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Heat Transfer to Viscous Non-Newtonian Fluids

in Non-Circular Ducts



Abstract

A computational and experimental study was made of the steady developing
laminar convective heat transfer to viscous non-Newtonian fluids described by the power
law model flowing in straight channels of circular and several non-circular cross-sections.
In the numerical study the governing conservation equations in three dimensions subject to
suitable boundary conditions were solved after appropriate discretization, using the
Galerkin finite element method. Fourteen different cross-sectional geometries were studied
numerically. Effects of temperature-dependent apparent viscosity, viscous dissipation as
well as Prandtl number were included in the model. The thermal boundary conditions
tested were; uniform wall temperature ‘Iand uniform wall heat flux on the entire duct
surface. Predicted v/élocity fields, pressure drop, and heat transfer distributions were
compared with available data and simulation results as appropriate. Results are presented
on the c;bmparq_tive thermal performance of various cross-sectional ducts.

n the .experimental study the critical Reynolds numbers were measured for
distilled:;;ter flowing through a semi-circular and an equilateral triangular duct. Local
‘Nusselt number distributions are presented for ducts with the horizontal bottom plane
sides subjected to uniform heat flux while the rest of the channel is well insulated. The
measured pressure drop and Nusselt number distribution for Carbopol. solutions compared

very well with the numerical predictions.
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Résumé

_ Dans cette thése, on présente une €étude numérique et expérimentale sur la
convection thermique d’un fluide non-Newtonien dans un écoulement laminaire en voie
de développement en régime établi qui circule dans une gaine droite d’une section
circulaire ainsi que plusieurs autres sections non-circulaires. Dans 1’étude numérique les
équations de base décrivant le principe de conservation de masse, d’énergie et de quantité
de mouvement en trois dimensions, sont résolues numnériquement en utilisant la méthode
des éléments finis de Galarkin et des conditions limites appropriées. Des gaines avec 14
profils géométriques différents sont examinées. L’influence de la température locale sur
la viscosité, le nombre de Prandtl ainsi que la dissipation visqueuse ont &t€ pris en
compte. Les deux conditions limites thermiques d’une paroi & une température constante
et 3 un flux thermique constant sont considérées. Les prédictions numériques pour le
profil de vitesse, la chute de pression et le coefficient local de transfert de chaleur sont
comparées avec les résultats numériques et expérimentaux des autres auteurs. La
performance comparée des gaines 2 différentes géométries a €€ discuté en détail.

Dans létude expérimentale, le nombre de Reynolds critique est mesuré pour de
I’eau distillée circulant dans une gaine A section demi-circulaire et triangulaire. La
distribution du nombre local de Nusselt est donnée dans une gaine dont 1I’un des cdtés est
chauffé avec un flux thermique constant tandis que les autres cotés sont isolés. Les
valeurs mesurées de la chute de pression et la distribution du nombre de Nusselt pour des

solutions de Carbopol se comparent trés favorablement avec les prédictions numériques.
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Chapter 1

Introduction and Background

1,1 Introduction

Thermal processing of highly viscous non-Newtonian fluids is encountered in
several industrial sectors, e.g. chemical, petrochemical, polymer, foods etc. For reliable
design and optimization of such process equipment it is essential to have information on
the heat transfer rates for such liquids flowing through channels. Since liquids of interest
are often very viscous, if the hydraulic diameter of the flow passage is small the flow is
laminar. Also, a large class of such liquids display negligible elasticity at least over the
flow ranges of interest. Thus it is of practical interest to study the laminar heat transfer
characteristics of purely viscous non-Newtonian fluids flowing in straight ducts.

Much of earlier studies in this area have focused on flows through circular tubes,
rectangular channels and between infinitely large parallel plates. This thesis research was
designed to examine at a fundamental level the simultaneously developing laminar flow
and heat transfer of purely viscous non-Newtonian fluids (described by the well known
power law model) flowing in straight channels of various uniform non-circular cross-
sections, The prime objective was to make a comparative evaluation of many different
geometries and include cocurrently the effects of such additional parameters as:
temperature-dependent apparent viscosity, viscous dissipation, Prandtl number as well as
two commonly employed thermal boundary conditions viz. uniform wall temperature and
uniform wall heat flux.
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Details of the flow and thermal fields were studied numerically using the finite
element technique to solve the governing conservation equations of mass, momentum and
energy along with the power law model constitutive equation and appropriate boundary
conditions. Fourteen different cross-sectional geometries were examined numerically and
two were selected for experimental validation.

Since little information exists on the critical Reynolds numbers for non-circular
ducts, flow visualization experiments were conducted to measure the Reynolds number at
which the laminar flow suffered transition. This information gives the upper limit on the
applicability of the laminar flow model. Also, an experimental facility was developed to
measure the pressure drop and local Nusselt number distribution for the entrance flow of
viscous non-Newtonian fluids through two non-circular straight ducts. A semi-circular and
an equilateral triangular channels were used as test cases for the experimental part of this
thesis work. Experimental results are compared with the numerical simulation results.

This thesis is divided into eight chapters. This chapter is followed by objectives and
scope of the thesis as well as a brief literature review. Chapter 2 covers the mathematical
model used for numerical solution and also the basic definitions. Governing equations in
dimensionless form and boundary conditions are presented. Description on the mesh
generation for different geometries and the numerical solution are also presented. In the
third chapter the effects of power law index on fluid flow and heat transfer characteristics
are examined. The results cover both isothermal wall and constant wall heat flux boundary
conditions. _

Chapter 4 covers the effects of temperature dependent viscosity, viscous
dissipation, the simultaneous effects of temperature dependent viscosity and viscous
dissipation, and Prandtl number on flow and heat transfer performance. Miscellaneous
effects such as: effects of rounding of the comers of a square duct, aspect ratio of
rectangular ducts, apex angle of circular sector channels and a specially defined geometric
parameter of a cross-shape channels on fluid flow and heat transfer characteristics are

presented in Chapter 5. Chapter 6 presents the effects of geometry on friction factor and
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Nusselt number distribution, Several criteria are defined and calculated for different duct
geometries to compare their thermal performance.

Chapter 7 is devoted to the experimental study. A description of the experimental
apparatus is given along with the experimental methodology. Data on the critical Reynolds
number for semi-circular and equilateral triangular ducts are preséhted. Nusselt number
measurements for distilled water experiments include the effect of the Rayleigh number.
Also, for viscous non-Newtonian fluids, pressure drop and heat transfer results are
presented and compared with numerical resuits.

Chapter 8 includes a summary of the major conclusions of this study and also some
recommendations for future research..

1.2 Objectives and scope

The prime objectives of this study were:

(a@)- To develop finite element simulation results for simultaneously developing
laminar flow and heat transfer to phrely viscous non-Newtonian fluids described by power
law model. The governing conservation equations subjected to selected boundary
conditions were solved using the FIDAP solver upon appropriate mesh generation and
discretization procedures. Effects of temperature-dependent viscosity, viscous dissipation
as well as Prandtl number are included in the model. '

(b)- To apply the finite element solver to foﬁrteen different duct geometries of
current and potential practical interest and evaluate the results by comparison with existing
literature where possible.

(c)- To investigate on the effects of rounding the corners of a square duct, aspect
ratio for rectangular channels, apex angles of circular sector ducts and the geometric
parameter of cross-shape channels on fluid flow and heat transfer characteristics.

(d)- To develop an experimental test apparatus to measure the critical Reynolds
numbers and to measure the pressure drop and local Nusslet number distribution in the

entrance region of a semi-circular and an equilateral triangular ducts.
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1.3 Background

The present review focuses only on fluid flow and heat transfer through straight,
uniform and singly connected ducts of different cross-sections. Only steady,
incompressible, and laminar flows are considered.

For Newtonian fluids, Shah and London (1978) and Shah and Bhatti (1987) have
publist:ed excellent reviews on laminar flow and heat transfer through the ducts of circular
and non-circular cross sections. In these reviews different conditions of flow and thermal
development are considered. Literature on laminar forced convection of Newtonian fluids
in the combined entry region of ducts has been reviewed by Kakac and Yener (1983). The
fully developed flow and heat transfer characteristics of various channels were discussed
by Shah (1983a).

Fluid flow and heat transfer problems involving non-Newtonian fluids have been
reviewed by Metzner (1965), Skelland (1967), Cho and Hartnett (1985) and Irvine Jr. and
Karni (1987). An extensive literature review has been published by Lawal and Mujumdar
(1989b) which deals with non-Newtonian fluids flowing in non-circular ducts; they
included studies on temperature-dependent viscosity and viscous dissipation effects.

Studies dealing with simultaneously developing flcw and heat transfer are cited in
the following sections. Relevant published works und;.r different flow and thermal
development conditions are tabulated in Tables 1.1 through 1.4. Some of these works are
referred to and interpreted in thew results and discussion chapters of this thesis. Studies
discussed in Shah and London (1978) are nu::cited here except when they are directly
compared with the resuits of this study.

1.3.1 Circular tubes

Simultaneously developing flow and heat transfer for Newtonian fluids flowing in
circular tubes was considered numerically by Kays (1955) for constant wall temperature
(T) and constant heat flux (H) conditions and Pr=0.7. He employed a finite difference

technique ignoring the radial velocity component as well as axial conduction in the energy
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equation. A finite difference method also was used by Hornbeck (1965) with linearization
of the momentum equation. This investigation was for T and H boundary conditicns and
for Pr=0.7, 2, and 5.

Jensen (1989) employed a control volume finite difference method to obtain
accurate results for the isothermal wall boundary condition and for various Prandt!
numbers. In this study very fine grids were used close to the entrance of the channel. Local
and mean Nusselt numbers were presented over a wide range of Pr (0.01 - 50).
Simultaneous development of fiow and heat transfer was investigated by Pagliarine (1989)
using the finite element method. He computed the local Nusselt number distribution in a
circular tube for Prandtl numbers ranging from 0.1 to 100 and Peclet numbers from 5 to
500.

Huhn (1992) has correlated the data of various investigators and developed an
empirical correlation for the entrance Nusselt number in circular, rectangular, triangular,
and concentric annular ducts as well as parallel plates. He published an equation which
relates the entrance region Nusselt number to the fully developed Nusselt number through
coefficients, which depend on the boundary conditions as well as the duct geometry. Al-
Ali and Selim (1992) presented an integral boun'iary layer solution for the case of constant
heat flux for different Prandtl number fluids. Thelr results were in close agreement with
the predictions of Hornbeck (1965). They tabulated thermal entrance length and Nusselt
number results for different Prandtl numbers. Also, Shome and Jensen (1993) employed
the control volume finite difference technique for the general convective boundary
condition which in special cases become T and H boundary conditions, They used fine
grids close to the entrance and employed different Prandtl numbers for both T and H
boundary coaditions. Their results cover Prandt numbers"from 0 to 0; here theoo case is
the same as the hydrodynamically developed and thermally developing condition. They
developed a correlation for the product of the apparent friction factor and Reynolds
number and also the local Nusselt number and thermal entrance length. Nguyen (1993)
considered the combined entry length problem for a circular duct using finite difference

methods for T and H boundary conditions Bt presented local Nusseit number results only
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for Pr=0.7. He tabulated local Nusselt number for both boundary conditions and also
presented correlations for the hydrodynamic and thermal entrance lengths over
I<Re<1000.

The problem of simultaneously developing flow and heat transfer to viscous non-
Newtonian fluids was solved by McKillop (1964) using a boundary layer solution near the
entrance and a perturbation solution farther downstream. The results of McKillop (1964)
for Newtonian fluids are in very good agreement with those obtained by Kays (1955). He
tabulated the local Nusselt numbr for different power law indices and various Prandtl
numbers for both T and H boundary conditions. In a subsequent work McKillop et al.
(1970) included temperature-dependent viscosity in their analysis of the same problem.

Victor and Shah (1976), Lin (1977), and Lin and Shah (1978) employed a control
volume finite difference method with a forward marching procedure to obtain numerical
solution for yield power law fluids flowing in tubes. The solution of the energy equation
was obtained for two boundary conditions (T and H). The results of Lin (1977) cover the
fully developed and entrance Nusselt numbers for different power law indices and various
yield numbers. )

Heat transfer to a Bingham plastic fluid flowing through a circular tube was
investigated by Samant and Marner (1971) and more recently by Vradis et al. (1993).
Vradis et al. (1993) employed a finite difference method and presented friction factor and -
local Nusselt number results for the T boundary condition and different yield, Prandtl, and
Brinkman numbers.

The effects of viscous dissipation were investigated numerically by Lawal (1985),
Lawal and Mujumdar (1989a and 1992). They employed the control volume finite
difference technique, marching method and an orthogonal coordinate transtormation
technique to transform the physical space into a new computational space wherein the
physical boundaries coincide with the transformed boundaries. Their results covered
different values of the power law indices for the T boundary condition but_;cfhly for

Pr=0.1. The scope of their work was limited by available computing power and facilities.
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Later Lawal (1989} considered mixed convection heat transfer for power law fluids in
circular ducts.

Recently Isazadeh (1993) developed a control volume based finite difference code
to compute the laminar heat and mass transfer in flows with reactions, for tubes of
arbitrary cross section. However, his results do not cover the range of interest in this study

and hence could not be compared with directly.

1.3.2 Rectangular cross-sectional ducts

In a comprehens_ivé' ‘and elegant review Hartnett and Kostic (1989) have
summarized the numerous investigations of fluid flow and heat transfer to Newtonian and

non-Newtonian fluids flowing through rectangular ducts and between parallel plates. Only

selected studies will be cited in this section.
i1,

1.3.2.1 Parallel plates

Hwang and Fan (1964) used a finite diﬁ'e;énce method to obtain velocity
distributions for a Newtonian ﬂbw and numerically integrated the energy equation for both
T and H boundary conditions. These results were given by Shah and London (1978) and
were later claimed by Shah and Bhatti (1987) to be more accurate than other results
available in the literature. Mercer et al. (1967) also used a finite difference solution for T
and T(1) (isothermal condition"at one wall while another wall is insulated) boundary
conditions with Pr=0.7, They also investigated e_xpeﬁmentally using interferometer
measurements for the same conditions as used in thei;\ numerical work and reported good
agreement between the two. They also proposed a correlation for the mean Nusselt
number.

The problem of combined entrancgzjrééf(;h heat transfer .was investigated
analytically by Rostami and Mortazavi (1990) assuming a linear profile for the axial
component of the velocity and solving the energy equation by the similarity method. They

obtained a closed form expression for the Nusselt number as a function of x~ and the

7
/
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Prandt! number. This method is less applicable for low Prandt number, because the
assumption of a linear velocity profile in the thermal boundary layer introduces significant
error. This problem for the T and H boundary conditions was solved numerically by
Nguyen (1991) and Nguyen and Maclaine-Cross (1991). The results of Nguyen (1991) are
valid for Pr=0.7 and Reynolds number between 1 and 20 while the results of Nguyen and
Maclaine-Cross (1991) cover for Pr=0.2 to 100 and Re=40 to 2000. Nguyen (1991)
proposed correlations for the incremental pressure drop and heat transfer and also the
hydrodynamic and thermal entrance lengths. The results of Nguyen and Maclaine-Cross
(1991) are in good agreement with those of Hwang and Fan (1964).

Campos Silva et al. (1992) employed a linearization procedure to solve the flow
problem in the developing flow region. They solved the decoupled energy equation using a
generalized integral transform technique. Results were given for the isothermal wall
condition, and for Pr=0.72 and 10.

For purely viscous non-Newtonian fluids Yau and Tien (1963) employed the
momentumn-and energy integral method of von Karman and Pohlhausen to solve the
laminar entrance heat transfer problem for the T boundary condition. As noted by Hartnett
and Kostic (1989) their Nusselt number predictions appear to be in error when
recalculated on the basis of local Nusselt number versus x~ with Prandtl number as a
parameter. The numerical finite difference and marching method was used by Lin (1977)
and Lin and Shah (1978) for T and H boundary conditions which cover a wide range of
power law index and yield number values.

Klemp et al. (1992) applied a finite difference method to account for the
temperature-dependent viscosity variation of .purely viscous non-Newtonian fluids
subjected to the H boundary condition. They presented results for both Reynolds and
Peclet numbers equal to 1. Recently Etemad et al (1994) solved the simultar}eously
developing thermal entry problem using the Galerkin finite element technique for viscous
non-Newtonian fluids flowing through parallel plates subjected to four different thermal
boundary conditions; T, T(1), H and H(1). They presented results which include the

effects of power law index, temperature-dependent viscosity, viscous dissipation,
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simultaneous effects of temperature-dependent viscosity and viscous dissipation, and

Prandtl number on the entrance Nusselt number distribution.

1.3.2.2 Other rectangular ducts

Wibulswas (1966), and Montgomery and Wibulswas (1967) investigated the
combined entry problem for rectangular ducts of different aspect ratios. They employed a
numerical finite difference method for T and H1 boundary conditions for Newtonian
fluids. They specified the transverse velocity components to be zero and neglected both
axial momentum and thermal diffusion terms. Wibulswas (1966) also presented
experimental work for air flowing through a rectangular duct of " x 2" cross section for
the H1 boundary condition. Based on the resuits of Montgomery and Wibulswas (1967),
Shah and London (1978) caiculated the thermal entrance length for the H1 boundary
condition and found that this parameter decreases with decreasing aspect ratio.

Simultaneously developing steady laminar flow and heat transfer to Newtonian
fluids flowing through square cross section ducts was considered by Neti and Eichhorn
(1983) and Asako and Faghri (1988) using a control volume finite difference method and a
marching technique for solution. Neti and Eichhorn (1983) presented results for the T
boundary condition for Pr=6. The study of Asako and Faghri (1988) is related to rhombic
ducts which square duct was as a special case.

Abou-Ellail and Morcos (1983), Incropera and Schutt (1985), and Mahane_y et al.
(1988) employed the control volume finite difference method to solve tiie mixed
convection heat transfer in the entrance region of a rectangular duct. Incropera et al.
(1987) considered experimentally mixed convection in a rectangular duct with aspect
ratios of 0.1 and 0.2 when the bottom plate was heated by direct current. They used dye
injection to visualize the fluid flow and measure Grashof and Reynolds numbers for
transition from laminar to turbulence due to the buoyancy-driven secondary flow.

For viscous non-Newtonian fluids Chandrupatla (1977) employed a finite

difference technique and marching method to solve the govemning equations for the T, Hl,
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and H2 boundary conditions at various power law indices {only pseudoplastic fluid) and
Prandt! numbers. Lawal (1985); Lawal and Mujumdar (1984, 1985, 1989a and 1992)
considered the combined entry region of Newtonian and viscous non-Newtonian fluids
flowing through a square duct using a control volume finite difference method. The work
of Lawal (1985) and Lawal and Mujumdar (1989a and 1992) also were included the effect
of viscous dissipation for Pr=0./. Lawal (1989) has presented some numerical results on
mixed convection heat transfer in a square duct.

° Hartnett 2nd Kostic (1987 ¥ studied experimentally the entrance non-Newtonian
flow and heat transfer distribution m a rectangular duct with aspect ratio of 0.5. They
heated the bottom and top stainless steel plates of the channel electrically while other walls
were insulated. They reported local Nusselt number distribution for different Reynolds and
Rayleigh numbers. Recently Shin and Cho (1994) considered numerically the heat transfer
through a rectangular channel with aspect ratio of 0.5 when top plate was heated while
other sides were insulated. They considered viscous non-Newtonian fluids and
temperature-dependent apparent viscosity and proposed a correlation for the apparent

friction factor and local Nusselt number.

1.3.3 Circular-sector ducts

There is no published work on simultaneously developing of flow and heat transfer

to Newtonian and viscous non-Newtonian fluids flowing through circular-sector ducts.

1.3.4 Triangular ducts

Simultaneously developing steady laminar flow and heat transfer of Newtonian and
viscous non-Newtonian fluid for the T boundary condition was considered by Lawal
(1985) and Lawal and Mujumdar (1984, 1985, 1989a and 1992). The results of Lawal
(1985) include the effects of variable viscosity and viscous dissipation for Pr=0./ and
Re=1000.
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1.3.5 Summary of various studies

Tables 1 through 4 contain a listing of various published investigations on steady
laminar channel flow and heat transfer. The following symbols and abbreviations are used

in these tables in the interest of conciseness:

*1 Hydrodynamically and thermally fully developed

*2 Hydrodynamically developing flow . |

*3 Hydrodynamically fully developed and thermally developing

*4 Simultaneously developing flow and heat transfer

T Temperature-dependent viscosity

*B Viscous dissipation

*N Natural convection

T Isothermal wall condition

T(1) Constant temperature at one wall while other walls are insulated
H2 Constant wall heat flux both axially and peripherally

H1 Constant wall heat flux axially and constant wall temperature peripherally
H2(1) Constant heat flux (H2) at one wall while other walls are insulated
H1(1) Constant heat flux (H1) at one wall while other walls are insuiated
Hv Wall heat flux varies circumfrentially

F.D.M. Finite difference method

CVFDM. Control voulume finite difference method

FEM. Finite eleinent method

Int. Integral method

Exp. Experimental study

N Newtonian fluid

V.N. Viscous non-Newtonian fluid

BP. Bingham plastic fluid

VE Viscoelastic fluid
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Table 1.1 Summary of laminar fluid flow and / or heat transfer studies: circular tube.

References Studied fluid Description
Kays (1955) N T, H, *4, FD.M.
Powlek & Tien (1964) V.N. _ 1, *4, Int.
McKillop (1964) V.N. T, H, *4, Im.
Hornbeck (1965) N T, H, *4, FD.M.
McKillop et al. (1970) | VN, T, *4, *4, Int.
Samant & Marner (1971) B.P. T, *4, Int.
Lin (1977) V.N. T, H *4, CV.F.DM,
Lin & Shah (1978) V.N. " T H ™4, CVFDM.
Joshi & Bergles (1980) V.N. H, *3, Exp.
Filkova et al. (1987) V.N. H, *4, Exp.
Conley et al. (1985} N 7, *3, CV.F.D.
Lawal (1985) V.N. T, *4,*4, *B, C.V.F.D.M.
Prikh & Mahalingam (1988) | V.N. H, Hv, *1, Superposition ~ |
Pagliarini (1989) N T H *4, FEM
Mansour (1989) V.N. T, *3, Laplace transformation
Poirier & Mujumdar (1989) N T, *3, FDM.
Jensen (1989) N T, *4, C.V.F.D.M.
Lawal & Mujumdar (1989a) V.N. 7, *4, *B, C.V.F.D.M.
Salazar & Campo (1990) N T, H, *3, Separation of variables
Flores et al. (1991) V.N. 1, *3, *B, Laplace transformation
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Table 1.1 (Continued)
Lawal & Mujumdar (1992) V.N. T, *4, *B, CV.F.DM.
Nguyen (1992) N T, H, *3, FDM.
Al-Ali & Selim (1992) N H, *4, Int.
Nguyen (1993) N T, H "4, FDM.
Shome & Jensen (1993) N T, H * CVFDM
Vradis et al. (1993) B.P. T, *4, *B, FD.M.
Isazadeh (1993) V.N. T, *4, CV.F.D.M.
Prusa & Manglik (1994) V.N. T, *3, *I, FDM.
Weber (1995) H*

Table 1.2 Summary of laminar fluid flow and / or heat transfer studies: Rectangular

ducts.
Studied | Aspect
References Fluid Ratio Description
Siegel & Sparrow (1959) N 0 H, *4, Int,
Bodoia & Osterle (1961) N 0 *2, FDM.

Yau & Tien (1963) V.N. 0 T, *4, Int.
Hwang & Fan (1964) N 0 T,H *4, FDM.
Mercer et al. (1967) N 0 T, T(1), *4, F.D.M. , Exp.

Montgomery & Wibulswas N 0.167 - T, HI, *4, F.DM.
(1967) 1.0
Shah (1975) N 0-10 T, H1, H2, Least square method
Natio (1975) N 0

H, H(1), *4, Int.
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Table 1.2 (Continued)
Bhatti and Savery (1977} N 0 H, *4, Int.
Lin (1977) V.N. 0 T,H CV.FDM.
Chandrupatla (1977) VN. | 19 T, HI, H2, *4, FD.M.
Chandrupatla & Sastri V.N. 1.0 T, HI, H2, *3, FD.M.
(1977)
Lin & Shah (1978) V.N. 0 T.H CV.FDM.
Abou-Ellail & Morcos N 0.25, 1.0 H2, %4, *N, CV.F.D.M.
(1983)

Neti & Eichhorn (1983) N L0 T, *4, CV.F.D.M.
Lawal & Mujumdar (1984) V.N. 10 T, *4, *4, CV.F.D.M.
Incropera & Schutt (1985) N 0.5 H2(1), *4, *N, CV.F.D.M.

Lawal (1985) V.N. L0 1, *4, *4, *B, C.V.F.D.M.

Lawal & Mujumdar (1985) V.N. 1.0 T, *4, CV.FDM.

Hartnett & Kostic (1985) VE 0.5 HI, %4, Exp.

Natio (1983) N 0 H, H2(1), *4, FD.M.
Mahaney et al. (1987) N 0.5 HX(1), *4, C.V.F.D.M.
Incropera et al, (1987) N 01,02 H(1), *4, Exp.
Mahaney et al. (1988) N 0.5 H2(1), *4, CV.F.D.M.
Asako & Faghri (1988) N Lo T, HI, *4, C.V.F.D.M.

Nonino et al. (1988) N 1.0 T H2 *4, F.EM.
Lawal & Mujumdar (1989a) | V.N. 10 T.*4, *B, CV.F.DM.
N ¢ T, *4, Similarity solution

Rostami & Mortazavi
' (1990)
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Table 1.2 (Continued)
Aparecido and Cotto (1990) N 0.1-1.0 T, *3, Int.
Nguyen (1991) N 0 T, H, *4, F.D.M.
Nguyen & Maclaine-Cross N 0 T, H *4, F.D.M.
(1991)
Yang & Camarero (1991) N 1.0 *2, F.D.M.
Campos Silva et, al, (1992) N ] T, *4, Int.
Lawal & Mujumdar (1992) V.N. 1.0 T *4, *B, C.V.F.DM
Klemp et al. (1992) V.N. 0 H, *4, *4, FDM.
Xie & Hatnert (1992) N 0.5 HI, *4, *A, Exp.
Gao & Harmett (1992) V.N. 0.2-1.0 T, Hl, H2, *i, F.D.M.
Isazadeh (1993) V.N. |0.5,066,1.0 T, *4 CV.FDM.
Shin & Cho (1994) V.N. 0.65 Hi, *4,*3, *A, C.V.F.D.M.
Etemad et al. (1994) V.N. 0 , I(1), H, d2(1), *4, *4, *B, FEM

Table 1.3 Summary of laminar fluid flow and / or heat transfer studies: Circular-sector

ducts.
Studied | Apex
References Fluid Angle Description
Hong & Bergles (1976) N 180° Hi, Hi(l), *3, F.DM.
Soliman et al. (1982) N 56°-45° *2, FDM.
Trupp & Lau (1984) N 8°-180° T, HI, *1, FDM.
Manglik & Bergles (1988) N 180° T, T(1), *3, FDM.
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Table 1.3 (Continued)

Lei & Trupp (1989a) N 0°-360° *1, Fourier transformation
Lei & Trupp (1989b) N 0°-360° | HlI, *1, Fourier transformation

Trup & Lei (1989) N 0°-360° | H2, *1, Fourier transformation
Ben-Ali et al. (1989) N 5°-350° 7, H1, H2, *1, FD.M.
Lei & Trupp (1990) N 20°-360° Hl, H2, *3, C.V.F.DM

Lei (1990) N 0°-360° T, HI, H2, *1, *3, Fourier
transformation, C.V.F.D.M., Exp.
Lei & Trupp (1991) N 180° HIi, *3, Exp.
Manglik and Bergles (1987) 180° T *3

Table 1.4 Summary of laminar fluid flow and / or heat transfer studies: Triangular ducts.

Studied | Apex
References Fluid Angle Description
Wibulswas (1966) N 60°, 90° T, Hl, *4, F.D.M,
Shah (1975) N 0°-180° | T, Hl, H2, Least square method
Schneider & LeDain (1981) N 10°-120° IT.HI, H2, *1, FEM.
Lawal (1985) V.N. 60° T, *4, *4, *B, C.V.F.D.M.
Lawal & Mujumdar (1989a) | V.N. 60° T, %4, *B, CV.F.D.M,
Isazadeh (1993) V.N. 60° T, *4, CV.F.DM
Lakshminarayana & N 25°-170° T, *3, Integral method
Haji-Sheikh (1992) '
Lawal & Mujumdar (1992) V.N. 60° T, %4, *B, CV.F.D.M.




Chapter 2
Mathematical Model

This chapter is concerned with the formulation of the mathematical model for
simultaneously developing steady laminar flow and heat transfer in a straight duct of
arbitrary but uniform cross-section. The governing equations of continuity, momentum,
energy as well as the pertinent boundary conditions are given. Finally the computational

procedure to solve these equations is described briefly.

2.1 Governing equations

The flow and heat transfer characteristics of fluids in various geometric domains
are obtained theoretically by solving either analytically or numerically the conservation
equations of mass, momentum and energy subje&ed to appropriate boundary conditions.

The equations for continuity, momentum, and energy for steady state and constant

density conditions in rectangular coordinates are:

Continuity: %:—-+-g— +;ﬂ =0 (2.1)
z

x-Momentum: p| u 2 +yZ% 4w X =—-—+(—=+ A =) +pg, (2.2)
7 y 0z

y-Momentum: ;{u?—z-&-v—ﬂv— 2) +pg, (2.3)
z
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ow dw _ Ow op ,0t, 0Ot, 0t .
- : = =t (= 2.4
z-Momentum p(u 6x+v6y +w 62] 62+ P + 5y + 62) pg, (2.4)
Energy: 4
or @r - aor dq, 0q, dq, du v ow
— Vet W— =~ + T, —+T, —+ T, —
pc’("ax”aywaz) [ax oy ez | \"=%x oy oz

e e o RN (e
oy ox) “\8z ox) Y\ 9z oy

2.5)

2.2 Constitutive equation for purely viscous
non-Newtonian fluids

The simplest mathematical model for a purely viscous non-Newtonian fluid is the

power law model of Ostwald-de Waele expressed by equation 2.6.

n=!
2

==kof(T)1-;-(A-'A) A (2.6)

in which Ais the symmetrical “ rate of deformation tensor ” with Cartesian components:

A - (ﬁ}{@f-) @)
e, o

(A:A) =AA, | (2.8)
where '
! ouY (avY (aw)’ ou ovY (0w ovY (ou owY
—(AA)= 2|l — | +] — _— e I e il
2( ) {l:[ax) (ay) oz) [ oy Vx ¥ 6y+az +[az+6x)
(2.9)

Here n is power law index and %, is the consistency index at reference temperature (7,)

while f(T) specifies the temperature dependence of the consistency index as follows:

fT)=e? ™ (2.10)
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where B’is temperature-viscosity coefficient. From equation 2.6, the expression reduces
to the Newtonian law of viscosity for n=1.0; therefore n can be viewed as an indicator of
non-Newtonian behavior. For n </ the fluid is a shear thinning fluid and for n> Jitis a
shear thickening fluid. At very high and low shear rates, pseudoplastic fluids exhibit
linearity in their flow curves (Newtonian behavior). It is evident that a constitutive
equation which completely describes the shear stress over the entire shear rate range must
contain several constants. Fortunately, for many engineering problems only a portion or
portions of the entire flow curve need to be considered, and therefore only a few constants

are required.

2.3 Dimensionless governing equations

The governing equations are non-dimensionalized with respect to appropriate

characteristics values. The dimensionless parameters are defined as follows:

=1'V=l’w=_‘?_.X=-—x—:}E’ Y=-—}L-, =i
u‘ u‘ u‘ Dk ":"Dh Dh (2 ll)
p=2-PE&
pu;

where the subscript ¢ indicates entrance condition. Hydraulic diameter, D, , equals 4

times the duct cross-section area, 4. , divided by the wetted perimeter p’.

T-T,

For the constant wall temperature boundary condition (T): 6= T T“' = (2.12)
N - ' L T_ I;
For the constant wall heat flux boundary condition (H2) : 6= D (2.13)
[}
¢ K

The heat flux is nondimensionalized in terms of the heat flux on one wall (Q = 4 ).

The dimensionless governing equations in Cartesian coordinates then become :

Continuity: 9 +ﬂ/—+§Z =0 (2.149)

oX oY oz
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xMomentum: UtV W =" "R ax Tar oz’ @.13)
oV oV v P 1.0F 8D &G
. um: Vo oy ¥ _ & 1O D G 2.16
y-Momentum:  Uow+V W =~ or "R o¥ Tax * z’ (2.16)
W oW oW P | OH oG OE
Momentum: Uy gV __& 1 OH G OF 2.17
Zviomentum xRz Ty (2.17)
Energy:
50,00 00_ I &0 7o &6

U=+ ew 2 =)+

x " a +6Y’"
(2.18)

Ml Foli iy LA - L)
oY aX 0Z oX 0z oY

Pe 7). ¢ oY oZ

where:
i Rl AR A A ALAY

2
T U
C= 2(2) = F®

n-1

(3 -5

n-}
mM\z(oU oW Il aV
E=|— —+—IF(8) == _
(2) (az*ax) ® ; F 2(2) aYF(E)) (2.19)
=l
(YT W\ o (IV7 W
G"(z) (az+ar © H"Z(z) sz ®)
u n=1
k,C (—‘) :
2-n yn o~p
where ; Rezﬂk—gﬁ-, Pr= ﬂ_ (2.20)
0
kum-l ,
For T bound diti B 2 — oB8(%-T,) _ B0
an[ﬁon ition r = Dr(L-T)K ' F(8)=e e
= 1Y
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*\D : 'og DL
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::‘}.‘3 q



21
Mathematical Model

2.4 Boundary conditions

The fluid enters fhe duct with uniform velocity and temperature profiles. Thus :
U=1,V=0,W=0 | |
X=0 1y 0= 1 forTboundary condition (2.21)
€ = 0 jor H2 boundary condition

The no-slip condition is applied at the channel walls. For thermal boundﬁfy
conditions at the walls a large variety of thermal boundary conditions can be specified.
Shah and London (1974 and 1978) attempied to systematize a possible sei of thermal
boundary conditions that can be applied at the walls.

Three commonly encountered thermal b;;ndary conditions at the wall are:

a. uniform wall temperature (T) everywhere

b. uniform heat flux axially as well as peripherally (H2)

c. uniform heat flux axially and uniform temperature peripherally (H1)

For circular tubes and parallel plates H1 and H2 boundary conditions are the same;
therefore for these geometries the constant heat flux boundary condition is indicated
simply as H. '

In the numerical study attention is given only to the T and H2 boundary conditions
while in the experimental work only the H2 boundary condition could be applied.

The dimensionless temperature at the walls for the T boundary condition is zero
while for the H2 boundary condition the dimensionless heat flux at the heated walls is
unity. The gradient of all dependent variables across the symmetry plane are zero except
for the velocity perpendicular to the symmetry plane for which the velocity itself at the
symmetry plane is zero. A fully developed condition could be prescribed at the outlet
boundary due to the long axial length of the plates (120 times the hydraulic diameter).
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2.5 Solution methodology

Equations (2.14)-(2.18), which is a system of highly nonlinear partial differential
equations with associated boundary conditions, were solved using FIDAP (a fluid dynamic
and heat transfer analysis package, based on the Galerkin finiie element method). The
Galerkin finite element method is well documented in the literature e. g. Zienkiewicz
(1977), Pittman (1989), and Engleman (1991) and hence will not be discussed in this
tﬁesis.

The flow domain was discretized and the governing equations were converted into
algebraic equations using appropriate number of grids (based on the geometry). Table 2.1
presents the number of nodes employed and the type of mesh used for different duct
geometries. The number of meshes was based on the requirement of mesh-independence
of the numerical solution. The number was chosen such that doubling the node numbers
showed less than 1 % difference in the apparent friction facter as well as the local Nusselt
numbers.

The penalty approach was chosen for pressure with the penalty parameter set at
107 to satisfy continuity without solving an additional partial differential equation. The
penalty function approximation is well known and described by several investigators e.g.
Hughes et. al. (1979) and Heinrich and:Yu (1988).

Due to the higher velocity and temperature gradients in the entrance region and in
the vicinity of the walls, finer mesh distributions were used in these regions (Table 2.1).
For some geometries (using symmetry of the cross section) the solution was obtained for
only half of the channels, while for a few the whole geometry was considered. The reason
for the latter was to allow investigation of the secondary flow pattern in the entrance
region. For the triangular duct identical mesh in the corner region could be obtained only
when the whole geometry is considered (due to the mesh generation capability of FIDAP).

The solution of the set of algebraic equations generated by the discretization of the
governing equations is the most time-consuming stage of the solution. Due to the high

radius of convergence of the fixed iteration method and also the high rate of convergence
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of the quasi-Newton-Raphson method, a combinatior:1 strategy used to solve the algebraic
equations which starts with the fixed iteration method and then switches to the quasi-
Newton-Raphson approach. The combination strategy results j)in a significant saving in
computational time, ‘

The streamline upwinding formulation was used to improve the probable numerical
oscillation. In this method the artificial diffusion is added to the physical diffusion, and a
Galerkin finite element discritization is employed. In the streamline upwinding method the
artificial diffusion acts in such a way that it only affects aﬁd modifies the true viscosity for
the streamline component of the viscosity. This is due to elimination of the crosswind
diffusion effect. The streamline upwind formulation is explained in details by Brooks and
Hughes (1982) and Engleman (1991).

The iteration was ended when the relative error was less than /0~ . The relative

error was calculated as follows:

A . . o
"“—?l‘!ﬂ <10™ where Ap,=¢,-@,, and @, is solution vector at iteration /.
P
The operator ||. | is the Euclidean norm. Although this convergence criterion is quite

effective for Newton-Raphson method, a more suitable convergence criterion is based on
the residual vector itself which must tend to zero when ¢, approaches the correct

solution. The normalized residual vector is defined as :

et 107f where R(p,) is the residual vector and R, is the reference

vector, typically R(p,). In this study the convergence criterion was set at /0~ for

relative difference between successive solution and also the relative residual.
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Numbers &
Type of
Element
XxYxZ
6Ix1ix19

8-nqde
bricks

6ix9x17
27-node
bricks

61lx11Ix2]
8-node
bricks

61x11x21

8-node
bricks
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Geometry
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Table 2.1 Generated mesh for different studied geometries.

SFTT
SSs=+

. WAL LRARRREREE

e 5 LY
. ET LT LLL LYY N

B i
lllllllllll

s\\\\\\\\\\\\\
LI

T 3 P B
< -~ A = o
 © |
s N 8 _, ‘a
” —— o W O
o p—
3 ) & me...m,zm_ mm,,m,z “_
3 » m.. 5§ > dm‘:,_. alN
3 < I35y > ¥FC
5§ & §- &
5 g

ARhbhhuunhey




Mathematical Model 25
Table 2.1 ( continued )
Rectangular a=1.5, b=0.75 P
- a 61x17x17
(A.R=035) ,
Z 27-node
X. 1 ° bricks
YAO
Rectangular a=3. 0, b=0. 6
a
— b 61x13x21
(AR=02) S
Z 27-node
X: ‘ bricks
Y o
Parallel Plates H'=05
P 121% 33
H b — 9.node
| elements
X
Semi-circular R=0.818
6Ix13x17
Z Q 8-node
X: ! °o R bricks
Y B
Circular R=,!'137
Sector(a=90) CIR 611919
Z o 8-node
X l bricks
A
Y
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Table 2.1 ( continued )
" 5 Circular R=1.455 Xx¥xZ

(7 y =6n°

'lz,’z///,fj//.,, s Sector (&= 60°) R Q 61x19x 19
' // /'/, " -

"‘?”//f//ﬁ// /fff,f,f":';" z 0 8-node
"l' '",;g}m %f;;}l ;’ =0 bricks
i it Xa, ’

g Y ]
Equilateral a=1.732

Trianguiar
& A 61 x 17 %17
Z ' = o 27-node
X ’ bricks
Y- o)

a=2.414, h=1.207

Right Isosceles
. Triangular
5> 61x17x17
L
RS - Z a o 27-node
o X ’ - bricks
i Y )
P >, Cross-Shape a=1.067
‘.._0,"-“ .:':-'- l=0-25
‘-?‘.",4:;-.' ﬁ ( . ) Ja 61x11x21
,,,,, ’ 2
’ EEI:] 27-node
i gg - X 0 bricks
&, 0 Y: 0
Cross-Shape a=1.333
(A=0.5)
) M 61x13x25
Z d}[:j 27-node
X I " bricks
Y >0
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2.6 Definitions of dimensionless parameters

In the solution and analysis of the governing equations the following dimensionless
groups are of most interest:

Dimensionless axial distance

For the hydrodynamically developing flow the dimensionless axial distance (x") is
defined as:

. x
x' =
D, Re

(2.22)

For the thermally developing region non-dimensional axial distance (x) is

expressed as;

. x x*

= X (2.23)
D,RePr Pr

Hydrodynamic entrance length
The hydrodynamic entrance length (/) is defined here as the axial length of the

straight duct which is required to achieve maximum axial velocity within 99% of its

corresponding fully developed value. This parameter is nondimensionalized as follows:

=t oL

=— 224
Dh Re ( )

Friction factor

The Fanning friction factor , f, is defined as the ratio of the local wall shear stress

to the fluid kinetic energy per unit volume. For a fully developed flow

T Ap 1
f="= (2.25)
1 1 AX
s P ?
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where p is the cross-section®! average pressure. In the entrance region f is called the
apparent friction factor, f_,,, , and is based on the pressure drop over the axial lengtn

fromX=0tX=X.

Incremental pressure drop

In a hydrodynamic entrance region, the pressure drop can be considered to consist
of two components: (1) pressure drop based on fully developed flow and (2) an additional
pressure drop due to change of the velocity profile. The second part of the pressure drop

is called as the incremental pressure drop, X(x), and it is defined as follows:

. x
AP = = TN+ K(x)

AP’ =(f . Re)(4x*)+ K(x) =(,,, Re)(4x") (2.26)
In the fully developed region, K(x) is designated as X(o). For a long duct the
following equation relates X(w)and fReto AP,
AP’ =(f.Re)(4x" )+ K(w) (2.27)

Dimensionless bulk temperature

The local dimensionless bulk temperature at any axial location is defined by:

AL .29
g L Udd,
Local Nusselt number
The local Nusselt number is defined as:
: h.D
Nu_= "T"- (2.29)

For the constant wall temperature (T) case :

Nu_= \ON (2.30)
eb,x
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For constant wall heat flux (both axially and peripherally) (H2) :

ON
Ny =—-""2 2.31
"x ew.m_eb.x ( )

where N is normal vector to the surface of the duct. The peripheral mean wall temperature

8., at an arbitrary cross section is defined as:

8,0 =— 8,dL" 232)
i L' ["

The mean Nusselt number over length X' measured from the inlet is then given by:

R — ] X
Nu, =on Nu dX (2.33)



Chapter 3

Flow and Heat Transfer in
Different Geometry Ducts

This chapter deals with the numerical results for fully developed as well as
simultaneously developing laminar flow and heat transfer for Newtonian and power law
non-Newtonian fluids through various cross-sectional ducts. The results are presented for
two different thermal boundary conditions; constant wall temperature (T) and constant
wall heat flux (H2). The results presented in this chapter are restricted to forced
convection heat transfer without temperature-dependent viscosity and viscous dissipation
effects.

The numerical results are compared with available analytical, experimental, and
computational results where appropriate. The influences of power law index and entrance
region on flow and thermal characteristics and also the effects of the wall thermal
boundary conditions on heat transfer are covered.

For all duct geometries, results were obtained for Re=500 and Re=1000. The
computed f.,,Re as well as Nur and Nuy; distribution were found to be independent of
Reynolds number when were plotted vs. x* and x  as dimensionless axial distances,
respectively. For the sake of brevity results showing the effect of the Reynolds number on
Nusselt number are not included in this thesis. The effect of the initial guess on”the flow
and heat transfer results (specially on the secondary flow) was examined by making two
different initial guesses for all dependent variables. No noticeable difference in the

depenﬂent variables was obtained as a result of the differences in the initial guess.

~

%

} \_\\\
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This thesis provides tabulated data for various hydrodynamic and heat transfer
parameters to three significant digits. Clearly, from the engineering viewpoint the third
digit is not significant. However, this format is retained for the benefit of future studies

which may wish to compare their results (particularly numerical) with those of this

investigation,

3.1 Comparison with prior studies

In the following section the flow and heat transfer characteristics, e.g. i:roduct of
friction factor and Reynolds number (f£Re), dimensionless maximum velocity (Unas) and
Nusselt numbers (Nur.. and Nuy;,. ) for hydrodynamically and thermally fully developed
conditions are presented for different power law indices and various duct geometries. For
each geometry, the results are compared with those in the literature most of which are for

fully developed conditions.

3.1.1 Circular tube

For power law fluids, the fully developed center-plane velocity distribution (Uy)
and fRe are given by Skelland (:l 967) as follows:

n+l
U= 3::1’ [1- (2r'-1 )T] G.1)
n ‘ T
f.Re=2" [i'ff—’-) (3.2)
’ n

r
where 7' = ——
Dh

The fully developed velocity profiles for different power law indices (Fig. 3.1)
obtained in this investigation are in excellent agreement with equation (3.1).

The computed results for friction factor and incremental pressure drop are shown
in Fig. 3.2 (a - b) and compared with the data of Hombeck (1965) who used a finite
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difference technique and boundary layer approximation to solve the Newtonian flow
problem in the entrance region of a circular tube. The work of Hornbeck (1965) is
believed to be the most accurate of published results (Shah and Bhatti (1987)). Also the
results of Lawal (1985) obtained by employing the control volume finite difference method
are shown in Fig. 3.2 (a) for comparison. The comparison is seen to be quite favorable.

Table 3.1 presents the fully developed values of flow characteristics and also the
Nusselt number which for comparison includes the analytical results of Bird et al. (1977)
who used the separation of variables technique.

For simultaneously developing flow and heat transfer of a Newtonian fluid, Fig.
3.3 (a) compares the results of this investigation with the results obtained by Nguyen
{1993) and McKillop (1964) for the H boundary condition and the results of Hornbeck
(1965) and Jensen (1989) for the T boundary condition. For non-Newtonian fluids
Fig. 3.3 (b) presents a comparison between the results of this study and the results of

McKillop (1964) for n=0.5. From Fig. 3.3 (a - b} good agreement exists between the

results of this investigation and available studies.

1
b h“ @
0.8 Present Study : a
n=0.5 -~ .
n=1.0 — Vo
- B,
0.6 n=125 — *,
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Equation 3.1
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, n=125 o %
02r
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0 1 . ] L i
0 0.5 4 1.5 2.5
U

Figure 3.1 Comparison of the fully developed center-plane axial velocity profile: circular. - _

tube.
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Figure 3.3 (a - b) Comparison of Nusselt numbers in combined entrance region: circular
tube
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Table 3.1 Comparison of the fully developed flow and heat transfer characteristics
for circular tube: present study and other available resulits.

f-Re Uax Nuy Nuy;

Skelland (1967) 6.325 1.667 —_ —_

n=0.5 | Birdetal. (1977) — — 3.949 4.746
Present Study 6.321 1.665 3.950 4.744

Skelland (1967) 16.000 2.000 —_ —

n=1.0| Birdetal (1977) —— o 3.657 4.364
Present Study 15.995 1.996 3.659 4.363

Skelland (1967) | 25238 | 2111 | - —

n=1.25\| Birdetal. (1977} — S — 4.275
Present Study 25.231 2.108 3.590 4.272

o 3.1.2 Parallel plates

For power law non-Newtonian fluids flowing in laminar flow between parallel
Vp_la_tgs the fully developed dimensionless velocity profile (Uy) and fRe as a function of
power law index are given by the following analytical expressions (Skelland (1967)):

nl
y, 2] ,_|r=025 (3)
I ntr|” | 025
n
f.Re=22"+1(££f_1) (3.4)
n e

Fig. 3.4 (a) displays the fully developed dimensioniess velocity profile, while Téible
3.2 indicates f£Re and U, in comparison withthe results obtained by Skelland (1967).
Again, good-agreement is found between the computational and analytical results.
N For parallel plates the boundary layer type solution of Bodoia and Osterle (1961) is
. - claimed by Shah and Bhatti (1987) as the most accurate. Fig. 3.4 (b) compares the
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product of the apparent friction factor and Reynolds number (f,,, Re) for a Newtonian
fluid as obtained in this investigation with the resuits of Bodoia and Osterle (1961).
Furthermore, Table 3.2 contains Nusselt numbers for hydrodynamically and thermally
developed conditions. For all boundary conditions, the Newtonian Nusselt numbers

obtained in this study are in excellent agreement with the exact solution of Shah and
London (1978). “

0.5 | 200
2. Present work: |- - — n=1.0
N n=0.5 -—- :
0.4 F \.\ n=1.0 — 50
: n=1.25 - Present work
— \ Bodoia & Osterle (1961 ) o
03 ]
! v
N $ 100
1 5
02+ b <
[/
. Equation 3.3
0.1Fb ' 7’ n=0.5 e 50 }'
l n=10 =
i n=l.25 o©
0 i | L 3 " ] L 1 "
0 05 1 15 2 25 ,

0 0.02 0.04 0.06 0.08
+
X

(b)

U
(a)
Figure 3.4 (a-b) Comparison of Uy and f,,, Re: parallel plates

Table 3.2 Comparison of the fully developed flow heat transfer characteristics for parallel
plates: present study and other availabie results.

f..Re Um N"Ta) Nu;- Nu”ﬂ') Nun
Skelland (1967) 8.000 I 333 — — ——— _—

n=0.5 |___ Lin(1977) — | Ny | e 17940 | — | 8762
Present Study 7.994 | 1.327 | 4898 | 7.950 | 5.398 | 8.758

Skelland (1967) | 24.000 | 1.500 | — — — —
n=1.0 |Shah & London (1978)] — — | 4861 | 7.541 | 5.385 |.8.235

Present Study 23.879 | 1.491 | 4.862 | 7.541 | 5.386 | 8.235
n=125|_ Skelland (1967)_] 40.978 | 1.555 — — — —

Present Study "\ 40.694 | 1.546 | 4857 | 7.442 | 5.380 | 8.109

44
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The constant wall temperature boundary conditions (T and T(1)) were investigated
by Mercer et al. (1967) experimentally using an interferometer. Fig. 3.5 (a - b) shows a
comparison of the present results with their experimental data obtained for air. Again, the
agreement is found to be good in the light of the experimental uncertainties. Note that the
local Nusselt number defined by Mercer et al. (1967) is based on the temperature
- difference between the wall and the inlet fluid. For Fig. 3.5 (a - b), our results were
: ““calculated according to the Mercer et al. definition although in rest of this work the local
Nusselt number in based on the temperature difference between the wall and the local fluid

mixing cup temperature.

16 - 16

L F ]
14 F The. 14 ¢ ULy T(I) b.c.

" Present work -_ 417 Present work _—
Mercer et al, (1967) © | Merceretal (1967 ) ©
2 2f
0 L 1 1 1 O L 1 1 |.
0,001 0.002 0.005 0.01 0.02 0.001 0.002 0.005 0.01 0.02
x. x.
(a) (b)

Figure 3.5 (a - b) Comparison of Nusselt number in the combined entrance region:
parallel plates

Table 3.3 compares the results of this study with those reported by Shah and
London (1978), and Hwang and Fan (1964) using a finite difference method for
Newtonian fluids. They obtained velocity distributions and then numerically integrated the

energy equation for both T and H boundary conditions; their Prandtl number values
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ranged from 0.01 to 50. These results are claimed by Shah and Bhatti (1987) to be more
accurate than other literature values (as of 1978). Table 3.3 also includes the results of
Nguyen and Maclaine-Cross (1991) who used a finite difference method to solve the
momentum and energy equations using the stream function as an independent variable.

This problem was also investigated analytically by Rostami and Mortazavi (1990}
using a linear profile for the axial component of the velocity and solving the energy
equation by the similarity method. Their results (Table 3.3) show good agreement with
those of this investigation except in the downstream region where large discrepancies
occur due to the linear velocity profile assumption. The values of Nur. obtained by
Campos Silva et al. (1992) are also tabulated in Table 3.3. Far downstream their results
are comparable to present results but close to the entrance they are greater probably
because of their linearization method.

Table 3.4 compares the Nusselt numbers obtained in the present investigation and
those reported by Lin (1977) fl‘;)re a non-Newtonian fluid (n=0.5) at different Prandt!

numbers (Pr=I0 and Pr=1). This comparison shows very good agreement in the entire

channel.
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Table 3.3 Comparison of Nusselt numbers reported by various researchers for Pr=10,
n=] and Re=500: parallel plates

Nutz Nur,,,- Nuy X
. |Nguyen & Shah | Rostami |Present| Campos | Present | Hwang | Present
x Maclaine] & & work |Silvaetal.| work & work
-Cross |London\Mortazavi (1992) -~y Fan
(1991) | (1978) | (1990) (1964)
0.00012 — 46.68 4746 47.18 27.75 24.72 | 3407 34.24
0.00043 —_— 2788 2784 2742 1680 1582 | 20.66  20.92

0. 0(_)975 — 21.94 2228 2186 13.70 13.34 | 17.03 1718

00020 13.96 15.44 13.63 15.31 10.10 10.27 | 12,60 12.58

0.00625 | 1049 11.01 11.33 1095 8.20 8.15 9.50 9.51
0.010 9.54 9.86 10.4 9.80 7.79 7.72 8.80 8.76

0.0125 9.15 9.40 10.14  9.38 7.70 7.63 — 8.55

Table3.4 Comparison of Nur, for n=0.5 and Re=500: parallel plates

Pr=10 Pr=1
X' Lin Present < Lin Present

(1977) Work (1977) Work
0.000781 1521 14.83 0.00061 20.71 20.97
0.000999 | 13.86 13.59 0.00110 16.57 15.98
0.001205 13.29 12,76 0.00217 12.29 12,12
0.001803 11.43 11.28 0.00405 9.87 9.86
0.002335 10.6 10.52 0.00571 9.05 92.03
0.004017 9.29 9.29 0.01047 827 8.20
0.006026 8.65 8.64 0.02055 8.00 7.97
0.010110 8.21 8.14 0.02653 7.96 7.95
0.020525 7.94 7.95
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3.1.3 Rectangular ducts

3.1.3.1 Square duct

Fig. 3.6 (a - b) displays the center-plane velocity profile ‘and dimensiorﬂess
maximum velocity for n=] obtained in this investigation ard the experimental results of
Goldstein and Krexd (1967) They made laser Doppler asemometer measurements in a
square duct with water as the working fluid. The results of this study are in very close
agreement with those of Goldstein and Kreid (1967). Fig. 3.6 (b) also includes the

numerical results of Lawal (1985) for different power law indices.

1

- 2.8
Present work : F Present work :
2y x*=0,0075 — 26 n=0.5 ---
09 R X=0020 --- i C n=l0 —
N\, fully developed -~ T
R 22}
08 r .. L W
2 -
[ WM 5 " i L
W
0.7 b 4 5 L8 [
| Goldstein & Kreid (1967), ' L6 ey
x'=0.0075 o . i »  Lawal (1985), n=0.5
06 x=0020 ¢ P * 14/ o Lawal (1985), n=1.0
| fully developed : L 1.2 o Goldstein &
A Kreid (1967)
0.5 L [ 1 N tg—L . 1 . ! N 1 . 1 .
0 0.5 1 L5 2 2.5 0 0.05 0.1 0.15 0.2
U, x*
a

Figure 3.6 Comparison of dimensionless center-plane axial velocity profile and Uy
square duct

Table 3.5 presents the fully developed values of the key flow characteristics and
Nusselt number. This table contains the results of Kozicki et al. (1966) who ilitroduced a
new Reynolds number for which the relationship f =%, is applicable for fully developed

laminar flow of a power law fluid through non-circular channels of uniform cross section.
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This table also includes the computational results of Gao and Hartnett (1992) for the
hydrodynamically and thermally fully developed condition and for various power law
indices. Table 3.5 includes the results of Chandrupatla (1977) for different boundary
conditions. This table demonstrates very good agreement between the results of this work

and other available data in the literature.

Table 3.5 Comparison of the fully developed flow and heat transfer characteristics for
square duct: present study and other available results

f-Re Unmax Nur Nuy,

Kozicki et al. (1966) 5.935 — — -
Chandrupatla (1977) 5.733 1.763 3.184 3.274
n=0.5} Gao & Harmett (1992) 5.723 —_ —_ 3.309
Present Study 3.772 1.760 3.190 3.310

Korzicki et al. (1966) 14.219 —_ — —
Chandrupatla (1977) 14.228 2.096 2.975 3.095

n=1.0 | Gao & Harmett (1992) 14.229 — —_ -
FPresent Study 14.234 2.092 2.979 3.090

n=125| Kozicki et al. (1966) 21.858 — — -
Present Study 22.248 2.209 2.925 3.032

results of this study with the resuits obtained by Chandrupatla (19'77);;?\/?{;,, has not been
reported by Chandrupatla (1977), hence for the T boundary condition’coﬂiparison is made
with Nur, reported by Chandrupatla (1977). The agreement between the two results is

good.

P

For simultaneous development of flow and heat transfer Fig. 37 compares the
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Figure 3.7 Com;;arison.;f? Nusselt number:
square duct )

3.1.3.2 Rectangular duct with different aspect ratios

Hydro_dynanﬁcéliy developing flow in rectangular ducts was studied by Sparrow et
al. ':'(-1,96__5_7) who used é'ﬁitot tube to measure the velocity profiles at different locations for
air flowing through rectangular ducts with aspect ratios of 0.2 and 0.5. Table 3.6 and

‘Table 3.7 indicate the results of the present investigation which are compared with

" available results in the literature showing good agreement.
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Table 3.6 Comparison of flow and heat transfer characteristics for rectangular duct with:

A.R.=0.5: present study and other available results

fRe Upea Nur Nutz
Kozicki etal. (1966) -.| 6.237 — — -
n=0.5 | Gao & Hartnett (1992) | . 6.002 — — 3.180
Present Study ! 6.060 1.734 3.600 3.150
Kozicki et al. (1966) 15.546 — — —
Shah & London (1978) — — 3.391 3.020
n=1.0 | Gao & Hartnett (1992) 15.551 — — ——
Sparrow et al. (1967) 15.550 1.991 — —
Present Study 15.570 1,992 3.388 3.021
n=125 Kozicli et al._(1966) 24.342 - — —
| Present Study 24.805 2.053 3.350 2.998

Table 3.7 Comparison of flow and heat transfer characteristics for rectangular duct with

A R.=0.2: present study and other available results

_f.'Re Uax Nur Nuyz
Kozicki et al. (1966) 7.019 — — -—
n=0.5 Gao & Hartnett (1992) 6.805 — — 2.743
Present Study 6.860 1.600 4.922 2717
Kozicki et al, (1966) 19.071 e — —
Shah & London (1978) - — 4.803 2.930
n=1.0 Gao & Hartnett (1992) 19.075 — — —
Sparrow et al. (1967) 19.075 1715 - -
Present Study 19.077 1.714 4.831 2.924
n=125 Kozicki et al. {1966} 31.087 — -— —
Present Study 31.456 1.749 4.817 2.996
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3.1.4 Circular-sector ducts

Fig. 3.8 shows the fully.developed velocity profiles for Newtonian fluids flowing

through semi-circular duct at different circumferential locations and indicates the excellent

agreement between the results of this investigation and the results of Manglik and Bergles
(1988) who used the finite diﬁii;jcnce method.

Table 3.8 presents the fuily
developed flow and heat transfer 08
results for a semi-circula: duct.

This table compares the results o8
of this study with those of Shah

and London (1978), it also R o
includes the results obtained by
Lei (1990) who used the Fourier
transform technique to _“,o'l‘atain
results for a fully de\félpped

steady laminar Newtonian flow~-.

4

Prexet work
Manglik &

Bergles ( 1988)

0 05 1 15

15

for the H2 thermal bouﬁfiﬁf}'{; Figure 3.8 Comparison of fully developed velocity
condition in circular sector ducts, -~ Profile at different circumferential locations: semi-
“===gircular duct

Table 3.8 furthermore contains

the results of Trupp and Lau (1984) obtained by the finite difference techpi&hj;; for laminar

A .
heat transfer in circular sector ducts with isothe-mal walls, and those of Ben-Ali et al.

'_‘\_ oAt

(1989) who applied the same numerical method tjo"‘predict the heat and fluid flow behavior

for different boundary conditions in annular sector and circular sector channels with

different apex angles.

Table 3.8 shows that the present results and other available data are in very close

agreement, which supports the accuracy of the computational model.

Pt
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Table 3.8 Comparison of the fully developed flow and heat transfer characteristics
for semi-circular duct: present study and otixer available results

f-Re Uax Nur Nuy;

Shah & London (1978) | 15.767 —_ —_ 2.923

Lei (1990} 15.767 2.061 — 2.920

n=1.0 | Ben-Alietal.(1989) 15.790 = 3.316 2.930
Trupp & Lau (1984) -— — 3.316 —

Present Study 15.860 2.058 3.318 2.920

For other circular sector channels (@ = 90° and a = 60°) Table 3.9 and Table 3.10
present the fully developed values of flow and heat transfer characteristics; which are

compared with the limited results available in the literature,

Table 3.9 Comparison of the fully developed flow and heat transfer characteristics
for circular-sector duct (@ = 90°): present study and other available results

f-Re Unax Nur Nuy;

Lei (1990) 14.769 2.102 - 2.987

n=1.0 | Ben-Ali et al.(1989) 14.790 —_ 3.060 2.984
Present Study 14.820 2079 3.060 2.980

Table 3.10 Comparison of the fully developed flow and heat transfer characteristics
for circular-sector duct (a = 60°): present study and other\‘g\'rai'l
S

able results

P
JRe Unax Nur Nuy;
Shah & London (1978) | 14.171 —_ -— -—
Lei (1990) 14.171 2.149 e 2.448
n=1.0 | Ben-Ali et al (1989) 14.200 — 2.822 2.421
Trupp & Lau (1984) —_ —_— 2819 -—
Present Study 14.248 2.134 2.820 2.430
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3.1.5 Triangular ducts

- Fig. 3.9 presents the computed

apparent friction factor

results for
Newtonian and non-Newtonian fluids
compared with the computational results
of Lawal (1985). Fully developed friction
factor and dimensionless maximum
velocity and the fully developed Nusselt
number values (Mug} are compared in
Table 3.11 with the results of Shah (1975)
who employed a least squares matching
technique to anaiyze the fully developed
laminar flow and heat transfer in ducts of
arbitrary cross-section. Also included in

Table 3.11 are results of Schneider and

100
| Present work ;
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;
I
] Lawal (1985) :
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% 1
~ 40h
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+
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Figure 3.9 Comparison of f;, Re: equilateral
triangular duct

LeDain (1981) who used the finite element method. The agreement between the results of

present study and other mentioned results was found to be excellent. Lawal {1985) did not

provide the fully developed Nusselt number values as a result of computatlona' limitations.

The Nusselt number (T boundary condition) distribution in the entrance region for

n=0.5 was compared with the results of Lawal (1985). This comparison is not shown

here. The results of Lawal (1985) were between 10 and 25 percent (depending on"‘ the axial

location) higher than results of the present work. Due to hxgh velocity and temperature

gradients close to the walls, a finer non-uniform mesh must be employed in ;l};.s reglon of

the channel. The difference between the results of Lawal (1985) and this ‘work can be

attributed to the uniform mesh used in the former work.
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Table 3.11 Comparison of the fully developed flow and heat transfer characteristics for
equilateral triangular duct: present study and other available results

fRe Unmax Nur Nuy;

Shah (1975) 13.333 2222 — 1.892

n=1.0 | Schneider & LeDain (1981) | 13.340 — 2.497 1.890
Present Study 13.340 2.230 2.503 1.896

Table 3.12 compares the flow and heat transfer characteristics for a right isosceles

triangular duct obtained in this study and those available in the literature.

Table 3.12 Comparison of the fully developed flow and he"z‘ils transfer characteristics
-~ for right isosceles triangular duct; present study and other availablc results

fRe Upex Nur Nuy;

Shah (1975) 13.154 _— — 1.340

n=1.0 | Schneider & LeDain (1981) | 13.161 —_ 2.358 1.351
Present Study 13.167 2.268 2.350 1.351

S
. -
1 yEN

Tav,
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3.2 Effect of power law index

3.2.1 Fluid flow

Figs. 3.10 (a - h) presenté the computed aiinensionless axial velocity profiles at
x'=0.002 and filly developed condition for different power law indices and various
geometries. The velocity profiles close to t‘fie“ entrance display a local maximum near the
wall. Due to the no-slip condition at the walls to satisfy the continuity equation the
velocity of the fluid must increase in other sections. This increase in velocity can not reach
‘t-he center instantaneously; therefore for small x, bulges appear near the walls. Further
downstream, the rise in axial velocity reaches the center of the duct and the maximum
velocity is transferred to the center. It is evident from Fig. 3.10 (a - h) that for
pseudoplastic fluids the increase in velocity due to the no-slip condition at the walls can
not sustain a bulge in the velocity profile. That is a result of the flatness of the velocity
profiles for these fluids. Therefore these bulges are bigger for larger values of the power
law index. Bunke and Berman (1969) conducted a series of experiments using a laser-
Doppler velocimeter to measure the velocity profile in the entrance region of a circular
tube. They observed overshoots in the velocity profile at Re=304, 206 and 108 in the
entrance section as predicted. Both experimental and analytical results suiiport the
existence of overshoots in the velocity profile in the entrance region of the duct (Shah and
London (1978)).

Close to the wall for the same value of shear rate and consistency index the
apparent visﬁééity of a pseudoplastic fluid is lower than that of a shear-thickening fluid. In
the entrance region of a duct, due to the viscous effects close to the walls and the high
shear rate in the wall region, the velocity of the pseudoplastic fluid islhigher than that of a
dilatant fluid. Rcquirement of mass conservation forces the fluids to 6’6r§9§pondingly slow
down in the core of the duct. Further downstream, viscous effects propagété to the center-

plane of the channel and the influence of the power law index decreases.
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Figure 3.10 (a - h) Dimensionless axial velocity profiles at x'=0.002 and fully developed
condition for different power law indices and various geometries.
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Unae as well as fip,Re and K(x) for different power law indices and various

geometries are presented in Fig. 3.11 (a - d) and Fig. 3.12 (a - I) respectively. Also the
results for U,... and f,,,Re are tabulated in Tables Al through A12 in Appendix A. The
fully developed flow and heat transfer characteristics for different power law indices and
various geometries are given in Table 3.13.

Due to the flatter velocity profile for lower power law index, Upn,. decreases with
decreasing 7 values. From Fig. 3.12 (a - ) and Table 3.13 it is observed that lower »

results in lower K(x) and (), but higher L". Also the power law index has a significant

effect on the pressure drop. The lower apparent viscosity close to the walls for shear-
thinning fluids causes smaller dimensionless pressure drop in comparison with that due to
a shear thickening fluid for the same Re. Thus, from Fig. 3.12 {(a - ) and Tables Al
through Al2 (Appendix A) two important observations can be made concerning the
apparent friction factor, entrance region and power law index. The hydrodynamically
developing section has a higher f,,,Re than the fully developed condition. For the duct
geometries studied for n=0.5, JappRe at x'=0.002 are appreciably higher than f.Re, ranging
from 228 % higher for parallel plates to 884 % higher for the right isosceles triangular
duct. The effect of power law index on f,,Re is also appreciable. For example, at
x"=0.002, fo,pRe of n=0.5 is smaller than £,,, Re of n=1.0 which ranges from 57 % for
right isosceles triangular duct to 72 % forlcross~shaped duct (1 =0.5).
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Figure 3.11 (a - d) Dimensionless maximum velocity for different power law indices and
various geometries, Re=500.
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Figure 3.12 (a-1) Product of apparent friction factor and Reynolds number (f;,, Re) and
incremental pressure drop (K(x)) vs. dimensionless axial distances for different power law
indices and various geometries, Re=500.
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Table 3.13 Predicted fully developed flow and heat transfer characteristics for different
power law indices and various duct geometries.

fRe | Ume | K(w) | L | Nur | Num

n=05 ) 6.321 | 1.665 | 0.632 | 0.098 | 3.950 | 4.744

Circular n=1.0 | 16.005 | 1.996 | 1.268 | 0.054 | 3.659 | 4.363

n=12525231| 2108 | 1.701 | 0.037 | 3.590 | 4.272

n=0.5 | 7.994 | 1.327 | 0.351 | 0.025 | 7.950 | 8.758"|-

Parallel plates n=1.0 {23879 1.491 | 0.763 | 0.611 | 7.541 | 8235

n=125140.694 | 1.546 | 1.089 | 0.050 | 7.442 | 8.109

n=05 1% 5772 | 1.760 | 0.901 | 0.131 | 3.190 | 3.310

Square n=1.0 | 14234 | 2.092 | 1.670 | 0.071 | 2.979 | 3.090

n=125|22248 2.209 | 2.222 | 0.050 | 2.925 | 3.032

n=051{ 6060 | 1.734 | 0.80] | 0.147 | 3.600 | 3.150

Rectangular (4.R.=0.5) | p

U
o~
=]

15.570 | 1.992 | 1475 | 0.084 | 3.388 | 3.024x

n=1.25124.805| 2.053 | 1.935 | 0.052 | 3.350 | 2.998

n=05 1 6860 | 1.600 | 0.639 | 0.i65 | 4922 | 2.717

Rectangular (A.R.=0.2) | p

1.0 |19.077 | 1.714 | L103 | 0.074 | 4.831 | 2.924

n=125|31.456 | 1.749 | 1417 | 0.034 | 4.817 | 2.996

n=051) 6223 | 1.747 } 0.764 | 0.143 | 3.480 | 3.038

Semi-circular n

1.0 | 15.860 | 2.058 | 1.437 | 0.076 | 3.318 | 2.920

n=1.25125365| 2.146 | 1.894 | 0.051 | 3.265 | 2.880
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Table 3.13 continued

n=05 | 5951 | 1.744 | 0.765 | 0.133 | 3.206 | 3.i121

Circular-sector (& = 90° )| n

1.0 | 14.820 | 2.079 | 1.451 | 0.072 | 3.060 | 2.980

n=125|23216| 2181 | 1.901 | 0.048 | 3.013 | 2.937

n=0.5 | 5.761 | 1.792 | 0.837 | 0.143 | 2.936 | 2.510

(Circular-sector (o =60°)| n=1.0 | 14.248 | 2.134 | 1.582 | 0.077 | 2.820 | 2.430

n=1.25|22332| 2.242 | 2.078 | 0.052 | 2.789 | 2.408

n=0.5 | 5455 | 1877 | 1.159 | 0.165 | 2.594 | 1.951

Equilateral triangular | n=1.0 1 13.340 | 2.230 | 2.043 | 0.100 | 2.503 | 1.896

n=125120.978 | 2.343 2.;562 0.069 | 2.478 | 1.880

n=0.5 | 5.383 | 1.916 | 1.236 | 0.175 | 2.409 | 1.370

Right isosceles triangular] p,

1.0 } 13167 | 2.268 | 2176 | 0.112 | 2.350 | 1.351

n=1.25|20.748 | 2.377 | 2.799 | 0.077 | 2.335 | 1.344

n=05 | 5317 | 1.711 | 0.727 | 0.130 | 2.883 | 3.170

Cross-shape (A=025) | p=1.0 | 12.625 | 2.034 | 1.404 | 0.074 | 2.667 | 2.956

n=125|19.356 | 2.148 | 1.835 | 0.053 | 2.628 | 2.903

n=051 5.209 | 1.821 | 0.881 | 0.159 | 2.508 | 2.598

Cross-shape (3 =050) | n=1.0 | 72.479: 2.171 | 1.648 | 0.097 | 2.338 | 2.443

n=1.25|19.349 | 2.287 | 2.121 | 0.068 | 2.300 | 2.4i3
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The location of the maximum axial velocity is different for various geometries.
Table 3.14 summarizes the predicted location for various ducts. It should be noted the

origins of the coordinates are based on Table 2.1 in Chapter 2.

Table 3.14 The locations of maximum velocity for different geometries

Geometries ) 4 VA
Circular — 0.000 0.500
Parallel Plates A.R.=0.0 0.250 -
A.R=0.2 0.000 0.300
Rectangular A.R=0.5 0.000 0.375
AR=10 0.000 0.500
o= 60° 0.829 0.479
Circular Sector a = 90° 0.478 0.478
o = 180° 0.000 0.393
Triangular a=60° 0.866 0.500
o= 90° 1.207 0.472
Cross Shape A=025 0.000 0.533
A=050 0.000 0.667

Secondary flow (cross-stream velocity vector) in the hydrodynamically developii:;g
region due to the growing boundary layer for different power law indices and various
 geometries are presented in Figs. 3.13 (a - c) through 3.16 (a - ¢). The maximum
secondary flow at specified axial distance for higher power law index is stronger which
can be attributed to higher deviation of axial velocity profile from fully developed

condition for higher power law index.
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Figure 3.13 (a - ¢) Secondary flow for different power law indices at x'=0,002: circular
tube {(a)-n=0.5, (b)-n=10, (c)-n=125

—_—

0.200E-0!

(a) (b) (¢)

Figure 3.14 (a - ¢) Secondary flow for different power law indices at x'=0.002: square
duct (a)-n=06.5, (b)-n=10, (¢c)-n=125.
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Figure 3.15 (a - ¢) Secondary flow for different power law indices at x"=0.002: semi-
circular duct (a)-n=0.5, (b)-n=1.0, (c)-n=1.25.

RN

0.800E-01

Figure 3.16 (a - ¢} Secondary flow for different power law indices at x'=0.002:
equilateral triangular duct (a)-n=0.5, (b)-n=10, (c)-n=1.25

M
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3.2.2 Heat transfer

Fig. 3.17 (a - x) and Tables A13 through A24 in Appendix A show the local
Nusselt number and dimensionless bulk temperature for different power law indices, T and
H2 boundary conditions, and various geometries. Fully developed Nusselt number values
for various geometries are tabulated in Table 3.13. Generally the Nusselt number for both
T and H2 boundary conditions increases with decreasing n because of the steeper velocity
gradient in the wall region for lower n values. Due to flow development, this difference

decreases further downstream. For the H2 boundary condition, 8, , is not affected by n.

This can be explained by the fact that the heat flux is the same for different power law

indices, therefore the difference in velocity profiles for different »’s is not reflected in the

bulk temperature,

The influence of # on Nusselt number for both T and H2 boundary conditions and
for all geometries is significant. For example from Tables A13 through A24 at x"=0.0002
the enhancement of Nur, for n=0.5 relative to #=1.0 ranges from about 23 % for the
semi-circular duct to 45 % for the equilateral triangular duct. The corresponding values
for Nuy,, are from 26% for parallel plates to 36 % for right isosceles triangular duct.
Also, the entrance region is very important facjlior whlch influences heat transfer. From
. Tables Al3 through A24, Nur, and Nuy;, for all power law indices studied are noticeably
higher in the developing region than their fully developed values.

At the fully developed “condition for all geometries decreasing » values results in
mcrea:.mg Nur and Nuy, uwcept for the rectangular duct with an aspect ratio of 0.2 for
which Nn,,, ;-decreases. Tlis behavior may be is due to the reversed effect of the wall
velocity gradlent on the short side of the channel.

Fig. 3.18 (a - f) presents the dimensionless circumferential heat flux for the T
boundary condition and the dimensionless circumferential wall temperature distribution for
the H2 boundary condition for different power law indices and various geometries. For
ducts with sharp corners subjected to the H2 boundary condition, due to the lower

velocity in the corner region, the fluid temperature in this region is higher than that close
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to the central part olf‘ the walls, Thus the maximum wall temperature occurs at the cormers
and the minimum wall temperature midway between the corners. At the fully developed
condition because of the constant heat flux around the periphery and the higher wall
temperature at the corners the peripheral average wall temperature increases causing a
reduction of Nu,, relative to its counterpart in geometries without sharp corners (e.g.
parallel plates and circular duct).

For the T boundary condition, for ducts with sharp comers the lower velocity in
the corner region yields a higher fluid temperature close to the corners (lower
dimensionless temperature), lowering the heat flux close to the cormers (Fig. 3.18).
Therefore the minimum wall heat flux occurs at the corners and the maximum wall heat
flux midway between the comers. For the fully developed condition lower heat flux from
the corners causes a lower Nusselt number relative to ducts without sharp comners. As
mentioned earlier the higher velocity gradient close t‘o"“the walls for lower power law index
result in higher h?aat fluxes for pseudoplastic fluids (Fig. 3.18).

Generally for the T boundary condition and for circular cross-sectional ducts as
well as'para]lel piates fhe temperatureﬁ of the fluid close to the walls approaches the walil
temperature; so the temperature gradient of the fluid at the wall is smaller for the T
boundary condition than that for the constant heat flux case. This results in a lower
Nusselt number for the former case. This difference in Nusselt numbers for a duct with
sharp comners is different compared to round ducts or parallel plate chanrels. As was
explained before, for ducts with sharp corners fully developed Nusselt numberé for both T
and H2 boundary conditions are lower than those for circular tubes and parallel plates, but
the decrease in Nusselt numbers due to the presence of sharp corners is more pronounced
for H2 than for the T boundary condition. Thus the difference in Nusselt numbers between
T and H2 boundary conditions decreases and sometimes (depending on the geometry) the
Nusselt number for H2 is less than that for T boundary condition.

In the fully developed region the presence of sharp corners reverses the effect of n

on the velocity gradient close to the comer (Fig 3.10 (h)). Therefore the difference
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between Nuy, of different power law indices diminishes with decrease in the angle of the

corner or increase in the number of corners.

NIIH2
ur

Table 3.15 presents the ratio at the fully developed condition for different power

law indices for the various geometries studied. From this table, for n=0.5, Nugy for all
ur

geometries ranges from 0.55 for the rectangular duct with aspect ratios of 0.2 to 1.2 for
the circular tube which reflects the strong effect of the presence of sharp corner on Nuy: .
To investigate the effect of rounding the comers on Nusselt number two
‘rounded” square channels were tested numerically with rounding corner radii of a/20 and
a/6, where a is the length of the side of the channel. Table 3.15 includes the ratio of
Nusselt numbers for rounded corner square ducts. From this table rounding corner
(RC.=a/6) yields an increase of 5.8 % and 4.8 % in 2 H2 for n=0.5 and n=1.0,
respectively. The effect of the rounding of comers of square duct on the flow and heat

transfer characteristics is explained in detail in Chapter 4.

i
y:
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Table 3.15 %’ﬂ in the fully developed regions for different

ur
geometries.
Geometries Nugz
Nur
n=0.5 | n=10
Circular o — 1.20 1.19
Parallel Plates A.R=0.0 L10 109
A.R=0.2 0.55 0.61
Rectangular AR =0.5 0.88 0.89
AR=10 1.04 104
Rounded Corners RC.=a/20 1.06 1.06
Square RC.=a’6 Lio | 109
a=60° 0.86 | 0.86
7 Circular-Sector a=90° 0.97 0.97
a=180° 0.87 | 0.88
'V a=60° 0.75 | 076
Triangular o =90° 0.57 0.57
A=0.25 L10 Li0
Cross-Shape A=05 104 | 104
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Figure 3.17 (a - x) Nusselt number and dimensionless bulk temperature vs. dimensioniess
axial distance for different power law indices and various geometries, Re=500, Pr=10.
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Figure 3.18 (a - f)  Circumferential wall heat flux (T b.c.) and circumferential wall
temperature (H2 b.c.) for different power law indices and various geometries, Re=500,
Pr=10.
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3.3 Conclusions

Numerical results for the steady laminar heat transfer under hydrodynamically and
thermally developed as well as simultaneously developing conditions of Newtonian and
power law non-Newtonian fluids flowing through various geometries were presented. The
analysis considered the effects of the power law index under both T and H2 boundary
conditions. The favorable comparison of the present results with available experimental
data as well as analytical and numerical results supports the accuracy of this study.

This work has shown that the influence of the entrance region of the channels and
also the effect of the power law index on the flow and heat transfer characteristics can be
significant. f,,,Re for pseudoplastic fluids is appreciably lower than that for dilatant fluids.

For both boundary conditions the local Nusselt number for lower power law index is
noticeably higher.



Chapter 4

Effects of Temperature-Dependent
Viscosity, Viscous Dissipation, and
Prandtl Number

This chapter includes the results of numerical simulation for the effects of several
key parameters on simultanecusly developing laminar flow and heat transfer through
circular, square, semicircular, and equilateral triangular ducts. The pararneters examined
are. temperature-dependent viscosity, viscous dissipation, simultaneous effects of
temperature-dependent viscosity and viscous dissipation, and Prandtl number.

Results are given for both T and H2 thermal boundary conditions as well as
different power law indices. It should be noted that it is not possible to generalize the
results including simultaneous effects of all ‘parameters. Each case must be solved
numerically. However, the results presented in this chapter can be used to anticipate the

influence of the key parameters involved on both the flow and heat transfer characteristics.

4.1 Effect of temperature-dependent apparent
viscosity

T“e apparent viscosity of most liquids decreases with increase in temperature.
Thus fc.r the case of heating the temperature-viscosity coefficient (B) is positive for T and

negative for H2 boundary conditions.
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The effect of temperature-dependent viscosity on the dimensionless central-plane
axial velocity profile for both T and H2 boundary conditions can be observed from
Fig. 4.1 (a - h). Dimensionless maximum velocity for various values of B are presented in
Fig. 4.2 (a-h).

In the case of heating, for both boundary conditions, due to the effects of
temperature~-dependent viscosity velocity and velocity gradients near the wall increasé
(Fig. 4.1(a - h)). Consequently temperature-dependence of viscosity results in lower
maximum velocities (Fig. 4.2 (a - h)).

Fig. 4.3 (a - h) and Tables B1 through B4 (Appendix B) show the effect of variable
viscosity ;n the apparent friction factor for both T and H2 boundary conditions. For the T
boundary condition, the reference temperature for viscosity is the wall temperature. When
variable viscosity (heating case) is considered, the viscosity and velocity gradient in the
momentum boundary layer are higher than that for the case of constant viscosity which
cause a higher dimensionless pressure drop and consequently higher friction factor.

For the H2 boundary condition the inlet fluid temperature is chosen as the
reference temperature, therefore considering variable viscosity results in a lower
dimensionless pressure drop. For example at x"=0.002, f,,, Re for n=0.5, B=1.5 and T
boundary condition increases by about 26 %, 74 %, 24 % and 24 % relative to constant
viscosity condition for circular tube, square, semicircular and equilateral triangular ducts,
respectively. For the H2 boundary condition f,,,Re decreases noticeably only far
downstream in the channel.

Fig. 4.4 (a - h) presents Nuy. and Nuy, . for n=0.5 for various duct geometries.
Nusselt numbers for #=1.0 are given in Fig. Bl (a - h) (Appendix B). Also Nuz, and
Nuys. for n=0.5 and n=1.0 are tabulated in Tables B5 through B8. For both T and H2
boundary conditions considering temperature-dependent viscosity enhances Nusselt
number which is due to the higher velocity close to the walls.

For the T boundary condition, a large difference between the wall and the bulk
fluid temperature exists close to the entrance, therefore considering temperature-

dependent viscosity induces significant changes in the velocity gradient close to the wall.
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On the other hand, the axial velocity profile in the entrance region is quiie flat and the
velocity and velocity gradient close the wall are rather high; thereforg‘“.-‘ the temperature-
dependence of viscosity does not produce large effects on the velocity profile.
Competition between these two factors affects both the pressure drop and the Nusselt
number. For example at x'=(0.0002 the enhancement of Nur. for n=0.5 and B=L5 is
about 18.8 %, 11.7 %, 17.8 %, and 11.5 % relative to the constant viscosity condition for
circular, square, semi-circular and triangular ducts, respectively.

For the H2 boundary condition by reason of small temperature difference between
the channel walls and the bulk temperature and also because of the relatively flat velocity
profiles at locations close to the entrance, the effect of variable viscosity is negligible in
this section. Further downstream the increase in (6,, —6,,) and development of the
velocity make these effects more notable. At x'=0.0062 for n=0.5 and B=-1.5, Nuy;.
increases by only 1.4 % relative to constant viscosity condition for the triangular duct
among all studied geometries, while at x'=0.0//88 increases of 4.9 %, 7.6 %, 8.9 %, and
10.6 % are observed for circular, square, semi-circular and triangular ducts, respectively.
Comparison of the Nur, and Nuy, . results shows smaller effect of temperature-dependent

viscosity for the H2 boundary condition.
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4.2 Effect of viscous dissipation

The Brinkman number is used as a criterion which signifies the importance of
viscous dissipation. It is defined in chapter 2 (Equation 2.20) for both T and H2 boundary
conditions.

The effect of viscous dissipation on the dimensionless center-plane temperature
profile for various duct geometries is displayed in Fig. 4.5 (a - h) while the local bulk
temperature and Nusselt number variations for n=0.5, different boundary conditions, and
for different Brinkman numbers are presented in Fig. 4.6 (a - h) and Tables BS through B8
(Appendix B). The effect of Brinkman number on Nusselt numbers for n=1.0 can be seen
from Fig. B2 (a - h) and Tables B35 through BS.

For both T and H2 boundary conditions, since the highest shear rate occurs near
the wall, the effect of viscous dissipation is most significant in this region. Viscous heating
increases the bulk temperature and results in a decrease of the local Nusselt number,

For the T boundary condition the Brinkman number is negative when the fluid is
being heated. For this boundary condition, in the entrance region due to the highest

velocity gradient close the walls viscous heating is appreciable, while (7, —7})is also

large; thus changes in temperature difference due to viscous heating are not appreciable.
Competition between these two facts influences the value of the local Nusselt number.
Generally due to increase in fluid temperature near the wall, the heat flux from the wall
decreases causing lowering of the Nusselt number. For example at x =0.0002 for n=0.5
and for Br=-2.0 the local Nusselt number decreases about 17.8 %, 14.4 %, 22.0 % and
19.3 % due to viscous dissipation effects for circular, square, semi-circular and equilateral
triangular ducts, respectively.

For the T boundary condition since the temperature difference between the wall
and the fluid bulk is highest in the entrance region, the bulk temperature and fluid
temperature close the wall are still far ﬁ'om‘the wall temperature. Further downstream,
due to the combined effects of viscous heating and wall heating, the temperature of the

fluid close to the wall approximates the wall temperature. Hence the temperature gradient

BN
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at the wall is nearly zero and the local Nusselt number therefore approaches zero. The
zero Nusselt number situations for n=0.5 and Br=-2.0 occur at x =0.00701, 0.00789,
0.00702, and 0.00614 for circular, square, semi-circular and equilateral triangular ducts,
respectively. However, the bulk temperature still is lower than that of the wall (i.e. the
dimesionless bulk temperature is positive). As the fluid proceeds downstream the fluid
temperature adjacent to the wall becomes higher than the wall temperature, which changes
the heating mode to cooling mode (negative heat flux) and Nusselt number assumes a
negative value.

~ Fig. 47 (a - h) shows Nur. , dimensionless bulk fluid temperature and the
dimensionless heat flux through the wall for different duct geometries. As can be observed
from this figure, further into the duct, where the heat flux through the wall still is negative,
the fluid bulk temperature increases to reach the wall temperature, i.e. the dimensionless
bulk fluid temperature becomes zero. Consequently, the conventionally defined Nusselt
number becomes infinite. At locations further downstream, the bulk temperature becomes
greater than the wall temperature (i.e. dimensionless bulk temperature is negative). Since
the heat flux is also negative, the Nusselt number changes to a positive value again. At
further downstream locations competition between the heat flux and bulk temperature
decreases the Nusselt number to an asymptotic value (Fig. 4.7).

For the constant heat flux boundary condition, the Brinkman number is positive for
heating. Since in the entrance region, the velocity gradient close to the walls is large and
the temperature difference between the wail and the fluid bulk is very small, thus the
relative increase in the bulk and wall temperatures is appreciable and the most effect of
viscous dissipation is felt in this region. Further downstream the trade-off between the
increases of 0, and O, retards the effect of viscous dissipation. For example at
x"=0.01188 for n=0.5 and Br=2.0, Nuy;, decreases about 80 %, 75 %, 76 %, and 68 %
due to the viscous heating for circular, square, semi-circular and equilateral triangular

ducts, respectively.
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Figure 4.5 (a - h) Effect of viscous dissipation on center-plane dimensionless temperature
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4.3 Simultaneous effects of temperature-

dependent apparent viscosity and viscous
dissipation

Fig. 4.8 (a - h) and B3 (a - h) demonstrate the simultaneous effects of temperature-
dependent viscosity and viscous dissipation on Nusselt number for both T and H2
boundary conditions for n=0.5 and n=1.0, respectively.

When temperature-dependent viscosity is included in the simulation, both the axial
velocity and velocity gradient close to the walls increase which cause higher viscous
heating when compared to the isoviscous case. Viscous heating increases the fluid
temperature close to the walls, therefore the velocity and velocity gradient next to the
walls increase due to the temperature-dependence of viscosity. Higher velocity close to
the walls enhances the heat transfer for the T boundary condition and decreases the wall
temperature for the H2 boundary condition whiie viscous dissipation has a reverse effect.
Depending on the boundary condition and geometry as well as the value of the power law
index, competition between thes.e two opposing effects determines the Nusselt number.

In the entrance region for the T boundary condition the effects of temperature-
dependent viscosity as well as viscous heating on heat transfer are significant but in this
part the effect of viscous dissipation is less significant than that downstream. Therefore for
the T boundary condition, for some geometries (depending on the power law index) the

temperature-dependence of viscosity has a dominant effect in the entrance region while the

effect of viscous dissipation becomes dominant further downstream.

For the 142 boundary condition the effect of temperature-dependent viscosity is
smallest in the entrance part while the effect of viscous heating is the greatest. Thus for the
H2 boundary condition the effect of simultaneous :temperature-dependence of. viscosity
and viscous dissipation is more pronounced in the entrance section of the channel while

this effect decreases as the fluid proceeds downstream.
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Figure 4.8 (a - h) Simultaneous effects of temperature-dependent viscosity and viscous
dissipation on Nusselt number and dimensionless bulk temperature for different
geometries, n=0.5, Re=500, Pr=10.
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4.4 Effect of Prandtl number

For the T boundary condition the local Nusselt number depends on the heat
transfer from the walls as well as the dimensionless local bulk temperature. Fig. 4.9 (a - b)
presents the dimensionless heat flux through the wall, dimensionless bulk temperature, and
Nusselt number vs. X for different Prandtl numbers. A lower Prandtl number implies faster
thermal development which results in higher bulk temperature (lower dimensionless bulk
temperature) and lower wall heat flux (Fig. 4.9 (a)). Competition between these produces
a lower Nusselt number for lower Prandtl numbers in the entrance region (Fig. 4.9 (b)).
Far downstream where the fully developed condition occurs, the local Nusselt number
approaches a constant value independent of the Prandtl number. Fig. 4.10 (a - b) shows Q.

, 8, , Nur, based on x* as dimensionless axial distance. From this figure it is clear that a
lower Prandtl number results in higher Q. but lower 8, causing higher Nur at a given X"

Fig. 4.11 (a - b) and Fig. 4.12 (a - b) present the effects of Prandt] number on the
local dimensionless wall and bulk temperatures as well as Nuy . as functions of X and x’,
respectively. For the H2 boundary condition due to the faster thermal development for

lower Prandt] number fluids both 6,, and @, are higher at the same X. Competition
between the increasing 0,, and 8,, due to the lowering of Prandtl number results in

lower Nuy,, at a given X. When x" is chosen as the dimensionless axial distance (Fig. 4.12
(a-b)) 8, for a smaller Pr is lower while 8,, is the same. Therefore for the same x’,
lower Pr results in higher Nuy;.. Fig. 4.13 (a - h) and Fig. B4 (a - h) present Nusselt
number distribution for different Prandtl numbers and for various ducts for n=0.5 and
n=1.0, respectively. These results are tabulated in Table B9 through Table B12 in
Appendix B.
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Figure 4.9 (a - b) Heat transfer characteristics vs. X for T boundary condition for
different Prandtl number, Re=500.
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Figure 4.13 (a - h) Effect of Prandtl number on Nusselt number and dimensionless bulk
temperature for different geometries, Re=500.
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4.5 Conclusions

The numerical simulations considered the effects of temperature-dependent
viscosity, viscous dissipation, simultaneous effects of temperature-dependent viscosity and
viscous dissipation, and Prandtl number on simultaneously developing flow and heat
transfer. Results are given for T and H2 boundary conditions and for fluids of different
power law indices.

Viscosity variation with temperature affects the local Nusselt number and also the
pressure drop. For heating, the increase in the local Nusselt number for constant
temperature boundﬁry conditions is noticeably higher than that for the constant heat flux
boundary conditions.

Viscous heating has a very significant effect on heat transfer which can even
change the direction of heat flux for the case of uniform temperature boundary conditions.

~ Results indicates that the Prandtl number is a very important parameter; the lower

. the Prandt] number the higher Nusselt number in the developing region of the channel (for
the same x") .



Chapter 5

Mlscellaneous Geometrlcal
Effects

This chapter covers the results of numerical experiments to evaluate miscellaneous
geometrical effects on the flow and heat transfer characteristics. The effects considered
are: effect of rounding the corners of a square duct, aspect ratio of rectangular ducts, apex
angle of circular-sector channels, and the geometric parameter of cross-shaped channels.
Also, circular-sector ducts and triangular channels with the same apex angles are
compared. Results are presented for both T and H2 boundary conditions and various

power law indices but at fixed values of yhe Reynolds and Prandtl numbers.

5.1 Effect of rounding corners of a square duct

Two radii of curvature, af20 and a6, were chosen for the purpose of simulating
the effect of rounding of th comers. Here a is the side of the rounded comers square
duct. Fully developed values of the flow characteristics and Nusselt number are presented
in Table 5.1. This table also includes the corresponding results for a square duct with
sharp comers to compare the effect of “rounding” of the corners.

Fig. 5.1 (a - d) and Fig. 5.2 (a - d) present Up.. and fz,Re as well as the local
Nusselt number, respectively, for different rounded corner square ducts.

Generally in the fully developed region rounding of the corners increases velocity

and velocity gradient around the comer; therefore requirement mass conservation results
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in 2 reduction in the maximum velocity. For example from Table 5.1 rounding corner of

square duct (R.C.=a/6) for n=0.5 decreases Unax from 1,760 to 1.707.

Table 5.1 Comparison of flow and heat transfer characteristics for rounded
corner square ducts for different power law indices.

fRe | Uner | K(w) | L Nur | Nuy;
R.C.=0.0 3.772 | 1.760 ) 0.901 | 0.131 | 3.190 | 3.310
n=05| RC=a20 | 5924 | 1.719 | 0.742 | 0.121 | 3.270 | 3.461
RC.=a/6 6,193 | 1.707 | 0.721 | 0.116 | 3.431 | 3.764

RC.=00 |14.234| 2.092 | 1.670 | 0.071 | 2.979 | 3.090
n=1.0 | RC.=a/20 |14.604] 2.060 | 1.419 | 0.065 | 3.047 | 3.22]

RC=a/6 115500) 2.051 | 1.408 ) 0.060 | 3.188 | 3.488

RC=0.0 |22.248)| 2.209 | 2.222 | 0.050 | 2.925 | 3.032
n=125| RC.=a/20 |22.895| 2.150 | 1.895 | 0.045 | 2.991 | 3.160
RC=a/6 |24.120| 2.141 | 1.872 | 0.042 | 3.129 | 3.417

Alsc rounding corners reduces the hydrodynamic entrance length which is due to
change in the shear stress around the comers. f,,, Re is aftected by the velocity gradient,
apparent viscosity, and change in the surface in the corner region due to the rounding of
the corner. Close to the entrance, coupling between these three effects causes a decrease
in f.,, Re in comparison with a square duct with sharp corners. As the fluid proceeds
downstream the difference in f,,, Re decreases and finally for the duct with rounded
corners f,,, Re becomes greater than that for a duct with sharp corners. From Fig. 5.1 (c -
d) at x*=0.002 due to rounding of the corners (R.C.=a/6) f.,Re decreases 23.3 % and
14.5 % while at fully developed condition it increases by 7.3 % and 8.9 % for n=0.5 and
n=1.0, respecfively. | |

The rounding of corners of a square duct affects heat transfer which is reflected in
the value of the local Nusselt number. The velocity gradients along the perimeter close to
the corners are important factors in determining the local Nusselt number. Very close to
the entrance the difference; of velocity gradient in the corner region between the sharp and

rounded corners is very:ginall but it increases further downstream. Thus the increase of the
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radius of rounding of the corner enhances the Nusselt number far from the inlet. At the

fully developed condition for #=0.5 this effect increases Nur and Nuy; by 7.6 % and

13.7%, respectively, due to the rounding of the corners of the square duct (R.C.=a/6). As

discussed in chapter 3, Nuy; is affected more noticeably than Nur by the presence of

sharp corners. The ratio—JX;‘H 2 for n=0.5 at the fully developed condition is 1.04, 1.06,
ur

and 1.10 for R.C.=0 (sharp corner), a/20, and a/6, respectively. For engineering purpose

the effect of rounding is rather small.
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Figure 5.1 (a - d) Effect of rounding corners of a square duct on the dimensionless
maximum velocity and apparent friction factor, Re=500.
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Figure 5.2 (a - d) Effect of rounding comers of a square duct on the local Nusselt
number distribution, Re=500, Pr=10.

5.2 Effect of aspect ratio of rectangular ducts

Rectangular channels with aspect ratios of 0.0 (parallel plates), 0.2,0.5, and 1.0
(square duct), were simulated to investigate the effect of the aspect ratio on the fluid flow
and heat transfer characteristics. The effects of the aspect ratio on fully developed
characteristics, on Upax , fopp Re and on the local Nusselt number subjected to both T and
H2 boundary conditions are displayed in Table 5.2, Fig. 5.3 (a - d) and Fig. 5.4 (a - d),
respectively. In the fully developed region the channel with a smaller aspect ratio has
higher velocity and velocity gradient close to the wall, and lower dimensionless maximum
axial velocity. Due to the flatter velocity for pseudoplastic fluids the effect of aspect ratio
on maximum velocity for these fluids is less pronounced than for Newtonian fluids. For
example, the dimensionless maximum velocity in the fully developed region for Newtonian
fluids ranges from 1.491 (parallel plates) to 2.092 (square duct) while for n=0.5 it ranges
from 1.327 to 1.760. The higher velocity gradient. close to the walls for the lower aspect
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ratio duct as expected results in a higher fully developed friction factor (Fig. 5.3). From
Table 5.2 the range of fully developed f.Re is from 5.772 (for square duct) to 7.994 (for

parallel plates) and from 14.234 (for square duct) to 23.879 (for parallel plates) for n=0.5
and n=1.0, respectively. '

Table 5.2 Comparison of flow and heat transfer characteristics for
rectangular ducts with different aspect ratio.

fRe | Unee { K(w0)| L" | Nur | Nup
A.R.=0.0 7.994 | 1.327 | 0.351 ) 0.025 | 7.950 | 8.758
0.5 AR=02 6,860 | 1.600 | 0.639 | 0,165 | 4.922 | 2.717
AR=05 6.060 | 1.734 | 0.801 | 0.147 | 3.600 | 3.150
AR =10 5.772 | 1.760 | 0.901 | 0.131 | 3.190 | 3.310
AR =00 123.879| 1491 | 0.763 | 0.011 | 7.541 | 8.235
n=10 AR=02 [19.077| 1.714 | 1.103 | 0.074 | 4.831 | 2.924
AR=035 15570\ 1.992 | 1.475t 0.084 | 3.388 | 3.021
AR=1.0 }14.234) 2.092 | 1.670 | 0.071 | 2.979 | 3. 090 g
AR=0.0 |40.694| 1.546 | 1.089 | 0.050 | 7.442 | 8.109
n=1.25| AR=02 |31.456| 1.749 | 1.417 | 0.034 | 4.817 | 2.996
AR=05 |24.805]| 2.053 | 1.935 | 0.052 | 3.350 | 2.998
AR=1.0 (22248} 2.209 | 2222 | 0.050 | 2.925 | 3.032

il

n

Decreasing the aspect ratio also enhances the local Nusselt number as the velocity
close to the wall increases. For example at x'=0.0002 for n=0.5, Nur, and Nuy,. vary
from 23 (square duct) to 26 (parallel plates) and from 32*-‘(§quare duct) to 36 (parallel
plates), respectively. As we can see from Fig, 5.4, the enhancement is not the same for
different boundary conditions and the magnitude of the relative increase in Nusselt number
for various boundary conditions is different. In the entrance region, for the small aspect
ratio duct (0.2), Nuy,, is greater than Nuy  while this trend reverses further downstream.
In other words, for a duct with an aspect ratio approaching zero, due to the effect of

imposed constant heat flux on the short sides, Nuy,, does not approach the value for

paralle! plates. For example, for n=0.5 at the fully developed condition Nur =7.950, 4.922,



107
Miscellaneous Geometrical Effects

3.600, 3.190 and Nuy, =8.758, 2.717, 3.150 and 3.310 for ducts with aspect ratios of

0.0, 0.2, 0.5 and 1.0 respectively. For n=0.5,—]§—l;-f£ is 1.10, 0.55, 0.88, 1.04 which shows
ur

the significant effect of sharp comer on Nuy, for A.R.=0.2. Also as explained in Chapter 3

at fully developed region for the rectangular duct of aspect ratio 0.2, due to the opposite

effect of power law index on velocity profiles on short sides, increasing » increases Nuy, .

2.2 22
AR=l0 — Yy L

0 005 01 015 02 025 0 005 01 015 02 0325
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Figure 5.3 (a-d) Effect of aspect ratio of a rectangular duct on dimensionless maximum
velocity and apparent friction factor, Re=500.
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Figure 5.4 (a-d) Effect of aspect :i'atio of a rectangular duct on the local Nusselt number
distribution, Re=500, Pr=10.

5.3 Effect of apex angle of circular-sector ducts

Fig. 5.5 (a - d) shows Upa: , fopp Re for circular-sector ducts of three different apex
angles (). The fully developed flow and heat transfer characteristics are tabulated in
Tables 5.3. From Fig. 5.5 the effect of @ on Upa and fi,Re !shoiiv's] different behavior
depending on the power law index. For example, for n=0.5 and @ =60, fup Re (at
x* =0.0020) and fRe (fully developed condition) is ai:out 17.2 % and 10.1 % higher
than those for a semi-circular duct, but for n=1.0 these values are about 4.2 % and 10.2 %
lower, respectively. For a = 90°, at x* = 0.0020 for fluids with »=0.5 and #n=1.0, f,;, Re
is 5.0 % and 7.8 % lower than the corresponding values for the semi-circular duct. At the
hydrodynamically fully developed condition the corresponding values for £Re are 4.4 %
and 6.6 %, respectively.

Fig. 56 (a - d) displays the local Nusselt number and dimensionless bulk

temperature distribution for circular-sector ducts of different apex angles. From Fig. 5.6 it
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is clear that the effect of the apex angle on Nur. is strongly dependent on x". At the fully

developed condition, Nur for n=0.5 ranges from 2.936 (for a =60°) to 3.480 {a = 180")
and for Newtonian fluids the corresponding range is from 2.820 to 3.318.

Table 5.3 Comparison of flow and heat transfer characteristics for
circular-sector ducts with different apex angles.

fRe | Unae | K() L Nur | Nuy
a=60° 5.761 | 1.792 | 0.837 | 0.143 | 2.936 | 2.510
n=0J5 a=90° 5.951 1 1.744 | 0.765 | 0.133 | 3.206 | 3.121
a=180° 6.223 | 1.747 | 0.764 | 0.143 | 3.480 | 3.038
a=60" 14.248) 2.134 | 1.582 | 0.077 | 2.820 | 2.430
Lo a=90° 14.820) 2.079 | 1.451 | 0.072 | 3.060 | 2.980
a=180"__|15.860| 2.058 | 1.437 0.076 | 3.318 | 2.920
o =60° 22,3324 2.242 | 2.078 | 0.052 | 2.789 | 2.408
wel2s) o=op |23.216| 2181 | 1.901 | 0.048 | 3.013 | 2.937
a=180° 25.365) 2.146 | 1.894 | 0.051 | 3.265 | 2.880

n

For the H2 boundary condition, at the fully developed condition there is a different
effect of apex angles on the Nusselt number. At fully developed condition, for all power
law indices the duct with « =60°possesses the lowest Nuy; while the duct with

a = 90° yields the highest Nuy: .
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Figure 5.5 (a-d) Effect of apex angle of circular-sector duct on dimensionless maximum

velocity and apparent friction factor, Re=500.
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5.4 Comparison between circular-sector and
triangular ducts

Fig. 5.7 (a - d) compares Up and f,, Re for triangular and circular-sector
channels with the same apex angles. Fully developed values of the flow characteristics and
Nusselt numbers are presented in Table 5.4. For @ = 60° and a = 90°, f,, Re is lower for

circular-sector ducts in the entrance region while it is slightly higher far downstream. For
example, at x* =0.0020 and x* =0.02290 for n=0.5, f,,, Re for a circular-sector duct
(a=60°") possesses 40.4 % and 1.3 % lower values than those for an equilateral
triangular duct, the corresponding values for a=90° are 554 % and 19.9 %,
respectively. But the fully developed friction factor for the circular-sector exceeds the
corresponding values for the triangular channels (Table 5.4).

Fig. 5.8 (a - d) shows Nur, and Nuy, . for circular-sector and triangular ducts. For
both apex angles (e =60° and a = 90°) Nuy,, for circular-sector ducts is much higher
than those for triangular ducts in the entire duct. For n=0.5 at x' =0.00020 and

x' =0.00229 for the circular-sector duct withe = 60° Nuypz . values are 6.6% and 21.5 %,
respectively, higher than those for an equilateral triangular duct at the same x* . The
corresponding values for a = 90°are 15.2 % and 54.9 %.

For the T boundary condition close to the entrance for n=0.5, Nur, is about the
same for both circular-sector and triangular channels (for both & =60" and « = 90°);
further downstream the difference increases reaching a maximum value at the fully
developed condition. For n=1.0, at x =0.00020 circular sector ducts (@ =60" and
a = 90°) possess 13.9 % and 15.6 % higher Nur values than those for triangular ducts of

the same apex angles. Further downstream the difference in Nur, between circular sector

and triangular channels for n=1.0 decreases.
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Table 5.4 Comparison of flow and heat transfer characteristics between circular-sector
and triangular ducts with the same apex angles.

fRe | Unee | K{0) | L' Nur | Nuy;
| Circular-sectora =60°__| 5.761 | 1.792 | 0.837 | 0.443 | 2.936 | 2.510

n=0.5 Triangular o = 60° 5,455 | 1.877 | 1159 | 0.165 | 2.594 | 1.951
Circular-sector a = 90° 5.951 | 1.744 1 0.765 | 0.133 | 3.206 | 3.12]
Triangular a = 90° 5.383 | 1.916 | 1.236 | 0.175 | 2.409 | 1.370

| Circular-sectorg =60°_ |14.248) 2.134 | 1.582 | 0.077 | 2.820 | 2.430

n=1.0 Triangular o = 60° 13,340 2.230 | 2.043 | 0.100 | 2.503 } 1.896

Circular-sectora = 90° | 14.820| 2.079 | 1.451 | 0.072 | 3.060 | 2.980
Triangular a = 90° 13.167) 2.268 | 2.176 | 0.112 | 2.350 | 1.351]
| Circular-sector . = 6¢° 22.332| 2.242 | 2078 | 0.052 | 2.789 | 2.408
n=125 Triangular a = 60° 20.978] 2.343 | 2.662 | 0.069 | 2.478 | 1.880
Circular-sectora = 90° |23.216| 2.181 | 1.901 | 0.048 | 3.013 | 2.937
Triangular g = 90° 20.748 ) 2.377 | 2.799 | 0.677 | 2.335 | 1.344

- Triangular — n=10 3 gimrg’ular ’ n=l0
——— reular-Sector ——-
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Figure 5.7 (a - d) Comparison of flow characteristics between the circular-sector and
triangular ducts with the same apex angles, Re=500.
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Figure 5.8 (a - d) Comparison of Nusselt number between the circular-sector and
trianguiar ducts of the same apex angles, Re=500, Pr=10.

5.5 Effec? of geometric parameter of cross-shaped
duct

The effect of the geometric parameter, A, on the flow and thermal performance of
cross-shaped ducts is studied numerically for Re=500 and Pr=10. Fig. 5.9 (a - d) and Fig.
5.10 (a - d) present Upa: , fappRe, and Nusselt number distributions, respectively, for
.~ different values of the geometric parameter (A ) defined in Table 2.1. The fully developed
values for selected fluid ﬂow and heat transfer characteristics are displayed in Table 5.5.
From Fig. 5.9, Upa for a square duct (4 =0.0) falls within the correspondmg range for a
cross-shape duct with /1 0.25 and 4 =0.50. )

From Fig. 5.9, for n=0.5, the square duct (1 = 0.0 ) yields the highest f,,, Re in the
entrance region while the cross-shaped duct with A = 0.5yields the lowest value. Further
downstream the lowest value corresponds to the cross-shaped duct with A =0.25. For
Newtonian fluids the highest pressure drop is presented by square duct and the lowest
value by the cross-shaped channel (A =0.25) over most of the axial length.
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For both T and H2 boundary conditions the choice of duct geometry with higher
Nusselt number depends on the axial length. For example, for n=0.5 at x'=0.0002 the
highest Nur. is obtained with a cross-shaped channel with A = 0.25 while the lowest one
with a square duct. Far downstream, the square duct has the highest Nur.. while the lowest
Nuz, is due to the cross-shaped channel with A =0.5. The fully developed values of Nur
(Table 5.5) emphasize the significant effect of the geometric parameter,A, on heat
transfer.

For the H2 boundary condition, close to the entrance the relative thermal
performance of the duct depends on the power law index. For instance, at x'=0.0002 the
highest Nusselt number for #=0.5 is due to the square duct while the lowest value is given
by the cross-shaped channel with A = 0.5. Further downstream for both »=0.5 and n=1.0
the square duct has the highest Nuy;. while the cross-shaped duct withA =0.5 yields"the
lowest value. Different behavior of the fluid flow and heat transfer characteristics can be
reletcd-to number of the presence of sharp comers and velocity gradient in the corner
region.

In general the cross-shaped duct has the advantage of lower friction factor but it

. results in a lower Nusselt number.

Table 5.5 Comparison of flow and heat transfer characteristics for
cross-shaped ducts with different geometric parameters.

j.'Re Upeax K(m) L Nur Nuy

A.=0.00 3.772 | 1.760 | 0907 | 0.131 | 3.190 | 3.310
05| _A=025 153171711 0.727 | 0.130 | 2.883 | 3.170
A =050 5.209 | 1.821 | 0.881 | 0.159 | 2.508 | 2.598

n

A=000 |14234) 2092 | 1.670 | 0.071 | 2.979 | 3.090
1.0 A=025 |12.625| 2.034 | 1.404 | 0.074 | 2.667 | 2.956 =
1 A=050 112479)| 2171 | 1.648 | 0.097 | 2.338 | 2.443

n

A=000 |22.248| 2.209 | 2.522 | 0.050 | 2.925 | 3.032
n=125| _A=025 |19.356| 2.148 | 1.835 | 0.053 | 2.628 | 2.903
A=050 |19.349| 2.287 | 2.121 | 0.068 | 2.300 | 2.413
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Figure 5.9 (a - d) Effect of geometric parameter of cross-shaped duct on dimensionless
maximum velocity and apparent friction factor, Re=500.
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Figure 5.10 (a - d) Effect of the geometric parameter of cross-shaped duct on the local

Nusselt number distribution, Re=500, Pr=10.
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5.6 Conclusions

The results of numerical simulations are presented which include some
miscellancous effects not documented in earlier chapters. The following conclusions are
made from these numerical éﬁcperiments.

- Rounding of corners of a square duct results in higher fully developed friction
factor regardless of the value of n. Also, rounding of corners enhances the fully developed
Nusselt number for both T and H2 boundary conditions. The enhancement due to the
rounding of cofn"ers is greater for Nuy; than for Nur .

- The effects of the aspect ratio of a rectangular duct on f,,, Re and Nusselt
number are significant. By decreasing the aspect ratio of a rectangular duct, Nuy: does not
simulate the parallel plate channel due to the presence of corners,

- In the entrance region, fp, Re for the circular sector duct (& = 60° and a = 90°)
1s lower than that for the triangular duct of the same apex angles, but it is higher turther
downstream. Fully developed values of Nur and Nuy; for circular sector chanels are

higher than those for corresponding triangular ducts.



Chapter 6

Comparison of Thermal
Performance of Various Dlucts

This chapter deals with comparison of the flow and thermal performance of 14
duct geometries examined in this study; it includes results for fully developed as well as
simultaneously developing flow and thermal conditions. Different ‘Eoodness factors” are

compared for koth T and H2 boundary conditions.

6.1 Fully developed conditions

The fully developed values of £Re, Uns:, K(), and L* for 14 duct geometries

are presented in Table 6,1. Table 6.2 contains the fully developed Nusselt number values
for two thermal boundary conditions (T and H2) and various power law indices.

From Table 6.1 f.Re for n=0.5 ranges from 5,209 to 7.994. For n=1.0 and n=1.25
the ranges of f.Re are 12.479 to 23.879 and 19.349 to 40.692 respectively. The highest
JfRe for all n values belong to parallel plate channels and the lowest to the cross-shaped
channel (A =3.5). The parallel plate channel is followed by the rectangular channel with
an aspect ratio of 0.2. | -

The fully developed dimensionless maximum axial velocity for the channels studied
(Table 6.1) range from 1.327 to 1.916, 1.497 to 2.268 and from 1.547 to 2.377 for n=0.5,
1.0 and 1.25, respectively. The highest values are for right isosceles triangular ducts and
the lowest for parallel plates for all power law indices. The hydrodynamic entrance length

for parallel plates is the shortest while the right isosceles triangular duct requires the
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highest length for development. The hydrodynamic entrance length (Table 6.1) varies from
0.025 to 0.175, from 0.011 to 0.112, and from 0.007 to 0.077 for n=0.5, 1.0, and 1.25,
respectively. For Newtonian fluids the flow entrance region for parallel plates is about 10
times smaller than that for the right isosceles triangular channel. Hydrodynamic entrance
length is one of the parameters which affects the incremental pressure drop. The results
also show the incremental pressure drop for parallel plates is the smallest while that for the

right triangular channels is the highest. For example, X(co) for n=1.0 varies from 0.763 to
2.176; the ratio of the highest to lowest value of K{(w)is about 2.9 emphasizing the

significant effect of the entrance region on the pressure drop for a right tniangular duct.
For the duct geometries studied for n=0.5, Nur ranges from 2.409 for the right
triangular duct to 7.950 for parallel plates (Table 6.2). For n=1.0 and n=1.25 the highest
values 7.541 and 7.442 belong to parallel plate channel, while the lowest ones, 2.338 and
2.300, are for the cross-shaped channel (1 =0.5). Therefore for isothermal walls the
parallel plate channel is superior in heat transfer performance relative to other channels.
For the H2 boundary condition the parallel plate channel has the highest Nuy;
while the right isosceles triangular duct has the lowest Nuyy; for all power law indices. The .
ratio of highest Nuy, to the lowest values are 6.4, 6.1 and 6.0 for n=0.5,/ and 1.25
respectively. Nuy; for channels with sharp corners is lower than that circular tubes or
parallel plate channels. As mentioned in Chapter 3 the effect of sharp corners in the duct

cross-section on Nusselt number is more pronounced for the H2 boundary condition than

for the T boundary condition.
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Table 6.1 Fluid flow characteristics for different power law indices and various geometric configurations for fully developed
conditions.

n=0.50 n=1.00 n=1.25
Geometry
VfRe | Upee | K(@) | L' | fRe | Upax | K() | L" | fRe | Unee | Kle) | L'

O { Circle {6.3211(1.665|0.632|0.098 (16,0051 1.996|1.268 | 0.054 (25.231]2.108 | 1.701 | 0.037

Square | 5.77211.760| 0.901 { 0.131 (14.234] 2.092 | 1.670 | 0.071 [22.248 2.209 | 2.222 | 0.050
)

Rounded

ch;r:;o 5.9241.719(0.742 | 0.121 |14.604] 2.060 | 1.419 | 0.065 |22.895) 2.150 | 1.895 | 0.045

Rounded .

‘fgr::;6 6.193 | 1.707| 0.721 | 0.116 |15.500| 2.051 1.408 1 0.069 24.120 2.141 | 1.872 | 0.042

AR=0.5 |6.060|1.73410.801)|0.147115.570| 1.992| 1.475 | 0.084 |24.805| 2.053 | 1.935 | 0.052

| AR=02 |6.860|1.600)|0.639)| 0.165 19.07% 1.714|1.103 | 0.074 |31.456| 1.749 | 1.417 | 0.034
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Parallel

Plates 7994 |1.327|0.351 | 0.025|23.879| 1.4911 0.763 | 0.011 [40.692| 1.547 | 1.089 | 0.007

Q o= 180° 6.223|1.747|0.764 | 0.143 |15.860| 2.058 | 1.437 | 0.076 |25.365)| 2.146 | 1.894 | 0.051
D o =90 5.951|1.744)|0.765 | 0.133 |14.820| 2.079 | 1.451 | 0.072 |123.216 2.181 1.961 | 0.048
Q =6 5.7611.79210.837 | 0.143 |14.248( 2.134| 1.582 | 0.077 |22.332 2242 2.078)0.052
A o =60 5.455|1.877|1.159 | 0.165 |13.340( 2.230| 2.043 | 0.100}20.978} 2.343 | 2.662 | 0.069
A =90 5.383\1.916|1.2360.175(13.167] 2.268 | 2.176 | 0.112 |120.748| 2.377 | 2.799 | 0.077
[:::] A=025 5.317|1.711|0.727| 0.130 |12.625| 2.034 | 1.404 } 0.074 (19.356| 2.148 | 1.835 | 0.053
Ijj:l A=0S5 5.209|1.821,0.881|0.159 |12.479] 2.171 | 1.648 | 0.097 |19.349| 2.287 | 2.121 | 0.068
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Table 6.2 Nusselt number for different power law indices and various geometric
configurations for fully developed conditions.

Nur Nuy;
Geometry
n=0.50 | n=1.00 | n=1.25 | n=0.50 | n=1.00 | n=1.25
O Circle | 3.950 | 3.659 | 3.590 | 4.744 | 4.363 | 4.272

Square | 3.190 | 2.979 | 2.925 | 3.510 | 3.090 | 3.032

Rounded
Corner | 3.270 | 3.047 | 2,991 | 3.461 | 3.221 | 3.160
R.C.=a20
Rounded

D Corner 3.431 3188 | 3.129 | 3.764 | 3.488 | 3.417
RC.=a/6 .

AR=05| 3.600 | 3.388 | 3.350 | 3.150 | 3.021 | 2.998

AR=02| 4922 | 4831 | 4817 | 2717 | 2.924 | 2.996

Parallel
Plates

]

7.950 | 7541 | 7.442 | 8.758 | 8.235 | 8.109
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a—1807 3480 | 3.318 | 3.265 | 3.038 | 2.920 | 2.880

a=90°)] 3.206 | 3.060 | 3.013 | 3.121 | 2.980 | 2.937

a=60°| 2936 | 2820 | 2.789 | 2.510 | 2.430 | 2.408

a=90° | 2409 | 2350 | 2.335 | 1.370 | 1.351 | L1344

1=025t 2.883 | 2677 | 2.628 | 3.170 | 2.956 | 2.903

i E w=6o" | 2594 | 2503 | 2.478 | 1.951 | 1896 | 1880

C s

6.2 Efféct of cross-sectional factor on fully developed
Jriction factor and Nusselt number

0.5 | 2.508 | 2.338 | 2300 | 2508 | 2443 | 2.413

Table 6.3 presents the ratio of the cross-sectional area based on the hydraulic
diameter definition over the actual geometric area (here called the cross-sectional factor)
for the noncircular duct geometries examined. In Table 6.3 the inset circle describes the

fictitious area calculated according to the classical definition of the hydraulic diameter of

3
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the channel. Also, Fig. 6.1 shows the fully developed values of £.Re and Nusselt numbers
vs. their respective cross-sectional factors. Bejan (1984) has nnted an approximate
proportionality between the fully developed values of £ Re and Nu and the degree to which
D, misjudges the wall-to-wall distance, As can be see_rl from Fig. 6.1 the values are
scattered. It is clear that the flow and heat transfer characteristics are affected in a
complex way by the effects of channel georﬁetry and a simplistic modei based on Bejan’s
factor can not be expected to hold over a wide range of duct geometries. The relationship
appears reasonably good if information on some noncircular ducts is removed from the

figure.
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Figure 6.1 Fully developed values of /. Re and Nusselt numbers vs. cross-sectional factor.
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Table 6.3 Cross-sectional factors for various duct geometries.

xD} |4 xD; /4 ':
Geometry A, Geometry A,
O Circle | 1.000 @ a=180°| 0747
N Square | 0.785 a=90" 0.774
N/ ,
Rounded
i Corner | 0.819 ' a=60"] 0.709
RC.=a20 .
7 N Rounded
. Corner | 0.889 : a=60"| 0.605
S RC=al6
C Y] | ars| oo Q woop | 0539
I ( ) AR=02| 0.436 © | 4=0.25 0736
S .
Parallel
@: Plates | 1571 K:):l A=0.5| 0589
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6.3 Comparison of f.,pRe for different geometries

Values of f,;, Re in the entrance region at different dimensionless axial locations
are tabulated in Tables Al to Al2 (Appendix A) for different power law indices and
various cross-sectional configurations.

. Due to the short length of channels used in heat exchangers the entrance region
can be very important and most of the pressure drop could occur in this section of the
channel. This fact is confirmed by the computed results of this study. For example at
x"=0.0229 for n=0.5, f,,, Re =11.80, 12.20, 11,64, 11.99, 14.09, 11.20 for parallel plates,
square, circular, semicircular, equilateral triangular and cross-shaped (4 =0.5) ducts,
respectively. These imply 48 %, 111 %, 84 %, 93 %, 158 %, and 115 % higher values of
Jaopplte than their respective fully developed values (f.Re).

Fig. 6.2 (a - ) presents f,,, Re for different duct geometries. This figure refers to

the parallel plate channel, the right isosceles triangular duct, and cross-shaped channel

(A =0.25) since these represent the limiting geometries in term of their J,,,,Re values. The

remaining duct geometnes fall within these bounds. The circular tube is also included in
Fig. 6.2 (a - ¢) for comparison. The right isosceles triangular channel offers the highest
pressure drop in the entrance region regardless of the value of n. At x*=0.0229 for n=0.5
among 14 geometries studied the highest f.,, Re, 14.46, is for the right isosceles triangular
channel while the lowest value, 10.90, is for the cross-shaped (1 =0.25) configuration.
For n=1.0 and n=1.25 at x*=0.0229 the highest values of f,;,Re, 32.38 and 52.79, are for
parallel plates and the lowest values, 25.62 and 37.70, for the cross-shaped duct
(A=025).

SN
n
i

e
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Figure 6.2 (3 - ¢) fupp Re vs. x* for different geometries at Re=500 (a)- n=0.5,
. (b)- n=1.0, (c)-n=1.25.
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6.4 Comparison of entrance region Nusselt numbers
for different geometries

_ Computed Nusselt numbers for different geometries and various power law indices
are presented in Fig. 6.3 (a - ¢) and Fig. 6.4 (a - ¢) for the T and H2 boundary conditions,
respectively. The highest values of Nur,. and Nuy,. over the entire length of the duct
belong to the parallel plate channel for all power law indices except for Nur, of n=1.25
very close the entrance. The lowest value of Nuz, for n=0.5is for the square duct close to
the inlet and for the cross shape (A1 =0.25) over rest of the channel except further
downstream which isosceles righ't triangular duct possesses a minimum value. For the H2
boundary condition lowest values of Nuy,. are yielded by the right isosceles triangular
duct while the highest values are for parallel plates over the entire length of the duct.

Nur. and Nuy,, for different power law indices and various geometries are
tabulated in Table A13 through A24 (Appendix A).

TN
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6.5 Goodness factor comparison

Since a variety of surface configurations is being used in compact heat exchanger
design, surface selection which governs the channel geometry for fluid flow is an
important task. Compact heat exchangers are manufactured for different applications and
therefore have different performance criteria depending on the application, e.g. minimum
material cost, minimum operating cost, minimum volume, minimum pressure drop,
maximum heat transfer rate, etc. Surface selection depends on the objective function'
chosen which should be minimized or maximized.

Several goodness factors have been defined in the literature for compact heat
exchanger surface performance comparisons. These have been reviewed by Shah (1983b),
Webb and Bergles (1983), Webb (1981), Kays and London (1984). Among the selection
criteria proposed, two important ones for compact surfaces are : minimum cross-sectional
area (ﬂow"'a{ea) and minimum volume for a specified duty. These two criteria can be
obtained byr_ comparison of the flow area goodness factor (Nu/f.Re) and also by
comparison of the volume goodness factor (heat transfer coefficient (h) and pumping

power (P)) which are defined in the following sections.

6.5.1 Area goodness factor comparison
Nuf f. Re can be expressed in the following forr:

Nu Kk hAdu hAdm k, ©1)
f-Re 2KApDMA. 2p"KApA™ Dy '

The left hand side of equation (6.1) is a constant for the fully developed condition
for a specified fluid and boundary condition and duct geometry. Equation (6.1) shows that
Nu/ f.Re is inversely proportional to 4. if the following parameters are kept constant. 1)

Reynolds number, 2) heat transfer per unit temperature difference, 3) Ap, 4) hydraulic

1 When one of the performance criterion has been defined quantitatively and should be minimized or

maximized, it is called an “ objective function ™.
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diameter. Clearly, a duct with higher Nu/f.Re is desirable because it needs a smailer flow
cross-sectional area. A smaller flow area can produce a significant saving in the mass of
the heat exchanger.

Table 6.4 presents computed Nu/ f. Re values for different power law indices for
both T and H2 boundary conditions. From this Table for h=0.5, Nu, [ f. Revaries from
0.448 for the right isosceles triangular duct to 0.994 for parallel plates. The ranges of
Nu_[f.Re for n=1.0 and n=1.25 are 0.178 to 0.316 and 0.112 to 0.183, respectively.
The highest value belongs to parallel plate channel and the lowest value to the right
isosceles triangular duct. For the H2 boundary condition for all power law indices, again
the parallel plate channel has the highest values viz. 1.10, 0.345, and 0.199, and the right
triangular channel possesses the lowest values viz. 0.255, 0.103, and 0.0615 for n=0.5, 1.0
and .25, respectively. The ratio of the highest value of the area goodness factor to the
lowest value for the H2 boundary condition is always higher than that for the T boundary
condition. For n=0.5 this ratio is 4.314 for the H2 boundary condition while for the T
boundary condition it is only 2.219. This also emphasizes the significant effect of sharp
comners on Nuy, .

Based on Table 6.4 the parallel plate channel needs a smaller flow area to produce
the same heat transfer per unit temperature difference and the same pressure drop when
the hydraulic diameter and Reyno!;is number are constant. For instance, for n=0.5
equation (6.1) gives: 'i

(g1 Re),, _(4)
(Nuy /f'Re)R.T (4)

(AG)P_P
(4

(NuHZ/f‘Re)P.P = (Ac)R-T =4314 6.4
(Nu.'{?/f'Re)R,r (Ac)p.p I Y

(Ac)p
£ =0.232 6.5
@), ©3)

for the T boundary condition: RL 2219 (6.2)

PP

=0.45] (6.3)

for the H2 boundary condition:
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The subscripts P.P and R.T refer the parallel plate channels and the right isosceles
triangular ducts, respectively. Therefore parallel plate channels need 54.9 % and 76.8 %

smaller cross-sectional area in comparison with the right triangular duct for the T and H2
boundary conditions, respectively. |

If we consider constant flow rate condition instead of constant Reynolds number,
- Nu, [ f.Reis icversely proportional to 4™ (Equation 6.1). In this case the parallel plate
channel for T and H2 boundary conditions need 41.2 % and 62.3 %, respectively, smaller

cross-sectional area in comparison with right isosceles triangular duct.
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Table 6.4  Nuff.Refor various power law indices and duct geometries for fully
developed condition, constant property fluids.

Nu./f.Re Nuy,[f.Re
Geometry 7-___
n=0.50 | n=1.00 | n=1.25 | n=0.50 | n=1.00 | n=1.25
O Circle 0.625 | 0.229 | 0.142 | 0.751 0.273 0.169
Square | 0.553 | 0.209 | 0.131 | 0.573 | 0.217 | 0.136
Rounded '
Corner | 0.552 | 0.209 | 0.131 | 0.584 | 0.221 0.138
RC=a?20 .
Rounded
D Comer | 0.554 | 0.206 | 0.130 | 0.608 | 0.225 | 0.142
RC.=a/b .

AR=05 | 0.594 | 0.218 | 0.135 | 0.520 | 0.194 | 0.121

ar=oz | 0718 | 0253 | 0153 | 0396 | 0.153 | 0.095

Parallel

0994 | 0.316 | 0.183 | 1.100 | 0.345 | 0.199
Plates

h
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Q a=180° | 0.559 | 0209 | 0129 | 0.488 | 0.184 | 0.114
D a=%" | 0.539 | 0.206 | 0130 | 0.524 | 0.201 | 0.127
a a=60° | 0.510 | 0.198 | 0.125 | 0.436 | 0.171 | 0.108

i E a=60 | 0.476 | 0.188 | 0.118 | 0.358 | 0.142 | 0.090
A “a=30° | 0448 g.;7s 0.113 | 0.255 | 0.103 | 0.065
| [:::] | 1=0.25| 0.542 | 0.211 | 0136 | 0.596 | 0.234 | 0.150
- lf\::] ',1= o5 | 0482 | 0187 | 0.119 | 0499 | 0.196 | 0.125

6.5.2 Volume goodness factor comparison

The heat transfer coefficient (h) and pumping power (P ) can be written in the

following form:

o

p

Apm

1

E'=

| Sl

spm
pA

O'=hd(T,-T)=hpV(T,-5) , h=TeK

(6.6)

(6.7)
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where [’ is surface compactness. We assume our objective is to reduce the overall
exchanger volume (by selecting appropriate geometric configuration) ai the same flow
rate, the same heat transfer per unit temperature difference, and also the same
compactness (the same hydraulic diameter) and pressure drap. The following discussion
shows the calculatlon of the appropriate dimensions for parallel plates in comparison with
the right triangular duct for n=0.5 based on fully developed results. This result is shown as
an illustration.

For the same (' and temperature difference (7., - 7,) from equation 6.6 :

1 1
hAR' V' =constant => h= — or — 6.8
gV =co = or ©8)

“Therefore higher # indicates lo{%‘qr heat transfer area {also lower volume). Hence for a
constant property fluid Nu can be used instead of A for comparison.
From Table 6.2 for n=0.5 :

Nu Ni
Mordop _ 3500=407  gng Miso)ee 6.393 = 2rr (6.9)
( ”T) RT AP.P (N Uiz )R.T AP.P
Therefore, for the T boundary condition : App=03034,, ,and
for the H2 boundary condition : A, =0.156 A,

Thus for the same pumping power parallel plates need 69 7% and 84.4 % lower
heat transfer area (and also smaller volume} in comparison w1th the right triangular duct
for the T and H2 boundary conditions, respectively.

| For the same pressure drop and flow rate, from the computed area goodness

factor, 41.2 % and 62.3 % less flow area is required for the parallel plate .channeﬁ;‘

comparison with a right triangular duct. Since flow rate and pressure drop are the same

the pumping power will also be the same for both channels. Since the hydraulic diameter is

the same for both ducts, the length necessary for parallel plates is less than that required
by the corresponding right triangular channél. Thus,

_4‘4c_4_A¢£ A,}"" (4.)5p L

" r 4 T Ay (A)er

(6.10)
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Using the results obtained for area and volume goodness factors, for the T boundary
Lpp

condition : =0.515 ,and (6.11)
R.T

for the H2 boundary condition : | Ler _ 0.414 (6.12)
. RT

Therefofé'_-jihe length necessary for parallel plates is 48.5 % and 58.6 % shorter than that
for the right triangular duct for T and H2 boundary conditions, respectively.
Based on the new dimensions, the operating Reynolds number and Prandtl number

are necessarily different for-parallel plates :

. 2
pu'Dy  m Dy

Re= = 6.13
TR, kAT ©.13)
n-1
kC [“—) -
°r kC m
Pr= Dh = 2 ’p - (6.]4) b
K KD 4™ g
.‘i‘l\. AV
Bor the T boundary condition : Repe _ ( °)'§'_f, =2.219 (6.15)
‘—l‘:_—;_._‘:‘:\“ Re R.T ( A")P,P

L P (4
QI Y .16

e _ }3 r{a:r ) (Ac)p.r

|
- A Z-n'\;_,‘
For the H2 boundary conditi: n : Repe _ ( °)§;’; =4.3]4 6.17)
| Repr  (4.),,
Pr, a4
ee )fj-',' =0614 (6.18)
Pres (Ac)P.P

Thus the operating Re for parallel plates is higher than that for the right isosceles
triangular duct while the operating Pr is lower for both T and H2 boundary conditions.
If the objective is to have the same E’(pumping power per unit heat transfer area),

for constant flow rate the pressure drop will be different in each duct. From equation 6.7 :
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Appp _ App

For the T boundary condition : —=L=—2L.=0.303 (6.19)
APR.T AR.T

For the H2 boundary condition : APep _ App _ 0.156 (6.20)
ADpr  Ags

Thus parallel plate channels will have 69.7 % and 84.4 % lower pressure drop than the
right triangular duct for T and H2 boundary conditions, respectively. Consequently, the
parailei plate channel possesses the advantage of 69.7 % less heat transfer area and 69.7 %
lower pressure drop for the T boundary condition and 84.4 % less heat transfer area as
well as pressure drop for the H2 boundary condition in comparison with the right
triangular duct. To obtain these advantages the cross sectional area for parallel plates is

larger, however. From equation 6.1 for n=0.5 :

1.5
(Nuj,./‘]".}'\'8)‘,,_P _ A:‘)R.T Apyr =2219 (6.21)

(
(Nur/f -Re)g.r ) (Ac)fp App p

for the T boundary condition:

A
and (Ader _ 1 303 | (6.22)
N A
For the H2 boundary condition: (Nats/ /) ( )R r AP =4.314 (6.23)

(N”Hz/f)g (A )” Appp

A
and (Ao)pr _ 1302 | (6.24)

(4)er
Thus for both boundary conditions parallel plate channels will require about 30.2 % larger
flow area in comparison with that for the right triangular duct.

Similar calculation can be madé‘féi the-developing section of different geometries
based on the mean Nusselt number and:pparent friction factor which needs iterative
solutions and the results are additionally dependent on the length of channel used. These
are not presented in this thesis. The mean Nusselt number for different power law indices
and various geometries are given in Tables C1 through C12.

Generally the parallel plate channel has better thermal performance but heat
exchangers taking advantage of this simplest geometry seem to be impractical. Table 6.4
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shows the thermal performance of various geometries. For the T boundary condition the
rectangular duct with small aspect ratio is better geometry than others after parallel plates.
For H2 boundary condition the circular duct, rounded corner square duct or the cross
shape channel (4 =0.25) are better geometries. Thus best practical geometry after the
circular tube with high thermal performance (for H2 boundary condition) is the rounded
corner square or cross-shape channel (depends on power law index).

In choosing heat exchanger configuration many other criteria must be considered,
e.g. structural stability, operating costs, manufacturing costs , etc.. Therefore selection of
the geometry is not only governed by the thermal performance and pressure drop
considerations. The total capital and operating expenses must also be considered.

It should be noted that triangular cross section channels and other ducts with low
thermal performance may fulfill other specific criteria and may find other special
applications. Note that the difficulty and cost of fabrication of the non-circular ducts as
well as their maintenance problems are not considered in this discussion. For engineering

design these factors must be considered as well.

6.6 Conclusions

This chapter compares the flow and heat transfer‘:),j;:hﬁracteristics in the entrance
region and also under fully developed conditions between‘ different geometries. For fully
developed condition, f.Re for parallel plates has the highest value while theki;west value
belongs to cross-shaped channel (4 = 05 ).for all values of the power law index. Highest
fully developed Nusselt number for noth T and H2 boundary r'ondmons is obtained with
the paralle} plate channel while the right isosceles tnangular uas the lowest value of Nuy; .
Lowest Nur is due to the right isosceles triangular duct and cross-shaped channels
(A =0.5) depending on the value of the powér law index.

In the entrance region the parallel plate channels give the highest Nuy;. and Nur,

values.
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Based on the goodness criteria discussed in this chapter, for the T boundary
condition the rectangular channel with small aspect ratio is a practical geometry with high
thermal performance among geometries studied. For the H2 boundary condition, next to
the circular tube rounded corner square duct and cross-shaped channel (4 =0.25) are
better geometries than others. It should be noted the parallel plate channel has the highest
thermal performance but this geometry is not necessarily the best from the overall

engineering viewpoint,

1y



Chapter 7

Experimental Studies

This chapter deals with an experimental study of developing laminar flow and heat
transfer to Newtonian and viscous non-Newtonian fluids flowing in straight ducts of semi-
circular and equilateral triangular cross-sections. The thermal boundary condition
employed is constant heat flux on the lower plate while the other sides are insulated.

The objectives of the experimental study were:

1- To measure the criticai Reynolds number and static pressu;gj distribution in the entrance
fegion for semi-circular and equilateral triangular ducts. \\
2- To obtain the local Nusselt number distribution over a range%f Reynolds and Rayleigh

numbers.

3- To validate the numerical predictions.

7.1 Experimental apparatus

A basic schematic diagram of the once-tﬁrough experimental rig is shown in Fig.
7.1. The flow loop consists of a Monyo-type pump, an overhead tank, a calming section,

the test secticn, a motionless mixer, and two reservoir tanks.

7.1.1 Flow system

The working fluid is drawn from the supply reservoir tank (380 liter capacity) by a
0.5 h.p. Monyo-type pump to an overhead tank (Fig. 7.1). The Monyo-type pump is used

in order to reduce possible shear degradation of the polymer solution. The constant head



145
Experimental Studies

tank is made of PVC (180 c¢m high and 20 ¢m diameter). It eliminates fluctuations in the
flow rate caused by the pump. A vent is connected to the top of the overhead tank to
debubble the solution.

Fluid travels by gravity from the overhead tank to the calming section through a
flexible hose and a valve, The calming section is a PVC tube of 10 cm diameter and 60 cm
length and helps to establish a uniform velocity profile just upstream of the test section.
The calming section is connected to the plexiglas tube of circular cross-section at one end
and a semicircular or equilateral triangular cross-section at the other end. The length of
this tube is 60 cm and its cross-section changes from circular to semi-circular or tnangular
graduallw to mmmuze flow distortion due to transition in its cross-sectional shape.

A stainless steel honeycomb is installed in the pipe just upstream of the test section
to obtain a uniform velocity profile at the inlet to the test section. The fluid passes through
the test section and a motionless mixer and then to a second reservoir of 380 liter capacity.

The mass flow rate is determined by measuring the weight of fluid flowing in a
given time. The test section was placed on two supports and is designed to be inclined and
/ or rotated for future studies.

The dye injection technique was used to determine the critical Reynolds number. A
dye was injected through a hypodermic needle at various locations of cross-section in the

duct.
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1 & 8- Reservoir Tanks
2- Monyo-type Pump
3- Overhead Tank

4- Calming Section
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Figure 7.1 Experimental apparatus
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7.1.2 Test section

The test sections used in this study were: (1) a semi-circular cross-sectional
channel of 29' mm radius and 250 cm long and (2) an equilateral triangular duct with 29.6
mm sides and 250 cm long. Both test sections were made of plexiglas to permit flow .
visualization.

Ten pressure taps were installed on the top side of the test sections to measure the
static pressure variation along the length of the channels. Close to the entrance, due to the
high axial pressure gradients, the distance between adjacent pressure taps was small; it was
increased further downstream, For each tap, a 3 mm hole was drilled through the_,:"'-.:j"r;ct wall
and the burr was carefully removed. After drilling holes the inside walls of the charnels ™
were polished. A capillary stainless steel tube was used to fabricate the pressure taps. The
taps were connected to a small cylindrical drum by plastic tubes and valves. The drum was
coupled to a pressure transducer. The pressure tap in the inlet was connected directly to
pressure transducer in order to measure the pressure drop from the inlet. The pressure
transducer was calibrated before use. An inclined manometer with a Meriam fluid (specific
gravity equal to "1.75) was used for a second check of the pressure transducer calibration.

For heat transfer studies the bottom plate of the test sections was held at constant
heat flux while the other walls were insulated. A heater which maintained a uniform heat
flux and minimized wall conduction effects was required to meet the constant heat flux
boundary condition (H2). A stainless steel foil (Goodfellow Co., FE080240) of very small
thickness (0.05 mm) was Used to minimize the temperature variation across the thickness
of the wall and also axial and peripheral thermal conduction. This method pro;ided the
cloe:.est possible approximation to the constant heat flux boundary condition (Ei2) on the
heated surface. The foil was bonded to the surface of the plexiglas and was heated by
connecting it to a d.c. power supply. To miinimize heat losses ;Zpolystyrene foam
insulation was wrapped around the ducts,

The test section was heated by passing a direct electrical current through the foil.

The rate of heat generated is /°R where / is the current and R is the electrical resistance



148
Experimental Studies

of the foil. The electrical resistance of the foil is dependent on its resistivity, its length,
width, and thickness. The temperature coefficient of resistance is given in Appendix D
(D.1). Due to the very small magnitude of the temperature coefficient of resistance the
resistance variation with temperature is negligible. Also, because of the uniform width of
the foil in the entire channel, the resistance varies linearly with axial distance.

A 10 kW power supply was used to supply dc power to the foil. The test section
was isolated thermally and electrically from both upstream and downstream pafts of the
flow rig. Each end of the test section was connected to bus bars which provided electrical
connections to the test section. The electrical resistance of the test fluid (distilled water
and Carbopol 934 solutions) in comparison with the foil is negligible; therefore the amount
of electrical current flowing through the fluid could be ignored.

Twenty seven, 24 gage iron-constantan thermocouples were located through 1.5
mm holes drilled on the bottom plate of both test sections to measure the temperature of
the heating foil. The thermocouples measured the foil temperature at 9 axial stations, each
station employing three thermocouples. The locations of the thermocouples were along
the midplane of the bottom plate and along two rows at locations 9 mm and 14 mm from
the center. To check for symmetry about the midplane some thermocouples are positioned
symmetrically on the opposite side. Due to the larger temperature variation closer to the
entrance, thermocouples in this region were more closely spaced. The spacing between
thermocouples increased with downstream distance, A thin layer of Omega resin 400 was
used to cement each thermocouple bead to the foil and to prevent any electrical
interference which might affect the thermocouples reading. All thermocouples (and also
pressure transducer) were connected to the selector switch box (Fig. 7.1) which is capable
to measuring seven reading simultaneously.

Two ungrounded iron-constantan thermocouples were used to measure the inlet
and outlet fluid temperatures. Any temperature gradients in the fluid leaving the test
section were destroyed by the motionless mixer. The resulting * mixing cup “ temperature
of the fluid was measured by the exit thermocouple. The motionless mixer contained of
four baffles and was insulated by a fiber glass blanket.
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From the averaged bottom plate temperature at various axial locations and the inlet
and outlet fluid temperatures, the local bottom plate Nusselt number was calculated as
shown in Appendix D (D.2). 5

7.2 Test fluids

Distilled water and partially neutralized 0.5 % by weight aqueous solutions of
Carbopol 934 (carboxy polymethylene a product of B.F.Goodrich chemical company)
were used as the test fluids. Carbopol 934 solutions are viscous power law fluids as shown
by Yoo (1974), Lawal (1985) and also verified in the present work.

The Carbopol 934 solution was prepared in the supply reservoir tank (380 iiter
capacity). A mechanical mixer (0.5 hp) was used to mix a pre-determined quantity of
Carbopol powder which was added gradually to distilled water. Special care was taken to
avoid agglomeration of the powder. After all the powder was added to the distilled water,
stirring of the solution was continued for at least 8 hours to obtain a homog. "sus solution
and to bring its rheological properties to steady values before experiments were
performed. The solution were allowed to stand for about twenty four hours; small lumps
of Carbopol powder floating in the solution were removed by screen.

For partial neutralization, a sodium hydroxide solution was added to the Carbopol
solution while stirring. The solution was mixed vigorousily to assure a homogenous
solution. The neutralization step enhances the apparent viscosity and decreases the power
law index of the solution; the values of both apparent viscosity and power law index

depend on the degree of neutralization.

7.2.1 Physical properties of Carbopol solutions

For Carbopol 934 solutions the physical properties, e.g. density, thermal
conductivity and heat capacitjf have been reported by several investigators (Yoo (1974),
Cho and Hartnett (1985) and Irvine, Jr (1983)). The measurements of Yoo (1974) indicate
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that the density and thermal conductivity of Carbopol 934 solution (0.5 %) differ by 0.5 %
and 1.7 % respectively from the properties of distilled water. Also as reported by Yoo

(1974), the heat capacity of Carbopol solution (0.5 %) is the same as heat capacity of
distilled water. .‘

7.2.2 Rheological measurements

The Carbopol solution was sampled before and after each experimental run. The
rheological properties (consistency index, and power law index) were measured over a
range of temperatures using a Haake rotational viscometer (Model RV20, Haake Hess-
Technik, Karlsruhe, Germany). The shear rate range was 10-500 sec’’ which corresponds
to the range of conditions encountered in the experiments.

Typical plots of the shear stress vs. shear rate obtained from the rheometer are
shown in Fig. 7.2 (a - b) for a 0.5 % Carbopol solution at two neutralization levels. These
log-log plots confirm the validity of the power law model for these solutions. The power
law index is obtained from the slope of the curve and the consistency index from the
intercept. The flow curves were obtained at various temperatures (20, 25, 35, 50° C).
Additional information about Fig. 7.2 is given in Appendix D (D.3). The data shown in
Appendix D indicates the power law index is constant at all temperatures while the
consistency index varies appreciably with temperature. The following correlations were

obtained for the two solutions to represent the temperature dependence of the consistency

index.

r BT

k=a'e (7.1)

For solution#1: a'=0.82! grsec™ /em, b =-0.00334 °C"'
For solution #2 : a’ =2.929 grsec™ /em, & =-0.00364 °C"

The rheological measurements for two fluid samples taken before and after
selected experimental runs confirmed that no degré:dation of the Carbopol solutions

occurred during the experiments. The absence of degradation was expected because of the
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flow loop is a once through system and also because a Monyo-type pump was used in the

experiments.

L
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Figure 7.2 (a - b)  Shear stress vs. shear rate for partially neuiralized Carbopol 934
solutions neutralized to different levels.
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7.3 Results and discussion

For both channels the critical Reynolds number and pressure drop measurements
were obtained under isothermal conditions. For the heat transfer study a uniform heat flux
was applied to the lower plate while the rest of the duct walls were insulated. To check
reproducibility of the pressure drop and Nusselt number results runs were made under
identical conditions. The results were found to be repeatable within 2.4 % for pressure
drop and within 3.3 % for the local Nusselt number.

The ranges of dimensionless parameters were:

e Newtonian fluid (distilled water):

Re=L%Dr _ 545 1074
J7i

_#6, _
K

6.84 (7.2)

2 ¢ a0
Gr =£—1-)-"£g—g =9.03x10° —349x10°
H

Ra=Gr.Pr=6.13x10°-227x10
s Viscous non-Newtonian fluids (Carbopol 934 solutions)

For pressure drop study:
Re=2"Dh _ 5341155 FE
I.:‘J .

Lme el

For heat transfer study:

Re = c-"Dh
k,

0

=3.16-19.65

n=l
ez
Pr=—— "2 =383-1412
K

2fl+2mn 2=2n
kK
Ra=Gr.Pr=202x10"-172x10°

All physical properties appearing in the dimensionless numbers are calculat_cd: at

(1.3)

Gr—

=14.33-43165

the inlet fluid temperature.
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7.3.1 Critical Reynolds number

Transition from laminar to turbulent flow in triangular ducts was studied by Eckert
et al. (1956) using a smoke injection technique. They located a smoke probe at different
locations from the apex of triangular ducts and measured the critical Reynolds number.
They used two isosceles triangular ducts with apex angles of //.5"and 24.8°. Based on
their data over a wide range of Reynolds number both laminar and turbulent flows co-exist
side by side within the channel, extending from laminar flow close to the comers to
turbulent flow at the centroid of the triangular ducts. This fact is confirmed regently by
Mikic et al. (1994) for an isosceles triangular duct with a /2° apex angle.

In the present investigation dye injection was used to visualize the distilled water
flow and to obtain the critical Reynolds number. The dye solution was prepared using
TELON Blue powder (Bayer Co.) dissolved in distilled water.

The dye was injected through a small stainless steel probe bent at a 90°angle. The
injection leg was located parallel to the flow direction; it could be moved along the
symmetry lines of the semi-circular and equilateral triangular ducts. At each specific
location of the probe the critical Reynolds number was measured which showed a wide
range of Re..; depending on the distance from the corer.

Dye injection indicated existence of fully laminar flow everywhere in the semi-
circular test section for Re <1250 and in the triangular duct for Re < 1000 . Fig. 7.3 (a -
b) presents measured Re.,; vs. distance from the corner for the equilateral triangular duct
and the top point of the semi-circular duct on the symmetry lines of the channels. For the
semi-circular duct for Re > 1250 dye injection displayed very small amplitude oscillations
at a specific location of the cross-section (Y=0.00, Z=0.39) on the symmetry line. This
point is a positicn where (as shown by numerical results) the maximum axial velocity
occurs. For the triangﬁlar duct Re., is /000 at the centroid (Y=0.87, Z=0.50). As the
probe moved toward the apex of the semi-circular and the corner of the triangular duct the
critical Reynolds number increased. The maximum critical Reynolds number for semi-

circular and equilateral triangular channels are /760 and 2450, respectively. For
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1250 < Re< 1700 (for semi-circular duct) and 7000 < Re <2450 (for equilateral
triangular duct) both laminar and turbulent flows exist simultaneously in different locations
of the cross-section. For a triangular channel with an apex angle of / 1.5° the data of Eckert
et al. (1956) indicate a very wider range of the critical Reynolds number
(400 < Re <8000) in comparison with the present results for an equilateral triangular
duct. It appears that the critical Reynolds number depends on the magnitude of the apex
angle for a triangular duct.

At all locations of the probe, the amplitude and frequency of fluid oscillations
increases with increase of Re. The Reynolds numbers at which the flow changes to fully

turbulent condition are presented in Fig. 7.3 (a - b) for the two non-circular ducts

examined,
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Figure 7.3 (a - b) Critical Reynolds numbers at different locations over duct cross-section
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(a)- semi-circular duct, (b)- equilateral triangular duct.
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7.3.2 Pressure drop measurements

Fig. 7.4 (a - b) compares the experimental static pressure drop and corresponding
numerical simulation results for Carbopol solution (#=0.623). The experimental
measurements are in good agreement with the numerical results for both channels. The
experimental data are somewhat higher (maximum 5.5 %) than those predicted by the
numerical model due to the possibly uncertainty in the experimental values. The Re values
are in the fully laminar range for both ducts.

The experimental values of the pressure drop for both channels for the viscous
non-Newtonian fluids studied are plotted in Fig. 7.5 (a - b) through Fig. 7.8 {a - b). These
results are also tabulated in Appendix D (D.5). The pressure drop is normalized by the

dynamic pressure, %puf and plotted as a function of the dimensionless axial distance, X,

aswell as x* = i-RI:’L . The data are for different Reynolds numbers.

As seen from Figures 7.5 and 7.6, the dimensionless pressure drop decreases with
increasing of Reynolds number. Also the pressure drop per unit-length close to the

entrance is higher than that downstream. From Fig. 7.7 and Fig. 7.8 it is clear that when
AP’ is plotted againstx” =J—c;—D"- resulting plots are independent of Re for both semji
e

circular and triangular ducts.
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Figure 7.5 (a - b) Dimensionless pressure drop vs. dimensionless axial distance X for

n=0.623, (a)- semi-circular duct, (b)- equilateral triangular duct.
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Figure 7.6 (a - b) Dimensionless pressure drop vs. dimensionless axial distance X for
n=0.727, (a)- semi-circular duct, (b)- equilateral triangular duct.
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Figure 7.7 (a - b) Dimensionless pressure drop vs. dimensionless axial distance x* for
n=0.623, (a)- semi-circular duct, (b)- equilateral triangular duct.
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Figure 7.8 (a - b) Dimensionless pressure drop vs. dimensionless axial distance x" for
n=0.727, (a)- semi-circular duct, (b)- equilateral triangular duct.
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7.3.3 Heat transfer results

Heat transfer experiments were performed with distilled water and Carbopol
solutions by heating the foil bonded on to the lower plate of the semi-circular and
triangular channels, The measured quantities were: the inlet and outlet temperatures of the
fluid, bottom plate temperatures at different spanwise locations as well as various axial
distances and the flow rate. Bottom plate temperatures at each axial station integrated
over-the width of channel to obtain mean bottom plate temperature. The local Nusselt
number was calculated based on the average bottom plate temperature (Appendix D, D.2).

Appendix D (D.4) presents results of _;he uncertainty analysis for Nusselt number.

7.3.3.1 Newtonian fluids

A typical mean bottom plate temperature distribution (7w, ) and the corresponding

local Nusselt number distribution based on the bottom plate temperature (Nu, ) are

presented in Fig. 7.9 and Fig. 7.10, respectively. All data related to Nusselt number are
given in Appendix D (D.5).
Inspection of these figures reveals that in the entrance region as 7w, increases

Nu, , decreases. Natural convection effects are small in this section of the channel due to

the small temperature difference between the wall and fluid. As the fluid proceeds
downstream, the temperature difference between the wall and the fluid increases and
promotes secondary flow over the bottom plate. The heated fluid near the bottom plate
becomes lighter and moves along the side wall while the cooler fluid descends.
Introduction of the cooler fluid in the vicinity of the bottom plate causes a reduction in
Tw, (Fig. 7.9) and enhancement in Nusselt number (Fig. 7.10). Thus a local maximum in

Tw, and a local minimum in Nu, , appear. Further downstream, reduction of the bottom

plate temperature due to natural convection effect causes the temperature difference (7w,
- Ty ) to diminish and Nusselt number increases. This phenomenon is repeated and 7w,

displays local maxima and minima. Also, Nu,, possesses local minima and maxima. .
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Similar behavior of wall temperature and consequently the local Nusselt number was
reported by Incropera et al. (1987) based on their experimental work and by Mahaney et

al. (1988) in their numerical study of mixed convection in rectangular channels.
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Figure 7.9 Mean bottom plate wall temperature vs. dimensions axial distance X for semi-
circular and equilateral triangular ducts.
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Figure 7.10 Bottom plate Nusselt number vs. dimensionless axial distance X for semi-
circular and equilateral triangular ducts.

7.3.3.1.1 Effect of Rayleigh number

Fig. 7.11 (a - d) portrays typical axial variations of Nu, . for different Rayleigh

numbers but for approximately the same Reynolds number. The corresponding data are
tabulated in Appendix D (D.5).

As shown in Fig. 7.11 increasing the Rayleigh number for the same Reynolds
number strongly increases Nusselt number due to the presence of secondary flows. The
magnitude of the local minima and maxima in Nusselt number decreases with diminishing

Rayleigh number.
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Figure 7.11 (a - d) Nusselt number vs. dimensionless axial distance x~ for different
Reynolds and Rayleigh numbers for semi-circular and equilateral triangular ducts.
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7.3.3.2 Viscous non-Newtonian fluids

A comparison of the local Nusselt number distribution obtained numerically and
experimentally for a viscous non-Newtonian fluid (n=0.623) is shown in Fig. 7.12 (a - b)
for both semi-circular and triangular channels. The measured Nu; . values are seen to be in
good agreement with the numerical predictions with a maximum deviation of 8.6 %.

Nusselt number vs. x° are presented in Fig. 7.13 (a - b) for two Carbopol solutions
(n=0.623, n=0.727) for the semi-circular and equilateral triangular ducts. These results
and other heat transfer results for viscous non-Newtonian fluids obtained from this
experimental study are tabulated in Appendix D (D.5).

Due to limitation of the apparatus higher values of Ra could not be achieved for
further evaluation. For the small Rayleigh numbers used (for #=0.623) natural convection
does not have a strong effect on heat transfer (Fig. 7.13a and Fig. 7.13c). For Carbopol
solution with n=0.727 (Fig. 7.13b and Fig. 7.13d) due to the higher Ra effect of natural
convection in downstream becomes noticeable. At x'=0.0/56 and n=0.727 for the

semicircular duct increasing Ra from 1./1x10° to 172x10° increases Nuy, 12.6 % and

for triangular duct increasing Ra from L02x 10° to 1.64x 10° enhances Nusselt number
about 8.5 %.
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Figure 7.12 (a - b) Comparison of the local Nusselt number distribution from numerical
and experimental results (n=0.623), (a)- semi-circular duct, (b)- equilateral triangular
duct.
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Figure 7.13 (a - d) Local Nusselt number vs. dimensionless axial distance x" for different
Rayleigh numbers,
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7.4 Conclusions

An experimental study was performed to measure the critical Reynolds number,
pressure drop, and local heat transfer distribution in simultaneously developing laminar
flow of Newtonian and purely viscous non-Newtonian fluids in semi-circular and
equilateral triangular ducts. The thermal boundary condition employed was constant heat
flux on the bottom plate while other walls of the duct are insulated.

The measured critical Reynolds numbers indicate which forRe < /250 and
Re < 1000the flow is fully laminar over the entire cross-section for semi-circular and
triangular ducts, respectively. The measured pressure drop and Nusselt number results are
in good agreement with numerical predictions. Results show that the Rayleigh number
influences the Nusselt number. At higher Rayleigh numbers (for distilled water) the mean
bottom plate temperature and Nusselt numbers show local maxima and minima. Also,
results indicate isothermal dimensionless pressure drop can be scaled with x* which makes

it almost independent of the Reynolds number.



Chapter 8

Conclusions, Contributions to
Knowledge and Recommendations

8.1 Conclusions

The Galerkin finite element method was used to solve numerically the governing
equations for a steady laminar three dimensional simultaneously developing flow of
Newtonian and viscous non-Newtonian fluids flowing through various non-circular cross-
section ducts subjected to the constant temperature and constant heat flux conditions. For
each geometry results were compared with available data in the literature to validate the
code. The numerical results include the effects of the power law index, temperature
dependence of viscosity, viscous dissipation, simultaneous effects of temperature-
dependent viscosity and viscous dissipation, and Prandtl number. The following general
conclusions apply to all duct geometries unless stated otherwise.

Based on this comprehensive numerical study the following conclusions are made:
1- Lower power law index results in higher Nusselt number and reduced dimensionless

pressure drop. The effect of Prandtl number on heat transfer is significant. Higher Prandtl
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number produces higher Nusselt number (at the same X' 1) but a lower Nusselt number (at

the same x" 2).

When the apparent friction factor and Nusselt number are plotted vs. x* * and x°

respectively for different Reynolds numbers, the Xeynolds number dependence is
eliminated, '
2- For the case of .heating, inclusion of the temperature-dependence of viscosity increases
the pressure drop for the T boundary condition while decreasing it for the H2 boundary
condition. For both T and H2 thermal boundary conditions, the temperature-dependence
of viscosity enhances NusSéit number but this influence for the ' boundary condition is
more pronounced than that for the H2 boundary condition. ‘

For the heating case, for both T and H2 conditions, inchision of the viscous
dissipation effects reduces Nusselt number. For the H2 boundary condition, close to the
entrance of the duct, this effect is more significant than further downstream. For the T
boundary condition when viscous dissipation is significant, the heating process can change
to the cooling ﬁrocess under certain set of parameter values.

3- From a comparison of the thermal performance criteria for the various duct geometries
studied it is concluded that the paraliel plate channei is superior to all other configurations
from the heat transfer point of view for the same flow rate, hydraulic diameter, and
pressure drop. Therefore when reduction in the heat transfer area is the main objective,
since the parallel plate geometry is not always practical, use of rectangular ducts of small
aspect ratio (for the T boundary condition) and circular tubes or rounded corner square

ducts are recommended for the constant heat flux boundary conditions.

L X=i
D,
2 X
D, Re Pr
R

D, Re
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An experimental study was performed to obtain new data to validate the numerical
work. The critical Reynolds numbers for semi-circular and equilateral triangular ducts
were measured by a flow visualization technique. Pressure drop measurements for viscous
non Newtonian fluids and heat transfer experiments for distilled water as well as Carbopol
934 solutions were carried out. The constant heat flux condition was applied in the
experimental tests.

From the experimental study the following conclusions are drawn.

1- The critical Reynolds number for the semi-circular duct varies from 1250 to 1700
depending on the transverse location at a given axial cross section. This range for the
equilateral triangular duct is 1000 to 2450. Laminar flow simulations are strictly applicable
only up to the lower limit of the critical Reynolds number,

2- The effezt of Rayleigh number on heat transfer to distilled water in two noncircuiar
ducts was found to be significant. High Rayleigh number (2x107) results in a local
maximum and a minimum in the Nusselt number distribution at different axial distances for
the two channels used.

According to the limited experimental data the pressure drop and Nusselt number
for viscous non-Newtonian fluids can be scaled by x” and x°, respectively, which makes the
distribution curves independent of the Reynolds number, Experimental pressure drop and
local Nusselt number distribution curves agreed closely with the numerical results for both

semi-circular and equilateral trianguiar ducts.

8.2 Contributions to knowledge

1- Quantitative laminar fluid flow and heat transfer characteristics are presented for
the combined entrance region for fourteen different channels. Results are obtained for both
constant temperature and constant heat flux boundary conditions. The effects of the power
law index on flow and heat transfer performance and the effect of Prandtl number on heat

transfer are discussed quantitatively.
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2- The effect of rounding the comners of a square duct, the effect of aspect ratio of
rectangular channels, effect of apex angle of a circular sector duct, and effect of the
geometric parameter of a cross-shape channel on fluid flow and heat transfer performance
are examined and discussed.

3- A quantitative discussion is made which includes the effects of temperature-dependent
viscosity, viscous dissipation, and the simuitaneous effects of temperature-dependent
viscosity and viscous dissipation, and Prandtl number. Presented results cover velocity
profiles, apparent friction factor, and Nusselt number distribution for different
temperature-viscosity functions and a range of Brinkman numbers.

4- The experimental study has produced new results for the critical Reynolds number,
pressure drop and Nusselt number distribution for laminar flow through semi-circular and
equilateral triangular ducts. The range of the critical Reynolds numbers based on the
location of the dye probe was obtained for both channels. The effect of the Rayleigh
number on the Nusselt number distribution for distilled water is discussed quantitatively.
Pressure drop and Nusselt numbers obtained for various viscous non-Newtonian fluids
indicate the capability of these parameters to be scaled by x* and x~ , respectively. The

experimental results verified accuracy of the numerical model.

8.3 Recommendations for future research

It is recommended that further attention be given to the following:

1- Extension of the study of fluid flow and heat transfer to other non-Newtonian fluids
such as: Bingham plastic and viscoelastic non-Newtonian fluids. Such studies need to be
carried out both numerically and experimentally. Extension to include time-dependent flow
or boundary conditions is also of practical interest.

3- Free convection effects on the fluid flow and heat transfer characteristics in the entrance
region of non-circular channels for non-Newtonian fluid have not been studied before;
even for the Newtonian case very few investigations have been reported. Also, as an

extension of the present study experiments should be carried out at higher Rayleigh
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numbers for both Newtonian and non-Newtonian fluids. Also, effects of transversely
mounted fins to enhance heat transfer would be of significant practical interest.
4- The present work should be extended to reacting flows as well as to non-Newtonian
fluids containing particulate solids. The latter is an important problem in continuous
processing of liquids foods.
5- Extension of the present study to the turbulent flow regime would be of engineering
interest. There are opportunities for both fundamental and applied contributions in this
area,
6- Effects of variable cross-sectional area as well as geometry in the flow direction should
be of potential interest in the design of novel heat exchangers.

Laminar and turbulent heat transfer in Newtonian and non-Newtonian fluids
flowing in curved ducts as well as coils of ducts of non-circular ducts may find new

applications in future.
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Appendix A

A.1 Upax and foppRe for different geometries

Table Al £, Re and Uy, for different power law indices ard at different
axial locations: circular tube,

x* SupRe Umax
n=0.50 n=1.00 | n=1.25 | n=0.50 | n=1.00 | n=1.25

0.00201 | 24.035 81.659 136.366 | 1.097 1.204 1.268
0.00334 | 21.021 64,535 102.992 | 1.147 1.291 L375
0.00546 | 18.187 51.587  80.931 L211 1.394 1.499
0.00884 | 15.658 41.772  64.232 1.283 1.522 1.652
0.01425 | 13.476 34318 52.044 1.363 L.677 1.849
0.02289 | 11.641 28683  43.167 | 1.449 1.828 2.009
0.02898 | 10.853 26425 39.718 1.492 1.889 2.058
0.05873 3.974 21.494  32.558 1.601 1.985 2.107
0.11878 7.756 18.763  28.847 | L1654 L996 2.107
0.21346 7.151 17.544  27.224 1.662 1.996 2.107




Appendix A

Table A2 f.p,.Re and U, for different power law indices and at different
axial locations: parallel plates.

x* JopRe Unmas
n=0.50 | n=100 | n=1.25 | n=0.50 | n=1.00 | n=1.25
0.00201 | 26.239 88.869 150.196 | 1.103. 1,232 L315
0.00334 | 22227 69.583 114.327 | 1.146 1318 1422
0.00546 | 18.826 55.451 89.294 1,192 1.402 1504
0.00884 | 15.976 44.978 71.761 1.239 1.460 1.539
0.01425 | 13.637 37437 60.116 1.281 1.485 1.546
0.02289 | 11.799 32.384 52.790 | 1.310 1.491 1.546
0.02898 | 11.063  30.594 50.240 1.319 1.491 1.546
0.05873 9.534 27184  45.399 1327 1491 1.546
0.11878 3.748 25.503  43.009 1.327 1.491 1.546
0.21346 3.407 24.773 41.970 1.327 1.491 1.546

Table A3 fi;,.Re and U,,, for different power law indices and at different
axial locations: square duct.

x* Jopp Re Unax

n=0.50 | n=1.00 | n=L25 | n=0.50 | n=1.00 | n=1.25
0.00201 | 30469 87795 139.272 | 1077 1182  1.247
0.00334 | 24690 68352 106497 | 1125 1269  1.352
0.00546 | 20526 54190 82.595 | 1191 1367 1460
0.00884 | 17.132  43.453 65115 | 1269 1486  1.599
0.01425 | 14.396 35234 52270 | 1356 1639  1.794
0.02289 | 12204 29.011 42.812.). 1.453 1811  2.003
0.02898 | 11.285 26531 39.106 | 1.504 1891  2.086
0.05873 | 9.054 20928 31036 | 1648 2052  2.202
0.11878 | 7548  17.621 26635 | L7400 2094 . 2215

6.768 16121 24710 | 1765  2.096 2215

0.21346



Appendix A

Table A4 f.,.Re and U, for different power law indices and at different

axial locations: rectangular duct { A.R.=0.5).

xt Sopp Re Upax

n=0.50 | n=1.00 | n=125 | n=0.50 | n=1.00 | n=1.25
0.00201 | 31.087 93.586 154.835 | 1.082 1,190 1.250
0.00334 | 25.597 72220 115.698 | 1.134 1.274 1.348
0.00546 | 21.056  56.499  88.353 1.196 1376 L479
0.00884 | 17.454 44.874  68.963 L1266 1.501 L1636
0.01425 | 14.610  36.247  54.957 1348 1.636 . 1.788
0.02289 | 12.340 29.818 44,868 1.438 1.763 1,910
0.02898 | 11.387 27268 41.006 1.483 1.818 1.957
0.05873 9.161 21.766  33.070 1.611 1.941 2.038
0.11878 7.730 18.690  28.906 1.701 1.987 2.053
0.21346 6.999 17.299  27.073 1.734 1,992 2.053 |

Table A5 fo,pRe and U, for different power law indices and at different

axial locations: rectangular duct { AR.=0.2).

x* Sopp Re Uax
n=0.50 | n=1.00 | n=1.25 | n=0.50 | n=1.00 | n=125
0.00201 | 31.189 89.739 143.027 | 1.082 1.181 1.233
0.00334 | 25.539 69.902 109.971 L131 1269 - 1368
0.00546 | 21.219 55.573  85.961 1.189 1.384 1.505
© 0.00884 | 17.545 44.755-- 68.186 1254 1.493 L6112
0.01425 | 14.627  36.588  55.442 1,323 1.577 1.676
002289 | 12.376 30.586 46.773 1.391 1.630 1713
0.02898 | 11.460 28317  43.640 1.422 1.649 1.724
0.05873 9.407 23.757  37.538 1.498 1.689 1.745
0.11878 8.193 21.406  34.468 1.560 1.709 1749
0.21346 7.610 20.370  33.117 1.600 1.714 1.749
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A4

Table A6 f,Re and Ul for different power law indices and at different

axial locations: semi-circular duct.

x* SupRe Umax
n=0.50 | n=1.00 | n=1.25 | n=0.50 | n=1.00 | n=1.25
0.00201 | 24.860 86.872 147.089 | 1.083 1,193 1.258
0.00334 | 21.229 68.354 110858 | L1131 1.282 1,364
0.00546 | 18.488 54,121 85.429 1.195 1,386 1.491
0.00884 | 16.125 43472 67.272 | 1.272 1516 1.651
0.01425 | 13.927 35494 54175 | 1357 L662 1.829
0.02289 | 11.992 29.526  44.734 | 1.448 1807 1.980
0.02898 | 11.153 27150  41.090 1.494 1.873 2.039
0.05873 | 9.149  21.956 33.466 | 1624 2.012 2135
0.11878 | 7.816 18971 29.386 | 1716 2.056 2,146
021346 | 7118  17.607 27.584 | 1.747 2.058 2.146

Table A7 f,,,.Re and Un.e for different power law indices and at different
axial locations: circular sector duct { &= 90" ).

x* SeppRe Umax
n=0.50 | n=100 | n=1.25 | n=0.50 | n=1.00 | n=125
0.00201 | 23.611 80.087 134.609 | 1.081 1181  L245
0.00334 | 20.683 63.753 102.964 | 1130 L.269 1.351
0.00546 | 17.917 51.114 80.283 | 1192 1.371 1.474
0.00884 | 15473 41459 63.730 | 1.266 1.499 1.628
0.01425 | 13.371 34.062 51510 | 1350 1.654 1,822
0.02289 | 11.584 28393  42.503 | 1.443 L1817 2.007
0.02898 | 10.803 26.090 38956 | 1.492 1.891 2.075
0.05873 | 8883 20928 31365 | 1.630 2,039 2.172
0.11878 | 7.552 17.899  27.253 | 1718 2,077 2,181
0.21346 6.847 16.519  25.442 1.744 2.079 2,181
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Table A8 f.,»Re and Up.. for different power law indices and at different
axial locations: circular sector duct ( @ =60° ).

x* SuppRe  Ua

n=050 | n=1.00 | n=1.25 | n=0.50 | n=1.00 | n=125
0.00201 | 29.125 83.239 140.778 | 1.080 1,178 1.239
0.00334 | 25.257 65.361 107.578 | 1.129 1,264 1.348
0.00546 | 21.705 52.359 83.529 1192 1.368 1.473
0.00884 | 18.649 42.433 65.770 1.268 1.499 1.629
0.01425 | 16.068 34.703 | 52.704. | 1355 1.659 1.827
0.02289 | 13.904 28.747 43.121 1.453 1832 2.030
0.02898 | 12,957 26326 39350 1.505 1913 2.109
0.05873 | 10.599 20.868 31.218 1.655 2.083 2.228
0.11878 8.925 17.605  26.744 1.759 2132 2.242
0.21346 | 8.017 16.100 24,765 1792 2134 2.242

Table AS fopp-Re and U, for different power law indices and at different
axial locations: equilateral triangular duct ( @ =60° ).

x* JopRe Umax

n=0.50 | n=1.00 | n=1.25 | n=0.50 | n=1.00 | n=1.25
0.00201 | 48.868 117.092 186682 | 1069 1174  1.237
0.00334 | 36.049 86.408 135.086 | 1119 1267 1346
0.00546 | 27.681 65177 100239 | 1185 1367 1457
0.00884 | 21.757 50254 76046 | 1266 1490  1.606
0.01425 | 17.357 39.502 58973 | 1357  1.646  1.804
0.02289 | 14.087 31.650 46.877 | 1460 1825  2.019
0.02898 | 12.776  28.560  42.219 | 1515  1.915 2120
0.05873 | 9.792 21774 32.239 | 1685 2129 2302
0.11878 | 7.852 17710 26617 | 1820 2216 2341
0.21346 | 6.815 15786 24.099 | 1876 2226 2343
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A-6

Table A10 f,,-Re and U, for different power law indices and at different

axial locations: right isosceles triangular duct ( @ =90° ).

x* Japr Re U eax

n=0.50 | n=1.00 | n=125 | n=0.50 | n=1.00 | n=1.25
0.00201 | 52971 123910 193.684 | 1.067 1168  1.227
0.00334 | 38499 90.729 139.625 | 1116 1261  1.338
0.00546 | 29.178 67.930 103.105 | 1183 1362  1.453
0.00884 | 22.679 51972 77859 | 1264 1486  1.604
0.01425 | 17.945 40.581 60155 | 1.356 1643  1.804
0.02289 | 14.462 32.344 47.641 | 1460 1823  2.020
0.02898 | 13.075 29.117 42.824 | 1517 1914 2121
0.05873 | 9.947  22.051 32519 | 1692 2142  2.320
011878 | 7.92¢  17.811 26676 | 1.843 2250 2373
0.21346 | 6.832 15771 24030 | 1916 2268 2377

Table All f,p.Re and U for different power law indices and at different

axial locations: cross-shaped duct ( A =0.25 ).

x* JoopRe Umax

n=0.50 | n=1L00 | n=125 | n=0.50 | n=1.00 | n=1.25
0.00201 | 21.585 75.242 121.824 ) 1.077 L176 1.277
0.00334 | 20.045 59.327 93.329 1,129 1.257 1.327
0.00546 | 17.858 47.279 72.621 1.194 1.349 1.436
0.00884 | 15.198 38.077 57.349 1,265 1.459 1.559
0.01425 | 12.825 31.015 46.048 1342 1,598 1,731
0.02289 | 10.898  25.621 37.702 1.429 1.757 1,930
0.02898 | 10.083 23.436 34.394 1.475 1.833 2.014
0.05873 8.141 18.521 27,209 1.605 1.990 2.136
0.11878 6.843 15.605  23.253 1.688 2.032 2.149
0.21346 6.169 14.271  21.508 1.711 2.034 2.148
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Table Al2 f, Re and Us:e for different power law indices and at different

axial locations: cross-shaped duct ( A=0.5 ).

x* JepRe Uma

n=0.50 | n=1.00 | n=1L25 | n=0.50 | n=1.00 | n=125
0.00201 | 21.003 75238 124.781 | 1.071 1.169 L1223
0.00334 | 19.239 59.997 96.731 1.121 1.254 1.331
0.00546 | 17.225  48.480  76.024 1.184 1.356 L.456
0.00884 | 14.998 39.496  60.220 1.259 1.478 1599
0.01425 | 12.957 32331 48334 1345 1.623 1.768
0.02289 | 11.202 26726  39.524 1.443 1,788 1.971
0.02898 | 10.420 24.436  36.028 1.495 1.872 2.067
0.05873 | 8.447 19.216 28317 | L.653 2.078 2.248
0.11878 7.030 15.968  23.852 1.774 2.162 2.287
0.21346 | 6.242 14411  21.837 | 1.821 2.171 2.287
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A.2 Nusselt numbers for different geometries

Table A13 Nur. and Nuy,. for different power law indices and different axial
distances , Re=500 and Pr=10 ; circular tube.

n=0.50 | n=100 | n=125 | n=0.50 | n=1.00 | n=1.25

0.000201 { 24.804 19.350 17.934 | 34.376 27.147 25289
0.000334 | 19.150 15510 14.668 | 26.752 21.549 20.263
0.000546 | 15.107 12,734 12171 | 21.039 17.388  16.497
0.000884 | 12.170 10.540  10.157 | 16.783 14.210 13.582
0.001425 | 9.917 8.812 8.562 13.559 11.727 11.287
0.002289 8217 7465 7.307 | 11.096 9.788 9.484
0.002898 7.532 6.905 6.781 10.094 8.985 8.735
0.005873 | 5.960 5.577 5.512 7.792 7.104 6.965
0.011878 | 4.931 4.644 4.584 6.292 5.821 5.720
0.0213460 | 4.398 4.119 4.054 5.474 5.074 4.985

Fulh | 3950 3659 3590 | 4744 4363 4272
Developed
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Table A14 MNuy, and Nuy,. for different power law indices and different axial
distances , Re=500 and Pr=10 : parallel plates.

X Nuz, Nuy .

n=0.50 n=1.00 | n=1L25 | n=0.50 | n=1.00 | n=1.25

0.000201 | 26.105 20.679 18.661 | 36.216 28.634 26.180
0.000334 | 20.823 17329 16079 | 28.414 23218 21.513

0.000546 | 17.005 14.727 13.971 | 22.787 19.266 18.189
0.000834 | 14.187 12713 12297 | 18.662 16.229 15.576
0.001425 § 12,100 11.167 10.934 | 15.587 13.907 13.509
0.002289 | 10.570 9.947 9.777 13.291 12118 11.843
0.002898 9.971 9.427 9.272 12.377 11.374 11133
0.005873 8.679 8.226 8.103 10.354 - 9.634 9.457
0.011878 8.061 7.648 7.544 9.203 8.615 8.472
0.0213460 | 7.952 7.551 7.451 8.829 8.293 8.164

Fully

7.950 7.541 7.442 8.758 8.235 8.109
Developed

Table A15 Nur, and Nug,, for different power law indices and different axial
distances , Re=500 and Pr=10 : square duct.

Xx Nur, Nuys,«

n=0.50 | n=1.00 | n=1.25 | n=0.50 | n=1.00 | n=1.25

0.000201 | 22.898 16.494 14887 | 32180 23.959 22.137
0.000334 | 17.808 13.466 12,288 | 24.783 17992 16.712

0.000546 | 13.943 11305 10501 | 18.321 14512 13.713
0.000884 | 11.229 9.567 9.056 14.160 11901  11.341
0.001425 | 9.214 8.131 7.787 11.297  9.743 9.359
0.002289 7.589 6.887 6.643 9.107 8.032 7.773
0.002898 6.883 6.331 6.136 8129 7.327 7.106
0.005873 | 5.291 5.013 4918 | 6132 5.684 5.541
0.011878 | 4.304 4.115 4.048 4.804 4.563 4.451
0.0213460 | 3.746 3.548 3.494 4.090 3.915 3.799

Fully 3.190 2.979 2.925 3.310 3.090 3.032
Developed
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Table A16 Nur, and Nuy;. for different power law indices and different axial

distances , Re=500 and Pr=10 : rectangular duct { AR.=0.5 ).

x Nur, Nuyps

n=0.50 | n=1.00 | n=1.25 | n=0.50 | n=1.00 | n=1.25
0.000201 | 24422 17.836 16167 | 33.089 24.974 23.270
0.000334 | 18.056 14.523 13.644 | 24.447 19.365 18.334
0.000546 | 14.262 12075 11.598 | 18.710 15.414 14.748
0.000884 | 11.661 10.104 9.817 | 14.755 12.467 12.008
0.001425 | 9.590 8434 8270 | 11.788 10.188  9.860
0.002289 | 7925 7113 7037 | 9499 8399 8180
0.002898 | 7246 6577 6530 | 8566 7662  7.490
0.005873 | 5699 5325 5312 | 6450 5961 5873
0.011878 | 4686 4439 4416 | 5067 4791  4.745
0.0213460 | 4132 3935 3900 | 4294 4101  4.069
D e’: :{g | 3600 3388 3350 | 3150 3021 2998

Table A17 Nur, and Nuy,, for different power law indices and different axial

distances , Re=500 and Pr=10 : rectangular duct ( A.R.=0.2).

x Nuy, Nuppx

n=0.50 | n=L00 | n=125 | n=0.50 | n=1.00 | n=1.25

0.000201 | 24.005 17.815 16432 | 33.396 26139 24727
0.000334 | 18.881 14.658 13.804 | 26115 20.703 19.749
0.000546 | 14.645 12.360 11842 | 20167 16609 15929
0.000884 | 12069 10.611 10358 | 15.882 13.547 13.103
0.001425 | 10292 9289 9197 | 12.841 11264 10.998
0.002289 | 8919 8218 8173 | 10.606 9.543  9.382
0002898 | 8320 7724 7684 | 9.699 8826 8699
0.005873 | 6811 6432 639 | 7549 7072  7.008
0011878 | 5846 5586 5545 | 6048 5829 5788
0.0213460 | 5468 5266 5299 | 5192  S117  5.088
Fullh | 4022 4831 4817 | 2717 2924 299

Developed
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Table A18 Nur, and Nuyz,. for different power law indices and different axiai
distances , Re=500 and Pr=10 : semi-circular duct.

x Nuz, Nups

n=0.50 | n=1.00 | n=1.25 | n=0.50 | n=1L00 | n=1.25

0.000201 | 26,952 21957 19.533 | 34.739 . 27.022 24.947
0.000334 | 21.305 17.361 15.968 | 27.027 21.426 20.158

0.000546 | 16.597 13.402 12,626 | 21.332 17157 16207
0.000884 | 12.698 10.447 9.969 16.600 13.603 12.937
0.001425 | 9.712 8.474 3.233 12.806 10.845 10.417
0.002289 7.872 7.172 7.039 10.014 8.793 8.535
0.002898 7.209 6.641 6.539 8.934 7.937 7.776
0.005873 5.687 5.351 5.305 6.570 6.089 6.012
0.011878 | 4.660 4.435 4.403 5.062 4.813 4.785
0.0213460 | 4.108 3.908 3.872 4.212 4.052 4.034

Fully

3.480 3.318 3.265 3.038 2.920 2.880
Developed

Table A19 Nur. and Nuy,. for different power law indices and different axial
distances , Re=3500 and Pr=10 : circular sector duct { @ =90° ).

L]
X Nur,, Nu H1x l

n=0.50 | n=1.00 | n=125 | n=0.50 | n=1.00 | n=125

0.000201 | 24.333  19.022 17.440 | 32.252 25.371 23.629
0.000334 | 18.703 15.050 14213 | 24.840 19.808 18.697

0.000546 | 14.713 12.426 11.869 | 19.330 15.779  15.055
0.000884 | 11.930 10.260 9.835 15,212 12.723 12226
0.001425 { 9.636 8.417 8.135 12,060 10.313 9.971
0.002289 7.813 6.998 6.827 9.536 8.386 3.192
0.002898 7.085 6.422 6.292 8.520 7.592 7.457
0.005873 | 5.436 5.067 5.018 6.216 5.769 5.737
0.011878 | 4.346 4112 4.094 4.759 4.569 4.549
0.0213460 | 3.754 3.538 3.543 3.982 3.867 3.833

Fully 3.206 3.060 3.013 3.121 2.980 2937

Developed
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Table A20 Nuz. and Nuy,. for different power law indices and different axial

distances , Re=500 and Pr=10 : circular sector duct ( & = 60" ).

x Nur, Nuy,.

n=0.50 | n=1.00 | n=1.25 | n=0.50 | n=1.00 | n=125
0.000201 | 24328 18959 17971 | 31.535 24254 23.136
0.000334 | 18857 15706 14795 | 24.248 19.028  18.255
0.000546 | 15168 12664 11921 | 18.813 14542 14.470
0.000884 | 11970 10138  9.688 | 14.605 11832 11537
o.001425 | 9.527 8329 8071 | 11311  9.549  9.295
0.002289 | 7.748 6934 6761 | 8821 7721  7.556
0.002898 | 7005 6320 6180 | 7819 6959  6.830
0.005873 | 5231 4850 4797 | 5577 5170 514
0011878 | 4124 3910  3.881 | 4183 3993  3.981
0.0213460 | 3.55¢ 3370 3335 | 3440 3318  3.306
b ef :I'g | 2936 2820 279 | 2500 2430 2408

Table A21 Nur, and Nuy,. for different power law indices and different axial

distances , Re=500 and Pr=10 : equilateral triangular duct ( @ =60° ).

x Nug. Nuyz.
n=0.50 | n=100 | n=1.25 | n=0.50 | n=1.00 | n=1.25
0.000201 | 24181 16639 15148 | 29.576 21.930 20.704
0.000334 | 19.122 14.038 12.874 | 21.997 16856 16.211
0.000546 | 14.855 11484 10.702 | 16.513 ;| 13.116 12719
0.000884 | 11390  9.473 - 8996 | 12355 ' 10236 10.008
0.001425 | 9.084 7925 7643 | 9.364 8094  7.987
0.002289 | 7.449 6679 6501 | 7261 6502  6.459
0.002898 | 6767 6125 5979 | 6443 5855  5.828
0.005873 | 5.095 4732 4669 | 4.619 4353  4.344
0.011878 | 4.005  3.813 3794 | 3493  3.388  3.363
0.0213460 | 3.442  3.294  3.271 | 2853 2815  2.784
Fully 2594 2503 2478 | 1951 1896  1.880

Developed
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Table A22 Nur. and Nuy,. for different power law indices and different axial

distances , Re=500 and Pr=10 : right isosceles triangular duct ( @ = 90" ).

X Nur, Nuyz .

n=0.50 | n=100 | n=1.25 | n=0.50 | n=L00 | n=L25
0.000201 | 23.841 16454 14912 | 27.995 20.657 19.067
0.000334 | 18.879 13.842 12706 | 20296 15461 14.566
0.000546 | 14.66¢4 11386 10.617 | 14.756 11849 11313
0.000884 | 11331  9.405 8943 | 10.830 9184  8.866
0.001425 | 9.017 7865 7586 | 8077 7187  7.027
0.002289 | 7.363 6601 6424 | 6158 - 5.697  5.633
0.002898 | 6.676 6044 5903 | 5417 5094  5.060
0.005873 | 5.013 4663 4607 | 3780 3701 3721
0011878 | 3910 3731 3701 | 2755 2781  2.825
0.0213460 | 3.328 3202 3178 | 2207 2260 2299
D .:: ;‘I’g g} 2909 2350 2335 | 1370 1351 1344

Table A23 Nur, and Nuy,, for different power law indices and different axial

distances , Re=500 and Pr=10 : cross-shaped duct ( 4 =0.25 ).

Developed

LA

x Nuz, Nutyz
n=0.50 | n=1.00 | n=1.25 | n=050 | n=1.00 | n=125
0.000201 | 25.668 18394 16861 | 30.623 22.860 21.241
0.000334 | 18106 13503 12562 | 22.564 17.397 16287
0.000546 | 12530 10.569 10.086 | 16579 13.510 12779
0.000884 | 9.817 8774 8474 | 12639 10.786 10.312
0.001425 | 8153 7362  7.152 | 10.048 8821 . 8505
0.002289 | 6779 6180 6033 | 8194 7329 7110
0.002898 | 6187  5.672 5853 | 7445 6710  6.528
0.005873 | 4.778 4471 4415 | 5706 5249  5.150
0.011878 | 3.874  3.662  3.622 | 4550 4254  4.193
0.0213460 | 3.377 3184 3141 | 3910 3674 3621
Fully | 2883 2677 2628 | 3170 295 2903
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Table A24 Nur. and Nuy,, for different power law indices and different axial

distances , Re=500 and Pr=10 : cross-shaped duct { 1 =0.5 ).

x Nur, Nuy; .

n=0.50 | n=1.00 | n=125 | n=0.50 | n=1.00 | n=1.25
0.000201 | 24.364 18738 17367 | 30.140 23.411  21.235
0.00033¢4 | 18718 14537 13564 | 22973 18097 16.941
0.000546 | 13.883 11491 10.844 | 17333 14059 13222
0.000884 | 10.779  9.308 8916 | 13.219 11.063 10.513
0.001425 | 8696 7676 7445 | 10297 8856 8512
0.002289 | 7.097 6383 6226 | 8156 7197  6.978
0.002898 | 6413 5810 5679 | 7297 6516 6339
0.005873 | 4744 4404 4347 | 5348 4923 4837
0.011878 | 3.683  3.498 3475 | 4112  3.875  3.837
0.0213460| 3135  2.987 2960 | 3449  3.282  3.254
b e’: :”g | 2508 2338 2300 | 2598 2403 2413
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B.1 Effect of temperature dependent viscosity
on Nusselt number for n=1.0
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Figure Bl (a - h) Effect of temperature-dependent viscosity on Nusselt number and
dimensionless bulk temperature, n=1.0, Re=500, Pr=10.
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B.2 Effect of viscous dissipation on Nusselt
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Figure B2 (a-h) Effect of viscous dissipation on Nusselt number and dimensionless bulk

temperature, n=J1.0, Re=500, Pr=10.
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B.3 Simultaneous effects of temperature-
dependent viscosity and viscous dissipation
on Nusselt number for n=1.0
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Figure B3 {a - h)

simultaneous effects of temperature-dependent viscosity and viscous

dissipation on Nusselt number and dimensionless bulk temperature, n=1.0, Re=500,

Pr=10,
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B.4 Effect of Prandtl number on Nusselt
number for n=1.0
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Figure B4 (a - h) Effect of Prandtl number on Nusselt number and dimensionless bulk
temperature for various geometries, n=1.0, Re=500, Pr=10.
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B.5 Effects of temperature-dependent viscosity
and viscous dissipation on flow and heat
transfer characteristics.

Table B1 fup, Re and U.x for T and H boundary conditions and for Re=500, Pr=10 and
different values of B : circular tube.

S Re Unas
x n=0.50 n=1.00 n=0.50 n=1.00

B=15 |B=15| B=1.5 |B=-15| B=1.5 |B=15| B=1.5 ([B=1.5
I'BC IHBRC|TBC |HBC | TBC {HBC |TBC |HBC

0.00201 |30.188 23.568 129.660 81.319| 1.107 1.084 1296 1191
0.00334 | 26.287 20.506 102.019 64.189| 1144 1.132 1422 1.277
0.00546 (22810 17.637 81708 51.233; 1173 1192 1527 1378
0.00884 | 19.886 15.073 66.775 41.402| 1.191 1.260 1.577 1.503
0.01425 | 17.519 12.852 55955 33.925| 1.196 1333 1578 1.654
0.02289 | 15.640 10974 48.185 28256 1.197 1409 1.558 1.799
0.02898 | 14.847 10.160 45110 25.975 | 1.199 1.445 1.549 1.857
0.05873 | 12.868 8.183 37.894 20.948 | 1.220 1523 1539 1942
0.11878 |11.303 6.815 32495 18.048| 1261 1534 1558 1.942

L 021346 110225 6012 28841 166061\ 1310 1514 1601 1931 |
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Table B2 f.,» Re and Un.: for T and H2 boundary conditions and for Re=500, Pr=10
and different values of B : square duct.

fopRe Umax
< n=0.50 n=1.00 n=0.50 n=1.00

B=1.5 |B=1.5| B=15 |B=15| B=1.5 |B=15| B=1.5 |B=1.5
TBRC H2BCITBCH2BC|TRC \HZBCITRBC H2BC

0.00201 | 53.135 35.126 150.146 99.198 | 1.100 1.075 1.266 1.184
0.00334 | 41.453 27.693 114.399 74979 | 1.148 LI24 1.391 L271
0.00546 | 33.259 22316 88.852 57.816| 1.189 1187 1517 1.366
0.00884 | 27.243 18.054 70.432 45190 | 1.224 1.260 1.610 1480
0.01425 | 22.754 14.720 57130 35814 | 1.243 1.340 1.647 1.624
0.02289 | 19.412 12,122 47.656 28.854 | 1.250 1.427 1.641 1.783
0.02898 | 18.077 11.039 44.006 26.070| 1.253 1471 1.632 1.855
0.05873 |15.012 8.469 35899 19.8001 1.270 1.580 1.614 1.980
0.11878 112.844 6.714 30.308 15901\ 1.310 1.615 1626 1973
| 021346 10445 5695 26679 13771 1361 1502 1,663 1,935 |

Table B3 f,,, Re and U, for T and H2 boundary conditions and for Re=300, Pr=10
and different values of B : semi-circular duct.

Sapp Re Umax
x n=0.50 n=1.00 n=0.50 n=1.00

B=1.5 |B=15| B=15 |B=15| B=1.5 ([B=1.5| B=1.5 {B=~15
IBRC H2BC/TBC \H2BC | TBC H2BCITBC H2BC

0.00201 {30833 24.402 136.799 85823 | 1102 1091 1294 1190
0.00334 ) 26.822 20.746 107.495 67330 | 1145 1128 1418 1277
0.00546 | 23.412 17.951 85.762 53.108| 1183 1190 1.522 1.379
0.00884 | 20.462 15.540 69.647 42.422| 1.215 1.263 1595 1.504
0.01425 | 17.927 13.303 57.884 34.367 | 1.236 1342 1628 1.643
0.02289 | 15836 11.320 49.353 28.293 | 1.249 1423 1628 1777
0.02898 | 14.950 10.453 45.985 25852 1.254 1462 1.622 1.835
0.05873 | 12,803 8342 38260 20.391| 1.274 1561 1.610 1.944
0.11878 |11.183 6.857 32701 16968 | 1.313 1603 1.622 1945

. | 021346 | 10,089 5968 29023 150271 L363 1583 1658 1905 |
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Table B4 f,,, Re and Upns for T and H2 boundary conditicns and for Re=500, Pr=10
and different values of B : equilateral triangular duct.

Senp Re Uwax
x n=0.50 n=1.00 n=0.50 n=1.00
B=15 |B=15| B=15 |B=15| B=1.5 |B=L5| B=1.5 |B=L5
TRC H2RCITBC H2BC| TBC HRBCITBC |[H2BC
0.00201 | 60.508 48.425 173.211 117.616| 1.093 1068 1.245 1172
0.00334 | 44.317 35.500 128.679 86323 | 1145 1115 1375 1.263
0.00546 | 33.819 27.065 97.747 64.688 | 1.194 1179 1.512 1359
0.00884 | 26.594 21.096 75885 49498\ 1.240 1.255 1.629 1.477
0.01425 | 21.430 16.660 60.316 38.542| 1.276 1339 1.701 1626
0.02289 | 17.667 13.345 49.195 30.528 | 1299 1432 1722 1.793
0.02898 | 16.183 12.010 44.909 27.363 | 1305 1480 1719 1875
0.05873 | 12.889 8936 35.619 20.323| 1.322 1615 1.700 2053
0.11878 | 10.737 6.866 29.600 15882 1.359 1685 1704 2082
Lﬂﬂlﬁ_ww

Table B5 Nur. and Nuy. for Re=500, Pr=10 and specific values of B and Br

: circular tube .

n=0.50

n=1.00

n=0.50

n=1.00

B=15
Br=0.0

Br=2.0

B=1.5

B=0.0

Br=0.0

Br=-2.0
B=0.0

=.1.5
Br=0.0

Br=2.0

B=0.0

B=-1.5
Br=0.0

Br=2.0
B=0.0

0.000201
0.000334
0.000546
0.000884
0.001425
0.002289
0.002898
0.005873
0.011878

29.478
23.304
18.629
15.144
12.448
10.309
9.405
7.232
5.741

20.385
14.870
10.954
8.079
5.782
3.908
3.074
0.654
-2.430

22,128
17.964
14.852
12.418
10.469
8.871
8.174
6.437
5.183

9.861
7.003
4.776
2.764
0.923
-0.919
-1.935
-6.167
-16.869

| 0.02]492 | 4953 -7.733 4495 -128,320]

34.671
27.063
21351
17.084
13.854
11.393
10.392
8.094
6.601

4.548
3.944
3.410
2.948
2.536
2.171
2.007
1.586
1.263

27.220
21.622
17.460
14.280
11.796
9.855
9.051
7.169
5.886

| 5789 1,067 5140 0,567

1.831
L722
L1600
L456
1.303
1.150
1,075
0.861
0.679
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Table B6 Nur, and Nuy;, for Re=500, Pr=10 and specific values of B and Br
: square duct.

Nuz.

Nu

H1x

n=0.50

n=100

n=0.50

n=1.00

B=15
Br=0.0

Br=2.0
B=0.0

B=L5
Br=00

Br=-2.0
B=0.0 |

0.000201
0.000334
0.000546
0.000884
0.001425
0.002289
0.002898
0.005873
0.011878

25.584
21.297
17.310
14.033
11.510
9.545
8.702
6.609
5.142

|_0.02]492 |

19.610
14.607
10.488
7.720
5.696
3.975
3.173
0.935
-1.567

19.238
15.967
13.320
11.233
9.556
8.132
7.489
5.840
4.635

8.479
6.048
4.283
2.818
L372
-0.249
-1.136
-4.485
-11.994

B=15

Br=2.0

| Br=0.0
32.532
25.173
19.350
15.043
11.914
9.588
8.649
6.520
5.171

| 4300 -5365 3908 -52715)

| B=0.0

B=1.5
Br=0.0

Br=2.0
B=0.0

4.005
3.525
3.081
2.683
2.335
2.023
1.878
1.488
1.177

24.961
19.633
15.533
12.456
10.140
8.353
7.611
5.888
4.747

4445 0978 4086 0553 ]

1.562
1.492
1.410
1.322
1.220
1.100
L037
0.847
0.674

Table B7 Nur, and Nuy,,. for Re=500, Pr=I0 and specific values of B and Br
: semi-circular duct.

Nur,,

Num,,

n=0.50

n=100

n=0.50

n=1.00

B=1.5

Br=-2.0

Br=0.0

0.000201
0.000334
0.000546
0.000884
0.001425
0.002289
0.002898
0.005873
0.011878

31.756
26.230
20.632
15.430
12.241
9.902
8.994
6.915
5.487

| 0021492 |

| B=0.0

B=L3
Br=0.0

Br=-2.0
B=0.0

B=15
Br=0.0

Br=2.0
B=0.0

B=15
Br=0.0

Br=2.0
B=0.0

21.032
15.420
11,856
7.930
5.365
3.443
2.664
0.389
-2.475

25.878
20.542
15.387
12.372
10.104
8.475
7.810
6.174
4.982

11,907
8.242
4.942
2.166
0.212
-1.507
-2.480
-6.578
-16.791

4703 7241 4301 -114.663

35.062
27.305
21.584
16.873
13.162
10.463
9.410
7.039
5512

4.313
3.799
3.397
2.950
2.502
2.115
1.954
1.533
1212

4,697 __10I6

27.268
21.665
17.411
13.873
11.119
9.065
8.242
6.356
5.091

1354

1.681
1.720
1.604
L434
L.275
1.126
L053
0.848
0.676

0.567 ]
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Table B8 MNur, and Nuy,,. for Re=500, Pr=10 and specific values of B and Br
: equilateral triangular duct.

Nur,,

n=0.50

n=100

n=0.50

n=1.00

B=15

Br=-2.0

Br=0.0 |

0.000201
0.000334
0.000546
0.000884
0.001425
0.002289
0.002898
0.005873
0.011878

26.963
22.531
18.220
14.407
11.456
9.308
8.451
6.387
4.911

| 0.021492 |

| 4,060

| B=0.0 |
19.502
14.102
9.961
6.739
4.600
2.992
2.264
0.130
-2.285

B=L5

Br=-2.0

.Br=0.0
19.508
16.375
13.403
11.037
9.252
7.853
7.240
5.632
4.424

2 708

| B=0.0_
5.493
3.906
2in2
"0.889
-0.292
-1.621
-2.410
-5.601
-12.699

B=15

Br=2.0

B=15

| Br=0.0
29.994
22.540
17.081
12,251
9.954
7.829
6.994
5.098
3.864

-47.5691 3227 0916 3.005 0.556

| B=0.0 |
3.952
3.430
2.975
2.571
2.212
1.905
1.767
1.397
1112

| Br=0.0

Br=2.0
B=0.0

22.360
17.255
13.517
10.641
8.485
6.872
6.213
4.652
3.594

1.541
1.486
1392
1.290
1.187
1.078
L1020
0.838
0.674
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B.6 Nusselt number for Re=500 and Pr=1.0

Table B9 Nur. and Nuy, for Pr=1.0: circular tube.

< Nuz, Nujyr .
n=0.50 | n=1.00 | n=0.50 | n=1.00
0.00201 | 11055 9.275 | 15.612 12667
0.00334 | 8735 7511 | 12284 10.149
0.00546 | 7114 6240 | 9.881 8318
0.00834 | 5947 5293 | 8121 6958
001425 | 5114 4507 | 6835 5946
0.02289 | 4.550 4114 | 5918  5.215-
0.02898 | 4.358 3.948 | 5576  4.943
0.05873 | 4074 3725 | 4.951  4.467
0.11878 | 4.041  3.659 | 4.761 4.363
@ 021346 | 4232  3.659 | 4.744 4363

Table B10 Nur. and Nuy,. for Pr=1.0 : square duct.

x Nuz, Nug; .
n=0.50 | n=1.00 | n=0.50 | n=1.00
0.00201 | 10931 8876 | 14.842 11387
0.00334 | 8439 7144 | 11266 8903
0.00546 | 6.683 5790 | 8.695  7.081
Y 0.00884 | 5471 4809 | 6877 5742
' 0.01425 | 4600 4097 | 5572 4766
0.02289 | 3.968 3.567 | 4639 - 4.060
0.02898 | 3.733 3366 | 4286 3791
0.0s873 | 3336  .035 | 3606 3272
| 011878 | 3232 2981 | 3.354 3105
@ 021346 | 3.213 2979 | 3.308  3.088
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Table BI1 MNup. and Nuy;. for Pr=1.0 : semi-circular

duct.
« Nur, Nuy
n=0.50 | n=1.00 } n=0.50 | n=1.00
0.00201 11.343 9.118 | 15.883 12.489
0.00334 8.833 7.275 | 12.255  9.561
0.00546 7.057  6.077 | 9.472 7.590
0.00884 | 5.828  5.163 7.441 6.170
0.01425 | 4.987 4475 | 5989 5111
0.02289 4.411 3.981 4.932 4.319
0.02898 | 4.199  3.799 | 4546 4.005
0.05873 | 3.786  3.458 | 3.666 3.333
0.11878 | 3.620  3.356 | 3.196 3.001
3.672 3425 | 3052 2920

0.21346

Table B12 Nur, and Nuy. for Pr=1.0: equilateral
triangular duct.

SN Nur, Nup .
n=0.50 | n=100 | n=0.50 | n=1.00
0.00201 | 11.571 9.008 | 13913 10192
0.00334 | 8.748 7182 | 10.200 7.648
0.00546 | 6822 5818 | 7583  5.924
0.00884 | 5467 4750 | 5728  4.654
0.01425 | 4514 3971 | 4418 3712
0.02289 | 3.831 3410 | 349  3.032
0.02898 | 3.563 3188 | 3144 2.768
0.05873 | 3018 2731 | 2414 2213
0.11878 | 2.821 2595 | 2069  1.961
0.21346 | 2815 2617 | 1982  1.909
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C.1 Mean Nusselt number

Table C1 Nur,, and Nuy,, for different power law indices and different axial distances,
Re=500 and Pr=10: circular tube. N

x Nuz,, Nuyizm

n=0.50 n=1.00 n=0.50 n=1.00
0.000201 44.187 36.125 63.205 492.339
0.000334 34.719 28.575 49.924 39.172
0.000546 27.612 22,972 39.618 31.376
0.000884 22,183 18.678 31.561 25.319
0.001425 17.958 15.305 25.254 20.567
0.002289 14.633 12.633 20.312 16.816
0.002898 13.245 11,511 18.260 15.247
0.005873 9.956 8.837 13.431 11512
0.011878 7.687 6.963 10.128 8.900
0.0213460 6.417 5.883 8.216 7.344
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Table C2 Nur, and Nuy., for different power lavs indices and different axial distances,
Re=500 and Pr=10: Parallel plates.

x Nty m Nuym

n=0.50 n=1.00 n=0.50 n=1.00

0.000201 51.620 37.848 65.244 51020
0.000334 40.276 30.269 51.937 40.888
0.000546 31.879 24.675 41.560 33.168
0.000884 25.576 20.434 33.482 27.194
0.001425 20.806 17.174 27.199 22.536
0.002289 17.193 14.650 22,328 | 18.901
0.002898 15.732 13.603 20.323 17.391
0.005873 12.421 11.12% , 15.687 13.822
0.011878 10.326 9.469 12.631 11.386
0.0213460 9.286 = 8.629 11..003 10. 064

Table C3 Nur,, and Nuy,,, for different power law indices and dlﬁ'erent axial distances,
Re=500 and Pr=10: square duct.

x ;. Nugm Ntgzm.

n=0.50 n=1.00 n=0,50 n=100
0.000201 56.068 50.171 65.0.21 50.855
0.000334 43.534 35.271 50.202 39.156
0.000546 32.152 25.886 39.004 30.526
0.000884 ‘ 24.031. 19.797 30.370 23.999
0.001425 18.563 . 15.625 23.724 19.017
0.002289 14.716 12,608 18.624 15.191
0.002898 13.191 11.386 16.539 13.618
0.005873 9.661 8.515 11.716 9.939
0.011878 7.205 6.490 8.0501 . 7.433
0.0213460 5.790 5.294 6.682 5.976
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Table C4 Nur, and Nuy,, for different power law indices and different axial distances,
Re=500 and Pr=1(: rectangular duct (AR=0.5).

X Nuf,,.. Ntz m

n=0.50 n=1.00 n=0.50 n=1.00

0.000201 64.518 38999 60.401 45.806
0.000334 41.652 31.643 47.488 36177
. 0.000546 31.338 25.831 37.222 28.748
0.000884 24.827 20.822 29.262 22.998
0.001425 19.489 16.406 23.118 18.514
0.002289 15.288 13.170 18.356 14.993
0.002898 13.656 11.894 16.389 13.524
0.005873 9.959 8.911 11.790 10.046
0.011878 7.519 6.871 8.676 7.633
0.0213460 6.136 5.682 _ 6.878 6.197

Table C5 Nur,, and Nuy,. for different power law indices and different axial distances,
Re=500 and Pr=10: rectangular duct ( AR.=0.2).

x Nt Nuttizm
#=0.50 n=1.00 n=0.50 n=100
0.000201 65.927 53.280 64.920 51.790
0.000334 47.990 35173 50.681 40.291
0.000546 32.197 25.396 39.551 31.752
0.000884 23.686 20.358 31335 25.280
0.001425 19.270. 17.124 24.812 20.334
0.002289 16.087 14.403 19.817 16.545
0.002898 14.674 13.168 17.778 14.993
0.005873 11113 10.085 13.048 11.351
0.011878 8.647 7.973 9.822 3.817
0.0213460 7.325 . 6.853 7.931 7.311
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Table C6 Nur, and Nuy, for different power law indices and different axial distances,
Re=500 and Pr=10: semi-circular duct. .

x Nitgm Nuym

n=0.50 n=1.00 n=0.50 n=1.00

0.000201 40.953 31.568 64.500 49.960
0.000334 32.978 25.119 50.788 _ 39.':4 78
0.000546 26.372 20.764 40.262 31.507
0.000884 21.132 17.283 31.968 25.234
0.001425 17.112 14.401 - o 25.300 20.221
0.002289 14.023 12, 028 19,977 16.241
0.002898 12.736 11.007 17.760 14,582
0 005873 9.619 8.500 12.580 10.669

- “6.011878 7.385 6.687 9.090 7.972
0.0213460 6.118 5.635 7.086 6.378

Table C7 Nuz, and Nuy,, for different power law indices and different axial distances,
Re=500 and Pr=10: quarter-circular duct. ‘

*

X === Nuzm Nty m

n=0.50 n=1.00 n=0.50 n=1.00
0.000201 42,945 34,951 61.085 47.666
0.000334 33.297 27.535 47.841 37.458
0.000546 26570 22.054 37.644 29.673
0.000884 21.341 17.812 29.716 23.677
0.001425 17.162 14.463 23.519 19.001
0.002289 13.877 11.845 18.648 15.311
0.002898 . 12.524 10.768 16.617 13.766
0.005873 9.351 8.230 11.822 10.088
0.011878 |-+ 7.149 6.453 8.547 7.544
0.0213460 5.912 5.432 6.667 6.045
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Table C8 Nur, and Nuy, for different power law indices and different axial distances,
Re=500 and Pr=10: circular sector duct ( @ =60° ).

x Nuzp Nuisgz,m

n=0.50 =100 n=0.50 n=1.00
0.000201 44.998 36.036 61.201 46.639
0.000334 34.833 28.083 47.651 36.056
0.000546 27.215 22.102 37.313 28,223
0.00088¢ |  21.389 17.407 29.290 22.392
0.001425 16.879 13.885 22,993 17.895
0.002289 13477 11294 |  18.048 14.355
0.002898 12113 . 10.247 15996  12.873
0.005873 8.952 7.778 11.184 9.341
0.011878 6.761 6.045 7.929 6.878
0.0213460 5.527 5.041 6.076 5.427

Table C9 Nurm and Nuy,. for different power law indices and different axial distances,
Re=500 and Pr=10: equilateral triangular duct ( a =60° ).

x ~ Nurm Nugizm

n=0.50 n=1.00 n=0.50 n=1.00

0.000201 53.062 50.036 69.180 54.302
- 0.000334 41.820 35.429 51.591 40.158
0.000546 31.620 26.338 38.838 30.245
0.000884 24.090 20.546 29.370 23.048
0.001425 18.985 16.360 22.260 17.722
0.002289 15.101 13.001 16.939 13.749
0.002898 13.428 11,583 - 14811 12.152
0.005873 9.504 8.358 10.016 8.510
0.011878 6.983 6.296 6.930 6.104

0.0213460 - 5.536 5.084 5.244 4.755

L]
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Table C10 Nur,, and Nug,, for different power law indices and different axial distances,

Re=500 and Pr=10: right triangular duct ( & = 96° ).

x Nurm Nityrzm

n=0.50 n=I1.00 n=0.50 n=1.00
0.000201 53.235 50.141 65.270 50.988
0.000334 41.692 35.583 48.561 37.630
0.000546 31.614 26.475 36.303 28.179
0.000884 24.151 20.589 27.178 21.333
0.001425 18.952 16.332 20.370 16.289
0.002289 15.011 12.961 15.317 12.536
0.002898 13.348 11.548 13.307 11.031

0.005873 9.454 8.322 8.817 7.609

0.011878 6.903 6.227 5.962 5.358
0.0213460 5.444 5.005 4.400 4.084

... Table C11 Nuz, and Nuy, , for different power law indices and different axial distances,
Re=500 and Pr=10: cross shape duct ( A =0.25 ).

x Nurm Nutyizm

n=0.50 n=L00 n=0.50 n=1.00
0.000201 47.653 42.367 58150 46.285
0.000334 40.544 32.541 45.309 35.654
0.000546 30.417 23.941 35.106 27.668
0.000884 22.366 18.111 27.124 21.640
0.001425 17.158 14.382 21.059 17.096
0.002289 13.635 11.672 16.507 13.657
0.002898 12.209 10.533 14.675 12.258
0.005873 8.878 7.841 10.495 9.014
0.011878 6.667 - 6.023 7.729 6.816 -
0.0213460 5.404 4.953 6.157 5.533
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Table C12 Nur., and Nuy.,, for different power law indices and different axial distances,
Re=500 and Pr=10: cross shapeduct ( A =0.5 ).

x Nitg Numm

n=0.50 n=1.00 n=0.50 n=1.00
0.000201 47.390 40.190 58.101 47.280
0.000334 38.070 28.682 45.289 - 36.515
0.000546 27.525 21.246 . 35.347 28.442
0.000884 20.671 17.084 27.537 22,273
0.001425 16.794 14.346 21.469 17.542
0.002289 13.921 11,990 16.795 13.912
0.002898 12.614 10.900 14.882 12,425
0.005873 9.205 8.085 10.455 8.958
0.011878 6.724 6.041 7.501 6.605

0.0213460 5318 4.864 5.830 5.245
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D.1 Resistance variation with temperature

The electrical resistance, R, , of the foil at a given temperature is a function of its

resistivity and physical dimensions.

erpr«% D.1)

where p, is electrical resistivity, 4r is the cross-sectional area of the foil, and L, is its

length. Each of these dimensional factors is a function of temperature as is the resistivity.
The change in resistance of the test section with temperature is defined as its

temperature coefficient of resistance.

| - E_RR

AR
ap = =

) RR(T- T—:) R-RAT

0.2)

- Now we consider the effects of a change in temperature, from 7z to 7, on the
dimensions of the foil and consequently on its resistance. These effects may be evaluated

by examining the temperature dependence of the dimensional factors in Eq. (D.1).

B o_ pTZR[I+aL(T_1;?)]

~(D.3)
a'b'[1+a,(T-T)]
wherea” and b" are the width and thickness of foil, respectively.
= L 1
R.=p. 2 (D.4)

a"b" [1+a,(T-T,)]

The resistance variation in the worst case with temperature difference about 50°C

for stainless stee! foil (Goodfellow Co., FE080240) can be shown to be:
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L, 1 —p L,
a"b" [1+u.1 % 107 ><50] Ta"p"

R, =p, (0.999) (D.5)

Thus the influence of dimensional changes can be considered negligible.

_ = pLn L,
o FaoRe __ AR _Prgmr PRawt _pr-pa 80 _ o
o R(T-T,) R,A AT L T pgAT T p AT P T
Pr a"b"

The temperature coefficient of resistance very closely approximates the

temperature coefficient of electrical resistivity. @/, for stainless steel foil is 0.000/K .

therefore the effect of temperature on electrical resistance is treated as negligible.

D.2 Local bottom plate Nusselt number

For the case of constant heat flux (both axially and peripherally) on the bottom

plate, the local heat transfer coefficient is expressed by:

T ®
where g" is the rate of heat flux per unit surface area on the bottom plate and 7w, and 7Ty,
are the averaged wall temperature and bulk temperature, respectively, at axial location x.
Equation D.7 can be rearranged in the following form:

= =)o)

"

(D.8)

where T, is the inlet fluid temperature. 7, and Tw, are measured using thermocouples;-and
difference (7}, -T) can be calculated from an overall energy balance over the test section.

Assuming the wall is well insulated,

Q. |
Re-L=ps L @9

where 3, is the heat supplied from the beginning of the heating up to the axial position x.
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Due to the uniform thickness of the foil and also small temperature-coefﬁcient of
resistance it can be assumed the resistance varies linearly with axial distance since the

current is constant.
—~ Ox
a. =.QZ_ D.10)

Here L is the total length of the foil and O is the amount of energy generated electrically

within the duct. The bottom plate Nusselt number was calculated as follows:

— hth _ q”Dh

Nu,, = e _K(wa‘n.x) (D.11)
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D.3 Physical and rheological properties of
Carbopol solution

As was mentioned in Chapter 7, the physical properties (density, heat capacity and
thermal conductivity) of Carbopol 934 solution can be approximated By those for distilled
water.

Rheological properties of Carbopol 934 solution (0.5 % by weight) with two
different partial neutralization levels were measured at four temperatures. For both
solutions and all temperatures straight lines were fitted to the flow curve data with
R?=0.999 in log-log coordinates. The consistency index is the intercept while the power
law index is the slope of the fitted straight line.

Table D1 Consistency index of Carbopol 934 solutions
(n=0.727 for solution # 1 and n=0.623 for solution # 2).

Temperature Solution # 1 Solution # 2
°C k grsec*?/em | k grsec™ /om
20 0.769 2.728
25 0.754 2.667
35 0.733 2.576
S50 0.694 2.443

L

W
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D.4 Error analysis

Suppose the measurements of independent variables x; , xz, ...... , X, are made in

the laboratory and the relative uncertainty of each measured quantity is estimated as »; . If
the objective is to calculate some result ¥ (here Nusselt number), we want to analyze how
errors in the x; propagate into the calculation ¥ from measured values.
Y =f(x, x, oo, x,) (D.12)
As shown by Kline and McClintock (1953) the uncertainty for a result¥ is given

by:
a7 Y x, oF Y
X
W= e 2 W 4 13
The local Nusselt number is obtained from:
q"D,
Nu =—132"h . 14
" K(Tw,-T,,) ®-19)

The uncertainties associated with the measurement of various parameters are

presented in Table D.2. Uncertainty of the heat flux can then be calculated as following:

P 2 2 2 2
. _(mogY , (Coag") . (ATog"Y ., (489",
Y R M PN et O O BN R R B 15
“ [q” am')“m +(q" oc,) " \qmanr) g aa) e P

Here A is the bottom plate area and AT is the increase in the fluid bulk temperature due to

heating, The uncertainty in each property is calculated as follows:
u’ =(0.0005)" +(0.005)" = 2.53x 10°°
u? =(0.0005)" +(0.047) = 2.89x 10~ (D.16)
u? =(0.0005) +(0.01)" =100 x 107

The uncertainty of the mass flow rate and bottom plate area are calculated as:

i o, 01Y (01Y -
=l =] +|==| =278x10 17
o (zooo) (60) X (D.17)

Since A=a"xL and a”=29cm, L = 250cm thus:
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w = (ﬂ)z + (——0‘0'} . 119x10°° (D.18)
41250 2.90 ) '

In the worst case AT is about 3°C, therefore:

2
uy, =278 x107° +100x 10~ + (Qj{) +119%107 =1226x10° (D.19)

N q'Ax
L ~T= — 20
bx . mch (D )
Uy gy =134x107 (D.21)
uy =6.25x10 (D.22)
u;, =877x107 (D.23)
u(’m‘_n 0= 398x10 (D.24)
The uncertainty of the measured Nusselt number is thus given by:

Ul =1226%x107 +0.0004+2890 x 10~ +3.530 x 10~ = 2.09 x 10~° (D.25)

uy, =0.046

Equation D.24 shows that the uncertainty in calculating Nusselt number is 4.6 %. It is

estimated that the maximum actual error is not greater than 10 %. The réproducibility of

local Nuy x> values was within +3.3 % based on reproducibility tests.

Table D2 Uncertainty for different parameters.

Quantity -~ | Measurement Correlation Uncertainty Value
uncertainty uncertainty (other)
Temperature 0.05°C o — —
m 0.1gr —_ — 2000 gr
i 0.1 sec e ——— 60 sec
AT 0.1°C —s — 3C
0 — 0.0005 £0.5% —
X — 0.0005 +17% —
c, —_— 0.0005 +10% —
A 0.05cm o= —— 250 cm
D, 0.02em X — — ——
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D.5 Experimental results

D.5.1 Pressure drop

Table D3 Experimental results
n=0.623, Re=234, Flow Rate=16615 cm’.min”, T,=20.1°C, Semi-circular duct

X cm

0.95

2.61

4.27

6.50

10.98

22.26

41.98

67.40

103.64

131.76

APF

0.478

0.930

1.270

1.730

2.409

4.108

6.967

10.556

15.776

19.543

n=0.623, Re=295, Flow Rate=1970] cn’*. min’,

T,=20.1° C, Semi-circular duct

X cm

0.95

2.61

4.27

6.50

10.98

22.26

41.98

67.40

103.64

131.76

AP!

0.396

0.799

1.090

1.439

2.032

3.399

3.675

8.526

12.725

15.759

n=0.623, Re=372, Flow Rate=23319 cn’.min”’,

T,=20.1°C, Semi-circular duct

x cm

0.95

2.61

4.27

6.50

10.98

22,26

41.98

67.40

103.64

131.76

AP

0.340

0.686

0.930

1.225

1.739

2.877

4.678

6.897

10.298

12.556

n=0. 727, Re=805, Flow Rate=22301 cm’.min”,

T.=20.1° C, Semi-circular duct

X cm

0.95

2,61

4,27

6.50

10.98

22.26

41.98

67.40

103.64

131.76

AP!

0.262

0.513

0.7060

0.910

1.243

1.980

3.101

4.428

6.338

7.691

n=0.727, Re=987, Flow Rate=26153 cn’.min’,

T,=20.1°C, Semi-circular duct

0.95

2.61

4.27

6.50

10.98

22.26

41.98

67.40

103.64

13176

0.232

0.450

0.613

0.780

1.100

1710

2.621

3.720

5.236

6.396
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n=0.727, Re=1155, Flow Rate=29605 cm’.min’', T,=20.1°C, Semi-circular duct

x cmi| 0.95 2.61 4,27 6.50

10.98

22.26

41.98

67.40

103.64

131.76

AP' | 0.210 {1 0.399 | 0.550 | 0.713

0.988

1550

2.345

3.309

4.704

5.597

n=0.623, Re=239, Flow Rate=19754 cm’.min’,

T,=20.3°C, Equilateral triangular duct

x em| LI8 | 292 | 4.67 | 699

11.65

23.32

43.76

70.06

105.19

134.44

AP' | 0.784 | 1.225 | 1.570 | 1.965

2.665

4,202

6.680

9.600

14.100

17.300

n=0.623, Re=301, Flow Rate=23364 cm’.min’’,

T,=20.3° C, Equilateral triangular duct

x cm| 118 ) 292 | 467 | 699

11.65

23.32

43.76

70.06

105.19

134.44

AP' | 0.691 | 1.068 | 1.308 | 1.701 .

2.297

3.601

2.625

7.958

11.316

14.013

n=0.623, Re=379, Flow Rate=27567 cm’.min”,

1.=20.3° C, Equilateral triangular duct

x cmi| 118 | 292 | 4.67 | 699

11.65

23.32

43.76

70.06

105.19

134.44

AP' | 0.614 | 0.944 | 1.214 | 1.496

2.001

3.090

4.729

6.600

9.319

11.601

n=0.727, Re=825, Flow Rate=26665 cm’.min’,

T.=20.1° C, Equilateral triangular duct

x cm| LI18 | 292 | 4.67 | 6.99

11.65

23.32

43.76

70.06

105.19

134.44

AP’ | 0514 | 0.757 | 0.942 | 1.137

1.437

2.165

3.173

4.299

5.757

6.988

n=0.727, Re=901, Flow Rate=28581 cnt’.min’,

T,=20.1° C, Equilateral triangular duct

x cm | 118 | 2.92 | 4.67 | 699

11.65

23.32

43.76

70.06

105.19

134.44

AP' | 0.496 | 0.727 | 0.894 | 1.060

1.399

2.067

2.999

4.145

5.434

6.622
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n=0.727, Re=989, Flow Rate=30756 cm’.min”, T.=20.1°C, Equilateral triangular duct

X cm

1.18

2.92

4.67

6.99

11.65

23.32

43.76

70.06

105.19

134.44

AP'

0.479

0.687

0.855

1.039

1.302

1.950

2.829

3.856

5.180

6.279

D.5.2 Nusselt Number

D.5.2.1 Distilled water

Table D3 (continued)

Re=603, Pr=6.61, Gr=120x 10°, Flow Rate=644cn’.min”, T,=22.6°C,
Semi-circular duct

x cm

6.88

9.88

13.85

23.92

45.02

73.80

98.80

128.77

178.76

Nu;,,,

23.30

18.98

16.99

20.52

20.30

19.72

21.57

20.73

21.64

Re=607, Pr=6.56, Gr=2.13x 10°, Flow Rate=644cm’.min”’, T,=22.9°C,
Semi-circular duct

X cm

6.88

9.88

13.85

23.92

45.02

73.80

98.80

128.77

178.76

Nub_,

24.67

21.58

19.99

23.84

20.18

21.62

23.70

24.43

24.45

Re=611, Pr=6.51, Gr=3.49 x 10°, Flow Rate=644cn’.min’’, T,=23.2°C,
Semi-circular duct :

x cm

6.88

9.88

13.85

23.92

45.02

73.80

98.80

128.77

178.76

Nuz,_,

26.89

24.64

24.62

26.73

24.56

24.72

27.63

28.07

30.21

Re=780, Pr=6.84, Gr=103x 10°, Flow Rate=880 cm’.min", T,=21.4°C,
Semi-circular duct

X cm

6.83

9.88

13.85

23.92

45.02

73.80

98.80

128,77

178.76

21.52

18.88

15.78

19.44

20.71

19.41

19.85

17.45

19.36
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Re=802, Pr=6.82, Gr=183 x 10°, Flow Rate=880 cm’.min’!, T,=21.5°C,
Semi-circular duct

x cm| 688 | 988 | 13.8523.92 | 45.02 | 73.80 | 98.80 (128.77]178.76

Nuy. | 24.90 | 20.51 | 18.54 | 22.75 | 22:80 | 22.40 | 22.88 | 21.86 | 22 46

Re=829, Pr=6.56, Gr=2.92 x 10°, Flow Rate=880 cm’.min’', T,=22.9°C,
Semi-circular duct |

x cm| 688 | 988 | 13.85 | 23.92 | 45.02 | 73.80 | 98.80 {128.77178.76

Nuy. | 24.90 | 20.51 | 18.54 | 22.75 | 22.80 | 22.40 | 22.88 | 21.86 | 23.46

Re=1074, Pr=6.72, Gr=106 x 10°, Flow Rate=1164 cmi.min”, T,=22.0°C,
Semi-circular duct

x cm| 688 | 9.88 | 13.85 | 23.92 | 45.02 | 73.80 | 98.80 | 128.77|178.76

Nuy. | 22.97 | 20.43 | 16.89 | 16.64 | 18.71 | 19.66 | 21.78 | 18.34 | 21.68

Re=1075, Pr=6.71, Gr=170 x 10%, Flow Rate=1164 cm’.min*’, T,=22.1°C,
Semi-circular duct

x cm| 688 | 988 | 13.85 | 23.92 | 45.02 | 73.80 | 98.80 | 128.77|178.76

Nuy. | 26.67 | 22.70 | 19.09 | 19.37 | 23.95 | 22.55 | 23.82 | 20.86 | 27.57

Re=1076, Pr=6.70, Gr=2.62x 10°, Flow Rate=1164 cn’.min’, T,=22.1°C,
Semi-circular duct

x cm| 688 | 9.88 | 13.85 | 23.92 | 45.02 | 73.80 | 98.80 |128.77 | 178.76

Nup. | 28.49 | 24.31 ) 20.52 | 23.30 | 27.08 | 22.56 | 26.63 '28.16 | 32.53

Re=542, Pr=6.79, Gr=9.03x 10°, Flow Rate=640 cm’.min’, T,=21.7°C,
Equilatercl triangular duct

x cm| 7.02 | 10.02 | 13.99 | 24.11 | 45.15 | 73.96 | 99.00 | 129.01|179.0

Nup, | 15.15 | 13.70 | 1454 | 16.08 | 18.35 | 17.45 | 13.88 | 17.13 | 18.1]
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Re=542, Pr=6.77, Gr=170 x 10°, Flow Rate=640 cm’.min’, T,=21.7°C,
Equilateral triangular duct

x cm

7.02

10.02

13.99

24.11

45.15

73.96

99.00

129.01

179.01

Nub,,

18.17

16.37

21.05

21.62

21.30

23.30

19.18

20.91

23.04

Re=>543, Pr=6.76, Gr=271x 10°, Flow Rate=640 cm’.min’", T.=21.8°C,
Equilateral triangular duct

X cm

7.02

10.02

13.99

24.11

45.15

73.96

99.00

129.01

179.01

Nug,,,

22.35

21.25

26.24

25.23

23.96

24.10

23.60

25.78

27.21

Re=743, Pr=6.63, Gr=101x 10°, Fiow Rate=860 cm>.min", T,=22.5°C,
Eaquilateral triangular duct

X cm

7.02

10.02

13.99

24.11

45.15

73.96

99.00

129.01

179.01

16.90

14.41

14.87

15.33

16.78

17.65

16.79

15.70

17.44

Re=744, Pr=6.62, Gr= 185 x 10°, Flow Rate=860 cm’.min”’, T.=22.6°C,
Equilateral triangular duct

X cm

7.02

10.02

13.99

24.11

45.15

73.96

99.00

129.01

179.01

Nus, .

19.15

16.49

21.50

25.15

19.74

26.31

21.92

19.85

21.29

Re=745, Pr=6.61, Gr=293x 10°, Flow Rate=860 cm’.min”, T,=22.6°C,
Equilateral triangular duct '

X cm

7.02

1002

13.99

24.11

4$5.15

73.96

99.00

129.01

179.01

Nu,

22.55

19.63

26.94

26.26

23.53

26.62

23.62

24.61

123.10

Re=993, Pr=6.54, Gr=115x 10°, Flow Rate=1136 cn’.min", T,=23.0°C,

Equilateral triangular duct

X cm

7.02

10.02

13.99

24.11

45.15

73.96

99.00

129.01

179.01

Nub,,

16.92

14.01

16.37

15.82

16.33

15.79

19.96

18.22

15.96
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Re=994, Pr=6.53, Gr= 192 x 10%, Flow Rate=1136 cm*min’, T,=23.1°C,
Equilateral triangular duct

x ecm| 7.02

10.02

13.99

24.11

45.15

73.96

99.00

129.01

179.01

Nuy, | 18.92

15.29

19.87

231

19.89

23.11

22.94

19.84

19.60

Re=997, Pr=6.51, Gr=3.08 x 10%, Flow Rate=1136 cm’.min’!, T,=23.2°C,
Equilateral triangular duct ‘

x cm| 7.02

10.02

13.99

24.11

45.15

73.96

99.00

129.01

178.01

17.85

24.54

27.83

23.50

25.30

25.61

24.23

21.94

D.5.2.2 Viscous-non-Newtonian fluid

Table D3 (contiﬂﬁed)

n=0.623, Re=11.21, Pr=1018, Gr=75.7; B=-0.511, Flow Rate=1831 cm’min",
Q=344 w, T,=20.4°C, Semi-circular duct

x cm| 688

9.88

13.85

23.92

45.02

73.80

98.80

128,77

178.76

Nuyy | 20.89

18.22

16,00

13.09

10.29

870

7.91

7.20

6.63

n=0.623, Re=9.14, Pr=1077. Gr=67.7, B=-0.457, Flow Rate=1579 cm’min",
=308 w, T,=20.4°C, Semi-circular duct

x ¢cm| 688

9.88

13.85

23.92

45.02

73.80

98.80

128.77

178.76

Nuy, | 17.53

15.34

13.50

11.01

8.82

7.47

6.80

6.27

5.71

n=0.623, Re=4.23, Pr=1330, Gr=27.5, B=-0.317, Flow Rate=902 cnm’.min’,
=213 w, T,=20.4°C, Semi-circular duct

x cm| 6.88

9.88

13.85

23.92

45.02

73.80

98.80

128.77

178.76

Nuy, | 16.03

13.86

12.14

9.79

8.01

6.68

6.14

3.63

5.24
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n=0.623, Re=4.23, Pr=1330, Gr=30.8, B=-0.354, Flow Rate=902 cm’.min’",
0=239w, T,=20.4°C, Semi-circular duct

x cm | 688 | 9.88 | 13.85123.92 | 4502|7380 9880 (128.77\178.76]

Nup: | 16,33 | 13.80 | 12.05 | 9.83 | .7.88 | 6.69 | 613 | 5.65 | 527 | =

n=0.623, Re=4.23, Pr=1330, Gr=19.4, B=-0.224, Flow Rate=902 cm’.min",
0=151w, T,=20.4°C, Semi-circular duct

x cm| 688 | 988 | 13.85 | 23.92 | 45.02 | 73.80 | 98.80 |128.77|178.76

Nuye | 1602 | 13.93.] 1207 | 9.65 | 7.97 | 665 | 612 | 559 | 507

n=0.727, Re=19.65, Pr=383, Gr=351, B=-0.309, Flau Rate—1206 cm’ .min!,
0=227w, T.=20.1°C, Semi-circular duct

x cm| 688 | 988 | 13.85 | 23.92 | 45.02 | 73.80 | 98.80 | 128.77|178.76

Nu,, | 17.13 14.89 13.07 | 10.65 | 858 | 7.36 | 682 | 6.52 | 655

n=0.727, Re=11.54, Pr=429, Gr=279, B=-0.309, Flow Rate=794 cmj.min",
0=226w, T,=20.1°C, Semi-circular duct

x cm| 688 | 9.88 | 13.85 | 2392 | 45.02 | 73.80 | 98.80 | 128.77]178.76

Nuy, | 14.60 | 12.69 | 11.15 | 9.24 { 759 | 691 | 685 | 687 | 7.40

n=0.727, Re=16.21, Pr=399, Gr=339, B=-0.324, Flow Rate=1037 cm’.min’,
0=238w, 1,220.1°C, Semi-circular duct

X cm| 688 | 9.88 | 13.85 | 23.92 | 45.02 | 73.80 | 98.80 |128.77|178.76

Nuy, | 16.17 | 14.04 | 12.34 | 10.11 | 817 | 7.07 | 6.64 | 649 | 6.62

n=0.727, Re=16.21, Pr=399, Gr=278, B=-0.266, Flow Rate=1037 em’ min’,
0=195w, T,=20.1°C, Semi-circular duct

x cm| 6.88 | 9.88 | 13.85 | 23.92 | 45.02 | 73.80 | 98.80 | 128.77|178.76

Nuy, | 16.14 | 14.07 | 12.36 { 10.08 | 815 | 699 | 648 | 6.20 | 6.26
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n=0.727, Re=16.21, Pr=399, Gr=432, B=-0.413, Flow Rate=1037 cm’.min”,
0=303w, T.=20.1°C, Semi-circular duct

x cm| 688 | 9.88 | 13.85 1 23.92 |'45.02 | 73.80 | 98.80'|128.77|178.76

Nup, | 16.17 | 13.98 | 12.37 | 1014 | 824 | 7.24 | 696 | 6.91 | 7.05

n=0,623, Re=5.43, Pr=1218, Gr=23%:3, B=-0.284, Flow Rate=1264 cm’.mir’",
0=202 w, T,=20.3°C, Equilateral triangular duct

x cm| 7.02 | 10.02 | 13.99 | 24.11 | 45.15 | 73.96 | 99.00 | 129.01| 179.01

Nuy, | 12.09 | 10.59 | 946 | 7.87 | 6.43 | 546 | 499 | 4.62 | 4.24

n=0.623, Re=4,15, Pr=i311, Gr=16.3, B=-0.203, Flow Rate=1040 c¢m’.min",
Q=145 w, T,=20.3°C, Equilateral triangular duct

x cm| 7.02 | 1002 13.99 | 24,11 | 45.15 | 73.96 | 99.00 |129.01|179.01

Nuse | 1170 | 10.28 | 9.16 | 7.55 | 6.08 | 521 | 477 | 4.42 | 4.06

kS

n=0.623, Re=3.16, Pri=1412, Gr=I4.3, B=-0.208, Flow Rate=853 cm’.min’,
O=148w, T,=20.3°C, Equisilateral triangular duct

x om| 7.02 | 10.02 | 13.99724.01 | 45.15 | 73.96 | 99.00 | 129.01179.01

Nuse | 10.61 | 9.36 | 838 697 17565 | 4.86 446 417 | 3.85

et

n=0.623, Re=3.16, Pr=1412, Gr=17.2, B=-0.250, Flow Rate=3853 em’ min! 7

;

=178 w, T.=20.3°C, Equilateral triangular duct \ /’
x cm| 7.02 {10.02 1399 | 24.11 | 45.15 | 73.56'| 99.00 |129.01{179.01

Nuy. | 1058 | 9.38 | 836 | 691 | 5.73 | 4.91 | 447 | 419 | 391

n=0.623, Re=3.16, Pr=1412, Gr=20.6, B=-0.299, Flow Rate=853 cm’.min",
0=214w, T,=20.3°C, Eguilateral triangular duct

x cm | 7.02 | 10.02 | 13.99 | 24.11 | 45.15 |:73.96 | 99.00 {129.01179.01

Nuy, | 1043 | 924 | 828 | 693 | 5.67 495 | 445 | 416 | 395
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n=0,727, Re=14.26, Pr=403, Gr=218, B=-0.236, Flow Rate=1100 cm’.min’,
=184 w, T,=20.4°C, Equilateral triangular duct

x cm

7.02

10.02

13.99

24.11

45.15

73.96

99.00

129.04

179.01

11.61

10.20

9.06

7.33

6.12

5.22

4.83

4.61

4.62

n=0.727, Re=11.25 Pr=424, Gr=150, B=-0.180, Flow Rate=913 cm’.min’,

=140w, T,=20.4°C, Equilateral triangular duct
x cm| 7.02 | 10.02 | 13.99 { 24.11 | 45.15 | 73.96 | 99.00 [ 129.01 | 179.01
I Nug, | 11.17 | 9.80 8.72 7.21 3.85 4.98 4.59 4.36 4.39

n=0.727, Re=17.24, Pr=387, Gr=263, B=-0.263, Flow Rate=1276 cm’.min”,
=204 w, T,=20.4°C, Equilateral triangular duct

X cm

7.02

10.02

13.99

24.11

45.15

73.96

99.00

129.01

179.01

11.92

10.57

9.43

7.84

6.39

3.45

3.03

4.78

4.71

n=0.727, Re=17.24, Pr=387, Gr=354, B=-0.355, Flow Rate=1276 cm’.min"',
_0=275w, T.=20.4°C, Equilateral triangular duct

x cm

7.02

10.02

13.99

24.11

45.15

73.96

99.00

129.01

179.01

M Upx

11.93

10.46

9.33

7.74

6.34

5.48

5.15

4.95

4.96
1

n=0.727, Re=17.24, Pr=387, Gr=423, B=-0.423, Flow Rate= 1276 cm’.min’,

=328 w, T.=20.4°C, Equilateral triangular duct

X cm

7.02

10.02

13.99

24.11

435.15

73.96

99.00 |72

1179.64

Nuy .

11.87

10.39

9.30

7.73

6.33

5.58

3.29

3.1






