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Abstract

The United States is currently in the midst of a micro-mobility revolution
of sorts. Almost overnight, U.S. cities have been inundated with short-term
rental scooters owned and operated by start-up companies promising a dis-
ruption to the urban transportation status-quo. These scooter-share services
are presented as a dockless alternative to traditionally government-funded,
docking station-based bike-sharing programs. Given the rapid rise of electric
scooter companies, and how little is known about their operations, there is
pressing public interest in understanding the impact of these transportation-
sharing platforms. By exploring the nuanced spatial and temporal activity
patterns of each of these platforms, this research identifies differences and
similarities between dockless e-scooters and existing bike-sharing services.
The findings from this research contribute to our understanding of urban
transportation behavior and differences within mobility platforms.
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1. Introduction

We are in the midst of technology-induced paradigm shift in transporta-
tion. Ride-hailing services, short-term car rentals, and autonomous vehicles
are altering the transportation landscape. Within this environment, elec-
tric, dockless, scooter-sharing services are experiencing explosive growth and
adoption in urban centers (Brustein and Lanxon, 2018; Marshall, 2018a).
Presented as a solution to the last-mile problem, privately funded scooter-
share companies have inundated cities so quickly that municipal governments
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are struggling to evaluate the impacts on existing services, determine legality,
and assess citizen safety.

First, a brief overview of how current scooter-sharing services works. A
user accesses a map of available scooters via a service-specific application
downloaded to their mobile device. After navigating to the available scooter,
the user unlocks it by scanning a Quick Response (QR) code on the vehicle
and begins their trip. Upon reaching their destination, the user parks the
scooter on any public city property, clicks the trip completion button on
their mobile app, and walks away. The trip is charged to the credit card
registered with the mobile application. At time of writing, the cost to use a
scooter in most U.S. cities is $1 USD to unlock and $0.15 per minute of usage
(from https://www.li.me/help). A number of scooter-share companies are
in service today. One of the dominant operators in the United States, and
the source of trip data for this research, is Lime (a set of Lime scooters is
shown in Figure 1a).

(a) Lime dockless electric scooters (b) Capital Bikeshare docked bicycles

Figure 1: Two mobility services in Washington, D.C. Docked refers to programs that
require vehicles to be docked at stations, as opposed to those that permit vehicles to
be left in any public space (Dockless). Photographs published under Creative Commons
License. Photographers (a) Grant McKenzie (b) Ben Schumin.

In much the same way that ride-hailing services recently forced citizens
and governments to re-evaluate urban transportation, this new mode of short-
trip travel is again causing heated discussions at a municipal level (Richter,
2018). One program most likely affected by the influx of these scooter-share
services is government-funded bike-sharing. These two services likely appeal
to a similar demographic of the urban population and bike-share programs
often involve substantial financial investment in infrastructure and mainte-
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nance. For example, between 2011 and 2019, the City of Montréal, Canada,
spent an estimated $62.2 million in taxpayer funds to support the BIXI bike-
share program (Guénette and Doucet, 2017). Given the level of investment,
and the desire of scooter-share companies to expand into new markets (Cana-
dian Press, 2018), it is worthwhile investigating scooter-sharing services fur-
ther and assessing the differences between them and existing, subsidized,
bike-sharing programs.

One of the issues facing cities is that few studies were conducted prior
to the introduction of these scooter-share services. Many of these vehicles
showed up on city streets without warning (Lazo, 2018) and the proprietary
nature of the companies operating these services has limited external research
opportunities. Questions still remain as to how these services are actually
used and the overall impact that these scooter-share companies are currently
having, and will continue to have on cities. While existing research has fo-
cused on a number of facets ranging from regulatory (Anderson-Hall et al.,
2019) and economic concerns (Smith and Schwieterman, 2018), to usage be-
havior (Todd et al., 2019) and environmental impact (Weiss et al., 2015) to
the best of my knowledge, little research has investigated the nuances of when
and where people are using these scooters. In this work I identify these spa-
tiotemporal usage patterns and compare them to existing bike-share mobility
services in a major urban center.

Figure 2: Location of study area, Washington, D.C.
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The geographic setting for this work is Washington, District of Columbia
(D.C.), in the United States (Figure 2). The city was chosen for this work
as it is one of the few cities in North America that currently requires pri-
vate micro-mobility companies to share their data publicly in order to receive
an operating permit (DDOT, 2018). This, in combination with the recent
inflow of scooter-share services into the city allows for the analysis of rid-
ership patterns at a high spatial and temporal resolution within a major
metropolis. Furthermore, comparison with existing mobility services is pos-
sible through open data efforts in the region. D.C.’s docked bike-share pro-
gram, Capital Bikeshare (Figure 1b), is one of the largest, and most success-
ful, government-funded bike-sharing programs in the United States (Lazo,
2017), and anonymized trip data are openly shared with the public. These
factors combine to make Washington, D.C. an ideal region in which to ana-
lyze scooter-share spatiotemporal usage patterns.

Contribution

The primary contribution of this work is the identification and compar-
ison of spatial and temporal scooter-share and bike-share usage patterns in
Washington, D.C. To this end, the work presented here addresses the follow-
ing four research questions (RQ). The first two pertain to a scooter-share
service itself while the latter two involve comparative analysis with an exist-
ing bike-share service.

RQ1 What is the temporal distribution of scooter-share trips and how do
they vary during the course of a day? Are there differences between
weekdays and weekends?

RQ2 What is the spatial distribution of scooter-share trips and what is their
land use distribution?

RQ3 Is there a significant difference in the temporal activity patterns of
customers using a docked bike-sharing program and dockless scooter-
sharing service?

RQ4 Are there spatial differences in the usage patterns of a dockless scooter-
sharing service and a docked bike-sharing program?

These questions will be addressed in the remainder of this manuscript
which is organized as follows. Related work is presented and discussed in
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Section 2. An overview of the data is provided in Section 3 and the data
cleaning process is presented in Section 4. The first two research question
are addressed in Section 5 while Section 6 presents a comparative analysis
with a bike-share program, addressing the remaining research questions. A
discussion of the implications of these analyses are provided in Section 7 and
conclusions are presented in Section 8.

2. Related work

Dockless scooter-share services are a new and rapidly emerging market
(Clewlow, 2019), and as such, limited external research has investigated their
impact on existing municipal services or transportation infrastructure. What
research there is has primarily focused on the social impacts of these scooter
services (Petersen, 2019; Loizos, 2018), parking placement (Fang et al., 2018),
adoption rates (Riggs, 2018; Degele et al., 2018), and safety concerns (Allem
and Majmundar, 2019). Additional research has centered on distribution
optimization (Chen et al., 2018) and electrical engineering-focused efforts
towards efficient batteries (Pellegrino et al., 2010). One recent scooter-share
usage study based out of Chicago conducted analysis using hypothetical trips.
The authors identified a number of ways in which scooter-share services could
potentially augment existing public transit and reduce personal automobile
usage (Smith and Schwieterman, 2018). In this case, however, no spatial or
temporal analysis was done to identify the differences between any of these
services.

While the body of literature related to scooter-shares is small, a substan-
tial amount of research pertaining to bike-share programs, their impacts on
existing transportation systems, as well as socioeconomic and environment
effects exists (see Fishman, 2016 for an overview). Recent efforts have been
exploring relatively new dockless bike-sharing services, though many of these
have been replaced by scooter-sharing (Sussman, 2018) in recent years. Zhou
et al. (2018) discovered that the introduction of dockless bike-sharing services
produced a modal shift, reducing metro ridership in Shanghai, China. Re-
search into the impact of bike-sharing services on traffic and congestion found
that these services had a positive impact on large cities and negative impact
on wealthier municipalities (Wang and Zhou, 2017). Similarly, Mooney et al.
(2019) examined spatial equity of dockless bikes in Seattle, Washington find-
ing that education level of residents correlated with a higher density of dock-
less bikes. Other work (Ricci, 2015) supports the notion that bike-sharing
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systems reduce travel times and cost, and improve health and travel experi-
ences. Computationally, there is a substantial body of literature pertaining
to optimization strategies for bike-share distribution (Pal and Zhang, 2017;
Lin et al., 2018; Garćıa-Palomares et al., 2012). More recently, the spatial
and temporal distribution of docked and dockless bike-sharing trips has been
analyzes showing unique patterns within each service (McKenzie, 2018).

Probably the most similar area of research to scooter-sharing is electric
bike-sharing. The introduction of these services have been found to have
an impact on existing city infrastructure. Specifically, electric bike-shares
have been shown to draw users from bus systems, taxis, and metro (Camp-
bell et al., 2016) and the ride-hailing company Uber just reported that the
electric bike-sharing program Jump, in which they are heavily invested, is
cannibalizing riders from Uber cars (Rao, 2018). While electric bike-share
services substantially overlap with scooter-share services, few research efforts
have been made to quantify the difference in spatial patterns of the various
mobility services.

3. Data

In this work, trips using two urban mobility services were analyzed,
namely Capital Bikeshare (CB), the government-funded docked bike-sharing
service, and Lime (LS), the dockless electric scooter-sharing company. An
overview of the data collected is shown in Table 1.

Table 1: Descriptive statistics for Lime scooters and Capital Bikeshare programs. Median
value in brackets. *The temporal resolution of data collection for Lime scooters was 5
minutes hence the median trip length of 5 minutes.

Platform Lime eScooters (LS) Capital Bikeshare (CB)
Service N/A Members Casual
Total number of trips 937,590 1,086,619 327,436
Mean trip distance (meters) 649 (554) 2608 (2244) 2698 (2436)
Mean trip length (mins) 5:19 (5:00*) 14:34 (10:26) 39:23 (24:20)
Mean num vehicles per day 287 (325) 1886 (1919) 1080 (1143)
Mean num trips per day 7050 (7962) 8170 (8478) 2462 (2390)

3.1. Lime

Lime scooter data were accessed at a 5-minute temporal resolution via
the public accessible application programming interface (API) for the D.C.
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region (https://ddot.dc.gov/page/dockless-api). Data were collected
from June 13 through October 23, 2018. The result of a single API request
is an array of available vehicles (those not currently in use). Each available
vehicle includes limited attribute information such as the vehicle identifier
and geographic coordinates. As the data were collected in real-time, a time
stamp was assigned to each API request.

Data collection for scooters resulted in 15,960 snapshots of available scoot-
ers taken at 5 minute intervals over 133 days. A trip was identified as the
time stamp and coordinates of when a scooter last appeared available in a
snapshot, to the time stamp and coordinates of when the same scooter next
appeared available in the set of incremental snapshots. The start of the next
trip for the scooter was then identified as the stop location of the previous
trip and the start time of the trip was identified based on when the scooter
next moved. Only those scooters that moved more than 80 meters were con-
sidered trips. This was done primarily in consideration of GPS multi-pathing
errors and vehicle location adjustment by non-users. Using this approach,
1,005,788 trips were identified in the scooter data before further cleaning.

3.2. Capital Bikeshare

CB trip data are freely accessible as monthly comma delimited text
files from the Capital Bikeshare website (http://www.capitalbikeshare.
com/system). Trip data were downloaded for the same time period as the
scooter data. Each CB trip consists of a set of attributes including a bike
identifier, trip start and end station identifiers, trip start and end time
stamps, and duration of trip in seconds. The geographic coordinates of
docking station locations were downloaded from D.C.’s Open Data portal
(http://opendata.dc.gov) and mapped to bike trip start and end stations
identifiers. The CB service region currently covers the greater D.C. metro
area including parts of Virginia and Maryland, a total of 523 docking sta-
tions. For this study only those trips that both started and ended within
the municipal boundary of D.C. were included, restricting analysis to 269
stations and 1,414,055 trips. The pricing structure for Capital Bikeshare in-
cludes two plans, members that pay an annual or monthly fee for unlimited
access to the bike-share service, and casual riders that pay per trip (This
includes riders that purchase 24 hour or 3-day passes). Provided this infor-
mation, CB trips were further separated into two datasets, one for casual
users (CBCasual) and one for members (CBMembers). Again, Table 1 gives a
numerical overview of the services.
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4. Data cleaning

Before analysis could be done with the data, I first identified potential
issues such as falsely labeled trips within the scooter data.

4.1. Scooter-share juicing

Under normal usage conditions, a typical electric scooter must be recharged
at least once within a 24 hour period. To accomplish this, Lime developed
a crowd-sourcing program called Juicing. Through the juicing program,
Lime pays citizens to recharge electric scooters on their private property
(https://web.limebike.com/juicer). Participants are instructed to pick
up scooters that have low batteries at the end of the day and drop them off
to specific locations the next morning. In order to analyze authentic trips
within the dataset, juicing trips were first identified and removed.

As a first pass, all trips with a duration over 2 hours were identified.
Given a average trip duration of roughly 5 minutes, it is highly unlikely that
a trip lasting 2 hours is an authentic user trip. Furthermore, since an electric
scooter can only run continuously for 2 hours (roughly 30 miles per charge
at a speed of 15 mph) (Marshall, 2018b), a trip lasting 2 hours would likely
involve a stop with a long duration and should not be included in analysis for
this project. Two hours is also important as it is considered the minimum
amount of time that a juicer can spend recharging a scooter in order to get
paid (Ridester, 2018). Through this method 37,243 trips were identified as
juicing trips.

While it could be argued that removing all trips with a duration over 2
hours may falsely remove actual user trips, I chose to error on the side of
removing false positives rather than include false negatives. Figure 3 shows
the temporal distribution of scooter pick-up and drop-offs, trips identified as
juicing trips, aggregated to a 24 hour period. This figure shows that most
pick-ups related to juicing are distributed broadly in the evening hours which
is a reflection of when the batteries on the scooters run low and juicing is
requested by Lime. Comparatively, juicing drop-off times are much more
specific with most of the drop-offs occurring between 4am and 8am.

4.2. Scooter-share redistribution

Aside from juicing, Lime also employs staff members to redistribute scoot-
ers that are in non-optimal locations (e.g., too many scooters in one location,
or a scooter has not been used in 24 hours). The maximum speed of a scooter
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(b) Juicing Drop-offs

Figure 3: Temporal pattern of juicing trip pick-ups and drop-offs over an aggregated 24
hour period.

is 15 miles per hour (Lime, 2018). Given this information, redistribution trips,
were identified as any trip with an average speed faster than this as identi-
fied by the distance between the start and end points, as computed by the
shortest path distance along the D.C. road network, divided by duration.
These “faster than maximum speed” trips imply that the scooter moved by
way of a redistribution vehicle. Notably, the majority of these redistribution
trips occurred between 3pm and 4pm on weekdays, likely with the goal of
redistributing scooters before peak commute times. Through this process I
further identified and remove 15,791 trips leaving a total of 937,590 authentic
scooter-share trips.

5. Spatiotemporal scooter-share usage patterns

In addressing RQ1 and RQ2, I first identify the temporal and spatial
usage patterns within the scooter trip data.

5.1. Temporal patterns

The 4 months of scooter trips were aggregated by hour of the day and
day of the week and normalized to produce the temporal usage patterns
shown in Figure 4. The start times of the trips are shown in this figure
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but given that the mean duration of trips is roughly 5 minutes (the temporal
resolution of data collection), the end trip usage pattern is nearly identical. A
mid-day peak is seen in both weekday and weekend usage with a smaller, and
more pronounced peak on weekday mornings during peak morning commute,
roughly 8am.
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Figure 4: Scooter-share trip start times aggregated to hours of the week. Solid lines at
midnight and dashed blue lines at 12 noon.

Cosine similarity (CosSim) was employed to statistically assess the degree
of similarity between days of the week. CosSim measures the cosine angle
of two inner product vectors and produces a similarity measure for each
pair of temporal activity distributions allowing for statistical comparison
between temporal usage patterns. While all combinations of days produced
relatively high CosSim values (above 0.9), midweek days, Tuesday-Thursday,
were determined to be the most similar followed by Saturday-Sunday. This
approach also supports the visual estimation that the least similar scooter-
share usage is between weekend and midweek days, addressing RQ1, that
there are indeed differences in usage between weekdays and weekends.

5.2. Spatial patterns

While the previous section identified temporal patterns in the scooter-
share data, this section presents the spatial distribution of scooter-share trips.

5.2.1. Land use

These activity patterns were then further analyzed by splitting trips based
on land use of origin and destination with the goal of addressing RQ2. By
separating the temporal usage patterns in this way, I gain a better under-
standing of potential trip purpose, at least as it can broadly be identified
through the proxy of land use. The most recent land use spatial data for D.C.
was downloaded, all scooter trip start and end locations were intersected with
the dataset, and the nearest land use code was assigned to each start and end
point. Land use types were grouped into broad categories. Low, medium,
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and high density residential were categorized as Residential, all office and
commercial types were designated as Commercial, and all recreational, fed-
eral public, and quazi-public land were designated as Recreational/Public.
Trips starting or ending in mixed-use, industrial, or schools were removed
from analysis in this work as together they accounted for less than 10% of
all trips. Of the remaining three land use categories, trips that started in
Recreation/Public accounted for 40.6% of all trips, Commercial accounted
for 36.3%, and Residential 23.1%. Breaking this down further, all combina-
tions of origin and destination land use were tabulated. Overall, 60% of these
trips started and ended in the same land use type (e.g., Commercial → Com-
mercial). Table 2 shows the breakdown of trips.

Table 2: Origin and destination of scooter-share trips by top three land use types.

Trip Start Trip End Percentage

Public/Recreation
Public/Recreation 28.2
Commercial 8.2
Residential 4.2

Commercial
Commercial 19.5
Public/Recreation 8.6
Residential 8.2

Residential
Residential 11.4
Public/Recreation 4.2
Commercial 7.5

The land use of the origin of each trip was further examined by hour
of the week. The percentage of trips split by land use type are shown in
Figure 5. Notably, the number of trips starting in Residential areas did not
change much between weekdays and weekends, 24.1% to 23.0% respectively.
The largest difference between weekdays and weekends was found with both
Commercial and Public/Recreation land use types. On weekdays, 38.9%
of trips started from Commercial areas compared to 32.1% on weekends.
In contrast, 37.1% of Public/Recreation origin trips occurred on weekdays
increasing to 44.9% on weekends. This is a significant shift in both cases.

5.2.2. Traffic analysis zones

The origin locations for all scooter-share trips were next intersected with
the traffic analysis zone (TAZ) polygon dataset for D.C. and trip density
was calculated for each TAZ (Figure 6a). Visually, we see a clear cluster
of trips near the downtown core of the city with far fewer trips originating

11



P
er

ce
nt

ag
e 

of
 T

rip
s

0
20

40
60

80
10

0

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Residential Commercial Public/Recreation

Figure 5: Percentage of trips by hour of the week split by land use of where the trip
originated.

on the outskirts of the region. Given that analysis of the temporal patterns
identified differences in trip volume between weekends and weekdays, I next
computed Global Moran’s I (Moran, 1950) for the two patterns in order
to identify differences in spatial autocorrelation. The results demonstrate
that the trip volume patterns are both non-spatially random with weekday
trips (0.170) showing a higher degree of spatial clustering than those on
the weekends (0.121). Both analyses had an expected value of -0.0022 and
standard deviation of 0.0033. Calculating the weighted standard deviation
distance from the mean weighted TAZ centers identified weekends a having
a larger radius distance than weekdays. In response to the spatial dimension
of RQ1, this indicates that weekday trips are generally more centered in the
downtown city core of D.C. relative to weekend trips which show greater
spatial dispersion.

The differences in regional trip density are shown in Figure 6b. Normaliz-
ing trip volume to allow for comparison, weekday trips were subtracted from
weekend trips resulting in a map showing the regional dominance of trips
based on day of the week. Notably, weekday trips dominate the majority of
TAZs, especially around the downtown city core whereas weekend usage is
relatively greater than weekday usage in regions near the National Mall and
along the Potomac River. There is negligible difference in scooter usage on
the outskirts of the district.
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Scooter	Trips	(Start)
	1	-	136	
	136	-	391	
	391	-	1148	
	1148	-	3502	
	3502	-	24869	

(a) Scooter trip density (b) Normalized weekend vs. weekday trips

Figure 6: Spatial distribution of trips aggregated by traffic analysis zone. Figure 6b ranges
from Weekday to weekend dominance.

6. Contrasting scooter-share and bike-share usage patterns

In this section I address RQ3 and RQ4 by comparing scooter-share spa-
tiotemporal usage patterns with those of D.C.’s bike-share program.

6.1. Temporal activity similarity

Similar to the scooter temporal patterns introduced in the previous sec-
tion, bike-share trips were aggregated by hour of the day and day of the week
to produce an averaged temporal vector of 168 values. Split by membership
type, the two temporal signatures for trip start times are shown in Figure 7.

There is a striking difference between the two CB patterns shown in these
Figures. Figure 7a clearly shows increased trips during typical commute
times on weekdays while Figure 7b shows increased usage on the weekends
and no clear commuting behavior during weekdays, aside from a slight in-
crease in usage around 5pm. This is in line with previous findings comparing
these two bike-share types (Buck et al., 2013). By comparison, the scooter-
share temporal pattern (Figure 4) is visually similar to casual CB ridership,
more so than member CB usage. To assess the similarity of these patterns
statistically, Watson’s U2 two sample test for homogeneity (Watson, 1961)
was applied with the goal of identifying any significant differences between
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Figure 7: Temporal patterns for Capital Bikeshare trip start times aggregated to hours of
a week. Solid lines at midnight and dashed blue lines at 12 noon.

the services and membership types. This test is a variation on the Cramér–
von Mises test (Cramér, 1928) and provides a criteria to test whether two
circular distributions, such as these temporal patterns, differ significantly
from one another. The test starts with the null hypothesis that the two dis-
tributions being sampled are drawn from the same population distribution.
Setting a significance value of 0.01, which in turn sets a critical value for the
168 element distributions of 0.268, this approach recommends rejecting the
null hypothesis for the pair of CBMember and scooter temporal trip patterns.
This suggests that these two patterns are not drawn from the same overall
temporal distribution and are in fact quite dissimilar. The results of Wat-
son’s U2 test for the other pairs, at the same significance value (0.01), namely
CBMember vs. CBCasual and CBCasual vs. scooters, suggest not rejecting the
null hypothesis, meaning they are much more similar to one another. A more
detailed investigation of these values finds a significance value of p < 0.001
for the CBMember and scooters pair, p < 0.05 for the CBCasual and scooters
pair, and p > 0.1 when comparing the two bike-sharing temporal patterns.
This indicates that, according to this method, the bike-share platforms are
more similar to one another than to the scooter-share service.

While a useful measure, the results of Watson’s U2 test really offers two
possible outcomes, either the distributions are significantly similar or they
are not. To supplement this measure, CosSim was again used to assess the
degree of similarity between temporal patterns, allowing for a more nuanced
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comparison between the services and membership types. The CosSim be-
tween CBCasual and CBMember was 0.756 whereas CBCasual to scooters was
0.886, and scooters to CBMember was 0.809. These values again support the
hypothesis that trips performed by casual bike-share users are more similar
to scooter-share trips than membership based bike-share trips. In addressing
RQ3, I can state that there are statistically significant differences between
bike-share and scooter-share temporal usage patterns. Membership based
bike-share clearly reflects standard commuting patterns while scooter-share
does not.

6.2. Spatial activity similarity

Having compared temporal patterns, I next turn focus to assessing the
spatial differences between scooter-share and bike-share services (RQ4 ). The
primary difficulty in comparing two spatial datasets such as these is that bike-
share trips are restricted to a set of static locations (269 docking stations)
while dockless scooter trips are not. This complicates spatial analysis that
requires two datasets to be represented at the same spatial resolution for
comparison. To mitigate this issue, a Voronoi polygon tessellations (Voronoi,
1908) was constructed for D.C. based on the point locations of CB docking
stations. The purpose of this tessellation approach was to assign each docking
station to some region within D.C. The assumption being that any individual
interested in starting a CB trip would navigate to a bike docked at their
closest station. Figure 8 shows the overall volume of trips by region for the
CBMember service. This Voronoi tessellation approach serves another purpose
in that it provides a contiguous set of polygons to which each scooter trip
start and end can be assigned. Using a spatial intersection, each scooter-
share trip start and end is assigned to a CB docking-station-based Voronoi
polygon and trip volume is calculated for each region and each service.
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Figure 8: Voronoi polygons built around Capital Bikeshare docking stations. Color inten-
sity reflects number of trips started by bike-share members.

Next, I calculate the difference in the spatial distribution between the
services and membership types. Each service is normalized providing a value
between 0 and 1 for each docking station polygon. This normalization allows
each service to be compared to each other service in the spatial dimension,
with respect to trip density. Figure 9 shows a set of maps produced by
subtracting trip density of one service from another. These maps show vari-
ation in service dominance. Notable observations from these maps are that
CBMember trips appear to dominate the downtown core of D.C., with higher
relative usage around the Capitol Hill neighborhood when compared to ei-
ther LS or CBCasual trips. On the other hand, scooter-share appears to have
broader regional adoption outside of the downtown core with greater trip
volume relative to CB on the outskirts of the district. The only region that
appears to show higher than average trips for CBCasual is along the Potomac
river waterfront whereas scooter-share usage is dominant around Georgetown
and the National Mall.

The similarity of these spatial distributions is statistically tested us-
ing a two dimensional Earth Mover’s Distance (EMD) approach (Rubner
et al., 2000). EMD calculates the similarity between two equally sized multi-
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(a) CBMember vs. CBCasual (b) CBMember vs. Scooters (c) CBCasual vs. Scooters

Figure 9: Normalized trip volume for one service compared to another.

dimensional matrices by computing the cost of converting one distribution
into the other. The cost in this case is based on the difference between
normalized trip volume in a region, and the minimum “distance” needed to
travel. The results of the EMD analysis indicates that the highest level of
spatial similarity is between CBMember and CBCasual (0.13) whereas the least
similar spatial distributions are CBCasual and scooters (0.50). A comparison
of scooters to CBMember demonstrates an EMD similarity value roughly be-
tween the two at 0.37. In other words, while casual bike-share usage is similar
to scooter-share usage in the temporal dimension, it is quite dissimilar in the
spatial dimension.

6.3. Temporal similarity within regions

Temporal activity patterns are next computed for each of the 269 docking-
station based regions independently within the dataset, one for each of the
three services. CosSim is computed between all pairs of temporal patterns
within each individual region. This analysis allows us to determine which
regions of the city demonstrate the highest degree of temporal trip similarity
and which show the least. Figure 10 presents the CosSim of temporal patterns
by region for each bike-share and scooter service.

In Figure 10a we see that the highest levels of similarity are in the re-
gions between the downtown core and the peripheral neighborhoods in the
city. The orange solid bordered region shown in this figure is the region with
the highest cosine similarity. In this case both of the temporal patterns ap-
pears to mirror the commute pattern indicative of the district-level CBMember

temporal usage. The light blue dashed bordered region on the other hand
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Figure 10: Cosine similarity between bike-share and scooter-share trip temporal patterns
by region. Orange solid bordered region shows the highest cosine similarity and blue
dashed border region shows one of the regions with the lowest cosine similarity between
services.

reflects two substantially different temporal patterns with CBMember show-
ing a prominent commuting pattern with very high trip volume during the
weekday morning commute compared to the scooter data which shows the
standard scooter-share pattern with high activity on the weekends and little
to no indication of weekday commuting behavior.

Figure 10b shows the CosSim comparing CBCasual to scooters. The re-
gions with the highest similarity between these two services are found along
the Potomac River and the National Mall as well as a few regions within the
downtown city core. Exploration of these similar regions in the downtown
core show that neither service portrays commuting patterns but instead the
high degree of similarity could be attributed to their non-commute trip pat-
terns. A notable limitation of visualizing the data in this way is that cosine
similarity decreases as the sparsity of the trips increases. This means that
polygons in the Southeast of D.C. may be seen as less similar simply because
they lack a large enough trip volume on which to produce an accurate cosine
similarity measure.
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7. Discussion

The overall goal of this research is to identify similarities and differences
between existing docked bike-sharing and this new service of dockless scooter-
sharing. The results of the analyses presented in the previous sections demon-
strate that there are clear differences both in the temporal and spatial dimen-
sions. Not only are ridership patterns different within Washington, D.C. as a
whole, but these results indicate that there are nuanced regional differences
within the district. Splitting bike-share trips into those taken by members
and those that use bike-share casually allows for a more detailed comparison
of the services. The results indicate that while both bike-share modes show
similar spatial distribution of trips, they vary substantially in their temporal
patterns. When compared to the new scooter-share service, the results show
that casual bike-share is similar temporally but varies greatly in spatial dis-
tribution. Membership bike-share, on the other hand, is generally dissimilar
to scooter-share usage in both dimensions.

The primary take away from these results is that these two services are
used for different purposes. Member bike-share in Washington, D.C. is pre-
dominantly used by those commuting to and from work while scooter-share
does not reflect this standard commuting behavior. While the purpose of the
trips conducted by users of these services is not explicitly clear, the analysis
in this work suggests that causal bike-share usage and scooter-share trips
support leisure, recreation, or tourism activities, more so than commuting.
Reasons as to why these services are used in these ways was not explored
in this work but I theorize that much of this has to do with the length of
time the two services have been in operation. Capital Bikeshare has been in
use, in some form, since 2008 and over the years has proven to be a robust
and trustworthy service on which both residents and visitors to D.C. can
rely. Furthermore, the Capital Bikeshare program is funded through tax dol-
lars and supported by local governments. In contrast, Lime’s scooter-share
service is roughly one year old. The service has not had time to build trust
within the community and to many residents these scooters remain a novelty.
It is therefore not surprising that residents prefer to rely on the membership-
based Capital Bikeshare program when commuting to and from work and
likely use scooter-share when the cost of failure (e.g., not making it to work
on time) is low.
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7.1. Biases

Though this work focuses solely on the spatial and temporal distribution
of trips within Washington, D.C., there is a clear discussion to be had per-
taining to the demographics of scooter-share and bike-share users. While
Capital Bikeshare conducts and publishes regular user surveys, little infor-
mation is available regarding the demographics of scooter-share users. What
is notable however, is the regions of the city that show little to no scooter-
share activity. Wards 7 and 8 in the Southeast of D.C. report the fewest
number of scooter-share and bike-share trips and are also home to the lowest
income families and largest percentage of African Americans in the district.
This suggests one of two things, either these mobility services only appeal
to a small socio-economic subset of the population, or these new services are
contributing to a further socio-economic divide fueled by technology-based
transportation. Regardless, further investigation into the demographics and
socio-economic status of the users is necessary to understand why there is a
lack of urban mobility service usage in these regions.

7.2. Data limitations and future work

Though analysis in this work relied solely on scooter-share trips from
one of the largest providers in D.C., Lime, other scooter-share services may
depict different patterns. While unlikely to be substantially different from
the results of this analysis, further research should investigate the variation
between services. In addition, the five minute temporal resolution of data
collection limits the analysis and comparison of trip duration, given that
many trips are shorter than five minutes. Future efforts will increase the
temporal resolution of data collection.

Next steps on this research topic will compare these results to spatial
and temporal patterns of scooter-share services in other cities and involve
examining regional variability in scooter usage. Land use will be further
examined with the goal of identifying differences within land use types (e.g.,
High density vs. low density residential). Similarly, the impact of regional
climate, seasonal changes, and hyper-local weather will be assessed. Finally
the results of these analyzes will be compared to other existing modes of
transportation including traditional automobile, ride-hailing services, and
public transit.
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8. Conclusions

The rapid influx of scooter-sharing services in U.S. cities has caught many
municipal governments by surprise. One of the first steps towards under-
standing the impact of these new micro-mobility services is to identify how
they are used within a city. In this work I explored the spatial and temporal
patterns of dockless scooter-share trip origins and destinations and compared
these patterns to those of traditional docked bike-sharing services. The re-
sults indicate that there are important differences between the two services.
Bike-sharing services within the city of Washington, D.C. are primarily used
by individuals commuting to and from work while scooter-share is not. These
findings offer novel insight into how these services are used in an urban set-
ting and provide a foundation on which public policy and transportation
infrastructure decisions can be made.
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