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Abstract

Investigation of sharp constants in Sobolev inequalities dates back to the independent work of Aubin[3]] and
Talenti[43]] in the 1970s on the first order Euclidean Sobolev inequality, and has been the focus of significant
research in the decades since in part due to importance in geometry, physics, and PDEs (Partial Differential
Equations). As a consequence, a particular collection of results on best constants for Sobolev inequalities on
Riemannian manifolds has come to be known as the "AB Program" in the literature (see Druet and Hebey|[/10]]).
In recent years, natural extensions of these problems to higher order have gathered significant attention, ex-
amples of which can be found in Mazumdar[33]], Mazumdar-Vétois[34], and Liu[32]]. This thesis aims to
cover problems involving best constants for Sobolev inequalities of higher order on Riemannian manifolds,
their relationship to the sharp Sobolev inequalities on Euclidean space, and applications to existence results
in PDEs. We develop the necessary background material to discuss a higher order AB Program and prove
a new sharp higher order Sobolev inequality, which comprises the main result of the thesis. This result di-
rectly generalizes the previous work of Hebey-Vaugon[25]] and Hebey[23]] in the first and second order cases

respectively, combining classical arguments from geometric analysis with results of Mazumdar[33]].
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Abrégé

L’ étude des meilleures constantes des inégalités de Sobolev remonte aux travaux indépendants d’Aubin[3]] et
de Talenti[43]] dans les années 1970 sur I’'inégalité euclidienne de Sobolev de premier ordre, et ont fait I’objet
de recherches importantes au cours des décennies qui ont suivi, en partie en raison de leur importance en
géométrie, en physique et en EDP (équations aux dérivées partielles). En conséquence, une collection partic-
uliere de résultats sur les meilleures constantes pour les inégalités de Sobolev sur les variétés riemanniennes
est désormais connue dans la littérature sous le nom de « programme AB » (voir Druet et Hebey[10]]). Ces
dernieres années, les généralisations naturelles de ces problémes aux ordres supérieurs ont retenu une atten-
tion considérable, par exemple dans les travaux de Mazumdar[33]], Mazumdar-Vétois[34] et Liu[32]]. Cette
these vise a couvrir des probléemes impliquant les meilleures constantes pour les inégalités de Sobolev d’ordres
supérieurs sur les variétés riemanniennes, leur relation avec les inégalités optimales de Sobolev sur I’espace
euclidien et les applications a 1’existence de solutions d’EDP. Nous développons le matériel nécessaire pour
discuter d’un programme AB d’ordre supérieur et prouver une nouvelle inégalité de Sobolev d’ordre supérieur,
ce qui constitue le résultat principal de la these. Ce résultat généralise directement les travaux antérieurs de
Hebey-Vaugon[25]] et de Hebey[23]], respectivement dans les cas du premier et du second ordre, combinant

des arguments issus de 1’analyse géométrique avec des résultats de Mazumdar(33|].
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1 Introduction

1.1 Concepts and Notation

This thesis assumes general knowledge of measure theory, functional analysis, and differential and Rie-
mannian geometry. Introductory references for these subjects can be found for example in Folland[|14]] and
Lee[26[][27].

Let (M, g) be a smooth Riemannian manifold. If V¥T is the kth covariant derivative of a j-degree covariant

tensor 7', we will occasionally use the notation

Vi VT, =T,

i iy Poeeosd 3l edpe”

Einstein summation notation will be used for all tensor computations. We raise and lower indices using the
metric in the usual way, for example
i _ ik
R, = g"R,;.

If S, T are two tensors of degree g, their inner product is defined by

(8,T), = ST,

ijedy”

The norm of a tensor 7 is then defined as

IT| = /(1. T),.

We use dvg to denote the volume density, which is well defined regardless of whether the manifold is ori-
entable. When working in a coordinate chart, we use the notation \/E := 4/|det(g)|. The volume density in
a coordinate chart is then given by \/gd x. The Laplacian operator A acts on a tensor T' by the negative sign

convention, i.e.

AT =-V'VT.

If working in a coordinate system on some open set U C M, we use & to represent the Euclidean metric on
U. If (M, g) is compact and without boundary, then for tensors 7',.S of the same degree we make frequent

use of the integration by parts equality

/M (VT,VS),dv, = /M (T,AS),dv,.



Given a nonnegative integer m, we use the notational convention
m m=1
A2u:=VA7u

when m is odd. We use i, to refer to the injectivity radius of the manifold. If (M, g) is compact, we can always
guarantee i, > 0. If x € M and r > 0, we use the notation B, (r) = {y € M : d,(y,x) < r} where d, is the
Riemannian distance function. We may occasionally, when there is no confusion, instead use the alternative
notation B,(x) depending on how much focus we would like to give to x and r. If A C M and r > 0, we

define
B.(4):= B.(».

XEA

We use the notation W"™? for mth order Euclidean Sobolev spaces with exponent p and H? for mth order
Sobolev spaces on manifolds with exponent p, both of which will be defined in Section 2. If X and Y are
Banach spaces, then X C Y will always be assumed to denote a continuous embedding in the sense that there
exists some C such that for all x € X,

Ixlly < Cllx]ix-

As is typical in analysis arguments, we will use the same letter C to denote potentially different constants

throughout computations where the value of C only needs to remain independent of certain parameters.

1.2 Background and Motivation

Best constants problems for Sobolev inequalities have been a topic of great development since Aubin[3] and
Talenti[43] independently calculated the best constant K (1, n, p) for the embedding W '»(R") c L (R") in
the sense that
X . /Rn |Vul|Pdx
K,n,p)y = inf —_—F
ueW 12 (R")\ {0} ([ " dx) 7
where 1 < p < nand p* := n”—_"p is the critical Sobolev exponent. Because the case p = 2 is of particular interest,
we write K(1, n) := K(1,n,2). This sharp constant is particularly notable for applications to semilinear PDEs
of critical growth arising in geometry, providing a seminal role in the resolution of the Yamabe problem

through the combined work of Yamabe[45]], Trudinger[44], Aubin[2]], and Schoen[40].
If (M, g) is a Riemmanian manifold of dimension n > 3, by the Sobolev embedding H IZ(M yc L¥ (M),



there exist constants A, B > 0 such that for allu € H 12(M ),

2
>
</ |u|2"dug> gA/ |Vu|2dug+B/ wdv,. (1.1)
M M M
The "AB Program" (see Druet and Hebey[/10] for an overview), studies sharp versions of this inequality. It
was shown by Aubin[3]] through an elementary partition of unity argument that the value of A in the above
inequality must satisfy A > K(1,n) and for any A > K(1, n), there exists some B(A) such that (1.1) is valid.
Hebey-Vaugon[25] then showed the best possible value A = K(1, n) is in fact obtained through a fine blow-up
analysis of a sequence of positive functions u, for @ > 0 solving the PDE

2%—1
« -

Au, +au, =u

This technique of proving sharp results for inequalities like through asymptotic analysis of a sequence

of solutions to PDEs is by now classical, see for example Hebey[23]], Li-Ricciardi[29]], Li-Zhu[30], Druet[9],
and Aubin-Li[5]].

The higher order Sobolev embeddings H2(M) C L% (M), where 2F = n_zﬁ and m < g give rise to a

natural development of the AB Program in higher order, studying constants (A, B) such that

% el
</ |u|2fndug)2m gA/(A§u)2dug+32/(Aéu)2dug. (1.2)
M M i=0 J M

The best constants for the higher order Euclidean Sobolev embeddings with exponent p = 2

z 2
K(m,m™ = ueng(lufM\{O} M
(f w?dv,)™
were calculated by Edmunds-Fortunato-Jannelli[11] in the case m = 2 and Swanson[42] in the case m > 3. A
similar argument to that originally used by Aubin in the case m = 1 shows that the constant A is in (I.2)), must
be at least K(m, n), see Djadli-Hebey-Ledoux[8] for the case m = 2 and Mazumdar[33] for the case m > 3.
It therefore is sensible to ask whether the constant A in (1.2) can be taken to be equal to the best possible
value K(m, n), generalizing the result of Hebey-Vaugon. A positive answer in the case m = 2 was shown by
Hebey[23]]. In this work we show this result can be extended to all m > 3.
A refined version of the first order result involving the scalar curvature was proven in Li-Ricciardi[29].

Natural next steps from our results could include estimating lower order constants in the higher order AB

Program after the first constant is lowered, i.e. inequalities of the form

i# m—1 »
M M i=0 M

3



Results in this direction have been initiated in the case of hyperbolic space in Liu[32] and on the unit sphere
in the case m = 2 in Djadli-Hebey-Ledoux[8]]. One can also consider whether the higher order inequalities

can be refined in the sense of[29] through local or global geometric quantities.

1.3 Organization of the Work

In Section 2, we review basic definitions regarding Sobolev spaces and prove the Sobolev inequalities in the
settings of Euclidean space and compact Riemannian manifolds. In Section 3 we discuss sharp and asymp-
totically sharp versions of higher order Sobolev inequalities in the Riemannian setting with exponent p = 2.
In particular we set up a higher order variant of the AB Program for best constants and discuss applications to
existence results in semilinear PDEs of critical growth. Section 4 is dedicated to proving the best first constant
in the higher order AB Program is attained. This is the main result and represents an original contribution to
the literature. The Appendix reviews the De Georgi-Nash-Moser iterative scheme, which is crucial in Section

4.



2 Sobolev Spaces

2.1 Euclidean Space

In this section we recall some definitions and basic results on Sobolev spaces, prove the Gagliardo-Nirenberg-
Sobolev inequalty, and discuss the best constants. This serves to motivate and prove the corresponding
Sobolev inequalities on Riemannian manifolds in Section 2.2. All results in this section can be found in
the books of Adams][ 1] or Evans][12].

Given a multiindex @ = (q; ..., @,) € N" we define the differential operator D* by

0% 0%

T
ox, ox,"

D%u =

for u € C1*I(R").

Definition 2.1. Let Q C R" be anopensetand 1 < p < oo and let m > 0 be an integer. We define the Sobolev
Space W?(Q) to be the set of functions f € LP(Q) such that for all multi-indices @« € N” satisfying |a| < m

there exists some f, € LP(L2) satisfying

(=1)lel / f,pdx = / fD%pdx
Q Q
for all ¢ € C(Q).

If f € W™P(Q) and |a] < m, we use the notation D*f := f, and call D*f a weak derivative of f.
We note if f € C!*l(Q) then the weak derivative D®f coincides with the classical derivative up to a set of
measure 0.
The space W™?(Q) endowed with the Sobolev norm
lellymogy = D, 1Dl 1
|a|<m
forms a Banach space. We define VVOm”’ (€2) € W™P(L2) as the completion of C:*(£2) with respect to the norm
I[-1lyms- The following theorem of Meyers-Serrin (which we present without proof) shows when developing

results in the theory of Sobolev spaces, it is often possible to prove a statement only for smooth functions and

argue through density instead of working directly with the definition.
Theorem 2.1. For any Q C R" open, m > 0, 1 < p < o0, the set
{u € C*(Q) : ullymq) < o}

5



forms a dense subset of W"P(Q).

Remark 2.2. Given R > 0 let 7, be a nonnegative smooth function equal to 1 on B,(R) and equal to 0 on
R™\ By(R + 1) satisfying |V'ng| < C for 0 < i < m, where C is independent of R. Given u € C*(R") such

that [|ul|ymsgn < o0, it can be easily shown that nzu — u in the Sobolev norm as R — co. Therefore it holds
Wy (R") = W (R").
Definition 2.2. Let 1 < p < n. We define the Sobolev conjugate p* by p* = n”—_’;.

It was originally proven by Sobolev([41]], using a fairly difficult representation formula, thatif 1 < p < n,
then W'P(R") c L” (R"). We present the proof in the form given by Gagliardo[15]] and Nirenberg[37],
which give simple and explicit constants for the embedding. This embedding is commonly referred to as
the Gagliardo-Nirenberg-Sobolev inequality. Because p* > p, the result allows one to in a sense "trade off"
differentiability for integrability in a higher L? space. This is especially relevant in bounded domains (and
compact Riemannian manifolds, see Section 2.2) as in these spaces Holder’s inequality implies the L? spaces

are decreasing as p increases.

Theorem 2.3. For any n > 1 and u € C!(R"),

1
”u”L%(R") S §||Vu||L1(Rn).

Proof. We write u(x) = u(x,,...,x,). We have by the fundamental theorem of calculus (and because u is

assumed with compact support) that for 1 <i < n,

u(x)=/ uxidxi=—/ u, dx;.

i

Therefore we have

[2u(x)| < /oo |u, ()| x;

[o0]

which implies

n

u(x)| 2 < (%)_‘ I1 </_°° |Vu(x)|dxi>m. Q.1

i=1 00
Note that each of the integrals on the right hand side are with respect to only one variable and the value

of /_0:0 |Vu(x)|dx; is a function only of the coordinates (x; : j # i).



We integrate (2.1) with respect to x,. The first term in the product on the right hand side is constant with

respect to x;, so we pull it out of the integral and focus on the other n — 1 terms. We get

/|u<x>|ﬁdx1s(%)E </ |Vu<x>|dx1>"‘1/ H(/ |Vu(x>|dxi>"_ldx1
—0 -0 —00 =) -0

We recall the generalized Holder’s inequality, which states that if 1 < p, < oo are such that ), 1% =1,

1
then [, | 1, fildx < T £ill . We apply this inequality with p; = n—1and f; = ([~ |Vu(x)|dx;)". We

achieve
1 £
00 ; n% 00 pary n n—1
[ i < (3)7 () wueotax, ) (][ 19uwianax
Y 2 -0 i=2 Dxlx,-
where D, , represents the 2-dimensional plane spanned by e/, e; in R". This notation extends naturally to

other subspaces of dimension 2 <i <n— 1.
We continue, integrating both sides with respect to x,. This time the first term in the iterated product
on the right hand side will be constant with respect to x,, so it can be pulled out of the integral, and we

again apply the generalized Holder inequality to the other n — 1 terms, i.e. f, = ( /_o; |Vu(x)|a’x1)E and

fi= (/D

IVu(x)|dx, dx,,, ) " for2 < i <n— 1. We obtain

*1Xi+1

- =y =
u(o)| 7T dx,dx, < (5) / IVu(x)|dx, dx, I1 / IVu(x)ldx,dx,dx, | .
DX1X2 DX1X2 l=3 DX]Xin
Continuing in this manner, iterating the integral of both sides k times with respect to x,...,x, with k < n
results in

/ |u(x)|ﬁdx1 .dx, < (%)nl < |Vu(x)|dx, ...dxk>n_
Xl.uxk D

X1 Xp

(1)

Once the process has been iterated » times, we are left with exactly

n—1
|Vu(x)|dx, ... dxkdxi> .

X1 Xp X

n

n_ 1 e -1
/[R" lu(x)|=Tdx < <5> </Rﬂ |VM(X)|dx>
7



which is what we aimed to show.

Theorem 2.4. Let 1 < p < n. Then there exists a constant C(p, n) such that for all u € Ccl(IR”),

”u“LP*(R”) < C”Vu”LP(IR")'

Proof. We note the fact that p*"=* > 1 implies we are able to apply the case Theorem 2.3 to |u|” = CCI(IR”).

n

We obtain by Holder’s inequality

-1 pra=h 4
IVl ol L

2

=1

o 2,2y < 2P i <

Ln=1

5 n—1

*(n=1) —_—-1
. lull” " and

where p’ is the Holder conjugate for p. Then by a simple calculation [[u'—+ V|| 17

s« n—1

u?" @=/m)| ey = ”””iv“‘T’ so we conclude

pi(n—-1)
”u”LP*(R") < 2—nllvu”LP(R")'

Corollary 2.5. If 1 < p < n, the embedding W'P(R") C L” (R") holds.

Remark 2.6. By considering functions of the form u,(x) = u(Ax) and sending A to co and 0, it is easily seen

that given p > 1, p* is the only exponent for which such an estimate holds.

Corollary 2.7. For all open sets Q C R", if 1 < p < n there exists some C independent of Q such that for all
u € W, (Q)

||u||u*(g) < C”V””LP(Q)

While the proof of the Gagliardo-Nirenberg-Sobolev inequality gives explicit constants for the embedding,

it gives no information on the value of the optimal constant K(1, n, p) for which

1
”””Lp*(Rn) < K(1,n,p)r ||V”||Lp(Rn)-

An equivalent way of phrasing the value of this constant is

IVal?, g,
K(l,n,p)™" = >

mn
ueW Lp(RmM\ {0} ”u”LP*(R")



This question was answered independently by Aubin[3]] and Talenti[43]]. The value is calculated to be exactly

. n—p [p—-1]" IF(n+1) !
P01 [n—p) |Tw/pTa+1-n/pw,

if ] <p<mnand

K(l,n,l):ll n r

n|w,_

where w,_, is the volume of the n — 1 dimensional unit sphere. The extremal functions are known and are

given explicitly by

1 =
Uy (X) = € p+ |x — xq|p/p-1

forc,y > 0and x, € R" when 1 < p < n. When p = 1 the extremal functions are characteristic functions on
balls.

Given a real number p > 1 and an integer m > 1 such that mp < n, we define the higher order Sobolev
conjugate pfn = ﬁ. This is obtained by iterating the first order Sobolev conjugate m times. Using the well
known inequality|V|V'u|| < |V™*'u| for u € C™*!'(R") where r > 0 is an integer (see Lemma 2.11 for a
proof in the more general Riemannian case), it is easy to iterate the Gagliardo-Nirenberg-Sobolev inequality

to obtain

leell it oy < €UVl < ClIVIvul] < C|IV2ull < - S OV ull gy

# # #
me—l (R") me—z(R") me—Z (R™)

for u € W™2(R"). In the case p = 2, integration by parts implies
||Vmu||L2(Rn) = ||A5u||L2(W)

for any function u € C*(R"). Therefore we can phrase the problem of finding the higher order best constant
for

1
”u”szn(R") S K(ma n’ 2)2 ”Vmu”LZ([Rn)

as calculating
Az ull?
- L2R
K(m,n,2)~" := &

#

n
uewm2RM\(0)  ||ul|?
Lzm(R")

By the work of Edmunds-Fortunato-Jannelli[[11] in the case m = 2 and Lions[31]] and Swanson[42] in the

case m > 3, the best constants and extremal functions are given by

2m

F(}’l) = m—1
— am -1
K(m,n2)=rx <F(n/2)> ,:| _Im(n +20)

9



and

n=2m
1 2

u X)=C\ ——/——=
cual®) </4 Flx =P

where ¢, y > 0 and x, € R".

2.2 Sobolev Spaces on Riemannian Manifolds

In this section we define and prove the basic properties of Sobolev spaces on Riemannian manifolds without
boundary and prove the Sobolev embeddings in the compact setting, using the results from the Euclidean case.
We will always assume (M, g) is a smooth complete Riemannian manifold without boundary throughout this
section. All results in this section can be found in the books of Aubin[4] or Hebey[22].

We recall that if T is a j-times covariant tensor field on M, then the covariant derivative VT is a j + 1
times covariant tensor. If u is a C’ function on M, V*u is then the k-times covariant tensor of class C/~* given

by iterating the covariant derivative k times. In local coordinates, we compute the tensor norm

|VEu| = g ... gWe(VEuy, , (Vo) =V ... ViV, ..V, u

JiJk

and define the L? norm for 1 < p < oo by

||vku||u=< / |vku|Pdvg> .
M

Definition 2.3. Given a nonnegative integer k and 1 < p < oo, let C;(M) be the space of smooth functions

whose first k derivatives are in LP(M), i.e.

CI(M) = {u € C™(M) : ||V/ul|,, < oo forall 1 < j < k}.

The Sobolev space H lf (M) is defined to be the metric completion of C,f (M) with respect to the norm

m ;
lall s, = (anni,,) -
j=1

If M is compact, then for any k and p, C,f(M ) = C®(M) = C*(M). However, the Sobolev spaces for
each k and p will be different due to the different imposed norms. One may notice that elements of H ,f (M) are
not a priori functions (or even elements of L”(M)), but rather equivalence classes of sequences of functions.

However, a Cauchy sequence {u; }; with respect to the norm ||- | HI(M) is clearly Cauchy in L?( M), and therefore

10



converges to a limit function u € LP(M). Then it can be shown that if two Cauchy sequences {u;};, {v;};
converge to the same limit in L?(M ), then they must be equivalent (see Hebey and Robert[24], Definition 2.1
for a proof). Therefore we will from now on refer to elements of H l’: (M) by their limit in LP(M).

The first Sobolev embedding we wish to transfer to the case of compact manifold is H 11 (M) C Lnf_l(M ).

As in the Euclidean case, the other embeddings will follow directly from this special case.

Lemma 2.8. Let (M, g) be a compact Riemannian manifold. Then there exists a collection of finitely many
charts

{U,¢) 1 1<i <k}
covering M and constants A, u such that 0 < 1 < \/g <uong,U,)foralll <i<k.

Proof. Let
{U,d) :ieT}

be a collection of coordinate charts covering M. For each x € M, we can find some i, € T and an open set
V. containing x and compactly supported in U, . Then {V; : x € M} forms a covering of M and we take a

1

finite subcover
(¥, ¢, ) 1<j<k}
Because each Vix, is compactly supported in Uix, , there exists A o M forl1 < j < ksuchthat0 < 4 i < \/E <

ong, (V, )foralll <j < k. Taking p = max,;, #; and A = min,;, 4; allows us to conclude. [
Xj X =J= =J =

Theorem 2.9. Let (M, g) be a compact Riemannian manifold. Then the embedding H 11 (M) C L%(M )
holds.

Proof. We need to show that for allu € H ll(M ), u € Lﬁ(M ) and there is some C such that

”u”LL < C||U||H11(M)- 2.2)

n—1
By density it suffices to restrict to u € C®(M).
Let {(U;,¢;) : 1 <i < k} be a finite covering of charts of M satisfying the conclusion of Lemma 2.8.
and let {a; : 1 <i < k} be a partition of unity subordinate to this covering. Letu € H 11 (M) be arbitrary, we
first have immediately by the Minkowski inequality

S o

i

lell 2 ) = "
Ln—T(M) i

11



We also have

/ |V(qu)|dv, = / luVa;, + a;Vul|dv, < / |Vul| + [uVa;|dv, < C||u||H11(M).
M M M
Therefore in order to show (2.2) it is sufficient to prove

lagull, = < ClIV(eu)ll 1.

We recall by the definition of integration on a manifold that

/|aiu|ﬁdug=/ |au(; ()| 1 /gdx
M R7
and

/ |V(eu)ldv, = / |V (u(; ()] y/dx
M R"

where the right hand integrands are compactly supported in R”. Therefore, applying Theorem 2.3 and letting

A and u be as in the conclusion of Lemma 2.8,

n—1 n—1

(/ |a,.u|ﬁdu>7 <u't </ |a,-u<¢;1(x))|dx> "
M R”

n—1

< % / IV (@7 () dx

Rn

n—1
A1
<t |V (u)|dv
2 f, e

and we are done.

]

Theorem 2.10. Let (M, g) be a compact Riemannian manifold. For any 1 < p < n, the embedding L (M) C
H!(M) holds.

Proof. As for Theorem 2.9 we prove the statement for u € C*(M ), the conclusion then follows by density.
Set ¢ = |u|”"""Y/" € H!(M) and apply the inequality

n—1

</ |¢|n"_1dvg>" SC/ IV$l + |¢ldv,.
M M

12



We set ¢ = p*(n — 1)/n — 1 and p’ to be the Holder conjugate of p. We obtain by Holder’s inequality

(/ |u|? dvg> <C )/ |ul?| Vuldo, +c/ Jul? @D/,
M
-1 i/ Z
M(/ |u|quu> </ |W|pdu>
n M M
+c</ |u|qp’dug>” </ |u|1’dug>P
M M

By a simple calculation, gp’ = p* and "n;l — 1% = pi Therefore we obtain

</ Iulpdu>” <cp(” D </ |Vu |pdv>_+C</ Iulf’dvg>;.
M

]

As the following theorem shows, we can iterate the first order Sobolev inequality to show general em-

bedings of higher order Sobolev spaces H?(M) in H}(M). Naturally, having higher differentiability gives

stronger integrability in the lower order space. We first require a lemma.

Lemma 2.11. Let r be a nonnegative integer and let u € C'*'. Then
IVIVul| < [V,

Proof. Let T be the 2r + 1 degree covariant tensor defined by

T

vay...a.p...

5, =VVy . VouVy .. Vyu—V Vg ... VuV, ...V, u
Then writing out the property |T'|?> > 0 in coordinates gives

(V Vg o VouVy o Nyu=VV, . VyuV, ..V, u)

Ay .

12
xg'tg v

When expanding out this product following four terms appear:

A=V, ..V, uV, .. Vyughghh . ghhght gl vV, .V, uV, ...V, u
A=V, Vy ..V,uV, ...V, u ghghh L g¥hghn g’}’”V”V},1 o V,uV, .V, u
A;=V,V, ..V, uV, .. .Vyughgih ghhghn gV NV, uV, ...V, u

Ay=V, ..V uV,V, . Vyughghh . gWhghn gty YV uV,V, ...V, u

13

ghhghn gV, VuY, LV u=V Y, .V uV, .V, u) > 0.

(2.3)



Substituting then gives us

We first recognize

A, = A, = |V*u?|Vul
For the other two terms, we consider |V|V"u|?|?, which in coordinates is given by

gV, (g . gV Vo uV, VY (P gP Y,V uV, Y ).

i 71 Vr

When applying the product rule to in the first half of the above formula, we note by symmetry of g we have

gh gV IV, VuV, L Vu=g"h gV, VY uV Y, LV,

A similar equality holds when applying the product rule in the second half of the formula. We therefore obtain
4A, =4A, = |V|Vul*]%
Hence substituting in our expansion of |T'|*> > 0 gives
0 < 2|V u*|Vu* - %lVlV’u|2|2 = 2|V 2|V ul? = 2|V |V ul|*|Vul?

which immediately yields our Lemma. O

Theorem 2.12. Let (M, g) be compact, m > k > 0 be integers, and p > 1 such that n — (m — k)p > 0. Then
#
the embedding H? (M) C H,f’"”‘(M ) holds.

As usual, we prove the statement for smooth functions and conclude through density. First we prove the
statement in the case k = m — 1. By Lemma 2.11 we have |V"'u| € H [(M). Therefore we apply the first

order Sobolev inequality and Lemma 2.11 to obtain

—1 -1 -1
v ””Lp*(M) <c(vlv® u”le(M) + | V"™ u”LP(M)

< C(vau”LP(M) + ”Vm_lL‘”LP(M)
Similarly, for all 0 <i < m — 1 we have

. " )
”Vlu”LP*(M) <c(v u”LP(M) + ”VII"”LI’(M)'

14



Therefore, summing together the previous two inequalities gives us

el oy < Cllalguey

For the general case, we note n — (m — k)p > 0 implies n — pf‘ > O forall 1 <i < m— k, and therefore iterating

the previous embedding m — k times allows us to obtain
" # #
H(M)C H'_(M)C H* (M) C - C H"*(M).

Remark 2.13. It is easily seen by Theorem 2.12 and Holder’s inequality that if (M, g) is compact, m > k > 0
are integers, and p,q > 1 are such that m — n/p > k — n/q, then the embedding H?(M) C HZ(M) still
holds. In fact, this embedding is compact (we recall an embedding X C Y is compact if bounded subsets of
X are relatively compact in Y'). We refer to Chapter 2 of Hebey[22] for a proof. This is often referred to as
the Rellich-Kondrachov embedding theorem. In particular, the embedding H?(M) C H f: (M) is compact if

m> k.

Remark 2.14. By the well known fact that L?(M)) is a reflexive space for p > 1, it immediately follows the

Sobolev spaces H? (M) are reflexive for m > 0 and p > 1.

15



3 The Higher Order AB Program

3.1 Introduction

Throughout Sections 3 and 4 (except Section 4.2) we let (M, g) be a compact Riemannian manifold without
boundary of dimension » and m > 1 be an integer such that m < g We simplify notation by writing 2* := 2’;
and K := K(m, n). We first note the existence of constants (A, B) such that the inequality holds does not
necessarily follow a priori from the embedding H i(M ) C L (M) as stated in Theorem 2.11. However, one
sees as an immediate consequence of Lemma 4.4 (see also Robert[38]) the existence of a constant C such that

forallu € H2(M),

1 - i - i
EZ/(Azu)ZdUgS ||u||§li(M)ch/(Azu)2dug.
i=0 /M i=0 J M

We therefore overload notation for ||-|| 2, and occasionally use it to represent the equivalent norm

m

el = Y, / (Atwido,
m M

i=0
when there is no confusion.

Using this norm equivalence, we write (1.2)) in the form

2
of m
(/ |u|2"dvg> sA/(Aau)zdug+B||u||§ﬂ o (3.1)
M M m—1

The main focus of Sections 3 and 4 is to discuss the best first constant A in this inequality. Let A(m,n) C R
be defined to be the set of all values A such that there exists some B(A) for which is valid. Let a(m, n) :=
inf A(m, n). In Section 3.1 we present the result of Mazumdar([33|] stating a(m, n) = K. Results of this kind
are often known as asymptotically sharp Sobolev inequalities in the literature. We also state the main result of
the thesis, that it is in fact possible to take A = K in . In Section 3.2 we present another result from [33]],
applying the asymptotically sharp inequality from Section 3.1 to prove an existence result for a higher order
semilinear PDE through the concentration compactness principle of Lions[31]. We also show a sufficient
condition for the solution to be smooth and positive. The use of results from the AB Program to prove the
existence of solutions to PDEs originates from the work of Aubin[2]] in the resolution of the Yamabe Problem
(see Lee and Parker[28]]). Aside from being an interesting result in its own right, this existence is necessary
for proving the best constant A = K in (3.1)) is attained through a blow up analysis of a sequence of positive
solutions u, to the PDE

2*_1
A+ a)"u, =u, .

16



3.2 The Best First Constant

Directly following the proof in Mazumdar[33]], we prove the result a(m,n) = K in two steps. We first
show for any (A, B) such that (3.1)) is true, A > K. We then show that for every ¢ > 0, setting A = (1 + ¢)K

grants the existence of some B, such that substituting ((1 + €)K, B,) in (3.1)) results in a valid inequality.
Lemma 3.1. If A € R is such that there exists B(A) € R satisfying inequality (3.1)), then A > K.

Proof. Suppose there exists some A < K such that inequality (3.1)) holds. Let ¢ > 0. It can be shown by
computing in geodesic coordinates (see Lemma 9.1 in Mazumdar[33]) the existence of some §y(¢), 0 < 6, < i,

such that for any p € M, u € C*(B(6)) (on Euclidean space), and 1 < k < m,

2
# 2_# #
(1-¢) </ |u|? dx) < </ |uoexp;1|2 dvg>
R M

/ (A; (woexp )Ydv, < (1+¢) / (AZu)dx.
M Rn

and

Therefore if (A, B) are such that (3.1]) holds then we have

</ |u|2#a'x> /(A2u)2
RVI

Now let v € C*(R") and let v,(x) := v(Ax) for A € R and x € R". For 4 sufficiently large, supp(v,) C B(5),

H2 (Rn

therefore substituting in the above inequality and applying a change of variable and the chain rule gives

2
F
A—(n=2m) (/ |u|2#dx> < A—("—zm)ijA/ (sz) dx-}-CZ/l (= 2k)/ |A2u|2dx
R~ —€ R~

and sending 4 — oo implies
2
.\ 7 k
</ lo|? dx> < 1+€A/ (A2v)*dx.
Rn 1 — € R~ §

Choosing € such that %A < K gives a contradiction.

Theorem 3.2. Let € > 0. Then there exists B, such that
lull, < (40K [ @furdu, + Bul?,
m 1

and K is the smallest constant for which this holds.

17



Proof. We prove the statement for u € C*(M) and then conclude through density. Let €, ¢; > 0. By Lemma

9.1 in Mazumdar[33|], for all x € M, there exists some harmonic chart ¢ around x and some &, such that

i, > 6, > 0such thatforallu € CC°°(B5X(x)),

2

</ |u|2#dvg>2_# <(I+¢) (/ |u0¢_1|2#dx>2_#
M R*

and
m 2 m
/Rn (87 (woer™)) dx§(1+€])/M(Ag2u)2dvg.

Therefore, by the sharp higher order Euclidean Sobolev inequality as discussed at the end of Section 2.1, we

can set 0, such that for all u € CC°°(B5x (x)),
3.2)

2
2# m
(/ |u|2*‘dvg> s<1<+e)/(Azu)2dug.
M M

By compactness, there exists an integer k, points {x; : 1 < i < k}, and positive values {6, 1 < i < k}
such that M is covered by {Béx,(xi) : 1 <£i < k} such that for any u € CC°°(B5X'(xi)) the estimate (3.2) holds.

It is easy to construct a partition of unity {#, : 1 <i < k} subordinate to this covering such that \/ﬁ is smooth

for all 1 <i < k. Then by the Minkowski inequality, (3.2)), and Lemma 4.5 we obtain
()’ <5 (mre)
M i=1 M
k m
< )UK +e) / (AZ (V) dv,
i=1 M

< (K + e)/ (Agu?dv, + Cllull g2,
M

which is what we intended to show. The second part of the theorem follows from Lemma 3.1.
[

We delay the proof of the following theorem to Section 4.
Theorem 3.3. There exists some B based only on (M, g) and m such that inequality (3.1) holds with A = K.

3.3 Existence Results for a Higher Order Semilinear PDE

(3.3)

m—1

Lu=A"u+ Z c;A'u
i=0

For the sake of simplicity, we consider only differential operators L of the form

18



where ¢; are positive real numbers. Given u € Hrfl(M ), we interpret f o uLudv, in the sense of distributions,

1.€. - |
/uLudvg=/(Aiu)zdvg+2ci/(A§u)2dvg.
M M i=0 M

It is obvious L is coercive in the sense that there exists A > 0 such that f o uludv, > 2 f o u’d v,. In fact, by
the Sobolev embedding theorem and the norm equivalence discussed in Section 3.1, there exists some A > 0

such that
/ uLudv, > Alull®>, duv,. (3.4)
M

L2 (M)
Given f € L'(M), we say u € Hi(M ) is a weak solution (or a solution in the sense of distributions) to the

PDE Lu = f if for all $ € C®(M),

m—1

/ AZWAL(P)dv, + Y ¢, A W)A($)dv, = / fedv,.
M i=0 M

We briefly review some classical results in the theory of linear elliptic PDEs, stated without proof and sim-

plified in order to apply directly to the needs of this section.

Theorem 3.4 (Strong Maximum Principle). Let a > 0. Ifu € C*(M) and Au + au > 0, then either u = 0 or

u > 0 everywhere.
Proof. Robert[39], Proposition 4.3. O

Theorem 3.5 (Schauder Theory). Let L be as in (3.3) and f € Cg(M) for p € (0,1). Ifu e Hi is a weak

solution to Lu = f, then u € C*"P(M) and there exists C based on (M, g) and Z;’:OI c; such that

||u||c2m,/i(M) < C”f”cO,ﬁ(M) + ||”||CO(M)-
Proof. Nicolaescu[36], Theorem 10.3.11 O]

Theorem 3.6 (Existence and Uniqueness). Let L be as in (3.3). Let f € LP(M) for 1 < p < . Then there

exists a unique weak solution u € Hé’m(M Yto Lu= f.
Proof. Mazumdar[33]], Proposition 8.2. Note the uniqueness part of the theorem is trivial by coercivity. [

Corollary 3.7. Let L be as in |i Suppose L can be decomposed as Lu = H:"zl(A + a,)u where a; > 0 for

all 1 <i < m. Then foru € C*"(M), if Lu > 0, then either u = 0 or u > 0 everywhere.
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We aim to find weak solutions to the PDE
Lu=p;  flul*u (3.5)
for positive functions f € C%**(M) where

= inf I(u
Hir ueH2(M) @)

by minimizing the functional
f v ulLudv,

I, ,(w)= -
o

(fu [ lul*dv,)?

over the set
N, = {u € H (M) : / fludo, = 1.}.
M

By li we have y; » > 0. By homogeneity, minimizing over N # 1s equivalent to minimizing over all of
HZ(M). Therefore if u, € H(M) is a minimizer for I, ,(u) over N, then for ¢ € C*(M), the property

—| T+ =0

=0

implies u,, satisfies the definition of a weak solution for for (3.5)).

Ideally one would like to take a minimizing sequence {,;}; C N s such that I, ,(u;) — and show it
converges to a minimizer u, € Hi(M ). Unfortunately the lack of compactness of the embedding Hi(M ) C
L¥ (M) prevents us from achieving this in general. However, by the work of Lions[31], we can describe the
sense in which this loss of compactness occurs. The following concentration compactness lemma states that
if a bounded sequence in Hi(M ) does not converge in L (M), then it must concentrate at countably many
points. Additionally, there is a sense in which this concentration satisfies a sort of Sobolev inequality. Our

argument follows the presentation in Mazumdar[33]] and Neumayer[35].

Lemma 3.8. Let (M, g) be a smooth manifold of dimension n and let 2m < n. Let {u;}, be a bounded
sequence in H,i(M ). By reflexivity of H,i(M ), the Riesz Representation Theorem for Radon measures, weak
compactness for Radon measures, and the Sobolev embedding theorem, there exists u € Hjl(M ) and Radon

measures v, u such that up to a subsequence,
® u, — uweakly in Hi(M).
® 4 = (Agui)zdug — u weakly in the sense of measures.

20



# .
o v, = |ul’d v, = Vv weakly in the sense of measures.

Then there exists an at most countable index set 1T and a set of points {x; € M : i € 1} and weights

{a; €R : i €1} such that

#
o v=ul? dv, + Dicr a;6,

2

o u>(Auldv, + =Y @6,

2
~ ¥
In particular Y,,_; a” < co.

Proof. First we consider the case u = 0. By Theorem 3.2, for all ¢ > O there exists B, such that for all

¢ € C®°(M)andforall k €N,

</ |¢uk|2“dug>2 g(K+e)/(Ag(qbuk))Zdvg+Bell¢ukIIH;_l(M>-
M M

Let € be fixed for now. Because H,i_l(M ) is compactly embedded in Hrfl(M ) (see Remark 2.13), the second
term will converge to 0 as k — oo. Expanding the first term (or applying Lemma 4.5) and using the weak

convergence of u, to 0 implies

(K +¢) / (A% (pu))Ydv, > (K +€) / ¢*du
M M

as k — oo. After sending ¢ — 0 we therefore have for all p € C*(M)

(/ |¢|2“dv>2_# SK/ Sdu.
M

This can be thought of as a "reverse Holder’s inequality" (contrasting with the use of the usual Holder’s
inequality to bound lower L? norms with higher ones). Because C*(M) is dense in L?(M) for all Radon

measures, it follows by approximating characteristic functions that for any Borel A C M
(V(A)F < Ku(A) (3.6)

Because y is a finite measure, it has at most countably many atoms {x;},c; C M where I is a countable

index set. Therefore, forany x € M \ {x;,},.,, we can let A be an open set containing x with measure p(A) < %

iel»
and we will have

1> Ku(A) 2 (VA)F > u(A)
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i.e. v is absolutely continuous with respect to 4 on M \ {x;} We can therefore calculate the Radon-

iel
Nikodym derivative f suchthatdv = fdu, and by a version of the Lebesgue Differentiation Theorem applied
to manifolds (see Federer|[13|], Chapter 2), we have for all x € M \ {x;},c;.

=i D it
r=0 #(Br(x)) r—0

Therefore v is supported on {x;},c; and we write
V= Z ;6. .
i€l

Then considering any x; for i € I, applying (3.6) to B,(x;)), and letting r — 0 then gives us
> Lo ®
. — . 2
u(ix;h) 2 2(v({x;])

Now in the case u # 0, we set v, = u,—u — 0. Up to a subsequence we assume 1, — u almost everywhere,
which is possible by strong convergence in L>(M). We recall the Brezis-Lieb Lemma (see Brezis-Lieb[6])

states for any p > 1 and any complete measure u on M,
lim / ||u|” — |u P + |u— uk|p| du=0.
k— o0 M

As a consequence we have V, := |uk|2#d Vg, =V — lu|?d v, weakly in the sense of measures. It is also easily
seen that ji, = (Ag(vk))zd Vg = U — (Agu)zd v, weakly in the sense of measures. Therefore the proof is

completed by applying the case u = 0 to the sequences v,, fi,, and V,.

]

The following theorem states that there exists a "minimal energy", below which we can guarantee a min-

imizing sequence converges strongly to a C*"(M) solution to (3.53).

Theorem 3.9. Suppose L is as in (3.3) and f € C**(M) is positive. Then if

1
:ML,f < 2 s
K(max,, f)?
then there exists a C*™ minimizing solution u to
#
Lu = flu)* u.
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1

Proof. Assume inf N I(uw) < —. Let {u,}, C N + be a minimizing sequence for I(u).Then u, is

K(max,, f)2*
bounded in H? and therefore if we define v, as in Theorem 3.8 then

Ve = |u0|2#dvg + Z a;6,

i€l
where u, is the weak limit of u, in L2'(M). An immediate consequence of the defintion of weak convergence
in the sense of measures and the fact that M is compact is if we define V, = f|u, |2#dvg then

V= flugldog + Y fxpab,.
i€l
Applying again the definition of weak convergence we obtain
1 = lim / dv, = / Flugl¥dv, + Y f(x)a,.
k—o0 M k M 0 s zezl

If we define the measure 4 such that dA = fduv,, then u;, — u, in L¥ (M, ). Therefore by the well known

fact norms are lower semicontinuous with respect to weak convergence

/f|uo|2’*dugglimkinf/f|uk|2“ =1.

Letr €[0,1] = / i |u0|2#dug. If t = 1, then we have strong convergence in L? and will be able to conclude
u is a weak solution to the PDE. Therefore we assume ¢ € [0, 1). Then by Lemma 3.8, the strong convergence

of u, — uyin H?_, and the fact that )., f(x,)a; = 1 — we obtain

1 7
Mp > / uyLuydv, + — ) af
f I g K ,ezl
2 1 ¥
2 1Py o+ — Zaf
K i€l
1 2
- ) (D)
K(max,, f)? ic1
2
2 (1-07 <f(x,-)a,- ) e

tz#,uL’f+ B 1—;
K(max,, /)7 icI

2
> tz—#ML,f +

(1-1)F
K(max,, f)#

\
.
e

Hi s +

2 2
>t pp+ (1 —-0Fpy

> Hrr
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and we have a contradiction, therefore we must have = 1. Again applying lower semicontinuity of norms

under weak convergence, we have
/ ugLupydv, = I(uy) < I}im I(u,)
M — 00

and we conclude {u, }, converges to a minimizer u, € H2(M). Therefore u, is a weak solution to lb For
a proof of the C?"(M) regularity, we refer to the appendix (Section 8) of Mazumdar[33].
[

Now, in the case L decomposes as a product of second order operators, we follow the proof of Proposition
4.1 of Robert[39] to obtain a positivity result. We will then have the necessary background to prove Theorem

3.3.

Theorem 3.10. Suppose L as in ll decomposes as a product of second order operators ]_Lm= ((A+a)u. Let
f € C®(M) be positive. Suppose the assumptions of Theorem 3.9 hold. Then the C*"(M) solution to (3.5)

can be chosen to be smooth and positive.

Proof. Let u be the C*"(M) solution solution to guaranteed by the conclusion of Theorem 3.9. Because
|Lu| € C*!, by Theorem 3.5 and 3.6 there exists v € C*"(M) such that Lv = | Lu|. Then because L(v+u) >
0, by Corollary 3.7 we have v +u > 0. Because u # 0, we must have v > 0 in the conclusion of Corollary 3.7.

We calculate, applying Holder’s inequality

/3, vLvdv,
(/y flvlz#dug)zl#
_ [y brp folul®du,

(/y f|v|2#dvg)2£#
Sy PO T do,
(fy FloPde,)
| #_j
(o £0%)% oy W 7o) =
(/y flulz#dug)zl#

(Il o) =
(fy FloPdv,)

IL’f(U) =

SHUpy

=HLy
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Then because v > |u| and u € N, we continue the calculation

#_
271 o

[y ul? fdo,) ™ =
Hiy ((}4 P |2#dg))% S MUy (/M |u|2#fdvg> = MU s
M v Ug ’

By definition we also have u; , < I; ,(v). Thus, all of the inequalities in the calculation are equalities, and v

is a minimizer for I; ,. In particular we have v = |u| > 0. By continuity of u we must have u < 0 everywhere
or u > 0 everywhere. If u < 0, we replace u with —u to obtain a positive solution. Then by bootstrapping the
PDE

Lu=f el

we obtain u is smooth. ]

4 Proof of Theorem 3.3

4.1 Structure of the Proof

In Section 4.2 we provide several lemmas which pertain to the Sobolev spaces H ]f(M ) in general. While they
are all necessary in order to prove Theorem 3.3 and written with the sole purpose of proving the theorem,
they can easily be applied to other higher order problems (see Section 3 for examples). The main usage of
the lemmas is the ability to integrate by parts around a smooth function in in a way which only affects lower

order error terms, for example

/nuAkudvg = /nAuAk'ludUg + lot

where # is some fixed smooth function.
The theorem is then proven in Section 4.3 in two parts, following the structure of the second order case in
Hebey[23]]. The proof is by contradiction. Assuming the inequality (3.1)) is false, we first perform a concen-

tration point analysis of a sequence of positive functions u, solving
_ 2%
(A+a)"u, =u,

and satisfying / ui#d v, = 1forall @ > 0. The functions will "blow up" as @ — oo and the energy (in

an L2 (M) sense) will concentrate around a single point up to a subsequence. Section 4.3.1 is dedicated to
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obtaining both local and global information about this concentration. Then in Section 4.3.2 we show the
estimates from Section 4.3.1 imply a contradiction to the sharp higher order Euclidean Sobolev inequality,
completing the proof of Theorem 3.3.

All constants C in Secton 4.3 will be independent of the parameter a. All unmarked Laplacians and
integrals without volume elements will be assumed to be with respect to the Riemannian metric g. We occa-
sionally choose to state them anyway to reduce confusion when other metrics are involved (for example, Steps

1 and 2 in Section 4.3.2).

4.2 Preliminary Lemmas

In this section (M, g) will represent some smooth complete n-dimensional Riemannian manifold without
boundary with bounded curvature.

In the following, given two tensors A, B we adopt the notation A x B to denote a linear combination
of contractions of A @ B, possibly after raising and lowering indices using the metric and including the
trivial linear combination 0 - A @ B. We write A %, B in the case each element of the linear combination
is covariant of degree k. Given a permutation ¢ of {1, ..., k} and a covariant k-tensor A we define ¢ - A by

(c-A)y ;, =A - Weuse the notation A, B to denote a sum of the form

id(l)"'[o’(k
Z o, -(Ax, B)
i=0
for some {o; : 1 < i < m} permutations on {1,...,k}. We have the relation V(A% ,B) = VA%, B +
A, VB.
All integrals will be assumed to be with respect to the Riemannian volume element dv, unless explicitly
stated otherwise. All Laplacians will be assumed to be with respect to the metric unless explicitly stated

otherwise. We let R represent the Riemann curvature tensor.

Lemma 4.1. Let k > 0 be an integer and u € Hlf(M). Let 6 be a permutation of {1, ..., k}. Then

Viu—o-Viu= ) V Rk V"
0</<k-3

Proof. Because the statement is immediate for k = 0, 1,2, we operate under the assumption k > 3. We first

consider what happens when o is a transposition of two consecutive elements (j j + 1) where j < k — 1. In

26



this case, we have

k
Vi Vi (VY =V, VOV, V=V, LV, > RS, ViV, VY, V)
I=j+2

This shows in this case by a Leibniz rule applied to covariant differentiation (see Gavrilov([]16]]) that
Viu—o-Viu= ) VR*Vu
0<i<k-3
Now for general o, we write ¢ = 7, ... 7; where 7, is a transposition of consecutive elements. Let us also write

6,=1,...7 for 1 < p < g. Then we write V*u — 6 - V¥u as a telescoping sum

Viu — 6, Viu + 6, Viu — 6, V¥u-- — aq_lvku +0,- Viu— o - Viu
and therefore by applying the case of a transposition to each difference we obtain
Viu—o¢ - Viu = Z V! Rk V=21,

0<I<k-3

O

While Lemmas 4.2-4.9 are stated for functions inu € H ]f(M ), by density it will suffice to prove them for

u € C*(M), therefore all functions from now on will be assumed smooth.

Lemma 4.2. Let k > 0 be an integer. Let

(ki ky) € {(k,k),(k—1,k+1),(k—=1,k)}.

Foreachi € {1,2}, let j, < %, let T; be the operator taking a k; degree tensor and contracting on the last j;
pairs of indices, i.e. Tji(Vk"u) = Vk=2i Ay, and let o, o] be permutations on {1, ... k;}. Let S be an arbitrary
compactly supported tensor of degree q such that g > 2|(j, — %) — j,|. For each k, —2j, degree covariant
tensor A, let A><S denote some fixed contraction (possibly after raising and lowering indices using the metric)
of AQ S of degree k| —2j, where all contractions either occur within S or take one index from each of A and
S i.e. no contractions occur within A. Then there exists some C based on n, k, max |.S|, max |V.S|, max |V2S|
and bounds for R and finitely many of its derivatives such that for all u € Hlfz(M ),

k—1
‘/(le(a] -Vklu),sz(62~Vk2u)¢%S)—/(le((y;~Vk1u),sz(0';-Vk2u)¢%S)' SCZ/ [Viu|> (4.1)
M M i=0  supp(S)
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Proof. We note * immediately grants the existence of some operator %’ such that for each k, — 2j, degree
covariant tensor B, B+'S' is some contraction of B ® .S of degree k, — 2, (where all contractions are within

S or take one index from B and one index from .§') such that for all k, — 2j, degree covariant tensors A,
(B,A%S) = (BX'S, A).

We prove the statement in the case 6] = o, = Id, the full statement then follows by a simple application of

the triangle inequality.
We have
[ @ VT e, Vos) = [ (1,0, T (Puges)

= /M (T, (0, - V1), T; (0, - Vu)*S) — /M (T, (6, - Vo), T, (V¥2u)S)

+ / (T, (6, - Vo), T, (V2u)x.S) — / (T, (Vou), T, (Vu)xS).
M M

Then considering the first difference we have by applying Lemma 4.1 and extending our % notation such that

instances of A*g)B represent fixed choices for A%, B,
/M (T, (o, - V), T, (0, - VFuyxS) — /M (T, (0, - Vu), T, (VR2u)xS)

= / (T, (0, - V1), T; (0, - V*ou — V2u)x.S)
M

= /M (le(al-V"'u),sz< > V’R*;‘;sz—z—’u) *S)

0<I<k,-3
= / (I}I(GI-V"Iu),Th( > V’R*E{])sz‘z"u)‘;%S)—(leVklu,sz( > V’R*;”vkrz—’u)w)
M 0<i<k,—3 ’ 0<I<k,—3 ’
+ / (T VhuT, [ ) VRADIVEZ My ) x8)
M 0<I<k,-3 ?
_ I D ygk,—2-1 l (D ygky—2-1
—/(TJ.I< Y, VRRIVE u),sz< Y, VRxVE u>¢‘<S>
M 0<i<k,-3 0<I<k,-3
+ / (VA2 AT, ) VIRRDVE | %),
M 0<I<k,—3 ’
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We clearly have

/ (Tj]< > V’R*f)vkl—Z—’u>,Th< > V’R*jjz)vkr?—’u) %)
M 0<i<k,-3 1 0<I<k,-3

If (k;,k,) € {(k=1,k+1),(k—1,k)}, then we also clearly have

/]W<Vk1—21'1 Ajlu’ sz < Z VIR*ZZ)Vk2—2—1u> *S>

0<i<k,—3

k—1

<c) / |Viul.
i=0 ¢ supp(S)

k-1
<C Z/ IViulzdvg.
i=0 < supp(S)

In the case (k,,k,) = (k, k), we need to integrate by parts. If 2j, = k then after integrating by parts and

applying the Leibniz rule, we obtain

/(Vkl—zlejlu’]"jz< Z VIR*E:Z)vkz—2—lu> *S>
M 0<i<k,~3
= / <A"u,< > V’R*k_jzvk-z-’u> %)

M 0<I<k-3
< /(VAk_lu,< D v’R*k_j2+1vk-1-lu> *,5)

M 0<I<k—2

+ / <VAk-1u,< D VIR*k_jZVk'2‘Iu> *,V.S)
M 0<I<k-3

k—1
<c)y / |Viu2.
i=0 ¢ supp(S)

If 2j, < k then a similar computation gives

/ <Vk—2j1 Ajl u, T’jz < Z VIR*il)Vk_2_lu> *S>
M

0</<k-3

/ <V’<-211-1Ahu,diu< Z VIR*k_ZjZVk_2_1u>*S>)
M 0<I<k-3

k-1

<c) / |Viu|?
i=0 < supp(S)
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We also have, applying Lemma 4.1,

/M (T, (o, -Vku),sz(Vku)*S)— /M (le(Vku),sz(Vku)*S>’

= /M (le< > V’R*kvk'2‘1u>,7‘jz(vku)¢%5>

0<I<k-3

/ (le< Z V’R*kvk‘2‘1u> *' S, VA2 Aly)
M 0<I<k-3
k—1

<C Z/ |Viul?
i=0 < supp(S)

after integrating by parts similarly to above. Therefore we have obtained (4. 1)

]

Lemma 4.3. Let k > 0 be an integer and n be an arbitrary compactly supported smooth function. Then there
exists C, based on n, k, and bounds for R and finitely many of its derivatives, bounds for n and finitely many
of its derivatives such that for all u € Hlf(M),

'/mWW—/mMW
M M

k—1

<c) / |Viuf?
i=0 < supp(n)

Proof. Throughout the proof we use the notation A = B to mean

k—1
A-sl<cy [ v
i=0 / supp(n)

. This clearly satisfies the assumptions of an equivalence relation. We therefore perform the proof of Lemma

4.3 by finding expressions A, ... A, such that

k
/ n\Veul> = A, = A, = / n(A2u)>.
M M

We prove by induction. The statement is immediate for k = 0 and k = 1. Now let kK > 2 and assume the

statement holds true for k — 2. We apply Lemma 4.2 to obtain

/ n|Veu|* = / nVh ... V’Akuvi1 .Viu= / nVivi . V"k—luvi1 ..V,u 4.2)
M M « M «
We then integrate by parts on the right hand side of (4.2)) to obtain
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/ nViEVh L VeV, LV u= —/ ViegVir ... ViuV, ...V, u—/ nv ... V"’<*1LtV"’<V,.1 ..V, u

M 1 k M 1 k M k
(4.3)

Changing in order of indices on the first term on the right hand side of (4.3]) by Lemma 4.2 and integrating by

parts we obtain

—/ ViegVi .. Vik—'uVil Vi u = —/ VigVi ... V"k-luVikVil ...V u
M

T—1
M

:—/ AV .. VuV, LV, u+/ VgV, Vit . V%=V, ..V, u
M k—1 M k 1

and therefore after subtracting the second term over, we obtain
k-1

< CZ/ |Viul. (44)
i=0 < supp(n)

/ pVAVI L VY, LV, u = —/ nV" L VEUVEY, LV, 4.5)
M M
For the right hand side of (4.5]), we once again change the order of the indices with Lemma 4.2 and integrate

'/ ViegVir ... Vi%1uV, ...V, u
M 1 k

Therefore

by parts to obtain

—/ nV' . VeV, LV, u = —/ nV' L VUV, LV, Au
M

v -

—/ nVh . ViV, V. ...V, Au

M k-1 1 k=2
\Y

M

AV VAL A VIR v Au+/ nV, V.. VeV, .V, Au
1 k=2 M k—1 1 k=2

T—1

= / vV, nVi... Vik—'uVil <o Vi Au +/ nvh ... V’AHAMV,.1 .V, Au (4.6)
M

Lp—1
M

Then for the first term of (4.6) we again reorganize the indices to obtain

/ Vik_lnvil V"HMV,.1 Ve A= / Vik_lnvil V"k—luAV,.1 ..V, u
M M

=]

Integrating by parts gives

Tg—1

/ V, nV'" . VWAV, LV, u= / VAV, gV VeV, VoY,
M M

Te—1

+/V. nVeV VeV, VLV,
M
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We clearly have
k-1

/ ViV, gV VeV, Y, LV, u<C Z/ |Viu)?
M ) - i=0  supp(n)

and by reorganizing indices with Lemma 4.2 and then relabeling the indices we obtain
/ Vik_anikVil Vik-luV,.kV,.l oV u= / V,.k_anil Vik-ZVikVik-luV,.l ...V. V.u
M M

= / ViV ... V’Ak—luviI o Vou
M

k-1

<C Z/ |Viu|?
i=0 < supp(n)

by (4.4). This shows that

— / AV L VISV, LV, u= / nVh L Vi AuV, LV, Au= / 7|V (Au)|? 4.7
M M M

By the induction hypothesis, we have

‘/mWWMW—/mﬁW
M M

which implies

k-3 k—1

<cy [ wvaorsc¥ [
i=0 < supp(n) i=0  supp(n)

/ 1| VE2(Auw)|? = / n(Azu)?. (4.8)
M

M

Therefore by (4.2)), (4.5), (4.7) and (4.8)) we have proven Lemma 4.3.
O

Lemma 4.4. Let n be a compactly supported smooth function, k > 0 be an integer, and r > 0 be a real
number. Then there exists a constant C based on n, k, bounds for R and finitely many of its derivatives, r, and

bounds for n and finitely many of its derivatives such that for allu € H Z(M ),
k=1

‘/nww%%—/nm%YSCZ/' (Azu)?
M M i=0 < B, (supp(m)

Proof. We prove by strong induction. The statement is immediate for k = 0 and k = 1 as the left hand side

vanishes. Now fix k£ > 2 and assume the statement holds for all j < k. Let n, be a smooth nonnegative

function such that #, = 1 on supp(n) and n, = 0 on M \ B:(supp(n)).
2
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Then we apply Lemma 4.3 and invoke the (strong) induction hypothesis with 7, taking the place of n and

% taking the place of r to obtain

‘/ nIV"uIZ—/ n(ATu)| <
M M

k-1

cy / |Viu|?
i=0 ¢ supp(n)

i—1

<C / n(ATu)? + / (ASu)?
% ( M jgo B (supp(n))
1

]

Lemma 4.5. Let k > 0 be an integer. Let n be a compactly supported smooth function and r > 0 be a real
number. Then there exists a constant C based on n, k, bounds for R and finitely many of its derivatives, r, and

bounds for n and finitely many of its derivatives such that
k-1

' / (A% (u))* — / RISDEESeD) / (A2u)?
M M i=0 7 B.(supp(n))

Proof. First suppose k is even. We write k = 2/. We recall for any tensors S, S, of the same type we have

A<S1, Sz) = <S1AS2> - 2(VS1, VSz) + (SzAS1>

Let us define operators T; on tensors for i € {0,1,2} by T, = 1d, T, = V, T, = A. Then for any multi-
index f = (B, ..., B) € {0,1,2}', we define Ty = T, ... T, . Given f, we define f' = (2~ f,...,2 = f).
Finally we define j; to be the number of 1’s appearing in f. We note j; = j,, therefore if .S}, .S, are tensors

of the same type, so are TS, and T},.S,. Then we write the /th Laplacian of the product of two functions as

AGuy = ). (=2Y(Tu, Tyn),. (4.9)

pe{0,1,2}

This formula can easily be proven by induction.

We then have
/ (A (qu))* = / B (2 Ty, Ty (T, Ty, (4.10)
a,pe{0,1,2}!
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It follows that to estimate | /, (A'(qu))* — [, n*(A'u)?|, it suffices to estimate the terms on the right hand side

of (4.10) apart from the principal term of /,, n*(A'u)* corresponding to the case |a| = || = 2/. We separate
this sum into three cases modulo symmetry in a and S.

Case 1: |a| <2/ —1 and |f| < 2[ — 1. In this case, on supp(n), we have

(_2)jﬂ+ja<Tﬁua T ’rl>g<Tau’ T(x’”)g S ClTaul |Tﬁu|
< C(Tul® + | Tyul?)

< C(IV™u|? + | VIPly|?)

Letting 7, be a smooth nonnegative function such that #;, = 1 on supp(n) and n, = 0 on M \ B:(supp(n)) and
2

applying Lemma 4.4 with % as our value of r results in
20-1

sc/ n1(|V|“|u|2+|V|ﬁ|u|2)§CZ/ (Azu)
M i=0 < B(supp(n))

Case 2: || <2/ —2 and |f| = 2. In this case we integrate by parts and argue as in Case 1 to obtain

‘A{(_z)jﬁ+ja<Tﬂua Tﬂ/n>g<Taua Tg’”)g

‘/M(_z)j“’?Al“<Tau’ Ta"7>g

— ‘(_z)fa / (VA= u, Vi) (Tu, T, n) + (=2) / n(ViA’_luV,.Tau,Ta,n)g
M M

+ (=2) / n(V'A~' vV, T, n, Tu),
M

21-1
<cy [ @y
i=0 ¢ B.(supp(m)

Case 3: |a| =2/ — 1 and |f| = 2!. In this case we have

/ (=2 Ty, Tyn) o (Tyt, Ty, = —2 / nA'u(AV Ay, Vi)
M M

for some y, + y, = [ — 1. In the following computation (and the rest of the proof), we extend our notation
A = B from the proof of Lemma 4.3 to mean

21-1 21-1
A-sl<cy [ wupscy [ st
i=0 < supp(n) i=0 7 B.(supp(m)

where the last inequality is by an application of Lemma 4.4. Integrating by parts and reorganizing the indices
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by Lemma 4.2 we obtain

/ nA'u(ANV Ay, Vi) = / A'u(ATV A”u, V(7?))
M M

= N—= =

/ Au(VA='uvn?)
M

1
2

/ (VPAT ', VA= 'u @ V(ii?)) + / (V2(H), VA 'u @ VA u)
M M

2
1 2=l 2 1 -1 -1 2,2
=7 (A2M)A(71)+§ (VAT 'u® VA u, V=(n)).

M M

Arguing as in Case 1 then shows
20-1

<c) / (A3u)?
i=0 < B.(supp(n))

'/ (_2)jﬁ+ja<Tﬂuﬂ T r”l)g(TaU, Tg”])g
M

and therefore Lemma 4.5 holds.
Now suppose k is odd. We write k = 2/ + 1. Using our computations for A’(yu), we obtain
/ IVA (qu)|* = / Z (=2)rta ((V'Tyu, Tym) (V, T, Tyn), + (Tpu, ViTyn) (V,T,u, Ty, ) do,
M M 4 pef0,1.2)!

+ / Z (=2)/stia ((ViTﬂu, T ,n)g(Tau, V,.Ta,n)g + (Tﬁu, VT, ,n)g(Tau, V,.Ta,n)) dug.
M 4 pef0,1,2}!

We once again have a principal term of /[, #*|VA'ul|* as the first of the four terms when |a| = |8] = 2I.
Therefore to prove Lemma 4.5 we once again split the other terms into cases modulo symmetry and estimate.

Case 1: |a| <2/ —1and |f| < 2] — 1. The details are virtually identical to the proof of Case 1 when k is
even.

Case 2: |a| <2/ —2 and g = 2. In this case, we can still apply the argument from Case 1 to the second
term in each row of the above formula. We perform the argument from Case 2 when k is even on the first term

in the first row, the first term in the second row is handled similarly. Integrating by parts and estimating as in

Case 1 results in

='(_2)fa / A'uV'n(V,Tu, Tyn), + (—2) / nA'u(AT,u,Tyn),
M M

’(_z)ja / nViAlu<ViTau’ Ta’r’)g
M

+ (=2)= / nA'u(VT,u,VT,n),
M

21

<cy / (Au)?
i=0 < B, (supp(n))
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Case 3: |a| =2/ — 1 and || = 2/. Once again the second term in each row of the sum can be estimated
using the methods from Case 1. The first term in the second row can be estimated using the method from
Case 2, leaving us with only one term to consider. We calculate, writing 7, = A""VA” where y, +y, =1 -1

as in Case 3 of (i), and integrating by parts and changing the order of indices with Lemma 4.2,

/ V' AUV, AN VIAPUY i = / VAUV, ANV AR )
M M

N—= NI—= = =

/ VAWV, VAV (%)
M

— / AIM<AVAI_IMV(7’]2)> _ % / AIM<V2AI_1M, VZ(”2)>
M

M

/ A’u(VA’uV(nz))—% / A'u(VEA"u, V()
M

M
= l/(A’u)zA(nz)—l/ A'u(V2 A" u, V2(r))
4 Jm 2 M

21
<c) / (Atu)?
i=0 < B, (supp(m)

Case 4: |a| = 2/ and |f| = 2/. The first term is the previously mentioned principal term. The second
term in the first row and first term in the second row can be estimated using the method from Case 3. The
second term in the second row can be estimated using the method from Case 1. This completes the proof of

Lemma 4.5.

]

Lemma 4.6. Let n be a compactly supported smooth function and r > 0 be a real number. Leti,, i,, j,, j, € %N
be such that i, + i, = j, + j, = k. Then there exists a constant C based on n, k, bounds for R and finitely

many of its derivatives, r, and bounds for n and finitely many of its derivatives such that

k-1
'/ nAiluAizu—/ nA ‘uA2y SCZ/ (Aéu)z.
M M i=0 7 B.(supp(n))

Proof. We prove
k-1

‘/ nuAku—/ nAuA1y ch/ (Azu)? 4.11)
M M i=0 / B,(supp(n))
and
k-1 _
V r]uAku—/ n(Vu, VA u) ch/ (Azu). 4.12)
M M i=0 ¢ B,.(supp(n))

The full statement then follows by a simple induction.
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We calculate

/nuAkuz/ A(nu)Ak'luz/ nAuAk'lu—Z/(Vn,Vu)Ak_1u+/ uAnA*y. (4.13)
M M M M M

We integrate by parts on the final term of (4.13]) and we have

k—1
/uAnAk_lu:/ A%(uAn)A%uch/ (Azu)?
M M i=0 ¢ B.(supp(n))

after expanding with and applying Lemma 4.4. For the second term of (4.13)), we integrate by parts and
apply (4.9) to obtain

2/(Vn,Vu)Ak'lu=2/ A%(Vn,Vu)Ak_;lu
M M

=2 / (Vi, AT Vu)AT u + / > T Tyn) A
M M pefo,1.2)k\{@.....2}

and computations as in the proof of Case 1 in Lemma 4.5 show

k-1

/ Y (T TymATu<CYy, / (Au).
M pef0,1.2}k\{(2.....2} i=0 < B,(supp(n))

.....

For the remaining term, we reorganize the indices with Lemma 4.2 to obtain

k=L k=L k1 k=L 1 kL, kL,
(Vi, A7 Vu)A7u= [ (Vn,VAZ u)A7u= = An(A72u)"<C (A2 w)
M M 2 Jm

supp(n)

and we have shown (4.11)).

For (4.12] we integrate by parts twice to obtain

/ nuA*u = / (V(qu), VA*u)
M M
=/ n(Vu,VAk_lu)+/ u(Vn, VA*u)
M

M

=/ n(Vu,VA"_lu)+/(Vu,Vn)Ak_1u+/ uAnA*u.
M M M

The latter two terms are identical to the latter two terms of (4.13)) and we conclude by applying the same

computations. ]

Lemma 4.7. Let k > 0 be an integer and i, j,,i,, j, be integers such such that i, +i, = j, + j, = k. Let

r > 0 be a real number. Let n be a compactly supported smooth function. Then there exists C based on n, k,r,
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bounds for R and finitely many of its derivatives, and bounds for n and finitely many of its derivatives such

that for allu € HX(M) and p > 0,

k—1 k—1-i

/ (A + B 1u(A + B)u < / (A + Y u(A + pY2u+ C / 3N A

M M B,(supp) =0 j=0

where C is independent of u and .

Proof. We begin by stating a simple but useful reindexing identity. Let a;, b, be real numbers for 0 < i < k.
Then

k j k
Z Y ui-sb) = Zak_,. > b) (4.14)

To prove this we use the substitution i’ = i — j to obtain

k k k k k k k—j k  k—i
Zaktzb_zzakwm Zzakwﬂ ZZ% by = Zzak —r-5b;
i= i=0 j=0 j=0 i=0 j=0 i"=0 i’=0 j=0

Now to prove Lemma 4.7, we will show for all k,, k, such that k, + k, = k and k, < k,

k—1 k—1-i

' / (A + P 1u(A + By — / n(A+ pN*u(A + gyt < C / O3 B @4.15)
M M B, (supp(n) i=0 j=0

and full statement immediately follows by a simple induction. First we prove the case of (4.15)) where k, =

0,k, = k. We expand, defining ¢, such that (A + ) = ¥ ¢, f*Alu to get

/ nu(A + pYu = / nuA(A + ) u) + / Pru(A + Y u)
M M M

k-1

= / nuA <Z ci,k_lﬂk'l'iAiu> + / Pru(A + B 'u
i=0 M

/ Zc,k B ’nuA’+1u+/ Pru(A + B u
M M

i=l
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We then apply Lemma 4.6 to each term and reindex with (4.14])) to obtain

k—
/ Ciaet B ’nuA’“u+/ Bru(A + Y 1u</ nAuZ Coat BT AU+ fru(A + B
M =

k—1 i
+ c/ DAY (AN
B, (supp(n) =0

J=0

= / n(A + Pu(A + §)'u
M

/B - (supp(1))

Now let k,, k, be such that k, + k, = k and assume k; < k,. We write

?.

=1 k=1-i

Z ﬁk 1- l—j(Azu)Z
Jj=

i=l

/ (A + ) u(A + pYou = / (A + B u(A + gy~ (A + p)ru
M

M
and apply the previous special case replacing u with (A + )*1u and r with g We obtain
/ (A + A 1u(A + pYou < / n(A + A u(a + g
M

M
ky—ky =1 ky—ky—1—

+C Y ) e / (A3(A+ Pl (4.16)
i=0 j=0 B (supp(m)

Let 5, be a smooth function equal to 1 on B:(supp(n)) and equal to 0 on M \ Bz (supp(n)) We fix an arbitrary
. 3
i and j and consider gl>~ki=1=1=/ [ n(AZ(A + B 1u)®. We expand

k, . 2
/ ”I(A%(A + ﬂ)klu)z = / m <Z cl,k,ﬁkl_lAH'é”)
M M 1=0

- i i
= ) / e, g €y BT AN IUART Sy 4.17)
0<ly <k, / M
We rewrite this sum as

. . 2k, . _

2k —ly=Iy AL AD+L 2k —I AL +L A L+L
D / ey i, i, B Aty APty = ey i Cp FPATAT AR T (4.18)

0<I,. <k, 4 M 1=0 0<ly,l,<k, v M
1, +1,=I

Fixing some /, [, [, such that /; + /, = [ and applying Lemma 4.6 with #, replacing #, and % replacing r
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we have

I+j-1
J J _ J+l JH P
/ Mk, Clz,k1ﬂ2k1_1A11+2uA12+2M < ¢ clz,klﬂZkl : / mATuAru+C Z / (A2u)?
M M p=0 < B, (supp(m)
I+j
2
<cphy / (A2uy?

p=0  B,.(supp(n))

Applying this inequality in the right hand side of (4.18)) and using the fact that k, — k, + 2k, = k we obtain

2k, _ _ 2k, I+j
. i L —1—i—j— 2
ﬂkz—kl—l—l—j Z Z / nlcll,klcl2’klﬂ2k1_IAll+2uA12+2u < C Z ﬂk 1—i—j—I Z / (AZU)Z (419)
=0 0<Iy,l<k, =0 p=0 < B,(supp(n))

1 +1y=1
Then substituting / + j with I, using the fact that 2k, + j < k — 1 — i, and applying (4.14)) we obtain

2k, 2k +j !

proim / (Azu)? = Y pi=t / (ASuy?
Z ; B, (supp(n)) //ZJ 2 B, (supp(n))
k—1—i l’
< Z ﬂk—]—i—l’Z/ (Agu)z
I'=0 p=0 7 B, (supp(n))
k=1—i k=1—i=I'
=y ) pet / (AZuy, (4.20)
I'=0  p=0 B, (supp(n))
Then by substituting [’ + i with /" we obtain
k=1—i k=1—i=1" k=1 k=1-1"
Z prot=i-l=r / (At =) Y g / (ASu)?
= p=0 B, (supp(n)) I"=i p=0 B, (supp(n))
k=1 k=1-1"
<Y et / (ASu). 4.21)
"=0 p=0 B, (supp(n))
Therefore, putting together @.17), @.19), (4.20), (.21) we obtain
k=1 k=1-1"
ﬁkz—kl—l—i—j/ ’11(A (A+ﬁ)k1u)2 < Z Z ,Bk 1— 1/’_[,/ (Agu)z
1"=0 p=0 B, (supp(n))
Becuase i, j were arbitrary, we apply this bound to each term of (4.16]) to conclude
Ky =y =1 ky—kj—1—i k=1 k=1—i

Y D ek / (AXA+ P < C /
i=0 j=0 Bg (supp(1))

B, (supp(n)) j=

Z ﬂk 1—i—j (A 3 U)
Jj=
and we are done. ]
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Lemma 4.8. Let k > 1 and r > 0 be arbitrary and let n be a smooth compactly supported function. Leti,, i,
and j,, j, be such that i, + i, = j, + j, = k. Additionally, for each 0 <1 < k —1 let p,, q, be an arbitrary pair
of nonnegative integers satisfying p, + q, = l. Then there exists C based on n, k,r, bounds for R and finitely
many of its derivatives, and bounds for n and finitely many of its derivatives such that for allu € H Z(M ) and

B > 0 such that (A + p)'u >0 forall0 <[ <Lk,

k-1

/ (A + B)1u(A + B)u < / (A + BY'u(A + f)>u+C ) / (A + BY'u(A + f)'u
M M 1=0 4 B

- (supp(n))
Proof. Letn € CX(M), k > 0, p;, g, such that p, + g, = [ for 0 < I < k, r > 0 be arbitrary. Let 5, be a
function such that n;, = 1 on Bg(supp(n)) andn, =0on M \ Bgr(supp(n)). By applying Lemma 4.7 with g
replacing r we obtain

lk—lt

C/ ﬁk—l—i—j(A%u)Z
Br (supp(n)) j= Z

J=0

‘/ (A + B)u(A + f)u — / n(A + By u(A + pY2u| <

k=1 k—=1-i

c[ XX mst st

i=0 j=0

IA

It therefore suffices to prove for k > 0, n; € CX(M), s > 0 there exists C such that

and letting s = % will allow us to conclude.

k—i k

pp et <Y [ @ prua s
=0 1=0 7 By(supp(n;))

J

The base case k = 0 is immediate. Assume the statement is true for some k and let p,, g, satisfy p, +q, =/

for 1 <1 < k+ 1. Then we have after substituting i’ =i — 1

k+1 k+1—i _ k+1 ) k+1 k+1—i '
/ DD m AN = / D BT A+ )Y T (A
M =) j=0 M =0 i=1 j=0
k+1 k k=i
=/ Zn PSR + Y Y p I (AR (4.22)
i'=0 j=0

By the induction hypothesis

k—i k

k .
> / mp AP <C Y / (A + By u(A + p)"u.
M 1=0 ¢ By(supp(n))

i'=0

~.
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Now to bound the the first term in (4.22)), using the positivity assumption on (A + f)'u we expand

/ A+ pru(A + pYiu > / (A + PP u(A + ot
B s (supp(n,))

M
Pr+1 i1
= =L AL 2 Ger1 =l Al
/111 zcl,pmﬁ Alu cl,q;mﬂ Au
M 1=0 1=0
k+1
_ k+1=I ALy AL
- Z Z / nlcll’pk+I6127qk+]ﬁ AtuA udug
1=0 0<l1<pyyy Y M
0<l,<q4,
Li+1,=I

Then applying Lemma 4.6 to each term we obtain

k+1 k+1 -1
! P
k+1-1 Al I} k+1-1 5:\2 SN2
/ Ml i 124k+1ﬁ Atuldu 2 Zd”‘ﬂﬂ / m (AZu) _CZ/ (AZu)
1 0 0<l)<psi 1=0 M p=0 < B (supp(m))
0<ly<qy44
I +ly=1
where

dl,k+1 = Z cll7pk+1012’qk+1 21

0<ly <pryy
0<l<q; 4
1 +1,=

We therefore obtain

k+1
/ (A + Ju(A + pytst > ) prHt-! ( / m(Asu? - C
Bs (supp(n)) 1=0 M

Adding the remainder terms onto the left hand side and substituting /” = I — 1 results in

-1

Z / (AZu)? ).
B 3 (supp(n;))

p=0

k+1 k I
> gt / n(A3u)? < / A+ pu(A + Byi+u+C Y p Y / (ASuy?
1=0 M Bs (supp(ny)) I'=0 p=0 < Bs (supp(n,))

Let 1, be such that #, = 1 on B:(supp(n,)) and n, = 0 on M \ B: (supp(n,)). By ll and the induction
3 3

hypothesis (applied to #, and %) we continue

l/

k
/ (A+ pyeiu(A + pyru+C Y p Y / na(Afu)?
Bs (supp(n,))

I'=0 p=0JM
k k=1
i P
[ @epreuatprusc Y 3 [ et
Bs (supp(n,)) I'=0 p=0 Y M

k
< / (A + pPiu(A + pTiu+C Y / (A + B)Pu(A + B)u
B (supp(n;)) 1=0 J B(supp(n,))
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and the claim is proven.

]

Lemma 4.9. Let k > 0 be an integer and u € H,f(M ) be supported inside a geodesic ball B C M centered
around x, € M. Let & represent the Euclidean metric on B defined through a geodesic normal coordinate
chart and dx the corresponding Euclidean volume element. Let r, be the geodesic distance function to x,.

Then there exists C independent of u such that

/ |Viul® a’x</(1+Cr2)<|Vku|2+CZ|V’u|2> dv,

Proof. The estimate dx < (1 + Crz)d v, implies it is sufficient to prove

k-1
k. 12 2 k, 12 i 12
/M|V§u| de/M((1+Crg)|Vgu| +C§|Vgu| >dx

We prove by strong induction on k. The base case k = 0 is immediate. Assume the statement holds for all
values strictly smaller than same k£ > 1. We recall the formula for the components of the covariant derivative
of a p covariant tensor 7T is ,

V.T

iy, T 21 i), l Y PENT. (PRSI

k=

Therefore, applying this to the kth covariant derivative we obtain
—_ v®
0,..i 4 = V;Ig...;k“ + Z faaau + Z Z gﬂa u (4.23)
aefl,.. j=0 pell,..

where f, represents a sum of positive and negative Christoffel symbols and g is a sum of positive and negative

derivatives of Christoffel symbols. We have |f,| < Cr, and |g,| < C in our chart. We take the equation

2 _ (€:9)
/M(a,.l___,.ku) dx—/M<Vilmiku+ > fadau+2 2 gﬂ ,,u> dx

ae{l,...n}k! j=0 pe{l,...,

and consider the resulting terms from the right hand side.
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Terms of the form /| v Ja, S, 00,40, udx Where |a;| = |a,| = k — 1 can be bounded by taking

/ fal fazaaluaazudx < C/ 0(11 u@azudx
M M

< C/ |()0t]u|2 + |0a2u|2dx
M

SC/ |V'§‘_1u|2dx
M

k—

1
< c/ ViU, |*dx
M i— 8

where the final inequality is by the induction hypothesis (although the full strength of the estimate is not used).
Terms of the form / v 86,85, a,}] uaﬂzud x and f v J2850,40,u can be bounded through the same argument.

For terms of the form / v gﬂvgf?”ikuaﬂu, we first substitute

k=2
(€3] —
vil,,,iku =0; U~ Z JaOukt = Z Z 850U
aEf{l,...,n}pk1

Jj=0 pefl,....n}J

After making this substitution and expanding, we only need to bound the term /| v 830, u0zudx, the others

can be bounded by the above computations. Euclidean integration by parts gives

/ 840; ; udsudx = —/ 0, 840;,. ; uosudx —/ 830;, ; U0; Ogudx
M 1 k M 1 k M
sc/ |v§-1u|2dx+c/ |v'f'u|2dx+c/ IV uPdx.,
M M M

Because |f| + 1 < k — 1, by the induction hypothesis

-1

k
k=112 181,12 IB1+1, 12 i 2
/ |V.f ul dx+/ |V§ u| dx+/ |V5 ul deC/ E |VgUa| dx
M M M M =

i=

For terms of the form [, faVE‘lg.)“ikuaaud x, we calculate
/ [V uu<C / r Ve udu
M M
<C / r(VE  wdx+C / (0,u)*dx
M M

We have

k—1
/(0au)2dx$C/ D IViul*dx
M M =0 ¢
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by the induction hypothesis. Combining all of our previous computations we obtain

k—1
2 2 (&) 2 i 12
/M(a,.]___,.ku) de/M(1+Crg)(Vilmiku) +C/M§|Vgu|

To complete the proof of the lemma, we first recall 67 < (1 + ré)gij where 6" represents the Kronecker delta

and calculate
k—1

k 2 2 (€] 2 i 12
/Mw U,| dxs/M1< Y A+ u dx+C/ D Vil

<ipyenig<n M =0

k—1
_ 25 iy ik (&) (&) i12
—/(1+Crg)5 J ...5’<JijlmjkuVilmikudx+C/MZ(}IVgul

/(1+Cr IVEU, |2+CZ|V’U |2dx

4.3 Proof of the Theorem

Suppose for all B > 0, inequality (3.1)) is false. Then, using notions from Section 3.3 with f = 1, foralla > 0

we have

) 1
A, = inf A "udv, < —. 4.24
. in /Mu( + a)"udv, z ( )

uEJ\fl

where we recall we must interpret the integral in the sense of distributions. The sequence 4, is clearly non-
decreasing and so converges to some A < % By Theorem 3.10, for all « > 0 there exists a smooth positive
solution u, € N, to the PDE
2#-1
(A+a)"u, = Au, . (4.25)

Independently, we recall Theorem 3.2 states for all € > O there exists B, such that for allu € H i(M ),

2
# * m
</ |u|2> dv, < (K+€)/ (Aiu)2d0g+B€||u||H;_l. (4.26)
M M

Therefore, for all e there exists a, large such that

—_— f A+ a)"udv,.
(1+e)K — ulen l/j\lu( ae) Hls

Combining this with (4.24)) shows A = E' We note that ||uO,||Hz_1 — 0 as a = oo while ||u,||,» = 1. Then

ot 22 2
/ u dv, < (supu,) / udo,
M M M
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we must have sup,, u, = oo as @ — co. Let x, € M be such that u,(x,) is maximum. Taking a subsequence

of @ we assume x, — x, € M and u,(x,) increases to infinity.

4.3.1 Asymptotic Analysis

Step 1: Up to a subsequence, u, has one unique concentration point.
2
Let us define p, = u,(x,) 2. Leti, be the injectivity radius for (M, g). We define sequences of functions
ii, and metrics g, on By(i,/u,) by

n—=2m

8,(x) = po "ty (exp,, (4,x)) and g,(x) = (exp} &)(,X).

We note |, By(i,/u,) = R". The functions i, are bounded in C°(R") with sup ii, = #(0) = 1 and they satisfy
the PDE

2yme~ g ~2F]
(A +oap)"i, = A, ~ .

We would like to show these functions are uniformly bounded in C*™#(K) for K compact and therefore
converge to a limit function #i. To show boundedness in C?™/(K), it suffices to show a,ui is bounded as
a — oo and apply standard regularity theory as seen in Gilbarg-Trudinger[17]]. Suppose up to a subsequence

au’ — coas @ — oo. Let us define for 0 < k < m functions 8 and v'® on By(i,/u,) and M respectively by

k

~(k) Nk~ _ k=i 2k=i) AP ~

0, =(B; +au)i, = Z cpa u A%aua
i=0

and
k

v® = (A, + o)u, = 2 ¢ Alu,
i=0
where ¢, , are defined the same as in Lemma 4.7.

We obtain systems of PDEs

A, oW + ap2o = g+ if0<k<m-2
“ 4.27)
A 0D 4 ap2pm D = 2!
and
AP + qu® = gkt ifO<k<m—2
4.28)

A U(m_l) + (XU(m_]) = uz#_].
g« a o
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Because ui#‘l > 0, iterating the maximum principle we obtain v’ > 0 for all 1 < k < m. This then shows
for x € By(i,/u,)

—(

B 2 —(m—2k)
09(x) = p; v (exp, (4x)) 20

foralll < k < m.

We now show 5% is bounded in L*(By(R)) for fixed R > 0 as & — oo for any 1 < k < m—1. We perform

the proof of this claim through the following (strong) induction:
m )2
L. If k < | 3] then /BO(R)(U;)) dv, <C.
2. If L%J <k <m-2and /BO(R)(US))ZdUga < Cfori < k, then /BO(R—z)(fokH))szg} <C.

Letk < [%J Integrating by parts gives

2k 2k
/ (fok))ZdUg = / 2 di’kaZk—iuaA;uadUg < C/ Z azk—iuaA;uadUg
M M - M =0
where d; , = Zj]ﬂ.z:i ¢;, k¢, and we use the fact that for all integers k > 0 and u € szk,

k
/ ubiudv, = / (Au)’dv, > 0.
M M

Therefore, using the PDE we obtain

2k
am—Zk/ (fok))2dug < C/ Z a" i (A u)dv, < C/ U (A, + )"u,dv, = C/ ui#dug <C
o w g M M

k=0

We therefore have by a change of variable

/ (5§1k))2d Uga = / M(nx—2(m—2k)(vka)(expxa (iuax)))zdvga
By(R) By(R)

—2(m=2k k)\2
= / u WO do,
B, (Ruy)

<C M;Z(m—Zk) o~ (m=2)
<C

and we have proven (i).

Now let us define for 1 < i < 2(m — 1) functions w by

2

w? = <ﬁ£é)> if i is even

i1 i1
52 2)5£2+2) if i is odd.
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Let [%J < k < m—2 and let # be a smooth nonnegative function such that# = 1 on Bj(R—1)andn =0
on R" \ By(R — %). Assume fBO(R)(Ug))ZdUga < C for | < k. This is equivalent to fBO(R) wdv, < C for
i < 2k. Because k > L%J there exists a nonnegative integer s such that m + s = 2k + 1. Additionally because

k < m —2 we must have s + 1 < k. Then applying Lemma 4.8 with r = % gives

2k
/ ﬁ(k+l)5(k)dU~ S / ﬂﬁ(k+l)5(k)dl)~ S / ﬂﬁ(m)ﬁ(s)dl)~ + C/ E w(i)dv~ .
o o 8a 1 o o 8a 1 a a 8a a 8a

By(R-1) By(R-3) By(R-3) By(R) j=0

We note because g, converges to the Euclidean metric uniformly on compact subsets (and its derivatives up

converge to 0 uniformly on compact subsets), the constant C above is indeed independent of a. Substituting
., () . _ .« . ,.,( ) _ ,.,2#_1 .

definitions of w;’, applying Cauchy-Schwarz, recognizing 6 = &, = < 1, and using the fact that s < k

gives

1 1 2k

2 2 .
/ w(2k+l)dvga < </ (ﬁﬁm))ZdUga> </ (wf”)dvga> + C/ Z wg)dvga <C.
By(R—1) By(R) By(R) By(R) =0

Therefore / By(R-1) w¥d v, < Cfori <2k + 1. Now let # be a smooth function such that n = 1 on B;(R —2)

andn =0onR"\ By(R — %). Again applying Lemma 4.8 with r = %,

2k+1
/ @) dv, < / n(@ ) dv, < / no™ o Vdv, +C / D widu, .
By(R-2) By(R-3) By(R-3) By(R-1) i=0

Then we once again apply Cauchy-Schwarz, ﬁfxm) < 1 and the fact that s + 1 < k to obtain

/ (ﬁka+l))2d0g <C
By(R-2) ¢

and we have shown (ii), therefore forall 1 < k <m — 1, fBO(R)(ﬁg‘)dega <C.

We now consider 5"~V which satisfies the last PDE in the system . Because 5"~ is positive and
bounded in L*(By(R)) and ui#‘l is bounded in C°(B,(R)), we get 5"~ is bounded in C°(B,(R — 1)) by the
De Georgi-Nash-Moser iteration scheme. We note because g, converges to the Euclidean metric uniformly on
compact sets, the constant C in the De Georgi-Nash-Moser iterative scheme will indeed be independent of «
(specifically, in the application of Lemma A.2, we can guarantee bounds for the constants 4 and A independent
of ). Then for 1 < k < m — 2, we consider fok) in the system and apply the De Georgi-Nash-Moser

iteration scheme again. If 5**! is bounded in C°(B,(R)) and 5¥ is bounded in L*(By(R)) then 5* is bounded
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in C°(By(R — 1)). Therefore by induction 5* is C® bounded on compact sets for 1 < k < m. We then take
the particular equation from (4.27)

Ag b, + aplia, = 0.
Because A, #,(0) > 0, @,(0) = 1, and 5'P(0) < C we obtain that ay? is in fact bounded. We then apply
standard regularity theory to see @, are uniformly bounded in Cfm(K ) for K compact, and therefore i, will
converge in C,, (R") to a limit function # satisfying 0 < & < 1 and #(0) = 1.

Independently, by integrating by parts, substituting our PDE, and using the fact that / v ui#dvg =1 we

have

2
e : i # # *
/ cimam"(Aiua)zdug = / u, (A + a)"u,dv, < l/ ui dv, = 1 </ ui dvg> . (4.29)
=0 JM M K Ju K \Ju

1

We note by the inequalities above and the fact that ¢, = 1 we have
AP < Ll | = - 430
1azull; < 2lluglly = - (4.30)
Given € > 0, we apply (4.29), the asymptotically sharp Sobolev inequality (4.26)), and (4.30) to obtain

Z/ ™ (A, v, < 1830, 2+ S 1850, 12 + 2yl < IAT 02+ S + 2
3 = S H? -
i= M s ’ & *72 K all2 K alll all2 K2 K allH? |

Then because ¢, ,, = 1 = ¢, ,, we have for sufficiently large «

m—1
. B i e B

m 2 m 2 m—i € = 2 € 2
a uwdv, <a wdv, + ¢ a"'——)Azu,)dv, L — + — wdv,=—+o(1

[ e, s [ e, 3 [ et - goatuian, < v g [ v, = o

where o(1) — 0 as @ — . Therefore by letting ¢ — 0 we see
a’"/uidvgaOasa—»oo.
M

Because i 1s continuous and #(0) = 1, / B.(1) #*dx > 0. Thus by uniform convergence i, — & as @ — oo
0

2 > ¢. Therefore given 6 > 0

a =

on compact sets, there exists some ¢ > 0 independent of & such that / B &
0

small and fixed, for sufficiently large «

a”'/ uidvg = a’"yi”‘/ ﬁi > a”‘,uzm/ fti > ca’”,ui”’
B By(L) By(1)

X (8)
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which implies au> — 0 as @ — co. Hence, passing to the limit, & is a C*"(R") nonnegative solution to the

PDE

in the Euclidean metric. By the Euclidean sharp Sobolev inequality (as stated in Lions[31]) we have

2
o# m
< / az’*dx> <K / (A i)dx
R7 M

and so we obtain (after integrating by parts)

# zi# #
</ i dx) g/ i dx. 4.31)
Rn Rn

By a change of variable, for all R > 0 and sufficiently large o we have

~H #
/ P = / W <1
a a
By(R) B, (1 R)

and taking the limit as @ — oo and then as R — oo implies

/ <1,

BO([R")

/ Fdx =1
BO([R")

Fixing R > 0 large and 6 > 0 small, we have

I > lim sup/ wdo, > liminf/ Wdo, > liminf/ W dv, = / idx=1- €r
@ g a—oo @ g a— 00 a g
a=o J B, (5) B, (6) By, (1 R) By(R)

where €, — 0 as R — co. We thus obtain

Hence by (4.31)) we have

. #
lim ui dv, = 1.
a— 00 on(é)

Since ¢ is arbitrary, if y, # x, for any 6 < d(x,, y,) we must have

. #
lim ui d v, = 0
a— 00 By0(5)

otherwise we would contradict /| v ui#d v, = 1. This completes the proof there is only one unique concentration

point x, along our subsequence.
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Step 2: For all x € M we have the inequality
d(X, %)= uy(x) < C. (4.32)

We directly follow Hebey’s proof in the second order case, see also Druet and Robert.
Suppose there is some sequence y, such that

n=lm n=m
sup d (x,, X) 2 Uy (x) = d (X4, ¥,) 2 Uy(y,) = 0.
xEM

2
Similarly to what is done in step one, we define fi, = u,(y,)” »2» and define the rescalings i, of u, on R”

with metric g, as follows.

n—2m

2

Uy = fle* u,(exp, (f,x)) &, = (eXp;ng)(ﬁ,,X)-
Then i 1s a solution to the PDE
(A + o)™, = A2 .

By our definition of y, we additionally have

n—=2m

d , 2
ﬁa(x)§< o ¥a) ) : (4.33)

d (X, exp, (fix)

Fix R > 0. If |x| < R the triangle inequality implies

dg(xa’ expya(laa‘x)) Z dg(xa7 ya) - Rlaa'

Because d (x,, ya)%ua(ya) — oo, we additionally have

_ e
d,(Xys y)
Therefore by (4.33)),

n—=2m

Ri, \
i, < (1 - ———
dy (X4, V)

which implies &, are C° bounded on compact sets.
Now that we have local C° bounds, following the De Georgi-Nash-Moser iteration scheme argument seen

in Step 1 shows for all 1 < k < m, the functions 0 = (A, + f2a)*(4,) are bounded on compact sets.
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Let us first consider the case (after possibly taking a subsequence) y, — y, # x,. Then for all ¢ > 0,

because A, 4, < 0V < C,
ANl _ - - el A 12 N
A, ()" =+ e A, a, —e(l +e)a |V, a,|” < Ci,
Now fixing ¢ small such that % > g and applying the De Georgi-Nash-Moser iteration scheme gives for
all p > 0 there exists C, such that

A N l4e A NIt ~e
< .
Bos(lflzl_)n(ua) <G (ll(u“) liercayr + ”u"‘”L%(Bo(R)>

Setting p = 12: gives us

~ \1+e A e R
su u < il 1 i .

Because #4,(0) = 1, this implies lim inf a4l 1205, cry) > 0. However, because x,, is the only concentration

a—o0

point we additionally have

i ¥
A A2# ? o#
||ua||L2(BO(R)) <C u, = u, - 0.
By(R) B, (Ri,)

and we have a contradiction.

Now let us consider the case (after potentially taking a subsequence) y, — x,. In order to apply the
same logic as Step 1 in showing @, converges to a limit function in C*"(R"), we need to show (A; 4,)(0) 18
bounded from below. This corresponds to showing ﬁi(A (W(¥,) 18 bounded from below. We let r, correspond
to the function d(x,,-). Because y, — x,, y, will be contained in an exponential chart around x, for «
sufficiently large. In particular, d,(x,, x)”_szua(x) is twice differentiable at y, for a sufficiently large, so we

n=2m n=2m

have Ag(ro,T u,)(y,) >0and V g(raT u,)(y,) = 0. The latter equation implies

n—2m n—=2m

Fo® Vol (v) = (=V (e * i )(,).

Then, using the well known formulas in an exponential chart |V, f(r)| = |f'(r)| and A, f(r) = A f(r) —

f'(r)o.(In \/E) for a radial function f, we compute, with all expressions are evaluated at y,,

a

n—=2m n—2m 2 n-2m—4
n—2m\" =5
0<A(re® u,)=r,’ Agua+2< 5 ) r, ' ou

—_ — _ n—2m—4 _ n—2m=2
_ (n 22m> (3n 22m 4>’a_2 iy — n 22mr0[_z 9.(In \/E)ua
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which implies

%r;ldr(ln \/g)ua + (n —22m> <n ks 2;" — 4) r;zua < A,u,.

The Cartan expansion of the metric shows d,(In \/E) > —Cr where C is based only on the curvature of

the metric, therefore we have

n—2m n+2m—4r_2
2 2 *

The left hand side is bounded from below (positive for sufficiently large a because y, — x,)), so our claim

[—C + ] u, < Au,

holds and we let i : R” — R be the limit function of #,.

Let 6 > 0 be small and R be fixed. We recall notions from Step 1, using the same & and #,,

/ 2 dv, = / u¥ do
14 8a a g
By(R) B, (Rug)
/ Zdx = 1.
Rn

. # #
lim uidug:/ ¥dx =1-ep
4= J B, (Ruy) By(R)

and

We therefore have

where €, = 0as R = 0.
Combining this with the fact that

. #
lim ui dvg =1
a—o0 on(é)

immediately implies

2#
/ u, <eg+o(l).
B, (O\B,, (Ruy)

Because i, — 0 and y, — x,, for sufficiently large & we obtain

o 2o#
/ u S/ u, +eg+o(l).
B, (i) B, (A,)NB, (R,

As stated before i = o(d,(x,, y,)). Combining this fact with p, < i, implies Bya (AN Bxu(Rua) = ¢ for
sufficiently large a.

Therefore



Taking the limit as @ — oo shows

A0H#
/ 0% dx < eg.
By(1)

However, the left hand side is a positive constant independent of R or a and the right hand side converges to
0 as we send R — oo and we have a contradiction, therefore holds.

As a consequence of Step 2, we prove forall 0 <k <m—1,0® - 0in C) (M \ {x,}). By Step 2, u, is
bounded in C? (M \ {x,}) and v"~D satisfies

AprD < Ly,
* K
Integrating the PDE |i implies / a™u, < C by the divergence theorem, so for0 < k <m — 1,

/U(k)z/akua—>0
a
M M

as a — co. Additonally, because [, u, — 0 and u, is bounded in C) (M \ {x,}), for any p > 0 and for any

/uZ—>O
E

as @ — oo. Therefore by the De Georgi-Nash-Moser iteration scheme v — 0in C) (M \ {x,}). Now,

compact subset E of M \ {x,}

assuming for some 1 <k <m—10% - 0in C) (M \ {x,}), then we consider

Ag vka_l) <

a

and applying the De Georgi-Nash-Moser iteration scheme again shows v%*~" — 0in C}) (M \ {x,}) and the
claim follows by induction.

Step 3: L? concentration holds, i.e. foreach § > O and forall0 <i <m—1

L2
/M\BXO(zS) |A%u,|

lim > =0
e [y
Our first claim is that forall 0 < k <m — 1,
/ (A%u,)? < Ca* / 2 (4.34)
M\B, (5) M\B, (2-2k+15)

Let 6 > 0 be arbitrary. Let us as before write v"~) = (A + @)™ 'u,. By the last PDE in the system (4.28) we

have
_ _ 1
AV D 4 gD — 2 =,
a a A o

[o4
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We write this as

o 1
m—i A i m 27—1 _
Cm@" T Aluy + Uy = o~ u,— =0.
o

™-

1l
—_

1

Lu2'=1 > 0 for suffiently large a on compact subsets of
I

a

Because u, — 0in C) (M \ {x,}) we have a"u, —

M \ {x,}. Additionally, by the simple identity (a + b)* — b* = a Z,k;ol b'(a + b)*~'~" we have

¢ ma" " Alu, —A(Za’ (=1~ )

Therefore, applying the De Georgi-Nash-Moser scheme we obtain

M

Il
—_

i

m—1
sup Zau(’"l’)<C/ Zav(’"l’)

M\B,,(3) M\B,(5/2) iZ

Let n be a smooth nonnegative function equal to 1 on M \ Bs(x,) and equal to 0 on Bs(x,). Then we
2 4

continue the calculation, integrating by parts the expression /[, 7 Z:":_Ol a'v™17) to obtain

m—1

m—1
/ Z aivflm—l—i) < / n Zaivfxm—l—i) < Cam—l/ . (435)
M\B,(6/2) =0 M =0 M\B, (5/4)

Let # now be a smooth nonnegative function equal to 1 on M \ B,;(x,) and equal to 0 on By(x,). Now
we prove (4.34) by induction. The base case k = 0 holds by immediately. Now suppose for 1 < k <m —1
(4.34) is true for i < k. Considering the m — 1 — kth term of individually and applying Cauchy-Schwarz

gives us

2
am'l'k/ nuka)ua < Ca™! / u, | < Cam'I/ ui
M M\B, (5/4) M\B, (5/4)

which we can write as
k
/ nu, Z ale, Alu, < Cock/ ‘ ui.
M 1=0 M\B, ()

Applying Lemma 4.6 to each term with r = g we obtain

-1

k k -
k=l At N2 k 24 kel Al
n E ¢ (A2u,)” < Ca / u, + / o E( 2u (4.36)
/M 1=0 M\B, () M\B, (6/2)Z —0

1=0 p

Given a fixed / < k for all 0 < p </ — 1 we have by the induction hypothesis

/ (A% ) < C / a“an? < Ca* / 2. (4.37)
M\By,(3/2) M\B,,(2-0) M\B, (2-295)
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We therefore obtain by (4.36) and 4.37)

LN k 2
(A2u,)” L Ca u
M\B, (5/2) M\B, (2-205)

which is equivalent to (4.34). For all 1 < kK < m — 1 we obtain the bound

k
/ (Aium)2 < Cak/ u’
M\B, (6) M\B, (2-@m+D3)

Now multiplying the PDE (4.25) by 1 and using the fact that u, — 0in C{ (M \ {x,}) we obtain

m

m—i i _ 2# 2# 2
Z/ ne; @ U, A ua—/ nu; S/ u SC/ u;
i=0 4 M M M\BXO(Z—(2m+1)5) M\BXO(Z—(2m+1)5)

We apply Lemma 4.6 with r = g to each term and substitute i’ = i — 1 to obtain

m i—1

i=0 j=0

X0
m—1 i’
- Ca™! / 2+CY oY /
(4
M\B, (2-Cm+25) i'=0 j=0 7 M\

Givensome 0 <i’ <m—1and 0 < j < i’ we apply (4.34) to obtain

—1—=i' i J —
am 1 / (Au,)? < Ca™! ’”/ ui < Ca™ 1/ ui.
M\B_ ; M\B, (2-Cn2)5) M\B,,(2-Cn+2)5)
o8

5)

Hence we have

m
Z/M1101.’,,105’”'"(A§ua)2 gCam'l/ ui.

i=0 M\on (2—(2m+2)5)

After dividing both sides by a™! we have

a / ui <C / ui
M\B, (26) M\B, (2-Cm+2)5)

and we have

2 2
_ fM\BXO(é) e fM\BXO(é) Uy . C
0<Ilim ——— < lim <Ilim—=0
a—00 u2 a—co / uZ a—oco
M “a M\BXO(Z‘(Z’”+3)5) a
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m
Z/ nci,ma’""'(Aéua)2 < Ca™! / w, +C Z a”! Z/ (AVu,)?
M M\B, (2-Cm+25) pus) M\B

(4.38)

(4.39)

(4.40)



proving Step 3 for i = 0. For 1 < i < m — 1 we divide both sides of (4.39) by ™" and apply (4.40) i — 1

times to obtain

/ (Aéua)2 < C(xm'l'i/ ui < C/ ui
M\B, (6) M\B, (2-@m+3)5) M\B, (2-(-D@n+3)5)

and we have ’
N2 2
‘ f M\BXO((S)(A 2u,) . / M\B, (2-(-D@n+3)5) u,
0 < lim > < C lim > =0
o= ./M ua o= /M ua

and the proof of Step 3 is complete.

4.3.2 Main Argument

We first note an immediate consequence of Step 3is forall0 <k <m —1

k
i\
lollgon <C Y [ @t
= /B,

(4.41)

Now we let %” > 6 > 0 and let # be a nonnegative smooth function defined on R” such that # = 1 on B(6)

and equal to 0 on R" \ B,(26). We define 1, on M by 7,(x) = n(exp;l(x)). We then define U, by U, = n,u,.

We have uniform bounds for all derivatives of ,.

Because U, is only nonzero inside a geodesic chart, we consider the Euclidean metric £ on B, (26) defined

through the pullback of exp;l. We write dx = dv, and the Euclidean Sobolev inequality gives

2
N o m
</ U’ dx> < K/ (A; U, dx
M M

Euclidean integration by parts shows

/ (AgUafdx: / IVIU, *dx.
M M

Then Lemma 4.9 gives

m—1
m 2 2 m 2 i 2
/Mlva"l dxg/M(1+Cra)<|VgUa| +c§_0|nga| )dvg

where r, = d,(x,, ). Then by Lemma 4.3

m—1
2 2 2 2 2 m 2 i 2
/(AgUa) dxg/(A;Ua) dvg+C/ r2IVIU,| dvg+CZ/ ViU, *dv,
M M M i=0 J M
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We consider the third term in || Applying norm equivalence for Hrfl(M ) (see Robert[38]), Lemma 4.5
and (4.41)) results in

m—1 1
Z/ ViU, |2dv<C2/ |A2U 12 dU<C / |A u |2du<cZ/ (AZu,)? (4.44)
i=0 /M B, (6)

where Lemma 4.5 is applied to each individual term of the second sum. For the first term of (4.43)), we use

Lemma 4.5, 4.6 and (4.41]) to obtain

m—1

/ (AU, < / PO +CY / (S,
M M =0 J B.,(6)

m—1
S/ niuaAmua+C2/ (Aéum)2
M i=0 7/ By, ()

We then substitute A™u, = ui#‘l - Z:.':OI ¢; m@" ' Alu,, apply Lemma 4.6 to each term, and apply (4.41) to

-1 m—1
/ AU < A / ' — c,ma’"—" / n2u,A'u, | +C Y / (AZu,)? (4.45)
M = M i=0 / B, (6)
m—1
%/ 112”2# ( ci’mam—i/ Z(A%M )2>

i=0

m—1
+CZa'" ’Z/(Azu)2+CZ/ (Azu,)? (4.46)
i=0 /B

10 (®
m—1 _
# . i
[y (B [ i)
M i=0 M
m—1 i—
+C Z am™! Z /
i=1 j=0 7 By

Considering the remainder terms, substituting i’ = i — 1 we have

i-1 m—1 m-1
DO BCCARD ) IS WD ACCRRD y ACCR e
im0 /B, i=0 J By, (8) By, (8) i=0 7 By, ()

i’=0

= Zam 1 Z /B @(A%uaf (4.49)

i’=0

obtain

<

==

m—1

(Azu)2+CZ / (Azu, ). (4.47)
,® B, (8)

m—1

i=1
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Then reindexing with (4.14)) gives

m—1 i’ m—

o1 / (Adu, P =C / Q"1 (AR, (4.50)
= Z& B, (® lz;' B, ®)

m—1 m—1—j
= cz / a1 (A, ) 4.51)

B, (5)

m—1—j
/ W) Y o (4.52)
0’ B i=0

Therefore we obtain

m—1 m—1—i _
/(AZU) / Z( m=i _ Z;) Caf>/B @(A%u)z. (4.53)

! J

We now estimate the second term of (4.43). Applying Lemmas 4.3, 4.5, 4.6, substituting the PDE (4.25)),
and applying (4.44)) gives us

/rinUalszS/ ri(A%Ua)z-i_C”Ua”HQ
g m—1
S/ ﬂzri(A%”a)z Clll’o(”HzI
M "

2.2
< / n2ru, A", + CllU, |l
M

m—1 m—1—j
1 / 2.2 2 / i N2 i
<= | mru,dv,+C (Au,) o' (4.54)
K Ju ¢ ;0 B, (®) ;

where to obtain (4.54) we have applied the computations from (4.45]) — (4.52).
By Step 2, we have

4 n 2 w2 _n_ 22m=2
riui = u, (ryumam)(r uy " yunam < Cu, (rouy" Juy ™"

and therefore

n 2m=2
2.2 2# n—2m n—2m
oo, < Cnauy(ron g " ug ™.

no2moD) % + % = 1, we apply Holder’s inequality to the right hand side to obtain

n—=2(m—1) 1 2m-2
2n 2n 2 2n
2.2 2# Py 2.2 2# 2#
/ morou, < C (/ (n,u,) % dvg noru, u; .
M M M M
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# . .
Because [, u* = 1, this gives us
M "«

n=2(m—1)

2n n
/ Mgty <C ( / <n>—> - (#:33)
M M

We then apply the Sobolev embedding theorem and (4.44)

( / (nauC,)%)
M

therefore, by putting together (4.54)), (4.53)), and we obtain

n—2(m—1) m—1

<Cllu, 2 <CY, / (ATu,) (4.56)
i=0 BXO(S)

m—1—j

m—1
/ PZIV'UPdv < C Y / (Au)? Y o'(Au,) (4.57)
M j=0 < By () i=0
Therefore, by combining (4.43), (4.44)), (4.53)), (@.57)) we obtain

m—1 m—i—1
K / (A2U,Ydx < / u?—Z(Kci,mam_"— D Caf> / (ATu,) (4.58)
M M i=0 B, (6)

J=0

Now we consider the left hand side of (4.42). By the Cartan expansion of the metric and the definition of

/Uz#dxz/ W dv —C/ PU%dv..
o a g aa g
M B, (6) M

Since 0 < 17, < 1 we must have ;15# < #2 and so by (14.55[) and (14.56[) we have

U, we have

m—1

2% 0 of 2.2 of N
/710, ru, S/ n,ru, SCZ/ (A2u,)".
M M i=0 * By, (6)

m—1

/ U(f#dx > / ui#dug -C Z/ (Aéua)2
M G) i=0 J B, (®)

The first term converges to 1 from below and the second term converges to 0, therefore raising both sides to

Therefore we obtain

2 <1 we have
2#

m—1

2
¥ ,-
</ U(?dx) 2/ ui#—CZ/ (AZu)?
M B, (5) i=0 J B,,(6)

Independently we have by Step 3

22
/ ¥ < sup u, / w<C / U
o o a
M\B,(6) M\B,(6) M\B, (5) B, (5)
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allowing us to strengthen our previous inequality to

2 m—1
of i
</ Uj#dx> 2/ ui# - CZ/ (A7u,)?
M M im0 /B, 6

Therefore combining (4.42), (4.58]), and (4.59) we obtain

m—1 m—i—1
Z K, ,a" " — Z Ca’ / (A%ua)2 <0
= B, ()

i j=0

and we obtain a contradiction when a is sufficiently large.
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A Appendix: The De Georgi-Nash-Moser Iterative Scheme

The De Georgi-Nash-Moser Iterative Scheme, for Riemannian manifolds is a crucial tool in Section 4.3. We
state the Euclidean De Georgi-Nash-Moser Iterative Scheme and use it to show it indeed applies in a useful
sense when generalized to the Riemannian case. The following is Theorem 4.14 in the book of Han and

Lin[20].

Theorem A.1 (Euclidean De Georgi-Nash-Moser Scheme). Ler Q C R" be a connected open set. Let a;; €
L*®(Q) satisfy
Mflz < aijgl‘éj < A|é‘|2

forall x € Qand & € R". Let f € LY(Q) for some q > g Let u € W2(Q) be a nonnegative subsolution in

following sense:

/aijDiuqu’)dx < /f(l)dx
Q Q
forany ¢ € I/Vol’z(Q) such that ¢ > 0 in Q. Then for any ball B C Q and 0 < r < R and any p > 0, there

exists C based on A, \, q, p, n such that

1 21
supu < C | ——llull g + RS N pasy | -
B, (R—r)»

The following lemma shows we can apply the Euclidean De Georgi-Nash-Moser iterative scheme in small

geodesic balls on Riemannian manifolds.

Lemma A.2. Let (M, g) be a smooth complete n dimensional Riemannian manifold with bounded curvature.
Let xy € M, 6 > O suchthati, ,> 6 wherei, , isthe injectivity radius at x,. Let Bs(x,) be the geodesic ball
of radius 6 at x,.. Let f € L1(By(x,)) for q > g be a nonnegative function. Let 0 < A < \/g < A in normal
coordinates on Bg(x,). It is easily seen through the Cartan expansion of the metric in normal coordinates that
A and A can be taken to depend on curvature bounds for the manifold. Letu € H 12(B 5(x,)) be a nonnegative
function satisfying Agu < f. Then for any p > 0, there exists C based on (A, A\, 6, p, q, n) such that

sup u < C (llull Lo, ey + 1S 1 asyix00)
Bs/2(xp)

Proof. We first recall the formula for the Laplacian operator in coordinates Au = —éa,.(\/ggff d;u) (see

Chapter 2 of Lee[26]). Let ¢ € I/VOM(B(S(O)) be nonnegative. Computing in geodesic normal coordinates, we
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have

/ —0,.(\/gg"jdju(expxﬂ(x))w(x)dx < f(expr(x))d)(x)\/gdx < / Af(exp, (x)d(x)dx.
By(6)

By(6) By (6)
Integrating by parts on the left hand side shows the definition of a subsolution in Theorem A.1 is satisfied and
therefore applying the Euclidean De Georgi-Nash-Moser scheme (passing to Riemmanian integrals through

the bounds A and A) yields our lemma. O]

Theorem A.3 (De Georgi-Nash-Moser Scheme). Let (M, g) be a smooth complete n dimensional Riemannian
manifold with bounded curvature. Let Q C M be a bounded open set. Let A C Q be a compact proper subset
of Q. Let f € LYUQ) for q > g be a nonnegative function. Let u € H"“'(Q) be a nonnegative function

satisfying Agu < f. Then for any p > 0, there exists C based on (M, g), <2, A, p, q, n) such that

supu < C (llull pogy + 1/ | o)) -
A

Proof. By the Hopf-Rinow theorem, it is easily seen there exists 6; > 0 such that for all x € Q, i, , > 6.
Becuase A is compact in €, there also exists some 6, > 0 such that for all x € A, B, (x) C Q. Taking
6 = min(d,, 6,), considering a finite covering { B;,(x;) : x; € A, 1 <i < k} of A, and applying Lemma A.2

immediately yeilds the theorem. ]
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Conclusion

The result of Theorem 3.3 represents an important development in the AB Program and is interesting in the
sense that it requires methods which are not necessary in the second order proof by Hebey[23]] while still
maintaining the same structure. We hope to see more higher order questions of this sort being attacked in
the future, as they often require more than just added technicality and viewing a problem in its most general
state frequently reveals aspects which would not be shown in lower order cases. We also hope the lemmas in
Section 4.2 (or sharper versions thereof) can be of use in other higher order problems.

The refined version of Theorem 3.3 (for dimension n > 6 and m = 1) proven in Li-Ricciardi[29] makes
use of the "conformal Laplacian" A + R where R represents the scalar curvature. This operator has natural
generalizations to higher order in the "GJMS operators" (see Graham, Janne, Mason, and Sparling[18]]). It may
then be reasonable to seek refinements of Theorem 3.3 in general (with possible restrictions on the dimension
or geometry) involving the GJMS operators. A key obstacle which is inherent to higher order problems is
that of positivity. One reason this causes difficulty is H”(M) does not have the property that if u € H? (M)
then |u| € H?(M) if m > 2 (while this does hold for m = 1). Additionally, if a higher order operator is not
a composition of coercive second order operators, then the maximum principle may not apply. We refer to
Robert[39], Proposition 4.4 for an example of a sign changing minimizing solution to an equation like (3.5)) in
fourth order. It therefore should not be taken for granted that Theorem 3.3 can be proven by working solely with
the operators (A + a)™ for @ > 0, where positivity is trivial by iterating the second order maximum principle.
Some recent results on positivity for fourth or higher order operators (with a focus on GJMS operators) can
be found in Case-Malchiodi[7]], Gursky-Malchiodi[19], and Hang-Yang[21]. This makes it a very interesting

problem unique to higher order to formulate blow up analysis arguments while taking account of this obstacle.
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