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ABSTRACT

Relevance, a notion at the heart of information retrieval (IR), has received pro-

lific attention in the textual IR domain. While the creation of rigorous and practica-

ble theories concerning the nature of relevance has long been identified as a key prior-

ity for the field of Music Information Retrieval (MIR), relevance-related research has

remained scarce in comparison. This dissertation employs a large-scale systematic

analysis of the user-focussed MIR literature to identify different conceptualizations

of relevance in a musical context. We establish a broad account of the present state

of knowledge in the field by triangulating convergent findings of disparate studies

in order to identify areas of commonality, and outline several under-explored areas,

pointing the way for future research. We build on this foundation by investigating

rhythmic information as a relevance criterion, employing methodologies from music

perception and cognition. The role of rhythmic information as a cue for melody

identification is examined in a series of experiments employing distorted versions of

familiar melodies. Further, we investigate beat salience, a measure of the percep-

tual prominence of the beat in the context of finding music to move to, employing a

convergent-methods approach investigating perceptual beat induction, sensorimotor

synchronization, and beat salience judgement. Primary contributions include the re-

assessment of the role of rhythm in melody identification, underlining its importance

in the definition of an experiential criterion of topical relevance; and the establish-

ment of the validity and reliability of beat salience as a situational relevance criterion

for use cases involving synchronized movement to music.

vii



ABRÉGÉ

La pertinence, une notion au cœur de la recherche d’information, a été étudiée

en profondeur dans le contexte d’information textuelle. Si le développement de

théories rigoureuses et applicables sur la pertinence dans un contexte d’information

musicale a été identifié depuis longtemps comme une priorité dans le domaine de

recherche d’information musicale, les études sur le sujet restent peu nombreuses.

Cette thèse vise tout d’abord à identifier les différentes conceptualisations de la no-

tion de pertinence dans un contexte musical au moyen d’une revue systématique à

grande échelle des études centrées sur l’utilisateur dans la littérature sur la recherche

d’information musicale. La triangulation des résultats issus de différentes études nous

permet d’identifier les domaines de convergence, de mettre en évidence les domaines

peu étudiés et d’établir ainsi un état des lieux des connaissances et de proposer

des perspectives de recherches. À un niveau plus spécifique, nous étudions le rôle

de l’information rythmique comme critère de pertinence en utilisant des méthodes

dérivées du domaine de la psychologie de la musique. Dans une série d’expériences

utilisant des distorsions rythmiques, nous examinons l’importance de l’information

rythmique comme indice pour l’identification de mélodies connues. Dans une autre

série d’expériences, nous examinons la saillance du beat, une mesure de l’importance

perceptive du beat, dans un contexte de synchronisation sur la musique au moyen de

mesures perceptives, de mesures de synchronisation sensorimotrice et de jugements

sur échelles. Nos contributions nous amènent à réévaluer le rôle du rythme dans

l’identification de mélodies, soulignent l’importance du rythme comme critère de

viii



pertinence expérientielle et thématique et permettent d’établir la validité et fiabilité

de la saillance du beat comme critère de pertinence situationnelle dans un contexte

de synchronisation du mouvement sur la musique.
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CHAPTER 1
Introduction

Relevance, as a concept or set of concepts, has received prolific research atten-

tion in the field of information science. Discussions on the nature of relevance and

its place at the heart of information retrieval (IR) have been ongoing for decades,

and have been traced to the very beginnings of organized academic research into

IR (Saracevic, 1975). A large majority of IR systems organize information around

textual entities, such as words and phrases (Saracevic, 2007, p. 1931), and so it is

not surprising that relevance research has focused overwhelmingly on textual infor-

mation domains; indeed, so ingrained is the notion that the relevance concepts under

discussion operate on textual data, that this assumption is rarely stated explicitly.

In comparison, the notion of relevance has received scant attention in music informa-

tion retrieval (MIR) research. Yet, operationalizing relevance criteria to meaningfully

address the music information needs of (potential) users of MIR systems, with suffi-

cient detail to guide the design and implementation of such systems, is a formidable

challenge – as we shall see.

This dissertation presents an attempt at understanding the current state of

knowledge on relevance in music information research. It is motivated by the multi-

experiential challenge outlined by J. S. Downie in his early, comprehensive overview

of the MIR field:
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“Music ultimately exists in the mind of its perceiver. Therefore, the per-

ception, appreciation, and experience of music will vary not only across

the multitudes of minds that apprehend it, but will also vary within

each mind as the individual’s mood, situation, and circumstances change

... How do we adjust our relevance judgments under this scenario of

ever-shifting moods and perceptions? ... The creation of rigorous and

practicable theories concerning the nature of experiential similarity and

relevance is the single most important challenge facing MIR researchers

today.” (Downie, 2003, p. 304-306)

The textual domain affords the luxury of lexical meaning, of representational

semantics; specific concepts expressed in the words of a query bear an “unques-

tioned correspondence” with information, the explicit goal of conventional IR (Byrd

& Crawford, 2002, p. 21). Whilst textual searches are possible in the domain of

music, operating on lyric fragments or on bibliographic facets, searches employing or

operating on purely musical information must forgo such luxuries.

“Where the poet or playwright can evoke sadness by narrating a recogniz-

ably sad story, musicians must create sadness through non-representational

sounds. Where a comedian might evoke laughter through parody, word-

play, or absurd tales, musicians must find more abstract forms of parody

and absurdity.” (Huron, 2006, p. 1)

Acknowledging the experiential, and thus psychological, nature of the problems

posed by Downie’s multiexperiential challenge, this dissertation draws on approaches

informed by the field of music perception and cognition. The experience of music
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has been subject to psychology research since at least the time of the Gestalt the-

orists (e.g., Wertheimer, 1923). The potential benefits of integrating insights from

such research have been under discussion in the MIR field since its early days (e.g.,

Huron, 2000), but rarely was such work actually adopted into MIR studies (Futrelle

& Downie, 2002). The dialogue between the two fields remains difficult (Aucouturier

& Bigand, 2012), although it is ongoing—evidenced by the annual seminar on cog-

nitively based music informatics research (CogMIR)1 , first held in 2011.

The experimental work presented in this dissertation bridges these fields by

exploring melody identification, beat perception, and sensorimotor synchronization

(moving to music) from the perspective of music perception and cognition, and re-

lating outcomes and implications to guide the implementation of MIR systems op-

erationalizing measures of topical and situational relevance. Here, these terms are

defined as per Jansen and Rieh (2010, p. 1525): topical relevance is a measure of

“the connection between information objects retrieved and a query submitted” to

an IR system; situational relevance is a measure of the user’s judgement of “the

relationship between information and information need situations in a certain time”.

This experimental work is constrained to the investigation of musical informa-

tion facets relating to the temporal dimension of the music, which will be collectively

referred to as rhythmic information. Included in these facets are musical parame-

ters such as note event durations, onset times, and metric regularity, and perceptual

1 http://www.cogmir.org/
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parameters such as beat salience and movement affordance (sensorimotor synchro-

nization). Rhythmic information is fundamental to our experience of the music,

being a primary component of melody (Whittall, 2011) along with pitch (i.e., the

sequence of note heights), and accordingly, providing determinant sensory cues in

melody identification (Hébert & Peretz, 1997). Further, rhythmic information drives

core MIR processes such as beat tracking, onset detection, tempo estimation, and

melodic similarity estimation. However, little research has yet examined algorith-

mic outcomes of such MIR processes in light of experimental data on the human

perception of rhythmic information.

1.1 Research questions

In order to adequately address questions at the intersection of (algorithmic) mu-

sic information processing, and listener experience, a conceptual relevance framework

must be defined for the music information domain; such a framework may then form

the grounding for the experimental work outlined above. This requirement motivates

the work presented in this dissertation.

Concretely, we examine the following research questions:

1. How may the notion of relevance be conceptualized for music information re-

search? And, building on this conceptualization:

2. What is the role of rhythmic information in melody identification, and what

are the implications in formulating an experiential criterion of topical relevance

in MIR? And,

3. Can beat salience inform a valid and reliable criterion of situational relevance

in MIR?
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1.2 Chapter overview

Along with this introduction and the conclusion, this dissertation addresses the

research questions posed above in a collection of three manuscripts in Chapters 2–4.

Versions of each of these manuscripts are currently under preparation for journal

submission; an article based on Chapter 3 is currently under revisions for Memory

& Cognition.

The remainder of this introductory chapter presents a brief history of MIR; a

reflection on the IR challenges posed by musical in contrast to textual information;

and a discussion of the notion of melodies as music information objects in the field

of music perception and cognition.

Chapter 2 presents a systematic analysis and synthesis of 159 user studies in the

MIR literature, based on an application of Saracevic’s stratified model of relevance

interactions (Saracevic, 1997; 2007b) to the music information domain. This chapter

serves to provide a broad overview of the notion of relevance in MIR, including

discussions on the topics studied, and the insights obtained, as well as on the current

gaps in our knowledge.

Chapter 3 investigates the role of rhythmic information in melody identification,

finding this role to have been underestimated in previous research. The chapter

draws implications for the formulation of topical relevance criteria for MIR systems

focussing on tasks relating to melody identification (e.g., query-by-humming systems,

where the user hums a melody into a microphone, and the system returns matching

documents from a musical database).
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Chapter 4 presents a series of experiments investigating beat salience, a measure

of the perceptual prominence of the beat in music, and evaluates the validity and

reliability of this measure as a relevance criterion in the context of finding music to

move to.

Chapter 5 concludes this dissertation, drawing together the main findings of the

preceeding chapters, summarizing theoretical, methodological, and practical contri-

butions, as well as limitations, and finally, proposing directions for future research.

1.3 A brief history of music information retrieval

The field of music information retrieval (MIR) is highly interdisciplinary in na-

ture, uniting researchers from a diverse range of disciplines in pursuit of the com-

mon goal of providing robust, comprehensive access to musical information (Downie,

2004a). The field is rooted in traditional textual information retrieval research, but

is also informed by research areas such as music perception and cognition, music

theory, signal processing, audio engineering, and computer science.

MIR is a young field; while pioneering academic work can be traced back to the

1960’s (Kassler, 1966), literature in the area remains sparse until the late 1990’s. As

new technologies, such as the MP3 format, plummeting costs of digital storage, and

the widespread adoption of the Internet by the public made digital music ubiquitously

available, the increased necessity for music information storage and retrieval engaged

the interest of researchers from a variety of disciplines. The International Society

for Music Information Retrieval (ISMIR) has been the focal point of this renewed

research activity; Downie, Byrd, & Crawford (2009) offer an overview of ISMIR’s

first decade, from 1999–2009.
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The origin and growth of ISMIR has been motivated by the textual Information

Retrieval (IR) world. Plans for an evaluation platform based on that used by the Text

REtrieval Conference (TREC) were under discussion from the beginning (Downie et

al., 2009), and eventually led to the creation of MIREX, the Music Information

Retrieval Evaluation eXchange (Downie, West, Ehmann, & Vincent, 2005).

The primary emphasis of research in MIR has been placed on the development

of MIR systems. Much valuable work has gone into the creation and continued

improvement of algorithms to perform tasks integral to MIR, such as onset and key

detection, tempo extraction, beat tracking, genre classification, and many others

(Downie, 2008). Evaluation metrics are generally applied to system performance

parameters such as precision and recall. Formal consideration of user information

needs and information behaviour has been sparse in comparison. The situation

reflects the early state of research in the field of textual IR, where similar early

emphasis on information systems gradually gave way to a more user-centric paradigm

(Dervin & Nilan, 1986; Wilson, 1981).

1.4 What challenges does retrieval of music pose in contrast to text
retrieval?

Parallels and key difference between the worlds of textual IR and MIR exist

on a number of levels. We now consider the relationships between the two fields in

order of decreasing abstraction, starting at the broadest level of intellectual property

rights and research infrastructure, proceeding via the examination of paradigmatic

approaches, to relevance measures, and finally arriving at the level of information

representation, querying, and retrieval.

7



1.4.1 Infrastructure and intellectual property challenges

For practical reasons, collaborative research on information retrieval requires

common access to shared collections of information. Without such shared data sets,

and without validated and standardized evaluation methodologies, generalizability is

threatened; experiments cannot be accurately replicated between research locations,

and algorithm performance cannot be fairly evaluated (Voorhees & Harman, 2005).

Researchers in the textual retrieval world have access to corpora in numerous lan-

guages, extracted from a wide variety of sources (Harman, 2005). The complexities

of intellectual property law with regards to musical works (Levering, 2000) prevent

the creation and dissemination of analogous corpora for MIR; in the “post-Napster

era,” holders of musical rights are “notoriously litigious” (Downie, 2004b) (p. 18),

and even public domain works cannot be incorporated into shared data sets without

considerable legal obstacles (Downie, 2003).

The absence of community-wide music collections poses considerable challenges

to the rigorous cross-evaluation of different approaches employed by MIR researchers

(Futrelle & Downie, 2002). This need to provide a common ground for evaluation

eventually resulted in the creation of MIREX, the Music Information Retrieval Eval-

uation eXchange (Downie, 2008). MIREX is an evaluation platform inspired by

the Text REtrieval Conference (TREC) testing and evaluation paradigm. As with

TREC, MIREX functions along a yearly cycle: research tracks focussing on infor-

mation retrieval tasks that warrant specific investigation are decided by community

discussion; independent teams of researchers develop algorithms to address the tasks;

the performance of the developed algorithms is evaluated on a shared data set; and
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the results are disseminated to the community at large, informing future research and

development. In TREC’s case, the data set is distributed to each research team; the

teams then perform their evaluations independently using identical steps (via eval-

uation scripts distributed alongside the data), and submit their results to a central

contact at TREC. This approach generates only a fairly low administrative over-

head, as the evaluation work is distributed among the community. Unfortunately,

the threat of litigation prevents such an approach in the world of MIR.

In order to overcome these legal obstacles, MIREX employs a “centralized

algorithm-to-data model” (Downie, 2008, p. 249). Rather than distributing eval-

uation data sets, and the work of running evaluations, to the community, the in-

dividual research teams submit their algorithms to a central testing platform lo-

cated at IMIRSEL, the International Music Information Retrieval Systems Evalua-

tion Laboratory at the University of Illinois at Urbana-Champaign (Downie, Futrelle,

& Tcheng, 2004). IMIRSEL houses evaluation data sets (i.e., collections of music and

metadata) for the various MIREX tasks. The submitted algorithms are then evalu-

ated locally, and the results are disseminated to the community. This model avoids

intellectual property concerns, as the music never leaves the building; however, the

burdens of infrastructure requirements and administrative overhead are much larger:

“the largest amount of effort expended by IMIRSEL on behalf of MIREX

is in compiling, debugging, and verifying the output format and valid-

ity of submitted algorithms. Collectively, managing and monitoring the

algorithms submitted to MIREX consumes nearly a 1,000 person-hours

each year.” (Downie, 2008, p. 250-251)
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The algorithm-to-data model is applicable in an evaluation context; however,

local copies of data sets available to individual researchers have their uses, for instance

in classifier development and corpus analysis. Furthermore, the size of these data sets

matters, as developing with small amounts of data can lead to classifier overfitting,

and may not expose relatively rare but interesting phenomena to analysis. The

relatively high cost of musical works makes the acquisition of vast quantities for

research purposes prohibitively expensive for many researchers, and the sharing of

music between labs runs afoul of the “well-known antagonistic stance of the recording

industry to the digital sharing of their data” (Bertin-Mahieux, Ellis, Whitman, &

Lamere, 2011, p. 592). In recent years, several large corpora have been published

that bypass these problems, by distributing a wealth of algorithmically derived or

hand annotated metadata, while withholding the music itself. Examples include the

McGill Billboard 1,000 corpus (Burgoyne, Wild, & Fujinaga, 2011) and the Million

Song Dataset (Bertin-Mahieux, Ellis, et al., 2011).

1.4.2 Paradigmatic challenges

Given the MIR community’s emulation of TREC with MIREX, and the strong

influence of IR traditions on MIR research, it is perhaps unsurprising that the pri-

mary emphasis of research in MIR has been on the development of MIR systems.

There have been repeated calls for a greater emphasis on user-centric research in

articles discussing the state of the field. Without empirical data regarding users’

needs and requirements, music seeking behaviours, and on the usability of MIR in-

terfaces, design decisions are based on “intuitive feelings for user information seeking

behaviour,” (Cunningham, Reeves, & Britland, 2003) and on “anecdotal evidence
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and a priori assumptions of typical usage scenarios” (Lee, 2010). Downie, Byrd, and

Crawford (2009) acknowledge that “the knowledge acquired by interacting with users

... can only improve the quality of the community’s research output”; such work will

“also go a long way to helping ISMIR researchers create truly useful music-IR sys-

tems” (p. 17). Some of the earliest papers in the ISMIR proceedings highlight the

“need to draw extensively on research in music perception and cognition” (Huron,

2000), acknowledge that “much research has been done on music perception in psy-

chology, music psychology, and cognitive science”, but note that “[s]ignificantly, how-

ever, MIR researchers have so far rarely adopted work in these areas as a basis of

MIR studies” (Futrelle & Downie, 2002, p. 218).

Ingwersen and Järvelin (2005) have noted the dichotomy of IR research, out-

lining the distinction between systems-oriented IR, and user-oriented and cognitive

IR research. They note that research adopting the cognitive viewpoint is “not lim-

ited to user-centered approaches to information. Essentially, it is human-oriented,”

involving “humanistic aspects with respect to contents of messages, technological in-

sights of tools for processing, and social scientific dimensions due to the information

activities taking place in a social contextual space” (p. 25).

Results from the small pool of existing user studies in MIR (Weigl & Guastavino,

2011) have underlined the importance of such human-oriented research regarding

music information needs and behaviours. Several studies have shown the primacy

of social factors in the development of musical tastes and the acquisition of new

music (Cunningham & Nichols, 2009; Laplante, 2010a; Laplante, 2011); furthermore,

studies of peoples’ encounters with new music (Cunningham, Bainbridge, & McKay,
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2007; Laplante & Downie, 2006; Laplante, 2010b) suggest that music information

seeking most commonly occurs as a non-goal oriented activity: “it is mostly the

pleasure [participants] take in the activity itself that motivates them to seek for

music rather than an actual information need ... most [participants] admitted that

they are sometimes so absorbed when they browse for music that they have a problem

stopping” (Laplante & Downie, 2006, p. 382).

The sparsity of human-oriented research in the MIR field remains a challenge

to the understanding of music information needs, and to the creation of MIR tools

that are usable and useful both within and beyond academia. While the “cognitive

turn that took place in [textual] IR” (Ingwersen & Järvelin, 2005, p. 3) has not been

emulated in the predominantly systems-focussed MIR field, there has been a growing

trend toward greater publication of user studies in recent years, although the overall

number remains small in terms of overall MIR research output (Lee & Cunningham,

2012).

1.4.3 Experiential similarity and relevance

Among the open research problems of MIR, the definition and operationalisa-

tion of experiential similarity and relevance measures—a key research priority for

the field (Downie, 2003)—may stand to benefit most from user-focussed research

efforts. The concept of relevance is central to both (human) information seeking and

(systems-centric) information retrieval research (Jansen & Rieh, 2010). From the

systems perspective, IR tools make use of relevance-predicting algorithms to match

available information objects to a query in order to generate a set of results. When

operationalised as a quantitative metric of the match between a submitted query
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and retrieved information objects, the concept is more precisely referred to as topical

relevance. From the human-oriented perspective of information searching, relevance

is a relation between information and contexts (e.g., the user’s information needs at

a given point in time), based on “some property reflecting a relevance manifestation

(e.g., topicality, utility, cognitive match).” Operationalised as the outcome of human

judgement of the relation between information and information needs, the concept

may be termed situational relevance.

Topical relevance is generated deterministically by a given algorithm mapping

a given query to set of information objects; thus, it is a static measure. Situational

relevance is dynamic; defined by reference to a user’s judgement at a given time, it

may vary both between individuals, and within individuals, given different contexts.

In the domain of music, there are major implementational challenges for both of

these relevance concepts.

Topical relevance. Performance measures such as precision and recall, and

metrics such as TF·IDF (Zobel & Moffat, 1998) provide implementational approaches

for topical relevance in textual IR. Applying such concepts to abstract musical infor-

mation is problematic. Textual information offers relatively straight-forward units

of analysis (e.g., words, or phrase-level chunks); while the words and statements

of natural language may be ambiguous, various techniques exist to address such

ambiguities (Meadow, Boyce, & Kraft, 2000). Identifying musical correlates is non-

trivial. Melodies retain their identity under transposition; thus, any isolated tone

could conceivably match any given location in any suitably transposed melody. In

other words, “isolated notes have no inherent meaning in a melody identification
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task” (Schulkind, Posner, & Rubin, 2003). While a particular musical phrase may

acquire well-defined representative meaning through association with a certain char-

acter, location, or idea—the concept referred to as ‘leitmotif’ (Copland, 1957)—such

usage is rare within a generally non-representative domain. Accordingly, determining

the concrete shapes and boundaries of music information objects is a non-trivial task.

A naïve approach defining songs as information objects swiftly runs into problems:

musical identity is highly resilient, and a song may exist as a multitude of divergent

instances (e.g., alternate takes, live performances, covers by different artists) yet

remain fundamentally the same song.

Furthermore, musical experience is inherently multifaceted; when listening to

music, various perceptual qualities (pitch, timbre, contour, tempo, rhythm, har-

mony, loudness) arise through the complex interactions of various physical properties

(frequency, amplitude, spectrum, temporal evolution). Musical identity can survive

distortions along any of these facets. Melodies reproduced by amateur singers may

remain recognizable despite inaccuracies such as altered pitch intervals and distorted

rhythms. Trained singers and musicians make controlled use of such distortions, e.g.,

by applying rubato (variations in tempo) or portamento (sounding of between-note

pitches), to affect expressive qualities of a piece. This resilience of recognisability

is not limited to popular music. The systematic and creative manipulation of the

musical parameters of melodies is at the core of traditional jazz music. Similarly,

a number of studies have investigated expressive timing in classical music; a study

of the same classical piece by Chopin played by 108 pianists (Repp, 1998) revealed

different timing profiles in each take.
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Downie refers to this complexity as the multifaceted challenge to MIR (2003).

Many strands of MIR research, and many MIREX tasks, target specific musical facets

in isolation, and much progress has been made toward building algorithmic classifiers

in areas such as key finding, beat tracking, tempo extraction and onset detection.

However, when it comes to matching the features gleaned through these classifiers

to a catalogue of music, the challenges of resilient identity and experiential measures

of topical relevance come into play.

Situational relevance. Individuals may interact with music and MIR sys-

tems in many different ways, and in many different contexts. Listeners modify

their listening habits based on contextual factors, characterizing music by intended

use cases—e.g., ‘driving music’ vs. ‘working music’ (Cunningham, Jones, & Jones,

2004)—and according to their affective state, to accommodate or to modify their

mood (Laplante, 2010b). Furthermore, social factors enormously influence listen-

ing behaviour (Taheri-Panah & MacFarlane, 2004; Laplante, 2010b). These are the

complexities of the multiexperiential challenge to MIR (Downie, 2003).

Results from studies by Laplante and Downie (2006), and Cunningham, Bain-

bridge and McKay (2007) suggest that the information behaviour implicit in the

most common encounters with new music take a form akin to the “ongoing” mode

of searching outlined by Wilson (1997); the information seeker possesses an already-

established framework of musical tastes and knowledge, but updates this continuously

in order to inform future listening decisions, and to derive pleasure from the process.

Opportunistic browsing as outlined by de Bruijn and Spence (2001) also plays a role:

passive, serendipitous events during everyday life constitute the majority of people’s
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encounters with new music (Cunningham et al., 2007). Such results demonstrate

the importance of user studies in the creation of workable definitions of situational

relevance for music information research.

Clearly, situational aspects of relevance also play a role in textual IR; however,

the sparsity of representation and semantics in the abstract realm of music imbues

additional importance on information gleaned from contextual and situational fac-

tors.

1.4.4 Challenges of information representation, querying, and retrieval

Musical information exists in a large number of different formats. These may be

subdivided into symbolic representations, and audio recordings. Symbolic represen-

tations of music include printed sheet music, text, specialised notation formats such

as guitar tablature, and a number of widespread computer formats such as MIDI,

MusicXML, and the Music Encoding Initiative (MEI) framework. Audio representa-

tions are encoded in a variety of analogue and digital formats, including phonograph

records (LPs), CDs, WAV, and MP3 files. Certain formats arguably involve both

classes; for instance, MEI events may include timestamps to align them with a given

audio representation of the encoded music, and MIDI files may be turned into audible

music using sequencing software.

While textual information may be similarly represented in both symbolic (tex-

tual) and audio (recorded speech) formats, querying and indexing is almost always

done symbolically. Textual storage for retrieval access is less resource intensive by

several orders of magnitude, and users of textual IR systems are generally literate and

able to form symbolic textual queries with little difficulty. Conversely, the potential
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users of MIR systems cannot be assumed to be musically literate, and may exhibit

great difficulty in attempting to formulate symbolic musical queries (Uitdenbogerd

& Yap, 2003). Audio queries and representations based on features extracted from

audio signals thus play a much larger role in MIR systems.

The difficulty of implementing topical relevance measures complicates retrieval

in this context. Audio fingerprinting systems such as the popular commercial music

identification software Shazam (Wang, 2006) provide a useful example: while such

systems are particularly good at identifying specific recordings (Typke, Wiering,

& Veltkamp, 2005), they fail when encountering different recordings of the same

song, even when they are very similar (e.g., alternate takes in the studio, or live

performances by the same artist). The measure of topical relevance employed by the

software (“musical objects are relevant for retrieval if their audio fingerprint matches

that of the input”) does not necessarily match that employed by the user (“musical

objects are relevant for retrieval if their musical identity matches that of the input”).

1.4.5 Summary: Challenges of music information retrieval

The fields of textual IR and MIR share much common ground; the history of

MIR can be understood as an evolution of textual IR traditions, acknowledging

strong influences from a number of external fields. Nevertheless, many challenges

apply uniquely or differently to MIR. There are pragmatic difficulties, such as the

challenges of designing and maintaining the tools and infrastructure for international

research collaboration in the face of a litigious music industry antagonistic to the

sharing of digital music. There are representational complications, such as the much

greater role of non-symbolic formats (i.e., audio recordings), both in information
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storage and in query formulation. There are challenges of semantics, as the com-

paratively straight-forward mappings between language and meaning are much more

tenuous in the abstract domain of music. There are differences in information seeking

behaviour, as opportunistic, non-goal oriented activities are behind the most com-

mon encounters with new music. Finally, experiential measures of topical relevance

are more difficult to define, as musical identity exhibits a curious resilience to various

sorts of distortions; and situational relevance takes on a pronounced importance with

the influence of affective, cognitive, and situational factors.

A greater emphasis on the perceptual and cognitive processes of listeners, and

on the music information needs and behaviours of potential users of MIR systems,

offers one potential avenue towards addressing many of these challenges. However,

as in the early days of textual IR, the dominant paradigm of MIR remains firmly

entrenched in systems-focussed research.

1.5 Perspectives from music perception and cognition

Of the various perceptual facets of musical experience, those related to pitch and

time appear to be most fundamental to the identity of musical objects. In its simplest

definition, melody is “the result of the interaction of rhythm and pitch” (Whittall,

2011). Accordingly, “the cues that arise from sequential variations along the pitch

and the temporal dimension are apparently the most determinant” sensory cues in

the identification of familiar melodies (Hébert & Peretz, 1997, p. 518). Cues provided

by other facets, such as timbre—the tonal quality of the sound that differentiates a

note played on a piano from the same note played on a harpsichord—are insufficient

for the task of melody identification; although above-chance identification of musical
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genre has been demonstrated with stimuli as short as 250ms, less than the duration

of half a beat at a moderate tempo of 110 beats per minute, and far too little time

for pitch and rhythm variations to unfold significantly (Gjerdingen & Perrott, 2008).

1.5.1 Topical relevance and musical objecthood

A number of methodologies have been applied in music perception research to

determine the contributions of individual musical facets to the identity and well-

formedness of musical objects in the mind of the listener. Such concerns are of

interest in an MIR context; given the definition of topical relevance as a measure of

the mapping between a query and a set of information objects, a notion of perceptual

objecthood is a requirement if topical relevance is to be operationalized in the music

domain (see section 1.4.3). Approaches can be broadly categorised into two camps:

investigations of the conditions under which perceptual objects arise from individual

stimulus dimensions, and investigations of the degree to which these individual di-

mensions may be distorted without affecting the holistic properties of the perceptual

object.

1.5.2 Gestalt theory, stream segregation, and auditory scene analysis

In the perception literature, Gestalt theory, a movement in psychology seeking to

explain perceptions in terms of high-level holistic forms (“Gestalts”) rather than by

analysing finer-grained constituents, offers an approach towards explaining the nature

of perceptual objecthood. While research in this direction has primarily been directed

at visual perception (Bregman, 1990), other modalities, including auditory sensation,

have been studied within this framework from the very beginning; addressing an

aspect of the musical facet of harmonicity, Wertheimer (1923) exclaims: “I hear a
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melody (17 notes!) with its accompaniment (32 notes!). I hear a melody and an

accompaniment, not simply ‘49’ and certainly not a straight line, nor ‘20’ and ‘29’ at

my leisure” (p. 301). Addressing the Gestalt principle of figure-ground segregation,

he discusses the “emergence of a Motif from the cacophony, the elevation from the

background of an accompaniment, the phenomenal ‘breaking of the silence’ ” (p.

350).

Figure-ground segregation and other Gestalt principles, such as grouping by

proximity, masking, belongingness, and perceptual closure, offer a theoretical frame-

work upon which the notion of perceptual objecthood may be conceptualised. Breg-

man (1990) outlines analogous applications of these principles in the visual and

auditory domains. Bregman refers to the cognitive process by which raw sensory ev-

idence is combined into perceptual structures as ‘scene analysis’. ‘Auditory streams’

are defined as “perceptual grouping[s] of the parts of the neural spectrogram that go

together” (p. 6); as “perceptual units” that represent distinct events happening in

the physical world; and as a “computational stage on the way to the full description

of an auditory event” (p. 8).

Bregman details a study that elaborates on Wertheimer’s insight about the per-

ceptual nature of melody and accompaniment. In the study (Bregman & Campbell,

1971), a loop of six tones with distinct pitches is presented to participants; three of

the tones are ‘low’ and three are ‘high’ pitched, with a gap of at least one and a

half octaves between the two groups. The tones are arranged in alternating order

between the low and high group; that is, if the six tones are numbered from 1 to

6 in ascending pitch order, the tones are presented in the sequence 142536. When
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the sequence is presented very slowly, participants hear the tones in the correct pre-

sentation order. However, as presentation speed is increased, participants begin to

perceive two distinct streams of tones, “one containing a repeating cycle of the three

low pitched tones, 1-2-3- (where dashes indicate silences) and the other containing

the three high tones (-4-5-6)” (p. 12). Bregman refers to this phenomenon as ‘stream

segregation’.

The perceptual framework outlined by Bregman is complementary, but not iden-

tical, to Gestalt theory. In particular,

“[Gestalt theory] sees the principles of grouping as phenomena in them-

selves, a self-sufficient system whose business it is to organize things. The

scene-analysis approach relates the process more to the environment, or,

more particularly, to the problem that the environment poses to the per-

ceiver as he or she (or it) tries to build descriptions of environmental

situations” (Bregman, 1990, p. 21)

1.5.3 Theory of Indispensable Attributes

Another complementary approach is offered by Kubovy and Van Valkenburg’s

theory of auditory objecthood (2001). In their approach, the term ‘perceptual object’

is defined as “that which is susceptible to figure-ground segregation” (p. 102). By

their account, grouping, as discussed by Bregman (1990) and Wertheimer (1923) for

visual and auditory modalities,

“produces Gestalts, or perceptual organizations, which are also putative

perceptual objects. Attention selects one putative object (or a small set of

them) ... and relegates all other information to the ground ... the putative
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objects that become figure are perceptual objects, whereas the ground

remains undifferentiated information” (Kubovy & Van Valkenburg, 2001)

(p. 102).

Perceptual objects are emergent properties formed by aggregations of individual

elements. There are two types of emergent properties: ‘eliminative’ and ‘preserva-

tive’, depending on whether the properties of the individual elements remain acces-

sible after aggregation. A melody, from this perspective, is identified as an emergent

property of the set of notes defining it; the individual notes remain accessible, and

hence a melody is a preservative property.

Perceptual grouping occurs over a set of elements distributed over one or more

stimulus dimensions. In the case of the melody, the elements (notes) are distributed

over two dimensions, frequency and time (Bregman, 1990; Kubovy & Van Valken-

burg, 2001). Since the melody is a preservative property, the elements retain their

numerosity—the notes remain countable even as the emergent melody is perceived.

Kubovy and Van Valkenburg (2003) refer to this situation in defining their crite-

rion for indispensable attributes: “If you distribute elements over a medium and

perceptual numerosity is perceived, then the attribute is indispensable” (p. 227).

Their Theory of Indispensable Attributes (TIA) provides a conceptual frame-

work for the definition of edges; edges are important as they define the boundaries

of perceptual objects. In visual perception, edges are defined over the indispens-

able attributes of the visual domain, space and time. In auditory perception, the

analogous indispensable attributes are frequency and time; Kubovy and Van Valken-

burg illustrate this with a set of thought experiments. Their proposed plenacoustic
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function—the process that characterizes the edges of perceived auditory objects—

identifies fundamental frequencies as potential lower edges of “auditory objects as

harmonic complexes (such as a voice)”, but acknowledge that “more complex com-

binations of sound” may have upper edges in frequency/time as well. (p. 229)

TIA, as outlined by Kubovy and Van Valkenburg, thus proposes workable defi-

nitions regarding the boundaries of auditory objects along the domains of frequency

and time. Their plenacoustic function assumes a local snapshot of time during which

contributions of different frequencies may be measured for edge detection. The sit-

uation suggested by their plenacoustic function is of theoretical value for auditory

perception, and may explain certain aspects of musical experience. However, there

are limitations in applying a notion of perceptual objects based on time snapshots

to more longitudinal aspects of music, such as melody identification.

1.5.4 Melodic objects: Analytical and holistic processing

Melodies retain their identity under transposition; thus, an isolated tone could

conceivably match a given location in any suitably transposed melody. The plena-

coustic function proposed by Kubovy and Van Valkenburg performs the process of

edge detection in auditory perception, based on the individual elements—frequencies

at a given time instance—that are aggregated by perceptual grouping into auditory

objects. By analogy, a plenmelodic function to perform edge detection in music

perception would be concerned with identifying perceptual groupings among the in-

dividual elements—notes—that aggregate into melodic objects.

As noted above, melodies are preservative properties, and thus, perceptual access

to the individual notes of a melody is retained. This suggests two distinct types
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of cognitive processes involved in melody perception: those that operate on the

melody as a unit, and those that operate on the set of notes underlying the melody.

Schulkind, Posner, and Rubin (2003) make this distinction, referring to the former as

holistic processing, and to the latter as analytic processing. They discuss a number

of studies from the music cognition literature to support such a distinction. A more

precise functional definition of the two processes is given as follows:

“[C]haracteristics of individual notes or intervals [are] considered to be

analytical properties”; “characteristics of longer sequences of notes [are]

considered to be holistic properties.” (Schulkind et al., 2003, p. 221)

Schulkind, Posner, and Rubin employ a melody identification task in which

familiar melodies are presented iteratively to participants on a note-by-note basis,

one note at a time. If the melody is not identified based on the notes played in a given

trial, the next iteration presents the same notes, plus the next note in the melodic

sequence. This approach, inspired by the cohort theory of spoken word identification

(Marslen-Wilson, 1987), tests the hypothesis that melody identification proceeds by

note sequences activating a cohort of melodies in memory that share these initial

elements; further notes provide additional information to progressively prune the size

of the cohort, until the target is sufficiently distinguished from all other melodies,

and identification occurs.

Schulkind, Posner, and Rubin apply musicological analysis to identify different

characteristics present in the melodies that are associated with analytical processing

(e.g., interval size and direction, interval consonance, pitch height, and duration of

individual notes), and with holistic processing (e.g., tonal function, contour patterns,
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metrical accents, rhythmic factors, and phrase boundaries). Their results implicate

note placement within phrase boundaries as the most consistent predictor. More

generally, four of five characteristics identified as significant code information “about

the overall temporal and pitch shapes of the melody rather than characteristics of

individual notes or intervals,” and would thus be associated with holistic processing.

This implies that melody identification is a holistic task, largely taking place at a

level of abstraction above that of individual notes. The relative predictiveness of note

placement within a musical phrase suggest that “musical phrases may be processed

as unified, coherent entities or gestalts” (Schulkind et al., 2003, p. 241). The results

suggest melodic phrase boundaries as potential candidates to define the edges of

perceptual musical objects in a plenmelodic function.

1.5.5 Melodic facet distortion

The studies on auditory objecthood discussed thus far have explored the merg-

ing of perceptual qualities of acoustic or melodic stimuli into perceptual entities—

acoustic or musical objects. A number of further studies have investigated the mal-

leability of perceptual objects; that is, the degree to which the elements distributed

along the stimulus dimensions of the perceived object may be altered without fun-

damentally altering the object’s identity. White’s pioneering study on melody iden-

tification (1960) explores such questions in a musical context. In this study, partic-

ipants attempt to recognize distorted versions of familiar melodies; distortions are

performed on pitch intervals (e.g., doubling the size of all intervals) and on rhythm

(e.g., setting all note durations to the same value).
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Hébert and Peretz (1997), conducting research inspired by White’s study, ad-

dress certain methodological flaws; White’s subjects are pre-informed about the lim-

ited list of 10 melodies from which the stimuli were drawn, whereas Hébert and

Peretz’s participants do not have access to such information, requiring them to

draw upon their long-term memory for identification. Kuusi (2009) further builds

on Hébert and Peretz’s work, adding harmony as a parameter alongside pitch and

rhythm.

The results of these studies have indicated a strongly diminished role in the

importance of rhythm, compared to pitch. The rhythmic distortions are typically

achieved by imposing isochrony (setting all note durations in the melody to the

same value) on the assumption that this nullifies rhythmic information. However,

the stimuli used in these studies – highly familiar melodies – often feature very

simple rhythms to begin with; for instance, “Twinkle Twinkle Little Star”, a com-

monly used stimulus, is entirely composed of quarter notes. Melodies undergoing

isochronic transformations may thus retain large parts of their original rhythmic

structure (Schulkind et al., 2003).

Furthermore, relatively little focus is given to the separation of holistic and

analytical processing; Prince’s study (2011) exploring the contributions of both types

of processing in the integration of stimulus dimensions in music perception is an

exception.

In Prince’s study, participants are presented with melodic stimuli exhibiting

four levels of structural conformity in both pitch and time: an unaltered version; a

random reordering of the original elements, preserving conformity to existing tonal
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or metrical structure; a random reordering perturbing the original structure; and a

completely randomized sequence, including pitch classes and durations not present

in the original sequence. Participants are tasked with providing either a rating of the

‘well-formedness’ of a melody (“if it sounded like a normal, typical melody, conversely

if it sounded like there was something wrong with the melody”, p. 2134); or a

classification of structural conformity (“is this melody metric or random?”,“is this

melody tonal or atonal?”, p. 2143). In either condition, participants are presented

with three experimental blocks during which they are told to focus exclusively on the

pitch or temporal characteristics of the melodies, or on both. One interesting finding

among all conditions is that the differences in response to levels 2 and 3 (random

reorderings either preserving or perturbing conformity to the pitch and temporal

structure of the original) generally do not reach strongly significant levels. This

may indicate “all-or-none” effects of tonality and syncopation on pitch and rhythmic

conformity in musical contexts (p. 2137).

The latter condition, involving the classification task, presents a situation in

which “information along one dimension is purely irrelevant to the other ... provid[ing]

a context that promotes the ability to process pitch and time more independently

and therefore an opportunity to test how involuntary this interference is” (p. 2142).

This offers empirical access to the question of holistic and analytical processing in

the melodic context; the absence of interference of e.g. temporal factors in a pitch-

judgement task would indicate strictly analytical contributions of the two attributes,

whereas the presence of such interactions implies holistic processing of melodies.
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In fact, Prince finds that “pitch and time always affected responses in every con-

dition of all experiments”, but that there was “variation in how these dimensions

combined—sometimes showing independent and additive properties, and other times

demonstrating more complex interactions”. (p. 2147) In particular,

“interactions were more likely as the salience of pitch and time approached

parity. Yet pitch remained the more salient dimension except when lis-

teners attempted to consciously ignore it, and even in these conditions

the advantage of time over pitch never approached the corresponding

advantage of pitch over time when rating or classifying pitch”. (Prince,

2011, p. 2147)

The various behavioural studies discussed here all make use of stimuli repre-

senting distorted versions of ‘real’ music. Similar distortions are encountered readily

in everyday life, for instance when a novice pianist hesitantly stumbles through a

piano performance, or when one band produces a radically altered cover version of

another band’s song. Furthermore, the ability to recognise melodies is fairly univer-

sal, and thus results are likely to generalise well. Although the findings produced

through such studies may lack the deep, explanatory power of fundamental auditory

perception studies as covered in section 1.5.2, they apply much more readily to the

everyday music tasks addressed by MIR systems. In Chapter 3, we employ a related

paradigm to re-evaluate the role of rhythmic information in melody identification, in

order to provide approaches towards the creation of practicable experiential measures

of topical relevance in MIR.
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In the preceding discussion, MIR has been characterised as a young field of re-

search with a predominantly systems-focussed outlook. The user-centric problems

of the multiexperiential challenge, and the perceptual complexities inherent in the

multifaceted challenge (Downie, 2003) have been discussed to characterise the estab-

lishment of robust criteria for musical relevance as a research priority for the field.

However, we have shown that the definition of relevance criteria in the abstract do-

main of musical information is not a trivial task. To address these challenges, we

will need to consider insights from studies of the information needs and behaviours

of MIR users, and of listeners’ music perception and cognition more generally.

Such studies are generated by a wide range of research fields. In order to max-

imise the benefits of this interdisciplinary collaboration, while addressing as far as

possible the communication difficulties inherent in what Downie terms the “multidis-

ciplinary challenge” (Downie, 2003, p. 306), it is worth considering some details in

terminology, pertaining in particular to the term cognitive and its use within the fields

of information science, and music perception and cognition. Information scientists

differentiate between user-centric and cognitive approaches to information retrieval

research—the former concerned, broadly, with understanding user motivations, in-

tentions, information seeking strategies and behaviours (e.g. Cunningham, 2002),

whereas the latter is concerned in particular with the perception and interpretation

of document contents, casting the concept of information as the result of this inter-

pretation process (Ingwersen & Järvelin, 2005, Chapter 5). In contrast, research in

music perception and cognition is directly concerned with the processes taking place

in the mind of the listener, a “chain of transformations affecting a stimulus (e.g. a
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piece of music reaching the ears)” (Aucouturier & Bigand, 2012, p. 397), eventually

producing a behaviour, e.g., an emotional reaction, recognition, learning, etc. In this

context, cognition is to be understood as a set of explicable processes, triggered by

external and internal signals, and resulting in behaviours that can be measured, e.g.

via psychometric laboratory experiments.

In order to allow the outcomes of studies from such diverse backgrounds to

inform the task of operationalizing relevance criteria, we require a conceptual frame-

work that is flexible enough to incorporate these diverse approaches, enabling findings

to be compared and triangulated. We now proceed to Chapter 2, in which we em-

ploy Saracevic’s stratified model of relevance interactions (Saracevic, 1997), adapted

to the music information domain (Weigl & Guastavino, 2013), to establish such a

framework, and to synthesise results from its application to a large subsection of the

MIR user literature.
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CHAPTER 2
Relevance in Music Information Retrieval

The field of music information retrieval (MIR) is highly interdisciplinary in na-

ture, drawing on research from a diverse range of disciplines in joint pursuit of

providing robust, comprehensive access to musical information (Downie, 2004). The

field is rooted in traditional textual information retrieval (IR) research, but is heavily

informed by areas including digital signal processing, audio engineering, computer

science, musicology, and music perception and cognition.

Research dedicated to music as information to be stored and retrieved is a rel-

atively recent phenomenon. While a few pioneering studies relating to MIR can be

identified in the “distant past” (e.g., Kassler, 1966), research interest remained sparse

until the use of computerized databases became more prevalent in humanities schol-

arship; an early example is Huron’s paper on detecting and handling errors in music

databases (1988). By the late 1990’s, the arrival of new technologies such as the

MP3 file format, file-sharing platforms such as Napster, plummeting costs of digital

storage, and the widespread adoption of the Internet created unprecedented require-

ments for efficient music storage and retrieval. This new urgency to handle vast

quantities of digital music correspondingly mobilized research attention. The annual

conference of the International Society for Music Information Retrieval (ISMIR),

first held in 1999 as the International Symposium for Music Information Retrieval,

provides a platform for collaborative research on this topic.
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The origin and growth of ISMIR has been motivated by the textual IR world.

Plans for an evaluation platform based on that of the Text REtrieval Conference

(TREC) were under discussion from the beginning (Downie et al., 2009), and even-

tually led to the creation of MIREX, the Music Information Retrieval Evaluation

eXchange (Downie et al., 2005).

Given this emulation of developments in the field of textual IR, it is perhaps

unsurprising that the primary emphasis of research in MIR has been placed on the

development of MIR systems. An enormous amount of concentrated research activity

has gone into the creation and continued improvement of algorithms to perform

tasks integral to MIR, such as onset and key detection, tempo extraction, beat

tracking, genre classification, and many others (Downie, 2008). Evaluation metrics

are generally applied to parameters of system performance (e.g., precision and recall

of automatic classification outcomes), against baseline datasets generated by pre-

existing reference algorithms, or against human “ground truth” typically generated

either by musicologists’ expert annotation, or by crowd-sourcing from non-expert

listeners (e.g., Aljanaki, Wiering, & Veltkamp, 2014; Bertin-Mahieux, Hoffman, &

Ellis, 2011; Burgoyne et al., 2011).

Although there have been repeated calls in the literature for a greater emphasis

on the (potential) users of music information systems—complementing this valu-

able and thriving research on MIR algorithms—formal consideration of user infor-

mation needs and information behaviour has been relatively sparse in comparison

(Lee & Cunningham, 2012; 2013; Schedl, Flexer, & Urbano, 2013; Weigl & Guas-

tavino, 2011). The situation reflects the early state of research in the field of textual
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IR, where similar early emphasis on information systems gradually gave way to a

more user-centric paradigm (e.g., Dervin & Nilan, 1986; Wilson, 1981). Ingwersen

and Järvelin (2005) outline this distinction between systems-oriented IR and user-

oriented and cognitive IR research, noting that the latter viewpoint involves “human-

istic aspects with respect to contents of messages, technological insights of tools for

processing, and social scientific dimensions due to the information activities taking

place in a social contextual space” (p. 25).

The distinction is formalised by Jansen and Rieh (2010) in their framework of

human information behaviour and information systems. Jansen and Rieh perceive

(human) information searching and (systems-oriented) information retrieval as two

fields that share common ground, yet pursue “distinct research agendas, with limited

exchange of research” (p. 1517). They identify 17 theoretical constructs of informa-

tion searching and information retrieval, categorised by “intellectual perspective”—

the utilisation of a given construct in either or both of the fields—and by “theoretical

orientation”—the “focus of the construct in terms of the three core elements in both

fields: people, technology, and information”(p. 1521). Central to the information-

theoretical orientation of both fields in their framework is the concept of relevance.

From the systems-centric perspective, information retrieval systems make use of

relevance-predicting algorithms to match available information objects to a query

in order to generate a set of results. Operationalised as a quantitative metric of the

match between a submitted query and retrieved information objects, the concept is

more precisely referred to as topical relevance. From the user perspective, relevance

is a relation between information and contexts (e.g., the user’s information needs at
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a given point in time), based on “some property reflecting a relevance manifestation

(e.g., topicality, utility, cognitive match)” (p. 1525). Operationalised as the outcome

of human judgement of the relation between information and information needs, the

concept may be termed situational relevance.

In his series of comprehensive reviews on the subject, Saracevic (1975; 2007a;

2007b) similarly positions relevance as a central concept: “a, if not the, key notion

in information science in general and information retrieval in particular” (2007b, p.

1915; emphasis his). He expands the dichotomy of systems- and user-orientation into

a model with more refined analytical granularity (1997; 2007b) by casting the act or

process of information retrieval as a set of interactions between users and systems,

through an interface at the surface level. Both user and system are represented by a

“set of interdependent, interacting layers” (Saracevic, 2007b, p. p.1927) that charac-

terize this dialogue: the system by content, processing, and engineering layers; and

the user by cognitive, affective, and situational layers. There is an implicit assump-

tion that this process is “connected with cognition and then situational application”

of the retrieved information (Saracevic, 1997, p. 315). A contextual component

characterizes the influence of social and cultural factors that may influence or trig-

ger adaptations in various layers. This stratified model of relevance interactions is

capable of representing the influence of factors beyond topicality and situation, in-

cluding those relating to the user’s personal views, tastes, history of information

consumption, and emotional state. Such factors carry particular significance in non-

problem-solving or hedonic information seeking behaviour (Xu, 2007).
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2.1 Approaches to musical relevance

The definition and operationalisation of relevance measures corresponding to the

user’s listening experience has been identified as a key research objective for music

information retrieval (Downie, 2003). Although research in this direction remains

sparse, several authors have explicitly addressed the topic in recent years.

Laplante (2010b) investigated the relevance criteria of potential users of MIR

systems in everyday life situations in a series of in-depth interviews. 15 young adult

francophone participants were selected from the Montréal metropolitan community.

The interviews were conducted in order to identify clues used by the participants to

make relevance inferences about music items, to investigate the influence of individual

characteristics (e.g., knowledge, experience) on participants’ relevance judgements,

and to determine the influence of contextual factors. Her findings suggest that while

there is significant overlap in terms of relevance criteria between the textual and

music information domains—“e.g., quality, authority, familiarity, situation, user’s

knowledge and experience” (p. 605)—there are also criteria of unique importance to

MIR; for instance, musical genre “displaced topicality as the most commonly used

criterion to start a search” (p. 606). Criteria pertaining to the listener, such as indi-

vidual tastes and beliefs, “have a greater impact on selection than in other contexts.”

(p. 605). Further, affective considerations and novelty prominently influence par-

ticipants’ relevance judgements, mirroring findings on hedonic information seeking

behaviour in the textual information domain (Xu, 2007).

Inskip, MacFarlane, and Rafferty (2010) conducted a user study investigating

the musical relevance criteria of creative professionals. Seven expert ad-agency and
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independent music supervisors evaluated the relevance of result sets obtained during

real-world music searches made by creative professionals in the course of unknown-

item searches for music to accompany moving images (TV and cinema commercials,

and TV programmes). The evaluators were found to make use of a range of content-

based and contextual criteria. The relevance judgements of these creative music

professionals are “situated in a socio-cognitive paradigm” (p.526), taking into ac-

count not only the appropriateness of the result sets to their corresponding search

queries but also the evaluators’ estimation of each song’s utility to the end user.

As in Laplante (2010b) a key finding is the significant overlap of relevance criteria

with those discussed in relation to textual retrieval: “Overall relevance judgement

categories in music ... appear to relate strongly to earlier findings in those relating

to text, despite the many differences between music and text in their actual content”

(p. 527).

Knees and Widmer (2008) presented a user evaluation of an MIR system pro-

viding natural language music search by combining textual IR techniques (a tf-idf

variant) operating on web pages resulting from Google queries, with acoustic similar-

ity calculations based on the music’s audio content. Their system further provides

an explicit relevance feedback mechanism that adjusts the weighted term vectors

representing the query and result sets in order to adapt subsequent search results

to the user’s preferences. A small user study with 11 participants was conducted

to investigate the impact of relevance feedback on user’s relevance judgements of

result sets. Results when comparing a version of the system employing relevance

feedback in the generation of results, compared to a control system that did not
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take relevance feedback into account, were not entirely consistent, with participants

apparently differing in their relevance judgements between evaluation trials. Nev-

ertheless, a general trend toward improved results was identified with the system

incorporating relevance feedback.

2.2 Modelling relevance in the music information domain

Acknowledging the work exploring relevance and music presented above, to our

knowledge, no research has as yet attempted to outline a broad conceptual model

of relevance for the domain of musical information. Reflecting on the diversity of

musical information needs and MIR use cases, it is clear that relevance is a highly

complex notion in music—as it is in text—information retrieval. Even seemingly

clear-cut requests to musical information systems (“please retrieve musical work X

by composer Y”), where a binary relevance model might seem sufficient at first con-

sideration (“the system’s response is relevant if it includes the musical work I seek;

otherwise it is irrelevant”), quickly become complicated by the multifaceted nature

of musical information: musical identity is highly resilient, and can be retained even

when a work is transposed to a different key, orchestrated using atypical instrumen-

tation, performed in the stylistic manner of another genre; melodies may remain

recognisable even when undergoing severe distortions of pitch and/or rhythm, as re-

vealed in the music perception literature (e.g Hébert & Peretz, 1997; White, 1960;

Chapter 3 of this dissertation), or more viscerally, by an evening’s entertainment at

a Karaoke bar. Live performances, cover versions, remixes, sampling, and melodic
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quotation1 all further complicate relevance considerations even in this very simple

scenario. As in textual retrieval, the user’s individual tastes and preferences, current

mood, their situational, social, and cultural context, and their particular information

needs may complicate things further; far less specific queries are formulated as users

seek music for a range of utilitarian and hedonic reasons (Laplante & Downie, 2011).

In adopting a conceptual relevance framework that is broad enough to rea-

sonably span the domain of musical information, given these complexities and key

correspondences to and differences from textual IR, it is thus desirable to aim for an

established model that is of sufficient analytical granularity to differentiate between

concepts of interest regarding relevance, while being abstract and flexible enough to

facilitate application from a textual to a musical information context. It is for these

reasons that we have decided to adapt the stratified model of relevance interactions

(Saracevic, 1997; 2007b) to the music information domain.

2.3 Systematic analysis

We now present a systematic analysis of user studies in the context of music

information, focusing on the notion of relevance. Our review is motivated by three

overarching aims: i.) to establish the present state of knowledge and to generate

hypotheses for future MIR user research; ii.) to draw together existing insights in

1 Melodic quotations incorporate a melodic passage into a foreign musical context,
e.g., the echoing of the introductory notes of Stravinsky’s “The Rite of Spring” in
Frank Zappa’s “Fountain of Love”, a satirical tribute to the Doo Wop genre.
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order to inform MIR system design; and iii.) to test the suitability of Saracevic’s

stratified model of relevance interactions within the music information domain.

As per Lee and Cunningham (2012), we are conscious of the challenges in the

systematic synthesis of research results in this area, resulting from the highly inter-

disciplinary nature of the MIR field, and thus the scattering of research articles of

potential interest across journals in multiple domains. Thus, we gratefully avail our-

selves of the list of articles subject to analysis by Lee and Cunningham, which they

have made available on the web2 . The list was assembled using a selection strat-

egy that focussed on “1) empirical investigation of needs, behaviors, perceptions, and

opinions of humans, 2) experiments and usability testing involving humans, 3) analy-

sis of user-generated data, or 4) review of [such] studies” (p. 391). This list represents

a set of research output that has already been subject to bibliometric analysis; by

making this set the subject of our present review, we hope to avoid “reinventing the

wheel” when it comes to defining the articles of interest to MIR researchers interested

in music user studies, while contribute to the richness of descriptive detail available

about this collection of works.

Various studies included in this collection investigate music information be-

haviour under very specific task specifications (e.g., in user evaluations of specific

MIR systems). In order to capture subtleties relating to the modes of searching

employed, we further augment our application of the stratified model of relevance in-

teractions to employ Wilson’s formulation of the modes of information searching and

2 Available at http://www.jinhalee.com/miruserstudies
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acquisition (1997, p. 562) as an additional category for the classification of findings.

These modes include active search, in which an individual actively seeks out new

information (e.g., searching for a specific song); passive search, in which one type of

information behaviour incidentally leads to the acquisition of unrelated information

that happens to be relevant to the searcher (e.g., finding out about a new release

by a favourite artist while seeking out an older track); passive attention, in which

information acquisition may take place without intentional seeking (e.g., overhear-

ing the top-40 on a radio playing in the background); and ongoing search, in which

a pre-existing knowledge framework is updated and expanded through occasional,

exploratory continuing search (e.g., periodically visiting a favourite record shop to

keep abreast of new releases). We extended Wilson’s categories with two additional

modes that were expected to occur frequently in the MIR user studies under review:

playlist generation, a special instance of active search that involves the assembly of

an ordered collection of music, typically reflecting a planned listening session; and

browsing, in which a collection is explored in order to obtain an overview of what is

available, without a particular further search goal in mind. Of course, users may be

involved in many or none of these modes of searching at any point during everyday

listening, and only some of the studies under discussion are explicitly concerned with

such topics.

2.3.1 Methodology

In order to address the workload inherent in the analysis of this large collection

of articles at a low level of granularity (i.e., with the article content, rather than

bibliographic metadata, as our primary focus), we distributed the task of coding
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the collection of articles among four researchers: the author of this dissertation, two

professors at McGill’s School of Information Studies, as well as one post-graduate

research assistant (a PhD candidate at the school). To promote coding consistency

between the four researchers, we initially conducted an iterative process of picking

two to four articles from the list, coding them in isolation according to a preliminary

application of Saracevic’s model of stratified relevance interactions to MIR (Weigl

& Guastavino, 2013), and then meeting for group discussion of the coding process

and comparison of individual coding results. A mutually agreed coding was deter-

mined for each article, and the outcomes of the discussion informed the next iterative

coding cycle. This processes was repeated until a concensus in terms of the coding

approach applied by each researcher was reached after 20 mutually coded articles.

The remaining 139 articles were then distributed among the four researchers, one

researcher for each article.

At this point, the agreed-upon coding procedure was formalized. Our basic unit

of analysis was the individual relevance-related finding, as generated by empirical

research reported in the respective article being coded; i.e., findings based on cita-

tions from the previous literature, or grounded in speculation not supported by the

reported data, were not coded in conjunction with a particular study. Where an ar-

ticle reported on two or more studies applying differing methodologies, investigating

different research questions, or sampling participants from a different population,

each study was coded separately; where two studies in the same article replicated

the same finding, the finding was accordingly coded multiple times, once for each

study.
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In order to assist the researchers in their coding activity, a simple web application

was developed to track article assignments and coding progress. For each article, the

researchers were able to encode one or more studies presented by providing short

descriptions of the study, the employed methodology, the sample frame and size.

The researchers assigned findings to each study by providing a short textual de-

scription, and by choosing descriptors from a set of drop-down menus corresponding

to each stratum of our adaptation of Saracevic’s model (Figure 2–1). Any number of

the available descriptors could be selected for each stratum (including zero). The set

of descriptors was originally determined based on the preliminary application of the

model to the music domain, and on our subsequent iterative discussions during the

initial phase of the coding process. Each descriptor is associated with a specific stra-

tum of the model, and comprises the label that appears in the drop-down menu, and

a short textual definition that is visible in the coding interface when new findings

are configured for assignment to a study. For the purposes of the coding of find-

ings, descriptors from the modes of searching category were handled using the same

mechanism employed for the various strata of the model of relevance interactions;

the modes were treated separately during analysis.

In cases where none of the available descriptors suitably conveyed the meaning

intended by the coding researcher, new descriptors could be minted by specifying

a stratum of the model and providing a corresponding new label and definition.

Provenance information describing the particular coding researcher responsible for

the addition, as well as the specific article, study, and finding that prompted the

addition, was recorded automatically by the system. New descriptors added to the
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system in this way became immediately available to all researchers in their subsequent

coding activities in order to promote consistency and to prevent overlapping concepts

with different descriptors (according to the respective researchers) from introducing

unnecessary ambiguities in subsequent analysis.

The researchers agreed to flag instances where none of the available strata suit-

ably accommodated aspects of a particular finding; however, after the conclusion of

the iterative discussion phase, no such instances were identified.

2.3.2 Analysis and results

Quantitative analysis of the distribution of findings across the strat-

ified model of relevance interactions. Our application of the stratified model

of relevance interactions to the music domain outlines nine stratum-level coding

classes: three systems-related classes (content, processing, engineering); three user-

related classes (cognitive, affective, situational); the interface class; and two contex-

tual classes, relating to social and to cultural context. Note that Saracevic’s original

model implicitly combines the latter two classes into one combined contextual com-

ponent, although the ambiguity and multiplicity of context in information science is

acknowledged: “Context is a plural” (Saracevic, 2007b, p. 1927). Here, we have

elected to explicitly separate social and cultural context into their own strata, as

several of the user studies in our collection look individually at the influence of social

or of cultural context. In our conception, social context refers to influences from or

on specific individuals, including friends, relatives, colleagues, or other users involved

in interactions with the user of an online system. Cultural context, in turn, refers

to influences from or on members of a particular culture or subculture, sampled
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Figure 2–1: Coding interface.

Left: Form to add findings.
Researchers chose appropriate
descriptors from drop-down
menus corresponding to the
model’s relevance strata, spec-
ifying new descriptors (with
short explicatory hints, e.g.,
see text in yellow highlight) as
required.

Right: Example of an en-
coded finding. All completed
findings for a particular study
are listed on the same page in
order to track coding progress.
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to represent behaviours and attitudes of that group as a whole; examples include

broad-brush demographic factors (e.g., comparing music information behaviours of

participants based in New York with those of participants based in Hong Kong), as

well as finer distinctions (e.g., relating to typical listeners of “classical” or of “heavy

metal” music). The cultural context category further includes vectors of encultura-

tion including the influence of television and radio programming.

While coding the articles, we chose descriptors from any combination of the nine

relevance strata, according to what we felt most suitably corresponded to the finding

under discussion. Where appropriate, we also included descriptors of the mode(s)

of searching relating to the finding. We now present an analysis of the distribution

of the stratum interactions identified during this coding process in terms of the co-

occurrence of relevance strata within this nine-dimensional relevance space.

Of the 866 identified findings, none combined more than five interacting rel-

evance strata in practice, with only two findings reaching this maximum. 48% of

the findings identified were coded according to the interactions of two strata, with

the remainder largely distributed, almost evenly, among single-stratum findings, and

interactions of three strata; a small portion of the identified findings (4.8%) encoded

the interactions of four strata (Figure 2–2).

The co-occurrence heat map in Figure 2–3 displays the distribution of specific

stratum interactions within our corpus of findings. This figure displays a projec-

tion of the (maximally) five-dimensional space of relevance interactions into a two-

dimensional plane, in order to simplify interpretation; thus, a single finding encoding

an interaction of strata A, B, and C is represented as three distinct interactions,
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Figure 2–2: Distribution of the number of stratum interactions in the identified
findings.

of A & B, A & C, and B & C; the numbers along the diagonal represent the total

number of coding occurrences of each individual stratum class, regardless of interac-

tion context — thus the finding encoding an interaction of A, B, and C is included

three times in the diagonal, once for each of the three strata. The percentage values

thus do not add up to 100; instead, the values express the number and percentage of
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findings that describe interactions involving at least those relevance strata described

by the axis labels corresponding to the respective cell.
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Figure 2–3: Co-occurrence of stratum-level classes within the corpus of coded findings (N=866). Values
indicate the number and proportion of findings that incorporate at least the respective strata; thus percentages
do not add up to 100%.



Inspection of the number of occurrences of each individual stratum (i.e., the

diagonal of Figure 2–3) reveals that almost half of the coded findings involve as-

pects of the interface between user and system (49.7%). Also well represented are

the cognitive stratum on the user side, encoding aspects of the user’s perceptions,

behaviours, and preferences (42.7%); and the content stratum on the system side,

encoding aspects of the information resources available to the system (40.6%). The

engineering stratum with a focus on the system’s hardware characteristics is notable

for its virtual absence, appearing in only 2.9% of the findings. The cultural context

is also relatively under-represented, appearing in 7.6% of the findings (note that the

separation of cultural and social context is specific to our application of the stratified

model, differing from Saracevic’s conception).

In terms of interactions between individual strata, prevalent pairings include

those of the most prevalent individual strata, as would be expected — with interface

and content co-occurring in more than a fifth of the coded findings (20.7%); inter-

face and cognitive in 17% of the findings; and content and cognitive in 13% of the

findings. Other relatively common co-occurrences include cognitive and situational

(9.7%), interface and processing (8.1%), cognitive and processing (6.6%), interface

and situational (6.5%), and affective and cognitive (5.5%), with all other pairings

occurring in less than one twentieth of findings, respectively.

49



Figure 2–4: Distribution of multi-dimensional stratum co-occurrences within the corpus of coded findings
(N=866). In practice, no finding combined more than 5 interacting strata. Line colour indicates the number
of strata involved in a given interaction (i.e., the dimensionality of the interaction). Line width corresponds
to the number of findings encoding a particular interaction.



In order to obtain a complete overview of the distribution of relevance interac-

tions within our corpus of findings, it is necessary to look beyond two-stratum pair-

ings, by accounting for the full dimensionality of our findings. Figure 2–4 provides a

visualisation of these findings within our corpus. The figure is generated by drawing

line segments connecting the strata constituting each particular stratum combina-

tion; the width of the segments corresponds to the number of findings exhibiting

this interaction, and the colour corresponds to the number of strata involved. To aid

visibility, strata are always connected in a particular order of precedence, starting

at the bottom of the y-axis and working upwards. The numerical data visualized in

Figure 2–4 is provided in Appendix A.

Inspection of the red line segments in Figure 2–4 reveals the distribution of the

roughly one quarter of our findings that only encode relevance descriptors along a sin-

gle stratum (see also Figure 2–1). As expected from inspection of the co-occurrence

heatmap (Figure 2–3), we find the largest proportion of these singletons in the in-

terface stratum (59 findings, corresponding to 6.8% of all findings), with cognitive

(42 findings; 4.9%) and content (29 findings; 3.35%) also relatively well represented.

Contrary to the expectations from Figure 2–3, we find a similar proportion of the

singleton findings encoded as situational (36 findings; 4.2%), suggesting that find-

ings on situational cues to relevance skew toward describing the user’s situation in

isolation of other relevance criteria.

The largest proportion of findings fall within the two-stratum interactions (blue

line segments in Figure 2–4) of content and interface (90 findings; 10.4%), interface

and cognitive (69 findings; 8%), and content and cognitive (43 findings; 5%). Of
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the three-stratum interactions (green line segments), the combinations of content,

interface, and cognitive (27 findings; 3.1%) and content, processing, and cognitive (24

findings; 2.8%) occur most commonly. Findings combining four or more interacting

strata are more dispersed, with no combination present in more than 1% of findings.

Distribution of findings by associated modes of searching. Table 2–

1 displays the identified findings in terms of their associated modes of searching.

The large majority of findings (70%) were not associated with or descriptive of any

particular mode of searching, and hence no mode was specified during the coding

process. Of the four modes of information searching and acquisition proposed by

Wilson (1997), only active search was significantly represented, with 15.9% of findings

encoded correspondingly. The remaining modes of Wilson’s formulation were less

prevalent, with ongoing search involved in 2.7% of findings; passive attention in 0.9%;

and passive search associated with only a single finding: serendipitous discovery of

new music was frequently mentioned as a highly desirable outcome of MIR system

use by participants in a large-scale online survey investigating user requirements for

music information services (Lee & Waterman, 2012).

Of the two additional descriptors we included as modes of searching after dis-

cussions following our initial rounds of collaborative coding, playlist creation was rel-

atively prevalent, occurring in 9.2% of findings; with browsing represented in merely

3.5% of findings. Further descriptors added to the system during the coding process

— general/comparative (where differences in modes of searching were the subject of

the finding), and personal catalogue maintenance, were only sparsely represented.
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Table 2–1: Distribution of modes of searching associated with the identified findings
(N=866).

Mode of searching Number of findings
None specified 605
Active search 138
Playlist creation 80
Browsing 30
Ongoing search 23
Passive attention 8
General/comparative 7
Personal catalogue maintenance 4
Passive search 1
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Figure 2–5: Distribution of findings representing the four most common modes of searching in terms of
stratum-level co-occurrence within the corpus of coded findings (N=866). Note differences in the scale of
proportions: the number of findings encoding particular modes differ widely (Table 2–1).



Figure 2–5 illustrates the distribution of stratum-level co-occurrences for the four

most frequently encoded modes of searching. Although the limited number of data

points for all modes but active search prohibit conclusive interpretation, some sug-

gestive trends may be inferred. Findings on active search predominantly involve in-

teractions of the content and interface strata, reflecting known-item search situations

where a specific piece of content (say, a particular song) is retrieved using the system

interface, frequently in the context of a system evaluation task. Findings on playlist

generation further involve the cognitive and processing strata, reflecting a number

of studies exploring users’ decision-making processes when assembling playlists, and

evaluating the performance of automatic playlist generation algorithms. Findings on

browsing most frequently focus on the interface or on the content stratum in isola-

tion. These findings typically concern relevance cues inherent in or associated with

the content (e.g., album covers; genre markers), or particular interface mechanisms

that assist browsing activities (e.g., faceted navigation), but do not typically involve

specific system evaluation tasks that might produce findings on the interactions of

these strata. Finally, findings on ongoing search tend to involve social context: many

of these findings involve users perusing physical music stores or music libraries, cre-

ating opportunities for social influence; further, a primary motivation of ongoing

search activities that update one’s framework of musical knowledge appears to be

to drive social interactions, where music discussion can be used to build personal

relationships or project the listener’s self-image, one’s knowledge of music acting as

a “social badge” (as per Laplante & Downie, 2011, p. 208).
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Distribution of studies. The quantitative analysis of findings presented thus

far provides an overview of the degree of insight on the notion of relevance, under-

stood through the lens of the stratified model, represented within the subsection of

the literature under discussion. A related but distinct approach is to focus on the

number of individual studies that concern themselves with each relevance interaction,

i.e., that include at least one finding encoding a given stratum combination. This

approach provides an overview of the degree to which the various possible relevance

interactions have been studied in the present literature. Figure 2–6 provides such an

overview.

While the two distributions visualised in the co-occurrence heatmaps in Figures

2–3 and 2–6 are broadly similar, with interactions of the content, interface, and

cognitive strata being best represented, there are significant differences (Wilcoxon

paired signed rank test on the proportion of studies vs. findings according to stratum

co-occurrence: V=946, p <.0001); see corresponding data in Appendix B.
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Figure 2–6: Proportion of studies (N=176) mapped onto stratum-level class co-occurrence according to the
presence of at least one finding encoding the given interaction within the corpus.



Particularly notable in terms of differences in ranking between studies and find-

ings is the cultural context stratum, implicated in all differences with a magnitude

greater than 4 (see Appendix B, Table B2). These differences demonstrate that

findings encoding interactions with the cultural context strata are represented in

disproportionately greater numbers than studies encoding at least one such finding,

suggesting that there are relatively few MIR user studies investigating the role of

cultural context, and that those in existence tend to focus predominantly on this

topic, in that many corresponding findings are generated.

Discussion. This quantitative description of the findings identified in our sur-

vey according to their distribution within the multidimensional space framed by our

application of Saracevic’s stratified model of relevance interactions outlines the state

of insight on the notion of relevance in a music information context within the size-

able collection of user studies under discussion. As might be expected given its

central role in the interaction of user and system, we find the interface stratum to

be most prevalent; in part, this reflects the predominant focus, noted by Lee and

Cunningham (2012) in describing the research design of the studies in the collection

under discussion, to “[evaluate] what is out there rather than focusing on deeper

problems or questions” (p. 394).

Next most prevalent are the content stratum on the system side, and the cog-

nitive stratum on the user side. This suggests that, although the focus of MIR

research activity in general remains concerned primarily with systems aspects (Lee

& Cunningham, 2012; Weigl & Guastavino, 2011), MIR user research has expanded

beyond the systems-centricity inherent in early textual IR user research (Dervin &
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Nilan, 1986; Wilson, 1981): with an eye towards contemporary understanding in

textual IR, the focus on the content available within music information systems can

be related to the subject literature view of relevance outlined by Hjorland (2010);

whereas the focus on the user’s cognition relates to the paradigm shift toward out-

lined by Dervin and Nilan (1986) and the cognitive turn described by Ingwersen and

Järvelin (2005), conceiving of the user as an agent actively involved in the subjec-

tive, contextual construction of relevance, taking internal cognition into account, and

seeking to understand the user experience as a holistic phenomenon incorporating

history and consequences, beyond an atomistic focus on the moment of information

system interaction.

Notable by its near-absence is the engineering stratum, involved in only 25 find-

ings (2.9%). This scarcity of attention suggests there may be few engineering-related

concerns facing users of MIR systems, given the raw computing power, high-speed

connectivity, and capacious digital storage inherent in the mobile devices now carried

in the typical user’s pocket; not to mention the computing infrastructure driving the

recommendation algorithms of music content-streaming providers such as Spotify

or Pandora. Modern music playback systems may simply have become “powerful

enough” for engineering concerns not to play much of a role from a relevance per-

spective. Another explanation for this absence of findings incorporating engineering

suggests that legitimate, relevance-related engineering concerns do exist for MIR,

but that these are under-represented in the subsection of the literature under re-

view. The selection strategy employed by Lee and Cunningham (2012) to assemble
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the collection of articles under discussion may have missed articles concerning the en-

gineering stratum that only address user needs indirectly but nevertheless determine

important relevance considerations. Alternatively, such concerns may also represent

a legitimate gap in the literature, with potentially informative research questions re-

maining to be explored. Do relevance interactions arise when considering the user’s

choice of listening device in context of the auditory characteristics of the listening

environment? Are there certain types of music more suited to, say, noise-isolating

over-ear headphones versus noise-permitting on-ear headphones when the listener

is exposed to certain types of background noise, and could relevance determination

be improved by taking these into account? Are there implications in terms of user

requirements of mobile versus stationary listening on a hardware level that impact

on music relevance? It is conceivable that the investigation of such topics may yield

informative results. In failing to reveal existing findings impacting on engineering,

we hope that the stratified model may yet serve to guide the generation of hypotheses

for future research.

One further important but relatively under-represented interaction is that of

the system’s processing and the user’s cognitive strata; this co-occurrence, as a pair

or in conjunction with other strata, is represented in 57 findings (6.8%). The out-

puts of MIR algorithms addressing a particular task — such as beat tracking, key

finding, melody extraction, or mood detection — are typically evaluated against

human-generated reference classifications, generally provided by a dedicated but rel-

atively small number of expert musicologists, or crowd-sourced from larger numbers

of anonymous users. Collections of such classifications are termed “ground-truth”,
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the veracity of which is often taken at face value. While algorithm performance

is meticulously evaluated against such datasets (Downie, 2008), the perceptual and

cognitive processes driving the human classification decisions often remain opaque

in MIR research. This is clearly an issue where the “correct” choice of classifica-

tion is demonstrably subjective; even given the undisputed sincerity, dedication, and

expertise of the human volunteers, the usefulness of the resulting data as “truth”,

aiming to reflect the perceptions of all (or at least, a majority of) the potential users

of an MIR system, is questionable. For instance, the ground-truth dataset for the

MIREX Audio Music Similarity and Retrieval (AMS) tasks run over four years from

2010 — 2013 incorporated similarity judgements provided by trusted volunteers from

the MIR community. Organisciak and Downie’s subsequent analyses of inter-rater

agreement (2015), regarding the broad similarity of pairs of songs on a categorical

ranking of “very similar”, “somewhat similar”, and “not similar”, revealed category

agreement in only 35% of cases — nearly half of which were on “somewhat similar”

items.

Even in MIR tasks not focussing on user judgements, the scarcity of consid-

eration of the listener’s music perception and cognition alongside the algorithm’s

task performance presents potential concerns, especially given the multifaceted com-

plexity of musical information, and thus the diversity of cognitive processes, the

performance of which the MIR algorithms are ultimately aiming to emulate. For

instance, temporal facets relating to such fundamental aspects of music listening as

beat and tempo perception, melody recognition, and sensorimotor synchronization

(moving in time with the music) are present in interactions of the processing and
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cognition strata in a mere 4 findings in our corpus (0.46%); yet many core MIR

tasks, such as beat tracking, onset detection, tempo estimation, downbeat detection,

query-by-humming, and melodic similarity, plainly revolve around such facets. Music

perception and cognition research has suggested a wide range of inter-individual dif-

ferences in beat perception and performance in the general population (e.g., Iversen

& Patel, 2008); what effects do such differences have on relevance criteria incorpo-

rating rhythmic information? Such questions bridging the fields of MIR and music

perception and cognition remain largely unaddressed in the present subsection of the

literature.

2.3.3 Providing community access

Access to the entire corpus of findings, queryable on the level of stratum inter-

actions and of sub-stratum descriptors, is provided by an online resource3 . Users of

this resource are provided with the stratum-level co-occurrence heatmap displayed

in Figure 2–3 and can click on particular cells of interest to load a list of findings on

interactions incorporating the corresponding strata, numbered and ordered accord-

ing to the frequency of sub-stratum descriptor co-occurrence (Figure 2–7). Further,

users can select a descriptor co-occurrence of interest to retrieve full details of the

corresponding findings, linking to the corresponding research articles and including

descriptions of the study that generated each finding. An alternative view presents

users with a set of stratum-level drop-down menus presenting all sub-stratum de-

scriptors (as in Figure 2–1, left), enabling the retrieval of all findings incorporating

3 Available at http://relevance.linkedmusic.org
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narrowly defined topics (e.g., all findings relating to the situational descriptor of

music practice). We hope that this tool be useful to both user researchers, and MIR

system designers aiming to address particular music information needs or use cases.
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Figure 2–7: Web application providing an interactive analytical interface with views on the corpus of findings.



2.4 Synthesis of findings

While the distribution of findings analysed above provides insight into the multi-

faceted notions of relevance in MIR, we must go beyond this distribution and inspect

the qualitative content of these findings if they are to guide further user research and

MIR system design. We now present a synthesis of the findings represented in the

relevance interactions most commonly encountered in our corpus as determined in

the quantitative analysis, in order to provide insight into the state of knowledge on

the topic across the studies included within the subsection of the literature under

discussion. In order to restrict this synthesis to a manageable size, and to exclude

“solitary” findings that have only appeared in a single study with no further elabora-

tion or replication, we limit this synthesis to combinations of sub-stratum descriptors

that are shared by at least 2 findings in the corpus. The full corpus, including “soli-

tary” findings, is available through the web resource described above.

Note: For brevity, the synthesis presented in this section refers to articles from

the collection by number; a full listing is provided in Appendix C.

2.4.1 Music use cases

Music information needs often relate to certain uses of music, beyond sheer

listening enjoyment, for instance to regulate mood (e.g., relaxation, energizing), to

contribute to the background atmosphere at social gatherings and parties, or to fulfil

specific functions, e.g., in a ceremonial context [67, 154]. The upkeep of interper-

sonal relationships, where music is used to promote and maintain social interaction,

emerges as an important reason for listening to music; this may take the shape of

listening to music in order to dance together, attending live concerts together, or
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listening in order to have a topic for shared discussion with others [109]. Users may

categorize music according to very specific situational descriptors corresponding to

application scenarios (e.g., “programming music” [115], “gym music” [30]). Songs are

selected from different styles and genres to serve in different situations [82]. However,

users tend to assign multiple use cases to individual songs [115], and musical choices

often fulfil a number of different functions simultaneously [43].

One particular use case that has been well described involves the use of music in

synchronization, that is, to accompany video (e.g., films, advertisements). This sce-

nario has been studied from the perspectives of the information needs, behaviours,

and relevance criteria of creative professionals seeking music [57, 58], and of the

record publishers providing catalogues for this purpose [59]. It has also been studied

from the pesrpectives of the media consumers who listen to and watch the synchro-

nized media: background music can significantly influence the remembering of filmed

events [17]; the congruence and incongruence in terms of the mood expressed by the

music compared to the events on screen plays a role, with mood-incongruent music

resulting in better recall of events in the episode when a scene is foreshadowed, but

mood-congruent music resulting in better recall when the scene is accompanied by

the music [17]. Synchronization with video also has effects on the listener’s percep-

tion of the music: the product name featured in a TV commercial accompanied with

a certain song may be mistaken for the song’s title; and conversely, corporate names

are typically associated with songs heard during TV commercials very accurately,

when these are used as a search cue [86].
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2.4.2 Effects of listening

When participants choose to listen to music, this has several effects, linked to

style of music. Whether or not the music was chosen by the listener affects the

functions the music may fulfil. The reasons for listening to music, and the effect of

hearing the music on the listener, vary depending on the location that the music is

heard [126].

Mood management has been identified as a key reason for listening to music

[67, 154], enabling the listener to calm down, relieve tension, or alleviate boredom.

Music listening may be used to provide a means of rest at intervals between work pe-

riods; conversely, stimulating rhythms may be used to energize the worker and speed

progress [41]. Aside from selecting music to manage one’s own mood, proprietors

of commercial premises may select background music to significantly affect listener’s

perceptions of the atmosphere of the commercial environment, extending to some

degree to affecting purchasing decisions [118].

2.4.3 Musical engagement

Social interactions are a common source of musical information [109], with users

who listen for greater periods disproportionately more likely to encounter new songs

and artists by peer influence ( “information diffusion”) [40]. Conversely, users ex-

posed to more new content tend to see greater diffusion from peers. Highly involved

listeners tend to be more positive about their use of music, based on music impor-

tance, mood enhancement, coping and identity construction [143]. The extent of

users’ music collections follow an exponential distribution curve, both in terms of
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number of songs and collection size in gigabytes, with collection sizes ranging from

dozens of songs to tens of thousands [20].

An analysis of user behaviour across five very large datasets (Netflix ratings,

Yahoo! Music ratings, Yahoo! search queries, clicked Yahoo! Results, and Nielsen

web browsing data) [42] emphasises the long-tail effect in terms of web resources and

music collection sizes; with 10 web sites accounting for 15% of page views, and 10,000

sites for up to 80% of views; and only 5 - 10% of users satisfied with collections the

size of large physical retailers, suggesting most have at least some eclectic tastes.

Accordingly, the availability of “long tail” inventory brings second-order benefits like

customer satisfaction, and small increases in popular inventory lead to high increases

in satisfaction. Niche products that are generally unknown also tend to be generally

disliked, with the most and least popular songs tending to receive the highest ratings,

and a dip in the middle. Listeners’ engagement (amount of usage) was not correlated

with their eccentricity (median rank of items consumed), although the number of

unique items consumed is higher for more engaged listeners.

2.4.4 Specific interface evaluations

Many of the articles under discussion present user evaluations of specific, novel

interfaces, including a location-based audio recommendation service [5], haptic audio-

tactile playlist and music collection navigation devices [2, 64], visualizations of mu-

sical content [46] or of affective parameters associated with the music [157], a tempo

sensitive music search engine [156], a bimanual “hands-on” interface to create map-

pings for a tactile mobile music playback interface [15], and a zoomable user interface

widget to enable music collection management on large and small screens [32], among
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others. Such studies are typically presented in conference or workshop papers, gen-

erally employing lab-based evaluation experiments with relatively small groups of

participants. These tend to be students and other members of university commu-

nities, sometimes predominantly involved in disciplines related to the researchers’

field (e.g., computer science, HCI). As might be expected, most such studies find

novelty effects, with users typically rating the presented systems as more satisfying

or fun to use than corresponding baseline systems; and learning effects, where par-

ticipants’ task performance improves as they are exposed training or practice with

the presented system.

Additional findings respective to the individual interaction paradigms are iden-

tified. For instance, users of the location-based audio service find that listening to

sounds, and to a less clear extent, music, enrich their walking experience; further,

that sounds are easier to associate with specific locations than music, but that music-

listeners were more engaged with the experience than sound-listeners [5]. The studies

of tactile interfaces produced findings on differences in terms of usability of different

interaction mechanisms depending on the user’s physical activity [64]; and on the

suitability of specific haptic-to-audio mappings [2]. A study investigating the use of

emotion-based visual icons to represent music found that the presence of such icons

improved playlist generation speed (task performance in the context of this partic-

ular evaluation), and further that evaluating valence from the visual representation

is more difficult than evaluating arousal [157]. The evaluation of a zoomable user

interface widget for music collection browsing [32] found significant differences in
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completion times between users of large (PC) and small (portable) displays; how-

ever, comparing the number of data items was more difficult on smaller screens. The

evaluation of a music information retrieval system based on user-driven similarity

resulted in better task performance, and a greater feeling of control, compared to

baseline comparison systems [147]. An evaluation of a music recommendation system

based on dynamic weighting of content features and user access patterns suggests

that a content-based approach is best for generating recommendations exhibiting

content similarity; access-pattern and artist-based approaches give better diversity;

with hybrid approaches capable of providing balance between the two [134].

2.4.5 Cultural differences

A few studies examine cultural differences in music information behaviour, e.g.,

between American and Chinese survey respondents [54], or between Western and

Korean music searchers in a search log analysis [92]. Perception of the music may

be culturally affected, with significant differences detected along a number of di-

mensions, e.g., between American and Chinese responses in terms of mood clusters

chosen to correspond to stimulus songs, even taking into account demographic dif-

ferences such as gender or age; listeners tended to agree more with others from their

cultural background than those from another cultural background [54]. Information

needs may be different; e.g., 36% of music searches queries conducted using Naver, a

prominent Korean search portal, were looking for music recommendations, compared

to only 5% of Google users. Correspondingly, the usefulness of specific query access

points may be culture-dependent: Google searchers provided date, genre, lyrics, and

70



region information significantly more often, but “phonetic sound of lyrics” less of-

ten than Naver searchers. Other access points may be universal; e.g., there were

no significant differences between the frequency of searches for associated use (i.e.,

involving a movie or advertisement featuring a song), by audio or video example, by

name or gender of the artist, by the title of the work, mood/affect, and others [92].

The most common information need expressed across cultures was the identification

of bibliographic information pertaining to artist and work. Issues of transliteration

can cause issues for searches across language, where the correspondence between e.g.,

the English and Korean version of an artist name is not clear.

2.4.6 Interface interaction behaviour

A large number of findings concern user interactions with different query mech-

anisms and interfaces. The focus in these cases is not the evaluation of a particular

system, but rather, the understanding of user behaviour when using various types of

interface.

An investigation of user interactions with a hypothetical “query by voice” mech-

anism demonstrates that users may conduct musical known item queries by repro-

ducing melodies using sung lyrics, or nonsense syllables when lyrics aren’t known;

by humming or whistling; by hand percussion, and by spoken comment. Given

the choice, a small majority of participants in this investigation adopted one of

these methods, while the rest combined multiple mechanisms (e.g., singing lyrics

and syllables); query lengths varied with the chosen mechanism, with lyrical queries

significantly shorter than queries presenting nonsense syllables. Query mechanisms
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producing pitch intervals were chosen predominantly over rhythmic or spoken ap-

proaches [105].

In a playlist creation scenario, users describe songs according to lyric-based

features [140]. Tempo and rhythm are among the most important audio-content

based features in (manual) playlist creation. Participants tend to use longer strings

when providing keyword descriptions of music, compared to query string length when

searching for music, and tend to use more concrete symbolic or metaphorical cate-

gories referring to nature or particular objects [67]. Tools to support playlist creation

are desired by certain users, as they lower the barriers to playlist creation, making

the task easier and shortening the time required [132]. Playlist variety is desired,

with song similarity merely one of many different factors involved in playlist ratings

[89].

In a search context, participants instead tend to describe music as “for, about,

or on” certain occasions, events, or specific activities [67]. Participants conducting

searches for musical information seek bibliographical information in a large majority

of cases [7, 30, 82]. Such searches tend to involve performer name, song title, notions

of date, lyrics, and more rarely, orchestration info, collection title (e.g., album name),

or label name [7, 30, 82, 91]. Related but less straightforwardly bibliographical

search vectors may be useful, for instance when links between artists are implicit by

a known, liked artist citing another as an influence [82]. In specialist circumstances,

non-bibliographic information gains significance. For instance, most participants in

an investigation of the users of a music library required historical information, for

example collector’s manuscripts or notes [55].
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Queries for music information tend to be longer than average web queries [23],

likely because such queries include terms from song / album titles and artist names,

which tend to be longer. Music search engines must be resilient to errors and confu-

sions; inaccuracies abound, with spelling errors in song titles and artist names, and

confusions between the chorus lyrics and the song title, or between similar-sounding

artists, occurring commonly. Lyric queries are particularly prone to error, with in-

accuracies including missing word(s), additions of word(s), misspellings, errors in

contraction, pronoun use, preposition use, tense, and (most commonly), confusion of

similar sounding or semantically similar words [86].

Searches are often conducted for reasons beyond single-item identification, such

as to assist in the building of collections [91]. In the maintenance of physical col-

lections (e.g., CDs), people employ various different strategies in organizing their

main active collection: by date of purchase, by release date, by artist, by genre, by

country of origin, by degree of liking, or in order of recency that the CDs have last

been listened to. Secondary organization may be applied within top-level categories,

e.g., sorting by artist within genre; rarely is the classification scheme more than 2

levels deep [28].

Complex correspondences may form between the listener’s mood and their in-

teractions with a particular interface. For instance, serendipitous music encounters

through random “shuffle mode” listening may be recognized as a happy coincidence,

raising the listener’s mood [104]; or be baffling or surprising, capturing the imagi-

nation [102]. Mood may influence song selection behaviour; for instance, once users
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skip a song during active listening, they are disproportionately likely to skip a few

more, due to a lowered aspiration level [13].

2.4.7 Notions of genre / style

Musical genre emerges as a useful, wide-spread, but problematic notion in music

information retrieval. The definition of a genre taxonomy is non-trivial [30, 138], and

genre classifications are neither consistent nor objective [146]. While strong agree-

ment has been demonstrated between expert-created taxonomies and crowdsources

“folksonomies” for certain genres, including “blues” and “hip-hop”, other genres (e.g.,

“rock”) exhibit disagreement [138].

Algorithmic approaches to genre classification perform well in certain cases: for

instance, genre clusters generated according to probabilistic reasoning over large

amounts of listening data generated by Zune users [158] correspond well to certain

pre-defined genre notions, such as “Latin” and “Electronic/Dance”; while other clus-

ters comprise mixtures of high-level genres, e.g., the combination of “Electronic/Dance”,

“R&B”, “Pop”, and “World”.

Music listeners often describe their listening habits in terms of genre affiliation,

and indeed user studies commonly prompt for these in their investigations. Listeners

typically listen to music from several different genres [39, 106]. One study identifies

some demographic links with genre choice, with adolescents preferring “Pop” and

“Dance” music over other genres [119]; other genres may be collectively deemed

unimportant or redundant by some participants (e.g., “Gospel”, “New Age”) [48] .

In one experiment, queries according to taxonomic style produced highly relevant

results, outperforming queries by music example or by music group; however, there
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was a drop-off in precision over time, as the number of available inputs was limited

[77].

Notions of musical genre extend into extra-musical content. Participants make

inferences about musical style based on album cover images, although these can be

misleading [30]. There is some evidence suggesting significant associations between

certain genres and fonts [47] and even colours [48]; in particular, there is significant

agreement between participants on which fonts look “Metal”, and that the colour

associated with this genre is “black”.

2.4.8 Interacting with others

Several studies examine users’ online interactions with other individuals in a

music information seeking context. In a study of music-related queries to Google

Answers, shorter queries were significantly more likely to be answered by other users,

suggesting that conciseness is valued in such exchanges; by comparison, the mean

monetary value offered in exchange for an accepted response did not significantly

affect this likelihood [95]. An analysis of postings to a music message board reveals

social and contextual elements relating to the associative or environmental context of

the desired musical information appearing in almost a fifth of all postings analysed.

Such queries offer qualitative descriptions that users use to contextualize their queries

- “Heard it at a couple of jam sessions”; “used to sing while bowling”; “last week

at the Fraley festival” - that provide vivid detail of the particular information need,

but may be difficult to quantify [35].

In terms of physical interactions with information professionals, several studies

have investigated user’s search behaviours in locations including music libraries [24,

75



30, 55, 79, 141] and record shops [24, 30, 82, 141]. Although such locations typically

benefit from the availability of information professionals or shop assistants capable

of answering questions expertly, some participants demonstrated a reluctance or

an embarrassment in engaging in such interactions [30], especially in any kind of

“query by voice” (i.e., singing a musical query) [24]. That said, the expertise of such

individuals is valued, e.g., with recommendations by staff in small, specialist record

stores being trusted above expert reviews in music journals [82].

2.4.9 Music perception

A few studies within this subset of the literature have shed findings on inter-

actions of music perception and cognition, and music information retrieval. One

preliminary study suggests that participants shared similar perceptions regarding

fundamental aspects of music, including tempo and brightness (timbre), with only

small differences between individuals [159]. Tempo appears to have an effect on

users’ choice of mood tags, with faster versions of songs associated with positive tags

(happy / energetic), while slower versions of the same songs were associated with

more negative tags. Instrumentation also had an effect, with distorted guitars asso-

ciated with tags such as “aggressive”, while e.g., cover versions featuring banjos were

associated with “soothing” and “relaxing” [94]. User-supplied mood tags appear to

follow a long-tail (Bradford) distribution, the majority appearing only once, with

only a smaller set of core mood terms used heavily.

2.5 Conclusion: Relevance in MIR

The creation of rigorous and practicable theories concerning the nature of rele-

vance has been identified as a key challenge to the field of music information retrieval
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(Downie, 2003). In this chapter, we have sought to address this challenge by exploring

the state of knowledge on music relevance available in the literature. Cross-applying

and extending an established conceptual model of relevance from textual information

retrieval—Saracevic’s stratified model of relevance interactions (Saracevic, 2007b) —

to the domain of music, we have provided a highly detailed description of the aspects

of relevance studied, and the findings generated, in the user-centric music informa-

tion research literature. As our central object of study, we have adopted a collection

of research articles subject to previous bibliometric analysis and shared in the spirit

of collaborative and transparent research synthesis in previous research (Lee & Cun-

ningham, 2012). We reciprocate by making our corpus of coded studies and findings

available, accessible and queryable through a simple user interface. We hope that

the outcomes of this process will be useful to future MIR user research, providing

a reference of current knowledge, a tool for hypothesis generation, and a lens to

promote the “synergic impact” (as per Lee & Cunningham, 2012, p. 396) of these

studies in terms of implications for MIR system design. Further research on the

present corpus might usefully extend Lee and Cunningham’s analysis of the research

study designs and methodologies employed in the articles under review, in terms of

the findings generated. This could in turn suggest opportunities for the diversifica-

tion of investigations of particular relevance interactions that may thus far have been

predominantly studied from only a limited set of perspectives.

Some limitations of our work remain to be addressed. As a consequence of

building our review on a previously established collection of articles, we are bound

to the consequences of the selection strategy employed in the previous research. As

77



Lee and Cunningham note, the articles are widely dispersed in various publication

venues represented in multiple databases tied to different fields, as a consequence of

the interdisciplinarity of MIR research: “despite our best efforts, we would not be

surprised if there were studies we were not able to find” (Lee & Cunningham, 2012,

p. 396).

A further consequence of our building on this pre-existing collection is that the

latest research under review is already some three years old at time of writing. Future

research could address this by periodically extending the collection of articles using a

compatible search strategy. Alternatively, authors of MIR user research studies might

be interested in contributing new findings from their own work to this collection;

perhaps this could form part of a sustainable archive of citation information for user

studies related to music, managed by multiple stakeholders, as Lee and Cunningham

have proposed.

Another limitation of our work is the inherent degree of subjectivity necessitated

by our approach. We have worked to promote consensus in our coding activities, by

beginning with an iterative series of parallel coding of the same articles by all four

coding researchers in isolation, followed by collaborative discussion and review, until

a consensus coding approach was established. Further, we have employed a coding

system that automatically propagated new classification terms among the four re-

searchers as and when they were necessitated in the coding activity of any individual

coder. Nevertheless, the final decision of which parts of an article should be identified

as a relevance-related finding, and the precise configuration of descriptors by which

the finding should be incorporated into the conceptual framework, remains subject
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to the judgement of the individual. We thus acknowledge that four different indi-

viduals would likely not have produced an identical outcome; however, we maintain

that the overall shape of the distribution of studies and findings would likely remain

comparable, given the systematic methods we have employed. Further, we hope and

expect our detailed corpus of findings to be useful to future research, regardless of

the degree of individual judgement involved in its creation.

The remainder of this dissertation shifts focus from the broad conceptualization

of relevance in the MIR literature provided in the preceding discussion, to the inves-

tigation of very specific aspects of music and relevance. In particular, we investigate

concerns at the intersection of MIR and music perception and cognition focussing on

temporal facets of music, an area that has remained under-explored in the literature

(section 2.3.2, p. 61). We now turn to Chapter 3, where we present a series of

experiments investigating the role of rhythmic information in melody identification,

drawing implications for the formulation of topical relevance criteria for MIR systems

along the way.
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CHAPTER 3
The Role of Rhythmic Information in Melody Identification

The human ability to recognize familiar melodies is curiously resilient to a wide

range of transformations (Dowling & Harwood, 1987; White, 1960). Melodies are

recognized under key transposition (Ehrenfels, 1937), alterations of tempo (Andrews,

Dowling, Bartlett, & Halpern, 1998), and even complex, non-linear distortions (Hébert

& Peretz, 1997; White, 1960). Melody identification tasks have been used to probe

the nature of melodies as perceptual objects in the context of cognitive science (e.g.,

Schulkind et al., 2003). Insights on melody identification also have practical impor-

tance in the field of information science, in particular for music information retrieval,

in which digital signal processing, feature extraction, and computational classification

processes operating on musical audio must aim to closely match human judgements

in order to produce results relevant to the user (Byrd & Crawford, 2002; Downie,

2003).

Consideration of the invariance of melodic recognition under transposition is

evident in the earliest thought in Gestalt theory (Ehrenfels, 1937). The theory of

indispensible attributes outlined by Kubovy and van Valkenburg (2001), a modern

elaboration on Gestalt theory, provides a conceptual framework for the definition of

edges—or boundaries—of perceptual objects. Consideration of melodies as exem-

plars for category membership and the degree of family resemblance among various
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instances of a melody and its distorted versions is consistent with Rosch’s prototype

theory (1978).

White’s pioneering investigation of distorted melodies (1960) explored percep-

tual objects in a musical context. In his study, participants attempted to recognize

distorted versions of ten familiar melodies from a list revealed at the start of each

session. Distortions were systematically performed on individual musical attributes

of each melody, including pitch and rhythm. Participants were presented with ei-

ther the first 24 notes or the first six notes of each stimulus. From the perspective

of prototype theory, the task amounts to placing each presented stimulus into one

of ten distinct target categories, corresponding to the ten familiar melodies. The

prototype for each category was represented by the undistorted, canonical version

of the corresponding melody; this was not played back to participants during the

experiment, but was assumed to be available as an internal mental representation

to each individual (Halpern, 1989; Levitin, 1994). Each distorted melody occupied

a particular location within a continuous frequency-temporal space subsuming these

categories.

White’s distortions included various alterations of pitch information, e.g., dou-

bling the size of all intervals, or imposing equitonality by setting all pitch intervals

equal to zero, thus assigning each note a constant pitch value; and one alteration of

rhythmic information, imposing isochrony by setting all note durations to a constant

value. The assumption is taken that the equitonal and isochronous conditions re-

spectively negate pitch and rhythmic cues. Only one type of alteration was applied in

each experimental trial, so that rhythmic information was preserved when pitch was
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altered and vice versa. All stimuli were generated by a computer program, affording

the reproduction of each stimulus without expressive variation in tone, loudness, or

accentuation.

White reported relatively minor impairment of melody recognition rates in the

pitch-retaining isochronous condition (88% correct in the 24 notes condition; 60%

correct in the six notes condition), compared with recognition rates of undistorted

stimuli (94% correct in both the 24 notes and six notes condition). In contrast,

alterations of relative pitch interval sizes resulted in the strongest impairment effects,

with the rhythm-retaining equitonal condition producing the lowest recognition rates

(33% correct in the 24 notes condition; 32% correct in the six notes condition).

A related study by Hébert and Peretz (1997) investigated the relative contribu-

tions of pitch and rhythm to the task of melody identification in a series of experi-

ments. Whereas the participants in White’s study recognized distorted versions from

an explicit closed set, the list of 10 familiar melodies presented at the start of each

session, Hébert and Peretz’s participants were required to draw upon their long-term

memory for free identification.

In their first experiment, participants were tasked with identifying melodies

that were altered using either equitonal or isochronous distortions, as used by White

(1960), as well as melodies presented in their unaltered condition. Participants were

asked to respond with the name of the melody where possible. They were also

required to provide a “feeling of knowing” rating on a Likert scale ranging from 1

(“I did not recognize it at all”) to 5 (“I did recognize it very well”). Identification
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rates were found to be substantially higher in the isochronous condition (M=49%)

compared to the equitonal condition (M=6%).

Two further experiments were conducted employing identification tasks to con-

trast pitch and rhythmic information: an investigation of responses to “chimeric”

stimuli presenting the pitch sequence of one melody with the durational sequence

of another melody; and a response time task investigating the contributions of top-

down processing featuring the stimuli of the first experiment alongside a visually

presented song title that either corresponded or did not correspond to the stimulus

melody, with participants instructed to respond as quickly as possible on whether

the title matched the melody. Results of both studies strongly emphasized the im-

portance of pitch information over rhythmic information in melody identification:

participants instructed to attend to the pitch components of the chimeric stimuli

in the second experiment outperformed those attending to the rhythms in terms of

identification success (pitch: M=53%; rhythm: M=8%)—indeed, participants in-

structed to attend to the rhythm and ignore pitch nevertheless tended to name the

pitch-contributing melody (M=28%)—and performance on both response time and

accuracy were more severely impaired in the pitch-disrupting equitonal condition

than in the rhythm-disrupting isochronous condition in the third experiment.

Based on these results, Hébert and Peretz concluded that while the unaltered

condition with its combination of rhythmic and pitch cues provides optimal grounds

for melody identification from long-term memory, pitch strongly predominates over

rhythmic information in terms of enabling identification when isolated in the altered

conditions.
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Newton (1990) investigated the ability to convey musical identity using only

rhythmic information. Motivated by problems of cognitive bias in the construal of

intention in inter-personal communication, Newton set up a study in which par-

ticipants were grouped into pairs of “tappers” and “listeners”. Pairs were seated

with their backs facing each other. Tappers selected three targets from a list of 25

well-known melodies, and tapped out the rhythm of each target for the listener. Lis-

teners were tasked with identifying and writing down the names of the corresponding

melodies. After tapping each song, tappers were asked to estimate the likelihood that

the listener would identify the song correctly.

Newton hypothesized that tappers, drawing on their memories of the melodies

in question and accessing a rich, multifaceted internal representation of the music,

would tend to overestimate the listeners’ chances of identifying the tapped rhythms.

Estimates ranged from 10% to 95%, with a mean of 50%. In actual fact, there were

only three instances of identification success in all 120 trials of the experiment—a

success rate of 2.5%.

Cast in the terms of prototype theory, these preceding studies investigate the cue

validity of the pitch and rhythmic information presented by the experimental stimuli.

In White’s study, the cue validity of each stimulus can be quantified empirically

because the set of possible categories is limited to the ten melodies presented to

participants. Each pitch class, pitch interval, or durational value contained within a

particular stimulus can thus be exhaustively mapped against all melodies in the set.

In the studies of Newton, and of Hébert and Peretz, participants must draw on an

open set of potential categories (only Newton’s tappers are given the list of songs;
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the listeners remain uninformed), and thus such calculations are not practicable;

however, the concept of cue validity may still guide the interpretation of results.

The outcomes of these preceding studies led previous investigators to infer a

substantially diminished role for rhythm compared to pitch in melody identification.

In the studies employing alterations of musical facets, the predominant method of

rhythmic manipulation is the imposition of isochrony—setting all note durations

in the melody to a constant value while retaining pitch information—resulting in

a metronome-like durational structure. In the case of rhythmically heterogeneous

melodies, this manipulation affects the durational structure both at the level of

individual notes, and on the metric level; as metric boundaries are blurred, previously

unaccented note events may be relocated to metrically “strong” positions through the

process of subjective rhythmization; likewise previously accented notes may transfer

to metrically “weak” positions.

The isochronous manipulation is applied on the assumption that it effectively

nullifies rhythmic information, and that pitch thus remains as the only musical

facet providing contributions toward identification success. However, highly familiar

melodies as used in these studies often feature very simple, homogeneous rhythms; for

instance, the rhythmic structure of “Twinkle Twinkle Little Star” is composed pre-

dominantly of quarter-note durational elements. Melodies undergoing isochronous

transformations may thus retain large parts of their original rhythmic structure after

distortion (Schulkind et al., 2003). The assumption that successful identifications

in such cases rely on cues from pitch in isolation, without incorporating rhythmic
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information, is thus unwarranted. This puts previous claims about the relative contri-

butions of pitch and rhythm into question, and creates a gap of empirical evidence in

this area. Further, all results of the previous studies have been reported in aggregate

across all melodies in a particular condition, making it difficult to draw conclusions

about participants’ performance on individual melodies. We thus cannot determine

whether, for instance, the degree of homogeneity present in individual rhythms had

an effect on identification rates in altered conditions, or whether certain stimuli may

have been more readily identifiable by rhythm alone.

The present study aims to reassess the cue validity of rhythmic information

in the context of melody identification. We build on the methodological approach

of the melody distortion studies outlined above by applying complex, stochastic

manipulations of durational elements in order to more thoroughly minimize rhythmic

cues. As we are interested in memory identification from long-term memory, we

follow Hébert and Peretz’ approach of not revealing the set of target melodies to

our participants. Empirically quantifying cue validity is thus impracticable, as the

set of possible categories effectively includes every melody that a given participant

happens to be familiar with. However, it is still possible to quantify the degree of

dissimilarity between each rhythmically distorted stimulus and its prototypical target

melody using algorithmic and mathematical similarity metrics developed in music

information retrieval and related fields. Measures obtained through such means can

ensure that a given manipulation does in fact introduce sufficient levels of distortion

to justify claims about the nullification of rhythmic cues.
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Familiar melodies also carry connotative qualities through associations in episodic

memory, aside from denoting a particular sequence of pitches and durations. The

precise nature of such associations will vary between individuals. Given that the

melodies in these studies were selected for inclusion based on being commonly known

among members of the sampled population, certain associations are likely to be con-

sistent across participants through shared processes of enculturation. Although par-

ticipants are tasked to respond with the name of the given target, categorization is

thus likely to occur on levels of abstraction beyond that of the individual melody. For

example, a certain sequence of pitches and durations may be identified not merely as

the melody to “Rudolph the Red Nosed Reindeer”, but also, at a more abstract level

of categorization, as being connotative of “Christmas music”. Similarly, a distorted

version of the “Wedding March” may be recognized not only as corresponding to

that particular melody based on pitch and durational similarity, but also as belong-

ing to the higher-level category of “ceremonial music”. Examinations of personal

music collections (Cunningham et al., 2004) have indeed revealed music organization

principles based on context: People organize music on the basis of the situation in

which they intend to listen to a particular set of music (e.g., “work music”, “driving

music”).

This distinction between cues from elements of the constituent structure—in

our case, durations and pitches—and contextual, connotative cues is discussed in the

case of food categorization by Ross and Murphy (1999), who show that food can

be cross-classified either into taxonomic categories relating to constituent structure

(e.g., yoghurt as a dairy product) or into script categories relating to the context of
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use (e.g., yoghurt as a breakfast item). In the case of everyday listening, Guastavino

(2007) and Dubois (2000) provide converging evidence that the categorization of en-

vironmental sounds relies on experiential knowledge of the context in which everyday

sounds are typically encountered, giving rise to goal-driven script categories in the

auditory domain, integrating notions of time, location, and activity.

The present study investigates the role of rhythmic information in the context

of melody identification by analyzing participants’ identification performance under

different conditions of rhythmic distortion. We further investigate the applicability

of notions of script categorization in musical memory by analyzing instances of par-

tial identification and of misidentification of melodies. Our goals are to contribute

insights on the nature of perceived melodic identity. By investigating contributive

factors to melody identification success, we also aim to inform notions of experiential

relevance of musical information. The operationalization of such notions has been

identified as a key challenge to the field of Music Information Retrieval (Downie,

2003).

3.1 Study 1: Randomized and reordered conditions

3.1.1 Participants

Participants (N=31; 18 female; mean age: 25.3 years, SD=7.4) were members

of the McGill University community with no reported hearing deficit. As the stimuli

used in this study are culturally specific (e.g., nursery rhymes, folk, and pop songs),

participants were required to be native English speakers, or to have learned English

during early childhood. Participants varied in their degree of musical training (mean

years of musical training: 5.9, SD=5.6), assessed using a modified version of the
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Queens University Musical Experience questionnaire (Chapados & Levitin, 2008;

Cuddy, Balkwill, Peretz, & Holden, 2005). Participants either received course credit

or a financial compensation of $10 CAD for their participation.

3.1.2 Norming study

Stimuli were generated from short excerpts of 38 English language songs that

had been established as familiar to a separate group of individuals drawn from a

similar participant pool in previous research (Kim & Levitin, 2002). In that study,

a list of popular songs used in previously published studies on song recognition

(Andrews et al., 1998; Halpern, 1988; 1989; Hébert & Peretz, 1997; White, 1960)

was administered to 600 students in an undergraduate class at McGill University.

Participants were asked to indicate those songs “that you know so well you can hear

them playing in your head”, and to rank the 20 best known songs from 1 - 20. In

addition, they were given the opportunity for free response, to add up to five songs

to the list that they felt they knew well. These results were tallied and from them

a list of 42 songs was generated. Monophonic piano versions of these 42 songs were

presented to a group of 44 pilot participants and four songs were eliminated from

the set due to poor recognition (fewer than 30% of the participants), thus leaving a

stimulus set of 38 songs (see Appendix A).

3.1.3 Materials

Each melodic excerpt was performed monophonically by a professional musician

using a MIDI keyboard. All expressive information was removed from the resulting

MIDI files; this was done using the MIDI editor in ProTools (Digidesign, Daly City,

CA), to quantize note durations and to set all note velocities—corresponding to the
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force with which the note is played—to the same constant value (as per Bhatara,

Tirovolas, Duan, Levy, & Levitin, 2011). Distortions were then applied, according

to experimental condition, using a Perl script and the MIDI-Perl module (Burke &

Conklin, 2010). The resulting files were synthesized to WAV format using the Akai

Steinway III piano SoundFont (AKAI Professional, Tokyo, Japan) to create the final

stimuli.

3.1.4 Stimulus conditions

Each melody was distorted, or altered, in two different ways, leading to three

experimental conditions: the two alterations plus the original, unaltered stimulus.

The alterations involved systematic changes to the durations of MIDI events (notes

and pauses) according to experimental condition. Only event durations were affected;

other information, in particular pitch chroma and height, and the ordering of pitches,

remained unchanged.

In the first altered condition (“reordered”), durations were randomly re-assigned

among the MIDI events in a given melody. In the second altered condition (“ran-

domized”), each event’s duration was set to a random MIDI-tick value, limited by the

shortest and longest note durations present in the unaltered melody. In the unaltered

condition, event durations remained unchanged.

The generated files are likely to differ with each execution of the script, as both

altered conditions introduce stochastic elements. The degree of rhythmic distortion

varies accordingly with each random outcome. In order to control for this variation,

100 distorted versions were generated for each combination of melody and condition.

A measure of rhythmic similarity—the chronotonic distance—was determined for
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each version, and the version with the highest distance for each such combination

was selected for inclusion in the study.

The chronotonic distance measure was obtained by representing the event du-

rations of the distorted and undistorted versions of a given melody as histograms,

with the vertical axis showing inter-onset intervals and the horizontal axis showing

onset times; this is known as “TEDAS representation” (Gustafson, 1988). Each dis-

torted version’s TEDAS representation was then superimposed over the undistorted

version’s histogram. The area of difference between the two representations was

then determined to obtain the chronotonic distance (Guastavino, Gómez, Toussaint,

Marandola, & Gómez, 2009). The choice of this measure was motivated by Toussaint

(2006), who demonstrated the chronotonic distance’s suitability in providing insights

on the structural interrelationships that exist within groups of related rhythms.

3.1.5 Procedure

Experimental sessions were conducted with small groups of between two and six

participants. The participants were seated in a quiet room facing a projector screen.

Each participant was given a pen and a lined piece of paper; the lines were numbered

sequentially, one line for each experimental trial.

Participants were informed that they would be listening to a number of com-

monly known melodies that had been distorted in different ways. They were told to

write down the name of each recognized melody. If they could not remember the

name, they were asked to write down any other identifying information that comes

to mind; this might include song lyrics, artist name, or contextual information about

where one would expect to hear the melody. If no identifying information came to
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mind, but they nevertheless felt that they recognized the melody (i.e., if they expe-

rienced a “feeling of knowing”), they were asked to respond with the word “Yes”; if

they simply did not recognize the melody, they were asked to respond with the word

“No”. They were also informed that an undistorted version of each melody would

be presented at the end of the experiment, to verify whether they actually knew the

individual songs.

In each trial, a stimulus was presented over the loudspeaker in the room (Anchor

LN-100 Powered Monitor) at a comfortable listening level of approximately 70 dB(A).

The corresponding trial number was projected onto the screen as the stimulus was

playing. Participants were tasked to write down their response on the paper at

the corresponding line as soon as they were ready. The next trial started playing

automatically after a silent period of six seconds following the end of the previous

trial. The screen briefly changed color at one second prior to the end of this period

to alert the participants to the imminent start of the next trial.

Two pseudo-random orderings of all melodies were generated and respectively

assigned as the presentation order of the two altered conditions, in counterbalanced

fashion between experimental sessions. The two orderings were then interleaved,

so that participants were exposed to the experimental stimuli with conditions in

alternating order. Care was taken during the generation of presentation orders to

ensure that the two altered versions of a given melody would never be presented

consecutively.

Participants listened to the unaltered stimuli after completing trials for each

altered stimulus in this sequence. Each experimental session comprised a total of
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114 trials, corresponding to two distorted and one undistorted presentation of each

of the 38 melodies. Experimental sessions lasted approximately one hour, including

time for the questionnaire on musical background and a debriefing.

3.1.6 Classification

All target melodies in the stimulus set, as well all other melodies specified in

participants’ responses, were classified by mutual agreement of the coauthors into one

of five categories: Children; Christmas; Pop; Theme (e.g., from a movie or television

show); and Ceremonial (e.g., the “Wedding March”, or “Happy Birthday”). A full

list of melodies and their classifications is included in Appendix E.

3.1.7 Scoring

Three raters independently scored two thirds of all observations following the

guidelines described below. Observations were assigned to raters in such a way

that every participant response was scored by two of the raters. Score parity was

achieved in 96.9% of cases; the primary author resolved the remaining individual

inconsistencies.

Responses were scored by assigning a value of 1 to a correctly identified melody,

0.5 to a partially identified melody, and 0 to a wrongly identified or unidentified

melody. The aim was not to assess the participants’ recollection of song names,

but rather the correct identification of the song itself. As such, responses that in-

cluded names that differed from the official name but nevertheless unambiguously

represented the same song were scored as correct; e.g., “Barney” was an acceptably

correct response for “Yankee Doodle”, as the theme tune for children’s TV show

“Barney the Dinosaur” shares “Yankee Doodle’s” melody. Responses that included
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lyrics narrowly matching those of the target melody were also scored as correct iden-

tifications; e.g., “life is but a dream” was deemed an acceptably correct response

for “Row, Row, Row Your Boat”. Similarly, responses correctly naming composers

or performers—e.g., “Beethoven” as a response to “Ode to Joy”, or “Beatles” as a

response to “Hey Jude”—were deemed to be correct and received full credit. Fi-

nally, responses that correctly described a very narrow context for the melody were

also scored as correct identifications; e.g., “From [the film] 2001: A Space Odyssey”

was deemed an acceptable response to the “Blue Danube Waltz”, which is featured

during an iconic scene in the film.

Responses that correctly described a higher-level contextual category for the

melody—e.g., “Christmas” for “Hark! The Herald Angels Sing”—were deemed as

partial identifications, receiving a score of 0.5. Responses that made no attempt

at identifying the melody, specified a melody clearly different from the target, or

otherwise provided non-matching information (e.g., a mistaken category or unrelated

lyrics) were deemed as unidentified, receiving a score of 0.

3.1.8 Analysis

Withheld observations. Two of the 38 melodies—“Coming ’round the Moun-

tain” and “If You’re Happy and You Know It”—were mistakenly presented in their

reordered versions during both the reordered and randomized condition due to tech-

nical problems. Responses for these two melodies were thus withheld from analysis.

Identification. Participants’ rate of identification of the unaltered stimuli was

variable (proportion of successful identifications: Median=.71, M=.68, SD=.24),

suggesting that individuals differed in terms of the number of melodies in our set
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that were highly familiar to them. It would be erroneous to penalize an individual’s

incorrect responses to altered stimuli in cases where the corresponding unaltered

melody is unknown to the individual. Taking the assumption that a failure to identify

an unaltered stimulus indicates a lack of sufficient familiarity with the corresponding

melody, any responses to melodies that were not correctly identified in their unaltered

version were excluded from analysis per-participant.

A proportional odds analysis was conducted to analyze the resulting dataset

using the R statistical programming language (R Core Team, 2015) and the clm

function of the ordinal R module (Christensen, 2013), fitting a cumulative link model

with response score (0, .5, or 1) as the dependent variable and condition (unaltered,

reordered, or randomized) as a treatment effect. The condition factor was coded to

contrast between the unaltered and altered (reordered and randomized) conditions,

and between the two altered conditions.

Partial identification and misidentification. Responses indicating a con-

textual category without naming the target melody were investigated by comparing

each target’s category as determined in the scoring stage with the categories indi-

cated in participants’ responses. Misidentifications—responses specifying a melody

that differs from the target—were similarly investigated in terms of category pairings,

by comparing each target’s category with the categories determined during scoring

for the melody specified by the participant. Furthermore, target-response pairings

were analyzed directly to determine recurring misidentification patterns.

“Feeling of knowing” responses. Responses that only indicated the pres-

ence or absence of a “feeling of knowing” without any further specification were
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analyzed by calculating the sensitivity index (d’) for all “yes” and “no” responses in

the two altered conditions. In order to arrive at a ground truth, we assume that the

ability to identify a melody in its unaltered form indicates true familiarity with that

melody. Accordingly, a “yes” response to an altered version of a melody correctly

identified in the unaltered condition was treated as a hit, and a “yes” response to

an altered stimulus that was not correctly identified in the unaltered condition was

treated as a false alarm.

Correlation with algorithmic measures. Two alternative measures of the

rhythmic dissimilarity between the unaltered and distorted stimuli were determined,

in addition to the chronotonic distance measure used in stimulus generation, in or-

der to investigate the degree of correlation between these metrics and participants’

identification performance. The first of these, Dynamic Time Warping (DTW), was

chosen because it makes no assumptions about the two sequences to be compared in

terms of their conformity to standard musical structure. The second, rhytfuzz, was

included based on its performance in related musical contexts.

A MATLAB implementation of the DTW procedure (D. Ellis, 2003) was used

to determine the amount of modification (i.e., stretching or shortening of segments

of the melody) required to align each distorted stimulus with its unaltered version.

As mentioned above, the DTW metric may operate on any temporal sequences with

no assumptions about musicality, and has been applied in diverse non-musical con-

texts such as word recognition (Myers, Rabiner, & Rosenberg, 1980), gait analysis

(Boulgouris, Plataniotis, & Hatzinakos, 2004), and the classification of whale vocal-

izations (Brown, Hodgins-Davis, & Miller, 2006) as well as in musical contexts (e.g.,
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Kroher, 2013; Macrae & Dixon, 2010). This motivated its inclusion in the present

study, given that the distortion process applied in the randomized condition results

in sequences that are unlikely to conform to standard musical durational patterns.

Melodies altered to exhibit such randomized durational elements are likely to be

deemed metrically ill-formed by participants (Prince, 2011).

Further, the rhytfuzz measure of Müllensiefen and Frieler (Müllensiefen & Frieler,

2004) was determined for each stimulus. This measure “fuzzifies” rhythmic informa-

tion by placing each durational component of the stimulus into one of five categories,

ranging from very short through normal to very long, where the center of the “nor-

mal” category is determined by the most commonly occurring duration in the stim-

ulus. An edit distance is then determined to quantify the minimum number of edits

(deletions, insertions, or substitutions) required to transform the fuzzified durational

sequence of the distorted stimulus into that of the unaltered original. The rhyt-

fuzz measure was determined using the SIMILE software application (Müllensiefen

& Frieler, 2006). This measure was included in the current study as it was the most

successful purely durational measure in a previous evaluation of melodic similarity

metrics against human judgements (Müllensiefen & Frieler, 2004).

3.1.9 Results

Identification. Identification was inhibited in both altered conditions, with

the randomized condition inhibiting identification scores to a greater degree than the

reordered condition (randomized: M=.30, SD=.46; reordered: M=.57, SD=.49; see

Figure 3–1). The results of the proportional odds analysis reveal these differences

to be significant: the altered conditions significantly differed from the unaltered
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Figure 3–1: Aggregated cross-
participant identification scores
for stimuli in the randomized and
reordered conditions of Study 1.
A score of 1 indicates successful
melody identification; 0.5 indi-
cates partial identification; and 0
indicates misidentification or no
identification attempt. Melodies
not correctly identified in their
unaltered condition are excluded,
per-participant. Point ranges
indicate bootstrapped 95% confi-
dence intervals (1,000 resamplings).

condition (β1 = 3.35, SE = 0.18, z = 19.12, p < .0001), and from each other (β2 =

1.15, SE = 0.11, z = 10.81, p < .0001). Appendix D lists identification scores by

melody, aggregated over participants.

Partial identification. There were 174 partial identifications, where partic-

ipants named a category without specifying a particular song. Of these, 45.4%

occurred in response to an unaltered stimulus; 39.7% occurred in the reordered con-

dition; and 14.9% occurred in the randomized condition. Participants tended to

remain “in-category”, correctly matching the category of the target song in 134 of

the 174 instances (77%).

Misidentification. There were 158 instances of misidentification, where a

participant explicitly specified a song other than the trial’s target. Of these in-

stances, 24.7% occurred as participants attempted to identify an unaltered stimulus;
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36.1% occurred under the reordered condition; and 39.2% under the randomized

condition. Interestingly, misidentification pairings between the three songs, “Old

MacDonald”, “Bingo”, and “Yankee Doodle”, accounted for 24 of the 158 misidenti-

fications (15.2%; well above the conservative chance level of 2.9% that results when

limiting the set of possible confusions to those melodies within our stimulus set). As

was the case with partial identifications, participants tended to remain “in-category”

with their misidentifications, specifying a song within the same category as the target

115 of the 158 times (72.8%).

“Feeling of knowing” responses. Results of the analysis of responses indi-

cating only the presence or absence of a “feeling of knowing” (i.e., “yes” or “no”)

without any further specification reveal closely matched hit rates (H.R.) and false

alarm rates (F.A.R.), and correspondingly very low sensitivity in both the reordered

(H.R. = .29, F.A.R. = .28, d′ = 0.03) and randomized (H.R. = .12, F.A.R. = .1, d′ =

0.12) conditions. This suggests that in absence of attempted identification, partic-

ipants’ “feeling of knowing” of the distorted stimuli was not a reliable predictor of

their familiarity with the unaltered melodies.

Correlation with algorithmic measures. Pearson’s product-moment cor-

relations were calculated comparing each of the three distance measures (chrono-

tonic, DTW, and rhytfuzz) determined between each altered stimulus and its cor-

responding unaltered original with the mean identification score for that stimulus,

aggregated across participants. For each distance measure, two correlations were

determined, one for each altered condition (i.e., reordered and randomized). No sig-

nificant correlations were found between the chronotonic distance and aggregated
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identification scores in either altered condition (reordered: r = .08, p = .67; ran-

domized: r = −.18, p = .32). A marginally significant trend was determined be-

tween the DTW distance measure and scores in the randomized condition (reordered:

r = −.24, p = .17; randomized: r = −.29, p = .09). Conversely, a significant cor-

relation was determined between the rhytfuzz measure and the reordered condition

(reordered: r = .56, p < .0005; randomized: r = .15, p = .4).

3.1.10 Discussion

The results of Study 1 demonstrate the detrimental effect of rhythmic distor-

tion on melody identification success. There is a significant effect of the type of

distortion; while identification rates are adversely affected in the reordered condition

that restructures the durational components of the melody, the effect is considerably

stronger in the randomized condition that distorts these individual components, dis-

rupting the rhythmic information contained in the melody.

The tendency for participants to remain within the target’s contextual category

in cases of partial identification and misidentification suggests that participants at-

tended to stimuli at a higher level of abstraction—termed the superordinate level by

Rosch—and exhibit a tendency to err within the membership of the target’s cate-

gory, at Rosch’s basic level (1978). This implicates cues from contextual category

as exerting an influence on melody identification, even in controlled conditions ex-

cluding lyrics, variations in orchestration, or other presented sources of contextual

information.

The frequent co-occurrence of misidentifications between three songs—“Old

MacDonald”, “Bingo”, and “Yankee Doodle”—is especially interesting given that
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these songs are fairly heterogeneous and dissimilar in terms of pitch contour. They

all share the contextual category of “children’s songs,” but this is the most common

category for the melodies in our data set (see Appendix E). Further, there is some

lyrical similarity with shared references to barnyard animals, but again this is a com-

mon theme in children’s music. However, their durational structure is highly similar,

especially up to the first phrase boundary of each melody; Schulkind et al. (2003)

have found melody identification facilitated at phrase boundaries. This misidentifi-

cation pattern is thus consistent with a pronounced attention to rhythmic cues, even

in rhythmically distorted conditions, and suggests that such cues may predominate

over cues from pitch information in these cases.

As a consequence of the optimization toward greater chronotonic distance in

the generative procedure for the randomized condition, there is a greater overall

duration of the resultant stimuli compared to the unaltered condition (mean du-

ration of 548% compared to unaltered; SD: 284%). Previous studies have shown

decreased identification performance on uniformly slowed melodic stimuli (Andrews

et al., 1998). This suggests alternative hypotheses regarding the low identification

rate in the randomized condition: The effect may be explicable by the disruption of

rhythmic information, by the slow overall tempo, or by a combination of the two.

A second study was undertaken in order to address this issue. The stretched

condition of Study 2 is designed to control for this potential confound introduced

by stimulus duration. In this condition, each melody is uniformly slowed to match

the overall duration of the randomized version of each melody, while maintaining
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the durational structure (i.e., the sequence of ratios of note durations) of the undis-

torted version. Additionally, the isochronous condition is introduced to facilitate

comparisons with previous studies in the literature, which typically make use of this

metronome-like transformation. Whereas the reordered and randomized conditions

of the first study were designed to disrupt the rhythmic information contained in the

melodic excerpts, the distortions in Study 2 were designed to assess the validity and

transferability of the findings in Study 1.

3.2 Study 2: Stretched and isochronous conditions

3.2.1 Participants

A new set of participants in Study 2 (N=29; 22 female; mean age: 20.8 years,

SD=1.6) was recruited from the McGill University community. Participants were

native English speakers or had learned English during early childhood, and had no

known hearing problems. Their degree of musical training (mean years of musical

training: 8.9, SD=4.7) was assessed as in Study 1 using the same questionnaire. As

before, participants either received course credit or a financial compensation of $10

CAD for their participation.

3.2.2 Materials

The stimuli for the second study were generated from the same set of melody

excerpts used in Study 1. The generative process was identical, except that the

distortions applied to each excerpt’s MIDI event durations differed between Studies

1 and 2.
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3.2.3 Stimulus conditions

The second study presented stimuli in two altered conditions—stretched and

isochronous—as well as in the unaltered condition also presented in Study 1. In the

stretched condition, the tempo of each excerpt was uniformly slowed by multiplying

each MIDI event’s duration by a value held constant for all events within the indi-

vidual excerpt. This value was determined so that the final duration of the stimulus

matched that of the same melody’s randomized condition in Study 1. The rhyth-

mic structure remained undistorted, isolating the potential effects of presentation

slowness on identification rate.

Study 2 also included an isochronous condition to investigate the extent to

which our findings may be transferable to the contexts of previous studies employing

different participant pools and stimulus sets. The alteration for this condition assigns

a constant duration to all MIDI events across all melodies, resulting in metronome-

like rhythms akin to those used in previous studies in the literature (Hébert & Peretz,

1997; Kuusi, 2009; Schulkind, 1999; White, 1960).

3.2.4 Procedure

The procedure from the first study was repeated identically for Study 2. The

same presentation order was applied, interleaving stretched and isochronous condi-

tions and counterbalancing this alternating sequence between experimental sessions.

Again, the undistorted stimuli were presented after the completion of all distorted

stimuli. As before, each experimental session lasted approximately one hour, includ-

ing time for the questionnaire on participants’ musical backgrounds and a debriefing.
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3.2.5 Scoring

Scoring was undertaken by the same three raters and using the same guidelines

as in Study 1. Inter-rater scoring parity was achieved in 96.7% percent of cases; the

primary author resolved the remaining inconsistencies.

3.2.6 Analysis

The two melodies withheld due to technical problems in the analysis of the

previous study were correctly presented in their isochronous and stretched conditions

in Study 2, but responses to these melodies were again withheld from analysis to

maintain consistency in cross-study comparisons. The responses of one of the 29

participants who had failed to complete the experiment were also withheld.

Participants’ rate of identification of the unaltered stimuli, as in the previous

study, was variable (proportion of successful identifications: Median=.68, M=.69,

SD=.22), suggesting that individuals differed in terms of the number of highly fa-

miliar melodies in the set. As in the previous study, a proportional odds analysis

was conducted in order to investigate the effect of rhythmic alteration on response

score, and to determine whether the stretched and isochronous alterations differed

significantly in their contribution to this effect.

Four two-sample z-tests for proportions were performed on mean identification

rate to assess the significance of the different distorted conditions across the two

studies. These tests corresponded to the four cross-study pairings of the reordered

and randomized conditions of Study 1 and the stretched and isochronous conditions

of Study 2.
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Figure 3–2: Aggregated cross-participant identification scores for stimuli in the al-
tered conditions of Studies 1 and 2. All altered conditions significantly inhibited
identification success. There are significant differences in identification scores across
all condition pairings except those of Study 2 (isochronous and stretched). Melodies
not correctly identified in their unaltered condition are excluded, per-participant.
Point ranges indicate bootstrapped 95% confidence intervals (1,000 resamplings).

Partial identifications, misidentifications, “feeling of knowing” responses, and

correlations with algorithmic measures were analyzed as in Study 1.

3.2.7 Results

Identification. As in Study 1, identification rates were inhibited in both

altered conditions of Study 2 (stretched: M=.49, SD=.5; isochronous: M=.48,

SD=.49). Results of the proportional odds analysis confirm a significant effect of

the presence of rhythmic alteration on response score (β3 = 2.93, SE = 0.17,
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z = 17.6, p < .0001), but reveal no significant differences between the stretched

and isochronous alterations (β4 = 0.011, SE = 0.11, z = 0.1, p = 0.92).

Results of the cross-study two sample z-tests for proportions revealed signif-

icant differences in identification rates among all four cross-study pairings of dis-

torted conditions: randomized and stretched, z=-7.24, p<.0001; randomized and

isochronous, z=-7.13, p<.0001; reordered and stretched, z=3.27, p<.005; and re-

ordered and isochronous, z=3.38, p<.001.

Partial identification. Participants responded with a partial identification

(naming a category without specifying a song) 154 times. Of these responses, 37.6%

occurred in the unaltered condition; 19.5% occurred in the stretched condition; and

42.9% occurred in the isochronous condition. Participants again tended to remain

within-category, correctly matching the category of the target song in 120 of 154

cases (77.9%).

Misidentification. There were 152 instances of misidentification in Study

2. Of these, 30.9% occurred in the unaltered condition; 34.9% occurred in the

isochronous condition; and 34.2% occurred in the stretched condition. Again, pair-

ings between the three songs, “Old MacDonald”, “Bingo”, and “Yankee Doodle”,

accounted for a large portion of the misidentifications (37 of 152, or 24.3%). As

was the case with partial identifications, and as in Study 1, participants tended to

remain within-category with their misidentifications, specifying a song different from

but sharing a category with the target in 114 of 152 instances (75%).
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“Feeling of knowing” responses. Hit rates (H.R.) and false alarm rates

(F.A.R.) for responses indicating the presence or absence of a “feeling of know-

ing” without any further identification attempt (i.e., “yes” or “no” responses) cor-

responded closely for both altered conditions, resulting in low sensitivity (stretched:

H.R. = .16, F.A.R. = .19, d′ = −0.1; isochronous: H.R. = .32, F.A.R. = .30, d′ =

.06). This suggests that participants’ “feeling of knowing” of the distorted stimuli

in absence of attempted identification was not a reliable predictor of their actual

familiarity with the melodies, as in Study 1.

Correlation with algorithmic measures. Pearson’s product-moment cor-

relations were calculated comparing the chronotonic, DTW, and rhytfuzz distance

measures between the isochronous and stretched stimuli and their respective un-

altered originals with mean identification scores in these altered conditions, ag-

gregated across participants. Neither the chronotonic distance measure nor the

DTW measure correlated significantly with participants’ performance in either con-

dition (chronotonic distance—isochronous: r=-.07, p=.67; stretched: r=-.26, p=.14;

DTW—isochronous: r=.15, p=.4; stretched: r=-.28, p=.1). The rhytfuzz measure’s

fuzzified rhythms are unaffected by uniform changes in melody tempo—i.e., identi-

cal fuzzy classifications would result for any corresponding stretched and unaltered

stimuli—and thus, rhytfuzz was not determined for the stretched condition. How-

ever, the rhytfuzz measure’s outcome correlated significantly with mean identification

scores in the isochronous condition (r=.4, p<.05).
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3.2.8 Discussion

The results of Study 2 reveal significant adverse effects of the stretched and

isochronous distortions on identification rate. There are no significant differences

in terms of identification performance between these two conditions. However, the

adverse effect of both distortions is significantly stronger than that of the reordered

condition and significantly weaker than that of the randomized condition of the first

study (see Figure 3–2, p. 105).

A comparison of the results of the randomized condition of Study 1 with those

of the stretched condition of Study 2 suggests that while the slow overall tempo of

the randomized stimuli may inhibit identification success, a significant part of the

adverse effect must be ascribed to the disruption of rhythmic information caused by

the randomization of the durational components of the melody.

The findings regarding partial and misidentifications resemble those of the first

study, and provide further evidence that participants attended to our stimuli at a su-

perordinate level of contextual category membership. The tendency toward misiden-

tification between the three melodies—“Old MacDonald,” “Bingo,” and “Yankee

Doodle”—in the isochronous condition particularly demonstrates that the imposi-

tion of isochrony does not necessarily nullify rhythmic cues. Misidentification pairs

chosen from these three melodies feature in 17 of the 58 misidentifications in the

isochronous condition (29.3%); in contrast, only 6 of the 62 misidentifications in the

randomized condition of Study 1 (9.7%) feature pairings of these songs.
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3.3 General discussion: Rhythm in melody identification

Overall, the results of Studies 1 and 2 demonstrate both the inhibitory effect

of rhythmic distortion on melody identification, and the greater disruptive effect

of the randomized condition, compared to the other conditions. In particular, the

significant differences in identification score between the randomized and isochronous

conditions strongly suggest that the assumption that imposing isochrony nullifies

rhythmic information in familiar melodies is unwarranted.

The significantly lower identification rates of the randomized condition com-

pared to all other conditions, situated within the context of previous findings int

he literature, provide new evidence regarding the relative effectiveness of pitch and

rhythm as cues for melody identification. Findings from previous studies suggest that

while these melodic facets interact in their contributions to identification, there is

a considerable asymmetry in this interaction, with pitch information predominating

over rhythmic information (Hébert & Peretz, 1997; White, 1960). Correspondingly,

identification rates for tasks involving recognition from rhythm, e.g., via the im-

position of equitonality (setting all pitches to the same frequency without altering

rhythmic information) are dramatically lower than those for tasks involving recogni-

tion from pitch via the imposition of isochrony. The results of our randomized and

isochronous conditions suggest that the contributions of rhythmic information have

been underestimated in this previous work. While identification rates in our ran-

domized condition approximately match those in the equitonal condition of White’s

study (24-note: 33% correct; 6-note: 32% correct), where participants recognized

distorted melodies from a limited, revealed set, they are still markedly higher than
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those in the equitonal task of Hébert and Peretz (6% correct) where participants had

to access their long-term memory for identification, as in our study. Nevertheless,

the extent of this difference is much reduced compared to isochronous identification

rates in our Study 2 and in previous studies (see Figure 3–3).

Our participants’ tendency to remain within-category in cases of partial identi-

fication and misidentification further demonstrates that the influence of connotative,

contextual cues beyond the pitch and durational cues in the constituent musical

structure must not be discounted when interpreting the results of such studies, even

in controlled conditions that withhold contextual information such as lyrics and in-

strumentation. This tendency to attend at superordinate levels of abstraction and to

err within contextual category is consistent with the principle of cognitive economy

as outlined by Rosch (1978); in cases where there is a conflict between the desire

to attain a fine discrimination between members of a category, and the cognitive

resources available—participants had to produce their responses within six seconds

of the end of presentation in each trial—the naming of a more abstract (contextual)

category, or the choice of a readily accessible exemplar within that category, is a

working compromise.

On methodological grounds, the apparent lack of predictive value of responses

indicating a “feeling of knowing” in our altered conditions, regarding the subse-

quent ability to provide any identifying information on the unaltered melodies, sug-

gests that listeners’ experiential feelings of familiarity when attending to unidentified

melodies may be suspect, and perhaps illusory, in certain conditions. It must be noted

that the distorted stimuli are very different from melodies typically encountered in
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Figure 3–3: Melody identification performance in different rhythmically distorted
conditions. N.b.: Bars to the right of the dotted line illustrate results of previous
studies in the literature, using slightly different experimental procedures and different
stimulus sets, and sampling participants from different populations, than is the case
in the present studies.
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everyday listening. However, experiments in music perception and cognition involv-

ing real, pre-existing musical stimuli commonly attempt to control for confounds of

participant familiarity by asking participants to report or rate their familiarity with

each musical piece. In light of our results, it may be recommendable to supplement

this self-reporting with an identification task, to see whether participants are able to

provide any identifying information for pieces deemed “highly familiar.” Our findings

suggest that ratings of the “feeling of knowing” without such additional validation

may be insufficient in controlling for confounds of familiarity. We note the slight par-

allel to Newton (1990): As her tappers are unable to accurately predict the melody

identification performance of other listeners, so our participants do not significantly

predict their own level of identification success when attending to an impoverished

musical signal.

Finally, the weak overall performance of our three algorithmic measures of rhyth-

mic distance in terms of the correlation with participants’ identification performance

suggests that they are insufficient as algorithmic measures of experienced melodic

identity. Such a measure must be operationalized in order to provide an approach

toward quantifying topical relevance for tasks such as query-by-humming, query-by-

performance, and cover song detection in the field of Music Information Retrieval

(Weigl & Guastavino, 2013; Chapter 2 of this dissertation).

Our results strongly suggest that rhythmic cues, although insufficient in isola-

tion, cannot be disregarded in determining experiential measures of melodic identity.

Combinations of distance measures beyond those focusing on rhythm alone have
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shown improved correspondence with listener’s judgments in melodic similarity rat-

ing tasks (Müllensiefen & Frieler, 2004). Future directions might fruitfully include

investigations of such combined measures in the context of a melody identification

task along the lines presented here.

Furthermore, our results demonstrate significant contributions of connotative,

contextual cues to experienced melodic identity. Algorithmic measures may stand

to benefit by incorporating such cues. Systems to automatically generate contextual

tags, based on data mining of user-contributed annotations on the web, have been

proposed in the MIR literature (Bischoff, Firan, Nejdl, & Paiu, 2009). Metadata

schemes such as those of the Music Encoding Initiative (Hankinson, Roland, & Fu-

jinaga, 2011), and the Digital Music Objects currently being explored as part of the

Fusing Audio and Semantic Technologies for Intelligent Music Production and Con-

sumption (FAST-IMPACt) project (De Roure, Klyne, Page, Pybus, & Weigl, 2015),

explicitly provide elements encoding context alongside those encoding musical facets.

Future research in this direction is necessary in order to fully address the challenge

of measuring experiential relevance in the field of Music Information Retrieval.

Whereas the melody identification task investigated in this chapter relates to

querying scenarios in which a known musical item is being sought, we now turn

toward an investigation of the role of rhythmic information in a different information

seeking scenario; an alternative case that involves the user searching for music to

suit the needs of a particular usage context, where situational requirements dictate

the desired nature of specific aspects of the music. Correspondingly, the quality of a

match is not judged by “topicality” (as in this chapter; the melodic query matches
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the information object retrieved), but rather by situational relevance (a measure

of the relationship between aspects of the information object, and the particular

information need situation at play).

Concretely, Chapter 4 will explore the common musical use case of finding music

to move to, by undertaking a series of experiments investigating beat salience, a

measure of the perceptual prominence of the beat. In these experiments, we will

assess the inter-rater reliability of beat salience ratings, as well as the effect of varying

levels of beat salience on the beat induction and sensorimotor synchronization phases

forming the cognitive process of moving to music, and the predictive validity of

salience ratings on task performance in these contexts. Finally, we will consider

possible implementation strategies for an algorithm to operationalize beat salience

as a situational relevance criterion for MIR systems.
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CHAPTER 4
A Convergent-Methods Investigation of Beat Salience in Sensorimotor

Synchronization

Sensorimotor synchronization—the temporal coordination of motor action with

a regular, periodic external signal—is an ability shared almost universally from an

early age (Drewing, Aschersleben, & Li, 2006), across different levels of musical ex-

pertise (Chen, Penhune, & Zatorre, 2008). Indeed, recent evidence suggests this

ability is not unique to our species (Fitch, 2013; Patel, 2014; Patel, Iversen, Breg-

man, & Schulz, 2009). Yet despite its ubiquity in the human population, several

authors have reported considerable individual differences in rhythmic ability (Grahn

& Schuit, 2012), with some special populations exhibiting rhythmic impairment or

“beat deafness” (Foxton, Nandy, & Griffiths, 2006; Phillips-Silver et al., 2011).

Differences in sensorimotor synchronization are of particular interest in the con-

text of music research, since music listening frequently involves the coordination of

a motor rhythm with an external rhythm (Repp, 2005). For this reason, the effect

of tempo on performance in beat perception and synchronization tasks has received

considerable research attention. According to Parncutt (1994), pulse sensation, the

evocation of a sense of beat, swing, or rhythm in the mind of the listener, occurs

when the inter-onset interval (IOI) conforms to a range between about 200 and 1,800

ms. Within this range, pulse sensation is greatest in the so-called dominance region
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of about 400-900 ms, reaching a point of maximum pulse salience at around 600 ms

(Fraisse, 1982; Parncutt, 1994). Outside of this range, pulse sensations cease.

Researchers have operationalized the perceptual prominence of the beat in var-

ious ways. Tzanetakis, Essl, and Cook (2002) refer to beat strength as the rhythmic

characteristic(s) that allow discrimination between two musical exemplars sharing

the same tempo, while Lartillot, Eerola, Toiviainen, and Fornari (2008) define pulse

clarity as a measure of how easily listeners can perceive the underlying rhythmic

or metrical pulsation at a given point in the music. Finally, Toiviainen and Snyder

(2003) define resonance value as the accentuation strength of a particular tapping

mode, i.e., the period and phase that a listener would be likely to adopt when tapping

along to the music.

Previous studies have evaluated computational models of the prominence of the

beat using subjective rating tasks. Tzanetakis, Essl, and Cook (2002) conducted an

experiment where 32 participants with varied levels of musical expertise rated 50

musical excerpts of 15 seconds each, representing a variety of musical styles, on a

Likert scale encompassing five levels of beat strength (from weak to strong). Lartillot

et al. (2008) conducted a similar study in which 25 musically trained participants

rated the pulse clarity of 100 five-second excerpts from movie soundtrack on a 9-point

Likert scale (from unclear to clear).

Rating tasks possess several advantages in this research context. They are easy

to administer, and do not require musical expertise to complete. Both of the above

studies demonstrated high levels of inter-rater agreement, suggesting that such rat-

ings are reliable across individuals. However, the approach also holds a number
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of limitations: such ratings are retrospective rather than momentary, representing

an overall judgement of the stimulus without capturing real-time variation, and as

a consequence, suffer from potential confounds relating to attention and memory

(Steffens & Guastavino, 2015). What is more, motor coordination is often not con-

sidered, though working definitions of beat strength, pulse clarity, etc. often cite the

ability to synchronize to the external stimulus as an important factor.

Toiviainen and Snyder (2003) take an alternative approach by employing a tap-

ping task to focus explicitly on the motor processes of sensorimotor synchronization.

There is a long tradition of sensorimotor synchronization research employing such

a tapping paradigm (Repp, 2005; Repp & Su, 2013). In such experiments, partici-

pants tap along to isochronous (metronome-like) pulse patterns, simple synthesized

rhythms, or musical recordings. Relevant dependent variables include tap consis-

tency, which represents the degree of regularity of a participant’s taps; tap asyn-

chrony, which refers to the temporal offsets between participants’ tap times and the

“true” beat positions within the stimulus; and tap consensus (Toiviainen & Snyder,

2003), which represents the consistency of the tap times of different individuals for

the same stimulus. Participants may be instructed to tap at particular auditory

events in the stimulus (e.g., with every metronome click), or to tap along at a pace

that feels natural to them. Tasks employing this latter approach are termed pulse-

finding tasks, and they typically result in inter-participant variation resulting from

the metrical level at which participants decide to tap. Meter in this context refers to

nested layers of approximately equally spaced beats or pulses (Krebs, 1999). For a

passage notated in common time and played at a moderate tempo (i.e., where each
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measure is divided into four equally spaced beats), for example, participants some-

times tap at the level of the quarter note (i.e., on beats 1, 2, 3, and 4 within the bar),

at the level of the half note (i.e., on beats 1 and 3), or at the level of the whole note

(i.e., on beat 1). In a pulse-finding task, participant tap times therefore implicitly

reveal characteristics of the perceived meter, where tapping tends to adhere to a

particular level of the metrical hierarchy.

Tapping experiments have typically employed auditory stimuli presenting rhyth-

mically simple or isochronous tone sequences. Such synthetic, lab-generated stimuli

offer a great amount of control over the numerous attributes characterizing most

musical genres, including timbre, pitch, intonation, and accentuation; however, their

ecological validity is limited in a musical context. What is more, pulse-finding exper-

iments employing genuine musical stimuli have generally been confined to a narrowly

defined genre and style (Snyder & Krumhansl, 2001), or to different excerpts from

the same musical piece (Toiviainen & Snyder, 2003). This more naturalistic approach

offers greater ecological validity while maintaining a fair degree of control over con-

founding facets. However, the range of applicability toward a more varied musical

and rhythmic context remains limited.

The act of sensorimotor synchronization is a two-stage process. Sensorimotor

synchronization begins with a perceptual process of beat induction in the first stage,

in which the listener determines the period and phase of the isochronous pulse at one

or more levels of the metrical hierarchy, with the various motor processes involved

in synchronization constituting the second stage. One disadvantage of the tapping

paradigm is that these perceptual and motor processes are difficult to disentangle
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(Toiviainen & Snyder, 2003). The beat alignment test (BAT) proposed by Iversen

and Patel (2008) offers an experimental framework to address this issue by combining

the tapping approach discussed above with a psychoacoustic task measuring beat

perception.

The BAT was conceived as a test battery to “quantify the normal range of beat-

based processing abilities in the general population” (p. 465), to assess the degree of

association between beat perception and sensorimotor synchronization task perfor-

mance, and to identify “beat deaf” participants, i.e., individuals that demonstrate

significantly impaired abilities of beat perception and synchronization but do not

exhibit congenital amusia or “pitch deafness” (see also Phillips-Silver et al., 2011).

The BAT consists of three stages of testing: 1) a synchronization task to col-

lect baseline data, in which participants are first instructed to tap consistently at a

tempo of their choosing, without an accompanying stimulus, and then to tap along

to metronomic sequences at different tempi; 2) a pulse-finding task, in which partic-

ipants tap along to each of twelve musical stimuli selected from the rock, jazz, and

pop instrumental genres; and 3) a beat perception task, in which participants indi-

cate whether isochronous trains of pulses (beeps) superimposed over each musical

excerpt align with one or more levels of the metrical hierarchy. In the perception

task, three versions of each excerpt are presented, with pulses either correctly placed

“on the beat”, or exhibiting one of two types of error: pulse trains that are too fast or

too slow (“tempo error” condition), or pulse trains that are out of phase (either too

early or too late) with the beat of the music (“phase error” condition). Participants
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respond by indicating as quickly as possible whether the pulses are on or off the beat,

and accuracy and response time are recorded.

Iversen and Patel (2008) reported on a pilot application of the BAT to 30 par-

ticipants ranging in musical expertise from professional to self-declared amusic (p.

466). Their results demonstrated significant differences in synchronization perfor-

mance between individuals (matching tapping tempo against musical tempo), as

might be expected given the range of expertise. None of their participants were

found to be “beat deaf”, with tempo sensitivity remaining clearly evident even in

the worst individual performance (an outlier demonstrating relatively poor tempo

tracking). In the beat perception task, participants demonstrated a tendency to

identify pulse trains as being “on-the-beat”, even when tempo or phase errors were

in fact present. Although on-beat pulse trains were identified correctly in most cases

(mean percent correct = 90%), performance was significantly impaired in both error

conditions, with particular poor results in the phase error condition (mean percent

correct = 60%, IQR = 30%, range = 18 – 98%; see figure 3, p. 467). Finally, their

results demonstrated a moderate correlation between synchronization and perception

task performance, when the results of the participant with the worst synchronization

performance were removed.

The present study concerns beat perception and sensorimotor synchronization

to musical stimuli with beats exhibiting a range of degrees of perceptual salience.

Similarly to Tzanetakis, Essl and Cook (2002), we are interested in rhythmic charac-

teristics beyond tempo. However, whereas their study conceives of beat strength as

supporting discrimination between different types of beat, we wish to measure the
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effect of such characteristics on the process of beat perception and sensorimotor syn-

chronization. Our concerns are also well aligned with those of Lartillot et al.’s study

of pulse clarity (2008), in that we wish to investigate the clarity of the rhythmic pul-

sation underlying the music as it is perceived by the listener. However, rather than

focusing on momentary impressions for short musical stimuli, we employ somewhat

longer excerpts of 17 seconds, encompassing an average of 6.33 complete measures

of music (SD=1.52), in order to involve longer-term rhythm and meter perception to

provide greater ecological validity in the context of perceiving and moving to music.

Concretely, our study investigates the sensation of beat salience, which we define as

the quality of the music that affords synchronized rhythmic movement; a measure of

the perceptual prominence of the beat in the context of moving to music.

Our motivations for pursuing this study are rooted in the disciplines of psychol-

ogy, music perception and cognition (MPC), and music information retrieval (MIR).

From a psychological perspective, we apply a convergent measures approach in order

to study the phenomenon of sensorimotor synchronization by obtaining psychometric

measures of the constituent processes of perception and motor synchronization, and

experiential measures in the form of self-reported ratings by the listener, across a

broad range of task difficulties. From the perspective of MPC, we contribute to a

tradition of research in rhythm perception while filling certain gaps in previous work

– limitations in the ecological diversity of musical stimuli, and a focus on partici-

pants lacking substantive musical training. Non-musicians are of particular interest

given the near-universality of the human ability to synchronize movement to a musi-

cal beat. Finally, rhythmic synchronization of movement is a common musical “use
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case”, as in dance, work, or exercise. Musical qualities that afford such movement

are thus of particular interest from an MIR perspective, where beat salience may

serve as a useful relevance criterion or query mechanism in MIR system design.

To address these goals, the present study employs a convergent approach featur-

ing three experimental tasks. Our participants first complete either a beat perception

task (Experiment 1) or a sensorimotor synchronization task (Experiment 2), based

on the corresponding tasks of the Beat Alignment Test (Iversen & Patel, 2008). Both

experiments employ musical stimuli selected in a preliminary study as exemplars of a

range of beat salience levels (low, medium, or high). After completing their first task,

all participants completed a rating task (Experiment 3) based on the approaches of

Tzanetakis, Essl, and Cook (2002) and Lartillot et al (2008).

4.1 Preliminary study

We conducted a preliminary study in order to determine a normative set of

musical exemplars of low, medium, and high levels of beat salience, to serve as

stimuli in our perception, synchronization, and rating tasks (Experiments 1-3).

4.1.1 Participants

Ten participants (four female) were recruited from the McGill University com-

munity. All participants described themselves as either amateur (9) or professional

musicians (1), averaging 13.1 years of study on a musical instrument. All partici-

pants also described themselves as music lovers, listening to an average of six hours

of music each week. Participants also reported listening to a variety of musical gen-

res (e.g., classical, pop, rock, techno, hip hop, folk, etc.). All participants reported

normal hearing. A standard audiogram was administered before the experiment to
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confirm that hearing thresholds were below 20 dB HL (ISO 398-8, 2004). None of the

participants indicated they had absolute pitch. All participants gave informed con-

sent. The study was certified for ethical compliance by McGill University’s Research

Ethics Board II.

4.1.2 Materials

The stimuli consisted of 54 short excerpts (17s) selected from the popular and

electronic music repertoire, and a further six excerpts selected to serve as example

stimuli in practice trials before data collection began. To ensure familiarity with

the excerpts would not affect participant ratings of beat salience, we attempted to

select relatively unknown excerpts. Care was also taken to select stimuli in which the

perceived beat salience would not vary over the course of the excerpt. Each excerpt

was pre-classified into one of three categories by the authors—low, medium, and high

salience, 18 excerpts in each category—according to our perception of the clarity and

strength of the beat. A one second fade-in and fade-out was also applied to each

stimulus to de-emphasize stimulus boundaries. To ensure differences in perceived

loudness between excerpts would not affect beat salience ratings, the stimuli were

normalized to -.3 dB.

4.1.3 Apparatus

The participants were seated in a double-walled IAC sound-isolation booth (IAC

Acoustics, Bronx, NY). The stimuli were reproduced on a Macintosh G5 PowerPC

(Apple Computer, Cupertino, CA), output as S/PDIF using an M-Audio Audiophile

192 sound card (Avid, Irwindale, CA), converted to analog using a Grace Design m904

monitor system (Grace Design, Boulder, CO), and presented stereophonically over a
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pair of Dynaudio BM6A monitors (Dynaudio, Skanderborg, DK). The stimuli were

presented at a comfortable listening level that was kept constant for all participants.

The experimental program, subject interface, and data collection were programmed

using the Max/MSP program from Cycling 74’ (San Francisco, CA), and controlled

by the PsiExp software environment (Smith, 1995).

4.1.4 Design and procedure

Upon arriving, each participant was asked to fill out an informed consent form,

and then directed into the testing booth to begin the experiment. After listening

to each excerpt, participants were instructed to rate the salience of the beat on a

5-point Likert scale labeled from very low to very high. Beat salience was defined

to the participants as “the perceptual strength or prominence of a beat. A value of

5 indicates that you could easily tap to the beat, while a value of 1 indicates that

you simply could not tap to the beat.” Participants were encouraged to use the full

range of the scale over the course of the experiment, and to listen to each excerpt as

many times as they wished. Participants were explicitly asked to tap along to the

music in order to inform their response.

In addition to the beat salience rating, participants rated their familiarity with

the excerpt on 7-point analogical-categorical scales (Weber, 1991). This consisted

of an analogue scale subdivided into seven discrete categories labeled from 1 to 7,

where a rating of 7 indicated that they had certainly heard the excerpt and knew

the song, and 1 indicated that they had never heard the excerpt before.

To familiarize the participants both with the range of stimuli and with the

experimental task, the experiment began with a practice session of six additional
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excerpts, pre-categorized as exhibiting low, medium, and high beat salience (two

additional excerpts per beat salience category). The pre-study was composed of two

blocks of 27 trials each. At the end of the first block, participants could take a short

break, leaving the testing booth if they wished. After completing the ratings task,

participants filled out a questionnaire addressing their music background.

4.1.5 Outcomes

Agreement between participants was fairly high, with a median of eight partic-

ipants assigning the same rating on stimuli we had pre-classified as exemplifying a

high level of beat salience, and a median of five participants on medium and low beat

salience level stimuli.

To determine a minimum threshold of inter-case agreement, a chi-square test was

calculated to compare the beat salience judgement that received the highest number

of responses (e.g., very low) to the sum of the responses for the other four possible

judgements. Out of 180 cases within each beat salience category (10 participants x 18

excerpts per category), a minimum of 46 identical responses (25.6%) was necessary

to achieve significance, χ2(1) = 4.27, p < .04. The excerpts pre-classified as high

beat salience received “high” responses in 23%, and “very high” responses in over

65% of all cases. Excerpts pre-classified as medium beat salience received “medium”

responses in just under 40% of all cases, while excerpts pre-classified as low beat

salience received “low” responses in 40%, and “very low” in 25% of all cases.

On average participants rated the excerpts as somewhat familiar (M = 3.03, SD =

3.8). However, the mean familiarity ratings displayed a fairly restricted range, falling

between 2–4 on the 7-point scale. Unfortunately, the median beat salience ratings
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for each excerpt were correlated with ratings of familiarity, rs(54) = .7, p < .001,

indicating that the participants’ familiarity with the excerpts may have affected their

beat salience ratings.

The outcomes of this preliminary study were used to obtain a reduced subset

of 24 highly representative exemplars of each beat salience level (8 musical excerpts

per category). To eliminate unwanted effects of familiarity, care was taken to select

excerpts that received low mean familiarity ratings (1 SD below the mean). K-means

clustering on our participants’ beat salience ratings was then performed in order

to identify the 8 most representative excerpts for each category. The 24 resulting

excerpts were used in the remaining experiments reported in this chapter, and are

listed in Appendix F.

4.2 Experiment 1: Beat induction

We conducted an experiment in order to investigate the effect of beat salience

on beat induction, the perceptual phase of sensorimotor synchronization wherein the

temporal location of the external beat is established. This experiment employed a

response time task modeled on the perceptual judgement task of the Beat Alignment

Test (Iversen & Patel, 2008), with the addition of beat salience level as an independent

variable.

An assumption underlying our experimental design is that completion of this

task requires a series of perceptual steps: beat induction, that is, establishing an

internal representation of the regular isochronous pattern corresponding to the metric

grid of the music; locating the position of the cowbell pulses along this grid; and

finally, assessing whether these pulse positions intersect with valid positions of the
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beat of the music. We expect the difficulty of the first step to vary according to the

clarity with which the beat of the music is perceived. Accordingly, we hypothesize

a linear relationship between beat salience level and our outcome measures, where

high beat salience levels are associated with fast response times and a high proportion

of correct responses, and low beat salience levels are associated with slow response

times and a low proportion of correct responses.

4.2.1 Participants

Thirty non-musicians (17 female) from the Montreal community were recruited

through the McGill University classified ads calling for non-musicians with no known

hearing impairments to participate in a music perception experiment. Interested vol-

unteers were screened in a pre-participation questionnaire to ensure they possessed

no more than one year of formal training on a musical instrument. None of the par-

ticipants had taken part in the preliminary study. The average age of the participants

was 25 years (SD = 6). Twenty seven participants self-identified as “non-musicians”;

three self-identified as “amateur musicians”. All but one participant indicated that

they enjoyed listening to popular and electronic music, and participants reported

listening to a mean of 2.5 hours of music each day (SD=2.5). All participants ex-

hibited unimpaired binaural hearing at ranges from 250 – 8,000 Hz as assessed by

a standardised audiometric test at the beginning of each experimental session. All

participants gave informed consent. The study was certified by the McGill University

Review Ethics Board.
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4.2.2 Materials

Twenty four musical excerpts selected in the preliminary study were presented to

participants. This stimulus set comprised eight exemplars each of the low, medium,

and high beat salience categories. Each stimulus was presented alongside an over-

laid isochronous (metronome-like) pulse train presenting an impulsive cowbell sound

(200 ms). The cowbell sample was selected from a range of sounds including other

percussive audio samples, pure tones, and noise bursts, as its timbre was determined

to be the most easily perceptually separable from the musical stimuli.

4.2.3 Apparatus

The sound isolation booth, along with its computer and audio equipment set-

up, was described in the preliminary study. For the purposes of Experiment 1, a

high-accuracy response time measuring device (Li, Liang, Kleiner, & Lu, 2010) was

connected to the USB port of the computer to accept participants’ responses. The

outer two of the device’s four response buttons were masked with tape, leaving a red

and a green response button visible and available to the participant. A marker was

placed just below and in between these two buttons to indicate the resting position

for the participant’s index finger during the experiment. The experimental interface

was presented using a MATLAB script and the Psychtoolbox-3 module (Kleiner et

al., 2007).

4.2.4 Design

Each experimental trial presented one of the 24 stimuli, along with an overlaid

pulse train consisting of an isochronous cowbell beat. Each trial first presented the

musical excerpt without the pulse train overlay for five seconds. The pulse train
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overlay then began during a measure within the following three seconds, according

to the present trial’s experimental condition (see below). The musical excerpt and

pulse train overlay then continued playing until the participant issued a response,

or until the excerpt’s duration of 17 seconds was reached. Participants were tasked

with responding as quickly and as accurately as possible as to whether or not the

pulse train was synchronized to the beat of the music.

The placement of the pulse train corresponded to the experimental condition

according to two factor manipulations: meter, in which the first sounding of the

pulse train occurred on either a metrically strong or metrically weak position, cor-

responding to the first or last beat of the measure; and phase, in which the pulse

train was either aligned perfectly with the beat of the music, or misaligned with a

phase error of ±75 ms (early or late). This duration was selected as it represents

the duration of a 32nd note at the ideal tapping tempo of 100bpm as determined by

Parncutt (1994).

The study therefore employed a 3 (beat salience level) x 3 (phase condition) x 2

(metric condition) design, where beat salience level corresponded to the classification

of the individual musical excerpts in the preliminary study. There were 8 musical

excerpts for each beat salience level, and each excerpt was presented to each partic-

ipant once in every combination of the phase and metric conditions, resulting in a

total of 144 trials in the experimental session. Presentation order of excerpts and

conditions was randomized for each participant. Participants’ response times (the

time between the first sounding of the pulse train and the participant’s response)

and accuracy were recorded.
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4.2.5 Procedure

After signing the informed consent form, each participant was led to the test-

ing booth, where an audiogram was performed. Upon passing the audiogram test,

participants received instructions regarding the experimental task and the require-

ment to respond as quickly as possible as soon as they were confident of the correct

response was emphasized to each participant.

A practice block consisting of eight trials preceded the main experiment, pre-

senting stimuli to exemplify the different levels of beat salience, using excerpts not

included in the main session. During this block, the experimenter was present in the

testing booth to ensure that the participant understood the interface and the task.

After completion of the practice block, the experimenter exited the testing booth,

and the participant was left to complete all 144 trials of the main experiment. Each

successive trial’s presentation started automatically 500ms after the participant is-

sued a response for the previous trial. In the case that any stimulus played for 17s

without receiving a response, the excerpt would fade to silence, and the next trial

would only commence after the participant issued a response; participants were in-

structed to simply press either response button in this case, and any such delayed

responses were withheld from analysis.

After completion of the main experimental task, participants completed Exper-

iment 3 (the beat salience rating task), described below. Finally, participants filled

out a questionnaire on their musical background. All participants received $10 CAD

upon completion of the experimental session as compensation for their time.
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4.2.6 Analysis

Response times. As differences in response times are to be expected between

correct and incorrect responses (Ratcliff & Rouder, 1998) we constrained our analysis

to take into account only correct responses. This necessarily results in an unbalanced

dataset, as the proportion of correct responses will vary according to differences in

expected task difficulty among the experimental conditions. Further, while it was

desirable to treat our musical excerpts as random effects, we expected correlations

among the response times for excerpts exhibiting the same level of beat salience. As

such, our analysis applied a linear mixed effects modelling approach that is able to

address both unbalanced data sets and crossed random effects (Pinheiro & Bates,

2006). The analysis was performed using R (R Core Team, 2015) and the lme4 mod-

ule (Bates, Maechler, Bolker, & Walker, 2014). Response times were log-transformed

in order to address the positive skew inherent in raw response time data.

Following Barr, Levy, Scheepers, and Tily (2013), we first specified a maximal

random-effects structure, with sum-coded fixed effects for beat salience level, phase

condition, metric condition, and their interactions, and random intercepts with by-

participant slopes for all fixed effects, and by-item (musical excerpt) slopes for phase

condition and metric condition1 . Linear mixed effects models (LMEM) are typically

fit using an iterative algorithm that estimates parameter values to maximize the

likelihood of obtaining the observed data, given the structure of the model (Barr

1 By-item slopes for beat salience are not justified by our design, as each musical
excerpt belongs to only one beat salience level.
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et al., 2013, p. 261). This algorithm is not guaranteed to arrive at a solution

within a tractable number of iterations, in which case the estimation is said to be

“non-convergent”. Such convergence failures are more commonly encountered in

structurally complex models (p. 261), and in our case, the maximal model failed to

converge.

To identify principled means of simplifying the model, we fit a reduced, random-

intercept-only linear mixed effects model (LMEM) with fixed effects for beat salience

level, phase condition, metric condition, and their interactions, and crossed random

intercepts by participant and item. No random slopes were specified. Such random-

intercepts-only models are structurally simpler than models specifying slopes, and

thus more likely to converge; however, they are prone to producing type 1 errors,

as the unspecified random slope variation may account for differences in condition

means, resulting in spurious “treatment effects” that are in fact merely statistical

artifacts (p. 261). We opted to fit such a model in order to identify any fixed

effects that remain insignificant even with this inflated risk of false positives, in

order to justify pruning these from a more fully specified model encoding random

intercepts and slopes. Significance was determined using the pamer.fnc function

of the LMERConvenienceFunctions R module, which computes “upper- and lower-

bound p-values for the analysis of variance (or deviance) as well as the amount of

deviance explained (%) for each fixed-effect” of an LMEM, given the range of possible

degrees of freedom (Tremblay & Ransijn, 2013). The analysis of this intercepts-

only model revealed a significant main effect of beat salience level, and a significant
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interaction of beat salience level and phase condition. No significant effects were

detected for the metric condition, nor for any of its interactions.

We thus arrived at our final model, specifying fixed effects for beat salience

level, phase condition, and their interactions, and random intercepts with slopes by-

participant for all fixed effects present in the model, and by-item (musical stimulus)

for phase condition. This model’s structure does not account for the metric con-

dition, but is otherwise identical to our initial, maximally specified model. After

convergence, assumptions of homoscedasticity and normality were checked by visual

inspection of residual plots; no obvious deviations were detected. Hypothesis testing

was conducted using the pamer.fnc module to determine significance (Tremblay &

Ransijn, 2013), as above.

In order to control for potential confounds that may be introduced by the range

of tempi represented in the stimulus set (see Appendix F), we repeated the above

analysis investigating an alternative measure of the response time: the number of

inter-onset intervals of the overlaid cowbell pulses before a response was obtained

in each trial. Rather than measuring the (tempo-dependent) time period before a

response, we thus obtained a measure of the number of (tempo-independent) indi-

cations of the overlaid pulse’s position relative to the beat of the musical stimulus

before a response was obtained. Similarly to response times, the distribution of ob-

servations of this measure is positively skewed; we thus log-transformed our data

before analysis. As in the response time analysis above, a maximal model failed to

converge; however, an intercept-only model indicated no significant main effects of

the metric condition or its interactions. The outcomes of a model replicating the
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final model of the response time analysis—fixed effects for beat salience level, phase

condition, and their interactions, and random intercepts with slopes by-participant

for all these fixed effects, and by-item (musical stimulus) for phase condition—were

similar to the results obtained in the response time analysis.

Accuracy. A logistic linear mixed effects modeling approach was undertaken

using the lme4 R module (Bates et al., 2014) following a similar approach to the

one described for the response time analysis above. Following Barr et al. (2013), we

specified a maximal model with fixed effects for beat salience level, phase condition,

metric condition, and their interactions, and random intercepts with by-participant

slopes for all fixed effects, and by-item (musical stimulus) slopes for phase condition

and metric condition. This maximal model achieved convergence.

4.2.7 Results

Response times. Our raw data set included 4,320 observations, correspond-

ing to 30 participants’ responses to 24 musical excerpts (eight per beat salience level),

each presented in three phase conditions and two metric conditions. We removed two

observations encoding responses that were given before the sounding of the first cow-

bell pulse, and 292 observations given after 17 seconds (i.e., after presentation of

the stimulus had ended). The resulting data set included 4,026 observations, with a

minimum response time of 455 ms after the sounding of the first cowbell pulse.

As timing differences are to be expected between correct and incorrect responses

(Ratcliff & Rouder, 1998), this set of observations was further divided into correct

(N=2,198) and incorrect (N=1,828) cases in the analysis of response times.
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Figure 4–1: Cross-participant mean response times for correct responses across beat
salience levels and phase conditions. Response times are measured from the sounding
of the first cowbell in the pulse train overlay. Point ranges indicate bootstrapped
95% confidence intervals (1,000 resamplings).

The analysis of our random-intercept-only model of log-transformed response

times (RT) for correct responses, fit to identify a principled means of reducing the

maximally specified model after non-convergence, revealed a significant main effect

of beat salience level, F = 3.18, p < .05, and a significant interaction of beat salience

level and phase, F = 8.95, p < .001; with a range of DF of 2,126 – 2,180, and p-

values, adjusted to control for false discovery rate (FDR) for multiple comparisons

(Benjamini & Hochberg, 1995), differing by less than .0001 over this range.

As no significant effects of metric condition or its interactions was detected,

we arrived at our final model, specifying fixed effects for beat salience level, phase
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condition, and their interactions, and random intercepts with slopes by-participant

for all fixed effects present in the model, and by-item (musical stimulus) for phase

condition. Analysis of this model revealed a significant main effect of beat salience

level, F = 3.31, p < .05, and a significant interaction of beat salience level and

phase, F = 3.2, p < .05, with a range of DF of 1,847 – 2,189, and FDR-adjusted p

values differing by less than .001 over this range. Figure 4–1 illustrates the mean

untransformed RT for correct responses across the different beat salience levels and

phase conditions.

Post-hoc testing of the interaction between beat salience level and phase con-

dition was conducted by employing least-squares means using the R lsmeans pack-

age (Lenth, 2014), with pairwise contrasts of beat salience level grouped by phase

condition (Figure 4–2). This analysis revealed significant differences in log(RT) of

responses to low vs. high beat salience stimuli when phase condition was “on”: low -

high beat salience log(RT ) = 0.38, t(31.16) = 3.65, p < .01 (Tukey-adjusted for mul-

tiple comparisons). We also detected a trend short of significance in the differences in

log(RT) of responses to medium vs. high beat salience stimuli when phase condition

was “on”: medium - high beat salience log(RT ) = 0.2, t(21.96) = 2.22, p < .1. No

significant differences between beat salience levels were detected in those conditions

exhibiting phase error (“early” and “late”).

Pulse train inter-onset intervals before response. We repeated our anal-

ysis of the correct responses (N=2,198) using an alternative, tempo-independent

measure of the speed of response – the number of inter-onset intervals of the overlaid
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Figure 4–2: Least-squares means and 95% confidence intervals of log(RT) according
to beat salience level, grouped by phase condition. Response time measures to low
and high beat salience stimuli differ significantly in the phase “on” condition.

cowbell pulses before a response was obtained in each trial. We fit an LMEM speci-

fying fixed effects for beat salience level, phase condition, and their interactions, and

random intercepts with slopes by-participant for all fixed effects present in the model,

and by-item (musical stimulus) for phase condition, replicating the final model em-

ployed in the RT analysis above. This analysis revealed a significant interaction of

beat salience level and phase condition, F = 3.48, p < .001; with a range of DF of

1,847 – 2,189, and FDR-adjusted p values differing by less than .001 over this range.
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Figure 4–3: Mean number of pulse train inter-onset intervals between first sounding of
cowbell beat and participant response. This alternative indicator provides a measure
of response speed that is independent of stimulus tempo. Point ranges indicate
bootstrapped 95% confidence intervals (1,000 resamplings).

Post-hoc testing conducted in the same manner discussed above for response

times was repeated on our inter-onset interval measure, resulting in significant di-

vergence from the grand mean only in the low and high beat salience levels of

the phase “on” condition (low beat salience: divergence from grand mean inter-

onset intervals = 0.14, t(28.56) = 1.94, p < .05; high beat salience: divergence

= 0.23; t(25.24) = 3.3, p < .01; FDR-adjusted p-values).

The outcomes of our analysis of this alternative measure thus largely replicate

the results of our log(RT) analysis presented above, suggesting that our findings are

resilient to confounds from the range of tempi in the employed stimuli. Figure 4–3
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illustrates the mean number of inter-onset intervals for correct responses across the

different beat salience levels and phase conditions.

Accuracy. The data set for the analysis of accuracy (proportion of correct

responses) consisted of the undivided set of observations comprising correct and

incorrect responses, after the removal of responses obtained before the sounding of

the first cowbell pulse or after the presentation of the stimulus had ended (N=4026).

Hypothesis testing on our maximally specified logistic LMEM, with fixed effects

for beat salience level, phase condition, metric condition, and their interactions,

and random intercepts with by-participant slopes for all fixed effects, and by-item

(musical stimulus) slopes for phase condition and metric condition, was conducted

using a type III Wald χ2 test (Table 4–1). We determined a significant main effect

of phase condition on accuracy, as well as a significant interaction of beat salience

level and phase condition, reflecting the findings of the response time analysis. We

further detected a significant interaction of phase and metric condition on accuracy,

not present in the analysis of response times.

4.2.8 Discussion

Our results support the hypothesized linear relationship between beat salience

level and our outcome measures in the phase “on” condition. When the pulse train

aligned with the phase of the music, high salience levels corresponded to fast response

times and a high proportion of correct responses, and low salience levels corresponded

to slow response times and a low proportion of correct responses. The results for

trials presenting misaligned pulse trains (i.e., the phase “early” and “late” condi-

tions) do not support this hypothesis. Instead, we observed a significant interaction

139



Table 4–1: Proportion of correct responses: Type III Wald χ2 test.

Fixed effect DF χ2

Grand mean 1 5.19*
Beat salience level (BSL) 2 1.54
Phase condition (PC) 2 13.34**
Metric condition (MC) 1 2.13
BSL×PC interaction 4 22.49***
BSL×MC interaction 2 0.99
PC×MC interaction 2 6.84*
BSL×PC×MC interaction 4 0.64
*** p < .0001 ** .001 < p < .01 * .01 < p < .05
Note: N = 4,026. Model specifies random intercepts and slopes by-participant for
beat salience level, phase condition, metric condition, and their interaction, and
by-item for phase condition, metric condition, and their interaction.

Table 4–2: Proportion of correct responses: parameter estimates.

PC BSL Estimate SE z-ratio

Early
Low 0.44 0.29 1.51

Medium 0.37 0.28 1.32
High −0.81 0.29 −2.79*

On
Low −1.31 0.36 −3.65***

Medium −0.55 0.35 −1.57
High 1.86 0.39 4.75***

Late
Low 1.15 0.43 2.66*

Medium 0.46 0.42 1.1
High −1.62 0.46 −3.51**

*** p < .0001 ** .001 < p < .01 * .01 < p < .05 (FDR-adjusted p-values)
Note: Results averaged over the levels of the metric condition.
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Figure 4–4: Cross-participant mean proportion of correct responses across beat
salience levels, phase conditions, and metric conditions. Participants responded as
to whether or not the pulse train was synchronized to the beat of the music. Dotted
line indicates chance level (50%). Point ranges indicate bootstrapped 95% confidence
intervals (1,000 resamplings).

between beat salience level and phase condition, with response times significantly di-

verging in the “low” and “high” beat salience levels of only the phase “on” condition.

Our investigation of the alternative measure of response time controlling for tempo

differences between stimuli, which consisted of the number of inter-onset intervals

(inter-cowbell soundings) before a response was provided, reveals a similar pattern of

results, though the difference between the “low” and “medium” beat salience levels

of the phase “on” condition was less pronounced.

For the proportion of correct responses shown in Figure 4–4, the significant

interaction between beat salience level and phase condition resulted in a counter-

intuitive outcome where participants overwhelmingly responded that the pulse train

141



was synchronized with the beat of the music in trials presenting high salience stim-

uli, regardless of the actual presence or absence of phase error. This resulted in

a proportion of correct responses that was significantly above the grand mean in

the interaction of high beat salience and synchronized phase, as would be expected,

but significantly below the grand mean in the interaction of high beat salience and

“early” or “late” phase, contrary to expectation (Table 4–2, p. 140). This finding

reflects a similar asymmetry in the results obtained in the beat perception task of

Iversen and Patel (2008), where participants also more frequently judged off-beat

pulses to be on the beat than they judged on-beat pulses to be off the beat. Iversen

and Patel’s study does not investigate beat salience; their stimuli would likely fall

into the high beat salience level in our study’s design.

The tendency toward perceiving marginally early or late beat onsets as falling

on the beat in the high beat salience condition may be attributable to a captor effect,

whereby the overlaid cowbell beats are perceptually grouped with the highly salient

beat of the music. From this perspective, we may posit an integration window

spanning a short time period around the beat onset time; pulse onsets occurring

within this span are captured by the musical stimulus, and perceived as “on the

beat”. The absence of this effect for the medium and low beat salience stimuli

could be accounted for by positing a relationship between the size of the integration

window, and the distinctiveness of the metric grid established during beat induction,

corresponding to the experienced level of beat salience. This hypothesis could be

tested by experimenting with different phase offset sizes in the different salience

conditions. We would expect the captor effect to be replicated with smaller phase
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offsets in the medium and low salience conditions. Additionally, potential effects of

the degree of participants’ musical training on the location of the offset thresholds

at the transition between the presence and absence of capture could be investigated,

with the expectation that a higher degree of training would result in a narrower

integration window, and thus heightened sensitivity to phase error.

Following on from our investigation of the effect of beat salience on beat induc-

tion, the primary perceptual phase of the sensorimotor synchronization process, we

conducted a further experiment focusing on the secondary stage, motor coordina-

tion. This second experiment made use of a beat finding methodology commonly

employed in tasks investigations of sensorimotor synchronization (Iversen & Patel,

2008; Repp, 2005; 2013; Toiviainen & Snyder, 2003) in order to investigate the effect

of beat salience on participants’ task performance in terms of consistency of motor

coordination when moving to the musical beat.

4.3 Experiment 2: Sensorimotor synchronization

4.3.1 Participants

Thirty two non-musicians (18 female) from the Montreal community were re-

cruited through McGill University classified ads. Participants were screened based

on the same criteria as in Experiment 1. None of the selected participants had

taken part in either Experiment 1 or in the preliminary study. The average age of

the participants was 22 years (SD = 5). Twenty six participants self-identified as

“non-musicians” and six self-identified as “amateur musicians”. All but two partic-

ipants indicated that they enjoyed listening to popular and electronic music, and

participants reported listening to a mean of 3.1 hours of music each day (SD = 1.8).
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All participants exhibited unimpaired binaural hearing, assessed at the beginning

of each experimental session as in Experiment 1. All participants gave informed

consent. The study was certified by the McGill University Review Ethics Board.

4.3.2 Materials

This task presented the 24 musical excerpts selected in the preliminary study

and employed in Experiment 1, exemplifying low, medium, and high levels of beat

salience (8 excerpts per level), with a duration of 17s per stimulus. In this task,

the excerpts were presented without the pulse train overlay (cowbell beat) used in

Experiment 1.

4.3.3 Apparatus

The sound isolation booth, along with its computer and audio equipment set-

up, were the same as in the preliminary study. Additionally, a Roland HPD15

HandSonic electronic hand percussion MIDI controller (Roland, Hamamatsu, JP)

was connected to the computer’s USB port to record participants’ taps during the

experiment. The MIDI controller was parameterized for optimal sensitivity to finger

tapping. A flashing LED indicator on the drum pad gave visual feedback to reassure

participants that their taps had been registered.

4.3.4 Design

Each trial in the experimental session presented one of the 24 musical stimuli in

three successive sub-trials: i) naïve tapping; ii) attentive listening; and iii) informed

tapping. In each case, excerpts were presented in full, i.e., played for 17s per sub-

trial. Trial order was randomly determined for each participant. Measurements of

the onset times of participants’ taps on the MIDI drum were taken, and the duration
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between the first sounding of the current sub-trial’s musical excerpt and each tap

onset was recorded.

4.3.5 Procedure

Upon signing the informed consent form, participants entered the testing booth

and completed an audiogram test, as in Experiment 1. After passing the audiogram,

participants were instructed on their task, and given the opportunity to ask for

clarification from the experimenter. An initial block of practice trials was then

completed in the presence of the experimenter to familiarize the participant with the

experimental interface and task. This practice block presented three trials featuring

musical excerpts exhibiting low, medium, and high beat salience that were chosen

from outside the main stimulus set. After completion of the practice block, the

experimenter then left the participant to complete the main experimental block of

24 trials.

Each trial was comprised of three successive sub-trials presenting the same stim-

ulus. In the first sub-trial (“naïve tapping”), participants tapped along to the musical

excerpt, having not heard it before in the context of the experiment. Participants

were instructed to start tapping as soon as they were confident that they had found

the beat. In the second sub-trial (“attentive listening”), participants were instructed

to listen attentively to the beat of the music, without tapping along. In the third

sub-trial (“informed tapping”), participants tapped along again. Participants were

explicitly not required to replicate their tapping from the first sub-trial; rather, they

were instructed to tap wherever seemed natural.
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As after Experiment 1, participants completed a beat salience rating task (Ex-

periment 3) after completion of Experiment 2. Finally, participants filled out a

questionnaire on their musical background. All participants received $10 CAD upon

completion of the experimental session as compensation for their time.

4.3.6 Analysis

Tapping consistency. In order to determine the effect of beat salience level

on participants’ consistency while tapping along to the music, and to control for a

potential confound of stimulus tempo on tap consistency, we analyzed the standard

deviation of intertap intervals (ITI) for each participant and excerpt, log-transformed

to address positive skew in the data. We constrained our analysis to ITI obtained

during informed tapping, in order to control for potential confounding effects of

unexpectedness upon initial (naïve) exposure to each stimulus.

We specified a linear mixed effect model with fixed effects for beat salience level

and excerpt tempo (in beats per minute), with random intercepts by-participant and

by-excerpt, and a random slope by-participant for beat salience level. Visual inspec-

tion of residual plots revealed no apparent violations of the assumptions of normality

and homoscedasticity. As in the analysis of response times (Experiment 1), hypoth-

esis testing was conducted using the pamer.fnc module to determine significance

(Tremblay & Ransijn, 2013).

Tapping consensus. We visualized the degree of tapping consensus between

the individuals within our group of participants by plotting the probability density

function p(t) of all participants’ tap times for a given stimulus and sub-trial (naïve

or informed tapping), where p(t) is the sum of Gaussian kernels placed at each tap
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time (Toiviainen & Snyder, 2003). This approach is parameterized by the standard

deviation of the Gaussian kernels to be placed; a larger SD results in a smoother

distribution, a smaller SD in a more granular distribution. To address the range of

tempi and beat salience inherent in our stimuli, we determined this value indepen-

dently for each stimulus using the Sheather and Jones “Solve-the-Equation Plug-In”

approach (Jones, Marron, & Sheather, 1996; Sheather & Jones, 1991), adjusting by a

value of 50ms, as used by Toiviainen and Snyder. We found this approach to produce

a good compromise between smoothness and resolution of the estimated probability

densities.

We hypothesized that the musical stimuli with a highly salient beat would

present little ambiguity regarding appropriate tapping times, and stimuli exhibit-

ing low beat salience conversely would present greater ambiguity. Accordingly, we

expected the probability distributions of high salience stimuli to be characterized

by clearly defined, spiky peaks, as participants are more likely to tap at mutually

consistent times; and those of low salience stimuli to be defined by diffuse peaks of

unclear definition, as different individuals’ taps are not well correlated.

In order to obtain a more objective grasp of tapping consensus and to facilitate

analysis, it was desirable to quantify such distributional cues. Toiviainen and Snyder

obtained a quantitative consensus measure of their participants’ tap consensus based

on information-theoretic considerations (Toiviainen & Snyder, 2003, p. 62). In our

case, this was less straightforwardly applicable, as our stimuli exhibit a range of tempi

and, necessarily, differ widely in beat salience; Toiviainen and Snyder’s participants
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tapped along to different excerpts of the same piece by J.S. Bach, the last of four

organ duettos for solo performers (BWV 805).

As our primary concern was with the degree of regularity and periodicity inher-

ent in the tap densities, we instead employed a digital signal processing approach to

quantify the cross-participant tapping consensus for each stimulus. We computed the

Fourier transform of the mean-deducted autocorrelation function for each tapping

density distribution. We then determined the coefficient of variation of each Fourier

plot in order to obtain a normalized measure of dispersion inherent in the frequency

distribution. The value of this coefficient is larger when most of the energy in the

Fourier plot is concentrated within specific frequency bands, i.e., when participants’

taps tend to be placed consistently; it thus accounts for the issue of different partic-

ipants adhering to different levels of the metric hierarchy. Conversely, the value of

the coefficient is smaller as energy is dispersed more arbitrarily across the frequency

space of the Fourier plot, i.e., when taps tend to be placed inconsistently across

participants (Figure 4–8, p. 153).

Naïve vs. informed tapping. To determine the impact of preparatory ex-

posure to the music on tapping behavior, we conducted two-sample Kolmogorov-

Smirnov tests on the cross-participant tap distributions obtained during the naïve

tapping and informed tapping phases of each trial.

4.3.7 Results

Tapping consistency. We constrained our analysis to the standard deviation

of inter-tap intervals (SDITI) obtained in the informed tapping sub-trials. This

resulted in 768 data points (32 participants tapping to 24 musical excerpts). The

148



Figure 4–5: Least-squares means and 95% confidence intervals of tap consistency
(log standard deviation of intertap interval) according to beat salience level. The
tap consistencies of low and high beat salience level stimuli differ significantly.

SDITI ranged from 12 ms to 6.9 seconds across all informed tapping trials, with

a median of 103 ms, and a 5% trimmed mean of 126 ms. As the observation with

the maximum SDITI value was very distant from the remaining distribution, we

removed it as an outlier; the next-largest value was 2.6 seconds. The remaining 767

observations were analysed using a linear mixed effect model with fixed effects for

beat salience level and excerpt tempo (in beats per minute), with random intercepts

by-participant and by-excerpt, and a random slope by-participant for beat salience

level. As hypothesized, we determined a significant main effect of beat salience level

on tapping consistency (logSDITI), F = 4.92, p < .01, with a range of DF of 640 –

760 and p-values differing by less than .001 over this range. No significant effect of

tempo was detected.
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Figure 4–6: Tapping density distributions generated by participants during the naïve

tapping sub-trial.
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Figure 4–7: Tapping density distributions generated by participants during the in-

formed tapping sub-trial.

Post-hoc testing conducted using pairwise contrasts of least-squares means (Fig-

ure 4–5, page 149) revealed a significant difference in SDITI of the low vs. high
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beat salience categories: low - high beat salience SDITI = 0.53, t(22.3) = 3, p < .05

(Tukey-adjusted for multiple comparisons).

Tapping consensus. The set of observations consists of 50,880 tap events,

with 46.8% obtained during the naïve tapping sub-trials, and 52.7% obtained during

informed tapping. The remaining 263 observed taps were (erroneously) produced

during the attentive listening sub-trial, in-between naïve and informed tapping; they

were discarded from analysis.

The tapping density distributions for each stimulus are visualised in Figure 4–6

(naïve tapping sub-trials; page 150) and Figure 4–7 (informed tapping sub-trials;

page 151). As hypothesized, the plotted density distributions exhibit a striking

difference between the comb-like shape of the stimuli exhibiting high levels of beat

salience, and the more diffuse and less regular peaks of the stimuli exhibiting medium

or low beat salience. The visual differences between medium and low salience stimuli

are less clear-cut, as both categories include some diffuse but regular distributions,

and some highly irregular distributions.

To quantify the degree of tapping consensus inherent in each tapping density

distribution, we determined the mean-deducted autocorrelation function (ACF) of

the distribution, and the Fourier-transform of the ACF: FFT(ACF); see Figure 4–8,

p. 153.

We then calculated the coefficient of variation (CoV) of the FFT(ACF) curve

to provide a normalised measure of dispersion that is low when taps were placed in-

consistently (i.e., low consensus), and high when taps were placed consistently (i.e.,
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Figure 4–8: Quantifying tapping consensus: tapping density, mean-deducted au-
tocorrelation function (ACF), and Fourier transform – FFT(ACF). Left: Plot for
stimulus with the highest tapping consensus measure: Stimulus 5 (high beat salience
level), sub-trial 1 (naïve tapping), CoV=5.57. Note: Scale of y-axis differs between
plots for the different stimuli. Middle: Plot for stimulus with the median tapping
consensus measure: Stimulus 14 (medium beat salience level), sub-trial 1 (naïve
tapping), CoV=3.85. Right: Plot for stimulus with the lowest tapping consensus
measure, as determined by the CoV of FFT(ACF): Stimulus 19 (low beat salience
level), sub-trial 3 (informed tapping), CoV=1.98.

153



Figure 4–9: Tapping consensus according to beat salience level.

high consensus) between participants. The outcomes of this measure are summa-

rized in Figure 4–9, grouped by tapping sub-trial (naïve and informed tapping), and

aggregated according to beat salience level.

Naïve vs. informed tapping. The degree of overlap between the cross-

participant tap density distributions obtained in naïve tapping compared to informed

tapping sub-trials is visualized for each excerpt in Appendix G (Figures G1 – G3).

The distance between these distributions, quantified by calculating the two-sample

Kolmogorov-Smirnov statistic for the differences in tap densities between the sub-

trials for each stimulus, is presented in Table 4–3. Significant differences in the

distributions were detected for all low beat salience stimuli; all but one of the medium

beat salience stimuli; and for two of the high beat salience stimuli (eight stimuli per
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Table 4–3: Naïve vs. informed tapping: Kolmogov-Smirnov statistic for each stimu-
lus

Beat Salience Level Stimulus Kolmogov-Smirnov D

High

1 0.04
2 0.047
3 0.044
4 0.059
5 0.056*
6 0.051
7 0.068*
8 0.071*

Medium

9 0.076*
10 0.07 **
11 0.078*
12 0.058*
13 0.075**
14 0.11 ***
15 0.048
16 0.061*

Low

17 0.12 ***
18 0.083**
19 0.071*
20 0.15 **
21 0.069*
22 0.12 ***
23 0.078*
24 0.11 *

*** 0 < p < .001 ** .001 < p < .01 * .01 < p < .05 (FDR-adjusted p-values)

155



Figure 4–10: Two-sample Kolmogov-Smirnov D statistic quantifying the distance
between the cross-participant naïve tapping and informed tapping distributions.

beat salience level). Figure 4–10 visualises the statistic for each stimulus, grouped

according to beat salience level.

4.3.8 Discussion

Our results demonstrate a significant correspondence between beat salience level

and the consistency at which individuals tap along to the music, as well as between

beat salience level and the consensus between individuals (i.e., the inter-participant

consistency in tapping behaviour). In particular, tapping consistency and consensus

are significantly stronger in stimuli exhibiting high beat salience, compared to those

exhibiting low beat salience; with medium beat salience stimuli overlapping on either

side of the spectrum. This evidence supports the hypothesized relationship between

beat salience and sensorimotor synchronization performance in the context of tapping

to the beat in the music.
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Our hypothesis regarding the reason for this relationship – that highly salient

beats present little ambiguity regarding appropriate tap positions, and conversely,

that low beat salience presents a stronger ambiguity in terms of when to tap – is sup-

ported by observing the differences in tap distributions generated during naïve and

informed tapping for the individual stimuli. These differences remain insignificant

for six of the eight high beat salience stimuli; but the distributions differ significantly

for seven of the eight medium salience stimuli, and for all eight low salience stimuli.

This suggests that little tapping ambiguity was present in most of the high salience

stimuli, with participants’ tap behaviour during the second tapping attempt (and

thus on their third exposure to the stimulus) largely replicating their tap behaviour

on initial exposure to the music. Conversely, a larger degree of ambiguity could ex-

plain the observed inconsistencies in tapping behaviours exhibited in response to the

medium and low beat salience stimuli. The implied differences of degree of ambiguity

are apparent on visual inspection of the overlap of naïve and informed tapping dis-

tribution plots (Appendix G), with the two curves largely tracing each other neatly

in the high salience category, and strikingly lesser overlap of the two distributions in

response to medium and (especially) low salience stimuli.

4.4 Experiment 3: Beat salience ratings

We conducted a beat salience rating experiment in order to investigate whether

subjective assessment of beat salience was consistent between participants, and to

quantify the degree of correspondence between an individual’s subjective assessment

of beat salience and their beat perception or synchronization task performance.
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4.4.1 Participants

After completion of their primary task (either Experiment 1 or Experiment 2), all

participants were instructed to complete a beat salience rating experiment. Technical

issues prevented one participant, who had successfully completed the sensorimotor

synchronization task (Experiment 2), from taking part in the beat salience rating

experiment. All other participants completed the experiment (N=62; 34 female;

mean age=23.7, SD=5.9).

4.4.2 Materials

This experiment presented the same 24 musical excerpts used in Experiments 1

and 2, as selected in the preliminary study. As in Experiment 2, the excerpts were

presented without the pulse train overlay (cowbell beat) featured in Experiment 1.

4.4.3 Apparatus

The equipment and experimental interface were as described for the preliminary

study.

4.4.4 Design and procedure

As in the preliminary study, participants listened to each musical excerpt, pre-

sented in random order, and were tasked to rate beat salience on a 5-point Likert

scale, and familiarity and liking on 7-point analog categorical scales. Beat salience

was again defined as “the perceptual strength or prominence of a beat. A value of 5

indicates that you could easily tap to the beat, while a value of 1 indicates that you

simply could not tap to the beat.” The experiment proceeded as in the preliminary

study; however, as there were only 24 excerpts in this case, participants completed

only one experimental block following a practice block presenting 6 excerpts drawn

158



from outside the main stimulus set. During the experimental block, the 24 excerpts

of the main set were presented in an order generated randomly for each participant.

4.4.5 Analysis

Inter-rater reliability. Participants’ inter-rater reliability was quantified by

determining intraclass correlation coefficients (ICC; Shrout & Fleiss, 1979) for both

groups of raters: those who had just completed the perception experiment (Experi-

ment 1; N=30); and those who had just completed the sensorimotor synchronization

task (Experiment 2; N=31). As all participants rated all musical excerpts, and as

we are treating both judges (participants) and targets (musical excerpts) as ran-

domly sampled from a larger population, a two-way random effects anova model

corresponding to Shrout & Fleiss’ Case 2 was conducted (p. 421):

xij = μ + ai + bj + (ab)ij + ei

where xij denotes the ith judge’s rating of the jth target; μ, the overall popu-

lation mean of the ratings; ai, the difference from μ of the mean of the ith judge’s

ratings; bj, the difference from μ of the jth target’s “true score” (i.e., the mean across

many repeated ratings of the jth target); (ab)ij, the degree to which the present rat-

ing reflects a departure of the ith judge’s usual rating tendencies on the jth target;

and eij, the random error in the ith judge’s scoring of the jth target (Shrout & Fleiss,

1979, p. 421).

Corresponding ICC measures were calculated to determine the reliability of a sin-

gle, typical rater, and the average reliability of all raters in aggregate—corresponding

to ICC(2, 1) and ICC(2, k) in Shrout and Fleiss’ notation, respectively. For both
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cases, we further determined ICC measures for consistency and for absolute agree-

ment between raters. In the consistency measure, systematic differences between

different judges’ rating behaviors are discounted, whereas such differences remain

relevant in the absolute agreement measure. All measures were determined using the

icc function of the irr R package (Gamer, Lemon, Fellows, & Singh, 2012).

Predictive validity. In order to assess whether participants’ beat salience

ratings significantly relate to task performance in the perception and sensorimotor

synchronization tasks (Experiments 1 and 2), we applied further linear mixed effects

model analyses, specifying beat salience ratings as fixed effects, and response time

(Experiment 1) and the standard deviation of intertap interval (Experiment 2) as

dependent variables. We also investigated the proportion of correct responses (Ex-

periment 1) as a dependent variable, specifying a corresponding logistic linear mixed

effects model with beat salience ratings as fixed effects. Each of these models was

specified with random intercepts for the individual participants.

4.4.6 Results

The beat salience ratings obtained from both participant groups for musical

excerpts in each of the three beat salience categories (as established in the pre-

study) are summarized in Figure 4–11. ICC agreement and consistency measures for

the reliability of a single, typical rater—ICC(2, 1)—and for the average reliability of

all raters in aggregate—ICC(2, k)—are listed in Table 4–4.
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Figure 4–11: Beat salience ratings obtained in Experiment 3. Horizontal axes: participants’ ratings of each
musical excerpt on a 5-point Likert scale: from 1—low beat salience, could not tap along to the music; to 5—
high beat salience, could easily tap along to the music. Vertical axes: beat salience categories determined for
each excerpt by expert inter-rater agreement in the preliminary study. Left: Beat salience ratings provided by
participants after completing the beat perception experiment (Experiment 1 group; total number of ratings:
720). Right: Beat salience ratings provided by participants after completing the sensorimotor synchronization
experiment (Experiment 2 group; total number of ratings: 744).



Table 4–4: Intraclass correlation coefficients (ICC) quantifying the degree of inter-
rater reliability of participants in the beat salience rating experiment (Experiment
3).

Participants Unit of analysisa Measureb ICC 95% CI

Experiment 1 group (N=30)
Single Consistency 0.62 .49 < ICC < .77

Agreement 0.57 .44 < ICC < .73

Average Consistency 0.98 .97 < ICC < .99
Agreement 0.98 .96 < ICC < .99

Experiment 2 group (N=31)
Single Consistency 0.57 .44 < ICC < .73

Agreement 0.56 .42 < ICC < .71

Average Consistency 0.98 .96 < ICC < .99
Agreement 0.98 .96 < ICC < .99

a Inter-rater reliability determined for a typical rater (Single) or for all raters in aggregate (Aver-
age).
b Inter-rater reliability discounting systematic differences in individual raters’ behaviors (Consis-
tency) or penalizing such differences (absolute Agreement).

Predictive validity. Our analysis reveals significant main effects of partici-

pants’ beat salience ratings on both response times (F = 17.7, p < .0001, DF lower

bound–upper bound: 881–911) and on proportion correct (χ2(4) = 121.2, p < 0.0001)

in the beat perception task (Experiment 1), and on the standard deviation of inter-

tap intervals (F = 6.4, p < .0001, DF lower bound–upper bound: 704–735) in the

sensorimotor synchronization task (Experiment 2).

4.4.7 Discussion

The results of the beat salience rating experiment reveal a high degree of inter-

rater consistency, both within and between experimental groups. Furthermore, there

is a good correspondence between the ratings obtained in the context of this exper-

iment and the beat salience classifications determined by expert agreement in the

preliminary study. Finally, our analysis suggests that the ratings obtained in this
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task significantly relate to dependent variables corresponding to task performance

in both the beat perception and sensorimotor synchronization experiments. Several

implications relating to the validity and generalizability of beat salience ratings may

be drawn from these findings.

There were only relatively minor differences between individuals’ subjective im-

pressions of beat salience in our exemplars of popular and electronic music. This

consistency appears to hold regardless of the presence of musical training, as the

ratings of our non-expert participants correspond closely to the pre-categorizations

obtained from the clustered ratings of trained music technology graduate students.

Figure 4–11 illustrates the high degree of consistency between responses ob-

tained from participants who had previously completed the beat perception experi-

ment, and from those who had instead completed the sensorimotor synchronization

experiment. This consistency is of particular interest as the beat salience rating task

was cast in terms of prospective tapping difficulty. The sensorimotor synchronization

group had direct evidential access to this information, having spent approximately 45

minutes tapping to these stimuli immediately prior to the start of the beat salience

rating experiment; whereas the beat perception group had been critically attending

to the music, without the requirement of coordinated motor activity. Nevertheless,

responses obtained from both groups are very similar, suggesting that beat salience

ratings may be framed in terms of prospective tapping difficulty with a high degree

of construct validity.

Our analysis demonstrates a significant correspondence between participants’

beat salience ratings and their individual task performance on the same stimuli,
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in both the perception and sensorimotor synchronization contexts. It is thus the

case that participants’ prospective assessments were not only consistent as measured

against the responses of other individuals, but also accurate in terms of the rater’s

performance in the previously completed experimental tasks. This suggests that beat

salience ratings framed in terms of prospective tapping difficulty also have a degree

of predictive validity, in both perception and synchronization contexts.

4.5 Evaluating a Computational Measure of Beat Salience

The three experiments reported in the preceding sections investigate different

psychometric measures of beat salience. One of the motivating goals of this research

has been to establish the validity and reliability of beat salience as a potential query

mechanism or relevance criterion for music information retrieval systems serving the

common music information need of finding music to move to. Given that the suitabil-

ity of beat salience has been established in this context, an algorithmic measure that

approximates human performance on beat salience related tasks is required before

such a mechanism can be integrated into a music information retrieval system.

We thus report on a preliminary investigation of one possible method of imple-

mentation. The music information retrieval task of automated beat tracking is highly

analogous to human beat finding tasks such as the one presented in our sensorimotor

synchronization experiment, in that both the algorithmic and human process pro-

duce a vector along the musical time-line encoding temporal positions upon which

the presence of the beat is asserted.
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For our purposes, we apply a committee-based beat tracker (Holzapfel, Davies,

Zapata, Oliveira, & Gouyon, 2012) to our musical excerpts. The committee-based ap-

proach combines a set of five state-of-the-art beat tracking algorithm (Dixon, 2007;

Degara et al., 2012; D. P. Ellis, 2007; Oliveira, Gouyon, Martins, & Reis, 2010;

Klapuri, Eronen, & Astola, 2006), each employing their own distinct method of im-

plementation, into a beat tracking committee. Beat annotations are then produced

by selecting the output of the component algorithm that provides the closest match

to the output of all other component algorithms, i.e., the maximal mutual agreement

(MaxMA) among the committee, for each potential beat location. Holzapfel et al.

(2012) demonstrate that this MaxMA approach significantly outperforms each indi-

vidual component beat tracker when evaluated against a large data set of manually

annotated beat positions.

An interesting property of the decision making process based on choosing the

output with maximal mutual agreement is that the degree of agreement among the

committee members is itself informative. Zapata et al. (2012) explore the utility

of the mean mutual agreement (MMA) among committee members, calculated over

entire musical tracks, demonstrating that MMA may be used to meaningfully assign

confidence thresholds on the overall quality of automatic beat annotations of large

data sets.

Following the intuition that the degree of confidence in the vector of beat posi-

tions along the musical time-line of a given excerpt relates to the level of beat salience

present in the music, we conducted an investigation of the relationship between the

MMA measure produced by the algorithm for our musical excerpts, and the beat
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Table 4–5: Beat salience ratings and mean mutual agreement: Significance testing
for fixed effects.

Fixed effect DF (lower – upper) F % deviance explained
Beat salience rating (SR) 1,393 – 1,454 216.24 *** 37.25
Prior study (PS) 1,393 – 1,454 0.8 0.034
SR×PS interaction 1,393 – 1,454 0.54 0.093

*** 0 < p < .001

salience ratings produced by our participants in the course of Experiment 3. The

raw MMA scores produced for our stimuli ranged from 0.72 to 3.74, where higher

values indicate better mutual agreement between the component algorithms of the

committee. We rescaled these values to a range with minimum of 1 and a maximum

of 5, in order to facilitate interpretation against the beat salience ratings obtained

from our participants in Experiment 3 on a scale of 1 (very high beat salience) to 5

(very low beat salience). We fit a linear mixed effects model, specifying the rescaled

MMA measure as the dependent variable, beat salience ratings, the rater’s prior

completed study (Experiment 1 or Experiment 2), and their interaction as fixed ef-

fects, and by-participant intercepts as random effects. Given the limited number of

musical stimuli employed in our study, and thus the small number of MMA data

points (one per musical excerpt), neither the individual items nor their beat salience

pre-categories were encoded in the random effects structure to avoid over-fitting the

model. Difference coding was applied to investigate the relative contributions of

adjacent levels of beat salience ratings in terms of their relationship to the MMA

measure.
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Figure 4–12: Mean mutual agreement (MMA) measure produced by a committee-
based beat tracker (Holzapfel et al., 2012), related to beat salience ratings obtained
from our participants in Experiment 3 for the same musical excerpts. Participants
had previously completed either a response time study measuring beat salience per-
ception (Experiment 1), or a tapping (beat finding) study investigating sensorimotor
synchronization (Experiment 2). MMA has been rescaled to a continuous range from
1—lowest agreement between the committee’s constituent beat tracking algorithms;
to 5—best agreement. Beat salience ratings were obtained on a Likert scale from
1—low beat salience, could not tap along to the music; to 5—high beat salience,
could easily tap along to the music.
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4.5.1 Results and discussion

Our results demonstrate a significant relationship between the beat salience

ratings obtained from participants during the beat salience rating task (Experiment

3), and the MMA measure produced by the committee-based beat tracker, in the

context of the 24 musical excerpts forming our stimulus set. As expected from the

outcomes of Experiment 3, there were no significant differences for the beat salience

ratings obtained from participants who had previously completed Experiment 1,

compared to ratings obtained from those who had previously completed Experiment

2, in terms of correspondence with the MMA measure (Table 4–5, p. 166).

We also found significant differences between each successive level of the beat

salience rating scale (Table 4–6, p. 169), suggesting that the relationship between

beat salience ratings and the MMA measure is present along the entire scale, and that

the scale’s level of granularity is appropriate for the purpose of this investigation.

That said, we observed a fairly large degree of overlap between the range of MMA

ratings for each successive salience level (Figure 4–12), suggesting that a coarser

conception of beat salience (e.g., a binary indication of low or high beat salience)

might be preferable if accuracy is required, as may be the case in the context of

music information retrieval system design.

The MMA measure was not specifically developed to correspond to human beat

salience judgements; Zapata et al. (2012) discuss its use in improving and evaluating

the quality and accuracy of beat tracking algorithms. As such, the preliminary results

presented here are especially encouraging – both by demonstrating that algorithmic
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Table 4–6: Difference coded contrasts investigating the relative differences of adjacent
levels of beat salience ratings (BSR) in terms of their relationship to the MMA
measure.

Change in BSR Change in MMA Std. Error t-value
BSR:1 → BSR:2 0.34 0.12 −2.75 **
BSR:2 → BSR:3 0.58 0.11 −5.23 ***
BSR:3 → BSR:4 0.59 0.11 −5.55 ***
BSR:4 → BSR:5 0.52 0.11 −4.86 ***

*** 0 < p < .001 ** .001 < p < .01
Note: The MMA measure was rescaled to a continuous range from 1 (best agree-
ment between committee beat tracker algorithms) to 5 (least agreement). BSR were
obtained on a categorical scale of 1 (very low beat salience) to 5 (very high salience).

approximation of human beat salience judgement is feasible, and by suggesting that

improved performance is likely feasible with further research in this direction.

4.6 General discussion: Beat salience

We have presented an investigation into beat salience, a measure of the percep-

tual prominence of the beat in the context of moving to music. Making use of a

stimulus set of musical excerpts drawn from the popular and electronic music reper-

toire and categorized according to their beat salience by expert inter-rater agreement,

we have employed a convergent methods approach to investigate the effect of vary-

ing levels of beat salience on psychometric measures of the beat induction and motor

synchronization phases of sensorimotor synchronization, and on the subjective expe-

rience of movement affordance in the context of tapping along to music. With a view

toward practical applications in music information retrieval, we have further estab-

lished the validity and reliability of beat salience ratings among musically untrained

individuals, and we have proposed an initial approach to generating algorithmically
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derived equivalents of such ratings in order to aide in the implementation of a rele-

vance criterion or query mechanism based on beat salience for the common use case

of finding music to move to.

The results of our response time experiment, based on the beat perception task

of Iversen and Patel’s Beat Alignment Test (2008), suggest a strong correspondence

between beat salience level and perception task performance in the “on-beat” con-

dition, where a superimposed cowbell beat is synchronized without phase error with

the beat of the music. In the “early” and “late” conditions where a small (75ms)

phase error was present, we have found evidence of a temporal captor effect, whereby

participants tended to respond that the cowbell was on the beat in high beat salience

exemplars, regardless of the actual presence of phase error; this effect appears to be

limited to musical stimuli exhibiting high beat salience, and was not significantly

evident in responses to trials in the medium and low beat salience conditions. To

explain this effect, we have posited the existence of a perceptual integration window

around the musical beat, within which musical onsets are perceived as occurring in

synchronization with the music; the width of this window may be parameterized

by the salience of the beat, such that the 75ms phase offsets of our early and late

conditions tend to fall within this range in the beat integration processes of our

participants for high salience excerpts, but tend to fall outside for medium and low

salience excerpts. We leave the exploration of this hypothesis for future research.

The results of our beat finding task, employing a tapping paradigm with a long

tradition in sensorimotor synchronization research (Repp, 2005; Repp & Su, 2013),
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further suggest a good correspondence between beat salience level and various mea-

sures of tapping performance, both individually (e.g., the participant’s tapping con-

sistency in terms of the standard deviation of inter-tap intervals over a given trial),

and in terms of cross-participant consensus measured by quantifying the periodic-

ity present in the combined tap density across all individuals’ responses to a given

musical excerpt. This correspondence is particularly evident when inspecting task

performance in the high beat salience condition, compared to responses to trials in

the medium and low salience conditions.

The outcomes of our analysis of the beat salience ratings provided by partici-

pants after the completion of their respective primary task indicate a high degree

of inter-rater consistency both within and across experimental groups (i.e., partici-

pants who had previously completed either the respose-time task investigating beat

induction, or the beat finding task investigating sensorimotor synchronization). This

consistency between individuals in their ratings of beat salience related measures pro-

vides a replication of the findings of Tzanetakis, Essl, and Cook (2002) and Lartillot

et al. (2008). Further, these ratings, produced by individuals without significant mu-

sical training, correspond strongly with the beat salience categorizations determined

by inter-rater agreement among the ten music technology post-graduate students

who participated in our normative preliminary study. This correspondence provides

evidence of the reliability of such a measure across a range of musical expertise. Fi-

nally, these experiential ratings correlated with individuals’ task performance in both

the response-time and beat finding tasks, suggesting that individuals are accurate in

their experiential assessment of beat salience in terms of movement affordance.
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Taken together, the results of these experiments suggest a consistent role for

beat salience, understood in terms of movement affordance in the context of tap-

ping along to music, on an experiential, and on a performance-based level. This is

manifested in terms of reliability (consistency within and across responses from indi-

viduals sampled from a population of enthusiastic music listeners lacking significant

musical training); construct validity (participants’ beat salience ratings, responses to

the question of how easily they could tap along to the music, correlate strongly with

measures of tapping performance across different levels of beat salience determined

in our preliminary study); and ecological validity, tapping to music being a common,

everyday activity. This suggests a role for beat salience as a relevance criterion or

query mechanism for music information retrieval systems, catering to the use case of

finding music to move to, as in the contexts of dance, exercise, or work. Our find-

ing of significant correlations between our participants’ beat salience ratings and the

Mean Mutual Agreement (MMA) measure of Zapata et al.’s ensemble beat tracking

algorithm (2012) provide a preliminary suggestion for a possible approach toward

implementing such a system.

Several limitations of the present studies must be outlined clearly at this stage,

relating mainly to our set of musical stimuli. From the initial phases of study de-

sign, we made the conscious decision to emphasize ecological validity by choosing

commercial, polyphonic musical excerpts, exhibiting a range of tempi, selected from

the repertoire of popular and electronic music commonly listened to by a broadly

specified Western musical audience; this decision was made explicitly to broaden our

investigation beyond the synthetic, laboratory generated stimuli typically used in
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previous research. Such diversity naturally comes at a cost in terms of control over

potential musical confounds. We have tried to address this issue by selecting stimuli

exhibiting a range of time signatures, metric complexity, and attack density across

the different levels of beat salience, by accounting for differing tempi in our analy-

ses where possible, and by attempting to minimise experimenter bias by employing

only a subset of the initially compiled collection of musical excerpts, selected as best

exemplifying low, medium, and high levels of beat salience in our preliminary study.

However, it is certainly possible that confounds present in the interactions partic-

ularly of extra-temporal musical facets (e.g., of timbre, orchestration, or melodic

complexity) and the cognitive process of sensorimotor synchronization remain unac-

counted for.

The relatively small number of musical excerpts, prescribed by the practical need

to limit each experimental session to a manageable duration (approximately 1 hour),

also needs to be considered; while our experimental design generated many data

points for each excerpt and participant, resulting in robust outcomes in the context

of the stimulus set employed here, care must be taken in applying these outcomes

to popular and electronic music at large without further study. This is particularly

true in the analysis of the correlation between our participants’ responses and the

measures generated by the beat tracking algorithm, for which we have only 24 data

points; while results here are promising, further research employing a larger stim-

ulus set, ideally sampled randomly from the musical repertoire, is required before

widespread conclusions may be drawn. Given the evidence presented here for the

correspondence of beat salience ratings and sensorimotor task performance, a study

173



that collects human beat salience ratings on a large stimulus set may be sufficient to

properly evaluate algorithm performance, even in absence of finer-grained psychome-

tric measures such as those gathered in our beat perception and beat finding tasks.

Crowd-sourcing solutions such as Amazon’s Mechanical Turk platform could serve

to bootstrap such a study.

As the ability to move along to music is widespread in the general population,

we have chosen in the present studies to recruit participants without significant mu-

sical training. It would be interesting to pursue further research in this direction

that explicitly investigates the effect of musical expertise on beat salience ratings

and task performance. Such a study might look at musicians in general, and perhaps

at highly trained percussionists in particular; we would expect similar overall trends

to the ones described here, but with improved reaction times, accuracy measures,

and tapping consistency due to greater musical expertise. The tendency for par-

ticipants to identify the superimposed cowbell as playing on the beat in the high

salience condition of Experiment 1, even with phase error present, would be particu-

larly interesting to investigate further; we would expect the hypothesized integration

window that spans the range of temporal offsets accepted as “on the beat” to vary

with musical training, and thus that the acceptance threshold under which tempo-

ral offsets are tolerated would be smaller in magnitude for participants with greater

degrees of musical expertise.

We hope that the theoretical and practical outcomes of this research will con-

tribute to ongoing conversations in communities of music perception and cognition,
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and of music information retrieval research. By employing experimental methodolo-

gies to gather empirical evidence on human information processing in order to inform

information system design, we are building on a tradition of information retrieval

research employing cognitive perspectives (see e.g., Ingwersen, 1996; Ingwersen &

Järvelin, 2005) and on more recent cognitive trends in the music information do-

main (e.g., Aucouturier & Bigand, 2012; Honing, 2010; Müllensiefen & Frieler, 2004;

consider also the annual CogMIR seminar2 , first held in 2011). We see much poten-

tial in the overlap of these disciplines, both from the perspective of the creation of

research tools for the music psychologist, and in terms of empirical insights on the

user’s behaviour to inform the development of music information systems. Calls for

a greater focus on the user have cropped up repeatedly in the MIR literature (e.g.,

Cunningham et al., 2003; Downie et al., 2009; Lee & Cunningham, 2012; Schedl et

al., 2013; Taheri-Panah & MacFarlane, 2004; Weigl & Guastavino, 2011), and cogni-

tive approaches in particular are required to address the problem of operationalizing

measures of musical similarity and relevance in the highly subjective, mood- and

situation-dependent context of music listening behaviour. This problem, formulated

in Downie’s “multiexperiential challenge” to music information retrieval (Downie,

2003) in the early days of the field, continues to loom formidably today.

2 Seminar on cognitively based music informatics research (CogMIR):
http://www.cogmir.org
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CHAPTER 5
Conclusion

By successive technological advances over the last two decades, digital music lis-

tening has become a pervasive part of everyday life: from readily-available broadband

access, to high-quality compressed audio encoding formats, via file-sharing applica-

tions of questionable legal status, to more legitimate music streaming services, and

powered by the ubiquitous mobile computing platforms carried in the pockets of a

large proportion of the population. Massive quantities of music are readily available

for our listening pleasure. Consequently, the design and implementation of efficient

and effective methods of music information storage, organization, and retrieval to

support listeners’ music information needs and behaviours has become a research

priority attracting focused attention from a wide range of disciplines. Under the

banner of music information retrieval, these multifarious influences are united into

one coherent field of research.

MIR research has produced algorithmic solutions addressing problems on a spec-

trum from low-level digital signal processing (e.g. note onset detection) to high-level

digital musicology (e.g. structural segmentation). This research has predominantly

focused on the design and implementation of the components of music information

systems. While investigations of the (potential) users of such systems have remained

sparse in comparison, the body of findings relating to listeners’ music information

needs and behaviours is nevertheless substantive, and growing.
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In this dissertation, we have synthesised and built upon this body of research,

in order to obtain an understanding of the current state of knowledge on music and

relevance, and to inform the operationalization of relevance criteria for music in-

formation retrieval. This work has been motivated by Downie’s multiexperiential

challenge: in the abstract information domain of music, lacking a well-defined lexi-

con and representational semantics, relevance cannot be inferred without taking into

account the listener’s perception and experience of the music, varying according to

mood, situation, and circumstance (Downie, 2003). In Chapter 2, we have presented

a wide-ranging, systematic analysis of MIR user studies, focussing on findings in-

forming a broader understanding of the notion of relevance. In doing so, we have

conceptualized relevance according to our application of Saracevic’s stratified model

of relevance interactions (Saracevic, 1997; 2007b; Weigl & Guastavino, 2013).

In Chapters 3 and 4, we have narrowed our focus, targeting the temporal facets

of music that we have termed rhythmic information in order to investigate their role

in the definition of criteria of topical relevance, a measure of “the mapping between

a query and a set of information objects,” and situational relevance, a measure of

the user’s judgement of “the relationship between information and information need

situations in a certain time” (Jansen & Rieh, 2010, p. 1525).

The overarching goal has expressly not been to “solve” the problem of relevance

for music—such a lofty aim is precluded by the complex natures both of musical

information, and of the notion of relevance more broadly. Rather, this dissertation

represents an acknowledgement that relevance, a key notion for information retrieval

in general (Saracevic, 2007b), and for MIR in particular (Downie, 2003), has thus far
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received relatively sparse attention in the MIR literature, with system design often

guided by “anecdotal evidence of user needs, intuitive feelings for user information

seeking behavior, and a priori assumptions of typical usage scenarios” (Cunningham

et al., 2003), and with user studies generating findings that touch on relevance dif-

fusely, without focussing on this important aspect of MIR explicitly.

We further acknowledge the experiential, and thus psychological, aspects of mu-

sic relevance: “User studies are useful, but some kind of cognitive framework is

required if we are to better understand the music seeking behaviour of MIR users”

(Taheri-Panah & MacFarlane, 2004, p. 459). As such, we have chosen to adapt

a conceptual model of relevance that explicitly takes into account the user’s cogni-

tion and affective state; and we have investigated music perception and cognition

in two sets of experiments aiming to inform relevance measures at the intersection

of (algorithmic) information processing concerning the temporal facets of music,

and the perceptive aspects of melody identification, beat perception, and sensorimo-

tor synchronisation—areas that have remained under-explored in MIR user research

(section 2.3.2).

5.1 Research outcomes

We now return to the three research questions posed in section 1.1, addressing

each in order to reflect on the outcomes of the work presented in this dissertation.

5.1.1 How may the notion of relevance be conceptualized for music in-
formation research?

In the preceding discussion, we have shown the conceptualization of relevance for

the music information domain to be a non-trivial task. Lacking the concrete semantic

mappings afforded by lexical meaning in textual information, and operating in a
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space where hedonic, non-goal-oriented information seeking is the norm (Laplante &

Downie, 2011), MIR researchers must consider notions of relevance as complex and

multifaceted as musical information itself.

In Chapter 2, we have shown Saracevic’s stratified model of relevance interac-

tions (Saracevic, 1997; 2007b), applied to the music information domain (Weigl &

Guastavino, 2013), to provide an adequate fit for this purpose, acting as concep-

tual scaffolding to house findings from MIR user research pertaining to relevance.

Saracevic’s model was chosen as an established framework from the textual IR do-

main that provides the abstraction and flexibility to facilitate cross-application to

music, while retaining a level of analytical granularity sufficient to capture details of

interest. We have shown that the conceptualization of music relevance afforded by

this framework accommodates the triangulation of findings from diverse user studies,

providing an overview of the current state of knowledge in the field, and anticipate

that this approach will fruitfully inform both future user research, and MIR system

design.

5.1.2 What is the role of rhythmic information in melody identification,
and what are the implications in formulating an experiential crite-
rion of topical relevance in MIR?

Music perception and cognition studies investigating melody identification by

presenting familiar melodic stimuli with systematically distorted pitches or rhythms

to participants for identification (Hébert & Peretz, 1997; Kuusi, 2009; White, 1960)

have found identification performance to be substantially more impaired under pitch

distortion, as compared to rhythmic distortion, suggesting a strongly diminished role

of rhythmic information in melody identification.
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The outcomes of such studies have implications on the formulation of experien-

tial measures of topical relevance for MIR, if a system supporting query methods such

as query-by-humming is to correspond to human identification judgments. Indeed,

the formulation of musical queries based solely on melodic pitch contour—whether

successively sounded pitches go up, down, or stay the same, compared to the imme-

diate precedent—is the basis for Parsons coding, one of the earliest proposed means

of content-based music information retrieval (Parsons, 1975).

In Chapter 3, we have reassessed the role of rhythmic cues in the context of

melody identification, primarily by tackling the assumption implicit in previous re-

search that the imposition of isochrony (setting each note duration to a globally

constant value) nullifies rhythmic information. Finding strongly inhibited identifi-

cation performance when rhythmic information is randomized, we demonstrate that

rhythm’s role in melody identification has been underestimated in previous studies.

MIR systems targeting tasks pertaining to melody identification—for instance, query

by humming, query by performance, or cover song detection—thus cannot afford to

discount rhythmic information if an experiential measure of topical relevance, map-

ping the user’s query to a music information object in a way that corresponds to the

user’s perception of melodic identity, is to be realized.

5.1.3 Can beat salience inform a valid and reliable criterion of situational
relevance in MIR?

Finding music to move to—in the context of manual work, dance, or exercise—

is a common music information need, identified in numerous MIR user studies (e.g.

Brinegar & Capra, 2011; Cunningham et al., 2003; Cunningham et al., 2007; Greasley

& Lamont, 2009; Lonsdale & North, 2011; Robertson, 2006). Such activities all
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involve sensorimotor synchronization - the act of synchronizing one’s movements

to the external musical stimulus. As such, the predictability and clarity of the

musical beat is of particular importance, potentially overriding other criteria such

as matching the listener’s taste profile, to the point where a user’s preferred “gym

music” may not be appreciated in other listening contexts (Cunningham et al., 2007).

In Chapter 4, we have presented an investigation of beat salience, a measure of

the perceptual prominence of the beat in the context of moving to music. Employ-

ing a convergent-methods approach to investigate the distinct stages of perceptual

beat induction, sensorimotor synchronization, and beat salience judgement, we have

demonstrated the validity and reliability of beat salience as a situational relevance

criterion for use cases involving synchronized movement to music; beat salience rat-

ings demonstrated good consistency between musically trained and untrained indi-

viduals, and were predictive of task performance in both the beat perception and

sensorimotor synchronization tasks. Promisingly, the pre-existing committee-based

beat-tracking implementation of Holzapfel et al. (2012) produces a secondary out-

put measure—the mean mutual agreement of the constituent algorithms forming

the beat-tracking committee—that aligns pleasingly well with human beat salience

judgements. We propose this algorithm as a starting point for the operationalization

of beat salience as a measure of situational relevance in MIR.

5.2 Contributions

We now review the theoretical, methodological, and practical contributions gen-

erated by the work presented in this thesis.
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5.2.1 Theoretical contributions

In our application of Saracevic’s stratified model of relevance interactions to the

music information domain, we have established a first comprehensive conceptualiza-

tion of the notion of relevance for MIR. In the systematic analysis and synthesis

presented in Chapter 2, we have provided an overview of the state of knowledge on

relevance in a large subsection of the MIR user literature, as well as identifying sev-

eral underexplored areas, pointing the way for future research. Further, our study

represents a validation of the stratified model: in formulating the model, Saracevic

acknowledged that it “has not yet enough details for experimentation and verifica-

tion” (1997, p. 318). While our work in Chapter 2 lacks experimental components, it

nevertheless represents a comprehensive case study of the model’s use in representing

the relevance interactions implicit in a large corpus of knowledge.

In Chapter 3, we have addressed misconceptions about the nullification of rhyth-

mic information in previous literature in order to re-evaluate the role of rhythm

in melody identification, finding it to provide significantly stronger identification

cues than previously acknowledged. The tendency of participants to err within

the melody’s category in cases of partial identification and misidentification further

demonstrates the influence of connotative, contextual cues beyond the pitch and

durational cues in the constituent musical structure, demonstrating that listeners

attend at superordinate levels of abstraction.

In Chapter 4, we have identified beat salience as a valid and reliable measure of

situational relevance in the context of finding music to move to. In the course of our

experimentation, we have also discovered some surprising aspects of beat perception.
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In particular, the tendency of participants to overwhelmingly identify the cowbell

pulse on trials presenting high salience stimuli as playing on the beat, even in phase

error conditions, suggests the presence of an integration window spanning a short

time period around the beat onset time, with pulse onsets occurring within this span

being “captured” by the musical stimulus, resulting in a perception of being “on

the beat”. The presence of this effect in high salience beat stimuli, as well as its

absence in trials presenting medium and low beat salience stimuli—perhaps due to

a relationship between the size of this integration window, and the distinctiveness of

the metric grid established during beat induction, corresponding to the experienced

level of beat salience—could be usefully explored in future research.

5.2.2 Methodological contributions

We have implemented a novel coding tool to support the coding activities under-

lying Chapter 2; this tool provides a means of coordinating the activities of multiple

researchers applying the stratified model of relevance interactions to findings identi-

fied in large collections extracted from the literature, and could easily be modified

to accommodate alternative conceptual models.

In Chapter 3, we build on (and largely replicate) the methods of preceding

melody identification studies, but apply complex rhythmic alterations to our stim-

uli. Alterations such as the “reordered” condition have previously been applied in

research on melody perception (e.g. Prince, 2011), but we are the first to apply

them in a melody identification context comparable to the work of White (1960) and

Hébert and Peretz (1997).
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The surprising lack of predictive value of responses indicating a “feeling of know-

ing” in the altered rhythmic conditions of Chapter 3, regarding the subsequent abil-

ity to provide any identifying information on the unaltered melodies, carries broader

methodological implications for music perception and cognition research, as it sug-

gests that listeners’ experiential feelings of familiarity when attending to unidentified

melodies may be unreliable in certain conditions. Experiments in music perception

and cognition employing “real” musical stimuli taken from the wider musical cata-

logue commonly attempt to control for confounds of participant familiarity by asking

participants to self-report their familiarity with each musical piece. In light of our

results, it may be recommendable to supplement this self-reporting with an identi-

fication task, to see whether participants are able to corroborate their experienced

feelings of familiarity with any identifying information.

In Chapter 4, we avail ourselves of methods already applied in previous research

(e.g. Iversen & Patel, 2008). However, we believe our application of convergent

methodologies (response-time based beat induction task; tapping-based beat finding

task; experiential beat salience rating task), analyzing the degree of correspondence

in task performance in comparable experimental conditions in order to inform the

construct validity and generalizability of a potential relevance criterion for MIR ap-

plications, to be a novel approach. In adopting these convergent methodologies,

we provide a means of directly addressing the gap between algorithmic information

processes and the listener’s perception and cognition, an important area that has

remained under-represented in the literature (section 2.3.2).
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5.2.3 Practical contributions

The work presented in the preceding chapters has produced a number of practi-

cal contributions with direct applicability in future MIR research and systems design.

The tools developed during the coding and analytical stages of the work presented in

Chapter 2, as well as the corpus of coded studies and findings established during this

work, has been made available to the MIR research community1 . We anticipate that

the analytical interface, enabling the exploration of our coded findings at the level

of stratum interactions, or at the level of co-occurring sub-stratum descriptors, to be

of particular interest to designers of specific MIR systems or algorithms interested in

obtaining a quick overview of the available user research pertaining to their particu-

lar implementation area. We anticipate that these tools will prove valuable to MIR

user researchers, to assist in hypothesis generation for future research. Further, we

hope that other MIR user researchers might be interested in contributing their own

findings to the database, in order to grow the corpus and make it more fully repre-

sentative of the state of knowledge in the field. Given sufficient interest, this could

form part of a web-service, managed by multiple stakeholders, addressing the lack

of systematic synthesis of results in MIR user research, and the disconnect between

system designers and user studies researchers, as proposed by Lee and Cunningham

(2012).

Insights regarding the role of rhythmic information as a relevance criterion, in

the case of known-item musical queries (e.g. query by humming), and in the case of

1 Available at: http://relevance.linkedmusic.org
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situational queries revolving around a specific musical facet in a particular use context

(requesting music exhibiting highly salient beats, as part of a query to find music to

move to), have direct practical applications for MIR systems design. In particular,

we demonstrate that rhythmic information cannot be neglected in determinations

of relevance as a response to such queries; and we propose a pre-existing set of

algorithms—the committee-based beat-tracking implementation of Holzapfel et al.

(2012)—as a promising starting point in the implementation of a computational

measure of beat salience as an experiential situational relevance criterion.

5.3 Limitations

We must acknowledge a number of limitations arising from the methodologies

and paradigmatic approach applied in the work presented here.

The coding activities underlying the systematic analysis and synthesis of the

MIR literature presented in Chapter 2 necessarily rely on interpretations by the

coders employed in this research. Care was taken to adopt an approach that was as

rigorous and systematic as possible, by means of an iterative, mutual coding process,

followed by group discussions among the four researchers until convergence in our

coding approach was reached, and making use of a coding tool that propagated new

terms added by any one coder to all others, in order to promote consistency. Nev-

ertheless, we acknowledge the potential bias inherent in the individual judgements

underlying our coding decisions; a different group of individuals would likely not

have produced a corpus of coded findings identical to the one presented in Chapter

2, although we are confident that the overall distribution of studies and findings

identified would remain comparable.
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This issue could be addressed to some extent by enabling the authors of MIR

user studies to perform the coding process for their own studies in future work,

should sufficient interest to do so arise. Of course, this would not eliminate the need

for interpretation, but it would guarantee that the process was driven by optimal

background knowledge of the studies in question.

In Chapters 3 and 4, we make use of empiricist approaches focussed on psycho-

metric measurement of the cognitive and perceptual processes of our participants as

they complete our experimental tasks. As this work was conducted with the purpose

of producing practical insights to inform relevance criteria for MIR in mind, we em-

ploy a post-positivist paradigm, rejecting the use of artificially generated stimuli and

instead adopting excerpts of “real” music that might be encountered in everyday lis-

tening. In this decision, we promote ecological validity at the expense of tight control

over potential confounds from musical facets not pertaining to rhythmic information.

Practical considerations relating to the length of our experiments, and thus

the demands on our participants, further prescribed limitations on the amount of

musical stimuli that could be presented. While our stimulus selection was guided

by normative studies, again to promote ecological validity, it is conceivable that the

stimulus sets are not entirely representative of the musical catalogue at large.

The relatively limited size of our stimulus sets is a particular issue in the analysis

of the correlation between the mean mutual agreement (section 4.5), which, although

promising, is based on a small number of observations, limited to the 24 musical

stimuli employed in Chapter 4. Given the correspondence of beat salience ratings

and sensorimotor task performance, algorithmic implementations of beat salience
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measures could be evaluated more thoroughly if human beat salience ratings were

obtained on a larger scale, even in absence of finer-grained psychometric measures

such as those obtained in the experimental work presented in Chapter 4. Such a

corpus of beat salience ratings could be bootstrapped using crowdsourcing platforms

such as the Amazon Mechanical Turk, the suitability of which has been previously

demonstrated in MIR research, e.g. in the context of obtaining music similarity

judgements (Lee, 2010).

5.4 Future work

The work presented in this dissertation can be extended in a number of direc-

tions.

Depending on community response, we hope to maintain and extend the corpus

of findings collected in the work presented in Chapter 2, and thus to contribute

toward increasing the cohesiveness and impact of the user-centric aspects of MIR

research.

The surprising lack of predictive value of “feelings of knowing” of distorted

melodies in Chapter 3 could be usefully explored in further experimental work; partly

to illuminate this finding in itself, but also because self-reported familiarity with

musical stimuli is part of standard pre-screening questionnaires in many music per-

ception and cognition experiments. If these turn out to be unreliable, this may have

broad methodological consequences.

The outcomes of Chapter 3 demonstrate the contributions of connotative, con-

textual cues to experienced melodic identity. At time of writing, I am conducting

research on enriching musical information with extra-musical, contextual semantics,
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by employing Linked Data and Semantic Web technologies, as a research associate

on the multi-institutional Fusing Audio and Semantic Technologies for Intelligent

Music Production and Consumption (FAST-IMPACt) project (e.g. De Roure et al.,

2015). I anticipate that this work will provide a means of progressing toward en-

hanced relevance measures in MIR, further occupying the gap between information

processing and music perception and cognition.

Two directions clearly suggest themselves as avenues toward building on the work

presented in Chapter 4. On the one hand, a large-scale crowdsourcing of human

beat salience judgements would provide a useful dataset to function as “ground-

truth” in the evaluation of algorithms estimating beat salience. We have shown the

inter-rater reliability of such judgements, among musically trained and untrained

individuals, as well as the correspondence between these judgements and perception

and synchronization task performance. Such a crowd-sourced corpus could thus be

deemed valid and reliable in terms of reflecting a situational relevance criterion in

the context of finding music to move to with some degree of confidence

On the other hand, an important continuation of our investigations would study

the correspondence between performance in a tapping task, as compared to per-

formance in a task involving whole-body coordination. The tapping task has been

employed as a proxy for the idea of moving to music in the research presented here,

largely for practical reasons: it is very easy to employ. However, the assumed corre-

spondence between tapping performance and, say, performance running on a tread-

mill, needs to be verified. Future experimental work could perform such verification,
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hopefully to corroborate the validity of beat salience as a relevance criterion beyond

“mere” tapping.

This dissertation has provided a broad account of the vital notion of relevance

in music information retrieval, establishing the first comprehensive conceptualization

of relevance for the domain of musical information, and describing areas that have

received greater, or lesser, degrees of research attention thus far. At a lower level,

the work presented herein has focussed on very specific aspects of music and of

relevance, investigating the role of rhythmic information as a criterion for topical

and situational relevance in MIR. Motivated by Downie’s multiexperiential challenge

(Downie, 2003), we acknowledge that we have not “solved” the problem of relevance

and music. Instead, we have provided a solid grounds for future work specifying

this notion, and a significant advance toward formulating the “rigorous and practical

theories” concerning the nature of relevance that the challenge demands. We hope

that this work will be useful to the MIR research community.
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Appendix A: Distribution of findings according to relevance interactions (Chapter 2)

The following tables display the distribution of findings (N = 866) according to relevance interactions.
Table A-1 displays this distribution ordered by number of interacting strata (i.e. dimensionality of interaction),
and then by stratum class from left to right. Table A-2 displays the same distribution, ordered by number of
findings encoding the corresponding interaction. For the columns encoding the stratum classes, 1 indicates
presence of this stratum in an interaction, and 0 indicates its absence.

Table A-1: Distribution of findings by number of interacting strata.

Content Processing Engineering Interface Cognitive Affective Situational SocContext CultContext #Findings %Findings #InteractingStrata

1 0 0 0 0 0 0 0 0 29 3.35% 1

0 1 0 0 0 0 0 0 0 8 0.92% 1

0 0 0 1 0 0 0 0 0 59 6.81% 1

0 0 0 0 1 0 0 0 0 42 4.85% 1

0 0 0 0 0 1 0 0 0 12 1.39% 1

0 0 0 0 0 0 1 0 0 36 4.16% 1

0 0 0 0 0 0 0 1 0 19 2.19% 1

0 0 0 0 0 0 0 0 1 2 0.23% 1

1 1 0 0 0 0 0 0 0 9 1.04% 2

1 0 1 0 0 0 0 0 0 4 0.46% 2

1 0 0 1 0 0 0 0 0 90 10.39% 2

1 0 0 0 1 0 0 0 0 43 4.97% 2

1 0 0 0 0 1 0 0 0 9 1.04% 2

1 0 0 0 0 0 1 0 0 11 1.27% 2

1 0 0 0 0 0 0 1 0 7 0.81% 2

1 0 0 0 0 0 0 0 1 9 1.04% 2

0 1 0 1 0 0 0 0 0 17 1.96% 2

0 1 0 0 1 0 0 0 0 22 2.54% 2

0 1 0 0 0 1 0 0 0 2 0.23% 2

0 1 0 0 0 0 1 0 0 2 0.23% 2

0 0 1 1 0 0 0 0 0 4 0.46% 2

0 0 1 0 1 0 0 0 0 1 0.12% 2

0 0 1 0 0 0 1 0 0 3 0.35% 2

0 0 0 1 1 0 0 0 0 69 7.97% 2

0 0 0 1 0 1 0 0 0 5 0.58% 2

0 0 0 1 0 0 1 0 0 14 1.62% 2

0 0 0 1 0 0 0 1 0 18 2.08% 2

0 0 0 1 0 0 0 0 1 4 0.46% 2

0 0 0 0 1 1 0 0 0 9 1.04% 2

0 0 0 0 1 0 1 0 0 25 2.89% 2

0 0 0 0 1 0 0 1 0 11 1.27% 2

0 0 0 0 1 0 0 0 1 2 0.23% 2

0 0 0 0 0 1 1 0 0 9 1.04% 2

0 0 0 0 0 1 0 1 0 1 0.12% 2

0 0 0 0 0 1 0 0 1 2 0.23% 2

0 0 0 0 0 0 1 1 0 8 0.92% 2

0 0 0 0 0 0 1 0 1 5 0.58% 2

0 0 0 0 0 0 0 1 1 1 0.12% 2

1 1 0 1 0 0 0 0 0 24 2.77% 3

1 1 0 0 1 0 0 0 0 6 0.69% 3

1 1 0 0 0 0 1 0 0 2 0.23% 3

1 1 0 0 0 0 0 0 1 1 0.12% 3

1 0 1 1 0 0 0 0 0 2 0.23% 3

1 0 1 0 1 0 0 0 0 1 0.12% 3

1 0 1 0 0 0 1 0 0 2 0.23% 3

1 0 1 0 0 0 0 1 0 1 0.12% 3

1 0 0 1 1 0 0 0 0 27 3.12% 3

1 0 0 1 0 1 0 0 0 3 0.35% 3

1 0 0 1 0 0 1 0 0 6 0.69% 3

1 0 0 1 0 0 0 1 0 6 0.69% 3



Table A-1: Distribution of findings by number of interacting strata.

Content Processing Engineering Interface Cognitive Affective Situational SocContext CultContext #Findings %Findings #InteractingStrata

1 0 0 1 0 0 0 0 1 7 0.81% 3

1 0 0 0 1 1 0 0 0 3 0.35% 3

1 0 0 0 1 0 1 0 0 8 0.92% 3

1 0 0 0 1 0 0 1 0 2 0.23% 3

1 0 0 0 1 0 0 0 1 3 0.35% 3

1 0 0 0 0 1 1 0 0 5 0.58% 3

1 0 0 0 0 1 0 1 0 1 0.12% 3

1 0 0 0 0 1 0 0 1 2 0.23% 3

1 0 0 0 0 0 1 1 0 1 0.12% 3

1 0 0 0 0 0 1 0 1 1 0.12% 3

1 0 0 0 0 0 0 1 1 1 0.12% 3

0 1 0 1 1 0 0 0 0 12 1.39% 3

0 1 0 1 0 1 0 0 0 3 0.35% 3

0 1 0 1 0 0 1 0 0 4 0.46% 3

0 1 0 0 1 1 0 0 0 2 0.23% 3

0 1 0 0 1 0 0 1 0 2 0.23% 3

0 1 0 0 0 0 1 1 0 1 0.12% 3

0 0 1 1 1 0 0 0 0 1 0.12% 3

0 0 1 1 0 0 1 0 0 3 0.35% 3

0 0 1 1 0 0 0 0 1 1 0.12% 3

0 0 1 0 0 0 0 1 1 1 0.12% 3

0 0 0 1 1 1 0 0 0 7 0.81% 3

0 0 0 1 1 0 1 0 0 7 0.81% 3

0 0 0 1 1 0 0 1 0 4 0.46% 3

0 0 0 1 1 0 0 0 1 1 0.12% 3

0 0 0 1 0 1 1 0 0 1 0.12% 3

0 0 0 1 0 0 1 1 0 4 0.46% 3

0 0 0 1 0 0 1 0 1 2 0.23% 3

0 0 0 1 0 0 0 1 1 2 0.23% 3

0 0 0 0 1 1 1 0 0 8 0.92% 3

0 0 0 0 1 1 0 0 1 1 0.12% 3

0 0 0 0 1 0 1 1 0 8 0.92% 3

0 0 0 0 1 0 0 1 1 5 0.58% 3

0 0 0 0 0 1 1 1 0 2 0.23% 3

0 0 0 0 0 0 1 1 1 2 0.23% 3

1 1 0 1 1 0 0 0 0 4 0.46% 4

1 1 0 1 0 1 0 0 0 1 0.12% 4

1 1 0 1 0 0 1 0 0 1 0.12% 4

1 1 0 0 1 0 1 0 0 5 0.58% 4

1 0 1 0 1 0 0 1 0 1 0.12% 4

1 0 0 1 1 1 0 0 0 1 0.12% 4

1 0 0 1 1 0 1 0 0 3 0.35% 4

1 0 0 1 1 0 0 1 0 1 0.12% 4

1 0 0 1 0 1 1 0 0 1 0.12% 4

1 0 0 1 0 0 1 1 0 1 0.12% 4

1 0 0 0 1 1 1 0 0 2 0.23% 4

1 0 0 0 1 1 0 0 1 1 0.12% 4

1 0 0 0 0 0 1 1 1 2 0.23% 4

0 1 0 1 1 0 1 0 0 4 0.46% 4

0 0 0 1 1 1 1 0 0 4 0.46% 4

0 0 0 1 1 0 1 0 1 1 0.12% 4

0 0 0 0 1 1 1 1 0 3 0.35% 4

0 0 0 0 1 1 1 0 1 4 0.46% 4

0 0 0 0 1 1 0 1 1 1 0.12% 4

0 0 0 0 1 0 1 1 1 1 0.12% 4

1 0 0 1 1 1 0 1 0 1 0.12% 5

1 0 0 0 1 1 1 0 1 1 0.12% 5



Table A-2: Distribution of findings by number of findings corresponding to interaction.

Content Processing Engineering Interface Cognitive Affective Situational SocContext CultContext #Findings %Findings #InteractingStrata

1 0 0 1 0 0 0 0 0 90 10.39% 2

0 0 0 1 1 0 0 0 0 69 7.97% 2

0 0 0 1 0 0 0 0 0 59 6.81% 1

1 0 0 0 1 0 0 0 0 43 4.97% 2

0 0 0 0 1 0 0 0 0 42 4.85% 1

0 0 0 0 0 0 1 0 0 36 4.16% 1

1 0 0 0 0 0 0 0 0 29 3.35% 1

1 0 0 1 1 0 0 0 0 27 3.12% 3

0 0 0 0 1 0 1 0 0 25 2.89% 2

1 1 0 1 0 0 0 0 0 24 2.77% 3

0 1 0 0 1 0 0 0 0 22 2.54% 2

0 0 0 0 0 0 0 1 0 19 2.19% 1

0 0 0 1 0 0 0 1 0 18 2.08% 2

0 1 0 1 0 0 0 0 0 17 1.96% 2

0 0 0 1 0 0 1 0 0 14 1.62% 2

0 1 0 1 1 0 0 0 0 12 1.39% 3

0 0 0 0 0 1 0 0 0 12 1.39% 1

1 0 0 0 0 0 1 0 0 11 1.27% 2

0 0 0 0 1 0 0 1 0 11 1.27% 2

1 1 0 0 0 0 0 0 0 9 1.04% 2

1 0 0 0 0 1 0 0 0 9 1.04% 2

1 0 0 0 0 0 0 0 1 9 1.04% 2

0 0 0 0 1 1 0 0 0 9 1.04% 2

0 0 0 0 0 1 1 0 0 9 1.04% 2

1 0 0 0 1 0 1 0 0 8 0.92% 3

0 1 0 0 0 0 0 0 0 8 0.92% 1

0 0 0 0 1 1 1 0 0 8 0.92% 3

0 0 0 0 1 0 1 1 0 8 0.92% 3

0 0 0 0 0 0 1 1 0 8 0.92% 2

1 0 0 1 0 0 0 0 1 7 0.81% 3

1 0 0 0 0 0 0 1 0 7 0.81% 2

0 0 0 1 1 1 0 0 0 7 0.81% 3

0 0 0 1 1 0 1 0 0 7 0.81% 3

1 1 0 0 1 0 0 0 0 6 0.69% 3

1 0 0 1 0 0 1 0 0 6 0.69% 3

1 0 0 1 0 0 0 1 0 6 0.69% 3

1 1 0 0 1 0 1 0 0 5 0.58% 4

1 0 0 0 0 1 1 0 0 5 0.58% 3

0 0 0 1 0 1 0 0 0 5 0.58% 2

0 0 0 0 1 0 0 1 1 5 0.58% 3

0 0 0 0 0 0 1 0 1 5 0.58% 2

1 1 0 1 1 0 0 0 0 4 0.46% 4

1 0 1 0 0 0 0 0 0 4 0.46% 2

0 1 0 1 1 0 1 0 0 4 0.46% 4

0 1 0 1 0 0 1 0 0 4 0.46% 3

0 0 1 1 0 0 0 0 0 4 0.46% 2

0 0 0 1 1 1 1 0 0 4 0.46% 4

0 0 0 1 1 0 0 1 0 4 0.46% 3

0 0 0 1 0 0 1 1 0 4 0.46% 3

0 0 0 1 0 0 0 0 1 4 0.46% 2

0 0 0 0 1 1 1 0 1 4 0.46% 4

1 0 0 1 1 0 1 0 0 3 0.35% 4

1 0 0 1 0 1 0 0 0 3 0.35% 3

1 0 0 0 1 1 0 0 0 3 0.35% 3

1 0 0 0 1 0 0 0 1 3 0.35% 3

0 1 0 1 0 1 0 0 0 3 0.35% 3

0 0 1 1 0 0 1 0 0 3 0.35% 3

0 0 1 0 0 0 1 0 0 3 0.35% 2

0 0 0 0 1 1 1 1 0 3 0.35% 4

1 1 0 0 0 0 1 0 0 2 0.23% 3

1 0 1 1 0 0 0 0 0 2 0.23% 3



Table A-2: Distribution of findings by number of findings corresponding to interaction.

Content Processing Engineering Interface Cognitive Affective Situational SocContext CultContext #Findings %Findings #InteractingStrata

1 0 1 0 0 0 1 0 0 2 0.23% 3

1 0 0 0 1 1 1 0 0 2 0.23% 4

1 0 0 0 1 0 0 1 0 2 0.23% 3

1 0 0 0 0 1 0 0 1 2 0.23% 3

1 0 0 0 0 0 1 1 1 2 0.23% 4

0 1 0 0 1 1 0 0 0 2 0.23% 3

0 1 0 0 1 0 0 1 0 2 0.23% 3

0 1 0 0 0 1 0 0 0 2 0.23% 2

0 1 0 0 0 0 1 0 0 2 0.23% 2

0 0 0 1 0 0 1 0 1 2 0.23% 3

0 0 0 1 0 0 0 1 1 2 0.23% 3

0 0 0 0 1 0 0 0 1 2 0.23% 2

0 0 0 0 0 1 1 1 0 2 0.23% 3

0 0 0 0 0 1 0 0 1 2 0.23% 2

0 0 0 0 0 0 1 1 1 2 0.23% 3

0 0 0 0 0 0 0 0 1 2 0.23% 1

1 1 0 1 0 1 0 0 0 1 0.12% 4

1 1 0 1 0 0 1 0 0 1 0.12% 4

1 1 0 0 0 0 0 0 1 1 0.12% 3

1 0 1 0 1 0 0 1 0 1 0.12% 4

1 0 1 0 1 0 0 0 0 1 0.12% 3

1 0 1 0 0 0 0 1 0 1 0.12% 3

1 0 0 1 1 1 0 1 0 1 0.12% 5

1 0 0 1 1 1 0 0 0 1 0.12% 4

1 0 0 1 1 0 0 1 0 1 0.12% 4

1 0 0 1 0 1 1 0 0 1 0.12% 4

1 0 0 1 0 0 1 1 0 1 0.12% 4

1 0 0 0 1 1 1 0 1 1 0.12% 5

1 0 0 0 1 1 0 0 1 1 0.12% 4

1 0 0 0 0 1 0 1 0 1 0.12% 3

1 0 0 0 0 0 1 1 0 1 0.12% 3

1 0 0 0 0 0 1 0 1 1 0.12% 3

1 0 0 0 0 0 0 1 1 1 0.12% 3

0 1 0 0 0 0 1 1 0 1 0.12% 3

0 0 1 1 1 0 0 0 0 1 0.12% 3

0 0 1 1 0 0 0 0 1 1 0.12% 3

0 0 1 0 1 0 0 0 0 1 0.12% 2

0 0 1 0 0 0 0 1 1 1 0.12% 3

0 0 0 1 1 0 1 0 1 1 0.12% 4

0 0 0 1 1 0 0 0 1 1 0.12% 3

0 0 0 1 0 1 1 0 0 1 0.12% 3

0 0 0 0 1 1 0 1 1 1 0.12% 4

0 0 0 0 1 1 0 0 1 1 0.12% 3

0 0 0 0 1 0 1 1 1 1 0.12% 4

0 0 0 0 0 1 0 1 0 1 0.12% 2

0 0 0 0 0 0 0 1 1 1 0.12% 2



Appendix B: Stratum co-occurrence: distribution of findings and of
studies (Chapter 2)

The following tables provide an overview of stratum pairings in terms of the
distribution of findings (N = 866), and of studies (N = 176) encoding at least
one corresponding finding. Table B-1 is ordered by stratum pairing. Table B-2 is
ordered according to the magnitude of rank difference for the corresponding stratum
interaction between the two distributions (|studies ranking−findings ranking|).

Table B-1: Stratum co-occurrence (distribution of findings & studies), by stratum pairing.

Stratum A Stratum B Num. Findings Num. Studies Findings Ranking Studies Ranking Rank Diff.

Content Content 352 109 3 3 0

Content Processing 53 33 16 13 -3

Content Engineering 11 8 35 31 -4

Content Interface 179 65 5 6 1

Content Cognitive 113 64 9 7 -2

Content Affective 31 19 23 23 0

Content Situational 52 30 17 16 -1

Content Social Context 25 15 27 25 -2

Content Cultural Context 28 13 24 27 3

Processing Processing 132 59 7 8 1

Processing Engineering 0 0 45 44 -1

Processing Interface 70 38 12 12 0

Processing Cognitive 57 32 14 14 0

Processing Affective 8 6 38 34 -4

Processing Situational 19 11 30 29 -1

Processing Social Context 3 2 41 41 0

Processing Cultural Context 1 1 43 42 -1

Engineering Engineering 25 15 26 26 0

Engineering Interface 11 7 34 33 -1

Engineering Cognitive 4 3 39 39 0

Engineering Affective 0 0 44 45 1

Engineering Situational 8 6 37 35 -2

Engineering Social Context 3 3 40 38 -2

Engineering Cultural Context 2 1 42 43 1

Interface Interface 430 118 1 2 1

Interface Cognitive 147 70 6 5 -1

Interface Affective 27 20 25 22 -3

Interface Situational 56 31 15 15 0

Interface Social Context 37 18 21 24 3

Interface Cultural Context 18 5 31 37 6

Cognitive Cognitive 370 135 2 1 -1

Cognitive Affective 48 25 18 19 1

Cognitive Situational 84 45 11 11 0

Cognitive Social Context 40 26 20 17 -3
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Table B-1: Stratum co-occurrence (distribution of findings & studies), by stratum pairing.

Stratum A Stratum B Num. Findings Num. Studies Findings Ranking Studies Ranking Rank Diff.

Cognitive Cultural Context 21 12 28 28 0

Affective Affective 107 56 10 9 -1

Affective Situational 40 26 19 18 -1

Affective Social Context 9 6 36 36 0

Affective Cultural Context 12 3 33 40 7

Situational Situational 213 76 4 4 0

Situational Social Context 33 21 22 20 -2

Situational Cultural Context 19 8 29 32 3

Social Context Social Context 119 49 8 10 2

Social Context Cultural Context 16 9 32 30 -2

Cultural Context Cultural Context 66 21 13 21 8
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Table B-2: Stratum co-occurrence by rank difference: |Studies Ranking−Findings Ranking|.

Stratum A Stratum B Num. Findings Num. Studies Findings Ranking Studies Ranking Rank Diff.

Cultural Context Cultural Context 66 21 13 21 8

Affective Cultural Context 12 3 33 40 7

Interface Cultural Context 18 5 31 37 6

Processing Affective 8 6 38 34 -4

Content Engineering 11 8 35 31 -4

Interface Affective 27 20 25 22 -3

Cognitive Social Context 40 26 20 17 -3

Content Processing 53 33 16 13 -3

Situational Cultural Context 19 8 29 32 3

Content Cultural Context 28 13 24 27 3

Interface Social Context 37 18 21 24 3

Engineering Social Context 3 3 40 38 -2

Engineering Situational 8 6 37 35 -2

Social Context Cultural Context 16 9 32 30 -2

Content Social Context 25 15 27 25 -2

Situational Social Context 33 21 22 20 -2

Content Cognitive 113 64 9 7 -2

Social Context Social Context 119 49 8 10 2

Processing Engineering 0 0 45 44 -1

Processing Cultural Context 1 1 43 42 -1

Engineering Interface 11 7 34 33 -1

Processing Situational 19 11 30 29 -1

Affective Situational 40 26 19 18 -1

Content Situational 52 30 17 16 -1

Affective Affective 107 56 10 9 -1

Interface Cognitive 147 70 6 5 -1

Cognitive Cognitive 370 135 2 1 -1

Engineering Affective 0 0 44 45 1

Engineering Cultural Context 2 1 42 43 1

Cognitive Affective 48 25 18 19 1

Processing Processing 132 59 7 8 1

Content Interface 179 65 5 6 1

Interface Interface 430 118 1 2 1

Processing Social Context 3 2 41 41 0

Engineering Cognitive 4 3 39 39 0

Affective Social Context 9 6 36 36 0

Cognitive Cultural Context 21 12 28 28 0

Engineering Engineering 25 15 26 26 0

Content Affective 31 19 23 23 0

Interface Situational 56 31 15 15 0

Processing Cognitive 57 32 14 14 0

Processing Interface 70 38 12 12 0

Cognitive Situational 84 45 11 11 0

Situational Situational 213 76 4 4 0

Content Content 352 109 3 3 0
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Appendix C: List of articles (Chapter 2)

The following list of all articles subject to the systematic analysis presented

in Chapter 2 was obtained from the “List of Resources on User Aspects in MIR”

available at http://www.jinhalee.com/miruserstudies/ (retrieved on December 7th,

2015). We assigned numeric article IDs (sequentially according to alphabetic order),

and use these to refer to specific articles in the synthesis of findings.

1. Adamczyk, P. D. (2004). Seeing sounds: exploring musical social networks. Paper presented at the 12th annual

ACM international conference on Multimedia, New York, NY, USA.

2. Allen, M., Gluck, J., Maclean, K., & Tang, E. (2005). An initial usability assessment for symbolic haptic

rendering of music parameters. Paper presented at the 7th international conference on Multimodal interfaces

(ICMI ’05).

3. Andric, A., & Haus, G. (2006). Automatic playlist generation based on tracking user’s listening habits. Multi-

media Tools and Applications, 29(2), 127-151.

4. Andric, A., Xech, P.-L., & Fantasia, A. (2006). Music Mood Wheel: Improving Browsing Experience on Digital

Content through an Audio Interface. Paper presented at the Automated Production of Cross Media Content

for Multi-Channel Distribution, International Conference on, Los Alamitos, CA, USA.

5. Ankolekar, A., & Sandholm, T. (2011). Foxtrot: a soundtrack for where you are. Paper presented at the

Interacting with Sound Workshop: Exploring Context-Aware, Local and Social Audio Applications, New

York, NY, USA.

6. Arhippainen, L., & Hickey, S. (2011). Classifying music user groups and identifying needs for mobile virtual

music services. Paper presented at the 15th International Academic MindTrek Conference: Envisioning Future

Media Environments, New York, NY, USA.

7. Bainbridge, D., Cunningham, S. J., & Downie, J. S. (2003). How people describe their music information needs:

A grounded theory analysis of music queries. Paper presented at the 4th International Conference on Music

Information Retrieval (ISMIR 2003), Baltimore, MD.

8. Bainbridge, D., Novak, B. J., & Cunningham, S. J. (2010). A user-centered design of a personal digital library

for music exploration. Paper presented at the 10th annual joint conference on Digital libraries, Gold Coast,

Queensland, Australia.
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9. Barrett, S., & Inskip, C. (2008). Deriving context from users’ evaluations to inform software development.

Paper presented at the 2nd International Symposium on Information Interaction in Context, London, United

Kingdom.

10. Barrington, L., Reid, O., & Lanckriet, G. (2009). Smarter Than Genius? Human Evaluation of Music Recom-

mender Systems. Paper presented at the 10th International Society for Music Information Retrieval Confer-

ence, Kobe, Japan.

11. Baumann, S., & Klüter, A. (2002). Super Convenience for Non-Musicians: Querying MP3 and the Semantic

Web. Paper presented at the 3rd International Conference on Music Information Retrieval (ISMIR 2002),

Paris, France.

12. Baur, D., Steinmayr, B., & Butz, A. (2010). SongWords: Exploring Music Collections Through Lyrics. Paper

presented at the 11th International Society for Music Information Retrieval Conference (ISMIR 2010), Utrecht,

Netherlands.

13. Bentley, F., Metcalf, C., & Harboe, G. (2006). Personal vs. commercial content: the similarities between

consumer use of photos and music. Paper presented at the SIGCHI conference on Human Factors in computing

systems (CHI’06).

14. Berenzweig, A., Logan, B., Ellis, D. P. W., & Whitman, B. (2004). A Large-Scale Evaluation of Acoustic and

Subjective Music-Similarity Measures. Computer Music Journal, 28(2), 63-76.

15. Bergman, J., Kauko, J., & Keränen, J. (2009). Hands on music: physical approach to interaction with digital

music. Paper presented at the 11th International Conference on Human-Computer Interaction with Mobile

Devices and Services, New York, NY, USA.

16. Bischoff, K., Firan, C. S., Nejdl, W., & Paiu, R. (2009). How do you feel about “dancing queen”?: deriving

mood & theme annotations from user tags. Paper presented at the 9th ACM/IEEE-CS joint conference on

Digital libraries Austin, TX, USA.

17. Boltz, M., Schulkind, M., & Kantra, S. (1991). Effects of Background Music on the Remembering of Filmed

Events. Memory & Cognition, 19(6), 593-606.

18. Bonardi, A. (2000). IR for contemporary music: What the musicologist needs. Paper presented at the 1st

Annual International Symposium on Music Information Retrieval (ISMIR 2000), Plymouth, MA.

19. Braunhofer, M., Kaminskas, M., & Ricci, F. (2011). Recommending music for places of interest in a mobile

travel guide. Paper presented at the 5th ACM conference on Recommender systems, New York, NY, USA.

20. Brinegar, J., & Capra, R. (2011). Managing music across multiple devices and computers. Paper presented at

the 2011 iConference, Seattle, WA, USA.

21. Carlisle, J. (2007). Digital music and generation Y: discourse analysis of the online music information behaviour

talk of five young Australians. Information Research, 12(4).
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22. Chen, Y.-X., & Butz, A. (2009). Musicsim: integrating audio analysis and user feedback in an interactive

music browsing ui. Paper presented at the 14th International Conference on Intelligent user interfaces Sanibel

Island, FL, USA.

23. Cunningham, S., & Bainbridge, D. (2010). A Search Engine Log Analysis of Music-Related Web Searching. In

N. Nguyen, R. Katarzyniak & S.-M. Chen (Eds.), Advances in Intelligent Information and Database Systems

(Vol. 283, pp. 79-88): Springer Berlin / Heidelberg.

24. Cunningham, S. J. (2002). What People Do When They Look for Music: Implications for Design of a Music

Digital Library. Lecture notes in computer science(2555), 177-178.

25. Cunningham, S. J. (2003). User studies: A first step in designing an MIR testbed. The MIR/MDL Evaluation

Project White Paper Collection Edition #3, 17–19.

26. Cunningham, S. J., Bainbridge, D., & Falconer, A. (2006). “More of an art than a science”: Supporting the

creation of playlists and mixes. Paper presented at the 7th International Conference on Music Information

Retrieval (ISMIR 2006), Victoria, Canada.

27. Cunningham, S. J., Bainbridge, D., & McKay, D. (2007). Finding new music: a diary study of everyday

encounter with novel songs. Paper presented at the 8th International Conference on Music Information

Retrieval (ISMIR 2007), Vienna, Austria.

28. Cunningham, S. J., Jones, M., & Jones, S. (2004). Organizing digital music for use: an examination of personal

music collections. Paper presented at the 5th International Conference on Music Information Retrieval (ISMIR

2004), Barcelona, Spain.

29. Cunningham, S. J., & Nichols, D. M. (2009). Exploring Social Music Behavior: an Investigation of Music

Selection at Parties. Paper presented at the 10th International Society for Music Information Retrieval

Conference (ISMIR 2009), Kobe, Japan.

30. Cunningham, S. J., Reeves, N., & Britland, M. (2003). An ethnographic study of music information seek-

ing: implications for the design of a music digital library. Paper presented at the 3rd ACM/IEEE-CS joint

conference on Digital libraries, Washington, DC, USA.

31. Cunningham, S. J., & Zhang, Y. E. (2008). Development of a music organizer for children. Paper presented at

the 9th International Conference on Music Information Retrieval (ISMIR 2008), Philadelphia, PA.

32. Dachselt, R., & Frisch, M. (2007). Mambo: a facet-based zoomable music browser. Paper presented at the 6th

international conference on Mobile and ubiquitous multimedia, New York, NY, USA.

33. Dias, R., & Fonseca, M. J. (2010). MuVis: an application for interactive exploration of large music collections.

Paper presented at the international conference on Multimedia, New York, NY, USA.

34. Downie, J. S. (1994). The MusiFind musical information retrieval project, Phase II: User assessment survey. Pa-

per presented at the 22nd Annual Conference of the Canadian Association for Information Science, Montreal,

Quebec.
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design implications. Science And Technology, 18, 29.
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Appendix D: Mean identification scores for melodies in the stimulus set
(Chapter 3)

The following tables display the mean identification scores for melodies in the
stimulus set (altered conditions). Table D-1 is ordered by melody name. Tables D-2
and D-3 are ordered by mean identification score in the isochronous and randomized
conditions, respectively.

Values listed for a particular melody correspond to mean identification score
across all participants who were familiar with this melody (i.e., participants able to
identify the melody in its unaltered version). Individual responses were scored 1
for correct identifications, .5 for partial identifications, and 0 for misidentifications
or non-identifications. Two melodies, marked with asterisks (*) in the following
tables, were erroneously presented in their reordered version in both the reordered
and randomized conditions of Study 1. Responses to these melodies were accordingly
withdrawn from the analyses of all conditions of both studies.

Table D-1: Mean identification scores by melody name.

Mean identification score

Study 1 Study 2

Melody name Reordered Randomized Stretched Isochronous

Addams Family Theme .00 .00 .31 .23

Bingo .41 .05 .42 .58

Blue Danube Waltz .45 .36 .53 .47

Camp Town Racing .69 .17 .17 .44

Coming ’round the Mountain* .15 * .74 .47

Deck the Halls .26 .00 .08 .32

Doe, a Deer .09 .00 .12 .22

For He’s a Jolly Good Fellow .00 .00 .00 .00

Frère Jacques .91 .50 .57 .74

Happy Birthday .94 .97 1.00 1.00

Hark the Herald Angels .24 .21 .22 .62

Hey Jude .82 .36 .56 .17

I Will Survive .05 .00 .00 .00

If You’re Happy and You Know It* .75 * .95 .59
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Table D-1: Mean identification scores by melody name.

Mean identification score

Study 1 Study 2

Melody name Reordered Randomized Stretched Isochronous

Jingle Bells .87 .19 .55 .73

London Bridge .28 .13 .36 .61

Lone Ranger Theme (William Tell) .65 .09 .20 .50

Mary Had a Little Lamb .96 .29 .60 .95

Michael Row the Boat .00 .00 .50 .50

My Bonnie .71 .35 .81 .81

Ode To Joy .40 .40 .64 1.00

O Canada .92 .50 .60 .30

Oh Suzanna .65 .08 .42 .58

Old MacDonald .89 .37 .57 .86

Rock a Bye Baby .39 .37 .63 .58

Row Row Row Your Boat .14 .00 .15 .20

Rudolph the Red Nosed Reindeer .79 .09 .19 .52

Russian Dance (Nutcracker) .22 .00 .13 .00

Silent Night .78 .92 .98 .19

The Itsy Bitsy Spider .02 .00 .32 .00

The Song That Never Ends .00 .00 .20 .20

Three Blind Mice .41 .41 .81 .19

Twinkle Twinkle Little Star .87 .63 .72 .96

We Wish You A Merry Christmas .95 .17 .50 .66

Wedding March (Here Comes the Bride) .77 .65 .68 .20

When The Saints Go Marching In .59 .33 .88 .64

White Christmas .21 .14 .72 .00

Yankee Doodle .86 .69 .86 .86
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Table D-2: Mean identification scores by performance in isochronous condition.

Mean identification score

Study 1 Study 2

Melody name Reordered Randomized Stretched Isochronous

Happy Birthday .94 .97 1.00 1.00

Ode To Joy .40 .40 .64 1.00

Twinkle Twinkle Little Star .87 .63 .72 .96

Mary Had a Little Lamb .96 .29 .60 .95

Old MacDonald .89 .37 .57 .86

Yankee Doodle .86 .69 .86 .86

My Bonnie .71 .35 .81 .81

Frere Jacques .91 .50 .57 .74

Jingle Bells .87 .19 .55 .73

We Wish You A Merry Christmas .95 .17 .50 .66

When The Saints Come Marching In .59 .33 .88 .64

Hark the Herald Angels .24 .21 .22 .62

London Bridge .28 .13 .36 .61

If You’re Happy and You Know It* .75 * .95 .59

Bingo .41 .05 .42 .58

Oh Suzanna .65 .08 .42 .58

Rock a Bye Baby .39 .37 .63 .58

Rudolph the Red Nosed Reindeer .79 .09 .19 .52

Lone Ranger Theme (William Tell) .65 .09 .20 .50

Michael Row the Boat .00 .00 .50 .50

Blue Danube Waltz .45 .36 .53 .47

Coming ’round the Mountain* .15 * .74 .47

Camp Town Racing .69 .17 .17 .44

Deck the Halls .26 .00 .08 .32

Oh Canada .92 .50 .60 .30

Addams Family Theme .00 .00 .31 .23

Doe, a Deer .09 .00 .12 .22

Row Row Row Your Boat .14 .00 .15 .20

The Song That Never Ends .00 .00 .20 .20

Wedding March (Here Comes the Bride) .77 .65 .68 .20
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Table D-2: Mean identification scores by performance in isochronous condition.

Mean identification score

Study 1 Study 2

Melody name Reordered Randomized Stretched Isochronous

Silent Night .78 .92 .98 .19

Three Blind Mice .41 .41 .81 .19

Hey Jude .82 .36 .56 .17

For He’s a Jolly Good Fellow .00 .00 .00 .00

I Will Survive .05 .00 .00 .00

Russian Dance (Nutcracker) .22 .00 .13 .00

The Itsy Bitsy Spider .02 .00 .32 .00

White Christmas .21 .14 .72 .00
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Table D-3: Mean identification scores by performance in randomized condition.

Mean identification score

Study 1 Study 2

Melody name Reordered Randomized Stretched Isochronous

Happy Birthday .94 .97 1.00 1.00

Silent Night .78 .92 .98 .19

Yankee Doodle .86 .69 .86 .86

Wedding March (Here Comes the Bride) .77 .65 .68 .20

Twinkle Twinkle Little Star .87 .63 .72 .96

Frere Jacques .91 .50 .57 .74

Oh Canada .92 .50 .60 .30

Three Blind Mice .41 .41 .81 .19

Ode To Joy .40 .40 .64 1.00

Old MacDonald .89 .37 .57 .86

Rock a Bye Baby .39 .37 .63 .58

Blue Danube Waltz .45 .36 .53 .47

Hey Jude .82 .36 .56 .17

My Bonnie .71 .35 .81 .81

When The Saints Come Marching In .59 .33 .88 .64

Mary Had a Little Lamb .96 .29 .60 .95

Hark the Herald Angels .24 .21 .22 .62

Jingle Bells .87 .19 .55 .73

We Wish You A Merry Christmas .95 .17 .50 .66

Camp Town Racing .69 .17 .17 .44

White Christmas .21 .14 .72 .00

London Bridge .28 .13 .36 .61

Rudolph the Red Nosed Reindeer .79 .09 .19 .52

Lone Ranger Theme (William Tell) .65 .09 .20 .50

Oh Suzanna .65 .08 .42 .58

Bingo .41 .05 .42 .58

Michael Row the Boat .00 .00 .50 .50

Deck the Halls .26 .00 .08 .32

Addams Family Theme .00 .00 .31 .23

Doe, a Deer .09 .00 .12 .22

214



Table D-3: Mean identification scores by performance in randomized condition.

Mean identification score

Study 1 Study 2

Melody name Reordered Randomized Stretched Isochronous

Row Row Row Your Boat .14 .00 .15 .20

The Song That Never Ends .00 .00 .20 .20

For He’s a Jolly Good Fellow .00 .00 .00 .00

I Will Survive .05 .00 .00 .00

Russian Dance (Nutcracker) .22 .00 .13 .00

The Itsy Bitsy Spider .02 .00 .32 .00

If You’re Happy and You Know It* .75 * .95 .59

Coming ’round the Mountain* .15 * .74 .47
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Appendix E: Contextual categories for melodies in the stimulus set
(Chapter 3)

Table E-1: Contextual categorization of melodies in the stimulus set.
Melody Name Category
For He’s a Jolly Good Fellow

CeremonialHappy Birthday
O Canada
Wedding March (Here Comes The Bride)
Bingo

Children

Camp Town Racing
Coming ’round The Mountain
Frere Jacques
If You’re Happy And You Know It
London Bridge
Mary Had A Little Lamb
Michael Row the Boat
My Bonnie
Old MacDonald
Oh Suzanna
Rock a Bye Baby
Row Row Row Your Boat
The Itsy Bitsy Spider
The Song That Never Ends
Three Blind Mice
Twinkle Twinkle Little Star
Yankee Doodle
Deck the Halls

Christmas

Hark The Herald Angels Sing
Jingle Bells
Rudolph the Red Nosed Reindeer
Silent Night
We Wish You A Merry Christmas
When The Saints Come Marching In
White Christmas
Blue Danube

ClassicalOde To Joy
Russian Dance (Nutcracker)
Hey Jude PopI Will Survive
Addams Family Theme

ThemeDoe, a Deer
Lone Ranger Theme (William Tell)

Note: Categorizations determined by mutual agreement between co-authors.
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Table E-2: Contextual categorization of melodies named in misidentifications.
Melody Name Category
Amazing Grace

Ceremonial

America the Beautiful
God Save The Queen
My Country ‘tis of Thee
National Anthem
Star Spangled Banner
US National Anthem
Alouette

Children

Alphabet Song
Baa Baa Black Sheep
Bed Time Song
Do Your Ears Hang Low?
Fais Dodo
Farmer in the Dell
Head, Shoulders, Knees, & Toes
Hickory Dickory Dock
Hot Cross Buns
Hot Potato
Jack & Jill
Kumbaya
La Cucaracha
Over The Hills We Go
Pop Goes The Weasel
Railroad
Ring Around The Rosie
Swanee River
The Bear Went Over The Mountain
There Was An Old Lady Who Swallowed a Fly
There’s A Hole in My Bucket
Turkey In The Straw
Angels We Have Heard On High

Christmas

Away in a Manger
Frosty The Snowman
Good King Wenceslas
Little Drummer Boy
O Tannenbaum
Once In Royal David’s City
Silver Bells
Au Clair de la Lune

ClassicalGreensleeves
Mozart
Waltz Of The Flowers
Bang Bang, Wanda Jackson

ChristmasHow Much Is That Doggy In The Window
Macarena
You Are My Sunshine
Alfred Hitchcock Theme

Theme

Barney Theme
Baseball Game Song
Bonanza Theme Song
Elliot the Moose Theme
Hockey Game
I’d Do Anything (Oliver)
The Munsters Theme
Pink Panther Theme
Somewhere Over The Rainbow
Theme from My Fair Lady

Note: Melodies listed in this table were named in participants’ misidentifying responses, i.e. none of these melodies were presented
during the experiment. Categories determined by mutual co-author agreement.
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Appendix F: Stimulus details (Chapter 4)

Table F-1: Stimulus details

Beat Salience Level Stimulus Song Title Artist Album Excerpt time Tempo (BPM)

High

1 The Maker Omar S Single 4:45 - 5:02 121
2 Alpha Male Royksopp The Understanding 2:36 - 2:53 135
3 Sparks Royksopp Melody AM 0:32 - 0:49 85
4 Up There Centovalley August 0:42 - 0:59 135
5 Dirty Dancehall The Zutons Who Killed the Zutons 0:49 - 1:05 88
6 Dwrcan Bibio Ambivalance Avenue 1:12 - 1:29 93
7 Everybody’s Stalking Badly Drawn Boy The Hour of Bewilderbeast 0:23 - 0:40 83
8 Fall Apart Lukid Foma 1:22 - 1:39 99

Medium

9 Contact Note Jon Hopkins Contact Note 3:53 - 4:10 107
10 The Black Forest Bear Kobaya (Sub-Opt) Ocean of Orbs 1:47 - 2:03 100
11 Closing In Imogen Heap Speak for Yourself 2:17 - 2:34 112
12 Children’s Limbo Venetian Snares Find Candace 1:03 - 1:20 170
13 Ratsback2 (Saitone Remix) Plaid Tekkonkinkreet OST 1:51 - 2:08 141
14 The Sentinel Horror Inc. Horrorama EP 2:00 - 2:17 125
15 Matter of Time ASC Nothing is Certain 0:45 - 1:02 85
16 Myxamatosis Radiohead Hail to the Thief 0:38 - 0:55 99

Low

17 When I look at your face I laugh and cry A Setting Sun & Shigeto Table for Two 2:32 - 2:48 120
18 Omgyjya Switch 7 Aphex Twin Drukqs Disk 1 0:00 - 0:17 95
19 The Black Page #1 Frank Zappa Läther (Disc 2) 0:37 - 0:54 124
20 Indigo Monolake Single 0:29 - 0:46 118
21 Mouse Bums Mu-ziq Bilious Paths 0:20 - 0:37 120
22 Bucephalus Bouncing Ball Aphex Twin Come to Daddy 3:02 - 3:19 83
23 Distant Father Torch Clark Growl’s Garden 0:37 - 0:54 77
24 Pleasure Is All Mine BjÃűrk Medúlla 2:50 - 3:09 95

High Practice 1 Satellite Guster Gangin up on the Sun 3:09 - 3:26 132
Medium Practice 2 Heysatan Sigur Ros Takk 0:40 - 0:57 78
Low Practice 3 Nightjar Jon Hopkins Contact Note 0:37 - 0:54 90
High Practice 4 Cool for Cats Squeeze Greatest Hits 00:32 - 0:49 144

Medium Practice 5 Gonna Be Sick Beardyman I Done A Album 1:23 - 1:40 140
Low Practice 6 Diabolical Minds Buckethead Bucketheadland 0:08 - 0:25 90
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Appendix G: Contrasting naïve and informed tap densities (Chapter 4)

The three plots on the following pages display tap density distributions generated

during naïve tapping (sub-trial 1) and informed tapping (sub-trial 3), for stimuli

respectively exhibiting high, medium, and low levels of beat salience. Black-shaded

curves represents naïve tapping; white-shaded curves represent informed tapping

(sub-trial 3); grey shade represents areas of overlap.
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Figure G-1: Tap density distributions generated in response to high beat salience stimuli.



Figure G-2: Tap density distributions generated in response to medium beat salience stimuli.



Figure G-3: Tap density distributions generated in response to low beat salience stimuli.



Appendix H: Informed consent forms (Chapters 3 & 4)

The following two pages provide facsimiles of the blank forms signed by partic-

ipants to indicate informed consent in the melody identification studies reported in

Chapter 3, and in the beat salience studies reported in Chapter 4.
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