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Abstract

Investigation of sharp constants in Sobolev inequalities dates back to the independent work of Aubin[3] and
Talenti[43] in the 1970s on the first order Euclidean Sobolev inequality, and has been the focus of significant
research in the decades since in part due to importance in geometry, physics, and PDEs (Partial Differential
Equations). As a consequence, a particular collection of results on best constants for Sobolev inequalities on
Riemannian manifolds has come to be known as the "AB Program" in the literature (see Druet and Hebey[10]).
In recent years, natural extensions of these problems to higher order have gathered significant attention, ex-
amples of which can be found in Mazumdar[33], Mazumdar-Vétois[34], and Liu[32]. This thesis aims to
cover problems involving best constants for Sobolev inequalities of higher order on Riemannian manifolds,
their relationship to the sharp Sobolev inequalities on Euclidean space, and applications to existence results
in PDEs. We develop the necessary background material to discuss a higher order AB Program and prove
a new sharp higher order Sobolev inequality, which comprises the main result of the thesis. This result di-
rectly generalizes the previous work of Hebey-Vaugon[25] and Hebey[23] in the first and second order cases
respectively, combining classical arguments from geometric analysis with results of Mazumdar[33].
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Abrégé

L’étude des meilleures constantes des inégalités de Sobolev remonte aux travaux indépendants d’Aubin[3] et
de Talenti[43] dans les années 1970 sur l’inégalité euclidienne de Sobolev de premier ordre, et ont fait l’objet
de recherches importantes au cours des décennies qui ont suivi, en partie en raison de leur importance en
géométrie, en physique et en EDP (équations aux dérivées partielles). En conséquence, une collection partic-
ulière de résultats sur les meilleures constantes pour les inégalités de Sobolev sur les variétés riemanniennes
est désormais connue dans la littérature sous le nom de « programme AB » (voir Druet et Hebey[10]). Ces
dernières années, les généralisations naturelles de ces problèmes aux ordres supérieurs ont retenu une atten-
tion considérable, par exemple dans les travaux de Mazumdar[33], Mazumdar-Vétois[34] et Liu[32]. Cette
thèse vise à couvrir des problèmes impliquant les meilleures constantes pour les inégalités de Sobolev d’ordres
supérieurs sur les variétés riemanniennes, leur relation avec les inégalités optimales de Sobolev sur l’espace
euclidien et les applications à l’existence de solutions d’EDP. Nous développons le matériel nécessaire pour
discuter d’un programme AB d’ordre supérieur et prouver une nouvelle inégalité de Sobolev d’ordre supérieur,
ce qui constitue le résultat principal de la thèse. Ce résultat généralise directement les travaux antérieurs de
Hebey-Vaugon[25] et de Hebey[23], respectivement dans les cas du premier et du second ordre, combinant
des arguments issus de l’analyse géométrique avec des résultats de Mazumdar[33].
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1 Introduction

1.1 Concepts and Notation

This thesis assumes general knowledge of measure theory, functional analysis, and differential and Rie-
mannian geometry. Introductory references for these subjects can be found for example in Folland[14] and
Lee[26][27].

Let (𝑀,𝑔) be a smooth Riemannian manifold. If∇𝑘𝑇 is the 𝑘th covariant derivative of a 𝑗-degree covariant
tensor 𝑇 , we will occasionally use the notation

∇𝑖1 …∇𝑖𝑘𝑇𝑙1…𝑙𝑗 ≔ 𝑇𝑙1,…,𝑙𝑗 ;𝑖1…𝑖𝑘 .

Einstein summation notation will be used for all tensor computations. We raise and lower indices using the
metric in the usual way, for example

𝑅𝑖
𝑗 = 𝑔𝑖𝑘𝑅𝑘𝑗 .

If 𝑆, 𝑇 are two tensors of degree 𝑞, their inner product is defined by

⟨𝑆, 𝑇 ⟩𝑔 = 𝑆 𝑖1…𝑖𝑞𝑇𝑖1…𝑖𝑞 .

The norm of a tensor 𝑇 is then defined as

|𝑇 | =
√

⟨𝑇 , 𝑇 ⟩𝑔.

We use 𝑑𝑣𝑔 to denote the volume density, which is well defined regardless of whether the manifold is ori-
entable. When working in a coordinate chart, we use the notation √

𝑔 ≔
√

|det(𝑔)|. The volume density in
a coordinate chart is then given by √

𝑔𝑑𝑥. The Laplacian operator Δ acts on a tensor 𝑇 by the negative sign
convention, i.e.

Δ𝑇 = −∇𝑖∇𝑖𝑇 .

If working in a coordinate system on some open set 𝑈 ⊂ 𝑀 , we use 𝜉 to represent the Euclidean metric on
𝑈 . If (𝑀,𝑔) is compact and without boundary, then for tensors 𝑇 , 𝑆 of the same degree we make frequent
use of the integration by parts equality

∫𝑀
⟨∇𝑇 ,∇𝑆⟩𝑔𝑑𝑣𝑔 = ∫𝑀

⟨𝑇 ,Δ𝑆⟩𝑔𝑑𝑣𝑔.
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Given a nonnegative integer 𝑚, we use the notational convention

Δ
𝑚
2 𝑢 ≔ ∇Δ

𝑚−1
2 𝑢

when 𝑚 is odd. We use 𝑖𝑔 to refer to the injectivity radius of the manifold. If (𝑀,𝑔) is compact, we can always
guarantee 𝑖𝑔 > 0. If 𝑥 ∈ 𝑀 and 𝑟 > 0, we use the notation 𝐵𝑥(𝑟) = {𝑦 ∈ 𝑀 ∶ 𝑑𝑔(𝑦, 𝑥) < 𝑟} where 𝑑𝑔 is the
Riemannian distance function. We may occasionally, when there is no confusion, instead use the alternative
notation 𝐵𝑟(𝑥) depending on how much focus we would like to give to 𝑥 and 𝑟. If 𝐴 ⊂ 𝑀 and 𝑟 > 0, we
define

𝐵𝑟(𝐴) ≔
⋃

𝑥∈𝐴
𝐵𝑥(𝑟).

We use the notation 𝑊 𝑚,𝑝 for 𝑚th order Euclidean Sobolev spaces with exponent 𝑝 and 𝐻𝑝
𝑚 for 𝑚th order

Sobolev spaces on manifolds with exponent 𝑝, both of which will be defined in Section 2. If 𝑋 and 𝑌 are
Banach spaces, then 𝑋 ⊂ 𝑌 will always be assumed to denote a continuous embedding in the sense that there
exists some 𝐶 such that for all 𝑥 ∈ 𝑋,

‖𝑥‖𝑌 ≤ 𝐶‖𝑥‖𝑋 .

As is typical in analysis arguments, we will use the same letter 𝐶 to denote potentially different constants
throughout computations where the value of 𝐶 only needs to remain independent of certain parameters.

1.2 Background and Motivation

Best constants problems for Sobolev inequalities have been a topic of great development since Aubin[3] and
Talenti[43] independently calculated the best constant 𝐾(1, 𝑛, 𝑝) for the embedding 𝑊 1,𝑝(ℝ𝑛) ⊂ 𝐿𝑝∗(ℝ𝑛) in
the sense that

𝐾(1, 𝑛, 𝑝)−1 = inf
𝑢∈𝑊 1,𝑝(ℝ𝑛)⧵{0}

∫ℝ𝑛 |∇𝑢|𝑝𝑑𝑥
(

∫ℝ𝑛 𝑢𝑝∗𝑑𝑥
)

𝑝
𝑝∗

where 1 ≤ 𝑝 < 𝑛 and 𝑝∗ ≔ 𝑝𝑛
𝑛−𝑝

is the critical Sobolev exponent. Because the case 𝑝 = 2 is of particular interest,
we write 𝐾(1, 𝑛) ≔ 𝐾(1, 𝑛, 2). This sharp constant is particularly notable for applications to semilinear PDEs
of critical growth arising in geometry, providing a seminal role in the resolution of the Yamabe problem
through the combined work of Yamabe[45], Trudinger[44], Aubin[2], and Schoen[40].

If (𝑀,𝑔) is a Riemmanian manifold of dimension 𝑛 ≥ 3, by the Sobolev embedding 𝐻2
1 (𝑀) ⊂ 𝐿2∗(𝑀),
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there exist constants 𝐴,𝐵 > 0 such that for all 𝑢 ∈ 𝐻2
1 (𝑀),

(

∫𝑀
|𝑢|2∗𝑑𝑣𝑔

)
2
2∗

≤ 𝐴∫𝑀
|∇𝑢|2𝑑𝑣𝑔 + 𝐵 ∫𝑀

𝑢2𝑑𝑣𝑔. (1.1)
The "AB Program" (see Druet and Hebey[10] for an overview), studies sharp versions of this inequality. It
was shown by Aubin[3] through an elementary partition of unity argument that the value of 𝐴 in the above
inequality must satisfy 𝐴 ≥ 𝐾(1, 𝑛) and for any 𝐴 > 𝐾(1, 𝑛), there exists some 𝐵(𝐴) such that (1.1) is valid.
Hebey-Vaugon[25] then showed the best possible value 𝐴 = 𝐾(1, 𝑛) is in fact obtained through a fine blow-up
analysis of a sequence of positive functions 𝑢𝛼 for 𝛼 > 0 solving the PDE

Δ𝑔𝑢𝛼 + 𝛼𝑢𝛼 = 𝑢2∗−1𝛼 .

This technique of proving sharp results for inequalities like (1.1) through asymptotic analysis of a sequence
of solutions to PDEs is by now classical, see for example Hebey[23], Li-Ricciardi[29], Li-Zhu[30], Druet[9],
and Aubin-Li[5].

The higher order Sobolev embeddings 𝐻2
𝑚(𝑀) ⊂ 𝐿2#𝑚(𝑀), where 2#𝑚 = 2𝑛

𝑛−2𝑚
and 𝑚 < 𝑛

2
give rise to a

natural development of the AB Program in higher order, studying constants (𝐴,𝐵) such that
(

∫𝑀
|𝑢|2#𝑚𝑑𝑣𝑔

)
2
2#𝑚 ≤ 𝐴∫𝑀

(Δ
𝑚
2 𝑢)2𝑑𝑣𝑔 + 𝐵

𝑚−1
∑

𝑖=0
∫𝑀

(Δ
𝑖
2𝑢)2𝑑𝑣𝑔. (1.2)

The best constants for the higher order Euclidean Sobolev embeddings with exponent 𝑝 = 2

𝐾(𝑚, 𝑛)−1 = inf
𝑢∈𝑊 𝑚,2(ℝ𝑛)⧵{0}

∫ (Δ
𝑚
2 𝑢𝑑𝑣𝑔)2

(

∫ 𝑢2#𝑑𝑣𝑔
)

2
2#𝑚

were calculated by Edmunds-Fortunato-Jannelli[11] in the case 𝑚 = 2 and Swanson[42] in the case 𝑚 ≥ 3. A
similar argument to that originally used by Aubin in the case 𝑚 = 1 shows that the constant 𝐴 is in (1.2), must
be at least 𝐾(𝑚, 𝑛), see Djadli-Hebey-Ledoux[8] for the case 𝑚 = 2 and Mazumdar[33] for the case 𝑚 ≥ 3.
It therefore is sensible to ask whether the constant 𝐴 in (1.2) can be taken to be equal to the best possible
value 𝐾(𝑚, 𝑛), generalizing the result of Hebey-Vaugon. A positive answer in the case 𝑚 = 2 was shown by
Hebey[23]. In this work we show this result can be extended to all 𝑚 ≥ 3.

A refined version of the first order result involving the scalar curvature was proven in Li-Ricciardi[29].
Natural next steps from our results could include estimating lower order constants in the higher order AB
Program after the first constant is lowered, i.e. inequalities of the form

(

∫𝑀
𝑢2#

)
2
2#

≤ 𝐴∫𝑀
(Δ

𝑚
2 𝑢)2𝑑𝑣𝑔 +

𝑚−1
∑

𝑖=0
𝐵𝑖 ∫𝑀

(Δ
𝑖
2𝑢)2𝑑𝑣𝑔. (1.3)
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Results in this direction have been initiated in the case of hyperbolic space in Liu[32] and on the unit sphere
in the case 𝑚 = 2 in Djadli-Hebey-Ledoux[8]. One can also consider whether the higher order inequalities
can be refined in the sense of[29] through local or global geometric quantities.

1.3 Organization of the Work

In Section 2, we review basic definitions regarding Sobolev spaces and prove the Sobolev inequalities in the
settings of Euclidean space and compact Riemannian manifolds. In Section 3 we discuss sharp and asymp-
totically sharp versions of higher order Sobolev inequalities in the Riemannian setting with exponent 𝑝 = 2.
In particular we set up a higher order variant of the AB Program for best constants and discuss applications to
existence results in semilinear PDEs of critical growth. Section 4 is dedicated to proving the best first constant
in the higher order AB Program is attained. This is the main result and represents an original contribution to
the literature. The Appendix reviews the De Georgi-Nash-Moser iterative scheme, which is crucial in Section
4.

4



2 Sobolev Spaces

2.1 Euclidean Space

In this section we recall some definitions and basic results on Sobolev spaces, prove the Gagliardo-Nirenberg-
Sobolev inequalty, and discuss the best constants. This serves to motivate and prove the corresponding
Sobolev inequalities on Riemannian manifolds in Section 2.2. All results in this section can be found in
the books of Adams[1] or Evans[12].

Given a multiindex 𝛼 = (𝛼1 … , 𝛼𝑛) ∈ ℕ𝑛 we define the differential operator 𝐷𝛼 by

𝐷𝛼𝑢 = 𝜕𝛼1
𝜕𝑥𝛼1

1

… 𝜕𝛼𝑛
𝜕𝑥𝛼𝑛

𝑛
𝑢

for 𝑢 ∈ 𝐶 |𝛼|(ℝ𝑛).
Definition 2.1. Let Ω ⊂ ℝ𝑛 be an open set and 1 ≤ 𝑝 ≤ ∞ and let 𝑚 ≥ 0 be an integer. We define the Sobolev

Space 𝑊 𝑚,𝑝(Ω) to be the set of functions 𝑓 ∈ 𝐿𝑝(Ω) such that for all multi-indices 𝛼 ∈ ℕ𝑛 satisfying |𝛼| ≤ 𝑚

there exists some 𝑓𝛼 ∈ 𝐿𝑝(Ω) satisfying

(−1)|𝛼| ∫Ω
𝑓𝛼𝜙𝑑𝑥 = ∫Ω

𝑓𝐷𝛼𝜙𝑑𝑥

for all 𝜙 ∈ 𝐶∞
𝑐 (Ω).

If 𝑓 ∈ 𝑊 𝑚,𝑝(Ω) and |𝛼| ≤ 𝑚, we use the notation 𝐷𝛼𝑓 ≔ 𝑓𝛼 and call 𝐷𝛼𝑓 a weak derivative of 𝑓 .
We note if 𝑓 ∈ 𝐶 |𝛼|(Ω) then the weak derivative 𝐷𝛼𝑓 coincides with the classical derivative up to a set of
measure 0.

The space 𝑊 𝑚,𝑝(Ω) endowed with the Sobolev norm

‖𝑢‖𝑊 𝑚,𝑝(Ω) =
∑

|𝛼|≤𝑚
‖𝐷𝛼𝑢‖𝐿𝑝(Ω)

forms a Banach space. We define 𝑊 𝑚,𝑝
0 (Ω) ⊂ 𝑊 𝑚,𝑝(Ω) as the completion of 𝐶∞

𝑐 (Ω) with respect to the norm
‖⋅‖𝑊 𝑚,𝑝 . The following theorem of Meyers-Serrin (which we present without proof) shows when developing
results in the theory of Sobolev spaces, it is often possible to prove a statement only for smooth functions and
argue through density instead of working directly with the definition.
Theorem 2.1. For any Ω ⊂ ℝ𝑛 open, 𝑚 ≥ 0, 1 ≤ 𝑝 < ∞, the set

{𝑢 ∈ 𝐶∞(Ω) ∶ ‖𝑢‖𝑊 𝑚,𝑝(Ω) < ∞}

5



forms a dense subset of 𝑊 𝑚,𝑝(Ω).

Remark 2.2. Given 𝑅 > 0 let 𝜂𝑅 be a nonnegative smooth function equal to 1 on 𝐵0(𝑅) and equal to 0 on
ℝ𝑛 ⧵ 𝐵0(𝑅 + 1) satisfying |∇𝑖𝜂𝑅| ≤ 𝐶 for 0 ≤ 𝑖 ≤ 𝑚, where 𝐶 is independent of 𝑅. Given 𝑢 ∈ 𝐶∞(ℝ𝑛) such
that ‖𝑢‖𝑊 𝑚,𝑝(ℝ𝑛) < ∞, it can be easily shown that 𝜂𝑅𝑢 → 𝑢 in the Sobolev norm as 𝑅 → ∞. Therefore it holds

𝑊 𝑚,𝑝
0 (ℝ𝑛) = 𝑊 𝑚,𝑝(ℝ𝑛).

Definition 2.2. Let 1 ≤ 𝑝 < 𝑛. We define the Sobolev conjugate 𝑝∗ by 𝑝∗ = 𝑛𝑝
𝑛−𝑝

.

It was originally proven by Sobolev[41], using a fairly difficult representation formula, that if 1 ≤ 𝑝 < 𝑛,
then 𝑊 1,𝑝(ℝ𝑛) ⊂ 𝐿𝑝∗(ℝ𝑛). We present the proof in the form given by Gagliardo[15] and Nirenberg[37],
which give simple and explicit constants for the embedding. This embedding is commonly referred to as
the Gagliardo-Nirenberg-Sobolev inequality. Because 𝑝∗ > 𝑝, the result allows one to in a sense "trade off"
differentiability for integrability in a higher 𝐿𝑝 space. This is especially relevant in bounded domains (and
compact Riemannian manifolds, see Section 2.2) as in these spaces Hölder’s inequality implies the 𝐿𝑝 spaces
are decreasing as 𝑝 increases.

Theorem 2.3. For any 𝑛 > 1 and 𝑢 ∈ 𝐶1
𝑐 (ℝ

𝑛),

‖𝑢‖
𝐿

𝑛
𝑛−1 (ℝ𝑛)

≤ 1
2
‖∇𝑢‖𝐿1(ℝ𝑛).

Proof. We write 𝑢(𝑥) = 𝑢(𝑥1,… , 𝑥𝑛). We have by the fundamental theorem of calculus (and because 𝑢 is
assumed with compact support) that for 1 ≤ 𝑖 ≤ 𝑛,

𝑢(𝑥) = ∫

𝑥𝑖

−∞
𝑢𝑥𝑖𝑑𝑥𝑖 = −∫

∞

𝑥𝑖

𝑢𝑥𝑖𝑑𝑥𝑖.

Therefore we have
|2𝑢(𝑥)| ≤ ∫

∞

−∞
|𝑢𝑥𝑖(𝑥)|𝑑𝑥𝑖

which implies
|𝑢(𝑥)|

𝑛
𝑛−1 ≤

(1
2

)

𝑛
𝑛−1

𝑛
∏

𝑖=1

(

∫

∞

−∞
|∇𝑢(𝑥)|𝑑𝑥𝑖

)
1

𝑛−1

. (2.1)

Note that each of the integrals on the right hand side are with respect to only one variable and the value
of ∫ ∞

−∞ |∇𝑢(𝑥)|𝑑𝑥𝑖 is a function only of the coordinates (𝑥𝑗 ∶ 𝑗 ≠ 𝑖).
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We integrate (2.1) with respect to 𝑥1. The first term in the product on the right hand side is constant with
respect to 𝑥1, so we pull it out of the integral and focus on the other 𝑛 − 1 terms. We get

∫

∞

−∞
|𝑢(𝑥)|

𝑛
𝑛−1𝑑𝑥1 ≤

(1
2

)

𝑛
𝑛−1

(

∫

∞

−∞
|∇𝑢(𝑥)|𝑑𝑥1

)
1

𝑛−1

∫

∞

−∞

𝑛
∏

𝑖=2

(

∫

∞

−∞
|∇𝑢(𝑥)|𝑑𝑥𝑖

)
1

𝑛−1

𝑑𝑥1

We recall the generalized Hölder’s inequality, which states that if 1 ≤ 𝑝𝑖 ≤ ∞ are such that ∑𝑖
1
𝑝𝑖

= 1,
then ∫ℝ𝑛 |

∏

𝑖 𝑓𝑖|𝑑𝑥 ≤
∏

𝑖‖𝑓𝑖‖𝐿𝑝𝑖 . We apply this inequality with 𝑝𝑖 = 𝑛−1 and 𝑓𝑖 =
(

∫ ∞
−∞ |∇𝑢(𝑥)|𝑑𝑥𝑖

)
1

𝑛−1 . We
achieve

∫

∞

−∞
|𝑢(𝑥)|

𝑛
𝑛−1𝑑𝑥1 ≤

(1
2

)

𝑛
𝑛−1

(

∫

∞

−∞
|∇𝑢(𝑥)|𝑑𝑥1

)
1

𝑛−1
(

𝑛
∏

𝑖=2
∫𝐷𝑥1𝑥𝑖

|∇𝑢(𝑥)|𝑑𝑥1𝑑𝑥𝑖

)
1

𝑛−1

where 𝐷𝑥1𝑥𝑖 represents the 2-dimensional plane spanned by 𝑒1, 𝑒𝑖 in ℝ𝑛. This notation extends naturally to
other subspaces of dimension 2 ≤ 𝑖 ≤ 𝑛 − 1.

We continue, integrating both sides with respect to 𝑥2. This time the first term in the iterated product
on the right hand side will be constant with respect to 𝑥2, so it can be pulled out of the integral, and we
again apply the generalized Hölder inequality to the other 𝑛 − 1 terms, i.e. 𝑓1 =

(

∫ ∞
−∞ |∇𝑢(𝑥)|𝑑𝑥1

)
1

𝑛−1 and
𝑓𝑖 =

(

∫𝐷𝑥1𝑥𝑖+1
|∇𝑢(𝑥)|𝑑𝑥1𝑑𝑥𝑖+1

)
1

𝑛−1 for 2 ≤ 𝑖 ≤ 𝑛 − 1. We obtain

∫𝐷𝑥1𝑥2

|𝑢(𝑥)|
𝑛

𝑛−1𝑑𝑥1𝑑𝑥2 ≤
(1
2

)

𝑛
𝑛−1

(

∫𝐷𝑥1𝑥2

|∇𝑢(𝑥)|𝑑𝑥1𝑑𝑥2

)
2

𝑛−1
(

𝑛
∏

𝑖=3
∫𝐷𝑥1𝑥2𝑥𝑖

|∇𝑢(𝑥)|𝑑𝑥1𝑑𝑥2𝑑𝑥𝑖

)
1

𝑛−1

.

Continuing in this manner, iterating the integral of both sides 𝑘 times with respect to 𝑥1,… , 𝑥𝑘 with 𝑘 ≤ 𝑛

results in

∫𝐷𝑥1…𝑥𝑘

|𝑢(𝑥)|
𝑛

𝑛−1𝑑𝑥1… 𝑑𝑥𝑘 ≤
(1
2

)

𝑛
𝑛−1

(

∫𝐷𝑥1…𝑥𝑘

|∇𝑢(𝑥)|𝑑𝑥1… 𝑑𝑥𝑘

)
𝑘

𝑛−1

×

(

𝑛
∏

𝑖=𝑘+1
∫𝐷𝑥1…𝑥𝑘𝑥𝑖

|∇𝑢(𝑥)|𝑑𝑥1 … 𝑑𝑥𝑘𝑑𝑥𝑖

)
1

𝑛−1

.

Once the process has been iterated 𝑛 times, we are left with exactly

∫ℝ𝑛
|𝑢(𝑥)|

𝑛
𝑛−1𝑑𝑥 ≤

(1
2

)

𝑛
𝑛−1

(

∫ℝ𝑛
|∇𝑢(𝑥)|𝑑𝑥

)
𝑛

𝑛−1
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which is what we aimed to show.

Theorem 2.4. Let 1 < 𝑝 < 𝑛. Then there exists a constant 𝐶(𝑝, 𝑛) such that for all 𝑢 ∈ 𝐶1
𝑐 (ℝ

𝑛),

‖𝑢‖𝐿𝑝∗ (ℝ𝑛) ≤ 𝐶‖∇𝑢‖𝐿𝑝(ℝ𝑛).

Proof. We note the fact that 𝑝∗ 𝑛−1
𝑛

> 1 implies we are able to apply the case Theorem 2.3 to |𝑢|𝑝
∗ 𝑛−1

𝑛 ∈ 𝐶1
𝑐 (ℝ

𝑛).
We obtain by Hölder’s inequality

‖𝑢𝑝
∗ 𝑛−1

𝑛
‖

𝐿
𝑛

𝑛−1
≤ 1

2
𝑝∗𝑛 − 1

𝑛
‖𝑢𝑝

∗ 𝑛−1
𝑛 −1

|∇𝑢|‖𝐿1 ≤ 𝑝∗𝑛 − 1
2𝑛

‖∇𝑢‖𝐿𝑝‖𝑢
𝑝∗(𝑛−1)

𝑛 −1
‖𝐿𝑝′

where 𝑝′ is the Hölder conjugate for 𝑝. Then by a simple calculation ‖𝑢(
𝑝∗(𝑛−1)

𝑛 −1)
‖𝐿𝑝′ = ‖𝑢‖

𝑝∗ 𝑛−1
𝑛 −1

𝐿𝑝∗ and
‖𝑢𝑝∗(𝑛−1)∕𝑛‖𝐿𝑛∕𝑛−1 = ‖𝑢‖

𝑝∗ 𝑛−1
𝑛

𝐿𝑝∗ , so we conclude

‖𝑢‖𝐿𝑝∗ (ℝ𝑛) ≤
𝑝∗(𝑛 − 1)

2𝑛
‖∇𝑢‖𝐿𝑝(ℝ𝑛).

Corollary 2.5. If 1 ≤ 𝑝 < 𝑛, the embedding 𝑊 1,𝑝(ℝ𝑛) ⊂ 𝐿𝑝∗(ℝ𝑛) holds.

Remark 2.6. By considering functions of the form 𝑢𝜆(𝑥) = 𝑢(𝜆𝑥) and sending 𝜆 to ∞ and 0, it is easily seen
that given 𝑝 ≥ 1, 𝑝∗ is the only exponent for which such an estimate holds.

Corollary 2.7. For all open sets Ω ⊂ ℝ𝑛, if 1 ≤ 𝑝 < 𝑛 there exists some 𝐶 independent of Ω such that for all

𝑢 ∈ 𝑊 1,𝑝
0 (Ω)

‖𝑢‖𝐿𝑝∗ (Ω) ≤ 𝐶‖∇𝑢‖𝐿𝑝(Ω)

While the proof of the Gagliardo-Nirenberg-Sobolev inequality gives explicit constants for the embedding,
it gives no information on the value of the optimal constant 𝐾(1, 𝑛, 𝑝) for which

‖𝑢‖𝐿𝑝∗ (ℝ𝑛) ≤ 𝐾(1, 𝑛, 𝑝)
1
𝑝
‖∇𝑢‖𝐿𝑝(ℝ𝑛).

An equivalent way of phrasing the value of this constant is

𝐾(1, 𝑛, 𝑝)−1 = inf
𝑢∈𝑊 1,𝑝(ℝ𝑛)⧵{0}

‖∇𝑢‖𝑝𝐿𝑝(ℝ𝑛)

‖𝑢‖𝑝
𝐿𝑝∗ (ℝ𝑛)

.
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This question was answered independently by Aubin[3] and Talenti[43]. The value is calculated to be exactly

𝐾(1, 𝑛, 𝑝) =
𝑛 − 𝑝

𝑛(𝑝 − 1)

[

𝑝 − 1
𝑛 − 𝑝

]𝑝 [ Γ(𝑛 + 1)
Γ(𝑛∕𝑝)Γ(𝑛 + 1 − 𝑛∕𝑝)𝜔𝑛−1

]
𝑝
𝑛

if 1 < 𝑝 < 𝑛 and
𝐾(1, 𝑛, 1) = 1

𝑛

[

𝑛
𝜔𝑛−1

]
1
𝑛

where 𝜔𝑛−1 is the volume of the 𝑛 − 1 dimensional unit sphere. The extremal functions are known and are
given explicitly by

𝑢𝑐,𝜇,𝑥0(𝑥) = 𝑐
(

1
𝜇 + |𝑥 − 𝑥0|

𝑝∕𝑝−1

)
𝑛−𝑝
𝑝

for 𝑐, 𝜇 > 0 and 𝑥0 ∈ ℝ𝑛 when 1 < 𝑝 < 𝑛. When 𝑝 = 1 the extremal functions are characteristic functions on
balls.

Given a real number 𝑝 > 1 and an integer 𝑚 ≥ 1 such that 𝑚𝑝 < 𝑛, we define the higher order Sobolev
conjugate 𝑝#𝑚 = 𝑛𝑝

𝑛−𝑚𝑝
. This is obtained by iterating the first order Sobolev conjugate 𝑚 times. Using the well

known inequality|∇|∇𝑟𝑢|| ≤ |∇𝑟+1𝑢| for 𝑢 ∈ 𝐶𝑟+1(ℝ𝑛) where 𝑟 ≥ 0 is an integer (see Lemma 2.11 for a
proof in the more general Riemannian case), it is easy to iterate the Gagliardo-Nirenberg-Sobolev inequality
to obtain

‖𝑢‖𝐿𝑝#𝑚 (ℝ𝑛) ≤ 𝐶‖∇𝑢‖
𝐿𝑝#𝑚−1 (ℝ𝑛)

≤ 𝐶‖∇|∇𝑢|‖
𝐿𝑝#𝑚−2 (ℝ𝑛)

≤ 𝐶‖∇2𝑢‖
𝐿𝑝#𝑚−2 (ℝ𝑛)

≤ ⋯ ≤ 𝐶‖∇𝑚𝑢‖𝐿𝑝(ℝ𝑛)

for 𝑢 ∈ 𝑊 𝑚,2(ℝ𝑛). In the case 𝑝 = 2, integration by parts implies

‖∇𝑚𝑢‖𝐿2(ℝ𝑛) = ‖Δ
𝑚
2 𝑢‖𝐿2(ℝ𝑛)

for any function 𝑢 ∈ 𝐶∞
𝑐 (ℝ𝑛). Therefore we can phrase the problem of finding the higher order best constant

for
‖𝑢‖𝐿2#𝑚 (ℝ𝑛) ≤ 𝐾(𝑚, 𝑛, 2)

1
2
‖∇𝑚𝑢‖𝐿2(ℝ𝑛)

as calculating
𝐾(𝑚, 𝑛, 2)−1 ≔ inf

𝑢∈𝑊 𝑚,2(ℝ𝑛)⧵{0}

‖Δ
𝑚
2 𝑢‖2

𝐿2(ℝ𝑛)

‖𝑢‖2
𝐿2#𝑚 (ℝ𝑛)

.

By the work of Edmunds-Fortunato-Jannelli[11] in the case 𝑚 = 2 and Lions[31] and Swanson[42] in the
case 𝑚 ≥ 3, the best constants and extremal functions are given by

𝐾(𝑚, 𝑛, 2) = 𝜋−𝑚
(

Γ(𝑛)
Γ(𝑛∕2)

)
2𝑚
𝑛

𝑚−1
∏

𝑙=−𝑚
(𝑛 + 2𝑙)−1
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and
𝑢𝑐,𝜇,𝑥0(𝑥) = 𝑐

(

1
𝜇 + |𝑥 − 𝑥0|

2

)
𝑛−2𝑚
2

where 𝑐, 𝜇 > 0 and 𝑥0 ∈ ℝ𝑛.

2.2 Sobolev Spaces on Riemannian Manifolds

In this section we define and prove the basic properties of Sobolev spaces on Riemannian manifolds without
boundary and prove the Sobolev embeddings in the compact setting, using the results from the Euclidean case.
We will always assume (𝑀,𝑔) is a smooth complete Riemannian manifold without boundary throughout this
section. All results in this section can be found in the books of Aubin[4] or Hebey[22].

We recall that if 𝑇 is a 𝑗-times covariant tensor field on 𝑀 , then the covariant derivative ∇𝑇 is a 𝑗 + 1

times covariant tensor. If 𝑢 is a 𝐶 𝑗 function on 𝑀 , ∇𝑘𝑢 is then the 𝑘-times covariant tensor of class 𝐶 𝑗−𝑘 given
by iterating the covariant derivative 𝑘 times. In local coordinates, we compute the tensor norm

|∇𝑘𝑢| = 𝑔𝑖𝑖𝑗𝑖 … 𝑔𝑖𝑘𝑗𝑘(∇𝑘𝑢)𝑖1…𝑖𝑘(∇
𝑘𝑢)𝑗1…𝑗𝑘 = ∇𝑖1 …∇𝑖𝑘𝑢∇𝑖1 …∇𝑖𝑘𝑢

and define the 𝐿𝑝 norm for 1 ≤ 𝑝 < ∞ by

‖∇𝑘𝑢‖𝐿𝑝 =
(

∫𝑀
|∇𝑘𝑢|𝑝𝑑𝑣𝑔

)
1
𝑝

.

Definition 2.3. Given a nonnegative integer 𝑘 and 1 ≤ 𝑝 < ∞, let 𝑝
𝑘(𝑀) be the space of smooth functions

whose first 𝑘 derivatives are in 𝐿𝑝(𝑀), i.e.

𝑝
𝑘(𝑀) = {𝑢 ∈ 𝐶∞(𝑀) ∶ ‖∇𝑗𝑢‖𝐿𝑝 < ∞ for all 1 ≤ 𝑗 ≤ 𝑘}.

The 𝐒𝐨𝐛𝐨𝐥𝐞𝐯 𝐬𝐩𝐚𝐜𝐞 𝐻𝑝
𝑘(𝑀) is defined to be the metric completion of 𝑝

𝑘(𝑀) with respect to the norm

‖𝑢‖𝐻𝑝
𝑘 (𝑀) =

(

𝑚
∑

𝑗=1
‖∇𝑗𝑢‖𝑝𝐿𝑝

)
1
𝑝

.

If 𝑀 is compact, then for any 𝑘 and 𝑝, 𝑝
𝑘(𝑀) = 𝐶∞(𝑀) = 𝐶∞

𝑐 (𝑀). However, the Sobolev spaces for
each 𝑘 and 𝑝 will be different due to the different imposed norms. One may notice that elements of 𝐻𝑝

𝑘(𝑀) are
not a priori functions (or even elements of 𝐿𝑝(𝑀)), but rather equivalence classes of sequences of functions.
However, a Cauchy sequence {𝑢𝑖}𝑖 with respect to the norm ‖⋅‖𝐻𝑝

𝑘 (𝑀) is clearly Cauchy in𝐿𝑝(𝑀), and therefore
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converges to a limit function 𝑢 ∈ 𝐿𝑝(𝑀). Then it can be shown that if two Cauchy sequences {𝑢𝑖}𝑖, {𝑣𝑖}𝑖
converge to the same limit in 𝐿𝑝(𝑀), then they must be equivalent (see Hebey and Robert[24], Definition 2.1
for a proof). Therefore we will from now on refer to elements of 𝐻𝑝

𝑘(𝑀) by their limit in 𝐿𝑝(𝑀).
The first Sobolev embedding we wish to transfer to the case of compact manifold is 𝐻1

1 (𝑀) ⊂ 𝐿
𝑛

𝑛−1 (𝑀).
As in the Euclidean case, the other embeddings will follow directly from this special case.

Lemma 2.8. Let (𝑀,𝑔) be a compact Riemannian manifold. Then there exists a collection of finitely many

charts

{(𝑈𝑖, 𝜙𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑘}

covering 𝑀 and constants 𝜆, 𝜇 such that 0 < 𝜆 ≤
√

𝑔 ≤ 𝜇 on 𝜙𝑖(𝑈𝑖) for all 1 ≤ 𝑖 ≤ 𝑘.

Proof. Let
{(𝑈𝑖, 𝜙𝑖) ∶ 𝑖 ∈ }

be a collection of coordinate charts covering 𝑀 . For each 𝑥 ∈ 𝑀 , we can find some 𝑖𝑥 ∈  and an open set
𝑉𝑖𝑥 containing 𝑥 and compactly supported in 𝑈𝑖𝑥 . Then {𝑉𝑖𝑥 ∶ 𝑥 ∈ 𝑀} forms a covering of 𝑀 and we take a
finite subcover

{(𝑉𝑖𝑥𝑗
, 𝜙𝑖𝑥𝑗

) ∶ 1 ≤ 𝑗 ≤ 𝑘}.

Because each 𝑉𝑖𝑥𝑗
is compactly supported in 𝑈𝑖𝑥𝑗

, there exists 𝜆𝑗 , 𝜇𝑗 for 1 ≤ 𝑗 ≤ 𝑘 such that 0 < 𝜆𝑗 ≤
√

𝑔 ≤ 𝜇𝑗

on 𝜙𝑖𝑥𝑗
(𝑉𝑖𝑥𝑗

) for all 1 ≤ 𝑗 ≤ 𝑘. Taking 𝜇 = max1≤𝑗≤𝑘 𝜇𝑗 and 𝜆 = min1≤𝑗≤𝑘 𝜆𝑗 allows us to conclude.

Theorem 2.9. Let (𝑀,𝑔) be a compact Riemannian manifold. Then the embedding 𝐻1
1 (𝑀) ⊂ 𝐿

𝑛
𝑛−1 (𝑀)

holds.

Proof. We need to show that for all 𝑢 ∈ 𝐻1
1 (𝑀), 𝑢 ∈ 𝐿

𝑛
𝑛−1 (𝑀) and there is some 𝐶 such that

‖𝑢‖
𝐿

𝑛
𝑛−1

≤ 𝐶‖𝑢‖𝐻1
1 (𝑀). (2.2)

By density it suffices to restrict to 𝑢 ∈ 𝐶∞(𝑀).
Let {(𝑈𝑖, 𝜙𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑘} be a finite covering of charts of 𝑀 satisfying the conclusion of Lemma 2.8.

and let {𝛼𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑘} be a partition of unity subordinate to this covering. Let 𝑢 ∈ 𝐻1
1 (𝑀) be arbitrary, we

first have immediately by the Minkowski inequality

‖𝑢‖
𝐿

𝑛
𝑛−1 (𝑀)

=
‖

‖

‖

‖

‖

∑

𝑖
𝛼𝑖𝑢

‖

‖

‖

‖

‖𝐿
𝑛

𝑛−1 (𝑀)

≤
∑

𝑖
‖𝛼𝑖𝑢‖𝐿 𝑛

𝑛−1 (𝑀)
.
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We also have

∫𝑀
|∇(𝛼𝑖𝑢)|𝑑𝑣𝑔 = ∫𝑀

|𝑢∇𝛼𝑖 + 𝛼𝑖∇𝑢|𝑑𝑣𝑔 ≤ ∫𝑀
|∇𝑢| + |𝑢∇𝛼𝑖|𝑑𝑣𝑔 ≤ 𝐶‖𝑢‖𝐻1

1 (𝑀).

Therefore in order to show (2.2) it is sufficient to prove

‖𝛼𝑖𝑢‖𝐿 𝑛
𝑛−1

≤ 𝐶‖∇(𝛼𝑖𝑢)‖𝐿1 .

We recall by the definition of integration on a manifold that

∫𝑀
|𝛼𝑖𝑢|

𝑛
𝑛−1𝑑𝑣𝑔 = ∫ℝ𝑛

|𝛼𝑖𝑢(𝜙−1
𝑖 (𝑥))|

𝑛
𝑛−1
√

𝑔𝑑𝑥

and
∫𝑀

|∇(𝛼𝑖𝑢)|𝑑𝑣𝑔 = ∫ℝ𝑛
|∇(𝛼𝑖𝑢(𝜙−1

𝑖 (𝑥)))|
√

𝑔𝑑𝑥

where the right hand integrands are compactly supported in ℝ𝑛. Therefore, applying Theorem 2.3 and letting
𝜆 and 𝜇 be as in the conclusion of Lemma 2.8,

(

∫𝑀
|𝛼𝑖𝑢|

𝑛
𝑛−1𝑑𝑣

)
𝑛−1
𝑛

≤ 𝜇
𝑛−1
𝑛

(

∫ℝ𝑛
|𝛼𝑖𝑢(𝜙−1

𝑖 (𝑥))|𝑑𝑥
)

𝑛−1
𝑛

≤ 𝜇
𝑛−1
𝑛

2 ∫ℝ𝑛
|∇(𝛼𝑖𝑢(𝜙−1

𝑖 (𝑥)))|𝑑𝑥

≤ 𝜇
𝑛−1
𝑛 𝜆−1

2 ∫𝑀
|∇(𝛼𝑖𝑢)|𝑑𝑣𝑔

and we are done.

Theorem 2.10. Let (𝑀,𝑔) be a compact Riemannian manifold. For any 1 < 𝑝 < 𝑛, the embedding 𝐿𝑝∗(𝑀) ⊂

𝐻𝑝
1 (𝑀) holds.

Proof. As for Theorem 2.9 we prove the statement for 𝑢 ∈ 𝐶∞(𝑀), the conclusion then follows by density.
Set 𝜙 = |𝑢|𝑝∗(𝑛−1)∕𝑛 ∈ 𝐻1

1 (𝑀) and apply the inequality
(

∫𝑀
|𝜙|

𝑛
𝑛−1𝑑𝑣𝑔

)
𝑛−1
𝑛

≤ 𝐶 ∫𝑀
|∇𝜙| + |𝜙|𝑑𝑣𝑔.
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We set 𝑞 = 𝑝∗(𝑛 − 1)∕𝑛 − 1 and 𝑝′ to be the Hölder conjugate of 𝑝. We obtain by Hölder’s inequality
(

∫𝑀
|𝑢|𝑝∗𝑑𝑣𝑔

)
𝑛

𝑛−1

≤ 𝐶
𝑝∗(𝑛 − 1)

𝑛 ∫𝑀
|𝑢|𝑞|∇𝑢|𝑑𝑣𝑔 + 𝐶 ∫𝑀

|𝑢|𝑝∗(𝑛−1)∕𝑛𝑑𝑣𝑔

≤ 𝐶
𝑝∗(𝑛 − 1)

𝑛

(

∫𝑀
|𝑢|𝑞𝑝′𝑑𝑣𝑔

)
1
𝑝′
(

∫𝑀
|∇𝑢|𝑝𝑑𝑣𝑔

)
1
𝑝

+ 𝐶
(

∫𝑀
|𝑢|𝑞𝑝′𝑑𝑣𝑔

)
1
𝑝′
(

∫𝑀
|𝑢|𝑝𝑑𝑣𝑔

)
1
𝑝

.

By a simple calculation, 𝑞𝑝′ = 𝑝∗ and 𝑛−1
𝑛

− 1
𝑝′
= 1

𝑝∗
. Therefore we obtain

(

∫𝑀
|𝑢|𝑝𝑑𝑣𝑔

)
1
𝑝∗

≤ 𝐶
𝑝(𝑛 − 1)

𝑛

(

∫𝑀
|∇𝑢|𝑝𝑑𝑣𝑔

)
1
𝑝

+ 𝐶
(

∫𝑀
|𝑢|𝑝𝑑𝑣𝑔

)
1
𝑝

.

As the following theorem shows, we can iterate the first order Sobolev inequality to show general em-
bedings of higher order Sobolev spaces 𝐻𝑝

𝑚(𝑀) in 𝐻𝑞
𝑘 (𝑀). Naturally, having higher differentiability gives

stronger integrability in the lower order space. We first require a lemma.
Lemma 2.11. Let 𝑟 be a nonnegative integer and let 𝑢 ∈ 𝐶𝑟+1. Then

|∇|∇𝑟𝑢|| ≤ |∇𝑟+1𝑢|. (2.3)

Proof. Let 𝑇 be the 2𝑟 + 1 degree covariant tensor defined by

𝑇𝜈𝛼1…𝛼𝑟𝛽1…𝛽𝑟 = ∇𝜈∇𝛼1 …∇𝛼𝑟𝑢∇𝛽1 …∇𝛽𝑟𝑢 − ∇𝜈∇𝛽1 …∇𝛽𝑟𝑢∇𝛼1 …∇𝛼𝑟𝑢.

Then writing out the property |𝑇 |2 ≥ 0 in coordinates gives

(∇𝜈∇𝛼1 …∇𝛼𝑟𝑢∇𝛽1 …∇𝛽𝑟𝑢 − ∇𝜈∇𝛽1 …∇𝛽𝑟𝑢∇𝛼1 …∇𝛼𝑟𝑢)

× 𝑔𝜈𝜇𝑔𝛼1𝜆1 … 𝑔𝛼𝑟𝜆𝑟𝑔𝛽1𝛾1 … 𝑔𝛽𝑟𝛾𝑟(∇𝜇∇𝜆1 …∇𝜆𝑟𝑢∇𝛾1 …∇𝛾𝑟𝑢 − ∇𝜇∇𝛾1 …∇𝛾𝑟𝑢∇𝜆1 …∇𝜆𝑟𝑢) ≥ 0.

When expanding out this product following four terms appear:

𝐴1 = ∇𝜈∇𝛼1 …∇𝛼𝑟𝑢∇𝛽1 …∇𝛽𝑟𝑢 𝑔
𝜈𝜇𝑔𝛼1𝜆1 … 𝑔𝛼𝑟𝜆𝑟𝑔𝛽1𝛾1 … 𝑔𝛽𝑟𝛾𝑟∇𝜇∇𝜆1 …∇𝜆𝑟𝑢∇𝛾1 …∇𝛾𝑟𝑢

𝐴2 = ∇𝜈∇𝛽1 …∇𝛽𝑟𝑢∇𝛼1 …∇𝛼𝑟𝑢 𝑔
𝜈𝜇𝑔𝛼1𝜆1 … 𝑔𝛼𝑟𝜆𝑟𝑔𝛽1𝛾1 … 𝑔𝛽𝑟𝛾𝑟∇𝜇∇𝛾1 …∇𝛾𝑟𝑢∇𝜆1 …∇𝜆𝑟𝑢

𝐴3 = ∇𝜈∇𝛼1 …∇𝛼𝑟𝑢∇𝛽1 …∇𝛽𝑟𝑢𝑔
𝜈𝜇𝑔𝛼1𝜆1 … 𝑔𝛼𝑟𝜆𝑟𝑔𝛽1𝛾1 … 𝑔𝛽𝑟𝛾𝑟∇𝜇∇𝛾1 …∇𝛾𝑟𝑢∇𝜆1 …∇𝜆𝑟𝑢

𝐴4 = ∇𝛼1 …∇𝛼𝑟𝑢∇𝜈∇𝛽1 …∇𝛽𝑟𝑢𝑔
𝜈𝜇𝑔𝛼1𝜆1 … 𝑔𝛼𝑟𝜆𝑟𝑔𝛽1𝛾1 … 𝑔𝛽𝑟𝛾𝑟∇𝛾1 …∇𝛾𝑟𝑢∇𝜇∇𝜆1 …∇𝜆𝑟𝑢.
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Substituting then gives us
𝐴1 + 𝐴2 − 𝐴3 − 𝐴4 ≥ 0.

We first recognize
𝐴1 = 𝐴2 = |∇𝑟+1𝑢|2|∇𝑟𝑢|2.

For the other two terms, we consider |∇|∇𝑟𝑢|2|2, which in coordinates is given by

𝑔𝜈𝜇∇𝜈(𝑔𝛼1𝜆1 … 𝑔𝛼𝑟𝜆𝑟∇𝛼1 …∇𝛼𝑟𝑢∇𝜆1 …∇𝜆𝑟𝑢)∇𝜇(𝑔𝛽1𝛾1 … 𝑔𝛽𝑟𝛾𝑟∇𝛽1 …∇𝛽𝑟𝑢∇𝛾1 …∇𝛾𝑟𝑢).

When applying the product rule to in the first half of the above formula, we note by symmetry of 𝑔 we have

𝑔𝛼1𝜆1 … 𝑔𝛼𝑟𝜆𝑟∇𝜈∇𝛼1 …∇𝛼𝑟𝑢∇𝜆1 …∇𝜆𝑟𝑢 = 𝑔𝛼1𝜆1 … 𝑔𝛼𝑟𝜆𝑟∇𝛼1 …∇𝛼𝑟𝑢∇𝜈∇𝜆1 …∇𝜆𝑟𝑢.

A similar equality holds when applying the product rule in the second half of the formula. We therefore obtain

4𝐴3 = 4𝐴4 = |∇|∇𝑟𝑢|2|2.

Hence substituting in our expansion of |𝑇 |2 ≥ 0 gives

0 ≤ 2|∇𝑟+1𝑢|2|∇𝑟𝑢|2 − 1
2
|∇|∇𝑟𝑢|2|2 = 2|∇𝑟+1𝑢|2|∇𝑟𝑢|2 − 2|∇|∇𝑟𝑢||2|∇𝑟𝑢|2

which immediately yields our Lemma.

Theorem 2.12. Let (𝑀,𝑔) be compact, 𝑚 > 𝑘 ≥ 0 be integers, and 𝑝 ≥ 1 such that 𝑛 − (𝑚 − 𝑘)𝑝 > 0. Then

the embedding 𝐻𝑝
𝑚(𝑀) ⊂ 𝐻𝑝#𝑚−𝑘

𝑘 (𝑀) holds.

As usual, we prove the statement for smooth functions and conclude through density. First we prove the
statement in the case 𝑘 = 𝑚 − 1. By Lemma 2.11 we have |∇𝑚−1𝑢| ∈ 𝐻𝑝

1 (𝑀). Therefore we apply the first
order Sobolev inequality and Lemma 2.11 to obtain

‖∇𝑚−1𝑢‖𝐿𝑝∗ (𝑀) ≤ 𝐶(‖∇|∇𝑚−1𝑢|‖𝐿𝑝(𝑀) + ‖∇𝑚−1𝑢‖𝐿𝑝(𝑀)

≤ 𝐶(‖∇𝑚𝑢‖𝐿𝑝(𝑀) + ‖∇𝑚−1𝑢‖𝐿𝑝(𝑀)

Similarly, for all 0 ≤ 𝑖 < 𝑚 − 1 we have

‖∇𝑖𝑢‖𝐿𝑝∗ (𝑀) ≤ 𝐶(‖∇𝑖+1𝑢‖𝐿𝑝(𝑀) + ‖∇𝑖𝑢‖𝐿𝑝(𝑀).
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Therefore, summing together the previous two inequalities gives us

‖𝑢‖𝐻𝑝∗
𝑚−1(𝑀) ≤ 𝐶‖𝑢‖𝐻𝑝

𝑚(𝑀).

For the general case, we note 𝑛−(𝑚−𝑘)𝑝 > 0 implies 𝑛−𝑝#𝑖 > 0 for all 1 ≤ 𝑖 ≤ 𝑚−𝑘, and therefore iterating
the previous embedding 𝑚 − 𝑘 times allows us to obtain

𝐻𝑝
𝑚(𝑀) ⊂ 𝐻𝑝∗

𝑚−1(𝑀) ⊂ 𝐻𝑝#2
𝑚−2(𝑀) ⊂ ⋯ ⊂ 𝐻𝑝#𝑚−𝑘

𝑘 (𝑀).

Remark 2.13. It is easily seen by Theorem 2.12 and Hölder’s inequality that if (𝑀,𝑔) is compact, 𝑚 > 𝑘 ≥ 0

are integers, and 𝑝, 𝑞 ≥ 1 are such that 𝑚 − 𝑛∕𝑝 > 𝑘 − 𝑛∕𝑞, then the embedding 𝐻𝑝
𝑚(𝑀) ⊂ 𝐻𝑞

𝑘 (𝑀) still
holds. In fact, this embedding is compact (we recall an embedding 𝑋 ⊂ 𝑌 is compact if bounded subsets of
𝑋 are relatively compact in 𝑌 ). We refer to Chapter 2 of Hebey[22] for a proof. This is often referred to as
the Rellich-Kondrachov embedding theorem. In particular, the embedding 𝐻𝑝

𝑚(𝑀) ⊂ 𝐻𝑝
𝑘(𝑀) is compact if

𝑚 > 𝑘.

Remark 2.14. By the well known fact that 𝐿𝑝(𝑀) is a reflexive space for 𝑝 > 1, it immediately follows the
Sobolev spaces 𝐻𝑝

𝑚(𝑀) are reflexive for 𝑚 ≥ 0 and 𝑝 > 1.
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3 The Higher Order AB Program

3.1 Introduction

Throughout Sections 3 and 4 (except Section 4.2) we let (𝑀,𝑔) be a compact Riemannian manifold without
boundary of dimension 𝑛 and 𝑚 ≥ 1 be an integer such that 𝑚 < 𝑛

2
. We simplify notation by writing 2# ≔ 2#𝑚

and 𝐾 ≔ 𝐾(𝑚, 𝑛). We first note the existence of constants (𝐴,𝐵) such that the inequality (1.2) holds does not
necessarily follow a priori from the embedding 𝐻2

𝑚(𝑀) ⊂ 𝐿2#(𝑀) as stated in Theorem 2.11. However, one
sees as an immediate consequence of Lemma 4.4 (see also Robert[38]) the existence of a constant 𝐶 such that
for all 𝑢 ∈ 𝐻2

𝑚(𝑀),
1
𝐶

𝑚
∑

𝑖=0
∫𝑀

(Δ
𝑖
2𝑢)2𝑑𝑣𝑔 ≤ ‖𝑢‖2𝐻2

𝑚(𝑀) ≤ 𝐶
𝑚
∑

𝑖=0
∫𝑀

(Δ
𝑖
2𝑢)2𝑑𝑣𝑔.

We therefore overload notation for ‖⋅‖𝐻2
𝑚(𝑀) and occasionally use it to represent the equivalent norm

‖𝑢‖2𝐻2
𝑚(𝑀) =

𝑚
∑

𝑖=0
∫𝑀

(Δ
𝑖
2𝑢)2𝑑𝑣𝑔

when there is no confusion.
Using this norm equivalence, we write (1.2) in the form

(

∫𝑀
|𝑢|2#𝑑𝑣𝑔

)
2
2#

≤ 𝐴∫𝑀
(Δ

𝑚
2 𝑢)2𝑑𝑣𝑔 + 𝐵‖𝑢‖2

𝐻2
𝑚−1(𝑀)

. (3.1)
The main focus of Sections 3 and 4 is to discuss the best first constant 𝐴 in this inequality. Let (𝑚, 𝑛) ⊂ ℝ

be defined to be the set of all values 𝐴 such that there exists some 𝐵(𝐴) for which (3.1) is valid. Let 𝛼(𝑚, 𝑛) ≔
inf (𝑚, 𝑛). In Section 3.1 we present the result of Mazumdar[33] stating 𝛼(𝑚, 𝑛) = 𝐾 . Results of this kind
are often known as asymptotically sharp Sobolev inequalities in the literature. We also state the main result of
the thesis, that it is in fact possible to take 𝐴 = 𝐾 in (3.1). In Section 3.2 we present another result from [33],
applying the asymptotically sharp inequality from Section 3.1 to prove an existence result for a higher order
semilinear PDE through the concentration compactness principle of Lions[31]. We also show a sufficient
condition for the solution to be smooth and positive. The use of results from the AB Program to prove the
existence of solutions to PDEs originates from the work of Aubin[2] in the resolution of the Yamabe Problem
(see Lee and Parker[28]). Aside from being an interesting result in its own right, this existence is necessary
for proving the best constant 𝐴 = 𝐾 in (3.1) is attained through a blow up analysis of a sequence of positive
solutions 𝑢𝛼 to the PDE

(Δ + 𝛼)𝑚𝑢𝛼 = 𝑢2#−1𝛼 .
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3.2 The Best First Constant

Directly following the proof in Mazumdar[33], we prove the result 𝛼(𝑚, 𝑛) = 𝐾 in two steps. We first
show for any (𝐴,𝐵) such that (3.1) is true, 𝐴 ≥ 𝐾 . We then show that for every 𝜖 > 0, setting 𝐴 = (1 + 𝜖)𝐾

grants the existence of some 𝐵𝜖 such that substituting ((1 + 𝜖)𝐾,𝐵𝜖) in (3.1) results in a valid inequality.

Lemma 3.1. If 𝐴 ∈ ℝ is such that there exists 𝐵(𝐴) ∈ ℝ satisfying inequality (3.1), then 𝐴 ≥ 𝐾 .

Proof. Suppose there exists some 𝐴 < 𝐾 such that inequality (3.1) holds. Let 𝜖 > 0. It can be shown by
computing in geodesic coordinates (see Lemma 9.1 in Mazumdar[33]) the existence of some 𝛿0(𝜖), 0 < 𝛿0 < 𝑖𝑔
such that for any 𝑝 ∈ 𝑀 , 𝑢 ∈ 𝐶∞

𝑐 (𝐵0(𝛿)) (on Euclidean space), and 1 ≤ 𝑘 ≤ 𝑚,

(1 − 𝜖)
(

∫ℝ𝑛
|𝑢|2#𝑑𝑥

)
2
2#

≤
(

∫𝑀
|𝑢◦𝑒𝑥𝑝−1𝑝 |

2#𝑑𝑣𝑔

)

and
∫𝑀

(Δ
𝑘
2
𝑔 (𝑢◦𝑒𝑥𝑝−1𝑝 ))2𝑑𝑣𝑔 ≤ (1 + 𝜖)∫ℝ𝑛

(Δ
𝑘
2
𝜉 𝑢)

2𝑑𝑥.

Therefore if (𝐴,𝐵) are such that (3.1) holds then we have
(

∫ℝ𝑛
|𝑢|2#𝑑𝑥

)
2
2#

≤ 1 + 𝜖
1 − 𝜖

𝐴∫ℝ𝑛
(Δ

𝑘
2
𝜉 𝑢)

2𝑑𝑥 + 𝐵1 + 𝜖
1 − 𝜖

‖𝑢‖2
𝐻2

𝑚−1(ℝ
𝑛)
.

Now let 𝑣 ∈ 𝐶∞
𝑐 (ℝ𝑛) and let 𝑣𝜆(𝑥) ≔ 𝑣(𝜆𝑥) for 𝜆 ∈ ℝ and 𝑥 ∈ ℝ𝑛. For 𝜆 sufficiently large, 𝑠𝑢𝑝𝑝(𝑣𝜆) ⊂ 𝐵0(𝛿),

therefore substituting in the above inequality and applying a change of variable and the chain rule gives

𝜆−(𝑛−2𝑚)
(

∫ℝ𝑛
|𝑣|2#𝑑𝑥

)
2
2#

≤ 𝜆−(𝑛−2𝑚)1 + 𝜖
1 − 𝜖

𝐴∫ℝ𝑛
(Δ

𝑘
2
𝜉 𝑣)

2𝑑𝑥 + 𝐶
𝑚−1
∑

𝑘=0
𝜆−(𝑛−2𝑘) ∫ℝ𝑛

|Δ
𝑘
2 𝑢|2𝑑𝑥

and sending 𝜆 → ∞ implies
(

∫ℝ𝑛
|𝑣|2#𝑑𝑥

)
2
2#

≤ 1 + 𝜖
1 − 𝜖

𝐴∫ℝ𝑛
(Δ

𝑘
2
𝜉 𝑣)

2𝑑𝑥.

Choosing 𝜖 such that 1+𝜖
1−𝜖

𝐴 < 𝐾 gives a contradiction.

Theorem 3.2. Let 𝜖 > 0. Then there exists 𝐵𝜖 such that

‖𝑢‖22# ≤ (1 + 𝜖)𝐾 ∫𝑀
(Δ

𝑚
2 𝑢)2𝑑𝑣𝑔 + 𝐵𝜖‖𝑢‖

2
𝐻2

𝑚−1

and 𝐾 is the smallest constant for which this holds.
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Proof. We prove the statement for 𝑢 ∈ 𝐶∞(𝑀) and then conclude through density. Let 𝜖, 𝜖1 > 0. By Lemma
9.1 in Mazumdar[33], for all 𝑥 ∈ 𝑀 , there exists some harmonic chart 𝜙 around 𝑥 and some 𝛿𝑥 such that
𝑖𝑔 > 𝛿𝑥 > 0 such that for all 𝑢 ∈ 𝐶∞

𝑐 (𝐵𝛿𝑥(𝑥)),
(

∫𝑀
|𝑢|2#𝑑𝑣𝑔

)
2
2#

≤ (1 + 𝜖1)
(

∫ℝ∗
|𝑢◦𝜙−1

|

2#𝑑𝑥
)

2
2#

and
∫ℝ𝑛

(

Δ
𝑚
2
𝜉

(

𝑢◦𝜙−1)
)2

𝑑𝑥 ≤ (1 + 𝜖1)∫𝑀
(Δ

𝑚
2
𝑔 𝑢)2𝑑𝑣𝑔.

Therefore, by the sharp higher order Euclidean Sobolev inequality as discussed at the end of Section 2.1, we
can set 𝛿𝑥 such that for all 𝑢 ∈ 𝐶∞

𝑐 (𝐵𝛿𝑥(𝑥)),
(

∫𝑀
|𝑢|2#𝑑𝑣𝑔

)
2
2#

≤ (𝐾 + 𝜖)∫𝑀
(Δ

𝑚
2 𝑢)2𝑑𝑣𝑔. (3.2)

By compactness, there exists an integer 𝑘, points {𝑥𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑘}, and positive values {𝛿𝑥𝑖1 ≤ 𝑖 ≤ 𝑘}

such that 𝑀 is covered by {𝐵𝛿𝑥𝑖
(𝑥𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑘} such that for any 𝑢 ∈ 𝐶∞

𝑐 (𝐵𝛿𝑥𝑖
(𝑥𝑖)) the estimate (3.2) holds.

It is easy to construct a partition of unity {𝜂𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑘} subordinate to this covering such that √𝜂 is smooth
for all 1 ≤ 𝑖 ≤ 𝑘. Then by the Minkowski inequality, (3.2), and Lemma 4.5 we obtain

(

∫𝑀
|𝑢|2#𝑑𝑣𝑔

)
2
2#

≤
𝑘
∑

𝑖=1

(

∫𝑀
|

√

𝜂𝑖𝑢|
2#𝑑𝑣𝑔

)
2
2#

≤
𝑘
∑

𝑖=1
(𝐾 + 𝜖)∫𝑀

(Δ
𝑚
2
𝑔 (
√

𝜂𝑖𝑢))2𝑑𝑣𝑔

≤ (𝐾 + 𝜖)∫𝑀
(Δ

𝑚
2
𝑔 𝑢)2𝑑𝑣𝑔 + 𝐶‖𝑢‖𝐻2

𝑚−1(𝑀)

which is what we intended to show. The second part of the theorem follows from Lemma 3.1.

We delay the proof of the following theorem to Section 4.
Theorem 3.3. There exists some 𝐵 based only on (𝑀,𝑔) and 𝑚 such that inequality (3.1) holds with 𝐴 = 𝐾 .

3.3 Existence Results for a Higher Order Semilinear PDE

For the sake of simplicity, we consider only differential operators 𝐿 of the form

𝐿𝑢 = Δ𝑚𝑢 +
𝑚−1
∑

𝑖=0
𝑐𝑖Δ𝑖𝑢 (3.3)
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where 𝑐𝑖 are positive real numbers. Given 𝑢 ∈ 𝐻2
𝑚(𝑀), we interpret ∫𝑀 𝑢𝐿𝑢𝑑𝑣𝑔 in the sense of distributions,

i.e.

∫𝑀
𝑢𝐿𝑢𝑑𝑣𝑔 = ∫𝑀

(Δ
𝑚
2 𝑢)2𝑑𝑣𝑔 +

𝑚−1
∑

𝑖=0
𝑐𝑖 ∫𝑀

(Δ
𝑖
2𝑢)2𝑑𝑣𝑔.

It is obvious 𝐿 is coercive in the sense that there exists 𝜆 > 0 such that ∫𝑀 𝑢𝐿𝑢𝑑𝑣𝑔 ≥ 𝜆 ∫𝑀 𝑢2𝑑𝑣𝑔. In fact, by
the Sobolev embedding theorem and the norm equivalence discussed in Section 3.1, there exists some 𝜆 > 0

such that
∫𝑀

𝑢𝐿𝑢𝑑𝑣𝑔 ≥ 𝜆‖𝑢‖2
𝐿2# (𝑀)

𝑑𝑣𝑔. (3.4)
Given 𝑓 ∈ 𝐿1(𝑀), we say 𝑢 ∈ 𝐻2

𝑚(𝑀) is a weak solution (or a solution in the sense of distributions) to the
PDE 𝐿𝑢 = 𝑓 if for all 𝜙 ∈ 𝐶∞(𝑀),

∫𝑀
Δ

𝑚
2 (𝑢)Δ

𝑚
2 (𝜙)𝑑𝑣𝑔 +

𝑚−1
∑

𝑖=0
𝑐𝑖Δ

𝑖
2 (𝑢)Δ

𝑖
2 (𝜙)𝑑𝑣𝑔 = ∫𝑀

𝑓𝜙𝑑𝑣𝑔.

We briefly review some classical results in the theory of linear elliptic PDEs, stated without proof and sim-
plified in order to apply directly to the needs of this section.

Theorem 3.4 (Strong Maximum Principle). Let 𝑎 > 0. If 𝑢 ∈ 𝐶2(𝑀) and Δ𝑢 + 𝑎𝑢 ≥ 0, then either 𝑢 ≡ 0 or

𝑢 > 0 everywhere.

Proof. Robert[39], Proposition 4.3.

Theorem 3.5 (Schauder Theory). Let 𝐿 be as in (3.3) and 𝑓 ∈ 𝐶𝛽
0 (𝑀) for 𝛽 ∈ (0, 1). If 𝑢 ∈ 𝐻2

𝑚 is a weak

solution to 𝐿𝑢 = 𝑓 , then 𝑢 ∈ 𝐶2𝑚,𝛽(𝑀) and there exists 𝐶 based on (𝑀,𝑔) and
∑𝑚−1

𝑖=0 𝑐𝑖 such that

‖𝑢‖𝐶2𝑚,𝛽 (𝑀) ≤ 𝐶‖𝑓‖𝐶0,𝛽 (𝑀) + ‖𝑢‖𝐶0(𝑀).

Proof. Nicolaescu[36], Theorem 10.3.11

Theorem 3.6 (Existence and Uniqueness). Let 𝐿 be as in (3.3). Let 𝑓 ∈ 𝐿𝑝(𝑀) for 1 < 𝑝 < ∞. Then there

exists a unique weak solution 𝑢 ∈ 𝐻𝑝
2𝑚(𝑀) to 𝐿𝑢 = 𝑓 .

Proof. Mazumdar[33], Proposition 8.2. Note the uniqueness part of the theorem is trivial by coercivity.

Corollary 3.7. Let 𝐿 be as in (3.3). Suppose 𝐿 can be decomposed as 𝐿𝑢 =
∏𝑚

𝑖=1(Δ + 𝑎𝑖)𝑢 where 𝑎𝑖 > 0 for

all 1 ≤ 𝑖 ≤ 𝑚. Then for 𝑢 ∈ 𝐶2𝑚(𝑀), if 𝐿𝑢 ≥ 0, then either 𝑢 ≡ 0 or 𝑢 > 0 everywhere.
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We aim to find weak solutions to the PDE

𝐿𝑢 = 𝜇𝐿,𝑓𝑓 |𝑢|
2#−2𝑢 (3.5)

for positive functions 𝑓 ∈ 𝐶0,𝛼(𝑀) where

𝜇𝐿,𝑓 ≔ inf
𝑢∈𝐻2

𝑚(𝑀)
𝐼(𝑢)

by minimizing the functional
𝐼𝐿,𝑓 (𝑢) =

∫𝑀 𝑢𝐿𝑢𝑑𝑣𝑔
(

∫𝑀 𝑓 |𝑢|2#𝑑𝑣𝑔
)

2
2#

over the set
𝑓 ≔

{

𝑢 ∈ 𝐻2
𝑚(𝑀) ∶ ∫𝑀

𝑓 |𝑢|2#𝑑𝑣𝑔 = 1.
}

.

By (3.4), we have 𝜇𝐿,𝑓 > 0. By homogeneity, minimizing over 𝑓 is equivalent to minimizing over all of
𝐻2

𝑚(𝑀). Therefore if 𝑢0 ∈ 𝐻2
𝑚(𝑀) is a minimizer for 𝐼𝐿,𝑓 (𝑢) over 𝑓 , then for 𝜙 ∈ 𝐶∞(𝑀), the property

𝑑
𝑑𝑡

|

|

|

|𝑡=0
𝐼(𝑢0 + 𝑡𝜙) = 0

implies 𝑢0 satisfies the definition of a weak solution for for (3.5).
Ideally one would like to take a minimizing sequence {𝑢𝑖}𝑖 ⊂ 𝑓 such that 𝐼𝐿,𝑓 (𝑢𝑖) → and show it

converges to a minimizer 𝑢0 ∈ 𝐻2
𝑚(𝑀). Unfortunately the lack of compactness of the embedding 𝐻2

𝑚(𝑀) ⊂

𝐿2#(𝑀) prevents us from achieving this in general. However, by the work of Lions[31], we can describe the
sense in which this loss of compactness occurs. The following concentration compactness lemma states that
if a bounded sequence in 𝐻2

𝑚(𝑀) does not converge in 𝐿2#(𝑀), then it must concentrate at countably many
points. Additionally, there is a sense in which this concentration satisfies a sort of Sobolev inequality. Our
argument follows the presentation in Mazumdar[33] and Neumayer[35].

Lemma 3.8. Let (𝑀,𝑔) be a smooth manifold of dimension 𝑛 and let 2𝑚 ≤ 𝑛. Let {𝑢𝑖}𝑖 be a bounded

sequence in 𝐻2
𝑚(𝑀). By reflexivity of 𝐻2

𝑚(𝑀), the Riesz Representation Theorem for Radon measures, weak

compactness for Radon measures, and the Sobolev embedding theorem, there exists 𝑢 ∈ 𝐻2
𝑚(𝑀) and Radon

measures 𝜈, 𝜇 such that up to a subsequence,

• 𝑢𝑘 ⇀ 𝑢 weakly in 𝐻2
𝑚(𝑀).

• 𝜇𝑘 ≔ (Δ
𝑚
2 𝑢𝑖)2𝑑𝑣𝑔 ⇀ 𝜇 weakly in the sense of measures.
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• 𝜈𝑘 ≔ |𝑢𝑖|2
#𝑑𝑣𝑔 ⇀ 𝜈 weakly in the sense of measures.

Then there exists an at most countable index set  and a set of points {𝑥𝑖 ∈ 𝑀 ∶ 𝑖 ∈ } and weights

{𝛼𝑖 ∈ ℝ ∶ 𝑖 ∈ } such that

• 𝜈 = |𝑢|2#𝑑𝑣𝑔 +
∑

𝑖∈ 𝛼𝑖𝛿𝑥𝑖

• 𝜇 ≥ (Δ
𝑚
2 𝑢)2𝑑𝑣𝑔 +

1
𝐾

∑

𝑖∈ 𝛼
2
2#
𝑖 𝛿𝑥𝑖

In particular
∑

𝑖∈ 𝛼
2
2#
𝑖 < ∞.

Proof. First we consider the case 𝑢 ≡ 0. By Theorem 3.2, for all 𝜖 > 0 there exists 𝐵𝜖 such that for all
𝜙 ∈ 𝐶∞(𝑀) and for all 𝑘 ∈ ℕ,

(

∫𝑀
|𝜙𝑢𝑘|

2#𝑑𝑣𝑔

)
2
2#

≤ (𝐾 + 𝜖)∫𝑀
(Δ

𝑚
2 (𝜙𝑢𝑘))2𝑑𝑣𝑔 + 𝐵𝜖‖𝜙𝑢𝑘‖𝐻2

𝑚−1(𝑀).

Let 𝜖 be fixed for now. Because 𝐻2
𝑚−1(𝑀) is compactly embedded in 𝐻2

𝑚(𝑀) (see Remark 2.13), the second
term will converge to 0 as 𝑘 → ∞. Expanding the first term (or applying Lemma 4.5) and using the weak
convergence of 𝑢𝑘 to 0 implies

(𝐾 + 𝜖)∫𝑀
(Δ

𝑚
2 (𝜙𝑢𝑘))2𝑑𝑣𝑔 → (𝐾 + 𝜖)∫𝑀

𝜙2𝑑𝜇

as 𝑘 → ∞. After sending 𝜖 → 0 we therefore have for all 𝜙 ∈ 𝐶∞(𝑀)

(

∫ |𝜙|2#𝑑𝜈
)

2
2#

≤ 𝐾 ∫𝑀
𝜙2𝑑𝜇.

This can be thought of as a "reverse Holder’s inequality" (contrasting with the use of the usual Holder’s
inequality to bound lower 𝐿𝑝 norms with higher ones). Because 𝐶∞(𝑀) is dense in 𝐿𝑝(𝑀) for all Radon
measures, it follows by approximating characteristic functions that for any Borel 𝐴 ⊂ 𝑀

(𝜈(𝐴))
2
2# ≤ 𝐾𝜇(𝐴) (3.6)

Because 𝜇 is a finite measure, it has at most countably many atoms {𝑥𝑖}𝑖∈𝐼 ⊂ 𝑀 where 𝐼 is a countable
index set. Therefore, for any 𝑥 ∈ 𝑀⧵{𝑥𝑖}𝑖∈𝐼 , we can let𝐴 be an open set containing 𝑥with measure 𝜇(𝐴) ≤ 1

𝐾

and we will have
1 ≥ 𝐾𝜇(𝐴) ≥ (𝜈(𝐴))

2
2# ≥ 𝜈(𝐴)
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i.e. 𝜈 is absolutely continuous with respect to 𝜇 on 𝑀 ⧵ {𝑥𝑖}𝑖∈𝐼 . We can therefore calculate the Radon-
Nikodym derivative 𝑓 such that 𝑑𝜈 = 𝑓𝑑𝜇, and by a version of the Lebesgue Differentiation Theorem applied
to manifolds (see Federer[13], Chapter 2), we have for all 𝑥 ∈ 𝑀 ⧵ {𝑥𝑖}𝑖∈𝐼 ,

𝑓 (𝑥) = lim
𝑟→0

𝜈(𝐵𝑟(𝑥))
𝜇(𝐵𝑟(𝑥))

≤ lim
𝑟→0

𝐾
2#
2 𝜇(𝐵𝑟(𝑥))

2#
2 −1 = 0

Therefore 𝜈 is supported on {𝑥𝑖}𝑖∈ and we write

𝜈 =
∑

𝑖∈
𝛼𝑖𝛿𝑥𝑖 .

Then considering any 𝑥𝑖 for 𝑖 ∈ , applying (3.6) to 𝐵𝑟(𝑥𝑖)), and letting 𝑟 → 0 then gives us

𝜇({𝑥𝑖}) ≥
1
𝐾
(𝜈({𝑥𝑖}))

2
2# .

Now in the case 𝑢 ≠ 0, we set 𝑣𝑘 = 𝑢𝑘−𝑢 ⇀ 0. Up to a subsequence we assume 𝑢𝑘 → 𝑢 almost everywhere,
which is possible by strong convergence in 𝐿2(𝑀). We recall the Brezis-Lieb Lemma (see Brezis-Lieb[6])
states for any 𝑝 > 1 and any complete measure 𝜇 on 𝑀 ,

lim
𝑘→∞∫𝑀

|

|

|𝑢|𝑝 − |𝑢𝑘|
𝑝 + |𝑢 − 𝑢𝑘|

𝑝
|

|

𝑑𝜇 = 0.

As a consequence we have 𝜈̃𝑘 ≔ |𝑣𝑘|2
#𝑑𝑣𝑔 ⇀ 𝜈 − |𝑢|2#𝑑𝑣𝑔 weakly in the sense of measures. It is also easily

seen that 𝜇̃𝑘 ≔ (Δ
𝑚
2 (𝑣𝑘))2𝑑𝑣𝑔 ⇀ 𝜇 − (Δ

𝑚
2 𝑢)2𝑑𝑣𝑔 weakly in the sense of measures. Therefore the proof is

completed by applying the case 𝑢 ≡ 0 to the sequences 𝑣𝑘, 𝜇̃𝑘, and 𝜈̃𝑘.

The following theorem states that there exists a "minimal energy", below which we can guarantee a min-
imizing sequence converges strongly to a 𝐶2𝑚(𝑀) solution to (3.5).

Theorem 3.9. Suppose 𝐿 is as in (3.3) and 𝑓 ∈ 𝐶0,𝛼(𝑀) is positive. Then if

𝜇𝐿,𝑓 < 1

𝐾(max𝑀 𝑓 )
2
2#

,

then there exists a 𝐶2𝑚 minimizing solution 𝑢 to

𝐿𝑢 = 𝑓 |𝑢|2#−2𝑢.
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Proof. Assume inf 𝑢∈𝑓
𝐼(𝑢) < 1

𝐾(max𝑀 𝑓 )
2
2#

. Let {𝑢𝑘}𝑘 ⊂ 𝑓 be a minimizing sequence for 𝐼(𝑢).Then 𝑢𝑘 is
bounded in 𝐻2

𝑚 and therefore if we define 𝜈𝑘 as in Theorem 3.8 then

𝜈𝑘 ⇀ |𝑢0|
2#𝑑𝑣𝑔 +

∑

𝑖∈
𝛼𝑖𝛿𝑥𝑖

where 𝑢0 is the weak limit of 𝑢𝑘 in 𝐿2#(𝑀). An immediate consequence of the defintion of weak convergence
in the sense of measures and the fact that 𝑀 is compact is if we define 𝜈̃𝑘 = 𝑓 |𝑢𝑘|2

#𝑑𝑣𝑔 then

𝜈̃𝑘 ⇀ 𝑓 |𝑢0|
2#𝑑𝑣𝑔 +

∑

𝑖∈
𝑓 (𝑥𝑖)𝛼𝑖𝛿𝑥𝑖 .

Applying again the definition of weak convergence we obtain

1 = lim
𝑘→∞∫𝑀

𝑑𝜈̃𝑘 = ∫𝑀
𝑓 |𝑢0|

2#𝑑𝑣𝑔 +
∑

𝑖∈
𝑓 (𝑥𝑖)𝛼𝑖.

If we define the measure 𝜆 such that 𝑑𝜆 = 𝑓𝑑𝑣𝑔, then 𝑢𝑘 ⇀ 𝑢0 in 𝐿2#(𝑀,𝜆). Therefore by the well known
fact norms are lower semicontinuous with respect to weak convergence

∫ 𝑓 |𝑢0|
2#𝑑𝑣𝑔 ≤ lim inf

𝑘 ∫ 𝑓 |𝑢𝑘|
2# = 1.

Let 𝑡 ∈ [0, 1] = ∫𝑀 𝑓 |𝑢0|2
#𝑑𝑣𝑔. If 𝑡 = 1, then we have strong convergence in 𝐿2# and will be able to conclude

𝑢 is a weak solution to the PDE. Therefore we assume 𝑡 ∈ [0, 1). Then by Lemma 3.8, the strong convergence
of 𝑢𝑘 → 𝑢0 in 𝐻2

𝑚−1, and the fact that ∑𝑖∈ 𝑓 (𝑥𝑖)𝛼𝑖 = 1 − 𝑡 we obtain

𝜇𝐿,𝑓 ≥ ∫𝑀
𝑢0𝐿𝑢0𝑑𝑣𝑔 +

1
𝐾

∑

𝑖∈
𝛼

2
2#
𝑖

≥ 𝑡
2
2# 𝜇𝐿,𝑓 + 1

𝐾
∑

𝑖∈
𝛼

2
2#
𝑖

≥ 𝑡
2
2# 𝜇𝐿,𝑓 + 1

𝐾(max𝑀 𝑓 )
2
2#

∑

𝑖∈
(𝑓 (𝑥𝑖)𝛼𝑖)

2
2#

= 𝑡
2
2# 𝜇𝐿,𝑓 +

(1 − 𝑡)
2
2#

𝐾(max𝑀 𝑓 )
2
2#

∑

𝑖∈

(

𝑓 (𝑥𝑖)𝛼𝑖
1 − 𝑡

)
2
2#

≥ 𝑡
2
2# 𝜇𝐿,𝑓 +

(1 − 𝑡)
2
2#

𝐾(max𝑀 𝑓 )
2
2#

> 𝑡
2
2# 𝜇𝐿,𝑓 + (1 − 𝑡)

2
2# 𝜇𝐿,𝑓

≥ 𝜇𝐿,𝑓
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and we have a contradiction, therefore we must have 𝑡 = 1. Again applying lower semicontinuity of norms
under weak convergence, we have

∫𝑀
𝑢0𝐿𝑢0𝑑𝑣𝑔 = 𝐼(𝑢0) ≤ lim

𝑘→∞
𝐼(𝑢𝑘)

and we conclude {𝑢𝑘}𝑘 converges to a minimizer 𝑢0 ∈ 𝐻2
𝑚(𝑀). Therefore 𝑢0 is a weak solution to (3.5). For

a proof of the 𝐶2𝑚(𝑀) regularity, we refer to the appendix (Section 8) of Mazumdar[33].

Now, in the case 𝐿 decomposes as a product of second order operators, we follow the proof of Proposition
4.1 of Robert[39] to obtain a positivity result. We will then have the necessary background to prove Theorem
3.3.

Theorem 3.10. Suppose 𝐿 as in (3.3) decomposes as a product of second order operators
∏𝑚

𝑖=1(Δ+𝑎𝑖)𝑢. Let

𝑓 ∈ 𝐶∞(𝑀) be positive. Suppose the assumptions of Theorem 3.9 hold. Then the 𝐶2𝑚(𝑀) solution to (3.5)

can be chosen to be smooth and positive.

Proof. Let 𝑢 be the 𝐶2𝑚(𝑀) solution solution to (3.5) guaranteed by the conclusion of Theorem 3.9. Because
|𝐿𝑢| ∈ 𝐶0,1, by Theorem 3.5 and 3.6 there exists 𝑣 ∈ 𝐶2𝑚(𝑀) such that 𝐿𝑣 = |𝐿𝑢|. Then because 𝐿(𝑣±𝑢) ≥

0, by Corollary 3.7 we have 𝑣± 𝑢 ≥ 0. Because 𝑢 ≠ 0, we must have 𝑣 > 0 in the conclusion of Corollary 3.7.
We calculate, applying Hölder’s inequality

𝐼𝐿,𝑓 (𝑣) =
∫𝑀 𝑣𝐿𝑣𝑑𝑣𝑔

(

∫𝑀 𝑓 |𝑣|2#𝑑𝑣𝑔
)

2
2#

=
∫𝑀 𝜇𝐿,𝑓𝑓𝑣|𝑢|2

#−1𝑑𝑣𝑔
(

∫𝑀 𝑓 |𝑣|2#𝑑𝑣𝑔
)

2
2#

=
∫𝑀 𝜇𝐿,𝑓 (𝑓

1
2# 𝑣)(|𝑢|2#𝑓 )

2#−1
2# 𝑑𝑣𝑔

(

∫𝑀 𝑓 |𝑣|2#𝑑𝑣𝑔
)

2
2#

≤ 𝜇𝐿,𝑓

(

∫𝑀 𝑓𝑣2#
)

1
2#
(

∫𝑀 |𝑢|2#𝑓𝑑𝑣𝑔
)

2#−1
2#

(

∫𝑀 𝑓 |𝑣|2#𝑑𝑣𝑔
)

2
2#

= 𝜇𝐿,𝑓

(

∫𝑀 |𝑢|2#𝑓𝑑𝑣𝑔
)

2#−1
2#

(

∫𝑀 𝑓 |𝑣|2#𝑑𝑣𝑔
)

1
2#
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Then because 𝑣 ≥ |𝑢| and 𝑢 ∈ 𝑓 , we continue the calculation

𝜇𝐿,𝑓

(

∫𝑀 |𝑢|2#𝑓𝑑𝑣𝑔
)

2#−1
2#

(

∫𝑀 𝑓 |𝑣|2#𝑑𝑣𝑔
)

1
2#

≤ 𝜇𝐿,𝑓

(

∫𝑀
|𝑢|2#𝑓𝑑𝑣𝑔

)
2#−2
2

= 𝜇𝐿,𝑓 .

By definition we also have 𝜇𝐼,𝑓 ≤ 𝐼𝐿,𝑓 (𝑣). Thus, all of the inequalities in the calculation are equalities, and 𝑣

is a minimizer for 𝐼𝐿,𝑓 . In particular we have 𝑣 = |𝑢| > 0. By continuity of 𝑢 we must have 𝑢 < 0 everywhere
or 𝑢 > 0 everywhere. If 𝑢 < 0, we replace 𝑢 with −𝑢 to obtain a positive solution. Then by bootstrapping the
PDE

𝐿𝑢 = 𝑓𝑢2#−1

we obtain 𝑢 is smooth.

4 Proof of Theorem 3.3

4.1 Structure of the Proof

In Section 4.2 we provide several lemmas which pertain to the Sobolev spaces 𝐻2
𝑘 (𝑀) in general. While they

are all necessary in order to prove Theorem 3.3 and written with the sole purpose of proving the theorem,
they can easily be applied to other higher order problems (see Section 3 for examples). The main usage of
the lemmas is the ability to integrate by parts around a smooth function in in a way which only affects lower
order error terms, for example

∫ 𝜂𝑢Δ𝑘𝑢𝑑𝑣𝑔 = ∫ 𝜂Δ𝑢Δ𝑘−1𝑢𝑑𝑣𝑔 + 𝑙𝑜𝑡

where 𝜂 is some fixed smooth function.
The theorem is then proven in Section 4.3 in two parts, following the structure of the second order case in

Hebey[23]. The proof is by contradiction. Assuming the inequality (3.1) is false, we first perform a concen-
tration point analysis of a sequence of positive functions 𝑢𝛼 solving

(Δ + 𝛼)𝑚𝑢𝛼 = 𝑢2#−1𝛼

and satisfying ∫ 𝑢2#𝛼 𝑑𝑣𝑔 = 1 for all 𝛼 > 0. The functions will "blow up" as 𝛼 → ∞ and the energy (in
an 𝐿2#(𝑀) sense) will concentrate around a single point up to a subsequence. Section 4.3.1 is dedicated to
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obtaining both local and global information about this concentration. Then in Section 4.3.2 we show the
estimates from Section 4.3.1 imply a contradiction to the sharp higher order Euclidean Sobolev inequality,
completing the proof of Theorem 3.3.

All constants 𝐶 in Secton 4.3 will be independent of the parameter 𝛼. All unmarked Laplacians and
integrals without volume elements will be assumed to be with respect to the Riemannian metric 𝑔. We occa-
sionally choose to state them anyway to reduce confusion when other metrics are involved (for example, Steps
1 and 2 in Section 4.3.2).

4.2 Preliminary Lemmas

In this section (𝑀,𝑔) will represent some smooth complete 𝑛-dimensional Riemannian manifold without
boundary with bounded curvature.

In the following, given two tensors 𝐴,𝐵 we adopt the notation 𝐴 ⋆ 𝐵 to denote a linear combination
of contractions of 𝐴 ⊗ 𝐵, possibly after raising and lowering indices using the metric and including the
trivial linear combination 0 ⋅ 𝐴 ⊗ 𝐵. We write 𝐴 ⋆𝑘 𝐵 in the case each element of the linear combination
is covariant of degree 𝑘. Given a permutation 𝜎 of {1,… , 𝑘} and a covariant k-tensor 𝐴 we define 𝜎 ⋅ 𝐴 by
(𝜎 ⋅ 𝐴)𝑖1…𝑖𝑘 = 𝐴𝑖𝜎(1)…𝑖𝜎(𝑘) . We use the notation 𝐴★𝑘𝐵 to denote a sum of the form

𝑚
∑

𝑖=0
𝜎𝑖 ⋅ (𝐴 ⋆𝑘 𝐵)

for some {𝜎𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑚} permutations on {1,… , 𝑘}. We have the relation ∇(𝐴★𝑘𝐵) = ∇𝐴★𝑘+1𝐵 +

𝐴★𝑘+1∇𝐵.
All integrals will be assumed to be with respect to the Riemannian volume element 𝑑𝑣𝑔 unless explicitly

stated otherwise. All Laplacians will be assumed to be with respect to the metric unless explicitly stated
otherwise. We let 𝑅 represent the Riemann curvature tensor.

Lemma 4.1. Let 𝑘 ≥ 0 be an integer and 𝑢 ∈ 𝐻2
𝑘 (𝑀). Let 𝜎 be a permutation of {1,… , 𝑘}. Then

∇𝑘𝑢 − 𝜎 ⋅ ∇𝑘𝑢 =
∑

0≤𝑙≤𝑘−3
∇𝑙𝑅★𝑘∇𝑘−2−𝑙𝑢.

Proof. Because the statement is immediate for 𝑘 = 0, 1, 2, we operate under the assumption 𝑘 ≥ 3. We first
consider what happens when 𝜎 is a transposition of two consecutive elements (𝑗 𝑗 + 1) where 𝑗 ≤ 𝑘 − 1. In
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this case, we have

∇𝑖1 …∇𝑖𝑗−1(∇𝑖𝑗∇𝑖𝑗+1 − ∇𝑖𝑗+1∇𝑖𝑗 )∇𝑖𝑗+2 …∇𝑖𝑘𝑢 = ∇𝑖1 …∇𝑖𝑗−1(
𝑘
∑

𝑙=𝑗+2
𝑅𝛼

𝑖𝑗 𝑖𝑗+1𝑖𝑙
∇𝑖𝑗+2 …∇𝑖𝑙−1∇𝛼∇𝑖𝑙+1 …∇𝑖𝑘𝑢)

This shows in this case by a Leibniz rule applied to covariant differentiation (see Gavrilov[16]) that

∇𝑘𝑢 − 𝜎 ⋅ ∇𝑘𝑢 =
∑

0≤𝑙≤𝑘−3
∇𝑙𝑅★𝑘∇𝑘−2−𝑙𝑢.

Now for general 𝜎, we write 𝜎 = 𝜏𝑞 … 𝜏1 where 𝜏𝑖 is a transposition of consecutive elements. Let us also write
𝜎𝑝 = 𝜏𝑝… 𝜏1 for 1 ≤ 𝑝 ≤ 𝑞. Then we write ∇𝑘𝑢 − 𝜎 ⋅ ∇𝑘𝑢 as a telescoping sum

∇𝑘𝑢 − 𝜎1∇𝑘𝑢 + 𝜎1∇𝑘𝑢 − 𝜎2∇𝑘𝑢⋯ − 𝜎𝑞−1∇𝑘𝑢 + 𝜎𝑞−1 ⋅ ∇𝑘𝑢 − 𝜎 ⋅ ∇𝑘𝑢

and therefore by applying the case of a transposition to each difference we obtain

∇𝑘𝑢 − 𝜎 ⋅ ∇𝑘𝑢 =
∑

0≤𝑙≤𝑘−3
∇𝑙𝑅★𝑘∇𝑘−2−𝑙𝑢.

While Lemmas 4.2-4.9 are stated for functions in 𝑢 ∈ 𝐻2
𝑘 (𝑀), by density it will suffice to prove them for

𝑢 ∈ 𝐶∞
𝑐 (𝑀), therefore all functions from now on will be assumed smooth.

Lemma 4.2. Let 𝑘 ≥ 0 be an integer. Let

(𝑘1, 𝑘2) ∈ {(𝑘, 𝑘), (𝑘 − 1, 𝑘 + 1), (𝑘 − 1, 𝑘)}.

For each 𝑖 ∈ {1, 2}, let 𝑗𝑖 ≤
𝑘𝑖
2

, let 𝑇𝑗𝑖 be the operator taking a 𝑘𝑖 degree tensor and contracting on the last 𝑗𝑖
pairs of indices, i.e. 𝑇𝑗𝑖(∇

𝑘𝑖𝑢) = ∇𝑘𝑖−2𝑗𝑖Δ𝑗𝑖𝑢, and let 𝜎𝑖, 𝜎′
𝑖 be permutations on {1,… 𝑘𝑖}. Let 𝑆 be an arbitrary

compactly supported tensor of degree 𝑞 such that 𝑞 ≥ 2|(𝑗2 −
𝑘2−𝑘1

2
) − 𝑗1|. For each 𝑘2 −2𝑗2 degree covariant

tensor 𝐴, let 𝐴⭒𝑆 denote some fixed contraction (possibly after raising and lowering indices using the metric)

of 𝐴⊗𝑆 of degree 𝑘1−2𝑗1 where all contractions either occur within 𝑆 or take one index from each of 𝐴 and

𝑆 i.e. no contractions occur within 𝐴. Then there exists some 𝐶 based on 𝑛, 𝑘,max |𝑆|,max |∇𝑆|,max |∇2𝑆|

and bounds for 𝑅 and finitely many of its derivatives such that for all 𝑢 ∈ 𝐻2
𝑘2
(𝑀),

|

|

|

|

∫𝑀
⟨𝑇𝑗1(𝜎1 ⋅ ∇

𝑘1𝑢), 𝑇𝑗2(𝜎2 ⋅ ∇
𝑘2𝑢)⭒𝑆⟩ − ∫𝑀

⟨𝑇𝑗1(𝜎
′
1 ⋅ ∇

𝑘1𝑢), 𝑇𝑗2(𝜎
′
2 ⋅ ∇

𝑘2𝑢)⭒𝑆⟩
|

|

|

|

≤ 𝐶
𝑘−1
∑

𝑖=0
∫𝑠𝑢𝑝𝑝(𝑆)

|∇𝑖𝑢|2 (4.1)
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Proof. We note ⭒ immediately grants the existence of some operator ⭒′ such that for each 𝑘1 − 2𝑗1 degree
covariant tensor 𝐵, 𝐵⭒′𝑆 is some contraction of 𝐵⊗𝑆 of degree 𝑘2 − 2𝑗2 (where all contractions are within
𝑆 or take one index from 𝐵 and one index from 𝑆) such that for all 𝑘2 − 2𝑗2 degree covariant tensors 𝐴,

⟨𝐵,𝐴⭒𝑆⟩ = ⟨𝐵⭒′𝑆,𝐴⟩.

We prove the statement in the case 𝜎′
1 = 𝜎′

2 = Id, the full statement then follows by a simple application of
the triangle inequality.

We have
∫𝑀

⟨𝑇𝑗1(𝜎1 ⋅ ∇
𝑘1𝑢), 𝑇𝑗2(𝜎2 ⋅ ∇

𝑘2𝑢)⭒𝑆⟩ − ∫𝑀
⟨𝑇𝑗1(∇

𝑘1𝑢), 𝑇𝑗2(∇
𝑘2𝑢)⭒𝑆⟩

= ∫𝑀
⟨𝑇𝑗1(𝜎1 ⋅ ∇

𝑘1𝑢), 𝑇𝑗2(𝜎2 ⋅ ∇
𝑘2𝑢)⭒𝑆⟩ − ∫𝑀

⟨𝑇𝑗1(𝜎1 ⋅ ∇
𝑘1𝑢), 𝑇𝑗2(∇

𝑘2𝑢)⭒𝑆⟩

+∫𝑀
⟨𝑇𝑗1(𝜎1 ⋅ ∇

𝑘1𝑢), 𝑇𝑗2(∇
𝑘2𝑢)⭒𝑆⟩ − ∫𝑀

⟨𝑇𝑗1(∇
𝑘1𝑢), 𝑇𝑗2(∇

𝑘2𝑢)⭒𝑆⟩.

Then considering the first difference we have by applying Lemma 4.1 and extending our ★ notation such that
instances of 𝐴★(𝑖)

𝑘 𝐵 represent fixed choices for 𝐴★𝑘𝐵,

∫𝑀
⟨𝑇𝑗1(𝜎1 ⋅ ∇

𝑘1𝑢), 𝑇𝑗2(𝜎2 ⋅ ∇
𝑘2𝑢)⭒𝑆⟩ − ∫𝑀

⟨𝑇𝑗1(𝜎1 ⋅ ∇
𝑘1𝑢), 𝑇𝑗2(∇

𝑘2𝑢)⭒𝑆⟩

=∫𝑀
⟨𝑇𝑗1(𝜎1 ⋅ ∇

𝑘1𝑢), 𝑇𝑗2(𝜎2 ⋅ ∇
𝑘2𝑢 − ∇𝑘2𝑢)⭒𝑆⟩

=∫𝑀
⟨𝑇𝑗1(𝜎1 ⋅ ∇

𝑘1𝑢), 𝑇𝑗2

(

∑

0≤𝑙≤𝑘2−3
∇𝑙𝑅★(1)

𝑘2
∇𝑘2−2−𝑙𝑢

)

⭒𝑆⟩

=∫𝑀
⟨𝑇𝑗1(𝜎1 ⋅ ∇

𝑘1𝑢), 𝑇𝑗2

(

∑

0≤𝑙≤𝑘2−3
∇𝑙𝑅★(1)

𝑘2
∇𝑘2−2−𝑙𝑢

)

⭒𝑆⟩ − ⟨𝑇𝑗1∇
𝑘1𝑢, 𝑇𝑗2

(

∑

0≤𝑙≤𝑘2−3
∇𝑙𝑅★(1)

𝑘2
∇𝑘2−2−𝑙𝑢

)

⭒𝑆⟩

+ ∫𝑀
⟨𝑇𝑗1∇

𝑘1𝑢, 𝑇𝑗2

(

∑

0≤𝑙≤𝑘2−3
∇𝑙𝑅★(1)

𝑘2
∇𝑘2−2−𝑙𝑢

)

⭒𝑆⟩

=∫𝑀
⟨𝑇𝑗1

(

∑

0≤𝑙≤𝑘1−3
∇𝑙𝑅★(2)

𝑘1
∇𝑘1−2−𝑙𝑢

)

, 𝑇𝑗2

(

∑

0≤𝑙≤𝑘2−3
∇𝑙𝑅★(1)

𝑘2
∇𝑘2−2−𝑙𝑢

)

⭒𝑆⟩

+ ∫𝑀
⟨∇𝑘1−2𝑗1Δ𝑗1𝑢, 𝑇𝑗2

(

∑

0≤𝑙≤𝑘2−3
∇𝑙𝑅★(1)

𝑘2
∇𝑘2−2−𝑙𝑢

)

⭒𝑆⟩.
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We clearly have
|

|

|

|

|

|

∫𝑀
⟨𝑇𝑗1

(

∑

0≤𝑙≤𝑘1−3
∇𝑙𝑅★(2)

𝑘1
∇𝑘1−2−𝑙𝑢

)

, 𝑇𝑗2

(

∑

0≤𝑙≤𝑘2−3
∇𝑙𝑅★(1)

𝑘2
∇𝑘2−2−𝑙𝑢

)

⭒𝑆⟩
|

|

|

|

|

|

≤ 𝐶
𝑘−1
∑

𝑖=0
∫𝑠𝑢𝑝𝑝(𝑆)

|∇𝑖𝑢|2.

If (𝑘1, 𝑘2) ∈ {(𝑘 − 1, 𝑘 + 1), (𝑘 − 1, 𝑘)}, then we also clearly have
|

|

|

|

|

|

∫𝑀
⟨∇𝑘1−2𝑗1Δ𝑗1𝑢, 𝑇𝑗2

(

∑

0≤𝑙≤𝑘2−3
∇𝑙𝑅★(1)

𝑘2
∇𝑘2−2−𝑙𝑢

)

⭒𝑆⟩
|

|

|

|

|

|

≤ 𝐶
𝑘−1
∑

𝑖=0
∫𝑠𝑢𝑝𝑝(𝑆)

|∇𝑖𝑢|2𝑑𝑣𝑔.

In the case (𝑘1, 𝑘2) = (𝑘, 𝑘), we need to integrate by parts. If 2𝑗1 = 𝑘 then after integrating by parts and
applying the Leibniz rule, we obtain

|

|

|

|

|

|

∫𝑀
⟨∇𝑘1−2𝑗1Δ𝑗1𝑢, 𝑇𝑗2

(

∑

0≤𝑙≤𝑘2−3
∇𝑙𝑅★(1)

𝑘2
∇𝑘2−2−𝑙𝑢

)

⭒𝑆⟩
|

|

|

|

|

|

=
|

|

|

|

|

|

∫𝑀
⟨Δ𝑘𝑢,

(

∑

0≤𝑙≤𝑘−3
∇𝑙𝑅★𝑘−𝑗2∇

𝑘−2−𝑙𝑢

)

⭒𝑆⟩
|

|

|

|

|

|

≤
|

|

|

|

|

|

∫𝑀
⟨∇Δ𝑘−1𝑢,

(

∑

0≤𝑙≤𝑘−2
∇𝑙𝑅★𝑘−𝑗2+1∇

𝑘−1−𝑙𝑢

)

★1𝑆⟩
|

|

|

|

|

|

+
|

|

|

|

|

|

∫𝑀
⟨∇Δ𝑘−1𝑢,

(

∑

0≤𝑙≤𝑘−3
∇𝑙𝑅★𝑘−𝑗2∇

𝑘−2−𝑙𝑢

)

★1∇𝑆⟩
|

|

|

|

|

|

≤𝐶
𝑘−1
∑

𝑖=0
∫𝑠𝑢𝑝𝑝(𝑆)

|∇𝑖𝑢|2.

If 2𝑗1 < 𝑘 then a similar computation gives
|

|

|

|

|

|

∫𝑀
⟨∇𝑘−2𝑗1Δ𝑗1𝑢, 𝑇𝑗2

(

∑

0≤𝑙≤𝑘−3
∇𝑙𝑅★(1)

𝑘 ∇𝑘−2−𝑙𝑢

)

⭒𝑆⟩
|

|

|

|

|

|

=
|

|

|

|

|

|

∫𝑀
⟨∇𝑘−2𝑗1−1Δ𝑗1𝑢, 𝑑𝑖𝑣

((

∑

0≤𝑙≤𝑘−3
∇𝑙𝑅★𝑘−2𝑗2∇

𝑘−2−𝑙𝑢

)

⭒𝑆

)

⟩

|

|

|

|

|

|

≤𝐶
𝑘−1
∑

𝑖=0
∫𝑠𝑢𝑝𝑝(𝑆)

|∇𝑖𝑢|2
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We also have, applying Lemma 4.1,
|

|

|

|

∫𝑀
⟨𝑇𝑗1(𝜎1 ⋅ ∇

𝑘𝑢), 𝑇𝑗2(∇
𝑘𝑢)⭒𝑆⟩ − ∫𝑀

⟨𝑇𝑗1(∇
𝑘𝑢), 𝑇𝑗2(∇

𝑘𝑢)⭒𝑆⟩
|

|

|

|

=
|

|

|

|

|

|

∫𝑀
⟨𝑇𝑗1

(

∑

0≤𝑙≤𝑘−3
∇𝑙𝑅★𝑘∇𝑘−2−𝑙𝑢

)

, 𝑇𝑗2(∇
𝑘𝑢)⭒𝑆⟩

|

|

|

|

|

|

=
|

|

|

|

|

|

∫𝑀
⟨𝑇𝑗1

(

∑

0≤𝑙≤𝑘−3
∇𝑙𝑅★𝑘∇𝑘−2−𝑙𝑢

)

⭒′𝑆,∇𝑘−2𝑗2Δ𝑗2𝑢⟩
|

|

|

|

|

|

≤ 𝐶
𝑘−1
∑

𝑖=0
∫𝑠𝑢𝑝𝑝(𝑆)

|∇𝑖𝑢|2

after integrating by parts similarly to above. Therefore we have obtained (4.1)

Lemma 4.3. Let 𝑘 ≥ 0 be an integer and 𝜂 be an arbitrary compactly supported smooth function. Then there

exists 𝐶 , based on 𝑛, 𝑘, and bounds for 𝑅 and finitely many of its derivatives, bounds for 𝜂 and finitely many

of its derivatives such that for all 𝑢 ∈ 𝐻2
𝑘 (𝑀),

|

|

|

|

∫𝑀
𝜂|∇𝑘𝑢|2 − ∫𝑀

𝜂(Δ
𝑘
2 𝑢)2

|

|

|

|

≤ 𝐶
𝑘−1
∑

𝑖=0
∫𝑠𝑢𝑝𝑝(𝜂)

|∇𝑖𝑢|2

.

Proof. Throughout the proof we use the notation 𝐴 ≡ 𝐵 to mean

|𝐴 − 𝐵| ≤ 𝐶
𝑘−1
∑

𝑖=0
∫𝑠𝑢𝑝𝑝(𝜂)

|∇𝑖𝑢|2

. This clearly satisfies the assumptions of an equivalence relation. We therefore perform the proof of Lemma
4.3 by finding expressions 𝐴1 …𝐴𝑝 such that

∫𝑀
𝜂|∇𝑘𝑢|2 ≡ 𝐴1⋯ ≡ 𝐴𝑝 ≡ ∫𝑀

𝜂(Δ
𝑘
2 𝑢)2.

We prove by induction. The statement is immediate for 𝑘 = 0 and 𝑘 = 1. Now let 𝑘 ≥ 2 and assume the
statement holds true for 𝑘 − 2. We apply Lemma 4.2 to obtain

∫𝑀
𝜂|∇𝑘𝑢|2 = ∫𝑀

𝜂∇𝑖1 …∇𝑖𝑘𝑢∇𝑖1 …∇𝑖𝑘𝑢 ≡ ∫𝑀
𝜂∇𝑖𝑘∇𝑖1 …∇𝑖𝑘−1𝑢∇𝑖1 …∇𝑖𝑘𝑢 (4.2)

We then integrate by parts on the right hand side of (4.2) to obtain
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∫𝑀
𝜂∇𝑖𝑘∇𝑖1 …∇𝑖𝑘−1𝑢∇𝑖1 …∇𝑖𝑘𝑢 = −∫𝑀

∇𝑖𝑘𝜂∇𝑖1 …∇𝑖𝑘−1𝑢∇𝑖1 …∇𝑖𝑘𝑢 − ∫𝑀
𝜂∇𝑖1 …∇𝑖𝑘−1𝑢∇𝑖𝑘∇𝑖1 …∇𝑖𝑘𝑢

(4.3)
Changing in order of indices on the first term on the right hand side of (4.3) by Lemma 4.2 and integrating by
parts we obtain

−∫𝑀
∇𝑖𝑘𝜂∇𝑖1 …∇𝑖𝑘−1𝑢∇𝑖1 …∇𝑖𝑘𝑢 ≡ −∫𝑀

∇𝑖𝑘𝜂∇𝑖1 …∇𝑖𝑘−1𝑢∇𝑖𝑘∇𝑖1 …∇𝑖𝑘−1𝑢

= −∫𝑀
Δ𝜂∇𝑖1 …∇𝑖𝑘−1𝑢∇𝑖1 …∇𝑖𝑘−1𝑢 + ∫𝑀

∇𝑖𝑘𝜂∇𝑖𝑘∇
𝑖1 …∇𝑖𝑘−1𝑢∇𝑖1 …∇𝑖𝑘−1𝑢

and therefore after subtracting the second term over, we obtain
|

|

|

|

∫𝑀
∇𝑖𝑘𝜂∇𝑖1 …∇𝑖𝑘−1𝑢∇𝑖1 …∇𝑖𝑘𝑢

|

|

|

|

≤ 𝐶
𝑘−1
∑

𝑖=0
∫𝑠𝑢𝑝𝑝(𝜂)

|∇𝑖𝑢|2. (4.4)
Therefore

∫𝑀
𝜂∇𝑖𝑘∇𝑖1 …∇𝑖𝑘−1𝑢∇𝑖1 …∇𝑖𝑘𝑢 ≡ −∫𝑀

𝜂∇𝑖1 …∇𝑖𝑘−1𝑢∇𝑖𝑘∇𝑖1 …∇𝑖𝑘𝑢. (4.5)
For the right hand side of (4.5), we once again change the order of the indices with Lemma 4.2 and integrate

by parts to obtain

−∫𝑀
𝜂∇𝑖1 …∇𝑖𝑘−1𝑢∇𝑖𝑘∇𝑖1 …∇𝑖𝑘𝑢 ≡ −∫𝑀

𝜂∇𝑖1 …∇𝑖𝑘−1𝑢∇𝑖1 …∇𝑖𝑘−1Δ𝑢

≡ −∫𝑀
𝜂∇𝑖1 …∇𝑖𝑘−1𝑢∇𝑖𝑘−1∇𝑖1 …∇𝑖𝑘−2Δ𝑢

= ∫𝑀
∇𝑖𝑘−1𝜂∇

𝑖1 …∇𝑖𝑘−1𝑢∇𝑖1 …∇𝑖𝑘−2Δ𝑢 + ∫𝑀
𝜂∇𝑖𝑘−1∇

𝑖1 …∇𝑖𝑘−1𝑢∇𝑖1 …∇𝑖𝑘−2Δ𝑢

≡ ∫𝑀
∇𝑖𝑘−1𝜂∇

𝑖1 …∇𝑖𝑘−1𝑢∇𝑖1 …∇𝑖𝑘−2Δ𝑢 + ∫𝑀
𝜂∇𝑖1 …∇𝑖𝑘−2Δ𝑢∇𝑖1 …∇𝑖𝑘−2Δ𝑢 (4.6)

Then for the first term of (4.6) we again reorganize the indices to obtain

∫𝑀
∇𝑖𝑘−1𝜂∇

𝑖1 …∇𝑖𝑘−1𝑢∇𝑖1 …∇𝑖𝑘−2Δ𝑢 ≡ ∫𝑀
∇𝑖𝑘−1𝜂∇

𝑖1 …∇𝑖𝑘−1𝑢Δ∇𝑖1 …∇𝑖𝑘−2𝑢

Integrating by parts gives

∫𝑀
∇𝑖𝑘−1𝜂∇

𝑖1 …∇𝑖𝑘−1𝑢Δ∇𝑖1 …∇𝑖𝑘−2𝑢 = ∫𝑀
∇𝑖𝑘∇𝑖𝑘−1𝜂∇

𝑖1 …∇𝑖𝑘−1𝑢∇𝑖𝑘∇𝑖1 …∇𝑖𝑘−2𝑢

+ ∫𝑀
∇𝑖𝑘−1𝜂∇

𝑖𝑘∇𝑖1 …∇𝑖𝑘−1𝑢∇𝑖𝑘∇𝑖1 …∇𝑖𝑘−2𝑢
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We clearly have

∫𝑀
∇𝑖𝑘∇𝑖𝑘−1𝜂∇

𝑖1 …∇𝑖𝑘−1𝑢∇𝑖𝑘∇𝑖1 …∇𝑖𝑘−2𝑢 ≤ 𝐶
𝑘−1
∑

𝑖=0
∫𝑠𝑢𝑝𝑝(𝜂)

|∇𝑖𝑢|2

and by reorganizing indices with Lemma 4.2 and then relabeling the indices we obtain

∫𝑀
∇𝑖𝑘−1𝜂∇

𝑖𝑘∇𝑖1 …∇𝑖𝑘−1𝑢∇𝑖𝑘∇𝑖1 …∇𝑖𝑘−2𝑢 ≡ ∫𝑀
∇𝑖𝑘−1𝜂∇

𝑖1 …∇𝑖𝑘−2∇𝑖𝑘∇𝑖𝑘−1𝑢∇𝑖1 …∇𝑖𝑘−2∇𝑖𝑘𝑢

= ∫𝑀
∇𝑖𝑘𝜂∇𝑖1 …∇𝑖𝑘−1𝑢∇𝑖1 …∇𝑖𝑘𝑢

≤ 𝐶
𝑘−1
∑

𝑖=0
∫𝑠𝑢𝑝𝑝(𝜂)

|∇𝑖𝑢|2

by (4.4). This shows that

−∫𝑀
𝜂∇𝑖1 …∇𝑖𝑘−1𝑢∇𝑖𝑘∇𝑖1 …∇𝑖𝑘𝑢 ≡ ∫𝑀

𝜂∇𝑖1 …∇𝑖𝑘−2Δ𝑢∇𝑖1 …∇𝑖𝑘−2Δ𝑢 = ∫𝑀
𝜂|∇𝑘−2(Δ𝑢)|2 (4.7)

By the induction hypothesis, we have
|

|

|

|

∫𝑀
𝜂|∇𝑘−2(Δ𝑢)|2 − ∫𝑀

𝜂(Δ
𝑘
2 𝑢)2

|

|

|

|

≤ 𝐶
𝑘−3
∑

𝑖=0
∫𝑠𝑢𝑝𝑝(𝜂)

|∇𝑖(Δ𝑢)|2 ≤ 𝐶
𝑘−1
∑

𝑖=0
∫𝑠𝑢𝑝𝑝(𝜂)

|∇𝑖𝑢|2

which implies
∫𝑀

𝜂|∇𝑘−2(Δ𝑢)|2 ≡ ∫𝑀
𝜂(Δ

𝑘
2 𝑢)2. (4.8)

Therefore by (4.2), (4.5), (4.7) and (4.8) we have proven Lemma 4.3.

Lemma 4.4. Let 𝜂 be a compactly supported smooth function, 𝑘 ≥ 0 be an integer, and 𝑟 > 0 be a real

number. Then there exists a constant 𝐶 based on 𝑛, 𝑘, bounds for 𝑅 and finitely many of its derivatives, 𝑟, and

bounds for 𝜂 and finitely many of its derivatives such that for all 𝑢 ∈ 𝐻2
𝑘 (𝑀),

|

|

|

|

∫𝑀
𝜂|∇𝑘𝑢|2𝑑𝑣𝑔 − ∫𝑀

𝜂(Δ
𝑘
2 𝑢)2

|

|

|

|

≤ 𝐶
𝑘−1
∑

𝑖=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑖
2𝑢)2

Proof. We prove by strong induction. The statement is immediate for 𝑘 = 0 and 𝑘 = 1 as the left hand side
vanishes. Now fix 𝑘 ≥ 2 and assume the statement holds for all 𝑗 < 𝑘. Let 𝜂1 be a smooth nonnegative
function such that 𝜂1 = 1 on 𝑠𝑢𝑝𝑝(𝜂) and 𝜂1 = 0 on 𝑀 ⧵ 𝐵 𝑟

2
(𝑠𝑢𝑝𝑝(𝜂)).
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Then we apply Lemma 4.3 and invoke the (strong) induction hypothesis with 𝜂1 taking the place of 𝜂 and
𝑟
2

taking the place of 𝑟 to obtain

|

|

|

|

∫𝑀
𝜂|∇𝑘𝑢|2 − ∫𝑀

𝜂(Δ
𝑘
2 𝑢)2

|

|

|

|

≤ 𝐶
𝑘−1
∑

𝑖=0
∫𝑠𝑢𝑝𝑝(𝜂)

|∇𝑖𝑢|2

≤ 𝐶
𝑘−1
∑

𝑖=0
∫𝑀

𝜂1|∇𝑖𝑢|2

≤ 𝐶
𝑘−1
∑

𝑖=0

(

∫𝑀
𝜂1(Δ

𝑖
2𝑢)2 +

𝑖−1
∑

𝑗=0
∫𝐵 𝑟

2
(𝑠𝑢𝑝𝑝(𝜂1))

(Δ
𝑗
2𝑢)2

)

≤ 𝐶
𝑘−1
∑

𝑖=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑖
2𝑢)2

Lemma 4.5. Let 𝑘 ≥ 0 be an integer. Let 𝜂 be a compactly supported smooth function and 𝑟 > 0 be a real

number. Then there exists a constant 𝐶 based on 𝑛, 𝑘, bounds for 𝑅 and finitely many of its derivatives, 𝑟, and

bounds for 𝜂 and finitely many of its derivatives such that

|

|

|

|

∫𝑀
(Δ

𝑘
2 (𝜂𝑢))2 − ∫𝑀

𝜂2(Δ
𝑘
2 𝑢)2

|

|

|

|

≤ 𝐶
𝑘−1
∑

𝑖=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑖
2𝑢)2

Proof. First suppose 𝑘 is even. We write 𝑘 = 2𝑙. We recall for any tensors 𝑆1, 𝑆2 of the same type we have

Δ⟨𝑆1, 𝑆2⟩ = ⟨𝑆1Δ𝑆2⟩ − 2⟨∇𝑆1,∇𝑆2⟩ + ⟨𝑆2Δ𝑆1⟩

Let us define operators 𝑇𝑖 on tensors for 𝑖 ∈ {0, 1, 2} by 𝑇0 = Id, 𝑇1 = ∇, 𝑇2 = Δ. Then for any multi-
index 𝛽 = (𝛽1,… , 𝛽𝑙) ∈ {0, 1, 2}𝑙, we define 𝑇𝛽 = 𝑇𝛽𝑙 … 𝑇𝛽1 . Given 𝛽, we define 𝛽′ = (2 − 𝛽1,… , 2 − 𝛽𝑙).
Finally we define 𝑗𝛽 to be the number of 1’s appearing in 𝛽. We note 𝑗𝛽 = 𝑗𝛽′ , therefore if 𝑆1, 𝑆2 are tensors
of the same type, so are 𝑇𝛽𝑆1 and 𝑇𝛽′𝑆2. Then we write the 𝑙th Laplacian of the product of two functions as

Δ𝑙(𝜂𝑢) =
∑

𝛽∈{0,1,2}𝑙
(−2)𝑗𝛽⟨𝑇𝛽𝑢, 𝑇𝛽′𝜂⟩𝑔. (4.9)

This formula can easily be proven by induction.
We then have

∫𝑀
(Δ𝑙(𝜂𝑢))2 = ∫𝑀

∑

𝛼,𝛽∈{0,1,2}𝑙
(−2)𝑗𝛽+𝑗𝛼⟨𝑇𝛽𝑢, 𝑇𝛽′𝜂⟩𝑔⟨𝑇𝛼𝑢, 𝑇𝛼′𝜂⟩𝑔 (4.10)
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It follows that to estimate |
|

∫𝑀 (Δ𝑙(𝜂𝑢))2 − ∫𝑀 𝜂2(Δ𝑙𝑢)2|
|

, it suffices to estimate the terms on the right hand side
of (4.10) apart from the principal term of ∫𝑀 𝜂2(Δ𝑙𝑢)2 corresponding to the case |𝛼| = |𝛽| = 2𝑙. We separate
this sum into three cases modulo symmetry in 𝛼 and 𝛽.

Case 1: |𝛼| ≤ 2𝑙 − 1 and |𝛽| ≤ 2𝑙 − 1. In this case, on 𝑠𝑢𝑝𝑝(𝜂), we have
|

|

|

(−2)𝑗𝛽+𝑗𝛼⟨𝑇𝛽𝑢, 𝑇𝛽′𝜂⟩𝑔⟨𝑇𝛼𝑢, 𝑇𝛼′𝜂⟩𝑔
|

|

|

≤ 𝐶|𝑇𝛼𝑢||𝑇𝛽𝑢|

≤ 𝐶(|𝑇𝛼𝑢|
2 + |𝑇𝛽𝑢|

2)

≤ 𝐶(|∇|𝛼|𝑢|2 + |∇|𝛽|𝑢|2)

Letting 𝜂1 be a smooth nonnegative function such that 𝜂1 = 1 on 𝑠𝑢𝑝𝑝(𝜂) and 𝜂1 = 0 on 𝑀 ⧵𝐵 𝑟
2
(𝑠𝑢𝑝𝑝(𝜂)) and

applying Lemma 4.4 with 𝑟
2

as our value of 𝑟 results in

|

|

|

|

∫𝑀
(−2)𝑗𝛽+𝑗𝛼⟨𝑇𝛽𝑢, 𝑇𝛽′𝜂⟩𝑔⟨𝑇𝛼𝑢, 𝑇𝛼′𝜂⟩𝑔

|

|

|

|

≤ 𝐶 ∫𝑀
𝜂1(|∇|𝛼|𝑢|2 + |∇|𝛽|𝑢|2) ≤ 𝐶

2𝑙−1
∑

𝑖=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑖
2𝑢)2

Case 2: |𝛼| ≤ 2𝑙 − 2 and |𝛽| = 2𝑙. In this case we integrate by parts and argue as in Case 1 to obtain
|

|

|

|

∫𝑀
(−2)𝑗𝛼𝜂Δ𝑙𝑢⟨𝑇𝛼𝑢, 𝑇𝛼′𝜂⟩𝑔

|

|

|

|

=
|

|

|

|

(−2)𝑗𝛼 ∫𝑀
⟨∇Δ𝑙−1𝑢,∇𝜂⟩⟨𝑇𝛼𝑢, 𝑇𝛼′𝜂⟩ + (−2)𝑗𝛼 ∫𝑀

𝜂⟨∇𝑖Δ𝑙−1𝑢∇𝑖𝑇𝛼𝑢, 𝑇𝛼′𝜂⟩𝑔

+ (−2)𝑗𝛼 ∫𝑀
𝜂⟨∇𝑖Δ𝑙−1𝑢∇𝑖𝑇𝛼′𝜂, 𝑇𝛼𝑢⟩𝑔

|

|

|

|

≤ 𝐶
2𝑙−1
∑

𝑖=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑖
2𝑢)2

Case 3: |𝛼| = 2𝑙 − 1 and |𝛽| = 2𝑙. In this case we have

∫𝑀
(−2)𝑗𝛽+𝑗𝛼⟨𝑇𝛽𝑢, 𝑇𝛽′𝜂⟩𝑔⟨𝑇𝛼𝑢, 𝑇𝛼′𝜂⟩𝑔 = −2∫𝑀

𝜂Δ𝑙𝑢⟨Δ𝛾1∇Δ𝛾2𝑢,∇𝜂⟩

for some 𝛾1 + 𝛾2 = 𝑙 − 1. In the following computation (and the rest of the proof), we extend our notation
𝐴 ≡ 𝐵 from the proof of Lemma 4.3 to mean

|𝐴 − 𝐵| ≤ 𝐶
2𝑙−1
∑

𝑖=0
∫𝑠𝑢𝑝𝑝(𝜂)

|∇𝑖𝑢|2 ≤ 𝐶
2𝑙−1
∑

𝑖=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

|Δ
𝑖
2𝑢|2

where the last inequality is by an application of Lemma 4.4. Integrating by parts and reorganizing the indices
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by Lemma 4.2 we obtain

∫𝑀
𝜂Δ𝑙𝑢⟨Δ𝛾1∇Δ𝛾2𝑢,∇𝜂⟩ = 1

2 ∫𝑀
Δ𝑙𝑢⟨Δ𝛾1∇Δ𝛾2𝑢,∇(𝜂2)⟩

≡ 1
2 ∫𝑀

Δ𝑙𝑢⟨∇Δ𝑙−1𝑢∇(𝜂2)⟩

= 1
2 ∫𝑀

⟨∇2Δ𝑙−1𝑢,∇Δ𝑙−1𝑢 ⊗ ∇(𝜂2)⟩ + 1
2 ∫𝑀

⟨∇2(𝜂2),∇Δ𝑙−1𝑢 ⊗ ∇Δ𝑙−1𝑢⟩

= 1
4 ∫𝑀

(Δ
2𝑙−1
2 𝑢)2Δ(𝜂2) + 1

2 ∫𝑀
⟨∇Δ𝑙−1𝑢 ⊗ ∇Δ𝑙−1𝑢,∇2(𝜂2)⟩.

Arguing as in Case 1 then shows
|

|

|

|

∫𝑀
(−2)𝑗𝛽+𝑗𝛼⟨𝑇𝛽𝑢, 𝑇𝛽′𝜂⟩𝑔⟨𝑇𝛼𝑢, 𝑇𝛼′𝜂⟩𝑔

|

|

|

|

≤ 𝐶
2𝑙−1
∑

𝑖=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑖
2𝑢)2

and therefore Lemma 4.5 holds.
Now suppose 𝑘 is odd. We write 𝑘 = 2𝑙 + 1. Using our computations for Δ𝑙(𝜂𝑢), we obtain

∫𝑀
|∇Δ𝑙(𝜂𝑢)|2 = ∫𝑀

∑

𝛼,𝛽∈{0,1,2}𝑙
(−2)𝑗𝛽+𝑗𝛼

(

⟨∇𝑖𝑇𝛽𝑢, 𝑇𝛽′𝜂⟩𝑔⟨∇𝑖𝑇𝛼𝑢, 𝑇𝛼′𝜂⟩𝑔 + ⟨𝑇𝛽𝑢,∇𝑖𝑇𝛽′𝜂⟩𝑔⟨∇𝑖𝑇𝛼𝑢, 𝑇𝛼′𝜂⟩𝑔
)

𝑑𝑣𝑔

+ ∫𝑀

∑

𝛼,𝛽∈{0,1,2}𝑙
(−2)𝑗𝛽+𝑗𝛼

(

⟨∇𝑖𝑇𝛽𝑢, 𝑇𝛽′𝜂⟩𝑔⟨𝑇𝛼𝑢,∇𝑖𝑇𝛼′𝜂⟩𝑔 + ⟨𝑇𝛽𝑢,∇𝑖𝑇𝛽′𝜂⟩𝑔⟨𝑇𝛼𝑢,∇𝑖𝑇𝛼′𝜂⟩
)

𝑑𝑣𝑔.

We once again have a principal term of ∫𝑀 𝜂2|∇Δ𝑙𝑢|2 as the first of the four terms when |𝛼| = |𝛽| = 2𝑙.

Therefore to prove Lemma 4.5 we once again split the other terms into cases modulo symmetry and estimate.
Case 1: |𝛼| ≤ 2𝑙 − 1 and |𝛽| ≤ 2𝑙 − 1. The details are virtually identical to the proof of Case 1 when 𝑘 is

even.
Case 2: |𝛼| ≤ 2𝑙 − 2 and 𝛽 = 2𝑙. In this case, we can still apply the argument from Case 1 to the second

term in each row of the above formula. We perform the argument from Case 2 when k is even on the first term
in the first row, the first term in the second row is handled similarly. Integrating by parts and estimating as in
Case 1 results in

|

|

|

|

(−2)𝑗𝛼 ∫𝑀
𝜂∇𝑖Δ𝑙𝑢⟨∇𝑖𝑇𝛼𝑢, 𝑇𝛼′𝜂⟩𝑔

|

|

|

|

=
|

|

|

|

(−2)𝑗𝛼 ∫𝑀
Δ𝑙𝑢∇𝑖𝜂⟨∇𝑖𝑇𝛼𝑢, 𝑇𝛼′𝜂⟩𝑔 + (−2)𝑗𝛼 ∫𝑀

𝜂Δ𝑙𝑢⟨Δ𝑇𝛼𝑢, 𝑇𝛼′𝜂⟩𝑔

+ (−2)𝑗𝛼 ∫𝑀
𝜂Δ𝑙𝑢⟨∇𝑇𝛼𝑢,∇𝑇𝛼′𝜂⟩𝑔

|

|

|

|

≤ 𝐶
2𝑙
∑

𝑖=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑖
2𝑢)2
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Case 3: |𝛼| = 2𝑙 − 1 and |𝛽| = 2𝑙. Once again the second term in each row of the sum can be estimated
using the methods from Case 1. The first term in the second row can be estimated using the method from
Case 2, leaving us with only one term to consider. We calculate, writing 𝑇𝛼 = Δ𝛾1∇Δ𝛾2 where 𝛾1 + 𝛾2 = 𝑙 − 1

as in Case 3 of (i), and integrating by parts and changing the order of indices with Lemma 4.2,

∫𝑀
𝜂∇𝑖Δ𝑙𝑢∇𝑖Δ𝛾1∇𝑗Δ𝛾2𝑢∇𝑗𝜂 = 1

2 ∫𝑀
∇𝑖Δ𝑙𝑢∇𝑖Δ𝛾1∇𝑗Δ𝛾2𝑢∇𝑗(𝜂2)

≡ 1
2 ∫𝑀

∇𝑖Δ𝑙𝑢∇𝑖∇𝑗Δ𝑙−1𝑢∇𝑗(𝜂2)

= 1
2 ∫𝑀

Δ𝑙𝑢⟨Δ∇Δ𝑙−1𝑢∇(𝜂2)⟩ − 1
2 ∫𝑀

Δ𝑙𝑢⟨∇2Δ𝑙−1𝑢,∇2(𝜂2)⟩

≡ 1
2 ∫𝑀

Δ𝑙𝑢⟨∇Δ𝑙𝑢∇(𝜂2)⟩ − 1
2 ∫𝑀

Δ𝑙𝑢⟨∇2Δ𝑙−1𝑢,∇2(𝜂2)⟩

= 1
4 ∫𝑀

(Δ𝑙𝑢)2Δ(𝜂2) − 1
2 ∫𝑀

Δ𝑙𝑢⟨∇2Δ𝑙−1𝑢,∇2(𝜂2)⟩

≤ 𝐶
2𝑙
∑

𝑖=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑖
2𝑢)2

Case 4: |𝛼| = 2𝑙 and |𝛽| = 2𝑙. The first term is the previously mentioned principal term. The second
term in the first row and first term in the second row can be estimated using the method from Case 3. The
second term in the second row can be estimated using the method from Case 1. This completes the proof of
Lemma 4.5.

Lemma 4.6. Let 𝜂 be a compactly supported smooth function and 𝑟 > 0 be a real number. Let 𝑖1, 𝑖2, 𝑗1, 𝑗2 ∈
1
2
ℕ

be such that 𝑖2 + 𝑖2 = 𝑗1 + 𝑗2 = 𝑘. Then there exists a constant 𝐶 based on 𝑛, 𝑘, bounds for 𝑅 and finitely

many of its derivatives, 𝑟, and bounds for 𝜂 and finitely many of its derivatives such that

|

|

|

|

∫𝑀
𝜂Δ𝑖1𝑢Δ𝑖2𝑢 − ∫𝑀

𝜂Δ𝑗1𝑢Δ𝑗2𝑢
|

|

|

|

≤ 𝐶
𝑘−1
∑

𝑖=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑖
2𝑢)2.

Proof. We prove
|

|

|

|

∫𝑀
𝜂𝑢Δ𝑘𝑢 − ∫𝑀

𝜂Δ𝑢Δ𝑘−1𝑢
|

|

|

|

≤ 𝐶
𝑘−1
∑

𝑖=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑖
2𝑢)2 (4.11)

and
|

|

|

|

∫𝑀
𝜂𝑢Δ𝑘𝑢 − ∫𝑀

𝜂⟨∇𝑢,∇Δ𝑘−1𝑢⟩
|

|

|

|

≤ 𝐶
𝑘−1
∑

𝑖=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑖
2𝑢)2. (4.12)

The full statement then follows by a simple induction.
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We calculate

∫𝑀
𝜂𝑢Δ𝑘𝑢 = ∫𝑀

Δ(𝜂𝑢)Δ𝑘−1𝑢 = ∫𝑀
𝜂Δ𝑢Δ𝑘−1𝑢 − 2∫𝑀

⟨∇𝜂,∇𝑢⟩Δ𝑘−1𝑢 + ∫𝑀
𝑢Δ𝜂Δ𝑘−1𝑢. (4.13)

We integrate by parts on the final term of (4.13) and we have

∫𝑀
𝑢Δ𝜂Δ𝑘−1𝑢 = ∫𝑀

Δ
𝑘−1
2 (𝑢Δ𝜂)Δ

𝑘−1
2 𝑢 ≤ 𝐶

𝑘−1
∑

𝑖=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑖
2𝑢)2

after expanding with (4.9) and applying Lemma 4.4. For the second term of (4.13), we integrate by parts and
apply (4.9) to obtain

2∫𝑀
⟨∇𝜂,∇𝑢⟩Δ𝑘−1𝑢 = 2∫𝑀

Δ
𝑘−1
2
⟨∇𝜂,∇𝑢⟩Δ

𝑘−1
2 𝑢

= 2∫𝑀
⟨∇𝜂,Δ

𝑘−1
2 ∇𝑢⟩Δ

𝑘−1
2 𝑢 + ∫𝑀

∑

𝛽∈{0,1,2}𝑘⧵{(2,…,2}

(−2)𝑗𝛽⟨𝑇𝛽𝑢, 𝑇𝛽′𝜂⟩𝑔Δ
𝑘−1
2 𝑢

and computations as in the proof of Case 1 in Lemma 4.5 show

∫𝑀

∑

𝛽∈{0,1,2}𝑘⧵{(2,…,2}

(−2)𝑗𝛽⟨𝑇𝛽𝑢, 𝑇𝛽′𝜂⟩𝑔Δ
𝑘−1
2 𝑢 ≤ 𝐶

𝑘−1
∑

𝑖=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑖
2𝑢)2.

For the remaining term, we reorganize the indices with Lemma 4.2 to obtain

∫𝑀
⟨∇𝜂,Δ

𝑘−1
2 ∇𝑢⟩Δ

𝑘−1
2 𝑢 ≡ ∫𝑀

⟨∇𝜂,∇Δ
𝑘−1
2 𝑢⟩Δ

𝑘−1
2 𝑢 = 1

2 ∫𝑀
Δ𝜂(Δ

𝑘−1
2 𝑢)2 ≤ 𝐶 ∫𝑠𝑢𝑝𝑝(𝜂)

(Δ
𝑘−1
2 𝑢)2

and we have shown (4.11).
For (4.12, we integrate by parts twice to obtain

∫𝑀
𝜂𝑢Δ𝑘𝑢 = ∫𝑀

⟨∇(𝜂𝑢),∇Δ𝑘−1𝑢⟩

= ∫𝑀
𝜂⟨∇𝑢,∇Δ𝑘−1𝑢⟩ + ∫𝑀

𝑢⟨∇𝜂,∇Δ𝑘−1𝑢⟩

= ∫𝑀
𝜂⟨∇𝑢,∇Δ𝑘−1𝑢⟩ + ∫𝑀

⟨∇𝑢,∇𝜂⟩Δ𝑘−1𝑢 + ∫𝑀
𝑢Δ𝜂Δ𝑘−1𝑢.

The latter two terms are identical to the latter two terms of (4.13) and we conclude by applying the same
computations.

Lemma 4.7. Let 𝑘 ≥ 0 be an integer and 𝑖1, 𝑗1, 𝑖2, 𝑗2 be integers such such that 𝑖1 + 𝑖2 = 𝑗1 + 𝑗2 = 𝑘. Let

𝑟 > 0 be a real number. Let 𝜂 be a compactly supported smooth function. Then there exists 𝐶 based on 𝑛, 𝑘, 𝑟,
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bounds for 𝑅 and finitely many of its derivatives, and bounds for 𝜂 and finitely many of its derivatives such

that for all 𝑢 ∈ 𝐻2
𝑘 (𝑀) and 𝛽 ≥ 0,

∫𝑀
𝜂(Δ + 𝛽)𝑖1𝑢(Δ + 𝛽)𝑖2𝑢 ≤ ∫𝑀

𝜂(Δ + 𝛽)𝑗1𝑢(Δ + 𝛽)𝑗2𝑢 + 𝐶 ∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

𝑘−1
∑

𝑖=0

𝑘−1−𝑖
∑

𝑗=0
𝛽𝑘−1−𝑖−𝑗(Δ

𝑗
2𝑢)2

where 𝐶 is independent of 𝑢 and 𝛽.

Proof. We begin by stating a simple but useful reindexing identity. Let 𝑎𝑖, 𝑏𝑖 be real numbers for 0 ≤ 𝑖 ≤ 𝑘.
Then

𝑘
∑

𝑖=0

𝑘−𝑖
∑

𝑗=0
𝑎𝑘−𝑖−𝑗𝑏𝑗 =

𝑘
∑

𝑖=0
𝑎𝑘−𝑖

𝑖
∑

𝑗=0
𝑏𝑗 (4.14)

To prove this we use the substitution 𝑖′ = 𝑖 − 𝑗 to obtain
𝑘
∑

𝑖=0
𝑎𝑘−𝑖

𝑖
∑

𝑗=0
𝑏𝑗 =

𝑘
∑

𝑖=0

𝑘
∑

𝑗=0
𝑎𝑘−𝑖𝑏𝑗1𝑗≤𝑖 =

𝑘
∑

𝑗=0

𝑘
∑

𝑖=0
𝑎𝑘−𝑖𝑏𝑗1𝑗≤𝑖 =

𝑘
∑

𝑗=0

𝑘−𝑗
∑

𝑖′=0
𝑎𝑘−𝑖′−𝑗𝑏𝑗 =

𝑘
∑

𝑖′=0

𝑘−𝑖′
∑

𝑗=0
𝑎𝑘−𝑖′−𝑗𝑏𝑗

Now to prove Lemma 4.7, we will show for all 𝑘1, 𝑘2 such that 𝑘1 + 𝑘2 = 𝑘 and 𝑘1 < 𝑘2

|

|

|

|

∫𝑀
𝜂(Δ + 𝛽)𝑘1𝑢(Δ + 𝛽)𝑘2 − ∫𝑀

𝜂(Δ + 𝛽)𝑘1+1𝑢(Δ + 𝛽)𝑘2−1
|

|

|

|

≤ 𝐶 ∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

𝑘−1
∑

𝑖=0

𝑘−1−𝑖
∑

𝑗=0
𝛽𝑘−1−𝑖−𝑗(Δ

𝑗
2𝑢)2 (4.15)

and full statement immediately follows by a simple induction. First we prove the case of (4.15) where 𝑘1 =

0, 𝑘2 = 𝑘. We expand, defining 𝑐𝑖,𝑘 such that (Δ + 𝛽)𝑘 =
∑𝑘

𝑖=0 𝑐𝑖,𝑘𝛽
𝑘−𝑖Δ𝑖𝑢 to get

∫𝑀
𝜂𝑢(Δ + 𝛽)𝑘𝑢 = ∫𝑀

𝜂𝑢Δ((Δ + 𝛽)𝑘−1𝑢) + ∫𝑀
𝛽𝜂𝑢(Δ + 𝛽)𝑘−1𝑢)

= ∫𝑀
𝜂𝑢Δ

(

𝑘−1
∑

𝑖=0
𝑐𝑖,𝑘−1𝛽

𝑘−1−𝑖Δ𝑖𝑢

)

+ ∫𝑀
𝛽𝜂𝑢(Δ + 𝛽)𝑘−1𝑢

= ∫𝑀

𝑘−1
∑

𝑖=0
𝑐𝑖,𝑘−1𝛽

𝑘−1−𝑖𝜂𝑢Δ𝑖+1𝑢 + ∫𝑀
𝛽𝜂𝑢(Δ + 𝛽)𝑘−1𝑢
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We then apply Lemma 4.6 to each term and reindex with (4.14) to obtain

∫𝑀

𝑘−1
∑

𝑖=0
𝑐𝑖,𝑘−1𝛽

𝑘−1−𝑖𝜂𝑢Δ𝑖+1𝑢 + ∫𝑀
𝛽𝜂𝑢(Δ + 𝛽)𝑘−1𝑢 ≤ ∫𝑀

𝜂Δ𝑢
𝑘−1
∑

𝑖=0
𝑐𝑖,𝑘−1𝛽

𝑘−1−𝑖Δ𝑖𝑢 + 𝛽𝜂𝑢(Δ + 𝛽)𝑘−1𝑢

+ 𝐶 ∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

𝑘−1
∑

𝑖=0
𝛽𝑘−1−𝑖

𝑖
∑

𝑗=0
(Δ

𝑗
2 )2𝑢

= ∫𝑀
𝜂(Δ + 𝛽)𝑢(Δ + 𝛽)𝑘−1𝑢

+ 𝐶 ∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

𝑘−1
∑

𝑖=0

𝑘−1−𝑖
∑

𝑗=0
𝛽𝑘−1−𝑖−𝑗(Δ

𝑗
2𝑢)2

Now let 𝑘1, 𝑘2 be such that 𝑘1 + 𝑘2 = 𝑘 and assume 𝑘1 < 𝑘2. We write

∫𝑀
𝜂(Δ + 𝛽)𝑘1𝑢(Δ + 𝛽)𝑘2𝑢 = ∫𝑀

𝜂(Δ + 𝛽)𝑘1𝑢(Δ + 𝛽)𝑘2−𝑘1(Δ + 𝛽)𝑘1𝑢

and apply the previous special case replacing 𝑢 with (Δ + 𝛽)𝑘1𝑢 and 𝑟 with 𝑟
3
. We obtain

∫𝑀
𝜂(Δ + 𝛽)𝑘1𝑢(Δ + 𝛽)𝑘2𝑢 ≤ ∫𝑀

𝜂(Δ + 𝛽)𝑘1+1𝑢(Δ + 𝛽)𝑘2−1

+ 𝐶
𝑘2−𝑘1−1
∑

𝑖=0

𝑘2−𝑘1−1−𝑖
∑

𝑗=0
𝛽𝑘2−𝑘1−1−𝑖−𝑗

∫𝐵 𝑟
3
(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑗
2 (Δ + 𝛽)𝑘1𝑢)2 (4.16)

Let 𝜂1 be a smooth function equal to 1 on 𝐵 𝑟
3
(𝑠𝑢𝑝𝑝(𝜂)) and equal to 0 on 𝑀 ⧵𝐵 2𝑟

3
(𝑠𝑢𝑝𝑝(𝜂)) We fix an arbitrary

𝑖 and 𝑗 and consider 𝛽𝑘2−𝑘1−1−𝑖−𝑗 ∫𝑀 𝜂1(Δ
𝑗
2 (Δ + 𝛽)𝑘1𝑢)2. We expand

∫𝑀
𝜂1(Δ

𝑗
2 (Δ + 𝛽)𝑘1𝑢)2 = ∫𝑀

𝜂1

( 𝑘1
∑

𝑙=0
𝑐𝑙,𝑘1𝛽

𝑘1−𝑙Δ𝑙+ 𝑗
2𝑢

)2

=
∑

0≤𝑙1,𝑙2≤𝑘1
∫𝑀

𝜂1𝑐𝑙1,𝑘1𝑐𝑙2,𝑘1𝛽
2𝑘1−𝑙1−𝑙2Δ𝑙1+

𝑗
2𝑢Δ𝑙2+

𝑗
2𝑢 (4.17)

We rewrite this sum as
∑

0≤𝑙1,𝑙2≤𝑘1
∫𝑀

𝜂1𝑐𝑙1,𝑘1𝑐𝑙2,𝑘1𝛽
2𝑘1−𝑙1−𝑙2Δ𝑙1+

𝑗
2𝑢Δ𝑙2+

𝑗
2𝑢 =

2𝑘1
∑

𝑙=0

∑

0≤𝑙1,𝑙2≤𝑘1
𝑙1+𝑙2=𝑙

∫𝑀
𝜂1𝑐𝑙1,𝑘1𝑐𝑙2,𝑘1𝛽

2𝑘1−𝑙Δ𝑙1+
𝑗
2𝑢Δ𝑙2+

𝑗
2𝑢 (4.18)

Fixing some 𝑙, 𝑙1, 𝑙2 such that 𝑙1 + 𝑙2 = 𝑙 and applying Lemma 4.6 with 𝜂1 replacing 𝜂, and 𝑟
3

replacing 𝑟
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we have

∫𝑀
𝜂1𝑐𝑙1,𝑘1𝑐𝑙2,𝑘1𝛽

2𝑘1−𝑙Δ𝑙1+
𝑗
2𝑢Δ𝑙2+

𝑗
2𝑢 ≤ 𝑐𝑙1,𝑘1𝑐𝑙2,𝑘1𝛽

2𝑘1−𝑙

(

∫𝑀
𝜂1Δ

𝑗+𝑙
2 𝑢Δ

𝑗+𝑙
2 𝑢 + 𝐶

𝑙+𝑗−1
∑

𝑝=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑝
2𝑢)2

)

≤ 𝐶𝛽2𝑘1−𝑙
𝑙+𝑗
∑

𝑝=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑝
2𝑢)2

Applying this inequality in the right hand side of (4.18) and using the fact that 𝑘2−𝑘1+2𝑘1 = 𝑘 we obtain

𝛽𝑘2−𝑘1−1−𝑖−𝑗
2𝑘1
∑

𝑙=0

∑

0≤𝑙1,𝑙2≤𝑘1
𝑙1+𝑙2=𝑙

∫𝑀
𝜂1𝑐𝑙1,𝑘1𝑐𝑙2,𝑘1𝛽

2𝑘1−𝑙Δ𝑙1+
𝑗
2𝑢Δ𝑙2+

𝑗
2𝑢 ≤ 𝐶

2𝑘1
∑

𝑙=0
𝛽𝑘−1−𝑖−𝑗−𝑙

𝑙+𝑗
∑

𝑝=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑝
2𝑢)2 (4.19)

Then substituting 𝑙 + 𝑗 with 𝑙′, using the fact that 2𝑘1 + 𝑗 ≤ 𝑘 − 1 − 𝑖, and applying (4.14) we obtain
2𝑘1
∑

𝑙=0
𝛽𝑘−1−𝑖−𝑗−𝑙

𝑙+𝑗
∑

𝑝=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑝
2𝑢)2 =

2𝑘1+𝑗
∑

𝑙′=𝑗
𝛽𝑘−1−𝑖−𝑙′

𝑙′
∑

𝑝=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑝
2𝑢)2

≤
𝑘−1−𝑖
∑

𝑙′=0
𝛽𝑘−1−𝑖−𝑙′

𝑙′
∑

𝑝=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑝
2𝑢)2

=
𝑘−1−𝑖
∑

𝑙′=0

𝑘−1−𝑖−𝑙′
∑

𝑝=0
𝛽𝑘−1−𝑖−𝑙′−𝑝

∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))
(Δ

𝑝
2𝑢)2. (4.20)

Then by substituting 𝑙′ + 𝑖 with 𝑙′′ we obtain
𝑘−1−𝑖
∑

𝑙′=0

𝑘−1−𝑖−𝑙′
∑

𝑝=0
𝛽𝑘−1−𝑖−𝑙′−𝑝

∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))
(Δ

𝑝
2𝑢)2 =

𝑘−1
∑

𝑙′′=𝑖

𝑘−1−𝑙′′
∑

𝑝=0
𝛽𝑘−1−𝑙′′−𝑝

∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))
(Δ

𝑝
2𝑢)2

≤
𝑘−1
∑

𝑙′′=0

𝑘−1−𝑙′′
∑

𝑝=0
𝛽𝑘−1−𝑙′′−𝑝

∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))
(Δ

𝑝
2𝑢)2. (4.21)

Therefore, putting together (4.17), (4.19), (4.20), (4.21) we obtain

𝛽𝑘2−𝑘1−1−𝑖−𝑗
∫𝑀

𝜂1(Δ
𝑗
2 (Δ + 𝛽)𝑘1𝑢)2 ≤

𝑘−1
∑

𝑙′′=0

𝑘−1−𝑙′′
∑

𝑝=0
𝛽𝑘−1−𝑙′′−𝑝

∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))
(Δ

𝑝
2𝑢)2

Becuase 𝑖, 𝑗 were arbitrary, we apply this bound to each term of (4.16) to conclude
𝑘2−𝑘1−1
∑

𝑖=0

𝑘2−𝑘1−1−𝑖
∑

𝑗=0
𝛽𝑘2−𝑘1−1−𝑖−𝑗

∫𝐵 𝑟
3
(𝑠𝑢𝑝𝑝(𝜂))

(Δ
𝑗
2 (Δ + 𝛽)𝑘1𝑢)2 ≤ 𝐶 ∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

𝑘−1
∑

𝑖=0

𝑘−1−𝑖
∑

𝑗=0
𝛽𝑘−1−𝑖−𝑗(Δ

𝑗
2𝑢)2

and we are done.
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Lemma 4.8. Let 𝑘 ≥ 1 and 𝑟 > 0 be arbitrary and let 𝜂 be a smooth compactly supported function. Let 𝑖1, 𝑖2
and 𝑗1, 𝑗2 be such that 𝑖1 + 𝑖2 = 𝑗1 + 𝑗2 = 𝑘. Additionally, for each 0 ≤ 𝑙 ≤ 𝑘−1 let 𝑝𝑙, 𝑞𝑙 be an arbitrary pair

of nonnegative integers satisfying 𝑝𝑙 + 𝑞𝑙 = 𝑙. Then there exists 𝐶 based on 𝑛, 𝑘, 𝑟, bounds for 𝑅 and finitely

many of its derivatives, and bounds for 𝜂 and finitely many of its derivatives such that for all 𝑢 ∈ 𝐻2
𝑘 (𝑀) and

𝛽 ≥ 0 such that (Δ + 𝛽)𝑙𝑢 ≥ 0 for all 0 ≤ 𝑙 ≤ 𝑘,

∫𝑀
𝜂(Δ + 𝛽)𝑖1𝑢(Δ + 𝛽)𝑖2𝑢 ≤ ∫𝑀

𝜂(Δ + 𝛽)𝑗1𝑢(Δ + 𝛽)𝑗2𝑢 + 𝐶
𝑘−1
∑

𝑙=0
∫𝐵𝑟(𝑠𝑢𝑝𝑝(𝜂))

(Δ + 𝛽)𝑝𝑙𝑢(Δ + 𝛽)𝑞𝑙𝑢

Proof. Let 𝜂 ∈ 𝐶∞
𝑐 (𝑀), 𝑘 ≥ 0, 𝑝𝑙, 𝑞𝑙 such that 𝑝𝑙 + 𝑞𝑙 = 𝑙 for 0 ≤ 𝑙 ≤ 𝑘, 𝑟 > 0 be arbitrary. Let 𝜂1 be a

function such that 𝜂1 = 1 on 𝐵 𝑟
3
(𝑠𝑢𝑝𝑝(𝜂)) and 𝜂1 = 0 on 𝑀 ⧵ 𝐵 2

3 𝑟
(𝑠𝑢𝑝𝑝(𝜂)). By applying Lemma 4.7 with 𝑟

3

replacing 𝑟 we obtain
|

|

|

|

∫𝑀
𝜂(Δ + 𝛽)𝑖1𝑢(Δ + 𝛽)𝑖2𝑢 − ∫𝑀

𝜂(Δ + 𝛽)𝑗1𝑢(Δ + 𝛽)𝑗2𝑢
|

|

|

|

≤ 𝐶 ∫𝐵 𝑟
3
(𝑠𝑢𝑝𝑝(𝜂))

𝑘−1
∑

𝑖=0

𝑘−1−𝑖
∑

𝑗=0
𝛽𝑘−1−𝑖−𝑗(Δ

𝑗
2𝑢)2

≤ 𝐶 ∫𝑀

𝑘−1
∑

𝑖=0

𝑘−1−𝑖
∑

𝑗=0
𝜂1𝛽

𝑘−1−𝑖−𝑗(Δ
𝑗
2𝑢)2

It therefore suffices to prove for 𝑘 ≥ 0, 𝜂1 ∈ 𝐶∞
𝑐 (𝑀), 𝑠 > 0 there exists 𝐶 such that

∫𝑀

𝑘
∑

𝑖=0

𝑘−𝑖
∑

𝑗=0
𝜂1𝛽

𝑘−𝑖−𝑗(Δ
𝑗
2𝑢)2 ≤ 𝐶

𝑘
∑

𝑙=0
∫𝐵𝑠(𝑠𝑢𝑝𝑝(𝜂1))

(Δ + 𝛽)𝑝𝑙𝑢(Δ + 𝛽)𝑞𝑙𝑢

and letting 𝑠 = 𝑟
3

will allow us to conclude.
The base case 𝑘 = 0 is immediate. Assume the statement is true for some 𝑘 and let 𝑝𝑙, 𝑞𝑙 satisfy 𝑝𝑙+ 𝑞𝑙 = 𝑙

for 1 ≤ 𝑙 ≤ 𝑘 + 1. Then we have after substituting 𝑖′ = 𝑖 − 1

∫𝑀

𝑘+1
∑

𝑖=0

𝑘+1−𝑖
∑

𝑗=0
𝜂1𝛽

𝑘+1−𝑖−𝑗(Δ
𝑗
2𝑢)2 = ∫𝑀

𝑘+1
∑

𝑗=0
𝜂1𝛽

𝑘+1−𝑗(Δ
𝑗
2𝑢)2 +

𝑘+1
∑

𝑖=1

𝑘+1−𝑖
∑

𝑗=0
𝜂1𝛽

𝑘+1−𝑖−𝑗(Δ
𝑗
2𝑢)2

= ∫𝑀

𝑘+1
∑

𝑗=0
𝜂1𝛽

𝑘+1−𝑗(Δ
𝑗
2𝑢)2 +

𝑘
∑

𝑖′=0

𝑘−𝑖′
∑

𝑗=0
𝜂1𝛽

𝑘−𝑖′−𝑗(Δ
𝑗
2𝑢)2 (4.22)

By the induction hypothesis
𝑘
∑

𝑖′=0

𝑘−𝑖′
∑

𝑗=0
∫𝑀

𝜂1𝛽
𝑘−𝑖′−𝑗(Δ

𝑗
2𝑢)2 ≤ 𝐶

𝑘
∑

𝑙=0
∫𝐵𝑠(𝑠𝑢𝑝𝑝(𝜂1))

(Δ + 𝛽)𝑝𝑙𝑢(Δ + 𝛽)𝑞𝑙𝑢.
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Now to bound the the first term in (4.22), using the positivity assumption on (Δ + 𝛽)𝑙𝑢 we expand

∫𝐵 𝑠
3
(𝑠𝑢𝑝𝑝(𝜂1))

(Δ + 𝛽)𝑝𝑘+1𝑢(Δ + 𝛽)𝑞𝑘+1𝑢 ≥ ∫𝑀
𝜂1(Δ + 𝛽)𝑝𝑘+1𝑢(Δ + 𝛽)𝑞𝑘+1𝑢

= ∫𝑀
𝜂1

(𝑝𝑘+1
∑

𝑙=0
𝑐𝑙,𝑝𝑘+1𝛽

𝑝𝑘+1−𝑙Δ𝑙𝑢

)(𝑞𝑘+1
∑

𝑙=0
𝑐𝑙,𝑞𝑘+1𝛽

𝑞𝑘+1−𝑙Δ𝑙𝑢

)

=
𝑘+1
∑

𝑙=0

∑

0≤𝑙1≤𝑝𝑘+1
0≤𝑙2≤𝑞𝑘+1
𝑙1+𝑙2=𝑙

∫𝑀
𝜂1𝑐𝑙1,𝑝𝑘+1𝑐𝑙2,𝑞𝑘+1𝛽

𝑘+1−𝑙Δ𝑙1𝑢Δ𝑙2𝑢𝑑𝑣𝑔

Then applying Lemma 4.6 to each term we obtain
𝑘+1
∑

𝑙=0

∑

0≤𝑙1≤𝑝𝑘+1
0≤𝑙2≤𝑞𝑘+1
𝑙1+𝑙2=𝑙

∫𝑀
𝜂1𝑐𝑙1,𝑝𝑘+1𝑐𝑙2,𝑞𝑘+1𝛽

𝑘+1−𝑙Δ𝑙1𝑢Δ𝑙2𝑢 ≥
𝑘+1
∑

𝑙=0
𝑑𝑙,𝑘+1𝛽

𝑘+1−𝑙

(

∫𝑀
𝜂1(Δ

𝑙
2𝑢)2 − 𝐶

𝑙−1
∑

𝑝=0
∫𝐵 𝑠

3
(𝑠𝑢𝑝𝑝(𝜂1))

(Δ
𝑝
2𝑢)2

)

where
𝑑𝑙,𝑘+1 =

∑

0≤𝑙1≤𝑝𝑘+1
0≤𝑙2≤𝑞𝑘+1
𝑙1+𝑙2=𝑙

𝑐𝑙1,𝑝𝑘+1𝑐𝑙2,𝑞𝑘+1 ≥ 1.

We therefore obtain

∫𝐵 𝑠
3
(𝑠𝑢𝑝𝑝(𝜂1))

(Δ + 𝛽)𝑝𝑘+1𝑢(Δ + 𝛽)𝑞𝑘+1 ≥
𝑘+1
∑

𝑙=0
𝛽𝑘+1−𝑙

(

∫𝑀
𝜂1(Δ

𝑙
2𝑢)2 − 𝐶

𝑙−1
∑

𝑝=0
∫𝐵 𝑠

3
(𝑠𝑢𝑝𝑝(𝜂1))

(Δ
𝑝
2𝑢)2

)

.

Adding the remainder terms onto the left hand side and substituting 𝑙′ = 𝑙 − 1 results in
𝑘+1
∑

𝑙=0
𝛽𝑘+1−𝑙

∫𝑀
𝜂1(Δ

𝑙
2𝑢)2 ≤ ∫𝐵 𝑠

3
(𝑠𝑢𝑝𝑝(𝜂1))

(Δ + 𝛽)𝑝𝑘+1𝑢(Δ + 𝛽)𝑞𝑘+1𝑢 + 𝐶
𝑘
∑

𝑙′=0
𝛽𝑘−𝑙′

𝑙′
∑

𝑝=0
∫𝐵 𝑠

3
(𝑠𝑢𝑝𝑝(𝜂1))

(Δ
𝑝
2𝑢)2

Let 𝜂2 be such that 𝜂2 = 1 on 𝐵 𝑠
3
(𝑠𝑢𝑝𝑝(𝜂1)) and 𝜂2 = 0 on 𝑀 ⧵𝐵 2

3 𝑠
(𝑠𝑢𝑝𝑝(𝜂1)). By (4.14) and the induction

hypothesis (applied to 𝜂2 and 𝑠
3
) we continue

∫𝐵 𝑠
3
(𝑠𝑢𝑝𝑝(𝜂1))

(Δ + 𝛽)𝑝𝑘+1𝑢(Δ + 𝛽)𝑞𝑘+1𝑢 + 𝐶
𝑘
∑

𝑙′=0
𝛽𝑘−𝑙′

𝑙′
∑

𝑝=0
∫𝑀

𝜂2(Δ
𝑝
2𝑢)2

=∫𝐵 𝑠
3
(𝑠𝑢𝑝𝑝(𝜂1))

(Δ + 𝛽)𝑝𝑘+1𝑢(Δ + 𝛽)𝑞𝑘+1𝑢 + 𝐶
𝑘
∑

𝑙′=0

𝑘−𝑙′
∑

𝑝=0
∫𝑀

𝛽𝑘−𝑙′−𝑝𝜂2(Δ
𝑝
2𝑢)2

≤∫𝐵𝑠(𝑠𝑢𝑝𝑝(𝜂1))
(Δ + 𝛽)𝑝𝑘+1𝑢(Δ + 𝛽)𝑞𝑘+1𝑢 + 𝐶

𝑘
∑

𝑙=0
∫𝐵𝑠(𝑠𝑢𝑝𝑝(𝜂1))

(Δ + 𝛽)𝑝𝑙𝑢(Δ + 𝛽)𝑞𝑙𝑢
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and the claim is proven.

Lemma 4.9. Let 𝑘 ≥ 0 be an integer and 𝑢 ∈ 𝐻2
𝑘 (𝑀) be supported inside a geodesic ball 𝐵 ⊂ 𝑀 centered

around 𝑥0 ∈ 𝑀 . Let 𝜉 represent the Euclidean metric on 𝐵 defined through a geodesic normal coordinate

chart and 𝑑𝑥 the corresponding Euclidean volume element. Let 𝑟𝑔 be the geodesic distance function to 𝑥0.

Then there exists 𝐶 independent of 𝑢 such that

∫𝑀
|∇𝑘

𝜉𝑢|
2𝑑𝑥 ≤ ∫𝑀

(1 + 𝐶𝑟2𝑔)

(

|∇𝑘
𝑔𝑢|

2 + 𝐶
𝑘−1
∑

𝑖=0
|∇𝑖

𝑔𝑢|
2

)

𝑑𝑣𝑔

Proof. The estimate 𝑑𝑥 ≤ (1 + 𝐶𝑟2𝑔)𝑑𝑣𝑔 implies it is sufficient to prove

∫𝑀
|∇𝑘

𝜉𝑢|
2𝑑𝑥 ≤ ∫𝑀

(

(1 + 𝐶𝑟2𝑔)|∇
𝑘
𝑔𝑢|

2 + 𝐶
𝑘−1
∑

𝑖=0
|∇𝑖

𝑔𝑢|
2

)

𝑑𝑥

We prove by strong induction on 𝑘. The base case 𝑘 = 0 is immediate. Assume the statement holds for all
values strictly smaller than same 𝑘 ≥ 1. We recall the formula for the components of the covariant derivative
of a 𝑝 covariant tensor 𝑇 is

∇𝑖𝑇𝑖1…𝑖𝑝 =
𝜕𝑇𝑖1…𝑖𝑝

𝜕𝑥𝑖
−

𝑝
∑

𝑘=1
Γ𝛼
𝑖𝑖𝑘
𝑇𝑖1…𝑖𝑘−1𝛼𝑖𝑘+1…𝑖𝑝 .

Therefore, applying this to the 𝑘th covariant derivative we obtain

𝜕𝑖1…𝑖𝑘𝑢 = ∇(𝑔)
𝑖1…𝑖𝑘

𝑢 +
∑

𝛼∈{1,…,𝑛}𝑘−1
𝑓𝛼𝜕𝛼𝑢 +

𝑘−2
∑

𝑗=0

∑

𝛽∈{1,…,𝑛}𝑗
𝑔𝛽𝜕𝛽𝑢 (4.23)

where 𝑓𝛼 represents a sum of positive and negative Christoffel symbols and 𝑔𝛽 is a sum of positive and negative
derivatives of Christoffel symbols. We have |𝑓𝛼| ≤ 𝐶𝑟𝑔 and |𝑔𝛼| ≤ 𝐶 in our chart. We take the equation

∫𝑀
(𝜕𝑖1…𝑖𝑘𝑢)

2𝑑𝑥 = ∫𝑀

(

∇(𝑔)
𝑖1…𝑖𝑘

𝑢 +
∑

𝛼∈{1,…,𝑛}𝑘−1
𝑓𝛼𝜕𝛼𝑢 +

𝑘−2
∑

𝑗=0

∑

𝛽∈{1,…,𝑛}𝑗
𝑔𝛽𝜕𝛽𝑢

)2

𝑑𝑥

and consider the resulting terms from the right hand side.
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Terms of the form ∫𝑀 𝑓𝛼1𝑓𝛼2𝜕𝛼1𝑢𝜕𝛼2𝑢𝑑𝑥 where |𝛼1| = |𝛼2| = 𝑘 − 1 can be bounded by taking

∫𝑀
𝑓𝛼1𝑓𝛼2𝜕𝛼1𝑢𝜕𝛼2𝑢𝑑𝑥 ≤ 𝐶 ∫𝑀

𝜕𝛼1𝑢𝜕𝛼2𝑢𝑑𝑥

≤ 𝐶 ∫𝑀
|𝜕𝛼1𝑢|

2 + |𝜕𝛼2𝑢|
2𝑑𝑥

≤ 𝐶 ∫𝑀
|∇𝑘−1

𝜉 𝑢|2𝑑𝑥

≤ 𝐶 ∫𝑀

𝑘−1
∑

𝑖=0
|∇𝑖

𝑔𝑈𝛼|
2𝑑𝑥

where the final inequality is by the induction hypothesis (although the full strength of the estimate is not used).
Terms of the form ∫𝑀 𝑔𝛽1𝑔𝛽2𝜕𝛽1𝑢𝜕𝛽2𝑢𝑑𝑥 and ∫𝑀 𝑓𝛼𝑔𝛽𝜕𝛼𝑢𝜕𝛽𝑢 can be bounded through the same argument.

For terms of the form ∫𝑀 𝑔𝛽∇
(𝑔)
𝑖1…𝑖𝑘

𝑢𝜕𝛽𝑢, we first substitute

∇(𝑔)
𝑖1…𝑖𝑘

𝑢 = 𝜕𝑖1…𝑖𝑘𝑢 −
∑

𝛼∈{1,…,𝑛}𝑘−1
𝑓𝛼𝜕𝛼𝑢 −

𝑘−2
∑

𝑗=0

∑

𝛽∈{1,…,𝑛}𝑗
𝑔𝛽𝜕𝛽𝑢

After making this substitution and expanding, we only need to bound the term ∫𝑀 𝑔𝛽𝜕𝑖1…𝑖𝑘𝑢𝜕𝛽𝑢𝑑𝑥, the others
can be bounded by the above computations. Euclidean integration by parts gives

∫𝑀
𝑔𝛽𝜕𝑖1…𝑖𝑘𝑢𝜕𝛽𝑢𝑑𝑥 = −∫𝑀

𝜕𝑖1𝑔𝛽𝜕𝑖2…𝑖𝑘𝑢𝜕𝛽𝑢𝑑𝑥 − ∫𝑀
𝑔𝛽𝜕𝑖2…𝑖𝑘𝑢𝜕𝑖1𝜕𝛽𝑢𝑑𝑥

≤ 𝐶 ∫𝑀
|∇𝑘−1

𝜉 𝑢|2𝑑𝑥 + 𝐶 ∫𝑀
|∇|𝛽|

𝜉 𝑢|2𝑑𝑥 + 𝐶 ∫𝑀
|∇|𝛽|+1

𝜉 𝑢|2𝑑𝑥.

Because |𝛽| + 1 ≤ 𝑘 − 1, by the induction hypothesis

∫𝑀
|∇𝑘−1

𝜉 𝑢|2𝑑𝑥 + ∫𝑀
|∇|𝛽|

𝜉 𝑢|2𝑑𝑥 + ∫𝑀
|∇|𝛽|+1

𝜉 𝑢|2𝑑𝑥 ≤ 𝐶 ∫𝑀

𝑘−1
∑

𝑖=0
|∇𝑖

𝑔𝑈𝛼|
2𝑑𝑥

For terms of the form ∫𝑀 𝑓𝛼∇
(𝑔)
𝑖1…𝑖𝑘

𝑢𝜕𝛼𝑢𝑑𝑥, we calculate

∫𝑀
𝑓𝛼∇

(𝑔)
𝑖1…𝑖𝑘

𝑢𝜕𝛼𝑢 ≤ 𝐶 ∫𝑀
𝑟𝑔∇

(𝑔)
𝑖1…𝑖𝑘

𝑢𝜕𝛼𝑢

≤ 𝐶 ∫𝑀
𝑟2𝑔(∇

(𝑔)
𝑖1…𝑖𝑘

𝑢)2𝑑𝑥 + 𝐶 ∫𝑀
(𝜕𝛼𝑢)2𝑑𝑥

We have

∫𝑀
(𝜕𝛼𝑢)2𝑑𝑥 ≤ 𝐶 ∫𝑀

𝑘−1
∑

𝑖=0
|∇𝑖

𝑔𝑢|
2𝑑𝑥
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by the induction hypothesis. Combining all of our previous computations we obtain

∫𝑀
(𝜕𝑖1…𝑖𝑘𝑢)

2𝑑𝑥 ≤ ∫𝑀
(1 + 𝐶𝑟2𝑔)(∇

(𝑔)
𝑖1…𝑖𝑘

𝑢)2 + 𝐶 ∫𝑀

𝑘−1
∑

𝑖=0
|∇𝑖

𝑔𝑢|
2

To complete the proof of the lemma, we first recall 𝛿𝑖𝑗 ≤ (1 + 𝑟2𝑔)𝑔
𝑖𝑗 where 𝛿𝑖𝑗 represents the Kronecker delta

and calculate

∫𝑀
|∇𝑘

𝜉𝑈𝛼|
2𝑑𝑥 ≤ ∫𝑀

∑

1≤𝑖1,…,𝑖𝑘≤𝑛
(1 + 𝐶𝑟2𝑔)(∇

(𝑔)
𝑖1…𝑖𝑘

𝑢)2𝑑𝑥 + 𝐶 ∫𝑀

𝑘−1
∑

𝑖=0
|∇𝑖

𝑔𝑢|
2

= ∫𝑀
(1 + 𝐶𝑟2𝑔)𝛿

𝑖1𝑗1 … 𝛿𝑖𝑘𝑗𝑘∇(𝑔)
𝑗1…𝑗𝑘

𝑢∇(𝑔)
𝑖1…𝑖𝑘

𝑢𝑑𝑥 + 𝐶 ∫𝑀

𝑘−1
∑

𝑖=0
|∇𝑖

𝑔𝑢|
2

≤ ∫𝑀
(1 + 𝐶𝑟2𝑔)|∇

𝑘
𝑔𝑈𝛼|

2 + 𝐶
𝑘−1
∑

𝑖=0
|∇𝑖

𝑔𝑈𝛼|
2𝑑𝑥

4.3 Proof of the Theorem

Suppose for all 𝐵 > 0, inequality (3.1) is false. Then, using notions from Section 3.3 with 𝑓 ≡ 1, for all 𝛼 > 0

we have
𝜆𝛼 ≔ inf

𝑢∈1 ∫𝑀
𝑢(Δ + 𝛼)𝑚𝑢𝑑𝑣𝑔 <

1
𝐾
. (4.24)

where we recall we must interpret the integral in the sense of distributions. The sequence 𝜆𝛼 is clearly non-
decreasing and so converges to some 𝜆 ≤ 1

𝐾
. By Theorem 3.10, for all 𝛼 > 0 there exists a smooth positive

solution 𝑢𝛼 ∈ 1 to the PDE
(Δ + 𝛼)𝑚𝑢𝛼 = 𝜆𝛼𝑢

2#−1
𝛼 . (4.25)

Independently, we recall Theorem 3.2 states for all 𝜖 > 0 there exists 𝐵𝜖 such that for all 𝑢 ∈ 𝐻2
𝑚(𝑀),

(

∫𝑀
|𝑢|2#

)
2
2#

𝑑𝑣𝑔 ≤ (𝐾 + 𝜖)∫𝑀
(Δ

𝑚
2 𝑢)2𝑑𝑣𝑔 + 𝐵𝜖‖𝑢‖𝐻2

𝑚−1
. (4.26)

Therefore, for all 𝜖 there exists 𝛼𝜖 large such that
1

(1 + 𝜖)𝐾
≤ inf

𝑢∈1 ∫𝑀
𝑢(Δ + 𝛼𝜖)𝑚𝑢𝑑𝑣𝑔.

Combining this with (4.24) shows 𝜆 = 1
𝐾

. We note that ‖𝑢𝛼‖𝐻2
𝑚−1

→ 0 as 𝛼 → ∞ while ‖𝑢𝛼‖2# = 1. Then
because

∫𝑀
𝑢2#𝛼 𝑑𝑣𝑔 ≤ (sup

𝑀
𝑢𝛼)2

#−2
∫𝑀

𝑢2𝛼𝑑𝑣𝑔
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we must have sup𝑀 𝑢𝛼 → ∞ as 𝛼 → ∞. Let 𝑥𝛼 ∈ 𝑀 be such that 𝑢𝛼(𝑥𝛼) is maximum. Taking a subsequence
of 𝛼 we assume 𝑥𝛼 → 𝑥0 ∈ 𝑀 and 𝑢𝛼(𝑥𝛼) increases to infinity.

4.3.1 Asymptotic Analysis

Step 1: Up to a subsequence, 𝑢𝛼 has one unique concentration point.
Let us define 𝜇𝛼 = 𝑢𝛼(𝑥𝛼)

− 2
𝑛−2𝑚 . Let 𝑖𝑔 be the injectivity radius for (𝑀,𝑔). We define sequences of functions

𝑢̃𝛼 and metrics 𝑔̃𝛼 on 𝐵0(𝑖𝑔∕𝜇𝛼) by

𝑢̃𝛼(𝑥) = 𝜇
𝑛−2𝑚
2

𝛼 𝑢𝛼(exp𝑥𝛼 (𝜇𝛼𝑥)) and 𝑔̃𝛼(𝑥) = (exp∗
𝑥𝛼
𝑔)(𝜇𝛼𝑥).

We note ⋃𝛼 𝐵0(𝑖𝑔∕𝜇𝛼) = ℝ𝑛. The functions 𝑢̃𝛼 are bounded in 𝐶0(ℝ𝑛) with sup 𝑢̃𝛼 = 𝑢̃(0) = 1 and they satisfy
the PDE

(Δ𝑔̃𝛼 + 𝛼𝜇2
𝛼)

𝑚𝑢̃𝛼 = 𝜆𝛼𝑢̃
2#−1
𝛼 .

We would like to show these functions are uniformly bounded in 𝐶2𝑚,𝛽(𝐾) for 𝐾 compact and therefore
converge to a limit function 𝑢̃. To show boundedness in 𝐶2𝑚,𝛽(𝐾), it suffices to show 𝛼𝜇2

𝛼 is bounded as
𝛼 → ∞ and apply standard regularity theory as seen in Gilbarg-Trudinger[17]. Suppose up to a subsequence
𝛼𝜇2

𝛼 → ∞ as 𝛼 → ∞. Let us define for 0 ≤ 𝑘 ≤ 𝑚 functions 𝑣̃(𝑘)𝛼 and 𝑣(𝑘)𝛼 on 𝐵0(𝑖𝑔∕𝜇𝛼) and 𝑀 respectively by

𝑣̃(𝑘)𝛼 = (Δ𝑔̃𝛼 + 𝛼𝜇2
𝛼)

𝑘𝑢̃𝛼 =
𝑘
∑

𝑖=0
𝑐𝑖,𝑘𝛼

𝑘−𝑖𝜇2(𝑘−𝑖)
𝛼 Δ𝑖

𝑔̃𝛼
𝑢̃𝛼

and
𝑣(𝑘)𝛼 = (Δ𝑔 + 𝛼)𝑘𝑢𝛼 =

𝑘
∑

𝑖=0
𝑐𝑖,𝑘𝛼

𝑘−𝑖Δ𝑖
𝑔𝑢𝛼

where 𝑐𝑖,𝑘 are defined the same as in Lemma 4.7.
We obtain systems of PDEs

⎧

⎪

⎨

⎪

⎩

Δ𝑔̃𝛼 𝑣̃
(𝑘)
𝛼 + 𝛼𝜇2

𝛼𝑣̃
(𝑘)
𝛼 = 𝑣̃(𝑘+1)𝛼 if 0 ≤ 𝑘 ≤ 𝑚 − 2

Δ𝑔̃𝛼 𝑣̃
(𝑚−1)
𝛼 + 𝛼𝜇2

𝛼𝑣̃
(𝑚−1)
𝛼 = 𝑢̃2#−1𝛼

(4.27)

and
⎧

⎪

⎨

⎪

⎩

Δ𝑔𝑣(𝑘)𝛼 + 𝛼𝑣(𝑘)𝛼 = 𝑣(𝑘+1)𝛼 if 0 ≤ 𝑘 ≤ 𝑚 − 2

Δ𝑔𝑣(𝑚−1)𝛼 + 𝛼𝑣(𝑚−1)𝛼 = 𝑢2#−1𝛼 .
(4.28)

46



Because 𝑢2#−1𝛼 ≥ 0, iterating the maximum principle we obtain 𝑣(𝑘)𝛼 ≥ 0 for all 1 ≤ 𝑘 ≤ 𝑚. This then shows
for 𝑥 ∈ 𝐵0(𝑖𝑔∕𝜇𝛼)

𝑣̃(𝑘)𝛼 (𝑥) = 𝜇
𝑛
2−(𝑚−2𝑘)
𝛼 𝑣(𝑘)𝛼 (𝑒𝑥𝑝𝑥𝛼 (𝜇𝛼𝑥)) ≥ 0

for all 1 ≤ 𝑘 ≤ 𝑚.
We now show 𝑣̃(𝑘)𝛼 is bounded in 𝐿2(𝐵0(𝑅)) for fixed 𝑅 > 0 as 𝛼 → ∞ for any 1 ≤ 𝑘 ≤ 𝑚−1. We perform

the proof of this claim through the following (strong) induction:
1. If 𝑘 ≤ ⌊

𝑚
2
⌋ then ∫𝐵0(𝑅)

(𝑣(𝑘)𝛼 )2𝑑𝑣𝑔̃𝛼 ≤ 𝐶 .

2. If ⌊𝑚
2
⌋ ≤ 𝑘 ≤ 𝑚 − 2 and ∫𝐵0(𝑅)

(𝑣(𝑖)𝛼 )
2𝑑𝑣𝑔̃𝛼 ≤ 𝐶 for 𝑖 ≤ 𝑘, then ∫𝐵0(𝑅−2)

(𝑣(𝑘+1)𝛼 )2𝑑𝑣𝑔̃𝛼 ≤ 𝐶 .
Let 𝑘 ≤ ⌊

𝑚
2
⌋. Integrating by parts gives

∫𝑀
(𝑣(𝑘)𝛼 )2𝑑𝑣𝑔 = ∫𝑀

2𝑘
∑

𝑖=0
𝑑𝑖,𝑘𝛼

2𝑘−𝑖𝑢𝛼Δ𝑖
𝑔𝑢𝛼𝑑𝑣𝑔 ≤ 𝐶 ∫𝑀

2𝑘
∑

𝑘=0
𝛼2𝑘−𝑖𝑢𝛼Δ𝑖

𝑔𝑢𝛼𝑑𝑣𝑔

where 𝑑𝑖,𝑘 =
∑

𝑗1+𝑗2=𝑖
𝑐𝑗1,𝑘𝑐𝑗2,𝑘 and we use the fact that for all integers 𝑘 ≥ 0 and 𝑢 ∈ 𝐻2

2𝑘,

∫𝑀
𝑢Δ𝑘

𝑔𝑢𝑑𝑣𝑔 = ∫𝑀
(Δ

𝑘
2
𝑔 𝑢)2𝑑𝑣𝑔 ≥ 0.

Therefore, using the PDE we obtain

𝛼𝑚−2𝑘
∫𝑀

(𝑣(𝑘)𝛼 )2𝑑𝑣𝑔 ≤ 𝐶 ∫𝑀

2𝑘
∑

𝑘=0
𝛼𝑚−𝑖𝑢𝛼(Δ𝑖

𝑔𝑢𝛼)𝑑𝑣𝑔 ≤ 𝐶 ∫𝑀
𝑢𝛼(Δ𝑔 + 𝛼)𝑚𝑢𝛼𝑑𝑣𝑔 = 𝐶 ∫𝑀

𝑢2#𝛼 𝑑𝑣𝑔 ≤ 𝐶

We therefore have by a change of variable

∫𝐵0(𝑅)
(𝑣̃(𝑘)𝛼 )2𝑑𝑣𝑔̃𝛼 = ∫𝐵0(𝑅)

𝜇𝑛−2(𝑚−2𝑘)
𝛼 (𝑣(𝑘)𝛼 (𝑒𝑥𝑝𝑥𝛼 (𝜇𝛼𝑥)))2𝑑𝑣𝑔̃𝛼

= ∫𝐵𝑥𝛼 (𝑅𝜇𝛼)
𝜇−2(𝑚−2𝑘)
𝛼 (𝑣(𝑘)𝛼 )2𝑑𝑣𝑔

≤ 𝐶𝜇−2(𝑚−2𝑘)
𝛼 𝛼−(𝑚−2𝑘)

≤ 𝐶

and we have proven (i).
Now let us define for 1 ≤ 𝑖 ≤ 2(𝑚 − 1) functions 𝑤(𝑖)

𝛼 by
⎧

⎪

⎨

⎪

⎩

𝑤(𝑖)
𝛼 =

(

𝑣̃
(

𝑖
2

)

𝛼

)2

if 𝑖 is even

𝑤(𝑖)
𝛼 = 𝑣̃

(

𝑖
2−

1
2

)

𝛼 𝑣̃
(

𝑖
2+

1
2

)

𝛼 if 𝑖 is odd.
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Let ⌊𝑚
2
⌋ ≤ 𝑘 ≤ 𝑚− 2 and let 𝜂 be a smooth nonnegative function such that 𝜂 = 1 on 𝐵0(𝑅− 1) and 𝜂 = 0

on ℝ𝑛 ⧵ 𝐵0(𝑅 − 1
2
). Assume ∫𝐵0(𝑅)

(𝑣(𝑙)𝛼 )2𝑑𝑣𝑔̃𝛼 ≤ 𝐶 for 𝑙 ≤ 𝑘. This is equivalent to ∫𝐵0(𝑅)
𝑤(𝑖)

𝛼 𝑑𝑣𝑔̃𝛼 ≤ 𝐶 for
𝑖 ≤ 2𝑘. Because 𝑘 ≥ ⌊

𝑚
2
⌋ there exists a nonnegative integer 𝑠 such that 𝑚+ 𝑠 = 2𝑘+ 1. Additionally because

𝑘 ≤ 𝑚 − 2 we must have 𝑠 + 1 ≤ 𝑘. Then applying Lemma 4.8 with 𝑟 = 1
2

gives

∫𝐵0(𝑅−1)
𝑣̃(𝑘+1)𝛼 𝑣̃(𝑘)𝛼 𝑑𝑣𝑔̃𝛼 ≤ ∫𝐵0(𝑅−

1
2 )
𝜂𝑣̃(𝑘+1)𝛼 𝑣̃(𝑘)𝛼 𝑑𝑣𝑔̃𝛼 ≤ ∫𝐵0(𝑅−

1
2 )
𝜂𝑣̃(𝑚)𝛼 𝑣̃(𝑠)𝛼 𝑑𝑣𝑔̃𝛼 + 𝐶 ∫𝐵0(𝑅)

2𝑘
∑

𝑖=0
𝑤(𝑖)

𝛼 𝑑𝑣𝑔̃𝛼 .

We note because 𝑔̃𝛼 converges to the Euclidean metric uniformly on compact subsets (and its derivatives up
converge to 0 uniformly on compact subsets), the constant 𝐶 above is indeed independent of 𝛼. Substituting
definitions of 𝑤(𝑖)

𝛼 , applying Cauchy-Schwarz, recognizing 𝑣̃(𝑚)𝛼 = 𝑢̃2#−1𝛼 ≤ 1, and using the fact that 𝑠 ≤ 𝑘

gives

∫𝐵0(𝑅−1)
𝑤(2𝑘+1)𝑑𝑣𝑔̃𝛼 ≤

(

∫𝐵0(𝑅)
(𝑣̃(𝑚)𝛼 )2𝑑𝑣𝑔̃𝛼

)
1
2
(

∫𝐵0(𝑅)
(𝑤(2𝑠)

𝛼 )𝑑𝑣𝑔̃𝛼

)
1
2

+ 𝐶 ∫𝐵0(𝑅)

2𝑘
∑

𝑖=0
𝑤(𝑖)

𝛼 𝑑𝑣𝑔̃𝛼 ≤ 𝐶.

Therefore ∫𝐵0(𝑅−1)
𝑤(𝑖)𝑑𝑣𝑔̃𝛼 ≤ 𝐶 for 𝑖 ≤ 2𝑘 + 1. Now let 𝜂 be a smooth function such that 𝜂 = 1 on 𝐵0(𝑅 − 2)

and 𝜂 = 0 on ℝ𝑛 ⧵ 𝐵0(𝑅 − 3
2
). Again applying Lemma 4.8 with 𝑟 = 1

2
,

∫𝐵0(𝑅−2)
(𝑣̃(𝑘+1)𝛼 )2𝑑𝑣𝑔̃𝛼 ≤ ∫𝐵0(𝑅−

3
2 )
𝜂(𝑣̃(𝑘+1)𝛼 )2𝑑𝑣𝑔̃𝛼 ≤ ∫𝐵0(𝑅−

3
2 )
𝜂𝑣̃(𝑚)𝛼 𝑣̃(𝑠+1)𝛼 𝑑𝑣𝑔̃𝛼 + 𝐶 ∫𝐵0(𝑅−1)

2𝑘+1
∑

𝑖=0
𝑤(𝑖)

𝛼 𝑑𝑣𝑔̃𝛼 .

Then we once again apply Cauchy-Schwarz, 𝑣̃(𝑚)𝛼 ≤ 1 and the fact that 𝑠 + 1 ≤ 𝑘 to obtain

∫𝐵0(𝑅−2)
(𝑣̃(𝑘+1)𝛼 )2𝑑𝑣𝑔̃𝛼 ≤ 𝐶

and we have shown (𝑖𝑖), therefore for all 1 ≤ 𝑘 ≤ 𝑚 − 1, ∫𝐵0(𝑅)
(𝑣̃(𝑘)𝛼 )2𝑑𝑣𝑔̃𝛼 ≤ 𝐶 .

We now consider 𝑣̃(𝑚−1)𝛼 which satisfies the last PDE in the system (4.27). Because 𝑣̃(𝑚−1)𝛼 is positive and
bounded in 𝐿2(𝐵0(𝑅)) and 𝑢2#−1𝛼 is bounded in 𝐶0(𝐵0(𝑅)), we get 𝑣̃(𝑚−1)𝛼 is bounded in 𝐶0(𝐵0(𝑅 − 1)) by the
De Georgi-Nash-Moser iteration scheme. We note because 𝑔̃𝛼 converges to the Euclidean metric uniformly on
compact sets, the constant 𝐶 in the De Georgi-Nash-Moser iterative scheme will indeed be independent of 𝛼
(specifically, in the application of Lemma A.2, we can guarantee bounds for the constants 𝜆 and Λ independent
of 𝛼). Then for 1 ≤ 𝑘 ≤ 𝑚 − 2, we consider 𝑣(𝑘)𝛼 in the system (4.27) and apply the De Georgi-Nash-Moser
iteration scheme again. If 𝑣̃(𝑘+1)𝛼 is bounded in 𝐶0(𝐵0(𝑅)) and 𝑣̃(𝑘)𝛼 is bounded in 𝐿2(𝐵0(𝑅)) then 𝑣̃(𝑘)𝛼 is bounded
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in 𝐶0(𝐵0(𝑅 − 1)). Therefore by induction 𝑣̃(𝑘)𝛼 is 𝐶0 bounded on compact sets for 1 ≤ 𝑘 ≤ 𝑚. We then take
the particular equation from (4.27)

Δ𝑔̃𝛼 𝑢̃𝛼 + 𝛼𝜇2
𝛼𝑢̃𝛼 = 𝑣̃(1)𝛼 .

Because Δ𝑔̃𝛼 𝑢̃𝛼(0) ≥ 0, 𝑢̃𝛼(0) = 1, and 𝑣̃(1)𝛼 (0) ≤ 𝐶 we obtain that 𝛼𝜇2
𝛼 is in fact bounded. We then apply

standard regularity theory to see 𝑢̃𝛼 are uniformly bounded in 𝐶𝛽
2𝑚(𝐾) for 𝐾 compact, and therefore 𝑢̃𝛼 will

converge in 𝐶2𝑚(ℝ𝑛) to a limit function 𝑢̃ satisfying 0 ≤ 𝑢̃ ≤ 1 and 𝑢̃(0) = 1.
Independently, by integrating by parts, substituting our PDE, and using the fact that ∫𝑀 𝑢2#𝛼 𝑑𝑣𝑔 = 1 we

have

𝑚
∑

𝑖=0
∫𝑀

𝑐𝑖,𝑚𝛼
𝑚−𝑖(Δ

𝑖
2𝑢𝛼)2𝑑𝑣𝑔 = ∫𝑀

𝑢𝛼(Δ + 𝛼)𝑚𝑢𝛼𝑑𝑣𝑔 ≤
1
𝐾 ∫𝑀

𝑢2#𝛼 𝑑𝑣𝑔 =
1
𝐾

(

∫𝑀
𝑢2#𝛼 𝑑𝑣𝑔

)
2
2#

. (4.29)

We note by the inequalities above and the fact that 𝑐𝑚,𝑚 = 1 we have

‖Δ
𝑚
2 𝑢𝛼‖

2
2 ≤

1
𝐾
‖𝑢𝛼‖

2
2# =

1
𝐾
. (4.30)

Given 𝜖 > 0, we apply (4.29), the asymptotically sharp Sobolev inequality (4.26), and (4.30) to obtain
𝑚
∑

𝑖=0
∫𝑀

𝑐𝑖,𝑚𝛼
𝑚−𝑖(Δ

𝑖
2𝑢𝛼)2𝑑𝑣𝑔 ≤ ‖Δ

𝑚
2 𝑢𝛼‖

2
2 +

𝜖
𝐾
‖Δ

𝑚
2 𝑢𝛼‖

2
2 +

𝐵𝜖

𝐾
‖𝑢𝛼‖𝐻2

𝑚−1
≤ ‖Δ

𝑚
2 𝑢𝛼‖

2
2 +

𝜖
𝐾2

+
𝐵𝜖

𝐾
‖𝑢𝛼‖𝐻2

𝑚−1
.

Then because 𝑐0,𝑚 = 1 = 𝑐𝑚,𝑚 we have for sufficiently large 𝛼

𝛼𝑚
∫𝑀

𝑢2𝛼𝑑𝑣𝑔 ≤ 𝛼𝑚
∫𝑀

𝑢2𝛼𝑑𝑣𝑔 +
𝑚−1
∑

𝑖=1
∫𝑀

(𝑐𝑖,𝑚𝛼𝑚−𝑖 −
𝐵𝜖

𝐾
)(Δ

𝑖
2𝑢𝛼)2𝑑𝑣𝑔 ≤

𝜖
𝐾2

+
𝐵𝜖

𝐾 ∫𝑀
𝑢2𝛼𝑑𝑣𝑔 =

𝜖
𝐾2

+ 𝑜(1)

where 𝑜(1) → 0 as 𝛼 → ∞. Therefore by letting 𝜖 → 0 we see

𝛼𝑚
∫𝑀

𝑢2𝛼𝑑𝑣𝑔 → 0 as 𝛼 → ∞.

Because 𝑢̃ is continuous and 𝑢̃(0) = 1, ∫𝐵0(1)
𝑢̃2𝑑𝑥 > 0. Thus by uniform convergence 𝑢̃𝛼 → 𝑢̃ as 𝛼 → ∞

on compact sets, there exists some 𝑐 > 0 independent of 𝛼 such that ∫𝐵0(1)
𝑢̃2𝛼 ≥ 𝑐. Therefore given 𝛿 > 0

small and fixed, for sufficiently large 𝛼

𝛼𝑚
∫𝐵𝑥𝛼 (𝛿)

𝑢2𝛼𝑑𝑣𝑔 = 𝛼𝑚𝜇2𝑚
𝛼 ∫𝐵0(

𝛿
𝜇𝛼

)
𝑢̃2𝛼 ≥ 𝛼𝑚𝜇2𝑚

𝛼 ∫𝐵0(1)
𝑢̃2𝛼 ≥ 𝑐𝛼𝑚𝜇2𝑚

𝛼
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which implies 𝛼𝜇2
𝛼 → 0 as 𝛼 → ∞. Hence, passing to the limit, 𝑢̃ is a 𝐶2𝑚(ℝ𝑛) nonnegative solution to the

PDE
Δ𝑚

𝜉 𝑢̃ = 1
𝐾
𝑢̃2#−1.

in the Euclidean metric. By the Euclidean sharp Sobolev inequality (as stated in Lions[31]) we have
(

∫ℝ𝑛
𝑢̃2#𝑑𝑥

)
2
2#

≤ 𝐾 ∫𝑀
(Δ

𝑚
2
𝜉 𝑢̃)

2𝑑𝑥

and so we obtain (after integrating by parts)
(

∫ℝ𝑛
𝑢̃2#𝑑𝑥

)
2
2#

≤ ∫ℝ𝑛
𝑢̃2#𝑑𝑥. (4.31)

By a change of variable, for all 𝑅 > 0 and sufficiently large 𝛼 we have

∫𝐵0(𝑅)
𝑢̃2#𝛼 = ∫𝐵𝑥𝛼 (𝜇𝛼𝑅)

𝑢2#𝛼 ≤ 1

and taking the limit as 𝛼 → ∞ and then as 𝑅 → ∞ implies

∫𝐵0(ℝ𝑛)
𝑢̃2# ≤ 1.

Hence by (4.31) we have
∫𝐵0(ℝ𝑛)

𝑢̃2#𝑑𝑥 = 1

Fixing 𝑅 > 0 large and 𝛿 > 0 small, we have

1 ≥ lim sup
𝛼→∞ ∫𝐵𝑥0

(𝛿)
𝑢2#𝛼 𝑑𝑣𝑔 ≥ lim inf

𝛼→∞ ∫𝐵𝑥0
(𝛿)
𝑢2#𝛼 𝑑𝑣𝑔 ≥ lim inf

𝛼→∞ ∫𝐵𝑥𝛼 (𝜇𝛼𝑅)
𝑢2#𝛼 𝑑𝑣𝑔 = ∫𝐵0(𝑅)

𝑢̃2#𝑑𝑥 = 1 − 𝜖𝑅

where 𝜖𝑅 → 0 as 𝑅 → ∞. We thus obtain

lim
𝛼→∞∫𝐵𝑥0

(𝛿)
𝑢2#𝛼 𝑑𝑣𝑔 = 1.

Since 𝛿 is arbitrary, if 𝑦0 ≠ 𝑥0 for any 𝛿 < 𝑑(𝑥0, 𝑦0) we must have

lim
𝛼→∞∫𝐵𝑦0

(𝛿)
𝑢2#𝛼 𝑑𝑣𝑔 = 0

otherwise we would contradict ∫𝑀 𝑢2#𝛼 𝑑𝑣𝑔 = 1. This completes the proof there is only one unique concentration
point 𝑥0 along our subsequence.
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Step 2: For all 𝑥 ∈ 𝑀 we have the inequality

𝑑𝑔(𝑥𝛼, 𝑥)
𝑛−2𝑚
2 𝑢𝛼(𝑥) ≤ 𝐶. (4.32)

We directly follow Hebey’s proof in the second order case, see also Druet and Robert.
Suppose there is some sequence 𝑦𝛼 such that

sup
𝑥∈𝑀

𝑑𝑔(𝑥𝛼, 𝑥)
𝑛−2𝑚
2 𝑢𝛼(𝑥) = 𝑑𝑔(𝑥𝛼, 𝑦𝛼)

𝑛−2𝑚
2 𝑢𝛼(𝑦𝛼) → ∞.

Similarly to what is done in step one, we define 𝜇̂𝛼 = 𝑢𝛼(𝑦𝛼)
− 2

𝑛−2𝑚 and define the rescalings 𝑢̂𝛼 of 𝑢𝛼 on ℝ𝑛

with metric 𝑔̂𝛼 as follows.

𝑢̂𝛼 = 𝜇̂
𝑛−2𝑚
2

𝛼 𝑢𝛼(exp𝑦𝛼 (𝜇̂𝛼𝑥)) 𝑔̂𝛼 = (exp∗
𝑦𝛼
𝑔)(𝜇̂𝛼𝑥).

Then 𝑢̂ is a solution to the PDE
(Δ𝑔̂𝛼 + 𝜇̂2

𝛼𝛼)
𝑚𝑢̂𝛼 = 𝜆𝛼𝑢̂

2#−1
𝛼 .

By our definition of 𝑦𝛼 we additionally have

𝑢̂𝛼(𝑥) ≤

(

𝑑𝑔(𝑥𝛼, 𝑦𝛼)
𝑑𝑔(𝑥𝛼, 𝑒𝑥𝑝𝑦𝛼 (𝜇̂𝑥)

)
𝑛−2𝑚
2

. (4.33)

Fix 𝑅 > 0. If |𝑥| ≤ 𝑅 the triangle inequality implies

𝑑𝑔(𝑥𝛼, 𝑒𝑥𝑝𝑦𝛼 (𝜇̂𝛼𝑥)) ≥ 𝑑𝑔(𝑥𝛼, 𝑦𝛼) − 𝑅𝜇̂𝛼.

Because 𝑑𝑔(𝑥𝛼, 𝑦𝛼)
𝑛−2𝑚
2 𝑢𝛼(𝑦𝛼) → ∞, we additionally have

𝜇̂𝛼

𝑑𝑔(𝑥𝛼, 𝑦𝛼)
→ 0.

Therefore by (4.33),
𝑢̂𝛼(𝑥) ≤

(

1 −
𝑅𝜇̂𝛼

𝑑𝑔(𝑥𝛼, 𝑦𝛼)

)− 𝑛−2𝑚
2

which implies 𝑢̂𝛼 are 𝐶0 bounded on compact sets.
Now that we have local 𝐶0 bounds, following the De Georgi-Nash-Moser iteration scheme argument seen

in Step 1 shows for all 1 ≤ 𝑘 ≤ 𝑚, the functions 𝑣̂(𝑘) = (Δ𝑔̂𝛼 + 𝜇̂2
𝛼𝛼)

𝑘(𝑢̂𝛼) are bounded on compact sets.
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Let us first consider the case (after possibly taking a subsequence) 𝑦𝛼 → 𝑦0 ≠ 𝑥0. Then for all 𝜖 > 0,
because Δ𝑔̂𝛼 𝑢̂𝛼 ≤ 𝑣̂(1)𝛼 ≤ 𝐶 ,

Δ𝑔̂𝛼 (𝑢̂𝛼)
1+𝜖 = (1 + 𝜖)𝑢̂𝜖𝛼Δ𝑔̂𝛼 𝑢̂𝛼 − 𝜖(1 + 𝜖)𝑢̂𝜖−1𝛼 |∇𝑔̂𝛼 𝑢̂𝛼|

2 ≤ 𝐶𝑢̂𝜖𝛼

Now fixing 𝜖 small such that 2
𝜖
> 𝑛

2
and applying the De Georgi-Nash-Moser iteration scheme gives for

all 𝑝 > 0 there exists 𝐶𝑝 such that

sup
𝐵0(𝑅−1)

(𝑢̂𝛼)1+𝜖 ≤ 𝐶𝑝

(

‖(𝑢̂𝛼)1+𝜖‖𝐿𝑝(𝐵0(𝑅) + ‖𝑢̂𝜖𝛼‖𝐿 2
𝜖 (𝐵0(𝑅)

)

.

Setting 𝑝 = 2
1+𝜖

gives us
sup

𝐵0(𝑅−1)
(𝑢̂𝛼)1+𝜖 ≤ 𝐶‖𝑢̂𝛼‖

𝜖
𝐿2(𝐵0(𝑅)

(1 + ‖𝑢̂𝛼‖𝐿2(𝐵0(𝑅)).

Because 𝑢̂𝛼(0) = 1, this implies lim inf𝛼→∞‖𝑢̂𝛼‖𝐿2(𝐵0(𝑅)) > 0. However, because 𝑥0 is the only concentration
point we additionally have

‖𝑢̂𝛼‖𝐿2(𝐵0(𝑅)) ≤ 𝐶
(

∫𝐵0(𝑅)
𝑢̂2#𝛼

)
1
2#

= 𝐶

(

∫𝐵𝑦𝛼 (𝑅𝜇̂𝛼)
𝑢2#𝛼

)
1
2#

→ 0.

and we have a contradiction.
Now let us consider the case (after potentially taking a subsequence) 𝑦𝛼 → 𝑥0. In order to apply the

same logic as Step 1 in showing 𝑢̂𝛼 converges to a limit function in 𝐶2𝑚(ℝ𝑛), we need to show (Δ𝑔̂𝛼 𝑢̂𝛼)(0) is
bounded from below. This corresponds to showing 𝜇̂2

𝛼(Δ𝑔𝑢)(𝑦𝛼) is bounded from below. We let 𝑟𝛼 correspond
to the function 𝑑(𝑥𝛼, ⋅). Because 𝑦𝛼 → 𝑥0, 𝑦𝛼 will be contained in an exponential chart around 𝑥𝛼 for 𝛼
sufficiently large. In particular, 𝑑𝑔(𝑥𝛼, 𝑥)

𝑛−2𝑚
2 𝑢𝛼(𝑥) is twice differentiable at 𝑦𝛼 for 𝛼 sufficiently large, so we

have Δ𝑔(𝑟
𝑛−2𝑚
2

𝛼 𝑢𝛼)(𝑦𝛼) ≥ 0 and ∇𝑔(𝑟
𝑛−2𝑚
2

𝛼 𝑢𝛼)(𝑦𝛼) = 0. The latter equation implies

𝑟
𝑛−2𝑚
2

𝛼 ∇𝑔𝑢𝛼(𝑦𝛼) = (−∇𝑔(𝑟
𝑛−2𝑚
2

𝛼 )𝑢𝛼)(𝑦𝛼).

Then, using the well known formulas in an exponential chart |∇𝑔𝑓 (𝑟)| = |𝑓 ′(𝑟)| and Δ𝑔𝑓 (𝑟) = Δ𝜉𝑓 (𝑟) −

𝑓 ′(𝑟)𝜕𝑟(ln
√

𝑔) for a radial function 𝑓 , we compute, with all expressions are evaluated at 𝑦𝛼,

0 ≤ Δ𝑔(𝑟
𝑛−2𝑚
2

𝛼 𝑢𝛼) = 𝑟
𝑛−2𝑚
2

𝛼 Δ𝑔𝑢𝛼 + 2
(𝑛 − 2𝑚

2

)2
𝑟

𝑛−2𝑚−4
2

𝛼 𝑢𝛼

−
(𝑛 − 2𝑚

2

)(3𝑛 − 2𝑚 − 4
2

)

𝑟
𝑛−2𝑚−4

2
𝛼 𝑢𝛼 −

𝑛 − 2𝑚
2

𝑟
𝑛−2𝑚−2

2
𝛼 𝜕𝑟(ln

√

𝑔)𝑢𝛼
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which implies
𝑛 − 2𝑚

2
𝑟−1𝛼 𝜕𝑟(ln

√

𝑔)𝑢𝛼 +
(𝑛 − 2𝑚

2

)(𝑛 + 2𝑚 − 4
2

)

𝑟−2𝛼 𝑢𝛼 ≤ Δ𝑔𝑢𝛼.

The Cartan expansion of the metric shows 𝜕𝑟(ln
√

𝑔) ≥ −𝐶𝑟 where 𝐶 is based only on the curvature of
the metric, therefore we have

𝑛 − 2𝑚
2

[

−𝐶 + 𝑛 + 2𝑚 − 4
2

𝑟−2𝛼
]

𝑢𝛼 ≤ Δ𝑔𝑢𝛼

The left hand side is bounded from below (positive for sufficiently large 𝛼 because 𝑦𝛼 → 𝑥0), so our claim
holds and we let 𝑢̂ ∶ ℝ𝑛 → ℝ be the limit function of 𝑢̂𝛼.

Let 𝛿 > 0 be small and 𝑅 be fixed. We recall notions from Step 1, using the same 𝑢̃ and 𝑢̃𝛼,

∫𝐵0(𝑅)
𝑢̃2#𝛼 𝑑𝑣𝑔̃𝛼 = ∫𝐵𝑥𝛼 (𝑅𝜇𝛼)

𝑢2#𝛼 𝑑𝑣𝑔

and
∫ℝ𝑛

𝑢̃2#𝑑𝑥 = 1.

We therefore have
lim
𝛼→∞∫𝐵𝑥𝛼 (𝑅𝜇𝛼)

𝑢2#𝛼 𝑑𝑣𝑔 = ∫𝐵0(𝑅)
𝑢̃2#𝑑𝑥 = 1 − 𝜖𝑅

where 𝜖𝑅 → 0 as 𝑅 → ∞.
Combining this with the fact that

lim
𝛼→∞∫𝐵𝑥0

(𝛿)
𝑢2#𝛼 𝑑𝑣𝑔 = 1

immediately implies
∫𝐵𝑥0

(𝛿)⧵𝐵𝑥𝛼 (𝑅𝜇𝛼)
𝑢2#𝛼 ≤ 𝜖𝑅 + 𝑜(1).

Because 𝜇̂𝛼 → 0 and 𝑦𝛼 → 𝑥0, for sufficiently large 𝛼 we obtain

∫𝐵𝑦𝛼 (𝜇̂𝛼)
𝑢2#𝛼 ≤ ∫𝐵𝑦𝛼 (𝜇̂𝛼)∩𝐵𝑥𝛼 (𝑅𝜇𝛼)

𝑢2#𝛼 + 𝜖𝑅 + 𝑜(1).

As stated before 𝜇̂ = 𝑜(𝑑𝑔(𝑥𝛼, 𝑦𝛼)). Combining this fact with 𝜇𝛼 ≤ 𝜇̂𝛼 implies 𝐵𝑦𝛼 (𝜇̂𝛼) ∩𝐵𝑥𝛼 (𝑅𝜇𝛼) = ∅ for
sufficiently large 𝛼.

Therefore

∫𝐵𝑦𝛼 (𝜇̂𝛼)
𝑢2#𝛼 ≤ 𝜖𝑅 + 𝑜(1).
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Taking the limit as 𝛼 → ∞ shows
∫𝐵0(1)

𝑢̂2#𝑑𝑥 ≤ 𝜖𝑅.

However, the left hand side is a positive constant independent of 𝑅 or 𝛼 and the right hand side converges to
0 as we send 𝑅 → ∞ and we have a contradiction, therefore (4.32) holds.

As a consequence of Step 2, we prove for all 0 ≤ 𝑘 ≤ 𝑚 − 1, 𝑣(𝑘)𝛼 → 0 in 𝐶0
𝑙𝑜𝑐(𝑀 ⧵ {𝑥0}). By Step 2, 𝑢𝛼 is

bounded in 𝐶0
𝑙𝑜𝑐(𝑀 ⧵ {𝑥0}) and 𝑣(𝑚−1)𝛼 satisfies

Δ𝑣(𝑚−1)𝛼 ≤ 1
𝐾
𝑢2#−1.

Integrating the PDE (4.25) implies ∫ 𝛼𝑚𝑢𝛼 ≤ 𝐶 by the divergence theorem, so for 0 ≤ 𝑘 ≤ 𝑚 − 1,

∫𝑀
𝑣(𝑘)𝛼 = ∫𝑀

𝛼𝑘𝑢𝛼 → 0

as 𝛼 → ∞. Additonally, because ∫𝑀 𝑢𝛼 → 0 and 𝑢𝛼 is bounded in 𝐶0
𝑙𝑜𝑐(𝑀 ⧵ {𝑥0}), for any 𝑝 > 0 and for any

compact subset 𝐸 of 𝑀 ⧵ {𝑥0}

∫𝐸
𝑢𝑝𝛼 → 0

as 𝛼 → ∞. Therefore by the De Georgi-Nash-Moser iteration scheme 𝑣(𝑚−1)𝛼 → 0 in 𝐶0
𝑙𝑜𝑐(𝑀 ⧵ {𝑥0}). Now,

assuming for some 1 ≤ 𝑘 ≤ 𝑚 − 1 𝑣(𝑘)𝛼 → 0 in 𝐶0
𝑙𝑜𝑐(𝑀 ⧵ {𝑥0}), then we consider

Δ𝑔𝑣
(𝑘−1)
𝛼 ≤ 𝑣(𝑘)𝛼

and applying the De Georgi-Nash-Moser iteration scheme again shows 𝑣(𝑘−1)𝛼 → 0 in 𝐶0
𝑙𝑜𝑐(𝑀 ⧵ {𝑥0}) and the

claim follows by induction.
Step 3: 𝐿2 concentration holds, i.e. for each 𝛿 > 0 and for all 0 ≤ 𝑖 ≤ 𝑚 − 1

lim
𝛼→∞

∫𝑀⧵𝐵𝑥0
(𝛿) |Δ

𝑖
2𝑢𝛼|2

∫𝑀 𝑢2𝛼
= 0

Our first claim is that for all 0 ≤ 𝑘 ≤ 𝑚 − 1,

∫𝑀⧵𝐵𝑥0
(𝛿)
(Δ

𝑘
2 𝑢𝛼)2 ≤ 𝐶𝛼𝑘

∫𝑀⧵𝐵𝑥0
(2−(2𝑘+1)𝛿)

𝑢2 (4.34)

Let 𝛿 > 0 be arbitrary. Let us as before write 𝑣(𝑚−1)𝛼 = (Δ + 𝛼)𝑚−1𝑢𝛼. By the last PDE in the system (4.28) we
have

Δ𝑣(𝑚−1)𝛼 + 𝛼𝑣(𝑚−1)𝛼 − 1
𝜆𝛼

𝑢2#−1𝛼 = 0.
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We write this as
𝑚
∑

𝑖=1
𝑐𝑖,𝑚𝛼

𝑚−𝑖Δ𝑖𝑢𝛼 + 𝛼𝑚𝑢𝛼 −
1
𝜆𝛼

𝑢2#−1𝛼 = 0.

Because 𝑢𝛼 → 0 in 𝐶0
𝑙𝑜𝑐(𝑀 ⧵ {𝑥0}) we have 𝛼𝑚𝑢𝛼 −

1
𝜆𝛼
𝑢2#−1𝛼 ≥ 0 for suffiently large 𝛼 on compact subsets of

𝑀 ⧵ {𝑥0}. Additionally, by the simple identity (𝑎 + 𝑏)𝑘 − 𝑏𝑘 = 𝑎
∑𝑘−1

𝑖=0 𝑏
𝑖(𝑎 + 𝑏)𝑘−1−𝑖 we have

𝑚
∑

𝑖=1
𝑐𝑖,𝑚𝛼

𝑚−𝑖Δ𝑖𝑢𝛼 = Δ

(

𝑚−1
∑

𝑖=0
𝛼𝑖𝑣(𝑚−1−𝑖)𝛼

)

.

Therefore, applying the De Georgi-Nash-Moser scheme we obtain

sup
𝑀⧵𝐵𝑥0

(𝛿)

𝑚−1
∑

𝑖=0
𝛼𝑖𝑣(𝑚−1−𝑖)𝛼 ≤ 𝐶 ∫𝑀⧵𝐵𝑥0

(𝛿∕2)

𝑚−1
∑

𝑖=0
𝛼𝑖𝑣(𝑚−1−𝑖)𝛼

Let 𝜂 be a smooth nonnegative function equal to 1 on 𝑀 ⧵ 𝐵 𝛿
2
(𝑥0) and equal to 0 on 𝐵 𝛿

4
(𝑥0). Then we

continue the calculation, integrating by parts the expression ∫𝑀 𝜂
∑𝑚−1

𝑖=0 𝛼𝑖𝑣(𝑚−1−𝑖)𝛼 to obtain

∫𝑀⧵𝐵𝑥0
(𝛿∕2)

𝑚−1
∑

𝑖=0
𝛼𝑖𝑣(𝑚−1−𝑖)𝛼 ≤ ∫𝑀

𝜂
𝑚−1
∑

𝑖=0
𝛼𝑖𝑣(𝑚−1−𝑖)𝛼 ≤ 𝐶𝛼𝑚−1

∫𝑀⧵𝐵𝑥0
(𝛿∕4)

𝑢𝛼. (4.35)

Let 𝜂 now be a smooth nonnegative function equal to 1 on 𝑀 ⧵ 𝐵2𝛿(𝑥0) and equal to 0 on 𝐵𝛿(𝑥0). Now
we prove (4.34) by induction. The base case 𝑘 = 0 holds by immediately. Now suppose for 1 ≤ 𝑘 ≤ 𝑚 − 1

(4.34) is true for 𝑖 < 𝑘. Considering the 𝑚− 1 − 𝑘th term of 4.35 individually and applying Cauchy-Schwarz
gives us

𝛼𝑚−1−𝑘
∫𝑀

𝜂𝑣(𝑘)𝛼 𝑢𝛼 ≤ 𝐶𝛼𝑚−1

(

∫𝑀⧵𝐵𝑥0
(𝛿∕4)

𝑢𝛼

)2

≤ 𝐶𝛼𝑚−1
∫𝑀⧵𝐵𝑥0

(𝛿∕4)
𝑢2𝛼

which we can write as

∫𝑀
𝜂𝑢𝛼

𝑘
∑

𝑙=0
𝛼𝑘−𝑙𝑐𝑙,𝑘Δ𝑙𝑢𝛼 ≤ 𝐶𝛼𝑘

∫𝑀⧵𝐵𝑥0
( 𝛿4 )

𝑢2𝛼.

Applying Lemma 4.6 to each term with 𝑟 = 𝛿
2

we obtain

∫𝑀
𝜂

𝑘
∑

𝑙=0
𝑐𝑙,𝑘𝛼

𝑘−𝑙(Δ
𝑙
2𝑢𝛼)2 ≤ 𝐶𝛼𝑘

∫𝑀⧵𝐵𝑥0
( 𝛿4 )

𝑢2𝛼 + 𝐶 ∫𝑀⧵𝐵𝑥0
(𝛿∕2)

𝑘
∑

𝑙=0
𝛼𝑘−𝑙

𝑙−1
∑

𝑝=0
(Δ

𝑝
2𝑢𝛼)2. (4.36)

Given a fixed 𝑙 ≤ 𝑘 for all 0 ≤ 𝑝 ≤ 𝑙 − 1 we have by the induction hypothesis

∫𝑀⧵𝐵𝑥0
(𝛿∕2)

𝛼𝑘−𝑙(Δ
𝑝
2𝑢𝛼)2 ≤ 𝐶 ∫𝑀⧵𝐵𝑥0

(2−(2𝑘)𝛿)
𝛼𝑘−𝑙𝛼𝑝𝑢2𝛼 ≤ 𝐶𝛼𝑘

∫𝑀⧵𝐵𝑥0
(2−(2𝑘)𝛿)

𝑢2𝛼. (4.37)
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We therefore obtain by (4.36) and 4.37)

∫𝑀⧵𝐵𝑥0
(𝛿∕2)

(Δ
𝑘
2 𝑢𝛼)2 ≤ 𝐶𝛼𝑘

∫𝑀⧵𝐵𝑥0
(2−(2𝑘)𝛿)

𝑢2

which is equivalent to (4.34). For all 1 ≤ 𝑘 ≤ 𝑚 − 1 we obtain the bound

∫𝑀⧵𝐵𝑥0
(𝛿)
(Δ

𝑘
2 𝑢𝛼)2 ≤ 𝐶𝛼𝑘

∫𝑀⧵𝐵𝑥0
(2−(2𝑚+1)𝛿)

𝑢2 (4.38)

Now multiplying the PDE (4.25) by 𝜂 and using the fact that 𝑢𝛼 → 0 in 𝐶0
loc(𝑀 ⧵ {𝑥0}) we obtain

𝑚
∑

𝑖=0
∫𝑀

𝜂𝑐𝑖,𝑚𝛼
𝑚−𝑖𝑢𝛼Δ𝑖𝑢𝛼 = ∫𝑀

𝜂𝑢2#𝛼 ≤ ∫𝑀⧵𝐵𝑥0
(2−(2𝑚+1)𝛿)

𝑢2#𝛼 ≤ 𝐶 ∫𝑀⧵𝐵𝑥0
(2−(2𝑚+1)𝛿)

𝑢2𝛼

We apply Lemma 4.6 with 𝑟 = 𝛿
2

to each term and substitute 𝑖′ = 𝑖 − 1 to obtain

𝑚
∑

𝑖=0
∫𝑀

𝜂𝑐𝑖,𝑚𝛼
𝑚−𝑖(Δ

𝑖
2𝑢𝛼)2 ≤ 𝐶𝛼𝑚−1

∫𝑀⧵𝐵𝑥0
(2−(2𝑚+2)𝛿)

𝑢2𝛼 + 𝐶
𝑚
∑

𝑖=1
𝛼𝑚−𝑖

𝑖−1
∑

𝑗=0
∫𝑀⧵𝐵

𝑥0(
𝛿
2 )

(Δ𝑗𝑢𝛼)2

= 𝐶𝛼𝑚−1
∫𝑀⧵𝐵𝑥0

(2−(2𝑚+2)𝛿)
𝑢2𝛼 + 𝐶

𝑚−1
∑

𝑖′=0
𝛼𝑚−1−𝑖′

𝑖′
∑

𝑗=0
∫𝑀⧵𝐵

𝑥0(
𝛿
2 )

(Δ𝑗𝑢𝛼)2

Given some 0 ≤ 𝑖′ ≤ 𝑚 − 1 and 0 ≤ 𝑗 ≤ 𝑖′ we apply (4.34) to obtain

𝛼𝑚−1−𝑖′

∫𝑀⧵𝐵
𝑥0(

𝛿
2 )

(Δ𝑗𝑢𝛼)2 ≤ 𝐶𝛼𝑚−1−𝑖′+𝑗
∫𝑀⧵𝐵𝑥0

(2−(2𝑚+2)𝛿)
𝑢2𝛼 ≤ 𝐶𝛼𝑚−1

∫𝑀⧵𝐵𝑥0
(2−(2𝑚+2)𝛿)

𝑢2𝛼.

Hence we have
𝑚
∑

𝑖=0
∫𝑀

𝜂𝑐𝑖,𝑚𝛼
𝑚−𝑖(Δ

𝑖
2𝑢𝛼)2 ≤ 𝐶𝛼𝑚−1

∫𝑀⧵𝐵𝑥0
(2−(2𝑚+2)𝛿)

𝑢2𝛼. (4.39)

After dividing both sides by 𝛼𝑚−1 we have

𝛼 ∫𝑀⧵𝐵𝑥0
(2𝛿)

𝑢2𝛼 ≤ 𝐶 ∫𝑀⧵𝐵𝑥0
(2−(2𝑚+2)𝛿)

𝑢2𝛼 (4.40)

and we have

0 ≤ lim
𝛼→∞

∫𝑀⧵𝐵𝑥0
(𝛿) 𝑢

2
𝛼

∫𝑀 𝑢2𝛼
≤ lim

𝛼→∞

∫𝑀⧵𝐵𝑥0
(𝛿) 𝑢

2
𝛼

∫𝑀⧵𝐵𝑥0
(2−(2𝑚+3)𝛿) 𝑢2𝛼

≤ lim
𝛼→∞

𝐶
𝛼

= 0
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proving Step 3 for 𝑖 = 0. For 1 ≤ 𝑖 ≤ 𝑚 − 1 we divide both sides of (4.39) by 𝛼𝑚−𝑖 and apply (4.40) 𝑖 − 1

times to obtain

∫𝑀⧵𝐵𝑥0
(𝛿)
(Δ

𝑖
2𝑢𝛼)2 ≤ 𝐶𝛼𝑚−1−𝑖

∫𝑀⧵𝐵𝑥0
(2−(2𝑚+3)𝛿)

𝑢2𝛼 ≤ 𝐶 ∫𝑀⧵𝐵𝑥0
(2−(𝑖−1)(2𝑚+3)𝛿)

𝑢2𝛼

and we have
0 ≤ lim

𝛼→∞

∫𝑀⧵𝐵𝑥0
(𝛿)(Δ

𝑖
2𝑢𝛼)2

∫𝑀 𝑢2𝛼
≤ 𝐶 lim

𝛼→∞

∫𝑀⧵𝐵𝑥0
(2−(𝑖−1)(2𝑚+3)𝛿) 𝑢

2
𝛼

∫𝑀 𝑢2𝛼
= 0

and the proof of Step 3 is complete.

4.3.2 Main Argument

We first note an immediate consequence of Step 3 is for all 0 ≤ 𝑘 ≤ 𝑚 − 1

‖𝑢𝛼‖𝐻2
𝑘 (𝑀) ≤ 𝐶

𝑘
∑

𝑖=0
∫𝐵𝑥0

(𝛿)
(Δ

𝑖
2𝑢𝛼)2. (4.41)

Now we let 𝑖𝑔
2
> 𝛿 > 0 and let 𝜂 be a nonnegative smooth function defined on ℝ𝑛 such that 𝜂 = 1 on 𝐵0(𝛿)

and equal to 0 on ℝ𝑛 ⧵𝐵0(2𝛿). We define 𝜂𝛼 on 𝑀 by 𝜂𝛼(𝑥) = 𝜂(exp−1
𝑥𝛼
(𝑥)). We then define 𝑈𝛼 by 𝑈𝛼 = 𝜂𝛼𝑢𝛼.

We have uniform bounds for all derivatives of 𝜂𝛼.
Because 𝑈𝛼 is only nonzero inside a geodesic chart, we consider the Euclidean metric 𝜉 on 𝐵𝑥𝛼 (2𝛿) defined

through the pullback of 𝑒𝑥𝑝−1𝑥𝛼 . We write 𝑑𝑥 = 𝑑𝑣𝜉 and the Euclidean Sobolev inequality gives
(

∫𝑀
𝑈 2#

𝛼 𝑑𝑥
)

2
2#

≤ 𝐾 ∫𝑀
(Δ

𝑚
2
𝜉 𝑈𝛼)2𝑑𝑥 (4.42)

Euclidean integration by parts shows

∫𝑀
(Δ

𝑚
2
𝜉 𝑈𝛼)2𝑑𝑥 = ∫𝑀

|∇𝑚
𝜉 𝑈𝛼|

2𝑑𝑥.

Then Lemma 4.9 gives

∫𝑀
|∇𝑚

𝜉 𝑈𝛼|
2𝑑𝑥 ≤ ∫𝑀

(1 + 𝐶𝑟2𝛼)

(

|∇𝑚
𝑔𝑈𝛼|

2 + 𝐶
𝑚−1
∑

𝑖=0
|∇𝑖

𝑔𝑈𝛼|
2

)

𝑑𝑣𝑔

where 𝑟𝛼 = 𝑑𝑔(𝑥𝛼, ⋅). Then by Lemma 4.3

∫𝑀
(Δ

𝑚
2
𝜉 𝑈𝛼)2𝑑𝑥 ≤ ∫𝑀

(Δ
𝑚
2
𝑔 𝑈𝛼)2𝑑𝑣𝑔 + 𝐶 ∫𝑀

𝑟2𝛼|∇
𝑚
𝑔𝑈𝛼|

2𝑑𝑣𝑔 + 𝐶
𝑚−1
∑

𝑖=0
∫𝑀

|∇𝑖
𝑔𝑈𝛼|

2𝑑𝑣𝑔 (4.43)
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We consider the third term in (4.43). Applying norm equivalence for 𝐻2
𝑚(𝑀) (see Robert[38]), Lemma 4.5

and (4.41) results in
𝑚−1
∑

𝑖=0
∫𝑀

|∇𝑖
𝑔𝑈𝛼|

2𝑑𝑣 ≤ 𝐶
𝑚−1
∑

𝑖=0
∫𝑀

|Δ
𝑖
2
𝑔𝑈𝛼|

2𝑑𝑣 ≤ 𝐶
𝑚−1
∑

𝑖=0
∫𝑀

|Δ
𝑖
2
𝑔 𝑢𝛼|

2𝑑𝑣 ≤ 𝐶
𝑚−1
∑

𝑖=0
∫𝐵𝑥0

(𝛿)
(Δ

𝑖
2𝑢𝛼)2 (4.44)

where Lemma 4.5 is applied to each individual term of the second sum. For the first term of (4.43), we use
Lemma 4.5, 4.6 and (4.41) to obtain

∫𝑀
(Δ

𝑚
2
𝑔 𝑈𝛼)2 ≤ ∫𝑀

𝜂2𝛼(Δ
𝑚
2
𝑔 𝑢𝛼)2 + 𝐶

𝑚−1
∑

𝑖=0
∫𝐵𝑥0

(𝛿)
(Δ

𝑖
2𝑢𝛼)2

≤ ∫𝑀
𝜂2𝛼𝑢𝛼Δ

𝑚𝑢𝛼 + 𝐶
𝑚−1
∑

𝑖=0
∫𝐵𝑥0

(𝛿)
(Δ

𝑖
2𝑢𝛼)2

We then substitute Δ𝑚𝑢𝛼 = 𝑢2#−1𝛼 −
∑𝑚−1

𝑖=0 𝑐𝑖,𝑚𝛼𝑚−𝑖Δ𝑖𝑢𝛼, apply Lemma 4.6 to each term, and apply (4.41) to
obtain

∫𝑀
(Δ

𝑚
2
𝑔 𝑈𝛼)2 ≤ 𝜆𝛼 ∫𝑀

𝜂2𝛼𝑢
2#
𝛼 −

(

𝑚−1
∑

𝑖=0
𝑐𝑖,𝑚𝛼

𝑚−𝑖
∫𝑀

𝜂2𝛼𝑢𝛼Δ
𝑖𝑢𝛼

)

+ 𝐶
𝑚−1
∑

𝑖=0
∫𝐵𝑥0

(𝛿)
(Δ

𝑖
2𝑢𝛼)2 (4.45)

≤ 1
𝐾 ∫𝑀

𝜂2𝛼𝑢
2#
𝛼 −

(

𝑚−1
∑

𝑖=0
𝑐𝑖,𝑚𝛼

𝑚−𝑖
∫𝑀

𝜂2𝛼(Δ
𝑖
2𝑢𝛼)2

)

+ 𝐶
𝑚−1
∑

𝑖=1
𝛼𝑚−𝑖

𝑖−1
∑

𝑗=0
∫𝑀

(Δ
𝑗
2𝑢)2 + 𝐶

𝑚−1
∑

𝑖=0
∫𝐵𝑥0

(𝛿)
(Δ

𝑖
2𝑢𝛼)2 (4.46)

≤ 1
𝐾 ∫𝑀

𝜂2𝛼𝑢
2#
𝛼 −

(

𝑚−1
∑

𝑖=0
𝑐𝑖,𝑚𝛼

𝑚−𝑖
∫𝑀

𝜂2𝛼(Δ
𝑖
2𝑢𝛼)2

)

+ 𝐶
𝑚−1
∑

𝑖=1
𝛼𝑚−𝑖

𝑖−1
∑

𝑗=0
∫𝐵𝑥0

(𝛿)
(Δ

𝑗
2𝑢)2 + 𝐶

𝑚−1
∑

𝑖=0
∫𝐵𝑥0

(𝛿)
(Δ

𝑖
2𝑢𝛼)2. (4.47)

Considering the remainder terms, substituting 𝑖′ = 𝑖 − 1 we have
𝑚−1
∑

𝑖=1
𝛼𝑚−𝑖

𝑖−1
∑

𝑗=0
∫𝐵𝑥0

(𝛿)
(Δ

𝑗
2𝑢𝛼)2 +

𝑚−1
∑

𝑖=0
∫𝐵𝑥0

(𝛿)
(Δ

𝑖
2𝑢𝛼)2 =

𝑚−2
∑

𝑖′=0
𝛼𝑚−1−𝑖′

𝑖′
∑

𝑗=0
∫𝐵𝑥0

(𝛿)
(Δ

𝑗
2𝑢𝛼)2 +

𝑚−1
∑

𝑖=0
∫𝐵𝑥0

(𝛿)
(Δ

𝑖
2𝑢𝛼)2 (4.48)

=
𝑚−1
∑

𝑖′=0
𝛼𝑚−1−𝑖′

𝑖′
∑

𝑗=0
∫𝐵𝑥0

(𝛿)
(Δ

𝑗
2𝑢𝛼)2 (4.49)
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Then reindexing with (4.14) gives
𝑚−1
∑

𝑖′=0
𝛼𝑚−1−𝑖′

𝑖′
∑

𝑗=0
∫𝐵𝑥0

(𝛿)
(Δ

𝑗
2𝑢𝛼)2 = 𝐶

𝑚−1
∑

𝑖=0

𝑚−1−𝑖
∑

𝑗=0
∫𝐵𝑥0

(𝛿)
𝛼𝑚−1−𝑖−𝑗(Δ

𝑗
2𝑢𝛼)2 (4.50)

= 𝐶
𝑚−1
∑

𝑗=0

𝑚−1−𝑗
∑

𝑖=0
∫𝐵𝑥0

(𝛿)
𝛼𝑚−1−𝑗−𝑖(Δ

𝑗
2𝑢𝛼)2 (4.51)

= 𝐶
𝑚−1
∑

𝑗=0
∫𝐵𝑥0

(𝛿)
(Δ𝑗𝑢𝛼)2

𝑚−1−𝑗
∑

𝑖=0
𝛼𝑖. (4.52)

Therefore we obtain

∫𝑀
(Δ

𝑚
2
𝑔 𝑈𝛼)2 ≤

1
𝐾 ∫𝑀

𝑢2#𝛼 −
𝑚−1
∑

𝑖=0

(

𝑐𝑖,𝑚𝛼
𝑚−𝑖 −

𝑚−1−𝑖
∑

𝑗=0
𝐶𝛼𝑗

)

∫𝐵𝑥0
(𝛿)
(Δ

𝑖
2𝑢)2. (4.53)

We now estimate the second term of (4.43). Applying Lemmas 4.3, 4.5, 4.6, substituting the PDE (4.25),
and applying (4.44) gives us

∫𝑀
𝑟2𝛼|∇

𝑚
𝑔𝑈𝛼|

2𝑑𝑣 ≤ ∫𝑀
𝑟2𝛼(Δ

𝑚
2 𝑈𝛼)2 + 𝐶‖𝑈𝛼‖𝐻2

𝑚−1

≤ ∫𝑀
𝜂2𝛼𝑟

2
𝛼(Δ

𝑚
2 𝑢𝛼)2 + 𝐶‖𝑈𝛼‖𝐻2

𝑚−1

≤ ∫𝑀
𝜂2𝛼𝑟

2
𝛼𝑢𝛼Δ

𝑚𝑢𝛼 + 𝐶‖𝑈𝛼‖𝐻2
𝑚−1

≤ 1
𝐾 ∫𝑀

𝜂2𝛼𝑟
2
𝛼𝑢

2#
𝛼 𝑑𝑣𝑔 −

(

𝑚−1
∑

𝑖=0
𝑐𝑖,𝑚𝛼

𝑚−𝑖
∫𝑀

𝜂2𝛼𝑟
2
𝛼𝑢𝛼Δ

𝑖𝑢𝛼

)

+ 𝐶
𝑚−1
∑

𝑖=0
∫𝐵𝑥0

(𝛿)
(Δ

𝑖
2𝑢𝛼)2

≤ 1
𝐾 ∫𝑀

𝜂2𝛼𝑟
2
𝛼𝑢

2#
𝛼 𝑑𝑣𝑔 + 𝐶

𝑚−1
∑

𝑗=0
∫𝐵𝑥0

(𝛿)
(Δ𝑗𝑢𝛼)2

𝑚−1−𝑗
∑

𝑖=0
𝛼𝑖 (4.54)

where to obtain (4.54) we have applied the computations from (4.45) − (4.52).
By Step 2, we have

𝑟2𝛼𝑢
2#
𝛼 = 𝑢𝛼(𝑟𝛼𝑢

𝑛
𝑛−2𝑚 )(𝑟𝛼𝑢

2
𝑛−2𝑚
𝛼 )𝑢

2𝑚−2
𝑛−2𝑚 ≤ 𝐶𝑢𝛼(𝑟𝛼𝑢

𝑛
𝑛−2𝑚
𝛼 )𝑢

2𝑚−2
𝑛−2𝑚
𝛼

and therefore
𝜂2𝛼𝑟

2
𝛼𝑢

2#
𝛼 ≤ 𝐶𝜂𝛼𝑢𝛼(𝑟𝛼𝜂𝛼𝑢

𝑛
𝑛−2𝑚
𝛼 )𝑢

2𝑚−2
𝑛−2𝑚
𝛼 .

Because 𝑛−2(𝑚−1)
2𝑛

+ 1
2
+ 2𝑚−2

2𝑛
= 1, we apply Hölder’s inequality to the right hand side to obtain

∫𝑀
𝜂2𝛼𝑟

2
𝛼𝑢

2#
𝛼 ≤ 𝐶

(

∫𝑀
(𝜂𝛼𝑢𝛼)

2𝑛
𝑛−2(𝑚−1)𝑑𝑣𝑔

)
𝑛−2(𝑚−1)

2𝑛
(

∫𝑀
𝜂2𝛼𝑟

2
𝛼𝑢

2#
𝛼

)
1
2
(

∫𝑀
𝑢2#𝛼

)
2𝑚−2
2𝑛

.
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Because ∫𝑀 𝑢2#𝛼 = 1, this gives us

∫𝑀
𝜂2𝛼𝑟

2
𝛼𝑢

2#
𝛼 ≤ 𝐶

(

∫𝑀
(𝜂𝛼𝑢𝛼)

2𝑛
𝑛−2(𝑚−1)

)
𝑛−2(𝑚−1)

𝑛

. (4.55)

We then apply the Sobolev embedding theorem and (4.44)

(

∫𝑀
(𝜂𝛼𝑢𝛼)

2𝑛
𝑛−2(𝑚−1)

)
𝑛−2(𝑚−1)

𝑛

≤ 𝐶‖𝑢𝛼‖𝐻2
𝑚−1

≤ 𝐶
𝑚−1
∑

𝑖=0
∫𝐵𝑥0

(𝛿)
(Δ

𝑖
2𝑢𝛼)2 (4.56)

therefore, by putting together (4.54), (4.55), and (4.56) we obtain

∫𝑀
𝑟2𝛼|∇

𝑚
𝑔𝑈 |

2𝑑𝑣 ≤ 𝐶
𝑚−1
∑

𝑗=0
∫𝐵𝑥0

(𝛿)
(Δ𝑗𝑢𝛼)2

𝑚−1−𝑗
∑

𝑖=0
𝛼𝑖(Δ

𝑖
2𝑢𝛼)2 (4.57)

Therefore, by combining (4.43), (4.44), (4.53), (4.57) we obtain

𝐾 ∫𝑀
(Δ

𝑚
2
𝜉 𝑈𝛼)2𝑑𝑥 ≤ ∫𝑀

𝑢2#𝛼 −
𝑚−1
∑

𝑖=0

(

𝐾𝑐𝑖,𝑚𝛼
𝑚−𝑖 −

𝑚−𝑖−1
∑

𝑗=0
𝐶𝛼𝑗

)

∫𝐵𝑥0
(𝛿)
(Δ

𝑖
2𝑢𝛼)2 (4.58)

Now we consider the left hand side of (4.42). By the Cartan expansion of the metric and the definition of
𝑈𝛼 we have

∫𝑀
𝑈 2#

𝛼 𝑑𝑥 ≥ ∫𝐵𝑥0
(𝛿)
𝑢2#𝛼 𝑑𝑣𝑔 − 𝐶 ∫𝑀

𝑟2𝛼𝑈
2#
𝛼 𝑑𝑣𝑔.

Since 0 ≤ 𝜂𝛼 ≤ 1 we must have 𝜂2#𝛼 ≤ 𝜂2𝛼 and so by (4.55) and (4.56) we have

∫𝑀
𝜂2#𝛼 𝑟

2
𝛼𝑢

2#
𝛼 ≤ ∫𝑀

𝜂2𝛼𝑟
2
𝛼𝑢

2#
𝛼 ≤ 𝐶

𝑚−1
∑

𝑖=0
∫𝐵𝑥0

(𝛿)
(Δ

𝑖
2𝑢𝛼)2.

Therefore we obtain

∫𝑀
𝑈 2#

𝛼 𝑑𝑥 ≥ ∫𝐵𝑥0
(𝛿)
𝑢2#𝛼 𝑑𝑣𝑔 − 𝐶

𝑚−1
∑

𝑖=0
∫𝐵𝑥0

(𝛿)
(Δ

𝑖
2𝑢𝛼)2

The first term converges to 1 from below and the second term converges to 0, therefore raising both sides to
2
2#

< 1 we have
(

∫𝑀
𝑈 2#

𝛼 𝑑𝑥
)

2
2#

≥ ∫𝐵𝑥0
(𝛿)
𝑢2#𝛼 − 𝐶

𝑚−1
∑

𝑖=0
∫𝐵𝑥0

(𝛿)
(Δ

𝑖
2𝑢𝛼)2

Independently we have by Step 3

∫𝑀⧵𝐵𝑥0
(𝛿)
𝑢2#𝛼 ≤

(

sup
𝑀⧵𝐵𝑥0

(𝛿)
𝑢𝛼

)2#−2

∫𝑀⧵𝐵𝑥0
(𝛿)
𝑢2𝛼 ≤ 𝐶 ∫𝐵𝑥0

(𝛿)
𝑢2𝛼
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allowing us to strengthen our previous inequality to
(

∫𝑀
𝑈 2#

𝛼 𝑑𝑥
)

2
2#

≥ ∫𝑀
𝑢2#𝛼 − 𝐶

𝑚−1
∑

𝑖=0
∫𝐵𝑥0

(𝛿)
(Δ

𝑖
2𝑢𝛼)2 (4.59)

Therefore combining (4.42), (4.58), and (4.59) we obtain
𝑚−1
∑

𝑖=0

(

𝐾𝑐𝑖,𝑚𝛼
𝑚−𝑖 −

𝑚−𝑖−1
∑

𝑗=0
𝐶𝛼𝑗

)

∫𝐵𝑥0
(𝛿)
(Δ

𝑖
2𝑢𝛼)2 ≤ 0

and we obtain a contradiction when 𝛼 is sufficiently large.
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A Appendix: The De Georgi-Nash-Moser Iterative Scheme

The De Georgi-Nash-Moser Iterative Scheme, for Riemannian manifolds is a crucial tool in Section 4.3. We
state the Euclidean De Georgi-Nash-Moser Iterative Scheme and use it to show it indeed applies in a useful
sense when generalized to the Riemannian case. The following is Theorem 4.14 in the book of Han and
Lin[20].

Theorem A.1 (Euclidean De Georgi-Nash-Moser Scheme). Let Ω ⊂ ℝ𝑛 be a connected open set. Let 𝑎𝑖𝑗 ∈

𝐿∞(Ω) satisfy

𝜆|𝜉|2 ≤ 𝑎𝑖𝑗𝜉𝑖𝜉𝑗 ≤ Λ|𝜉|2

for all 𝑥 ∈ Ω and 𝜉 ∈ ℝ𝑛. Let 𝑓 ∈ 𝐿𝑞(Ω) for some 𝑞 > 𝑛
2
. Let 𝑢 ∈ 𝑊 1,2(Ω) be a nonnegative subsolution in

following sense:

∫Ω
𝑎𝑖𝑗𝐷𝑖𝑢𝐷𝑗𝜙𝑑𝑥 ≤ ∫Ω

𝑓𝜙𝑑𝑥

for any 𝜙 ∈ 𝑊 1,2
0 (Ω) such that 𝜙 ≥ 0 in Ω. Then for any ball 𝐵𝑅 ⊂ Ω and 0 < 𝑟 < 𝑅 and any 𝑝 > 0, there

exists 𝐶 based on 𝜆,Λ, 𝑞, 𝑝, 𝑛 such that

sup
𝐵𝑟

𝑢 ≤ 𝐶

[

1
(𝑅 − 𝑟)

𝑛
𝑝

‖𝑢‖𝐿𝑝(𝐵𝑅) + 𝑅2− 𝑛
𝑞
‖𝑓‖𝐿𝑞(𝐵𝑅)

]

.

The following lemma shows we can apply the Euclidean De Georgi-Nash-Moser iterative scheme in small
geodesic balls on Riemannian manifolds.

Lemma A.2. Let (𝑀,𝑔) be a smooth complete 𝑛 dimensional Riemannian manifold with bounded curvature.

Let 𝑥0 ∈ 𝑀 , 𝛿 > 0 such that 𝑖𝑥0,𝑔 > 𝛿 where 𝑖𝑥0,𝑔 is the injectivity radius at 𝑥0. Let 𝐵𝛿(𝑥0) be the geodesic ball

of radius 𝛿 at 𝑥0. Let 𝑓 ∈ 𝐿𝑞(𝐵𝛿(𝑥0)) for 𝑞 > 𝑛
2

be a nonnegative function. Let 0 < 𝜆 ≤
√

𝑔 ≤ Λ in normal

coordinates on 𝐵𝛿(𝑥0). It is easily seen through the Cartan expansion of the metric in normal coordinates that

𝜆 and Λ can be taken to depend on curvature bounds for the manifold. Let 𝑢 ∈ 𝐻2
1 (𝐵𝛿(𝑥0)) be a nonnegative

function satisfying Δ𝑔𝑢 ≤ 𝑓 . Then for any 𝑝 > 0, there exists 𝐶 based on (𝜆,Λ, 𝛿, 𝑝, 𝑞, 𝑛) such that

sup
𝐵𝛿∕2(𝑥0)

𝑢 ≤ 𝐶
(

‖𝑢‖𝐿𝑝(𝐵𝛿(𝑥0)) + ‖𝑓‖𝐿𝑞(𝐵𝛿(𝑥0))
)

Proof. We first recall the formula for the Laplacian operator in coordinates Δ𝑢 = − 1
√

𝑔
𝜕𝑖(

√

𝑔𝑔𝑖𝑗𝜕𝑗𝑢) (see
Chapter 2 of Lee[26]). Let 𝜙 ∈ 𝑊 1,1

0 (𝐵𝛿(0)) be nonnegative. Computing in geodesic normal coordinates, we
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have

∫𝐵0(𝛿)
−𝜕𝑖(

√

𝑔𝑔𝑖𝑗𝜕𝑗𝑢(𝑒𝑥𝑝𝑥0(𝑥)))𝜙(𝑥)𝑑𝑥 ≤ ∫𝐵0(𝛿)
𝑓 (𝑒𝑥𝑝𝑥0(𝑥))𝜙(𝑥)

√

𝑔𝑑𝑥 ≤ ∫𝐵0(𝛿)
Λ𝑓 (𝑒𝑥𝑝𝑥0(𝑥))𝜙(𝑥)𝑑𝑥.

Integrating by parts on the left hand side shows the definition of a subsolution in Theorem A.1 is satisfied and
therefore applying the Euclidean De Georgi-Nash-Moser scheme (passing to Riemmanian integrals through
the bounds 𝜆 and Λ) yields our lemma.

Theorem A.3 (De Georgi-Nash-Moser Scheme). Let (𝑀,𝑔) be a smooth complete 𝑛 dimensional Riemannian

manifold with bounded curvature. Let Ω ⊂ 𝑀 be a bounded open set. Let 𝐴 ⊂ Ω be a compact proper subset

of Ω. Let 𝑓 ∈ 𝐿𝑞(Ω) for 𝑞 > 𝑛
2

be a nonnegative function. Let 𝑢 ∈ 𝐻1,1(Ω) be a nonnegative function

satisfying Δ𝑔𝑢 ≤ 𝑓 . Then for any 𝑝 > 0, there exists 𝐶 based on ((𝑀,𝑔),Ω, 𝐴, 𝑝, 𝑞, 𝑛) such that

sup
𝐴

𝑢 ≤ 𝐶
(

‖𝑢‖𝐿𝑝(Ω) + ‖𝑓‖𝐿𝑞(Ω)
)

.

Proof. By the Hopf-Rinow theorem, it is easily seen there exists 𝛿1 > 0 such that for all 𝑥 ∈ Ω, 𝑖𝑥,𝑔 > 𝛿1.
Becuase 𝐴 is compact in Ω, there also exists some 𝛿2 > 0 such that for all 𝑥 ∈ 𝐴, 𝐵𝛿2(𝑥) ⊂ Ω. Taking
𝛿 ≔ min(𝛿1, 𝛿2), considering a finite covering {𝐵𝛿∕2(𝑥𝑖) ∶ 𝑥𝑖 ∈ 𝐴, 1 ≤ 𝑖 ≤ 𝑘} of 𝐴, and applying Lemma A.2
immediately yeilds the theorem.
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Conclusion

The result of Theorem 3.3 represents an important development in the AB Program and is interesting in the
sense that it requires methods which are not necessary in the second order proof by Hebey[23] while still
maintaining the same structure. We hope to see more higher order questions of this sort being attacked in
the future, as they often require more than just added technicality and viewing a problem in its most general
state frequently reveals aspects which would not be shown in lower order cases. We also hope the lemmas in
Section 4.2 (or sharper versions thereof) can be of use in other higher order problems.

The refined version of Theorem 3.3 (for dimension 𝑛 ≥ 6 and 𝑚 = 1) proven in Li-Ricciardi[29] makes
use of the "conformal Laplacian" Δ + 𝑅 where 𝑅 represents the scalar curvature. This operator has natural
generalizations to higher order in the "GJMS operators" (see Graham, Janne, Mason, and Sparling[18]). It may
then be reasonable to seek refinements of Theorem 3.3 in general (with possible restrictions on the dimension
or geometry) involving the GJMS operators. A key obstacle which is inherent to higher order problems is
that of positivity. One reason this causes difficulty is 𝐻𝑝

𝑚(𝑀) does not have the property that if 𝑢 ∈ 𝐻𝑝
𝑚(𝑀)

then |𝑢| ∈ 𝐻𝑝
𝑚(𝑀) if 𝑚 > 2 (while this does hold for 𝑚 = 1). Additionally, if a higher order operator is not

a composition of coercive second order operators, then the maximum principle may not apply. We refer to
Robert[39], Proposition 4.4 for an example of a sign changing minimizing solution to an equation like (3.5) in
fourth order. It therefore should not be taken for granted that Theorem 3.3 can be proven by working solely with
the operators (Δ + 𝛼)𝑚 for 𝛼 > 0, where positivity is trivial by iterating the second order maximum principle.
Some recent results on positivity for fourth or higher order operators (with a focus on GJMS operators) can
be found in Case-Malchiodi[7], Gursky-Malchiodi[19], and Hang-Yang[21]. This makes it a very interesting
problem unique to higher order to formulate blow up analysis arguments while taking account of this obstacle.
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