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ABSTRACT 

This study investigated the possibility of using data, acquired from airborne 

multi-spectral or hyper-spectral sensors, to detect nitrogen status and presence of 

weeds in crops; with the ultimate aim of contributing towards the development of a 

decision support system for precision crop management (PCM). 

A 24-waveband (spectrum range 475 to 910 nm) multi-spectral sensor was 

used to detect weeds in corn (Zea mays L.) andsoybean (Glycine max (L.) Merr.) in 

1999. Analysis of variance (ANOVA), followed by Scheffe's test, were used to 

determine which wavebands displayed significant differences in aerial spectral data 

due to weed treatments. It was found that the radiance values were mainly indicative 

of the contribution ofweeds to the total vegetation coyer in various plots, rather than 

indicative of changes in radiance of the crops themselves, or of differences in 

radiance between the weed populations and the crop species. 

In the year 2000, a 72-waveband (spectrum range 407 to 949 nm) hyper­

spectral sensor was used to detect weeds in corn grown at three nitrogen levels (60, 

120 and 250 kg Nlha). The weed treatments were: no control of weeds, control of 

grasses, control of broadleaved weeds and control of aIl weeds. Imagery was 

acquired at the early growth, tassel, and fully-mature stages of corn. Hyper-spectraI 

measurements were also taken with a 512-waveband field spectroradiometer 

(spectrum range 270 to 1072 nm). Measurements were also carried out on crop 

physiological and associated parameters. ANOV A and contrast analyses indicated 

that there were significant (a=0.05) differences in reflectance at certain wavebands, 

due to weed control strategies and nitrogen application rates. Weed controls were best 

distinguished at tassel stage. Nitrogen levels were most c10sely related to reflectance, 

at 498 nm and 671 nm, in the aerial data set. Differences in other wavebands, wh ether 

related to nitrogen or weeds, appeared to be dependent on the growth stage. Better 

results were obtained from aerial than ground-based spectral data. 

Regression models, representing crop biophysical parameters and yield in 

terms of reflectance, at one or more wavebands, were developed using the maximum 

r2 criterion. The coefficients of determination (r2
) were generally greater than 0.7 
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when models were based on spectral data obtained at the tassel stage. Models based 

on normalized difference vegetation indices (NDVI) were more reliable at estimating 

the validation data sets than were the reflectance models. The wavebands at 701 nm 

and 839 nm were the most prevalent in these models. 

Decision trees, artificial neural networks (ANNs), and seven other classifiers 

were used to classify spectral data into the weed and nitrogen treatment categories. 

Success rates for validation data were lower than 68% (mediocre) when training was 

done for aIl treatment categories, but good to excellent (up to 99% success) for 

classification into levels of one or the other treatment (i.e. weed or nitrogen) and also 

classification into pairs of levels within one treatment. Not one classifier was 

determined best for aIl situations. 

The results of the study suggested that spectral data acquired from airbome 

platforms can provide vital information on weed presence and nitrogen levels in 

comfields, which might then be used effectively in the development ofPCM systems . 

11 
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RÉSUMÉ 

Cette étude vise l'évaluation du potentiel d'un système de télédétection en 

surface ou par spectromètre imageur aéroporté soit multispectral ou en hyperespace 

spectral, pour la détection de mauvaises herbes lors des cultures sous divers régimes 

de fertilisation azotée. La finalité de cette étude serait de contribuer au 

développement d'un système de surveillance des culture dans une Cadre de 

L'agriculture de Précision. 

Durant la première année de l'étude (1999), un système d'aéro­

photogrammétrie multispectral (24-gammes d'ondes de 475 à 910 nm) servit à 

détecter les mauvaises herbes dans des champs de maïs (Zea mays L.) et de soja 

(Glycine max Merr.). Une analyse de variance suivie d'un test de Scheffe furent 

choisis pour déterminer laquelles des gammes d'ondes a présenté une différence 

significative quant aux représentations spectrales aériennes causées par les 

traitements de désherbage. L'analyse de cette saison de culture propose que les 

valeurs de radiance ont démontré la contribution des mauvaises herbes à la couverture 

végétative de plusieurs parcelles plutôt que d'être indicateur d'un changement de la 

radiance spectrale des cultures ou d'un changement de radiance entre les mauvaises 

herbes et les différentes cultures. 

En 2000, un imageur spectrographique compact aéroporté fut employé pour 

acquérir des données dans un hyperspectrales de 72 bandes étroites dans les régions 

du visible et de l'infrarouge proche (409 nm à 947 nm), à trois stades phénologiques 

durant la saison de croissance (début de la croissance, stade de la panicule et à pleine 

maturité), afin de détecter les mauvaises herbes dans une culture de maïs sous quatre 

stratégies de gestion des mauvaises herbes: aucun contrôle, contrôle des graminées, 

contrôle des dicotylédones et contrôle complet des mauvaises herbes, et ce à des 

niveaux de fertilisation azotée de 60, 120, et 250 kg ha- l
. La collecte des données 

dans un hyperspectrales se fit aussi sur le terrain avec un spectroradiomètre mobile à 

512 bandes étroites, d'une gamme de 270 nm à 1072 nm. De plus, divers paramètres 

physiologiques du maïs et paramètres associés à la croissance furent mesurés . 

L'analyse de variance et l'analyse des contrastes indiquent une différence significative 

III 
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(ex = 0.05) du facteur de réflexion à certaines gammes d'ondes en raison des 

différentes stratégies de contrôle de la mauvaise herbe et des régimes de fertilisation 

azotée. Le contrôle des mauvaises herbes s'est mieux distingué au stade de croissance 

de la panicule. Les niveaux d'azote ont été plus justement associés à la réflectance à 

498 nm et 671 nm. Les différences notées à différentes gammes d'ondes, reliées aux 

mauvaises herbes ou au taux d'azote, semblent être directement influencées par le 

niveau de maturité de la culture. De meilleurs résultats ont été obtenus des données 

spectrales aériennes plutôt que des observations au sol. 

Plusieurs relations fonctionnelles furent établies entre les paramètres 

biophysiques de la culture et les données spectrales en se basant sur les valeurs du 

coefficient de détermination multiple. Les coefficients de détermination (r2
) furent en 

général supérieurs à 0.7 pour les modèles basés sur des données spectrales prises au 

stade de croissance de la panicule. Les modèles basés sur l'indice de végétation 

normalisé se sont avérés plus fiables pour l'estimation des données de validation que 

les modèles basés sur la réflectance. Les gammes d'ondes de 701 nm et 839 nm ont 

étés les plus courantes. Des arbres décisionnels, des réseaux neuronaux artificiels et 

sept autres classificateurs ont été utilisés pour classifier les données spectrales suivant 

les catégories de traitement des mauvaises herbes et de fertilisation azotée. La 

validation des résultats a donné des taux de moins de 68% (médiocre) pour l'ensemble 

des catégories de traitement, alors que des taux de succès allant jusqu'à 99% ont été 

obtenus pour la classification de l'un ou l'autre des traitements. Aucun des 

classificateurs ne s'est démarqué. 

Les résultats ont démontré que les données spectrales aériennes peuvent servir 

les besoins de gestion de l'agriculture de précision en fournissant des données 

essentielles sur la présence de mauvaises herbes et sur les concentrations en azote des 

sols en culture . 

IV 
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CHAPTERI 

INTRODUCTION 

Responding to the demand for increased food production, together with an ever­

growing concern about the negative impact of agriculture on the environment and 

also decreasing profit margins, is a challenge for today's researchers, policy planners, 

and producers. Radical philosophie al and technologieal changes are necessary to meet 

this challenge. Precision agriculture has demonstrated a step in the right direction, 

because it offers a means to achieve higher crop production and improve 

environmental quality (Plant, 2001; Stombaugh and Shearer, 2000; Brisco et al., 

1998; Tomer et al., 1997). 

Precision agriculture is also known as farming by foot (Reichenberger and 

Russnogle, 1989) and farming by soil (CaIT et al., 1991). It may be defined as the 

application of technology and basic principles in order to manage the spatial and 

temporal variability associated with aIl aspects of agricultural production, with the 

purpose of improving crop performance and environment quality (Pierce and Nowak, 

1999). The basic philosophy behind this developing technology is the management of 

spatial variability of soil properties and the microenvironment in a field settings 

(Pierce and Nowak, 1999). The CUITent approach of broadcasting fertilizer or 

herbicides often results in a less than optimal use of these inputs (i.e. under- or over­

dosing), increased risk of environmental contamination, and a lower yield per unit of 

input. The precision approach allocates inputs according to the needs of subdivisions 

of the cultivated area, where the subdivisions are determined by analysis of the spatial 

variations of soil and crop conditions. The timing of inputs is subject to temporal 

changes in crop requirements and such external factors as weather. 

There is little doubt that precision management will be the reality of the 

future, with such new technologies having a drastic impact on farm management 

(Schilfgaarde, 1999). However, the benefits of precision agriculture are yet to be fully 

realized because the required technologies have yet to be perfected (pierce and 

Nowak, 1999). The implementation of precision agriculture systems is being fueled 
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by the simultaneous development of more precise DifferentiaI Global Positioning 

Systems (DGPS), as weIl as more powerful Geographie Information Systems (GISs), 

Variable Rate Technology (VRT), and sensor technology (Stombaugh and Shearer, 

2000). However, the successful implementation of a precision agriculture system 

concurrently requires a system for the measurement and analysis of variability of soil 

and crop parameters in the field (Pierce and Nowak, 1999). Once acquired, this 

information must also be available to decision-making software and to the control 

mechanisms of VRTs used to apply inputs to the field. In order to make the overall 

system complete, the inclusion of an evaluation system to measure the application 

efficiency and efficacy of site-specifie inputs is necessary. 

Accurate mapping of crop variability across fields is essential to the adoption 

of precision agriculture (Tomer et al., 1997). Because ground collection of site­

specifie information may be too expensive and time consuming, (Plant, 2001; Senay 

et al., 1998) as a result considerable work has been done on evaluating the potential 

of image-based remote sensing (Moran et al., 1997; Hatfield and Pinter, 1993; 

Stevens, 1993). With satellites and aircraft used as platforms for spectral sensors 

(GopalaPillai and Tian, 1999), precision farming is now considered to be the most 

promising area for the application of remote sensing technology, since the inception 

of environmental resource monitoring by LANDSAT in the early 1970's (Anderson 

et al., 1999). Images obtained from aircraft-mounted sensors are currently used for 

time-specific and time-critical precision crop management, because they provide 

better spectral and spatial resolution and flexibility in operation (Moran et al., 1997); 

however, it is anticipated that the resolution of satellite imagery will soon become 

high enough to provide such advantages as lower operating costs and wider spatial 

coverage. 

Remote sensing has already been successfully used to differentiate crops and 

estimate yields over relatively extensive areas. The analysis of spectral data is 

currently under investigation with potential of assessing crop health and crop vigor, 

and also identifying such specifie factors detrimental to crop yield as weed infestation 

and moisture deficit. Such applications may be easily coupled with precision 

agriculture technology. Another important advantage of remote sensing imagery is 
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that point measurements may be converted into spatial information more reliably 

(Brisco et al., 1998). Images taken from aircraft and satellite remote sensing 

techniques have been successfully used to determine the cultivated area of various 

crops by using the visible spectrum (Saha and Jonna, 1994) or radar backscaUer 

(Foody et al., 1994; Brown et al., 1984). Numerous studies have focused on 

forecasting crop yields from remote sensing data (Senay et. al., 1998; Moulin et al., 

1998; Moran et al., 1995; Delécolle et al., 1992; Bournan, 1992; Klemn and 

Fagerlund, 1987; Wiegand et al., 1986; Asrar et al., 1985; Crist, 1984; Holben et al., 

1980). 

The environmental and economic benefits of precision weed management are 

recognized widely. However, the factor presently limiting the adoption of site­

specifie application of chemicals for weed management is the absence of a cost­

effective technique for weed maps production (Rew et al., 2001; Hall et al., 2000). 

Many past studies have indicated, with varying degrees of success, the potential of 

remote sensing technologies to detect weeds in agricultural fields and range lands 

(Medlin et al., 2000; Zwiggelaar, 1998; Lass and Callihan, 1997; Lass et al., 1996; 

Brown and Steckler, 1995; Hanson et al., 1995; Menges et al., 1985; Everitt et al., 

(1987, 1994, 1995, 1996)). Greater accuracy in weed detection may be achieved, 

provided that such spectral differences between weeds, crops and soils exist, and are 

detectable by instruments with sufficient spectral resolution (Lamb and Brown, 

2001). Thus, the requirement is higher resolution instruments. 

Management of nitrogenous fertilizers for precision agriculture is most crucial 

due to the direct environmental benefits and the temporal variation in soil-nitrogen 

availabilityand crop demand (Pierce and Nowak, 1999). Currently, the most widely 

used methods to determine variable fertilizer rates are soil testing and yield mapping 

(Taylor et al., 1998). However, many studies have indicated the potential of spectral 

measurements ta assess nitrogen status in plants. Plants reflect more light in the red 

and less in the near-infrared regions when nitrogen is limited due to lower chlorophyll 

content (Serrano et al., 2000). Various reflectance ratios and indices have been used 

to detect nitrogen deficiencies in plants (plant et al., 2000; Lukina et al., 2000; 

Blackmer and White, 1998; GopalaPillai et al., 1998; Sui et al., 1998; Taylor et al., 
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1998; Martin and Aber, 1997; Bausch and Duke, 1996; Blackmer et al., 1996a; Ma et 

al., 1996; Buschmann and Nagel, 1993). These studies were conducted at the leaf or 

canopy scale, and with different sensors (ground based and airbome). Researchers 

achieved mixed success in differentiating nitrogen stress levels and establishing 

quantitative relationships. 

Accurate estimation ofwithin-field spatial variability of crop parameters such 

as leaf area index (LAI), biomass, disease incidence and severity, and other factors is 

essential for precision agriculture (Stafford, 1997). Most of these variables are 

continuous and a functional relationship is required between these variables and 

spectral and ancillary data (e.g. topography, sun angle, ground data, etc.). Success in 

deriving characteristics of vegetation from remotely sensed data will determine the 

utility ofremote sensing technologies in vegetation science (Kimes et al., 1998). Prior 

conversion of remote sensing data into a vegetation index, LAI, nitrogen deficiency, 

weed density, and soil organic matter is necessary for the proper application of VRT 

(Frazier et al., 1997). Researchers are therefore attempting to develop quantitative 

functional relationships between remotely sensed data and crop parameters. The 

estimation of various biophysical parameters from remotely sensed data is also 

important in extending the spatial range of the application of crop growth models. A 

number of studies have demonstrated that there are significant correlations between 

spectral measurements, crop biophysical parameters and the concentrations of certain 

biochemicals in plants (e.g. Patel et al., 2001; Inoue et al., 2000; Thenkabail et al., 

2000; Cloutis et al., 1999; Jago et al., 1999; Brown et al., 1997; Curran et al., 1997; 

Cloutis et al., 1996; Inoue and Morinaga, 1995; Munden et al., 1994). 

The potential of remote sensing has been clearly established in the acquisition 

of spatial information on many parameters of agricultural interest. Most research of 

this kind has been based on color photography, digital photography or videography, 

or multi-spectral imaging. These photographs have proved useful in the visual 

interpretation or qualitative assessment of field conditions; however, there has been 

limited success in quantifying the various objects or parameters of interest. The major 

drawbacks of these technologies involve the provision of average reflectance values 

over a limited number of fairly broad wavebands. This results in the loss of spectral 
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difference existing in narrow wavelength regions, and perhaps answers why it has 

been difficult to discriminate between objects having subtle differences in their 

spectral response. Hyper-spectral imaging systems scan a large number of narrow 

wavebands, thus providing a greater spectral resolution in a cost-effective manner 

(Lamb and Brown, 2001; Lamb, 1998). For the efficient integration of remote 

sensing and precision agriculture, data are required at high spectral resolution i.e. in 

more narrow wavebands «25 nm) (Anderson et al., 1999). Furthermore, the digital 

format of remotely sensed spatial data facilitates automated processing (Frazier et al., 

1997) and should provide reliability in extracting quantitative information. Studies 

using handheld spectroradiometers have demonstrated the potential of hyper-spectral 

measurements in the detection of weeds and nitrogen levels in crops. Hyper-spectra1 

remote sensing has the greatest potential in providing quantitative estimation of many 

crop growth parameters, but its current limitation is costs (Lamb, 2000). Extension of 

hyper-spectral technology to an airbome platform is rather challenging and new for 

many ofthe applications in agricultura1 crop monitoring. 

Fast processing algorithms are being developed to dea1 with the large amount 

of data generated from remote sensing systems. Data-mining techniques and artificial 

neural networks (ANNs) are now receiving greater attention from the remote sensing 

community. In remote sensing image analysis, the usefulness of data-mining 

techniques in general and decision trees in particu1ar, has been demonstrated by sorne 

recent studies (Friedl et al., 1999; Soh and Tsatsoulis, 1999; Fried1 and Brodley, 

1997; Hansen et al., 1996). There has also been sorne success in the application of 

ANNs to deal with remote sensing data (Augusteijin and Warrender, 1998; 

Augusteijin et al., 1995; Danaher et al., 1997; Hepner et al., 1990; Kanellopoulos et 

al.,1992). 

1.1 Objectives 

The present project was conceived after envisaging the growing importance of 

remote sensing in precision agriculture. The ultimate objective ofthis research was to 

contribute to the development of a crop monitoring system for precision crop 

management (PCM) of corn (Zea mays L.) production in central Canada. The specifie 

5 



• 

• 

objectives of the proposed study were: 

1. to study the possibility of using multi-spectral and hyper-spectral images, 

obtained from an airborne platfonn, in order to monitor crop growth under 

different weed management conditions and nitrogen fertilization rates, 

2. to identify the wavebands and waveband ratios that best permit the recognition of 

weed infestations and corn nitrogen status at different growth stages, 

3. to develop functional relationships between remotely-sensed data and vanous 

biophysical crop canopy parameters, 

4. to develop models for the prediction of crop yield, based on hyper-spectral 

measurements acquired from airborne and ground-based sensors, 

5. to develop models for the classification of hyper-spectral data, in order to locate 

weeds and assess nitrogen levels using artificial neural networks (ANNs) and 

decision trees, and 

6. to assess the potential of aerial hyper-spectral imagery, in order to create weed 

infestation and nitrogen variability maps using different image classification 

algorithms. 

1.2 Scope 

Airborne and ground-based sensors were used to acquire spectral data. In the 

first year, the study focused upon identifying suitable wavelength regions for the 

detection of different weeds in corn (Zea mays L.) and soybeans (Glycine max (L.) 

Merr.). In the second year of the study, emphasis was placed on the selection of 

suitable wavelength regions, in order to detect different weeds and different nitrogen 

fertilization levels in corn. In addition, extensive effort involved the development of 

functional relationships between spectral data and biophysical indicators of crop 

condition. Various traditional and innovative approaches to classifying spectral data 

were used to detect weeds and nitrogen levels in corn. 

Because crop growth is influenced by numerous, highly variable factors, 

application of the models developed in this study is limited to the growth conditions 

in the field, and to the transmission and illumination conditions of the atmosphere, at 

the times of spectral data acquisition. The findings of this study are also limited to 
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airborne platfonns and should be validated with satellite-based sensors under varying 

atmospheric and solar illumination conditions. In general, remote sensing approaches 

are based on the development of models using sm aU are as of imagery, for which 

ground infonnation is available, and then extending such models to the whole area. 

Thus, a similar approach is recommended to extend the scope and application of the 

results of the study to a larger scale and also over time. 

1.3 Thesis Organization 

This thesis consists of nine chapters. Chapter 1 introduces the subject, and 

states the objectives and scope of the study. Chapter 2 refers to the relevant and 

pertinent literature on the subject. Chapter 3 describes the first year of study, which 

focused on monitoring corn and soybeans under different weed infestation levels. A 

multi-spectral sensor was used to acquire spectral data. This chapter focuses on the 

selection of suitable wavelength regions and wavelength ratios in order to detect weed 

infestations. Results of efforts to estimate crop biophysical parameters, from remotely 

sensed data, are also presented in this chapter. In this chapter, the section based on the 

selection of suitable wavebands has been published in the Transactions of the ASAE 

45(2): 443-449. 

Chapters 4 to 6 describe the work carried out in the second year of the study, 

involving the investigation of the effects of weeds and nitrogen fertilization on the 

spectral response of a corn canopy. A highly sophisticated hyper-spectral airborne 

sensor and a hand-held spectroradiometer were used to acquire spectral data. Chapter 

4 focuses on the selection of suitable wavelength regions to detect weeds and crop 

nitrogen status. Aiso presented here is a comparison between the airborne sens or and 

hand-held spectroradiometer. In addition, this chapter deals with the development of 

functional relationships between spectral data and various crop biophysical 

parameters and includes efforts to provide pre-harvest yield estimates using spectral 

data. Two papers are based on this chapter, one accepted for publication in Computer 

and Electronics in Agriculture, and the second submitted and under review for 

publication in Transactions of the ASAE . 

Chapter 5 focuses on the use of decision trees, a data-mining technique, and 
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artificial neural networks (ANNs) for classifying highly complex hyper-spectral data 

in terms of weed infestation and crop nitrogen status. A paper based on this chapter 

has been accepted for publication in Computer and Electronics in Agriculture. 

Chapter 6 summarizes the results of work completed on the development of 

weed and nitrogen maps, using various widely used traditional image classification 

algorithms and more sophisticated approaches for hyper-spectral image analysis. A 

manuscript based on this work has been submitted and is under review for publication 

in Transactions of the ASAE. 

Finally, Chapter 7 presents a summary and lists the salient conclusions of this 

research. Chapter 8 outlines the main contributions to knowledge and suggestions for 

future research. Chapter 9 outlines a comprehensive li st of references . 
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CHAPTER2 

LITERATURE REVIEW 

This chapter reviews the literature relevant to the application of remote sensing for 

weed detection and the assessment of nitrogen levels in vegetation. The first section 

covers the spectral properties of vegetation. The next section reviews the remote 

sensing of weeds and of nitrogen status in plants. This discussion is followed by an 

overview of studies, which were aimed at estimating crop yield and the biophysical 

parameters of vegetation using spectral data. The fourth section covers applications of 

decision trees and artificial neural networks (ANNs) for image analysis. This chapter 

ends with a brief account of the CUITent status of this area of research. 

2.1 Spectral Properties of Vegetation 

Light impinging on materials is reflected, absorbed and transmitted. The 

proportion and quality of energy, falling into each of these categories, depends on the 

surface properties and internaI structure of the material, as well as on the angle of 

incidence. Remote sensing usually involves the measurement and analysis of the 

reflected radiation. Typical spectra of healthy green vegetation, dry bare soil, and 

c1ear water are shown in Figure 2.1. 
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------- Water (Clear) 
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Fig. 2.1 Typical reflectance spectra for vegetation, soil, and water. 
(aft:er Swain and Davis, 1978) 
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Leaves reflect light ranging from the visible to infrared regions (400 to 2500 

nm). Reflectance is low in the visible (400 to 700 nm), high in the near-infrared (700-

1200 nrn), and low in the middle and far infrared (>1200 nm) regions. Important 

information concerning the structure and physiology of 1eaves can be related to the 

spectral responses in the visible and infrared regions, as weIl as to the differences in 

spectral response in the red and infrared regions (Pefiuelas et al., 1994). 

The reflectance spectra are determined in part by the absorbance of important 

plant pigments and other chemical components. Absorption wavebands of the most 

relevant components are listed below (after Zwiggelaar, 1998): 

chlorophyll a: 435, 670-680, 740 nrn; 

chlorophyll b: 480, 650 nm; 

a-carotenoid: 420,440, 470 nm; 

l3-carotenoid: 425, 450, 480 nrn; 

anthocyanins: 400-550 nm; 

lutein: 425, 445,475 nm; 

violaxanthin: 425,450,475 nm; 

water: 970, 1450, 1944 nm. 

It is difficult to obtain plant spectra with sharp absorption peaks, because 

leaves contain a combination of these chemical components and the wavebands are 

quite wide. It is now weIl established that the shape of the reflectance spectra of 

plants in the visible region are largely determined by green chlorophyll. 

The spectral response of plants, and particularly of their leaves, also depends 

on anatomical features including the physical structure of the plant surface and the 

cell structure within the leaf (Vogelmann, 1993; Gausman, 1977). The spectral 

response is also wavelength dependent due to the different refractive indices of celi 

components (cell wall n = 1.4, water n = 1.3, and air n = 1) and discontinuities in 

media within leaves (Gausman, 1974; Knipling, 1970). The absorption coefficient, 

infini te reflectance, and scattering coefficient of the leaves of 30 plant species were 

determined in a laboratory at seven different wavelengths (Gausman and Allen, 
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1973). Results indicated that thick, complex, dorsiventralleaves (bifacial mesophyll), 

such as those found in rubber plants, begonia, sedum and privet, had a lower infinite 

reflectance and higher absorption coefficient than thinner, less complex, dorsiventral 

leaves (i.e. soybean, peach, bean, rose). Infinite reflectance was found to be 

negatively correlated with leaf thickness whereas the absorption coefficient was 

directly correlated with leaf thickness. However, there was no correlation between the 

scattering coefficient and leaf thickness. 

As earlier mentioned, the chemical components of leaves influence their 

reflectance spectra. Buschmann and Nagel (1993) determined the reflectance spectra 

of bean (Phaseolus vulgaris 1.) leaves with colors varying from yellow to fully­

green. In general, the signaIs were low in the blue (400 to 500 nm) and high in the 

near-infrared (750 to 800 nm) regions. Higher absorption near 680 nm was associated 

with higher chlorophyll content. It was also observed that this waveband became 

broader, and that the point of inflection in the rise from 680 to 750 nm (red edge) 

shifted to longer wavelengths, with increasing chlorophyll content. Other researchers 

have also reported a shift of the red edge to longer wavelengths, with an increase in 

chlorophyll concentration (Vogelmann, 1993; Baret et al., 1992; Horler et al., 1983). 

Buschmann and Nagel (1993) found that the highest correlation between the 

reflectance in individual waveband and chlorophyll content was at 550 nm 

(coefficient of determination, r2 = 0.756). However, mu ch better correlations were 

obtained with chlorophyll content and functions of the signaIs at 800 nm and 550 nm 

(r2 
= 0.906 for the difference between the two; r2 

= 0.942 for the logarithm of the ratio 

of the two). 

The reflectance spectra of leaves are also affected by water content. Tucker et 

al. (1980) reported an association between the responses in the near- and middle­

infrared regions and the water content of plant tissues. Carlson et al. (1995) found a 

strong positive correlation between reflectance and water content in corn, soybean, 

and sorghum (Sorghum bicolor) leaves. Buschmann and Nagel (1993) noted that 

water infiltration in bean leaves resulted in lower reflectance in two wavebands, 500 

to 650 nm and 700 to 800 nm. These wavebands are usually characterized by high 

reflectance. 
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The interactions of crop or forest canopies with incident radiation are more 

complex than those of single leaves, because other plant parts also affect the overall 

response (Guyot, 1990). The canopy architecture and the presence of surfaces, other 

than those of the crop (soil, crop residue, surface conditions, etc.), complicate the 

analysis of spectral data obtained over cultivated fields (Jackson and Pinter, 1986). 

Reflectance in the visible range is generally lower, whereas the same in the near­

infrared is higher, when there is more biomass in the crop canopy. Canopy reflectance 

in the visible range decreases sharply from emergence until the LAI approaches a 

value of 2 cm2/cm2
, and then tapers off asymptotically as ground coyer approaches 

100%. Hatfield and Pinter (1993) found that canopy reflectance reached a minimum 

(3 to 5%) in the visible, and a maximum (60 to 70%) in the near-infrared, wh en the 

LAI reached 3 to 4 cm2/cm2
. 

2.2 Remote Sensing for Weed Detection 

The detection of weeds by remote sensmg depends on the existence of 

detectable differences between the spectra of weeds and of other objects in the 

canopy (soil and crop plant), as weIl as on equipment having sufficient spatial and 

spectral resolution (Lamb, 1998). Numerous attempts have been made to detect 

weeds in agricultural fields and rangelands. 

2.2.1 Weed detection in agriculturalfields 

Medlin et al. (2000) noted that the spectra of certain crops are often similar to 

those of the predominant weeds that invade them. Zwiggelaar (1998) reviewed the 

work on the potential use of spectral properties of plants for the discrimination of 

crops and weeds, and conc1uded that it is nevertheless possible to discriminate 

between plants with similar spectra if equipment is utilized with a high enough 

spectral resolution. 

There have been many comparisons between the spectra of crops and weeds, 

focusing on individu al leaves, individual plants or canopies of crops or weeds. 

Spectral observations have been made from a distance of a few centimeters (using 

handheld devices) to a few hundred meters (airbome sensors), with sensors ranging in 
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spectral resolution from the capabilities of color or color-infrared cameras to those of 

scanners providing reflectance at hundreds of wavebands. Sorne of these studies are 

summarized and discussed below. 

Menges et al. (1985) examined single leaf and canopy reflectance 

characteristics of different weed species and of agronomic and horticultural crops. 

Spectral data were collected at seven different wavelengths in the range 450 to 1250 

nrn. It was conc1uded that the greatest differences in the spectra of crops and weeds 

occurred at 850 nrn (near-infrared) and 550 nm (visible). The possibility of 

distinguishing weeds from crops in different weed-crop combinations was 

demonstrated using conventional color and color infrared photography. Results 

indicated that it was possible to identify c1imbing milkweed (Sarcostemma 

cyanehoides) in orange (Citrus sinensis Osbeck) trees; ragweed (Parthenium 

hysterophorus L.) in carrots (Daueus caro ta L.); johnsongrass (Sorghum halepense 

(L.) Pers.) in cotton (Gossypium hirsutum L.) and in sorghum (Sorghum bieolor L.); 

London rocket (Sisymbrium irio L.) in cabbage (Brassica oleracea L.); and Palmer 

amaranth (Amaranthus palmeri S. Wats.) in cotton. Their results were attributed to 

differences in chlorophyll content, color, leaf area and intercellular spaces in the 

individual leaves. However, these differences were not consistent and depended on 

the comparative deve10pmental rates of the crops and weeds. 

With further advancement in inexpensive and convenient digital imaging 

systems, researchers explored the potential ofstill video images and multi-spectral 

imaging systems. Brown and Steckler (1993) took images from a "cherry-picker" lift 

(8 m) and from a low-altitude aircraft (600 m) to detect weeds in corn fields. Images 

were acquired at spatial resolutions of 2.5 cm2 and 15 cm2 from the lift and aircraft, 

respectively. The filters used were standard red, blue, green, and infrared. Scanned, 

digital, aerial images of the corn field were c1assified into three broad groups (corn, 

soil, and weeds) using the supervised maximum likelihood algorithms. Weed patches 

could be c1assified with an accuracy of over 80% from the aerial images. However, it 

was not possible to distinguish between weed species with sufficient accuracy. It was 

suggested that higher spectral resolution was needed for this task. Hatfield and Pinter 

(1993) mentioned that the use of multi-spectral imagery for weed detection within 
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crop canopies required further research. The relationships between spectra and the 

following were mentioned as requiring particular attention: weed infestation levels, 

weed species, and crop growth stage. 

Brown and Steckler (1995) developed herbicide prescription maps from 

digitized, low-altitude, aerial color and color-infrared photographs with a spatial 

resolution of 100mm x 100mm per pixel. An overall classification accuracy of 75% 

was reported between weed maps developed through ground observations and maps 

derived from aerial imagery (Steckler and Brown, 1993). A decision model was also 

developed to control the herbicide application rate of a sprayer. It was estimated that 

about 40% less herbicide would be needed if the proposed approach was used. 

Brown et al. (1994) took hyper-spectral measurements over weed-infested 

corn fields and found that variations in the spectral signatures of different parts of the 

fields were related to the presence of seven common weeds, as detennined by ground­

truthing. The weeds were redroot pigweed (Amaranthus retroflexus L.), lamb's­

quarters (Chenopodium album L.), dandelion (Taraxacum officinale Weber), 

milkweed (Asclepias syriaca L.), bluegrass (Poa compressa L. and Poa pratensis L.), 

quackgrass (Agropyron repens (L.) Beauv), and foxtail (Setaria sp. Beauv.). The 

wavebands that best related to the presence of these weeds were those centered at 

440, 530, 650, and 730 nm. 

In a more recent study, Wang et al. (1998b) evaluated the use of plant 

reflectance spectra for differentiating between crop plants and weeds. Hyper-spectral 

data were obtained for various crops, weeds, and soils under artificial light in the 

laboratory. The spectra of whole plants, leaves and stems were measured separately. 

Results indicated 100% confidence with distinguishing soil from any of the plant 

parts. However, success was poor in distinguishing weed plants, leaves or stems, from 

crop plants, leaves or stems. The researchers suggested that the limited amount of 

available data was responsible for low classification accuracy. 

Mapping weeds in fallow land or against a contrasting background of soil, 

stubble, or dead vegetation is much easier than in cropped fields, due to the 

significant difference in spectral signature of classes represented in each pixel of the 

image. In such cases, the basic objective is usually to discriminate living vegetation 
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(weeds and volunteer crop) from any other material. This approach was shown to be 

effective by Lamb and Weedon (1998), who used an airbome multi-spectral video 

system to map hairy panic (Panicum effusum R. Br.) in a fallow field of oilseed rape 

(Brassica napus L.) stubble. Multi-spectral digital imagery was acquired by using 

440-, 550-, 650-, and 770-nm filters over the study site. Results demonstrated that it 

was possible to develop weed maps having an accuracy of about 87%. The success 

obtained was attributed to the relatively simple criteria used to discriminate weeds 

(living vegetation) from soil or stubble and to differences in weed phenology. 

Deguise et al. (1999) mapped weed patches in a canola (Brassica napus L.) 

field using hyper-spectral radiance data from an airbome sensor. Automatic and 

manual end-member selection techniques were applied to unmix the hyper-spectral 

data, and better results were obtained with manual selection method. Good visual 

comparisons were found in the weed patches detected in acquired airborne imagery at 

587.2 nm wavelength and in the images derived using spectral unmixing. However, 

further investigation was recommended of end-member selection from the surface 

reflectance image. 

Lamb et al. (1999) evaluated the accuracy of a four-camera, airbome, digital 

imaging system to map wild oats (Avena spp L.) in seedling triticale (X 

Triticosecale). Images were acquired at different spatial resolutions (0.5, 1.0, 2.0, and 

2.5 m) in order to assess the effect of resolution of the imaging system on weed 

detection. The normalized-difference vegetation index (NDVI) and the soil-adjusted 

vegetation index (SA VI) were derived from the acquired multi-spectral image. 

Results indicated that the density of wild oats could be correlated to the NDVI or 

SA VI values. As expected, better results were obtained with images acquired at 

higher spatial resolutions, i.e. at 0.5 m. The study also indicated that areas with weed 

populations of over 17 plants per m2 could be detected in the field. However, it was 

found unlikely that treatment maps could be developed from aerial imagery alone. 

Remote sensing systems could be used in combination with DGPS systems to identify 

and locate weed patches in the field. 

In an effort to evaluate multi-spectral remote sensing for weed detection early 

in the cropping season, Medlin et al. (2000) acquired images from a four-waveband 
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Charged Coupled Deviee (CCD) camera taken over a soybean field, nine weeks after 

planting. The wavebands were in the green (535 to 545 nrn), red (690 to 700 nrn and 

715 to 725 nrn), and near-infrared (835 to 845 nrn) regions. There was success in 

detecting weed-infested and weed-free areas in the field, and the authors reported that 

Senna obtusifolia L., Ipomea lacunosa L., and Solanum carolinense L. could be 

detected with an accuracy of 75%. It was recommended that future studies target the 

early detection of weeds and the detection of specifie weeds within a complex 

mixture of different species in the field. 

In a most recently published study, Rew et al. (2001) compared weed maps 

developed from aerial, multi-spectral imagery and maps generated from a ground 

weed survey. A kriging method was used to generate weed maps based on weed 

count in the grid survey. Based on the ground survey, weed density could not be 

estimated with acceptable accuracy for site-specifie weed control; however, it was 

conc1uded that mll:1ti-spectral imagery could serve to provide accessory data to 

improve the estimates of weed density and distribution across the field. A cost 

comparison was also performed and this indicated that multi-spectral imagery was 

less labor intensive and time consuming, and also more economical. Moreover, weed 

maps could be produced at much finer resolution by aerial imagery. 

2.2.2 Weed detection in rangelands/grasslands 

Numerous studies have shown that it is possible to use conventional color 

and/or color-infrared aerial photography and videography to map weeds in rangeland 

(Everitt et al., 1984, 1987, 1994, 1995, 1996). Color-infrared photography was used 

to map broomweed (Ericameria austrotexana M. C. Johnston) (Everitt et al., 1984), 

broom snakeweed (Gutierrezia sarothrae (Pursh) Britt & Rusby) and spiny aster 

(Aster spinosus Benth.) (Everitt et al., 1987). The same research group then combined 

aerial color-videography with GPS and GIS technologies to permit rapid geo­

referencing and data processing (Everitt et al., 1994, 1995, 1996). In the 1994 study, 

attempts were made to detect and map Big Bend loco (Astragalus mollissimus Torr.) 

and Wooton loco (Astragalus wootonii Sheldon.), two poisonous range1and weeds . 

The 1995 study quantified leafy spurge (Euphorbia esula L.), an exotic deep-rooted 
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perennial rangeland weed, in the study area. Canopy reflectance measurements were 

made with a ground sensor in the visible red (630 to 690 nm) and near-infrared (760 

to 900 nm), followed by the use of aerial photography and videography. The findings 

indicated that remote sensing observations coupled with GPS and GIS technologies 

could be successfully used to map rangeland weeds. However, compared to 

conventional photography, aerial videography had coarser spatial resolution at the 

same flying altitude. Photographs were taken late in the season when particular weeds 

had distinct colors due to foliage or flowers. 

Lass et al. (1996) were able to detect yellow starthistle (Centaurea solstitialis 

L.) and common St. John's Wort (Hypericum perforatum L.) in rangelands from 

digital images obtained from an airbome Charged Coupled Deviee (CCD). The 

images were collected in four wavebands (460 to 570 nm, 575 to 625 nm, 610 to 710 

nm and 780 to 1000 nm) and at resolutions of 0.5, 1, and 2 m. Yellow starthistle and 

St. John's Wort could be detected at densities as low as 30% ground cover. As 

expected, better results were obtained from the higher resolution images. 

Lass and Callihan (1997) also studied the effect of the phenological stage on 

detection of two perennial rangeland weeds, yellow hawkweed (Hieracium pratense 

Tausch) and oxeye daisy (Chrysanthemum leucanthemum L.). They found that the 

detection of different rangeland weeds was most accurate when they were in full 

bloom rather than in early or post-bloom. The aecuracy of detection was good enough 

for management of rangelands weeds. 

A few studies have gone a step further to realize the potential of remote 

sensing, for the development and management of pastoral or grazing lands. Hill et al. 

(1996) used a GIS to create pasture growth maps from satellite imagery, bio-c1imatic 

models, topographie and other ancillary data. This approach directly addresses site­

specific variations in land productivity and provides a practical tool for managing 

pastures and rangelands. 

Hill et al. (1999) then used satellite data in combination with GRAZPLAN, a 

pasture simulation model, to estimate production at the farm level. A spatial data 

layer mapping the growth status was used to determine parameter inputs for the 

simulation model. It was indicated that future developments, in high spectral and 
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spatial resolution airborne and space-borne sensors, would provide better qualitative 

infonnation for the simulation models. 

2.3 Remote Sensing of Nitrogen Stress in Plants 

Nitrogen is one of the main limiting factors in the growth of plants. Nitrogen 

IS also the most crucial parameter in managing agricultural, non-point source 

pollution. Various techniques have been developed to detennine the timing and 

nitrogen requirements of crops. However, traditional methods involving soil and plant 

tissue sampling are very laborious and time consuming. Moreover, there may be 

considerable time lags between sample collection and the availability of results 

(Bausch and Duke, 1996). 

One alternative that has been widely used to measure nitrogen stress in plants, 

albeit with varying degrees of success, is the chlorophyll meter, which is based on 

light reflectance (Blackmer and Schepers, 1995; Schepers et al., 1992; Dwyer et al., 

1991). This technology is generally only applicable to a single leaf at a time, which 

precludes its usefulness for large-sc ale assessments. However, remote sensing of the 

reflectance of canopies, in the appropriate wavebands, should be an appropriate basis 

for mapping the spatial variability of nitrogen status (Blackmer et al., 1996a; Bausch 

and Duke, 1996) and water stress across a field (Penuelas et al., 1994). 

In general, compared to healthy plant leaves, leaves from stressed plants have 

higher reflectance in the visible and lower reflectance in the near-infrared spectral 

region (Gausman, 1977; Penuelas et al., 1994). Nitrogen-stressed plants have 

significantly lower levels of plant nitrogen and chlorophyll, higher starch content and 

greater leaf thickness. They reflect more light in the red region due to lower 

chlorophyll content, and less light in the near-infrared region (Serrano et al., 2000). 

A more detailed review of relationships between nitrogen stress and spectral 

signature is given in the following sub-sections. One sub-section concems reflectance 

measurements at the leaf scale under laboratory or field conditions, and the other 

regards canopy scale assessments from ground-based or airbome platforms . 
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2.3.1 Leaf-nitrogen level studies 

Various authors have reported significant correlations between reflectance in 

certain wavebands and nutrient deficiencies. Thomas and Oerther (1972) found that 

reflectance at 550 nm was a good indicator of the nitrogen content of sweet pepper 

(Capsicum annuum L.) leaves. It was noted that the change in reflectance, at 550 nm, 

could be detected well before human visual observation of the symptoms of stress. 

Later, Thomas and Gausman (1977) studied the reflectance of single leaves from 

eight crops at wavelengths of 450, 550, and 670 nm. These are the absorption bands 

of chlorophyll and carotenoids, a reflectance peak, and the chlorophyll absorption 

band, respectively. It was concluded that the reflectance at 550 nm was a better 

indicator of chlorophyll and carotenoid content than the absorption bands. Takebe et 

al. (1990) conducted an experiment on rice (Oryza saliva L.) leaves and found a 

significant correlation between leaf chlorophyll content and the ratio of the 

reflectance at 550 and 800 nm. Chappelle et al. (1992) also obtained best results at 

550 nm, in a study to differentiate between nitrogen fertilization levels in corn. 

Buschmann and Nagel (1993) observed that leaves with higher nitrogen content have 

stronger reflectance in the blue and near-infrared (NIR) waveband. It was suggested 

that reflectance in the green (545 nm), red (660 nm), and NIR (800 nm) could also be 

related to plant nitrogen content. 

Blackmer et al. (1994a) found that the best relationships between reflectance 

and leaf nitrogen content, and between reflectance and chlorophyll meter (Minolta 

SP AD) readings, occurred at 550 nm. A significant correlation was also reported 

between relative corn yield and reflectance at 550 nm. These findings could be 

attributed to a comparatively lower absorption of energyby chlorophyll at 550 nm, 

resulting in more pronounced differences with varying chlorophyll content. 

Peîiuelas et al. (1994) demonstrated that narrow waveband indices are more 

usefuI than wider wavebands for assessing nitrogen and moi sture stress in sunflower 

(Helianthus annuus L.) leaves. This involved the utilization of the normalized 

difference vegetation index (NDVI), the physiological reflectance index (PRl) , the 

normalized pigment chlorophyll ratio index (NPCI), and the water band index (WBI) . 

These indices were: 
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NDVI = [R850 - R680 ] 
R 850 + R680 ' 

(2.1) 

PRI = [R550 - R"O ] 
R550 + R530 ' 

(2.2) 

NPCI = [R680 - R 430 
] 

R 680 + R 430 ' 
(2.3) 

WBI=[R
970 l R 900 

(2.4) 

where RBO, R530, R550, ~80, R850, R900, and R970 are the reflectance values at 430, 530, 

550, 680, 850, 900, and 970 nrn, respectively. 

In addition to the above, indices were also used based on the first and second 

derivative of the reflected spectrum. First derivative minima and maxima in the green 

region were at 570 nrn and 525 nrn, respective1y. Derivative maxima in the red edge 

region (700 to 710 nrn) and differences between these values were also evaluated. 

Second derivative minima in the green (530 nrn) and red edge (690 nrn) were tested 

as weIl. It was concluded that nitrogen and water stress caused significant differences 

between the above listed indices and derivatives. The researchers recommended that 

the study should be extended to the canopy scale. 

2.3.2 Canopy-nitrogen level studies 

The canopy level studies may be further classified into two categories: (i) 

those in which spectral data were acquired from spectral devices kept at a distance of 

a few meters from the crop canopy; (ii) those in which the imaging systems were 

airborne to acquire data at the field scale. 

2.3.2.1 Studies with ground-based canopy-scale spectral data acquisition systems 

Walburg et al. (1982) monitored the spectral signature of a corn canopy over 

the entire growing season. The range examined was 400 to 2400 nrn and images were 
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taken from a 9 m tower. Results indicated that at higher nitrogen levels, reflectance in 

the visible (400 to 700 nm) and middle infrared region (1400 to 2500 nm) was lower, 

while that in the near IR (700 to 1400 nm) was higher. Changes in spectral response 

could be attributed to changes in canopy factors (LAI, plant biomass, and percent soil 

coyer) and changes in leaf structure and composition (leaf pigment concentration, cell 

size, and cell wall composition and structure). Reflectance in the red (630 to 690 nm) 

decreased, while reflectance in the near-infrared increased as LAI, biomass, and soil 

coyer increased through the growing season. Detailed examination of spectral 

wavebands, corresponding to the LANDSAT multi-spectral scanner (MSS) and 

thematic mapper (TM), indicated that nitrogen treatments could be more effectively 

separated using the ratio of near-infrared (NIR) (760 to 900 nm) to red (630 to 690 

nm). A highly significant relationship was also obtained between grain yield and the 

ratio ofNIR to red. 

Studies at the leaflevel were used by Takebe et al. (1990) to design and test a 

portable green color intensity meter, for estimating nitrogen status in a rice canopy. 

The meter measured the intensity of incident solar canopy-reflected radiation in the 

green (550 nm) and near-infrared (800 nm) regions. The results of the field trial of the 

instrument indicated a good correlation between leaf nitrogen determined with the 

color-meter and leaf nitrogen determined in the laboratory. 

Blackmer et al. (1994b) used a spectroradiometer and aerial photography to 

study the reflectance spectra of corn under various nitrogen fertilization levels. 

Wavelengths around 550 nm and 710 nm were the most suitable for detecting 

nitrogen deficiency in individualleaves. However, reflectance at 550 nm was better 

correlated to nitrogen deficiency at the canopy scale. Thus, a photometric cell was 

used to measure reflectance at 550 nm, and aerial black and white photographs were 

taken with a filter which was sensitive in this range. There was a significant 

correlation between yield and reflected radiation. Furthermore, the ratio of reflectance 

of nitrogen-deficient to nitrogen-sufficient corn leaves at each wavelength effectively 

explained the variation in spectral response due to different nitrogen levels. 

In another study, Blackmer et al. (1996a) made spectral observations (350 to 

1100-nm range) over irrigated canopies of different corn hybrids, at various nitrogen 
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fertilization levels. Observations were taken at the R5 (dent) physiological growth 

stage. Absolute radiation was found to depend on sensor and illumination angle, solar 

irradiance and canopy architecture. To account for the illumination differences, the 

researchers referenced aIl the data to reflected radiation from high nitrogen plots and 

were thus able to detect differences in spectra that were due to hybrids and nitrogen 

treatments. It was concluded that the regions near 550 nm and 710 nm were the most 

useful in detecting nitrogen levels. The ratios of reflectance, from the range 550 to 

600 nm to the range 800 to 900 nm, were also found to be useful for this purpose. 

Correlations between relative corn yield and reflectance in the above wavebands were 

also high. 

In a similar experiment, Ma et al. (1996) measured reflectance in eight broad 

(50 nm interval) wavebands from 400 to 800 nm, over six different maize hybrids 

grown under three different nitrogen levels. It was reported that canopy reflectance at 

600 nm and 800 nm or a derived NDVI could be used to differentiate nitrogen levels 

and to estimate crop yield. 

Bausch and Duke (1996) compared a ground-based spectral observation 

system, with a SP AD chlorophyll meter and plant tissue nitrogen, in an irrigated corn 

canopy. Spectral data were acquired from a radiometer with channels in the blue (450 

to 520 nm), green (520 to 600 nm), red (630 to 690 nm), and near-infrared (760 to 

900 nm). The researchers reported a nearly 1: 1 relationship between the nitrogen 

sufficiency index (average SP AD value in a general plot to average SP AD value in 

high nitrogen plots) and the canopy-based normalized reflectance index. The 

normalized reflectance index used was defined as the reflectance ratio for a particular 

treatment, divided by the ratio ofNIR to green for high nitrogen plots. 

Stone et al. (1996) found significant correlations between spectral radiance 

and both wheat (Triticum aestivum L.) forage yield and forage nitrogen uptake. A 

photodiode detector with filters for red (671 ± 6 nm) and NIR (780 ± 6 nm) was used 

in the study. The researchers found a slight improvement in correlations, when both 

red and near-infrared wavebands were combined to calculate plant spectral nitrogen 

stress (PNSI), the absolute value" of the inverse of the NDVI. The PNSI could be 

defined as: 
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PNSI = R N1R + RRED 

R N1R - RRED ' 

where RNIR and RRED are the reflectance values in the NIR and red wavebands. 

(2.5) 

Joel et al. (1997) studied the impact ofwater stress, nitrogen stress, and their 

combination on sunflower canopy development, and also their effect on the fractionai 

interception of photosynthetically active radiation (fF AR), the NDVI, and the SR 

simple ratio index). Strong correlations were reported among fF AR, NDVI, SR, and 

LAI. However, neither of the stresses (water or nitrogen) had a significant effect on 

the relationship between fP AR and NDVI or SR. Although spectral observations were 

acquired with a narrow-waveband field spectroradiometer, reflectance values used 

were averaged over broad wavebands for calculating NDVI and SR values to mimic 

A VHRR (Advanced Very High Resolution Radiometer) wavebands. 

Sui et al. (1998) used a hand-held spectroradiometer to detect nitrogen 

deficiency in a cotton canopy. The researchers used a spectral index based on the 

ratio of observed reflectance in the blue (460 to 490 nm), green (540 to 565 nm), 

amber (600 to 610 nm), and NIR (740 to 770 nm). A significant correlation was 

reported between the spectral index and petiole nitrogen. The spectral index (SI) was 

defined as: 

SI = [ R N1R + R BLUE ] 

R GREEN + RAMBER ' 
(2.6) 

where RNIR, RB LUE, RoREEN and RAMBER are the reflectance values in the NIR, blue, 

green, and amber wavebands, respectively. 

Adams et al. (2000) related micronutrient deficiencies (Mn, Zn, Fe, and Cu) in 

soybean to reflectance and fluorescence measurements. In addition to the commonly 

used vegetation indices, R7S0IRSSO, R7501RtiSO, and the NDVI «R7S0-~so)/(R750+~SO», 

they also used a yellowness index (YI), which is a measure of leaf chlorosis. In these 
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ratios, Rsso, Rtiso, and R7so were the reflectance values at 550, 650, and 750 nm, 

respectively. The yellowness index could be calculated from the concavity-convexity 

of the reflected spectrum, at the midpoint between the reflectance maxima at 550 nm 

and the minima at 670 nm. Mathematically, YI could be defined as the finite 

difference approximation of the second derivative of the reflectance spectrum 

between 550 and 670 nm: 

YI = d
2
R = _[RÂ-l - (RÂo )+ RMl] 

d).,2 Ll;!? ' (2.7) 

where RNJ is the reflectance at the central wavelength, R}.-l and R}'+l are the reflectance 

values at lower and higher wavelengths, respectively, and 11"A is the difference 

between two wavelengths. 

2.3.2.2 Studies with airborne field-scale data acquisition systems 

Blackmer et al. (1996b) investigated the possibility of using ordinary color 

aerial photographs to detect variability in corn growth, due to different nitrogen 

levels. Color photographs were first digitized and digital counts in red, green, and 

blue were then generated. The results indicated that the red counts provided a better 

basis for discriminating between nitrogen treatments. A significant relationship 

existed between the red digital counts and grain yield; however, better correlations 

(r2=0.93) between yield and digital counts were obtained when black and white aerial 

photographs were taken, using a filter centered at 536 nm. It was also found non 

feasible to pool digital data from different years, or even from different crop growth 

stages, in the same year. 

Based on a two-year study, Tomer et al. (1997) also suggested that color 

scanned photographs could be used to describe spatial variability in yield and 

nitrogen uptake in corn. It was reported that better predictions could be obtained by 

this method, rather than using approaches dependent on topographic data or geo­

statistical methods . 

However, the scanning process results in a considerable loss of spatial and 
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spectral resolution, and in the signal to nOlse ratio of color or color-infrared 

photographs (GopalaPillai et al., 1998). Realizing this, the researchers used high 

resolution color-infrared (CIR) images (500 to 810 nm) in three channels (infrared, 

red, and green) to detect in-field, spatial variability of corn. High correlations were 

obtained between canopy reflectance and applied nitrogen and yield. However, the 

correlation between reflectance and nitrogen in stalks was poor. 

GopalaPillai and Tian (1999) used a digital CCD camera with a filter to 

acquire a CIR image (500 to 810 nm) in three wavebands: green (500 to 600 nm), red 

(600 to 710 nm), and NIR (710 to 810 nm). A comparison of standard maps of soil 

type with maps generated from aerial imagery, according to a supervised 

classification algorithm, indicated that agreement was 76% (area basis). Nitrogen­

stressed areas in the CIR image could be easily detected; however, it was difficult to 

determine nitrogen levels in nitrogen-sufficient areas. Spatial variations in yield were 

also found to be highly correlated with CIR reflectance. Better correlations were 

obtained in the red and green wavebands than in the NIR waveband. Linear models to 

predict yield were developed from the data and were 76 to 98% accurate for the 

particular data collection field. When the model was used for other fields, accuracy 

dropped to 55 to 91 %. 

2.4 Estimation of Vegetation Biophysical Parameters and Yield 

The primary objective of the majority of the current studies in this area, is to 

establish a quantitative link between spectral data and crop physiological parameters, 

as an indication of crop growth. Kimes et al. (1998) mentioned that the degree of 

success in deriving vegetation parameters from remotely sensed data would determine 

the utility of Earth Observing Satellites (EOS) in vegetation science. The estimation 

of various biophysical parameters from remotely sensed data is important in order to 

extend the application of crop growth models to larger areas. These models could be 

used to assess crop conditions for yield prediction or to facilitate crop management 

during the growth season. Spectral data could be used to derive variables necessary in 

crop models, to update indices of canopy status, to re-initialize crop models or to 

adjust model parameters according to remotely sensed data or ground observations 
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(Moulin et al., 1998). There have been various attempts to use remote sensmg 

observations to calibrate crop models dynamically (Moran et al., 1995; Bournan, 

1992; Delécolle et al., 1992; Wiegand et al., 1986). Inoue and Morinaga (1995) noted 

that observations, in a number of narrow spectral wavebands, could provide plenty of 

physiological and ecological information on both at a local and regional scale. 

A number of studies are currently underway, exploring the correlation 

between spectral measurements and the concentrations of certain biochemicals in 

plants. A strong correlation appears to exist between remotely acquired data and the 

concentration of many biochemicals within the vegetation canopy (Curran et al., 

1997). Chlorophyll is the most important biochemical in the process of conversion of 

sunlight to chemical energy in plants. Many studies have shown that there is a 

significant correlation between the concentration of chlorophyll in a crop and spectral 

measurements (Patel et al., 2001; Jago et al., 1999; Munden et al., 1994; Miller et al., 

1990). Numerous research studies have indicated the potential of remote sensing 

observations, in developing functional relationships between forest canopy chemistry 

and spectral data (Martin and Aber, 1997; Johnson et al., 1994; Matson et al., 1994; 

Peterson et al., 1988; Wessman et al., 1988), albeit with varying degrees of success. 

Martin and Aber (1997) developed a calibration model, for estimating nitrogen and 

lignin content in a forest canopy, based on Airbome VisiblelInfrared Imaging 

Spectrometer (AVIRIS) data. 

Many workers have attempted to develop relationships between spectral 

measurements and crop growth parameters, such as LAI, plant height, and biomass. 

Inoue et al. (2000) used a camera mounted on a blimp to collect spectral 

measurements in four wavebands. They successfully estimated LAI and fresh 

biomass for soybean and rice crops based on these images. Brown et al. (1997) 

demonstrated that indicators of canola crop vigor (biomass and leaf area) were 

significantly related to near-infrared reflectance, as obtained From a Compact 

Airbome Spectrographic Imager (CASI). In another experiment, Inoue and Morinaga 

(1995) estimated fresh biomass and greenness using spectral observations taken from 

a blimp. The researchers found a significant correlation between the remotely and 

ground-sensed parameters (r=0.971 for fresh biomass and 0.680 for greenness) . 
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Cloutis et al. (1999, 1996) evaluated high spectral resolution optical and radar 

imagery for use in the estimation of a number of crop parameters (LAI, plant height, 

and canopy temperature) for different crops (wheat, canola, beans, peas, and 

wheat/alfalfa). Several statistically significant correlations were found between the 

spectral observations and the crop parameters. In a more recent study, Thenkabail et 

al. (2000) carried out an intensive field campaign to correlate many crop biophysical 

parameters with spectral values acquired from a hand-held spectroradiometer in the 

visible to NIR range (350 to 1050 nm). The usefulness ofhyper-spectral measurement 

and narrow waveband indices was cleady indicated in estimating various crop 

parameters. These spectral observations were acquired over cotton, potato (Solanum 

tuberosum L.), soybean, corn and sunflower. 

Numerous studies have shown, with varying degrees of success, that remote 

sensing technology can be used to estimate crop yield. Different vegetation indices 

have been used to estimate crop yield for wheat (Asrar et al., 1985), barley (Hordeum 

vulgare L.) (Klemn and Fagerlund, 1987), soybean and corn (Holben et al., 1980; 

Crist, 1984). Decker (1994) observed that statistical models based on climatological 

variables could explain only 50% of the variation in yield. However, Hayes and 

Decker (1998) developed a better yield assessment system for maize, based on 

satellite and c1imatic data. Following this approach, the researchers were able to 

explain about 75% of the observed variability in normalized yield. Moran et al. 

(1997), reviewing the role of remote sensing in agriculture, indicated that two main 

approaches are being followed for yield estimation of crops. In the first approach, 

which is simpler and more straight forward, regression equations based on single or 

multiple, time-integrated vegetation indices (VI), such as NDVI, could be used for 

yield estimation. Another approach is to use remote sensing observations or 

vegetation indices to directly estimate canopy parameters, LAI or fP AR, which could 

. then be used as input parameters for crop growth or agrometeorological models 

(Clevers, 1997; Clevers et al., 1994). Serrano et al. (2000) reported highly significant 

correlations between the simple ratio vegetation index (SVI= R900~80) and yield or 

biomass of wheat. It was also reported that nitrogen fertilization level significantly 

affected the SVI to LAI relationship. However, under varying nitrogen levels, a better 
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relationship was developed when total canopy Chlorophyll A (LAI x Chlorophyll A) 

was considered as a single factor. 

2.5 Vegetation Index 

Many vegetation indices (VIs), which combine reflectance at two or more 

wavelengths in different ways, have been shown to be useful in characterizing plant 

growth and development (Jackson and Huete, 1991). These VIs enhance the spectral 

contribution from green vegetation and minimize the contribution from soil and 

atmospheric factors, by taking advantage of typical spectral features of vegetation. 

These indices are also useful, in reducing multi-spectral remote sensing data into a 

single value, for assessing vegetation status. The most commonly used vegetation 

indices are: the ratio vegetation index (RVI) , the normalized difference vegetation 

index (NDVI), the soil-adjusted vegetation index (SA VI), the perpendicular 

vegetation index (PVI), the difference vegetation index (DV!), the transformed-SA VI 

(TSA VI), and the modified-SA VI (MSA VI). The basis for most vegetation indices is 

the contrast between green leaves and soil or de ad plant material (Joel et al., 1997). 

Perry (1984) indicated that,in general, most of these indices are functionally 

equivalent, i.e. the value of one index may be computed based upon the value of 

another index. Thus, decisions based on one index are similar to those taken 

according to another index. However, Joel et al. (1997) mentioned that the 

performance of most of the vegetation indices depended on the settings. Hatfield and 

Pinter (1993) reviewed the applications of remote sensing in crop production, and 

highlighted the limitations of VIs in distinguishing weed populations from field crops. 

VIs are dependent on changes in plant biomass, leaf area, and the interception of 

radiation by the green portion of the canopy. Thus, VIs have a limited application for 

discriminating between different plant species. However, in a recent study, 

Zwiggelaar (1998) found sorne ratio vegetation indices (RVIs) and vegetation indices 

(VIs) to be useful for the discrimination of weeds from crops, particularly in row 

crops. Similarly, various reflectance ratios and indices have been used to detect 

nitrogen deficiencies in plants (Lukina et al., 2000; Plant et al., 2000) . 
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2.6 Application of Decision Trees and Artificial Neural Networks (ANNs) in 

Remote Sensing 

There has been an exponential increase in remote sensing data, due to the 

launching of an increasing number of satellites with improved resolution. In order to 

make the best use of this large data set, a more fully automated image analysis 

approach is necessary, with limited human interaction for critical evaluations (Soh 

and Tsatsoulis, 1999). For the quantitative analysis ofremote sensing data, supervised 

and unsupervised methods are used; however, supervised classification is most 

frequently used. Moreover, image classification should be capable of tackling noise in 

the data sets, identifying better features to discriminate between different classes, and 

minimizing confusion among spectral classes (Friedl et al., 1999). Another important 

issue re1ated to automated or semi-automated classification algorithms is that they 

should be capable of handling different situations in the same domain (Soh and 

Tsatsoulis, 1999). Realizing the need for more efficient remote sensing image 

classification techniques, many researchers explored the utility of data mining and 

artificial neural networks. Sorne of the salient studies are discussed briefly in the 

following section. With reference to the data-mining category, the decision tree tool is 

the most suitable for classification problems, and discussion is therefore limited to 

decision trees. 

2.6.1 Decision trees 

The decision tree, a frequently-used method of data mining, leams from a 

given data set and formulates explicit mIes to classify, segment, or make predictions 

about a target variable. This process begins by using the entire training data set. 

Initially based on one of the attributes, data are split into one or more homogeneous 

categories. The splitting process is extended into subsets until the split size of the data 

reaches a level beyond which splitting is either not feasible or desirable. It generates a 

decision tree, which is basically a step-by-step mIe system that splits the data into 

different categories. The decision tree resembles a simple flow chart of a rule-based 

expert system, that consists of mIes for arriving at a decision. A sample decision tree 

is presented in Figure 2.2. This classification of the data set, into different categories 
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or groups, is based on explicit rules that are fonnulated from the training data. These 

rules are used to further classify other sets. 

Figure 2.2 illustrates the mechanism of the decision tree approach, based on 

an example classifying a classicai Iris data set (Fisher, 1936). The data consists of 150 

descriptions of Iris flowers. Each description is a vector whose elements are petaI 

length, petai width, sepaiiength, sepai width and the target variable (in this case, the 

species of Iris). There are 50 such descriptions for flowers from each of the following 

species: setosa, versicolor, and virginica. The objective is to generate a decision tree, 

on the basis of these 150 records, that will be able to key out (categorize) other such 

vectors into the correct species. 

As indicated in the Figure 2.2, the complete data set is first split into two 

branches on the basis of the variable that is best correlated with the target variable 

(species). The rule for segmenting the data at that point is decided by an iterative 

process that examines aIl possible partitions into two subsets, and chooses the one 

that minimizes the combined variability in the two subsets. Based on the petallength, 

this process defines the split point as 2.450. Thus, aIl cases for which petaI length is 

<= 2.450 are sent ta the left node, and the others (petallength >2.450) are sent ta the 

right node. The improvement values are also given, and these indicate the percentage 

of correctly identified cases after the split point. An improvement value of 0.3333 at 

the first node indicates that 33.33% of cases were correctly classified due ta the 

splitting criterion used at the node. In this example, it tums out that all the cases sent 

to the left no de belong to one species, setosa. 

The process is now repeated only at the right node. At this level, the rule for 

segmenting at the second node was 'width <= 1.750 or >1.750'. This rule has 

classified the remaining 100 cases into versicolor, and virginica. However, as can be 

seen, the resulting subsets are not pure, the left node containing 49 versicolor and 5 

virginie a and the right node eontaining 1 versic%r and 45 virginica. At this node, 

another 25.98% of cases (improvement value 0.2598) were classified correctly. The 

tree is fully-grown to two levels at this stage, because none of the other descriptors 

could reduce the impurity of either node. OveraIl, this tree correctly classified 59.31 % 
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Cat. % n 
Setosa 33.33 50 
Versicolor 33.33 50 
Virginica 33.33 50 
-----------------------------
Total (100) 150 

Petallength; Improvement=0.3333 

<= 2.450 
1 

Cat. % 
Setosa 100 
Versicolor 0.00 
Virginica 0.00 

n 
50 
o 
o 

Total (33.33) 50 

1 

Cat. % n 
Setosa 0.00 0 
Versicolor 50 50 
Virginica 50 50 

Total (66.67) 100 

PetaI width; ImProvement=0.2598 

1 1 
<=1.750 > 1. 50 

Cat. % n Cat. % 
Setosa 0.00 0 Setosa 0.00 
Versicolor 90.74 49 Versicolor 2.17 
Virginica 9.26 5 Virginica 97.83 

n 
0 
1 

45 
----------------------------- -----------------------------
Total (36.00) 54 Total (30.67) 46 

Fig. 2.2 Fully grown sample decision tree 
(Source: AnswerTree 2.0 User's Guide. 1998) 
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(33.33% + 25.98%) of the cases. Such a tree should then be validated on an unseen 

data set, in arder to better establish the extent of expected correct classification of any 

other Iris flower, from one of the three possible species. To achieve the highest 

classification accuracy, the tree is grown to the level at which further no de splitting is 

either impossible or undesirable. This example was taken from AnswerTree, User's 

Guide (SPSS Inc., Chicago, IL). 

A large number of decision tree algorithms have been reported; however, the 

two most widely used are the C&RT (Classification and Regression Trees, also called 

CART), developed by statisticians (Breiman et al., 1984), and the C4.5, developed by 

a computer scientist (Quinlan, 1993). In the C&RT algorithm, decision tree 

development is based on a desire to minimize impurity measurements. In most cases, 

impurity-based criteria are used to grow trees by splitting the data at each node. These 

impurity indices are developed in such a way that after each split, data sets in the 

chi Id nodes are more homogeneous than the data in the parent node. 

In the C&R T algorithm, impurity may be measured in different ways 

according to the type oftarget variable involved. The Gini index, twoing, and ordered 

twoing are used for categorical target variables, while the least squared deviation is 

applied in the case of a continuous target variable. The most commonly used method 

is the Gini index, which was proposed by Breiman et al. (1984). At node t, the Gini 

index, g(t) is given by: 

g(t) = LP(j/t)p(i/t) , (2.8) 
fl'·i 

where i and} are categories of the target variable and p(ilt) and p(jlt) are the 

probabilities of a random sample X belonging to class i and}, respectively, given the 

distribution of data in the set at node t. The adequacy of a split is measured in terms 

of the decrease in impurity. Thus, split s at node t is chosen so as to maximize the 

value ofthe Gini criterion function il> (s,t). If PR and PL are the proportions of cases in 

t sent to the right and left hand nodes, respectively, cP (s,t) can be defined as: 
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(2.9) 

where g(tJ and g(tRJ are the Gini indices for the left and right child nodes, 

respectively. Based on the algorithm of classification, a tree is developed, which can 

then be used to classify another data set. 

The applicability of data-mining techniques in general and decision trees in 

particular, to the analysis of remote sensing imagery, has been demonstrated by a few 

studies at various levels (Friedl et al., 1999; -Soh and Tsatsoulis, 1999; Friedl and 

Brodley, 1997; Hansen et al., 1996). 

2.6.2 Artificial neural networks (ANNs) 

Artificial neural networks (ANNs) are complex mathematical functions that 

mimic the brain. They are considered to be capable of converting inputs into desired 

outputs, with no need for a physical explanation of the input-output relationships. 

ANN models, through intensive training with known examples, develop a functional 

relationship between input and output parameters. A typical ANN architecture 

(Figure 2.3) consists of a number of layers with interconnecting processing elements 

(PE), each of which is a basic component that receives inputs from many other PEs 

and generates an output based on a weighted sum of inputs and a transfer function. 

There are normally three types of layers in ANNs: (i) the input layer, in which the 

number ofPEs is equal to the number of inputs to the model; (ii) the hidden layers, in 

which the number of hidden layers and processing elements in each hidden layer 

depends upon the complexity of the problem; and (iii) the output layer, in which the 

number of PEs is equal to the number of output variables. Many factors should be 

considered in order to build an effective ANN mode!. Sorne of the important 

parameters are: the number of hidden layers and PEs, the leaming role, and the 

transfer function. In addition, there should be an appropriate selection of various 

parameters (such as leaming coefficient, epoch, momentum term, etc.) associated 

with leaming algorithms (Lacroix et al., 1997) . 
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Fig. 2.3 Structure of an Artificial Neural Network. 
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The output from each PE is a weighted summation of outputs from the PEs in 

the preceding layer, which is then passed to the next layer PE through a transfer 

function. Thus the input to any PE, q, can be expressed as: 

b 

netq = l WqpOp , 

p=l 
(2.10) 

(2.11) 

where, W qp is the weight of the link connecting PEs p and q, b is the total number of 

connected PEs in the layer from which input is being received at PE q. op is the input 

to q from PE p, Oq is the output from PE q, andfis defined as the activation function 

of the PE output. 

f(O)={L 
0, 

0>0 

otherwise ' (2.12) 

where 8 is the threshold value. Sorne of the most common activation functions are the 

sigmoid, hyperbolic, linear threshold and the Gaussian. 

Back-propagation is the algorithm that is the most widely used for 

classification problems (Schalkoff, 1992). This type of ANN model is built by 

presenting a training data set with both input and output parameters. The response at 

each PE is passed to the next layer. The final output is then compared with the known 

output, and the error is back-propagated. The weights of the connections are then 

adjusted accordingly, and the new responses from PEs are again passed to the next 

layer. This process, of forward transfer of response and backward propagation of 

error, is a recursive process which continues until the achievement of a satisfactory 

output (user-defined limit). The accuracy of the trained network can then be validated 

on an unseen data set. 

Since the early 1980's, ANN-based approaches have been successfully used in 

pattern recognition problems in diverse fields. From 1988 onwards there has been a 
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steady growth in their application to the field of remote sensing (Wilkinson, 1997) . 

Today, earth-observing sensors are generating large quantities of data which are being 

added to huge databases. For the full realization of this activity, fast processing and 

interpretation of data are necessary (Atkinson and Tatnall, 1997). Reviewing the 

work of many researchers, Atkinson and Tatnall (1997) commented on many of the 

qualities of ANNs. Sorne of the advantages highlighted by the greater accuracy of 

ANN techniques involves complex feature space classification, faster classification 

compared to statistical approaches, feasibility of incorporation of prior knowledge, 

and the possibility of the simultaneous use of data from different sensors or sources. 

The use of ANN technology for pattern recognition has drawn considerable 

attention in recent years. Neural network classifiers have sorne important advantages 

over statistical methods. Whereas statistical classification techniques typically require 

prior infonnation about the pattern distribution, ANN classifiers work well without 

any knowledge of the distribution (Danaher et al., 1997). Lee et al. (1990) showed 

that ANNs perfonned as weIl as statistical classifiers, but did not require as extensive 

training data sets. Various studies have demonstrated the usefulness of ANNs in 

ground cover classification (Augusteijin and Warrender, 1998; Danaher et al., 1997; 

Augusteijin et al., 1995; Kanellopoulos et al., 1992; Repner et al., 1990). Singh et al. 

(1998) also reported better classification results ofLANDSAT images with an ANN 

classifier when compared to statistical classification. In a recent approach, 

considering the importance and practical utility of fuzzy classification of remotely 

sensed data, Zhang and Foody (2001) proposed a fully-fuzzy classification approach. 

Better results were obtained with this approach than with partially-fuzzy or other 

sta:tistical approaches. ANNs have also been used for identification of clouds patterns 

(Bankert, 1994; Lee et al., 1990). Depenau (1997) reported a better performance by 

ANNs over traditional, maximum likelihood classifiers in ice-type classification of 

Synthetic Aperture Radar (SAR) images trom the European Remote Sensing Satellite 

(ERS-l). 

There are numeroUS studies on the use of ANNs for other applications. Baret 

et al. (1995) compared ANNs with vegetation index-based approaches, for estimating 

the canopy gap fraction in sugar beets. Kimes et al. (1996) used ANN rnodels to 
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estimate forest age. Forest crop growth models were inverted using an ANN approach 

(EUmes et al., 1997). Pierce et al. (1994) successfully predicted various canopy 

parameters (trunk density, trunk diameter, height) of Loblolly pine from airborne 

SAR data. The ANN approach was employed to predict corn yield from airborne 

images, with much better results than that obtained with traditional statistical 

techniques (Panda and Panigrahi, 2000). Smith (1993) used a back-propagation ANN 

method by inverting a multiple scattering model in the visible region (400 to 700 nm), 

in order to estimate leaf area index (LAI). Jin and Liu (1997) used ANN techniques to 

estimate wheat and oat (Aven a saliva L.) canopy parameters from active/passive 

remote sensing. The estimated parameters were: canopy height, canopy water content, 

dry matter fraction, and moisture content of the underlying land. 

2.7 Current Status and Conclu ding Remarks 

The studies reviewed above demonstrate that it is possible to relate the 

presence of weeds and nitrogen deficiency in crops to reflectance measurements, 

made from airborne or ground-based instrumentation systems. Although there is a 

growing consensus that hyper-spectral sensors (multiple narrow-waveband capability) 

are the most promising imaging technology for mapping either phenomenon on a 

large scale, airborne hyper-spectral imaging systems were not used to monitor 

combined effects of weed infestations and nitrogen stress in any of the studies listed 

above. There has been no previous attempt to monitor crop growth in conditions of 

simultaneous weed and nitrogen stress, using such instrumentation, nor have decision 

trees and ANNs been used to classify hyper-spectral data in classes indicative of 

combinations of weed and nitrogen stress . 
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PREFACE TO CHAPTER 3 

A review of the research in the application of remote sensing indicated that the use of 

airborne multi-spectral sensors in weed detection requires further investigation. A 

pilot field experiment was initiated in the first year (summer 1999) to study the 

spectral response of corn (Zea mays L.) and soybean (Glycine max (L.) Merr.), two 

locally important crops, under different conditions of weed infestation. Different 

weed treatments were selected to represent the prevailing weed conditions in corn and 

soybean fields of the region. Spectral observations were acquired from an Airborne 

Imaging Spectrometer for Applications (AISA) in 24 wavebands (475.l2-nm to 

910.01-nm spectrum region). The objectives of the study were to determine whether 

multi-spectral imagery from airborne platforms could be used in monitoring the 

growth of corn and soybean crops under specific weed conditions or not, and also to 

develop quantitative relationships between the remotely sensed data and crop 

physiological parameters related to weed-induced crop stress. 

Research papers based on the chapter: 

1. Goel, P. K., S. O. Prasher, R. M. Patel, D. L. Smith, and A. DiTommaso. 2002. 

Use of airborne multi-spectral imagery for weed detection in field crops. 

Transactions of the ASAE 45(2): 443-449. 

(Copy of the published paper is given in the attached CD-ROM.) 
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CHAPTER3 

MULTI-SPECTRAL AIRBORNE REMOTE SENSING FOR 

WEED DETECTION 

3.1 Abstract 

An image of an experimental field was obtained with an airborne imaging 

spectrometer, in order to assess the potential of this technology to provide the data 

required for precision herbicide application systems, i.e. the location and type of 

weed present. For this particular application, the objective was to distinguish between 

three types of weed population, grasses, velvetleaf (Abutilon theophrasti Medik.), and 

mixed weeds, in plots cropped with corn (Zea mays L.) or soybean (Glycine max (L.) 

Merr.). The image involved radiance in 24 wavebands in the range 475.12 to 910.01 

nm, and was taken over a split-plot experiment with corn and soybean assigned to 

alternate main plot units (one row of 4) and 4 weed treatments assigned to the sub­

plot units. The treatments were: no weed control, removal of aIl weeds, removal of an 

weeds except velvetleaf, and removal of an weeds except grasses. The main plots 

were 3m x 3m and weeding was done by hand. Both crop species and the weeds were 

in vegetative growth stages at the time the image was acquired. 

The comparative spectra indicated that weed-free plots could be distinguished 

from those containing weeds, based on radiance levels in the red and near infrared 

(NIR) regions. Statistically significant differences were only found in two wavebands, 

in the red and a range of wavebands in the NIR. Only one waveband exhibited a 

significant difference, due to treatments in the case of soybean, and it was in the NIR. 

Ratios of wavebands in the red and NIR were examined and it was found that 

many of them exhibited significant differences due to the weed treatments for both 

crops. Relationships were also examined between spectral data and direct 

measurements of LAI, greenness, photosynthetic rate and other indicators of crop 

status. Certain wavebands exhibited very high correlations with leaf greenness, 

photosynthetic rate, plant height and LAI in plots cropped with corn. In the case of 

soybean, the correlations were lower and not always in the same direction. 
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The results of this study were not very conclusive with respect to the main 

objective, because it was not possible to determine whether the significant differences 

in radiance at certain wavebands or in waveband ratio were exclusively associated 

with the type of weed population or with the weed density, the latter not having been 

controlled in this study. 

3.2 Introduction 

The applicability of various kinds of remote sensing images to site-specifie 

weed management has been assessed by various authors. Conventional color or color­

infrared films, and videography have been used to detect weeds from aerial platforms 

(Brown and Steckler, 1995; Hanson et al., 1995; Curran, 1985; Menges et al., 1985; 

Everitt et al., 1996, 1995, 1987). The more recent work in this field has involved data 

collection at three or four wavebands with airborne digital imaging systems (Rew et 

al., 2001; Medlin et al., 2000; Lamb et al., 1999; Lass et al., 1996). The relationships 

have also been investigated between optical or radar imagery and crop biophysical 

parameters such as biomass, LAI, plant height, canopy temperature and yield 

(Cloutis et al., 1999, 1996; Inoue and Morinaga, 1995), and the relationships between 

spectral data and biochemical indicators of erop status, such as chlorophyll (Jago et 

al., 1999; Curran et al., 1997; Munden et al., 1994). Success has been limited, 

basically because the differences in spectral signature between crops and weeds are 

subtle throughout the vegetative stages of growth, whereas they may be quite marked 

when crops or weeds approach or are within their blooming or senescent stages. This 

situation does not leave much leeway in making management decisions for weed 

control at critical times, except against weeds that approach bloom early in the 

cropping season. Various authors (Lamb and Brown, 2001; Zwiggelaar 1998) have 

suggested that sensing systems with higher spectral resolution should be used. 

The focus of the present study was to reexamine these issues using reflectance 

in 24 narrow wavebands (in the range 475.12 to 910.01 nm) acquired from an 

Airbome Imaging Spectrometer for Applications (AISA). The specifie objectives of 

the study were (i) to identify suitable wavelength regions for the detection of weed 

infestations in corn and soybean crops, and (ii) to examine the correlation between 
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such multi-spectral data and the biophysical parameters of crops under stress, due to 

the presence of different weeds. 

3.3 Materials and Methods 

3.3.1 Study site and experiment details 

A split-plot experiment consisting of six main plots was set up in 1999 on a 

silty clay loam at the Lods Agronomy Research Center, Macdonald Campus, McGill 

University, Ste-Anne-de-Bellevue, QC, Canada. The 6 plots were laid out in one row, 

with corn (pioneer 3921 hybrid) and soybean (Bayfield) sown in altemate plots (3 

plots each) in the second week of May 1999. The main plots were divided into four 

subplots (3m x 3m), to which four weed treatments were randomly assigned within 

each main plot unit. Thus, each combination of crop type and weed treatment was 

replicated three times. The first treatment involved full removal of weeds (by hand). 

The second permitted grass species to proliferate while aIl other types were removed 

by hand. The third permitted velvetleaf (Abutilon theophrasti Medik.) to proliferate 

while aIl other species were removed by hand. AIl weed species were permitted to 

proliferate in the plots assigned to the fourth treatment. 

Corn was sown at a row spacing of 76-cm and density of 70,000 seeds per ha, 

and soybean was sown at a row spacing of 18-cm at 500,000 seeds per ha. The 

fertilizer application rates for corn were 115,35, and 70 kg/ha (N, P, K, respectively). 

Soybean received 40 kg/ha P and 40 K kg/ha. 

3.3.2 Airborne spectral data acquisition 

Images of the study plots were acquired from an AISA imaging spectrometer 

mounted on a Piper Seneca airera ft (Agrimage Inc., Sherbrooke, Quebec, Canada). 

On July 12, 1999, the flight took place over the experimental field on a cloudless day. 

On that day, corn was in its late vegetative growth stages (VI5 to VI7, depending on 

the particular plot) and soybean was in the early flowering (RI) stage. Weeds were in 

mid-vegetative growth. Tassels in corn and pods in soybean started forming a few 

days later, whereas weeds reached the pre-bloom stage more than two weeks later . 
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The data were acquired at a spatial resolution of 1 m, in 24 wavebands in the 

visible to near-infrared range ofthe spectrum (475.12 nm to 910.01 nm). Bandwidths, 

central wavelengths and wavelength intervals are given in Table 3.1. The raw data 

were digital numbers (DN). Radiometric corrections for gain, offset, DN dark current, 

and integration time were applied to the raw data to obtain radiance images. 

The data were also corrected for changes in angle of incidence of the reflected 

radiation at the sensor, due to aircraft pitch and roll, as recorded by the inertial 

navigation system. A differential geographical positioning system (DGPS) unit was 

used to reference the image to earth co-ordinates (geo-referencing). Geo-referencing 

of the image was facilitated by blue tarpaulin sheets that were fixed to each corner of 

the experimental field. The data processing was performed by Agrimage Inc. using 

their in-house software. 

It is important to note that radiance is the reflected solar radiation received by 

the sensor, whereas reflectance is the reflected radiation corrected for downwelling 

irradiation, which changes depending on sun angle and atmospheric conditions 

(cloud, haze, etc.). Reflectance is therefore the basis of comparison between images 

taken under different conditions. The sensor for measuring downwelling irradiance 

was not installed on the aircraft at the time ofthe flight; however, only one image was 

taken over the experimental site. The constraint of the overall study is that the data 

from 1999 cannot be used for quantitative comparison with the data taken in 2000. 

3.3.3 Plant parameters 

Crop conditions in the experimental plots were determined the day before and 

the day of the flight. The measurements inc1uded plant height, leaf greenness, leaf 

area index (LAI), chlorophyll fluorescence, and photosynthetic rate. Plant height, a 

simple and direct indicator of plant health, was measured to the nearest centimeter. 

The foliage coyer per unit of ground area, as represented by LAI, has a direct 

influence on radiance. LAI is a dimensionless quantity, but can be expressed as cm2 

foliage area per cm2 ground area. An LAI-2000 Plant Canopy Analyzer (Li-Cor, Inc., 

Lincoln, Nebraska, USA) was used to obtain these values. One set of readings 
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• Table 3.1 Wavebands used to acquire aerial spectral data 

Waveband Wavelength Waveband Difference Waveband Spectral 
number interval center 

. . 
width III succeSSIve reglOn 

(nm) (À) wavebands (nm) 
(nm) (~ Â) 

(nm) 
1 475.12 - 479.86 477.49 - 4.7 Blue 
2 500.40 - 508.30 504.35 26.86 7.9 Green 
3 541.48 - 549.38 545.43 41.08 7.9 Green 
4 552.40 - 560.75 556.58 11.15 8.4 Green 
5 572.44 - 580.79 576.62 20.04 8.3 Green 
6 587.47 - 595.82 591.65 15.03 8.4 Green 
7 632.56 - 639.24 635.90 44.25 6.7 Red 
8 672.64 - 679.32 675.98 40.08 6.7 Red 
9 682.66 - 687.67 685.17 9.19 5.0 Red 
10 687.67 - 692.68 690.18 5.01 5.0 Red 
11 697.69 - 702.70 700.20 10.02 5.0 Red 
12 702.70 - 707.71 705.21 5.01 5.0 N ear -Infrared 
13 714.52 - 719.71 717.12 11.91 5.2 N ear -Infrared 
14 724.90 - 730.09 727.50 10.38 5.2 N ear -Infrared 
15 733.55 - 738.74 736.15 8.65 5.2 N ear -Infrared 
16 743.93 - 749.12 746.53 10.38 5.2 N ear -Infrared 
17 754.31 - 759.50 756.91 10.38 5.2 Near -Infrared 
18 775.07 - 778.53 776.80 19.89 3.5 N ear -Infrared 
19 794.10 - 797.56 795.83 19.03 3.5 N ear -Infrared 
20 809.67 - 813.l3 811.40 15.57 3.5 N ear -Infrared 
21 826.97 - 830.43 828.70 17.30 3.5 N ear -Infrared 
22 854.65 - 859.84 857.25 28.55 5.2 N ear -Infrared 
23 878.87 - 884.06 881.47 24.22 5.2 Near -Infrared 
24 904.82 - 910.01 907.42 25.95 5.2 N ear -Infrared 
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consisting of one above-canopy and four below-canopy readings (according to 

standard procedure) were taken in the center of each plot. 

Greenness, or the amount of chlorophyll in a plant, is a visible indicator of 

stress in plants. Because most of the plant nitrogen is contained in the chlorophyll 

molecules, this measure is a good indicator of the nitrogen status of plants. 

Greenness was determined with a SP AD Chlorophyll meter (Minolta Camera Ltd., 

Osaka, Japan) on the newest fully extended leaf on 10 randomly selected plants in 

each plot. 

Chlorophyll fluorescence has been reported to be a convenient indicator of 

photosynthetic activity. It has been shown that any change in the overall bioenergetic 

status of a plant is accompanied by a change in chlorophyll fluorescence (Krause and 

Weis, 1991). Moreover, the changes that affect the opening of stomata and gas 

exchange with the atmosphere are reflected by changes in the fluorescence 

characteristics of a leaf. This measure can be used to indicate the photochemical 

efficiency of the Photo system II pathway. Chlorophyll fluorescence was measured 

with a CF-IOOO, Chlorophyll Fluorescence Measurement System (Morgan Scientific, 

Inc., Andover, MA, USA) on the newest fully-extended leaf of five randomly selected 

plants in each plot. 

Photosynthesis is the physico-chemical process that converts radiant en erg y to 

the chemical energy used by biological systems, and is also a direct indicator of plant 

health. The LI-6400, Portable Photosynthesis System (Li-Cor, Inc., Lincoln, 

Nebraska, USA) instrument was used to measure the photosynthetic rate on two fully 

extended leaves in each plot. 

Soil moisture content was determined gravimetrically. Precipitation was about 

normal in 1999, being 880.7 mm or slightly below the average of 939.7 mm for the 

area. Details on the climatic parameters for the entire year are given in Table 3.2. 

3.3.4 Observations on weeds 

Weed density, composition, and time of emergence are sorne of the criteria 

used to assess the impact of weeds on crop development. Weed counts were taken in 

a 50cm x 50cm quadrant at the center of each plot during the week of the flight. The 
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Table 3.2 Mean monthly temperature, relative humidity, wind speed, and total precipitation during the year 1999 and for a 

normal year 

Month Year 1999 Normal year 
(Average based on the years 1961-1990) 

Temperature Relative Wind Precipitation Temperature Relative Wind Precipitation 
~c) humidity speed (mm) fC) humidity speed (mm) 

(%) (kmIh) (%) (kmIh) 
Max. 1 Min. 1 Avg. Max. 1 Min. 1 Avg. 

January -5.1 -14.2 -9.7 74.88 14.96 142.2 -5.8 -14.9 -10.3 NA NA 63.3 
February -0.6 -10.2 -5.6 69.55 11.71 29.4 -4.2 -13.5 -8.8 NA NA 56.4 
March 2.7 -5.4 -1.8 70.21 15.42 76.6 2.0 -6.9 -2.4 NA NA 67.6 
April 12.1 1.5 6.5 58.18 13.24 20.9 10.7 0.6 5.7 NA NA 74.8 
May 22.0 8.8 15.8 59.78 10.94 40.8 18.5 7.3 12.9 NA NA 68.3 
June 26.0 15.6 20.8 68.87 10.56 111.0 23.4 12.5 18.0 NA NA 82.5 
July 27.1 17.1 21.7 75.68 11.01 100.2 26.2 15.4 20.8 NA NA 85.6 
August 24.7 14.1 19.0 74.20 9.40 55.0 24.6 14.1 19.4 NA NA 100.3 
September 23.8 12.6 17.3 78.31 8.41 100.1 19.8 9.3 14.5 NA NA 86.5 
October 12.5 3.2 7.6 74.89 11.31 90.5 13.0 3.6 8.3 NA NA 75.4 
November 9.4 0.9 4.8 73.71 14.22 45.4 5.2 -2.0 1.6 NA NA 93.4 
December 0.5 -6.7 -3.5 78.92 12.95 68.6 -2.9 -11.0 -6.9 NA NA 85.6 

---- ---- ------

NA: Not available 
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time of emergence of weeds was not recorded, although it was noted that sorne weeds 

had emerged before the crop. At the time of the flight, however, all weeds in the plots 

were fully established. 

3.3.5 Data analysis 

Processed radiance Images were imported into the IDRISI GIS software 

(Version 2.00.000, Clark University, MA, USA) using the PCI software (Version 

6.2.1 (Demo), PCI Geomatics, ON, Canada). Representative values for each 

waveband were obtained by extracting the average radiance for the waveband from 

the central portion of each plot in the image. The central portion of the plot was 

marked by examining the image visually. The visual interpretation was aided by 

identifying the soil buffer strips that surrounded each plot. 

Scheffe's multiple range test (Steel et al., 1997) was used to determine which 

wavebands best eXplained differences between type of weed infestation. SAS 

software (Version 6.11, North Carolina, USA) was used for the analysis, which was 

carried out at the 95% significance level (P<0.05). Simple 1inear regression and 

correlation analyses were used to relate the spectral data to crop physiological 

parameters. 

3.4 Results and Discussion 

The presentation of the results from ground-based observations is of primary 

importance, because the discussion of the significance of spectral data will 

necessarily refer to the direct measurements made on the canopies. 

3.4.1 Ground-based observations 

3.4.1.1 Observations on weeds 

Weeds were generally uniformly distributed over the plots. Yellow foxtail 

(Setaria glauca) was the most prominent among the grassy weeds, which also 

included bamyard grass (Echinochloa crusgalli) and yellow nutsedge (Cyperus 

esculenthus). Velvetleaf (Abutilon theophrasti Medik.), redroot pigweed (Amaranthus 

retroflexus), and lamb' s quarters (Chenopodium album) were the most prominent 
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broadleaved weeds. The replicate-averaged weed counts for the four weed treatments 

are presented in Table 3.3, for each individual crop. 

As expected, weed density was higher in the plots without weed control for 

both crops, and weed density was lower in each treatment c1ass for soybean than for 

corn. The difference in weed density between corn and soybean is likely due to the 

latter' s ability to compete for light (greater soil coverage due to greater plant density 

and leaf structure), as exhibited by a much higher LAI for soybean (Table 3.4, 

section 3.4.1.2) and possibly in part due to poorer growth conditions for weeds in the 

soybean plots because there was not an application of nitrogenous fertilizer. 

3.4.1.2 Crop physiological parameters 

The replicate-averaged crop physiological parameters for the four weed 

treatments are presented in Table 3.4, for each individual crop. The most striking 

feature of these data involves significant differences in the physiological parameters 

of corn due to the presence of weeds, whereas there are none apparent in the case of 

soybean. As suggested in the preceding section, when soybean was seeded at 

recommended rates and row spacing, this crop ho Ids a greater competitive advantage 

over the predominant weed species than that exhibited by corn. The sensitivity of 

corn to the weed populations is evidenced by a definite tendency toward lower 

photosynthetic rates of corn leaves, where weeds are allowed to proliferate, compared 

to the rate in weed-free corn canopies. Although the photosynthetic rate is 

significantly lower only in plots with no weed control (mixed grasses), Table 3.3 

indicates that there are more total weeds without weed control in place, compared to 

the removal of aIl but one species (velvetleaf) or family (grasses). If the weed density 

of veIvetleaf or grassy weeds was the same as the mixed weeds, it is suggested that 

the photosynthetic rate of corn would be significantly lower than the weed-free rate. 

The effect of weeds is manifested by shorter plants and evidence of nitrogen stress in 

corn (lower greenness) . 
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• Table 3.3 Weed count in different weed treatments for corn and soybean crops 

Treatment Grassy weeds Velvetleaf Broadleaf Total 
(shoots per sq. (plants per weeds" (shoots/plants 

meter) sq. meter) (plants per per sq. meter) 
sq. meter) 

Yellow 1 
foxtail Others 

Corn + Velvetleaf - - 62 - 62 
Corn + Mixed weeds 53 53 - 19 125 
Corn + Grasses 48 59 - - 107 

Soybean + Velvetleaf - - 21 - 21 
Soybean + Mixed weeds 32 22 - 6 60 
Soybean + Grasses 23 31 - - 54 

* Broadleaf weeds included velvetleaf plants also 
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Table 304 Details ofvarious measurements of erop parameters and volumetrie soil moi sture content, (average value ± SD) 

a. Corn 
Crop parameter Corn + Corn + Corn + Com+ Variation across 

Velvetleaf Mixed weeds Grasses No weeds various treatments 1 

Leaf area index (cmLlem2
) 2.31 ± 0.240 3.11±0.17 a 2.11 ± 0.29 0 1.73 ± 0.13 0 1.60 to 3.29 . 

Plant height (cm) 76.5 ± 6.8 b 71.4 ± l3.3 b 99.7 ± 9.7 ab 109.3 ± 1004 a 59.6 to 116.1 
Greenness (comparative 20.9 ± 3.4 cb 14.0 ± 404 c 27.6 ± 5.4 ab 36.3 ± 1.7 a 9.5 to 38.2 
sca1e) 
Chlorophyll fluorescence 0.709 ± 0.021 a 0.672 ± 0.030 a 0.718 ± 0.034 a 0.696 ± 0.069 a 0.619 to 0.754 
(ratio, unitless) 

l3.38 ± 4.35 b Photosynthesis rate 21.90 ± 1.90 a 25.20 ± 2.65 a 27.83±1.16 a 8.45 to 28.90 
(/-Lm01C02m-2s-l

) 

Soil moisture content (%) l3.20 ± 1.30 a ,J2.11 ± 1.95 a 12.32 ± 1.72 a 11.85 ± 1.47~_ 10.15 to 14.69 
--- -- ---- ---- ----

b.Sovb 
Crop parameter Soybean + Soybean + Soybean + Soybean + Variation aeross 

Velvetleaf Mixed weeds Grasses No weeds various treatments 
Leafarea index (cm1Icm2

) 7.57 ± 0.30 a 7.40 ± 0.99 a 7.27 ± 0.98 a 6.22 ± 1.05 a 5.01 to 8.33 
Plant height (em) 61.3 ± 2.8 a 62.2 ± 6.5 a 61.8 ± 7.2 a 52.2 ± 6.1 a 45.2 to 69.4 
Greenness (comparative 31.4± 1.8 a 30.5 ± 2.1 a 32.0 ± lA a 3004 ± l.6 a 28.1 to 33.6 
scale) 
Chlorophyll fluorescence 0.628 ± 0.009 a 0.656 ± 0.012 a 0.635 ± 0.015 a 0.661 ± 0.018 a 0.618 to 0.677 
(ratio, unitless) 
Photosynthesis rate 18.93 ± 1.25 a 21.67 ± 1.07 a 20.37 ± 4.31 a 20.33 ± 3.52 a 15.40 to 23.20 
(/-LffioIC02m-2s- l

) 

S()iL moisture content (%) 13.16 ± 1.73 a ~3.08 :I:_t90 a 
__ cl:215 ± 2·1?_~ 11.86 ± 0.73 a 10.63 to 15.27 

- - ------- --

Mean parameter values (±SD) with same superseript letters in each row are not signifieantly different (Scheffets multiple range test, 
P<0.05). 
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3.4.2 Spectral response 

The replicate-averaged radiance data obtained at vanous combinations of 

weed infestation and crop are presented in Figures 3.1 and 3.2 for corn and soybean, 

respectively. High absorption in the visible and high reflectance in the near-infrared 

wavebands are typical of vegetation reflectance curves, according to Guyot (1990) 

who reported that chlorophyll and other pigments absorb about 85% of the incoming 

visible radiation and that leaves absorb only about 50% of the incoming NIR. 

Because chlorophyll a and chlorophyH b in plant leaves exhibit maximum absorption 

in the blue and red wavebands, leaves show maximum reflectance at 550 nm (yellow­

green). Although canopy reflectance spectra can differ somewhat from these general 

characteristics of leaf spectra, depending on the development stage and extent of the 

vegetation coyer, the spectra of Figures 3.1 and 3.2 do conform to them, because they 

were obtained at a fairly advanced stage of crop development. The expected peak at 

550 nm reflects a plateau from the central wavelengths ofwavebands 3 and 4, (545.43 

and 556.58 nm). 

The c1earest distinctions between the four types of vegetation coyer (i.e. weed 

controls) in Figures 3.1 and 3.2 are associated with comparatively higher radiance in 

the visible red, in weed-free plots, and lower radiance in the NIR in weed-free plots. 

This is due to the combined effect of a lower proportion of radiance from plants and a 

higher proportion of radiance from soil under such a condition of sparser leaf 

coverage. The plots without weed control are associated with comparatively lower 

radiance in the visible red and comparatively higher radiance in the NIR. In the plots 

cropped with corn, these effects appear to mimic the trends in LAI, whereas the 

situation is not so clearly defined in the case of soybean, where there were no 

significant differences in LAI attributable to the weed treatments. Therefore negative 

correlations are anticipated between LAI and radiance in the visible red, and positive 

correlations in the NIR. This expectation is borne out in Tables 3.9 and 3.10. 

An interesting comparative feature of Figures 3.1 and 3.2 is that the radiance 

in the visible spectrum is of the same magnitude for both corn and soybean, although 

LAI is substantially greater in aH soybean plots than in corn plots. However, radiance 

in the NIR from soybean plots becomes increasingly greater than that of the corn 
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plots, as the wavelength increases from about 700 nm to about 750 nm, the difference 

being maintained on to about 875 nm. The NIR differences appear to reflect the large 

difference in LAI between plots of the two crops rather than any influence of weeds; 

however, the question remains as to why the same is not true in the visible spectra. 

Such different behavior may reflect the combined effects of the denser soybean 

canopy and the high level of absorption (85%) of visible radiation compared to NIR 

(50%), as noted by Guyot (1990). Briefly stated, the visible light received by the 

sensor is mainly a function of the leaf coverage at the upper levels of the canopy, with 

the light reflected from lower levels being, for the most part, absorbed before 

reaching leafless regions. In the case of NIR radiation, more energy is transmitted 

from upper canopy to the lower canopy which can then be reflected back. 

3.4.3 Suitable wavebandsfor detection ofweeds 

The spectral data were analyzed to determine whether any fine features in the 

data could be related to the different weed treatments more precisely than the visual 

analysis of Figures 3.1 and 3.2 as presented above. The results ofScheffes's multiple 

range test are summarized in Tables 3.5 and 3.6 for corn and soybean, respectively. 

There were significant differences in radiance in the red part of the spectrum between 

the plots ofweed-free corn and plots of corn with mixed weeds at wavebands 8 and 9 

(Table 3.5). However, at the same wavebands, the other weed treatments exhibited no 

differences in radiance either between themselves or with the weed-free and mixed 

weed plots. 

There were also significant differences in radiance at wavebands 16 to 21 

(746.53 to 828.70 nm). The radiance of weed-free corn was significantly lower than 

that of corn with velvetleaf and corn with mixed weeds in wavebands 16, 17 and 19; 

however, there was not such a significant difference with that of corn with grasses. In 

waveband 18 (776.80 nm), the radiance of the weed-free crop was significantly lower 

(P<0.05) than that of corn infested with any ofthe weeds. 

The above relationships are so similar to the compansons of LAI, 

photosynthetic rate and greenness presented in Table 3.4, that it may be concluded 
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Table 3.5 Statistical analysis ofradiance in different wavebands for corn 

Waveband 
Radiance (flW/cm2/sr/nrn) 

Number Corn + 1 Corn+ ;l Corn + 
1 

Corn + 
Velvetleaf Mixed weeds Grasses Noweeds 

1 3379 ±140 a 3206 ±107 a 3492 ±64 a 3566 ±131 a 

2 2454 ±97 a 2271 ±53 a 2515 ±80 a 2705 ±162 a 

3 3473 ±l8 a 3323 ±138 a 3449 ±93 a 3459 ±148 a 

4 3513 ±11 a 3359 ±142 a 3454 ±100 a 3485 ±159 a 

5 2773 ±9 a 2676 ±122 a 2774 ±85 a 2891 ±158 a 

6 2382 ±21 a 2315 ±101 a 2392 ±87 a 2576 ±167 a 

7 1871 ±48 a 1826 ±78 a 1946 ±72 a 2205 ±150 a 

8 1484 ±57 ab 1389 ±41 b 1595 ±72 ab 1898 ±170 a 

9 1637 ±70 ab 1526 ±49 b 1762 ±88 ab 2073 ±184 a 

10 1604 ±73 a 1527 ±52 a 1714 ±83 a 1988 ±165 a 

11 2273 ±62 a 2225 ±112 a 2290 ±101 a 2437 ±150 a 

12 2824 ±81 a 2743 ±162 a 2778 ±119 a 2823 ±150 a 

13 4104 ±84 a 4012 ±232 a 3941 ±163 a 3863 ±143 a 

14 5062 ±60 a 5020 ±244 a 4848 ±127 a 4608 ±105 a 

15 6392 ±28 a 6428 ±246 a 6241 ±72 a 5831 ±82 a 

16 7858 ±43 a 8017 ±219 a 7781 ±54 ab 7198 ±85 b 

17 8484 ±61 a 8714 ±204 a 8432 ±76 ab 7824 ±101 b 

18 8295 ±72 a 8533 ±187 a 8246 ±59 a 7662 ±77 b 

19 7846 ±110 a 8053 ±187 a 7818±8 ab 7282 ±58 b 

20 7899 ±135 ab 8092 ±189 a 7842 ±30 ab 7339 ±37 b 

21 6994 ±l59 ab 7146 ±180 a 6945 ±14 ab 6498 ±36 b 

22 7621 ±l78 a 7689 ±245 a 7439 ±49 a 7022 ±75 a 

23 7916 ±227 a 8001 ±287 a 7714 ±50 a 7344 ±137 a 

24 6334 ±230 a 6444 ±231 a 6233 ±64 a 6038 ±180 a 

Mean radiance values (±SE) with same superscript letters in each band are not 
significantIy different (Scheffe's multiple range test, P<0.05) . 
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Table 3.6 Statistical analysis ofradiance in different wavebands for soybean 

Waveband 
Radiance (JlW/cm2/sr/nm) 

Number Soybean + 1 Soybean + 1 Soybean + 
1 

Soybean + 
Velvetleaf Mixed weeds Grasses Noweeds 

1 3266±39a 3277±40 a 3534±85a 3576±156 a 
2 2386±6 a 2375±73 a 2370±74a 2589±83 a 
3 3534±114 a 3408±121 a 3355±79 a 3600±52 a 
4 3566±131 a 3458±128a 3384±81a 3648±59a 
5 2744±73a 2666±107 a 2616±74 a 2888±55 a 
6 2314±44 a 2260±100 a 2248±83a 2498±58a 
7 1800±20 a 1786±85 a 1801±65 a 2041±66a 
8 1464±35 a 1464±74 a 1512±89 a 1737±82 a 
9 1618±33 a 1614±81 a 1671±94 a 1917±92 a 
10 1595±29 a 1596±80 a 1646±81a 1861±91 a 
11 2372±57a 2312±101 a 2308±80 a 2528±62 a 
12 3057±94a 2945±108 a 2930±96a 3137±62 a 
13 4778±170 a 4542±122 a 4443±117a 4679±44a 
14 6204±218a 5937±80 a 5744±116a 5917±34 a 
15 8112±237a 7899±41 a 7630±150 a 7607±46a 
16 10229±251a 10113±73 a 9722±223a 9528±67 a 
17 11173±235 a 11139±108 a 10743±280 a 10391±122 a 
18 10879±187 a 10952±151 a 10557±263 a 10148±119 a 

19 10168±152 a 10262±103 a 9934±236a 9512±148 a 
20 10137±135 ab 10248±84 a 9924±193 ab 9514±155 b 
21 8857±135 a 8979±118 a 8712±173 a 8326±117 a 
22 9517±187 a 9617±138 a 9248±170 a 8929±160 a 

23 9826±176 a 9860±138 a 9552±108 a 9189±162 a 

24 7692±132a 7654±125 a 7426±69a 7194±163 a 

Mean radiance ratio values (±SE) with same superscript letters in each band are not 
significantly different (Scheffe's multiple range test, P<0.05) . 
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that the presence of weeds in a corn crop are be detected through analysis of spectral 

data, if there is a priori knowledge of the contribution to LAI of the corn itself, in 

respect of its stage of growth, health status and crop density (spacing and plants per 

row). 

The statistical analysis perforrned on the soybean crop (Table 3.6) indicated 

that, with the exception of waveband 20 (811.40 nm), the recorded radiance values 

were not significantly different for the weed-infested and weed-free soybean 

treatments. At waveband 20 (811.40 nm), however, the only significant difference 

existed between the two extreme treatments (weed free and mixed weed), as indicated 

with corn. The scarcity of additional infonnation realized from this analysis of the 

radiance of the plots with soybeans is not surprising, given that the weed treatments 

had no significant effect on the soybean physiological parameters, which is in aIl 

likelihood due to the comparatively low weed densities. 

Multi-spectral imaging systems were used in prevlOUS studies aimed at 

detecting weeds or distinguishing them from other vegetation. These systems usually 

had broad waveband sensors, with wavebands centered or sensitive in the blue (400 to 

500 nm), green (500 to 600 nm), red (600 to 700 nm), and near-infrared (700 to 1000 

nm) ranges (Bajwa and Tian, 2001; Lamb et al., 1999; Lass and Callihan, 1997; Lass 

et al. 1996; Everitt et al., (1996~ 1995, 1994)). Brown et al. (1994) found that 

wavebands centered at 440, 530, 650, and above 730 nm were useful in distinguishing 

between weed species. Brown et al. (1994) selected these wavebands based on field­

spectroradiometer measurements acquired over weed canopies rather than over weed­

infested CroP canopies, yet had limited success in separating different weeds. Results 

were even poorer when the images were acquired from a still-video camera, with four 

filters from a height of 10m. Very high within-class variability was cited as the reason 

for poor discrimination. However, in another study of the same field, slightly better 

results were reported, when images were acquired from an airbome platform (Brown 

and Steckler, 1993). Good weed classification results were reported when all weeds 

were grouped into one class and separated from corn or from the soil. Similarly, using 

a field-spectroradiometer, Everitt et al. (1987) reported significant differences in the 

spectral response of various rangeland weeds and other vegetation at 550, 650, and 
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850 nm. The differences in the spectral response of weeds were attributed to 

differences in foliage color and biomass. 

3.4.4 Ratios ofwavebands in the red and NIR 

Many vegetation indices (VIs), that combine reflectance at two or more 

wavelengths in different ways, have been found use fui in characterizing plant growth 

and development (Jackson and Huete, 1991). In a recent study, Zwiggelaar (1998) 

found sorne ratio vegetation indices (RVIs) useful in the discrimination of weeds 

from crops, and in particular from row crops. As a result, this study has attempted to 

evaluate different waveband ratios for discriminating between the different weed 

treatments. 

Wavebands 8, 9, and 10 and wavebands 16 to 24 in the near-infrared plateau 

region were combined in aH possible ratios of red to near-infrared on a one-to-one 

basis. Scheffe's multiple range test was used to detect significant differences in the 

ratios due to the weed treatments, as was the case for the analysis of individual 

wavebands. 

The results ofthis analysis are presented in Tables 3.7 and 3.8. The results for 

corn c1early establish that the values of these waveband ratios for pure corn were 

significantly different (P<0.05) from those of corn infested with ve1vetleaf and mixed 

weeds. Thus, the waveband ratios, given in Table 3.7, and waveband 18 (776.80 nm) 

may be used to determine the presence ofweeds in corn fields. 

In the case of soybean (Table 3.8), it is evident that waveband ratios are more 

effective at discriminating between weed treatments than are radiance values. 

However, there was a similar difficulty in distinguishing the velvetleaf only and 

grasses only treatments. Although the weed-free soybean crop and soybeans with 

mixed weeds were distinguishable at several waveband ratios, it was not possible to 

differentiate the other weed treatments. It was difficult to make a distinction between 

the different weed treatments visually, because the dominant canopy coverage of the 

soybean crop suppressed weed growth in the velvetleaf and grass weed treatments . 
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Table 3.7 Statistical analysis ofradiance ratios in different wavebands for corn 

Waveband 
Radiance ratio (x 10-3

) (unitless) 

ratio Corn + Com+ Corn + Corn + 
Velvetleaf Mixed weeds Grasses Noweeds 

8/16 189±7 b 173 ±4 b 205 ±9 ab 264 ±25a 

8/17 175 ±7 b 159 ±3 b 189 ±9 ab 243 ±23 a 

8/18 179 ±6 b 163 ±4 b 194 ±9 ab 248 ±24 a 

8/19 189 ±5 b 173 ±5 b 204 ±9 ab 261 ±25 a 

8/20 188 ±4 b 172 ±5 b 203 ±9 ab 259 ±24 a 

8/21 212 ±3 b 195 ±6 b 230 ±11 ab 292 ±28 a 

8/22 195 ±3 b 181 ±6 b 214 ±10 ab 270 ±25 a 

8/23 187 ±2 b 174 ±5 b 207 ±9 ab 259 ±26 a 

8/24 234 ±1 ab 216±7 b 256 ±11 ab 316 ±34 a 

9/16 208 ±9 b 190 ±4 b 227 ±11 ab 289 ±27 a 

9/17 193 ±8 b 175 ±4 b 209 ±10 ab 265 ±25 a 

9/18 197 ±7 b 179 ±5 b 214 ±11 ab 271 ±26 a 

9/19 209 ±6 b 190 ±6 b 225 ±11 ab 285 ±27 a 

9/20 207 ±5 b 189 ±6 b 225 ±11 ab 283 ±26 a 

9/21 234 ±5 b 214 ±6 b 254 ±13 ab 319 ±30 a 

9/22 215 ±4 b 199 ±7 b 237 ±12 ab 295 ±27 a 

9/23 207 ±3 b 191 ±6 b 228 ±11 ab 283 ±28 a 

9/24 258 ±2 ab 237 ±7 b 283 ±13 ab 345 ±37 a 

10/16 204 ±9 b 190 ±2 b 220 ±10 ab 276 ±24 a 

10/17 189 ±9 b 175 ±3 b 203 ±1O ab 254 ±22 a 

10/18 193 ±8 b 179 ±4 b 208 ±10 ab 260 ±23 a 

10/19 204 ±7 b 190 ±4 b 219 ±10 ab 273 ±24 a 

10/20 203 ±6 b 189 ±4 b 219 ±11 ab 271 ±23 a 

10/21 229 ±6 b 214 ±5 b 247 ±12 ab 306 ±27 a 

10/22 210 ±5 b 199 ±5 b 230 ±12 ab 283 ±25 a 

10/23 202 ±4 ab 191 ±4 b 222 ±11 ab 271 ±25 a 

10/24 253 ±3 ab 237 ±5 b 275 ±13 ab 331 ±34 a 

Mean radiance ratio (±SE) with same superscript letters in each waveband ratio are 
not significantly different (Scheffe's multiple range test, P<0.05) . 
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Table 3.8 Statistical analysis on radiance ratios of different wavebands for soybean 

Waveband 
Radiance ratio (x 103

) (unitless) 

Ratio Soybean + l: Soybean + ;1 Soybean + 1 Soybean + 
Velvetleaf Mixed weeds Grasses No weeds 

8/16 143±7 a 145±8 a 155±8 a 182±8 a 
8/17 131±6 b 132±8 ab 141±8 ab 167±7 a 

8/18 135±6 ab 134±9 b 143±8 ab 171±7 a 
8/19 144±6 b 143±9 b 152±8 ab 183±7 a 
8/20 145±5 b 143±8 b 152±8 ab 182±7 a 

8/21 165±7 ab 163±1O b 173±9 ab 209±8 a 

8/22 154±6 a 153±10 a 164±10 a 194±7 a 

8/23 149±6 a 149±10 a 158±9 a 189±8 a 
8/24 190±7 b 192±13 ab 203±11 ab 241±8 a 
9/16 158±7 a 160±9 a 172±9 a 201±9 a 
9/17 145±6 b 145±9 b 156±9 ab 184±8 a 
9/18 149±6 b 148±9 b 158±9 ab 189±8 a 
9/19 159±6 b 157±10 b 168±9 ab 201±8 a 

9/20 160±5 b 158±9 b 168±9 ab 201±8 a 
9/21 183±7 b 180±11 b 192±10 ab 230±9 a 

9/22 170±7 ab 168±11 b 181±11 ab 215±8 a 
9/23 165±6 ab 164±1O b 175±lO ab 209±9 a 

9/24 211±7 b 211±14 b 225±12 ab 266±9 a 

10/16 156±6 a 158±9 a 169±8 a 195±9 a 

10/17 143±5 a 143±9 a 153±7 a 179±8 a 
10/18 147±5 a 146±9 a 156±8 a 183±8 a 
10/19 157±5 ab 156±5 b 166±8 ab 196±8 a 
10/20 157±5 b 156±9 b 166±8 ab 195±8 a 

10/21 180±6 ab 178±11 b 189±9 ab 223±9 a 

10/22 168±6 a 166±11a 178±9 a 208±9 a 

10/23 163±6 a 162±10 a 172±8 a 203±9 a 

10/24 208±7 a 209±14a 222±10 a 259±10 a 

Mean radiance ratio (±SE) with same superscript letters in each waveband ratio are 
not significantly different (Scheffe's multiple range test, P<O.05) . 
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3.4.5 Relationship between crop physiological parameters and spectral data 

This section discusses the results of the analysis linking ground observations 

of crop physiological parameters (Table 3.4 above) and the corresponding spectral 

measurements. 

The simple correlation coefficients (r) between the crop physiological 

parameters and the spectral measurements are given in Tables 3.9 and 3.10 for corn 

and soybean, respectively. Good correlation was observed between radiance and the 

various crop parameters. The maximum correlation between radiance and the crop 

parameters for corn were: -0.809 for LAI, -0.812 for plant height, -0.858 for 

greenness, -0.814 for photosynthesis rate, 0.389 for chlorophyll fluorescence and -

0.263 for soil moisture, in wavebands 9, 14, 19, 18, 9 and 24, respectively. Similarly, 

the maximum correlation coefficients between the radiance and the crop parameters 

for soybean were: 0.786 for LAI; -0.733 for plant height; -0.549 for greenness; 0.455 

for photosynthesis rate; -0.605 for chlorophyll fluorescence; and 0.736 for soil 

moisture, in wavebands 24, 21, 4, 19, 24, and 22, respectively. This analysis indicated 

that the highest correlation between radiance and a given parameter was not always 

found in the same waveband for both crops. 

In general, it was observed that the correlations between crop physiological 

parameters and radiance were higher for corn, corresponding to the greater influence 

ofweeds on corn than on soybean, as discussed in section 3.4.l.2. It is also interesting 

to note that higher correlation values were obtained for wavebands in the near­

infrared region, with the exception of three cases within the visible region: soybean 

greenness in waveband 4 (556.58 nm) and corn LAI and chlorophyll fluorescence in 

waveband 9 (585.17 nm). 

The observed spectral responses of the canopies were the result of complex 

interactions between crops, weeds and soil factors. In the present study, complications 

arose due to the presence of weeds, differences in individual leaf properties, and 

. canopy structures. For example, in the case of soybean, the highest negative 

correlation was obtained between greenness and radiance values in waveband 4 

(556.58 nm). However, higher radiance in this region usually indicates beUer growth 

and more biomass. Thus, it is difficult to extrapolate results obtained at leaf scale or 

60 



• 

• 

Table 3.9 Correlation coefficient (r) values relating radiance and crop parameters for 
corn 

Leaf 
Plant Photosynthesis Chlorophyll Soil 

Waveband are a 
height 

Greenness 
rate fluorescence moi sture 

index 
1 -0.716 0.441 0.507 0.445 0.057 -0.013 

2 -0.790 0.339 0.569 0.561 0.376 -0.005 

3 -0.493 -0.162 0.096 0.127 0.220 -0.105 

4 -0.457 -0.210 0.064 0.073 0.199 -0.108 

5 -0.583 0.017 0.306 0.231 0.252 -0.155 

6 -0.618 0.089 0.387 0.267 0.287 -0.138 

7 -0.728 0.339 0.590 0.446 0.288 -0.210 

8 -0.798 0.471 0.710 0.564 0.373 -0.135 

9 -0.809 0.462 0.701 0.558 0.389 -0.158 

10 -0.792 0.415 0.656 0.495 0.362 -0.165 

11 -0.589 -0.007 0.263 0.170 0.229 -0.210 

12 -0.394 -0.313 -0.066 -0.100 0.166 -0.218 

13 -0.053 -0.633 -0.452 -0.416 0.011 -0.194 

14 0.275 -0.812 -0.715 -0.651 -0.104 -0.119 

15 0.460 -0.802 -0.795 -0.744 -0.195 -0.068 

16 0.622 -0.737 -0.822 -0.777 -0.283 -0.043 

17 0.654 -0.724 -0.813 -0.797 -0.287 -0.048 

18 0.679 -0.730 -0.838 -0.814 -0.274 -0.011 

19 0.633 -0.742 -0.858 -0.786 -0.267 -0.016 

20 0.613 -0.746 -0.840 -0.801 -0.221 -0.024 

21 0.565 -0.731 -0.831 -0.755 -0.193 -0.048 

22 0.507 -0.756 -0.816 -0.717 -0.161 0.010 

23 0.442 -0.704 -0.770 -0.685 -0.190 -0.121 

24 0.312 -0.558 -0.650 -0.569 -0.198 -0.263 
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Table 3.10 Correlation coefficient (r) values relating radiance and crop parameters for 
soybean 

Leaf 
Plant Photosynthesis Chlorophyll Soil 

Waveband area 
height 

Greenness 
rate fluorescence moisture 

index 
1 -0.177 -0.001 0.099 0.394 0.050 -0.061 

2 -0.220 -0.207 -0.222 0.196 0.224 -0.524 

3 -0.308 -0.287 -0.522 -0.204 0.218 -0.498 

4 -0.313 -0.288 -0.549 -0.177 0.245 -0.480 

5 -0.344 -0.322 -0.471 -0.084 0.296 -0.541 

6 -0.340 -0.316 -0.376 0.018 0.310 -0.591 

7 -0.356 -0.319 -0.288 0.179 0.332 -0.559 

8 -0.216 -0.179 -0.099 0.310 0.234 -0.540 

9 -0.240 -0.200 -0.123 0.289 0.244 -0.538 

10 -0.253 -0.215 -0.166 0.290 0.237 -0.525 

11 -0.311 -0.271 -0.395 0.093 0.268 -0.541 

12 -0.210 -0.168 -0.412 0.034 0.136 -0.464 

13 -0.092 -0.066 -0.427 -0.084 -0.005 -0.232 

14 0.104 0.128 -0.357 -0.053 -0.182 0.053 

15 0.362 0.385 -0.181 0.100 -0.354 0.313 

16 0.541 0.563 0.008 0.209 -0.448 0.502 

17 0.629 0.647 0.119 0.340 -0.524 0.608 

18 0.679 0.692 0.197 0.383 -0.518 0.638 

19 0.724 0.724 0.265 0.455 -0.546 0.634 

20 0.737 0.723 0.260 0.450 -0.544 0.616 

21 0.743 0.733 0.315 0.439 -0.539 0.644 

22 0.706 0.663 0.328 0.408 -0.532 0.736 

23 0.761 0.691 0.449 0.342 -0.558 0.669 

24 0.786 0.701 0.489 0.374 -0.605 0.704 
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from canopies having only one species of plant, to complex canopies involving crops 

and weeds. 

These results were nevertheless comparable to those of other relationship 

estimates between crop parameters and remotely sensed spectral data. Ma et al. 

(1996) reported significant negative correlations (r ranged from -0.52 to -0.95) 

between data acquired with a hand-held multi-spectral radiometer and greenness 

(SPAD readings) at 600 nm, and LAI (r = -0.49 to -0.87) of corn plants at different 

stages of growth. In the above experiment, spectral measurements were acquired in 

eight wavebands (450 to 800 nm) over corn plots with different nitrogen application 

rates. The wavebands centered at 600 and 800 nm were found useful in deriving such 

relationships. Cloutis et al. (1996) reported correlation coefficients of 0.75 and greater 

between aerial spectral data and parameters describing crop condition (LAI, plant 

height, and difference in the canopy and ambient temperature) for various crops. The 

highest correlations were obtained at different wavebands for different crops and at 

different growth stages. Leaf chlorophyll was negatively correlated to spectral data 

near 600 nm for soybean (Adcock et al., 1990), and at 550 nm for corn (Blackmer et 

al., 1994a). Similarly, Thenkabail et al. (2000) reported correlations of 0.88 and 0.81 

between ground spectral data and LAI, and ground spectral data and plant height, 

respectively. However, these studies did not report the effect of weeds on these 

relationships, which makes it difficult to compare such results with those of the 

present study. Moreover, differences in type of sensor (multi- or hyper-spectral), type 

of platforms (ground- or air-based) of the study, and the scale of study (leaf or 

canopy) make it aIl the more difficult to draw comparisons or make inferences from 

previous work. 

Simple linear regresslOns were also executed in an attempt to develop 

relationships between crop parameters and spectral measurements. These 

relationships could then be used to estimate various crop parameters, based on the 

recorded radiance data. The regressions were based on the waveband with the highest 

correlation within the given crop parameter. Table 3.11 shows the crop, wavebands, 

crop parameters, linear regression parameters and the level of significance of the 

regression. The F-test was used to determine the statistical significance of the 
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Table 3.11 Linear regression analysis of spectral data vs. crop condition parameters 

Regression equation 
F value 

Crop Crop parameter Waveband coefficients 
a 1 b 

Corn 
Chlorophyll 9 0.596 5.89E-05 1.78 
fluorescence (ratio, 
unitless) 
Greenness 19 205.47 -0.0233 27.89** 
(comparative scale, 
unitless) 
LAI (cm2/cm2

) 9 5.25 -0.0017 18.89** 
Photosynthesis rate 18 132.86 -0.0135 19.64** 
(I1moIC02m-2s-1) 
Soil moi sture (%) 24 20.00 -0.0012 0.74 
Plant height (cm) 14 488.94 -0.0767 19.39** 

Soybean 
5.77* Chlorophyll 24 0.947 -4E-05 

fluorescence (ratio, 
unitless) 
Greenness 4 48.08 -0.0048 4.32* 
(comparative sc ale, 
unitless) 
LAI (cm2 /cm2) 24 -12.53 0.0026 16.17** 
Photosynthesis rate 19 -10.73 0.0031 2.61 
(I1molC02m-2s-1) 
Soil moi sture (%) 22 -16.42 0.0031 11.81** 
Plant height (cm) 21 -67.48 0.0160 11.62** 

Note: a and b are the intercept and the slope of the regression equation (y = a + bx), 
where y is the crop parameter and x the radiance at a given waveband. 
* P < 0.05 and ** P < 0.01 
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regresslOn equations. Highly significant (P<O.OI) linear relationships between 

spectral data and greenness, LAI, photosynthesis rate and plant height were obtained 

forcom. 

A similar analysis for soybean indicated that linear relationships (P<O.OI) 

existed between the spectral data and LAI, plant height and soil moisture content; the 

relationships between spectral data and chlorophyll fluorescence and greenness were 

also approximately linear (P<O.05). However, photosynthetic rate did not have a 

relationship with spectral data in the case of soybean. In general, this analysis 

indicated that many crop physiologie al parameters could be estimated from remotely 

sensed data. 

3.5 Conclusions 

Researchers have reported that weed detection is easier at the flowering stage 

(Lass and Callihan, 1997). However, if detection is carried out early in the growing 

season, weeds may be eliminated quickly and effectively without causing any serious 

damage to the main crop. Even though the image in the present study was taken when 

the weeds weI'e at the vegetative growth stage, and therefore difficult to distinguish 

from crops on the basis of radiance in the wavebands used, it is suggested that the 

presence of weeds in a corn crop or soybean crop can nevertheless be deduced with 

adequate reference data obtained by ground-truthing. 

On the other hand, it has been suggested that weed aggregations (mainly 

grassy weeds) at a specifie location tend to be stable over time (Johnson et al., 1997; 

Cardina et al., 1995). In such situations, weed mapping at the flowering stage could 

permit the application of measures that prevent seed formation and propagation in 

time and space. 

The relationships between incident light and recorded vegetation response are 

highly complex in themselves (Goel, 1988). A lot more research needs to be 

accomplished, if radiance or reflectance measurements are to be used for weed 

identification and mapping, in which the latter would be extremely useful in 

applications such as precision spraying. The results of the present study provide sorne 

indication that spectral data may be useful in distinguishing between fields with very 
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high or very low weed densities, if the field over which the image has been taken is 

known to have a specific crop at a given density. 

Various relationships between spectral data and many other factors involved 

in crop-weed interactions and in the interactions of plants and incident radiation have 

yet to be elucidated before one can consider the direct application of spectral data to 

weed management. Interpretation of spectral data at this time is difficult without 

fairly extensive ground-truthing. The results presented here do not indicate the 

plausible use of spectral data in providing more elaborate information on the weed 

status of cropped areas, when both crop and weed are in vegetative growth stages. At 

lowweed densities, much higher spatial resolution combined with higher spectral 

resolution might help in locating weeds and distinguishing them from each other and 

from crop plants. The results presented here do not give a clear indication that the 

differences in spectra are attributable to anything other than weed density; however, 

similar investigations at higher spectral and/or spatial resolution may reveal that the 

technology may, in fact, satisfy the original objective of discriminating between types 

of weed infestation . 
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PREFACE TO CHAPTER 4 

Despite not very conclusive 1999 results, many lessons were learned throughout the 

field season, especially during data evaluation over the winter. Given the spatial 

resolution available from the airborne platform, it became evident that plot sizes were 

far too small. AIso, the choice of soybean as a second crop was ill-advised in the 

study ofweed control strategies, because soybean was so densely seeded compared to 

corn, that weeds of any of the locally predominant species did not provide it with 

much competition. Moreover, because soybean did not receive any nitrogen fertilizer, 

the weed populations in the corn and the soybean crops were not directly comparable. 

The first major change made in the planning of the second study year involved 

focusing on only one crop: corn (Zea mays L.). The second change involved 

enlarging the dimensions of the square plots, from 9 m2 to 400 m2
, in order to obtain 

more data records per plot and thereby enhance the relative resolution. Given the 

impracticality of managing a single specific broadleaf weed, i.e. velvetleaf in plots of 

a larger dimension, a decision was made to use herbicides against grasses and to 

permit the proliferation of aIl broadleaved weeds in the designated plots. 

The results of the 1999 study appeared to corroborate the suggestion by 

several other researchers, that higher spectral resolution was needed to discriminate 

between weeds and crops, particularly at stages of development where there are such 

subtle differences in spectral signature. A 72-waveband imager was therefore chosen 

for the aerial measurements, and a 512-waveband spectroradiometer was obtained for 

ground-truthing. In order to continue in this vein, a decision was made to induce 

differences in spectral response in both the crop and the weeds by creating controlled 

nitrogen stress. This was effected by combining the weed control strategies with 

various nitrogen application rates in a factorial experiment. 

Research papers based on the chapter: 

1. Goel, P. K, S. O. Prasher, l-A. Landry, R. M. Patel, R. B. BonneIl, A. A. Viau, 

and l R. Miller. 2003. Potential of airborne hyperspectral remote sensing to 

detect nitrogen deficiency and weed infestation in corn. Computers and 

Electronics in Agriculture 38(2): 99-124. 
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2. Goel, P. K., S. O. Prasher, I-A. Landry, R. M. Patel, and A. A. Viau. 2003 . 

Estimation of crop biophysical parameters through airborne hyper-spectral remote 

sensing. Transactions of the ASAE (In press). 

3. Goel, P. K., S. O. Prasher, J.-A. Landry, R. M. Patel, and A. A. Viau. 2003. 

Assessment of corn growth parameters through hyperspectral field measurements. 

(Under preparation). 

(Copies of the published papers are given in the attached CD-ROM.) 
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CHAPTER4 

HYPER-SPECTRAL REMOTE SENSING TO DETECT 

NITROGEN AND WEED STRESSES 

4.1 Abstract 

Hyper-spectral images of a field experiment, aimed at studying the combined 

effects of weed and nitrogen stresses on corn, were acquired from ground-based and 

airborne sensors. The main objective of the study was to determine whether the 

effects of these stresses on crop physiological parameters, measured in the canopies, 

could be deduced from the hyper-spectral data. Four weed control strategies (no 

weed control, grass weed control, broadleafweed control, and full weed control) were 

replicated four times and assigned to the main plots; also three nitrogen fertilization 

rates (60, 120, 250 N kg ha- I
) were randomized to the subplots within each weed 

control strategy. Using a Compact Airborne Spectrographic hnager (CASI) sensor, 

hyper-spectral data in 72 narrow wavebands (407 to 949 nm) were collected 30 days 

after planting, at tassel stage, and at the fully-mature stage when most kerne1s were 

filled. Over the same time frame, a 512-waveband field spectroradiometer, with a 

range of 270 to 1072 nm, was used to acquire spectral data at ground level. Leaf 

greenness (SP AD readings), leaf area index (LAI), plant height, leaf nitrogen content, 

leaf chlorophyll content, and ancillary data were also determined on these days. 

The data analysis indicated that there were significant (a=0.05) differences in 

reflectance at certain wavebands, due to weed control strategies and nitrogen 

application rates. The influence ofweeds was mûst readily observed, in the aerial and 

field spectroradiometer data, when the corn had tassel about nine weeks after 

planting. A study of the aerial data acquired at all three growth stages rèvealed that 

the nitrogen effect was most c1ose1y related to reflectance at 498-nm and 671-nm 

wavebands. In these wavebands, no interaction was shown between nitrogen levels 

and weed controls. Differences in other regions of the spectrum, whether related to 

nitrogen or weeds, appeared to be dependent on the growth stage . 
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Regression models were generated to represent crop biophysical parameters 

and yield, in terms of reflectance at one or more wavebands, using the maximum r2 

improvement criterion. The models that best represented the data had five wavebands 

as independent variables. Coefficients of determination (r2
) for the regressions were 

generally greater than 0.9, when based on spectral data taken at the tassel stage. 

Models based on normalized difference vegetation indices (NDVI) were more reliable 

at estimating the validation data sets than were the reflectance models. For most of 

the parameters, the best results were obtained using data acquired at the tassel stage; 

in general, the wavebands at 701 nm and 839 nm were the most prevalent in the 

NDVI-based models. 

This study confirmed previous suggestions that greater spectral resolution 

should lead to more reliable relationships between the spectral data and the various 

indicators of crop status. The comparison between results obtained from airbome 

sensors and those acquired on the ground, indicated that unless there is willingness to 

pro vide the same coverage of a canopy with ground-based instruments, as is possible 

from airbome systems, the higher resolution of the ground-based sensors does not 

compensate for the full coverage at lower resolution from high altitude. 

4.2 Introduction 

Attempts to relate remote sensing data from aircraft or satellites to nitrogen 

stress of crops, or to the characteristics of weed populations in agricultural fields, 

have been based on film or digital photography, videography, or multi-spectral digital 

imaging systems, utilizing three or four broad wavebands. Although, these 

photographs or images provided invaluable assistance in the visual interpretation or 

qualitative assessment of field conditions, these images were only partly successful in 

quantifying the various objects or parameters of interest. The major drawback is that 

these technologies provide average reflectance over a limited number of fairly broad 

wavebands. This results in a considerable loss of spectral information, and is 

suggested as the reason for the difficuIties associated with discriminating species or 

objects showing subtle differences in very narrow spectral ranges. Hyper-spectral 

imaging systems scan a large number of narrow wavebands, and are thus capable of 
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acquiring information at much higher spectral resolution (Lamb and Brown, 2001; 

Lamb, 1998). Moreover, the digital format of remotely sensed spatial data facilitates 

automated processing (Frazier et al., 1997). 

Studies using handheld spectroradiometers have demonstrated the potential of 

hyper-spectral measurements in the detection ofweeds (Wang et al., 1998b; Brown et 

al., 1994) and nitrogen level in crops (Sui et al., 1998; Blackmer et al., 1996a; 

Blackmer et al., 1994a; Walburg et al, 1982). In a recent review ofweed detection in 

crops using remote sensing, Lamb and Brown (2001) also emphasized the need for 

remote sensing instruments with a higher spectral resolution. It is expected that high 

resolution, hyper-spectral satellite imagery will eventually be available, to provide a 

basis for monitoring crop health and the variability of several factors affecting 

growth, at a scale suitable for precision farming (Brisco et al., 1998; Moran et al., 

1997). In the future this would provide a basis for multi-dimensional mapping 

(Ponzoni and Goncalves, 1999). Thus, the extension of hyper-spectral technology 

from a ground-based system to an airborne platform is rather challenging and new for 

many applications in agricultural crop monitoring. Research is not yet available on 

the change in the reflectance spectrum of a CroP canopy under the simultaneous 

influences of nitrogen stress and competition from weeds, specifically utilizing 

ground-based, aerial or satellite platforms in a controlled experimental field setting. 

The aim of the present study was therefore to study the spectral response of 

corn to controlled combinations of weed and nitrogen stresses, using hyper-spectral 

imaging technology simultaneously from ground-based and airborne platforms. 

The specific objectives of the study were: (1) to identify specific wavebands 

or spectral regions in which variations in crop reflectance can be directly associated 

with: (a) the type and/or extent of the weed population in a com canopy, and/or (b) 

the nitrogen status of the crop, and (2) to develop functional relationships between 

hyper-spectral data and: (a) crop biophysical parameters; (b) crop yield. 

4.3 Materials and Methods 

4.3.1 Experimental design and layout 

The study was conducted in the summer of the year 2000 at the Lods 
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Agronomy Research Center of Macdonald Campus, McGill University, Ste. Anne-de­

Bellevue, Québec, Canada (45°25'45" N lat., 73°56 '00" W long.). The soils at the 

study site are classified as Bearbrook clay and Ste. Rosalie clay. Both soils belong to 

the Dark Gray Gleysolic group. Corn was grown under different levels of nitrogen 

and weed infestation in order to simulate a wide range of growth scenarios. The 

experiment was a two-factor, split-plot, completely randomized design. Four weed 

control strategies were assigned to the main plots (80m x 20m) and three nitrogen 

application rates were assigned to the sub-plots (20m x 20m). Each sub-plot had 26 

rows of corn. The weed treatments were: no weed control (W1), control of grasses 

(W2), control of broadleaf (W3), and full weed control (W4). Nitrogen treatments 

were: low nitrogen (N60, 60 kg Nlha), normal nitrogen (N120, 120 kg Nlha), and high 

nitrogen (N250, 250 kg Nlha). Potassium, phosphorous and micronutrients were 

applied at the locally recommended rates. The initial surface sail test report is given 

in Table 4.1. Corn was sown on May 30, 2000, at a rate of 76000 seeds per ha and a 

row spacing of 75 cm. Herbicides were applied on June 26, 2000, and nitrogen 

fertilizer, above the minimal rate of 60 kg/ha (which had been banded with the seeds) 

was broadcast in the second week of July. Details of the cultural operations and other 

relevant information are summarized in Table 4.2. The total precipitation for the year 

was 1005.2 mm, which was almost equal to the average (939.7 mm) for the region. 

However, precipitation from April to September was 613.6 mm, about 23% above the 

average for that period. Details on other weather conditions during the year are given 

in Table 4.3. 

4.3.2 Spectral measurements 

Hyper-spectral data were acquired from a Compact Airborne Spectrographie 

Imager (CASI), and at ground level using a 512-waveband field spectroradiometer 

(FieldSpec HH model, Analytical Spectral Deviee, Boulder, CO, USA). 

The CASI provided reflectance in 72-narrow wavebands in the visible and 

near-infrared regions (407 to 949 nm) at 2-m spatial resolution. Various details about 

the selected CASI wavebands are given in Table 4.4. Images were taken at three 

critical growth stages of the crop: (1) early growth - 30 days after planting 
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Table 4.1 Surface soil properties before corn planting 

Properties pH Organic Phosphorous 
matter (P) 

% mglkg 

Average 6.7 5.1 26.9 
Min. 6.5 4.5 8.2 
Max. 7.1 6.0 67.2 

Ammonium nitrogen (NH4-N) 
t Nitrate nitrogen (N03-N) 

Potash Calcium 
(K) (Ca) 

mglkg mg/kg 

238.9 3286.2 
195.5 2165.4 
328.7 4183.3 

• 
Magnesium Nitrogen (N) 

(Mg) (mg/kg) 
mglkg Dry soil Moist soil 

~-N N03-N
t ~-N N03-Nt 

828.8 6.0 4.8 2.2 5.9 
100.9 4.0 2.7 0.3 1.3 

1155.4 8.7 7.6 10.9 15.1 
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• Table 4.2 Details of tillage, sowing, fertilization and other cultural operations 

Operation Date Specifie details 
Tillage May first week 
Sowing May 30,2000 76000 seeds/ha, 

75 cm row spacing 
F ertilization a. May 30,2000 10-120-50, in aIl plots (N-P20S-K20) (kg/ha) 

b. June 01,2000 o in N60; 10 in N 12o; 90 in N250 (N kg/ha) 
e. July 12, 2000 50 in N60; 100 in N 12o; 150 in N250 (N kg/ha) 

Herbicide June 26, 2000 a. Grass control (W2): Ultim & Agral 90 
application b. Broadleaf control (W3): Banvel II 

c. Full weed control (W4): Ultim, 
Agral 90, and Banvel II 

Ultim: 18.7% Rimsulfuron and 18.7% 
Nicosulfuron; applied at a rate of 67 g/ha. 
Banvel II: Dicamba; applied at a rate of288 
g/ha wh en applied with Ultim, and 576 g/ha 
wh en applied alone. 
Agral 90: surfactant; 0.2% of herbicide 
amount except in plots where only Banvel II 
was applied 

CASI hyper- a. First flight on a. 30 Days after planting 
spectral June 30, 2000 
observations b. Second flight on b. 66 Days after planting 

August 05, 2000 
c. Third flight on c. 86 Days after planting 

August 25, 2000 

• 
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Table 4.3 Mean monthly temperature, relative humidity, wind speed, and total precipitation during the year 2000 and for a normal year 

Month Year 2000 Normal year 
(Average based on the years 1961-1990) 

Temperature Relative Wind Precipitation Temperature Relative Wind Precipitation 
(oC) humidity speed (mm) (oC) humidity speed (mm) 

(%) (km/h) (%) (km/h) 
Max. 1 Min. 1 Avg. Max. Min. Avg. 

January -5.1 -14.1 -10.2 72.01 14.57 90.6 -5.8 -14.9 -10.3 NA NA 63.3 
February -1.9 -12.1 -6.9 72.11 13.47 39.0 -4.2 -13.5 -8.8 NA NA 56.4 
March 6.3 -2.5 1.4 69.68 13.25 58.0 2.0 -6.9 -2.4 NA NA 67.6 
April 10.4 1.3 5.1 68.79 14.11 100.0 10.7 0.6 5.7 NA NA 74.8 
May 18.6 8.1 12.8 71.35 12.30 133.2 18.5 7.3 12.9 NA NA 68.3 
June 22.3 12.0 16.6 72.99 11.27 89.9 23.4 12.5 18.0 NA NA 82.5 
July 24.7 14.6 19.2 74.83 10.57 81.0 26.2 15.4 20.8 NA NA 85.6 
August 24.0 14.6 18.8 80.25 10.42 125.5 24.6 14.1 19.4 NA NA 100.3 
September 19.1 8.9 13.7 79.14 10.35 84.0 19.8 9.3 14.5 NA NA 86.5 
October 13.6 4.4 8.6 76.83 10.82 28.9 13.0 3.6 8.3 NA NA 75.4 
November 5.4 -0.5 2.4 82.90 9.92 72.6 5.2 -2.0 1.6 NA NA 93.4 
December -5.1 -12.7 -9.2 78.29 14.85 102.5 -2.9 -11.0 -6.9 NA NA 85.6 

----

NA: Not available 

75 



• • 
Table 4.4 Wavebands used to acquire aerial spectral data 

Waveband Spectral Waveband Spectral Waveband Spectral 
Number Center Width !::.À,'" reglOn Number Center Width !::.À,'" reglOn Number Center Width !::.À,'" reglOn 

(À) (nm) (nm) (À) (nm) (nm) (À) (nm) (nm) 
(nm) (nm) (nm) 

1 408.73 4.27 - . Blue 25 587.86 4.32 7.52 Green 49 770.00 4.37 7.65 NlR 
2 416.13 4.28 7.40 Blue 26 595.39 4.33 7.53 Green 50 777.65 4.37 7.65 NlR 
3 423.53 4.28 7.40 Blue 27 602.93 4.33 7.54 Red 51 785.30 4.37 7.65 NlR 
4 430.95 4.28 7.42 Blue 28 610.47 4.33 7.54 Red 52 792.96 4.37 7.66 NlR 
5 438.36 4.28 7.41 Blue 29 618.02 4.33 7.55 Red 53 800.62 4.37 7.66 NlR 
6 445.79 4.28 7.43 Blue 30 625.57 4.33 7.55 Red 54 808.29 4.38 7.67 NlR 
7 453.21 4.29 7.42 Blue 31 633.13 4.33 7.56 Red 55 815.96 4.38 7.67 NlR 
8 460.65 4.29 7.44 Blue 32 640.69 4.34 7.56 Red 56 823.64 4.38 7.68 NlR 
9 468.09 4.29 7.44 Blue 33 648.26 4.34 7.57 Red 57 831.32 4.38 7.68 NlR 
10 475.53 4.29 7.44 Blue 34 655.83 4.34 7.57 Red 58 839.01 4.38 7.69 NlR 
11 482.98 4.30 7.45 Blue 35 663.41 4.34 7.58 Red 59 846.70 4.38 7.69 NlR 
12 490.44 4.30 7.46 Blue 36 670.99 4.34 7.58 Red 60 854.39 4.39 7.69 NlR 
13 497.90 4.30 7.46 Blue 37 678.57 4.34 7.58 Red 61 862.09 4.39 7.70 NlR 
14 505.37 4.30 7.47 Green 38 686.17 4.35 7.60 Red 62 869.80 4.39 7.71 NlR 
15 512.84 4.30 7.47 Green 39 693.76 4.35 7.59 Red 63 877.51 4.39 7.71 NlR 
16 520.32 4.31 7.48 Green 40 70l.36 4.35 7.60 NlR 64 885.22 4.39 7.71 NlR 
17 527.80 4.31 7.48 Green 41 708.97 4.35 7.61 NlR 65 892.93 4.39 7.71 NlR 
18 535.29 4.31 7.49 Green 42 716.58 4.36 7.61 NlR 66 900.66 4.40 7.73 NlR 
19 542.79 4.31 7.50 Green 43 724.20 4.36 7.62 NlR 67 908.38 4.40 7.72 NlR 
20 550.29 4.31 7.50 Green 44 73l.82 4.36 7.62 NlR 68 916.11 4.40 7.73 NlR 
21 557.79 4.32 7.50 Green 45 739.45 4.36 7.63 NIR 69 923.84 4.40 7.73 NIR 
22 565.30 4.32 7.51 Green 46 747.08 4.36 7.63 NIR 70 931.58 4.40 7.74 NIR 
23 572.82 4.32 7.52 Green 47 754.71 4.36 7.63 NIR 71 939.33 4.40 7.75 NIR 
24 580.34 4.32 7.52 Green 48 762.35 4.37 7.64 NIR .-72 _~47.07 _4.41 7-,--74 NlR 

Note: NIR: Near-infrared 
*!::. À is the difference in the center of two successive wavebands 
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(June 30, 2000); (2) tassel stage - 66 days after planting (August 5, 2000); and, (3) 

fully-mature stage - 86 days after planting (August 25, 2000). Radiometrie, 

geometric, and atmospheric corrections were applied to the reflectance data. 

Specifications for the CASI sensor and the various radiometric, atmospheric, and 

geometric correction procedures used to correct the images are summarized in the 

Table 4.5. The corrected images were imported into ENVI software (ENVI 3.3, 

Research System, Inc., Boulder, Colorado, USA), and average reflectance values 

were extracted for each plot. Waveband 72 (centered at 947 nm) could not be used in 

the analyses due to excessive noise in the signal. 

The FieldSpec had a range of 270 to 1072 nm. Observations were made 

concurrently on the day of the first and second flights i.e., on 30th June and 5th 

August, respectively. Due to sorne instrument technical problems, ground 

measurements could not be made with this instrument on the day of the third flight. 

Spectral observations were acquired with a 15° field ofview. Six sc ans were made in 

each plot. The first three were made with the spectroradiometer placed directly over 

corn plants, whereas the other three were made with the instrument placed between 

corn rows. A four-band moving average filter was used to smooth the spectra. The 

smoothed spectra were then averaged. The data from 346 wavebands (with centers 

from 378.8 to 920.5 nm) were used for the analysis, due to excessive noise at the two 

ends of the nominal range of the instrument. 

4.3.3 Plant parameters 

Measurements on the various crop canopy and other parameters were taken on 

the day of the flight and on the following day. These measurements included: plant 

height, leaf greenness, leaf area index (LAI), leaf chlorophyll content, leaf nitrogen 

content and soil moisture. Crop yield and biomass were also recorded at the end of 

crop season. Plant height, a simple and direct indicator of plant health, was measured 

for ten plants in each plot, and then averaged. A LAI-2000 Plant Canopy Analyzer 

(Li-Cor, Inc., Lincoln, Nebraska, USA) was used to measure LAI values. LAI is a 

dimensionless quantity, but can be expressed as cmz foliage area per cmZ ground area . 

Greenness or the amount of chlorophyll in a plant is another visible indicator of stress 
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• Table 4.5 CASI specification and data processing 

Type of sensor Pushbroom imager 
Field ofview 37.8° 
Wavelength range 407 to 949 nm 
Number ofwavebands 72 
Sampling rate 405 (spatial direction) 
Spectral resolution 7.5 nm 
Spatial resolution 2mx2m 
Noise floor I.4DN 
SIN ratio 420:1 peak 

a. June 30th, 2000 
a. Reading: 150.732 North, Altitude above sea level: 

1148 m, Time: 18:22, Cloud free; 

b. August 5th, 2000 
b. Reading: 150.859 North, Altitude above sea level: 

1130 m, Time: 15:30, Cloud free; 

c. August 25th, 2000 
c. Reading: 331.225 North, Altitude above sea level: 

1152 m, Time: 14:58, Cloud free. 

Data processing 
Data collected from CASI were processed to at-sensor 
radiance using calibration coefficients determined in 
the laboratory by CRESTech (Center for Research in 
Earth and Space Technology). The CAM5S 

a. Radiometrie and atmospheric 
atmospheric correction model (O'Neill et al., 1997) 
was used to transform at-sensor radiance to ground-

corrections 
reflectance. Further, spectrally-flat uniform areas in 
each image (asphalt, bare soil and concrete surfaces) 
were used to do flat field adjustments in the spectral 
regions affected, residually by atmospheric absorption 
features for improved reflectance image data cubes. 
Images were corrected for the aircraft movements 
(yaw, pitch, and roll) using GPS data onboard the 

b. Geometrie corrections, aircraft, then rectified to UTM geographic 
geo-referencing, and coordinates. Further, white targets at the corners of 
image co-registration the field were used for precise correction and error 

assessment. The estimated RMSE (root mean square 
error) was about 0.5 pixel. 

• 
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in plants and was measured with a SP AD Chlorophyll meter (Minolta Camera Ltd., 

Osaka, Japan). This measure reveals the N status of the plant, because most leaf 

nitrogen (N) is contained in the chlorophyll molecules. Chlorophyll content was 

determined in the laboratory on twelve leaves from representative plants in each plot, 

following the procedure described by Arnon (1949). The total Kjehdahl nitrogen in 

the leaves was also determined. Biomass was estimated on the basis of ten plants 

harvested and weighed from each plot. Finally, crop yield was calculated by 

harvesting ten representative plants, from each of four randomly chosen locations in 

each plot. Variations in crop growth indicators due to thé various treatments are 

summarized in Table 4.6, for each aerial data acquisition campaign. 

4.3.4 Observations on weeds 

Two survey sets of observations were collected with reference to the weeds in 

the experimental plots. The first set was collected on July 14, and included details of 

weed species, density, plant height, and percentage coyer. The second set was 

collected on August 15. Because weeds were fully established at the time of the first 

observation (July 14), and no change in weed density was observed thereafter, the 

second set focused on percentage coyer of broadleaf, grassy, and total weeds in each 

plot. For the weed survey, 50cm x 50cm quadrates were used. Data were collected by 

placing the quadrate at three (first survey) and four (second survey) randomly 

selected areas within each plot. During the weed count, grass species were counted as 

the number of shoots per m2
, while broadleaf weeds were counted as the number of 

plants per m2
. 

Results of the weed surveys are summarized in Table 4.7. The most common 

grassy weeds were bamyard grass, yellow nutsedge, and crab grass. The predominant 

broadleaved weeds were Canada thistle, sow thistle, lamb's quarter, and redroot 

pigweed. The grassy weed population exhibited less variability across the various 

treatments than did the broadleaved weeds. No specific conclusions could be drawn 

about the effect of nitrogenapplication rate on individual weed species. As expected 

under field conditions, there were differences in the species of grassy weed present 

across different treatments. However, measurements on percentage weed cover 
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Table 4.6 Details ofvarious measurements of crop parameters, soil moisture, biomass and yield at different flight times 

Crop parameter Treatments Variation 
N60W1 N60W3 N60W4 N 12oW1 N 120W3 N 120W4 N250W1 N250W3 N250W4 across various 

plots 
First flight (June 30, 2000)# 
Leaf area index 1.14 0.59 0.77 1.24 0.86 0.72 1.50 1.13 1.06 0.30t02.18 
(cm2/cm2

) ±O.54 ±0.22 ±0.16 ±0.18 ±0.45 ±0.21 ±0.32 ±0.44 ±0.29 
Plant height 18.8 18.7 18.3 20.1 19.5 19.3 21.3 21.2 20.6 14.8 to 23.7 
(cm) ±1.7 ±1.9 ±1.2 ±2.5 ±1.1 ±2.1 ±1.5 ±1.3 ±lJ 
Greenness 34.9 32.6 33.3 35.7 36.2 34.7 41.7 41.7 39.3 26.1 to 43.67 
(unitless) ±3.6 ±4.8 ±3.8 ±3.0 ±3.2 ±2.1 ±1.6 ±2.3 ±1.6 
Leaf nitro gen 41.65 38.75 42.95 40.18 48.41 44.53 56.66 57.57 55.84 28.16 to 68.35 
(glkg) ±12.59 ±4.39 ±4.41 ±4.75 ±5.58 ±10.10 ±8.04 ±6.76 ±4.46 
Chlorophyll 0.0104 0.0096 0.0106 0.0096 0.0099 0.0107 0.0108 0.0139 0.0134 0.0051 to 0.016 
(mg/cm2) ±O.0024 ±0.0026 ±0.O025 ±0.0040 ±0.0028 ±0.0013 ±0.0017 ±0.0019 ±0.0007 
Soil moisture 34.2 33.9 33.9 34.8 33.5 34.0 33.7 34.0 32.7 27.3 to 39.5 
content (%) ±2.9 ±2.4 ±3.6 ±4.8 ±2.1 ±2.1 ±3.7 ±1.9 ±3.9 
Second flight (Aug. 05, 2000) 
Leaf area index 3.98 3.89 2.84 4.45 4.63 3.45 5.17 4.46 3.70 2.04 to 6.19 
(cm2/cm2

) ±1.36 ±0.85 ±0.91 ±0.94 ±0.62 ±0.24 ±1.18 ±1.11 ±0.34 
Plant height 151.6 152.6 159.0 173.8 183.1 182.7 204.5 206.0 199.7 113.7 to 230.5 
(cm) ±17.9 ±32.4 ±26.3 ±22.7 ±21.2 ±19.4 ±21.4 ±17.5 ±13.3 
Greenness 32.8 38.3 40.0 40.6 44.8 46.2 46.8 47.5 47.9 31.0 to 54.0 
(unitless) ±O.6 ±5.3 ±2.7 ±4.3 ±2.3 ±4.4 ±4.8 ±3.1 ±2.7 
Note- For each parameter average value ±SD for a treatment IS glVen; 
* Treatments: Wl- no weed control; W3-broadleafweed control; W4-full weed control; N60-60 kg Nlha; N 12o-120 kg Nlha; N250-250 
kgNlha. 
# At the time offirst flight, nitrogen rates in N60, N l2O, and N250 treatments were 10,20, and 100 kg Nlha, respectively. 
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Table 4.6 (cont'd) Details ofvarious measurements of crop parameters, soil moisture, biomass and yield at different flight times 

Crop parameter Treatments Variation across 
N60W l N60W3 N60W4 N l20Wl N 120W3 N l2oW4 N 250Wl N250W3 N250W4 various plots 

Second flight (Aug. 05, 2000) 
Leaf nitrogen 49.07 57.09 63.39 57.42 66.98 71.56 69.08 73.60 77.58 33.34 to 78.72 
(glkg) ±11.14 ±6.96 ±4.88 ±7.91 ±7.09 ±1.23 ±5.71 ±3.31 ±1.35 
Chlorophyll 0.0112 0.0128 0.0136 0.0150 0.0145 0.0151 0.0159 0.0165 0.0174 0.0093 to 0.0191 
(mg/cm2) ±0.0020 ±0.0020 ±0.0014 ±0.0030 ±0.0014 ±0.0022 ±0.0020 ±0.0011 ±0.0008 
Soil moi sture 32.1 32.9 33.8 34.6 32.1 31.7 30.9 30.6 30.9 27.5 to 38.3 
content (%) ±2.7 ±2.3 ±3.2 ±3.3 ±1.2 ±1.7 ±1.7 ±0.2 ±2.4 
Third flight (Aug. 25, 2000) 
Leaf area index 4.04 3.68 2.90 4.26 4.22 3.31 4.58 4.27 3.65 2.27 to 4.87 
(cm2/cm2

) ±0.52 ±0.56 ±0.57 ±0.48 ±0.52 ±0.58 ±0.25 ±0.26 ±0.37 
Plant height 151.6 152.6 159.0 173.7 183.0 182.7 204.4 206.0 199.6 113.7 to 230.5 
(cm) ±17.9 ±32.4 ±26.3 ±22.7 ±21.2 ±19.4 ±21.4 ±17.5 ±13.2 
Greenness 32.1 34.8 38.8 43.6 46.4 46.6 52.1 52.0 51.5 28.3 to 56.2 
(unitless) ±4.5 ±6.6 ±3.4 ±4.6 ±3.8 ±2.6 ±4.3 ±2.4 ±1.3 
Soil moisture 34.00 34.37 34.26 32.49 33.80 33.05 33.75 32.71 32.60 27.1 t040.2 
content (%) ±4.38 ±2.11 ±4.05 ±2.70 ±1.37 ±2.27 ±5.03 ±3.46 ±2.63 
Harvesting 
Biomass 1.0554 0.9853 1.1464 1.0723 1.1627 1.2636 1.3469 1.3733 1.4564 0.765 to 1.723 
(kg/m2) ±0.1629 ±0.2502 ±O.l583 ±0.2392 ±0.3591 ±0.1447 ±0.3254 ±O.l871 ±0.184 
Yield 4.072 3.605 4.803 5.015 6.135 6.114 6.551 6.859 6.754 2.291 to 7.820 
(tlha) ±1.199 ±1.521 ±1.000 ±1.1 47 __ ~823 ±0.591 ±1.112 ,~O~OO :±:0.658 

----

Note- For each parameter average value ±SD for a treatment is given; 
* Treatments: W1- no weed control; W3-broadleafweed control; W4-full weed control; N 60-60 kg N/ha; N l2o-120 kg Nlha; N250-250 
kgNlha. 
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Table 4.7 Details ofweed type, number, density, and average ground cover in different weed treatments 

" F , F -
Grassy weeds Broadleaf weeds 

Treatment * Barnyard Yellow Crab Quack Canada Sow Lamb's- Redroot Others 
nutsedge thistle thistle Quarter pigweed 

No.IHt. No.IHt. No. 1 Ht. No.IHt. No.IHt. No. 1 Ht. No. 1 Ht. No. J Ht. No. 1 Ht. 
N60Wl 57 12.3 57 11.1 70 3.0 a 0.0 2 3.7 1 0.3 9 5.3 la 4.8 13 5.1 
N6oW3 33 12.3 24 8.1 18 1.8 a 0.0 a 0.0 a 0.0 a 0.0 a 0.0 a 0.0 
N120Wl 72 19.6 66 14.1 46 2.3 68 5.0 1 0.6 2 1.1 17 5.5 12 3.3 16 4.7 
N12oW3 51 18.1 8 7.4 44 3.4 a 0.0 a 0.0 a 0.0 a 0.0 a 0.0 a 0.0 
N250Wl 67 17.3 107 13.8 119 5.4 a 0.0 1 3.4 2 1.4 11 7.5 9 5.9 la 5.1 
N25oW3 43 19.4 13 7.6 29 3.3 a 0.0 a 0.0 a 0.0 a 0.0 a 0.0 a 0.0 

b. Weed cover 

* 
Weed cover on Ju1y 14, 2000 Weed cover on August 15, 2000 

Treatment (%) (%) 
Grass y Broadleaf Total Grassy Broadleaf Total 

N60W1 31.3 ±3.8 6.0 ±0.1 37.3 ±3.7 77.5 ±5.2 10.68 ±1.2 88.1 ±5.4 
N60W3 8.8 ±2.2 0.0 8.8 ±2.2 38.3 ±11.8 0.0 38.3 ±11.8 
N12oW1 29.l ±3.3 5.6 ±1.2 34.7 ±4.4 78.3 ±2.7 10.4 ±2.5 88.7 ±4.2) 
N l 20W3 19.9 ±5.9 0.0 19.9 ±5.9 47.9 ±18.1 0.0 47.9 ±18.1 
N250W1 36.1 ±6.9 5.8 ±0.8 41.9 ±7.4 78.7 ±10.7 11.4 ±1.3 90.00 ±10.0 
N250W3 15.7 ±7.4 _0·9 ______ 15.7 ±7.4 55.4 ±10.1 0.0 55.4 ±10.1 

------------- -- --- ---- -

Note- Average value ±SD for a treatment is given; 
* Treatments: Wl- no weed control; W3-broadleafweed control; N6o-60 kg N/ha; N120-120 kg N/ha; N250-250 kg N/ha. 
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suggested little variation across weed categories. At the time of the first survey, weed 

coyer in plots with no weed control (Wl) ranged from 34.7 (± 4.4) to 41.9 (± 7.4) 

percent across nitrogen application rates. Where broadleaved weeds were controlled 

(W3), the coverage ranged from 8.8 (± 2.20) to 19.9 (± 5.9) percent. However, on 

August 151
\ weed coverage ranged from 88.1 (± 5.4) to 90.00 (± 10.0), and from 38.3 

(± 11.8) to 55.4 (± 10.1), for Wl and W3 plots, respectively. In plots with no weed 

control, grassy weeds accounted for 94.0 and 90.0 percent of the weed populations 

within the first and second surveys, respectively. The predominance of grassy weeds 

was not related to any residual effect of herbicide applications in previous years. 

4.3.5 Data analysis 

4.3.5.1 Selection of suitable wavebands 

Reflectance in different wavebands was analyzed using the General Linear 

Model (GLM) procedure of SAS (SAS Institute, Inc., Cary, NC, USA). Analyses of 

variance (ANOV A) were conducted, inc1uding single degree of freedom contrasts, for 

each of the 71 wavebands from the airbome sensor and each of the 346 wavebands 

from the field spectroradiometer. The ANOV A model was adjusted to involve only 

three weed treatments because very few broadleaved weeds were found in the plots 

where the herbicide application was only a control for grassy weeds. With reference 

to the natural variability in weed germination, the results of treatment W2 were 

considered to be normal. Thus, data associated with treatment W2 were exc1uded 

from the analyses. 

4.3.5.2 Estimation of crop biophysicaI parameters 

The spectral data were analyzed separately for the three flights. Multiple 

regression models were generated with reflectance values at the different wavebands 

as the independent variables, and crop biophysical parameters as the dependent 

variables. The maximum r criterion (MAXR) was used with PROC REG (SAS, 

Version 6.12) to choose the best one, two, three, four and five parameter models for 

each biophysical parameter, based on half the available data from a given flight. The 
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remaining data were used to test the performances of these models in order to select 

the best model for each dependent variable. 

This method had been used previously by Thenkabail et al. (2000), whereas 

Ingleby and Crowe (2000) used the closely related minimum ~ (MINR) improvement 

in a similar analyses of spectral data. Derived regression models with a maximum of 

five independent parameters were, 

(4.1) 

where: P = parameter to be estimated, 

bo, b l , b2, b3, b4, b5 = regression coefficients, and 

So, SI, S2, S3, S4, S5 = the percentage reflectance values recorded at 1, 2, 3, 4, and 5 

wavelengths, respectively. 

The plots of MAXR vs. the number of wavebands in the model indicated that 

inclusion of more than five parameters in the model had little effect on the 

performance of mode!. Furthermore, the criterion ratio of the number of wavebands in 

the model to the total number of field samples (5/24), being between 0.15 and 0.20 

(Thenkabail et al., 2000; Hruschka, 1987), led to the use of a maximum of five 

wavebands in the regression model. 

Performance of the developed models was then evaluated by comparing the 

observed and model predicted values. The sum of squared error (SSE) and the 

average relative percent error (ARPE) values were calculated for both the calibration 

and validation data sets, while the more stringent coefficient of efficiency (or Nash­

SutcIiffe coefficient), Ceff, (James and Burges, 1982) was calculated for the validation 

data only: 

i=n 

L:(Si -OJ2 
SSE = _i=_l ___ _ 

n 
(4.2) 
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l=n 

I(Si -OJ 
ARPE=-=-i=...:..l----

l=n 

LOi 
i=l 

where: Oi = individual observed value, 

Si = individual simulated value, 

o = mean observed value, and 

n = the number of paired observed-simulated values. 

(4.3) 

(4.4) 

The SSE is an indicator of quantitative dispersion between the observed and 

estimated values, while the ARPE expresses the error and sign ofthe error (i.e., over­

or under-estimation) on a percentage basis. The C eff evaluates the error relative to the 

natural variation in the observed values. A Ceff of 1.0 represents a perfect prediction, 

while a value of 0 (zero) represents a prediction no better than simply using the 

observed mean as a prediction; increasingly negative values indicate increasingly 

poorer predictions. 

Efforts were also made to develop simple linear regression models to predict 

crop biophysical parameters, based on a Normalized Difference Vegetation Index 

(NDVI). 

NDVI= NIR-R 
NIR+R' 

(4.5) 

where NIR and R are the reflectance values in the near-infrared and red spectrum 

regions, respectively . 
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The NDVI is the most widely used vegetation index used to highlight the 

vegetation component in a soil background, and to minimize the effects of 

illumination and other measurement conditions. Based on the results of the MAXR 

procedure, ten red wavebands (633 to 701 nm) and eleven near-infrared wavebands 

(778 to 854 nm) were found to be the most descriptive of crop biophysical 

parameters, for aIl crop stages. These wavebands were selected to carry out further 

analysis. NDVI values, resulting from aIl possible combinations of the selected red 

and near-infrared wavebands, were used to develop prediction models. 

4.4 ResuUs and Discussion 

The results of the analysis, aimed at selecting suitable wavebands for the 

detection of weeds and nitrogen fertilization levels, are presented and discussed first 

(section 4.4.1). A discussion of the models relating crop biophysical parameters to 

reflectance measurements foIlows in section 4.4.2. In both sections, the results of 

spectral observations are presented in order of crop growth stage (early growth, tassel, 

and fully mature). Furthermore, the results from the aerial and field spectral 

measurements are discussed under separate subheadings for each growth stage. 

4.4.1 Selection ofwavebands 

The average reflectance values obtained from aerial imagery at the tas sel stage 

are shown in Figures 4.la-c, for each nitrogen application rate. At this stage, the 

effect of nitrogen and weed treatments was quite evident in the different plots. Each 

of these figures exhibits a broad low intensity peak, centered in the green region at 

550 nm, and a sharp rise starting at about 675 nm, to a plateau in the vicinity of 762 

nm. The near-infrared reflectance associated with the weed controls is similar in 

shape but differs clearly in intensity at aIl three nitrogen application rates. 

The highest intensity in the near-infrared was always associated with no weed 

control, whereas the lowest was associated with full weed control. This is probably 

related to a greater standing biomass, as indicated by the higher LAI values (Figure 

4.2 and Table 4.6) in the plots with no weed control. The near-infrared intensities 

associated with control of broadleaved weeds were close to those of the full control 
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Note: At the time of first flight, nitrogen rates in N60, N 120, and N250 treatments 
were 10, 20, and 100 kg N/ha, respectively . 
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situation in Figure 4.1 a; however, they were even closer to the no weed control 

treatment (Figures 4.1 b and 4.1 c). Although for a given weed control, it is difficult to 

see the differences in intensity from one figure to the next, a careful inspection shows 

that the near-infrared plateaus are at greater reflectance intensities in Figure 4.1 c 

(highest nitrogen rate), and lowest in Figure 4.1a (lowest nitrogen rate). This also 

implies a correspondence between total reflected energy in the near-infrared and 

standing biomass. With reference to the weed treatments, a higher biomass was 

observed in the high nitrogen treatments, as compared to the low nitrogen treatments; 

for example, average LAI values were 5.17 and 3.98 cm2/cm2 in N250 and N60 

treatments, respectively, under a no weed control (W1) condition. The average LAI 

values across various treatments, at the time of tasseling, ranged from 2.84 to 5.17 

cm2lcm2 in N60W4 (low nitrogen and full weed control) and N250Wl (high nitrogen 

and no weed control) plots, respectively. Healthier plants in the higher nitrogen 

treatment plots, as supported by the higher greenness and plant height values, also 

caused higher reflectance in the near- infrared region (Table 4.6). In general, higher 

nitrogen levels resulted in more biomass, due to more vigorous growth of both crop 

and weeds. 

There was a general tendency for LAI values to decrease from tas sel to fully­

mature stage, which was due to a waning weed population (due to inability to 

compete with the corn), and also due to the start of corn senescence. A decrease in 

LAI values, from tassel stage to fully-mature stage, is evident in Figure 4.2. In 

general, at tas sel stage, the crop biophysical parameters ranged in magnitude across 

different treatments: LAI from 2.04 to 6.19 cm2lcm2; plant height from 113.7 to 230.5 

cm; greenness from 31.0 to 54.0 on a comparative scale; leaf nitrogen from 33.34 to 

78.72 glkg; leaf chlorophyll content from 0.0093 to 0.0191 mg/cm2 (Table 4.6). 

These large variations in various plant parameters demonstrated the combined effect 

of weeds and nitrogen on crop growth. Better crop growth in higher nitrogen plots 

was also supported by the measurements on other plant parameters (Table 4.6). 

It is interesting to note that peaks in the green region of the visible spectrum 

are not the only areas where it is possible to make sorne distinction associated with 

weed controls. The intensities are also ordered, being greatest in Figure 4.1a, and 
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lowest in Figure 4.1 c. When there is insufficient nitrogen tasseling is incomplete or 

delayed, resulting in decreased color change from green compared to a plot of 

tasseled plants. 

Figures 4.3a and 4.3b permit a comparison of the spectral response between 

no weed control and full weed control, at 120 kglha N, at the three growth stages. The 

reflectance in the near-infrared region was higher at the tassel stage when there was 

no weed control. However, at the fully-mature stage, the near-infrared reflectance was 

greater with full weed control. This is attributed to the fact that at the fully-mature 

stage, the crop and weeds were beginning to die back without weed control, whereas 

the corn did not start to die back until after the fully-mature stage had been reached 

when there was full weed control. 

To enable the separation of different weed and nitrogen effects on the basis of 

reflectance, a statistical analysis was performed for the different growth stages and 

the results are given in Tables 4.8 to 4.10 for aerial observations, and in Table 4.11 

for ground-based spectral data. A note of explanation is in order here. Although the 

analyses were done for each waveband separately, the total number ofwavebands (71 

for the aerial and 346 for the field spectroradiometer) were recombined into regions 

of identical significance, in order to reduce the size of the tables. For example, 

wavebands 45 to 69, inclusively, were the same with respect to the significance of 

effects and contrasts, and are presented as one large region. 

4.4.1.1 Early-growth stage 

4.4.1.1.1 Aerial measurements 

Although the crop was only four weeks old at the time of the first flight (June 

30, 2000), there were significant differences (a=0.05) in reflectance, attributable to 

the nitrogen application rate at aIl wavebands, except at 717 nm and 724 nm (Table 

4.8). The contrasts between pairs ofnitrogen application rates (N-rate) indicated that 

the differences were detectable only between the highest N-rate and the two others, 

but not between the two lowest, except in the waveband region of 739 to 924 nm. It 

should be noted at this stage, that there was no significant difference (difference of 10 

kg Nlha) between the N60 and N120 treatments because the additional dose ofnitrogen 
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Table 4.8 Statistical significance calculated from ANOV A for main and subplot 
treatments, interactions and contrasts, (aerial spectral data) 

Waveband Weed Nitrogen ~teraction Contrast 
Number Center or (W) (N) W*N Wl Wl W3 N60 N60 

Range (nm) vs. vs. vs. vs. vs. 
W3 W4 W4 N120 N250 

First flight (June 30, 2000)# 
1 to 13 409 to 498 NS * NS NS NS NS NS * 

14 to 27 505 to 603 NS * * NS NS NS NS * 
28 to 35 610 to 663 NS * * NS * NS NS * 

36 671 NS * NS NS * NS NS * 
37 to 40 679 to 701 NS * * NS * NS NS * 

41 709 NS * * NS NS NS NS * 
42 717 NS NS NS NS NS NS NS NS 
43 724 NS NS NS NS NS NS NS * 
44 732 NS * NS NS NS NS NS * 
45 739 NS * NS NS NS NS * * 

46 to 69 747 to 924 NS * NS NS NS NS * * 
70 to 71 932 to 939 NS * NS NS NS NS NS * 

Second flirht (Aug. 05, 2000) 
1 to 3 409 to 424 NS NS NS NS NS NS NS NS 

4 431 NS NS NS NS NS NS NS NS 
5 t08 438 to 461 NS NS NS NS NS NS NS NS 

9 468 NS NS NS NS NS NS NS NS 
10 to 11 476 tp 483 NS * NS NS NS NS NS NS 

12 490 NS * NS NS NS NS * NS 
13 to 14 498 to 505 NS * NS NS NS NS * NS 

15 513 NS * NS NS NS NS * * 
16 520 * * NS * * NS * * 

17 to 22 528 to 565 * * * * * NS * * 
23 573 * * NS * * NS * * 
24 580 * * NS * * NS * * 

25 to 27 588 to 603 * * NS * * NS * * 
28 610 NS * NS * * NS * * 
29 618 NS * NS * NS NS * * 

30 t039 626 to 694 NS * NS NS NS NS * * 
40 701 * * NS * * NS * * 

N120 
vs. 

N250 

* 
* 
* 
* 

* 
* 

NS 
NS 
NS 
NS 
* 
* 

NS 
* 

NS 
* 
* 

* 
NS 
NS 
NS 

* 
NS 
* 

NS 
NS 
NS 
NS 
* .. 

*Slgnlficant at < 0.05 probability level; NS-Non slgnlficant at < 0.05 probablhty level; 
Wl- no weed control; W3-broadleafweed control; W4-full weed control; N60-60 kg 
N/ha; N 120-120 kg N/ha; N250-250 kg N/ha. 
# At the time offirst flight, nitrogen rates in N60, N12o, and N250 treatments were 10,20, 
and 100 kg N/ha, respectively . 
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Table 4.8 (cont' d) Statistical significance calculated from ANOV A for main and subplot 
treatments, interactions and contrasts, (aerial spectral data) 

Waveband Weed Nitrogen IInteraction Contrast 
Number Center or (W) (N) W*N Wl Wl W3 N60 N60 N I20 

range (nm) vs. vs. vs. vs. vs. vs. 
W3 W4 W4 N I20 N250 N250 

Second flight (Aug. 05,2000, 
41 to 42 709t0717 * * * * * NS * * * 

43 724 * * * * * * * * * 
44 732 * * * * * * NS * * 
45 739 * NS * * * * NS NS NS 
46 747 * * NS * * * * * NS 

47 to 71 755 to 939 * * NS * * * * * * 
Third flight (Aug. 25, 2000) 
1 to 10 409 to 476 NS NS NS NS NS NS NS NS NS 

11 483 NS NS NS NS NS NS NS * NS 
12 490 NS NS * NS NS NS NS NS NS 

13 to 14 498 to 505 NS * NS NS NS NS * * NS 
15 to 28 513 to 595 NS * NS NS NS NS * * * 
29 to 39 618 to 694 NS * NS NS NS NS * * NS 
40 to 44 701 to 732 NS * NS NS NS NS * * * 

45 739 NS * * NS NS NS * * * 
46 to 52 747 to 785 NS NS * NS NS NS NS NS NS 
53 to 57 801 to 831 NS NS * NS NS NS NS * NS 
58 to 61 839 to 862 NS NS * NS NS NS * * NS 

62 870 NS * * NS NS NS * * NS 
63 877 NS NS * NS NS NS * * NS 

64 to 69 885 to 924 NS * * NS NS NS * * NS 
70 932 NS NS NS NS NS NS NS NS NS 
71 939 NS * NS NS NS NS NS NS NS 

*Significant at < 0.05 probability level; NS-Non significant at < 0.05 probability level; 
Wl- no weed control; W3- broadleafweed control; W4-full weed control; N60-60 kg 
N/ha; N 12o-120 kg N/ha; N250-250kg N/ha . 

94 



• 

• 

was applied as topdressing after the first flight. The difference in plant growth due to 

nitrogen, especially that between the highest (N250) and lowest level (N60), is also 

evident from the observations of various plant parameters (Table 4.6). The maximum 

average values of LAI, plant height, greenness, chlorophyll, and nitrogen content 

were recorded in the high nitrogen (N250) plots as 1.50 cm2/cm2
, 21.3 cm, 41.7 on a 

comparative scale, 57.57 glkg, and 0.0139 mg/cm2, respectively. The corresponding 

minimum values were recorded in plots with the lowest nitrogen fertilization (N60) as 

0.59 cm2/cm2
, 18.3 cm, 32.6 on a comparative scale, 38.75 glkg, and 0.0096 mg/cm2, 

respectively. 

Response to weed control, so early in the season, could not be associated with 

the changes in reflectance at any waveband. Visual observations supported that this 

was due to the fact that herbicide had been applied only five days earlier and had not 

taken full effect. In general, there is a time lag of a few days between the time of 

application of a herbicide and the die-back of weeds. Even at this stage, observations 

of various plant parameters did not show a c1ear trend in the crop growth difference 

among various weed treatments for a particular nitrogen fertilization level (Table 

4.6). 

There was an interaction between weed and nitrogen in four waveband 

regions. As shown in Table 4.9, the contrasts between nitrogen-rates depended on the 

type of weed control. With no weed control, aIl contrasts between pairs of nitrogen­

rates are significant at this early-growth stage of growth. It is interesting to note that 

the interaction was mainly associated with the reflectance values in the green and red 

regions of the visible spectrum. Where there was no weed control, the differences in 

reflectance between various pairings of nitrogen-rate were aU significant at the 

waveband regions indicated by the table. The situation is not as c1ear in plots with 

broadleaf and full weed controls. 

When the differences between the various weed controis were examined at 

separate nitrogen-rates (Table 4.10), it was apparent that differences between no weed 

control (Wl) and broadleaf control (W3) at the lowest nitrogen-rate (N60) were not 

significant except at waveband 41. At the normal (N120, 120 kg N/ha) and higher 

(N250, 250 kg N/ha) nitrogen-rates, there were no significant differences in reflectance 

95 



• 

• 

Table 4.9 Statistical significance obtained from a pairwise comparison of nitrogen 
fertilization rate means, for different weed control strategies, for bands in 
which the interaction between weed and nitrogen fertilization treatments was 
significant, (aerial spectral data) 

Waveband W1 W3 W4 
Number Center or N60 N60 N120 N60 N60 NI20 N60 N60 N120 

range vs. vs. vs. vs. vs. vs. vs. vs. vs. 
(nm) N I20 N250 N250 N120 N250 N250 N120 N250 N250 

First fli~ht (June 30, 2000)" 
14 505 * * * NS NS NS NS * * 

15 to 17 513 to 528 * * * NS NS * NS * * 
18 535 * * * * NS * NS * NS 
19 543 * * * NS NS * NS NS NS 
20 550 * * * * NS * NS NS NS 
21 558 * * * NS NS * NS * NS 

22 to 34 565 to 656 * * * NS NS * NS * * 
35 663 * * * NS NS NS NS * * 

37 to 38 679 to 686 * * * NS NS NS NS * * 
39 694 * * * NS NS * NS * * 
40 701 * * * NS NS * NS * NS 
41 709 * * * * NS * NS NS NS 

Second flight (AUI . 05, 2000) 
17 to 22 528 to 565 * * * * * NS * * NS 

41 709 * * * * * NS * * NS 
42 717 * * * * * * * * NS 
43 724 * * * NS * * NS * NS 
44 732 '" * * NS NS NS NS NS NS 
45 739 NS NS NS * * NS NS * NS 

Third flight (Aug. 25, 2000) 
12 490 * * NS NS NS NS NS NS NS 
45 739 * * * NS NS NS NS NS NS 
46 747 * * NS NS NS NS NS NS NS 
47 755 NS * NS * NS NS NS NS NS 

48 to 69 762 to 924 NS NS NS * * NS NS NS NS 
.. 

*Slgnlficant at < 0.05 probablhty level; NS-Non slgnlficant at < 0.05 probability level; 
Wl- no weed control; W3- broadleafweed control; W4-full weed control; N60-60 kg 
N/ha; N I20-120 kg N/ha; N250-250 kg N/ha. 
# At the time offirst flight, nitrogen rates in N60, N 1ZO, and N Z50 treatments were 10, 20, 
and 100 kg N/ha, respectively . 
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Table 4.10 Statistical significance obtained from a pairwise comparison ofweed 
treatment means, for different nitrogen fertilization levels, for bands in which 
the interaction between weed and nitrogen fertilization treatment was 
significant, (aerial spectral data) 

Waveband N60 N 120 N250 
Number Center or Wl Wl W3 Wl Wl W3 Wl Wl W3 

range vs. vs. vs. vs. vs. vs. vs. vs. vs. 
(nm) W3 W4 W4 W3 W4 W4 W3 W4 W4 

First fli~ht (June 30, 2000t 
14 505 NS * NS * * NS * * NS 

15 ta 16 513 ta 520 NS * * * * NS * * NS 
17 ta 22 528 ta 565 NS NS * * * NS * * NS 
23 ta 31 573 ta 633 NS * * * * NS * * NS 
32 ta 35 641 ta 663 NS * NS * * NS * * NS 
37 ta 38 679 ta 686 NS * NS * * NS * * NS 

39 694 NS * * * * NS * * NS 
40 701 NS * * * * NS * * * 
41 709 * NS * * * NS NS * * 

Second flight (Aug. 05, 2000) 
17 ta 22 528 ta 565 * * NS * * NS * * NS 

41 709 * * NS * * NS * * NS 
42 ta 43 717 ta 724 * * * * * * * * NS 
44 ta 45 732 ta 739 * * * * * * * * * 
Third flight (Aug. 25, 2000) 

12 490 * NS * NS NS NS NS NS NS 
45 739 * * NS NS * NS NS NS NS 

46 ta 69 747 ta 924 * * NS NS NS * NS NS NS 

*Significant at < 0.05 probability level; NS-Non significant at < 0.05 probability level; 
Wl- no weed control; W3- broadleafweed control; W4-full weed control; N60-60 kg 
N/ha; N12o-l20 kg N/ha; N250-250 kg N/ha. 
# At the time of first flight, nitrogen rates in N60, N 120, and N250 treatments were 10, 20, 
and 100 kg N/ha, respectively . 
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between the broadleaved weed and full weed controls, whereas there were significant 

differences between no control and the other controls at aH waveband regions except 

one (41 under high nitrogen-rate). 

4.4.1.1.2 Field spectroradiometer measurements 

Results of the analysis and the single-degree of freedom contrast for the data 

obtained with the field spectroradiometer are reported in Table 4.11. Results indicated 

that at this early stage, recorded reflectance values over different treatments were not 

significantly different in most of the wavelength regions. A significant difference in 

the overall nitrogen treatments was observed in the near-infrared wavelength region, 

from 744.6 to 920.5 nm. Only low (N60) and high (N250) nitrogen treatments plots 

could be separated in this region. However, from the airbome platform, in the 

corresponding wavelength region (747 to 924 nm), all three nitrogen levels were 

separable (Table 4.8). As expected, and also discussed in the previous section, the 

reflectance values in the weed treatments did not differ significantly, thus indicating 

that it was not possible to discriminate between weed control strategies on the basis of 

the field spectroradiometer data. 

In general, better results were obtained from aerial observations. This could be 

attributed to higher variability from the ground-based spectral data, because of too 

high a spatial resolution relative to the proportion of the plot included in the images. 

Brown et al. (1994) also reported better results with data acquired at low resolution 

(high altitude), with less within-class variability. 

4.4.1.2 Tassel stage 

4.4.1.2.1 Aerial measurements 

At the time oftasseling (second flight), the crop was about nine weeks old. At 

this stage, the effect ofweeds and nitrogen fertilization levels was more evident in the 

field. A wide range of variation in the values of the various plant parameters, across 

various weed and nitrogen treatments (Table 4.6), indicated better separability of the 

various treatments at this stage. The results of the statistical analysis (Table 4.8) 

indicated significant differences associated with nitrogen-rate across most of the 
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Table 4.11 Statistical significance ca1culated from ANOY A for main and subplot 
treatments, interactions and contrasts, (field spectroradiometer data) 

Waveband Weed Nitrogen Interaction Contrast 
Number Center or (W) (N) W*N Wl Wl W3 N60 N60 N120 

range (nm) vs. vs. vs. vs. vs. vs. 
W3 W4 W4 N120 N250 N250 

lDuring first flight (June 30, 2000)# 
1 to 226 378.8 to 732.1 NS NS NS NS NS NS NS NS NS 

227 to 233 733.6 to 743.1 NS NS NS NS NS NS NS * NS 
234 to 346 744.6 to 920.5 NS * NS NS NS NS NS * NS 

J>uring second flight (Aug. 05, 2000) 
1 to 89 378.8 to 517.0 NS NS NS NS NS NS NS NS NS 

90 to 91 518.6 to 520.1 NS NS NS NS NS NS NS * NS 
92 to 94 521.7 to 524.8 NS * NS NS NS NS NS * NS 
95 to 96 526.4 to 528.0 NS * NS NS NS NS * * NS 

97 to 106 529.5 to 543.7 NS * NS NS * NS * * NS 
107 to 109 545.2 to 548.4 * * NS NS * NS * * NS 

110 550.0 NS * NS NS * NS * * NS 
111 to 116 551.5 to 559.4 * * NS NS * NS * * NS 
117 to 127 561.0 to 576.6 NS * NS NS * NS * * NS 
128 to 165 578.2 to 636.3 NS * NS NS NS NS * * NS 

166 637.9 NS NS NS NS NS NS NS NS NS 
167 to 174 639.4 to 650.4 NS NS NS NS NS NS NS * NS 
175 to 200 652.0 to 691.3 NS NS NS NS NS NS NS NS NS 
201 to 203 692.8 to 696.0 NS * NS NS NS NS NS * NS 
204 to 205 697.5 to 699.1 NS * NS NS NS NS * * NS 
206 to 207 700.7 to 702.2 NS * NS NS * NS * * NS 
208 to 212 703.8 to 710.1 * * NS NS * NS * * NS 
213 to 214 711.7 to 713.2 * * NS NS * NS * * * 
215 to 219 714.8 to 721.1 * * NS * * * * * * 
220 to 226 722.7 to 732.1 * * NS * * * NS * * 

227 733.6 * NS NS * * * NS * NS 
228 to 230 735.2 to 738.4 * NS * * * * NS NS NS 
231 to 238 739.9 to 750.9 * NS NS * * * NS NS NS 
239 to 240 752.5 to 754.1 * NS NS * * * NS * NS 

241 755.6 * * NS * * * NS * NS 
242 to 346 757.2 to 920.5 * * NS * * * * * NS 

*Slgmficant at < 0.05 probability level; NS-Non significant at < 0.05 probability level; 
Wl- no weed control; W3- broadleafweed control; W4-full weed control; N60-60 kg 
Nlha; N 120-120 kg Nlha; N250-250 kg Nlha. 
# At the time of first flight, nitrogen rates in N60, N I2o, and N250 treatments were 10, 20, 
and 100 kg Nlha, respectively . 
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spectral reglOns investigated. Significant differences were associated with weed 

controls in 44 of the wavebands, and significant interactions only in Il wavebands 

(17 to 22, and 41 to 45). The regions in which the nitrogen-rate effects were 

significant, inc1uded the wavebands noted, as relevant to plant nitrogen content by 

Buschmann and Nagel (1993) - 545 nm (green), 660 nm (red) and 800 nm (near­

infrared) - and by Blacker et al. (1996a) - 550 nm. By combining the information 

from the additional wavebands, available through hyper-spectral imagery, it may be 

possible to detect more subtle differences in crop condition than has been possible 

before. 

Within the different weed treatments, significant differences in reflectance 

values occurred over much fewer wavebands. Wavelength regions, from 520 to 603 

nm and 701 to 939 nm, were found to be useful in the detection of different weed 

infestations. These inc1uded two of the four wavebands (centered at 440, 530, 650, 

and above 730 nm wavelengths) found useful in discriminating between weed species 

by Brown et al. (1994). Ten days after the flight, on August 15th
, the weed coyer 

observations also indicated a significant difference in weed coyer between the various 

weed treatments. The average total weed coyer in no weed control (WI) and broad 

leafweed control (W3) plots were about 89 and 47 percent, respectively (Table 4.7). 

The LAI values were also quite high, ranging from 2.04 to 6.19 cm2/cm2 across the 

various treatments (Table 4.6). Thus, it seems that differentiating between weed 

species in a cropping context, where the vegetation coyer provided by the crop is 

substantially greater than that provided by weeds, would probably require a spatial 

resolution of the order of the row spacing at early stages of growth, and much better 

resolution as the crop reaches the fully-mature stage. 

The contrasts, presented in Table 4.8, indicate that the significant differences 

between W3 (broadleaf control) and W4 (full weed control) only occurred in the 

near-infrared region. In the case of nitrogen, the contrasts indicated that differences 

occurred between N60 (low nitrogen level) and the other two nitrogen treatments over 

most of the investigated spectral range. Significant differences between N 120 and N250 

were present in only a few wavelength regions. In general, it was concluded that the 

differences in spectral response, associated with nitrogen-rate, weed control, and their 
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interaction, cannot be attributed to a specifie waveband. The difference in spectral 

response in weed treatments could be attributed to the level of weeds and their 

contribution to canopy fonnation. As shown by Brown et al. (1994) and various other 

researchers, reflectance can be significantly different at specifie wavebands from one 

species to the next. 

In general, no interaction was found between weed and nitrogen treatments, 

except in the wavelength regions from 528 to 565 nm and in 709 to 739 nm range. 

The results of the analysis for wavebands, where interaction had taken place (Tables 

4.9 and 4.10), also indicate that at this stage, the differences in reflectance are quite 

significant for most of the weed and nitrogen treatment conditions. However, under 

full weed control, it is difficult to separate out N120 and N 250 nitrogen levels (Table 

4.9). With respect to the different nitrogen levels, the reflectance value under 

different weed treatments was significantly different in most of the cases. With the 

presence of excess nitrogen, it was difficult to separate W3 and W4 treatments (Table 

4.10). 

4.4.1.2.2 Field spectroradiometer measurements 

At the time of the second flight, the crop canopy was almost fully developed 

with evidence of more pronounced effects ofweeds and nitrogen treatments. Analysis 

of variance of the spectral data showed significant differences due to both weed and 

nitrogen treatments in many wavelength regions (Table 4.11). Compared to weeds, 

the effect of nitrogen treatment was evident over a much wider range of the spectrum. 

The nitrogen effect was evident from 522 to 636 nm in the visible spectrum, and also 

in the entire near-infrared region, except for the region from 734 to 754 nm region. 

However, the presence of weeds significantly influenced the spectral response in the 

entire near-infrared. Weeds were only detectable in a small part of the visible, from 

545 to 548 nm, and from 551 to 559 nm. The most useful region was found to be in 

the NIR from 715 to 721 nrn, wherein aIl weed and nitrogen treatments were 

separable. Weed treatments Wl (no weed control) and W4 (full weed control) were 

separable in the rest of the NIR. Significant differences between N 120 (nonnal) and 

N250 (high) nitrogen plots occurred in only a few regions, whereas there were several 
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regions in which N60 could be differentiated from both Nl20 and Nz5o. A comparison 

with aerial observations suggested that better results could be obtained from aerial 

platforms due to the same reasons given in the previous section. 

4.4.1.3 Fully-mature stage 

4.4.1.3.1 Aerial measurements 

Most of the crop had reached fullmaturity by the time ofthird flight (August 

25). By this time, there were no significant differences in spectral response due to 

weed control. This is likely due to the fact that the corn canopy completely masked 

any weeds that may have survived the season. There were significant differences 

associated with the nitrogen-rate in many waveband regions, especially in the green 

to near-infrared region (498 to 732 nm) (Table 4.8). There was no interaction between 

weed control and nitrogen-rate in this region. The contrasts indicated that the 

reflectance values at different nitrogen levels were statistically different. All contrasts 

between nitrogen rates were significant in the green region (513 to 595 nm). The 

nitrogen effect on total biomass (represented by LAI) was quite evident, given a 

specific weed treatment. Higher nitrogen resulted in higher total biomass due to better 

crop and weed growth (Figure 4.2). However, there was more biomass within 

nitrogen levels when there was no weed control. Thus, the green range (513 to 595 

nm) was proficient in detecting differences due to nitrogen availability. 

The resultsof analyses of cases, where the weed/nitrogen interaction was 

significant, are summarized in Tables 4.9 and 4.10. The contrasts in Table 4.9 

indicate that it was not easy to discriminate between nitrogen-rates under fixed weed 

control. It is interesting to note that there were no significant differences in spectral 

response, due to nitrogen-rates, where there was full weed control. This could not be 

explained by the yield data (Figure 4.4). Although grain yields and total corn biomass 

werc higher, when more nitrogen was applied, there was no evidence of the effect of 

weeds on crop yield. With no weed control and control of broadleaved weeds only, 

the observed differences between nitrogen-rates did not occur within the same 

waveband regions. Thus, it was difficult to draw further conclusions regarding the 

discrimination of nitrogen-rates. 
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The contrasts between weed controls at fixed nitrogen-rates are given in Table 

4.10. There were significant differences at most wavebands between no weed control 

(Wl) and the others (W3 and W4) at the lowest nitrogen-rate (N60). There were no 

significant differences between weed controls at the highest nitrogen-rate. There was 

an indication of sorne potential of discriminating different weeds at the normal 

nitrogen-rate, particularly in the near-infrared region. 

In summary, the statistical analysis of spectral response of corn under 

different weed control strategies and nitrogen levels c1early indicated that various 

spectral regions in the visible and near-infrared regions of the spectrurn could be used 

to detect weeds and plant stress due to nitrogen level. The spectral rneasurements, 

acquired near 498 nm and 671 nm with the airbome sensor, were found to be the rnost 

indicative of nitrogen stress; this was irrespective of the tirne of flight and without the 

interaction with weed treatments. The significant impact of weeds was found only 

during the second flight. Thus, from the aforernentioned analysis it rnay be conc1uded 

that the impact of weeds and nitrogen could be detected by spectral rneasurements. 

The selection of specific spectral regions to detect a particular category of stress, 

weed or nitrogen, therefore appears to depend upon the growth stage of corn at which 

spectral data are acquired. 

4.4.2 Estimation of crop biophysical parameters 

The rnodels which express crop biophysical parameters and other canopy 

descriptors, in terms of reflectance in up to five wavebands as rneasured by the 

airbome sensor, are summarized in Tables 4.12, 4.22, and 4.24 for each of the three 

flights. Corresponding models based on data acquired with the field 

spectroradiometer are given in Tables 4.18, 4.21, and 4.23. 

4.4.2.1 Early-growth stage 

4.4.2.1.1 Aerial measurements 

The average values of the biophysical . crop parameters at the nine retained 

cornbinations of weed control and nitrogen-rate are given in Table 4.6. The crop 
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canopy was small and the soil was visible in most plots at the time of the first flight, 

30 days after sowing. The regression models with the highest ? were those involving 

five wavebands as predietors of biophysical parameters (Table 4.12). In general, 

wavebands in the blue and near-infrared regions were the most prevalent inthese 

models (recaIl that aIl possible combinations of up to five wavebands were assessed 

by the MAXR eriterion during the stepwise multiple regression procedure). Table 

4.12 also reveals that the models of a given biophysical parameter, involving 3, 4 or 5 

wavebands, often share common wavelengths. 

The performance of the five-waveband models was evaluated usmg the 

validation data sets. The relationships between the observed and predicted values of 

the various parameters are shown in Figure 4.5. The values of SSE, ARPE and Ceff 

are presented in Tables 4.13 and 4.14. The SSE values for aIl parameters were 

comparatively higher for the validation data set than for the calibration data set. 

While this is expeeted, it certainly suggests caution in applying the equations. The 

ARPE values show an underestimation by as much as 18% (LAI), and an 

overestimation of 34% for grain yield. Figure 4.5 shows that, although good 

agreements between the observed and predicted values were obtained for most of the 

parameters, the values of Ceff, rangeing from -1.444 to -0.193, suggest that the. models 

can be improved. 

The three most signifieant NDVI ratios for each crop parameter are presented 

in Table 4.15. Regression coefficients of the best NDVI-based models are given in 

Table 4.16. Although the coefficients of determination are very low, the values of 

SSE and ARPE for the calibration and validation data sets (Table 4.17) indicate that 

the NDVI models predict the validation data adequately. The ARPE values indicate a 

3.3% over-prediction of yield, and a 6.9% under-prediction of leaf nitrogen. The 

positive Nash-Sutcliffe (Ceff) values, presented in Table 4.14, also supported the 

observation that better prediction results from the NDVI-based models. Thus, 

although i values were higher for the models, based on the direct reflectance values 

compared to NDVI-based models, a further validation analysis indicated that the 

latter performed better. The Ceff values clearly indicated that better models could be 

developed with NDVI for LAI, plant height, and greenness estimation. The NDVI 
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Table 4.12 Use fuI wavebands and corresponding regression equation parameters for the 
estimation ofvarious crop-condition indicators and other parameters at early­
growth stage, using aerial spectral measurements (first flight; June 30, 2000) 

Crop 
r2 Wavelength 

Regression equation coefficient* 
parameter (nm) 

bo bl b2 b3 b4 bs 
lLeaf area 0.23 939 1.724 ~.105 
'ndex 0.37 724939 0.886 0.177 0.210 

0.63 709724732 1.354 1.504 4.399 3.026 
0.79 701 724 732 893 0.381 0.823 4.530 ~.939 1.123 
0.82 709 724 732 831 893 0.241 1.435 4.884 ~.151 0.805 1.413 

~lant 0.43 701 33.221 0.935 
~eight 0.63 416461 28.855 5.024 5.013 

0.68 ~53 461 505 27.343 16.108 6.801 8.423 
0.73 438453 461 505 27.113 ~.530 13.571 8.603 8.252 
0.84 424 438 453 513 932 15.455 4.927 ~.724 13.552 12.02 p.621 

Greenness 0.51 694 pO.840 1.933 
0.70 717932 40.647 2.829 1.879 
0.93 490558724 59.787 ~0.134 26.638 ~.448 
0.95 453 490 558 724 67.590 9.467 ~0.031 28.893 6.771 
0.97 453 490 528 558 724 68.310 15.204 ~0.740 16.960 18.494 ~.092 

lLeaf 0.21 461 0.0198 0.0012 
~hlorophyll 0.28 453461 0.0183 p.0080 0.0086 
~ontent 0.53 573595901 0.0033 0.0235 ~.0203 p.0016 

0.66 580633 901 916 0.0043 -0.0187 p.0163 p.0098 0.0082 
0.74 686694732901 916 -0.0161 0.0082 ~.0115 0.0108 0.0182 0.0097 

!rotalleaf 0.26 694 85.341 3.110 
Initrogen 0.37 431 618 77.784 ~0.180 13.679 

0.42 431461 618 65.854 145.312 25.952 9.564 
0.48 431476618618 79.900 ~7.941 ~6.191 51.386 19.104 
0.74 476573 610618717 62.318 149.206 97.279 ~59.67 219.66 13.460 

!rotaI soil 0.53 717 (70.652 2.032 
Imoisture 0.70 438528 63.551 8.097 8.056 

0.82 ~31 453 513 54.783 24.091 ~8.455 15.830 
0.88 431 453 498 543 62.918 19.845 35.578 12.565 4.713 
0.91 431 453 490 535 543 54.611 16.867 35.288 18.556 ~0.622 31.168 

* Regression equation coefficients of one-, two-, three-, four- and five-variable models 
Note-General form of the equation: crop parameter = bo + blSI + b2S2 + b3S3 + b4S4 + 
bsSs, where SI, S2, S3, S4, and Ss are the reflectance values at the respective wavelengths 
listed ab ove . 
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Table 4.12 (cont'd) Useful wavebands and corresponding regression equation parameters 
for the estimation ofvarious crop-condition indicators and other parameters at 
early-growth stage, using aerial spectral measurements (first flight; June 30, 
2000) 

Crop 
r2 Wavelength 

Regression equation coefficient* 
parameter (nm) 

bo bl b2 b3 b4 bs 
Grain 0.31 528 14.057 0.821 
yield 0.43 717 939 6.132 -0.725 0.489 

0.85 476 550724 12.333 ~.724 9.027 2.326 
0.89 476 490 550 724 13.078 3.777 ~.213 10.597 2.660 
0.92 446 476 490 550 724 14.170 3.360 ~.205 7.529 11.781 ~.957 

lBiomass 0.22 717 2.992 0.096 
0.31 724 939 2.125 0.157 p.088 
0.55 709 724801 0.929 0.716 1.265 0.554 
0.75 686 709 724801 0.734 0.547 ~.398 2.962 1.092 
0.80 618 709 724801 885 0.895 0.721 g.402 2.832 1.678 0.634 

* Regression equation coefficients of one-, two-, three-, four- and five-variable models 
Note-General form of the equation: crop parameter = bo + blS I + b2S2 + b3S3 + b4S4 + 
bsSs, where SI, S2, S3, S4, and S5 are the reflectance values at the respective wavelengths 
listed above . 
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Fig. 4.5 Observed and predicted crop condition parameters and crop yield, based on 
airbome spectral observations at the initial stage (June 30, 2000) 
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Table 4.13 Sum of squared error (SSE) and average relative percent error (ARPE) values of the best five-parameter models developed 

using aerial spectral measurements for the estimation of different crop parameters 

First flight 
(Early-growth stage) 

Crop parameters 
Sum of squared 

error (SSE) 

Cali: Vali.# 
Leaf area index, 

0.034 0.298 
cm2/cm2

) 

Plant height, 
0.653 5.581 

cm) 
Greenness 

0.560 15.708 /unitless) 
Leaf chlorophyll 
content, 0.000 0.000 
/mg/cm2) 

Totalleaf 
25.529 138.704 

nitrogen, (g/kg) 
Total soil 

1.125 5.837 
moisture, (%) 
Grain yield, 

3.726 5.590 
(tlha) 
Biomass 

0.013 0.115 
(kg/m2

) 

Cali.'·: Calibration data 
Vali.#: Validation data 

Average 
relative percent 
error (ARPE) 
Cali.· Vali." 

0.007 -0.182 

-0.001 0.074 

0.000 -0.009 

-0.002 -0.072 

0.007 -0.054 

0.001 0.023 

0.318 0.342 

0.005 -0.051 

Second flight Third flight 
(Tassel stage) (Fully-mature stage) 

Sum of squared Average Sum ofsquared Average relative 
error (SSE) relative percent error (SSE) percent error 

error (ARPE) (ARPE) 
Cali: Vali.# Cali.* Vali.# Cali.* Vali.# Cali.* Vali.# 

0.161 1.110 0.001 0.041 0.035 0.301 0.0 0.034 

39.140 220.405 0.0 -0.007 24.260 442.703 0.0 0.017 

2.405 17.628 0.0 0.031 1.250 17.248 0.0 0.010 

0.000 0.000 0.004 -0.040 - - - -

13.590 51.985 -0.001 0.051 - - - -

1.789 11.155 0.002 0.045 2.946 14.766 0.0 -0.052 

0.118 3.268 0.0 0.012 0.128 1.796 0.001 -0.003 

0.120 0.109 -0.249 -0.201 0.013 0.167 0.001 0.013 
-----------
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Table 4.14 Nash-Sutc1iffe coefficient values for comparison between observed and predicted values ofvarious crop-condition 

indicator parameters. Prediction results of the best five-parameter regression models and best NDVI-based model for 
validation data set, (aerial spectral measurements) 

Nash-Sutcliffe Coefficient 
Best five parameter regression model Best NDVI based model 

Crop parameter First flight 
Second flight 

Third flight First flight 
Second flight 

Third flight 
(Earl y-growth (Full y-mature (Early-growth (Fully-mature 

stage) 
(Tassel stage) 

stage) stage) 
(Tassel stage) 

stage) 
Leaf area index -0.993 -0.035 0.189 0.427 0.384 0.036 
Plant height -0.962 0.778 0.382 0.124 0.834 0.514 
Greenness -0.193 0.519 0.680 0.224 0.587 0.828 
Leaf 
chlorophyll -1.351 0.125 - -0.071 0.514 -
content 
Totalleaf 

-1.039 0.539 -0.383 0.414 nitrogen - -
Ifotal soil 

-0.273 -1.673 -0.714 -0.182 -0.289 -0.530 
Imoisture 
Grain yield -1.444 -0.217 0.350 0.091 0.782 0.673 
lBiomass -0.798 -0.297 -0.990 0.060 0.349 -0.427 

~-- - -_ .. _---------------------- - ---------~ -----
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Table 4.15 Best three useful NDVI indices and corresponding coefficient of detennination (r2) values for the development of 

regression models, for the estimation ofvarious crop-condition indicators and other canopy parameters at different crop 
growth stages, (aerial spectral measurements) 

Crop parameter 
Model-l Model-2 Model-3 

NDVI-l NDVI-2 r NDVI-3 r 
arly-growth stage (First flight, June 30, 2000) 
eaf area index (NIRS31 -R70l)/ (NIR.g31+R70l) 0.283 ~IR7s5-R70l)/ ~IR7S5+R70l) 0.282 ~IR778-R70l)/ ~77S+R70l) 0.281 
lant height (NIR793-R70l)/ ~793+R70l) 0.388 ~IR7S5-R70l)/ ~7S5+R70l) 0.386 ~IRsoI-R70l)/ ~801+R70l) 0.384 

Greenness (NIRsoI-R701)/ ~801+R70l) 0.569 ~IRS47-R70l)/ ~S47+R70l) 0.566 ~IRS31-R70l)/ (NIRS31+R70l) 0.565 
eaf chlorophyll (NIRS47-R70l)/ ~S47+R70l) 0.223 ~IR7S5-R70l)/ ~7S5+R70l) 0.217 ~IR793-R70l)/ ~793+R70l) 0.217 

Totalleafnitrogen (NIR778 -R70l)/ ~778+R70l) 0.352 ~IRsoI-R70l)/ ~sol+R701) 0.351 ~IR7S5-R70l)/ ~7S5+R70l) 0.345 
otal soil moi sture (NIRS39-Rti79)/ ~S39+~79) 0.024 (NIRS39-~71)/ (NIRS39+R671) 0.023 ~IRSW~79)/ ~SI6+~79) 0.023 

Grain yield (NIRsoI-R701)/ ~sol+R701) 0.327 (NIR793-R701 )/ (NIR793+R701) 0.326 ~IR785-R70l)/ ~785+R70l) 0.326 
lOmass IRsoI-R701 / IRsol+R701 0.024 IRs4rR7ol)/ IRs47+R701 0.023 IR785-R7ol / ~785+R70l) 0.022 
assel stage (Second flight, August 5, 2000) 
eaf area index (NIR847-~71)/ ~847+~71) 0.464 ~IRs39-~71)/ ~839+R671) 0.462 ~IRS54-~71)/ ~S54+R671) 0.462 
lant height (NIRS39-R70l)/ ~839+R701) 0.708 ~IR831-R70l)/ ~S31+R701) 0.706 ~IR824-R70l)/ ~S24+R70l) 0.704 

Greenness (NIRS39-R70l)/ ~S39+R701) 0.293 ~IR77S-R70l)/ ~778+R70l) 0.293 ~sol-R70l)/ ~801+R70l) 0.292 
eaf chlorophyll (NIRS47-R70l)/ ~847+R70l) 0.177 (NIRSI6-R70l)/ ~S16+R701) 0.175 ~IRS24-R70l)/ ~S24+R70l) 0.174 
otalleafnitrogen (NIRS39-R70l)/ ~S39+R70l) 0.197 (NIRS31-R70l)/ ~831 +R701 ) 0.194 ~IR77S-R70l)/ ~778+R70l) 0.192 
otal soil moisture (NIRs31-R70l)/ ~831+R70l) 0.011 ~S54-R70l)/ ~854+R701) 0.011 ~IRS47-R70l)/ ~S47+R70l) 0.010 

Grain yield (NIRS39-R70l)/ ~IR839+R701) 0.567 (NIRS31-R70l)/ ~S31+R701) 0.565 (NIRs24-R7ol)/ ~S24+R70l) 0.563 
lOmass S39-R70l / 839+R70l 0.274 77S-R70l / 77S+R701 0.273 ~IR824-R70l / ~824+R70l 0.271 

Note: Subscripts represent wavelength for near-infrared (NIR) and red (R) reflectance 
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Table 4.15 (cont'd) Best three useful NDVI indices and corresponding coefficient of detennination (r2

) values for the development of 
regression models, for the estimation of various crop-condition indicators and other canopy parameters at different crop 
growth stages, (aerial spectral measurements) 

Crop parameter 
Model-l Model-2 Model-3 

NDVI-l r NDVI-2 NDVI-3 r 
Fully-mature stage (Third flight, August 25, 2000) 

eaf area index (NIR831-~63)/ (NIR831+~63) 0.590 ~IIt839-~63)/ (~839+~63) 0.590 ~IR847-~79)/ ~847+~79) 0.589 
lant height (NIR854-~48)/ ~IIt854+~48) 0.866 ~IIt801-~48)/ ~801+~8) 0.866 ~IR839-~33)/ ~IR839+~33) 0.865 

Greenness (NIR839-It701)/ (NIR839+It701) 0.934 ~IR831-It701)/ ~831+It701) 0.932 ~IR839-~94)/ ~839+It694) 0.932 
otal soil moi sture (NIR854-~79)/ (NIR854+~79) 0.003 ~IIt816-~79)/ ~IIt816+It679) 0.003 ~IIt839-~63)/ ~IIt839+~63) 0.003 

Grain yield (NIR831-It701)/ (NIR831+It701) 0.897 ~IIt839-Ft701)/ ~839+Ft701) 0.894 ~831-~94)/ ~831+~94) 0.889 
iomass ~IFt778-Ft701 / 778+Ft701 00400 IFt785-Ft701 1 78S+Ft701 0.395 IFt793-Ft701)/ ~793+Ft701 0.395 

Note: Subscripts represent wavelength for near-infrared ~IR) and red (Ft) reflectance. 
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Table 4.16 Regression equation parameters for the best NDVI-based model for the 
estimation ofvarious crop-condition indicators and other canopy parameters 
at different crop growth stages, (aerial spectral measurements) 

Crop parameter NDVI r Intercept (bo) Coefficient (b l) 
lEarly-growth stage (First flight, June 30, 2000) 
lLeaf area index (NIRS3l -R701 )/ (NIRS31+R701) 0.283 0.0128 3.3407 
IPlant height (NIR793-R701)/ (NIR793+R701) 0.388 14.70 17.96 
Greenness (NIRsol-R701)/ (NIRsol+R701 ) 0.569 22.66 47.01 
lLeaf 
~hlorophyll (NIRs4rR701)/ (NIRS47+R701) 0.223 0.0059 0.0174 
!content 
!fotalleaf 

(NIR77s -R701 )/ (NIR77S+R701) 0.352 21.88 82.76 
Initrogen 
rIotaI soil 

(NIRS39-R(179)/ (NIRS39+Rti79) 0.024 36.1 -5.845 Imoisture 
Grain yield (NIRsol-R701)/ (NIRsol+R701) 0.327 2.31 11.97 
lBiomass (NIRsol-R701)/ (NIRsol+R701) 0.024 1.090 0.565 
!fassel stage (Second flight, August 5, 2000) 
Leaf area index (NIR84rRti71)/ (NIR847+Rti71) 0.464 -28.17 35.30 
Plant height (NIRs39-R701)/ (NIRs39+R701) 0.708 -296.29 614.90 
Greenness (NIR839-R701)/ (NIR839+R701) 0.293 -29.83 94.49 
lLeaf 
~hlorophyll (NIR847-R701)/ (NIR847+R701) 0.177 -0.0061 0.0269 
!Content 
rIotalleaf 

(NIRS39-R701)/ (NIR839+R701) 0.197 -25.80 118.62 
Initrogen 
rIotaI soil 

(NIR831-R701 )/ (NIR831+R701) 0.011 38.63 -7.75 
Imoisture 
KJrain yield (NIRS39-R701)/ (NIR839+R701) 0.567 -17.05 29.34 
lBiomass (NIRs39-R701)/ (NIRs39+R701) 0.274 -1.3l3 3.321 
Wully-mature stage (Third flight, August 25, 2000) 
lLeaf area index (NIR831-Rti63)/ (NIRS31+Rti63) 0.590 -41.33 51.65 
Plant height (NIRs54-~S)/ (NIRS54+~S) 0.866 -1521.84 1999.07 
Greenness (NIRs39-R701)/ (NIRs39+R701) 0.934 -32.24 145.36 
!fotal soil 

(NIRS54-Rti79)/ (NIRs54+Rti79) 0.003 46.239 -16.297 
Imoisture 
KJrain yield (NIR831-R701)/ (NIR831+R701) 0.897 -9.51 28.58 
lBiomass (NIR77S-R701)/ (NIR77S+R701) 0.400 -1.967 4.435 
Note-General fonn of the regression equation: crop parameter = bo + bl(NDVI), where 
NDVI is the nonnalized difference vegetation index. 
Subscripts represent wavelength for near-infrared (NIR) and red (R) reflectance . 
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Table 4.17 Sum ofsquared error (SSE) and average relative percent error (ARPE) values of the best NDVI models, developed for the 

estimation of different crop parameters, (aerial spectral measurements) 

First flight 
(Early-growth stage) 

Crop parameter 
Sum of squared 

error (SSE) 

Cali.* Vali.# 
Leaf area index, 

0.136 0.086 itcm2lcm2) 

Plant height, (cm) 2.522 2.490 
Greenness, 

8.238 10.219 
(unitless) 
Leaf chlorophyll 
content,(mglcm2) 

0.000 0.000 

Totalleaf 
62.950 94.135 

nitrogen, (glkg) 
Total soil 

11.760 5.420 
moisture, (%) 
Grain yield, (tlha) 1.450 2.078 
lBiomass, (kglm~) 0.065 0.060 
Cali. ,.: Calibration data 
Vali.#: Validation data 

Average 
relative percent 
error (ARPE) 
Cali." Vali.# 

0.0 0.005 

0.0 0.025 

0.0 -0.008 

0.0 -0.040 

0.0 -0.069 

0.0 0.007 

0.0 0.033 
0.0 0.001 

Second flight Third flight 
(Tassel stage) (Fully-mature stage) 

Sum of squared Average Sum of squared Average 
error (SSE) relative percent error (SSE) relative percent 

error (ARPE) error ARPE) 
Cali: Vali.# Cali." Vali.# Cali. * Vali.# Cali. * Vali.# 

0.409 0.730 0.0 -0.02 0.155 0.358 0.0 -0.05 

180.088 165.693 0.0 -0.02 115.532 348.461 0.0 0.05 

24.858 11.444 0.0 -0.01 4.316 9.300 0.0 0.01 

0.000 0.000 0.0 0.01 - - - -

66.360 66.113 0.0 0.02 - - - -

7.440 5.378 0.0 0.03 6.901 13.183 0.0 -0.06 

0.759 0.~86 0.0 0.00 0.273 0.587 0.0 -0.03 
0.034 0.055 0.0 0.02 1.273 0.120 0.0 0.01 
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ratio of reflectance at 701 run (red) and at 801 run (NIR), was found to be most 

successful predicting greenness, yield and biomass estimation. However, no single 

ratio was found to be useful for a11 the given parameters. The reflectance at 701 run 

was involved in the NDVI models of aIl crop physiological parameters. 

4.4.2.1.2 Field spectroradiometer measurements 

Following the MAXR procedures, regression models were also developed 

using the spectral data acquired from the field spectroradiometer. Best models 

(highest ~ value), with a minimum of one to a maximum of five independent 

parameters for the estimation of the various biophysical parameters, are summarized 

in the Table 4.18. Higher coefficient of determination (r2>0.8) values for the five­

waveband model were obtained for most of the biophysical variables, except for the 

biomass (~=0.71). The results suggest that significant models can be developed for 

the estimation of the various biophysical variables, using spectral data acquired from 

a field spectroradiometer. As ohserved in the case of aerial measurements, no single 

wavelength region was found to be useful for the estimation of aIl of the parameters. 

However, maximally useful wavebands for the development of prediction models 

were found in the near-infrared regions, followed by the wavebands in the blue 

reglOn. 

The next procedure involved the best five-parameter models for each variable 

and their validation with the unseen data set. The SSE and ARPE values, indicating 

the usefulness of the models for both calibration and validation data sets, are 

presented in Table 4.19. The ARPE values indicated that the model under-estimated 

LAI by 3.8 % and over-estimated leaf chlorophyll by 12.3%. However, when models 

were examined, based on much stiffer Ceff values, the results were not very 

encouraging, with the Ceffvalues ranging from 0.202 to -2.158 (Table 4.20). 

A comparative evaluation (based on 1- values) between the different models, 

developed using the field spectroradiometer and aerial observations, indicated that 

slightly better estimates for LAI, leaf chlorophyll, and leaf nitrogen could be made 

from the former . 
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Table 4.18 Useful wavebands and corresponding regression equation parameters for the 
estimation ofvarious crop-condition indicators and other parameters, at the 
early-growth stage for the data acquired from the field spectroradiometer, 
(first flight; June 30, 2000) 

Crop 
rZ Wavelength (nm) Regression equation coefficient* 

parameter 
bo b l bz b3 b4 bs 

Leafarea 0.30 903 -0.171 0.044 
'ndex 0.46 906909 -0.189 0.535 -0.489 

0.54 911913 914 0.013 -0.605 1.237 -0.593 
0.83 873875886917 -0.092 -1.966 1.314 1.010 -0.321 
0.88 815873875886917 -0.238 0.423 -2.213 1.155 1.005 -0.322 

Plant 0.50 ~04 29.042 -2.276 
height 0.54 379404 28.417 0.676 -2.716 

0.56 379404410 28311 0.685 -4.938 2.122 
0.76 603 705 903 905 20.198 2.595 -3.061 2.868 -2.287 
0.80 379603705903905 18.947 0.713 2.645 -3.272 3.189 -2.570 

Greenness 0.54 ~06 56.721 -4.959 
0.61 ~06421 55.262 -11.455 5.992 
0.87 622668884 32.580 -14.671 13.155 1.016 
0.93 627669 867 883 32.474 -19.458 17.413 -6.605 7.794 
0.96 399627669867883 36.334 -4.094 -19.325 18.809 -7.721 8.867 

Leaf 0.31 886 0.0049 0.0002 
chloro- 0.71 760815 0.0027 -0.0033 0.0035 
phyll 0.78 382765815 0.0057 -0.0012 -0.0096 0.0097 
content 0.89 384765815888 0.0067 -0.0016 -0.0118 0.0090 0.0028 

0.94 384763765815888 0.0091 -0.0020 0.0060 -0.0175 0.0085 0.0030 
Totalleaf 0.21 385 69.516 -5.938 
nitrogen 0.63 765803 9.822 -34.250 34.709 

0.73 765803844 15.157 -27.514 45.212 -17.058 
0.81 767803 855 855 14.640 -34.264 52.565 -37.211 19.416 
0.84 385767803844855 29.663 -3.126 -36.329 50.026 -34.586 21.149 

Total soil 0.19 704 43.939 -0.768 
rmoisture 0.31 567704 42.119 4.822 -4.513 

045 526570704 45.080 -8.561 11.807 -4.401 
0.79 388566567698 45.155 -2.841 -80.384 85.835 -4.669 
0.86 415537566567702 44.344 -5.150 9.212 -83.273 82.500 -5.159 

* Regression equation coefficients of one-, two-, three-, four- and five-variab1e models 
Note-General form of the equation: crop parameter = bo + blSI + b2SZ + b3S3 + b4S4 + 
bsSs, where SI, S2, S3, S4, and Ss are the reflectance values at the respective wavelengths 
listed above . 
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Table 4.18 (cont'd) Useful wavebands and corresponding regression equation parameters 
for the estimation of various crop-condition indicators and other parameters, 
at the early-growth stage for the data acquired from the field 
spectroradiometer, (first flight; June 30, 2000) 

Crop ~ Wavelength (nm) Regression equation coefficient* 
parameter 

bo b l b2 b3 b4 b5 
Grain 0.49 ~01 12.404 -1.666 
~eld 0.59 ~01696 11.308 -3.385 0.745 

0.70 1401611696 10.590 -2.599 -2.874 3.054 
0.78 1401493624696 7.736 -4.157 4.447 -5.308 3.468 
0.91 ~O 1 493 504 624 696 8.359 -4.130 12.887 -8.994 -5.214 3.984 

lBiomass 0.20 398 1.976 -0.174 
0.36 390398 1.885 0.458 -0.581 
0.53 398424434 1.872 -0.566 1.437 -1.044 
0.62 398424449665 2.409 -0.709 1.457 -1.632 0.411 
0.71 398424454665671 2.317 -0.599 1.587 -1.893 2.178 -1.701 

* Regression equation coefficIents of one-, two-, three-, four- an~ five-vanable models 
Note-General form ofthe equation: crop parameter = bo + biS} + b2S2 + b3S3 + b4S4 + 
b5S5, where SI, S2, S3, S4, and S5 are the reflectance values at the respective wavelengths 
listed above . 
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Table 4.19 Sum of squared error (SSE) and average relative percent error (ARPE) values of the best five-parameter mode1s, developed 

for the estimation of different crop parameters using spectral values acquired with the field spectroradiometer 

First flight, 30th June 
(Early-growth stage) 

Crop parameter 
Sum of squared 

error (SSE) 

Cali." Vali.# 
Leaf area index, 

0.024 0.358 
(cm2Icm2

) 

Plant height, cm) 0.839 2.903 
Greenness, 

0.837 23.479 unitless) 
Leaf chlorophyll 
content, (mglcm2

) 
0.000 0.000 

~otalleafnitrogen, 
11.333 81.962 

~g/kg) 

rrotal soil moi sture, 
1.115 16.249 If%) 

Grain yield, 
0.212 6.433 

(t/ha) 
lBiomass, 

0.020 0.149 
'f~g"m~l 
Cali. ~: Calibration data 
Vali.#: Validation data 

Average 
relative percent 
error(ARPE) 
Cali.* Vali.# 

0.000 -0.038 

0.000 -0.011 

0.000 0.019 

-0.002 0.123 

0.000 0.017 

0.000 0.013 

0.000 0.121 

0.000 0.080 

25th July Second flight, 5th August 
(Before tassel stage) (Tassel stage) 

Sum of squared Average Sum of squared Average 
. error (SSE) relative percent error (SSE) relative percent 

error (ARPE) error (ARPE) 
Cali: Vali.# Cali.* Vali.# Cali: Vali.# Cali.* Vali.# 

0.055 0.588 0.0 0.215 0.147 1.841 0.0 -0.037 

16.934 116.944 0.0 -0.038 81.593 603.904 0.0 -0.033 

2.206 10.151 0.0 -0.028 2.006 56.818 0.0 0.090 

- - - - 0.000 0.000 0.0 -0.103 

- - - - 21.200 216.853 0.0 0.020 

2.607 36.845 0.0 0.120 1.033 14.667 0.0 0.058 

0.148 1.261 0.0 -0.105 0.298 2.348 0.0 0.029 

0.053 0.069 0.0 -0.056 0.015 0.080 0.0 -0.045 
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Table 4.20 Nash-Sutcliffe coefficient values for the best five-parameter regression 
models developed, using spectral values acquired with the field 
spectroradiometer 

Crop parameter First flight 25 th July Second flight 
(Early-growth (Before tassel (Tassel stage) 

stage) stage) 
Leaf area index -1.898 0.001 -0.874 
Plant height -0.148 0.658 -0146 
Greenness -0.770 0.702 -0.947 
Leaf chlorophyll 

-0.791 - -2.860 
content 
Totalleaf nitrogen 0.202 - -2.860 
Total soil -0.945 -6.041 -2.758 
moisture 
Grain yield -2.158 0.418 -0.893 
Biomass -1.661 0.100 -0.631 
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4.4.2.2 Before tas sel stage 

4.4.2.2.1 Field spectroradiometer measurements 

An additional set of ground-based reflectance measurements was made on 

July 25th 
, ten days before the second flight. Corn plants began developing tassels a 

few days after this measurement. The results of the MAXR analysis of these spectral 

data are presented in Table 4.21. A much higher percentage of the overall variability 

of crop physiological parameters just prior to tasseling could be eXplained by models 

than was the case at the early-growth stage. This is evidenced by the high ? values 

(>0.90) of the models based on reflectance at five wavebands. Again, however, no 

particular wavelength region could be pronounced as a best estimator for 

physiological parameters. The SSE and APRE values for the calibration and 

validation data sets are presented in Table 4.19. The five-waveband models resulted 

in a maximum overestimation of 21.5% of the LAI, and a maximum underestimation 

of grain yield of 10.5%. Overall, the prediction errors could be considered weIl within 

the acceptable range. The higher Ceff values for most of the parameters, except for 

soil moi sture, also suggest that better prediction models were developed at this stage 

(Table 4.20) 

4.4.2.3 Tassel stage 

4.4.2.3.1 Aerial measurements 

Table 4.22 summarizes the results of the MAXR multiple regression analysis. 

The second spectral data acquisition was carried out 66 days after planting, when 

most of the corn had tassels and the canopy coverage was greater (the highest LAI 

value was about 6 cm2/cm2
). Consequently, the characteristic vegetation reflectance 

was proportionally greater than at the previous acquisition date. Thus, better 

relationships were expected between spectral values and crop biophysical parameters. 

Models with five independent parameters explained over 90% of the variability in 

plant height, greenness and yield, and over 74% of the variability of the other 

parameters (Table 4.22). No single waveband was found to be representative of 

changes in aIl the parameters, as was the case for the early-growth stage. The near­

infrared region was still proved to be the most significant. 
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Table 4.21 Use fui wavebands and corresponding regression equation parameters for the 
estimation of various crop-condition indicators and other parameters, prior to 
the tas sel stage for the data acquired from the field spectroradiometer, (July 
25,2000) 

Crop 
rZ Wavelength (nm) Regression equation coefficient* 

parameter 
bo b l b2 b3 b4 b5 

Leafarea 0.60 906 -1.324 0.083 
'ndex 0.83 765801 -0.364 -1.985 2.003 

0.86 763765 801 -0.016 1.859 -4.089 2.238 
0.89 763765 801 878 0.531 2.969 -5.739 3.702 -0.941 
0.91 763765 801 878 906 0.065 2.631 -5.345 3.561 -1.379 0.535 

Plant 0.67 698 182.844 -15.460 
height 0.87 716919 107.260 -7.472 2.355 

0.92 542710 919 95.673 36.042 -31.814 2.397 
0.94 396406 712919 80.679 -40.114 47.871 -8.796 2.436 
0.96 396406 726 763 862 92.809 -39.738 42.127 -7.824 20.606 -16.051 

Greenness 0.46 705 62.481 -2.620 
0.58 542555 54.638 54.681 -53.648 
0.83 514526 745 30.054 27.399 -23.581 1.043 
0.92 514526 687914 32.108 51.325 -28.475 -13.983 0.537 
0.93 512514 526687914 31.681 -39.638 89.803 -29.607 -12.479 0.532 

Total soil 0.10 385 25.749 1.892 
moisture 0.28 379385 27.333 -3.807 4.297 

0.46 379409413 30.371 -2.567 28.659 -25.875 
0.55 379396409413 31.398 -3.047 6.703 23.818 -27.134 
0.68 409413 418453 522 26.876 47.862 -60.873 33.282 -22.695 4.906 

Grain 0.54 698 10.575 -0.947 
yield 0.77 515610 5.777 6.906 -5.761 

0.84 399514 611 4.533 -2.606 9.490 -6.491 
0.88 391399 515 610 4.524 2.182 -3.774 8.772 -6.503 
0.93 391396 427 515 603 2.853 3.825 -2.432 -6.906 13.608 -7.613 

Biomass 0.46 702 2.039 -0.115 
0.57 528572 1.459 1.042 -0.976 
0.78 456517 898 1.168 1.138 -0.915 0.021 
0.89 454512 815 898 1.346 1.365 -1.252 -0.336 0.355 
0.92 454511 512 815 898 1.253 1.201 1.740 -2.810 -0.301 0.322 

* RegreSSIOn equahon coefficients of one-, two-, three-, four- and five-variab1e mode1s 
Note-General form ofthe equation: crop parameter = bo + blS l + bzSz + b3S3 + b4S4 + 
b5S5, where SI. S2, S3, S4, and S5 are the reflectance values at the respective wavelengths 
listed above . 
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Table 4.22 Useful wavebands and corresponding regression equation parameters for the 
estimation of various crop-condition indicators and other parameters at the 
tassel stage, using aerial spectral measurements (second flight; August 5, 
2000) 

Crop ? Wave1ength (nm) Regression equation coefficient* 
parameter 

bo b l b2 b3 b4 bs 
lLeafarea 0.61 932 2.921 0.167 
'ndex 0.64 513 932 -0.440 -0.926 ~.167 

0.71 513 648932 2.6l3 7.110 14.453 0.217 
p.74 446 513 648 932 4.323 1.276 8.519 5.987 0.232 
~.79 r446 483 513 648932 1.955 -3.973 ~.816 9.037 5.960 0.257 

IPlant 0.59 603 343.350 -46.310 
~eight 0.84 732770 196.505 Il.635 6.659 

0.91 747770854 166.422 -25.915 54.982 31.508 
~.93 739 770 839 854 132.782 -15.112 140.871 37.191 64.294 
0.94 747770831 839854 127.526 -24.928 ~}.078 41.374 57.455 55.115 

Greenness 0.83 709 80.685 -4.368 
0.87 416 709 72.051 5.685 4.436 
p.90 416431 709 83.490 10.861 Il.066 4.200 
~.91 f416 468 528 709 65.714 9.726 -15.859 ~0.393 15.682 
0.93 1416 431 468 528709 72.179 13:992 11.358 13.638 32.620 16.305 

lLeaf ~.24 595 0.0239 0.0025 
~hloro- 0.49 490656 0.0093 0.0144 -0.0105 
phyll 0.62 610 633 663 0.0193 0.0614 0.1009 0.0362 
~ontent 0.69 610633663 694 0.0174 0.0593 0.1262 0.0328 0.0253 

p.75 610 633 663 679 694 0.0215 0.0499 0.1175 0.0525 0.0207 0.0261 
Irotalleaf 0.68 717 120.715 -4.284 
ritrogen p.77 505 603 38.408 56.895 29.170 

p.8Q 1453 505603 35.729 15.792 75.975 31.697 
p.81 1409 453 603 603 37.924 6.522 23.871 ~8.675 32.376 
p.83 1453 498 505 588 603 6.068 26.156 ~8.431 172.458 74.301 117.81 

[rotaI soil p.21 431 51.456 9.556 
r-toisture p.31 431 648 48.648 13.697 14.256 

P.49 490648694 61.499 25.729 143.661 24.909 
0.75 490 603 663 694 49.616 24.382 ~6.307 56.808 62.828 
0.80 490 603 663 694 808 36.078 28.189 ~~8.080 69.846 69.654 0.229 

* Regression equation coefficients of one-, two-, three-, four- and five-variable models 
Note-General form of the equation: crop parameter = bo + blSI + b2S2 + b3S3 + b4S4 + 
bsSs, where SI, S2, S3, S4, and S5 are the reflectance values at the respective wavelengths 
listed above . 
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Table 4.22 (cont'd) Use fuI wavebands and corresponding regression equation parameters 
for the estimation ofvarious crop-condition indicators and other parameters at 
the tassel stage, using aerial spectral measurements (second flight; August 5, 
2000) 

Crop 
r2 Wavelength (nm) Regression equation coefficient* 

parameter 
bo b i b2 b3 b4 bs 

Grain 
~eld 0.60 565 13.386 1.506 

0.73 528 565 ~.072 14.224 11.251 
b.84 588709739 3.106 8.514 4.708 0.526 
p.91 618 709747 893 14.344 11.079 5.116 1.904 0.933 
0.93 618 709770885901 0.815 2.945 1.698 1.484 3.757 2.590 

lBiomass p.40 709 ~.201 0.110 
p.50 543 550 1.583 3.525 3.414 
0.60 573709747 P.039 1.893 1.051 0.048 
0.72 438 573 709 939 p.726 0.658 ~.359 1.217 0.046 
P.74 438 498 573 709 939 ~.434 0.870 P.481 1.972 1.052 0.046 

* Regression equatIon coeffiCIents of one-, two-, three-, four- and five-vanable models 
Note-General form ofthe equation: crop parameter = bo + bIS) + b2S2 + b3S3 + b4S4 + 
bSS5, where SI, S2, S3, S4, and S5 are the reflectance values at the respective wavelengths 
listed above . 
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The model calibration and validation results for the five-waveband models are 

presented in Table 4.13. The validation ARPE showed a 20% underestimation for 

biomass, but a prediction within 0.5% for the other parameters (Table 4.13). The 

magnitude of the calibration ARPE declined from the first to the second spectral data 

acquisition date for LAI, plant height, leaf nitrogen and grain yield (Table 4.13). As 

exemplified by higher calibration SSE and ARPE values (Table 4.13), a weaker 

relationship for soil moisture was observed at the tassel than at the seedling stage, due 

to greater soil coverage by vegetation. The validation SSE and ARPE and the 

scatterplots of the observed and predicted values (Figure 4.6) demonstrated an 

improvement in the predictive abilities of the models, except in the case of biomass. 

The absolute values of the validation ARPE were no greater than 5.1 % except in the 

case of biomass, for which the ARPE was 20%, whereas those based on data taken 

during early-growth ranged from -18% to 34%. Although the C eff remained negative 

(i.e. unacceptable) for all but height, greenness, leaf chlorophyll and leaf N (c1osely 

related parameters), the Ceff did improve relative to the seedling stage values for all 

parameters, except soil moisture (Table 4.13). The latter observation is not 

unexpected because very little soil would remain exposed to direct sunlight at this 

stage. The observed and predicted values of the various parameters are plotted in 

Figure 4.6, showing an overall improvement in all models at this stage, with the 

exception of soil moisture. 

The values for the various crop parameters vs. the .best five waveband-derived 

NDVI are given in Table 4.15. The regression coefficients for the best NDVI models 

are given in Table 4.16. At this stage, although much higher r2 values were obtained, 

they were substantially lower than those of the best five-waveband models. The SSE 

and ARPE values for the calibration and validation data sets, and the Ceff for 

validation data sets, are presented in Tables 4.17 and 4.14, respectively. The results 

clearly indicated an improved ability to represent the data and estimate the validation 

data than was the case for models generated at the early-growth stage. Furthermore, 

the ARPE values for the validation data set indicate that NDVI-based models were 

underestimating LAI values by only 2%, and overestimating soil moi sture by only 

3%. This represented an improvement over the five-waveband models. Except for soil 
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moi sture, the Ceff values were aIl positive, thus demonstrating the advantages of 

NDVI-based models over those based on reflectance alone. Very high Ceff values 

(more than O.S) for height, greenness, chlorophyll content, and yield c1early justify 

the use of NDVI-based models. Reflectance at 701 nm was again present in the best 

models except in the case of LAI. The waveband near 839 nm was also quite 

prevalent. 

4.4.2.3.2 Field spectroradiometer measurements 

Details giving r values, useful wavebands, and regression model coefficients 

for the different predictive models of the various parameters are presented in Table 

4.23. The r values were higher for the five-waveband models, with the exception of 

soil moisture. When these were compared to the models based on aerial 

measurements, it was observed that slightly better or comparable models could be 

developed with the field spectral measurements. However, a comparison of the 

models on two different dates, July 2Sth and August Sth, revealed that slightly higher 

or comparable? values were obtained for the earlier data set (with the exception for 

soil moisture). The ARPE values for the validation data set indicated an 

underestimation of 10.3% and overestimation of 9.0% in various parameters (Table 

4.19). Such findings are reasonable, although the Ceff values were unsatisfactory. The 

Ceff values for models based on data from the airbome sensor were higher. 

4.4.2.4 Fully-mature stage 

4.4.2.4.1 Aerial measurements 

The Iast set of spectral data was acquired 86 days after planting, when the 

crop was fully matured and grain filling was almost complete. The results of the 

MAXR analysis (Table 4.24) indicated that, for five-waveband models, the r values 

ranged from 0.56 for soil moisture to 0.98 for greenness. Once again, no particular 

waveband was found to be useful for the estimation of a11 parameters at the fu11y­

mature stage. Models with more independent parameters resulted in better prediction 

results. Once again, besides the near-infrared region, the blue region was found to be 

most useful in the development of various models. 
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Table 4.23 Useful wavebands and corresponding regression equation parameters for the 
estimation ofvarious crop-condition indicators and other parameters at the 
tas sel stage, for the data acquired from the field spectroradiometer, (second 
flight; August 5, 2000) 

Crop ~ Wavelength (nm) Regression equation coefficient* 
parameter 

bo bl b2 b3 b4 bs 
Leafarea 0.44 914 -0.944 0.103 
'ndex 0.72 844858 -0.790 -3.265 3.357 

0.77 776844858 0.158 -1.035 -2.404 3.493 
0.81 776803844858 0.674 -2.648 3.610 -4.087 3.153 
0.84 776803844858909 1.460 -3.477 5.322 -4.896 3.684 -0.635 

Plant 0.29 822 53.300 2.638 
height 0.70 759765 142.021 -72.362 71.702 

0.78 486759765 100.155 35.408 -80.476 78.872 
0.88 503685759763 168.362 213.036 -162.017 -80.310 76.689 
0.91 396503685759763 185.582 -44.960 295.844 -195.241 -98.006 92.322 

Greenness 0.16 911 24.634 0.372 
0.54 735737 36.868 -20.974 20.183 
0.65 735737740 41.384 -105.681 143.401 -39.149 
0.78 473492735737 36.241 -120.506 124.938 -31.827 29.992 
0.94 402471489732734 29.342 -22.452 -111.374 138.268 -31.412 29.018 

;Leaf 0.27 710 0.0223 -0.0008 
phloro- 0.54 ~35652 0.0177 0.0090 -0.0075 
phyll 0.60 435437652 0.0195 0.0321 -0.0237 -0.0075 
~ontent 0.83 391453460668 0.0165 0.0079 -0.0562 0.0661 -0.0153 

0.87 387391453460668 0.0180 -0.0049 0.0131 -0.0563 0.0646 -0.0147 
lTotalleaf 0.18 713 94.782 -2.694 
nitrogen 0.52 526533 67.340 114.079 -97.797 

0.67 387526533 77.658 -22.358 183.607 -153.902 
0.72 387525685685 80.473 -18.258 191.870 -143.827 -23.216 
0.83 387525534690691 96.429 -21.881 194.193 -156.429 -196.295 187.012 

lrota1 soi1 0.15 622 25.041 2.226 
Imoisture 0.34 621622 27.502 -97.247 99.962 

0.46 621622641 .29.976 -118.498 133.032 -13.414 
0.82 622647671688 23.814 33.060 -38.563 48.232 -35.934 
0.87 621622647671688 25.941 -53.094 84.983 -36.455 42.575 -32.105 

* Regression equatlOn coefficients of one-, two-, three-, four- and five-vanable mode1s 
Note-General form of the equation: crop parameter = bo + blS I + b2S2 + b3S3 + b4S4 + 
bsSs, where SI, S2, S3, S4, and Ss are the reflectance values at the respective wavelengths 
listed above . 
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Table 4.23 (cont'd) Useful wavebands and corresponding regression equation parameters 
for the estimation ofvarious crop-condition indicators and other parameters at 
the tassel stage, for the data acquired from the field spectroradiometer, 
(second flight; August 5, 2000) 

Crop ~ Wavelength (nm) Regression equation coefficient* 
parameter 

bo bl b2 b3 b4 bs 
Grain 0.25 822 -0.673 0.128 
yield 0.63 751752 2.924 -8.846 8.775 

0.74 ~86751752 0.400 2.025 -9.691 9.563 
0.85 473486751752 1.028 -24.268 26.428 -12.203 II.995 
0.88 473475486751752 0.333 -41.084 18.550 24.793 -12.204 12.005 

Biomass 0.15 380 0.800 0.293 
0.31 514605 0.875 0.798 -0.545 
0.51 380592602 0.870 0.588 2.609 -2.837 
0.70 380396589605 0.792 0.552 0.194 2.093 -2.419 
0.76 380586589605710 1.036 0.407 -4.824 8.517 -3.146 -0.335 

* RegressIon equatlon coeffiCIents of one-, two-, three-, four- and five-vanable models 
Note-General form ofthe equation: crop parameter = bo + blS I + b2S2 + b3S3 + b4S4 + 
bSS5, where St, S2, S3, S4, and Ss are the reflectance values at the respective wavelengths 
listed above . 
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Table 4.24 Useful wavebands and corresponding regression equation parameters for the 
estimation of various crop-condition indicators and other parameters at the 
fully- mature stage, using aerial spectral measurements (third flight; August 
25,2000). 

Crop r Wavelength (nm) Regression equation coefficient* 
parameter 

ho b l b2 b3 b4 b5 
lLeaf area 0.44 901 1.671 ~.127 
~ndex 0.74 498901 2.660 3.157 0.222 

0.83 498 520901 3.198 5.777 1.012 0.282 
0.87 498 701 808901 4.496 4.629 0.311 -0.520 0.748 
0.91 490498701808901 3.920 ~.318 6.268 0.314 0.703 0.906 

!plant 
height 0.57 709 ~40.213 16.554 

Kl·88 717901 130.680 12.178 5.120 
0.93 550717732 50.601 165.192 105.581 22.562 
0.94 409550717732 58.359 16.097 177.259 111.710 ~3.81 
0.97 431550573717924 50.468 23.428 377.528 225.673 90.27 ~.948 

Greenness 0.72 709 ~3.679 5.116 
0.95 724932 53.683 3.385 1.522 
0.97 528618932 ~3.382 29.014 17.906 1.336 
0.97 ~53 528618932 53.616 7.984 28.582 15.960 1.193 
0.98 ~38 453 528618932 52.577 4.250 11.285 27.822 15.057 1.263 

Total soil 0.15 ~32 ~4.6752 0.3535 
moi sture 0.44 ~24 431 31.9931 12.3377 12.0062 

0.52 ~24 431468 ~5.5741 15.8465 8.0001 7.9435 
0.54 ~24 431461468 ~1.9115 16.8859 9.1278 ~.8478 10.32 
0.56 ~24 431 461468490 ~6.9586 15.9386 9.1430 5.5742 8.288 4.90 

prain 
~eld p.59 ~09 14.410 0.927 

0.91 724762 2.060 0.648 0.383 
p.93 ~53 520916 0.652 ~.683 4.368 p.325 
p.94 ~53 520916916 1.256 ~.779 -4.391 0.442 0.770 
0.95 ~53 520831847916 0.715 ~.360 4.544 1.901 1.934 0.422 

iBiomass 0.39 717 2.378 0.085 
0.48 550717 1.886 1.389 0.660 
0.63 ~16 490656 0.837 0.657 1.924 1.002 
p.72 ~09 416490656 0.606 0.465 1.118 2.067 1.026 
p.78 ~09 416490626656 0.369 p.588 1.173 2.910 1.561 3.41 

* Regression equation coefficients of one-, two-, three-, four- and five-variable models 
Note-General form of the equation: crop parameter = ho + bIS I + b2S2 + b3S3 + b4S4 + 
b5SS, where SI, S2, S3, S4, and S5 are the reflectance values at the respective wavelength 
listed above . 
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Plots of observed vs. predicted values, from the best five-waveband models 

for the different parameters, showed a generally good agreement between the 

observed and predicted values, with the exception of the soil moi sture and total 

biornass predictions (Figure 4.7). The corresponding SSE, ARPE and Ceff values are 

presented in Tables 4.13 and 4.14. AlI predictions show an absolute value of ARPE 

of no more than 5.2%. The Ceff values for LAI, plant height and grain yield, ranging 

frorn 0.189 to 0.382, represent good precision, while the Ceff value of 0.680 for 

greenness represents an excellent predictive ability. The Ceff values for moisture and 

biornass were below -0.7 (unsatisfactory). 

Models based on the NDVI values are surnmarized in Tables 4.15 and 4.16. 

Very high r2 values were obtained for greenness, yield, and height: 0.93, 0.90, and 

0.87, respectively; however, these were lower than the values for the corresponding 

five-waveband rnodels. The ARPE values (-0.06 to 0.05) for the validation data sets 

indicate that aIl models perforrned very weIl. These values were also higher than 

those obtained at the previous stages of crop developrnent. At this stage also, the r2 

values could not justify the use of NDVI, over the use of refleetance values in 

different wavebands, for the estimation of plant parameters. However, when the Ceff 

values were compared (as the most rigorous eriterion of model performance), it 

beearne evident that the NDVI-based models were more reliable except in the case of 

LAI. 

Although the 701-nrn waveband was found to be the most prorninent in the 

best NDVI ratios at the previous growth stages, it only appeared in a few of the best 

NDVI expressions for the fully-mature stage. The 839-nrn waveband was once again 

represented, but there was not a predominant waveband to explain the crop 

physiological parameters at this stage. A review of the five-waveband relationships 

indieated that no partieular waveband was partieularly useful for estirnating a given 

parameter at different developmental stages, or for estimating different parameters at 

a single stage. This means that different wavelength regions should be used for the 

development of sueh models. Moreover, better results rnay be expeeted from models 

involving more wavebands . 

In general, the models obtained in this study perforrned at an equivalent level 
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Fig. 4.7 (cont'd) Observed and predicted crop condition parameters and crop yield, based 
on airbome spectral observations at the full y-mature stage (August 25, 2000) 
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or better than models of these parameters reported in earlier literature. For example, 

in a most recent study, Thenkabail et al. (2000) based their experiment on a spectral 

data set acquired from a hand-held spectroradiometer, and obtained r2 values for four­

waveband models of 0.78 and 0.66 for LAI and plant height, respectively, while this 

study shows the corresponding values of 0.87 and 0.94 for similar models, for the 

calibration data set. For the NDVI-based models, the obtained values were 0.86 and 

0.31 for LAI and height, respectively. In this study, the highest r2 values were 0.87 

and 0.59 for plant height and LAI, respectively. In addition, the values obtained by 

this study for the NDVI-based models are for a validation data set and based on data 

from an airbome sensor. Shanahan et al (2001) reported ~ values of about 0.9 

between corn yield and broadband NDVI. They acquired images from an airbome 

platform in four wavebands over an experiment involving different nitrogen levels. 

Similarly, in an experiment involving different corn hybrids grown under various 

nitrogen levels, Blackmer et al. (1996a), using a portable spectroradiometer, 

presented yield prediction models with r2 ranging from 0.70 to 0.99 for different 

growth stages. In the present study, the highest ~ value obtained on a calibration data 

set was 0.95 (third flight). It is difficult to make a true comparison of the results with 

earlier studies because none of them estimated crop parameters on the basis of data 

acquired from an airborne platform. Moreover, there is no evidence that a researcher 

has reported the combined effect of weed infestation and nitrogen level on crop 

reflectance. 

4.5 Conclusions 

This study has demonstrated the potential of using hyper-spectral airborne 

remote sensing in the visible and near-infrared regions, in the detection of weed 

infestations and nitrogen stresses in the corn fields. Statistical analysis of data 

indicated that the spectral response of corn canopy changed significantly in the 

presence of weeds and/or varying nitrogen fertilization levels. In addition, spectral 

response changed significantly over time. In general, the green and near-infrared 

regions were found to be good indicators of the two stresses in corn. However, the 

wavebands, permitting discrimination between levels of nitrogen stress, were not the 
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same as those permitting discrimination between weed control strategies. The best 

indicators of these stresses and the best representatives of crop physiological 

parameters were also dependent on the stage of development of the canopy. It was 

easier to differentiate between treatments on the basis of data acquired from the 

airborne sensor than the ground-based spectroradiometer, because the lower spatial 

resolution from high altitude was more than compensated for by a complete image of 

the study area. 

The study also demonstrated that hyper-spectral imagery from airborne or 

ground-based sensors may be used to estimate several biophysical parameters of corn 

as well as certain canopy-related parameters. Highly significant regression models 

were developed based on the stepwise regression technique using the MAXR 

criterion. More than 70% of the variability in the crop parameters could be explained 

by models based on reflectance in five wavebands The ARPE and Ceff values for the 

reflectance-based models indicated that most of the parameters and crop yield could 

be estimated within 5% from airborne platforms. The performance of models to 

estimate various crop parameters depended upon the growth stage of the crop. 

However, there was little consistency in the usefulness ofwave1ength regions for the 

estimation of these parameters.· Furthermore, different wavebands were found useful 

in the best models, developed for the estimation of a particular parameter at different 

growth stages of the crop. There was a generally good agreement between the 

observed and predicted values of various parameters. Moreover, when the NDVI­

based mode1s for aerial measurements were compared with the multiple reflectance 

waveband-based models, the former were found to be more reliable. Among the three 

spectral data sets obtained from an airborne platform at different growth stages of 

corn, best results were generally obtained with data from the second flight (tassel 

stage). 

The proposed approach can be extended to other years by pre-establishing 

ground control points or calibration plots with known crop growth conditions. 

Effective wavebands for precision crop management could then be identified, and 

used for processing full images acquired over larger fields to locate problem areas . 

The results of this study were far more encouraging than those of the study 
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presented in Chapter 3, and tend to confirm suggestions by various authors that higher 

spectral resolution should be used for weed detection and crop monitoring, as was the 

case here . 
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PREFACE TO CHAPTER 5 

Although the results of Chapter 4 were encouraging compared to those of Chapter 3, 

the regression and ANOV A approaches were cumbersome to interpret, and it was 

difficult to extract much more than tendencies in the data. This led to the exploration 

of alternative methods of classification of the various growth conditions included in 

the field experiments. 

Although the McGill research group has been involved in developing ANN 

models for various possible applications to precision farming, including weed 

recognition systems, a more tangible approach was desired. Such an approach might 

lead to a c1earer identification of direct relationships between reflectance values and 

growth conditions. Based on the understanding that decision trees partition large data 

sets according to well-defined statistical mIes, this appeared to be a better option than 

ANNs, insofar as c10sing in on the specifics of the sought-after relationships. 

Nevertheless, taking into account the ability of ANNs to recognize patterns implicitly, 

even in a non-linear system, it seemed appropriate to treat the data with this technique 

and to compare the classification accuracies of the two methods. 

Research papers based on the chapter: 

1. Goel, P. K., S. O. Prasher, R. M. Patel, l-A. Landry, R. B. Bormell, and A. A. 

Viau. Classification of hyperspectral data by decision trees and artificial neural 

networks to identify weed stress and nitrogen status of corn. Computers and 

Electronics in Agriculture 39(2): 67-93. 

(Copy of the published paper is given in the attached CD-ROM.) 
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CHAPTER5 

APPLICATION OF DECISION TREES AND ARTIFICIAL 

NEURAL NETWORKS TO CLASSIFICATION OF 

HYPER-SPECTRAL DATA 

5.1 Abstract 

This study examines the ability of the C&RT decision tree algorithm and of 

the back-propagation ANN to classify images of experimental corn plots into 

categories of nitrogen application rate and type of weed present. The images were 

acquired from· an airborne 72-waveband hyper-spectral imaging system (CASI, 

compact airborne spectrographie imager), having a spatial resolution of 2m x 2m, at 

three developmental stages - early growth, tassel, and fully mature. 

Neither the decision trees nor the ANNs were able to classify the mne 

treatment combinations adequately at any stage of development, although the best 

validation results were obtained at the tas sel stage. When trees or ANNs were 

generated to classify the plots according to only one of the factors (weeds or 

nitrogen), the misclassification rate was reasonable based, on the spectra obtained at 

the tassel stage (17% misclassified for nitrogen application rates, 21.5% misclassified 

for weed control strategies). In general, results were slightly better when the ANNs 

were used to classify the data. 

5.2 Introduction 

The spatial and spectral resolutions of satellite-borne imaging systems have 

improved significantly over the last twenty years. This has generated substantial 

interest in the application of the available information to the management of agro­

ecosystems. Given the huge quantity of available data and the complexity involved in 

optimizing agricultural systems, under an increasing number of environmental 

constraints, the development of more efficient methods of image analysis has bec orne 

a priority. Approaches to image analysis should be more autornatic, with lirnited 

hurnan interaction for such critical evaluations (Soh and Tsatsoulis, 1999) . 
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Classification algorithms should be capable of tackling noise in the data sets, of 

identifying the best features to discriminate between different classes, and of 

minimizing confusion among spectral classes (Friedl et al., 1999). Another important 

issue, related to automated or semi-automated classification algorithms, is that they 

should be capable of handling different situations in the same domain (Soh and 

Tsatsoulis, 1999). 

A basic requirement for the classification of images into different categories is 

that differences in one or more features of the images should be detectable within a 

suitable degree of statistical confidence, and that these differences should be 

consistent with the criteria used to define the categories. Various statistical methods 

have been used to identify wavebands, groups of wavebands, or functions of more 

than one waveband that lead to a proper classification of images. Among these are 

analysis of variance with tests for separation of me ans and principal components 

analysis. Interpretation of the results of these statistical methods can nevertheless be 

cumbersome when there is a large number of possible predictor variables, as is the 

case for hyper-spectral images. As a consequence of the aforementioned, there is a 

trend towards delegating the task to data mining techniques such as artificial neural 

networks (ANNs) and decision trees (DTs). 

The applicability of decision trees to the classification of images has been 

demonstrated by various authors (Friedl et al., 1999; Soh and Tsatsoulis, 1999; Friedl 

and Brodley, 1997; Hansen et al., 1996). ANN models have been used, with varying 

degrees of success, in handling classification problems in agricultural applications 

(Yang et al., 2000; Wang et al., 1998a; Nakano, 1997; Ghazanfari et al., 1996; Deck 

et al., 1995) and in remote sensing (Augusteijin and Warrender, 1998; Danaher et al., 

1997; Augusteijin et al., 1995; Kanellopoulos et al., 1992; Hepner et al., 1990). 

The research described in this chapter concerns the interpretation of hyper­

spectral images, taken from an airbome platform, over a set of experimental plots 

cropped with corn and subjected to various combinations of weed control and 

nitrogen application rate. Earlier research has indicated that it is possible todetermine 

the nitrogen status of various crops (Lukina et al., 2000; Plant et al., 2000; Blackmer 

and White, 1998; GopalaPillai et al., 1998; Sui et al., 1998; Taylor et al., 1998; 
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Martin and Aber, 1997; Bausch and Duke, 1996; Blackmer et al., 1996a; Ma et al., 

1996; Buschmann and Nagel, 1993), and to distinguish between weed species 

(Medlin et al., 2000; Zwiggelaar, 1998; Lass and Callihan, 1997; Lass et al., 1996; 

Brown and Steckler, 1995; Hanson et al., 1995; Menges et al., 1985; Everitt et al., 

(1987, 1995, 1996)) on the basis of certain spectral wavebands in the visible and near­

infrared (NIR) regions. 

Therefore, it seemed plausible that the treatment combinations set up in the 

experimental field might be c1assified correctly by the decision tree and artificial 

neural network approaches. The aforementioned was based on hyper-spectral images, 

involving 72 fairly narrow wavebands in the spectral regions, previous1y identified as 

being representative of nitrogen status and weed population characteristics. Thus, the 

objective of this study was to assess and compare the classification accuracies of 

decision tree and ANN models generated for this purpose. 

5.2.1 A brief overview of decision tree and artificial neural networks 

To avoid repetition, the reader is referred to sections 2.6.1 and 2.6.2 for details 

conceming the characteristics of decision trees and artificial neural networks, and also 

the applications of these data mining methods to the analysis of spectral data. 

5.3 Materials and Methods 

5.3.1 Experimental detaits 

Already given in section 4.3.1. 

5.3.2 Acquisition of spectral data 

Aerial spectral measurements were used, details of which are given in section 

4.3.2. 

5.3.3 Data analysis 

The goal of the study was to classify the data into categories representing the 

treatments applied to the experimental plots, based on the spectral values recorded in 

different wavebands. This involved different approaches in the use of decision trees 
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and one approach in the case of ANNs. The decision to use ANNs was made in 

response to the results of the decision tree approach. 

5.3.3.1 Decision trees 

Decision trees were generated usmg Answer Tree 2.1.1, a decision tree 

classification package developed by SPSS (SPSS Inc., Chicago, IL). The specific 

algorithm used was the C&RT (Classification and Regression Tree) algorithm 

developed by Breiman et al. (1984). Different tree-growing mechanisms and 

validation procedures were used to evaluate the performance of the trees. To 

determine the classifier accuracy, a 10-fold crossvalidation was used. In a lO-fold 

crossvalidation, the data set is randomly partitioned into 10 parts. Iteratively, 10 

different models are then built, with each iteration involving a different combination 

of nine parts for the model development and one part for the testing. Risk estimate, 

for crossvalidation and resubstitution, represents the percentage of the cases 

incorrectly classified in testing and training data sets, respectively. 

As mentioned in Chapter 4, the sub-plots in which only grass weeds were 

controHed could not be used in the analysis because the broadleaved weed population 

was negligible in these plots. This may have been due to the absence ofweed patches 

in those locations in the previous year, however, this was not confirmable. Chapter 4 

also mentioned the need to exclude data from the 72nd waveband, due to excessive 

noise in the signal. Thus, data from a total of 36 sub-plots, consisting of four 

replicates of aH combinations ofthree weed treatments (Wl, W3, and W4) and three 

nitrogen levels (N60, N l2o, and Nz50), were used in the analysis. 

First of aH, the spectral data from the three different flights were analyzed 

separately. Recalling that the sub-plots were 20m x 20m, and that the spatial 

resolution of the hyper-spectral data was 2m x 2m, 20 to 25 pixels could be attrihuted 

to each sub-plot after removing pixels involving border effects. Three subsets were 

then generated from each of the cropped images. One subset consisted of the average 

values of the wavebands computed over the whole sub-plot. The second consisted of 

the reflectance values at four randomly chosen pixels in each sub-plot, and these were 

not averaged. The third consisted of data at 20 points from each sub-plot. 
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Decision trees were then generated to classify the data into categories 

representing: (a) the nine combinations ofweed control and nitrogen fertilization rate, 

or (b) the weed control strategies al one, or (c) the nitrogen fertilization rates alone. 

The 2ü-point subsets were also pooled, and decision trees were generated to classify 

the data into categories of type (a), (b) or (c); another was generated to classify the 

data into stages of crop development. Single-variable best regressors were used to 

deterrnine the splits at each node. The Gini impurity measure was used to optimize 

the splits in aIl cases. Misclassification tables with risk assessments were also 

generated for aIl trees. 

5.3.3.2 Artificial neural networks 

Neural Netware Professional IIIPLUS (version 5.ü), developed by Neural 

Ware Ine. (Pittsburgh, PA), was used to build ANN models with different 

architectures. ANNs were developed corresponding to the different decision trees 

generated using the 2ü-point subsets, exeept in the case of the pooled data. The 

architecture of aIl the ANN models was a fully connected, multi-Iayer, feed-forward, 

consisting of one input layer, one output layer, and one or two hidden layers. The 

back-propagation leaming algorithrn, the most widely used approach to tackle non­

linear problems (Lacroix et al., 1997), was used for all the ANN models attempted in 

the study. This algorithrn iteratively minimizes an error terrn by comparing the output 

and input values during the training period (Schalkoff, 1992). The norrnalized­

cumulative delta leaming mIe and the sigrnoid transfer function were also used. The 

root mean square (RMS) value was considered as the leaming criteria. Models were 

trained in steps for different numbers of training cycles. The reflectance values in all 

ofthe 71 wavebands were used as input to the models, and the number of outputs was 

dependent on the number of categories in which the data were to be classified. 

5.4 Results and Discussion 

5.4.1 Decision tree approach 

The data were analyzed according to three subsets, as described in section 

5.3.3.1, each one of which provided a different number of data records to process, 
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according to different sets of categories. As a result, it was necessary to find out, in 

each case, which structure was suitable in terms of the number of tree levels and the 

maximum and minimum number of cases permitted in parent and child nodes, 

respectively. Risk summaries were generated for each case in the form of 

misclassification tables. The misclassification rate is calculated according to the 

number of case incorrectly classified and total number of cases. 

5.4.1.1 Results based on reflectance at each waveband (sub-plot average) 

The risk summaries (classification accuracy) for the decision trees, generated 

on the basis of reflectance at each wavelength averaged over all retained pixels in a 

sub-plot, are presented in Table 5.1 for the three flights. The wavebands retained as 

splitting criteria in the final models are listed at the bottom. The risk of classification 

was calculated according to the number of cases incorrectly classified. Although the 

best results were obtained for the spectral data acquired at the tassel stage (second 

flight, August 5th
), the results were clearly unsatisfactory. When the whole data set 

was used, 16.7% of the cases were misclassified (risk estimate for 

resubstitution=0.167) and the crossvalidation risk estimate was 80.6%. 

The next set of decision trees was generated on the same averages, but with 

fewer categories (i.e. considering only the weed control strategies or only the nitrogen 

application rates). The risk summaries for these six decision trees are presented in 

Table 5.2. Although there appears to be a significant improvement in the overall 

performance of these decision trees, compared to the previous set, the crossvalidation 

risks were still quite high at 0.750, 0.556, and 0.417 for nitrogen and 0.583, 0.278, 

and 0.389 for weeds, for the first, second, and third flight, respectively. 

At this point, the problem was perceived to be reflecting variability among 

replicates in each category, whether the treatments were considered together or one at 

a time. High v ari abilit y may be representative ofhigh natural variab ility of the objects 

being studied, or may be due to unrepresentative data. However, it seemed equally 

likely that there were simply not enough data points to suit the purpose. 

Decision trees were then grown for the subset involving four randomly 
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Table S.l Misclassification matrix (decision tree approach) for the detection of 
various combinations ofweed and nitrogen effects, using the average 
spectral value of each plot for different flights (crossvalidation method) 

a. First flight (June 30th) 
Actual 

1N6oWlIN6oW31N6oW41N12oWllN12o W31N12o w41N250 WllN250W3l-f25o W4 

1N6oWI 2 1 0 0 0 0 0 1 0 

1N6oW3 0 3 0 0 0 1 0 0 0 

1N60W4 0 0 3 1 1 0 1 0 0 
"d 

N120Wl 0 0 0 3 0 0 0 0 0 0 ..... 
0 

N12oW3 0 0 0 0 2 0 0 0 0 ..... 
"d 

~ N120W4 0 0 0 0 0 3 0 0 0 
N250Wl 0 0 0 0 0 0 2 0 0 
N250W3 0 0 1 0 0 0 0 3 0 
N250W4 2 0 0 0 1 0 1 0 4 

'Total 4 4 4 4 4 4 4 4 4 

~sk Resubstitution Crossvalidation 
estimate 0.30S6 0.8889 
~ands in ~09,446,S88,641, 717,878,932,939 
he final 

model 

b. Second flight (August Sth) 
Actual 

N6oWIIN6oW31N6oW41N12oWIIN12oW31N12oW41N250WI 1N250W3 1N250W4 

N60Wl 4 0 1 0 1 0 0 0 0 

N60W3 0 3 1 0 0 1 0 0 0 

N60W4 0 0 2 0 0 0 0 0 0 
] lN120WI 0 0 0 4 0 0 0 0 0 
0 

1N120W3 0 0 0 0 3 0 0 0 1 ..... 
"d 

~ lN12oW4 0 0 0 0 0 3 0 0 0 

1N250W1 0 1 0 0 0 0 4 0 0 

1N250W3 0 0 0 0 0 0 0 4 0 

1N250W4 0 0 0 0 0 0 0 0 3 
rrotal 4 4 4 4 4 4 4 4 4 

IRisk Resubstitution Crossvalidation 
jestimate 0.1667 0.8056 
lBands in ~83,490,513,535,550,558, 724, 755, 770 
he final 

Imodel 

rrotal 
4 
4 
6 
3 
2 
3 
2 
4 
8 

36 

Total 
6 
S 
2 
4 
4 
3 
5 
4 
3 

36 

Treatments: Wl- no weed control; W3-broadleafweed control; W4-full weed control; 
N60-60 kg N/ha; N12o-120 kg N/ha; N250-250 kg N/ha 

145 



• 

• 

Table 5.1 (cont'd) Misclassification matrix (decision tree approach) for the detection 
of various combinations of weed and nitrogen effects, using the average 
spectral value of each plot for different flights (crossvalidation method) 

c. Third flight (August 25th
) 

Actual 
N6oWl!N6oW3!N6oW4jN12oWl!N12oW3!N12oW4!N250Wl!N250W3 !N250W4 !rotaI 

N6oW1 4 1 0 0 0 0 1 1 1 8 
N60W3 0 3 0 0 0 0 0 0 0 3 
N60W4 0 0 4 0 0 0 0 0 1 5 

't:l 
NI20Wl 0 0 0 4 0 0 0 0 0 4 B 

u 
N12oW3 0 0 0 0 4 0 0 0 1 5 ~ 

~ N12oW4 0 0 0 0 0 4 0 0 1 5 Po! 
N250Wl 0 0 0 0 0 0 3 0 0 3 
N250W3 0 0 0 0 0 0 0 3 0 3 
N250W4 0 0 0 0 0 0 0 0 0 0 
Total 4 4 4 4 4 4 4 4 4 36 

IRisk Resubstitution Crossvalidation 
estimate 0.1944 0.8055 
lBands in 409,416,431,461,543,565,701,739 
he final 

Imodel 
Treatments: Wl- no weed control; W3-broadleafweed control; W4-full weed control; 
N60-60 kg N/ha; N 12o-120 kg N/ha; N250-250 kg N/ha 
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Table 5.2 Misclassification matrix (decision tree approach) for the detection of 
separate weed and nitrogen effects, using average spectral values of each 
plot for different flights (crossvalidation method) 

a. First flight (June 30th
) 

Actual Actual 
N60 1 N120 1 N Z50 Total W1 1 W3 j W4 Total 

N60 11 2 1 14 W1 12 0 3 15 
IPredicted N120 0 8 1 9 W3 0 12 0 12 

NZ50 1 2 10 13 W4 0 0 9 9 
Total 12 12 12 36 Total 12 12 12 36 

Risk estimate Risk estimate 
Resubstitution 0.1944 0.0833 
Crossvalidation 0.7500 0.5833 

lBands in the 409,476,550,641,724, ~09,513, 701, 724, 732,939 
final model 732,939 

b. Second flight (August 5th
) 

Actual Actual 
N60 J N120 1 N Z50 Total W1 1 W3 1 W4 Total 

N60 10 0 1 11 W1 12 1 1 14 
Predicted N120 0 10 0 10 W3 0 11 0 11 

Nz50 2 2 11 15 W4 0 0 11 11 
Total 12 12 12 36 Total 12 12 12 36 

Risk estimate Risk estimate 
Resubstitution 0.1389 0.0556 
Crossvalidation 0.5556 0.2778 

Bands in the ~90,535, 747, 770 424,446,732,739 
final model 

c. Third flight (August 25th
) 

Actual Actual 
N60 1 N lzo 1 N250 Total wli W3 1 W4 Total 

N60 11 0 1 12 Wl 12 1 2 15 
Predicted NI20 0 12 1 13 W3 0 11 0 11 

NZ50 1 0 10 11 W4 0 0 10 10 
Total 12 12 12 36 Total 12 12 12 36 

Risk estimate Risk estimate 
Resubsti tution 0.0833 0.0833 
Crossvalidation 0.4167 0.3889 

Bands in the ~09,424,558, 701 416,453,490,762 
,nal model 
Treatments: Wl- no weed control; W3-broadleafweed control; W4-full weed control; 
N60-60 kg N/ha; N 12o-120 kg N/ha; NZ50-250 kg N/ha 
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selected pixels per sub-plot. This gave a total of 144 sets of reflectance values to 

represent 36 plots. When the decision trees were grown, considering the nine 

treatment combinations, the crossvalidation risk estimates improved to about 50% 

(data not shown), leading to the testing of decision trees based on 20 points per plot at 

a time. 

5.4.1.2 Results based on twenty randomly selected points in each sub-plot 

With 20 random points in each plot, 720 sets of reflectance values were 

available, 80 for each of the nine categories. In this case, several trials led to the 

conclusion that trees cou Id be grown for a maximum of 20 levels, and that it was 

sufficient to have a minimum of five cases in the parent node and one case in child 

node. Because the total number of data points was considered to be sufficient, the 

, data were divided into a training set and a validation set. Sixt y-four sets ofreflectance 

values from each sub-plot were randomly associated with training, with the remaining 

16 attributed to validation. 

Misclassification matrices for the unseen validation data sets are presented in 

Table 5.3, for each ofthe three growth stages of the crop. Once again, the best results 

were obtained from the data acquired at the tas sel stage (August 5th
). While only 34% 

of the cases from the second flight data set were misc1assified, about 47% from the 

first and 52% from the third flight were wrongly classified. 

A substantial improvement in the results was observed in aIl categories when 

treatments were considered one at a time (Table 5.4). Again, the minimum 

classification risks were obtained at the tassel stage (0.17 for nitrogen application rate 

and 0.21 for weed control strategy). It is interesting to note that misclassification was 

mainly the result of the classification of either low or high nitrogen cases into the 

normal category, rather than due to the classification of low nitrogen into a higher 

nitrogen category. With respect to the wavebands involved in the dichotomization, 

despite the fact that many more were involved than in the earlier cases, there did not 

appear to be much consistency from one model to the next. 

A lü-fold crossvalidation approach was then used on this subset. The results 

for aIl three flights are summarized in Table 5.5. Out of the three flights, the best 
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Table 5.3 Misclassification matrix (decision tree approach) for the detection of 
various combinations ofweed and nitrogen effects, using spectral values at 
20 points in each plot for different flights (for the unseen data set) 

a. First flight (June 30th
) 

Actual 
N60 WI 1N60 w31N60 W 41N120 WIIN120 w31N 120 W 41N250 wIIN250 w31N250 W 4 [Total 

N60WI 5 0 1 2 2 1 0 4 3 18 
N60W3 2 7 2 0 2 1 0 0 0 14 
N60W4 1 1 9 0 0 0 0 0 0 11 

"'d 
Nl20W1 0 5 0 13 0 0 1 0 0 19 <l> ..... 

0 
Nl20W3 1 2 1 1 4 0 2 1 2 14 ..... 

"'d 
~ N12oW4 0 0 5 0 0 7 0 2 0 14 P-t 

N250Wl 0 0 0 0 1 0 7 0 1 9 
N250W3 3 0 0 0 2 3 1 7 0 16 
N250W4 0 0 1 0 2 1 3 0 13 20 
Total 12 15 19 16 13 13 14 14 19 135 

Risk Estimate 0.467 
Bands in ~09,416,424,431,446,453,468,483,490,498,505,513,528,543,550, 
he final 558,565,595,633,648,679,694,701,709,717,724,732, 739, 747, 755, 

model 762,770,778,801,816,824,839, 847,862, 870,893,901,916,932,939 

b. Second flight (August 5th
) 

Actual 
N60WIIN60W31N60W4IN120WIIN120W31N12oW41N250WIIN250W31N250W4 [Total 

1N60W1 8 3 0 1 0 0 0 0 0 12 

1N60W3 2 7 1 0 0 0 0 1 0 11 
1N60W4 0 1 14 0 0 0 0 2 0 17 

"'d IN 120W 1 1 0 0 10 0 4 1 0 0 16 <l> 
t) 

N12oW3 0 3 0 0 10 0 2 1 0 16 ~ 
~ lN12oW4 0 0 0 6 0 7 1 0 1 15 P-t 

1N250W1 0 0 0 0 0 1 13 1 4 19 

1N250W3 0 0 2 0 3 0 0 10 4 19 

1N250W4 0 0 0 0 0 0 0 0 10 10 
!rotaI 11 14 17 17 13 12 17 15 19 135 

Risk Estimate ~.341 
rsands in ~09,416,424,431,446,461,468,476,483,490,505,513,543,573,588, 
he final 610,618,656,671,679,686,701,709,717, 724,770,801,816,831,839, 
~odel 847,854,870,885,893,901,916,924,932 
Treatments: Wl- no weed control; W3-broadleafweed control; W4-full weed control; 
N60-60 kg Nlha; N 12o-120 kg Nlha; N250-250 kg Nlha 
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Table 5.3 (cont'd) Misclassification matrix (decision tree approach) for the detection 
ofvarious combinations ofweed and nitrogen effects, using spectral values 
at 20 points in each plot for different flights (for the unseen data set) 

c. Third flight (August 25th
) 

Actual 
N60Wl 1N6oW31N60W41NIzOWI[N12oW31NIZOW4INz50WllNz50W3INz50W4 Irotal 

N60WI 12 2 2 0 0 0 0 0 0 16 
N60W3 2 6 2 1 2 1 0 1 1 16 
N60W4 3 2 3 0 1 4 0 0 0 13 

as N120WI 0 1 0 8 1 0 1 0 0 11 ..... 
u 

N12oW3 1 4 0 2 5 1 2 0 2 17 :.a 
8 NIZOW4 0 1 1 0 4 5 0 0 0 11 p., 

N250Wl 1 0 2 2 4 1 7 0 3 20 
N250W3 0 1 0 0 3 1 0 9 4 18 
NZ50W4 0 0 0 1 0 0 2 0 10 13 
Total 19 17 10 14 20 13 12 10 20 135 

Risk Estimate p.518 
Bands in ~09,416,438,446,468,483,490,498,505,520,543,565,588,618,648, 
he final 663,671,679,694,701,709,717,724,739,747,762,778, 785, 793,816, 

model 839,862,870,878,885,893,901,908,916,939 
Treatments: Wl- no weed control; W3-broadleafweed control; W4-full weed control; 
N60-60 kg N/ha; N 12o-120 kg N/ha; NZ50-250 kg N/ha 
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Table 5.4 Misclassification matrix (decision tree approach) for the detection of 
separate weed and nitrogen effects, using spectral values at 20 points in 
each plot for different flights (for the unseen data set) 

a. First flight (June 30th
) 

Actual Actual 
N601 N120 1 NZ50 Total W11 W3 1 W4 Total 

~60 30 5 5 40 ~1 30 5 4 39 
IPredicted IN-IZ0 11 29 8 48 ~3 7 29 5 41 

INZ50 3 8 36 47 1W4 6 12 37 55 
!fotal 44 42 49 135 lTotal 43 46 46 135 

Risk Estimate 0.2963 Risk Estimate K>.2889 
tBands in ~09,416,424,438,446,468, ~09,416,424,446,453,468,476, 
he final ~76,483,490,498,543,550, ~83,490,498,535,550,558,595, 
model 558,565,588,633,686,701, ~63,694, 709, 717, 747,770,839, 

709, 717, 724, 732, 755, 770, 854,870,901,924,932,939 
778,801,816,831,847,854, 
893,901,916,932,939 

b. Second flight (August 5th
) 

Actual Actual 
N60 1 N120 1 NZ50 Total wll W3 1 W4 Total 

~60 34 7 1 42 W1 36 6 1 43 
Predicted ~IZO 5 34 6 45 W) 6 36 13 55 

INZ50 1 3 44 48 W4 0 3 34 37 
lTotal 40 44 51 135 J'otal 42 45 48 135 

Risk Estimate 0.1704 Risk Estimate p.2148 
Bands in ~09,446,453,490,498,505, ~24,438,461,476,490,505,520, 
he final 513,543,558,565,595,610, 580,618,641,656,671,679,694, 

model 656,671,709,709,724,739, 709,724,732,739,801,847,862, 
747,755,762,778,839,885, 885,916,924,932 
~01,908,916 

Treatments: W1- no weed control; W3-broadleafweed control; W4-full weed control; 
N60-60 kg N/ha; Nl2o-120 kg N/ha; NZ50-250 kg N/ha 
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Table 5.4 (cont'd) Misc1assification matrix (decision tree approach) for the detection 
of separate weed and nitrogen effects, using spectral values at 20 points in 
each plot for different flights (for the unseen data set) 

c. Ir Ig ugus 
Actual Actual 

N60 1 N120 1 N250 Total Wll W3 1 W4 Total 

~ 36 13 1 50 Wl 33 5 7 45 
IPredicted ~ 6 30 12 48 W3 15 27 8 50 

N250 0 6 31 37 W4 2 8 30 40 
Total 42 49 44 135 Total 50 40 45 135 

Risk Estimate Kl.2815 Risk Estimate Kl.3333 
lBands in ~09,424,438,446,453,461, ~09,431,438,446,453,461,468, 

he final ~68,490,513,520,543,558, ~83,490,498,505,513,520,543, 
Imodel ~65,610,618,648,656,679, 558,565,603,648,663,671,679, 

694, 709, 717, 724, 739, 747, ~86, 717, 732, 739, 747, 793,801, 
r85, 824, 854, 878, 885, 893, 847,885,893,901,908,924 
901 

Treatments: Wl- no weed control; W3-broadleafweed control; W4-full weed control; 
N60-60 kg N/ha; N120-120 kg N/ha; N250-250 kg N/ha 
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Table 5.5 Risk estimate values indicating the performance of different decision trees developed with spectral values at 20 points in 

each plot 

Risk estimate value 

Decision tree evaluation 
June 30, 2000 August 5, 2000 August 25, 2000 Combined data 

criteria* Resubsti Crossval Resubsti Crossval- Resubsti- Crossval- Resubsti- Crossval-
-tutionJ -idationJ -tutionJ idationJ tutionJ idationJ tutionJ idationJ 
training testing training testing training testing training testing 

1. Combined effect of 
weed and nitrogen 

a. Cross validation (10 0.1014 0.4042 0.0667 0.2847 0.1028 0.4083 0.0556 0.2597 
fold) 

b. Cross validation 0.0752 0.4667 0.0581 0.3407 0.0855 0.5185 0.0935 0.4315 
(separate training and 
test data) 

2. Effect of weed alone 
a. Cross validation (10 0.0403 0.2347 0.0417 0.1625 0.0556 0.3083 0.0630 0.2593 

foId) 
b. Cross validation 0.0632 0.2889 0.0325 0.2148 0.0444 0.3333 0.0572 0.2691 

(separate training and 
test data) 

3. Effeet ofnitrogen aione 
a. Cross validation (10 0.0514 0.3208 0.0431 0.1889 0.0486 0.2278 0.0556 0.2597 

fold) 
b. Cross validation 0.0786 0.2963 0.0427 0.1704 0.0359 0.2815 0.0601 0.3016 

(separate training and 
~std~tcY ____ ---L- ______ -- ------- ------ -- -- ----- -----

*Resubstitution and crossvalidation terms for 10-fold cross validation criteria, training and testing for simple crossvalidation 
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results were obtained for the second flight (August 5th
), giving a risk estimate of 

0.2847 for lO-fold crossvalidation and 0.3407 for the unseen validation data set, when 

both nitrogen and weed factors were considered together. Much better results were 

obtained when one of the two factors, either weed or nitrogen, was studied alone. At 

the tasse! stage, when only weed control strategies were considered, 21 % of the cases 

in the unseen data set were misc1assified, while 17% of cases were misc1assified 

when nitrogen was considered alone. 

FinaIly, the data were pooled from aIl three flights. First of aIl, attempts were 

made to classify the pooled data into three growth categories. As expected, the results 

indicated that fewer than 1 % of the cases (four cases) were misc1assified in an unseen 

data set of 431 cases. This clearly indicated that the spectral responses of the crop 

canopy were quite different at the three growth stages. Further analysis was carried 

out to classify pooled data into different nitrogen and weed combinations, and also to 

separate the categories of weeds and nitrogen. The results are summarized in the far 

right columns of Table 5.5. 

5.4.2 Comparison of the decision tree models with ANN models 

A large number of ANN models with different architectures were generated 

for each case in order to find the best model. AlI models were based on the 20 point 

per sub-plot subsets. Simple models with one or two hidden. layers were first 

generated. The number ofprocessing elements (PEs) varied from 10 to 70 in the first 

hidden layer and from lOto 40 in the second hidden layer. The selection of these 

numbers was based on the change in RMS value with the addition or deletion of PEs 

in a layer. The number ofPEs in the input layer was 71, which equaled the number of 

used wavebands. However, depending upon the output categories, the number of PEs 

in the output layer was three or nine. The best ANN model was retained for each case. 

To avoid bias in the development ofmodels, aIl the data was randomized and divided 

into three data sets. The models were initialIy trained with 60% of the data set and 

tested with 20% ofthe data. FulIy trained models were then validated on a completely 

unseen data set, consisting of20% of the cases (about 144 values). Models were also 

crossvalidated to confirm the results. 
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The output of the ANNs consisted of factors with three or nine elements, 

depending on what case a given ANN was trained to classify. Because the elements 

were continuous (as opposed to Is and O's), the input record was assigned to the 

category represented by the element with the highest value. For example, in a 

classification of categories for weed control strategy, the first element of the output 

vector was associated with treatment Wl, the second with W3, and the third with W 4. 

If the output vector was (0.7, 0.2, 0.1), the input record was assigned to Wl. 

ANN models were first trained to classify the aerial spectral data into aIl nine 

treatment combinations for each flight separately. There were 432 data records for 

training and 144 each for testing and validation ofmodels. For the initial growth and 

tassel stages, the best ANN models had one hidden layer and 41 PEs and 22 PEs, 

respectively. However, the best model for the fully-mature stage (third flight), had 35 

PEs in the first hidden layer and 10 PEs in the second hidden layer. 

Results for the ANNs trained to classify the records into categories 

representing the nine treatment combinations are presented in the form of 

misclassification matrices in Table 5.6. As was the case for the decision trees, the best 

results were obtained for the data set at the tas sel stage (second flight, August 5th
) 

stage. In total, about 29.9% of the cases were misclassified in all categories in the 

second flight data set, followed by 36.8% in the third, and 41.7% in the first flight. A 

closer look at the misclassification matrix indicated that at all three stages, most of 

the misclassified cases had been classified into the next nearest category. In other 

words, it was very rare for N60 to be misclassified as N250. Diagonal values in the 

misclassification matrix represent the number of cases correctly classified. The risk 

estimates were lower than those of the corresponding decision trees (Table 5.3), for 

aIl stages of crop development. Neverthe1ess, the lowest (tas sel stage) was 29.9%. 

The misclassification matrices for ANNs trained to classify records into one 

or the other treatment (weed control or nitrogen rate) are given in Table 5.7 for the 

three flights. Risk estimates were much lower for each flight, compared to the results 

for the nine treatment combinations, as was the case for the analogous comparison 

involving decision trees. Again, better classification results were obtained from the 

aerial data set acquired at the tassel stage. When nitrogen alone was considered, 
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Table 5.6 Misclassification matrix (Artificial Neural Networks models) for the 
detection ofvarious combinations ofweed and nitrogen effects, using 
spectral values at 20 points in each plot for different flights (for the unseen 
data set) 

a. First flight (June 30th
) 

Actual 
lN60 W1lN60 w31N60 W 41N 120 W11N 120 W31N 120 W 41N250 w11N250 w31N250 W 4 rrotal 

1N60Wl 8 2 1 3 3 5 4 0 1 27 
1N60W3 1 14 1 6 1 0 1 0 0 24 

1N60W4 4 2 11 0 1 3 0 0 0 21 
'"Cl 

lN120Wl 0 0 0 9 1 0 0 0 0 10 ~ 
0 

N12oW3 0 1 1 0 7 0 0 1 1 11 :.a e N120W4 1 0 1 0 1 11 0 1 0 15 p.. 
N250Wl 1 0 0 4 0 0 13 1 0 19 
N250W3 0 0 1 0 3 0 0 4 0 8 
N250W4 0 1 0 0 1 0 0 0 7 9 
Total 15 20 16 22 18 19 18 7 9 144 

Risk Estimate 10.417 

b. Second flight (August 5th
) 

Actual 
N60W1 1N6o W3lN60W4lN120 W1lN120 W3lN120 w41N250 w11N250 W3lN250 W4 Total 

N60WI 8 0 0 1 0 0 0 0 0 9 
N60W3 1 20 5 0 0 0 0 0 0 26 
N60W4 0 5 10 0 0 0 0 0 0 15 

'"Cl N120Wl 2 0 0 8 6 0 1 0 0 17 ~ 
0 

N12oW3 0 1 0 0 9 0 0 2 :.a 2 14 
e N12oW4 0 0 1 0 1 9 0 0 0 11 p.. 

N250W1 0 0 0 2 1 0 13 2 0 18 
1N250W3 0 0 0 0 6 0 3 13 1 23 
1N250W4 0 0 0 0 0 0 0 0 11 11 
rrotal 11 26 16 Il 23 9 17 17 14 144 

Risk Estimate 0.299 
Treatments: W1- no weed control; W3-broad1eafweed control; W4-full weed control; 
N60-60 kg N/ha; N120-120 kg N/ha; N250-250 kg N/ha 

156 



• 

• 

Table 5.6 (cont'd) Misclassification matrix (Artificial Neural Networks models) for 
the detection ofvarious combinations ofweed and nitrogen effects, using 
spectral values at 20 points in each plot for different flights (for the unseen 
data set) 

c. Third flight (August 25th
) 

Actual 
N6oWIIN6oW3~6oW4\N12oWIIN12oW31N12oW41N250WI\N250W31N250W4 Irotal 

1N6oWI 11 2 1 5 0 0 0 0 0 19 

1N60W3 1 7 0 1 0 0 0 0 0 9 
1N6oW4 0 1 13 0 0 3 0 0 0 17 

as N120WI 1 2 0 2 3 0 0 0 0 8 ..... 
0 

N120W3 0 1 1 5 10 0 3 1 0 21 :.a 
~ N12oW4 0 0 0 0 1 12 0 0 0 13 
~ 

N250W1 0 0 0 3 0 0 12 5 2 22 
N250W3 0 0 0 0 1 1 3 12 2 19 
N250W4 0 0 0 0 0 2 1 1 12 16 
Total 13 13 15 16 15 18 19 19 16 144 

Risk Estimate 0.368 
Treatments: Wl- no weed control; W3-broadleafweed control; W4-full weed control; 
N60-60 kg N/ha; N120-120 kg N/ha; N250-250 kg N/ha 
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Table 5,7 Misc1assification matrix (Artificial Neural Networks models) for the 
detection of separate weed and nitrogen effects, using spectral values at 20 
points in each plot for different flights (for the unseen data set) 

a, First flight (June 30th
) 

Actual Actual 

N60 1 N120 1 N250 Total wll W2 1 W3 Total 

~ 35 17 6 58 IWl 42 3 6 51 
Predicted ~ 7 30 7 44 1W3 2 42 7 51 

N250 1 6 35 42 1W4 1 8 33 42 
Total 43 53 48 144 lTotal 45 53 46 144 

Risk Estimate 0.3056 Risk Estimate 0,1875 

b, Second flight (August 5th
) 

Actual Actual 

N60 1 N120 1 N250 Total wll W2 1 W3 Total 

~ 41 4 0 45 IWI 38 11 0 49 
Predicted ~ 2 35 3 40 1W3 2 34 1 37 

.N250 0 8 51 59 1W4 0 3 55 58 
Total 43 47 54 144 lTotal 40 48 56 144 

Risk Estimate 0,1181 Risk Estimate 0,1181 

c, Third flight (August 25th
) 

Actual Actual 

N60 1 N 120 1 N250 Total Wl 1 W2 Jw3 lTotal 

iN60 45 4 0 49 IWI 45 6 1 52 
Predicted iN I20 8 42 4 54 1W3 0 37 3 40 

1N250 0 5 36 41 1W4 3 4 45 52 
1T0tal 53 51 40 144 lTotal 48 47 49 144 

Risk Estimate 0.1458 Risk Estimate 0,1181 
Treatments: Wl- no weed control; W3-broadleafweed control; W4-full weed control; 
N60-60 kg N/ha; N 120-120 kg N/ha; N250-250 kg N/ha 
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the lowest risk estimate value was 0.118 for the second flight, 0.146 for the third, and 

0.306 for the first flight. Better results were obtained with the ANN than with the 

decision tree, with the exception of the first flight. Much better results were obtained 

from the analysis based on the weed factor. Only Il.8% of the cases from the second 

and third flights (Risk estimate value = 0.118) were misclassified, whereas 18.8% of 

the cases from the first flight were misclassified. The best classification result 

obtained with decision trees was 21.5% misclassification of cases from the second 

flight. 

s.s Conclusions 

Overall, the best classification results from ANN models and decision trees 

were obtained using data from the second flight (August 5th
), reflecting the results of 

Chapter 4, based on regression models and analysis of variance. Risk estimates were 

lower in both cases when one treatment was considered at a time. The progression in 

improvement of results, with the number of data records available to the decision tree, 

points to a need for better spatial resolution. As noted in Chapter 4, conceming the 

comparison of results using ground-based and aerial spectral data, there is an 

interplay between resolution and coverage. It is possible that better results could be 

obtained at full coverage, with somewhat higher resolution. 

An area that could be investigated further is the optimization of inputs to the 

models. In the case of decision trees, the dichotomization was done on the basis of the 

best single regressor at each node, i.e. the one waveband that best separated the data 

in each case. One might obtain better classification accuracy on the data set, even if 

the data from all three flights were combined. This could be effected by first applying 

a technique such as principal components analysis to the spectral data, in order to 

obtain orthogonal functions of the reflectance values at different wavelengths to 

describe the variability of the data set. Such functions would then serve as the 

regressors for the C&RT algorithm and might yield better results. Insofar as ANNs 

are concemed, the best classification accuracies reported in the literature are based on 

data sets that have been pre-processed to find the optimal descriptors, which in tum 

serve as inputs for training such models. 
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The risk estimates associated with the broadest objective of this work (i.e. to 

classify the data into nine treatment combinations) are modest, being in the vicinity of 

0.3 (or 30% misclassification) for ANNs and decision trees. However, pre-processing 

of these reflectance values using appropriate data reduction and orthogonalization 

techniques could lead to risk estimates as low as those obtained for the one-treatment­

at-a-time models. Furthermore, the most useful wavebands retained in the final 

models, were generally different. 

In conclusion, compared to the results presented in Chapter 3 based on data 

acquired from a 24-waveband sensor on very small plots, there was a marked 

improvement in the ability to relate spectral imagery to canopy conditions using 

equipment with higher spectral resolution. There appears to be sorne advantage to 

using ANNs over decision trees or simple regression or correlation analyses, in 

classifying spectral data into categories of treatment combinations. However, 

implementation of state-of-the-art pre-processing is needed to make the technology 

applicable to precision farming . 
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PREFACE TO CHAPTER 6 

The study presented in this section was motivated by the moderate classification 

accuracies obtained with decision trees and ANNs. For aU intents and purposes, the 

results using these technologies were comparable. There was little consistency in the 

wavebands used to segment the data into various sets of categories by decision trees, 

or in the ANN architectures leading to the highest classification accuracies. 

Therefore, it seemed logical to explore both conventional methods of classifying 

hyper-spectral imagery as weU as relatively new classifiers, such as linear unmixing 

and the spectral angle mapper. 

Research papers based on the chapter: 

1. Goel, P. K., S. O. Prasher, l-A. Landry, R. M. Patel, and A. A. Viau. 

Hyperspectral image classification to detect weed infestations and nitrogen status 

in corn. Transactions of the ASAE (In press). 

(Copy of the published paper is given in the attached CD-ROM.) 
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CHAPTER6 

IMAGE CLASSIFICATION FOR MAPPING WEEDS AND 

NITROGEN LEVELS 

6.1 Abstract 

Hyper-spectral data acquired from an airborne sensor were classified 

according to categories of weed control strategy and nitrogen application rate by 

seven different supervised algorithms. The ultimate objective was to produce maps 

reflecting the combinations of these categories in an experimental field. The data 

were obtained over a field plot experiment designed to investigate the effects of 

different weeds on corn (Zea Mays L.) growth at three levels ofnitrogen fertilization. 

The images analyzed were obtained at the tassel stage. The following supervised 

algorithms were applied to the images: maximum likelihood, minimum distance, 

Mahalanobis distance, parallelepiped, binary encoding, spectral angle mapping and 

linear spectral unmixing. The algorithms failed to classify the images, into the nine 

combinations of weed and nitrogen treatment, to an acceptable level of accuracy for 

precision farming requirements. However, when these algorithms were required to 

classify images into categories of one or the other treatment, performance was 

reasonable for practical applications, being 66% for classification to nitrogen levels 

and 68% to weed control strategies. The best results were obtained in the 

classification of two levels at a time, of one or the other factor. Not one classifier 

proved best for an subsets of the complete factorial problem. 

6.2 Introduction 

The greatest strength of remote sensing lies in the wide spatial coverage that 

can be obtained in a short time. Ground-truthing is an essential step in the 

development of a remote sensing system, because it is the step that permits the 

development ofrelationships between conditions or objects on the earth's surface and 

the images. Once relationships with adequate statistical significance are established, 

specialized maps are produced by classifying each pixel of the image into categories 

reflecting the absence or presence of one or more features, and then referencing them 
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to their relative positions in the scanned area . 

Many different classification algorithms have been applied to remote sensing 

data. Most of the earlier methods were developed for the analysis of multi-spectral 

imagery with relatively few wavebands. These include the maximum likelihood, 

minimum distance, Mahalanobis distance, parallelepiped and binary encoding 

classifiers. However, the aforementioned are now considered inadequate for the large 

data sets that result from the use of hyper-spectral sensors. This is due to the loss in 

potential information stored in continuous spectra, the need for a greater number of 

training pixels, and the greater computational requirements of such methods 

(Lillesand and Kiefer, 2000). Researchers dealing with hyper-spectral data sets have 

used statistical procedures to select a few suitable wavebands based on class 

separability or prioritization based on transformation techniques (such as principal 

component analysis) to reduce the dimensionality of the data (Pu and Gong, 2000). 

These selected wavebands or transformed components are then used to develop maps 

by applying multi-spectral image classification algorithms. However, attention has 

now tumed to the development of new procedures, such as spectral matching and 

spectral unmixing (Staenz, 1996), which are thought to be more effective than the 

previous methods. 

The objective of the study, presented in this chapter, was to compare the 

classification resulting from seven classifiers, including spectral matching and 

spectral unmixing. This was carried out using hyper-spectral images of plots cropped 

with corn, that had been subjected to combinations of weed control strategy and 

nitrogen application rate. 

6.2.1 A brief overview ofimage classification methods 

Image classification is the process of assigning classes to the pixels in a 

remotely sensed image, and generating a thematic or land coyer class map. Thus, a 

classified image shows the spatial distribution of a particular theme or class of 

interest. Many approaches are being used to classify remotely sensed data. In general, 

classification procedures have been grouped into two classes: supervised and 

unsupervised. In a supervised classification, training pixels or are as are selected for 
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each category based on sorne prior or acquired knowledge of the classes in the 

imagery. The image is then segmented according to spectrally 'similar' pixels for 

each class. In the unsupervised classification procedure, features are typically 

separated solely on the basis of spectral properties which are 'similar' in a statistical 

sense. Sorne of the supervised classification algorithms, used in the present study are 

briefly discussed in the following paragraphs. 

The maximum likelihood classifier is the most widely used technique to 

classify remote sensing images. With this technique, the estimates of the probability 

function of aU classes of interest in the image are based on a Gaussian distribution. 

For classification, the individual pixels in the image are assigned to the class with the 

highest probability value. 

The minimum distance classifier determines the mean vector value of each 

class. The Euclidean distance of an unknown pixel from each class is determined, and 

the unknown pixel is assigned to the closest class. 

The Mahalanobis classifier is similar to the maximum likelihood classifier, 

but is a direction-sensitive distance classifier, where covariances of aH the classes are 

considered equal. This classifier is faster than the maximum likelihood procedure. A 

discussion on these methods is presented by Richard (1994). 

The parallelepiped classifier uses a simple approach of classification, based on 

decision boundaries, by drawing boundaries for a training c1ass using straight lines in 

each waveband. In the simplest case of two wavebands, the method may be visualized 

by the boundaries resembling a series of rectangles covering each class. However, for 

a greater number of wavebands, each c1ass is covered by a multidimensional box or 

parallelepiped. Unknown pixels are assigned to a class if they fall within the class 

boundaries; otherwise, they are classified as unknown. 

In the binary encoding classification approach, the endmember spectra 

(spectra known to represent a condition or type of object) and the unknown spectra 

are coded as 0' s or l' s, depending on whether the waveband value falls above or 

below the spectrum mean. The classification image is then produced by using an 

'OR' function to compare each encoded unknown spectral and endmember spectra . 

Details ofthis approach are given by Mazer et al. (1988). 
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The Spectral Angle Mapper (SAM) classification algorithm is based on 

comparing image spectra to a known library of spectra or endmembers. In this 

method, the endmember and unknown pixel spectra are treated as vectors, and a 

calculation is made of the spectral angle between them. The angles between pixel 

spectra and spectra of different endmembers are compared in different wavebands, 

and the pixel is assigned to the category having the most similar angle. Because it is 

only the direction of the vector that is used in this approach, the method is insensitive 

to differences in illumination (length of the vector). A more detailed discussion is 

given by Kruse et al. (1993). 

The spectral unmixing technique is based on the fact that most surfaces on the 

earth, geologic or vegetated, are not homogeneous, resulting in a mixture of spectral 

responses by a single pixel. Thus, this technique is aimed at estimating the proportion 

of each class in the pixel. The complexity of mathematical models to determine the 

abundance of each class is based on how these materials are mixing on the surface. 

Linear unmixing techniques assume that the sum of the fractional proportion of all 

potential endmembers in each pixel is equal to unit y, and may therefore be 

represented by a linear model. 

n 

LF;=F;.+F2+F3+······+ Fn=1 , (6.1) 
1 

where FI, F2 . ..... Fn are the fractional proportions of each possible endmember, n, in 

the pixel. 

The other main assumption of the unmixing procedure is that the spectral 

response of each pixel, i.e., recorded digital number (DN}J value in a particular 

waveband, ).., is the weighted sum of the spectral responses of each endmember: 

(6.2) 
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where FI, Fl, .... , Fn are the fractional proportions of each endmember in the pixel; 

DN.,..,I, DNÀ,l .... , DNÀ,n are the responses of each endmember, if the pixel is fully 

covered by that particular endmember, and E ).is the error term (Lillesand and Kiefer, 

2000). 

In addition to the ab ove methods, other classification approaches have been 

used in the field of remote sensing; however, no single classifier is best for aIl the 

particular conditions. In general, results from the various classifiers are compared to 

achieve optimal results (ENVI, Training Manual, 2000). 

6.3 Materials and Methods 

6.3.1 Experimental details 

Refer to section 4.3.1 

6.3.2 Acquisition of spectral data 

A Compact Airborne Spectrographie Imager (CASI) was used to acquire a 

hyper-spectral image in 72 narrow wavebands (407 to 949 nm), in the visible and 

near-infrared regions. The spatial resolution was 2 m. The analyses presented in 

Chapters 4 and 5, indicates that the images obtained at the tas sel stage of the corn 

crop were easier to classify than the others. Thus, the various classifiers were 

evaluated for this data set only. More details on the acquisition and processing of the 

image were given in section 4.3.2. 

6.3.3 Data analysis 

As explained lU Chapter 4, the data associated with the plots in which 

broadleaved weeds were permitted to grow.and grasses were eliminated (W2) was not 

considered in the analysis. Thus, a total of 36 plots w~re used in the analysis, with 

three weed treatments (Wl, W3, and W4) and three nitrogen levels (N6o, N12o, and 

NZ50) replicated four times. The reflectance values from waveband 72 could not be 

used due to excessive noise in the signal. Because each combination of the two 

factors was replicated four times, data from two of the replicates were used for 

training the classifiers and the rest were used in validation. 

166 



• 

• 

AH analyses were perfonned using the ENVI image processmg software 

(ENVI 3.1, Research System, Inc., Boulder, Colorado, USA). In each sub-plot, a 

region of interest (ROI) was created to eliminate pixels in which there may be border 

effects. The ROI consisted of 25 to 30 pixels, depending on the sub-plot (recall that 

there were approximately 100 pixels associated with the 20m x 20m sub-plots). Only 

the supervised classification algorithms provided in the ENVI software were used, 

because aU the plots were of known character. Numerous trials were carried out 

using the various, optional threshold parameters available in each classification 

module. The classifiers used were: maximum likelihood, minimum distance, 

Mahalanobis distance, parallelepiped, binary encoding, spectral angle mapper and 

spectral unmixing. 

The first problem presented to these classifiers was to separate aIl mne 

combinations of nitrogen application rate and weed treatments, representing a rather 

complex crop growth scenario in the field. In the next step, the images were classified 

by taking one factor at a time, which involved the assumption that the variability 

caused by the levels of the other factor was intrinsic. The classification accuracies of 

the seven methods were compared on the basis of the validations. 

The Kappa coefficient (K) was also calculated to compare the accuracy of 

different classifiers. This coefficient is used to measure the accuracy of a classifier by 

comparing the number of correctly classified pixels with that obtained by a purely 

random classification. It is defined as foUows: 

nLXkk - IXkI X Ik 
K = _..:.:k __ -=::--'k=--___ _ 

n2 
- LXkI X Ik 

k 

where: n = number of pixels in aU groundtruth classes, 

k = a particular class, 

Xkk = sum of the confusion matrix diagonals, 

XkE = sum of the groundtruth pixels in class k, and 

XI;k = sum of the pixels attributed to the kth class . 

(6.3) 

In this experiment, aIl pixels were ground-truthed with respect to nitrogen. 
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However, it would be difficult to consider that the weed control strategies were 

ground-truthed for weed density, even though they were controlled with respect to 

type of weed population. The between-row LAI measurements taken at ground level 

could give sorne indication of differences in weed density, and could conceivably be 

used to draw inferences regarding the comparative influence on reflectance values of 

broadleaved and grassy weeds. 

6.4 ResuUs and Discussion 

A color-infrared image, shown in Figure 6.1, indicated the prevailing 

variability in corn growth conditions across the various treatments. Qualitatively 

speaking, the darker colors represent comparatively better growth and higher nitrogen 

levels. Nitrogen-deficient areas and plots in which growth is poor due to other reasons 

may be distinguished by their lighter and yellowish color. However, it was difficult to 

group all plots visually into the nine different treatment categories. A field layout 

indicating the location of different treatments is given in Figure 6.2. 

Attempts were made to c1assify the whole image based on the nine different 

categories, representing all the possible combinations of three nitrogen levels and 

three weed control measures. None of the classifiers performed this task at a 

satisfactory level, which was also the case with the methods used in Chapters 4 and 5. 

The classifiers were then trained to categorize the data according to one factor at a 

time, as described with the decision trees and ANNs (Chapter 5). In the case of 

nitrogen application rates, classifiers were also trained to distinguish between each 

possible pair. In the case of weed control strategies, one classifier was trained to 

distinguish between full weed control (W 4) and no weed control (Wl), whereas 

another was trained to categorize images into two categories: (a) no weed control 

(Wl) or control ofbroadleaves only (W3), or (b) full weed control (W4). 

The performances of aU seven c1assifieis with respect to nitrogen are 

presented in Table 6.1. The confusion matrices for the best 3-level classifier and for 

the best 2-level classifiers are given in Table 6.2. The comparison of classifiers in the 

case ofweeds is given in Table 6.3. The confusion matrices for the best 3-level and 2-
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Fig. 6.1 Color-infrared image of experimental plots during the second 
flight (August 5, 2000, tassel stage). Bands centered at 747 nm, 
558 nm, and 490 nm are displayed as red, green, and blue, 
respectively . 
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Plot size 20 m x 20 m 

Legend 

N60 : Low nitrogen 
W I N l2o : Normal nitrogen 

N250 : High nitrogen 

W2 Il [[[l] D 
W 1 : No wccd control 

W l W 2 : Grass control 
W3 : Broad lear control 
\V,' Full w('('1i cnll1rnl 

of 

Fig. 6.2 Field layout indicating the relative location ofvarious weed and 
nitrogen treatment plots 
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level cases for weed controls are given in Table 6.4 . 

The accuracies, for classifying the 36 plots into nitrogen application rates, 

ranged from 41.77% to 65.84% (Table 6.1). The "best results were obtained using the 

spectral angle mapper (65.84%, «=0.488) and binary encoding (65.30%, K=0.483). 

With only two levels of nitrogen considered at a time, binary encoding yielded the 

best results for the sets (N6o vs. N250) and (NI20 vs. N250); although the SAM and linear 

unmixing were a close second in the former set. Discrimination between NI20 and 

N250 appeared to be the most difficult task. This was a small incremental effect on 

crop productivity as a result of fertilizing at a rate of 250 kg/ha rather than at 120 

kg/ha, when compared to the large change resulting from doub1ing the nitrogen from 

60 to 120 kg/ha. This is clearly supported by the yields recorded under various 

nitrogen levels. Under full weed control (W4), yields in N60, N l2o, and N250 were 4.80 

tlha, 6.11 tlha, and 6.75 tlha, respectively. 

The classification maps, based on the best classifier for different nitrogen 

classification approaches, are presented in Figure 6.3. The confusion matrices, 

representing the accuracy of classification for the best classifiers, are presented in 

Table 6.2. A c10ser scrutiny of the confusion matrix for aIl three nitrogen 1evels 

indicated that most of the misclassified pixels were from Nl20 plots. This clearly 

suggests that high and low nitrogen categories may be classified with very high 

accuracy; and that good results may be expected when the objective is to separate 

areas with high or low nitrogen levels. 

From the point of view of precision farming, it would be more beneficial to 

detect differences in the nitrogen status of young plants prior to broadcasting the 

second application of fertilizer. This would permit a variable rate of application of 

this nutrient to optimallevels across the field with a lower total dose. 

When classified according to the three types of weed control strategy (Table 

6.3), the highest accuracy was obtained from the minimum distance classifier 

(67.83%, «=0.516). The maximum likelihood classifier yielded the best accuracy for 

classification of no weed control (W1) or full weed control (W4). The minimum 

distance approach was best for the comparison (Wl or W3) vs. (W4). The poorest 

results for aIl three sets were associated with binary encoding, which yielded the best 
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Table 6.1 Accuracy of different image classification methods for nitrogen treatrnents 

Classification accuracy (%) 
AlI nitrogen 

Classification Method levels N60 NI20 N120 
(i.e. N60, vs. vs. vs. 
N120, and N250 N60 N250 

N250) 
Linear Spectral 50.44 94.61 73.88 75.53 

Unrnixing (0.254) (0.892) (0.479) (0.511) 
Spectral Angle Mapper 65.84 94.88 73.61 75.53 

(0.488) (0.898) (0.473) (0.511) 
Binary Encoding 65.30 99.46 89.18 48.95 

(0.483) (0.989) (0.784) (0.0) 
Mahalanobis Distance 60.88 88.94 66.23 78.42 

(0.415) (0.779) (0.331) (0.569) 
Maximum Likelihood 41.77 77.09 58.05 52.34 

(0.161) (0.557) (0.221) (0.817) 
Minimum Distance 47.43 81.67 61.21 60.53 

(0.213) (0.633) (0.225) (0.210) 
Parallelepiped 49.20 77.36 70.45 53.42 

(0.236) (0.556) (0.407) (0.075) 
Note: Kappa coefficient values are given in parenthesis, numbers in bold represent 

efficiency for best classifier. 
Treatrnents: N60-60 kg Nlha; N120-120 kg Nlha; N250-250 kg Nlha 
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• Table 6.2 The confusion matrix for nitrogen treatments 

a. AlI nitrogen levels 
Actual category 

(Number of pixels) 
Predicted N60 N120 N250 Total 
category 

N60 146 61 4 211 
(Number 

N120 39 76 32 147 
of pixels) 

N250 0 57 150 207 
Total 185 194 186 565 

Classification accuracy (%) 65.84 

Classification method Spectral angle mapper 

b. Low nitrogen (N60) vs. high nitrogen (N250) 
Actual category 

Predicted (Number of pixels) 
category N60 N250 Total 
(Number N60 183 0 183 
of pixels) N250 2 186 188 

Total 185 186 371 
Classification accuracy (%) 99.46 

Classification method Binaryencoding 

c. Normal nitrogen (N12o) vs. low nitrogen (N60) 
Actual category 

Predicted (Number of pixels) 
category N60 NI20 Total 
(Number N60 183 39 222 
of pixels) Nl20 2 155 157 

Total 185 194 379 
Classification accuracy (%) 89.18 

Classification method Binary encoding 

d. Normal nitrogen (N120) vs. high nitrogen (N250) 
Actual category 

Predicted (Number of pixels) 
category N120 N250 Total 
(Number N I20 140 28 168 
of pixels) N250 54 158 212 

Total 194 186 380 
Classification accuracy (%) 78.42 

Classification method Binary encoding 
Treatments: N60-60 kg Nlha; N120-120 kg Nlha; N250-250 kg Nlha • 
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.. LowN 
• HighN 
.. Normal N 

a. An nitrogen level categories, classified with the spectral 
angle mapper classifier. 

.. LowN 
• HighN 

b. High and low nitrogen levels, classified with the binary 
encoding classifier. 

Fig. 6.3 Classification map for nitrogen categories . 
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II LowN 

• Normal N 

c. Normal and low nitrogen level categories, classified with 
the binary encoding classifier. 

Il High N 

• Normal N 

d. Normal and high nitrogen level categories, classified with 
the Mahalanobis distance classifier. 

Fig. 6.3 (cont'd) Classification map for nitrogen categories . 
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Table 6.3 Accuracy of different image classification methods for weed detection 

Classification accuracy (%) 
AlI weed No weed No weed control & 
classes control vs. Broadleaf control 

Classification Method (i.e. Wl, full weed vs. 
W3,and control full weed control 

W4) (i.e. Wl vs. (i.e. Wl and W3 
W4) Combined vs. W 4) 

Linear Spectral 50.82 79.46 80.42 
Unmixing (0.276) (0.587) (0568) 

Spectral Angle Mapper 58.74 80.81 81.35 
(0.374) (0.614) (0.585) 

Binary Encoding 33.80 46.46 53.15 
(0.036) (0.0) (0.0) 

Mahalanobis Distance 59.91 87.54 80.19 
(0.399) (0.754) (0.599) 

Maximum Likelihood 63.40 91.25 67.60 
(0.441) (0.824) (-0.002) 

Minimum Distance 67.83 85.86 84.84 
(0.516) (0.717) (0.661) 

Parallelepiped 58.51 83.51 71.79 
(0.389) (0.708) (0.237} 

Note: Kappa coefficIent values are given in parenthesis, numbers in bold represent 
efficiency for best classifier. 
Treatments: Wl- no weed control; W3-broadleafweed control; W4-full weed 
control 
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• Table 6.4 The confusion matrix for weed detection 

a. All weed classes 
Actual category 

(Number of pixels) 
Predicted Wl W3 W4 Total 
category WI 116 46 0 162 
(Number 

W3 43 67 30 140 of pixels) 
W4 0 19 108 127 

Total 159 132 138 429 
Classification accuracy (%) 67.83 

Classification method Minimum distance 

b. No weed control (Wl) vs. full weed control (W4) 
Actual category 

Predicted (Number ofpixels) 
category Wl W4 Total 
(Number W1 148 15 163 
of pixels) W4 11 123 134 

Total 159 138 297 
Classification accuracy (%) 91.25 

Classification method Maximum likelihood 

c. No weed control (Wl) and broadleaf control (W3) combined vs. full weed 
control (W4) 

Actual category 
(Number ofpixels) 

Predicted Wl&W3 
W4 Total 

category Combined 
(Number Wl and W3 

252 26 278 
of pixels) Combined 

W4 39 112 151 
Total 291 138 429 

Classification accuracy (%) 84.84 
Classification method Minimum distance 

Treatments: W1- no weed control; W3-broadleafweed control; W4-full weed control 
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• Broadleaf control 
I!III Full weed control 
• No weed control 

a. AlI weed classes, classified with the minimum distance 
classifier. 

III Full weed control 
III No weed control 

b. Full weed control and no weed control classes, classified 
with the maximum likelihood classifier. 

Fig. 6.4 Classification map for weed categories . 
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Il Full weed control 
I11III No weed control 

and broadleaf 
weed control 
classes combined 

c. Full weed control and combined categories ofboth no weed 
control and broadleaf weed control treatments, classified with 
the minimum distance classifier. 

Fig. 6.4 (cont'd) Classification map for weed categories . 
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results overall for the various nitrogen categories. The confusion matrix for the weed 

control classifications (Table 6.4a) indicate that the most likely to be misclassified are 

the pixels from plots having only grassy weeds (W3). Because total biomass is the 

most dominating factor influencing the reflectance values, maximum 

missclassification was between W1 and W3. In general, there was not much 

variability in the distribution of weeds across various plots. The weed maps 

generated, on the basis of the best classifiers for each case, are presented in Figure 

6.4. Visual comparison with Figure 6.2 indicates good concordance not only with 

areas where weeds were fully controlled but also with the areas where weeds were not 

controlled. 

The results for both weed and nitrogen treatments did not provide one single 

classifier which performed best under aIl conditions. However, the results obtained in 

this study are quite comparable to those reported in the pub li shed literature. For 

example, Bajwa and Tian (2001) reported good accord between a map generated 

from spectral data and a ground-truth weed map. They used ISODAT, a classification 

algorithm in MultiSpec software (Purdue University, West Lafayette, Ind., USA), to 

segment weed patches in multi-spectral aerial images taken over soybean fields. 

GopalaPillai and Tian (1999) also used ISODAT, in this case to generate maps from 

multi-spectral aerial images showing soil variability, nitrogen stress and yield levels 

in corn fields. The reported classification accuracy was 75%, although difficulties 

were encountered separating out nitrogen levels. Brown and Steckler (1993) used the 

supervised, maximum likelihood method to map weed patches in a multi-spectral 

aerial image of a no-till corn field. No attempt was made to distinguish between types 

of weeds, and a classification accuracy of 82% was obtained for this simplified 

problem. Lass et al. (1996) used an unsupervised method to classify images of 

monospecific stands of grasses. They reported classification accuracies ranging from 

19% to 72%, depending on the type ofweed categories to be identified and the spatial 

resolution of the images. In a study aimed at detecting rangeland weeds, through CIR 

aerial photographs, Menges et al. (1985) used the maximum likelihood classifier and 

achieved classification accuracies of 68% to 100%, depending upon the type of plant. 

Classification accuracies ranging from 58% to 98% were reported by Staenz (1996) in 
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a study to identify different crops from hyper-spectral aerial images, using maximum 

likelihood, logistic, and band-moment procedures. Deguise et al. (1999) used spectral 

unmixing to identify weeds in hyper-spectral aerial images. A good match was 

reported between the visuaUy identified weed patches and the hyper-spectral image. 

However, the accuracy was not reported in quantitative terms. 

6.5 Conclusions 

The results of this study tend to corroborate the findings of Chapters 4 and 5, 

in which analysis of variance, decision trees and artificial neural networks were used 

to classify the hyper-spectral images into treatment combinations or subsets thereof. 

The classification accuracies of the seven classifiers tested in this chapter, did not 

produce strikingly better results than the decision trees or ANNs for comparable 

classification problems. Not one classifier could be identified as the best for aU 

situations. 

As was the case for decision trees and ANN s, classification accuracies were 

significantly better when the original problem of classification, to nine treatment 

combinations, was reduced to either looking at one treatment at a time, or comparing 

sets of two leve1s of a given treatment. As mentioned in the conclusions to Chapter 4, 

the moderate classification results are more likely to be the result of a spatial 

resolution that is too low, given the complexity of the problem of classifying the nine 

treatment combinations . 
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CHAPTER 7 

SUMMARY AND GENERAL CONCLUSIONS 

7.1 Summary 

At a fundamentalleve1, this research project was motivated by the need to 

reduce the various impacts of agriculture on the environrnent. This study was part of a 

larger effort to develop variable rate technologies for herbicide and fertilizer 

applications. The basic objective of this study was to investigate the relationships 

between multi-spectral and hyper-spectral images, acquired from airborne sensors, 

and specific characteristics of crop canopies, under various combinations of nitrogen 

and weed stresses. This objective was pursued in two field studies, involving corn and 

soybean, with different weed control strategies in 1999, and corn at different 

combinations of weed control and nitrogen fertilization rates in 2000. An aircraft­

mounted 24-waveband multi-spectral sensor (475-nrn to 910-nrn range) was used in 

the first year, whereas a 72-waveband hyper-spectral sensor (407-nm to 949-nrn 

range) was at the disposai of the project in the second year. In 1999, it was only 

possible to obtain one image of the experimental field (24 plots, 3m x 3m dimension) 

from the airborne sensor. The 1999 field season was considered a pre1iminary study, 

because many adjustments were made to the methodology, upon critical evaluation of 

the 1999 data. 

Three images were taken in the year 2000; one during early growth, one when 

the corn had deve10ped tasse1s, and one at full maturity (kernels filled). Plot 

dimensions were 20m x 20m (total of 48 plots). Spectral measurements were also 

made at the canopy leve1 (512-waveband field spectroradiometer) and several crop 

physiological parameters were measured with specialized instrumentation. Additional 

work involved weed population assessment. 

The ultimate aim of data analysis was to detennine whether the accuracy leve1 

of aerial imagery could be classified into categories, representing the combinations of 

the twO factors controlled in the field experiments. Regression analysis was used to 

determine which wavebands and waveband ratios were most closely associated with 
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canopy conditions. Based on the results ofthis approach, it was decided to investigate 

the classification accuracies that might be attained by data mining techniques 

(specifically, the C&RT decision tree algorithm and back-propagation ANNs), five 

well-known classifiers, and also two classification techniques that have gained 

substantial recognition in image analysis and mapping in recent years, that of spectral 

angle mapping and linear unmixing. 

7.2 Conclusions 

There are several general conclusions that may be drawn from the work 

presented here. As such, these will be presented in an order reflecting the 

chronological order of the work presented in the main chapters of the thesis. 

(1) The preliminary study (of 1999), that explored the potential of a multi­

spectral airbome system in detecting weed infestations in corn and soybean crops, 

confirmed several of the opinions expressed in the literature. The results showed the 

encouraging potential of aerial multi-spectral systems in discriminating between 

weed-free and weed-infested areas in a crop. However, it was difficult to distinguish 

velvetleaf and grassy weed treatments from either the mixed weed or weed-free 

treatments. In general, better results were obtained for the distinction between weed­

free and various weed-infested treatments with the ratio of radiance in the red and 

near-infrared wavebands. Investigations also indicated strong correlations between 

spectral data and various crop biophysical parameters. 

However, a closer visual inspection of the spectra indicated that the radiance 

spectra obtained over the corn and soybean crops differed primarily in magnitude of 

radiance, because the shapes of the spectra were very nearly identical. This 

phenomenon was the case, whether the spectra were compared with respect to weed 

control strategies within a crop, or with respect to the same control strategy observed 

for both of the two crops. Thus, spectra obtained during the vegetative growth of 

vegetation predominantly indicated differences in canopy density rather than type of 

vegetation. The differences in the spectral signatures of corn, soybean and the weeds 

involved in this study were too subtle to be detected from images with limited 
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spectral resolution, and an the more so from images taken at the spatial resolution 

available, at the altitude measured (lm x lm), because the proportion of reflected 

spectrum due to the crop far outweighs that of the weeds. 

There is support in the literature for these conclusions, with findings 

indicating that different weed species could best be discriminated at the flowering 

stage, because the spectral signatures differed due to color differences in flowers 

(Lass and CaUihan, 1997). Furthermore, several authors, working with spectral 

measurements obtained at various altitudes or in leaf-scale studies, have suggested 

that higher spectral resolution would be necessary to pro vide better discrimination 

between weeds and crops. It is perhaps best not to venture any further in drawing 

conclusions from the first year of study, because the aircraft data were essentially 

1imited due to the smaU plot size and radiance values, and the resultant difficulty 

posed by the quantitative comparison of results. Suffice it to say that the results from 

the preliminary study led to an improved methodology in the second year. 

(2) The second year of the field experiment was the subject of the material 

presented in Chapters 4, 5 and 6. The study, using hyper-spectral airbome and field 

sensors to detect weed infestations and nitrogen stresses, suggested that the 

reflectance of the corn crop was significantly influenced (a=O.05) in certain 

wavebands by the presence of weeds, the nitrogen rate and the interaction between 

the two. Aerial observations indicated that the nitrogen effect was detectable in many 

wavelength regions, at aU three growth-stages. However, differences in response due 

to nitrogen stress were most evident, at 498 nm and 671 nm, in the aerial data set. In 

these particular wavebands, differences due to nitrogen levels were observed at aIl 

growth stages because no interaction effect was found with weeds. From the aerial 

platform, the influence of weeds was most easily observed at the tasseling stage of the 

corn crop. Wavelengths from 520 to 603 nm and 701 to 939 nm were use fuI in 

detecting different weed infestations. In general, the study suggested that high and 

low nitrogen effect in corn could easily be differentiated in many spectrum regions. 

However, the selection of appropriate wavebands was very crucial, in order to 

separate aU three nitrogen levels. Similarly, weed-free corn plots could be separated 
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from no weed control plots in more spectrum regions. However, in order to separate 

the presence of more specifie weeds in corn, differences in spectral values existed in a 

few spectral regions. Irnportantly, the most significant wavelength regions for 

differentiating weed and nitrogen treatments were different. The choice of optimal 

wavelength regions aIso depended upon the growth stage ofthe crop. 

In general, efforts to develop functional relationships, using hyper-spectral 

observations (aerial and field) and various crop biophysical pararneters, indicated that 

predictive models with r2 > 0.9 could be developed for various crop physiological 

parameters, based on the spectral data. Highly significant models could also be 

developed for crop yield estimation using spectral observations. For aerial spectral 

data sets, linear models were also developed using norrnalized difference vegetation 

indices (NDVI). Better results were obtained when NDVI values were utilized for the· 

development of models, rather than using model based on 5-waveband reflectance 

values. In general, 701-nrn and 839-nrn wavebands were found to be the most useful 

for the development ofNDVI-based models. 

The comparison between models, based on hyper-spectral data acquired from 

the airborne sensor and those obtained from the ground-based platforrn (Chapter 4), 

led to the conclusion that there was a comparative mismatch between resolution and 

sampling coverage between the two systems. Aerial platforrns provided better 

representative values by averaging out the natural variation across a plot, which 

resulted in less variation across the sarne treatment plots. High variation resulted in 

different plots of the same treatment because of lower sampling coverage of the 

ground-based system. 

The regression models representing the relationships between data obtained 

from the air and crop physiological pararileters were significant for the most part. 

ANOV A results relating aerial spectral data to the split-plot experiment with weed 

control strategies and nitrogen fertilization rates were also statistically significant in 

certain respects. However, neither type of the aforementioned models cou Id be 

considered adequate for the purposes of precision application of agricultural inputs. 

The main problem with the regression models, aside from measurement 

errors, involving reflectance data or ratios of reflectance, and crop physiological 
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parameters, is that the pixels associated with specific parts of an image do not have a 

one-to-one relationship with the ground-truth measurements. Complexity is added, 

due to the fact that each pixel in the image represents a complex response of a ground 

parcel, wherein the proportional coverage of crop, weed, and soil vary from pixel to 

pixel. Thus, the variability among pixels pertaining to a particular sub-plot could not 

be fully associated with the variability in the samples of a given parameter in the sub­

plot. This latter problem leads to a distortion of the relationships. On the other hand, 

the fact that the relationships tended to be c10ser when the ratios were used, points to 

the complexity of the influences of weeds and nitrogen status on the radiation 

reflected by the canopy. With respect to ANOV A and contrasts, the situation is 

analogous in that the weed control strategies do not create the perfect conditions 

(uniform weed density and weed composition) across the replicates associated with a 

specific nitrogen level, because of natural variation. These considerations lead to the 

conclusion that a more complete sampling should be carried out at the ground, and 

that much better results might be obtained if data from pixels were associated with the 

closest reference measurement taken at canopy level. However, collection of such 

extensive information (pixel wise) and ensuring proper geo-referencing of each 

ground sampling point to image pixel, will again be a practical and technological 

challenge. 

(3) With respect to classification by decision trees and ANNs (Chapter 5) and 

the seven other classifiers described in Chapter 6, the main conclusion drawn is that 

not one stood out as "better" than the others. Classification accuracy was similar (i.e. 

poor) when all nine treatment combinations were treated as categories; accuracy was 

adequate to good when the categories involved levels of individual treatments only; 

and very good to excellent accuracy when the classification problems involved pairs 

of levels within a treatment. This points back to the limitations of the data, more 

specifically to the spatial resolution of the data acquired from the airborne sensor. 

Ideally, pixels should be associated with weed or crop; however tbis is impossible in 

practice unless the aerial imagery is obtained before corn leaves from different rows 

overlap and imagery is acquired at higher spatial resolution. 
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On another note, all of the classification techniques explored have strong 

underlying similarities in terms of the how their respective mathematics or 

probabilistic criteria are applied to partition the data, and it is therefore not surprising 

that not one was prominent. However, further exploration with other data processing 

may lead to refinement in the results. 

(4) When considering the results as a whole, in light of the limitations of the 

methods used, there is sufficient evidence that hyper-spectral data acquired from an 

airborne sensor, at a spatial resolution of 2m x 2m, may be used to detect nitrogen 

stress and weed infestations in a corn crop, given appropriate ground-truthing. It is 

not clear wh ether this is due to the combined influences on the quantities of biomass 

in the various sub-plots, or to a detectable change in the spectral signature ofthe corn. 

In either case, the practical problem that becomes evident is that the time, during the 

growing season at which the best discrimination may be obtained, is too late in the 

growing season (tasse1 stage). As a result, little flexibility is available in management 

to improve conditions during the same growing season. However, sorne studies also 

suggest that weed aggregations are stable at a specific location over time. In such 

situations, weed mapping could be useful in site-specific weed management for the 

following year as well. The detection of weeds at later stages is also important 

because adopting appropriate measures at this stage for stopping seed production and 

reproduction could control further propagation and the spreading of weeds in the next 

year and into newer fields. Furthermore, information on nitrogen status at the latter 

stage in the season could serve as a guide to investigate the problematic areas in the 

field. 

Thus, it may be concluded that this study clearly demonstrated that multi­

spectral and hyper-spectral remote sensing technologies have the definite potential of 

detecting weed infestations and nitrogen stress in corn. These stresses are detectable 

even when both are present simultaneously. On a note of caution, that the data 

acquired from the airborne sensors with the resolution available and analyzed with the 

methods used in this study, do not fully satisfy the requirements of peM. However, 

this study suggests that with an improvement in the following: spatial coordination of 
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aerial and ground-truth sampling, more refined data analysis, and somewhat better 

spatial resolution from the airbome sensors, it should be possible to produce maps of 

nitrogen levels and weed status of sufficient accuracy, to be used to provide control 

data to the variable rate technologies, required for precision crop management. 
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CHAPTER8 

CONTRIBUTIONS TO KNOWLEDGE AND SUGGESTIONS FOR 

FUTURE RESEARCH 

8.1 Contributions to Knowledge 

The following are specific original contributions to knowledge made from this 

study: 

1. To the author's knowledge, this is the first field study investigating the 

potential ofhyper-spectral airborne sensors to monitor corn growth, under the 

combined influence of different weed management strategies and nitrogen 

fertilization rates. A number of useful wavelength regions and ratios have 

been identified, to provide a more efficient application of remote sensing 

platforms to differentiate among various weed infestation conditions, and also 

to detect nitrogen stress. The conclusions of this study could have a direct 

bearing on the direction of future research on the development of airborne 

systems capable of providing maps of the variability of factors critical to crop 

growth. In such a way, this study contributes to the development of systems 

for precision crop management in eastern Canada. 

2. A number of functional relationships were developed between hyper-spectral 

data and crop biophysical parameters. Such relationships wou Id be important 

in time-critical and site-specific decision-making, to enable optimal allocation 

of economically and environmentally crucial resources. These relationships 

may be coupled with crop growth models for better predictions of crop 

growth. This study also indicated that, even under variable growth conditions 

(due to weed and nitrogen), highly significant models may be developed for 

early yield prediction using hyper-spectral data . 
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3. Decision trees and artificial neural network algorithms may be used to c1assify 

highly complex, hyper-spectral aerial data sets. The results indicated that these 

algorithms have a strong potential when applied to agricultural remote sensing 

applications. The literature review indicted that the application of decision 

tree algorithms, to classify aerial hyper-spectral data sets acquired over an 

agricultural field, was the first of its kind. 

8.2 Suggestions for Further Research 

1. There is a need to determine how the spatial resolution of the airbome sensing 

system needs to be improved to achieve the underlying aim of the research 

presented here: i.e., to develop accurate maps of the weed and nitrogen status 

of crop canopies. Should a similar field experiment be set up in the future, it is 

suggested that the area should be scanned from different altitudes with the 

airbome hyper-spectral sensor; and that a moving bridge system should be set 

up to permit full-coverage scanning with a field spectroradiometer just over 

the tops of the canopies. Efforts should also be made to note the exact 

positions of aIl accessory measurements (LAI, greenness, etc.) so as to permit 

them to be properly referenced to the pixel data. Efforts should also be made 

to obtain the cooperation of farmers using different cultural techniques to 

permit flights and ground-truthing in full-scale agricultural productions. 

2. There is also a need to obtain accurate spectral signatures of crops and their 

predominant weeds at various stages of development. This is required in order 

to achieve a more refined analysis of spectral imagery. With the assumption 

that there are significant differences between the signatures, it would then be 

necessary to determine whether the airbome sensor is sensitive enough to 

detect them. This kind of information was not available at the time of the 

present study . 
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3. One of the problems in this study was the difficulty in separating the weed 

control strategies during ANOV A and classification. This was partly due to 

the fact that, under field conditions, it is difficult to create perfect 

homogeneous conditions in the replicates associated with three of the weed 

control strategies. As seen in the first year, weed density in the corn plots was 

about double that of the soybean plots. There were also sorne differences in 

weed density within crop types, as weIl as variability among replicates within 

treatment combinations. It was possible to separate full weed control from no 

weed control (mixed weeds), but not corn plots with velvetleaf only from corn 

with no weeds, or corn plots with grassy weeds from corn plots with no 

weeds, or corn plots with velvetleaf only from corn plots with grasses only. 

Therefore, it is necessary to develop equivalencies between various types of 

weed, in order to be able to account for differences in reflectance caused by 

weed density. 

4. Researchers have used various other statistical approaches to analyze remote 

sensing data; therefore, other data analysis techniques may also be explored to 

improve upon these results. It is suggested that the data from this study may 

be statistically pre-processed to find an orthogonal set of discriminators, 

which can then be used to train decision trees andlor ANNs, in order to 

classify the data into categories of treatment combinations. 

5. Further research is recommended on the sensitivity of remote sensmg 

instruments in the detection of nitrogen stress at the canopy sc ale, under 

varying planting densities and changing canopy architectures due to nitrogen 

levels. Efforts could aiso be made to develop better relationships with more 

levels of nitrogen fertilization. It is further recommended to examine the effect 

of other different factors on reflectance, such as soil moisture, organic matter, 

and crop residue . 
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6. Another important are a, which could be explored, involves coupling remote 

sensing systems and ground-based real-time weed or nitrogen sensing 

systems. Currently, extensive efforts are being made by researchers to develop 

ground-based systems for weed control and fertilizer applications. Instead of 

using remote sensing, as a stand-alone system to develop weed or nitrogen 

variability maps, remote sensing could be used as the secondary source of 

information, in order to further improve upon the efficiency of ground-based 

systems . 
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APPENDIX-A 

Details of the content of the CD-ROM are briefly given in the table. 

Directory/Subdirectory Content 

EJ{.::.:JI Pradeep-Goel 1 The root directory contains a subdirectory Pradeep-Goel 

U Experiment-Details which is divided into two subdirectories, Experiment-
!±JD Year-1999 
œ-f.:) Year-2000 Details and Thesis-Text. 

Thesis-T ext 

Éle] Pradeep-Goel 
7" 

Experiment-Details 1 

I±ll] Year-1999 

ttH.::.:J Year-2000 

D Thesis-Text 

ElD Pradeep-Goel 

éD Experiment-Details 

! œq Year-1999 1 

!±JD Year-2000 

D Thesis-Text 

BD Pradeep-Goel 

éD Experiment-Details 

!±JD Year-1999 

: œ-CJ Year-2000 1 
1 D Thesis-Text 

ElLJ Pradeep-Goel 

ElD Experiment-Details 

[±JD Year-1999 
; œD Year-2000 
; 

[) Thesis-Text 1 

This directory is further divided into two subdirectories. 

Details concerning the first year (1999) and the second 

year (2000) of the experiment are glVen lU two 

subdirectories Year-1999 and Year-2000, respectively. 

In this directory, aU the relevant details of the experiment 

and collected data during the first year of the study are 

glVen. The Image collected from AISA sensor and 

coUected ground data is given in the subdirectories AISA­

Image and Ground-Data, respectively. Further details on 

these are given in the readme file. 

All the details related to the second year of the study are 

given in the Year-2000 directory. Hyperspectral CASI 

images, ASD spectral data, and other ground data are 

given in the subdirectories CASI-Image, ASD-Data, and 

Ground-Data, respectively. These directories are further 

divided into various sub-subdirectories. The names of 

these subdirectories are self explanatory. Further details 

on these are given in the readme file. 

This directory contains the thesis document lU MS­

WORD format. Various tables and figures are given in 

separate files and are named according to the chapter 

number. Copies of the published papers are also given 

various subdirectories. 
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