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ABSTRACT 

Staphylococci strains are among the most widespread multidrug-resistant nosocomial 

pathogens in Canada. Rapid and accurate identification and epidemiological typing of 

methicillin-resistant S. aureus (MRSA) and its discrimination from coagulase-negative 

staphylococci (CNS) and glycopeptide-intermediate S. aureus (GISA) are crucial for 

appropriate therapy and for monitoring and limiting intra- and inter-hospital spread of 

epidemic MRSA strains. Although pulsed-field gel electrophoresis and polymerase chain 

reaction methods for the identification of MRSA are reliable, they are technically 

demanding, time-consuming and inappropriate for routine clinical diagnosis. Moreover, 

no reliable method exists for discrimination of epidemic MRSA from sporadic MRSA 

and from GISA strains. The objective of the research described in this thesis was to 

investigate whether Fourier transform infrared (FTIR) spectroscopy could be used to 

distinguish MRSA from methicillin-susceptible S. aureus, borderline oxacillin-resistant 

S. aureus (BORSA), CNS, including methicillin-resistant CNS, and GISA. The 

application of FTIR spectroscopy for epidemiological typing of Canadian epidemic 

MRSA (CMRSA) strains as well as their discrimination from sporadic MRSA was also 

assessed. FTIR spectra were recorded from intact stationary-phase cells grown on 

Universal Medium (UM™) and deposited and dried on a ZnSe optical window, 

normalized, and converted to first-derivative spectra. Various chemometric approaches 

were employed to cluster the different phenotypes of staphylococci species and to 

subtype five CMRSA strains based on the similarity of their infrared spectral fingerprints 

in narrow spectral regions selected by visual inspection and by employing a singular-

value decomposition (SVD) algorithm. Pairwise separation of MRSA from MSSA, 

BORSA, CNS, MRCNS, and GISA was accomplished by using principal component 

analysis (PCA), self-organizing maps (SOM), and the K-nearest neighbors (KNN) 

algorithm. These chemometric techniques were also successfully employed for 

epidemiological typing of the five CMRSA strains and their discrimination from sporadic 

MRSA strains using a combination of different optimal spectral regions selected by SVD. 

These results demonstrate that FTIR spectroscopy has considerable potential as a rapid 

method for the identification of different phenotypes of staphylococci and 

epidemiological typing of MRSA. 



RESUME 

Les souches de staphylocoques multiresistantes aux antibiotiques sont les bacteries 

pathogenes qui generent le plus d'infections nosocomiales au Canada. L'identification et 

le typage epidemique des souches de Staphylococcus aureus resistantes a la methicilline 

(SARM) ainsi que leur discrimination des souches staphylocoques a coagulase-negative 

(SCN) et des souches de S. aureus a resistance intermediate aux glycopeptides (SAIG) 

sont des etapes cruciales pour assurer une therapie appropriee et pour controler et limiter 

leur propagation dans les hopitaux. Bien que les methodes d'electrophorese en champ 

pulses («PFGE») et de la reaction a chaine de polymerase («PCR») sont efficaces et 

fiables pour l'identification et le typage des souches de SARM respectivement, elles 

s'averent cependant, techniquement tres laborieuses exigeant beaucoup de temps et ne 

sont pas appropries pour des diagnostics clinique de routine. De plus, l'existence d'une 

methode efficace et fiable pour la discrimination des souches epidemiques de SARM des 

souches sporadiques de SARM ainsi que l'identification des souches de SAIG n'a pas ete 

rapportee a ce jour. L'objectif de la recherche decris dans cette these etait de verifier la 

capacite de la methode d'infrarouge a transformee de Fourier (IRTF) a distinguer entre les 

souches SARM, des souches de S. aureus a resistance sensible a la methicilline (SASM), 

des souches de S. aureus a resistance limitrophe («borderline») a la methicilline 

(«BORSA» pour «borderline methicillin-resistant S. aureus^), de celles des souches SCN 

y compris les souches de SCN a methicilline resistante (SCN-RM) et des souches de 

SAIG. L'application de 1'IRTF pour le typage epidemiologique des souches epidemiques 

canadiennes de SARM (CSARM) ainsi que leur discrimination des souches sporadiques a 

egalement ete investigues. Les spectres de IRTF normalises et convertis a la derive 

premiere ont ete acquis a partir d'une suspension de cellules bacteriennes provenant de la 

phase stationnaire de croissance sur le milieu universel (UM ) et deposer ainsi que 

secher sur un cristal optique de ZnSe. Differentes methodes de chemometrie ont ete 

utilisees pour grouper les differents phenotypes de staphylocoques et pour sous-typer les 

cinq souches de CSARM, en se basant sur la similarite de leur empreinte spectrale 

infrarouge dans des regions spectrales etroites selectionnees par inspection visuelle et par 

l'emploie de l'algorithme decomposition en valeurs singulieres (DVS) ((Singular value 

decomposition)) («SVD»). La separation par paire des SARM, de ceux des SASM, 



«BORSA», SCN, SCN-RM et SAIG a ete accomplie par l'utilisation de l'algorithme de 

l'analyse en composantes principales (ACP), du reseaux auto-organises (RAO) ((Self-

organizing maps» («SOM») et du K plus proches voisins (KPPV) «K-nearest neighbor)) 

(«KNN»). Ces techniques de chemometrie ont aussi ete employees avec succes pour le 

typage epidemiologique des cinq souches epidemiques de CSARM ainsi que leur 

discrimination de celles des souches sporadiques de SARM en utilisant differentes 

combinaisons optimales de regions spectrales selectionnees par DVS. Ces resultats 

demontrent que la spectroscopic a IRTF offre un potentiel considerable du fait que cette 

methode est unique, rapide et economique pour l'identification des differents phenotypes 

de staphylocoques et le typage epidemiologique des souches de SARM. 

in 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL INTRODUCTION 

The research described in this thesis concerns the evaluation of FTIR 

spectroscopy as a tool for the identification of methicillin-resistant staphylococci and 

epidemiological typing of methicillin-resistant Staphylococcus aureus (MRSA) strains. 

Staphylococcus aureus and coagulase negative staphylococci (CNS) are the most 

prevalent pathogens causing both nosocomial and epidemic community-acquired 

infections. The incidence of MRSA in Canadian hospitals increased sixfold from 1995 to 

1999 with 4.507 infected patients [1] and with treatment costing between $50 million and 

$60 million per year. Much of the increase in MRSA prevalence in Canada is due to 

specific strains of MRSA that are termed epidemic (EMRSA) strains [2,3] owing to their 

ease and rate of transmission, long-term persistence, rapid inter-hospital spread, and 

ability to cross geographic and continental boundaries compared to sporadic MRSA 

(SMRSA) strains [4.5]. Outbreaks of hospital-acquired infections due to EMRSA are also 

being reported with increasing frequency throughout the world, challenging clinicians 

and infection control teams [6-9]. Furthermore, the recent emergence and spread of 

glycopeptide-intermediate Staphylococcus aureus (GISA) isolates among MRSA clinical 

isolates are expected to raise the morbidity and mortality rates of nosocomial infection 

significantly, since glycopeptides (vancomycin and teicoplanin) have been the drugs of 

choice for the treatment of multiresistant MRSA infections in the last three decades [10]. 

With the emergence of methicillin-resistant staphylococci as worldwide 

nosocomial pathogens [11,12], highly specific and fast identification and typing methods 

for MRSA strains and discrimination of MRSA from CNS are needed for infection 

control and epidemiological surveillance purposes. The ability to rapidly differentiate S. 

aureus from CNS in blood cultures and other specimens is essential for selecting the 

appropriate treatment. S. aureus typing is often required for the tracking of an outbreak or 



as part of ongoing surveillance, whereas CNS typing is often used to determine whether 

two or more strains from a patient represent contamination or infection. In addition, rapid 

and accurate discrimination between EMRSA and SMRSA strains would allow a more 

selective implementation of infection control measures in order to prevent dissemination 

of MRSA strains within hospitals. Finally, before the prevalence and clinical relevance of 

GISA strains can be assessed, a reliable method for their detection must be established. 

Presently, no single definitive diagnostic and typing system exists for both 

identification of methicillin-resistant staphylococci and epidemiological surveillance of 

MRSA, although a hierarchical approach using two or more methods sequentially has 

been advocated [13]. Most public health laboratory services use phenotypic 

(antimicrobial susceptibility and phage typing) as well as genotypic [polymerase chain 

reaction (PCR)-based and pulsed field gel electrophoresis (PFGE)] methods for 

characterization and typing of MRSA strains. The ideal method to replace these labor-

intensive procedures for routine clinical diagnosis of methicillin-resistant staphylococcal 

infections and clinical epidemiology purposes would (i) require minimal sample 

preparation, (ii) produce results within seconds, (iii) analyze samples directly without the 

need of reagents, (iv) be amenable to automation, and (v) be relatively inexpensive. 

With the recent improvements in analytical instrumentation, these requirements 

are being fulfilled by physicochemical "whole-organism fingerprinting" methods [14]. 

These methods are based on various types of spectroscopy, most commonly pyrolysis 

mass spectrometry [15], electrospray ionization mass spectrometry [16], ultraviolet (UV) 

resonance Raman spectroscopy [17], proton magnetic resonance spectroscopy [18], and 

Fourier transform infrared (FTIR) spectroscopy [19,20]. In the case of FTIR 

spectroscopy, whole-organism fingerprinting is based on measurement of the absorption 

of infrared light due to the excitation of the molecular vibrations of the various 

biomolecules present in the cell. Infrared absorption intensities provide quantitative 

information while the absorption frequencies give qualitative information about 

molecular structure and, because molecular vibrations are perturbed by intermolecular 

interactions, are sensitive to the environment of the molecule. Thus, infrared spectra 



provide an enormous amount of information about the biochemistry of the intact viable 

organism. The infrared spectrum of a whole intact organism can be considered to be the 

sum of the infrared spectra of all the cellular components (nucleic acids, cytoplasmic 

proteins, membrane and cell wall components). The complex superposition of the 

individual contributions of these constituents yields broad and complex absorption bands 

throughout the entire infrared spectrum. Accordingly, the infrared spectrum in essence 

provides quantitative information about the total biochemical composition of a sample, 

and variations in biochemical composition among different organisms should result in 

differences in their infrared spectra. Based on the recognition of this fact, the potential 

use of infrared spectroscopy to differentiate microorganisms was studied as early as the 

1950s [21-25]. These early studies established that, just as the infrared spectrum of a 

chemical compound is considered to be its most unique physical characteristic and is 

often considered to be equivalent to a fingerprint in unequivocally identifying the 

compound [26,27], so the infrared spectrum of an organism can serve as its fingerprint. 

However, because the dispersive spectrometers available at that time were inadequate in 

terms of sensitivity, speed, and reproducibility and lacked data handling capabilities, the 

identification of bacteria by infrared spectroscopy was regarded as too time-consuming 

and impractical. 

In the 1980s, interest in the possibility of employing infrared spectroscopy for 

bacteria identification revived after the performance of infrared instruments was 

improved through the development of FTIR spectroscopy, coupled with efficient low-

cost computers capable of generating and processing high-quality spectra. Since that 

time, increasing efforts have been made to develop FTIR spectroscopy as a diagnostic 

tool in microbiology. Much of this research has concerned the application of 

chemometrics to address the problems associated with processing the complex infrared 

spectra of microorganisms for purposes of classification and identification. 

Chemometrics can generally be described as the application of mathematical and 

multivariate statistical methods to: (i) improve chemical measurement process and (ii) 

extract more useful chemical information from chemical and physical measurement data 

[28,29]. The latter is particularly relevant to infrared spectroscopy, which can produce 



large data sets of multidimensional complexity. Infrared spectra of microorganisms have 

extensive overlap of absorptions from the various biomolecules present in the cells. The 

subtle differences in the infrared spectra among different strains may not be perceptible, 

but can be revealed by detailed examination, often with the aid of chemometric tools such 

as genetic algorithms [30] and supervised neural networks [31]. The capability to 

differentiate between different strains on the basis of their infrared spectra may then be 

investigated by judiciously using specific spectral regions in combination with 

chemometrics [32-34]. Principal component analysis (PCA), unsupervised neural 

networks such as self-organized maps (SOM), supervised neural networks (ANNs), and 

the K-nearest neighbors (KNN) algorithm have all been applied in the analysis of infrared 

spectra of a variety of different microorganisms within the fields of medicine and 

agriculture [20]. For example, FTIR spectroscopy has been successfully used for the 

discrimination of some species of the genus Staphylococcus [31,35,36], other clinical 

pathogens [37,38], food poisoning bacteria [31,35,39-43], and food spoilage 

microorganisms [43]. 

FTIR spectroscopy has also been used for the detection of antibiotic resistance in 

bacteria for the identification of imipenem-resistant Pseudomonas aeruginosa species 

[44,45], B-lactam-resistant E. coli [44,46,47], and MRSA [36,48] as well as for the 

detection of drug resistance in human cells [30,49]. However, these studies were based on 

very limited numbers of resistant species; numbers that are too small and insignificant to 

allow the FTIR methods to be compared with phenotypic methods such as antibiotic 

susceptibility testing or to genotypic gold-standard methods such as PCR. Moreover, 

regarding the identification of MRSA, the classification trial failed when larger and new 

data sets were included in the analysis due to the heterogeneous nature of some MRSA 

strains [36]. Examples of epidemiological typing and subtyping of microorganisms by 

FTIR spectroscopy are also scarce and have been reported only recently for some 

nosocomial [50,51] and foodborne yeasts [52] and for bacteria such as Salmonella 

enteritidis [53] and Acinetobacter baumannii [54]. 



1. 2 OVERVIEW AND OBJECTIVES OF THE RESEARCH PROJECT 

1.2.1 Goal of the research project 

The overall objective of this thesis is to evaluate the feasibility of employing 

FTIR spectroscopy for identification of methicillin-resistant staphylococci and 

epidemiological typing of MRSA strains. The research includes the differentiation 

between the various phenotypes of clinical methicillin-resistant staphylococcal species 

that arise from the heterogeneous nature of the resistance mechanism [55-58]. This 

heterogeneity is an inherent limitation to the accuracy of susceptibility testing and 

automated systems. Among the phenotypes that are addressed in this work are GISA, 

which exhibits low-level resistance to glycopeptide antibiotics (teicoplanin MIC 8-16 

ug/ml and vancomycin MIC >8 ug/ml) [10], and borderline oxacillin-susceptible S. 

aureus (BORSA: oxacillin MICs of 2-8 fag/ml), which exhibits methicillin resistance 

overlapping with low-level methicillin resistance of MRSA [59] but can be effectively 

treated with B-lactamase-resistant penicillins and cephalosporins [60,61], unlike MRSA, 

which is resistant to all B-lactam antibiotics, including cephalosporins, carbapenems, and 

monocarbactams. Though several screening methods have been suggested for BORSA 

[62] and GISA strains [63,64], no standardized method to screen for them in the clinical 

laboratory is available. Thus, the rapid and accurate identification of MRSA strains and 

discrimination of MRSA from MSSA, BORSA, GISA, and CNS species by FTIR 

spectroscopy could not only provide a tool to control the spread of MRSA strains but 

could also decrease unnecessary use of glycopeptide antibiotics, thereby both reducing 

the cost of care and minimizing the rate of development of bacterial resistance to 

glycopeptides. 

1.2.2 Specific objectives of the research 

(i) To discriminate MRSA from MSSA and BORSA strains by employing 

FTIR spectroscopy, 

(ii) To discriminate CNS species from S. aureus (MRSA, MSSA) strains by 

using FTIR spectroscopy. 



(iii) To evaluate the capability of FTIR spectroscopy for the identification of 

methicillin-resistant CNS strains, 

(iv) To assess the feasibility of employing FTIR spectroscopy for the accurate 

differentiation of GISA/heterogeneous-GISA (h-GISA) strains from 

MRSA and MSSA strains, 

(v) To evaluate the discriminatory power of FTIR spectroscopy for 

epidemiological typing of five Canadian epidemic MRSA strains 

(CMRSA-1 to CMRSA-5) and compare the FTIR typing approach to the 

reference typing methods, 

(vi) To differentiate between epidemic (EMRSA) and sporadic (SMRSA) 

strains based on differences between their infrared spectra. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 TAXONOMY AND SYSTEMATICS OF STAPHYLOCOCCI 

Bacteria that are members of the genus Staphylococcus, belonging to the family 

Micrococcaceae, are Gram-positive cocci about 1 urn in diameter, characteristically 

dividing in more than one plane to form grape-like clusters. They have a unique cell wall 

peptidoglycan characterized by multiple glycine residues in the interpeptide bridge, 

which renders them susceptible to lysostaphin. Members of the genus Staphylococcus are 

usually facultative anaerobes, capable of generating energy by respiratory or fermentative 

pathways. Most species have relatively complex nutritional requirements, usually 

requiring several of the amino acids and B vitamins for growth. They are catalase-

positive and usually oxidase-negative. Staphylococci are tolerant of high concentrations 

of NaCl (up to 10% w/v) and can grow over a temperature range of 10-45 °C The G + C 

content of Staphylococcus DNA is within the range of 30-38 mol %, which is considered 

relatively low for Gram-positive bacteria [1]. 

Classification of staphylococci was traditionally based on colony morphology and 

simple biochemical and physiological tests [2]. Finer subdivisions are possible using 

contemporary molecular genetics techniques (e.g., DNA-DNA hybridization [3], 

ribotyping [4], and pulsed-field gel electrophoresis (PGFE) of Smal digests of 

chromosomal DNA [5)]), as well as detailed chemical analysis of cellular fatty acids [5], 

microbial proteins [6], and composition of the peptidoglycan [7]. A number of 

staphylococci species as well as subspecies have been defined on the basis of their DNA 

relatedness as established by DNA-DNA hybridization [8]. 

Typically, staphylococci are found in association with the skin, skin glands, and 

mucous membranes of warm-blooded animals, although some species can be isolated 

from processed animal sources such as meat and dairy products or from environmental 

sources such as soil, dust, air, and water. The staphylococci are among the most 

prominent of all nosocomial pathogens throughout the world. Among staphylococci 
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species, S. aureus has the greatest pathogenic potential and diversity. S. aureus causes 

disease by exotoxin production (toxic shock and staphylococcal scalded-skin syndromes) 

and direct invasion and systematic dissemination (bacteremia, urinary tract infections) 

and has the ability to clot blood plasma. The latter property, with its connotations of 

virulence, has been used to divide staphylococci into two major groups: the coagulase-

positive {S. aureus) and the coagulase-negative staphylococci (CNS). The distinction of 

the species S. aureus from other staphylococci was of considerable importance, since S. 

aureus was recognized as a common opportunistic pathogen causing morbidity and 

mortality, whereas other staphylococci were generally regarded as commensal or 

saprophytic. Although S. aureus is clearly the primary pathogen, the coagulase-negative 

staphylococci are also capable of causing infections associated with indwelling medical 

devices [9,10]. However, the prevalence of CNS species as commensal bacteria has the 

adverse diagnostic consequence of false-positive culture results owing to contamination 

of the specimen during collection [11]. For this reason, it is important to distinguish 

between S. aureus and CNS in clinical samples and to confirm the presence of CNS 

before making a diagnostic decision [11,12]. Misidentification of S. aureus as a CNS can 

result in a costly search for other pathogens or unwarranted broad-spectrum empiric 

antimicrobial coverage [13]. 

The major concern with regard to the treatment of staphylococcal infection is the 

continued emergence of antibiotic-resistant strains. Indeed, over 90% of all nosocomial 

isolates are resistant to penicillin, and as increasing number are resistant to the semi­

synthetic, B lactamase-resistant derivatives represented by oxacillin or methicillin [14, 

15]. Moreover, oxacillin-resistant strains are often resistant to other antimicrobial agents 

commonly used to treat staphylococcal infection [16]. Therapeutic options in such cases 

are often limited to the glycopeptide antibiotics (e.g., vancomycin) or the newly approved 

drugs linezolid [17] and quinupristin-dalfopristin [18]. Recent reports describing S. 

aureus with reduced susceptibility to vancomycin emphasize the tenuous nature of our 

reliance on such a limited group of drugs [19,20]. To delay the emergence of resistant 

strains and prolong the utility of currently available antibiotics, it is imperative that the 
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use of these drugs be restricted to those cases in which they are absolutely necessary, the 

primary example being a serious infection caused by an oxacillin-resistant strain. 

2.2 ANTIMICROBIAL RESISTANCE IN STAPHYLOCOCCI 

2.2.1 General mechanisms of bacterial resistance to antimicrobial agents 

Antibiotics have been available for the treatment of bacterial infections for more 

than fifty years. However, even during the initial period surrounding the commercial 

development of benzylpenicillin, it was realized that certain bacteria were not killed by 

the antibiotic, i.e., that antibiotic-resistant bacteria existed already. Nowadays, two broad 

categories of antibiotic resistance are recognized: intrinsic (or intrinsic insusceptibility) 

and acquired. The term "intrinsic" is used to indicate that inherent features of the cell are 

responsible for preventing antibiotic action and distinguishes this situation from acquired 

resistance, which occurs when resistant strains emerge from previously sensitive bacterial 

populations, usually after exposure to the agents concerned. Intrinsic resistance is usually 

expressed by chromosomal genes, whereas acquired resistance may result from mutations 

in chromosomal genes or by acquisition of plasmids and transposons. In a clinical setting, 

acquired antibiotic resistance results primarily from selective pressure exerted on bacteria 

during antibiotic administration for chemotherapy. 

Mechanisms of antimicrobial resistance include alterations in membrane 

permeability [21], active antimicrobial extrusion or efflux [22,23], antimicrobial target 

alteration, metabolic bypass [24], and enzymatic modification of the antimicrobial [24]. 

Alterations in membrane permeability may prohibit influx of certain antimicrobials, e.g., 

aminoglycosides [25]. Antimicrobial target alteration results in a lowered affinity for the 

antimicrobial (e.g., B-lactams and macrolides). Enzymatic modification of antimicrobials 

(e.g., B-lactams and chloramphenicol) may inhibit membrane permeability or ability to 

interact with the target of action. Genes conferring antimicrobial resistance often have a 

metabolic purpose in that organism or a different organism. For example, the gene mecA, 

which confers methicillin resistance to S. aureus, probably encodes a cell wall 

transpeptidase from a nonstaphylococcal organism [26]. 
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Bacteria can acquire resistance by mutation, conjugation, transduction, or 

transformation, although transduction and transformation are rare resistance-acquisition 

mechanisms for staphylococci [27]. Chromosomal mutation usually causes an alteration 

in the antimicrobial target site but also can affect bacterial membrane permeability to an 

antimicrobial agent, or enzymatic-ally inactivate it. Conjugation between two 

microorganisms is not as common among Gram-positive microorganisms as it is among 

Gram-negative microorganisms but does occur. Conjugation may transfer chromosomal 

or plasmid-borne genes. Transposons are DNA sequences that move between 

chromosomes and plasmids. Plasmids are extrachromosomal DNA that can self-replicate. 

Plasmids can acquire multiple resistance genes, giving the microorganism additional 

genetic material to use. Plasmids have less deleterious effect on the organism and 

facilitate acquisition of multiple effective antimicrobial resistance genes en bloc [27]. 

2.2.2 Overview of methicillin resistance in staphylococci 

Methicillin and other B-lactam antibiotics interact with the penicillin-binding 

proteins (PBPs), enzymes anchored in the cytoplasmic membrane that are involved in the 

last stages of peptidoglycan biosynthesis. The PBPs are responsible for the 

polymerization of peptide moieties of the peptidoglycan chains, which in S. aureus are 

cross linked by a characteristic pentaglycyl side chain [28]. Penicillin reduces the cross 

linking of the peptidoglycan and inhibits new septum initiation [29,30]. The effect of B-

lactams in staphylococci is dose dependent, extending with increasing concentration from 

growth inhibition, through lytic death, to nonlytic death [31]. The lethal target of B-

lactams has not been identified, and penicillin-induced death does not necessarily 

correlate with bacteriolysis [32]. 

Staphylococci become resistant to B-lactam antibiotics by various mechanisms. 

Resistance may be due to B-lactamases that open the B-lactam ring, inactivating the 

antibiotic. The genes for B-lactamase production are usually on a plasmid. Because B-

lactamases are structurally similar to PBPs but are not associated with cell wall 

transpeptidation [33], penicillins bind to them, and are thereby rendered inactive, without 

metabolic consequences in the bacteria; i.e., the B-lactamases are essentially PBP 
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antimicrobial targets freed of their metabolic action. Alteration of the B-lactam target site 

can also cause resistance, and this is the mechanism of methicillin resistance in S. aureus. 

This can occur either by mutation or more efficiently, and of greater clinical relevance, 

by acquisition of a foreign DNA element coding for methicillin resistance. The 

methicillin-resistance determinant mec encodes a low-affinity penicillin-binding protein, 

referred to as PBP2a or PBP2', and confers to the staphylococci an intrinsic resistance 

against all B-lactams, including cephalosporins and carbapenems. Resistance is termed 

"intrinsic" because it is not due to destruction of the antibiotic by B-lactamases [34]. The 

first methicillin-resistant 5. aureus (MRSA) containing the mec determinant was isolated 

in 1960, shortly after the introduction of methicillin into clinical use. At that time, MRSA 

strains comprised less than 0.1% of all isolates but have since spread all over the world. 

MRSA strains reside mainly in environments in which there is a constant strong 

antibiotic pressure, such as in hospitals. Once established, they are difficult to eradicate 

and have become a serious problem because of their multi-resistance and their intrinsic 

resistance to all B-lactams, ruling out therapy with currently available B-lactam 

antibiotics. Another genetically distinct and clinically less important class of 

staphylococci exhibits borderline resistance to methicillin. Although these isolates can 

sometimes be mistaken for MRSA in susceptibility tests, they carry no mec determinant, 

are usually not multi-resistant, and arise by mutation at additional non-mec loci and as a 

result of selection of resistance. For treatment and epidemiologic purposes, it is important 

to differentiate between mec-dependent and non-wec-dependent methicillin resistance 

because in the latter case infections appear to be effectively treated with B-lactamase-

resistant penicillins and cephalosporins [35,36]. 

In summary, at least three different mechanisms are thought to account for 

methicillin resistance in staphylococci: (i) the production of low-affinity penicillin 

binding protein, referred to as PBP2a or PBP2' and encoded .by the mecA gene; (ii) B-

lactamase production [37-39]. and (iii) production of PBPs with modified penicillin-

binding capacity or increased levels of production of PBPs [37,40,41]. 
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2.2.2.1 Heterogeneity in expression of methicillin resistance 

A distinctive feature of methicillin resistance is its heterogeneous nature [42,43], 

with the level of resistance varying according to the culture conditions and B-lactam 

antibiotic. The majority of cells in heterogeneous strains (typically 99.9% or more) are 

susceptible to low concentrations of B-lactam antibiotics (e.g., 1-5 ug/ml of methicillin), 

with only a small proportion of cells (e.g., 1 in 106) growing at methicillin concentrations 

of 50 ug/ml or greater. Most clinical isolates exhibit this heterogeneous pattern of 

resistance under routine growth conditions. Heterogeneous strains can, however, appear 

homogeneous (i.e., 1% or more of cells grow at methicillin concentrations of 50 ug/ml) 

under certain culture conditions, such as growth in hypertonic culture medium 

supplemented with NaCl or sucrose or incubation at 30 °C [44]. Addition of EDTA or 

incubation at 37-43 °C favors a heterogeneous pattern and may suppress resistance 

entirely. 

These changes in expression of resistance with different culture conditions are 

transient and entirely phenotypic. Passage of a heterogeneous strain in the presence of B-

lactam antibiotic alters the resistance phenotype by selecting for highly resistant mutant 

clones [26,44]. These clones produce a homogeneous population of highly resistant cells 

that can grow at methicillin concentrations of 50-100 ug/ml. The trait tends to be unstable 

in these laboratory-selected clones. With repeated subculture in antibiotic-free medium, 

the proportion of highly resistant cells gradually diminishes and the original 

heterogeneous pattern reemerges. 

The phenomenon of heterogeneous versus homogeneous resistance in wild-type 

strains is completely unexplained. Heterogeneous strains may be deficient in a factor or 

lack a critical modification in a biochemical pathway, possibly for cell wall synthesis, 

that is important to the functions of PBP2a, which is, in effect, a "foreign" PBP. 

Homogeneous strains may result from B-lactam antibiotic selective pressure favoring 

mutants whose genetic background allows for a fully functional PBP2a [45,46]. 



2.2.2.2 mecA-Associated intrinsic resistance to B-lactams 

Methicillin resistance in staphylococci is due to the acquisition of the 

chromosomal gene mec A and its flanking sequences {mec DNA) [47]. The mec A gene is 

highly conserved among staphylococci species, being virtually identical in both MRSA 

and coagulase-negative staphylococci that have the characteristic methicillin resistance 

phenotype. There is no mecA homologue in susceptible strains. The mecA gene encodes 

PBP2a (also termed PBP2'), an inducible high-molecular-weight (76-kDa) class B PBP 

[48]. PBP2a has a low binding affinity for P-lactams, thereby allowing cell wall 

transpeptidation to proceed in the presence of P-lactam antibiotics at concentrations that 

would inactivate high-affinity PBPs and hence be lethal to the cell. The precise structural 

basis for its low affinity is not understood, as the same penicillin binding motifs as found 

in the penicillin-binding domains of high-affinity PBPs also are present in PBP2a [49]. 

2.2.2.3 Non-metvl-mediated intrinsic resistance to B-lactams 

Standard susceptibility tests sometimes fail to distinguish between an MRSA with 

a very low-level basal resistance and the clinically less relevant borderline resistant 

strains that carry no mec determinant. Two types of borderline resistant strains can be 

encountered: 

(i) The first type of borderline resistant isolates, termed BORSA, are 

hyperproducers of p-lactamase [37] or strains producing a methicillinase [50]. This 

resistance mechanism cannot be defined as intrinsic, because it involves partial 

hydrolysis of penicillinase-resistant penicillins. However, it appears that hyperproduction 

of B-lactamase is not sufficient, but specific, yet-to-be defined, host background factors 

are also needed to establish borderline resistance [50,51]. 

(ii) The second types of borderline resistant isolates, termed MODSA, are strains 

with modifications in their own PBPs [52]. Such strains can also be obtained in vitro 

starting from a susceptible S. aureus and selecting for growth on increasing 

concentrations of B-lactams [53]. Multiple factors that have not yet been identified are 

involved in this process, and changes in the amount and/or affinity of the existing PBPs 
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of the cell, mainly in PBP2 and PBP4, have been described [54,40]. Increase in resistance 

by this mechanism is usually paired with decreased growth rates. In contrast to mecA-

dependent methicillin resistance, no heteroresistance is observed in MODSA strains; all 

descendants of culture are uniformly resistant clinically. 

Neither BORSA nor MODSA have become as relevant clinically as MRSA, but, 

because of the phenotypic overlap of BORSA and MODSA with low-level-resistant 

MRSA, identification methods have to be used that can distinguish between the presence 

and absence of the mec A gene. 

2.2.3 Staphylococci with reduced susceptibility to glycopeptides 

Glycopeptides (vancomycin and teicoplanin) have been the drugs of choice for 

treating MRSA infections for the last decade. However, the frequency of staphylococci 

isolates with reduced susceptibility to glycopeptides has been increasing [55,56]. The 

emergence and spread of such strains are expected to raise significantly the morbidity and 

mortality rates of nosocomial infections. Strains of S. aureus exhibiting intermediate 

resistance to glycopeptides (termed GISA), defined as vancomycin MICs of 8 ug/ml, 

have been reported in Japan [55], the United States [57-59], France [60], the United 

Kingdom [61] Hong Kong [62], and Korea [63]. The isolates from the United States, 

France, and Japan appear to have developed from pre-existing MRSA infections. The 

strains from the United Kingdom and additional strains from Spain [64] appear 

heteroresistant to vancomycin with MICs in the 1-4 pg/ml range. MRSA with 

subpopulations exhibiting reduced susceptibility to glycopeptides have been reported 

worldwide [55,61,63-66]. Heteroresistance to vancomycin was found among 1-20% of 

MRSA strains isolated in Japanese hospitals in 1997 [55]. However, a lower range (0.5-

1.5%) was reported in the majority of European countries and the United States [59,66-

68]. The reduced susceptibility of GISA strains to glycopeptides has been associated with 

therapeutic failures with vancomycin, and these strains have shown resistance to many 

other antimicrobial agents, limiting therapeutic alternatives to fewer antimicrobials 

Currently, there are no recommended therapy guidelines for GISA infections [69]. 

Although nosocomial spread of GISA strains has not been observed in North America 
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and Europe, spread of heteroresistant S. aureus has apparently occurred in Japan [55]. 

Infection control measures, rational antibiotic policies, including the reduction of 

glycopeptide use, and rapid laboratory detection of GISA and heterogeneous GISA (h-

GISA) strains (h-GISA: vancomycin MIC of 1-4 ug/ml and teicoplanin MIC of 16 jug/ml, 

with resistant subpopulations that can grow in the presence of >4 u.g/ml vancomycin 

being present at a frequency of 10"6) are the key measures in preventing the spread of 

these strains. h-GISA isolates might be precursors of GISA, as has been suggested 

previously [55], and can be associated with treatment failures. 

2.2.3.1 Classification of glycopeptide-resistant staphylococci 

On the basis of phenotypic differences with respect to vancomycin and 

teicoplanin susceptibility and bacterial population analysis, three distinct classes of 

resistant isolates have been defined: class A, vancomycin intermediate, teicoplanin 

intermediate; class B, vancomycin intermediate, teicoplanin susceptible; class C, 

vancomycin susceptible, teicoplanin intermediate [70]. S. aureus strains with reduced 

susceptibility to vancomycin have been defined in the literature using different acronyms, 

such as VRSA, VISA, and GISA, which correspond to different breakpoint criteria in 

different countries, causing confusion among infectious disease and microbiology 

specialists. 

Vancomycin-intermediate S. aureus (VISA) 

The National Committee for Clinical Laboratory Standards [71] defines those S. 

aureus strains requiring 8-16 ug/ml of vancomycin for inhibition as "intermediate" 

(VISA), those requiring <4 fig/ml as "susceptible", and those requiring >32 |!g/ml as 

"resistant" strains. Since most VISA strains are also resistant to teicoplanin, the term 

GISA (glycopeptide-intermediate S. aureus) is more appropriate. 
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Vancomycin-resistant S. aureus (VRSA) 

Japanese investigators [55] have defined vancomycin-resistant S. aureus (VRSA) 

as staphylococcal isolates with a vancomycin MIC of >8 ug/ml according to the NCCLS 

method. This term suggests the failure of vancomycin treatment even when administered 

in appropriate doses and for appropriate periods of time [56]. However, in North 

America, the term VRSA defines staphylococci with vancomycin MICs of >32 ug/ml. 

Heterogeneous vancomycin-resistantS. aureus (h-VRSA, h-VISA, h-GISA) 

Heterogeneous resistance to vancomycin has been reported in Japan [55] and was 

defined as staphylococcal strains that grow on brain heart infusion (BHI) screening agar 

plates supplemented with 4 ug/ml of vancomycin at a frequency of 1/106 colonies or 

higher. These subpopulations have MICs of 8 ug/ml, higher than the parent clinical 

isolate (MICs 1-4 u.g/ml). This type of resistance appears to be much more common and 

is termed heterogeneous vancomycin-resistant S. aureus (h-VRSA), heterogeneous 

vancomycin-intermediate S. aureus (h-VISA), or heterogeneous glycopeptide-

intermediate S. aureus (h-GISA) [55,64,65,72]. Often, the vancomycin MICs reported for 

hetero-VRSA in published reports are those for the daughter colonies, not for the original 

clinical isolate (i.e., the parent strain). 

2.2.3.2 Mechanism of glycopeptide resistance in staphylococci 

The mechanism of resistance in clinical GISA isolates is not yet known, but the 

low level of resistance and the lack of hybridization with enterococcal vancomycin 

resistance genes vanA, vanB, vanC, vanD, and vanE suggest that the mechanism(s) is 

distinct from those that mediate vancomycin resistance in enterococci [73]. Briefly, GISA 

is associated with an increased proportion of glutamine-nonamidated muropeptides in the 

cell-wall peptidoglycan synthesis pathway and increased levels of penicillin-binding 

proteins (PBP2), resulting in thickened or aggregated cell walls. These alterations in cell-

wall composition and upregulation of cell wall synthesis presumably result in triggering 

the overproduction of false target sites (affinity trapping of glycopeptide molecules) that 

may decrease the access of glycopeptides to their lethal target, the D-alanyl-D-alanine of 
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the lipid-II-linked muropeptide precursor [74]. The potential mechanisms of resistance in 

GISA include increases in cell wall turnover that lead to an increase of non-cross-linked 

D-alanyl-D-alanine side chains; these chains are capable of binding vancomycin outside 

of the cell wall, making less vancomycin available for intracellular target molecules. In 

addition, greater autolytic activity and increased SigmaB activity have also been reported 

[75]. The first GISA strain (Mu-50), which was reported in Japan [55], showed the 

following characteristics: (a) the cell wall appeared twice as thick as the cell wall of 

vancomycin-susceptible strains on electron microscopy; (b) penicillin-binding protein 

production (PBP2 and PBP2a) was increased; (c) nonhydrolytic trapping capacity for 

glycopeptides; (d) activity of cell-wall synthesis enzymes was enhanced; and (e) vanA, 

vanB, vanC, vanD and vanE genes from vancomycin-resistant enterococci were not 

present. Recently, other investigators demonstrated that the vancomycin resistance 

phenotype is unstable in clinical GISA isolates. A decrease of glycopeptide MICs was 

observed by nonselective serial passage of GISA strains [76]. Much research needs to be 

done to better understand the mechanisms of resistance. 

2.3 EPIDEMIOLOGY OF NOSOCOMIAL STAPHYLOCOCCI INFECTIONS 

S. aureus is one of the most common causes of both endemic nosocomial 

infections and epidemics of hospital-acquired infection [77]. On the other hand, most 

nosocomial infections caused by CNS represent endemic infections. In fact, epidemics 

due to these pathogens have not been reported in Canada [78]. 

S. aureus may be introduced into hospitals by colonized health care workers [79, 

80]. Transmission of S. aureus in hospitals may occur by direct or indirect contact and by 

airborne transmission [81]. Some strains of S. aureus such as type 80/81 strains that were 

prevalent during the 1950s and 1960s had the propensity to cause serious infections in 

patients and personnel and spread rapidly through hospitals [82]. More recently, certain 

strains of MRSA [so-called "epidemic MRSA" (EMRSA)] have spread through hospitals 

despite the use of measures that effectively controlled transmission of other strains [83, 

84]. The characteristics responsible for rapid spread of such organisms are not clear, 

although it has been suggested that strains that produce large amounts of coagulase or 
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with multiple copies of the protein A gene may be more likely to cause outbreaks [85-

87]. Since most strains of MRSA are multidrug resistant, utilization of a variety of 

different agents can exert selection pressure that would favor spread of MRSA. Also, the 

efficacy of infection control measures can greatly affect the incidence of MRSA in 

hospitals. 

The epidemiologic goal of bacterial typing is to accurately identify the source, 

extent, and mechanism(s) of transmission of outbreaks of infection. Investigations are 

typically triggered by an increase in the prevalence of S. aureus infection or by the 

appearance of isolates with a distinctive biotype or antibiotic susceptibility pattern. Thus, 

basic infection control surveillance and routine laboratory evaluation of isolates are 

practical epidemiologic screening tools. Putative outbreaks are most appropriately 

corroborated by detailed epidemiologic investigation; molecular typing studies can 

effectively verify that the isolates represent an outbreak due to a single strain, as was well 

demonstrated in a recently reported investigation of a nosocomial outbreak of S. aureus 

[88]. 

2.4 STANDARD METHODS FOR IDENTIFICATION AND EPIDEMIO­

LOGICAL TYPING OF ANTIBIOTIC-RESISTANT STAPHYLOCOCCI 

2.4.1 Phenotypic methods 

A variety of well-known phenotypic methods have been used for the detection 

and/or epidemiological typing of MRSA, including antibiogram susceptibility testing, 

phage typing, serotyping, and protein electrophoresis [whole cell protein, 

immunoblotting, multilocus enzyme electrophoresis (MLEE), and zymotyping]. Among 

these, antibiogram susceptibility testing and phage typing are the most widely used in 

clinical and routine diagnostic laboratories. 
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2.4.1.1 Antimicrobial susceptibility testing 

Clinical microbiology laboratories routinely test most bacterial isolates for 

susceptibility to a panel of antimicrobial agents. The identification of a new or unusual 

pattern of antibiotic resistance among isolates cultured from multiple patients is often the 

first indication of an outbreak [89]. Both manual and automated methods are widely 

available, rigorously quality controlled, typically easily performed, and relatively 

inexpensive. The major disadvantages are poor discriminatory ability and lack of 

reproducibility. Different strains may develop similar resistance patterns, or sequential 

clinical isolates representing the same strain may differ in their resistance to one or more 

antibiotics [90, 91] owing to the acquisition or loss of plasmids or transposons carrying 

resistance genes. Thus, in most circumstances, the antibiogram cannot be used as the sole 

typing method for MRSA [6]. 

2.4.1.2 Bacteriophage typing 

Phage typing reflects the outcome of a complex biologic process in which a 

freshly plated lawn of bacteria is spotted with a suspension of 23 different standard 

phages and then examined after 24 hours of incubation. An isolate is considered to be 

sensitive to a particular phage if the growing organisms are lysed, leaving a defect in the 

lawn, and resistant if growth is unaffected. Resistance may reflect a variety of 

circumstances, including the absence of an appropriate cell surface receptor for the 

phage, restriction-modification systems that prevent replication of phage DNA, or the 

presence of an incompatible lysogenic phage. The phage types assigned to an isolate 

indicate those phages to which the isolates are determined to be sensitive. Typically, the 

response to a particular phage is consistent for isolates representing the same strain, and 

thus a panel of diverse phages can be used to identify and differentiate distinct strains. 

For many years, phage typing was the method of choice for epidemiological 

investigations of MRSA. However, in addition to being time-consuming and technically 

demanding, phage typing suffers from a lack of reproducibility, and the value of this 

approach is further diminished by the high proportion (20-30%) of non-typable strains of 

MRSA. Although phage typing has been replaced in many reference laboratories by 

molecular typing systems, it provided critical insights not only into the basic 
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epidemiology of staphylococcal transmission, but also into the kinds of problems, many 

still unresolved, inherent in numerous typing methods. 

2.4.2 Genotypic methods 

Advances in molecular biology have provided new sets of tools that have been 

used to develop a wide variety of DNA-based strain-typing systems. Initially restricted 

largely to research settings, technologies such as plasmid analysis, chromosomal DNA 

restriction enzyme analysis (REA), Southern hybridization (ribotyping, insertion 

sequences, mecA: Tn554 probe typing, binary typing), pulsed-field gel electrophoresis 

(PFGE), PCR typing (coagulase gene typing; coa gene), Protein A gene typing, random 

amplified polymorphic DNA (RAPD) or arbitrary primed-PCR (AP-PCR), and repetitive 

element sequence-based PCR (rep-PCR) have disseminated, so that genotypic methods 

are increasingly performed in clinical laboratories. Although these approaches avoid the 

problems inherent in phenotypic systems, they are, nevertheless, subject to natural and, in 

some cases, experimental sources of variation. In addition, substantial complexities are 

involved in interpreting genotyping data and applying them consistently and effectively 

to epidemiologic studies. Among these genotypic methods, PCR and PFGE are the gold-

standard methods in the clinical laboratory. 

2.4.2.1 Polymerase chain reaction (PCR) 

The essential feature of PCR is the ability to replicate ("amplify") rapidly and 

exponentially a particular DNA sequence ("the template"). The basic procedure involves 

several distinct components: 

1. The template is typically a relative small fragment of DNA, 0.5 to 2.0 kb, as larger 

sequences are difficult to amplify efficiently. Only minute quantities of the template 

need be present. 

2. Two small oligonucleotides, termed "primers", corresponding to sequences at 

opposite ends of the template, define the sites at which replication is initiated. The 

primers should be long enough to define those sites uniquely; based on statistical 

considerations, 18 to 20 bp is typically sufficient. A cycle of replication involves 

denaturing the double-stranded DNA template and binding of the primers to each 
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strand of the template, followed by synthesis ("polymerization") of the 

complementary strand. 

3. A rapid, self-contained "chain reaction" is achieved by using thermostable DNA 

polymerases and programmable fhermocyclers. An entire procedure, consisting of 20-

30 cycles, can be conducted in a small closed container (microfuge tube) and within a 

few hours will generate sufficient product ("amplicon") to be visualized and sized 

directly in an agarose or polyacrylamide gel. 

PCR is highly useful for diagnostic detection of infectious agents [92]. Strain 

typing, however, requires additional information beyond the presence or absence of the 

target sequences. 

There are numerous reports describing the use of PCR for the identification and 

characterization of staphylococcal isolates [12,93-95]. To maximize sensitivity, most of 

the reported PCR protocols focused on amplification of conserved regions of eubacterial 

rRNA genes and required additional steps (e.g., hybridization with species-species 

probes) to establish a diagnosis [93,96-99]. Other protocols were directed toward the 

specific detection of S. aureus and focused on amplification of genes found only in that 

species. Specific examples include the genes encoding nuclease (nuc) and coagulase 

(coa), an undefined 442-bp DNA fragment amplified from the S. aureus chromosome 

[99-101], and the S. aureus specific elf A gene, encoding a surface-associated fibrinogen-

binding protein [102]. However, reports describing polymorphisms within coa [103-105] 

suggest that protocols that focus on coa as a distinguishing characteristic might be subject 

to errors of amplification and/or interpretation. Given the importance of detecting 

oxacillin resistance, some protocols focused directly on amplification of the mecA gene, 

either alone or in multiplex format capable of simultaneously amplifying additional 

markers [12,93,95,99,106,107]. 
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2.4.2.2 Pulsed-field gel electrophoresis (PFGE) 

Pulsed-field gel electrophoresis (PFGE), developed by Schwartz and Cantor 

[108], is a variation of agarose gel electrophoresis in which the orientation of the electric 

field across the gel is changed periodically ("pulsed"), rather than being kept constant as 

in conventional agarose gel electrophoresis used for Southern blot. For technical reasons 

[109], this modification enables DNA fragments as large as megabases to be separated 

effectively by size. Suitable unshared DNA is obtained by embedding intact organisms in 

agarose plugs ("insert"), and enzymatically lysing the cell wall and digesting the cellular 

proteins. The isolated genomes are then digested in situ with restriction enzymes that 

have few recognition sites [110,111]. When a staphylococcal chromosome of about 2800 

kb with a G+C content of approximately 34% is digested with restriction enzyme Smal 

(recognition sequence CCCGGG), PFGE analysis provides a chromosomal restriction 

profile composed of 15-20 distinct, well-resolved fragments ranging from approximately 

10 to 800 kb. 

PFGE has two notable limitations. First, because of the need to diffuse all buffers 

and enzymes into the agarose insert, the preparation of suitable DNA involves several 

extended incubation periods and takes 2-4 days [111]. Second, PFGE requires relatively 

expensive specialized equipment [109]. Nevertheless, PFGE has emerged as the 

technique of choice for many laboratories and has been used to investigate MRSA in 

numerous studies [90,112,113]. Although a variety of restriction enzymes have been 

used, none has been found to be better than Smal [114-116]. All staphylococcal isolates 

are typable by PFGE, and the pattern is reproducible even after many subcultures 

[90,113]. Discriminatory ability is high and has been shown superior to that of 

bacteriophage typing, antibiogram susceptibility testing, RAPD, ribotyping, and 

zymotyping [114]. Results are also more reliable than for standard REA as there is no 

interference from plasmid DNA, the fragments being too small to affect the pattern [117]. 

Thus, PFGE has many of the features associated with the ideal typing method, and it has 

been proposed that it be regarded as the "gold standard" for delineation of the 

epidemiology of both endemic and epidemic MRSA. 



2.4.3 Commercial rapid identification kits and automated systems 

To expedite the process of identification of staphylococci in the clinical 

laboratory, several manufacturers have developed rapid identification kits and automated 

systems that allow tests to be completed in only a few hours to one day. With these 

products, identification of most species and subspecies can be made with an accuracy of 

70 to >90% [113,118]. Several manual and automated methods for rapid identification of 

staphylococci based on biochemical screening are commercially available, including the 

API STAPH-IDENT kit identification system [118], the STAPH Tract system, and ID 32 

STAPH kits (for a much larger range of staphylococcal species) and automated systems 

such as the MicroScan system [119] and Vitek GPS-SA cards. These methods have 

excellent specificity but often lack sensitivity in detecting methicillin-resistant 

staphylococci, particularly coagulase-negative strains [44]. Other commercial systems 

include the Alamar panel system (Alamar, Sacramento, CA), E-test quantitative 

antimicrobial susceptibility testing (with 2% NaCl in Mueller-Hinton agar; AB Biodisk, 

Solona, Sweden) [120], and the BBL crystal MRSA ID system (Becton Dickinson, 

Cockeysville, MD). 

The heterogeneous resistance to methicillin or oxacillin manifested by strains of 

MRSA (see Section 2.2.2.1) made detection of these organisms problematic for early 

versions of rapid, automated susceptibility testing systems. The currently available 

automated systems such as Vitek GPS-SA cards or the MicroScan system have excellent 

specificity but often lack sensitivity in detecting methicillin-resistant staphylococci, 

particularly coagulase-negative strains [121]. It has been reported that, except for unusual 

mecA -positive S. aureus strains for which MICs of oxacillin are <2 mg/ml, MRSA strains 

are detected accurately by the Vitek system [122]. It has been recommended that 

laboratories using automated systems (and probably other commercial methods as well) 

for detecting methicillin resistance should confirm the results with a second test before a 

strain is reported as methicillin-susceptible. PCR assays for the mec A gene are currently 

considered a "gold standard" for identifying MRSA, as they will correctly identify even 

the most heterogeneous of strains [26], However, for laboratories where such assays are 
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not available, oxacillin-salt agar screen plates have been recommended as probably the 

best alternative [44,122]. 

Over the years, many manufacturers have developed commercial kits for the rapid 

identification of 5. aureus based on agglutination tests. The earliest of these tests 

employed erythrocytes sensitized with fibrinogen for the detection of clumping factor. 

Thereafter, a second generation of products was marketed which employed coated latex 

particles and/or sensitized sheep erythrocytes to identify S. aureus by the simultaneous 

detection of clumping factor and protein A [123]. Initially, these tests were reported to be 

very accurate, but later reports documented false-negative results among MRSA strains 

[124-128]. It was hypothesized that these false-negative MRSA strains do not expose 

clumping factor or protein A on their surface, which might be explained by the presence 

of a large amount of capsular polysaccharides masking other cell wall structures. The 

observation that capsular polysaccharide serotype 5 predominated among MRSA isolates 

that were not identified by rapid agglutination methods offered a target for improvement 

of the available tests [124]. Third-generation tests were developed, which incorporated 

antibodies against group-specific antigens on the S. aureus cell surface [123,129]. Well-

known commercial agglutination kits for the identification of S. aureus include Slidex 

Staph-Plus (bioMerieux), Staphaurex Plus (Murex Diagnostics Ltd.), and Pastorex Staph-

Plus (Sanofi Diagnostics Pasteur, SA). All three tests detect clumping factor and 

staphylococcal protein A; in addition, Slidex Staph-Plus and Staphaurex Plus detect 

group-specific antigens on the £ aureus cell surface, and Pastorex Staph-Plus detects 

capsular polysaccharides. 

Another standard test kit for differentiating S. aureus from CNS species is the 

traditional tube coagulase test for the detection of free coagulase. However, the time-

consuming nature of the test (incubation for 4-24 h is required) often forces clinical 

microbiology laboratories to use more rapid alternatives. The slide coagulase test, which 

detects bound coagulase (clumping factor), is rapid (<1 min), but 10-15% of S. aureus 

strains may yield a false-negative result [130]. Accurate differentiation of S. aureus from 

other Staphylococcus spp. was achieved by using PCR to detect the presence of the nuc 
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gene, which codes for an extracellular thermostable nuclease [130,130]. However, this 

method would not be considered suitable for routine diagnostic tests since it is tedious 

and time-consuming. 

2.4.4. Laboratory detection of GISA 

The difficulties of laboratory detection of GISA have been reviewed in several 

recent articles [56,132-134]. Routine methods for antibiotic susceptibility testing, such as 

disk diffusion and rapid automated methods (MicroScan rapid panels and Vitek cards 

[132]), fail to detect staphylococci with reduced susceptibility to glycopeptides. Several 

screening methods to detect GISA isolates have been reported [45,59,132-134], and it has 

been recommended that quantitative susceptibility testing should be used routinely, with 

confirmatory testing done only on isolates with MICs > 4 u.g/ml [56,59,132]. The U.S. 

Centers for Disease Control (CDC) has specified three requirements to confirm an isolate 

as GISA [56]: (1) broth microdilution vancomycin MIC of 8-16 ug/ml; (2) E-test 

vancomycin MIC > 6 |ug/ml on Mueller Hinton agar (MHA) plates; and (3) growth on 

commercially prepared BHI screen plate containing 6 ug/ml of vancomycin (inoculum of 

10s CFU/ml; 24 h of incubation). The Emerging Infections Program of the CDC found 

that although 84% of U.S. laboratories had the capacity to screen for GISA (i.e., they did 

not rely solely on the use of disk diffusion without supplemental testing), only 60% 

recognized the need to perform supplemental testing on selected isolates [135]. Although 

routine population analysis profiles (PAP) testing is not recommended, because of the 

technical difficulties, all GISA isolates should be confirmed by this method [136]. 

Identification of subpopulations that demonstrate heterogeneous resistance to 

vancomycin is difficult, and there is currently no clinical method for routine screening of 

S. aureus for hetero-resistance [137]. 
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2.5 FTIR SPECTROSCOPY 

The last two decades have witnessed the emergence of sensitive, rapid, and 

increasingly precise physical techniques for microbiological analysis. These new 

techniques include mass spectrometry (MS), molecular spectroscopy [including 

fluorescence, Fourier transform infrared (FTIR), and Raman spectroscopy], the 

application of laser technologies, flow cytometry, and separation techniques such as gas 

chromatography and high-performance liquid chromatography [138]. Although FTIR 

spectroscopy is included in this list of "new" techniques, the use of infrared (IR) 

spectroscopy as a means of differentiating and identifying bacteria was extensively 

reported as early as the 1950s [139,140]. However, in a critical review on this subject 

published in 1959, it was concluded that, although individual strains of bacteria definitely 

exhibit unique IR spectra, the identification of bacteria by IR spectroscopy could not be 

regarded as a useful technique, as the procedure was too time-consuming and impractical 

[139]. Indeed, reports on the study of microorganisms by IR spectroscopy became less 

frequent in the 1960s and virtually ended in the mid-1970s. However, interest in this 

technique revived in the 1990s, when the development of FTIR spectroscopy in 

combination with new emerging techniques of chemometrics opened a wide range of new 

applications for IR spectroscopy. 

This revitalization of IR spectroscopy was made possible by the vastly superior 

performance of FTIR spectrometers in comparison to the dispersive IR instruments that 

they replaced. The advantages of FTIR spectrometers include excellent photometric and 

wavelength accuracy, improved spectral quality and reproducibility, and very rapid 

spectral acquisition. The fundamental basis for these advantages is the use of 

interferometeric modulation (e.g., a Michelson interferometer) to resolve the radiation 

from an IR source into its component wavelengths. Thus, as illustrated in Figure 2.1, 

absorption of IR radiation by the sample is measured simultaneously at all wavelengths 

by recording an interferogram, which can be acquired in less than one second. The IR 

spectrum of the sample is then calculated from the interoferogram by a fast Fourier 

transform algorithm [141]. In addition to the availability of FTIR spectrometers, the 

interfacing of low-cost minicomputers with these instruments and the development of 
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new algorithms for multivariate statistical analysis and pattern recognition also all 

contributed to the revival of interest in IR spectroscopy as a means of characterizing 

microbial samples. 

2.5.1 Principles of IR spectroscopy 

The infrared region of the electromagnetic spectrum extends from the visible 

region to the microwave, or very short radar, region at wavelengths of some millimeters 

and is subdivided into the near-infrared (NIR), mid-infrared (MIR), and far-infrared 

(FIR) regions. The mid-infrared region, corresponding to the wavelength range between 

2.5 and 20 urn, is of special interest because absorption of IR radiation in this region 

results in excitation of the fundamental vibrational modes of molecules. According to 

quantum mechanics, a molecule can take up an amount of energy to reach the first 

vibrationally excited state of one of its vibrational modes. A molecule that is irradiated 

with a continuous spectrum of IR energy will absorb light quanta that have this energy, 

resulting in an absorption band in the IR spectrum at the vibrational frequency, vs A 

nonlinear molecule composed of N atoms has 3/V - 6 fundamental vibrational modes, 

corresponding to various internal stretching and bending vibrations. Although not all of 

these vibrational modes give rise to IR absorption bands, since only vibrations that are 

accompanied by a change in the molecular dipole moment are infrared-active, complex 

molecules display numerous bands in their IR spectra. 

It has been internationally accepted that the position of IR absorption bands is 

expressed in wavenumbers (cm" ), which is the reciprocal of the wavelength. This unit of 

measurement has the advantage of being directly proportional to the absorbed energy. In 

general, the frequency of an absorption band in the IR spectrum increases with increasing 

force constant of the bond(s) involved and decreases with increasing mass of the atoms. 

This allows the interpretation of a spectrum according to a rough pattern: bands observed 

between 4000 and 2800 cm"1 are due to the stretching vibrations of bonds linking 

hydrogen to another atom, the stretching vibrations of double and triple bonds occur 

between 2500 and 1500 cm"1, and the stretching vibrations of single bonds as well as 

deformation, bending, and ring-breathing vibrations occur in the range below 1500 cm"1 
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[148]. Some vibrational bands can be assigned to specific bonds or functional groups and 

are especially valuable in elucidating the structure of a compound, whereas the entire IR 

spectrum of a particular compound is unique to that compound and is thus of great use in 

the identification of unknowns. In particular, the range below 1000 cm"1 is frequently 

referred to as the "fingerprint region" of the spectrum. 

2.5.2 Characterization of bacteria based on their IR spectra 

IR spectroscopy has been applied to the study of bacteria for over 50 years [142] 

and is based on the observation that different bacteria display different IR spectra. 

However, bacterial cells represent an extremely complex biochemical system. Many 

different signals arise from vibrations of molecules of the cell wall, membrane, and 

polymeric substances in the cytoplasm. This leads to an overlapping and broadening of 

bands in the spectra. Despite the availability of several resolution enhancement 

techniques, it is still not possible to completely separate these spectral bands from each 

other. Nevertheless, the region between 4000 and 500 cm" contains characteristic bands 

of peptide and protein structures, of polysaccharides, of phospholipids, and of nucleic 

acids and is suitable for the characterization of microorganisms. 

The high information content of the IR spectra of bacteria has already been 

exploited for the classification of microorganisms of clinical relevance [143]. Most of the 

structural and functional groups in different bacteria are identical, and thus the spectra of 

bacteria are very similar. However, the relative distribution of different functional groups 

varies among microbial strains, and the availability of software and statistical algorithms 

for analyzing IR spectra allows the detection of subtle differences in the IR spectra of 

different bacterial strains. Furthermore, once a spectral library has been established using 

authenticated strains, mathematical and statistical methods allow the identification of 

unknowns by comparison of their spectra to those in the library. 

2.5.2.1 Spectral acquisition and processing 

The fundamental requirement for IR analysis of microorganisms is that the 

variance within the spectra of one taxon must be smaller than the variance among spectra 
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of different taxa. Although the variations in biochemical composition among different 

taxa will result in differences in their IR spectra, these differences may be very slight 

(e.g., between different strains). Thus, the requirement stated above imposes stringent 

conditions on spectral reproducibility, and interest in IR bacteria identification, which 

waned in the 1960s largely because these conditions could not be achieved with the IR 

instrumentation available at the time, was renewed only when FTIR spectrometers that 

could provide the required spectral reproducibility were developed. However, many 

factors other than instrument performance affect spectral reproducibility, and these must 

all be carefully considered and controlled. 

IR spectra of bacteria are usually recorded from intact cells taken directly from 

culture plates. As early as the 1950s, it was recognized that the IR spectra of living 

bacterial cells strongly depend on the composition of the growth medium and time of 

growth. In a more recent study of these types of effects, differences in the spectra of S. 

aureus grown in two different broth media (brain heart infusion versus peptone) and at 

different times of growth (stationary growth phase versus exponential growth phase) 

were examined; it was found that the relative peak intensities were affected much more 

significantly (due to changes in metabolite pool sizes) than the peak positions [144]. 

These differences suggest that FTIR analysis is dependent on the constraint that all 

cultures must be grown on the same growth medium under identical conditions. 

Consequently, extremely precise metabolic control and strict standardized handling of all 

samples are necessary to yield sufficient reproducibility for the interpretation and 

comparison of IR spectra of various bacterial cells [144-147]. For the work described in 

this thesis, an "IR grade" standard growth medium developed by Quelab Laboratories 

(Monreal, PQ, Canada) to ensure reproducibility of IR spectra for the use of FTIR 

spectroscopy in routine microbiological analysis was employed. 

The reproducibility of the sample-handling technique employed to acquire the 

FTIR spectra of bacteria is also of critical importance. FTIR spectra of microorganisms 

are commonly acquired in the transmission mode, although various other techniques such 

as attenuated total reflectance (ATR) and diffuse reflectance spectroscopy (DRIFT) have 

also been employed. For spectra acquired in the transmission mode, spectral 
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reproducibility depends mainly on the uniformity of the sample (sample homogeneity, 

particle size) and sample thickness (or pathlength) [148]. Sample nonuniformity leads to 

baseline variations owing to the scattering, diffraction, and refraction that occur as the 

infrared beam passes through the sample, whereas variations in sample thickness result in 

variations in band intensity, although consistency in relative peak intensities is 

maintained. Such variations between replicate spectra can be minimized by normalization 

and transformation to derivative spectra, assuming the spectra possess very high signal-

to-noise ratio. In addition, other types of mathematical preprocessing are frequently 

applied to facilitate subsequent data analysis aimed at the differentiation of different 

phenotypes of bacteria on the basis of their spectral profiles. The main types of 

preprocessing algorithms that have been applied for these purposes are briefly described 

below. 

(i) Smoothing 

Smoothing is a useful treatment for allowing visual recognition of trends in 

spectral data. It is important that smoothing be carried out in an objective manner. One 

very well recognized method of smoothing is to apply a Savitzky-Golay filter to the data 

in order to reduce the spectral noise. Commonly, a 5-point Savitzky-Golay filter is 

appropriate as higher orders of smoothing may result in the loss of useful spectral 

information [150]. 

(ii) Normalization 

Normalization makes the lengths of all the data vectors in a data set equal; that is, 

the sum of the squares of the elements of each data vector is the same for all of the 

samples in the entire data set. Normalization of a set of spectra can be based on the height 

or area of a single peak or the integrated area under the entire spectrum, depending on the 

nature of the spectral data set. With an appropriately chosen normalization procedure, 

normalization effectively removes the variance due to differences in pathlength [150], 
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(iii) Spectral derivatives 

Raw absorption spectra may be transformed to first- or second-derivative spectra 

to mathematically enhance their spectral resolution, highlighting differences in band 

shapes and contours of spectra, as well was to eliminate baseline offsets (first-derivative 

spectra) or tilts (second-derivative spectra). Derivative spectra are commonly computed 

by using the algorithm published by Savitzky and Golay in 1964 [151]. Because spectral 

noise is increased by derivatization, first-derivative spectra provide a higher signal-to-

noise ratio than second-derivative spectra. 

(iv) Mean centering 

Mean centering of spectra involves the subtraction of the mean absorbance at 

each data point for the entire data set from the absorbance at that data point in each 

individual spectrum Thus, use of mean-centered data facilitates the extraction of spectral 

information relevant to the variability in the data set, as such data represent the variation 

around the mean [150]. 

(v) Variance scaling 

Variance scaling, also termed autoscaling to unit variance, is applied to mean-

centered spectra and involves dividing the absorbance at each data point in each 

individual spectrum by the standard deviation of the absorbance values at that data point 

for the entire data set. Thus, variance-scaling gives equal weighting to all data points in 

the spectrum, thereby eliminating the effect of inherent differences in band intensities. 

2.5.3. Discrimination, classification, and identification of microorganisms based on 

their IR spectra 

The high information content of the IR spectra of microorganisms may be 

exploited for the discrimination, classification, and identification of microorganisms. 

Indeed, FTIR spectroscopy has been shown to have sufficient discriminatory power to 

distinguish between microbial cells even at the strain level, without any preclassification 

on the basis of other taxonomic criteria [149]. The extensive work conducted in this field 
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during the past decade has recently been reviewed by Mariey et al. [152], and 

investigations of potential clinical relevance have been discussed by Maquelin et al. 

[153]. 

The application of various chemometric tools has played a major role in the 

advancement of FTIR techniques for the identification and classification of 

microorganisms. Chemometrics can generally be described as the application of 

mathematical and multivariate statistical methods to: (i) improve chemical measurement 

process and (ii) extract more useful chemical information from chemical and physical 

measurement data [150,154]. The latter is particularly relevant to infrared spectroscopy, 

which can produce large data sets of multidimensional complexity. Infrared spectra of 

microorganisms have extensive overlap of absorptions from the various biomolecules 

present in the cells, and the subtle differences in the infrared spectra among different 

strains may not be perceptible. Thus, identification and classification of microorganisms 

on the basis of their FTIR spectra can be categorized as pattern recognition tasks, and, as 

in any such task, feature extraction is an important stage. Chemometric techniques that 

may be employed for feature extraction include singular-value decomposition (SVD) of 

the spectral data matrix; genetic algorithms; fractal dimensions; sequential feature 

selection algorithms such as forward, backward, and bidirectional sequential searches; 

and feature weighting. The capability to differentiate between different strains on the 

basis of specific spectral features may then be investigated by various chemometric 

approaches [149,155]. Principal component analysis (PCA), hierarchical cluster analysis 

(HCA), discriminant analysis, supervised neural networks (ANNs), and the K-nearest 

neighbors (KNN) algorithm have all been applied in the analysis of infrared spectra of a 

variety of different microorganisms within the fields of medicine and agriculture [152]. 

In the work described in this thesis, singular-value decomposition (SVD) was 

utilized to assist in the selection of appropriate spectral regions for differentiation of 

particular staphylococcal strains. PCA was then used to achieve data reduction and a 

preliminary idea about the distribution of the data. An unsupervised ANN method 

developed by Kohonen [156] to allow the visualization of high-dimensional data via 
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generation of a self-organizing map (SOM) was also employed to examine the 

distribution of the data. Subsequent cluster analysis was performed by partitioning the 

SOM with the use of the &-means algorithm. Although the SOM approach has seldom 

been employed in the analysis of FTIR data, it has been applied successfully to 

multidimensional flow-cytometric data for the identification of seven species of fresh 

water phytoplankton [157] and to pyrolysis mass-spectrometric data for the classification 

of Propionibacterium acnes isolates [158,159]. In parallel, a robust supervised cluster 

analysis algorithm (KNN), which was previously employed to discriminate between 

cyanobacterial strains and yielded a high rate (99-100%) of correct classification [160], 

was applied to confirm the results obtained by exploratory data analysis. The basic 

principles of these chemometric techniques are presented in the following sections. 

2.5.3.1 Exploratory data analysis 

2.5.3.1a Principal component analysis (PCA) 

In spectroscopy, computational chemistry, image analysis, and process control, a 

large number of variables describing the samples can be collected. A major problem is to 

find ways of dealing with these large numbers of variables and eliminate correlations 

between variables that may lead to invalid results. The aim of analyzing data is often to 

find the underlying structure of a data set and to describe it in the simplest possible way 

in order to find patterns and trends in the data as well as to interpret which variables 

contribute most strongly to these patterns and trends. 

PCA is a well-known and effective technique for reducing the dimensionality of 

multivariate data, including FTIR data, while preserving most of the variance [161,162]. 

By using PCA, most of the variation in the data is described by a few orthogonal 

principal components (PCs), or latent variables, which are linear combinations of the 

original variables. The data are characterized by (a) scores, which are projections of 

objects (such as spectra) onto each PC, and (b) loadings, which represent the 

contributions of the variables to each PC. Because the PCs are orthogonal to each other, 

PCA removes collinearities from the data. 
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In mathematical terms, PCA is an eigenanalysis technique. It extracts a set of 

eigenvectors and their associated eigenvalues by a sequential or non-sequential 

procedure, depending on the algorithm used. The nonlinear iterative partial least squares 

(NIPALS) algorithm is most commonly employed and extracts the eigenvectors 

sequentially in order of explained variance. Thus, the first eigenvector accounts for the 

maximum amount of variance in the data. After each eigenvector is extracted, a residual 

data matrix is calculated and the procedure is repeated, until there are no significant 

eigenvalues left. The variance accounted for by each eigenvector is equal to the square of 

the eigenvalue. Examination of the eigenvalues and their relative magnitudes allows an 

estimation of the number of significant "factors" or components in the data matrix. 

2.5.3.1b Self-organizing map (SOM) 

In this section, only the basic principles of SOM, also known as Kohonen 

networks, will be presented owing to the mathematical complexity of the topic. For a 

detailed discussion of self-organization, the reader may refer to the monograph by 

Kohonen [163]. The principal chemical applications of Kohonen networks have been 

reviewed by Gasteiger and Zupan [164]. 

The SOM algorithm is an unsupervised neural network algorithm. The neurons 

are regularly spaced on a low-dimensional grid (one-, two-, or three-dimensional), and 

each neuron k is represented by an n-dimensional prototype vector mk = [mk\, , 

m/cn], where n is the dimension of the input space. On each training step, a data sample x 

is selected and the nearest neuron mc (referred to as the best matching unit, BMU) is 

found from the map. The prototype vectors of the BMU and its neighbors on the grid are 

moved toward the sample vector: 

mk =mk+a (t)hck(t)(x - mk) 

where a(t) is the learning rate and hck(t) is a neighborhood kernel centered on the BMU. 

Both learning rate and neighborhood kernel radius decease monotonically with time. 

Thus, during iterative training of the network, the neurons are organized into a 

meaningful two-dimensional order in which similar neurons are closer to each other in 
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the grid than the more dissimilar ones. The SOM may thus be regarded as a clustering 

diagram. There are a variety of methods to visualize the SOM. The two methods used in 

this work are the U-matrix (unified distance matrix) [165] and component planes [166] 

methods. In the U-matrix method, color is used to show the distances between 

neighboring map units: longer distances are represented by shades of yellow and red, 

while shorter distances are represented by shades of blue. Thus, the U-matrix shows the 

cluster structure of the map, with a uniform area being blue (designating a cluster) while 

border areas are yellow and red. Component planes show the values of the individual 

variables (i.e., PC scores) in each map unit and provide an idea of the spread of values of 

each variable. By comparing the U-matrix with the component planes, it is possible to 

identify which variables contribute strongly to a cluster observed in the U-matrix. When 

the number of SOM units is large, standard clustering algorithms such as the k-means 

algorithm described in the following section may be applied to partition the SOM [166]. 

The number of clusters can then be evaluated using some kind of validity index such as 

the Davies-Bouldin index [167]. 

2.5.3.2 Cluster analysis 

Clustering is a statistical technique that classifies objects into groups 

characterized by their qualitative or quantitative properties [168]. A clustering O involves 

partitioning a data set into a set of clusters 0„ i= 1 ,C. Most clustering algorithms 

produce crisp partitionings, where each data sample belongs to exactly one cluster. In the 

case of ambiguity in assigning a particular data point to a specific cluster, the use of 

fuzzy clustering algorithms, where a data object may belong to several clusters [169], is 

warranted. Cluster analysis algorithms may also be characterized as hierarchical or 

partititive. Agglomerative hierarchical clustering algorithms cluster objects one by one 

using some measure of similarity, usually the Euclidean distance. The next most similar 

object is then grouped to form a larger cluster. This process is continued until all the 

objects have been grouped together to build a hierarchical clustering tree (dendrogram). 

Divisive hierarchical algorithms are similar but work in the opposite direction, starting 

from a single cluster and dividing each cluster into sub-clusters until each sub-cluster 

contains a single object. On the other hand, partitive clustering algorithms divide a data 
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set directly into a (given) number of clusters, usually based on an implicit assumption on 

the form of the clusters (e.g., spherical in the case of the &-means algorithm employed in 

this thesis). If the number of clusters is unknown, the partitioning can be repeated for 

different numbers of clusters, typically ranging from two to the square root of N, where N 

is the number of samples in the data set. The application of some validity measure is then 

required to evaluate which partitioning is the best. For example, in the case of the widely 

used Davies-Bouldin index [167], the best partitioning is that which minimizes: 

IDB= \IC I max SC(C,) + Sc(Cj)/dcs(C„ C,) 

where C is the number of clusters, Sc is within-cluster distance, and cice(C„ Cy) is between-

clusters distance. Because the Davies-Bouldin index uses centroid distance for within-

cluster distance and centroid linkage for between-clusters distance, it makes the implicit 

assumption that the clusters are hyperspheres and thus is suitable for evaluation of k-

means partitioning. 

2.5.3.3 K-nearest neighbors (KNN) algorithm 

The K-nearest neighbors algorithm [170,171] is a similarity-based classification 

method that attempts to categorize unknown samples exclusively on the basis of their 

proximity to other samples of pre-assigned categories (the training set) in /^-dimensional 

space. It consists of drawing a circle (sphere for n = 3; "hypersphere" for n > 3) around a 

point to be classified. The circle is drawn to encompass K nearest neighbors, where K is a 

user-set parameter. The unclassified point is then assigned to the class to which the 

majority of its K nearest neighbors belong. If the vote is split, the decision will be based 

on average distance. The performance of this classification method is assessed by using 

samples of known category in an independent prediction set as test points and counting 

the number of correctly classified test points. 
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2.5.4 Advantages and disadvantages of FTIR spectroscopy in microbiological 

analysis 

Among the advantages of FTIR spectroscopy for investigating microorganisms, the 

following are the most noteworthy: 

1- The method is uniformly applicable to virtually all microorganisms that can be grown 

in culture. IR spectra can be recorded from intact cells taken directly from culture 

plates, and biomass requirement can be scaled down to single colonies. With the use 

of an IR microscope, even microcolonies as small as 20 um in diameter, 

corresponding to a few hundred cells, can be analyzed [149]. 

2- Spectra are available within minutes after obtaining an adequate sample of a pure 

culture. 

3- Detection, enumeration, classification, and identification can be integrated in a single 

instrument. With the use of an IR-microscope, results are available within one 

working day in a clinical setting, including isolation, cultivation, and identification. 

4- IR spectroscopy can classify microorganisms at very different levels of taxonomic 

discrimination without any preselection of strains by other taxonomic criteria. In 

contrast to most other techniques, IR spectroscopy is useful at the strain, species, and 

genus level. The specificity of the method is generally extremely high, allowing 

differentiation at the strain and/or serogroup/serotype level. 

5- The above advantages make IR spectroscopy useful for (i) very rapid identification of 

life-threatening pathogens, (ii) epidemiological investigations, conductance of case 

studies, screening of pathogens, hygiene control, elucidation of infection chains, 

therapy control, and detection of recurrent infections, (iii) characterization and 

screening of microorganisms from the environment, (iv) monitoring of 

biotechnological processes, (v) microbiological quality control in the food and 

pharmaceutical industries, and (vi) maintenance of strain collections. 

6- In a number of cases, in situ detection of specific cell components is possible (e.g., 

storage materials, spore formation, encapsulation of microorganisms), and drug 

resistance and cell-drug interactions can be monitored and characterized. 
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The limitations of this technique include the following: 

1- Only microorganisms that can be grown in culture can be analyzed. Mixed cultures 

can only be investigated with the use of an IR microscope provided single colony 

growth is obtained. 

2- Classification and identification are based on the analysis of spectral fingerprints. 

Specific information on specific compounds present in the whole cells is generally 

not available. 

3- Since the technique provides a spectral fingerprint of cell constituents, reliable 

identification of unknowns can only be obtained provided the microbiological 

parameters (culture medium, cultivation time and temperature) can be rigorously 

controlled. Development of spectral databases for use in different laboratories 

requires the use of the accepted culture media available on the market. 

4- While the strength of the technique is its ability to differentiate microorganisms very 

rapidly below the species level, classification at the genus level may not be 

taxonomically relevant in all cases [149]. 

2.5.5 Application of FTIR spectroscopy in identification and differentiation of 

staphylococcal species, identification of antibiotic-resistant bacteria, and 

typing of bacteria 

As previously mentioned, the extensive work on the discrimination, classification, 

and identification of microorganisms based on their IR spectra that has been conducted 

during the past decade has recently been reviewed in the literature [152,153]. 

Accordingly, the review of the literature in this section will be limited to a brief survey of 

work related to the specific applications of FTIR spectroscopy described in Chapters 3-7 

of this thesis. 

(i) Identification and differentiation of staphylococcal species 

Numerous studies have shown the capability of infrared spectroscopy to 

differentiate bacteria at the genus level [140,149,172-176], and staphylococci have been 

included in many of these studies, owing to their prevalence [44]. In all cases, the spectral 
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data in broad regions of the infrared spectra of the bacteria (3000-2800, 1750-1500, 

1500-1200, 1200-900, and 900-700 cm"1) were utilized. In some cases, each spectral 

region was given a weighting factor to augment the performance of the data analysis 

algorithms [149,172-174]. More recently, ANN was utilized to automatically predict the 

weighting factors [176]. In all cases reported to date, a correct classification rate of >93% 

was achieved in the differentiation of staphylococcal species from other bacteria. 

In one of the above studies, various staphylococcal species were also successfully 

distinguished from each other by FTIR spectroscopy [172]. In this study, 11 strains of S. 

aureus and 12 strains of coagulase-negative staphylococci (CNS) were separated by 

hierarchical cluster analysis (HCA) into two well-separated subclusters by applying both 

the average linkage method (UMPGA) and Ward's algorithm to the first-derivative 

spectral data in three broad spectral ranges (weighting factors in parentheses): 3000-2800 

cm"1 (3.0), 1200-900 cm"1 (1.0), and 900-700 cm'1 (3.0). 

(ii) Antibiotic resistance 

Several groups have investigated the feasibility of employing FTIR spectroscopy 

for the differentiation between antibiotic-resistant and sensitive strains. Significant 

differences between the FTIR spectra of E. coli susceptible to B-lactams and those of 

resistant transconjugants were reported [177,178], and the strains were separated from 

each other employing cluster analysis based on spectral differences in the region 1800-

950 cm"1. Similarly, discrimination between four isogenic imipinem-susceptible and 

resistant Pseudomonas aeruginosa strains was achieved using PCA and HCA, employing 

a single broad spectral region (1800-900 cm"1) [178,179]. 

An alternative approach to the differentiation between antibiotic-resistant and 

susceptible strains makes use of an observation made by Zeroual et al. [180] that the 

infrared spectra of E. coli were significantly affected by addition of sublethal doses of P-

lactam (penicillins G and A) and quinolone (nalidixic acid) antibiotics to the growth 

medium. Kirschner et al. [181] failed to separate 20 strains of MRSA from 18 strains of 

MSSA by PCA, HCA, and ANN, utilizing either broad or narrow regions of their infrared 
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spectra. However, by growing the microorganisms in the presence of sublethal doses of 

the antibiotic oxacillin, a significant change in the infrared spectra (between 1175-875 

cm ) of the MSSA strains in comparison to those of the MRSA strains was observed 

which allowed for the complete separation of MRSA from MSSA. 

(Hi) Bacteria typing 

FTIR spectroscopy was recently employed for typing of Legionella pneumophila 

[182], Salmonella enteritidis [183], Acinetobacter baumannii [184], and Serratia 

marcescens [185]. Horbach et al [182] demonstrated the utility of FTIR spectroscopy to 

differentiate between four different serogroups of Legionella pneumophila (based on 

differences in the spectral region 1200-900 cm"1). They separated the strains based on a 

differentiation index (D) calculated from the equation D = (1-a) x 1000, where a is 

Pearson's moment correlation coefficient [172]. Seltmann et al. [183] reported a 

complete separation of 89 strains of Salmonella enteritidis into two subgroups based on 

the differences in their infrared spectra between 1185 and 1120 cm"1 employing HCA. It 

was concluded that the sensitivity of the FTIR-based method was equal to that of whole 

cell protein pattern (WCPP) analysis and multilocus enzyme electrophoresis (MLEE) for 

typing of bacteria. Seltmann et al. [184] also demonstrated that FTIR spectroscopy could 

be employed to type 49 Acinetobacter baumannii strains into three biotypes (biotypes 2, 

6, and 9). Multiple spectral regions were employed (3000-2800, 1500-1200, and 1200-

900 cm"1) with a different weighting factor for the 1200-900 cm"1 spectral region. While 

FTIR spectroscopy proved to be a very rapid and reproducible method, it was limited in 

its discriminating power as compared to PFGE since only 43 out of the 49 strains were 

correctly typed. Irmscher et al. [185] evaluated the efficacy of FTIR spectroscopy relative 

to MLEE and PFGE to type 66 isolates of Serratia marcescens obtained from 46 patients. 

They concluded that FTIR spectroscopy was easy to use and highly reproducible but that 

its discriminatory power was limited relative to that of the other two techniques. 
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CHAPTER 3 

RAPID IDENTIFICATION OF METHICILLIN-RESISTANT 

STAPHYLOCOCCUS AUREUS (MRSA) BY FOURIER TRANSFORM 

INFRARED (FTIR) SPECTROSCOPY 

3.1 ABSTRACT 

Methicillin-resistant Staphylococcus aureus (MRSA) has become a worldwide 

nosocomial pathogen. The feasibility of employing Fourier transform infrared (FTIR) 

spectroscopy as a rapid, single-step method for the detection of MRSA and 

differentiation of MRSA from borderline oxacillin-resistant S. aureus (BORSA) and 

methicillin-sensitive 5". aureus (MSSA) was investigated. The FTIR spectra of whole 

cells from stationary-phase cultures, grown on a universal growth (UM™) medium, of 26 

MRSA, 25 MSSA, and 15 BORSA (mecA negative, oxacillin MICs of 2-8 ug/ml) strains 

were recorded in quadruplicate and normalized to unit height. Principal component 

analysis (PCA), self-organizing maps (SOM), and the K-nearest neighbors (KNN) 

algorithm were investigated to cluster the different phenotypes of S. aureus strains based 

on the similarity of their infrared spectral fingerprints obtained from whole cells. Visual 

inspection of the spectra revealed clear differences in the region of 1080-1050 cm"1 

(containing absorption bands assigned to the phosphodiester backbone of nucleic acids, 

polysaccharides, and phosphorylated proteins). When PCA was performed on first-

derivative spectra using this single narrow spectral range, a scores plot of the first two 

PCs yielded three clusters corresponding to MRSA, MSSA, and BORSA strains. 

However, one MRSA strain did not fall in the MRSA cluster, nine MSSA and five 

BORSA (phage group 94/96) strains were misclassified as MRSA, and three BORSA 

strains fell between the MSSA and MRSA clusters, yielding an overall correct 

classification rate of 76%. Similar results, with slightly higher overall rates of correct 

classification, were obtained when the same spectral data were used to generate an SOM 

or were subjected to cluster analysis using the KNN algorithm. With the use of additional 

spectral regions selected by employing singular-value decomposition (SVD), pairwise 

differentiation of the three strains by PCA, SOM, and KNN all yielded >90% correct 

classification, and, of particular significance from a clinical perspective, only a single 
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MRSA strain was misclassified. Furthermore, in a separate validation study, 166 S. 

aureus clinical isolates were all correctly classified. The FTIR spectra of cell walls 

extracted from one MRSA and one MSSA strain showed differences in the same spectral 

regions as those employed for the discrimination of MSSA and MRSA, consistent with 

the fact that the structural modifications associated with methicillin resistance are 

localized within the cell wall. The results obtained in this study demonstrate that FTIR 

spectroscopy has considerable potential as an alternative rapid (1-hr) method for the 

differentiation of MRSA from BORSA and MSSA strains. 
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3.2 INTRODUCTION 

The increasing incidence of nosocomial infections caused by methicillin-resistant 

S. aureus (MRSA) makes it essential to have a rapid, simple and reliable method for 

detection of MRSA so that appropriate therapy and intervention for cross-infection 

control can be initiated in a timely manner. Methicillin resistance is caused exclusively 

by production of an altered penicillin binding protein (PBP2a) in the cell wall encoded by 

the mec A gene [1]. Most diagnostic laboratories use traditional antimicrobial 

susceptibility methods to detect MRSA. However, these methods are technically 

demanding and time-consuming (48 hr). In addition, the differentiation of MRSA from 

methicillin-sensitive S. aureus (MSSA) may be further obscured by the presence of 

borderline oxacillin-resistant S. aureus (BORSA) strains that overlap with low-level 

resistant MRSA [2]. Detection of the mecA gene by PCR appears to most accurately 

detect methicillin resistance in S. aureus [1,2]. However, the mecA gene occurs in some 

strains of S. aureus that are phenotypically methicillin sensitive [3]. Moreover, PCR 

assays are not currently utilized by most routine diagnostic laboratories. 

The application of FTIR spectroscopy for the discrimination, classification, and 

identification of microorganisms has been increasingly investigated during the past 

decade [4]. FTIR spectroscopy is a biophysical method that provides quantitative 

information about the total biochemical cellular composition [5]. As illustrated in Figure 

3.1, the absorption bands in the FTIR spectra of whole cells are assigned to major cellular 

constituents such as proteins, lipids, polysaccharides, and nucleic acids. The FTIR spectra 

of different strains exhibit distinct and unique patterns that are highly reproducible, 

thereby providing a means for differentiation between strains. FTIR spectroscopy has a 

number of advantages over conventional methods of biochemical analysis: it is rapid and 

reliable, sample preparation is relatively simple, and no reagents are required. FTIR 

spectroscopy has proved to be successful in bacterial classification at different levels of 

taxonomic discrimination without any preselection of strains based on other taxonomic 

criteria [6]. 

Recently, several studies have been reported on the application of FTIR 

spectroscopy for the detection of antibiotic-resistant microorganisms, including 

imipenem-resistant Pseudomonas aeruginosa species [7], B-lactam-resistant Escherichia 
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coli [8], and MRSA [9,10]. However, the previous work on the differentiation of MRSA 

from MSSA was inconclusive and the possible presence of BORSA strains was not 

considered in the data analysis. Thus, the present study was undertaken to evaluate more 

fully the potential utility of FTIR spectroscopy for the rapid identification of MRSA 

strains by investigating the capability of this technique to distinguish MRSA from MSSA 

and BORSA strains. 

3.3 MATERIALS AND METHODS 

3.3.1 Strains 

Twenty-six strains of MRSA and twenty-five strains of MSSA were obtained 

from the Royal Victoria Hospital (Montreal, PQ, Canada). Fifteen strains of BORSA 

were obtained from the Laboratoire de Sante Publique du Quebec (Pointe-Claire, PQ, 

Canada) culture collection. All strains were stored in brain heart infusion (BHI) 

supplemented with 15% glycerol at -70°C. 

3.3.2 Sample preparation and FTIR spectral acquisition 

After an overnight subculture of S. aureus strains on tryptic soy with sheep blood 

agar (Quelab Laboratories Inc., Montreal, QC, Canada) at 37 °C, followed by culture on 

Universal Medium (UM™) agar plates (Quelab Laboratories Inc., Montreal, QC, 

Canada) for 18 h at 37 °C, four loops-full of stationary-phase cells were carefully 

collected using a 10-mm-diameter loop and suspended in 200-ul aliquots of sterile 

physiological saline (0.9%). A 25-ul aliquot of the 10-fold diluted bacterial suspension 

(approximately 5x10 cells ml" ) was evenly applied onto a zinc selenide (ZnSe) optical 

window and then oven-dried at 48 °C for 1 hour. For each of the 66 strains employed in 

this study, four samples were prepared in this manner from different culture plates. IR 

spectra were recorded using a Bomem MB-104 (ABB-Bomem, Quebec, PQ, Canada) 

FTIR spectrometer equipped with a deuterated triglycine sulfate (DTGS) detector and a 

KBr beamsplitter and operating under Bomem-Grams/386 software (Galactic, Salem, 

NH). The spectrometer was purged with dry, C02-free air from a Balston dryer (Balston, 

Lexington, MA). A total of 64 scans were co-added at 4 cm"1 resolution in the mid-IR 
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region (4000-400 cm"1) and ratioed against an open-beam background to produce an 

absorbance spectrum. 

3.3.3 Mathematical processing 

The collected spectral data, stored in Grams SPC format, were converted into 

CSV format and then into MAT format using Matlab version 5.1 (The Math Works, Inc. 

Natick, MA). Spectra were normalized to unit height and were transformed to first-

derivative spectra using the Savitzky-Golay algorithm to maximize peak separation and 

minimize baseline shifts. Exploratory data analysis was performed using principal 

component analysis (PCA) based on both singular-value decomposition (SVD) and the 

nonlinear iterative partial-least-squares (NIPALS) algorithm and self-organizing maps 

(SOM), using data processing routines written in Matlab for this study. Cluster analysis 

was performed by using the K-nearest neighbors (KNN) algorithm (written in Matlab). 

3.3.4 Microbiological analysis of selected strains 

Strains that were not properly classified in the initial analysis of the FTIR data 

were subsequently characterization by antimicrobial susceptibility testing, phage typing, 

and multiplex PCR, as described below. 

3.3.4 1 Antimicrobial susceptibility testing 

Antimicrobial susceptibility testing was performed by the disk diffusion method 

of Kirby-Bauer [11], using breakpoints according to National Committee for Clinical 

Laboratory Standards (NCCLS) guidelines [12]. 

3.3.4.2 Phage typing 

Strains were phage typed by the standard method of Blair and Williams [13] with 

the basic international set of 23 phages. The set of phages included the lytic groups I (29, 

52, 52A, 79 and 80), II (3A, 3C, 55 and 71), III (6, 42E, 47, 53, 54, 75, 77, 83A, 84 and 

85), and V (94, 96) and miscellaneous or non-allocated phages 81 and 95. Susceptibility 
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to phages was determined at the standard routine test dilution (RTD) and at 100 x RTD 

concentrations. 

3.3.4.3 Multiplex PCR 

Multiplex PCR reactions were performed for the simultaneous detection of the 

mec A and nucA gene sequences [14,15]. Bacterial DNA was extracted using 2-3 colonies 

of a test organism and boiled in 100 ul of Triton X-100 lysis buffer. One microliter of the 

cooled, centrifuged suspension was used as template, and PCR was performed in a 25-ul 

volume, with 10 raM Tris-HCl, 50 mM KC1, 1.5 mM MgCl2, 200 uM dNTP's, 2.5 U of 

Taq polymerase, and 0.2 uM of each primer. Thermocycling conditions in a Gene-Amp 

9600 thermocycler were as follow: 94 °C for 2 min followed by 30 cycles of 94 °C for 1 s 

and 55 °C for 15 s, with a final 10-min extension at 72 °C Amplicons were detected on a 

1% agarose gel after electrophoresis and stained with ethidium bromide. 

3.3.5 Cell wall extraction 

Following the procedure for cell wall extraction described by Stranden et al. [16], 

MRSA BB270 and MSSA BB255 strains were grown in 500 ml of brain heart infusion 

(Difco) to an optical density at 600 nm of 0.9 and harvested by centrifugation. Cells were 

resuspended in 10 ml of 1 M NaCl and mechanically disrupted by glass beads (0.1 mm), 

using a cell grinder for 5 min at 4 °C. The glass beads were separated by filtration and 

washed with 0.5% sodium dodecyl sulfate (SDS). The collected cell suspension was 

incubated at 60 °C for 30 min to remove noncovalently bound components. The cell 

walls were isolated by centrifugation and washed three times with water to remove SDS 

prior to lyophilization. The cell wall extracts obtained by this procedure have previously 

been shown to contain murein with teichoic acids and proteins covalently attached via 

interpeptide chains [16]. 

3.4 RESULTS 

The primary aim of this study was to investigate the feasibility of employing 

FTIR spectroscopy for the rapid identification of MRSA strains. The following strategy 
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was employed to ascertain whether MRSA could be discriminated from MSSA and 

BORSA utilizing the spectra of whole cells. First, the spectra of 26 MRSA, 25 MSSA, 

and 15 BORSA strains were collected in quadruplicate to generate a spectral database 

comprising 263 spectra (one improperly collected spectrum having been rejected). The 

effects of various types of spectral processing on spectral reproducibility, as assessed by 

examination of variations between replicate spectra, were studied to select the most 

suitable spectral preprocessing tools to be employed prior to data analysis. Analysis of 

the FTIR data commenced with visual inspection of a subset of 30 spectra in an attempt 

to identify specific spectral regions containing information that would allow for 

discrimination between MRSA, MSSA, and BORSA strains. Prior to data processing, the 

most significant spectral region for differentiation of MRSA, MSSA and BORSA was 

selected by visual inspection of the spectra. Various chemometric techniques were 

applied in the analysis of the spectral data within the selected region(s) to cluster the 

different phenotypes of S. aureus strains. The results obtained in each of the above stages 

are presented in the following sections. 

3.4.1 Spectral reproducibility 

The discrimination, classification, and identification of microorganisms by FTIR 

spectroscopy requires that the variance within the spectra of one taxon must be less than 

the variance between the spectra of different taxa. Accordingly, a high level of spectral 

reproducibility is required, and the sources of spectral variability must be identified and 

controlled. These include variations in plating conditions (growth media, growth 

temperature, incubation time) and sampling methodology (transfer of bacteria from an 

agar plate to a ZnSe optical window, drying of the bacterial suspension on the optical 

window). Thus, FTIR spectroscopy, as well as other whole-organism fingerprinting 

techniques, such as pyrolysis-mass spectrometry and UV resonance spectroscopy, has 

been reported to require strict metabolic control of growth media and standardization of 

growth conditions [17-20]. The selection of a universal growth medium (UM™) and 

appropriate standard growth conditions for the present study was thus of prime 

importance in order for the IR spectra of various bacterial strains to be reliably compared 

and interpreted. In addition, as the quality of the IR spectra of bacterial films deposited 
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on an optical window depends on the sample homogeneity, particle size, and film 

thickness, a standardized sampling methodology was established, whereby a single drop 

of a diluted bacterial suspension was deposited onto the window and dried for 1 hr at 48 

°C to form a transparent and homogeneous film suitable for FTIR measurements. 

To assess the level of spectral reproducibility achieved under the conditions 

selected for this study, quadruplicate spectra of each of the strains investigated were 

recorded by depositing samples from four different culture plates on four different optical 

windows. Figure 3.2 presents quadruplicate spectra in the 1800-800 cm"1 region obtained 

for cells taken from a stationary-phase MRSA culture. Although there is some spectral 

variability due to baseline shifts and sampling-associated factors such as sample 

thickness, these spectra show excellent reproducibility in terms of the relative peak 

intensities. Pairwise comparison of quadruplicate spectra yielded an average correlation 

coefficient of r = 0.97. The variation between replicate spectra was minimized by 

normalization to unit height and the use of the first-order spectral derivatives [21], which 

highlight shapes and contours of spectra and remove the effects of baseline shifts. Other 

spectral processing techniques, including mean centering, autoscaling, and second-order 

spectral derivatives, were evaluated but were not found to be helpful. 

3.4.2 Discrimination of MRSA from MSSA and BORSA 

3.4.2.1 Spectral differences of MRSA, MSSA and BORSA strains 

Visual inspection over the full spectral range (4000-400 cm" ) of 30 randomly 

selected raw spectra of MRSA, MSSA and BORSA strains among the 263 spectra 

collected revealed clear differences in the region between 1080 and 1050 cm"1 (Figure 

3.3). Absorptions in this range in the spectra of bacteria may be attributed mainly to the 

symmetric P=0 stretching vibration of the phosphodiester backbone of nucleic acids and 

phosphorylated proteins and C-O-C stretching vibrations of polysaccharides [5,6]. For the 

analysis of the full spectral data set using the specific narrow spectral region of 1080-

1050 cm"1 for discrimination, multivariate analysis was performed because of the large 

number of spectra. 
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3.4.2.2 Principal component analysis (PCA) 

PCA is a technique used for reducing the dimensionality of multivariate data 

while preserving most of the variance. It compresses data by producing linear 

combinations of the original variables ("scrambles" them) and removes collinearities 

[22]. The variation in the data is thus described in a few orthogonal principal components 

(PCs), or latent variables, characterized by (a) scores, which are projections of objects (in 

the present case, spectra) onto the PCs, and (b) loadings, which represent the 

contributions of the original variables to each PC. A scores plot is a projection of the 

original data onto the PC(s) and allows for the visualization of the relationship between 

samples, thereby providing possibilities to find patterns and trends in the data and 

interpret which variables contribute most strongly to these patterns and trends, as well as 

to identify outliers in the data set. 

PCA was applied, using the nonlinear iterative partial least squares (NIPALS) 

algorithm, to the first derivatives of the complete set of 263 peak-height-normalized 

spectra in the spectral range of 1080-1050 cm"1 selected by visual inspection of a subset 

of 30 spectra. The first three principal components captured almost 99.9% of the total 

variance. The first component (PCI) by itself accounted for over 98.1% of the total 

variance. The PCI vs. PC2 scores plot displayed three distinct clusters corresponding to 

MRSA, BORSA, and MSSA strains (Figure 3.4). However, one MRSA strain fell 

between the BORSA and MSSA clusters, and nine MSSA strains fell within the MRSA 

cluster. Moreover, five BORSA strains of phage group 94/96 were within the MRSA 

cluster, and two BORSA strains belonging to phage group 75 and one BORSA strain 

belonging to phage group 29 fell between the MSSA and MRSA clusters. Although the 

five misclassified BORSA strains of phage group 94/96 were clustered together, this 

cluster was not distinct from the MRSA cluster. Overall, a correct classification rate of 

76% was obtained, indicating that a more sophisticated classification technique would be 

required. 
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3.4.2.3 Self-organizing map (SOM) 

An SOM, also known as a Kohonen map, is the product of a neural network 

algorithm based on unsupervised learning that was developed to allow the visualization 

of high-dimensional data [23]. The SOM employed in this work was based on a two-

dimensional grid of neurons, and the network was trained using the PC scores obtained as 

described above as input data. In the SOM algorithm, initially the neurons are regularly 

spaced, and each neuron k is represented by an n-dimensional weight vector mk = [mk\, 

, W/t,,], where n is the dimension of the input space (i.e., in the present case, the 

number of PC scores selected to describe the spectra, typically 2-3). On each training 

step, a data sample x is selected and the nearest unit mc (the best matching unit, BMU) is 

found from the map. The weight vectors of the BMU and its neighbors on the grid are 

moved toward the sample vector: 

mk = mk + a (t)hck(t)(x - mk) 

where a(t) is the learning rate and hck(t) is a neighborhood kernel centered on the BMU. 

Both learning rate and neighborhood kernel radius decease monotonically with time. 

Thus, during iterative training of the network, the neurons are organized into a 

meaningful two-dimensional order in which similar neurons are closer to each other in 

the grid than the more dissimilar ones. The SOM may thus be regarded as a clustering 

diagram. There are a variety of methods to visualize the SOM. The two methods used in 

this work are the U-matrix (unified distance matrix) [24] and component planes [25] 

methods. In the U-matrix method, color is used to show the distances between 

neighboring map units: longer distances are represented by shades of yellow and red, 

while shorter distances are represented by shades of blue. Thus, the U-matrix shows the 

cluster structure of the map, with a uniform area being blue (designating a cluster) while 

border areas are yellow and red. Component planes show the values of the individual 

variables (i.e., PC scores) in each map unit and provide an idea of the spread of values of 

each variable. By comparing the U-matrix with the component planes, it is possible to 

identify which variables contribute strongly to a cluster observed in the U-matrix. When 

the number of SOM units is large, standard clustering algorithms such as the /c-means 

algorithm may be applied to partition the SOM [25]. The number of clusters can be 

evaluated using some kind of validity index such as the Davies-Bouldin index [26]. 
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An SOM of size [10 x 8] was trained using a rough training phase of 4 and a fine-

tuning phase of 13 epochs. The learning rate decreased linearly to zero during the fine-

tuning phase with a final quantization error of 0.434 and final topographic error of 0.057. 

From the U-matrix (Figure 3.5a), three distinct clusters were detected, two large clusters 

and one small cluster. The labeled SOM (Figure 3.5b) shows that most of the 

interpolating units (empty hexagonal neurons) are positioned neatly along the border of 

cluster R (MRSA). Following partitioning of the map by using the &-means clustering 

algorithm, computation of the Davies-Bouldin index confirmed that there are three 

clusters on the map, as indicated by the minimum on the plot on the left-hand side of 

Figure 3.6a. Based on the three clusters on the partitioned SOM (Figure 3.6a, 3.6b), 

100% of R (MRSA) map units, 80% of B (BORSA) map units, and 60% of S (MSSA) 

map units were correctly classified. Overall, using the SOM algorithm for the 

classification of MRSA, MSSA, and BORSA, 80% correct classification was obtained 

with no false negatives (i.e., no misclassification of MRSA strains). 

3.4.2.4 K-Nearest neighbors (KNN) algorithm 

The KNN algorithm is a similarity-based classification method [27,28] that 

attempts to categorize unknown samples exclusively on the basis of their proximity in n-

dimensional space to other samples of pre-assigned categories, which constitute the 

training set [27,28]. It consists of drawing a circle (a sphere for n = 3 and a "hypersphere" 

for n > 3) around a point to be classified. The circle is drawn to encompass K nearest 

neighbors, where K is a user-set parameter. The category to which an unknown is 

assigned is based on a majority vote of its K nearest neighbors; if the vote is split, the 

decision is based on average distance. 

In the present study, the data set of 263 spectra was split into subsets 1 and 2 

(containing 132 and 131 spectra, respectively), each of which served alternately as the 

training set and the prediction set, and classification of the spectra in the prediction set 

was performed with K ranging from 1 to 10. The highest percentage of correctly 

classified spectra was achieved with K = 3 and K = 4 for subsets 1 and 2, respectively. 

Although KNN gave a slightly higher percentage of correct classification (79%) than 
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PCA, the nine MSSA and five BORSA strains that were misclassified as MRSA by PCA 

were also misclassified by the KNN algorithm. 

3.4.2.5 Genotypic characterization and antibiogram testing 

A genotypic study was undertaken to investigate the reason for the 

misclassification of nine MSSA and five BORSA strains as MRSA by FTIR 

spectroscopy, irrespective of the multivariate technique employed in the analysis of the 

spectral data in the 1080-1050 cm"1 region. In a study on methicillin resistance in S. 

aureus, it was reported that the mecA gene occurs in some coagulase-negative 

staphylococci and in some (13%) strains of S. aureus that are phenotypically methicillin-

sensitive [3]. Thus, the possibility that the misclassified MSSA and BORSA strains carry 

the mecA gene without producing the altered penicillin binding protein PBP2a was first 

considered. However, when multiplex PCR reactions were performed for the 

simultaneous detection of the mecA and nucA gene sequences, no such mutants were 

found (Figure 3.7). A second possibility was suggested by recent findings at Health 

Canada (M.R. Mulvey, personal communication), where several MSSA strains were 

found by PFGE to have identical DNA profiles as MRSA; these strains had, in fact, been 

provided to Health Canada for epidemiological study, having been incorrectly classified 

as MRSA. If similar findings were to be obtained for the MSSA and BORSA strains 

misclassified as MRSA by FTIR spectroscopy, it would indicate that the spectral 

information in the 1080-1050 cm" range was in effect serving for DNA typing. 

However, PFGE showed that the DNA profiles of all the misclassified strains were quite 

different from those of MRSA (Figure 3.8), demonstrating that the 1080-1050 cm"1 

spectral range does not contain the information required for representative DNA typing. 

Finally, antibiotic susceptibility testing of the misclassified strains was performed and 

revealed that the MSSA strains falling within the MRSA cluster were resistant to 

erythromycin and some other aminoglycosides. Accordingly, it was concluded that the 

spectral differences observed in the 1080-1050 cm"1 range appear to be related to 

antibiotic resistance but are not specific to methicillin resistance. Therefore, a search for 

other spectral regions that would allow for the complete separation of the MRSA, MSSA, 

and BORSA strains into distinct clusters was undertaken by randomly selecting pairs of 
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spectra (i.e., MRSA/MSSA, MRSA/BORSA, or MSSA/BORSA pairs) and performing 

singular-value decomposition (SVD) of these spectral data matrices. 

3.4.2.6 Spectral regions selected using the SVD algorithm for the pairwise 

differentiation of MRSA, MSSA, and BORSA 

Application of SVD to randomly selected pairs of spectra suggested the potential 

utility of three regions for the pairwise discrimination of MRSA vs. MSSA (1070-1000, 

1732-1708, and 2968-2958 cm"1), one region for the pairwise discrimination of MSSA vs. 

BORSA (1732-1708 cm"1), and two regions for the pairwise discrimination of MRSA vs. 

BORSA (1118-1112 and 2622-2552 cm"1) (Table 3.1). PCA, SOM, and KNN were then 

employed to examine the clustering of the strains based on the spectral data in these 

specific regions. 

3.4.2.7 Discrimination of MRSA from MSSA 

The pairwise discrimination of MRSA and MSSA strains was investigated 

employing a data set of 200 spectra acquired from four replicate test portions of 25 

MSSA and 25 MRSA strains. The PCA scores plot (PCI vs. PC2) generated from the 

normalized and first-derivatized spectral data in the spectral regions of 1070-1000, 1732-

1708, and 2968-2958 cm"1, as selected by using SVD, showed two distinct clusters, 

corresponding to MRSA and MSSA strains (Figure 3.9). Two MSSA strains fell in the 

MRSA cluster, and a single MRSA strain was misclassified as MSSA, yielding an overall 

correct classification rate of 94%. The separation of the two clusters was also evident by 

visual inspection of the SOM (Figure 3.10), with a similar rate of correct classification 

(95%>) and similar misclassified strains as in PCA. Cluster analysis using the KNN 

algorithm was performed using half of the data set (n = 100) as the training set and the 

other half as the prediction set; the best results were obtained with K = 4. Two MSSA 

strains were misclassified as MRSA, and a single MRSA strain was misclassified as 

MSSA, again yielding an overall correct classification rate of 95%. 
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3.4.2.8 Discrimination of MSSA from BORSA 

A spectral data set consisting of 159 spectra acquired from four replicate test 

portions of 25 MSSA and 15 BORSA strains was used in the pairwise differentiation of 

these two groups of strains. The data for the single spectral region (1732-1708 cm"1) 

selected for the discrimination of MSSA and BORSA strains were employed in 

exploratory data analysis by PCA. Plots of the linear projection of the scores of the first 

two PCs (PCI vs. PC2) showed clustering of MSSA and BORSA strains (Figure 3.11). 

However, two BORSA strains were misclassified within the MSSA cluster and five 

MSSA strains were within the BORSA cluster, yielding a correct classification rate of 

83%. The SOM generated by nonlinear projection of the scores of the first two PCs 

(Figure 3.12) yielded the same rate of correct classification with the same misclassified 

strains. The clustering indicated by visual inspection of the SOM was also confirmed by 

the partitioning of the SOM using the &-means algorithm and the Davies-Bouldin index 

(not shown). Supervised clustering performed with the KNN algorithm using half of the 

data set (n = 80) as the training set and the rest (n = 79) as the prediction set yielded a 

correct classification rate of 90%, obtained with K = 4. In this case, only one MSSA 

strain and three BORSA strains were misclassified. 

3.4.2.9 Discrimination of MRSA from BORSA 

A data set of 163 spectra consisting of four replicate spectra of 26 MRSA and 15 

BORSA strains was investigated for the pairwise discrimination of MRSA and BORSA 

strains using the regions of 1118-1112 and 2622-2552 cm" selected with the use of the 

SVD algorithm. The PCA scores plot (PCI vs. PC2) revealed two distinct clusters, 

corresponding to MRSA and BORSA strains (Figure 3.13). A single MRSA strain was 

misclassified within the BORSA cluster and two BORSA strains fell within the MRSA 

cluster, yielding an overall rate of correct classification of 94%. Similarly, the SOM 

generated using the scores of the first two PCs as input data showed visually the 

existence of two clusters of MRSA and BORSA strains (Figure 3.14). The same strains of 

MRSA and BORSA misclassified in PCA were also misclassified when using SOM, 

yielding 93% correct classification. Supervised cluster analysis using the KNN algorithm 

was performed using 82 spectra as the training set and the remaining 81 spectra as the 
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prediction set. The highest rate of correct classification (97%) was achieved with K = 1 

and K = 2. Although no false negatives (misclassified MRSA) were obtained, the same 

BORSA strains misclassified as MRSA by PCA and SOM were misclassified in the 

supervised cluster analysis. 

In summary, the use of SVD to select spectral regions for the pairwise 

discrimination of MRSA, MSSA, and BORSA yielded much higher correct classification 

rates than were obtained using the single region of 1080-1050 cm"1 selected by visual 

inspection of the spectra. This finding highlights the importance of identifying 

appropriate spectral regions for the differentiation of MRSA from MSSA and BORSA. 

3.4.3 Validation of FTIR method 

The potential of FTIR spectroscopy to discriminate MRSA clinical strains from 

MSSA and BORSA strains was assessed in a validation study performed with 166 S. 

aureus isolates. These included 100 epidemic MRSA, 25 sporadic MRSA, 22 clinical 

BORSA strains, and 10 S. aureus strains from hospitals across Canada and 9 mutant 

strains from Switzerland, comprising 6 MRSA and 3 MSSA strains. With the use of the 

spectral regions listed in Table 3.1, all these strains were correctly classified by PCA, 

SOM, and KNN. These results confirmed the utility of the FTIR method for the 

discrimination of MRSA from MSSA and BORSA strains. 

3.4.4 FTIR spectroscopic analysis of cell walls 

Since the structural modifications associated with methicillin resistance are within 

the cell wall [1], the FTIR spectra of the cell walls extracted from one MRSA (BB270) 

and one MSSA (BB255) strain were recorded. These spectra exhibited discernible 

differences in all the regions selected using SVD for the discrimination of the 26 MRSA 

and 25 MSSA strains. The major differences between the spectra were observed at 1018-

978, 1074-1018, 1276-1214, 1540-1500, and 1756-1726 cm"1 (Figure 3.15). and at 3190-

3170 cm"1 (not shown in Figure 3.15). These findings provide evidence that the specific 

markers for the discrimination of MRSA from MSSA from the spectra of whole cells are 

localized within the cell wall. 
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3.5 DISCUSSION 

In previous FTIR studies [9,10], attempts to differentiate MRSA from MSSA by 

applying cluster analysis techniques were unsuccessful and were thus abandoned in favor 

of neural network approaches, which yielded better results but did not provide 100% 

correct classification. The present study indicates that achieving accurate classification 

appears to rely mainly on the appropriate selection of specific spectral regions and less on 

the choice of chemometric method since exploratory data analysis (PCA), an 

unsupervised neural network (SOM), and supervised cluster analysis (KNN) gave similar 

results. Consequently, the use of SVD to select spectral regions containing features that 

are specifically related to methicillin resistance was a key element of this work. Thus, 

although spectral differences among MRSA, MSSA, and BORSA strains were visually 

discernible in the 1080-1050 cm"1 region of the spectrum, the results obtained when 

differentiation was based on this region alone indicated that these differences were not 

specific to methicillin resistance. Therefore, it was necessary to select additional spectral 

regions that were not evident by visual inspection, and SVD proved very effective in 

identifying optimal spectral regions that allowed for the pairwise differentiation of the 

three S. aureus phenotypes. Cell walls extracted from MRSA and MSSA strains exhibited 

spectral differences in all the regions selected by SVD for the discrimination of MRSA 

from MSSA, consistent with the localization of methicillin resistance in the cell wall of 

MRSA strains. 

Another important aspect of this work was the strategy employed to ensure the 

high degree of spectral reproducibility required to reliably detect the spectral features that 

differentiate MRSA, MSSA, and BORSA. Excellent spectral reproducibility was attained 

through the rigorous control of growth conditions, including the use of a universal growth 

medium (UM™), and the selection of appropriate spectral preprocessing tools 

(normalization and first-order derivatization) to minimize spectral variability arising from 

baseline shifts and sampling-associated factors such as sample thickness. 
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3.6 CONCLUSION 

This study has demonstrated the potential utility of FTIR spectroscopy as a rapid 

method for the accurate classification of MRSA, MSSA, and BORSA strains. Pairwise 

discrimination of MRSA, MSSA, and BORSA yielded high rates of correct classification; 

the lowest rate of correct classification (90%) was for the discrimination of MSSA from 

BORSA, which is not important from a clinical perspective since infections due to 

BORSA strains are treated in the same way as those due to MSSA and do not require the 

use of vancomycin as for MRSA infections. In addition, 166 S. aureus isolates were all 

correctly classified in a separate validation study. Furthermore, the speed of the FTIR 

method, with results being obtained within 1 hour from a stationary-phase culture, make 

it highly suitable for application in a clinical setting. 
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Table 3 .1 . Spectral regions selected using SVD for the pairwise 

differentiation of MRSA MSSA and BORSA 

Strains differentiated 

MRSA vs. MSSA 

MSSA vs. BORSA 

MRSA vs. BORSA 

Spectral region(s)* (cm-1) 

1070-1000 

1732-1708 

2968-2958 

1732-1708 

1118-1112 

2622-2552 

* Assignment of the major bands in these regions can be 
seen in Figure 3.1 
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CHAPTER 4 

CONNECTING STATEMENT 

In the previous chapter, an FTLR-based method for the discrimination of 

methicillin-resistant S. aureus (MRSA) from methicillin-sensitive S. aureus (MSSA) and 

from borderline strains was described. It was shown that FTIR spectroscopy, in 

combination with the use of a universal growth medium and the application of various 

chemometric tools, could provide a routine method for the identification of MRSA 

clinical isolates among MSSA and BORSA isolates. Based on these findings, the research 

presented in Chapter 4 was undertaken to evaluate the potential use of FTIR spectroscopy 

for the discrimination of coagulase-negative staphylococci (CNS) from S. aureus (MRSA 

and MSSA) as well as the identification of methicillin-resistant CNS (MRCNS) among 

CNS isolates. 



CHAPTER 4 

RAPID AND ACCURATE IDENTIFICATION OF COAGULASE-NEGATIVE 

STAPHYLOCOCCI (CNS) AND METHICILLIN-RESISTANT CNS (MRCNS) BY 

FOURIER TRANSFORM INFRARED (FTIR) SPECTROSCOPY 

4.1 ABSTRACT 

Coagulase-negative staphylococci (CNS) are frequently associated with both 

community-acquired and nosocomial bloodstream infections. Rapid and accurate 

identification of methicillin-sensitive CNS (MSCNS) and methicillin-resistant CNS 

(MRCNS) among staphylococci species by a single-step simple assay is important for 

treatment decisions. However, conventional routine methods are too laborious and time-

consuming and often lack sensitivity in detecting methicillin resistance in CNS. The 

feasibility of developing a simple, rapid single-step method employing Fourier transform 

infrared (FTIR) spectroscopy, combined with the use of a universal medium (UM ) and 

chemometrics, was evaluated in this study. The FTIR spectra of 22 CNS strains, 

including 11 MRCNS and 11 MSCNS strains, 25 methicillin-resistant Staphylococcus 

aureus (MRSA) strains, and 25 methicillin-sensitive S. aureus (MSSA) strains were 

obtained from dried films of stationary-phase cells grown on UM . Principal component 

analysis (PCA), self-organizing maps (SOM), and the K-nearest neighbor (KNN) 

algorithm were employed to cluster the different phenotypes of staphylococci species 

based on the similarity of their FTIR spectra. PCA of the first-derivative normalized 

spectral data from a single narrow region of the infrared spectrum (1442-1439 cm" ) 

allowed for 100% correct classification of CNS and S. aureus species. When data from 

four spectral regions were combined, MRSA and MSSA strains were fully discriminated 

from each other as well as from CNS. For the discrimination of MRCNS from MSCNS, 

92% correct classification was obtained with the use of a single narrow spectral region 

(2880-2860 cm"1). Thus, FTIR spectroscopy provides a simple and accurate means for the 

identification of CNS species and is a promising method for discrimination of MRCNS 

from MSCNS strains. 
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4.2 INTRODUCTION 

Coagulase-negative staphylococci (CNS) have been known for decades as 

commensal organisms of human skin flora and viewed mostly as clinically non-relevant 

contaminants in blood cultures among staphylococci species. Only recently, CNS strains 

have been recognized as a major cause of both community-acquired and nosocomial 

bloodstream infections [1], and an increasing proportion (60-90%) of methicillin 

resistance in CNS in hospitalized patients [2,3] has been ascertained within the past 

decade. 

This emergence of CNS as human pathogens and reservoirs of antimicrobial-

resistance determinants, especially for methicillin resistance, requires that rapid and 

reliable means for the differentiation of CNS from S. aureus and for the identification of 

methicillin-resistant CNS (MRCNS) strains be available to guide antimicrobial therapy 

and to clarify the clinical significance of CNS species. The accuracy of biochemical tests 

conventionally employed for the identification of CNS is low, ranging from 50 to 70% 

[4-7], and phenotypic detection of methicillin resistance in CNS is more difficult than in 

S. aureus, making disk diffusion methods unreliable [8]. Commercial automated systems 

are rapid but often lack sensitivity and may give false-positive results due to the 

heterogeneous expression of methicillin resistance. On the other hand, PCR assays based 

on the detection of the nuc gene [9], which is responsible for the production of the 

thermostable nuclease of S. aureus and is not present in other staphylococcal species, and 

the mec A gene [10], which confers methicillin resistance in staphylococci, are reliable 

and specific but are too laborious and time-consuming to be performed on a routine basis. 

For these reasons, significant efforts have been made to develop alternative identification 

methods that combine speed and reliability of identification at a lower cost per sample. 

FTIR spectroscopy is one of several whole-organism fingerprinting techniques 

whose potential as simple, rapid, and accurate methods for characterization and 

identification of microorganisms has recently been investigated. As illustrated in Figure 

4.1, FTIR spectroscopy measures the vibrations of chemical bonds within all the 

biochemical constituents of cells, i.e., proteins, lipids, polysaccharides, and nucleic acids, 
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and thus provides quantitative information about the total biochemical composition of the 

intact whole microbial cell [11]. Furthermore, because the FTIR spectra of 

microorganisms consist of distinct and unique patterns that are highly reproducible, the 

spectra effectively serve as "fingerprints", allowing for their successful use in taxonomic 

discrimination [12]. FTIR spectroscopy has been demonstrated to be a highly sensitive 

and reproducible method for microbial analysis and process control [13] that provides 

rapid identification within 19 h, starting from a single colony, without the use of any 

reagents. This simple and nondestructive technique has also been shown to have 

sufficient resolving power for the detection of antibiotic resistance in clinical isolates [14-

17]. For example, in our previous work, the discrimination of methicillin-resistant S. 

aureus (MRSA) from methicillin-sensitive S. aureus (MSSA) and even from borderline 

strains was achieved [17]. Based on these findings, the present study was undertaken to 

evaluate the potential use of FTIR spectroscopy for the discrimination of CNS from 5". 

aureus (MRSA and MSSA) and of MRCNS from methicillin-sensitive CNS (MSCNS). 

4.3 MATERIALS AND METHODS 

4.3.1 Clinical specimens 

A total of 72 clinical isolates, consisting of 22 coagulase-negative staphylococci 

and 50 strains of & aureus, were selected for this study. Eleven MSCNS (mecA -negative) 

strains, consisting of S. hemolyticus (n=l), S. epidermidis (n=2), S. warneri (n=2), S. 

saprophytics (n=2), S. hominis (n=\), S. xylosus (n=\), S. schleiferi (n=\), and S. 

lugdunensis (n=l), and 11 MRCNS (mecA-positive) strains, including S. hemolyticus 

(n=l), S. capitis (n=2), S epidermidis (n=4), S. sciuri (n=l), S. hominis (n=l), S. simulans 

(n=l), and S. cohnii (n=l), were obtained from the collection of the microbiology 

laboratory of the Sunnybrook & Women's College, Health Sciences Centre (Toronto, 

ON, Canada). Strains of MRSA (n=25) and MSSA (n=25) were obtained from the Royal 

Victoria Hospital (Montreal, PQ, Canada). 

4.3.2 Microbiological methods 

All CNS strains were identified using the API Staph ID 32 system (bioMerieux 

Inc., Marcy-l'Etoile, France). The MRSA-Screen™ (Denska-Seiken, Tokyo, Japan) latex 
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agglutination test, oxacillin susceptibility testing, and multiplex PCR assays for the 

simultaneous detection of the mecA and nucA gene sequences were performed as 

described below. 

4.3.2.1 MRSA-Screen™ assay 

The MRSA-Screen latex agglutination test for the detection of penicillin-binding 

protein PBP2a [18], the product of the mecA gene, was performed according to the 

manufacturer's instructions with one modification. A large "heaping" 1-ul-loopful of the 

test microorganism was used (approximately 30-50 colonies, depending on colony size) 

instead of the standard 1-ul-loopful and was emulsified in 4 drops of an extraction 

reagent and boiled for 3 min. After cooling to room temperature, 1 drop of a second 

extraction reagent was added and mixed. The suspension was then centrifuged at 1500 x 

g for 5 min. A 50-ul aliquot of the supernatant was added to each of two circles on a 

disposable test card and mixed with 1 drop of the anti-PBP2a monoclonal antibody-

sensitized latex and 1 drop of the negative control latex, respectively. The samples were 

then mixed for 3 min on a shaker, and agglutination was observed visually. Any 

agglutination was considered positive for the presence of PBP2a [18]. 

4.3.2.2 Antimicrobial susceptibility testing 

Antimicrobial susceptibility testing of isolates using an oxacillin agar screen 

(Mueller-Hinton agar supplemented with 4% NaCl and 6 ug/ml of oxacillin), disk 

diffusion, and broth microdilution were performed in accordance with current National 

Committee for Clinical Laboratory Standards (NCCLS) guidelines. E test (AB Biodisk, 

Solna, Sweden) oxacillin MIC determination was performed according to the 

manufacturer's instructions. Breakpoint MIC testing using Vitek GPS-SV and GPS-107 

(bioMerieux Inc., Hazel wood, MO) susceptibility cards was performed as per 

manufacturer's instructions. 
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4.3.2.3 Multiplex polymerase chain reaction (PCR) 

Multiplex PCR assays were performed for the detection of the nuc gene for the 

differentiation of CNS from S. aureus and the mecA gene encoding for methicillin 

resistance in staphylococci. Bacterial DNA was extracted using two to three colonies of a 

test organism grown on 5% sheep blood agar plate and then boiled for 10 min in 100 ul 

of Triton X-100 lysis buffer (100 mM NaCl, 10 mM Tris-HCl [pH 8], 1 mM EDTA [pH 

9], and 1% Triton X-100). The suspension was cooled at room temperature for 5 min and 

centrifuged at 14,000 rpm for 1 min. With the use of 1 ul of the supernatant as template. 

PCR was performed in a 25-ul volume, with lxPCR buffer containing 10 mM Tris-HCl 

[pH 8.3], 50 mM KC1, 1.5 mM MgCl2> 200 uM concentrations of each deoxynucleoside 

triphosphate, 2.5 U of Taq polymerase, and 0.2 uM concentrations of each primer 

(mecA 1: AAA ATC GAT GGT AAA GGT TGG C. mecA2: AGT TCT GCA GTA CCG 

GAT TTG C. nucAl: GCG ATT GAT GGT GAT ACG GTT. nucAl: AGC CAA GCC 

TTG ACG AAC TAA AGC). Thermocycling conditions in a Gene-Amp 9600 

thermocycler (PE Biosystems, Mississauga, ON, Canada) were as follows: 94 °C for 2 

min followed by 30 cycles of 94 °C for 1 s and 55 °C for 15 s, with a final 10-min 

extension at 72 °C. The control organisms included S. aureus ATCC 25923 and S. 

epidermidis ATCC 12228. Electrophoresis at 100 V for 40 min was performed to 

separate the products on 1% lx TBE (8.9 M boric acid and 0.2 M EDTA) agarose gels. 

Gels were stained with ethidium bromide and photographed under UV illumination. 

4.3.3 FTIR spectroscopic methods 

4.3.3.1 Sample preparation 

All bacterial strains were grown from frozen stocks, kept at -70 °C in brain heart 

infusion (BHI) broth containing 15% glycerol, by overnight subculture on tryptic soy 

with sheep blood agar (Quelab Laboratories Inc., Montreal, PQ, Canada) at 37 °C. A 

single bacterial colony was then collected from the agar plate and cultured on Universal 

Medium (UM™) agar (Quelab Laboratories Inc., Montreal, PQ, Canada) for 18 h at 37 

°C. Four loops-full of stationary-phase cells were then carefully collected from four 

different culture plates on UM™ using a 10-mm-diameter loop and suspended in 200-ul 
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aliquots of sterile physiological saline (0.9% NaCl). A 25-ul aliquot of the 10-fold diluted 

bacterial suspension, containing approximately 5*10" cells ml"1, was deposited onto a 

zinc selenide (ZnSe) optical window and then oven-dried at 48 °C for 1 hour to form a 

thin and transparent homogeneous dried film suitable for FTIR measurements. 

4.3.3.2 Spectral acquisition 

All FTIR spectra were acquired in the transmission mode using a Bomem MB-

104 (ABB-Bomem, Quebec, PQ, Canada) FTIR spectrometer equipped with a deuterated 

triglycine sulfate (DTGS) detector and a KBr beamsplitter and operating under Bomem-

Grams/386 software (Galactic, Salem, NH). The spectrometer was purged with dry, CO2-

free air from a Balston dryer (Balston, Lexington, MA) to minimize interferences from 

atmospheric water vapor and CO2. To enhance the signal-to-noise ratio, 64 scans were 

co-added at 4 cm"1 resolution over the wavenumber range of 4000-400 cm"1 and ratioed 

against an open-beam background to produce an absorbance spectrum. For each strain, 

spectra were recorded in quadruplicate by depositing samples from four different culture 

plates on four different optical windows. 

4.3.4 Mathematical preprocessing and processing 

Spectral data (acquired in Grams SPC format) were converted into comma-

separated values (CSV) files and then into MATLAB files by MATLAB version 5.1 (The 

Math Works, Inc. Natick, MA). Spectra over the whole spectral range (4000-400 cm"1) 

were normalized to unit height by vector transformation and were transformed to first-

derivative spectra using the Savitzky-Golay algorithm to maximize peak separation, 

enhance apparent resolution, and minimize problems arising from baseline shifts [19]. 

Prior to data processing, spectral feature selection was performed using the singular-value 

decomposition (SVD) algorithm. Exploratory data analysis was performed using 

principal component analysis (PCA) based on the nonlinear iterative partial least squares 

(NIPALS) algorithm and self-organizing maps (SOM) clustered by the /c-means 

algorithm. Cluster analysis of spectral data was accomplished using the K-nearest 

neighbors (KNN) algorithm. Programs were written in MATLAB version 5.1 to 

implement the data preprocessing and processing algorithms. 

108 



4.4 RESULTS 

4.4.1 Classification strategy 

The strategy employed to evaluate the potential utility of FTIR spectroscopy for 

the rapid and accurate identification of CNS and MRCNS strains involved three stages: 

• Discrimination between 50 coagulase-positive (S. aureus) and 22 coagulase-

negative staphylococci (CNS) strains 

• Discrimination between 22 CNS, 25 MRSA, and 25 MSSA strains 

• Discrimination between 11 MSCNS and 11 MRCNS strains 

In each case, three chemometric techniques (PCA, SOM, and KNN) were employed to 

examine the clustering of the different phenotypes of staphylococci based on the 

similarity of their FTIR spectra in narrow spectral regions selected by the application of 

SVD to individual pairs of spectra. 

4.4.2 Discrimination between S. aureus and CNS species 

4.4.2.1 Spectral region selection 

The capability of an FTIR-based method to differentiate between S. aureus and 

CNS was investigated with the use of a set of 288 spectra, comprising four replicate 

spectra of each of 25 MSSA, 25 MRSA, 11 MSCNS, and 11 MRCNS isolates. Regions 

for the classification of S. aureus and CNS were selected by applying the SVD algorithm 

to the spectral data for three randomly chosen S. aureus/CNS pairs. Based on this 

analysis, the single narrow region of 1442-1439 cm"1, in which spectral differences 

between the S. aureus and CNS isolates could be visually discerned (Figure 4.2), was 

selected. 

4.4.2.2 Principal component analysis (PCA) 

PCA was performed on the data in the region 1442-1439 cm"1 using the complete 

data set of 288 spectra, transformed to first-derivative spectra. A plot of the first two PC 

scores (PCI versus PC2) showed two distinct clusters (Figure 4.3), representing complete 

separation of S. aureus from CNS. Accordingly, the spectral data in this very narrow 
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region were sufficient to allow 100% differentiation between S. aureus and CNS isolates 

by PCA. 

4.4.2.3 Self-organizing map (SOM) 

The first and second PC scores were utilized as input data to generate an SOM of 

size [ 18 > 5]. A rough training phase of 4 epochs and a fine-tuning phase of 13 epochs 

resulted in a final quantization error of 0.137 and a final topographic error of 0.034. 

Visual examination of the SOM indicated two distinct clusters (Figure 4.4). The number 

of clusters was confirmed by partitioning of the map with the use of the k-means 

algorithm and calculation of the Davies-Bouldin index (Figure 4.5). The labeled SOM in 

Figure 4.4 shows 100% correct classification of the CNS and S. aureus isolates, as in the 

case of PCA. 

4.4.2.4 K-Nearest neighbors (KNN) algorithm 

Supervised cluster analysis using the KNN algorithm was performed on the 

spectral data in the 1442-1439 cm"1 region, employing half of the data set (n = 144) as a 

training set and the other half as a prediction set. All test points were correctly classified, 

with K= 4. Hence, the results obtained by PCA, SOM, and KNN all demonstrate that the 

spectral region between 1442 and 1439 cm"1 is highly sensitive and selective for the 

differentiation between S. aureus and CNS (Table 4.1). 

4.4.3 Discrimination of CNS species from MRSA and MSSA strains 

The same data set of 288 spectra employed in the previous stage of the 

classification strategy was used to investigate the possibility of classifying staphylococcal 

isolates as CNS, MSSA, or MRSA in a single step, i.e., without their prior classification 

as CNS or S. aureus. For this investigation, the spectral data in the region 1442-1439 cm"1 

were combined with those from three spectral regions that were successfully employed in 

previous work [17] for differentiation between MRSA and MSSA (1080-1050, 1732-

1709, and 2969-2958 cm"1). The following results were obtained by analysis of the 

combined spectral data for these four regions. 
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4.4.3.1 Principal component analysis (PCA) 

PCA was performed on the transformed (normalized and first-derivative) spectral 

data in the combined regions of 1080-1050, 1442-1439, 1732-1709, and 2958-2969 cm"1. 

Figure 4.6 presents the scores plot for PCI versus PC2, which clearly shows three 

clusters corresponding to MRSA, MSSA, and CNS. However, two CNS strains fall in the 

MSSA cluster, and four MSSA and four MRSA strains were misclassified as MRSA and 

MSSA, respectively, yielding an overall correct classification rate of 87%. 

4.4.3.2 Self-organizing map (SOM) 

The first and second PC scores were utilized as input data to generate an SOM of 

size [13x7]. A rough training phase of 4 epochs and a fine-tuning phase of 13 epochs 

resulted in a final quantization error of 0.166 and a topographic error of 0.027. Three 

distinct clusters were discerned by visual examination of the map (Figure 4.7); however, 

when the &-means algorithm was applied to partition the map, the Davies-Bouldin index 

indicated four clusters instead of the expected three clusters. 

4.4.3.3 K-Nearest neighbors (KNN) algorithm 

Supervised cluster analysis using the KNN algorithm was performed using half of 

the data set as a training set (n = 144) and the other half as a prediction set. The highest 

number of correctly classified test points (92%) was obtained with K= 1. Thus, the 

performance of the KNN algorithm was superior to that of PCA, and all CNS isolates 

were correctly classified. However, three MSSA and three MRSA strains were 

misclassified. 

4.4.4 Discrimination between MSCNS and MRCNS strains 

A data set of 88 spectra, consisting of four replicate spectra of 11 MSCNS and 11 

MRCNS isolates, was used in this stage of the study. Based on the application of SVD to 

randomly chosen spectral pairs, four spectral regions of potential utility for the 

discrimination between MSCNS and MRCNS were selected: 2880-2860, 1479-1475, 

1403-1393, and 1380-1375 cm"1. 
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4.4.4.1 Principal component analysis (PCA) 

A plot of the scores of the first two PCs (PC 1 and PC2) for the normalized and 

first-derivatized data in the spectral region between 1403 and 1393 cm"1 showed partial 

clustering of the MRCNS and MSCNS isolates (Figure 4.8). Three MRCNS isolates were 

within the MSCNS cluster and three MSCNS isolates were within the MRCNS cluster, 

yielding a correct classification rate of only 73%. The use of the 2880-2860 cm'1 region 

in place of the 1403-1393 cm"1 region improved the rate of correct classification, with 

only two misclassified MRCNS isolates. With the use of the combined data from two 

regions (1380-1375 and 1479-1475 cm"1), a single MRCNS isolate was misclassified. 

The use of other combinations of the spectral regions did not increase the rate of correct 

classification by PCA. 

4.4.4.2 Self-organizing map (SOM) 

Exploratory analysis using the SOM algorithm was investigated for the 

discrimination of MRCNS from MSCNS based on the use of the scores of the first three 

PCs from the spectral regions employed above. A better organization of the map units 

into two clusters was obtained by using the spectral region 1403-1393 cm"1 than the 

combined regions of 1380-1375 and 1479-1475 cm"1 or the single region 2880-2860 cm"1. 

For the optimal spectral region (1403-1393 cm"1), the [8 x 6] map was trained using a 

rough training phase of 6 epochs and a fine-tuning phase of 22 epochs with a final 

quantization error of 0.522 and topographic error of 0.0001, yielding two distinct clusters. 

However, application of the A:-means algorithm and the Davies-Bouldin index failed to 

partition the map into two clusters of MRCNS and MSCNS. 

4.4.4.3 K-Nearest neighbors (KNN) algorithm 

The KNN algorithm was employed for cluster analysis of the spectral data from 

the four spectral regions examined in the exploratory data analysis described above. Half 

of the 88 spectra were put into the training set, and the rest into the prediction set. The 

rate of correct classification was evaluated by comparing the actual to the predicted 

category for the spectra in the prediction set. For the region between 1403 and 1393 cm"1, 
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the highest rate of correct classification was 73%, obtained with K = 1. In this case, three 

strains each of MRCNS and MSCNS were misclassified. The use two combined spectral 

regions (1380-1375 and 1479-1475 cm"1) improved the rate of classification to 83% (with 

K = 1), with two misclassified MSCNS and two misclassified MRCNS strains. The best 

rate of correct classification (92%) was achieved by using the spectral data from the 

region between 2880 and 2860 cm"1 with K = 1. All MRCNS isolates were correctly 

classified, and only two MSCNS isolates were misclassified. 

4.5 DISCUSSION 

As stated in previous studies [12,17,20], correct classification of microorganisms 

by FTIR spectroscopy cannot be expected to be achieved if the variance within spectra of 

the same taxon is greater than the variance among spectra of different taxa. The FTIR 

spectra of microorganisms are highly influenced by the plating methods employed in 

growing the bacteria (growth conditions, growth media), spectral artifacts (incomplete 

baseline correction, instrumental noise), and sample-associated factors, such as variations 

in sample thickness and particle size. Thus, a standard procedure has been established in 

our laboratory to minimize these sources of variation and optimize spectral 

reproducibility in order to enhance the potential for accurate classification [17]. This 

procedure includes the use of a single growth medium (UM™) with a defined 

biochemical composition and rigorously controlled culture conditions. For FTIR spectral 

acquisition, a diluted drop of each sample (with approximately comparable concentration 

of bacteria in saline solution) was deposited on the dry polished surface of a ZnSe optical 

window of fixed diameter to yield a constant film thickness. The FTIR spectra obtained 

by this procedure in the present study were considered reproducible as assessed by the 

consistency between the relative peak intensities. Variations in absolute peak intensities 

resulting from minor differences in film thickness among replicate samples were 

minimized using peak height normalization. All spectra were subsequently transformed 

to their first-order spectral derivatives using the Savitzky-Golay algorithm, in order to 

delineate subtle changes in absorption bands and to correct for baseline shifts. Both of 

these preprocessing tools have been widely used in previous studies on the classification 

of microorganisms by FTIR spectroscopy [12,21,22]. 
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The evaluation of an FTIR-based method for the accurate differentiation of CNS 

and S. aureus was investigated using PCA and SOM as exploratory data analysis tools 

and supervised cluster analysis based on the KNN algorithm. The search for spectral 

regions that could be suitable for differentiation between the two groups of staphylococci 

was carried out by visual inspection aided by the use of the SVD algorithm. Differences 

between typical spectra of CNS and S. aureus were readily discerned between 1442 and 

1439 cm" (Figure 4.2), and the data in this single narrow spectral region were found to be 

appropriate for the differentiation between CNS and S. aureus. The discrimination of a 

small number of 5. aureus isolates from CNS strains as well as Streptococcus and 

Clostridium species was reported previously based on the use of the combined data in 

three broad spectral regions (3000-2800, 1200-900, and 900-700 cm"1) [24], However, 

the use of narrow spectral regions has been found to be optimal in the discrimination 

between closely related bacteria, and, in the present work, it was demonstrated that the 

data from a single, very narrow region was highly effective for discrimination between 

CNS and S. aureus. Furthermore, the use of this region in combination with other 

regions, in an attempt to discriminate among CNS, MRSA, and MSSA, resulted in some 

misclassification of CNS isolates as S. aureus by PCA. This result highlights the 

importance of optimal region selection and the superiority of a hierarchical classification 

strategy, involving classification of isolates as CNS or S. aureus prior to differentiation 

between MRSA and MSSA. Finally, differentiation between methicillin-resistant and 

methicillin-sensitive CNS by FTIR spectroscopy was investigated for the first time. The 

most promising region for differentiation between the two groups was 2880-2860 cm"1, 

with application of the KNN algorithm to the data in this region yielding 92% correct 

classification with no false negatives. The selection of additional or alternative spectral 

regions by the use of more sophisticated region selection tools, such as genetic 

algorithms, should be investigated to improve the rate of correct classification. 

4.6 CONCLUSION 

This study indicates that FTIR spectroscopy combined with the use of a universal 

growth medium is a rapid and simple method for the differentiation between S. aureus 

and CNS, yielding 100% correct classification of 50 S. aureus and 22 CNS isolates. In 

14 



addition, FTIR spectroscopy may be considered a promising tool for the differentiation 

between MSCNS and MRCNS. 
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Table 4. 1. Percentage of correct classification of the three categories of species 

employing three different chemometric methods and obtained using regions 

selected by SVD 

Species differentiated 

5. aureus vs. CNS 

CNS vs. MRSA vs. 

MSSA 

MRCNS vs. MSCNS 

Spectral region 
(s) (cm1) 

1442-1439 

1080-1050 
1442-1439 
1732-1709 
2969-2958 

2880-2860 

Percent correct classification 

PCA 

100 

87 

78 

SOM* 

100 

<70 

<70 

KNN 

100 

92 

92 

* Based on clustering of the SOM with the /t-means algorithm and the Davies-Bouldin index. 
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CHAPTER 5 

CONNECTING STATEMENT 

In Chapters 3 and 4, research on the discrimination of methicillin-resistant S. 

aureus (MRSA) from methicillin-sensitive S. aureus (MSSA) and borderline oxacillin-

resistant S. aureus (BORSA) strains and from coagulase-negative (CNS) species as well 

as for the discrimination of methicillin-resistant CNS from methicillin-sensitive CNS 

strains was presented. In view of the increasing emergence of MRSA with reduced 

susceptibility to glycopeptides such as vancomycin, which is the antibiotic of choice for 

treatment of MRSA, further research on the capability of FTIR spectroscopy for the 

detection of glycopeptide-intermediate S. aureus strains among MRSA strains was 

conducted and is described in the following chapter. 



CHAPTER 5 

EVALUATION OF FOURIER TRANSFORM INFRARED (FTIR) 

SPECTROSCOPY FOR THE RAPID IDENTIFICATION OF GLYCOPEPTIDE-

INTERMEDIATE STAPHYLOCOCCUS AUREUS (GISA) 

5.1 ABSTRACT 

Methicillin-resistant Staphylococcus aureus (MRSA) isolates with reduced 

susceptibility to glycopeptides (vancomycin or teicoplanin), so-called GISA, have 

emerged with increasing frequency, making therapy for staphylococcal infections more 

difficult. Rapid and reliable identification of GISA and heterogeneous-GISA (h-GISA) 

strains by a single-step assay is of utmost importance for the prediction of inefficacy of 

glycopeptide treatment at normal dosage levels and prevention of emergence of GISA. 

However, GISA and h-GISA strains are difficult to detect by conventional routine 

diagnostic assays. FTIR spectroscopy was investigated as a rapid and accurate single-step 

method to identify 35 GISA and h-GISA strains from the Network on Antimicrobial 

Resistance in Staphylococcus aureus (NARSA) collection and to distinguish these 35 

strains from 22 sporadic MRSA (SMRSA) and 25 Canadian epidemic MRSA (CMRSA) 

strains. Principal component analysis (PCA), self-organizing maps (SOM), and the K-

nearest neighbor (KNN) algorithm were employed to cluster the GISA/h-GISA and 

MRSA strains based on the FTIR spectral data obtained from dried films of stationary-

phase cells grown on a universal growth medium (UM ). PCA and SOM plots obtained 

for the GISA/h-GISA and CMRSA strains by employing the first-derivative normalized 

spectral data from either of two narrow regions of the IR spectrum (1352-1315 cm"1 and 

1480-1460 cm"1) showed two distinct clusters, the first region allowing for 99% correct 

classification and the second for 96% correct classification of GISA/h-GISA and 

CMRSA strains. However, the spectral data from only one of these regions (1480-1460 

cm"1) was appropriate for the discrimination of GISA/h-GISA strains from SMRSA as 

well as CMRSA strains, yielding a correct classification rate of 92%. Thus, FTIR 

spectroscopy may provide a means for the rapid and accurate identification of GISA and 

h-GISA among MRSA species. 
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5.2 INTRODUCTION 

Methicillin-resistant S. aureus (MRSA) is one of the most common pathogens 

responsible for community-acquired and nosocomial infections worldwide, causing high 

morbidity and mortality. Over the past three decades, glycopeptides (teicoplanin and 

vancomycin) have been considered the antibiotics of choice for the treatment of MRSA 

infections. However, in recent years, the emergence of clinical isolates of MRSA with 

reduced susceptibility to glycopeptides (teicoplanin MIC 8-16 ug/ml and vancomycin 

MIC >8 ug/ml), so-called GISA, has been increasing [1]. Therefore, a convenient method 

for routine screening of GISA strains is of critical importance for the prediction of 

inefficacy of glycopeptide treatment at normal dosage levels and the institution of key 

measures for the prevention of the emergence of GISA strains. 

Since the mechanisms of glycopeptide resistance in S. aureus strains are not 

completely elucidated, the detection of glycopeptide resistance in S. aureus strains 

continues to rely mainly on susceptibility testing methods. Efficient detection of GISA 

strains by routine diagnostic assays [2] is often difficult due to the low levels of 

glycopeptide resistance of the heterogeneous phenotypes within GISA (h-GISA: 

vancomycin MIC of 1-4 pg/ml and teicoplanin MIC of 16 ug/ml [2], with resistant 

subpopulations that can grow in the presence of >4 p.g/ml vancomycin being present at a 

frequency of 10"6) [1]. It has been suggested that h-GISA strains are best detected and 

quantified by means of population analysis [1], a method unsuited to routine practice. 

Accordingly, it has been recommended that quantitative susceptibility testing should be 

used routinely and confirmatory testing using population analysis profile testing should 

be done only on isolates with MICs of >4 ug/ml [2]. Currently, no standardized single 

method to screen for GISA/h-GISA in the clinical microbiology laboratory exists. 

Because GISA is associated with alterations in the cell-wall peptidoglycan 

synthesis pathway and increased levels of penicillin-binding proteins (PBP2), resulting in 

thickened or aggregated cell walls [3], the possibility of developing a single reliable assay 

based on detection of these biochemical changes should be assessed. In this context, an 

FTIR-based assay emerges as a possible candidate. FTIR spectroscopy is a biophysical 
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technique that probes the total biochemical composition of intact microbial cells 

nondestructively and without the use of any reagents, producing complex, yet distinct and 

reproducible spectral signatures that serve as the "fingerprint" of a microorganism 

(Figure 5.1). FTIR spectroscopy has been extensively applied during the past decade for 

the identification and typing of microorganisms at the subspecies level [4,5]. Some recent 

studies have also demonstrated that FTIR spectroscopy has sufficient resolving power to 

detect antibiotic-resistant phenotypes in various clinical bacteria [6-10]. In our previous 

work, FTIR spectroscopy was successfully employed for the discrimination of MRSA 

from methicillin-sensitive S. aureus (MSSA) and borderline oxacillin-resistant S. aureus 

(BORSA) strains [9] and from CNS species as well as for the discrimination of MRCNS 

from MSCNS species [10]. Based on these results, the present study was undertaken to 

evaluate the potential use of FTIR spectroscopy for the discrimination of GISA/h-GISA 

strains from epidemic CMRSA and SMRSA strains. 

5.3. MATERIALS AND METHODS 

5.3.1 Clinical specimens and microbiological analysis 

A total of 82 S. aureus clinical isolates, consisting of 31 methicillin-resistant and 

4 methicillin-sensitive GISA strains and 22 sporadic and 25 epidemic MRSA strains, 

were selected for this study. The 35 GISA strains were obtained from the collection of the 

Network on Antimicrobial Resistance in Staphylococcus aureus (NARSA) Program. The 

47 MRSA strains were provided from the collection of the National Microbiology 

Laboratory of Health Canada (Winnipeg, MB, Canada). 

Susceptibility testing for the screening of glycopeptide intermediate resistance in 

all GISA strains was performed by NARSA using broth microdilution (with the use of 

frozen and dried panels), conventional E-test (MHA, 0.5 McFarland inoculum, 24 h at 35 

°C) and modified E-BHI agar, 2 McFarland inoculum, 48 h at 35 °C), BHI agar screen 

assay (growth of 10-pl spot on BHI + 6 ug/ml vancomycin after 24, 48, and 72 h), and 

the conventional disk diffusion method. 
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5.3.2 FTIR spectroscopic methods 

5.3.2.1 Sample preparation 

All bacterial strains were grown from frozen stocks, kept at -70 °C in brain heart 

infusion (BHI) broth containing 15% glycerol, by overnight subculture on tryptic soy 

with sheep blood agar (Quelab Laboratories Inc., Montreal, PQ, Canada) at 37 °C. A 

single bacterial colony was then collected from the plate and cultured on Universal 

Medium™ (UM™) agar for 18 h at 37 °C. Four loops-full of stationary-phase cells were 

then carefully collected using a 10-mm-diameter loop and suspended in 200-p.l aliquots 

of sterile physiological saline (0.9% NaCl). A 25-u.l aliquot of the 10-fold diluted 

bacterial suspension (approximately 5x 1011 cells ml"1) was deposited onto a clean zinc 

selenide (ZnSe) optical window, which was then oven-dried at 48 °C for 1 h to form a 

thin and transparent homogeneous dried film suitable for FTIR measurements. 

5.3.2.2 Spectral acquisition 

All FTIR spectra were acquired in the transmission mode using a Bomem MB-

104 (ABB-Bomem, Quebec, QC, Canada) FTIR spectrometer equipped with a deuterated 

triglycine sulfate (DTGS) detector and a KBr beamsplitter and operating under Bomem-

Grams/386 software (Galactic, Salem, NH). The spectrometer was purged with dry CO2-

free air from a Balston dryer (Balston, Lexington, MA) to minimize interferences from 

atmospheric water vapor and CO2. To enhance the signal-to-noise ratio, 64 scans were 

co-added at 4 cm"1 resolution over the wavenumber range of 4000-400 cm"1 and ratioed 

against an open-beam background to produce an absorbance spectrum (Figure. 5.1). For 

each strain, spectra were recorded in quadruplicate by depositing samples from four 

different culture plates on four different optical windows. 

5.3.3 Mathematical preprocessing and processing 

Spectral data (acquired in Grams SPC format) were converted into comma-

separated values (CSV) files and then into MATLAB files using MATLAB version 5.1 

(The Math Works, Inc., Natick, MA). Because band intensity varies as a function of film 

thickness, the spectral data over the whole spectral range (4000-400 cm"1) were 
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normalized to unit height by vector transformation to compensate for differences in film 

thickness. They were then transformed to first-derivative spectra using the Savitzky-

Golay algorithm to maximize peak separation, enhance apparent resolution, and minimize 

problems arising from baseline shifts. 

Prior to data processing, spectral feature selection was performed by singular-

value decomposition (SVD) using individual pairs of spectra and confirmed by visual 

examination of the normalized spectra. Data analysis was performed using principal 

component analysis (PCA) employing the nonlinear iterative partial-least-squares 

(NIPALS algorithm, self-organizing maps (SOM) clustered by the &-means algorithm, 

and cluster analysis using the K-nearest neighbors (KNN) algorithm, as described 

previously [9]. Programs were written in MATLAB version 5.1 to implement the data 

preprocessing and processing algorithms. 

5.4 RESULTS 

5.4.1 Examination of spectral differences between CMRSA and GISA/h-GISA 

Investigation of differences between randomly selected spectra within a data set 

consisting of 240 spectra acquired from four replicate test portions of 25 CMRSA and 35 

GISA/h-GISA strains revealed clear differences between CMRSA and GISA/h-GISA 

strains in two narrow regions of the IR spectrum: (i) 1352-1315 cm"1 (Figure 5.2) and (ii) 

1480-1460 cm"1 (Figure 5.3). 

5.4.2 Discrimination between CMRSA and GISA/h-GISA strains based on spectral 

data in the region 1352-1315 cm"1 

PCA was performed on the first-order derivatives of the peak height-normalized 

spectral data in the region of 1352-1315 cm"1 for all the CMRSA and GISA/h-GISA 

strains. The first five PCs accounted for over 99.9% of the total variance, with PCI and 

PC2 alone accounting for 98.8% (PCI: 96.0%; PC2: 2.8%) of the total variance. The 

PCA scores plot (PCI vs. PC2) showed two distinct clusters, corresponding to CMRSA 

and GISA/h-GISA (Figure. 5.4). A single GISA strain, namely NRS68, fell between the 

two clusters, yielding 99% correct classification of GISA/h-GISA strains. A similar rate 
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of correct classification was obtained by visual inspection of an SOM of size [16x5] 

generated by a nonlinear projection of the scores of the first two PCs derived from the 

spectral data in the region 1352-1315 cm"1, using 4 training lengths for the rough training 

and 13 epochs for the fine-tuning phase. The final quantization error was 0.136 with a 

final topological error of 0.004. The U-matrix, the two component planes, and the labeled 

SOM are represented in Figure 5.5a along with an expanded view of the labeled SOM in 

Figure 5.5b. Referring to the SOM labels, two distinct clusters of GISA and CMRSA are 

clearly discerned on the map grid. The map was partitioned with use of the &-means 

algorithm, and the Davies-Bouldin index confirmed the existence of two distinct clusters 

(Figure 5.6). However, based on this partitioning; only 82% correct classification was 

achieved. On the other hand, application of the KNN algorithm using half of the data set 

(n = 120) as the training set and the other half as the prediction set yielded the same rate 

of correct classification (99%) as obtained by PCA. The value of K was varied from 1 to 

10, with the best results being obtained with K = 4. 

5.4.3 Discrimination between CMRSA and GISA/h-GISA strains based on spectral 

data in the region 1480-1460 cm1 

A similar analysis of the spectral data in the 1480-1460 cm"1 region also allowed 

appreciable clustering of CMRSA and GISA/h-GISA strains but yielded a slightly lower 

overall correct classification rate of 96% (data not shown). Irrespective of the data 

analysis technique employed (PCA, SOM, or KNN), NRS68 and a second GISA strain 

(NRS3) were misclassified as CMRSA, and a single CMRSA strain (CMRSA 488) was 

misclassified as GISA. 

5.4.4 Discrimination between CMRSA/SMRSA and GISA/h-GISA strains 

An additional set of 22 SMRSA strains was subsequently added to the CMRSA 

set to investigate the capability of the FTIR method to discriminate both sporadic and 

epidemic MRSA strains from GISA/h-GISA. The expanded data set comprised 328 

spectra, consisting of four replicate spectra of 35 GISA/h-GISA strains and 47 MRSA 

strains [CMRSA (n = 25) and SMRSA (n = 22) strains]. The region between 1352-1315 

cm"1, although suitable for the discrimination between CMRSA and GISA/h-GISA 
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strains, did not prove to be appropriate for discrimination between SMRSA and GISA/h-

GISA strains, yielding an overall correct classification rate of 84% by PCA (data not 

shown). Some improvement was obtained when PCA was applied to the spectral data for 

the region of 1480-1460 cm"1. The first three PCs were sufficient to explain over 99.9% 

of the overall total variance in the spectral data, the cumulative total variance explained 

being 98.18, 99.74 and 99.92% for PCI, PC2, and PC3, respectively. The scores plot 

(PCI vs. PC2) showed two main distinct clusters, corresponding to GISA and MRSA 

strains (Figure 5.7). However, three SMRSA strains (SMRSA693, SMRSA715, and 

SMRSA864) fell within the. GISA cluster, and five GISA strains (NRS4, NRS11, NRS19, 

NRS68, and NRS76) fell within the MRSA cluster, yielding an overall correct 

classification rate of 90%. Application of the SOM algorithm to the scores of the first two 

PCs also resulted in a clear clustering of the GISA/h-GISA and MRSA strains (Figure 

5.8a,b). The map of size [13*7] was trained using a rough training phase of 3 and a fine-

tuning phase of 11 epochs. The learning rate decreased linearly to zero during the fine-

tuning phase with a final quantization error of 0.167 and a final topographic error 0.021. 

The U-matrix (Figure 5.8a) shows two distinct areas of dark blue (top of the map) and 

light blue (rest of the map), indicating the presence of two clusters, although there is no 

clear border (which would be represented by a yellow-red area) separating the top cluster 

from the rest of the map. Comparative visual inspection of the U-matrix and the labeled 

SOM revealed that the top dark blue cluster in the U-matrix corresponded to an 

SMRSA/CMRSA cluster and the light blue cluster to a GISA/h-GISA cluster. However, 

partitioning of the SOM with the use of the &-means algorithm and the Davies-Bouldin 

index indicated the presence of four clusters (data not shown). 

Supervised classification performed with the KNN algorithm using half of the 

data set (n = 164) as the training set and the other half as the prediction set gave a 92% 

rate of correct classification with K = 6. Three SMRSA (SMRSA693, SMRSA715, and 

SMRSA864) and four GISA (NRS4, NRS11, NRS19, and NRS68) strains were 

misclassified. It may be noted that the strains misclassified when using KNN were the 

same as those misclassified by PCA and SOM. 
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5.5 DISCUSSION 

Successful discrimination between CMRSA and GISA/h-GISA strains with a 

99% correct classification rate was achieved by analysis of FTIR spectral data in a single 

narrow region of 1352-1315 cm"1 using either PCA, SOM, or KNN chemometric tools. 

However, with the inclusion of SMRSA strains in the data set, this region was no longer 

appropriate for classification, yielding an overall classification rate as low as 84%, 

indicating that the spectral differences between GISA/h-GISA and CMRSA strains 

observed in this region are not specific to glycopeptide-intermediate phenotypes. The 

spectral region of 1480-1460 cm"1, containing primarily absorption bands assigned to 

CH2 asymmetric bending vibrations of lipids and proteins [11], was found to be more 

appropriate for discrimination between CMRSA/SMRSA and GISA/h-GISA strains. 

Based on the spectral data in this region, 92% of the strains were correctly classified with 

the use of the KNN algorithm. All three SMRSA and four GISA/h-GISA strains that 

were misclassified (SMRSA693, SMRSA715 and SMRSA864; NRS4. NRS11, NRS19, 

and NRS68) were also misclassified [together with an additional GISA strain (NRS76)] 

when classification was based on visual examination of clusters on the PCA scores plot 

or the SOM. Since the same strains were misclassified using KNN, SOM, and PCA, the 

microbiological identification of these strains should be confirmed by quantitative 

susceptibility testing and confirmatory testing using routine population analysis profiles. 

5.6 CONCLUSION 

Based on the results of this study, FTIR spectroscopy combined with the use of 

UM™ and chemometrics is a promising alternative to susceptibility testing methods as a 

routine technique for the identification of GISA/h-GISA strains, and accordingly further 

validation studies are warranted to confirm the suitability of this technique for the rapid 

screening of GISA/h-GISA strains. In addition, further investigation of the spectral 

differences between MRSA and GISA strains observed in this study may aid in the 

elucidation of the mechanisms of glycopeptide resistance in S. aureus strains. 
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CHAPTER 6 

CONNECTING STATEMENT 

Chapters 3-5 have concerned the application of FTIR spectroscopy for the 

identification of antibiotic-resistant staphylococci. The FTIR-based methods developed in 

this research are of potential utility in a clinical setting as they would provide a simple, 

rapid, and reliable means for the detection of antibiotic-resistant strains so that 

appropriate therapy and intervention for cross-infection control can be initiated in a 

timely manner. In recent years, a limited number of studies on the subtyping of 

microorganisms by FTIR spectroscopy have been reported. Accordingly, the 

discriminatory power of FTIR spectroscopy for epidemiological typing of five Canadian 

epidemic MRSA clones was evaluated in order to determine whether FTIR spectroscopy 

could be employed for epidemiological surveillance purposes. The results of this 

investigation are presented in the following chapter. 



CHAPTER 6 

EPIDEMIOLOGICAL TYPING OF METHICILLIN-RESISTANT 

STAPHYLOCOCCUS AUREUS (MRSA) STRAINS BY FOURIER TRANSFORM 

INFRARED (FTIR) SPECTROSCOPY 

6.1 ABSTRACT 

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most 

widespread multidrug-resistant nosocomial pathogens in Canada. A rapid, efficient, and 

simple routine epidemiologic typing system is crucial for monitoring and limiting intra-

and interhospital spread of epidemic MRSA strains. Molecular subtyping methods such 

as pulsed-field gel electrophoresis (PFGE) are reliable discriminatory methods, but they 

are technically demanding and time-consuming. In the present study, FTIR spectroscopy 

was employed to subtype 85 strains of epidemic Canadian MRSA clones (CMRSA-1, 

CMRSA-2, CMRSA-3, CMRSA-4, and CMRSA-5) based on their infrared spectral 

fingerprints obtained from whole cells (stationary-phase cells grown on UM™). 

Potentially suitable spectral regions for the differentiation of CMRSA-1 through 

CMRSA-5 were selected by visual inspection of randomly chosen spectra, aided by 

singular-value decomposition (SVD) of the spectral data matrix. The spectral regions 

1080-1050 and 1170-1140 cm"1 appeared to be suitable for discrimination of CMRSA-4 

and CMRSA-2, respectively, from the other CMRSA strains while CMRSA-1, CMRSA-

5, and CMRSA-3 each exhibited distinctive spectral profiles in the 1120-1080 cm"1 

region. The clustering of the different subtypes of CMRSA based on these spectral 

differences in the region of 1170-1050 cm"1 by principal component analysis (PCA), self-

organizing maps (SOM), and supervised cluster analysis employing the K-nearest 

neighbor (KNN) algorithm was investigated with a data set of 850 spectra, comprising 

the first derivatives of the peak-height normalized spectra of 10 replicates of each of the 

85 strains. While use of the spectral data from this region did not result in clear 

separation of the five CMRSA subtypes, five clusters were obtained when the data from 

the spectral region 2914-2880 cm"1 were combined with the data from the narrow regions 

1096-1066 and 1114-1099 cm"1. An overall correct classification rate of 86% was 

obtained by visual examination of the PCA scores plot (PCI vs. PC2) or by partitioning 
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an SOM with the use of the &-means algorithm, whereas the supervised cluster analysis 

yielded a correct classification rate of 97%. These results demonstrate that FTIR 

spectroscopy has considerable potential as an alternative rapid (1-hour) and simple 

method for epidemiological typing investigations and monitoring transmission of MRSA 

strains at both local and interregional levels. 

6.2 INTRODUCTION 

MRSA is recognized as the most important worldwide multidrug-resistant 

pathogen causing nosocomial infections, and the incidence of MRSA in Canadian 

hospitals has dramatically increased in recent years. A rapid, accurate, and simple routine 

epidemiologic typing system is essential for institution of appropriate infection control 

procedures and epidemiological surveillance purposes in health-care facilities. Several 

DNA-based typing methods have been developed for typing MRSA strains. Standardized 

pulsed-field gel electrophoresis (PFGE) systems provide fingerprinting of the 

chromosomal background with high discriminatory power and accurate typability for 

comparing distant clonal MRSA lineages [1,2]. PFGE is widely used by many hospitals 

and laboratories and has been suggested as the gold standard for the molecular typing of 

MRSA [3,4]. However, it is labor-intensive and has a long turnaround time (2-3 days), 

reducing a laboratory's ability to analyze large numbers of samples and therefore making 

this technique difficult to perform on a routine basis in a hospital setting. 

Ideally, laboratories routinely conducting regional epidemiological surveillance 

of MRSA infections would have available to them a rapid, simple, and accurate typing 

system with high discriminatory potential, easily interpretable results, and good intra-

laboratory reproducibility. With recent developments in analytical instrumentation, these 

requirements may potentially be fulfilled by "whole-organism fingerprinting" using 

spectroscopic techniques. Such biophysical methods may offer several advantages over 

conventional biochemical methods, including speed, simplicity, and unambiguous data 

interpretation, as well as not requiring the use of any reagents. 
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In this context, the application of FTIR spectroscopy for the identification and 

classification of microorganisms has been extensively investigated [3-14]. FTIR 

spectroscopy measures the vibrations of chemical bonds within all the biochemical 

constituents of cells, i.e., proteins, lipids, polysaccharides, and nucleic acids, and thus 

provides quantitative information about the total biochemical composition of the intact 

whole microbial cell [13]. Furthermore, because the FTIR spectra of microorganisms 

consist of distinct and unique patterns that are highly reproducible, the spectra effectively 

serve as "fingerprints", allowing for their successful use in taxonomic discrimination 

[13]. Thus, various studies have shown that FTIR spectroscopy provides a powerful tool 

with sufficient discriminatory power to distinguish between microbial cells even at the 

strain level, without any preclassification on the basis of other taxonomic criteria [8]. 

In recent years, several studies have been reported on the application of FTIR 

spectroscopy for the discrimination of some pathogenic species of the genera 

Staphylococcus [8], Clostridium [6], Listeria [9], Klebsiella [7], Bacillus [5], 

Pseudomonas [10], and Enterococcus [11]. In addition, the subtyping of microorganisms 

by FTIR spectroscopy has recently been reported for food-borne yeasts [12] and in an 

epidemiological typing study of nosocomial yeasts [14], for bacteria such as Salmonella 

enteritidis [15], Serratia marcescens [16], and Acinetobacter baumannii [17], and for 

algae [14]. Only one study to date has addressed the typing of five S. aureus strains by 

FTIR spectroscopy [18]. The goal of the present study was to evaluate the discriminatory 

power of FTIR spectroscopy for epidemiological typing of CMRSA clones. 

6.3. MATERIALS AND METHODS 

6.3.1 Strains 

Eighty-five strains of epidemic CMRSA clones (CMRSA-1, CMRSA-2, 

CMRSA-3, CMRSA-4, and CMRSA-5) were generously provided by the Canadian 

Nosocomial Infection Surveillance Program from the National Microbiology Laboratory 

(Winnipeg, MB, Canada). All strains were stored in cryovials containing brain heart 

infusion (BHI) broth supplemented with 15% glycerol at -70 °C. 
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6.3.2 Microbiological methods 

6.3.2.1 Phage typing 

Phage typing of MRSA was performed according to the standard method of Blair 

and Williams [19] with the basic international set of 23 phages. The set of phages 

included the lytic groups I (29, 52, 52A, 79 and 80), II (3A, 3C, 55 and 71), III (6, 42E, 

47, 53, 54, 75, 77, 83A, 84 and 85), and V (94, 96), and miscellaneous or non-allocated 

phages 81 and 95. Susceptibility to phages was determined at the standard routine test 

dilution (RTD) and at 100 x RTD concentrations. Bacterial isolates were considered to 

belong to different phage types if they differed in their sensitivity to two or more phages. 

6.3.2.2 Pulsed-field gel electrophoresis (PFGE) analysis 

Isolates were characterized by PFGE following DNA extraction and digestion 

with Smal [2]. The digitized PFGE DNA profiles were input into the Molecular Analyst 

software, Version 1.6 (BioRad; Hercules, CA) for analysis. DNA fragments on each gel 

were normalized using lambda molecular weight standards run on each gel to allow 

comparisons between different gels. Cluster analysis was performed by the unweighted 

pair group method using arithmetic averages (UMPGA), and DNA relatedness was 

calculated based on the Dice coefficient. Genetic relatedness was calculated based on 

criteria recommended by Bannerman et al. [1] and Tenover et al. [4]. Isolates were 

considered to be genetically related if their macrorestriction DNA patterns differed by six 

bands or less and the Dice coefficient of correlation was 75% or greater. 

6.3.3 FTIR spectroscopic methods 

6.3.3.1 Sample preparation 

After an overnight subculture on tryptic soy with sheep blood agar (Quelab 

Laboratories Inc., Montreal, PQ, Canada) at 37 °C, followed by culture on Universal 

Medium™ agar (Quelab Laboratories Inc., Montreal, PQ, Canada) for 18 h at 37 °C, four 

loops-full of stationary-phase cells were carefully collected using a 10-mm-diameter loop 

and suspended in 200-pl aliquots of sterile physiological saline (0.9%>). A 25-p.l aliquot 

of the 10-fold diluted bacterial suspension (approximately 5xlOn cells ml"1) was evenly 
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applied onto a zinc selenide (ZnSe) optical window and then oven-dried at 50 °C for 1 

hour (Figure 6.1). 

6.3.3.2 Spectral acquisition 

All FTIR spectra were recorded using a Bomem MB-104 (ABB-Bomem, Quebec, 

QC, Canada) FTIR spectrometer equipped with a KBr beamsplitter and a deuterated 

triglycine sulfate (DTGS) detector and operating under Bomem-Grams/386 software 

(Galactic, Salem, NH). Ten replicate spectra were collected for each of the 85 samples. 

The procedure for spectral acquisition is schematically represented in Figure 6.2. For 

each FTIR spectrum, 64 interferograms were co-added at 4 cm"1 resolution in the mid-IR 

region (4000-400 cm"1) and ratioed against an open-beam background to produce an 

absorbance spectrum. The spectrometer was continuously purged with dry air from a 

Balston dryer (Balston, Lexington, MA) to reduce the spectral contributions of 

atmospheric water vapor and CO2. 

6.3.4 Mathematical preprocessing and processing 

The collected spectral data, stored in Grams SPC format, were converted into 

CSV format and then into MAT format using Matlab version 5.1 (The Math Works, Inc., 

Natick, MA). Spectra were normalized to unit peak height to compensate for variations in 

sample thickness, autoscaled to unit variance (all spectral ranges equally weighted), and 

transformed to first-order derivative spectra using the 9-point Savitzky-Golay filter to 

enhance the separation of partially superimposed bands and to minimize problems arising 

from unavoidable baseline drift. Singular-value decomposition (SVD) was employed to 

investigate the spectral differences between different clones. Exploratory data analysis 

was performed using principal component analysis (PCA) based on the NIPALS 

algorithm and self-organizing maps (SOM) clustered by applying the &-means algorithm 

and the Davies Bouldin index [20]. Cluster analysis was performed using the K-nearest 

neighbors (KNN) algorithm. 

1ST 



6.4 RESULTS AND DISCUSSION 

The representative DNA profiles obtained by PFGE of Smal digests from 

CMRSA-1, CMRSA-2, CMRSA-3, CMRSA-4, and CMRSA-5 isolates show that the 

five CMRSA strains have different DNA pattern profiles (Figure 6.3). The phylogenetic 

relatedness of these strains is shown in a dendrogram (Figure 6.4). 

The data set employed to evaluate the possibility of differentiating these five 

CMRSA strains by FTIR spectroscopy comprised 850 spectra, consisting of 10 replicate 

spectra of each of the 85 CMRSA isolates. The difficulty of extracting the relevant 

discriminatory information from a spectral data set of this size is compounded by the 

inherent complexity of the spectra, as they are the superposition of the infrared-active 

vibrational spectroscopic features of all biochemical components present in the whole 

cell [21-24]. Thus, appropriate spectral preprocessing and region selection, use of data 

reduction techniques to compress the data while preserving the important information, 

and application of pattern recognition techniques are mandatory. The principles of the 

strategy employed in the present work have been described in a previous publication [25]. 

6.4.1 Spectral reproducibility 

A prerequisite for successful typing of CMRSA isolates by FTIR spectroscopy is 

sufficient spectral reproducibility to ensure that spectral differences between strains are 

not obscured by the variance within the spectra of each individual strain. The selection of 

an appropriate growth medium and rigorous control of growth conditions are of prime 

importance in this regard since changes in spectral profiles occur with changes in growth 

media and/or time of growth [26-29]. The reproducibility of the IR spectra depends also 

on the sample homogeneity, particle size, and film thickness. The way in which bacteria 

are transferred from an agar plate to the IR sample holder and even the method used to 

dry the bacterial suspension after deposition on the sample holder can affect the level of 

spectral reproducibility. Excellent spectral reproducibility thus requires rigorous control 

and standardization of both plating and sampling methodology. The first requirement was 

addressed in this study by the use of a standard universal medium (UM™) developed by 

Quelab Laboratories Inc. and a strict control of the growth conditions (18-h incubation at 
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37 °C) to ensure that all samples were taken from an early stationary-phase culture. In 

terms of sampling methodology, a precise volume of diluted bacterial suspension was 

deposited on a ZnSe optical window and dried for 1 hour at 48 °C. This procedure 

produced a transparent and homogeneous film of uniform dryness suitable for FTIR 

measurements, avoiding the anomalous diffraction effects seen in inhomogeneous 

samples with too large particles. The level of spectral reproducibility achieved was 

evaluated by examining replicate spectra obtained by taking 10 individual samples from 

four different culture agar plates. Excellent reproducibility was indicated by the 

consistency of the relative peak intensities. However, the integrated area (measured 

between 1800 and 800 cm"1) varied somewhat among replicate spectra (r = 0.97) due to 

baseline shifts and variations in sample thickness. These variations in integrated area 

were minimized by the use of pea-height normalization and first-order spectral 

derivatives. 

6.4.2 Spectral differences among the 5 CMRSA strains 

Prior to multivariate analysis, randomly chosen spectra of each of the five 

CMRSA strains were examined in an attempt to identify spectral features that might be 

employed for the differentiation of the CMRSA strains. Visual inspection of the spectra, 

aided by the application of singular-value decomposition (SVD), revealed clear 

differences between the spectra of CMRSA-4 and those of the other CMRSA strains in 

the spectral region between 1080 and 1050 cm"1 (Figure 6.5). The region 1120-1080 cm"1 

allowed a clear distinction between CMRSA-1, CMRSA-3, and CMRSA-5 strains 

(Figure 6.6), and. CMRSA-2, CMRSA-1, and CMRSA-4 were each distinguishable from 

CMRSA-3 and CMRSA-5 in the region 1175-1140 cm"1 (Figure 6.7). Finally, CMRSA-2 

was distinguishable from the four other CMRSA strains in the region between 2940 and 

2865 cm"1 (Figure 6.8). A summary of these readily observed differences between typical 

spectra of the five CMRSA strains is presented in Table 6.1. 

It would clearly be of interest to interpret the spectral differences observed in 

these regions in relation to specific biochemical markers. However, although it can be 

stated that the bands in the region between 2940 and 2865 cm"1 are due to C-H stretching 
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vibrations, and those in the other regions may be assigned to polysaccharide or 

phosphate-containing compounds, more definitive band assignments cannot be made 

owing to the extensive overlap of vibrational bands of the various biochemical 

components of the cell. Further information regarding the origin of the observed spectral 

differences could potentially be obtained through the application of isotope-edited FTIR 

spectroscopic techniques, which take advantage of the band shifts produced by isotopic 

substitution owing to the dependence of infrared absorption frequencies on atomic mass. 

For example, by growing bacteria on media containing 13C-sugars, the infrared bands due 

to polysaccharide components of the cell would shift to lower wavenumbers [30], and 

thus the effects of such isotopic substitution on the spectral differences among the five 

CMRSA strains observed in Figures 6.5-6.8 could help in elucidating the biochemical 

basis for these differences. Also, data obtained by pyrolysis mass spectrometry could 

further help in band assignment and identification of biomarkers. This approach has been 

successfully implemented by Goodacre and co-workers [31] for the detection of 

dipicolinic acid as the characteristic biomarker for the identification of Bacillus spores. 

6.4.3 Principal component analysis (PCA) 

PCA was performed on the first derivatives of the 850 peak-height-normalized 

spectra in the data set, using only the information contained in the narrow spectral 

regions shown in Figures 6.5-6.8. The combined data from the regions 1096-1066, 1114-

1099, and 2914-2880 cm"1 were selected for differentiation of the five CMRSA strains 

through an iterative process. A plot of the scores of the first two principal components, 

PCI (accounting by itself for 97% of the total variance) versus PC2, derived from these 

data shows five distinct clusters corresponding to CMRSA-1, CMRSA-2, CMRSA-3, 

CMRSA-4, and CMRSA-5 (Figure 6.9). The CMRSA-1, CMRSA-2, and CMRSA-4 

isolates give rise to fairly well separated clusters on the scores plot, whereas there is some 

overlap between the CMRSA-3 and CMRSA-5 isolates. Classification of the 850 spectra 

in the data set on the basis of the scores plot yielded an overall correct classification rate 

of 86%. 
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6.4.4 Self-organizing map (SOM) 

The generation of an SOM by an unsupervised neural network algorithm using 

the scores of the first two PCs as input data was subsequently investigated as a possible 

means of improving the rate of correct classification. The map of size [12x9] was trained 

using a rough training phase of 3 and a fine-tuning phase of 9 epochs. The learning rate 

decreased linearly to zero during the fine-tuning phase with a final quantization error of 

0.149 and a final topographic error of 0.008. Figure 6.10a shows the U-matrix, the 

component planes, and the labeled SOM, which is also shown in an expanded view in 

Figure 6.10b. The U-matrix shows two large clusters (dark blue areas), two medium-

sized clusters (light blue areas), and one small cluster (light green area). Visual inspection 

of the labeled SOM indicated that these clusters correspond to CMRSA-1, CMRSA-3, 

CMRSA-2, CMRSA-5, and CMRSA-4, respectively, and classification of all the spectra 

in the data set based on these clusters yielded a correct classification rate of 97%. For 

quantitative analysis, the map was partitioned by partitive clustering using the &-means 

algorithm and the number of clusters was confirmed to be five by calculating the Davies-

Bouldin index (Figure 6.11). Classification based on the clustered SOM yielded the same 

percentage of correct classification (86%) as PCA. 

6.4.5 K-Nearest neighbors (KNN) algorithm 

Supervised cluster analysis using the KNN algorithm was based on the spectral 

data (normalized and transformed to first derivatives) in the same spectral regions as 

employed in PCA. Half of the 850 spectra in the data set served as the training set, with 

the remaining 425 spectra serving as the test set. Each member of the test set was 

classified among the five CMRSA clones by computing its K nearest neighbors (K = 1-

10) in the training set in multidimensional space and assigning it to the class to which the 

majority of its K nearest neighbors belonged. The highest percentage of correctly 

classified test points (97%) was achieved with K = 5. 
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6.5 CONCLUSION 

The work presented here demonstrates that differences in the biochemical 

composition of various CMRSA strains are reflected in differences in their infrared 

spectra. The use of three narrow spectral regions (1096-1066, 1114-1099, and 2936-2880 

cm"1) allowed for differentiation among five CMRSA strains by PCA, SOM, and KNN, 

with the latter technique yielding the highest percentage of correct classification (97%). 

Accordingly, FTIR spectroscopy has considerable potential as an alternative rapid (1-

hour) method for the differentiation of CMRSA strains and would be useful for 

monitoring transmission of epidemic MRSA at both local and interregional levels. 

Extensive validation studies and elucidation of the origin of the spectral differences on 

which differentiation is based would facilitate adoption of the FTIR method in clinical 

diagnostics. 

158 



6.6 REFERENCES 

1. Bannerman, T.L., G.A. Hancock, F.C. Ternover, and J.M. Miller, 1995. Pulsed-field 
gel electrophoresis as a replacement for bacteriophage typing of Staphylococcus 
aureus. J. Clin. Microbiol. 33:551-555 

2. Mulvey, M.R., L. Chui, J. Ismail, L. Louie, C. Murphy, N. Chang, M. Alfa, and 
Canadian Committee for the Standardization of Molecular Methods, 2001. 
Development of a Canadian Standardization Protocol for Subtyping Methicillin-
Resistant Staphylococcus aureus (MRSA) using pulsed-field gel electrophoresis. J. 
Clin. Microbiol. 39:3481-3485 

3. Tenover, F.C, R. Arbeit, G. Archer, J. Biddle, S. Byrne, R. Goering, G. Hancock, G. 
A. Hebert, B. Hill, and R. Hollis, 1994. Comparison of traditional and molecular 
methods of typing isolates of Staphylococcus aureus. J. Clin. Microbiol 32:407-415 

4. Tenover, F.C, D. Arbeit, R.V. Goering, P.A. Mickelsen, B.E. Murray, D.H. Persing, 
and B. Swaminathan, 1995. Interpreting chromosomal DNA restriction patterns 
produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. 
Clin. Microbiol. 33:2233-2239 

5. Beattie, S.H., C. Holt, D. Hirst, and A.G. Williams, 1998. Discrimination among 
Bacillus cereus, B. mycoides and B. thuringiensis and some other species of the genus 
Bacillus by Fourier transform infrared spectroscopy. FEMS Microbiol. Lett. 164:201-
206 

6. Franz, M, 1994. Identifizierung von Clostridien mittels FT-IR-Spektroskopie. Dtsch. 
Milchwirtsch. 3:130-132 

7. Goodacre, R., E.M. Timmins, R. Burton, N. Kaderbhai, A.M. Woodward, D.B. Kell, 
and P.J. Rooney, 1998. Rapid identification of urinary tract infection bacteria using 
hyperspectral whole-organism fingerprinting and artificial neural networks. 
Microbiology 144:115 7-1170 

8. Helm, D., H. Labischinski, G. Schallehn, and D. Naumann, 1991. Classification and 
identification of bacteria by Fourier transform spectroscopy. J. Gen. Microbiol 
137:69-79 

9. Holt, C , D. Hirst, A. Sutherland, and F. MacDonald, 1995. Discrimination of species 
in the genus Listeria by Fourier transform infrared spectroscopy and canonical variate 
analysis. Appl. Environ. Microbiol. 61:377-378 

10. Johnesen, K., and P. Nielsen, 1998. Diversity of Pseudomonas strains isolated with 
King's B and Gould's SI agar determined by repetitive extragenic palindromic-
polymerase chain reaction, 16S rDNA sequencing and Fourier transform infrared 
spectroscopy characterization. FEMS Microbiol. Lett. 173:155-162 

159 



ll.Kirschner, C , K. Maquelin, P. Pina, N.A. Ngo Thi, L-P. Choo-Smith, G.D. 
Sockalingum, C. Sandt, D. Ami, F. Orsini, S.M. Doglia, P. Allouch, M. Manfait, G.J. 
Puppels, and D. Naumann, 2001. Classification and identification of Enterococci: a 
comparative phenotypic, genotypic, and vibrational spectroscopic study. J. Clin. 
Microbiol. 39:1763-1770 

12. Kummerle, M., S. Scherer, and H. Seiler, 1998. Rapid and reliable identification of 
food-borne yeasts by Fourier-transform infrared spectroscopy. Appl. Environ. 
Microbiol. 64:2207-2214 

13. Naumann, D., D. Helm, and H. Labischinski, 1991. Microbiological characterization 
by FTIR spectroscopy. Nature 351:81-82 

14. Schmalrek, A., P. Trankle, E. Vanca, and R. Blaschke-Hellmessen, 1998. 
Differentiation and characterization of Candida albicans, Exophila dermatidis and 
Prototheca spp. by Fourier-transform infrared spectroscopy (FTIR) in comparison 
with conventional methods. Mycoses 41:71-77 

15. Seltmann, G., W. Voigt, and W. Beer, 1994. Application of physico-chemical typing 
methods for the epidemiological analysis of Salmonella enteritidis strains of phage 
type 25/17. Epidemiol. Infect. 113:411-424 

16. Irmscher, H-M., R. Fischer, W. Beer, and G. Seltmann, 1999. Characterization of 
nosocomial Serratia marcescens isolates: Comparison of Fourier-trransform infrared 
spectroscopy with pulsed-field gel electrophoresis of genomic DNA fragments and 
multilocus enzyme electrophoresis. Zbl Bakteriol. 289:249-263 

17. Seltmann, G., W. Beer, H. Claus, and H. Seifert 1995. Comparative classification of 
Acinetobacter baumannii strains using seven different typing methods. Zentbl. 
Bakteriol. 282:372-383 

18. Ngo Thi, N.A., C Kirschner, and D. Naumann, 1999. FTIR microscopy: a rapid 
method for classifying microorganisms, in J. Greve, G.J. Puppels, and C. Otto (eds.), 
Spectroscopy of Biological Molecules: New Directions. Dordrecht: Kluwer. pp. 557-
558. 

19. Blair, J.E., and R. E. O. Williams, 1961. Phage typing of staphylococci. Bull WHO 
24:771-784 

20. Vesanto, J., and E. Alhoniemi, 2000. Clustering of the self-organized map. IEEE 
Trans. Neural Networks. ll(3):586-600 

21. Helm, D., H. Labischinski, and D. Naumann, 1991. Elaboration of a procedure for 
identification of bacteria using Fourier-rransform IR spectral libraries: a stepwise 
correlation approach. J. Microbiol. Methods 14:127-142 

160 



22. Helm, D., H. Labischinski, G. Schallehn, and D. Naumann, 1991. Classification and 
identification of bacteria by Fourier transform spectroscopy. J. Gen. Microbiol 
137:69-79 

23. Naumann, D., D Helm, and H. Labischinski, 1991. Microbiological characterization 
by FT-IR spectroscopy. Nature 351:81-82 

24. Naumann, D., 1998. Infrared and NIR Raman spectroscopy in medical microbiology. 
Proc. SP1E 3257 (Infrared Spectroscopy: New Tool in Medicine):245-257 

25. Amiali, M.N., B. Berger-Bachi, K. Ehlert, M.R. Mulvey, A.A. Ismail, J. Sedman, and 
A.E. Simor, 2003. Rapid identification of methicillin-resistant Staphylococcus aureus 
(MRSA) by Fourier transform infrared (FTIR) spectroscopy. Submitted 

26. Naumami, D., 1984. Some ultrastructural information on intact, living bacterial cells 
and related cell-wall fragments as given by FTIR. InfraredPhys. 24:233-238 

27. Kummerle, M., S. Sherer, and H. Seiler, 1998. Rapid and reliable identification of 
food-borne yeast by Fourier-transformed infrared spectroscopy. Appl. Environ. 
Microbiol. 64:2207-2214 

28. Magee, J., 1993. Whole-organism fingerprinting, in M. Goodfelow and A.G. 
O'Donnel (eds.), Handbook of New Bacterial Systematics. New York: Harcourt Brace, 
pp. 383-427 

29. Bourne, R., U. Himmelreich., A. Sharma., C. Mountford, and T. Sorrel, 2001. 
Identification of Enterococcus, Streptococcus, and Staphylococcus by multivariate 
analysis of proton magnetic resonance spectroscopic data from plate cultures. J. Clin. 
Microbiol. 39:2916-2923 

30. Torres, J., A. Kukol, J. Goodman, M, T. and Arkin, 2001. Site-specific examination 
of secondary structure and orientation determination in membrane proteins: the 

I T i n 

peptidic C= O group as a novel infrared probe. Biopolymers 59:396-401. 

31. Goodacre, R., B. Shann, R.J. Gilbert, E. Timmins, M. McGovern, C. Aoife, B. 
Alsberg, K. Kell, B. Douglas, and A. Niall, 2000. Detection of the dipicolinic acid 
biomarker in Bacillus spores using curie-point pyrolysis mass spectrometry and 
Fourier transform infrared spectroscopy. Anal. Chem. 72:119-127. 

161 



Table 6. 1. Spectral regions for differentiation of five Canadian epidemic MRSA 
(CMRSA) strains selected by visual inspection 

Spectral regions (cm1) 

1086-1049 

1123-1078 

1174-1137 

2904-2864 

Distinguishable CMRSA strain(s) 

CMRSA- 4 

CMRSA-1 

CMRSA-3 

CMRSA-5 

CMRSA-1 

CMRSA-2 

CMRSA-4 

CMRSA-2 
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CHAPTER 7 

CONNECTING STATEMENT 

In Chapter 3, the potential utility of FTIR spectroscopy for the detection of 

methicillin-resistant S. aureus (MRSA) strains was demonstrated, and the advantage of 

implementing such a method in a clinical setting so that appropriate therapy and 

intervention for cross-infection control can be initiated in a timely manner was described. 

In the latter context, the capability to differentiate between epidemic (EMRSA) and 

sporadic (SMRSA) strains is important as the institution of strict infection control 

measures is only required in the case of EMRSA infections. In the research described in 

Chapter 6, five epidemic Canadian MRSA clones (CMRSA-1 to CMRSA-5) were 

differentiated by FTIR spectroscopy. The extension of this work to the differentiation of 

these CMRSA strains from SMRSA is described in the following chapter. 



CHAPTER 7 

DISCRIMINATION BETWEEN EPIDEMIC AND SPORADIC ISOLATES OF 

METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS (MRSA) STRAINS 

BY FOURIER TRANSFORM INFRARED (FTIR) SPECTROSCOPY 

7.1 ABSTRACT 

The incidence of methicillin-resistant Staphylococcus aureus (MRSA) has been 

increasing throughout the world over the past few decades, causing outbreaks or 

epidemics of hospital infections. Epidemic strains (EMRSA) are differentiated from 

nonepidemic or sporadic strains (SMRSA) by their ease of transmission, long-term 

persistence, rapid interhospital spread, and ability to cross geographic and continental 

boundaries. Therefore, an efficient diagnostic test for the accurate detection of MRSA 

strains with epidemic spreading capacity is essential to be able to apply appropriate 

infection control and prevention measures most effectively. However, no specific 

diagnostic assay for the discrimination of EMRSA from SMRSA based on genetic or 

biochemical markers is yet available. To investigate the potential utility of FTIR 

spectroscopy for the identification of EMRSA clones, the FTIR spectra of 25 EMRSA 

and 22 SMRSA strains were recorded from dried films of stationary-phase cells grown on 

UM™. Spectra were normalized and transformed to first-derivative spectra prior to 

exploratory data analysis, performed using principal component analysis (PCA) and self-

organizing maps (SOM), and cluster analysis based on the K-nearest neighbor (KNN) 

algorithm. Although visual inspection of selected spectra suggested that the SMRSA and 

EMRSA strains could be differentiated on the basis of either of two narrow regions of 

their FTIR spectra (940-929 and 1346-1306 cm"1), only the 940-929 cm"1 region proved 

suitable for accurate classification of MRSA isolates as sporadic or epidemic. The use of 

the spectral data in the 940-929 cm"1 yielded 100% correct classification of the spectra in 

an independent test set, confirming that FTIR spectroscopy is a promising diagnostic tool 

for the discrimination of EMRSA from SMRSA. 
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7.2 INTRODUCTION 

Outbreaks of hospital-acquired infections due to methicillin-resistant 

Staphylococcus aureus (MRSA) are being reported with increasing frequency, 

challenging clinicians and infection control teams throughout the world [1,2]. Based on 

epidemiological evidence, it has been suggested that some MRSA strains have properties 

that enable them to disseminate particularly well [3], the term epidemic MRSA 

(EMRSA) being used to designate clinically or epidemiologically relevant strains that 

have been identified in patients or staff members from five or more hospitals sites or 

from three or more geographic regions within the country. By comparison to non-

epidemic or sporadic (SMRSA) strains, EMRSA strains appear to be able to spread more 

rapidly or easily among patients within hospitals and, once introduced into an institution, 

mainly in intensive care units (ICU), are difficult to control and eradicate. SMRSA 

strains are mostly acquired in hospitals by long-term-care patients and lack the capacity 

to spread extensively [4]. 

Accurate discrimination between EMRSA and SMRSA strains and detection of a 

discriminative biochemical marker by a single reliable assay would allow a more 

selective implementation of strict infection control measures to prevent dissemination of 

MRSA strains within hospitals. It may also provide insight into the bacterial factors 

involved in epidemic spread. Several attempts to identify markers for the discrimination 

of EMRSA and SMRSA using antibiotyping, protein A (spaA typing) gene 

polymorphism analysis [5], coagulase gene restriction fragment length polymorphism 

(RFLP) analysis [6], or binding to extracellular matrix proteins [7] were investigated in 

the past decades. Epidemic MRSA strains were reported to have a lower level of protein 

A expression and a higher level of coagulase expression than non-epidemic SMRSA 

strains [5]. Protein A gene polymorphism analysis indicated that strains with more than 

seven repeats in the X region of protein A tended to be epidemic, while the presence of 

seven or fewer repeats was indicative of non-epidemic MRSA strains [8]. EMRSA was 

found to bind significantly less to extracellular protein fibrinogen and Fc fragments of 

immunoglobulin G [7]. However, none of these methods were able to differentiate 

between EMRSA and SMRSA [4]. Traditional phenotypic typing methods such as phage 
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typing have also been used in attempts to discriminate between EMRSA and SMRSA. 

However, although there is a preponderance of certain phage types in epidemic strains 

[9], the association of phage type and epidemic character is not rigorous enough to be of 

prognostic value [9]. The only available genotyping methods for the recognition of 

epidemic MRSA strains are macrorestriction Smal digest DNA using pulsed-field gel 

electrophoresis (PFGE) and mec DNA characteristics using ribotyping. The recognition 

of EMRSA and SMRSA strains is based on arbitrary comparison of genetic 

characteristics (Smal DNA digest-PFGE patterns, genomic background or mec DNA) of 

the unknown to those of already known epidemic and sporadic strains [10,11] and does 

not rely on any genetic or biochemical markers. Both genotyping techniques are 

appropriate and adequate to define MRSA clones and enable the detection of widely 

spread MRSA clonal lineages rather than for discrimination of EMRSA from SMRSA. 

Therefore, efforts should be directed at the development of a diagnostic tool for 

differentiation of SMRSA and EMRSA based on genetic or biochemical markers. 

In the present work, an evaluation of the use of FTIR spectroscopy for 

differentiating between EMRSA and SMRSA strains and for the detection of appropriate 

biochemical markers was undertaken. The applicability of FTIR spectroscopy as an 

analytical tool in the field of microbiology has already been persuasively demonstrated 

[12-17]. This biophysical technique allows the differentiation of intact microbial cells 

nondestructively and without the use of any reagents by producing complex, reproducible 

and distinct fingerprint-like spectral signatures (Figure 7.1). Because FTIR spectroscopy 

measures molecular vibrations, the spectral fingerprint signatures represent the overlap of 

the spectral signatures of all vibrationally active biochemical components (including 

DNA, RNA, proteins, membrane and cell wall components) of the whole cell. Thus, the 

differences in biochemical composition among different strains result in differences in 

the FTIR spectra of the strains, with sufficient discriminatory power to distinguish 

microbial cells at different taxonomic levels, at the strain level and even down to the 

subtype level [12,18]. 
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FTIR spectroscopy has been shown to be a rapid, reliable, and highly sensitive 

method for microbial analyses and process control [14,18]. It is also considered a 

promising diagnostic tool in clinical microbiology. FTIR spectroscopy was recently 

employed for epidemiological typing of nosocomial yeasts [19-21], algae [19], 

Salmonella enteritidis [22], Serratia marcescens [23], send Acinetobacter baumannii [24]. 

Subtyping of yeasts by FTIR spectroscopy has also been reported for food-borne yeasts 

[25]. Moreover, only recently, epidemiological typing of epidemic MRSA strains was 

reported [26]. In this latter work, five epidemic Canadian MRSA clones (CMRSA-1 to 

CMRSA-5) were differentiated by FTIR spectroscopy, enabling the detection of widely 

spread epidemic MRSA clonal lineages such as MRSA phage type 95 among the clonal 

lineages [27]. The present study extends this work to the differentiation of EMRSA from 

SMRSA. 

7.3 MATERIALS AND METHODS 

The feasibility of employing FTIR spectroscopy for the differentiation between 

EMRSA and SMRSA strains was evaluated using 47 clinical isolates of MRSA, 

consisting of 25 EMRSA (CMRSA) and 22 SMRSA strains (set I). These strains were 

kindly provided by the Canadian Nosocomial Infection Surveillance Program (CNISP). 

An additional set of 25 MRSA strains obtained from the Laboratoire de Sante Publique 

du Quebec (LSPQ) and 25 subtypes of CMRSA-1 to CMRSA-5 obtained from CNISP 

were employed as an independent test set (set II). Stock cultures were stored at -70 °C in 

brain heart infusion (BHI) broth containing 15% glycerol. 

7.3.1 Microbiological methods 

7.3.1.1 Antimicrobial susceptibility testing 

Resistance to oxacillin was confirmed by growth on an oxacillin agar screen plate 

(Mueller-Hinton agar supplemented with 4% NaCl and oxacillin, 6 ug/ml) incubated at 

35 °C for 24 h [28]. MICs to oxacillin, clindamycin, erythromycin, ciprofloxacin, fusidic 

acid, mupirocin, rifampin, vancomycin, teicoplanin, tetracycline, and trimethoprim-
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sulfamethoxazole (TMP-SMZ) were determined by broth microdilution in accordance 

with National Committee for Clinical Laboratory Standards guidelines [28]. 

7.3.1.2 MRSA screen assay 

All isolates were confirmed as MRSA by simultaneous detection of the mecA and 

nucA genes by multiplex polymerase chain reaction (PCR). Primer sequences designed to 

detect the mec A gene and PCR conditions were as described by Louie et al. [29] 

Thermocycling conditions, using a GeneAmp 9600 thermocycler (Perkin-Elmer Cetus), 

were as follows: 95 °C for 2 min followed by 25 cycles of 94 °C for 15 s, 55 °C for 15 s, 

and 72 °C for 15 s. PCR amplicons were visualized on a 1% agarose gel after staining 

with ethidium bromide and were photographed under UV illumination. 

7.3.1.3 Molecular typing by PFGE 

MRSA isolates were typed by PFGE following DNA extraction and digestion 

with Smal [30]. PFGE-generated DNA profiles were digitized into the GelCompar 

computer software program (Version 4.1; GelCompar, Kortrijk, Belgium) for analysis. 

DNA fragments of each gel were normalized using the molecular weight standard run on 

each gel to allow comparisons between different gels. A 1.8% band tolerance was 

selected for use during comparisons of DNA profiles. Cluster analysis was performed by 

the unweighted pair group method, using arithmetic averages (UPGMA), and DNA 

relatedness was calculated on the basis of the Dice coefficient. Isolates were considered 

to be genetically related if their macrorestriction DNA patterns differed by <7 bands [31 ] 

and the Dice coefficient of correlation was >75%. 

Definition of EMRSA versus SMRSA and analysis of strain relatedness 

MRSA strains were classified as EMRSA if isolates were recognized to be 

clinically or epidemiologically significant (e.g., associated with outbreaks of infection in 

health care facilities and spread among patients), the strain was identified among patients 

or staff members from >5 hospital sites or from >3 geographic regions in Canada, and all 
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the isolates were genetically related and had been characterized by standard methods 

[32]. Strains were classified as SMRSA if they were recovered from only one patient. 

Genetic relatedness was based on the results of DNA macrorestriction analysis 

[30]. Identification of EMRSA and SMRSA strains was based on comparison of their 

Smal-DNA pattern to those of already known EMRSA and SMRSA strains. Isolates were 

classified as genetically closely related to an EMRSA strain if their macrorestriction 

pattern differed from that of the EMRSA strain by changes consistent with a single 

genetic event, which typically results in a two- to three-band difference. These isolates 

showed a Dice coefficient of correlation of 80% or more with EMRSA. Isolates were 

classified as possibly genetically related to an EMRSA strain if their macrorestriction 

pattern differed from that of the EMRSA strain by changes consistent with two 

independent genetic events, i.e., a four- to six-band or greater difference and a Dice 

coefficient of correlation of 60% or less. 

Banding patterns were compared visually by two independent observers and by 

calculating the Dice coefficient of correlation (number of shared fragments x 2 x 

100/total number of fragments in the two samples; [33]) with the GelCompar software 

(Applied Maths, Kortrijk, Belgium). Epidemiological relatedness was based on data 

obtained by analysis of patients' charts. The isolates were considered epidemiologically 

related to EMRSA when they were recovered during the same time frame or from the 

same area during the patient's hospital stay, according to the guidelines proposed by 

Tenover et al. [31]. 

7.3.1.4 Phage typing 

MRSA strains were phage typed according to the method of Blair and Williams 

[34], using the basic international set of typing phages. All phages were used at 100 x 

routine test dilution. 

180 



7.3.2 FTIR spectroscopic methods 

7.3.2.1 Sample preparation 

Following an overnight subculture on tryptic soy with sheep blood agar (TSB; 

Quelab Laboratories Inc., Montreal, PQ, Canada) at 37 °C, a single bacterial colony was 

collected from the TSB plate and streaked onto a universal medium (UM™) agar plate 

(Quelab Laboratories Inc., Montreal, PQ, Canada) with the use of a four-quadrant streak 

pattern. After 18 h at 37 °C, four loops-full of stationary-phase cells were carefully 

collected using a 10-mm-diameter disposable loop from the third quadrant of the agar 

surface and suspended in 200-u.l aliquots of sterile physiological saline (0.9% NaCl). A 

25-u.l aliquot of the 10-fold diluted bacterial suspension (~5X 1011 cells ml"1) was 

deposited onto the center of a zinc selenide (ZnSe) optical window and then oven-dried at 

48 °C for 1 hour to form a thin and transparent homogeneous dried film suitable for FTIR 

spectral acquisition in the transmission mode. The ZnSe window was placed in a custom-

made holder that shielded the spectrometer optics from the bacteria to prevent 

contamination. 

7.3.2.2 FTIR spectral acquisition 

Spectra were recorded in quadruplicate for each strain in the region between 4000 

and 400 cm"1 on a Bomem MB FTIR spectrometer (ABB-Bomem, Quebec, PQ, Canada) 

equipped with a deuterated triglycine sulfate (DTGS) detector and a KBr beam splitter 

and operating under Bomem-Grams/386 software (Galactic, Salem, NH). The 

spectrometer was continuously purged by dry air from a Balston dryer (Balston, 

Lexington, MA) to reduce the spectral contributions of atmospheric water vapor and C02. 

Spectra were acquired by co-addition of 64 scans collected at 4 cm"1 resolution and 

ratioed against an open-beam background to produce absorbance spectra. 

7.3.3 Multivariate data processing and preprocessing 

The collected spectral data, stored in Grams SPC format, were converted into 

CSV format and then into MAT format using Matlab version 5.1 (The Math Works, Inc., 

Natick, MA). Prior to data pre-processing and processing, optimal spectral features 

selection was performed by singular-value decomposition (SVD) using randomly 

181 



selected EMRSA/SMRSA pairs of spectra. Spectra over the whole spectral range (4000-

400 cm"1) were normalized to unit height by vector transformation and were transformed 

to first-derivative spectra using a 5-point Savitzky-Golay filter to maximize peak 

separation, enhance apparent resolution of superimposed bands, and minimize problems 

arising from unavoidable baseline shifts. Exploratory data analysis was performed using 

principal component analysis (PCA) employing the NIPALS algorithm and self-

organizing maps (SOM) clustered by the /t-means algorithm. Cluster analysis was applied 

to normalized and first-derivatized spectral data using the K-nearest neighbor (KNN) 

algorithm. A program was written in Matlab to implement the preprocessing and 

processing algorithms of the spectral data. 

7.4 RESULTS AND DISCUSSION 

7.4.1 Spectral feature selection 

Optimal differentiation of closely related strains by FTIR spectroscopy is 

generally achieved by basing the analysis of the spectral data on specific spectral features 

or narrow spectral regions that reflect the differences between the strains rather than on 

the whole spectrum, or large regions of it. Spectral regions of potential use for the 

differentiation of SMRSA from EMRSA were selected by the application of SVD in 

order to discover subtle differences in the spectra that would be difficult to detect by the 

naked eye. SVD of randomly chosen pairs of spectra of SMRSA and EMRSA isolates 

showed significant differences in two narrow regions, 940-929 cm" and 1346-1306 cm" . 

Visual inspection of the spectra confirmed that there were distinct differences in the 

absorption bands of SMRSA and EMRSA strains in both spectral regions as shown in 

Figures 7.2 and 7.3, respectively. 

7.4.2 Differentiation between SMRSA and EMRSA using the infrared spectral 

region between 940 and 929 cm'1 

7.4.2.1 Principal component analysis (PCA) 

PCA is commonly employed to reduce the dimensionality of spectral data and 

obtain preliminary information about the distribution of the data. PCA was applied to the 
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first-derivative spectral data in the region 940-929 cm"1 for set I, comprising the 

normalized spectra of 25 EMRSA (CMRSA) and 22 SMRSA isolates recorded in 

quadruplicate. The eigenvalue plot indicated that the first three principal components 

(PCs) were significant (Figure 7.4). When the scores of the first two PCs were plotted 

against each other (PCI vs. PC2), two distinct clusters could be detected on the plot 

(Figure 7.5) and were confirmed to represent the complete separation of the SMRSA and 

EMRSA isolates. Since PCA is an unsupervised technique, this separation was obtained 

without the use of information about the class assignment of the samples and is indicative 

of definitive spectral differences between the EMRSA and SMRSA isolates. 

Furthermore, 100%> correct classification of the strains in the independent test set (set II) 

was subsequently achieved based on these spectral differences. 

7.4.2.2 Self-organizing map (SOM) 

Information about the spatial relationships and clustering of the data can be 

obtained by visual inspection of an SOM generated by using an unsupervised neural 

network algorithm. The scores of the first two PCs from set I were input into an SOM 

algorithm, and the network was trained using a rough training phase of 3 epochs and a 

fine-tuning phase of 10 epochs with initial learning rates 0.5 and 0.05, respectively. The 

learning rate decreased linearly to zero during the fine-tuning phase. Visual inspection of 

the labeled SOM, shown in Figure 7.6, indicated the presence of two clusters 

corresponding to SMRSA and EMRSA. Partitioning of the SOM by applying the k-

means algorithm and the Davies-Bouldin index confirmed the presence of two clusters 

(Figure 7.7), although the Davies-Bouldin index plot had several local minima. However, 

the rate of correct classification of SMRSA and EMRSA strains based on the partitioned 

SOM was only 85%. 

7.4.2.3 Clustering by K-nearest neighbors (KNN) algorithm 

Supervised cluster analysis was performed by applying the KNN algorithm to the 

spectral data in the region 940-929 cm"1 using half of the spectra in set I as the training 

set (n = 94) and the other half as the prediction set. All the spectra in the prediction set 
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were correctly classified with all K values used (K = 1-10). In addition, 100% correct 

classification was also obtained with the independent test set (set II). 

7.4.3 Differentiation of SMRSA and EMRSA using the region 1346-1306 cm'1 

7.4.3.1 Principal component analysis (PCA) 

As described above, the first step in the data processing was to apply PCA to the 

normalized first-derivative spectral data for set I (Figure 7.8). PCI accounted for 88.9% 

of the total variance, and a scores plot for PCI vs. PC2 (Figure 7.9) revealed a clustering 

of the data that corresponded to a clear separation of the EMRSA and SMRSA isolates 

into two distinct groups. However, one EMRSA isolate fell within the SMRSA cluster, 

and one SMRSA isolate fell within the EMRSA cluster, yielding a rate of correct 

classification of 96%. This result indicated that the 940-929 cm"1 region is more 

appropriate for the differentiation of SMRSA and EMRSA. 

7.4.3.2 Self-organizing map (SOM) 

The eigenvalue plot obtained by PCA for the region 1346-1306 cm"1 showed a 

plateau at seven PCs (Figure 7.8). Accordingly, the scores of the first seven PCs for set I 

were input into an SOM algorithm, and the network was again trained using a rough 

training phase of 3 epochs and a fine-tuning phase of 10 epochs with initial learning rates 

0.5 and 0.05, respectively. Based on visual inspection of the labeled SOM (Figure 7.10), 

the SMRSA and EMRSA isolates were fairly well separated into two clusters, 

corresponding to a rate of correct classification of 87%. However, the Davies-Bouldin 

index plot obtained upon partitioning of the SOM by the A>means algorithm indicated the 

presence of five clusters (data not shown). Accordingly, the SOM results confirmed that 

use of spectral data in the 1346-1306 cm"1 region is not effective for the differentiation 

between SMRSA and EMRSA isolates. 

7.5 CONCLUDING REMARKS 

The results obtained in this study indicate that FTIR spectroscopy can provide a 

rapid and accurate means for the discrimination between EMRSA and SMRSA strains, 
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thereby allowing timely implementation of measures to minimize the spread of EMRSA 

among patients within hospitals. The successful differentiation between EMRSA and 

SMRSA isolates achieved in this study was based solely on spectral differences in a very 

narrow region of the infrared spectrum (940-929 cm"1). As seen in Figure 7.2, which 

shows the range between 955 and 925 cm"1 in the normalized spectra of a set of four 

SMRSA and four EMRSA isolates, this region contains a single band centered at -936 

cm"1, the intensity of which is higher in the spectra of the SMRSA isolates. Such an 

intensity difference likely indicates differences in the relative amounts of a specific 

biomarker. Although it may also arise from differences in absorptivity resulting from 

interactions of the biomarker with its surroundings, such changes in the absorptivity of an 

infrared absorption band are often accompanied by a shift of the peak maximum. Thus, 

since the difference in the band intensity at 936 cm"1 seen in Figure 7.2 is not 

accompanied by any significant shift of the peak maximum, it is likely that the spectral 

differences that allowed for the differentiation between EMRSA and SMRSA isolates can 

be attributed to changes in the concentration of the biomarker. However, the assignment 

of the 936 cm"1 band to a specific biochemical component of the cell is extremely 

difficult owing to the numerous possible origins of spectral absorptions in this region of 

the infrared spectrum and was beyond the scope of the present work. 

In this context, it is also of interest to note that although band intensity differences 

between randomly selected SMRSA and EMRSA strains were also apparent in the region 

1346-1306 cm"1, as seen in Figure 7.3, the use of spectral data in this region was not 

effective for the differentiation between SMRSA and EMRSA isolates..This finding 

highlights the critical importance of region selection in the development of FTIR methods 

for the differentiation of closely related strains. 
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CHAPTER 8 

CONCLUSION AND CONTRIBUTIONS TO KNOWLEDGE 

Research conducted primarily during the past decade has demonstrated that the 

information about the total biochemical composition of the cell contained in the infrared 

spectrum of a microorganism can be widely exploited for the classification, 

differentiation, and identification of microorganisms. In the research presented in this 

thesis, FTIR spectroscopy was utilized for the first time in the identification of the 

different phenotypes of antibiotic-resistant staphylococci strains and in the 

epidemiological typing of methicillin-resistant S. aureus strains. The major contributions 

to knowledge resulting from this research may be summarized as follows. 

1. Demonstrated the capacity of FTIR spectroscopy, combined with the use of a 

universal growth medium and chemometrics, for the discrimination of 

methicillin-resistant Staphylococcus aureus (MRSA) strains from methicillin-

sensitive S. aureus (MSSA) and from borderline oxacillin-resistant 5 aureus 

(BORSA) 

Subtle differences in the infrared spectra of Staphylococcus aureus strains were identified 

and shown to be useful for the accurate identification of MRSA among MSSA and 

BORSA strains. The accurate differentiation between BORSA, MSSA and MRSA strains 

would allow physicians to avoid prescribing vancomycin unnecessarily, thereby reducing 

both cost of care and the risk of side effects and the development of bacterial resistance to 

vancomycin. 

2. Provided experimental evidence that information inherent in the infrared 

spectra can successfully differentiate coagulase-negative staphylococci (CNS) 

from S. aureus and from MSSA and MRSA strains 

Excellent agreement between PCR and agglutination tests and an FTIR-based method 

developed in this thesis provides the means for the rapid discrimination between S. 
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aureus and CNS strains and for the determination of whether strains from a patient 

represent contamination or infection. 

3. Developed the first simple technique to reliably detect glycopeptide-intermediate 

Staphylococcus aureus (GISA) strains 

FTIR spectroscopy was shown to potentially serve as an alternative to antibiotic 

susceptibility testing for detection of GISA/h-GISA among MRSA isolates. The 

increasing emergence of clinical isolates of MRSA with reduced susceptibility to 

glycopeptides.has led to a critical need for such a routine screening method for the 

detection of GISA 

4. Demonstrated the utility of FTIR spectroscopy for the differentiation between 

the five Canadian epidemic MRSA (CMRSA) strains and as a means of 

epidemiological monitoring of MRSA in surveillance programs 

Exhaustive analysis of infrared spectra of CMRSA revealed subtle but reproducible 

differences between the infrared spectra of various strains of CMRSA. This led to the 

development of an FTIR method for the differentiation and epidemiological typing of 

MRSA that may potentially serve as a rapid, simple and cost-effective alternative to the 

gold standard technique (PFGE) in MRSA surveillance programs. 

5. Developed the first biophysical technique for the differentiation of epidemic 

MRSA (EMRSA) from sporadic MRSA (SMRSA) 

The FTIR method can be employed in a clinical setting for the identification of epidemic 

strains of MRSA through the differentiation of epidemic MRSA from sporadic MRSA, 

allowing for a more selective implementation of infection control measures in order to 

prevent dissemination of MRSA strains within hospitals. The adoption of the FTIR 

method could play a critical role in controlling the spread of epidemic MRSA. 
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6. Identification of spectral differences linked to the biochemical variability in the 

different phenotypes of staphylococci and in the five CMRSA strains 

With the aid of the SVD algorithm, appropriate spectral regions allowing for 

differentiation between the different phenotypes of staphylococci and the separation of 

the five CMRSA strains were identified. These spectral regions are listed in Table 8.1 

together with the results achieved using the three chemometric techniques employed in 

this work. In the majority of cases, higher rates of correct classification were achieved 

when differentiation of strains was based on the combined data from several spectral 

regions. In several cases, however, the best results were obtained by restricting the 

analysis to the data from a single narrow spectral region. In particular, it is noteworthy 

that the information contained in single spectral regions was sufficient for the complete 

differentiation of CNS from S. aureus and of SMRSA from EMRSA. In the latter case, 

the use of an alternative spectral region in which spectral differences between randomly 

selected SMRSA and EMRSA strains were also apparent gave a somewhat lower rate of 

correct classification. This finding highlights the importance of region selection in the 

development of FTIR methods for the differentiation of closely related strains. In 

contrast, the choice of the chemometric approach was not critical since similar rates of 

correct classification were achieved with exploratory (unsupervised) data analysis using 

PCA, an unsupervised artificial neural network approach (SOM), and supervised cluster 

analysis based on the KNN algorithm. 

Although beyond the scope of the research described in this thesis, it would 

clearly be of interest to elucidate the origin of the spectral differences observed in the 

regions that were successfully employed for differentiation between the different 

phenotypes of staphylococci and the separation of the five CMRSA strains. However, 

such an undertaking would be exceedingly complex since the FTIR spectra represent the 

superposition of contributions from all the biochemical components in the cell and would 

require the application of a multitude of separation and analytical techniques. 
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In conclusion, the results presented in this thesis demonstrate that FTIR 

spectroscopy has considerable potential as an alternative rapid (1-hour) discriminative 

method for the differentiation between staphylococci strains and identification of 

antibiotic-resistant strains as well as epidemiological typing of methicillin-resistant 5". 

aureus strains (Figure 8.1). It may thus be recommended that extensive validation studies 

of the FTIR methods developed in this thesis be undertaken. 
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Table 8.1. Infrared spectral regions allowing for differentiation of various phenotypes of 
staphylococci by FTIR spectroscopy 

Strains differentiated 

MRSA vs. MSSA 

MSSA vs. BORSA 

MRSA vs. BORSA 

CNS vs. S. aureus 

CNS vs. MSSA vs. 

MRSA 

MSCNS vs. MRCNS 

GISA/hGISA vs. MRSA 

SMRSA vs. EMRSA 

CMRSA-1 

CMRSA-2 

CMRSA-3 

CMRSA-4 

CMRSA-5 

Spectral region(s) (cm"1) 

1070-1000 

1732-1708 

2968-2958 

1732-1708 

1118-1112 

2622-2552 

1442-1439 

1080-1050 

1442-1439 

1732-1709 

2969-2958 

2880-2860 

1480-1460 

940-929 

1346-1306 

1096-1066 

1114-1099 

2936-2880 

Percentage of correct 
classification based on: 

PCA 

94 

83 

94 

100 

87 

78 

90 

100 

96 

86 

SOM 

95 

82 

93 

100 

93 

75 

88 

100 

87 

86 

KNN 

95 

90 

97 

100 

92 

92 

92 

100 

98 

97 

204 



CO 

z o 

<D 
> 

HM 

m O) 
a> c 
(0 

3 
a> a 
o 
O 

o 
u 
o o 
.o 
>« 

X a a HH# 

10 

CO 

«±" 
o CO 

s 

o 
> 

• H 

CO c 
A) 
(0 

in
-

M
et

hi
ci

ll 

CO 

z 
o 

( 0 
z 
o 
CC 

2 

+* 
c (0 

HH» 

(0 
0) 
<l> 

lin
-

M
et

hi
ci

l 

CO 

z 
o 

< 
CO 
> 
•D 

G
IS

A
 a

r 

• 
(D 

tid
 

a 
n» 

G
ly

co
p 

'n
-

o 

om
y 

an
d 

va
ne

 

0) 
n 

;5 

in
te

rm
 

(0 
3 
21 

S
.a

u
 

o o 
o 

« l Q> >> 

£ -o 3 a 
,* 2 
§ (0 
u 9> 
8 .> 
P • * 
O (0 
5 o 
^ 9--S i ft. (0 
a is CO 3 

O) 
(0 
o 
o 

< 
( 0 
cc 
o 03 

+ H 

C 
n HH# 

(0 
<0 

e-
rc

 

c 

er
li 

"O 
^ o 
m 

(0 
3 • 

3 m 
(Q 

CO 
E 

© 
co 
t/> 
O 
U 

CJ 

a 
X 

H 
tu 
>> 

. © 
ex 

"S 
CO 

a 
IX 

.PH 
co 
u 
O 
CJ 
O 

3 

< 
CO 
CC 

2 

H M 

C 
a HHH 

(0 ;S
3J-

ill
in

 

u 
X 
H** 

0> 
2 

re
us

 

3 
«0 

CO 

+ 

F 

< 
CO 
(0 
2 

a> 
> t 

w c 3S-

c in 

o 
£ 
* H 

a> 2 

u> 

re
u 

J 
ui 

CO 

i 

0) 
E 

< 
CO 
cc 
2 
o 
•o 
(0 
^ o Q. 

( 0 

HH» 

C 
CD 
C 
o 
u 
< 
c 
a> +* 
o k . 

Q. 
£ 
o> 

X 

© 

e 

3 
CO 

u> 
.4> 

CJ 

. C 
CJ 
u 
3 
Ui 
0J 

0£ 

« 
Ui 

Had cx 
3 

e 
3 
U 
OX) 
3 

0 0 

Si 
0JD 

205 


