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Abstrf:l~t 
, " 1 

The determination of network ~ parameters for ar~itrarily-shaped wavcguid(' 
rf 1 _ ,. 

jun_étions is best handled by numerical. methods. ReceÎüly, several mcthodfl hnv(' 
( " ':". . ..-

e~er~d for Qbtaining tllese parameters for II-plane waveguide junctions [11 [21 1'31 

141 using the finite element method. These methods, however, ail" have, restrirt,ions _ 

_ -t? regarding the placement of the planes which define the locati"on of the ports of 
, 

,the junction. -This thesia presents a· finite element method to êxtract network pa-
-' , 

li • • 

rameters, of H-plane waveguide junctions, which is free of the previotls methods' 
, -

. -~.... ~ v~ (€\': 
rest~icti'ons. The new method, makes use "of modal projettion operators which ac-

count for ev~nescent modes ,at the ports. Tite new formulation generates a matrix 
\ 

eqûation which, under certain conditions, is positive definite, leadillg ,to faster sC:-

1ution_ ti~es. Resulta fr~m a FORTRAN impleD;lentation for several test examples 

are preseI'lted. 
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Résumé . ~~ ~ 
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i 

t· 
\ 

, ~, . 
o ~s procéd,és numériques s'attaquent bien à la détermination des coéfficients 

d,.jmpéd~ce PO~1r les jonctions dè gé~métrles gêtérales. 'Récement, plusi~~rs p~o­
cédés qui utilisent la théorie 'des éléments finis ont étés présentés pour les jonctions 

dan?pl~n H Il] (21 [3114]. Cependan~, ces procédé~ ont tous ~es réstrictions sur le 

placement des plans d~ portails: Cette dlèse présente un procédé d'élément finis qui 

extrait les'€oéfficients d'impédance d'une jonction de plan H sans ceS réstrictions. Ce 
. . ' 

nouveau procédé utilise des ~rateurs modals qui calculent les cl~amps électriques 
, Q 

dfts aux modes décroissants dans les guides q'ondes. Le nouveau procédé produit 

une équation de matrice qui est définie positive dans certains cas. On lWut donc 

résoudre ce système plus vit,e. 'Les résultats ob\~nu~ d'un logiciel é'c!it en FO,RTRAN 

pour plusieurs' problèmes de jonction concorderit bien av~c Ia-fthéorie. ' ... 
......... 
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Ohapter 1 - .I~ roduction , ., 

- , \ 
Waveguldes are struct~res which are used to transmit, -high-freqI,Hincy signaIs 

, \ . /1 

" fr?m ~ne devic~ tynother ~ The region at l~ic~ se~eral waveguidcs mect i~ callcd 

-~~ waveguide Junction.' Pqase-shjfters, attenuator~, and makhed terminations are 
1 0..;fi 1 

..' 1 

eJÇamples of w~veg~e junctions. Fi~~re 1.1 dePiits se~~ral mo~c. 

" , 

Ii is often useful to ch~racterise these junctions as N-port dE'vÎceR wit,h NxN 
, , c 

. scattering matrices relating the energy.-coup\ing between~l(:' dornir:lant. 1II0d(' WaV('H 

at the ports. This allows a given junctioh to be represent.ed ail a ilCt.worl{ el't!UI<1ï1t.., 
.. -'" /" 

-' , ' 

However, the derivation of the n~twork }ilai~meters for an -arb1trary waveguide jllllc-
~ \. *., ~ 

tion requîres ,either-measurèment or the soluLion of el;ctroInagnet.ic field problcrmf, 
, f _ -

that is, the solution of the fields which result from the application of Maxwell '8 

equations. Q 

Experimental methods for solving ele~trom.agnetic probJems are off,en expen-
\ . 

sive and time-consuming. Theoretical solution techniqu~s may he cither 'analylk 
, 

\f ~umeric~l. Analyti~ methods are usually geometry- or problem-dcpcn(1<mt, and 
.. 

.. hence lack the flexibility requi.red in à computatio~al tool for w~veglli(~an.aIYHiH. H-

" is therefore sometimes desirable to use numerical methods to soLve elcc:tromagrl(!tk' 

bOllndary'value problems. Method~ s~ch as finit~ elements hive lhe advant'lg(!,t,hal 
, 

they may b~Jormulated so as'to be geometry-independent. 

1 

The fundamental equation to solve -in waveguide analysis is ~the curl-curl 

1 
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.. 
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SOME WAVEGUIDE JUNCTIONS 

(à) Capacitive obstacle 
(b) Waveguide Bend 
(~) T-Junction 
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(d) Waveguide Termination 
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_'., equation, a !Variation of the vector Helmholtz equation. The ~el1eral ~robl(lm (~f ,'-
.. ~,. 

solving for the fields iI'l. ajunction is intrinsically t~ree-dim('nsional in naturt', n?w:, 

ever, a two-dimensional analysis may be ,appropriate if the variation ill tht: O(·ldH Hf(' 

'" known in,.a given direction. An example oftthis is an H-plane.el(l('tric n('ld !),rohtttm 
" r 

< D 

... in which.}he junction,. ge~:netry is, constaJlt in tl~\_~-directiOl~ (F'igul'~' 1',2r. III Hudl iL 

-, problep1, on.ly the y-CO~p~hent bf electri~ field .exists. There~ore, ri. O~OIllP()rt(,ll't.,., '_', 

, two-di:gIensional analysi~ris valid. . f -, • 

J ' 

Recently, sevetal fin'ite. element methods ([1112][3114)) ~a.ve been propo~('d t.o 

extract the n~twork paramet;rs of arbitrarily;~ha~ed, H-plane waveguide .ium:tiollli:
l

" 

Ail of these.~ethoùs il~pose s~~le'limitation on th~ p'/aéement of the port plarH'R t;mt 

dèfine the extent of the junction.- In Webbl1] the'PQrt .planes. must be suflici(llltly far 
o _ , ~_.r 

f:om ~he junctioo cavity so that the 'transverse fields al trie PD.J'~ plaucs are ('lr~,rtJh"\,ly 

,':composed of only the dominant mO:de .. In Koshibp. et. al. '[2][3][41,~two (>-ort phW(11' 
~ , 

plUst be defined, for ea,.ch waveg~ide connecte'd to t.he junétioll, in ?hler t.o account. 

for the field contributions of evanescent mode~ af the po~t planes. It iH 1I('('('HfHl.fY ~ 
, 

to mesh the problem so that there are a significapt 11umber 'of nodes bctw,ccn the 

. 'plane~ i~ each waveguide. Irr bQth l:!.WthoÛs, .the're is a degrü~ o( IIOtc~:!tft:y abolit. 
~ ~ 

the position of the port plan~s. Thi~ësents an inconveniencc to th~ 118Cr of this 
~ '. 1(7 

... type of formulation. 

. ... 
The aim of this thesis is to present a ~,nite element formulation io cXtra( t. 

,_-_ ,..,. J .... ,;'~~ ... 

network parameters of an arbitrarily-shaped II-plane waveg:;iôe jlllldio1\ which iH 
, f '''. 

, free of t'he port plane restrictions found in Webb[l] and KOflhiba el,. a~ 1211-:JII4]. Tnt· '" . 
II • ~ ~"-4 ~ \ t,. 

. \ ~ 

new method presented allows the user to define the extent of"'the jUJ'lCt,ioll reg101l • . ~ 
with as little knowl~dge as possible of the fields within:~he device.,III addition, Hw 

new formulation is 'cast in terti:ts of a positive de'finite mat~ix operator in sorne cases, 
, 0 • 

~ 

thereby enabling faster sQlution Limes . .. 
3 
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FIG 1.2 AN H-PLANE W~VEGUIDE JUNCTION 
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The thesis is organiseô as follows: Chapte,r 2 provides a history of past work 

III computational waveguide analysis. Chapter 3 pr('scnts SOll\(" r('I('VHnt. ('krt.J'()-
. 

magnetic theory. The finite element analysis of waveguidc jun('tiolls is di!il('usHrd ill 

Chapt.er 4. In Chapter 5, a new finite element formulation is prcsent.ed and Chllpt.I'T 
. 

6 deals with the implementation of the method and result.s obtain<,d fl'Oill RO:l\(' !.('Ht. . , 

examples. A discussion of the merits and disadvantages of the new m('t.hod iR giv(,tl 

in Chapter 7, which serves as a Conclusion. The AppendiceR pl'(wid(' n'I('vaut, pIOO[H . 
and sorne background functional analysis. 
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Chapter 2 - Literature Survey 

, 

This Chapter will present an overview of past wo~k in waveguide. analysis, 

with emphasis on numerical methods. 

Early waveguide analysis relied primariIy ùpon experimental, analytical, 

semi-analytic--al a,nd graphical techniques [5][61[7] . In the mid-forties, Southwell 

181 aftplied relaxation techniques to a number of physical problems involving the so­

lution to Laplace's equation. This analysis led to another paper by Grad [9] which 

invest.igat.ed t.he utility of this type of analysis in dealing with a number of electrical 

engineering problems: incluùing TEM-mode waveguide analysis. In addi.tion, Grad 
) 

• 
extended Southwell's relaxation ~pproach to develop a method to determine thé 

resonan t modes of a waveguide eavity. ' 
(0 

lu the early sixties, Davies [10][11] proposed a semi-analytic method which 

was applied to an N-port H-plane junctron to determine its sca~tering parameters. . . 
This analysis, however, ignored contributions to the- field at the port planes due 

~ 0 

to evanescent modes ,and, consequently, the port planes needed to be plae.ed saf-

ficiently far from _the junction cavity so that only the dominant- mode fields are 

.significant. By the mW.-sixties~ finite difference schemes for transmission-Hne and 

wavegl.lide analysis were developed by Green 112}, Schneider [13], an-cl ~etcalfe [14] 
• ~ • J 

6 

" 

, 



0 0 

for TE M -mode analysis. The principal sllOrtcomÎllg of Lhese' methods was., dUt> 1.0 

the regular grids necessary in fJte finite diff(lrence method, t.hal. c urvNl-bo\llldary 

problems could not he analysed. This restriction was 1'emoved hy Carson [l[)] in a 

,"ormulation in which the boundary nodes of t.h~ probl~~ r(lgion w~rl' I.I't!itt.(!d \I~'iI\R 
" a special difference schérne. 

. 
Later, an E- and H-plane finite diffcrence formulation was int.!'oùuc('ù by 

Mui1wyk ana Davies [16]. In their paper, the authors acknowledged the Iimitat.iolUl 

of an analysis that neglects the presence of evanescént waveguid~modcs al. the po!'t 

planes, in determining network parameters, as.in Davies[lO][lll. This port pInnE' .., 

restriction was partially eliminated in the mode-matching met.hod of W«,x)er 1171. 

He~e, reflection and transmission cOèfficients of systems of ("onn(>ct.~d waveguid(,H 

were obtained by ensuring continuity of a finite number of waveguide modes. lIow-

ever, the analysis required a great deal of computational effort and was ineffed,iv(> 
-' 

in treating arbitrary-shaped structures, 

Finite element formulations to analyse waveguide components, mnerged in, 

the late sixties. Ahmed [18] proposed an axial field (En Hz) IQef,hod from which 

the other components of electric and magnetic field could be extracted. 1~he rnet.hod 

determined the propagating modes and resouant frequencies of arbit.rarily-sltaped, 
~ 

dielectric-filled waveguide structllres-;-nater, Silvester !19] outlined a Unite element. 

method tç 'tleter~,ine the modes and resonant frequencies of two-dimenBional, Hcalar 

Helmholtz field prohlems. In ~ subsequent paper, Silvester !201 used an H-plan<" 

scalar formulation to determine the admittance pararneters of an N-{llirt stripline 

or microstrip junction. Ho\yever, the restrictions mentioued in Muilwyk and Davies 

[16] remained, namelYi por~ planes needed to b~ placed a.Iargé distance from the 

junction cavity. , .. 
I~. -

, 7 
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By: the mid-s~venties, two- and three·dimentional finite element formuJations 

had been developed' by Kon~ad [21][221 and Ferrari et. al.[231 to solve for fields in . 
wavegu;d~ ~omponents. These methods were extended by Webb [11[24] to.obtain 

impedance and admittance parameters of II-plane junctions, 'subject tô the port 

plane restriction. Recently, however, K"oshiba et.aI. !2][3][4]f25] have developed . - . 
o 

waveguide junction formulations (E-plane and H-plqne) which account for l"nes­

~:ent rnod~s at the port planes, thereby removing this restriction. How~ver, their 
~ 

metJlOd req1Ïires the modeling of two p)anes per port with a significant number of 
~ 

nodes in the regibn between the two planes. In addition,.the matrix equation arising 

from this formulation 1s not symmetrÏc, thus increasing solution time. The devel­

opment of a les~ restrictive formulation, such as the C:ne presented,.in this thesis, is 

therefore motivated. 

J 
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C~apter 3 - SOIlle WaveguidÉL Thebry 
1 

li 

'> •• 

" This chapter will de a) with sorne electromagnetlc theory needed to d(\scrftj(\ 
, " 

waveguide junctions. The Chapter will begin with a presentat.ion of the wayeguid~ 
~ J. \ 

) ... l 

field problem and the corresponding màthematical formulation. Nl'xt., t.he wavt~-'" 
\ 

\\ guide junction will be introduced as will its equivalent. circuit.' parameters 'and a 
. . 

method to determine these parameters. Finally, II-plane rectangulal' wav'eguid(' 

problJht will be pres~ted and di' ussed. For simplicity, ~.t.heory will denl, wil.h 

single-mode waveguide operation only. -

3.1 - The Wavegui4e 

.. 

A ~\\r~guide' is a structure through which a high-frequency electrprnagn~tic' -
~ " 

signal may be sent ,(s~e Fig'!re 3.1). -The ~lectroinagne'tic fields i~side a wavegui.de 
" 

satisfy the time-harmonic Maxwell's equations: 

'" 

(a) V x E = iW/-LH 

(c) V x II = -iwf:E 

where E is the electric field, 

H is the magnetic Jleld, 

È is the electric permittivity, 

9 

(b)V.€E=O . 
(d) V . jJ.H == 0 

:J 
(3.1 ) 

/ 



C'. 

( 

" 

( 

, , . -
J.t ie the magnetiG permeability. 

~ 

A' wave equation for E may be obtaine(l by solving for H in (3.,~a) and . 
substituting this r~8ult into (3.le) : . .. 

(3.2) , 

... 
wh~re ku is the free-space wave numl1er (~). 

An equivalent wave equa.tion may be obtained for 'H. 

Assuming tran81ation~1 symmetry along the z-direetion, as in Figure 3.1, the '. 

electric field may be written as : 

• > • 

E(x,y, z) = [~(x, y) + ~ (x, y)]e±J{h, 

where Et is the componellt or E normal to Qa 

E z is the ;omponent ~f E ~r~leI to Q,:r 

, .' 

(3.3) 

)f f and J.t are upiform, the tranverse electric field at JPort p can be Fourier-

de'toIIlposed in terrns of TE and TM harmonies : 

, ,/ 

00 00 

E.t = L v'u ~m -+ L: v,:.'!:n, 
m=1 m=1 

, 

where ,v,,. ~ J J Et,'!m dB 
- - (JO l' 

i 

V;:. = J'J Et . !:,.' d~ 
(J Il l' 

" ~Jn 0 is the electric field of the mth TE mode 

~:.. ,is the electric field of the mtl. TM mode ' 

10 

~ 

(3.4) 

/ 

" 
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Similarly, the transverse magnetic field at por~ p may be ex.presse<f as : 

00 00 

H t :;: L lm!lm + L 1:" h::" , (3,5) 
m=l -".=1 

where lm = Il H,:hm dS 

Il Il,, 

I:u = III Ht • h:" dS 
, 1 

{J Il,, 

!lm is the magn~tlc field of the mth TE mode 

l!:" is the magnetic field of the mtlr TM mode 

't 

Waveguides are usually driven at a frequency at ~hich only the first TE mode 

~ro_gat~s and aU other modes are attenuated. In sucli a case, the propagation 

constant, (J, in ~3) 'is. real and· positive for the first TE mode and imaginary for 

ail other modes} This is called sing.Ie-mode operation of the waveguide. 

J 3.2 - Waveguide J'unëtions 
, . 

Figure 3.2 (Bee also Figure 1.2) depicts a structure at which sever al waveg­

uides meet. Such a structure is called a waveguide junction. The junetion may be 

<> considered an -N-port circuit element by using the dominant-mode Fourier coeffi-

'cients in (3.4) and (3.5), VI and Il to represent t.he voltage and eurrent at a given' 

port. .. 

. The eoupling of ene;gy from the ~iffer~nt ports may be writ~en, for ex amI., 

as an admittance matrix'relation: ,\ 
( 

Il ,) ( Yu 12 Y21 

· - . · - . · . 
IN YN1 

" 

(3.6) 

- 12-

" 

.C 
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, . 
(TIl(~ mode subscripts in (3.4) and (3.5) have heen dropped. '1;he suhscripts in (3:6) 

. refer to the port nu~?ers, in!ltead.) 

The admittance matrix characterises the coupling of e'llergy in the dominant 

modes of each waveguide connected ~ the juncti6n. The matrix allows the junction 

to he used in a lumped parameter circuit model. 

3.3 Determination of N etwork Parameters - (Belszajn ~s Metho~ 

[31]) 

/ 

.In an N-port junction, the -entries of the admittance or impedance matrix 

may be determined uaing open- and sho!t-drcuit ex.periments on pairs of ports. 

Figure 3.3(a) shows an N-port junction in which aIl but the i t
" and lI. ports have 

been short-circuited'4 In Figure 3.~(b), Helszajn's equivalent circuit in terms of 

impedence parameters is presented. For symmetric junctions, the parameters are 
1 

represented in Figure 3;3(c). The admittance parameters for this two-port tnay he 

obtainel as follows : 

') J 

. . 
step 1 - Short-circuit the terminal plane T and de~ermine'the impedanc~ at Pt (z~). 

-::;teJ 2 - Open-ciréuit the terminal pfaIl~ T and determine tl~e impedahc'e at Pt (~IJ}' 

" 
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step 3 - Use Helszajn's model to_ extract irnpedance and admit.tance paTameters: 
~ r~" 

z" = z. 

Z" - z. 

Z. 1 (3.7) 
Yu = 2 1 (, .1 )2 

. , Z. - 4' Zo - Z. 

Z • ...... Z(J 

Y,) =:: 2 2 1 ( ) 2 1 
Z,. - '2 Zo - Z. 

\ 

\ .. 
Performing this analysis for each . j-pair cha'racterises the admittance matrix 

entirely. This experiment w;ll be the basis 1 or the flrmu'ation presented in Chapters 
; -, 1 ~ 

1 
-

·4 and 5. 

,3..4 - H-Plane Junctions 

A special class of waveguide Junctio~s, is the H-plane junction. Co~ider the _ 

junction of Figure 1.2, in which conducting planes exist at y = 0 and at y = b, 

where b is the j~nction thickness. If the feeding waveguide dimensions are·chosen 

BO that -the waveguide width, a, is larger than the waveguide' thickness, b, then the 

T E"," are the dominant modes of the waveguides. The electric field d·istributions of -~hese modes have only a y-component and have no variation in the y-direction . .As 

, ' a result, the H-plane waveguJd~ junction is amenable to a two-dimenS1.onal, scalar 

'an~lysiR. Th(' H-plane waveguide geometry can be defined in tw6~dimensions, as in 

Figure 3.2. For simplicity, the theory in the remainder of titis chapter will deal 

with a. t,wo-dimensional junction, in which there. ,is only single-mode operation pf • 

the feeding waveguides. 

.. . 
The electric field distributions of the T Emo modes in ~ectangular waveguides ' 
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fqr singl~-mode operation are : 

.j 1 

., where Pm 

real for rn = 1 

i~laginar,y ~or m 2: 2 
, 

, 
TJ;te tangential magnetic field of the T Emu modes is ~ivèn by : 

• • 

- 1 

(3.8) 

" -4 

. •• 
. (:1.9) 

\ - ... ) 

where Yrn is the'ch~racteristic impedance of the T 4'", oInode in the w~veguide . . 
. " 

- / 

The voltages/',and currents at the plane z = constant, which cutA thE' ~aveg-

uide, are: 

v" m = ! J Ey ~in ",~r dx dY- ...... 

{} ll" 
. (3.10) 

x=a 

= ~ Jo Ev sin m~J' ~x 
:1:=0 

3':=(1 

l" ~ = ~. J lIœ sin mrF:,,~X ' j3.11) 

..:=0 
1 , 

These definitions for 1 and V' will b~ usèd in Chapter~ 4 and 5. -- .... 

3..5 - SUnlmary . . ~ 
. ~ . . 

, . 
This Chapter presented sorb.e elctromagnetic theory needed for waveguide .. 

analysis. The waveguide junction, its representation, and the det~rrnina~ion of its 

network paramet~rs was discussed. 
~. 

waveguideJ was presen~ed. 

, 

AIso, the special case of II-plane redangulat' 

/ 
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Chapter 4 - Finite-Œlem(mt Waveguide Analysis 
0, 

The finite element method may be used to extract waveguide network pa­

ramf'ters fll['24j[11l!20U2j[3!f4j[251 f9r arbitrarily-shaped junctions. The formulation 

rommon to aIl t,he references mentioned above will he referred to as the standard 

("url-curl formulati0l!.'and will be present:d in this Qhapter. The finite element 

t,heory will be presented for two-dimension11, scalar waveguide prohlems, whe're 
u 0 

applicahlf'. This formulittion is appropriate for H-plane junction analysis. 

4.1 - The Standard Curl-Curl Formulation 

o 

II. has been det4Jonstrated [24H26] that for a waveguide region, 0 in Figure 

<1.1, (ontainin~ only lossless materials , the quantity : 

( 

(4.1) , 

, 

h~ a stationary point at E = 'E, where ft satisfies the curl-curl equatt>n 
t: Q 

!3.2). It has been assumed here that both E a;nd ft sati~fy the appropriate boundary 
,-

conditions on an (see Figure 4.1). 
\ ,Ir 

For If-plane junctions, E = El! and n is an area rather than a voJume. 

A s~n.lar field approximat.lon ,for E, suita.ble for analysis of H-plane recta:ngular 

waveguide junctiôns, may be obtained by subdividing the region n into e triangular 0 
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supregiomi such that (see Figure 4.2): 

t' 

U 't 
0= 0, 

(4.2) s= l--r--
\ . 

n, n OJ = 0,6'1 

Within a given subregion, n" the approximate field may he expressed as a 
" . 

Iinear int~rpolation of the electric field values at the vertices ( see Silvesteri27] ): . 
3 

E(') = E(')a = '"' E a (x y) - "-If L.,.; k k , (4.3) 
k=l 

In finite element terminology, the vertices are called nodes and the triangular sub-

rcgions, clements. 

Inserting (4.3) into (4.1), the function may he written as a matrix quadratic 
'~ 

forrn : 

(4.4) 

where E Ïs a column vector of EI/'s 

- , 

W is a square, symmetric matrix. 

It may he shown that the stationary poi~t of Fu, subject to the boundary conditions 

on E, Îe E" , where: " 
W' E' = R (4.6) 

See Section 6.2 for details. J'he- resulti:r:g solution vector, E* ,may he used to ap­

I proximate E by interpolating between vertices jn a given eleinen.t using (4.3). ~is 
, 

forma the basis of finite element theory . 

. 4.2 - Waveguide Junction Admittance Parameters , 

Figur~ 4.3 ilhistates a waveg~ide junction in which aIl ports except porAi i ,- - ... . "F. 
have been open- or short':circuited and the ports have been defined to ne far enough 
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" 

away from the junction cavity that evanescent modes.of the waveguide have very 

littIe contribution to the fields at ,the port planes. In such a case, it has been 

demonstrated [24] that if port i is excited with a wave of unit voltage, then the 

admittance seen at port i· is proportional to ~) (Ê) (see Appendix 1 for proon, : 

. , 

where 'k is a known constant . 

;-~ , 
.tjL .. "' 

( 4.7) 

Relation (4.7) allow.sJhé individual entries to be jbtained uaing HE'lsz~jn'B 

equivalent circuit models ( Section 3.3 ) by performing open- and short-circuit 
~ . 

\ ~ 

. experi'ments on pairs of ports. For a symmetric two-port, .the procedure is 

step 1'- Short-circuit the ten,n.inal plane Ttnd solve the finlte element problern 
; \. 

corresponding to finding the stationary point of (4.1). 

s-tep 2 - Evaluate y ~ k . Jo (ET). Cali this value y •. 
.. 

step 3 - OpenJcÏrcuit the terminal plane T and obtain a finfte element approx­

, imation of the admittance seen at plane P (Yu). _ 

step 4 - Evaluate the diagonal and off-diagonal impedan~e and admittance 
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parameters: 

Z.i = l/y. Q • 

l/yo -1/y. 
z'J = 2 

l/y. Yi, = -...,----..,......:....::..----,---,--
(1/y"}2 - Hl/Yu - l/y.)2 

(4.8) 

. l/y, - l/yo . 
Y'J == 2(IÎy,}2 - Hl/Yu -'l/y,)2 

. 
4.3 ~ Placement of the Junction Port Planes 

There is a restriction impos~d Oll the placement 9rt planes in the for-, . . "::S 
mulation ab:~e. In Figure 4.4, a portion of the waveguide jun tion' is depicted. -At 

port plane l, the electric field may be written as : 

(4.9) 

where j!", is the electric field of the TEmu ffiQde. At port plane 2 the electric field 

is : 

(4.10) 
+ c' e+ r 1Ll. e 

l -1 

If the dominant mo~e, TE. o, is thè only p~opogating mode in the waveguide con­

nected to the port, then r 1 is purely imaginary and aU other rI 's are real and 

positive. 

, ... - 1 

For large enough A, e- r",Ll. is small for m ~ 2 so that electric field at plane 
1 . ' 
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can be said to be comprised mainly of ,the dominant mode, ~1 

E2 ~ CI e- r 1 A ~l 

+ c' e+ r lA e for large D. 
1 -1 

( 

(4.11) 

It is therefore justifted, in such a case, to apply a Dirichlet boundary condition of 
, 

the fOfln : 

E 2 ::: ~1 (4.12) 

in order to excite the port with a unit ;yoltage T ElO _ wave. 

il 

The imposition of (4.12) is tantamount to imposing a non-homogeneous 

Dirichlet condition for the dominant mode and a homogeneous 'Dirichlet bound~ 

ary condition for each of the high~ TEmfJ modes: 

Vi 1 
V2 

V3 

v,,. 

::;: 

1 

0 
0 

0, 
/-

0 

(4.13) 

This method will be refered to as the Dirichlet port c~mstraint method or "Dirichlet~ 

port'" method', for short. The ab ove constraint does not, however', accurately model, 

the fields of a true phyaical waveguide' (where the higheJ'-mode contributions are 

non-zero) unless the port plane is a large distance away from the junction. The 

true boundary value problem lS effectively an op€n-boundary problem and the ap-
~ 

plication of (4.12) is a virtual boundary wndition that limita the probleffi'region to 

a finîte domain. The user of a form~lation such as that 'deacribed in'this chapter is . 

-- therefore restricted ~- to how close ta the junction° the port planes II?-ay be located. 

\ 

;. 
4.4 - Sumrnàry-

This chapte~ presented a finite elemen~ method to ex~ract, admittance pa­

rameters of an arbitrary-geometry H-plane waveguide junction. How~ver, the port 
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planes of the lunction must be situated sufficiently far from th~ junction cavity th.at. 

the fields at these ports consist almost entirely'of the dominant-mode fIelds. This 

restriction will be dealt with in the next chapter. chap5 
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Chapter 5 - A New Finite Element Method for Waveguide Analysis 

The need to account for evam~scent modes at the planes of the ports of 

a 'waveguide junction has b~en mentioned in ~any papers [16][2][3][4][251. Two 

rIlOdiijca:tions ,to the'" method presented in the previous chapter are that: 

(i) the energy.-functional of equation (4.1) must be made to account fôr 

the energy contained in 'the higher waveguide. modes, and 

(ii) the input port bo~nd~ry cond!tion must be projective in ~a&re; that 
~ - ~ 

is, it must only constrain the dominant - mode field component at the 

inp.ut port . 

In order to accomplish these modifications, a new fpnctional ~nd sorne proje-
{ " . 

ctive field operators 'must be developed. The theory will be presented in a three-

dimensional form. This type of analysis will allow extensions of the theory to 

probJems other than the H-plane junctions presented in tItis thesis. The theory will 
assume single-mode operation of the feeding waveguides throughout. 

6.1 - Projective Operators, and a New FUl1ctional 
'" o 

. 
The electric field contribution fr~rn the m th TE ..JIlode, illl/" ltt a given waveg-

7 -
uide junction port can be extracted from ,the e.lectric fie,Id contribution, E, by us~ng 
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,the following projection Qperator: 

l q 0 È· ~ dO, ,. 
Pm (E) = /' ,.- ~" dO ~" 

.1 Il ,. ~II • ~'" Il 

,(5.1) 

Given a port field distribution which is a mixture of several 'T E". Il modes, such as 

Elof equation (4~9), the operator above extracts the mt/I mode contribut.iôn so 

that: 

P (E) - -l'mA 
m -1 - cille ~III (5.2) .. 

<" ", -~ For an e~anesceI?-t mode (m 2: 2), the m th mode m~gnetic field contribut.ion is: 

1 

Bm (E) = b",!! x Pm (E) (5 .:J) 

where bm is the characteristic susceptance of the T E j" () mode 

!! is a ~nit outward normal to the junction at the port boundary ,J" 

m 2: 2 

The total hi;her :r:n.0de (m = 2,3, ... ) contribution to the magnetic field is given ~ 

00 

BI (E) = -L Bm (E) {5.4) 
m=2 

By analogy, the projection operators Qin (H) and QI (H) can be defined 6uch 

that: 

/. 
, fon,. H . ~,~ dO,.' 

Q", (H) = f h Il dO 
_ il Il,. -In • -=n. i " 

h 
-~" ... 

and 
co 

QI (H) =. L Q", (H) 
J 'fi e 2 

The operator.s in (5.1), (5.3), and {5.4) ~re useful.ln·devel~ping a nj!w func-
'.. ~ -t 

tional and a new form of the boundary ëonditions needed in waveguide analysis. T'he 
1 
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" 
functional, F'.,(E), in equation (4.1) is proportional to the time-average outward-
\. " 

going power in the junction. This may be related to port admittanc~s through the 

app1i~ation of Po~nting's Theorem (see Appendix 1 for proof). The time-averag~ 

outward-going power in the T Elu mode is given 'by: 

(5.5) 

~. , 

The surface term above represents the outward-going power contaihed in the higher 

(m ? 2) modes. The quantity may be used as a functional similar to the functi9nal 
"- . ~ f , 

, F:,(E). This will ~e shown in the following sections .. 
o 

• 
The boundary condition on the first mode of the waveguide at ao,. can be 

wtjtten as: 

PdE) -.fi 

. 
for the first mode and for each higher mode, by application of equation -(5.3): 

, , 

\ 

. ) -
A justification for the above relation m}ly~be made as follows. Qi (Ii) is the higher-

• '. - • 1 

mode component of the magnetic field at the port and Bl (E) is the evanescent 

portion of the ,magne'ti~ field, assumint..ly outwardly-decaying higher mo'des. For' 
-

single-mode operation, Qi (H) must equal.~dE). 
, " 

o .. • ,. 

The above two ,conditiop.s proviâe adequate constraint for proper problem 

specification. This method of imposing the unit-voltage condition 1is called the 

" projective-port"'\nethod. 

6.2 - The s..tation~ry Point of F(E) 

Referin~ to Figure 4.2, consider a~~ace" S, of fun~tions,·E, ~e~ed~uth 
30 
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, , 

that: 
on an,." (conductor)., 

and P 1 ~.E) ;;:- ~1 unit. voltage condition 

The following Theorem may be developed: 
.. 

, _, t _ 

1)heorem A: If E is the stationary point of F(E) in'S, then E satisfies the (:url-curl 

equation and. the evanesc<tent mode condition: 

Proof 

The first varrati()l} of the functional, F(E),. with respect to an arbitrary 
~ . " 

function ,!!, wh'ich satisfies homogeneous boundary conditions on "ao and Pl (u) =- () 
" 

on ao,. is: ~ 

c5F(E),,!! =, r {":"(V x E) ,_('v x ,!!)'- 2k~f.rÊ''!!} dO 10 /-tr \ 

+ ko-:;'o 1 {Bd!!:) x E + BdË} x~} . n. dO" 
a 1) l' . 

Ap~lying the. id~ity V.' (~ x Il) = !!. . (V ~ gJ - Q' (V x Q), _ • 

t5F(E) , u = -V'.(u x V lX E) + -u ',V' x V X !Id. - 2f.rk~E·.!! . 'ndO .,. ~ l { 2 "- 2 N -} 

Il /-tr Itr -

+ 2ku 1](/ f '" {BdE). x ll.}. n.dO,. • , 
• 1IJuI' 

Therefore,· - . , , , 

6F(Ë),~ = r {,~ V.(,!! x V ;< Ë) } lldO -+ 2k()1]o ~ {Bl (Ë) '/ l!} .. ndO" 1 Cl ,..,r } lJ li,. ' 
. ~,r ""'2 u .#(V X V y t - k,,2 Er E) dO 

,10 /-t .. 

The Divergence Theorem can be applied to the first integral, above, to givc:, - 1) 

6F(Ê),Yt. = f ~u x V x Ê . !l~n + 2ko1]o f ~l (Ë) >' Yt.~!}pn'l 
} () 0 IL. " .' IJ (/ " 

" .. ~ 

+ [ ~,!!_. (S- x V x E - Kt,2f.rÊ) dO . J~I ILr 
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Sillce k /' Ti -;:; E y 11 -- 0 on conducting boundarjes, 

o • . 

If Ê is il. stationary' ",\oint of F(E), then, the volume and surface integrals above 

must each vanish sepe~y. This implies that: 

For tri' -. l and'y: = !i,,, on Bn", " cl n x u = =m.. an : - - ,l,,,, 

From the dèfinitif>n of Q ... (,J, this implies that: 

whidl is thE:' evanescent mode c.ondition. 

Therëfore, E satisfies the curl-curl equation as ~ell as the evanescent mode 
o , 

condition. 
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Therefore, as the above proof demoJlstrates, the solution fipld, E, whkh 

satisfies the curl-eurl equation may ~e found by using the functional F( E) instet\d 

of F;, (E) and by applying Pl (E) = fI instead of E :::: f. I on the port !.>oundary in n 
o 

variational formulation siniilar to that presented in Chapter 4. The higher modes 

at the' por~Iane have been a€counted for and, thereforc, there is no restriction 
0' 

whatev.er on the distance that the planes must be from the port, unlike the st.andard 

formulation. 

5.3 - The Physical Significance of F(E) 

In ~addjtion to the similarity in tbe stationarity properties of F(E) and Fil (12) 

presented aboie, the two functionals also share similar propcrtres whcn evaluatcd 
e:. 

at their respective stati0hary points. The following Theorem applies to F" (E): 
J 

Theorem B: F(E) is proportional to the admittance seen at port an,. 

o 

Proof:" 
~ 

Sinee: 

thén: 
t, 

("\7 xE.) . (\1 x E) = \! . (E ;' V; E) + E . (\! ;/. V x E') 

F(E) = l (:,. [\!. (E x \! x E) + E· (\1 x V ; E)] - k;'€rf/ )dn 

-1~)7]u f BI (E) ;<". n.do.,. "'-
{/- JIJO

JI 
' 

N! NI _ fIN N 

F(E) = V . (E x -\1 ;< E)dO t -E· (V /rV / E)d!! 
1/ J1..r \1 J1..r • 0 

- k2 ! €rÊ2 dO + kll17!! f BI (1.) JI' Ê . ndn,. 
(1 JOI/ I • 

F(Ê) = r (Ê x .! \1 x E) . n dO. + k
" 

17" r B1'(Ê) / b'· rrdO,. II\I /1-r \ JOll p 
\ 
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Now the firtJt integral Îs zero everywhere except at the ports, 

_0 F(E} = ( (Ë x ~ V' x E) .!! drl" + kuTlo ( BdË) x Ê, n dO" 
JI! ",> I1r Jo n" 

F(E} = ( E x [~V' x E - kU170BdÉ)] . n dO" ~ 
Jou l' I1r 

Now the fields can be written 'at the ports as follows: 

00 

Et = ~l + I: Vm~'l 
tri = 2 

00 

fit = ft hl + L I m f1.m 

m=2 

and for each mode m of the port wav'eguide: 
\ > 

l!,n = -Ym!!: x ~m 
00 

N <) '""'" => Hf = -lrYr!!: x ~r - L- l," y", n x ~m 
m=2 

And for outward-going evanescent modes: 

00 

=> Ht = -Il YI!!: X ~1 + L VmYm n X!!.,/l 

From Maxwell 's equations: 

we cau th us write: . .. 
1 ~ , ~ 
-V x E = -Jkot'/(lH 
IL,. 

tn=2 

, => F(Ë) = r Ex [-Jko1Jo fI - k0170Bl(E)] '!!: dO, • . Jau,. 

F(È) = 1 Ex [~jku1Jo(-IlYlnX~l + tv,ny",!!:x~m) 
au" In= 2 
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Now 

\ 

But 

'1 

• 

so 

o 
<> 

00 

di'-ku1Jo!l. x L brn V~,~" 
r,.,.::: 2 

00 

- jkn1Jo L V'" y", n X ~'" 

00 

+ kotJo L \V;" ~m n X ~rn] . n dn" 
tu.=2 

= J'ko1Jo { Ê X Il Ydl,X §.1 • 11 dn,. , Jo li l' 0 , 

= -I1"b l ko 110 r E X (11 X !il) . !!: dO" ( 
JOUI' 't 

= -Il bl k" Tlo r [nCE . ~l) -.: ~l (En) J . 11 dO:, 
Jall" \ 

= -It bt kil 11(/ r jj; . ~t dn 
J<lrl,. 

on 

fi) IJ " il.. . ~l an,. 0 

el f 2a ' = ~l 
- on" §.l 0." 

''') 
lIO,. 

on an" 

F(E) = -IlbtkutJo r ~î dO 
Ji} "" 

Th~refore, as with t.he standard method , port admittances may ~e obtained frorn 

the ev~Jtation of ,the new' functio~al ~t_ its stationary,' point. 

.B , , 
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5.4 - Positive Definite Properties of F(E) 

.. Th~ functional, Ji'( E), may be shown to be positive definite under certain 

conditions ( Bee Appendix II for sorne background in numerical analysis ahd a 
o • 

" proof of the positive definite properties of the functional ). Un~er thëse conditions, 
. '---

one may obtain' a faster solution of the finite element matrix equati,on. Once the 

functional, F(E), has been has been shown to be positive definite , the di~cretised 

operator may be written in matrix form: 

F(E) = ETWE (5.6) 

w~ere W is positive definite. The .êtationary point of F( E), subject to the port 
~ 

cOiH3raint., Pl (E) = ~p is a solution to the matrix equation ( see Section 6.2 ).: 

(5.7) 

where, W" is àlso positive definite. The matrix equation abo~e can be solved very 

efficiently by performing an incomplete Cholesky decomposition of W" and sub­

seqll,ently applying the conjugate gradient method to solve for E. If F(E)' is 'not 
~ ~ 

positive definite, then neither is W" and an alternate meth6d must be used, such 

as symmetric Gaussian elimination. The time saved by explo~ting positive defi­

niteness may be significant for large problems sinee the conjugate gradient method 

requires 0 (N ~) operations whereas a symmetric Gaussian solver requîres O( N 2
) . ~. ~. 

operations, w~ere N is the dimensionality of the·matrix (Kershaw [30]). Therefore, 

to summarize the above results and those from Appendix II: 

A faster solution to the finite element matrix in equation (5.7) may be ob­

tained if the driying frequency , ko , is small~r than the lowest resonant 

frequency of the closed cavity, nLiIl Figure 4.2. 

, 
5.5 - Summary 
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A new finite element formulation was presented in this Chapter with the 

following properties: 

(i) The new fomulation can be used to obtain waveguide admittances fOI 

H - plane june,tions. 

(ii) The formulation ls free of the port restrictio'n found in , for exalJlple, 

Webb[l], . 

(iii) The operator problem result.ing frorn the new formulation is posit,Îv(> 

definLte for sorne ranges of the dri~ing frequency, resulling in fast{'r 

matrix solution times. 

] 
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Ch~pter. 6 - Implementa1ion and Results ~ 

/ 
IÎ 
1 

1 

/ 
1 
1 

This Chapter is divided into two parts: Part 1 will diseuss the implementation 

of the finite element method presented in Chapter 5. Part II will present results 

that yalidate the theory presented in earlier chapters. 

PART 1 - IMPLEMENTATION 

This Part will present an algorithm for .extraeting ttte admittance parameters 

of an H-plane waveguide junetion. 

. .. 
6.1 - Matrix Assembly 

The assembly o( the global fini te element matrix ean beldivided into two, 

tasks: (i) the standard fundiohal assembly, (Ft, ),' and (ii) the port boundary term 
3<f. 

assembly ( refer to equations (5.4) and (5.5) ). 

The contribution to F;, from an arbitrary element k is:" 
, ~ ,-

,J 

.( 

~:kl(E)= f ~(VX'E)2dOk-k~fk f,~E.Ednk 
JO k f..L1e JOie' 

., ~here Ok lS the region representedO by element k, 

l'k ie the relative permea,bility in e~ement k, 

Ek lS the relative permittivity in element k. 
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<',o' 0' 

0' 

o , ... 0 3 

Substituting 12. = L'=1 E,a,(x,z}!!" 

" 
(6.2) 

1 

and El k 1 is a 3-vector of nodal electric field y-components in elem~nt k. The global 
. .~ 

matrix, Wu, is constructed by mapping the local indices for element k into global 

indi,ç.J so that: 

~~- (6.3) 
--k=1 

whe:r-e n p is the number of elements. 

The port boundary term of F(E) may he constructed by considering ail nodes 

which define the port boundary as being part of a large "port ele~ent.". FiglJf(~ 

6.1(a) depiets the nodes defini7gp port element and shows the ~ort eoordin •. te' 

'system. Figure '6.1(h) presents two afbitrary tent-functions, used as first ord(~r finit,e 

, element trial functions for the assembly of the port term. Writing E along the port. 

as: 

"" 
E ;== L En an!!" (6.4), 

,,=1 .. 
where n,. is the number of port nodes. The boundary term may now be cxpresBcd 

Q.S: 

f 

00 n,," " 
boundary terrn == L bm L L E. EJ K:" K:" 

",::;:2 .=1 J=1 

00 

= L bm ErW:,. E, " 

m=2 

where K~" is a' function which depends on the port 

çoordinate of node i ( see Appendix III ),. 
( 
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The functional can now'he written as: 

• 00 

,,,=2 
=ETWE 

The matrix, W, is the 'global finite element operator matrix. 

6.2 - Matrix Modification 

, \~ 

\ , , 

(0.6) 

\ 
In or der t\ obtain the solution vector, E' , the functional in cquation (6.6) 

must be rendered~~onary with respect to E,.subject to two special con'ditions. 
-

The first condition is that at electrical conductor houndaries: 
.' , 

E. = 0 if node i is on a comj ùctor. (6.7) 

, 
. The second condiiiôn imposed upon E is that the field at the' port plane must, 

~ 

-represent that of a unit voltage excitation. This may be enforced on the problern 

by applying the condition: 

P dE) = ~1 = A'i 7rX QII , a 

~ . 

(6.8) 

where A. is chosen so that the input wav~arries unit power. Equation (6 . .8) rnny 

be written in the following Iorm: 

, (6.9) 
.= 1 

- where Tf. is St ..yeight arÎsing from the operator Pl (se~ .Appendix III). The di8cre~ 

tised farm of F(E) tan be modified to acéount for the two constraints. The first 

modification accounts for the short-circuit condition ( 6.7): 

W'E = 0 where (6.10) 
1/ 
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, {W(i,j) 
W'(i,j) := 0 . 

, 1 1 

if i,j E V 
if i or j EPand i :f. j 
if i = j E P 

V is the set of ail free (unconstrained) nodes. 

P is the 'set of ail nodes on the.con~uctihg boundaries. 

r,­

(6.n) 

-,.., 
ThE! zero righthand side results from the application of homogeneous boundary 

conditions due to thè conducting boundaries. The matrix W' E = 0 may be further 

modified to àccount for condition (6.11) (see Webb [29] for detaits), leadiwo the 

stationarity condition: 

W"E = R - -, (6.12) 

where: 

R. = ~W'(i,m) + ~W'(m,~) + kTlI 
Tl", - Tl!' 

W"(··)-W'(··) .... ,~W'( ')_!!Lw'( ,)+Tl.713 W '( )+k t,J. - Z,} 'w- m,} m, t 2 m, m 71171J 
71m Tlm' Tlm " . 

m i5 an index chosen 50 that 71", f:. 0 

k is an arbitra;y constant > 0 

Il 

• 
The final matrix relation of equation . (6.12) leads directly to ohtainillg ~he .. , 

solution vedor, E· . -
6.3 - Matrix Equation Solution' 

If the waveguide junction must be analysed ov:er ~ lat:ge range of frequencies, 

then it is advantageous to exploit the positive definite properties of W", ~his may 

be' accomplished by implementing the structure in Figure 6.2., Note that for positive 
.:-

dMinite ffequency: ranges of W" the conjugate gradient (CG) method may be u;eel 
- , 

to solve the matrix equation (see Kershaw [30] for CG and ICCG method details ). 

For indefini te ranges. a symmetric Gaussian elimination solvet: may he used. This 

str~cture makes opt1ma\ use 6f the positive p~opertie5 of W" 1 
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, 6.4 - Th~ Program , t 

The implernentation described above was programmed in FORTRAN-77 on 
, 

a Digital Equipment Microvax II, running_ Unix V1.2: The problem geometl!W data . 
was defined using MAGMESH, a well-known interactive finite element mod~ler . 

The s~l.ution structure described in Sectio~- 6.3 was not implemented. Inst~ad~a 

symmetric Gauss solver was used for aIl ranges of frequency, /(;" fo'r simplicity. 

Resulta of this program are t>res~nted in Part Il of this Chapter. 
~ . 

t , 

PART II - RESULTS 

6.5 - The Empty' Waveguide Stub 

As a fi'rst test of the program described in the, previous section, an emp,ty, 

short':circuited waveguide was analysed. The waveguide' one-port junction 4s de­
./' 

r • 

picted in Figûre 6.3(a) and its equivalent circuit tepresentation is shown ln Figure 
" 

6.3(b). The normalised susceptance obtained is plotted against norma.lised
j 
fre-

quency in Figure 6.4. 

The waveguide stub was modeled using approximately 100 équaUy-spaced , ' , 

nodes. Ver'y good, agreement with theoretical values for susceptance was obtained. 

However, since no higher-mode fields are produced, due to the symmetry of the prob­

lem,. there is no advantage in using the projective-port method over the Dirichlet: , 

port .method. ~ 

0 6 •6 _ The Inductive WiI1dow 

The indu'ctive window, depicted in Figure 6.5(a), provides a good test of the 

effectiveness of the projective-port method 6ver the Dlrichlet-port method. The 
, , 

e_quivalellt circuit parameters for this- twO-port are s,hown in Figure 6.5(b): , 
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A plot of the reactances, X" and X,., is given in Figures 6.6 and 6.7 fOl' 
-

parameter values d' = 0.6rn., a = 1.0m., and l:::: 0.2m .. in Figure 6.5(a). 

Results from the projective-port and Dirichlet-port'methods a~e compan'cl with t.h(l 

values predicted by Marcuvit~[51. The port plane was defined to h,e O.~l III. away 

from the terminal plane, T, of the junction. T}le finite clement. moo('\ c()nRiRt.(~d of 

approximately 200 nodes, with more refinement near the obst.aclcR, 

The projective-port method results correspond more dosely t,n t.h~ Mnll'Ilvit.z 
", -

o 
results th an do the Dirichlet-port results. The reason for th is is that tlw Dirk hle\.-

port method does not account for the lï»her-mode contributions al Uw port plall(l, 

which are signiflcant for this problem. As a result, the projective-porI. lIlet.llOd giv(·s 

better results with the same discretisation. 

The results obtained for this test problem differ significant.\y frorn 1.11(· Mal'-

cuvitz results, however. The rea.son for this may be that. the shl1rp edgcR of t.h<· 

inductive window produce large variations in the y-componeJl1. of (·I(·dric fi('lcI, 10-

cally. As a result; many more degrees of freedom arc necded to mode\ t,ll(> illdudiv(' 

windowaccurately. However, an even higher: number of nodes are reqllirNI for t.he 

Dirichlet-port method than for the projective-port method. 

6. 'T - The Circular Metallic Post 

Another test example which generates a significant higher-mode field COJl­

tribution is that of the circular metallic obstacle in a wélNeguide, sbown iIl Figuf'(' 
, 

6.8(a), with a = 1.0m., dl a ranging from 0.05 to 0.25, and >'1 a, = lA . Th(' 

equivalent circuit. representation of this two-port js shown in Figure 6.8(b). This 

junction was modeled using approximately 400 finite elemcnt nO<.!(!H. 

1 

The parameters XII and X" are plotted versus post diametcr in Figures 6.0 
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and 6.10. Agaih, the two finite element methods are 

compared with the predicted values from Marcuvit~[51 in both of thc:w 

graphs. 1 

J' 

It is interesting to note that due to the close pl~cemt'nt of t.~c port. plal1(\ ( 
L .r .. 

0.2 m.} the projective-port results correspond more c10sely to MMnlv'ïtzlf)] rt'fltalt.~ 

than do the Diriclilet-port results. In addition, this effect uecornes more »\,onOllllt'(,d 
- < 

as the post diameter is increased. Presumably, this corresponds t.o an infl<'élRing 

higher-mode field contribution at the port plane. 

6.8 - Summary 
',1 

( , 

... 
This chapter. presents a finite element formulation"; based npon the !.Iu'ory of 

Chapter 5, which extracts network parameters for one- and two-port H-plao<, wav('g-

uide junctions. The results obtained from a,FORTRAN program indicat,(~ that, t.JH' 

projective-port method, introduced in this thesis, models certain junctioflR b('f.t,N 

than does the standard Dirichlet-port method Ill. In particular, the projective-pori, 
4 

method is particularly weIl suited to problems in which the port. plan(l harl 1)(>(>/1 
'--

defined close enough to the junction that higher-mode fields are significant.' This iH 

evident in two test ~xamples presented in this chapter: _ the inductive window; aud, 

the circular metallic post obstacle. 

\ 
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Chapter 7 - Conclusion 

The design of passive mierowave eomponents requires the use of flflxihlp, 

reliable computational tools. Useful tools of this type can provitle the lIIÎc'l'ownvt· 

engilJ.eer with a circuit parameter representation for a giv~en waveguide dt·vice. S('v-

erai formulations eurrently exisi which are able to charaeterise Il-plant' wav(!guid(· 
r' 

junctions in terms of admittance or impedance matrix represcntations 111121[:{II'IJ. 

However, the eurrent, methods have sorne restrictions regardillg the placement. of 
o 

the port planes. This thesis has presented a finite element mcthod t.o obtain admit.-

tance pa,ameters of II-plane waveguide junetions, which is free of port plurern(\llt. 
o 

'restrictions . . 

Previous methods to extract network parameters of II-plane wavcguidc jun('­

tions have b~en presented by Webb [lI and Koshiba [21131[41. The Dirichlet.-porl. 

method, used by Webb, is a finite element, sealar, eleetric-field formulat.ioll. Th~ 
• • 

method does Ilot, however; aceount for evaneseent modes in the waveguidcs <.-on-

ne~ted to the junction. As a result, the junction ports must be pla('(~d a largt' 

distance away from tqe junetion eavity 50 t~at only the dominant-rnod(> fields. ex­

ist there. In using the Dirichlet-port methQ_d, a microwave designer must, t.herefof(· 
. 

have sorne a priori knowledge of the fieIfdi:5tribution in the jun<;tion. This preHcntR , 

an ineonvenienee to the designer. 
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The Koshiba met'hods are scalar [2][4][25] and vecto~ [31 electric and magnetic 

~ , 

field wJtich account for the evanescent modes between two ports planes, thereby 

altwing the ports to be defined arbitrariy clos"e to the junction. However, for 

caeh port, two planes must be defined with a significant number of finite element 

Horles in the region between them. This structure is inconvenient, although it is 

an irnprovement on the Dirichlet-port method. Furthermore, the number of nodes 
r 

in the region between the two port planes may increase the number of degrees , 

of freedom needed to tblve the prbblem. In addition, the resulting finite element -

mat.rix is not symmetric, thus requiring longer solution times than for symmetric 

or positiv~ definite .matrices. ) 

The method presented in this thesis is similar to the method used by Webb 
\ 

/1] but makes use of modal Rrojection operators to account for evanescent modes 

in the waveguides connected to the ports of the junction. Only one port plane is . " 

rcquired for each p.ort, and accordingly, fewer degrees of freedom are required to 

sol~e the waveguide problem, thereby making the method more amen able to fast 

computation than Koshiba's method. Furthermore, the 13ymmetry of the matrix 

operator is preserved, leading to still faster solution times. 

The functional used in the new method can also be sho~n to be positive defi­

nite for a portion of the driving frequency spectr,um. The resulting matrix equation 

may therefore be solved using the conjugate-gradient method, lea~ing, to lower so­

lution times. Also, when the matrix is positive definite, the one-port admittance 
o • 

parameters round ~ this method are lower bounds for the true' admittances. 

(.40< ,. 

Numerical results, obtained from a Fortran implementation of the new meth-

od, correspond well with theoretical network parameters fOll:nd in Marèuvitz [5]. 
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\ 
Test exarnples used in this thesis incIude an empty, short-circuited wnveguid(), nn 

inductive window in a rectangular guide,' and a circular metallic post in a rectangular 

guide. Tlle results of this method were compared to results ... obt,nined from t,he 
, -

rnethod in Webb (11 and were shown to outperform the latter for waveguide junctjons 

having significant higher-rnode contributions at the port plalles. 

" J 
, ImpI:ovements or extensions to the new method could be pursued aiOl,lg Ht'V-

\ -, "" ' 

1 eral fronts. Firstly, the accuracy of computed pàrameters coulcl he innenAcd hy 

using higher order finite elements. However, substantial work would be required t.,O 

convert the' modal operators for hi~her order el~nts. Another extension would 

be to investigat~ dual'bounding methods (see Synge's hy percircle method 1281 ) t.o 

J)btain tight bounds on the network parameters, in order t.o estimate the error of 

a given admittance parameter. As is, the rnethoù only 'yielùs lower ,,",OUII<.I8 011 LI\(· 

o 

admittance parameters, making it impossible to extract a measure of the accuJracy 

of the computed parameters. 

As a final extension, a. vector electric or magnetic field formulation could pro-

vide an altèrnate approach to the problem of waveguide analysis, thcreby allowiqog a. 

broader cIass of waveguide junction to be analysed. In faet, the modal approach 1.0 

waveguide .problems could be applièd to a junction of any" waveguide - indeed, th(~ 

. inathematics has ~een presented'for a general, t,hree-dimensional junction (>roblem. 
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Appelldix 1 - The Physical Significance of Ft, (Ê) 'f.' 

"-
The fu~ctional }i~, (Ê),·evaluated at its stationary point, Ê, can be relate.d to . -

- , 
... the aomit'tance se en at a_given port. (Refer to Figure 4.1 for problem geometry). 

The fUllctional at jj; is: . \ 

FuCE) ~ 1 {~(\1 X Ê)2 - k~€rE . ..[} dO 
'il J.lr 

(A1.1) 

Sinc).'Q' . (!! X Q) = Q' (\7 x !!) -- !! . (\1 x Q) , if the- substitution Q = V X!! is ma~e, 
the functional IIlay be writtJ: #' 

, 

~,(Ê) =: _1 {V. (Ê x \l x Ê) + Ê· (\7 x \l ~ Ê) - k~€rÊ. Ê} dO 
Il > 

(A1.2) 

And by the Divergence Theorem: 

(A1.3) 

"\ . 
Using Maxwell's first equatlOn ((3.1)a), 

',. _ " •• 0 

~,(È)~iw [ ÊxiI:!!dS+ [Ê.,(\lxVxi~k~f.rÊ) d06-1 iJll fr 111 

(A1.4) 

Since j; satisfies the cur1-curl equation', the second term vanÏf\,hes 60 that: ., 

(A1.S) 

c' 
N .. , ~ 0 ~ 

Therefore, F:;(E) is prop'ortional to the average outward-going reactive power leav-
) -

~ ing th~ junction. However, due t& the con<Îucting waHs of the junction, power leaves 
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;Z;J :r 

'0 

'1 .. ------

or enters only from the port surface, ao,.: 

i, (E) = jw { ' Ê x fI.!! dS 
- JOli!, 

{ 

(A 1.0) 

If the port is fa.r en,ough away from the junction c;wity, ~nty the dominant-mod(\ 

fields are present at an, .. If the port is then excited with a unit-vottfl,ge (VI - 1) 

wave: 
E =:= ~1 at an,. 

if = J1 111 at an,. 
(A 1.(11) 

And the functional reduces to: 

(A 1.7) 

Since the amplitudes of §.1 and 11 are.arbitrary, the functional is: 

(A 1.8) 
"" 

l . , 

.' 

where J( is a numbér which depends upon w and the amplitudes of ~1' and ll.1 . 
. -

Now JI is the admittance when a unit voltage ~ave is applied, therefore: 

... 
Fr) (E) = K· Y (A1.9) 

\, ( 
f) 

(J 

'" 
~ '.' -_ 0, 

~ . 
fi 

c' 

.... 

... 

d' 
" 

1 .f" 
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App~ndix Ii - Somé Functional Analysis Th.eory 

This appendix 'fill restate the H-plane junction houndary problem of Chap~ 

Lers ~,4 and 5 in~ a more mathematiéâlly-rigorous form. An investigation of the 

positive definite prope~ties of operators will follow. 

A2.1 - The Boundary Value Problem 

" Thf' II-plane waveguide problem can be forinulated as a scalar field problem, 

involving only the y-component of electric field. In this case, the curl-curt functional 

for u = Et/ reduces 'to : 

, - (A2.1) 

t. 
and is su bject to : 

u = 0 on ane (conclue.tor). 

~ ... ~ 
• 
) 

, ,,' 
" (> 

P(u) = g on ao,. (port houndary). 

The functional represents a quadratic foim, which ~ay he written as 

, 

Fu(u) = (lu,u) - k~(€ru,u) 

where (.cu,u) = 1 ~IVuI2 dO 
Il JLr 

(ErU,U) = ln Er~2 dO 
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A quadratic form may be one of the three types depicted in Figure A2.1. If fi. is 

the stationary point of F(u) and F(u) is positive "definite (Le. F(u) > 0 Vu -1 0), 

then : 

F(u~ ~ F(u) = j ( A2.:l) 

and F(u) is said to bound the quantity j. Au operator, C" whose quatlrat,ic l"orJII, 

'< .cu, u >, is positive definitè, is callet! a: positive definite operator. 

A2.2 - Corresponùence Between the Eigen Problerll aud tIti, DrivPll 

Problem 

The eigen problem associated with a given operator, .c, consiRts of d(!t(lrmill-

ing aIl À, and u, f. 0, such that : 

12u, - À,u, = 0 i = 1,2, ... 

o P(u,) =0 on anl, 

If aIl .>., are real and positive, then the 12 is positive definite. 

Th~ driven problem involves finding a il sùch tlï.at : 

iL = 0 on an,. 
" ," 

P(u) = g on ao" 

Equation (A2.5) may be restated in the sirnpler fonn : 

.c'u == 0 
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where C' =:0 .c - ÀoI 

and 1 is the idelltity operator. 

The operator .c'is positive definite, in turn, if ail of its eigenvalues, A." art) real 
\ 

and positive. If t,he ÀJ and À., are numbellt!d from lowest to highest, such that : 

(A2,()b) 
N<>..'<X<···<A' 1 - 2 - 3, - - n 

then ,x., may be expressed as : 

(A2.7) 

The smal/est· eigenvalue of' 12' is therefore : 

(A2.R) 

Equation (A2.8) provides a condition on the positive defilliteness of C' 

Theorem 1: The ?perij.to~.c' is positive defillite if: 

(i)f is positive definite (Al> 0) 
< 

(ii)À~ < Àl :::: smallest eigenvalue of 12 

A2.3 - Addition of Semi-Definite Operators to f" 

The operator, .c' remaills positive defiqite upon addition of a posit~yc Rcmi-

definite operator, A. 

Theorem 2: The operator M = f' + A if: 

(i)f is positive definite' 
1 

(ii)A is positiye serrii-d(;finite 
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Praof: (Au, u) ~ 0 by definition, therefore: 

F(u} = (Mu,u) ~ (.c'u,u) > 0 Vu t= 0 fJ 

Therefore M is positive definite. 

A2.4 - The Positive Definitenè,SB of F(u) 
( 

!heorem 1 may be applied t~ t~e functional of eqïation (A2.1), so that Fu (u) 

is positive definite if k(~ €r < >'1, where ÀI corresponds to the first cavity resonant 

frequency of the jundion prohlem. In addition, the functional presented in Chapter 

5 may be analysed using Theorern 2. First, note that F(u) can he expressed as (see 

Appendix III) : 

00. ( ( m1l"X) 2 

F(u) = Fu (u) +"2: Tm 1.1 y, sin -- dx 
111=2 <lU,> a 

(A2.9) 

where 1:" is a positive scalar function of m. The second (boundary) term in equation 

(A{9) is a positive semi-definite quadratic for~, by in,spection. Theon;m 2 may be 

applied to equation (A2.9) with the result : F( u) is posItive definite if k~ €r < >'1' 
f 

Tbis statement demonstrates that .. if the driving waveguide frequency is low enough, 

then F(u) is positive definite. 

a 

.. ... 
o 

... 

l' 

( 
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Appendix III - The Boundary Term in F(E) 

-, 

The houndary term in F(E) presented in Chapter 5 -~ay be assembled hy 

assurning thejfinite elernent nodes along the port boundary are part of a large" POI',t,­

element". If the port nodes in Figure 6.1(a) are assumèd to be equally-spaced along 
J 

an, then the boundary term s\iiJaplifies to: 

CXl J Il:' = " J E a . e dO 
F(E) - f't, (E) = jko t'Jo I::< y", ',_ [EyQv' { ~ ~I,. • el/-fi. e -", dO " } . ~",] dx' 

,,, = 2 r - Il a Il l' -ni [III l' 

00 2 [1,J;' = " ] 2 
= j ko t'Jo L Ym . - . If: sin·III~/ dx' 

a ",'=0 ",=2 
',J • 1 

2) ko rJo ~ [1 J: =" E . UJIIL.. d ,] 2 
=. 'L- ~". _J y sm" x 

a -r'=O m=2. 

Now Ey = E:'~ 1 Et a t where E. are nodal Ey-values along the port. and 

a t are ~lobal a-polynomial functions ( see Figure 6.1(b) ).' The boundary term iR 

therefore: 

00 " (1 "CJ :r 1 = n r II = ,t 

=. I:: R", I:: LEIE;, r al sin Wtff- dx' .! a)Jinum? 
JI{ }""'=o rl/:;:II 

rn = 2 " • = 1 J = 1 

dx" 

, 00 "II "II _ / 

= ~2 r'" ~:;; E, E, K;" . K;" 
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where , 
fi.m =, {'" =., a, sin r,";,," dx' 

1,"'=0 

R 
,= 2jku 1]oY", 

tll a 

Now for arbitrary i, K:n h~ the formy 

K'" , 
r r, 

- 1.r, -w 
(1 + x' - x, sin ~ dx' + r'+w (1- x' - x, sin m~:' dx' 

w 1", W 

= ('r, sin ~ dx' + 1 r' x' sin VEIL dx' - ~ r' x. sin "u;;" dx'-
1.r,-w z;;It.-w a w1.r._w 

f
r.+ w 

+ sin W:1!L ., 
,r, 

11:r,+w 11:r .+w 
dx' - - x' sin m'Ir".' dx' + - x sin !.!.E!:L dx' Il. l ,r. 

, W J:j W :r, 

[ a] :r, - __ cos tll~,:r' 
m7l" ",-w 

1 [ a
2 

a ] r, + - --- sin m'Ir'; - --x' cos rrt'lrT' 
W T1~2 71"2 .. rn:7r ":rf- W 

I[ a ]:r l 

- - ---x cos "ur .. ' 
• IL 

W m7l" .r,-w + [-~ cos "'~I J""+W 
m7l" r. 

'Let 
w == port node spacing 

x; == x, - w 

x~ == x, + W 

therefore, 

Km = , 
a2 

{ • m7rx, . mll'x,- m1rx+ 
2sln--- - 81n---='- - sin 'a ,} 

wm2 11'2 a a-
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Going back to the original expression ror F: 

2 . k 00 " (1 1111 .. 

F(E) = F.1, (E) + J lI'TJ
o

" \ ....... \--- E E a {} { \ 
a L- Ym L- L- • J w:lm"1f" Tl. 'l, J 

with 

111=2 .=1)=1 

y", = ~-'-k--­
J Il 'TJu 

{ 
. m7rx. . 1n1fX- . m1fx+ 1 

11. = 2szn-- - 81.n • - szn · \ 
a a a J 

{
m7rx m1fX- m1fx7 } "'3 = 2sin--J 

- sin J - SU1.-----'-
a a a 

50 that F(E) take5 the form: 

which is positive semi-definite and converges. 

.. 

1 

( [ 
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