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ABSTRACT 

This thesis introduces a new language for Artiflcial Intelligence applications 

that allows to integrate symbolic and numerical computation. This language is 

applied to Autornatic Speech Recognition (ASR). 

Speaker-independence and large lexicon access are still two of the greatest 

problems in automatic speech recognition. Cognitive and information-theory 

approaches try to solve the recogni~bn problern by proceeding il1 almost opposite 

directions. The former relies on knowledge representation, reasoning and 

perccptual analysis, while the latter is in general based on numerical algorithms. 

Progress is expected from the integration of the two mentioned approaches. 

Artificial intelligence techniques are often used in the cognitive approach, but 

these techniques usually lack of sophisticated numerical support. TIle Extended 

Procedural Network constitutes a general AI framework which integrates powerful 

numerical strategies including stochastic techniques and symbolic computation. 

The framework has been tested on difficult problems in speech recognition, 

including speaker-independent letter and digit recognition, speaker-independent 

vowel and diphthong recognition, and access to a large lexicon. 

Various experiments and comparisons have been executed on a large number 

of speakers and the results are reportl·d. 
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RESUME 

Cette thèse presente un nouveau langage pour des applications en intelligence 

artificielle qui permettent l'intégtation entre les calculs symbolique et numerique. 

Le langage présenté a été appliqué à la reconnaissance automatique de la parole 

(RAP). 

L'indépendance du locuteur et l'accès à un grand lexique sont encore deux 

des plus importants problèmes en reconnaissance automatique de la parole. 

L'approche cognitive et celle de la théorie de l'information essaient de résoudre le 

problème en l'approchant de deux directions quasiment opposées. La première se 

base sur la représentation de la connaissance, le raisonnement et l'analyse de la 

perception, alors que la deuxième est en général basée sur des algorithmes 

numériques. 

L'intégration des deux méthodes peut apporter des progrès. Les techniques 

d'intelligence artificielle sont souvent utilisées dans l'approche cognitive mais, 

actuellement, elles manquent de support numérique sophistiqué. Le réseau 

procédural etendu constitue une structure qui intègre de puissantes stratégies 

numériques incluant des techniques statistiques et de calcul symbolique. 

Le modèle a' été testé sur des problèmes difficiles en reconnaissance de la 

parole, incluant la reconnaissance indépendante du locuteur des lettres et des 

chiffres, des voyelles et des diphtongues, et l'accès à un grand lexique. 
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o Des expefiences et des comparaisons différentes ont été faites sur un grand 

nombre de locuteurs et les résultats ont été rapportés. 
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1 • INTRODUCTION 

The design of the Extended Procedural Network (EPN) has its motivation in 

the need of integrating stochastic methods with symbolic computation. Generally 

speaking intelligent systems with numerical attachements can only deal with ad 

hoc numerical treatment. On the other side powerful numerical systems like those 

derived from pattern recognition cannot easily model non numerical strategies 

(like chaining rules, for example). The EPN model bridges the gap between these 

two philosophies. Any hybrid paradigm is easily described with the EPN model 

and the model itself encourages the study and the expression of hybrid strategies 

to solve problems that are hard to solve using a single paradigm. A discussion on 

the need of probability in A.I. systems can be found in [12]. Without taking such 

a radical approach and provided that the reasoning scheme can be represented by 

a network-like structure, efficient algorithms for probabilistic inl'erence can be 

taken l'rom the theory of Markov models and inserted into an A.l. cnvironment. 

The dctails of the EPN model and the originality with respect to the existing 

network approaches to A.I. are given in this thesis. 

The EPN model has been tested on several applications concerning 

Automatir. Speech Recognition (ASR). Speaker-independent ASR by computers 

of large or difficult vocabularies by computers is still an unsolved task, especially 

if words are pronounced connectedly. Efforts and progress towards the solution 

of this problem are reported in the recent literature [8], [45] ,[49], [52], [53]. 

7 



Recent results on ASR and Speech Analysis suggest that progress in 

designing recognition devices and in advancing speech science knowledge may 

arise from an integration of the so called cognitive and information-theoretic 

approaches [53]. 

The cognitive approach attempts to infer analytic knowledge about possible 

speech invariants and their relations. Work by Zue [93], Klatt [47], Stevens [83] 

and De Mori et al. [19], [24] are along this line. 

The contribution proposed in this thesis is based on the following 

considerations. First, if large or difficuIt vocabularies have to be recognized when 

words are pronounced by many speakers, it is advisable to consider a (possibly 

small) set of Speech Units (SU) with which ail the words and word 

/ 
concatenations can be represented by compilation. A relation between a word W 

and its SUs can be represented by a limited number of basic prototypes and a 

description of their distortions observed when W is pronounced by a large 

population of speakers in different contexts. Distortions introduce ambiguities in 

the relation R1(W,SU) between W and SUs. In order to make ambiguous 

relations more useful, for example, for recognition purposes, their statistics can 

be taken into account. 

Second, the knowledge we have about production and perception of 

phonemes, diphones and syllables can be useful for conceiving prototypes of 

Speech Units. SU prototypes can be characterized by a redundant set of Acoustic 

Properties (AP). A relation R2(SU,AP) between a Speech Unit and its APs is 

8 



o ambiguous because acoustic properties can be distorted, missed or inserted in a 

particular instantiation of an SU. This is due to context, inter and intra-speaker 

variability. A performance model of such alterations can be built using statistical 

methods. This is called the Information-Theoretic approach. 

The information theoretic approach is based on a performance model 

containing states and transitions between any pair of states [8]. Probabilities that 

the system is in any of the model states or is changing state through any of the 

allowed transitions ean be learned. Furthermore, the model generates in cach 

state or in each transition, observable system parameters or descriptors according 

to sorne statistical distribution. 

Whethcr knowledge about speech analysis, synthesis and perception should 

be taken into account or not in ASR is still the subject of discussions among the 

researchers in the field. Investigating the possibility of using acoustic pro pert y 

descriptors for ASR is attractive. Nevertheless, an ASR system based on acoustic 

property descriptors is not very efficient if the set of properties used and the 

algorithms for their extraction are not weil chosen and conceived. Notice that 

property descriptors de scribe the speech data and do not interpret them. 

Descriptors cannot be false or ambiguous, rather they can be insufficient or 

redundant for interpreting speech. For this reason it is important to st art an 

investigation on pro pert y descriptors based on properties which are expected to 

be robust, speaker-independent cup.s of fundamental phonetic events. These 

o properties and the algorithms that extract them may have different performance 



( and degrees of success in different cases. For this reason, a certain redundancy in 

the number of properties used for characterizing a phonetic event rnay be useful. 

Rernarkable work has been done so far on spectrograrn reading [92]. A 

nurnber of APs for SUs has been identified with such an effort. Atternpts have 

also becn made in order to extract sorne properties automatically and use them 

for ASR [21]. 

Knowledge about spectrograms is incomplete. We know that sorne properties 

that can be detected are relevant for perception. The same pro pert y rnay appear 

in slightly different patterns corresponding to different pronunciations of the sarne 
1-

word because of inter and intra-speaker variations. It is important to characterize 

knowledge about such variations. This characterization has to be statistical 

because we do not have other types of knowledge on how basic word pattern 

prototypes are distorted when different speakers pronounce that same word. On 

the other hand, it is very important to characterize wor,' prototype~ in terrns of 

properties that are relevant for speech production and for perception. Property 

based prototypes of words or SUs May describe a large variety of patterns not 

only because properties are distorted, iJut also because sorne properties are 

t rnissed or sorne unexpected properties have been inserted. Insertions and 

j 
" • " 

deletions can be often characterized by deterministic rules reftecting basic 
• , 
, 
t co articulation knowledge, but in Many cases they cannot be fully explained and 

j '" 
li ( 

are better characterized by statistical methods. 

10 
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Based on the above considerations, the application of the EPN to speech 

recognition represents an attempt to integrate knowledle-based extraction of 

relevant speech properties and statistical modelinl of their distortions. 

Furthermore, the choice of APs is such that the essential information for 

reconstructing understandable speech is preserved. 
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o 2 • EXTENDED PROCEDURAL NETWORKS 

Chapter 2 describes a language based on Extended Procedural Networks 

(EPN). Section 2.1, 2.2, and 2.3 respectively present the formai model, the 

supervisor strategy and the related programming language. The remaining sections 

show how the EPN model can include a number of A.I. paradigms. 

2.1 • THE MODEL 

An Extended Procedural Network (EPN) can be described with a formalism 

similar to that used for an Augmented Transition Network Grammar (ATNG) 

[90]. This formalism has been successfully used for Natural Language and Pattern 

Recognition [32). The novelty in the approach of the EPN consists in the tight 

integration between symbolic and numerical computation. The rcsult is a new 

model which is able to describe and implements strategies that cannot be handled 

by A TNG's. Examples of sorne of the strategies that can be defined in the EPN 

model can be found in section 2.4. A TNG's and their applications are of course 

a special case of the much more powerful EPN model. 

An EPN is a 5-tuple 

EPN=V ,Q ,A ,qo,q f ~ (2.1) 

whcre j is the network identifier, Q is a finite set of states, A is a finite set of 

o directed arcs, qoEQ is the initial state and q f is the final state. Without any 10ss 

13 
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of generality only EPNs with a single initial state and a single final state are 

considered. 

Each arc ajEA is a 5 - tuple: 

where: 

(2.2) 

- qbjEQ is the starting state of a, 

- qejEQ is the terminal state of ai 

- Pj is a measure associated to the arc (it can be a weight or a 

probability according to the scoring method used by the EPN 

supervisor dcseribed later on) 

- conditiolli is a condition which has to be testcd and is assoeiated to 

the arc 

- action, is an executable action associated to the arc 

The conditions ean be categorized in two classes: 

CONDn 

refers to a user defined condition n. 

DEFAULT r 

refers to a default condition (it is satisfied only if no other transition of any 

arc whose starting state is qbl returns a score greater than r). 

The actions are executed by the EPN supervisor and can be categorized in 

eight classes: 

14 
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EXEn 

executes a user defined action; such an action is usually a "matcher" which 

performs sorne computations on the input data and returns a result. 

PUSH i 

is defined as follows. Let's assume that EPN, has an arc that contains 

PUSH i. Let 1rj be the process that executes EPN
J

• When the arc is reached 

whose associated action is PUSH i, the execution of 1r, is suspended. The 

state of 1r. is pushed on the top of the stack of the EPN supervisor. A new 
] 

proccss Ti, that executes EPN, is created and executed. When the final state 

of EPN, is reached, the last arc of EPNj is considered. It has associated 

either a POP ABS f or a POPCOND f action. This action is executed. It 

returns scores computed by EPN,. These scores are passed to ?T] whose 

execution is resumed while ?T, terminates. 

POPABSf 

1S associated to the final state of an EPN. It stops the execution of the 

current network process as soon as t is executed. The result of the execution 

of the user defined function f is returned. 

POPCOND f 

It stops the execution of the current network if the final state is the only 

active state in the current column of the trellis, i. e. if aIl the actions 

associated to the paths in the network leading to the final state have been 

executed. If this condition is satisfied, then the result of the execution of the 

15 
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lMP 

user defined function f is returned. 

makes the score associated to qbi propagate to qei according to the measure 

Pi associated to the transition 

INHIBIT a r 

inhibits the activation of the arc a, if the score associated to qbi is greater 

than r 

EMPTY 

propagates the score fi (Pi,score(qb'» to qei (see the EPN supervisor section) 

in the same column of the trellis. 

EXPAND i 

the subnetwork EPNi is substituted to the EXP AND transition in such a way 

that the initial state of the subnetwork coincides with the startpoint of the 

transition and the final state of the subnetwork coincides with the transition 

endpoint 

PUSH and EXP AND implement a hierarchical strategy respectively model 

and data driven. The difference between the two actions can be better understood 

if we draw the corresponding trellis. 

Figure 2.2 represents the trellis corresponding to the network of Figure 2.1 

(PUSH) and Figure 2.4 corresponds to Figure 2.3 (EXP A ND ). 

A set of buHt-in functions which modify the structure and the parameters of the 
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POPCCJt4D F1 

o 

EXEACT2 

~DF2 

EXEACT1 EXEACT2 

PN2: 

EXEACT3 

~DF3 

EXEACT4 

PN3: 

EXEACT6 

Figure 2.1: Example of EPN with PUSH actions 

o 



f , , 
;; 
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PN1: 

PN3: 

1 2 3 4 5 

Figure 2.2: Trellis corresponding to the network of Figure 2.1 



o POPCONDF1 

PN1: 

EXEACT2 

EXEACT1 

PN2: 

EXEACT3 

EXEACT4 EXEACTS 

PN3: 

EXEACT6 

Figure 2.3: Example of EPN with EXP AND actions 

o 



1 2 3 4 5 

PN1: 

PN2: 

PN3: 

c 
Figure 2.4: Trellis corresponding to the network of Figure 2.3 



'. 

o EPN is defined as follows: 

CREA TE transition trans_param 

creates a new transition in the network whose transition parameters are 

specified as action parameters. 

DELETE transition 

deletes a transition 

SET_P ARAM transition trans_param 

modifies the parameters of the specified transition 

GET_PARAM transition param 

returns in the variable param the parameters of the specified transition. 

2.2 • THE SUPERVISOR 

Several strategies can be applied in order to build astate space of hypotheses 

and to find the most plausible one. The supervisor considers two symmetrical 

strategies: forward strategy and backward strategy. Most of the applications do 

not require backward strategy. 

Let ai be an arc of an EPN. The contribution of such an arc is 

(2.3) 

where: 

- Pi is the score :lssociated with ai' 

o - gi is a function \\hich returns the evidence of satisfaction of conditioni , 

17 



( - hj is the function which returns the value computed by the actionj and 

- fj is the function which combines the values of its arguments in order to give 

the contribution of the arc. 

According to the definition of Pj,gj,hi,andfi' several interpretations of the 

contribution of an arc are possible. Sections 2.4 and 4.2.1 show how the 

mentioned parameters p"gi'hi,andfi' have to be characterized to specify various 

arc contributions in different paradigms. 

The supervisor forward strategy calculates the compound contribution of aH 

the transitions in a dynamic programming style. Partial computations (partial 

scores and contextual information) are stored in astate buffer associated with 

J states in the trellis data structure. Every column of th~ trellis corresponds to a 

computational step 111 the dynamic programming process. Initially at 

computational time (i.e. discrete step) 0, only the initial state of the network 

belongs to the O-th column. The associated score is supplied by the user as a 

parameter of the network and depends on the interpretation of the reasoning 

process. If a stochastic approach has been taken, i. e. measures are probabilities 

and the function f, is the multiplicative function, then it is reasonable to initialize 

the score of the initial state to 1. This interpretation leads us to understand the 

scores as the probability of having reached a particular state of the network at a 

particular computational step. If the network is used to evaluate a distance then, 

.1 ( <;; 
~ 

for example, the measures are costs, the function fi is an additive function and 

... 
; 

l " 
t' 
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o the score of the initial state at step 0 would be reasonably set to O. 

The column 0 of the trellis would be subsequently completed by the states 

and contributions which arise from EMPTY transitions leaving from the initial 

state. 

Figure 2.6a and Figure 2.6b show the initialization of the trellis corresponding 

to the model in Figure 2.5 - stochastic interpretation. 

The iterative step in the forward supervisor strategy is the following. 

1) For ail the states in the i-th column of the trellis do 

For a1l the non EMPTY transitions leaving l'rom the 

current state do 

begin 

compute the contribution of the current transition 

update the scores of the terminal state of the 

transition in the (i+ 1)-th column of the 

trellis 

end 

2) For aIl the states in the (i+ 1)-th column of the trellis do 

For all the EMPTY transitions leaving from the 

current state do 

begin 

o 
r;ompute the contribution of the current transition 
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end 

update the scores of the terminal state of the 

transition in the (i+ l)-th column of the 

trellis 

The updating phase substitutes the score associated with astate qj in the 

trellis with value score(q;) = combine(score(q),c(qi,q,» where c(qi,q;) is the 

contribution of the transition l'rom state q J to q,. The function "combine" is a 

function which combines the previous score associated with astate with the 

incoming one and propagates the contextual information l'rom one state to 

another. This function must be supplied by the user. For example, in the 

stochastic interpretation of the strategy, the function is the maximum if we want 

to perform a maximum likelihood evaluation. If we want to calculate the sum of 

the probabilities of ail the paths then the sum have to be used. In the 

interpretation of a distance the function to be used is the minimum. 

Figure 2.7a and Figure 2.7b show the first iteration of the model in Figure 2.5 

after the initialization and in Figure 2.8 the probabilities are reported - the 

combination function is the maximum and the corresponding best path is 

propagated as contextual information from state to state. 

The same strategy can be applied in reverse and this IS what IS called 

supervisor backward strategy. 

InitÎê.lly at computational time (i.e. discrete step) 0 only the final state of the 

( network belongs to the O-th column. The associated score is supplied by the user 
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Fig. 5 

Figure 2.5: Example of EPN with stochastic interpretation 

o 

Figure 2.6a Figure 2.6b 

Figure 2.6: Forward initialization of the trellis of the model in Figure 2.5 
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Figure 2.7a Figure 2.7b 

Figure 2.7: Second forward iteration of the model in Figure 2.5 
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Figure 2.8: Forward measures of the trcllis in Figure 2.7 
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Figure 2.9a Figure 2.% 

Figure 2.9: Backward initialization of the trellis of the model in Figure 2.5 

o 



o 1 o 1 

Figure 2.lOa Figure 2.lOb 

Figure 2.10: Second backward iteration of the model in Figure 2.5 
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as a parameter of the network. The score of the final state of the network 

depends on the interpretation of the reasoning process. If a stochastic approach 

has been taken then a reasonable value for the final state is 1, and so on. 

The column 0 of the trellis would be subsequently completed by the states 

and contributions which arise from EMPTY transitions ending in the final state. 

The trellis after the initialization is reported in Figure 2.9a and Figure 2.9b. 

The itcrative step in the backward supervisor strategy is the following. 

1) For ail the states in the i-th column of the trellis do 

For ail the non EMPTY transitions ending in the 

current state do 

begin 

end 

compute the contribution of the current transition 

update the scores of the starting state of the 

transition in the (i-l)-th column of the 

trellis 

2) For aIl the states in the (i-l)-th column of the trellis do 

For aIl the EMPTY transitions ending in the 

current state do 

begin 

compute the contribution of the current transition 



update the scores of the terminal state of the 

transition in the (i-l)-th r.olumn of the 

trellis 

end 

The updating function becomes then score(qj) = combine(score(qj),c(qj,q;» 

where c(qJ ,q;) is the contribution of the transition from state q j to qi' 

Figure 2.10a, Figure 2.lOb show the first iteration and Figure 2.11 show the 

values when the combination function is the maximum and the best path is 

propagated as contextual information from state to state. 

The complexity of the supervisor strategies is linear with respect to the trellis 

size which is considered as the number of states times the length of the trellis 
J 

(computational steps). 

2.3 • THE LANGUAGE 

The EPN description can be considered as an A.I. programming language. 

Such a programming language corresponds to the actual input to the computer, 

while graphical description is more used for human analysis. The language 

definition has been implemented as a library of interface routines toward the 

Pascal compiler. The language is not directly compiled into sorne machine code. 

The user of the library (an EPN programmer) typically wants to parse and execute 

( 
a set of EPN's. Such functions are accessible through any language which is 



o 

o 

compatible with standard Pascal parameter passing mechanisms. The EPN can be 

described in the following format. 

FUNCBEGIN 
<compulsory function declaration> 

GLOBALBEGIN 
<global declaration> 

BUFBEGIN 
<state buffer declaration> 
DECLEND 

{ 
DEFPNBEGIN <net name> 
<initial state name> <final state name> 
<epn declaration> 

}+ 

{ 
DEFTRBEGIN <transition name> 
<starting state> <terminal state> 
<transition parameters> 
DEFTREND 

}+ 
DEFPNEND 

<global declaration> ::= <declaration> 

<epn declaration> ::= <declaration> 

<transition parameters> ::= <measure> <transition declaration> 
CONDBEGIN <condition> ACTBEGIN <action> END 

<transition declaration> ::= <declaration> 
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<state buffer declaration> ::= <variable declaration> 

<declaration> ::= <constant declaration> 
<type declaration> 
<variable declaration> 
<procedure declaration> 

<condition> ::= DEFAULT r 1 <statement> 

<action> ::= PUSH i 1 POPABS f 1 POPCOND f 1 JMP 1 INHIBIT a ri 
EMPTY , EXP AND i 1 CREA TE <transition> 1 
DELETE <transition> 1 
SET YARAM <transition> <transition parameters> , 
GETJ>ARAM <transition> <transition parameters> 1 

<statement> 

<transition> ::= <transition_name> <starting state> <terminal state> 

The scoping rules of the EPN are the following: an identifier referenced in a 

condition or action is sought in .the transition declaration and in the state buffer 

declaration. The transition level includes transition declarations and state buffer 

declaratiolls together at the same level. Therefore identifiers which appear in the 

state buffer declaration and in the transition declaration must be different. If an 

identifier is not found at the transition level, then subsequently the <epn 

declaration> and the <global declaration> are examined. If the identifier is still 

not found, then an undeclared identifier error is issued. 

Procedures and functions defined in the function declaration cannot be 

referenced in any part of the network; they are used internally by the EPN 

supervisor. 



o A number of AI problems are reviewed in the following sections and their 

solution with EPN is shown. 

o 

2.4 • EPN AND AI STRATEGIES 

The computational power of the EPN model is the same of linear bounded 

automata (refer to section 2.4.9). Furthermore the possibility of defining 

executable actions which are pieces of code gives the EPN the same power of 

conventional high level languages (HLL). Although ail AI strategies call be 

irnplernented in the EPN for'11alisrn, sorne strategies are very easy to describe by 

simply tuning the parameters of the EPN. In the followillg sections sorne 

examples will be presented. 

2.4.1 - PLANNING 

A plan is sorne finite structure over a set of actions. A sequential plan is a 

finite sequence of actions. A plan defines a set of sequences of world states, 

called the behaviour of the plan. We can obtain one of these behaviours by 

executing the plan. 

In general, the planning problem is the following: given an initial situation 1 s 

and sorne desired condition (goal) G to be achieved we need to construct a plan 

that will guarantee that astate satisfying G can be achieved provided only that the 

plan is executetl in astate that satisfies 1 s' There are several known algorithms to 
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( generate plans (planning), [11], [69], [89]. The EPN planner is a maximum 

likelihood strategy with no backtracking. In order to perform a planning algorithm 

( 

all the probabilities are set to 1.0. Conditions are set to true if standard planning 

is desired. In the case of conditional pianning, the conditions are activated and 

represent the conditions of the plan. 

When the concurrency of several plans is required to achieve a goal the 

standard planning systems provide a structure of split and join to explicitly 

control cooperative or competitive plans. In the EPN such an explicit structure is 

not possible because of the interpretation of the network according to the data 

driven model strategy. Nevertheless, the concurrency or competition of goals is 

achieved using EPN built-in functions. Splitting a plan is the normal operation 

which is performed wh en there are more than one transition leaving from astate. 

Each transition starts an independent subplan. The difficult problem is to join 

different partial plans. The join is implicitly realized by the POPCOND action of a 

subnetwork, which then represents the operation of joining concurrent plans. 

Wilkins's SIPE (System for Interactive Planning and Execution Monitoring 

[89]) performs the following operations: 

- hier arc hic al 

- forms partial plans 

- allows limited parallelism 

- uses constraints to increase search efficiency 

- allows reasoning about resources 
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- provides reasonable deductive power 

- allows conditional plans 

- monitors execution 

- can replan after execution failure 

The EPN can perform ail these activities except to replan after execution failure, 

because the EPN always finds a plan: it is the one with highest score. If there is 

no way to get to the desired goal (i.e. there is no plan satisfying the constraint) a 

system error is issued, but no replanning is performed if this was not previously 

embeddcd explicitly in the planning strategy. 

Under certain conditions, the order in which the set of applicable rules is 

applied to the database is unimportant. A.I. systems of that kind are called 

commutative systems. The properties which characterize a commutative system 

are deflned in [66]. 

In sorne A.I problems the most natural solution involves non commutative 

systems. The typical solution is a sequence of actions. Planning is this part of 

A.I. World state can only change through the occurrence of sorne event or action. 

An event or action is a relation on states representing ail possible 

occurrenCéS of the event. This relation is usually assumed ta be functional (i.e., 

events are viewed as transition functions on states). Events are represented by 

EPN states, the functional relation between events is the transition function on 

EPN states. 

'1.7 
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( If we had a number of actions to be performed, we would have quite a 

number of conditions to specify that certain actions do not change the values of 

certain predicates [58]. The problem of keeping track of the consequences of 

performance of an action in a representation world is known as the frame 

problem, referring to the movie sequences of frames in which the background 

doesn't change whether the image is moving. 

In the EPN the contextuai information which is propagated from state to 

state is considered as the background, and it is the role of every action to change 

sorne part of such information. This constitutes a sort of procedurai approach to 

the frame problem, with respect to a declarative approach (add list and delete list) 

like in STRIPS [66]. 

2.4.2 - EVIDENTIAL REASONING 

Evidential reasomng has been used in A.I. to represent and manipulate 

incomplete and imperfect knowledge. l] ncertainty arises from missing or 

erroneous data, missing or erroneous rules and incorrect modeling. Evidential 

reasoning removes sorne of the probabilistic axioms and gives rise to other 

theories and formulas. The best known approaches to manage such uncertainty 

are the certainty factor (CF) model [82] used in medical systems like Mycin - and 

later adapted for Emycin systems -, Dempster-Shafer theory (79] and Fuzzy Logic 

[91]. Certainty approach uses the concept of Measure of Belief (MB) and 

Measure of Disbelief (MD) to evaluate a certainty factor (CF). P(H) is the beHef 

( of an expert in hypothesis H and P(H/E) is the belief in H based on sorne 
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o observation E. The definition of MD and MD can be found in [74J. 

The CF is represented in a EPN formalism by the value returned by function 

fi. The measures of belief and disbeHef are stored in the state buffer which is 

propagated. The EPN supervisor then finds the sequence of transitions (rules) 

that support a certain goal (final state) with a certain criterion matched on the 

certainty factor. For example, it seems to be reasonable to choose the highest 

certainty factor. Other criteria May be applied as weil. 

The Dempster-Shafer belief funetions, like CF and Bayesian funetions, assign 

numerical measures of belief in hypotheses based on an observed evidenee. The 

D-S eombination ru le includes the Bayesian and CF functions as special cases. 

Another consequence of the generality of the D-S belief funetions is avoidanee of 

the Bayesian restriction that commitment of belief in a hypothesis implies 

eommitment of the remaining belief in its negation. The D-S measures of belief 

assigned to each hypothesis in the original set need not sum to 1 but May sum to 

a number less than 1. Refer to [79] for details. In the EPN D-S measures can be 

propagated through the state buffer and the transitions represent the strategy of 

evidence gathering and reasoning. 

2.4.3 - PROBLEM SOLVING 

The EPN ran perform problem solving by relating a state in the network as a 
, 

o state in the prot~ lem space. The network supervisor performs then a search in 
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( 8uch a 8pace. Expansion of s~ates at the same level (breadth first search) is 

achieved through the creation of transitions in the same 8ubnetwork, while 

successive expansion of states at lower hierarchical level (depth first search) is 

achieved though PUSH and hierarchical nesting. Pruning is introduced through 

conditions. The EPN supervisor implicitly performs a breadth first search, unless 

otherwise instructed by PUSH actions. Creating transitions and states is achieved 

by using the structure modifying built-in functions (see section 2.5). 

An EPN state ean also represent a strategy state. In this case, the problem 

can be interpreted as a planning problem with finite state space. This case is 

detailed in section 2.4.1. 

Among the many problem solving paradigms, hypothesize and test will be 

considered in the next sub-section. 

2.4.4 • HYPOTHESIZE AND TEST 

The hypothesize-and-test strategy is the simplest A.I. paradigm. The method 

consists of generating aIl possible solutions in the search space and testing each 

solution until one which satisfies a goal condition is found. The basic algorithm is 

the following: 

1) Generate a possible solution. This means generating a particular point in the 

problem space. 

( 
2) Test to see if this is actually a solution by comparing the chosen point to the 
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o goal conditions 

3) if a solution has been found, quit. Otherwise return to step 1 

The EPN corresponding to a hypothesize and test paradigm is reported in 

P· " 1" 19ure ...... 

Obviously the set of possible solutions must be finite and for practical 

reasons its cardinality should be kept small. If the number of hypotheses to be 

tested is reasonably small, the strategy can be explicitly declared in the EPN 

formalism. If we think of the network in terms of strategies, one state in the 

network corresponds to a particular strategy. Therefore the hypothesize and test 

paradigm has to be read as "hypothesize a strategy to solve the problem" and 

then "verify if the problem is solvable under that strategy". J n this context the 

number of possible strategies that can be applied to solve a problem has no 

relation to the size of the search state space for a particular strategy. In general 

this number is fairly small and can be used in the EPN formalism with t:xplicit 

declaration. 

When the size of the problem becomes bigger and we want a dynamic 

creation of hypothesis and tests, actions that modify the structure and the 

parameters of the network have to be used. This dynamic generation of EPN 

transitions is encountered also in standard problem solving (see section 2.4.3). 

o 
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Figure 2.12: EPN for hypothesize-and-test paradigm 
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2.4.5· NEURAL NETWORKS 

Neural Networks [55], [78], can easily be implemente'd in the EPN formalism. 

The Multilayer Perceptron can be represented according to the EPN model. The 

interpretation of the parameters of a transition are the following: the weights IVi 

correspond to the measures P, associated to the transitions. The values on the 

neural network states correspond to the scores associated to the EPN states. The 

function "combine" which combines an incoming contribution with the current 

score of a state corresponds to the sigmoid function. 

Figure 2.13 shows an EPN which implements a neural network. Every 

transition at level u or v has the following parameters: 

Pj is the weight w, of the transition 

condition j is defined to be always satisfied because the arcs do not 

have to be conditionally executed 

action, is the built-in action JMP 

Transitions at level t in Figure 2.13 set the input values, and transitions at 

level z propagate the output values to the final state. 

Figure 2.14 shows an EPN for estimating the parameters of a neural net. The 

action LEARN modifies the measures Pi of transitions of type u,v according to 

the learning paradigm. The condition CON V tests for the reaching of the desired 

convergence. 
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Figure 2.13: EPN that implements a neural network 
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c Figure 2.14: EPN that infers the parameters of a neural network 



o 2.4.6 • DYNAMIC PROGRAMMING 

Dynamic programming is a technique of algorithm design by which a problem 

is decomposed into a polynomial number of subproblems who se solutions can be 

considered as entries in a table. Th~ table is fiUed with the solution of the 

subproblems without regard to whether or not a particular subproblem is aClually 

need~d in the overall solution. The structure of the table and the order in which 

the entries are filled are the characteristics of a particular dynamic programming 

algorithm. DP algorithms have been widely used in pattern recognition, in 

particular what is called DP matching [64]. Let us define a template pattern x as 

Xl' .\:'2' ••• , x,. and an input pattern y as y l' Y 2' ••• , Y,1 • Let a(x,,y ) be the cost of 

substituting x, with x J' b( Y J) the cost of inserting y j and c(xJ the cost of deleting 

x,. The cost of matching x as xl' x2' ..• , XL with y as YI' Y2' ... , y j is computed 

on the base of the cost of matching xl' .\:'2' •.. , Xi _ 1 with Yi' Y2' ... , y j-l' Xl' X2' 

••• , X'_1 with YI' Y2' ... , YI' and xl' X 2' ••• , x, with YI' Y2' ... 'Yj-l. If we 

define the cost of matching xl'.\:' 2' ... , xi with Y l' Y 2' ••. , y j as D(i,j) then in 

formulas: 

D(i,j) = f(D(i-1,j-l)+a(xi'Y j)' D(i-l, j)+c(xJ, D(i, j-l)+b (y j» 
If we assume that l' = min then the formula becomes: 

D(i,j) =min(D(i-l,j-l)+a(xj,y), D(i-l,j)+c(xJ, D(i,j-l)+b(y) 

If we identify i as the state number in the EPN and j as the trellis column of the 

EPN supervisor the cost D(n,m) can be computed by the EPN in Figure 2.16. The 
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( Figure 2.15: Dynamic programming trellis 
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Figure 2.16: EPN that performs adynamie programming pattern matching 
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corresponding Dynamic Programming trellis is reported in Figure 2.15. 

2.4.7 • NONMONOTONIC REASONING 

The importance of nonmonotonic or default reasoning has been discussed in 

rnany papers [29], [59], 173]. Nonmonotonic reasoning is important because il 

models the human way of reasoning in which we deal with incomplete 

information, with assumptions and with defaults that are considered true unless 

the opposite has been proven. 

The EPN presents a nonmonotonic behaviour thanks to the inhibitory 

arc. A transition which is ruled by an inhibitory arc is normally executed except 

when the inhibitory condition is satisfied. In this way it is possible to represent 

default rules and hierarchical inheritance with exceptions. 

With regard to the EPN the logic is somewhat different. In classical 

nonmonotonic logic, the database is considered to be time indcpendent - i.e. a 

fact, which represents a certain belief is retained unless explicitly canceled (in 

sorne model). In the EPN the trellis structure corresponds to an historically 

dynamic set of beliefs, in which every fact that is not explicitly supported at every 

instant is removed frorn the database. This allows the user to decide whether or 

not sorne backtracking is needed or desired. In a classical Truth Maintenance 

System (TMS) as soon as a "justification" of a default condition is no longer 

satisfied, the 1 MS returns the system to a consistent state (i.e. with no 
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( contradictions) aeeording to different criteria (elimination of the facts which 

crea tes the inconsistency together with aIl the faets derived frorn them. In the 

EPN the eontext is different. Since the states normally disappear at every 

cornputational step, to retrieve and kill a path starting from astate which 

represents a faet which is no longer true may be rneaningless. At the time when 

the state was active the fact was true and since the EPN represents a strategy it is 

perfectly correct that at that lime and context that path had been chosen. In a 

classical TMS systemall the facts are global. In the EPN the states carry some 

contextual and local meaning. In this context the nonmonotony is applied. If 

desired nothing prevents us from building global facts in the global "viewpoint" 

and reason about them and decide to run a dependencies directed backtracking 

algorithm on the basis of the current EPN active states. In this way the EPN 

would impIe ment a problem solving plus TMS strategy and then backtracking 

would beeome an operator which is tied to a particular phase of the strategy (i.e. 

a particular transition). 

The particular structure of the EPN causes sorne diffieulties in defining the 

theory of the non monotonie EPN in the sense that: 

1) the presence of an inhibitory faet does not affect the current reasoning 

unless both the inhibitory fact and the starting state of the inhibited transition are 

presently contained in the current column of the trellis. Therefore sorne classical 

problems of nonmonotonic reasoning are expressed differently in the language of 

i. ( the EPN. 
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o 2) So far the EPN does not perform any backtracking in the sense of a classical 

truth maintenance system [16], [27], but as shown in the example of Nautilus 

(Figure 2.17) taken from [30], a similar result can be achieved. 

3) An important difference with ~lassical default systems is that the facts in the 

database have attributes and a score. Attributes allow the system to perform 

inheritance with exceptions and scores select, in a non-arbitrary way, one 

deduction l'rom a set of deductions in one extension. This solves the problem of 

how to choose or to switch from one extension to another during the reasoning 

process. Scores (Ire also useful to deal with inconsistencies and contradictions 

which are inherent in a default logic system. 

The EPN allows that a fact and its negation are simultaneously present in the 

database since possibly they carry different scores. An example of inheritance 

with exceptions is presented in Figure 2.17. 

The EPN allows an explicit control strategy to take place. This means that 

what was implicit in other systems or left to a not well defined problem solver is 

now explicit. This reduces the need for backtracking since it is up to the system 

designer to model the strategy in such a way that either backtracking is explicitly 

applied or inconsistencies have to be accepted. Furthermore, non monotonie 

reasoning is applied in a weil defined context in which the behaviour of the 

network is in principle clearly understood and planned. The structure of 

transitions and ~arkings implies that there exists a specific ordering among the 

o transitions depending on the time of activation. This avoids the problem that 
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Figure 2.17: EPN for inheritance with exceptions 
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o gray 

INHIBIT 

albino elephant 

Figure 2.19: Example of EPN for inheritance with exceptions 

birds fly 

cstrich doesn't tly 

o Figure 2.20: Example of EPN for inheritance with exceptions 
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Figure 2.21: EPN for normal default logic 
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INHIBIT 
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( 
Figure 2.22: EPN for seminormal default logic 



o appears in certain networks of having different inheritance depending on the 

(unknown) order of parallel computation of transitions. 

However sorne direct comparison can be made. Suppose that the following 

is a set of default assertions in the notation of [29]: 

noon,sunny -> sunny 

noon 

eclipse -> -8unny 

eclipse 

The corresponding network 18 represented in Figure 2.18. Three examples of 

inheritance with exceptions are shown in Figure 2.17, Figure 2.19, and Figure 

2.20. They correspond to the following assertions: 

a) Molluscs are normally Shell-bearers 

Cephalopods must be Molluscs but normally are not Shell-

bearers 

Nautili must be Cephalopods and must be Shell-bearers 

b) Elephants are normally gray 

Albino elephants are not gray 

Albino elephants are elephants . 
c) Birds normally fly except ostriches 

Normal default networks [29] correspond to a structure like the one in Figure 2.21 

and an example of a seminormal default network is represented by the network in 

o Figure 2.22. 
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2.4.8· RULE BASED SYSTEMS 

Rule based systems consist of: 

a) a set of rules in which the left side describe the applicability of the rule and the 

right hand side indicates the consequence of applying a ru le 

b) sorne databases containing facts (elements of the database) and information 

about the reasoning process 

c) a control strategy which specifies the order of application of rules and the 

criteria of solving the conflicts which arise when more than onc rule are 

applicable at the same time. 

Rule based systems are easily implemented in the EPN formalism. Rules are 

represented by transitions. Facts correspond to states in the network. If the state 

appears in the current colllmn of the trellis it means that the fact is asserted and 

it is the precondition to the firing of a rule (transition). The initial state 

corresponds to the initial situation of the database, while the final state 

corresponds to the goal which has to be proven. Rules are practically cIustered in 

the sense that only the transitions which are defined as going out of astate can be 

possibly taken. This is equivalent to clustering rules to define context of 

applicability. Furthermore the network provides inherently numerical attachment 

to rules (scores), procedural-attachrnents, local and global scopes. 

Classical control strategies in rule based systems are Forward and Backward 

chaining. These two strategies are embedded in the EPN Supervisor. 
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2.4.9. SYNTACTIC APPROACHES 

The EPN has the power to represent strategies which can be described by 

Conte'" Sensitive Languages. In particular the EPN can implement a linear 

bounded auto maton defined as in [39] and therefore accept Context Sensitive 

Languages. The EPN states and actions represent the finite control and the tape 

can be thought as an EPN global variable. 

Recognizers for languages at a lower level in the hierarchy defillcd by 

Chomsky can be defi .... ed by the EPN model. Pushdown auto mata and finite state 

automata are easily described in the EPN formalism. Pushdown automata can be 

simulated by identifying the input tape and the pushdown stack as EPN global 

variables and the tinite control with EPN states and actions. Finite state auto mata 

can be simulated by considering the input tape as an EPN global variable and the 

finite control as EPN states and actions. Details ~md applications of syntactic 

pattern recognition can be found in [32], [34]. 

2.S • LEARNING 

An important ability of intelligent agents is to adapt to new situations, rather 

than sim ply doing as they were told to do. In the EPN two different kinds o.f 

learning can be defined: learning by parameter adjustment - a kind of 

specialization - and structural learning. Learning by parameter adjustment is an 

iterative method that estimates the measures associated with a transition on the 
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( basis of the past experience. The new parameters are used to formulate and solve 

new problems. 

( 

An example of learning by parameter adjustment is presented with the 

assumption that the function "combine" (see section 2.2) is the maximum and the 

best path is propagated as contextual information. If the network or subnetwork 

is monotonie (Le. the inhibitory arc is not used) then the learning algorithm is 

optimal in the sense that the estimates converge to those values of parameters 

which maximize the scores of ail the correct solutions of the problems presented 

as learning samples. The structure of the network (i.e. states and transitions) is 

supposed to be known. The parameters are estimated as function of this 

structure. 

Let 5 = SI' 52' ... ,5m be the best paths corresponding to a certain 

training set, and S/ = t/ 1, t;2' ... ,t/ll be the sequence of transitions belonging 

to the i-th best path. Let us define 

III " 

N(t) = E E o(tij,t) 

;-1 j-l 

as the number of times that transition t has been used to process the training set, 

where 

{ 
1 if x ~ 

h(x,y) = 0 if x+y 

The expected frequency ft of transition t can be estimated as 
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ft = 
N(t) 

E N(t') 

t'/L(t)-L(t') 

Another point of view of learning by parame ter adjustment is that of 

changing the measures of the arcs to influence future strategies according to the 

current one. 

Structural learning is directly used in A.I. approaches like problem solving, 

hypothesize and test paradigm, and whenever the topological structure of states 

and transitions is intrinsically dynamic. The structure of the network can be 

inferred by using a set of examples. The !irst step is to define a language E whose 

alphabet is the alphabet of condition-action pairs. The training set is represented 

as a sequence of vectors whose components are condition-action paIrs air Let 

be the trainjng set. An algorithm for the inference of finite state auto mata [9],[34] 

can be used to infer the EPN structure which correspond to that training set. 

Structurallearn:ng, rather than language driven, can also be rule base driven, plan 
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( driven and so on. 

The generalization power of the learning approach is that of the underlying 

algorithm. In the proposed examples, the function ft converges through iterations 

to a value that unfortunately is optimal only in a local way. The estimated value 

depends therefore on the initial value of Pt' The language driven structural 

learning contains a parameter k which controls the generalization power of the 

inferred automaton. The learning algorithm can be tuned to recognize finite 

languages which consist only in the training set up to more general languages, and 

* finally to E . 

2.6 • CONCLUSIONS 

A new language for the description of integrated numerical and symbolic 

computations has been introduced. An overview of straightforward applications to 

implement AI paradigms has been provided. An application to ASR will be 

presented in detail in the next chapters. 

c 
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3 • A MODEL FOR COMPUTER PERCEPTION OF SPEECH 

It will. be shown in chapter 5 how EPN can impIe ment a perceptual model. 

The speech signal xI (1) is generated by a discrete and finite sequence of 

actions 

(3.1) 

where ok (tk ) denotes an action ending at time tk;a 1 (t 1) represents the silence 

preceding the beginning of a sentence. 

When a pcrson reads a sentence S, a relation 

(3.2) 

is applied which produces A. The relation RI may depend on the speaker, 

his/her mood, state of hcalth and history. As RImay produce several As for the 

same S. probability distributions lor ail the possible As can be derived using a 

generative model. 

The ~peech signal Xl (1) IS generated by the sequence of actions A usmg 

another relation 

(3.3) 

R'2, depends on the anatomy of the speaker. Again, the same actions may 

produce different signaIs, because the speech production system is soft and its 

behavior is affected to sorne extent by the environment. 

If the speaker does not read but generates a sentence from a set C of 

concepts, then a third relation is applied: 
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R3 may depend on the speaker and his/her culture. Statistical models can also be 

used for characterizing this relation. 

The generation of xl (t) can be seen as the application of the following 

composite relation: 

G=(R30R l)oR'1 

according to the scheme shown in Figure 3.1. 

(3.5) 

Recognition consists in applying the relations III the opposite direction. 

Unfortunately wc have only a limited knowlcdge of thesc relations. Wc have used 

it for building speech synthesizcrs. Wc do not even know the alphabet ~A (a,) 

for the clements of A, although wc know alphabets I:caml I:s for the clements 

of C and S rcspectivcly. Furtherrnore, signal xl (1) is affected by noise and is 

transformed into anothcr signal x (t) through the acoustic channel. 

As we do not know ~A' nor wc know R'1' wc can characterizc 3ctions hy 

descriptions of what they produce. According to this approach, the perception 

of x (t) consists in eXlracting a sequence of deâcriptions: 

(3.6) 

where dI('l) describes the silence preceding the beginning of the speech signal 

and d,Cr,) describes the segment of x(r) between the lime instants ',_1 and T" 

Segments of Dean he 10 ms frames or intervals of variable duration obtained 

by a segmentation algorithm like the one proposed in [20]. 
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o The descriptions D can be obtained by perceptual actions by analogy with 

the generative scheme. Perceptual actions, as weil as generative actions, have to 

be defined and used according to a criterion of economy. That is, there must be a 

limited number of actions (operators) based on which a variety of networks of 

actions can be built. 

Recognition can be seen as a combination of a relation 

(3.7) 

that is the perceptual counterpart of relation RI uscd for speech generation, and a 

relation: 

L: (x(I),D) 

that is the pcrccptual counterpart of R:(A ,x .(1» 

(3.8) 

The relation L '2(x (t ).D) is deterministic in the sense that it can produce only 

one descripllon D for a signal X(I). Description D is a sequence of descriptive 

phrases. Each phrase can be of fixed duration, i.e., gcnerated at constant time 

intervals, or of variable duration. i.e., generated for intervals of dirfcrent length. 

If we want to maintain the analogy with the production model just outlined, D 

should be of variable duration becausc the articulatory actions (gestures) arc of 

variable duration. 

Descriptions must refer to parameters, morphologies and properties that are 

characteristic for a sound and exhibit low variances when many speakers, 

different microphones and environments are considered. 

';. t­
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In practice, fixed duration models have been developed and tested with a 

considerable degree of success mostly in speaker-dependent systems. In one of 

the most successful systems developed so far (42), D is a sequence of symbols 

obtained every 10 ms by vector-quantization with a process that is speaker-

dependent and context-independent. 

Relation LI (D ,S) has to capture two different types of knowledge. The tirst 

type of knowledge is a relation: 

(3.9) 

between a sequence V of Speech Units (SV) and corresponding description D. 

Thcrc arc speech units like the plosivc ~ound lb 1 for which a large variety of 

different descriptions D are perceived as the same sound. Relation L 11 is many-

tO-Dne and it could be interesting to colleet statistics of the elements of the 

universe of aeoustic descriptions that produce the perception of the same 

linguistic sound. Thesc statistics may reprcscnt distributions of acoustic patterns 

produced bya single or many speakers having the intention of producing the same 

sound. Statistics may also take into account charaeteristics of background noise. 

The choice of SUs, for our purpose, has to be based on practical 

considerations as weil as on theoretical ones. For example, for sorne purposes, 

units can be just phone classes or syllable classes. 

The introduction of SUs is important because once a vocabulary ~u of 

speech units has been chosen and effective relations between each SUE~u and 

C descriptions of acoustic properties have been established, large varieties of word 
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o and sentence models can be built by compilinl networks of SU models. 

A second type of knowledge is a relation: 

(3.10) 

where S IS a linguistic entity like a sentence and U is a sequence of Speech 

Units. L 12 can also contain statistics. 

L 12 may represent how different speakers may have different pronunciations of 

the same word. A stochastic model representing a word W in terms of SUs can 

be built. 

An interesting possibility, which we explore in this thesis, is that of designing 

L'!, and LI procedurally, through actions to be performcd on x(t) in order to 

obtain D, U and S. Chapter 4 describes operators which compute relation L'2 and 

Chapter 5 contain details about different strategies corresponding to relation LI in 

different contexts. 

Knowledge-based extraction and interpretation of signal properties has 

proven to be very effective when interpretation can benefit l'rom contcxtual 

relations [65]. 

Descriptions D of different level of detail (depth) can be obtained depending 

on model expectations or the already available context. Feedback is also possible 

between relations, although it has not been implemented in the application 

described in this paper. 

It seems that variable depth descriptions can be very useful in complex tasks 

o where a preliminary selection of hypotheses has to be done based on robust but 
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( simple descriptions and then a more detailed analysis has to be performed 

involving levels of depth depending on the competing hypotheses or on acoustic 

evidence. 

The entire perception model can be represented by extended procedural 

networks which invoke subnetworks at severallevels. 

Building extended procedural networks is an activity of conditional planning. 

Elementary planning techniques and conditional planning are discusscd in [33), 

[69), f86]. An introduction to the use of planning techniques for ASR is 

described in (21). 

The most general extendcd procedural nctwork has to operatc along two 

dimensions using acoustic properties extracted in different time intervals and at 

different levels of detaiJ. It will be shown in the following sections how these 

capabilities can be performed in the EPN mode!. 

In order to perform variable depth analysis, a context in which the analysis is 

performed has to be defined. Algorithms were proposed in the past for 

segmenting continuous speech into Pseudo-Syllabic-Segments [20). Although 

these algorithms have shown good performances in different tasks and for 

varieties of speakers, they were not error free in segmenting the speech signal into 

syllables. The principal reason for these errors was that segmentation was based 

only on acoustic evidence. Acoustic Segments (AS), obtained by segmentation 

algorithms based on acoustic properties, have to be treated as data rather than 

( interpretations. Being based on acoustic evidence, ASs can be used for driving 

49 



~ ~1 ~'-: fff1~ 
J: to .... 

o and delimiting the extraction of more detailed acoustic properties or as anchors 

for lexical aceess in continuous speech. 

Once an AS has been delimited, an Extended Procedural Network (EPN) is 

invoked to further segment it into intervals and to generate seored SU hypotheses 

on each interval. Scored SU hypotheses are used by word models that consider 

possible distortions, insertions and deletions. 

Figure 3.2 shows a sort performance model for the word W. 

For the sake of simplicity, the alphabet 2:u is made cqual to the ARPABET 

(see. [47]). 

In practice less detailed models suffice for recognizing the vocabulary defined 

in Table 3.1. 

Chapter 4 and chapter 5 describe how the just introduccd model can be 

implemented with EPN. 
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Figure 3.2: Performance model of the word W using the ARP ABET for Eu 
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Table 3.1: Letters and digits vocabulary definition 

Zero One Two Tbree 
Four Five Si:'C Seven 
Eigllt. Nine A B 
C 0 E F 
G H 1 J 
K L M N 
0 P q R 
5 T v V 
W X y Z 

o 
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4 • APPLICATION TO ASR: THE NETWORK OPERATORS 

Before describing the recognition strategy, new ideas for speech analysis, that 

are suitable to be embedded in the flexible EPN paradigm, are introduced. 

Section 4.1 deals with spectral lines, their extraction from the speech signal 

and their treatment. Section 4.2 introduces Markov models in the frequency 

domaill and their relation to spectral lines. Section 4.3 presents the training 

algorithm. section 4.4 presents a diphthong recognizer bascd on the Markov 

models of section 4.2, and section 4.5 introduces a word rccognil.cr bascd on 

neural nets memhcrships. 

4.1 - ANALYSIS OF SPECTRAL LINES 

4.1.1 - EXTRACTION AND DESCRIPTION OF SPECTRAL LINES 

For spectrogram segments exhibiting narrow-band resonances, spectral line~ 

are extracted from a time-frequency-enelgy representation of a speech unit using 

skeletonization techniques already used for image analysis [63]. Thcsc techniques 

have been adapted to spectrogram lines. 

Skcletonization can detect a variable number of lines with different durations 

inside an acou~tic segment, thus avoiding the errors and the difficulties of tracking 

formants [48]. 
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( Each spectral line is described by a vector of triplets (time, frequency, 

energy) that represents the lowest level (Jevel-O) of a time-frequency morphology 

taxonomy. 

It is worth m~ntioning that spectral lines extracted with skeletonization 

always contain formants when they are detectable with peak-picking techniques, 

but very often contain other lines. The system of lines obtained in this way is 

richer than the system of formants that can be tracked interactively on 

spectrograms and used for reconstructing undcrstandable speech. 

J\ rccent paper by Kopec [48J attempts to track formants usmg Markov 

modcls. In the approach proposed in this thesis a set of lines is tracked that is 

redundant with respect to a set of formants. Distortions, insertions and deletions 

) 
of spectral lines are taken into account in each SU model. 

The motivation for such an approacil is that spectral Hnes are significant 

acoustic properties but we do not know exactly which of them, if any, are not 

cssential. We know that different speakers produce similar lines wh en they 

pronounee, for example, the same vowel. Relative frequencies and amplitudes 

between lines may vary from speaker to speaker in a limited range and bigger 

variations can be characterized as insertions or deletions. Distortions of relative 

line frequencies and amplitudes as well as insertions and deletions reflect inter-

and intra-speaker variabilities and are described by statistical methods beeause 

l' their statistics are the only knowledge we ean systematically acquire and 

. , C :i 
\ 

generalize . 

j, 

l 
53 



----~ - ---~~----------

o The above discussion is incomplete because spectral lines as extracted in our 

system cannot completely describe every type of speech units. In this thesis, we 

willlimit our attention to spectrallines in vowels and diphthongs. 

The skeletonization algorithm, described next, extracts spectral lines from 

the time-frequency-energy patterns obtained by considering the O~ kHz portions 

of spectra computed with the Fast Fourier Transform (FFT) algorithm applied to 

the preemphasized speech signal. A description of spectral lines is then obtained. 

The Skeletonization Algorithm 

The time-frequency-energy pattern for a given speech segment (sec ['20] for 

segmentation algorithm) generated by the FFT algorithm goes through '2 stages, 

namely, thinning and preprocessing before description. The pattern is thinned 

using the SaCe-Point Thinning Aigorithm (SPT A) described in (63]. 

There are two important rcstriction5 imposed on the choice of the 

skeletonization algorithm for our application, namely: 

1. connectivity of lines should be maintained by keeping the points at 

junctions, 

2. excess erosion shouldn't be allowed. 

The SPT A was chosen because it meets the above conditions. 

Figure 4.1 shows an example of such a pattern for the diphthong laei/ of /kl 

before it is thinned and Figure 4.2 shows the thinned pattern. 
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In Figure 4.1 and Figure 4.2, time increases along the horizontal axis and 

each printed !ine corresponds to a 10 ms interval. Frequency is shown along the 

vertical axis. Intervals correspond to spectral peaks cut 6dB below the maximum. 

Energy of spectral peaks is coded by lctters and digits. Letter B represents twice 

the energy represented by Jetter A; digit 0 rcpresents an energy that is twice than 

the one represented by Z etc. 

Preproccssing on skeletonized patterns is performed to discard aIl isolated, 

weak, and sc.1ttered pomts in the pattern. Preprocessing is carried out by applying 

an algorithm based on the stratcgy of tracing continuity. 

The Line Tracing Algorithm (LT A) retains properties ot collinearity, 

curvelinearity, continuity etc. present in the pattern. The significant lines in 

speech patterns are usually surrounded by lines which are less significant. 

Thinning and preprocessing surface ail significant and nOll-significant lines in 

the pattern and discard ail scattered points. 

L T A accepts the skcletonized pattern and applies an algorithm for 

smoothing. 

The skeletonized pattern is a binary image which contains only dark and 

white points. The five-neighbours of a point P, are defined to be the 5 points 

adjacent to P,. A continuous line, l, exists between points Po and Pl iff there 

exists a path Po P1".Pj- 1 Pj .... Pl such that P, -1 is a neighbour of Pj for 1 <i<I. A 

path between points Pj and P'+l exists iff there exists at Jeast one dark point 

among its neighbours. If more th an one dark point exists among its neighbouring 
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Figure 4.1: Relevant spectral peaks In a pattern of the diphthong laei/. 
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Table 4.1: The Line Tracing Algorithm. 

liDe_tradaLaJaoritlua (panera:sptCtrotralD; yar vector:lilles) 
1 paan !s a blnary image of the speech pattem 1 
1 vecror will have all detected lines in the pattem 1 

bcfÙI 

'nd 
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Sil point P Ut pallerft as white: 
SIt MW Mighbour as pOint p: 

COIllJlllU tracing 
,l1li 

if,. > 1 then 1j/UlCIIOlt foundl 
btgin 
accepl POtnt p fo, lin,. Je .' 
Sil pOint P UI pall'''' as whil' : 
Sil pOint P as strOltg,sI MW fttlghbour : 
COIlllllue trtlClnl 

,,1Il 
tI.,/CwhU, 

,na_dO 
,ndj" 

1: neighbours, n, is computed as, 
II • (j.J.j) + (j·I/+/) + (;.j+/) + (;+1.j+J) + (;+J J) 

where i and j pOints to the location of p in pattern. 
2: rulel = une , if 

1c(P) > II' 1 and Ie(ll) > 11'2 

where, le i5 the k,h line 
p is the number of points in line k 

le is the height of line, " 
11'1 and "'2 were empirically determined constants. 



o points niO-n;4' then, the point nI with the maximum energy is considered. If the 

maximum energy point is not unique, then the algorithm to find line l, is 

recursively applied to find the line which is the longest from point P" The 

algorithm written in Pascal-like notation is given in Table 4. 1. Further details can 

he found in [68]. Figure 4.3 shows the pattern produced by smoothing the pattern 

of Figure 4.1. 

The number of lines that appear in a pattcrn depcnds on thresholds that can 

he varicd in order tn have a dcsired effcct. Our ohjective is that of keeping small 

the probability of loosing formant lines. On the contrary the rncthods lm handling 

spectral lines that will he proposcd in the following are weil suited for taking into 

account rcdundant lines. 

Various solutions have been invcstigated for reduclI1g the number of 

rcdundant lines due to pitch effccts. They incJudc the possibiIity of using pitch 

synchronous FFT or cepstral analysis in sc!ccted time intervab and tn use thcir 

rcsults on a tiller for lines gencrated with asynchronous FFT. Such fiItcrs arc 

applied in such a way that a sufficient number of lines is kept in at lcast tluee 

frequency bands in which formants may be present. 

4.1.2· DESCRIPTION AND SEGMENTATION 

Spectral tines can be described at several lcvels. At the lowest level, each line 

is described as an independent object whose relations with other objects (tines) 
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level-O each spectral Hne 1S descnbed by a vector of triplets 
(time1frequency,energy) 

level-l each spectralline is described by a summary 
expressing 1 ts behavior ~nd frequency b~nd 

leveJ-2 quasi-stationary short-time segments of spectralline 
patterns are related to pl~ces of ~rticulation 

level-3 properties of the time evolution of spect~l1ines 
are descrlbed 

Figure 4.4 



o are not considered. Higher level descriptions involve relations between objects 

(lines) both in the time and frequency domaine Such relations can be eventually 

structured in a time-frequency taxonomy. An overview of the taxonomy is shown' 

in Figure 4.4. 

At level-O of the taxonomy a spectral line is described by a vector VI of 

triplets (tJI.fJI,eJI) (j=l, .. .J;i=l, ... ,1) where lJI is a time reference In 

centiseconds, f JI is a frequency value in Hz and e JI is an cnergy value in dB. J is 

the total number <)1' spectral lines in a pattern; 1 j is the number of time frames (a 

time frame usually has a 10 ms duration) correspondmg to the duration oi the j-th 

line. The i-th samplc of the j-th line is represented by (l JI' Ijl,e JI)' The line 

bandwidth is not considered bccause it is in principle redundant and in practice 

difficult to estimate. 

The information contained in vectors V
j 

can be further compressed, by 

segmcnting a spectral linc into segments of variable lcngth that can be further 

described at level-l by acceptable approximations of their time cvolutions. 

At level-l spectral lincs arc described by morphology symbols Xkfl:1 and a 

sequence of attributes. 2:1 is an alphabet. A first-Ievcl description uk of a line 

segment is expresscd as follows: 

(4.1) 

where: Xk f2:
1 

is a morphology symbol, t bk is the beginning time of the segment 

described by uk,tek is the ending time, f bk is the frequency of the beginning time, 
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t~k tek h" ! ek ! mk !Mk tGk 

1- 41 65 2154 2100 2511 2154 8.1 
2. 41 49 3078 2916 2916 3078 8.3 
3. 42 78 513 540 459 540 8.1 
4. 42 78 540 783 540 783 7.8 
5. 41 81 2160 2727 2160 2127 7.9 
6. 46 5i 1800 2187 1890 2181 8.1 
7. 45 56 3024 3240 3024 3240 8.8 
8. 51 14 2016 3375 2016 3375 8.3 
9. 58 63 3261 3348 3267 3348 8.4 
A. 65 81 2205 2565 2295 2565 8.8 
B. 74 83 201 201 2D7 324 7.1 
C. 14 83 2916 3213 2D16 3213 5.6 

Figure 4.5: Level-! description of the pattern of Figure 4.3 
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o tek is the frequency of the ending time, f Mk is the maximum frequency, t mk IS 

the minimum frequency, and eak is the average energy. 

L:1 is an alphabet obtained by concatenating two symbols belonging to alphabets 

L:1a and :Elb . Ela describes temporal events and is defined as follows: 

Ela :{ A :ascendent ,H :horir.ontal ,D : descendent } (4.2) 

Etb glves a rough indication of the frequency location of the mid-point of the 

line: 

2: lb : {LO:loh', LA :low-ol'erage, A : average , 

AH:Ol'erage-high, H/:high, VH:l'ery-high} 

(4.3) 

If a line requires more than one symbol of 2:
ltl 

or 2: lb in order to be propcrly 

describcd then it is automatically scgmented into lines each one of which can be 

described by a single symbol. 

Figure 4.5 shows a description of spectrallines represented in Figure 4.3. 

4.1.3 - A CONTINUOUS PARAMETER AND FREQUENCY DOMAIN BASED 

MARKOV MODEL FOR DESCRIBING FREQUENCY RELATIONS 

Frequency relations among Spectral Lines (SL) can be expressed in many 

ways. A particularly interesting set of descriptors is the class of Places of 
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( Articulation (PA) defined by the following vocabulary: 

EPA : {FP:front-place, CP:centTal-place 1 BP:back-place} (4.4) 

The symbols of ~PA are used for Level-2 descriptions. The literature on 

Acoustics-Phonetics is rich in work relating place of articulation to spectral 

morphologies [83]. From this knowledge we can expect differcnt relations 

between SL's and PA's depending on the nature of speech segments. For sorne 

sounds. like plosives, relations involve SL transitions: for sorne other sounds, like 

non-nasalized 50110rants, intcrcstmg relations can be cstablished betwecn PA's 

and spectral lines that are qua~i-stationary in time. The inference of the latter 

type of relations will he {hscussed in this section. 

Any speech intcrval containing only horizontal tines can be assumed to be 

quasi-stationary. The same assumption can be made with other intervals obtained 

by segmenting larger segments into sm aller ones in which line-parameter 

variations are modest. Large portions of a speech signal can be characterized in 

terms of quasi-stationary intervals of variable length. These intervals can be 

further segmented in order to obtain fixed-Iength intervals each oTle of which can 

be described by PA hypotheses using relations with SL. 

Place of Articulation is a very useful, although often not sufficient, feature 

for describing speech patterns. For sorne vocabularies, like the one consisting of 

C' letters and digits PAs are sufficient for characterizing most of the vowels and 

59 



o 

o 

diphthongs. Different speakers produce difl'erent spectral lines for the same PA, 

but such variations have constraints that can be expressed statistically on 

distortions, insertions and deletions of spectral Hnes. 

In order to obtain more adequate descriptions of speech patterns, othcr 

features have to oe considered. They can be described by other relations with 

spectral morphologies. In this way each speech interval can be represented by a 

composite description. 

In this section the possibility of using spectral hnes for the recognition of the 

manner of articulation together with the place of articulation will also be 

considered. This will makc it possible to gencrate hypothcses about ail the 

vowels. 

1\ speech unit or a word can be related to chains of composite descriptions 

through Stochastic Automata or Markov Models. The important property of 

composite descriptions is that they reprpseat clusters of acoustic morphologies 

whose importance is motivated by Speech Science and whose distortions can be 

represented by a statistical model of multispeaker performances. 
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( 4.1.4 • PARAMETER CHARACTERIZATION AND STRUCTURE OF STATISTICAL 

RELATIONS BETWEEN SL'S AND PA'S 

Segments corresponding to vowels extracted from the pronunciation of 

connected letters and numbers have been used. 

Places of articulation of vowels were assigned to segments usmg a 

semiautomatic procedure where the intervention of a supcrvisor \Vas required only 

for labeling or accepting labels of difficult cases. 

For cach labeled interval, each spectral line was represented by two 

parameters corresponding to its frequency and its associated spectral energy. 

) 

In order to introduce a sort of normalization, rather than using frequencics 

and cnergies, differences between the frequcncy and cnergy of cach li ne and the 

frequer.cy and energy of a base-line are used. The base-line is the line of highest 

energy in the low frequency range. 

The description of a quasi-stationary interval is a string Yj of vectors of the 

form: 

(4.5) 

Each vector Yij of the sequence Yj represents a line in the pattern. The first 

\ 

" 
( vector Yj1 corresponds to the base line. The remaining lines of the pattern are 

; 
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Figure 4.6: A quasi-stationary speech pattern and its sequence of vectors 



'" 
,; , " , \ , ,~ 

>, 

o sorted by frequency. 

Each vector has two components defined as follows: 

where: 

Bjll = frequency of the base Hne, 

Bi12 = energy of the base line, 

B"1=/ .- 8'11' IJ IJ , 

B"2=e··- B· 12, 1) IJ 1 

lij = average frequency of the j-th sorted line in the pattern i, 

ejj = average energy of the j-th sorted line in the pattern i. 

Figure 4.6 shows a speech interval with the corresponding vector Y j as defined by 

(4.5) and (4.6). 

4.2 • FREQUENCY DOMAIN BASED MARKOV MODELS 

In the next sections the theoretical definition of frequency domain based 

Markov models will be presented. The results of the experiments on the use of 

o such models for speech recognition will be presented in section 6.1 and section 
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6.3. 

4.2.1 - INTRODUCTION TO MARKOV MODELS 

The theory of Markov models and their application to speech recognition is 

satisfactorily covered in the literature. Basic references for the elementary 

aspects of the theory are [41], [72], (71], [8]. Several variation and enhancement 

are proposed to the basic models in [2], [26], [28], [44], l88]. In the following 

sections a discussion of the mathematical aspects of the theory that is relevant to 

our approach is nrovided. Further details can be found in the references just 

cited. 

Markov models are a special case of the EPN model. A state in the Markov 

model corresponds to a state in the network. the a priori probability of Markov 

model transition is the measure of the corresponding EPN transition. The EPN 

conditions are set to true and the probability distribution of Markov model 

transition is represented by the EPN action which returns the same probability 

value. Stochastic algorithms on Markov models like Viterbi algorithm and 

Forward-Backward algorithm are performed by the EPN supervisor with forward 

and backward strategy. 
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o 4.2.2· MARKOV MODELS IN mE FREQUENCY DOMAIN 

A Markov source is introduced to model a process that generates spectral 

lines and their energies. The model includes formants, spurious lines and lines 

corresponding to a split of a format into two lines. Frequency and amplitude 

distributions are associated with each transition in the model. The model is 

conceived in such a way that variances of the distributions are kept small so that 

each distribution represents variation due to inter-speaker differences of the 

parameters of a line having specifie structural properties. 

Distortions of frequency and energy differences are assumed to have normal 

distribution and to be statistically independent. A model without such simplifying 

assumptions would have been more realistic, but it would have implied practical 

complications. We decided to avoid them and to build a manageable model to be 

eventually compared in the future with more complex ones. 

The statistical relations between SLs and PA's are characterized by a CPMM 

(Continuous Parameters Markov Model). A CPMM is a Markov Model in which 

transitions produce vectors of parameters. The probability P(s",sk) is the 

probability of choosing the transition from state S" to state Sk when the state Sil is 

reached. q(sn,sk'Yj) is the probability that the vector Yij Bil'Bi2 is produced in 

the transition from S'I to sk' The collection of the probability distributions of the 

parameters describes a transition. 

o A transjtion t from Sil to sk that produces the vector Yi is then described by the 
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( 

following matrix: 

M= t (4.7) 

where mil is the Mean and 0;1 is the variance of parameter Bil' In our case, 1 can 

be either 1 (frequency) or 2 (amplitude). 

4.3 • LEARNING AND RECOGNITION 

The Forward-Backward [4] algorithm has been used for both learning and 

recognition purposes. On each transition the Hnes are assumed to be produced by 

a multivariate Gaussi3n distribution G(t 'Yi) with diagonal covariance matrix. In 

our case the distribution is two dimensional as we consider the probability of a 

line Yij as a function of its parameters Bij l' B ij2 (see (4.6». The formula 

becomes: 
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G(t,y;) 

1 (Blil - ml(I) B2I1 - m;:(t») 
-- + -""---

1 2 (11(t) (T;:(r) 
-----e 
211"0"1 (t) 0"2(t) 

(4.8) 

where mt(t) and m2(t) are the means of Une parameters B;jl' BiJ2 and O"t(/) and 

0"2(t) are the standard deviations of the same parameters. The distribution 

parameters m and 0" have to be estimated through the learning set 

A = YI, Y2, ... ,Y m starting from an initial hypothesis. Let us define p(t ,Y,J ) as 

the joint probability that Y, is the pattern produced by a HMM and the j-th line 

whose parameters are represented by the vector Y
'J 

is produced by the transition 

t. Formally p(t 'Yi) is defined as: 

where qs is the startpoint of t, qe is the endpoint of t, Pt is the a priori 

probability of the transition t, Œ,/q) is the forward probability of state q at 

instant i while the output Yj is produced, and f3jj (q) is the backward probability 

of state q at instant i while the output Y j is generated by the Markov model. The 

reestimation formulas that have been used to estimate the mean and the standard 

deviation of li ne parameter k, and the a priori probability of a transition t 

follow. The mean is: 
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p(Y;) 
1-1 j-l 

mk (t) = --'-------
m Il p.(t, V .. ) 

1 • IJ 
~ E -----'--

i"",1 j==l p(Y;) 

In (4.10) p(Y;) ean be faetored and eliminated, therefore obtaining: 

The standard deviation is: 

ln Il 

E E Bi jkPj(t 'Yi) 
i=1 j==1 

mk(t) = ------
m /1 

~ E p/(t,y,) 
i=1 }=1 

i=1 j=1 

ln /1 

E E Pj(t 'Y/j) 
/=-1 j=l 

(4.10) 

(4.11) 

(4.12) 

upon faetorization and elimination of p(Y,) as In (4.10). For eomputational 

efficieney, even though it is less aeeurate due to round-off errors, formula (4.12) 

ean be re-written as: 

m Il ln Il 

L; E Bijk 
2 

Pj(t ,Yjj) ~ E Bjjk Pj(t 'Yij) 

;-1 j-l -2 () ;-1 jal ( )2 
mkt -mkt 

m n m n 

E E Pj(t'Yij) 
1-1 j-l 

The estimated frequency of transition t is: 
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1 

2 
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o 
ln Il 

f = 
f III Il 

(4.14) 

1-1 J=1 "/L(t)-L(t') 

where the function L(t) returns the startpoint of the transition t. 

During learning and recognition a scaling technique similar to the one 

described in [54] has been adopted. 

In the recognition process, the probability p(Yj/MJ...) is computed with the 

Forward-Backward algorithm as follows: 

p(Y) = 2: nlll(q) 

qEQ 
(4.15) 

where Y, is an input string 01 vectors as defined by (4.5) and Mk is a CPMM. 

The string YI is assigned to the j-th Place of Articulation PA / if 

H 

p(YJM)= max {p(Y)MIr )} 
h=l 

where H = 3 for VB, VC, and VF, anJ: 

(4.16) 

(4.17) 

where C jk is the threshold of confusion between M j and Mk (the Markov source 

corresponding to the second highest score). 

If 

(P(Yj/Mj)-p(YJMk» <c jk (4.18) 

o then PA is decided (if a local decision has to be made) according to rules. 
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In a program for the automatic recognition of PA for vowels, the following 

rules can be used in order to decide when probabilities for "back" and "front" 

places of articulation are very close: 

1) if gt>g2 then "PA: back" 

2) if gt<g2 then "PA: front" 

where: 

/1 

gt=max {B'j21«Bill>Bill) and(B,j1<th 1»} 
1=1 

" 
g2=max {Bij21«Bill>th t)and(Bijl <th 2»} 

1=1 

th t = 1500 Hz; th:, = 2900 Hz. 

4.4· DIPHTHONG OPERATOR 

The speech signal is segmented to produce segments showing a quasI 

stationary pattern of lines. The smallest segment is of course a single frame. Let 

Si = Sil' s,2' ... ,sill be the sequence of segments that produce pattern 

The probability vector v·· = p.. ·1' p. .. .." ... ,P.'·I·H' 
"1 'I 'J-

where Ilijk = p(Yij/MI..) is the probability that pattern Yi be generated by model 

( 
Mk • In our case H = 3 and the three models recognize the places of articulation 
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o back, central, and front. 

A diphthong is represented by a Markov model D x in the time domain, 

who se transitions tare described by the 4-tuple (P" Sil' sk' M (1» where P, is the 

a priori probability of the transition, Sil is the st art point of t, sk is the endpoint of 

t, and M(t) is the model that generates Y,j in pattern Y, at instant j. with 

probability I-lj j/i • AlI the models together constitute the set 

D = Dl' D2' ... ,DN of models of rliphthongs. 

* The Viterbi algorithm is used to find the sequence S = t l' t 2' . .. t of 
, /1 

transitions of the model D\ that maximizes the probability 

1/ 

p(Y,/S) = TI (PlI P(V,/i\I(I)] 
,-1 

It is assumed that p(Y,/Dr:} = p(Y,IS*). Pattern Y, is assigned to diphthong class 

• D = argmax p(YJDr:)' Constraints on durations can be inserted in the model 
DrED 

following the basic scheme in Figure 4.7. in which strings of length greater than m 

can be assigned a low probability (remark the transitions leaving from Sm ), and 

strings of length less than n are not accepted. It is important to remark that no 

learning is required for such models: ail the learning is concentrated in the models 

in the frequency domain. 

The results and the experimental details of the application of the diphthong 

operator will be presented in section 6.2. 

() 
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Figure 4.7: Markov submodel for time constraints 
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o 4.5 . NEURAL NETS OPERATOR 

The pattern Yi corresponding to the speech signal is analyzed frame by frame 

by different sets of neur;,: nets [14]. Let 

be the sets of memberships calculated on the j-th frame by MLNs Ml to Mm' 

A word is represented by a pseudo Markov model W in the time domain, x 

whose transitions tare described by the 3-tuple (Sil' Sk' ft) where Sil IS the 

startpoint of t, sI.. is the cndpoint of t, and fI is a function associated to the 

transition t. Function ft: M)l X M(2 X .. , X M)/n - [0,1] returns a 

membership which is a function of input memberships {l,/k' The set of aIl the 

* The Viterbi algorithm is used to find the sequence S = t l' t2, . .. t of , n 

transitions of the model Wx that maximizes the membership 

/1 

{l(YjS) = ~ ft, ({lj 11 , •.• , /-Ljmn) 
,-1 

We define /-L(Y;!Wx) = {l(Y,/S*). Pattern YI is assigned to word class 

W* = argmax /-L(Y;!Wx)' Constraints on durations can be inserted in the model 
WxEW 
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following the basic scheme in Figure 4.7, in which strings of length greater than m 

can be assigned a low probability (remark the transitions leaving t'rom Sm ), and 

strings of length less than n are not accepted. It is important to remark that no 

lcarning is required for such models: aIl the learning is concentrated in the MLNs. 

The experimental details and results of the application of the neural net 

operator will be presented in section 6.6. 

4.6 - CONCLUSIONS 

New and highly specialized operators have been defined to perform specifie 

analyses of the speech signal. The EPN paradigm has the flexibility of integrating 

these heterogeneous operators into strategies for ASR. Nex1 chapter will 

introduce strategies for different ASR experiments. 
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5 - ASR RECOGNmON STRATEGIES 

This chapter presents several strategies that make use oi the operators of chapter 

4. Different problems are attacked. Section 5.1 shows the approach to the 

recognition of leU ers and digits. Section 5.2 presents the strategy for lexical 

access and section 5.3 introduces a strategy for speech recognition that makes use 

of neural networks. 

5.1 - PROCEDURAL NETWORKS FOR LETTERS AND DIGITS RECOGNITION 

The EPN model has a data-driven component that identifies Acoustic 

Segments (AS) based only on acoustic evidence and knowledge of the 

information bearing properties corresponding to different spectral structures. An 

Acoustic Segment usually contains at least a "vocalic" part identified by 

resonances represented by narrow band spectral Hnes in a time-frequency-energy 

representation of speech. An AS may contain one or more vowels with one or 

more consonants in the "vocalic" part. An AS may also have a head and a ta il. 

Heads and tails may contain low energy sonorant consonants or consonants 

characterized by frication noise or by a transition between a deep dip in the signal 

energy curve and an energy peak. 

The coarse acoustic properties that characterize ASs and are used for 

C delimiting them are by no means interpretations; they are just elements for 
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IOCUSÎnI the attention of the property extractors. Relatiolls between ASs and 

SUs like phonemes, diphones or syllables are established by performance models 

representing, for each SU of intere'$t, insertions, deletions, substitutions and their 

statistics. 

As unambiguous segmentation of continuous speech into ASs is very useful 

for reducing l he complexity of word hypotheses generation and verification 

because word hypotheses can start only at specifie time instants of the head, 

vocalic part or tail of an AS. 

For the head, vocalic part and tail of each AS, plans of property extraction 

opera tors (procedures) are executed. These plans produce descriptions of speech 

segments. These descriptions may apply to segments of variable duration. 

Ferguson [31] has shown how performance models can be build under the 

assumption that properties generated by a model have variable duration. Plans 

producing descriptions perform a sort of Variable Depth Analysis (VDA) 

because they may generate different types of properties for different segments. 

The results of VDA can be descriptors obtained by a sort of "Knowledge­

based vector quantizer". They can also be Speech V nit hypotheses affected by a 

certain SCOl·e. These scores that are generated by procedures are used by 

performance models consisting in stochastic automata relating words and SV s. 

U nfortunately there is not a suitable theory for the conception of 

performance modcls in such a case, but interesting research is in progress [36]. 

Such research is motivated by the existence of a similar problem in different 
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c application areas [3], [80]. While waiting for a probabilistic theory of 

heterogeneous pattern descriptions, a pseudo solution can be adopted where word 

hypotheses scores are obtained by just multiplying p,robabilities or scores of each 

segment even if the type of acoustic properties may vary from segment to 

segment. 

Most of the operators associated with EPN actions include plans, Hidden-

Markov-Models (HMM), local parsers, rule-based inference units. These actions 

produce scored interpretations of segments of the speech signal. AIl these tools 

are used for extracting an unambiguous description D of a speech pattern and for 

computing an a-priori probability for an hypothesis H: 

P(D/H) (5.1) 

The EPN supervlsor keeps up-to-date a search space where each node is 

represented by the following four-tuple: 

(q ei , q b, , context ,score) (5.2) 

where: 

- qei and qbi are respectively the end point and the startpoint of the transition 

- "context" fepresents the contextual information associated to qei It contains the 

time interval of the speech signal in which the execution of sens ory procedures 

invoked by the transition is performed. Segmental information and the current 

hypothesis are also included in the context. 

-"score" is the score of the hypothesis contained in or implied by "context" in the 

C specified time interval; score could be P(D(t;T)/H) where t; is the beginning of 
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the sentence. T could also be a set of possible time references; in this case, 

score will be a set of scores {s (t )/tET J. Composite scores can be evaluated as 

likelihoods: 

L (D ,H) Pr(D /H)Pr(H) 

where Pr(H) is obtained by a language model. 

(5.3) 

Global information is alsQ accessible by the EPN supervisor at any time. 

Markov models, linguistic description of the signal, power spectrum and so forth 

are kept in the global communication area. 

The size of the search space can be kept small in spite of a large number of 

states in the EPN if conditions and actions are properly chosen and placed in the 

network. 

The assumption made for the experiment described in this work is 

summarized in the following. Score Pi is the a priori probability of an arc; gi is 

the probability that the condition is satisfied; h, is the probability that the segment 

Sk matches with the knowledge used by action acti' f j is a multiplication 

operator, The contribution (2.3) can be rewritten as: 

(5.4) 

Let s=;Yl's2' ..... 'sn be an input sequence of speech segments, 

arcs in the network EPN k such that the initial state of al is q t/J and the terminal 
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The slJpervisor attempts to find the sequence of arcs "a" which maximizes 

the conditional probability 

P(als) P(sla)IP(s) (5.5) 

for a given s, that is, to find the sequence "a" which maxÏmizes: 

II 

P(s la )=.I1 ~,g;(COndj )hj(actj )] 
1-1 

(5.6) 

An example of an EPN to be used to compute the score of the word lfivel is 

shown in Figure 5.1. The EPN is supposed to extract data from the AS under 

analysis and to produce a score that is an estimation of the a-priori probability 

that the data extracted from AS have been observed during the pronunciation of 

lfive/. 

The initial state is associated with a conteA.1: containing the hypothesis lfive/. 

The first arc is associated with a PUSH action whose function consists in using a 

subnetwork for generating hypotheses about fricative sounds on the head of a 

segment. Action PUSH head (fr) extracts the head of the AS under analysis and 

executes a "Network of Actions" on the segment head for computing the acoustic 

properties that are relevant for discriminating among fricative sounds. Let data 1 

be the properties extracted from the AS head. Properties data 1 are related to the 

SU 1ft f' ud the following score is computed: 

Pr(data tif) 

The above probability could be obtained directly or through the probabilities of 

c the plalte and manner of articulation for f. 
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In the case of the following diphthong, the SU lail, there is no need to 

hypothesize the manner of articulation in order to distinguish it from the other 

syllables of the language to be recognized. Thus, only the properties data 2 for the 

place of articulation are considered and the score (vf stays for front-vowel, vc 

stays for central vowel): 

Pr(dataivc v f) 

are computed by the action PUSH vocalic. An algorithm for the computation of 

the above probability using HMM in the frequency domain is proposed in [62]. In 

a similar way a "tai! (fr)" network is invoked for generating hypotheses about 

fricatives in the tail of the segment. It will e~1ract data, and compute a score for 

Iv/. 

Eventually, the final state 53 is reached and the action POPABS f is 

executed. The associated function f for computing the cumulative score returns 

Pr(data/5), where Pr(data/5) = Pr(data/f) Pr(data 2/vc vf) Pr(data 3/1'). 

Networks like the one shown in Figure 5.1 are examples of a model driven 

approach to word hypotheses. In such an approach there is a procedural model 

for each hypothesis that can be generated. The model driven approach and the 

example oi Figure 5.1 have sorne problems that will be discussed in the following. 

The first problem is that EPNs like the one of 151 and the one of 191 have a 

lot of actions in common whose execution should not be duplicated. A more 

efficient network organization will be presented in section 6.4. 
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HlM = NCVSON 
BEEN = NI V SON 
IF - VNC 
MOST = SON V NC NI 
MUST = SON V NC NI 
OUT - V SON NI 
S) = NCV 
WHAT = SON V NI 

Figure 5.2: Subset of vocabulary 
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Table 5.1: Basic PPF classes 

Ne 
NI 

SON 
V 

WF 

Table 5.2: PPF based on coarticulatory effects 

SV (SON-V) 
SVS (SON-V-SON) 

VS (V-SON) 
VSV (V-SON-V) 

VV (V-V) 
WV (WF-V) 
NIF (final NI) 

NIS (NI-SON) 
SVSV (SON-V-SON-V) 
VSVS (V-SON-V-SON) 

SW (SON-WF) 
VW (V-WF) 

NeF (final Ne) 
Nes (Ne-SON) 
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LPK .01 
SPI< .02 
MPK .02 
LONP .01 
LNS .2 

LPK .01 W.JS .2 LPK .8 
SPI< .01 LVI .12 SPI< .0 
MPK .01 MVI .2 MPK .0 
LOWP .1 SIX) .01 LONP .0 
LNS .35 LDD .01 LNS .0 
~ .35 LMD .05 M'S .0 
LVI .01 SMD .05 LVI .2 
MVI .1 U-ID .05 MVI .0 
SlD .01 SH) .05 SlD .0 
LOD .01 LDD .0 
LMD .01 LMD .0 
SMD .01 SMD .0 
U-ID .01 U-ID .0 
8H) .01 8H) .0 

1.0 

Figure 5.3: Example of Markov model f(\r "fricative-vocalic" (fr-vw) 
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( The second problem is that different networks may extract diCferent types of 

data in the same AS making score comparisors rather difficult. 

This problem can be avoided by organizing the EPN hierarchy in such a way 

that properties for each interval of an AS are extracted only by a single action. 

The third problem is that properties like data 1,data2 and data 3 cxtracted in 

different intervals of the same AS may be different in number and in quality. This 

problem is common to other Pattern Recognition applications [3], [36], [80]. A 

pseudo-solution of such a problem has been adopted for the project described in 

this paper consisting in just multiplying probabilities of different segments. Other 

solutions are under investigation. 

J 
A fourth problem is that the boundary between heads, vocalic parts and tails 

may be Cuzzy. This possibility is not considered in the application described 111 

this research although it will be investigated in future works. 

Section 6.4 will report the experimental results and set-up for the recognition 

of letters and digits. 

5.2 • LEXICAL ACCESS 

5.2.1 • INTRODUCTION TO LEXICAL ACCESS 

The ultimate goal will only be reached when Speech Recognition Systems will 

c be speaker-independent and will dea} with vocabularies that approach in size 
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o those typically commanded by human beings. A hum an being can usually 

recognize from 50,000 up to 100,000 words, although he may have a conscious 

knowledge of only a fraction of t!lis amount [84]. However, to converse with one 

another people normally use a maximum of 12,000 words [46]. Therefore a 

vocabulary of this size would suffice to make the- interface between man and 

machine approach the reality of vocal communication between human beings. 

Systems presently in general use deal with very limited vocabularies (less than 

1000 words) and are directed at very specific and specialized tasks; moreover, 

since most are speaker-dependent they need a special training from the would-be 

user. This training is lengthy and delicate in spite of the reduced vocabulary size 

involveù. 

Interesting laboratory prototypes have been developed for the recognition of 

10 to 20 thousand words [35] [43], [50], [60]. Such systems are speaker-dependent 

and most do not recognize connected speech. 

Systems that rely upon template-matching techniques are hardly manageable 

if extended to the size of large lexicons. The complexity of such an approach 

depends on the number of templates. The reduction of a smaller recognition unit 

(for exalT'ple from words to syllables, doesn't help; in English there are about 

20,000 syllables [67]. 

The mair.. problem with large vocabularies still remains the high degree of 

confusion inhemnt in them. In a study using the original phonetic labeling from 

the Webster dictionary, close to 30,000 minimal pairs of words have been found 
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( [84]. Furthermore, a statistical study of spoken English [25] reported that in most 

minimal pairs, the distinguishing phonemes differ by their manner of articulation 

rather than their place of articulation, thus aggra~ating the confusion. This 

suggests that very fine acoustic information has to b0 extracted from the signal in 

order to correctly recognize phonetic segments. 

Phonetic recognition, as opposed to template-matching, has the advantage of 

cxploiting phonemic constraints and distributions in large lexicons. Shipman and 

Zue [81J showed that a large vocabulary can be reduced to a very small list of 

candidates (on the average less than one percent of the total vocabulary) if the 

utterance is described in terms of six coarse phonetic classes. Search space is 

thus drastically reduced and costlier methods can then be used to examine in 

J details the diminished list of candidates. 

Other Approaches in Word Recognition includc: the CMU Continuous Speech 

Recognition System [76], the Torino Large Lexicon Access Task System [15], 

[50], the IBM-France Very Large Size Dictionary Speech Recognition System [60], 

the BNR Large Vocabulary Word Recognizer [35], the NEC Large Vocabulary 
1 ( 

Word Detection System [37], the Tangora 20,000 Word Speech Recognizer [43], 

and others [40]. 

5.2.2 • EPN FOR LEXICAL ACCESS 

The EPN is a valuable tool to describe and implement the access procedure 

to a large lexicon. Lexicons may have different representation, but the EPN can 
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o support the most general one: graph representation. A lexicon that is organized as 

a tree is a particular case of a graph. EPN is hierarchical, so the lexicons can be 

described using different details of description at different level of representation. 

The built-in network actions add power and generality to the recognition process 

that has been designed on the lexicon. U ser-defined conditions and actions allow 

the definition of a very flexible recognition environ ment. 

Generally speaking the lexical access is not performed on the base of the 

whole words, but smaller Speech Unit.;; (SU) ar~ used. Different approaches make 

use of different units. In our case the units are called PPF (Primary Phonetic 

Features) [20]. The basic five PPF classes are reported in Table 5.l. 

AlI thc words in the dictionary are described according to the chosen 

strategy. A subset of our rlictionary is shown in Figure 5.2. 

Several words may have the same PPF description. Conversely, a set of 

words is attached to a sp\;cific PPF description. This subset is called a cohort. 

Therefore the result of the lexical access is a set of words that correspond to the 

PPF description recognized in the signal. 

The relation between PPFs and signal is rlescribed by HMMs. Each PPF is 

represented by a three-state Markov Model whose transitions are taken according 

to the transition PAC distribution (Figure 5.3). PACs (Primary Acoustic Cues) 

[21] are extracted from the signal. Each HMM has been learnt in a speaker 

independent way [57]. The word model for recognition purpose are then obtained 

by concatenating the HMM corresponding to the PPF description of the word 
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Figure 5.4. Unfortunately, this approach is far too simple because of 

coarticulatory effects, which are contextual modifications of phonemes. To better 

represent the reàl world several PPF classes that take into account the 

coarticulatory effect have been defined (see Table 5.2). Several advantages have 

risen from the use of EPN. The coarticulatory effects can be represented in a 

descriptive way (an arc on a graph). Furthermore, subnetworks give rise to a 

highly parallel architecture. As example, the subnetwork SONY is subsequently 

decomposed into three subnetworks: the proper SONY model in parallel with the 

concatenation on the SON and V models (Figure 5.5). 

A special user defined action PUSHSYM has been defined for the purpose of 

implem.enting the concatenation of markc.v models. The action PUSHSYM m, 

where m is a HMM, receives a set of scored and time-stamped initial states 

S = (St', t l '), (S2', 12'), .•. ,(s,,', III') 

as input and returns a set of scored and time stamped final states 

F ( " ") ( "") (" ") (" t ") = sl,l ' t 1,1 ' S2,1 ,t2,1 ' ... , Sm,l ,Im,l ' ... , Sm,,, ' m,II 

as output. The score attached to states represents the probability of being in that 

state at the stamped time. The score of each initial state s;', rather than the 

certain probability, is successively attributed to the initial state of the HMM m. 

This ir .. ~dal state is put in column t;' of the lexical trellis. The corresponding 

scores appearing attributed to the final state of M at times I l ,;'',12,t, ... ,lm ,;'' 

during the analysis of the signal from 
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PUSH~ PUSHV PUSHONC PUSHONI 

Figure 5.4: EPN corresponding to the word "MOST" 

PUSHSYMSON PUSHSVMV 

PUSHSYM SONV 

Figure 5.5: EPN corresponding to the PPF SONY 

o 



~J • .:,:...*~:;~"'-,~,~"~';,-:"i> - " "'";~~I.,. ... -:~r~,..~ ",\-"> ,,1_"~ " ~ .. ~ l}' .. '- , ..... s-'. ~_ ~.R ....... , ... >-",."~-._-"'" ,,,-' " ·_-~'_··-~-~li_lrrii ~ -~ ~ ~ 

~ ~ 

OCH)RT1 

1 ~10) 
:31 
~ 
"'1 -, G PUSHSVM NC __ PUSHSYM V CXJt-KlRT6 
VI . 
0\ .. 
trl 

~ 
(') 1 PUSHSYM NI __ PUSHSYMV __ PUSHSYM SON __ 

OCH)RT2 0 

~ 
fi) 

'"0 
0 

= Q. 
Er ,-1{ PUSHSVM V __ PUSHSVM Ne .....--... CXHJRr3 (JQ -0 -~ G 

G es. \ \ PUSHSYM~ ,.-...,.. PUSHSYM NI ,.-...,.. OCHJU'S (') 
0 
1:1 
0 ...... 
~ _. 
~ 

\ PUSHSYM SON .....--... PUSHSYM V "'1 ,,--...... PUSHSYM NI ,--....... OCH)RT7 CD 

Y' 
l\J 

PUSHSYM NI oa«:lRT4 

, ;.--~ 



0 

o 

CXHJn'CXXE CXJœT 

1 = NCVSON 
2 - NI V SON 
3 = VNC 
4 - SON VNC NI -
5 = V SON NI 
6 = NCV 
7 = SON VNI 

Figure 5.7: Co bort list for the vocabulary of Figure 5.2 

HlM 
BEEN 
IF 
MOST 
MUST 
OUT 
g) 

WHAT 

1 
2 
3 
4 
5 
6 
7 
8 

1 
2 
3 
4 
4 
5 
6 
7 

Figure 5.8: Word code and cobort code for tbe vocabulary of Figure 5.2 
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formed by score and time are put in the set of scored and time stamped final 

states. The states and the related information are propagated through the state 

buffer of the EPN. The action PUSHSYM computes in an efficient way the 

contribution of each initial state and signal interval to the global lexical trellis. 

The principles of "overlapping contributions" takes place and each partial 

computation is halted whenever it is sure that the contribution wouldn't modify 

the optimal selection previously made. In this way only a smalt amount of average 

overhead is paid for the flexibility of describing the lexicon in the EPN formalism. 

The EPN structure corresponding to the dictionary of Figure 5.2 is shown in 

Figure 5.6. Figure 5.7 and Figure 5.8 show the cohort set and dictionary with word 

code and cohort code. 

Experimental results on the lexical access will be presented in section 6.5. 

5.3 - PROGRAMMABLE EXECUTION OF MULTI-LAYERED NETWORKS 

Characterizing Speech Units (SU) in terms of speech properties or speech 

para met ers requires a form of learning with a relevant generalization capability. 

Structural and stochastic methods have been proposed for this purpose [21], [42]. 

Recently, a large number of scientists have investigated and applied learning 

systems based on Multi-Layered Networks (MLN). Definitions of MLNs, 

motivations and algorithms for their use can be found in [10], [38], [70], [77], [85], 

[87]. Theoretical results have shown that MLNs can perform a variety of complex 
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o functions (77]. Furthermore, they allow competitive learning with an algorithm 

based on weil established mathematical properties. 

Our interest in the use of MLNs is justified by previously published work. 

We have introduced a data-driven paradigm for extracting acoustic properties 

from continuous speech [22] and have investigated methods based on fuzzy or 

stochastic performance models for relating acoustic properties with SUs. MLNs 

appear to be good operators for automatically learning how to extract acoustic 

properties and relate them with phonetic features and words automating most of 

the activity which formerly required a large amount of effort from a hum an 

expert. The human expert used knowledge acquired by generalizing observations 

of time-frequency-energy patterns. We will investigate in this section how such 

learning can be performed by a set of MLNs whose execution is dccided by a 

data-driven strategy. By applying an input pattern to an MLN and clamping the 

output to the values corresponding to the code of the desired output, weights of 

connections between MLN nodes can be learned using error-back propagation 

[70]. When a new input is applied to an MLN, its outputs may assume values 

between zero and one. If we interpret each output as representing a phonetic 

pro pert y, then the output value can be se en as a degree of evidence with which 

that pro pert y has been observed in the data [17]. If phonemes are coded using a 

known set of phonetic features, the MLN s will learn how to detect evidence of 

each feature wlthout being told a11 the details of the acoustic properties relevant 

o for that feature. Statistical distributions cf feature evidences can be coUected in 
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c performance models of SUs conceived as Hidden Markov Models (HMM). These 

models ean be used to represent the time evolution of feature evidences for eaeh 

" 
SU or word. It is also possible to compute distances between time evolutions of 

real and desired degrees of evidences and to use such distances to rank word 

hypotheses, eaeh word being characterized by a desired time evolution of degrees 

of evidenees. Details about organization of muItilayered networks ean be found in 

[7]. 

S.3.1 - USE OF MLNs IN A RECOGNITION SYSTEM 

The speech signal is initially segmellted into two types of regiolls. These 

r 

regions and transitions between them define situations. Each region is labeled 

J with one of the following symbols: SON (attached to a segment with narrow band 

resonances - typieally vowels, nasals and sonorant consonants), NS (attached to 

segments with a spread of energy in higher frequeneies - typically fricative sounds 

l ' 
- or to segments with a very low total energy). Each type of segment may contain 

every phoneme, but different sets of MLNs and MLN inputs are used for different 

types of segments. The system that performs a data-driven execution of MLNs is 

" '. 
',' described by an Extended Proeedural Network (EPN). A generai purpose 
,-
.' 

~ 
" r· 

environ ment for developing various types of EPNs has been developed [22]. A 

~ 
simple EPN has been coneeived to implement the programmed exeeution of 

f 

" . 
~ MLNs. 
f 
! 

t ( 
~\ 

i. 
j " 
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The speech signal is considered as a sequence of segments of type SON, NS, 

and of transitions between segments. In Figure 5.9 the step corresponding to the 

analysis of a transition followed byan NS or SON segment is shown. This step is 

repeated as many times as the length of the signal requires. Figure 5.10 shows a 

two-steps variable-depth strategy associated with a segment. Depending on the 

preconditions, a particular set of MLNs is activated. The variable-depth paradigm 

is described in the following. If two or more candidates have scores which are 

close enough to trigger the variable-depth analysis, then an MLN specialized to 

solve the specific conflict is executed. If the candidates are weIl discriminated, the 

execution of specialized MLNs is not required and the default transition is taken. 

The number of contlict sets is finite and small. Several stages of variable-depth 

analysis call be considered, although, in practice, there are no more than two of 

them. Variable-depth analysis is particularly useful, for example, to discriminate 

between Iml and Inl when these sounds have close degrees of cvidence or to 

discriminate among pairs of plosive sounds. 

5.4 • CONCLUSIONS 

The EPN paradigm has been used to define the strategy to solve sorne ASR 

problems. Such a strategy involved the use of heterogeneous operators. Next 

chapter will describe the experimental set-up and the results obtained in ASR 

applications. 
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PUSH TRANS PUSH SEGM POP o a {)t-----{) 

Figure 5.9: Analysis of a transition followed by a segment 

C(N)~ 

PUSH MLNSET1 
CONO conf1 ,1 
EXE solve1.1 

CONO conf2.m 
EXE solve2.m 

Figure 5.10: Two-steps variable-depth analysis 

CONO End-of-segment 
POP 
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6· EXPERIMENTAL RESULTS 

Results l'rom various experiments are reported. Section 6.1 shows the results 

of the recognition' of the place of articulation. Section 6.2 deals with the 

recognition of diphthongs. Section 6.3 shows the results of vowel and diphthong 

recognition. Section 6.4 presents the results of lctter and digit recognition. 

Section 6.5 deals of lexical access and section 6.6 presents the application of the 

neural net operator to isolated digit recognition. 

6.1 • EXPERIMENTS ON THE RECOGNITION OF 

THE PLACE OF ARTICULATION 

This experiment was based on the operators presented in section 4.1 and 

section 4.2. Vocalic segments corresponding to 500 pronunciations of vowels in 

continuous speech from 25 female and 25 male speakers were considered for 

learning 3 CPMM, one for each PA in ~PA' 

Learning was performed using the Forward-Backward algorithm on vowels 

extracted from random sequences of connectedly spoken letters and digits. 

CPMM were obtained for the three places of articulation, namely FP, CP, 

BP. 

Figure 6.1, Figure 6.2, and Figure 6.3 show the CPMMs obtained. A test set 

consisting of vowels pronounced by 9 new female and 9 new male speakers was 

C used. The results are summarized in Table 6.1 and show the contribution of rules 
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su .. sllta Trln.lllon M ••• (l'tl) V.ri."c. (a") \1 .. " (Ml V.riance (r) 

1 3 O.,. 'sa.790 5935.361 !.O]3 0.316 

1 . 0.561 511.003 4019373 1.411 o l!i] .. 
:: 6 0509 lU.6" 6104.010 ·1.726 v.a9l 

: 3 0.3%7 %:1.44' 1103.066 ·1.%61 0500 

:: . 0.164 ·136.760 l'SSl.347 ·0.11: 0.1:3 .. 
3 5 O .... 1777.933 '''45.1%' ·0.016 0.,91 

3 4 O.lfT 639.4'1 27J76' 000 ·1.1:: 0.17' 

3 3 0.11$ 444.053 nl1.113 -1.135 0.1!i1 

4 5 0.704 1731.'" 39109.133 .0.140 0631 

6 4 0.196 U02.419 14644311 -0 .• 47 OUI 

5 7 0.337 %3:0.153 19535.136 ·0.159 0536 

5 6 0.342 %05U33 434'.31S 0.05' 0"1 

5 S 0302 IIU.370 1709.103 ·0.%51 0.71% 

6 6 0.117 lIST.1I1 2999.77' 0.071 0.'51 

6 7 0.783 :3:3.111 14175.'50 0.132 0.310 

7 7 1000 %6U.696 11239914 -0014 0.66% 

o Figure 6.1: The inferred CPMM for the front place of articulation. 
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Figure 6.2: The inferred CPMM for the central place of articulation. 
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Figure 6.3: The inferred CPMM for the back place of articulation. 
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Table 6.1: Results on the recognition of the place of articulation 

F-B alg. F-B alg.+rules 

BP 95% 97% 
CP 08% 98% training set 
FP 98% 99% 

BP 84% 94% 
CP aS% 98% test set 
FP 96% 06% 

c 
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to the decision process. 

6.2 • EXPERIMENTS ON THE RECOGNITION OF DIPHTHONGS 

Diphthong recognition was executed using the opera tors defined in section 

4.1, 4.2, and 4.4. 

6.2.1 • TEMPO&AL RELATIONS OF FREQUENCY DESCRIPTORS 

Frequency descriptions based on the alphabet ~PA (see section 4.1.3) can be 

generated at fixed or variable length intervals. For each interval, the three places 

of articulation (FP, CP, BP) can be hypothesized and a score can be attached to 

each descriptor. The score is the a-priori probability computed for that descriptor 

by the Markov Models (see section 4.2). Segmenting the speech pattern into 

variable length intervals can also be done by putting an interval bouml whenever a 

consistent change is detected in any of the pattern lines. 

Figure 6.4 shows the spectral lines of a pronunciation of the leUer U (ju) 

spoken in isolation. The highest scored hypothesis about the place of articulation 

is indicateJ for every 10 ms fixed-length interval. Symbols represent places of 

articulation for vowels according to an alphabet Ev defined later on. 

The redundant descriptors shown in Figure 6.4 suggest two possible 

approaches to A ,SR. By labeling fixed-duration intervals with the PA symbol 

having the highest score and considering this label together with others generat~d 
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Figure 6.4: Spectrallines of a pronunciation of the letter U (ju). 
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by similar procedures but representing different phonetic properties, a composite 

description can be obtained for each interval and used as the output of a vector 

quantizer. This approach is suitable to be used with stochastic decoding [8] which 

is essentially model-driven. 

Another possibility consists in having a data-driven segmentation followed by 

actions that generate scored hypotheses for each segment. This possibility has 

been investigated to produce the results of section 6.1. 

The scored hypotheses of the segments in Figure 6.4 can be combined in 

order to obtain word hypotheses. If the lexicon is made of letters and digits, 

most of the lexical hypotheses contain vowels that can be identified only on the 

basis of the place of articulation. Furthermore, if letters and digits are 

pronounced in isolation, most of the sonorant portions of cnergy peaks 

correspond to vowels and diphthong. For this purpose, the alphabet used for 

descriptions in Figure 6.4 is defined as follows: 

~v: { (VB:Back Vowel), (VC:Central Vowel), (VF:Front Vowel) }. 

The letter U can be characterized in terms of the places of articulation of its 

vowels as follows: 

u= (VF) (VB) 

and its sccre can be obtained by just multiplying the scores of VF and the 

scores of YB. 
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If the segment has three intervals, then the scores for the following 

possibiIities have to be considered: 

{ (VF)(VF)(VB) } , { (VF)(VB)(YB) } 

and the maximum of the scores has to be ascribed to the word hypothesis U. 

It can be easily seen that the number of possibilities to be considered grows 

with the length of the segment. 

The best probability for the hypothesis {(YF)(YB)} can be computed by 

using a Markov Model in the time domain like the one in Figure 6.5. The 

probability to be estimated is: 

Pu = P(spectral-lines /«VF)(VB») 

An estimation of Pu is obtained by applying a Viterbi-Iikc algorithm to the 

source of Figure 6.5 with the assumption that the probabilities of symbols 

associated with arcs are not known a-priori but are computed using CPMM in the 

frequency domain. Notice that the model of Figure 6.5 contains a rudimentary 

constraint on durations. In fact, q23 represents the probability that the duration of 

the YF segment is 20 ms, while q22 represents the probability tl1at the duration of 

the YF segment is longer. 

Table 6.2, shows the sequences of places of articulation for vowels for which 

time-domain Markov Models have been derived. The digit-Ietter vocabulary is 

defined in Table 3.1. 
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Figure 6.5: Time-domain Model for U (VF YB). 
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Table 6.2: Sequences of places of articulation and corresponding words 

Sequence of places of articulation confusion set 

e,G,p,3,V,C,S,T,O (h) 
L,M,N,S,F (t) 

VF 
A,K,J (h,d) 
X,H,8 (t) 

6 (h,t) 
Z,7 (h,t) 

VC R 

) VS 2,0,4 (h) 

VF VS o,a,u (h) 

VC VF 1,5,9 (h,t) 

VBVC 1 

VS VC VF y 

VC VF VS W 

c 
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It appears from Table 6.2 that the recognition of the place of articulation for 

vowels and diphthongs is not sufficient for an unambiguous characterization of aIl 

the words of the letter-digit vocabulary. 

Confusion sets are indicated in the second column of Table 6.2. Each line of 

words corresponds to a confusion set. Confusion sets corresponding to the same 

sequence of PAs are identified and solved in Many cases by analyzing the head(h) 

or the tail(t) of the word pattern and by generating hypotheses about consonants. 

These hypotheses are also scored by a-priori probabilities as described in [18], 

[22], [61]. Each conftict set in Table 6.2 ends with the indication of the he ad or 

tail analysis that will allow disambiguation among its components. 

Details of the he ad and tail processes capable of performing such 

disambignations are described in [18], [22], [61 J. 

A more reliable disambiguation could also be performed with a recognition 

of the manner of articulation as weIl (for example: 0 of 4 vs u: of 2). 

Not a11 the pronunciations of diphthongs are perfect; this May cause more 

ambiguity th an expected by just considering theoretical places of articulation for 

vowels and diphthongs. 

Let us consider now the leUer A (aei). It is a diphthong, but the place of 

articulation of its phonemes is VF for both. So, even if a pronunciation of A has 

been segmented into Many intervals, the hypothesis for A is the one 

corresponding to VF in aIl the intervals. The hypothesis will receive the same 

score as the hypothesis for E which also corresponds to VF in aIl intervals. In 
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order to solve this ambiguity, as weil as the ambiguities generated by imperfect 

pronunciations, more detailed temporal relations among spectral Hnes have to be 

considered. These relations are introduced at the third level of description 

hierarchy and are used by a disambiguation process indicated by d in Table 6.2. 

Level-3 descriptions refer to temporal relations of level-l descriptions 

representing Hnes that are close in frequency. They are of the following type: 

where Rm is a relation symbol, Ym 1 and Ym2 are line descriptions. 

Rm symbols belong to an alphabet ~3 whose elements are defined using 

stylized pictures in Figure 6.6. 

Level-3 descriptions are obtained by an algorithm, ALDESLEVEL-3, who se 

details are omitted for the sake of brevity. 

Composite descriptions can be obtained between Level-3 descriptions and 

PAs. 

The following experiment shows how Level-2 descriptions can be useful for 

recognition. The purpose of the experiment is that of showing the potential of the 

property "follow-down" (FDN) for characterizing the diphthong /aei/. 

The results shown in Table 6.3 refer to the pronunciations of E and K in 

letters like (E,P,B,T,D,K, etc.) for five speakers (four pronunciations for each 

letter and each speaker). 
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Table 6.3: Distinction of diphthong laeil as opposed to vowel/i:1 

Speakers 1 Letter FDN VF Ml/ae/ 6oFl/i/ 

#1 jkj 100% 100% 425-450 325-345 
others 0 100% - 345-525 

#2 jkj 100% 100% 415-525 350-375 
otb.ers 0 100% - 425-525 

#3 jkj 100% 100% 375-450 300-325 
otb.ers 0 100% - 300-500 

) 

#4 jkj 100% 100% 575-650 325-350 
others 0 100% - 355-610 

#5 jkj 100% 100% 475-525 275-300 
others 0 100% - 325-550 

$. 
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o The strong evidence of follow-down property and 100% presence of VF in 

letter Ikl allows to distinguish the diphthong laeil and to unambiguously 

distinguish the first confusion set for VF in Table 6.2 from the second one. Table 

6.1 shows also the frequency intervals in which spectral lines of lael and Iii 

involved in the VF relation were detected. As these intervals overlap, it appears 

doubtful that context-free recognition algorithm can be efficient in multispeaker 

detection of the diphthong laeil as opposed to the vowel Iii. 

(} 

The results obtained show that hierarchical descriptions are powerful tools 

for detecting and recognizing diphthongs as opposed to single vowels. 

Unfortunately, when many speakers are analyzed, even robust properties may 

disappear. In order to make the decision more rcliable, a redundant set of 

Transient Properties (TP) are extracted based on acoustic preconditions. When 

these properties are detected, transitions of spectral lines are extracted covering a 

time interval whose duration can vary. For each line transition, !ive parameters 

are considered, namely fs -PHs (the frequency of the starting point in the base­

line), M (the frequency excursion of the transition), T (the time excursion of the 

transition), 63 (the amplitude excursion of the transition), em -p 12m (the 

difference between the average energy in the line transition and the average energy 

of the corresponding segment of the base-line). 

CPMMs have been derived for these types of transition using the five above 

mentioned parameters. The a-priori probability rendered by each transition 

CPMM was then multiplied by the probability obtained for the places of 
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( articulation using the Viterbi-like algorithm in the time domain. In this way, a 

composite score for each sequence of vocalic places of articulation shown in the 

tirst column of Table 6.2 was com~uted. This composite score takes into account 

models derived for quasi-stationary patterns as weil as models of transients. A 

complete score for each word hypothesis is then obtained by multiplying the 

composite vocalic score by the scores computed on the head and tail of the 

segment. The letter scores may refer to generic vocalic hypotheses or detailed 

consonantal hypotheses. 

c 

6.2.2 - RESULTS ON VOWEL AND DIPHTHONG RECOGNITION 

The data described in section 6.1 were llsed for lcarning CPMMs for the 

place of articulation of vowels. 

Recognition tests were performed on 20 new speakers who pronounced the 

vocabulary of isolated letters and digits described in section 6.4.3 and shown in 

Table 3.1. A decision was made by selecting the sequence of places of 

articulation for which the composite score made of probabilities of stationary and 

transient components was maximum. 

The confusion matrix obtained with the above described experiments is 

shown in Table 6.4. Results are in percent. Sorne errors, like in the case of (VB) 

and (VF)(VB), are corrected by the recognition of consonants at the lexicallevel. 
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~ Table 6.4: Confusion matrix for the recognition of vowels and diphlhOngs·1 

E C N 1 

VB VC 
VC VF 

VF VC VB VFYB VCVF YBVC VF VB 
VF 1 97 1 15 1 12 22 1 1 1 

VC 1 1 85 1 
5 1 1 

VB 1 
1 1 88 1 14 1 1 1 1 1 

VF YB 1 1 1 1 64 1 1 1 1 32 1 

VC VF 
1 2 1 1 1 95 20 1 

YB YC 1 1 1 1 80 6 1 

VB VC VF 1 1 1 1 1 1 
94 

VC VF VB 1 1 1 1 1 68 1 

c 



o The most typical errors are shown in Figure 6.7 and Figure 6.8. 

Figure 6.7 shows a pattern of Y (lu ai!) for which the final /il is missed. 

Figure 6.8 shows a pattern of lluanl for which the initial/ul is missed. 

The results show the effectiveness of the use of spectral lines and 

performance models of their distortions in the recognition of sequences of places 

of vowels. 

6.3.1 - EXPERIMENTS ON THE RECOGNITION OF VOWELS AND DIPHTHONGS 

Wc will cor.centrate, in the rest of this section, on the recognition of vowels 

and PAs in quasi-stationary, non-nasalized speech intervals. The opcrators that 

have been used to produce these results are explained in section 4.1, 4.2, and 4.4. 

6.3.1 - P ARAMETER CHARACTERIZATION 

Speech segments corresponding to vowels extracted from the pronunciation 

of letters, digits and words containing 10 English vowels have been used. In 

order to !earn statistical relations of SLs, a learning set was prepared in which 

vowel labels were assigned to segments using an automatic procedure made 

possible by the choice of words used for learning. 

Figure 6.9 shows a speech interval with the corresponding vector Y as defined 

by (4.6). 
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( Details on learning and recognition of vowels and PAs will be given in the 

next sub-section. 

6.3.2· EXPERIMENTS ON THE RECOGNITION OF STATIONARY SEGMENTS 

In order to investigate the possibility of using spectral lines and CDHMM for 

ASR an experiment has been set up for the recognition of English vowcls. A 

signal data-base has been built by asking 20 speakers (10 male and 10 fcmale) to 

pronounce the monosyllabic words shown in Table 6.5. Each speaker read a 

randomly ordered li st which included 40 occurrences of each word from Table 

6.5. Every pronunciation of every word was then processed using a network of 

J HP workstations including one HP 9000-236 especially cquippcd for speech 

processing, an HP 9<m-320 and an HP 9000-330. Table 6.5 contains also a 5 wont 

vocabulary containing vowels that are common to number of Languages other 

than English. 

Task decomposition among units was performed as suggested in [20]. Fourier 

Transformation, Primary Acoustic Cues as defined in [20] and Spectral Lines 

were computed for each word in roughly 10 times real-time. 

For each word pronunciation, three vowel samples were automatically 

extracted using PAC description. A vowel sample was extracted in the Middle of 

the vowel in an interval of 60 ms duration. 

( 
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Pigure 6.10: General structures of CDHMMs for the recognition of vowels. 



Table 6.5 

VOCABULARY FOR VOWEL RECOGNITION 

5 VOWELS 10 VOWELS 

) 
bed bat 
beep bed 
boot beep 
but boot 
saw but 

far 
fur 
pit 
put 
saw 

c 
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Table 6.6: Transition probabitities of a CDHMM 

o 
startpoint endpolnt probability m 1 v

1 
m

2 
v

2 

0 1 1.0 318.1 675 8.57 0.081 

1 2 0.01 117.0 855 0.313 0.008 

1 4 0.01 1445.0 130502 -1.669 0.174 

1 5 0.406 1696.8 12852 -0.924 0.923 

1 6 0.573 1978.5 1781 0.567 0.138 

2 6 1.0 1992.0 248004 1.072 0.072 

4 6 1.0 1953.0 238388 0.7 0.031 

5 6 0.821 2048.1 8774 0.539 0.173 

5 7 0.179 2533.4 3228.5 0.325 0.057 

6 7 0.966 2592.9 4604 0.811 0.121 

6 8 0.034 2890.3 48880.5 0.383 0.663 

7 8 0.286 3082.9 6570 0.106 0.409 

7 9 0.714 3275.0 18647 0.319 0.118 

8 9 1.0 3490.2 14750 0.023 0.220 

where: 

m
1 

• me an of frequency 

v 1 • variance of frequency 

m
2 

• mean of amplitude 

v 2. variance of amplitude 

,n -



( Learning was performed using data from 10 speakers (S male and 5 female). 

Recognition was performed using data from the other 10 speakers. 

Markov chains were built in the following way. The frequency range from .1 

to 3.5 kHz was subdivided into intervals. A basic chain was built by considering 

a linear sequence of a state and a transition, each transition corresponding to a 

frequency interval. Othc.r transitions were then added in order to allow each state 

to reach any of the states following il. 

Figure 6.10 shows the general structure of a CDHMM for the recognition of 

vowels as it is set up before starting a learning phase. 

A transition t l'rom state Sil to state sk that produces vector Y" is associated 

1 with the mean of the differencc between the frequency and energy of the u-th Hue 

and the frequency and energy of the base Hne. Each transition is also associated 

with a transition probability not shown in Figure 6.10 for the sake of simplicity. 

At the beginning ail the transitions having the same destination state are 

associated with the same means and standard deviations. 

Chains conceived with the above mentioned criteria have been constructed 

and used for learning and testing vowel models. A tabular description of a 

Markov chain for a front vowel is given in Table 6.6. 

The tirst experiment concerned learning and recognition of the place of 

articulation as defined by (4.4) for the five vowel vocabulary of Table 6.5. 

( 
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Table 6.7 

recognition results for vowels 

~ 
multlspeaker sp. independent sp. independent 

task CDHMM CDHMM MLN 

place of 
97.1 95.2 96.9 

articulation 

5 vowels 97 95 96.6 

10 vowels 73.6 69.9 87 



( A second experiment concerned learning and recognition of the five vowel 

c 

vocabulary. 

Other two experiments were performed usmg half of the data from each 

speaker for learning and the other haU for recognition. The task of the latter 

experiments was learning and recognition of the place of articulation and of the 

tive vowels in a muItispeaker mode while the task of the tirst two experiments 

involved the same classes m a speaker-independent mode. Finally, two other 

experiments have been conducted m the speaker-independent and the 

multispeaker mode using the 10 vowel vocabulary. 

The results of these cxperiments are summarized in Table 6.7. The results in 

Table 6.7 clcarly show that spectral lines and CDHMMs are more than adequate 

for the recognition of the place of articulation and for vowels having remarkably 

diffcrent place or manner of articulation. This suggested the use of such an 

approach for the rc,~ognition of vocabularies for which discrimination of vowels 

having close place and manner of articulation is not required. Such an application 

will be further discussed in the following Sections. 

Nevertheless, the recognition of 10 vowels was not performed satisfactorily 

with the above proposed method. In order to try to improve the recognition 

performances of the 10 vowels attempts were made to introduce discrimination 

rules for cases characterized by relations like in (4.18). In order to avoid the 

tedious work of manually inferring rules by experiments, another learning and 

recognition paradigm was tried based on Multi Layered Networks (MLNs). The 
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o reason for such a choice is that MLNs allowone to perform competitive learning 

and to discover pattern regularities. 

These aspects were found particularly attractive for the case of vowels 

because sorne of them are so similar that competitive learning is a more suited 

paradigm for discovering regularities that enhance differences among pattern 

classes. 

Furthermore, MLNs can perform speaker normalization by learning functions 

of SLs in accordance with hypotheses made by otller researchers that speaker 

normalization should involve relations between formant frequencies. 

A detailed definition of MLN s and a discussion on their use in ASR can be 

found in [5]. Only a brief introduction of the MLN used for the recognition of 

vowels will be given in the following. 

Figure 6.11 shows the general scheme of an MLN. The input layer is fed by a 

Property Extractor (PE), that acts as a window analyzing the data \Vith variable 

time and frequency resolution. PEs may also extract data l'rom the speech 

waveform. The MLN in Figure 6.11 has two hidden layers and one output layer. 

The PEs are mostly rectangular windows subdivided into cells as shown in 

Figure 6.11. 

In our case, PE is a column of 64 windows of 60 ms duration. Each window 

has a frequency width of 50 Hz . 
. , 
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Figure 6.11: Structure of a Multi Layered Network (MLN) 



o In a tirst experiment 64 spectral samples where sent to an MLN with 40 

nodes in the first hidden layer, 20 nodes in the second hidden layer and 10 nodes 

in the output layer. 

The weights of the connections among nodes were learned using the Error 

Back Propagation Aigorithm (see [77] for details). 

An error rate of 20.4% was obtained. A second experiment was executed by 

using only spectral lines coded as proposed in [5] using an MLN with 320 input 

nodes and 200 nodes in each hidden layer. An error rate of 18.8% was obtained 

showing that SL are a good coding of speech spectrograms. The two MLN 

outputs where combined together using heuristic rules inferred l'rom the training 

set and an error rate of 13% was obtained. 

The obvious conclusions are that SLs contain enough information for 

discriminating among vowels and MLNs are powerful tools for performing 

speaker-normalization. 

Furthermore, competitive learning shows remarkable advantages especially 

when the task requires fine discrimination. 

Further efforts are required in order to evaluate the possibility of usmg 

MLNs for more complex tasks. For this reason the task described in 6.2 was 

implemented using stochastic models in the time domain. 
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( 6.4 - EXPERIMENTS ON THE RECOGNITION OF LETTERS AND DIGITS 

The application of the EPN model to the recognition of letters and digits has 

been detailed in section 5.1. The experirnental results are presented in the next 

sections. 

6.4.1 - EXPERIMENTAL ENVIRONMENT 

Let's assume we want to characterize sequences of Ictters and digits 

according to the lexicon deüncd in Table 3.1 with a little pause bctween thcm. Let 

us also assume wc want to represent knowledgc that is spcakcr-indcpcndent. 

The EPN conceived for this purpose is based on a data-driven approach 

(action execution is dccided based on data) and has several Ievels. 

The highest level is reprcsented in Figure 6.12. It consists of a "push" arc to 

a subnetwork LEX representing the lexicon (Figure 6.13). The arc following state 

S~1 in Figure 6.12 is associated with a PUSH action to a subnetworks that rcturns 

the probability of having a PAUSE after the just analyzed AS. From state S~2 an 

iterative jump to state S ~ under the condition "not-end" reprcsents the fact that 

there is still a part of the :nput signal to be analyzed; otherwise the recognition 

process will stop on the execution of a POBABS arc with a stop function 

associated to it. 

It is subdivided into three subnetworks depending on the number of ASs 

( detected per word. A subnetwork ASH for generating SU hypotheses for each 
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Symbol 

LPK 
SPK 
MPK 
LOWP 
LNS 
~INS 
LVI 

MYI 

LOO 
LvID 
Sz.vID 
LHD 
SHO 

( 

Table 6.8: Definition of Primary Acoustic Cues (PAC) 

Attributes 

tb,te.ml.zx. .. 
.. 

tb,te,zx .. 
tb,te,ml,zx 

tb,te,ml.zx 

emIn.tb.te,':x 

Attribute 

tb 
te 
ml 

emln 
zx 

Primary Ac:oustic: eues 
Description 

long peak of tota.l ener~ tTE) 
short peak of TE 
peak of TE of medium d uratlon 
10"" energy peak of TE 
10Dg DODSODoran t trace 
medium nODSODoraDt tra.ct 
long vocalic tract adjacent to a. L~S or a Nli~S in a TE 
peak 
medium vocalic tra.ct adjacent to a LNS or a :VINS in a 
TE peak 
shore deep dip of total energy 
long dip of total energy wlth medium depth 
shore dip of tota.l energy wlth medium depth. 
long non-deep dip of tota.l ener;y 
short. non-deep dlp ai total eneru 

Attribute description 
Description 

tlme of beglDDmg 
ttme of end 
ma.lumum slgna.1 energy 111 the peak 
minimum total energy ID a. dip 
ma.'Clmum zero-crossing denslty of the signal derivatlve iD 
the tr:1Ct 



o AS is shown in Figure 6.14. Two subnetworks similar to the one in Figure 6.14 

are available for words with 2 ASs. Three subnetworks are used for words with 

three ASs. 

ASH subnetwork uses actions for analyzing the "head", the "vocalic part" 

and the "tail" of each AS. The AS head is analyzed by attached procedures 

(actions) performing an Elaboration-Decision (ED) paradigm. Let us call these 

types of procedures ED-actions. ED-actions pcrform variable-depth analysis on 

intervals of AS and will be described in the section "The Elaboration - Decision 

paradigm". There arc two possible ED-actions for the he ad of <ln AS, namely: 

-plosive head 

-fricative (including affricate) head 

The choicc of the ED action is made by disjoint conditions associated with arcs. 

Thcse conditions are regular expressions of Primary Acoustic eues (P 1\ C) 

introduced in [20]. PACs arc descriptions of the time cvolution of speech 

loudness combined with the description of speech intervals where cnergy 1S 

predominant in frequencies greater than those corrcsponding to the most 

prominent sonorant resonances. A definition 01 PACs is rccalled in Table 6.8. 

A data-driven process DDPl pcrforms signal acquisition, Fast-Fourier 

Transformation (FFT), signal description in terms of P ACs and segmentation of 

the speech signal into ASs. For each AS a process is created that instantiates 

ASH. 

~ , .... 
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( For the AS for which an ASH instantiation has been created, the signal, its 

FFf and the PAC description are stored illto the WM associated to the ASH 

instantiation. 

Condition "pl-head" is a rcgular expressIOn of PA Cs corresponding to 

acoustic morphologies that are eues for plosive sounds. 

The condition "fr-head" is ilnalogous but it contains morphologies that are 

eues for fricative soullds. If none of the two above rnentioned conditions is 

verified. then the default condition is satisticd. Statc Ml in Figure 6.14. will he 

reached by only one arc. As it will be seen later, the ED action for the AS head 

identifies the AS head as a possible acoustic subsegmcnt and extracts sorne 

acoustic propertics. Using techniques partially described clsewhere [21], 

hypotheses about the place and manner of articulation for the speech unit in the 

head subscgment are gcncrated and scored hy the following a-priori probability: 

Prh =Prdata (h ) jplace r'manner 

"place" is a variable that takes values in the following set: 

PLset ={labial , front ,central ,back } 

"manner" is a variable that take values in the following set: 

MNset = {high -vowel, low-vowel, oral, nasal, 

unvoiced, voiced -nonsonorant} 

(6.1) 

(6.2) 

(6.3) 

The description data(h) contains acoustic properties the system knowledge 

considers worth to be extracted given the suprasegmental characteristics of the 

( head subsegrnent. These properties can be broad-band spectral energies for a 
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o fricative head or transient descriptors for a plosive head. 

In the case of letters and digits, the place and manner of articulation are not 

identified separately. Speech Units hypothesized by head actions are phoneme 

symbols, when they are important for recognizing the leUer or the digit. For 

example, only the head actions can distinguish between P, B, T, G and ail the 

letters beginning by a consonant and ending with the same vowel. In this case the 

consonants are SU hypothcsized by the head process. For the letters or the digits 

beginning with a vowel. it is not the hcad action that has the proper knowledge 

for distinguishing among vowels, thus a generic "vocalic" SU is hypothcsized for 

ail thcsc words. 

For each head action, suitable acoustic properties are extractcd and a-priori 

probabilities arc colIcctcd 111 a Icarning phase for concatenations of acoustic 

propertics corrcsponding to each SU symbol that can be hypothesizcd as an AS 

head. 

For cxamplc, "plosive head" cxecutes a network of actions describcd in [21]. 

These actions extract a number of acoustic properties and produce hypotheses 

not only about plosive sounds but also about any SU (including "vocalic") that 

may have generated the observed properties. After state Ml, the ED-action 

"vocalic" is executed. It segments the vocalic part of AS into stationary and 

transient units. 

Let 
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be such subsegments. For each segment Vx spectral lines are considered as data 

(see [62] for details) and a-priori probabilities about place and manner of 

articulation are obtained by HMMs of spectral lines in the segment li\". For each 

subsegment and for each consistent "place-manner" pair, the following probability 

is computed. 

Pr(l'\:) Pr(data(l'J/placermanner) (6.4) 

From state M2 to state M3, ED-actions for the tail of AS are executed 

similar to those used for the head. A probability 

Prt =Pr (data (t)/placermanner) (6.5) 

scores the hypotheses of the tait subsegment. The data extracted in the head, the 

subsegments of the vocalic part and the tail can be assumed to be independent. 

The "select" action associatcd with the POP ABS arc computes the probability for 

cach candidate hypothesis 

Pr (data Ihyp). 

where "hyp" indicates the sequence 

of the SU hypotheses and selects the best candidate. 

Let us consider the hypothesis Ib/. The hypothesis "hyp" can be represented 

by the following sequence of two SUs: 

( Ibl = (B)(E) 
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o where Ibl represents the letter, Band E represent SUs. The corresponding 

probability will be computed as follows 

Pr(data/b)-PrhB [~PrE(VX) rNT 
x-l 

(6.6) 

where PrhB is the left-hand side of the (6.1) computed for the place and manner 

of articulation of B, PrE is the left-hand side of the (6.4) computed for the place 

and manner of articulation of E and Prt NT is the probability that the segment has 

no tail. Probability PrtNT is set to 1 if the dcfault action is taken in the transition 

from M2 to M3. 

Duration statistics for the Speech Units involved in each hypothesis can be 

coUected and used in the "sclect" action. As probabilities for places and manners 

of articulation are computed in weIl delimited time intervals, durations of these 

inten 11s can be considered as additional data. 

The segmenter that produces ASs may undersegmcnt and, vcry rarely, 

oversegment. In both cases, hypotheses are considered with one, many or no 

vocalic segments. A maximum of two and a minimum of zero segments are 

allowed both for head and tai!. 

Figure 6.15 shows an example of the pronunciation of "five". The total 

energy curve as weIl as the time evolution of the low-to-high frequency energy 

ratio are shown with the corresponding PAC description. Vertical Hnes delimit 

the head, vocalic and tail subsegments. 
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The tirst candidates produced by the "fr-head" action are: 

f 0.0078 
t 0.0003 

The tirst candidates produced by the "vocalic" action are: 

AI 0.269 
UAI 0.198 
EH 0.161 

The tail has been treated as a sonorant one but hypotheses for aU the sounds 

observed under such conditions are generated. 

The tirst candidates produced by the tail action are: 

v 0.001 
n 0.0002 

The action POPABS f has selected the tirst candidate of the following list: 

5 
4 
Y 

Figure 6.16 shows an example of pronunciation of /w/ split into two ASs 

delimited by a thick vertical line. 

More details on the ED-actions are reported in section 6.4.2. 
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o 6.4.1 . THE ELABORATION.DECISION PARADIGM 

An Elaboration-Decision (ED) paradigm is executed through a certain number of 

ED cycles which analyze descriptions of the same acoustIc segment at different 

levels of depth. The use of the ED paradigm has been discussed in a previous 

paper [21]. ED cycles are PNs. According to this approach d, (T) in (3.6) is 

made of components extracted at different levels of dcpth. Thus, d, (T) cau be 

represented as follows: 

dj(T)=d j9 (r) di! (r). .. d,/(Tj) ... dll(T) 

J being a function of i ,i.e.] =J(i). 

(6.7) 

Description d,4J (r,) is made of Primary Acoustic Cues (PAC). These cues 

are extracted by a spontaneous activity. 

The first ED cycle executes an Elaboration Phase (EP) that computes a tirst 

level description d i1 (r,). A Decision Phase (DP) is executed that uses as data the 

following description: 

dj (Ti )=d'9C ri )dj 1 (T,) (6.8) 

DP decides the next action based on the available descriptions. Other ED cycles 

are performed until a termination condition is reached. Scored hypotheses are 

associated with descriptions. 

Local scores are a-priori probabilities. For example, the score of hypothesis 

H in Ti is: 
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( (6.9) 

Diffp.mnt ED-actions may extract different data and obtain different descriptions 

for the same time interval i 
1. 

There are possible solutions 10 this problem. The one which has been 

adopted for letters and digits recognition cOl1sists in using homogeneous 

descriptions (PAC sequences) for sclccting the best path of actions. Each one of 

these paths applies the ED-paradigm only once for cach signal subsegment. Thus 

the probabililics computcd for cach candidate hypothesis in a subsegment are 

based on the same data lor ail the considered hypotheses. 

Anothcr problem arises lrom the fact that local probabilities may not he 

"hom0bcneous" in dilferent intervals Tl because they have been computed on 

descriptions extracted al diffcrcnt levcls of depth. There arc different possibilities 

for cornbining local probabilitics. One of them consists in "summarizing" the 

states of each local connict 01 hypothcscs by a symbol belonging to a summary 

Alphabet .ESA and using strings of summaries for building a performance mode!. 

Such a performance mode! can be a Markov Source. A model for each word can 

be constructed and used together with a Language Model for computing sentence 

likelihoods like in [8]. The other possibility, that has becn adapted for the 

letters-and-digits protocol, consists in just multiplying the probabilitics of 

segments in a sequence to obtaill a cumulative score. 

A detailed description of the properties used In the ED paradigm for 

( recognizing lctters and digits appears in other papers describing motivations for 
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o choosing certain properties and the experimental conditions in which statistics 

have been collected (21 l, [68], [75]. A brief summary of these properties is given 

in the following. 

6.4.2.1 - PLOSIVE SOUNDS 

Various properties cxtracted both in the time and frequency domain have 

been used. They are described in [21]. 

The first description \cvcl consists of l'AC. The second description level 

contains buzz-bar and burst indicators extracted l'rom the time waveform, its 

enve\ope, the time evolution on certain frequency bands. 

The thinf description \cvcl contains burst properties extracted in the time 

intervals in which burst indicators were detected. 

The fourth description \cvcl is related to spectral line transitions at the voice 

onset. 

6.4.2.2 - VOCALIC INTERV ALS 

Spectral lines are extracted with an algorithm described in [62]. Markov 

Models are used for modeling statistics of frequency and energy of spectrallines. 

They generate probabilities of place of articulation for intervals of 20 ms duration. 

Sequences of hypotheses are kept in a search space in which anode represents a 

(j sequence like: 
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(v 1:l'f, V2:vj, v3:vb, 1'4:vb ) 

where f stays for "front", b for "back" and v for "vowel". The no de sequence 

corresponds to the hypothesis that subsegrnents vIto v 4 represent a sequence of a 

front vowel followed by a back vowel. The product of the probabilities of each 

subsegment hypothesis is used as score for the node. 

6.4.2.3 • OTHER CONSONANTS 

Liquid and nasal sounds are hypothesized using a mel-scaled filter bank and 

considering time evolutions ot energy diffcrenccs in a continuous parameter 

Markov Model. Other lcvels of descriptions involve the use of Markov Models for 

spectral lines in the stationary zone of the consonant and in the transient 

segments in order to capture statistics of properties discussed in [19]. More 

details on the content of this subsection can be round in [75]. 

The ED-paradigm corresponding to the subnetwork "nons-tail" PUSHed in 

the transition between state M2 and state M3 in Figure 6.14 will be described as 

an example. The condition "nons-tail" for the protocol of letters and digits is the 

following regular expression of PACs: 

CON D' 'nons -tail" -a(LPK +L VI)((3+D )(NS +SP)8 (6.10) 

where Œ is any noise description that can precede the PACs of a vowel, f3 is any 

short non-deep dip, D is any deep dip, NS is any descriptor of frication noise, 

and fJ is any noise description at the end of a word. 
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o Equation (6.10) corresponds to a "Level-4l' description obtained by the tirst 

elaboration phase. The tirst decision phase selects a subnetwork NTI if the actual 

description matches with !3 and NS (/fI or Isl are expected), a subnetwork NT2 if 

the actual description matches D (/x/, Ihl or 181 are expected). 

Let us describe NTI in detail. The elaboration phase of NTI selects the 

speech signal in the time interval corresponding to the description that matched 

NS. In this time interval a power spectrum in the 2-8 kHz band is obtained every 

10 ms using a filter bank with 8 filters. Filter bandwidths grow logarithmically 

l'rom low to high frequencies. 

From the filter outputs, five parameters are computed every 20 ms: 

1) G: the center of gravit y of the power spectrum, 

2) 1: the fiUer index for which the energy output, is maximum, 

3) the first three cepstral coefficients detined as follows: 

8 

Cs = L; loglO 
i=1 

b, 

[ 
2i-l 11] cos s---

8 2 (6.11) 

where: s=(1,2,3), Ei is the energy at the output of the i-th filter, bi is the 

fiUer bandwidth. 

The decisicn phase uses three Continuous Parameter Markov Models 

(CPMM), one for each hypotheses NTI is supposed to generate, namely, Isl, If! 

...... and Ifl. The 3 CPMMs have three states each. Various transitions bctween states 
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( are allowed. Eûch transition is associated with the mean and the variance of the 

five above mentioned parameters which are assumed to be independent and with 

Gaussian distribution. 

Learning has been performed on 15 speakers usmg the Forward-Backward 

algorithm [4]. The same algorithm is used for generating scored hypotheses. 

The conjecture that such parameters are good properties for characterizing 

fricative sounds is based on Speech Science and previously acquircd cxperimcntal 

evidencc. The cxamplc dcscribcd so far refers to a variable depth analysis with 

two levels of depth. 

6.4.3 - EXPERIMENTAL RESULTS ON LETTERS AND DIGITS 

A corpus consisting of 400 pronunciations of the vocabulary defilled in Table 

3.1 was used for cvaluating the ASR model built based on the theory presented in 

this paper. The corpus was obtained by asking 100 (50 male and 50 l'emale) 

speakers to pronounce four times the entire vocabulalj. 

Speakers were mostly university students and instructors with different 

mother tongue. They were alI asked to speak in English. 

A computer program generated random sequences of 5 letters or digits. Each 

speaker was asked to pronounce each sequence presented to him/her with a little 

pause between each letter or digit. Data were acquired with a Hewlett Packard 

( Special Purpose Workstation HP 9000-236. 
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G Signais were sampled at 20kHz over 12 bits. The signal was windowed by a 23 

ms Hamming window, and a 128 points Fast Fourier Transformation (FFT) was 

computed every 10 ms by a TMS 320. 

The rest of the processing was carried out on a VAX 8600, while a 

distributed version of the recognition system following a paradigm proposed in 

[20] is under developmcnt. This new version uses a TMS 320 and the two 

proccssors of the HP 9000-236 and HP 9000-320 Workstations. 

Lcarning was donc on the first 40 speakers for propertics cxtractcd by hcad 

and tail actions. Markov sources inl"errcd \Vith prcvious data for the cxpcrimcnt 

describcd in [62] were used for recognizing vowels and diphthong~. 

Twenty othcr speakers (10 males, 10 fcmales) were uscd for testing. A 

sample for each word of the 36-word vocabulary was uscd for each speaker 

resulting in 20 samples for each voeabulary word. 

Experimental results are summarizcd in Table 6.9. 

Column headings represent pronounced words, row headings represent 

recognized words. 

Figure 6.17 shows an example of an error. The signal envelope of the 

pronunciation of a/bl is plotted versus time. As there is no buzz-bar preceding 

the vowel onset, the letter has been recognized as leI. 

The remaining data were used for performing other experiments on groups of 

n letters, like those belonging to the E-set (E,G,P,3, V ,C,B, T,D), the A-set 
.Q. 
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( (A,K,J,8,H) the I-set (I,9,Y) the AE-set (L,M,N,F,S) and others both in a 

multispeaker mode (40 speakers, different utterances) or in a speaker-independent 

mode. Remarkably bettcr performances were observed for the multispeaker with 

respect to the speaker-independent mode (more the 10% higher recognition 

scores for sorne groups). 

(~ 

This suggests that the generalization power of the methods proposed in this 

thesis applied to our acoustic propertics has performances that can be improved if 

the numbcr of speakers used for Icarning is grcater than 40. Wc suspect that 

diffcrences between the multispeaker and the speaker-independcnt mode will be 

noticed even if the number of speakers used for lcarning is greater thal1 100. 

Table 6.10 shows the results obtained by different researchers on similar 

speech recognition problems. The table is organized in such a way that the 

vocabulary, the number of speakers, the speaker independence, the strategy, and 

the recognition rate are shown. The complexity of the vocabulary increases l'rom 

eleven digits to vowels, letters, and letters and digits. The power of the 

recognition strategy increases from Markov models to simple networks, trees, and 

AI environment with speeialized matchers (EPN with operators). Simple 

strategies are inadequate to model the speaker independent recognition process of 

a complex vocabulary 8uch letters and digits or and that is the reason why their 

use is limited to digits or letters only. 
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( Table 6.9: Experimental results for letters and digits recognition 

?!aIIOUICED 

œl::t' .1. • A Il C. 1) 1: r C H r : 1(, t. "" /'f C P Q 1\ l 'r Il V \Y X Y :: 

Il 181 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
, 1151 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

: 1 1191 1 1 1 1 1 1 1 1 1 l , , 
1 1 1 1 1 

• 1 1 lui l , 1 1 1 1 1 1 1 1 1 1 
, 

1 1 1 

• 1 1 ',1201 , 1 1 1 1 1 1 1 1 1 
, 

1 1 1 1 

sil 1 l , Ilsi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

• 1 1 1 1 1 1 1191 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 
, 

1 1 1 1 1201 1 1 1 1 1 1 1 1 1 1 1 1 

• 1 1 1 1 1 1 1 1 Ilsi 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 Ilsi 1 1 1 1 1 1 1 1 1 1 1 1 1 12 1 

A 1 Il! 1 1 1 1 1 Ill1120 1 1 Il 1 Il Il 1 Il 1 1 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 1 1 1 1 l, ~l Il Il 1 1 1 1 1 1 1 Il 1 1 1 1% 1 1 1 

c: 1 1 1 Il 1 1 Il 1 1 1 1 1 IlS/II 1 1 1 1 1 1 1 1 1 1 1 1 III 
1. !) Il 1 1 1 1 1 1 1 1 1 1 z 1 lu Il 1 1 1 1 1 1 1 1 1 12 1 1 1 1 

III 1 1 1 1 1 1 Il 1 1 1151 1 1 1 1 1 1 1 1 1 121 1 1 :: i: 1 1 c 
a r 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1191 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G 

1 1 1 1 1 1 1 1 1 1 1 1 III 1191 1 1 1 1 1 1 1 1 13 1 1 1 1 1 :f c: 

; if , 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 117 1 1 1 1 1 1 1 1 1 1 1 l 1 1 

i t 1 Il 1 1 1 1 z 1 1 Ill.; 1 1 1 1 1 1 1 1191 1 1 1 1 1 1 1 1 1 1 1 1 
1l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 III 1 lu Il 1 1 1 1 1 1 1 1 1 1 1 1 

:.: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 /2 1191 1 Il 1 1 12 1 1 1 1 1 1 

r. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 116 1 1 1 1 1 1 ~ 1 1 1 1 1 1 

!>( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11.5 h 1 1 1 1 1 1 1 1 1 1 
N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Il 1 4 Il61 1 1 1 1 ! 1 1 1 1 1 
C 1 III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1171 1 1 1 1 1 1 1 1 1 

\ 

1 1 i p 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Ils 1 1 1 1 1 1 l 
Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ILS 1 1 1 1 1 1 1 1 J 
Il 1 1 1 1 1 1 1 Il 1 1 1 1 1 1 1 1 1 1 13 1 13 1 1 1161 1 1 1 1 Il 1 1 

sil 1 1 1 1 1 1 1 1 1 1 1 Il 1 III 1 1 1 1 1 1 1 1 1 1191 1 1 1 1 1 1 1 
':' 1 1 1 1 1 1 1 1 1 1 III 1 1 1 1 1 1 1 1 1 1 Il 1 1 1 lU 1 Il 1 1 j, 1 
Il 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1181 1 1 1 

vi 1 1 1 1 1 1 1 1 1 Il 1 1 Il 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 117 1 1 1 1 1 
\VI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 120 1 1 1 1 

~I 1 1 1 1 1 1 1 1 1 1 1 1 ! 1 1 Il 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1181 1 J 
y 1 1 z 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111 1 

( : 121 1 1 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Ils 1 
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Authors 
Kopec Cole 

Stern 
McGiII Rabiner McGiII 

Bush Stern 
87 

May 87 Dec 87 88 
85 83 

eleven 
isolatad isolated 

isolated isolated 

vocabulary isolated 
letters letters 

letters + letters + vowels 
digits ten digits ten digits 

225 20 
20 60 100 40 

# speakers (TI2) 10m 
10f 

in 

yes 
speaker 

multi 
speaker yes 19 + 

adaptation yes 
speaker 

yes 
dependence 1 (adjust 40 + 20 + 

statistics) 20 20 

simple decision improved A.I. environ. 
Markov 

Hierarchica tree + 83 specialized Markov models + 
strate~y network + feature models neural 

matchers extractors 
matchers networks 

recognition 
rate 

97-99 89.5 93.4 88.2 88.5 87-96.6 

-

Table 6.10: Comparison with other research works 



( 6.S • LEXICAL ACCESS PERFORMANCE AND PERSPECTIVES 

Preliminary results, obtained running experiments on lexical access whose 

strategy has been presented in section 5.2, show a performance similar to the one 

obtained in [57] using the same data and Markov models. A much better 

performance can be achicved in the author's opinion by exploiting the facilities on 

the EPN to represent a more detailed knowledge for lexical access. Two major 

points are worth to be investigated. 

1) Dictionary (kscription and organization 

2) Phonologicai rules 

1) The description of the dictionary in terms of only PPF is quite rough. Toois are 

available [68], [75] to recognize phonetic units with a tiner grain of detail. Voweis 

can be identified [23], and so can fricatives, plosives etc. To make use of this 

knowledgc and tools, the dictionary should report this description. The EPN 

could then handle a lexical access to a finer discrimination. Figure 6.18 shows the 

detailed description of the word "most" and Figure 6.19 shows the correspondent 

EPN. Yariable-depth analysis is then used to stop the recognition pro cess 

whenever the hierarchical level is tine enough to avoid any ambiguity. 

2) The description of a word is not unique. The same word can be pronounced in 

different ways due to geographical variations or change in the population or 

statistical distortions. The dictionary should include the descriptions 

corresponding to the possible variation of a word. Then the EPN could infer 

thorough its learning algorithms, the pro b abilit y of these variation and its 
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Figure 6.18: Hierarchical description of the word "MOST" 
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Figure 6.19: Subnetwork for the lowest level description of the word "MOST" 



) 

( existence in a certain population. Automatically a lexical aceess which is learnt 

for a particular geographical are a or population (example the Eastern North 

America) can be produeed. 

6.6 • EXPERIMENTS ON THE RECOGNITION OF ISOLATED DIGITS 

Different speaker produce speech aecording to different speaking modes. A 

feature-based wonl model taking into account aIl the possible inter-speaker 

variations would be very comple;~. The EPN model, together with the neural net 

opcrator (see section 4.5), allows the fine grain description of words to express 

the inter-speaker variations and coarticulation distortions into a rich model with 

low computational complexity. Conditions are put on the arcs in such a way that 

paths that are not likely to have generated the signal are not considered at aIl. 

This is possible because the l'eature based speech analysis is highly related to the 

articulation parameter, and these are subject to physical laws ruling their 

behaviour in time - they cannot vary too sharply, for example. Therefore fast 

executed conditions on symbols and durations actually prune the model almost to 

a unifilar one. The pruned model can then be very detailed and ean perform 

sophisticated analysis because of its reduced complexity. Conditions at this level 

ean be regarded as heuristic functions that lead the supervisor toward the solution 

disregarding unlikely paths. Of course optimality is lost for higher efficiency. The 

approach has been tested on isolated digits belonging to the vocabulary of letters 

and digits (refer to sections 6.4 and 6.4.3) and the 96% overall recognition rate 
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o has been achievec on 20 speakers. The model corresponding to the digit "9" is 

shown in Figure 6.20. The transitions of such a model are labeled with a regular 

expression as described in [14], and with a time interval "m - n". For example the 

regular expre~,sion for the transition from state 2 to state 4 is "(f+ F)L" and the 

time interval is l'rom 14 to 16. Time interval means that there can be no less than 

14 frames activating the transition and more than 16 frames have exponentially 

decreasing probability. Time intervals are expanded according to the model in 

Pigure 4.7. 
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7 - CONCLUSIONS 

7.1 . CONTRIBUTION TO KNOWLEDGE 

The EPN model sonstitutes an original and new contribution. The novelty is 

10 the flexibility of the EPN to represent and implement intelligent strategies 

together with strongly numerical algorithm from pattern recognition. The EPN fills 

the gap between systems that were based on numerical strategies and had little or 

no intelligence, and systems that were inherently intelligent. but lacking of 

sophisticated numerical support. Furthermore many AI strategies are simply a 

special case of the EPN mode!. In this sense the EPN can do what other systems 

do and much more. Frequently a system is bound to a certain degree of 

sophistication that depends 011 the technology. The EPN model olfcrs a really 

open ended and extensible system, very flexible for research purposcs in which 

the solution algorithm has to be found, and were the strategy is Ilot known a­

priori, The EPN intrinsically encourages the definition of hybrid systems with the 

power of capturing the real knowledge to solve a problem, without the limits of a 

predefined paradigm. 

The model has proven effective in modeling the stratcgy of recognition of 

different difficult problems in speech recognition. Compared to standard network 

approaches to speech recognition the EPN is way ahead from the point of view of 

underlying intelligent power [49], [51]. The results obtained in the applications 

o show comparable or better recognition rates with plenty of architectural power to 
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C investigate alternate strategies or solution. 

The application of the EPN to the speaker-independent recognition of letters 

and digits proved effective. The strategy introduces a paradigm to merge into an 

intelligent model evidences coming from different sources. The research is still 

open for otller solutions. The cognitive and feature-based approach showed its 

power because of the differcnt foeus of attention and variable-depth analysis 

required to distinguish among certain words where the difference appears in a 

very specifie time interval. 

Variable-depth analysis, the possibility of invoking subnetworks at different 

levels and of using Markov models by sorne subnetworks are among the noveIties 

J 
of the proposed approach with respect to previously proposed network-based 

models for ASR [49], [51 J. 

The possibility of using aeoustic properties as in [13J with stochastic models 

of their descriptions is another noveIty of the proposed approach. 

A tirst test of the proposcd methodology has been performed on a difficult 

J vocabulary spoken by a variety of speakers. Rcsults are comparable to the ones 

recently obtained by other researchers [13] on a population of limited size and 

only on letters. 

Results can be improved, especially for sorne letters, by collecting statistics 

of the acoustic properties of a larger speaker population or by adding new 

,-

( 
; 

" 

operators and observing their influence in the performances of the fully 

automated learning-recognition systems presented in this paper. This may indicate 

0 
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o how difficult is the proper characterization of different speaking styles when 

detailed phoneme discrimination is a requirement for word recognition. 

Finally, a theory of machine perception of speech based on datu-driven 

actions and a paradigm for its implementation based on extended procedural 

networks have been proposed. 

The EPNs for lexical access l'ully support the needs to specify complex 

dictionary structure together with sophisticatcd recognition algorithms which 

integrate numerical or probabilistic techniques with rules and hcuristics. 

Neural nets training power combined with a Markovian time alignment seems 

promising for a higher performance and incremental recognition systems. If the 

desired recognition rate is not achieved, it is because the present features are not 

discrimating enough. hence the solution would be to add further features unOI the 

phoncmes or the smallest recognition units are properly identified and c1assified. 

EPNs define the stratcgy of application of neural nets operators. The EPN 

constitutes the AI environ ment in which the activation of neural net operators is 

triggered and the contributions of the operators are combined together in an 

intelligent way. The EPN can define an efficient non optimal stochastic process 

based on flexible and contextual heuristic functions. The limits of current 

stochastic systems [52] are the simplicity required by the word models to have a 

reasonable speed performance of the recognition process. Coarticulation and 

inter-cluster speaker variations would require a more sophisticated, finer grain 

-0 
<0> description of the words. This does not seem to be practical in conventional 
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( systems. but appears ordinary in a EPN ellvironment. Knowledge and contextual 

heuristic functions are applied to the undt~rlying stoci1.astic process to reduce the 

space of the probahilitics to a smaller non optimal subspace. 

EPN and neural net operators provide a model of description and recognition 

that is as rich in dctail as desired and computationally efficient. 

The application of frequency domain-based Markov models on spectral lines 

is original and tries to capture into il stochastic model the inter-speaker variations 

for a speaker indcpendent application. Traditionally, Markov models have been 

used for thc time alignment of the speech SIgnal. The novelty is in the idca of 

considcring the frequency as the do main in which the sequence of input symbols 

is den ned. Consequcntly ncw mcaningful paramcters have been defincd in the 

frequency domain. The definition of the three classes back, central, and front for 

the classification of thc place of articulation has shown the ability of achieving a 

high recognition rate and a granularity fine enough to make the distinction among 

diphthongs in the context of isolated speaker independent leUers and digits 

recognition. 

The result., show the effectiveness of the use of spectral lmes and 

performance models of their distortions in the recognition of sequences of places 

of vowels. 

It is likely that a larger number of speakers would allow us to obtain a better 

charactelÏzation of spectral line distortions in quasi-stationary vocalic segments. 

( Different speaking modes are likely to produce different distortions on expected 
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o pattern morphologies. 

As the system is rather robust, a systematic analysis of its error should 

suggest the use of other transition properties, a better implementation of the 

actions for cxtracting them and a better statistical characterization of their 

distortions. 

1'0 study the limits of this approach it has becn tested on a larger number of 

classes. The cxperiments on the recognition of the English-American vowels, 

that \Vere pronounced in il f1xed context l'rom many speakers, showcd that the 

pertormancc is still int..!resting in a multispeaker mode, but it dcgrades when 

speaker-independence is sought. Neural networks seem to be a bcttcr tool in such 

a context and for this kind of granularity (see section 6.3.2). 

7.2 - IMPLEMENTATION 

The EPN model and the software for the implemcntation of Markov model 

have bcen implemented in Pascal on a V AX-8650 running YMS. The EPN mode! 

required about 4000 lines of code and the Markov mode! routines rcquircd about 

26000 lines. Additional 200 kbytes were used to store certified test cases. The 

software has been deve!oped according to the rules reported in appendix A.1. 

The EPN model interfaces the user with two main routines: the parser that reads 

a file in which an EPN is described in the format shown in section 2.3 and 

produces an internaI representation on the network, and a routine that executes a 
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( particular network. 

c 

7.3 . FUTURE RESEARCH 

The EPN model has been used for the application to speech recognition. 

Further rcsearches can he made to exploit the paradigm of integratmg different 

knowledge sources and various strategies into a hybrid paradigm. Indications for 

speech recognition arc rcportcd in section 5.3.1 and [6]. 

Other computer science rcscarch areas can benetlt from the EPN mode!. 

Software Engineering, for cxamplc, is a very promising domain for the study and 

the application of Artiticial Intelligence concepts. The EPN model can be applied 

to the modcling ot the soltware process and other software engineering activities 

whose solution with monolithic strategies is still unsatisfactory. The l1exibility and 

extensibility of the EPN model match the requirements of software engineering 

systems. 
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c A.t· IMPLEMENTATION ISSUES 

A Software Engineering Approach is particularly useful when the system to 

be developed and subsequently maintained rcaches cven a medium size and there 

are several people I11volved among users and designers. AIthough a Sottware 

Development Environment was not available a certain number of Software 

Engineering principlcs have been applied to the life cycle ot the sottware involved 

in the research. The system has heen <.k~igil bl' LOp down dcvclopmcnt and 

rctincments. Stub routines have bcen crcatcd to test the hierarchy. The system 

has been written mostly in standard Pascal a:- it IS detincd in the ANSI standard 

[1 J. The standard has been vcrificd (although not enforced) by the compiler itself. 

/ The non standard teatures include only lexical violation to the standards that can 

be arranged by sorne operation of batch edlting (examplc, non standard use of 

"_" character) and fcw machine dependcnt teatures (non standard and non 

portable such as 1/0 and tile access). This have bcen aU enclosed in a tile which 

have to be modified to transfer the software onto another machine. 

A special testing procedure has bcen applied. Counters have been defined for 

aU the branches of the software and a simple profiler has been written. Test cases 

and test output have been stored to be compared upon software modification in 

the maintenance phase. Guidelines based on a modification of the ones in the 

course [56] have been applied and are reported in Appendix A2. 

( 
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o AI.I N CODING 

N Adopt naming conventions for routines, functions, global constants and global 

types. Example: 

procedure x-yyy_nnnnn.m 

wherc: 

x = progrurnmer identifier 

yyy = projcct/version code 

nnnnnnn = meaningful procedure narne 

- Meaningful names can make the code more readable. Remcmber: prograrns 

must he rcad by humans 

- Coding should be simple. Tricky code is hard ta read and error prone: kecp it 

simple stupid 

- Add the following prologue comments at the beginning of every procedure or 

function 
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( (~****************************************************************** 

* 
FUNCTION NAME: 

AUTHOR: DATE: 

DESCRIPTION: 

PARAMETERS: 

RETURN VALUE: 

GLOBAL AND EXTERNAL VARIABLES REFERRED: 

PROCEDURES AND FUNCTION CALLED: 

FILES ;\CCESSED: 

( 'OMPILER: VERSION: 

HARDWARE/OS: 

) 
~ 

~~**~~~~~**~~t****~~*t*****~~*************~********~****~t~*****~~*) 

(~***~t~tt**tt~~******t******~~******~*****~*************~t****~~~~* 

t 

PROCEDURE NAME: 

AUTHOR: DATE: 

DESCRIPTION: 

PARAMETERS: 

GLOBAL AND EXTERNAL VARIABLES REFERRED: 

PROCEDURES AND FUNCTION CALLED: 

FILES ACCESSED: 

COMPILER: VERSION: 

HARDW ARE/OS: 

( * 
*******************************************************************) 
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o -Use, if necessary, a consistent abbreviation technique. For exarnple. you may 

remove the vowels from the names 

- Alphabetize declaration lists 

Use parentheses to clarify expressIOn and make the parse tree unambiguous 

(extra parentheses do not hurt and avoid errors) 

a * b t c / (d .f. e .f. f) ---> (a t b >t c) / (d * e * f) 

- lndent code 

- Add identifiers in comments to explicitly match begin-end, then-else. case-end 

paIrs: 

while .. , do 
begin (t 1 *) 

if '" 
then (* 2 *) 

cIse (* 2 *) 
case ... 

end (* case *) 
end (* 1 *); 
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( - Select a data representation suitable for the problem (it is much easier to build a 

c 

tree with records and pointers rather than arrays) 

- \-Vrite modular code. Procedures should be about 60 lines or less since this fits 

on one or two screens and can be easily understood. A procedure should 

perform a single logical task 

- A VOID USING GLOBAL COMMUNICATION IN MODULES SINCE THIS 

CAN HAVE RIPPLE EFFECTS THROUGHOUT THE ENTIRE 

PROGRAM WHEN A MODIFICATION IS MADE 

- Use structured coding 

- Use case statement rather than nested if's. Remember that standard pascal does 

not allow a default value when the case selector does not match any label. 

Make sure that illegal values do not get through the case statement 

case i of: 
0: ... ; 
2,5: ... , 
3: 

end; 

becomes: 

if i in {0,2,3,5} 
then 

case i of: 
O.' . ... , 
2,5: 
3: 

. ... , 
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o 

end (* case ") 
el se 

m_mc7_error(llLmc7_iILcase_select) (* exception handIing 
procedure *) 

- Declare aIl variables (even if sorne languages allow default declarations) 

- Initialize aIl variable before use (even if sorne systems and sorne compilers 

initialize the variables automatically). If this is not do ne unexpected values may 

be encountered when the program is run in anothcr cnvironment (debugger) or 

with another operating system. 

- Use constants rather then numerical values 

for i := 0 to 10 do ... -> for i := m_rnc7_min to m_mc7_max do ... 

- Do not use the same variable narne for different purposes 

- Always asslgn a return value to output procedure parameters. This must be 

particularly taken into account in exception handling. 

- Make use of exception handling if available, otherwise design your own 

exception handling mechanism. The latter would include error or recovery 

procedures together with consistent error coding and error propagation. A 

pro gram is supposed to degrade gracefully upon exceptions and to stop only if 

no other actions can be taken 
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C -Supply command files to regenerate the entire software system (compilation, 

library generation, linking etc.) 

c 

- Put ail non standard and non portable caUs (system caUs etc.) in a module and 

redefine them in terms of user defined procedures. That module represents the 

only software to be rewritten in case of portability problerns. 

A1.2 - DEBUGGING 

- Antibugging is better than debugging 

- Use conditionally executed debugging statements or (better) conditionally 

compiled debugging statements. 

CONDITIONAL EXECUTION: 

type 
rn_rnc7_opLexe = array[1..m_rne7_max..opt] of boolean; 

var 
opLarr: rn_me7 _opLexe; 

if opLarr[29] 
then 

writeln( ... ); 

CONDITIONAL COMPILATION: 

begin ('" 1 processJine *) 
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o (*#-dbg writeln('process line');*) 
if not eoln then 
begin (* 2 *) 

read(c); 
(*#-dbg writeln(c);*) 

if c = '(' then 

the Hnes labeled with (*#-dbg .... *) are not compiled into the 
object code, but they are activated after preprocessing: 

begin (* 1 process_line *) 
(*#+dbg*) writeln('process line '); 

if not eoln then 
begin (* 2 *) 

read(c); 
(*#+dbgot ) writeln(c); 

if c = '(' then 

- Suspect ail data. Data consistency checks should be performed by every routine. 

Although such checking code slows the program it is better than producing 

incorrect results with a l'aster program 

- Check array bounds 

Al.3· TESTING 

- Test cases have to be designed in order to test: 

every instruction 

every branch 

every recursion and iteration 
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normal input 

unusual input 

extremes (acceptable input at the Iimit of its range) 

exceptions (graceful degradation must be achieved) 

- Compare output files with previous (and certified) output files 

- Make a prolile of your pro gram (use conditionally eXl..~uted or conditionally 

compiled counter increments if a protller is not available) 

- Construcled testing data is a good starting point, actual data adds reality 

/ - Test your program again after any change (testing command files are helpful) 

( 
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