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ABSTRACT

This thesis introduces a new language for Artificial Intelligence applications
that allows to integrate symbolic and numerical computation. This language is

applied to Automatic Speech Recognition (ASR).

Speaker-independence and large lexicon access are still two of the greatest
problems in automatic speech recognition. Cognitive and inforration-theory
approaches try to solve the recognitia»n problem by proceeding in almost opposite
directions. The former relies on knowledge representation, reasoning and

perceptual analysis, while the latter is in general based on numerical algorithms.

Progress is expected from the integration of the two mentioned approaches.
Artificial intelligence techniques are often used in the cognitive approach, but
these techniques usually lack of sophisticated numerical support. The Extended
Procedural Network constitutes a general Al framework which integrates powerful

numerical strategies including stochastic techniques and symbolic computation.

The framework has been tested on difficult problems in speech recognition,
including speaker-independent letter and digit recognition, speaker-independent

vowel and diphthong recognition, and access to a large lexicon.

Various experiments and comparisons have been executed on a large number

of speakers and the results are report::d.



RESUME

Cette theése presente un nouveau langage pour des applications en intelligence
artificielle qui permettent 'intégration entre les calculs symbolique et numerique.
Le langage présenté a été appliqué a la reconnaissance automatique de la parole
(RAP).

L’indépendance du locuteur et ’accés a un grand lexique sont encore deux
des plus importants problémes en reconnaissance automatique de la parole.
L’approche cognitive et celle de la théorie de I'information essaient de résoudre le
probléme en I'approchant de deux directions quasiment opposées. I.a premiére se
base sur la représentation de la connaissance, le raisonnement et ’analyse de la
perception, alors que la deuxiéme est en général basée sur des algorithmes

numériques.

L’intégration des deux méthodes peut apporter des progrés. Les techniques
d’intelligence artificielle sont souvent utilisées dans l’approche cognitive mais,
actuellement, elles manquent de support numérique sophistiqué. Le réseau
procédural etendu constitue une structure qui intégrc de puissantes stratégies

numériques incluant des techniques statistiques et de calcul symbolique.

Le modéle a'été testé sur des problémes difficiles en reconnaissance de la
parole, incluant la reconnaissance indépendante du locuteur des lettres et des

chiffres, des voyelles et des diphtongues, et ’accés & un grand lexique.
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o Des expefiences et des comparaisons différentes ont été faites sur un grand

nombre de locuteurs et les résultats ont été rapportés.
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1 - INTRODUCTION

The design of the Extended Procedural Network (EPN) has its motivation in
the need of integrating stochastic methods with symbolic computation. Generally
speaking intelligent systems with numerical attacheni€nts can only deal with ad
hoc numerical treatment. On the other side powerful numerical systems like those
derived from pattern recognition cannot easily model non numerical strategies
(like chaining rules, for example). The EPN model bridges the gap between these
two philosophies. Any hybrid paradigm is easily described with the EPN model
and the model itself encourages the study and the expression of hybrid strategies
to solve problems that are hard to solve using a single paradigm. A discussion on
the need of probability in A.I. systems can be found in [12]. Without taking such
a radical approach and provided that the reasoning scheme can be represented by
a network-like structure, efficient algorithms for probabilistic inference can be
taken from the theory of Markov models and inserted into an A.l. environment.
The details of the EPN model and the originality with respect to the existing

network approaches to A.l. are given in this thesis.

The EPN model has been iested on several applications concerning
Automatic Speech Recognition (ASR). Speaker-independent ASR by computers
of large or difficult vocabularies by computers is still an unsolved task, especially
if words are pronounced connectedly. Efforts and progress towards the solution

of this problem are reported in the recent literature {8], [45] ,[49], [52], [53].
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Recent results on ASR and Speech Analysis suggest that progress in
designing recognition devices and in advancing speech science knowledge may
arise from an integration of the so called cognitive and information-theoretic

approaches [53].

The cognitive approach attempts to infer analytic knowledge about possible
speech invariants and their relations. Work by Zue [93], Klatt [47], Stevens [83]

and De Mori et al. [19], [24] are along this line.

The contribution proposed in this thesis is based on the following
considerations. First, if large or difficult vocabularies have to be recognized when
words are pronounced by many speakers, it is advisable to consider a (possibly
small) set of Speech Units (SU) with which all the words and word
concatenations can be represented by compilation. A relation between a word W
and its SUs can be represented by a limited number of basic prototypes and a
description of their distortions observed when W is pronounced by a large
population of speakers in different contexts. Distortions introduce ambiguities in
the relation R,(W,SU) between W and SUs. In order to make ambiguous
relations more useful, for example, for recognition purposes, their statistics can

be taken into account.

Second, the knowledge we have about production and perception of
phonemes, diphones and syllables can be useful for conceiving prototypes of
Speech Units. SU prototypes can be characterized by a redundant set of Acoustic

Properties (AP). A relation R,(SU,AP) between a Speech Unit and its APs is



ambiguous because acoustic properties can be distorted, missed or inserted in a
particular instantiation of an SU. This is due to context, inter and intra-speaker
variability. A performance model of such alterations can be built using statistical

methods. This is called the Information-Theoretic approach.

The information theoretic approach is based on a performance model
containing states and transitions between any pair of states [8]. Probabilities that
the system is in any of the model states or is changing state through any of the
allowed transitions can be learned. Furthermore, the model generates in each
state or in each transition, observable system parameters or descriptors according

to some statistical distribution.

Whether knowledge about speech analysis, synthesis and perception should
be taken into account or .not in ASR is still the subject of discussions among the
researchers in the field. Investigating the possibility of using acoustic property
descriptors for ASR is attractive. Nevertheless, an ASR system based on acoustic
property descriptors is not very efficient if the set of properties used and the
algorithms for their extraction are not well chosen and conceived. Notice that
property descriptors describe the speech data and do not interpret them.
Descriptors cannot be false or ambiguous, rather they can be insufficient or
redundant for interpreting speech. For this reason it is important to start an
investigation on property descriptors based on properties which are expected to

be robust, speaker-independent cues of fundamental phonetic events. These

properties and the algorithms that extract them may have different performance
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and degrees of success in different cases. For this reason, a certain redundancy in

the number of properties used for characterizing a phonetic event may be useful.

Remarkable work has been done so far on spectrogram reading [92]. A
number of APs for SUs has been identified with such an effort. Attempts have
also been made in order to extract some properties automatically and use them

for ASR [21].

Knowledge about spectrograms is incomplete. We know that some properties
that can be detected are reclevant for perception. The same property may appear
in slightly different patterns corresponding to different pronunciations of the same
word because of inter and intra-speaker variations. It is important to characterize
knowledge about such variations. This characterization has to be statistical
because we do not have other types of knowledge on how basic word pattern
prototypes are distorted when different speakers pronounce that same word. On
the other hand, it is very important to characterize wor." prototypes in terms of
properties that are relevant for speech production and for perception. Property
based prototypes of words or SUs may describe a large variety of patterns not
only because properties are distorted, but also because some properties are
missed or some unexpected properties have been inserted. Insertions and
deletions can be often characterized by deterministic rules reflecting basic
coarticulation knowledge, but in many cases they cannot be fully explained and

are better characterized by statistical methods.

10




Based on the above considerations, the application of the EPN to speech
recognition represents an attempt to integrate knowledge-based extraction of

relevant speech properties and statistical modeling of their distortions.

Furthermore, the choice of APs is such that the essential information for

reconstructing understandable speech is preserved.

11
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2 - EXTENDED PROCEDURAL NETWORKS

Chapter 2 describes a language based on Extended Procedural Networks
(EPN). Section 2.1, 2.2, and 2.3 respectively present the formal model, the
supervisor strategy and the related programming language. The remaining sections

show how the EPN model can include a number of A.I. paradigms.

2.1 - THE MODEL

An Extended Procedural Network (EPN) can be described with a formalism
similar to that used for an Augmented Transition Network Grammar (ATNG)
[90]. This formalism has been successfully used for Natural Language and Pattern
Recognition [32]. The novelty in the approach of the EPN consists in the tight
integration between symbolic and numerical computation. The result is a new
model which is able to describe and implements strategies that cannot be handled
by ATNG’s. Examples of some of the strategies that can be defined in the EPN
model can be found in section 2.4. ATNG’s and their applications are of course

a special case of the much more powerful EPN model.

An EPN is a 5-tuple

EPN={j,0,A 409 t (2.1)
where j is the network identifier, Q is a finite set of states, A is a finite set of

directed arcs, g ,€Q is the initial state and g f is the final state. Without any loss

13
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of generality only EPNs with a single initial state and a single final state are
considered.
Each arc a;€A is a 5 - tuple:

a,=(q,;>9,; ,P‘.,conditionl ’actioni) (2.2)

where:

- q,,€0 is the starting state of g,

- q,,€Q is the terminal state of a;

- P, is a measure associated to the arc (it can be a weight or a
probability according to the scoring method used by the EPN
supervisor described later on)

- condition; is a condition which has to be tested and is associated to
the arc

- actionl i1s an executable action associated to the arc

The conditions can be categorized in two classes:

COND n

refers to a user defined condition n.

DEFAULT r
refers to a default condition (it is satisfied only if no other transition of any

arc whose starting state is g,, returns a score greater than r).

The actions are executed by the EPN supervisor and can be categorized in

eight classes:

14
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EXE n
executes a user defined action; such an action is usually a “matcher” which

performs some computations on the input data and returns a result.

PUSH i
is defined as follows. Let’s assume that EPN , has an arc that contains
PUSHi. Letn j be the process that executes EPN p When the arc is reached
whose associated action is PUSH i, the execution of T, is suspended. The
state of T is pushed on the top of the stack of the EPN supervisor. A new
process 7, that executes EPN, is created and executed. When the final state
of EPN, is reached, the last arc of EPN, is considered. It has associated
either a POPABS f or a POPCOND f action. This action is executed. It

returns scores computed by EPN,. These scores are passed to 7, whose

executicn 1s resumed while m terminates.

POPABS {
is associated to the final state of an EPN. It stops the execution of the
current network process as soon as t is executed. The result of the execution

of the user defined function f is returned.

POPCOND f{
It stops the execution of the current network if the final state is the only
active state in the current column of the trellis, i. e. if all the actions
associated to the paths in the network leading to the final state have been

executed. If this condition is satisfied, then the result of the execution of the

15
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user defined function f is returned.
IMP
makes the score associated to g, propagate to g,; according to the measure

P, associated to the transition

INHIBIT ar

inhibits the activation of the arc a, if the score associated to g,; is greater
thanr
EMPTY
propagates the score f,(P;,score(q,,)) to g, (see the EPN supervisor section)
in the same column of the trellis.
EXPAND i
the subnetwork EPN, is substituted to the EXPAND transition in such a way
that the initial state of the subnetwork coincides with the startpoint of the
transition and the final state of the subnetwork coincides with the transition
endpoint
PUSH and EXPAND implement a hierarchical strategy respectively model
and data driven. The difference between the two actions can be better understood
if we draw the corresponding trellis.
Figure 2.2 represents the trellis corresponding to the network of Figure 2.1
(PUSH) and Figure 2.4 corresponds to Figure 2.3 (EXPAND).

A set of built-in functions which modify the structure and the parameters of the

16



PUSH PN2 EXEACT2

POPCOND F2
EXE ACT1 EXE ACT2
pN2. 1 >( 2 )
EXEACT3
POPCOND F3
EXE ACT4 EXE ACT5
PN3: (1 ”@
EXE ACT6

Figure 2.1: Example of EPN with PUSH actions
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EXE ACT1 EXEACT2

pa: (1 ”@

EXEACT3

EXE ACT4 EXE ACTS

PN3: \_1 ’G‘/\

EXEACT6

Figure 2.3: Example of EPN with EXPAND actions
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Figure 2.4: Trellis corresponding to the network of Figure 2.3




EPN is defined as follows:
CREATE transition trans_param
creates a new transition in the network whose transition parameters are
specified as action parameters.
DELETE transition
deletes a transition
SET_PARAM transition trans_param
modifies the parameters of the specified transition

GET_PARAM transition param

returns in the variable param the parameters of the specified transition.

2.2 - THE SUPERVISOR

Several strategies can be applied in order to build a state space of hypotheses
and to find the most plausible one. The supervisor considers two symmetrical
strategies: forward strategy and backward strategy. Most of the applications do

not require backward strategy.

Let g, be an arc of an EPN. The contribution of such an arc is

u,=f;(p;,g;(cond,),h;(act;)) (2.3)

where:
- p; is the score associated with a,,

- g is a function which returns the evidence of satisfaction of condition;,

17
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- h; is the function which returns the value computed by the action; and
- [; is the function which combines the values of its arguments in order to give

the contribution of the arc.

According to the definition of p;,g;,h;,andf;, several interpretations of the
contribution of an arc are possible. Sections 2.4 and 4.2.1 show how the
mentioned parameters p,,g;,h;,andf;, have to be characterized to specify various

arc contributions in different paradigms.

The supervisor forward strategy calculates the compound contribution of all
the transitions in a dynamic programming style. Partial computations (partial
scores and contextual information) are stored in a state buffer associated with
states in the trellis data structure. Every column of the trellis corresponds to a
computational step in the dynamic programming process. Initially at
computational time (i.e. discrete step) 0, only the initial state of the network
belongs to the O-th column. The associated score is supplied by the user as a
parameter of the network and depends on the interpretation of the reasoning
process. If a stochastic approach has been taken, i. €. measures are probabilities
and the function f, is the multiplicative function, then it is reasonable to initialize
the score of the initial state to 1. This interpretation leads us to understand the
scores as the probability of having reached a particular state of the network at a
particular computational step. If the network is used to evaluate a distance then,

for example, the measures are costs, the function f,. is an additive function and

18




the score of the initial state at step O would be reasonably set to 0.

The column O of the trellis would be subsequently completed by the states
and contributions which arise from EMPTY transitions leaving from the initial

state.

Figure 2.6a and Figure 2.6b show the initialization of the trellis corresponding

to the model in Figure 2.5 - stochastic interpretation.

The iterative step in the forward supervisor strategy is the following.
1) For all the states in the i-th column of the trellis do
For all the non EMPTY transitions leaving from the
current state do
begin
compute the contribution of the current transition
update the scores of the terminal state of the
transition in the (i+1)-th column of the
trellis

end

2) For all the states in the (i+1)-th column of the trellis do
For all the EMPTY transitions leaving from the
current state do
begin

‘zompute the contribution of the current transition

19



update the scores of the terminal state of the
transition in the (i+1)-th column of the
trellis

end

The updating phase substitutes the score associated with a state g; in the
trellis with value score(q;) = combine(score(q,.),c(q].,q,)) where c(q].,qi) is the
contribution of the transition from state g, to g,. The function “combine” is a
function which combines the previous score associated with a state with the
incoming one and propagates the contextual information from one state to
another. This function must be supplied by the user. For example, in the
stochastic interpretation of the strategy, the function is the maximum if we want
to perform a maximum likelihood evaluation. If we want to calculate the sum of
the probabilities of all the paths then the sum have to be used. In the

interpretation of a distance the function to be used is the minimum.

Figure 2.7a and Figure 2.7b show the first iteration of the model in Figure 2.5
after the initialization and in Figure 2.8 the probabilities are reported - the
combination function is the maximum and the corresponding best path is

propagated as contextual information from state to state.

The same strategy can be applied in reverse and this is what is called

supervisor backward strategy.

Initially at computational time (i.e. discrete step) 0 only the final state of the

network belongs to the 0-th column. The associated score is supplied by the user

20
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0.1  EMPTY1 0.2 EMPTY1

Fig. 5

Figure 2.5: Example of EPN with stochastic interpretation
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Figure 2.6a Figure 2.6b

Figure 2.6: Forward initialization of the trellis of the model in Figure 2.5
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Figure 2.7: Second forward iteration of the model in Figure 2.5



Figure 2.8: Forward measures of the trellis in Figure 2.7
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Figure 2.9: Backward initialization of the trellis of the model in Figure 2.5
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as a parameter of the network. The score of the final state of the network
depends on the interpretation of the reasoning process. If a stochastic approach

has been taken then a reasonable value for the final state is 1, and so on. ;

The column 0 of the trellis would be subsequently completed by the states

and contributions which arise from EMPTY transitions ending in the final state.

The trellis after the initialization is reported in Figure 2.9a and Figure 2.9b.

The iterative step in the backward supervisor strategy is the following.

1) For all the states in the i-th column of the trellis do
For all the non EMPTY transitions ending in the

current state do

begin
compute the contribution of the current transition
update the scores of the starting state of the
transition in the (i-1)-th column of the
trellis
end

2) For all the states in the (i-1)-th column of the trellis do
For all the EMPTY transitions ending in the
current state do
begin

compute the contribution of the current transition
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update the scores of the terminal state of the
transition in the (i-1)-th ~olumn of the
trellis

end

The updating function becomes then score(q].) = combine(score(q j),c(q j,q,-))

where c(q ],q,.) is the contribution of the transition from state ¢ j tog;.

Figure 2.10a, Figure 2.10b show the first iteration and Figure 2.11 show the
values when the combination function is the maximum and the best path is

propagated as contextual information from state to state.

The complexity of the supervisor strategies is linear with respect to the trellis
size which is considered as the number of states times the length of the trellis

(computational steps).

2.3 - THE LANGUAGE

The EPN description can be considered as an A.l. programming language.
Such a programming language corresponds to the actual input to the computer,
while graphical description is more used for human analysis. The language
definition has been implemented as a library of interface routines toward the
Pascal compiler. The language is not directly compiled into some machine code.
The user of the library (an EPN programmer) typically wants to parse and execute

a set of EPN’s. Such functions are accessible through any language which is
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compatible with standard Pascal parameter passing mechanisms. The EPN can be

described in the following format.

FUNCBEGIN
<compulsory function declaration>

GLOBALBEGIN
<global declaration>

BUFBEGIN
<state buffer declaration>
DECLEND

{
DEFPNBEGIN <net name>

<initial state name> <final state name>
<epn declaration>

{
DEFTRBEGIN <transition name>
<starting state> <terminal staie>
<transition parameters>
DEFTREND

I+

DEFPNEND

H

<global declaration> ::= <declaration>
<epn declaration> ::= <declaration>

<transition parameters> ::= <measure> <transition declaration>
CONDBEGIN <condition> ACTBEGIN <action> END

<transition declaration> ::= <declaration>

23
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<state buffer declaration> ::= <variable declaration>

<declaration> ::= <constant declaration>
<type declaration>
<variable declaration>
<procedure declaration>

<condition> ::= DEFAULT r | <statement>

<action> ::= PUSH i | POPABS f | POPCOND f | JMP | INHIBIT ar |
EMPTY | EXPAND i | CREATE <transition> |
DELETE <transition> |
SET_PARAM <transition> <transition parameters> |
GET_PARAM <transition> <transition parameters> |
<statement>

<transition> ::= <transition_name> <starting state> <terminal state>

The scoping rules of the EPN are the following: an identifier referenced in a
condition or action is sought in the transition declaration and in the state buffer
declaration. The transition level includes transition declarations and state buffer
declarations together at the same level. Therefore identifiers which appear in the
state buffer declaration and in the transition declaration must be different. If an
identifier is not found at the transition level, then subsequently the <epn
declaration> and the <global declaration> are examined. If the identifier is still

not found, then an undeclared identifier error is issued.
Procedures and functions defined in the function declaration cannot be
referenced in any part of the network; they are used internally by the EPN

supervisor.



o

A number of Al problems are reviewed in the following sections and their

solution with EPN is shown.

2.4 - EPN AND AI STRATEGIES

The computational power of the EPN model is the same of linear bounded
automata (refer to section 2.4.9). Furthermore the possibility of defining
executable actions which are pieces of code gives the EPN the same power of
conventional high level languages (HLL). Although all AI strategies can be
implemented in the EPN formalism, some strategies are very easy to describe by
simply tuning the parameters of the EPN. In the following sections some

examples will be presented.

2.4.1 - PLANNING

A plan is some finite structure over a set of actions. A sequential plan is a
finite sequence of actions. A plan defines a set of sequences of world states,
called the behaviour of the plan. We can obtain one of these behaviours by
executing the plan.

In general, the planning problem is the following: given an initial situation I
and some desired condition (goal) G to be achieved we need to construct a plan

that will guarantee that a state satisfying G can be achieved provided only that the

plan is executed in a state that satisfies I. There are several known algorithms to
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generate plans (planning), [11], [69], [89]). The EPN planner is a maximum
likelihood strategy with no backtracking. In order to perform a planning algorithm
all the probabilities are set to 1.0. Conditions are set to true if standard planning
is desired. In the case of conditional pianning, the conditions are activated and

represent the conditions of the plan.

When the concurrency of several plans is required to achieve a goal the
standard planning systems provide a structure of split and join to explicitly
control cooperative or competitive plans. In the EPN such an explicit structure is
not possible because of the interpretation of the network according to the data
driven model strategy. Nevertheless, the concurrency or competition of goals is
achieved using EPN built-in functions. Splitting a plan is the normal operation
which is performed when there are more than one transition leaving from a state.
Each transition starts an independent subplan. The difficult problem is to join
different partial plans. The join is implicitly realized by the POPCOND action of a

subnetwork, which then represents the operation of joining concurrent plans.

Wilkins’s SIPE (System for Interactive Planning and Execution Monitoring
[89])) performs the following operations:
- hierarchical
- forms partial plans
- allows limited parallelism
- uses constraints to increase search efficiency

- allows reasoning about resources
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- provides reasonable deductive power

- allows conditional plans

- monitors execution

- can replan after execution failure
The EPN can perform all these activities except to replan after execution failure,
because the EPN always finds a plan: it is the one with highest score. If there is
no way to get to the desired goal (i.e. there is no plan satisfying the constraint) a
system error is issued, but no replanning is performed if this was not previously

embedded explicitly in the planning strategy.

Under certain conditions, the order in which the set of applicable rules is
applied to the database is unimportant. A.I. systems of that kind are called
commutative systems. The properties which characterize a commutative system

are defined in [66].

In some A.I problems the most natural solution involves non commutative
systems. The typical solution is a sequence of actions. Planning is this part of

A.I. World state can only change through the occurrence of some event or action.

An event or action is a relation on states representing all possible
occurrences of the event. This relation is usually assumed to be functional (i.e.,
events are viewed as transition functions on states). Events are represented by
EPN states, the functional relation between events is the transition function on

+

EPN states.
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If we had a number of actions to be performed, we would have quite a
number of conditions to specify that certain actions do not change the values of
certain predicates [58]. The problem of keeping track of the consequences of
performance of an action in a representation world is known as the frame
problem, referring to the movie sequences of frames in which the background

doesn’t change whether the image is moving.

In the EPN the contextual information which is propagated from state to
state is considered as the background, and it is the role of every action to change
some part of such information. This constitutes a sort of procedural approach to
the frame problem, with respect to a declarative approach (add list and delete list)

like in STRIPS [66].

2.4.2 - EVIDENTIAL REASONING

Evidential reasoning has been used in A.l. to represent and manipulate
incomplete and imperfect knowledge. TJncertainty arises from missing or
erroneous data, missing or erroneous rules and incorrect modeling. Evidential
rcasoning removes some of the probabilistic axioms and gives rise to other
theories and formulas. The best known approaches to manage such uncertainty
are the certainty factor (CF) model [82] used in medical systems like Mycin - and
later adapted for Emycin systems -, Dempster-Shafer theory [79] and Fuzzy Logic
[91]. Certainty approach uses the concept of Measure of Belief (MB) and
Measure of Disbelief (MD) to evaluate a certainty factor (CF). P(H) is the belief

of an expert in hypothesis H and P(H/E) is the belief in H based on some
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observation E. The definition of MB and MD can be found in [74].

The CF is represented in a EPN formalism by the value returned by function
f;- The measures of belief and disbelief are stored in the state buffer which is
propagated. The EPN supervisor then finds the sequence of transitions (rules)
that support a certain goal (final state) with a certain criterion matched on the
certainty factor. For example, it seems to be reasonable to choose the highest

certainty factor. Other criteria may be applied as well.

The Dempster-Shafer belief functions, like CF and Bayesian functions, assign
numerical measures of belief in hypotheses based on an observed evidence. The
D-S combination rule includes the Bayesian and CF functions as special cases.
Another consequence of the generality of the D-S beliet functions is avoidance of
the Bayesian restriction that commitment of belief in a hypothesis implies
commitment of the remaining belief in its negation. The D-S measures of belief
assigned to each hypothesis in the original set need not sum to 1 but may sum to
a number less than 1. Refer to [79] for details. In the EPN D-S measures can be
propagated through the state buffer and the transitions represent the strategy of

evidence gathering and reasoning.

2.4.3 - PROBLEM SOLVING

The EPN ran perform problem solving by relating a state in the network as a

state in the prol:lem space. The network supervisor performs then a search in
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such a space. Expansion of states at the same level (breadth first search) is
achieved through the creation of transitions in the same subnetwork, while
successive expansion of states at lower hierarchical level (depth first search) is
achieved though PUSH and hierarchical nesting. Pruning is introduced through
conditions. The EPN supervisor implicitly performs a breadth first search, unless
otherwise instructed by PUSH actions. Creating transitions and states is achieved

by using the structure modifying built-in functions (see section 2.5).

An EPN state can also represent a strategy state. In this case, the problem
can be interpreted as a planning problem with finite state space. This case is
detailed in section 2.4.1.

Among the many problem solving paradigms, hypothesize and test will be

considered in the next sub-section.

2.4.4 - HYPOTHESIZE AND TEST

The hypothesize-and-test strategy is the simplest A.l. paradigm. The method
consists of generating all possible solutions in the search space and testing each
solution until one which satisfies a goal condition is found. The basic algorithm is
the following:

1) Generate a possible solution. This means generating a particular point in the
problem space.

2) Test to see if this is actually a solution by comparing the chosen point to the
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goal conditions

3) if a solution has been found, quit. Otherwise return to step 1

The EPN corresponding to a hypothesize and test paradigm is reported in
Figure 2.12.

Obviously the set of possible solutions must be finite and for practical
reasons its cardinality should be kept small. If the number of hypotheses to be
tested is reasonably small, the strategy can be explicitly declared in the EPN
formalism. If we think of the network in terms of strategies, one state in the
network corresponds to a particular strategy. Therefore the hypothesize and test
paradigm has to be read as ‘“hypothesize a strategy to solve the problem” and
then “verify if the problem is solvable under that strategy”. In this context the
number of possible strategies that can be applied to solve a problem has no
relation to the size of the search state space for a particular strategy. In general
this number is fairly small and can be used in the EPN formalism with cxplicit

declaration.

When the size of the problem becomes bigger and we want a dynamic
creation of hypothesis and tests, actions that modify the structure and the
parameters of the network have to be used. This dynamic generation of EPN

transitions is encountered also in standard problem solving (see section 2.4.3).
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Figure 2.12: EPN for hypothesize-and-test paradigm



2.4.5 - NEURAL NETWORKS

Neural Networks [55], [78], can easily be implemented in the EPN formalism.
The Multilayer Perceptron can be represented according to the EPN model. The
interpretation of the parameters of a transition are the following: the weights w;
correspond to the measures P, associated to the transitions. The values on the
neural network states correspond to the scores associated to the EPN states. The

function “combine” which combines an incoming contribution with the current

score of a state corresponds to the sigmoid tunction.

Figure 2.13 shows an EPN which implements a neural network. Every
transition at level u or v has the following parameters:
P, is the weight w, of the transition
condition, is defined to be always satisfied because the arcs do not
have to be conditionally executed

action, is the built-in action JMP

Transitions at level t in Figure 2.13 set the input values, and transitions at

level z propagate the output values to the final state.

Figure 2.14 shows an EPN for estimating the parameters of a neural net. The
action LEARN modifies the measures P, of transitions of type u,v according to

the learning paradigm. The condition CONYV tests for the reaching of the desired

convergence.
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Figure 2.13: EPN that implements a neural network
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Figure 2.14: EPN that infers the parameters of a neural network




2.4.6 - DYNAMIC PROGRAMMING

Dynamic programming is a technique of algorithm design by which a problem
is decomposed into a polynomial number of subproblems whose solutions can be
considered as entries in a table. The table is filled with the solution of the
subproblems without regard to whether or not a particular subproblem is actually
needed in the overall solution. The structure of the table and the order in which
the entries are filled are the characteristics of a particular dynamic programming
algorithm. DP algorithms have been widely used in pattern recognition, in
particular what is called DP matching [64]. Let us define a template pattern x as
X{> X5 ... , X, and an input patterny as y,, y,, ... , ¥,. Let a(x, ,y]) be the cost of
substituting x, with x , b( y]) the cost of inserting y ; and c(x)) the cost of deleting
X, The cost of matching x as x,, Xpy oo, X, With y as y,, ¥, ..., Y, is computed
on the base of the cost of matching x;, x,, ..., x;_; with y, y,, ... 2 Vo1 X1 X

., Xy with vy, v,, oL, y,» and Xy, X5, ., X with y,, y,, ... » Vi1 If we
define the cost of matching x;, x,, ..., x; with y,, y,, ..., y; as D(i,j) then in
formulas:

D(i’j) = f(D(i—l’j—l)'*'a(x,"yj), D(i—l:j)"'c(x,‘)’ D(l’]_1)+b(y}))

If we assume that f = min then the formula becomes:
D(l’]) =min(D(i—1’j—l)+a(xj’yj)’ D(i_l’j)'*'c(xi)’ D(i’j"l)+b(yj))

If we identify i as the state number in the EPN and j as the trellis column of the

EPN supervisor the cost D(n,m) can be computed by the EPN in Figure 2.16. The
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Figure 2.15: Dynamic programming trellis
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Figure 2.16: EPN that performs a dynamic programming pattern matching
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corresponding Dynamic Programming trellis is reported in Figure 2.15.

2.4.7 - NONMONOTONIC REASONING

The importance of nonmonotonic or default reasoning has been discussed in
many papers [29], [59], [73]). Nonmonotonic reasoning is important because it
models the human way of reasoning in which we deal with incomplete
information, with assumptions and with defaults that are considered true unless

thc opposite has been proven.

The EPN presents a nonmonotonic behaviour thanks to the inhibitory
arc. A transition which is ruled by an inhibitory arc is normally executed except
when the inhibitory condition is satisfied. In this way it is possible to represent

default rules and hierarchical inheritance with exceptions.

With regard to the EPN the logic is somewhat different. In classical
nonmonotonic logic, the database is considered to be time independent - i.e. a
fact, which represents a certain belief is retained unless explicitly canceled (in
some model). In the EPN the trellis structure corresponds to an historically
dynamic set of beliefs, in which every fact that is not explicitly supported at every
instant is removed from the database. This allows the user to decide whether or
not some backtracking is needed or desired. In a classical Truth Maintenance
System (TMS) as soon as a “justification” of a default condition is no longer

satisfied, the TMS returns the system to a consistent state (i.e. with no



contradictions) according to different criteria (elimination of the facts which
creates the inconsistency together with all the facts derived from them. In the
EPN the context is different. Since the states normally disappear at every
computational step, to retrieve and kill a path starting from a state which
represents a fact which is no longer true may be meaningless. At the time when
the state was active the fact was true and since the EPN represents a strategy it is
perfectly correct that at that time and context that path had been chosen. In a
classical TMS system all the facts are global. In the EPN the states carry some
contextual and local meaning. In this context the nonmonotony is applied. If
desired nothing prevents us from building global facts in the global “viewpoint”
and reason about them and decide to run a dependencies directed backtracking
algorithm on the basis of the current EPN active states. In this way the EPN
would implement a problem solving plus TMS strategy and then backtracking
would become an operator which is tied to a particular phase of the strategy (i.e.

a particular transition).

The particular structure of the EPN causes some difficulties in defining the

theory of the nonmonotonic EPN in the sense that:

1) the presence of an inhibitory fact does not affect the current reasoning
unless both the inhibitory fact and the starting state of the inhibited transition are
presently contained in the current column of the trellis. Therefore some classical
problems of nonmonotonic reasoning are expressed differently in the language of

the EPN.

35




2) So far the EPN does not perform any backtracking in the sense of a classical
truth maintenance system [16], [27], but as shown in the example of Nautilus

(Figure 2.17) taken from [30], a similar result can be achieved.

3) An important difference with -lassical default systems is that the facts in the
database have attributes and a score. Attributes allow the system to perform
inheritance with exceptions and scores select, in a non-arbitrary way, one
deduction from a set of deductions in one extension. This solves the problem of
how to choose or to switch from one extension to another during the reasoning
process. Scores are also usetul to deal with inconsistencies and contradictions

which are inherent in a default logic system.

The EPN allows that a fact and its negation are simultaneously present in the
database since possibly they carry different scores. An example of inheritance

with exceptions is presented in Figure 2.17.

The EPN allows an explicit control strategy to take place. This means that
what was implicit in other systems or left to a not well defined problem solver is
now explicit. This reduces the need for backtracking since it is up to the system
designer to model the strategy in such a way that either backtracking is explicitly
applied or inconsistencies have to be accepted. Furthermore, nonmonotonic
reasoning is applied in a well defined context in which the behavio.ur of the
network is in principle clearly understood and planned. The structure of
transitions and markings implies that there exists a specific ordering among the
transitions depending on the time of activation. This avoids the problem that
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elephant gray
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Figure 2.19: Example of EPN for inheritance with exceptions
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Figure 2.20: Example of EPN for inheritance with exceptions
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Figure 2.21: EPN for normal default logic
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Figure 2.22: EPN for seminormal default logic




appears in certain networks of having different inheritance depending on the

(unknown) order of parallel computation of transitions.

However some direct comparison can be made. Suppose that the following

is a set of default assertions in the notation of [29]:

noon,sunny —> sunny

noon

eclipse —> “sunny

eclipse
The corresponding network is represented in Figure 2.18. Three examples of
inheritance with exceptions are shown in Figure 2.17, Figure 2.19, and Figure
2.20. They correspond to the following assertions:

a) Molluscs are normally Shell-bearers
Cephalopods must be Molluscs but normally are not Shell-
bearers

Nautili must be Cephalopods and must be Shell-bearers

b) Elephants are normally gray
Albino elephants are not gray
Albino elephants are clephants
c) Birds normally fly except ostriches
Normal defauit networks [29] correspond to a structure like the one in Figure 2.21
and an example: of a seminormal default network is represented by the network in

Figure 2.22.
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2.4.8 - RULE BASED SYSTEMS

Rule based systems consist of:
a) a set of rules in which the left side describe the applicability of the rule and the
right hand side indicates the consequence of applying a rule
b) some databases containing facts (elements of the database) and information
about the reasoning process
c) a control strategy which specifies the order of application of rules and the
criteria of solving the conflicts which arisc when more than one rule are

applicable at the same time.

Rule based systems are easily implemented in the EPN formalism. Rules are
represented by transitions. Facts correspond to states in the network. If the state
appears in the current column of the trellis it means that the fact is asserted and
it is the precondition to the firing of a rule (transition). The initial state
corresponds to the initial situation of the database, while the final state
corresponds to the goal which has to be proven. Rules are practically clustered in
the sense that only the transitions which are defined as going out of a state can be
possibly taken. This is equivalent to clustering rules to define context of
applicability. Furthermore the network provides inherently numerical attachment

to rules (scores), proceduralattachments, local and global scopes.

Classical control strategies in rule based systems are Forward and Backward

chaining. These two strategies are embedded in the EPN Supervisor.
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2.4.9 - SYNTACTIC APPROACHES

The EPN has the power to represent strategies which can be described by
Context Sensitive Languages. In particular the EPN can implement a linear
bounded automaton defined as in [39] and therefore accept Context Sensitive
Languages. The EPN states and actions represent the finite control and the tape

can be thought as an EPN global variable.

Recognizers for languages at a lower level in the hierarchy defined by
Chomsky can be defi~ed by the EPN model. Pushdown automata and finite state
automata are casily described in the EPN formalism. Pushdown automata can be
simulated by identifying the input tape and the pushdown stack as EPN global
variables and the finite control with EPN states and actions. Finite statc automata
can be simulated by considering the input tape as an EPN élobal variable and the
finite control as EPN states and actions. Details and applications of syntactic

pattern recognition can be found in [32], [34].

2.5 - LEARNING

An important ability of intelligent agents is to adapt to new situations, rather
than simply doing as they were told to do. In the EPN two different kinds of
learning can be defined: learning by parameter adjustment - a kind of
specialization - and structural learning. Learning by parameter adjustment is an

iterative method that estimates the measures associated with a transition on the
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basis of the past experience. The new parameters are used to formulate and solve

new problems.

An example of learning by parameter adjustment is presented with the
assumption that the function “combine” (see section 2.2) is the maximum and the
best path is propagated as contextual information. If the network or subnetwork
is monotonic (i.c. the inhibitory arc is not used) then the learning algorithm is
optimal in the scnse that the estimates converge to those values of parameters
which maximize the scores of all the correct solutions of the problems presented
as learning samples. The structure of the network (i.e. states and transitions) is

supposed to be known. The parameters are estimated as [unction of this

structure.
Let §=8,,8, -+ ,S, be the best paths corresponding to a certain
training set, and S, =1, t;5, ‘" , t,, be the sequence of transitions belonging

to the i-th best path. Let us define

NE)Y=X 6(ti].,t)

iml juml
as the number of times that transition t has been used to process the training set,

where
1if x=y

0if xsy

The expected frequency f, of transition t can be estimated as

6(x’y) = {




N()
Y N@)

t'/L(t)=L(2')

Another point of view of learning by parameter adjustment is that of
changing the measures of the arcs to influence future strategies according to the

current one.

Structural learning is directly used in A.I. approaches like problem solving,
hypothesize and test paradigm, and whenever the topological structure of states
and transitions is intrinsically dynamic. The structure of the network can be
inferred by using a set of examples. The first step is to define a language ¥ whose

alphabet is the alphabet of condition-action pairs. The training set is represented

as a sequence of vectors whose components are condition-action pairs g i Let
L=L,L, -+ ,L,, where
Ly={ay,ap,, -, “1n,}
Ly=Aay, ay, ", 8y }
Lm = {aml’ s T amn,,, }

be the training set. An algorithm for the inference of finite state automata [9],[34]
can be used to infer the EPN structure which correspond to that training set.

Structural learn:ng, rather than language driven, can also be rule base driven, plan
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driven and so on.

The generalization power of the learning approach is that of the underlying
algorithm. In the proposed examples, the function f, converges through iterations
to a value that unfortunately is optimal only in a local way. The estimated value
depends therefore on the initial value of p,. The language driven structural
learning contains a parameter k which controls the generalization power of the
inferred automaton. The learning algorithm can be tuned to recognize finite
languages which consist only in the training set up to more general languages, and

finally to L.

2.6 - CONCLUSIONS

A new language for the description of integrated numerical and symbolic
computations has been introduced. An overview of straightforward applications to
implement Al paradigms has been provided. An application to ASR will be

presented in detail in the next chapters.
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CHAPTER - 3



3 - A MODEL FOR COMPUTER PERCEPTION OF SPEECH

It will be shown in chapter 5 how EPN can implement a perceptual model.

The speech signal x,(r) is generated by a discrete and finite sequence of
actions

A=a,(t))a,(t)a,(ts).....a; (t,).....ak (1) 3.1

where a, (¢, ) denotes an action ending at time ¢, ;a,(¢,) represents the silence

preceding the beginning of a sentence.

Whean a person reads a sentence S, a relation
R,(S.A) (3.2)

is applied which produces A. The relation R, may depend on the speaker,
his/her mood, state of health and history. As R, may produce several As for the
same S. probability distributions tor all the possible As can be derived using a
generative model.

The speech signal x,(r) is generated by the sequencc of actions A using
another relation

RA(A ,x,(¢)) (3.3)

R, depends on the anatomy of the speaker. Again, the same actions may
produce different signals, becausc the speech production system is soft and its
behavior is affected to some extent by the environment.

If the speaker does not read but generates a sentence from a set C of

concepts, then a third relation is applied:
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R4(C,S) (3.4)

R, may depend on the speaker and his/her culture. Statistical models can also be

used for characterizing this relation.

The generation of x (¢) can be seen as the application of the following

composite relation:

G=(R40R )R, (3.5)

according to the scheme shown in Figure 3.1.

Recognition consists in applying the relations in the opposite direction.
Unfortunately we have only a limited knowledge of thesc relations. We have used
it for building speech synthesizers. We do not even know the alphabet Y, {a, }
for the clements of A, although we know alphabets }}.and } ¢ for the clements
of C and S respectively.  Furthermore, signal x,(7) is affected by noise and is
transformed into another signal x(¢) through the acoustic channel.

As we do not know M, nor we know R,, we can characterize actions by
descriptions of what they producc. According to this approach, the perception
of x(¢) consists in extracting a sequence of descriptions:

D=d (1)) d(7,)....d,(r)....d,(r)) (3.6)

where d,(r;) describes the silence preceding the beginning of the specch signal

and d,(r,) describes the segment of x(¢) between the time instants 7, _; and 7,

Segments of D can be 10 ms frames or intervals of variable duration obtained

by a segmentation algorithm like the one proposed in [20].
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The descriptions D can be obtained by perceptual actions by analogy with
the generative scheme. Perceptual actions, as well as generative actions, have to
be defined and used according to a criterion of economy. That is, there must be a
limited number of actions (operators) based on which a variety of networks of

actions can be built.

Recognition can be seen as a combination of a relation
L(D,S) (3.7)
that is the perceptual counterpart of relation R, used for speech generation, and a
relation:

L, (x(1),D) (3.8)

that is the perceptual counterpart of R5(A,x.(1))

‘The relation Lo(x(r).D) is deterministic in the sensc that it can produce only
one description D tor a signal x(¢). Description D is a sequence of descriptive
phrascs. Each phrase can be of fixed duration, i.c., gencerated at constant time
intervals, or of variable duration. i.c., generated for intervals of different length.
If we want to maintain the analogy with the production model just outlined, D
should be of variable duration because the articulatory actions (gestures) arc of

variable duration.

Descriptions must refer to parameters, morphologies and properties that are
characteristic for a sound and exhibit low variances when many speakers,

different microphones and environments are considered.
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In practice, fixed duration models have been developed and tested with a
considerable degree of success mostly in speaker-dependent systems. In one of
the most successful systems developed so far [42], D is a sequence of symbols
obtained every 10 ms by vector-quantization with a process that is speaker-

dependent and context-independent.

Relation L, (D,S) has to capture two different types of knowledge. The first

type of knowledge is a relation:

L,,(D,U) (3.9

between a sequence U of Speech Units (SU) and corresponding description D.
There are speech units like the plosive sound /b/ for which a large variety of
different descriptions D are perceived as the same sound. Relation L, is many-
to-one and it could be interesting to collect statistics of the elements of the
universe of acoustic descriptions that produce the perception of the same
linguistic sound. These statistics may represent distributions of acoustic patterns
produced by a single or many speakers having the intention of producing the same

sound. Statistics may also take into account characteristics of background noise.

The choice of SUs, for our purpose, has to be based on practical
considerations as well as on theoretical ones. For example, for some purposes,
units can be just phone classes or syllable classes.

The introduction of SUs is important because once a vocabulary Y, of
speech units has been chosen and effective relations between each SU€E), and

descriptions of acoustic properties have been established, large varieties of word
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and sentence models can be built by compiling networks of SU models.

A second type of knowledge is a relation:

L (U,S) (3.10)

where S is a linguistic entity like a sentence and U is a sequence of Speech
Units. L,, can also contain statistics.

L,, may represent how different speakers may have different pronunciations of
the same word. A stochastic model representing a word W in terms of SUs can

be built.

An interesting possibility, which we explore in this thesis, is that of designing
L, and L, procedurally, through actions to be performed on x(¢) in order to
obtain D,U and §. Chapter 4 describes operators which compute relation L, and
Chapter 5 contain details about different strategies corresponding to relation L in

different contexts.

Knowledge-based extraction and interpretation of signal propertics has
proven to be very effective when interpretation can benefit from contextual

relations [65].

Descriptions D of different level of detail (depth) can be obtained depending
on model expectations or the already available context. Feedback is also possible
between relations, although it has not been implemented in the application

described in this paper.
It seems that variable depth descriptions can be very useful in complex tasks
where a preliminary selection of hypotheses has to be done based on robust but
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simple descriptions and then a more detailed analysis has to be performed
involving levels of depth depending on the competing hypotheses or on acoustic

evidence.

The entire perception model can be represented by extended procedural

networks which invoke subnetworks at several levels.

Building extended procedural networks is an activity of conditional planning.
Elementary planning techniques and conditional planning are discussed in [33],
[69], [86]. An introduction to the use of planning techniques for ASR is

described in [21].

The most general extended procedural nctwork has to operate along two
dimensions using acoustic properties extracted in different time intervals and at
different levels of detail. It will be shown in the following sections how these

capabilities can be performed in the EPN model.

In order to perform variable depth analysis, a context in which the analysis is
performed has to be defined. Algorithms were proposed in the past for
segmenting continuous speech into Pseudo-Syllabic-Segments [20]. Although
these algorithms have shown good performances in different tasks and for
varieties of speakers, they were not error free in segmenting the speech signal into
syllables. The principal reason for these errors was that segmentation was based
only on acoustic evidence. Acoustic Segments (AS), obtained by segmentation
algorithms based on acoustic properties, have to be treated as data rather than

interpretations. Being based on acoustic evidence, ASs can be used for driving
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and delimiting the extraction of more detailed acoustic properties or as anchors

for lexical access in continuous speech.

Once an AS has been delimited, an Extended Procedural Network (EPN) is
invoked to further segment it into intervals and to generate scored SU hypotheses
on each interval. Scored SU hypotheses are used by word models that consider

possible distortions, insertions and deletions.

Figure 3.2 shows a sort performance model for the word W.

For the sake of simplicity, the alphabet 37, is made cqual to the ARPABET
(sce. [47)).

In practice less detailed models suffice for recognizing the vocabulary defined

in Table 3.1.

Chapter 4 and chapter 5 describe how the just introduced model can be

implemented with EPN.
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Figure 3.2: Performance model of the word W using the ARPABET for ),
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Table 3.1: Letters and digits vocabulary definition

eSS S e T ———

Zero One Two Three
Four Five Six Seven
Eight Nine A B
C D E F
G H I J
K L M N
0 P Q R
) T v v
w X Y yA



CHAPTER - 4

51




4 - APPLICATION TO ASR: THE NETWORK OPERATORS

Before describing the recognition strategy, new ideas for speech analysis, that

are suitable to be embedded in the flexible EPN paradigm, are introduced.

Section 4.1 deals with spectral lines, their extraction from the speech signal
and their treatment. Section 4.2 introduces Markov models in the frequency
domain and their rclation to spectral lines. Section 4.3 presents the training
algorithm. section 4.4 presents a diphthong recognizer based on the Markov
models of scction 4.2, and section 4.5 introduces a word recognizer based on

neural nets memberships.
4.1 - ANALYSIS OF SPECTRAL LINES

4.1.1 - EXTRACTION AND DESCRIPTION OF SPECTRAL LINES

For spectrogram segments exhibiting narrow-band resonances, spectral lines
are extracted from a time-frequency-eneigy representation of a spcech unit using
skeletonization techniques already used for image analysis [63]. These techniques

have been adapted to spectrogram lines.

Skeletonization can detect a variable number of lines with different durations
inside an acoustic segment, thus avoiding the errors and the difficulties of tracking

formants [48].
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Each spectral line is described by a vector of triplets (time, frequency,
energy) that represents the lowest level (level-0) of a time-frequency morphology

taxonomy.

It is worth mentioning that spectral lines extracted with skeletonization
always contain formants when they are detectable with peak-picking techniques,
but very often contain other lines. The system of lines obtained in this way is
richer than the system of formants that can be tracked interactively on

spectrograms and used for reconstructing understandable speech.

A recent paper by Kopec [48] attempts to track formants using Markov
models. In the approach proposed in this thesis a set of lines is tracked that is
redundant with respect to a set of formants. Distortions, insertions and deletions

of spectral lines are taken into account in each SU model.

The motivation tor such an approaci is that spectral lines are significant
acoustic properties but we do not know exactly which of them, if any, are not
essential. We know that different speakers produce similar lines when they
pronounce, for example, the same vowel. Relative frequencies and amplitudes
between lines may vary from speaker to speaker in a limited range and bigger
variations can be characterized as insertions or deletions. Distortions of relative
line frequencies and amplitudes as well as insertions and deletions reflect inter-
and intra-speaker variabilities and are described by statistical methods because
their statistics are the only knowledge we can systematically acquire and

generalize.
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The above discussion is incomplete because spectral lines as extracted in our
system cannot completely describe every type of speech units. In this thesis, we

will limit our attention to spectral lines in vowels and diphthongs.

The skeletonization algorithm, described next, extracts spectral lines from
the time-frequency-energy patterns obtained by considering the 04 kHz portions
of spectra computed with the Fast Fourier Transform (FFT) algorithm applied to

the preemphasized speech signal. A description of spectral lines is then obtained.

The Skeletonization Algorithm

The time-frequency-energy pattern for a given speech segment (see [20] for
segmentation algorithm) generated by the FFT algorithm goes through 2 stages,
namely, thinning and preprocessing before description. The pattern is thinned

using the Safe-Point Thinning Algorithm (SPTA) described in [63].

There are two important restrictions imposed on the choice of the

skeletonization algorithm for our application, namely:

1. connectivity of lines should be maintained by keeping the points at
junctions,

2. excess erosion shouldn’t be allowed.
The SPTA was chosen because it meets the above conditions.

Figure 4.1 shows an example of such a pattern for the diphthong /aei/ of /k/

before it is thinned and Figure 4.2 shows the thinned pattern.
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In Figure 4.1 and Figure 4.2, time increases along the horizontal axis and
each printed line corresponds to a 10 ms interval. Frequency is shown along the
vertical axis. Intervals correspond to spectral peaks cut 6dB below the maximum.
Energy of spectral peaks is coded by letters and digits. Letter B represents twice
the energy represented by letter A; digit O represents an energy that is twice than

the one represented by Z etc.

Preprocessing on skeletonized patterns is performed to discard all isolated,
weak, and scattered pomnts in the pattern. Preprocessing is carried out by applying
an algorithm based on the strategy of tracing continuity.

The Line Tracing Algorithm (LTA) retains properties ot collinearity,

curvelinearity, continuity etc. present in the pattern. The significant lines in

speech patterns are usually surrounded by lines which are less significant.

Thinning and preprocessing surface all significant and non-significant lines in

the pattern and discard all scattered points.

LTA accepts the skeletonized pattern and applies an algorithm for

smoothing.

The skeletonized pattern is a binary image which contains only dark and
white points. The five-neighbours of a point P, are defined to be the 5 points
adjacent to P. A continuous line, |, exists between points P, and P, iff there
exists a path Py P,...P,_, P,....P; such that P, is a neighbour of P, for 1<4<I. A
path between points P, and P, exists iff there exists at least one dark point

among its neighbours. If more than one dark point exists among its neighbouring
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Table 4.1: The Line Tracing Algorithm.

line_tracing_sigorithm (pattern:spectrogram; var vector:lines)
/ patem s a binary image of the speech pattem /
/ vector will have all detected lines in the pattem  /

begin
set line counter, k =0 ;
Jor each row in pattern do
begin
Jor each column in pattern do
begin
set line_end = false ;
while not line_end do
begin
look for dark_point. p, in paitern ;
compute_neighbours 1, n, of point p ;
ifn =0 then lend_of line found!
if rulel? then
begin
increment line_counter. k ;
accepe currens_line ask ;
set line_end = (rue
end
ifn=1then /1 nesghbour for p/
begin
accept pownt p for line, k;
set pount p in pattern as white;
se¢ new neighbour as point p;
connnue rracing
end
ifn>1then [junction found/
begin
accept powne p for line k ;
set poirt p in paitern as white ;
set pownt p as strongest new neighbour ;
conanue racing
end
end_while
end_do
end_do
end
1: neighbours, n, is computed as,
R = (i-d,) + (i-1j#1) + (i j+1) + (i+d j+1) + (i+1,))
where i and ; paints to the location of p in pattern.
2: rulel = true , if
kp) >y, and kh) > y,

where, & is the k% line

pis the number of points in line %

h is the height of ine, &

v, and y, were empirically determined constants.




o points n,o—n,,, then, the point 7 with the maximum energy is considered. If the
maximum energy point is not unique, then the algorithm to find line I, is
recursively applied to find the line which is the longest from point P. The
algorithm written in Pascal-like notation is given in Table 4.1. Further details can
be found in [68]. Figure 4.3 shows the pattern produced by smoothing the pattern

of Figure 4.1.

The number of lines that appear in a pattern depends on thresholds that can
be varied in order to have a desired effect. Our objective is that of keeping small
the probability of loosing formant lines. On the contrary the methods tor handling
spectral lines that will be proposed in the tollowing are well suited for taking into

account redundant lines.

Various solutions have been investigated for reducing the number of
redundant lines due to pitch effects. They include the possibility of using pitch
synchronous FFT or cepstral analysis in sclected time intervals and to use their
results on a filter for lines gencrated with asynchronous IFFT. Such filters are
applied in such a way that a sufficient number of lines is kept in at lcast three

frequency bands in which formants may be present.

4.1.2 - DESCRIPTION AND SEGMENTATION

Spectral lines can be described at several levels. At the lowest level, each line

{E is described as an independent object whose relations with other objects (lines)
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OVERVIEY GF TIHE-FREQUENEY TARCNOHY

level-0 each spectral line is descrbed by avector of triplets
(time,frequency,energy)

level-1 each spectral line is described by a summary
expressing 1ts behavior and frequency band

level-2 quasi-stationary short-time segments of spectralline
patterns are related to places of articulation

level-3 properties of the time evolution of spectral lines
are described

Figure 4.4




are not considered. Higher level descriptions involve relations between objects
(lines) both in the time and frequency domain. Such relations can be eventually
structured in a time-frequency taxonomy. An overview of the taxonomy is shown’

in Figure 4.4.
At level-0 of the taxonomy a spectral line is described by a vector V! of
triplets (tﬂ,f”,eﬂ) (j=1,...J;i=1,...,1}) where ¢, is a time reference in

centiseconds, [ is a frequency value in Hz and e, is an energy value in dB. J is

i
the total number of spectral lines in a pattern; [ is the number of time frames (a
time frame usually has a 10 ms duration) corresponding to the duration ot the j-th
line. The i-th sample of the j-th line is represented by (t“,f”,eﬂ). The line
bandwidth is not considered because it is in principle redundant and in practice
difficult to estimate.

The information contained in vectors V/ can be further compressed, by
segmenting a spectral line into segments of variable length that can be further
described at level-1 by acceptable approximations of their time evolutions.

At level-1 spectral lines are described by morphology symbols v, €3 and a

scquence of attributes. Y7, is an alphabet. A first-level description @, of a line

segment is cxpressed as follows:

=X i Sore ek S oare T micCak 4.1)
where: x, €Y}, is a morphology symbol, z,, is the beginniny time of the segment

described by a,,t,, is the ending time, f,, is the frequency of the beginning time,
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k Lok Lok S ok fek S mi I vk Cat
1. a1 85 9754 2700 2511 2754 8.1
2. a1 19 3078 2016 2018 3078 8.3
3. 42 78 513 540 459 540 8.1
4. 42 78 540 783 540 783 7.8
5. a1 81 2180 2797 2160 2797 7.9
6. 46 57 1800 2187 1890 2187 8.1
7. 45 56 3024 3240 3024 3240 8.8
8. 51 74 2016 3375 2016 3375 8.3
9. 58 63 3267 3348 3267 3348 8.4
A. 85 81 2205 2565 2295 2565 6.8
B. 74 83 207 207 207 324 7.1
C. 74 83 2018 3213 2018 3213 5.8

Figure 4.5: Level-1 description of the pattern of Figure 4.3



L4,

fex is the frequency of the ending time, f), is the maximum frequency, f,, is

the minimum frequency, and e , is the average energy.

Y5, is an alphabet obtained by concatenating two symbols belonging to alphabets

3iq and 33,0 3, describes temporal events and is defined as follows:

3 ,q :{A:ascendent H :horizontal D :descendent } 4.2)

>y, 8ives a rough indication of the frequency location of the mid-point of the

line:

—
LJ1b

: {LO:low, LA:low—average, A:average, (4.3)

AH:average—high, Hl:high, VH :very—high}

If a line requires more than one symbol of 3}, ~or Y, in order to be properly
described then it is automatically segmented into lines each one of which can be

described by a single symbol.

Figure 4.5 shows a description of spectral lines represented in Figure 4.3.

4.1.3 - A CONTINUOUS PARAMETER AND FREQUENCY DOMAIN BASED

MARKOV MODEL FOR DESCRIBING FREQUENCY RELATIONS

Frequency relations among Spectral Lines (SL) can be expressed in many

ways. A particularly interesting set of descriptors is the class of Places of
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Articulation (PA) defined by the following vocabulary:

Ypa : {FP: front—place, CP:central—place, BP:back—place} (4.9)

The symbols of },, are used for Level-2 descriptions. The literature on
Acoustics-Phonetics is rich in work relating place of articulation to spectral
morphologies [83]. From this knowledge we can expect different relations
between SL’s and PA’s depending on the naturc of speech segments. For some
sounds. like plosives, relations involve SL transitions for some other sounds, like
non-nasalized sonorants, interesting relations can be established between PA’s
and spectral lines that are quasi-stationary in time. The inference of the latter

type of relations will be discussed in this section.

Any speech intcrval containing only horizontal lines can be assumed to be
quasi-stationary. The same assumption can be made with other intervals obtained
by segmenting larger segments into smaller ones in which line-parameter
variations are modest. Large portions of a speech signal can be characterized in
terms of quasi-stationary intervals of variable length. These intervals can be
further segmented in order to obtain fixed-length intervals each ore of which can

be described by PA hypotheses using relations with SL.

Place of Articulation is a very useful, although often not sufficient, feature
for describing speech patterns. For some vocabularies, like the one consisting of

letters and digits PAs are sufficient for characterizing most of the vowels and
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diphthongs. Different speakers produce different spectral lines for the same PA,
but such variations have constraints that can be expressed statistically on

distortions, insertions and deletions of spectral lines.

In order to obtain more adequate descriptions of speech patterns, other
fcatures have to be considered. They can be described by other relations with
spectral morphologies. In this way each speech interval can be represented by a

composite description.

In this section the possibility of using spectral lines for the recognition of the
manner of articulation together with the place of articulation will also be
considered. This will makc it possible to gencrate hypotheses about all the

vowels.

A speech unit or a word can be related to chains of composite descriptions
through Stochastic Automata or Markov Models. The important property of
composite descriptions is that they represeat clusters of acoustic morphologies
whose importance is motivated by Speech Science and whose distortions can be

represented by a statistical model of multispeaker performances.

60



4.1.4 - PARAMETER CHARACTERIZATION AND STRUCTURE OF STATISTICAL

RELATIONS BETWEEN SL’S AND PA’S

Segments corresponding to vowels extracted from the pronunciation of

connected letters and numbers have been used.

Places of articulation of vowels were assigned to segments using a
semiautomatic procedure where the intervention of a supervisor was required only

for labeling or accepting labels of difficult cases.

For cach labeled interval, each spectral line was represented by two

parameters corresponding to its frequency and its associated spectral energy.

In order to introduce a sort of normalization, rather than using frequencics
and cnergies, differences between the frequency and cnergy of cach line and the
frequercy and energy of a base-line are used. The base-line is the line of highest

energy in the low frequency range.

The description of a quasi-stationary interval is a string Y, of vectors of the

form:

Yi=irYip >V (4.5)

Each vector y,, of the sequence Y; represents a line in the pattern. The first

: ( vector y,, corresponds to the base line. The remaining lines of the pattern are

G g o
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sorted by frequency.

Each vector has two components defined as follows:

=B. ., B.

in in?>in2

Yiu=BisBin v 5 ¥i;=B;j1B; 4 (4.6)

ij12Pij» 7

where:

B, = frequency of the base line,

B, 5 = energy of the base line,

B;j1=f.j= Bi1n

Bj2=€;j— Bi12

f;; = average frequency of the j-th sorted line in the pattern i,

e;; = average energy of the j-th sorted line in the pattern i.

Figure 4.6 shows a speech interval with the corresponding vector Y, as defined by

(4.5) and (4.6).

4.2 - FREQUENCY DOMAIN BASED MARKOV MODELS

In the next sections the theoretical definition of frequency domain based
Markov models will be presented. The results of the experiments on the use of

such models for speech recognition will be presented in section 6.1 and section
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6.3.

4.2.1 - INTRODUCTION TO MARKOV MODELS

The theory of Markov models and their application to speech recognition is
satisfactorily covered in the literature. Basic references for the elementary
aspects of the theory are [41], [72], [71], [8]. Several variation and enhancement
are proposed to the basic models in [2], [26], [28], [44], {88]. In the following
sections a discussion of the mathematical aspects of the theory that is relevant to
our approach is provided. Further details can be found in the references just

cited.

Markov models are a special case of the EPN model. A state in the Markov
model corresponds to a state in the network. the a priori probability of Markov
model transition is the measure of the corresponding EPN transition. The EPN
conditions are set to true and the probability distribution of Markov model
transition is represented by the EPN action which returns the same probability
value. Stochastic algorithms on Markov models like Viterbi algorithm and
Forward-Backward algorithm are performed by the EPN supervisor with forward

and backward strategy.
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4.2.2 - MARKOV MODELS IN THE FREQUENCY DOMAIN

A Markov source is introduced to model a process that generates spectral
lines and their enefgies. The model includes formants, spurious lines and lines
corresponding to a split of a format into two lines. Frequency and amplitude
distributions are associated with each transition in the model. The model is
conceived in such a way that variances of the distributions are kept small so that
each distribution represents variation due to inter-speaker differences of the

parameters of a line having specific structural properties.

Distortions of frequency and energy differences are assumed to have normal
distribution and to be statistically independent. A model without such simplifying
assumptions would have been more realistic, but it would have implied practical
complications. We decided to avoid them and to build a manageable model to be

eventually compared in the future with more complex ones.

The statistical relations between SLs and PA’s are characterized by a CPMM
(Continuous Parameters Markov Model). A CPMM is a Markov Model in which
transitions produce vectors of parameters. The probability p(s,,s,) is the
probability of choosing the transition from state s, to state s, when the state s, is
reached. g(s,.s;.y;) is the probability that the vector y;;=B;,,B;, is produced in
the transition from s, to 5, . The collection of the probability distributions of the
parameters describes a transition.

A transition t from s, to s, that produces the vector y; is then described by the
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following matrix:

m;1 %

m;, 0,

M= m; r, 4.7)

mzL O-iL ]

where m;, is the mean and o, is the variance of parameter B;. In our case, | can

be either 1 (frequency) or 2 (amplitude).

4.3 - LEARNING AND RECOGNITION

The Forward-Backward [4] algorithm has been used for both learning and
recognition purposes. On each transition the lines are assumed to be produced by
a multivariate Gaussian distribution G(t,y; ].) with diagonal covariance matrix. In
our case the distribution is two dimensional as we consider the probability of a
line y,; as a function of its parameters B, i1 Bij2 (see (4.6)). The formula

becomes:
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Gty ) =————e

2m0, () oy(t)

(1) ox(1) (48)

where m,(t) and m,(¢) are the means of line parameters B, j1» B;,2 and o,(t) and
o5(t) are the standard deviations of the same parameters. The distribution
parameters m and o have to be estimated through the learning set

A= Yl,Yz’ - ++,Y, starting from an initial hypothesis. Let us define p(t,y ) as

4[]

the joint probability that Y, is the pattern produced by a HMM and the j-th line

whose parameters are represented by the vector y, ; is produced by the transition

t. Formally p(¢,y, ].) is defined as:

o, (q,)p, G (2, i1, @) e produces outputs

. _ (4.9)
P;( Y, 1) {O'i](qs)pt /311 (q,) if t produces the null output

where g  is the startpoint of t, g, is the endpoint of t, p, is the a priori
probability of the transition t, a,](q) is the forward probability of state q at
instant i while the output Y; is produced, and ﬁi}.(q) is the backward probability
of state q at instant i while the output Y, is generated by the Markov model. The
reestimation formulas that have been used to estimate the mean and the standard
deviation of line parameter k, and the a priori probability of a transition t

follow. The mean is:
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m "1 B‘-jkpi(t ,y,'j)

2 X

t=1 j=1 p(Y))
g "; pi(t.y;;)
i=l j=1 p(Y)

In (4.10) p(Y;) can be factored and eliminated, therefore obtaining:

S 5 B unity;)
i=1 j=I
m(t) = (4.11)

m n

E E IJI(I’."lj)
i=1 =1

The standard deviation is:

1
2 8 B —m ) piley,) |
0, (6) = [ (4.12)

m n

> 2Py,

1=1 j=]

upon factorization and eclimination of p(Y,) as in (4.10). For computational
efficiency, even though it is less accurate due to round-off errors, formula (4.12)

can be re-written as:

m n m n —1'
2
> ¥ By pit.y;) > X B pi(t:yi)) >
=l j=1 =1 j=1
o (t) = = —2m,(t) =/ —mk(t)2 (4.13)

m n m n
N pi(t’yij) » Y p;(t:yi,’)
1=l j=1 i=1 j=1

The estimated frequency of transition t is:
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Y 3 p ey, )/p(Y)

1=1 j=1
f, = (4.14)

m n
)y Z > p,‘(t's.",',')/p(y,)
1=1 p==1 ¢'/L(t)=L(t")
where the function L(t) returns the startpoint of the transition t.

During learning and recognition a scaling technique similar to the one

described in [54] has been adopted.

In the recognition process, the probability p(Y;/M,) is computed with the

Forward-Backward algorithm as follows:

p(Y[) = 2 0'”(‘1) (4.15)
q€Q
where Y, is an input string ot vectors as defined by (4.5) and M, is a CPMM.

The string Y is assigned to the j-th Place of Articulation PA, if

H
p(Y,/M )= max {p(Y;/M,)} (4.16)
h=1
where H = 3 for VB, VC, and VF, and:
(Y, /M )p(Y, /M) > ¢, (4.17)

where ¢ ; is the threshold of confusion between M j and M, (the Markov source

corresponding to the second highest score).

If
(Y, /M )-p(Y;/M,)) <c,, (4.18)
then PA is decided (if a local decision has to be made) according to rules.
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In a program for the automatic recognition of PA for vowels, the following
rules can be used in order to decide when probabilities for “back” and “front”

places of articulation are very close:
1) if g,>g,then “PA: back”
2) if g,<g,then “PA: front”

where;

g,=max {B‘j?_l((B‘.]1>B‘.“) and(BU.1<th1))}
=1
n

g,=max {B‘.jzl((B‘.] >th 1)and(B‘.}.1<th )}

1=1

thy = 1500 Hz; th2 = 2900 Hz.

4.4 - DIPHTHONG OPERATOR

The speech signal is segmented to produce segments showing a quasi
stationary pattern of lines. The smallest segment is of course a single frame. Let
S, =582 "' ,S, be the sequence of segments that produce pattern
Y, =yY2 "' >¥,- The probability vector Yij = Mjp Hijas s e
where ., = p0;; /M,) is the probability that pattern Y; be generated by model

M,. In our case H =3 and the three models recognize the places of articulation
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back, central, and front.

A diphthong is represented by a Markov model D, in the time domain,
whose transitions t are described by the 4-tuple (p,, s,, 5;, M(t)) where p, is the
a priori probability of the transition, s, is the startpoint of t, s, is the endpoint of

t, and M(t) is the model that generates Yij in pattern Y, at instant j, with

probability i All  the models together constitute the set
D =D, D,, -+ , Dy of models of diphthongs.
The Viterbi algorithm is used to find the sequence s =1, 14, " , 1, 0f

transitions of the model D that maximizes the probability

p(¥,/5)=T1[p, PG, /M)

=1
It is assumed that p(Y,/D ) =p(Y,/S *). Pattern Y, is assigned to diphthong class

D' = argmax p(Y;/D_). Constraints on durations can be inserted in the model
D.eD

following the basic scheme in Figure 4.7, in which strings of length greater than m
can be assigned a low probability (remark the transitions leaving from S, ), and
strings of length less than n are not accepted. It is important to remark that no
learning is required for such models: all the learning is concentrated in the models

in the frequency domain.

The results and the experimental details of the application of the diphthong

operator will be presented in section 6.2.
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Figure 4.7: Markov submodel for time constraints




4.5 - NEURAL NETS OPERATOR

The pattern Y; corresponding to the speech signal is analyzed frame by frame

by different sets of neurs: nets [14]. Let

M, = {“m’ Higas =" 7 “,‘1»,}

sz ={“]21> [1']22’ Tt ﬂ]z,z}

M/m = {“}ml l“l'jm'."_’ T u]mnm}

be the sets of memberships calculated on the j-th frame by MLNs M, to M, .

A word is represented by a pscudo Markov model W_ in the time domain,
whose transitions t are described by the 3-tuple (s,,s,, f,) where s, is the

startpoint of t, s, is the endpoint of t, and f, is a function associated to the

transition t.  Function f, :M  XM,X -+ XM, —[01] returns a
membership which is a function of input memberships g, e The set of all the

words is W = W,W, -, WN.

The Viterbi algorithm is used to find the sequence s =1l ", of

transitions of the model W that maximizes the membership

n
N(Y,/S) =3 f;,(ujlp T “‘jmn,,,)
=1

We define w(Y;/W,) = u(Y, /S"). Pattern Y is assigned to word class

[}

»

W' =argmax u(Y;/W_). Constraints on durations can be inserted in the model
W.ew
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following the basic scheme in Figure 4.7, in which strings of length greater than m

can be assigned a low probability (remark the transitions leaving irom S, ), and
strings of length less than n are not accepted. It is important to remark that no

lcarning is required for such models: all the learning is concentrated in the ML NG,

The experimental details and results of the application of the neural net

! operator will be presented in section 6.6.

4.6 - CONCLUSIONS

New and highly specialized operators have been defined to perform specific
analyses of the speech signal. The EPN paradigm has the flexibility of integrating
J these heterogeneous operators into strategies for ASR. Next chapter will

introduce strategies for different ASR experiments.
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5 - ASR RECOGNITION STRATEGIES

This chapter presents several strategies that make use of the operators of chapter
4. Different problems are attacked. Section 5.1 shows the approach to the
recognition of letters and digits. Section 5.2 presents the strategy for lexical
access and section 5.3 introduces a strategy for speech recognition that makes use

of neural networks.

5.1 - PROCEDURAL NETWORKS FOR LETTERS AND DIGITS RECOGNITION

The EPN model has a data-driven component that identifies Acoustic
Segments (AS) based only on acoustic evidence and knowledge of the
information bearing properties corresponding to different spectral structures. An
Acoustic Segment usually contains at least a ‘“vocalic” part identified by
resonances represented by narrow band spectral lines in a time-frequency-energy
representation of speech. An AS may contain one or more vowels with one or
more consonants in the “vocalic” part. An AS may also have a head and a tail.
Heads and tails may contain low energy sonorant consonants or consonants
characterized by frication noise or by a transition between a deep dip in the signal

energy curve and an energy peak.

The coarse acoustic properties that characterize ASs and are used for

delimiting them are by no means interpretations; they are just elements for
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focusing the attention of the property extractors. Relations between ASs and
SUs like phonemes, diphones or syllables are established by performance models
representing, for each SU of interest, insertions, deletions, substitutions and their

statistics.

As unambiguous segmentation of continuous speech into ASs is very useful
for reducing the complexity of word hypotheses generation and verification
because word hypotheses can start only at specific time instants of the head,

vocalic part or tail of an AS.

For the head, vocalic part and tail of each AS, plans of property extraction
operators (procedures) are executed. These plans produce descriptions of speech
segments. These descriptions may apply to segments of variable duration.
Ferguson [31] has shown how performance models can be build under the
assumption that properties generated by a model have variable duration. Plans
producing descriptions perform a sort of Variable Depth Analysis (VDA)

because they may generate different types of properties for different segments.

The results of VDA can be descriptors obtained by a sort of “Knowledge-
based vector quantizer”. They can also be Speech Unit hypotheses affected by a
certain score. These scores that are generated by procedures are used by

performance models consisting in stochastic automata relating words and SUs.

Unfortunately there is not a suitable theory for the conception of
performance modcls in such a case, but interesting research is in progress [36].

Such research is motivated by the existence of a similar problem in different
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application areas [3]), [80]. While waiting for a probabilistic theory of
heterogeneous pattern descriptions, a pseudo solution can be adopted where word
hypotheses scores are obtained by just multiplying probabilities or scores of each
segment even if the type of acoustic properties may vary from segment to

segment.

Most of the operators associated with EPN actions include plans, Hidden-
Markov-Models (HMM), local parsers, rule-based inference units. These actions
produce scored interpretations of segments of the speech signal. All these tools
are used for extracting an unambiguous description D of a speech pattern and for
computing an a-priori probability for an hypothesis H:

P(D /H) (5.1)

The EPN supervisor keeps up-to-date a search space where each node is

represented by the following four-tuple:

(9,; Gy, cOntext score) (5.2)

where:

-q,; and g,; are respectively the endpoint and the startpoint of the transition

- “context” represents the contextual information associated to g,; It contains the
time interval of the speech signal in which the execution of sensory procedures
invoked by the transition is performed. Segmental information and the current
hypothesis are also included in the context.

-“score” is the score of the hypothesis contained in or implied by “context’ in the

speciiied time interval; score could be P(D(¢ ¢T)/H ) where ¢, is the beginning of

76



the sentence. T could also be a set of possible time references; in this case,
score will be a set of scores {s(t)/t€T}. Composite scores can be evaluated as

likelihoods:

L(D,H)=Pr(D/H)Pr(H) (5.3)
where Pr(H) is obtained by a language model.

Global information is also accessible by the EPN supervisor at any time.
Markov models, linguistic description of the signal, power spectrum and so forth

are kept in the global communication area.

The size of the search space can be kept small in spite of a large number of
states in the EPN if conditions and actions are properly chosen and placed in the

network.

The assumption made for the experiment described in this work is
summarized in the following. Score p; is the a priori probability of an arc; g; is
the probability that the condition is satisfied; A, is the probability that the segment
s, matches with the knowledge used by action act;, f, is a multiplication

operator, The contribution (2.3) can be rewritten as:

w;=p;g;(cond)h,(act;) (5.4)
Let s§=s5,,5,,.....,5, be an input sequence of speech segments,
EPN,={k,Q,A ,qo,qf} be the k-th EPN and a=4,,4,,.....,a, be a sequence of

arcs in the network EPN, such that the initial state of a, is g, and the terminal

state of a,, is qs-

7



C

The supervisor attempts to find the sequence of arcs “a’’ which maximizes

the conditional probability

P(a [s)=P(s fa)/P(s) (5.5)
for a given s, that is, to find the sequence ‘“‘a” which maximizes:
n
P(sfa)=II [P‘ g;(cond,)h; (acti)] (5.6)
iml

An example of an EPN to be used to compute the score of the word /five/ is
shown in Figure 5.1. The EPN is supposed to extract data from the AS under
analysis and to produce a score that is an estimation of the a-priori probability
that the data extracted from AS have been observed during the pronunciation of

/five/.

The initial state is associated with a context containing the hypothesis /five/.
The first arc is associated with a PUSH action whose function consists in using a
subnetwork for generating hypotheses about fricative sounds on the head of a
segment. Action PUSH head (fr) extracts the head of the AS under analysis and
executes a “Network of Actions” on the segment head for computing the acoustic
properties that are relevant for discriminating among fricative sounds. Let data,
be the properties extracted from the AS head. Properties data, are related to the
SU /f/ #nd the following score is computed:

Pr(data [f)
The above probability could be obtained directly or through the probabilities of

the place and manner of articulation for f.
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In the case of the following diphthong, the SU /ai/, there is no need to
hypothesize the manner of articulation in order to distinguish it from the other
syllables of the language to be recognized. Thus, only the properties dara, for the
place of articulation are considered and the score (vf stays for front-vowel, vc
stays for central vowel):

Pr(data,/vc vf)
are computed by the action PUSH vocalic. An algorithm for the computation of
the above probability using HMM in the frequency domain is proposed in [62]. In
a similar way a “tail (fr)” network is invoked for generating hypotheses about
fricatives in the tail of the segment. It will extract data, and compute a score for

vl.

Eventually, the final state 53 is reached and the action POPABS f is

executed. The associated function f for computing the cumulative score returns

Pr(data /5), where Pr(data /S) = Pr(data/f) Pr(data,/vc vf) Pr(data,/v).

Networks like the one shown in Figure 5.1 are examples of a model driven
approach to word hypotheses. In such an approach there is a procedural model
for each hypothesis that can be generated. The model driven approach and the

example ol Figure 5.1 have some problems that will be discussed in the following.

The first problem is that EPNs like the one of /5/ and the one of /9/ have a
lot of actions in common whose execution should not be duplicated. A more

efficient network organization will be presented in section 6.4.
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HM = NCVSON
BEEN = NIVSON

IF = VNC

MOST = SONV NCNI
MUST = SONVNCNI
OUT = VSONNI

O = NCV

WHAT = SON VNI

Figure 5.2: Subset of vocabulary



Table 5.1: Basic PPF classes

NC
NI
SON
s \'
WF

[
3
4
e
3

Table 5.2: PPF based on coarticulatory effects

SV (SON-V)
SVS (SON-V-SON)
| VS (V-SON)
’ VSV (V-SON-V)
‘ VV (V-V)
WV (WF-V)
NIF (final NI)
NIS (NI-SON)
SVSV (SON-V-SON-V)
VSVS (V-SON-V-SCN)
SW (SON-WF)
VW (V-WF)
NCF (final NC)
NCS (NC-SON)
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Figure 5.3: Example of Markov model for "fricative-vocalic” (fr-vw)
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The second problem is that different networks may extract different types of

data in the same AS making score comparisors rather difficult.

This problem can be avoided by organizing the EPN hierarchy in such a way

that properties for each interval of an AS are extracted only by a single action.

The third problem is that properties like data, data, and data cxtracted in
different intervals of the same AS may be different in number and in quality. This
problem is common to other Pattern Recognition applications [3], [36], [80]. A
pseudo-solution of such a problem has been adopted for the project described in
this paper consisting in just muitiplying probabilities of different scgments. Other

solutions are under investigation.

A fourth problem is that the boundary between heads, vocalic parts and tails
may be fuzzy. This possibility is not considered in the application described in

this research although it will be investigated in future works.

Section 6.4 will report the experimental results and set-up for the recognition

of letters and digits.

5.2 - LEXICAL ACCESS

5.2.1 - INTRODUCTION TO LEXICAL ACCESS

The ultimate goal will only be reached when Speech Recognition Systems will

be speaker-independent and will deal with vocabularies that approach in size




those typically commanded by human beings. A human being can usually
recognize from 50,000 up to 100,000 words, although he may have a conscious
knowledge of only a fraction of this amount [84]. However, to converse with one
another people normally use a maximum of 12,000 words [46]. Theretore a
vocabulary of this size would suffice to make the-interface between man and

machine approach the reality of vocal communication between human beings.

Systems presently in general use deal with very limited vocabularies (less than
1000 words) and are directed at very specific and specialized tasks; moreover,
since most are speaker-dependent they need a special training from the would-be
user. This training is lengthy and delicate in spite of the reduced vocabulary size

involved.

Interesting laboratory prototypes have been developed for the recé)gnition of
10 to 20 thousand words [35] [43], [50], [60]. Such systems are speaker-dependent

and most do not recognize connected speech.

Systems that rely upon template-matching techniques are hardly manageable
if extended to the size of large lexicons. The complexity of such an approach
depends on the number of templates. The reduction of a smaller recognition unit
(for exarple from words to syllables, doesn’t help; in English there are about

20,000 syliables [67].

The main problem with large vocabularies still remains the high degree of
confusion inherent in them. In a study using the original phonetic labeling from

the Webster dictionary, close to 30,000 minimal pairs of words have been found
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[84]. Furthermore, a statistical study of spoken English [25] reported that in most
minimal pairs, the distinguishing phonemes differ by their manner of articulation
rather than their place of articulation, thus aggravating the confusion. This
suggests that very fine acoustic information has to be extracted from the signal in

order to correctly recognize phonetic segments.

Phonetic recognition, as opposed to template-matching, has the advantage of
exploiting phonemic constraints and distributions in large lexicons. Shipman and
Zue [81] showed that a large vocabulary can be reduced to a very small list of
candidates (on the average less than one percent of the total vocabulary) if the
utterance is described in terms of six coarse phonetic classes. Search space is
thus drastically reduced and costlier methods can then be used to examine in

details the diminished list of candidates.

Other Approaches in Word Recognition include: the CMU Continuous Speech
Recognition System [76], the Torino Large Lexicon Access Task System [15],
[50], the IBM-France Very Large Size Dictionary Speech Recognition System [60],
the BNR Large Vocabulary Word Recognizer [35], the NEC Large Vocabulary
Word Detection System [37], the Tangora 20,000 Word Speech Recognizer [43],

and others [40].

5.2.2 - EPN FOR LEXICAL ACCESS

The EPN is a valuable tool to describe and implement the access procedure
to a large lexicon. Lexicons may have different representation, but the EPN can
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support the most general one: graph representation. A lexicon that is organized as
a tree is a particular case of a graph. EPN is hierarchical, so the lexicons can be
described using different details of description at different level of representation.
The built-in network actions add power and generality to the recognition process
that has been designed on the lexicon. User-defined conditions and actions allow

the definition of a very flexible recognition environment.

Generally speaking the lexical access is not pertormed on the base of the
whole words, but smaller Speech Units (SU) are used. Different approaches make
use of different units. In our case the units are called PPF (Primary Phonetic

Features) [20]. The basic five PPF classes are reported in Table 5.1.

All the words in the dictionary are described according to the chosen

strategy. A subset of our dictionary is shown in Figure 5.2.

Several words may have the same PPF description. Conversely, a set of
words is attached to a sp.cific PPF description. This subset is called a cohort.
Therefore the result of the lexical access is a set of words that correspond to the

PPF description recognized in the signal.

The relation between PPFs and signal is described by HMMs. Each PPF is
represented by a three-state Markov Model whose transitions are taken according
to the transition PAC distribution (Figure 5.3). PACs (Primary Acoustic Cues)
[21] are extracted from the signal. Each HMM has been learnt in a speaker
independent way [57]. The word model for recognition purpose are then obtained

by concatenating the HMM corresponding to the PPF description of the word
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Figure 5.4. Unfortunately, this approach is far too simple because of
coarticulatory effects, which are contextual modifications of phonemes. To better
represent the real world several PPF classes that take into account the
coarticulatory effect have been defined (see Table 5.2). Several advantages have
risen from the use of EPN. The coarticulatory effects can be represented in a
descriptive way (an arc on a graph). Furthermore, subnetworks give rise to a
highly parallel architecture. As example, the subnetwork SONV is subsequently
decomposed into three subnetworks: the proper SONV model in parallel with the

concatenation on the SON and V models (Figure 5.5).

A special user defined action PUSHSYM has been defined for the purpose of
impiementing the concatenation of markcv models. The action PUSHSYM m,
where m is a HMM, receives a set of scored and time-stamped initial states

S =008 (555 120 -0 5 (5,7 )

as input and returns a set of scored and time stamped final states

F=(s11" 110" 620" 820" 0 5 Gt 8wt s s B )
as output. The score attached to states represents the probability of being in that
state at the stamped timc. The score of each initial state s;’, rather than the
certain probability, is successively attributed to the initial state of the HMM m.
This iradal state is put in column ¢’ of the lexical trellis. The corresponding
scores appearing attributed to the final state of M at times tl,i"’tz,i""“’tm,i"

during the analysis of the signal from ¢’ to its end at time

bmi=tm1=tpp="""' =t,, arecalleds,;”,s,;", -+ ,s, ;" and the pairs
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Figure 5.4: EPN corresponding to the word "MOST"

PUSHSYM SON PUSHSYM V
Qi)
PUSHSYM SONV

Figure 5.5: EPN corresponding to the PPF SONV
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Figure 5.7: Cohort list for the vocabulary of Figure 5.2

WORD WORDCODE  COHORT CODE
HIM 1 1
BEEN 2 2
IF 3 3
MOST 4 4
MUST 5 4
ouT 6 5
SO 7 6
WHAT 8 7

Figure 5.8: Word code and cohort code for the vocabulary of Figure 5.2



forined by score and time are put in the set of scored and time stamped final
states. The states and the related information are propagated through the state
buffer of the EPN. The action PUSHSYM computes in an efficient way the
contribution of each initial state and signal interval to the global lexical trellis.
The principles of “overlapping contributions” takes place and each partial
computation is halted whenever it is sure that the contribution wouldn’t modify
the optimal selection previously made. In this way only a small amount of average

overhead is paid for the flexibility of describing the lexicon in the EPN formalism.

The EPN structure corresponding to the dictionary of Figure 5.2 is shown in
Figure 5.6. Figure 5.7 and Figure 5.8 show the cohort set and dictionary with word

code and cohort code.

Experimental results on the lexical access will be presented in section 6.5.

5.3 - PROGRAMMABLE EXECUTION OF MULTI-LAYERED NETWORKS

Characterizing Speech Units (SU) in terms of speech properties or speech
parameters requires a form of learning with a relevant generalization capability.
Structural and stochastic methods have been proposed for this purpose [21], [42].
Recently, a large number of scientists have investigated and applied learning
systems based on Multi-Layered Networks (MLN). Definitions of MLNs,
motivations and algorithms for their use can be found in [10], [38], [70], [77], [85],

[87]. Theoretical results have shown that MLNs can perform a variety of complex
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functions [77]. Furthermore, they allow competitive learning with an algorithm

based on well established mathematical properties.

Our interest in the use of MLNs is justified by previously published work.
We have introduced a data-driven paradigm for extracting acoustic properties
from continuous speech [22] and have investigated methods based on fuzzy or
stochastic performance models for relating acoustic properties with SUs. MLNs
appear to be good operators for automatically learning how to extract acoustic
properties and relate them with phonetic features and words automating most of
the activity which formerly required a large amount of effort from a human
expert. The human expert used knowledge acquired by generalizing observations
of time-frequency-energy patterns. We will investigate in this section how such
learning can be performed by a set of MLNs whose execution is decided by a
data-driven strategy. By applying an input pattern to an MLN and clamping the
output to the values corresponding to the code of the desired output, weights of
connections between MLN nodes can be learned using error-back propagation
[70]. When a new input is applied to an MLN, its outputs may assume values
between zero and one. If we interpret each output as representing a phonetic
property, then the output value can be seen as a degree of evidence with which
that property has been observed in the data [17]. If phonemes are coded using a
known set of phonetic features, the MLNs will learn how to detect evidence of
each feature without being told all the details of the acoustic properties relevant

for that feature. Statistical distributions cf feature evidences can be collected in
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performance models of SUs conceived as Hidden Markov Models (HMM). These
models can be used to represent the time evolution of feature evidences for each
SU or word. It is also possible to compute distances between time evolutions of
real and desired degrees of evidences and to use such distances to rank word
hypotheses, each word being characterized by a desired time evolution of degrees

of evidences. Details about organization of multilayered networks can be found in

[7].

5.3.1 - USE OF MLNs IN A RECOGNITION SYSTEM

The speech signal is initially segmented into two types of regions. These
regions and transitions between them define situations. Each region is labeled
with one of the following symbols: SON (attached to a segment .with narrow band
resonances - typically vowels, nasals and sonorant consonants), NS (attached to
segments with a spread of energy in higher frequencies - typically fricative sounds
- or to segments with a very low total energy). Each type of segment may contain
every phoneme, but different sets of MLNs and MLN inputs are used for different
types of segments. The system that performs a data-driven execution of MLNs is
described by an Extended Procedural Network (EPN). A general purpose
environment for developing various types of EPNs has been developed [22]. A
simple EPN has been conceived to implement the programmed execution of

MLN:s.
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The speech signal is considered as a sequence of segments of type SON, NS,
and of transitions between segments. In Figure 5.9 the step corresponding to the
analysis of a transition followed by an NS or SON segment is shown. This step is
repeated as many times as the length of the signal requires. Figure 5.10 shows a
two-steps variable-depth strategy associated with a segment. Depending on the
preconditions, a particular set of MLNs is activated. The variable-depth paradigm
is described in the following. If two or more candidates have scores which are
close enough to trigger the variable-depth analysis, then an MLN specialized to
solve the specific conflict is executed. If the candidates are well discriminated, the
execution of specialized MLNs is not required and the default transition is taken.
The number of conflict sets is finite and small. Several stages of variable-depth
analysis can be considered, although, in practice, there are no more than two of
them. Variable-depth analysis is particularly useful, for example, to discriminate
between /m/ and /n/ when these sounds have close degrees of cvidence or to

discriminate among pairs of plosive sounds.

5.4 - CONCLUSIONS

The EPN paradigm has been used to define the strategy to solve some ASR
problems. Such a strategy involved the use of heterogeneous operators. Next
chapter will describe the experimental set-up and the results obtained in ASR

applications.
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Figure 5.9: Analysis of a transition followed by a segment

7
3
>
2
ks
5
4
3
3

PRl

COND SON COND conft,1 COND conf2,m
PUSH MLNSET1 EXE solvet1,1 EXE solve2,m

COND End-of-segment

COND conf1i,n

DEFAULT
EXE advance-analysis-frame

( Figure 5.10: Two-steps variable-depth analysis




CHAPTER - 6

89



6 - EXPERIMENTAL RESULTS

Results from various experiments are reported. Section 6.1 shows the results
of the recognition' of the place of articulation. Section 6.2 deals with the
recognition of diphthongs. Section 6.3 shows the results of vowel and diphthong
recognition. Section 6.4 presents the results of letter and digit recognition.
Section 6.5 deals of lexical access and section 6.6 presents the application of the

neural net operator to isolated digit recognition.

6.1 - EXPERIMENTS ON THE RECOGNITION OF

THE PLACE OF ARTICULATION

This experiment was based on the operators presented in section 4.1 and
section 4.2. Vocalic segments corresponding to 500 pronunciations of vowels in
continuous speech from 25 female and 25 male speakers were considered for

learning 3 CPMM, one for each PAin ), ,.
Learning was performed using the Forward-Backward algorithm on vowels
extracted from random sequences of connectedly spoken letters and digits.

CPMM were obtained for the three places of articulation, namely FP, CP,

BP.

Figure 6.1, Figure 6.2, and Figure 6.3 show the CPMMs obtained. A test set
consisting of vowels pronounced by 9 new female and 9 new male speakers was

used. The results are summarized in Table 6.1 and show the contribution of rules
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Teansition Parsmster # 1 Parameter # 2
Prabability
from to af
tate |state Transition Mean (M) Variance (@) Mean (M) ] Varianee (o)
1 3 0438 458.790 $918.368 $.033 0.386
1 2 0.562 $22.003 4019 873 3.488 0293
2 4 0 509 111.666 6104.020 -{.726 9.991
s 3 0.327 228.448 1803.066 -1.261 0 500
2 2 0.164 -136.760 14552.347 -0.812 0.223
3 5 0.488 1777.933 57545.128 -0.016 0.498
3 4 0.297 639.481 273764 000 -1.222 0.878
3 k) 0.218 444,033 6318.21) -1.338 0.191
4 s 0.704 1731.968 39209.113 -0.340 0631
4 4 0.296 1502.419 14644 381 -0.467 0858
S 7 0.357 2320.153 $9535.836 -0.159 0536
s [ 0.342 2052.133 4344315 0.054 0 361
b b 0102 1865.370 8709.503 -0.251 0.722
[ [ 0.217 2157.8387 2999.774 0.072 0.358
[ 7 0.783 2321.118 14175.450 0.132 0.380
7 7 1 000 2665.696 28239914 -0 014 0.662

Figure 6.1: The inferred CPMM for the front place of articulation.



Parsmeter # |

Transition Parameter # 2
Probadility

,r,':,:' e o Lrranmition| Mesm on | Vaciance (&) |Man M| Varisnce (@)
1 3 0221 777.974 7244.006 1.576 0.577
t o 0779 783.254 7430.651 1987 0.574
2 ‘ 0354 192.941 $07329.094 -0.65% 0.447
2 3 0326 289 528 482435.750 .0.693 0.460
2 2 0320 183.919 493942.813 .0.752 0.469
3 3 3 000 962.596 $78899.475 - 0.591 0.431
3 6 209 §32.267 $69751.625 .0.576 0.416
3 s 0146 193.876 470285313 .0.629 0,483
3 4 0.728 429.573 S18128.344 .0.637 0.443
3 3 2.091 108.038 499673.113 .0.681 0.462
. ' 0.000 1705.290 $47970.873 .0.973 0.445
" 6 0158 922.124 426718918 .0.408 0.342
. s 0532 §81.043 330763.128 .0.388 0.387
. s 0ttt 760.141 401895.469 .0.402 0.358
s 7 0.572 1014.282 419429.719 -0.399 0.338
s 6 0163 960.179 €21735.219 .0398 0.342
s H 0065 728.972 329779.004 -0.379 0.351
6 $ 0.150 1901.754 441204188 .0.578 0.488
6 7 0818 1033.238 419284932 .0 398 0.337
3 6 0033 1000.254 415977.719 -0.393 0.338
7 s 0.028 2081.247 274714918 .0.617 0.481
7 7 0172 1222.221 3196869.563 -0.390 0.362

Figure 6.2: The inferred CPMM for the central place of articulation.
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Traasitien Parameter # 1 Paramester # 2
Probability
from te ot
state {state |Teansition Mean (M) Variance (o) | Miean (M)| Variance ()
1 2 G £50 570 090 1851.513 $.309 0191
1 3 0 450 $28.140 2334 136 8 438 0369
2 3 0 459 206.060 29406.381 -0 350 0020
2 4 0 541 253.393 1334.415 -0.257 0.140
3 4 0378 393 278 19150.404 -0.163 0.134
1 § Q.132 1883.019 4183.322 -1.531 0.024
4 4 0323 880 184 67648.172 -1.941 0.333
4 H 0576 1819 642 153428.703 -2.176 0.517
4 6 0101 2701 823 15439.756 -1.966 0.061
H ) 0 443 2218.530 96298.328 -2.202 0.708
§ 6 0557 2737 8% 8447.664 -1.614 0.309

Figure 6.3: The inferred CPMM for the back place of articulation.
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to the decision process.

6.2 - EXPERIMENTS ON THE RECOGNITION OF DIPHTHONGS

Diphthong recognition was executed using the operators defined in section

4.1, 4.2, and 4.4.

6.2.1 - TEMPORAL RELATIONS OF FREQUENCY DESCRIPTORS

Frequency descriptions based on the alphabet },, (see section 4.1.3) can be
generated at fixed or variable length intervals. For each interval, the three places
of articulation (FP, CP, BP) can be hypothesized and a score can be attached to
each descriptor. The score is the a-priori probability computed for that descriptor
by the Markov Models (see section 4.2). Segmenting the speech pattern into
variable length intervals can also be done by putting an interval bound whenever a

consistent change is detected in any of the pattern lines.

Figure 6.4 shows the spectral lines of a pronunciation of the letter U (ju)
spoken in isolation. The highest scored hypothesis about the place of articulation
is indicated for every 10 ms fixed-length interval. Symbols represent places of

articulation for vowels according to an alphabet Y7, defined later on.

The redundant descriptors shown in Figure 6.4 suggest two possible
approaches to ASR. By labeling fixed-duration intervals with the PA symbol

having the highest score and considering this label together with others generated
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by similar procedures but representing different phonetic properties, a composite
description can be obtained for each interval and used as the output of a vector
quantizer. This approach is suitable to be used with stochastic decoding [8] which

is essentially model-driven.

Another possibility consists in having a data-driven segmentation followed by
actions that generate scored hypotheses for each segment. This possibility has

been investigated to produce the results of section 6.1.

The scored hypotheses of the segments in Figure 6.4 can be combined in
order to obtain word hypotheses. If the lexicon is made of letters and digits,
most of the lexical hypotheses contain vowels that can be identified only on the
basis of the place of articulation. Furthermore, if letters and digits are
pronounced in isolation, most of the sonorant portions of cnergy peaks
correspond to vowels and diphthong. For this purpose, the alphabet used for

descriptions in Figure 6.4 is defined as follows:

3yt { (VB:Back Vowel), (VC:Central Vowel), (VF:Front Vowel) }.

The letter U can be characterized in terms of the places of articulation of its

vowels as follows:

U= (VF) (VB)

and its sccre can be obtained by just multiplying the scores of VF and the

scores of VB.
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If the segment has three intervals, then the scores for the following

possibilities have to be considered:
{ (VEX(VE)(VB) }, { (VFX(VB)(VB) }

and the maximum of the scores has to be ascribed to the word hypothesis U.

It can be easily seen that the number of possibilities to be considered grows

with the length of the segment.

The best probability for the hypothesis {(VF)(VB)} can be computed by
using a Markov Model in the time domain like the one in Figure 6.5. The
probability to be estimated is:

P, = P(spectral—lines [(VF)(VB)))

An estimation of Py, is obtained by applying a Viterbi-like algorithm to the
source of Figure 6.5 with the assumption that the probabilities of symbols
associated with arcs are not known a-priori but are computed using CPMM in the
frequency domain. Notice that the model of Figure 6.5 contains a rudimentary
constraint on durations. In fact, g,, represents the probability that the duration of
the VF segment is 20 ms, while q,, represents the probability that the duration of
the VF segment is longer.

Table 6.2, shows the sequences of places of articulation for vowels for which
time-domain Markov Models have been derived. The digit-letter vocabulary is

defined in Table 3.1.
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Table 6.2: Sequences of places of articulation and corresponding words

LSequence of places of articulation

confusion set

VC VF vB

E,G,P,S,V,C,B,T,D (h)
LM,N,SF (t)
AK,J (h,d)
VF X,H,8 )
6 (ht)
27 (h.t)
vC R
VB " 20,4 (h)
VF VB 0,QU (h)
VC VF 1,5,9 (h.t)
VB VC 1
VB VC VF Y
w
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It appears from Table 6.2 that the recognition of the place of articulation for
vowels and diphthongs is not sufficient for an unambiguous characterization of all

the words of the letter-digit vocabulary.

Confusion sets are indicated in the second column of Table 6.2. Each line of
words corresponds to a confusion set. Confusion sets corresponding to the same
sequence of PAs are identified and solved in many cases by analyzing the head(h)
or the tail(t) of the word pattern and by generating hypotheses about consonants.
These hypotheses are also scored by a-priori probabilities as described in [18],
[22], [61]. Each conflict sct in Table 6.2 ends with the indication of the head or

tail analysis that will allow disambiguation among its components.

Details of the head and tail processes capable of performing such

disambiguations are described in [18], [22], [61].

A more reliable disambiguation could also be performed with a recognition

of the manner of articulation as well (for example: o of 4 vs u: of 2).

Not all the pronunciations of diphthongs are perfect; this may cause more
ambiguity than expected by just considering theoretical places of articulation for

vowels and diphthongs.

Let us consider now the letter A (aei). It is a diphthong, but the place of
articulation of its phonemes is VF for both. So, even if a pronunciation of A has
been segmented into many intervals, the hypothesis for A is the one
corresponding to VF in all the intervals. The hypothesis will receive the same

score as the hypothesis for E which also corresponds to VF in all intervals. In
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order to solve this ambiguity, as well as the ambiguities generated by imperfect
pronunciations, more detailed temporal relations among spectral lines have to be
considered. These relations are introduced at the third level of description
hierarchy and are used by a disambiguation process indicated by d in Table 6.2.

Level-3 descriptions refer to temporal relations of level-1 descriptions

representing lines that are close in frequency. They are of the following type:
bm :Rm (ym 1°Ym 2)

where R, 1s a relation symbol, ¥, and y, , are line descriptions.

R, symbols belong to an alphabet )}, whose elements are defined using

stylized pictures in Figure 6.6.

Level-3 descriptions are obtained by an algorithm, ALDESLEVEL-3, whose
details are omitted for the sake of brevity.

Composite descriptions can be obtained between Level-3 descriptions and
PAs.

The following experiment shows how Level-2 descriptions can be useful for
recognition. The purpose of the experiment is that of showing the potential of the

property “follow-down” (FDN) for characterizing the diphthong /aei/.

The results shown in Table 6.3 refer to the pronunciations of E and K in
letters like (E,P,B,T,D,K, etc.) for five speakers (four pronunciations for each

letter and each speaker).
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Table 6.3: Distinction of diphthong /aei/ as opposed to vowel /i./

Speakers | Letter l FDN | VF | OFl/ae/ | OF1/i/

#1 /k / 100% | 100% 425-450 325-345

others 0 100% — 345-525

‘« #2 /k/ | 100% | 100% | 475-525 | 350-375
others 0 100% — 425-325

#3 /k/ 100% | 100% 375-450 300-325

others 0 100% — 300-500

F#4 /k/ 100% 100% 575-630 325-3350

y others 0 100% — 353-610
x %5 /k/ | 100% | 100% | 475-325 | 275-300
others 0 100% — 325-330

-
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The strong evidence of follow-down property and 100% presence of VF in
letter /k/ allows to distinguish the diphthong /aei/ and to unambiguously
distinguish the first confusion set for VF in Table 6.2 from the second one. Table
6.1 shows also the frequency intervals in which spectral lines of /ae/ and /i/
involved in the VF relation were detected. As these intervals overlap, it appears
doubtful that context-free recognition algorithm can be efficient in multispeaker

detection of the diphthong /aei/ as opposed to the vowel /i/.

The results obtained show that hierarchical descriptions are powerful tools

for detecting and recognizing diphthongs as opposed to single vowels.

Unfortunately, when many speakers are analyzed, even robust properties may
disappear. In order to make the decision more reliable, a redundant set of
Transient Properties (TP) are extracted based on acoustic preconditions. When
these properties are detected, transitions of spectral lines are extracted covering a
time interval whose duration can vary. For each line transition, five parameters
are considered, namely f —P,, (the frequency of the starting point in the base-
line), Af (the frequency excursion of the transition), T (the time excursion of the

transition), Aa (the amplitude excursion of the transition), e —P,,. (the

m

difference between the average energy in the line transition and the average energy

of the corresponding segment of the base-line).

CPMMs have been derived for these types of transition using the five above
mentioned paraineters. The a-priori probability rendered by each transition

CPMM was then multiplied by the probability obtained for the places of
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articulation using the Viterbi-like algorithm in the time domain. In this way, a
composite score for each sequence of vocalic places of articulation shown in the
first column of Table 6.2 was computed. This composite score takes into account
models derived for quasi-stationary patterns as well as models of transients. A
complete score for each word hypothesis is then obtained by multiplying the
composite vocalic score by the scores computed on the head and tail of the
segment. The letter scores may refer to generic vocalic hypotheses or detailed

consonantal hypotheses.

6.2.2 - RESULTS ON VOWEL AND DIPHTHONG RECOGNITION

The data described in section 6.1 were used for learning CPMMs for the

place of articulation of vowels.

Recognition tests were performed on 20 new speakers who pronounced the
vocabulary of isolated letters and digits described in section 6.4.3 and shown in
Table 3.1. A decision was made by selecting the sequence of places of
articulation for which the composite score made of probabilities of stationary and

transient components was maximum.

The confusion matrix obtained with the above described experiments is
shown in Table 6.4. Results are in percent. Some errors, like in the case of (VB)

and (VF)(VB), are corrected by the recognition of consonants at the lexical level.
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Figure 6.9: A quasi-stationary speech pattern and its sequence of vectors
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R R o Table 6.4: Confusion matrix for the recognition of vowels and diphthongs.
E c N I
YB YC
YC | YF
YF YC VB | YF YB| YC YF{YB YC VE VB
YF 97 15 12 22
YC 85 3
¥YB 1 88 14
YF VB 64 32
YC YF 5 95 20
YB YC 80 6
YB YC YF 94
YCYF VB 68




0 The most typical errors are shown in Figure 6.7 and Figure 6.8.
Figure 6.7 shows a pattern of Y (/uai/) for which the final /i/ is missed.
Figure 6.8 shows a pattern of 1 /uan/ for which the initial /u/ is missed.
The results show the effectiveness of the use of spectral lines and

performance models of their distortions in the recognition of sequences of places

of vowels.

6.3.1 - EXPERIMENTS ON THE RECOGNITION OF VOWELS AND DIPHTHONGS

We will corcentrate, in the rest of this section, on the recognition of vowels
and PAs in quasi-stationary, non-nasalized speech intervals. The opecrators that

have been used to produce these results are explained in section 4.1, 4.2, and 4.4.

6.3.1 - PARAMETER CHARACTERIZATION

Speech segments corresponding to vowels extracted from the pronunciation
of letters, digits and words containing 10 English vowels have been used. In
order to learn statistical relations of SLs, a learning set was prepared in which
vowel labels were assigned to segments using an automatic procedure made

possible by the choice of words used for learning.

Figure 6.9 shows a speech interval with the corresponding vector Y as defined

by (4.6).

b
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Details on learning and recognition of vowels and PAs will be given in the

next sub-section.

6.3.2 - EXPERIMENTS ON THE RECOGNITION OF STATIONARY SEGMENTS

In order to investigate the possibility of using spectral lines and CDHMM for
ASR an experiment has been set up for the recognition of English vowels. A
signal data-base has been built by asking 20 speakers (10 male and 10 female) to
pronounce the monosyllabic words shown in Table 6.5. Lach speaker read a
randomly ordered list which included 40 occurrences of each word from Table
6.5. Every pronunciation of every word was then processed using a network of
HP workstations including one HP 9000-236 especially cquippcd for speech
processing, an HP 9000-320 and an HP 9000-330. Table 6.5 contains also a 5 word
vocabulary containing vowels that are common to number of Languages other

than English.

Task decomposition among units was performed as suggested in [20]. Fourier
Transformation, Primary Acoustic Cues as defined in [20] and Spectral Lines

were computed for each word in roughly 10 times real-time.

For each word pronunciation, three vowel samples were automatically
extracted using PAC description. A vowel sample was extracted in the middle of

the vowel in an interval of 60 ms duration.
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Table 6.5

VOCABULARY FOR VOWEL RECOGNITION

5 VOWELS 10 VOWELS
bed bat
beep bed
boot beep
but boot
saw but

far
fur
pit
put
saw




-

Table 6.6: Transition probabiiities of a CDHMM

startpoint| endpoint probability] m 1 V4 m 2 v2
0 1 1.0 318.1 675 6.57 0.081
1 2 0.01 117.0 855 0.313 0.006
1 4 0.01 1445.0 130502 | -1.669 0.174
1 5 0.406 1696.8 12652 | -0.924 0.923
1 6 0.573 1978.5 1781 0.567 0.138
2 6 1.0 1992.0 248004 1.072 0.072
4 6 1.0 1953.0 238388 0.7 0.031
5 6 0.821 2048.1 8774 0.539 0.173
5 7 0.179 2533.4 3228.5 0.325 0.057
6 7 0.9686 2592.9 4604 0.811 0.121
6 8 0.034 2890.3 48880.5 0.383 0.663
7 8 0.286 3082.9 6570 0.106 0.409
7 9 0.714 3275.0 18647 0.319 0.118
8 9 1.0 3490.2 14750 0.023 0.220
where:

m_ = mean of frequency

1

v 1" variance of frequency

m_ = mean of amplitude

2

Vo

= variance of amplitude
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Learning was performed using data from 10 speakers (5 male and S female).

Recognition was performed using data from the other 10 speakers.

Markov chains were built in the following way. The frequency range from .1
to 3.5 kHz was subdivided into intervals. A basic chain was built by considering
a linear sequence of a state and a transition, each transition corresponding to a
frequency interval. Othcr transitions were then added in order to allow each state

to reach any of the states following it.

Figure 6.10 shows the general structure of a CDHMM for the recognition of

vowels as it is set up before starting a learning phase.

A transition t from state s, to state s, that produces vector y,| is associated
with the mean of the difference between the trequency and energy of the n-th line
and the frequency and energy of the base line. Each transition is also associated

with a transition probability not shown in Figure 6.10 for the sake of simplicity.

At the beginning all the transitions having the same destination state are

associated with the same means and standard deviations.

Chains conceived with the above mentioned criteria have been constructed
and used for learning and testing vowel models. A tabular description of a

Markov chain for a front vowel is given in Table 6.6.

The first experiment concerned learning and recognition of the place of

articulation as defined by (4.4) for the five vowel vocabulary of Table 6.5.
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Table 6.7

recognition resuits for vowels

mode muitispeaker | sp. independent sp. independent
task CDHMM CDHMM MLN
place of
articulation 97.1 95.2 96.9
5 vowels 97 95 96.6
10 vowels 73.6 69.9 87




A second experiment concerned learning and recognition of the five vowel

vocabulary.

Other two experiments were performed using half of the data from each
speaker for learning and the other half for recognition. The task of the latter
experiments was learning and recognition of the place of articulation and of the
five vowels in a multispeaker mode while the task of the first two experiments
involved the same classes in a speaker-independent mode. Finally, two other
experiments have been conducted in the speaker-independent and the

multispeaker mode using the 10 vowel vocabulary.

The results of these cxperiments are summarized in Table 6.7. The results in
Table 6.7 clcarly show that spectral lines and CDHMMs are more than adequate
for the recognition of the place of articulation and for vowels having remarkably
different place or manner of articulation. This suggested the use of such an
approach for the rccognition of vocabularies for which discrimination of vowels
having close place and manner of articulation is not required. Such an application

will be further discussed in the following Sections.

Nevertheless, the recognition of 10 vowels was not performed satisfactorily
with the above proposed method. In order to try to improve the recognition
performances of the 10 vowels attempts were made to introduce discrimination
rules for cases characterized by relations like in (4.18). In order to avoid the
tedious work of manually inferring rules by experiments, another learning and

recognition paradigm was tried based on Multi Layered Networks (MLNs). The

101




reason for such a choice is that MLNs allow one to perform competitive learning

and to discover pattern regularities.

These aspects were found particularly attractive for the case of vowels
because some ot them are so similar that competitive learning is a more suited
paradigm for discovering regularities that enhance differences among pattern

classes.

Furthermore, MLNs can perform speaker normalization by learning functions
of SLs in accordance with hypotheses made by other researchers that speaker

normalization should involve relations between formant frequencies.

A detailed definition of MLNs and a discussion on their use in ASR can be
found in [5]. Only a brief introduction of the MLN used for the recognition of

vowels will be given in the following,.

Figure 6.11 shows the general scheme of an MLN. The input layer is fed by a
Property Extractor (PE), that acts as a window analyzing the data with variable
time and frequency resolution. PEs may also extract data from the speech

waveform. The MLN in Figure 6.11 has two hidden layers and one output layer.

The PEs are mostly rectangular windows subdivided into cells as shown in

Figure 6.11.

In our case, PE is a column of 64 windows of 60 ms duration. Each window

has a frequency width of 50 Hz.

.
L]
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In a first experiment 64 spectral samples where sent to an MLN with 40
nodes in the first hidden layer, 20 nodes in the second hidden layer and 10 nodes

in the output layer.

The weights of the connections among nodes were learned using the Error

Back Propagation Algorithm (see [77] for details).

An error rate of 20.4% was obtained. A second experiment was executed by
using only spectral lines coded as proposed in [5] using an MLN with 320 input
nodes and 200 nodes in each hidden layer. An error rate of 18.8% was obtained
showing that SL are a good coding of speech spectrograms. The two MLN
outputs where combined together using heuristic rules inferred from the training

set and an error rate of 13% was obtained.

The obvious conclusions are that SLs contain enough information for
discriminating among vowels and MLNs are powerful tools for performing

speaker-normalization.

Furthermore, competitive learning shows remarkable advantages especially

when the task requires fine discrimination.

Further efforts are required in order to evaluate the possibility of using
MLNs for more complex tasks. For this reason the task described in 6.2 was

implemented using stochastic models in the time domain.
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6.4 - EXPERIMENTS ON THE RECOGNITION OF LETTERS AND DIGITS

The application of the EPN model to the recognition of letters and digits has

been detailed in section 5.1. The experimental results are presented in the next

sections.

6.4.1 - EXPERIMENTAL ENVIRONMENT

Let’s assume we want to characterize sequences of letters and digits
according to the lexicon defined in Table 3.1 with a little pause between them. Let

us also assume wc want to represent knowledge that is speaker-independent.

The EPN conceived for this purpose is based on a data-driven approach

(action execution is dccided based on data) and has scveral levels.

The highest level is represented in Figure 6.12. It consists of a “push’ arc to
a subnetwork LEX representing the lexicon (Figure 6.13). The arc following state
S¢1 in Figure 6.12 is associated with a PUSH action to a subnetworks that returns
the probability of having a PAUSE after the just analyzed AS. From state S¢2 an
iterative jump to state S¢ under the condition “not-end” represents the fact that
there is still a part of the input signal to be analyzed; otherwise the recognition
process will stop on the execution of a POBABS arc with a stop function

associated to it.

It is subdivided into three subnetworks depending on the number of ASs

detected per word. A subnetwork ASH for generating SU hypotheses for each
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Figure 6.12: Top level of an EPN for the recognition of a lexicon
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Symbol

LPK
SPK
MPK
LOowP
LNS
VINS
LVI1

LDD
LMD
SMD
LHD
SHD

Table 6.8: Definition of Primary Acoustic Cues (PAC)

Attributes

th,te.ml.zx,

"

tb,te,zx
tb,te.mlzx
tb,te,ml.2x

emun.tb.te,zx

Attribute

tb
te
ml
emin
2X

Primary Acoustic Cues

Description

long peak of totai energy {TE)

short peak of TE

peak of TE of medium duration

low energy peak of TE

long nonsonorant tract

medium nonsonorant tract

long vocalic tract adjacent to 2 LNS or a MNS in a TE
peak

medium vocalic tract adjacent to a2 LNS or a MNS in a
TE peak

short deep dip of total energy

long dip of total energy with medium depth

short dip of total energy with medium depth

long non-deep dip of total energy

short non-deep dip of total energy

Attribute description
Description

time of beginning

time of end

maximum signal energy in the peak

minimum total energy 1n a dip

maximum zero-crossing density of the signal derivative in
the tracet
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AS is shown in Figure 6.14. Two subnetworks similar to the one in Figure 6.14
are available for words with 2 ASs. Three subnetworks are used for words with

three ASs.

ASH subnetwork uses actions for analyzing the ‘“head”, the “vocalic part”
and the “tail” of each AS. The AS head is analyzed by attached procedures
(actions) performing an Elaboration-Decision (ED) paradigm. Let us call these
types of procedures ED-actions. ED-actions perform variable-depth analysis on
intervals of AS and will be described in the section “The Elaboration - Decision
paradigm™. There are two possible ED-actions for the hcad of an AS, namely:

-plosive head

-fricative (including affricate) head
The choice of the ED action is made by disjoint conditions associated with arcs.
These conditions are regular expressions of Primary Acoustic Cues (PAC)
introduced in [20]. PACs are descriptions of the time cvolution of speech
loudness combined with the description of speech intervals wherc cnergy is
predominant in frequencies greater than those corresponding to the most

prominent sonorant resonances. A definition ot PACs is recalled in Table 6.8.

A data-driven process DDP1 performs signal acquisition, Fast-Fourier
Transformation (FFT), signal description in terms of PACs and segmentation of

the speech signal into ASs. For each AS a process is created that instantiates

ASH.
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For the AS for which an ASH instantiation has been created, the signal, its

FFT and the PAC description are stored into the WM associated to the ASH

instantiation.

Condition “‘pl-head” is a rcgular expression of PACs corresponding to

acoustic morphologies that are cues for plosive sounds.

The condition “fr-head” is aralogous but it contains morphologies that are
cues for {ricative sounds. If none of the two above mentioned conditions is
verified. then the default condition is satisfied. State M1 in Figure 6.14. will be
reached by only one arc. As it will be seen later, the ED action tor the AS head
identifies the AS hcad as a possible acoustic subsegment and extracts some
acoustic propertics. Using techniques partially described clsewhere [21],
hypotheses about the place and manner of articulation for the speech unit in the

head subscgment are generated and scored by the following a-priori probability:

Prh=Prdata(h) /place ~vnanner (6.1)

““place” is a variable that takes values in the tollowing set:

PLset={labial, front ,central ,back } (6.2)

“manner” is a variable that take values in the following set:

MNset = {high —vowel, low—vowel, oral, nasal,
unvoiced , voiced —nonsonorant } (6.3)

The description data(h) contains acoustic properties the system knowledge
considers worth to be extracted given the suprasegmental characteristics of the

head subsegment. These properties can be broad-band spectral energies for a
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fricative head or transient descriptors for a plosive head.

In the case of letters and digits, the place and manner of articulation are not
identified separately. Speech Units hypothesized by head actions are phoneme
symbols, when they are important for recognizing the letter or the digit. For
example, only the head actions can distinguish between P, B, T, G and all the
letters beginning by a consonant and ending with the same vowel. In this case the
consonants are SU hypothesized by the head process. For the letters or the digits
beginning with a vowel, it is not the head action that has the proper knowledge
for distinguishing among vowels, thus a generic “vocalic” SU is hypothcsized for

all these words.

For each head action, suitable acoustic propertics are extracted and a-priori
probabilities arc collected in a learning phase for concatenations of acoustic
properties corresponding to each SU symbol that can be hypothesized as an AS

head.

For cxample, “plosive head” executes a network of actions described in [21].
These actions extract a number of acoustic properties and produce hypotheses
not only about plosive sounds but also about any SU (including “‘vocalic”) that
may have generated the observed properties. After state M1, the ED-action
“vocalic” is executed. It segments the vocalic part of AS into stationary and

transient units.

Let
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be such subsegments. For each segment v_ spectral lines are considered as data

(see [62] for details) and a-priori probabilities about place and manner of

articulation are obtained by HMMs of spectral lines in the segment v.. For each

subsegment and for each consistent ‘‘place-manner” pair, the following probability
is computed.

Pr(v )=Pr(data(v )/placevnanner) (6.9

From state M2 to state M3, ED-actions for the tail of AS are executed

similar to those used for the head. A probability

Prt=Pr(data(t)/place "ynanner) (6.5)

scores the hypotheses of the tail subsegment. The data extracted in the head, the
subsegments of the vocalic part and the tail can be assumed to be independent.
The “select” action associated with the POPABS arc computes the probability for

cach candidate hypothesis

Pr (data /hyp).
where “hyp” indicates the sequence

P

llehZ"" P, ’Phl

’ h",--o

of the SU hypotheses and selects the best candidate.

Let us consider the hypothesis /b/. The hypothesis “hyp” can be represented

by the following sequence of two SUs:

/bl = (B)(E)
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where /b/ represents the letter, B and E represent SUs. The corresponding

probability will be computed as follows

Pr(data [b)=Prhg

X
PrE(vx)}PrtNT (6.6)
1

p ]

where Prhy is the left-hand side of the (6.1) computed for the place and manner
of articulation of B, Pr, is the left-hand side of the (6.4) computed for the place
and manner of articulation of E and Prty; is the probability that the segment has
no tail. Probability Prt,. is set to 1 if the default action is taken in the transition

from M2 to M3.

Duration statistics for the Speech Units involved in each hypothesis can be
collected and used in the “select” action. As probabilities tor places and manners
of articulation are computed in well delimited time intervals, durations of these

intervals can be considered as additional data.

The segmenter that produces ASs may undersegment and, very rarely,
oversegment. In both cases, hypotheses are considered with one, many or no
vocalic segments. A maximum of two and a minimum of zero segments are

allowed both for head and tail.

Figure 6.15 shows an example of the pronunciation of “five”. The total
energy curve as well as the time evolution of the low-to-high frequency energy
ratio are shown with the corresponding PAC description. Vertical lines delimit

the head, vocalic and tail subsegments.
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Figure 6.15: Head-vocalic-tail segmentation for a pronunciation of “five”.
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Figure 6.16: Example of a two-segment pronunciation
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The first candidates produced by the “fr-head” action are:

f 0.0078
t 0.0003

The first candidates produced by the “vocalic” action are:

Al 0.269
UAI 0.198
EH 0.161

The tail has been treated as a sonorant one but hypotheses for all the sounds

observed under such conditions are generated.

The first candidates produced by the tail action are:

v 0.001
n  0.0002

The action POPABS f has selected the first candidate of the following list:

S
4
Y

Figure 6.16 shows an example of pronunciation of /w/ split into two ASs

delimited by a thick vertical line.

More details on the ED-actions are reported in section 6.4.2.
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6.4.2 - THE ELABORATION-DECISION PARADIGM

An Elaboration-Decision (ED) paradigm is executed through a certain number of
ED cycles which analyze descriptions of the same acoustic segment at different
levels of depth. The use of the ED paradigm has been discussed in a previous
paper [21]. ED cycles are PNs. According to this approach d, (r,) in (3.6) is
made of components extracted at different levels of depth. Thus, d, (T‘) can be
represented as follows:
di(r)=d;, (1) d;, (Ti)...d”(ri)...du(rl) (6.7)
J being a function of i,i.e.J=J(i).
Description d (r,) is made of Primary Acoustic Cues (PAC). These cues

are extracted by a spontaneous activity.

The first ED cycle executes an Elaboration Phase (EP) that computes a first
level description d;,(7,). A Decision Phase (DP) is executed that uscs as data the
following description:

d; ('rl.)=d‘¢(ri)d‘.1(rl) (6.8)
DP decides the next action based on the available descriptions. Other ED cycles
are performed until a termination condition is reached. Scored hypotheses are

associated with descriptions.

Local scores are a-priori probabilities. For example, the score of hypothesis

H in T; is:
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Pr(d (r)/H)=Pr(d, (7,)/H)Pr(d; (7,)/d, ,(7,),H)) (6.9

Different ED-actions may extract different data and obtain different descriptions

for the same time interval 7

There are possible solutions to this problem. The one which has been
adopted for letters and digits rccognition consists in using homogeneous
descriptions (PAC sequences) for sclecting the best path of actions. Each one of
these paths applies the ED-paradigm only once for cach signal subsegment. Thus
the probabilitics computed for cach candidate hypothesis in a subsegment are
based on the same data tor all the considered hypotheses.

Another problem arises trom the fact that local probabilities may not be
“homogeneous” in dilferent intervals 7, because they have been computed on
descriptions extracted at different levels of depth. There are different possibilities
for combining local probabilitics. One of them consists in “summarizing” the
states of each local conflict ot hypothcscs by a symbol belonging to a summary
Alphabet } ., and using strings of summaries for building a performance model.
Such a performance model can be a Markov Source. A model for each word can
be constructed and used together with a Language Model for computing sentence
likelihoods like in [8]. The other possibility, that has been adapted for the
letters-and-digiis protocol, consists in just multiplying the probabilities of

segments in a sequence to obtain a cumulative score.

A detailed description of the properties used in the ED paradigm for

recognizing letters and digits appears in other papers describing motivations for
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choosing certain properties and the experimental conditions in which statistics
have been collected [21], [68], [75]. A brief summary of these properties is given

in the following.

6.4.2.1 - PLOSIVE SOUNDS

Various properties extracted both in the time and frequency domain have

been used. They are described in [21].

The first description level consists of PAC. The second description level
contains buzz-bar and burst indicators extracted from the time waveform, its

envelope, the time evolution on certain tfrequency bands.

The third description level contains burst properties extracted in the time

intervals in which burst indicators were detected.

The fourth description level is rclated to spectral line transitions at the voice

onset.

6.4.2.2 - VOCALIC INTERVALS

Spectral lines are extracted with an algorithm described in [62]. Markov
Models are used for modeling statistics of frequency and energy of spectral lines.
They generate probabilities of place of articulation for intervals of 20 ms duration.
Sequences of hypotheses are kept in a search space in which a node represents a

sequence like:
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wyvf, voivf, vaivb, v ivb)
where t stays for “front”, b for “back” and v for “vowel”’. The node sequence
corresponds to the hypothesis that subsegments v, to v, represent a sequence of a
front vowel followed by a back vowel. The product of the probabilities of each

subsegment hypothesis is used as score for the node.

6.4.2.3 - OTHER CONSONANTS

Liquid and nasal sounds are hypothesized using a mel-scaled filter bank and
considering timc evolutions of energy differences in a continuous parameter
Markov Model. Other levels of descriptions involve the use of Markov Models for
spectral lines in the stationary zone of the consonant and in the transient
scgments in order to capture statistics of properties discussed in [19]. More

details on the content of this subsection can be found in [75].

The ED-paradigm corresponding to the subnetwork ‘“nons-taii”> PUSHed in
the transition between state M2 and state M3 in Figure 6.14 will be described as
an example. The condition ““nons-tail’’ for the protocol of letters and digits is the

following regular expression of PACs:
COND “‘nons —tail"=a(LPK+LVI)(5+D (NS +SP)} (6.10)

where « is any noise description that can precede the PACs of a vowel, 3 is any
short non-deep dip, D is any deep dip, NS is any descriptor of frication noise,

and ¢ is any noise description at the end of a word.
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& Equation (6.10) corresponds to a ‘“Level-¢”’ description obtained by the first
elaboration phase. The first decision phase selects a subnetwork NT1 if the actual
description matches with 3 and NS (/t/ or /s/ are expected), a subnetwork NT2 if

the actual description matches D (/x/, /h/ or /8/ are expected).

Let us describe NT1 in detail. The elaboration phase of NT1 selects the
speech signal in the time interval corresponding to the description that matched
NS. In this time interval a power spectrum in the 2-§ kHz band is obtained every
10 ms using a filter bank with 8 filters. Filter bandwidths grow logarithmically

from low to high trequencies.

From the filter outputs, five parameters are computed every 20 ms:
1) G: the center of gravity of the power spectrum,
2) I: the filter index for which the energy output, is maximum,

3) the first three cepstral coefficients defined as follows:

583 1 E, [ 2i-1 7r]
¢, = Y, log,, |=—]| cos|s
oo (6.11)

where: s=(1,2,3), E,; is the energy at the output of the i-th filter, b; is the

filter bandwidth.

The decisicn phase uses three Continuous Parameter Markov Models
(CPMM), one for each hypotheses NT1 is supposed to generate, namely, /s/, /f/

<
it

< %
. and /f/. The 3 CPMMs have three states each. Various transitions between states
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are allowed. Each transition is associated with the mean and the variance of the
five above mentioned parameters which are assumed to be independent and with

Gaussian distribution.

Learning has been performed on 15 speakers using the Forward-Backward

algorithm [4]. The same algorithm is used for generating scored hypotheses.

The conjecture that such parameters are good properties for characterizing
[ricative sounds is based on Speech Science and previously acquired experimental
evidence. The example described so far refers to a variable depth analysis with

two levels of depth.

6.4.3 - EXPERIMENTAL RESULTS ON LETTERS AND DIGITS

A corpus consisting of 400 pronunciations of the vocabulary defined in Table
3.1 was used for cvaluating the ASR model built based on the theory presented in
this paper. The corpus was obtained by asking 100 (50 male and 50 female)

speakers to pronounce four times the entire vocabulai y.

Speakers were mostly university students and instructors with different

mother tongue. They were all asked to speak in English.

A computer program generated random sequences of 5 letters or digits. Each
speaker was asked to pronounce each sequence presented to him/her with a little
pause between each letter or digit. Data were acquired with a Hewlett Packard

Special Purpose Workstation HP 9000-236.
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Signals were sampled at 20kHz over 12 bits. The signal was windowed by a 23
ms Hamming window, and a 128 points Fast Fourier Transformation (FFT) was

computed every 10 ms by a TMS 320.

The rest of the processing was carried out on a VAX 8600, while a
distributed version of the recognition system following a paradigm proposed in
{20] is under development. This new version uses a TMS 320 and the two
processors of the HP 9000-236 and HP 9000-320 Workstations.

Learning was done on the first 40 speakers for propertics extracted by head
and tail actions. Markov sources inferred with previous data for the experiment

described in [62] were used for recognizing vowels and diphthongs.

Twenty other speakers (10 males, 10 females) were used for testing. A
sample for each word of the 36-word vocabulary was uscd for cach spcaker

resulting in 20 samples for each vocabulary word.
Experimental results are summarized in Table 6.9.

Column headings represent pronounced words, row headings represent

recognized words.

Figure 6.17 shows an example of an error. The signal envelope of the
pronunciation of a/b/ is plotted versus time. As there is no buzz-bar preceding

the vowel onset, the letter has been recognized as /e/.

The remaining data were used for performing other experiments on groups of

letters, like those belonging to the E-set (E,G,P,3,V,C,B,T,D), the A-set
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(A,K,J,8,H) the Iset (I,9,Y) the AE-set (L,M,N,F,S) and others both in a
multispeaker mode (40 speakers, different utterances) or in a speaker-independent
mode. Remarkably better performances were observed for the multispeaker with
respect to the speaker-independent mode (more the 10% higher recognition

scores for some groups).

This suggests that the generalization power of the methods proposed in this
thesis applied to our acoustic properties has performances that can be improved if
the number of speakers used for learning is greater than 40. We suspect that
differences between the multispeaker and the speaker-independent mode will be

noticed even if the number of speakers used for learning is greater than 100.

Table 6.10 shows the results obtained by different researchers on similar
speech recognition problems. The table is organized in such a way that the
vocabulary, the number of speakers, the speaker indcpendence, the strategy, and
the recognition rate are shown. The complexity of the vocabulary increases from
eleven digits to vowels, letters, and letters and digits. The power of the
recognition strategy increases from Markov models to simple networks, trees, and
Al environment with specialized matchers (EPN with operators). Simple
strategies are inadequate to model the speaker independent recognition process of
a complex vocabulary such letters and digits or and that is the reason why their

use is limited to digits or letters only.
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Kopec Cole McGill Rabiner McGill
Authors Bush Stern S:.a,rn May 87 Dec 87 88
85 83
eleven isolated isolated isolated | isolated
isolated letters + | letters + vowels
vocabulary digits letters letters ten digits | ten digits
225 20
60 40
# speakers | (T12) 10m 20 100
10t
speaker mukti
speaker Jes Y3 | adaptationy  yes epeaker | Y°S
independence 3 (adjust 40 + 20 +
statistics)] 20 20
simple decision improved ] Markov
Hierarchicaftree + ! p83v :.'.e ei:"'_';‘::" Markov | models +
strateyy network + |feature r:at:h lr models | neural
matchers {extractors ers networks
recognition | g g9 89.5 03.4 882 | 885 |s87-96.6
rate
Table 6.10: Comparison with other research works




6.5 - LEXICAL ACCESS PERFORMANCE AND PERSPECTIVES

Preliminary results, obtained running experiments on lexical access whose
strategy has been presented in section 5.2, show a performance similar to the one
obtained in [57] using the same data and Markov models. A much better
performance can be achicved in the author’s opinion by exploiting the facilities on
the EPN to represent a more detailed knowledge for lexical access. Two major
points are worth to be investigated.

1) Dictionary description and organization

2) Phonological rules

1) The description of the dictionary in terms of only PPF is quite rough. Tools are
available [68], [75] to recognize phonetic units with a finer grain of detail. Vowels
can be identified [23], and so can fricatives, plosives etc. To make use of this
knowledge and tools, the dictionary should report this description. The EPN
could then handle a lexical access to a finer discrimination. Figure 6.18 shows the
detailed description of the word ‘“most’ and Figure 6.19 shows the correspondent
EPN. Variable-depth analysis is then used to stop the recognition process
whenever the hierarchical level is fine enough to avoid any ambiguity.

2) The description of a word is not unique. The same word can be pronounced in
different ways due to geographical variations or change in the population or
statistical  distortions.  The dictionary should include the descriptions
corresponding to the possible variation of a word. Then the EPN could infer

thorough its learning algorithms, the probability of these variation and its
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existence in a certain population. Automatically a lexical access which is learnt
for a particular geographical area or population (example the Eastern North

America) can be produced.

6.6 - EXPERIMENTS ON THE RECOGNITION OF ISOLATED DIGITS

Different speaker produce speech according to different speaking modes. A
feature-based word model taking into account all the possible inter-speaker
variations would be very complex. The EPN model, together with the neural net
operator (see section 4.5), allows the fine grain description of words to express
the inter-speaker variations and coarticulation distortions into a rich model with
low computational complexity. Conditions are put on the arcs in such a way that
paths that are not likely to have generated the signal are not considered at all.
This is possible because the feature based speech analysis is highly related to the
articulation parameter, and these are subject to physical laws ruling their
behaviour in time - they cannot vary too sharply, for example. Therefore fast
executed conditions on symbols and durations actually prune the model almost to
a unifilar one. The pruned model can then be very detailed and can perform
sophisticated analysis because of its reduced complexity. Conditions at this level
can be regarded as heuristic functions that lead the supervisor toward the solution
disregarding unlikely paths. Of course optimality is lost for higher efficiency. The
approach has been tested on isolated digits belonging to the vocabulary of letters

and digits (refer to sections 6.4 and 6.4.3) and the 96% overall recognition rate
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has been achieved on 20 speakers. The model corresponding to the digit “9” is
shown in Figure 6.20. The transitions of such a model are labeled with a regular
expression as described in [14], and with a time interval “m - n”. For example the
regular expression for the transition from state 2 to state 4 is “(f+F)L” and the
time interval is from 14 to 16. Time interval means that there can be no less than
14 frames activating the transition and more than 16 frames have exponentially
decreasing probability. Time intervals are expanded according to the model in

Figure 4.7.
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Figure 6.20: Digit model
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7 - CONCLUSIONS

7.1 - CONTRIBUTION TO KNOWLEDGE

The EPN model -onstitutes an original and new contribution. The novelty is
in the flexibility of the EPN to represent and implement intelligent strategics
together with strongly numerical algorithm from pattern recognition. The EPN fills
the gap between systems that were based on numerical strategies and had little or
no intelligence, and systems that were inherently intelligent, but lacking of
sophisticated numerical support. Furthermore many Al strategies arc simply a
special case of the EPN model. In this sense the EPN can do what other systems
do and much more. Frequently a system is bound to a certain degree of
sophistication that depends on the technology. The EPN model olfers a really
open ended and extensible system, very flexible for research purposcs in which
the solution algorithm has to be found, and were the strategy is not known a-
priori, The EPN intrinsically encourages the definition of hybrid systems with the
power of capturing the real knowledge to solve a problem, without the limits of a

predefined paradigm.

The model has proven effective in modeling the strategy of recognition of
different difficult problems in speech recognition. Compared to standard network
approaches to speech recognition the EPN is way ahead from the point of view of
underlying intelligent power [49], [51]. The results obtained in the applications

show comparable or better recognition rates with plenty of architectural power to
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investigate alternate strategies or solution.

The application of the EPN to the speaker-independent recognition of letters
and digits proved effective. The strategy introduces a paradigm to merge into an
intelligent model evidences coming from different sources. The research is still
open for other solutions. The cognitive and feature-based approach showed its
power because of the different focus of attention and variable-depth analysis
required to distinguish among certain words where the difference appears in a

very specific time interval.

Variable-depth analysis, the possibility of invoking subnetworks at different
levels and of using Markov models by some subnetworks are among the novelties
of the proposed approach with respect to previously proposed network-based

models for ASR [49], [51].

The possibility of using acoustic properties as in [13] with stochastic models

of their descriptions is another novelty of the proposed approach.

A first test of the proposed methodology has been performed on a difficult
vocabulary spoken by a variety of speakers. Results are comparable to the ones
recently obtained by other researchers [13] on a population of limited size and
only on letters.

Results can be improved, especially for some letters, by collecting statistics
of the acoustic properties of a larger speaker population or by adding new
operators and observing their influence in the performances of the fully

automated learning-recognition systems presented in this paper. This may indicate
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how difficult is the proper characterization of different speaking styles when

detailed phoneme discrimination is a requirement for word recognition.

Finally, a theory of machine perception of speech based on data-driven
actions and a paradigm for its implementation based on extended procedural

networks have been proposed.

The EPNs for lexical access fully support the needs to specify complex
dictionary structure together with sophisticated recognition algorithms which

integrate numerical or probabilistic techniques with rules and heuristics.

Neural nets training power combined with a Markovian time alignment seems
promising for a higher performancc and incremental recognition systems. If the
desired recognition rate is not achieved, it is because the present features are not
discrimating enough. hence the solution would be to add further features until the

phonemes or the smallest recognition units are properly identified and classified.

EPNs define the stratcgy of application of neural nets operators. The EPN
constitutes the Al environment in which the activation of neural net operators is
triggered and the contributions of the operators are combined together in an
intelligent way. The EPN can define an efficient non optimal stochastic process
based on flexible and contextual heuristic functions. The limits of current
stochastic systems [52] are the simplicity required by the word models to have a
reasonable speed performance of the recognition process. Coarticulation and
inter-cluster speaker variations would require a more sophisticated, finer grain

description of the words. This does not seem to be practical in conventional
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systems, but appears ordinary in a EPN environment. Knowledge and contextual
heuristic functions are applied to the underlying stochastic process to reduce the

space of the probabilities to a smaller non optimal subspace.

EPN and neural net operators provide a model of description and recognition

that is as rich in detail as desired and computationally efficient.

The applicationt of frequency domain-bascd Markov models on spectral lines
is original and tries to capture into a stochastic model the inter-speaker variations
for a speaker independent application. Traditionally, Markov models have been
used for the time alignment of the speech signal. The novelty is in the idea of
considering the frequency as the domain in which the sequence of input symbols
is defined. Consequently new meaningful paramecters have been defined in the
frequency domain. The definition of the three classes back, central, and front for
the classification of the place of articulation has shown the ability of achieving a
high recognition ratc and a granularity fine enough to make the distinction among
diphthongs in the context of isolated speaker independent letters and digits
recognition.

The results show the effectiveness of the use of spectral lines and
performance models of their distortions in the recognition of sequences of places
of vowels.

It is likely that a larger number of speakers would allow us to obtain a better

characterization of spectral line distortions in quasi-stationary vocalic segments.

Different speaking modes are likely to produce different distortions on expected
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pattern morphologies.

As the system is rather robust, a systematic analysis of its error should
suggest the use of other transition properties, a better implementation of the
actions for extracting them and a better statistical characterization of their

distortions.

To study the limits of this approach it has been tested on a larger number of
classes. The experiments on the recognition of the English-American vowels,
that werc pronounced in a fixed context from many speakers, showed that the
pertormance is still interesting in a multispcaker mode, but it degrades when
speaker-independence is sought. Neural networks seem to be a better tool in such

a context and for this kind of granularity (sce section 6.3.2).

7.2 - IMPLEMENTATION

The EPN model and the software for the implementation of Markov model
have been implemented in Pascal on a VAX-8650 running VMS. The EPN model
required about 4000 lines of code and the Markov model routines required about
26000 lines. Additional 200 kbytes were used to store certified test cases. The
software has been developed according to the rules reported in appendix A.l.
The EPN model interfaces the user with two main routines: the parser that reads
a file in which an EPN is described in the format shown in section 2.3 and

produces an internal representation on the network, and a routine that executes a
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particular network.

7.3 - FUTURE RESEARCH

The EPN model has been used for the application (o speech recognition.
Further researches can be made to exploit the paradigm of integrating different
knowledge sources and various strategies into a hybrid paradigm. Indications for

speech recognition are reported in section 5.3.1 and [6].

Other computer science rescarch areas can benefit from the EPN model.
Softwarc Iingineering, for cxample, is a very promising domain for the study and
the application of Artificial Intelligence concepts. The EPN model can be applied
to the modeling ot the soltware process and other softwarc c¢ngincering activities
whose solution with monolithic strategies is still unsatisfactory. The flexibility and
extensibility of the EPN model match the requirements of software engineering

systems.
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( A.1 - IMPLEMENTATION ISSUES

A Software Engineering Approach is particularly useful when the systcm to
be developed and subsequently maintained rcaches even a medium size and there
are scveral people mvolved among users and designers.  Although a Sottware
Development Environment was not available a certain number of Software
Engineering principles have been applied to the life cycle ot the sottware involved
in the research. The system has been design by top down development and
refinements. Stub routines have been created to test the hierarchy. The system
has been written mostly in standard Pascal as it 1s defined in the ANSI standard
[1]. The standard has been verified (although not enforced) by the compiler itself.
The non standard teatures include only lexical violation to the standards that can
be arranged by some operation of batch editing (example, non standard use of
“_” character) and few machine dependent teatures (non standard and non

portable such as 1I/0 and file access). This have been all enclosed in a file which

have to be modified to transfer the software onto another machine.

A special testing procedure has been applied. Counters have been defined for
all the branches of the software and a simple profiler has been written. Test cases
and test output have been stored to be compared upon software modification in
the maintenance phase. Guidelines based on a modification of the ones in the

course [56] have been applied and are reported in Appendix A2.
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Al.1 - CODING .

- Adopt naming conventions for routincs, functions, global constants and global
types. Example:

procedure X_yyy_nnnni.n

where:
X = progrummer identifier
yyy = project/version code
nnnnnnn = meaningful procedurec name

- Meaningful names can make the code more readable. Remember: programs

must be rcad by humans

- Coding should be simple. Tricky code is hard to read and error prone: keep it

simple stupid

- Add the following prologue comments at the beginning of every procedure or

function
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( (********************************#*****************************#****

%

FUNCTION NAME:

AUTHOR: DATE:
DESCRIPTION:
PARAMETERS:

RETURN VALUE:

GIL.OBAL AND EXTERNAL VARIABLES REFERRED:
PROCEDURES AND FUNCTION CALLED:

IFILES ACCESSED:

COMPILER: VERSION:

HARDWARE/OS:

*
*********************ar*sr*»r*******:r*********************************)
(****a ok ok kb ok bbbk sk ok ok ok dok ok kbt ot ok sk kb ok Rk RoR b Rk kR Rk F Ay

*

PROCEDURE NAME:

AUTHOR: DATE:

DIESCRIPTION:

PARAMETERS:

GLOBAL AND EXTERNAL VARIABLES REFERRED:
PROCEDURES AND FUNCTION CALLED:

FILES ACCESSED:

COMPILER: VERSION:
HARDWARE/OS:
*
c *******************************************************************)
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ﬁ - Use, if necessary, a consistent abbreviation technique. For example, you may
remove the vowels from the names

m_mc7_truncate ——> m_mc7_trnct

Alphabetize declaration lists

Use parentheses to clarify expression and make the parse tree unambiguous
(extra parentheses do not hurt and avoid errors)

a*bfc/(d*e*f)—>(a*b*c)/(d*e*¥)

Indent code

- Add identifiers in comments to explicitly match begin-end, then-else, case-end

pairs:

while ... do
begin (* 1 *)
if ...
then (* 2 *)

else (* 2 *)
case ...

end (* case *)
end (* 1%);
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( - Select a data representation suitable for the problem (it is much easier to build a

tree with records and pointers rather than arrays)

- Write modular code. Procedures should be about 60 lines or less since this fits

on one or two screens and can be easily understood. A procedure should

perform a single logical task

- AVOID USING GLOBAL COMMUNICATION IN MODULES SINCE THIS

CAN HAVE RIPPLE EFFECTS THROUGHOUT THE ENTIRE

PROGRAM WHEN A MODIFICATION IS MADE
- Use structured coding

- Use case statement rather than nested if’s. Remember that standard pascal does
not allow a default value when the case selector does not match any label.

Make sure that illegal values do not get through the case statement

case 1 of:
0: ..:
2,50 ..
3:
end;

becomes:

if i in {0,2,3,5}
then
case 1 of:
0 ..

¢ B
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o end (* case *)

else
m_mc7_error(m_mc7_ill_case_select) (* exception handling
procedure *)

- Declare all variables (even if some languages allow default declarations)

- Initialize all variable before use (even if some systems and some compilers
initialize the variables automatically). If this is not done unexpected values may
be encountered when the program is run in another environment (debugger) or

with another operating system.

- Use constants rather then numerical values

fori:=0to 10 do ... —> for i := m_mc7_min to m_mc7_max do ...
- Do not use the same variable name for different purposes

- Always assign a return value to output procedure parameters. This must be

particularly taken into account in exception handling,

- Make use of exception handling if available, otherwise design your own
exception handling mechanism. The latter would include error or recovery
procedures together with consistent error coding and error propagation. A
program is supposed to degrade gracefully upon exceptions and to stop only if

no other actions can be taken

O
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- Supply command files to regenerate the entire software system (compilation,

library generation, linking etc.)

- Put all non standard and non portable calls (system calls etc.) in a module and
redefine them in terms of user defined procedures. That module represents the

only software to be rewritten in case of portability problems.

Al.2 - DEBUGGING

- Antibugging is better than debugging

- Use conditionally executed debugging statements or (better) conditionally

compiled debugging statements.

CONDITIONAL EXECUTION:

type
m_mc7_opt_exe = array[l..m_mc7_max_opt] of boolean;

var
opt_arr: m_mc7_opt_exe;

if opt_arr{29]
then
writeln( ... );
CONDITIONAL COMPILATION:

begin (* 1 process_line *)
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G (*#-dbg writeln(’process line’);*)
if not eoln then
begin (* 2 *)
read(c);
(*#-dbg writeln(c);*)
if ¢ =’(C then

the lines labeled with (*#-dbg .... *) are not compiled into the
object code, but they are activated after preprocessing:

begin (* 1 process_line *)
(*#+dbg*) writeln(’process line’);
if not eoln then
begin (* 2 *)
read(c);
(*#+dbg*) writeln(c);
it ¢ =’(C then

- Suspect all data. Data consistency checks should be performed by every routine.
Although such checking code slows the program it is better than producing

incorrect results with a faster program

- Check array bounds

Al.3 - TESTING
- Test cases have to be designed in order to test:

every instruction
every branch

‘ﬁ every recursion and iteration
<
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normal input

unusual input
extremes (acceptable input at the limit of its range)

exceptions (graceful degradation must be achieved)

- Compare output files with previous (and certified) output files

yYeavaa T

- Makc a protile of your program (use conditionally exccuted or conditionally

compiled counter increments if a profiler is not available)
- Constructed testing data is a good starting point, actual data adds reality

/ - Test your program again after any change (testing command files are helpful)
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