HIV-HCV co-infection could benefit greatly from a 

predictive tool for drug poisonings as they are often more vulnerable and an important proportion 

engage in high-risk activities, such as drug use. Many of the strengths of this study lie in the data 

source. The participants in the CCC are generalizable to the HIV-HCV co-infected population in 

Canada that is linked to care (12). CCC participants are connected to care in a variety of settings 

across the country, including community-based clinics and university-based treatment programs, 

in both small and large urban centres. The richness and detail of the potential predictors available 

in the CCC is an additional strength. The method used, the random forest classifier, is also a 
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powerful and sophisticated machine learning algorithm that is considered to be accurate, 

relatively robust to outliers and noise, and is not overly prone to overfitting (15,17). 

Additionally, we conducted several sensitivity analyses which allowed us to explore model 

performance in different contexts. 

 

This study has several limitations. Although drug poisoning was the most common known cause 

of death in our cohort affecting 5% of the participants included in these analyses, the number of 

events was relatively low which resulted in imbalanced data (53 events:17,784 non-events, or 

0.3%). When the minority class is rare, a model can appear accurate when in reality it is 

prioritizing the majority class. We attempted to mitigate this imbalance by using a stratified 

random forest algorithm and under sampled the majority class. We opted for random 

undersampling, a popular choice to address data imbalance, as it is one of the simplest and most 

effective methods, and has shown to outperform more sophisticated methods (49). However, 

when undersampling the majority class, there is a loss of information that occurs as the model 

sees a smaller subset of the data. The data was not split into separate training and testing datasets 

and instead relied entirely on OOB estimates. Additionally, the algorithm was not validated on 

an external dataset. Certain variables in the CCC with limited data points had to be collapsed 

with other similar variables or removed entirely. The CCC does not collect data on non-fatal 

drug poisonings or OUD, which previous studies have found to be strongly associated with fatal 

drug poisonings (34,42,50). Including non-fatal poisonings would also have increased the 

number of events and thus increased our study power.  
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Conclusion   

Despite a rich data set of socio-demographic, behavioural, and clinical predictors, we were 

unable to accurately predict six-month drug poisoning death in people living with HIV-HCV co-

infection. While potential and plausible markers of vulnerability, such as recent drug treatment 

and certain recent drug exposures may signal increased risk, our model performance did not 

generalize well out of sample suggesting that drug poisonings may be driven more by external 

factors such an increasingly toxic and unpredictable drug supply. Future prediction studies would 

benefit from using a larger dataset in the recent time period to reduce heterogenicity in drug 

exposures. In the meantime, redoubling efforts to reduce harms from toxic drug exposures such 

as drug testing and drug purity kits, and public education is essential.  
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Appendix 1  

Table 1 – Predictive performance of random forest for sensitivity analyses (OOB)  

Sensitivity analysis  AUC (95% CI)  Accuracy  PPV  Sensitivity  
One year  0.64 (0.58, 0.70)  80.2%  0.6%  28.6%  
Opioid era  0.70 (0.59, 0.81)  83.8%  1.1%  51.9%  
Active users  0.62 (0.56, 0.69)  79.4%  0.5%  30.0%  
Unknown deaths  0.60 (0.55, 0.65)  79.8%  0.6%  22.2%  
  

Table 2 – Predictive performance of random forest for sensitivity analyses (entire sample)  

Sensitivity analysis  AUC (95% CI)  Accuracy  PPV  Sensitivity  
One year  0.9958 (0.9921, 0.9995)  80.9%  2.0%  100%  
Opioid era  0.9790 (0.9610, 0.9969)  84.2%  2.0%  96.3%  
Active users  0.9976 (0.9961, 0.9991)  79.9%  1.5%  100%  
Unknown deaths  0.9977 (0.9962, 0.9991)  80.7%  2.6%  100%  
  

Table 3 – Association between the five most predictive variables of all analyses (primary and the 

four sensitivity analyses), as measured by variable importance in the random forest, and drug 

poisoning deaths as captured via a GEE  

Variable Main model  
OR (95% CI) 

One year 
OR (95% CI) 

Opioid era 
OR (95% CI) 

Active users 
OR (95% CI) 

Unknown deaths 
OR (95% CI) 

Prescription 
opioids (ever) 

1.43 (0.76, 2.68) 1.56 (0.92, 2.62) 3.07 (1.20, 7.87) 1.24 (0.66, 2.34) 1.52 (0.97, 2.40) 

Addiction 
therapy (6m) 

1.19 (0.60, 2.34) 1.21 (0.67, 2.17) 1.32 (0.53, 3.27) 1.23 (0.61, 2.45) 1.34 (0.82, 2.20) 

STI (ever) 0.93 (0.54, 1.60) 0.90 (0.56, 1.46)   1.13 (0.73, 1.75) 
Non-injection 
opioid use (6m) 

1.73 (0.91, 3.29)   1.77 (0.82, 3.85)  

Cigarette 
smoking (6m) 

2.75 (1.03, 7.36)     

Non-injection 
polysubstance 
drug use (6m)  

 1.03 (0.51, 2.06)  1.04 (0.46, 2.37)  

Injection 
stimulant use 
(6m) 

  1.22 (0.50, 2.97)  1.41 (0.90, 2.21) 

Injection 
polysubstance 
drug use (6m)  

 1.87 (0.96, 3.61)    
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Education (high 
school) 

  0.60 (0.26, 1.37)   

Sex (male)   0.66 (0.29, 1.53)   
Sex work (ever)    1.81 (1.01, 3.26)  
Sexual 
orientation 
(heterosexual) 

    1.67 (0.95, 2.93) 
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4. DISCUSSION 

4.1. Summary of findings 

The objective of the manuscript presented in this thesis was to predict six-month drug poisoning 

deaths within the Canadian HIV-HCV co-infection cohort. To accomplish this, we used a 

random forest classifier, a robust machine learning method used for prediction. The in-sample 

assessment of the model’s predictive performance, which predicted events using the entire 

dataset, performed well (AUC 0.9965). However, the OOB assessment, which predicted events 

in a withheld sample of the data, performed poorly (AUC 0.61). These results indicate that our 

findings likely would not generalize well outside of the CCC, as OOB results are considered 

more reliable (less prone to optimism) than whole sample metrics. Additionally, we conducted 

four sensitivity analyses to explore model performance in different scenarios, and like the 

primary model, the models performed better on the entire sample than on a withheld portion of 

the sample across all sensitivity analyses. After ranking the variables by importance, the top five 

most important variables in the primary model were: addiction therapy in the past six months, 

STI ever, smoking in the past six months, prescription opioids ever, and non-injection opioid use 

in the past six months. Addiction therapy (6m) and prescription opioids (ever) appeared in the 

top five important predictors across all sensitivity analyses. However, none of these variables 

were strongly predictive: the variable importance plot demonstrated that they minimally affected 

the overall accuracy and the results from the GEE of the top five important predictors showed 

wide 95% confidence intervals, preventing any definitive conclusions from being made. 

 

Previous studies, although conducted among populations other than the HIV-HCV co-infected 

population, such as Canadian youth or adults with at least one opioid prescription, have also 
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found similar important predictors to the top five highlighted in our analysis: prescription 

opioids, smoking, non-injection opioid use, and addiction therapy (16,89–92). Of our top five 

important predictors, there were two that stood out. Addiction therapy is a critical aspect of harm 

reduction that aims to lessen the harms related to drug use, including fatalities (93). It was 

therefore initially a surprising finding that this should predict drug poisoning. However, the 

current literature indicates that although addiction therapy programs are very helpful as long as 

individuals are engaged in the programs, the risk of drug poisoning appears to be heightened 

immediately after discontinuing treatment (60,94,95). This could be due to a variety of factors, 

such as no longer being accustomed to the current street drugs. Although it is not possible to 

know if a participant in the CCC would have discontinued addiction therapy after their final visit, 

this is a possibility. It may be beneficial to more closely monitor individuals who are actively in 

an addiction therapy program or have recently completed one and develop tailored education 

regarding risk of drug use under these circumstances. Another predictor of note among the top 

five was history of an STI. Although it appeared as an important predictor in the primary model 

and two sensitivity analysis models, the direction of the association was unclear. In the primary 

model and the sensitivity analysis including drug poisoning deaths up to one year after a 

participant’s visit, STI appeared to be protective (although the 95% confidence intervals 

associated with the odds ratios crossed the null in both cases). In the sensitivity analysis 

including unknown deaths as drug poisoning deaths, the association indicated heightened risk, 

although once again the 95% confidence intervals associated with the odds ratio crossed the null. 

It is possible that reporting an STI is a marker of risk-taking behaviour; this warrants additional 

investigation.  
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A narrative review by Tseregounis & Henry identified 12 studies that developed clinical 

prediction tools for opioid poisonings (88). The studies included in this review identified similar 

important predictors to the ones we found in our analysis (16,17,92,96,97). The findings of this 

review indicate that prediction of drug poisoning events is possible, particularly if focusing on a 

well-defined type of process (e.g., poisoning in a particular era or from a particular drug class) or 

when using a very large sample. Many of the included studies focused on a narrow time period 

(<5 years) and had access to large datasets (>25,000 people). This is very different from our 

analysis which focused on a period of 20 years (thus spanning multiple drug eras) and included 

roughly 2,000 individuals. It is possible that our model may have seen better results if we had 

access to a larger dataset, particularly if such a larger dataset could be limited to a shorter period 

of time. In fact, the model of the sensitivity analysis limiting only to visits after 2016 saw the 

best OOB performance with an AUC of 0.70 (95% CI 0.59, 0.81) and a high in-sample model 

performance with an AUC of 0.9790 (95% CI 0.9610, 0.9969). This slightly improved 

performance may be due to a greater homogeneity in drug poisoning events occurring closer in 

time. Drug use patterns have changed significantly over the past 20 years, particularly after the 

introduction of synthetic opioids (98,99). It is riskier than ever to use drugs and drug poisonings 

are occurring at an alarmingly high rate (14,99). The drastic change in drug use patterns and in 

the supply itself throughout the duration of our study period have resulted in difficulty in 

predicting drug poisoning events in the cohort. 

 

Finally, the imbalance in our data was an obstacle that we faced in this analysis. Although 

imbalanced data can pose a challenge, there have been instances of prediction with imbalanced 

data that have obtained good accuracy. For example, Khalilia et al. used ensemble learning 
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methods to predict disease risks in imbalanced data (100). Of the eight disease categories they 

predicted, the most imbalanced category, breast cancer, had a prevalence of 1.66%. The authors 

used a repeated random sub-sampling approach, and using this technique with random forest, 

they predicted breast cancer with an AUC of 0.9123 (100). However, this analysis exhibited two 

key advantages relative to our situation: the authors had access to much larger dataset (8 million 

records) as well as highly predictive features as the authors used diagnosis categories as 

predictors for diseases status. Authors Paing et al. compared four sampling methods for 

imbalanced data in random forest: random oversampling, random undersampling, Tomek Link, 

and synthetic minority oversampling technique (SMOTE) (101). Of these options, SMOTE 

yielded the best performance among a variety of imbalanced datasets, generating AUROC (area 

under receiver operating curve) values over 90 in all but one dataset. However, SMOTE is not 

suitable for categorical data (102), which feature in the CCC. Extensions to address categorical 

data either need a mix of continuous and categorical variables (102) or are not available in R. For 

our analysis, we opted for random undersampling, as it is simple yet effective (103). It is a 

popular choice to address imbalanced data and is readily available in R. There are many methods 

to address imbalanced data, each with their lists of pros and cons; it is unclear if using a different 

method to address the imbalance in our data would have generated better results, however an 

investigation into the difficult methodological question was beyond the scope of this thesis. 

 

4.2. Strengths and limitations 

There were several strengths in this thesis. One of the greatest strengths was the richness and 

detail of potential predictors in the CCC. The CCC collects information on hundreds of clinical, 

socio-demographic, and behavioural variables. This data provided a strong base for the random 
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forest classifier. Additionally, the participants in the CCC are generalizable to the HIV-HCV co-

infected population in Canada connected to care. Participants are connected to care in small and 

large urban centres across the country (20). An additional strength of this thesis is the use of the 

random forest classifier, due to its reputation as a robust machine learning algorithm (81,104). 

The manuscript in this thesis is also the first study to focus on predicting drug poisoning deaths 

within the HIV-HCV co-infected population. Although this population is a small subset of the 

population, they could benefit greatly from a clinical prediction tool for drug poisonings as they 

are typically at higher risk and more vulnerable. Finally, we conducted several sensitivity 

analyses which allowed us to explore the model’s performance in various contexts, which 

contributed relevant information to the study’s objective.  

 

There were several limitations to this thesis. As noted above, although drug poisoning deaths are 

the most common recorded cause of death in the CCC, the number of events was relatively low. 

To address the imbalance, we opted to use a stratified random forest and under-sample the 

majority class. However, when undersampling the majority class, there is a loss of information 

that occurs because not all observations are being used. A loss of information also occurred as 

certain variables in the CCC with variability in observed values had to be collapsed or removed 

entirely. We mitigated the loss of variables as much as possible by combining similar variables, 

for example combining drugs considered stimulants together such as cocaine and amphetamines. 

In addition, to not further reduce the number of events, we opted not to split the data into testing 

and training datasets and instead relied only on the whole sample and OOB results. Although 

OOB is a valuable tool in the random forest algorithm, as it withholds a portion of the data itself 

to then predict on the withheld sample, splitting the data into testing and training datasets would 
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ensure the model is truly blinded from the test dataset and provide a more accurate assessment of 

generalizability; unfortunately, the low number of events precluded this option. Working with a 

larger dataset with a greater number of events would help to address this problem, as even if a 

larger dataset had a low prevalence of events, the raw number would be greater than our current 

number of events, making splitting more feasible. We also did not validate the model on an 

external dataset. Finally, as is the reality with self-reported data, it is possible that participants 

may not have answered truthfully on questionnaires. However, the long and open relationship 

that CCC participants have with staff minimizes this concern. Despite these obstacles, we 

uncovered some interesting clues for who might be at risk and mitigated the challenges the best 

we could. 

 

4.3. Future directions 

This thesis was an important first step towards predicting drug poisoning deaths within the HIV-

HCV co-infected population in Canada. However, our model did not perform well out of sample, 

indicating that it may not generalize well to other data including real-world clinic settings. Future 

studies within the cohort should examine different classification methods or, alternatively, this 

problem may require larger datasets which could be obtained by combining information across 

several cohorts to increase the number of events.  

 

The CCC should also consider starting to collect additional information that could be helpful to 

predict drug poisoning events, such as experiencing a non-fatal drug poisoning event and a 

diagnosis of opioid use disorder. These variables proved to be important predictors in previous 

studies (92,105,106) and would be easy to incorporate into questionnaires. Additionally, if non-
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fatal and fatal drug poisonings were to be combined, this would increase the number of events, 

thus helping to address the imbalanced data.   

 

As prediction did not perform as well as anticipated, it is also possible that future public health 

efforts should focus elsewhere: rather than attempting to identify the most at-risk individuals, 

perhaps general messaging to people living with HIV-HCV co-infection who use drugs or 

focusing efforts on drug testing would be more fruitful, particularly as the current street drug 

market is alarmingly volatile.  
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5. CONCLUSION 

In this thesis we used a random forest classifier to predict six-month drug poisoning deaths 

among individuals with HIV-HCV co-infection in Canada using sociodemographic, clinical, and 

behavioural data. Our model performed well in-sample, however, it performed poorly out of 

sample, indicating that our results may not generalize well. Although we identified certain 

important predictors, these results must be interpreted with caution. This was an important first 

attempt to develop a tool that could be deployed in clinical settings to reduce drug-related deaths 

within the HIV-HCV co-infected population. However, future efforts would benefit from using 

larger datasets, and within the cohort, amplifying drug poisoning prevention efforts such as drug 

testing and drug purity kits, or messaging to all drug users in the cohort.  
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