LA £ T A PRI e S e ey ot i R N

>

MULTIPION PRODUCTION IN DIFFRACTIVE ’

. /
HADRONIC REACTIONS :

-

by .

Richard Gagnon

.

, A thesis submitted to the Faculty of Graduate Studies and
- Research of McGill University, in partial-fulfilment of the
requirements for the degree of Doctor of Philosophy.
AY G -
r
*
- .
[
e Departiment of Physics qMontreal",Que'bec
~— McGill University

August 1978

A 1

1w
b
(]




B FTeITTIR T A AT BT T

Cwsm o T3 T

N

. g,
%

QORI T

] © SOMMAIRE

Un mod&le hybride est présenté dans lequel une "fire-
ball", parficule fortement excitée, formée de maniére dyna-

mique se désintégre en cascade selon le modéle du "bootstrap"

)

statistique., Cette “fireball” est constituée d'un ensemble

trés dense de résonances, Les lois de conservation de 1l'iso-

- ;
spin et de la parité G sont pleinement satisfaites et il est

" tenu compte de-la largeur finie des résonances produites. La

densité totale des états de la "fireball" est calculée et le

mod&le est utilisé@ pour le calcul des distributiod; de masse
et des sections efficaces relatives dans les diffusions dif-

fractives plon~proton et plion-deutéron, L'accord entre la
¥

. " . J
théorie et les données expérimentales disponibles est en géné-~

*

ral trds-bon., Diverses prédictions pour les événements 3 haute

multiplicité sont faites. La conclusion générale est que le

modéle donne une description satisfaisante de la production

de trois plons dans le secteur de Lorentz avant (LPS}1) alor§
qu'il s'aveére trés approprié pour décrire les'phéanénes dif-

.

Z

fractifs 3@ haute multiplicité,
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-ABSTRACT w
. % :
We present a hybrid model in which a fireball seen as

a dense set of overlapping resonances is dynamically formed
and subsequently dec;yS'in cascade according to the statisti-
cal bootstrap model. Full account is taken of isospin and G-
parity conservations as well as of the finite widths of the

produced resonances. This model '‘aliows an explicit calculation

of the total density of states in a fireball. It is applied

" to diffractive pion dissociation on nucleon and nuclear targets

for which multipion mass distributions and relative cross-sec-
tions are calculated. Agreement with available experimental
data is in general very‘good. Several predictions for high

S
multiplicity are given. The general conclusion iﬁlthat the

model gives a satisfactory description of the three-pion 'events
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CHAPTER I

Y

INTRODUCTION

el

Quite naturally, statistical models appeared in high
energy physics when the number of particles b:eing produced in

a reaction started to increase, The idea was that in this kind

of process dynamical considerations would, average out due to

" the great number of different components interfering yith each other.

Equally na,turally, the concept:_ of cluster or fireball emerged, °

&

in analogy to the compound nucleus in nuclear physics or the

statistical model of Fermi (1.1) . A number of models based

on this idea were formulated such as the thermodynamical model

(1.2) in which a continuum of fireballs

of Hagefdorn and Ranft
: (1.3)

in which
the same cluster is used to describe hadron-hadron, photon-
hadron J‘&nd ‘e+e- processes Oor a recent one attempting to apply

information theory to multiparticle physics developed by Caraz-
(1.4)

- .
In this thesis, we shall concentrate our attention to

[

diffractive dissociation processes and present a model in which

a fireball is dynamically formed throubghﬁ‘Regge exchange in the
i

t-channel and then decays statis{tically in the s-channel. Though |

we shall apply it to exclusive processes, this is the sbirit of,\

(1.5)

the double fireball model of Hwa ~or the statistical model _

of Ranft and Ranft (1.6) for inclusive reactions.
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. Many features characterize diffraction dissociation

- phenomena (1.7) . For ingtance, the strong forward peak in the

- '~ differential cross-sections and the slow energy dependence of
. the integrated cross-section. -Experiments. performed at 200GeV -

on pp 1+8) ang 77p (19)

scattering show that the diffrac7tive 3
low mx;lﬂtiplicity states have the same beha}vior'as observed at
lower energies. This is not surprising once we realize that *
dif fraction is highly peripheral and thus a change in the in-
cident momentum should have little effect. Peripherality a1§o
explains why no intrinsic quantum numbers are exchangéd in

these reactions except of course spin' and parity since there can

be angular momentum transfer. However, it is found empirically

that the transfer of éngq}.ar momentur between the twe-colliding
H particles. is minimal thus allowing the production of states of
the unnatural parity sequence (0‘,l+,2_,...). This result is

embodied in the so-called Gribov—-Morrison rule: ) .

. - - o Aj ' va
, ’ Pe = P, (-1) (1.1)

- °

- where Pi and nPf are respectively the parity of the initial and

final systems and Aj the change of spin. . It seems however that

this rule is not general sinpce some AZ. prodgctibn has been‘ re-
(1.10)

ported recently in diffractive pion dissociation

Many partiéleg havﬁ been seen to dissociate diffrac-

(1.11) ‘

. tively: pion, kaon, nucleon and even I~ on either nu-

O cleon or nuclear targets. The mass distribution of the disso-

) - 0
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¥ ciating system shows an enhancement in the low-mass range above
/ the threshold associated with the production of two-body states.
> For instance, the Al and A, peak near the threshold of pmr and 4
‘?’b " fr production respectively. But this tendency may not persist

H

and in fact, in the model we shall present (1‘12), higher

multiplicity spectra are not dominated by two-body states but

j " rather are the resuli:s of a summation over many different con- i

\ tributions obtai‘ned in a fireball decay cascade. ]
W The id‘é”gis the following: in diffractive dissociation,‘
. as we said b}afore, the paoduted particles form a system having é

the same intrinsic quantum numbers (except spin and parity) as

those of the hadron being dissociated. This suggests that they

2}

. might come from a cluster or fireball being produced through
pomeron exchange. As we sha®l show, it ‘consists of a §tatis-
tically dense set of oxlre:'rlapping resonances whose den\sity )

will be calculated according to the statistical bootstrap
(1.13) (1.14)

e

model of Hagedorn

and Frautschi and resulting in

¢ an éxponential increase within powers of M of the number of
/ '

. -~states. We then make the usual assumption of statistical

L M |

mechanics: the probability of a particular outcome is given by

the ratio of the occupied number of states to the total number

of states (3+13) | Most likely, the fireball will decay into

-

two- particles, one being as light as possible, the other as®

)// - heavy -as possible (1.14) so that if it is heavy enough, it can

5(*3 be considered in its turn as another fireball. We are thus led
- ) w

/

*
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to a cascade decay scheme whose net result is a mass spectrum

rapidly increasing at low-mass until the exponential density

£ (1.16)

of states acts as a fast high-mass cut-of . No angular

1

,\“Jﬁomentum considerations- are taken into account so that all

-«

decays are isotropic in their own rest-frame. This is not a

severe restriction since no angular distribution calculations

"will be attempted. On the other hand, isospin and Cﬂparity

conservations are fully taken into account. Finite widths of

discrete resonances produced in the reaction are also incor-
1,

porated leading to axgood description of threshold phenomena

and to a general smoothing of the mass distributions.

2

This thesis is divided into five chapters. In chapter
T, thé general formalism of the modél is developed. It is
shown how the fofhatfbn of a dense set of resonances results in
fireball production.. A briéf description of the statistical
bootstrap model is also givens’ Chépter ITI deals with the cal-

culation of the total density of states, of multipion mass dis-
tributions and of relative cross-sections in pion-proton scat-

tering. In. chapter IV, similar calculat%ons are done on a

°

deuterium target. A summary.and conclusions of this thesis

are presented in chapter V. In order riot to break continuity

-

of the text, we have collected in four appendices initial con-

ditions of equations to beé evaluated as well as a Qefivation '

.

of the géneral non-invariant Ehreg—body phase-space.

i

ik




*
N

CHAPTER II 4

, A MODEL FOR DIFFRACTIVE MULTIPION PRODUCTION

IT-1 General Considerations.

v

+

To produce multipion states, we shall construct a two-
component model describing independently the formation of a o

3 ’ i
" fireball and its subsequent decay. Consider for insta e .
i | | < i
y process
&
g | ' ‘
: ' a+ b->nr +c (I1.1.1)
¥ . .
3 v 3
% where a,b and c are stable particles under strong intexac-
% tions. Our model ‘stétes that - this reaction proceeds in two-
"’ stages as follows: 2

— -1 'u-:“ Tf‘
a+b > IR +cC (I1.1.2)

’ .
Here, the Ris are all possible resonances which have a non-zero

branching ratio into the (nm) channel. Each of them is charac-

. terized by its mass Mi and its width I‘i. They are formed du- ™
ring the first—étage of the reactiuoh"which is then seen as a
quasi two—bodyireaction. This formation mechanism is dynamical

in nature and therefore depends on the particular reaction con-

sidered: Since we are mainly interested here in multipion
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enhancements diffractively produced, we shall consider :assem-
tially that a pomeron exchange gﬂives rise to these highly
excited reson.ances. It is to be noticed that in such a case,
each fesonance will retain the intrinsic quantum numbers of
par.tic le a ,except for Spini and parity. We lefwe a' more de-
tailed study of this first stage€ to chapters wher;e applications
are considered.

| The second stage of the reaction deals. with the decay of
the resonances. We shall assume no final state interaction
between their decay products and particle c¢. This amounts to ag-

suming that resonances are sufficiently long-lived (theix" width

is sufficiently' narrow) that their decay is completely indepen-

L d;ant of what happened previously and 1n part'icular of the\ way
th;y have been formed. 1In tl}e next section, we shall show

that if these resonances are close enough to each other (wpich‘
will happen as the mass of the resonances ;ncreases) one één

-

replace reaction (II.l.2) by

at+b+F+c (11.1.3)

Lo

¢

where F is a superposition of overlapping resonances which we
- call a fireball. This is depicted diagrammatically in fiqure

2.1,

L

"
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Figure 2,1: Regge exchange giving rise to a fireball which
then decays into n-pion states..
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IT-2 The Formation of a Fireball.

We shall now establish the formalism in which the fire-
ball is formed. 1In order to do so, we haye to calculate the

cross—section for the diagram of figure

.2. We start with the
cross-section for the process (IT.1.1) ich in geaeral is given

by:

n
¢ = 1 7 2 in-—l "l‘j:i4pc I d4q'“pf:'“3c2:) X
2\ (s,ma,mb) (2m) n! i .

) . 2
1

e TNIF (II.2.1)

.y .

a

.
R
. ‘
N I L I T . A N T T - P P S m},ﬁ/\ L S

B ar

3

where s is the square of the total center-of-mass energy. m_,

oy

- . ‘o

AN
[

m and P,r Py dre respectively the masses and the fou?}nomenta

of the incoming particles, m_ and the mis,p, and the i"s

e

are respectivély the masses and the four-momenta of the oui:going

particles. In our case, all ’mis are equal to m the pion mass.
’

T . SR

1/n! is the statistical factor for n identical pions in the

final state and

v
L TR L, R .

R

AMx,¥,2) = x% 4+ y© ¥z - 2xy - 2xz -2yz (11.2.2)

We next introduce a unit actor:

’

1= fd4064(0-2_1qi) o , U (11.2.3)
l -

L BEERAT
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Figure 2.2: Formation of a set of resonances decaying into

n-pions.
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where Q will represent the four-momentum of the n-pion system.

., .
We factorize the amplitude into, the form appropriate for reac-

t}on (11.1.2). ]4 R
|
T(a + b ﬁ nt + ¢) = IT{a + b =+ Rk + c) > .21
| k . ‘ (M]v< - M )-—1MkI'k
! .
x T(R > nm) ' (1I.2. 4)/

/

where T(a + b ~> Rk + ¢) is the production amplitude of resonan-
ce Rk' T(Rk~+ nw) its deéay amplitude into n pions and |
1/ BM& - Mz) - iMkPk] is the resonance propagator or its effec-
tive mass distribution. Mk and rk are respectively the mass
and total 'width of the resonance.. We have also summed over

1

lal1 possible resonances Which can decay into ? pions.

! !
Inserting (II.2,3) an “511:2.4) into (I11.2.1), one has:
. . /

‘ ])
. -1 N '
/ 1 @Y f 4 4 O 4 2 2
L 0= — |[d'pdQ I d q,8(p -m’)
2)%(5' mi’mg)‘ ( ﬂ_)3n I [o] igil 1 (o [+

x4 (qi- m-;zr)‘s-d(/é B I':qli-)(s‘%({:’a + pb/'f,Pc -
i .

) * * } <
x k}fl'.r (a J;/é + Rk + c)T (R +"m)
MY - w) ¢ im T, /

I

x T(a,+ b + Ry + c)T(R; nﬂ)/ 7
2 2 . )
MS - M%) + iM,T /
( 1 14 /r | (II.Z.S)’
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’ Wz shall now aﬁsume a high d&gree of randomness'!or |a

g PR T

rapid oscillation of the relative siégs of the phase of the dif-

ferent production and decay amplitudes. This leads to a domi
nance of the incoherent k = 1 terms. The off—diagon%l te

1
to the extent that they do not cancel, would give a chponen

~
9
S e S 5

slowly varying with energy}typic%l of Regge behavior ("'16). ! b
Then, the cross-section reduces to: \ ‘ \ §
; ; |
=1 5
B P e e [ a'p, a'0s (pg-n) |

2) (s,ma,mb) (2w) e

A N A N LICE S S AL

I
1

. 1 12 2
’f[(z Mz")2+Miri] qu“‘% ) | »

=

(I1.2.6)

»®
o
Y
o
1

1q,) 208y > nm |
1

and since

n
" 1l 1 1 4 2 2
I‘(Rk + nr) = 3n-4 fﬂld ‘qié (95 - )

ZMk (2m)

x 6% - 1q) Iz (R, > nm |2
1

(11.2.7)

-

where I'(R, > nm) is the partial width of resonance R, to decay:

into n pions, we obtain:

@ - . ' ° ' 4
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8 ' o

Do = L L 1 7 1 2¥]ﬁ?péh4Q6«p2 mz)" .
. k 2X) (s,ma.mb) (2m) g ] 7 Co

l . 4 L \ R 2

x 8%(p, + Py - Py - Q) |T(a+ b >R+ )

° ‘
L

C

1 . . . C
X k T'( + nw) - (11.2.8)
| I e ‘

° »
_So fal, all matrix elements are exact, but from here

on, ‘we shall neglect angular momentum and spin effects. There- .
1 ! B

fore, conseertion of angular momentum will not be taken into

account. Wegao not expect this to be a too severe réstribtion
\ T . -
(.1,2.1) and'to have big'effects on the results, except’of

’ 2 |

. course, foratwe angular distribution of pions which we ghall

)not attempt té calculate. ) ‘ . '
! ! -
As their mass grows, resonances are expected to get ¢

" closer and closer, becoming, at sufficiently high masé, a con-

|

tinuum of overlapping resonances of density pﬁMk), énabling .

!

us to replace the sum over k by an integral over Mk.u'ﬁhis /

S S|
- f / \ | /
. / H ' o
1 1 p ' /
z
f

leads to: -~

- , 4_ a4 .. 2 2
a = Zlk(s,mz,mi) (ZW)Z.IEMkp(Mk)d pc% Q“pc mc) -

!

4 .
% 8p, ey - R

! v

' j
~@[Ta+b+ R + o)

! \

M T(R_~> nm) / _ L
X - 7 . .
Bmi -wh? 4 Miri] o (11.2.9)

e

/

/’ /
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is of the order of ¥ e pion mass while the effective mass of
¢ g \ n pions is in the Ge range, already for n=3, In'this case,
¢ . - . - »
: C 8 .
f v~ - . one has: -
P
. e N *
bl . 1 °
2 2 2,2 ' 2 2 2.2
(q, - MO + M TP ,(Mk Mzd%‘+ MOT
. (I1.2.11)
-
*
sing‘Ca‘ﬁchy"s theorem o integrate over Mk,‘ we }Jbtain: ’
J -
0 = ——t—y 2 2[‘34%‘3405 (e - mg) )
2 (s,ma,mb) (2m)

X 6_4(pa * Py — P - A|T(a+b>F +c) |12

x-‘-’-ém H%ﬁ’lﬂ g . (I1.2.12)

2 - [ ¥
)
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# ,

N N N et . '
# the first delta—foqctiqn and with the help of the second,lgsegra—

te over Q. 1In addition, we know that:

/ d3pc am?agat
== 73 (IX.2.13)
‘ . 2Ec 4 (s,ma,mb) -
”2‘3\ ( ) ° '
\\\r to- - . /}

The result i%: .

) .
‘ > :
do _ ! 2 o ;
am® _'16nx(s n?, 02 -[étlT(a o ¥l 5 '
’ a'mb k
« L{F> nm) y ‘ -]
LT () (17.2.14)
o ~ ' . T

N -

We have assumed rotational invariance with respect "to the col-

-~ lision axis to perform the integration over ¢c. T |

Looking at the above derivation, one sees that in fact ¥
. ' 3 .
|T(a + b >F + c)l2 is the production matrix element of a sin-
gle resonance of mass M. Instead, we can replace it by the: -

inclusive matrix element for the process:
. ,

~ N - ' 3

a+b » c+ anything (II.2.15)

-

' which corresponds to the production of all resonances in the
interval between M and M + dM, provided we divide it by the
number of states #n this interﬁal, a number proportional to

p (M) .




/ ~ T -15 - - |
/ - ‘ : .
| N ) Therefore, we finally obtain: .
.. )
;, d02= 12 5 ﬁt R(s,t,M) ¥-l-P(F *nr) , (II.2.16)
. . ) ‘ dm 16n)\(s,ma,mb) M /

®

where R(s,t,M) is the inclusive matrix element and P(F -+ n7n) is

't.he decdy probability of the fireball into n pions as:

)
3

P(F - nnf °=L1§E(_ﬁ~):_rur). ’ (I1.2.17)

¢ » - -
B 1
This quantity is Lorentz-invariant and hence can be

’
calculated in any frame of reference. For convenience, we shall
2
L é

do the cz'Iculation in the rest frame of the fireball.

ey PRGN AR

fur v . . "
¢ ) * e
i

I1-3 Statistical Bootstrap Model. s

b 1

Y -1 So far, we have produced one piec°e of highly excited

hadronic matter of mass M: a fireball. This fireball, due to-
. N
its high mass, can decay inte a great number of channels. This

suggests that one can average over dynamical effects and uti-

lize a statistical decay 'scheme. We shall therefore assume, as:’

usual in statistical models (e.g. Fermi model in nuclear phy-
sics Uf'l) that the pi‘obébility of a particular outcome . is pro-

_portional to the ratio of the number of\occupied states to the
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(M). In addition, each chan=

define a density of. channels Pout

nel can be obtained in many ways and here too, we define a den-

sity of states which give rise to the channel pin$M). It is '

@

3
clear that for large enough M, pin(M) and pout(M) will have the

)
same functional dependence since a heavy resonance decays main-
’ + ¥

ly into other resopances which in turn decay into other reso-

nances\and so on. So, asymptotically, the qbectrum of the

\

"mothert\resonancédyill be the same as the spectrum of thé éﬂ
"qaughter" rééon;nces. Conversely, onehmay say that the "daugh- ¢ 'i
ter" fééonances are the constituents of\zhe "mothex" resopahce.' ;
(This explalns why the subscrlpts in and out are used )  There- )
fb;e, the den31ty of produced resonances will also be ‘the same.
This is precisely the statistical bootstrap que} of ;

Hagedorn (1.13) .ha Frautschi ‘;'lf)." We shall ﬁse here the gl
fof@ulgtion of Frautschi mofe’guited to particle physics, ?

W

P

One can wrlte the manlfestly covariant number of sta-

;

tes as (l 14 2. 2) ':
. /]

- 4 Mo 2o idipmy o I 1w .Y

faoguen ator@Petwdiste-o = L L

g R’ ) g

, X fdmlpm(m ) at a 2w &(q - )<§ ”— I q )
. voi=1
(11.3.1)

where w,. is the_four-bolume of particle i. It is defined as
vu where V is the volume occupied by a particle at rest~(which

we take universal) and u its four-velocity ¢u2=1).b The

-~




" itself in‘a change of the@ﬂens;ty of states
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0

quantity wuqu is an invariant equal to Vqé/(Zn)3 as easily

_seen when evaluated in a frame where V is’at rest.

The left-hand side of the gquatioﬁ isrthe number of
states that a fireball of mass M can have. The right-hand side
is the number of states available to n particles (asymptoti-
cally fireballs themselves) constrained by energy-momentum con-
servation. The sum over n appears because the number qf cons-
tituents is unfixed and unlimited and the integral over the
mass because, in addition to different states of motion, each
particle can also>be in different states of mass with density
plm, 7. ~

In the rest-frame of the firebaii!.this expression re-

.- .

duces to: - 2
@ . _n-1 'n ‘ 3
Pout (M = niz v 5| L igl.[hmipin(mi) d"q;
. (2m) n!
I’} ﬂ“j n (’3 n ) Y
x §(.L E;-M) 67( I q;) (Ir.3.2)

i=1 + i=l1

This is the -form given b;ﬁ$rautschi. This density is

fully covariant as we just saw. In addition, all strong inter-

actions are effectively taken into account since the interac- .

[}

tion responsible for the binding of two constituents manifests
(1.14,2.5,2.6)

Therefore, we can treat a fireball as a gas of completely

non-interacting particles (repulsivé forces are negligible}.
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It has been shown by Chaichian et al. (2.2) that the above so-

called non-covariant phase-space is indeed the right one to

»

use in the case of an ideal gas. The use of the covariant

L

phase-space containing an ddditional factorymi/E. is in fact
equivalent to a dynanical assumption which clearly results in

favoring low kinetic energies and thus high multiplicities.

e R s

Y

_An asymptotic analytic solution of equation (II.3.2)

H
3
2

can be obtained using the following bootstrap condition:

p. (M) - p

(M) (11.3.3)
in JM > w  Out
The resulting density of states is (1.14,2.5,2.6) M -
v ;
p(M) — ae!/T (I1.3.4) ? !
Tl ) mee M3 E
] |
vhere T can be 1nterpretgd as the maximum temperature of ha-
dronic matter (1 13)K~T and a (a normalization cdnstant) cannot !

be calculated but we might expect T to'be\\\-the order of the

pion mass since above that temperature, plons\Eﬁn\hg emitted.

~

II-4 Average Multiplicities and Decgy Scheme,

. Frautschi calculated alse the probability that a fire- ,

' 1.14 .
ball is constituted of n objects ( ), He found in the high

(»w Jmass limit:

1
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W

v n-1
, P(n) = %‘3—_——2-%)—.— (I1.4.1)

A result independent of the mass of the fireball. This means
that a fireball is 69% of the time a two-body object, 24% of
the time a three-body object and in only 7% of the ¢&ases does
it contain more than three bodies. This leads to an averége
“multiplicity E of aéproximately 2.4. Moreover, it turned out -
that a particular contribution peaks when oneNparticle takes
most of the mass of the initial fireball and other particles

-~

are light (hence mostly pions). Since our model assumes

ThEiny W

that a fireball decéys according ta the relative proportions

of its constituents, we are therefore given a decay scheme in
which aninitial fireball decays predominantly into a pion plus )
a heavy object which can‘its;lf be another fireball if its 4
mass is high enough. In turn, this second fireball is treated ({
as the first one. Occasionally, we shall observe a three- "
particle decay but rarely four. Thus, we are led to‘a cas-

cade model of fireball decayoas shown in.figure 2.3. At each

step i of thé cascade, we é;sociate a pgbbability of decay

‘into n bodies:

EoTeRICTEE

p_ (M) ]
Pi(M) - p?M) (11.4.2)

AL

3 o

\

he g
P

where we dehote by pn(M) the ntﬁﬁﬁerm contributing to (II.3.2).

7
r
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Figufe 2.3
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(b)

(b)
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.

Predominant dgcay scheme of a fireball

the Frautschi model.\

°

Decay of a fireball exhibiting a three-

particle’ vertex.
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The prébability of decay of a fireball into(n pions (eq.II.Z.l?)
will then be a convolution of expressions like (I1I.4.2) over
the different steps of the cascade,

wagver, hére, we shall not use aéymptotic considera-

tions working instead directly with a generalized version of

‘equation (II%3.2) to account for isospin and G-parity conser-

vations, which shall be evaluated numerically.
Cleariy, at thé_ena of the chain, even the heavy par-
ticle emitted will be rather light and we shall not allow it to

become lighter than an ordinary discrete reson@ce. Even in

" this case, statistical considerations might not be completely

reliable. But this should not be a large source of érror

especially.for long chains which are expected to dominate in

. any case.

N
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CHAPTER III
\APPLICATION TO PION~-PROTON SCATTERING

*I1I-1 Introduction. ' #

¢

We are now ready to apply the model developed in chap-

ter II to hadronic reactions. We stgrt with diffractive disso-

ciation in pion—-proton scattering at high energy for which we

Ak

shall calculate the mass.spectra of three, five, seven and niné
- pions as well as the relative prdduction cross—section.

We look at dlffractlve reactlons because it allows us
to test the model in a clean way, i.e. we know exactly the
quantum numbers of the fireball which are those of the particle
being excited (except for spin and parity which we do not take ‘ }

into account); all produced pions come from the same vertex

since double dlffractlve excitation is certainly negligible if

it ever exists; finally, the dynamics involved in the fireball
formation can safely be handled by keeping it to a minimum sin-
ce even accounting for all possible contributions to diffrac-
tion will not change our results appreciably.

III~2 Dynamical Formation of a Fireball,

.
S~

We adopted in the previous chapter a formulation of

the model in which the mechaniém of fireball formation was to

be replaced, in this case, by the inclusive cross-section

t
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T+ p > p + anything . (111.2.1)

# "
>~

in the fragmentation region of the pjon (figure 3.1)., At high

energies, this process is best described By making a triple-

Regge 'expansion (3.1) as sho@n in figure 3.2w; Several contri-
butions can play a role in this reaction, na#ely’(neglecting

interference terms): PPP,PPR,PRR,RRR where Pfstagds for a po-~ -
meron'and’R for a reggeon on a lower tpajeqﬁgry. But it turns

- out, according to an analysis of Chan Hong—ﬁo et al. (3.2) that

. |
the triple-pomeron term dominates the crosifsection for small

value of MZ/S (where M is the missing mass). It is clear that

!

a PPR contribution could be added, but as we said before, this
would hardly change ouf reéﬁlts. Thus, for simplibity, only

the triple-pomeron term will be kept. Moreover, it seems that
<

' these conclusions do not strongly depend ‘on the reaction since

a similar analysis of Roy and -Roberts (3.3) on -proton-proton

inclusive reaction in the fragmentation regiord of a proton led

to the same conclusions.

e

In the triple-Regge formalism, we write the triple-

pomeron squared matrix element as (3.4):

‘R(s,t,M) () s_12% (Y w2 @

2y
PPP >

(111.2.2)

‘e

=

v ) A\ .
%
where YPPP(t) is the triple-pomeron coupling and ap(t) is the
h 4
pomeron trajectory. We shall use the usual linear form:

a

v

et 1

R i s v
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Figure 3.1: Inclusive pion-proton s!httering in the fragmen-

tation region.



« Figure 3.2:

—

Triple~Regge expansion for inclusive reaction at

large values of s, Mz, s/M2 and small fixed t.
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- - - . ' ‘\ ~ “ ‘
ap (t) = 1+ ayt (I11.2.3)

¢

. A]_SO' fO].lOWing many authors (3.3,3.5)

, 'we shall parametrize the

co\upling constant as:

) YPf’P(t) = a,e + ae SR (I11.2.4)

Therefore, in pidn-proton scattering, the differential cross-

?

( .
section (I1.2.16) reads:

' 2 0 bt b, t
dcz = 1 ‘2 Sz MP(F—*mT)f dt (aie 1 + ae 2 )
- am”™ l6ms™ |\M : -t )
] N "
2aPt , : ' v .
X 53 , (I1I.2.5)
M ) R ,

-

. yhere'/)\(s,mg,mi) has been replaced by s2 for large s. The in-

tegral is readily done and we find:

do_ _ 1 1 ! ' a2
v el 1 REEILIER N ETE
dM 167 M”:jb,+2a,1n(s/M°) . b,+20,1n (5/M") -\
! 174% 27 %
sk N
x P(F + nm) o _ (III.2.6)
o LERYS

Thus, within logarithms which almost do not vary over

-

the short range of M we shall consB‘.der, the cross=-section re-

duces to :\ - S%

~
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by the cross-section at \t=0. This is due to the fact that we

strong peak in the forward direction which accounts for most

o

of the cross-section.
ITI-3 Linear Statistical Bodtstrap Model.

The main contribution)\to the decay probability comes
from the sequential decay of a\ fireball into a félativelyb
light 'particle (pion dr discrete hadronic resonance) plus -

another fireball. In a first approximation, we may assume

Ehat this two—particle decay acc uﬁts for the whole probabi;

lity. We shall call this version \of thelmodel the llnear

statistical bootstrap.

n pions. The third component of isospin does not appear as a

label since for I<2 (we do net allow for exotic fireballs) it

can be shown ‘3'5)

that in a statisticall model, ' the decay is
symmetric in isosﬁin space.

Consider for instance the proces

c (F - nn) - : (I1T.2.7)

4
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F(M) = F,(my) + P(m,) > pm (I11.3.1)
v\:here Fl(ml) is a fireball -of mass m of four-momentum dys of >
isoégngli—; of G—pa;:ity Gy and P(mz) is a light particle of
mass m, of four-momentum dyr of isospin I2, of G~parity G2
and of -spin \SZ.

Generalizing equation. (II.3.2) to include isospin and
G-parity conservation and making use of the appropriate Clebsch-
Gordan coefficients, we obtain the probability for such an
event: - . .

1z A : ’
. P (M,I,G) = —— (25,+1) —-—-—-jdm"dm p(m,)
~n o(M,I,G) P(mz)/ 2 (2“)3 12 2
© a3 3 (3 o -
x d7q4d7q,8 (q1+q2)_6(M El_EZ)aG,glGZ \,
- . L
x [510 {AGIzop(ml'o'Gl)Pn—nz (my:0,Gy)
t+8; 40(my,1,G6)Pp g (ml'l'Gl')] ‘
2 ¢ ~ 2
- ?\ .
+ 811 [6120O(ml,l,Gl)Pn_n;(ml.l.Gl)
+ 5121 (p(mI,O,Gl)Pn_nz(ml,O,Gl)
+ p(ml'l"Gl)fn-nzfmlfl[Gl)}]] “(/’III.3.2)
0

where we have summed over all possible light particles. Here,
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p(m,) is the mass distriBution of the light particﬁle.' W;a' shall
use a Dirac delta function for pions and very narrow resenanées
and a Breit-—Wigner' distribution omt’herwise. n, is the number of
' pions coming f):oml the decay of P(mz) . The 1/2! factor does n_ot
appear because t}{e two particles are different: P(mz) is a.dis-

cret-:erhadron while F"1 (ml) is in the continuum. We now define

an auxiliary probability: .

N

B,(M,I,6) = pM,T,G)P_(M,I,G) (LII.3.3)

IS

1

Al

N ©
After integration over the phase-space factor, equation (III.
3.2) becomes: ’ . .

+

- _ z "
B, (M,1,6) = P (my) (25271 Jdmdmyp(my) Aty my)o6, ¢ 6,

- "

A}

8 ) 5. B ‘
x[ IO[GI Oﬁn—nz(ml,O,Gl)' + Izl n—nz(ml,l,Gl)

2
} T ]
+819(87 o¥an 1,6)) + 6, [ -
2 21 1 121 n-n, (ml,O,Gl) ,
+ i‘fn_n2= (ml',l,Gl?)]] : © (III.3.4)

where A(M,ml;mz) is the two-body phase-space factor:

f V(w4 ,.2 221,% 2 2., (III.3.5)
A (M,m;,m,)) = )3 —-—Z[M = (m{-m5) }A (M, ,m3 ,m5) i

2M .

T

Y S R

1o e 8~

g




& a2 Wt

T D TR
»

T

3

We thus obtain an expression, in fact a recursion re-

lation, independent of the density of states of any fireball.

This is very interesting since, given appropriaté initial con-
"ditjons, it provides us with a way of calculating explicitly

the density of states for any M, I and G. Indeed, clearly, if
Wwe Sum over alll valdes of n, we shall have summed (Svef ;ll b
- possibilities of:: decaﬁz of a fireball with such mass and quan-

tum nurbers. Hence, we have:

)
gj P (M, I,6) =1 (III.3.6)

»

r\

and from equation (I11,3.3):

‘ ;B MI,6) = o(M,1,G) (III.3.7)

0 P . . sy
o <
[4

Therefore, the probability that a fireball decays into n pions

g e

will be given by: ’ _ ‘ ¢

‘ o BmLne .
P (M,I,G) = —r—————— .{111.3.8)
n z?!n (M,1,G) _ ﬂ
n . o

E ?

3

N 144 ‘ <
III~-4 Calculation of the density of states,’

P+ - - |
In the. linear bootstrap, as we have seen, a fireball

emits a pion or a discrete resonance leaving another fireball

: as a daughter. Every resonance with compatible quantum num-

M e jaer Pt e
N - o T, e ""'i“i‘r‘) LA Zf’!ﬁﬁmw oo tinl '-i,"”“\*’ FIR o
. e e %, z * R




bers can be produced. Here,” we shall allow for the emission of

N, Py w,n', tS,f,A2 and gq. Aii these ‘resonances have a width
of Eﬁe order of the pion mass or less. Resonances such‘as ¢, '
: A, p' and A, with larger widighs have never been established

o as éefipit_e resonances - and shall be interpreted as kinematical
’ effects. We shall see later that, for instance, Al and A3 are
indeed predicted by the statistical bootstrapwmodel as statis-
tical enhancements. ‘ .
- ‘ We shall neither allow for the production of strange
> o - fireballs which, according to Zweids rule, are strongly suppres-

sed - thus direct emission of kadns or of strange resonances

will not be taken into account - nor for the emission of non-

*
strange resonances such as S , ¢ and D which decay mainly into
o . kaons. Empirically we know that at high energy the amount of
"L kaons is about ten times smaller than the amount of pions (3.7 .

", On the other hand, our model does not reflect this SU(3) syrh—

metry breaking in the coupling constants and would overestimate i

o ( the amount of kaons produced. Finally, due to their high mas-
ses, baryon production is negligible, at least in thea relati-
vely low-mass range we shall be coﬁs”id;aring.

Therefore, the only vertices considered are those in

f

| : ‘ figure (3.3) where the branching ratiog of the discrete reso-

- (e N * N . .
nances into pions that we have used.are shown. 1In these,
R - , )
. " A _ photons have been counted as neutral pions. Making use of the
) 2 _ ‘
?r}iﬁ .

appropriate Clebsch-Gordan coefficients, the recursion relation

2

- - ‘;4 ‘
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Figure '3.3: Vertices taken into account in the linear boot-
strap model to calculate the total density of

. Bt ceos states. Branching ratios into different numbers

O . of pions are also~given.
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(IIT.3.4) becomes:
“ - M—m"
- ] 1 ] @ L4
*E?? ﬁn(MIIIG) =-[ . dM A‘(MIM 'mﬁ) [610§n_1(M llt"G)"'GIl[g’n_l (M ¢0,-G)
p min ) h
= M-m N
‘\52 ] n [
‘ + i!n__l(M ,1.—G)]] +f aM A (M,M 'mn)
) Mnin
.ﬁ L ? [}
? v % !
: +0.62[80F M0, 4B /1,6)
: ]
g M-2m1r , M ) " '
) .dm g(m )A(M,M ,m )| § M ,1,6)
g\\\ + 3j\ v daM ; pp p ’ ‘p [ I0" n-2 rer
3 \\\\ Mmin 2
% l \ /{ | ﬂ' ‘ \rﬁ.?
X - *ﬁn[ﬁn—z“"‘ ,0,G)+E__ (M ,1,@]} “ f ,
y ‘ M-m . ‘ .
. Wy ' [ - y '
i o N-[m | dM A (M,M ,:gw)[o.101 5 1oPn-2 (M 10,-C) ‘
i min . . [
s ' $ ' % ' , |
. ,/ + o ¥, 1,-6)) +0.899[5 0B »0,-G)
N _ Mem |
’ i’ ' 1 ) N ﬂd ' ]
+ 8y F 3 M, ,—G)] + i M A(M,M ,mn,)
' min o .
% !
? Y . ¥ y ' >
?i x{0.02[5, B T ,0,6)+5,,F (n ,1,G)1
? / N “
; gy ' 5 '
| : + 0308 [ergB 0 ,0,00v8 8 0r',1,0] '
' ‘-5 v )
0 - +0.257[5B i ,0,00+ 612,00 ,1,6]

¥
- [
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% L * 1 1
+E ,1,-G))ﬂ + 3[ am A(M,M ,mg)

+ B 00,10 +o0.899[s,
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0.4 B ‘ b
+ 04195 0B (M ,0,6) 45,8 04,1,0)

M—mG 1. 1 i" 1
{m an’ A, m 0.38 s o, (4 ,1,-6)
min !

+ 511('1%_3 (M' ,0,-G)+i"n_3 (M' ,1,-'G))]

¥, B,
+ 0,626 %, 1-G) sy B, 0 ,0,-G)

m_ .
min

3
~

: ' L ’ /
x[ 0.101[510?‘n_3(m ,1,G)+511(i‘1n_3(r4 ,0,G) /

' I
%‘n_4(M y1,6) | |

t
h

0

1

+ SIlt?‘n-—4(M"O’G)+i?n—4(M""l’G))]} y

M—2mTr M-M
1] ]
+ 4.05J‘ aMm f dmfp(mf)A(M,M ;M

. 2m
Mmin - m :

s ‘ | | | \

v 1 L]
X [6IO?D"2 (M YO'GHGIl@n—Z (M Illg)]

f) o |

M-m_:

f{’ ‘ ~
£ |

) ' ’ ] J
+0.14[> daMA(MM ,m) [5162’11-4(”‘ ,0,G)
m - [

min

M-m
A
-2 ' ] )

dM A(M,M oy )

Mnin . s 2

o

, 2 ' + j
+ 813 r_1-4(M ,l,v-G)] 5

B 5 o,
x[0.766[610 o3 @, 1,-G 46, (B S ,0,-6)

e
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R B ] ’ ﬁ y
+ B ,1,-GA] + 0.102[510 (M ,1,-G)
T Ty

" 511(3n_4(m',o,-s)+ﬁn_4ZM',1,-Gﬂ]

& ]
<

-

+

. ﬁ L} o 'B ’
9.934{510_n_5(m 1o=G) 6, (B o ,0,-G)

) M—2mTT
ﬁn_s(M,l,—G))]] +1.68fm a’

Fin

-+

M-M ' ik "
X me dmgo(mg)A(M,M ,mg) [610 n-2 M ,1,G)
m

+

1 l-
dll[i‘fn_z(m. ,0,G)+B__ (M ,l,G]]
M-m .
4 9]‘ ng'A(M M )[5 ¥ (M ,1,G)
L ] m
m ’;'g 10 n-4 " -ty

+

3

le[Bn-‘l(M ,0,G) + i‘fn_4(m jl,G)]]

+

init .
¥;nl (M51,G) \ (III.4.1)

.

v ' .
- where p(m) is taken to be a relativistic Breit-Wigner distri-

(3.8)

bution as in equation (II.2.9) ! e
2mm,.
pm) =—& — Tl _ . (I11.4.2)
M - L3 " {mi-m”) “+m. T~ (m). -
, (1 0
I'(m) is given by: | - . ”



21+1 . 2 .
T (m) ( J 29, (1II.4.3)
2 2
{q"+q;)
j L1
where ' 8
1 % 2 2 2 . ,
q =35z 2m "“1'“‘2) (III.4.4)
and S ‘ i,
= 1 35 (m2,m?,m2 | ‘ (III.4.5)
9% = Im 0rMy My .4.

(,J'\

4

I‘o and 1 are respectively the width \at m='m0 and the spin of
particle my w}?ile m, and m,.are the masses of its decay. pro-
ducts. This form has originally been used for the p resoﬂance
(3.9) b'ut we shall adqpt it for any two-body resonance of spin
1,
In equatiopn (*’III.“4.1), the lower limit of integration
2 2

min is simply determined by the zeros of A%(Mz, (M) con-

tained in A(M,M'.,m) . Also, the mass distribut:i:on of. very
na\rrow resonances likel m, n, w, H' have been taken to be
Dirac delta functions and were readily‘integrated over. Dirac
delta functions have also been used for other resonances)which
" start contributing to %n (M,,I,G‘) at n=6 or higher. Their

production—rates are small and the use of a finite,width would
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i,e. the vertices appearing at the end of the chain (figure A.1l)
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not change anything in the result while complicating its eva-
luation. o ™~

The initial conditions necessary to calculate 3n(M,I,G),

are collected in appendix I. -Using these, equation (III.4.l)
has been evaluated by computer. ~

However, before presenting the results, .we would like
to comment apout the fegion of validity of this formula. Since
in our model, fireballs contain at ieast a heavy resonance in
addition to another particle, it is clear that equation (III.
4.1) cannot describle the physical low-mass density of states.
Indeeé, this part of the spectruﬁ is dominated by discrete

resonances such as 7, p, w etc. which may contain less than:

three pions and are not generated by our recursion relation,

These particles anyhow contribute to the total density of
states and have to be taken into account if low-mass calcula- g

tions are to be performed. B Co |
I1I-4-A The Resulting Density of States.

Figure I shows the resulting density of states (equa- ;
tion III.3.7). A summation up to n=15 has been necessary to 1

ensure a very good convergence over the whole range conside-

red. We have used a volume of radius 1.1 fm. This very

reasonable value has been favored by Margolis et al. in e+e-

(3.6) (3.10)

« N N I . .
annihilation -as well as in other reactions




We observe a rather weak dependence on the quantum numbers of
the fireball above 1.6 GeV. Indeed, both I=0 and I=1 curvés

can clearly be parametrized with the same function and the same

R 2 WOV

parameters exﬁept for overall normalization constants which

will differ slightly.‘—We note also a complete independence of

;x ' the g—parity for each isosg}m. Below 1.6 GeV,.the situation is

completely different and Lbe density of states depenés moxe

¢ strongly on the fireball quantum nﬁmbers. This is because we

é are in a region where new channels still appear in a‘discrete

g fashion and ihdividual threshoid effects are noticeable.

% ‘ , However; Hamer and Frautscﬁi (2’?) ising a different

é teéhnique in which a realistic low-mass spectrum of SyU(3)
multiplets of mesons is fed as an input to generate higher mass

1

; atates, found that the density of states reaches its asymptotic

behavior at even lower-mass, i.e. at about 700 MeV. Moreover,

" (3.11)

Hagedorn found that a smoothed experimental spectrum of

resonances could be fitted down to almost the pion mass with

e

a density of the form:

a
o(M) = 05 /T (III.4.6)
(M +M) .

et L

—

This parametrization is off by a power of L from the true asymp~

totic form (which was not known in thosé days) but is very close
(v

to it over a small energy range.

.
I
- e
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In our, case, we see that the analytic asymptotic sol&-
tion (equation I}.3.4) is entirely_consistent with our calcu-
lation’ and we find a limiting temperature of 160 MeV, in agree-
ment with previous estimates (2‘4'2‘9'3'6). D

- Thus, in viewypf the above discussion, we propose to
use the asymptotic density of states (corrected for very low
mass) over the entire range (dashed line-on figure I). It is
clear, however, that a full statistical behavior is not expec-
ted to set in in the discr%te resonanee region and‘tﬂat results’

s

obtained thqr% should be interpreted cautiously.

e -

I11-5 Multipion Production.

-

We now proceed to évaluate the production cross-section
of n charged pions. Only a subset of all diagrams building up
the total density of states contribute to such exclusive chan-
nels. In pion-proton s;attering (n is odd), the only vertices
contributing are those shown in figure (3.4). We shall write
a recursion relation similar to equation (I11.4.1) with the
following difference: since the only particles produced are
either charged pionséor resonances decaying into charged pions
only, it is clear that we no longer have isospin symmetry
(insured by the presence of the nentral pions). Howéver,
interestingly, it turns out that it is possible to w£ite two

different recursion relations, each being independent of the

third component of isospin and actually of the G-parity as well

Y
|
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Vertices contributing to the calculated exclusive
channels in the linear bootstrap model. Branching

ratios into different numbers of pions are also

given. .
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numbers of pions and the second for even numbers.

-tions are:

M-m

T ' ) B
ﬁﬁ(M,l) = fm dM A(M,M ,mﬂ) [?n_l('M ,0)40.5 %n_

min
M=-2m

+ l.sf
m

min

L
dM

— P

M-m

+

min

+

1
M-M

2m
m

.dmpp(mp)A(M,M ’mp}?n

AZ ' '
‘1.772?[. dM A(M,M ,
m

~

mAz)[Bn_3XM ,0 i

T
M-2m M-M
m

. |} [}
g 0.5 ¥ s 1) + 4.03[ dMJr dmp (m,)
. ‘ m 2mTT

]

. ' ' ' g ]
x A(M ,M ,mg)%n_z(m ,1) +’2.4E[ aM A (M,
m

x ﬁnn4(M F1) +

M-m

L ] L] n ] .
B (M,1) = fm dM A(M,M ,m) [510(0.6667)Pn_l(M 1)

min

B, ,0) + 0.84

Binit
n

2

Y ' 3
+ 8B 1) ?[;

' ' R
x AMM m)B o (M.,1) + Q.l{[

M—2mn

m .
min

(M,1)

M-2m

min

min
M-m
£, '
dM A(M,M ,mf)
Mnin ‘
1
M-M

1
aM a
mg P (mg

2mTr
M-m
min

'(if_n is odd)

(I11.5.1)

M-M

Tr [
de dm 0 (m.)
2m“ p o}

K3
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¢

We note that for odd values of n, 3R(M,0)=0. Initial
conditions used to evaluate these recursion relations can be -

found in appendix II. o : ~ I
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II1-5~-A Production of Three Pions.

We preseﬁt on figure II the three-—pion mass spectrum
predicted by our model. The main enhancement peaked at 1.12 GeV

can be identified to the Al meson ( p-m contribution only) and

<&

the shoulder starting at about 1.4 GeV to the A3 meson (f-7

contribution only). No g-n eﬁhancement is visible at higher

mass. o

We would expect though a more accurate prediction if

the three resonances p, £ and g vere replaced.by the full di-

pion amplitude as measured from the experimental phase-shifts

(3'12). Indeed, this would account for all interference phe-

nomena of ‘the different pértial,waves which are likely to

8

‘ show up in this low multiplicity state sinéewieW—diagrams, -

contribute. At higher multiplicity, we expect all ihterference

‘effects to cancel out due to the la}ge number of diagrams.

However, individual partial waves should be well described and .

to illustrate the point, the p-m contribution haq been separa-

ted out and normgliied to the data obtained by Ballam et al,

(3.13) £or the A, ( figure III).- We see that the experi-

. mental peaklis sharper than we predict,butg nevertheless, the

?

agreement is .surprisingly. good sinpe at such low mass dyna-

aﬁical considerations should still play an important role.

The experimental status of the three-pion diffrac-

©

tive enhancements in both the Al and -the A3 regions is still

confused }3'14). Previous phase-shift analysis (31}5) showed

e = e
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variation over the full widthﬁof the spectrum of the rela-

-

tive phases between the dominant partial wave and other partial

waves associated with the background. We know that for a true

-

o

‘an® . . .
resonance, a 90 increase is expected. This observation led

ra

people to interpret these peaks as non-resonant threshold >

effects generated either by a fireball model such as the one

(3.16)

exposed in this thesis- or in a multiperipheral way by

o

the so-called Deck model (3.17) preferably in its Reggeized

vérsion (3'18). This last model tends also to produce too

broad a bump.
However, very recent works suggest on the contrary,
that Al and perhaps A3 are quite respectable resanances. First

(3.19)

of all, a reanalysis of the CERN~-IHEP data, using analy-

tic-and unitary three-pion amplitudes concludes that, due to

‘(‘

Jambiguities in the fit, a resonant interpretation of the Al is

not excluded. Secondly, a new partial wave analysis of cohe-

) (3.20)

rent pion scattering off comﬁlex_nuclei supports the

. + . .
existence of resonant 1 waves in the Al region as well as a

‘}esonance behavior of a 2~ state in the A3 region. Thirdly,

a backward pon- enhancement has beeh observed in the non-dif-
- &

fractive m p'» (3m) p reaction at a mags of 1050 Mey (3-21)

The measured w;dth oﬁ 195+32 ﬁeV is narrower than found in
e - -

-diﬁfractive“productidﬁ but, neverthelegé, the resﬁlts of this

" experiment constitute a strong evidence that a resonant A,

meson ‘has been produced; Finally, a study 6; the decay*of the

,
. . -
o * /
v Y ‘
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is the result of the full calculation. It |is a sm

: ' + - . -
newly discovered heavy lepton-t(e e =~ T+T > vve + vpon) shows

an indication of a bump in the Al region (3’22). The pwm mass

spectrum in séite of low statistics (21 events) is entirely

consistent with the 1 + A.,v decay mode.

1

In conclusion, present experimental situation seems to,

\

support the existence of A aé a true resonance and likely,

1
it will be fully confirmed in}?ﬁ% near futur;. Actually,

the discovery of this meson is of great importance for quark
models and’ chiral symmetry(3‘23). On the oth;r hand, it is
also clear that in diffractive three-pion prodhctibn, the
whole enhancement cannot be resonant. In faqt* the above dis-

cussion is suggestive of a large fraction of non-resonant

behavior coﬁpatible‘with our statistical description.

I1II-5-B Production of Five Pions. .

Figure IV shows the five-pion mass spectrym generated-

Y our model. We display three different c ions to point

out the importance of resonance emission. r curve

oth but irrégu—

on the low-

¢

lar shape peaked at 2,17 GeV and with two shpulder

¢
|

y of the

«

and IIXII.5.2), as indicq%ed by the middle Cﬂrve. It is clear

however, that no significant meaning should e attached to the

l
~ * 1 \?‘ © !]

o
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second shoulder becausk it can so easily be destroyed by either

statistical fluctuations or minor dynamical effects. We do not
Q
expect data to reproduce in detail the predictions of a statis-

tical model at finite energies. On the other hand the lower

shoulder is more pronounced and should manifest iEself in the
s 7

'

data. Other contributions such as resonance emission along
the decay chain will peak at a somewhat higher mass and since

there are so many of these configurations possible the full

GO B a4

spectrum will be shifted at higher mass. 3 1

The lower curve shows also the prediction of the first

A TR S e TS O A TR e 0 -

term of equations (III.5.1) and (III.5.2) but here all initial

-

~. conditions yieiding more than three pions have béen removed.
This stresses the importance of adding all relevant contribu-
tions in,gengralizing the model to a higher number of pions. ; !

c 7

produced. Indeed, integration over the spectra shows that the

Sy

lower curve represents only 38.2% of the total number of . {' .
five-pion events while the middle curve . accounts for 58,3% of

these events. Thus, 41,7% of the decays exhibit either the

emission of at least one resonance along the chain or the
emission of two resonances at its end, certainly not a negli-
geable fraction. N

~

-

Finally, we reproduce in figure V the mass spectrum
obtained using the analytic asymptotic density of states (equa-
o tion IX.3.4), (full line), along with the spectrum obtained ) 1

(\' when the calculated density of states (equation I1II.4,1) is
Yy -
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2

used (dashed line). Both‘curves have been normalized to the

t

“same peak value. We see that the differences between the two

are very minér anduclearly negligible in the ;pirit of our mo-
del.

Unfortunately, no data exist on diffractive five-pion

oduction off a proton but there are some off nuclei. "In the

next chapter, we shall see how our predictions compare to them.
III-5-C Seven and Nine Pion Production.

: The seven pion spectrum has been calculated up to 4.41
GeV only using the method outlined above. At higher masses,
the accuracy, due to the great ﬁumber'of numerical integrations
to be performed, starts to failk. Thus, we neglected all reso~
nances® width, reducipg ipso facto_the number of iﬁtegfatioq by
one. Looking at the curve in figure, VI, we see that the match-
ing is excellent and that virtually no error has beeh in- ”
troduced in the process.  The maximum of the peak occurs ‘at
3.?2 GeV and the whole specérum is very smooth indicating that
no '‘particular sub-gréup of diagxams dominate§ ifs behavior over
a’limited range. This is confirmed by the two lower curves
which display, as in figure IV, the contribution of pion emis-
sion alon; the detay chain Elqne. These contribute even less

to the full spectrum than in the five-pion case and thus, mass

-

differences between resonances a;g\ﬁion become less important. '

F

The middle curve accounts for 22.7% of the ihtegrated nunber of

1
3
l),K
[
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events while the lower one acvcounts for 15%:

a o h
~

Finally, we calculated the nine-pion spectrum presented
»on figure VII. We did not attempt to go beyond 4.41 GeV but we
have enough information to know that it peaks at 4.3 GeV and

o

that resonance emission aloAg the decay chain or doqué reso-
nance emission at the end of the chain is very important.
Indeed, we found‘that pion emission alone contributes approxi-
mately 13% to the integrated number of events (middle curve)

and it reduces to 8% when wp, TE(f » 27), wg(g > 27) are the

only initial conditions taken into account (lower curve) .

III-5-D Relative Cross-Sections:.
v

Our statistical model cannot predict absolute cross-
sections though it makes definite predictions on their relative
A — I3 s o . 2
mqize. They are simply given by the ratio of the respective

s -
integrated numbers of events. We have:

o ' *

o (mp+(n;T)p) Idman(up+gnlw)p)/dm//

(111.5.3)
0(wp+(n2ﬂ)p) l[ﬁMdyiﬁgjinifTP)/dM

We collected in table I all cross- sections calculated

.relatively to the three-pion cross-section. 1In the nine-pion
case we only have about half the spectrum and the results of
the partial integration are multiplied by two. This provides

us with a good estiﬁate, probably accurate to within 30%. We
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give our predictions for the three cases shown on'the graphs.
From the figureé, it is obvious that resonance emission is be-
coming %ore important as the number of bions produced increases.
This 9f course, should not come as a surprise since, as we said
before, the mass differences befween resonances and pion are
less relevant for a heavy fireball.

Therefore, from the linear statistical boostrap, we

have learned the following: a naive generalization of the model

- from the three-pion spectrum taking only into account pion emis-

sion aloﬁg the decay chdin (first term .of equation (II1.5.1)

and (I11.5.2)) and the correspondiAg initial1conditions (all w~R
vertices - middle curves.- or m-R(R+2m) vertices only - 1§wer
curves) reveals itself ﬁompletely inadéquate to predict relative
branching ratios but, on the other hand,‘is sufficiently accu~

N ¥
rate in predicting the masses (but not the detailed shapes) of

all n-pién enﬁancements.‘

-

III-6 NonrLinear Statistical Bootstrap Model.

So far, we have cqnsidered only a simpler ,version of
the model in which a fireball decays into two particles, We
shall now take into account the next dominant contribution:
the decay of the fireball into three objects. We know that
asymptotically,27% of the first generation particles come

from a three-body decay. However, for low-mass enhancements

such as the ones we are calculating, it should be considerably

1]

~

[ ——
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« less and we shall now study how this figure is changed. In
order to do so, we writé recursion relations similar to equa-—

tions (III.5.1) and (III.5.2), but here, we neglect all reso-
nances' width. This is because the non-linear term is expec-
ted to contribute much less than the linear one, thus making

the inclusion of widths an unnecessary complication, For the

same reason, we shall not reevaluate the total density of sta-
tes assuming a priori that the asymptotic temperature is not

changed. From the results obtained it will be easy to judge

a posteriori ifi%his was indeed a good guess.

Along the decay chain the only vertices conéidered
are those shown in figure 3.5. They are all of the type m1F
or TRF and dominate the non-linear contribution. RRF vertices
are suppressed because, firstly, the integfand is smaller for

s

larger masses and, secondly, the integration interval ig

narrower, However, all 77R, TRR and RRR vertices are allowed R
: at the end of the chain, Init{ial conditions are given expli-

e .
a

"citly in appendix III. Thus, recursion relation in the non-

linear version of the model are:

‘

, M-2m.

B ®

P (M1) = 0.9 . aM, T (M, M, ,mp m P (M, 1)
4 , min,

M- (mytm ) 15 . n
+ {m - an, (M,Ml,mﬂ,mp)[O.SPn_3(Ml,O)
. . min \

() ’

4
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T
% -
% ‘ ] l : M—(m“+mf /
; + o.4?n_3(Ml,1ﬂ + 5[; dM, I (M,M;,m_,m.)

min ’

X [0‘Blan—3(M1'0)+0'405%£-3(M1'1)+0'028?n—5(M1’0)

M—' (m:‘,-r'{'mA )— N

+ 0.614%n_5(ml,1ﬂ + 3.19%f‘ 2 au,

' ! ' mmin ‘u

M-(m +m )

) ) i g

x/I(M,Ml,m“,mA )'13}1_4(M1,1‘) + ‘Z[
: 2

m . .
< min

O e i o ki S IRUN SN E

X M) T (M, My, m ) [o.lszn_3(Ml,o)+o.095i5n__3(Ml,1)_

/
+ 0.35?5“_5(Ml,o)+o.23%n_5(ml,1)]
+ terms of equation (III.5.1) (if n is odd) ~
1 . | o (III.6.1) 1
; M---ZI’(Llr , / . i
¥ i) # o,sf aM, I (M,M,,_,m_) [510/{0.667'1‘1n_2(ml,0) , |
i n=emn ~ Mmin / | i

+ 0'333£‘n-2(M1,'1):'~ + 511[?’11—2 (Ml,ozja.si‘fn_z(ml,l)]]

M~ (mﬂ+m ) . . |
J
+ 6 - ) dMlI(M,Ml,mﬂ,mp) (6100.167'13n_3(M1,1) |
min )
, ﬁ‘ M- (m"+mf) .
min '

Y
x [§Io[o.z7%n_3(M1,1)+o.009%n_5(ml,1ﬂ
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\

+ g l[o 2058__,(m,1)+o0. 014%_ _g M, 1)]]

M—(m“+mA )

+ 1.7725 2 am LJIOLM m o ) s [0.667
I 1 a,’ %10
min ,

x ?‘n_4(Ml,0)+o.333?5n_4(M,l)] + 511(§R_4(M1,0)

M—(mw+m )

+ o.e@n_4(ml,1)]] + 14 i aM T (M, My m )
' min

X [510 [0.04i¥n_3(Ml,l)+0.117Bﬂ_5(M1,1)] Y

+ 611[0.096?5n_3(ml,1)+o.zs%fn_s(Ml,l)]]

+ terms of equation (IIT.5.2) (if n is even)

~

(I11.6.2)

)

R,

where:I(M,Ml,ma,mb) is the three-body phase-space calculated
, in appendix IV, Factors for identical particles are included
in the coefficients.

-
s

III 6-A Effect of the Non-Linear Contrlbutlon on Multlplon i ‘
Ay
Productlon. .

The major conclusion that we draw from the results
of this enlarged version of the mddel is that the non-linear

term is hardly necessary unless a few percent accuracy is

desired. This is, from a practical point of view, a very
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interesting and fortunate conclusion indeed,.since this more

general model is much,difficult to handle numerically requiring

’

huge memory and long/execution'time. Let us néw see in details

.

*its influences on ojr previous results.

~

o

Firstly, itls effect on the shape of all épectra to which
it contributes (57 |and up) is totally negligible. Indeed, the

g . ' 3
new spectra, once properly renormalized, can be supéflmposed

{23

within plotting accuracy to the old ones establishing the

smallness and the smoothness of the non-linear term.

4

Secondly, its effect on the magnitude of the cross-

: “
sections is also pretty small and, as expected, slowly increases

with the number of pions produced or, equivalently, with the
mass of the enhancement. More precisely three-particle ver-
tices, apart from.not contributing to the three-pion production
cross—-section, accouhts for 1.5%-of the five—pion'spectrum; _
only 3% dg all seven-pion events exhibit at one place or

another one or more threé—particlevdecay and it goes up to

approximately 4.1% in the nine-pion case. We give in Table I

the new relative cross-sections obtained in this non-linear

L4

. version and a glance at it convinces us that unless very
precise éggérimental data become availablé/the statistical
Jbootstrég model, in its simpler linear version, is completely
satiéfactory. A
;

By the same occasion, our results provide us with a

7
full a posteriori justification for our use of an unmodified
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tribute very little to it, thus having a negligible effect|on T
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. CHAPTER IV )

APPLICATION TO PIQN-DEUTERON SCATTERING

v

IVv-1 Introduction. x

A

It is an easy matter to extend the results, obtained‘in.

the previous chapter for diffractive pion-proton scattering to

pien-nucleus scattering. Among the different nuclei, deuteron
is particularly suitable to study diffractive ‘dissociation and

presents definite advantages on proton target. There are a

number of reasons for it (4.1)

TN .
zero nucleus thus eliminating all non-coherent background co-

. The deuteron is an isospin

ming from I=1 exchanges (important in pion-pfbton). The deu- 1

LS

teron is a spin one nucleus for which spin-flip contributions

are forbidden in the forwafd direction (t=0) and therefore

heavily suppressed in the diffractive region (t very small).

-

The deuteron has no excited states so that, except for few

a

_deuteron break-up events followed by recombination, wvacuum
quantum numbers exchange can be assumed every time a deuteron
KN

nucleus is identified in the final state. Finally, the deuteron

form factor favors scattering in the small t region, thus .

favoring-diffractive events. All these reasons combine to make

¢

easier the production (relative to other channels) and’the
identification of diffractive events. At least, they were

(4.2,4.3)

sufficient to stimulate experimentalists
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~ which state,é that the momentum transfer cannot exceed the in-

IV-2 Coherent Production on Nuclei. -

aI\]uc‘lei are a collection of interacting nucleons very
p_lése to 'éa;ch other. For this reason, we expect diffractive
haéiror"x—nucleus interact’ions to be more compligated than hadron-
hadron “collisions. OHowever, at high energies (in the GeV ran-
ge), an’ event takes p,lace/before any nuclear rearrangement can
.occur and the nucleus is seen as’ a frozen object. It was thus
possible to develop witg} much success a sophisticated theory
(4.4) accounting forx rllutﬁal screening of nucleons an°d multiple
scattering. ~ It involves in general the solution of a set of
‘éoupled differential equations related to all diffractive chan- ’
nels that can be produced. Bué, as we have just seen, diffrac-
tive events are highly concentrated in tﬁe low t region, a re-
gion where production amplitudes 'are vety dominantiy coherent.
Nuclear coherence implies that the outgoing parficle shares
with the incoming hadron all its internal quantum numbers ex-

cept .spin and parity since there might be some angular .momen-

This condition is clearly satisfied in diffrac-

8

tum transfer.

tion dissociation. It'also puts restrictions on the mass of the

particles that «can be diffracEively produced. Indeed, in order
to keep in phase both the incoming and the outcoming wave-

functions, the following condition must be fulfilled:

-

0K R < 1 - (Iv.2.1)

€

7
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_to use the full machinéry of the theory and the folTwing factori- "’

Tt =y !

verse’ ofl the -nuclear radius. In addition, there is a minimum
momentum transfer involved in any reaction where the masses of

the initial and the final particles differ:

t—mi‘n = - [(Mz—mz)/ZpLéb]z (Iv.2,2)

Thus our coherence condition implies:

Me-m $ 2Pp /R ‘ (Iv.2.3) ,

suppressing the production of high nass states. Theory ~(4'4)
predicts very little mul}:iple scﬁattering in this low t region
where differential cross-sections, cﬁaracterized‘ by a steep‘ -
falloff mainly determined by the nuclear form factor, ‘can be

parametrized by an exponential in t. Thus it is not necessary
A

zed form is quite sufficient

(4'5): .
, V7
) dzUnN d‘iN 2 2 d?‘ovrp : Oé -
—— =|| F (t) ——= (Iv.2.4) =
dth GTTP dtdM i

ya 3

vhere F(t) is,/«tfhe nuclear form factor. Once integrated over

» A

" ‘eE N
t from (-«) to tmin' the simple distribution results: ] \/
. ¢ ‘”‘% ' ] -\1
. 2 ' . ‘\
T 2 . hd . o .
do g do o
TN N -bt .. yif .
TM—- = -c_'f— ’e 'lntln _m—B _ ] (IVQZoS)

. P ' )
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differential cross-—seété‘ibns. This is cdmpletely e uivalent to

9

‘the result obtained from the theory in the small t approxima-

tion (4.6) leading to the identification: - ’
o ) b = é<-;2> (IV-2‘6')
where <r2> is the rms nuclear radius. .
] It is clear from equation (IV.2.5) that the presence of

. , kY,
the nucleus produces a shifting on" the low-mass side and a .

shrinking of all multipion spectra. These effects are more

!

pronounced for higher multiplicities thus affecting the size

of the relative cross-sections.

5
e

Iv-3 Multipion Production in Pion-Deuteron Scattering.

©

We shall now present our predictions on deuterium and

-
L3

:compare thém with data when available. We emphasize that no

additional free parameters are introduced when dealing with

. nuclei since both (G;I;D/o:‘p)z and b (or<i:2>) are taken from ex—~: -

perimen\ts. The ratio of the deuteron to proton square cross-

. ’ i
, sections is equal to ~3.6 (?'7) and the value of b has been

v, determined (4"2'4%3’4'_8) to be 30-32- corresponding to a ra-

*
. - dius of apfi)réximately 2,7 fm., Margolis and Rudaz (4.6) used -

a radius of 2.8 fm (b=33.7) which is equally dgood since, as we

() shall see,.our results are little sensitive to a precise value.

o -
-




B Mg

e

i S .‘%ﬂﬁ“&
A X
o

-
b A

- 60 -

«

In the predicted spectra presented in figures VIII-XI,
b=31 was se}/écted. In figurd VIII, we compare @uxr three-pion

. 1 . .
mass spectrum with data (pL ‘=15 GeV/c) (4.3) of the LPS#1l

ab.
sector since our model does not\ attempt to describe the entire
three-pion channel “(for instancé no d*'oformation is taken into
account) . We do not obtaiun’a very good agreement. The width
is too big mainly because the f-m enhancement ured at 1.65
GeV manifest; itself as a smooth shoulder from 1.4 GeV on.

However Harris et al. (4.1,4.3)

, using the‘ full dipion ampli-
tude as discussed in chapter II, reproduced very well the
experirental result suggesting that interference e‘ffects are
indeed important at low mul’éiplicity. While most people seem
-+, to prefer a Deck mechanism to describe this channel, it is
found that the stati/s/t;ical bootstrap mo:del makes a se}tisfactoryai'
job in the forward LPS sector. Of course, in other sectors,
the Deck model Wis superi_or”since it incorporates d* effects.
However at higher multiplicity our prec{licti_ons should

improve considerably due to the large number of diagrams

contributing. Fjgure IX which displays the fi\<e—pion spectrum

indicates that this is ihdeed the case. The aé{éement with

. data (4.3)

is; excéllenf:,,even strui:ture detail‘s \qsually asso-
ciated w‘ith dynamical effects are ve“ry satisfactorily eu;cplained:
the peak of the enhancement is observed at precisely the pre-r'“
dicted mass_ (2.12 GeV); a prominer-ltu shoulder on the low-mass

‘'side is seen to have at least mostly a statistical origin: the: .
. , . b

. ' e
/

L % P a——




A LA

i W 7

R

1

&

(

compeptitio,n of classes of diagrams pgaking at somewhat™dif-
ferent masses (see chapter UII, we note that this shoulder is
further enhanced in pion—déuteron thén ii\ pion—proton scatte—
ring by the“ nucleat form factor); the slope on the high mass
side follows cfosely the data up to 3.0 GeV. 'It is not per-
fect though and if. the few unexpléined events' in t;he shoulder
region could mostly disappear in a higher statistics experi-

(4.9)

ment , it is doubtful that those in the tail will. For

3

instance, the latter could be connected, to some dj‘ ei‘zf?cts: Pro
duced in minimal qu,antity’and not accounted for in our model.
or to some coherence setting ﬁp among the different partial
waves. Accorczng to dvality, thié leads to a powér—law beha-
(2.1) '

vior, typical fia Regge tail . Obviously, little atten- .
tion shouyld ine paid to the predicted double _pe:ak. © It-is

simply the reflection of the small shou’ideri in the pion-proton
spe”ctrﬁm enhanced by the deuteron form factor and would disap- .
‘pear wj:th it for }thé safie reasons,

Therefc?re, we conclude that the main features of this

enhancement are statistical in nature and thus iittle dyna-
“mics is involved in the process. Once agaiﬁ, our results stress
the importance of many relatively ‘small cfontribut(\ions addin?' up
together and responsible of structure details formation. The
obtained agreement with data can bepa regarded as remarkable for,
as far as we know, no other model gives such a good descxjiptic\m

o

of the afive-—pion enhancement. 1In particulag, different multi- »




a7
1

peripheral mechanisms have been tried (4.1b,4. 3b) with rather

v . 1 ]
¢ modest success. Two of them were two-body versions, (gm,p. 7},

R L ' R
- but no such dominant quasi two-body states were identified in

' ]
the data while the third one (ppm) predicts too many p s. In

T N
7
<

addition; none of thesg fits well the five-pion distribdtion.b

The next two fiqures show the seven and nine pion spec-

b
{

&
o
3
A
b

tra ﬁespectively. Clearly, no specific comments are needed.

Both are very smooth and, as exg/;fed from the deuteron form
Y

factor, at masses several hundreds MeV lower than their pion-

proton counterparts: the seven pion bump peaks at 2.72 GeV and

the nine pion one at 3.22 GeV.

% - ‘ " IV-4 Relative Cross-Sections. <

4

are easily obfained frdh'integratiqn of equation (IV.2.5f. °,

Several conclusions tan be drawn from the results presented .o

in table TI. Two of them are already known from our preV1ous

T ‘ analysis of plon—proton.scatterlng, i.e. the 1mportance of re-‘
'sonancé emiésion whicﬁ increases by almost a factor of three
the number ;f five-piqn events and by roughly an order of‘
magnitﬁde the nine-pion cross~-section; the negligibility of
three—par%é%le\nartices whose contribution amountqmpnly to a
E few percent. A third one is the little sensitibity of all .
: cross-sections to the actual slope of the deuteron form factor.

- 1
\ '(ﬂ This can be seen from a comparison of the values obtained

f
J . —
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« These, same authors, following Margolis and Rudaz
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using b=31 Qith thdése calculated with b=33.67 (<r2>%=2.8fm):

a mere 5% variation in the ratio o(37)/o(571) and approximatelyl
30% in c(3;)/0(9n). Thus in view of the‘extreme difficulty to
obtain an accurate nine-pion cross-section measurement, it is
obvious that %p% represents a really small cqﬁnge and that oﬁe
does not have to worry too much about the précise slope value.
OQur fourth conclusion is that measurements %ffmultiplicities

(4.10) in tHis energy

®H
range (pLab=lSGeV/c) since, relative to the number of five-pion

higher than five will be quasi impossible

events, only 1.6% yield seven pions. However, we have calcula-

" ted that 21% of the absolute number of five-pion events obtained

at pLab=15GeV/c is reached in the seven-pion chéﬁnel if
pLab=50GeV/c is used. At 100 GeV/c, this ratio goes up to 28%
and thus we believe ‘such éﬁ experiment could be performed with
success at, for instance, Ferndlab: In addition we note that
the deuﬁeronlstill remains a better target than a proton since
the latter yieldsjonly 9% in its asymptotic regime.

The only available pieée of data is Lhe relative three
to five-pion cross-section. Lubiiti and his collaborators (4.3)

measured a ratio of 17.4+3.5 in excellent agreement with our

‘predictions independently of the selected model's version.

(4'6), esti-

mated this ratio to be 42 assuming that the simplest version of

th olum in tables I and II) was largely dominant.

the model (4
In frder to explain the discrepancy, they suggested an 'increase

of the fireball radius meglecting its relation with temperatu-

-
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re (2'9). As YF have seen, th;g is not at all neéessary since
a correct application of the model leads to the right value.

In summary, we showed that the statistical bootstrap
model g;ves a good description of experimental data available
so far, ip particular of the five-pion enhancement, giving

great confidence in our higher multiplicity predictions. The

1

» detailed shape of the three-pion spectrum in the LPS§l sector

is better accounted for if the full dipion amplitude is used

rather than the discrete resonances produced in the reaction.

The. three to five-pion ratio is very well predicted by our mo-
i/

del suggesting some sortuqf precocious statistical'behavior
due to the rapid reach of the aéymptotic density of states,
certainly the best applicabi}ity criterion for oﬁf‘statistical
model. Whilﬁwphe three-pion enhancement?is basically two-
body‘states éégily separable, we foﬁnd the five-pian one to be
the sum of many diagrams of different numbers of steps in the
decay cascade with no single contribution really dominating.

(4'3) and in contrast

This is in agreement with e#periment
with many versions of the Déck ;@chanism.- In this régard,

seven-pion measurements will be very intéresting since, if this
behavior persists, the statistical bootstrap moael will provide

a very reliable tool to predict the characteristics of high

multiplicity diffractive dissociation.




CHAPTER V

SUMMARY AND CONCLUSIONS

In this thesis, we studied diffractive multibion"pro-
duction resulting in low-mass enhancements. In order ‘to do éo,
a hybrid model was developed in which a dehse s;t of overlap-
ping resonances is formed by Regge exchange in the t-channel
and then decays statistically into multipion states in the s-
channel. Isospin and G-parity conservation were fully taken
into account as well as the finite width of discrete resonances
produced in the reaction. A faciorized fo;m of the cross—-sec-
tion f(equation II.2.16) was obtainéd, consequence of the inde-
pendence of fireball formation and decay.' Indeed,'wg assumed

that the fireball is sufficiently long-lived to "forget" the

way it was formed. Due to the great number of open channels,
{

[}

the probability of decaying into a specific channel is simély
proportional to the number of copfigurations assumed by this
channel and inversely proportional to the total number of con-
figurations. Since the total densit§ of states grows exponen-
tially within powers of M, thus suppressing high mass statés,
low-mass threshold enhancements result. .The general formalism
of the model as well as a brief discussion of the statistical
bootstrap of Hagedorn and Frautschi which we'used to caléulate
densities of states was presented in chapter II.

We next considered application to diffractive pion—prb—
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‘

ton scattering for which a triple-Pomeron exchange was selected,
as suggested by previous aralyses, for fireball formation and
proceeded to calculate exglicitly the total density of states

'
in/ the linear version of the model. For this purpose, we wrote

i J &
'

ﬁ/recursion relétioﬁ (equation III.4.1) allowing us to generate
’any multiplicity state of any iséspin and G-parity. We found
that all curves could be fitted by the same function using the
same values of the parameters except for a small change in the
normalization conétants of the I=0 and I=l densities. The
asymptotic teﬁberature tﬁrned out to be 160 MeV (for a radius
of 1.1 fm) in agré%ment with previous calculations. Our ap-
proach was not suited for the low-mass region since it does not
account for discrete resonances but a direct counting of
states by ﬁagedorn led us to conclude that the analytic asymp-
totic density of states (aeM/T/M3) corrected for very low mas-
ses could be used over the entire mass range.

The occupied number of states was then calculated and
even though isospin symmetry was no longer present, we were
able to write two different recursion relations, each of which
turning out to be G-parity independent thus simplifyiné their
evaluation. .

Using these, the three, five, seven and nine-pion

’

ass specﬁra were obtained as well as the relative ¢ross—sec-

I

tions. Our results led us to the following conclusions:

R
1- Diffractive production of A,, if its exjstence as a

+rue resonance is confirmed, is accoméanied by the
L]

2
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A prbduction of a large non-resonant background sa-
tisfactorily described by the statistical bootstrap
mddelf

é— The experimental three-pion enhancement is better
described if .the full dipion amplitude is used ra-

ther than the discrete resonances p, f and g (5'1).

This is suggestive of important interference effects

among these resonanges observable at low multipli-

city due to the small number of contributing dia-

grams.

3 Resénancé emission along the decay cﬁain and double
resonance production at the end of the chain are véx%
~important at high multiplicity (n35). " Due to the
‘great number of possible diagrams, they actually

account for most of the cross-section (though a

little more than 40% in the n=5 case). However, the ’
simplest version of the model (pion emission along

the decay chain; mp, nf (£+27), wg(g>27m) at the end)

e o o e

is sufficient to determine with a good accuracy -the
mass of all enhancements. |

§ 4- Structure details in the five-pion eghancement‘are
?ue to Competitioﬂ between different classes of
diggrams ﬁeaking at somewhat different masses. At

_fhiéhgr multiplicity, no such details are observed

( ! ) since mass differences between pion and resonances




L | |
%

become less relevant.

5- The contribution of the non-linear terms (three-
particle vertices) is neéligible unless a few per-
cent, accuracy .is needed, They do not alter the
shape of any n-pion mass distributions and can be
superimposed within plott§ng éccuracy to the prév
dictions of the linear version pro&ided a suitable
renormslization of the peak values is performed. .

In chapter IV, our analysis of pion-proton collision w;s

extended to coherent pion-deuteron scattering. Because very

sﬁall values of t are favored ih difffactive processes, double

scaétering ié negligible and it was quite sufficient to simply i

multiply our results on hydrogen by an exponential in t to ap-

t

proximate the deuteron form factor (equation IV.2.5). By doing
so, no arbitrariness was introduggd in the model since the two

needed extra parameters were taken from experiment, Conclusions

'1 »

and comments suggested by our results go as follows:’

*

1- The nuclear form factor produces a shifting on the
} low-mass side and a shrinking of mass spectra more
pronounced at high multiplfcity thus changing the

size of the relative cross~sections. However, as i

\ expected,‘éll coﬂclusions drawn from pion scatfering 5

‘ off a proton remain valid on a deuteron target. !

2- The statistical model gives a satisfactory descrip-

! tion of the three-pion spectrum in the forward LPS
Q\

L
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i
sector. It cannot account for the entire channel
/
: ' {
since no d* production is incorporated.

3- The predicted five-pion mass distribution agrees
5 \ very well with data. No two-body states dominate \
3 ‘the channel as confirmed by experiment. Most struc-

- |
ture details are found to have a“statistical origin

indicating that little dynamics is involved in high

- i

¥

multiplicity diffractive enhancements and giving
. _great confidénce in our seven and nine-pion predic-
tions. The last point is further supported by our

next conclusion. >

-
I

The' three to five-pion cross-section ratio,
o(3m)/o(571)=16.94 (non-linear version, b=31f is in

excellent agreement with the measured value 17.4+3.5.

: P ‘ This is suggestive of precocious statistical beha-
) vior due to the rapid reach of the asymptotic den-
sity of states. , ‘ . AN
5- A precise determlnatlon of the slope value of the AR J
deuteron form factor is of minor 1mportance in the

statistical bootstrap model unless very high multi-

plici%y experiments are made.

3

6~ Measurements of multiplicities higher than five will

have to be performed at PLab>50 GeV/c to get a suf-

ficient number of events, Moreover, the deuteron

ﬁ ( ; ' still remains a better target than\theugfgfgfi’///////
- . ‘
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del ‘in which higher multiplicity enlyandements ar

. should improve with multiplicity making comparison with expe-

cross-~section, might be simultaneously produced. This could
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resented a mo-
I

ated Ty

"

from lower ones in a completely deteérmined fashiaqn. | Because 4

of -its statistical nature, the accuracy of its predictions &

]

riment more stringent. In particular, the existence of fire-

balls, crucial in our type of model, remains to be experimental~ .

12J3§Fablisﬁed. For the time being, we have every reason to ]
believe that it is 1ndeed a good concept,

Though very well suited for pion diffractive Qigéo— . ¥
ciation, the statistical boottrap model is not limited to it

\Q
and can be used to explore other kinds of reactions such as,

for instance, photon dissociation. Some work has already been o

(5.2)

done in this connection , on a beryllium target (NAL data,

reference 5,3) and we,would like to end by stating our prelt

minary regults (5’4): B . 0.
- ' :
he four-pion enhancement, known as the p (1600), can-

not adequately be described by our model, we predict too wide
®
a distribution, most likely it is a true resopance. However,

a large background of statistical nature, which we estimated

roughly to ?e of the same order of magnitude as the measured

explain why it is experimentally so difficult to establish - '

the p' (1600) resonance status. '
: /
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APPENDIX I

L4

Initial Conditions in the Linear Bootstrap (Density of states).

' We state here the non—zero initial condition{ used to
evaluate the density of states in the linear bootst;‘[pp model

(eq.'III.'ti.l). They correspond to the diagrams of fi&};_re (A.1).

The following notation is adopted:

- gy wem |
P‘Is(‘M,ml,mz) = ffi“‘;p(mi) ﬁdm2 p(m;)A(M,mi,m;)
'1, p m3+m4 ° m5+m6 |
e _ @)

g *
- [y
-

where my and m, are the masses of the decay products of parti-

cle 1 and m, and m, those of particle 2. p(m) is taken to be
‘ v '

a Dirac delta.function for the \iery narrow resonances T,nN,w,n ;
( >

a Breit-Wigner distribution for p,8,B and ‘A2 in vertices con-

tributing to '134 (M,I,G) or lower and a Dirac delta function for

all paﬁrticles‘ in verticés coptribqting to ?‘5 (M,I,G) or higher.
Making use of the appropriate spins ax;d Clebsch-Gordon coeffi-

cients and dividing by 2! when’ two particles are identical,

* , w

)‘we

obtain: - - *
» " i J‘ - i 14

33 (M'o"‘)

3PI (M,mp,m“) + 1.68 PI(M,mg(g - er),m“) ﬂ

it

%,‘3(M/,1,+) 0.303 PI(Mym ,m ) .

R S

T B

AP
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B.M,1,7) = 0.38 PI(M,m ,m) + 3 PI(M,m_ ,m) '+ 0.02 PI(M,m , o)

+ 4.05 PI(M,mf(f-;Z'fr),m } + 1.68 PI(M,m_(g+27),m.)
o ¥ g ‘ﬂ’(

o

B,(4,0,+) = 0.38 PI(M;mg,m) + 3.545 PI(M,m " (A,55+1) ,m ) -

2

+ 0.285 PI(M,mAZ(A2+n+n),mH) + 0.072 PI(M,mn,mn)

+ 0.008 PI(M,mn,mn,) + 1.539 PI(M,mf(f+%w),mn)

]

s
+ 4.5 PI(M,mp,mp) + 3.04 PI(M,mgtg+2n), mp)

L ' ‘ )
p ~+ 0.046 PI(M,m@,mw) + 0.08% PI(M,mf(f*zn),nH,)

+ 8,201 PI(M,m_(£+27) ,m (£+2)) f

> L P+ 11411‘PI(M,mg(g+2ﬁ),mg(g+2n))
R J "

\'J

0.303 PI(M,my(av27),m,) + 0.115 PI(M/m,m ) &

. +70.003 PI(M,m‘;”mﬂ._;ﬂ 1.227 PI(M,m (£+27) ,m )

o
)

. ‘ %‘4(M,1,+) = 2.697 éx(m,mw,mﬂ)- +0.38 PI(M,mg,m ) -

‘ . + 3.545'PI(M,mA
' - . 2

P

(Az*oﬂr) ,mn) _ °.

¢ K o>&i PL(M,my  (A,>T4T). my)o+ 1.14 PT04m, )
- o L, o ’ ‘ ’
- ) - W" R 2 B - [ o2 e
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+0.638 PI(M,m_(g+27) ,m ) + 4.5 PI(g,mp,mp)
. ‘ «‘o.oe'px(m,mp,mn,) + 12.15 PI(M,mf(f+2n),mp ) .

+ 5.04 PI (M,mg(g+z;fr),mp) + 0.034 PI (M,mg(g+2n),mn.)

S
2

"+ 6.804 PI(M%mf(f+2n5,mg(gf2ﬂ))

3
1
E
b
i
z
3
5

L + 1.411-PI(M,m (g+2m) ,m_(g>27]) -
' ’ ; ‘3 U "D N .0 9
v —\
Ny : I ) :
. ‘34(§,1,a) ="0.62 PI(M,m_,m) + 0.304 PI(M,m ,,m ) )
\'.L\ ) -‘ N - . h
- i + 0.383 PI (M,my (w>2m),m ) + ‘0.909) PI‘(M,mp,mw)e |
. . : “ /
) + 0.509 PI(M,m_(g+27),m ) ..
L oY v :
- a, N !
g p-.M,0,+) 5 0.62 PI({M,m,,m_) + 0.5 PI(M,m, °,m"’)" Lo
) 5 §' L Ay .
T -~ , ) ’ ’ - " / 4‘“ N
- ' . +0.236 PI(M,m ,m ) + 0.128 PI(M,mn,mn{) | )
(/ > - Y ot - . . - - ” B
S ’ + 0.909 Pr(Mfmp,mB)'f p.817vp1(mfmw,TP)'a | 9
‘ , s +'0.006 PI(M,m ,m.,) ¢:2.51§ Px(thf,mn) -
P J\ ) N . R ) - N - > ]
. . b s 3 . . '/G » ° I v -
‘ '+ 1.231 P-I (‘M,mn..,mf—-)‘ +'0.509 PI (bM,mB.,ng) N
g o . ! ' .
o By (4,0,-) = 2.697 PI(M,mgy,m) .+ 4.9 PI(M,m ,m)
.X S, ; %rl o
e - \ ’%+- 1.213 PI(H,mm‘. |,!) + 1.1%4 PI(M.,mp,mo‘) /
. 0 : ’ { ‘
- ‘ ix" [} ) | E)
et . \
- k a = \




+ 11.49 PI (M, mp,m y + 0.146 PI(M m, ,m )
2 \ s

+k19.923 P%(M,mf,mw) f 0.638 PI(Myma,mg)

, N
+°6.434 PI(M,m

A ,mg)

2

u

"0.62 PI(M,m ,m ) '+ 0. 51 PI(M,m ,m )
8 A2 .
. ’ ~ D -
+ 0.‘115 PI (M,mn,mB) +»;.86 PI (Bd,mp,m‘n). ‘

P -~
~

¥ 0.312 PI(M,m ,m ,) + 0.909jpx(u,m6,m3) ' .

~ ! . © 3
o

v - o
® ‘

.+ 0.115 PI(M’mw,mG)A"“l.lG PI (M'mw'mAz) . .. . 1‘1

-+ 0,006 PIIM,m ,,mp) + 1.227 PI(M,my,my)
+ 1.042'PI (M,mg:{‘n%n) _+ Oz/,f’{ll I"I (M,mg,mn.)

4 ’ ) «

]

+.0.509 PI(M,mB,mg)‘

0.257 PIF&'mﬂ('mﬂ)‘+ 2.697 PI (M my,m_)

i

T ~

+ 0.14 PI(M,mg,m ) + 4.9 PI(M,mg,mﬂf | ‘
1] . -4 I . 3&\}
)
n\ l “ A2

+ 8.091 PI(M, mp,m ) +1.14 PI(M, p'mG) | .

+ 0.144 PI (M,mg,m ) + 12455 PIKMmmn,m

v

+ 11.49 PI(M, ) + 0.092 PI(M. .mB)
‘ 2 *
“ . .}*

~ 0
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4

8

j’ 0.008 PI(M,mn,,ma) + 0.077 PI(M,mh,,mAz)
+ 1.539 PI (M,mé,mf) + 15.512 PI(M,mf,mAz)

+ 4,531 PI(M,mg,hm) + 0.638 PI(M,mG,mg)

+ 6..)4’34 PI (M,mAz,mg) : ,

|

) \ e
0.42 PI (M(mAz,m“) + 0.286 PI (M,mn,mn,)_

=

+ 0.053 PI(M,mf:‘.mn) + 8.091 PI(lil,mp,mB)

a

t 14.7 PI(M,m ,m ) + 0.051 PI(M,m ,,m,) .

-+ 1.044 PI (M,mn.,mf). + 4'4531 PI(M,mB,rEg)

+ ?.;32 PI(M,mg,mg) +70.192 PI(M,mn,mn)

+ 3.6?7 gg((M,mme) + 0.072 PI‘ (M,mdgms)

+ 1.485 p;(M,mG,mAZ) + 0.046xPI(M,thmﬁ) .

.
o ~

o

+ 7,334 PI(M,m,

,m ) + 0.567 PI (M,m "ml) -7
2 A af £

-

Bgtm}o,d) = 1.86 PI(M,m ,m ) + 1.53 p?(M,gmeA ) i

2

+ 0,898 P;fM,mm,mn.) + 0,042 PIfM,mf,ﬁw)

¢+ 1.042 PI(M,m¢,m ) + 0.857 PI(M,mAz,mg)‘
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+1.672 PI(M,m ,m ) +
w n
‘4.; a
§ B +1.16 PI(M,mB,mAz)
) .

5 -

o G B o, 1,4) = 0.42 PI(M;mA2,mn) + 19213 PT(M,m_,mp)
;% I’ + 1.862 PI(M,mg,mn) + 0.771 pITM,ﬁp,mn.)

+ B.091 PI(M,Qp,mB):+ 0.42 P;(M,mf,mp) -

v

T + 14, . + 1. . -
\\\\\\gi\\ 14 7'PI(M_,n}g mp) 1.213 P;(M mw,mﬁl

+ 10.484 ﬁi(M,md}mA ) + 0.146 PI(M;mn,,mB)

2

u . |

o /; : + 0.53_5;(M,mn.,mg) + 10.923 PI(M,my,mg) . ’
7
¢ + 20.08‘?I(M,mf,mg) + 4,531 ?I(M.mB,mé) _ 1

+ 8.232 PI(M,;m_,m ) + 0.072 PI(M,mG,mG). l

\

+ 1.455 PI(M(mG,mAZ) + 0.046 ?I(MﬂmB’mB)

< .+ 7334 PI(M,m, ,my )
- ) ’ ’ “2 ! 2 ? N
ﬁs(m,},-) = 0.419 P;(M,mnd,m“) + 0.471 gI(M,mn,ms) L, v
- + 2. P ) + 1.86 PI(M .
. e “ : 2ﬂ568 I(M,mn,mhz) ( ,mp,mﬁ)
E (‘) a s

+ 1.53.P.I(M,mp,mA ) + 1.634 PI(M,mm,mB)

2
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Q‘ ~
+ 1.485 PI(M,mg,mw) + 0.;g§’PI(M,mn,,m&)

-
@

+ 1.175 PI(M,mn!,mAz)'+ ?.511 PI(M,m ,mf)

i

+ 2.066 PI(M,mf,mAZ) + 1.042 PI(M,mG,mg)

.+ 0.857 PI(M,mAé,Tg)’+ 0.115 PI(M,m§,mB%

n

+ 1.16'PI(M,mB,mA2)

’
Sy

?7(M,o,+) = 0.319 PI(M,m ,m ,) +0.087 PI(M,m ,,m ,)

+ 1,74 PI(M,mn.,mf) + 0.087 PI(M[mf,mn)

+ 0,236 PI(M,mﬁ,mG) + 2.375 PI(M,mG,mAz)

+ 9.817 PI(M,mB,mB) + 1.485 PI(M,mB,mg)

L3

’ . + 1,934 PI(M,mAz,mAz)

» at

%7(u,o,-)‘a 1.26 PI(M,m,

m, ) + 19.473 PI(M,m
n,’ :

, Az'm9)

7
t

+ 0,82 PI(M,mw;mn.) +0.378 PI(M,mf,mw)

. . 0-‘,
+ 1.213°PI(M;mg,mg) + 1.862 PI(Mms,m )

|
+ 10.483 PI(M,mg,m, ).
2

Fo(M,1,4) = 1.257 PI(%,mp,mn,f§+ 1.503 PI(M,m_,m, ) -

A

< -
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37(M,1,—) = 9.476 PI(M,m AU ) + 1.26 PI(M,mp,mA )

By (M,0,+) = '0.26\§1(M,mn,mn,) +0.16 PI(M,m_,pm ;)

!

1

- g
’ !

|

+2.194 PI(M,m,,m) + 1.672 PI(M,m ,my)

+ 3.038 PI(M,mg,mn) + 1.672 PI (M,mw,mG)

i

+ 0.?98 PI(M,mn,,mB) + 0.236 PI(M,mé,mﬁ)

+ 3;553 PI(M,mﬁ,mA2)=+ 0.817 PI(M,my,my)

+ 0.042 PI(M,mB,mf) + 1.485,PI(M,mB,mg)

+ LQS}PIQ%mAzm% ) ‘ s | n

2 ./

oA, 2

+ 1.148 PI(M,mq,,mAz) + 2.?%7 PI(M,mf;mAz)

' /s

+ 1%,473 PI(M,mAz,mg) + 0.384 PI(M,mn,mG)

.

+ 7.274 PI(M,mw,mB) + 13.215 PI(M,mg,mw)

+ 0.286 PI(M,mn,,md) + 1.213 PI(M,mG,mB)

<

8

.+ 0,053 PI(M,mG,mf) + 1.862 PI(M,mﬁ,ng

+

+ 0.4?4\PI(M,mB,mA2)

N

+0.476 pI(M,mG,mAz) + 1.739 PI(M'm“z'mAz)

N \\ .

‘ 8
=~ “h
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. +0.036 PI(M, m_,,mg) + 0.192 PI(M,mG,TG)

+ 3,637 PI(M,my,my) + 13.215 bz(M,mB,mg)

g + 0.01 PI (M,mf,mf) + 12.005 PI(M,mg,mg)

‘ ?B(M,o,—) = 1.13 PI(M,m ,m ) + 1.503 PI(M,mB,mAé)
» ‘ ’ - N
v {i& , + 1.672 PI (M,ma,mB) + 3.038 PI (M,ma,mg)
’ - +0.071 PI(M,m.,m. ) + 2.499 PI(M,m. ,m_)
L ) B ’ Ay 9
\ Bo,1,4) = 1.133 PI(M,mQ,mAz) +0.476 PI(M,ma,mA2)

+ 1.739 PI(M,mAz,mAz) + 0.82 PI (M~,mn,,mB)

[

+ 17259 PI(M,mn,,mg)i + 0.192 PI (M,ms,ms)

vl
N [ »I o
+ 3.637 ?I(M,mB,mB) + 13.215 PI (M,mB.,mg)
I;’ + 0.686 PI(M,mé,mf) + 12.005 PI (M,mg,mg)
Y
. + 0.378 PI(M,my,m,)

d
¥

BgM,1,-) = 0.26'PI(M,m ,m) ) + 1.864 PI(M,m ,,m, )=

’ 2 2
+ 0,319 PI(M,mn.,mé) + 1.672 PI (M,m(S ,mB)
\ (‘} L
+ 0.087 PL(M,mg,m) + 3i038 PI(MrmG,mgz
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. + 1.503 PI(M,mB,mAz) + 0.071 PI(M,mf,mAz)
+ 2.499 PI(M,mAZ,mg) Co
; ﬁg(Mﬂg,+) = 0.108 PI(M,mn,,mn,) + 0.26 PI(M,mG,mAZ)

« + 0.059 PI(M,mn,,mf) + 0.214 PI(M,mAZ,mA )

2
g %Q(M,o,-) = 1.133 PL(M,mB,mAz) + 2.058 PI(M,mAZ,mg)
g 0 .
) - )
? ?Q(M,1,+) 0.26 PI(M,ma,mAz) + 1.13 PI(M,m_, ,mp)
%
% + 0.?14 PI(M,mAz,mAz) + 2.05? PI(M,mn,,mg)
% ) ” Bg(m,l,—) = 0.322 PI(M,mn,,mAz) + 0.26 PI(M,mn,,ms) , {
~ A
¥ . I
+ 1.133 PI(M,mB,mAZ) + 0.082 PI(M,mf,mAz) . \
' |
j o + 2.058 PI(M,mA ,mg) §
i 2 ;
¥, (M,0,4)= 0.088 PI(M,m ,,m ,) + 0.088 PI(M,mAz,mAz)
: %lo(m,1,+)= 0.088 PI(M,m, ,m, )
. 2 2 (
. Ly : |
- 10(M,1,-)= 0.176 PI(M,nm ,,mA‘)
0’1 2 .
ﬁ ~
: .
(
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- , * APPENDIX II

A 3 . » -

° - Initial Conditions in the Linear Bootstrap (Exclusive Channels).

Y

3
»
.

We state here the non-zero initial conditions used to

evaluate éxclub;ve channel probabilities in the linear boot-

P -

strap model (eq.IIT.5.1,III.5.2). They correspond to the dia-

grams of figure (A.é). The notation is the same as in dbpeﬂdix
s . s

[4

I. They are: - , ' ' ’

1.5 PI(M,m_,m ) # 4.05 PI(M,m(f>27),m )
: e w’

i

I

By, 1)

(
+ 0.84 PI(M,mg(g+2ﬂ),mm)

[ -

+ 0.47 PI (M,mg(g—er) ,mg_(g+(21r))

(4

B,(M,1) = 1.773 PI(MimA;,m“) + 12.15 PT(M,mg (£+21) ,m )

+ 6.804 PI(M,mf(f+2n).mg(g+2r))

IS

Bo(M,1) = 0.14 PI(M,mg,m ) + 2.45 PI(M,n ,m )
' + 2,659 PI(M,mp,mAz) + 7.179 PI(M,mf,mAz)‘ | .
) e - » :
’ . +1.489 PI(M,m_,m, '} _ b
Lo ‘ i g AZ # .
/

¥, (M,0) = 1182 PI(M,m 2,mﬂ)°+ 1.5 PI(M,mp,mp?
~ +1.68 RI(M,m;(Q+2n),mp) + 8.201 PI(M,mg(£>2m) ,m (E+27))

I .

A

PR

PO I o T T, o T 0 ST

e
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ﬁs(m;O) = 4.9 PI(M,m_,m ) + 2.744 PI(M,m_,n_) ,
- ) ‘ ) ‘. ‘ -
- + 1.047 PI (M,mA2,mA2) +.0.567 PI(M,mf,mf) ! .

1 - . . . g
%G(M,l) = o.%z PI(M,mg,m ) + 20,08 PI(M,m ,m) :
| o , ] ]
+ 1.571 ' PI(M,m, ,m, ) i
A2 A2- ig
Bo(M,1) = 0.248 PI(M,mf,mAz) +4.343 PI(mgmy ) , : '
' | @

Bg(M,0) = 0.01 PT(M,mg,m) + 4.002 PI(M,m_,m )

. ;% .
ﬁB(M,lr = 0.686 PI(M,mc,m )

LI

\
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Figure A2: Schematic representation of initial conditions i
Al . )

( Yoo ' for equations (III.5.1,III.5.2).n 'is the number _‘ .
j YA ;\ of pions emitted by the, fireball. a
f , .

&




‘ we have: “ *
¥4(M,0) = 0,5 I(M,mn,m%,mp) + 1.35 I(M,m_,m_,mg)
q N . - 1 v > * ’
v ¢ ¢ + . ’
VO 28 I(M,mn,mn,mg) : }
By,1) = L2 1(Mymm ) + 2,025 T(Mm m me) | S

\‘
\ e
~ . -

\ - 91 -~
A ‘ *
‘ - 4 s \»lf.

r - / -
/ ' _APPENDIX III ,

@ s

Initial Conditions in the Non-Linear Bootstrap(Exclusive Channels).
N ,

Non=-zero initialtconditions used to evaluate exclusive

channel probabilities in the non-linear bootstrap model (eq.
v .
I11.6.1,I11.6.2) are stated here. .These conditions which cor-

.respond to the diagrams of figure (A.3) must be added to the

corresponding ones in appendix II. We denote by I(M}ml,m21m3)

L4
the three-body phase-space (see appendix IV ) and include in

the coefficient all factors for,identiéal particles. Thus,

<
i3

- -

/ N
+ 0.672 F(M:m“ﬂmﬂ,mé9

) + 1.8 I(M,m",mpﬂmp)

%S(M,l) = 1,064 I(M,mﬂmﬂ,mA2 '

P

+ 2.016 I(M,mn,mp,mg) + 0.564 I(M,mﬂ,mg,mg)
. ' v .
+.8.2 I(M,mﬂ,mf,mf) + 6.075 I(M,mn,mp,mf)

+ 3,402 I?M,yﬂ,mf,mg)'

Pe(M,0) = 0.047 I(Mm_,m ,m.) + 0.817 I(M,mﬂ,mw,mg)

4
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e

+ }.773 I(M,mﬁ,mp, mAz) + 4.778 I(M,mﬂ,mf,mAz)
+ 0,992 I(M,mﬂ,mg!mAz) + 6.075 I(M,ma,mp,mf) ‘ -
+ 6.804 I(M,mp,mf,mg) +11.072 ;(M,mf,mfin)
:\ o | + 1.905 I(M,mf,mg,mg) ’ Co
:}* I '
. | Bom,1) = 0.07 I(Mm ,m ,me) + 1.96 I(M,m ,m ,m )
, + 4.254 I(M,mh,mp,mAz) + 7.179 I(M,mﬂ,mf,mAz)

~

+ 2.382 I(M,m",mg,mAz) + 0.9 I(M,mp,mp,mp)

"+ 4,536 I(M,mp,mp,mg) + 2,54 I(M,mp,mg,mg)

~»

'
" 14

v+ 0.474 I(M,mg,mg,mg) + 24.6 I%E{Tp,mf,mf) .

-~

v ; + 13.7]8 I(M,mf,mf,mg)

>

%17(14,1) = 5,88 I(M,m",mp,mg) + 3,293 I(M,mﬂ,m’g,n‘,\é) : : 3

e e pe
£

+'0.567‘I(M,mr,mf,mf) + 0,21 I(M,mﬂ,mp,mf)

¥ . 3

9
, + 10.04 I(M,mﬂ,mf)mg) + 1.885 IjM,mﬂ,mAz,mAz)

Yy 3.19/1 I(M,mp,mp, ) + 1.0 I(M,mg,n?g,mA )

m
A w2 -

2

1 < v

+ 3.573 I(M,mp,mg,mAz)'+ 15,188 I(M,mp,mf,mAZL

+6031(Mmmm)+44311fm“mmx6) P

) , L4 ¥ g' f' Az L4 2 f'rf’ A2 ’
’ ¢+

Initial conditions contributing to the-production'of a higher

{
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A.3: Schematic representation of initial conditions

P

for equations (II1.6.1,ITI.6.2), non-linear ‘terms

T only. n is the number of pioné emitted by the

! Fireball. , - -
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- V , .’ APPENDIX IV . a
P | .

N Three-body Phase-space. ' ) S

We shall here derive an exact expression for the non-

. invariant relativistic three-body phase-space where all three
-~ { . , A

-

masses are different. In the center of mass of this system,

. the expression to calculate is the following:

>

‘., b

§ '= 3 ‘3‘ 3 > > y - i - ? )
[N I(M,ml.mzfm3) d?p,d7p,d"P36 (P +P,*+P,) 6 (M-E,~E,~E,)
- ' /
g . - \ B - ;
2 X e(E¥)e(E2)e(E3) . (D-1)
¢ 3 /
%' a /
B { ; ;
H . - , - .
%‘ ! N . s ¢ N - /
1 (The notation used is self-evident). “
i . " After integration over the two delta functions and
»; ' g using the identity:
1] N ' 8
. :é‘&% - l o ‘
“ . E\E,E, ,
: - 49)dqydfcosp ) =-S5y dE,dE,dE,
) 195174,
v \ ’ (D-.z) —4
- - ¥

where 6 is defined as the angle between 31 and 32, we obtain:

!

E—4 2 3 ‘ 1 —-— -—
]f(M,ml,mz ,m3) "‘51 87 IdE :‘.‘.lEzElEz (M—El—Ez) 8 (El) GJ(EZ) 5 (M E,1 E2)"

L 2_ 2, .2 2 2. ' 2
i a X 01{4(El ml)(E2 mz) @4 2M(E1+E2)+2E1E2 my

’
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(D-3)

The last 6 function comes from the momentum conserva-
tion requirement and defines the boundary of the 'integfation

region enclosed in. , For instance, solving for El gives:

—

Lower limit: By = b-y/d
\ . L Sa _ .
a
' (D-4)
Upper limit: B, = b-;,/a' - .
a \
\Mere L ' '
' ' AN
ry 2
az (M 2ME2+m2) }
. 2_ 2, 22 ~
b = (M-E,) (M 21v\n~::2+ml+m[2 m3) . .
o2 23 [ o 2,02 2.2 '2‘2] s
az (E2-nd) [(nP-2M -nd+n2-n3) *-4nind .
Using these, the integral reduces to: -

#

~

3

E
. 2 /20 - ]
_.2r 2__2 2 2.2 2.2 , 2 2
I(M,ml,’mz,mg)t., «_j...f dE2 {(E2 mz)\[(lv‘l 2MI}:2 ml+m2 m-) “=4mim ]
B

ad »

* X E2
2 2,3
(M“-2ME, +m.) 7
- 2
- ) , >

[ +f . |

, 2 -
[3 (M-E,) [(Mz-gm2+m§) 2_(m%-m
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27My) 2 1™3

X ! : ~(E2-n? [(MZ-ZME -mi+m§—m§)2-4m2 2]}»(0-5)

where the limits of_integrétion are given by the zeros of the ( 5

1

argument of the square. root. They are:

‘ 2L
4 ) ~ A - ’ (D—G)
_ 1.2, 2 21
E,y = 5% [M +m2—(m1+m3) ]

[\V]

20

This is our final answer. It is not possible to ob-

tain a general fully integrated analytic result. Nevertheless,

" we can *f two masses vanish. In this case, we have:

" r® ~

B 2,5 2 2 4 . 6. 8y ... 4
1(M,m,0,0) = TM Hl—l_n_z. (\7—43m ~23m°-3m’+2m° +120m4%n_1~_;_1_
5 M M m ‘

—— pe— v

M2 M oMb M8

b e o e 3 RN TN I T 2L TR T s R

- . . (0-7)

i —

y

e atabons ol

When all masses vanish, this expression reduces, to:
- » "

Ed

. L r <
/ : 2,5 1

1(4,0,0,00 = 2% M (-8)
»> / .
‘ -
‘These special cases were also obtained by M,i‘llburn (da.1).
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PION-PROTON SCATTERING AT LARGE S VALUES. *
NUMBER OF EVENTB* "{I
%'ULL CALCULATION |VERTICES: 1/F VERTICES ;q 4F
ﬂ—k P . \‘n‘_A_

INIT.XOND: ¢

Al

é INIT.COND:.4 , ’

n/f+2m,1/g>2m
Linear |Non-Linear|Linear Linear :
‘ 3m . - |]30%8 303.8 [303.8 \/ 303.8 °
, 57 40.14 40.75 |[23.38 15.32
T oon 4.99 5.15 1.30 .86
o | 0.66 A.68 |8, 631072 A5, 1x2072
L .
G ; -
o (31) /o (5m) | 7.57 7.46 12.99 19.83
. e B :
o(3m)/c(71) | 60.9 & 59.0 234 353
| ) i
o {31) /0 (91) | ~460 n 447 n3533 A5957

* Overall arbitrary normalization
i

Table I
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Table II

- '
‘ Fad R " 'S
C‘ ~ . ( -
-~ PION-DEUTERON SCATTERING AT Pl ap™ ev/c .
; > _
» \
NUMBER ©OF-EVENTS* >
FULL CALCULATION VERTICES:T/F | VERTICES:m/F
INIT.COND:7w/R INLIT.CONDTT/p
. r/f+271, m/g¥Zm
- Linear " |Non-linear Linear Linear
b=31 b=33.67 |b=31 °~ , |b=33.67 [|b=31 b=33.67 |b=31 tb=33.67 _ -
3 944,3 933.5. 944.3 933.5 944.3 933.5 944,3 933.,5 ¢
S 54.94 '51.52 55.73 52.24 35.35 33.38 20-.36' ) 19.10 )L
1 L - - 5
7 1842 .707 .867 .727 309 .265 .163 -139 ~
-3 -3 -3, -3 -4 -4 -4 -4 | '
9m 13.35%107°|2.41x1077(3.50x10" 7 {2.47x10” > |8.58x10” “|6.43x10” *{4.47x10" 7 [3.35x10" ~,
17 (3m) /o (57) |17.19 18.12 16.94 17.87 26.71 27.97 46.38 |48.87
d(3m) /o (7m) |1121 - 1320 _ 11089 1284 3056 13523 15793 6716 .
o (37) /0 (9m) |2.82x10° |3.87x10° [2.70x10° |3.78x10° |[1.10x10° [1.45x10° |2.11x10% |2.79x10°
* Normalization to hydrogen is provided by equation (IV.2.5) with (UﬁD/gipy&=3.6
) *
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. FIGURE CAPTIONS

S

1n {M3p6M)} versus M. p(M) i; the total density
of states we Have calculated for diﬁferent isospin,
G-parity combinations. |
,"1 Kupper full curve) : I =1

(lower full curve)

.
=
i}
o

(- - =)z 1%

(-emr=v) = I%=0

€

(= — —) : continuation of the I=1l curves

: , i
Figure II: Three-pion mass distribution in pion-proton. scatte-

-

ring: Al and Aq regions.
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Figure III:Three-pion mass distriqution in pion-proton scatte-
Ho ' .

| ring: Al/regionz Data from reference ‘3.13.
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Figure IV: Five-pion mass distribution in pion-proton scatte-
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co . initial conditions TmR

s' N ' . :(oouo---) :‘ Vertj.ces TTF
initial conditions wp, wf, 7mg
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Figure V: Five-pion mass distribution in pion-proton scatte-

0y

ring (full spectrum) .
/ -

~——) : with the analytic asymptotié
density of states -
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~~

- B //R\Q\&
° * . ’ (- - =) : with the calculated density of
*states
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Figure VI: Seven-pion mass distribution in pion-proton scatte- > -

ring ‘s ! ; . )

, N (————) ¢ full spectrum . . /

(- - -) : vertices 7F
initlal conditions 7R
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Figure VII:Nine-pion Tass distribution in pion-proton scatte-

r%ng ' ’
(—=————) : full spectrum
: (- - - ) : vertices 7F
‘ . - . initial conditions 7R .
(eve.e..) = vertices 7F
initial conditions wp, 7f, 7g
N ‘ Figure VIII:Three-pion mass distribution in pion-deuteron scatte—

" !,

riné‘(pLab;ls GeV/c). Data from reference 4.3.

»?

N

Figure IX: Five-pion mass distribution in pion-deuteron scatte-

(} B ring (pLab=15 GeV/c). Data from reference 4. 3.
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