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SOMMAIRE 

Un mod~le hybride est pr~sent~ dans lequel une "fire-

bail", particule fortement excitée; form~e de manière dyna-' 

mique se d~sintègre en cascade selon le mod~le ftu "bootstrap" 
j 

s-tatistiqu'e. Cette tffireball" est constituée d'un ensemble 

~ très dense de résonances. Lès lois de conservation de l'iso-
./ 

spin et de la parité G sont pleinement satisfaites ~t il,est 

tenu compte de-la largeur finie des résonances produites. La 

densité totale' des états de la "fireball" est calculée et le" 
r 

modèle est utilisé pbur le calcul des d~stributions de masse 

et des sections efftcaces relatives dans les diffusions dif­

fractives pion-proton ~t pion-dèutéron. L'accord entre la 
" , ) 

théorie et les données expéIiment~les disponibles ~st en giné-

,~l très,bon. Diverses prédictions pour les év~nements à ha~te 

multiplicité sont faites. La conclusion générale est que le 

modèle donne une description satisfaisante de la production 

de trois pions:dans le secteur de Lorentz avant (LPS'l) alors . , , 

qu'il s'avère très approprié pour décrire les 'phénrmènes dif-

frac tifs à haute multiplicité. 
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-ABSTRACT 

\ ' 

We pr~;en~ a hybrid model~ in which' a firebaii seen as 
, 

a de~se set of overl~pping resonances is'dy~amically formed . 

and subsequently decays' i~ cascade according to the statisti-
" ' 

cal bootstrap model. Full account is taken of isospin and G-

parity conservations as weIl as of the finite widths of the 

, produced resonances. This model \aiiows an explicit calculation 

of the total density of states in a fireball. It is applied 

to diffractive pion dissociation on nucleon and nuclêar targets 

for which multipion mass distributions and relativ~ cross-sec-

tions are calculated. Agreement with available experimental 
" 

\ 

data is in general very good. Several predictions for high 
'r'~ r 

multiplicity ar~ given. The genèral conclusion iJ that the 

model gives a sati€factory description of the 

in the forward LPS sector and is very weIl 

higher multiplicity '~iffractive phenomena • 

ree-pion 'events 
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CHAPTER l 

INTRODUCTION 

Ouite naturally, statistical models appeared in high 
, , 

energy physics when the number of particles treing produced in 

a reaction started to increase. The ïdea was that in this kind 

of process dynamical considerations would,average out due to 

the great number of dit'ferent components interfering w;i.th each other. 

Equally na,turall~, the concept of cluster or fireball emerged, 

in analogy to the compound nucleus ~n nuclear phys ics or th~ 

statistical model of Fermi (1.1). A nurnber of models based 
-

on this idea were formulated such as the thermodyriarnical model 

of Hagedorn and Ranft (1. 2) in which a continuum of fireballs 
; 

. is produced or the one of El vekj aer and Ste iner (1. 3) in .which 
f 

~ 

the sarne cluster is used to describe hadron-hadron, photon-

1 + - - .. 
hadron ~d 'e e processes or a recent one atte~pting ~o ~PPIY 

information theory to mul tiparticlE!' physics developed by Caraz­

za, Ernst~.Gandolfi and Schmitt 0.4) • 

• 
In this thesis, we shall concentrate our attention to 

. 
diffractive dissociation processes and present a model in which 

" a fireball is dynami<:ally formed' through,,1~egge exchange in the 
i 

t-channel and then decayS statisltically in the s-.channel. Though . 

-we shall apply it to exclusive Jrocesses, this is the spirit of-... 

the double fireball mOde'l of HJa (1.5) or the statis.tical model 

of Ranft and Ranft (1.6) for inclusive reactions. 
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, Many features characterize diffraction dissociation 

phenomena (1. 7). For instance, the strong forward peak in the 

differentia1 cross-sections and the slow energy' dependence of 

the integrated cross-section. .Experimen"ts'. performed at 200GeV 
" 

on pp (1.8) and lT':"P (1.9) scattering show that the diffractive 

low m~lOtipllcitY states have the sarne behavior as observed' at 

" lower energies. This i-s not surprising Once we rea1ize thClt 

diffraction is high1y peripheral and thus a change in the in-

ci dent momentum should have little effect. PeripheJ;;ality a1so 

explains why no intrinsic quantum nurnbers ar~ exchanged in 

these reactions except of course spin' and pari ty since there can 
o 

be angular momenturn transfeF. However, it is found empiriea11y 

that the transfer of imgular momentum between the tWG-- colliding 

partic1es. is rnin.i~al thus al10wing the produc~tion of J;tat~s of 

... + -the unnatura1 parity sequence (0 ,1 ,2 , ••• ). This result i8 

embodied in the so-ca11ed Gribov-Morrison rule: 

(1.1) 
• 

where Pi and Pf are respective1y the parity of the initial and 

final systems and àj the change of spin. " It seems however that 

this ru1e i5 !lot general, sinee sorne A2. prod~etion has been re-

d 1 · d' f f . . d' .. (1. 10) porte recent y l.n 1. ract1. ve pl.on l.SSOCl.atl.on • 

Many partièles ha~ been seen to dissociate diffrac-
• Wtl 

tive1y: pion, kaon, nuc1eon and' even r- (1.11) on ~ither nu-

cleon or nuc1ear targets. ~he mass distri~ution of the disso-

• 
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ciating system shows an enhancement in the low-rnass range above 

the threshold associated with the production of two-body states. 

For instance, the Al and A3 peak near the threshold of p~ an~ 
. 

f'IT production rèspectively. But this~ tendency may nqt persist 

and in fact, in the mode l we shall pre"sent (1.12 ) higher , 
mul tipI ici ty spectra are not dominated by two-body states but 

ra~her are the results of a summation over many different con-

tributions obtained in a fireball decay cascade . .... 
The ~ is the fo'llowing: in diffractive dissociation, 

as we said b~fore, the produbed particles forro a system having 
j 

the same intrinsic quantum numbers (except spin and parity) as 

those of the hadrOn being dissociated. This suggests that they 
~) 

might come from a c1uster or fireball being produced tbrough 

pom~ron exohange. As we shaiPl show r it 'consists' of a statis-. \ 

tically dense sèt. of over1apping reso~ances whose de~sity . 
, 

will be calculated àccording to the statistica1 bootstrap 
• 

(1 13) (1 14)' model of Hagedorn • and Frautschi • and resulting in 
" 

an èxponential increase within powers of M of the number of 
l ' 

/ 

'~s. We then make the usuai assurnption of st;.a~istiC'al 

meehanics: the probability of a particular outcome is given by 
Il \ ,J 

the ratio of the occùpied number of states to the total number 

of states 0.15). Most likely, 'the fireball will decay into 

two'particles, one being ~s light as possible, the other as~ 

heavy-as pqssible (1.14) '50 that i~ it is heavy enough, it can 

be cOl)sidered in i ts turn as another fireball. We ar~ thus led 
~ 

" 

. r 
! ; 
, ( 

.. 



}' 
" 

f 
" -:. 

\ 

t 
i 
\ 
< 

( 

- 4 -

to a cascade decay scheme whose net result is a mass spectrtim 

rapidIy increasing at low-mass untii the exponential density 

of states acts as a fast high-mass eut-off (1.16). No angular 

.~omentum co~siderations' are taken into account so that aIl 

" 
decays are isotropie in their own rest-frame. This is not a 

severe restriction since no angular d~stribution calculations 

. w~ll be attempted. On the other hand, isospin and G .... parity 

conservations are fully taken into account. Finite widths of 

dis crete resonances produced in the reaction are also incor-
1, 

porated leading to a 'good description of threshold phenorœna 

and 'to a general smoothing of the mass distributions. 

This thesis is divided into five chapters. In chapter 

'II', the general fo.rmalism of the model is developed. It is 

shown how the formatÏbn of a dense set of resonances results in 

firebail production.. A brief description of, the statistical 

bootstrap model i5 a'lso given.' Châpter III deais with the crl-
, . 

culation of the total density of states, of multipion mass dis-

tributions and of relative cross-sections in pion-proton scat-, , 

tering. In. chapter IV, si~ilar calculations are done on a 
; 

deuterium target. A summary and conclusions of this thesis 

are presented in chapter V. In order n'Dt ,to break continuity 
.. 

of 'thè text,' we have collected in four ~ppendices initial con-

ditions of~equations t;Îb-e-ev~luated as weIl as a qerivation 
o 0 

of the gêneraI non-invàriant thre~-body phase-space~ 

;. MI P tl' <i ft •• ' ." "Nlet t r .. 

1 
l ' " 

! 
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CHAPTER II .. 

-, . 
A MO DEL FO} ,DIFFRACTIVE MULTIPION PRODUCTION 

II~l General Considerations. 

To produce multipion stat,es, we shfill construct a two­

component model describing independentl:y the fo~ation of a 

fireball and its subsequent decay. Consider 

process 

a + b -+ nIT + c (11.1.1) 

where a,b and c are stable particle? under strong interac­

tions. Our model 'states that-this reaction proceeds in two­

~ , stages as follows: 

, 

a + b -+ .I: R. + c . p. 
1. 4 mr 

(IL 1. 2) 

Here., the R. s are aIl possible resonances which have a non-zero 
1. 

branching ~rat.io into the (mr) channel. Each of them is charac-
-

'~.' terized by i ts mass M. and its width r.. They are formed du- '-. 
1. '. 1. 

ring the first-;tage of. the reacti.on -- which is then seen as a 

quasi two-body reaction. This formation mechanism is dynarnical 

in nature and the.refore depends on the particular reaction con-

sidered: Since we ar~ mainly interested here in multipion 

~ 
i 
1 

l 
1 
1 

1 
1 

1 
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enhaneements diffractively produced, we shall eonsider essen~ 

tially that a pomeron excthange gives rise to these highly 

excited resonances. It ls to be noticed that in sueh a case, 

each resonanee will retain the intrinsic quantum numbers of 

partie le a ,except for spin and parity. We leave al more de-
; ./' 

tailed study of this first stage ta chapters where applications 

are considered. 

The second stage of the reaction deals with the deeay of 

the resonances. We shall assume no final state interaction 

between theii- decay produets and particle c. This amounts to as­

surning that resonances are sufficiently long-lived (their width 

is sufficiently'narrow) that their decay is completely indepen-

dent of what happened previously and in particular of the way 

they have been formed. In the next section, we shall show 

that if these resonances are close e;nough to each other (which 

will happen as the mass of the resonançes increases) one can 

r~place reaction {II.l.2} by 

. (II.l.3), 

where F i6 a superposition of overlapping resonances which we 

call a fireball. Tbis is depicted diagrammatically in figure 

2.1. 
" . 

" 

" " 

, 
,< 

1 
1 
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Figure 2.1: Regge exchang~ giving rise ta a firehal1 which 

then decays inta n-pian states e .. 
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11-2 The For~ation of a Fireball_ 

We shall now establish the formal'ism in which the -fi re-

by: 

. ' 

' ... 
where ~ is t~e square of the total center~of-mass energy~ ma' 

~ and Pa' Pb are respectively the masses and the fournfomenta 

) of the incomin,g parti èles, m and the m ~ s , Pc and the ~:.t S 
, " C 1. ~ 

/ ~., 

[' are respecti v~ly the masses and the four-momen ta of th~ out,going 

particles. In our case, all' Jll% sare "equal to m the pion mass. 
... 'If , 

lin! is the statistical factor for n ~dentical pions in the 

final state and 

À(X,y,z) - z2 - 2xy - 2xz -2yz 
.' 
fIl. 2.2) 

We next ihtroduce 

(II.2.~) 

"~~ 
\ 

'; 

5; 
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where Q will reprrsent the 

We factorize the lamplitude 

four-momentum of the n-pion system. 
h 

into,,~he form appropriate for reac-

tion ( l 1. 1. 2) • 
'1 ' 

'l'(a + b 1 
mr + c) :;: ET {a +, b + lit +, c) 2 2 

k (~ - ~ )-iHkrk 

1 

x T.<~ + l'PT) {I1.2'.4} 
.. 

where T(a + b + ~ + c} is the production amplitude of resonan-
c , 

ce ~, T(~. + nTI) its decay amplitude into npions and 

1/ [O-Ç - M~) - Hi/ k] is the resonance propagator or i~s effec-

tive mass distribution. ~ and rk are respectiyely the mass 

and total ',width of the resonance.' We have also summed over 

aIl possible res0!lances which can decay into f pions: 

, , 

x T(a,+ b + RI + C)T(Rl ~ 

(Mi - M~) + iMl f
i (I1.2.5) 



1 

'\ 

\ 

(j 

(l 
~ 1'1l- .. .,....,,'.~;.' ,:' 

~.i,.,..-._ 

! c ,- Il 

\ 
, W1 shall now a,sume a ~igh d~gree of 

rapid oS~~llation of the re~ative si~s of the phase of the dif~ 
ferent p~oduction and decay amp1itudel. This leads ta 
nance of the incoherent k = 1 terms. The off-diagon,l te 

1 

to the extent that they do not cancel, wou1d give a c~mponen 

slowly varying wi th' energy \tYPicJl of Regge behavior \<:. .16) • 
1 l \ 

Then, the cross-section re~uces to: \\ 

L l (n!)-l fdJ d4Qô(p2_~2) 
cr ::: k 2À~(S,m!,~) (2'1f) 3n-l r c c 

and since 

r (11t ~ n'Ir) 

- 2 
Eq .) 1 T (~ ~ n7T) 1 
i 1. 

\ 

-L 1 1.. nd4q.o(q~ l
n -

= 2Mk (27r)3n-4 n! i=l ,1. 1. 

4' 2 x ô (Q - Eq.) IT(~ : n'If) 1 
i ~ 

\ 
1 

• 
(I1.2.6) 

(II.2.7) 

where r(~ ~ n'If) is the ifartia1 width of resonance ~ to decay. 

into n pions, we obtain: , 

, 1 

:/.-_' 

1 

-, 
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c 
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\ li 
" if 
~' 
l~ •• 
~ 
" ;/ 
", 
r 

·1 

-

'" 
;. , 

l»' . 

1 

, cr = ! 
k 

.. ~, 

1 , 

\. ' 

\ 
\ 
\ 
\ 

- ~2',,-

x ô 
4 

(p a + Pb - Pc - Q) • 1 T (a + b .... ~, + c) /2 

x ~~ 
1 

1 

" 

\(11. 2 .;8) 

1 

So fab, aIl matrix elernents are exact, but from he~ 
on, we ~hall teglect angular moment~ and spin effeèts. ~here-

l , 

fore, conservrtion of angular rnomentum will not be taken ~nto 

accoll;Ilt. We, ~o not expect this to be a ,too severe restr~'cd.on 
(l 1 2.1) \. ' 1 

• ,f and! to have b~g! effects on the results, except,:' of 
./ 1 

, 
1 

• course, for" t~e angular distribution of piôns w~ich we ~hall 

Inot attempt to calculate. .' 
1 ! 1" 

As théir mass grows, resonances are . ' 
expected tè get 
, l , 
h~gh mass, a con-closer and cIoserj becoming, at sufficiently 

l , 
pl(f\>, enabling tinuum"of over1apping resonance~ of den~ity 

1 

us to replace ~e sum over k by an 

leads to; 

integral ov/er M... "This 1 --j{. 

i 1 
1 1 

l} 4 14 2 
(21T) 2 'dl\p <f\.> d pc1 Qô (pc 
" i 

4 
c) 12 x 6 (p + P - p ... Q) 1 T (a + b .. ~ + - a b c 1 

r 
1 

( .. 
~ r(~ mr) .. 1 

1 x- I 

~r~] 1T • ~rÇ M2 )2 1 , 
+ UI.2.9) 
1 
1 

! 

1 

1 

. ;. 

1 
C 1 

1 

1 

Î 
i 

, 
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We shal1 now make the 

, r "1 

., 
\ 

13\ -
1 

fPproXim~tion 
/ 
1 

-
that: 

_lt ..,-

-J 

• 

, 
(II.~.10) 

\ . ' . " _-ô' 

the width of a typical rlsonance This is in general 

is of the ord~r of t e pion mass while the effective mass of 
T 

n pions is in the range, already for n= 1.. In' this case, 

one has: . 

• 

(II. 2 .11) 

, 
o integrate over Mk; we obtain: '.. . sing Cauchy's theotem 

Il 
J 

cr ::= .1 '1 fd4p a4Qo (p2 
2>' ~ (9 ,m: ,~) J21f) 2 c c 

x ~4(Pa + P: -' Pc - Q) IT(a + b -+-"F + c)'l
i 

" 
.Q.llil r( F ri. n 1f ) 

x M rŒ) (11.2.12) 

where F s a fireba11 of mass M and of total width reM}. 

We ~e consists of a superposition pf reson~s'of 

density p 

We integrate over the fourth componen~of Pc us~ng 

, ,i 

j . , 
" il 

1: 1 

! ' 
,! • 
, i , , 
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" .,iI' 
J '~T , 

• the first de l ta':' fon ct1 on and with the help of, the second,i~gra-

te over Q. In addition, we know that: 

The 

1 ~ 

do 
-dM2 = 

/ ..-

x r(F-+ n1f) 

· r (M) 

(II.2.13) 

+b -+ F + c) 1
2 .eJ1!2. 

~ 

. ' ,1 
(II. 2 .l4l ~ 

---~~--'-t 

We ,have assumed rotational invariance with respect"to the col-

/ lision axis to perforrn the integration over 4l • 
, c, 

Looking at the'above ,derivation, one sees that in fact ~ 
" '2 \ . 

IT(a + b -+ F + c) t is the production matrix element of a si~-

gle resonance of rnass M. Instead, w,e can: replace it by the ' 

inclusive rnatrix element for the process: 

a + b -+ C ,+ anything nI • 2 • 15) 

which corresponds ta the production'of, aIl resonances ~n the 

interval· bet~een M and M + dM, pravided we divide it by the 

number of states tn this interval, a number proportional to 

P (M) • 

~ _~ __ ~4 ... _ ~ _ ... ___ • __ 

1 

, l 
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Ther~fore, we finally obtain: 

der. 1 f ( l -2= 2 2 dtRs,t,,~l)-P(F-+ 
dM l61TÀ (s ,m ,m. ) M 

, a.t> 

mT) / (11.2.16) 

/ '" 

where R (s, t,M) is the inclusive matrix element and P (F -+ mr) is 

'the decay probabili ty of the fireball into n pions as: 

P(F 

1 • 

mrf 
_ r(F -+ n'Ir} 

r (M) 

. .., 

1 

(11.2.17) 

• 
This quantity is Lorentz-invariant and hence ~an be , 

ca,lc~lat! in apy frame of reference. ,For convenience, we shall 

do the c~culation in the rest frame of the fireball. 

" 
11-3 Statistical Bootstrap Model • 

So far, we have produced one piece of highly exci ted 

hadronic matter of mass M: a fireba11. This fireball, due to' 

its high mass, can d~cay intGl a great numb~r of channels. This 
\ 

suggests t~at one can average over dynamical effe'cts and ut!.,. 

4 

lize a stati<stical decay'scpeme. We shall therefore assume, as'" 

uèual in ~tatistical model~ (e.g. Fermi model in nuclear phy-

sics t~ .. 1) that the probability of a 

,portional. to the ratio of the number 0 

total number of available s 

Aga,i-n, ~ere, 

outcome. is pro-

states te the 

we can 

.1 

.) 
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define a density of, channels Pout (M). In àddition, each chan~ 
" 0 

nel can be obtained in many ways and here too, we define a den-

sity of states ~hich gi ve rise to the 
\ 

clear that for large enough M, p. (M) 
~n , 

ch'annel p. (M). 
~n·' , 

and P t (M) will ou _ 

It i8 1 

have the 

same funptional dependence sinee a heavy resonanee decays main-

1y into other resonances which in turn deèay into other reso-
, 

nanee\ and so on,. So, asymptoticalLy, the s~eetrum of the 
, , . 

"tno1!her" resonanee; JlUl be the same as the spectrum of the 

"daughtet" resonanees. Conversely, one may say that the "daugh- l' 

'-.. ' 
ter" re'sonances are the eonsti tuents of the "rnother" resonanee. 

(This explains why the subscripts in and out are used.) . There-
, 

fOfe, the density of produced resonanees will also be the same. 

This is pr-ecisely the statistiea1 bootstrap model of 

( l 13) Cl. 14·) ,'" Hagedorn . and Frautsehi.. • We shall use here the 
& 

fQr~ulation of Frau.tschi more _~.~.dted to particle physics ~ 

tes as 

One can write the manifestly covariant number of sta­

(1.14,2.2). 

co 

r 
n=2 

1 
.Ïl1 

Il ~" 
x dm.p. (m.) d q.2w. q.é-(q.,-m.)q (Q- L q.) J f 4 . li 2" 2 4 

~ ln· ~ ~ 1~ 1 ~ 1 : i=1~' 

UÏ.3.1) 

where w~ is the four-volume of partic1e i. It is qefined' as 

v:!J, where V ls the volume occupied by a particle at rest .... (whieh 

2 we take universal) and u its fo~-velocity tu =1). The 
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quantity w q~ is an invariant equa1 to vq./(2n)3 as easi1y 
~ . 0 

seen when evaluated in a frame where V iS"at rest. 

~he 1eft-hand side of the equation is the number of 

states that a fireball of mass M can have. The right-hand side 

is the number of states availab1e to n particles (asymptoti-

ca11y firebal1s themse1ves) constrained by energy-momentum con-

servation. The sum over n appears because the nÙmber of cons-

tituents is unfixed and un1imited and the integra1 over the 

mass because, in addition to different states of motion, each 

part~c1e can a1so be in different states qf mass with density 

p (m. -} • 
. 1. 

'.' 

In the rest-frame of the fireba11, this expression re-
o • 

duces to: 

Pout (M) = 
co n-1 

~~.) j] . 
n 

x 15 <. E E. - M) 
. 1 1 1.= 

, n ) 

.!.. n fdro. p. (m. )j3q . 

n! 
i71 1. 1.n 1. 1 

3 n 
6 ( 1: q.) 

. 1 1 1= 
(II. 3. 2) 

This is th~-form gi~en by~rauts~hi. This density is 

fu11y covariant: as we just saw. ln addition» aIl strong inte'r­

actions are effectively taken into account since the interac-
. . 

, tion responsible. for the binding o~ two consti tuents manifests' 

. • Î - h' 'dd . f (1.14,2.5,2.6) itself 1n a change of t eG enstty 0 states 

Therefore, we can treat a fireball as a gas of com~letely ~ 

non-interactinq partic1es (repü1sivé forces are negligiblel • 

\ ' 
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1t has been shQwn by Chaichian et al. (2.2) that the above 50-

cal1ed non-covariant phase-space is indeed the right one to 

use in the case of an ideal gas. The use of the covari~nt 

phase-space containing an additional factor~./E. fs in fact 1. l. 

equivalent ta a dynanical assumption which clearly results in 

favoring low kinetic energies and thus high multiplicities. 

An asymptotic analytic solution of equation (11.3.2) 

can be obtained using the ~ollowing bootstrap condition; 

p. (M) 
1.n / M 

Pout (M) (I!.3.3) 
-+ 00 

. 'f ,(1.14,2.5,2.6) The result1.ng dens1.ty 0 states 1.S 

P (M) 
M -+- OC) 

" where T can be interpret~d as the maximum temperature of ha~ 
r 

, (1.13) d ( 1" ) ~ dronl.c matter - ..... T an a a n~rma l.zat1.on ~('}nstan>t: cannot 

be calculated but we might èxpect T to-~ the'.or,der of the 
'-- - , 

pion mass since above that temperature, pions ~~~mitted. 

1I-4 Average Multip1icities and Deèay Scheme. , , 

Frautschi calcu~ated a1so the probability that a fire­
(1.14 ) 

baIl is constituted of n objects He found in the high 

l', ,,- mass limit: 

. -
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P (n) 
(ln 2) n-l 

= (n - l)! (I1.4.1) 

A resul t independent of the mass of the fireba~l,. This means 

that a fireball is 69% of' the time a two-body object, 24% of 

the time a three-body object and in only 7% of the cases does 

it contain more than three bodies. This leads ta 'an average 

/multiplicity ~ of approximately 2.4. Morebver, it turned out 

that a particular contribution peaks when one particle takes 

.. 

most of the mass of th~ initial fireball and other particles 

are light, (hence mostly pions). Since our model assumes 

thqt a fireball dec~ys according to the relative proportions 
, 

of its constituents, we are therefore qiv~n a decay scheme in 

which an-initial fireball decays predominantly into a pion plus 

a heavy ~bject, which can /i tself be another fireball if its 

mass is high enough. In turn, this second,fireball is treated 

as the first ?ne~ Occasionally, we shal1 obserVe a th~ee­

particle decay but rarely four. Thus, we are led tO'a cas-
1#11 

cade model of fireball decay'as shown in figure 2.3. At each 
-{ , . 

step i of the cascade, we associate a prôb~bility of decay 

'inta n bodies: 

,P. (M) Pn (M) 
1. = 'p (M) (II.'4.2) 

th- -
where we denote by p (M) the n ,.term contributing to (11.3.2). 

n ~ 

J 

.' ,1 

" 

, . 

. ' 
'. 1 

• li 
1 
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Figure 2.3 (a) Predominant dleay seheme of a fireball in 
/, 

the Frautsehi model. 

(b) Deeay of a fireball exhibiting a three-

(:.. partie le' vertex. 
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-
The probability of decay of 9 fireball into n pions (eq.II.2.l7) 

will then be a convolution of expressions like (II.4.2) over 

the different steps of the cascade. 
. ' 

However, here , we sha1l not use asymptotic considera-
I , 

tions working instead airectly with a generalized version o~ 

°equatlon (II~3.2) to account for isospin and G-parity conser-

~ations, which shall be evaluated numerically. 

Clearly, at thd end of the chain, even the heavy par-
~r ' .. 

ticle emitted will be rather light and we shall not allow it ta 

become lighter than an ordin~ry discrete reson1Dce. Even in 

this case, statistical considerations might not he completely 

reliable. But this should not he a large source, of érror 

especially,,,for long chains which are expected t9 dominate in 

any case. 

/ 

--.oo! 
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CHAl?TER III 

APPLICATION TO PION-PROTON SCATTERING 

. III-i Introduction .. 

We are now ready ta apply the model deve10ped in chap-

ter II to hadronic reactions. We st~rt with diffractive disso­

ciation in pion-proton scattering at high energy for which we 

snall calcu1ate the mass.spectra of three, five, seven and niné 

pions as weIl as the relative production cross-section • 

. We look at diffractive reactions because it allows us 

to test the model in a clean way, i.e. we know exactly the 

quantum numbers of the fireball which are those of the partie le 

being excited (except for spin and parity which we do not take 

into aécount); aIl produced pions come from the sarne vertex 

- since double diffractive eX'citation is certainly negligible if 

it ever exista; finally, the dynarnics involved in t~e fireball 

formation can safely be handled by keeping it ta a m~nimurn sin-

ce even accounting for aIl possible contributions ta diffrac-

tian will not change our results appreciably. 

1II-2 Dynamical Formation of a Fireball. 

"'-r- . 

We adopted in the previous chapter a formulation of 

the model in which the mechani~m of firebal1 formation was ta 

be rep1aced, in this case, by the inclusive cross-section 
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TI + P + P +'anything 1 . (III.2.l) 

in the fragmentation re:ion of th: pion (figu~e 3.1). At high 

energi~s, this process is best described by mtking a triple­

Regge 'expansion (3.1) as sho~n in figure 3.2,.1 Several contri-
l ' 
l ' 

butions can play a role in this reaction, na~ely (neglecting 
1 
l ' 

interference terms): PPP,PPR,PRR,RRR where Pistaryds for a po-' 
1 

meron'and"R for a reggeon on a lower trajee~bry. But it turns 
, 'i 

out, according to an analysis of Chan Hong-~o et al. (3.2) that 
1 

crossi section for small 

rnass)j' It is clear that 

a PPR contribution could b,e added, bût as + said before, thi, 

w6uld hardly change our results. Thus, for sirnplicity, only 

the triple-pomeron term dominates the 

value of M2/S (whe~e M is the missing 

" 

the triple-pomeron terrn will be kept. Moreover, it seems that 
-: 

these conclusions do not strongly depend 'on the reaétion sinee 

a sirnilar analysis of Roy and.Roberts (3.3) on-proton-proton 

inclusive reaction in the fragmentation region of a proton led 

to the same conclusion~. 

In the triple-Regge formalisrn, we write the tripIe­

pomeron s'quared matrix elernent as (3.4): 

'R(S,t,M) ;;' (t) (S )2ap (t) Yppp -
M2 

\ 

(III.2.2) 

' .. 
, 

where ~ppp(t) is the triple-pomeron coupling and 0p(t) is the' 
~ 

pèrneron tr,ajectory. We shall use the usuai linear forro: 

1 . ' 
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Figure 3.1: Inclusive' pion-prdton stattering in thé fra~men-

( tation region. 
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• Clp(t) = l'+,Cl t , p (111.2.3) 

Al f Il . h (3.3,3.5) so, 0 ow~ng many aut ors 'we sha11 parametrize the 
, 

coup1ing constant as: 

(III.2.4) 

Therefore,in pi6n-proton scatte~in9, the differentia1 cross­
( 

section (11.2.16) reads: 

dO' ,.. 1· (!ïi2 M~ (F+mr) J:~t bIt b 2t 
--,= (a~e + a

2
e ) 

dM~ 16lTS 2 1 
/' 

1 

x (!f
pt 

{III.~.5) 

where'" À (s,m2,m2) h b 1 d b s2 01: 1 as een rep ace y .LlOr arge s .• ' 
• P 'Ir 

The in-

tegral is readily done and we find: 

dO' l l ~ al + 
a 2 (S/M2~ , dM2 = 16lT M3 , ~1+2a;ln('s/M2) t 

, b 2+2apln 
.J, "-

x P(F + rilT) (111.2.6) 

o ',0) 

Thus, wjthin logarithms whic~ almost do not vary ,over 
o 

the short range of M we shall consider, the cross-'section r~-

~ .,. 
duces to: 

-~ 

" , 
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(F .... mr~ (111.2.7) 

where C is a normaliz tion constant. We obtain the same exp:r;es­

sion we would have obta"ned by approximating equation (111.2.5)-

b;y the cros,s-section a~ t=Q. T,his is due to the fact that we 

are dealing with diffrac ive scattering W~~h exhibits ~ very 
-

strong peak in the forwar direction which accounts for most 

of the cross-section. 

1f1~3 Linear Statistic~l BO,tstrap Model. 

The main contribution to the decay probability cornes 
<0-

from the sequential decay of a fireball into a rel~tively 

light'particle (pion qr discret hadronic resonance) plus -

another fireball. In a first-ap roximation, we may assume 
\ 

that thifi two-particle decay ace unt~ for the whole probabi-
o -

lity. We shall calI this version o~ the;model the linear 
t 

statistical bootstrap. 

_ We shall denote prob ab ili,t y that: a fire-

baIl of mase M, of isospin land -parity G decays into 

n pions. The thi'rd component of does not ëlppear as a 

label since for 1<2 (we do n0t allo~ f r exotic fireballs) it 
"-

can be shown (3.5) that ln a statistica model,·the decay is 
, 0 

symmetric in isospin space. 

Consider for instance the proces 

, 

, r 
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(111.3.1) 

" , 

wh~re F1 (rnl ) i5 a fireba11-of mass ml' of four-~omehtum ql' o~ 

isoé?_~~,~Ip of G-parity GI and P (rn2) is ël; light partie le of 

mas~ rn
2

, of fou:r;-mome.ntum Q2' of isospil'). 1
2

, of G-pari ty G2 

and of ~spin 8
2

• 

J 

Generalizing equation. (II. 3. 2) to include isospin and 

G-pari ty conservation and makin-g use of' the appropriate Clebs cn­

Gordan coeffieient.s, we obtç.in the probability for sueh an 

event: 

P (M,I,G) = 
n 

+ ~I21 {p(mf,o,GI )Pn-n
2 

(ml' 0 ,GI ) 

+ PCml.l,Gl):n_n2Cm1'.1:Gll)]] > •• ~III.3. 2) 

o 

where we have summed over .all possible light part:i.cles. Here, 

) . 
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p (m2) is the mass distrioution of the lignt particIe.· We' shail 

use a Dirac delta functioH for pions and very narrow resonanées 
'-

1 

and a Breit-Wigner distribution otherwise. n 2 is the number of 

· pions coming from, the decay of P (m2). The I/2! factor does not 

appear because the two particles are different.: P (m
2

) is a .dis­

cre~er hadron while P-1 (ml) is in the continuum. We now define 

an auxiliary probability: " 

~ (M,I,G) := p(M,I,G)P (M,I,G) (III.3.3) 
n , "n 

" After integration ,over the phase-space ff'lctor, equation (III. 

3.2) becomes: . . 

== p (;2) (25 2+1 ) J dml dm2 P (m2 ) A (M,ml' m2 ) 6G , G
1 
G

2 
" 

• 0 

(111.3.4) 

, . 
whe,re A (M,ml ;m2 ) is the two-body phase-space factor: 

(111.3.5) 
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We thus obtain an expression, iI;l fact a recursion re-
. 

lation, independent of the densi ty of states of' any fireball. 

This is very int"eresting since, given appropriate initial con-:­

<1 di t:i.dns, i t provides us wi th a way of calculating explici tly, 

the dens i~y of states for any M, land G. Indeed, clearly, if 
. 
we SUIn over aIl vqlues of n, we shâll have SUInITled over all 

possibili ties of decay of a fireba11 wi th such mass and quan-

tum nuI(lbers. Hence, we have: 

l ' 

~I P n (M, l , G) = l (lU;' 3.6) 
... 

-
and from equation (III,3.3-): 

(III.3.}) 

Therefore, the probability that a fireball decays into n pions 

will be gi ven by: 

. 

, . . 

q • 

= _~ n~(M_,_I_, G_)_ 

E~ {M,I,G} 
n n 

r . 
III-4 -Càlculation of the density of states. O 

Cl 

. (Ill. 3.8) 

In the, linear bootstrap, as we have seen, a fireball 

emi ts a pion or a" disp:t~t~' 'resonance leaving another fireba~l 

as a daughter. EverY:,resopance with compatible quantum num-

j , 

J • 
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I c, 
~ . . . 

'. 

\ 

~ , ' bers can be produced. Here,' we shall allow for the emission of 

~ n, P, w, n " <S, f ,A2 and 9. Ali these resonance~ have a width 
~, ... .. :... ~ 
, ~ 

, " ·.of the order of ttre pion- mass or less. Resonances such"as E, 

, 
o " 

.. 
~ 0 

. " . .. 

.a 

o 
cl 

j 

, 
Al' P and A3 wi th larger widths have never been estqblished 

as defi~ite resonances-and shall be interpreted'as kinematical 

effects. ,We shall see later that, for instance, Al and AJ are 

indeed predicted by the statistical bootstrap model as statis-

tical enhancements. 

We shall neither allow for the production of strange 

fireballs which, according to Zweigs rule, are s~rongly suppres­

sed - thus direct emission of kaàns or of strange resonances 

will not be taken into account - nor for the emission of non-

* strange resonances such as S , ~ and D which decay mainly into 

! 
kaons. Empirically we know that at high energy the amount of ' 

kaon's is about ten times $maller than the amount of pions (3. 7) • 

On 'the other hand, our model does not reflect this SU(3} sy~ . 

metry breaking in the coupling constants and would overestimate 

the amount of.kaons produced. Finally, due to their high mas-

ses, baryon production is neglisible, at least in the relati­

vely low':'mass rànge we sha"ll be conS'idering. 

Î Therefore, the only vertices considered are those 1n 

figure, (3.3) where the branching ratio!:} of the dis crete reso" 

nances into pions that we have used'r are shown. In these, 
~";.; . 
, . , 

photons have .been counted as neutral pions. Making use of the 

appropriate Clebsch-Gordan coefficients, the recursion relation 

)~ 
1 hw..V 
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n::::2, O. 3ft-­
n=3,0.62 

"~~-~ 
n=2, O. rrz--­
n=3,0.30"4 

.n' 1 n=4,0.257 
_-,-Y __ n=5,0.419 

f 1 n=2,0.81 
/ n=4,0.028 _-:..._-
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1 n=4,0.102·-
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-~--

Figure '3. 3: Vertices taken into account in the 1inear boot-

strap model to calcu1ate the total densi ty of 

states. Branching rat,ios into different numbers 

of pions are a1scngiven. 
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(!Ir. 3.4) becornes: 

" 
ft 

; 
- M-m 

~ J 11' 1 1 [ 1 ~ , 

n (M, I,G)::: m', dM A(M,M ,mri ) ÔIO~ n-l (ri , 1,-G) +<SI1[~ n-l (M ,0 ,-G) 
mlon . • <' 

+ Îin- 1 (MI , 1 ,,-G)]] 

• 1 

M-m . 
"r li) 1 • [ [' • 1 ·~m. dMA(M,M ,mw) 0.101 o~OÎln_2(M ,O,-G.l 

ml.n 
\ 

, 1 

+ ôl1Fl n-3 (M' ,1,-G>J] 
M-m 

J" ni 1 • 
-+ dM A(M,M ,m ,) 

m , ,- 1'\ 
mln 

" 

+ O.257[Ôlo~n_4(M· ,o,G)+ ô;nPn_4(M',1,G)]' 
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x [ 0.101 [~·Il n-3 (M' ,1 ,G;+Înl ~ n_~·(M' ,0 ,G) 

+ Îin _3 (M' ,1,G))) + O.899[ Oro P'n_4 (M' ,1,G) 
1 

1 
1 , 

+ 5 

M-m 

J 
~2 

m . m:Ln 
• 

, t 

dM A (M,M ,mA ) 
2 

o 

X [ o. 766 [6IO~n-3 (M' ,1,-G) HIll ~ n- ~ (M' ,0 :-G) 
> • 

[' 
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+ i\'h_3(M' ,1,-G})) + 0.102 [Ô
IO

P'n-4 (M' ,l,-G) 
, '1), 

, fM-mg, 1 1 [ t 

+ 4.9 .. dM A(M,M ,m } ôIo~n-4(M ,1,G} 
, rnrnl.n ,g 

1 

+ ~init (M;I G) 
n " \ 

l, 

\ 
\ 

(111.4.1) 

~. where pern) is taken te be a relativistic Breit-Wlgner distri-

bution as in equation (11.2.9) (3.8) : .. 

,/' 

1) 
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( 1'~ 

'0 

q = l À~(m2 m2 m2 
o ïrn 0' l' 2 

. ' 

(J:II.4.1) 

• (III. 4" • .4) 

(III.4.5) 

. - r 0 ap.d 1 are respectively the width at m=ïnO and the spin of 

particle ~O w~ile ml a~d m2,are the m sses of its decay.pro­

ducts. This form has originally been used for the p resonance 

(3.9) but we shall adopt it for any two-body resonance of spin 

1. 

In equatiop e'III ;4.1), the lower limit of integration 

m. is simply determined by the zer~s of À ~ (M2 ,M 1 2 ~m2) co~­
mln. ,-

tained in A(M,M ,ml. Also, the rnass distribution of. very 

narrow resonances like n, n, w, n' have been taken to be 

Dirac delta functions and were readi1y integrated over. Dirac 
1 

delta functions have also been used for other resonance~which 

start contributing to ~ (M"I,G) at n=6 Or higher. Their . n . ' 
production-rates are small and the use of a finite,width-would 

/ 

"-

n. 



./ 

m 

- 37 ,-

\ , 

not change anything in ,the result while complicating its eva-

luation. 

The initial conditions necessary to calcul~te ~n{M,I,G) 1 

'-
,ipe. the vertices appe~ring at the end of the chain (figure A.l) 

are collected in appendix T. oUsing ~heseJ equation (111.4.1) 

has been evaluated bY,computer. 

However, before presenting the results"we would like 

to comment about the region of validity of this formula. Since 

in our model, fireballs contain at least a heavy resonance in 

addition to another particle, it is clear that eguation (Ill. 

4.1) cannot describle the physical low-mass density of states~ 

1ndeed, this part of the spectrum i5 dorninated by discrete 
, 
resonances such as ~, p, w etc. which may contain less than 

three pions and are not generated by our recursion relation. 

These particles anyhow contribute to the total dens.i ty of 

states and have to be taken into àccount if low-mass calcula-

tions are to be performed. 

TII-4-A The Resulting Density of States. 

Figu~e l shows 'the resulting' density'of states (equa~ 
. 

tion 111.3.7). A summation up to n=15 has been necessary to 

ensure a yery good convergence, over the who1e range cons ide-

red. We have used a volume of radius 1.1 fm. This very 

" + -reasonable value has been favored by Margolis et al. in e e 

(3 6) 1 (3.l0) annihilation • -as weIl as in other reactions 
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We observe a rather weak dependence on the quantum nurnbers of 

the fireball above 1.6 'GeV. 1ndeed, both '1~O and 1=1 curv~ 
can clearly be parametrized with the same funetion and ~he same 

pararneters eX~êpt for overal1 norrnalizatiOn constants which 

will differ slightly. We note also a complete independ~nce of 

the G-parity for each isospi~. 
/ 

Below 1.6 GeV, the situation is 

completely different and tbe aensity of states depends more 

strongly on the fireball quantum numbers. This is because we 

are in a region where new channels 'still appear in a discrete 

fashion and individual threshold effects are noticeable. 

However, Ramer and Frautschi (2.?) using a different 

technique in which a realistie low-mass spectrum of S,U (3) 

rnultip'lets of mesons is fed as an input to generate higher mass 

states, founa that the density of states reaches its asymptotic 

behaviô~ at even lower-rnass, i.e. at about 700'MeV. Moreover, 
, (3 Il) . 

Hagedorn • found tna't a srnoothed experimental spectrum of 

resonanees could be f~tted down to almost the pion mass with 
~ 

a density of the form: 

, 

a O MIT 
= (M +M) 5/2 e ~ 

o 
'(11I.4.6) P (M) 

This parametrization is off by a power of ~ from the true asyrnp­

totie form (which wâs not known in thos~ days) but is very close 

to it over a srnall energy range. 
j . 
1 

ri 

, ' 

.. 
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In ou~ case, we see that the analytic asymptotic solu-

tion (equation II.3.4) is entirely consistent with our calcu-

lation' and we find a limi ting temperature of 160 MeV, in agree­

ment ~ith pre~ious estimates (2.4,2.9,3.6) 

,Thus, in view of the above discussion, we propose to 

use the asymptotic density'of states (corrected for very low 

mass) over the entire range (dash~d line'on figure I). It is 

clear, however, that a full statistical behavior is not expec­

ted to set in in the discrete resonan~e region and'that results' 

obtained there should be interpreted cautious:).y. 
, ,-

/ 

111-5 Multipion Production. 

We now proceed to evaluate the production cross-section 

of n charged pions. Only a s~set of aIl diagrams building up 

the total density of states contribute to such exclusive chan-

nels. In pion-proton scattering (n is odd), the only vertices 

contributing- are those shown in figure (3.4). We shall write 

a reeursiQn relati'on similar to equation (~III. 4.1) with the 

following difference: sinee the Only partieles produeed are 

either charged pions or resonanees deeaying into charged pions 

only, i t is elear that we no' longer have isospin symmetry 

(insured by the presence of the neutral pions). However, 

interestingly, it turns out that it is possible to write two 

different recursion relations, eaeh being independent of the 

third component of isospin and aetually of the G-pari'ty as weIl 
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/ f Il n=2,O.81 
n=3', 0.709 1 n=4,0.028 
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/ n=2,O.24 
-'n=4,O.70 
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, ./ 

Vertices contributing to the calculated exclusive 

channels 'in the l{near bootstrap model., Branc~lng 

ratios into different numbers of pions are also 

given. 
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·/'~(fOr . 
an additional simplification). 

, 
Ids for Ç)dd 

, , 

numbers of pions and the second for even numbers. These rela-

-tians are: 

, 

~ (M,I) = n 

" 

M-m 

J Tf, , [~ 1 !:ù'] . 
dM A(M,M ,m ) .P' leM ,0)+0.5.p (M ,.1) 

1T n- n-m . ' 
mln , 

+ 1. 5rM-2m~M' J~-M dm p (m ) A (M,M' ,m)-~ ,.,(M l ,1) 
Jm . 2m p P p-n~ 

mln 1T 

-' M-m 

+ ,1. 772sf A2 

m. 
mln 

, , [~ , 
dM A(M,M ,mA) Pn _ 3JM ,0 

2 . 
1 

M-2m M-M 
+ 4. OSr 1T dM) dm

f
, (m

f
) 

J m. . 2m 
mln 1T 

, 
M-2m M-M 

O.S4( 1T dM' J dm p (m 
J m . 2m 9 9 

mln 1T 

'1 !Y ' 
X A(M ,M ,m)p 2(M ,1) 

9 n-
r::.r

M
- mg , 

+' 2.4) m .. dM A(M, 

mln 

(if n is add) 

(I 1.5.1) 

M-m , ' 

J 1T, '[ 'V' 
dM A(M,M ,m1T ) Ô10 (0.6667) P n-l (M ,1)' 

mmin 

• 

l' 
1 

1 
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. 
) 

x A(M,M',m
f

) [ÔIO~n~~(~',O) + ÔI1~n_~(M',l~ , ,r-mf , 
+ O.l~ dM 

m. ml.n 
1 

M-2m M-M 
lo6Br 7T dM'J dm p (m ) J m . 2m 9 9 ml.n : 7T 

, '. 

l, 

-~ 

X A(M,M' ,mg} (ÔIO{O.3333)~n_~.(M' ,l)-+ 611~n-2(M'--;-crr-
M-m 

+ 4.9( '9dM 'A(M,M' ,mg} (oIO(O.,3333}Îin_~,(M· ,1) :lm. ml.n 

, 
Ô 

'li (' 0)] + ~ini t tM 1) + 11l'n-4 M i' 'j- Pn " 
if n i~ even) 

(111.5.2) 

We note that for odd values of n, ~n(M,O)=O. Initial 
-conditions used to evaluate these recursion relations can be 

found in appendix II. 

. . 
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III-S-A Prpduction of Three Pions. 

We present on figure II the three~pion mass spectrum 

predicted by ?ur model. The main ~nhancement peaked at 1.12 GeV 

can be identified to the Al meson ( p-n contribution only) and 
" 

the shoulder starting at abo'ut 1. 4 GeV to the, A3 meson (f-n 

contribution only). No g-n enhan~ment is visible at higher 

mass. 

We would expect though a more accurate prediction if 
, 

the three resonances p, f and ~ we~e replaced.by the full di-

pion amplitude as rneasured from the experimental phase-shifts 

(3.12) , ' 

Indeed, this would account for aIl interference phe-

nomena of 'the different partial,waves which are like1y to 

show up in this low multiplicity staté since-f-ew -diagrams. 

contribute. At higher multiplicity, we expect aIl ifiterference 

'effects to cancel out due to the large number of di~grams. 

However, individual partial waves should be wall' described and, 
(' '-IIS 

to i11ustr~te the point, thé, p-n contribution ha~ been separa­

ted out and normalized to the data obtained by Ballam~t al. . \ ~ -.. 

(3.13) fàr the Al ( figure III)., We s~e that the experi-
, 

mental peak is sharper than we predict,but, nevertheless, ,the 
~ 

agreement is $urprisingly,,'good sin,ce at such low mass dyna-
" 

,mical considerations should still play an important role. 

The experimental status of th~ three-pion dlffrac­

tive enhancements in bath the Al and ,the A3 regions is still 

confused (3.14) Pre~iaus phase-shi ft analY~iS (3~lS) showed 

ID 

,. 
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, 
variatibn over the full width of the spectrum or the rela-

tive phases between the dominant partial wave and other partial 

waves associated with the background. We know that for a true 
, 0 

resoRance, a 90 increase is expected. This observation led 

people to interpret these peaks as non-resonant threshold 0 J 

effects generated either by. a fireball model such as the qne 
" 

exposed in this thesis-(3.l6) or in a multiperipheral way by 

the so-called Deck model (3.17) preferably in its~"~eggeized 
version (3.18) This last model tends also to pro duce too 

broad a bmnp. 

However, very recent works suggest on the cont~ary, 

that Al and perhaps A3 are quite respectable resQnances. First 

of aIl, a ~eanalysis (3.19) of the CERN-IHEP data, using analy-

ttc-and-unrtary three-pion_arnplitudes concludes that, due to 

"a~iguities in the fit, a resonant interpretation of the Al is 

not exçluded. Secondly, a new partial wave analysis of cohe-
J " (3 20) 

rent pion seattering off complex nue lei • supports the 

• existence ~f resonq.nt _1+ waves in the A~ region as weIl as a 

Iresonance behavior of ·a 2- state in the AJ region. Th'irdly 1 

0-' b h a backward p 1T enhancement has ee observed in the non-dif-
i. 

fractive 1T-p,J+ (31T)-p reaction at a mass of 1050 MeV (3.21) 
, 

The measured width of 195+32 MeV is narrowero than found in 
_ f~-_ ,',~ -~, 

- dif,fractive'producti~ but, neverthele~§, the results of this 

, experiment constitute a ,.strong evidence ~hat a resonant "f.l 

meson"has been produced. Finally, a study 6~ the decay'of the 
r 

i-_______________________ ~~ 

""", .... 
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newly discover'ed heavy lepton- T (e e ~ T T ~ V\le + vp 11") shows 

an indication of a hump in the Al region (3.22). The p11"_~ass 
, 

spectrum in spite of low statistics (21 events) is entirely 

• consistent with the T -+ Al'" decay mode. 

In conclusion, present exper,imental \situation seems to. 

support the existence of Al as a true resona~ce and likely, 
'1 \ 

it will he fuliy confirmed inr~he near futur~. Actually, 

the discovery of this meson i5 of great importance for quark 
\ 

models and~chiral symmetry(3.23). On the othér hand, it is 
i • 

aiso clear that in diffraGtive three-pion production, the • 

whole enhancement cannot be resonant. In façt,\ the ahove dis­

cussion ls suggestive of a large fraction of no -resonant 

behavlor co~patible 'with our 'statistical descri 

1II-5-B Production of Five Pions. 

L Figure IV shows the five-pion mass spectr 

I:Y. ou~ model. We disp1ay three different c 

.out the importance of resonance emissi,on. 

is the resul t of. the full ca1culation. It 

lar shape peaked at 2:17 GèV and with two 
( , 

1 

.. mas s s ide. Tpese two, shoulders 'are due to 
J 

firehall into "a pion plus another ·,firebal -
.. 1 

nance'at, the end of the chain- (lirst term 0 
, 1 

and III.5.2), as indicated by the middle 
.. : 1. 

howeve_r, that no sfgnificant meaning shou 

generated-

point 

oth but irre.gu-

on the low-

lus a reso-

clear 

'., 
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second shqulder beca~s~ it can so ea5ily be de~~royed by either 

statistical fluctuations or minor dYRamical effects. We do not 
, 

expect data to reproduce in detail th~ predictions of a statis-

tical model at finite energies. On the other hand the lower 
, 

shoulder is more pronounced and should manifest itself in the 

data. Other contributions such as resonance emission along 

the decay chain will peak at a somew~at higher mass and since 

there are 50 many of these configurations possible the ~ull 

spectrum will be shifted at higher rnass. 

The lower curve shows also the prediction of the first 

term of equations (III.5.l) and (II1.5.2) but here aIl initial 
, 

condi tions yield'ing more than three pions have been removed. 

This stresses the importance of adding aIl relevant contribu-
" 

tions in ,gen~ralizi'ng the model to a highe"I' number of ~ions. 

Produced. Indeed, integratio~ over the spectra shows that the 

lower curve represents on1y 38.2% of the total number of 
. 

five-pion events while the middle curve.accounts for 58.3% of 

these events. Thus, 41..1% of the decays exhibi t ei ther the 

emissio~ of at least on~ resonance along the chain or the 

emission of two resonances a,t its end, certainly not a negli-' 

geable fraction. 

Finally, we reproduce in figure V the mass spectrum 

obtained using th~ analytic, asymptotic density of states> ,(equa-

tion 11.3.4), (full Hne) , along wi.th the s~ectrum obtained 

when the calculated density of states (equation III"A .. l) is 
,~, 

~ ~ . 
->, 

, II> 



, ... 

'1 

~ 
1 

l 
t 

! 
L 

« 

( 

- 47 -

? 

used (dashed line). Both curves have been normalized to the 

same peak value. We see that the differences between the two 

are very minor and clearly negligible in the spirit of our mo-

deI. 

Unfortunately, no data exist onr'diffractive five-pio\l 

,~~duction off a 

, ne~ chapter, we 

proton but there are some off nuclei. lIn the 

shall see how our predictions compare to them. 

\ , 

1II-5-C Seven and Nine Pion Production. 

The seven pion spectrum has been calculated up to 4.41 

Gey only using the method outlined above. At higher masses, 

the accuracy, due to the great number'of numerical i~tegratiQns 

to be performed, s tarts to faiJ.. Th,us, we neglected aIl reso­

nances·'width, reducing ipso factoothe number of integratio~ by 

one. Looking at the c!lrve in figure,. VI, we see that the ma;tch-

ïng is excellent and that virtua11y no error has been in-

" 0 troduced in the process." The maximum of, the peak occurs at 

3.~2 GeV and the who1e spectrum is very smooth indicating that 

no\particular sub-group of diagrams dominate~ its behavior over 
~ ~ ~ , 

a lirnited range. This is cbnfirmed by the.two lower curves 

which display, as in figure IV , the contribution of pion emis­

sion along the decay chain alone. These contribute even 1ess 
, 

to the full spectrum than in the flve-pion case and thus, rnass 

differences between resonances a~n become 'less important. ' 

The middle purve accounts "for 22.7% of the integrated numbero~ 
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events while the lower one accounts for 15%; .. .. , 
FlnallYr we calcu1ated the nine-pion spectrum presehted 

. on figure VII. We did not atternpt to go beyond 4.4i GeV but we 

have enough information to knQW that it peaks at 4.3,GeV and 
/ 

that resonance emi'ssion a10Aç the decay chain or doubfe reso-

nance emission at the end of the chain is very important. 

Indeed, we found that pion emission alone contributes approxi­

mately 13% to the integrated number of events (rniddle curve) 

and it reduces to 8% when np, ~f(f 7 2~), ~g(g ~ 2~) are the 

only initial conditions, taken into account (lower cur~e). 

1II-5-0 Relative Cross-Sections~ 

, Our statistical model cannot predict absolute cross-

sections though it rnakes definite predictions' on their relative 

• size. They are sirnply given by the ratio of the respective 
o • 

integrated numbers of,event~. We have: 

a(~p~(nl:r)p) 

CJ(1Tp~(n2~)p~ 

We collected in table 1 aIl cross- sections ca1culated 

crelatively to the three-pion cross-section. In the ni ne-pion 

case we only hav~'about half the, spectrurn and the results of 

the partial, integration are multiplied.by two. This provides 

us with a good esti~ate, probably accurate to within 30%. We 

, 0 

\ 
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give our p~edlctions for the three cases shown on'the graphs. 

From the figures, it is obvious that resonance emission is be­

coming ~ore important as tne nurnber of 'pions produced increases. 

This of course, should not come as a surprise since, as we said 
, 

before, the mass differences between resonances and pion are 

less relevant for a heavy fireball. 

Therefore, from the linear statistical boostrap, we 

have learned the following: a naive generalization of the model 

, from the three-pion spectrum taking only into account pion emis-
1 

sion along the decay chain (first term.of equation (111.5.1) 

and (111.5.2) and the correspondin~ initial cond~tions (aIl u-R 

ve~tices - middle curves,- or u-R(R+2u) vertices only - lower , , 

curves) ,reveals itself ~ompletely inadequate to predict relative 

b~anching ratios but, on the other hand, is sufficiently accu-
, "t' 

rate in predicting the masses (but not the detailed shapes) of 

aIl n-pi6n enhancements. ' 

1II-6 Non~Linear Statistica1 Bootstrap Madel. 

Sa far, we have considered only a simpler,version of 

the model in which a fireball decays into bwo particles. We 

shall now take into account the next dominant contribution: 

the decay of the fi'reball into three abjects. We know that 

asymptotically,27% of the first generation particles come 

from a three-body deoay. However, for low-mass enhancements 
• 

such às the ones we are calculating, it should be considerably 
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Figure 3.5:" Vertices ta~en into account to etCUlate exclusive 

channels in the nan-linear boots rap-model. 
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..., 1ess and we shall now study how this figure - is changed. In 

order to do so, we write recursion relations'similar to equa-

tions (111.5.1) and (III.S.2), but here, we neglect aIl reso-

nances' width. This is because the non-linear term is expec-

ted to contribute much less than the linea~ one, thus making 

the inclusion of widths an unnecessary complication. For the 

sarne reason, we shall not reevaluate the total density of sta-

tes assurning a priori that the asymptotic ternperature is not 

changed. From the results obtaine'd it will be easy to judge 

a posteriori if~his was indeed a good guess. 

Along the decay 'chain 'the only vertices considered 

are those shown in figure 3.5. They a.re aIl of the type 7T7TF 

or nRF and dominate' the non-linear contribution. RRF vertices 

ar~, suppressed because, firstly, the integrand i6 smaller for 
'" r 

larger masses and, secondly, the integrat~on interval is 

narrower. However, aIl 7T7TR, 7TRR and RRR vertices are allowed 

at the end of the chain. Ini~~l conditions are 'given expli-

, citly in appendix
c 
III. Thus, recursion relation in the non­

linear version of the model are: 

'ù 
P (M,l) = 

n 

i 

1 
1 
; 



, 

, 
", : 

) 

~ (M,I) 
n 

x [o. 81P'n_3 (Ml,{)+O.405P'n_3(Ml,1)+O.028Îin_S(Ml'O) 

• M- (m~+mA )-'. 

+ o.a14P'n_?(Ml,1~ + 3.19Jfm w 2 dMl 
1 min 

\ 

+ terms of equation (111.5.1) (if n is odd) 

, (III.6.1) 
M-2rn , l' 

~' o·1m , 'dM1I(M,Ml,I!\"mn> [ôIO'fo• 667Ï'n_2 (Ml'0> 
, m~n 1 

+ O. 33311 n-2 (Ml' 1 r + ô Il [~ n-2 (Ml' ° 1 ;G • aÏ' n-2 (M!'..! ~l 
M- {m +m ) 

+ if ~ f'l dMl I(M,Ml'm
1T

,mp ) (ÔIOO.l67~n_3(Ml'·1) 
mmin 

M- (m +mf > 

+ 6IlO.4~n_3(Ml'l>J + 11 TI dt'MlI(M,Ml,mlT,mf ) 
mmin . 

/ 

i 

1 

l, 
J 
1 
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+ 0il[ O.405~n_3(Ml,1)+O .. 014~n_5 (MI,l)]] 

M- (rn +m ) . 

+ 1..7721m . • A
2 

dMlI (ii,Ml,m~,mA21 [6 IO [ 0.667 
m~n 

x ~n_4(MI,O)+O.333~n_4(M,l~ + ÔIl{~n_4(Ml'O) 
, M- (m +m ) 

+ O.B\lIn_4{Ml,l~l + I1m . • g dM1I{M.Ml'mrr,mgl 
rnJ.n 

x [ÔIO[O.04~n_3(Ml,I)+O.117~n_5(MI,1)J c 

+ 0II[O.096~n_3(Ml,I)+O.28~n_5 (Mlf!)]] 

,+ terrns of equation (111.5.,2) (if n is even) 

(IlI.6.2) 

where l (M,Ml'ma'lTb) is the three-body phase-space calculated 

in appendix IV. Factors for identical particles are included 

in the coefficients. 

1II-6-A,Effect of the Non-Linear Contribution on Multipion 
."1 

Production. 

The major conclusion that we draw from the res~lts 

of this enlarged version of the môdel is that the non-linear 
• 

term is hardly necessary unless a few percent accuracy ls 

desired. This is, from a practical point,of view, a very 

..\il"'ÎiIII' • .....i.;I, -.-_______ .... _ ... , _I$"PI1_'~l __ ""'~"".""_~!N . !tif 4 4K: .. _____ h. __ ~ __ 
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interesting and fortunate conclusion indeed,.since this more 
J " 
general model is muchtdifficuit to handle numerically requiring 

huge memory and long/execution' time. Let us n6w see in details 

its' influences on 0 r previous results. 

Firstly, i s effect on the shape of aIl spectra to which 
1 

it contributes (Sn and up) is totally negligible. Indeed, the 

new spectr~, once properly renormalized, can be ~upèrimposed 

within plotting accuracy to the old ones estgblishing the . 
smallness and the smoothness of the non-linear term. 

Secondly, its effect on the magnitude of the cross-
, ~ 

sections is also pretty smail and, as expected, slowly increases 

with the number of pions produced or, equivalently, with the 

mass of the 'enhan~ment. More precisely thfee-particle ver-

tices, apart from,not contributing to the three-pion production 

cross-section, accounts for 1.5% of the five-pion spectrumi 

only 3% of aIl seven-pion events exhibit at one place or 
" 

another one or more threé-particle decay and it goes up to 
, . 

approximately 4.1% in the nine-pion case. We give in Table l 

the new relative cross-sections obtained in this non-lineai 

, version and a glance at it convinces us that unless very 
~ 

precise, ~~~rimental data become avai.lable the statistical 

~bootstrap mo~el, in its simpler linear version, 15 çompletely 
" 

s~tisfactory • 
r 

By the sarne occasion, our results, provide us with a 
? 

full a posteriori justification Éor our use of ~n unmodified 
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density of states. Indeéd three-par~icle vertices would 

tribute ~ery +ittle to it, thus having a negligible effect on 

the tempera ture • 
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CHAPTER IV 

APPLICATION TO PIQN-DEUTERON SCATTERING 

IV~l Introduction. 

It is an easy matter to ex tend the results. obtained' in. 

the, prevlous chapter for diffractive pion-proton 5cattering to 

pi0n-nucleus scattering. Among the different nUclei 1 deuteron 

is particularl"y suitable to study dïffractive 'dissociation and , . 

presents qefinite ad.vantages on proton target. There are a 

number of reasons for i t (4 • l). The deuteron is an isospin 
'~ 

zero nucleus th us' eliminating all non-coherent background co-, 

ming from 1=1 exc~anges (important in pion-proton). The deu­

terori is a spin ,one nucleus f"or which spi~-flip contributions 

are forbidden in the forwat'd direction (t=O) and thercfore 

heavily, suppressed in the diffractive region (t very small). 

The deuteron has no excited states 50 that, except for few 

, deuteron break-up events followed by recombination, vacuum 

, quantum numbers exchange can be assumed every time a deltteron 
" 

nucleus is identified in 'the final state. Finally, the deuteron 

form factor favors scattering in the small t region, thus . 

fa~o:r:ing 'diffractive events. AH these reasonS combi-ne to make 

easier the production (relative to other channels) and-'the 
, 

identification of diffractive events. At least, the)' were 
(4.2,4.3) 

sufficient to stimulate experimentalists , . 

1 • 

1 

'\ 
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IV-2 Coherent P,roduction on Nuclei. 

-/ 

. 
"~uclei are a collection of interacting nucleons ver:y 

r' 

::Ç.lq~e to 'each other. For this reason, we expect diffractive , ' 

hadron-nucleus interactions to be more complicated than hadron-. . 
hadron 'collisions. However, at high energies (in the GeV ran-

ge), an event takes p,lace before any nuclear rearrangeroent can 

OCCUl;' and the nucleus is seen as a frozen abject. It was thus 

possible to develop wittt rnuch success a sophisticated theory 
1 • 

(4.4) accounting fo:r; mut~al screening of nucleons and multiple 

scatteri.ng. - It involves in general the solution of a set of 
. 

coupled differential equations related to all diffractive chan-

nels that can be produced. But, as we have just seen, diffrac­

tive events are highly concentrated in the low t region, a re-

gion where production amplitudes are very dominantly coherent. 
" • 1 

Nuclear coherence irnplies that the outgoing particle shares 

with the incorning hadron aH its internal quantum numbers ex­

cept .spin and par~ty Bince there might be sorne angular .rnomen~ 

tum transfer. This cond~ tion is clearly, satisfied in diffr.ac-
n " 

tion dissociation. It' aIso puts restrictions on the mass of the 

particles that "Can be diffractively produced. Indeed', in order 
, , 

to keep in phase both the incoming and the outco~ing wave-

functions, the following cÇ?ndi tion must be fulfilled: 

l\K R < 1 (IV.2.l) 

- which stat~s that the momentum transfer cannot exceed' the in-
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1 

verse" ofl the ·nuclear radius . In addition, there is a minimum 

momentum transfer involved in any reaction where the masses of 

the initial and the final particles differ: 

-

t /1 = ml_n 

, 
Thus our coherence condition implies: 

2 "2 
M -m ~ 2PLab/R 

~ 
suppressing the production of high mass states . 

.!> 

(IV.2.2) 

(IV. 2.3) • 

Theory ,( 4 • 4) 

predicts very little mul~iple scattering in this low t region 

where differential qross-sections 1 characterized by a steep. 

falloff mainly determined by the nuclear forro factor, can be 
, 

pajrametrized by an expon'ential in t. 
\. 

Thus i tis not necessary 

to use the full machinery of th~ theory and 

zed form is q~ite sufficient (4.~): 

/' 

, 

factori-

(IV. 2.4) 

whelte F (t) is/the nuclear ferm factor. Once integrated over 
___ //' ~L 

':Ci" 

t from (_00) to t m, , the simple distrl~.bution resul ts: 
ln ' , . . , 

da N .n 
dM "7 

T 2 

(~) 

\~ 
~'t 

da 
-e -btniin .o....-.!!..E. 

'f .~ (IV. 2.~) 

.\ 

i • 

il . 
1 
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where h i5 a parameter which can ~e extLt experimental 

diffe:rential 
' r), 

This is uivalent cross-sections. c to . 
0 

'the result obtained from the theory in aIl t approxima-

(4.6) ~ 

tioll leading to the identif1catio 

, , 

b = 1<~2> (IV. 2. 6.) 
6 

where <r2) 
, 

is the rms nuclear radius. ~ 

It ls' clear from equation (IV.2.5) that the presence of 

the nucleus produces a shifting on" the low-mass, side and a 

shrinking of ail multipion spectra. These effects are more 

pronounced for higher rnultiplicities thus affecting the size 

of the relative cross-sections. 

IV~3 MUltipion Production in Pion-Deuteron Scattering. 

We shall now pre!;>ent ,our predictions on dèuterium and 

;. : compare thènt with data when available. We ernphasize that n'o 
, ' 

additional free parameters are introduced when' dealing with 
: .'~ . 

nuclei ~ince both «(JTD/aT }2 and b (or<r2» are takén from ex- , . 
1T 1Tp 

, , 
periments. The ratio of the deuteron ta protœn square crass-

, , sections ls eqùal to "'3.,6 (4.7) and the value of b has been 
, 1 

d t . à (4. 2 , 4. 3 , 4 • 8) t b 30'32 d . t' 
~ erm1ne ," 0 e - . c~respon 1ng 0 a ra-

dius of ;p~rôximately 2.7 fm. Margolis and Rudaz (4.6) used 

a radius of 2.8 fm (b=33. 7) ,which i5 equally <Jocd since, as we 

shaH see, .our results are little sensitive to a precise valué. . ~ 

.. 
, v' 

" ' 
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" In the predictèd spectra presented in figures VIII-XI, 

b:2::31 was s~~ct~d. In figuri!! VIII, we compare ,~u.r three-pion jC \ . . 
ma.ss spectrum with data (PLab.-~15 GeV)c) (4.3) of the LPS#1 

sector since our model does no~ attempt to describe the entire 

three-pion channel (for instancè no d* 0 formation is taken into 

account) • w~ do not obtain a very good a~reetnt. The width 

mainly because the ·f-n enhançement ured p.t 1.65 is too big 

GeV manifests i tself as a smooth shoulder from 1. 4 GeV on. 

However Harris et al. (4.1,4.3), using the full dipion ampli-

tude as discussed in chapter II, reproduced very weIl the 

expflr~.rr.p.'1tal result ~uggesting that interference effects are 
, 

in"deed important at low multiplicity. While most people seem 

to prefer a Deck mechanism to describe this channel, it is 
// 

found that the statîstical bootstrap model makes a satisfactory,,-
e 

job in the forward LPS sector. df course, in other sectors, 

the Deek model ~s super~or" sinee i t incorpora"tes d * effe'cts. 

However at higher multiplicity our predict~ons should 

improve considerably due to the large number of diagrams_ 

contributing. ,Figu;re IX which displays the fi ,\e-pion spectrum 
\ 

. indicates that this is ifldeed the case. The agfèement wi th 

, (4.3),' '1 ~ d' '1 \ Il data ~s exce lent, even structure eta~ s 1.\sua y ~sso-
, 

ciated with dynamic~l ~ffects are very satisfactorily explained: 
,J ' 

th.e peak of the enhancement is observed at' precisely the pre- " 

dicted mass 0 (2.12. GeV); a prominent shoulder on the lQw-mass 
" <> 

'side is seen ta have at least mostly a statistical ~gin: the '0 

~J" 

\ 
/ 
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compe'ti ti0!l of classes of diagrams peaking 'at somewhat'dif-
" 

ferent masses (see chapter II, we note that this shoulder is 

further enhanced in pion-deuteron than in pion-proton scatte-

ri,ng by the nuclear form factor); ,the slope on the hi-gh mass 
1 

side follows closely the data up to 3.0 GeV. lt is not per-

fect though and if, the few unexplained events" in the shoulder ... 

region could mostly disappear in a higher statisticD experi­

ment (4.9), it is doubtful, that those in the tail will. For 

instance, the latter could be connected,to sorne d* effects pro-
, L • ....... 

duced in minimal qu?ntity'and not accounted for in our model. 

or to sorne coherence setting up among t,he different partial 

waves. Accorf~ng to duality, this leads to a power-1aw beha-

vior, typieaMf a Regge taU (2.1) Obviously, little atten-

tion shol)ld be paid to the predicted doub le peak.' lt 0 i.s 
r' 

simply the reflectiori. of the small shoulder in the pion-proton 
,-

spectrum 'enhance~ by the deuteroil form factor and would~disap- • 

/ pear wi th i t for thé same reasons. 

Therefore, we concluqe that the main features of this 

enhancement are statistical in ni;ltùre and thus li ttle dyna-

mies is involved in the process. 9nce again, our results stress 

t~ importance of many relatively small ~ontribu~ions add~n?' up 

together and responsible of structurE! details formation. The." 
l' 

obtained agreement with data can b~ regarded as remarkable for, 

as far as we know, no other model gives such a good description 

In partiCUla( dif;erent multi- .. 
a 

of the five-pion enhancement. 

1 . , 
1 
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peripheral meehanisms have been tried (4 .lb, 4. 3b) with rather 
, , 

modest success. Two of them were. two-bodJ:' versions. (<j1T,p, 1T), 

f 

but no such dominant quasi two-body states were identified'in 
1 

the data while the t~ird one (pp1T) predicts tao many P s. In 

addition·, none of the's.e fits well the five-pion distribu'tion. 

The next two figures show the seven and nine pion spec-
" 

tra iI~spectively. Clearly, no specifie comments are needed. , 

Both are very smooth and, as expe~ted,from the deuteron form 
/ ... ,-~ lit. ' 

factor, ~t masses several hundreds MeV lower than their pion-

proton counterparts: the seven pion,bump peaks at 2.72 GeV and 

the nine pion one at 3.22 GeV. 

IV-'4 Relative Cross-Sections . 

.. 
pion production cross-sections off deuteron" 

are frôm'inte<;)ration of equation (IV.2.Sf. 
, -

Several can be drawn from the results presented 

in table TwO pf them are already known from our previous 

analysis of pion-proton scattering, i.e. the importance'of re- . 
• 

, sonanee ernission which j.ncreases by almost a factor of three 

the number of five-pion events and by roughly an order of 
, 

rnagnitud~ the nine-pion cross-section; the negligibility of 
• D 

three-partjjle vertice!'> whose contribution amoun"!:s. __ c;mly to a 

few percent. A third one is the little sensitivity of aIl 

cross-sections to the actual slope of the deuteron form factor. 

This can be seen from a comparison of the values obtained 

.1 

ri,' ~ 
~, , 
~. , 
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./ 

using b=31 wi th thèse calculated wi th b~33. 67 «r-2> ~=2. Sfm) : 

a mM:"~ 5% variation in the rat'io cr (3n)!cr (Sn) and approximately 

30% in a(3TI~!cr(9TI). Thus in view of the extreme difficulty to 

obtain an accura.te nine-pion ,cross-section measurement, it is 

obvious that 30% represents a really small c~ange and that one 
"" Il , 

does not have to worry too much about the precise slope value. 
y 

~'f 1 "-

Qur fourth conclùsion is that measurements of, multiplicities 
./ 

h ' h' th f' 'Il b' ., 'bl (4.10) , th' 19 er an 1ve W1 e quas1 1mpossl e ln lS energy 

range {PLab=15Gev/c) since, relative ,to the number of five-pion 

events, only 1."6% yield seven pions. However, we have calcula-

ted th~t 21% of the absolute number of five-pion events obtained 

at PLab=15GeV!c is reached in the seven-pion chapnel if 
- . 

PLab=50Gev!c is used. At 100 GeV!c, this ratio goes up to 28% 

and thus we be1ieye 'such a'î) experiment cduld be performed witij 
, 

success at, for instance, Fermjlab. In addition we note that 
, , 

the deuteron still rernains a better target than a proton sinee 

the latter yields, on1y 9% in its asymptotic regime. 

The only available piece of data is the relative three 

to five-pion cross-section. Lubttti and his collaborators (4.3) 

measured a ratio of 17.4:t3.5 in ~cellent agreement with our 

'predictions independently of the se1ected model' s version: 
< 

, These\ same authors, following Margolis 'and Rudaz (4.6), esti-

mated this ratio to be,42 assuming ~hat the simplest version of 

the mode1 (4 th column in -tables l and II) was largely dominant. 

In ~rder to explain the discrepancy, they suggested an' increase' 

of the fireba1l radius Reglecting its relation with temperatu-
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re (2.9). As ~e have seen, th~ is not ~t all necessary since 

a correct application of the model leads to the right value. 

In summary, we showed that the statistical bootstrap 

model g~ves a good description of exp~ntal data available 

so far, in particular of the five-pion enhancement, giving 

great confidence ~1 our higher multiplicity predictions. The 

detailed shape of the three-pion spectrum in the LPS#1 sector 

is better accounted for 'if the full dipion amplitud~ is used 

rather than the Çliscrete resan,ances produced in the :reaction. 

,The, three to five-pion ratio is very weIl predicted by our mo-
I 

deI suggesting sorne sort of precocious statistical behavior 
, , 

due ta the rapid reach of the a~ymptotic density of states, 

certainly the"pest a,pplicabi,lity criterion for our' statistical 

model. While, the three-pion enhancement~is ba9ically two-
~\:.I, • ' 

, ~ 

body states easily separable, we found the five~pian one to be 

the sum of many diagrams of different nuIDbers of steps in the 

decay çascade with no single contribution really dominating. 

Th ' , , t'th ' . t (4.3) d' t t 
~s ~s ~n agreemen Wl exper1men ,an ln con ras 

. 
with many versions of the Dëck rnechanism._ In this regard, 

seven-~ion measurernents will be very interesting since, if this 

behavior persists, the statistical bootstrap model will grovide 

a very reliable taol to predict the characteristics of high 

multiplicity diffractive dissociation. 

1 

) 7 2 .nm?~---- --
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CHAPTER V 

SUMMARY AND CONCLUSIpNS 

In this thesis,.we studied diffractive multipion"pro­

duction resulting in low-mass enhancements. In Qrder 'to do 50, 

a hybrid model was developed' in which a dense set of overlap-

ping resonances is formed by Regge exchange in the t-channel 

and then decays statistical1y. into multipion states in the s-

1 channel. Isospin an4 G-parity conservation were fully taken 

into account as well as the finite width of discrete resonances 

produced in thè reaction. A factorized form of the cross-sec-

tion ~quation II.2.16) was obtained, consequence of the inde-

pendence of fireball formation and decay. Indeed, we assumed 
, ' 

that the fireball is sufficiently long':'lived to "forget" ,the 

way it was formed. Due to the great number of open channels, 
" 

the probability of decaying into a specifie channel is simply 

propbrtional to the number of configurations assumed by this 

channel and inversely proportional to the total number of con-

figurations. Since tpe total density of states grows expon~n­

tially within poo/ers of Mf, thus supp'ressing high mass states, 

low~mass threshold enhancements result. ,The ge~eral formalism 

of the model as well,as a brief discussion of the statistical 

bootstrap of Hagedorn and Frautschi which we'used to calculate 
• 1 

densities of sta~es was presented in chapter II. 

We next considered application to dit'f:r;active pion-pro-

\ 

, . 



, 

J 

, 

1 

1 

- 66 -

ton scattering for which a tripl~-Pomeron e~change was selected, 

as quggested by previous a~alyses, ~or fireball formation and 

proceeded to calculate explicitly the total density of states 
r;, 

, 1 

~n! the linear version of the model. For this purpose, we wrote 
" 1 _ 

a,! recursion relàtion (equation III. 4.1) allowing us to generate 
" , 
any multiplicity state of any isospin and G-parity. We found 

that aIl curves could ~e fitted by the same function using the 

same values of the parameters except for a small change l.n the 

normalization constants of the 1=0 and 1=1 densities. The 

asymptotic tempe rature turned out to be 160 MeV (for a radius 
,) 

of 1.1 fm) in agreement with previous calculatïons. Our ap-

proach was not suited for the low-mass region since it does not 
/ 

account for dis crete resonances but a direct coun,ting of 

states by 'Hagedorn led us to conclude that the analytic asymp­

totic density of states (aeM!T 1M3 ) corre'cted for very low mas-
, 

ses could be used over the entire mass range. 

The occupied number of states was then calculated and 

even though isospin symmetry was no longer present, we were 

able to write two differ'ent recursion relations, each of which 

turning out to be G-parity independent thus simplifying their 

evaluation. 

Using these, the three, five, seven and nine-pion 

ass spectra were obtained as weIl as the relative eross-sec-

results led us to the following conclusions: 

Diffracti ve ptoduction of Al' if i ts existence as, a 

-true resonance is conf irmed, is accom~anied by the 
l 

./ 

1 

j 
• ~ 
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production of a large non-resonant background sa-

tisfactorily described by the statistical bootstrap 

model. 

2- The experilIlental three-pion enhancement is better 
,1 :;. 

described if cthe full dipion amplitude is used ra­

ther than the discrete resonances p, f and g (5,1) 

This is suggestive of important interference effects 

among the~e resonanGes observable at low mul~ipri-

city due to the small nurnber of contributi,ng dia-

grams. 

3- Resonance emission a10ng the decay chain and double 

resonance production at the end of th.e chain are ve\ 

-important a.t high. multiplicity (n?5}. " Due to th.e 

great number of possible diagrams, they actually 

account for most of the cross-section (though a 

littlè more th an 40% in the n=5 case}. However., the 

simplest version of the model (pion emission along 

the decay chain; TIp,'TIf(f~2TI), TIg(g~2TI) at the end) 

is sufficient ta de termine with a good accuracy ,the 

mass of all enhancements. 

4- Structure details in the five-pion enhancement are 

due to competition betwee.n different classes of 
1 

'diagrams peaking at < somewhat different masses. At 
, , 

: 1 

_ /bigl).er multiplicity, no such details are observed 
~ . 

sinee mass differ~nces between pion and resonances 
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become less relevant. 

5- The contribution of the non-linear terms (three-

particlè vertices) is negligible unless a few per~ 

cent; accuracY·is needed. They do not alter the 

shape of any n-pion mass distributions and can.pe 
, , 

superimposed within plott\rtg accuracy to the pre~ 

dictions of the l'inear version provided a suitable 

renormalization of the peak values is performed. '; 
, 
." 

In chapter IV, our analysis of pion-proton collision was 

extended to coherent pion-deuteron scqttering. Because very 

small values of tare favored ih diffiactive processes, double 

scattering is negligible and it was quite sufficient to simply 

multiply our results on hydrogen by an exponential in t to ap-

proximate the deut~tRn form factor (equation IV.2.5). By doing 

so, no arbitrariness was introduced in th~ model since the two , / 

needed extra parameters were taken from experiment. Conclusions 

a~d comments suggested by our results go as follows:' 

1- The nuclear forro f~ctor produces a shifting on the 

, low-mass side and a shrinking of mass spectra more 

pronounced at high multiplicity thus changing the 

size of the relative cross-sections. However, as 
1 • 

\ expected, 'aIl conclusions drawn from pion scattering , 

off a proton remain valid on a deuteron target. 

2- The stat~stical mode1 gives a satisfactory descrip-

tion of the three-pion spectrum in the forward LPS 
'" 

l­

l 

,\ 
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sector. It cannot account for the ent±re chqnnel 
1 

~ ! 
since no d* production in incorporate~. 

3- The .p;-edicted fi ve-pion roass distribution agrees 

very well with data. No twa-body states dominaté 

1 the channel as confir~ed hy experiment. Most struc-

ture details are found to have a-statistical origin 

indicating that little dynamics is involved in high 

multiplicity diffractive enhancements and giving 

,great canfidénce in our seven and nine-pion predic-

tions. The last point is further supported by ou~ 

next conclusion. 

4- The' three ta five-pia~ cross-section ratio, 

a(3n)/a(5n}=16.94 (non-linear version, b=3l) is in 

excellent agreement with the rneasured value l7.4±3.S. 

This is suggestive of' precociaus sta,.tistieal beha-

vior due to the rapid reach of the asymptatic den­

sity of states. 

5- A precise determination of the' slope value of thè 
; 

d~uteron forrn factor is'of minor importanée-ln the 

statistical bootstrap model unless very high.multi­

plicity experiments are made. 

6- Measurements of multiplicities h~gher than five will 

have to be performed at PLab>SOGev/c to get a suf­

ficient nurnber of event?" Moreover, the deuteron 

still remains a better, target tha~ th~~ 

C 
\ 

\ 
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fi, " 

These meàsurements will'be extremely' u eful for our 

understanding of diffractive dissociat~ We 

deI 'in which higher mUl~iPli~itY en ~n"\ment. 
'from lower ones in a ,completely dete rnined fashi 

resented a mo-
l , 

of-its statistical nature, the accuracy of its predictions 

should irnprove w,i'th ~ul tiplici ty making comparison wi th expe­

riment more stringent. In particular, the existence of fire-

balls, crucial in our type of model, remains to be experirnental­

ly~tablished. For the time being, we have every reason to 

believe that it is lndeed a good concept. 

Though very weIl suite~ for pion diffractive disso-
o , 

-ciation, ,the statistical boo is not 1irnited to i t 
, 

\ 

and can be used to explore ot r kinds of reactions such as, 

for instance, photon dissocia Sorne work has already been 

done in this connection (5.2), on a b~ryllium target (NAt data, 

reference 5.3) and we"would like to end by stating our prel~ 
(5.4). minary r,e/ul ts , . 

~he four-pion 
1 

enhancement, known as the p (1600), can-

not adequqtely be described "by our model, we prediqt too wide 

a distribution, most like1y it is a true reso~an<?e-'. However, 

a large background,of statistical nature, which we estimated 
.. 

roughly to be of the sarne order of magnitude as the mea5ured 
/ 

cross-section, might be simultaneously produced. This'could 

explain why it is experimentàl1y 50 difficu1t to establish 

the p' (1600) resonance status. 

" 
~, 

" 

i 
" 

"~ 
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APPENDIX l 

Initial in the Linear Bootstrap (Density of states). 

We state here the non-zero initial conditions-used ta 

evaluate the density of states in the linear bootst~p model 
. 

(eq •. IJI. ~.I). They correspond to the diagrams of fi~re (A.I). 

The following notation is adopted: 

, 
M- ~m5 +m6} M-~l , ., ' 

= J~m~p (m~) ft dm~ p (m2 ) A (M, ml' m
2 

) 

, 
,1 

... ". 

m3+m4 ~ mS+m6 

(A.l) . . 
where m3 and m4 a're the masses of the decay, products of parti­

. 
cIe l and mS and m6 those of particie 2. p(m) is taken to be 

. , , 
a D(irac delta ,function for the '{ery narrow resonances 1T ,n,w,n ; 

(j • 

a Breit-Wigner distribution for p,ô,B and 'A2 in vertices con-
~ ) . 

trilJuting to ~ 4 (M,~,G) or l~er and a Dirac delta function for 

aIl p~rticl~s in vertic~s co~tribqting to ~5(M,I,G) or higher. 

Making use of the appropriate spins al!d Clebs,ch-Gordon coeffi-

cients and di viding by 2! when' two particles are identical, we 
~.# ~ .. 

~ 
obtain-: 

2n),m ) 
. 1f 

~3(M,l"l+) ;::: 0.303 PI(M~mw,mn) 
./ 

< , 
i 
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1 
o 38 PI(M,rn :m) + 3 PI(M,m ,m )"+ 0.02 PI(M,m'nl,mw ) 

• Tl n P ~ " , 
1 1 

( > 

. 
+ 0.008 PI(M,mn,mn ,) + 1.539 PI(M,rn

f
(f-+21T),rn

Q
) 

u , 
,+ 0.046 PI (M,mw,l1}w) + 0.08.1, PI(M,mf(f-+21T)~mnl) 

, 

'" ~' . 
. p 4 (M,O, -) == 

. 
+,00 • 003 PI(M,m~,m'l')+ 1.227 PI(M,.tnf(f-t-21f ),rn{j) 

'" .. p • \ 

. ; 

; 

\ 

, pi al _ 
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" J 

+ 0.638 PI (M,m (g-t-21r) ,m ) + 4.5 PIlM/m ,m ) 
g n PP' 

+ 6.804 PI{M,mf(f-t-2n),m (g~2TI» 
,( 9 

+ 1. 411~ PI {M,m (g-t-2n),m (g .... 2TI1') , . g, g 
o -. 

'ls'4(~,i, .. ) ='0.62 PIlM,mn,mn ) + 0.30"4 PI{M,mn"J'Q.n) 

," 

. , 
~ '\ 

- ,11 

tI" , 
P5(M,O,.t-) ;;= 

, .' 

" 

" 

i'S(M,O,,-) = 
"'1 ,'" 

, . \ 

, " 

... 

+ 0.303 PI{M,rrL(w .... 2n),m ) + '0.909 P!(M,m ,m ) 
:~ . li TI , P III 

( 

+ 0.509 PI(M,m (g-t-2n),m ) 
g w 

j 

0.62 PI(M,mô,mn ) + 0.51 PIlM,mA;,m;>, 

,,) 

+ 0.236 PIlM,m ,m ) + 0.1·28 PI (M,m ,m ,) 
n n n n 

) .... . 
+ 0.909 PI'(M,.m~,~) .+. p.817··PI(M,mw,mw) '0 

/ "< 
/ 

2 .. 697 P,l (M,ID- ,m ... > ,+" 4.9 PI (M,m ,m ) . 
.. !S " ..rq Tf, 

: ~ 1.2i.3 PI (M,mw~\') + '1.\14 PI (M.,m
p

,m
6

.) 
'" . ," 

, , 

f ' , 
, ' 

, 
o 
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.. 

1 
, 1 

+ 11. 49 PI (M,m ",mA ) + 0 .146 PI (M,ID ,m 1) 
po 2 .' W Il 

1J 
+ 0.115 PI(M,m ,m

B
) +'1:86 PI(M,m ,m' ) 

Tl ' ,'P Tl 

~ 0.312 PI (M,m ,m .) + 0.909" PI (M,m- ,ITL) 
P Tl " (J .,Ij 

/ . 
.. 

- .:i 

PI (M,m ,m f 
CI 11" 

1 
.~" . . '.( 

PI I{M., m , mA' ') 
l "n 2 

+ 0.144 ~I{M,mô,mn) + 1~455 
, ,., 1 

. 
+ Il.49 PI(H,m ,mA) + 0.092 PI(M,m~;~) 

.p 2 
" 

-' 1 
1 

~' _I ... -_ ........ ________ ........ ________ ~ __ ~ __ L 

\ 

1/ 

\ -

J 
~ 

1 , 
'1 , 
.~ 
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.. 

1 
+ 0.008 PI (M,m

n 
t ,]llo) + 0.077 PI (M,m, "mA ) 

n 2 
( 

.., 
+ 1. 539 PI (M,m

é 
,m

f
) + 1,5.512 PICM,mf,mA ) 

~ 
2 

if. <: 

" + 4.531 PI (M,m ,in ) + 0.638 PI (M,m6,m
g

) ,-
9 !Il fi 

;: , 
" 

+ 6.4'34 PI (M'TIA ,m ) 0 

t' 2 . 9 , ( " 
~-

~ ~6(M,O,+) = 0.42 PI (M,mA' ,m ) \ + 0.286 PI (M,:rn ,m ,) 
"" . 2~ 1T n n ' . 

~ \ 
~. 

,> , . 
t + 0.053 PI(M,mf;m

n
) + 8.091 PI{M,mp'~) 

\. 

0 0 

t 14.7 PI (M,ro ,m ) + 0.051 PI (M,m I,m ,) il /' 9 ,p n n 
~ 

! ' + 1.044 PI ('M,m "mf ) + 4.531 PI(M,~,~) n . 

,+ 8.232 PI (M,m ,m ) +~·0.192 PI(M,m ,tn ) \ 
9 9 n n 1 ëI 

1 
1 
l 1 

+ 3.637 PI(M,m ,m ) + 0.072 PI (M,mIS ,mIS) 1 -1 
r • S,,\)-, W 1 W 

'- . , , 
+ 1.4S5 P~ (M/mô ,mA ) + 0.046'PI{M,~,~), / / Q 

'" ...----2 , 

, . 
+ .,. 334 PI (M,mA ,mA ) + 0.567 PI(M,mf,mf ) .2 2 ' a ., 

~6 (M',O,-') 
, , 

= 1. 86 .PI (M,m ,m
é

) + 1.53 PI(M,m ,mA) .. 
, p op' , 2 

~t 

\ 

+ 0.898 PI(M,m ,m .) + 0.042 PI~M,mf,mw) " w n 

(i 
" 1.042 PI(M'~ô,m9) +'0.857 PI (M,~ ,m ) , 0+ 

. 2 9\ 
!' 

, 0 

~, , \' " ( 
*w , $ 
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+ 1.672 PI (M,ro ,m J + cry.115 
w n 

+ 1.16 PI(M,~,rnA ) 
2 

+ 1.862 PI(M,m ,m ) + 0.771 PI(M,m ,m ,) 
. 9 n p n 

- + 8.091 PI (M,rt\ ,~) + 0.42 PI{M,mf.,m } 
, p.' - P 

+ 10.484 fi (M,m '·,mA ) + 0.146 PI (M;rn
n

, ,lllJ> 
w 2 '1 

+ 20.08.~I(M,mf,mg) + 4.531 PI(~,~,m ) 
. 9 

+ 8.~32 PI (M,ro ,m ) + 0.072 PI(M,mô,m
ë

) , 9 9 

. . 
0.419 P~(M,m "m ) + 0.471 PI(M,m ,mô> , n' 7T ,n 

+ 2.568 PI (M,ro ,mA .) + 1.86 PI(M,mp,mô)C 
~ n 2 , 

+ 1.53,PI(M,m ,mA) + 1.634 PI(M,m.",ms> 
. p 2 .... 

",' 

.. 

" 

1 

l' 

r-
/' 

" 
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" + 1. 485 PI (M,mg,mw) + o. ~?_8'~"PI (M,mn• ,mÔ,) 

.-
+ 1.175 PI (M,mnpm

A2
) '+ 2.5U. PI(M,mô,mf ) 

+ 1.16 PI{M,~,mA ) 
2 

, \ 

0.319 PI(M,m ,m .) + 0.087 PI (M,m .,m 1) 
n n n n 

+ 1.934 PI (M,mA ,mA) 
2 2 

1.26 PI(M,m ,mA) + 19.473 PI (M,mA ,m ) 
p 2,' - 2 9 

, / 

, 
1 
i 

+ 10.484 PI {M,mg,mA ). 
~ 2 

1. 257 PI (M,m ,m ,)', + 1.503 PI (M,m ,m]\ ) <; 

o P.11 CAl n 2 

" 

,? 

" , 

, 
1 

'1 ~ 
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r 
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': . 
1 
~ 

1: '" 

,1 

~7(M,1,-) ::: 

l , 
1 
1 
! 
1 
1 

, 1 

"-

" 

'" ~8(M,O,+) = -.. 

.( 

,1 
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. 
+ 2.194 PI(M,m .,m ) + 1.672 PI(M,mn,m-} n' g Jj 

+ 3.038 PI (M,m ,m r + 1. 672 PI (M,m ,m~) g n w u' 

+ 0.898 PI (M,mn • ,~) + 0.236 PI(M,mcS,m~,} .. , 
" 

+ 3.553 PI(M,mo,mA } + 0.817 PI(M,~,IIl:s} 
2 

+ 0.042 PI(M,~,mf) + 1.485,PI(M,~,mg) 

+ 1~953. PI (M,mA ,mA) 
. ..! 2 2 

/ 
/ 

"", 
0.476 PI(M,mn,mA ) + 1. 26 PI (M,mp,mA ) 
, 2 2, 

+ J..148 PI (M,mn • ,mA ) + 2.2317 PI(M,mf,mA } 
a 2 / . 2 

+ 19 .• 473 PI (M, mA ,'m ) 
2 g 

+ 0.3à4 PI(~,mn,mo) 

" ' 

+ 7.274 PI(M,mw'~) + 13.215 PI (M,mg,mw) 

+ 0.286 PI (M,mn 1 ,mô) + 1. 213 PI (M,mô'~) 

+ 0.053 PI (M,mt') ,mf) + 1. 862 PI (M,mô,mg)' 

+1° 484 PI (M'"1l,mA2 ) 

0.26~I(M,mn,mnl) + 0.16 ~I (M,mnl"mn,) 

+ 0.476 PI (M~mo"mA2) + 1. 739 PI{M,mA ,mA) 
2 2 

"'-
\ \ 

.~ '\ 

1 

i 
i 
1 
J 
1 
1 
1 

ï' , j ! ,,~\ 

/ . 
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t' 

f. 
~ 

\ 

l 
l ~, 

_ '~8(M,O,-1 = 

~ . ' 
,< 

" 

~ 

1 

1 
1 
1 '" . , 

~ 8 (M, 1,-) "" 

( :) 

5 

, f 

+ 3.637 PI(M,~,~) + 13.215 PI(M,~,mg) 

1.13 PI(M,m ,m ,) + 1.503 PI (M,IIL,rn
A

') 
w n .: ~ 2 

" 

+ 0.071 PI (M,mf,mA ) + 2.499 Pl(M,m~ ,m ) 
2, 2 9 

1.133 PI(M,m',mA ) + 0. 47 6 PI {M,m"" mA ) 
w 2 ,u 2 

+ 1.739 PI(M,mA ,mA) + 0.82 PI(M.,mnl'~) 
2 2 

+ 1. 259 PI (M,rn I,m ), + 0.192 PI (M,mô ,mô) n g, 

, + 3.637 PI (M,~,~) ,+ 13.215 PI (M,~.,mg) 

+ 0.686 PI (M,rng,lIl
f

) + 12.
1
005 PI (M,m ,m ) 

9 g 

+ 0.378' PHM,ltJ3,mf
) 

- ~~, 

O.26·PI(M,rn ,mA) + 1.864 PI(M,rn "mA )'-
. 

. n· 2 Il 2 

+ 0.319 PI(M,m I,m
ô

) + 1. 6'-72 PI (M,m
ô 
,~) , n 

~ 

+ 0.087' PI (M,rnô,tnf
) + 3.038 PI (M,m

ô 
,m ) 

. ,go 

\ 
1 

• 1 

" 
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+ 1.503 PI(M/~/mA ) + 0.071 PI (M,mf,mA ) 
2 2 

+ 2.499 PI(M,m
A 

,m ) 
2 9 

1 

0.10B PI(M,m "m ,) + 0.26 PI(M,m~,mA ) 
n n u 2 

, , 

, + 0.059 PI(M,mn"mf ) + 0.214 PI{M,mA ,mA) 
2 2 

1.133 PI,(M'ITE,mA ) + 2.058 PI (M,m~ ,m ) 
2 2 9 

+ 0.214 PI(M:mA ,mA) + 2.053 PI(M,m "m) 
2 2 n g 

~ 9 (M,l, - ) -- O.3f2 PI(M,m "mA) + 0.26 PI(M,mn"mo) 
n 2 

~ 10 (M, ° , + ) == 

~lO{M,l,+)= 

~ -
lO(M,l,-)= 

+ 2.058 PI (M,mA ,m ) 
2 9 

0.08a PI(M,m "m ,) + Q.088 ~I(M,mA ,mA) 
Tl Tl 2 2 

0.088 PI (M,mA ,mA ) 
2 2 ( 

0.1,76 PI (M,m "mA') 
\l .... 2 , 

\ 

\ 
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.' 
APPENDIX II 

In~tial Conditions in the Linear Bootstrap (Exclusive Channels) • 

i' 
. . 

W~ state here the non-zero initial conditions used to 

evaluate exclus~ve channel probabilities in the linear boot­

strap model (eq.II~.5.1,III.5.2). They correspond t~ the dia­

grams of figure (A.il. The notation is the same as in appendix 
./ 

I. They are: 

1.5 PI(t1,m ,m) .. 4.05 PI(M,mf (f+2TI),m) 
," p if. 1T r 

( 

+ 0.84 PI(M,m (g+27T),m ) 
9 ·TI 

1.182 PI (M,mA ,m )0+ 1.5 PI(M,m ,m ) 
u '- 2 TI P P 

. ; 
+ 1.68 PI(M,m (g+27T),m ) + 8.201 PI (M,mf (f+21T) ,m

f
(f+2v» , 9 ,p 

. 
1.773 PI(M,m~ ,m ) + 12.15 PI (M,mf (f+21T) ,m ) 

,n2 TI . P 
-~: 

+ 2~659 PI{M,m ,mA) + 7.179 PI(M,mf,mA ), 
,'p 2 2 

/ 

/ 

-.1 n'MM ""E"ft!re«r 

/ 

j 
• , , 

i 
1 



- 88 - , 
f,\ 

, 
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4.9 PI(M,m ,m) +' 2.744 PI(M,m ,m ) 
9 P 9 9 1 

\ , 

.' 

O. ~2 PI (M, m~ ,m'p) + 20 ~ 0 8 PI (M,mg,mf )· 

1 < 

+ 1.571'PI(M,mA ,mA) 
2 2 

, , 

'", 
0.686 PI(M,mf,mg ) 

/ 

/ 

/ 

/ 

( 

(; / 
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Figure A2: Schematic representation of initial conditions 
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for equations (III.5.1,III.5.2)" n i9 the number 

of pions emi tted by th~ fiX·eball. .. 
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APPENDIX III 

, 
Initial C?nditions in the ~o~-Linear ~ootstrap(Exclusive Channe,ls). 

\ 

Non~zero initialtconditions used to evaluate exc1u~ive 

çhannel probabilities in the non-linear bootstrap model (eq. 
( ! 

111.6.-1,111,.6.2) are stated he:r;e. ,These conditions which cor-
~ , 

. respon'd to the diagrams of figure (A.3) must be added to the 

7 

correspondi~g ones in appendix II. 
1 

the three-body phase-space ,(see appendix -IV ) and include in 

the coefficient aIl factors for, identiéal part.icles. Thus, 

we have: 

1'4(M,O) 
. 

= 0,5 1 (M,m ,m ',m ) + 1..35 l (M,m ,m ,m
f

)' 
Tf 'If P Tf 1T 

, ~ . ' • t + 0.2B l (M,rn ,m ,m ) 
, 1T 11' 9 

ÎJ
4

(M,l) = 1.2 l (M,m ,m ,m ) + 2.025 l(M,m ,m ,mf) 
Tf 'If P 1T Tf 

1 

+ 0.672 l (M, m ,m ,m~1 TfI1T 
- '. 

ÎlS (M,'1) = 1.064 l (M,m ~m ,mA ) + 1.8 l (M,m ,m ,m ) 
'If ~. 2 1T 'r> 0 p 

;-
l , 

+ 2.016 l (M,ro ,m ,m ) + 0.S64 l (M,m ,m "m ) 
1T P 9 Tf 9 9 

-+,8.2 l (M,m'If ,memf) + 6.07~ 1 (M,m ,m ,mf) 
Tf p , 

+ 3.402 I(M'~1T,mf,mg) • 

P6(M,O) = 0.047 l (M,ID , m' ,mf> + 0.817 l (M,m ,m ,m ~ 
'If Tf 'Tf 'If 9 

, 1 
1 

. 1 

, . 



" 
" 

. 
1 
1 

( 1 

l' 

. -' 

116 (M,'l) = 

- 92 

+ 1.773 I(M,m ,m , mA ) + 4.778 I(M,m ,mf,m
A 

) 
'Ii P 2 'If 2 

JI 

+ 0.992 l (M, m ,m ,mA ) + 6.075 l (M, m ',m , mf ) 
'If g- 2. P P 

+ 6.804 I(M,m ,mf,m ) 
. P 9. 

+ 1.905 I(M,mf,m ,~ ) 
9 9 

." 

+ 11.072 ~(M,mf,mfJ~f) 
t 

0.07 I(M,m ,m ,mf) + 1.96 I(M,m ,m ,m) 
'If TI 'If7\' 9 

+ 4.254 I(M,m ,m ,mA) + 7.~79 I(M,mTI,mf,mA ) 
TI P 2 2 

+ 2.382 I(M,m ,m ,mA) + 0.9 I(M,m ,m ,m ') 
'If 9 2 ppp. 

, 
'+ 4.536 I(M,m ,J11 ,m ) + 2.54 I(M,m ,m ,m ) 

p p 9 p g 9 
.', 

+ 0.474 I(M,m ,m ,m ) + 24.6 .l-(M..,m ,mf,m
f

) 
9 9 9 (~p 

5.88 I(M,m ,m ,m) +'3.29.3 I(M,m ,ni ,m') 
'If p 9 TT g;g 

+ 10.,04 I(M,m ,mf~m) + 1.885 IJM,m ,mA ,mA) 
'If 9 TI 2 2 

. 
\ + ~.l~l I(M,m ,m ,mA) + 1.0 I(M,m ,m ,mA) 

P p 2 9 .g~ 2 

+ 3. 5 7 3 l (M, m ,m , m" ) + 15. 18 8 l (M, m , mf ' rn. ), 
. p 9 n 2 · P ,A2 

). 

Initial conditions contributing to the-production of a higher 
~ . 

• i 

, . 

.1 
1 
1 
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number of pions (n=8,9) are neqlected. 
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Fiqur~ 'k. 3: Schernatic ::epresentation of initial conditioris , ' 
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1 

fo~ equations (III.6.1,III.6.2), ~on-linear 'terms 
, , 

only. n is the nurnber of pions emitted by the 

,fireball. 

\, 
\ 

J 
f 



.) 

~ 

el 

i 
1 
f 
f l, 
~ • 1 
l 

Î-
, , 

. f 

f 
! 
1 
1 

1 

- 96 -

. ' 

, 
APPENDIX IV 

Three-body Pha~e-space • . 
1 

We shall here derive an exact expression for the non-

invari~nt relativistic ~hree-body phase-space where aIl three 

masses are different. In the center of 'mass of this system, 

- the expression to calculate ~s the following: 

x a ~EI) e (E 2 ) e"(E3 ) , 
(The notation used is se~f-ev,ident) .• 

/ 

(D-l) / 

, ( 

/ 

1 
1 

1 

" After integration over the two delta functions and 

using the identity: 

= 

(D-2) 

j 

e '... -+ where is (,defined as the angle between ql and Q2' we obtaiIi: 



c 
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(0-3) 

The last e function cornes from the momentum conserva­

tion requirement and defines the boundary of the ~ntegration 

region enclosed in. ,For instance,· solving for El gives: 

Lower limît: BIL 
::;; b-1(3. 

2"a' 
(D-4) 

Upper limiot: ElU = b+/CI 
'" 2a 

- / ~re 
1'~ \ 

,1 

"' 
Using thèse, th~ integral- reduces to:, 

1# .' i 
t 

[ 
2 2 [ 2 - 2 2 2' 2 2 2)] Is ;t--

,(E2- m2k (~-2ME2-rnl+m2-m3) -4m1rn3 , (, 1 

~o 
"'" [> , 'II' E2 

. 2 2 2 2 ' 2- 2 2 x 3JM-E2) [(M -2,ME 2+m2 ) - (ml-ml' ] 
{M2-2ME +m2) ~ 
·22 " . \ 

" 
J 

' .... ~ ~, 

.. ., 1 



, , 

" f 
r. 
l-, 
il. 

, -
\ 

• ! ., 
l < ,Ir 

1 \ 

' . 
• 

;! 98 -

- (E -m) (M -2ME -m +m -m ) -4m rn '(0-5) 22( 2 2 222 22]~ 
22 2 123 13 

where the limits of integration are given by the zeros of the 

argument of the square. root. They are: 

E
2L "" m2 

t 
(0-6) .\ 

l [2 2 2 -E 2U ~ M +rn2- (ml +m3) ] 2M 

, 
This is our final ~nswer. It is not possible to ob-

tain a general fully integrated analytic result. N~vertheless, 

we can .lf two masses vani~h. In this. case; we have: 
. . 

I(M,m,O,O) .. = 
2.S! 

(D-7) 

When aIl masses vanish, this expression reduces, to: 
'" 

l (M,O,O, 0,) = (D-8) 

• 1 

-These special cases were also obtained' by ~illburn (d .1) • 
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/ 

PION- PROTON SCATTERING AT LARGE S VALUES. 

NUMBER OF EVENT( 
, 

, 
FULL CALCULATJ;:ON 

. 
./ 

, 

Linear Non-Linear 

31T 
, 

'lu9a 
, 

303.8 -

S1T 40.14 -' 4,0.75 

... 
5'.15 . 71T 4.99 - , 

91T 
, 

'\.0.68 "'.68 
1 

0 

cr (3rr)!0' (51f) 7.57 7.46 
/) 

cr (3rr)!0' (71f) 60.9 ~ 59.0 

cr (3~) /0' (91f) '\1460 '" 447 . 
-

./ 

* Overa11 arbi trary normaliza,tion 
/ 

'. 

Table l 

V~ l CES: Tfl~ .. 
INIT~D:~ 

., , 

Linea.r 

303.8 , 1 
23.38 

-' 

1. 30 , 

rv8.6xlO-2 

.. 
12.99 

-
234 

) 
, , 

",3533 

·l .... ~ 
.~ c 

-
VERTICES\"'{f/F ,... , 

~ INIT.CONO:'~!PI 
1T!f ..... 2rr 1 ïf!S ..... 2ïf 

0 

Linear 

303.8 . 

15.32 

.86 

'\.5 .1xlO - 2 
\ 

; . . 
'}. 

, 

19.83 

353 
~ 

'\.5957 

l ,13 

i 

l' 
~ , i 

, 



1 oro,",,, ___ ._, •• ,-, , __ ~ 

...,. ~1!'~'t:rl~Rll'~~~ ~ , __ .:.!~4~ 

~ 
\ ~ ... ~ .!,...; .. I! ... • .... 1t~~r\""" , "' ., ' . .! .. 

,-.. -- ~ -
'- ( 

.\ PION~DEUTERON SCATTERING ~T PLAB=~ev/c 

/' 

t> 

> '<r ~. 

NUMBER GF-~TS* 

FUL~ CALCULAT~ON 
. VERTICES:rr/ 7 VER'l'ICES: 11/7 1 

INIT.COND:rr R "IN;t: T • COND : Tf p 
. 

1 

. ! c 

rr/f-+2rr, rr/g-+2rr . -
Linear 

, 
Non-J.inear Linear Linear , 

< 

b=31 b=33 .,6 7 b;'31 b=33.67 b=31 b=33.67 b=31 b~3:. 67 . '1 < 
1 

3rr 944.3 933.5, 944.3 933.5 944.3 933.5 944.3 933.5 i 
1 . . - 1 

Srr 54.94 '51.52 55.73 52.24 35.35 33.38 20.36 19.10 
, , . 

7rr , :842 .707 .867 .727 ;-309 , .265 .163 .139 . 

9rr -3 - 3. J..5x10 . -3 2.41xlO " 3.S0x10- 3 2.-47x10- 3 8.58x10 -4 6.43x10- 4 4.47x10 -4 -4 3.35x10 " 
~. --- ~ - ----- ~~ -- ---- _ .. _ ... _.- _. ---

-" 
cr (3rr)/0' (Sn) 17 .. 19 18.12 16.94 17.87 26.'71 27.97 46.38 48 •. 87 

-
d(3Tf)/a(7'IT) 1121 1320 1089 1284 3056 3523 ' 5793 6716 , ! - -

~ , 

0(37ï)/0' (9n) 2.82xlO S 3.87x10 5 2.70x10 5 3.78xlO 5 1.10x10 6 1. 4sx10 6 2 .11x10 6'· 2.79x10 6 

_._. __ ._._--~ 

* Norma1ization to hydrogen is provided by equation (IV.2.5) with (oTO/oT )~=3.6 
~ rr rrp 

'-
\ 

Table II 

.. 
'--

-\ 

)-J 

o 
~ 

... 

J 

\ -

:-. 

~."-~~ -=-*""<:;::: - -- .... 
. -~ - "",';' 

~~-.;>-., - .. Jt~ '-'/'/ ~- ';-,)l~:;\4-J.~;~-~.-. "~-;;<:~~~~~';";;~1J~~~:~~ 
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FIGURE CAPTIONs 

'Figur~ 1: ln {M3 
p (M)} versus M. p (M) is' the total density 

of states we have calculated for different isospin, 

G-paritx c°mbina~ions. 

'(upper ·full curve) IG=l-

(lower full curve) IG=O-
~ 

/ 

(- - -) , IG=I+ 
'(' 

(-.-.-. ) IG=O+ 
, 

(-- --) continuation of the 1=1. curves 

Figure II: Three-pion'mass distribution in pion-proton,scatte-

ring: Al and A3 regions . 

. . 
Figu~e III:~hree-pion mass distri~ution in pion-proton scatte­

! ' 
ring: Al_region~ Data from reference '3.13. 

Figure IV: Five-pion mass distribution in pion-proton scatte-

ring • 

. (--- full spectrum. 

(- -) 'vertices 1Tl" 
initial conditions TIR 

. ( ....... ) :~ vertices TIF 
initial conditions TIP, yf, TIg 
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Figure V: Five-pion mass distribution in pion-proton scatte-,. 
ring (full spectrum) 

, 
( ) : wi th the analytic asymptotic 

density of states 

\ ' ,.> 

(- -) with the calculated density of /7~<'--= 
• states ( , 

Figure VI: Sev,en-pion mass distribution in pion-proton scatte~ \ 
) rin<J 

(---) full spectrum 
" 
// 

(- - -) vertices TIF 
initial conditions TIn 

( •••••• ) :' vertices TIF ~ 
initial conditions TIp, Bf,. ~ _. 

.. " 
Figure VII:Nine-pion ~ass distribution in pion-proton scatte-

,0 

ring 
/ 

(----.-- full spectrum 

(- ) vertices TIF 
initial conditions TIR 

, 
( ....... ) vertices TIF 

initiaJ conditions TIp, nf, ng 

.... 
Figure VIII :Three-pion . màss distribution in pion-deute~on "scatte-

1. 

ring (PLab~15 GeV/c),. Data from reference 4.3. 

Figur~ IX: Five-pion mass distribution in pion-deut~ron scatte­

ring (PLab=15 GeV/c). Data from reference 4.3. 
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