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ABSTRACT 

Batters are highly complex systems with wide rangmg ingredients inc1uding 

flours, water, flavorings, and sp tces. Interactions between the ingredients determine the 

performance of batters and the final quality of coated products. Addition of hydrocolloids 

into batters of different types of flour provides special effects on batter performance. The 

functionalities of hydrocolloids- flour mixtures in terms of the thermal and rheological 

properties ofthe resulting batter ~:ystems were investigated in this study. 

The rheological properti,~s of the batter were determined using a strainlstress 

control rheometer. A steady state method was used to measure the viscosity as a function 

of the shear rate varying from 0.5 to 150 S-l at 15 oc. The resulting data was then fitted to 

the Herschel-Bulkley Model. The viscoelastic properties were monitored as a function of 

temperature and were determined using a dynamic oscillatory test. Two different 

temperature profiles were used ":0 simulate cooking and storage processes. DifferentiaI 

scanning calorimetry (DSC) was used to determine thermal properties (namely glass 

transition temperature, gelatinization temperature, ice melting temperature, and enthalpy) 

and to describe the phase transitions that occur during heating and cooling processes. 

The rheological and themlal properties varied for different types of flours and their 

combination ratios, as well as different types of hydrocolloids at different concentrations. 

The replacement of corn flour greatly altered the viscosity and viscoelastic properties of 

wheat based and rice based batte:r systems. Using 100% corn flour based batter showed 

highest yield stress, whereas 100% rice flour based batter did not show any yield stress. 

Higher temperatures and longer times were required to gelatinize starch at the higher 



levels of rice flour for each batter system flour mix combination. The various combination 

ratios of the flours apparently did not significant influence the gelatinization temperatures 

of the batter systems. However they significantly influence the total enthalpies (i1Ho) of 

the various sarnples. Wheat flour based batters showed the lowest glass transition 

temperatures. Thermal propertLes of wheat-based batters were influenced by the 

replacement of wheat with ric:e or corn flours. Corn flour based batters required 

considerably more energy for gelatinization during the cooking process. 

Hydrocolloids lowered flow behavior index (n) and increased the consistency 

index (k) of all batters. The gums also changed the onset temperature of structure 

development and the storage and loss moduli of the batter systems. Hydrocolloids greatly 

influenced the thermal properti;:s of batter systems. The gums shifted gelatinization 

temperature and depressed gla:;s transition temperature of resulting batter systems. 

Further, MC increased the melting temperature (Tm) for the test batter systems as 

compared with the values for the control system without methylcellulose (MC). 

Carboxyrnethylcellulose (CMC) did not show statistically significant effects on the total 

enthalpies of ice melting for a11 samples. However, MC and CMC showed more 

pronounced effects on rice, corn, and their combined flour based batters than it did on 

wheat flour based batters. However, this characteristic does not show in batter systems 

containing xanthan gum. 
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RESUME 

Les pâtes lisses sont des systèmes complexes comportant de nombreux ingrédients 

comme les farines, l'eau, les arômes et les épices. Les interactions entre les différents 

ingrédients déterminent la performance de la pâte lisse et la qualité finale des produits 

enrobés. 

L'ajout d' hydrocolloïdes dans les pâtes lisses constituées de différentes farines 

agit sur la performance de la pâte. Les fonctionnalités des mélanges hydrocolloïdes -farine 

en terme de propriétés thermiques et rhéologiques de la pâte lisse résultante ont été 

recherchées dans cette étude. 

Les propriétés rhéologiques de la pâte lisse ont été déterminées en utilisant un 

rhéomètre contrôlant la contrainte et la force appliquée. Une analyse à ei état régulier a 

permis de mesurer la viscosité en fonction des taux de cisaillement compris entre 0.5 et 

150.0 S-1 à 15 oc. Les données obtenues ont ensuite été comparées àcllesdu modèle de 

Herschel-Bulkley. Les propriétés viscoélastiques ont été enregistrées en fonction de la 

température et déterminées en utilisant un test oscillatoire dynamique. Deux profiles de 

température ont été utilisés afin de simuler les procédés de cuisson et de stockage. La 

calorimétrie à balayage différentiel (DSC DifferentiaI Scanning Calorimetry) a été utilisée 

pour déterminer les propriétés thermiques (telles la température de transition vitreuse, la 

température de gélatinisation, le point de fusion, et l'enthalpie) et pour décrire les 

transitions de phases qui ont lieu pendant lacuissou et ls nef à gination. 

Les propriétés rhéologiques et thermiques ont varié en fonction du type de farine 

et de son ratio au sein du mélange mais aussi en fonction du type et de la concentration en 
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hydrocolloide. Le remplacement de la farine de maïs par de la farine de blé ou de riz a 

fortement altéré la viscosité et les propriétés viscoélastiques de la pâte. Unefocére 

entièrement à doués la plus grande déformation de la pâte lisse alors que r utilisation de 

100 % de farine de riz n' a montré aucune déformation. Des températures plus élevées et 

des temps plus longs ont été requis afin de gélatiniser r amidon dans les systèmes de 

pâtes lisses utilisant de grandes concentrations dn farine of de riz. Les différents ratios de 

farine n'ont apparemment pas influencé les températures de gélatinisation des systèmes de 

pâtes lisses. Cependant ils ont significativement affecté les enthalpies totales des 

différents échantillons (~HG). Les pâtes lisses utilisant de la farine de blé ont montré les 

températures de transition vitreuse les plus basses. Les propriétés thermiques de ces pâtes 

ont été modifiées en remplaçant la farine de blé par des farines de riz ou de maïs. Les 

pâtes lisses utilisant la farine de maïs ont nécessité beaucoup plus d'énergie pour la 

gélatinisation au cours du procédé de cuisson. 

Les hydrocolloïdes ont abaissé l'indice d'écoulement (n) et augmenté l'indice de 

consistance (k) de toutes les pâtes lisses. Les gommes ont aussi modifié la température 

initiale, G' et G". Les hydrocolloides ont largement influencé les propriétés thermiques 

des systèmes de pâtes lisses. L'ajout de gommes a décalé les températures de 

gélatinisation et abaissé la température de transition vitreuse des pâtes lisses résultantes. 

Par ailleurs r space ajout de méthylcellulose (MC) a augmenté le point de fusion (Tm) 

comparativement aux valeurs obtenues avec le système contrôle sans méthylcellulose. La 

carboxyméthylcellulose (CMC) n'a pas montré d'effet significatif sur l'enthalpie totale et 

sue point de fusion des échantillons. Cependant, MC et CMC ont montré des effets plus 

prononcés dans le cas des systèmes comportant de la farine de riz ou de maïs ou encore un 
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mélange des deux. Mais cette propriété n'a pas été retrouvée dans les systèmes contenant 

de la gomme de xanthane. 
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1. GENERAL INTRODUCTION 

1.1 BACKGROUND 

Batters, or/ and breadings serve many functions as food coatings by adding value 

to food products and improving their flavour and texture. Aiso they provide many 

opportunities to reduce oil absorption during deep-frying (Pinthus et al., 1993; Mohamed 

et al., 1998; Fiszman et al., 2003). Batter is a liquid mixture comprised of water, flour, 

starch, flavoring, and seasonings into which food products are dipped prior to cooking. 

Batters can be c1assified into one of two categories namely interface/adhesion batters or 

puffltempura batters (Loewe, 1990). An adhesive batter is typically used with a 

supplemental breading, and it serves primarily as an adhesive layer between the food 

surface and the breading. Chemicalleavening is not normally used in an adhesive batter. 

A tempura batter is chemically leavened, and by itself can serve as the outside coating of 

the food. Both wheat and corn flours play important roles in tempura batters. 

Batters are highly complex systems in which the nature of the ingredients is very 

wide-ranging, and interactions between ingredients determine the performance quality of 

the final product. However, the functionalities of ingredients in terms of their influence on 

thermal and rheological properties of batter systems are not yet fully understood. These 

functionalities directly influence process conditions as weIl as coated products quality. 

For instance, the use of one type flour or combination of flours may provide special 

effects on the thermal and rheological batter (Mukprasirt et al., 2000; Dogan et al., 2004) 

properties. Therefore, in order to formulate and apply batter-breading coatings to a wide 

variety of products, investigation of those properties will continue to be a challenge to 
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workers in this area. A fundamental basic knowledge is needed to advance the science of 

batler formulation for products. 

Rheological properties are arnong the most important physical properties that 

define batler behaviour. The viscosity of batler affects the quantity and quality of batter 

pick-up, appearance, texture, and the handling property of a coated product (Mukprasirt et 

al., 2000). The quality of a coated product is influenced by changes in batter coating 

properties associated with the structural phase transition from the liquid to the solid state. 

The flow behaviors and dynamic viscoelastic properties of a batter may provide 

information that characterizes the influence of temperature, water content, and various 

ingredients on a coating' s structural behavior during process (Steffe, 1996). Rheological 

data provide information useful for any coating application. 

The thermal properties and phase transition characteristic of batter systems change 

during cooking (e.g. deep fat frying) and freezing (e.g. frozen storage). They have 

combined effects on the overall characteristics of the finished coated foods. Several 

chemical and physical changes such as starch gelatinization and water evaporation occur 

during heating. The thermal properties (heat capacity, enthalpy, onset temperature and 

gelatinization temperature) reflect those changes, which directly influence the texture 

characteristic and quality of fini shed coated products (Arenson, 1969; and Meste, 2002). 

Thermal properties are critical in defining heat and mass transfer behaviors of coated 

product during heating (frying, baking, etc) and storage. They are important parameters in 

predicting the effect of freezing and thawing on coated product adhesion and quality. It is 

necessary to understand phase transitions, inc1uding glass transitions, occurring in 

coatings at sub-zero temperatures during storage, since glass transition may control rates 

of recrystallization of ice and diffusion-controlled reactions (Slade et al., 1995, Lee et al., 
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2002). Consequently, different batter fonnulations and their components may affect 

cooking quality and frozen state stability through their effects on thennal and phase state 

properties. Researchers and food processors are interested in developing further-processed 

coated products as a means of providing foods with high nutritional quality and lower fat 

contents. Understanding phase and state transition of batter system may hold the key to 

improving coating perfonnance during cooking and maintaining overall product quality 

during storage. 

Many food ingredients can be used to improve functionality (e.g., viscosity, 

cnspness, distinctive flavor, crunchy texture) in batters and coatings. Recently, 

hydrocolloids represent a category of functional ingredients that have been incorporated 

into batter fonnulations, and have shown their effectiveness in improving batter 

perfonnances and reducing oil absorption in fried coated foods (Meyer al et. 1990; Hsia et 

al., 1992; Balasuramaniam et al., 1997; Annapure et al., 1999; Holownia et al., 2000; 

Susanne et al., 2001; Mellma, 2003; and Sanz et al., 2004). 

Hydrocolloids are water-soluble polymers, generally carbohydrates, with the 

ability to thicken and/or gel aqueous systems. Each type of hydrocolloid has a different 

contribution to the batter system due to different structures resulting from different 

degrees of substitution with different branch compounds. However, they play an 

important role on viscosity, film-fonning, and barrier properties in batter system (Meyers, 

1990, and Albert, 2002). Hydrocolloids as functional ingredients may change the 

rheological, texture and thennal properties ofbatter system and lead to an influence on the 

final quality of the end products. Besides, hydrocolloids and other ingredients may cause 

interaction resulting in synergistic effects on those properties of batter systems during 
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processing (Ferrero and Zaritzky, 2000; Sanz et al., 2005; Kim and Yoo, 2005; Cao and 

Vodovot, 2005; Guadalupe et al., 2005) 

Although the majority of fried food products are batter and breading coated, 

formulation of batter system has evolved from an art into a science. In the last decade, 

research on batter systems has focused mainly on comparing their functionality with 

respect to fat absorption. Not much work has been done on understanding the fundamental 

properties such as rheological properties and thermal transition behavior and properties, 

especially for different combinations of flour blends containing hydrocolloids. Moreover, 

understanding how these properties change with the formation of flour-hydrocolloids 

batter systems during heating and cooling process, and the interaction between 

hydrocolloids, flour base, and other ingredients, will be helpful for optimizing processing 

and storage conditions as weIl as in selecting and formulating appropriate batter systems 

for various types of battered products thus resulting in nutritional foods for healthier 

living. 

1.2 HYPOTHESIS OF THE RESEARCH PROJECT 

The present study will significantly extend the current knowledge on the effects of 

hydrocolloids on thermal and rheological properties of batter systems formulated with 

hydrocolloids and different combinations of flour blends. Several studies have shown that 

thermal and rheological properties of batter systems are largely determined by their 

constituent flour type. The hypothesis of this study is that in addition to the type of flours, 

combination of different flours, and addition of hydrocolloids such as methylcellulose 

(MC), carboxymethylcellulose (CMC) and xanthan gum (XG) may have special 

functional effect on batter systems. It is assumed that the effects ofwater content, salt, and 
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leavening on thermal properties, phase transition behavior and rheological properties of 

batter system during cooking and freezing storage will be the same for aIl samples since 

the amount of these ingredients will be fixed for aIl samples. Therefore, the changes on 

the properties ofbatter will be considered as due to the effect of different combinations of 

flour and combination ratios of blends, as weIl as the addition of different concentrations 

of hydrocolloids. 

1.3 OBJECTIVES 

The overall objective of this study was to determine the thermal and rheological 

changes as weIl as the phase transitions in batters containing hydrocolloids and different 

combinations of flour blends during heating processes or during frozen storage. The 

information can be useful in selecting and formulating appropriate systems for various 

battered foods. Thus, the knowledge will be critical in designing process and storage 

conditions resulting in improved and higher quality coated food products. 

To contribute to the overall objectives set for this study, three flours (wheat, rice 

and corn) and three hydrocolloids (MC, CMC, and Xanthan gum) have been identified as 

the focus materials. Therefore, the following specifie objectives were set for the proposed 

research. 

1. To study the flow behavior and viscoelastic properties of batters formulated 

using wheat flour, rice flour, corn flour and their various combinations. 
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2. To evaluate the influence of incorporating methylcellulose (MC) or xanthan 

gum at different concentrations on the flow and viscoelastic properties of wheat, rice and 

corn based batters. 

3. To evaluate the influence of incorporating carboxymethylcellulose (CMC) and 

xanthan gum at different concentrations on the flow and viscoelastic properties of wheat, 

rice and corn based batters. 

4. To determine changes in the thermal properties (enthalpy, onset temperature and 

gelatinization temperature), and phase transition (glass transition temperature, ice melting 

temperature, and enthalpy) during the heating and cooling processes of batters formulated 

using wheat, rice, and corn flours and their various combinations. 

5. To investigate the effects of methylcellulose or xanthan gum on thermal 

properties (enthalpy, onset temperature, and gelatinization temperature), and phase 

transition (glass transition temperature, ice melting temperature and enthalpy) of wheat, 

corn, and rice based batter systems during the heating and cooling processes. 

6. To study the effects of carboxymethylcellulose on thermal properties (enthalpy, 

onset temperature, and gelatinization temperature), and phase and state transition (glass 

transition temperature, ice melting temperature and enthalpy) of wheat, corn, and rice 

based batter systems during the heating and cooling processes. 

6 



II. LITERATURE REVIEW 

Surface properties of foods are very important in influencing fat uptake as weIl as 

in defining the physical characteristics of products during deep fat frying. The coating 

provides promising opportunities to develop flavor and to reduce fat uptake in coated fried 

foods. The mechanism of the action is not fully understood. However, the ingredients in 

the coating may have certain functionalities that are related to specifie properties. As a 

result, during the last decade, research on battered products has focused mainly on 

reducing the quantity of oil absorbed during frying. Modified starch, rice flour, and other 

ingredients also contribute to the reduction of oil content in fried coated foods. Certain 

hydrocolloids that have been incorporated in formulations have shown their effectiveness 

as oil absorption barri ers. 

During the recent years of rapid growth in the batter and breading industry, many 

technological advances and breakthroughs have occurred in batter formulation, breading 

manufacture, frying oils, and production equipment engineering. As a result, many food 

companies now operate and fund their own research programs for batters and breadings, 

and their applications to various food products. Along with these changes, improved 

quality assurance practices, appropriate and practical food regulatory laws, and 

revolutionary approaches to product development has been needed to provide better 

technical service to the customers and ultimately to the final consumers. 

Batter and breading are complex systems comprising of water, flour, starch, and 

seasonings with which food products are coated prior to cooking. Different functionalities 

of the systems apply to different categories of food. 
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2.1 BATTER SYSTEMS 

Batters are the common and vital component of aIl successful food coating 

systems. Batters link the fundamentals of food science with the product needs. The proper 

selection and application of batters influence the flavour, appearance, eating 

characteristics, performance and cost effectiveness of the final coated product. In addition 

to the obvious benefits of taste, colour, and texture, batter systems also improve the yield 

and keeping qualities to withstand the demands of processing, distribution and final 

preparation for the table. 

Batter can be defined as liquid dough, being a thick but pourable mixture, into 

which a product is dipped before it is breaded or fried. Loewe (1993) c1assified batter 

systems into two broad categories: Interface/adhesion and puffltempura. Normally, 

interface or adhesion batters serve as "glue" and are used with an added breading, serving 

primarily as the adhesive layer between the product's surface and the breading. The 

interface/adhesion batter's main function is to provide a base so the bread crumbs, when 

used, will adhere to a product. Adhesive batters gained the name for a very simple reason 

- like Mom's egg and milk dip; they provide an adhesive layer between substrate and outer 

breading layer. They can be formulated with wheat flour, corn flour or starch. 

The characteristic of adhesive batters is a low to medium viscosity, intended 

mostly to achieve breading adhesion. Typically, they are high in starch and quite thin. The 

heavier the batter, the more crumb will adhere. They may carry flavors, and the thicker 

batters can be used as stand-alone coatings. Starch-based batters, also considered adhesion 

batters, act as the glue in a coating system. They are usually thin and need to be stirred 

frequently to keep the starch in suspension. Starch-based batters bind themselves quite 
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strongly to protein-based products and can be used as an outer coating on the products in 

order to increase their crispiness and improve holding time. Flour-based batters can also 

serve as the product's final outer coating without breading. Since these batters are thicker 

than starch-based batters, they adhere coarser breadcrumb that may not stick to a thin, 

starch-based batter. A flour batter can also contain leavening agents that will make the 

batter more "puffy" when fried. Examples of this are tempura and beer batters. Both 

starch-based and flour-based batters can be modified with a wide array of flavorings and 

spices to obtain the desired sensory profile. Viscosity is very important in regulating the 

amount of pickup or thickness of batter, depending on the flour/water ratio and the batter 

temperature. 

Tempura batter, which inc1udes raising or leavening agents to generate gas and 

"puff' the product, has a high viscosity to provide a thick coating with minimum 

requirement for mixing or pumping in order to prevent loss of the leavening gas. Cooked 

immediately, it is designed to brown and exp and the batter (w/gas) into an open, honey­

comb-like texture. No breading is required to form a thick coating on the product when a 

tempura type batter is used. 

Batter and breading act as a moi sture barrier, and provide a promising route to 

develop flavor and to reduce fat uptake (Wills et al., 1981; Lamberg et al., 1990; Pinthus 

et al., 1993; Moreira et al., 1997; Saguy et al., 1998; Fiszman et al., 2003). However, 

both the convenience food industry and consumers increasingly desire even more 

sophisticated foods and variety with more juiciness while absorbing less oil. 
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2.2 FUNCTIONAL INGREDIENTS 

Ingredients serve numerous important functions in batter systems to give coatings 

their unique characteristics and functionalities. The selection of appropriate ingredients 

directly influences quality of the fini shed products 

2.2.1 Flours 

Flour is the key ingredient in batter and breading system. Sorne flours such as 

wheat flour provide viscosity and may promote adhesion through the formation of gluten. 

Gluten provides structure and texture and can act as a barrier to fat absorption. Flour 

contains sorne reducing sugars that caramelize during frying, contributing to the color and 

flavor of the coating (Mohamed et al., 1998). Flour is also the main component of most 

breadings. It can be used as is or first baked into a crumb. The porosity of the resulting 

products affects oil absorption - the more porous the material, the more oil is absorbed. 

Wheat flour is the most common flour used in batters and breadings (Loewe, 

1993). However, rice, corn, soy, malted barley and potato flours have also been used. 

Wheat flour with higher protein levels will increase batter viscosity and produce darker, 

crisper fried foods. Corn flour generally produces a yellowish color due to the carotene 

pigment in corn. It serves as a source of natural yellow color in order to reduce the 

influence of sugars and milk powder in batter (Salvador et al., 2003). Corn flour is added 

more often for viscosity control as the higher starch level affects the batter's ability to 

absorb water. Corn flour in batter systems increases crispness and decreases high leve1s of 

puffing due to decreased moisture retention in the coating (Salvador et al., 2002). Corn 

contains higher crude lipids than wheat and rice flour (USDA Handbook # 8). Suderman 

(1993) reported that a corn starch based batter required continuous mixing during 
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processing because the solids had a tendency to settle out easily, resulting in changes in 

batter viscosity throughout the production period, leading to non-uniform batter pickup by 

substrates. Therefore corn flour based batter requires the addition of a thickener to keep 

the solids in suspension to solve this problem. 

Rice flour shows its potential to be served as an alternative to wheat flour in 

battered and breaded foods. Rice flour-based batter might be a commercially feasible new 

product in the food industry. Shih et al. (1999), Dogan et al. (2000) and Mukprasirt et al. 

(2000) found that proteins and starch in rice flour are chemically different from those in 

wheat flour. They reported that rice flour resisted oil absorption better but was less 

effective as a thickening agent than wheat flour. Their results showed a 69% oil reduction 

with rice flour batter on shrimp products. A high ratio of rice flour provided roughness to 

the crust (Shih, 1999). However, rice flour-based batters form thin slurries and require 

additives to develop viscosity and other desirable batter properties. A good strategy is to 

use rice-based thickening agents as additives. For example, gelatinized long grain rice 

flour and phosphorylated long grain rice starch ester can be effective in enhancing the 

batter viscosity and the oil-Iowering properties of rice flour batters. Mukprasirt et al. 

(2000) also studied the effects of ingredients used in a rice flour-base on the adhesion 

characteristics for deep fat fried chicken drumsticks. They found that batter formulated 

with a 50:50 mixture of rice and corn flours adhered better to drumsticks than did batter 

with other rice flour ratios (30:70, 70:30 - rice flour: corn flour). As rice flour ratio 

increased from 50 to 70%, the binding force decreased. They suggested that rice flour 

should be combined with other ingredients. For example, methy1cellulose, oxidized 

starch, and xanthan gum increased the amount of batter pick-up before frying by 

increasing viscosity, and they led to fini shed products with lower fat content. However, 
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combining different flours may pro vide special effects and produce desired characteristics 

in the coated products. 

2.2.2 Starch 

Starches have traditionally been used for adhesion in batters. The two mam 

components of starch are amylopectin and amylose. Starches with higher amylose content 

are generally selected for better film-forming properties. They produce a crisper, stronger 

film, which stays intact through the fryer. Oxidized starches are used for their basic 

adhesion and coating, while high-amylose starches help reduce fat pickup. Batters 

typically contain starch levels of 5 to 30% of the dry mixture (Mukprasirt, 2001). 

Several specialty ingredients for batters and breadings have been developed. One 

new development in the starch line is dextrins (Shinsato et al., 1999), which have superior 

film-forming properties. These products also can increase shelf life on a foodservice line. 

Since fried items typically sit for 15 minutes or more under heat lamps, the challenge is to 

keep them just as crunchy as the minute they came out of the fryer. Special hydrophobic 

starches with less water affinity can also improve adhesion and crispness. A variety of 

starches can be used in batters and breadings. These inc1ude common corn starch, potato 

starch, wheat starch, tapioca starch, and high-amylose corn starch. The amylose portion 

improves film forming. Waxy corn starch is not used extensively in batters and breadings 

because of its high amylopectin content. A modified starch also can add freeze/thaw 

stability to a par-fried product (Bertram, 2001). However, in most frozen battered items, 

the starch is not cooked until the product is fried, so it has little to no contribution during 

frozen storage. 

12 



2.2.3 Protein 

Adding protein helps the structure or changes the texture of the final coated 

product. Proteins might be added at a level of lOto 15% by dry weight base (Robert, 

1996). Research with protein ingredients showed that products with higher protein 

contents are generally more effective as binding agents. Protein has been used to improve 

the water absorption capacity of flour, which in tum increases the viscosity of the system 

(Hoseney, 1994). It is a1so used to strengthen the structure and texture, retard moi sture 

10ss, and enhance crust color and flavor development. The 1eve1 of flour protein used had 

a major effect on batter pickup, ranging from Il to 28% when measured at equa1 water­

solids ratios (Loewe, 1993). In genera1, a higher leve1 ofprotein increased crispness of the 

fried product and produced a darker color. As the protein 1eve1 increased, there was a 

graduaI increase in roughness of texture and brittleness of the fried coating. The pancake­

like inner structure was no longer present in the high-protein (12.1%) flour coatings 

(Loewe, 1993). 

2.2.4 Chemicalleavening 

Typical 1eavenings used in batters inc1ude sodium acid pyrophosphate (SAPP), 

sodium aluminum phosphate (SALP), and combinations of SALP and monocalcium 

phosphate (MCP) (Dubois, 1981). The gas-release characteristic of the specific leavening 

affects the texture. If the release is too early, the product texture will be coarse and the 

coating will absorb excess oil (Loewe, 1996). Additionalleavening may be able to change 

the color and texture of a fried product, for example a com-dog (a sausage) coating needs 

a leavening system that re1eases gas very rapidly so that the coating can exp and very 

quickly. The batter becomes more brittle as the amount of leavening is increased (Dubois, 
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1981). The leavening system can be tailored for a specific application by varying the type 

of leavening acids incorporated. The amount of gas generated, and its rate of production 

determine the effect of leavening in the batter. 

2.2.5 Shortening and oil 

Shortening plays a key role in the mouth-feel or eating quality of battered and 

breaded food. Shortening and oil have specific functions in coatings, such as being 

carriers of fat-soluble vitamins and contributing to food flavor and palatability as well as 

to the feeling of satiety after eating. Other fatty materials with potential use in batters and 

breading inc1ude emulsifiers and staling inhibitors (Fennema, 1976). The melting point 

and solids content are functions of the source of oil selected for the frying shortening. 

Proper selection of shortening is important to assure the quality of coated products 

because it would affect flavor, eating quality, nutrition, solidlliquid form, and fry life 

economics (Crosby & Kincs, 1990). Ang (1993) reported that cellulose had a greater 

effect in shortening. The research results showed the decreasing in fat and increasing in 

moisture when 1% powdered cellulose (fiber length in excess of 100 microns) was 

incorporated into the batter. It could be due to hydrogen bonds forming between water 

moluecules and cellulose fibers. Results from water and oil retention capacities indicate 

that powdered cellulose is more hydrophilic than tipophilic. This could also restrict the 

displacement ofwater by fat frying (Ang, 1993). 

2.2.6 Egg and milk 

Eggs are used widely, both as a batter ingredient and as pre-dips. Egg contains 

albumin, a heat-coagulable protein that is useful in binding the breading Ibatter to the 
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substrate. The white's protein improves adhesion, while the yolk's phospholipids provide 

increased emulsification. Egg whites may create sorne microbiological issues, especially 

if the product sits on a line at a room temperature of 70 to 90oP. The addition of eggs to a 

batter tends to darken the final product (Loewe, 1993). Dairy ingredients contribute 

flavor, adhesion and color. Typical pre-dips inc1ude milk, evaporated milk and buttermilk. 

Sorne producers select buttermilk for its unique flavor profile in many coating food 

recipes, inc1uding "rock shrimp cones," "crispy fried chicken" and "fried okra." 

Monhame et al. (1998) reported that amongst the proteins (egg yolk, skimmed milk and 

ovalbumin) studied, ovalbumin was able to reduce oil absorption and improve the 

crispness ofthe fried batter. 

2.2.7 Flavoring and seasoning 

One way to improve the value-added perception of battered and breaded products 

is to incorporate additional flavorings and seasonings. Donahoo (1970) suggested that the 

seasoning level varies considerably though the average is 3 - 5% of a batter mix. Spices 

and herbs are dry ground plant materials that possess a characteristic taste and contain 

many aromatic and flavor constituents. They are usually used at a rate of 0.5 - 1.0% in 

fini shed food products (Suderman, 1993). At the same time, spices may contribute specks 

and colors that are unacceptable (i.e. paprika). AIso, it takes time to reach flavor 

equilibrium with their medium (Suderman, 1993). Essential oils offer many advantages 

that inc1ude high flavor concentration, no off colors or specks, instant flavor equilibration 

and easy blending and quality control. Essential oils are used in food products at a level 

of 0.01 - 0.10% of the finished weight (Pangbom and Russell, 1976). 
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Flavor components are released from the coated food (substrate, predust, and 

batter-breading complex). AIl flavor components have a volatility spectrum, and it is 

conceivable that sorne flavor components are steam stripped from the foods as water 

converted to steam and exits the food surface. Flavor components are also imparted to the 

coated food product by the frying oil or heat stable flavors contained in the frying oil. In 

the commercial batter and breading mix, garlic is one of the popular ingredients that 

improve the flavor of the product (Suderman, 1996). From a food safety standpoint it 

should be kept in mind that spices are an occasional source of microbial contamination. 

Another factor to consider when selecting the correct batter or breading inc1uded 

texture, crispness, color, flavor, appearance, functionality, cooking characteristics (i.e. 

baking, frying, microwaving, or convection oyen preparation), compatibility, interaction 

of batter with other ingredients in the system. It is essential to know these princip les 

because most flavor development work is supplemental to the basic development of 

batters. However, in sorne situations, structural changes in batters and breading are 

necessary to achieve highly technical flavor development objectives. 

2.2.8 Hydrocolloids 

Hydrocolloids are high molecular weight water-soluble carbohydrate biopolymers 

with the ability to form gel or thickening aqueous system. Hydrocolloids generally 

contain many hydroxyl groups linked in different configurations. Hydrocolloids can be 

categorized according to their origin, isolation or derivation methods, major functionality, 

and the presence ofionic charges. From the structural point ofview, hydrocolloids can be 

classified (Figure 2.1) as: linear (e.g., cellulose, amylose), substituted linear (e.g., guar 
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gum, methylcellulose) or branch-on-branch (e.g., Arabic gum, amylopectin). The 

structural conformation and degree of substitution also can play an important role to 

provide different functional properties to food products (Meyers, 1990). Gum and starch 

are the most important types ofhydrocolloids (Meyers, 1990). 
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Hydrocolloids are currently widely used in a variety of industrial sectors to 

perfonn a number of functions inc1uding thickening and gelling aqueous solutions, 

stabilizing foams, emulsions and dispersions, inhibiting ice and sugar crystal fonnation 

and the controlled release of flavors. Recently, it has been popularly used in the 

fonnulation of batters to coyer pieces of food which are to be fried. Traditionally, the 

primary use of hydrocolloids for this application has been based on their capacity to 

immobilize water and control viscosity of batters (Fiszman et al., 2005). Carboxymethyl 

cellulose (CMC) has been used to increase moi sture retenti on and control rheological 

properties of cereal batters and doughs, and protect against leavening losses in cake 

mixes, improve the volume and structural unifonnity of baked products, and increase the 

shelf-life of cereal products (Dziezak 1991; Sindhu and Bhawa 2000). Kayacier and Singh 

(1999) used CMC to obtain low-fat tortilla chips with rheological properties similar to 

regular chips. The addition of hydrocolloids is generally effective at levels as low as 1 % 

of the fonnulation' s dry weight or less (Meyers,1996). Bell and Steinke (1991) reported 

increase in volume of microwave-baked cakes on addition of 1-2% methy1cellulose gums 

due to improved distribution of moisture by the gum. Xanthan gum (XG) is used to 

improve the texture and moi sture retention in cake batters and dough, increase the volume 

and shelf life of cereal foods by limiting starch retrogradation, improve their eating 

quality and appearance, and enhance the effectiveness of other hydrocolloids (Lee et al., 

1982; Miller and Hoseney, 1993; Hanna et al., 1997; Lee et al., 2002). The gel-fonning 

capacities of certain hydrocolloids have been showed their ability to reduce the oil 

absorption in the cereal product or batter-coated products during the frying process. This 

has been one of the main applications over the past two decades (Stypula and Bckholz, 

1989; Meyers and Cockling, 1990; Chalupa & Sanderson, 1994) and is possibly that of 
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greatest value added. Selecting the appropriate hydrocolloid(s) reqmres not only an 

understanding of their physical properties but also an understanding of the foods 

themselves. It is difficult to ascribe defined exact characteristics and functions to the 

broad c1ass ofhydrocolloids. 

There are several factors to consider when choosing a hydrocolloid for specific 

application. One of these is the specific requirement for correct hydration of the different 

hydrocolloids. In this regard, when different alternatives are available the preferred gums 

will be those that can be incorporated into the batter by dry blending. Correctly selecting 

hydrocolloids for a specific function should also consider that other ingredients in the 

batter system might affect hydrocolloids performance, so the compatibility of the 

hydrocolloids with those components must also be checked (Gnarder et al., 2004). For 

instance, a high concentration of soluble solids (i.e. sugar, salt, etc) can reduce the 

solubility of hydrocolloids because of competition for the available water (Grover, 1982, 

1990). 

2.3 FUNCTIONALITY OF HYDROCOLLOIDS IN BATTER SYSTEMS 

Many of the hydrocolloids substances are used as ingredients in batters to serve 

three functions in batter system. The primary two functions are viscosity control of the 

batter and control of its water-holding capacity (Mallikarjunan et al., 1997; Ford, 1998). 

The third function is to control water loss and oil uptake. This is attributed to the unique 

thermal gelation abilities of sorne hydrocolloids, which form gels and pro vide a resistant­

barrier coating during heating (Meyers, 1990; Balasuramaniam et al., 1997; Susanne et al., 

2001; Albert, 2002; Mellema, 2003). 
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Methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC) are the only 

food gums that can thermally gel (Henderson, 1988; Sanz et al., 2005) and that are 

reversible and repeatable. A number of studies have reported that the addition of MC and 

HPMC in batter systems has successfully reduced oil uptake in coated fried products 

(Meyer et al., 1990; Annapure et al., 1999; Susanne et al., 2001; Mellema, 2003). 

Thermogelling can also lead to a stronger but more brittle coating that promotes the 

formation of a relatively sm~ll number of wide punctures with low capillary pressure, 

resulting in low oil uptake during deep fat frying (Holownia et al., 2000). The 

temperatures at which the gelation process starts and the strength of the gel formed are 

dependent upon the type and the degree of substitution, molecular weight, and 

concentration of hydrocolloids (Nishinari et al., 1997; Sanz et al., 2004). Priyea et al. 

(1996) reported that adding Carboxymethylcellulose (CMC) to the formulation of 

"boondis", a deep-fried batter-based legume snack food popular in India, reduced the 

amount of oil in the final product. This study analyzed the effect of different 

concentrations of CMC in the range of 0.5 - 3%, by adjusting the proportion of water to 

obtain adequate viscosity . The greatest barrier efficiency was obtained at a concentration 

of 2%. The higher concentration of 3% was found to be non effective for oil absorption. 

Gums are mostly used for cold-batter viscosity adjustment (Davis, 1983). It 

contributes to variations in viscosity often attributable to other ingredients such as 

starches and flours in batter systems. Meyers (1990) reported that sorne gums (e.g. 

xanthan and tragacanth) could a]so provide a yield value to the batter. Yield value is the 

initial resistance to flow under stress. This yield value enables the suspension of heavy 

partic1es at low gum concentrations (0.01-0.25% w/w). Suderman et al. (1981) indicated 

that carboxymethy1cellulose (CMC) was able to improve adhesive strength in batters. Gao 
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and Vodovot (2005) reported that CMC changed the rheological and thermal properties of 

masa (dough) and the resulting tortilla's shelf-life. Andres et al. (2005) found that CMC 

greatly influenced the rheological and functional properties of dried nixtamalised 

(alkaline-cooked) maize masa .. The use of flour as batter base that do es not develop much 

viscosity, such as rice flour, makes it necessary to incorporate a xanthan or guar gum to 

ensure quality similar to a classic formulation (Mukprasirt et al., 2000). 

Apart from providing viscosity, hydrocolloids help to keep solids suspended in 

solution. This property especially has been related particularly to xanthan gum and 

tragacanth gum, which also provide yield value and are able to suspend heavy particles 

under shear conditions at low concentration (0.10 - 0.255 w/w) (Hsia et al., 1992). 

Generally, the effectiveness of a gum in providing adhesive strength in a batter system 

will be increased with an increase in its gel strength, concentration, and molecular weight, 

as well as its viscosity in the batter (Meyers, 1990). Aiso the highly hydrophilic nature of 

hydrocolloids retards ice crystal growth during frozen product storage and reduces water 

migration to the coating from the substrate. This improves the freeze/thaw stability 

(Fiszman et al., 2003). 

Hydrocolloid performance can also be affected by the complexity of other 

ingredients in the batter system and the compatibility of hydrocolloids with those 

components. Most food gums are non-digestible polysaccharides that have a profound 

effect on the available free water and the rheology of liquid batter systems (Meyers, 

1990). At high concentrations (greater than approximately 60% by weight), soluble solids 

such as sugars and salts can reduce the solubility of hydrocolloids because they are 

competing for the available water (Meyers, 1990). The application of these novel 

hydrocolloid ingredients in batter systems is stilliargely in the laboratory stage, and their 
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mechanism and properties are not yet fully understood. However, hydrocolloids show a 

high potential ability to provide consumers with healthy food products if they could be 

incorporated into batters on a commercial scale. 

2.4 RHEOLOGICAL PROPERTIES OF BATTER SYSTEMS 

Batter is a complex system with wide variance of ingredients inside the system. 

The rheological properties of the batter system affect the pickup and quality of the batter 

that adheres, the handling properties of the battered product, and its appearance and final 

texture. Control of viscosity, degree of adhesion, and porosity of the batter system is 

important to control the quality of final products. Changes in rheological properties of a 

material reveal changes in its molecular structure. Consequently, the rheological 

properties of a material influence the flow process and are themse1ves influenced by the 

structural changes generated during the process. Those changes in their structure could 

directly affect the appearance and final texture of the fini shed products. Therefore, 

rheological measurements can provide a means of monitoring changes in product structure 

during process. 

The incorporation of hydrocolloids makes the flow behaviour of batters more 

complex. Fiszman et al. (2005) reported that only single shear rate rheological 

measurements are usually performed in industrial plants and they do not provide complete 

information. Aiso a rheological characterization of batter behavior over a range of shear 

stresses and time give more complete information for optimizing the processes of mixing, 

pumping and coating, with a view to keeping the batter properties, pickup and adhesion 

uniform (Fiszman and Salvador, 2003). However, the determination of rheological 

properties by using sophisticated rheometers make it possible to study the rheological 
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behavious of batter in depth, although their use is generally confined to the field of 

research (Sanz et al., 2004). 

Batter viscosity is a critical coating characteristic. It affects the pick up and 

quality of the batter that adheres, and an end product's appearance and texture (Hsia et al., 

1992; Shih et al., 1999; and Mukprasirt et al., 2000). Steady shear measurement is 

commonly used to determine fluid behavior such as the apparent viscosity of batter. 

Numerous studies showed that batter generally presented shear-thinning behaviour, time 

dependency and thixotropy. Therefore the rheological characterization of a batter's flow 

behaviour over a range of shear stresses and time gives more complete information for 

optimization of the process of mixing, pumping, and coating, with a view to keep the 

batter properties, pickup, and their adhesion uniform (Hsia et al., 1992; Balasubramaniam 

et al., 1997; and Mukprasirt et al., 2000). The composition and proportion of the 

ingredients, the water-solids relationship and temperature are considered factors that 

affect the rheological properties of a batter. An increase in temperature resulted in lower 

consistency index values (Ostwald-deWale model) in several tempura batter formulations 

(Baixauli et al., 2003 and Salvador et al., 2003). 

The incorporation of hydrocolloids makes predicting their flow behaviour even 

more complicated. Christianson et al. (1981) reported that viscosity of wheat starch was 

significantly increased by the addition of a small amount of xanthan, guar, and cellulose 

gums. At the initial stage of gelatinization, those gums and their inherent viscosity 

magnified the effect of swelling so that the viscosity increase was apparent. Sanz et al. 

(2004) studied the effect of concentration and temperature on properties of MC-added 

batters. Their results showed that MC produced a significant increase in the consistency 

(Ostwald-de Waele model) and shear-thinning behaviour of the wheat flour based batter, 
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and this effect was more evident at high levels of MC addition (2%). Sanz et al. (2005) 

observed that methylcellulose influenced the rheological behaviour of wheat starch and 

modified corn starch. Marcotte, Hoshahili, and Ramaswamy (2001) studied the 

concentration and temperature dependencies of rheological characteristics were 

determined for selected hydrocolloids. In their results, higher gum concentrations resulted 

in an increase ofboth Newtonian and apparent (at 50 S-I) viscosities. Xanthan was found 

to be the most pseudoplastic and the least temperature dependent of aIl hydrocolloids 

studied. Hsia et al. (1992) also found guar and xanthan gum to increase shear thinning 

behaviour in wheat flour based batter and corn flour based batter, but CMC did not 

increase batter consistency significantly in either wheat or corn flour based batters. 

Mukprasirt et al. (2000) reported a higher consistency index for rice based batter 

containing MC at the low temperature of 5 oC compared to either 15 or 25 oC, and that the 

shear-thinning behavior decreased with temperature increase. Kim and Y 00 (2005) 

showed that the results of the increase in rate constant (k) in the gelatinization of rice 

starch-xanthan gum mixtures was a function ofxanthan gum concentration. 

Sanz et al. (2005) studied the thermogelation properties of MC and its effect on 

wheat flour based batter formulas containing 1, 1.5, or 2% MC. Their results showed that 

MC solutions tested at 15 to 60 oC clearly showed a transition from a fluid-like to a gel­

like behaviour. The evolution of the G' (storage modules) and G" (loss modules) with an 

upward temperature ramp showed the transition of sol state and gel state that to occur at 

approximately 52 oC. Increasing temperature of MC batters resulted in a transition from a 

soft gel at 15 oC to a stronger although still soft gel at 60 oc. Both G' and G" increased 

with MC concentration, although MC did not seem to qualitatively influence the 

viscoelastic behaviour. 
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A limited number of studies were conducted on the fundamental rheological 

properties of batters formulated by using different combination flour blends containing 

hydrocolloids designed for food coatings. This is an area of great importance and potential 

use and the rheological data provide information that is useful for coating applications. 

2.5 THERMAL PROPERTIES OF BATTER SYSTEMS 

Knowledge of thermal properties (e.g. specifie heat Cp, and enthalpy, AH) of food 

may help to predict heat transfer rates in food. Specifie heat indicates how much heat is 

required to change the temperature of a material. It depends strongly on the temperature 

and composition (such as moi sture content, fat content, and the nature of the solid 

component, such as carbohydrate and protein) of the product (Ngadi et al., 2000). 

Enthalpy is the heat content or energy level of a material. It can be very complicated for 

frozen foods because it is difficult to separate the latent and sensible heats in frozen foods. 

They often contain both frozen and unfrozen water, even at very low temperatures. 

Therefore, enthalpy depends upon the amount of unfrozen water in addition to the 

proximate composition of the food (Dickerson, 1981). 

The coatings are produced from batters which are coated food substances in which 

flour is a major functional ingredient. Therefore, gelatinization properties of starch are the 

paramount properties in processing battered food. Because they are based on gelatinized 

starch, which may undergo important texturaI changes during the process which may 

directly influence the final quality of the particular products. The ge1atinization properties 

are useful to determine the amount of heat and time required for cooking and processing 

raw material (ingredients) into fini shed products. Both water and thermal energy play 
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indispensable roles in the process of gelatinization of starch in a batter system containing 

other ingredients (Sweat et al., 1984; Billiaderis et al., 1986; Saif et al., 2003). 

In general, starch gelatinization is greatly influenced by protein and lipid contents, 

amylose and amylopectin contents, and amount of available water in the system 

(Hoseney,1994). The availability ofwater is determined by the formula or recipe used and 

by the presence of ingredients or components such as proteins, pentosans (naturally 

present hydrocolloids), or sugars, which compete with starch for the water. The amount 

of moi sture available for gelatinization is also affected by the degree of protection against 

water absorption that fat provides to the starch partic1es (Kaletunç et al., 2001). Granule 

size also affects starch gelatinization behaviors due to their water absorbing and holding 

capacity during cooking process (Hoseney, 1994). 

Many processes and properties encountered in food science are affected by, or 

changed by, the glass transition phenomena (Levine et al., 1990; Schenz, 1995). Glass 

transition (phase or state transition) is the name given to a phenomenon observed as a 

change from a brittle glassy or crystalline state to a rubbery behavior at temperature Tg. 

At a sufficiently 10w temperature, or with a limited content of plasticizer such as water, 

molecular motion becomes restricted as a glassy solid is formed. On heating or plasticizer 

addition, the mobility of the amorphous polymers increase and the material becomes 

flexible or rubbery. The glass transition temperature (Tg) depends on molecular 

characteristics, composition, and compatibility of the components in the amorphous 

matrix (Kalichevsky et al., 1992). Therefore, the glass transition behavior affects many 

types of food properties related to molecular mobility, inc1uding texture and shelf-life 

(Mizuno et al., 1998). 
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Variability in composition of batter system formulas is reflected in their thermal 

properties and phase transition characteristics exhibiting similar magnitude. Various 

flours and hydrocolloids change the thermal properties and phase transition characteristics 

of batter systems. Ferrero et al. (2000) reported that the low hydrocolloid concentrations 

used (10 g/kg) did not significantly affect corn starch gelatinization temperature as 

compared to the systems without hydrocolloids in starch-sucrose system. However, small 

differences were detected among the systems containing alternatively guar, xanthan, or 

alginate gums. Aiso small quantities of hydrocolloids did not shift the glass transition 

temperature, but they played an important role in minimizing structural damages. This 

was verified in their research by rheological viscoelastic tests where an increase in the 

dynamic moduli G' (storage module) and G" (loss module) after slow freezing and during 

storage at -19°C was observed in starch-sucrose system. 

Sarkar (1979) and Ford (1999) studied the thermal gelation properties of 

methylcellulose and hydroxypropyl methylcellulose as a function of molecular weight, 

degree of methyl and hydroxypropyl substitution, concentration, and the presence of 

additives. The results of these studies showed that the precipitation temperature of these 

polymer solutions decreased initially with increasing concentration until a critical 

concentration was reached, above which the precipitation temperature was minimally 

affected by concentration changes. The incipient gelation temperature decreases linearly 

with concentration (Sanz et al., 2005). The strength of these gels is time dependent, 

increases with increasing molecular weight, decreases with increasing hydroxypropyl 

substitution, and depends on the nature of additives (Grover, 1982). 

Starch and hydrocolloids may provide synergistic effects on thermal properties 

and phase transition on batter system during processing. However, studies on these 
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properties III the coatings system have not been extensively reported III the CUITent 

scientific literature. 
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CONNECTION TEXT 

In order to approach the development of batter systems with nove1 functional 

properties, it is necessary to start with an understanding of the batter's basic composition, 

such as flour and its behavior during processing. In many cases, understanding has re1ied 

upon empirical experience. AIso, a comprehensive review of literature demonstrated the 

need for further studies regarding the effect of different flour types and combination ratios 

upon the rheological properties of batter systems, and addition of effects of salt behavior 

in batter systems during processing. 
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III. THERMAL PROPERTIES OF BATTER SYSTEMS 

FORMULATED BY COMBINATIONS OF DIFFERENT FLOURS 

3.1 ABSTRACT 

There is an increasing consumer preference for reduced oil content in fried food 

products. The amount of fat absorbed by deep fried foods can be modified using 

appropriate coatings such as batter and breading systems. Coatings also change the heat 

transfer characteristics of the composite products. The goal of this study was to determine 

sorne thermal properties of selected batter mixes that are commonly used for deep fat 

frying of chicken products. Three types of flour based batter mixes were used. These were 

mixtures of wheat and rice (WR), wheat and corn (WC), and corn and rice (CR) flours 

with salt and different methylcellulose (MC) levels. The differential scanning calorimeter 

(DSC) was used to measure glass transition temperature (Tg), gelatinization temperature 

(TG), ice melting temperature (Tm) and enthalpy (~HG) of the different batter 

formulations. Salt and MC greatly influenced the thermal properties of batter systems as 

they increased TG, but depressed Tm. Adding rice and corn flours to wheat flour based 

batters apparently changed their thermal properties. Corn flour based batters required 

considerably more energy for gelatinization during the cooking process. 

Keywords: Thermal properties; Batter coating; Fried products; Flour; Deep-fat 

frying 
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3.2 INTRODUCTION 

Consumers' preference for lower fat products continues to increase and there is 

significant pressure on processors to reduce fat in fried food products. The application of 

batter and breading provides many opportunities to develop unique flavors and modify 

textures in fried products. It also promises to reduce fat uptake if a suitable coating system 

can be used. Certain hydrocolloids have been incorporated into batter formulations and 

have shown their effectiveness as oil absorption barriers (Lee & Han, 1988; Hsia, Smith, 

& Steffe, 1992; Annapure, Sighal, & Kuldarni, 1999; Sanz, Salvador, & Fiszman, 2004a). 

A number of studies have reported that the addition of methylcellulose (MC) and 

hydroxypropyl methylcellulose (HPMC) in batter systems has successfully reduced oil 

uptake in coated fried products such as chicken pieces, fish, vegetables, cheese, and cereal 

products (Meyers, 1990; Albert & Mittal, 2002; Fiszman & Salvador, 2003). The 

functionalities of the MC and HPMC are attributed to their film-forming properties and 

unique thermal gelation abilities. Williams and Mittal (1999) also reported that as a film-

forming agent, MC was found to reduce fat on fried products more than gellan gum and 

HPMC. Very little information is currently available about the thermal properties of 

batter systems for coated fried poultry products formulated using different flour 

combinations with hydrocolloids. 

Wheat flour is the most common flour used in batter systems (Loewe, 1993). 

However, rice, corn, and soy flours have aiso been used (Robert, 1990). Shih and Daigie 

(1999) observed a 69% reduction in oil absorption by using rice flour batter on shrimp 

products, compared to using wheat flour. Rice flour resulted in a rough crust on the 

coating due to its less effective role as a thickening agent. However, it still showed sorne 
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potential as an alternative to wheat flour in batter formulations. Corn flour generally 

produces a yellowish color due to the carotene pigment in the corn, and may be use fui as a 

source of natural yellow color (Salvador, Sanz, & Fiszman, 2003). In general, higher 

levels of corn increase crispness and decrease puffing in batter systems due to decreased 

moisture retenti on in the coating. Corn is also often added to control viscosity as its 

higher starch level affects the batter's ability to absorb water (Roger, 1990). Combining 

different flours may provide special effects. 

Batters are complex systems that may undergo various changes in phase transition 

during processing and storage. The thermal properties of batter systems reflect these 

changes, and they have combined effects on the overall characteristics of the fini shed 

fried products. Batter systems are composed of flour base, water, and other ingredients. 

They may exhibit different phase behaviors and variations in thermal properties because 

they may contain components that are or may become phase separated. For instance, 

carbohydrates, lipids, proteins, salt, water and other functional ingredients may all exist in 

different phases or in phases separated from each other (Roos, 1995). Water is a key 

factor that greatly influences the phase transition phenomena such as gelatinization during 

the cooking process and the glass transition during frozen storage. Batter compositions 

greatly affect water available for starch gelatinization during heating and the unfrozen 

water during cooling. However, phase transition behaviors and thermal properties of 

batters are important in designing a process to achieve a desired functionality as well as 

for the manipulation of coated food products to meet storage stability requirements and 

consumer expectations. Nevertheless, characterizations of these properties on batter 
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systems fonnulated from different flour blends containing hydrocolloids have not been 

adequately reported in the literature. 

The goals of this study were to evaluate the thennal phase transition 

characteristics, namely the glass transition temperature (Tg), gelatinization temperature 

(TG), change in enthalpy (.~H), and the heat capacity (Cp) of batter systems fonnulated 

using different blends of wheat, rice, and corn flours, and to detennine the influence of 

adding salt and a hydrocolloid such as methylcellulose (MC) to the different flour mixes. 

Results of the study will provide useful infonnation on factors influenceing processing 

conditions and storage of fried products. It will also assist in the selection and fonnulation 

of appropriate batter systems for a given product. 

3.3 MATERIALS AND METHODS 

The study was conducted using a complete block experimental design method. 

The first block was to detennine the thennal properties ofbatter containing only blends of 

flour. The second block was designed to investigate the influence of added ingredients 

such as salt and methylcellulose (MC) on properties of the batter system. 

3.3.1 Batter systems 

Commercial wheat flour (Five Roses AlI Purpose Flour, Les Cuisines Five Roses 

Kitches, QC), rice flour (Club Rouse Gluten Free Rice Flour, McConnick Canada Inc, 

ON), and corn flour (CLIC Import Export Inc., Montreal, QC, Canada) were used in the 

study. Moisture, crude protein, lipid, and ash contents of flours were measured using 

appropriate AACC methods (1995). The nitrogen to protein conversion factors used were 
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5.7, 6.25 and 5.95 for wheat, corn and rice flour, respectively. Proximate analyses were 

conducted to compare compositions of the different flours with typical values as reported 

in the USDA Handbook. The partic1e sizes of the flours were determined by using the 

Fisher Subsieve Partic1e Size Analyzer (Fisher Scientific, Nepean, ON). The Method 

involved packing a small plug of flour into a tube to a controlled bulk density, and then 

pumping air through it. The pressure drop is a function of the average partic1e size. The 

values are reported in "Fisher Microns", and represent average partic1e sizes. 

Three blends of flours were obtained by mixing two flours, namely wheat and rice 

(WR), wheat and corn (WC), and corn and rice (CR) to use in this study. The two flours in 

each blend were mixed at five different ratios (w/w g/100g) namely 0: 100; 30:70; 50:50; 

70:30 and 100:0. For instance, there were five levels of WR blends containing wheat and 

rice flours mixed in the ratios of 0: 1 00; 30:70; 50:50; 70:30 and 100:0. Similar mixtures 

were prepared for the WC and CR blends. The samples containing 100% of a given flour 

(i.e. either the so called 0:100 or 100:0 blends) were considered as the control samples. 

Thus a total of 12 flour samples (9 blends and 3 controls) were used for the first block of 

experiments. In the second block of experiments, batters were formulated by adding 

different combinations of salt and methylcellulose (MC, AI5C, Dow Chemical Company, 

MI, US) as ingredients to the flour samples. The fixed quantity of 2.5% (flour weight 

basis) salt was used in all cases, whereas the different amounts of MC used were 0, 0.5, 

1.0, and 1.5% (flour weight basis). To formulate batters, the dry ingredients consisting of 

flour, salt and MC were first mixed thoroughly before adding cold distilled water at 8 ± 

2°C. The water temperature was chosen since it had been reported to enhance the gelling 

ability of MC (Sanz, Salvador, & Fiszman, 2004b). AlI batter was constituted with water 
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to dry-mix proportion (w/w) of 1.3 :1. The moisture content of the batter sample was 

confirmed to be about 55.58 g/100g (wet basis) by drying in an oven set at 105 oC. Batter 

samples were kept for about 20 minutes at 15 oC (± 2 OC) in a water bath to allow the MC 

to develop a gel, and then kept at room temperature (20 ± 2 OC) for another 10 min. before 

commencing the thermal property measurements. 

3.3.2 Determination of thermal properties 

Thermal properties, namely glass transition temperature (Tg), gelatinization 

temperature (TG), melting temperature (Tm), ice crystallization ons et temperature (Ti), 

enthalpy (L\H), and heat capacity (cp) of the batters were determined using a differential 

scanning calorimeter (DSC, TAQ 100, TA Instruments, Delaware, USA). Samples (10 -

15 mg) were placed in aluminum pans and hermetically sealed. Two different temperature 

profiles were used. To determine Tg, Tm, and the melting enthalpy change (mm), the 

samples were first cooled to - 40 oC at 10°C/min in a DSC chamber and then 

subsequently heated to 30 oC at 5 OC/min heating rate. However, to determine TG, and the 

enthalpy change for gelatinization (mG), samples were' heated from 20 to 100 oC at 

5°C/min. 

3.4 STATISTICAL ANALYSIS 

AlI measurements were replicated at least twice. Analyses of variance (ANOV A) 

of the results were performed using the multiple comparison tests, and statistical 

significance was determined at P < 0.05 using the SAS pro gram PROC ANOV A. 
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3.5 RESULTS AND DISCUSSION 

3.5.1 Chemical composition and particle size of the raw mate rial 

Table 3.1 shows the moisture, protein, ash, and crude fat contents, and the Fisher 

microns of the wheat, corn, and rice flours used in the study. The compositions of the 

flours used in this study were close to the typical values reported by the USDA (USDA 

Handbook # 8, 2002). Corn flour had lower protein content indicating that it may have 

higher starch content. Also corn flour had a higher fat content, probably indicating that 

more germs were in the flour (Hoseney, 1994). Rice flour was relatively 10w in fat and 

contains fewer calories. Thus rice could possibly be healthier than traditional batters from 

the point of view of fat content. However, is should be noted that the initial fat content in 

batter is usually low, compared to the expected normal fat pick-up during deep fat frying. 

Rice flour was coarser, as compared with the wheat and corn flours. 

Table 3.1 Chemical composition and particle sizes ofwheat, rice and corn flours 

Flour type Wheat flour Rice flour Corn flour 

Moisture (g/1 OOg) 12.60 (12)* 11.78 (12) 10.85 (12) 

Protein (g/100g) 11.87 (11.8) 6.78 (6.0) 3.86 (7.8) 

Ash (g/100g) 0.41 (0.44) 0.49 (0.2) 0.55 (0.8) 

Crude fat (g/1 00) 0.73 (1.1) 0.41 (0.3) 2.23 (2.6) 

Particle size (microns) 24 38 25 

* The values in parenthesis are 'typical' values for each type of flours as report 

by USDA(USDA handbook #8) 
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Protein, lipid, starch, and moi sture contents were different for each flour samples. 

However, the moi sture contents were adjusted in the final batter slurry to be 

approximately the same for aH samples. 

3.5.2 Effeet of different flours and their eombination ratios 

The basic batters used in this study consisted of flour and distilled water. Changes 

in the thermal properties of the batter systems during freezing and cooking processes were 

observed by the DSC. AH samples exhibited a single endothermic transition over the 

temperature range from 50 to 85 Oc during the heating process as shown in Figure 3.1. 

The temperature range corresponds to the range expected for starch gelatinization. 
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Figure 3.1 DifferentiaI scanning calorimetry thermograms corresponding to gelatinization 

process ofwheat, corn and rice flour solution (wheat --, corn --, rice - ) 
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Table 3.2 Gelatinization temperature, total enthalpies of gelatinization, glass transition 

temperature, ice melting temperature and total enthalpies of melting on flour-water 

suspenSIOn. 

Flour TG CC) ~HG (J/g) Tg CC) TrnCC) mrn(J/g) 

Wheat 65.54 a6e 2.26 a -10.31 a 4.17 a 102.80 a 

Corn 68.97 a be 4.38 b -8.75 b 2.54 d 74.96 e 

Rice 61.80 ab 3.34 e -7.29 f 2.90 e 61.52 f 

C3R7 63.50 abc 2.08 f -7.97 d 3.30 b 69.20 d 

C5R5 70.56 a 2.56 e -9.21 b 1.80 f 58.91 g 

C7R3 64.13 abc 4.13 d -8.06 d 1.90 f 66.91 e 

W3C7 62.49 be 2.39 I -7.81 d 1.99 f 42.15 I 

W5C5 60.04 be 2.30 h -8.13 e 1.08 g 55.97 h 

W7C3 61.55 be 1.62 g -8.56 e 2.27 e 81.02 b 

W3R7 61.25 be 2.07 1 -7.69 e 3.23 b 64.15 f 

W5R5 63.26 a 1.71 k -7.77 e 2.2g e 66.69 d 

W7R3 63.04 a be 1.38 j -7.86 d 3.38 b 70.80 d 

C7R3 = 70% corn and 30% rice flour, C5R5 = 50% corn and 50% rice flour, C3R7 = 30% corn and 70% 

rice flour, W7C3= 70% wheat and 30% corn flour, W5C5 = 50% wheat and 50% rice flour, W3C7 = 30% 

wheat and 70% corn flour, W7R3 = 70% wheat and 30% rice flour, W5R5 = 50% wheat and 50% rice flour, 

W3R7= 30% wheat and 70% rice flour. The mean with the same letter in any given colurnn are not 

significant different. TG = starch gelatinization temperature, MIG = total enthalpies of gelatinization, Tg = 

glass transition temperature, Tm = ice melting temperature, AHm = total enthalpies of ice melting. 

The corresponding gelatinization temperatures (TG) as peak temperatures, total 

enthalpies for gelatinization (mG), glass transition temperatures (Tg), ice melting 

temperatures T rn (peak temperature) and total enthalpies for melting are shown in Table 

3.2. ANOVA analysis and mean comparisons did not show c1ear statistical difference 
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(P<0.05) between the TG of the different batter samples. The various combination ratios of 

the flours apparently did not greatly influence the gelatinization temperatures of the batter 

systems. However, the ANOV A results showed significant differences among the total 

enthalpies (MIG) of the various sarnples. 

It is known that change in the total enthalpy of gelatinization is influenced by 

several factors inc1uding the distribution of water between gluten and starch, starch 

granule size, hydration rates, and other possible interactions between the various 

components (Kaletunç and Breslauer, 2001). Corn based batters showed the highest MIG. 

Increasing the proportion of corn flour in any batter mixture increased MIG. This result 

could be attributed to the high starch and the fat contents in the corn flour that required 

more energy to open the starch helix structure. Hydrophobic fats tend to coat the starch 

granules and they interfere with the ability of water to enter the starch helix by sorne sort 

of a "blocking action", leading to the reduction in the available free water required to 

interact with starch (Pomeranz, 1987). Starch will not norrnally be gelatinized if starch 

crystallinity is not disrupted. 

For the wheat and rice flour combination blend based batters, ~HG increased with 

increasing rice flour content due to the reducing proportion of wheat gluten content in the 

batter mixture. The resulting reduction in gluten content apparently led to a larger amount 

of water being available for starch gelatinization. A similar effect was observed when the 

proportion of corn flour was increased in a combination of wheat and corn flour based 

batters. The results suggest that corn and rice flours exerted diluting effects on wheat 

gluten, increasing the amount of water available to react with wheat starch during the 

heating process. Similar results have been reported by other researchers (Liu et al., 2002; 
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Fukuoka, Ohta, and Watcoonabe, 2002; Wang, Choil, and Kerr, 2004). Wang, Choil, and 

Kerr (2004) reported the gelatinization temperature to be affected by water and gluten 

contents in the dough. It is suggested that the heated gluten gel showed a greater binding 

of water than the starch gel in the dough. This was attributed to less water being available 

to starch in the presence of gluten. 

The glass transition behavior of the starch-water system in a freeze-concentrated 

phase depends on ice formation. The Tg and ~Hm are influenced dramatically by the 

amount of available water in the system (Addo, Xiong, and Blanchard, 2001; Chung, Lee, 

and Lim, 2002; Hsu, et al., 2003). Roorda (1994) indicated that glass transition occurs at 

or close to the temperature of water melting (and freezing) in hydrogels. Thermal 

properties, such as Tg, the peak temperature for ice melting Tm, and the melting enthalpy 

of ice mm of the batter systems, indicate that there is freezable water in the batter 

systems. The ANOV A model showed statistically significant differences in T g, Tm and 

~Hm for aIl samples. Thus, the different combination of flours and their combination 

ratios influenced the changes in glass transition temperature, enthalpy and ice melting 

temperatures in a starch-water matrix. 

The batter system with 100% wheat flour showed the lowest Tg (-10.31 OC), Tm 

(4.17 OC), and ~Hm (102.8 J/g). This is possibly because wheat gluten tightly binds water 

and protects it from freezing. This apparently led to increasing unfrozen water content in 

the system resulting in the depressed glass transition temperature. Wang, Choil, and Kerr 

(2004) reported that water molecules more easily diffuse in starch-water mixtures than in 

gluten-water mixtures. Reid (1997) demonstrated that water cornes out from the food 

product to form ice during the freezing process. The diffusion of water in mixtures can be 
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complicated, and depends on a number of parameters inc1uding type of mixtures, their 

compositions and partic1e size. Rice flour has a higher amount of free water than corn 

flour in the batter system. This difference is because the rice starch granule size is smaller 

than in corn and it absorbed less water. AIso, rice flour has no gluten to ho Id water in the 

manner that wheat flour does. Free water can easily be frozen in batter systems during the 

freezing process. Therefore, rice flour has a higher Tg (-7.29 OC) and lower ~Hm (61.52 

J/g), compared with 100% wheat flourbased (-10.31 oC and 102.8 J/g) or 100% corn flour 

based (-8.75 oC and 74.96 J/g) batter systems. 

The thermal property behaviors of wheat based batters were greatly influenced by 

replacement of either corn or rice flour compared with 100% wheat flour based batter. 

The glass transition temperatures of the batter systems were raised and Tm values 

decreased. The ~Hm values were reduced when the proportion of corn or rice flour in 

batter systems was increased. It can be explained that reducing the gluten level in the 

blended flour resulted in increasing free water in the batter systems. 

There was a significant difference in Tg, Tm, and ~Hm for the combinations of corn 

and rice flour based batters because different compositions and amounts of free water 

remained in the batter system. C5R5 showed a lower Tg (-9.21 OC) than C3R7 (-8.06 OC) 

and C7R3 (-7.97 OC), indicating a synergistic effect on the thermal properties of batter 

systems when the proportions of corn and rice flours were nearly equal. 

AlI the samples showed trends similar to those in Figure 3.1. The heat capacity cp 

gradually and consistently increased to the onset temperature of gelatinization, and then it 

progressively increased more rapidly until gelatinization temperature TG (peak: 

temperature) was reached. After that, the heat capacity decreased to the endpoint 
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temperature that indicated when the starch was completely gelatinized. The corn flour has 

a higher heat capacity due to its higher fat and starch contents. 

3.5.3 Effect of salt addition on thermal properties 

Sodium chloride (NaCI) is an essential ingredient in batter systems and is used as a 

flavor enhancer and batter stabilizer (Salvador, Sanz, and Fiszman, 2003). Formulations 

with salt showed dramaticaIly increased starch gelatinization temperatures for aIl samples 

(Figure 3.2). This increasing of gelatinization temperature is attributed to the role of salt 

in maintaining the integrity of the starch granule. The starch granule swells to a greater 

extent or remains intact for a longer time before fragmentation occurs (Ganz, 1965). 

Similar results were observed on corn and wheat flours (Evans and Haisman, 1982; 

Salvador, Sanz, and Fiszman, 2002). Salt lowered the MIG value in aIl samples due to its 

strengthening and tightening effect on the gluten (Pyler, 1988). It is a competitor with 

flour and other components for water, so less water is available to be absorbed by starch. 

Therefore, more energy was required for starch gelatinization to occur in limited water 

systems during heating process, and hence an elevation in the gelatinization temperature. 

Figure 3.3 shows that salt depressed the glass transition temperature Tg. Results 

are shown in Table3.3, indicating that salt greatly lowed ice-melting temperature Tm, and 

reduced the L1Hm value for aIl samples, because salt dissolved in water lowers the 

temperature at which the water freezes, or at which the ice melts (Reid, 1997). 
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Table 3.3 Comparison of Tm and ~Hm on batter systems with/without salt 

Batter System Tm CC) mm (J/g) 
Control Salt Control Salt 

Wheat 4.17 a 0.80 c 102.80 a 63.75 a 

Corn 2.54 e -0.74 i 74.96 c 39.92 d 

Riee 2.90 d 0.72 d 61.52 f 50.22 c 

C3R7 3.30 b -0.41 g 69.20 c 40.80 d 

C5R5 1.80 g -0.01 f 58.91 f 52.92 b 

C7R3 1.90 g 0.47 e 66.91 d 57.20 a 

W3C7 1.99 g -0.59 h 42.15 h 35.94 e 

W5C5 1.08 h 1.02 a 55.97 g 39.21 d 

W7C3 2.27 f -0.79 i 81.02 b 52.34 b 

W3R7 3.23 c 0.76 d 64.15 d 49.29 c 

W5R5 2.29 f 0.91 c 66.69 d 55.17 b 

W7R3 3.38 b 0.97 b 70.80 c 58.26 a 

C7R3 = 70% corn and 30% rice flour, C5R5 = 50% corn and 50% rice flour, C3R7 = 30% corn and 70% 

rice flour, W7C3= 70% wheat and 30% corn flour, W5C5 = 50% wheat and 50% rice flour, W3C7 = 30% 

wheat and 70% corn flour, W7R3 = 70% wheat and 30% rice flour, W5R5 = 50% wheat and 50% rice flour, 

W3R7= 30% wheat and 70% rice flour. The mean with the same letter in any given colurnn are not 

significant different. Tm = ice melting temperature, ilHm = total enthalpy of ice melting. 

3.5.4 Effeet of methyleellulose (MC) on thermal properties 

The effects of MethylceHulose on the thermal properties of batter systems were 

determined by DSC at frozen and above thawing temperatures ranging from -40 to 25 oC, 

and at cooking temperatures from 20 to 100 oc. ANOV A results showed significant 

differences in aH parameters with different levels of MC. MC greatly affected the thermal 

properties of the batter for aH the samples. Figure 3.4 shows that the gelatinization 

temperatures of aH samples have the same trend, increasing with the concentration of MC 
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in batter systems, as compared with the control. This is probably because MC reduced the 

amount ofwater available to react with starch during gelatinization. As MC is one of the 

food gums that can thermally gel, it also started gelation at a lower temperature (52 -

57°C) than starch gelatinization. Another reason could be that MC is a water-soluble 

polymer that has a higher capacity for absorbing water than does starch (Mukprasirt et al., 

2001). Generally, the available free water for starch granule reaction is reduced with an 

increasing concentration of MC in batter systems. In comparisons of 100% wheat, 100% 

corn and 100% rice flour based batter, MC greatly increased T 0 of 100% wheat flour 

based batter more than 100% rice or 100% corn flour based batters due to synergistic 

effect of MC and wheat gluten. Thus the synergistic effect of MC and flour components 

greatly raised the gelatinization temperature and 8Ho of the batter systems. 

Variations in the thermal properties (Tg, Tm and 8Hm) of aU samples during 

freezing and thawing processes followed similar trends as shown in Figure 3.5 for 

combined wheat and corn flour based batter systems. MC increased Tm and depressed Tg, 

especiaUy at higher MC levels. This is due to the absorption of water by MC to form gel 

and subsequent reduction of free water in the batter systems (Sanz, Salvador, and 

Fiszman, 2004b; Sarkar, 1997). MC gel typicaUy binds water tightly during a freezing 

process, resulting in postponement of freezing of the bound water in MC-flour batter 

systems. Therefore, lower temperature was required to complete phase transition and glass 

transition temperature of batter was depressed. On the other hand, more energy was 

required to melt ice formed in batter system during thawing process. Thus, Tm was raised 

and the batter system enthalpies (8Hm) were increased. 
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3.6 CONCLUSIONS 

DSC was used to determine several important thermal parameters such as glass 

transition and gelatinization temperatures, enthalpy and heat capacity changes in batter 

systems. The thermal properties varied for different types of flours and their combination 

ratios. Thermal properties of wheat based batters were greatly influenced by replacement 

of wheat by rice or corn flours. There was a synergistic interaction resulting in marked 

change in glass transition temperature when rice and corn flours were mixed in equal 

proportions. Salt and methylcellulose (MC) each greatly influenced thermal properties. 

Both of the ingredients increased the gelatinization temperature but depressed the glass 

transition temperature of the resulting batter. Salt also decreased the total enthalpy of 

gelatinization ~HG and depressed the melting temperature (Tm) for batter systems. MC 

increased the melting temperature (Tm) for the test batter systems as compared with the 

values for the control system without MC. A higher enthalpy ~HG was required to 

gelatinize starch at higher levels of corn flour (70%) for each flour mix combination 

tested. 

3.7 IMPLICATIONS FOR BATTER PREFORMANCE 

Fried food coatings are most commonly produced from batters in which flour is 

the major functional ingredient. The selection of different flours, and how they are 

blended for optimal product quality, depends upon the composition of the particular batter 

system being used and the characteristics of the specific food product being coated. 

Information on thermal properties can be used as an aid in formulating batters with better 

performance during the various processing operations. Thermal properties can also aid in 
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prescribing process parameters such as cooking time, cooking energy, and freezing and 

thawing conditions (i.e. temperature, time, and required energy). The gelatinization 

temperature and total enthalpy reflect the temperature and energy required for coating 

structure development and final solid-like coating layer formation. It is also re1ated to 

cooking temperature and time requirements. The frying temperature and duration time are 

two process-controlled factors which affect the amount of oil uptake during deep fat 

frying. 

The ge1atinization temperature appeared to be independent of the ratios by which 

the flours were combined into the batter systems, but the different types of flour have 

great influence on the energy required to complete the coating's structure formation. More 

energy is required to cook batters containing higher levels of corn flour. However, 

substituting sorne wheat flour in corn based batters might reduce the energy required for 

coating layer formation. The information on glass transition temperature, ice melting 

temperature, and total enthalpy for ice melting affect the choice of storage conditions for 

batters or coated products. Wheat flour showed the lowest glass transition temperature, 

highest ice melting temperature and total enthalpy (energy) for ice melting. This suggests 

that products with wheat flour batter might require re1ative1y lower temperature to be 

stable during frozen storage but they do not thaw as readily as other batters. However, 

partial replacement of rice or corn flour would reduce the energy required for the freezing 

and thawing processes of wheat flour based batters. Various food substrates require 

special batter systems in order to match their characteristics during storage, and to achieve 

the desired end product quality. 
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CONNECTING TEXT 

Results reported in chapter III showed that different types of flour and their 

combination ratio greatly influenced the thermal properties of batter systems. In chapter 

IV, the effect of hydrocolloids (xanthan gum, methylcellulose, carboxymethylcellulose) 

on thermal properties such as gelatinization temperature, total enthalpies of gelatinization, 

glass transition, ice melting temperature, and total enthalpies of ice melting were 

extensively studied and reported 

55 



IV. EFFECTS OF HYDROCOLLOIDS ON THERMAL PROPERTIES 

OF BATTER SYSTEMS 

4.1 ABSTRACT 

Batters are highly complex systems containing a wide range of ingredients. 

Interactions between the ingredients determine batter performance and the final coated 

product quality. The functionalities ofhydrocolloid-flour mixtures, in terms of the thermal 

properties of the resulting batter systems, were investigated in this study. DifferentiaI 

Scanning Calorimeter (DSC) were used to determine thermal property parameters 

including gelatinization temperature (TG), total enthalpies of gelatinization (MIG) , glass 

transition temperature (Tg), melting peak temperature (Tm) and total melting enthalpies 

(MIm). Hydrocolloids such as methy1cellulose (MC), carboxymethy1cellulose (CMC) and 

xanthan gum (XG) greatly influenced the thermal properties of batter systems. The gums 

shifted gelatinization temperatures and depressed glass transition temperatures of the 

resulting batter systems. Further, MC increased the melting temperature (Tm) of the test 

batter systems whereas no significant (at the 0.5% level) effects of CMC and XT were 

observed on Tm. Different heating processes influenced Tg of the batter systems. Lower 

Tg were obtained when batters were sequentially cooked, frozen and thawed (CFT 

process) compared to when batters were frozen and cooked (FC process). The effect of 

xanthan gum was more pronounced in the batters that were FC processed than in the CFT 

processed samples. MC and CMC showed more pronounced effects on rice and corn flour 

based batters than on wheat flour based batters. 
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Keywords: Batter coating; Thermal properties; Cooking processes; Phase 

transition, Hydrocolloids. 

4.1 INTRODUCTION 

Hydrocolloids are widely used as functional ingredients in the food industry to add 

commercial value to foodstuffs. In addition to the obvious benefits of taste, texture, 

mouth-feel, moisture control, and water mobility, they also improve the overall product 

quality, stability in withstanding the demands of processing, distribution, and final 

preparation for the table. From a health perspective, hydrocolloids have been used in 

batter and breading systems to block fat absorption during deep-fat frying so that lower 

fat, more nutritious, coated food products could be created (Meyer, 1990; Hsia et al., 

1992; Balasubramaniam et al., 1997; Annapure et al., 1999; Holownia et al., 2000; 

Garcia et al., 2001, Mellma 2003, Sanz et al., 2004). Batters are complex mixtures of 

flour and various ingredients. The properties of batter systems are further altered by the 

addition of hydrocolloids. Therefore, it is important to understand the interactions 

between flours, hydrocolloids, and other ingredients in batter systems during processing 

as they relate to the functionalities they impart on fried food products. This would assist in 

understanding and controlling the functionalities of the ingredients. 

Methylcellulose (MC), xanthan gum (XG) , and carboxymethylcellulose (CMC) 

are the hydrocolloids that are most extensively used in batter industries. They are high 

molecular weight water-soluble carbohydrate biopolymers with the ability to form gels 

and thickening in aqueous systems. They are greatly attracted to water and absorb it 

readily (Keller, 1982). MC and CMC are cellulose derivative hydrocolloids. MC can 
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thermally gel (Meyers et al., 1990; Sanz et al., 2005), and CMC forms a three-dimensional 

network with an ability to link water molecules within the systems (Andrew, 2004). They 

form and provide a resistant-barrier coating during heating (Meyers, 1990; Khalil, 1999, 

Susanne et al., 2001; Albert, 2002; Mellema, 2003). Xanthan gum has a linear main chain 

whose molecular formation appears to allow a high degree of interaction between polymer 

chains. The results in the formation of network of molecular aggregates held together by a 

valence force (Pettitt, 1982). Therefore, these gums could change the physical and thermal 

properties of batter systems. Hydrocolloid performance are affected by the complexity of 

other ingredients in the batter system and the compatibility of the specific hydrocolloids 

with those components 

Coated food products undergo several physical and chemical changes during 

processing. Thermal property analyses should reveal possible interactions between 

hydrocolloids and the other batter constituents. This could partially explain the effects of 

adding hydrocolloids to complex batter systems. The effects of hydrocolloids on phase 

transitions are important in examining the molecular interactions involved in developing 

structural stability during processing of coated products. To an extent, one can generally 

select a hydrocolloid to use for a product based on its characteristics and its impact during 

processing. Thus, it is critical to have a conceptual understanding of how the thermal 

properties of the coating system can be changed by the addition of hydrocolloids and 

other ingredients. Furthermore, understanding the functionality of ingredients and their 

interactions in batter systems during thermal processing steps is essential to achieving 

superior product quality. The thermal properties of batter systems containing 

hydrocolloids have not yet been studied in detail. 
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There are limited published studies dealing with the thermal properties of batter 

systems that were formulated using wheat, rice and corn flours with the addition of MC, 

CMC and xanthan gum (XG) (Christianson et al., 1981; Hsia et al., 1992; Rojas et al., 

1999; Sanz et al 2005; Gao and Vodovot 2005; Xue and Ngadi 2006). In this study, two 

different processes, simulating cooking and frozen storage, were used to determine 

thermal properties of the batter systems. The objectives were to achieve a better 

understanding ofthe functionality of MC, CMC and xanthan gum in batter systems during 

processing, and to investigate the synergistic effects of the hydrocolloids and different 

flour blend combinations on thermal properties of the various batter systems. The 

knowledge generated by this study could be helpful in designing product development 

protocols for coating systems with hydrocolloids 

4.2 MATERIALS AND METHODS 

4.2.1 Batter ingredients and formulations 

Wheat flour (Five Roses AlI Purpose Flour, Les Cuisines Five Roses Kitchens, 

QC, Canada), rice flour RL-I00 (Riviana Foods Inc., Houston, Texas, USA), yellow corn 

flour (ADM Milling Co., Lincoln, Nebraska, USA), leavening agent (Sodium bicarbonate, 

H. Cantin Ltd, Quebec, Canada), Methylcellulose (MC, AI5C, Dow Chemical Company, 

MI, USA), xanthan gum (TIC Gums Inc, Maryland, USA), and carboxymethylcellulose 

(CMC 2500, TIC Gums Inc, Maryland, USA) were used in the study. The characteristics 

of the flour samples, according to the flour manufacturers, are presented in Table 4.1. 

Three flour blends were prepared for this study by mixing two flours, namely wheat and 

rice flours (WR), wheat and corn flours (WC), and corn and rice flours (CR). The two 
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flours in each blend were mixed at five different ratios (w/w %), namely 0:100; 30:70; 

50:50; 70:30 and 100:0. Thus a total of 12 flour samples were used. 

Table 4.1. Chemical composition ofwheat, rice, and corn flours used in the study 

Flour type Wheat flour Riee flour Corn flour 

Moisture (%) 12.60 11.78 14.0 

Protein (%) 11.87 8.2 8.0 

Ash (%) 0.41 0.49 0.55 

Crude fat (%) 0.73 0.41 2.5 

A vg. particle size (J.1m) 24 26 27 

The batter systems were formulated with different combinations of flour and 

methylcellulose or carboxymethylcellulose (0, 0.5, 1.0, or 1.5%), or xanthan gum (0 or 

0.2%). Other ingredients inc1uded 2.5% salt, 3.1 % leavening agent (NaHC03, Sodium 

bicarbonate). AIl the ingredients were added on a flour dry weight basis. To formulate the 

batters, the MC, CMC, or xanthan gum powders were first dispersed and mixed in the 

total amount of cold distilled water required for the batter. Afterward hydrocolloid was 

totally dissolved, the dry ingredients (flour, salt, and leavening) were added to the 

hydrocolloid solution and mixed thoroughly until the batter was uniform and free of 

lumps. 

AIl the samples were prepared with the same water-to-solids ratio. Therefore, their 

apparent rheological and thermal property values wou Id indicate the functional 
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contribution of the ingredients to the mixture. All batters were prepared with water to dry­

mix in the proportion (w/w) of 1.3:1. The moisture content of the batler sample was 

confirmed to be about 55.6% (wet basis) by drying the samples in an oven set at 105 oC. 

Batler samples were kept for at least 45 minutes at 10 ± 2 oC to allow all the ingredients to 

completely hydrate and for the MC or CMC to develop a gel before measuring their 

thermal and rheological properties. 

4.2.2 Determination of thermal properties 

The batter systems were characterized thermally using a differential scannmg 

calorimeter (DSC, T AQ 100, TA Instruments, Delaware, USA), previously calibrated 

with indium and sapphire. For analysis, a sample (10 - 15 mg) was placed in aluminum 

pans and hermetically sealed. An empty aluminum pan was used as reference. The values 

of thermal properties, namely gelatinization temperature (peak temperature, TG), enthalpy 

for gelatinization (mG), glass transition temperature (Tg), melting temperature (peak 

temperature, Tm), and enthalpy for ice melting (dHm) of the batters were obtained directly 

from the analysis ofthe software TA instruments OS/2 version 5.5. 

Two different temperature profiles were used to simulate cooking and storage 

processes. To simulate a cooking-freezing-thawing process (CFT process), the samples 

were first heated to 120 oC at 10 OC/min from 15 oC, which is an initial temperature 

commonly used for batters in the food industry. Then the samples were rapidly cooled to -

50 Oc at 20 OC/min to avoid formation large ice crystals which could damage the food's 

structure. After that, the samples were heated to 25 oC as in a thawing condition. To 

simulate processing of batlered products being first frozen then cooked (namely FC 

process), the samples were first rapidly cooled to -50 Oc at the rate of 20 OC/min, then 
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heated to 120 Oc at 10 oC/min. The thennal transition parameters were directly detennined 

from the DSC thennogram curves after measurement. 

4.3 STATISTICAL DESIGN AND ANALYSIS 

All experiments were conducted using the factorial experimental designs and 

analyzed in each block experiment. The batter systems were prepared and tested in 

triplicate in a completely randomized design. A two-way analysis of variance (ANOV A) 

using the General Linear Model (GLM) was used to study the differences and interaction 

effects in batter fonnulations, such as main factors and their combined effects, inc1uding 

the ratio and type of combined flours and the levels of hydrocolloids. The significance of 

mean comparisons by the Scheffe's least significant difference (LSD) were detennined at 

P<0.05 using the SAS software (SAS Institute Inc., Cary, NC, USA). 

4.4 RESULTS AND DISCUSSION 

4.4.1 Effects of different thermal processes on thermal properties of batter systems 

The gelatinization temperature (T 0) of batters varied from 66.9 to 88.2°C during 

the CFT process, and from 67.2 to 88.6 oC during the FC process as shown in Table 4.2. 

The ranges of the total enthalpies of batter samples were from 1.52 to 4.57 J/g, and from 

1.59 to 4.50 J/g for CFT and FC processes, respectively (Table 4.3). The values varied 

according to flour type and their combinations and different types of hydrocolloids and 

their concentrations. ANOV A analysis and mean comparison showed that the different 

thennal processing (CFT and FC) did not significantly affect the gelatinization 

temperature and total enthalpies for the batter systems. It appeared that freezing did not 
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affect the function of the component in the raw batter systems (uncooked samples). In this 

study, the batter samples were rapidly cooled to -50 oC in order to avoid large ice crystal 

formation during the cooling process. The process conditions apparently maintained the 

batter system intact during frozen storage. 

Table 4.2. Effects ofhydrocolloids on gelatinization temperature ofbatter systems during 

different thermal processes 

Process Cooking-freezing-thawing (CFT} 
Batter Control 0.2%XT 0.5%MC 1.0%MC 1.5%MC 0.5%CMC 1.0%CMC 1.5%CMC 
Wheat 66.9(0.69) 69.17(1.02) 72.1(0.72) 76.8(0.69) 78.4(0.98) 70.2(0.23) 72.6(0.72) 72.9(0.98) 
Corn 75.7(0.72) 78.68(0.32) 76.5(0.96) 77.2(0.23) 79.1(0.28) 77.8(0.72) 78.5(0.28) 79.1(1.09) 
Rice 82.8(1.2) 82.43(0.96) 83.6(0.43) 84.2(0.55) 85.2(0.43) 83.8(0.28) 84.6(0.85) 84.9(0.69) 
W3C7 75.5(0.96) 78.37(1.02) 77.3(0.85) 79.5(0.87) 84.6(1.09) 78.9(0.98) 79.3(0.98) 79.4(0.55) 
W5C5 79.4(1.56) 80.54(0.63) 80.8(0.43) 81.9(0.69) 82.6(0.55) 81.2(0.43) 81.9(0.87) 82.6(0.43) 
W7C3 70.4(0.65) 71.85(0.23) 74.4(0.72) 76.5(0.85) 80.2(0.98) 72.1(0.69) 73.8(0.72) 74.1(0.72) 
W3R7 83.6(1.02) 84.63(0.69) 83.9(0.55) 85.6(0.28) 88.2(0.87) 84.5(0.23) 85.2(0.87) 86.1(1.09) 
W5R5 71.1(0.96) 85.94(1.030 72.1(1.02) 74.2(0.72) 77.2(0.85) 73.5(0.72) 75.3(0.43) 77.0(0.23) 
W7R3 69.5(0.49) 70.58(0.98) 69.8(0.28) 75.7(0.87) 77.5(0.43) 70.7(0.87) 71.5(0.28) 72.5(0.87) 
C3R7 82.3(1.36) 82.76(1.32) 82.9(0.98) 84.2(0.55) 85.3(0.98) 82.9(0.69) 84.1(0.72) 84.9(0.69) 
C5R5 79.4(0.98) 81.97(0.62) 80.2(0.87) 81.1(0.96) 84.3(0.85) 80.1(0.28) 82.1(0.55) 83.1(0.85) 
C7R3 78.1(1.56} 79.83(0.98} 79.1(0.43} 81.3(0.43) 84.7(0.282 78.8(0.85) 79.9(0.87} 80.6{0.872 
Process Freezing-Cooking (FC) 
Batter Control 0.2%XT 0.5%MC 1.0%MC 1.5%MC 0.5%CMC 1.0%CMC 1.5%CMC 
Wheat 67.2(1.02) 69.6(0.36) 72.2(0.43) 77.1(0.85) 78.9(0.65) 70.6(0.85) 72.1(0.23) 72.6(0.96) 
Corn 75.3(0.65) 78.8(0.98) 76.9(0.85) 78.3(0.96) 79.2(0.72) 77.4(1.09) 78.7(0.28) 79.6(0.55) 
Rice 82.6(0.98) 82.6(1.01 ) 83.8(0.55) 84.5(0.28) 85.3(0.87) 83.2(0.72) 84.1(0.85) 84.9(0.43) 
W3C7 75.6(1.23) 78.7(1.09) 77.6(0.96) 79.7(0.43) 84.9(0.43) 78.9(0.87) 79.5(0.98) 79.6(0.72) 
W5C5 79.1(1.36) 80.6(0.36) 80.9(1.01) 82.1(0.87) 82.5(0.55) 81.4(0.69) 81.6(0.87) 82.6(0.69) 
W7C3 70.1(0.65) 71.3(0.87) 74.8(0.23) 76.8(0.23) 80.6(0.72) 71.9(0.87) 72.9(0.72) 74.2(0.28) 
W3R7 83.3(1.02) 84.0(1.02) 72.1(0.87) 85.9(0.85) 88.6(0.85) 85.5(0.23) 85.6(0.87) 86.1(0.23) 
W5R5 71.2(0.69) 85.9(1.02) 70.6(0.69) 74.9(0.28) 77.5(0.43) 73.4(0.99) 75.4(0.23) 76.8(0.87) 
W7R3 69.4(0.46) 71.6(0.95) 70.1(0.85) 75.9(0.69) 77.9(1.09) 70.8(0.96) 71.9(0.43) 72.4(0.85) 
C3R7 82.4(1.24) 83.2(0.36) 82.7(0.55) 84.9(0.65) 85.7(0.98) 82.6(0.72) 83.9(1.09) 85.0(0.98) 
C5R5 79.7(0.69) 81.1(0.97) 80.9(0.98) 81.3(0.43) 84.9(0.28) 80.3(0.72) 82.6(0.85) 83.4(0.28) 
C7R3 78.0(0.55) 79.0(1.02) 80.5(0.28) 81.5(0.23) 85.8(0.55) 78.6(0.69) 79.7(0.72) 80.9(0.96) 

C7R3 = 70% corn and 30% rice flour, C5R5 = 50% corn and 50% rice flour, C3R7 = 30% corn and 70% 

rice flour, W7C3= 70% wheat and 30% corn flour, W5C5 = 50% wheat and 50% rice flour, W3C7 = 30% 

wheat and 70% corn flour, W7R3 = 70% wheat and 30% rice flour, W5R5 = 50% wheat and 50% rice flour, 

W3R7= 30% wheat and 70% rice flour. CFT= cooking -frozen-thawing process, FC=frozen-cooking 

process. Values in parentheses are standard deviations. 
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Table 4.3. Effects of hydrocolloids on total ge1atinization enthalpies of various batter 

systems during different processes 

Process Cooking-freezing-thawing {CFT} 

Batter Control 0.2%XT O.5%MC 1.0%MC 1.5%MC O.5%CMC 1.0%CMC 1.5%CMC 

Wheat 2.98(0.12) 2.87(0.09) 2.16(0.17) 1.94(0.09) 1.61(0.22) 2.92(0.25) 2.83(0.17) 2.63(0.09) 

Corn 3.58(0.25) 3.14(0.31) 3.38(0.27) 2.46(0.16) 2.03(0.31) 3.34(0.08) 3.29(0.08) 3.09(0.31) 
Rice 4.57(0.09) 4.17(0.08) 4.38(0.08) 3.10(0.11) 3.04(0.16) 4.46(0.17) 4.39(0.22) 4.21(0.09) 
W3C7 2.89(0.12) 2.67(0.27) 2.70(0.16) 2.30(0.22) 1.92(0.09) 2.81(0.25) 2.69(0.11) 2.51(0.27) 
W5C5 2.71(0.23) 2.40(0.22) 2.31(0.22) 2.03(0.09) 1.64(0.22) 2.59(0.16) 2.49(0.16) 2.34(0.22) 

W7C3 2.72(0.11) 2.950.19) 2.50(0.17) 2.19(0.16) 1.57(0.09) 2.57(0.17) 2.49(0.31) 2.35(0.17) 

W3R7 3.47(0.23) 2.97(0.17) 3.17(0.08) 2.73(0.27) 1.73(0.31) 3.21(0.27) 2.89(0.27) 2.21(0.25) 
W5R5 3.34(0.09) 2.82(0.21) 3.02(0.31) 2.65(0.11) 2.39(0.08) 3.29(0.08) 3.14(0.08) 2.87(0.09) 
W7R3 2.61(0.12) 2.31(0.08) 2.19(0.16) 1.90(0.22) 1.52(0.31) 2.59(0.22) 2.56(0.16) 2.19(0.31) 
C3R7 4.00(0.04) 3.65(0.19) 3.79(0.31) 3.12(0.17) 2.14(0.09) 3.72(0.17) 3.69(0.22) 3.50(0.08) 

C5R5 3.98(0.31) 3.57(0.31) 3.73(0.22) 3.22(0.27) 2.72(0.22) 3.68(0.11) 3.48(0.17) 3.29(0.17) 
C7R3 3.82{0.22} 3.22{0.08} 3.32{0.17} 2.82{0.08} 1.56{0.27} 3.48{0.09} 3.21{0.27} 3.14{0.09} 

Process Freezing-Cooking {Fe} 

Batter Control 0.2%XT O.5%MC 1.0%MC 1.5%MC 0.5%CMC 1.0%CMC 1.5%CMC 

Wheat 2.94(0.17) 2.93(0.04) 2.17(0.09) 1.92(0.25) 1.65(0.22) 2.91(0.09) 2.81(0.27) 2.67(0.22) 
Corn 3.57(0.15) 3.24(0.16) 3.32(0.27) 2.41(0.08) 2.01(0.27) 3.38(0.08) 3.27(0.16) 3.11(0.25) 
Rice 4.50(0.08) 4.34(0.22) 4.28(0.11) 3.09(0.22) 2.99(0.11) 4.51(0.11) 4.31(0.22) 4.23(0.11) 
W3C7 2.91(0.22) 2.40(0.09) 2.64(0.25) 2.34(0.16) 1.93(0.17) 2.79(0.22) 2.70(0.17) 2.53(0.08) 
W5C5 2.71(0.17) 2.71(0.08) 2.32(0.22) 2.11 (0.31) 1.59(0.09) 2.61(0.31) 2.50(0.31) 2.38(0.31) 
W7C3 2.71(0.22) 2.41(0.31) 2.54(0.11) 2.07(0.11) 1.60(0.22) 2.56(0.09) 2.48(0.22) 2.34(0.17) 

W3R7 3.41(0.25) 3.10(0.17) 3.21(0.22) 2.64(0.08) 1.62(0.27) 3.26(0.08) 2.84(0.08) 2.23(0.25) 

W5R5 3.38(0.11 ) 2.90(0.25) 3.12(0.17) 2.59(0.22) 2.31(0.25) 3.27(0.22) 3.19(0.25) 2.91(0.22) 
W7R3 2.59(0.04) 2.32(0.11) 2.09(0.25) 1.94(0.17) 1.62(0.08) 2.57(0.17) 2.54(0.08) 2.21(0.08) 
C3R7 4.01(0.09) 3.44(0.22) 3.75(0.08) 3.02(0.04) 2.01(0.25) 3.78(0.09) 3.68(0.11) 3.51(0.11) 
C5R5 4.01(0.22) 3.38(0.27) 3.71(0.09) 3.21(0.31) 2.73(0.04) 3.61(0.22) 3.49(0.17) 3.31(0.09) 
C7R3 3.67(0.08} 3.27(0.31) 3.21{0.25) 2.96(0.27) 1.62{0.17} 3.51(0.25) 3.24{0.22} 3.19(0.11} 

C7R3 = 70% corn and 30% rice flour, C5R5 = 50% corn and 50% rice flour, C3R7 = 30% corn 

and 70% rice flour, W7C3= 70% wheat and 30% corn flour, W5C5 = 50% wheat and 50% rice 

flour, W3C7 = 30% wheat and 70% corn flour, W7R3 = 70% wheat and 30% rice flour, W5R5 = 

50% wheat and 50% rice flour, W3R7= 30% wheat and 70% rice flour. CFT= cooking -frozen-

thawing process, FC=frozen-cooking process. Values in parentheses are standard deviations. 

The different thermal processes greatly influenced the phase transition properties 

of batter systems during the cooling process. The glass transition temperatures of 

uncooked samples (FC process) varied from -10.2 to -13.1 oC, and for cooked samples 
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(CFT process) from -16.6 to -23.8 oC, respectively. The cooked samples (CFT process) 

showed lower glass transition temperatures than uncooked samples (FC process) 

irrespective of the flours used in formulating the batter (Fig. 4.1). The glass transition 

behaviors of starch-water system in the freeze-concentrated phase depend upon ice 

formation, and are dramatically influenced by the amount of available water in the system 

(Addo et al., 2001, Chung et al., 2002, Hsu et al., 2003). A fraction of water existed 

compartmentalized and/or was trapped within the network structure of the cooked batter 

(CFT process). Apparently water was bound more tightly in the cooked samples making it 

difficult to freeze the trapped water into an ice crystal form. Therefore, the Tg was lower 

for the cooked samples (CFT process) than for the uncooked batters (CF process). 

[] control-FC 

m control-CFT 

Wheat Com Riee W3C7 W3CS WlC3 W3R7 W5R5 W7R3 C3R7 C5R5 C7R3 

B3tter systems 

Figure 4. 1. Glass transition temperature of control batters in different thermal processes. 
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The melting temperatures (peak temperature Tm) for aH the batter systems were in 

the range from 1.8 to 4.3 Oc and from 2.0 to 4.8 Oc for the cooked and uncooked samples, 

respectively. There were no significant differences in the melting peak temperatures (Tm) 

of batter systems containing CMC or 0.2% xanthan gum. ANOVA analysis results 

showed statisticaHy significant differences in the melting peak temperatures of batter 

systems to which MC had been added. However, significant differences were observed in 

the total enthalpy for ice melting (MIm) across aH sampI es (Table 4.4). The ôHm values 

for the uncooked samples (FC process) were higher as compared with those for the 

cooked samples (CFT process). The differences in thermal properties between these two 

thermal profiles could be due to the structures formed during processing. The batter 

samples were cooked and formed to the structure of a solid-like coating in the CFT 

process, thus less free water content remained as compared with the raw batters in which 

the batters were not cooked and more water remained. They apparently required different 

latent heats to melt ice crystals at a similar temperature. Therefore, resulting higher 

enthalpy was required to melt the ice in uncooked samples compared with cooked samples 

during the thawing process. 
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Table 4.4. Effects of hydrocolloids on ice melting peak temperature of various batter 

systems at different thermal processes 

Process Cooking-freezing-thawing {CFT} 

Batter Control 0.2%XT O.5%MC 1.0%MC 1.5%MC 0.5%CMC 1.0%CMC 1.5%CMC 

Wheat 2.1(0.22) 2.29(0.29) 2.2(0.25) 3.0(0.62) 3.5(0.21) 2.2(0.39) 2.4(0.29) 2.7(0.23) 

Corn 2.0(0.31) 3.49(0.17) 2.1(0.32) 3.7(0.24) 4.0(0.35) 2.2(0.55) 2.5(0.62) 2.6(0.39) 

Rice 1.9(0.49) 2.17(0.11) 2.0(0.19) 3.2(0.35) 3.7(0.19) 2.3(0.29) 2.6(0.42) 3.1(0.17) 

W3C7 2.2(0.27) 3.06(0.23) 2.4(0.25) 3.7(0.19) 4.0(0.45) 2.3(0.19) 2.4(0.34) 2.7(0.55) 

W5C5 2.3(0.22) 2.88(0.41) 2.6(0.34) 2.6(0.29) 3.5(0.53) 2.5(0.48) 2.6(0.23) 2.7(0.48) 

W7C3 1.8(0.31 ) 2.71(0.55) 1.7(0.36) 4.3(0.31) 4.7(0.32) 1.9(0.23) 2.4(0.11 ) 2.6(0.39) 

W3R7 2.1(0.25) 3.19(0.12) 2.3(0.28) 3.6(0.23) 3.8(0.29) 2.5(0.31) 2.8(0.29) 3.4(0.29) 

W5R5 2.3(0.19) 3.44(0.39) 2.5(0.48) 3.1(0.65) 3.6(0.62) 2.6(0.17) 2.7(0.31) 2.8(0.28) 

W7R3 2.2(0.36) 3.08(0.43) 2.4(0.34) 3.6(0.42) 4.0(0.39) 2.3(0.28) 2.5(0.39) 2.7(0.62) 

C3R7 2.3(0.28) 2.88(0.62) 2.4(0.29) 3.3(0.23) 3.7(0.41) 2.5(0.48) 2.6(0.42) 2.9(0.19) 

C5R5 2.3(0.17) 2.85(0.23) 2.3(0.42) 2.3(0.19) 2.6(0.24) 2.4(0.37) 2.6(0.48) 2.6(0.23) 

C7R3 2.2{0.432 3.04(0.59) 2.6{0.322 3.4{0.332 3.6{0.362 2.2{0.292 2.4{0.31 ) 2.5{0.112 

Process Freezing-Cooking {Fe} 

Batter Control 0.2%XT 0.5%MC 1.0%MC 1.5%MC 0.5%CMC 1.0%CMC 1.5%CMC 

Wheat 2.3(0.48) 2.39(0.62) 2.4(0.55) 2.9(0.62) 3.2(0.55) 2.3(0.19) 2.5(0.28) 2.6(0.55) 

Corn 2.1(0.34) 3.58(0.55) 2.3(0.28) 2.6(0.48) 3.8(0.62) 2.2(0.62) 2.6(0.48) 2.8(0.31 ) 

Rice 2.1(0.39) 2.31(0.28) 2.4(0.29) 2.4(0.17) 3.3(0.29) 2.5(0.55) 2.8(0.53) 3.4(0.11) 

W3C7 2.2(0.11) 3.09(0.42) 2.6(0.17) 2.3(0.34) 3.5(0.62) 2.4(0.53) 2.6(0.29) 2.9(0.23) 

W5C5 2.2(0.48) 2.96(0.23) 2.5(0.62) 2.8(0.39) 2.6(0.62) 2.4(0.39) 2.7(0.42) 2.8(0.34) 

W7C3 2.0(0.29) 2.69(0.17) 2.3(0.48) 2.1(0.11) 4.8(0.34) 2.1(0.62) 2.5(0.39) 2.7(0.19) 

W3R7 2.3(0.34) 3.23(0.39) 2.5(0.55) 3.5(0.23) 3.2(0.23) 2.5(0.31) 2.8(0.17) 3.3(0.48) 

W5R5 2.2(0.29) 3.49(0.34) 2.4(0.42) 2.9(0.11) 1.5(0.11 ) 2.4(0.48) 2.5(0.23) 3.0(0.62) 

W7R3 2.1(0.42) 3.12(0.19) 2.2(0.28) 2.2(0.19) 4.0(0.55) 2.4(0.34) 2.6(0.34) 2.8(0.23) 

C3R7 2.6(0.19) 2.91(0.28) 2.5(0.39) 3.0(0.42) 2.4(0.31) 2.6(0.62) 2.8(0.29) 2.9(0.42) 

C5R5 2.4(0.55) 2.89(0.55) 2.6(0.34) 3.4(0.29) 2.7(0.17) 2.6(0.48) 2.8(0.39) 2.9(0.11) 

C7R3 2.1{0.112 3.12(0.62) 2.3(0.232 3.2(0.19) 3.8(0.232 2.5{0. 192 2.7{0.232 2.8{0.482 

C7R3 = 70% corn and 30% rice flour, C5R5 = 50% corn and 50% rice flour, C3R 7 = 30% corn 

and 70% rice flour, W7C3= 70% wheat and 30% corn flour, W5C5 = 50% wheat and 50% rice 

flour, W3C7 = 30% wheat and 70% corn flour, W7R3 = 70% wheat and 30% rice flour, W5R5 = 

50% wheat and 50% rice flour, W3R7= 30% wheat and 70% rice flour. CFT= cooking -frozen­

thawing process, FC=frozen-cooking process. Values in parentheses are standard deviations 

There was a significant effect of adding hydrocolloids on the Tg of batter system. 

Hydrocolloids depressed the Tg of batters. Figure 4.2 shows the effect of 0.2% xanthan 
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gum on Tg. The effect of xanthan gum was more pronounced in the raw batter systems 

(i.e. FC process) than in the cooked samples (CFT process). It is suggested that xanthan 

gum absorbed water, and increased the viscosity of batter system at low temperatures. 

However, xanthan gum did not show a significant effect on the different flours and their 

combination blends in raw batters. These characteristics might be explained as due to the 

lower concentration of xanthan gum used in the batter system to stabilize suspension and 

viscosity in the systems. The xanthan gum at the lower concentration required less water 

to develop its properties as compared with CMC or MC used in this study in the limited 

water systems. None-the-Iess, xanthan gum showed more effects on Tg values of batter 

with rice and corn flour compared to batter with the wheat flour during the CFT process. 

o control-FC El O.2%XG-FC 
-24 

m control-CFT • O.2%XG-CFC 

-19 

-14 

Wheat Corn Rice W3C7 W5C5 W7C3 W3R7 W5R5 W7R3 C3R7 C5R5 C7R3 

Batter system 

Figure 4.2. Effects ofxanthan gum (XG) on glass transition temperature ofvarious batter 

systems 
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4.4.2 Effeet of hydroeolloids on thermal properties of batter systems 

Xue and Ngadi (2006) reported that the thennal properties ofbatter systems varied 

depending on the types of flours used in their fonnulation. Addition of hydrocolloids 

significantly increased TG of batter samples (Table 4.2). The results indicate that the 

interaction of starch-hydrocolloids in the system produced a more stable structure and 

needed a higher temperature for disorganization (Christianson et al., 1981; Rojas et al., 

1999). The observed effect of MC on the TG of the batter systems was more pronounced 

than the effect of CMC and XG. This may be attributed to the ability of MC to gel during 

heating, resulting in blocked or reduced water being available to react with starch. In that 

case, there was not enough water available to completely gelatinize the starch at low 

temperatures, as would be expected for starch gelatinized in the absence of hydrocolloids 

(Wang et al., 1991, Xue and Ngadi 2006). Hydrocolloids are also water-soluble 

polymers, causing them to compete for water with other components in the batter systems 

thus delaying temperature required for starch granules being to become completely 

swollen. AIso, the pol ymer increased the viscosity of batter systems causing reduction in 

the heat transfer rate. Therefore, the addition of hydrocolloids shifted TG toward higher 

temperatures. Increasing hydrocolloid concentration led to increased in TG for all of 

samples. 

Total gelatinization enthalpies were significantly influenced by different samples 

(Table 4.3). They decreased with increasing hydrocolloid concentrations in the batter 

systems. Gimeno et al. (2004) found that a higher interaction of hydrocolloids and starch 

retained more water molecules, causing a higher mobility of water during heating, 

increasing the kinetic energy and decreasing the enthalpy value. Therefore, the symbiotic 
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effects of hydrocolloids and starch increased the starch gelatinization temperature but 

reduced the total enthalpies of gelatinization of the batter systems during the heating 

process. 

Figure 4.3 shows variation in Tg with respect to different concentrations of MC 

and different batters. Figure 4.4 shows similar data for CMC. There were no significant 

differences in the glass transition temperatures of the control samples (0% CMC/ MC) and 

0.5 % CMC or MC samples during the CFT process, but it showed that the statistical 

effect of CMC or MC concentration was more pronounced in the glass transition of 

samples in the FC process (Fig. 4.3 and 4.4). The different behaviors of the batters can be 

attributed to their ability to form structures during the different thermal processes. 

Although similar CMC-flour or MC-flour interactions may have occurred at the 0.5% 

level, but it was not sufficient to cause large differences in the structure of the coating 

formed by heating during CFT processing. 
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Figure 4.3. Effects of methylcellulose (MC) on glass transition temperature of various 

batter systems. 
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Batter system 

Figure 4.4. Effects of carboxymethylcellulose (CMC) on glass transition temperature of 

various batter systems 

Free water is easily frozen as compared with bound freezable water, and it 

crystallizes during cooling (Bhaskar et al., 1998) .. In raw batter systems, MC and CMC 

typically bind water tightly, reducing the amount of free water in the batter systems. The 

effect of MC or CMC is to cause a postponement in the freezing of the bound freezable 

water in hydrocolloid-batter systems. Therefore, lower temperatures were required to 

complete the phase transition for the batters containing the addition of MC or CMC. Also, 
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the MC or CMC concentration had a significant effect on the glass transition temperatures 

in all raw batter systems. 

In a cooking-freezing-thawing (CFT) process, MC or CMC greatly influences the 

structure formation of the coating during heating, and the final water content of the 

cooked samples (Nakamur et al., 2004, Gao and Vodovot, 2005). This seemed to 

correlate with the interactions between starch and hydrocolloids in reorganization, 

creating a higher number of crosslink structures which retain a larger amount of water 

molecules during the process (Gimeno et al., 2004). Thus, MC or CMC increases the 

water content of the final cooked samples, and it consequently influences phase transition 

behavior such as glass transition, ice melting temperature, and total enthalpies of ice 

melting during cooling and thawing. The absorbed water inside a hydrocolloid-cooked 

sample that is mostly bound freezable water sets with the unfreezable water fraction, and 

water content of cooked samples would be increased with increasing MC or CMC 

concentrations. A lower temperature is required to form ice crystals in order to attain the 

glass state from the rubber state in the systems. 

During the thawing process, the DSC thermograph showed that endothermic 

transitions occurred due to the melting of ice crystal within the batter systems. The range 

of ice melting temperatures was from 1.8 to 4.8°C while the range of total enthalpies was 

from 110 to 155.6 J/g for the various batters system. ANOVA results showed statistically 

similar effects of hydrocolloids on the ice melting peak temperatures in the various batter 

systems (Table 4.4). Xanthan gum and MC greatly increased the ice melting temperatures 

and total enthalpies of ice melting across all batter systems for both thermal processes, but 

no significant differences were observed on the total enthalpies of ice melting in batter 

systems containing CMC for either CFT or FT processing (Table 4.5). 
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Table 4.5. Effects of hydrocolloids on total enthalpies of ice melting in various batter 

systems 

Process Cooking-freezing-thawing {CFT} 

Batter Control 0.2%XT 0.5%MC 1.0%MC 1.5%MC 0.5%CMC1.0%CMC 1.5%CMC 

Wheat 136.8(0.81 ) 145.4(1.02) 138.2(0.72) 142.6(0.96) 146.2(1.72) 141.2(1.23) 145.6(0.92) 145.9(1.14) 

Corn 126.5(1.14) 136.8(0.85) 129.6(0.69)135.2(0.85)142.3(1.43) 129.6(0.98) 134.5(1.02) 139.6(0.97) 

Rice 110.5(1.86) 135.8(1.43) 112.3(1.56)116.2(1.02)121.3(0.87) 115.8(1.04) 128.9( 1.31) 134.8(1.02) 

W3C7 120.7(1.02) 140.7(1.20) 126.1 (O. 72) 130.2(0.87) 136.2(0.98) 129.4(0.78) 144.0(0.86) 145.8(0.98) 

W5C5 133.0(0.42) 135.0(0.72) 138.2(0.96) 140.3(0.72) 143.6(0.72) 137.9(1.03) 145.2(1.03) 149.2(0.78) 

W7C3 126.9(0.84) 141.0(1.56) 128.2(1.32)129.6(1.09)132.3(1.02) 134.2(0.98) 138.6(0.98) 143.2(1.02) 
W3R7 119.4(1.03) 137.0(0.96) 120.9(0.55) 123.6(0.72) 127.6(0.85) 126.2(1.03) 138.2(1.85) 142.8(1.09) 
W5R5 129.8(1.25) 134.7(0.85) 130.1(0.63)135.2(0.69)139.2(1.36) 134.6(1.15) 139.2(0.85) 142.5(0.98) 
W7R3 132.9(0.61) 146.3( 1.36) 135.1(0.87) 135.9(0.87)139.6(0.98) 136.8(1.43) 143.2(0.87) 146.4(0.67) 
C3R7 112.8(1.20) 137.9(0.55) 117.8(0.96)124.5(0.98)132.1(1.03) 115.5(0.95) 124.8(1.00) 130.1 (1.02) 

C5R5 122.2(0.14) 137.5(1.09) 126.9(1.23)129.2(1.28)135.2(0.98) 133.8(0.87) 139.8(1.06) 141.7(0.98) 

C7R3 128.9{0.65} 134.3{0.98} 129.9{0.55}131.2{0.69}136.2{1.09} 134.5{0.81} 137.5{0.92} 140.3{1.00} 

Process Freezing-Cooking {Fe} 

Batter Control 0.2%XT 0.5%MC 1.0%MC 1.5%MC 0.5%CMC1.0%CMC 1.5%CMC 

Wheat 149.3(0.95) 141.5(1.02) 150.1(0.98) 153.6(1.09)154.6(0.72) 150.1(0.73) 150.9(0.23) 151.6(0.81) 

Corn 144.6(1.02) 133.8(1.28) 146.2(1.43) 148.3(1.02)147.5(1.28) 144.8(1.12) 145.2(0.89) 145.4(0.79) 
Rice 139.2(1.03) 138.3(0.96) 140.2(0.69) 143 .6(0. 97) 144.5(0. 87) 140.6(2.04) 140.9( 1.03) 141.2( 1.02) 

W3C7 140.6(1.06) 132.4(0.85) 141.2(0.87) 146.2(0.98) 147.6(0.43) 141.5(0.84) 141.9(0.97) 142.5(1.06) 

W5C5 145.8(0.64) 129.7(0.69) 147.2(0.28) 149.6(1.28) 150.3(0.98) 146.7(1.20) 147.7(1.02) 148.2(0.73) 
W7C3 146.1 (0.25) 137.8(0.87) 148.9(0.98) 151.2(1.02)151.9(0.87) 146.7(2.03) 147.5(0.98) 147.9(0.98) 
W3R7 143.2(0.89) 133.5(1.09) 145.2(1.23) 148.3(0.85) 149.8(0.72) 143.6( 1.32) 147.2(0.78) 148.2(1.12) 
W5R5 146.5(1.04) 127.0(1.07) 147.2(0.69) 150.3(0.87)152.3(1.01) 146.1 (0.98) 146.8(0.69) 147.2(1.86) 
W7R3 151.0(0.98) 134.6( 1.0 1) 152.3(1.07) 155.6(1.02)157.2(1.24) 151.8(0.98) 152.0(1.02) 152.4(0.86) 
C3R7 146.4(1.75) 122.5(0.87) 146.8(0.65) 150.3(0.69) 151.3(1. 72) 146.5(1.12) 148.5(0.99) 148.2(0.14) 
C5R5 141.7(0.45) 132.4(1.08) 142.3(0.98) 146.2(0.95) 149.6(0.55) 142.1(1.09) 142.1 (0.67) 143.2(1.23) 
C7R3 142.5(1.38) 137.3(1.25) 146.3(0.55) 149.2( 1.43) 152.3(0.85) 143.7{1.46} 144.8{1.23} 144.6{1.09} 

C7R3 = 70% corn and 30% rice flour, C5R5 = 50% corn and 50% rice flour, C3R7 = 30% corn 

and 70% rice flour, W7C3= 70% wheat and 30% corn flour, W5C5 = 50% wheat and 50% rice 

flour, W3C7 = 30% wheat and 70% corn flour, W7R3 = 70% wheat and 30% rice flour, W5R5 = 

50% wheat and 50% rice flour, W3R7= 30% wheat and 70% rice flour. CFT= cooking -frozen­

thawing process, FC=frozen-cooking process. 

Values in parentheses are standard deviations.The concentration of MC had a 

noticeable effect on the melting peak temperature of samples for both thermal processes. 

CMC only showed a noticeable effect on the melting peak temperature ofuncooked batter 

systems during the FC process. It might be explained that the MC could thermally gel 
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during heating; thus it could greatly influence the structure fonnation of a coating during 

heating. It also affected the amount of available free water in the raw batter systems 

during cooling due to its water-binding capacity. When CMC absorbed water, it leads to 

an increase in the viscosity of the batter systems. This affected the heat transfer in the 

batter, thus causing a slight shift to a higher melting temperature, as compared with the 

control samples. However, in cooked samples (i.e. CFT process), the results showed no 

significant differences in ice melting peak temperatures between the control samples and 

batter systems with addition of 0.5% CMC. But the results apparently did show effects on 

the melting peak temperature, and it increased with increasing concentration from 1.0 to 

1.5 % CMC in the CFT process. It might be explained that the high concentration of CMC 

more strongly influences the structure of coating fonnation during heating than does a 

lower concentration. 

In comparison with the effects of hydrocolloids in different flour blend 

combination batter systems, the results showed that the effect of CMC or MC was more 

pronounced in rice, corn, and their combination blend batters as compared with wheat 

flour based batter systems. This may be due to water limitations to MC or CMC 

developing their maximum efficiency in batter systems. AIso, wheat gluten may have 

diluted the effect of CMC on wheat flour based batters. However, this special behavior 

did not show-up in batter systems containing xanthan gum. 

4.5 CONCLUSIONS 

This study investigated and monitored the thennal properties of different flour 

combinations in conjunction with different types ofhydrocolloids in batter systems. It was 

found that the thennal properties varied with the different types of flours, their 

83 



combination ratios, and with the different types of hydrocolloids. Two different thermal 

processes for cooking and frozen storage were used to determine the thermal properties of 

batter systems formulated using different flour combinations with the addition of 

hydrocolloids at different levels. Although the different thermal processes did not show 

effects on gelatinization or total enthalpies of gelatinization in all samples, they affected 

the phase transition of batter systems during cooling. Hydrocolloids increased the 

gelatinization temperatures but depressed the glass transition temperatures of the resulting 

batters. MC increased the melting temperature (Tm) for the test batter systems as 

compared with the values for the control system without MC. CMC did not show 

statistically significant effects on the total enthalpies of ice melting for all samples. 

However, MC and CMC showed more pronounced effects on rice, corn, and their 

combined flour based batters than it did on wheat flour based batters. However, this 

characteristic does not show in batter systems containing xanthan gum. 

4.6 IMPLICATIONS FOR BATTER PREFORMANCE 

Hydrocolloids are incorporated into batter systems to improve their performance 

and end product quality. Moreover, interactions between the flours, hydrocolloids, and the 

other ingredients present can change the thermal properties as the food passes through the 

processes. It was observed in this study that hydrocolloids extend the starch gelatinization 

process and require lower temperatures to maintain satisfactory frozen properties. 

Therefore, high temperature and more energy might be require for coating structure 

development, but lower temperatures are required to freeze battered food products. 

Hydrocolloids influence the freeze/thaw stability of batters. The results suggest 

that 0.2% xanthan gum might be more suitable for batters than MC and CMC from the 
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point of view of their resulting glass transition temperatures, when cooked batters are kept 

in frozen storage. However, MC and CMC with 0.5% (higher glass transition 

temperatures) might be more suitable when raw batters are to be kept in frozen storage. 
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CONNECTING TEXT 

The results of the investigation in chapter IV continn the existence of a 

relationship between different types of flours and combination ratios on the thennal 

properties of batter systems. In Chapter V, the effects of different combination flour 

blends at different combination ratios on the flow behavior & viscoelastic properties of 

batter systems were investigated. 
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v. RHEOLOGICAL PROPERTIES OF BATTER SYSTEMS 

FORMULATED USING DIFFERENT FLOUR COMBINATIONS 

5.1 ABSTRACT 

Battered foods are popular due to their crispy texture, more desirable color, and 

flavour. The quality of batter coated products is influenced by the rheological properties 

of the batter materials and by changes in their properties associated with their transition 

from liquid to solid states. The rheological properties of combinations of rice and wheat, 

rice and corn, and wheat and corn flour based batters at different combination ratios were 

studied. The batters were formulated using different flour combinations and 2.5% (w/w) 

salt. The rheological properties varied with different types of flours and their combination 

ratios. The replacement of corn flour greatly altered the viscosity and viscoelastic 

properties of wheat based and rice based batter systems. Salt significantly lowered the 

viscosity and decreased G' max and G"max of batter. Higher temperatures and longer times 

were required to ge1atinize starch at the higher levels of rice flour for each batter system 

flour mix combination. 

Keywords: Batter coating; Fried products; Flour; Rheological properties; 

Viscoelastic properties 

90 



5.2 INTRODUCTION 

Most fried products incorporate coatings that are used to add value to the products 

by improving their texture, flavour, weight, and volume. Coatings can take the form of a 

batter and/or breading and often these coatings are applied in combination to produce a 

desired effect. Food batters are complex systems comprised of water, flour or starch, and 

seasonings into which food products are dipped prior to cooking. No exact recipes exist 

for batter systems. Formulations can be extremely flexible to allow for maximum 

adaptability to the product development process, depending on the food substance and the 

desired coating appearances. 

Wheat flour is the most common flour used in batter systems (Loewe, 1993). 

However, rice, corn, and soy flours have also been used (Robert, 1990). Rice flour is often 

used as a substitute for wheat flour and corn flour for batter system because of its 

perceived healthier properties, and it contains fewer calories. Rice flour reduces oil 

absorption better than wheat flour although it is less effective as a thickening agent (Shih 

and Daigle, 1999; Dogan, Sahin, and Surnnu, 2005). Corn flour is often used to provide 

natural yellow color and to increase crispness in coated fried products because it has 

decreased moisture retention in the coating. It is also often added to control viscosity 

since its higher starch level affects the batter's ability to absorb water (Roger, 1990). 

Traditional batter basically consists of flour, salt. and water, although the proportions of 

the basic ingredients are variable. It would be of interest to know how each of the 

ingredients contributes to the overall characteristics and more importantly to the final 

texture of the med products. Combination of different flours may provide special effects 

on quality of coated products. 
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The viscosity of a batter plays a major role in the quality of the coating. It is also 

one of the most important factors in determining a batter's performance during frying 

(Shih and Daigle, 1999; Dogan et al., 2005). The factors that affect rheological properties 

of batters include composition and proportion of the ingredients, the solid-water 

relationship, and temperature. Other important factors are shear rate and duration, and 

previous thermal and shear histories. A temperature increase resulted in lower consistency 

index values (Ostwald-deWale model) in tempura batter formulations (Baixauli, Sanz, 

Salvador, and Fiszman, 2003). Structural changes that took place during the batter 

cooking process corresponding to the transition from fluid to gelled state could be clearly 

followed by studying their mechanical spectra at three different temperatures (65, 75 and 

85°C). Pasting or gelatinization is another property of flour starch that affects batter 

viscosity during cooking. As heating disrupts the crystalline structure of starch granules, 

they begin to absorb water and swell with a consequent increase in viscosity. The peak 

viscosity of gelatinized starch is reduced by the action of a - amylase, which disrupts the 

starch granules during the frying operation. The swollen starch granules provide a film 

barrier that inhibits oil penetration into the food substrate, and prevents water loss from 

the substrate (Gibney, Butler, and Dwyer, 1999). Gelatinization and the film formed play 

a significant role in providing crispness and texture to the fini shed fried product. 

Therefore, the rheological properties of a batter system directly determine the 

quantity, quality, appearance, texture, and handing properties of the coated product. The 

viscosity of the batter applied to deep fat fried products is a critical coating characteristic, 

which affects the pick up and adhesion of the batter and breading, as well as the quality of 

the final product. Viscosity and rheological data provide information that may be useful 

for many coating applications. 
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Few studies have considered the rheological properties of batters containing 

different combinations ofingredients blended at different ratios (Dogan et al., 2005; Sanz, 

et al., 2005). These studies show that the type of ingredient and their combinations not 

only influence the consistency of the batter mix but it also affects critical quality 

parameters of fried product. Not much work has been reported on wide combination of 

flour blends at different ratios. The purpose of this study is to evaluate the rheological 

properties of batter system formulations using blends of wheat, rice and corn flours and 

also to show how flow behavior and viscoelastic properties change as one type of flour is 

partialIy replaced with either of the other types. This study also investigates the effect of 

salt on the rheological properties of these batter systems. 

5.3 MATERIALS AND METHODS 

5.3.1 Composition and particle size analysis 

Commercial wheat flour (Five Roses AlI Purpose Flour, Les Cuisines Five Roses 

Kitchens, QC, Canada), rice flour (Club Rouse Gluten Free Rice Flour, McCormick 

Canada Inc, ON, Canada), and corn flour (CLIC Import Export Inc., Montreal, Canada) 

were obtained from a local grocery and used in the study. Moisture, crude protein, lipid, 

and ash contents of flours were measured as described in chapter III. 

5.3.2 Batter formulations 

Experimental design was conducts as block experimental design. In the first block 

experiment, flour blends suspense was prepared according the procedure outlined in 

chapter III. 

93 



In the second block of experiments, batters were formulated by adding salt to the 

flour samples. A fixed quantity of 2.5% (by weight) salt was used in aIl cases. To 

formulate batters, the dry ingredients consisting of flour and salt were first mixed 

thoroughly before adding cold distilled water at 8 ± 2 oC. The water temperature was 

chosen since it had been considered necessary to maintain a fairly tight control on the 

cold-water viscosity of the mix. AlI batters were constituted with water to dry-mix in the 

proportion (w/w) of 1.3:1. The moisture content of the batter sample was confirmed to be 

about 55.6% (wet basis) by drying in an oyen set at 105 oc. AlI mixed batter samples 

were allowed to rest for about 15 min at 15 oC before their rheological properties were 

measured. 

5.3.3 Thermo-rheological measurements 

A strainlstress control rheometer (Advanced Rheometer 2000, TA Instruments, 

Delaware, USA) equipped with 4 cm diameter paralIe1 plates was used in the study. The 

gap between the plates was set to 1 mm, which was considered large enough with regard 

to the flour particle size. Rheological characterization was carried out using both 

stationary shear flow and oscillatory tests. The free surface of the sample edges was 

covered with silicone oil and a steel coyer was used to minimize the water loss during the 

measurements. 

5.3.3.1 Flow behavior 

Shear measurements (flour curves) were performed to evaluate the flow behavior 

of the batter systems. Apparent viscosity was measured as a function of shear rate over the 
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range 0.5 to 150 S-1 at 15 oC. Apparent viscosity was reported as the mean of three 

replicates on each sample. 

5.3.3.2 Viscoelastic behaviors 

In order to study the changes due to the effect of cooking temperature on the 

batters, the storage modulus (G') and loss modulus (G") were monitored as functions of 

temperature and were determined using dynamic osciHatory test. 

Preliminary tests were mn in frequency sweep mode by varymg the strain 

amplitude from 0.05 to 100%, which indicated that the selected strain (2.65%) was within 

the linear viscoelastic region. After equilibration at the initial temperature of 15 Oc for 5 

min, the samples were heated continuously at 2.5 oC/min to a final temperature of 100 oC. 

During the heating process, the samples were sheared at a fixed frequency of 1 Hz with 

maximum strain amplitude of 2.65%. The storage modulus (G', a measure of elastic 

response) and the loss modulus (G", a measure of viscous response) were continuously 

monitored during the dynamic rheological testing. 

5.4 STATISTICAL ANALYSIS 

AH batter systems were prepared and tested at least in duplicate in a completely 

randomized design. An analysis of variance (ANOVA) using the General Linear Models 

(GLM) procedure (SAS software) was conducted to study the differences in batter 

formulations using the multiple comparison test, and the significance was determined at 

P<0.05 using the SAS software. 
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5.5 RESULTS AND DISCUSSION 

5.5.1 Chemical composition and particle size of the raw material 

The chemical composition and partic1es size of the flours was reported in chapter 

III, and summarized in Table 3.1. The corn flour also had a higher fat content and the rice 

flour was coarser than the wheat and corn flours. 

5.5.2 Flow behaviors 

Batter viscosity decreased with increasing shear rate, revealing the shear thinning 

characteristics of the batters. The ANOV A results showed significant differences in 

viscosity for all the samples (Table 5.1). Sample viscosities varied from 1.08 to 7.41 Pa.s 

at different shear rates. Batter viscosity is a function of several variables inc1uding 

materials (especially their protein, starch, and pentosan contents), partic1e size, the amount 

of water present (solids concentration), and temperature. Free water might play a critical 

role in the viscosity value because starch granules are not soluble in cold water. 

Generally a higher viscosity is caused by lower water content. 

The batter containing 100% wheat flour showed higher viscosity than the batter 

containing either 100% corn or 100% rice flour. This could be attributed to the ability of 

wheat gluten to absorb water, resulting in decreased free water in the batter system. Corn 

and rice flours tend to feel more "gritty" because their proteins do not absorb water easily 

at lower temperatures. Their partic1es also do not hydrate as fully, do not swell, and do not 

interact with each other as much. Therefore, the viscosities of batter systems containing 

corn and rice flours do not rise as rapidly as systems containing wheat flour. Rice flour 

batters had higher viscosities (4.46 Pa. s) as compared to corn flour (1.08 Pa. s) systems. 

This may be attributed to differences in their partic1e diameters and size distributions. 
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Generally, viscosity has been reported to increase with increased partic1e size (Muk:prasirt, 

Herald, & Flores, 2000). The value of apparent viscosity obtained in this study is higher 

than the value of 3.52 Pa.s reported by Dogan et al. (2005) for a 100% rice flour based 

batter. An average rice flour partic1e size of 38 Jlm was used in the work by the authors 

whereas in this study, the average partic1e size was measured as 25.7 Jlm. The difference 

in apparent viscosity values reported in the two studies may be attributed to the partic1e 

sizes of the rice flour samples used in the different studies. In addition, the discrepancy 

could also be explained by noting that apparent viscosity was measured in this study at a 

lower temperature of 15 oc. 

Flow curves of the different batter formulations using wheat and corn (WC) flour, 

wheat and rice (WR) flour, and corn and rice (CR) flour at a temperature of 15 oC are 

presented in Figures 5.1, 5.2, and 5.3, respectively. For the wheat and corn flour blends, 

batter viscosity decreased with an increasing proportion of corn flour in the batter. Corn 

flour apparently dilutes the strengthening influence of wheat flour gluten (Navickis, 

1987). Rice flour also exerted a diluting effect on wheat flour gluten, increasing the 

available free water in the batter system. This free water could lubricate partic1es, enhance 

flow, and result in a lower viscosity value (Mukprasirt et al., 2000). However, the effect 

ofincreasing the proportion ofrice flour from 30 to 70% was not significant (Table 5.1). 
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Table 5.1. Average viscosities of batter systems formulated using different combinations 

of flour and salt 

Viseosity (Pa.s) 
Batler system 

Without salt With 2.5% (w/w) salt 

Wheat 7.41 ± 0.5 a 5.14 ± 0.4 b 

Riee 4.46 ± 0.5 b 3.10 ± 0.3 cd 

Corn 1.08 ± 0.5 d 0.68 ± 0.3 tg 

W3C7 1.87 ± 0.4 d 1.34 ± 0.3 tg 

W5C5 2.71 ± 0.4 cd 2.45 ± 0.3 de 

W7C3 4.26 ± 0.4 bc 3.29 ± 0.3 cd 

W3R7 4.01 ± 0.4 bc 2.98 ± 0.3 cd 

W5R5 3.90 ± 0.5 bc 2.63 ± 0.4 cd 

W7R3 4.36 ± 0.4 bc 3.99 ± 0.3 a 

C3R7 2.24 ± 0.4 b 1.59 ± 0.3 et 

C5R5 1.75 ± 0.5 d 0.87 ± 0.3 tg 

C7R3 1.85 ± 0.5 d 0.32 ± 0.3 g 

C7R3 = 70% corn and 30% rice flour, C5R5 = 50% corn and 50% rice flour, C3R 7 = 30% corn 

and 70% rice flour, W7C3= 70% wheat and 30% corn flour, W5C5 = 50% wheat and 50% rice 

flour, W3C7 = 30% wheat and 70% corn flour, W7R3 = 70% wheat and 30% rice flour, W5R5 = 

50% wheat and 50% rice flour, W3R7= 30% wheat and 70% rice flouf. Means with the same 

letter are not significantly different. 
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The viscosities of batters with 100% corn flour was not significantly different 

from those for batters fonnulated either with 70% corn flour and 30% rice flour (C7R3) or 

with 50% corn flour and 50% rice flour (C5R5). However, further increases in the 

proportion of rice flour in the corn and rice flour mixtures resulted in significant increases 

in batter viscosity (Table 5.2). In the C7R3 batter, corn flour was the major flour base and 

the viscosity behavior of the batter system tended towards corn flour, which had the 

lowest viscosity (1.08 Pa.s), whereas in C3R7 batter the behavior tended to rise to a 

higher viscosity. The results indicate that replacement of corn flour by up to 50% rice 

flour did not influence the viscosity of corn flour based batters. On the other hand, 

replacement of rice flour by 30% corn flour in a rice-based batter significantly lowered 

the viscosity of the system. Therefore, corn flour showed a stronger influence on viscosity 
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of corn - rice batter than did rice flour. Both corn and rice flours significantly reduced the 

viscosity ofwheat based batter systems. 

Adding salt to the batter formulations slightly lowered their viscosities (Table 5.2). 

Salt binds water tightly and increases the water-holding capacity of batter systems. 

Changala, Susheelamma, and Tharanathan (1989), also reported similar results as salt 

caused a decrease in the consistency index and an increase in the flow behavior index for 

both native and fermented black gram flour dispersions. 

5.5.3 Thermo-rheological properties 

Onset temperature of structure development (Tonset), G' max (measured at peak) and 

G"max were used to monitor changes in the batter systems rheological properties as 

functions of temperature for different flour combinations and proportions. These values 

are shown in Table 5.2. 

The storage and loss moduli for different batter systems exhibited similar trends 

for aH samples. None ofthe samples showed a significant elastic response (G') during the 

dynamic shearing test at temperatures below 50 Oc (Figure 5.4). However, a rapid 

increase in G' was observed for aH batters between from 58 to 68 oC, after which G' 

increased rapidly, indicating an increase in elastic properties. This increase was attributed 

to starch gelatinization resulting in the onset of structure formation during which the fluid­

like batter transforms into a solid-like coating. The storage modulus of samples reached 

maximum values (G' max) but subsequently decreased steadily with further heating at 

higher temperatures due to molecules of soluble starch orienting themselves in the 

direction that the system is being sheared, causing a decrease in the viscosity (Hoseney, 
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1994b). Changes in the loss modulus (G") of the different batter systems generally 

followed patterns similar to those observed for G' (Figure.5.4). 

Table 5.2. Dynamic rheological characteristics ofbatter systems at different formulations 

Batter Tonset eC) G' (Kpa) TG'maxtC) G" (kpa) 
Wheat 58.7a 30.53± 0.94 cd 69.5 7.24± 2.1 g 

Riee 68.0be 25.65± 0.98 d 78.6 3.57± 2.2 h 

Corn 67.6be 44.59± 1.01 ab 71.8 10.40± 2.3 ef 

W3C7 67.1 be 51.18± 1.03 a 73.6 24.01± 2.3 a 

W5C5 63.4ab 43.83± 1.04 ab 73.9 18.85± 2.4 e 

W7C3 62.3ab 38.21± 1.05 be 73.3 13.16± 2.4 d 

W3R7 67.4be 46.34± 1.05 ab 80.9 21.23± 2.4 b 

W5R5 63.7ab 37.33± 1.06 be 81.4 14.88± 2.4 d 

W7R3 62.4ab 30.08± 1.06 cd 70.9 10.76± 2.4 ef 

C3R7 66.6be 39.83± 1.06 ab 76.7 6.56± 2.4 g 

C5R5 68.2be 36.02± 1.06 be 74.1 6.17± 2.4 g 

C7R3 64.8ab 43.50± 0.9 be 72.3 8.38± 2.1 fg 

C7R3 = 70% corn and 30% rice flour, C5R5 = 50% corn and 50% rice flour, C3R 7 = 30% corn 

and 70% rice flour, W7C3= 70% wheat and 30% corn flour, W5C5 = 50% wheat and 50% rice 

flour, W3C7 = 30% wheat and 70% corn flour, W7R3 = 70% wheat and 30% rice flour, W5R5 = 

50% wheat and 50% rice flour, W3R7= 30% wheat and 70% rice flour. The mean with the same 

letter are not significant different. 

ANOV A results showed significant differences between onset temperatures (T onset) 

for 100% wheat flour batter and other batter samples used in the study. The onset 

temperatures for batters containing rice and corn flours were not significantly different. 

Onset temperature indicates the onset of structure development related to initialization of 

starch gelatinization or other structure related processes during heating. The different 

result obtained with wheat flour is attributed to gluten gelation which occurred at a lower 
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temperature than starch (Olewink and Kulp, 1993). There was a significant difference 

between G' max for corn and rice, and corn and wheat flour based batters. The corn based 

batter showed higher G' max, whereas rice flour showed lower G' max. Corn flour has higher 

fat and starch contents compared to the other flours. This may have been an explanation 

for the increased elastic characteristics. Rice flour has more free water than wheat flour 

resulting in lower elastic behaviour, and only reached the G' max at a higher temperature 

(78.6 OC). This implied that rice based batters require more time for complete 

gelatinization than corn and wheat based ones do. Corn based batters showed higher G" 

than rice and wheat based since corn flour has a higher flow characteristic than rice and 

wheat based. Wheat flour greatly influence G' and G" of either corn or rice based batters. 

G' and G" were reduced with increasing wheat flour proportion in batter systems. Similar 

results were reported by Sanz et al. (2005) who showed that both storage and loss moduli 

were higher in batters where wheat flour was partiaIly replaced by corn starch. 

Corn flour with higher G' and G" values dominated the viscoelastic behavior in 

combined flour systems. There were also synergistic effects of combined flours on 

properties ofbatter systems. 

Figures 5.5 and 5.6 show the effect of salt on storage and loss modules of the 

batter systems, respectively. Salt lowered the storage moduli G and the loss moduli G" in 

aIl samples. This is due to the influence of salt on the dynamic properties, which 

apparently resulted in a distinctly more viscous behavior. Llorca et al. (2001) explained 

that salt affected the solubilization of gluten proteins in wheat flour resulting in decreasing 

consistency coefficients. Similar results were also described by Salvador, Sanz, and 

Fiszman, (2003). The results indicate that salt containing products would be less elastic 

than those samples that do not contain salt. 
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5.6 CONCLUSIONS 

This study investigated and monitored the rheological properties of different flour 

combinations, with and without salt in batter systems. It was found that the rheological 

properties varied with the different types of flours and their combination ratios. The 

addition of corn flour greatly influenced viscosity and viscoelastic properties of wheat 

based and rice based batter systems as viscosity decreased with an increase of the corn 

flour proportion in the batter system. Both corn and rice reduced the viscosity and 

increased the onset temperature (Tonset), storage module (G' max Peak value) and loss 

module (G"max peak value) of wheat flour based batter systems. Salt significantly 

influenced the flow properties of batter systems by lowering the viscosity and decreasing 

G' max and G" max as well as increasing the onset temperature. A higher temperature and 
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longer time was required to gelatinize starch at higher proportions of rice flour (70%) for 

each flour mix combination in the batter systems tested in this study. 

5.7 IMPLICATIONS FOR BATTER PREFORMANCE 

A thin, low viscosity batter capable of releasing a large quantity of water produces 

a porous coating that absorbs a lot of oil. There is a strong positive relationship between 

oil uptake and water removal. Moreover, a coating layer that is too thin (eg. a 100% rice 

flour based batter) is difficult to handle during processing, and the coating (batter) maybe 

easily blown off from the food substrate during the frying. That directly affects the 

product's yield and quality, as weIl as providing a poor fat barrier effect during frying. 

Rice and corn flour batters have very low viscosities, and partial replacement with wheat 

flour could adjust the viscosity of these batters to an appropriate requirement for batter 

handling or coating processing. A layer that is too thick (eg. a 100% wheat flour based 

batter) can lead to an incompletely cooked final product, lack of crispness, high fat 

content, and a generally hard, lump y, unattractive appearance. This may be in part 

attributed to the high viscosity ofbatters that reduced the heat transfer rate during thermal 

processing. On the other hand, the reduced viscosity occurring when rice or corn is used 

to replace wheat flours can also have sorne advantages. 

A batter with a high yield stress value (eg. a 100% corn flour based batter) 

requires continuous mixing to maintain the solids in suspension during processing due to 

the tendency for the batter solids to settle out, and sediment in the bottom of the tank. This 

requires additional equipment (blender) and energy to operate in order to maintain a 

uniform batter. Also, the viscosity of the batter tends to change throughout the production 
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period, agam resulting in irregular batter pickup and inferior end product quality. 

Therefore, sorne replacement with wheat flour can be used for stabilizing corn flour solids 

in suspension, due at least in part to the wheat gluten effects. Rice flour does not have the 

ability to stabilize solids in suspension because it lacks wheat-type gluten and adhesion 

properties. Therefore, the adjustment of the amount of flour replacement in batter system 

is very important to maintain optimum batter functionality and performance. 
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CONNECTING TEXT 

The changes in the rheological properties of batter systems that depended on the 

different types of flour and combination ratios were observed in chapter V. Chapter VI 

describes how xanthan gum (XG) and methylcellulose influence the flow behavior and 

viscoelastic properties ofvarious batter systems. The Herschel-Bulkley model was used to 

describe the flow characteristics of batter systems. The linear viscoelastic properties were 

monitored during heat processing. 
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VI. RHEOLOGICAL PROPERTIES OF BATTER SYSTEMS 

CONTAINING DIFFERENT COMBINATIONS OF FLOURS AND 

HYDROCOLLOIDS 

6.1 ABSTRACT: 

The rheological properties of batters formulated using different combinations of 

wheat, corn, and rice flours with two types ofhydrocolloids, namely methy1cellulose (0.5, 

1 and 1.5%) or xanthan gum (0.2%), were studied. Control samples were formulated with 

combinations of flours without the added hydrocolloids. The effects of hydrocolloids on 

the rheological flow characteristics of the batter systems were measured using a controlled 

stress rheometer at a temperature of 15°C. The effects of hydrocolloids on dynamic 

viscoelastic parameters as functions of temperatures were evaluated. AlI the batters 

showed shear thinning behavior with flow behavior indices in the range from 0.34 to 0.67. 

Addition of xanthan gum lowered the flow index values, imparting a higher degree of 

pseudoplasticity to the batter samples compared to methy1cellulose. The consistency index 

of the control batter samples varied from 0.46 to 69.2 Pa.sn
. Addition of xanthan gum or 

MC significantly increased the batter consistency index value. The gums changed the 

onset temperature of structure development, and the storage (G' max) and loss moduli 

(G" max) of the batter systems. However, no statistically significant effects were observed 

on the peak: temperature of batter systems in which the G' reached maximum value. 

Xanthan gum increased both G' max and G" max, whereas at higher concentrations, 

methy1cellulose increased G' max but lowered G" max. 
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6.2 INTRODUCTION 

Batters are among the common and vital components of most successful food 

coating systems. Batters link the fundamentals of food science with the product needs. 

The proper selection and application of batters influences the flavour, appearance, eating 

characteristics, performance, and cost effectiveness of final coated product. In addition to 

the obvious benefits of taste, colour and texture, batter systems also improve the yield and 

keeping qualities and withstand the demands of processing, distribution, and final 

preparation for the table. 

Tempura type batters are chemically leavened, and they normally form a crispy, 

light, and puffy texture on seafoods and vegetables. The most common flour used in batter 

system is wheat flour. However, wheat flour absorbs more oil during deep-fat frying 

compared with rice flour (Shih and Daigle, 1999; Mukprashirt et al., 2000). Mukprasirt et 

al. (2000) reported that batters formulated with rice flour alone wou Id produce an inferior 

product due to the absence of gluten that contributes to viscoelasticity. Thus, rice flour 

batters do not develop high viscosity like batters made with wheat flour. Studies have 

shown that apparent viscosity was highly correlated with batter adhesion (Cunnigham and 

Tiede, 1981; Lane et al., 1986). Corn flour is cheap, and could provide a natural golden 

color and increase crispness (Burge, 1996; Fiszman and Salvador, 2003) but it has a high 

crude fat content and it is difficult to maintain solids in suspension during processing 

(Fiszman and Salvador, 2003). Therefore, combining different types of flours may 

provide special effects. Aiso sorne functional ingredients can be used to enhance these 

effects to produce more appealing and healthy food products. However, the behaviors of 
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these combination flours with the addition of functional ingredients in batter systems 

during processing have not been studied at a superstructure level. 

Hydrocolloids are water-soluble, high molecule weight polymers with the ability 

to thicken or gel in aqueous solutions. Hydrocolloids are used in batter systems as 

functional ingredients in order to improve batter performance by controlling viscosity and 

increasing adhesive strength, stabilizing solids suspension, and increasing the water 

holding capacity to obtain specific texturaI characteristics (Ferrero and Zaritzky, 2000; 

Kruger et al., 2003). They are also used as a barrier to prevent water loss and oil uptake 

during frying because sorne gums can create gel films during heating (Meyers, 1997; Hsia 

et al., 1992; Balasubramaniam et al., 1997; Annapure et al., 1999; Holownia et al., 2000; 

Albert and Mittal, 2002; Mellema, 2003 and Sanz et al., 2004). Methylcellulose (MC) has 

unique thermal gelation abilities and it is mostly used in the batter industry for reducing 

oil uptake (Meyers and Conklin, 1990; Sanz et al., 2005). Xanthan gum (XG) is widely 

used in the food industry. Its popularity could be attributed to its unique properties such as 

uniform viscosity over a wide temperature range (0-100 OC), and its compatibility and 

stability in salt solutions (Peettitt, 1982, Urlacher, 1997). However, xanthan gum has 

been reported to impart an adverse effect on product quality such as a chewy texture when 

it is used at more than 0.2% (Kuntz, 1995). 

Rheological properties are among the most important physical properties that 

define batter behaviour. It is also important to determine how the batter system behaves as 

it moves from a static to a dynamic environment. Changes in the rheological properties of 

a material reveal changes in its molecular structure. Consequently, the rheological 

properties of a material influence its flow process and are themselves influenced by the 

113 



structural changes generated during the process. These structure changes could directly 

affect the appearance and final texture of the fini shed products. Ferrero and Zaritzky 

(2000) reported the effects of certain hydrocolloids in retarding or inhibiting starch 

retrogradation. The highly hydrophilic characteristics of these gums may decrease water 

availability causing decreased starch dispersion and gelatinization. Sanz et al. (2005) 

observed that methylcellulose influenced the rheological behaviors of wheat starch and 

modified corn starch. Kim and Y 00 (2005) showed that the results of the increase in rate 

constant (k) in the gelation of rice starch-xanthan gum mixtures were a function of 

xanthan gum concentration. Therefore, as a consequence, addition of hydrocolloids 

should modify the rheological properties ofbatter systems. 

However, there have been only a limited number of studies on fundamental 

rheological properties of batters formulated by using different combination flour blends 

containing hydrocolloids designed for food coatings. This is an important area due to its 

obvious applications in the food product formulations. In order to achieve a better 

understanding of the hydrocolloid-flour interactions, the main objectives of this study 

were to investigate the effects of methylcellulose and xanthan gum on the flow behaviour 

ofbatter system composed of different combinations ofwheat, rice, and corn flours during 

a steady shear process, and to determine the changes in their viscoelastic properties during 

the heating process. This knowledge could be helpful in the development of new batter 

formulations. 
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6.3 MATERIALS AND METHODS 

6.3.1 Batter ingredients and formulations 

Wheat flour (Five Roses AlI Purpose Flour, Les Cuisines Five Roses Kitchens, 

QC, Canada), rice flour RL-I00 (Riviana Foods Inc., Houston, Tex., USA), yelIow corn 

flour (ADM Milling Co., Lincoln, Nebr., USA), leavening agent (Sodium bicarbonate, H. 

Cantin Ltd, Quebec, Canada), MethylcelIulose (MC, AI5C, Dow Chemical Company, 

MI, USA), and xanthan gum (TIC Gums Inc, Maryland, USA) were used in the study. 

The characteristics of the flour samples, according to the flour's manufacturers, are 

presented in Table 4.1. 

The flour blends were prepared in this study as described in an earlier study (Xue 

and Ngadi, 2006). The batter systems were formulated with different combinations of 

flour, methylcelIulose (0, 0.5, 1.0, or 1.5%) or xanthan gum (0 or 0.2%) on a flour dry 

weight basis Other ingredients inc1uded 2.5% salt, 3.1% leavening agent (NaHC03, 

Sodium bicarbonate). AlI ingredients were added on a flour dry weight basis (expressed as 

a percentage of g ingredients kg-1 dry flour). To formulate batters, the MC or xanthan 

gum powder was tirst dispersed in the total amount of cold distilIed water (8 ± 2 OC) 

required for the batter, and mixed. This water temperature was chosen because it has been 

reported to enhance the gelling ability of MC (Sanz et al., 2004). After the hydrocolIoid 

was totally dissolved, the dry ingredients (flour, salt, and leavening) were added to the 

hydrocolloid solution and mixed thoroughly until the batter was uniform and free of 

lumps. AlI the samples were prepared with the same water-to-solids ratio. Therefore, their 

apparent rheological property values would indicate the functional contribution of the 

ingredient to the mixture. AlI batters were prepared with water to dry-mix in the 
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proportion (w/w) of 1.3:1. The moi sture content of the batter sample was confirmed to be 

about 55.6% (wet basis) by drying the samples in an oyen set at 105 oc. Batter samples 

were kept for at least 45 min. at 10 ± 2 oC to allow the hydrocolloids to completely 

hydrate and to develop a gel before measuring the rheological properties. 

6.3.2 Rheological measurement 

Measurements of the rheological properties of batters were performed using a 

strainlstress control rheometer (Advanced Rheometer 2000, TA Instruments, Delaware, 

USA). The 4 cm diameter parallel plate was used in the study because parallel plate 

geometry allowed gap flexibility. The gap between the plates was set to 1 mm, which was 

considered large enough with regards to the flour particle size. Rheological 

characterization was carried out using both stationary shear flow and oscillatory tests. The 

free surface of the sample edges was covered with silicone oil and a steel coyer to 

minimize dehydration of the samples during the measurements. Before conducting any 

rheological measurements, the samples were allowed to rest in the measurement position 

for 5 min equilibration time to allow the stresses induced during sample loading to relax. 

6.3.2.1 Flow behavior 

To determine the flow behavior of the batters, apparent viscosity was measured as 

a function of shear rate over the range 0 to 150 S-1 at temperature of 15°C. The 

temperature was chosen since it had been considered necessary to maintain a fairly tight 

control on the cold-water viscosity of batter out of the mixer and onto the batter 

applicator. Normally, pseudoplastic behavior describes many fluids and is characterized 

using the general power law model. The power law model with the yield stress is called 
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Herschel-Bulkley (Mukprashirt, 2000). Therefore, in order to describe the variation in 

rheological properties of samples under steady shear, the data was fitted to the Herschel­

Bulkley. 

6.3.2.2 Viscoelastic properties 

The linear viscoelastic properties were monitored as a function of temperature and 

were determined using a dynamic oscillatory test. After equilibration at the initial 

temperature of 15°C for 5 min, the samples were continuously heated to 100 oC at 

4°C/min. During the heating process, the samples were sheared at a fixed frequency of 1 

Hz with maximum strain amplitude of 1.074% which was selected from preliminary test 

to guarantee the existence of a linear viscoelastic response. The preliminary test 

performed in strain sweep mode, and the tests were made by varying the strain amplitude 

from 0 to 100%. At least two replications of each oscillatory shear test were conducted 

TA rheometer Data Analysis Software (Version VI. 2.5) was used to obtain the 

experimental data and to calculate the storage modulus (G') and the loss modulus (G") 

that are used to describe the batter viscoelastic behaviors. Also, the onset temperature 

(T onset) that indicates when the structure of the batter system starts to change by G' or G" 

increased dramatically, and the peak temperature (TG') was measured at the point that the 

storage modulus reached its maximum value. 

6.4 STATISTICAL DESIGN AND ANALYSIS 

An experiments were conducted using factorial experimental designs and 

analyses. The batter systems were prepared and tested in triplicate in a completely 

randomized design. An analysis of variance (ANDV A) using the General Linear Model 
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(GLM) was used to study the differences in batter fonnulations, such as the main factors 

and their combined effects including: ratio and type of combined flours, and the levels of 

methy1celIulose and xanthan gum. The significance ofmean comparisons by the Scheffe's 

least significant difference (LSD) were detennined at P<0.05 using the SAS software 

(SAS Institute Inc., Cary, NC, USA). 

6.5 RESULTS AND DISCUSSION 

6.5.1 Effect of hydrocolloids on flow behavior properties of batter systems 

Flow behavior of the batters was detennined by changing shear rate from 0 to 150 

S-I. The Herschel-Bulkley Model (Equation 1) adequately described the experimental data 

for the flow curves of aIl samples (R2 varied from 0.87 to 0.98). 

cr =aO+K yn (1) 

Where cr is shear stress (Pa); cro is yield stress (Pa); K is the consistency 

coefficient (Pa sn ); y lS shear rate (lis), and n is the flow behavior index 

(dimensionless). Three replications of each flow curve gave good reproducibility since the 

difference between duplicates was less than 5%. AlI batters showed shear thinning 

behavior with the flow behavior index less than one as shown in Table 6.1. Analysis of 

variance (ANOV A) showed that the types of flour and hydrocolIoids used in fonnulating 

a batter significantly influenced variations in the flow behavior index (n) of the batter 

system. Addition of xanthan gum consistently lowered the flow behavior index of batter. 

Thus, xanthan gum induced increased shear-thinning characteristics to the batter. This 

may be attributed to xanthan gum's unique rigid, rod-like confonnation that is more 

responsive to shear and the required progressive alignment of the rigid molecules during 
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shearing (Peettitt, 1982; Urlacher and Noble, 1997). Kim and Yoo (2005) reported 

increasing shear-thinning behavior with increasing xanthan gum concentration in rice 

starch-xanthan gum mixtures. These results are also consistent with observations in other 

systems, namely wheat starch-xanthan gum mixtures (Sajjan and Rao, 1987) and corn 

starch-xanthan gum mixtures (Sudhakar et al., 1996). A lower concentration of xanthan 

gum, compared to methylcellulose (MC), was required to lower n values, indicating its 

higher degree of pseudoplasticity. 

Comparison of means indicated that there was no significant difference between 

the n values for control samples and 0.5% MC batters samples. However, increasing MC 

concentrations from 0.5 to 1.5% significantly lowered n values and increased shear­

thinning behavior of batter. The degree of shear thinning pseudoplasticity typically 

increases with increasing MC concentration in a solution (Grover, 1982). Similar results 

have been reported by Sanz et al. (2004) and Mukprashirt et al. (2000) in their wheat flour 

batters and rice flour batters, respectively. The influence of MC was more pronounced in 

batters formulated with various combinations of rice and corn flours. There was no 

significant difference between n values obtained for control batter samples (100% wheat 

flour), W7C3 (combination of 70% wheat and 30% corn flour) and W7R3 (combination 

of 70% wheat and 30% rice flour). It is known that rice flour absorbs less water (thus it 

leaves more available water) than corn flour with the same solid content (Hoseney, 1994). 

Wheat flour absorbs more water (therefore leaving less available water) than the other 

flours due to its higher gluten content. There is apparently more free water available for 

MC hydration in rice based batters. The influence of MC in batter is attributed to its 
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intrinsic gelation properties. It may also be related to the availability of free water in the 

batter necessary for the gum to hydrate adequately (Hoseney, 1994; Ribotta et al., 2005). 

Table 6.1. Effect of xanthan gum (XG) and methylcellulose (MC) on flow behavior index 

(n) of the batter systems 

Batters Control 0.2% Xanthan 0.5%MC 1.0%MC 1.5%MC 

Wheat 
0.46 ± 0.02 0.35 ± 0.01 0.47 ± 0.01 0.45 ± 0.01 0.45 ± 0.02 

Corn 
0.58 ± 0.01 0.48 ± 0.02 0.68 ± 0.02 0.56 ± 0.02 0.51 ± 0.01 

Rice 
0.71 ± 0.03 0.51 ± 0.01 0.65 ± 0.01 0.53 ± 0.01 0.49 ± 0.01 

W3C7 
0.60 ± 0.03 0.36 ± 0.01 0.51 ± 0.02 0.53 ± 0.02 0.53 ± 0.01 

W5C5 
0.48 ± 0.01 0.35 ± 0.02 0.50 ± 0.02 0.53 ± 0.01 0.53 ± 0.01 

W7C3 
0.48 ± 0.02 0.37 ± 0.01 0.48 ± 0.01 0.51 ± 0.01 0.49 ± 0.01 

W3R7 
0.52 ± 0.02 0.38 ± 0.01 0.49 ± 0.01 0.49 ± 0.01 0.55 ± 0.01 

W5R5 
0.50 ± 0.02 0.33 ± 0.01 0.45 ± 0.01 0.47 ± 0.01 0.48 ± 0.02 

W7R3 
0.49 ± 0.01 0.35 ± 0.01 0.45 ± 0.01 0.46 ± 0.01 0.50 ± 0.01 

C3R7 
0.57 ± 0.02 0.53 ± 0.02 0.57 ± 0.02 0.56 ± 0.02 0.52 ± 0.01 

C5R5 
0.65 ± 0.03 0.48 ± 0.01 0.61 ± 0.01 0.55 ± 0.01 0.51 ± 0.01 

C7R3 
0.66 ± 0.01 0.55 ± 0.02 0.64 ± 0.01 0.60 ± 0.01 0.47 ± 0.02 

Wheat = 100% wheat flour, Corn = 100% corn flour, Rice = 100% rice flour, W3C7 = 30% wheat 

and 70% corn flour, W5C5 = 50% wheat and 50% corn flour, W7C3= 70% wheat and 30% corn 

flour, W3R7= 30% wheat and 70% rice flour, W5R5 = 50% wheat and 50% rice flour, W7R3 = 

70% wheat and 30% rice flour, C3R7 = 30% corn and 70% rice flour, C5R5 = 50% corn and 50% 

rice flour, C7R3 = 70% corn and 30% rice flour. 

Consistency index (k) of the control batter samples varied from 0.46 to 69.2 Pa.sn
• 

These values are in the range (4.35 to 22.66 Pa.sn
) reported by Mukprasirt et al. (2000) for 

rice flour based batters containing methylcellulose. The values varied according to flour 

type and their combinations as was also reported by Xue and Ngadi (2006). Addition of 

hydrocolloids significantly increased the consistency index of all batter systems. 
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The effect of xanthan gum on batter consistency index (k) for different batter 

system formulations at 15 Oc is shown in Figure 6.1. Addition of xanthan gum increased 

the consistency index value in the rice flour based batters much more than in the wheat or 

corn flour based batters. There was also a pronounced effect of xanthan gum on batters 

formulated with combined corn and rice flour batters. This could again be attributed to 

availability of more free water in the rice and corn based batters, allowing the gum to 

develop its viscosity in the batter systems. It is responsible for the effectiveness of 

xanthan gum in stabilizing suspensions against separation as rice and corn flours easily 

sediment in flour suspensions (Fiszman and Salvador, 2003; Peettitt, 1982). Similar 

results were obtained when MC was added in the batter as shown in Figure 6.2. Increasing 

the concentration of MC from 0.5 to 1.5% increased the value of consistency index. These 

results are in agreement with the work of Mukprasirt et al. (2000), Sanz et al. (2004), 

Wang et al. (2001), Kim and Y 00 (2005) in different systems. 
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Figure 6.l . Effect of 0.2 % xanthan gum (XG) on the consistency index ofbatter systems 

with (a) wheat to corn flour, (b) corn to rice flour, (c) wheat to rice flour (wheat to corn 

flour means that from left to right, the proportion of wheat flour decrease from 100% to 

0% which is 100% corn flour. The meaning ofwheat to rice flour and corn to rice flour is 

same as wheat to corn flour). 

122 



70 

.:; 60 
ni 
Il. 
-; 50 
Il) 

• Control -. - O.5%MC 

-. -1.0%MC -. - 1.5%MC 

~ 40 
>- ........ ..... 
u 30 .......... .. .. - .... 
s::::: ~ ... ........ -e - ... _ _ _ - _ - e -' - .. 
.! 20 ... - - .. --- ~ .S!! ... - ......... - ... ~ - - - - .. ----- - - -
fi) -- ... ----. ---~ 

O
c

o 1°1======:=====~======:=-="==~~:-:·~::;"~-~:--::~·~"~~~~~ - ..... -...., 

o 
- - -

Wheat W7C3 W5C5 W3C7 Corn 

Batters of combined wheat & corn f10ur 

70 
~ , c: 

60 III 
ni .. 

!!:.. 50 
, 

>< 
CIl 

40 ....... 'C .. 
. !: ...... . 
>. .. ~._-_ .. --- ..... 
(J 30 .. - - - .. --'----- .. .. .. .. • 
c --.-- __ • -. ---= ... --
G,) _ ... _ -- .- _ : - -
~ 20 ~ ~ ____ .. _ _ _ _ - - __ ... 

8 1:J:============~=====:====::--~=-::-~:;"~-~----~--~~"~-~~~-~~::1 

70 

r=- 60 
III 
ni 

e:.. 50 
S 
'C 40 
. !: 
~ 3D 
s:: 
CIl 
ûi 20 
"iii 
s:: 
o 10 o 

Wheat W7R3 W5R5 W3R7 Rice 

Batters of combined wheat & rice f10ur 

---e ... -· ... ........ "---e- ... 
.... . ... · ... e--- .... ---

-----~.----~---- .. ~---_ .. ~ 
o~~~~--~-~-~~~~-~~-~-~--~~~-~-~~ .. ~--=~~~-~~-~-~~ 

Corn C7R3 C5R5 C3R7 Rice 

Batters of combined wheat & ri ce flour 

Figure 6.2 Effect of methylcellulose (MC) on the consistency index ofbatter systems with 

(a) wheat to corn flour, (b) corn to rice flour, (c) wheat to rice flour (wheat to corn flOUf 

me ans that from left to right, the proportion of wheat flour decrease from 100% to 0% 

which is 100% corn flOUf. The meaning of wheat to rice flour and corn to rice flour is 

same as wheat to corn flour). 

123 



In the case of the control batters that did not contain hydrocolloids, the yield stress 

values varied from 0 to 2.58 Pa. The 100% corn flour based batter showed the highest 

yield stress, whereas the 100% rice flour batter did not show a yield stress. AIso, its flow 

behavior parameters fit the power law model very weIl, with R2 = 0.93, as compared with 

the Herschel-Bulkley model fit (R2 = 0.87). This might be attributed to there being more 

free-water in rice flour based batter systems, and the free water could lubricate the 

partic1es, enhancing their flow, resulting in a lower yield stress. It is also known that rice 

starch granules are small and have different surface characteristics, which may affect their 

interaction with each other and the sUITounding water. Suderman (1993) reported that 

corn-starch solids have a tendency to settle out easily, which changes the viscosity of the 

batter throughout the production period. This observation could be used to support the 

suggestion that corn starch solid sediments require more force to initiate the desired flow 

rate of batters during processing, resulting in a higher yield stress, even though there may 

be more free water in the 100% corn flour based batters as compared with wheat flour 

based batters. 

The ANDV A results (Table 6. 2) showed that the addition of xanthan gum or MC 

resulted in significantly higher yield stress values as compared with the control samples. 

However, no statistically significant differences were observed in the yield stress between 

batters containing high levels of corn flour (50 to 100%) with or without the addition of 

0.5% MC. Xanthan gum or methylcellulose developed viscosity in batter systems and 

reduced the amount of available free water, subsequently increasing the yield stress 

required to initiate flow in the batter systems. 

124 



Table 6.2. Effect ofxanthan gum (XG) and methylcellulose (MC) on yield stress ofbatter 

systems 

System Control 0.2% Xanthan 0.5%MC 1.0%MC 1.5%MC 

Wheat 
1.47 ± 0.18 5.56 ± 0.46 1.58 ± 0.07 1.94 ± 0.09 2.41 ± 0.12 

Corn 
2.58 ± 0.48 2.68 ± 0.32 2.29 ± 0.77 2.71 ± 0.14 3.38 ± 0.31 

Rice 
0.00 ± 0.02 0.60 ± 0.07 0.07 ± 0.01 0.88 ± 0.03 0.64 ± 0.09 

W3C7 
0.68 ± 0.01 2.94 ± 0.13 0.75 ± 0.12 0.82 ± 0.04 1.15 ± 0.12 

W5C5 
0.89 ± 0.03 3.42 ± 0.24 0.83 ± 0.32 0.91 ± 0.12 1.06 ± 0.08 

W7C3 
0.70 ± 0.04 2.85 ± 0.32 1.59 ± 0.41 1.49 ± 0.23 2.32 ± 0.11 

W3R7 
0.04 ± 0.01 2.58 ± 0.09 0.42 ± 0.06 0.55 ± 0.06 0.76 ± 0.09 

W5R5 
0.34 ± 0.06 4.50 ± 0.42 0.59 ± 0.08 1.31 ± 0.51 1.39 ± 0.14 

0.47 ± 0.07 4.65 ± 0.34 1.41 ± 0.13 1.43 ± 0.31 1.61 ± 0.11 
W7R3 

C3R7 
0.01 ± 0.01 1.13 ± 0.18 0.07 ± 0.01 0.54 ± 0.02 0.62 ± 0.06 

C5R5 
0.05 ± 0.01 1.25 ± 0.09 0.20 ± 0.03 0.50 ± 0.01 0.61 ± 0.04 

1.50 ± 0.21 4.60 ± 0.53 1.53 ± 0.09 3.33 ± 0.34 3.94 ± 0.62 
C7R3 

Wheat = 100% wheat flour, Corn = 100% corn flour, Rice = 100% rice flour, W3C7 = 30% wheat 

and 70% corn flour, W5C5 = 50% wheat and 50% corn flour, W7C3= 70% wheat and 30% corn 

flour, W3R7= 30% wheat and 70% rice flour, W5R5 = 50% wheat and 50% rice flour, W7R3 = 

70% wheat and 30% rice flour, C3R7 = 30% corn and 70% rice flour, C5R5 = 50% corn and 50% 

rice flour, C7R3 = 70% corn and 30% rice flour 

ANVOA results showed that MC greatly increased the yield stress for all the 

samples at high concentration (1.0 and 1.5%), but it had different effects on batter systems 

at the lower concentration of 0.5%. At 0.5%, it did not show a statistically significant 

influence on the yield stress of 100% wheat flour based batters. It did however 

significantly lower the yield stress of the 100% corn flour based batter, but it appeared to 

increase the yield stress of the rice flour based batter. This might be because the effect of 

wheat gluten was greater than the influence of 0.5% MC, so the wheat gluten dominated 

the characteristics of the wheat flour based batters. However, in the corn flour based 
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batters, 0.5% MC stabilized the solids in suspension, leading to reduced resistance and 

resulting in lowering the yield stress. Xanthan gum showed a higher effect on batter yield 

stress than did MC. Xanthan gum has previously been used to control viscosity of 

particulate suspension in systems containing materials such as corn flour that are known 

to affect yield the stress value (Peettitt, 1982). Similar results have been reported by 

Mukprasirt et al. (2000) and Ma et al.(1995). 

6.5.2 Effeet of hydroeolloids on structure of batter systems during the heating 

In order to investigate changes in the structure of hydrocolloid containing batter 

systems during a heating process, a small-amplitude oscillatory test was conducted to 

determine such rheological properties as the onset temperature of structure development 

(T onset), peak temperature TG' (measured temperature at peak), storage modulus G' max 

(measured at peak), and loss modulus G"max (measured at peak), which are functions of 

temperature. The storage and loss moduli for aIl the various batter systems exhibited 

similar trends as shown in Figure 6.3. None of the samples showed a significance 

difference between G' and G" during the dynamic shearing test at temperatures below 50 

oC. However, there was a rapid increase in G' and G" for aIl batters with /without 

hydrocolloids between 54 and 64 oC, after which G' and G" increased rapidly, indicating 

an increase in elastic and viscosity properties. This increase was attributed to starch 

gelatinization resulting in the onset of structure formation during which the fluid-like 

batter transforms into a solid-like coating. The storage modulus G' of samples reached 

maximum values (G' max), but subsequently decreased steadily with further heating at 

higher temperatures, apparently due to the orientation of soluble starch molecules in the 

shear direction, causing a reduction in the viscosity (Hoseney, 1994). 
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Figure 6.3. Dynamic oscillatory rheological curves of storage modulus and loss modulus 

ofwheat flour and wheat-xanthan batters. Legend: The solid square (.) refers to storage 

modulus (G') whereas the open circ1e (0) refers to loss modulus (G"). 

ANOY A results showed significant differences between the onset temperatures 

(T onset) of control and xanthan gum (XG) incorporated batters (Table 6.3). However, the 

peak temperature TG' did not change significantly among the batters. Onset temperature 

indicates the onset of structure development related to initialization of starch swelling and 

readiness to initiate gelatinization or other structure related pro cesses during heating. Peak 

temperature TG' indicates that the solid structure was formed due to starch gelatinization, 

achieving maximum values of elastic properties of the material. Xanthan gum absorbs 

water to develop batter viscosity, apparently resulting in reduced heat transfer, thus 
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greatly influencing the starch swelling process and significantly increasing onset 

temperature. Consequently, xanthan gum shifted the ons et temperature of structure 

development to higher temperatures. However, it did not influence the peak temperature 

of structure formation since temperature does not affect its viscosity (Peettitt, 1982). 

Therefore, a higher temperature and shorter time were required to gelatinize starch when 

xanthan was added to batter systems. 

Xanthan gum significantly increased both the G' and G" of all the batter systems 

(Table 6.3). This may be attributed to enhancements in overall viscous behavior of flour­

XG mixture due to swelling of the starch granules during gelatinization in starch-gum 

composite system (Allonc1e et al., 1989; Adulmola et al., 1996). The increase of elastic 

behavior of starch in the starch-XG mixture is attributed to the interactions between 

gelatinized granules enhanced by xanthan gum (Christianson et al., 1981). Allonc1e et al. 

(1989) reported that gum affected the gelatinization and retrogradation of starch through 

strong association of amylose with gum, resulting in a decrease in the retrogradation of 

starch. Therefore, xanthan gum influenced batter viscoelastic properties and structure of 

coating formation during the heating process. 

The results of the effect of methy1cellulose on structural changes and viscoelastic 

properties in various batter systems are reported in Table 6.4. Addition of methylcellulose 

(MC) also significantly increased the onset temperature. However the different MC 

concentrations did not show any statistical difference for onset temperatures. MC did not 

affect peak temperatures in any batter samples. This is probably because MC is a food 

gum that can thermally gel, and thus reduced the amount of water available to react with 

starch. After MC gelation, dehydration of MC gel apparently caused its molecules to 
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gradually loose their hydrated water as temperature rose and viscosity was reduced 

(Grover, 1982). This unique thermogelation property of MC significantly affected 

structure formation during the heating process in which MC delayed the starch swelling 

and gelatinization process. Thus structure onset temperatures were shifted to higher 

temperatures. However, structure formation was not affected after starch was gelatinized. 

Similar results were reported by Mukprasirt et al. (2000) 

Table 6.3. Effect ofxanthan gum on dynamic rheological properties ofbatter systems 

~mxJulœ (G) KPa Lœs mxJulus(G) KPa 

Batter Cœtrol Cœtrol ~ Cœtrol ~ Cœtrol ~ 
\\h:at 53.65 ± 0.59 59.35 ± UX> 73.75 ± 0.81 75.25 ± 1.21 18.97 ± 0.34 27.10 ± 0.21 3.44 ± 0.03 4.71 ± 0.04 
Qm 57.13 ± 0.83 66.20 ± 0.87 78.96 ± 0.86 80.10 ± 1.11 42Œi ± 0.28 49.80 ± 0.27 8.25 ± 0.05 9.86 ± 0.04 
Rice 67.75 ± 0.71 W.OO ± 1.33 83.00 ± 0.92 84.05 ± 0.28 34.96 ± 0.38 40.00 ± 0.23 5.49 ± O.Œi 6.61 ± O.Œi 
W3C7 53.35 ± 0.62 67.50 ± 0.89 79.10 ± 0.98 80.40 ± 0.93 29.52 ± 0.29 33.24 ± 0.22 5.58 ± 0.01 5.63 ± 0.04 
"W:C5 59.30 ± 0.62 68.55 ± 0.47 78.<Xl ± 0.66 79.85 ± 0.98 26.64 ± 0.24 31.11 ± 0.31 5.17 ± 0.02 5.05 ± 0.08 
WlO 56.85 ± 0.46 67.35 ± 0.77 77.95 ± 0.68 78.50 ± 1.25 25.47 ± 0.41 26.73 ± 0.2 4.5 ± 0.03 4.89 ± 0.(1) 
W3PJ 61.30 ± 0.35 W.15 ± 0.67 84.20 ± 0.11 84.05 ± 1.19 25.63 ± 0.14 33.39 ± 0.48 3.89 ± O.Œi 6.16 ± 0.04 
W5R5 61.05 ± 0.53 68.15 ± 0.99 8265 ± 0.75 84.50 ± 0.62 2280 ± 0.2 28.77 ± 0.52 3.6 ± 0.02 4.73 ± 0.04 
W7R3 61.40 ± 0.7 68.05 ± 0.71 79.20 ± 0.62 76.20 ± 1.38 20.30 ± 0.25 2259 ± 0.29 3.38 ± 0.03 4.08 ± 0.08 
OR7 58.75 ± 0.79 68.55 ± 0.73 8250 ± 0.38 83.85 ± 0.2 28.(1) ± 0.27 44.75 ± 0.12 4.21 ± 0.02 7.59 ± 0.1 
C5R5 62.15 ± 0.58 66.15 ± 0.71 8230 ± 1.29 8200 ± 0.51 35.Œi ± 0.35 49.44 ± 0.2 5.64 ± 0.03 8.85 ± 0.12 
C7R3 63.70 ± 0.37 68.80 ± 0.77 81.80 ± 1.25 80.55 ± 1.24 27.24 ± 0.56 47.02 ± 0.47 4.36 ± 0.03 8.75 ± O.Œi 

MC significantly increased G' and lowered G" of batter systems at high 

concentration of 1.0 and 1.5%. No significant difference was observed between the 0.5% 

MC and control batter samples, or between batter samples with 1.0 and 1.5% 

concentrations. This again may be attributed to thermal gelation properties of MC that 

affect the viscoelastic properties of batter system during heating. Grover (1982) reported 

that the viscosity of an aqueous solution of MC would initially decrease upon heating. 

However, there was a substantial increase in viscosity and enhanced development of 

elastic properties of material resulting in increased G' when the solution gels reached their 
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gelation temperature (52-57°C). Once gelation of MC started, dehydration and association 

are time-dependent processes in which viscosity decreased with increased time at constant 

shear rate, resulting in decreased loss modulus G". The concentration did not show any 

obvious effect after gelation. Therefore, elastic behavior dominated the material' s 

characteristics more than the viscous behavior, for coating formation ofbatter-MC during 

the heating process. Sanz et al. (2004) observed similar effect of MC on the viscoelastic 

behavior ofwheat flour batters. 

Table 6.4. Effect ofmethylcellulose on dynamic rheological properties ofbatter systems 

Too;et (q TG'(q 
B:tter Caird O.5"/JvC 1.(J'/JvC 1.5"/JvC Caird O.5"/JvC 1.O'/JvC 1.5"/JvC 

w-eat 53.65 ± 0.59 62.00± 0.07 63.35± 0.92 64.25± 1.02 73.75 ± 0.81 74.OO± QOO 75.70± 0.37 75.fl)± Q81 

Qrn 57.13 ± 0.83 64.al± 0.02 65.al± 0.58 ffi.34± 0.93 78.96± 0.86 79.~± Q62 79.25± 0.74 78.00± 0.00 

Rœ 67.75± 0.71 noo± 0.49 74.75± 0.00 75.15± Q78 83.60± 0.92 84.70± Q35 84.00± 0.62 83.70± Q93 

'III?J::T 53.35 ± 0.62 62.00± 0.13 64.25± Q68 ffi.OO±Qoo /9.10 ± 0.98 79.fl)± Q37 79.85± 0.72 OO.94± Q32 

'/Il'J:f) 59.30± 0.62 64.85± Q3 ffi. 10 ± 0.37 01.35± 0.58 78.90± 0.66 78.15± QOO 78.75± 0.58 79.OO± Qoo 

WlC3 56.85± 0.46 65.~± 1.27 01.10± 0.93 ffi.:D ± 0.74 77.95 ± 0.68 77.00± Q29 78.al± 0.12 79.al± 1.02 

lJII.Rl 61.30± 0.35 ffi.~± 0.72 ffi.35 ± Q46 OO.70±0.45 84.20± 0.11 84.40± Q58 85.OO± 0.00 84.15± 0.91 

WR5 61.05 ± 0.53 64.45± Q87 65.35± 0.58 00.:D± 0.87 82.65 ± 0.75 83.al± Q78 84.00± 1.02 84.~± 0.38 

WlR3 61.40± 0.7 01.70± Q16 01.93± 0.32 €ROO ± Qoo /9.20 ± 0.62 79.15± Q74 79.fl) ± 0.53 OO.al± 0.37 

CR! 58.75 ± 0./9 65.00± Q88 ffi.25 ± 0.58 01.OO±0.24 82.50± 0.38 83.65± Q93 83.75± 0.29 84.15± 0.62 

C5R5 6215 ± 0.58 ffi.45 ± 0.29 01.15± Q91 O1.~±Q72 82.30 ± 1.29 82.45± Q32 82.00± 0.58 82.fl) ± 0.00 

C7R3 63.70± 0.37 7O.00± 0.68 7Q&l± Q34 71.00± 0.00 81.80 ± 1.25 81.25± QOO 82.15± 0.91 82.71 ± 0.92 

~mxlulœ (G) KPa Lœs mxlulus(G') KPa 
B:tter Caird Q5"/JvC 1.O'/JvC 1.5"/JvC Caird O.5"/JvC UJ'/JvC 1.5"/JvC 

w-eat 18.97 ± 0.34 11.41 ± 0.7 15.77± 0.00 19.94± Q92 3.44± 0.03 3.23± Q02 273± 0.01 216± 0.01 

Qrn 42<Xi ± 0.28 4O.00± 0.29 48.94± 0.00 48.84± 1.07 8.25± 0.00 9.29± 0.01 7.21 ± 0.01 7.07± 0.02 

Rœ 34.96 ± 0.38 32.75± 0.32 35.45± 0.45 ~.35±0.32 5.49± 0.03 5.!ll± Q03 4.87± o.œ 4.62± 0.03 

'III?J::T 29.52 ± 0.29 29.71 ± Q91 33.23± 0.38 37.01 ± 0.2 5.58 ± 0.01 5.97± QOO 4.00± Q03 4.18± o.œ 

'/Il'J:f) 26.64 ± 0.24 25.29± 1.27 37.18± Q79 38.23± Q26 5.17 ± Q02 5.00± QOO 4.61 ± Q02 4.al± 0.03 

W1C3 25.47 ± 0.41 21.&l± 0.74 28.05± 0.53 27.:Jl± 0.74 4.00± 0.03 4.62± 0.03 3.46 ± 0.01 3.40± 0.01 

lJII.Rl 25.63 ± 0.14 26.52± 0.46 28.88± 0.42 29.24± 0.53 3.00± 0.03 4.œ± Q04 3.01 ± 0.03 287± 0.04 

WR5 2280 ± 0.2 18.77± Q49 26.07± 0.23 27.~±0.45 3.00± o.œ 3.a5± 0.04 270± o.œ 293± 0.00 

WlR3 20.30 ± 0.25 16.51 ± 0.62 25.00± 0.32 34.00±0.38 3.38± 0.03 278± 0.03 200± o.œ 200± 0.03 

CR! 28.00 ± 0.27 29.07± 0.00 33.15 ± 0.45 35.72± 0.00 4.21 ± o.œ 4.73± 0.02 3.œ± 0.03 3.01 ± 0.01 

C5R5 35.<Xi ± 0.35 34.œ± 0.72 38.œ± 0.61 38.ffi ± 0.7 5.64± 0.00 5.62 ± 0.02 4.11 ± 0.03 4.31 ± 0.00 
C7R3 27.24 ± 0.56 25.64± 0.91 34.93± 0.23 44.22±O.OO 4.33± 0.03 4.78± 0.04 3.18 ± 0.01 3.85± 0.03 
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6.6 CONCLUSIONS 

This study investigated and monitored the rheological properties of tempura 

batters formulated using different flour combinations, with and without hydrocolloids. 

Xanthan gum and methy1cellulose significantly influenced the flow behavior, increased 

the consistency, and lowered the shear-shinning behavior ofbatters. Xanthan gum showed 

more pronounced effects on batters containing corn or rice flours or their combined flour 

blends than on wheat flour based batters. Viscoelastic properties during the heating 

process were changed with the addition of XG and MC to the batter systems. The gums 

shifted the onset temperature of structure development to high temperature, but the 

concentration of MC did not show significant effects on the onset temperature. However, 

neither xanthan gum nor MC affected the peak temperature. XG and MC significantly 

influenced the storage and loss moduli of batter systems. Xanthan gum increased both 

G' max and G"max, whereas MC increased G' max but lowered G"max. A higher temperature 

and shorter time was required to gelatinize starch when the hydrocolloids were added to 

batter systems. 

6.7 IMPLICATIONS FOR BATTER PREFORMANCE 

Xanthan gum and Methy1cellulose when incorporated into batter systems greatly 

increase a batter's viscosity. They also raise the temperature and shorten the time required 

for the formation of a solids-like structure during heating. When hydrocolloids are used 

in a formulation, it is important to ensure their effectiveness, complete incorporation and 

hydration are necessary. The batter uniformity and thickness that is related to the batter's 

viscosity largely determine the acceptability of the fini shed products. Corn flour batters 

are difficult to maintain solids in suspension that they change viscosity during the process 
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and result in non-uniform batter coating systems. The results generated from this study 

suggested that xanthan gum at 0.2% concentration or 0.5% MC have more effect on 

stabilizing the solids in suspension than simply its viscosity effect on those batters 

containing high levels corn flour (greatly than 70% of corn flour, dry basis w/w). 

However, both of the hydrocolloids increased the yield stress value of aIl batters 

formulated with wheat, rice, and their combination flour blends. High yield stress values 

require more force to initiate flow when mixing or pumping. 

The ability of a batter to form a cru st is enhanced by the higher initial amount of 

coating that adheres. There is a linear relationship between coating adhesion and 

viscosity. Xanthan gum and MC lowered the shear shinning behaviour and increased 

consistence index. However, it should be noted that high viscosity of batter also has sorne 

disadvantages that affect finished products quality such as hard crust and less crispiness. 

The results generated from this study show that MC has a greater effect on rice or corn 

flour based batters than on wheat flour batters, possibly because the corn and rice batters 

have more free water available to interact with the hydrocolloid gums in order to develop 

their maximum viscosity properties. Wheat flour tends to compete with the hydrocolloid 

gums for water of hydration. Therefore, the addition of hydrocolloids increases the batter 

viscosity at a lower temperature, improving the ability of the batter to maintain a uniform 

consistency and composition during preparation and application. This action should result 

in a more uniform product coating, but hydrocolloid use may increase the batter costs 

slightly, and changes the mixing action and power required. Xanthan gum and MC greatly 

influence solids structure development, which delay the starch swelling process, but they 

did not show effects on structure formation after the starch gelatinization phase (the G' max 

temperature that indicates the temperature when G' reaches its maximum value due to 
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starch gelatinization, and develops the higher elastic properties). Therefore, high 

temperatures and shorter time intervals were required to cook the batters containing 

hydrocolloids. 

Selection a hydrocolloids at properly concentration is very important for batter 

formulation. The effects of hydrocolloids dependent in which types of flour would be 

used in batter systems and the batter formulation should match the food substrate that will 

be coated. 

6.8 REFERENCES: 

Albert, S. & Mittal, G S. 2002. Comparative evaluation of edible coatings to reduce fat 

uptake in a deep-fried cereal product. Food Research International35: 445-458. 

Annapure, U.S., Singha, R.S., & Kulkarni, P.R 1999. Screening of hydrocolloids for 

reduction in oil uptake of a model deep fat fried product. FettiLipid, 101,217-221. 

Balasubramaniam, V. M.; Chinnan, M.S.; Malliparjunan, P., Phillips, RD 1997. The 

effect of edible film on oil uptake & moisture retention of a deep-fat fried poultry 

products. Journal of Food Process Engineering. 1997,20,17-29. 

Bames, H. A., Hutton, J. F., & Walters, K. 1989. An introduction to theology, New York: 

Elsevier Applied Science, 11-35. 

Burge R M. 1996. Functionality of corn in food coatings. chapter 3. Batters and 

Breading in food processing. Karel kulp and Robert Loewe, editors, American 

Association ofCereal Chemists Inc. St. Paul, Minnesota 55121, USA. 

Cunnigham F.E. and Tiede L.M. 1981.A research note: Influence of batter viscosity on 

reading of chicken drumsticks. Journal of Food Science 46:1950. 

133 



Dogan, S.F., Sahin, Sand Sumnu, G., 2004. Effects of soy and rice flour addition on 

batter rheology and quality of deep-fat fried chicken nuggets. Journal of Food 

Engineering 71 :127-132. 

Dow Chemical. 1990. A food technologist's guide to Methocel premium food gums. 

Brochure 194-1037-190-AMS. The Dow Chemical Co., Midland, MI. 

Fiszman, S.M and Salvador, A. 2003. Recent developments in coating batters. Trends in 

Food Science and Technology 14:399-407. 

Ferrero, C., and Zaritzky, N.E. 2000. Effect of freezing rate and frozen storage on starch­

sucrose-hydrocolloids system. Journal of the Science of Food and Agriculture, 

80:2149-2158. 

Grover, J. A., 1982. Methylcellulose (MC) and Hydroxypropyl methylcellulose (HPMC). 

Chapter 4. Food Hydrocolloids ,Volume III 

Holownia, K. 1., Chinnan, M.S., Erickson, M. C., and Mallikarjunan, P. 2000. Quality 

evaluation of edible film-coated chicken strips and frying oil. Hournal of Food 

Science, 65: 1 087 -1090 

Hsia, H.Y., Smith, D.M. & Steffe, J. F, 1992. Rheological properties and adhesion 

characteristics of flour-based batters for chicken nuggets as affected by three 

hydrocolloids. Journal of Food Science. 57:16-24. 

Kim, c., Yoo, B. 2005. Rheological properties of rice starch-xanthan gum mixtures. 

Journal of Food Engineering. Available online at www.sciencedirect.com 

Kruger A., Ferrero, c., and Zaritzky, N.E.2003. Modelling corn starch swelling in batch 

systems: effect ofsucrose and hydrocolloids. Journal of Food Engineering 58:125-

133. 

134 



Lane RH, Abdel-Ghany M, Joness S.W. 1986. Viscosity and pick up of fish and chip 

batter: Detenninations of variation. Journal of Food Quality 9:107 

Lenchin, J.M., and Bell, H. 1995. Process for coating foodstuff with batter containing 

high amylose flour for microwave cooking. US patent 4,529,607. 

Loewe, R, 1993. Role ofingredients in batter systems. Cereal Foods World 38:673-677. 

Mellema M. 2003. Mechanism & reduction of fat uptake in deep-fat fried foods. Trends in 

Food Science and Technology 1: 364-373. 

Meyers, M.A. and Conklin, J.R 1990. Methods ofinhibiting oil adsorption in coated fried 

foods using methy1cellulose. US patent 4,900,572. 

Meyers M.A. Functionality of hydrocolloids in batter coating systems. 1996. chapter 7. 

Batters and Breading in food processing. Karel kulp and Robert Loewe, editors, 

American Association ofCereal Chemists Inc. St. Paul, Minnesota 55121, USA. 

Mukprashirt, A., Herald T. J. and Flores, RA, 2000. Rheological characterization of rice 

flour-based batters. Journal of Food Science 65: 1194-1199. 

Pettitt, D. J. 1982. Xanthan Gum. Chapter 5. Food Hydrocolloids ,Volume 1. 

Ribotta, P.D., Ausar, S.F., Beltramo, D.M., and Leon, A.E. 2005. Interactions of 

hydrocolloids and sonicated-gluten proteins. Food Hydrocolloids. 19:93-99. 

Sajjan, S. u., and Rao, M. R R 1987. Effect of hydrocolloids on the rheological 

properties ofwheat starch. Carbohydrate polymers, 7:395-402. 

Sanz, T., Fernandes, M.A., Salvador, A., Munoz, J., & Fiszman, S.M. 2005. 

Thennogelation properties of methy1cellulose (MC) and their effect on a batter 

fonnula. Food Hydrocolloids (19):141-147. 

135 



Sanz, T., Salvador, A., & Fiszman, S. M. 2004. Effect of concentration and temperature 

on properties of methy1cellulose-added batters application to battered, fried 

seafood. Food Hydrocolloids (18): 127-131. 

Shih, F. and Daigle. K, 1999. Oil uptake properties offried batters from rice flour. Journal 

of Agriculture and Food Chemistry 47: 1611-1615. 

Sudhakar, V., Singhal, R. S., and Kulkami, P.R. 1996. Starch-galactomannan interactions: 

functionality and rheological aspects. Food Chemistry. 55:259-264 

Urlacher, B., & Noble, O. 1997. Xanthan. In A .Imeson (Ed,), Thickening and gelling 

agents for food. London: Chapman & Hall. 

Wang F., Sun, Z., and Wang, Y. J. 2004. Study of xanthan gum/waxy corn starch 

interaction 1 solution by viscometry. Food Hydrocolloids. 15:575-581. 

Xue, J. and Ngadi, M.O. 2006. Rheological properties ofbatter systems formulated using 

different flour combinations. Journal of Food Engineering, Vol. 77(2): 334-341. 

136 



CONNECTING TEXT 

Results reported in Chapter VI showed the synergistic effect of flour and xanthan 

gum or methylcellulose on the flow behavior of various batter systems such as increased 

consistency, and lowered shear-shinning behavior of batters. Xanthan gum and 

methylcellulose also significantly influenced the viscoelastic properties of batter systems 

during heating. In Chapter VII, the same objectives and parameters as followed in Chapter 

VI were used to study carboxymethylcellulose's effect on the rheological properties of 

batter systems, except that the power model was used to describe the flow behavior of the 

batter systems. 
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VII. EFFECT OF CARBOXYMETHYLCELLULOSE ON 

RHEOLOGICAL PROPERTIES OF BATTER SYSTEMS 

7.1 ABSTRACT 

Batters are highly complex systems with wide ranging ingredients. Interactions 

between the ingredients determine the performance of batters and the final quality of 

coated products. Combining different types of flour provide special effects on batter 

performance. Carboxymethylcellulose (CMC) has been used as a functional ingredient 

due to its unique properties such as water retention and resistance to oil as well as a 

certain degree of adhesiveness. The functionalities of CMC-flour mixtures in terms of 

rheological properties of batter systems were investigated in this study. The combinations 

of wheat and rice, wheat and corn, rice and corn flours, and CMC at different 

concentrations of 0, 0.5%, 1.0% or 1.5% were studied. A strain/stress control rheometer 

was used to determine the rheological properties (flow behaviors and viscoelastic 

properties) ofthe mixtures. CMC influenced the flow behavior ofbatter systems at 15 oC. 

The viscoelastic properties of the batter systems depended upon formulation and 

temperatures from 15 to 100 Oc. The higher concentration of CMC also increased the 

shear thinning behavior of batter systems. CMC greatly influenced the viscoe1astic 

properties ofbatter systems during heating processes. 
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7.2 INTRODUCTION 

A wide variety of foods can be coated (battered and breaded) before frying. Each 

product to be coated (substrate) has its particular characteristics in tenn of structure, size, 

and cooking parameters. Coatings are nonnally specialized for each type of food and 

paired with flavors that match well with each substrate. Initially, batters and breadings 

were simple: wheat flour, seasonings and water for batters; whereas for breadings, 

seasoned breadcrumbs affixed with water, milk or egg. However, the technology for these 

coatings has evolved from its simple early roots. Instead of basic batter, manufacturers 

have developed a wide variety of batter systems using different flours with functional 

ingredients such as hydrocolloids to produce delicious and nutritional coated foods to 

entice the consumer. 

Interactions between ingredients detennine the perfonnance of batters and the 

final quality of coated products. Leavened batters are referred to as puff or tempura 

batters. These light stand-alone batters are typically used for seafoods and vegetables. The 

industry trend is toward producing lighter batter through selection of batter systems with 

different flour bases and other ingredients to produce a desired light, crispy and open 

structure coating fonn. Ingredients such as hydrocolloids may not directly influence the 

food taste and flavors, but they may have significant effect on gel fonnation, water 

retention, and aroma retenti on that influence the finished product's quality and consumer 

appeal (Speers and Tung, 1986; Meyer, 1990; Balasuramaniam, Chinnan, Mallikarjunan, 

and Phillips, 1997; Annapure, Singha, and Kulkarni, 1999; Holownia, Chinnan, Erickson, 

and Mallikarjunan, 2000; Sanz, Salvador, and Fiszman, 2004; Sanz et al., 2005). 

Combining sodium bicarbonate (leavening agent), special hydrocolloids and different 
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flours may also result in different desired flavor, crispy and open texture of coated 

products. 

Carboxymethylcellulose (CMC) is typical of cellulose derivatives that are obtained 

by chemical modification of cellulose. This ensures their uniform properties such as 

solubility in cold and hot water, and low to high viscosity in solution, as opposed to 

hydrocolloids from natural sources that normally have high variability (Guarda, Rosell, 

Benedito, and Calotto, 2004). CMC has wide applications in food processing as a 

functional ingredient due to its unique properties such as water retention, resistance to oil 

as well as certain degree of adhesiveness (Khalil, 1999; Cance1a, Alarez, and Maceiras, 

2005). Combining different types of flour and incorporating CMC provided special effects 

on batter performance. 

Coated food products undergo several physical and chemical transformations 

during processing. Gao and Vodovot (2005) reported that CMC changed the rheological 

and thermal properties of masa (dough) and the resulting tortilla's shelf-life. Andres, 

Guadalupe, Javier and Luis (2005) also found that CMC greatly influenced the rheological 

and functional properties of dried nixtamalised (alkaline-cooked) maize masa. However, 

the applications of CMC in batter systems have not been extensively reported in the 

scientific literature. Rheological analyses reveal a possible interaction between CMC and 

the other batter constituents, which could partially explain the effect of this hydrocolloid 

in complex batter systems. In cooking processing, carboxymethylcellulose (CMC) forms 

film to keep the batter intact and aid cohesiveness during heating (Keller, 1982). 

Characterization of CMC and different types of flour behaviors in batter system is 

important in order to understand their performance and application where they are used 

jointly. 
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The objective of this study was to investigate the possible interaction of the CMC 

with the other batter constituents in order to establish an understanding about the effects 

of the CMC as a batter improver agent. In this regard, the rheological properties ofbatters 

containing different combinations of flours (namely wheat, rice and corn flours) in the 

presence of CMC, and the resulting batter behaviors during heat processing were studied. 

7.3 MATERIALS AND METHODS 

Three concentration of carboxymethy1cellulose (0, 0.5, 1.0, or 1.5% on a flour 

weight basis) were used in this study. Batter systems were formulated in this study as 

described in the chapter VI. The samples that were formulated with no (0%) CMC were 

considered as the control samples. 

The rheological properties of batter were determined using a strainlstress control 

rheometer (Advanced Rheometer 2000, TA Instruments, Delaware, USA). The 4 cm 

diameter parallel plate was chosen and the gap between the plates was set to 1 mm. 

Rheological characterization was carried out using both stationary shear flow and 

oscillatory tests. To determine the flow behavior of the batters, apparent viscosity was 

measured as a function ofshear rate over the range ° to 120 S-1 at the temperature of 15°C. 

In order to describe the variation in rheological properties of samples under steady shear, 

the data was fitted to the power law model (Barnes, Hutton,and Walters, 1989). 

The linear viscoelastic properties were carried out by using a dynamic oscillatory 

test. After equilibration at the initial temperature of 15°C for 5 min, the samples were 

continuously heated to 100°C at the rate of 4°C/min. During the heating process, the 

141 



samples were sheared at a fixed frequency of 1 Hz with maximum strain amplitude of 

1.074% which was selected from preliminary tests to guarantee the existence of a linear 

viscoelastic response. The parameters of storage modulus (G' max measured at peak) and 

the loss modulus (G"max, measured at peak) that were used to describe the batter 

viscoelastic behaviors. Also, the onset temperature (TRonset) which indicates the 

temperature at which the structure of the batter system begins to change dramaticalIy, and 

the peak temperature (T peak) of the storage modulus were determined. 

7.4 STATISTICAL DESIGN AND ANALYSIS 

AlI experiments were conducted using factorial experimental designs. The batter 

systems were prepared and tested in triplicate in a completely randomized design. A Two­

way analysis of variance (ANOV A) using the General Linear Model (GLM) was used to 

study the differences and interaction effect in batter formulations, such as main factors 

and their combined effects inc1uding: ratio and type of combined flours, and the levels of 

CMC. The significance ofmean comparisons by the Scheffe's least significant difference 

(LSD) were determined at P<O.OI using the SAS software (SAS Institute Inc., Cary, NC, 

USA). 

7.5 RESULTS AND DISCUSSION 

Flow behaviors of batters were described in terms of consistency coefficient, and 

flow behavior index, in a power-law model according to the following Equation. 

(1) 
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where 11 is the viscosity in Pa s, k is the consistency coefficient in Pa s, fis the 

shear rate expressed in S-I, and n is the flow behavior index. For Newtonian fluid, n = 1 

that is its viscosity remains constant for different shear stress values. However, viscosity 

varies (n *" 1) for a non-Newtonian fluid with varying applied stress. 

Analysis of variance (ANOV A) showed that CMC significantly influenced the 

flow behavior index of aIl samples. AlI batlers were non-Newtonian and exhibited 

pseudoplastic behavior with flow behavior index less than one (Table 7.1). Wheat flour 

batter had the lowest flow behavior index compared to corn and rice flour batters. Thus, 

the apparent viscosity of wheat flour batter was higher at a given shear rate. Wheat flour 

based batter had more shear thinning behavior than corn or rice flour based batters. This is 

attributed to the higher ability of the gluten containing wheat flour to bind water in the 

system resulting in decreased free water for flow (Xue and Ngadi, 2005; Hoseney, 1994). 

The behavior index of batters decreased with increasing CMC concentration. Thus, 

increasing concentrations of CMC decreased the shear thinning behavior of batters. It is 

known that CMC exhibits pseudoplasticity in solution (Keller, 1982). This may be 

attributed to the orientation of the CMC macromolecules as they align themselves in the 

direction of the shearing force (Rozema and Beverloo, 1974). Cancela, Alarez, & 

Maceiras (2005) also observed a similar trend in an aqueous solution of CMC with 

sucrose. 
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Table 7.1. Effect ofCMC on flow behavior index, n ofbatter systems 

Batter Control O.5%CMC 1.0%CMC 1.5%CMC 

Wheat 0.46 ± 0.01 0.45 ± 0.01 0.36 ± 0.01 0.34 ± 0.01 

Corn 0.59 ± 0.02 0.56 ± 0.02 0.46 ± 0.02 0.41 ± 0.01 

Rice 0.71 ± 0.07 0.61 ± 0.02 0.55 ± 0.01 0.52 ± 0.01 

W3C7 0.61 ± 0.03 0.51 ± 0.02 0.46 ± 0.01 0.43 ± 0.01 

W5C5 0.49 ± 0.01 0.47 ± 0.02 0.40 ± 0.01 0.36 ± 0.01 

W7C3 0.48 ± 0.02 0.47 ± 0.02 0.42 ± 0.02 0.38 ± 0.01 

W3R7 0.53 ± 0.04 0.48 ± 0.01 0.39 ± 0.01 0.36 ± 0.01 

W5R5 0.50± 0.02 0.47 ± 0.01 0.43 ± 0.01 0.41 ± 0.01 

W7R3 0.49 ± 0.01 0.47 ± 0.01 0.43 ± 0.01 0.39 ± 0.01 

C3R7 0.58 ± 0.02 0.57 ± 0.01 0.53 ± 0.01 0.48 ± 0.01 

C5R5 0.66 ± 0.02 0.63 ± 0.05 0.54 ± 0.01 0.50 ± 0.01 

C7R3 0.67 ± 0.01 0.65 ± 0.01 0.56 ± 0.02 0.53 ± 0.02 

Wheat = 100% wheat flour, Corn = 100% corn flour, Rice = 100% rice flour, W3C7 = 30% wheat 

and 70% corn flour, W5C5 = 50% wheat and 50% corn flour, W7C3= 70% wheat and 30% corn 

flour, W3R7= 30% wheat and 70% rice flour, W5R5 = 50% wheat and 50% rice flour, W7R3 = 

70% wheat and 30% rice flour, C3R7 = 30% corn and 70% rice flour, C5R5 = 50% corn and 50% 

rice flour, C7R3 = 70% corn and 30% rice flour 

There were significant differences in the consistency index of batters containing 

different levels of CMC concentrations. The effect of CMC on consistency index for 
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different batters fonnulated at 15°C with different combinations of wheat and corn flour 

(WC), wheat and rice flour (WR), and corn and rice flour (CR) are shown in Figure 7.1, 

7.2, and 7.3, respectively. The results clearly show that CMC increased the consistency 

index for aIl batter systems. In other words, increasing the CMC concentration in a batter 

resulted in more viscous batters. CMC is a linear, long-chain, water-soluble hydrocolloids 

that can absorb water causing reduced free water in the batter systems. Similar result was 

reported by Cancela, Alvarez & Maceiraas (2005). Viscosity development in batters is 

mainly related to the water binding capacity of the ingredients. The consistency indices of 

batters fonnulated with only (100%) wheat, corn and rice flour, without addition ofCMC 

were 14.29, 2.14, and 0.46 Pa.sn
, respectively. Addition of 1.5% CMC in these batter 

systems, increased the consistency indices of the wheat, corn and rice batters to 83.8, 57.4 

and 48.7 Pa.sn (that is 4.86, 25.82 and 104.87% increase), respectively. There was more 

pronounced effect of CMC on batters fonnulated with corn or rice, or their combinations 

than on batters fonnulated with wheat flour. Among the different ingredients used in this 

study, wheat flour and CMC have the highest water-binding capacity. The hydroxyl group 

of CMC enables hydrogen bonding with water whereas wheat flour contains gluten which 

has a high water binding capacity (Keller, 1982). Thus the consequence of increasing 

amount ofwheat flour and CMC will be less available free water and higher viscosity in a 

batter system. 

Since rice and corn flours absorbed less water compared with wheat flour, there 

was more free water available for CMC to develop its maximum viscosity as was 

indicated by the pronounced effect of CMC in these batter systems. However, in wheat 

flour based batter systems, there was apparently a strong competition for water from 
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wheat gluten, resulting in is less free water available for CMC to develop its high 

efficiency for viscosity change in the limited water system. Therefore, there was a 

synergistic interaction between batter flours and CMC on flow behavior ofbatter systems. 
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Typical changes in storage modulus G' of batter systems containing different 

concentrations of CMC are shown in Figure 4. Changes in loss modulus (G") of the 

different batter systems generally followed trends similar to those observed for storage 

modulus (G') in all samples. 
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Figure 7.4 Dynamic oscillatory rheological curve on storage modulus of 100% wheat 
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1.0% CMC, the open circle (0) refers to G'of 100% wheat flour based batter with addition of 

1.5% CMC. 

There was no significant change in G' during the dynamic shearing test at 

temperatures below 50°C. However, G' increased rapidly for aIl batters between 58 and 

68°C indicating increase in elastic properties. The increase occurred as the starch granules 

sweIled, and started to gelatinize when starch polymer molecules and/or granule 
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fragments reinforced the gel in the formation of a solid-like coating from a fluid-like 

batter during heating (Liu and Lelievre, 1992). At each corresponding temperatures, the 

values of G' were higher than the values of G". This implies that the elastic behavior 

predominated at all temperature in these batter systems (Andres, Guadalupe, Javier and 

Luis, 2005). Thus, the overall response of the system approached that of a fully formed 

solid-like structure. The viscoelastic properties of batler systems formulated using 

different combined flours blends were varied depending on types of flour and 

combination ratios of the flour blends as was also observed in an earlier study (Xue and 

Ngadi, 2005). 

The onset temperature is the ons et of structure development related to how the 

starch granules swell and initiate gelatinization. Complex reactions between ingredients or 

flour components may also cause structural changes during heating. The onset 

temperature was determined at the point where G' started to increase rapidly, whereas 

peak temperature was determined at the point where G' reached its maximum value. Peak 

temperature Tpeak indicates the temperature where solid structure was formed due to 

starch gelatinization, achieving maximum values for the elastic properties of the material. 

The storage modulus of the samples reached their maximum values (G'max) but 

subsequently decreased steadily with further heating at higher temperatures due to the 

molecules of soluble starch orienting themselves in the direction of shear, causmg a 

decrease in viscosity (Hoseney, 1994). 

100% of wheat flour based batter had the lowest onset temperatures whereas rice 

flour only had the highest onset temperature as shown in Table 7.2. This could be 

attributed to their differences in water absorption characteristics, starch granule sizes, 

shapes and gelatinization properties of the flours. Rice starch granules are the smallest 
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among the cereals, and absorbed less water compared to corn and wheat flour (Hoseney, 

1994; Mukprasirt, Herald, and Flores, 2000). Typical gelatinization temperature range for 

rice starch is from 68 to 78°C, corn starch is from 62 to 70°C and wheat flour is from 58 

to 60°C (Hoseney, 1994). 

Table 7.2. Effects of CMC on onset temperature (TRonset. OC) of structure development of 

batter system during heating 

Batter Control 0.5%CMC 1.0%CMC 1.5%CMC 

Wheat 53.7± 0.59 56.4± 0.07 57.8± 0.92 60.6± 0.12 

Corn 57.1± 0.32 59.5± 0.72 63.5± 0.58 65.6± 0.98 

Rice 65.8± 0.21 67.2± 0.49 68.0± 0.59 68.3± 0.78 

W3C7 53.4± 0.62 57.1± 0.13 63.2± 0.68 65.0± 0.69 

W5C5 59.3± 0.62 59.2± 0.30 60.5± 0.37 62.7± 0.58 

W7C3 53.4± 0.62 57.1± 0.13 59.2± 0.68 62.0± 0.69 

W3R7 61.3± 0.35 62.9± 0.72 64.2± 0.46 64.5± 0.45 

W5R5 61.1± 0.53 56.3± 0.87 59.9± 0.58 63.3± 0.87 

W7R3 61.4± 0.42 62.8± 0.16 61.7± 0.32 60.0± 0.69 

C3R7 58.8± 0.19 61.8± 0.88 67.6± 0.58 68.2± 0.24 

C5R5 62.2± 0.58 66.0± 0.29 66.2± 0.91 66.6± 0.72 

C7R3 63.7± 0.37 67.3± 0.68 67.4± 0.34 68.8± 0.69 

CMC significantly influenced the structural onset temperature for an samples 

(Tables 7.2). The effects of CMC concentration on onset temperature were more 

pronounced for the batters that were formulated with either wheat or corn and their 

combination flours based batters. Competition for water between CMC, flour components 

and other ingredients apparently contributed to the development of structure during 

heating. There apparently was more water available for reaction with rice starch than with 
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wheat or corn starch in the limited water systems. The interaction between increasing 

concentration of CMC and wheat protein (gluten), or wheat starch may have produced 

less available water for starch to be swelled and consequently to be gelatinized. CMC did 

not significantly change onset temperature of rice flour based batters. Since there was 

more available water in rice flour, CMC apparently was more efficient in forming gel 

without increasing elastic behavior of the batter. Keller (1982) reported that viscous 

behavior of CMC gel was much greater than its elastic characteristics (G'< G"). Shil and 

BeMiller (2002) reported a carboxymethyl-starch interaction, observing that viscosity of 

sodium CMC solution dropped gradually when it was heated from 35 to 90°C with 

agitation speed of 125 rpm, but there was an increase in viscosity at 58°C when corn 

starch was added to the CMC solution. 

Table 7.3 shows that CMC slightly increased the peak temperature of structure 

formation since temperature does not affect its viscosity after starch gelatinization is 

completed (Peettitt, 1982). However, elastic properties were changed to form different 

structures for different flour with added CMC. Rojas, Rosell, and Benedito (1999) and 

Cameron, Sansom, and Donald (1993) also found that gums had little or no effect on the 

peak gelatinization temperature of wheat and waxy maize starches but they influenced the 

onset of gelatinization temperature. Shi and BeMiller (2002) reported a significant 

viscosity increased before pasting occurred in CMC-maize and CMC-rice suspensions. 

Therefore, higher temperatures and shorter times were required to gelatinize starch when 

CMC was added to batter systems. 
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Table 7.3. Effect of CMC on peak temperature (Tpeak, OC) of structure development of 

batter system during heating process 

Batter Control 0.5%CMC 1.0%CMC 1.5%CMC 

Wheat 73.8± 0.81 73.8± 0.59 73.8± 0.37 74.6± 0.21 

Corn 79.0± 0.86 80.1± 0.62 80.9± 0.74 81.2± 0.36 

Rice 83.6± 0.29 84.9± 0.35 84.9± 0.62 85.1± 0.38 

W3C7 79.1± 0.28 80.1± 0.37 80.9± 0.72 82.1± 0.32 

W5C5 78.9± 0.66 79.6± 0.59 80.6± 0.58 80.9± 0.69 

W7C3 78.0± 0.68 79.9± 0.29 80.8± 0.12 81.3± 0.24 

W3R7 84.2± 0.11 85.0± 0.58 86.0± 0.69 86.8± 0.19 

W5R5 82.7± 0.75 83.2± 0.78 83.9± 0.35 83.8± 0.38 

W7R3 79.2± 0.62 78.0± 0.74 80.2± 0.53 80.4± 0.37 

C3R7 82.5± 0.38 83.8± 0.98 84.5± 0.29 85.0± 0.62 

C5R5 82.3± 0.29 82.4± 0.32 83.2± 0.58 84.5± 0.66 

C7R3 81.8± 0.25 82.5± 0.59 83.2± 0.91 83.5± 0.92 

CMC significantly increased both the values of G' max and G"max in an samples 

(Tables 7.4 and 7.5). This can be attributed to the ability of CMC form three-dimensional 

network and to its ability to 1ink water molecu1es within the systems (Andrew, 2004). 

Other authors reported similar finding with corn starch (Gimeno, Moraru, and Kokini, 

2004), yam starch (Mali et al., 2003) and dried nixtamalised maize masa (Andres, 

Guadalupe, Javier and Luis, 2005). Therefore, CMC influences not on1y the elastic 

properties, it also influenced the viscous properties and the final structure ofbatters during 

heating. 
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Table 7.4. Effects of CMC on the maximum values of storage modulus (G' max kPa) of 

batter system during heating process 

Batter Control 0.5%CMC 1.0%CMC 1.5%CMC 

Wheat 19.0± 0.34 18.4± 0.52 21.9± 0.7 23.7± 0.05 

Corn 42.1± 0.28 41.7± 0.57 44.3± 0.29 46.4± 0.39 

Rice 35.0± 0.38 35.6± 0.32 39.6± 0.32 41.0± 0.45 

W3C7 29.5± 0.29 31.4± 0.25 33.0± 0.41 35.0± 0.38 

W5C5 26.6± 0.24 27.3± 0.26 30.9± 0.27 32.8± 0.59 

W7C3 25.5± 0.41 24.0± 0.34 27.7± 0.74 29.5± 0.53 

W3R7 25.6± 0.14 26.0± 0.53 28.4± 0.46 29.3± 0.42 

W5R5 22.8± 0.20 23.0± 0.45 25.7± 0.49 28.5± 0.23 

W7R3 20.3± 0.25 21.0± 0.38 24.6± 0.62 26.3± 0.32 

C3R7 28.1± 0.27 27.0± 0.49 30.4± 0.59 31.8± 0.45 

C5R5 35.1± 0.35 35.8± 0.67 37.6± 0.72 39.7± 0.61 

C7R3 27.2± 0.56 26.4± 0.05 31.1± 0.91 33.2± 0.23 
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Table 7.5. Effects ofCMC on the maximum values ofloss modulus (G"maxkPa) ofbatter 

system during heating process 

Batter Control 0.5%CMC 1.0%CMC 1.5%CMC 

Wheat 3.4± 0.32 3.6± 0.28 4.0± 0.18 4.4± 0.21 

Corn 8.3± 0.51 6.8± 0.17 6.9± 0.19 7.4± 0.29 

Rice 5.5± 0.59 5.8± 0.61 6.2± 0.26 6.5± 0.38 

W3C7 5.6± 0.14 6.6± 0.56 6.9± 0.43 7.6± 0.52 

W5C5 5.2± 0.23 5.1± 0.52 6.4± 0.32 8.3± 0.32 

W7C3 4.5± 0.33 4.8± 0.33 5.4± 0.21 6.5± 0.41 

W3R7 3.9± 0.62 5.2± 0.42 5.4± 0.13 5.6± 0.43 

W5R5 3.6± 0.23 3.8± 0.43 4.2± 0.25 4.3± 0.52 

W7R3 3.4± 0.34 3.4± 0.36 3.6± 0.26 3.7± 0.31 

C3R7 4.2± 0.21 4.8± 0.29 5.4± 0.35 5.9± 0.34 

C5R5 5.6± 0.33 5.8± 0.21 6.2± 0.53 6.8± 0.51 

C7R3 6.4± 0.34 6.2± 0.40 6.5± 0.21 6.7± 0.43 

7.6 CONCLUSION 

The addition ofCMC significantly influenced the flow behavior ofbatter systems. 

It increased consistency index and decreased shear-shinning behavior of batter systems. 

Viscoelastic properties were changed with the addition of CMC in batters. Increasing 

concentrations of CMC shifted ons et temperature of structure development but only 

slightly increased the peak: temperature. Maximum values of elastic and 10ss moduli 
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increased consistently with increasing CMC concentration. There was more pronounced 

effect of CMC on corn and rice flour based batters and their combination flour based 

batters than wheat flour based batter systems. 

7.7 IMPLICATIONS FOR BATTER PREFORMANCE 

CMC greatly influences the flow behaviour and viscoelastic properties of various 

batter systems. Wheat flour batters containing CMC showed the highest viscosity. That 

may affect the batter and the coated piece handling process, as well as the end-product 

quality. It may cause difficulty in mixing as the batter becomes stickier. A high batter 

pick up yield would result in uncooked food substrate that required a longer cooking 

duration and higher energy. The results suggest that, in the case of selecting those 

ingredients that do not develop much viscosity on their own, such as rice or corn flours, it 

is advantageous to incorporate CMC to ensure batter characteristics similar to the more 

c1assic formulations. Therefore, selecting the proper flour or flour blend and an 

appropriate hydrocolloid, along with other ingredients, is very important when starting to 

formulate a batter system. For special or unusual food substrates, the batter system not 

only affects the character and the quality of the products, but it also influences the 

processing conditions and bears heavily upon the economic aspect. 
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VIII. GENERAL SUMMARY AND RECOMMENDATIONS FOR 

FUTURE RESEARCH 

8.1 GENERAL SUMMARY 

Research conducted in the past decade has demonstrated the effectiveness of 

hydrocolloids on reduction of fat uptake in deep fat fried food products. This study 

investigated and monitored the rheological and thennal properties of different flour 

combinations in conjunction with different types ofhydrocolloids in batter systems. It was 

found that the rheological and thennal properties varied with the different types of flours, 

their combination ratios, and with the different types of hydrocolloids. In the batter 

systems containing only flours and water, the addition of corn flour greatly influenced the 

viscosity and viscoelastic properties of wheat based and rice based batter systems, as the 

viscosity decreased with an increase in the corn flour proportion in the batter system. Both 

corn and rice reduced the viscosity and increased the onset temperatures (TRanset), storage 

moduli (G' max) and loss moduli (G"max ) of wheat flour based batter systems. Salt 

significantly influenced the flow properties of batter systems by lowering the viscosity 

and decreasing G' max and G"max as well as increasing the onset temperature. A higher 

temperature and longer time was required to gelatinize starch at higher proportions of rice 

flour (70%) for each flour mixture combination in the batter systems tested in this study. 

Also, the thennal properties of wheat based batters were greatly influenced by 

replacement of wheat by rice or corn flours. There was a synergistic interaction resulting 

in marked change in glass transition temperature when rice and corn flours are mixed in 
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equal proportions. A higher enthalpy ~HG was required to ge1atinize starch at higher 

levels of corn flour (70%) for each flour mix combination tested. 

Hydrocolloids greatly influenced the rheological and thermal properties of batter 

systems. They significantly influenced the flow behavior, increased the consistency, and 

lowered the shear-shinning behavior of the batters. Viscoelastic properties during the 

heating process were changed with the addition of XG, MC, or CMC to the batter 

systems. The gums shifted the onset temperature of structure development but they did 

not affect the peak temperature. Hydrocolloids significantly influenced the storage and 

loss moduli of batter systems. A higher temperature and shorter time was required to 

gelatinize starch when hydrocolloids were added to the batter systems. 

Two different thermal processes for cooking and frozen storage were used to 

determine the thermal properties of batter systems formulated using different flour 

combinations with the addition of hydrocolloids at different levels. However, different 

thermal processes did not show effects on gelatinization or total enthalpies of 

gelatinization in all samples, but it affected the phase transition of batter systems during 

cooling. They increased the gelatinization temperatures but depressed the glass transition 

temperatures of the resulting batters. MC increased the melting temperature (Tm) for the 

test batter systems as compared with the values for the control system without MC. CMC 

did not show statistically significant effects on the total enthalpies of ice melting for all 

samples. However, MC and CMC showed more pronounced effects on rice, corn, and 

their combined flour based batters than it did on wheat flour based batters. However, this 

characteristic was nat evident in batter systems containing xanthan gum. 
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8.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

Further investigation is required to study the phase transitions during the heating 

and cooling process that result from the interactions arising from different flour 

combinations when hydrocolloids are added. The design of a system of thermal processes 

permitting the use of a microstructure image analysis to track phase changes and to 

provide visible evidence of different combination flours and hydrocolloids involved in the 

resulting structural changes occurring during this crucial stage is recommended. 

A non-invasive imaging technique such as scanning electron microscopy (SEM), 

or conf oc al laser scanning microscopy (CLSM) combined with the proper imagine 

analytical software could be used to study the structure of the coating part of batter 

products. This method would complement DSC and Rheological techniques and 

understanding of structural role of batter components and their effect on the overall 

microstructure of the complex food system. Therefore the effects of the interactions 

between the different flours and hydrocolloids on the resulting structure should become 

more evident. The experimental data generated from these tests can facilitate the 

development of a model to predict moisture loss and oil uptake based on the starch­

hydrocolloid matrix networks. 

A further study is vital to investigate the effects ofhydrocolloids on different types 

of starches (wheat, corn, or rice starch, etc.) which swell and gelatinize at different 

temperatures during the heating process. It could also help to understand how cooling 

conditions affect the structure and quality of the cooked batters during frozen storage. 

This would provide complementary information on the physical characteristics of batters 

and their responses to thermal processing. Exploring the effect of different types of flour 
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and their combination ratios, and with addition ofhydrocolloids at different concentration 

on quality of coating such as coating color, texture, fat and moisture contend in the end of 

coated food products. 
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IX. CONTRIBUTIONS TO KNOWLEDGE 

This is the first time that a comprehensive study has been carried out to investigate 

the rheological and physical properties ofbatters formulated by different types of four and 

their combinations with the addition of different types of hydrocolloids at different 

concentrations. The results provide more knowledge about interactions between flours, 

hydrocolloids and other ingredients on rheological and thermal properties that are 

important during processing. The data on batier properties generated from this work can 

be used as an aid in proper selection and formulation of batter systems for different food 

types. The data can also be used in optimizing process and storage conditions. The 

contributions to scientific knowledge are summarized as follows: 

1. The effects of different types of flours and their combination ratios, on thermal 

properties were determined. Thermal properties of batter systems varied with 

different types of flour, and with different flour combination ratios. Gelatinization 

temperatures of batter systems were independent of the ratio by which the flours were 

combined. However, the different flour type combinations and their blending ratio 

greatly changed total entropies for gelatinization. More energy was required to 

gelatinize the batter when they contained high levels of corn flour. Replacement of 

corn or rice flour in wheat-flour-based batters caused glass transition temperature to 

increase and should influence product stability during frozen storage. 

2. The effects of hydrocolloids on thermal properties of batters formulated using with 

different blends of flour in different combination ratio were investigated for two 

different thermal processes. Hydrocolloids increased gelatinization temperature and 

depressed the glass transition temperature of batter. The two different thermal 

164 



processes (cook-freeze-thaw, CFT and freeze-cook, FC) affected glass transition and 

ice melting processes. Cooked samples (i.e. prepare by CFT process) required lower 

temperatures to freeze for adequate frozen storage than did uncooked samples 

(prepared via FC process). Hydrocolloids delayed gelatinization process, especially 

batters containing MC. A lower temperature was required to freeze either uncooked 

or cooked samples during cooling process, as compared with the samples that did not 

contain hydrocolloids. MC had more effect on thermal properties of cooked products 

during cooling and freezing process, but xanthan gum showed more effect on 

uncooked samples during cooling. Hydrocolloids showed more pronounced effects on 

rice, corn, and their combined flour batters than they did on wheat flour based batters. 

3. The effects of different types of flour and their combination ratios on rheological 

properties of batters were examined. Blended flours at different combination ratios 

greatly influenced flow behavior and viscoelastic properties of batters. Corn flour 

batters did not show yield stress. Partial corn flour substitution had a larger effect on 

the viscosity of wheat flour based batters than did rice flour. However, corn and rice 

flours greatly affected viscoelastic properties of wheat flour based batters. Higher 

temperature and longer time was required to gelatinize starch at the higher proportions 

of rice flour (greater than 70%) for each flour mix combination in the batter systems 

tested in this study. 

4. Effect of hydrocolloids on the rheological properties of batter formulated usmg 

combined and different types of flour was elucidated in this study. Addition of 

hydrocolloids greatly increased viscosity and yie1d stress of batters but lowered their 

shear shinning behaviour. Hydrocolloids showed more effect on the flow behavior of 

batters containing rice or corn flours. Xanthan gum at 0.2% concentration in batters 
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increased yield stress in all batters expects for batter containing high level of corn 

flours. CMC increased rice flour starch gelatinization process in batters containing 

high proportional rice flour (greater than 70% of rice flour). Partial replacement of 

wheat with corn and rice flours greatly changed the rheological properties of wheat­

flour-based batters and compounded the action ofhydrocolloids. 

Batters are complex systems. Although the results obtained in this study can be 

general, the commercial user will need to weigh carefully the potential benefits of 

blending flours and adding hydrocolloids. Although addition of hydrocolloids may result 

in superior performance, storage stability, sensory characteristics, consumer preference, 

economics and other product specifie issues need to be considered. 
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