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ABSTRACT

This study investigated the possibility of using data, acquired from airborne
multi-spectral or hyper-spectral sensors, to detect nitrogen status and presence of
weeds in crops; with the ultimate aim of contributing towards the development of a
decision support system for precision crop management (PCM).

A 24-waveband (spectrum range 475 to 910 nm) multi-spectral sensor was
used to detect weeds in corn (Zea mays L.) and soybean (Glycine max (L.) Merr.) in
1999. Analysis of variance (ANOVA), followed by Scheffe’s test, were used to
determine which wavebands displayed significant differences in aerial spectral data
due to weed treatments. It was found that the radiance values were mainly indicative
of the contribution of weeds to the total vegetation cover in various plots, rather than
indicative of changes in radiance of the crops themselves, or of differences in
radiance between the weed populations and the crop species.

In the year 2000, a 72-waveband (spectrum range 407 to 949 nm) hyper-
spectral sensor was used to detect weeds in corn grown at three nitrogen levels (60,
120 and 250 kg N/ha). The weed treatments were: no control of weeds, control of
grasses, control of broadleaved weeds and control of all weeds. Imagery was
acquired at the early growth, tassel, and fully-mature stages of corn. Hyper-spectral
measurements were also taken with a 512-waveband field spectroradiometer
(spectrum range 270 to 1072 nm). Measurements were also carried out on crop
physiological and associated parameters. ANOVA and contrast analyses indicated
that there were significant (0=0.05) differences in reflectance at certain'wavebands,
due to weed control strategies and nitrogen application rates. Weed controls were best
distinguished at tassel stage. Nitrogen levels were most closely related to reflectance,
at 498 nm and 671 nm, in the aerial data set. Differences in other wavebands, whether
related to nitrogen or weeds, appeared to be dependent on the growth stage. Better
results were obtained from aerial than ground-based spectral data.
| Regression models, representing crop biophysical parameters and yield in
terms of reflectance, at one or more wavebands, were developed using the maximum

1 criterion. The coefficients of determination (r*) were generally greater than 0.7



when models were based on spectral data obtained at the tassel stage. Models based
on normalized difference vegetation indices (NDVI) were more reliable at estimating
the validation data sets than were the reflectance models. The wavebands at 701 nm
and 839 nm were the most prevalent in these models.

Decision trees, artificial neural networks (ANNSs), and seven other classifiers
were used to classify spectral data into the weed and nitrogen treatment categories.
Success rates for validation data were lower than 68% (mediocre) when training was
done for all treatment categories, but good to excellent (up to 99% success) for
classification into levels of one or the other treatment (i.e. weed or nitrogen) and also
classification into pairs of levels within one treatment. Not one classifier was
determined best for all situations.

The results of the study suggested that spectral data acquired from airborne
platforms can provide vital information on weed presence and nitrogen levels in

comfields, which might then be used effectively in the development of PCM systems.
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RESUME

Cette étude vise 1’évaluation du potentiel d’un systeme de télédétection en
surface ou par spectrometre imageur aéroporté soit multispectral ou en hyperespace
spectral, pour la détection de mauvaises herbes lors des cultures sous divers régimes
de fertilisation azotée. La finalité de cette étude serait de contribuer au
développement d’un systtme de surveillance des culture dans une Cadre de
L’agriculture de Précision.

Durant la premiére année de 1’étude (1999), un systeme d’aéro-
photogrammétrie multispectral (24-gammes d'ondes de 475 & 910 nm) servit a
détecter les mauvaises herbes dans des champs de mais (Zea mays L.) et de soja
(Glycine max Merr.). Une analyse de variance suivie d'un test de Scheffe furent
choisis pour déterminer laquelles des gammes d'ondes a présenté¢ une différence
significative quant aux représentations spectrales aériennes causées par les
traitements de désherbage. L'analyse de cette saison de culture propose que les
valeurs de radiance ont démontré la contribution des mauvaises herbes a la couverture
végétative de plusieurs parcelles plutdt que d'étre indicateur d'un changement de la
radiance spectrale des cultures ou d'un changement de radiance entre les mauvaises
herbes et les différentes cultures.

En 2000, un imageur spectrographique compact aéroporté¢ fut employé pour
acquérir des données dans un hyperspectrales de 72 bandes étroites dans les régions
du visible et de I’infrarouge proche (409 nm a 947 nm), a trois stades phénologiques
durant la saison de croissance (début de la croissance, stade de la panicule et a pleine
maturité), afin de détecter les mauvaises herbes dans une culture de mais sous quatre
stratégies de gestion des mauvaises herbes: aucun contrle, controle des graminées,
contrble des dicotylédones et contréle complet des mauvaises herbes, et ce a des
niveaux de fertilisation azotée de 60, 120, et 250 kg ha”. La collecte des données
dans un hyperspectrales se fit aussi sur le terrain avec un spectroradiometre mobile a
512 bandes étroites, d’une gamme de 270 nm a 1072 nm. De plus, divers parametres
physiologiques du mais et parametres associés a la croissance furent mesurés.

L'analyse de variance et I'analyse des contrastes indiquent une différence significative

il



(¢ = 0.05) du facteur de réflexion a certaines gammes d'ondes en raison des
différentes stratégies de controle de la mauvaise herbe et des régimes de fertilisation
azotée. Le contrdle des mauvaises herbes s'est mieux distingué au stade de croissance
de la panicule. Les niveaux d'azote ont été plus justement associés a la réflectance a
498 nm et 671 nm. Les différences notées a différentes gammes d'ondes, reliées aux
mauvaises herbes ou au taux d'azote, semblent étre directement influencées par le
niveau de maturité de la culture. De meilleurs résultats ont été obtenus des données
spectrales aériennes plutdt que des observations au sol.

Plusieurs relations fonctionnelles furent établies entre les parameétres
biophysiques de la culture et les données spectrales en se basant sur les valeurs du
coefficient de détermination multiple. Les coefficients de détermination (r*) furent en
général supérieurs a 0.7 pour les modeles basés sur des données spectrales prises au
stade de croissance de la panicule. Les modéeles basés sur l'indice de végétation
normalis€ se sont avérés plus fiables pour I'estimation des données de validation que
les mod¢les basés sur la réflectance. Les gammes d'ondes de 701 nm et 839 nm ont
étés les plus courantes. Des arbres décisionnels, des réseaux neuronaux artificiels et
sept autres classificateurs ont été utilisés pour classifier les données spectrales suivant
les catégories de traitement des mauvaises herbes et de fertilisation azotée. La
validation des résultats a donné des taux de moins de 68% (médiocre) pour I'ensemble
des catégories de traitement, alors que des taux de succés allant jusqu'a 99% ont été
obtenus pour la classification de I'un ou l'autre des traitements. Aucun des
classificateurs ne s'est démarqué.

. Les résultats ont démontré que les données spectrales aériennes peuvent servir
les besoins de gestion de l'agriculture de précision en fournissant des données
essentielles sur la présence de mauvaises herbes et sur les concentrations en azote des

sols en culture.
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CHAPTER 1

INTRODUCTION

Responding to the demand for increased food production, together with an ever-
growing concern about the negative impact of agriculture on the environment and
also decreasing profit margins, is a challenge for today’s researchers, policy planners,
and producers. Radical philosophical and technological changes are necessary to meet
this challenge. Precision agriculture has demonstrated a step in the right direction,
because it offers a means to achieve higher crop production and improve
environmental quality (Plant, 2001; Stombaugh and Shearer, 2000; Brisco et al,,
1998; Tomer et al., 1997).

Precision agriculture is also known as farming by foot (Reichenberger and
Russnogle, 1989) and farming by soil (Carr et al., 1991). It may be defined as the
application of technology and basic principles in order to manage the spatial and
temporal variability associated with all aspects of agricultural production, with the
purpose of improving crop performance and environment quality (Pierce and Nowak, -
1999). The basic philosophy behind this developing technology is the management of
spatial variability of soil properties and the microenvironment in a field settings
(Pierce and Nowak, 1999). The current approach of broadcasting fertilizer or
herbicides often results in a less than optimal use of these inputs (i.e. under- or over-
dosing), increased risk of environmental contamination, and a lower yield per unit of
input. The precision approach allocates inputs according to the needs of subdivisions
of the cultivated area, where the subdivisions are determined By analysis of the spatial
variations of soil and crop conditions. The timing of inputs is subject to temporal
changes in crop requirements and such external factors as weather.

There is little doubt that precision management will be the reality of the
future, with such new technologies having a drastic impact on farm management
(Schilfgaarde, 1999). However, the benefits of precision agriculture are yet to be fully
realized because the required technologies have yet to be perfected (Pierce and

Nowak, 1999). The implementation of precision agriculture systems is being fueled



by the simultaneous development of more precise Differential Global Positioning
Systems (DGPS), as well as more powerful Geographic Information Systems (GISs),
Variable Rate Technology (VRT), and sensor technology (Stombaugh and Shearer,
2000). However, the successful implementation of a precision agriculture system
concurrently requires a system for the measurement and analysis of variability of soil
and crop parameters in the field (Pierce and Nowak, 1999). Once acquired, this
information must also be available to decision-making software and to the control
mechanisms of VRTs used to apply inputs to the field. In order to make the overall
system complete, the inclusion of an evaluation system to measure the application
efficiency and efficacy of site-specific inputs is necessary.

Accurate mapping of crop variability across fields is essential to the adoption
of precision agriculture (Tomer et al,, 1997). Because ground collection of site-
specific information may be too expensive and time consuming, (Plant, 2001; Senay
et al., 1998) as a result considerable work has been done on evaluating the potential
of image—based remote sensing (Moran et al,, 1997; Hatfield and Pinter, 1993;
Stevens, 1993). With satellites and aircraft used as platforms for spectral sensors
(GopalaPillai and Tian, 1999), precision farming is now considered to be the most
promising area for the application of remote sensing technology, since the inception
of environmental resource monitoring by LANDSAT in the early 1970’s (Anderson
et al., 1999). Images obtained from aircraft-mounted sensors are currently used for
time-specific and time-critical precision crop management, because they provide
better spectral and spatial resolution and flexibility in operation (Moran et al., 1997);
however, it is anticipated that the resolution of satellite iinagery will soon become
high enough to provide such advantages as lower operating costs and wider spatial
coverage.

Remote sensing has already been successfully used to differentiate crops and
estimate yields over relatively extensive areas. The analysis of spectral data is
currently under investigation with potential of assessing crop health and crop vigor,
and also identifying such specific factors detrimental to crop yield as weed infestation
and moisture deficit. Such applications may be easily coupled with precision

agriculture technology. Another important advantage of remote sensing imagery is



that point measurements may be converted into spatial information more reliably
(Brisco et al., 1998). Images taken from aircraft and satellite remote sensing
techniques have been successfully used to determine the cultivated area of various
crops by using the visible spectrum (Saha and Jonna, 1994) or radar backscatter
(Foody et al., 1994; Brown et al,, 1984). Numerous studies have focused on
forecasting crop yields from remote sensing data (Senay et. al., 1998; Moulin et al,,
1998; Moran et al., 1995; Delécolle et al., 1992; Bouman, 1992; Klemn and
Fagerlund, 1987; Wiegand et al., 1986; Asrar et al., 1985; Crist, 1984; Holben et al,,
1980).

The environmental and economic benefits of precision weed management are
recognized widely. However, the factor presently limiting the adoption of site-
specific application of chemicals for weed management is the absence of a cost-
effective technique for weed maps production (Rew et al., 2001; Hall et al., 2000).
Many past studies have indicated, with varying degrees of success, the potential of
remote sensing technologies to detect weeds in agricultural fields and rangelands
(Medlin et al., 2000; Zwiggelaar, 1998; Lass and Callihan, 1997; Lass et al., 1996;
Brown and Steckler, 1995; Hanson et al., 1995; Menges et al., 1985; Eventt et al.,
(1987, 1994, 1995, 1996)). Greater accuracy in weed detection may be achieved,
provided that such spectral differences between weeds, crops and soils exist, and are
detectable by instruments with sufficient spectral resolution (Lamb and Brown,
2001). Thus, the requirement is higher resolution instruments.

Management of nitrogenous fertilizers for precision agriculture is most crucial
due to the direct environmental benefits and the temporal variation in soil-nitrogen
availability and crop demand (Pierce and Nowak, 1999). Currently, the most widely
used methods to determine variable fertilizer rates are soil testing and yield mapping
(Taylor et al., 1998). However, many studies have indicated the potential of spectral
measurements to assess nitrogen status in plants. Plants reflect more light in the red
and less in the near-infrared regions when nitrogen is limited due to lower chlorophyll
content (Serrano et al., 2000). Various reflectance ratios and indices have been used
to detect nitrogen deficiencies in plants (Plant et al,, 2000; Lukina et al., 2000;
Blackmer and White, 1998; GopalaPillai et al., 1998; Sui et al., 1998; Taylor et al,,



1998; Martin and Aber, 1997; Bausch and Duke, 1996; Blackmer et al., 1996a; Ma et
al., 1996; Buschmann and Nagel, 1993). These studies were conducted at the leaf or
canopy scale, and with different sensors (ground based and airborne). Researchers
achieved mixed success in differentiating nitrogen stress levels and establishing
quantitative relationships.

Accurate estimation of within-field spatial variability of crop parameters such
as leaf area index (LAI), biomass, disease incidence and severity, and other factors is
essential for precision agriculture (Stafford, 1997). Most of these variables are
continuous and a functional relationship is required between these variables and
spectral and ancillary data (e.g. topography, sun angle, ground data, etc.). Success in
deriving characteristics of vegetation from remotely sensed data will determine the
utility of remote sensing technologies in vegetation science (Kimes et al., 1998). Prior
conversion of remote sensing data into a vegetation index, LAI, nitrogen deficiency,
weed density, and soil organic matter is necessary for the proper application of VRT
(Frazier et al., 1997). Researchers are therefore attemptihg to develop quantitative
functional relationships between remotely sensed data and crop parameters. The
estimation of various biophysical parameters from remotely sensed data is also
important in extending the spatial range of the application of crop growth models. A
number of studies have demonstrated that there are significant correlations between
spectral measurements, crop biophysical parameters and the concentrations of certain
biochemicals in plants (e.g. Patel et al., 2001; Inoue et al., 2000; Thenkabail et al.,
2000; Cloutis et al., 1999; Jago et al., 1999; Brown et al., 1997; Curran et al., 1997,
Cloutis et al., 1996; Inoue and Morinaga, 1995; Munden et al., 1994).

The potential of remote sensing has been clearly established in the acquisition
of spatial information on many parameters of agricultural interest. Most research of
this kind has been based on color photography, digital photography or videography,
or multi-spectral imaging. These photographs have proved useful in the visual
interpretation or qualitative assessment of field conditions; however, there has been
limited success in quantifying the various objects or parameters of interest. The major
drawbacks of these technologies involve the provision of average reflectance values

over a limited number of fairly broad wavebands. This results in the loss of spectral



difference existing in narrow wavelength regions, and perhaps answers why it has
been difficult to discriminate between objects having subtle differences in their
spectral response. Hyper-spectral imaging systems scan a large number of narrow
wavebands, thus providing a greater spectral resolution in a cost-effective manner
(Lamb and Brown, 2001; Lamb, 1998). For the efficient integration of remote
sensing and precision agriculture, data are required at high spectral resolution i.e. in
more narrow wavebands (<25 nm) (Anderson et al., 1999). Furthermore, the digital
format of remotely sensed spatial data facilitates automated processing (Frazier et al.,
1997) and should provide reliability in extracting quantitative information. Studies
using handheld spectroradiometers have demonstrated the potential of hyper-spectral
measurements in the detection of weeds and nitrogen levels in crops. Hyper-spectral
remote sensing has the greatest potential in providing quantitative estimation of many
crop growth parameters, but its current limitation is costs (Lamb, 2000). Extension of
hyper-spectral technology to an airborne platform is rather challenging and new for
many of the applications in agricultural crop monitoring.

Fast processing algorithms are being developed to deal with the large amount
of data generated from remote sensing systems. Data-mining techniques and artificial
neural networks (ANNs) are now receiving greater attention from the remote sensing
community. In remote sensing image analysis, the usefulness of data-mining
techniques in general and decision frees in particular, has been demonstrated by some
recent studies (Fried! et al., 1999; Soh and Tsatsoulis, 1999; Friedl and Brodley,
1997; Hansen et al., 1996). There has also been some success in the application of
ANNs to deal with remote sensing data (Augusteijin and Warrender, 1998§;
Augusteijin et al., 1995; Danaher et al., 1997; Hepner et al., 1990; Kanellopoulos et
al., 1992).

1.1 Objectives

The present project was conceived after envisaging the growing importance of
remote sensing in precision agriculture. The ultimate objective of this research was to
contribute to the development of a crop monitorihg system for precision crop

management (PCM) of corn (Zea mays L.) production in central Canada. The specific



objectives of the proposed study were:

1. to study the possibility of using multi-spectral and hyper-spectral images,
obtained from an airborne platform, in order to monitor crop growth under
different weed management conditions and nitrogen fertilization rates,

2. to identify the wavebands and waveband ratios that best permit the recognition of
weed infestations and corn nitrogen status at different growth stages,

3. to develop functional relationships between remotely-sensed data and various
biophysical crop canopy parameters,

4. to develop models for the prediction of crop yield, based on hyper-spectral
measurements acquired from airbome and ground-based sensors,

5. to develop models for the classification of hyper-spectral data, in order to locate
weeds and assess nitrogen levels using artificial neural networks (ANNs) and
decision trees, and

6. to assess the potential of aerial hyper-spectral imagery, in order to create weed
infestation and nitrogen variability maps using different image classification

algorithms.

1.2 Scope

Airborne and ground-based sensors were used to acquire spectral data. In the
first year, the study focused upon identifying suitable wavelength regions for the
detection of different weeds in corn (Zea mays L.) and soybeans (Glycine max (L.)
Merr.). In the second year of the study, emphasis was placed on the selection of
suitable wavelength regions, in order to detect different weeds and different nitrogen
fertilization levels in corn. In addition, extensive effort involved the development of
functional relationships between spectral data and biophysical indicators of crop
condition. Various traditional and innovative approaches to classifying spectral data
were used to detect weeds and nitrogen levels in corn.

Because crop growth is influenced by numerous, highly variable factors,
application of the models developed in this study is limited to the growth conditions
in the field, and to the transmission and illumination conditions of the atmosphere, at

the times of spectral data acquisition. The findings of this study are also limited to



airborne platforms and should be validated with satellite-based sensors under varying
atmospheric and solar illumination conditions. In general, remote sensing approaches
are based on the development of models using small areas of imagery, for which
ground information is available, and then extending such models to the whole area.
Thus, a similar approach is recommended to extend the scope and application of the

results of the study to a larger scale and also over time.

1.3 Thesis Organization

This thesis consists of nine chapters. Chapter 1 introduces the subject, and
states the objectives and scope of the study. Chapter 2 refers to the relevant and
pertinent literature on the subject. Chapter 3 describes the first year of study, which
focused on monitoring corn and soybeans under different weed infestation levels. A
multi-spectral sensor was used to acquire spectral data. This chapter focuses on the
selection of suitable wavelength regions and wavelength ratios in order to detect weed
infestations. Results of efforts to estimate crop biophysical parameters, from remotely
sensed data, are also presented in this chapter. In this chapter, the section based on the
selection of suitable wavebands has been published in the Transactions of the ASAE
45(2): 443-449.

Chapters 4 to 6 describe the work carried out in the second year of the study,
involving the investigation of the effects of weeds and nitrogen fertilization on the
spectral response of a corn canopy. A highly sophisticated hyper-spectral airborne
sensor and a hand-held spectroradiometer were used to acquire spectral data. Chapter
4 focuses on the selection of suitable wavelength regions to detect weeds and crop
nitrogen status. Also presented here is a comparison between the airborne sensor and
hand-held spectroradiometer. In addition, this chapter deals with the development of
functional relationships between spectral data and various crop biophysical
parameters and includes efforts to provide pre-harvest yield estimates using spectral
data. Two papers are based on this chapter, one accepted for publication in Computer
and Electronics in Agriculture, and the second submitted and under review for
publication in Transactions of the ASAE.

Chapter 5 focuses on the use of decision trees, a data-mining technique, and



artificial neural networks (ANNs) for classifying highly complex hyper-spectral data
in terms of weed infestation and crop nitrogen status. A paper based on this chapter
has been accepted for publication in Computer and Electronics in Agriculture.

Chapter 6 summarizes the results of work completed on the development of
weed and nitrogen maps, using various‘ widely used traditional image classification
algorithms and more sophisticated approaches for hyper-spectral image analysis. A
manuscript based on this work has been submitted and is under review for publication
in Transactions of the ASAE.

Finally, Chapter 7 presents a summary and lists the salient conclusions of this
research. Chapter 8 outlines the main contributions to knowledge and suggestions for

future research. Chapter 9 outlines a comprehensive list of references.



CHAPTER 2

LITERATURE REVIEW

This chapter reviews the literature relevant to the application of remote sensing for
weed detection and the assessment of nitrogen levels in vegetation. The first section
covers the spectral properties of vegetation. The next section reviews the remote
sensing of weeds and of nitrogen status in plants. This discussion is followed by an
overview of studies, which were aimed at estimating crop yield and the biophysical
parameters of vegetation using spectral data. The fourth section covers applications of
decision trees and artificial neural networks (ANNs) for image analysis. This chapter

ends with a brief account of the current status of this area of research.

2.1 Spectral Properties of Vegetation _
Light impinging on materials is reflected, absorbed and transmitted. The
proportion and quality of energy, falling into each of these categories, depends on the
surface properties and internal structure of the material, as well as on the angle of
incidence. Remote sensing usually involves the measurement and analysis of the
reflected radiation. Typical spectra of healthy green vegetation, dry bare soil, and

clear water are shown in Figure 2.1.

—-—-~—-=— Dry bare soil {Gray-brown)
Vegetation {Green)

60

——————— Water (Clear)

Reflectance {3)

04 0S 0.8 1.0 1.2 1.4 16 1.8 2.0 22 24 26
Wavelength {um)

Fig. 2.1 Typical reflectance spectra for vegetation, soil, and water.
(after Swain and Davis, 1978)



Leaves reflect light ranging from the visible to infrared regions (400 to 2500
nm). Reflectance is low in the visible (400 to 700 nm), high in the near-infrared (700-
1200 nm), and low in the middle and far infrared (>1200 nm) regions. Important
information concerning the structure and physiology of leaves can be related to the
spectral responses in the visible and infrared regions, as well as to the differences in
spectral response in the red and infrared regions (Pefiuelas et al., 1994).

The reflectance spectra are determined in part by the absorbance of important
plant pigments and other chemical components. Absorption wavebands of the most

relevant components are listed below (after Zwiggelaar, 1998):

chlorophyll a: 435, 670-680, 740 nm;
chlorophyll b: 480, 650 nm;
a-carotenoid: 420, 440, 470 nm;
[B-carotenoid: 425, 450, 480 nm;
anthocyanins: 400-550 nm;

lutein: 425, 445, 475 nm;
violaxanthin: 425, 450, 475 nm,;
water: 970, 1450, 1944 nm.

It is difficult to obtain plant spectra with sharp absorption peaks, because
leaves contain a combination of these chemical components and the wavebands are
quite wide. It is now well established that the shape of the reflectance spectra of
plants in the visible region are largely determined by green chlorophyll.

The spectral response of plants, and particularly of their leaves, also depends
on anatomical features including the physical structure of the plant surface and the
cell structure within the leaf (Vogelmann, 1993; Gausman, 1977). The spectral
response is also wavelength dependent due to the different refractive indices of cell
components (cell wall n = 1.4, water n = 1.3, and air n = 1) and discontinuities in
media within leaves (Gausman, 1974; Knipling, 1970). The absorption coefficient,
infinite reflectance, and scattering coefficient of the leaves of 30 plant species were

determined in a laboratory at seven different wavelengths (Gausman and Allen,
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1973). Results indicated that thick, complex, dorsiventral leaves (bifacial mesophyll),
such as those found in rubber plants, begonia, sedum and privet, had a lower infinite
reflectance and higher absorption coefficient than thinner, less complex, dorsiventral
leaves (i.e. soybean, peach, bean, rose). Infinite reflectance was found to be
negatively correlated with leaf thickness whereas the absorption coefficient was
directly correlated with leaf thickness. However, there was no correlation between the
scattering coefficient and leaf thickness.

As earlier mentioned, the chemical components of leaves influence their
reflectance spectra. Buschmann and Nagel (1993) determined the reflectance spectra
of bean (Phaseolus vulgaris L.) leaves with colors varying from yellow to fully-
green. In general, the signals were low in the blue (400 to 500 nm) and high in the
near-infrared (750 to 800 nm) regions. Higher absorption near 680 nm was associated
with higher chlorophyll content. It was also observed that this waveband became
broader, and that the point of inflection in the rise from 680 to 750 nm (red edge)
shifted to longer wavelengths, with increasing chlorophyll content. Other researchers
have also reported a shift of the red edge to longer wavelengths, with an increase n
chlorophyll concentration (Vogelmann, 1993; Baret et al.,, 1992; Horler et al., 1983).
Buschmann and Nagel (1993) found that the highest correlation between the
reflectance in individual waveband and chlorophyll content was at 550 nm
(coefficient of determination, r* = 0.756). However, much better correlations were
obtained with chlorophyll content and functions of the signals at 800 nm and 550 nm
(r? = 0.906 for the difference between the two; 12 = 0.942 for the logarithm of the ratio
of the two).

The reflectance spectra of leaves are also affected by water content. Tucker et
al. (1980) reported an association between the responses in the near- and middle-
infrared regions and the water content of plant tissues. Carlson et al. (1995) found a
strong positive correlation between reflectance and water content in corn, soybean,
and sorghum (Sorghum bicolor) leaves. Buschmann and Nagel (1993) noted that
water infiltration in bean leaves resulted in lower reflectance in two wavebands, 500
to 650 nm and 700 to 800 nm. These wavebands are usually characterized by high |

reflectance.
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The interactions of crop or forest canopies with incident radiation are more
complex than those of single leaves, because other plant parts also affect the overall
response (Guyot, 1990). The canopy architecture and the presence of surfaces, other
than those of the crop (soil, crop residue, surface conditions, etc.), complicate the
analysis of spectral data obtained over cultivated fields (Jackson and Pinter, 1986).
Reflectance in the visible range is generally lower, whereas the same in the near-
infrared is higher, when there is more biomass in the crop canopy. Canopy reflectance
in the visible range decreases sharply from emergence until the LAI approaches a
value of 2 cm”/cm’, and then tapers off asymptotically as ground cover approaches
100%. Hatfield and Pinter (1993) found that canopy reflectance reached a minimum
(3 to 5%) in the visible, and a maximum (60 to 70%) in the near-infrared, when the

LAI reached 3 to 4 cm*/cm?.

2.2 Remote Sensing for Weed Detection

The detection of weeds by remote sensing depends on the existence of
detectable differences between the spectra of weeds and of other objects in the
canopy (soil and crop plant), as well as on equipment having sufficient spatial and
spectral resolution (Lamb, 1998). Numerous attempts have been made to detect

weeds in agricultural fields and rangelands.

2.2.1 Weed detection in agricultural fields

Medlin et al. (2000) noted that the spectra of certain crops are often similar to
those of the predominant weeds that invade them. Zwiggelaar (1998) reviewed the
work on the potential use of spectral properties of plants for the discrimination of
crops and weeds, and concluded that it is nevertheless possible to discriminate
between plants with similar spectra if equipment is utilized with a high enough
spectral resolution.

There have been many comparisons between the spectra of crops and weeds,
focusing on individual leaves, individual plants or canopies of crops or weeds.
Spectral observations have been made from a distance of a few centimeters (using

handheld devices) to a few hundred meters (airborne sensors), with sensors ranging in
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spectral resolution from the capabilities of color or color-infrared cameras to those of
scanners providing reflectance at hundreds of wavebands. Some of these studies are
summarized and discussed below.

Menges et al. (1985) examined single leaf and canopy reflectance
characteristics of different weed species and of agronomic and horticultural crops.
Spectral data were collected at seven different wavelengths in the range 450 to 1250
nm. It was concluded that the greatest differences in the spectra of crops and weeds
occurred at 850 nm (near-infrared) and 550 nm (visible). The possibility of
distinguishing weeds from crops in different weed-crop combinations was
demonstrated using conventional color and color infrared photography. Results
indicated that it was possible to identify climbing milkweed (Sarcostemma
cyanchoides) in orange (Citrus sinensis Osbeck) trees; ragweed (Parthenium
hysterophorus L.) in carrots (Daucus carota L.); johnsongrass (Sorghum halepense
(L.) Pers.) in cotton (Gossypium hirsutum L.) and in sorghum (Sorghum bicolor L.);
London rocket (Sisymbrium irio L.) in cabbage (Brassica oleracea L.); and Palmer
amaranth (Amaranthus palmeri S. Wats.) in cotton. Their results were attributed to
differences in chlorophyll content, color, leaf area and intercellular spaces in the
individual leaves. However, these differences were not consistent and depended on
the comparative developmental rates of the crops and weeds.

With further advancement in inexpensive and convenient digital imaging
systems, researchers explored the potential of still video images and multi-spectral
imaging systems. Brown and Steckler (1993) took images from a “cherry-picker” lift
(8 m) and from a low-altitude aircraft (600 m) to detect weeds in corn fields. Images
were acquired at spatial resolutions of 2.5 cm® and 15 cm’ from the lift and aircraft,
respectively. The filters used were standard red, blue, green, and infrared. Scanned,
digital, aerial images of the corn field were classified into three broad groups (corn,
soil, and weeds) using the supervised maximum likelihood algorithms. Weed patches
could be classified with an accuracy of over 80% from the aerial images. However, it
was not possible to distinguish between weed species with sufficient accuracy. It was
suggested that higher spectral resolution was needed for this task. Hatfield and Pinter

(1993) mentioned that the use of multi-spectral imagery for weed detection within
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crop canopies required further research. The relationships between spectra and the
following were mentioned as requiring particular attention: weed infestation levels,
weed species, and crop growth stage.

Brown and Steckler (1995) developed herbicide prescription maps from
digitized, low-altitude, aerial color and color-infrared photographs with a spatial
resolution of 100mm x 100mm per pixel. An overall classification accuracy of 75%
was reported between weed maps developed through ground observations and maps
derived from aerial imagery (Steckler and Brown, 1993). A decision model was also
developed to control the herbicide application rate of a sprayer. It was estimated that
about 40% less herbicide would be needed if the proposed approach was used.

Brown et al. (1994) took hyper-spectral measurements over weed-infested
corn fields and found that variations in the spectral signatures of different parts of the
fields were related to the presence of seven common weeds, as determined by ground-
truthing. The weeds were redroot pigweed (Amaranthus retroflexus L.), lamb’s-
quarters (Chenopodium album L.), dandelion (Taraxacum officinale Weber),
milkweed (Asclepias syriaca L.), bluegrass (Poa compressa L. and Poa pratensis L.),
quackgrass (Agropyron repens (L.) Beauv), and foxtail (Setaria sp. Beauv.). The
wavebands that best related to the presence of these weeds were those centered at
440, 530, 650, and 730 nm.

In a more recent study, Wang et al. (1998b) evaluated the use of plant
reflectance spectra for differentiating between crop plants and weeds. Hyper-spectral
data were obtained for various crops, weeds, and soils under artificial light in the
laboratory. The spectra of whole plants, leaves and stems were measured separately.
Results indicated 100% confidence with distinguishing soil from any of the plant
parts. However, success was poor in distinguishing weed plants, leaves or stems, from
crop plants, leaves or stems. The researchers suggested that the limited amount of
available data was responsible for low classification accuracy.

Mapping weeds in fallow land or against a contrasting background of soil,
stubble, or dead vegetation is much easier than in cropped fields, due to the
significant difference in spectral signature of classes represented in each pixel of the

image. In such cases, the basic objective is usually to discriminate living vegetation
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(weeds and volunteer crop) from any other material. This approach was shown to be
effective by Lamb and Weedon (1998); who used an airborne multi-spectral video
system to map hairy panic (Panicum effusum R. Br.) in a fallow field of oilseed rape
(Brassica napus L.) stubble. Multi-spectral digital imagery was acquired by using
440-, 550-, 650-, and 770-nm filters over the study site. Results demonstrated that it
was possible to develop weed maps having an accuracy of about 87%. The success
obtained was attributed to the relatively simple criteria used to discriminate weeds
(living vegetation) from soil or stubble and to differences in weed phenology.

Deguise et al. (1999) mapped weed patches in a canola (Brassica napus L.)
field using hyper-spectral radiance data from an airborne sensor. Automatic and
manual end-member selection techniques were applied to unmix the hyper-spectral
data, and better results were obtained with manual selection method. Good visual
comparisons were found in the weed patches detected in acquired airborne imagery at
587.2 nm wavelength and in the images derived using spectral unmixing. However,
further investigation was recommended of end-member selection from the surface
reflectance image.

Lamb et al. (1999) evaluated the accuracy of a four-camera, airborne, digital
imaging system to map wild oats (Avena spp L. in seedling triticale (X
Triticosecale). Images were acquired at different spatial resolutions (0.5, 1.0, 2.0, and
2.5 m) in order to assess the effect of resolution of the imaging system on weed
detection. The normalized-difference vegetation index (NDVI) and the soil-adjusted
vegetation index (SAVI) were derived from the acquired multi-spectral image.
Results indicated that the density of wild oats could be correlated to the NDVI or
SAVI values. As expected, better results were obtained with images acquired at
higher spatial resolutions, i.e. at 0.5 m. The study also indicated that areas with weed
populations of over 17 plants per m’ could be detected in the ficld. However, it was
found unlikely that treatment maps could be developed from aerial imagery alone.
Remote sensing systems could be used in combination with DGPS systems to identify
and locate weed patches in the field.

In an effort to evaluate multi-spectral remote sensing for weed detection early

in the cropping season, Medlin et al. (2000) acquired images from a four-waveband
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Charged Coupled Device (CCD) camera taken over a soybean field, nine weeks after
planting. The wavebands were in the green (535 to 545 nm), red (690 to 700 nm and
715 to 725 nm), and near-infrared (835 to 845 nm) regions. There was success in
detecting weed-infested and weed-free areas in the field, and the authors reported that
Senna obtusifolia L., Ipomea lacunosa L., and Solanum carolinense L. could be
detected with an accuracy of 75%. It was recommended that future studies target the
early detection of weeds and the detection of specific weeds within a complex
mixture of different species in the field.

In a most recently published study, Rew et al. (2001) compared weed maps
developed from aerial, multi-spectral imagery and maps generated from a ground
weed survey. A kriging method vwas used to generate weed maps based on weed
count in the grid survey. Based on the ground survey, weed density could not be
estimated with acceptable accuracy for site-specific weed control; however, it was
concluded that multi-spectral imagery could serve to provide accessory data to
improve the estimates of weed density and distribution across the field. A cost
comparison was also performed and this indicated that multi-spectral imagery was
less labor intensive and time consuming, and also more economical. Moreover, weed

maps could be produced at much finer resolution by aerial imagery.

2.2.2 Weed detection in rangelands/grasslands

Numerous studies have shown that it is possible to use conventional color
and/or color-infrared aerial photography and videography to map weeds in rangeland
(Everitt et al., 1984, 1987, 1994, 1995, 1996). Color-infrared photography was used
to map broomweed (Ericameria austrotexana M. C. Johnston) (Everitt et al., 1984),
broom snakeweed (Gutierrezia sarothrae (Pursh) Britt & Rusby) and spiny aster
(Aster spinosus Benth.) (Everitt et al., 1987). The same research group then combined
aerial color-videography with GPS and GIS technologies to permit rapid geo-
referencing and data processing (Everitt et al., 1994, 1995, 1996). In the 1994 study,
attempts were made to detect and map Big Bend loco (4stragalus mollissimus Torr.)
and Wooton loco (Astragalus wootonii Sheldon.), two poisonous rangeland weeds.

The 1995 study quantified leafy spurge (Fuphorbia esula 1..), an exotic deep-rooted
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perennial rangeland weed, in the study area. Canopy reflectance measurements were
made with a ground sensor in the visible red (630 to 690 nm) and near-infrared (760
to 900 nm), followed by the use of aerial photography and videography. The findings
indicated that remote sensing observations coupled with GPS and GIS technologies
could be successfully used to map rangeland weeds. However, compared to
conventional photography, aerial videography had coarser spatial resolution at the
same flying altitude. Photographs were taken late in the season when particular weeds
had distinét colors due to foliage or flowers.

Lass et al. (1996) were able to detect yellow starthistle (Centaurea solstitialis
L.) and common St. John’s Wort (Hypericum perforatum L.) in rangelands from
digital images obtained from an airborne Charged Coupled Device (CCD). The
images were collected in four wavebands (460 to 570 nm, 575 to 625 nm, 610 to 710
nm and 780 to 1000 nm) and at resolutions of 0.5, 1, and 2 m. Yellow starthistle and
St. John’s Wort could be detected at densities as low as 30% ground cover. As
expected, better results were obtained from the higher resolution images.

Lass and Callihan (1997) also studied the effect of the phenological stage on
detection of two perennial rangeland weeds, yellow hawkweed (Hieracium pratense
Tausch) and oxeye daisy (Chrysanthemum leucanthemum L.). They found that the
detection of different rangeland weeds was most accurate when they were in full
bloom rather than in early or post-bloom. The accuracy of detection was good enough
for management of rangelands weeds.

A few studies have gone a step further to realize the potential of remote
sensing, for the development and management of pastoral or grazing lands. Hill et al.
(1996) used a GIS to create pasture growth maps from satellite imagery, bio—climatic
models, topographic and other ancillary data. This approach directly addresses site-
specific variations in land productivity and provides a practical tool for managing
pastures and rangelands.

Hill et al. (1999) then used satellite data in combination with GRAZPLAN, a
pasture simulation model, to estimate production at the farm level. A spatial data
layer mapping the growth status was used to determine parameter inputs for the

simulation model. It was indicated that future developments, in high spectral and
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spatial resolution airborne and space-borne sensors, would provide better qualitative

information for the simulation models.

2.3 Remote Sensing of Nitrogen Stress in Plants

Nitrogen is one of the main limiting factors in the growth of plants. Nitrogen
is also the most crucial parameter in managing agricultural, non-point source
pollution. Various techniques have been developed to determine the timing and
nitrogen requirements of crops. However, traditional methods involving soil and plant
tissue sampling are very laborious and time consuming. Moreover, there may be
considerable time‘ lags between sample collection and the availability of results
(Bausch and Duke, 1996).

One alternative that has been widely used to measure nitro geh stress in plants,
albeit with varying degrees of success, is the chlorophyll meter, which is based on
light reflectance (Blackmer and Schepers, 1995; Schepers et al., 1992; Dwyer et al,,
1991). This technology is generally only applicable to a single leaf at a time, which
precludes its usefulness for large;scale assessments. However, remote sensing of the
reflectance of canopies, in the appropriate wavebands, should be an appropriate basis
for mapping the spatial variability of nitrogen status (Blackmer et al., 1996a; Bausch
and Duke, 1996) and water stress across a field (Pefiuelas et al., 1994).

In general, compared to healthy plant leaves, leaves from stressed plants have
higher reflectance in the visible and lower reflectance in the near-infrared spectral
region (Gausman, 1977, Pefiuelas et al,, 1994). Nitrogen-stressed plants have
significantly lower levels of plant nitrogen and chlorophyll, higher starch content and
greater leaf thickness. They reflect more light in the red region due to lower
chlorophyll content, and less light in the near-infrared region (Serrano et al., 2000).

A more detailed review of relationships between nitrogen stress and spectral
signature is given in the following sub-sections. One sub-section concerns reflectance
measurements at the leaf scale under laboratory or field conditions, and the other

regards canopy scale assessments from ground-based or airborne platforms.
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2.3.1 Leaf-nitrogen level studies

Various authors have reported significant correlations between reflectance in
certain wavebands and nutrient deficiencies. Thomas and Oerther (1972) found that
reflectance at 550 nm was a good indicator of the nitrogen content of sweet pepper
(Capsicum annuum L.) leaves. It was noted that the change in reflectance, at 550 nm,
could be detected well before human visual observation of the symptoms of stress.
Later, Thomas and Gausman (1977) studied the reflectance of single leaves from
eight crops at wavelengths of 450, 550, and 670 nm. These are the absorption bands
of chlorophyll and carotenoids, a reflectance peak, and the chlorophyll absorption
band, respectively. It was concluded that the reflectance at 550 nm was a better
indicator of chlorophyll and carotenoid content than the absorption bands. Takebe et
al. (1990) conducted an experiment on rice (Oryza sativa L.) leaves and found a
significant correlation between leaf chlorophyll content and the ratio of the
reflectance at 550 and 800 nm. Chappelle et al. (1992) also obtained best results at
550 nm, in a study to differentiate between nitrogen fertilization levels in corn.
Buschmann and Nagel (1993) observed that leaves with higher nitrogen content have
stronger reflectance in the blue and near-infrared (NIR) waveband. It was suggested
that reflectance in the green (545 nm), red (660 nm), and NIR (800 nm) could also be
related to plant nitrogen content.

Blackmer et al. (1994a) found that the best relationships between reflectance
and leaf nitrogen content, and between reflectance and chlorophyll meter (Minolta
SPAD) readings, occurred at 550 nm. A significant correlation was also reported
between relative comn yield and reflectance at 550 nm. These findings could be
attributed to a comparatively lower absorption of energy by chlorophyll at 550 nm,
resulting in more pronounced differences with varying chlorophyll content.

Pefiuelas et al. (1994) demonstrated that narrow waveband indices are more
useful than wider wavebands for assessing nitrogen and moisture stress in sunflower
(Helianthus annuus L.) leaves. This involved the utilization of the normalized
difference vegetation index (NDVI), the physiological reflectance index (PRI), the
normalized pigment chlorophyll ratio index (NPCI), and the water band index (WBI).

These indices were:
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NDVI = [M] , 2.1)

R + Rgo
NPCI = {%ﬁ%ﬁ} , (2.3)
WBI = [%} 2.4)

where Ry30, Ris30, Rsso, Reso, Rsso, Rogo, and Rgrp are the reflectance values at 430, 530,
550, 680, 850, 900, and 970 nm, respectively.

In addition to the above, indices were also used based on the first and second
derivative of the reflected spectrum. First derivative minima and maxima in the green
region were at 570 nm and 525 nm, respectively. Derivative maxima in the red edge
region (700 to 710 nm) and differences between these values were also evaluated.’
Second derivative minima in the green (530 nm) and red edge (690 nm) were tested
as well. It was concluded that nitrogen and water stress caused significant differences
between the above listed indices and derivatives. The researchers recommended that

the study should be extended to the canopy scale.

2.3.2 Canopy-nitrogen level studies

The canopy level studies may be further classified into two categories: (1)
those in which spectral data were acquired from spectral devices kept at a distance of
a few meters from the crop canopy; (ii) those in which the imaging systems were

airbome to acquire data at the field scale.
2.3.2.1 Studies with ground-based canopy-scale spectral data acquisition systems

Walburg et al. (1982) monitored the spectral signature of a corn canopy over

the entire growing season. The range examined was 400 to 2400 nm and images were

20



taken from a 9 m tower. Results indicated that at higher nitrogen levels, reflectance in
the visible (400 to 700 nm) and middle infrared region (1400 to 2500 nm) was lower,
while thét in the near IR (700 to 1400 nm) was higher. Changes in spectral response
could be attributed to changes in canopy factors (LAI, plant biomass, and percent soil
cover) and changes in leaf structure and composition (leaf pigment concentration, cell
size, and cell wall composition and structure). Reflectance in the red (630 to 690 nm)
decreased, while reflectance in the near-infrared increased as LAl biomass, and soil
cover increased through the growing season. Detailed examination of spectral
wavebands, corresponding to the LANDSAT multi-spectral scanner (MSS) and
thematic mapper (TM), indicated that nitrogen treatments could be more effectively
separated using the ratio of near-infrared (NIR) (760 to 900 nm) to red (630 to 690
nm). A highly significant relationship was also obtained between grain yield and the
ratio of NIR to red.

Studies at the leaf level were used by Takebe et al. (1990) to design and test a
portable green color intensity meter, for estimating nitrogen status in a rice canopy.
The meter measured the intensity of incident solar canopy-reflected radiation in the
green (550 nm) and near-infrared (800 nm) regions. The results of the field trial of the
instrument indicated a good correlation between leaf nitrogen determined with the
color-meter and leaf nitrogen determined in the laboratory.

Blackmer et al. (1994b) used a spectroradiometer and aerial photography to
study the reflectance spectra of corn under various nitrogen fertilization levels.
Wavelengths around 550 nm and 710 nm were the most suitable for detecting
nitrogen deficiency in individual leaves. However, reflectance at 550 nm was better
correlated to nitrogen deficiency at the canopy scale. Thus, a photometric cell was
used to measure reflectance at 550 nm, and aerial black and white photographs were
taken with a filter which was sensitive in this range. There was a significant
correlation between yield and reflected radiation. Furthermore, the ratio of reflectance
of nitrogen-deficient to nitrogen-sufficient com leaves at each wavelength effectively
explained the variation in spectral response due to different nitrogen levels.

In another study, Blackmer et al. (1996a) made spectral observations (350 to

1100-nm range) over irrigated canopies of different corn hybrids, at various nitrogen
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fertilization levels. Observations were taken at the R5 (dent) physiological growth
stage. Absolute radiation was found to depend on sensor and illumination angle, solar
irradiance and canopy architecture. To account for the illumination differences, the
researchers referenced all the data to reflected radiation from high nitrogeh plots and
were thus able to detect differences in spectra that were due to hybrids and nitrogen
treatments. It was concluded that the regions near 550 nm and 710 nm were the most
useful in detecting nitrogen levels. ‘The ratios of reflectance, from the range 550 to
600 nm to the range 800 to 900 nm, were also found to be useful for this purpose.
Correlations between relative corn yield and reflectance in the above wavebands were
also high.

In a similar experiment, Ma et al. (1996) measured reflectance in eight broad
(50 nm interval) wavebands from 400 to 800 nm, over six different maize hybrids
grown under three different nitrogen levels. It was reported that canopy reflectance at
600 nm and 800 nm or a derived NDVI could be used to differentiate nitrogen levels
and to estimate crop yield.

Bausch and Duke (1996) compared a ground-based spectral observation
system, with a SPAD chlorophyll meter and plant tissue nitrogen, in an irrigated corn
canopy. Spectral data were acquired from a radiometer with channels in the blue (450
to 520 nm), green (520 to 600 nm), red (630 to 690 nm), and near-infrared (760 to
900 nm). The researchers reported a nearly 1:1 relationship between the nitrogen
sufficiency index (average SPAD value in a general plot to average SPAD value in
high nitrogen plots) and the canopy-based normalized reflectance index. The
normalized reflectance index used was defined as the reflectance ratio for a particular
treatment, divided by the ratio of NIR to green for high nitrogen plots.

Stone et al. (1996) found significant correlations between spectral radiance
and both wheat (Triticum aestivum L.) forage yield and forage nitrogen uptake. A
photodiode detector with filters for red (671 + 6 nm) and NIR (780 + 6 nm) was used
in the study. The researchers found a slight improvement in correlations,'when both
red and near-infrared wavebands were combined to calculate plant spectral nitrogen
stress (PNSI), the absolute value of the inverse of the NDVI. The PNSI could be

defined as:
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PNSI — I_RNIR + RREDl

_ , | (2.5)
NIR RED

where Ryir and Rgep are the reflectance values in the NIR and red wavebands.

Joel et al. (1997) studied the impact of water stress, nitrogen stress, and their
combination on sunflower canopy development, and also their effect on the fractional
interception of photosynthetically active radiation (fPAR), the NDVI, and the SR
simple ratio index). Strong correlations were reported among fPAR, NDV], SR, and
LAI However, neither of the stresses (water or nitrogen) had a significant effect on
the relationship between fPAR and NDVI or SR. Although spectral observations were
acquired with a narrow-waveband field spectroradiometer, reflectance values used
were averaged over broad wavebands for calculating NDVI and SR values to mimic
AVHRR (Advanced Very High Resolution Radiometer) wavebands.

Sui et al. (1998) used a hand-held spectroradiometer to detect nitrogen
deficiency in a cotton canopy. The researchers used a spectral index based on the
ratio of observed reflectance in the blue (460 to 490 nm), green (540 to 565 nm),
amber (600 to 610 nm), and NIR (740 to 770 nm). A significant correlation was
reported between the spectral index and petiole nifrogen. The spectral index (SI) was

defined as:

SI‘: I{NIR + RBLUE

, (2.6)
RGREEN + RAMBER

where Rynir, Reiue, Roreen and RAMBER are the reflectance values in the NIR, blue,
green, and amber wavebands, respectively.

Adams et al. (2000) related micronutrient deficiencies (Mn, Zn, Fe, and Cu) in
soybean to reflectance and fluorescence measurements. In addition to the commonly
used vegetation indices, Ry750/Rss0, R750/Res0, and the NDVI ((R750-Re50)/(R750+R50)),

they also used a yellowness index (YI), which is a measure of leaf chlorosis. In these
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ratios, Rsso, Reso, and Ryso were the reflectance values at 550, 650, and 750 nm,
respectively. The yellowness index could be calculated from the concavity-convexity
of the reflected spectrum, at the midpoint between the reflectance maxima at 550 nm
and the minima at 670 nm. Mathematically, YI could be defined as the finite
difference approximation of the second derivative of the reflectance spectrum

between 550 and 670 nm:

d’R R, ,—\R,,)+R,,
YI = :_[ A-1 ( /’L) ﬂ.l:l’ @

dA? AL2

where Ry is the reflectance at the central wavelength, Ry ; and Ry are the reflectance
values at lower and higher wavelengths, respectively, and AA is the difference

between two wavelengths.

2.3.2.2 Studies with airborne field-scale data acquisition systems

Blackmer et al. (1996b) investigated the possibility of using ordinary color
aerial photographs to detect variability in corn growth, due to different nitrogen
levels. Color photographs were first digitized and digital counts in red, green, and
blue were then generated. The results indicated that the red counts provided a better
basis for discriminating between nitrogen treatments. A significant relationship
existed between the red digital counts and grain yield; however, better correlations
(’=0.93) between yield and digital counts were obtained when black and white aerial
photographs were taken, using a filter centered at 536 nm. It was also found non
feasible to pool digital data from different years, or even from different crop growth
stages, in the same year.

Based on a two-year study, Tomer et al. (1997) also suggested that color
scanned photographs could be used to describe spatial variability in yield and
nitrogen uptake in comn. It was reported that better predictions could be obtained by
this method, rather than using approaches dependent on topographic data or geo-
statistical methods.

However, the scanning process results in a considerable loss of spatial and
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spectral resolution, and in the signal to noise ratio of color or color-infrared
photographs (GopalaPillai et al., 1998). Realizing this, the researchers used high
resolution color-infrared (CIR) images (500 to 810 nm) in three channels (infrared,
red, and green) to detect in-field, spatial variability of corn. High correlations were
obtained between canopy reflectance and applied nitrogen and yield. However, the
correlation between reflectance and nitrogen in stalks was poor.

GopalaPillai and Tian (1999) used a digital CCD camera with a filter to
acquire a CIR image (500 to 810 nm) in three wavebands: green (500 to 600 nm), red
(600 to 710 nm), and NIR (710 to 810 nm). A comparison of standard maps of soil
type with maps generated from aerial imagery, according to a supervised
classification algorithm, indicated that agreement was 76% (area basis). Nitrogen-
stressed areas in the CIR image could be easily detected; however, it was difficult to
determine nitrogen levels in nitrogen-sufficient areas. Spatial variations in yield were
also found to be highly correlated with CIR reflectance. Better correlations were
obtained in the red and green wavebands than in the NIR waveband. Linear models to
predict yield were developed from the data and were 76 to 98% accurate for the
particular data collection field. When the model was used for other fields, accuracy

dropped to 55 to 91%.

2.4 Estimation of Vegetation Biophysical Parameters and Yield

The primary objective of the majority of the current studies in this area, is to
establish a quantitative link between spectral data and crop physiological parameters,
as an indication of crop growth. Kimes et al. (1998) mentioned that the degree of
success in deriving vegetation parameters from remotely sensed data would determine
the utility of Earth Observing Satellites (EOS) in vegetation science. The estimation
of various biophysical parameters from remotely sensed data is important in order to
extend the application of crop growth models to larger areas. These models could be
used to assess crop conditions for yield prediction or to facilitate crop management
during the growth season. Spectral data could be used to derive variables necessary in
crop models, to update indices of canopy status, to re-initialize crop models or to

adjust model parameters according to remotely sensed data or ground observations
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(Moulin et al., 1998). There have been various attempts to use remote sensing
observations to calibrate crop models dynamically (Moran et al., 1995; Bouman,
1992; Delécolle et al., 1992; Wiegand et al., 1986). Inoue and Morinaga (1995) noted
that observations, in a number of narrow spectral wavebands, could provide plenty of
physiological and ecological information on both at a local and regional scale.

A number of studies are currently underway, exploring the correlation
between spectral measurements and the concentrations of certain biochemicals in
plants. A strong correlation appears to exist between remotely acquired data and the
concentration of many biochemicals within the vegetation canopy (Curran et al.,
1997). Chlorophyll is the most important biochemical in the process of conversion of
sunlight to chemical energy in plants. Many studies have shown that there is a
significant correlation between the concentration of chlorophyll in a crop and spectral
measurements (Patel et al., 2001; Jago et al., 1999; Munden et al., 1994; Miller et al.,
1990). Numerous research studies have indicated the potential of remote sensing
observations, in developing functional reiationships between forest canopy chemistry
and spectral data (Martin and Aber, 1997; Johnson et al., 1994; Matson et al., 1994;
Peterson et al., 1988; Wessman et al., 1988), albeit with varying degrees of success.
Martin and Aber (1997) developed a calibration model, for estimating nitrogen and
lignin content in a forest canopy, based on Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) data. '

Many workers have attempted to develop relationships between spectral
measurements and crop growth parameters, such as LAI, plant height, and biomass.
Inoue et al. (2000) used a camera mounted on a blimp to collect spectral
measurements in four wavebands. They successfully estimated LAI and fresh
biomass for soybean and rice crops based on these images. Brown et al. (1997)
demonstrated that indicators of canola crop vigor (biomass and leaf area) were
significantly related to near-infrared reflectance, as obtained from a Compact
Airborne Spectrographic Imager (CASI). In another experiment, Inoue and Morinaga
(1995) estimated fresh biomass and greenness using spectral observations taken from
a blimp. The researchers found a significant correlation between the remotely and

ground-sensed parameters (*=0.971 for fresh biomass and 0.680 for greenness).
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Cloutis et al. (1999, 1996) evaluated high spectral resolution optical and radar
imagery for use in the estimation of a number of crop parameters (LAL plant height,
and canopy temperature) for different crops (wheat, canola, beans, peas, and
wheat/alfalfa). Several statistically significant correlations were found between the
spectral observations and the crop parameters. In a more recent study, Thenkabail et
al. (2000) carried out an intensive field campaign to correlate many crop biophysical
parameters with spectral values acquired from a hand-held spectroradiometer in the
vigible to NIR range (350 to 1050 nm). The usefulness of hyper-spectral measurement
and narrow waveband indices was clearly indicated in estimating various crop
parameters. These spectral observations were acquired over cotton, potato (Solanum
tuberosum L.), soybean, corn and sunflower. _

Numerous studies have shown, with varying degrees of success, that remote
sensing technology can be used to estimate crop yield. Different vegetation indices
have been used to estimate crop yield for wheat (Asrar et al., 1985), barley (Hordeum
vulgare L.) (Klemn and Fagerlund, 1987), soybean and corn (Holben et al., 1980;
Crist, 1984). Decker (1994) observed that statistical models based on climatological
variables could explain only 50% of the variation in yield. However, Hayes and
Decker (1998) developed a better yield assessment system for maize, based on
 satellite and climatic data. Following this approach, the researchers were able to
explain about 75% of the observed variability in normalized yield. Moran et al.
(1997), reviewing the role of remote sensing in agriculture, indicated that two main
approaches are being followed for yield estimation of crops. In the first approach,
which is simpler and more straight forward, regression equations based on single or
multiple, time-integrated vegetation indices (VI), such as NDVI, could be used for
yield estimation. Another approach is to use remote sensing observations or
vegetation indices to directly estimate canopy parameters, LAI or fPAR, which could
" then be used as input parameters for crop growth or agrometeorological models
(Clevers, 1997, Clevers et al., 1994). Serrano et al. (2000) reported highly significant
correlations between the simple ratio vegetation index (SVI= Rooo/Resgo) and yield or
biomass of wheat. It was also reported that nitrogen fertilization level significantly

affected the SVI to LAI relationship. However, under varying nitrogen levels, a better
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relationship was developed when total canopy Chlorophyll A (LAI x Chlorophyll A)

was considered as a single factor.

2.5 Vegetation Index

Many vegetation indices (VIs), which combine reflectance at two or more
wavelengths in different ways, have been shown to be useful in characterizing plant
growth and development (Jackson and Huete, 1991). These VIs enhance the spectral
contribution from green vegetation and minimize the contribution from soil and
atmospheric factors, by taking advantage of typical spectral features of Vegetation.
These indices are also useful, in reducing multi-spectral remote sensing data into a
single value, for assessing vegetation status. The most commonly used vegetation
indices are: the ratio vegetation index (RVI), the normalized difference vegetation
index (NDVI), the soil-adjusted vegetation index (SAVI), the perpendicular
vegetation index (PVI), the difference vegetation index (DVI), the transformed-SAVI
(TSAVI), and the modified-SAVI (MSAVI). The basis for most vegetation indices is
the contrast between green leaves and soil or dead plant material (Joel et al., 1997).
Perry (1984) indicated that, 'in general, most of these indices are functionally
equivalent, i.e. the value of one index may be computed based upon the value of
another index. Thus, decisions based on one index are similar to those taken
according to another index. However, Joel et al. (1997) mentioned that the
performance of most of the vegetation indices depended on the settings. Hatfield and
Pinter (1993) reviewed the applications of remote sensing in crop production, and
highlighted the limitations of VIs in distinguishing weed populations from field crops.
VIs are dependent on changes in plant biomass, leaf area, and the interception of
radiation by the gfeen portion of the canopy. Thus, VIs have a limited application for
discriminating between different plant species. However, in a recent study,
Zwiggelaar (1998) found some ratio vegetation indices (RVIs) and vegetation indices
(VIs) to be useful for the discrirﬁination of weeds from crops, particularly in row
crops. Similarly, various reflectance ratios and indices have been used to detect

nitrogen deficiencies in plants (Lukina et al., 2000; Plant et al., 2000).
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2.6 Application of Decision Trees and Artificial Neural Networks (ANNs) in
Remote Sensing

There has been an exponential increase in remote sensing data, due to the
launching of an increasing number of satellites with improved resolution. In order to
make the best use of this large data set, a more fully automated image analysis
approach is necessary, with limited human interaction for critical evaluations (Soh
and Tsatsoulis, 1999). For the quantitative analysis of remote sensing data, supervised
and unsupervised methods are used; however, supervised classification is most
frequently used. Moreover, image classification sho’uld be capable of tackling noise in
the data sets, identifying better features to discriminate between different classes, and
minimizing confusion among spectral classes (Friedl et al., 1999). Another important
issue related to automated or semi-automated classification algorithms is that they
should be capable of handling different situations in the same domain (Soh and
Tsatsoulis, 1999). Realizing the need for more efficient remote sensing image
classification techniques, many researchers explored the utility of data mining and
artificial neural networks. Some of the salient studies are discussed briefly in the
following section. With reference to the data-mining category, the decision tree tool is
the most suitable for classification problems, and discussion is therefore limited to

decision trees.

2.6.1 Decision trees

The decision tree, a frequently-used method of data mining, learns from a
given data set and formulates explicit rules to classify, segment, or make predictions
about a target variable. This process begins by using the entire training data set.
Initially based on one of the attributes, data are split into one or more homogeneous
categories. The splitting process is extended into subsets until the split size of the data
reaches a level beyond which splitting is either not feasible or desirable. It generates a
decision tree, which is basically a step-by-step rule system that splits the data into
different categories. The decision tree resembles a simple flow chart of a rule-based
expert system, that consists of rules for arriving at a decision. A sample decision tree

is presented in Figure 2.2. This classification of the data set, into different categories
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or groups, is based on explicit rules that are formulated from the training data. These
rules are used to further classify other sets.

Figure 2.2 illustrates the mechanism of the decision tree approach, based on
an example classifying a classical Iris data set (Fisher, 1936). The data consists of 150
descriptions of Iris flowers. Each description is a vector whose elements are petal
length, petal width, sepal length, sepal width and the target variable (in this case, the
species of Iris). There are 50 such descriptions for flowers from each of the following
species: setosa, versicolor, and virginica. The objective is to generate a decision tree,
on the basis of these 150 records, that will be able to key out (categorize) other such
vectors into the correct species.

As indicated in the Figure 2.2, the complete data set is first split into two
branches on the basis of the variable that is best correlated with the target variable
(species). The rule for segmenting the data at that point is decided by an iterative
process that examines all possible paxfitions into two subsets, and chooses the one
that minimizes the combined variability in the two subsets. Based on the petal length,
this process defines the split point as 2.450. Thus, all cases for which petal length is
<= 2.450 are sent to the left node, and the others (petal length >2.450) are sent to the
right node. The improvement values are also given, and these indicate the percentage
of correctly identified cases after the split point. An improvement value of 0.3333 at
the first node indicates that 33.33% of cases were correctly classified due to the
splitting criterion used at the node. In this example, it turns out that all the cases sent
to the left node belong to one species, setosa.

The process is now repeated only at the right node. At this level, the rule for
segmenting at the second node was ‘width <= 1.750 or >1.750’. This rule has
classified the remaining 100 cases into versicolor, and virginica. However, as can be
seen, the resulting subsets are not pure, the left node containing 49 versicolor and 5
virginica and the right node containing 1 versicolor and 45 virginica. At this node,
another 25.98% of cases (improvement value 0.2598) were classified correctly. The
tree is fully-grown to two levels at this stage, because none of the other descriptors

could reduce the impurity of either node. Overall, this tree correctly classified 59.31%
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Species (Iris)

Cat. % n
Setosa 33.33 50
Versicolor 33.33 50
Virginica  33.33 50
Total (100) 150

|
Petal length; Improvement=0.3333

|

<=2.450 : >2,‘450
Cat. % n Cat. n
Setosa 100 50 Setosa 0.00 0
Versicolor 0.00 0 Versicolor 50
Virginica 0.00 0 Virginica 50
Total (3333) 50 Total (66.67) 100
Petal width; Implrovement=0.2598
| l
<=1.750 >1,750
I
Cat. % n Cat. % n
Setosa 0.00 0 Setosa 0.00 0
Versicolor 90.74 49 Versicolor 2.17 1
Virginica = 9.26 5 Virginica 97.83 45
| Total (36.00) 54 Total (30.67) 46

Fig. 2.2 Fully grown sample decision tree

(Source: AnswerTree 2.0 User's Guide. 1998)
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(33.33% + 25.98%) of the cases. Such a tree should then be validated on an unseen
data set, in order to better establish the extent of expected correct classification of any
other Iris flower, from one of the three possible species. To achieve the highest
classification accuracy, the tree is grown to the level at which further node splitting is
either impossible or undesirable. This example was taken from AnswerTree, User’s
Guide (SPSS Inc., Chicago, IL).

A large number of decision tree algorithms have been reported; however, the
two most widely used are the C&RT (Classification and Regression Trees, also called
CART), developed by statisticians (Breiman et al., 1984), and the C4.5, developed by
a computer scientist (Quinlan, 1993). In the C&RT algorithm, decision tree
development is based on a desire to minimize impurity measurements. In most cases,
impurity-based criteria are used to grow trees by splitting the data at each node. These
impurity indices are developed in such a way that after each split, data sets in the
child nodes are more homogeneous than the data in the parent node.

In the C&RT algorithm, impurity may be measured in different ways
according to the type of target variable involved. The Gini index, twoing, and ordered
twoing are used for categorical target variables, while the least squared deviation is
applied in the case of a continuous target variable. The most commonly uséd method
is the Gini index, which was proposed by Breiman et al. (1984). At node ¢, the Gini
index, g(?) is given by:

g =>_p(/Op/t). 2.8)

J#i

where i and j are categories of the target variable and p(i/t) and p(j/t) are the
probabilities of a random sample X belonging to class i and j, respectively, given the
distribution of data in the set at node ¢. The adequacy of a split is measured in terms
of the decrease in impurity. Thus, split s at node ¢ is chosen so as to maximize the
value of the Gini criterion function ®(5,2). If pg and p;, are the proportions of cases in

t sent to the right and left hand nodes, respectively, ® (s,z) can be defined as:
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B(s,1)= g(O) — pLa(t,) - pr&(te), 29)

where g(t;) and g(tgr) are the Gini indices for the left and right child nodes,
respectively. Based on the algorithm of classification, a tree is developed, which can
then be used to classify another data set.

The applicability of data-mining techniques in general and decision trees in
particular, to the analysis of remote sensing imagery, has been demonstrated by a few
studies at various levels (Friedl et al., 1999; ‘Soh and Tsatsoulis, 1999; Friedl and
Brodley, 1997; Hansen et al., 1996).

2.6.2 Artificial neural networks (ANNs)

Artificial neural networks (ANNSs) are complex mathematical functions that
mimic the brain. They are considered to be capable of converting inputs into desired
outputs, with no need for a physical explanation of the input-output relationships.
ANN models, through intensive training with known examples, develop a functional
relationship between input and output parameters. A typical ANN architecture
(Figure 2.3) consists of a number of layers with interconnecting processing elements
(PE), each of which is a basic component that receives inputs from .many other PEs
and generates an output based on a weighted sum of inputs and a transfer function.
There are normally three types of layers in ANNS: (i) the input layer, in which the
number of PEs is equal to the number of inputs to the model; (ii) the hidden layers, in
which the number of hidden layers and processing elements in each hidden layer
depends upon the complexity of the problem; and (iii) the output layer, in which the
number of PEs is equal to the number of output Variébles. Many factors should be
considered in order to build an effective ANN model. Some of the important
parameters are: the number of hidden layers and PEs, the learning rule, and the
transfer function. In addition, there should be an appropriate selection of various
parameters (such as learning coefficient, epoch, momentum term, etc.) associated

with learning algorithms (Lacroix et al., 1997).
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Input Signal

Input Layer

Hidden Layer

Output Layer

Circles represent a processing element

Fig. 2.3 Structure of an Artificial Neural Network.
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The output from each PE is a weighted summation of outputs from the PEs in
the preceding layer, which is then passed to the next layer PE through a transfer

function. Thus the input to any PE, q, can be expressed as:

b

net, = leqpop . | (2.10)
p:

o, = f(net)), (2.11)

where, w,, is the weight of the link connecting PEs p and g, b is the total number of
connected PEs in the layer from which input is being received at PE g. o, is the input
to ¢ from PE p, o, is the output from PE g, and f'is defined as the activation function
of the PE output.

B L o>60
flo)= N

) otherwise ° (2.12)

where @ is the threshold value. Some of the most common activation functions are the
sigmoid, hyperbolic, linear threshold and the Gaussian.

Back-propagation is the algorithm that is the most widely used for
classification problems (Schalkoff, 1992). This type of ANN model is built by
presenting a training data set with both input and output parameters. The response at
each PE is passed to the next layer. The final output is then compared with the known
output, and the error is back-propagated. The weights of the connections are then
adjusted aCcordingly, and the new responses from PEs are again passed to the next
layer. This process, of forward transfer of response and backward propagation of
error, is a recursive process which continues until the achievement of a satisfactory
output (user-defined limit). The accuracy of the trained network can then be validated
on an unseen data set.

Since the early 1980’s, ANN-based approaches have been successfully used in

pattern recognition problems in diverse fields. From 1988 onwards there has been a
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steady growth in their application to the field of remote sensing (Wilkinson, 1997).‘
Today, earth-observing sensors are generating large quantities of data which are being
added to huge databases. For the full realization of this activity, fast processing and
interpretation of data are necessary (Atkinson and Tatnall, 1997). Reviewing the
work of many researchers, Atkinson and Tatnall (1997) commented on many of the
qualities of ANNs. Some of the advantages highlighted by the greater accuracy of
ANN techniques involves complex feature space classification, faster classification
compared to statistical approaches, feasibility of incorporation of prior knowledge,
and the possibility of the simultaneous use of data from different sensors or sources.

The use of ANN technology for pattern recognition has drawn considerable
attention in recent years. Neural network classifiers have some important advantages
over statistical methods. Whereas statistical classification techniques typically require
prior information about the pattern distribution, ANN classifiers work well without
any knowledge of the distribution (Danaher et al., 1997). Lee etl al. (1990) showed
that ANNs performed as well as statistical classifiers, but did not require as extensive
training data sets. Various studies have demonstrated the usefulness of ANNs in
ground cover classification (Augusteijin and Warrender, 1998; Danaher et al., 1997;
Augusteijin et al., 1995; Kanellopoulos et al., 1992; Hepner et al., 1990). Singh et al.
(1998) also reported better classification results of LANDSAT images with an ANN
classifier when compared to statistical classification. In a recent approach,
considering the importance and practical utility of fuzzy classification of remotely
sensed data, Zhang and Foody (2001) proposed a fully-fuzzy classification approach.
Better results were obtained with this approach than with partially-fuzzy or other
statistical approaches. ANNs have also been used for identification of clouds patterns
(Bankert, 1994; Lee et al., 1990). Depenau (1997) reported a better performance by
ANNSs over traditional, maximum likelihood classifiers in ice-type classification of
Synthetic Aperture Radar (SAR) images from the European Remote Sensing Satellite
(ERS-1). '

There are numerous studies on the use of ANNs for other applications. Baret
et al. (1995) compared ANNs with vegetation index-based approaches, for estimating
the canopy gap fraction in sugar beets. Kimes et al. (1996) used ANN models to
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estimate forest age. Forest crop growth models were inverted using an ANN approach
(Kimes et al.,, 1997). Pierce et al. (1994) successfully predicted various canopy
parameters (trunk density, trunk diameter, height) of Loblolly pine from airborne
SAR data. The ANN approach was employed to predict corn yield from airborne
images, with much better results than that obtained with traditional statistical
techniques (Panda and Panigrahi, 2000). Smith (1993) used a back-propagation ANN
method by inverting a multiple scattering model in the visible region (400 to 700 nm),
in order to estimate leaf area index (LAI). Jin and Liu (1997) used ANN techniques to
estimate wheat and oat (Avena sativa L.) canopy parameters from active/passive
remote sensing. The estimated parameters were: canopy height, canopy water content,

dry matter fraction, and moisture content of the underlying land.

2.7 Current Status and Concluding Remarks _
The studies reviewed above demonstrate that it is possible to relate the
presence of weeds and nitrogen deficiency in crops to reflectance measurements,
made from airborne or ground-baséd instrumentation systems. Although there is a
growing consensus that hyper-spectral sensors (multiple narrow-waveband capability)
are the most promising imaging technology for mapping either phenomenon on a
large scale, airborne hyper-spectral imaging systems were not used to monitor
combined effects of weed infestations and nitrogen stress in any of the studies listed
above. There has been no previous attempt to monitor crop growth in conditions of
simultaneous weed and nitrogen stress, using such instrumentation, nor have decision
trees and ANNs been used to classify hyper-spectral data in classes indicative of

combinations of weed and nitrogen stress.
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PREFACE TO CHAPTER 3

A review of the research in the application of remote sensing indicated that the use of
airborne multi-spectral sensors in weed detection requires further investigation. A
pilot field experiment was initiated in the first year (summer 1999) to study the
spectral response of corn (Zea mays L.) and soybean (Glycine max (L.) Merr.), two
locally important crops, under different conditions of weed infestation. Different
weed treatments were selected to represent the prevailing weed conditions in corn and
soybean fields of the region. Spectral observations were acquired from an Airborne
Imaging Spectrometer for Applications (AISA) in 24 wavebands (475.12-nm to
910.01-nm spectrum region). The objectives of the study were to determine whether
multi-spectral imagery from airborne platforms could be used in monitoring the
growth of corn and soybean crops under specific weed conditions or not, and also to
develop quantitative relationships between the remotely sensed data and crop

physiological parameters related to weed-induced crop stress.

Research papers based on the chapter:

1. Goel, P. K., S. O. Prasher, R. M. Patel, D. L. Smith, and A. DiTommaso. 2002.
Use of airborne multi-spectral imagery for weed detection in field crops.
Transactions of the ASAE 45(2): 443-449.

(Copy of the published paper is given in the attached CD-ROM.)
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CHAPTER 3

MULTI-SPECTRAL AIRBORNE REMOTE SENSING FOR
WEED DETECTION

3.1 Abstract

An image of an experimental field was obtained with an airborne imaging
spectrometer, in order to assess the potential of this technology to provide the data
required for precision herbicide application systerﬁs, i.e. the location and type of
weed present. For this particular application, the objective was to distinguish between
three types of weed population, grasses, velvetleaf (4butilon theophrasti Medik.), and
mixed weeds, in plots cropped with com (Zea mays L.) or soybean (Glycine max (L.)
Merr.). The image involved radiance in 24 wavebands in the range 475.12 to 910.01
nm, and was taken over a split-plot experiment with com and soybean assigned to
alternate main plot units (one row of 4) and 4 weed treatments assigned to the sub-
plot units. The treatments were: no weed control, removal of all weeds, removal of all
weeds except velvetleaf, and removal of all weeds except grasses. The main plots
were 3m x 3m and weeding was done by hand. Both crop species and the weeds were
in vegetative growth stages at the time the image was acquired.

The comparative spectra indicated that weed-free plots could be distinguished
from those containing weeds, based on radiance levels in the red and near infrared
(NIR) regions. Statistically significant differences were only found in two wavebands,
in the red and a range of wavebands in the NIR. Only one waveband exhibited a
significant difference, due to treatments in the case of soybean, and it was in the NIR.

Ratios of wavebands in the red and NIR were examined and it was found that
many of them exhibited significant differences due to the weed treatments for both
crops. Relationships were also examined between spectral data and direct
measurements of LAI, greenness, photosynthetic rate and other indicators of crop
status. Certain wavebands exhibited very high correlations with leaf greenness,
photosynthetic rate, plant height and LAI in plots cropped with comn. In the case of

soybean, the correlations were lower and not always in the same direction.
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The results of this study were not very conclusive with respect to the main
objective, because it was not possible to determine whether the significant differences
in radiance at certain wavebands or in waveband ratio were exclusively associated
with the type of weed population or with the weed density, the latter not having been

controlled in this study.

3.2 Introduction

The applicability of various kinds of remote sensing images to site-specific
weed management has been assessed by various authors. Conventional color or color-
infrared films, and videography have been used to detect weeds from aerial platforms
(Brown and Steckler, 1995; Hanson et al., 1995; Curran, 1985; Menges et al., 1985;
Everitt et al., 1996, 1995, 1987). The more recent work in this field has involved data
collection at three or four wavebands with airborne digital imaging systems (Rew et
al., 2001; Medlin et al., 2000; Lamb et al., 1999; Lass et al., 1996). The relationships
have also been investigated between optical or radar imagery and crop biophysical
parameters such as biomass, LAI, plant height, canopy temperature and yield
(Cloutis et al., 1999, 1996; Inoue and Morinaga, 1995), and the relationships between
spectral data and biochemical indicators of crop status, such as chlorophyll (Jago et
al., 1999; Curran et al., 1997; Munden et al., 1994). Success has been limited,
basically because the differences in spectral signature between crops and weeds are
subtle throughout the vegetative stages of growth, whereas they may be quite marked
when crops or weeds approach or are within their blooming or senescent stages. This
situation does not leave much leeway in making management decisions for weed
control at critical times, except against weeds that approach bloom early in the
cropping season. Various authors (Lamb and Brown, 2001; Zwiggelaar 1998) have
suggested that sensing systems with higher spectral resolution should be used.

The focus of the present study was to reexamine these issues using reflectance
in 24 narrow wavebands (in the range 475.12 to 910.01 nm) acquired from an
Airborne Imaging Spectrometer for Applications (AISA). The specific objectives of
the study were (i) to identify suitable wavelength regions for the detection of weed

infestations in corn and soybean crops, and (ii) to examine the correlation between
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such multi-spectral data and the biophysical parameters of crops under stress, due to

the presence of different weeds.

3.3 Materials and Methods
3.3.1 Study site and experiment details

A split-plot experiment consisting of six main plots was set up in 1999 on a
silty clay loam at the Lods Agronomy Research Center, Macdonald Campus, McGill
University, Ste-Anne-de-Bellevue, QC, Canada. The 6 plots were laid out in one row,
with corn (pioneer 3921 hybrid) and soybean (Bayfield) sown in alternate plots (3
plots each) in the second week of May 1999. The main plots were divided into four
subplots (3m x 3m), to which four weed treatments were randomly assigned within
each main plot unit. Thus, each combination of crop type and weed treatment was
replicated three times. The first treatment involved full removal of weeds (by hand).
The second permitted grass species to proliferate while all other types were removed
by hand. The third permitted velvetleaf (4butilon theophrasti Medik.) to proliferate
while all other species were removed by hand. All weed species were permitted to
proliferate in the plots assigned to the fourth treatment.

Corn was sown at a row spacing of 76-cm and density of 70,000 seeds per ha,
and soybean was sown at a row spacing of 18-cm at 500,000 seeds per ha. The
fertilizer application rates for corn were 115, 35, and 70 kg/ha (N, P, K, respectively).
Soybean received 40 kg/ha P and 40 K kg/ha.

3.3.2 Airborne spectral data acquisition

Images of the study plots were acquired from an AISA imaging spectrometer
mounted on a Piper Seneca aircraft (Agrimage Inc., Sherbrooke, Quebec, Canada).
On July 12, 1999, the flight took place over the experimental field on a cloudless day.
On that day, corn was in its late vegetative growth stages (V15 to V17, depending on
the particular plot) and soybean was in the early flowering (R1) stage. Weeds were in
mid-vegetative growth. Tassels in corn and pods in soybean started forming a few

days later, whereas weeds reached the pre-bloom stage more than two weeks later.
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The data were acquired at a spatial resolution of 1 m, in 24 wavebands in the
visible to near-infrared range of the spectrum (475.12 nm to 910.01 nm). Bandwidths,
central wavelengths and wavelength intervals are given in Table 3.1. The raw data
were digital numbers (DN). Radiometric corrections for gain, offset, DN dark current,
and integration time were applied to the raw data to obtain radiance images.

The data were also corrected for changes in angle of incidence of the reflected
radiation at the sensor, due to aircraft pitch and roll, as recorded by the inertial
navigation system. A differential geographical positioning system (DGPS) unit was
used to reference the image to earth co-ordinates (geo-referencing). Geo-referencing
of the image was facilitated by blue tarpaulin sheets that were fixed to each corner of
the experimental field. The data processing was performed by Agrimage Inc. using
their in-house software.

It is important to note that radiance is the reflected solar radiation received by
the sensor, whereas reflectance is the reflected radiation corrected for downwelling
irradiation, which changes depending on sun angle and atmospheric conditions
(cloud, haze, etc.). Reflectance is therefore the basis of comparison between images
taken under different conditions. The sensor for measuring downwelling irradiance
was not installed on the aircraft at the time of the flight; however, only one image was
taken over the experimental site. The constraint of the overall study is that the data

from 1999 cannot be used for quantitative comparison with the data taken in 2000.

3.3.3 Plant parameters

Crop conditions in the experimental plots were determined the day before and
the day of the flight. The measurements included plant height, leaf greenness, leaf
area index (LAI), chlorophyll fluorescence, and photosynthetic rate. Plant height, a
simple and direct indicator of plant health, was measured to the nearest centimeter.
The foliage cover per unit of ground area, as represented by LAI, has a direct
influence on radiance. LAI is a dimensionless quantity, but can be expressed as cm’
foliage area per cm?’ ground area. An LAI-2000 Plant Canopy Analyzer (Li-Cor, Inc.,

Lincoln, Nebraska, USA) was used to obtain these values. One set of readings
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Table 3.1 Wavebands used to acquire aerial spectral data

Waveband| Wavelength |[Waveband| Difference | Waveband Spectral
number interval center |in successive| width region
(nm) N wavebands (nm)
(nm) GYY;
(nm)
1 475.12-479.86 477.49 - 4.7 Blue
2 500.40 - 508.30 504.35 26.86 7.9 Green
3 541.48 - 549.38 545.43 41.08 7.9 Green
4 552.40 - 560.75 556.58 11.15 8.4 Green
5 572.44 - 580.79 576.62 20.04 8.3 Green
6 587.47-595.82 591.65 15.03 8.4 Green
7 632.56 - 639.24 635.90 44.25 6.7 Red
8 672.64 - 679.32 675.98 40.08 6.7 Red
9 682.66 - 687.67 685.17 9.19 5.0 Red
10 687.67 - 692.68 690.18 5.01 5.0 Red
11 697.69 - 702.70  700.20 10.02 5.0 Red
12 702.70 - 707.71  705.21 5.01 5.0 Near-Infrared
13 714.52-719.71  717.12 11.91 52 Near-Infrared
14 724.90 - 730.09  727.50 10.38 52 Near-Infrared
15 733.55-738.74 736.15 8.65 5.2 Near-Infrared
16 743.93 - 749.12  746.53 10.38 52 Near-Infrared
17 754.31 - 759.50 756.91 10.38 52 Near-Infrared
18 775.07 - 778.53  776.80 19.89 3.5 Near-Infrared
19 794.10 - 797.56  795.83 19.03 35 Near-Infrared
20 809.67 - 813.13 811.40 15.57 3.5 Near-Infrared
21 826.97 - 830.43 828.70 17.30 35 Near-Infrared
22 854.65 - 859.84 857.25 28.55 52 Near-Infrared
23 878.87 - 884.06 881.47 24.22 52 Near-Infrared
24 904.82 - 910.01 907.42 25.95 52 Near-Infrared
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consisting of one above-canopy and four below-canopy readings (according to
standard procedure) were taken in the center of each plot.

Greenness, or the amount of chlorophyll in a plant, is a visible indicator of
stress in plants. Because most of the plant nitrogen is contained in the chlorophyll
molecules, this measure is a good indicator of the nitrogen status of plants.
Greenness was determined with a SPAD Chlorophyll meter (Minolta Camera Ltd.,
Osaka, Japan) on the newest fully extended leaf on 10 randomly selected plants in
each plot.

Chlorophyll fluorescence has been reported to be a convenient indicator of
photosynthetic activity. It has been shown that any change in the overall bioenergetic
status of a plant is accompanied by a change in chlorophyll fluorescence (Krause and
Weis, 1991). Moreover, the changes that affect the opening of stomata and gas
exchange with the atmosphere are reflected by changes in the fluorescence
characteristics of a leaf. This measure can be used to indicate the photochemical
efficiency of the Photosystem II pathway. Chlorophyll fluorescence was measured
with a CF-1000, Chlorophyll Fluorescence Measurement System (Morgan Scientific,
Inc., Andover, MA, USA) on the newest fully-extended leaf of five randomly selected
plants in each plot.

Photosynthesis is the physico-chemical process that converts radiant energy to
the chemical energy used by biological systems, and is also a direct indicator of plant
health. The LI-6400, Portable Photosynthesis System (Li-Cor, Inc., Lincoln,
Nebraska, USA) instrument was used to measure the photosynthetic rate on two fully
extended leaves in each plot.

Soil moisture content was determined gravimetrically. Precipitation was about
normal in 1999, being 880.7 mm or slightly below the average of 939.7 mm for the

area. Details on the climatic parameters for the entire year are given in Table 3.2.

3.3.4 Observations on weeds
Weed density, composition, and time of emergence are some of the criteria
used to assess the impact of weeds on crop development. Weed counts were taken in

a 50cm x 50cm quadrant at the center of each plot during the week of the flight. The
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Table 3.2 Mean monthly temperature, relative humidity, wind speed, and total precipitation during the year 1999 and for a

normal year
Month Year 1999 Normal year
(Average based on the years1961-1990)
Temperature Relative| Wind |Precipitation Temperature Relative | Wind | Precipitation
‘o) humidity| speed (mm) CC) humidity| speed (mm)
(%) |(km/h) (%) | (km/h)
Max. | Min. | Avg. Max. | Min. | Avg.
January -5.1 -142 9.7 7488 14.96 142.2 -5.8 -149 -103 NA NA 63.3
February | -0.6 -10.2 -5.6 69.55 11.71 29.4 -42 -13.5 -88 NA NA 56.4
March 27 54 -1.8 7021 1542 76.6 20 -69 -24 NA NA 67.6
April 121 1.5 65 5818 13.24 20.9 10.7 0.6 5.7 NA NA 74.8
May 220 88 158 5978 10.94 40.8 185 73 129 NA NA 68.3
June 260 15.6 20.8 6887 10.56 111.0 234 125 180 NA NA 82.5
July 27.1 17.1 21.7 75.68 11.01 100.2 262 154 208 NA NA 85.6
August 247 141 190 7420 9.40 55.0 246 141 194 NA NA 100.3
September| 23.8 12.6 17.3 7831 8.4l 100.1 198 93 145 NA NA 86.5
October | 125 32 7.6 7489 1131 90.5 130 36 83 NA NA 75.4
November| 94 09 48 73.71 14.22 45.4 52 20 16 NA NA 93.4
December| 0.5 -67 -3.5 7892 12.95 68.6 29 -11.0 -69 NA NA 85.6

NA: Not available
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time of emergence of weeds was not recorded, although it was noted that some weeds
had emerged before the crop. At the time of the flight, however, all weeds in the plots
were fully established. '

3.3.5 Data analysis

Processed radiance images were imported into the IDRISI GIS software
(Version 2.00.000, Clark University, MA, USA) using the PCI software (Version
6.2.1 (Demo), PCI Geomatics, ON, Canada). Representative values for each
waveband were obtained by extracting the average radiance for the waveband from
the central portion of each plot in the image. The central portion of the plot was
marked by examining the image visually. The visual interpretation was aided by
identifying the soil buffer strips that surrounded each plot.

Scheffe’s multiple range test (Steel et al., 1997) was used to determine which
wavebands best explained differences between type of weed infestation. SAS
softwam (Version 6.11, North Carolina, USA) was used for the analysis, which was
carried out at the 95% significance level (P<0.05). Simple linear regression and
correlation analyses were used to relate the spectral data to crop physiological

parameters.

3.4 Results and Discussion
The presentation of the results from ground-based observations is of primary
importance, because the discussion of the significance of spectral data will

necessarily refer to the direct measurements made on the canopies.

3.4.1 Ground-based observations
3.4.1.1 Observations on weeds

Weeds were generally uniformly distributed over the plots. Yellow foxtail
(Setaria glauca) was the most prominent among the grassy weeds, which also
included barnyard grass (Echinochloa crusgalli) and yellow nutsedge (Cyperus
esculenthus). Velvetleaf (Abutilon theophrasti Medik.), redroot pigweed (Amaranthus

retroflexus), and lamb’s quarters (Chenopodium album) were the most prominent
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broadleaved weeds. The replicate-averaged weed counts for the four weed treatments
are presented in Table 3.3, for each individual crop.

As expected, weed density was higher in the plots without weed control for
both crops, and weed density was lower in each treatment class for soybean than for
corn. The difference in weed density between corn and soybean is likely due to the
latter’s ability to compete for light (greater soil coverage due to greater plant density
and leaf structure), as exhibited by a much higher LAI for soybean (Table 3.4,
section 3.4.1.2) and possibly in part due to poorer growth conditions for weeds in the

soybean plots because there was not an application of nitrogenous fertilizer.

3.4.1.2 Crop physiological parameters

The replicate-averaged crop physiological parameters for the four weed
treatments are presented in Table 3.4, for each individual crop. The most striking
feature of these data involves significant differences in the physiological parameters
of corn due to the presence of weeds, whereas there are none apparent in the case of
soybean. As suggested in the preceding section, when soybean was seeded at
recommended rates and row spacing, this crop holds a greater competitive advantage
over the predominant weed species than that exhibited by com. The sensitivity of
corn to the weed populations is evidenced by a definite tendency toward lower
photosynthetic rates of corn leaves, where weeds are allowed to proliferate, compared
to the rate in weed-free com canopies. Although the photosynthetic rate is
significantly lower only in plots with no weed control (mixed grasses), Table 3.3
indicates that there are more total weeds without weed control in place, compared to
the removal of all but one species (velvetleaf) or family (grasses). If the weed density
of velvetleaf or grassy weeds was the same as the mixed weeds, it is suggested that
the photosynthetic rate of corn would be significantly lower than the weed-free rate.
The effect of weeds is manifested by shorter plants and evidence of nitrogen stress in

comn (lower greenness).
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Table 3.3 Weed count in different weed treatments for corn and soybean crops

Treatment Grassy weeds | Velvetleaf | Broadleaf Total
(shoots persq. | (plants per weeds™ |(shoots/plants
meter) sq. meter) | (plants per |per sq. meter)
sq. meter)
Yellow
foxtail Others
Corn + Velvetleaf - - 62 - 62
Corn + Mixed weeds 53 53 - 19 125
Corn + Grasses 48 59 - - 107
Soybean + Velvetleaf - - 21 - 21
Soybean + Mixed weeds 32 22 - 6 60
Soybean + Grasses 23 31 - - 54

* Broadleaf weeds included velvetleaf plants also
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Table 3.4 Details of various measurements of crop parameters and volumetric soil moisture content, (average value = SD)

a. Corn

Crop parameter Com + Corn + Com + Corn + Variation across
Velvetleaf Mixed weeds | Grasses No weeds various treatments

Leaf area index (cm’/cm’) | 2.31 £ 0.24° 311+0.17° [211£0.29° 1.73+£0.13° 1.60 to 3.29

Plant height (cm) 76.5 + 6.8° 71.4+133% | 99.7+9.7%® 109.3 £10.4* |59.61t0 116.1

Greenness (comparative | 20.9 3.4 140+ 4.4° 27.6+54% 363+1.7° 9.5 to 38.2

scale)

Chlorophyll fluorescence | 0.709 £ 0.021* | 0.672 4+ 0.030* | 0.718 + 0.034* | 0.696 £ 0.069° | 0.619 t0 0.754

(ratio, unitless)

Photosynthesis rate 21.90+1.90* | 13.38+4.35° |2520+£2.65* |27.83+1.16° |8.451t028.90

(pmolCO,m™s ™) ,

Soil moisture content (%) | 13.20+1.30* | 12.11+1.95% {1232+1.72% [11.85+147 ® 110.15t0 14.69

b. Soybean

Crop parameter Soybean + Soybean + Soybean + Soybean + Variation across
Velvetleaf Mixed weeds | Grasses No weeds various treatments

Leaf area index (cm’/em’) | 7.57 +0.30° 7.40£099% |7.27+098" 6.22+1.05* " | 5.01to8.33

Plant height (cm) 61.3+£2.8°% 62.2+6.5° 61.8=72% 522+6.1°% 452 to 69.4

Greenness (comparative | 31.4+1.8° 305+2.1° 32.0+14% 304£1.6° 28.1t033.6

scale)

Chlorophyll fluorescence | 0.628 + 0.009* | 0.656 + 0.012% | 0.635+0.015 | 0.661 = 0.018* | 0.618 to 0.677

(ratio, unitless)

Photosynthesis rate 18.93£1.25* |21.67+1.07* 12037+431% |2033+£3.52% |1540t023.20

(umolCOzm'zs'l)

Soil moisture content (%) | 13.16£1.73* | 13.08+1.90* |12.35+2.15% |11.86+0.73° |10.63t0 1527

Mean parameter values (+SD) with same superscript letters in each row are not significantly different (Scheffe's multiple range test,

P<0.05).
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3.4.2 Spectral response

The replicate-averaged radiance data obtained at various combinations of
weed infestation and crop are presented in Figures 3.1 and 3.2 for corn and soybean,
respectively. High absorption in the visible and high reflectance in the near-infrared
wavebands are typical of vegetation reflectance curves, according to Guyot (1990)
who reported that chlorophyll and other pigments absorb about 85% of the incoming
visible radiation and that leaves absorb only about 50% of the incoming NIR.
Because chlorophyll a and chlorophyll b in plant leaves exhibit maximum absorption
in the blue and red wavebands, leaves show maximum reflectance at 550 nm (yellow-
green). Although canopy reflectance spectra can differ somewhat from these general
characteristics of leaf spectra, depending on the development stage and extent of the
vegetation cover, the spectra of Figures 3.1 and 3.2 do conform to them, because they
were obtained at a fairly advanced stage of crop development. The expected peak at
550 nm reflects a plateau from the central wavelengths of wavebands 3 and 4, (545.43
and 556.58 nm).

The clearest distinctions between the four types of vegetation cover (i.e. weed
controls) in Figures 3.1 and 3.2 are associated with comparatively higher radiance in
the visible red, in weed-free plots, and lower radiance in the NIR in weed-free plots.
This is due to the combined effect of a lower proportion of radiance from plants and a
higher proportion of radiance from soil under such a condition of sparser leaf
coverage. The plots without weed control are associated with comparatively lower
radiance in the visible red and comparatively higher radiance in the NIR. In the plots
cropped with corn, these effects appear to mimic the trends‘ in LAI, whereas the
situation is not so clearly defined in the case of soybean, where there were no
significant differences in LAI attributable to the weed treatments. Therefore negative
correlations are anticipated between LAI and radiance in the visible red, and positive
correlations in the NIR. This expectation is borne out in Tables 3.9 and 3.10.

An interesting comparative feature of Figures 3.1 and 3.2 is that the radiance
in the visible spectrum is of the same magnitude for both corn and soybean, although
LAI is substantially greater in all soybean plots than in corn plots. However, radiance

in the NIR from soybean plots becomes increasingly greater than that of the corn
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plots, as the wavelength increases from about 700 nm to about 750 nm, the difference
being maintained on to about 875 nm. The NIR differences appear to reflect the large
difference in LAI between plots of the two crops rather than any influence of weeds;
however, the question remains as to why the same is not true in the visible spectra.
Such different behavior may reflect the combined effects of the denser soybean
canopy and the high level of absorption (85%) of visible radiation compared to NIR
(50%), as noted by Guyot (1990). Briefly stated, the visible light received by the
sensor is mainly a function of the leaf coverage at the upper levels of the canopy, with
the light reflected from lower levels being, for the most part, absorbed before
reaching leafless regions. In the case of NIR radiation, more energy is transmitted

from upper canopy to the lower canopy which can then be reflected back.

3.4.3 Suitable wavebands for detection of weeds

The spectral data were analyzed to determine whether any fine features in the
data could be related to the different weed treatments more precisely than the visual
analysis of Figures 3.1 and 3.2 as presented above. The results of Scheffes’s multiple
range test are summarized in Tables 3.5 and 3.6 for com and soybean, respectively.
There were significant differences in radiance in the red part of the spectrum between
the plots of weed-free corn and plots of corn with mixed weeds at wavebands 8 and 9
(Table 3.5). However, at the same wavebands, the other weed treatments exhibited no
differences in radiance either between themselves or with the weed-free and mixed
weed plots.

There were also significant differences in radiance at wavebands 16 to 21
(746.53 to 828.70 nm). The radiance of weed-free corn was significantly lower than
that of corn with velvetleaf and corn with mixed weeds in wavebands 16, 17 and 19;
however, there was not such a si gnificant difference with that of corn with grasses. In
waveband 18 (776.80 nm), the radiance of the weed-free crop was significantly lower
(P<0.05) than that of corn infested with any of the weeds.

The above relationships are so similar to the comparisons of LAI,

photosynthetic rate and greenness presented in Table 3.4, that it may be concluded
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Table 3.5 Statistical analysis of radiance in different wavebands for corn

Waveband Radiance (uW/cmZ/sr/nm)
Number Corn + Com + Comn + Corn +
Velvetleaf Mixed weeds QGrasses No weeds
1 33794140 3206 £107* 3492 +64° 3566 +131*%
2 2454 497 ® 2271 £53*  2515+80® 2705 +162°
3 3473 +18® 3323 +138%  3449493% 3459 +148°
4 3513 +112 3359 +142° 3454+100* 3485 +159°
5 2773 +9° 2676 +122%  2774485% 2891 +158°
6 2382421° 2315 +101°  2392+87% 2576 +167°
7 1871 +48°2 1826 £78% 1946 +72® 2205 +150°
8 1484 +57 % 1389 +41°  1595+72%® 1898 +170°
9 1637 £70%° 1526 +49° 1762 +88% 2073 +184°
10 1604 +73° 1527 +52® 1714483 1988 £165°
11 2273 +62° 2225 +112%  2290+101* 2437 £150°
12 2824 4812 2743 £162° 2778 +119* 2823 +150°
13 4104 +84° 4012 £232% 3941 £163* 3863 +143*
14 5062 +60° 5020 £244° 4848 +127* 4608 £105°
15 6392 +28° 6428 +246° 6241 +72° 5831 +82°
16 7858 +43 2 8017 £219% 7781 +54% 7198 +85°
17 8484 +61° 8714 +204*  8432+76% 7824 +101°
18 8295 +722 8533 +187° 8246 +59° 7662 +77°
19 7846 +110° 8053 +187° 7818 8% 7282 £58°
20 7899 +135%° 8092 £189° 7842 +30% 7339 +37°
21 6994 £159%° 7146 £180% 6945 +14%° 6498 +36°
22 7621 +1782 7689 £245% 7439 +49° 7022 752
23 7916 £227° 8001 +287%  7714+450* 7344 +137*
24 6334 +230% 6444 £231°  6233+64* 6038 £180°

Mean radiance values (+SE) with same superscript letters in each band are not
significantly different (Scheffe's multiple range test, P<0.05).
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Table 3.6 Statistical analysis of radiance in different wavebands for soybean

- )
Waveband Radiance (uW/cm*/st/nm)

Number Soybean + Soybean + Soybean + Soybean +

Velvetleaf Mixed weeds Grasses No weeds

1 32661397 3277+40% 3534+85? 3576+156%

2 2386+6° 2375732 23701742 2589+83°

3 3534+114° 3408+121°? 3355+79°? 3600+52°

4 3566+131° 3458+128° 3384481° 3648+59°

5 2744+73% 2666+107*? 2616+74% 2888+55°2

6 2314+44% 2260+100? 2248+83% 2498+58?

7 1800+20°2 1786185? 1801+65% 20411662

8 1464+35° 14641742 1512+89% 1737+82°

9 1618+33% 1614481° 1671+94° 1917492%

10 1595429% 15964802 16461817 1861+91°

11 23724572 2312+101° 2308+80% 2528+62°

12 30574942 2945+108*% 2930196 3137462 %

13 4778+170% 4542+122° 4443+117° 46791+44°

14 620442182 5937+80° 5744+116% 59174342

15 81124+237% ‘ 7899+41° 7630+150% 7607+46%

16 10229+251° 10113+£73% 972242232 9528+67%
17 111734235% 11139+108*  10743+280° 10391+122°
18 10879+187% 10952+151°2 10557+263 2 10148+119?
19 10168+152° 10262+103% 99344236 9512+148%
20 101374135% 10248+84%  9924+193®  9514+155°

21 8857+135° 8979+118% 8712+173% 8326+117%
22 9517+187°% 9617+138% 9248+170° 8929+160?
23 9826+176° 0860+138* 9552+108° 9189+162*
24 769241322 7654+125° 74261692 7194+163*

Mean radiance ratio values (+SE) with same superscript letters in each band are not

significantly different (Scheffe's multiple range test, P<0.05).
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that the presence of weeds in a corn crop are be detected through analysis of spectral
data, if there is a priori knowledge of the contribution to LAI of the com itself, in
respect of its stage of growth, health status and crop density (spacing and plants per
row). |

The statistical analysis performed on the soybean crop (Table 3.6) indicated
that, with the exception of waveband 20 (811.40 nm), the recorded radiance values
were not significantly different for the weed-infested and weed-free soybean
treatments. At waveband 20 (811.40 nm), however, the only significant difference
existed between the two extreme treatments (weed free and mixed weed), as indicated
with corn. The scarcity of additional information realized from this analysis of the
radiance of the plots with soybeans is not surprising, given that the weed treatments
had no significant effect on the soybean physiological parameters, which is in all
likelihood due to the comparatively low weed densities.

Multi-spectral imaging systems were used in previous studies aimed at
detecting weeds or distinguishing them from other vegetation. These systems usually
had broad waveband sensors, with wavebands centered or sensitive in the blue (400 to
500 nm), green (500 to 600 nm), red (600 to 700 nm), and near-infrared (700 to 1000
nm) ranges (Bajwa and Tian, 2001; Lamb et al., 1999; Lass and Callihan, 1997; Lass
et al. 1996; Everitt et al., (1996, 1995, 1994)). Brown et al. (1994) found that
wavebands centered at 440, 530, 650, and above 730 nm were useful in distinguishing
between weed species. Brown et al. (1994) selected these wavebands based on field-
spectroradiometer measurements acquired over weed canopies rather than over weed-
infested crop canopies, yet had limited success in separating different weeds. Results
were even poorer when the images were acquired from a still-video camera, with four
filters from a height of 10m. Very high within-class variability was cited as the reason
for poor discrimination. However, in another study of the same field, slightly better
results were reported, when images were acquired from an airborne platform (Brown
and Steckler, 1993). Good weed classification results were reported when all weeds
were grouped into one class and separated from corn or from the soil. Similarly, using
a ﬁeld-spectroradibmeter, Everitt et al. (1987) reported significant differences in the

spectral response of various rangeland weeds and other vegetation at 550, 650, and
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850 nm. The differences in the spectral response of weeds were attributed to

differences in foliage color and biomass.

3.4.4 Ratios of wavebands in the red and NIR

Many vegetation indices (VIs), that combine reflectance at two or more
wavelengths in different ways, have been found useful in characterizing plant growth
and development (Jackson and Huete, 1991). In a recent study, Zwiggelaar (1993)
found some ratio vegetation indices (RVIs) useful in the discrimination of weeds
from crops, and in particular from row crops. As a result, this study has attempted to
evaluate different waveband ratios for discriminating between the different weed
treatments.

Wavebands 8, 9, and 10 and wavebands 16 to 24 in the near-infrared plateau
region were combined in all possible ratios of red to near-infrared on a one-to-one
basis. Scheffe’s multiple range test was used to detect significant differences in the
ratios due to the weed treatments, as was the case for the analysis of individual
wavebands.

The results of this analysis are presented in Tables 3.7 and 3.8. The results for
com clearly establish that the values of these waveband ratios for pure corn were
significantly different (P<0.05) from those of corn infested with velvetleaf and mixed
weeds. Thus, the waveband ratios, given in Table 3.7, and waveband 18 (776.80 nm)
may be used to determine the presence of weeds in corn fields.

In the case of soybean (Table 3.8), it is evident that waveband ratios are more
effective at discriminating between weed treatments than are radiance values.
However, there was a similar difficulty in distinguishing the velvetleaf only and
grasses only treatments. Although the weed-free soybean crop and soybeans with
mixed weeds were distinguishable at several waveband ratios, it was not possible to
differentiate the other weed treatments. It was difficult to make a distinction between
the different weed treatments visually, because the dominant canopy coverage of the

soybean crop suppressed weed growth in the velvetleaf and grass weed treatments.
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Table 3.7 Statistical analysis of radiance ratios in different wavebands for corn

Radiance ratio (x 10”) (unitless)

War\;(:}z)and Corn + Com + Corn + Corn +

Velvetleaf Mixed weeds| Grasses No weeds
8/16 189 +7° 173 +4°  20549% 264 +25°
8/17 175 £7° 15943 18949 243 +23°
8/18 179 +6° 163+4°  19449%° 248 +24°
8/19 189 +5° 17345%  20449% 261 425°
8/20 188 +4° 17245%  20349% 259 +24°
8/21 212 +3° 195+6°  230+11%® 292 +28%
8/22 195 +3° 181+6°  214+10% 270 +25°
8/23 187 +2° 174 45°  20749%° 259 +26°
8/24 234 +1% 216+7°  256+11% 316 +34°
9/16 208 +9° 190 +4°  227+11% 289 +27°
9/17 193 +8° 175 +4°  209+10%® 265 +25°
9/18 197 +7° 179+5°  214+11% 271 +26°
9/19 209 +6° 190+6°  225+11%®  285+27°
9/20 207 #5° 189 +6°  225+11°® 283 +26°
9/21 234 +5° 21446°  254+13%® 319 430°
9/22 215 +4° 199+7°%  237+12% 295 427°
9/23 207 £3° 191 6%  228+11%® 283 +28°
9/24 258 +2% 237+7°%  283+13%®  345137°
10/16 204 +9° 190£2°%  220+10% 276 +24°
10/17 189 +9° 17543%  203+10%® 254 +22°
10/18 193 +8° 179 #4° 208 +10%® 260 +23?
10/19 204 +7° 190 £4°  219+10%® 273 +24°
10/20 203 +6° 189+4° 2194112 271 +23°
10/21 229 +6° 214+5°%  247+12% 306 +27°
10/22 210 +5° 199+5%  230+12% 283 +25°
10/23 202 +42 191 +4°%  222£11% 271 +25°
10/24 253 +3% 23745°  275+13% 331 +34°

Mean radiance ratio (xSE) with same superscript letters in each waveband ratio are

not significantly different (Scheffe's multiple range test, P<0.05).
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Table 3.8 Statistical analysis on radiance ratios of different wavebands for soybean

Waveband Radiance ratio (x 103) (unitless)
Ratio Soybean + Soybean + | Soybean+ | Soybean +
Velvetleaf Mixed weeds| Grasses No weeds

8/16 143+7° 145+8% 15548° 182482
8/17 13146° 13248%® 14118 % 167472
8/18 135+6 % © 13449° 14348 % 17172
8/19 144+6° 143+9° 15248 % 183+7°
8/20 145+5° 14318° 15248 % 182+7°
8/21 16547 163+10°  173+9%® 209482
8/22 154462 153+10%  164+10° 194472
8/23 149+6° 149+10° 15892 189+8°
8/24 190+7° 1924132 20311 % 241482
9/16 158472 160+9° 172492 201492
9/17 14516° 14549° 15619 % 184+8°
9/18 149+6° 14849 ° 158+9% 18982
9/19 159+6° 157+10°  168+9% 20148°
9/20 160+5° 15849° 16849 20148°
9/21 183+7° 180+11°  192+10% 23049°
9/22 17047 % 168+11°  181+11% 215482
9/23 165£6® 164+10°  175+10% 209+9 2
9/24 211+7° 211+14°  225+12% 266+9 2
10/16 156+6° 158+9° 169+8° 195492
10/17 14345° 143+9° 15347° 179482
10/18 147452 146+9° 156482 183+8%
10/19 15745 % 1565° 16648 * 196482
1020 157+5° 156+9° 166+8* 19548?
10/21 180+6 % 178+11%  189+9® 22349°
10/22 168462 166+11° 17849° 20849 °
10/23 163462 162+10? 172482 203492
10/24 208+7® 209+14%  222+10*  259+10°

Mean radiance ratio (+SE) with same superscript letters in each waveband ratio are
not significantly different (Scheffe's muitiple range test, P<0.05).
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3.4.5 Relationship between crop physiological parameters and spectral data

This section discusses the results of the analysis linking ground observations
of crop physiological parameters (Table 3.4 above) and the corresponding spectral
" measurements.

The simple correlation coefficients (r) between the crop physiological
parameters and the spectral measurements are given in Tables 3.9 and 3.10 for corn
and soybean, respectively. Good correlation was observed between radiance and the
various crop parameters. The maximum correlation between radiance and the crop
parameters for corn were: -0.809 for LAI, -0.812 for plant height, -0.858 for
greenness, -0.814 for photosynthesis rate, 0.389 for chlorophyll fluorescence and —
0.263 for soil moisture, in wavebands 9, 14, 19, 18, 9 and 24, respectively. Similarly,
the maximum correlation coefficients between the radiance and the crop parameters
forisoybean were: 0.786 for LAI; -0.733 for plant height; -0.549 for greenness; 0.455
for photosynthesis rate; -0.605 for chlorophyll fluorescence; and 0.736 for soil
moisture, in wavebands 24, 21, 4, 19, 24, and 22, respectively. This analysis indicated
that the highest correlation between radiance and a given parameter was not always
found in the same waveband for both crops.

In general, it was observed that the correlations between crop physiological
parameters and radiance were higher for com, corresponding to the greater influence
of weeds on corn than on soybean, as discussed in section 3.4.1.2. It is also interesting
to note that higher correlation values were obtained for wavebands in the near-
infrared region, with the exception of three cases within the visible region: soybean
greenness in waveband 4 (556.58 nm) and corn LAT and chlorophyll fluorescence in
waveband 9 (585.17 nm).

The observed spectral responses of the canopies were the result of complex
interactions between crops, weeds and soil factors. In the preseht study, complications
arose due to the presence of weeds, differences in individual leaf properties, and
- canopy structures. For example, in the case of soybean, the highest negative
correlation was obtained between greenness and radiance values in waveband 4
(556.58 nm). However, higher radiance in this region usually indicates better growth

and more biomass. Thus, it is difficult to extrapolate results obtained at leaf scale or
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. Table 3.9 Correlation coefficient (r) values relating radiance and crop parameters for

com
Leaf Plant Photosynthesis | Chlorophyll Soil
Waveband ii?ei( height Greenness rate fluorescencej moisture
1 -0.716 0.441 0.507 0.445 0.057 -0.013
2 -0.790 0.339 0.569 0.561 0.376 -0.005
3 -0.493 -0.162 0.096 0.127 0.220 -0.105
4 -0.457 -0.210 0.064 0.073 0.199 -0.108
5 -0.583 0.017 0.306 0.231 0.252 -0.155
6 -0.618 0.089 0.387 0.267 0.287 -0.138
7 -0.728 0.339 0.590 0.446 0.288 -0.210
8 -0.798 0.471 0.710 0.564 0.373 -0.135
9 -0.809 0.462 0.701 0.558 0.389 -0.158
10 -0.792 0.415 0.656 0.495 0.362 -0.165
11 -0.589 -0.007 0.263 0.170 0.229 -0.210
12 -0.394 -0.313 -0.066 -0.100 0.166 -0.218
13 -0.053 -0.633 -0.452 -0.416 0.011 -0.194
14 0.275 -0.812  -0.715 -0.651 -0.104 -0.119
15 0460 -0.802  -0.795 -0.744 -0.195 -0.068
16 0.622 -0.737  -0.822 - -0.777 -0.283 -0.043
17 0.654 -0.724  -0.813 -0.797 -0.287 -0.048
18 0.679 -0.730  -0.838 -0.814 -0.274 -0.011
19 0.633 -0.742  -0.858 -0.786 -0.267 -0.016
20 0.613 -0.746  -0.840 -0.801 -0.221 -0.024
21 0.565 -0.731 -0.831 -0.755 -0.193 -0.048
22 0.507 -0.756  -0.816 -0.717 -0.161 0.010
23 0442 -0.704 -0.770 -0.685 -0.190 -0.121
24 0.312 -0.558  -0.650 0.569  -0.198 -0.263
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Table 3.10 Correlation coefficient (r) values relating radiance and crop parameters for

. soybean

Leaf . .
o] |2 L Pt i | so1
1 -0.177 -0.001  0.099 0.394 0.050 -0.061
2 -0.220 -0.207 -0.222 0.196 0.224 -0.524
3 -0.308 -0.287 -0.522 -0.204 0.218 -0.498
4 -0.313 -0.288 -0.549 -0.177 0.245 -0.480
5 -0.344 -0.322 -0471 -0.084 0.296 -0.541
6 -0.340 -0.316 -0.376 0.018 0.310 -0.591
7 -0.356 -0.319 -0.288 0.179 0.332 -0.559
8 -0.216 -0.179 -0.099 0310 - 0.234 -0.540
9 -0.240 -0.200 -0.123 0.289 0.244 -0.538
10 -0.253 -0.215 -0.166 0.290 0.237 -0.525
11 -0.311 -0.271  -0.395 0.093 0.268 -0.541
12 -0.210 -0.168 -0.412 0.034 0.136 -0.464
13 -0.092 -0.066 -0.427 -0.084 -0.005 -0.232
14 0.104 0.128  -0.357 -0.053 -0.182 0.053
15 0.362 0.385 -0.181 0.100 -0.354 0.313
16 0.541 0.563  0.008 0.209 -0.448 0.502
17 0.629 0.647 0.119 0.340 -0.524 0.608
18 0.679 0.692  0.197 0.383 -0.518 0.638
19 0.724 0.724  0.265 0.455 -0.546 0.634
20 0.737 0.723  0.260 0.450 -0.544 0.616
21 0.743 0.733  0.315 0.439 -0.539 0.644
22 0.706 0.663  0.328 0.408 -0.532 0.736
23 0.761 0.691 0.449 0.342 -0.558 0.669
24 0.786 0.701  0.489 0.374 -0.605 0.704
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from canopies having only one species of plant, to complex canopies involving crops
and weeds.

These results were nevertheless comparable to those of other relationship
estimates between crop parameters and remotely sensed spectral data. Ma et al.
(1996) reported significant negative correlations (r ranged from -0.52 to -0.95)
between data acquired with a hand-held multi-spectral radiometer and greenness
(SPAD readings) at 600 nm, and LAI (r = -0.49 to -0.87) of corn plants at different
stages of growth. In the above experiment, spectral measurements were acquired in
eight wavebands (450 to 800 nm) over corn plots with different nitrogen application
rates. The wavebands centered at 600 and 800 nm were found useful in deriving such
relationships. Cloutis et al. (1996) reported correlation coefficients of 0.75 and greater
between aerial spectral data and parameters describing crop condition (LAI, plant
height, and difference in the canopy and ambient temperature) for various crops. The
highest correlations were obtained at different wavebands for different crops and at
different growth stages. Leaf chlorophyll was negatively correlated to spectral data
near 600 nm for soybean (Adcock et al., 1990), and at 550 nm for corn (Blackmer et
al., 1994a). Similarly, Thenkabail et al. (2000) reported correlations of 0.88 and 0.81
between ground spectral data and LAI, and ground spectral data and plant height,
respectively. However, these studies did not report the effect of weeds on these
relationships, which makes it difficult to compare such results with those of the
present study. Moreover, differences in type of sensor (multi- or hyper-spectral), type
of platforms (ground- or air-based) of the study, and the scale of study (leaf or
canopy) make it all the more difficult to draw comparisons or make inferences from
previous work.

Simple linear regressions were also executed in an attempt to develop
relationships between crop parameters and spectral measurements. These
relationships could then be used to estimate various crop parameters, based on the
recorded radiance data. The regressions were based on the waveband with the highest
correlation within the given crop parameter. Table 3.11 shows the crop, wavebands,
crop parameters, linear regression parameters and the level of significance of the

regression. The F-test was used to determine the statistical significance of the
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Table 3.11 Linear regression analysis of spectral data vs. crop condition parameters

Regression equation

Crop Crop parameter Waveband coefficients Fvalue
a | b
Com
Chlorophyll 9 0.596  5.89E-05 1.78
fluorescence (ratio,
unitless)
Greenness 19 20547  -0.0233  27.89"
(comparative scale,
unitless)
LAI (cm*/cm?) 9 5.25 -0.0017  18.89"
Photosynthesis rate 18 132.86  -0.0135 19.64"
(umolCOzm'Zs'l)
Soil moisture (%) 24 20.00 -0.0012 0.74
Plant height (cm) 14 488.94  -0.0767 1939
Soybean
Chlorophyll 24 0.947 -4E-05 577"
fluorescence (ratio,
unitless)
Greenness 4 48.08 -0.0048 432°
(comparative scale,
unitless)
LAI (cm*/cm?) 24 -12.53  0.0026 16.17"
Photosynthesis rate 19 -10.73 0.0031 2.61
(umolCOy_m'zs")
Soil moisture (%) 22 -16.42  0.0031 11.817
Plant height (cm) 21 -67.48 0.0160 11.62"

Note: a and b are the intercept and the slope of the regression equation (y = a + bx),

where y is the crop parameter and x the radiance at a given waveband.

"P<0.05and P <0.01
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regression equations. Highly significant (P<0.01) linear relationships between
spectral data and greenness, LAI, photosynthesis rate and plant height were obtained
for com.

A similar analysis for soybean indicated that linear relationships (P<0.01)
existed between the spectral data and LAI, plant height and soil moisture content; the
relationships between spectral data and chlorophyll fluorescence and greenness were
also approximately linear (P<0.05). However, photosynthetic rate did not have a
relationship with spectral data in the case of soybean. In general, this analysis
indicated that ‘many crop physiological parameters could be estimated from remotely

sensed data.

3.5 Conclusions

Researchers have reported that weed detection is easier at the flowering stage
(Lass and Callihan, 1997). However, if detection is carried out early in the growing
season, weeds may be eliminated quickly and effectively without causing any serious
damage to the main crop. Even though the image in the present study was taken when
the weeds were at the vegetative growth stage, and therefore difficult to distinguish
from crops on the basis of radiance in the wavebands used, it is suggested that the
presence of weeds in a corn crop or soybean crop can nevertheless be deduced with
adequate reference data obtained by ground-truthing.

On the other hand, it has been suggested that weed aggregations (mainly
grassy weeds) at a specific location tend to be stable over time (Johnson et al., 1997;
Cardina et al., 1995). In such situations, weed mapping at the flowering stage could
permit the application of measures that prevent seed formation and propagation in
time and space.

The relationships between incident light and recorded vegetation response are
highly complex in themselves (Goel, 1988). A lot more research needs to be
accomplished, if radiance or reflectance measurements are to be used for weed
identification and mapping, in which the latter would be extremely useful in
applications such as precision spraying. The results of the present study provide some

indication that spectral data may be useful in distinguishing between fields with very
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high or very low weed densities, if the field over which the image has been taken is
known to have a specific crop at a given density.

Various relationships between spectral data and many other factors involved
in crop-weed interactions and in the interactions of plants and incident radiation have
yet to be elucidated before one can consider the direct application of spectral data to
weed management. Interpretation of spectral data at this time is difficult without
fairly extensive ground-truthing. The results presented here do not indicate the
plausible use of spectral data in providing more elaborate information on the weed
status of cropped areas, when both crop and weed are in vegetative growth stages. At
low .weed densities, much higher spatial resolution combined with higher spectral
resolution might help in locating weeds and distinguishing them from each other and
from crop plants. The results presented here do not give a clear indication that the
differences in spectra are attributable to anything other than weed density; however,
similar investigations at higher spectral and/or spatial resolution may reveal that the
technology may, in fact, satisfy the original objective of discriminating between types

of weed infestation.
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PREFACE TO CHAPTER 4

Despite not very conclusive 1999 results, many lessons were learned throughout the
field season, especially during data evaluation over the winter. Given the spatial
resolution available from the airborne platform, it became evident that plot sizes were
far too small. Also, the choice of soybean as a second crop was ill-advised in the
study of weed control strategies, because soybean was so densely seeded compared to
corn, that weeds of any of the locally predominant species did not provide it with
much competition. Moreover, because soybean did not receive any nitrogen fertilizer,
the weed populations in the corn and the soybean crops were not directly comparable.

The first major change made in the planning of the second study year involved
focusing on only one crop: corn (Zea mays L.). The second change involved
enlarging the dimensions of the square plots, from 9 m? to 400 m?, in order to obtain
more data records per plot and thereby enhance the relative resolution. Given the
impracticality of managing a single specific broadleaf weed, i.e. velvetleaf in plots of
a larger dimension, a decision was made to use herbicides against grasses and to
permit the proliferation of all broadleaved weeds in the designated plots.

The results of the 1999 study appeared to corroborate the suggestion by
several other researchers, that higher spectral resolution was needed to discriminate
between weeds and crops, particularly at stages of development where there are such
subtle differences in spectral signature. A 72-waveband imager was therefore chosen
for the aerial measurements, and a 512-waveband spectroradiometer was obtained for
ground-truthing. In order to continue in this vein, a decision was made to induce
differences in spectral response in both the crop and the weeds by creating controlled
nitrogen stress. This was effected by combining the weed control strategies with

various nitrogen application rates in a factorial experiment.

Research papers based on the chapter:

1. Goel, P. K., S. O. Prasher, J.-A. Landry, R. M. Patel, R. B. Bonnell, A. A. Viau,
and J. R. Miller. 2003. Potential of airborne hyperspectral remote sensing to
detect nitrogen deficiency and weed infestation in corn. Computers and

Electronics in Agriculture 38(2): 99-124.
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2. Goel, P. K., S. O. Prasher, J.-A. Landry, R. M. Patel, and A. A. Viau. 2003.
Estimation of crop biophysical parameters through airborne hyper-spectral remote
sensing. Transactions of the ASAE (In press).

3. Goel, P. K., S. O. Prasher, J.-A. Landry, R. M. Patel, and A. A. Viau. 2003.
Assessment of corn growth parameters through hyperspectral field measurements.
(Under preparation).

(Copies of the published papers are given in the attached CD-ROM.)
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CHAPTER 4

HYPER-SPECTRAL REMOTE SENSING TO DETECT
NITROGEN AND WEED STRESSES

4.1 Abstract

Hyper-spectral images of a field experiment, aimed at studying the combined
effects of weed and nitrogen stresses on corn, were acquired from ground-based and
airborme sensors. The main objective of the study was to determine whether the
effects of these stresses on crop physiological parameters, measured in the canopies,
could be deduced from the hyper-spectral data. Four weed control strategies (no
weed control, grass weed control, broadleaf weed control, and full weed control) were
replicated four times and assigned to the main plots; also three nitrogen fertilization
rates (60, 120, 250 N kg ha’l) were randomized to the subplots within each weed
control strategy. Using a Compact Airborne Spectrographic Imager (CASI) sensor,
hyper-spectral data in 72 narrow wavebands (407 to 949 nm) were collected 30 days
after planting, at tassel stage, and at the fully-mature stage when most kernels were
filled. Over the same time frame, a 512-waveband field spectroradiometer, with a
range of 270 to 1072 nm, was used to acquire spectral data at ground level. Leaf
greenness (SPAD readings), leaf area index (LAI), plant height, leaf nitrogen content,
leaf chlorophyll content, and ancillary data were also determined on these days.

The data analysis indicated that there were significant («=0.05) differences in
reflectance at certain wavebands, due to weed control strategies and nitrogen
application rates. The influence of weeds was most readily observed, in the aerial and
field spectroradiometer data, when the comn had tassel about nine weeks after
planting. A study of the aerial data acquired at all three growth stages revealed that
the nitrogen effect was most closely related to reflectance at 498-nm and 671-nm
wavebands. In these wavebands, no interaction was shown between nitrogen levels
and weed controls. Differences in other regions of the spectrum, whether related to

nitrogen or weeds, appeared to be dependent on the growth stage.
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Regression models were generated to represent crop biophysical parameters
and yield, in terms of reflectance at one or more wavebands, using the maximum '
improvement criterion. The models that best represented the data had five wavebands
as independent variables. Coefficients of determination (r2) for the regressions were
generally greater than 0.9, when based on spectral data taken at the tassel stage.
Models based on normalized difference vegetation indices (NDVI) were more reliable
at estimating the validation data sets than were the reflectance models. For most of
the parameters, the best results were obtained using data acquired at the tassel stage;
in general, the wavebands at 701 nm and 839 nm were the most prevalent in the
NDVI-based models.

This study confirmed previous suggestions that greater spectral resolution
should lead to more reliable relationships between the spectral data and the various
indicators of crop status. The comparison between results obtained from airborne
sensors and those acquired on the ground, indicated that unless there is willingness to
provide the same coverage of a canopy with ground-based instruments, as is possible
from airborne systems, the higher resolution of the ground-based sensors does not

compensate for the full coverage at lower resolution from high altitude.

4.2 Introduction

Attempts to relate remote sensing data from aircraft or satellites to nitrogen
stress of crops, or to the characteristics of weed populations in agricultural fields,
have been based on film or digital photography, videography, or multi-spectral digital
imaging systems, utilizing three or four broad wavebands. Although, these
photographs or images provided invaluable assistance in the visual interpretatibn or
qualitative assessment of field conditions, these images were only partly successful in
quantifying the various objects or parameters of interest. The major drawback is that
these technologies provide average reflectance over a limited number of fairly broad
wavebands. This results in a considerable loss of spectral information, and is
suggested as the reason for the difficulties associated with discriminating species or
objects showing subtle differences in very narrow spectral ranges. Hyper-spectral

imaging systems scan a large number of narrow wavebands, and are thus capable of
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acquiring information at much higher spectral resolution (Lamb and Brown, 2001;
Lamb, 1998). Moreover, the digital format of remotely sensed spatial data facilitates
automated processing (Frazier et al., 1997).

Studies using handheld spectroradiometers have demonstrated the potential of
hyper-spectral measurements in the detection of weeds (Wang et al., 1998b; Brown et
al.,, 1994) and nitrogen level in crops (Sui et al., 1998; Blackmer et al., 1996a;
Blackmer et al., 1994a; Walburg et al, 1982). In a recent review of weed detection in
crops using remote sensing, Lamb and Brown (2001) also emphasized the need for
remote sensing instruments with a higher spectral resolution. It is expected that high
resolution, hyper-spectral satellite imagery will eventually be available, to provide a
basis for monitoring crop health and the variability of several factors affecting
growth, at a scale suitable for precision farming (Brisco et al., 1998; Moran et al.,
1997). In the future this would provide a basis for multi-dimensional mapping
(Ponzoni and Goncalves, 1999). Thus, the extension of hyper-spectral technology
from a ground-based system to an airborne platform is rather challenging and new for
many applications in agricultural crop monitoring. Research is not yet available on
the change in the reflectance spectrum of a crop canopy under the simultaneous
influences of nitrogen stress and competition from weeds, specifically utilizing
ground-based, aerial or satellite platforms in a controlled experimental field setting.

The aim of the present study was therefore to study the spectral response of
com to controlled combinations of weed and nitrogen stresses, using hyper-spectral
imaging technology simultaneously from ground-based and airborne platforms.

The specific objectives of the study were: (1) to identify specific wavebands
or spectral regions in which variations in crop reflectance can be directly associated
with: (a) the type and/or extent of the weed population in a corn canopy, and/or (b)
the nitrogen status of the crop, and (2) to develop functional relationships between

hyper-spectral data and: (a) crop biophysical parameters; (b) crop yield.
4.3 Materials and Methods

4.3.1 Experimental design and layout
The study was conducted in the summer of the year 2000 at the Lods
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Agronomy Research Center of Macdonald Campus, McGill University, Ste. Anne-de-
Bellevue, Québec, Canada (45°25°45" N lat., 73°56°00" W long.). The soils at the
study site are classified as Bearbrook clay and Ste. Rosalie clay. Both soils belong to
the Dark Gray Gleysolic group. Corn was grown under different levels of nitrogen
and weed infestation in order to simulate a wide range of growth scenarios. The
experiment was a two-factor, split-plot, completely randomized design. Four weed
control strategies were assigned to the main plots (80m x 20m) and three nitrogen
application rates were assigned to the sub-plots (20m x 20m). Each sub-plot had 26
rows of corn. The weed treatments were: no weed control (W1), control of grasses
(W2), control of broadleaf (W3), and full weed control (W4). Nitrogen treatments
were: low nitrogen (Ngo, 60 kg N/ha), normal nitrogen (N2, 120 kg N/ha), and high
nitrogen (Naso, 250 kg N/ha). Potassium, phosphorous and micronutrients were
applied at the locally recommended rates. The initial surface soil test report is given
in Table 4.1. Corn was sown on May 30, 2000, at a rate of 76000 seeds per ha and a
row spacing of 75 cm. Herbicides were applied on June 26, 2000, and nitrogen
fertilizer, above the minimal rate of 60 kg/ha (which had been banded with the seeds)
was broadcast in the second week of July. Details of the cultural operations and other
relevant information are summarized in Table 4.2. The total precipitation for the year
was 1005.2 mm, which was almost equal to the average (939.7 mm) for the region.
However, precipitation from April to September was 613.6 mm, about 23% above the
average for that period. Details on other weather conditions during the year are given

in Table 4.3.

4.3.2 Spectral measurements

Hyper-spectral data were acquired from a Compact Airborne Spectrographic
Imager (CASI), and at ground level using a 512-waveband field spectroradiometer
(FieldSpec HH model, Analytical Spectral Device, Boulder, CO, USA).

The CASI provided reflectance in 72-narrow wavebands in the visible and
near-infrared regions (407 to 949 nm) at 2-m spatial resolution. Various details about
the selected CASI wavebands are given in Table 4.4. Images were taken at three
critical growth stages of the crop: (1) early growth - 30 days after planting
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Table 4.1 Surface soil properties before corn planting

Properties | pH | Organic | Phosphorous |Potash|Calcium| Magnesium Nitrogen (N)
- matter ®) X®) | (Ca) (Mg) (mg/kg)
% mg/kg mg/kg| mg/kg mg/kg Dry soil Moist soil
NH;-N' [NO;-N' [NH4-N™ |NO;-N'
Average |6.7 5.1 26.9 238.9 | 3286.2 828.8 6.0 4.8 22 59
Min. 6.5 4.5 8.2 195.5 | 2165.4 100.9 4.0 2.7 0.3 1.3
Max. 7.1 6.0 67.2 328.7 |1 4183.3 1155.4 8.7 7.6 10.9 15.1

" Ammonium nitrogen (NH4-N)
T Nitrate nitrogen (NO3-N)
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Table 4.2 Details of tillage, sowing, fertilization and other cultural operations

August 05, 2000
c. Third flight on
August 25, 2000

Operation Date Specific details

Tillage May first week '

Sowing May 30, 2000 76000 seeds/ha,
75 cm row spacing

Fertilization | a. May 30, 2000 10-120-50, in all plots (N-P,0s-K,0) (kg/ha)

b. June 01, 2000 0 in Neo; 10 in Ny20; 90 in Nso (N kg/ha)
c. July 12,2000 50 in Negp; 100 in Nyp9; 150 in Naso (N kg/ha)

Herbicide June 26, 2000 a. Grass control (W2): Ultim & Agral 90

application b. Broadleaf control (W3): Banvel II
¢. Full weed control (W4): Ultim,

Agral 90, and Banvel II

Ultim: 18.7% Rimsulfuron and 18.7%
Nicosulfuron; applied at a rate of 67g/ha.
Banvel II: Dicamba; applied at a rate of 288
g/ha when applied with Ultim, and 576 g/ha
when applied alone.
Agral 90: surfactant; 0.2% of herbicide
amount except in plots where only Banve] II
was applied

CASI hyper- | a. First flight on a. 30 Days after planting

spectral June 30, 2000

observations | b. Second flight on | b. 66 Days after planting

c. 86 Days after planting
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Table 4.3 Mean monthly temperature, relative humidity, wind speed, and total precipitation during the year 2000 and for a normal year

Month Year 2000 Normal year
(Average based on the years 1961-1990)
Temperature Relative | Wind |Precipitation Temperature Relative | Wind | Precipitation
‘o) humidity| speed (mm) (C) humidity| speed (mm)
(%) |(km/h) (%) | (km/h)
Max. | Min. | Avg. Max. Min. Avg.

January -5.1 -141 -102 72.01 14.57 90.6 -5.8 -149 -103 NA NA 63.3
February | -1.9 -12.1 -6.9 72.11 13.47 39.0 -42 -135 -88 NA NA 56.4
March 63 -25 14 69.68 13.25 58.0 20 -69 -24 NA NA 67.6
April 104 13 51 6879 14.11 100.0 10.7 0.6 5.7 NA NA 74.8
May 186 81 12.8 71.35 1230 133.2 185 7.3 129 NA NA 68.3
June 223 120 16.6 7299 11.27 89.9 234 125 18.0 NA NA 82.5
July 247 146 192 7483 10.57 81.0 262 154 208 NA NA 85.6
August 240 146 18.8 80.25 1042 125.5 246 141 194 NA NA 100.3
September| 19.1 89 13.7 79.14 10.35 84.0 198 93 145 NA NA 86.5
October 136 44 86 76.83 10.82 28.9 13.0 3.6 83 NA NA 75.4
November| 54 -0.5 2.4 82.90 9.92 72.6 52 20 1.6 NA NA 93.4
December | -5.1 -12.7 -9.2 7829 14.85 102.5 29 -11.0 -69 NA NA 85.6

NA: Not available

75



Table 4.4 Wavebands used to acquire aerial spectral data

Waveband Spectral Waveband Spectral Waveband Spectral
Number| Center | Width | A& | region |Number| Center | Width | A A~ | region |Number | Center [Width| A ™| region

N | (m) | (nm) (N | (nm) | (nm) (N | (nm) |(nm)

(nm) (nm) (nm) '
1 408.73 4.27 - - Blue 25 587.86 432 752 Green | 49 770.00 4.37 NIR
2 416.13 428 7.40 Blue 26 595.39 433 7.53 QGreen 50 777.65 437 NIR
3 42353 428 7.40 Blue 27 602.93 4.33 7.54 Red 51 785.30 4.37 NIR
4 430.95 428 742 Blue 28 610.47 433 7.54 Red 52 79296 4.37 NIR
5 438.36 428 7.41 Blue 29 618.02 433 7.55 Red 53 800.62 4.37 NIR
6 44579 428 743 Blue 30 625.57 4.33 7.55 Red 54 808.29 4.38 NIR
7 45321 429 7.42 Blue 31 633.13 4.33 7.56 Red 55 815.96 4.38 NIR
8 460.65 429 7.44 Blue 32 640.69 434 7.56 Red 56 823.64 4.38 NIR
9 468.09 429 7.44 Blue 33 648.26 4.34 7.57 Red 57 831.32 4.38 NIR
10 47553 429 7.44 Blue 34 655.83 4.34 7.57 Red 58 839.01 4.38 NIR
11 48298 430 7.45 Blue 35 663.41 434 7.58 Red 59 846.70 4.38 NIR

12 490.44 430 7.46 Blue 36 670.99 434 7.58 Red 60 85439 4.39

13 49790 430 7.46 Blue 37 678.57 4.34 Red 61 862.09 4.39 NIR

Red 62 869.80 4.39
Red 63 877.51 4.39
NIR 64 885.22 4.39
892.93 4.39
NIR 66 900.66 4.40
NIR 67 908.38 4.40
NIR 68 916.11 4.40
NIR 69 923.84 4.40

14 50537 430 7.47 Green 38 686.17 4.35
15 512.84 430 747 Green 39 69376 4.35
16 52032 431 748 Green 40 70136 4.35
17 527.80 431 7.48 Green 41 70897 4.35
18 53529 431 749 Green 42  716.58 4.36
19 54279 431 7.50 Green 43 72420 4.36
20 550.29 431 7.50 Green 44  731.82 4.36
21 55779 432 7.50 Green 45 73945 436
22 56530 432 751 Green 46  747.08 4.36 NIR 70 931.58 4.40
23 572.82 432 7.52 Green 47 75471 4.36 939.33 4.40
24 58034 432 7.52 Green 48 76235 437 764 NIR 72 947.07 _4.41
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Note: NIR: Near-infrared
*A )\ is the difference in the center of two successive wavebands
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(June 30, 2000); (2) tassel stage - 66 days after planting (August 5, 2000); and, (3)
fully-mature stage - 86 days after planting (August 25, 2000). Radiometric,
geometric, and atmospheric corrections were applied to the reflectance data.
Specifications for the CASI sensor and the various radiometric, atmospheric, and
geometric correction procedures used to correct the images are summarized in the
Table 4.5. The corrected images were imported into ENVI software (ENVI 3.3,
Research System, Inc., Boulder, Colorado, USA), and average reflectance values
were extracted for each plot. Waveband 72 (centered at 947 nm) could not be used in
the analyses due to excessive noise in the signal.

The FieldSpec had a range of 270 to 1072 nm. Observations were made
concurrently on the day of the first and second flights i.e., on 30" June and 5"
August, respectively. Due to some instrument technical problems, ground
measurements could not be made with this instrument on the day of the third flight.
Spectral observations were acquired with a 15° field of view. Six scans were made in
each plot. The first three were made with the spectroradiometer placed directly over
corn plants, whereas the other three were made with the instrument placed between
com rows. A four-band moving average filter was used to smooth the spectra. The
smoothed spectra were then averaged. The data from 346 wavebands (with centers
from 378.8 to 920.5 nm) were used for the analysis, due to excessive noise at the two

ends of the nominal range of the instrument.

4.3.3 Plant parameters

Measurements on the various crop canopy and other parameters were taken on
the day of the flight and on the following day. These measurements included: plant
height, leaf greenness, leaf area index (LAI), leaf chlorophyll content, leaf nitrogen
content and soil moisture. Crop yield and biomass were also recorded at the end of
crop season. Plant height, a simple and direct indicator of plant health, was measured
for ten plants in each plot, and then averaged. A LAI-2000 Plant Canopy Analyzer
(Li-Cor, Inc., Lincoln, Nebraska, USA) was used to measure LAI values. LAl is a
dimensionless quantity, but can be expressed as cm? foliage area per cm” ground area.

Greenness or the amount of chlorophyll in a plant is another visible indicator of stress
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Table 4.5 CASI specification and data processing

Type of sensor

Pushbroom imager

Field of view 37.8°

Wavelength range 407 to 949 nm
Number of wavebands 72

Sampling rate 405 (spatial direction)
Spectral resolution 7.5 nm "
Spatial resolution 2mx2m

Noise floor 1.4 DN

S/N ratio 420:1 peak

a. June 30th, 2000
b. August 5th, 2000

¢. August 25th, 2000

a. Heading: 150.732 North, Altitude above sea level:

1148 m, Time: 18:22, Cloud free;

Heading: 150.859 North, Altitude above sea level:

1130 m, Time: 15:30, Cloud free;

c. Heading: 331.225 North, Altitude above sea level:
1152 m, Time: 14:58, Cloud free.

b.

Data processing

a. Radiometric and atmospheric
corrections

Data collected from CASI were processed to at-sensor
radiance using calibration coefficients determined in
the laboratory by CRESTech (Center for Research in
Earth and Space Technology). The CAMS5S
atmospheric correction model (O’Neill et al., 1997)
was used to transform at-sensor radiance to ground-
reflectance. Further, spectrally-flat uniform areas in
each image (asphalt, bare soil and concrete surfaces)
were used to do flat field adjustments in the spectral
regions affected, residually by atmospheric absorption
features for improved reflectance image data cubes.

b. Geometric corrections,
geo-referencing, and
image co-registration

Images were corrected for the aircraft movements
(yaw, pitch, and roll) using GPS data onboard the
aircraft, then rectified to UTM geographic
coordinates. Further, white targets at the comers of
the field were used for precise correction and error
assessment. The estimated RMSE (root mean square
error) was about (.5 pixel.
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in plants and was measured with a SPAD Chlorophyll meter (Minolta Camera Ltd.,
Osaka, Japan). This measure reveals the N status of the plant, because most leaf
nitrogen (N) is contained in the chlorophyll molecules. Chlorophyll content was
determined in the laboratory on twelve leaves from representative plants in each plot,
following the procedure described by Arnon (1949). The total Kjehdahl nitrogen in
the leaves was also determined. Biomass was estimated on the basis of ten plants
harvested and weighed from each plot. Finally, crop yield was calculated by
harvesting ten representative plants, from each of four randomly chosen locations in
each plot. Variations in crop growth indicators due to the various treatments are

summarized in Table 4.6, for each aerial data acquisition campaign.

4.3.4 Observations on weeds

Two survey sets of observations were collected with reference to the weeds in
the experimental plots. The first set was collected on July 14, and included details of
weed species, density, plant height, and percentag.e cover. The second set was
collected on August 15. Because weeds were fully established at the time of the first
observation (July 14), and no change in weed density was observed thereafter, the
second set focused on percentage cover of broadleaf, grassy, and total weeds in each
plot. For the weed survey, 50cm x 50cm quadrates were used. Data were collected by
placing the quadrate at three (first survey) and four (second survey) randomly
selected areas within each plot. During the weed count, grass species were counted as
the number of shoots per m?, while broadleaf weeds were counted as the number of
plants per m’.

Results of the weed surveys are summarized in Table 4.7. The most common
grassy weeds were barnyard grass, yellow nutsedge, and crab grass. The predominant
broadleaved weeds were Canada thistle, sow thistle, lamb’s quarter, and redroot
pigweed. The grassy weed population exhibited less variability across the various
treatments than did the broadleaved weeds. No specific conclusions could be drawn
about the effect of nitrogen -application rate on individual weed species. As expected
under field conditions, there were differences in the species of grassy weed present

across different treatments. However, measurements on percentage weed cover
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Table 4.6 Details of various measurements of crop parameters, soil moisture, biomass and yield at different flight times

Crop parameter Treatments Variation

N50W1 N60W3 N60W4 N120W1 N120W3 N120W4 N250W1 N250W3 N250W4 across various
plots

First flight (June 30, 2000)’

Leaf area index | 1.14 0.59 0.77 1.24 0.86 0.72 1.50 1.13 1.06 0.30t0 2.18

(cm*/cm?) +£0.54 |+022 |%0.16 |=+0.18 |%0.45 |=£0.21 +0.32 | +0.44 | £0.29

Plant height 18.8 18.7 18.3 20.1 19.5 19.3 21.3 21.2 20.6 14.8 to 23.7

(cm) +1.7 *+1.9 +1.2 +2.5 +1.1 +2.1 +1.5 +1.3 +1.1

Greenness 34.9 32.6 333 35.7 36.2 34.7 41.7 41.7 39.3 26.1 to 43.67

(unitless) +3.6 +4.8 +3.8 +3.0 +3.2 +2.1 +1.6 +2.3 £1.6

Leaf nitrogen 41.65 38.75 42.95 40.18 48.41 44.53 56.66 57.57 55.84 28.16 to 68.35

(g/kg) +12.59 | £4.39 +4.41 +4.75 +5.58 +10.10 | +8.04 +6.76 +4.46

Chlorophyll 0.0104 0.0096 0.0106 0.0096 0.0099 0.0107 0.0108 0.0139 | 0.0134 0.0051 to 0.016

(mg/cmz) +0.0024 | £0.0026 | £0.0025 | £0.0040 | £0.0028 | £0.0013 | +£0.0017 | £0.0019 | £0.0007

Soil moisture 342 33.9 33.9 34.8 335 34.0 33.7 34.0 32.7 27.3t0 39.5

content (%) *+2.9 +2.4 +3.6 +4.8 +2.1 +2.1 +3.7 +1.9 +3.9

Second flight (Aug. 05, 2000) ’ "

Leaf area index | 3.98 3.89 2.84 4.45 4.63 3.45 5.17 4.46 3.70 2.04t06.19

(cm*/cm?) £136 | +0.85 |+0.91 £0.94 | +062 |+024 |+£1.18 |=£1.11 |=0.34

Plant height 151.6 152.6 159.0 173.8 183.1 182.7 204.5 206.0 199.7 113.7 to 230.5

(cm) +17.9 +32.4 +26.3 +22.7 +21.2 +19.4 +21.4 +17.5 +13.3

Greenness 32.8 383 40.0 40.6 44.8 46.2 46.8 47.5 479 31.0to 54.0

(unitless) 0.6 +5.3 +2.7 +4.3 +2.3 +4.4 +4.8 +3.1 +2.7

Note- For each parameter average value =SD for a treatment is given;
* Treatments: W1- no weed control; W3-broadleaf weed control; W4-full weed control; Ngo-60 kg N/ha; Ni20-120 kg N/ha; Nasg-250

kg N/ha.

# At the time of first flight, nitrogen rates in Ngo, N0, and Naso treatments were 10, 20, and 100 kg N/ha, respectively.
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Table 4.6 (cont’d) Details of various measurements of crop parameters, soil moisture, biomass and yield at different flight times

Crop parameter _ Treatments Variation across
N60W1 ] N60W3 N60W4 N120W1 N120W3 N120W4 N250W1 N25()W3 N250W4 various plOtS

Second flight (Aug. 05, 2000)

Leaf nitrogen 49.07 57.09 63.39 57.42 66.98 71.56 69.08 73.60 77.58 33.34 to 78.72

(g/kg) +11.14 | £6.96 +4.88 +7.91 +7.09 +1.23 +5.71 +3.31 +1.35

Chlorophyll 0.0112 | 0.0128 0.0136 | 0.0150 |0.0145 |0.0151 | 0.0159 0.0165 | 0.0174 | 0.0093 to 0.0191

(mg/cmz) +0.0020 | £0.0020 |=+0.0014 | £0.0030 | £0.0014 | £0.0022 | £0.0020 | £0.0011 | £0.0008

Soil moisture 321 32.9 338 34.6 32.1 31.7 30.9 30.6 30.9 27.5t038.3

content (%) +2.7 +2.3 +3.2 +3.3 *1.2 +1.7 +1.7 +0.2 +2.4

Third flight (Aug. 25, 2000) ’

Leaf area index | 4.04 3.68 2.90 4.26 422 3.31 4.58 427 3.65 2.27 t0 4.87

(cm*/cm?) +0.52 | £0.56 +0.57 | +0.48 | +052 |£0.58 |=£0.25 +0.26 | +0.37

Plant height 151.6 152.6 159.0 173.7 183.0 182.7 204.4 206.0 199.6 113.7 to 230.5

(cm) +17.9 +32.4 +26.3 +22.7 +21.2 +19.4 +21.4 +17.5 +13.2

Greenness 321 34.8 38.8 43.6 46.4 46.6 52.1 52.0 51.5 28.3t056.2

(unitless) +4.5 +6.6 +3.4 +4.6 +3.8 +2.6 +4.3 +2.4 +1.3

Soil moisture 34.00 34.37 34.26 32.49 33.80 33.05 33.75 32.71 32.60 27.1t040.2

content (%) +4.38 +2.11 +4.05 +2.70 +1.37 +2.27 +5.03 +3.46 +2.63

Harvesting

Biomass 1.0554 | 0.9853 1.1464 | 1.0723 1.1627 | 1.2636 | 1.3469 1.3733 1.4564 | 0.765t0 1.723

(kg/mz) +0.1629 | £0.2502 | +£0.1583 | £0.2392 | £0.3591 | £0.1447 | £0.3254 | +0.1871 | =0.184

Yield 4.072 3.605 4.803 5.015 6.135 6.114 6.551 6.859 6.754 2.291 to 7.820

(t/ha) +1.199 | £1.521 +1.000 | =+1.147 |+0.823 |+0.591 |=*1.112 |=+0.500 |=+0.658

Note- For each parameter average value +SD for a treatment is given,
* Treatments: W1- no weed control; W3-broadleaf weed control; W4-full weed control; Ngo-60 kg N/ha; Nj20-120 kg N/ha; Njse-250

kg N/ha.
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Table 4.7 Details of weed type, number, density, and average ground cover in different weed treatments

a. Weeds count (plants/shoots per sq. meter) and average height (cm) of weeds on July 14, 2000

Grassy weeds Broadleaf weeds
Treatment’ | Bamnyard | Yellow Crab Quack Canada Sow Lamb's- | Redroot Others
nutsedge thistle thistle Quarter | pigweed

No. | Ht. | No. [Ht. |No. | Ht. | No. | Ht. No. | Ht. | No. | Ht. | No. [ Ht. | No. | Ht. | No. | Ht.
NgoW, 57 12357 11.1|70 3.0 |0 0.0 2 37 |1 03 |9 53 |10 48 |13 5.1
NgoW3 33 123|124 81 |18 1.8 |0 0.0 0 00 {0 00 |0 0010 0.0 {0 0.0
Ni20W, 72 19666 141146 23 |68 5.0 1 06 |2 1.1 |17 5512 33 |16 47
Ni20W3 51 18.18 74 |44 34 |0 0.0 0 00 {0 00 |0 0010 0.0 {0 0.0
NasoW1 67 1731107 138|119 54 |0 0.0 1 34 |2 14 |11 7519 59 |10 5.1
N,s50W3 43 19413 76 |29 3310 0.0 0 00 |0 00 |10 00 |0 00 |0 0.0

b. Weed cover

Weed cover on July 14, 2000 Weed cover on August 15, 2000

Treatment (%) (%)

Grassy Broadleaf Total Grassy Broadleaf Total
NeoW 31.3 +£3.8 6.0 £0.1 37.3+3.7 77.5+£5.2 10.68 £1.2 88.1+£5.4
NeoW3 8.8+22 0.0 8.8+2.2 38.3+11.8 0.0 38.3+11.8
Ni20W, 29.1 £3.3 5.6+1.2 34,7 +4.4 78.3 £2.7 10.4 £2.5 88.7 £4.2)
Ni20W3 19.9+5.9 0.0 19.9+£5.9 479 £18.1 0.0 479 +18.1
Na2s50 W 36.1 6.9 5.8 £0.8 419+7.4 78.7 £10.7 11.4£1.3 90.00 £10.0
NasoW3 15.7 £7.4 0.0 15.7+7.4 55.4 £10.1 0.0 55.4 £10.1

Note- Average value +SD for a treatment is given;
* Treatments: W1- no weed control; W3-broadleaf weed control; Ngo-60 kg N/ha; Ni0-120 kg N/ha; Nso-250 kg N/ha.
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suggested little variation across weed categories. At the time of the first survey, weed
cover in plots with no weed control (W1) ranged from 34.7 (= 4.4) to 41.9 (+ 7.4)
percent across nitrogen application rates. Where broadleaved weeds were controlled
(W3), the coverage ranged from 8.8 (+ 2.20) to 19.9 (+ 5.9) percent. However, on
August 15" weed coverage ranged from 88.1 (+ 5.4) to 90.00 (£ 10.0), and from 38.3
(£ 11.8) to 55.4 (+ 10.1), for W1 and W3 plots, respectively. In plots with no weed
control, grassy weeds accounted for 94.0 and 90.0 percent of the weed populations
within the first and second surveys, respectively. The predominance of grassy weeds

was not related to any residual effect of herbicide applications in previous years.

4.3.5 Data analysis
4.3.5.1 Selection of suitable wavebands

Reflectance in different wavebands was analyzed using the General Linear
Model (GLM) procedure of SAS (SAS Institute, Inc., Cary, NC, USA). Analyses of
variance (ANOVA) were conducted, including single degree of freedom contrasts, for
each of the 71 wavebands from the airborne sensor and each of the 346 wavebands
from the field spectroradiometer. The ANOV A model was adjusted to involve only
three weed treatments because very few broadleaved weeds were found in the plots
where the herbicide application was only a control for grassy weeds. With reference
to the natural variability in weed germination, the results of treatment W2 were
considered to be normal. Thus, data associated with treatment W2 were excluded

from the analyses.

4.3.5.2 Estimation of crop biophysical parameters

The spectral data were analyzed separately for the three flights. Multiple
regression models were generated with reflectance values at the different wavebands
as the independent variables, and crop biophysical parameters as the dependent
variables. The maximum r° criterion (MAXR) was used with PROC REG (SAS,
Version 6.12) to choose the best one, two, three, four and five parameter models for

each biophysical parameter, based on half the available data from a given flight. The
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remaining data were used to test the performances of these models in order to select
the best model for each dependent variable.

This method had been used previously by Thenkabail et al. (2000), whereas
Ingleby and Crowe (2000) used the closely related minimum r* (MINR) improvement
in a similar analyses of spectral data. Derived regression models with a maximum of

five independent parameters were,
P=bg + b1S; + b3S; + b3Sz + bgS4 + bsSs, (4.1)

where: P = parameter to be estimated,
b, b1, by, bs, by, bs = regression coefficients, and
So, S1, Sz, S3, Ss, Ss = the percentage reflectance values recorded at 1, 2, 3, 4, and 5

wavelengths, respectively.

The plots of MAXR vs. the number of wavebands in the model indicated that
inclusion of more than five parameters in the model had little effect on the
performance of model. Furthermore, the criterion ratio of the number of wavebands in
the model to the total number of field samples (5/24), being between 0.15 and 0.20
(Thenkabail et al., 2000; Hruschka, 1987), led to the use of a maximum of five
wavebands in the regression model.

Performance of the developed models was then evaluated by comparing the
observed and model predicted values. The sum of squared error (SSE) and the
average relative percent error (ARPE) values were calculated for both the calibration
and validation data sets, while the more stringent coefficient of efficiency (or Nash-
Sutcliffe coefficient), Cesr, (James and Burges, 1982) was calculated for the validation

data only:

i=n

2(8-0,)

SSE == :
- (4.2)
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4.3)

izn —\? ’ (4.4)
Sfo-o]

i=1

where: O; = individual observed value,

S; = individual simulated value,

O = mean observed value, and

n = the number of paired observed-simulated values.

The SSE is an indicator of quantitative dispersion between the observed and
estimated values, while the ARPE expresses the error and sign of the error (i.e., over-
or under-estimation) on a percentage basis. The C.i evaluates the error relative to the
natural variation in the observed values. A Cg of 1.0 represents .a’ perfect prediction,
while a value of 0 (zero) represents a prediction no better than simply using the
observed mean as a prediction; increasingly negative values indicate increasingly
poorer predictions.

Efforts were also made to develop simple linear regression models to predict

crop biophysical parameters, based on a Normalized Difference Vegetation Index

(NDVI).

_NIR-R

NDVI=—F——,
NIR +R

4.5)

where NIR and R are the reflectance values in the near-infrared and red spectrum

regions, respectively.
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The NDVI is the most widely used vegetation index used to highlight the
vegetation component in a soil background, and to minimize the effects of
illumination and other measurement conditions. Based on the results of the MAXR
procedure, ten red wavebands (633 to 701 nm) and eleven near-infrared wavebands
(778 to 854 nm) were found to be the most descriptive of crop biophysical
parameters, for all crop stages. These wavebands were selected to carry out further
analysis. NDVI values, resulting from all possible combinations of the selected red

and near-infrared wavebands, were used to develop prediction models.

4.4 Results and Discussion _

The results of the analysis, aimed at selecting suitable wavebands for the
detection of weeds and nitrogen fertilization levels, are presented and discussed first
(section 4.4.1). A discussion of the models relating crop biophysical parameters to
reflectance measurements follows in section 4.4.2. In both sections, the results of
spectral observations are presented in order of crop growth stage (early growth, tassel,
and fully mature). Furthermore, the results from the aerial and field spectral

measurements are discussed under separate subheadings for each growth stage.

4.4.1 Selection of wavebands

The average reflectance values obtained from aerial imagery at the tassel stage
are shown in Figures 4.1a-c, for each nitrogen application rate. At this stage, the
effect of nitrogen and weed treatments was quite evident in the different plots. Each
of these figures exhibits a broad low intensity peak, centered in the green region at
550 nm, and a sharp rise starting at about 675 nm, to a plateau in the vicinity of 762
nm. The near-infrared reflectance associated with the weed controls is similar in
shape but differs clearly in intensity at all three nitrogen application rates.

The highest intensity in the near-infrared was always associated with no weed
control, whereas the lowest was associated with full weed control. This is probably
related to a greater standing biomass, as indicated by the higher LAI values (Figure
4.2 and Table 4.6) in the plots with no weed control. The near-infrared intensities

associated with control of broadleaved weeds were close to those of the full control
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Fig. 4.1 Spectral response curve for corn under different nitrogen levels and weed
control conditions, during the second flight (tassel stage; August 5, 2000)
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Fig. 4.2 Variation in Leaf Area Index (LAI) among various treatments, during different

flights

(Error bar represents one standard deviation)

Note: At the time of first flight, nitrogen rates in Ngg, Ni20, and Nysp treatments

were 10, 20, and 100 kg N/ha, respectively.

&9



situation in Figure 4.1a; however, they were even closer to the no weed control
treatment (Figures 4.1b and 4.1¢). Although for a given weed control, it is difficult to
see the differences in intensity from one figure to the next, a careful inspection shows
that the near-infrared plateaus are at greater reflectance intensities in Figure 4.1c
(highest nitrogen rate), and lowest in Figure 4.1a (lowest nitrogen rate). This also
implies a correspondence between total reflected energy in the near-infrared and
standing biomass. With reference to the weed treatments, a higher biomass was
observed in the high nitrogen treatments, as compared to the low nitrogen treatments;
for example, average LAI values were 5.17 and 3.98 cm?/cm? in Npso and Neg
treatments, respectively, under a no weed control (W1) condition. The average LAI
values across various treatments, at the time of tasseling, ranged from 2.84 to 5.17
cm?/cm? in NgoW4 (low nitrogen and full weed control) and NasoW1 (high nitrogen
and no weed control) plots, respectively. Healthier plants in the higher nitrogen
treatment plots, as supported by the higher greenness and plant height values, also
caused higher reflectance in the near- infrared region (Table 4.6). In general, higher
nitrogen levels resulted in more biomass, due to more vigorous growth of both crop
and weeds.

There was a general tendency for LAI values to decrease from tassel to fully-
mature stage, which was due to a waning weed population (due to inability to
compete with the corn), and also due to the start of corn senescence. A decrease in
LAI values, from tassel stage to fully-mature stage, is evident in Figure 4.2. In
general, at tassel stage, the crop biophysical parameters ranged in magnitude across
different treatments: LAI from 2.04 to 6.19 cm?/cm?; plant height fromll 13.7 t0 230.5
cm; greenness from 31.0 to 54.0 on a comparative scale; leaf nitrogen from 33.34 to
78.72 g/kg; leaf chlorophyll content from 0.0093 to 0.0191 mg/cm’® (Table 4.6).
These large variations in various plant parameters demonstrated the combined effect
of weeds and nitrogen on crop growth. Better crop growth in higher nitrogen plots
was also supported by the measurements on other plant parameters (Table 4.6).

It is interesting to note that peaks in the green region of the visible spectrum
are not the only areas where it is possible to make some distinction associated with

weed controls. The intensities are also ordered, being greatest in Figure 4.1a, and
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lowest in Figure 4.10. When there is insufficient nitrogen tasseling is incomplete or
delayed, resulting in decreased color change from green compared to a plot of
tasseled plants.

Figures 4.3a and 4.3b permit a comparison of the spectral response between
no weed control and full weed control, at 120 kg/ha N, at the three growth stages. The
reflectance in the near-infrared region was higher at the tassel stage when there was
no weed control. However, at the fully-mature stage, the near-infrared reflectance was
greater with full weed control. This is attributed to the fact that at the fully-mature
stage, the crop and weeds were beginning to die back without weed control, whereas
the corn did not start to die back until after the fully-mature stage had been reached
when there was full weed control.

To enable the separation of different weed and nitrogen effects on the basis of
reflectance, a statistical analysis was performed for the different growth stages and
the results are given in Tables 4.8 to 4.10 for aerial observations, and in Table 4.11
for ground-based spectral data. A note of explanation is in order here. Although the
analyses were done for each waveband separately, the total number of wavebands (71
for the aerial and 346 for the field spectroradiometer) were recombined into regions
of identical significance, in order to reduce the size of the tables.v For example,
wavebands 45 to 69, inclusively, were the same with respect to the significance of

effects and contrasts, and are presented as one large region.

4.4.1.1 Early-growth stage
4.4.1.1.1 Aerial measurements

Although the crop was only four weeks old at the tilﬁe of the first flight (June
30, 2000), there were significant differences (¢=0.05) in reflectance, attributable to
the nitrogen application rate at all wavebands, except at 717 nm and 724 nm (Table
4.8). The contrasts between pairs of nitrogen application rates (N-rate) indicated that
the differences were detectable only between the highest N-rate and the two others,
but not between the two lowest, except in the waveband region of 739 to 924 nm. It
should be noted at this stage, that there was no significant difference (difference of 10

kg N/ha) between the Ngo and Ny, treatments because the additional dose of nitrogen
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treatments, interactions and contrasts, (aerial spectral data)

Table 4.8 Statistical significance calculated from ANOVA for main and subplot

Interaction|

Waveband Weed [Nitrogen Contrast :
Number | Centeror | (W) N W*N [ W1 | W1 | W3 | Ngo | Nso | Ni2o
Range (nm) vs. [ vs. | vs. | vs. | vs. | vs.
W3 | W4 | W4 [ Nigo [ Naso | Naso
First flight (June 30, 2000)"
1to13 |409to498| NS * NS NSNS |NS|NS | * *
14t027 {505t0 603 | NS * * NS NS {NS|NS| * *
28t035 |610t0 663 | NS * * NS| * | NS|NS| * *
36 671 NS * NS NS| * | NS|NS| * *
37t040 |679t0 701 | NS * * NS| * | NS|NS| * *
41 709 NS * * NS|NS|NS|INS| * *
42 717 NS NS NS NS | NS | NS | NS | NS | NS
43 724 NS NS NS NS|NS|NS|NS| * |NS
44 732 NS * NS NSNS |NS|NS| * |NS
45 739 NS * NS NS [NS (NS | * * | NS
461069 | 74710924 | NS * NS NS [NS NS | * * *
70t0 71 19321t0939| NS * NS NS [NS|{NS|NS| * *
Second flight (Aug. 05, 2000)
1to3 |409to424| NS NS NS NS | NS | NS | NS | NS | NS
4 431 NS NS NS NS|NS|{NS|NS|NS| *
5t08 |438to461| NS NS NS NS | NS [ NS | NS | NS | NS
9 468 NS NS NS NS NS|NS|NS|NS| *
10to 11 [476t0 483 | NS * NS NS|NS|{NS|NS|NS | *
12 490 NS * NS NS|NS|{NS}{ * [NS| *
13to 14 {49810 505 NS * NS NS|{NS |NS| * | NS|NS
15 513 NS * NS NS|NS|NS| * * | NS
16 520 * * NS * [ ¥ [NS| * * | NS
17t022 |528t0o 565 * * * * * NS | * * *
23 573 * * NS * * INS| * * INS
24 580 * * NS * * NS | * * *
25t027 [588t0603| * * NS * * INS| * * I NS
28 610 NS * NS * * INS| * * I'NS
29 618 NS * NS * INS|NS | * * I NS
30t039 |626to 694 NS * NS NS |NS NS | * * INS
40 701 * * NS * * INS| * * *

*Significant at < 0.05 probability level; NS-Non significant at < 0.05 probability level;
W1- no weed control; W3-broadleaf weed control; W4-full weed control; Ngo-60 kg

N/ha; Nj20-120 kg N/ha; N2so-250 kg N/ha.
# At the time of first flight, nitrogen rates in Ngo, Nj20, and N3so treatments were 10, 20,
and 100 kg N/ha, respectively.
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Table 4.8 (cont’d) Statistical significance calculated from ANOVA for main and subplot
treatments, interactions and contrasts, (aerial spectral data)

Waveband Weed |Nitrogen|Interaction Contrast
Number| Center or | (W) N) W*N W1 | W1 ] W31 Ngo | Neo | Ni2o
range (nm) vs. {vs. | vs. | vs. | vs. | Vs
W3 | W4 | W4 [Nz | Njso [ Naso
Second flight (Aug. 05, 2000)
41t042{709t0 717 * * * * * NS | * * *
43 724 & & % ® % * * * %
44 732 * % % * * * NS * %
45 739 * NS * * * * | NS | NS [NS
46 747 * * NS * * * * * I NS
471071{755t0939| * * NS * * * * * *
Third flight (Aug. 25, 2000)
1to 10 [409 to 476| NS NS NS NS | NS| NS | NS |NS|NS
11 483 NS NS NS NS [NS{NS|NS}| * |NS
12 490 NS NS * NS | NS|{NS | NS |NS|NS
13 to 14{498 to 505| NS * NS NS | NSNS | * * INS
15t028|513to 595{ NS * NS NS NSNS | * * *
2910 39(618t0 694 NS * NS NS [NS|NS | * * I NS
40t044{701to 732| NS * NS NS [ NS|NS | * * *
45 739 NS * * NS | NSNS | * * *
46 t0 52|747to 785] NS NS * NS | NSNS | NS | NS |NS
53t057{801to 831| NS NS * NS |[NS|{NS|{NS| * | NS
5810 61|839to 862 NS NS * NS |NS[NS| * * | NS
62 870 NS * * NS |NS|[NS| * * I'NS
63 877 NS NS * NS | NS{NS} * * I NS
64 to 69{8851t0924| NS * * NS [NS|[NS| * * | NS
70 932 NS NS NS NS | NSNS |NS|NS|NS
71 939 NS * NS NS [ NS| NS | NS | NS |NS

*Significant at < 0.05 probability level; NS-Non significant at < 0.05 probability level;
W1- no weed control; W3- broadleaf weed control; W4-full weed control; Neo-60 kg
N/ha; Njz0-120 kg N/ha; N3sp-250 kg N/ha.
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was applied as topdressing after the first flight. The difference in plant growth due to
nitrogen, especially that between the highest (N2so) and lowest level (Ngo), 1s also
evident from the observations of various plant parameters (Table 4.6). The maximum
average values of LAI, plant height, greenness, chlorophyll, and nitrogen content
were recorded in the high nitrogen (N3so) plots as 1.50 cm’/cm?, 21.3 cm, 41.7 on a
comparative scale, 57.57 g/kg, and 0.0139 mg/cm’, respectively. The corresponding
minimum values were recorded in plots with the lowest nitrogen fertilization (Ngo) as
0.59 cm?cm?, 18.3 cm, 32.6 on a comparative scale, 38.75 g/kg, and 0.0096 mg/cm’,
respectively.

Response to weed control, so early in the season, could not be associated with
the changes in reflectance at any waveband. Visual observations supported that this
was due to the fact that herbicide had been applied only five days earlier and had not
taken full effect. In general, there is a time lag of a few days between the time of
application of a herbicide and the die-back of weeds. Even at this stage, observations
of various plant parameters did not show a clear trend in the crop growth difference
among various weed treatments for a particular nitrogen fertilization level (Table
4.6).

There was an interaction between weed and nitrogen in four waveband
regions. As shown in Table 4.9, the contrasts between nitrogen-rates depended on the
type of weed control. With no wéed control, all contrasts between pairs of nitrogen-
rates are significant at this early-growth stage of growth. It is interesting to note that
the interaction was mainly associated with the reflectance values in the green and red
regions of the visible spectrum. Where there was no weed control, the differences in
reflectance between various pairings of nitrogen-rate were all significant at the
waveband regions indicated by the table. The situation is not as clear in plots with
broadleaf and full weed controls.

When the differences between the various weed controls were examined at
separate nitrogen-rates (Table 4.10), it was apparent that differences between no weed
control (W1) and broadleaf control (W3) at the lowest nitrogen-rate (Ngo) were not
significant except at waveband 41. At the normal (Njz0, 120 kg N/ha) and higher

(Naso, 250 kg N/ha) nitrogen-rates, there were no significant differences in reflectance
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Table 4.9 Statistical significance obtained from a pairwise comparison of nitrogen
fertilization rate means, for different weed control strategies, for bands in
which the interaction between weed and nitrogen fertilization treatments was
significant, (aerial spectral data)

Waveband Wi W3 W4

Number| Center or| Ngo Ne¢o Nizo Nso Neo Ni2o | Neo | Neo | Ni2o

range | vs. Vs. vs. Vs. VS. vs. | vs. | vs. | Vs
(mm) | N | Nosp | Naso | Nizo | Naso | Naso | Nizo | Naso | Naso

First flight (June 30, 2000)"

14 505 * * * NS | NS [ NS | NS * *

15t0 17]513 to 528 * * * NS | NS * NS * *
18 535 * * * * NS * NS * I'NS
19 543 * * * NS | NS * NS [ NS [ NS
20 550 * * * * NS * NS | NS | NS
21 558 * * * NS | NS * NS * | NS

22 to 34|565 to 656 * * * NS | NS * NS * *
35 663 * * * NS | NS | NS | NS | * *

37 to 38|679 to 686 * * * NS | NS | NS | NS * *
39 694 * * * NS | NS * NS * *
40 701 * * * NS | NS * NS * | NS
41 709 * * * * NS * NS | NS | NS

Second flight (Aug. 05, 2000)

17 to 22|528 to 565 * * * * * NS * * | NS
41 709 * * * * * NS * * | NS
42 7 1 7 * * *® * * * * * NS
43 724 * * * NS * * NS * NS
44 732 * * * NS | NS | NS | NS | NS | NS
45 739 NS | NS | NS * * NS | NS * | NS

Third flight (Aug. 25, 2000)

12 490 * * NS | NS | NS | NS | NS | NS | NS
45 739 * * * NS | NS | NS | NS | NS [ NS
46 747 * * NS | NS | NS | NS | NS | NS | NS
47 755 NS * NS * NS | NS | NS [ NS [ NS
48 10 6976210924 NS | NS | NS * * NS | NS | NS | NS

*Significant at < 0.05 probability level; NS-Non significant at < 0.05 probability level;
W1- no weed control; W3- broadleaf weed control; W4-full weed control; Ngo-60 kg
N/ha; N120-120 kg N/ha; N250-250 kg N/ha.

# At the time of first flight, nitrogen rates in Neo, Ni20, and Nzso treatments were 10, 20,
and 100 kg N/ha, respectively.
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Table 4.10 Statistical significance obtained from a pairwise comparison of weed
treatment means, for different nitrogen fertilization levels, for bands in which
the interaction between weed and nitrogen fertilization treatment was
significant, (aerial spectral data)

Waveband N60 N] 20 N2 50
Number] Centeror | W1 | W1 | W3 | W1 | W1 | W3 | WI | W1 | W3
' range vs. | vs. | vs. | vs. | Vs Vs. Vs. Vs. VS.
(nm) W3| W4 | W4 | W3] W4 | W4 | W3 | W4 | W4
First flight (June 30, 2000)"

14 505 NS| * | NS | * * NS * * NS
15t0 16{513t0 520] NS | * * * * NS * * NS
171022{528to 565 NS | NS | * * * NS * * NS
23t031{573t0 633] NS | * * * * NS * * NS
32t035(641t0 663 NS | * | NS | * * NS * * NS
37 t0 38/679t0 686 NS | * | NS | * * NS * * NS

39 694 NS | * * * * NS * * NS

40 701 NS | * * * * NS * * *

41 709 * INS | * * * NS | NS * *
Second flight (Aug. 05, 2000
17 to 22|528 to 565| * * | NS | * * NS * * NS

41 709 * * | NS | * * NS * * NS
42 to 43|717to 724 * * * * * * * * NS
44 to 45|732t0 739| * * * * * * * * *
Third flight (Aug. 25, 2000)

12 490 * INS| * [NS| NS | NS | NS | NS | NS

45 739 * * | NS | NS * NS | NS | NS | NS
46 to 69|747 to 924| * * I NS |NS| NS * NS | NS | NS

*Significant at < 0.05 probability level; NS-Non significant at < 0.05 probability level;
W 1- no weed control; W3- broadleaf weed control; W4-full weed control; Ngo-60 kg
N/ha; N120-120 kg N/ha; N350-250 kg N/ha.

# At the time of first flight, nitrogen rates in Ngo, Ni20, and Naso treatments were 10, 20,
and 100 kg N/ha, respectively.
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between the broadleaved weed and full weed controls, whereas there were significant
differences between no control and the other controls at all waveband regions except

one (41 under high nitrogen-rate).

4.4.1.1.2 Field spectroradiometer measurements

Results of the analysis and the single-degree of freedom contrast for the data
obtained with the field spectroradiometer are reported in Table 4.11. Results indicated
that at this early stage, recorded reflectance values over different treatments were not
significantly different in most of the wavelength regions. A significant difference in
the overall nitrogen treatments was observed in the near-infrared wavelength region,
from 744.6 to 920.5 nm. Only low (Ngo) and high (N;s0) nitrogen treatments plots
could be separated in this region. However, from the airborne platform, in the
corresponding wavelength region (747 to 924 nm), all three nitrogen levels were
separable (Table 4.8). As expected, and also discussed in the previous section, the
reflectance values in the weed treatments did not differ significantly, thus indicating
that it was not possible to discriminate between weed control strategies on the basis of
the field spectroradiometer data.

In general, better results were obtained from aerial observations. This could be
attributed to higher variability from the ground-based spectral data, because of too
high a spatial resolution relative to the proportion of the plot included in the images.
Brown et al. (1994) also reported better results with data acquired at low resolution

(high altitude), with less within-class variability.

4.4.1.2 Tassel stage
4.4.1.2.1 Aerial measurements

At the time of tasseling (second flight), the crop was about nine weeks old. At
this stage, the effect of weeds and nitrogen fertilization levels was more evident in the
field. A wide range of variation in the values of the various plant parameters, across
~various weed and nitrogen treatments (Table 4.6), indicated better separability of the
various treatments at this stage. The results of the statistical analysis (Table 4.8)

indicated significant differences associated with nitrogen-rate across most of the
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Table 4.11 Statistical significance calculated from ANOVA for main and subplot
treatments, interactions and contrasts, (field spectroradiometer data)

Waveband Weed|Nitrogen|Interaction Contrast
Number Centeror |(W)| (N) WH*N |W1 W1 | W3 Ngo | Neo [ Ni2g
range (nm) vs. |vs. {vs. | vs. | vs. | vs
W3 | W4 | W4 N120 N250 N250
During first flight (June 30, 2000)"
1t0226 {378.8t0732.1| NS | NS NS NS |NS|NS| NS [ NS | NS
227 to 233|733.6 to 743.1] NS | NS NS NS|[NS|INS|NS| * |NS
234 to 346|744.6 to 920.5] NS * NS NS|NS|{NS{NS| * | NS
During second flight (Aug. 05, 2000)
1to 89 |378.8t0517.0] NS [ NS NS NS [NS|NS| NS | NS | NS
90 to 91 [518.6t0520.1{ NS | NS NS NS|NS|{NS{ NS | * INS
92 to 94 [521.7 to 524.8] NS * NS NSINS|NS|{NS | * |NS
95 to 96 |526.4 to 528.0{ NS * NS NSNS |NS| * * I NS
97 to 106 |529.5 to 543.7| NS * NS NS| * INS| * | * |NS
107 to 109{545.2 to 548.4] * * NS NS| * |NS| * * | NS
110 550.0 NS * NS NS * |[NS| * * I NS
111 to 116[551.5 to 559.4{ * * NS NS| * INS| * * INS
117 to 127|561.0 to 576.6{ NS * NS NS| * INS| * * | NS
128 to 165|578.2 to 636.3| NS * NS NS|NS|NS| * * INS
166 6379 NS | NS NS NS |[NS|NS| NS | NS | NS
167 to 174|639.4 to 650.4) NS | NS NS. NS|NS|NS|NS | * |NS
175 to 200|652.0 to 691.3] NS | NS NS NS |{NS|NS| NS | NS | NS
201 to 203{692.8 to 696.0] NS * NS NS|NS|{NS| NS | * | NS
204 to 205|697.5 to 699.1| NS * NS NS [NS|NS| * * I'NS
206 to 207|700.7 to 702.2| NS * NS NS| * |NS| * * NS
208 to 212|703.8 to 710.1] * * NS NS| * |NS| * * | NS
213 to 214{711.7 to 713.2} * * NS NS| * NS} * * *
215t0 219|714.8 to 721.1| * * NS L * * *
220 to 226{722.7 to 732.1| * * NS * ¥ [ * NS | * *
227 733.6 * NS NS * x| * INS| * |NS
228 to 230|735.2 to 738.4] * NS * x| % | ¥ I NSNS |NS
231 to 238|739.9 to 750.9] * NS NS * | * | ¥ I NS |NS|NS
239 to 240(752.5 to 754.1] * NS NS * | ¥ L * INS| * |NS
241 755.6 * * NS * ¥ I * INS| * |[NS
242 to 346(757.2 to 920.5| * * NS N L * * I NS

*Significant at < 0.05 probability level; NS-Non significant at < 0.05 probability level,
W1- no weed control; W3- broadleaf weed control; W4-full weed control; Ngo-60 kg
N/ha; N120-120 kg N/ha; N250-250 kg N/ha.
# At the time of first flight, nitrogen rates in Ngg, N129, and Nys treatments were 10, 20,
and 100 kg N/ha, respectively.
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spectral regions investigated. Significant differences were associated with weed
controls in 44 of the wavebands, and significant interactions only in 11 wavebands
(17 to 22, and 41 to 45). The regions in which the nitrogen-rate effects were
significant, included the wavebands noted, as relevant to plant nitrogen content by
Buschmann and Nagel (1993) — 545 nm (green), 660 nm (red) and 800 nm (near-
infrared) — and by Blacker et al. (1996a) — 550 nm. By combining the information
from<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>