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Abstract
" }

The determination of network parameters for arbitrarily-shaped waveguide
¢ s

~ bou - -

junctions is best handled by numerical methods. Recently, several methods have

en;erg%ed for obtaining these parameters for H-plane waveguide junctions [1] [2] 3]

[4] using the finite element method. These methods, however, all have restrictions

. ¢ regarding the placement of the planes which define the location of the ports of

the junc_tioﬁ. “This thesis presents a finite element method to éxtract network pa-

, rameters, of H-plane waveguide junctiong,ywh‘ich is free of the previous methods’
restrictions. The new method makes use"of modal proje‘éi,ion operat(‘n"s which ac:—
count for evanescent modes at the ports. The new formulation generates a matrix
equation which, under certain conditions, is positive fieﬁnite, leading to faster 80-

lution times. Results from a FORTRAN implementation for several test examples

are presented.
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1 . . Résumé ) i \%&

' - ‘ - d .- °

- Les procédgs nqxﬁériques s’attaquent bien a la détermination des coéfﬁcieﬁts
d’impéddgce pour les jonctions de géométries ge‘%érales. VRécement, plusiéu‘rs pro-
cédés qui utilisent la théorie des élémeﬁts ﬁnis. ont étés présentés pour les jonctior}s
dans | plan H [1] [2] [3] [4]. Cependant, ces procédés ont tous des réstrictions sur le
placement; des plans de portails. Cette 't}_lése présente un procé;lé d’élément finis qui
extrait lescoéfficients d’impédance‘d’une jonction ;ie plan H sans ces réstrictions. Ce
no‘uveau proc'édé utilise' des Op)éra.teurs modals qui calculent les _cl;amps électriques
dfis ailx modes décroissants dar&s les guides’ d’ondes. Le nouveau procoédé produit
une é;;uation de matrice qui est définie positiv;e dans certains cas. On p@ui donc

résoudre ce systéme plus vite. Les résultats obt{enu{s d’un logiciel écrit en FORTRAN

pour plusieurs probRmes de jonction concorderit bien avec Ia théorie.
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Waveguides are stfuctures which are used to transmit high-frequéency signals

n

P . .
from one device tg/anothere The region at which several waveguides meet iy called

a waveguide junction. Phase-shifters, attenuator!’s, and maftched terminations are
. sk ‘
. . [
examples of waveguide junctions. Figure 1.1 depiTts several more.

-y
‘

It is often useful to characterise these junctions as N-port devices with NxN

he o

. scattering matrices relating the energy-coupling between®he dominant mode waves

e ~

at the ports. This allows a given junction to be represented as a network efeincnt.
PN ! ) . 4

However, the derivation of the network parameters for an arbitrary waveguide junc-

. . 3 - . N 1\ - - 2l -
tion requires eitheruneasurément or the solution of electromagnetic field problems;

that is, the solution of the fields which result from the application of Maxwell’s

equations. - ) - L
& ‘ -

N -« -

Experimental methods for solving electrofnagnetic problems are often expen-

sive and time-consuming. Theoretical solution techniques rr;ay be either ranalytic
\gpr‘mmerical. Analytic methods are usually geometry- or problem-dependent and
hence lack the flexibility required in a computational tool for waveguidg analysis. M

4 . .
is therefore sometimes desirable to use numerical methods to solve electromagnetic

boundary ‘value problems. Methods such as finite elements have the advantagethat

they may be formulated so as'to be geometry-independent. . s

[

The fundamental equation to solvein waveguide analysis is-the curl-curl

) .

o
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- problem, only the y-compénent of electric field exists. Therefore, o@omponom,

two-dimensional analysisis valid. ' ) N ~ AR Y

-’:c0mposed of only the dominant mode. In KoshiBa et. al. 5[2][3][4

the position of the port planés. Thisrepresents an inconvenience to the user of this

L Al .
y
-

v . ‘ Lo e

¢ ] - . . N . ;\
equation, a variation of the vector Helinholtz equation. The general problem of

solving for the fields in a junction is intrinsically three-dinfensionq_l in nature. How- - -

ever, a two-dimensional analysis may be appropriate if the variation in the fields are

known in a given direction. An example ofithis is an H-plane .electric field }imbl(’\m

’

" in which the junction geometry is constant in th y-direction (Figure 1.2). Insucha,

) . . . Lo S
(N P

Recently, several ﬁn\i'te‘element methods ([1}[2](3]{4]) have been proposed to

extract the nthork paramet;rs ‘of arbitrarily&éhape&l, H—pLa:ale wavegui'de _imu;timma‘L
All of these‘rrqxethods ixanpose s\orr—le*limita.tiog on the pllaCement of the port planes that
define the extent ?_f the junction.-In Webb|1] the'port planes 1r;ust be sufliciently far .
ffom !,he junction cavity so that thetransverse fields at the p'o'r\t planes are v!f(}'t.ivvly ”

,two port planes

- - :- * . ] .
must be defined, {or each waveguide connected to the junction, in order to account

for the field contributions of evanescent modes at'the port planes. It is netessary 4

to mesh the problem so that there are a significant fiumber ‘of nodes between the

*

‘planes in each waveguide. Irr both mgthods, there is a degr(ié of uncertanity about
. - o .

b

: oo
type of formulation. . ' N

\
[ 4 +

The aim of this thesis is to present a fi,nite element formulation to extract, .

-

iU . . I .. .
network parameters of an arblatrarlly-shaped H-plane waveguide junction which is

free of t)‘}’le‘port plafie restrictions found in Webb|1] and Koshiba ct. al [2)[3][4]. The ®-

- «
new method presented allows the user to define the extent of*the ju}u'tion region o

PO

with as little knowledge as possible of the fields within-the device.. In addition, the

new formulation is cast in terms of a positive definite matrix operator in some cases,

- r

~ thereby enabling faster solution times. T o
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The thesis is organised as follows: Clhapte,r 2 provides a history of past work

4

in computational waveguide analysis. Chapter 3 presents some relevant clectro-
magnetic theor);. The finite element analysis of waveguide junctions is discussed iwn
Chapter 4. In Cl-la,pter 5, a new finite element formulation is presented and Chapter
6 deals with the implementation of the method and results obtained froin soe test
examples. A discussion of the merits and disadva:ntages of the new method is rgivon

in Chapter 7, which serves as a Conclusion. The Appendices provide relevant proofs

and some background functional analysis.

o4

w8
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Chapter 2 - Literature Survey

_
A ¢

This Chapter will present an overview of past work in waveguide analysis,

! o

with emphasis on numerical methods.

4

Early waveguide analysis relied primarily upon experimental, analytical,

semi-analytical and graphical techniques [5][6][7] . In the mid—forties,’Southwell
[8] applied relaxation techniques to a nurnber of physical problems involving the so-
lution to Laplace’s equation. This analysis led to .a.nother paper by Grad [9] which
investigated the utility of this type of analysis in dealing with a number of electrical
engineering problems: including TEM -mode waveguide analysis. In addition, Grad
extended Southwell’s relaxationbapproach to develop a method to deterrnine the

<

resonant modes of a waveguide cavity. * '
&

A

In the early sixties, Davies [10][11] proposed a semi-analytic method which

was applied to an N-port H-plane junction to determine its scattering parameters.

This analysis, however, ignored contributions to the field at the port planes due
LY [
to evanescent modes .and, consequently, the port planes needed to be placed suf-

ficiently far from the junction cavity so that only the dominant- mode fields are
significant. By the migd-sixties, finite difference schemes for transmission-line and

waveguide analysis were developed by Green [12], Schneider [13], and Metcalfe [14]



T

for TEM-mode analysis. Tile principal shortcomiﬁg of these' methods was, due to
the regulal: gricfs necessary in the finite diﬂergnce method, that curved-boundary
problems could not be analysed. This restriction was feimnoved by Carson [15] in a

' Yormulation in which the boundary nodes of the’ problén.\ region w;*re treated ualing

" a special difference scheme.

Later, an E- and H-plane finite difference formulation was introduced by

Muilwyk and Davies [16]. In their paper, the authors acknowledged the limitations

of an analysis that neglects the presence of evanescent waveguidwrrnlodcs at the port

.« planes, in determining network parameters, as in Davies[10|[11]. This port pl:;no
restriction was ‘partially eliminated in the mode-matching method of Wexler |17].
Here, reflection and transmission coefficients of systems of connected wa'veguidos
were obtained by ensuring continuity of a finite number of waveguide modes. How-

k]

ever, the analysis required a great deal of computational effort and was ineffective

(5

in treating arbitrary-shaped structures.

£y

Finite element formulatians to analyse waveguide components fatrlerge(l in

. the late sixties. Ahmed (18] proposed an axial field (E,, H,) method from which
the oth(;r components of electric and magnetic field could be extracted. 'i‘hc method

determined the propagating modes and resonant frequencies of arbitrarily-shapeq,

 dielectric-filled waveguide structures—Fhater, Silve;tér [19] outlined a finite element

method tg Hete;rmine the modes and resonant frequeﬂncies of two-dimensional, scalar
Helmholtz field pr&blems. In a subsequent paper, Silvester [20] used an H-plane,
scalar formulation to determine the adinittance parameters of an.N-per. stripline

or microstrip junction. However, the restrictions mentioned in Muilwyk and Davies

[16] remained, namely; port planes needed to be placed a_largé distance from the

@ junction cavity. S



¢

By:the mid-seventies, two- and three-dimentional finite element formulations
had been developed by Konrad [21](22] and Ferrari et. al.[23] to solve for fields in
waveguide components. These meth;)ds were extended b)\r Webb [1][24] to.obtain
impedance and admittance farameters o% H-plane junctions, subject to the port
plane restriction. Recently, however, Koshiba et.al. [2][3‘][4][25] have developed
waveguide junction formulations (E-plane and H-plane) which account for %g,nes-
cent modes at the port planes, thereby removing this restriction. However, their
method requires the modeling of two planes per port with a significant number of
nodes in the region between the two planes In addition, the matrix equatlon arising

from this formulation is not symmetric, thus increasing solution time. The devel-

opment of a less restrictive formulation, such as the one presented in this thesis, is

therefore motivated. (
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a - Chapter 3 - Some Waveguide Theory :

o ~
\

. , . .
8 4
.

‘ . -
This chapter will deal with some electromagnetic thgpry needed to descrﬁ)‘_: -
waveguide junctions. The Chapter will begin with a pfesentgtion of the wa¥eg\1i;l§3)
field problem and th(l: corresponding rr‘la"thematical formul;a,tion. N‘oxt, the wave-l',
guide junction will be introduced as will its ‘equivalent circuit” parameters and a

method to determine these parameters. Finally, II-plane rectangular waveguide

. . ‘
problem will be preséuted and dig€ussed. For simplicity, M theory will deal with

single-mode wavééﬁide operation only.

[ '

3.1 - The Waveguide

¥, ! ]
Wo* A

d

A v@%vgguide is a structure through which a high-frequency electromagnétic ~
signal may be sent (see Figyre 3.1). The électrofnagne‘tic fields inside a waveguide

satisfy the time-harmionic Maxwell’s equations:

-
@

=

. (a) Vx E =jwuH (D) V- -e£ =0
T () ¥ x H=—jwekE (d)¥Y-uH =0 (3.1)

£
where E is the electric field, .

H is the magnetic field,

€ is the electric permittivity, - ) ) A



o L

- u i8 the magnetic permeability. 2 .

L

A' wave equation for E may be obtained by solving for H in (3.a) and

[ . e
substituting this reésult into (3.1c) : ‘ ' L
) ’ . 1 - l t
e .- VX -V x.E-kile.E=0, (3.2)
. “ - -
) . : - o o ¢
where k, is the free-space wave number (£). ' .

An equivalent wave equation may be obtained for H.

~ -

- " Assuming translational symmetry along the z-direction, as in Figure 3.1, the
electric field may be written as : ‘ . .
E(s,3,2) = [E, (=, y)+E (z,y)])e**", © (3.3)
- > ' -

where £, is the component of E noi'n}al to a,

>

¥

E, is the component of E parallel to ¢, , Q .

®

If € and u are uniform, the tranverse electric field at,port p can be Fourier-

detomposed in terms of TE and TM harmonics :

BRI V,:,.:n, L (34)

’ m=1 m=1 . -
'S
s -
where V,, = / / E, -e, dS
) - 7 90y ) R
o« o .
' m /% E £ dS ,/
. [ SR )
d‘)') ' i

‘is the electric field of the m"‘TE mode

L €

e,, is the electric field of the m** TM mode -

10
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3.1 A HOLLOW RECTANGULAR WAVEGUIDE
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Similarly, the transverse magnetic field at port p may be expresse(f as :

L=img+ia&,"‘ "(w’

m=1 Tm=1

where I, ——:// _Ii,_-_lgm ds

aup

f:'»=//'_fit-h_ﬁnd5 S B

ailp

b, is the magnefic field of the m!* TE mode

m

k! is the magnetic field of the m'"TM mode

—~=m
@
5

-

A 4
Waveguides are usually driven at a frequency at which only the first TE mode

) proﬁgateﬁ and all other modes are attenuated. In such a case, the propagation

~ constant, g, in (3,3) is real and positive for the first TE mode and imaginary for

all other hodes/ This is called single-mode operation of the waveguide.

b

+8.2 - Waveguide Junctions

Figure 3.2 (see also Figure 1.2) depicts a structure at which several waveg-

uides meet. Such a structure is called a waveguide junction. The junction may be

. considered an N-port circuit element by using the dominant-mode Fourier coeffi-

-
’ .

‘cients in (3.4) and (3.5), V, and I, to represent the voltage and current at a given’

port.

-
) - 13

The coupling of energy from the different ports may be written, for example,

as an admittance matrix relation:

I Yn Y ... Yin\ [V

I Yoo Yo ..o Yon oo Va ’

S E I S S I - - (39)
Iy Yvr Yuo ... Yan/ \Vy

12 -

f
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(The mode subscripts in (3.4) and~(3.5) have been dropped. The subscripts in (3.6)

-refer to the port numbers, inktead.)

o A}

1 ~
~
1 N

The admitiance matrix characterises the coupling of e}lergy in the dominant

modes of each waveguide connected % the junction. The matrix allows the junction

-

to be used in a lumped parameter circuit model.

.
~

" 3.3 - Determination of Network Parameters (Helszajn’s Methods,

[31])

»

z

JIn an N-port junction, the entries of the admittance or impedance matrix

may be determined using open- and short-circuit experiments on pairs of ports.

Figure 3.3(a) shows an N-port junction in which all but the ¢* and j** ports have '

*  been short-circuited., In Figure 3.3(b), Helszajn’s equivalent circuit in terms of

impedence parameters is presented. For symmetric junctions, the parameters are

represented in Figure 3:3(c). The admittance parameters for this two-port may be .

obtained as follows :

5 - ,

step 1 - Short-circuit the terminal plane T' and determine' the impedance at P, (2.).

-

step( 2 - Open-circuit the terminal plane T' and determine the impedance at P, (20)-

s
9 , v
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step 3 - Use Helszajn’s model to extract impedance and admittance parameters:

¢
a "\ - N

Performing this analysis for each\ j-pair characterises the admittance matrix

4 and 5. ' f ’ ) T

- 8.4 - H-Plane Junctions

!

A special class of waveguide junctiops.fs the H-plane junction. Consider the _
junction of Figure 1.2, in which conducting planes exist at y = O and at y - b,

where b is the junction thickness. If the feeding waveguide dimensions are-chosen

» t

so that the waveguide width, a, is larger than the waveguide’ thickness, b, then the

TE,,, are the dominant modes of the waveguides. The electric field distributions of
o ¢ ® N
these modes have only a y-component and have no variation in the y-direction. As -

- a result, the H-plane wavegujde junction is amenable to a two-dimensional, scalar

N [ s
. - . . ¥ 4. . .
analysis. The H-plane waveguide geometry can be defined in two-dimensions, as in
[

Figure 3.2 . For simplicity, the theory in the remainder of this chapter will deal
with a two-dimensional junction, in which there is only single-mode operation of . -

the feeding waveguides.

- .
ta € o

The electric field distributions of the TE,,, modes in l:ectang"ular waveguides
. ’ Ny
16

=

-~
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' ©
; r , . .
@ for single-mode operation are : - -
L4 - ~ . - . . “
— vqin Wz e— 18ms .
> J‘ / -e-“m : Am sin “K € " Qu ? (3'8)
2 2 -
m? 2
— 12
¥ Yvhere ﬂ’,u = \/k§ — - 7

- ' ' . = realfor m =1

,‘ = imaginary lior m > 2 . =
’\' : o The tangential magnetic field oi’ the TE,,, modes is gjvén by : ‘ " .
© . ! * N v ’ & - ‘ .
" . y‘ ; b-m = Yu -(-l’.z % -e;m ? ' - . (39)
\ - # y

where y,, is the‘characteristic impedance of the T'E,, ,"mode in the wéveguide.

)
s
!
v .

'The voltages‘and currents at the plane z = constant, which cuts the waveg-

% . uide, are: ’ . .
/ : «
) v," = // E, sin wnt. dedy--—~

- . Uy - . . '
‘ eu ; (‘3.10)
, . =b/°E,,sinm{{’—dx - '
lz:U ’ )
s - F=a "‘ ’ ‘
L™ = b/ H, sin wae. dx . g ‘,(3-“)
-t / 4 . B £=0 '

sed in Chapters 4 and 5.

/ These definitions for I and V' will be u

3:5-Sum%ary . .

2/ . : —

~
Y

«

/ - : This Ohafiter presented sorhe elcEromagnetic tﬁedry needed for waveguide
){d / , " analysis. The waveguide junction, its representation, and the determination of its

network parametérs was\discussed. Also, the special case of H-plane rectangular

.

ey ) ~ ’
. waveguides was presented. ) , N /



ghapter 4 - Finite?Elemengz' Waveguide An}ilysis

-
-

The finite element method may be used to extract waveguide network pa-
rameters |1}[24][1 1][26][2]{3”4][25] for arbitrarily-shaped junctions. The formulation
common to all the references mentioned above will be referred to as the standard
curl-curl formulatiop,‘and will be presentgd in this Chapter. The finite element
theory wﬁi be presented for two-dimensiondl, scalar waveguide problems, where

applicable. This formulation is appropriate for H-plane junction analysis.

3

4.1 - The Standard Curl-Curl Formulation

It has been dethonstrated [24][26) that for a waveguide region, £ in Figure

4.1, containing only lossless materials , the quantity :

v
. \
. . *

-

RE)= [{-(xB -KeB-E}dn v (@)
At r

> -

has a stationary point at £ = E, where E satisfies the curl-curl equaf@m
i . )
(3.2). It has been assumed here that both If and E satisfy the appropriate boundary

conditions on 911 (see Figure 4.1). .

i ]

A .

. For H-plane junctions, E = FE, and Q1 is an area rather than a volume.
A scalar field approximation for E, suitable for analysis of H-plane rectangular '
waveguide junctions, may be obtained by subdividing the region 1 into e triangular

-
[y
®
5 ,
o

18
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FIG 4.1 A ONE-PORT PROBLEM REGION
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e (4.2)

-

Within a given subregion, {I,, the approximate field may be expressed as a
. b

linear interpolation of the electric field values at the vertices ( see Silvester{27] ):

-

' 3
EY = EMg, =) Eiox(z,y) g, (4.3)
E k=1

In finite element terminology, the vertices are called nodes and the triangular sub-

regions, elements. _ . -

Inserting (4.3) into (4.1), the function may be written as a matrix quadratic
b

. -
form :
-

F(E)=E"WE (4.4)

where F is a column vector of E,s

W is a square, symmetric matrix.

It may be shown that the stationary pofnt of Fy, subject to the boundary conditions
on F, is E', where: 3

WE =R .+ (4.6)

,

See Section 6.2 for details. The resulting solution vector, £* ,may be used to ap-

'proximate E by interpolating between verlices in a given eleinen‘t using (4.3). This

~—

forms the basis of finite element theory.
4.2 - Waveguide Junction Admittance Parameters
™
Figure 4.3 illuétaﬁes a waveguide junition in which all ports except port ¢

A

have been open- or short-circuited and the ports have been defined toHe far enough

20
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a

away from the junction cavity that evanescent modes,of the waveguide have very

. little contribution to the fields at /t.he port planes. In such a case, it has been

;
7

demonstrated [24] that if port ¢ is excited with a wave of unit voltage, then the
admittance seen at port ¢ is proportional to F, (_E:) (see Appendix I for proof) :

=

-

~ 1 " £ - -
y=k R(B)=k [ {Z(Ux B - KB B} dn, 57 a)
il r -

1.
A

>, &
6, .

5o

where k is a known constant. 3 .

“

v )
Oy v -

Relation (4.7) allows thé individual entries to be obtained using Helszajn's

equivalent circuit models ( Section 3.3 ) by performing open- and short-circuit
H

| e
" experiments on pairs of ports. For a symmetric two-port, the procedure is

-

step 1 — Short-circuit the terminal plé,ne T %nd solve the finite ele'ment problem

N [N
corresponding to finding the stationary point of (4.1).

step 2 — Evaluatey ~ k- f,(E’). Call this value y,.

N
¥

step 3 — Openicircuit the terminal plane T and obtain a finite element approx-

" imation of the admittance seen at plane P (y0)-
step 4 — Evaluate the diagonal and oﬂ'—diagolnal impedance and admittance

E

23



. 7
parameters: L
2 = 1/1/.
1/yo ~1/y,
2 = —————
2
l/y", (4.8)
Yie = -
(L/y.)? — 5(Y/yo — 1/y.)?
¥ . l/yo - l/yO

2(1/y.)2 = L(1/ye —'1/y.)?

4.3 - Placement of the Junction Port Planes

- . . N /
There, is a restriction imposed on the placer,ner}d%t planes in the for-.
mulation above. In Figure 4.4, a portién of the waveguide junttion is depicted. At

port plane 1, the electric field may be written as :

-’ -

E, =cie tece + - tene, +o0 (4.9)

where ¢ is the electric field of the TE,,, mode. At port plane 2 the electric field

-t
’

s
. E,=cie % +ee 8 +vetone Tnbe sto

(4.10)

If the dominant mode, T'E,,, is the only p;opogating mode in the waveguide con-
nected to the i)ort, then I', is purely ix_naginary and all other I',’s are real and

positive.

Fgr lé,rge enough A, e~ js small for m >2s0 tﬁat electric field at plane

24

o d



P,
|
b
\ l
Li,Vi |=2
. l
I
A
ax
\
az 3
’ gy A\

FIG 4.4 THE PORT PLANE AT PORT i

b



—

A}
1 3

can be said to be comprised mainly of the dominant mode, ¢, :

ria

E; mce” 1%g

(4.11)

t +T14 o
teem e for large A

It is therefore justified, in such a case, to apply a Dirichlet boundary condition of

~

the form :
E,=¢, (4.12)
in order to excite the port with a unit yoltage TE,, .wave.

q
The imposition of (4.12) is tantamount to imposing a non-homogeneous

Dirichlet condition for the dominant mode and a homogeneous\Dirichlei bound-

ary condition for each of the higher TE,,, modes :

Vi = 1
V, = 0
Vo, = 0 -
7 (413)

M 1
»
‘/m = 0
.

Al

«

This method will be refered to as the Dirichlet port cgnstraint method or ” Dirichlet-

L

port” method, for short. The above constraint does not, however, accurately model
the fields of a true physical waveguide (where the higher-mode contributi\ons are
non-zero) unless the port’ plane is a. large distance a.wa,y' from the junction. The
true boundary value problem is effectively an 6pen-bounda.ry problgm and the ap-
plication of (:!.12) is a virtual boundary ¢ondition that limits the proble;rl' region to

a finite domain. The user of a formulation such as that described in this chapter is _

therefore restricted ‘as_to how close to the junction the port planes may be located.
4.4 - Summary-

This chapter presented a finite element method to exi‘._ra.ct admittance pa-

rameters of an arbitrary-geometry H-plane waveguide junction. However, the port

1
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E ) planes of the junction must be situated sufficiently far from the junction cavity that
the fields at these ports consist almost entirely:of the dominant-mode fields. This

restriction will be dealt with in the next chapter. chap5
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Chapter 5 - A New Finite Element Method for Waveguide Analysis

. The need to account for evanescent modes at the planes of the ports of
a waveguide junction has been mentioned in many papers [16][2][3][4]{25]. Two

modifications to the’method presented in the previous chapter are that:

. (i) the energy-functional of equation (4.1) must be made to account for

the energy contained in the higher waveguide modes, and

(ii) the input port bound ry condition must be projective in Iiatuure; that
- ¢
is, it must only constrain the dominant - mode field component at the

input port.

7z

In order to accomplish these modiﬁcaf.ions, a new functional and some proje-

“ctive field operators‘must be developed. The theory will be presented in a three- -

dimensional form. This -type of analysis will allow extensions of the tlig;)ry to

problems other than the H-plane qu;Cti(;né presented in tlis thesis.l The theory will
assume Qingle-mocie operation of the feedirig waveguides throughout.

5.1 - Projective Operators and a New Functional

-3
o

The electric field contribution from the m'" TE ,ondé, €, at a given waveg-

: : 7
uide junction port can be extracted from the electric field contribution, £, by using

/ -
- L}
'
~ .

¢ B '
+ \)
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- & . ~the following projection operator:

‘f!')np ‘E_ "‘"‘

P, (E) =

dq,
dn“ g-m‘ . ,(5‘1)

f.’)(), LA

Given a port field distribution which is a mixture of several 'T'E,,, modes, such as

th

E, of equation (4:9), the operator above extracts the m'"* mode contribution so

that:

Pm (..E_l) = cm C—PmA € (52)

—-m
L

.= Foran eQanescelgt mode (m > 2), the m*'* mode mégnetic field contribution is:
/
B, (E) = b, nx P,, (E) j (5.3)

where b,, is the characteristic susceptance of the T E;,, mode

n is a unit outward normal to the junction at the port boundary

The total higher mode (m = 2,3,...) contribution to the magnetic field Is given b”f;’/

¥

- B.(8) (54)

m=?2

By analogy, the projection operators Q,,(H) and Q,(H) can be defined such

, that: - .
' fan H 'ﬁ'm dﬂ,, )
Qm (ﬂ) = L .Q,,,
- fO“p h,, -k, +dQ, -
and
=) Q. (H)
/ " =2
.
The opera.tors in (5.1), (5.3), and (5.4) are useful A developmg a new func-
9 tional and a new form of the boundary conditions needed in waveguide analysis. Tlle

i
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outward-going power in the TE,, mode is given by:

\

@

functional, #,(E), in equation (4.1) is proportional to the time-average outward-

. ) ‘ .
going power in the junction. This may be related to port admittances through the

. ‘ o . N
. application of Poynting’s Theorem (see Appendix I for proof). The time-average

d

B/(E) X E-n df, - . (59)

a1

F(:E_) = F (_E_) it ko o

@ .
The surface term above represents the outward-going power contained in the higher
(m > 2) modes. The quantity may be used as a functional similar to the functional
: - . ¢
v (E). This will be shown in the following sections. -

[ L]

8

The boundary condition on the first mode of the waveguide at 91, can be

wtitten as:
P, (E)=¢,
. , . z -
for the first mode and for each higher mode, by application of equation5.3):

Qv xE) =B.E). . .

Jwu { ..

A justification for the above relation may‘be made as follows. Q,(H) is the higher-
mode componeni; of the magnetic field at the port and B, (E) is the "evanescent

portion of the magnetic field, assumingnly outwardly-decaying higher modes. For

R ’
o i
’

single-mode operation, Q, (H) must equal B, (E).

-

The above two conditions provide adequate constraint for prbpe; prc;blem
specification. This method of imposing the unit-voltage condition "is called the

" projective-port” method.

" 5.2 - The Stationary Point of F(E)

Refering to Figure 4.2, consider aspace, §, of functions, E, defined in {1 su¢h

30
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> y o
>

that: G
' nx F= on 90, (conductor).,
and P,(E)=g¢, - unit voltage condition
The following Theorem may be developed:

e H

, . < . v ) ~ .
Theorem A: If E is the stationary point of F(E) in"S, then E satisfies the curl-curl

equation and the evanesdent mode condition:

Proof

The first variation of the functional, F(E), with respect to an arbitrary
)i :

. R -”
function u, which satisfies homogeneous boundary conditions on df! and P, (u) = 0

on 91, is: ~ ' ]

Applylng the ldggflty V-(exb==5b-(Vxa)-a- (¥ xP),

: E)+;-2-u YxVxE- Ze,k(,E u} "ndf}
Hr br

)
=
@z
e

Il

S~
P,

I -
®

X
<

X

Therefore," B T

§F(E), u / { 2 Y(uxVx E)} ndS + 2ko 70 B, (£) » u} - ndf,

"/ (X Uy E-kleE)

The Divergence Theorem can be applied to the first integral, above, to give: © |

on Hr T aty,

6F(__E__),yi = / -—2—‘u. X V X E ndn + Zko”“ ﬁl (E) s y_'.ytﬂ,,

+/ 2. (y,,x‘_v_x_E_-k;.“e,E) -
AT



‘o

Sincey » n = £ ¥ n -~ 0 on conducting boundaries,

fhr

{ ﬂ’r/""

- ~ 2
61‘“(@),1{:/ {'—‘u X V)/ E +2k(Jn()B1(E)
261,

[ 2 u (¥ x YxE kB d

} -ndfl,

‘ " *:/ ;Z—z-(zx_‘ZXE—ko \,E_)leﬂ
{ r
i) u=2] wxw)'[YxE - kB (B,
Jiy

¢ [ Zu(@xTxE-k’ef) dn
{

Ju M

If Eisa stationary‘J\oji of F(E), then the volume and surface intégrals above

must cach vanish seperately. This implies that:

7
9

For o> 1 and u = ¢, on 9{1,, n xu= =2 and:
L

~

o
2 1 .
§F(E),u=-— [ &, - [-—v x E ~ kyneB, (E)]dn

] bm Jd0p u'r

From the definitien of Q,, (;), this implies that:

Q. [ur Vx E- k.,n.,Bl(E)]
And since Q, (B, (£)) =B, (£), .
— 1 ..
x Ql(;;_zox ._FL) =B1(-'E—)
which is the evanescent mode E.ondition.

ey

Therefore, £ satisfies the curl-curl equation as well as the evanescent mode

condition.

=3
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Therefore, as the above proof demonstrates, the solution field, _E_‘. which

satisfies the curl-curl equation may be found by using the functional F'( £) instead
of F,, (E) and by applying P, (E) = ¢, instead of E = ¢, on Llie port boundary in a
variational formulatio;l similar to that presented in bhaptef 4. The higher modes
at the’ port&;plalne have been aecounted for and, therefore, there is no restriction

whatever on the distance that the planes must be from the port, unlike the standard

formulation.
5.3 - The Physical Significance of F(E)

In"addition to the similarity in the stationarity properties of F'(£) and F, (£)
presented abo®e, the two functionals also share similar propertfes when evaluated
b »
at their respective statiehary points. The following Theorem applies to F,(£):
J

-

L

Theorem B: F(E) is proportional to the admittance seen at port 91},

Proof::
(v} f\&
™
Since:
V-(exby=b-(¥Yxa}—a(V xb),
tien:

?' Y
(Y xEB)- (YxE)=Y(E » Y xB)+E- (Y« ¥ »E)
~0

F(E) = /(; [V (B x Y x B)+E- (YT 5 B)] - ko &' )dn

UJ”O / El (_E:) X E ° .r.l.dﬂ;r e
-

\
. .1 . 1 - .
F(E :/Y_-ﬁx—_?_xﬁdfﬂr/ —E- (V- V., I/)dQ
B = [T Ex T aBant | B (LT L
—k? / e,E_z d + kum B, (_E_) » E - ndfl,,
0 iy
. - . - ¢
F(ﬁ)_—_/ (Ex-—l—zxﬂ)-gdﬂ+k.,n., B,(_E)/E-Qdﬂ,,
a0 .Ur\ i I
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Now the first integral is zero everywhere except at the ports.

. ~ ~ 1 ~ R -
 F(E)Y = (E x —¥ x E) - n df}, + kono B,(E) x E-n d0,
#iy My a0
F(E) = E x [i—_V_ x B — koo B, (E)] -n dfl,
’ any r

&

Now the fields can be written at the ports as follows:

’
Bimg+ 3 Ve,

m=2

Et = Il_f_LL + Z Imhm

m=2

and for each mode m of the port waveguide: '

Ay

= —Ynn X £,

Q

oo
= Hf = _Ilylﬂ x e - E Im Y X &,
=2 ’

And for outward-going evanescent modes:

‘/m = _Im Q

~

= H, =~-Lynxeg + Z VaUmn X e,
% m=2

s
=

From Maxwell’s equations:

~ 1 ’ » TN
H=—— VxE=y VxE
JWHo iy " Noko i,
we can thu§ write: o
1 . . -
E‘_V. x B =—gkyneH
‘ = F(E) = / _El X [‘“Jkonoﬁ_ - kufioﬁl (E_)] -n dfl,
‘a(),’
F(E)= / E x [—'jkunu (-Lyinxe + ) Viynnxe,)

oty m=2

- ko 'Io—B—x (_E.)] 'n dnp
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Now

(o ¢]
F—kynun x Y b Vie,

ne= 2

F(_E_) = _/ 'E x [+‘7’kn noliyin x g+ /-\j
90y

[

‘ oo
- jk(l o Z ‘/m ym Q X _e_m
+ kO '7() Z ‘le b"l-..'l X .gm] * _T_l‘_ dﬂp
= Jkomo / ExILynxe -ndq,
' duy 0 ‘ .
N = —Ib kon, Ex(ﬁxél)‘ﬂ dfl, L

any,

= —I1bkyn, / [E(E. : El) — €& (..E.ﬂ)] ‘n dﬂ,,
('Hl,, N

= ‘—I‘ blk(,n” E .-gl dﬂ
ditp

But . ‘
P, (E) =& > on ag)l'
A
f'm _E_~_e_13ﬂ,,
. e, —~ =e" on 41,
1 f")n" gfaﬂ,, 1 1 ‘
S50 I
F(E) = ~I,6,ky,n, / e dQ 8
a1y,

F(E_) x [

Therefore, as with the standard method , pdrt admittances may be obtained from

the eval?xation of the new functional at its stationary point.
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5.4 - Positive Definite Properties of F(E)

1
|

. The funcfional, F(£), may be shown to be positive definite under certain
conditions‘( see Appendix II for some background in numerical analysis ahd a
i proof of ;‘,he positive definite properties of the functional ). Under these conditions,
;)ne may obtain a faster solutionvof the finite element matrix equation. Once the

functional, F(E), has been has been shown to be positive deﬁnite- , the discretised

operator may be written in matrix form: .
>

F(E)= E"WE (5.6)

‘v\;here W is positive definite. The stationary point of F(£), subject to the port

+
consraint, P, (E) = ¢,, is a solution to the matrix equation ( see Section 6.2 )

W'E = R g (5.7)

~a

wherq W' is also positive definite. The matrix equation above can be solved very
efficiently by performing an incomplete Cholesky decomposition of W' and sub-

sequently applying the conjugate gradient method to solve for E. If F(E)-is not

- t

positive definite, then neither is W' and an alternate rnethg(’i must be used, such
as symmetric Gaussian elimination. The time saved by exploiting positive defi-
niteness may be significant for large problems since the conjugate gradient method
requires O(N %) operations whereas a symme'tré? Gaussian solver requires O(N?)
operations, where N is the dimensionality of the-matrix (Kershaw [30]). Therefore,

—

to summarize the above results and those from Appendix II:

A faster solution to the finite element matrix in equation (5.7) may be ob-
tained if the driving frequency , k,, is smaller than the lowest resonant

frequency of the closed cavity, {1, in Figure 4.2.

5.6 - Sum?nary

36 ’ 7
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A new finite element formulation was presented in this Chapter with the
following properties:

(i) The new fomulation can be used to obtairf waveguide admittances for

H - plane junctions.

(ii) The formulation is free of the port restriction found in , for example,

Webbf1].

(iii) The operator problem resulting from the new formulation is positive
. definite for some ranges of the dri{ring frequency, resulting in faster

matrix solution times.

37
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Chapter. 8 - Implementa‘tion and Results Q&

*
]

This Chapter is divided into two parts: Part I will discuss the implementation
of the finite eleﬁent method presented in Chapter 5. Part II will present results

that validate the theory presented in earlier chapters.

PART I- IMPLEMENTATION

This Part will present an algorithm for extracting the admittance parameters

of an H-plane waveguide junction. .
. *
6.1 - Matrix Assembly

The assembly of the global finite element matrix can bejdivided into two

tasks: (1) the standard functional assembly, (F,), and (ii) the port boundary term

assembly ( refer to equations (5.4) and (5.5) }.

| -

The contribution to F, from an arbitrary element & is:

4

, { /
j \’ s F'*Y(E) —_—./ -1—-(_v_ ></_g)2 d0 — ke, /‘yg-gdnk (6.1)
J ) Mk P .
B !, .
: ) vxghelze 0, is the region represented’ by' element k,
- uy is the relative 'permea.,bility in element £k, * A

c ¢, is the relative permittivity in element k. o
Y
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Substituting £ = ‘ZL , B.a,(z,2)a,

F*'(E) = E'M'W!Y B9 | " (6.2)

where, W' (4,7) { (Vo) ~ ke o; e, } dy

', 0k
and E'*' is a 3-vector of nodal electric field y-components in element k. The global
matrix, W, is constructed by mapping the local indices for element k into global

indigeg so that:

\" F(E) = "i F,(E)=E"W,E (6.3)

where n, is the number of elements.

-~

The port boundary term of F'(E) may be constructed by considering all nodes

which define the port boundary as being part of a large ”port element”. Figilre

6.1(a) depicts the nodes deﬁning’@l} port element and shows the port coordinate"
system. Figure 6.1(b) presents two arbitrary tent-functions, used as first order linite

. element trial functions for the assembly of the port term. Writing E along the port

as.

n,»

E= ZE,,a,,_,, X (6.4),

n=1,
& ’
where n,, is the number of port nodes. The boundary term may now be expressed

@s: ’

Ny N P

boundary term = Z b, E Z EE, K" Km

m = 2 =1 =1 (6.5)

y o Zb,,,L’rW,,,E

m=2 -

where K™ is a function which depends on the port .

coordinate of node i ( see Appendix HI ).

P ) <
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The functional can now be written as:

"

. F(B) =E"W,E + Z E“"TW“"E“"

m=2

=E'WE

The matrix, W, is the global finite element operator matrix.

6.2 - Matrix Modification

»
In order ti;)btalin the solution vector, E*, the functional in equation (6.6)

T
tationary with respect to E, subject to two special conditions.

must be rendered\

The first condition is that at electrical conductor boundaries:

/

E, =0 if node is on a conductor. (6.7)

o

" The second condition imposed upon E is that the field at Lhe'port plane must
~—represent that of a unit voltage excitation. This may be enforced on the problem
by applying the condition:

» P, (E)=¢, = Asi) —a (6.8)

a Y

A ] ¢
where A.is chosen so that the input wave®arries unit power. Equation (6.8) may

be written in the following form:

N
ZT]‘E; =1 . . (6.9)

t=1
“where 7, is a weight arising from the operator P, (seé Appendix 111). The discre-
tised form of F(E) can be modified to account for the two constraints. The first

modification accounts for the short-circuit condition ( 6.7):

-

W'E=0 where ) ' (6.10)

_‘ 6 £ 41



W(i,5) ifi,j € V
W'(i,j)=q0 - ifiorj € Pandi#j ' [
N ifi=5 € P - , ﬂ (6.11)

V is the set of all free (unconstrained) nodes.

P is the set of all nodes on the conducting boundaries.

~ N . .
The zero righthand side results from the application of homogeneous boundary

conditions due to the conducting boundaries. The matrix W'E = 0 may be further
modified to account for condition (6.11) (see Webb[29] for‘details), leadi%gto the

stationarity condition:

’ W'E=R, (6.12)

whete:

a4

R = —W'(i, m)+ ™. —W'(m, m)+k17.

m m

W'(i,7) =W'(i ,])‘ —W'(m,j) — U W' (m,) + —+- 77; —LW'(m,m) +lcn,17J

ne m
rn “

m is an index chosen so that ,, # 0

k is an arbitrafy constant > 0

(5]

The final matrix relation of equation (6.12) leads directly to obtaining the

"y

solution vector, L.
Vs
6.3 - Matrix Equation Solution

‘If the waveguide junction must be analysed over a large range of frequencies,
then it is advantageous to exploit the positive definite properties of W"'. This may "
be accompli,shed by implementing the structure in Figure 6.2.. Note that for positive
définite frequency, ranges of W" the conjugate gradient (CG) met\hod may be used
to solve the matrix equation ( see Kershaw [30] for CG and ICCG method details ).
For indefinite ranges a symmetric Gaussian elimination solver may be used. 'i‘his

o g .
structure makes opt‘imax use of the positive properties of W".
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, 8.4 - The Program \ o,

The impler:zentation described above was programmed in FORTRAN-77 on
a Digitz;l Equipment Microvax II, running_Unix V1.2: The problem geometmy data

was defined using MAGMESH, a well-known interactive finite element modeler.

The sblption structure described in Section 6.3 was not implemented. Instéad,’a

symmetric Gauss solver was used for all ranges of frequency, k,, for simplicity.

Results of this program are presented in Part IF of this Cha.i)ter_.
% i }

% o,

PART II - RESULTS

8.5 - The Empty Waveguide Stub }
As a first test of the program described in the previous section, an empty,
A
short-circuited waveguide was analysed. The waveguide one-port junction 45 de-
. , 7
picted in Figure 6.3(a) and its equivalent circuit tepresentation is shown in Figure

6.3(b). The normalised susceptance obtained is plotted against normalised fre-

quency in I'igure 6.4. . .
* « The waveguide stub was modeled using approximately 100 equally-spaced
nodes, Very good-agreement with theoretical values for susceptance was obtained.
However, since no higher-mode fields are produced, due to the symmetry of the prob-
lem; there is no advantage in using the projective-port method over the Dirichlet-

port.method, A

Y

°8.6 - The Inductive Window

The inductive window, depicted in Figure 6.5(a), provides a good test of the
effectiveness of the projective-port method over the D;richlet-port method. The

equivalent circuit parameters for this two-port are shown in Figure 6.5(b):.
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A plot of the reactances, X, and X,, is given in Figures 6.6 and 6.7 for
parameter values d' = 06m., a = 10m., and [ = 0.2m. in Figure 6.5(a).
Results from the projective-port and Dirichlet-port methods are compared with the
values predicted by Marcuvit[5. The port plane was defined to be 0.3 m. away
from the terminal plane, T, of the junction. The finite element model consisted of

approximately 200 nodes, with more refinement near the obstacles.

The projective-port method results correspond more closely jo the Majcuvitz
a
results than do the Dirichlet-port results. The reason for this is that the Dirichlet-

port method does not account for the l?her—mode contributions al the port plane,

. which are significant for this problem. As a result, the projective-port method gives

better results with the same discretisation. o
v

The results obtained for this test problem differ significantly from the Mar-
cuvitz results, however. The reason for this may be that the sharp edges of the
inductive window produce large variations in the y-component of clectric field, lo-
cally. Asa result, mar;y more degrees of freedom are needed to model the inductive

window accurately. However, an even higher number of nodes are required for the

Dirichlet-port method than for the projeclive-port method.

~

6.7 - The Circular Metallic Post

Another test example which generates a significant higher-mode field con-
tribution is that of the circular metallic obstacle in a waveguide, shown in Figure
é.B(a), with e = 1.0m., d/aranging from 0.05 to 0.25, and A/a = 14 . The
equivalent circuit, representation of this two-port is shown in Figure 6.8(h). This

junction was modeled using approximately 400 finite element nodes,

/ B
The parameters X, and X, are plotted versus post diameter in Figures 6.9
. ! kS
»

'
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E and 6.10. Again, the two finite element methods are
% ,

compared with the predicted values from Marcuvitz[5] in both of these

~

graphs. . £
) 1

It is interesting to note that due to the close placement of the port plane (
0.2 m.) the projective-port results co/r—respond more closely to Murmv'it.z|5] results
(? than do the Dirichlet-port results. In addition, this effect becomes more pron‘ounco(l
as the post diameter is increased. Presumably, this correspo;mds to an increasing
higher-mode field contribution at the port plane. A% d

6/.8 - Summary

] . ’
.
»

This chapter presents a finite element formulation, based upon the theory of

Chapter 5, which extracts network parameters for one- and two-port H-plane waveg-

‘@ - uide junctions. The results obtained from a. FORTRAN program ind/ic;;l,e that the
projective-port method, introduced in this thesis, rﬁodels certain junctions better

than does the standard Dirichlet-port method [1]. In particular, the projective—po;t

method is particularly w\gg’l suited to pr6|;lems in which the; port plane has been

defined close enough to the junction that higher-mode fields are significant. This is

evident in two test examples presented in this chapter: the inductive window; and

Y

the circular metallic post obstacle.

-
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Chapter 7 - Conclusion

The design of passive microwave components requires the use of flexible,
reliable computational tools. Useful tools of this type can provide the microwave
engineer with a circuit parameter representation for a given waveguide device. Sev-
eral formulations currently exist which are able to characterise Il-plane waveguide
junctions in terms/of admittance or impedance matrix representations |1][2|[3}]4].
However, the current methods have some restrictions regarding the placement of
the port planes. This thesis has presented a finite element method to obtain admit-
tance parameters of H-plane wa.veguid? junctions, which is free of port placement

;res‘trictions. 0

Previous methods to extract network parameters of H-plane waveguide junc-
tions have been presented by Webb (1] and Koshiba [2][3][4]. The Dirichlet-port
method, used by Webb, is a finite elgment, Flcala.r, electric-field formulation. The
method does not, however, account for evanescent modes in the wavegui(ies con-
nected to the. junction. As a result, the junction ports must be placed a large
distance away from the junction cavity so that only the dominant-mode h'elds_ ex-
ist there. In using the Dirichlet-port method, a microwave designer must therefore
havefome a priort knowledge of the field distribution in the junction. This p;';:serlts 1

an inconvenience to the designer.

ﬁ:ﬁfta 55 0 [
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The Koshiba methods are scalar [2](4][25] and vector [3] electric and magnetic

(: field which account for the evanescent modes between two ports planes, thereby
all%wing the ports to be defined arbitrariy close to the junction. However, for

each port, two planes must be defined with a significant number of finite element

nodes in the region between them. This structure is inconvenient, although it is

an improvement on the Dirichlet-port method. Furthermore, the number of nodes

in the region between the two port planes may inc\rease the numb:r of degrees

of freedom needed to blve the problem. In addition, the resulting finite element

matrix is not symmetric, thus requiring longer solution times than for symmetric

or positive definite matrices. //

The method presented in this thesis is similar to the method used by Webb
\ .

[1] but makes use of modal projection operators to account for evanescent modes

o

{ in the waveguides connected to the ports of the junction. Only one port plane is
required for each port, and accordingly, fewer degrees of freedom are required to
solve the waveguide problem, thereby making the method more amenable to fast

computation than Koshiba’s method. Furthermore, the symmetry of the matrix
-~

operator is preserved, leading to still faster solution times.

’ _ The functional used in the new method can also be shown to be positive defi-
nite for a portion of the driving frequency spectrum. The resulting matrix equation
may therefore be solved using the conjugate-gradient method, leading to lower so-

: ~- lution times. Also, when the matrix is positive definite, the one-port admittance

parameters found by this method are lower bounds for the true admittances.

-

P

c .
° Numerical results, obtained from a Fortran implementation of the new meth-

C ‘ od, correspond well with theoretical network parameters found in Maréuvitz [5]
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/eral fronts. Firstly, the accuracy of computed parameters could be increased by

v
~ A

Test examples used in this thesis include an empty, short-circuited wavegujde, an
inductive window in a rectangular guide, and a circular metallic post in a rectangular
guide. The results of this method were compared to results.obtained from the

method in Webb (1] and were shown to outperform the latter for waveguide junctions

having significant higher-mode contributions at the port planes.
< N

o

, J

. Improvements or extensions to the new method could be pursued along sev-
using higher order finite elements. However, substantial work would be required to
convert the modal operators for hig}{er order elgegnts. Another extension would

be to investigate dual bounding methods (see Synge’s hypercircle method (28] ) to .

.obtain tight bounds on the network parameters, in order to estimate the error of

a given admittance parameter. As is, the method only yields lower hounds on the
admittance parameters, making it impossible to extract a measure ol the accuracy

of the computed parameters.

As a final extension, a.vector electric or magﬁetic field formulation could pro-
vide an alternate approach to the problem of waveguide analysis, thereby allowing a
broader class of waveguide junction to be analysed. In fact, the modal approach to

»

waveguide problems could be applied to a junction of any waveguide - indeed, the

. mathematics has been presented for a general, three-dimensional junction problem.

&
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Appendix I - The Physical Significance of F,(E) #

N~
The functional F, (E‘),°evaluated at its stationary point, £, can be related to

the admittance seen at a_given port. (Refer to Figure 4.1 for problem geometry).

~

The functional at E is:

[N

" A

y 1 o

RE) = [ {(Ux BP - Kok £} dn (AL1)
£ L

Sinc}-z (axb)=b-(V xa)—a-(Vxb),if the substitution b = V x g is made,

14

the functional may be writtej: s
RiB)= [{T (ExTxB)+E (TxTxB)-Kek B} dn  (412)
PAY .

And by the Divergence Theorem:

ST

-g¢s+/E_-(1xy_x_E—kge,E) a0 (AL3)

1 ‘

RE)=[ —Ex¥x
ot Mr . 9,

Using Maxwell’s first equa.t\mnﬁ((&l)a),
“)'. ) ~ ‘ . ..- ) N .
E,(_E_):_—jw/ Exﬁ_-gdS—{-/E-,(_V_xy_xﬁ¥kﬁe,_ﬁ_) df (A1.4)

18]

Since [ satisfies the curl-curl equation, the second term vanis‘hes so that:

5

FO(E.)=jw/ ExH-nds- / T (ALS).
DAY )

-~ o - L] ‘\ . ’ a? )
Thergfore, F,(E} is proportional to the average outward-going reactive power leav-

Ky

3 ing the junction. However, due té the conducting walls of the junction, power leaves
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or enters only from the port surface, 811,:

a ]

. {
_ ° Fo(B)=jw | ExH-nds © (ALY

L]
GITY

®

If the port is far enough away from the junction cavity, only the dominant-mode
fields are present at 91),. If the port is then excited with a unit-voltage (V, - 1)

wave;

. E=¢ aton, .
3 L (A1.6b)
E = Ilﬁl at aﬂ,, . !
And the functional reduces to: '
Fy(E) = jwl, / e, xh -ndS (A1)
» Ay

Since the amplitudes of ¢, and h, are arbitrary, the functional is:

F(E)=K -1, : (A18)
: "L Lo .

Q <

where K is a number which depends upon w and the amplitudes of e," and k.

~

&

Now I, is the admittance when a unit voltage wave is applied, therefore:

- -
L

. Fy(B)=K-y (ALY)
N )
& , ) . ' ° ‘:" v
k] ! ¢ ) ’
fu} , .
) s

¥



Appéndix II - Someé Functional Analysis Theory ,

o

v

This appendix yill restate the H-plane junction boundary problem of Chap-
ters 34 and 5 in a more mathemadtically-rigorous form. An investigation of the

positive definite properties of operators will follow. \

A2.1 - The Boundary Value Problemn B

I
.

The H-plane waveguide problem can be forinula}ed as a scalar field problem,

involving only the y-component of electric field. In this case, the curl-curl functional

for u = F, reduces to:

13
-
t -~

1 i ‘“
Fi(u) :/ {-(%0)? - Ko '} dn C v (azd)
2] r Pt .

i
and is subject to :

v =0 on 81, (conductor).
P(u) =g on 80, (port boundary).

The functional represents a quadratic form, which rflay be written as :

Fy(u) = (Lu,u) — k2 (e, u, u) f, o (422)
where (Eu,u):/ —1-|Vu|2 df )
, a Hr o
(€, u,u) :/ eu’ dil
Qa
g £
60 r
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A quadratic form may be one of the three types depicted in Figure A2.1. If @ is

the stationary point of F(u) and F(u) is positive definite (i.e. F(u) >0 Vu # 0),

I3

then :

Fu) >F(#) =/ (A2.3)

and F(u ) is said to bound the quantity f An operator, [, whose quadratic [orm,

< Lu,u >, is positive deﬁmte, is called a positive definite operator.

A2.2 - Correspondence Between the Eigen Problem and the Driven

®

Problem

The eigen problem a.ssocmted W1th a given operator, £ consists of deterrnin-

ing all A, and u, # 0, such that :

[4

Lu, —Au, =0 $=12,... . (A24)
[ U, = 0 on 8(1,

- P(u,) =0 on 99,

If all A, are real and positive, then the £ is positive definite.

The driven problem involves finding a #% such that : °
4 L~ it =0 (A2.5)
% =0 on 9dfl.
° A
. P(i) =¢ on 990,
Equation (A2.5) may be restated in the simpler form : ’
L'vu=0 ‘ (A2.6)

I
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where L' = L — A1

and I is the identity operator.
The operator L' is posilive definite, in turn, if all of its eigenvalues, A,,, are real
[N

and positive. If the A, and },, are numbexred from lowest to highest, such that :

(A2.6b)
AL <A <AL <M
then A,, may be expressed as :
/\; = A ~ Ao (A2.7)
The smallest- eigenvalue of [’ is therefore :
&\
AII - A] et A(, (A2.8)

Equation (A2.8) provides a condition on the positive definiteness of [ :

Theorem 1. The operatog L' is positive definite if:

(¢) L is positive definite (A, > 0)

(z2)do < Ay = smallest eigenvalue of £

A2.3 - Addition of Semi-Definite Operators to L/ .

The operator, £’ remains positive definite upon addition of a positive semi-

definite operator, A.

Theorem 2: The operator M = L' + A if:
(1)L is positive definite’
(1) A is positive semi-definite
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Proof: (Au,u) > O by definition, therefore:

F(u).= (Mu,u) > (L'u,u) >0Vu#0

Therefore M is positive definite. -

"3

A2.4 - The Positive Definiteness of F(u)

. { c.

Theorem 1 may be applied to the functional of eqlila.tion (A2.1),s0 that F,(u)
is positive definite if k¢, < X;, where A; corresponds to the first cavity resonant

frequency of the juncti(;n problem. In addition, the functional presented in Chapter

N

5 may be analysed using Theorem 2. First, note that F'(u) can be expressed as (see

Appendix III) :

9

( F(u) = F,(u) + ~f:-Tm (/ u sin m;rz d:r>2 . (A2.9)

=2 Jdip
i -

where T;,, is a positive scalar function of m. Thesecond (boundary) term in equation
(A’Z{Q) is a positive semi-definite quadratic fom:, by inlspection. Theorem 2 may be
apglied to equation (A2.9) with the result : F(u) is positive definite if k7e, < A,.
This statement demonstrates that«if the driving waveguide frequency is low enough,

* o

|
l
|
| then F(u) is positive definite. v
l
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Appendix JII - The Boundary Term in F(E)

The boundary term in F(E) presented in Chapter 5~n71ay be assembled by
assuming theffinite element nodes along the port boundary are part of a large " port-
element”. If the port nodes in Figure 6.1(a) are assumed to be equally-spaced along

! }
011, then the boundary term signpliﬁes to:

1 E -q-' —-”l dﬂ
F(E) - Ei = gkyno Z Y / )“P / } 'Qm] dx'
me=2 =0 f)l),, Zm dﬂ
[}
L = a 2
’ - ]kU No Z Y = — [ E; sin'-———""{;" d&:’]
m=2 z'=0
1]
2 ZJkoﬂo S [/J - . v P
Y E, sin mr dx ]
‘ n a '"Z,__Z " wl=0 v
; n
Now E, = Y " E,a, where E, are nodal E,-values along the port and

o, are global a—polynomxal functions ( see Figure 6.1(b) ).” The boundary term is

therefore:

=a "0

ZEa,smL'H‘—P'— d:c]

, « B.T. _ Z R /J:

m=2
n

LU | =u ro=a
Z Rm E ZE E; / o, sin e dz’ / o, sinwad dz"
- "

=2 1=17=1 =0 rf= 0

o0 no no

N /

v ‘:, . —_ E - E § E E Km Km
- m=2 1=1y=1
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where )

x =d
K™ = / @, sin ms dx’
z'=0

= 2.7.1‘:0 n() ym.

Rm.
a

Now for arbitrary ¢, K" has the form/

) nt T~ retw -z ,
1 . 1 .
K" -/ (1+ ———sin mnd g +/ (1 ~ ———sin md !
r

Fy—w £y

,e 1 Ty 1 Ty
= sin wme dz’ + — z' sin maz’ dz' — —/ z, sin wed dg'-
r w —-—w w fy—w

ry—w wy

Tt w
/ z, sin no’ dg’
x

13

retw T+ w
+/ sin d:c’-——/ ' sin w dz’ 4 —
w /., w
g . £y

a L 1 ae . a | R
= |———CO0s I + = |57 sin - — ——1 COS Wi
- mn Ly - w wimeme v rE—w

1 a , 17 a g Tyt w
—— v ] — __x‘ COS nu'rln + e comrer— cos mr:'l
wl mm —w mm r

Tyt w

L

o1 o a - retw ] a
- = [ sn}ﬂﬂ{g@i- — —z' cos ﬂﬂgi] + = [———-x, cos Mli]
, wl mr

w Lm2n? mm x
Let
w = port node spacing £
T, =2z, —Ww .
zf =z, +w
) ]
therefore, : N )
R AR ;e
( 2 - T+
a . mnzx . mnz . mnrzx
~ K" = {28m L~ stn—— — sin— }
wm?ir? a a . a
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Going back to the original expression for F:

]

=

ny no

PE) = R(E)+ 251 5y 3 S m 2 ) |

a

m=2 1=l g
[
i .
with
2,2
IR s 2 B
' aZ ku l
Y = T °
J Koty
. mnz, . mrz; , m1r:z:,+1 '
n, = {2sin — 8tn — §tn
a a P
. mmx, . mmrz; - mauzxt
n, = {28m — sin — 8in }
a a a

so that F(E) takes the form:

2.2

2¢° & hll"'—;g"— _k2| ny o 1o

E(-‘l—g-) = FU(E) + w2a7r4 Z mi - ZZE.E,{’T: 'I}})
m=2 1=]1 3=1 1

&

which is positive semi-definite and converges.

'
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