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Abstract

The complex Langevin algorithm was developed to evade the sign prob-

lem by extending the degrees of freedom into a complex space. The validity

of the results depends on the fall off of the resulting probability distribution.

To explore the falloff, we attempted to reweight the probability distribution

by introducing an acceptance probability at each step in the algorithm, and

by direct manipulation of the Fokker-Planck equation. The acceptance prob-

ability did not lead to the target reweighted distribution because the com-

plex Langevin algorithm does not follow detailed balance. Manipulating the

Fokker-Planck equation gave a differential equation for the reweighted distri-

bution, but we could not find a way to simulate it.
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Abstrait

AbstraitL’algorithme complexe de Langevin a été développé pour échapper

la problme de la signe en étendant les degrés de liberté dans un espace com-

plexe. La validité des résultats de l’algorithme dépend de la décroissance de

la distribution de probabilité résultante. Pour analyser cette décroissance,

nous avons tenté de modifier la distribution de probabilité en introduisant une

probabilité d’approbation à chaque étape de l’algorithme et en manipulant di-

rectement l’équation de Fokker-Planck. La probabilité d’approbation n’a pas

reproduit à la distribution desirée puisque l’algorithme Langevin complexe

ne suit pas le principe la balance détaillé. La manipulation de l’équation de

Fokker-Planck a donné une équation différentielle pour la distribution modi-

fier, mais nous n’avons pas trouvé un moyen de la simuler.
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CHAPTER 1
Introduction and Background

A common strategy for determining the value of observables such as cor-

relation functions in quantum field theories is to write them as an integral

over all trajectories through spacetime with a complex weight involving the

action of the theory [1]. In practice, solving this so called path integral is

not possible for all but the simplest quantum field theories. In some cases,

proceeding numerically is the most effective method of obtaining useful results

from the path integral formulation. Before applying numerical methods, the

problem must be discretized and reformulated onto a lattice while preserving

symmetries.

Once discretized, the path integral becomes a finite number of integrals

over each lattice site. These finite integrals still involve a complex weight,

making typical Markov Chain Monte Carlo techniques ineffective in many

cases. In order to circumvent the complex phase in the integral, it is common

to perform a Wick rotation, which is essentially replacing the time variable

with a complex time variable. This transformation changes the complex weight

into a real one and in some cases, Monte Carlo techniques become available [2].

However for many theories the Wick rotation does not completely eliminate

the complex phase.

The phase diagram of QCD is of particular fundamental importance. At

nonzero chemical potential, the phase diagram is almost completely unverified

numerically except in some limiting cases. Large regions of parameter space

are currently unexplored by simulations because of the so called sign problem,

which arises from a complex determinant in the action [3]. Other systems
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which exhibit the sign problem include the XY chain and the relativistic Bose

gas at finite temperature. These simpler systems have been used as testing

grounds for methods to circumvent the sign problem [4][5].

One proposed method of averting the sign problem is the complex

Langevin algorithm. In practice, this is similar to the standard Langevin

algorithm, but uses the complexity of the action to drive the real degrees of

freedom into the complex plane. The advantage of such an algorithm is that it

doesn’t rely on the weight as a probability distribution. The complex Langevin

equation has so far shown promise, giving accurate results when studying sys-

tems such as the relativistic Bose gas and the XY model [4]. Though the

algorithm shows potential, it fails in some cases, making it hard to believe any

predictive results that could not be verified by other techniques.

In this thesis, we will go through the theory of Markov chains and Monte

Carlo techniques, as well as detail the causes of the sign problem. The main

body of this text will be reviewing prior works which have developed the com-

plex Langevin algorithm and have created formal arguments for its validity.

Finally, we will detail some attempts we have made at incorporating reweight-

ing into the algorithm.

Before exploring the sign problems and the algorithm to avert it, we will

review the process of deriving the path integral formulation.

1.1 Path Integrals

The path integral formulation of quantum theory is indispensable for con-

structing theories on a lattice and gives an important and unique perspective

into quantum theory. To illustrate the physical reasoning behind the formu-

lation, consider performing a series of multi slit experiments [6]. In such an

experiment, a particle travels from a source to a screen. The screen is partially

blocked by an opaque wall which has two narrow slits in it. The particle can
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reach any point on the screen via two paths; one for each slit. The ampli-

tude of a particle reaching our point on the screen is simply the sum of the

amplitudes of each path.

Now imagine adding another double slit between the source and the

screen. There are now four amplitudes which need to be summed in order

to determine the probability that the particle hits a particular point on the

screen. Consider replacing the double slit walls with walls which have three

slits. In this case, there are nine amplitudes to consider.

The path integral formulation is a more extreme version of this multi slit

experiment. Imagine having a million (or more) walls with a million (or more)

slits in them between the source and the screen. There are now a million-

million paths and amplitudes to consider. In fact, a wall with so many slits in

it looks like empty space. What this extreme experiment is really suggesting is

to consider all the paths a particle can take through empty space, and consider

the quantum mechanical amplitude for each. The accounting of all the many

(infinite) trajectories a particle can take are encompassed in the path integral

as we will see. The question of how to compute such an elaborate sum is an

important one in the study of lattice quantum field theories.

In quantum mechanics, the state |ψ〉 of a system evolves from initial time

t0 to a later time t via the Schrödinger equation

|ψ(t)〉 = e−iH(t−t0)|ψ(t0)〉,

where H is the Hamiltonian of the system. Consider a system with degrees of

freedom qα where α is an index running from 1 to n. We denote the set of de-

grees of freedom by q and denote the simultaneous eigenstates of the system by

|q〉. Quantum mechanical amplitudes such as the amplitudes described above
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in the multi slit experiment are written as 〈q′, t′|q, t〉 = 〈q′|e−iHt′eiHt|q〉. In-

serting a complete set of energy eigenstates
∑

n |En〉〈En| in the matrix element

gives

〈q′, t′|q, t〉 =
∑
n

e−i(t
′−t)Enψn(q

′)ψ∗n(q),

where En is the energy of the eigenstate |En〉 and ψn(q) is the wavefunction

〈q|En〉. At this point, it is convenient to transform this equation to imaginary

time. In practice, this amounts to making the substitution t → −iτ and

t′ → −iτ ′. This substitution, called a Wick rotation, simplifies the calculations

by eliminating the complex exponential in the problem.

With this transformation done, the interval [τ ′, τ ] can be divided into

subintervals of length ε = τ ′−τ
N

for a large integer N . The endpoints of the

subintervals are denoted by τi with i ranging from 0 to N and τ0 = τ , τN = τ ′.

The matrix element in question can be written as

〈q′, t′|q, t〉 = 〈q′|e−H(τ ′−τ)|q〉

= 〈q′|e−H(τ ′−τN−1)e−H(τN−1−τN−2) . . . e−H(τ1−τ)|q〉.

At each intermediate time, a complete set of eigenstates can be inserted:

〈q′, t′|q, t〉 =
∫

dq(N−1) . . .
∫

dq(1) 〈q′|e−Hε|q(N−1)〉〈q(N−1)|e−Hε|q(N−2)〉

〈q(N−2)| . . . |q(1)〉〈q(1)|e−Hε|q〉.

The integral
∫
dq represents an integral over all coordinate degrees of

freedom qα. More concisely, the many integrals are written
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〈q′, t′|q, t〉 =
N−1∏
l=1

∫
dq(l) 〈q′|e−Hε|q(N−1)〉〈q(N−1)|e−Hε|q(N−2)〉〈q(N−2)| . . .

. . . |q(1)〉〈q(1)|e−Hε|q〉.
(1.1)

At this step, it is apparent that the amplitude 〈q′, t′|q, t〉 is the product of
many intermediate amplitudes, representing the multiple trajectories through

coordinate space the system can explore. This is in line with our multi slit

experiment described above.

Proceeding further, we choose a specific form for the Hamiltonian. The

typical example of a Hamiltonian is 1
2
PiPi+V (Q), where the operators Qα are

the operators corresponding to the qα degree of freedom (Qα|q〉 = qα|q〉). The
operators Pi are the momentum operators, which are conjugate to Qi. The

repeated indices are summed over.

With this Hamiltonian, and using the Baker-Campbell-Hausdorff theo-

rem,

eAeB = eA+B+ 1
2
[A,B]+...,

any one of the amplitudes in equation (1.1) can be written as

〈q(l+1)|e−ε 12PiPi−εV (Q)|q(l)〉 ≈ 〈q(l+1)|e− ε
2
PiPi |q(l)〉e−εV (q),

where the terms which are proportional to ε2 and higher powers of ε have been

disregarded because ε is arbitrarily small. In order to evaluate the momentum

operators, a complete set of momentum eigenstates are placed to the right of

the exponential.
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(1.2)

e−εV (q)〈q(l+1)|e− ε
2
PiPi |q(l)〉 =

∫
dp(l) e−εV (q)〈q(l+1)|e− ε

2
PiPi |p(l)〉〈p(l)|q(l)〉

=

∫
dp(l) e−εV (q)− ε

2
p(l)

2 〈q(l+1)|p(l)〉〈p(l)|q(l)〉

=

∫
dp(l)

(2π)n
e−εV (q)eip

(l)
i q

(l+1)
i e−ip

(l)
i q

(l)
i

=

∫
dp(l)

(2π)n
e−εV (q) exp

{
−ε
(
1

2
p(l)

2

− ip
(l)
i

(
q
(l+1)
i − q

(l)
i

ε

))}
.

In equation 1.2, the canonical eigenfunction was used,

〈q|p〉 = 1√
2π
eipq, (1.3)

and dp is shorthand for
∏n

i=1 dpi. This integral can be calculated by completing

the square to turn it into a simple Gaussian integral:

(1.4)

∫
dp(l)

(2π)n
e−εV (q) exp

{
−ε
(
1

2
p(l)

2 − ip
(l)
i

(
q
(l+1)
i − q

(l)
i

ε

))}

= e−εV (q) exp

{
− ε
2

(
q(l+1) − q(l)

ε

)2}∫
dp(l)

(2π)2
exp

{
− ε
2

(
p(l)

− i
q(l+1) − q(l)

ε

)2}

∝ e−εV (q) exp

{
− ε
2

(
q(l+1) − q(l)

ε

)2}
.

The term in the exponential can be rewritten. The states |q(l)〉 were

inserted as intermediate states. In other words, integrating over q(l) is really

integration over possible states at the (imaginary) time iτl. As such, the term

q(l+1)−q(l)
ε

begins to look a lot like a (imaginary) time derivative. This terms is

then denoted q̇(l).

The total exponential in equation(1.4) now resembles the Lagrangian from

classical mechanics. The (Euclidean) Lagrangian is defined by
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LE(q
(l), q̇(l)) = V (q(l)) +

1

2
q̇(l). (1.5)

The amplitude we are calculating then becomes

〈q|e−H(τ ′−τ)|q〉 ≈
∫ N−1∏

l=1

dq(l)√
2πε

e−εLE(q(l),q̇(l))

=

∫ (N−1∏
l=1

dq(l)√
2πε

)
e−

∑N−1
l=0 εLE(q(l),q̇(l))

(1.6)

The sum in the exponential is the (Euclidean) action,

SE =
N−1∑
l=0

εLE(q
(l), q̇(l)) (1.7)

The integration measure in equation (1.6) is an integral over all the possi-

ble intermediate states of the system. Such an integral is called a path integral

and is denoted by
∫ q′

q
D[q]. In all, equation (1.6) is written in a continuum

form as

〈q|e−H(τ ′−τ)|q〉 =
∫ q′

q

D [q] e−SE(q,q̇), (1.8)

where the continuum action is

SE(q, q̇) =

∫ τ ′

τ

dτ ′′LE(q(τ
′′), q̇(τ ′′)).

The paths which are important in the integral are those for which δSE = 0.

Deviations from these extremum paths are exponentially suppressed. Expand-

ing around the extremum of the action gives the usual Euler-Lagrange equa-

tions.

The path integral can only be solved exactly for very few cases in quantum

mechanics. Most problems in quantum mechanics are solved simply without

this formulation. In the next section, we will look at the path integral in the
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context of quantum field theory, where the formalism is more useful. The path

integral allows for the derivation of the Feynman rules and Feynman diagrams.

1.2 Path Integrals for Fields

In the previous section we managed to write a quantum mechanical am-

plitude as a path integral. Through various integral solving techniques, the

path integral can be used to obtain an actual value for the amplitudes. In this

section we will use the same line of reasoning for quantum fields. The simplest

operator we can consider is the scalar field. Using the Heisenberg picture, the

time evolution is given by

φ(x, t) = eiHtφ(x, 0)e−iHt. (1.9)

In field theory, the vacuum expectation values are the focus of interest:

G(x1, x2, ..., xl) = 〈Ω|T{φ(x1)...φ(xl)}|Ω〉, (1.10)

where 〈Ω| is the ground state (vacuum) and T represents time ordering, which

ensures that the fields are sorted in order of their time component. The tran-

sition to imaginary time for Heisenberg operators gives, for the operator Qi:

Q̂i(τi) = eHτiQie
−Hτi (1.11)

The vacuum expectation value can be obtained from the matrix element

〈q′|e−Hτ ′Q̂1...Q̂le
−Hτ |q〉. (1.12)

To show this, first insert energy eigenstates to the left and right of the expo-

nentials. This yields

〈q′|e−Hτ ′Q̂1...Q̂le
−Hτ |q〉 =

∑
κ,κ′

e−Eκ′τ ′eEκτψκ′(q
′)ψκ(q)〈Eκ′ |Q̂1...Q̂l|Eκ〉 (1.13)
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In the limit where τ ′ and τ approach infinity and negative infinity respectively,

only the lowest energy term remains relevant in the sum. This leads to

〈q′|e−Hτ ′Q̂1...Q̂le
−Hτ |q〉 → eE0(τ ′−τ)ψ0(q

′)ψ∗0(q)〈E0|Q̂i(τ1)...Q̂l(τl)|E0〉. (1.14)

If the operators Q are the unit operators we can readily see that

〈q′, τ ′|q, τ〉 → eE0(τ ′−τ)ψ0(q
′)ψ∗0(q). (1.15)

Going back to the desired matrix element, we have

〈q′, τ ′|Q̂1(τ1)...Q̂l(τl)|q, τ〉
〈q′, τ ′|q, τ〉 → 〈E0|Q̂1(τ1)...Q̂l(τl)|E0〉. (1.16)

A path integral expression for the denominator on the right hand side of equa-

tion (1.16) is identical to the one computed in the previous section. Returning

to equation (1.12), we write out the time dependence explicitly

〈q′|e−Hτ ′Q̂1...Q̂le
−Hτ |q〉 =〈q′|e−H(τ ′−τ1)Q̂1e

−H(τ1−τ2)Q̂2 . . .

e−H(τl−1−τl)Q̂le
−H(τl−τ)|q〉.

(1.17)

On either side of each Q̂i, we insert a complete set of the operators respective

eigenstates. This results in the following

〈q′|e−Hτ ′Q̂1...Q̂le
−Hτ |q〉 =

∫ q′

q

Dqq1(τ1)...ql(τl)e−
∫ τ ′
τ dτL. (1.18)

The exponential of the action comes from the amplitude we derived before,

〈qi, τi|qj, τj〉. Putting our two results together yields an expression for the

vacuum expectation value of our operator,

〈E0|Q̂1(τ)Q̂l(τl)|E0〉 =
∫ Dqq1(τ1)...ql(τl)e− ∫ τ ′

τ dτL∫ Dqe− ∫ τ ′
τ dτL

(1.19)
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From the above we can see a probabilistic interpretation for this expectation

value, with the probability being the exponential of the Euclidean action. This

is also important for the following sections. The thought experiment described

at the start of this chapter also gives a physical motivation for discretizing a

system. Of course, discretization is also necessary when dealing with problems

numerically.
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CHAPTER 2
The Sign Problem

In this chapter we will investigate exactly why standard Monte Carlo

techniques cannot be used when there are nonpositive weights.

As we will see in more detail in the next chapter, a Monte Carlo technique

is an algorithm which yields a set of system configurations according to a given

probability distribution. Once a large number, M , of such configurations are

attained, the expectation value of an observable, A, can be approximated by

the sample mean

〈A〉 ≈ 1

M

M∑
i=1

A(ci). (2.1)

If the probability distribution, or Boltzmann weight used in the Monte

Carlo is positive, then the problem is solvable in polynomial time. In other

words if the size of the system (number of particles, for example) is N , then

there is a number n such that the time needed to estimate the observable to

any desired accuracy is bounded by Nn [7].

If the Boltzmann factor is not positive its interpretation as a probability

distribution does not hold. We can instead write the problem in the so called

phase quenched theory [4][7]. This is done by writing the Boltzmann factor as

p(c) = |p(c)|s(c), where s(c) is the phase. Writing it in this way the expectation

value of the observable A is

〈A〉 =
∑
A(c)p(c)∑
p(c)

=

∑
A(c)s(c)|p(c)|∑
s(c)|p(c)| .

(2.2)
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Written this way, we can see that the desired quantity can be rewritten

in terms of expectation values calculated with the positive probability distri-

bution, |p(c)|. If we denote the expectation value with respect to the positive

probability distribution with primed angle brackets, then we see that

〈A〉 = 〈As〉′
〈s〉′ . (2.3)

This is an example of reweighting, a technique which generally involves factor-

ing the probability distribution and distribute factors between the observable

and a new probability distribution which is more easily sampled. Using this

reweighting, Monte Carlo simulations can be used but the error grows expo-

nentially with the system size, making such simulations infeasible. In order to

see the exponential growth of the error, let’s examine the expectation value of

the sign itself,

〈s〉 =
∑
s(c)p(c)∑
p(c)

=

∑
s(c)2|p(c)|∑

p(c)

=

∑ |p(c)|∑
p(c)

=
Z ′

Z
,

(2.4)

where Z and Z ′ are the partition functions of the original system and the

reweighted system respectively. The partition function of a system is the

exponential of the free energy, so the uncertainty of the measurement is

Δs

〈s〉 =
√〈s2〉 − 〈s〉2√

M〈s〉
∼ eβΔF

√
M
,

(2.5)

where ΔF is the difference of the free energy and β is the inverse temperature.

Since the free energy is an extensive quantity, the fractional error increases
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exponentially in the size of the system [7]. Given the large errors inherent in

this method, it is not a feasible solution to the sign problem.

The sign problem is not an intrinsic property of a system. If the Hamilto-

nian of a quantum system were expressed in its diagonal basis, there would not

be a sign problem [7]. Of course, diagonalizing Hamiltonians of large systems

is also computationally challenging and errors also grow exponentially.

Perhaps the most important appearance of the sign problem is in QCD

with a finite chemical potential. In this theory, when the different fermion

species are integrated over, a factor of det( 
D +m + μγ0) appears, where


D= γνDν and the γν are the Dirac, or gamma matrices. Using the anti-

commutativity relations of the gamma matrices we find

γ5( 
D +m+ μγ0)γ5 = ( 
D +m− μ∗γ0)†, (2.6)

where γ5 = iγ0γ1γ2γ3. Taking the determinant on both sides of the above

equation yields det( 
D +m+μγ0) = det( 
D +m−μ∗γ0)∗. If μ is zero or purely

imaginary, this determinant is positive and there is no sign problem. However,

to reproduce expected physics the determinant must be complex and there is

a sign problem [3].
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CHAPTER 3
The Complex Langevin Equation

As mentioned in the previous sections, systems with sign problems can-

not be solved by usual importance sampling techniques such as Metropolis-

Hastings algorithm because of the nonpositive measure. For systems without

the sign problem, there are algorithms which do not rely on the factor e−S

being a probability density. One such algorithm, which will be the focus of

this section is the Langevin algorithm. In this section, standard Langevin

algorithm and the corresponding Fokker-Planck equation will be studied. An

extension of the algorithm to systems with nonpositive weights will be made,

along with some formal arguments for the correctness of the complex Langevin

algorithm.

3.1 Markov Chains

The goal of Monte Carlo (MC) simulations is to generate configurations

of a system according to a given probability distribution. Such MC algorithms

are realized by the construction of a Markov chain.

Consider a system with possible states {Ci}1 . If this system can change

states in a way that only depends on its current configuration, the system

and the stochastic process is called a Markov chain. This thesis will deal with

1 In this section we will consider the set of configurations to be countable,
but it is possible to have an uncountable number of configurations. In the
uncountable case, the summations should be replaced with integrals where
appropriate.
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irreducible Markov chains. These are processes which can take the system

from one state to any other in finitely many steps

The art of Monte Carlo Markov chain techniques is in defining the right

possible states and transition probabilities in order to obtain the correct dis-

tribution of final states after enough steps in the stochastic process have taken

place. Once a large number, N , of realizations of the Markov chain have oc-

curred, the expectation value of a desired observableO is simply the arithmetic

mean,

〈O〉 = 1

N

N∑
i=1

O(C(ti)). (3.1)

A sufficient condition for a Markov chain to give configurations with the

desired distribution is what is known as the detailed balance equation,

e−S(C)P (C → C ′) = e−S(C
′)P (C ′ → C), (3.2)

where the probability to change states from C to C ′ is denoted P (C → C ′)

and e−S(C) is the probability distribution that we wish to sample, up to nor-

malization. Let’s now prove that any Markov chain which satisfies equation

(3.2) will result in configurations which follow the distribution e−S(C).

From this point forward, the state of the system at the ith step in the

Markov process will be denoted by Ci, with the initial starting configuration

being denoted by C0. Let PN(C) be the probability of finding the system in

state C after N steps in the Markov chain. The probability PN(C) is equal

to the the sum of probabilities of paths which start at C0 and end at C and

consist of N steps.

PN(C) =
∑

{Cj}N−1
j=1

P (C0 → C1)P (C1 → C2) . . . P (CN−1 → C). (3.3)
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From equation (3.3), an expression for PN+1(C) can be obtained recur-

sively,

PN+1(C) =
∑

{Cj}Nj=1

P (C0 → C1)P (C1 → C2) . . . P (CN → C)

=
∑
CN

∑
{Cj}N−1

j=1

P (C0 → C1)P (C1 → C2) . . . P (CN → C)

=
∑
CN

⎡
⎢⎣ ∑
{Cj}N−1

j=1

P (C0 → C1)P (C1 → C2) . . .

. . . P (CN−1 → C)

⎤
⎥⎦P (CN → C)

=
∑
CN

PN(CN)P (CN → C).

(3.4)

In order to determine whether the Markov chain gives configurations with

the desired distribution, which is denoted Peq, the variation σN is defined,

σN =
∑
C

|PN(C)− Peq(C)| . (3.5)

The variation measures the difference between the target distribution and

the distribution at the N th step in the Markov process. For a useful Markov

chain, it is expected that this variation decreases as the chain progresses [2].

Indeed,

σN+1 =
∑
C

|PN+1(C)− Peq(C)|

=
∑
C

∣∣∣∣∣
∑
C′

PN(C
′)P (C ′ → C)− Peq(C)

∣∣∣∣∣
=
∑
C

∣∣∣∣∣
∑
C′

[PN(C
′)P (C ′ → C)− Peq(C)P (C → C ′)]

∣∣∣∣∣
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≤
∑
C

∑
C′
|PN(C

′)P (C ′ → C)− Peq(C)P (C → C ′)| (3.6)

=
∑
C

∑
C′
|PN(C

′)P (C ′ → C)− Peq(C
′)P (C ′ → C)|

=
∑
C

∑
C′
|PN(C

′)− Peq(C
′)|P (C ′ → C)

=
∑
C′
|PN(C

′)− Peq(C
′)|

= σN .

In the third and second to last line, the fact that the transition probabil-

ities are normalized was used,

∑
C

P (C → C ′) = 1. (3.7)

The detailed balance condition (equation (3.2)) was used to obtain the

fifth line in equation (3.6). Since the sequence of σ are bounded from below

by 0 and they are decreasing, the limit exists. The difference between σN

and σN−1 can be made arbitrarily small by choosing a large enough value for

N . If we ignore the arbitrarily small error involved in setting σN = σN+1 for

large N , and look back on the steps in equation (3.6), we see that the triangle

inequality used in the fourth line should be an equality. The triangle inequality

is only equality when the vectors PN(C) and Peq(C) are scalar multiples of

one another. However, since both of these are normalized there is no scalar to

multiply by and it must be true that PN(C) = Peq(C).

Any Markov chain construction which satisfies detailed balance equation

(3.2) will give configurations according to the desired distribution, provided the

irreducibility condition mentioned before is met. The transition probabilities

are not unique. The choice of the transition probabilities is the difference
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between the various types of Markov chain Monte Carlo algorithms. The next

section will detail one such algorithm.

3.2 Langevin Algorithm

The most important Monte Carlo technique for the purposes of this thesis

is the Langevin algorithm and its extension to systems which have a sign

problem. Consider a system which has an action S which is a real function of

the system’s coordinate variables qi. The starting point for this algorithm is

in the Langevin equation

dqi
dτ

= −dS

dqi
+ ηi(τ) (3.8)

where η is a Gaussian random variable. In this case, the time variable τ labels

the evolution of the system as it progresses through the Markov process, and

is not the physical time. This variable is called the Langevin time.

In simulations, it is necessary to discretize the Langevin equation. In do-

ing so, we discretize the Langevin time and set the difference between Langevin

time points to be ε, that is, τi+1 − τi = ε. Equation (3.8) then becomes

qi(τn+1) = qi(τn) + ε

(
− dS

dqi(τn)
+ ηi(τn)

)
. (3.9)

The random variables ηi is given a Gaussian distribution with variance 2
ε
,

that is, the probability of a set of noises {ηi}i is given by

P ({ηi}) =
∏
i

√
ε

4π
exp

(
− ε
4
η2i

)
(3.10)

For simplicity, we can replace the random variable η with a random vari-

able ξ with variance 1 and mean 0 by making the substitution η =
√
ε/2ξ

so that equation (3.9) becomes

qi(τn+1) = qi(τn)− ε
dS

dqi(τn)
+
√
2εξi(τn) (3.11)
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To confirm that this is a valid MC algorithm, we will check that this

satisfies detailed balance. The probability of transitioning from a state q to q′ is

equal to the probability of the random variable ξ to be equal to q′−q√
2ε
+
√

ε
2
S ′(q).

So the transition probability is

P (q → q′) ∝ exp

{
−1

2

(
q′ − q√

2ε
+

√
ε

2
S ′(q)

)2
}

(3.12)

If we ignore terms which are at least proportional to ε, the ratio of this

transition probability and the reverse transition is

P (q → q′)
P (q′ → q)

= exp

{
−1

2
((q′ − q)S ′(q)− (q − q′)S ′(q′))

}
(3.13)

Using a Taylor series and again taking the limit where ε goes to zero we

can say that S(q′)− S(q) = (q′ − q)S ′(q) and we find

P (q → q′)
P (q′ → q)

=
e−S(q

′)

e−S(q)
, (3.14)

which is the detailed balance condition. This means that an algorithm which

updates as in equation (3.11) will give the desired probability distribution [2].

When we discuss extending this algorithm to complex actions, we will

not use detailed balance to justify the validity of the algorithm. Instead,

the justification will come directly from the Fokker-Planck equation, which is

described in the next section.

3.3 The Fokker-Planck Equation

The result of the Langevin algorithm is a series of configurations which

follow a specified probability distribution. The Langevin equation is equiva-

lent to the so-called Fokker-Planck equation, which is essentially an equation

for the evolution of the probability distribution. This equation will be of vital
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importance when we extend the algorithm to the complex plane to investi-

gate systems which have a sign problem because the underlying probability

distribution is not obvious in most cases.

We begin our derivation of the Fokker-Planck equation by considering a

smooth function f of the random variables qi whose dynamics are determined

by the Langevin equation. Using equation (3.11), we write

f(q(τn+1)) = f

(
q(τn)− ε

dS

dq
+
√
2εξ(τn)

)
. (3.15)

For small ε we can expand this function,

f (q(τn+1)) = f(q(τn)) +
df

dq
(q(τn))

(
−εdS

dq
+
√
2εξ(τn)

)

+
1

2

d2

dq2
f(q(τn))

(
−εdS

dq
+
√
2εξ(τn)

)2

+O(ε3/2)

= f(q(τn)) +
√
2ε
df

dq
(q(τn))ξ(τn)

+ ε

(
−df

dq
(q(τn))

dS

dq
(q(τn)) +

d2f

dq2
f(q(τn))ξ

2(τn)

)
+O(ε3/2).

(3.16)

Rearranging and dividing by ε gives that

df

dτ
(q(τ)) ≈ f(q(τn+1))− f(q(τn))

ε

= −df

dq
(q(τn))

dS

dq
(q(τn)) +

d2f

dq2
(q(τn))ξ

2(τn) +

√
2

ε

df

dq
(q(τn))ξ(τn)

(3.17)

Now, we can average over the noise. The last term in equation (3.41)

vanishes with the average since ξ follows a Gaussian distribution that has 0

mean. Then we have,

〈
df

dτ

〉
= −

〈
df

dq

dS

dq

〉
+

〈
d2f

dq2

〉
(3.18)
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In order to find a differential equation for the underlying probability dis-

tribution, P (q, τ), we may write this equation in integral form,

∫
dq f(q)

dP

dτ
(q, τ) = −

∫
dq

df

dq
(q)

dS

dq
(q)P (q, τ) +

∫
dq

d2f

dq2
P (q, τ). (3.19)

Assuming integration by parts holds, we arrive at the Fokker-Planck equa-

tion,∫
dq f(q)

dP

dτ
(q, τ) =

∫
dq f(q)

[
d

dq

(
dS

dq
P (q, τ)

)
+

d2P

dq2
(q, τ)

]

=⇒ dP

dτ
(q, τ) =

d

dq

(
dS

dq
P (q, τ)

)
+

d2P

dq2
(q, τ).

(3.20)

The second line in equation (3.20) follows since f was chosen to be arbitrary.

The same general procedure holds in higher dimensions as well, where the

Langevin equation is

qi(τn+1) = qi(τn)− ε∂iS(q) +
√
2Mijξi(τ) (3.21)

withM being a constant matrix and ξ being multidimensional Gaussian noise.

In this case the Fokker-Planck equation becomes

∂τP (q, τ) = ∂i(∂iS(q)P (q, τ)) +
1

2
MikMjk∂i∂jP (q, τ). (3.22)

3.4 The Complex Langevin Equation

As described in a previous section, regular Monte Carlo techniques such

as the Langevin algorithm are not effective when the action has a non-zero

imaginary part. The complex Langevin algorithm aims to resolve this. The

starting point is again the Langevin equation

dqi
dτ

= −dS

dqi
+ η(τ). (3.23)

In this case, S is non real [8]. Since the right hand side of equation (3.23) is

not purely real, we must include an imaginary part to the fields qi and the
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equation of motion that was the Langevin equation is now two equations; one

for each of the real and imaginary parts of the field. If we define qi = qRi + iqIi

then the equations of motion become

dqRi
dτ

= −

(
dS

dqi

)
+ 
 (ηi(τ)) (3.24)

dqIi
dτ

= −�
(
dS

dqi

)
+ � (ηi(τ)) (3.25)

In most cases, the noise will be purely real and the second term on the right

hand side of equation (3.25) will be zero. However, non-zero imaginary noise

will be explored in a later section as well.

From these Langevin equations, a Fokker-Planck equation can be derived

using similar methods as in the previous section. Most importantly, the proba-

bility distribution which evolves according to the Fokker-Planck equation shall

be a real function. The idea behind the complex Langevin algorithm is that

the ensemble average with respect to the complex measure will be the same as

the average with respect to the probability distribution given by the Fokker-

Planck equation corresponding to the Langevin equations in equations (3.24)

and (3.25). If we name the complex weight ρ(q, t) = e−S and the real proba-

bility distribution obtained by solving the Fokker-Planck equation P (qR, qI , t)

then for the complex Langevin equation to be applicable, we would like for

the following expressions to be equal [9]

〈O〉ρ =
∫
dqO(q)ρ(q, t)∫

dq ρ(q, t)

〈O〉P =

∫
dqRdqI O(qR + iqI)P (qR, qI , t)∫

dqRdqIP (qR, qI , t)
,

(3.26)

where O is an observable which is a holomorphic function of the field configu-

ration. For the remainder of this thesis we shall assume that our observables

27



are holomorphic. In the following section, we will look into the conditions for

which the above expressions are equal.

3.5 The Applicability of Complex Langevin Algorithm

In this section, we will examine the formal arguments of the convergence

of the complex Langevin algorithm to the correct limit. Apart from the issue

of whether or not the limit is the correct one, there is also the question of

whether or not the algorithm will converge at all, or if it will instead lead to a

runaway solution. This second question will be addressed in another section.

In this section, we will consider a slight generalization to the Langevin

equations by introducing a complex noise, ηI [9]. The introduction of this

extra noise term can be justified if we only consider observables O which are

holomorphic, and therefore the Laplacian , ΔO vanishes. In this case, we can

add a term
∫
dqRdqI nIΔOP (qR, qI) to the integral form of the Fokker-Planck

equation (equation (3.20)) with no consequence. After doing integration by

parts we find that nR = 1 + nI . The complex noise Langevin equations are

q̇R = εKR +
√
nRηR (3.27)

q̇I = εKI +
√
nIηI . (3.28)

For notational convenience, the symbols Ki have been introduced to represent

the derivative drift terms

KR = −

(
∂S

∂qR
(qR + iqI)

)
, KI = −�

(
∂S

∂qR
(qR + iqI)

)
. (3.29)

The corresponding Fokker-Planck equation is

∂tP (q
R, qI) = LTP (qR, qI), (3.30)

28



where the operator LT is given by

LT = ∇R(nR∇R −KR) +∇I(nI∇I −KI). (3.31)

These equations will determine the evolution of the real probability distribu-

tion. The complex measure, ρ, follows the complex Fokker-Planck equation,

∂

∂t
ρ(q, t) = LT

0 ρ(q, t), (3.32)

where LT
y0

is the operator

LT
y0

= ∇x(∇x +∇xS(x+ iy0)). (3.33)

In equation (3.32), though we have a Fokker-Planck equation, we cannot use

it to create an algorithm to sample ρ directly as is possible in the real case.

However, this complex Fokker-Planck equation will still be valuable in the

formal justification of the complex Langevin algorithm.

In the long time limit, the stationary solution to equation (3.32) is

exp(−S(x)), which is our complex weight. Given these evolution equations

for our complex and real distributions, we can determine what condition(s)

must be met for the expressions in equation (3.26) to hold in the long time

limit.

For as long as we are only considering holomorphic observables and ac-

tions, the Cauchy-Riemann equations and use the Langevin operator

L̃T = ∇z(∇z +∇zS(z)). (3.34)

This operator is used to introduce time evolution of observables via the equa-

tion

∂

∂t
O(z, t) = L̃TO(z, t), (3.35)
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where the initial condition is O(z, 0) = O(z). The formal solution to this

equation is

O(z, t) = exp(tL̃)O(z), (3.36)

with L̃T being the adjoint or transpose of L̃ with respect to the bilinear product

〈f, g〉 =
∫
f(x, y)g(x, y) dx dy. (3.37)

In order to determine how different our two expectation values in equation

(3.26) are, we define a function which interpolates between the two [10]:

F (t, τ) =

∫
P (x, y, t− τ)O(x+ iy, τ) dxdy, for 0 ≤ τ ≤ t. (3.38)

The function in equation (3.38) is defined in such a way that as we vary

the parameter τ from 0 to t, we can go from 〈O〉P (t) to 〈O〉ρ(t). In order

to assure that the expectation values coincide at initial time, we impose the

initial condition that

P (x, y, 0) = ρ(x, 0)δ(y − y0). (3.39)

With this initial condition, we can show that F (t, 0) = 〈O〉P (t) and F (t, t) =

〈O〉ρ(t). The first equality follows directly from the definition of 〈O〉P (t). To

show the second equality, we use the time evolution discussed above;

F (t, t) =

∫
P (x, y, 0)O(x+ iy, t) dxdy

=

∫
ρ(x, 0)δ(y)etLO(x+ iy, 0) dxdy

=

∫
ρ(x, 0)etL0O(x, 0) dx

=

∫
O(x, 0)etL

T
0 ρ(x, 0) dx

=

∫
O(x, 0)ρ(x, t) dx

= 〈O〉ρ.

(3.40)
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To get to the fourth line, we use integration by parts and assume there are no

boundary terms. If F (t, τ) were in fact independent of τ , this would show that

the two expectation values are the same at all time. In order to determine the

τ dependence, we take the derivative

d

dτ
F (t, τ) =

∫
P (x, y, t− τ)LO(x+ iy, τ) dxdy

−
∫
LTP (x, y, t− τ)O(x+ iy, τ) dxdy.

(3.41)

If integration by parts in both x and y is justified with no boundary terms,

then the two terms in equation (3.41) cancel for any imaginary noise. However,

if the boundary term does not vanish, there is no longer a formal argument

for the correctness of the complex Langevin algorithm.

In [9], it was shown that a weaker condition than requiring equation (3.41)

to vanish may be sufficient for the algorithm to hold. Instead of equation

(3.41), consider

lim
t→∞

d

dτ
F (t, τ)

∣∣∣∣
τ=0

. (3.42)

In the long t limit, LTP (x, y, t) goes to 0 by the Fokker-Planck equation since

the long time distribution is stationary. Then the expression in equation (3.42)

becomes

lim
t→∞

d

dτ
F (t, τ)

∣∣∣∣
τ=0

=

∫
P (x, y,∞)LO(x+ iy) dxdy. (3.43)

To show that equation (3.42) is sufficient, assume that we have found a dis-

tribution Q which solves

〈Q,LO〉 =
∫
Q(x, y)LO(x+ iy)dxdy = 0 (3.44)

for any observable O in a dense subset of continuous functions from the (real)

configuration space. If the inner product defined in equation (3.44) is bounded,

that is if there is a constant C such that 〈Q,O〉 ≤ C||O|| , then we can use
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the Reisz-Markov representation theorem to find a complex measure μ such

that 〈Q,O〉 =
∫ O(x)μ(x)dx. With this measure we can conclude that

〈Q,LO〉 =
∫
LO(x)μ(x)dx = 0 (3.45)

By using the fact that integration by parts is valid in the real variables, and

that the above equation is valid for any choice of observable in our dense set,

we find LT
0 μ(x) = 0, which has the (maybe unique) solution e−S. Thus that

assumption that equation (3.41) is zero implies that the two expectation values

of interest are equal.

The formal arguments for the validity of the algorithm fails in some sce-

narios. For example, in the case of the U(1)-link model, the time dependent

operators O(x+ iy; t) grow faster than any exponential as the imaginary part

of the field becomes large for t > 0. This means that the expression in equation

(3.38) is not integrable and is therefore ambiguous [9].

3.6 Imaginary Noise

In this section we will discuss some of the implications of having imaginary

noise in the complex Langevin algorithm. First, we should check when the

independence of the complex noise, nI is justified. To do so we will look

at the expectation value of a general observable 〈O〉, and compute how the

quantity depends on nI by taking the derivative. We use the fact derived

earlier, nR = 1 + nI to write the operator L as

L = LnI=0 + nIΔ, (3.46)

where Δ is the Laplacian and LnI=0 is the operator L which has nI = 0 and

therefore nR = 1. We use the general expression for the derivative of the

exponential map,
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∂

∂nI

etL
T

=

∫ t

0

dτeτL
T

Δe(t−τ)L
T

. (3.47)

Taking the derivative gives,

∂

∂nI

〈O(x+ iy)〉 = ∂

∂nI

∫
P (x, y, t)O dxdy

=
∂

∂nI

∫
etL

T

P (x, y, 0)O(x+ iy) dxdy

=

∫
dxdy

∫ t

0

dτ eτL
T

Δe(t−τ)L
T

P (x, y, 0)O(x+ iy)

=

∫
dxdy

∫ t

0

dτeτL
T

ΔP (x, y, t− τ)O(x+ iy)

=

∫
dxdy

∫ t

0

dτP (x, y, t− τ)ΔeτL
TO(x+ iy) +X

=

∫
dxdy

∫ t

0

dτP (x, y, t− τ)ΔO(x+ iy, t) +X.

(3.48)

The term X in the above calculation represents the possible boundary terms

from the integration by parts. The first term in the last line of equation

(3.48) will vanish by the Cauchy-Reimann equations since O was chosen to be

holomorphic.

The boundary term will in general not vanish. There is no conclusion

we can make in general, as this term may be finite, divergent, or zero. The

expected form of the boundary term after carrying out the integral in the

real dimensions are expected to involve terms containing combinations of PO,

O∇yP , and P∇yO. The question of whether or not the imaginary noise is

relevant depends on whether or not the decay of these products causes the

integral X to vanish [10].

In practice, determining the effect of the boundary terms is difficult. It

requires the introduction of a cut off in the imaginary direction and periodic
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boundary conditions. These boundary conditions will invalidate assumptions

made about holomorphicity and continuity.

3.7 Runaways

In the previous section, we discussed the criterion for the probability

distribution which is obtained from the Fokker-Planck equation to yield the

same expectation values as the complex measure. To do this we assumed that

the algorithm used would in fact converge. In this section we will address

the possibility of the algorithm not converging at all. These cases are called

runaways.

Runaways can be predicted, at least in the case of a one dimensional

field, by examining the classical flow diagram. For example, the three dimen-

sional XY model is a common system to which complex Langevin methods are

applied [11]. The complex action for this system is

S = −β
∑
x

2∑
ν=0

cos(φx − φx+ν − iμδν,0). (3.49)

The flow diagram is constructed by placing arrows which indicate the drift

terms, Kx and Ky. The diagram is shown in figure (3–1), taken from [11].

The drifts are represented by arrows which have been normalized. In the XY

model, the real part of the field is restricted to a compact domain, −π ≤
φR < π. From the diagram, we see that the imaginary part of the field φI is

unbounded, leading to potential runaway solutions. The runaway paths occur

at approximately φR ∼ −0.7 and at φR ∼ 2.4. When a trajectory comes close

to these lines, there is a chance that the imaginary part will go to infinity.

In the diagram, the arrows have been normalized for clarity. In reality, the

drift forces grow larger the further the system is from a fixed point, leading

to configurations reaching infinity in finite time. One way of dealing with

these runaways is to use a small stepsize when discretizing the system. This
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Figure 3–1: The flow diagram of the XY chain. The fixed points are marked
by black dots. The runaways appear at φR − 0.7 and φR 2.4, where the flow
becomes vertical.

is sufficient in some cases, but fails in other and can also lead to decreased

efficiency of the evolution [11]. To deal with this, we can introduce an adaptive

stepsize and take smaller steps in regions where there is a danger of runaways,

and larger steps in safe regions.

To regulate the stepsize we would like to keep εKmax
n bounded, where

Kmax
n is the largest drift vector at the nth time step:

Kmax
n = max

x

√
KR2

x (n) +KI2
x (n). (3.50)

At each step we choose the timestep ε to be such that

1

p
K ≤ εKmax ≤ pK. (3.51)

The reference value, K and p are chosen beforehand. If the above inequality

is not met for the current value of ε, it is changed by a factor of p until the

condition is met. This method forces the stepsize to be small as the drift

grows larger. It also does not force small steps in regions where the drift is

not problematic.
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Another technique to solve runaways comes from altering the Langevin

equation. By making a clever choice of coordinate transformation, an unstable

fixed point which would lead to runaways may become a stable fixed point.

In general when undergoing the coordinate change,

x→ x(u) (3.52)

the Jacobian of this transformation, J(u) = dx(u)

du
, is absorbed into the action:

S(x)→ S̃(u) = S(x(u))− ln(J(u)). (3.53)

A simple example of the applicability of changing variables is with a simple

Gaussian model with action given by

S(x) =
1

2
σx2, σ = a+ ib. (3.54)

For positive a, this action is readily sampled using complex Langevin. How-

ever, when a < 0, the fixed point at 0 becomes repulsive. By choosing variables

x(u) = u3 for example, the system becomes stable. The flow diagrams for each

choice of coordinates is shown in Fig. 3–2[12]. With this coordinate trans-

formation, the Langevin algorithm gives the correct result for moments, for

example

〈u6〉 = 〈x2〉 = 1

σ
, (3.55)

which is the analytic continuation of the case of real a. The change of variable

techniques can be used to solve integrals of this type. The same transformation

as above can be used for a complex quartic integral, S(x) = i λ
4!
x4.[12]

The addition of an extra term in the effective action makes this coordinate

change resemble reweighting, which we will talk about in more detail further

on. However, it is not our desired method to alter the probability distribu-

tion. Although coordinate transformations may lead to stable evolution, it
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Figure 3–2: Flow diagram of the Gaussian model with σ = −1 + i. The left
shows the real and imaginary axes of the unchanged coordinate description
including the repulsive fixed point at the origin. The right diagram is the
same system under the transformation x→ u3.

amounts to a change of the complex weight, whereas our goal is to reweight

the corresponding real probability distribution.
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CHAPTER 4
Higher Order Algorithm

In this chapter we will look at an improvement to the Langevin algorithm

which is developed in [13]. When we verified that detailed balance was satisfied

for the Langevin equation, we were required to take the limit of vanishing

stepsize. Taking this limit introduces a systematic error, since in practice the

stepsize must be finite. The simplest way to use the Langevin equation to

generate a new configuration for the system is

φ(n+ 1) = φ(n) + εK(φ(n)) +
√
2εη(n). (4.1)

This is the lowest order algorithm and carries a systematic error which is of

order ε. In order to reduce this error, the noise must be changed.

A higher order algorithm is proposed. The algorithm is constructed by

first defining the following variables [13]

ψ(n) = φ(n) +
1

2
εK(φ)

ψ̃(n) = φ(n) +
1

2
εK(φ) +

3

2

√
2εα̃(n)

α̃(n) =
1

2
α(n) +

√
3

2
ξ(n).

(4.2)

Each of α and ξ are Gaussian random variables with zero mean and a variance

of 1. The update step in the algorithm is as follows

φ(n+ 1) = φ(n) +
ε

3
(K(ψ) + 2K(ψ̃)) +

√
2εα. (4.3)

For a system which is one dimensional the error in the algorithm is of

order ε2. For a coupled system, the error is of order ε3/2[14].
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Let’s check the stepsize errors analytically. For simplicity, we will take a

one dimensional system with a linear drift, K(φ) = −ωφ. With this drift the

field which solves the discretized Langevin equation is φ(n) =
√
2ε
∑n−1

i=0 (1 −
εω)n−1−iη(i). Inserting this in the right hand side of equation (4.1) will confirm

that this is in fact a solution:

(4.4)

φ(n)− εωφ(n) +
√
2εη(n) = (1− εω)φ(n) +

√
2εη(n)

= (1− εω)
√
2ε

n−1∑
i=0

(1− εω)n−1−iη(i)

+
√
2ε(1− εω)0η(n)

=
√
2ε

n∑
i=0

(1− εω)n−iη(i)

= φ(n+ 1).

We will examine the expectation value 〈φ2〉 = limn→∞〈φnφn〉.

lim
n→∞

〈φ(n)φ(n)〉 = lim
n→∞

2ε

〈(
n−1∑
i=0

(1− εω)n−1−iη(i)

)2〉

= lim
n→∞

2ε

(
n−1∑
i=0

(1− εω)2n−2−2i〈η(i)η(i)〉

+
∑
i �=j

(1− εω)n−1−j(1− εω)n−1−i〈η(j)η(i)〉
)

(4.5)

The second term vanishes because the noise at each time step are not corre-

lated. We are left with a geometric sum

lim
n→∞

〈φ(n)φ(n)〉 = lim
n→∞

2ε(1− εω)2n−2
n−1∑
i=0

(1− εω)−2i

= lim
n→∞

2ε(1− εω)2n−2
1− (1− εω)−2n

1− (1− εω)−2
.

(4.6)
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After multiplying through and taking the limit, we find

lim
n→∞

〈φ(n)φ(n)〉 = 1

ω

1

1− εω
2

=
1

ω

(
1− εω

2
+O(ε2)

)
.

(4.7)

This shows that the obvious way to implement Langevin updates have an error

of order ε. To arrive at the algorithm asserted in equation (4.2), we propose

the following

ψ(n) = φ(n) +
1

2
εK(φ(n)) + k

√
2εα̃(n)

˜ψ(n) = φ(n)
1

2
εK(φ(n)) + l

√
2εα̃(n)

φ(n+ 1) = φ(n) + ε[aK(ψ(n)) + bK( ˜ψ(n))] +
√
2εα(n),

(4.8)

The values of a, b, l, and k are to be determined, and α̃ is as defined above.

After making the same simplifying assumptions on K and rearranging terms,

the last line in equation (4.8) becomes

φ(n+ 1) = φ(n)− εω̃φ(n) +
√
2εη̃(n), (4.9)

where

ω̃ = ω(a+ b)

(
1− 1

2
εω

)

η̃(n) = α(n)− ωε(ak + bl)α̃(n).

(4.10)

Equation (4.9) is identical to our simple case we dealt with before. The steps

taken in that case can be used here as well. The result is

〈φ2〉 = 1

ω̃

〈η̃2〉
1− εω̃

2

. (4.11)

Once we expand the expectation value and Taylor expand as before, we

get
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〈φ2〉 = 1

ω

(
1

a+ b
+

1 + a+ b− 2(ak + bl)

2(a+ b)
εω +O(ε2)

)
. (4.12)

To achieve the correct result, we require that a+b = 1. To have the linear

ε term vanish, we have ak + bl = 1. By considering a more complicated drift

than our linear example, a further condition can be derived, ak2+ b2 = 3
2
[14].

The values used in equation (4.2) satisfy these equations. They are

a =
1

3,
b =

2

3
, k = 0, l =

3

2
. (4.13)

Here we see that this algorithm has smaller errors associated with the step

size is smaller than for the simper algorithm. For higher dimensional systems,

the calculations are more complicated, but similar. In that case, the result is

an error of order O(ε3/2).
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CHAPTER 5
Reweighting

5.1 Reweighting

As we saw in the previous chapter, the usefulness of the complex Langevin

algorithm depends on the decay of the real probability distribution P in the

imaginary direction. In order to study the decay, we wish to make the be-

haviour of the probability distribution in this region more apparent. To do

this, we will try to use the technique of reweighting.

Reweighting was briefly mentioned in a previous chapter, when we dis-

cussed the sign problem. This method, which we will review shortly, is useful

when the probability distribution has features which may be hard to detect

directly. In this case, since we wish to study the falloff of the probability dis-

tribution we are interested in a region which is unlikely to be sampled without

some sort of reweighting.

A simple one-dimensional application of this technique which illustrates

its usefulness is when the sample probability, P has two peaks which are widely

separated in configuration space, as is sometimes the case when dealing with

phase transitions. If the probability distribution is near zero between the

two peaks, it is unlikely that a Monte Carlo simulation will cross this trough

if it only takes small steps. This means that once the system reaches one

local maximum of the distribution, it will probably not leave and will fail to

sample the entire relevant space of configurations. In order to explore past

these unlikely regions, we may chose a reweight function, W , such that the

reweighted probability WP no longer has peaks which are very isolated. For

example, W can be chosen such that instead of isolated peaks, WP has a
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much shallower valley between the two maxima. This allows a Monte Carlo

sampling algorithm to explore the entire configuration space [15].

When reweighting, the observable must be altered as well to offset the

fact that the probability distribution being sampled has been reweighted. Our

expectation value in terms of the reweighted probability is

〈O〉 =
∫
dxP (x)O(x)∫

dxP (x)

=

∫
dxP (x)W (x)W−1(x)O(x)∫

dxW (x)W−1(x)P (x)

=
〈W−1O〉W
〈W−1〉W .

(5.1)

where 〈·〉W denotes an expectation value with respect to the reweighted

probability distribution. In simulations this translates to

〈O〉 ≈
∑M

i=1O(xi)W
−1(xi)∑M

i=1W
−1(xi)

. (5.2)

In the case of the complex Langevin algorithm, the target distribution is not

known, making it difficult to reweight directly, by changing the drift terms for

example. Furthermore, we shall see that since the Langevin algorithm does

not maintain detailed balance, techniques which can be used to reweight in

usual algorithms may not apply here.

5.2 Lattice Gauge Theory

In our attempt to combine the concepts of reweighting and complex

Langevin we will use a simple one dimensional scalar field with a gauge sym-

metry as our toy model. Before we try to use reweighting, we should review

the process for discretizing a theory with an abelian gauge symmetry.

Suppose we wish to create a Lagrangian which is invariant under the

action of some group G. In the simple example of a complex scalar field, the

group G is the abelian group U(1). In this example, we are to construct a
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Lagrangian which is invariant under the transformation

ψ(x)→ eiα(x)ψ, (5.3)

where ψ is our field variable. The physical reasoning behind this symmetry is

simply that our Lagrangian should be unchanged when our field is multiplied

by any arbitrary phase, even if the phase is spacetime dependent. Now we

can ask what terms can be included in our Lagrangian. Clearly, the combi-

nation of ψ with its conjugate is allowed since it is invariant under the U(1)

transformation. Including a derivative term proves to be more complicated.

For example, recall the limit definition of the derivative:

nμ∂μψ(x) = lim
ε→0

1

ε
(ψ(x+ εn)− ψ(x)). (5.4)

Note that each term in the limit may pick up a different phase under the

gauge transformation, causing the transformation law of the derivative to be

complicated. The field can pick up a different factor at neighbouring points in

spacetime, making an interpretation of this difference unclear. The derivative

must be altered so that both terms in the difference have the same transfor-

mation rules.

To reconcile the need for a derivative and gauge invariance, we define the

covariant derivative [16]

nμDμψ = lim
ε→0

(ψ(x+ εn)− U(x+ εn, x)ψ(x)). (5.5)

The comparator U(x, y) is introduced as a pure phase with the transformation

law

U(x, y)→ eiα(x)U(x, y)e−iα(y) (5.6)
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With this definition, the quantities U(x+ εn, x)ψ(x) and ψ(x+ εn) transform

in the same way and so the covariant derivative is a sensible choice for a

derivative replacement .

Since we have defined U(x, y) as a phase, we can Taylor expand the com-

parator in equation (5.5)

U(x+ εn, x) = 1− iεnμAμ(x) +O(ε2) (5.7)

The coefficient Aμ is the connection. By imposing the transformation for

U(x, y), we find that under a gauge transformation, the connection must trans-

form as

Aμ(x)→ Aμ(x)− ∂μα(x), (5.8)

and the covariant derivative is simplified as

Dμψ(x) = ∂μψ(x) + iAμ(x)ψ(x) (5.9)

The covariant derivative now transforms the same way that ψ does. Thus

contracted combination of covariant derivatives will be a valid term in the

Lagrangian. Writing the comparator as a pure phase again, we have the

approximation

U(x+ εn, x) = e−iε·A (5.10)

When we discretize an action, the same logic will be used; gauge invariance

should be imposed at every step in the process.

In this thesis we will be using a one dimensional Bose gas, which is very

similar to a complex scalar field. The Lagrangian for this system is

L = ∂μφ∂
μφ∗ −m2|φ|2 (5.11)

So, the naive discretization of the action would then be
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∫
dτ(∂τφ∂τφ

∗ +m2|φ|2)→

x
∑
x

[(2 +m2)φ(x)φ∗(x)− (φ∗(x)φ(x+ ê) + φ(x)φ∗(x+ ê))]

(5.12)

Clearly, however, this suffers from the same problem as the derivative term

from above, namely the terms which multiply φ and φ∗ at two different points

are not gauge invariant. In order to amend this, we add a comparator Ux,x+ê.

The comparator is the same as in the continuous case, but we must think

about how the gauge field changes in a Wick rotation. Recall how the time

variable and temporal derivatives are transformed:

x0 → −ix4
∂0 → i∂4

(5.13)

In order for the gauge transformation to be consistent with the transfor-

mation of the derivative, i.e. A0 → A0− ∂0α the Wick rotation of the gauge

field must be

A0 → iA4. (5.14)

So, the comparator changes into,

U(x+ n, x) = e−iA0 → eA4 := eμ. (5.15)

The field μ will be called the chemical potential. To understand how the gauge

field and the usual notion of a chemical potential are related, we look at the

conserved current which arises from the phase invariance of the Lagrangian.

Under the phase transformation, the Lagrangian changes to

L → L′ = ∂μφ∂
μφ∗ + i∂μα[φ∂

μφ∗ − φ∗∂μφ] + ∂μα∂
μα|φ|2 −m2|φ|2. (5.16)
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Using the Euler-Lagrange equations gives an equation of motion for α.

∂μ
(

∂L′
∂(∂μα)

)
=
∂L′
∂α

(5.17)

The right hand side of equation (5.17) is zero. By choosing α as a constant

we find that the conserved current density is

jμ = i[φ∂μφ∗ − φ∗∂μφ] (5.18)

Recall the partition function from a previous section came from the amplitude∫
dφ〈φ|e−βH |φ〉. When there is a conserved charge, the Hamiltonian is replaced

with H + μQ, where Q is the conserved current expressed as a function of

the field and the conjugate momentum and μ is the chemical potential. The

appearance of a chemical potential is the same as in statistical mechanics. In

our case, the partition function translates to [17]

(5.19)
Z =

∫
D[φ1, φ2, π1, π1] exp

{∫
dτ
(
iπiφ̇i

− 1

2
(πiπi +m2φiφi + μ(φ1π2 − π1φ2)

)}
.

The fields φ1 and φ2 are the real and imaginary parts of φ,

φ =
φ1 + iφ2√

2
, (5.20)

and πi are there respective canonical momenta.

After completing the square and integrating out the momenta in the usual

way, the partition function simplifies to

∫ ∫
D[φ1, φ2] exp

{
−
∫

dτ (∂τ − μ)φ(∂ + μ)φ∗ +m2|φ|2)
}

(5.21)

We can see that the derivative terms look like covariant derivatives with

gauge field μ. This is the reason why we called our gauge field a chemical

potential above.
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5.3 Attempts at Reweighting a Complex Action

In this section, we will look at a few techniques which we attempted to

use to reweight a distribution that was attained via the complex Langevin

algorithm.

When we reweight in a standard Langevin algorithm, we can simply

change the drift forces and know exactly how the resulting distribution will

differ from the original. In the complex case, we do not actually know the tar-

get distribution so changing the drift forces will lead to hard to predict changes

in the resulting sample set. To overcome this, we attempted to reweight by

adding an accept reject step to the algorithm and by altering the Fokker-Planck

equation.

5.3.1 Metropolis

The first technique we will use to attempt reweighting is by combining it

with the Metropolis algorithm. The Metropolis algorithm is one of the most

popular MCMC because of its simplicity to implement [18][2].

The first step in Metropolis is to propose an update for the system. It is

common to propose an update in a symmetric way. For example, the proposed

state may be drawn from a normal distribution centred at the current state.

The second step imposes detailed balance. Once a proposed state x′ is

obtained, it is accepted as the new configuration for the system with a prob-

ability min{1, e−S(x′)+S(x)}. The proposal is always accepted if the proposal

is more likely than the current configuration. The probability of the system

exploring less probable configurations is chosen to ensure detailed balance. To

check that detailed balance is maintained, assume without loss of generality

that e−S(x
′) < eS(x). Then the probability of making the transition from a

state x to x′ is

P (x→ x′) = P0(x→ x′)
e−S(x

′)

e−S(x)
, (5.22)
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and the reverse transition probability is

P (x′ → x) = P0(x
′ → x), (5.23)

where P0 is the probability of proposing the new state. We chose this to be

symmetric and so the function P0 in equations (5.22) and (5.23) are the same,

and so these two equations give use detailed balance.

We can use a Metropolis step to reweight any sample obtained by any

algorithm which maintains detailed balance [19]. For example, assume we

have sampled a probability distribution, P (x) by Langevin algorithm. Then

we have detailed balance,

P (x)P (x→ x′) = P (x′)P (x→ x′). (5.24)

If we wish to sample a distribution P (x)W (x), then simply including an

acceptance rate at the end of each step with the form min{1,W (x′)/W (x)}
then we see that our algorithm maintains detailed balance for the distribution

P (x)W (x) as desired. This makes adding a Metropolis step a valid method of

reweighting.

To test if the Metropolis step is a valid way to reweight a sample attained

from the complex Langevin algorithm, we looked at some simple systems which

are solvable analytically, such as the complex scalar field described in a previ-

ous section, or the simpler case of a quadratic action with complex coefficients

[4]. The complex Langevin algorithm is known to work in these examples. The

algorithm was used as described in a previous section, but with the additional

accept reject which was the ratio of our reweight function, W at the proposed

and current configuration.
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Since the distribution attained from complex Langevin steps is not known

analytically, to test the Metropolis reweighting we compared the observables

〈OW−1〉RW

〈W−1〉RW

and 〈O〉

where the subscript on the angle brackets indicate the sample mean after doing

the Metropolis step. If these two calculations are equal, then the reweighting

will have been a success.

In simulations, we have found that the Metropolis step addition is not a

successful way to reweight. The reweight functions used were simple Gaus-

sians, and the observables that we attempted to calculate were the expectation

values of various powers of the field variables of the complex Bose gas.

The failure of this technique should not be a surprise. We motivated it

by showing that it was valid when we had detailed balance to begin with. The

complex Langevin algorithm never claims to maintain detailed balance, it only

uses the Fokker-Planck equation and Ito calculus. The failure of this method

is just further evidence that complex Langevin doesn’t hold detailed balance.

5.3.2 Altering the Fokker-Planck

Since we cannot use detailed balance to reweight, we will use the Fokker-

Planck equation directly. All we know about the target distribution is that is

solves the Fokker-Planck equation, we can try use that to determine a differ-

ential equation which is solved by the reweighted distribution. We will then

attempt to use this differential equation to directly sample the reweighted

distribution.

First we will examine the method of using the Fokker-Planck equation

to directly sample a distribution. This is equivalent to using the Langevin

equation but we hope that it allows for easier manipulation of the probability

distribution.
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The starting point is the master equation

P (x, t+ dt) =
∑
y

P (y→ x)P (y, t). (5.25)

Each term on the right hand side represents the probability of going from

state y to state x in a time window dt. By discretizing the Fokker-Planck

equation using finite differences and comparing it to the master equation, we

can identify the necessary transition probabilities. The transition probabilities

are

P ((x+ dx, y)→ (x, y)) = Px,− =
dt nR

dx2

(
1−Kx

dx

2nR

)

P ((x− dx, y)→ (x, y)) = Px,+ =
dt nR

dx2

(
1 +Kx

dx

2nR

)
,

(5.26)

and the probability for no transition in the real coordinate is

Px,0 =

(
1− 2nRdt

dx2

)
. (5.27)

The transition probabilities are the same for the imaginary coordinate, but

with Kx replaced with Ky and the real noise replaced by imaginary noise, nI .

At each step in the algorithm, the real and imaginary part of each field is

changed by dx =
√
2 dt nR and dy =

√
2 dt nI respectively according to the

above probabilities. With these choices of stepsizes, the probability of having

the system not change vanishes.

We have reviewed a method for taking a differential equation for a prob-

ability distribution and turning it into an algorithm to generate a sample set.

Now, we would like to derive an equation which is solved by the reweighted

distribution R = PW , given that P solves the Fokker-Planck equation. We

take our reweight function W (x) to be independent of time, since we wish to

reweight the stationary distribution anyway. We also takeW to have the form

e−M , whereM is a real differentiable function. Both sides of the Fokker-Planck
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equation are multiplied byW . After rearranging terms and using product rule,

we reach the following differential equation

∂tR = nR∂
2
xR− ∂x((Kx − 2nRMx)R)+(nRM

2
x − nRMxx −MxKx)R

+ (nR ↔ nI , x↔ y).

(5.28)

Once the equation is discretized, we may read off the coefficients and attempt

to interpret them as transition probabilities. Unfortunately, the coefficients

are not normalized, nor are they necessarily non-negative. For example, the

sum of all the coefficients gives

1 + nRdt(M
2
x −Mxx −MxKx) + nIdt(M

2
y −Myy −MyKy). (5.29)

There is no choice of the noise or timestep which allows the second and third

terms in parentheses to cancel out. There is also no way to guarantee that

they will be positive.

We have derived a differential equation followed by the reweighted distri-

bution we wish to sample from, however, we cannot come up with a master

equation with which to sample it.

52



CHAPTER 6
Conclusion

In this final chapter we will summarize the complex Langevin algorithm

and mention a couple of alternatives for evading the sign problem.

The path integral formulation opens up problems in quantum field theory

to many possible numerical solutions, including the Metropolis and Langevin

algorithms. There is a large class of problems, including QCD with finite

chemical potential, which cannot be solved by simple application of these

algorithms because of the sign problem.

In an attempt to evade the sign problem, the complex Langevin algorithm

was developed. We looked at how the algorithm can be applied and how formal

arguments for validity may fail depending on the fall off of the probability

distribution and the observable.

In order to explore the fall off we attempted to reweight the probabil-

ity distribution. To accomplish this, we attempted to combine the Langevin

equation with the Metropolis algorithm. This method was not effective, as

the complex Langevin equation lacked detailed balance. Altering the Fokker-

Planck equation into a differential equation for the reweighted distribution

also did not lead to anything which was easily simulated.

In addition to what was explored in this thesis, there are a number of

alterations that can be made to the standard real Langevin equation which

do away with detailed balance altogether [20]. Though these methods look

different from the complex Langevin equation, learning to manipulate these

may give some insight on how to manipulate to complex case.
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A promising alternative solution to the complex Langevin equation is

the method of Lefschetz thimbles [21] [22] . In this method, the contour of

integration is changed to the path of steepest descent, on which the imaginary

part of the action is constant. The path of steepest descent gives and equation

which is conjugate to the complex Langevin equation. This method may

introduce new sign problems, but these may be more mild than the original

theory’s sign problem.
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