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ABSTRACT

This thesis presents some new analytical tools and methods for the identification

of Hammerstein and parallel-cascade systems which are of particular relevance to the

study of dynamic joint stiffness. Joint stiffness plays a critical role in the control of

posture and movement and it has been extensively used to describe the biomechan-

ics of joints. Consequently, its accurate measurement is important to many research

fields. Dynamic joint stiffness can be modelled as a block oriented nonlinear system

having two parallel pathways: intrinsic stiffness which is due to the mechanical prop-

erties of the joint, muscles and tissues; and reflex stiffness which is due to stretch

reflex mechanisms.

This thesis presents objective methods that advance the ability to quantify stiffness

in three main ways. Firstly, it describes an analytical framework for the accurate

and efficient decomposition of total joint torque into its intrinsic and reflex compo-

nents. This is important since these are generated and change together and cannot

be measured individually. Previous analytical tools used an iterative approach to de-

compose the torque which failed to converge in important experimental conditions.

Secondly, it develops a new state-space model of stiffness with a minimal number

of parameters, each directly related to the individual element of stiffness. This fa-

cilitates the physiological interpretation of identification results. The parameters of

previous state-space models were not explicitly related to the underlying elements.

Thus, while they predicted the torque accurately, they did not model individual com-

ponents of stiffness.
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Thirdly, it provides a solution for measuring stiffness from multiple, short, quasi-

stationary data segments. In functionally important tasks, both pathways become

time-varying or show switching behaviour and so input-output data are non-stationary.

Fortunately, in many cases, the data can be segmented into multiple, short, quasi-

stationary segments with each subset of segments having the same properties. The

new methods identify local time-invariant models for each quasi-stationary subset.

Finally, extensive simulation studies that mimicked important experimental condi-

tions, tested these tools rigorously. When compared with other methods, the new

methods gave more accurate estimates with lower variance and higher resistance to

noise. This thesis also demonstrates the successful application of the new methods

to experimental data. They provided accurate estimates of stiffness in a number

of postural and movement tasks. They also unmasked important properties of the

neuromuscular system and demonstrated how the reflex response is controlled by

modulating both threshold and gain.

The new methods provide a better understanding on how the central nervous sys-

tem modulates stiffness to perform a task. They also have important applications in

assessment, diagnosis, treatment prescription and monitoring of a number of neuro-

muscular pathologies. Moreover, they are general and applicable to other biomedical

systems with block oriented structures.
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ABRÉGÉ

Cette thèse présente de nouveaux outils d’analyse et des méthodes pour l’identif-

ication des systèmes Hammerstein et parallèle-cascade qui revêtent un intérêt partic-

ulier pour l’étude de la rigidité articulaire dynamique. La rigidité articulaire joue un

rôle essentiel dans le contrôle de la posture et du mouvement et a été largement utilisé

pour décrire la biomécanique des articulations. Par conséquent, sa mesure précise est

importante à de nombreux domaines de recherche. La rigidité dynamique peut être

modélisée par un système en bloc avec deux voies parallèles: la rigidité intrinsèque

qui est due aux propriétés mécaniques de l’articulation ainsi que des muscles et des

tissus, et la rigidité réflexe générée par réflexe ostéotendineux.

Les méthodes objectives proposées avancent la capacité de quantifier la rigidité de

trois manières principales. Tout d’abord, un cadre analytique est décrit pour la

décomposition précise et efficace du moment de force articulaire en ses composants

intrinsèque et réflexe. Ceci est important parce que ces composants existent et vari-

ent ensemble et ne peuvent pas être mesurés individuellement. Aussi, les anciens

outils analytiques utilisent une approche itérative pour décomposer le moment de

force qui ne réussit pas à converger face aux conditions expérimentales importantes.

Ensuite, un nouveau modèle à représentation d’état de rigidité est conçu avec un

nombre minimal de paramètres, chacun directement lié à un élément individuel de

la rigidité. Cela facilite l’interprétation physiologique des résultats de l’identification

étant donné que les paramètres des modèles précédents n’ont pas été explicitement

liés à de tels éléments. Par conséquent, ces modèles font une prédiction précise du
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moment de force mais ils ne sont pas capables de modéliser les composants individu-

els de rigidité.

Troisièmement, une solution est offerte qui permet de mesurer la rigidité de multiples

courts segments de données quasi-stationnaires. Ainsi, au cours de tâches fonction-

nellement importantes, les deux voies mentionnées ci-dessus deviennent variables en

fonction du temps ou montrent un comportement de commutation et les données

deviennent non-stationnaires. Heureusement, dans la plupart de ces tâches, les

données peuvent être segmentées en plusieurs courts segments quasi-stationnaires

avec des sous-ensembles de segments ayant les mêmes propriétés. Les nouvelles

méthodes identifient les modèles invariants locaux pour chaque sous-ensemble des

données quasi-stationnaires.

Enfin, les outils proposés sont rigoureusement vérifiés dans le cadre des études ap-

profondies de simulation qui imitent les conditions expérimentales importantes. Les

nouvelles méthodes donnent des estimations plus précises avec une variance plus

faible et une plus grande résistance au bruit, par rapport des méthodes précédentes.

Cette thèse démontre également l’application des nouvelles méthodes aux données

expérimentales avec succès. Ces méthodes fournissent des estimations précises de

rigidité dans un certain nombre de tâches posturales et de mouvement. Elles révèlent

aussi des propriétés importantes du système neuromusculaire et démontrent comment

la réponse réflexe est dirigée par modulation de seuil et de gain.

Les nouvelles méthodes permettent de mieux comprendre comment le système nerveux

central module la rigidité afin d’effectuer une tâche. Elles ont également des appli-

cations importantes dans l’évaluation, le diagnostic, la prescription et le monitorage
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de certaines pathologies neuromusculaires. De plus, elles sont d’ordres généraux et

applicables aux autres systèmes biomédicaux avec des structures en bloc.
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CHAPTER 1
Introduction

Healthy humans perform motor tasks to take care of their bodies and/or to

interact with the environment. Examples include bathing, dressing, eating, and

community mobility [7]. These tasks may be performed without conscious thought

but they involve multiple complex mechanisms, many of them still unknown, working

together to accomplish the task. The neuromuscular system performs and controls

these mechanisms. Thus, the central nervous system sends commands to the periph-

ery that causes muscle contractions. It also constantly receives information about

the state of the periphery, e.g. muscle kinematics (forces exerted on muscles, muscle

lengths and their rates of changes), orientation of the body in space, etc, that it uses

to regulate theses commands [8].

Humans must regulate their joint stiffnesses to effectively interact with the en-

vironment and to smoothly perform these motor tasks, [9]. This is because stiffness

determines the resistance of the joint to an external perturbation before voluntary

interventions in a postural task; it also defines the properties of the load and actuator

that the central nervous system must control to perform a movement [10, 11, 12].

Regulation of joint stiffness is primarily achieved by two mechanisms. The first

involves altering muscle activation or co-activation through neural commands. Thus,

muscles exert forces on a joint to rotate it or maintain a posture. While the forces of

agonist/antagonist muscles subtract with co-activation, it shifts the joint stiffness.
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For example, in an arm wrestling match players strengthen their joint stiffnesses

by engaging muscles and boosting their activations. The second mechanism is by

selection of the joint posture, e.g. maintaining an open angle for the elbow joint

during handwriting. Stiffness regulation can be achieved voluntarily when people

deliberately select a posture or activation/co-activation level or involuntarily when

stiffness is regulated through reflex arcs for fast corrections. The reflex mechanisms

are also modulated with activation level and posture selection [10, 13, 14, 15, 16, 17,

18].

This thesis will focus on ankle joint stiffness. This joint is particularly important

because during many activities of daily living, all interactions between the body and

the environment are exerted as forces and moments at the ankle joint.

Our approach to understand how humans regulate ankle stiffness is by math-

ematical modelling. These models can describe the underlying system and sim-

ulating them can predict their behaviour. This is a non-invasive approach that

can provide valuable insight into how the different elements of the neuromuscular

system function individually and together. Moreover, these models provide objec-

tive methods for the diagnosis, assessment, treatment prescription and treatment

monitoring of neuromuscular diseases that change muscle tone. They are also im-

portant to rehabilitation engineering works related to restoring function of lost or

impaired limbs. Thus, a robot is designed to match the stiffness of the lost or

impaired joint to a normal one. They are also important in the design of robots

interacting with humans, biomimetic robots, and in sports for assessment purposes

[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32].
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One way to construct mathematical models of joint stiffness is to identify them

from measurements of input-output data. This approach is called system identifica-

tion which Lennart Ljung describes as “the art and science of building mathematical

models of dynamic systems from observed input-output data. It can be seen as the

interface between the real world of applications and the mathematical world...” [33].

This approach has been extensively used to obtain models of different neuromuscular

systems [34, 35, 36].

Joint stiffness at the ankle joint can be modelled with a parallel-cascade struc-

ture with intrinsic and reflex pathways. Intrinsic stiffness results from the inertial

properties of the limb and the viscoelastic properties of the joint surface, ligaments,

connective tissues and active muscle fibers. Reflex stiffness is due to changes in

muscle activation as a result of reflex mechanisms [37].

There are three major challenges in identification of the parallel-cascade model:

1. The intrinsic and reflex torques cannot be measured separately and only a

noisy version of their sum can be measured as the net joint torque. Moreover,

the intrinsic and reflex torques change together throughout the experiment.

Consequently, the identification method must decompose the net torque to its

intrinsic and reflex components before identification.

2. The joint posture and/or activation level has significant effects on both path-

ways and so the identified models must account for these modulations in a

nonlinear or time-varying manner. Consequently, underlying dynamics are

complex and requires complex nonlinear or time-varying methods.
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3. The output noise is large so methods must be reliable and robust in the presence

of noise.

The objectives of this thesis are to: (i) develop identification algorithms to effec-

tively decompose the torque to the intrinsic and reflex torques and identify stiffness

during a number of functionally important tasks; (ii) explore the performance of the

methods using simulation studies mimicking realistic experimental conditions;(iii)

demonstrate their utility with experimental data. The main contribution of this

thesis is in the development of improved methods for system identification of the

peripheral neuromuscular system. Nevertheless, these methods can be expected to

provide novel findings and unmask important features of the neuromuscular system.

1.1 Thesis Outline

I present this thesis as a collection of four scholarly articles, 1 published journal

paper, 1 journal paper currently under review and 1 journal article under preparation

as well as 1 paper published in a conference proceeding. I am the first author of all

four papers.

Chapter 2 describes the background materials. It starts by describing the

anatomy and physiology of the neuromuscular system. It then describes the anatomy

of the ankle joint, its bones, movements and muscles. Next, it presents background

information for modelling and identification of biomedical systems. The background

section is not intended to be comprehensive but rather to provide the reader with

general understanding of the methods and mechanisms involved in identification of

ankle joint stiffness.
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Chapter 3 provides a critical review of the literature on experimental and analyt-

ical studies of joint stiffness. Next, it reviews the available methods in the literature

for identification of block oriented nonlinear systems and it finally presents the thesis

rationale.

The main complexity in the identification of ankle joint stiffness is related to

the reflex pathway that has a Hammerstein structure, comprising a static nonlinear-

ity and a dynamic linear system. Chapter 4 develops a state-space model for the

Hammerstein structure and develops the New SubSpace (NSS) method for its identi-

fication. Simulations are used to demonstrate that the NSS method performs better

than other methods described in the literature. Finally, the utility of the method is

demonstrated by using it to identify the reflex EMG response in the plantarflexor

muscles of the ankle. This chapter is published in IEEE Transactions on Biomedi-

cal Engineering authored by K. Jalalaleddini and R. E. Kearney, entitled “Subspace

Identification of SISO Hammerstein Systems: Application to Stretch Reflex Identi-

fication” in 2013.

Chapter 5 extends the NSS method to support the identification from short

segments of data. This was achieved by formulating multiple data segments (versus

single data record of Chapter 4) by incorporating the initial conditions and identify-

ing them together with other parameters. This will have important applications for

time-varying or switched systems. It demonstrates the application of this method

in identification of the EMG reflex response in the ankle plantarflexor muscles when

subjects switched among different postural states during upright stance. This chap-

ter is published in the proceedings of the IFAC System Identification Symposium
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authored by K. Jalalaleddini, F. Alley and R. E. Kearney, entitled “Identification of

Hammerstein Systems from Short Segments of Data: Application to Stretch Reflex

Identification” in 2012.

Chapter 6 extends the NSS method to the Structural Decomposition SubSpace

(SDSS) method for the identification of ankle joint stiffness parallel-cascade model.

The SDSS method decomposes the total measured torque to the intrinsic and reflex

torques in a non-iterative way. It then fits an impulse response function to the

intrinsic dynamics and uses the NSS method to identify the Hammerstein structure

of the reflex pathway. This chapter also demonstrates the validity of the method by

providing a comprehensive analysis in realistic simulation scenarios in comparison

with available methods in the literature. It also demonstrates a successful application

of the method in identifying stiffness as a function of muscle activation level from

experimental data. This chapter is submitted to IEEE Transactions on Biomedical

Engineering authored by K. Jalalaleddini, E. Sobhani Tehrani and R. E. Kearney,

entitled “A Subspace Approach to the Structural Decomposition and Identification

of Ankle Joint Dynamic Stiffness”.

Chapter 7 extends the SDSS method to identify stiffness models from short

segments of data using an approach similar to that used in chapter 5. This would

have important applications in many functional tasks when data are non station-

ary such as in upright stance, movement, etc. This chapter explores the validity of

the method in comprehensive simulation studies that mimic realistic experimental

conditions. The application of the method is also demonstrated in studying proper-

ties of stiffness during an imposed movement task. This chapter will be submitted
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to IEEE Transactions on Neural Systems and Rehabilitation Engineering authored

by K. Jalalaleddini, and R. E. Kearney, entitled “Identification of Dynamic Joint

Stiffness from Multiple Short Segments of Input-Output Data”.

Chapter 8 summarizes the contributions of the findings of this thesis and pro-

vides a general discussion and suggestions for future developments, applications and

improvements.

1.2 Contributions of Authors

Chapter 4:

K. J. designed the algorithm, simulation and experiments, performed the simulation

and experiments, analyzed the data, interpreted the results, drafted the manuscript

and prepared the final version. R. E. K. provided overall supervision and advice

on the design of the algorithm, simulation and experimental studies, assisted in the

interpretation of the result, and provided editorial input in writing the manuscripts.

Chapter 5:

K. J. designed the algorithm and simulation, analyzed the simulation data, inter-

preted the simulation data, drafted the manuscript and prepared the final version.

F. A. designed the experiment, analyzed the experimental data and interpreted the

experimental results. R. E. K. provided overall supervision and advice on the design

of the algorithm, simulation and experimental studies, assisted in the interpretation

of the result, and provided editorial input in writing the manuscripts.

Chapter 6:

K. J. designed the algorithm, simulation and experiments, performed the simulation

and experiments, analyzed the simulation and experimental data, interpreted the
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simulation and experimental results, drafted the manuscript and prepared the final

version. E. S. T. designed the algorithm and experiment and revised the manuscript.

R. E. K. provided overall supervision and advice on the design of the algorithm,

simulation and experimental studies, assisted in the interpretation of the result, and

provided editorial input in writing the manuscripts.

Chapter 7:

K. J. designed the algorithm, simulation and experiments, performed the simulation

and experiments, analyzed the data, interpreted the results, drafted the manuscript

and prepared the final version. R. E. K. provided overall supervision and advice

on the design of the algorithm, simulation and experimental studies, assisted in the

interpretation of the result, and provided editorial input in writing the manuscripts.
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CHAPTER 2
Background

This chapter presents some background information related to the dynamic joint

stiffness identification problem. It starts by describing the physiology and anatomy

of the neuromuscular mechanisms at the ankle joint. Finally, it introduces system

modelling and identification and describes their usefulness in studying biomedical

systems.

2.1 Physiology of the Neuromuscular Systems

2.1.1 Skeletal Muscles

Skeletal muscles are soft tissues and their role is to generate the forces needed to

maintain a posture or perform a movement. They receive motor commands from the

Central Nervous System (CNS) and respond by contracting to produce forces. The

forces are transferred to bones via tendons. Muscles generate forces in one direction

in which they shorten. Thus, they can only pull on their tendons. Consequently,

each joint must be controlled by at least two antagonistic muscles working in opposite

directions. Thus, by activating appropriate muscles, joints resist external forces or

move [38].

A muscle is a bundle of thousands of muscle fibres working together in parallel.

The muscle fibres thin and long cells (diameter as small as 10-100μm and length

as long as 20cm). Each muscle fibre is a bundle of myofibrils that are 1-2 μm in

diameter (Figure 2–1A). Each myofibril contains contractile proteins organized in
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a repeating pattern of thin and thick filaments to form sarcomeres (Figure 2–1B).

A sarcomere is 1.5-3.5 μm long and are bounded by thin bands of protein called

the Z disks. Thick filaments are composed of a contractile protein called myosin,

each surrounded by 6 thin filaments. Thin filaments contain three major proteins:

troponin, actin and tropomyosin (Figure 2–1C). The portion of the myosin that can

interact with the thin filament is called the cross-bridge.

Forces are generated in muscles by the interaction of the thin and thick filaments

in the presence of calcium ions. The muscle fibre membrane (sarcolemma) is an

excitable membrane that can propagate action potentials using mechanisms similar

to those used in neurons. When a muscle action potential is propagated along the

fibre membrane, it releases calcium ions into the sarcoplasm that triggers a chain of

events causing the thick and thin filaments to slide past each other and shorten the

muscle. This mechanism is known as the cross-bridge cycle [3, 1, 39, 40, 41].

Motor Units

The CNS controls muscle fibres via alpha motor neurons. The cell bodies of the

alpha motor neurons are located in the spinal cord and their axons exit the spinal

cord from the ventral root and synapse with muscle fibres. When an alpha motor

neuron fires, the entire innervated muscle fibers contract. The collection of motor

units innervating a muscle is known as the motor neuron pool [42].

A motor unit consists of an alpha motor neuron and all the muscle fibres it

innervates. It is the functional unit of the muscular system. All muscle fibres within

a motor unit are located in the same muscle but are not necessarily adjacent to each

other. Motor units vary in size from a few to thousands of muscle fibres. For example,
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Figure 2–1: (A) A skeletal muscle is a bundle of muscle fibres working in parallel.
Each muscle fibre is itself a bundle of myofibrils that are made of proteins organized
as thin and thick filaments. (B) The special organization of filaments results in a
repeating pattern of sarcomeres that are separated from each other at Z disks. (C) In
each sarcomere, a thick filament is surrounded by thin filaments. Muscle contraction
is achieved by interaction of the thin and thick filaments through the cross-bridge
cycle that brings Z disks closer to each other and results, shortening the muscle.
Adapted from [1].
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in eye muscles (Rectus Lateralis) the average number of muscle fibres per motor unit

is 5 [43] allowing delicate movements of the eye. The number is much larger in the

leg muscles: 600 for the Tibialis anterior muscle and 1800 for the Gastrocnemius

Medialis [44].

Mechanisms of Muscle Force Generation

A twitch is the response of a muscle to a single action potential. The time

interval between its onset and end is the twitch contraction time; it ranges from 10

to 100ms. This time interval is closely related to the time history of the calcium ion

concentration in the sarcoplasm which rises in response to an action potential and

then decreases as it is recycled in the sarcoplasmic reticulum. This limits the muscle

bandwidth and introduces a low-pass dynamic relation between the action potential

firing rate and the generated force [45, 46, 2] (Figure 2–2).

Rate coding is the control of force by action potential firing rate. When the

action potentials are fired faster, the twitch responses overlap and sum. At low

firing rates, the response is oscillatory and is called the unfused tetanus response.

However, at higher firing rates, the motor unit response saturates and is called the

fused tetanus contraction (Figure 2–3).

The other mechanism for force generation is by recruitment of motor units pro-

gressively from the smallest to the largest. There is evidence that the membrane re-

sistance of a motor neuron is inversely related to its surface area. Thus, a small motor

neuron that innervates few muscle fibres has a small surface area and a low threshold

and so is recruited earlier than a bigger motor neuron. De-recruitment follows the

opposite order. This orderly recruitment/de-recruitment pattern is known as the size
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Figure 2–2: Muscles are sluggish and have limited bandwidth. The relation between
the input action potential firing rate and output force can be characterized by a
second-order low-pass filter. Adapted from [2].
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Figure 2–3: A twitch is the response of a motor unit to a single action potential.
When the action potential firing rate increases, the twitch responses sum to increase
the muscle force. This resultant force is oscillatory and called the unfused tetanus
response. If the action potential firing rate is high enough, the motor unit reaches
its force generation capacity and saturates; this is called the fused tetanus response.
Adapted from [3].

principle, first proposed by Hennaman [47] and confirmed by others [48, 49, 50, 51, 52]

(Figure 2–4).

Muscle Fibre Types

Small motor units have small thresholds and are recruited first. There are also

other factors distinguishing small and large motor units. Generally, motor units

can be categorized into two groups: type I units are slow and have a long twitch

contraction time. They are highly resistant to fatigue and are nourished by blood

supply since they have aerobic metabolism and so have a reddish color.

In contrast, type II motor units are large with many muscle fibres. They have a

fast twitch contraction time, their tetanic force is large but they are prone to fatigue.

14



Figure 2–4: Muscle recruitment is achieved by progressive recruitment of additional
motor units to increase muscle force. Motor neurons with smaller surface areas
innervate fewer muscle fibres and have a lower threshold and are recruited easily.
Adapted from [1].
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They have anaerobic metabolism and rely on glycogen stored in their muscle fibres

and have a white color [3, 1].

The proportion of motor unit types in a muscle depends on its function. Since

type I units have lower thresholds, they are recruited first and are mainly used for

low-intensity works such as providing muscle tone or in performing postural tasks.

Type II units fatigue quickly so can provide short bursts of large force. For example,

in the human soleus muscle which is mainly used for postural tasks such as providing

muscle tone during upright stance, almost 70% of the units are type I while there

is only 50% of type I units in the triceps branchii which can exerts bursts of large

forces [44].

2.1.2 Muscle Spindles

A muscle spindle is a sensory organ lying in parallel with skeletal extrafusal

muscle fibres. Consequently, they experience the same length change as the extrafusal

muscle fibres. They provide the CNS with information about the muscle length

and its rate of change. Muscle spindle is one of the main sensory organs providing

proprioceptive feedback for sensorimotor regulation [53, 54, 55, 56].

Each muscle spindle has 3-12 specialized intrafusal muscle fibres (Figure 2–5).

These fibres do not significantly contribute to the muscle force and their role is to

adjust the sensitivity of the sensory organ. Muscle spindles have contractile polar

regions and a non contractile central area. Thus, contraction of the polar regions

pulls on the central region from both ends causing it to stretch and increase the

firing rate of the afferents. The polar region is innervated by gamma motor neurons.

Typically there are three types of intrafusal fibres inside a spindle capsule: a dynamic
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nuclear bag fibre, a static nuclear bag fibre and a number of shorter nuclear chain

fibres. There are two types of gamma motor neurons: dynamic which innervates only

the dynamic nuclear bag fibre, and static that innervates the static nuclear bag fibre

and nuclear chain fibres. The afferents have a spiral form wrapped on the intrafusal

muscle fibre. There are two types of afferents: primary (Ia) afferents are located in

the central region of all intrafusal muscle fibre; secondary (II) afferent are located

adjacent to the central region of the static nuclear bag and chain fibres [57, 58].

Originally, the primary (type Ia) afferents were thought to provide velocity infor-

mation and the secondary (type II) afferents to provide length information. However,

it is now known that both type Ia and II afferents provide velocity and length in-

formation. However, the type Ia afferents are the most sensitive and also provide

acceleration information. An increase in the dynamic gamma motor neuron firing

rate increases the dynamic response of type Ia afferents but has no effect on the

type II response. In contrast, an increase in the static gamma activity, increases the

static responses of both type Ia and II afferents but has no effect on their dynamic

responses [59, 58, 56, 60, 57, 61, 62, 63, 54].

When a muscle shortens, the intrafusal muscle fibres shorten in parallel with the

extrafusal muscle fibres causing the muscle spindles to become slack and insensitive to

external perturbations. This can be prevented by activation of gamma motor neurons

to stretch the intrafusal muscle fibres. This prevents slacking and maintains the

tension. It has been hypothesized that since cell bodies of alpha and gamma motor

neurons are adjacent, gamma motor neurons coactivate with alpha motor neurons to
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Figure 2–5: Muscle spindles are sensory organs located in a capsule structure and
their role is to broadcast their parent muscle length and the rate of change in muscle
length. Spindle nerves are wrapped on intrafusal muscle fibres. Each capsule has
3-12 intrafusal muscle fibers comprising a dynamic nuclear bag fibre, a static nuclear
bag fibre and a number of shorter nuclear chain fibres. These fibres are innervated
by gamma motor neurons. Adapted from [1].
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ensure that information about the muscle length and velocity is continuously relayed

to the CNS. This mechanism is known as the alpha-gamma coactivation [64].

2.1.3 Stretch Reflex

Stretch reflex is one of the spinal reflex mechanisms that is also known as the

deep tendon reflex. In simplified terms, axons of muscle spindles enter the spinal cord

from the dorsal roots. They make monosynaptic excitatory homonymous connections

with the alpha motor neurons of their parent muscles. They also make monosynaptic

excitatory heteronymous connections with other motor neuron pools that have sim-

ilar functions. When a muscle is stretched, muscle spindles fire action potentials. If

the stretch is large enough, the excitatory synapses produce action potentials in the

alpha motor neurons that causes the muscle to contract. This mechanism is known

as the stretch reflex and is illustrated in Figure 2–6 for the clinical knee jerk test.

Muscle spindles also make inhibitory connections to the muscles of their antagonistic

pair through polysynaptic pathways. The circuitry of the stretch reflex mechanism is

very fast thanks to the monosynaptic connections but the information is still relayed

with a significant time delay because of the limited actional potential propagation

speed. For instance, this delay is in the order of 30-50ms at the ankle joint [65].

The circuitry of the stretch reflex arc is extensively studied and well understood

in cats, normal and pathological humans [56, 66, 67]. However, its functional role

in the neural control of movement is not very well understood and is a subject of

debate.
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Figure 2–6: The stretch reflex arc: when a muscle is stretched, muscle spindles
respond by generating action potentials. This response travels to the central nervous
system and excites the alpha motor neurons of the muscles through monosynaptic
connections and results in the contraction of those muscles. It also inhibits the
antagonist muscle through polysynaptic connections. This reciprocal innervation
results in decreased activation of the antagonist muscles. Adapted from [3].
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2.2 Ankle Joint Anatomy

The lower extremity joints are extended from the trunk and their main function

is to support body weight, maintain balance and perform movement. Figure 2–7

illustrates the regions and bones of the lower limbs. The main joints are at the hip,

knee, ankle and toes. The interest of this thesis is on the ankle joint; so we will focus

on its anatomy.

The ankle is a hinged synovial joint located between the distal ends of the tibia

and fibula and the proximal end of the talus (Figure 2–8) [4].

2.2.1 Bones

The three main bones comprising the ankle joint are the tibia, fibula and talus.

The tibia or shin bone is the second largest bone in the body, oriented vertically

within the leg and its both ends are enlarged to provide efficient areas for articulation

and weight transfer. The fibula lies posterolateral to the tibia but does not contribute

to weight bearing. Its main function is to provide sites for muscle attachments (one

muscle insertion and eight origins). The distal ends of both the tibia and fibula flare

and are called the malleoli, the medial malleolus at the tibia and the lateral malleolus

at the fibula (Figure 2–9). The talus has a body, neck and head. Its body articulates

with the tibia and fibula; its superior surface articulates with the tibia at the medial

malleolus and its lateral surface articulates with the fibula at the lateral malleolus

(Figure2–7). It has no muscular or tendinous attachments and most of its surface is

covered with articular cartilage.
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Figure 2–7: The anterior view of the regions and bones of the lower limbs. Adapted
from [4]. 22



Figure 2–8: The lateral view of the ankle joint bones. Adapted from [5]
.
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Figure 2–9: The anterior view of the tibia and fibula bones. Adapted from [5].
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2.2.2 Movements

The main movements at the ankle joint are dorsiflexion and plantarflextion.

Dorsiflexsion is flexion of the ankle joint, i.e. the toes are brought closer to the

shin, e.g. walking on the heels, lifting the foot during walking. Plantarflexion is

the opposite of dorsiflexion, e.g. pushing a car’s gas pedal or standing on tiptoes

(Figure 2–10).

The dorsiflexing range of motion of the ankle from its neutral position (foot

positioned at a right angle to the shin) is smaller than its plantarflexion range. This

is because of the resistance of the plantarflexor muscles to stretching and tension

in the medial and lateral ligaments. Boone et al. examined the range of motion

(ROM) of 56 male subjects aged between 19-54. The reported ROM average and

standard deviations were 54.3(5.98)˝ for plantarflexion and 12.2(4.1)˝ for dorsiflexion

[68]. Another study on 96 male Swedish subjects reported that ROM was 39.7(7.5)˝

and 15.3(5.8)˝ for plantarlexion and dorsiflexion respectively. [69]. Some studies

have shown that the ankle ROM increased with passive stretching of the calf muscles

[70, 71].

2.2.3 Muscles

The main muscle responsible for the ankle dorsiflexion is the Tibialis Anterior

(TA). It lies against the lateral surface of the tibia and is innervated mainly from

the fourth lumbar segment of the spinal cord [4]. The proximal attachment of the

TA muscle is on the tibia. The distal attachment is through the long TA tendon

whose origin is halfway down the leg and attaches to the medial side of the foot

(Figure 2–11).
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Figure 2–10: Dorsiflexion and plantarflexion movements of the ankle joint. Adapted
from [5].

The main muscles responsible for the ankle plantarflexion are the Gastrocnemius

and Soleus which are together called the Triceps Surae (TS) or calf muscle. The

Gastrocnemius is a bi-articular muscle that attaches to the proximal side of the

femur and has both medial and lateral heads (Figure 2–12). They share the calcaneal

tendon with the soleus muscle at the distal side that is attached to the heel bone.

The calcaneal tendon, also called the Achilles tendon, is the strongest tendon in the

body. The TS is innervated mainly from the first and second sacral segments of the

spinal cord.

The ankle dorsiflexor muscles lift the toes whereas the ankle plantarlexor muscles

lift the whole body during upright stance or locomotion. Consequently, the ankle
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Figure 2–11: The anterior view of the lower leg muscles. Adapted from [5].
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Figure 2–12: The posterior view of the lower leg muscles. Adapted from [5].
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plantarflexor muscles are much stronger than their antagonists (almost four times

stronger) [4].

2.3 Modelling and Identification of Biomedical Systems

One approach to the study of biomedical systems is through mathematical mod-

elling. Mathematical models are useful since they can give insight on how the system

works and may provide physiological interpretations. They predict the system output

to the input used to train the model or to other novel inputs; they have important

applications in simulations to make prediction about the system and in designing

controllers. One approach to construct mathematical models is through identifica-

tion of the model using input output data measurement.

2.3.1 System Modelling

There are two approaches in modelling biomedical systems. The bottom-up

approach starts by modelling simple subsystems and piecing them together to give a

more complex system. In this approach, each subsystem is modelled in details using

known laws. These are then linked together according to the physics of the system

until a complete top-level system is obtained [72]. For example, Niu et al. used

models of the muscle spindle, spiking neurons, neural synapses and skeletal muscles

to construct a model of the stretch reflex arc [73]. Each sub model was derived

from previous studies of individual elements. This approach provides models with

parameters that have physical significance and are directly related to the properties

of the system. However, model development may be extremely difficult due to the

detailed level of the analysis and complexity of the interactions between different

subsystems. The models maybe heavily over-parameterized, i.e. many parameters
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cannot be measured or identified from the input-output data. Many parameters are

lumped together to predict the final response so different sets of parameter values

might give the same output. Furthermore, individual models of each subsystem

identified from previous studies may not hold when that subsystem is interacting

with others in function. Consequently, this approach has limited applications in

studying biomedical systems.

The top-down approach, on the other hand, constructs models from measured

experimental data, often using system identification techniques. These models have

often fewer identifiable parameters and provide a concise description of the input-

output data. However, the parameters may be more difficult to relate to the original

properties of the system but they may provide an overall description of the underlying

physiology. For example, the parallel-cascade model of the ankle joint stiffness is

obtained from experimental data using a top-down approach [37]. Each parameter

is not explicitly related to the actual physiology and is a combination of several

parameters. However, this model has provided useful physiological interpretation of

the overall role of the peripheral neuromuscular system in function [65].

In the context of system identification, there are two model structures: non-

parametric and parametric models. A non-parametric model does not make a priori

assumption about the underlying dynamics. It has been extensively used for mod-

elling biomedical systems such as biomechanics of many human body joints (ankle,

arm, trunk, wrist), intracellular calcium concentration in muscle fibres, bladder hy-

drodynamics, auditory system, vestibular ocular reflex system, lung tissue mechanics

and many others [37, 74, 75, 76, 77, 78, 79, 80, 81, 82]. The main problem is that
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they may have large number of parameters. So, the routines used for their identifi-

cations deteriorate quickly in the presence of noise and this is inevitable when the

data length is short and the number of unknown parameters is large [83].

Parametric models, on the other hand, require a priori information about the

underlying system, e.g. model structure, order, etc, and often have few parameters.

There is large body of work on parametric modelling primarily for modelling me-

chanical, electrical and economical systems where the model structure is known but

the parameters are unknown. Thus, the main application of this approach has been

in control engineering where the objective is to have a simple, concise and easily

manipulated model to design an appropriate controller. However, this approach has

been assumed to be less appropriate for biomedical systems because the modeller

often does not have the necessary a priori information especially at the very first

attempts. The two main parametric models of linear dynamic systems are Transfer

Functions (TF) and State-Space (SS) models. In the sequel, we present different

non-parametric and parametric model structures used for linear and nonlinear sys-

tems.

Models of Linear Dynamic Systems

In a dynamic system, current output depends not only on current input but also

on previous values of input, i.e. the system has memory. In a linear system, the

superposition and scaling principles hold.

Impulse Response Function (IRF) is the response of a system to a unit impulse;

it is a non-parametric model. The impulse input is zero everywhere except at zero

with an integral of one over the entire time. The response of a linear system to an
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arbitrary input can be predicted from its IRF using the convolution integral:

ycptq “ hc ˚ uc “
ż 8

t“´8
hcpτqucpt ´ τqdτ (2.1)

where ucptq and ycptq are the continuous time input and output of the system and

hcptq is the IRF.

Since data are always recorded in discrete time in computers, the convolution

sum gives the system output:

ydpkq “ hd ˚ ud “
8ÿ

l“´8
hdplqudpk ´ lq (2.2)

where upkq and ypkq are the discrete time input and output signals and hdpkq is the

discrete IRF.

In practice, the lower/upper limit of the convolution integral/sum of (2.1,2.2) is

not infinity and bounded by the system memory. Consequently, the system memory

determines the total number of model parameters. The IRF has proven to be a

convenient way to model time-delayed, short memory and non-causal systems [72].

State-Space Models

Every realizable linear dynamic system has a State-Space (SS) representation

which relates the system output to the input and state vectors by a set of first-order

differential equations: $’’&
’’%

9Xptq “ AXptq ` Buptq

yptq “ CXptq ` Duptq
(2.3)

where Xptq is the state vector that might have a physical meaning (depending on the

SS realization) and A, B, C, D are the state-space matrices (system parameters).
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Figure 2–13: Signal flow graph of a linear state-space model.

The minimum number of state variables required to represent the system is the

system order. The SS representation is a parametric model but has equal or more

parameters than a transfer function but often fewer parameters than non-parametric

models.

Figure 2–13 shows a block diagram representation of a state-space model that

makes it clear that SS models can be easily converted to transfer functions:

Hpsq “ Y psq
Upsq “ CpsI ´ Aq´1B ` D (2.4)
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The similarity transformation states that for an arbitrary full rank matrix T ,

the state-space model with matrices AT , BT , CT , DT is equivalent to (2.3) where:$’’’’’’’’’’&
’’’’’’’’’’%

AT “ T´1AT

BT “ T´1B

CT “ CT

DT “ D

(2.5)

Consequently, the SS representation is not unique and the original A,B,C,D matri-

ces cannot be recovered.

SS models for discrete time signals have the form:$’’&
’’%
Xpk ` 1q “ AXpkq ` Bupkq

ypkq “ CXpkq ` Dupkq
(2.6)

Models of Static Nonlinear Systems

The output of a static nonlinear system depends only on the current value of the

input while superposition and scaling principles do not hold. A static nonlinearity

can be modelled using a closed-form equation or using general basis expansions such

as power, Tchebychev, etc polynomials. Polynomials provide a straight-forward tool

to model static nonlinearities.

Power Polynomials

34



A power polynomial represents an arbitrary static nonlinearity using a sum of

finite-order monomials of the input signal:

ŷpkq “ λ0 ` λ1upkq ` ¨ ¨ ¨ ` λpu
ppkq “

pÿ
j“1

λju
jpkq (2.7)

where p is the order of the power polynomials and λj is its coefficient. The power

polynomials are not the best basis expansions to use since they are not orthogonal

and their estimation may become prone to errors. Thus, the estimation methods may

become ill conditioned, i.e. condition number of the least-squares regressor become

large.

Tchebychev Polynomials

Tchebychev polynomials are orthogonalized over the input range r´1, 1s. A

static nonlinearity is approximated with Tchebychev polynomials as follows:

ŷpkq “
pÿ

j“1

λjgjpupkqq (2.8)

where gjpupkqq is the j-th Tchebychev polynomial defined as:

gjpupkqq “ j

2

t j
2

uÿ
m“0

p´1qm
j ´ m

¨
˚̋ j ´ m

m

˛
‹‚p2upkqqj´2m (2.9)

Tchebychev polynomials are frequently used to approximate static nonlinearities be-

cause they are orthogonalized, are easy to use and their estimations do not require

complex mathematical analysis. However, Runge’s phenomenon states that esti-

mates oscillate at the edges of the input interval and even higher order polynomials

do not improve the accuracy [84]. Oscillation of Tchebychev polynomials may hinder
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accurate identification of static nonlinearities, especially those with sharp transitions

in their slopes. Consequently, the modeller cannot accurately recover the points of

interests that may have physiological meanings.

Block Oriented Nonlinear Systems

Block Oriented NonLinear BONL structures are a class of nonlinear, dynamic

systems constructed by combining linear dynamic and static nonlinear elements [85].

The linear element can be represented using parametric or non-parametric models.

The nonlinear block can be represented in a closed form or using basis expansions.

A Hammerstein structure consists of a static nonlinearity followed by a linear

dynamic system (Figure 2–14(A)). The Hammerstein structure was introduced by A.

Hammerstein in 1930 [86] and became useful in modelling variety of physical systems

including biomedical ones and is extensively used in this thesis. Examples include

the reflex stiffness pathway of the human ankle joint [37], the neural integrator

model of the human vestibular ocular reflex [87], the human smooth pursuit eye

movement model [88], the visual cortex model for processing of image luminance

and movement [89], the mechanical behaviour of lung tissues [81], chemical processes

[90], the electrically stimulated muscles [91], aeroelastic systems [92] and many other

biomedical and non-biomedical systems.

A Wiener structure is the cascade of a linear dynamic system and a static

nonlinear element (Figure 2–14(B)). It was introduced by N. Wiener [93] in 1958 and

has been used to model biomedical systems including models of neural processing [94],
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neural activity of semicircular canals [95], muscle mechanics [96], chemical processes

[97] and many others.

Other class of BONL systems is sandwich structures. Thus, a Hammerstein-

Wiener model consists of a static nonlinearity followed by a linear block followed

by a second static nonlinearity (Figure 2–14(C)) and a Wiener-Hammerstein model

consists of a linear dynamic system followed by a static nonlinearity followed by a

second linear block (Figure 2–14(D)).

Parallel-cascade models are also an important class of BONL systems. Any

finite-dimensional nonlinear dynamic system can be estimated with parallel paths of

Wiener-Hammerstein structures [98]. Others showed that a structure with parallel

paths of Wiener models can also estimate any system within an arbitrary small error

[99, 100, 72]. Moreover, some biomedical systems have parallel-cascade structures in

nature. For example, joint stiffness can be modelled with a linear pathway in parallel

with a Wiener-Hammerstein system [37].

2.3.2 System Identification

System identification provides tools and methods to build mathematical models

from measured input output data. It gives guidelines on the design of experiments to

provide useful data. Typically, a model structure (non-parametric or parametric) is

considered and a system identification routine tunes the parameters of the model to

fit the data by optimizing certain cost functions. Identified models are then validated

by inspecting the errors of the parameters, model residuals and their performance in

response to novel inputs. If not satisfactory, previous steps must be revised. Thus,

system identification is iterative with new discoveries at each iteration [101, 102].
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Figure 2–14: Models of block oriented nonlinear systems: (A) a Hammerstein struc-
ture consists of a static nonlinearity followed by a linear dynamic system; (B); a
Wiener structure is the cascade of a linear dynamic system and a static nonlinear
element; (C) a Hammerstein-Wiener model consists of a static nonlinearity followed
by a linear block followed by a second static nonlinearity; (D) a Wiener-Hammerstein
model consists of a linear dynamic system followed by a static nonlinearity followed
by a second linear block.
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Identification of biomedical systems is a challenging task since they are com-

plex, nonlinear and time-varying in nature with little available a priori knowledge.

For example, joint stiffness dynamics continuously change in time during upright

stance [103] or subjects easily develop muscle fatigue if asked to provide large muscle

contractions for a long period of time [104, 105].

Impulse Response Function

The difficulty in the identification of the IRF is that it is not physically pos-

sible to deliver an impulse to the system since impulse is not realizable. There

are different approaches to identify IRF models. The least-squares regression is the

most straightforward analytical approach but computationally expensive [72]. The

correlation technique decreases the computational load by reducing the size of the

least-squares regressor [106, 107]. The pseudo inverse approach is also useful with

highly coloured inputs and at the same time robust to the output noise [108, 109, 110].

Most of the IRF identification routines suffer from biases when they are estimated

from data recorded in the presence of a feedback, i.e. from a closed-loop system.

State-Space Models

Identification of State-Space (SS) models belongs to parametric identification

methods and is the main focus of this thesis. SS models were introduced in the

1950’s and became very popular after the development of Kalman filtering in the

1960’s. Unlike transfer functions, identification of state-space models is a relatively

young domain and started in the 1990’s. There are different types of SS identification

routines but since they all estimate a subspace and use that to estimate the state-

space matrices, they are called the subspace methods [111].
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Three popular subspace methods were developed in parallel in the 1990’s: the

Canonical Variate Analysis (CVA) method developed by Larimore in 1990 [112],

Multivariable Output-Error State-sPace (MOESP) originally developed by Verhae-

gen and Dewilde in 1992 [113] and the Numerical algorithms For Subspace state-space

system IDentification (N4SID) developed by Overschee and De Moor in 1994 [114].

Overschee and de Moor subsequently demonstrated that the differences of the meth-

ods are insignificant in the limit and they all represent cases of one unifying theorem

[115].

In this thesis we chose to use the MOESP method because of a number of

appealing features:

1. it estimates the order of the system before identification. This is critical for

biomedical systems where a method requiring little a priori information is

preferable.

2. The number of SS parameters is considerably less than non-parametric IRF

models. This is expected to increase the method’s precision in the presence of

noise.

3. It is computationally efficient and available in the free SMI MATLAB toolbox

[116, 117].

4. It has been extended to BONL structures, including Hammerstein [118] and

Wiener systems [119].

5. With small modifications, it works well under closed-loop condition which is

the case in identification of stiffness when a joint interacts with a compliant

load [120].
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6. It has been successfully applied to the joint stiffness identification problem for

the intrinsic stiffness identification [121], and parallel-cascade model identifica-

tion both in open-loop and closed-loop conditions [122].

MOESP uses Instrumental Variables (IV) to extract the system state-space

matrices from the noisy data. The IVs need to satisfy two conditions: (i) full rank

and correlated with the state vector; (ii) uncorrelated with the noise. Different IV

candidates have been suggested for MOESP. The Past Input (PI) and Past Output

(PO) IVs successfully identify the system from data recorded in open-loop [113, 123].

The reference input together with the PI and PO IVs successfully identify the system

from data recorded in closed-loop [120].

MOESP works by first identifying the extended observability matrix. The col-

umn space of this matrix is equal to the column space of a matrix comprising the

state vectors. Thus, a singular value decomposition estimates the minimum number

of columns (system order) required to accurately estimate the state vector up to a

similarity transform. Once the state vectors are identified, a two-stage algorithm es-

timates the state-space matrices. The first stage uses linear least-squares to estimate

the A and C matrices (up to a similarity transform). These estimates of A and C

are then used at the second stage to form a linear least-squares problem to identify

the B and D matrices. For a full description of MOESP and its implementations

refer to [102, 116].
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CHAPTER 3
Literature Review

This focus of this thesis is on developing tools to identify dynamic joint stiff-

ness. Consequently, this chapter starts by defining joint stiffness and explaining

challenges in its measurement. It then presents a review of the experimental and

analytical approaches that have been used to study joint stiffness. Next, it presents

a mathematical model for joint stiffness and how this model is modulated in differ-

ent experimental conditions. Then, it describes the strengths and weaknesses of the

analytical methods that can be or have been used for identification of stiffness and

ends by giving the thesis rationale.

3.1 Dynamic Joint Stiffness

3.1.1 Definition

Dynamic joint stiffness defines the dynamic relation between the position of

a joint and the torque acting about it [19]. Joint stiffness is important because

it determines the resistance of the joint to external perturbations before voluntary

interventions during maintenance of a posture. It also defines the properties of the

load and actuator that the central nervous system must control when performing

movements [13, 19, 124, 125].

Dynamic joint stiffness has been used to describe joint biomechanics. However,

a number of other terms have also been used and it is important to differentiate.

Stiffness (versus dynamic stiffness) has been used to describe the static properties of
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joints, muscles, tendons and ligaments. Thus, stiffness refers to the elastic property

and describes the elastic deformation and storage of elastic energy. Compliance is

the inverse of stiffness and also describes only static properties [126]. Impedance

defines the dynamic relation between the velocity (versus position) of a joint and its

torque and admittance is its inverse [127, 128].

These terms have been used in various ways in the literature. Stiffness has

been described as the ratio of torque (force) over length [10]. This relationship

only gives one point on the force length curve and so is computing a response not

a functional relationship. Even if stiffness were linear, at least two points would

be required to estimate stiffness. Stiffness (compliance) has been used to explain

the relationship between the position (torque) and torque (position) increments at

different latencies during the time-course of position (torque) perturbations [129, 130,

20, 131]. Stiffness and compliance define only the static properties, those related to

the elastic parameter at the steady-state, and their estimates during the time-course

of the perturbations do not have a significant physical meaning. This value has

also been referred to as the quasi-stiffness. This approach may predict the output

correctly, but only to the very same input used for its estimation. Thus, this estimate

must be given together with the input type and its characteristics, e.g. ramp-and-

hold and its velocity. Impedance and admittance have also been used to describe

the dynamic relation between the joint position (versus velocity as officially defined)

and torque [132, 133, 134].
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Figure 3–1: Joint stiffness can be modelled as a system with intrinsic and reflex
stiffness pathways working in parallel.

Dynamic joint stiffness can be modelled as a system with intrinsic and reflex

stiffness pathways [19]. Intrinsic stiffness arises from the mechanical (visco-elastic-

inertial) properties of the joint, active muscles and passive tissues (tendons, lig-

aments, etc). Reflex stiffness arises from changes in the joint torque due to the

activation of muscles by reflex mechanisms. When the stretch reflex mechanism

(Section 2.1.3) is the main mechanism contributing to the reflex stiffness, it can be

modelled as a feed forward pathway in parallel with the intrinsic stiffness pathway

(Figure 3–1).

Dynamic joint compliance can also be modelled as a system with intrinsic and

reflex stiffness pathways. When the stretch reflex mechanism is the main mechanism

contributing to the reflex stiffness, it can be modelled as a feedback (Figure 3–2).

3.1.2 Decomposition of the intrinsic and reflex pathways

It is important to distinguish between the intrinsic and reflex mechanisms. In

studying biomedical systems, the goal is to understand how the system functions.
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Figure 3–2: Joint compliance can be modelled as a system with intrinsic and reflex
stiffness pathways with the reflex stiffness pathway as a feedback.

Thus, a model is preferred when it provides maximum insight about the underlying

system.

Distinguishing the pathways is also significant when models are used for diagno-

sis purposes. For example, [135] showed that the reflex torque of spastic subjects was

much larger than that of normal subjects while the intrinsic torque was not altered

as much.

Accurate assessment of the increased stiffness and identification of its origins

is important to prescribe a correct treatment. For example, injection of botulinum

toxin-A is often the first-line treatment for spasticity which is attributed to the

increased reflex response [136]. However, Aluhsaini et al. showed that this treatment

did not help when the origin of the increased stiffness was mechanical [23]. Rather,

other methods such as orthopedic surgery or orthotic management could be used

[137, 138]. Accurate decomposition is also important to study the recovery patterns

for treatment monitoring purposes [139].

45



The intrinsic and reflex torques change together and are not individually avail-

able for measurement. This makes the decomposition a challenging task. Thus, a

number of experimental and analytical methods have been developed for this decom-

position.

Two-Trials Experiments

Several experimental techniques have been implemented to separate intrinsic and

reflex contributions using a two-trials experimental scheme: one with and one without

reflex activity. Thus, identical position perturbations were delivered to the joint and

difference between the measured torques of these two trials gives the reflex torque.

Electrical stimulations [20, 140, 10, 141], ischemia induced by an inflated pneumatic

cuff fitted around the limb [142, 143, 144], and vibration of muscle tendons have

been used to suppress the reflex activity in the second trial [142, 145, 146]. These

techniques have been applied to the ankle and knee.

Some animal studies performed on cats and monkeys cut the nerve supply [147,

10]. Muscle deafferentation also eliminated the reflex response while preserving the

voluntary drive by cutting the corresponding dorsal spinal roots to remove the sensory

input [148, 149, 150, 151].

These experimental approaches have several drawbacks:

It is extremely difficult to match muscle activation levels between the two trials.

First of all, subjects might reach a different voluntary activation level in the presence

of reflex response since the reflex response adds an offset to the final torque. Second,

co-contraction is sometimes inevitable especially when electrical stimulations are
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applied to match the activation levels. Any mismatch between the activation levels

of the two trials will bias the estimates.

Intrinsic and reflex pathways cannot be considered as independent pathways

and must be studied together. This is because intrinsic stiffness is a function of the

number of cross bridges which is increased by the reflex response [152, 15, 153]. For

example, intrinsic stiffness was different in the two trials even when subjects were

instructed to be relaxed [154].

Techniques such as muscle deafferentation and nerve blocking are invasive and

not appropriate for human studies.

EMG Signals

EMG signal has been used as an intermediate signal to decompose the pathways.

Since EMG is a measure of muscle activation, it is not affected by the intrinsic

response. Thus, this signal has been used to guide the decomposition.

EMG signal has been used identify biomechanics of the arm [134, 155], ankle

[156, 157, 158, 159, 132] and trunk [160]. In some cases, the relation between the

joint position and EMG signals was referred to as the “reflex impedance” [133, 160].

Others used activation dynamics to estimate the reflex torque from EMG signals; this

was achieved by (i) using a priori activation models from previous studies as a first

or second-order low-pass filter [156, 134, 155]; (ii) identifying activation dynamics

from EMG-torque in a separate trial by instructing the subject to perform isometric

contractions at a range of activation levels [133].

Despite the utility of EMG signals, this approach has several drawbacks:
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1. EMG does not represent the biomechanics of joints. Thus, the use of “reflex

impedance” to described the position-EMG relationship cannot be justified.

2. The relationship between EMG and torque is complex and not well understood

except for isometric conditions. Even this form of relationship is controversial

and has been modelled as static, dynamic, linear and nonlinear systems in the

literature [161, 162].

3. EMG is a spatial and temporal filtered version of the activation of the un-

derlying motor units. Thus, electrode placement significantly changes the am-

plitude and dynamics of EMG [163, 164]. For example, it is not possible to

relate changes in the reflex gain to the underlying dynamics or to the electrode

location. Consequently, it is difficult to compare estimates among subjects or

from controls to patients.

4. Cross-talk between EMG signals of the synergistic muscles or antagonistic mus-

cles is inevitable [165]. This will deteriorate the confidence of the estimates.

5. Motor units are synchronized during the reflex response and this results in large

EMG spikes [166]. Activation dynamics identified from voluntary isometric

contractions might not hold for synchronized EMG reflex response.

6. EMG has two components when the joint is perturbed: (i) background noise

that scales with the level of the voluntary drive and (ii) the response of the

reflex mechanisms. Consequently, using EMG as the input of a system for

identification purposes must be performed with extra caution since the very

first assumption of many identification routines is a noise-free input [101].
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Analytical Approaches

A number of system identification algorithms have been developed to decompose

the intrinsic and reflex torques. Kearney et al. benefited from the delay of the reflex

path. They used an IRF model for the intrinsic path whose length was smaller than

the reflex delay. Thus, they proposed the use of an algorithm that fits the intrinsic

and reflex pathways iteratively [37]. Despite its utility, this iterative method did not

consistently converge to the true system [122]. Thus, Ludvig et al. proposed the

use of a well designed position input signal that when excited the system, resulted

in near zero correlation of the intrinsic and reflex torques. Thus, they could avoid

the iteration and the convergence problems [167]. The method was limited to only

that well designed input. Zhao et al. considered an a priori parametric model of

the intrinsic stiffness and proposed a non-iterative subspace approach [168]. The

main issue was that it could not capture complex dynamics of the intrinsic stiffness

that arise because of the complex musculotendon structure or dynamics of the joint

fixation to the actuator that delivers perturbations to the joint.

Accurate decomposition of the intrinsic and reflex torques is still an important

open problem that I will address in this thesis. I will use an analytical approach

to decompose the pathways. The main advantage of this approach is that it is

noninvasive and can decompose the torque from its noisy measurement even when

the intrinsic and reflex responses are changing together. It does not require an

intermediate signal, e.g. EMG, and requires little a priori information.
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3.1.3 Measurement of Joint Stiffness

Once the torque is decomposed to the intrinsic and reflex torques, the objective

is to estimate the models. Accurate measurement of joint biomechanics is significant

in a variety of research areas. It sheds light on the functional role of different cir-

cuitries and elements of the neuromuscular system. It provides objective tools for the

diagnosis, assessment, treatment prescription and monitoring of neuromuscular dis-

eases. It provides models to rehabilitation engineers to design orthotic or prosthetic

robots for the purpose of dexterous interaction with the environment. Moreover,

accurate models of stiffness play a key role for stable design of robots controlled

remotely by human operators. Consequently, accurate measurement of stiffness is of

interest to many fields. This section provides a critical review on the methods that

have been used to measure joint stiffness in a variety of tasks and comments on their

validities, strengths and weaknesses.

Ratio of Torque over Position Increments

The ratio of torque increment over position increment in the time-course of

the perturbations, or at certain latencies after the onset of a perturbation (usually

ramp-and-hold) has been used as a measure of joint stiffness [169, 129, 130]. Some

calculated stiffness at a latency when the reflex response was insignificant [71, 170,

171]. If the reflex stiffness was also of interest this ratio was calculated at the latency

when the reflex response was thought to be maximum [20, 131].

This approach has major drawbacks. First, the ratio of the torque over position

increment at the steady-state (equilibrium) depends on the type of perturbation

and changes dramatically with the type of the ramp-and-hold perturbation (velocity,
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amplitude). Moreover, division of the increments at a single point in time is prone

to inaccuracies due to noise [129]. Consequently, using this approach, some studies

reported negative values for stiffness that seems unreasonable [172, 173].

Linear Time-Invariant Identification Techniques

Linear techniques have been extensively used to characterize joint biomechan-

ics. The basic assumptions are that the underlying dynamics are linear and time-

invariant (stationary conditions). However, there is strong evidence that stiffness is

time-varying and nonlinear. Thus, these techniques can be applied only in specially

designed experiments where the assumptions can be satisfied.

The main challenge is measurement of the reflex stiffness. This is because of

its highly nonlinear dynamics due to the the uni-directional rate sensitive muscle

spindles. For example, stretching the ankle’s plantarflexor muscles elicits a reflex

response but there is little or no reflex when stretching the ankle dorsiflexor muscles

[37]. Consequently, regardless of how close the system is to its operating point, reflex

response stiffness is always nonlinear.

Linear identification techniques have been used to study stiffness in the absence

of reflex activity when the joint is perturbed around its operating point. This tech-

nique estimates stiffness when the joint is interacting with both stiff and compliant

loads. When the load is stiff, the joint torque in response to position perturbations

cannot change the position. Since there is no feedback, this experimental condition

has been referred to as the open-loop condition. This experimental condition can

describe numerous functional postural and movement tasks (e.g. sitting or eccentric

contraction of the arm, etc). Thus, any linear identification technique can estimate
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stiffness provided that perturbations persistently excite the dynamics. Both sinu-

soidal and stochastic perturbations have been applied to the ankle [174, 175, 176],

jaw, elbow, knee and other joints using this approach [151, 177, 178, 179, 180].

When the load is compliant, the joint torque (in response to position perturba-

tions and due to voluntary mechanisms) changes the joint position. This experimen-

tal condition has been referred to as the closed-loop condition. It describes many

functional postural and movement tasks (e.g. upright stance, cycling, etc). Stiffness

measurement is difficult since most of the methods are not designed to work for data

gathered from closed-loop systems. The main problem is that the input and noise

become correlated which violates the assumptions of many identification methods.

Limited numbers of works have considered this condition with care. Kearney and

Hunter first detected this possible problem and suggested a linear frequency response

identification solution based on cross-spectra analysis [19]. One study quantified the

bias error of open-loop identification techniques for closed-loop data and concluded

that it is minimal for inertial loads and increases with the load elasticity [181]. The

closed-loop frequency response approach has been successfully applied to the ankle

joint with relaxed muscles [182] as well as the arm [74, 133]. A parametric transfer

function approach was implemented in [183] and showed that the arm intrinsic stiff-

ness did not change with the load damping [183, 184]. An impulse response function

identification method has also been developed but no further experimental results

have been reported from this group [185].

The linear, time-invariant identification technique has also been used to study

stiffness in the presence of reflex response. This approach uses simple, parametric,
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linear models of the sensory organs (muscle spindle and golgi tendon organs) that

feedback joint position, velocity, acceleration and force, each with a scalable gain,

through activation dynamics to the torque. This approach has been used on both

the arm and ankle joints [132, 133]. The main issue is that the reflex pathway is

highly nonlinear and cannot be linearized especially at the ankle. So, the system

parameters will be estimated incorrectly. For example, this approach identified an-

kle reflex parameters such that muscle spindles became inhibitory and golgi tendon

organs became excitatory which is in contrast with the general belief of their role

and physiology [132, 134].

The use of linear time-invariant techniques for stiffness identification is appro-

priate provided that these assumptions are satisfied. Thus, it can be used during

quasi stationary conditions when the reflex response is insignificant or absent. When

the reflex response is significant, the model becomes nonlinear and nonlinear tech-

niques must be employed. Also, when changes in the joint operating point are large,

the system exhibits nonlinear or time-varying behaviours and thus nonlinear and

time-varying techniques must be employed.

Linear Time-Varying Identification Techniques

Linear time-varying techniques have been used to characterize intrinsic stiffness

in conditions when changes in the operating point (position or activation level) are

large, e.g. movement. Two types of conditions and techniques have been used in

the literature: (i) the same time-varying behaviour can be repeated many times, i.e.

periodic tasks; (ii) the time-varying nature is not periodic but changes as a function
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of a measurable signal such as the operating point. As with the linear time-invariant

approach, these methods cannot quantify the reflex pathway either.

Lee and Hogan quantified intrinsic stiffness at the ankle during walking on a

treadmill with a fixed speed [186]. Perturbations were delivered to the ankle joint

using a wearable robot in the dorsiflexion/plantarflexsion and inversion-eversion di-

rections. Since the joint operating point is periodic during walking with constant

speed, the technique developed in [187, 188] estimated stiffness from ensembles of the

input-output data records. Furthermore, they reported that there was no reflex ac-

tivity and thus, the linear assumption was valid. Yangming and Hollerbach extended

the ensemble method for parametric identification of human elbow joint [189]. Ludvig

and Perreault improved the non-parametric ensemble method to efficiently deal with

noise and short data segments [190]. They further improved their method by adding

an instrumental variable to handle the closed-loop condition and reported how the

elbow and knee intrinsic stiffness changed in the course of a sinusoidal movement

[191, 192].

The main drawback of this approach is that it requires many ensembles of input-

output realizations with the same time-varying nature. This might be difficult to

obtain in real experiments and thus realizations must be inspected carefully and

those with high variability must be discarded. It also requires many realizations to

provide accurate estimates [193]. Furthermore, models identified from this approach

cannot be used to predict stiffness in tasks with different time-varying natures.

If qualitative information on the time-varying nature of the system is known,

Linear Parameter Varying (LPV) methods can be employed. This approach assumes
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that stiffness changes as a function of a signal called the scheduling variable which

can be measured or estimated. Eesbeek et al. used an LPV method and measured

wrist stiffness in an activation varying task [194]. Sobhani et al. used a similar

approach to measure ankle stiffness in a position varying task [195].

The advantage of the LPV approach is that repeatability and periodicity is not

required and estimates are accurate from a single trial provided that the scheduling

variable has a rich amplitude distribution. It facilitates physiological interpretation

by explicitly estimating the relationship between stiffness and the scheduling variable.

Moreover, it provides models that can predict torques in novel time-varying tasks.

This would have important applications in the design of neuroprosthesis. The main

drawback is the choice of the scheduling variable which must be known as an a priori

knowledge and sometimes is not trivial to find or estimate. For example, Ludvig

and Perreault reported that a proper choice of scheduling variable was not found in

estimating the knee stiffness in a position varying task [191].

Nonlinear Time-Invariant Identification Techniques

Some studies used nonlinear a priori models of different elements and used a

nonlinear optimization to fit their parameters. These models were often taken from

experimental studies performed on individual elements (e.g. muscles, muscle spindle,

etc) in isolation. Thus, [196, 197] used a nonlinear model for the elastic parameter as a

function of the wrist joint position and velocity and applied ramp and hold perturba-

tions. They fit parameters to a small segment of the data after the perturbation onset

and before the onset of the reflex activity to identify the intrinsic stiffness only. Oth-

ers used nonlinear models of muscles and tendon (from force-length-velocity curves)
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and linear models of the muscle spindles and activation dynamics and applied ramp

and hold perturbations [156, 21]. Due to the complexity of these models, a nonlinear

optimization technique had to be used to fit the parameters to the measured data.

While this approach estimates physiologically meaningful parameters, it has several

weaknesses:

1. The slow ramp-and-hold input does not persistently excite the system to stim-

ulate the dynamics for parameter estimation. Thus, several sets of different

parameters might equally predict the output.

2. The optimization might converge to a local minimum. Thus, the estimated pa-

rameters are highly dependent on the values used to initialize the optimization

search.

3. Since deterministic and slow perturbations are applied, subjects can learn the

pattern and provide an anticipatory response.

Our lab extensively develops and applies nonlinear identification techniques to

estimate stiffness using the top down approach. We developed a number of non-

parametric and parametric time-invariant techniques to identify stiffness. The main

idea is that given a persistently exciting input, the identification method decomposes

the measured torque to the intrinsic and reflex torques and provides accurate and

precise estimates of the parameters. Thus, Kearney et al. developed the Parallel-

Cascade (PC) method that identified non-parametric (IRF) models of the stiffness

[37]. Mirbagheri et al. successfully applied this methods to measure intrinsic and

reflex contributions as a function of the joint operating points on normal human

subjects [65]. Other studies applied this methods on spinal cord injured and stroke
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patients and showed that the reflex pathway was significantly altered in pathologies

[135, 198]. Ludvig and Kearney extended the PC method for real-time estimation of

stiffness [167] and showed that by providing subjects with a visual feedback of their

reflex gain, they could voluntary modulate their reflexes [199]. Some studies used

this method as an assessment tool [200, 201] to predict recovery patterns of patients

[24]. Other labs applied this method to characterize intrinsic and reflex components

of low-back stiffness [202, 203, 204]. The main issue with this approach is that it is

difficult to relate the parameters to the physiological meaningful parameters, e.g it is

impossible to relate the gain of the reflex pathway to the gain of the muscle spindles

or motorneuron pool.

Nonlinear Time-Varying Identification Techniques

When changes in the joint operating point are large, the system is time-varying

and time-varying identification techniques must be employed. A handful of studies

considered the identification of the nonlinear stiffness model using time-varying iden-

tification techniques. Ludvig et al. developed the time-varying PC algorithm using

ensembles of periodic but non-stationary data. Starret applied this method during

isometric contractions with periodic variation in the activation level [205]. Sobhani

et al. developed a subspace LPV approach to measure stiffness during imposed

movement task [206].

The nonlinear, time-varying dynamic joint stiffness model would explain the

biomechanics during a vast repertoire of functional tasks. Techniques have recently

become available for identification of these complex dynamics and our lab is exploring

them on the ankle joint during functional movements and postural tasks.
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Multiple Joints/Multiple Degrees of Freedom

Joints often have more than one degree of freedom, e.g. inversion/eversion

and plantarflexion/dorsiflexion of the ankle joint or flexion/extension and prona-

tion/supination of the wrist. Moreover, several joints work together during many

postural or movement tasks, e.g. postural control of the hand involve the elbow and

shoulder joint movements [207, 208]. Furthermore, muscles are often connected to

more than one joint. Thus, their contraction produces moments at several joints

simultaneously [209]. Consequently, stiffness can be regarded as a multiple-input,

multiple-output (MIMO) system.

Mussa-Ivaldi et al. and Shadmehr et al. considered the hand endpoint stiff-

ness in the horizontal plane and measured restoring forces at the hand. They only

measured the elastic parameter of the stiffness and showed it with ellipses illustrat-

ing its direction and magnitude. They reported how stiffness was modulated by

the arm posture and activation level [16, 210]. Others complemented this approach

by estimating dynamic part of the stiffness [211, 212, 213]. Perreault et al. used

MIMO non-parametric frequency responses and impulse response functions [214].

They reported how stiffness at hand was modulated in the transverse plane with the

activation level during a force regulation task [15]. de Velugt et al. enhanced this

method for identification of MIMO stiffness for a closed-loop condition (compliant

load) using cross-spectra techniques [74]. Thus, they described how stiffness ellipses

change at different frequencies. Lee et al. used this approach and estimated the

ankle stiffness in both inversion/eversion and plantarflexion/dorsiflexion directions
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simultaneously [182, 215, 216]. To this date, no study has considered estimating

MIMO stiffness models with uni-direction rate sensitive reflex pathways.

To summarize, accurate measurement of joint stiffness is challenging. Dynamics

are often nonlinear and time-varying in functional tasks. The feedback loops make

the measurements even more challenging when joints interact with the body or en-

vironmental loads. Often, multiple joints function together and each has multiple

degrees of freedom and this significantly increases the level of complexity.

3.1.4 Parallel-Cascade: A Model of Dynamic Stiffness

Kearney et al. developed the parallel-cascade model for dynamic stiffness [37].

This model is a data driven model obtained using the top-down approach. Conse-

quently, it requires little a priori information. Its validity has been verified on both

normal and pathological subjects and has successfully described dynamics of the an-

kle and trunk joints. This model has the intrinsic and reflex pathways. The intrinsic

pathway has a quasi linear model and the reflex pathway has a BONL structure.

Intrinsic Stiffness

A quasi linear system with elastic (K), viscous (B) and inertia (I) parameters

describe the intrinsic dynamics well:

tqIptq “ Kposptq ` Bvelptq ` Iaccptq (3.1)

where tqIptq is the intrinsic torque, posptq is the joint angular position, velptq is the

joint angular velocity and accptq is the joint angular acceleration. This model has

high-pass dynamics and has been successfully used to model the biomechanics of

many joints including the ankle, elbow, knee and others. It can also be extended
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Figure 3–3: The reflex stiffness pathway has a block oriented nonlinear structure and
is the cascade of a delay operator, a differentiator, a static nonlinearity followed by
a linear dynamic system.

to joints with multiple degrees of freedom by replacing K, B, I with matrices with

appropriate orders [182, 74, 176, 217, 218, 219, 220].

Reflex Stiffness

The reflex stiffness pathway can be modelled as a BONL structure compris-

ing a differentiator followed by a delay operator followed by a static nonlinear ele-

ment followed by a linear low-pass filter. At the ankle joint, the static nonlinearity

resembles a half-wave rectifier because the stretch reflex mechanism is strong in

the plantarflexor muscles and weak in the dorsiflexors [158, 159]. At other joints,

stretches of both flexor and extensor muscles may elicit a stretch reflex response,

so the static nonlinearity can look like a dead-zone with different slopes for pos-

itive and negative velocities [221]. Figure 3–3 illustrates the BONL structure of

the reflex stiffness pathway for the ankle joint. This model was first proposed by

Kearney et al. in [37] and since then has been widely used to characterize the re-

flex stiffness in the ankle and trunk joints of both normal and pathological subjects

[202, 75, 222, 223, 76, 224, 225, 203, 226, 227, 201, 228].
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Combination of the intrinsic and reflex pathways gives the parallel-cascade

model for the joint stiffness (Figure 3–4). Thus, the total torque is the sum of the

torque due to intrinsic mechanism and the torque generated due to the activation of

muscles responding to the reflex mechanisms.

3.1.5 Stiffness Nonlinearities

The parallel-cascade model (Figure 3–4) is only valid for a specific operating

point and small perturbations [65]. Thus, the parameters of the intrinsic (3.1) and

reflex (Figure 3–3) models both change nonlinearly with the system operating point

(position and activation level), task and instruction. In this section I will present

some of these nonlinear properties.

Uni-directional Rate Sensitive Reflex Stiffness

The reflex pathway has a BONL structure. It consists of a differentiation block

followed by a static nonlinearity and then a linear dynamic system. Thus, the obvious

stiffness nonlinearity is the static nonlinearity of the reflex pathway. At the ankle,

this resembles a half-wave rectifier reflecting a uni-directional rate sensitive reflex

pathway. Thus, there is a response for large dorsiflexion velocities and little or no

response for small dorsiflexion or plantarflexion velocities [229].

No one studied changes in the parameters of this nonlinearity. This is on one

hand because of the lack of an accurate Hammerstein identification routine and on

the other hand because of the input signal used in stiffness identification experiments.

The frequently used input has been a realization of Pseudo Random Binary Sequence

(PRBS) that does not evenly excite the input range of the nonlinearity. Therefore,
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Figure 3–4: The Parallel-cascade structure of ankle joint dynamic stiffness.

accurate identification of the static nonlinearity becomes impossible even with an ac-

curate identification routine. Consequently, this nonlinearity has often been assumed

to be fixed as an a priori information with a threshold at zero [65, 135, 167]. More-

over, since the output of the nonlinearity is not measurable, the gain of the reflex

pathway was attributed to its linear element as the reflex pathway gain. However,

changes in the static nonlinearity can also change the reflex torque. For example,

the reflex torque can be decreased by two different mechanisms: an increase in the

threshold or a decrease in the slope (gain). Consequently, it is important to estimate

both nonlinear and linear elements when measuring reflex stiffness.

Position Dependency

Intrinsic stiffness is a nonlinear function of the joint angular position. This has

been studied during quasi stationary conditions. Zhang et al. found that the elastic

and viscous parameters increased with knee extension [217]. MacKay et al. showed

that the elastic parameter increased with elbow flexion [129]. Flash and Mussa-

Ivaldi found that hand stiffness was strongly dependent upon arm configuration at
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rest. Weiss et al. studied this dependency at the ankle joint at rest and found

that the elastic and viscous parameters increased as the joint was moved away from

its neutral position [175]. Mirbagheri et al. also studied this nonlinearity during a

torque regulating task in the presence of reflex activity and found similar patterns in

both normal [65] and Spinal Cord Injured (SCI) subjects [135]. Thus, the ankle joint

elastic parameter was minimal at the mid range of the ROM and increased toward

plantar and dorsiflexion. They also found that the elastic and viscous parameters of

the SCI subjects were larger than normal subjects.

Some groups studied the position dependency of intrinsic stiffness during im-

posed movement. Kirsch and Kearney demonstrated transient changes in stiffness

during large, imposed movement of the ankle [152]. Sobhani et al. found modula-

tion patterns of the intrinsic elastic parameter as a function of the ankle position

during an imposed walking task; it was minimal at the mid range of the ROM and

increased with both plantarflexion and dorsiflexion of the ankle [195]. Others showed

that stiffness dropped at the movement initiation at the wrist [197, 196] and elbow

[192].

Others studied the position dependency of intrinsic stiffness during voluntary

joint movement. Thus, Bennett et al. studied the arm stiffness during sinusoidal

movement and found that the elastic parameter was substantially lower than that

during posture [230]. Lee and Hogan showed that the ankle joint elastic and viscous

parameters were modulated strongly in the course of walking. Thus, both decreased

from the pre-swing phase to the initial swing phase, stayed almost invariant during
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the swing phase and increased again at the early stance phase. Stiffness rapidly

changed at heal-strike and toe-off instants [186].

Mirbagheri et al. studied changes in the ankle reflex stiffness as a function of

the joint position during quasi stationary conditions [65, 135]. They found that the

only parameter that significantly changed was the reflex stiffness gain. Thus, the

gain was small when the ankle was plantarflexed and increased significantly as the

joint was dorsiflexed. SCI subjects had similar patterns but their reflex stiffness gain

was substantially larger than normal subjects. Sobhani et al. found similar patterns

during imposed movement of the ankle joint [206].

Activation Dependency

Intrinsic stiffness is minimum at rest and increases with muscle activation and

with antagonistic muscle co-contraction. This has been shown at the ankle, hand,

knee and other joints during quasi stationary conditions [15, 217, 174, 231, 140, 153].

MacNeil et al. studied the time-varying properties of the ankle intrinsic stiffness

during a rapid, voluntary, isometric contraction task where subjects were instructed

to switch between two activation levels. They found that during the transient phase

of the contraction, the elastic parameter decreased [232]. Starret Visser improved

this work by considering both intrinsic and reflex pathways simultaneously and using

a continuous sinusoidal activation varying task. She showed that the ankle elastic

parameter was modulated proportional to the voluntary torque and the reflex gain

showed two peaks at the lowest and highest activation level [205].

Mirbagheri et al. studied the effect of the ankle plantarflexor activation level on

reflex stiffness during quasi stationary conditions [65]. They found that the reflex
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gain increased from rest to the minimum activation level (5% of maximum volun-

tary contraction) and decreased with further increase in the activation level. Other

researchers found that the maximum reflex gain happened at around 50% of the

maximum voluntary contraction [233, 140].

Lang and Kearney showed that the intrinsic and reflex parameters modulated

during quite stance as a function of the postural sway. Thus, the elastic parame-

ter was minimal at the mid range of the sway torque. It increased when subjects

switched to forward or backward lean postural states. Modulation of the reflex gain

was complementary to the intrinsic response. Thus, it was large when the elastic

parameter was small and small when the elastic parameter was large [103].

Input Dependency

Joint stiffness changes with the characteristics of the perturbations used for

their identification. Thus, both the elastic parameter and reflex gain decreased with

position perturbation amplitude. This has been observed at the ankle [195, 152, 234,

235], elbow [230], knee [191] and wrist [197] joints; and the rate of decrease increased

with joint velocity [196].

Reflex stiffness also changes with the input characteristics. The ankle reflex

stiffness (i) saturated with increasing position perturbations amplitude [229]; piiq
decreased with increasing perturbation mean absolute velocity [229]; (iii) decreased

with increasing input bandwidth [134, 133].

Other Dependencies

Some groups found that joint stiffness decreases with static stretching [71, 70,

236]. Others reported that intrinsic stiffness is invariant with muscle fatigue while
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reflex stiffness gain decreases [105]. Studies at the ankle joint have shown that the

elastic parameter decreases and the reflex stiffness gain increases with muscle fatigue

[237]. Some groups studied tasks dependencies; Thus, stiffness changes with the

task, e.g. cycling vs walking vs running [238, 239, 240]. Others found that task

instructions has significant effect on both intrinsic and reflex stiffness, e.g. resist

versus do-not-intervene [160, 241, 242, 199].

To conclude, joint stiffness is a complex and highly nonlinear system. Some of

these nonlinearities can be relaxed for example by fixing the system at an operat-

ing point, i.e. keeping the activation level and position operating points constant

throughout the experiment. Moreover, the system can also be assumed time-varying

instead of nonlinear when there are large changes in the position/activation level.

3.2 System Identification

This section provides a critical review of the system identification techniques

that have been or can be used to the joint stiffness identification problem. It starts

by reviewing Hammerstein identification methods applicable to the identification of

the reflex pathway. Next, it reviews identification methods that have been developed

to identify the parallel-cascade model of joint stiffness during various experimental

conditions.

3.2.1 Hammerstein Models

Any identification method for the parallel-cascade model requires a Hammer-

stein identification routine to estimate the reflex stiffness pathway. Consequently, in

this thesis we always start by identifying the Hammerstein structure and then ex-

tend it to the full parallel-cascade model. Identification of Hammerstein structure is
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also significant for other important biomedical systems such as the human vestibular

ocular reflex, the visual cortex model, the mechanical behaviour of lung tissues and

the electrically stimulated muscles.

Non-Iterative Techniques

Stochastic methods estimate the Hammerstein cascade with no a priori knowl-

edge. They fit polynomials to the static nonlinearity and a discrete or continuous-

time IRF to the linear element in a non-iterative manner using cross correlation

techniques [243, 244, 245, 246]. The severe limitation is that both input and noise

must be white and Gaussian. These conditions cannot be realized in experiments

on biomedical systems so their application cannot be justified. For example, in stiff-

ness identification experiment, the actuator has a limited bandwidth and delivers

non-white position perturbations and noise is also colored [247].

Verhagen and Westwick extended the linear MOESP method to Hammerstein

structures [118]. The method works by expanding the input signal using basis ex-

pansions to transform the Single-Input-Single-Output (SISO) Hammerstein cascade

into a MISO linear SS model. Thus, MOESP identifies the linear MISO SS model.

This method is robust, accurate and non-iterative and so does not have convergence

problems. It inherits all appealing features of the MOESP method. However, it is

not straightforward to convert the resulting MISO system to models of the static

nonlinearity and the linear element. Consequently, while this approach is useful to

predict the output in control applications, it fails in biomedical applications where

the purpose of the model is to provide insight into the system.
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Iterative Techniques

Other Hammerstein identification methods are iterative. Non-parametric meth-

ods iterate between estimating the static nonlinearity and the linear element. The

Hunter-Korenberg (H-K) method is based on the Bussgang’s theorem [96] which

states that the cross correlation between input and output of a Hammerstein struc-

ture is proportional to the cross-correlation of the input and output of the linear

element. Thus, the H-K algorithm approximates the nonlinearity with polynomials

and the linear element with an IRF using cross-correlation techniques. It has been ap-

plied to study reflex stiffness [158, 248] and lung tissue mechanics [81]. This method

does not require the input to be white but it must be Gaussian for the Bussgang

theorem to hold. Thus, [249] showed that the H-K method does not converge when

the input is non-Gaussian and non-white. However, if the input is non-Gaussian or

non-white (not both), the estimates are unbiased.

Westwick and Kearney developed the Separable Least Squares(SLS) method that

is iterative, non-parametric and correlation-based and identifies a basis expansion

for the nonlinear element and an IRF for the linear element. They showed that

SLS is superior to H-K because it does not depend on the Bussgang theorem and so

does not require the input to be Gaussian. They compared the two methods using

experimental data from the ankle stretch reflex model and showed that the H-K

estimates were biased and the IRF had a large oscillatory component whereas the

structure was identified more accurately using SLS [249]. In the SLS formulation,

the cost function, defined as the sum of squared errors, is highly nonlinear in terms

of its unknown parameters: coefficients of the nonlinearity and IRF weights. The
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SLS method separates the unknown parameters into two sets: one that is easy to

solve (using least-squares) and one that is more difficult to solve (using a nonlinear

optimization). The SLS method works by iterating between solving each parameter

set. The convergence of the SLS method cannot be established analytically because

the nonlinear optimization might not converge to the global minimum and the cost

function might not decrease with incrementing iterations. Nevertheless, the SLS

method has been extended to identify cubic spline models of the static nonlinearity

[250] which would have important applications in hard nonlinearities with sharp

changes in their slopes, e.g. half-wave rectifier of the stretch reflex mechanism. Le et

al. successfully used this approach to identify models of the electrically stimulated

muscles in stroke patients [251].

Bai and Li separated the Hammerstein structure parameters into two sets. They

showed that the output is a linear function of each parameter set provided that the

other set is held fixed [252]. Thus, they simplified the solution by proposing an

algorithm iterating between two least-squares problems. They showed that their

algorithm converges if the two parameter sets are normalized at each iteration and

if the algorithm starts from a certain set of initial conditions. Consequently, this

work improved on Westwick and Kearney’s work since no nonlinear optimization

was involved and the convergence of the algorithm was guaranteed.

Another class of iterative Hammerstein identification methods identifies para-

metric models of the linear element, e.g. transfer function. Narendra and Gallman

separated the Hammerstein parameters into two sets, one for the coefficients of the

static nonlinearity and one for the parameters of the linear transfer function [253].
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They showed that the output is a linear function of each parameter set provided

the other set is held fixed. So, they proposed iterative methods solving two least-

squares at each iteration and showed that the convergence occurs very fast. Later,

Stoica found a counterexample where this iterative method failed to converge [254].

Consequently, the convergence became an open problem until Bai proposed two solu-

tions: a two-stage identification approach and a normalized iterative approach. The

two-stage approach overparameterizes the problem by defining a new parameter set

containing all combinations of the products of the nonlinear and linear parameters.

Thus, the output becomes a linear function of the augmented parameter set. At the

first stage, a linear least-squares identifies this parameter set. At the second stage, a

singular value decomposition separates and identifies parameters of the static nonlin-

earity and linear elements [255]. The normalized iterative method was first proposed

in [252] for non-parametric identification of Hammerstein structure that adds an ini-

tialization stage before the iteration and a normalization stage at each iteration of

Narendra and Gallman’s method. Thus, [252] proved that the iteration converges

to the global minimum. Later, Liu and Bai extended the convergence analysis for

non-smooth nonlinearities [256] and Li and Wen proved that the convergence will be

established for any arbitrary non-zero initial condition [257]. Jalaleddini and Kearney

used Monte-Carlo simulations and showed that the iterative method is more robust

to noise and gives more reliable estimate with highly colored inputs compared to the

two-stage approach [258].

To conclude, identification of Hammerstein systems is a relatively mature do-

main and many techniques have been developed for different system structures (e.g.,
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transfer function, IRF, FRF, state-space models) under different conditions (e.g.,

white Gaussian input, colored input, white output noise, colored output noise). In

identification of biomedical systems, however, a method is desired that: (i) is robust

to noise; (ii) is guaranteed to converge; (iii) requires minimum a priori information;

(iv) provides consistent estimates for non-white inputs with arbitrary amplitude

distribution; (v) provides consistent estimates for non-white output noises with arbi-

trary amplitude distributions. Consequently, we aimed to use the MOESP subspace

method that satisfies all these conditions. However, the current MOESP Hammer-

stein method suffers from the fact that it does not separate the static nonlinearity

from the linear dynamics. Consequently, as it currently stands, its application is

less appropriate for biomedical systems where the objective is to acquire information

about the underlying system.

3.2.2 Parallel-Cascade Models

Both non-parametric and parametric methods have been developed to identify

the parallel-cascade model. The first was the Parallel-Cascade (PC) method pro-

posed by Kearney et al. [37]. It is a non-parametric method that iterates between

estimating the intrinsic and reflex pathways. They modelled the intrinsic pathway

using a short two sided IRF whose length was shorter than the reflex delay. This pre-

vented the intrinsic model from capturing any of the reflex pathway dynamics. They

used the H-K method to identify the reflex pathway so this version was called the

PC-HK method. This method had two types of iteration. The first is the iteration

between the identification of intrinsic and reflex pathways. The second is the H-K

iteration in estimating the reflex Hammerstein elements. None of these iterations are
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guaranteed to converge. Indeed, it has been frequently observed that the algorithm

does not converge and the cost function becomes non-decreasing.

The H-K method was not the most appropriate choice because it required the

velocity input to be Gaussian. However, one of the frequently used input is Pseudo

Random Binary Sequence (PRBS) with a velocity profile far from a Gaussian distri-

bution. Consequently, two other variations of the PC method were implemented: (i)

PC-HR which assumed a fixed half-wave rectifier nonlinearity; the reflex path identi-

fication was simplified as an IRF estimation between the half-wave rectified velocity

and the reflex torque; (ii) PC-SLS which replaced the H-K by the SLS method.

The PC-HR method was the most popular because of its simplicity. It was

extensively used to explore stiffness in quasi stationary conditions [65, 135, 198]. A

real time version of the PC-HR was also developed [199, 167].

Time-Varying (TV) versions were also developed. One approach is using en-

semble based methods. Lortie and Kearney developed the TV-IRF method using

correlation techniques. They extended it to identify TV Hammerstein structures

with a TV nonlinear element and a TV linear element [187]. Finally, Ludvig et al.

combined the two TV linear and Hammerstein approach and developed the TV-PC

method. They validated the TVPC method using simulation, [193], and experimental

data [205].

Kukreja et al. developed a parametric model of the parallel-cascade structure

and a method for its identification [259]. Their model was based on a Nonlinear

AutoRegressive Moving Average with eXogenous input (NARMAX) structure with

a fixed static nonlinearity. They showed that their proposed scheme works using
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some experimental data. Guarin et al. later showed that the NARMAX model and

its identification method is not accurate under realistic conditions because first the

nonlinearity limited to be fixed and second the method fails in the presence of col-

ored noise and third the identified discrete-time parameters were very difficult to

interpret and relate to the original parallel-cascade model [260]. Thus, they formu-

lated the nonlinearity to be identified as part of the identification procedure and they

considered a Multiple-Input-Multiple-Output MISO Box Jenkins (BJ) model with an

arbitrary colored output noise. They developed an iterative method with instru-

mental variables that gave unbiased and accurate estimates. Similar to the PC, this

method iterated between estimating the two pathways [261].

Zhao et al. developed a linear MISO SS model for the parallel-cascade structure

[122]. Similar to the Hammerstein MOESP, they used the MOESP linear method

for identification of the linear MISO SS model. They performed simulation analysis

and showed that the method gave more accurate estimates than the PC method.

They demonstrated that the method was consistent in both open-loop and closed-

loop conditions. I identified that this study has several issues which might limit its

applications in practice:

1. The method was not validated with experimental data. The results were given

for only one subject and one trial.

2. The parametric structure of the intrinsic pathway (elastic-viscous-inertia) does

not represent the reality. More complex dynamics that arise from complex

musculotendon dynamics or the joint-actuator contact dynamics must be con-

sidered.
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3. MOESP estimates a linear MISO SS model of the stiffness. However, it is not

straightforward to implement continuous-time models of individual elements of

the parallel-cascade structure from the SS model.

4. It is over-parameterized, so it is expected to be less robust in the presence of

noise.

3.3 Thesis Rationale

This thesis develops novel identification algorithms that efficiently unmask prop-

erties of stiffness during functionally important tasks. Detection of previously masked

properties can result from such developments. Moreover, such methods will be useful

for identification of other biomedical systems with linear, Hammerstein or parallel-

cascade structures.

Identification of Hammerstein structure is important in estimating joint stiff-

ness. The methods that have been used for this application are the linear, HK, SLS

and subspace methods. The linear method assumes a fix static nonlinearity (a half

wave rectifier) which assumes a priori information that might not be a correct rep-

resentation of the underlying system. The HK method does not converge when the

input to is non-white and non-Gaussian which is very limiting in practice. The SLS

method is not guaranteed to converge either. The current subspace method seems

promising but it does not separate the static nonlinearity and the linear dynamics

from the identified MISO model. Thus, it is not possible to detect changes in the

threshold or slope of the static nonlinearity from the gain of the linear element. Con-

sequently, in chapter 4, I answer two questions: (i) how we can improve the subspace

method to give direct estimates of the static nonlinearity and the linear dynamics;
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(ii) whether the reflex stiffness is regulated by changes in both the static nonlinearity

and the linear dynamics as a function of muscle activation.

Stiffness has a parallel-cascade model but accurate decomposition of the torque

and identification of the parameters remains an important open problem. All ver-

sions of the iterative PC methods (PC-HR, PC-HK, PC-SLS) do not consistently

converge to the true system. Moreover, they will give biased results when the joint

is interacting with a compliant load. The subspace method, on the other hand, does

not have convergence problems and it gives accurate estimates for compliant loads.

However, it considers an a priori structure for the intrinsic pathway that might not ac-

curately represent the complex underlying dynamics. It gives an over-parameterized

MISO state-space model but it is not straightforward to relate its parameters to

the individual elements of the parallel-cascade structure. Furthermore, all previous

experimental studies ignored changes in the static nonlinearity of the reflex pathway

and assigned all changes to the linear element. This was because of the lack of an

accurate Hammerstein identification method and also because of the non-informative

input signal that was used for identification. Consequently, in chapter 6, I address

four important questions: (i) how we can implement a non-parametric model of the

intrinsic stiffness in the state-space model; (ii) how we can analytically decompose

the torque to the intrinsic and reflex torques by assuming minimal a priori infor-

mation; (iii) how we can improve the subspace method to give direct estimates of

all elements of the parallel-cascade model; (iv) how we can use a more informative

input signal for more accurate identification of the static nonlinearity.
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It is challenging to obtain long stationary data as stiffness shows time-varying

or switching behaviour. This could happen in a variety of functional conditions

such as movement when the joint operating point is not fixed, during upright stance

when subject switches between different postural states, or in maintaining high ac-

tivation levels because muscle fatigue is inevitable. One approach is to segment

the nonstationary data record into multiple, short, stationary data segments and

then identify local time-invariant models from subsets of segments having the same

properties. Consequently, I extend the Hammerstein method in Chapter 5 and the

parallel-cascade method in Chapter 7 to support multiple short data segments.
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CHAPTER 4
Subspace Identification of SISO Hammerstein Systems: Application to

Stretch Reflex Identification

c©2013 IEEE. Reprinted, with permission, from Kian Jalaleddini and Robert

E. Kearney, Subspace Identification of SISO Hammerstein Systems: Application to

Stretch Reflex Identification, IEEE Transactions on Biomedical Engineering, 2013.

4.1 Abstract

This paper describes a new subspace-based algorithm for identification of Ham-

merstein systems. It extends a previous approach which described the Hammerstein

cascade by a state-space model and identified it with subspace methods that are

fast and require little a priori knowledge. The resulting state-space models predict

the system response well but have many redundant parameters and provide limited

insight into the system since they depend on both the nonlinear and linear elements.

This paper addresses these issues by reformulating the problem so that there are

many fewer parameters, and each parameter is related directly to either the linear

dynamics or the static nonlinearity. Consequently, it is straightforward to construct

the continuous-time Hammerstein models corresponding to the estimated state-space

model. Simulation studies demonstrated that the new method performs better than

other well-known methods in the non-ideal conditions that prevail during practical

experiments. Moreover, it accurately distinguished changes in the linear component

from those in the static nonlinearity. The practical application of the new algorithm
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was demonstrated by applying it to experimental data from a study of the stretch re-

flex at the human ankle. Hammerstein models were estimated between the velocity of

ankle perturbations and the EMG activity of triceps surae for voluntary contractions

in the plantarflexing and dorsiflexion directions. The resulting models described the

behavior well, displayed the expected uni-directional rate sensitivity, and revealed

that both the gain of the linear element and the threshold of the nonlinear changed

with contraction direction.

4.2 Introduction

A Hammerstein system as shown in Fig. 4–1 consists of a zero memory static

nonlinearity followed by a linear dynamic system [96]. Many physical and biological

systems can be modeled with the Hammerstein structure; biological examples include

the reflex stiffness of human ankle joint [37], the neural integrator model of the human

vestibular-ocular reflex [87], and the mechanical behavior of lung tissue [81].

A variety of methods have been developed to identify Hammerstein systems.

Stochastic methods estimate the linear and nonlinear components of the Hammer-

stein cascade with no a priori knowledge of the system. However, they require the

input to be white [245], [244] - a severe limitation since in practice it is rarely feasible

to generate white inputs experimentally.

Another category of Hammerstein system identification algorithm uses itera-

tive approaches. Hunter and Korenberg [96] described a method that first estimates

the linear dynamics using cross-correlation based methods. It estimates the nonlin-

earity’s output using the inverse dynamics of the linear component, and then uses

this predicted output to estimate the nonlinearity. The linear dynamics are then
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re-estimated using the output predicted by the estimated nonlinearity and the iter-

ation repeated. The method does not require the input to be white but the input

distribution needs to be Gaussian. Westwick and Kearney presented a method that

formulates the output of the system as a linear function of some parameters and

nonlinear function of the others [249]. Separable least-squares (SLS) optimization

was then used to estimate the linear and nonlinear elements. This method does not

require the input to be either white or Gaussian.

Another class of iterative algorithms separated the parameters into two sets:

one corresponding to the static nonlinearity and the second to the linear element

[253]. The output is a linear function of each parameter set provided the other set

is held constant. In the first step, one set of parameters is held fixed and the other

set is estimated using least-squares. The parameter sets are then interchanged and

the same procedure is used to estimate the optimal value for the second set. The

algorithm iterates until it converges to the optimal parameter values. Convergence

can be assured by 1) normalizing the parameter estimates at each iteration and 2)

setting the initial point for the optimization search correctly [252, 262, 257].

Most non-parametric approaches for identification of Hammerstein systems,

model the linear component as an impulse response function (IRF) [96], [253], [249].

This has the advantage of requiring little a priori knowledge of the system but may

result in models with many parameters if the system has a long memory. For in-

stance, describing a low-pass filter with a very low break frequency requires a long

IRF, i.e., introducing many unknown parameters [72]. This can result in less accurate

estimation when the noise level is high.
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In contrast, parametric approaches can provide parsimonious models but require

accurate a priori information about the system structure, i.e. system order, noise

model, etc [72]. Moreover, using a parametric method with an incorrect model will

give misleading results [154]. What is desired is an identification approach that yields

parsimonious models while requiring minimal a priori information. The subspace

method described in this paper achieves this.

Subspace methods were originally developed to estimate state-space models for

multiple-input/multiple-output (MIMO) linear systems; they require little a priori

knowledge since the order of the state-space model is determined as part of the

estimation procedure [113], [123]. They are efficient computationally, and can be

extended to identify systems with both input and output noise [116]. Moreover,

as Verhaegen and Westwick [118] showed, the Multivariable output error state-space

(MOESP) subspace algorithm can be used to identify Hammerstein models by trans-

forming the single-input/single-output (SISO) nonlinear Hammerstein model into a

multi-input/single-output (MISO) linear state-space model and identifying it with

MOESP. Models estimated with this approach have excellent predictive capabilities

but, as a result of the transformation to MISO, their parameters are not directly

related to those of the SISO system. This causes two problems. First, many of the

MISO model parameters are redundant and the resulting over-parameterization can

be expected to reduce the identification robustness. Secondly, each MISO parameter

depends on the properties of both the nonlinear and the linear dynamic elements.

Consequently, it is difficult to relate changes in the state-space model parameters

to those of the original Hammerstein model. For example, in studying the stretch
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Figure 4–1: The Hammerstein system model comprises a static nonlinearity followed
by a linear system. The input signal is upkq, zpkq is the output of the nonlinearity
and the input to the linear system, ypkq is the noise free output. npkq is additive
noise, and ỹpkq the noisy output. The only signals available for identification are
upkq and ỹpkq.

reflex it is important to distinguish changes in the linear dynamics from those of the

static nonlinearity. Thus, when we used the method described in [118] to estimate

a state-space model for joint stiffness, additional steps were required to recover the

underlying nonlinearity and linear dynamics [122].

The paper is organized as follows. Section 4.3, formulates the state-space model

for Hammerstein system. Section 4.4 describes the new identification algorithm

which extends Verhaegen’s algorithm [118] to estimate directly the coefficients of the

basis function expansion of the nonlinearity and the state-space model of the linear

component. Section 4.5 presents the results of simulation studies that validate and

evaluate the performance of the new algorithm. It compares the new method with

the original subspace method [118], which is a parametric approach, and two non-

parametric identification methods: Hunter-Korenberg H-K [96] and separable least-

squares SLS algorithms [249]. Section 4.6 gives experimental results and Section 4.7

provides a discussion and some concluding remarks.
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4.3 Problem Formulation

This section first formulates the state-space model for a Hammerstein structure

as developed in [118]. The SISO, nonlinear Hammerstein system is transformed into

a MISO linear model whose inputs are constructed from a basis function expansion

of the static nonlinearity. Then, it shows how the static nonlinearity and the linear

system parameters appear individually in data equations. Throughout this paper,

vectors, matrices and scalars are indicated by bold-face uppercase, uppercase and

lowercase letters respectively.

Consider a SISO Hammerstein discrete-time system shown in Fig. 4–1 consisting

of a static nonlinear block followed by a linear dynamic system. Define zpkq to

be the output of the nonlinear component - an intermediate signal that cannot be

observed. Approximate the nonlinearity by an orthogonal basis function expansion

(e.g. Tchebyshev, Hermite, ...):

zpkq “ f pupkqq »
nÿ

i“1

ωigi pupkqq (4.1)

where, gip¨q is the ith basis function, n is the order of the expansion and ωi is its

coefficient. Assume that Ns samples of upkq, the input of the Hammerstein structure,

and ypkq, its output are recorded.

Assume the linear component is stable and can be represented by a state-space

model: $’’&
’’%
Xpk ` 1q “ AXpkq ` Bzpkq

ypkq “ CXpkq ` Dzpkq
(4.2)
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where, Xpkq is a m ˆ 1 state vector while, Amˆm , Bmˆ1, C1ˆm and D1ˆ1 are the

state-space model matrices. Represent the elements of B and D by:

B “ rb1, ¨ ¨ ¨ , bmsT

D “ rds (4.3)

Assume the measured output ỹpkq is contaminated with additive noise, npkq that is

zero mean and uncorrelated with the input signal upkq. Define the vectors:

Ω “ rω1, ¨ ¨ ¨ , ωnsT (4.4)

U pkq “ rg1 pupkqq , ¨ ¨ ¨ , gn pupkqqsT (4.5)

Substitute (4.4) and (4.5) in (4.2) to yield:$’’&
’’%
Xpk ` 1q “ AXpkq ` BΩU pkq

ypkq “ CXpkq ` DΩU pkq
(4.6)

where:

BΩ “BΩT “

»
————–

b1ω1 ¨ ¨ ¨ b1ωn

...
. . .

...

bmω1 ¨ ¨ ¨ bmωn

fi
ffiffiffiffifl (4.7)

DΩ “DΩT “
„
dω1 ¨ ¨ ¨ dωn

j
(4.8)

Note that this parameterization is not unique since for any arbitrary scalar

β, the vectors βB, βD and β´1Ω will generate the same matrices BΩ and DΩ.
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Consequently, to provide a unique solution we will require that the first non-zero

element of the vector Ω be positive and ||Ω|| “ 1, where || ¨ || is the two norm.

Note that (4.6) models the total Hammerstein system as a MISO system whose

input is U pkq, a n ˆ 1 vector constructed from the basis function expansion of

the input to the SISO system. Thus, the estimated state-space matrices have the

following structure: $’’&
’’%
X̂

Spk ` 1q “ ÂSX̂
Spkq ` B̂SU pkq

ŷpkq “ ĈSX̂
Spkq ` D̂SU pkq

(4.9)

where, the superscript p¨qS indicates that the identification is achieved up to a simi-

larity transform. One can show that given the matrix S as the similarity transform,

the matrices B̂S and D̂S can be written as follows:

B̂S » S´1BΩ “

»
————–

bS1ω1 ¨ ¨ ¨ bS1ωn

...
. . .

...

bSmω1 ¨ ¨ ¨ bSmωn

fi
ffiffiffiffifl (4.10)

D̂S » DΩ “
„
dω1 ¨ ¨ ¨ dωn

j
(4.11)

Remark 1 The vector BS “ “
bS1 , ¨ ¨ ¨ , bSm

‰T
incorporates the effect of the similarity

transform i.e, BS “ S´1B. Thus, the similarity transform has no effect on the

parameter set Ω but does alter the parameters corresponding to the linear component,

i.e. b1, ¨ ¨ ¨ , bm, d. Also note that the rows of the matrices BΩ and DΩ are linearly

dependent.
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4.4 Algorithm

The first step of the new algorithm uses MOESP to estimate the order of the

linear component and the ÂS and ĈS state-space matrices from the constructed input

(4.5) and the measured noisy output ỹpkq. MOESP is described in [113], [123], [116],

[118] and is not repeated here. We used MOESP automatic order selection method

which is described in [117, 116].

It remains to estimate the vector BS and the scalar d, which define the linear

dynamics, and the vector Ω̂ which contains the coefficients of the basis function

expansion of the nonlinear block. The output of (4.9) can be expressed as [116]:

ŷpkq “
«
k´1ÿ
τ“0

UT pτq b ĈSÂS
k´1´τ

ff
vec

´
B̂S

¯

` “
UT pkq‰

vec
´
D̂S

¯
` npkq (4.12)

where the operator vecp¨q stacks the columns of a matrix p¨q on top of each other in

a tall vector and b is the Kroncker product. Define the following matrices:

Y “ rỹp0q, ¨ ¨ ¨ , ỹpNs ´ 1qsT

ΔNs “
«
0, ¨ ¨ ¨ ,

Ns´2ÿ
τ“0

UT pτq b ĈSÂS
Ns´2´τ

ffT

ΦNs “ “
UT p0q, ¨ ¨ ¨ ,UT pNs ´ 1q‰

B̄ “ vecpB̂Sq
D̄ “ vecpD̂Sq (4.13)

E “
„
np0q np1q ¨ ¨ ¨ npNs ´ 1q

jT
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Rewrite (4.12) as the matrix equation:

Y “ ΨΘ ` E (4.14)

where, Ψ is the Ns ˆ npm ` 1q data matrix constructed only from the known or

estimated elements:

Ψ “ rΔNs ,ΦNss (4.15)

Let the columns of Ψ be Ψ1,Ψ2, ¨ ¨ ¨ ,Ψnpm`1q. The vector Θ contains the unknown

parameters stacked in a single vector:

Θ “
»
—– B̄

D̄

fi
ffifl “

»
—– vecpBq

vecpDq

fi
ffifl (4.16)

For normal linear MISO identification, the remaining system parameters are

estimated by solving the least-squares problem defined by (4.14). However, for the

Hammerstein model, the parameters of interest appear as nonlinear combinations:

Θ “rbS1ω1, ¨ ¨ ¨ , bSmω1, bS1ω2, ¨ ¨ ¨ , bSmω2, ¨ ¨ ¨
bS1ωn, ¨ ¨ ¨ , bSmωn, dω1, ¨ ¨ ¨ , dωnsT (4.17)

Consequently, the parameters tbS1 , ¨ ¨ ¨ , bSm, ω1, ¨ ¨ ¨ , ωn, du cannot be estimated di-

rectly by linear least-squares solution.

Note that the parameters in the vector Θ are combinations of a smaller number

of independent parameters that may be divided into two subsets: the coefficients

of the nonlinearity tω1, ¨ ¨ ¨ , ωnu and the parameters of linear system’s state-space
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model tbS1 , ¨ ¨ ¨ , bSm, du. These parameters can be estimated separately using the iter-

ative approach suggested in [252, 262, 257] as follows: Assume an initial set of values

for the nonlinear coefficients tω1, ¨ ¨ ¨ , ωnu, and estimate the parameters of the linear

dynamics using ordinary least-squares. Then, fix these parameters tbS1 , ¨ ¨ ¨ , bSm, du,
and estimate the parameters of the nonlinearity using an ordinary least-squares so-

lution. Repeat the procedure until it converges to optimal values.

To use this approach, the data equation (4.14) must be reformulated so that

if the coefficients of the basis function expansion of the static nonlinearity (Ω) are

known, then the output vector Y is a linear function of the unknown parameters“
bS1 bS2 ¨ ¨ ¨ bSm d

‰T
. To do so, group the linear system parameters as follows:

Y “ `
Ψ1ω1 ` Ψm`1ω2 ` ¨ ¨ ¨ ` Ψmpn´1q`1ωn

˘
bS1

` ¨ ¨ ¨ ¨ ¨ ¨
` pΨmω1 ` Ψ2mω2 ` ¨ ¨ ¨ ` Ψmnωnq bSm (4.18)

` pΨmn`1ω1 ` Ψmn`2ω2 ` ¨ ¨ ¨ ` Ψmn`nωnq d1 ` E

Write this equation in matrix form:

Y “ ΨΩ

»
———————–

bS1
...

bSm

d

fi
ffiffiffiffiffiffiffifl

` E (4.19)
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where it is evident from (4.18) and (4.14) that ΨΩ is:

ΨΩ “ Ψ

»
————————————————————————————–

ω1 ¨ ¨ ¨ 0 0

...
. . .

...
...

0 ¨ ¨ ¨ ω1 0

...
...

...
...

ωn ¨ ¨ ¨ 0 0

...
. . .

...
...

0 ¨ ¨ ¨ ωn 0

0 ¨ ¨ ¨ 0 ω1

...
. . .

...
...

0 ¨ ¨ ¨ 0 ωn

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

(4.20)

The second requirement is to find a formulation that relates the output Y lin-

early to the unknown vector Ω given the state-space parameters bS1 , b
S
2 , ¨ ¨ ¨ , bSm d are

known. To do so, collect the terms associated with each nonlinear parameter to give:

Y “ `
Ψ1b

S
1 `Ψ2b

S
2 ` ¨ ¨ ¨ `ΨmbSm `Ψmn`1d

˘
ω1

` ¨ ¨ ¨ ` `
Ψmpn´1q`1b

S
1

˘
ωn

` `
Ψmpn´1q`2b

S
2 ` ¨ ¨ ¨ `Ψmnb

S
m `Ψmn`nd

˘
ωn `E (4.21)

Write this in matrix form as:

Y “ Ψbd

»
————–

ω1

...

ωn

fi
ffiffiffiffifl ` E (4.22)
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where from (4.21) and (4.14) it can be seen that Ψbd is :

Ψbd “ Ψ

»
———————————————————————————————–

bS1 0 ¨ ¨ ¨ 0

...
...

. . .
...

bSm 0 ¨ ¨ ¨ 0

...
...

...
...

0 0 ¨ ¨ ¨ bS1
...

...
. . .

...

0 0 ¨ ¨ ¨ bSm

d ¨ ¨ ¨ ¨ ¨ ¨ 0

...
. . .

...

...
. . .

...

0 ¨ ¨ ¨ ¨ ¨ ¨ d

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

(4.23)

Algorithm: The following algorithm uses these two formulations to estimate

the unknown parameters bS1 , ¨ ¨ ¨ , bSm, d, ω1, ¨ ¨ ¨ , ωn. The algorithm is iterative so vari-

ables will be indexed according to the iteration number j.

(1) Initialization:

Let j “ 1 and Ω̂p0q “ r1, ¨ ¨ ¨ , 1sTnˆ1.

(2) Construct the matrix ΨΩ̂pj´1q using (4.20).
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(3) Estimate rbS1 , ¨ ¨ ¨ , bSm, dsT by solving the least-squares problem defined in (4.19)

to give :

b̂dpjq “

»
———————–

b̂S1 pjq
...

b̂Smpjq
d̂pjq

fi
ffiffiffiffiffiffiffifl

“
´
ΨΩ̂pjq

¯:
Y (4.24)

where : is the pseudo inverse.

(4) Construct the matrix Ψb̂dpjq using (4.23).

(5) Estimate rω1, ¨ ¨ ¨ , ωnsT by solving the least-squares problem (4.22) to give:

Ω̂pjq “

»
————–

ω̂1pjq
...

ωnpjq

fi
ffiffiffiffifl “

´
Ψb̂dpjq

¯:
Y (4.25)

(6) Let s be the sign of first non-zero element of Ω̂pjq:

s “ sgn pω̂1pjqq (4.26)

Perform the normalization:

b̂dpjq Ð b̂dpjqs
∥
∥
∥Ω̂pjq

∥
∥
∥

Ω̂pjq Ð Ω̂pjqs
∥
∥
∥Ω̂pjq

∥
∥
∥

(4.27)

(8) Compute the sum of squared error (SSE) between the predicted output and

the measured output.
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(9) Terminate if SSE satisfies the following condition; otherwise replace j by j ` 1

and go to step (2).

SSEpjq ´ SSEpj ´ 1q
SSEpj ´ 1q ď threshold (4.28)

Considering SSE as a cost function, it is strictly convex at each iteration [252],

and so there will be a unique global minimum at each step. In addition, the cost

function will decrease with each iteration. Moreover, the algorithm will converge after

at most two steps to the true values of the parameters in the limit, i.e. provided

enough samples are available [252].

The threshold value for the stopping criteria is adjustable. However, the algo-

rithm converges very quickly with improvements in the SSE becoming very small

after a relatively few iterations. In the results presented here, we used a threshold

of 10´10 and the algorithm converged after 6-8 iterations.

4.5 Simulation Results

4.5.1 Methods

The performance of the algorithm was evaluated using simulated data from the

stretch reflex stiffness model of the human’s ankle shown in Fig. 4–2. In this model,

the input, upkq joint velocity, first passes through a static nonlinearity and then

through a linear component consisting of a delay and a second-order low-pass filter

to generate the output torque. This model describes reflex behavior well and has been

used extensively to explore the human stretch reflex [37], [65], [122]. The nonlinear

element accounts for two experimentally observed phenomena: strong unidirectional

rate sensitivity is modeled as a threshold at p1 [229]; a saturation of the response
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Figure 4–2: Hammerstein model of reflex stiffness.

at high velocities is modeled with a saturation at p2 [229]. This nonlinearity can be

described analytically as:

fpupkqq “ pupkq ´ p1q ` pupkq ´ p1qsgnpupkq ´ p1q
2

(4.29)

´ pupkq ´ p2q ` pupkq ´ p2qsgnpupkq ´ p2q
2

where sgn is the sign function. The continuous-time transfer function of the linear

component is:

Hpsq “ e´τsGw2

s2 ` 2sζw ` w2
(4.30)

where s is the Laplace variable, G is the gain, ζ is the damping parameter, w is the

natural frequency, and τ is the delay in seconds. Nominal values of these parameters
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were based on those described previously [65]:$’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’%

G “ 25
`
Nms
rad

˘
ζ “ 0.98

w “ 20
`
rad
s

˘
τ “ 0.04psq

p1 “ 0
`
rad
s

˘
p2 “ 1.5

`
rad
s

˘

(4.31)

To avoid aliasing due to the nonlinearity, the model was simulated using MAT-

LAB Simulink at 1KHz for sixty seconds. Signals were then filtered with an eight-

order low-pass filter with cutoff frequency of 40 Hz and decimated to 100 Hz before

analysis. Gaussian, white noise was added to the decimated output to simulate ex-

perimental noise; the amplitude of the noise was adjusted to generate the required

signal to noise ratio (SNR) defined as:

SNR (dB) “ 20log10

ˆ
RMSsignal

RMSnoise

˙
(4.32)

The model used by SLS and H-K had 50 unknown parameters for the IRF and

12 parameters for the static nonlinearity for a total of 62 free parameters while the

Hammerstein state-space model used in OSS algorithm had 42 unknown parameters.

In comparison, the NSS algorithm had 3 parameters for the state-space matrices

B and D, 6 parameters for the state-space matrices A and C, and 12 parameters

for the static nonlinearity, for a total 21 free parameters. Consequently, the NSS
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describes the same dynamics with fewer parameters than the other methods which

should make its estimates more robust.

The similarity of the predicted ŷ to the noise free simulated reflex torque, y was

quantified in terms of percentage variance accounted for (%VAF):

%VAF “ 100

ˆ
1 ´ varpŷ ´ yq

varpyq
˙

(4.33)

To derive confidence intervals on the prediction %VAF, we used Monte-Carlo

simulations with 1000 trials in which each trial involved a new realization of input

signal and noise sequence. The distributions of the %VAFs for the different methods

were not Gaussian, so we used a non-parametric approach to estimate the significance

of differences between methods. Thus, for each trial we computed the difference

between the %VAF of the new method and each of three other methods. Then, we

computed the cumulative distribution function (CDF) of this difference for the 1000

trials. The value of this CDF at zero (p) gives the probability that the %VAF of

NSS was equal to or smaller than that of the other method. Thus, the lower this

probability, the greater confidence that the NSS method is more accurate. Fig. 4–

3 shows the CDFs for Monte-Carlo simulations at SNR levels of -15 and +15 dB.

For the low SNR of -15dB, p ă 0.02 for all three comparisons. Consequently, NSS

was more accurate than others at this SNR level. The difference was, however, not

significant at +15dB in comparison to the original subspace (p “ 0.40) and SLS

(p “ 0.18) methods, however, the new method was still significantly more accurate

than H-K at this SNR level (p “ 0).
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Figure 4–3: Cumulative distribution function (CDF) of the difference between %VAF
of the NSS method and those of (a) OSS; (b) SLS; (c) H-K. Results are shown for
SNRS of -15dB and + 15dB.

95



4.5.2 Input Design

The position input often used in identification of reflex stiffness is pseudo random

binary sequence (PRBS) of low amplitude displacements around an operating point.

The histogram of the velocity of this input has three major peaks corresponding to

zero, positive, and negative velocities [229]. As a result, while the PRBS input ex-

cites the linear system well, its amplitude distribution is not well suited to estimate

the static nonlinearity since an infinite number of polynomials can be fit between

these three levels. To address this, we used a velocity input generated by sampling a

uniform distribution at 250 ms intervals. For simulation purposes we integrated the

velocity signal to produce the desired angular position signal. Position was then fil-

tered with a second-order, low-pass, Butterworth filter, with break frequency of 15.9

Hz to represent actuator dynamics. Fig. 4–4 shows one realization of the resulting

position input, the corresponding velocity, its distribution and power spectrum. The

amplitude histogram of the velocity shows that it is distributed over the whole range

of possible values and so this input provides a much richer set of values with which to

estimate the static nonlinearity. The frequency spectrum of the simulated actuator

velocity is not white but does contain power up to 30 Hz suitable for identification.

4.5.3 Results

We compared the predictive ability of the models produced by the different

methods in a Monte-Carlo validation where the SNR was varied between -15 to 15

dB at 10 db increments. We first estimated a model using half of the data points.

Then, we quantified the results in terms of the %VAF between the true output and

predicted output using the second half of the data points.
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Figure 4–4: Input signal used for simulation: (a) a realization of the position; (b) a
realization of the velocity; (c) amplitude distribution of the input; (d) Power spec-
trum of velocity.
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Figure 4–5: Mean output prediction (%VAF) bracketed by 95% range, i.e. r2.5% ´
97.5%s percentiles, for all four methods. Stars indicate cases where the %VAFs were
less than those of NSS in ¿ 95% of trials.

First, we studied the output prediction accuracy of the new method in compar-

ison to other methods. Fig. 4–5 shows the %VAF and its statistics for each method

at different noise levels. It shows that the output predictions from the new method

were significantly more accurate than those from all other methods at SNRs of -15,

-5 and 5 dB. At +15 dB, the only significant difference was for H-K.

Second, we examined the accuracy with which the nonlinear and linear ele-

ments of the Hammerstein model were estimated by NSS in comparison to the H-K

and SLS algorithms. Note that, as indicated in the introduction, the original state
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Figure 4–6: Hammerstein models of stretch reflex identified from simulation data
(SNR=5 dB). (a) Static Nonlinearity (b) IRF.

space method does not yield direct estimates of the static nonlinearity or linear dy-

namic elements of the Hammerstein systems. Consequently, no results are shown in

Fig. 4–6 and 4–7 for this method. For this comparison we used the nominal linear

model, a nonlinearity with fixed value for threshold (p1 “ 0
`
rad
s

˘
) and saturation

(p2 “ 1.5
`
rad
s

˘
) and a SNR level of 5 dB. The nonlinear elements were evaluated

by comparing their shapes over the input range. The nonlinearities estimated using

SLS and subspace were very similar to that simulated. As shown in Fig. 4–6(a), the

nonlinearity estimated with H-K was, however, wrong.

The linear dynamics estimated by the different methods were compared in terms

of their impulse response functions. Both SLS and H-K methods estimate IRFs

directly; the IRF of the state-space model was determined by simulating its response

to unit impulse. As shown in Fig. 4–6(b), the IRF estimated by the subspace method
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was almost identical to that simulated. The IRFs estimated by both SLS and HK

had considerable noise.

The subspace and SLS algorithms both predicted the noise free torque well

(%VAF of 99.7%, 99.4% respectively) while the prediction of the H-K method was

poor (%VAF = 81.2%).

We studied the robustness of the different methods, further by using a Monte-

Carlo simulation to examine how well the linear dynamics were estimated as the SNR

level changed. To do so, the gain, threshold and saturation were held fixed at the

same values (p1 “ 0
`
rad
s

˘
and p2 “ 1.5

`
rad
s

˘
) while the SNR was varied from 0 to 20

dB. A Monte-Carlo simulation of 1000 trials was performed at each SNR (each with

different realization of input and noise signals) and the estimated IRF was compared

to that simulated in terms of %VAF. Similar to Fig. 4–5, Fig. 4–7 shows the mean

value of the %VAF bracketed by its 95% range as a function of SNR. It also shows

the statistical test results as a star on the bar plot if the new subspace method was

significantly more accurate. The new subspace algorithm performed the best - it had

the highest mean %VAF with lowest variation at all SNRs. Moreover, the IRF was

significantly more accurately identified at all levels.

There are physiological reasons to expect both the linear and nonlinear ele-

ments may change independently. Consequently, it is important for an identification

algorithm to distinguish between changes in the linear and nonlinear elements. To

examine this, Monte Carlo simulations were done to assess the ability of the algo-

rithm to distinguish between changes in gain and threshold. Systematic changes in

the linear system gain G (10 to 30) and nonlinearity threshold (-0.8 to 0.2) were
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Figure 4–7: Mean IRF estimation accuracy (%VAF) bracketed by 95% range. Stars
indicate cases with %VAFs less than those of NSS in 95% of trials.

made and 100 trials were simulated at each threshold/gain combination, each with

different realizations of noise and input sequence. The results of identifying each trial

were parameterized by: (i) fitting equations (4.29) to the estimated nonlinearity and

(b) fitting under-damped second-order IRF (4.34) to the estimated IRF. Fits were

done using Levenberg-Marquardt method in MATLAB curve fitting toolbox.

hptq “ Gwa
1 ´ ζ2

e´ζwpt´τqsin
´
w

a
1 ´ ζ2pt ´ τq

¯
(4.34)

Fig. 4–8(a) shows the mean value of the estimated gain as a function of the simulated

gain and threshold. Fig. 4–8(b) shows the coefficient of variation CV of the gain

estimates. Fig. 4–8(c) and (d) show the results for the identification of the threshold

in a similar manner.
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Figure 4–8: Estimation accuracy of the Hammerstein model; (a) mean value of the
predicted gains (b) CV associated with the estimation of gain; (c) mean value of the
predicted thresholds (d) CV associated with the estimation of threshold.
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Figure 4–9: Estimation accuracy of the Hammerstein model; (a) mean value of the
predicted gain; (b) CV associated with the estimation of gain; (c) mean value of the
predicted saturation; (d) CV associated with the estimation of saturation.

In another set of simulations, the gain and saturation parameters were varied

systematically between [10 to 30] and [1 to 2] while the threshold was held constant

which is shown in Fig. 4–9. Fig. 4–8 and Fig. 4–9 show that the new method tracked

the changes accurately in the shape of the nonlinearity from changes in the linear

component.

To evaluate the quality of the tracking we fitted planes to the data from Fig. 4–8

and 4–9. Ideally, the estimated thresholds, saturations and gains should be equal to

103



Table 4–1: Estimation accuracy for varying gain and threshold values

NSS SLS H-K

Gain
Slope 1.00 0.94 0.72

R-square 0.98 0.94 0.95

Threshold
Slope 0.95 0.86 -0.12

R-square 0.98 0.96 0.20

Table 4–2: Estimation accuracy for varying gain and saturation values

NSS SLS H-K

Gain
Slope 1.00 1.00 0.97

R-square 0.98 0.98 0.98

Saturation
Slope 0.97 0.95 0.43

R-square 0.88 0.86 0.66

those simulated and the fitted planes would have a slope of 1. The fit results are

summarized in Table 1 for threshold/gain and in Table 2 for saturation/gain. For

the NSS method the slopes were close to one and the r-squared values were large

indicating that changes in the gain, threshold and saturation were distinguished

accurately. Results from SLS were also very good, although slightly less accurate,

while the H-K results were much worse.

In all the Monte-Carlo simulations we used MOESP automatic order selection

method which is described in [117], [116]. The order of the linear system was always

selected correctly as 2, however, as also stated in [117], [116], manual inspection must

always be performed.

Simulation studies validate the new method for identification of stretch reflex

model and shows that it is more reliable compared to the other non-parametric

algorithms and the original subspace method for systems of this type. In the future
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it will be of interest to determine whether this improved performance is also observed

for different types of dynamics (e.g. band-pass, high pass).

4.6 Experimental Results

4.6.1 Methods

We evaluated the performance of the algorithm under practical conditions by

using it to estimate the dynamic relation between ankle velocity and reflex EMG

in the triceps surae TS muscle. This relation has been modeled previously as a

Hammerstein system involving a unidirectional, rate sensitive nonlinearity [158].

EMGs were recorded using single differential surface Delsys electrodes supplied

with the Bagnoli Systems. The reference electrode was a DermaSport placed on the

subject’s left knee which was immobilized during the experiment. EMG signal was

amplified 1000 times and then band-passed at 20-2000 Hz using a custom-made filter

to remove artifacts. EMG as well as position signals were recorded using NI-4472

A/D card. Data were filtered to avoid aliasing and then sampled at 1000 Hz for 60

seconds. The anti-aliasing filter of the module filtered data at 486.3 Hz.

The experimental methods were similar to those described in [37], [65], [249]

except that we used the input signal described in Section V. Five subjects were

recruited and gave informed consent to the experimental procedures, which had been

reviewed and approved by McGill University Institutional Review Board. The ankle

joint was slightly dorsiflexed from the neutral position (+0.2 rad). The subject was

asked to maintain a constant torque aided by the visual feedback of low-pass filtered

ankle torque.
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Data were acquired at two voluntary torque directions corresponding to: PF

(5% of the Maximum Voluntary Contraction (MVC) in the plantarflexing direction,

i.e., a low level contraction of the (TS)) and DF (5% of the MVC in the doresiflexing

direction, i.e., a low level contraction of the tibialis anterior TA). Prior to analysis,

we verified the recorded data to be stationary by inspecting the EMG background

levels. We full-wave rectified EMG signals and removed their means. Simliar to the

simulation section, we decimated all data to 100 Hz for analysis purposes.

In the Hammerstein cascade, the distribution of the gain is arbitrary between

the static nonlinearity and the linear element [252]. We opted to assign the gain to

the linear element and fix the gain of the nonlinearity to one. This was achieved by

fitting the nonlinear element with (4.29) to give estimates of threshold and slope.

Next, we divided the coefficients of the nonlinearity by the slope of the nonlinearity

and multiplied the gain of the linear element by the slope of the nonlinearity. We then

calculated the gain of the linear system by integrating the IRF. Consequently, we

parameterized the Hammerstein cascade by two important parameters: the threshold

of the nonlinearity and overall gain of the cascade.

4.6.2 Results

Fig. 4–10 shows the Hammerstein systems estimated between the velocity and

EMG for a typical subject with the new algorithm. Qualitatively, the estimated

models were similar to previous results - the nonlinearities both demonstrate a uni-

direction rate sensitivity while the IRFs were dominated by a sharp peak at about

40 ms [158].
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The estimated order of the linear system was 6 for 3 trials and 5 for the other

7 trials. The %VAF of the identification was 90% for PF and 54% for DF for

this subject. The identification %VAF was 84 ˘ 7% and 66 ˘ 9% for PF and DF

conditions respectively for all five subjects. We attribute the decreases in %VAF in

DF to the lower gain and increased threshold associated with the changes from PF

to DF. As a result of these changes, the responses became much smaller; indeed the

power of the predicted output for PF was more than 13 times larger than that for

DF. Consequently, the effect of noise and non-reflex EMG activity would become

relatively more important. It is unlikely that the decrease resulted from un-modelled

dynamics since fitting a parallel-cascade model [99] to the residuals did not account

for any variance.

The previous studies modeled reflex EMG nonlinearity with a half-wave rectifier,

i.e., a threshold at zero [158]. Consequently, we also calculated the prediction %VAF

of a Hammerstein model whose nonlinearity is a half-wave rectifier to validate our new

models. The prediction %VAF was comparable to the identified nonlinearities for

PF condition which shows that in this case, the reliability of the half-wave rectifier

and the identified nonlinearity is almost similar. However, in DF condition, the

prediction %VAF of the half-wave rectifier was always smaller than our identified

models.

What is of most interest is the changes observed with the torque direction.

During plantarflexing contractions, when TS was active, the threshold was close to

0 and the IRF amplitude was large which is consistent with previous findings [65].

In contrast, during dorsiflexing contractions, when TA was active, the amplitude of
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Figure 4–10: Hammerstein models estimated from reflex EMG at two different torque
directions.

the IRF decreased and the threshold was higher than during the TS contraction.

Fig. 4–11 shows the result. It is evident that the threshold was always larger in DF

condition and the gain was always smaller compared to PF for all subjects.

4.7 Discussion and Conclusion

This paper describes a new MOESP-based algorithm for identification of Ham-

merstein systems. Its major advantage over previous Hammerstein MOESP-based

algorithms [118], [122], is that it yields independent estimates of the linear dynam-

ics and the static nonlinearity. This gives explicit information on the coefficients of

nonlinearity and the state-space model of the linear component. Consequently, it is

straightforward to compute the shape of the nonlinearity and the IRF of the linear

dynamics which are needed to interpret the significance of parameter changes.
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One of the advantages of the MOESP over other parametric identification ap-

proaches is that it estimates the linear system order prior to the parameter identifi-

cation. Consequently, in MOESP the only required a priori information about the

system is an upper-bound on its order.

The simulation results demonstrated that the new algorithm successfully distin-

guished changes in the threshold and saturation of the nonlinearity from changes in

the gain of the linear subsystem (see Fig. 4–8 and 4–9). They further demonstrated

that the NSS method was more robust to additive output noise than OSS, SLS and

H-K Hammerstein algorithms. Thus, the subspace estimates were more accurate and

had lower variances (i.e. lower biases and less noisy, Fig.4–5 and 4–7) especially at

low SNRs. The SLS also gave good results at at high SNRs (Fig. 4–5). However,

SLS solves a nonlinear optimization and it is not guaranteed to converge. Indeed,
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the Monte-Carlo studies showed that this was the case; the %VAF had a bimodal

distribution; one mode corresponding to large values of %VAF with high probability

and a second mode to lower %VAFs corresponding to trials where the algorithm did

not converge. In contrast, NSS always converged and the %VAF distribution was

unimodal.

Our simulation results demonstrated that the NSS method performed much

better than other methods for SNRs less than 0 dB. SNRs as low as this may be

infrequent for single input systems but will occur frequently for multiple input sys-

tems since when estimating the response to one input, the responses to the other

inputs will appear as noise. For example, in the identification of reflex stiffness at

the ankle, torques generated as a result of intrinsic mechanisms will appear as noise

[37] resulting in effective SNRs of much lower than 0dB.

Thus, the new method was more robust than other methods; this is likely be-

cause it has fewer free parameters to estimate in the case of reflex stiffness iden-

tification. We described the linear component of the Hammerstein system with a

state-space model whose number of parameters depends on the system order. In

contrast, non-parametric methods modeled it as an IRF whose length depends on

the system memory. The original subspace algorithm used an over-parameterized

model which will always have more parameters compared to our minimal formula-

tion. The total number of unknown parameters in our model is pm`1q2 `n whereas

for the original subspace method is m2 ` m ` mn ` n. Thus, the new formulation

reduced the number of parameters by mn ´ m ´ 1. The total number of unknown

parameters in the SLS formulation is nlags ` n, where nlags is the memory of the
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system. The difference of nlags ´ pm ` 1q2 between number of parameters in SLS

and NSS formulation is significant for a low-pass filter with relatively large memory

compared to its order.

The new method presented here modeled the static nonlinearity by a polynomial.

Future work is required to develop a method for determining which expansion to use

and the optimal order for the nonlinearity.

The experiment studies in this paper were intended as proof-of-principle exper-

iments. We did not examine reflex stiffness directly since the reflex torque cannot

be measured directly (only the sum of the voluntary, reflex and intrinsic torques can

be measured). Consequently, we used EMG as the output since it is an indicator

of muscle activity and is not related to the intrinsic response. The results showed

that the method works well with experimental data and gave results consistent with

previous EMG studies [158], [65].

Previous studies have shown that reflex stiffness changes dramatically with the

operating point defined by mean ankle position and muscle activation level [65]. In

these experiments the nonlinearity was assumed to be constant so all changes were

modeled as changes in the parameters of the linear component. Here, the results

show that the nonlinearity also changes as a function of the operating point, in this

case the muscle activation. The amplitude of the IRF changed with torque level as

expected - it was the larger when TS was active, and lower when TA was active.

Interestingly, the threshold behaved differently, it was low when TS was active and

high when TA was active. At least in this case, it appears the the reflex gain and

threshold varied independently and consequently, characterizing the reflex by its gain
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alone may not be appropriate. Much additional work on the identification of stretch

reflex (position-EMG system) needs to be carried out to map out how the gain and

threshold change with operating point; the new algorithm provides the means to do

so.

An important application of this work will be to incorporate it into our parallel-

cascade methods for the identification of systems with parallel-cascade structures.

We demonstrated its utility for reflex stiffness in our simulations. However, since

the reflex torque cannot be measured independently, a parallel-cascade method is

required to decompose the intrinsic and reflex components prior to the identification

of parameters [37]. In theory, by incorporating the intrinsic path into the system

model, one can integrate this method into the identification of the parallel-cascade

structures. This will become useful in studying joint stiffness with a compliant load.

Previous studies have shown that subspace method has the great advantage of pro-

viding accurate estimates in the presence of feedback and/or input noise, conditions

under which other correlation based methods give biased results [122].

Implementation of the new method is straightforward. The MOESP method

that we used is well-known to the system identification community and an imple-

mentation is available as part of the SIM toolbox, Delft University of Technology

[117]. The remainder consists of solving two least-squares in an iterative manner

followed by normalization. The MATLAB routine for the new method can be down-

loaded from our website as part of the new release of NLID toolbox.

The new method has some limitations too. It is difficult to include delay in a

state-space model. Thus, for the subspace identification methods to work, the value
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of the delay has to be known. Moreover, we showed that since the IRF model has

many parameters, its identification is less robust than the state-space identification.

However, for a complex linear dynamics with short memory, the IRF might have

fewer parameters than the state-space model and its identification might be more

robust. This is because the number of parameters in the state space model grows

rapidly with the system order.
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CHAPTER 5
Identification of Hammerstein Systems from Short Segments of Data:

Application to Stretch Reflex Identification

This paper was originally published in IFAC-PapersOnline, DOI: 10.3182/20120711-

3-BE-2027.00386, from Kian Jalaleddini, Ferryl Alley, and Robert E. Kearney, 16th

IFAC Symposium on System Identification, pp. 798-803, July 2012.

In Chapter 4, I developed the NSS method that identified a Hammerstein cas-

cade from a single, stationary, long data record. In this chapter, I extend the NSS

method to identify a Hammerstein cascade from multiple, short, stationary data

segments. I show an application to identify reflex EMG response in ankle plan-

tarflexor muscles during stance. This chapter is a conference paper published in the

Proceedings of 16th IFAC Symposium on System Identification.
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5.1 Abstract

It is not trivial to acquire data under stationary conditions from biomedical

systems since they frequently show time-varying/switching behaviour. It is often

possible to acquire short transients of stationary data and repeat the experiment

many times. However, initial conditions may contribute substantially to transient

response and must therefore be accounted for explicitly. This paper presents a sub-

space algorithm for identification of Hammerstein systems from short transients of

data that estimates the initial condition of each transient and the parameters of

the nonlinearity, as well as a state-space model for the linear part. A previously

developed subspace short transient algorithm suffers from two issues. Firstly, all

transients had to be equal lengths, and secondly the algorithm provided an over-

parameterized model of the Hammerstein system rather than an individual model

for each component of the cascade. We resolved the first issue by introducing a new

formulation of the problem and the second one by developing an iterative method

to separate the estimated parameters. Simulation results on Hammerstein model of

reflex joint stiffness show the algorithm is capable of identifying an acceptable model

even with corrupted noisy data. We also use this algorithm on a set of experimental

data acquired from one subject.
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5.2 Introduction

A Hammerstein system consists of a static memory-less nonlinear system fol-

lowed by a linear dynamic. Many biologicals systems have a Hammerstein structure

such as ankle joint stretch reflex stiffness and neural integrator model of the human

vestibular-ocular reflex (VOR). For more detailed structure of the models see [37]

and [87].

Identification of a Hammerstein system is an important problem and has been

extensively investigated in the past years. Some methods model the nonlinear part

with a polynomial and the linear part with an impulse response function (IRF).

The algorithm then iterates between estimation of these two subsystems until it

converges to the optimum minimum, [249], [252], [96] and [253]. Other algorithms

model the nonlinearity by a spline which are found to be useful in presence of hard

nonlinearities, and the linear part by an IRF [92] [250]. Another class of algorithms

formulates the nonlinear element by a polynomial and the linear part by a state-

space model. [118], [263] developed subspace algorithms to estimate this structure

formulation. The algorithm proposed in [118] works by transforming the single-

input-single-output SISO Hammerstein system to a multi-input-single-output MISO

linear system and then uses linear subspace method to estimate a state-space model

for the Hammerstein structure.

Most system identification methods use a single data record. During the whole

length of recorded data, the system is assumed to be stationary, i.e. time-invariant.

The general rule is that the longer the data record, the more the identification will

be accurate in the presence of noise. However, in biomedical systems, it is difficult to
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maintain stationary conditions for long periods. The system may show time-varying

behaviour, for example stretch reflex dynamic parameters change with postural sway

during quite stance [264]. Other systems such the vestibulo-ocular reflex (VOR)

switch between two different modes at random times [265]. As a result while it is

difficult to obtain long data record under stationary condition, often it is possible

to obtain many short data records during which the system is stationary. It may

also be possible to break a long data record displaying time-varying behaviour, into

a series smaller segments during which the system is time-invariant.

Initial conditions are an important issue to the system response for short tran-

sients, [266]. Depending on the memory of the system, the effect of initial conditions

will die out after some time. It is a standard practice in identification of biological

systems to consider the system in steady state mode and neglect the effect of initial

conditions. However, when only short transients of data are recorded, the effect of

initial condition must be considered since they play an important role at the onset

of recording.

Our laboratory has extended the Hammerstein identification proposed in [118]

to estimation of the parallel-cascade model of joint stiffness from short transients

of data (see [267]). This algorithm requires all transients of data to be the same

length (a condition that is often difficult to meet). It then identifies a state-space

model for the total Hammerstein system in which each parameter of the state-space

model is dependent on both the nonlinearity and the linear component. This model

predicts the output very well but is unable to describe each individual element of

the Hammerstein model. Therefore, after identification, the input and noise free
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Figure 5–1: Hammerstein system model.

predicted output was analyzed using other Hammerstein algorithms to acquire insight

about each component of the system.

In this paper, we introduce a new formulation of the problem where each tran-

sient may have different length. We then use the results of [253] and [252] to develop

separation and estimation the unknown parameters which are the initial condition

of each transient, the coefficients of the polynomial nonlinearity, and the state-space

model of the linear system.

The plan of the paper is as follows: Section 5.3 formulates the Hammerstein

model and define the optimization problem. Section 5.4 presents the new identifica-

tion algorithm. Section 5.5 provides some simulation results on a model of stretch

reflex. Section 5.6 describes its application to an experiment on identification of

velocity/EMG system. Section 5.7 gives a summary and some concluding remarks.

5.3 Problem Formulation

This section presents a formulation for the Hammerstein cascade where the

nonlinearity is approximated by finite-order polynomial and the linear system by its

state-space model.

Consider the SISO Hammerstein system shown in Fig. 5-1. The output to the

system is upkq, the output of the nonlinearity is wpkq and the output of the system

is ypkq. We can represent any static nonlinearity with a finite-order polynomial with

118



a given accuracy as follows, [5]:

wpkq “ f pupkqq »
nÿ

i“1

αigi pupkqq (5.1)

where gip¨q is the ith basis function and αi is the corresponding coefficient.

We further assume p transients of input-output data is recorded where each

transient has a distinct number of data points, i.e., the jth transient (j P 1, ¨ ¨ ¨ , p)
has tj samples:

uj “ rujp0q, ¨ ¨ ¨ , ujptj ´ 1qs
yj “ ryjp0q, ¨ ¨ ¨ , yjptj ´ 1qs

where ujpkq and yjpkq are the input and output of the jth transient at discrete time

k.

Assume that the linear component is stable and of order m so that it can be

described by the state-space model for the data in the jth transient:$’’&
’’%
xjpk ` 1q “ Axjpkq ` Bwjpkq

ypkq “ Cxjpkq ` Dwjpkq ` vjpkq
(5.2)

where, xjpkq P R
m is the state vector and, Amˆm , Bmˆ1, C1ˆm and D1ˆ1 are the

corresponding matrices and vjpkq is the additive noise signal which is uncorrelated

with the input. Let the elements of B and D be:

B “ rb1, ¨ ¨ ¨ , bmsT

D “ rds (5.3)
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Define the vectors:

α “ rα1, ¨ ¨ ¨ , αnsT (5.4)

Ujpkq “ rg1 pujpkqq , ¨ ¨ ¨ , gn pujpkqqsT (5.5)

Substitute (4.4) and (5.5) in (5.2) to yield:$’’&
’’%
xjpk ` 1q “ Axjpkq ` BαUjpkq

yjpkq “ Cxjpkq ` DαUjpkq
(5.6)

where:

Bα “

»
————–

b1α1 ¨ ¨ ¨ b1αn

...
. . .

...

bmα1 ¨ ¨ ¨ bmαn

fi
ffiffiffiffifl (5.7)

Dα “
„
dα1 ¨ ¨ ¨ dαn

j
(5.8)

The parameterization (5.7) and (5.8) is not unique and has one degree of free-

dom, i.e, for any arbitrary scalar β, the vectors βB, βD and β´1α will generate

the same matrices Bα and Dα. Consequently, to provide a unique solution we will

require that the first non-zero element of the vector α is positive and:

|| rα1, ¨ ¨ ¨ , αnsT || “ 1 (5.9)

where || ¨ || is the two norm.
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The state vector of the jth transient at discrete time k is given by:

xjpkq “ Akxjp0q `
k´1ÿ
τ“0

Ak´1´τBUjpτq (5.10)

The first term of (5.10) reflects the initial conditions while the second term states

how the past input signal accumulated in the memory of the system. Substituting

(5.10) in the state-space model (5.6), gives the output of the system at time k, [116]:

yjpkq “ CAkxp0q `
k´1ÿ
τ“0

Ak´1´τBUjpτq ` DUjpkq ` vpkq (5.11)

Definition 1 A Hankel matrix constructed from a discrete signal opkq has constant

block anti diagonal shape:

Oi,j,k “

»
————–

opiq ¨ ¨ ¨ opi` k ´ 1q
...

...

opi` j ´ 1q ¨ ¨ ¨ opi` j ` k ´ 2q

fi
ffiffiffiffifl (5.12)

Using this, (5.11) can be cast into the following data equations:

Y0,s,Nj “

»
————————–

C

CA

...

CAs´1

fi
ffiffiffiffiffiffiffiffifl

loooooomoooooon
Extended observability

rxjp0q ¨ ¨ ¨xjpNj ´ 1qs

`

»
————————–

D 0 ¨ ¨ ¨ 0

CB D ¨ ¨ ¨ 0

...
...

. . .
...

CAs´2B CAs´3B ¨ ¨ ¨ D

fi
ffiffiffiffiffiffiffiffifl
U0,s,Nj ` V0,s,Nj (5.13)
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where, U0,s,Nj
, Y0,s,Nj

and V0,s,Nj
are the Hankel matrices of the jth transient input,

output and the noise signals. s is the Hankel size which must be greater than the

linear system order and Nj is defined according to cover all the recorded data points:

Nj “ tj ´ s ` 2 (5.14)

The data equation (5.13) for each transient record can be generalized for all the

recorded transients as follows:

Y0,s,N1,¨¨¨ ,Np “
“
Y0,s,N1 ¨ ¨ ¨ Y0,s,Np

‰

“

»
————————–

C

CA

...

CAs´1

fi
ffiffiffiffiffiffiffiffifl
rx1p0q ¨ ¨ ¨x1pN1 ´ 1q ¨ ¨ ¨xpp0q ¨ ¨ ¨xppNp ´ 1qs

`

»
————————–

D 0 ¨ ¨ ¨ 0

CB D ¨ ¨ ¨ 0

...
...

. . .
...

CAs´2B CAs´3B ¨ ¨ ¨ D

fi
ffiffiffiffiffiffiffiffifl
U0,s,N1,¨¨¨ ,Np ` V0,s,N1,¨¨¨ ,Np (5.15)

Concatenate all the recorded transients:

U “ rU1p0q ¨ ¨ ¨U1pt1q ¨ ¨ ¨Upp0q ¨ ¨ ¨Upptp ´ 1qs (5.16)

Y “ ry1p0q ¨ ¨ ¨ y1pt1q ¨ ¨ ¨ ypp0q ¨ ¨ ¨ ypptp ´ 1qs (5.17)

5.4 Identification Algorithm

The past-input multivariable Output Error State Space PI-MOESP algorithm

estimates the linear system order and the A and C state-space matrices from the
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constructed input signal U and the measured output Y . The PI-MOESP algorithm

works by first eliminating the effect of the input signal from the data equation (5.15)

leaving only the observability matrix and the noise term. This is achieved by right

multiplying the data equation (5.15) by the orthogonal complement of the input

signal. The past input signal is a good candidate for instrumental variable (IV)

since it is not correlated with the noise signal but is correlated with the rest of the

data equation. Right multiplying the data equation with this IV leaves only the

extended observability matrix which can be used to estimate A and C matrices. For

details of the MOESP algorithm see [102].

The goal of the identification is now to estimate the remaining state-space ma-

trices (B and D), the initial conditions (xjp0q, j P 1 ¨ ¨ ¨ pq, and the parameters of

the nonlinearity (α). Using the Kronecker product, the output of the jth transient

(5.11) is ([116]):

yjpkq “
«
k´1ÿ
τ“0

UT
j pτq b CAk´1´τ

ff
loooooooooooooomoooooooooooooon

Λjpkq

vec pBαq

` “
UT
j pkq‰

vec pDαq ` CAkxjp0q ` vjpkq (5.18)

where vecp¨q generates a vector by stacking the columns of the matrix p¨q:

vec pBαq “ rb1α1 ¨ ¨ ¨ bmα1 ¨ ¨ ¨ b1αn ¨ ¨ ¨ bmαnsT

vec pDαq “ rdα1 ¨ ¨ ¨ dαnsT (5.19)
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Define the matrix Γ “ rΓ1 ¨ ¨ ¨Γps as follows:

Γ1 “

»
———————————————–

C

...

CAt1´1

0

...

0

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

, Γ2 “

»
—————————————————————————–

0

...

0

C

...

CAt1´1

0

...

0

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

, ¨ ¨ ¨Γp “

»
———————————————–

0

...

0

C

...

CAt1´1

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

(5.20)

Define matrix Λ as follows:

Λ “

»
—————————————————————–

0

U1p0qC
...řt1´2

τ“0 U1pτqCAt1´2´τ

0

Upp0qC
...řtp´2

τ“0 UppτqCAtp´2´τ
...

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

(5.21)

Now, the data equation (5.18) can be expressed in the following matrix form:

Y “ Φθ (5.22)
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where θ contains the unknown parameters:

θ “ rx1p0q ¨ ¨ ¨ xpp0q vec pBq vec pDqsT (5.23)

and the regressor Φ is constructed from Γ and Λ:

Φ “ rΓ1 Γ2 ¨ ¨ ¨ Γp Λ U s (5.24)

The unknown parameter θ set can be re-written as follows:

θ “ rζ1 ¨ ¨ ¨ ζp b1α1 ¨ ¨ ¨ bmα1 ¨ ¨ ¨ b1αn ¨ ¨ ¨ bmαn dα1 ¨ ¨ ¨ dαnsT (5.25)

Assuming αi is non-zero, ζi is:

ζi “ xip0q
α1

(5.26)

It is evident that the least-squares problem (5.22) is not a linear least-squares

problem. Therefore, the iterative algorithm suggested in [252] is applied to sepa-

rate and estimate the unknown parameters. This iterative algorithm separates the

unknown parameters into two sets:

θA “ rα1 ¨ ¨ ¨ αnsT

θB “ rζ1 ¨ ¨ ¨ ζp b1 ¨ ¨ ¨ bm dsT (5.27)

Now, if the set θA is held fixed, the output is a linear function of the other set θB

and similarly, if the set θB is held fixed, the output is again a linear function of the

parameter set θA. In other words, we break the problem of separation and estimation

of the unknown parameters into two linear least-squares problem which are solved

iteratively. Suppose the iteration index is k. Below, we state these two problems:
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Problem I: Suppose the parameter set θkA is known and fixed. The following

problem states the linear dependency of the output on θkB:

Y “ Φ

»
——————————————————————————————————————–

αk´1
i 0 0 ¨ ¨ ¨ 0 0

...
. . .

...
...

. . .
...

...

0 αk´1
i 0 ¨ ¨ ¨ 0 0

0 ¨ ¨ ¨ 0 αk´1
1 ¨ ¨ ¨ 0 0

...
. . .

...
...

. . . 0 0

0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ αk´1
1 0

...
...

...

0 ¨ ¨ ¨ 0 αk´1
n ¨ ¨ ¨ 0 0

...
. . .

...
...

. . . 0 0

0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ αk´1
n 0

0 ¨ ¨ ¨ 0 αk´1
1

...

0 ¨ ¨ ¨ 0 αk´1
n

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon
Φk´1

B

»
—————————————————–

ζk1
...

ζkp

bk1
...

bkm

dk

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

looomooon
θk
B

(5.28)

The following linear least-squares estimates θkB:

θkB “
”
pΦΦk´1

B qT pΦΦk´1
B q

ı´1 pΦΦk´1
B qY (5.29)
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Problem II: Suppose the parameter set θkB is known and fixed. The following

problem states the linear dependency of the output on θkA:

Y “ Φ

»
——————————————————————————————————————–

ζk´1
1 ¨ ¨ ¨ 0

...
...

...

ζk´1
p ¨ ¨ ¨ 0

bk´1
1 ¨ ¨ ¨ 0

...
...

...

bk´1
m ¨ ¨ ¨ 0

...
...

...

0 ¨ ¨ ¨ bk´1
1

...
...

...

0 ¨ ¨ ¨ bk´1
m

dk´1 ¨ ¨ ¨ 0

. . .

0 ¨ ¨ ¨ dk´1

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

loooooooooooomoooooooooooon
Φ

αk´1

»
————–

αk
1

...

αk
n

fi
ffiffiffiffifl

looomooon
θkA

(5.30)

The following linear least-squares estimates θkB:

θkA “ “pΦΦk
AqT pΦΦk

Aq‰´1 pΦΦk
AqY (5.31)

Identification Algorithm: The identification algorithm iterates between prob-

lem 1 and problem 2 to estimate the model parameters. If the initial point is set

properly, the global convergence of the algorithm is guaranteed:
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Figure 5–2: Hammerstein model of reflex stiffness.

1. Set k “ 1 and θ0A “
„
1 ¨ ¨ ¨ 1

jT

.

2. Construct the matrix Φk´1
B and following (5.29), solve problem 1.

3. Construct the matrix Φk
α and following (5.31), solve problem 2.

4. Let q be the sign of the first non-zero element of θkA, i.e., s “ sgn
`
αk

˘
and

perform the following normalization:

θkA Ð θkAs∥
∥θkA

∥
∥

θkB Ð θkBs
∥
∥θkA

∥
∥ (5.32)

5. Evaluate the sum of squared errors pSSEqk between the predicted output and

the recorded output. If the relative improvement in SSE is greater than a

threshold, replace k by k ` 1 and go to step 2. Otherwise, terminate.

5.5 Simulation Results

We assessed the algorithm’s performance using a small signal model of the

stretch reflex stiffness of the human ankle joint (Fig. 5-2). The input to this model

is joint angular velocity and the output is the reflex torque. Previous studies mod-

eled this stretch response by a Hammerstein system. The nonlinearity resembles

a threshold and the linear component is modeled by a second-order (or sometimes

third-order) low-pass filter, [65] and [37].
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To generate the velocity input signal, we sampled a uniform distribution with

minimum and maximum of r´20, 20s (rad/s) at each 150 ms. We integrated this

desired input signal to derive the desired angular position. The desired position

signal was then passed through a low pass filter with cut-off frequency of 20Hz to

mimic the actuator dynamics. We then calculated the derivative of the output of the

actuator as the simulated velocity input signal to the model.

We simulated this model in MATLAB Simulink at 1 KHz and the resulting sig-

nals were decimated to 100 Hz before further analysis. We simulated 20 transients of

input-output where the length of each transient was selected from a random distri-

bution with the mean of 1000 ms. The initial condition of each transient was set to

be a random as well. Realizations of Gaussian, white noise were added to the output

to simulate experimental noise; the amplitude of the noise was adjusted to generate

the 10dB signal to noise ratio (SNR).

Fig. 5-3 shows the simulated input-output data for 4 transients along with the

predicted output using the algorithm and Fig. 5-4 shows the identified Hammerstein

system. The variance accounted for (VAF) was 95.6% with respect to the noise free

output which shows an excellent consistency between the predicted torque and the

simulated one.

5.6 Experimental Results

We studied the behaviour of the stretch reflex during normal upright standing

when the subject is unconstrained. During upright standing, a subject sways for-

wards and backwards freely, in a random, time-varying pattern. The general pattern

of a subject’s postural sway was identified by low pass filtering the ankle torque at
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Figure 5–3: Simulated input-output of 4 transients along with the predicted output.
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Figure 5–4: Identified Hammerstein system model.

1Hz. Several postural states were identified for which the ankle torque was at differ-

ent levels. We expect that the postural state of a subject will affect the ankle joint

operating point; during a forward lean state, the subject’s triceps surae (TS) are

stretched and will contract. In contrast, during a backward lean, the TS are relaxed.

The state of the ankle joint will affect the behaviour of the stretch reflex response.

The experiment paradigm is described elsewhere but both feet were perturbed

with two uncorrelated PRBS position input signals, [268]. Fig. 5-5(a) shows the

postural torque for a typical subject, where two different states were identified as a

postural forward lean, state A, occurring at mean postural torques less than -2Nm,

and a postural backward lean, state B, occurring at mean postural torques greater
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than +2Nm. From the full data record, several state transients were identified, each

having a different length and occurring at several points during the record length.

The stretch reflex response has been described in terms of its reflex stiffness;

however, it can also be described in terms of the muscle activation EMG response.

This reflex EMG response can be represented by a Hammerstein system between

input velocity and output EMG recorded from the TS muscle, [158]. Therefore,

to determine the stretch reflex system at each postural state, the input velocity,

Fig. 5-5(b), and the output EMG, Fig. 5-5(c), were segmented according to the

selected transients from each postural State. Fig. 5-5 (b-1) and (c-1) illustrate a

single transient, where we have identified a segment of input velocity and output

EMG, respectively, according to the duration of the forward lean state A identified

from the postural torque. We identified three transients from state A and four

transients from state B, each with a different duration.

We used the algorithm presented herein to estimate the stretch Hammerstein

system for each state. The predicted models for state A (53.5%VAF) and state B

(62.8%VAF) are both presented in Fig. 5-6. The Hammerstein system identifies

a static nonlinearity resembling a half wave rectifier and a linear impulse response

function with a peak occurring at 40ms. The half-wave rectifier is consistent with the

physiological stretch reflex response, which is activated by positive input velocities, or

by inputs that stretch the TS muscle. Furthermore, the peak of the impulse response

function is consistent with the neural conduction delay of the reflex monosynaptic

pathway presented in previous literature. Comparing each state’s linear impulse

response function, state A has a higher peak than state B. This indicates that the
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reflex response is stronger when the subject has a postural forward lean, which is

consistent with prior ankle joint dynamic stiffness studies while subjects were at

supine position, [65].

5.7 Conclusions

We developed a subspace method to identify a Hammerstein model from short

transients of input-output data record. Compared to previous methods, it has two

advantages. First, we can now apply it to transients with different lengths and

second, it fully separates the parameters of the nonlinearity from the linear com-

ponent model. These two features make the algorithm a powerful tool for analysis

of biomedical systems where the system dynamics change/switch during the data

record. Simulation analysis show excellent identification in presence of additive noise.

Experimental results show that the algorithm was able to identify the half-wave rec-

tifier static nonlinearity and linear dynamic structure. This is consistent with results

presented in previous stretch reflex studies using alternative methods, [249]. Note

that the example presented here used only two states but the same principle can be

applied to distinguish many different states of the system.
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Figure 5–5: (a) System’s postural torque; (b) system input velocity; (c) system
output lateral Gastrocnemius EMG.
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Figure 5–6: Estimated stretch reflex EMG system between input velocity and output
lateral Gastrocnemius EMG; State A corresponds to a forward lean postural state
and State B corresponds to a backward lean postural state
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CHAPTER 6
A Subspace Approach to the Structural Decomposition and

Identification of Ankle Joint Dynamic Stiffness

In Chapter 4 and 5, I developed methods for identification of Hammerstein

structures. In this chapter, I extend the Hammerstein identification method to the

full parallel-cascade model of joint stiffness from a single, stationary, long data record.

I show an application to identify stiffness at the ankle joint as a function of activation

direction. This chapter is a journal paper that has been submitted to the IEEE

Transactions on Biomedical Engineering.
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6.1 Abstract

This paper presents a Structural Decomposition SubSpace (SDSS) method for

the identification of ankle joint dynamic stiffness, modelled as a parallel-cascade

structure with intrinsic and reflex pathways. First, it formulates a novel state-

space representation for the parallel-cascade structure with a concise parameter set

that provides a direct link between the state-space representation matrices and the

parallel-cascade parameters. Secondly, it presents a subspace method for the identi-

fication of the new state-space model that involves two steps: (i) the decomposition

of the intrinsic and reflex pathways contributions; (ii) the identification of an im-

pulse response model of the intrinsic pathway and a Hammerstein model of the reflex

pathway. Extensive simulation studies demonstrate that SDSS has significant per-

formance advantages over other methods. Thus, SDSS was more robust under high

noise conditions, converging where other methods failed; it was more accurate, giving

estimates with lower bias and random errors than other methods. The practical ap-

plication of SDSS was demonstrated by applying it to experimental data from human

subjects at three muscle activation levels. Together, the simulation and experimen-

tal results demonstrate that SDSS accurately decomposes the intrinsic and reflex

torques and provides accurate estimates of physiologically meaningful parameters.

It should be a valuable tool for studying joint stiffness under functionally important

conditions.
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6.2 Introduction

Joint dynamic stiffness defines the dynamic relation between the position of a

joint and the torque acting about it [19]. It plays an important role in control of

posture since it determines the resistance to external perturbations. Moreover, it is

important in movement since it defines the load the central nervous system (CNS)

must control [269, 10, 11, 12]. Consequently, its identification is of great importance

and has been extensively investigated [230, 37, 221, 65, 270, 185, 75].

Kearney et al. proposed a parallel-cascade model for ankle joint stiffness [37],

that was valid for small variations of position and torque about fixed operating points.

The model comprises two parallel pathways: intrinsic stiffness modelled as a linear

dynamic system and reflex stiffness modelled as a block oriented nonlinear (BONL)

structure consisting of the cascade of linear dynamic and a static nonlinear blocks

[85]. The total joint torque is the sum of intrinsic and reflex torques (Fig.6–1).

Identification of the parallel-cascade stiffness model is challenging since there is

no access to the intrinsic and reflex torques separately, i.e. only their sum can be

measured. Thus, intrinsic and reflex torques must be decomposed from the measured

torque as part of the identification procedure. Moreover, the noise is large and colored

since during the estimation of one pathway, the output of the other pathway appears

as noise in addition to measurement noise.

The parallel-cascade (PC) method described in [37] decomposes the torques

iteratively by estimating the intrinsic and reflex pathways alternatively using non-

parametric techniques. Our laboratory has successfully employed PC to study ankle

joint stiffness in both healthy and pathological subjects and showed how intrinsic and
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reflex stiffnesses modulate with the operating point [65, 135]. A real-time implemen-

tation of the PC was used to demonstrate that subjects could voluntarily modulate

their stiffness [167].

Despite its utility, the PC method has some shortcomings. First, it is based on

an iterative procedure that is not guaranteed to converge; indeed it does fail when the

noise is large. Second, the Impulse Response Function (IRF) used to model the reflex

linear dynamics has many free parameters which reduces the method’s robustness to

noise [271]. Third, it is a correlation based method and so will give biased results

when position and torque are connected via a feedback, as will be the case when the

joint interacts with a compliant load [185, 272].

To address these issues, we have explored the use of state-space models and a

parametric, subspace identification method, Multivariable Output Error State-sPace

MOESP. Zhao et al. formulated a state-space model for the parallel-cascade stiffness

structure and showed how it could be identified using the MOESP method [122].

This method which we will call original SubSpace (SS) throughout this paper, is not

iterative, gives reliable results with both open- and closed-loop data, and produces

models with excellent predictive abilities.

However, this state-space representation: (i) was over-parameterized which re-

duces the robustness of the identification procedure to noise [273]; (ii) parameters

were not directly related to the elements of the parallel-cascade model which makes it

difficult to interpret the physiological significance of the identified models [271]; and
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(iii) modelled the intrinsic stiffness pathway with a simple second-order mass-spring-

damper (IBK) structure that could not capture more complex dynamics that might

arise from the muscle tendon complex structure and/or fixation dynamics [206].

This paper addresses these limitations by extending Zhao’s method in three

ways. Firstly, it reformulates the state-space model based on our previous work on

Hammerstein systems ([271]), to have many fewer parameters, each directly related

to the underlying parallel-cascade elements. Secondly, it represents the intrinsic

dynamics by a two-sided IRF to account for more complex dynamics of this path-

way. Thirdly, it develops a Structural Decomposition SubSpace (SDSS) method that

estimates all elements of the parallel-cascade model individually.

The paper plan is as follows: Section 6.3 formulates the problem. Section 6.4

develops the SDSS identification algorithm. Section 6.5 evaluates the SDSS method

using simulation data that closely mimic actual experimental conditions and com-

pares its performance to those of the SS and PC methods. Section 6.6 demonstrates

successful application of SDSS to experimental data. Section 6.7 provides a discus-

sion and concluding remarks. A part of this work has been subject of a conference

presentation [274].

6.3 Problem Formulation

This section formulates a state-space model for the ankle stiffness and demon-

strates how each element of the parallel-cascade structure contributes to it.

Throughout this paper, vectors, matrices and scalars are shown in roman bold-

face uppercase, uppercase and lowercase letters respectively, the continuous time
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Figure 6–1: Parallel-cascade model of the ankle joint stiffness. The input is joint
angular position (posptq) and the output is the joint total torque (t̃qptq). The intrinsic
pathway is modelled by a linear system (high-pass filter), and the reflex pathway
modelled as a cascade of a delay operator, a differentiator, a static nonlinear element
(threshold-slope) followed by a linear element (low-pass filter). The measured output
torque (t̃qptq) is the sum of intrinsic (tqIptq), reflex (tqRptq) and voluntary (tqvptq)
torques and measurement noise (nptq).

argument by t, the discrete time argument by k. The symbol p̃¨q indicates the value

of p¨q contaminated by additive noise, and p̂¨q is its estimate.

Fig. 6–1 shows the parallel-cascade model of ankle joint stiffness which is a

single-input-single-output (SISO) nonlinear structure. We will use this model in

discrete time and transform it to a multi-input-single-output (MISO) linear system

to take advantage of linear identification techniques.

6.3.1 Intrinsic stiffness

Model the intrinsic stiffness pathway with a two-sided IRF, hipτq, whose length,
TMax, is less than the reflex delay, which is assumed to be known: TMax ď Δ samples.

141



Thus, the convolution sum gives the intrinsic torque tqIpkq:

tqIpkq “
TMaxÿ

τ“´TMax

hipτqpospk ´ τq “ ΘT
I U

T
I pkq

ΘI “
„
hip´TMaxq ¨ ¨ ¨ hipTMaxq

jT

(6.1)

UIpkq “
„
pospk ´ TMaxq ¨ ¨ ¨ pospk ` TMaxq

j

where, UIpkq is constructed from the sampled position input, and ΘI comprises the

unknown IRF coefficients.

6.3.2 Reflex Stiffness

Reflex stiffness has a BONL structure consisting of a differentiator, a delay

operator (Δ samples), followed by a Hammerstein model, i.e. a cascade of a static

nonlinearity and a dynamic linear system. The static nonlinearity is often modelled

by a rectifier and the linear component by a second-order ([37]) or third-order ([65,

135]) low-pass filter.

Numerically, calculate the delayed velocity vdpkq from the recorded sampled

position and approximate the output of the nonlinearity, zpkq, using a basis function

expansion of order p on vdpkq:

zpkq “
pÿ

j“1

λjgj pvdpkqq “ ΛTUT
Rpkq

Λ “
„
λ1 ¨ ¨ ¨ λp

jT

(6.2)

URpkq “
„
g1 pvdpkqq ¨ ¨ ¨ gp pvdpkqq

j
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where URpkq is constructed based on the basis expansion terms, and Λ comprises

its unknown weights.

Represent the reflex linear dynamics by a state-space model of unknown order

(m) with the unknown state-space matrices AR P R
mˆm, BR P R

mˆ1, CR P R
1ˆm

and DR P R
1ˆ1: $’’&

’’%
XRpk ` 1q “ ARXRpkq ` BRzpkq

tqRpkq “ CRXRpkq ` DRzpkq
(6.3)

where XRpkq is the state vector and:

BR “
„
b1 ¨ ¨ ¨ bm

jT

DR “ rds (6.4)

Using (6.2) and (6.3), the MISO state-space model for the reflex pathway is

[271]: $’’&
’’%
XRpk ` 1q “ ARXRpkq ` BλRURpkq

tqRpkq “ CRXRpkq ` DλRURpkq
(6.5)

where:

BλR “

»
————–

b1λ1 ¨ ¨ ¨ b1λp

...
...

bmλ1 ¨ ¨ ¨ bmλp

fi
ffiffiffiffifl

DλR “
„
dλ1 ¨ ¨ ¨ dλn

j
(6.6)
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6.3.3 Total Stiffness

The MISO linear state-space model for the total ankle joint stiffness is:$’’&
’’%
XRpk ` 1q “ ATXRpkq ` BTUT pkq

t̃qpkq “ CTXRpkq ` DTUT pkq ` tqvpkq ` npkq
(6.7)

where t̃qpkq is the recorded total torque. The intrinsic model has no state variables,

so AT “ AR and CT “ CR. BT is anmˆpp`2Δ`1q matrix andDT is a 1ˆpp`2Δ`1q
vector:

BT “
„
BλR 0 ¨ ¨ ¨ 0

j
(6.8)

DT “
„
DλR ΘT

I

j
(6.9)

The constructed input is:

UT pkq “ rURpkq UIpkqs (6.10)

The sum of voluntary torque (tqvpkq) and measurement noise (npkq) is considered as

the system’s noise which is not white.

6.4 Identification Algorithm

First, use PI-MOESP with past input to estimate the order of the reflex dynamics

and the matrices ÂR and ĈR using UT pkq as the input, and t̃qpkq as the output. This
method is available in the SMI toolbox [117] and gives unbiased estimates [113].
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It remains to estimateΘI , BR, DR and Λ. Express the output of the state-space

model (6.7) as [116]:

t̃qpkq “
«
k´1ÿ
τ“0

UT
T pτq b ĈRÂ

k´1´τ
R

ff
vecpBT q (6.11)

`UT
T pkqvecpDT q ` tqvpkq ` npkq

where the operator vec stacks the columns of a matrix vertically and b is the Kro-

necker product. Rewrite (6.11), the data equation, for all samples:

T̃Q “ ΨΘ ` N (6.12)

where:

Ψ “

»
————–

0 UT
T p0q

...
...řN´2

τ“0 UT
T pτq b ĈRÂ

N´2´τ
R UT

T pN ´ 1q

fi
ffiffiffiffifl

and:

T̃Q “
„
t̃qp0q ¨ ¨ ¨ t̃qpN ´ 1q

jT

N “
„
tqvp0q ` np0q ¨ ¨ ¨ tqvpN ´ 1q ` npN ´ 1q

jT

Θ “r b1λ1 ¨ ¨ ¨ bmλ1 ¨ ¨ ¨ b1λn ¨ ¨ ¨ bmλn

¨ ¨ ¨ dλ1 ¨ ¨ ¨ dλn hip´Tmaxq ¨ ¨ ¨ hipTmaxq sT

Separate the intrinsic and reflex parameter sets (ΘI , ΘR) and their regressors (ΨI ,

ΨR):

T̃Q “ TQI ` TQR ` N “ ΨIΘI ` ΨRΘR ` N (6.13)
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where:

ΨI “

»
————–

UT
I p0q
...

UT
I pN ´ 1q

fi
ffiffiffiffifl , ΘI “

»
————–

hip´Tmaxq
...

hipTmaxq

fi
ffiffiffiffifl

ΨR “

»
————–

0 UT
Rp0q

...
...řN´2

τ“0 UT
Rpτq b ĈÂN´2´τ UT

RpN ´ 1q

fi
ffiffiffiffifl (6.14)

ΘR “
„
b1λ1 ¨ ¨ ¨ bmλn dλ1 ¨ ¨ ¨ dλn

jT

6.4.1 Decomposition

Use orthogonal projections to decompose the total torque into its intrinsic and

reflex components. Fig. 6–2 demonstrates the decomposition geometrically, in 2D

for simplicity. The total torque is the vector sum of intrinsic and reflex torques,

and noise. RI is the range (column space) of the intrinsic torque and RK
I is its

perpendicular complement. Similarly, RR is the range of the reflex torque and RK
R is

its perpendicular complement.
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Figure 6–2: 2D geometrical representation of intrinsic, reflex and total torques and
their spaces used for the decomposition of the pathways. RI is the column space
of the intrinsic torque and RK

I is its perpendicular complement. RR is the column
space of the reflex torque and RK

R is its perpendicular complement. Projections of
both intrinsic and total torques onto RK

R, the perpendicular complement of the reflex
space (RK

R), are equal to C.
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Define orthogonal projection operators1 on RI , R
K
I , RR, R

K
R:$’’&

’’%
PI “ ΨIΨ

:
I

PR “ ΨRΨ
:
R

$’’&
’’%
PK
I “ I ´ PI

PK
R “ I ´ PR

where I is the identity matrix.

Fig. 6–2 makes it evident that the projection of the total torque on RK
R is equal

to the projection of the intrinsic torque on RK
R:

C “ PK
RTQI “ PK

R T̃Q (6.16)

Project C on RI :

PI pI ´ PRqTQI “ PI pI ´ PRq T̃Q (6.17)

1 If the matrix A is full rank, then PA is an orthogonal projection onto the column
space of A [275]:

PA “ AA: (6.15)

where p¨q: is the pseudo-inverse operator. Any arbitrary vector X has a component
that lies in the columns space of A, and a component that is perpendicular to this
space, i.e. X “ X|| ` XK. Thus, projection of X on the column space of A is:

PAX “ X||

The projection on the orthogonal complement is:

PK
A “ I ´ PA, PK

AX “ XK

where I is the identity matrix of appropriate order.
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The projection of TQI on RI is equal to itself (PITQI “ TQI), so (6.17) becomes:

pI ´ PIPRqTQI “ PIpI ´ PRqT̃Q (6.18)

Replace TQI by ΨIΘI :

pI ´ PIPRqΨIlooooooomooooooon
F

ΘI “ PIpI ´ PRqT̃Q (6.19)

Now, estimate the intrinsic parameters using least squares:

Θ̂I “ F :PIpI ´ PRqT̃Q (6.20)

Use Θ̂I to estimate the intrinsic and reflex torques:

T̂QI “ ΨIΘ̂I

T̂QR “ T̃Q ´ T̂QI (6.21)

This has decomposed the intrinsic and reflex torques besides estimating the intrinsic

IRF.

Remark 2 The decomposition is unbiased to the noise tqvpkq ` npkq if it is not

correlated with the input signal. This is a realistic assumption because the system

operates in open-loop. So, the noise vector is perpendicular to the intrinsic and

reflex spaces and their perpendicular complements. Projecting the noisy torque (T̃Q)

in (6.16) on to RK
R and RI will eliminate the effects of noise.

6.4.2 Identification

Use the subspace Hammerstein method described in [271] to estimate the reflex

pathway using vdpkq as input and T̂QR as output. This method divides the parameter
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set ΘR into two subsets: the coefficients of the nonlinearity Λ, and the parameters

of linear system’s state-space model BD “ tb1 ¨ ¨ ¨ bm duT . These are estimated

iteratively as follows: For the ith iteration, fix Λ and estimate BD using ordinary

least-squares [271]:

T̂QR “ ΨR

»
—————————————————–

λi
1 ¨ ¨ ¨ 0

0
. . . 0

0 ¨ ¨ ¨ λi
1

...
. . .

...

λi
p ¨ ¨ ¨ 0

0
. . . 0

0 ¨ ¨ ¨ λi
p

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

loooooooooooomoooooooooooon
ΨRBD

»
———————–

bi`1
1

...

bi`1
m

di`1

fi
ffiffiffiffiffiffiffifl

loooomoooon
BDi`1

(6.22)

B̂D
i`1 “ Ψ:

RBDT̂QR (6.23)
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Fix BD and estimate Λ using ordinary least-squares:

T̂QR “ ΨR

»
————————————————————————–

bi`1
1 0 ¨ ¨ ¨ 0

... 0 ¨ ¨ ¨ 0

bi`1
m 0 ¨ ¨ ¨ 0

di`1 0 ¨ ¨ ¨ 0

...
. . .

. . .
...

0 0 ¨ ¨ ¨ bi`1
1

0 0 ¨ ¨ ¨ ...

0 0 ¨ ¨ ¨ bi`1
m

0 0 ¨ ¨ ¨ di`1

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

looooooooooooooooomooooooooooooooooon
ΨRλ

»
————–

λi`1
1

...

λi`1
p

fi
ffiffiffiffifl

loooomoooon
Λ̂i`1

(6.24)

Λ̂i`1 “ Ψ:
RλT̂QR (6.25)

Normalize the parameters to the norm of Λ to ensure the iteration’s convergence.

6.4.3 Algorithm

The following Algorithm summarizes the decomposition and identification steps.

1. Record N samples of position input and total torque output.

2. Construct the input signal UT pkq using (6.10).

3. Use PI-MOESP withUT pkq, as the input and noisy torque, t̃qpkq, as the output
to estimate the order of the reflex system m and the state-space matrices ÂR

and ĈR.

4. Construct the regressors ΨI and ΨR by using the estimated ÂR and ĈR in

(6.14).
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5. Estimate the intrinsic parameters (Θ̂I) using (6.20).

6. Estimate T̂QR using (6.21).

7. Choose an arbitrary non-zero Λ0 and set i “ 0.

8. Use linear least squares to estimate the elements of BR and DR (i.e. B̂D
i`1

)

from (6.23).

9. Use linear least squares to estimate the nonlinearity’s coefficients (i.e. Λ̂i`1)

from (6.25).

10. Normalize the estimates to ensure convergence:

Λ̂i`1 :“ Λ̂i`1

||Λ̂i`1||
B̂D

i`1
:“ B̂D

i`1||Λi`1|| (6.26)

11. Simulate the model (6.22) or (6.24) with the estimated parameter sets Λ̂i`1

and B̂D
i`1

to predict the reflex torque T̂QPR.

12. Terminate if there is no significant improvement in the sum of squared errors

(SSE):

SSE “
N´1ÿ
k“0

pt̂qPRpkq ´ t̂qRpkqq2 (6.27)

Otherwise, i :“ i ` 1 and go to step 8.

6.5 Simulation Studies

6.5.1 Methods

The performance of the new SDSS method was evaluated using data from simu-

lations designed to replicate important experimental conditions: realistic model and

input noise sequences.

152



10−1 100 101
30

35

40

45

50

55

60

65

70
Frequency Response Model of the Intrinsic Stiffness

Frequency (Hz)

G
ai

n 
(d

B
)

Figure 6–3: The gain of the frequency response function of the intrinsic stiffness
model used in simulation studies.

Model

The model shown in Fig. 6–1 was simulated in MATLAB Simulink. The intrinsic

pathway was an IRF from previous work [206] where Fig. 6–3 shows the gain of its

frequency response. The reflex pathway parameters were based on those from [260];

the nonlinear element was a threshold at 0.75 rad/s, and the linear element was the

second-order low-pass filter:

H “ 3347.7

s2 ` 16.8s ` 184.9
(6.28)

Experimental Input

Characteristics of the input signal will strongly influence identification perfor-

mance. Consequently, we built a library of realistic inputs by recording the position
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perturbations resulted when different realizations of a piecewise constant pseudo ran-

dom arbitrary level distributed signal (PRALDS) were input to a hydraulic actuator

while subjects maintained an isotonic contraction. PRALDS switches between ran-

dom position levels at time intervals drawn from a uniform distribution ranging from

100 to 200ms. Thus, this input has a broad distribution of velocities needed to ac-

curately estimate the static nonlinearity of the reflex pathway. Fig. 6–4A shows a

10s segment of a PRALDS realization. The input library contained 210 realizations,

each 60s long.

Experimental Noise

Output noise is often treated as white and Gaussian when evaluating the per-

formance of identification algorithms. However, the noise associated with the torque

in stiffness identification experiments is neither white nor Gaussian [247]. Rather, it

comprises (i) a white Gaussian component due to electronics and signal condition-

ing circuitries and (ii) a low-pass non-Gaussian component due to variations in the

voluntary torque.

Consequently, to ensure that our simulations represented noise realistically, we

built a library of noise signals by recording the torque generated while subjects

attempted to maintain a constant muscle contraction with no position perturbation.

This record will have both components of the noise. Fig. 6–4B shows a typical noise

realization. The noise library comprised 210 records of voluntary torque, each 60s

long.
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Figure 6–4: A 10 second segment of one realization of the simulated stiffness signals
(SNR=10dB) (A) position input; (B) output noise; (C) total torque output (sum of
intrinsic, reflex and voluntary torques and noise).
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For use in simulations, each noise realization was scaled to generate the required

signal to noise ratio (SNR) defined as:

SNR(dB) “ 10log10

řN´1
k“0 tq2pkqřN´1

k“1 ptqvpkq ` npkqq2 (6.29)

Identification

The performance of the SDSS was evaluated and compared to that of PC [37],

and SS [122]. The basis functions used to describe the static nonlinearity of the reflex

pathway were 12th-order Tchebychev polynomial for all methods. Note that the

SS method does not explicitly estimate the elements of the parallel-cascade model.

Consequently SS results were not included when evaluating the accuracy with which

the elements of the parallel-cascade model were estimated.

The gain of the reflex stiffness pathway can be distributed arbitrarily between its

nonlinear and linear components since the intermediate signal zpkq is not measured

(Fig. 6–1). To ensure that the gain was distributed consistently, the gain of the linear

element of the reflex pathway was set to 1 so that all the reflex gain was assigned to

the nonlinear element. The linear element gain was estimated as the average of the

gain in the pass-band region (0-1 Hz) of its frequency response.

Monte-Carlo studies

The algorithms’ performance was evaluated in a series of Monte-Carlo simula-

tions. For each series, 1000 trials were simulated with the same system parame-

ters but with different realizations of the input and noise signals, selected randomly

from the two input-noise libraries. Simulations were done at 1kHz and signals were
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decimated to 100 Hz for analysis. Fig. 6–4 shows 10s of the input, noise, and out-

put+noise from a typical simulation trial.

Errors in estimates

SDSS and PC provide direct estimates of all parallel-cascade elements. Two

types of errors were used to quantify the accuracy [276]:$’’&
’’%
bias error “ ρ ´ Epρ̂q

random error “ E pρ̂ ´ Epρ̂qq2
(6.30)

where ρ is the true system and ρ̂ is its estimate. The bias error provides a measure

of how well the estimates retrieve the true value on average and the random error is

a measure of the trial-to-trial variance of the estimates.

Index of the Probability of Superior Performance (IPSP)

The simulation gave access to the noise free intrinsic and reflex torques. So, the

different methods could be compared in terms of how well their estimates predicted

the noise free torques. This was measured in terms of %VAF, between the simulated

and predicted intrinsic and reflex torques:

%VAFintrinsic “ 100

ˆ
1 ´ varpt̂qIpkq ´ tqIpkqq

varptqIpkqq
˙

%VAFreflex “ 100

ˆ
1 ´ varpt̂qRpkq ´ tqRpkqq

varptqRpkqq
˙

The %VAF distributions were not Gaussian, so the significance of differences

between methods was evaluated nonparametrically. For each Monte-Carlo trial, the

difference between the %VAF of the SDSS and each of the other methods was com-

puted. The percentage of times that this difference was positive was defined as
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the: index of the probability of superior performance (IPSP). Thus, an IPSP of 0

would indicate that the SDSS predictions were always worse than those of the other

method; an IPSP of 0.5 would mean that predictions of the two methods performed

best equally often; and an IPSP of 1 would mean that the SDSS predictions were

always the best.

Decomposition Error

A%VAF less than 100 could arise from either over or underestimating the output

of a pathway. To distinguish these, the difference between the true and predicted

output powers for each pathway was examined. If a pathways is estimated correctly,

this should be close to zero, values greater than zero would indicate underestimation

of the pathhway and values less than zero would indicate overestimation.

6.5.2 Results

Accuracy/Precision

The first series of Monte-Carlo simulations examined the accuracy with which

elements of the parallel-cascade model were estimated by the PC and SDSS methods.

Noise was scaled to generate an SNR of 15dB.

Fig. 6–5 shows the estimates obtained in all Monte-Carlo trials using PC (left

column) and SDSS (right column). The true values used in the simulation are shown

in red. By inspection, it is evident that the SDSS estimates of all three elements are

closer to the true values and are less variable than those of the PC estimates.

Fig. 6–6 presents the corresponding bias and random errors to permit a more

detailed analysis. Fig. 6–6A shows that the bias error for the SDSS intrinsic pathway

estimates was close to zero at all frequencies. In contrast, the bias error of PC was
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Figure 6–5: Estimates of the elements of the parallel-cascade model (blue) using the
PC and SDSS methods from a Monte-Carlo simulation of 1000 trials with SNR=15dB
superimposed on the true model (red). Left column: PC results; Right column: SDSS
results. Estimate of the intrinsic stiffness using: (A) PC and (B) SDSS; reflex static
nonlinear element using: (C) PC ;(D) SDSS; reflex linear element using: (E) PC;
(F) SDSS.
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Figure 6–6: Bias and random errors in the estimates of the parallel-cascade elements
using the PC (blue) and SDSS (dashed red) methods from a Monte-Carlo simulation
of 1000 trials with SNR=15dB. Left column: bias error; Right column: random error.
Error in the intrinsic estimates: (A) bias error and (B) random error; Error in the
reflex nonlinear estimates: (C) bias error and (D) random error; Error in the reflex
linear estimates: (E) bias error and (F) random error.
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positive at low frequencies that indicates it overestimated the low frequency gain

of the intrinsic pathway (elastic gain). The PC error peaked around 10 Hz (near

the break frequency) that indicates that the pathway’s break frequency was located

incorrectly. Fig. 6–6B shows that the SDSS random error was also substantially

lower than that of the PC method.

Fig. 6–6C,D show the estimation errors for the static nonlinearity. The bias

errors of the methods were close for negative velocities where there was little reflex

response. However, for positive velocities where the reflex response was larger, the

PC estimates consistently underestimated the gain while the SDSS bias error was

close to zero. The random errors of both estimates were near zero in the central

region and increased near both ends. However, the SDSS random error stayed low

over a much wider range of velocities than the PC estimates.

Fig. 6–6E,F demonstrate the estimation errors of the reflex linear element. The

SDSS bias error was close to zero for frequencies lower than 10 Hz where the input

had power and increased at larger frequencies. The PC bias error was also close

to zero at low frequencies but always slightly larger than SDSS (Fig. 6–6E). The

variability in the linear element estimates were significantly lower in SDSS estimates

(Fig. 6–6F).

The large bias errors of the PC estimates suggests that the PC decomposed the

intrinsic and reflex torques inaccurately. Fig. 6–7 confirms this by a box and whisker

plot of the decomposition errors. Thus, the SDSS errors were distributed symmet-

rically about zero for both intrinsic and reflex pathways indicating that there was

no consistent error. In contrast, the decomposition errors of the PC method were

161



SDSS PC
-40

-30

-20

-10

0

10

20
%

N
or

m
al

iz
ed

po
w

er
es

tim
at

io
n

er
ro

r
INTRINSIC

SDSS PC

-20

0

20

40

60

80
REFLEX

%
N

or
m

al
iz

ed
po

w
er

es
tim

at
io

n
er

ro
r

Figure 6–7: The decomposition error, difference between the true and predicted
output powers for the (A) intrinsic; (B) reflex pathways. The black line shows the
mean value; the light box shows the 25% and 75% percentiles, the dark box shows
the 2.5% and 97.5% percentiles, and the filled circles show the residuals.

distributed asymmetrically; they were skewed to negative values for the intrinsic

pathway and to positive values for the reflex pathway. Thus, the PC method consis-

tently overestimated the intrinsic stiffness and underestimate the reflex stiffness.

Robustness

Fig. 6–8 summarizes the results of the Monte-Carlo simulation that examined

the robustness of the three methods to noise at SNRs ranging from 0 to 30 dB.

Fig. 6–8A shows that for the intrinsic pathway, the SDSS estimates were the

most accurate, they had the largest %VAF for all SNRs except 0 where the SS

models were slightly better. IPSP values shown in Fig. 6–8C demonstrate that these

differences were consistent since the SDSS accounted for the most variance with

probability of 0.7 at the SNR of 5dB and close to 1 at higher SNRs.
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Figure 6–8: Performance of the SDSS, SS and PC as a function of SNR: (A) Mean
value of %VAFintrinsic; (B) Mean value of %VAFreflex; (C) probability that the
SDSS %VAFintrinsic was greater than that of SS (blue) and PC (red) ; (F) proba-
bility that the SDSS %VAFreflex was greater than of SS (blue) and PC(red).

Fig. 6–8B shows that for the reflex pathway, the SDSS estimates were always

the most accurate having the highest %VAFs at all SNRs. The SDSS models were

much better than the PC models at low SNRs. IPSP values in Fig. 6–8D confirms

this; they were greater than 0.8 for all examined SNRs.

Relative contribution of intrinsic and reflex pathways

Fig. 6–9 summarizes the results of the Monte-Carlo simulation that evaluated the

sensitivity of the methods to changes in the relative magnitudes of the intrinsic and

reflex torques. Simulations were run using the nominal model but with reflex gains

(5-75 Nms
rad

) spanning the range reported for normal and spastic subjects [65, 135].

The noise level was adjusted to maintain a constant SNR of 5dB.
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Fig. 6–9A shows the results for the intrinsic pathway identification. The mean

%VAF for the SDSS was greater than or equal to those of the other methods at

all reflex gains. IPSP values were large for low reflex gains and decreased as the

reflex power increased (Fig. 6–9C). Thus, SDSS was the most accurate method for

low reflex contributions while all three methods performed equally for larger reflex

contribution.

Fig. 6–9B shows the results for the reflex pathway; SDSS had the largest mean

%VAF. IPSP values were large and close to 1 (Fig. 6–9D) indicating that SDSS was

significantly the most accurate method for the reflex pathway identification. All

three methods performed poorly for the lowest reflex gain but SDSS degraded the

least.

6.6 Experimental Studies

The practical application of SDSS was demonstrated by estimating the intrinsic

and reflex stiffnesses at the ankle during tonic isometric contractions at three levels.

These levels were selected to examine the performance of the intrinsic and reflex

estimators at different total stiffnesses and relative contributions of the pathways.

6.6.1 Methods

Five subjects (three females) aged between {25-29} with no history of neuromus-

cular disorders were examined. Subjects gave informed consent to the experimental

procedures that had been reviewed and approved by McGill University Institutional

Review Board. The experimental methods were similar to those described in [271],
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except that PRALDS input was used to generate position perturbations. The sub-

ject’s left foot was attached to a hydraulic actuator which delivered position pertur-

bations. By convention, neutral (zero) position was taken as the 90 degrees angle

between the subject’s foot and shank. Ankle dorsiflexion position and torques tend-

ing to dorsiflex the ankle were taken as positive. The ankle was flexed 0.225rad

from the neutral position. Subjects were instructed to generate a constant muscle

activation level with the aid of the visual feedback of their voluntary torque on an

overhead monitor. The three levels were selected proportional to their Maximum

Voluntary Contraction (MVC): 15% of plantarflexion MVC (PF trial), no muscle

activation (REST trial), and 15% of dorsiflexion MVC (DF trial). For each trial,

perturbations started, the subject was allowed to generate a stable contraction level,

and then data were recorded for 60 seconds.

Since there was no access to the true intrinsic and reflex torques, we only assessed

the performance of the SDSS and PC methods in terms of the %VAFtotal between

total measured and predicted torques.

6.6.2 Results

Fig. 6–10 shows a segment of a typical PF trial. Fig. 6–10A shows the recorded

perturbations. Fig. 6–10B shows the measured total ankle torque (blue) along with

that using the model identified by SDSS (red). It is evident that the two curves were

very similar; indeed the identification %VAF was %87. Fig. 6–10C shows the pre-

dicted intrinsic torque and Fig. 6–10D shows the predicted reflex torque, illustrating

how the two mechanisms contributed to the overall torque.
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Figure 6–10: Experimental SDSS results for a typical subject during a PF trial (15%
of plantarflexion MVC): (A) Measured position; (B) Measured torque along with the
predicted total torque; (C) predicted intrinsic torque; (D) predicted reflex torque.
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Fig. 6–11 shows the stiffness pathways for this subject using the SDSS and PC

methods at the three contraction levels. The intrinsic stiffness estimates from the

two methods exhibited similar characteristics. The gains of the frequency responses

resembled a high-pass filter. The low-frequency gain (corresponding to the joint

elasticity) was smaller in REST compared to PF and DF (Fig. 6–11B) as expected

from previous studies [176]. However, there were important differences between the

two sets of estimates. The low-frequency gains of the PC were larger than those of

the SDSS (Fig. 6–11A-B).

The reflex pathway nonlinearities estimated with both methods were uni-directional

rate sensitive and exhibited threshold or threshold-saturation behaviours (Fig. 6–

11D). Thus, there was a response for positive velocities and little or no response for

negative velocities. By visual inspection it is evident that there were differences in

the threhold and slopes from case to case. Thus, the threshold was smaller in PF

compared to REST or DF. However, the nonlinearities estimated with the two meth-

ods behaved somewhat differently (Fig. 6–11C). Thus, for SDSS the nonlinearity’s

threshold (determined by visual inspection) was lower in PF than for REST or DF

and the nonlinearity saturated at high velocities. In contrast, in PC estimates there

was no change in threshold nor was there any saturation.

The SDSS estimates of the reflex stiffness linear dynamics had similar low-pass

characteristics at all activation levels (Fig. 6–11F). The PC estimates were also low-

pass in nature but were much noisier. In addition, they changed with activation

level, i.e. the filter break frequencies at DF and REST were different than those

obtained from the SDSS (Fig. 6–11E).
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Figure 6–11: Typical stiffness pathways estimated using the PC (left) and SDSS
(right) methods. Estimate of the: intrinsic stiffness models, using (A) PC and (B)
SDSS, resemble high-pass filters; reflex static nonlinear element, using (C) PC and
(D) SDSS, resemble a rectifier; reflex linear element, using (E) PC and (F) SDSS,
resemble a low-pass filter.
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The reflex pathway nonlinearities were parameterized by fitting a model consist-

ing of a threshold and linear gain using trust-region-reflective method from MAT-

LAB’s optimization toolbox to the Tchebychev estimates. Fig. 6–12 shows the iden-

tification group results comparing the SDSS and PC methods. Both methods pre-

dicted the measured total torque equally well (Fig. 6–12A). Thus, the %VAFtotal was

91.4% ˘ 2.5% for the SDSS method and 91.2% ˘ 2.5% for the PC method. The two

algorithms, however, assigned the pathway gains differently. Thus, Fig. 6–12B shows

that the intrinsic gain (elastic stiffness) resulted from the PC method was either

larger or equal to that obtained from the SDSS method. The identified threholds

were different (Fig. 6–12C). Finally, Fig. 6–12D shows that the gain of the reflex

pathway (the slope of the nonlinearity) obtained from the PC method was always

smaller or equal to that from the SDSS method.

6.7 Discussion

This paper develops a state-space representation for parallel-cascade model of

ankle joint stiffness with parameters directly related to the underlying dynamics of

the system. It presents a novel Structural Decomposition SubSpace (SDSS) method

that decomposes the pathways and identifies all elements using a subspace based

method. Extensive simulation and experimental studies show the SDSS decomposes

the intrinsic and reflex torques accurately and estimates key parameters better than

other methods.
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Figure 6–12: The distribution of pathway gains between SDSS and PC methods for
all 5 subjects at all contraction levels: PF, REST, DF: (A) identification %VAF
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6.7.1 Algorithmic Issues

Subspace Identification

SDSS is a MOESP based subspace method [113] that is fast, and can deal with

arbitrary colored output noise, as is the case for joint stiffness identification. It

has the potential for closed-loop identification [120] which is necessary when the

joint interacts with a compliant load [185, 122]. MOESP estimates the order of

the reflex linear system before identifying state-space matrices. This reduces the

a priori information required and is important for stiffness identification because

previous experimental studies showed that the order of the reflex stiffness is variable

[135]. Thus, while the order is usually two, normal subjects with a large muscle

activation level as well as those with spasticity exhibit third-order characteristics.

SDSS estimates the parallel-cascade elements directly in contrast to the original

subspace SS method which yielded a state-space model that required additional

steps to extract the parallel-cascade elements. Thus, [122] used SLS optimization to

separate the parameters of the static nonlinearity from the linear dynamics in the

reflex path.

SDSS uses a short, two-sided IRF to model the intrinsic dynamics whereas the

SS uses a linear mass-spring-damper model. Our approach has two advantages. First,

the intrinsic model may be more complex than a pure viscoelastic-inertial structure

due to the muscle tendon complex structure and/or fixation dynamics [206], [182].

Second, it avoids the need to differentiate position twice to estimate velocity and

acceleration from the position record which is prone to numerical errors and noise

amplification.
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SDSS estimates the reflex elements iteratively using the normalized alternative

convex search (NACS) approach whose convergence has recently established for any

square integrable nonlinearity [273, 252, 262, 257, 256]. Fortunately, the convergence

of the iteration does not depend on the choice of initial condition (step 7 of the

algorithm). Thus, SDSS is guaranteed to converge, in contrast to PC which does not

always converge.

Decomposition of Pathways

We used a novel approach to decompose the intrinsic and reflex pathways by

projecting the measured torque onto the intrinsic and reflex spaces and their per-

pendicular complements. This is important because the intrinsic and reflex torques

are not orthogonal in practice and cannot be easily decomposed. Ludvig et al. also

decomposed the torque, but using a different approach [167]. They relied on a priori

information and designed a special type of position perturbations that resulted in

intrinsic and reflex torques that had near-zero correlations. In our work, we propose

a general solution that is not limited to a specific input type. This approach can

be further generalized for any system with parallel non-orthogonal pathways. Thus,

each pathway can be estimated by performing proper projections. This has impor-

tant applications for other biomedical systems that a single input simultaneously

excites several pathways that sum to generate the output.

The decomposition works under the condition that the intrinsic and reflex re-

gressors (ΨI , ΨR in (6.13)) and their union (Ψ in (6.12)) are full ranks. That is when

the intrinsic and reflex spaces are not parallel to each other in Fig. 6–2. Fortunately,
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this can be easily achieved by designing a persistently exciting input like PRALDS

or PRBS [116].

6.7.2 Simulation Methods

Identification methods are often developed and validated in simulation studies

with ideal inputs and noises. However, their performance degrade considerably when

applied to experimental data. For example, nonlinear actuator dynamics often cause

the perturbations actually delivered to the joint to differ greatly from the ideally

designed ones. Furthermore, in practice, noise is rarely white or Gaussian [247]. It is

known that such non ideal behaviour will heavily affect identification accuracy. Thus,

we accounted for these differences and designed simulation scenarios by mimicking

real experiments using a realistic model and input and noise sequences observed

experimentally. We believe that by doing so we ensured that our simulation results

will be relevant to experimental conditions.

6.7.3 Simulation Results

Decomposition Accuracy (Bias Error)

The PC and SS methods had difficulty decomposing the pathways whereas the

SDSS method always gave unbiased and accurate decompositions. SDSS decompo-

sition was more accurate than SS because it considers more realistic dynamics for

the intrinsic pathway. It was more accurate than PC because of the effectiveness of

the orthogonal projections in extracting each pathway’s contribution from an output

contaminated with noise and contribution of the other pathway whereas PC itera-

tion does not guarantee convergence of the decomposition. Thus, PC overestimated

the intrinsic and underestimated the reflex pathway (Fig.6–7). This was because of
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overestimating the low frequency gain of the intrinsic pathway (Fig.6–6A) and un-

derestimating the slope of the static nonlinearity (Fig.6–6C). Consequently, the PC

method assigned the pathway gains inaccurately. Fig. 6–8(A-B) shows the estimates

of both SS and PC methods were always biased even at the largest SNR level.

Precision (Random Error)

Our results demonstrated that SDSS was the most robust. Both output noise

and the reflex torque appear as noise when estimating the intrinsic mechanics, and

similarly both output noise and any unmodelled intrinsic torque appear as noise

when estimating the reflex mechanics. Thus, we assessed the performance of the new

estimators in two different ways: (i) by changing the output noise level in Fig. 6–8

and (ii) by changing the relative contribution of the pathways in Fig. 6–9.

The SDSS intrinsic and reflex estimators provided the most precise models.

Statistical tests also revealed that SDSS was more robust than PC and SS at all

conditions. SDSS was more robust than SS because its state-space structure for

the reflex pathway had many fewer parameters. SDSS was more robust than PC

because (i) the iterations used in PC are not guaranteed to converge and (ii) the

SDSS considers a structure with many fewer parameters.

6.7.4 Experimental Results

SDSS successfully extracted stiffness models from experimental data and ac-

curately predicted the measured torque. The experiments were performed at three

different activation levels that resulted in a range of total stiffnesses and different

ratio of intrinsic to reflex pathway contribution.
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SDSS and PC methods predicted the total torque equally well; both estimates

resulted in similar %VAFtotal on average. However, they assigned the pathway gains

differently (Fig. 6–12). So, the PC method’s intrinsic gain estimates were consis-

tently larger than those of SDSS. In contrast, the PC estimates of reflex stiffness

gain (nonlinearity’s slope) was smaller than those of SDSS. Our simulation studies

demonstrated that the PC method overestimated intrinsic stiffness and underesti-

mated reflex stiffness while SDSS had no bias error (Fig.6–7). We argue that SDSS

results likely reflect the actual physiological behaviour.

Consequently, we used SDSS to estimate the parallel-cascade parameters for all

subjects. Fig. 6–13 shows estimates changed consistently with activation level for all

subjects: (A) The joint elasticity was smallest in REST and increased to PF and DF

trials; (B) the threshold of the static nonlinearity was smallest in PF and increased

to DF and REST trials; (C) the slope of static nonlinearity was largest in PF and

decreased to DF and REST trials.

6.7.5 Conclusion

We presented the SDSS method for identification of the parallel-cascade model

of ankle joint stiffness. We validated the method using extensive simulation and

experimental studies and showed that the use of the new method is preferred be-

cause it estimates physiologically important parameters of the model which was not

possible with the previous state-space method. Moreover, it is the most precise and

accurate method compared to other available methods in conditions prevail during

real experiments.
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CHAPTER 7
Identification of Dynamic Joint Stiffness from Multiple Short Segments

of Input-Output Data

In Chapter 6, I developed the SDSS method for identification of the parallel-

cascade structure of joint stiffness. In Chapter 4, I presented the rationale and a

method for identification of Hammerstein systems from multiple, stationary, short

data segments. In this Chapter, I expand this idea on the SDSS method to identify

the parallel-cascade structure from multiple, short, stationary segments of data. I

show an application to identify stiffness at the ankle joint as a function of joint

position during piecewise constant, imposed passive movement. This chapter is a

journal paper that will be submitted to IEEE Transactions on Neural Systems and

Rehabilitation Engineering.
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7.1 Abstract

This paper presents the Short Segment Structural Decomposition SubSpace (SS-

SDSS) method to identify dynamic joint stiffness from short segments of stationary

data can be acquired. The main application is when the data is non-stationary. Thus,

our approach is to segment the non-stationary data into a number of short, stationary

data segments and then identify a system from subsets of segments with the same

properties. The method extends our previous state-space method by incorporating

initial conditions in the system model and identifying them for each data segment.

An extensive simulation study using realistic input and noise signals is presented

that demonstrates the minimum number of segments and their lengths required for

a successful identification. The application of the method is presented in measuring

stiffness from experimental data during imposed movement of the ankle joint in

normal human subjects. We demonstrate how stiffness changes as a function of the

joint position during movement. We conclude that the SS-SDSS method is a valuable

tool for measuring stiffness in functionally important tasks.

7.2 Introduction

Dynamic joint stiffness defines the dynamic relation between the position of

a joint and the torque acting about it [37]. Joint stiffness plays a critical role in

the control of posture and locomotion [10, 11, 12]. Thus, identifying mathematical
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models accurately describing these dynamics in functional tasks is significant. These

mathematical models give insight on how the underlying neuromuscular systems

function together to perform a task [19]. Moreover, they provide objective measures

in diagnosis, assessment and treatment monitoring of the neuromuscular diseases that

change the muscle tone. These models can also be used in the design of rehabilitation

devices to match the stiffness of the lost or impaired joint to a normal one for the

purpose of dexterous interaction with the environment [21, 23, 204, 25].

At the ankle, dynamic joint stiffness can be described with a parallel-cascade

(PC) model. It consists of two parallel pathways (Fig. 7–1): (i) intrinsic stiffness

modelling viscoelastic and inertial properties of the joint, active muscles and pas-

sive tissues; it has high-pass filter dynamics, (ii) reflex stiffness arising from changes

in muscle activation due to stretch reflex mechanisms. This pathway has a block-

oriented, nonlinear structure comprising a cascade of a differentiator, a delay oper-

ator, a static nonlinearity resembling a rectifier, followed by a linear system with

low-pass dynamics [37].

The PC model has successfully described the relationship between the position

and torque data at the ankle and a variety of other joints for stationary condition [37,

204, 202, 270, 75, 76, 134]. However, the assumption of stationarity is often violated

during functionally important tasks when the joint operating point is not fixed.

Examples include movements when the joint position and/or muscle activation level

undergo large changes [186, 152, 193]; upright stance because of switching between

different postural states [103]; large contractions resulting in muscle fatigue [104].
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Figure 7–1: Parallel-cascade structure of the ankle joint stiffness. The input is the
joint angular position and the output is the joint total torque which is the sum of the
intrinsic, reflex and voluntary torques and measurement noise. The intrinsic pathway
has a high-pass filter and the reflex pathway has a block oriented nonlinear model.
Adapted from [6].

Marmarelis et al. proposed segmenting a non-stationary data record into short,

stationary data segments and then identifying local, linear time-invariant models

from subsets of segments with the same properties [277]. A similar approach to

the identification of joint stiffness would have important applications. For instance,

when stiffness dynamics vary slowly with time during quite stance, one could segment

the data according to the postural state and then find local models describing the

different strategies used for balance control. Segmentation would also be useful in

estimating stiffness at high activation levels where it is difficult to maintain stationary

contractions for a long period of time. Thus, subjects could perform multiple, short,

large contractions without muscle fatigue and the data segmented to only include

the intervals with large contractions. Consequently, it is of interest to have a method

to identify stiffness from short, stationary data segments.
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We recently developed the Structural Decomposition SubSpace (SDSS) method

that uses a subspace technique to identify a state-space representation of the PC

structure from a single stationary data record [6]. This paper presents an extension

of the SDSS method to work with multiple short data segments. A part of this work

has been presented at the Annual International Conference of the IEEE EMBS [278].

The rest of the paper is organized as follows: Section 7.3 gives reviews a state-

space model of the PC structure, derives a data equation for multiple data segments,

and presents the Short Segment SS-SDSS method for identification. Section 7.4 uses

simulation studies to find the minimum number of segments and their lengths at a

range of noise levels where the method successfully identifies the intrinsic and reflex

pathways. Section 7.5 describes the successful application of the SS-SDSSS method

to the identification of ankle stiffness during movements with piecewise constant

trajectories that spanned the joint’s range of motion. Section 7.6 provides a summary

and a discussion.

7.3 Theory

Throughout the paper, vectors, matrices and scalars are shown by roman bold-

face uppercase, uppercase and lowercase letters respectively. The continuous time

argument is t and the discrete time argument is k. A variable’s superscript refers

to the segment number, the tilde accented signal p̃¨q indicates the noise-corrupted

version of p¨q, and p̂¨q its estimate.

7.3.1 Modelling

Fig. 7–1 shows the PC model of ankle joint stiffness with the total torque as the

sum of intrinsic, reflex and voluntary torques and measurement noise. The voluntary
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torque and measurement noise are assumed to be uncorrelated with the input signal.

This model will be approximated with a discrete-time, state-space model.

Assume that data record comprises p stationary segments of joint angular posi-

tion and total torque, where the i-th segment has N i data points, i P t1 ¨ ¨ ¨ pu:

POSi “
„
posip0q ¨ ¨ ¨ posipN i ´ 1q

jT

T̃Q
i “

„
t̃q

ip0q ¨ ¨ ¨ t̃q
ipN i ´ 1q

jT

(7.1)

We previously developed a state-space representation of stiffness for one segment

[6]. The intrinsic pathway was modelled by a short, two-sided, Impulse Response

Function (IRF) with weights ΘI “ rhp´Δq, ¨ ¨ ¨ , hpΔqsT where Δ is the reflex delay.

The reflex static nonlinearity was modelled by a Tchebychev basis function expansion

of the delayed velocity with weights Λ “ rλ1, ¨ ¨ ¨ , λnsT and the reflex linear dynam-

ics by an l-th order state-space model with state-space matrices tAR, BR, CR, DRu.
Consequently stiffness was modelled by a MISO, linear, state-space representation:$’’&

’’%
Xipk ` 1q “ ARX

ipkq ` BTU
i
T pkq

t̃q
ipkq “ CRX

ipkq ` DTU
i
T pkq ` eipkq

(7.2)
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where the error is the sum of the voluntary torque and measurement noise eipkq “
tqivpkq ` nipkq, and Ui

T pkq is the constructed input:

Ui
T pkq “ “

Ui
Rpkq Ui

Ipkq‰
Ui

Ipkq “
„
posipk ´ Δq ¨ ¨ ¨ posipk ` Δq

j
(7.3)

Ui
Rpkq “

„
g1 pvidpkqq ¨ ¨ ¨ gn pvidpkqq

j

where gjp¨q is the j-th basis function of the expansion used to approximate the reflex

nonlinear element.

From (7.2), it is evident that the total measured torque is a function of the input

as well as the segment’s Initial Conditions (IC):

t̃q
ip0q “ CRX

ip0q ` DTU
i
T p0q ` eip0q

t̃q
ip1q “ CRARX

ip0q ` CRBTU
i
T p0q ` DTU

i
T p1q

` eip1q
... (7.4)

t̃q
ipkq “ CRA

k
RX

ip0q `
k´1ÿ
r“0

CRA
k´1´r
R BTU

i
T prq

` DTU
i
T pkq ` eipkq

Remark 3 It is a common practice in the identification of biological systems to

ignore the transient and consider the system in steady-state. However, when only

short data segments are available, the contribution of the ICs (Xip0q) may become

large and must be accounted for to avoid biased estimates of the system [279]. The
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contribution of the ICs is given by CRA
k
RX

ip0q. Since the system must be stable, all

eigenvalues of AR will lie inside the unit circle (eigpARq ă 1) and the contribution

from ICs will decay at a rate determined by the system time constants since lim
kÑ8 Ak

R “
0. Thus, when the segment length N i is short with respect to these time constants,

the contribution from ICs will be important and must be considered in data equations

as shown in (7.4).
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Rewrite (7.4) using Hankel matrices 1 :

˜TQ
i
s,s,ti “

»
————————–

CR

CRAR

...

CRA
s´1
R

fi
ffiffiffiffiffiffiffiffifl

looooooomooooooon
Γs

“
Xipsq ¨ ¨ ¨Xips` ti ´ 1q‰looooooooooooooomooooooooooooooon

Xi
s,ti

`

»
————————–

DΩ 0 ¨ ¨ ¨ 0

CBT DT ¨ ¨ ¨ 0

...
...

. . .
...

CRA
s´2
R BT CRA

s´3
R BT ¨ ¨ ¨ DT

fi
ffiffiffiffiffiffiffiffifl

loooooooooooooooooooooooooomoooooooooooooooooooooooooon
Hs

U i
T s,s,ti (7.6)

` Ei
s,s,ti

where, U i
T s,s,ti ,

˜TQ
i

s,s,ti , E
i
s,s,ti are the Hankel matrices of the ith segment of the

input, noisy output and noise. Γs is the extended observability matrix. The size of

the Hankel matrix, s, must be greater than the order of the linear dynamics. ti spans

the length of the segment:

ti “ N i ´ 2s ` 2 (7.7)

1

Definition 2 A Hankel matrix constructed from a discrete signal opkq has a constant
block anti-diagonal shape:

Oi,j,k “
»
—–

opiq ¨ ¨ ¨ opi` k ´ 1q
...

...
opi` j ´ 1q ¨ ¨ ¨ opi` j ` k ´ 2q

fi
ffifl (7.5)

186



Expand the data equation (7.6) using extended Hankel matrices2 to include all data

segments.

˜TQs,s,t1,¨¨¨ ,tp “ Γs

„
X1

s,t1 ¨ ¨ ¨ Xp
s,tp

j
loooooooooooomoooooooooooon

Xs,t1,¨¨¨ ,tp

` HsUT s,s,t1,¨¨¨ ,tp ` Es,s,t1,¨¨¨ ,tp (7.9)

Finally, concatenate the segments to give:

UI “ rU1
I
T p0q ¨ ¨ ¨U1

I
T pN1 ´ 1q ¨ ¨ ¨Up

I
T p0q ¨ ¨ ¨Up

I
T pNp ´ 1qsT

E “ re1p0q ¨ ¨ ¨ e1pN1 ´ 1q ¨ ¨ ¨ epp0q ¨ ¨ ¨ eppNp ´ 1qs (7.10)

T̃Q “ rt̃q1p0q ¨ ¨ ¨ t̃q1pN1 ´ 1q ¨ ¨ ¨ t̃qpp0q ¨ ¨ ¨ t̃qppNp ´ 1qsT

which will be used later in the data equations.

7.3.2 Identification Algorithm

The objective is to estimate the intrinsic IRF (ΘI), the coefficients of the static

nonlinearity (Λ), the state-space matrices AR, BR, CR, DR of the linear element,

and the ICs tX1p0q, ¨ ¨ ¨ ,Xpp0qu from the recorded position and torque.

2

Definition 3 The extended Hankel matrix for p Hankel matrices of signal opkq:
Oi,j,t1,¨¨¨ ,tp “ “

Oi,j,t1 ¨ ¨ ¨ Oi,j,tp
‰

(7.8)
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Reflex pathway dynamics

Extend the Multivariable Output Error State-sPace MOESP algorithm of [113]

with the past input as an instrumental variable (IV) to estimate the order of the

reflex linear element and its state-space matrices AR and CR. To this end, form the

LQ decomposition:»
————–

UT s,s,t1,¨¨¨ ,tp

UT 0,s,t1,¨¨¨ ,tp

Ỹs,s,t1,¨¨¨ ,tp

fi
ffiffiffiffifl “

»
————–

L11 0 0

L21 L22 0

L31 L32 L33

fi
ffiffiffiffifl

»
————–

Q1

Q2

Q3

fi
ffiffiffiffifl (7.11)

The matrix UT 0,0,t1,¨¨¨ ,tp is the IV. It is the past input and so not correlated with

the noise but is correlated with the rest of the data equation (7.9). Therefore, it

is a suitable IV in the presence of an arbitrarily colored noise. Next, compute the

singular value decomposition of L32:

L32 “ UΣV T (7.12)

Inspect the singular values, the diagonal entries of Σ and separate them into two

subsets, one containing “large” singular values that can be attributed to the system

dynamics and a second subset of “small” singular values due to noise. The number

of “large” singular values is equal the order of the linear element of the reflex path-

way. Consequently, the first l columns of U are then an estimate of the extended

observability matrix Γ̂l. The first row of Γ̂l gives an estimate of CR while AR can be

estimated from:

ÂR “ Γ̂:
l1Γ̂l2 (7.13)
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where Γ̂l1 as the upper pl ´ 1q rows of Γ̂l, and Γ̂l2 as the lower pl ´ 1q rows of Γ̂l and

p¨q: is the pseudo-inverse operator.

These estimators can be demonstrated to be unbiased by extending Theorem 9.3

of [102] to the case of extended Hankel matrices.

Decomposition

The next step is to decompose the measured torque into its intrinsic and reflex

components. To this end, Form the data equation [6]:

T̃Q “ ΦIΘI ` ΦRΘR ` E (7.14)

where ΦI is the regressor for the intrinsic parameter set:

ΦI “ UI (7.15)

and ΘI contains the unknown intrinsic IRF weights:

ΘI “
„
hp´Δq ¨ ¨ ¨ hp0q ¨ ¨ ¨ hpΔq

jT

(7.16)

ΦR is the regressor for the reflex parameter set:

ΦR “ rΞ1 ¨ ¨ ¨ Ξp Ψs (7.17)
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that is constructed from the input and the estimates ÂR and ĈR:

Ξ1 “

»
——————————————–

ĈR

...

ĈRÂ
t1´1
R

0

...

0

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

, ¨ ¨ ¨ ,Ξp “

»
——————————————–

0

...

0

ĈR

...

ĈRÂ
tp´1
R

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

(7.18)

Ψ “

»
————————————————————————–

0

U1
R
T p0q b ĈR

...řN1´2
τ“0 U1

R
T pτq b ĈRÂ

N1´2´τ
R

...

0

Up
R
T p0q b ĈR

...řNp´2
τ“0 Up

R
T pτq b ĈRÂ

Np´2´τ
R

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

(7.19)

ΘR contains the unknown parameters of the reflex pathway including: (i) the ICs;

(ii) the basis expansion coefficients of the reflex nonlinearity (tλ1 ¨ ¨ ¨ λnu; (iii) the
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state-space matrices of the reflex linear dynamic elements (tb1 ¨ ¨ ¨ bl du):

ΘR “r X1p0q ¨ ¨ ¨ Xpp0q b1λ1 ¨ ¨ ¨ blλ1 ¨ ¨ ¨ b1λn

¨ ¨ ¨ blλn dλ1 ¨ ¨ ¨ dλn sT (7.20)

Now, decompose the intrinsic and reflex torques from the total torque using the de-

composition procedure described in [6], based on the orthogonal projection on the

column space of the intrinsic and reflex pathways and their perpendicular comple-

ments. To this end, define the orthogonal projection operators:$’’&
’’%
PI “ ΨIΨ

:
I

PR “ ΨRΨ
:
R

Compute the least squares estimate of the intrinsic parameters:

Θ̂I “ ppI ´ PIPRqΨIq: PIpI ´ PRqT̃Q (7.21)

and use it to decompose the intrinsic and reflex torques:

T̂QI “ ΦIΘ̂I

T̂QR “ T̃Q ´ T̂QI (7.22)
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Estimation of the remaining parameters

It remains to estimate the ICs, the coefficients of the reflex nonlinearity, and BR

and DR state-space matrices of the reflex linear dynamics using:

T̂QR “ ΦRΘR (7.23)

This problem is not linear in the parameters Λ, tb1, ¨ ¨ ¨ , bm, du and ICs

tX1p0q, ¨ ¨ ¨ , Xpp0qu. Therefore, estimate them using the iterative algorithm we

described in [278] which can be summarized as follows. First, separate the parameters

into two sets:

ΘA “ Λ

ΘB “ rζ1 ¨ ¨ ¨ ζp b1 ¨ ¨ ¨ bl dsT (7.24)

where ζ i is a scaled version of the initial condition ζ i “ Xip0q
λ1

. Now, if the set ΘA is

fixed, the output is a linear function of ΘB. Conversely, if ΘB is fixed, the output is

a linear function of ΘA. Thus, (7.23) can be solved by iteratively solving two linear

least-squares problems. These two problems can be stated as follows for the iteration

index f .

Problem I: If the parameter set ΘA,f´1 is known, then the output depends linearly

on ΘB,f :

T̂QR “ ΦRΦA,f´1ΘB,f (7.25)
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where:

ΦA,f “

»
——————————————————————————————————————–

λ1,f 0 0 ¨ ¨ ¨ 0 0

...
. . .

...
...

. . .
...

...

0 λ1,f 0 ¨ ¨ ¨ 0 0

0 ¨ ¨ ¨ 0 λ1,f ¨ ¨ ¨ 0 0

...
. . .

...
...

. . . 0 0

0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ λ1,f 0

...
...

...

0 ¨ ¨ ¨ 0 λn,f ¨ ¨ ¨ 0 0

...
. . .

...
...

. . . 0 0

0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ λn,f 0

0 ¨ ¨ ¨ 0 λ1,f

...

0 ¨ ¨ ¨ 0 λn,f

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

(7.26)

which leads to the linear least-squares estimate:

Θ̂B,f “ pΦRΦA,f´1q: T̂QR (7.27)

Problem II: If the parameter set ΘB,f´1 is known, the output is linearly dependent

on ΘA,f :

T̂QR “ ΦRΦB,f´1ΘA,f (7.28)
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where:

ΦB,f “

»
——————————————————————————————————————–

ζ1f ¨ ¨ ¨ 0

...
...

...

ζpf ¨ ¨ ¨ 0

b1,f ¨ ¨ ¨ 0

...
...

...

bl,f ¨ ¨ ¨ 0

...
...

...

0 ¨ ¨ ¨ b1,f
...

...
...

0 ¨ ¨ ¨ bl,f

df ¨ ¨ ¨ 0

. . .

0 ¨ ¨ ¨ df

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

(7.29)

leading to the linear least-squares estimate:

Θ̂A,f “ pΦΦB,f´1q: T̂QR (7.30)

Algorithm

The following routine summarizes the steps of the SS-SDSS identification algo-

rithm.

1. Record p segments of the position input and torque output.

2. Construct the extended Hankel matrices of the input UT s,s,t1,¨¨¨ ,tp , the IV UT 0,s,t1,¨¨¨ ,tp ,

and output ˜TQs,s,t1,¨¨¨ ,tp using (7.8).
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3. Perform the LQ decomposition of (7.11).

4. Perform the singular value decomposition on L32 using (7.12).

5. Separate the singular values of Σ into two subsets of “large” and “small” values.

6. Set the order of the linear system in the reflex pathway, l, to the number of

“large” singular values. Form Γ̂l as the first l columns of U .

7. Estimate ĈR as the first row of Γ̂l.

8. Estimate ÂR from (7.13).

9. Form the regressors ΦI and ΦR using the constructed input, ÂR and ĈR.

4. Choose an arbitrary non-zero ΘA,0 to start the iteration and set the iteration

index f “ 1.

5. Construct the matrix ΦA,f´1 using (7.26). Solve (7.27) to estimate ΘB,f .

6. Construct the matrix ΦA,f´1 using (7.29). Solve (7.30) to estimate ΘA,f .

7. Let q be the sign of the first non-zero element of ΘA,f , i.e., q fi sgn pλ1,f q and

perform the normalization:

ΘA,f fi q
ΘA,f

‖ΘA,f‖
ΘB,f fi qΘB,f ‖ΘB,f‖ (7.31)

8. Evaluate the sum of squared errors (SSE) between the predicted and recorded

outputs. If the relative improvement in SSE is greater than a threshold, replace

f by f ` 1 and go to step 2. Otherwise, terminate.

If the reflex static nonlinearity is square integrable, the normalization (7.31) ensures

the convergence to the global minimum [252, 257, 262, 256].
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Algorithm limits

It follows from (7.7) that the length of each segment must be greater than:

min
`
N i

˘ “ 2s ´ 1 (7.32)

Furthermore, at least 2sp ´ p ` 2ns ` 3s total number of samples are required due

to numerical reasons of SVD computation.

7.4 Simulation Studies

Simulation scenarios mimic important experimental conditions to evaluate the

performance of the SS-SDSS method and assess the reliability of the estimates. The

specific objective is to find minimum data requirements in a range of experimental

conditions where the method successfully identifies stiffness.

7.4.1 Methods

Models

The PC model of stiffness shown in Fig. 7–1 was simulated using MATLAB.

The simulation parameters were based on those reported in the literature. Thus,

the intrinsic pathway model was modelled with a discrete-time IRF, estimated from

experimental data reported in [6], with the high-pass dynamics shown in Fig. 7–2.

For the reflex pathway, the delay was set to 40ms [65], the static nonlinearity was

a half-wave rectifier (as in Fig. 7–1) with a threshold at 0 rad/s [65], and the linear

element was the low-pass filter [6]:

184.96

s2 ` 16.8s ` 184.96
(7.33)
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Figure 7–2: The frequency response function of the intrinsic stiffness model used in
simulation studies: (A) gain; (B) phase.

Simulations were done at 1kHz and the resulting signals were decimated to 100

Hz for analysis purposes.

Input

The characteristics of the input signal (e.g. frequency content and amplitude

distribution) strongly affect the identification performance. Consequently, we built a

library of realistic signals by recording the position records generated when different
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realizations of a Pseudo Random Arbitrary Level Distributed Sequence (PRALDS)

were applied to our actuator while subjects maintained a constant muscle contraction

level. The PRALDS sequence switched between random amplitudes with maximum

of 0.04rad at time intervals drawn from a uniform random variable ranging from 100

to 200ms. The input library contained 210 realizations, each 60s long.

Noise

The characteristics of the noise will also influence the identification accuracy.

The noise associated with ankle torque in stiffness identification experiments is com-

plex being neither white nor Gaussian. Rather, it comprises (i) a white Gaussian

component due to electronics and signal conditioning circuitries and (ii) a low-pass

non-Gaussian component due to variations in the voluntary drive [247]. Conse-

quently, to simulate the noise accurately, we built a library of noise signals by record-

ing ankle torque while subjects attempted to maintain a constant muscle contraction

with no position perturbation. The noise library contained 210 realizations, each 60s

long.

Monte-Carlo Series

Monte-Carlo (MC) experiments evaluated the performance of the algorithm by

finding the minimum number of segments required for a successful identification.

Each MC series simulated 200 trials each 60s long with different realizations of the

input and noise signals selected randomly from the input-noise libraries.

We evaluated the performance of the algorithm in MC series which varied three

factors that occur in real experiments and affect the identification accuracy. The

first was the relative magnitude of the noise power to the total torque power defined
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as the Signal to Noise Ratio (SNR):

SNRdB “ 10log
powerptqpkqq

powerptqvpkq ` npkqq (7.34)

MC series were carried out at SNR levels of 10, 15 and 20dB, values comparable to

those observed in real experiments.

The second factor was the relative contribution of the intrinsic and reflex path-

ways which was expected to influence the decomposition algorithm. This factor was

quantified in terms of the ratio of the power in the two pathways:

RtI “ powerptqRpkqq
powerptqIpkqq (7.35)

MC series were run at RtI levels of 1
3
, 1 and 3. This was achieved by changing the

slope of the nonlinearity from 12.25 to 17.5 and to 24 rad/s respectively; levels are

within the range observed from normal subjects [65].

The third factor was the segment length. For each combination of SNR and RtI

levels, the data of each simulated MC record was divided into a number of segments

with lengths drawn from a uniform random distribution. MC series were run with the

minimum of this distribution varying systematically from the set t0.1, 0.2, ¨ ¨ ¨ , 1, 2, ¨ ¨ ¨
, 10u while its maximum was always 0.1s larger than its minimum.

Accuracy

The accuracy of each estimate was assessed by evaluating how well it predicted

the response to a trial with a novel input realization. The validation %Variance
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Accounted For (VAF) was used as a measure of the accuracy of the estimates:

%VAF “ 100

ˆ
1 ´ varpŷpkq ´ ypkqq

varpypkqq
˙

(7.36)

where ypkq is the noise-free output of the true model to a new input and ŷpkq is the

model estimate. Thus, a %VAF of 100% means the model was perfect and accounted

for all the output variance.

The identification was deemed to be successful if the validation VAF was larger

than 95% in more than 95% of the MC trials. This measure was evaluated for both

the intrinisc and reflex pathways:

%VAFintrinsic “ 100

ˆ
1 ´ varpt̂qIpkq ´ tqIpkqq

varptqIpkqq
˙

%VAFreflex “ 100

ˆ
1 ´ varpt̂qRpkq ´ tqRpkqq

varptqRpkqq
˙

7.4.2 Results

Fig. 7–3 shows a segment from a typical Monte-Carlo simulation trial where the

identification was successful. It is clear that there is a great consistency between

all simulated and predicted torques. Thus, both intrinsic and reflex torques were

predicted accurately and the residuals were small, demonstrating that the pathways

were decomposed and identified correctly. Furthermore, the reflex torque at the onset

of each segment was accurate, indicating that the initial conditions were estimated

well.

The success curves for the identification of the intrinsic pathway as functions

of segment length are shown for different values of the SNR (Fig. 7–4(B)) and RtI
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Figure 7–3: A segment from a typical Monte-Carlo trial where stiffness was estimated
from 20 segments with mean length of 2s and SNR of 10dB. (A,B) segment position;
(C,D) the total measured, predicted torque and residuals; (E,F) the true intrinsic
torque, predicted one and residuals; (G,H) the true reflex torque, predicted one and
residuals.
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(Fig. 7–4(B)). There are three main observations: (i) the curves resemble rectangular

hyperbolas with the coordinate axes as their asymptotes; that is the smaller the

segment length, the more segments were required for a successful identification; (ii)

the total number of samples required for a successful identification (mean segment

length ˆ number of segments) increased as the SNR level decreased; (iii) the number

of samples required for a successful identification decreased as the RtI level decreased.

The success curves for the identification of the reflex pathway as functions seg-

ment lengths are shown for different values of the SNR (Fig. 7–4(C)) and RtI (Fig. 7–

4(D)). The curves are generally similar to those of the intrinsic pathways but two

main differences are apparent. First, the number of samples required for a successful

identification was always greater than that for the intrinsic pathway. Second, the

number of samples required for a successful identification increased as the RtI level

decreased whereas it increased for the intrinsic pathway.

7.5 Experimental Studies

The practical utility of the SS-SDSS method was examined by applying it to

data from experiments on normal human ankle joints at rest which were moved

passively through their range of motions in a piecewise constant manner.

7.5.1 Methods

We recruited five healthy subject who gave informed consent to the experi-

mental procedures, which had been reviewed and approved by McGill University

Institutional Review Board. The experimental apparatus was similar to that de-

scribed in [135]. The subject’s left foot was attached to a hydraulic actuator using

a custom made low-inertia boot. The actuator was operated in position-servo mode
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to control the angular position of the ankle. The neutral position (90 degrees angle

between shank and foot) was taken as 0rad, plantarflexing displacements were taken

as negative and dorsiflexing displacements as positive. Subjects were instructed to

remain relaxed and not to resist to position perturbations.

The angular position command sent to the actuator was the sum of a slow and

large displacement superimposed with small perturbations. The large displacement

trajectory was a piecewise constant signal that spanned the subject’s range of mo-

tion. It was generated by switching randomly between levels selected from the set

t´0.4,´0.3, ¨ ¨ ¨ , 0, 0.05, ¨ ¨ ¨ , 0.3urad as permitted by the subject’s range of motion

at time intervals drawn from a uniform random variable ranging from 4 to 7s. The

resultant trajectory was then low-pass filtered for the sake of subject’s comfort with

a second-order Butterworth filter with a cut-off frequency of 2.5Hz to avoid sharp

transitions in the ankle displacements.

The large displacement was not suitable for identification because it had little

frequency content. Consequently, PRALDS perturbations were added to the actuator

input [6]. The switching rate of PRALDS was a uniform random variable with

minimum and maximum of 250 and 350ms and its peak amplitude was 0.04rad.

Fig. 7–5 shows a typical recorded position trajectory.

10 trials of 120s were recorded, separated by one minute rest time. Position,

torque and EMGs were sampled at 1kHz and then decimated to 100Hz for the anal-

ysis. EMG signals from triceps surae and tibialis anterior muscles were examined to

confirm that subjects remained relaxed with no background voluntary activity.
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Multiple stationary data segments were assembled for each position level. This

was achieved by segmenting the 10 trials according to the position large displacement

trajectory. The first 1.5s of each segment was removed to avoid transients associated

with the change in mean position. This yielded an average of 22 segments for each

level with minimum and maximum of 18 and 27. The average segment length was

3.92 ˘ 1.41s.

One subject performed an extra trial in the absence of large displacements when

only PRALDS perturbations were applied to the ankle. Similar to the previous

experiments, the subject was instructed to remain relaxed and position an torque

were recorded for 60s. This trial is referred to as the stationary trial and is used to

assess the performance of the SS-SDSS method against the SDSS method.

7.5.2 Results

Stationary Trial

Since the data were stationary, the SDSS method identified stiffness as the first

line method. 120 segments, each 0.5s, were then selected randomly from the station-

ary data and used by the SS-SDSS method to identify stiffness. The segmentation

and identification process was repeated 100 times. Fig. 7–6 compares the estimates

using the two methods and shows that the SS-SDSS estimates were very close to the

SDSS estimates. Consequently, the SS and SDSS methods had similar performances

at quasi static conditions.

Typical Subject Results

Fig. 7–7 shows a section of an input-output record for a typical trial. The output

torque characteristics changed considerably with the position operating point; at a
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dorsiflexed position (+0.25), reflex activity was present and large; while at a more

plantarfelxed position (-0.4rad), reflex activity was altogether absent.

The models estimated predicted the torque very accurately for all 10 positions

and the residuals were small. The average identification VAF was high (90.2%˘
2.5%). Fig. 7–8 shows a typical segment recorded together with the predicted torque.

There is great consistency between the measured and predicted torque and the resid-

uals are relatively small compared to the measured torque. Thus, the model accu-

rately predicted the torque. The torque at the first 300ms is due to the IC and it is

estimated consistently. Consequently, the the model accurately estiamted the IC.

Fig. 7–9 illustrates the stiffness estimates for this subject. The frequency re-

sponse of the intrinsic was high-pass nature and changed significantly with joint

position. The low frequency gain and break frequency were minimal at -0.2rad and

increased as the ankle was moved to more dorsiflexed or plantarflexed positions

(Fig. 7–9A).

The reflex pathway also changed considerably with the joint position. There

was no reflex response at positions more plantarflexed than 0 rad. That is the

order of the reflex linear element was estimated to be zero. At dorsiflexed positions,

the threshold and slope of the nonlinearity changed with position; the threshold

decreased and slope increased as the ankle was moved to more dorsiflexed positions

(Fig. 7–9B). The linear element of the reflex pathway was always low-pass in nature

(Fig. 7–9C).
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Group Results

To estimate the stiffness parameters, the elastic parameter was estimated as the

DC gain of the frequency response function of the intrinsic pathway. A half-wave rec-

tifier model consisting of a threshold and slope was fitted to the identified Tchebychev

polynomials using MATLABs optimization toolbox with the trust-region-reflective

method.

Fig. 7–10 shows the stiffness parameters estimated for all five subjects. The

elastic parameter was minimum midway through plantarflextion around -0.2 rad and

increased significantly toward dorsiflexed positions (Fig. 7–10A). The reflex threshold

(th in Fig. 7–1) decreased toward dorsiflexed positions. The reflex slope (m in Fig. 7–

1) increased toward dorsiflexed positions which together with threshold modulation

resulted in a larger reflex response when the ankle was dorsiflexed. We did not find

a strong and consistent dependency of damping and natural frequency of the linear

reflex dynamics with position.

7.6 Discussion

7.6.1 Summary

This paper presented the SS-SDSS method for identification of the ankle joint

stiffness parallel-cascade structure from short stationary data segments. It fits an im-

pulse response function to the intrinsic stiffness pathway, a polynomial to the static

nonlinearity of the reflex pathway, and a state-space model to the linear dynamics of

the reflex pathway. The method also estimates the initial conditions that contribute

to the output of each segment. Simulation studies evaluate the performance of the
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method and find the total number of data samples required for a successful identifi-

cation at different experimental conditions. Experimental studies show a successful

application of the method in identification of the ankle joint stiffness during passive

imposed movements. They demonstrate that the reflex response is controlled by

changes in both threshold and gain of the pathway.

7.6.2 Algorithm Features

The SS-SDSS method is a MOESP-based subspace method and therefore in-

herits many of its appealing features. First, while MOESP requires little a priori

information, it is a parametric method, and so yields models with few parameters.

This is because MOESP estimates the order of the reflex linear system as part of the

identification procedure; only an upper-bound on the system order needs to be spec-

ified. This is important because the reflex linear element may have more complex

dynamics especially in pathological subjects [135]. Second, it can handle arbitrary

colored output noise which is important because the color of the voluntary torque

(considered as the output noise) is not generally known to the modeller. Third, it

has been extended for identification from closed-loop data [120]. This is of particular

interest when the joint is interacting with a compliant load [74, 185].

SS-SDSS also inherits the appealing features of the SDSS method. First, it de-

composes the measured torque into the intrinsic and reflex torques using an orthog-

onal projection technique that is robust to the noise and has no convergence issues

since it is not iterative [6]. Second, it provides more relevant physiological informa-

tion by estimating all elements of the parallel-cascade model from the state-space

model. Third, it is guaranteed to converge because it uses the normalized alternative
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convex search to estimate the parameters of the reflex path and the initial condi-

tions [256, 257]. These features of the SS-SDSS method makes it an excellent tool

for identification of stiffness in functionally important tasks.

The method is comparable to some other works in the literature applicable for

identification of the joint biomechanics from short data segments. Ludvig and Per-

reault developed a nonparametric method for the identification of linear systems

[190]. Their method, however, did not account for the initial conditions, making

it applicable to systems with very short memories, e.g. only the intrinsic pathway.

Thus, it can be expected to give biased results in the presence of the reflex activ-

ity when used with short data segments. Others considered accounting for initial

conditions. Thus, Zhao and Kearney proposed a subspace approach for the identifi-

cation of a general MIMO linear system encompassing the PC model [267]. However,

this method required all data segments to have the same length which is difficult to

achieve due to the highly unpredictable nature of the system in real experiments.

Moreover, their model parameters were not directly related to the original stiffness

parameters. Kukreja et al. identified a Hammerstein structure (applicable to the

reflex stiffness path) from short segments of data using a transfer-function identifi-

cation technique [265]. They considered and estimated initial conditions but their

method deteriorated rapidly when the noise was not white, as is the case in stiffness

identification [280].

7.6.3 Simulation Results

We verified the effectiveness of the SS-SDSS method in extensive simulation

studies mimicking realistic experimental conditions that can affect the algorithm
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performance. Thus, we used Monte-Carlo simulations to give the statistics of the

estimates. The input was the joint angular position recorded from our hydraulic ac-

tuator when position perturbations were delivered to subjects. Thereby, accounting

for the nonlinear filtering of the actuator and load. The noise was the torque when no

position perturbations were delivered to the ankle. This accounted for non-Gaussian

and non-white characteristics of the noise.

Simulations were carried out over the range of parameter values observed in

real experiments. Thus, we explored different levels of the noise power and different

relative contributions of the intrinsic and reflex pathways. The method’s performance

is also dependent on the available data, i.e. number of data segments and their

lengths. So, we examined different combinations of these up to the algorithm’s limit.

There are two important observations from the simulation studies. First, suc-

cessful identification of the reflex pathway is more difficult than the intrinsic pathway.

This is mainly because of the more complex structure of the reflex pathway, i.e. Ham-

merstein vs linear. Second, there is a trade off between the number of segments and

the mean segment length, that is the smaller the mean segment length, the more seg-

ments are required. This is important in the design of experiments since it provides

guidelines to the modeller on how long the experiment must last prior to performing

the experiment for reliable measurements.

7.6.4 Experimental Results

We demonstrated that the SS-SDSS method successfully identified stiffness dur-

ing an imposed, passive movement of the ankle in a piecewise constant manner. We
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chose this paradigm because the changes of stiffness with joint position are well docu-

mented for stationary conditions [135]. Furthermore, extracting stationary segments

was straightforward from this quasi-stationary task. Thus, the method accurately

predicted the output and identified stiffness models and initial conditions at different

segment lengths.

The stiffness model estimated from short segments were similar in shape and

changed with position in a manner consistent with previous reports under stationary

conditions. Thus, the intrinsic pathway had high-pass dynamics (Fig. 7–9(A)) whose

low-frequency gain, corresponding to the joint elastic parameter, was minimal around

-0.2 rad and increased gradually with plantarflexion and rapidly with dorsiflexion.

This pattern is consistent with that reported in [175] from operating point studies

which identified the elastic gain as a function of the ankle joint position but in the

absence of reflex activity.

The reflex pathway was identified with a Hammerstein structure. The nonlin-

earities resembled a rectifier and the linear elements had low-pass filter dynamics

(Fig. 7–9(B,C)) which are again consistent with the literature [37]. We provide ex-

perimental evidence for the first time that both the threshold of the nonlinearity and

its slope (gain of the pathway) modulate with the joint position (Fig. 7–10(B,C)).

Thus, the reflex pathway contribution was small when the joint was plantarflexed

and increased toward more dorsiflexed positions. This resulted from changes in both

the gain and threshold of the pathway.

We validated the identified models at each position level. Thus, the identified

model when all data segments were used was taken as the nominal model. Next,
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Figure 7–11: Success curves for the (A) intrinsic and (B) reflex pathway identification
obtained from experimental data matched with simulation results. The effective
experimental SNR level was 13.41dB and the matched simulation SNR level was
15dB. The experimental RtI level was 0.34 and the matched simulation level was 1

3
.

we re-segmented the data to equal-length segments with length selected from the set

t0.25, 0.35, ¨ ¨ ¨ , 1.05us. We re-identified the system at each segment length and found

the required number of segments such that the validation VAF was greater than 95%.

Fig. 7–11 shows the success curves when the ankle position was 0.25rad. We selected

this level because the effective SNR calculated from the residuals power was 13.41dB

and the RtI level was 0.34. Thus, we could easily match it to the success curves

from the simulation study performed at the SNR of 15dB and RtI of 1
3
. It is clear

that these two curves matched each other closely for both pathways. Consequently,

our simulation studies were valid and accurately predicted conditions for a successful

identification from experimental data.
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7.6.5 Other Applications

The SS-SDSS method would be a powerful tool to characterize joint stiffness in

tasks where either only short segments of data can be recorded (e.g. high contraction

levels) or when the underlying dynamics are slow time-varying (e.g. quite stance).

In future, it will be of interest to explore the utility of the algorithm at different

experimental conditions.

An important clinical application of the method would be in quantifying severity

of spasticity. The Ashworth test assesses the patients with lesion in their central

nervous system, cerebral palsy, multiple sclerosis, spinal cord injury, stroke, etc [23,

281]. This test examines the resistance of the joint to passive movements in its range

of motion. A trained physician applies the movement and scores the resistance based

on their feeling of the resistance. Our new method could be be a useful adjunct to

quantify spasticity in the joint range of motion to provide a more objective assessment

[282, 156].

The method has applications to other systems showing time-varying or switching

behaviour. For instance, the Vestibulo Ocular Reflex (VOR) circuit can be modeled

with a Hammerstein structure; however, due to the switching nature of this type of

eye movement, the VOR data consists of both slow and fast intervals sequentially.

This results in variable length short segments of data in each mode with variable

initial conditions. The Hammerstein part of the SS-SDSS method can be a useful

tool for identification of such systems [265, 279].
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CHAPTER 8
Discussion and Conclusion

This chapter starts by providing a general discussion and a summary of the

chapters. I then list the original contributions of this thesis and presents areas of

future research that can be addressed using the tools developed in this thesis. Finally,

it provides recommendations and suggestions for improvement of the developed tools.

8.1 Discussion

This thesis developed a number of analytical tools for accurate measurement of

stiffness during postural and imposed movement tasks. It provided rigorous testing

of these tools in extensive simulation and experimental analysis and showed that they

outperformed other available tools. Moreover, they unmasked important properties

of the neuromuscular system and provided guidelines for future experimental designs.

Dynamic joint stiffness at the ankle can be modelled by a parallel-cascade struc-

ture with intrinsic and reflex pathways. Intrinsic stiffness has a quasi linear model and

reflex stiffness has a BONL structure that is the cascade of a differentiator followed

by a Hammerstein system. Any method for identification of the parallel-cascade

structure must incorporate identification of Hammerstein structures. Consequently,

this thesis provided tools for identification of Hammerstein structures applicable to

stiffness identification as well as other biomedical systems with Hammerstein struc-

ture; it also provides tools for identification of the parallel-cascade structure specific

for joint stiffness identification.
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The decomposition of the torque into its intrinsic and reflex components is signif-

icant not only for modelling purposes but also for its application to the diagnosis and

treatment monitoring of neuromuscular diseases. The difficulty is that intrinsic and

reflex torques change together and are not individually available for measurement;

only a noisy version of their sum can be measured. Consequently, decomposition of

the torque is a challenging task and was an open problem which required further

attention. This thesis solved this problem by providing an efficient analytical frame-

work for decomposition of the output of systems with parallel pathways with little a

priori information about their pathways.

The next step following decomposition is to estimate the intrinsic and reflex

stiffnesses. This is challenging because they are complex and highly nonlinear. I

addressed this problem by developing a linear state-space model of stiffness whose

parameters were directly related to those of the parallel-cascade structure. The

main significance was the ease of building continuous time models of the parallel-

cascade elements from the linear state-space model. This was necessary to acquire

any physiological interpretation. Consequently, I showed how the physiologically

meaningful parameters such as the elastic and viscous parameter of the intrinsic

pathway and the threshold and gain of the reflex pathway are modulated as functions

of joint position or activation direction.

In a number of functionally important tasks data is either non stationary or

stationary for a short period of time. I proposed to segment the measured non-

stationary data into multiple, short, stationary segments. I showed that stiffness

can be regarded as quasi time-invariant for data segments with the same properties,
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Consequently, I extended the Hammerstein and parallel-cascade methods to identify

local time-invariant stiffness models from multiple, short data segments having the

same properties. The main challenge was the issue of initial conditions that became

important at the onset of each segment. Thus, the new methods estimated initial

conditions as part of the identification algorithm. The main significance was devel-

oping a tool to explore and measure stiffness in numerous functional tasks such as

upright stance, movement, etc, when the time-varying nature is slow.

This thesis pays extra attention to the static nonlinearity of the reflex pathway.

Changes in the static nonlinearity had not been previously studied because: (i) the

binary type signal used for excitation did not evenly excite the input range of the

nonlinearity; (ii) lack of an accurate identification method to separate changes in

the static nonlinearity from those in the linear element. This thesis uses a more

effective input signal to more evenly excite the input range of the static nonlinearity.

Moreover, development of accurate identification methods was the main focus of this

thesis. I demonstrated that the new methods accurately tracked changes in the static

nonlinearity from changes in the linear element of the reflex stiffness Hammerstein

model in extensive simulation studies. Consequently, the new tools are significant

and provide an accurate estimate of the static nonlinearity.

Some previous works assumed that modulation of reflex response is entirely a

threshold mechanism [283]. Others hypothesized that it is entirely a gain mechanism

[10, 65]. My experimental results demonstrated that both the threshold and gain

change, in opposite directions, as functions of activation direction and joint position.
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It is important to understand what physiological mechanisms potentially regu-

late the threshold and gain. Modulation of reflex gain can occur in the sensory organ

(muscle spindle) and/or in the motorneuron pool. Activation of intrafusal muscle

fibers in response to gamma static drive increases the baseline of the afferent firing

rate [58]. This will change the threshold by bringing motor units closer to their

threshold, facilitating their recruitments. Activation of intrafusal muscle fibers in

response to gamma dynamic drive increases the sensitivity of the afferent [58]. This

will change the gain of the reflex response. According to the alpha-gamma coacti-

vation hypothesis, static and dynamic gamma motor neurons are synchronized with

alpha motor neurons [284]. Consequently, this can be one important mechanism

changing the threshold and gain of the response as a function of activation direction.

Thus, when the ankle plantarflexor muscles are active, gamma motor neurons are

coactivated. Hence, threshold decreases and gain increases. In contrary, when the

ankle plantarflexor muscles are silent, gamma motor neurons are also silent. Hence,

threshold increases and gain decreases.

Modulation can also occur in the motorneuron pool. Neurons carrying descend-

ing commands synapse with alpha motor neurons. Muscle spindle afferents also make

synapses with alpha motor neurons. Activation of the ankle plantarflexor muscles

will lower the threshold by facilitating the recruitment of larger motor units. Re-

cruitment of larger motor units will increase the gain since larger motor units include

more motor fibres. Nevertheless, other mechanisms such as the role of presynaptic

inhibition and golgi-tendon organs cannot be ruled out.
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In the following section, I will provide a more detailed summary of the findings

of each chapter.

8.1.1 Summary

I started by developing the NSS method for identification of Hammerstein struc-

tures. It yielded independent estimates of the nonlinear and linear elements of a

Hammerstein structure to facilitate any physiological interpretation. Contrary to

other Hammerstein methods, the convergence of the new method was guaranteed.

The number of parameters in the NSS state-space formulation was minimal compared

to the original state-space formulation. Furthermore, any parameter was directly re-

lated to the static nonlinearity or the linear element; this increased its robustness.

It estimated the order of the linear system prior to the parameter identification and

thus, required little a priori information compared to other parametric methods. I

explored the validity of the method using simulation studies on a Hammerstein model

of the reflex stiffness. Thus, it was more robust to noise when tested against other

available methods. It was more accurate and had lower variance in the estimates.

Furthermore, it successfully distinguished changes in the static nonlinearity from the

linear element. I showed an application to experimental data in identifying the reflex

EMG response. Thus, it successfully identified the system in an isometric task at

two voluntary contraction directions: PF when the ankle plantarflexor muscles were

active; DF when ankle dorsiflexor muscles were active. The results showed that both

the threshold of the static nonlinearity and the gain of the linear element modulated

with contraction direction. Thus, at the PF contraction, the threshold was small
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and gain was large whereas at the DF contraction, the threshold was large and gain

was small.

Next, I extended the NSS method for identification from short segments of data.

I showed that initial conditions contribute significantly when only short segments of

data are available. Thus, they were accounted for in the data equations and identified

as part of the identification routine. The new method successfully identified the reflex

EMG response in a stance experiment. I segmented the data based on the postural

state acquired from the subject sway. The results showed that the reflex EMG

response was larger during forward lean postural state than backward lean.

I developed the SDSS method for identification of the parallel-cascade model of

stiffness. This method works by identifying an IRF model of the intrinsic pathway,

a basis expansion of the reflex nonlinearity and a state-space model of the reflex lin-

ear dynamics. The SDSS method works by decomposing the total measured torque

to the intrinsic and reflex torques using orthogonal projections to the intrinsic and

reflex spaces and their perpendicular complements. Since the decomposition is not

iterative, it did not have convergence problem. The SDSS method then fits an IRF

to the estimated intrinsic torque, and uses the NSS method to identify the reflex

Hammerstein structure. I showed that the SDSS method is more precise and accu-

rate compared to other available parallel-cascade identification methods using both

simulation and experimental studies. I demonstrated how the stiffness parameters

of health subjects are modulated during isometric conditions as a function of muscle

activation level. Thus, the elastic parameter was minimal at rest and increased with

activation level. The reflex threshold was small and the reflex gain was large when
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the ankle plantarflexor muscles were active. The reflex threshold was small and the

reflex gain was large when the ankle plantarflexor muscles were active.

I also extended the SDSS method to work for multiple, short segments of input-

output data. This was achieved by incorporating the contribution of initial conditions

in the system response. I performed an extensive simulation study and found the

number of data samples required for a successful identification. Simulations swept

a range of parameters that could be observed in real experiments. So, I explored

different levels of the noise power and relative contribution of the intrinsic and re-

flex pathways. I applied the method to experimental data where the ankle joint

was passively moved in the subject’s range of motion. I showed that the method

provided estimates that accurately predicted the torque. I also extracted the stiff-

ness parameters and showed they were modulated during the course of movement.

Thus, the elastic parameter was minimal mid range through the range of motion in

the plantarflexion direction. It increased with plantarflexion and dorsiflexion of the

joint. Moreover, the reflex threshold decreased and the reflex gain increased as the

joint was moved from a plantarflexed toward a dorsiflexed position.

8.2 Original Contributions

Hammerstein Structures:

1. I developed the NSS method, the first subspace method for identification of

Hammerstein structure that provides estimates of the individual elements of the

structure with guaranteed convergence. This facilitates providing physiological

interpretations. The previous subspace approach identified a state-space model
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but did not provide individual models of the static nonlinearity and the linear

dynamics.

2. I demonstrated that the NSS method accurately tracks changes in the thresh-

old and saturation of the nonlinearity from changes in the gain of the linear

element in a Hammerstein model of the reflex stiffness. The previous subspace

method was unable to distinguish changes in the threshold/saturation of the

nonlinearity from changes in the gain of the linear element. I demonstrated

that the NSS method is more precise and accurate than a number of Hammer-

sein identification methods that are frequently used in practice.

Parallel-Cascade Models:

3. I developed the SDSS method, the first subspace method that decomposes the

torque with no convergence problem and provides estimates of all individual

elements of the parallel-cascade model. Previous methods suffered from con-

vergence issues and/or did not provide estimates of the individual elements.

4. I demonstrated that the SDSS method is more robust, accurate and precise

than previous methods.

5. I developed the SS-SDSS method, the first method that identifies stiffness

from multiple arbitrary-length short data segments by incorporating the ef-

fect of initial conditions. Previous methods did not consider initial conditions

and suffered from biases in the estimates of the parameters in the presence

of reflex response. I found experimental conditions that the SS-SDSS method
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successfully identifies stiffness. This provides guidelines for the design of new

experiments for reliable measurements.

6. I demonstrated that both the threshold and gain parameters of the reflex stiff-

ness are modulated as a function of the ankle joint position and contraction

direction. Previous experimental studies assumed a fixed threshold at zero

which my results demonstrate to be inaccurate.

8.2.1 Future Work

Future Experimental Studies

The experimental studies in this thesis were designed to explore the validity of

the identification methods. However, they unveiled interesting characteristics of the

neuromuscular system. The contribution of experimental findings is secondary to

the development of system identification tools. Nevertheless, they can be used as

proof of principles for the design of future experiments. One immediate hypothesis

to study is the threshold-gain co-variation as a function of the joint position/torque.

This would extend our understanding of how the neuromuscular system regulates

the reflex mechanisms.

Variance of the Estimates

The MOESP subspace method does not provide explicit estimates of the variance

or confidence intervals of the state-space model parameters. Techniques such as

Monte-Carlo testing, bootstrapping and cross validating have proven to be useful

alternatives to give statistics of the estimates [285]. In this thesis, I have heavily

performed Monte-Carlo testings in simulation studies to give the confidence intervals

of parameters in a range of experimental conditions. This gives an indirect estimate
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of the expected confidence intervals in real experiments. I have also performed a

number of cross validation studies on experimental data to validate changes in the

threshold of the reflex static nonlinearity.

In order to acquire the confidence intervals of the estimates from experimen-

tal data, I propose to use a bootstrap technique. Thus, a smaller segment of the

available data is selected and the stiffness parameters are identified. This process

is then repeated by randomly selecting the segment many times and performing the

identification. This gives a range for the parameters which can be used to extract

the statistics of the parameters, e.g. mean, variance, confidence interval, etc.

Diagnosis, Assessment and Treatment

The developed methods are significant in understanding the pathophysiology as

well as assessment, diagnosis, treatment prescription and monitoring of neuromus-

cular pathologies that change the muscle tone. In this section, I demonstrate this

potential application of the developed methods on an SCI subject. I show some

preliminary results, however, further analysis and exploring this aspect of the appli-

cation is subject of future works.

SCI results from a change in the spinal cord’s normal motor, sensory, or auto-

nomic function. SCI patients often lose limbs strength and dexterity, bowel and blad-

der control, sexual function, etc [286]. Common causes of SCI damage are trauma

(e.g. car accident, fall) or disease (e.g. transverse myelitis). In Canada, there are

more than 86000 SCI patients and it is estimated that there are more than 4300 new

SCI cases each year. The estimated annual cost of traumatic injuries alone is 3.6

billion Dollars [287].
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One of the common syndrome in SCI patients is spasticity which is defined as

the increased velocity-dependent resistance of muscles to stretching [288]. Spasticity

is due to the loss of motor neuron inhibition and is accompanied by hypertonia,

clonus, spasm and lack or impaired voluntary movement [289].

Ashworth and Fugl-Meyer scales are the widely used clinical tests to assess

spasticity and to quantify the recovery of patients benefiting from a treatment or

training [290, 291]. It has been reported that such clinical tests are subjective and

fail to demonstrate the origin of stiffness associated with spasticity. Furthermore,

they provide limited reproducibility and resolution [156, 200, 21, 292, 293, 139].

Accurate assessment of increased stiffness and identification of its origins and

components is important to prescribe the correct treatment. For example, injection

of botulinum toxin-A is often the first-line treatment for spasticity [136]. However,

Aluhsaini et al showed that this treatment did not help children with cerebral palsy

when the origin of the stiffness was intrinsic [23]. Rather, other methods such as

orthopedic surgery could be used to loosen the tight muscles and to release the stiff

joints [137]; orthotic management such as the use of ankle-foot-orthoses is also found

to be useful [138].

I used the SDSS method to identify stiffness for an SCI subject. It is interesting

to note that as recommended by the SDSS order selection, I selected a third-order

system for the reflex pathway linear system, see Figure 8–1. The third-order model

for the reflex system has been already suggested for spastic patients based on the

hypothesis that it reflects clonus-like reflex activations that comprises several distinct

bursts of activity [294].
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Figure 8–1: SDSS order selection selected a third order system for the reflex pathway
linear dynamics.
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The SDSS method successfully identified stiffness with identification %VAF of

92.2%. Figure 8–2 shows a 6s segment of the input and output data along with the

predicted responses. There are two main observations: (1) the reflex contribution is

much larger compared to that of a normal subject at rest; the intrinsic torque VAF is

only 10.7% while the reflex torque VAF is 85.8%. (2) the reflex response to a single

perturbation shows multiple bursts of reflex responses (clonus-like response). These

activation bursts coincides with EMG activity.

Figure 8–3 demonstrates the identified stiffness model. The intrinsic stiffness

model shows high-pass dynamics similar to those observed in normal subjects. How-

ever, the slope of the static nonlinearity (the gain of the reflex pathway) is signifi-

cantly larger than those observed in normal subjects. The linear element of the reflex

stiffness pathway shows a resonance at 5Hz to capture the clonus-like responses.

Some studies hypothesized that spasticity results purely from a decrease in the

reflex threshold [295, 296] or purely because of increase in the gain [297, 298]. I have

shown that SDSS is a powerful tool to distinguish changes in the threshold from the

gain of the reflex pathway. Consequently, SDSS can be used to document changes in

the threshold and gain in spastic patients.

It will be of interest to use the SDSS method to study spasticity in other patholo-

gies such as Multiple Sclerosis, Cerebral Palsy, Stroke, etc. It will also remain of

interest to use the SS-SDSS method to quantify stiffness during joint imposed move-

ments similar to those exerted in the Ashworth test to provide a more objective

assessment of spasticity.
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Closed-Loop Identification

When a joint interacts with a compliant load, the generated torques in response

to position perturbations and voluntary mechanisms change the joint position via a

feedback representing dynamics of the load. This has significant practical applica-

tions such as during upright stance where the body is considered as an inertial load

with that the ankle is interacting. Consequently, in such conditions, the position and

torque signals are recorded from a closed-loop system.

Subjects modulate their muscle activation according to the requirement of a

task. For example, during walking, the Triceps Surae muscles are activated during

the stance phase of the gait cycle and the Tibialis anterior muscle becomes activated

during the swing phase [186]. The degree of the activation and coactivation of muscles

changes the voluntary torques. This thesis studied stiffness when the activation was

held constant throughout the experiment. Thus, this constant was removed prior to

the identification. However, when the activation is varying, one needs to decompose

the total torque to the intrinsic, reflex and voluntary torques. One way to perform the

decomposition is to estimate the voluntary torque from the background EMG signals.

This relationship has been modelled as a Hammerstein model in a closed-loop system.

The feedback loop has been attributed to the inherent force feedback mechanisms of

the Golgi tendon organs [299]. Consequently, identification of Hammerstein system

from closed-loop data is also important in studying stiffness in a more function task.

The main difficulty in identification of closed-loop system is that the output noise

(voluntary torque and measurement noise) enters the input signal via the feedback.

The input and noise become correlated which is in contrast with the first assumption
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of many cross-correlation based methods such as the HK, SLS or PC methods. [181].

Consequently, closed-loop identification of stiffness is a challenging problem.

The MOESP method has been modified to consistently identify systems from

data recorded in closed-loop. This can be achieved by using proper instrumental

variables such as the past input and output signals together [120] or the reference

input signal that is not correlated with the noise but is correlated with the system

states [116]. This version is called the Errors In Variables (EIV-MOESP) method.

Zhao et al successfully applied this method to identify stiffness in closed-loop and

showed that it outperformed the PC method [300, 122].

It will be of interest to extend the methods of this thesis to the closed-loop

condition. This can be achieved by considering the reference input and the past

input and output signals as instrumental variables to estimate the A and C matrices.

The reference input can also be used as an instrumental variable in the iterative

least-squares solutions of the parameters of the static nonlinearity and the B and D

state-space matrices.

Identification of the Reflex Static Nonlinearity

I demonstrated that the threshold and slope of the reflex static nonlinearity are

modulated as functions of the joint position and activation direction. Consequently,

it is important to accurately identify these parameters in order to understand how the

neuromuscular system regulates the reflex mechanism. One option is to use splines

to extract these parameters. I show an extension of the NSS method to use splines

in Appendix A.2. The main difficulty is that the output is a nonlinear function of

the spline knot sequence that is difficult to solve.
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In future, it will be of interest to extend the method to use splines with optimized

knot location computed analytically or numerically. One way to solve this problem

is to separate the unknown parameters into two sets, one that is the knot sequence

and one that consists of the coefficients of the splines together with the state-space

matrices of the linear element. Thus, a separable least squares technique can be

developed to solve the problem. It is also of interest apply the decomposition routine

and extend this Hammerstein method to the parallel-cascade model.

Time-Varying Identification

I have developed a number of methods to identify stiffness during time-invariant

or quasi time-invariant conditions. However, during movement, changes in the joint

position and muscle activation are large and stiffness dynamics exhibit time-varying

behaviours. Consequently, it will be of interest to extend the developed methods to

identify time-varying stiffness models.

One way to characterize the time-varying properties of stiffness is to relate the

time-varying changes in the parameters as a function of a scheduling variable which

can be the joint position, muscle activation or even time. Sobhani et al. extended the

NSS method to identify LPV Hammerstein models with a time-varying LPV static

nonlinearity and a time-invariant state-space model [301]. This method successfully

identified the reflex EMG response of the ankle plantarflexors during movement [302].

Sobhani et al. also extended the SDSS method to identify the parallel-cascade system

with a time-varying LPV IRF model of the intrinsic pathway and a time-varying LPV

reflex static nonlinearity a and time-invariant reflex linear dynamics. They showed

a successful application in measuring stiffness during movement [206]. In the future,
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it is of interest to apply these methods to identify stiffness in an activation varying

task.

The main difficulty of these LPV extensions is that the reflex linear element was

assumed to be time-invariant. However, there is evidence that these dynamics change

with the joint operating point [65]. Consequently, it remains of interest to extend the

LPV methods for time-varying LPV reflex dynamics. This problem can be addressed

by expanding the state-space matrices of the reflex linear dynamics as a function of

the scheduling variable. The coefficients of these expansion can be identified using

two approaches: (i) formulating the problem of estimating the expansion coefficients

as a nonlinear optimization search and using the identified time-invariant model to

initialize the search [303]. (i) identifying the expansion coefficients using the Kernel

methods that have been developed for open-loop and closed-loop systems [304, 305].

238



APPENDIX A
Appendix

A.1 Documentations and Implementations

The algorithms developed in each chapter of this thesis are implemented in the

NonLinear IDentification (NLID) toolbox, an object oriented toolbox developed in

our laboratory.

Segmented Data

I created the segdat object which is a subset of the nldat object to support

segmented data. Consequently, it has all parameters of the nldat object with some

new parameters to show the start and end of the segments.

Construction:

dataSEGDAT = segdat(data,’onsetPointer’,onsetPointer,’segLength’,segLength);

where onsetPointer is a vector with elements showing the first sample of each data

segment and segLength is a vector with elements showing the length of each data

segment in samples.

Methods:

The segdat object inherits all methods of the nldat objects. Some methods such as

ddt, decimate, cat, nldat, vaf are updated to support the new feature.

State-Space Model

I created the ssm object for discrete time state-space models.

Construction:
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systemSSM = ssm(’A’,A,’B’,B,’C’,C,’D’,D,’domainIncr’,ts,’nDelayInput’,Δ);

where A,B,C,D are the state-space matrices, ts is the sampling time and Δ is the

input delay.

Identification:

systemSSM = nlident(systemSSM,z,’idMethod’,idMethod,’orderSelect’,orderSelect

,’hankleSize’,hankleSize,’displayFlag’,displayFlag);

or

systemSSM = ssm(z,’idMethod’,idMethod,’orderSelect’,orderSelect

,’hankleSize’,hankleSize,’displayFlag’,displayFlag);

where z contains the input and output signals as nldat or segdat objects. The id-

Method can be set to PI to use the past input or PO to use the past output as the

instrumental variable of the MOESP subspace method. orderSelect can be set to

’manual’ for the user to select the order of the system by inspecting singular values

or ’largest-gap’ for the method to automatically select the system order based on the

largest gap between large and small singular values. hankelSize is an integer number

that defines the size of the hankel matrix and must be set by the user to be larger

than the system order. If displayFlag is set to 1, the algorithm plots the predicted

output superimposed with the measured output after the identification.

Methods:

systemSSM = nlident(systemSSM,z) identifies the ssm object parameters from input

and output signals.

output = nlsim(systemSSM,input) simulates the ssm object to the input signal that

can be an nldat or segdat object.
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plot(systemSSM) plots the IRF representation of the ssm object.

systemFRESP = fresp(system) converts the ssm object to an NLID frequency re-

sponse object.

systemIRF = irf(system) converts the ssm object to an NLID impulse response ob-

ject.

set(system) sets the parameters of the ssm object.

Hammerstein Model

I updated the nlbl object to support state-space models.

Construction:

systemHammerstein = nlbl(’elements’,systemPOLYNOM,systemSSM);

where systemPOLYNOM is a polynom (polynomial) object that represents the static

nonlinearity and systemSSM is an ssm object.

Identification:

systemHammerstein = nlident(systemHammerstein,z,’idMethod’,’subspace’

,’maxOrderNLE’,maxOrderNLE,’threshNSE’,threshNSE,’hankleSize’,hankleSize

,’orderSelect’,orderSelect,’nDelayInput’,nDelayInput);

or

systemHammerstein = nlbl(z,’idMethod’,’subspace’,’maxOrderNLE’,maxOrderNLE

,’threshNSE’,threshNSE,’hankleSize’,hankleSize,’orderSelect’,orderSelect

,’nDelayInput’,nDelayInput);

where z contains the input and output signals as nldat or segdat objects. max-

OrderNLE is the maximum order of the Tchebychev polynomial, threshNSE is the

threshold for termination of the iterative Hammerstein method and the rest of the
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parameters are similar to those explained for the ssm object. It uses the NSS (for

nldat objects) and SS-NSS (for segdat objects) method developed in Chapter 4 and

5 for identification.

Methods:

The following Hammerstein methods are modified to support the new state-space

model.

systemSSM = nlident(systemSSM,z,’idMethod’,’subspace’) identifies a Hammerstein

structure using the MOESP subspace method.

output = nlsim(systemSSM,input) simulates the Hammerstein model to the input

signal that can be an nldat or segdat object.

plot(systemSSM) plots the Hammerstein model with the IRF representation of the

ssm object.

Parallel-Cascade Identification

The following function estimates the parallel-cascade model from position and

torque data. It is based on the methods developed in Chapter 6 and 7.

Syntax:

rintrinsicModel, reflexModel, tqI, tqR, tqTs = SDSS stiffnessID (z)

where z is input-output data as nldat or segdat objects.

intrinsicModel is the IRF model of the intrinsic pathway.

reflexModel is the Hammerstein model of the reflex pathway with a Tchebychev poly-

nomial identified for the static nonlinearity and a state-space model for the linear

dynamics.
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rtqI, tqR, tqTs are the predicted intrinsic, reflex and total torques.

The following options are available when calling this routine.

’decimation ratio’: The ratio that the input-output are decimated with. The default

is 10.

’order’: is the maximum order of reflex static nonlinearity. The default is 12.

’hankel size’: is the size of Hankel matrix and must be larger than the order of the

reflex linear dynamics. The default is 20.

’delay’: is the delay of the reflex stiffness pathway in seconds. The default is 0.04.

’orderdetection’: The order selection method used for the subspace method. It can

be ’manual’ or ’largest-gap. The default is ’manual’

A.2 Subspace Identification of Hammerstein Systems Using B-Splines

I showed that the threshold and slope of the reflex static nonlinearity are mod-

ulated as a function of the activation direction in Chapter 4 and 6, and as a function

of joint position in Chapter 7. Consequently, it is important that the identification

method accurately identifies the threshold and slope of the nonlinearity. In this

chapter, I develop this idea by using B-Splines as a basis to expand the reflex static

nonlinearity. This chapter is a conference paper that was published in Proceedings

of 34th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society.
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A.2.1 Abstract

This paper presents an algorithm for the identification of Hammerstein cascades

with hard nonlinearities. The nonlinearity of the cascade is described using a B-

spline basis with fixed knot locations; the linear dynamics are described using a

state-space model. The algorithm automatically estimates both the order of the

linear system and the number and locations of the knots used to characterize the

nonlinearity. Therefore, it significantly reduces the a priori knowledge about the

underlying system required for identification. A simulation study on a model of

reflex stiffness shows that the new method estimates the nonlinearity accurately in

the presence of output noise.

A.2.2 Introduction

The Hammerstein structure consists of a zero memory static nonlinearity fol-

lowed by a linear dynamic system as illustrated in Fig. 1 [249], [96]. Biological

examples include the reflex stiffness of the human ankle joint and the mechanical be-

havior of lung tissue [37], [81]. Therefore, the accurate identification of Hammerstein

systems is an important problem.
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Subspace methods are a well-developed set of tools for the identification of linear

systems. They represent a linear system by a state-space model that can be estimated

with no a priori knowledge about the system order [113], [123].

Recently, we developed a subspace algorithm for the identification of Hammer-

stein cascades that uses the framework proposed in [252] to estimate the parameters

corresponding to the nonlinearity separately from those of the linear state-space

model. The algorithm models the nonlinearity with an orthogonal Tchebychev poly-

nomial, and separates the parameters into two sets: one corresponding to the static

nonlinearity and the second to the state-space model. The output is a linear func-

tion of each parameter set provided the other set is held constant. Consequently,

an iterative least-squares procedure can be used to find the optimum nonlinear and

linear component parameters [258].

We assessed the performance of this algorithm using a small signal model of

ankle stretch reflex stiffness where we modeled the nonlinearity with a half-wave

rectifier (threshold) and the linear component with a second-order low-pass filter.

We demonstrated that the algorithm could distinguish changes in threshold from

those in the linear component gain [306].

A more general model for the reflex stiffness of one muscle would include both

threshold and saturation behaviors [229]. Moreover, joints are controlled by multiple

muscles which can be expected to have different thresholds and saturations. This

could lead to nonlinearities with sharp changes in slopes. The presence/absence of

these corner points could be significant in interpreting the underlying physiology
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[221]. Pilot experimental results from our laboratory confirm that the reflex nonlin-

earity is more complex than a simple half-wave rectifier [306].

Such hard nonlinearities are difficult to model using finite-order polynomials

due to problems with oscillations and instability. Consequently, it is difficult to

accurately estimate the corner points when using a Tchebychev expansion to describe

the nonlinearity. One solution to this problem is to represent the nonlinearities using

splines as in [250].

The contribution of this paper is twofold. First, we develop a subspace identifi-

cation method for Hammerstein cascades using splines. Splines have been used for

Hammerstein identification previously, but the linear component was described in

terms of its impulse response function (IRF) [250]. Replacing the IRF with a state-

space model can reduce the number of unknown parameters dramatically - especially

for systems with large memory. Therefore, state-space identification should be more

robust in presence of noise.

Second, in our spline formulation, we show how to choose number of knots and

their locations to describe the static nonlinearity parsimoniously. This is significant

since the proper choice of the nonlinearity is not well understood and is usually based

on trial and error.

The paper is organized as follows. Section II reviews the B-spline basis functions,

formulates the problem and describes the algorithm. Section III presents the results

of a simulation study that evaluates the performance of the new algorithm and

compares it to our previous method. Section IV provides a summary and some

concluding remarks.
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Figure A–1: Hammerstein model as a cascade of nonlinear-linear block.

A.2.3 Theory

B-Spline

A k-th order B-spline is defined by a set of knot points where the output between

each pair of knots is given by a pk ´ 1q-th order polynomial. The first pk ´ 2q
derivatives of the spline are continuous at the knot locations [307]. If the knot

sequence Λ “ tλ1, λ2, ¨ ¨ ¨ , λn`kuT is as follows:

λ1 “ ¨ ¨ ¨ “ λk “ L1 ă λk`1 ď ¨ ¨ ¨ ď λn ă
ă L2 “ λn`1 “ ¨ ¨ ¨ “ λn`k (A.1)

where L1 and L2 are the minimum and maximum of the nonlinearity’s input. Then,

the spline’s output w is defined as:

w “
nÿ

j“1

S
tku
j puqαj (A.2)

where α is the set of coefficients of the B-spline α “ rα1, ¨ ¨ ¨ , αnsT and S
tku
j is the

sequence of normalized B-splines of order k with respect to the knot sequence Λ and
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is derived from the following recursive equation:

S
t1u
j puq “

$’’&
’’%
1 if λj ď u ă λj`1

0 otherwise

(A.3a)

S
tku
j puq “ p

tku
j puqStk´1u

j puq `
´
1 ´ p

tku
j`1puq

¯
S

tk´1u
j`1 puq (A.3b)

p
tku
j puq “

$’’&
’’%

u´λj

λj`k´1´λj
if λj ă λj`k´1

0 otherwise

(A.3c)

Now, the output of the nonlinearity based on this approximation is:

W “ Sα (A.4)

where,W is the sampled vector of the output of the nonlinearityW “ rwp1q, ¨ ¨ ¨ , wpNqsT

and S is the observation matrix defined as follows:

S “

»
————————–

S
tku
1 pup1qq ¨ ¨ ¨ S

tku
n pup1qq

S
tku
1 pup2qq ¨ ¨ ¨ S

tku
n pup2qq

...
...

S
tku
1 pupNqq ¨ ¨ ¨ S

tku
n pupNqq

fi
ffiffiffiffiffiffiffiffifl

(A.5)

Hammerstein Formulation

Consider the single input single output SISO Hammerstein system shown in

Fig. 1. Assume that the order of the linear system is m and the elements of the

B and D state-space matrices are B “ rb1, ¨ ¨ ¨ , bmsT and D “ rds. Transform this

SISO nonlinear cascade to a multi input single output MISO linear system whose

n inputs are the outputs of the constructed spline basis functions, i.e., Upkq “
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”
S

tku
1 pupkq,Λq ¨ ¨ ¨ S

tku
n pupkq,Λq

ıT
. The resulting MISO state-space model is:

$’’&
’’%
xpk ` 1q “ Axpkq ` BαUpkq

ypkq “ Cxpkq ` DαUpkq
(A.6)

where, xpkq is the state vector while, A and C are the linear system state-space

matrices. The elements of Bα and Dα are given by:

Bα “

»
————–

b1α1 ¨ ¨ ¨ b1αn

...
. . .

...

bmα1 ¨ ¨ ¨ bmαn

fi
ffiffiffiffifl (A.7)

Dα “
„
dα1 ¨ ¨ ¨ dαn

j
(A.8)

The measured output ỹpkq is contaminated with noise:

ỹpkq “ ypkq ` npkq (A.9)

If the state-space matrices A and C are known, the output of the Hammerstein

system is given by [258], [116]:

ỹpkq “
«
k´1ÿ
τ“0

UT pτq b CAk´1´τ

ff
vecpBαq ` UT pkqvecpDαq (A.10)

` npkq

where b is the Kronecker product. Rewriting (A.10) in a matrix format gives:

Ỹ “ Ψ rα1b1 ¨ ¨ ¨ α1bm ¨ ¨ ¨ αnb1 ¨ ¨ ¨ αnbm α1d ¨ ¨ ¨ αndsT

`N (A.11)
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where Ψ is the observation matrix defined using the input signal as well as A and

C according to (A.10). This relation shows that the unknown parameters comprise

two sets: α which contains the coefficients of the spline, and θbd “ rb1, ¨ ¨ ¨ , bm, dsT

which contains the state-space elements.

Identification Algorithm

Step 1: Assume the knot sequence Λ, λ1 “ ¨ ¨ ¨ “ λk “ min pupkqq and λn`1 “
¨ ¨ ¨ “ λn`k “ max pupkqq where λk`1, ¨ ¨ ¨ , λn are equally spaced across the input

signal range with the resolution of maxpupkqq´minpupkqq
n´k

.

Step 2: Construct the B-spline basis expansion (A.5) of the input signal using

the knot sequence Λ.

Step 3: Use the MOESP algorithm, described in [113], to estimate the A and C

matrices of the linear state-space model of (A.6) using the constructed input signal

(U(k)) and noisy output (A.9).

Step 3: Initialize the coefficients set α “ r1, ¨ ¨ ¨ , 1sTnˆ1.

Step 4: Construct the matrix Ψα:

Ψα “ Ψ

»
———————–

0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 α̂1 ¨ ¨ ¨ α̂n

0 ¨ ¨ ¨ α̂1 ¨ ¨ ¨ 0 ¨ ¨ ¨ α̂n 0 ¨ ¨ ¨ 0

... . .
. ...

... . .
. ...

...
...

α̂1 ¨ ¨ ¨ 0 ¨ ¨ ¨ α̂n ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0

fi
ffiffiffiffiffiffiffifl

T

(A.12)

Estimate θbd by solving the least-squares problem: Y “ Ψαθbd
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Step 5: Construct the matrix Ψbd:

Ψbd “ Ψ

»
——————————————————————————————————————————–

b1 0 ¨ ¨ ¨ 0

...
...

. . .
...

bm 0 ¨ ¨ ¨ 0

0 b1 ¨ ¨ ¨ 0

...
...

. . .
...

0 bm ¨ ¨ ¨ 0

...
...

...
...

0 0 ¨ ¨ ¨ b1
...

...
. . .

...

0 0 ¨ ¨ ¨ bm

d ¨ ¨ ¨ ¨ ¨ ¨ 0

...
. . .

...

...
. . .

...

0 ¨ ¨ ¨ ¨ ¨ ¨ d

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

(A.13)

Estimate α by solving the least-squares problem: Y “ Ψbdα.

Step 6: Compute the sum of squared errors SSE for the model and compare it

to that from the previous iteration. Go to step 7 if there is not a significant decrease.

Otherwise, go to Step 4.

Step 7: Sort the knot points as follows. Recall that in a kth order spline,

the pk ´ 1qth derivative is discontinuous at the knot locations. If the pk ´ 1qth

derivative is discontinuous at a knot location, that knot is active and contributes to

the characterization of the static nonlinearity. If the pk´1qth derivative is continuous,
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that knot does not actively contribute in characterization of the static nonlinearity

[308]. In the presence of output noise, however, the spline coefficient estimation is not

perfect and small discontinuities in the pk´1qth derivative may be observed at inactive

knots. Consequently, we sort the knots according to the amount of discontinuity in

the pk ´ 1qth derivative which can be simply measured from the pk ´ 2qth derivative

at knot locations.

Step 8 Iteratively, identify the system by adding knots according to the or-

der of the sorted sequence of Step 7. Calculate the mean squared error (MSE) at

each identification. Stop adding knots when no significant improvement in MSE is

observed.

A.2.4 Simulation Results

We assessed the performance of the algorithm using a small signal model of

ankle stretch reflex stiffness. The input to this system is the angular velocity of

the ankle joint and the output is the reflex torque. This system was modeled as a

Hammerstein system consisting of a half wave rectifier followed by a second-order

low pass filter [37], [65].

More recent work has demonstrated that in the human ankle, the threshold is

not fixed at zero [249] but changes with the background torque level [306]. Moreover,

there is also experimental evidence for a saturation nonlinearity. Furthermore, several

muscles, presumably with different thresholds, interact to generate the overall reflex

response. Therefore, we considered a more general nonlinearity model consisting of

a threshold, an intermediate change of slope, and a saturation as shown in Fig. 2.

This type of nonlinearity models three experimental phenomena: (a) the strong

252



 Velocity rad
s   

1t  2t  

2

2 22
r n

n n

G
s s  

Torque (Nm)

3t  

Figure A–2: Hammerstein model of reflex stiffness.

unidirectional rate sensitivity (t1), (b) activation of a set of new muscle fibers (t2)

and (c) the saturation of the response at high velocities (t3). Consequently, the

nonlinearity has three corner points which were set to t1 “ ´0.4, t2 “ 0, t3 “ 0.4.

We modeled the linear system as a second-order low-pass filter:

Gpsq “ Grω
2
n

s2 ` 2sζωn ` ω2
n

(A.14)

The parameters of the linear element were chosen to be similar to those found ex-

perimentally (Gr “ 1, ωn “ 55, ζ “ 2.2) [65].

The input angular joint velocity signal was a uniform random number between

-3 and 3 rad/s. We simulated the input and output signals at 1000 Hz for 60s. A

realization of white Gaussian noise was added to the output to generate a signal to

noise ratio (SNR) of 10 dB.

We identified that system from the simulated data using an initial spline of order

2 with 34 knots equally spaced in the range of input.

Fig. 3(A) shows the derivative of the nonlinearity estimated with 34 knots after

step 6 of the algorithm. It is evident that the derivative is discontinuous at some knot

locations but not others. To separate knots whose discontinuities were not significant

from those with significant discontinuities, we sorted the knots by the value of their

second derivatives as shown in Fig. 3(B). Fig. 3(C) shows that after selection of the
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first five knots, the MSE between the predicted output of the Hammerstein cascade

and clean output converged to a small number. This indicates that only the first

five knots were important and adding more knots would not significantly improve

the identification. Consequently, we consider only the first five important knots as

active ones.

We identified the system once again using only the active knots and also com-

pared the result with our previous algorithm in [258] which used an 8-th order

Tchebychev polynomial with a subspace identification approach. Fig. 4(A) shows

the results. It is evident that the spline was more accurate despite having fewer

parameters than the polynomial. Moreover, the transition points, which were not

easily identified in the Tchebychev polynomial, were clearly evident with splines.

The variance accounted for (VAF) of the estimated output compared to the clean

output using spline was higher than Tchebychev: 99.97% for B-spline and 97.62%

for Tchebychev. Fig. 4(B) shows that the frequency response of the identified linear

dynamic using B-spline and Tchebychev matched the true system accurately.

A.2.5 Discussion

An identification algorithm was developed for Hammerstein cascade systems.

The algorithm uses a subspace approach and is useful for systems with hard nonlin-

earities. It models the nonlinear element with a B-spline and the linear element with

a state-space model. It then transforms a SISO Hammerstein system to a MISO

linear system.

Simulation results of a model of ankle reflex stiffness show that the new method

provided more accurate estimates of the nonlinearity than our previous subspace
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Figure A–3: Selection of active knots: (A) first derivative of the estimated spline;
(B) sorted knots according to the second derivative of the spline; (C) MSE according
to the sorted knot sequence.
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Figure A–4: Identified Hammerstein system: (A) Static nonlinearity, spline using
only active knots superimposed on the 8-th order Tchebychev approximation; (B)
Identified linear system frequency response.

method and could successfully detect sharp corner points. This improvement should

make possible a better understanding of the underlying physiological information.

The new method requires minimal a priori information. The method uses the

MOESP subspace algorithm to estimate the A and C state-space matrices. Prior

to the identification of these matrices, MOESP estimates the order of the linear

system. Second, the method determines the minimal number of knots and their

locations required to represent the static nonlinearity.

Another advantage of the method is that it does not require the use of Gaussian

inputs. It uses an over-parameterized MISO model and so does not rely on Busgang’s

theorem and therefore does not require a Gaussian distribution for the input signal.

This is useful for experiments where Gaussian inputs cannot be used or generated,
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such as studies of reflex stiffness where a PRBS input signal is often used for identi-

fication. It is also advantageous to use uniformly distributed inputs in Hammerstein

identification, since the input can equally excite all regions in the nonlinearity [309].

The knot locations used for the parsimonious model were a subset of those used

for the initial segmentation. Consequently, the estimation of corner point locations

in the hard nonlinearity is limited to the resolution of segmentation, i.e., location

of knots. For instance, in the simulation study, the input range was between -3 to

3 rad/s and we used 34 knots. Therefore, the resolution of corner point estimation

is ˘0.09 rad/s. One way to increase the estimation accuracy of the corner points

would be to use methods that consider variable knot location. However, for variable

knot locations, the problem is highly nonlinear [92], [250]. Therefore, nonlinear

optimization techniques need to be used to find the optimum knot location. It is

known that if the initial condition of a nonlinear optimization problem is set properly,

the likelihood of convergence to global minimum is increased. The new method can

be a good candidate to find the initial condition for the optimization search, i.e.,

we can use active knots as initial condition of the optimization search to finely tune

their optimal location.
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