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Abstract / Résumé  

Neuroscientific research aims to understand the biological nature of individual traits and 

behaviours. The field has made great strides toward this goal with the advancement of openly 

available, large neuroimaging datasets and computational tools. However, as sample sizes in 

neuroscience grow towards the population scale, it becomes increasingly difficult to reconcile 

group-level effects with inter-individual variability. Recent studies in functional magnetic 

resonance imaging (fMRI) argue that resting-state functional connectivity can both successfully 

distinguish individuals and predict individual traits. From these approaches emerged the notion 

of a brain-fingerprint, a set of functional neuroimaging features that distinguish between 

individuals within a cohort. The neurophysiological foundations and clinical relevance of such 

brain-fingerprints remain uncharted and are at the core of my thesis. I have therefore 

contributed to the clarification of neurophysiological inter-individual differences, in both health 

and disease, present in the rich and complex dynamics of task-free magnetoencephalography 

(MEG). In the first experiment (Chapter 2), I demonstrate that individuals can be robustly 

differentiated from one another using brief neurophysiological recordings. This work extends the 

derivation of brain-fingerprints to direct measures of polyrhythmic brain activity across the 

cortex. In the second experiment (Chapter 3), I explore how inter-individual differences in task-

free neurophysiology change across the adult lifespan. I report that while older adults can be 

differentiated from one another, the most salient features of participant differentiation diverge 

between younger and older ages along anatomical and neurochemical axes. In the third 

experiment (Chapter 4), I demonstrate the clinical relevance of brain-fingerprinting. I show that 

in Parkinson’s disease, rhythmic brain-fingerprints enable further insight into the 

pathophysiology of the disease while arrhythmic brain-fingerprints show greater within-

individual variability and challenge research on inter-individual differences. In the last chapter 

(Chapter 5), I elaborate on the possible genetic origins of brain-fingerprints by leveraging a twin-

study approach. The findings corroborate that monozygotic twins have strikingly similar 

neurophysiological brain-fingerprints compared to dizygotic twins. In addition, the most salient 
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neurophysiological features for differentiating between individuals covary with a ventromedial–

dorsolateral gradient of gene expression. This gene signature is enriched for biological processes 

related to ion transport, preferentially expressed in neurons, and becomes more pronounced 

throughout development. My findings demonstrate that inter-individual differences in brain 

activity, as measured by neurophysiological brain-fingerprints, are robust across the adult 

lifespan, relate to gene expression, and capture meaningful variations across population sub-

groups. I emphasize the significance of considering how inter-individual differences in brain 

activity diverge across populations. This dissertation informs future work on the biological origins 

of the self. 

 
MEG et moi-même: Comprendre la diversité interindividuelle de 

l'ac:vité cérébrale neurophysiologique 
 

La recherche neuroscienWfique vise à comprendre la nature biologique des traits et des 

comportements individuels. Le domaine a fait de grands progrès vers cet objecWf grâce à 

l'avancée des grands ensembles de données de neuro-imagerie et des nouveaux ouWls 

informaWques librement accessibles. Toutefois, à mesure que la taille des échanWllons en 

neurosciences augmente pour a`eindre l'échelle de la populaWon, il devient de plus en plus 

difficile de concilier les effets au niveau du groupe avec la variabilité interindividuelle. Des études 

récentes sur l'imagerie par résonance magnéWque foncWonnelle (IRMf) montrent que la 

connecWvité foncWonnelle à l'état de repos permet à la fois de disWnguer les individus et de 

prédire les traits individuels. Ces approches ont donné naissance à la noWon d'empreinte 

cérébrale, un ensemble de caractérisWques foncWonnelles de neuro-imagerie qui perme`ent de 

disWnguer les individus au sein d'une cohorte. Les fondements neurophysiologiques et la 

perWnence clinique de ces empreintes cérébrales demeurent inexplorés et sont au cœur de ma 

thèse. J'ai donc contribué à la clarificaWon des différences neurophysiologiques interindividuelles, 

tant dans la santé que dans la maladie, présentes dans la dynamique riche et complexe de la 

magnétoencéphalographie sans tâche (MEG). Dans une première étude (chapitre 2), je démontre 
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que les individus peuvent être solidement différenciés les uns des autres à l'aide de brefs 

enregistrements neurophysiologiques. Ce travail étend la dérivaWon des empreintes cérébrales à 

des mesures directes de l'acWvité cérébrale polyrythmique dans le cortex. Dans la deuxième 

expérience (chapitre 3), j'étudie comment les différences interindividuelles dans la 

neurophysiologie sans tâche évoluent au cours de la vie adulte. J'ai constaté que les adultes plus 

âgés peuvent être différenciés les uns des autres, mais les caractérisWques les plus marquantes 

de la différenciaWon des parWcipants divergent entre les jeunes et les plus âgés au long des axes 

anatomiques et neurochimiques. Dans la troisième étude (chapitre 4), je démontre la perWnence 

clinique des empreintes cérébrales. Je montre que dans le cas de la maladie de Parkinson, les 

empreintes cérébrales rythmiques perme`ent de mieux comprendre la physiopathologie de la 

maladie, tandis que les empreintes cérébrales arythmiques présentent une plus grande 

variabilité intra-individuelle et reme`ent en quesWon les recherches sur les différences 

interindividuelles. Dans le dernier chapitre (chapitre 5), je développe les origines généWques 

possibles des empreintes cérébrales en m'appuyant sur une étude de jumeaux. Les résultats 

corroborent le fait que les jumeaux monozygotes ont des empreintes cérébrales 

neurophysiologiques étonnamment similaires à celles des jumeaux dizygotes. En outre, les 

caractérisWques neurophysiologiques les plus marquantes pour différencier les individus 

covarient avec un gradient ventromédial-dorsolatéral d'expression génique. Ce`e signature 

généWque est enrichie pour les processus biologiques liés au transport des ions, s'exprime 

préférenWellement dans les neurones et s'accentue tout au long du développement. Les résultats 

de ma thèse démontrent que les différences interindividuelles dans l'acWvité cérébrale, mesurées 

par les empreintes cérébrales neurophysiologiques, sont robustes tout au long de la vie adulte, 

qu'elles sont liées à l'expression des gènes et qu'elles reflètent des variaWons significaWves entre 

les sous-groupes de la populaWon. J'insiste sur l'importance d'examiner comment les différences 

interindividuelles dans l'acWvité cérébrale divergent d'une populaWon à l'autre. Ce`e thèse 

inspirera les travaux futurs explorant les origines biologiques de la diversité comportementale 

entre les individus. 
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Chapter 1 

Introduc>on  
 
Every day, we are confronted with the diversity of human behaviour. The uniqueness of our 

personaliWes, cogniWve abiliWes, values, and beliefs are at the forefront of neuroscienWfic 

research exploring the biological nature of individual traits and behaviours (Costa et al., 2019; 

Dubois & Adolphs, 2016; Finn et al., 2015; APA Handbook of Personality and Social Psychology, 

Volume 4, 2015; Van Horn et al., 2008). With the increasing availability of large openly available 

neuroimaging datasets that approach the realm of populaWon-science (Niso et al., 2016a; Sudlow 

et al., 2015; Taylor et al., 2017; Van Essen et al., 2012), neuroscienWsts grapple with the 

considerable inter-individual variaWon of the brain. No two brains look alike—this diversity among 

individual brains has prompted neuroscienWsts to invesWgate how variability in brain acWvity 

reflects the uniqueness of individuals.  

 

Brain-behaviour relaWonships  
Historically, human neuroimaging and neurophysiology research has quanWfied group average 

differences in brain acWvity, such as contrasWng paWents and healthy controls. While this group-

level inference has advanced our understanding of how brain acWvity relates to behaviours and 

diseases, it neglects inter-individual variaWon.  

More recently, researchers have uWlized correlaWonal analyses to discover the 

neurological biomarkers of personality traits (Kennis et al., 2013; Lai et al., 2019), working 

memory (Richard Clark et al., 2004; Rosenberg, MarWnez, et al., 2020), and a`enWon (Rosenberg 

et al., 2017a; Rosenberg, Scheinost, et al., 2020). This approach referred to as brain-wide 
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associaWon studies (BWAS) (Bu`on et al., 2013; Marek et al., 2022; Spisak et al., 2023), allowed 

scienWsts to explore brain-behaviour relaWonships, generate novel hypotheses, and predict 

individual differences out of sample.  

The BWAS method links inter-individual variability of brain acWvity with variaWon in 

behavioural measures like cogniWve performance and traits. This is typically done either through 

linear correlaWons or machine learning models. However, this method has recently faced 

criWcism, parWcularly regarding its applicaWon in small sample sizes. Concerns about BWAS 

methods are heightened by the seemingly modest effect sizes of brain-behavior relaWonships, 

resulWng in limited reproducibility across studies and poor generalizaWon across populaWons 

(Bu`on et al., 2013; Greene et al., 2022; J. Li et al., 2022; Marek et al., 2022; Spisak et al., 2023).  

An example criWc of the BWAS approach reports that brain-behaviour relaWonships do not 

generalize across populaWons, bringing into quesWon whether these neural correlates truly reflect 

inter-individual variability in behaviour, or other covariates not accounted for in the BWAS 

method (Greene et al., 2022). Such covariates include clinical measures and sociodemographic 

factors, like the naWve language of parWcipants. Brain-behaviour model failure is observed within 

a subset of individuals and may reflect different cogniWve processes and strategies parWcipants 

take to perform a behavioural task (Greene et al., 2022).  In a verbal memory task, naWve English 

speakers’ performance may relate to arWculaWon rates while naWve Mandarin speakers’ 

performance relates to their increased phonological store (Greene et al., 2022; Ma`ys et al., 

2018). Different performance strategies on cogniWve tasks, like chunking in a working memory 

task—i.e., grouping sWmuli into a single unit for ease of memorizaWon—may explain parWcipant 

behavioural variance, and therefore contribute to the failure of brain-behaviour model 

generalizaWon across populaWons (Thalmann et al., 2019). 

The biases observed in brain-behavior relaWonships, as discussed above, are not unique 

to neuroscience and extend to various scienWfic fields (Buolamwini & Gebru, 2018; Obermeyer et 

al., 2019). As such, researchers emphasize cauWon in interpreWng brain-behavior predicWon 

models, as these models may not generalize to different populaWons and may even exhibit 

systemaWc biases against certain individuals (Greene et al., 2022; J. Li et al., 2022). 
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These findings underscore the complexiWes inherent in studying brain-behavior 

relaWonships and emphasize the need for researchers to carefully consider populaWon and 

clinical heterogeneity. Focusing on a single populaWon, like healthy young adults, does not 

necessarily provide researchers with a comprehensive model that may generalize to other 

populaWons, e.g., older adults. Model failure across populaWons challenges the interpretaWon of 

idenWfied brain-behaviour relaWonships. This is parWcularly relevant as data volumes increase in 

size and capture more diverse groups of individuals. To progress the field of brain-behaviour 

relaWonships forward, researchers need to consider data from diverse populaWons, with 

individuals of various ages and clinical challenges (e.g., different cogniWve deficits) (Ricard et al., 

2023).   

 
The brain-fingerprinWng method: a novel approach to study inter-individual differences  
Recent advancements in neuroscience highlighted the challenges and promises associated with 

inter-individual variability in brain funcWon. These findings demonstrate that individuals can be 

differenWated from a large cohort using their unique ‘brain-fingerprint’—a profile of brain acWvity 

that is characterisWc of a given individual (Finn et al., 2015a). The brain-fingerprinWng method 

proposes that an individual's brain phenotype is more similar (i.e., correlated) to themselves 

across mulWple instances of data collecWon than to any other unrelated individual (Amico & Goñi, 

2018a; Bari et al., 2019). Unlike BWAS methods which exclusively examine between-parWcipant 

variance, brain-fingerprinWng contrasts within- and between- parWcipant variability. 

Notably, the brain-fingerprinWng approach reported that brain acWvity characterisWc of 

individuals relates to individual differences in intelligence test performance (Finn et al., 2015a), 

working memory (Rosenberg, MarWnez, et al., 2020), and a`enWon (Rosenberg et al., 2017a; 

Rosenberg, Scheinost, et al., 2020).  

Convenience sampling and sampling bias, however, limit the generalizaWon of brain-

fingerprints to other populaWons. This research has exclusively examined inter-individual 

differences in healthy young adults (Finn et al., 2015a). While differenWaWng individuals from a 

homogenous populaWon is more challenging, the results obtained from a healthy young adult 

sample may not generalize to other populaWons. Both the accuracy of individual differenWaWon 

and the most salient features for parWcipant differenWaWon may depend on the populaWon 
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studied. Take for example healthy aging: Older adults show robust neurophysiological group-level 

differences in alpha oscillaWons (8-12 Hz) as well as arrhythmic brain acWvity (Andrews-Hanna et 

al., 2007; Damoiseaux et al., 2008; Scally et al., 2018; Voytek et al., 2015a; L. E. Wilson et al., 

2022). These populaWon-level differences in brain acWvity may impact which brain acWvity 

features are characterisWc of individuals—i.e., features that were useful for differenWaWng young 

adults may become less efficacious at disWnguishing older adults from one another. If this is the 

case, these findings would challenge the idea of a singular set of brain acWvity features that 

differenWate individuals across all populaWons, and would instead corroborate that individual 

differences in brain acWvity vary across populaWons complicaWng the interpretaWon of brain-

behaviour relaWonships.  

Another instance which may challenge individual differenWaWon is the robust 

neurophysiological alteraWons observed in neurological diseases. Various studies report several 

significant group-level differences in the brain acWvity of paWent populaWons (Boon et al., 2019; 

D. T. Jones et al., 2011; Stoffers et al., 2008a; Tinkhauser et al., 2017; Wiesman, Castanheira, et 

al., 2022; Wiesman, Donhauser, et al., 2023). Yet li`le is known about how disease may affect 

the so-called brain-fingerprint. Whether disease impacts the performance of brain-fingerprinWng 

methods and the most differenWable brain acWvity features remains an acWve topic of research. 

The quesWon of inter-individual differences is of parWcular importance for research on 

personalized medicine.   

 

The electrophysiological basis of brain-fingerprints remains unclear  

Beyond quesWons concerning how inter-individual differences generalize across populaWons, the 

electrophysiological and biological origins of brain-fingerprints remain unclear. Most published 

work on brain-fingerprints to date has focused on hemodynamic signals (Amico & Goñi, 2018a; 

Bari et al., 2019; Finn et al., 2015a; Miranda-Dominguez et al., 2014). Given the indirect 

relaWonship between the hemodynamic signal and neural brain signals (Brookes, Hale, et al., 

2011; Haufe et al., 2018; LogotheWs et al., 2001), the electrophysiological origins of  brain-

fingerprints remain to be explored.  
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Brain acWvity as measured by electrophysiology is composed of rich and complex signals. 

Spontaneous brain dynamics were long considered a nuisance and a by-product of neural noise 

(Başar, 1990; Donoghue et al., 2020a; Stein et al., 2005; Uddin, 2020). Recent experimental 

evidence, however, suggests that spontaneous electrophysiological brain signals measured 

during task-free condiWons express similar resWng-state brain networks as fMRI (Florin & Baillet, 

2015) and relate to conscious percepWon, sensory processing, and working memory 

(Bagherzadeh et al., 2020; Balestrieri & Busch, 2022; Iemi et al., 2019; Richard Clark et al., 2004; 

Samaha et al., 2020).  

Beyond the different origins of hemodynamic and electrophysiological signals, brain-

fingerprinWng has exclusively focused on measuring how brain-network derivaWves measured as 

the staWsWcal associaWons between signals from two brain regions are characterisWc of 

individuals—i.e., funcWonal connectomes (Amico & Goñi, 2018a; Bari et al., 2019; Finn et al., 

2015a; Miranda-Dominguez et al., 2014). Yet, there are several processing decisions and 

different derivaWves of the neurophysiological Wme series that yield a funcWonal connectome 

matrix (Cole et al., 2010; J. D. Power et al., 2014; Sadaghiani et al., 2022). This is parWcularly true 

in electrophysiology, where there is great variability in methods to derive funcWonal 

connectomes from EEG and MEG (Sadaghiani et al., 2022). Therefore, it is unclear whether 

simpler measures of local brain acWvity may equally differenWate individuals.  

ElectromagneWc brain acWvity is complex, characterized by slow and fast rhythms, and 

arrhythmic fluctuaWons (Baillet, 2017; Donoghue et al., 2020b; L. E. Wilson et al., 2022). Recent 

evidence proposes diverging interpretaWons of the rhythmic and arrhythmic components of brain 

acWvity, with the la`er reflecWng the local balance of excitatory/ inhibitory currents (Donoghue et 

al., 2020b; R. Gao et al., 2017). Further research is therefore needed to determine whether the 

enWre frequency spectrum of electrophysiological acWvity is characterisWc of individuals, or if 

unique brain acWvity is confined to specific rhythmic or arrhythmic components (Donoghue et al., 

2020b; R. Gao et al., 2017). Given the richness of the local electromagneWc brain signals, I 

anWcipate that individuals can be equally differenWated from simpler measures of the spaWal 

distribuWon of spectral power. 
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The scant research that has explored the electrophysiological origins of brain-fingerprints 

to date exclusively relied on electroencephalography (EEG) (EEG Fingerprints: Phase 

SynchronizaGon of EEG Signals as Biomarker for Subject IdenGficaGon | IEEE Journals & Magazine 

| IEEE Xplore, n.d.; Fraschini et al., 2015; Rocca et al., 2014). This research was restricted to scalp 

recordings and therefore provides li`le neuroanatomical insight. Moreover, 

electroencephalography recordings are oien contaminated by arWfacts of different natures 

including instrument noise, muscle contracWons, and eye and head movements. These arWfacts 

may be idiosyncraWc of individuals and bias brain-fingerprinWng. Together, this suggests that 

unique inter-individual differences in the fast dynamics of neurophysiology remain to be 

thoroughly explored. 

 

Research objecWves & original contribuWons of this dissertaWon 
In this thesis, I invesWgated inter-individual differences in fast neurophysiological brain acWvity 

using magnetoencephalography (MEG) and brain-fingerprinWng methodology. In this effort, I 

conducted several experiments and defined brain-fingerprints of individuals from diverse 

populaWons including healthy young adults, healthy older adults, and paWents with idiopathic 

Parkinson’s disease. I further explore the biological origins of electrophysiological brain-

fingerprints, using normaWve atlases of corWcal neurochemical systems and geneWc expression 

pa`erns. These findings are presented in the following four chapters: 

 

Chapter 2: Brief segments of neurophysiological ac@vity enable individual differen@a@on 

Research on inter-individual differences in brain acWvity has largely focused on hemodynamic 

measures of funcWonal connectomes. It remains unclear how such variaWons between individuals 

translate to the rich and complex dynamics of resWng-state electrophysiology. Which 

neurophysiological features are characterisWc of individuals? In my first experiment (Chapter 2), I 

explore whether simpler measures of the spaWal distribuWon of neurophysiological spectral signal 

power can differenWate individuals using brain acWvity recorded from magnetoencephalography 

(MEG). I demonstrate, leveraging the high temporal resoluWon of MEG signals, that brief 30-

second segments of brain acWvity can differenWate individuals with high accuracy. These inter-

individual differences in fast neurophysiological brain acWvity are robust to environmental and 
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physiological arWfacts, and can differenWate individuals with recordings taken weeks apart. 

Altogether, this study establishes the robustness of so-called electrophysiological brain-

fingerprints and elaborates on the relaWonship between inter-individual differences in 

electrophysiological brain acWvity and their relaWonship to demographics in healthy adults. 

 

Chapter 3: Neurophysiological brain-fingerprints evolve across the lifespan 

There are robust structural and funcWonal differences between the brains of young and older 

adults. Despite these differences, can we differenWate older adults from their brain-fingerprints, 

for example, with the same accuracy as young adults? In this chapter, I explore the stability of 

neurophysiological brain-fingerprints across the adult lifespan cross-secWonally. I demonstrate 

that electrophysiological brain-fingerprints relate to inter-individual differences in fluid 

intelligence across ages. In addiWon, I elaborate that while differenWaWon accuracy remains 

robust regardless of age, the most salient features to differenWate individuals differ between 

younger and older adults. The brains of older adults are best characterized by brain acWvity in 

regions that show the greatest age-related corWcal thinning. Together, these findings showcase 

that differenWable brain acWvity evolves throughout the adult lifespan and suggest the 

importance of considering divergence in differenWable brain acWvity when studying populaWons 

with varying ages and cogniWve abiliWes. 

 

Chapter 4: The neurophysiological brain-fingerprint of Parkinson’s disease 

Neurological diseases, like Parkinson’s disease (PD), are known to alter large-scale mulW-

frequency brain signalling. While these group-level differences between paWents and controls 

help neuroscienWsts understand the neural correlates of disease, li`le is known about how the 

disease may alter the uniqueness of neurophysiological acWvity. In my third experiment (Chapter 

4), I explore how PD alters the robustness of neurophysiological brain-fingerprints. I demonstrate 

that rhythmic brain-fingerprints differenWate between paWents and paWents from age-matched 

healthy with the same performance as between healthy controls. The Parkinson's brain-

fingerprint maps onto polyrhythmic acWvity in unimodal sensori-motor regions, decode disease 

staging, and coincides with brain regions rich in neurotransmi`er systems that are affected by 
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the disease pathophysiology. In contrast, arrhythmic brain acWvity is remarkably variable within 

PD paWents. Together, these findings corroborate the clinical uWlity of brain-fingerprinWng by 

delineaWng stable polyrhythmic features that features are both paWent-specific and relate to 

disease staging. We discuss how these rhythms may aid in the idenWficaWon and tesWng of 

therapeuWc neurosWmulaWon targets. 

 

Chapter 5: Neurophysiological brain-fingerprints are heritable 

Li`le is known about the microscale origins of inter-individual differences in electrophysiology. 

Prior research has suggested that brain-phenotypes are, in part, heritable and influenced by 

geneWcs. Researchers, however, have yet to determine the heritability of brain-fingerprints 

themselves. In my last experiment (Chapter 5), I clarified the heritability of inter-individual 

variability of resting-state neurophysiology.  Leveraging twin-study methodology, I demonstrate 

that monozygoWc twin pairs (MZ) —who share ~100% of their geneWcs—can be matched based 

on their sibling’s neurophysiological brain-phenotype. In line with the construal that brain-

fingerprints are heritable, we fail to match dizygoWc twins (DZ) who share only 50% of their 

genome. Salient features for parWcipant differenWaWon covary with a ventromedial–dorsolateral 

gradient of gene expression. This transcriptomic gradient is enriched for genes related to the 

neurochemical communicaWon between cells and is preferenWally expressed in neurons. The 

idenWfied geneWc signature, similarly, covaries with brain acWvaWons related to cogniWve task 

performance and becomes more pronounced across development. These findings, taken 

together, corroborate the geneWc origins of neurophysiological brain-fingerprints and pave the 

way for future research on the micro-scale origins of inter-individual differences in 

electrophysiology. 

 

Altogether, this dissertaWon will elucidate how fast neurophysiological brain acWvity differenWates 

individuals across several demographic, clinical, and geneWc landscapes. The results from these 

four experiments will clarify the biological origins of inter-individual differences and open new 

avenues for future research on brain-behaviour relaWonships using advanced machine learning 

techniques.  
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Chapter 2  
Brief segments of neurophysiological 
ac>vity enable individual differen>a>on 
 

Preface  
The manuscript in this chapter demonstrates for the first time how measures of the spatial 

distribution of neurophysiological spectral signal power differentiate individuals. I showcase that 

electrophysiological brain-fingerprints are robust to environmental and physiological artifacts. 

This manuscript establishes the robustness of spectral brain-fingerprints for future 

investigations.  

 

The manuscript was published as:  

da Silva Castanheira, J. *, Orozco Perez, H.D. *, Misic, B. et al. Brief segments of neurophysiological 
acWvity enable individual differenWaWon. Nat Commun 12, 5713 (2021). 
https://doi.org/10.1038/s41467-021-25895-8  
 
*These authors contributed equally: Jason da Silva Castanheira, Hector Domingo Orozco Perez 

 

Abstract 
Large, openly available datasets and current analyWc tools promise the emergence of populaWon 

neuroscience. The considerable diversity in personality traits and behaviour between individuals 

is reflected in the staWsWcal variability of neural data collected in such repositories. Recent 

studies with funcWonal magneWc resonance imaging (fMRI) have concluded that pa`erns of 

https://doi.org/10.1038/s41467-021-25895-8
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resWng-state funcWonal connecWvity can both successfully disWnguish individual parWcipants 

within a cohort and predict some individual traits, yielding the noWon of an individual’s neural 

fingerprint. Here, we aim to clarify the neurophysiological foundaWons of individual 

differenWaWon from features of the rich and complex dynamics of resWng-state brain acWvity 

using magnetoencephalography (MEG) in 158 parWcipants. We show that akin to fMRI 

approaches, neurophysiological funcWonal connectomes enable the differenWaWon of individuals, 

with rates similar to those seen with fMRI. We also show that individual differenWaWon is equally 

successful from simpler measures of the spaWal distribuWon of neuro- physiological spectral 

signal power. Our data further indicate that differenWaWon can be achieved from brain recordings 

as short as 30 seconds, and that it is robust over Wme: the neural fingerprint is present in 

recordings performed weeks aier their baseline reference data was collected. This work, thus, 

extends the noWon of a neural or brain fingerprint to fast and large-scale resWng-state 

electrophysiological dynamics. 

 

Introduc:on 
Understanding the biological nature of individual traits and behavior is an overarching objecWve 

of neuroscience research(Dubois & Adolphs, 2016; M. B. Miller & Van Horn, 2007; Van Horn et 

al., 2008; Yarkoni, 2015). The increasing availability of large, openly available datasets and 

advanced computaWonal tools propels the field toward this aim(Marcus et al., 2011; Niso et al., 

2016a; Poldrack & Gorgolewski, 2014). Yet, with bigger and deeper data volumes, 

neuroscienWsts are confronted with a paradox: while big-data neuroscience approaches the 

realm of populaWon neuroscience, we remain challenged by understanding how interindividual 

data variability echoes the singularity of the self(Dubois & Adolphs, 2016; Mars et al., 2018; Mišić 

& Sporns, 2016; Van Horn et al., 2008). 

This epistemological quesWon has become parWcularly vivid with recent research showing 

that individuals can be differenWated from a cohort via their respecWve neural fingerprints 

derived from structural magneWc resonance imaging (MRI)(Valizadeh et al., 2018; Wachinger et 

al., 2015), funcWonal MRI (fMRI)(Amico & Goñi, 2018a; Bari et al., 2019; Finn et al., 2015a; 

Kaufmann et al., 2017a; Miranda-Dominguez et al., 2014), electroencephalography 

(EEG)(Fraschini et al., 2015; Kong et al., 2023; Rocca et al., 2014), or funcWonal near-infrared 
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spectroscopy (fNIRS)(de Souza Rodrigues et al., 2019). Neural fingerprints are associated with 

individual differences in intelligence test performance, working memory, and a`enWon(Greene et 

al., 2018a; Rosenberg, Scheinost, et al., 2020; Yamashita et al., 2018; Yoo et al., 2018). Most 

published work so far is methodologically based on inter-individual similarity measures of 

funcWonal connecWvity—understood as staWsWcal dependencies between ongoing signals across 

brain regions in task-free awake condiWons(Bullmore & Sporns, 2012; Smith et al., 2013)—as 

defining features of neural fingerprints. Yet, the indirect coupling between hemodynamic and 

neural brain signaling interrogates the neurophysiological nature of brain fingerprints. 

In electrophysiology, ongoing brain dynamics at rest are rich and complex (Smith et al., 

2013) and have long been considered a nuisance, a by-product of neural noise(Başar, 1990; Stein 

et al., 2005; Uddin, 2020). Recent experimental evidence, spurred by systems neuroscience 

models, indicates that spontaneous brain acWvity captured using electrophysiological techniques 

expresses similar resWng-state connectomes as fMRI and influences conscious, sensory 

processes(Florin & Baillet, 2015; Iemi et al., 2019; Samaha et al., 2020). Ongoing 

neurophysiological acWvity varies considerably between individuals and across the lifespan. One 

instance is the inter-individual variability of prominent features of human brain 

neurophysiological acWvity, such as the alpha rhythm (8–12 Hz) peak frequency(Bodenmann et 

al., 2009; Haegens et al., 2014). Previous EEG fingerprinWng work was restricted to scalp data, 

and therefore, provided limited neuroanatomical insight(Fraschini et al., 2015; Kong et al., 2023; 

Rocca et al., 2014). Another disWncWve aspect of electrophysiology is the contaminaWon of 

recordings by arWfacts of different natures including environment and instrument noise, muscle 

contracWons, eye and head movements, which can be disWncWve of individuals and can bias 

fingerprinWng with non-neural signal features. Overall, the unique signature components of fast 

neurophysiological brain dynamics across individuals remain unchartered. 

In this work, we use resWng-state recordings of magnetoencephalography MEG (Baillet, 

2017) from a cohort of parWcipants to idenWfy neurophysiological features of individual 

differenWaWon. We both derive measures of funcWonal organizaWon (i.e., funcWonal connecWvity) 

inspired by fMRI neural fingerprinWng approaches, and spectral signal markers that are proper to 

the wider frequency spectrum of brain signaling accessible to neurophysiological data. Our data 
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exemplify that individual differenWaWon based on connectome features is akin to previous fMRI 

reports, and further demonstrate that we can equally differenWate individuals with simpler 

measures of the spaWal distribuWon of neurophysiological spectral signal power. In addiWon, 

individual differenWaWon is achieved with recordings as short as 30 seconds and is robust across 

recordings preformed weeks aier their baseline reference data was collected. Together, our work 

extends the noWon of a neural fingerprint to the fast and large-scale resWng-state dynamics of 

electrophysiology. 

 

Results 
We used MEG data from 158 parWcipants available from the Open MEG Archives OMEGA6. Data 

collected on mulWple days were available for a subset of these parWcipants (N = 47; mean 

duraWon between consecuWve sessions: 201.7 days; Fig. 1). The parWcipants were both healthy 

and paWent volunteers (ADHD and chronic pain) spanning in age from 18–73-years old (see 

Supplemental InformaWon). T1-weighted structural MRI volumes were available from OMEGA for 

all parWcipants and were used to produce source maps of resWng-state brain acWvity(Baillet et al., 

2001). We derived several neurophysiological signal features from MEG brain source Wme series 

summarized within the Desikan-Killiany atlas—68 regions of interest (ROIs) parcellaWng the enWre 

corWcal surface37. The MEG features comprised power-spectral-density esWmates (PSD) within 

each of the 68 ROIs37, and 68 × 68 funcWonal connectomes (FC) between these ROIs. The 

approach is illustrated in Fig. 1 and the FC and PSD methodological details are provided in 

“Methods”. 
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Chapter 2 Figure 1 Neural fingerprin@ng analysis pipeline and defini@on of differen@ability. 

a Schema@c of exemplar MEG data divided into datasets used in each of the specified 

differen@a@on challenges. (i) Within-session challenge: the session data was split in half to 

generate segments of equal dura@on; (ii) Between-sessions challenge: differen@a@on was 

performed using data recorded on two separate days; (iii) Between-session shortened 

challenge: data recorded on two different days were split into three 30 s segments. b Schema@c 

of the data analysis pipeline: source modeling was first performed before extrac@ng features 

from each region of the Desikan-Killiany atlas(Desikan et al., 2006a). These features were 

vectorized and subsequently used to fingerprint individuals, yielding a par@cipant correla@on 

matrix. c Features for the between-session challenge from an exemplar subject. Le_ panel 

depicts amplitude envelope correla@on (AEC) func@onal connec@vity matrices across two 

datasets; both matrices feature the Pearson correla@on coefficients between all 68 regions of 

the Desikan-Killiany atlas(Desikan et al., 2006a). Right panel plots the power spectrum density 

es@mates from two regions of the atlas, across two datasets. d Differen@ability was derived for 

each par@cipant as the z-score of their correla@on to themselves, rela@ve to the correla@on 

between themselves and the rest of the cohort. A par@cipant with a high correla@on to 

themselves and low correla@ons to others was qualified as highly differen@able. An individual 

highly correlated to both themselves and many others in the cohort was qualified as less 

differen@able. 
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ParWcipant differenWaWon was performed across pairs of MEG data segments taken from 

either the same (within-session differenWaWon) or a repeated session (between-session 

differenWaWon) using two disWnct datasets (Fig. 1a) and based either on FC or PSD features 

(referred as connectome and spectral fingerprinWng, respecWvely). The within-session challenge 

with longer data segments was considered to assess the baseline performances of the MEG 

fingerprinWng approaches proposed. The more challenging situaWons developed in the present 

report concern individual differenWaWon from shorter 30 s Wme segments within or between 

recording sessions. For each pair of parWcipants, the Pearson’s correlaWon coefficient between 

their respecWve features (i.e., FC or PSD) was the corresponding entry in the group correlaWon 

matrix (see Supplemental InformaWon). The fingerprinWng procedure for each individual 

proceeded via a lookup operaWon through the corresponding row of the correlaWon matrix; the 

index of the column featuring the largest correlaWon coefficient determined the predicted 

(anonymous) idenWty of the individual in the cohort. Thus, if a given individual’s data features 

from the first dataset were most correlated to the data features from their second dataset, the 

individual would be correctly differenWated. Note that taking the maximum along the rows or 

columns simply switches which dataset is used for deriving the differenWaWon features (e.g., 

differenWaWng individuals using dataset 1 from features derived from dataset 2; results for all 

possible combinaWons of datasets are reported in Supplemental InformaWon). The overall 

accuracy of the neural fingerprinWng procedure was computed as the proporWon of parWcipants 

correctly differenWated. We ran three types of differenWaWon challenges: within-session 

fingerprinWng consisted of the differenWaWon between 158 parWcipants (i.e., the datasets were 

from same-day recordings split in half); a between-session differenWaWon challenge for a subset 

of 47 parWcipants for whom the datasets were from two separate days; and a between-session 

differenWaWon using considerably shorter data segments (30 s) (Fig. 1a). We conducted the 

differenWaWon challenges using either broadband MEG data or band-limited versions within the 

typical frequency bands used in neurophysiology. We also derived a differenWability score for 

every parWcipant, which indicates the saliency of the differenWaWon of any given individual in the 

tested cohort (see “Methods”). 
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Within-session connectome and spectral data differen@ate individuals 

Within-session MEG connectome and spectral fingerprinWng achieved 94.9% and 96.2% 

parWcipant differenWaWon accuracy, respecWvely (Fig. 2). This outcome was robust to switching 

datasets (Supplemental InformaWon). While previous work(Amico & Goñi, 2018a) reported that 

data reducWon strategies improved fingerprinWng performances, this was not the case with our 

data. Data reducWon strategies only marginally improved individual differenWaWon, as explained 

in Supplemental InformaWon. 
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Chapter 2 Figure 2 Within-session differen@a@on is not related to recording ar@facts. 

a Differen@a@on accuracy of connectome and spectral fingerprin@ng based on broadband and 

narrowband brain signals. Horizontal gray bars indicate reference differen@a@on levels obtained 

from empty-room data recorded on the same days as par@cipants (see “Methods”). b 

Differen@ability scores were not related to typical confounds such as head mo@on, eye 
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movements, and heartbeats. Top row: using connectome fingerprin@ng; bofom row: spectral 

fingerprin@ng. Source data are provided as a Source Data file. 

 

MEG fingerprin@ng is robust over @me 

We tested whether parWcipants who underwent MEG sessions on separate days were 

differenWable from datasets collected weeks to months apart (with a range of 1–1029 days apart 

and an average of 201.7 days, SD = 210.1). We applied the above fingerprinWng procedures 

towards this between-session challenge on the subset of parWcipants concerned (N = 47). 

Connectome fingerprinWng decreased in performance compared to the differenWaWon accuracy 

scores obtained from the within-session challenge (89.4%). Performance of connectome 

fingerprinWng from narrowband signals also decreased, with the greatest robustness obtained 

from using signals in the beta and theta bands (Fig. 3 and Supplemental InformaWon). In contrast, 

spectral fingerprinWng was robust longitudinally, with differenWaWon accuracy scores of 97.9% 

(broadband) and >90% (narrowband) that were similar to those obtained in the within-session 

challenge (Fig. 3 and Supplemental InformaWon). DifferenWability scores were not correlated with 

the number of days between MEG sessions (connectome: r = 0.09, p = 0.5; spectral: r = 0.08, 

p = 0.65). 
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Chapter 2 Figure 3 Characteris@c features of connectome and spectral fingerprin@ng. 

a Differen@a@on accuracy for connectome and spectral between-session fingerprin@ng. 

Fingerprin@ng performances are similar to those from the within-session challenge. b Pearson 

correla@on analyses did not reveal an associa@on between differen@ability and the delay 

between session recordings (connectome fingerprin@ng: r = 0.09, p = 0.5; spectral 

fingerprin@ng: r = 0.08, p = 0.60). c Between-session-shortened differen@a@on accuracy using 

shorter 30 s data segments collected days apart (average: 201.7 days). Each data point 

represents one combina@on of datasets used for fingerprin@ng (see “Methods” for 

details). d Scafer plots of all fingerprin@ng challenges across frequency bands for source (brain) 

and sensor (scalp) level fingerprin@ng (Supplemental Informa@on details the results obtained 

for all sensor data fingerprin@ng challenges). Source data are provided as a Source Data file. 

 

We further challenged MEG individual differenWaWon between sessions days apart using 

shorter data segments. We extracted three 30 s segments from the between-session data on 

each day (Fig. 1a) and ran the same fingerprinWng procedures as above. DifferenWaWon 

performances from connectome fingerprinWng remained high across all 30 s segments tested 

(Fig. 3c) using broadband MEG signals (differenWaWon accuracy 83.8%). Performance of spectral 

fingerprinWng was decreased (differenWaWon accuracy: 61.6% Fig. 3c). We observed similar 

discrepancies in performance robustness between connectome and spectral fingerprinWng using 

narrowband signals (Fig. 3), especially in the delta, theta, and alpha bands. We report results 

https://www.nature.com/articles/s41467-021-25895-8#MOESM1
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obtained from using sensor data only and for the within-session shortened challenge in 

Supplemental InformaWon. 

 

Salient neurophysiological features for fingerprin@ng 

We idenWfied the features which were the most characterisWc of individuals for MEG 

fingerprinWng. We derived measures of intraclass correlaWon (ICC)(Amico & Goñi, 2018a) to 

quanWfy how much each feature, such as an edge of the FC connectome or the signal power in a 

frequency band from an anatomical parcel, contributed to fingerprinWng (see “Methods”). This 

metric was reported in previous brain fingerprinWng studies and captures the inter-rater 

reliability of each parWcipant as their own rater, to idenWfy the neurophysiological signal features 

that are the most consistent across individuals(Amico & Goñi, 2018a; Shrout & Fleiss, 1979a). We 

performed this analysis for both the broadband connectome and the band-specific spectral 

fingerprinWng within-session challenges. The data show that the dorsal a`enWon and visual 

networks were the most specific across individuals for connectome fingerprinWng, in all 

frequency bands (Fig. 4). Beta-band connecWvity of the limbic network was parWcularly disWncWve 

of individuals. For spectral fingerprinWng, theta, alpha, beta, and gamma bands discriminated 

individuals along midline, parietal, lateral temporal, and visual areas (Fig. 4b). These results are 

consistent with our narrowband analysis (see Fig. 2a), which highlights beta acWvity as the most 

informaWve in differenWaWng individuals. 
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Chapter 2 Figure 4 Characteris@c features of connectome and spectral fingerprin@ng. 

Intraclass correla@on (ICC) for connectome and spectral within-session fingerprin@ng. a ICC for 

connectome fingerprin@ng plofed for each tested frequency band, using network labels from 

Yeo et al.81. The most prominent networks for connectome fingerprin@ng were the Visual, 

Dorsal Afen@on, and Limbic networks. b ICC for spectral fingerprin@ng plofed for each tested 

frequency band and mapped using the Desikan-Killiany cor@cal parcella@on(Desikan et al., 

2006a). The most salient features were the theta, alpha, and gamma band signals expressed in 

midline structures and the beta band across the cortex. 
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Neurophysiological fingerprin@ng features are associated with demographics 

Beyond differenWaWng individuals in a cohort, we tested whether resWng-state neurophysiological 

features could also predict meaningful parWcipant traits, using an exploratory parWal-least-

squares (PLS) analysis (see “Methods”(McIntosh & Mišić, 2013)). Briefly, PLS explains the 

structure of the covariance between two observaWon matrices—here a demographic matrix and 

a neurophysiological signal matrix composed of ROI-specific connectome of spectral measures—

with latent components. PLS analysis of our data revealed three significant latent components, 

which were disWnct for connectome and spectral fingerprinWng (Supplemental InformaWon). The 

first latent component in connectome fingerprinWng was related to clinical populaWon (r = 0.2, 

95% CI [0.160, 0.3]) and handedness (r = 0.2, 95% CI [0.1, 0.3]). This demographic profile was 

associated with reduced beta-band funcWonal connecWvity over the frontal-parietal network (Fig. 

5). For spectral fingerprinWng, the first salient latent component was related to a younger age 

(r = −0.3, 95% CI [−0.1, −0.5]), female (r = 0.4, 95% CI [0.2, 0.5]) and clinical populaWon (r = 0.5, 95% 

CI [0.2, 0.5]). This demographic profile was associated with stronger expressions of broadband 

neurophysiological signal power in superior parietal regions and the pericalcarine gyrus 

bilaterally, and reduced neurophysiological signals in the isthmus cingulate (Fig. 5). 
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Chapter 2 Figure 5 Par@al Least-Squares analysis relates demographics to connectome and 
spectral features. 

(a) and (b) from le_ to right, depicts the design saliency paferns for the first latent variables 

and their associated neural-data bootstrap ra@os. Confidence Intervals (95% CI) were calculated 

through a bootstrapping procedure (n = 10,000), and as such may not necessarily be symmetric. 

Bootstrap ra@os computed for (a) connectome and (b) spectral features are plofed according to 

the res@ng-state networks labeled according to Yeo et al.81 and the Desikan-Killiany 

parcella@on(Desikan et al., 2006a), respec@vely: Default Mode Network (DMN), dorsal afen@on 

(DA), frontal-parietal (FP), limbic (L), somato-motor (SM), ventral afen@on (VA), and visual (VIS). 

Source data are provided as a Source Data file. 
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Discussion 
The recent leveraging of large, open fMRI datasets has brought empirical evidence that 

individuals may be differenWated within a cohort from their brain imaging funcWonal connecWvity, 

inspiring the metaphor of a neural fingerprint. Unlike hand fingerprints, their cerebral 

counterpart predicts task performance and a variety of traits(Finn et al., 2015a; Greene et al., 

2018a; Rosenberg, Scheinost, et al., 2020; Yamashita et al., 2018; Yoo et al., 2018). These 

intriguing findings require a be`er understanding of their neurophysiological foundaWons, which 

we sought to characterize from direct neural signals captured at a large scale with MEG. 

Our data show that individuals can be differenWated in a cohort of 158 unrelated 

parWcipants from their respecWve resWng-state connectomes and spectral profiles in a range of 

fast brain signals. MEG fingerprinWng was successful using data lengths (30 s) much shorter than 

those reported for fMRI fingerprinWng(Finn et al., 2015a; Noble et al., 2017). Brain 

electrophysiological signals are rich, complex, and convey expressions of large-scale neural 

dynamics channeled by individual structural anatomy and physiology(Cabral et al., 2017). Indeed, 

we also showed that MEG fingerprinWng is robust across Wme, making individuals potenWally 

differenWable from data collected days, months, or years apart. Lastly, we characterized whether 

individual differences in resWng-state neural dynamics are demographically meaningful through 

an exploratory PLS analysis. We showed that both resWng-state connectomes and spectra predict 

latent demographic components. Recent findings corroborate our results, demonstraWng 

individual differences between funcWonal connecWvity derived from resWng-state 

electrophysiology(Nentwich et al., 2020). Future work will be required to replicate and expand 

these findings in more samples of individuals. 

 

Connectome and spectral neurophysiological fingerprints 

Our results highlight two sets of brain-wide electrophysiological features that contributed to 

successful fingerprinWng: connectome and spectral measures across the neurophysiological 

frequency spectrum. Overall, connectome and spectral fingerprinWng with MEG performed 

equivalently to fMRI approaches, achieving overall differenWaWon rates above 90%, with robust 
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individual differenWaWon over Wme and against noise(Amico & Goñi, 2018a; Finn et al., 2015a; 

Horien et al., 2019). 

We found that for connectome fingerprinWng, the anatomical regions the most 

characterisWc of individuals differed between MEG and fMRI. While fMRI highlighted the default-

mode network and the fronto-parietal resWng-state networks, MEG connectome fingerprinWng 

emphasized funcWonal connecWvity within limbic and visual networks as contribuWng to 

individual specific neurophysiological signatures. In contrast, both MEG and fMRI fingerprinWng 

emphasize the importance of the dorsal a`enWon network(Finn et al., 2015a). These 

observaWons are not mutually exclusive, considering the different nature of brain signals 

captured by the respecWve modaliWes. One possible interpretaWon—requiring further 

invesWgaWon—is that the fast neurophysiological signals that contribute to differenWaWon with 

MEG have hemodynamic counterparts that are not as salient in fMRI as the fingerprinWng 

networks reported so far. Nevertheless, our data indicate that neurophysiological signals in the 

beta band contribute to the highest differenWaWon accuracy amongst all other typical bands. This 

finding is compaWble with previous work reporWng that correlated amplitude changes of MEG 

brain signals are related to the microstructure of white ma`er tracts and reveal, with the same 

amplitude envelope correlaWon method as used here, MEG resWng-state brain networks that 

align with fMRI’s(Brookes, Woolrich, et al., 2011; Hunt et al., 2016). Beta-band acWvity also 

emerges from recent literature as a signalling vehicle of re-afferent “top-down” communicaWons 

in brain circuits(Michalareas et al., 2016; Morillon & Baillet, 2017). One can therefore speculate 

that beta-band signals would convey electrophysiological representaWons of internal cogniWve 

models that are by essence inWmately specific of each individual(Baillet, 2017). 

Such brain signal amplitude signatures are further emphasized by the ability of simple 

spectral brain maps to enable MEG fingerprinWng. Within- and between-session spectral 

fingerprinWng were achieved with remarkable accuracy (>90%) with broadband MEG brain 

signals or restricted to the typical bands of electrophysiology. Spectral differenWaWon based on 

signals from the faster bands (gamma and high-gamma) was overall the most robust 

longitudinally and against using shorter data segments. This observaWon is consistent with the 

width of (high) gamma frequency bands spanning broader ranges (here between 30–50 Hz and 
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50–150 Hz) than slower bands such as delta (1–4 Hz), theta (4–8 Hz) and alpha (8–12 Hz). The 

spectral esWmates averaged across the broader (high) gamma bands were, therefore, the most 

robust against using shorter data segments. The reduced number of sliding Wme windows 

available over shorter data duraWons increased the variance of the summary staWsWcs extracted 

to derive the spectral fingerprints from the signals defined over narrower bands. The higher 

frequency bands were less affected because the larger number of frequency bins involved in the 

extracWon of their summary power staWsWcs tended to compensate the higher empirical variance 

of spectral esWmates from a lesser number of observaWons over Wme. Connectome fingerprinWng 

was more immune against using shorter data duraWons. The underlying approach indeed did not 

require spectral transformaWons but resorted to a bank of narrowband filters applied over the 

original duraWon of MEG recordings before the resulWng filtered signals were segmented in 

shorter epochs for the fingerprinWng challenges. The consequence is that the number of data 

points used for all narrowband signals was idenWcal across all frequency bands, yielding 

moderate variability in differenWaWon performances compared to those obtained with the 

spectral approach. Another point of robustness for connectome fingerprinWng is that connecWvity 

weights between network nodes may fluctuate very slowly over Wme in task-free brain acWvity: 

Florin and Baillet(Florin & Baillet, 2015) reported fluctuaWon rates of 0.01 Hz in MEG, indicaWng 

typical Wme cycles of 100 s—a duraWon substanWally longer than the 30 s shortest Wme window 

used here. Over longer periods of Wme though, such as in the between-session challenge, 

spectral fingerprinWng outperformed its connectome counterpart. We note a slight increase of 

spectral differenWaWon accuracy in the between-session challenge (e.g., +1.6% for broadband 

fingerprinWng) compared to within-session, which was a staWsWcal fluctuaWon due to using a 

smaller sample of parWcipants. 

On average across all source fingerprinWng challenges reported herein, and despite 

successful fingerprinWng across lower frequency bands (delta 54.4%, theta 62,3%, alpha 65.5%), 

performances were markedly be`er using high-frequency signal components (beta 82.0%; 

gamma 82.5%; high gamma 77.9%). Gamma and faster acWvity have long been associated with 

concurrent and colocalized hemodynamic fluctuaWons(Haufe et al., 2018; LogotheWs et al., 2001). 

Because they may be seen as dual manifestaWons of BOLD signaling used in fMRI fingerprinWng, 
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this may explain why these signals contributed robustly to MEG brain fingerprinWng in our data. 

However, gamma-band and faster brain signals are on average weaker in amplitude and therefore 

may be masked by contaminaWon from arWfacts and noise(No`age & Horder, 2015; Whitham et 

al., 2007; Yuval-Greenberg et al., 2008). The preprocessing applied to our data a`enuated such 

nuisance to a point where individuals were not differenWable from typical sources of signal 

contaminaWon such as individual head moWon behavior. 

Although a rhythm of prominent amplitude in humans during rest, alpha-band acWvity (8–

12 Hz) was not parWcularly specific to differenWate individuals in the cohort. In that respect, our 

data is aligned with previous MEG works on resWng-state connectomes extracted from 

neurophysiological MEG signals, which did not report on a salient role of alpha acWvity in driving 

inter-regional connecWvity(Brookes, Woolrich, et al., 2011; Florin & Baillet, 2015). We argue that 

the spaWal topography of alpha resWng acWvity may be relaWvely stereotypical across individuals, 

involving thalamo-corWcal loops that project focally to the parieto-occipital juncWon, with limited 

variability across individuals(Niso et al., 2016a). In task, alpha acWvity has been related to 

a`enWon orienWng, alertness and anWcipaWon, and the registraWon of (mulWmodal) sensory 

informaWon, thereby reflecWng transient mental states(Bagherzadeh et al., 2020; Clayton et al., 

2018; Foster & Awh, 2019; Lennert et al., 2021; Samaha et al., 2020) rather than individual traits. 

The data also indicates that MEG fingerprinWng is robust against typical recording arWfacts 

that may be idiosyncraWc of individuals and therefore, could have confounded fingerprinWng. 

Session environmental condiWons captured by empty-room MEG recordings were not sufficient 

to differenWate individuals within or between sessions. The parWcipant’s anatomical and head-

posiWon informaWon embedded in their respecWve MEG source imaging kernels were also not 

sufficient to differenWate individuals. Note that head posiWon changed between sessions. Further 

studies are required to clarify how these results may vary depending on the type of MEG source 

modeling adopted. We anWcipate li`le influence of the type of source model used though, based 

on evidence that beamforming kernels are mathemaWcally equivalently to other major classes of 

linear source esWmaWon kernels, such as weighted minimum-norm esWmators(Mosher et al., 

2003). Future work should corroborate these results with regards to fingerprinWng. The choice of 

connecWvity measure to derive electrophysiological connectomes may also influence 
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fingerprinWng(Sareen et al., 2021a). We look forward to current progress in electrophysiological 

brain connectomics to put forward measures of network connecWvity informed by mechanisWc 

principles and emerging as a standard metrics in the field to confirm and expand present 

fingerprinWng results(Sadaghiani et al., 2022). 

While our present data show robust longitudinal fingerprinWng performances, future 

work involving more parWcipants with mulWple MEG visits is required to both replicate these 

observaWons and invesWgate whether individual deviaWons from baseline fingerprints could be 

early signals of asymptomaWc neuropathophysiology(Baillet, 2017). We hope the remarkable 

ability to fingerprint individuals from the present electrophysiological features serves as a 

stepping stone for future invesWgaWon, which may include mulWmodal noninvasive assessments 

based on MEG, combined with, e.g., fMRI and/or EEG. 

 

Neural fingerprints of individual traits 

Our data suggest that individual differences in resWng-state neurophysiological funcWonal 

connecWvity and spectral power relate to latent demographic clusters. These observaWons are in 

line with previous fMRI work that showed that connectomes are predicWve of individual 

differences in a`enWon, working memory, and intelligence test performance. For instance, 

connecWvity pa`erns between the default mode and the dorsal a`enWon networks predict 

a`enWonal behavior during the task and self-reported mind wandering(Rosenberg et al., 2016; 

Rosenberg, Scheinost, et al., 2020)(see(Rosenberg et al., 2017a) for review). Overall, a possible 

conceptual framework is that task-free neural dynamics are the signatures of an individual 

scaffold of brain funcWons that is predicWve of task behavior. This view is also that of the 

spontaneous trait reacWvaWon hypothesis wherein the organizaWon of the human cortex at rest 

(manifested e.g., by funcWonal connecWvity) is a window into the self’s unique traits and 

abiliWes(Harmelech & Malach, 2013). Early evidence indeed suggests that funcWonal connecWvity 

and brain acWvity are associated with personality traits and even inter-personal closeness in 

social networks(Cai et al., 2020; Parkinson et al., 2018). 
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Yet, the mechanisWc implementaWon of these intriguing observaWons remains elusive. 

Inter-individual variability in the distribuWon of synapWc weights across the cerebrum, shaped 

through lifeWme experiences according to Hebbian principles, may account—at least in part—for 

connectome fingerprinWng(Harmelech & Malach, 2013). The heritability of funcWonal 

connecWvity has also been discussed, especially for a variety of brain networks (e.g., dorsal and 

ventral a`enWon network and the default mode network)(Glahn et al., 2010; Korgaonkar et al., 

2014; Miranda-Dominguez et al., 2018). Heritability of brain spectral characterisWcs is also 

acWvely discussed(Hodgkinson et al., 2010; Leppäaho et al., 2019; Salmela et al., 2016). This 

emerging literature and the empirical evidence of brain fingerprinWng certainly moWvate more 

research on new, fascinaWng quesWons about the biological nature of the self. 

 

Sampling popula@on diversity for personalized interven@ons 

Robust individual signatures of brain acWvity may be transformaWve to neurophysiological 

phenotyping and populaWon neuroscience. With the increasing availability of mulW-omic data 

repositories, there is a research opportunity to span the diversity of staWsWcal normaWve 

characterisWcs of brain fingerprints across the populaWon in relaWon to behavior, environmental, 

and clinical variables(Baillet, 2017; Dubois & Adolphs, 2016; Van Horn et al., 2008). Our study 

highlights the uWlity of datasets of individuals who have been scanned on mulWple occasions to 

capture and characterize interindividual variability as meaningful informaWon. Ideally, large 

databanks of individual variants sampled across mulWple dimensions of socio-economic, age, and 

geographic factors enable normaWve modeling approaches to establish the risk traits of 

developing syndromes of, e.g., early cogniWve decline, neurodegeneraWon, or mental illness. 

Previous work has shown that mental disorders may affect the stability of individual fingerprints 

over Wme and therefore points at possible translaWonal applicaWons of the approach(Kaufmann 

et al., 2017a, 2018a). We also foresee that changes over Wme or lack thereof of a person’s brain 

fingerprint may also consWtute a new class of non-invasive markers of responses to neurological 

and other treatment in a variety of chronic, neurodegeneraWve, or acute (e.g., stroke) condiWons. 

Brain fingerprints derived from short, task-free sessions may play a leading role to realize this 

vision in pracWce. 
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Brain fingerprinWng may also contribute to future endeavors in establishing how 

oscillatory dynamics at rest support cogniWve funcWons across the lifespan. MEG brain 

fingerprinWng presents several potenWal advantages in terms of safety, shorter scan duraWon, and 

the immediate proximity of a care person during data collecWon, especially for special 

populaWons. 

The methodological approaches proposed herein can, in principle, transfer to EEG 

fingerprinWng(Fraschini et al., 2015; Kong et al., 2023; Rocca et al., 2014) which would be more 

readily available in clinics. Whether results would be as robust with EEG as MEG remains to be 

demonstrated. Indeed, EEG source mapping is more prone to contaminaWon from muscle 

arWfacts and is more sensiWve to approximaWons in the biophysical modeling of head Wssues, 

which may compromise further fingerprinWng capabiliWes(Baillet, 2017). 

In sum, our study extends the concept of neural or brain fingerprint to fast and large-scale 

resWng-state electrophysiological dynamics, which encapsulate meaningful individual differences 

in both funcWonal connecWvity and neuroanatomical maps of power spectrum characterisWcs. 

We are hopeful that the present contribuWon paves the way to replicaWon and extension using 

larger open datasets. Many fascinaWng outstanding quesWons remain about the biological nature 

of inter-individual variability expressed via neural oscillaWons and brain network dynamics, and 

more specifically how these differences associate with behavior and diseases natural history. The 

research ahead is for future populaWon neuroscience studies. 

 

Methods  
The Open MEG Archives (OMEGA). We used data from the Open MEG Archives (OMEGA(Niso et 

al., 2016a)) consisWng of resWng-state MEG recordings acquired using the same MEG system 

(275 channels whole-head CTF; Port Coquitlam, BriWsh Columbia, Canada). The sampling rate 

was 2400 Hz, with an anWaliasing filter applied at 600 Hz cut-off, and built-in third-order spaWal 

gradient noise cancellaWon (see ref.(Niso et al., 2016a) for details on data acquisiWon). 

 

We analyzed MEG resWng-state data from 158 unrelated OMEG parWcipants (77 females, 

31.9 ± 14.7 years old). Recordings were ~5-min long. Supplementary Table 1 provides details on 
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scanning procedures and Supplementary Table 2 on demographics. A subset of these individuals 

(N = 47) had recordings over mulWple visits (different days) and were used in the between-session 

fingerprinWng challenge. The OMEGA data management protocol was approved by the research 

ethics board of the Montreal Neurological InsWtute. We followed the ethical procedure of our 

local ethics board (the Montreal Neurological InsWtute). 

 

MEG data preprocessing and feature extracWon.MEG data were preprocessed using 

Brainstorm(Tadel et al., 2011); version Oct-12-2018 in MATLAB 2017b (Mathworks, Inc., 

Massachuse`s, USA) following good-pracWce guidelines(Gross et al., 2013). Unless specified, all 

steps below were performed using the Brainstorm toolkit, with default parameters. Line noise 

arWfact (60 Hz) along with 10 of its harmonics were removed using a notch filter bank. Slow-wave 

and DC-offset arWfacts were removed using a high-pass FIR filter with a 0.3-Hz cut-off. We derived 

Signal-Space ProjecWons (SSPs) to remove cardiac and ocular arWfacts. We used electro-

cardiogram and -oculogram recordings to define signal projectors around idenWfied arWfact 

occurrences. We also applied SSPs to a`enuate low-frequency (1–7 Hz) and high-frequency noisy 

components (40–400 Hz) due to saccades and muscle acWvity, respecWvely. Bandpass filtered 

duplicates of the cleaned data were produced for each frequency band of interest (delta: 1–4 Hz, 

theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13–30 Hz, gamma: 30–50 Hz, and high gamma: 50–150 Hz). 

DisWnct brain source models were then derived for all narrowband versions of the MEG sensor 

data. 

Each individual T1-weighted MRI data were automaWcally segmented and labeled with 

Freesurfer(Fischl, 2012). CoregistraWon with MEG sensor locaWons was derived using dozens of 

digiWzed head points collected at each MEG session. We produced MEG forward head models for 

each parWcipant using the overlapping spheres approach, and corWcal source models with 

linearly-constrained minimum-variance (LCMV) beamforming, all using Brainstorm with default 

parameters (2016 version for source esWmaWon processes). We performed data covariance 

regularizaWon. To reduce the effect of variable source depth, the esWmated source variance was 

normalized by the noise covariance matrix. Elementary MEG source orientaWons were 

constrained normal to the surface at 15,000 locaWons of the cortex. Noise staWsWcs for source 
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modeling were esWmated from two-minute empty-room recordings collected as close as possible 

in Wme to each parWcipant’s MEG session. Source Wmeseries were clustered into 68 corWcal ROIs 

defined from the Desikan-Killiany atlas(Desikan et al., 2006a) and dimension-reduced via the first 

principal component of all signals within each ROI. 

Connectome and spectral fingerprinWng features were computed from ROI source 

Wmeseries. Individual connectomes were derived in all frequency bands from the amplitude 

envelope correlaWon (AEC) approach(Bruns et al., 2000). ROI Wmeseries were Hilbert transformed 

and all possible pairs of resulWng amplitude envelopes were used to derive the corresponding 

Pearson correlaWon coefficients, yielding a 68 × 68 symmetric connectome array. We used Welch’s 

method to derive power spectrum density (PSD) esWmates for each ROI(Welch, 1967), using Wme 

windows of 2 s with 50% overlap sled over all ROI Wmeseries and averaged across all PSDs within 

each ROI. The resulWng frequency range of PSDs was 0–150 Hz, with a frequency resoluWon of 

0.5 Hz. The connectome and spectral features were then exported to Python (3.7.6) for 

subsequent fingerprinWng analyses. 

 

FingerprinWng and differenWability. We used a fingerprinWng approach directly adapted from 

fMRI connectome fingerprinWng methods(Amico & Goñi, 2018a; Finn et al., 2015a) which relies 

on correlaWonal scoring of individuals between datasets. A given probe parWcipant is 

differenWated from a cohort by compuWng all Pearson correlaWon coefficients between the 

spectral or connectome features of said probe at one Wmepoint (e.g., dataset 1) and the enWre 

cohort at a different Wmepoint (e.g., dataset 2). The entry presenWng the highest correlaWon to 

the probe determined the probe’s esWmated idenWty, i.e., idenWfied entry in the cohort. This 

approach was applied between all pairs of parWcipants in the cohort, yielding an asymmetric 

correlaWon matrix spanning the cohort. We report scores of differenWaWon accuracy as the raWo 

between the number individuals correctly differenWated with the described procedure and the 

total number of individuals in the cohort. DifferenWaWon accuracy scores are obtained from 

fingerprinWng challenges from dataset 1 to dataset 2 and vice-versa, within- and between-

sessions. Figure 1 details the definiWon of the dataset labels used, and Supplemental InformaWon 

contains the results from across all combinaWons of datasets/sessions. 
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Amico and Goñi(Amico & Goñi, 2018a) proposed an idenWfiability score to quanWfy, for a 

given parWcipant, the reliability of its differenWaWon from others in the cohort. Here, we extend 

this noWon with the introducWon of a differenWability measure, Dself. Let A be the correlaWon 

matrix spanning the cohort (square, asymmetric) between dataset 1 and dataset 2, and N be the 

number of parWcipants to differenWate. We define Dself as the z-score of parWcipant Pi’s 

correlaWon to themselves between dataset 1 and dataset 2, with respect to Pi’s correlaWon to all 

other individuals in the cohort, noted: Dself (i) = (Corrii – μij)/σij, where Corrii is the Pi’s correlaWon 

between dataset 1 and dataset 2, μij is the mean correlaWon between parWcipant Pi in dataset 1 

and all other individuals in dataset 2 (i.e., the mean along the ith row of matrix A), and σi is the 

empirical standard deviaWon of inter-individual features correlaWons. Thus, if a parWcipant is 

easily differenWable, its differenWability increases; whereas small differenWability scores indicate a 

parWcipant that is parWcularly difficult to differenWate from the rest of the cohort. 

 

Recording arWfacts and differenWability. To invesWgate the effects of recording parameters and 

arWfacts on fingerprinWng, we related each individual’s differenWability to several possible 

confounds. The duraWon of each scan was compared to differenWability to verify that longer 

recordings available from a subset of individuals did not make them easier to differenWate. We 

also correlated the root mean square (RMS) of signals that measured ocular, cardiac, and head 

movement arWfacts over the duraWon of the enWre recording to parWcipants’ differenWability 

score. For cardiac arWfacts for instance, we derived the RMS of ECG recordings; for ocular 

arWfacts we used the HEOG and VEOG electrode recordings; and for moWon arWfacts we 

extracted the RMS of all three head coil signals that measured 3-D head movements during MEG 

recordings. These derivaWons were conducted for both the connectome and spectral broadband 

within-session fingerprinWng challenge. 

 

FingerprinWng across frequency bands. We replicated the above fingerprinWng approach using 

data restricted to each frequency band of interest (delta 1–4 Hz, theta 4–8 Hz, alpha 8–13 Hz, beta 

13–30 Hz, gamma 30–50 Hz, and high gamma 50–150 Hz). We report the differenWaWon accuracy 

obtained from each narrowband signal in both the spectral and connectome fingerprinWng 
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challenges in Figs. 2 and 3, for the within- and between-session fingerprinWng challenges 

respecWvely. 

We also performed fingerprinWng tests based on sensor data only. We used the same 

connectome and spectral approaches as the MEG source maps, considering the Wme series of 

each of the 275 MEG channels instead of the 68 ROI Wme series derived from the brain map 

parcels. We report the differenWaWon performances from both the sensor and source analyses in 

Fig. 3 and in Supplemental InformaWon. 

 

Between-session and shortened fingerprinWng challenges. We verified the robustness of MEG 

fingerprinWng with respect to (1) the ability to differenWate parWcipants over Wme and (2) 

reduced data duraWons. We subdivided parWcipants into three addiWonal challenges: the within-

session-shortened, between-session, and between-session-shortened challenge. First, we used 

the parWcipant data described in the within-session analysis and extracted connectome and 

spectral fingerprinWng features over three 30-second non-overlapping Wme segments. This 

duraWon was based on the length of the shortest recording in the data sample (Fig. 1aii). We 

applied the same fingerprinWng procedure as described in FingerprinWng and DifferenWability 

across all possible combinaWons of the three 30 s datasets. Second, we assessed the stability of 

the fingerprinWng outcomes using a subset of parWcipants with consecuWve MEG sessions 

separated by several days (N = 47; separated on average by 201.7 days, see Supplemental 

InformaWon for details). Again, we applied the same fingerprinWng procedure as described in 

FingerprinWng and DifferenWability for this between-session challenge. Lastly, we applied the 

same shortened analysis—described above—to the subset of individuals with mulWple scans (i.e., 

the between-sessions data). We report all possible combinaWons of datasets (i.e., three 30 s 

segments from day 1 and three 30 s segments from day 2; see Fig. 1a for example) in Fig. 3. 

 

Empty-room fingerprinWng. We tested whether environment and instrument noise daily 

condiWons would bias individual differenWaWon using empty-room recordings collected from each 

MEG session. The empty-room data was processed idenWcally to the parWcipants data, using the 

same individual imaging kernels, and were used to differenWate parWcipants. We ran all possible 
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combinaWons of empty-room vs. parWcipants datasets (e.g., empty-room 1 vs. parWcipant dataset 

1, empty-room 2 vs. parWcipant dataset 1, etc.) and computed the sample mean of the 

differenWaWon accuracies across all dataset combinaWons. The differenWaWon accuracies obtained 

represent esWmates of baseline reference performances that can be compared to each form of 

fingerprinWng based on actual parWcipant data (i.e., connectome or spectral, broadband or band-

specific; see Fig. 2 and Supplemental InformaWon). In a similar fashion, we also used sensor-level 

empty-room recordings of each parWcipant for fingerprinWng—a`empWng to differenWate 

individuals’ recordings from their empty-room features. The results of this analysis are reported 

in the Supplemental InformaWon. 

 

Most characterisWc features for fingerprinWng. We quanWfied the contribuWon of each feature 

(i.e., edges in the connecWvity matrix or a frequency band in an anatomical parcel) towards 

differenWaWng individuals using intraclass correlaWons (ICC). ICC is commonly used to measure 

the agreement between two observers (e.g., raWngs vs. scores). The stronger the agreement, the 

higher the ICC(Amico & Goñi, 2018a; Shrout & Fleiss, 1979a). ICC derives a random effects model 

whereby each item is rated by different raters from a pool of potenWal raters. We selected this 

measure to capture the inter-rater reliability of each parWcipant as their own rater to idenWfy 

which edges (e.g., connecWons in FC) are the most consistent (i.e., which features of a parWcipant 

Pi in dataset 1 are most like dataset 2). Here, the higher the ICC, the more consistent a given 

feature was within individuals. In addiWon, we computed two other measures of edgewise 

contribuWon proposed by Finn and colleagues14: group consistency and differenWal power 

(Supplemental InformaWon). We applied all measures (i.e., ICC, group consistency, and differenWal 

power) in the context of the broadband within-session fingerprinWng challenge. The source maps 

shown in Figs. 4, 5 and Supplemental InformaWon were generated using R (V 3.6.3(R Core Team, 

2022); with the ggseg package(Mowinckel & Vidal-Piñeiro, 2022)). 

 

ParWal Least-Squares: MEG features of parWcipant demographics. We conducted a ParWal 

Least-Squares (PLS) analysis with the Rotman-Baycrest PLS toolbox(McIntosh & Lobaugh, 2004) in 

MATLAB 2017b (Mathworks, Inc., Massachuse`s, USA). PLS is a mulWvariate staWsWcal method 



 45 

that relates two matrices of variables (e.g., neural acWvity and parWcipant demographics) by 

esWmaWng a weighted linear combinaWon of variables from both data matrices to maximize their 

covariance. The associated weights can be interpreted neural pa`erns (e.g., funcWonal 

connecWons) and their associated demographic profiles. PLS used singular value decomposiWons 

of the z-scored neural acWvity-demographics covariance matrix. This decomposiWon yielded 

orthogonal latent variables (LV) associated to a pa`ern of neural acWvity (i.e., funcWonal 

connecWvity or spectral power) and demographics. To assess the significance of these 

mulWvariate pa`erns, we computed permutaWon tests (10,000 permutaWons). Each permutaWon 

shuffled the order of the observaWons (i.e., the rows) of the demographic data matrix before 

running PLS on the resulWng surrogate data under the null hypothesis that there was no 

relaWonship between the demographic and neural data. A p-value for the LVs was computed as 

the proporWon of Wmes the permuted singular values exceeded that of the original data. We 

explored the first significant LV from the broadband connectome and spectral fingerprinWng 

features. We also assessed the contribuWon of each variable in the demographics and neural 

acWvity matrices by bootstrapping observaWons with replacement (10,000 bootstraps). We 

computed 95% confidence intervals for the demographic weights and bootstrap raWos for the 

neural weights. The bootstrap raWo was computed as the raWo between each variable’s weight 

and the bootstrap-esWmated standard error. 
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Chapter 3  
 

Inter-individual differences in 
neurophysiology vary with increasing age 
 

Preface  
In the previous chapter, I demonstrated in a cohort of mostly young adults that patterns of 

electrophysiological brain activity are unique to individuals. To date, there has been limited 

investigation into how aging may influence these so-called spectral brain-fingerprints. Aging is 

associated with significant neurobiological changes in both brain structure and function and 

therefore the average brains of young and older adults are vastly different. Although I found 

little evidence that participant differentiability scales with age, the previous participant sample 

was imbalanced (i.e., has fewer older adults than young adults), and is ill-equipped to 

comprehensively address such questions. In this chapter, I investigated how characteristic brain 

activity varies across the adult lifespan. I established that spectral brain-fingerprints enabled 

individual differentiation with >90% accuracy across all ages. Yet, aging is associated with a shift 

in the most salient brain regions for participant differentiation. This manuscript therefore argues 

for the robustness of spectral brain-fingerprints in older adults. 

 

The manuscript is being prepared for submission as:  

da Silva Castanheira, J., Wiesman, A., et al. Inter-individual differences in neurophysiology vary 
with increasing age. (2023).  
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Abstract 
Aging is associated with significant neurobiological changes in both brain structure and funcWon, 

resulWng in substanWal differences between the brains of young and older adults, on average. 

Recent research in young adults has demonstrated disWnct electrophysiological brain acWvity 

pa`erns that are unique to individuals and can predict behaviour. However, there has been 

limited invesWgaWon into how aging may influence inter-individual variaWons in 

neurophysiological acWvity. For example, brain acWvity features that best differenWate between 

young adults may not generalize to older adults. To address this knowledge gap, we characterized 

how inter-individual differences in brain acWvity evolve across the adult lifespan in a cross-

secWonal cohort. We used magnetoencephalographic imaging to derive the brain-fingerprints of 

606 individuals between 18 and 89 years old. These brain-fingerprints enabled individual 

differenWaWon with >90% accuracy across all ages. We found that the most differenWaWng 

electrophysiological features changed with age along a dorsal-to-ventral gradient: Older adults 

were be`er differenWated from neurophysiological acWvity in superior unimodal corWces, and 

younger adults from inferior transmodal regions. The brain-fingerprint of older adults maps to 

regions most affected by corWcal thinning and neurochemical systems known to change with age. 

Our study showcases the robustness of neurophysiological individual differenWaWon throughout 

the adult lifespan and emphasizes the significance of considering how inter-individual differences 

in brain acWvity may evolve across populaWons—parWcularly when studying populaWons of 

varying ages and cogniWve abiliWes. 

Keywords:  Aging, older adults, neural oscillaWons, spectral parametrizaWon, individual 
differences, brain-behaviour relaWonship, magnetoencephalography, brain fingerprinWng. 

Lay summary: 
Aging brain is accompanied by substanWal changes in both the brain’s funcWon and structure. 

These changes include the thinning of the outer layer of the brain (i.e., the cerebral cortex) and 

the slowing of brain acWvity. This line of research, however, has largely focused on average 

changes across an enWre age-group. In contrast, recent findings support the idea that brain 

acWvity is characterisWc of individuals. The authors, therefore, sought to invesWgate how person-

specific brain acWvity changes throughout healthy aging. To do so, the authors used a novel 
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approach: brain-fingerprinWng. The study demonstrates that older adults can be differenWated 

from one another, based on their brain acWvity, as accurately as young adults. However, the 

specific brain regions most useful for differenWaWng individuals diverge between young and older 

adults. The authors demonstrate that young adults are be`er differenWated from brain regions 

that support cogniWon and abstract thought. On the other hand, brain regions more typical of 

older adults are responsible for sensory and motor funcWons, show the greatest structural 

changes with age, and are sparse in specific neurochemical systems. Taken together, our study 

demonstrates the importance of considering how aging may alter individual differences in brain 

acWvity. The authors discuss the relevance of considering divergence in inter-individual 

differences when researching individuals of various demographics and cogniWve abiliWes.  

 

Introduc:on 
Changes in brain structure and neurophysiological acWvity across healthy aging are well 

documented. For instance, the dominant acWvity in the alpha band (8-12 Hz) tends to slow down 

with age (Babiloni et al., 2006; Merkin et al., 2022; More� et al., 2013; Scally et al., 2018; Thuwal 

et al., 2021). The aging brain also exhibits increased broadband background brain acWvity which 

is related to cogniWve abiliWes like visual working memory (Thuwal et al., 2021; Voytek et al., 

2015b; Voytek & Knight, 2015). In addiWon, older adults exhibit decreases in the variability of the 

blood-oxygen-level-dependent (BOLD) response, a metric that similarly scales with cogniWve 

performance (Baracchini et al., 2023; Garre` et al., 2011; Garre`, Kovacevic, et al., 2013; Garre`, 

Samanez-Larkin, et al., 2013; Rieck et al., 2022; Uddin, 2020).   

Older adults also show wide-spread reducWons of corWcal thickness (Bethlehem et al., 

2022; Provencher et al., 2016; Salat et al., 2004). Indeed, it is hypothesized that late-maturing 

brain regions (i.e., transmodal brain areas) are the most vulnerable to age-related loss of 

structural integrity (McGinnis et al., 2011; Raz & Rodrigue, 2006). Furthermore, the regional 

concentraWon of acetylcholine and monoamines receptors change with age (Araujo et al., 2005; 

Karrer et al., 2019; Meltzer et al., 1998; Schliebs & Arendt, 2011; The Cholinergic Hypothesis of 

Geriatric Memory DysfuncGon | Science, n.d.). AlteraWons in the cholinergic system are 

hypothesized to underly age-related declines in memory performance (Dumas & Newhouse, 

2011; Nemy et al., 2020; The Cholinergic Hypothesis of Geriatric Memory DysfuncGon | Science, 
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n.d.), while shiis in serotonergic signalling is hypothesized to mediate age-related mood 

disturbances (Karrer et al., 2019; Meltzer et al., 1998; Rodríguez et al., 2012; Sultzer et al., 2022). 

These findings and the rest of the vast literature on neurobiological aging corroborate that 

substanWal differences exist between the average brains of young and older adults. 

This extant research, however, has primarily focused on average differences between the 

brains of young and older adults, leaving the quesWon of how inter-individual variaWons are 

expressed across age largely unchartered. 

The brain-fingerprinWng method has advanced our understanding of the neurobiological 

correlates of individual traits (Finn et al., 2015a; Niso et al., 2016b; Taylor et al., 2017; Van Essen 

et al., 2012). This growing literature supports the idea that brain acWvity is disWncWve of 

individuals (da Silva Castanheira et al., 2021; Finn et al., 2015a; Sareen et al., 2021a). 

Nevertheless, a majority of the work on individual differences in brain acWvity and brain-

behaviour relaWonships, however, has focused on young adults. No study to date, however, has 

directly compared inter-individual differences in brain acWvity between young and older adults. 

Brain-fingerprints serve as valuable features for training machine learning and staWsWcal models 

that link individual neuroimaging data to behavioural, demographic, or cogniWve traits (da Silva 

Castanheira et al., 2021; Finn et al., 2015a; Rosenberg et al., 2017a). InvesWgaWng how aging may 

impact brain-fingerprinWng is therefore important for future research on brain-behaviour 

relaWonships in older adults. 

The quesWon of how inter-individual differences vary across populaWon has become 

parWcularly relevant as novel findings (Greene et al., 2022; J. Li et al., 2022) suggest that the 

brain-behaviour relaWonships may not generalize across populaWons. Models trained to predict 

individual behaviours from brain acWvity recorded from young adults do not necessarily 

generalize to older adults (M. Gao et al., 2020; J. Yu & Fischer, 2022). CollecWvely, these results 

interrogate whether the same brain acWvity features that best straWfy older adults from one 

another can equally differenWate young adults.  

  To address this quesWon, we derived the neurophysiological brain-fingerprints of 

individuals in a cross-secWonal sample of adult parWcipants (N = 606; 18 - 89 years old). First, we 

tested if our ability to differenWate individuals from brain acWvity varied across three age groups 



 61 

(young adults: 18-45 years old, adults: 45-65 years old, and older adults: 65-89 years old). We 

hypothesized that neurophysiological brain-fingerprints enable inter-individual differenWaWon 

regardless of age (da Silva Castanheira et al., 2023-- see Chapter 4; SorrenWno et al., 2021a; Troisi 

Lopez et al., 2023). Second, we idenWfied the most salient features of individual brain-fingerprints 

and tested whether they would change with age. We hypothesized that the brain acWvity 

features characterisWc of older adults would differ from young adults given the substanWal 

neurobiological changes related to aging. Last, we explored whether brain regions characterisWc 

of older adults were spaWally aligned with specific funcWonal, structural, and neurochemical 

systems. We hypothesized that previously reported neurochemical and structural changes 

associated with aging correlate spaWally with brain regions characterisWc of older adults. Together 

the results of this experiment establish how unique neurophysiological acWvity varies across 

aging populaWons. 

 

Results 
We used task-free MEG (8 minutes) and structural MRI data from 606 healthy parWcipants 

available from the Cambridge-Center for Aging Neuroscience (CamCAN) dataset (Taylor et al., 

2017) (demographics are presented in Supplemental Table S1; for detailed informaWon about 

data acquisiWon see Taylor et al., 2017). We replicated the approach proposed by da Silva 

Castanheira et al., 2021 (Chapter 2) to derive individual neurophysiological brain-fingerprints 

from the power spectrum density (PSD) of MEG source acWvity within all parcels of the Desikan-

Killiany atlas (see Methods). The brain-fingerprinWng procedure per se assessed the similarity 

within and between individual brain-fingerprints derived from two disWnct segments of the MEG 

data (i.e., self- and other- similarity). We defined age groups as follows, to maximize the number 

of parWcipants in each group: 204 young adults (18-45 years old), 194 adults (45-65 years old), 

and 208 older adults (65-89 years old).  

 

Brain-fingerprints differenWate between individuals across the lifespan 

We obtained an individual differenWaWon accuracy score of 89.6% ([88.0, 91.1] 95% CI) between 

the brain-fingerprints of the enWre cohort, with li`le variaWons across age groups: 91.8% 

between young adults ([88.6, 94.9] 95% CI), 89.2% between adults ([87.4, 91.4] 95% CI), and 
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93.3% between older adults ([91.4, 95.4] 95% CI; Figure 1a). Our observaWons were similar using 

brain-fingerprints defined within limited bands of the neurophysiological power spectrum, its 

arrhythmic components, and from MEG task data (see Supplemental InformaWon: Individuals are 

differenWable regardless of age group & Figure S2-S4). 

Next, we quanWfied the stability of individual brain-fingerprints between data segments 

using a self-similarity index, which did not change linearly with age (β=-4.62, SE= 2.45, 95% CI [-

9.43, 0.20], r2= 0.006, p=0.06, BF01= 1.96, see Table S2 and Figure 1b). Individual differenWability 

(da Silva Castanheira et al., 2021), a metric that quanWfies the ease by which we can differenWate 

an individual from a cohort, did change with age, but only in weak proporWons (β= 6.14, SE= 

1.12, 95% CI [3.94, 8.34], p< 0.001, BF01= 6.38 10-6, 4,6% of total variance explained; Table S3 & 

Figure S1).  

We replicated these analyses using brain-fingerprints derived from shorter 30-second 

data segments and obtained an overall 67.0% differenWaWon accuracy (computed 95% CI [64.9, 

69.0]) between all 606 individuals. We note that differenWaWon accuracy derived from shorter 

segments did not differ per age group (Figure 1a, points). 

Note, the above results were robust to various environmental and physiological arWfacts 

(see Supplemental Material: Brain-fingerprints are robust against data recording arWfacts). 
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Chapter 3 Figure  1 Par@cipants are differen@able regardless of age group 

(a) Differen@a@on accuracy using (broadband) spectral brain-fingerprints derived from ~4-min 

data lengths (bars) and from 30-s segments (individual points). The error bars show 

bootstrapped 95% confidence intervals. The grey segments at the foot of each bar plot indicate 

the differen@a@on accuracies from empty-room MEG recordings around the par@cipants’ visits. 

(b) Self-similarity of par@cipants’ broadband spectral brain-fingerprints. The self-similarity of 

brain-fingerprints do not relate to age.  

 
Predic@on of fluid intelligence traits from brain-fingerprints 

We used esWmates of intra-class correlaWon (ICC) to define the most salient features that 

differenWate individuals (Amico & Goñi, 2018a; da Silva Castanheira et al., 2021) (see Methods). 

Across all ages, these features mapped to the caudal aspects of the anterior cingulate cortex 

bilaterally (ICC= 0.88; see Figure S5).   

Based on previous work in fMRI (Finn et al., 2015a), we hypothesized that salient spectral 

features for parWcipant differenWaWon could predict fluid intelligence scores akin to their 

funcWonal connectome counterparts. To test this we trained support vector regression (SVR) 

models where we decoded fluid intelligence scores from i) all resWng-state brain acWvity features 

aier applying feature reducWon (see Methods), and ii) from the power spectral densiWes at each 

parcel of the Desikan-Killiany atlas (Desikan et al., 2006a).  
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First, we found that fluid intelligence scores can be inferred from resWng-state brain 

acWvity across regions (observed vs. predicted fluid intelligence scores: r= 0.54, t=15.6, p < 2.2e-

16, See Figure 3a). We note that chronological age is related to fluid intelligence performance 

(r=-0.67, t=-22.1, p < 2.2e-16); we similarly observed that parWcipants’ decoded fluid intelligence 

related to age (r=-0.71, t=-24.9, p-value < 2.2e-16). 

Second, we aimed to relate regional differences in our ability to decode fluid intelligence 

to the spaWal distribuWon of the most salient brain regions for individual differenWaWon. To 

achieve this, we trained SVR models to decode individual’s fluid intelligence scores from the 

power spectrum at each parcel of the Desikan-Killiany atlas (Desikan et al., 2006a). The decoding 

of fluid intelligence performance was driven by a broad set of corWcal regions, especially from the 

right peri-calcarine cortex (Figure 2b). The corWcal topography of fluid intelligence performance 

decoding overlaps with that of the regional saliency of the brain-fingerprint (Figure 2c; r= 0.40, 

pspin= 0.002)—a finding that was robust to differences in the cross-validaWon method used for 

designing the SVR models (Figure S6).  
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Chapter 3 Figure  2 Cor@cal region-wise decoding of fluid intelligence performance. 

(a) Le_ panel: the spectral brain-fingerprint features that differen@ate individuals were used to 

train Support Vector Regression models (SVR). We show that brain-fingerprint features decode 

fluid intelligence performance. Right panel: decoded fluid intelligence performance from brain-

fingerprints. (b) Decoded fluid intelligence performance from brain-fingerprint features at each 

ROI of the Desikan-Killiany atlas, plofed as correla@ons between the observed and decoded 

scores. (c)  Scaferplot of the colocaliza@on of decoding performance of fluid intelligence scores 

at each cor@cal parcel with the brain-fingerprint saliency of the neurophysiological features of 

each cor@cal parcel (ICC). The ability to decode intelligence performance from a cor@cal region 

(le_ panel) is linearly associated with its saliency for the spectral brain-fingerprint (right panel). 
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The salient features of the brain-fingerprint change across the adult lifespan 

We then tested whether the most salient features of the brain-fingerprints changed with age. We 

mapped the difference between the respecWve ICC regional scores of the older and younger age 

groups. We found that lateral frontal and temporal regions are the most salient brain-fingerprint 

features of young adults, and that lateral parietal regions are the most salient regions of the 

brain-fingerprints of older adults (Figure 3a). The relaWve topography of these age-related 

dispariWes in salient brain-fingerprint features follows an inferior-to-superior gradient (β= 0.13, 

SE= 0.05, 95% CI [0.03, 0.23], p=0.012, BF01= 0.17, pspin=  0.013; Figure 3b).  

We tested the impact of these age-related dispariWes in salient features on our ability to 

differenWate individuals (e.g., differenWaWon accuracy). We differenWated individuals from each of 

the three age groups based on the top 10% of features for differenWaWng young adults and the 

top 10% of features of older adults. We scaled the differenWaWon accuracy scores obtained for 

the young and older groups by those obtained from the adult group (see Methods). We observed 

that older adults were differenWated 22.9% more accurately from their respecWve top ICC 

features, whereas, young adults were differenWated 13.7% more accurately from their respecWve 

top ICC features (Figure 3a right). 

We then computed the self-similarity of brain-fingerprints derived only from these top 

10% of features for differenWaWng older and younger adults and related these self-similarity 

metrics to age. We observed a meager posiWve linear relaWonship between age and the self-

similarity of brain-fingerprints derived from the top 10% of spectral features for older adult 

differenWaWon (r= 0.16, t= 3.94, p< 0.001). In contrast, we observed a larger negaWve linear 

relaWonship between age and the self-similarity of brain-fingerprints derived from young adult 

features (r= -0.32, t= -8.32, p< 0.001). These results suggest that aging lowers the self-similarity of 

brain-fingerprints specifically in orbitofrontal brain regions (Figure 3a). 

In Figure 3b we plot an example power spectrum at the parcel showing the largest 

difference in salient features for parWcipant differenWaWon (i.e., ΔICC). We observed polyrhythmic 

differences between the spectra of older adults compared to that of young adults, most evidently 

in the beta (13-30 Hz) and theta (4-8 Hz) bands. 
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Chapter 3 Figure 3 Salient brain-fingerprin@ng features differ between young and older adults.  

(a) Topographic gradient of the age-related differences in self-similarity of brain-fingerprint 

features (brain maps). The topography of these differences between young and older adults 

follows a superior-to-inferior gradient (inlaid arrow). Right panel: differen@a@on accuracies 

obtained as a func@on of the most salient features for differen@a@ng young and older adults. 

When we use the top features for differen@a@ng older adults (i.e., lowest ΔICC), we obtain 

higher differen@a@on accuracies for older adults in comparison to young adults. The pafern is 

reversed when we use the top features for differen@a@ng young adults (i.e., highest ΔICC). (b) 

Example spectra from the right inferior parietal cortex: the region that showed highest age-

related differences in ICC. Shaded areas represent standard error of the mean.  

 

Alignment of the older-adult brain-fingerprint with cor@cal thinning and neurotransmifer 

systems 

Prior research has hypothesized that late-maturing corWcal regions, including the associaWon 

corWces, are more vulnerable to age-related loss of structural integrity (McGinnis et al., 2011; Raz 

& Rodrigue, 2006). We, therefore, invesWgated if the observed dorsal-to-ventral gradient of 

differenWable brain acWvity (Figure 3a) was topographically related to the corWcal distribuWon of i) 

corWcal thinning observed with aging, ii) the corWcal hierarchy, and iii) normaWve distribuWons of 

neurochemical systems.  
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First, we computed regional changes in corWcal thickness for older adults relaWve to 

young adults (see Methods). We observed age-related thinning in most corWcal regions, with 

more pronounced effects in the dorsolateral cortex (Figure 4a), which we previously idenWfied as 

a salient region of the brain-fingerprint of older adults (r=-0.48, t(66)=-4.49, p < 0.001, pspin= 

0.008; Figure 4a). 

Second, we examined the alignment between older adult differenWable features with the 

unimodal-to-transmodal gradient of the funcWonal hierarchy of the cortex (Margulies et al., 

2016). We found that the salient regions that differenWate young adults are aligned with 

transmodal regions of that funcWonal hierarchy, whereas regions that be`er differenWate older 

adults were aligned with unimodal corWcal regions (r=-0.45, t(66)=-4.13, p < 0.001, pspin< 0.001; 

Figure 4a).  

Finally, we contextualized the dorsal-to-ventral gradient of differenWable brain acWvity 

with corWcal atlases of neurochemical systems (Markello et al., 2022a) (see Methods). We found 

that the brain-fingerprint of young adults mapped to corWcal regions rich with serotonin-2a (r=- 

0.40, pFDR = 0.004, pspin= 0.003) and serotonin-4 (r=-0.49, pFDR= 0.0004, pspin= 0.002) receptors, 

and serotonin (r=- 0.40, pFDR= 0.004, pspin <  0.001) transporters. In contrast, regions that 

differenWated older adults the best were enriched in norepinephrine (r= 0.42, pFDR= 0.003, pspin= 

0.003) transporters (Figure 4c-d). 
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Chapter 3 Figure  4 Age-related differences in salient fingerprin@ng features colocalize with 

func@onal and neurochemical gradients. 

(a) The topography of age-related differences in salient brain-fingerprint features (Figure 3a) is 

linearly associated with age-related changes in cor@cal thickness. Right panel: brain map of z-

score age-related changes in cor@cal thickness. (b) The topography of age-related differences in 

salient brain-fingerprint features (Figure 4a) is linearly associated with the unimodal-transmodal 

func@onal gradient of the human brain. The size of the points are propor@onal to ΔICC. (c) Bayes 

factor analyses of the topographical alignment between the topography of age-related 

differences in salient brain-fingerprint features and atlases of cor@cal neurochemical systems 
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shows strong alignment with serotonin and norepinephrine systems. (d) Topographies of 

selected neurochemical cor@cal atlases. 

 

Discussion 
Brain-fingerprinWng has demonstrated great promise in quanWfying disWncWve pa`erns of inter-

individual brain acWvity associated with complex traits (Amico & Goñi, 2018a; da Silva 

Castanheira et al., 2021; Finn et al., 2015a; Rosenberg et al., 2017a; Sareen et al., 2021a). In this 

study, we demonstrate, in the largest parWcipant cohort to date, that individuals spanning the 

enWre adult lifespan remain differenWable from spectral brain-fingerprints derived from brief 

neurophysiological recordings (Figure 1a). Salient brain regions for individual differenWaWon are 

similarly useful for decoding fluid intelligence test performance (Figure 2). However, it is 

noteworthy that salient features for parWcipant differenWaWon differ between young and older 

adults (Figure 3a). We demonstrate that these dispariWes in differenWable features with age are 

topographically aligned with brain maps of corWcal thinning, the unimodal-to-transmodal 

funcWonal gradient, and the serotonin and norepinephrine neurochemical systems. Our results 

emphasize the importance of considering how inter-individual differences may vary across study 

populaWons and how these differences may inform models of brain-behaviour relaWonships. 

 
Neurophysiological recordings accurately differen@ate individuals and decode fluid intelligence 

test performance 

Individuals, irrespecWve of their age, can be differenWated from 605 other individuals with 

approximately 90% accuracy based on spaWally-resolved broadband neurophysiological features 

(Figure 1a). These findings remain robust regardless of the frequency band in which we define 

the brain-fingerprint and hold when deriving arrhythmic brain-fingerprints (Figure S2-S3). Prior 

research has reported group-level neurophysiological changes associated with healthy aging 

(Babiloni et al., 2006; Heinrichs-Graham et al., 2018; Heinrichs-Graham & Wilson, 2016; Merkin 

et al., 2023; Rempe et al., 2023; Rossiter et al., 2014; Voytek et al., 2015b; L. E. Wilson et al., 

2022), including a decrease in the moment-to-moment brain signal variability with age (Garre` 

et al., 2010; Garre`, Kovacevic, et al., 2013). Our present results suggest that despite these 
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group-level neurophysiological differences between age groups, older adults remain accurately 

differenWable from their brain acWvity. Indeed, we only observe a small effect of differenWability 

(~ 4% variance explained) in our sample (see Figure S1).  

AddiWonally, we observed that brief segments of neurophysiological recordings are 

sufficient for disWnguishing individuals (Figure 2b). These findings replicate our previous findings 

(da Silva Castanheira et al., 2021) in a substanWally larger cohort of varying ages and support the 

growing body of evidence that suggests spectral resWng-state brain acWvity esWmates may be 

robustly esWmated within 30 to 120 seconds of clean data (Wiesman, da Silva Castanheira, et al., 

2022a).  

Notably, our invesWgaWon revealed that the moment-to-moment variability of spectral 

brain-fingerprints does not exhibit significant differences across healthy age groups across the 

enWre cortex (Figure 2b). Instead, we observe decreases in self-similarity of brain-fingerprints in 

transmodal brain regions of older adults (Figure 3a). This finding dovetails with previous research 

on BOLD variability indicaWng that older adults tend to exhibit reduced moment-to-moment 

variability in BOLD signals across the brain (Garre` et al., 2010; Garre`, Kovacevic, et al., 2013). 

Our results expand upon this prior literature and suggest that age-related changes in brain 

acWvity variability (i.e., low self-similarity) may affect brain regions in disWnct ways, and 

potenWally reflect unique manifestaWons of variability across various imaging modaliWes 

(Baracchini et al., 2023). Future research can leverage brain-fingerprinWng methodologies as a 

complementary tool to address outstanding quesWons on intra-individual variability of brain 

acWvity, an emerging area of research in the neuroimaging field.  

Moreover, our results expand upon recent work exploring the neurophysiological brain-

fingerprints of clinical populaWons. In comparison to healthy older adults, the brain-fingerprints  

of mild cogniWve impairment (MCI) and Parkinson's disease show greater intra-session variability 

across the enWre brain, leading to reduced differenWability (da Silva Castanheira et al., 2023; 

SorrenWno et al., 2021a; Stampacchia et al., 2021; Troisi Lopez et al., 2023). In the case of 

Parkinson’s disease, previous work has argued that the arrhythmic component of brain acWvity 

selecWvely shows greater moment-to-moment variability (da Silva Castanheira et al., 2023 see 

Chapter 4). Future work can leverage the potenWal of clinical brain-fingerprinWng approaches to 
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establish how intra-individual variability in brain-fingerprints may be a risk factor for neurological 

diseases by tracking brain acWvity variability longitudinally.  

Previous work on brain-fingerprinWng has emphasized that different brain networks are 

characterisWc of individuals, depending on the specific brain signal recorded (e.g., BOLD vs. 

electrophysiology) (Amico & Goñi, 2018a; da Silva Castanheira et al., 2021; Finn et al., 2015a). We 

reaffirm these findings and suggest that several medial and caudal corWcal areas are the most 

prominent electrophysiological features for disWnguishing between all individuals in the cohort. 

Perhaps fast electrophysiological signals that contribute to individual differenWaWon with MEG 

have hemodynamic counterparts that are not as salient for fingerprinWng, leading to a divergence 

between imaging modaliWes. This interpretaWon is substanWated by research on cross-modal 

fingerprinWng (Sareen et al., 2021b)—yet warrants further invesWgaWon. Moreover, these findings 

suggest that fMRI and electrophysiological brain-fingerprints are complementary approaches that 

may independently contribute to brain-behavior relaWonships. 

Limited research has explored how brain-fingerprints derived from electrophysiology may 

relate to inter-individual differences in behaviours (da Silva Castanheira et al., 2021; Sareen et al., 

2021b). In addiWon, the literature has predominantly concentrated on associaWons between 

funcWonal connectome brain-fingerprints and inter-individual differences in cogniWon (Amico & 

Goñi, 2018a; Finn et al., 2015a; Rosenberg et al., 2017a; Sareen et al., 2021a). In the present 

study, we extend these findings and demonstrate that simpler measures of local brain acWvity can 

not only robustly differenWate individuals from one another, but can also be used to train brain-

behaviour models. These results expand our brain-behaviour research toolkit and underscore the 

uWlity of the spectral brain-fingerprinWng approach in studying inter-individual differences.  

 
The saliency of neurophysiological brain-fingerprint features changes throughout the course of 

healthy aging 

While individual differences in brain acWvity can characterize people regardless of age, the most 

useful features for differenWaWng between individuals vary with age. Specifically, we find that 

older adults are more differenWable from neurophysiological features of superior corWcal regions, 

while younger adults are more differenWable from those of inferior corWces (Figure 3a).  
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The divergence of salient features for individual differenWaWon across age groups correlated 

spaWally with the first component of the unimodal-to-transmodal funcWonal gradient (Margulies 

et al., 2016). Transmodal regions are more characterisWc of young adults (Figure 3a & Figure 4b), 

while unimodal regions are more salient for older adults. We posit that diminished funcWonal 

responses to sensory sWmuli observed in older adults (Stothart & Kazanina, 2016; Strömmer et 

al., 2017; Takahashi et al., 2009) may underly the observaWon that unimodal sensory regions are 

more disWncWve of older individuals. Takahashi and colleagues, for instance, demonstrated that 

the entropy of EEG signals aier a phoWc sWmulus was higher in young adults compared to 

baseline but did not significantly vary from baseline in older adults (Takahashi et al., 2009). 

Consistent with Takahashi and colleagues’ findings, be`er differenWaWon and higher self-

similarity of brain-fingerprints derived from sensory regions (Figure 3a) may indicate different 

compensatory mechanisms to account for sensory-loss associated with increasing age, rendering 

brain acWvity in these regions more disWncWve to individuals.  

Apart from changes in sensory processing, aging has also been linked to the de-

differenWaWon of brain networks, i.e., a reducWon in the specialized modular structure of the 

brain (Chong et al., 2019; Goh, 2011; Koen & Rugg, 2019; Park et al., 2004). We speculate that 

the loss of specializaWon of higher-order brain regions may explain the reduced individual 

differenWaWon of older adults in transmodal brain regions. This interpretaWon is in line with the 

“last in, first out” hypothesis of brain aging, which posits that late-maturing brain regions (i.e., 

transmodal brain areas) are the most vulnerable to age-related loss of structural integrity 

(McGinnis et al., 2011; Raz & Rodrigue, 2006). Future research on the neurobiology of aging 

should substanWate this interpretaWon.  

Moreover, we observed that the brain regions most salient for fingerprinWng older adults 

are aligned with corWcal areas that exhibit the most significant decrease in corWcal thickness 

(Figure 4a). While previous work has documented corWcal thinning with age, li`le research has 

explored how local changes in corWcal thickness relate to neurophysiological changes observed in 

healthy aging (More� et al., 2013; Provencher et al., 2016; Rempe et al., 2022). AddiWonally, no 

study to date has documented how changes in differenWable electrophysiological brain acWvity 

relates to corWcal thinning. Our results suggest that changes in brain structure may play a role in 
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shaping disWncWve electrophysiological signals, where regions undergoing the most corWcal 

thinning may be more characterisWc of specific populaWons because of anatomical alteraWons. 

These results align with recent findings that propose the geometry of the brain constrains its 

funcWon (Pang et al., 2023). The extent to which unique brain structure gives rise to characterisWc 

electrophysiological signals observed with MEG remains an open quesWon. 

We contextualized the observed differences in salient brain-fingerprint features with 

normaWve atlases of neurochemical systems (Markello et al., 2022a). We observed a spaWal 

overlap in the age-related differences in salient features for individual differenWaWon and the 

monoamine neurochemical systems, specifically the serotonin and norepinephrine systems 

(Figure 4c-d).  

Previous research has hypothesized that age-related loss of serotonergic 

neurotransmission may explain, in part, age-related changes in behaviours including mood 

disturbances (Alexopoulos, 2019; Deza-Araujo et al., 2021; Meltzer et al., 1998), sleep (Myers & 

Badia, 1995), and cogniWon (Karrer et al., 2019; Peters, 2006). Yet the effects of aging on 

serotonergic neurotransmission, its effects on local electrophysiology, and behaviour are less well 

understood. Our results suggest that corWcal regions with higher concentraWons of serotonin 

receptors and transporters also correspond to corWcal regions characterisWc of younger adults, 

thus warrant further invesWgaWon into how serotonergic funcWoning may influence disWncWve 

electrophysiological signals. 

The norepinephrine neurochemical system is affected by neurodegeneraWve diseases. In 

parWcular, pathology of the locus coeruleus (LC) relates to cogniWve deficits observed in 

Parkinson’s disease (Del Tredici & Braak, 2013). Moreover, recent evidence suggests that early 

norepinephrine intervenWons in MCI may slow the progression of AD (Chalermpalanupap et al., 

2013). These results have led to the neuroprotecWve hypothesis whereby norepinephrine may 

help to preserve cogniWve reserve (Robertson, 2013). Given the important role the LC plays in 

a`enWon processes (Noradrenergic ModulaGon of Rhythmic Neural AcGvity Shapes SelecGve 

AcenGon - ScienceDirect, n.d.), regional changes in electrophysiological signals may indirectly 

reflect the funcWoning of the norepinephrine neurochemical system in the aging brain, which, in 

turn, may explain individual differences in cogniWve abiliWes.  



 75 

Brain-fingerprin@ng for popula@on neuroscience 

The current body of findings suggest that electrophysiological spectral features are a robust 

neurophysiological phenotype that may aid the goal of populaWon neuroscience. On the other 

hand, our results also underscore the importance of mulW-omic data repositories sampled across 

mulWple dimensions of socio-economic, age, and geographic factors(Ricard et al., 2023).  

Recent work has postulated that funcWonal connectomes derivaWves are limited in their 

ability to generalize brain-behaviour relaWonships across subgroups. Greene and colleagues27, for 

example, argue that brain-behaviour models fail to generalize as they may not reflect unitary 

neurocogniWve constructs; rather, brain models may instead represent cogniWve constructs 

embedded in clinical and socioeconomic demographic groups. The brain-fingerprinWng approach 

provides a means to invesWgate and understand the failed generalizaWon of brain-behaviour 

models. With brain-fingerprinWng approaches, researchers can invesWgate whether the failed 

generalizaWon of a brain-behaviour model to another populaWon is, in part, related to diverging 

characterisWc brain acWvity. 

Bethlehem and colleagues have suggested that age-related changes in brain structure 

and funcWon can be assessed using brain-charts (Bethlehem et al., 2022). These charts are 

analogous to growth charts in medicine and were expanded to include morphological brain-

charts across the lifespan. A goal behind this iniWaWve is to measure how individuals differ in 

brain morphology relaWve to developmental norms, which may be extended to measures of brain 

funcWon in future research. However, this approach fails to capture neurodevelopmental norms 

in the moment-to-moment variability of brain acWvity. Brain-fingerprinWng, among other 

measures of variability in brain acWvity, may complement such brain-chart approaches and 

provide neurodevelopmental norms of moment-to-moment variability of brain acWvity. Given 

previous work on intra-individual variability in brain-fingerprints, its relaWonship to neurological 

diseases, and our present work on healthy aging, establishing developmental norms of intra-

individual variability in brain funcWon may be informaWve for clinical prognosis and diagnosis. This 

effort, however, would require large longitudinal datasets of neuroimaging phenotypes, which 

are currently limited. 
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The interpretaWon of these results should be considered alongside important 

methodological limitaWons. The current study only considers changes in brain-fingerprinWng 

cross-secWonally. Future work with longitudinal data across several decades can be`er ascertain 

the neurodevelopmental trajectory of an individual’s brain-fingerprint. In addiWon, the normaWve 

neurochemical system maps used for contextualizing our results were obtained from a mostly 

young adult sample. Therefore, future research should replicate these results uWlizing normaWve 

atlases of neurochemical systems in older adults—data which is currently not openly available.  

Like the prints lei by our fingers, neurophysiological features differenWate individuals 

even in older populaWons. Unlike fingerprints, however, we show that brain-fingerprints change 

in salient features for individual differenWaWon between younger and older adults. Our results 

underscore the importance of considering variability in the most characterisWc features of 

neurophysiological brain acWvity in heterogeneous populaWons with varying cogniWve abiliWes. 

We propose that a one-size-fits-all approach to understanding brain-phenotype relaWonships is 

limited by changes in inter-individual differences in brain acWvity across the adult life span. 

 

Methods 
Par(cipants. Data from 606 healthy individuals (18-89 years old; mean age= 54.69; SD= 18.28; 

299 of whom were Female) were collected from the Cambridge-Centre for Aging Neuroscience 

repository (Cam-CAN Taylor et al., 2017). The sample consisted of individuals spanning the adult 

lifespan (18 years old to 89) approximately uniformly sampled across decades. All parWcipants 

completed a home-interview, underwent a resWng-state eye-closed MEG recording using a 306-

channel VectorView MEG system (Elekta Neuromag, Helsinki), a sensorimotor task MEG 

recording, and a structural T1 MRI.  MEG data was collected from 102 magnetometers and 204 

orthogonal planar gradiometers at 1,000Hz sampling rate and a 0.03-330 Hz bandpass filter. The 

head posiWon of parWcipants was conWnuously monitored using four Head-PosiWon Indicator 

(HPI) coils, while ocular (EOG) and cardiac (ECG) external electrodes were used to monitor 

physiological arWfacts. All MEG recordings were conducted at the same site. ResWng-state 

recordings lasted approximately 8 minutes (Wiesman, da Silva Castanheira, et al., 2022b). See 

(Taylor et al., 2017) for details on the dataset and data acquisiWon. 
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Preprocessing and source modeling of empirical MEG data. MEG data were preprocessed using 

Brainstorm (Tadel et al., 2011) March 2021 distribuWon, running MATLAB 2020b (Mathworks, 

Inc., Massachuse`s, USA) following good-pracWce guidelines (Gross et al., 2013). The 

preprocessing pipeline followed our previously published work on brain-fingerprinWng (da Silva 

Castanheira et al., 2021). Line noise arWfact (50 Hz; with 10 harmonics) and 88 Hz noise—a 

common arWfact characterisWc to the Cam-CAN dataset—were removed using a notch filter bank. 

Slow-wave and DC-offset arWfacts were removed with a high-pass FIR filter with a 0.3-Hz cut-off. 

We derived Signal-Space Projectors (SSPs) to remove cardiac arWfacts and a`enuate low-

frequency (1–7 Hz) and high-frequency noisy components (40–400 Hz) due to saccades and 

muscle acWvity, respecWvely.  

We subsequently derived brain source models constrained to the individual T1-weighted 

MRI data available for each parWcipant. The MRI volumes of each parWcipant were automaWcally 

segmented and labelled using Freesurfer (Fischl, 2012) and co-registered to the MEG recording 

using approximately 100 digiWzed head points. We computed head models for each parWcipant 

using the Brainstorm overlapping-spheres approach with default parameters. CorWcal source 

models were computed using the Brainstorm implementaWon of linearly-constrained minimum-

variance (LCMV) beamforming with default parameters (2018 version for source esWmaWon 

processes). MEG source orientaWons at 15,000 locaWons were constrained normal to the surface 

of the cortex. The first principal component of all signals within each of the 68 corWcal regions of 

the Desikan-Killiany atlas (Desikan et al., 2006a) was extracted, and used to compute neural 

power spectra using the Welch method (2 second, 50% overlapping windows).  

We repeated the above preprocessing steps separately for the resWng-state and 

sensorimotor task MEG recordings (see Figure S4). Note, we treated the sensorimotor task data 

conWnuously, such that we could compare brain-fingerprints to those derived from the resWng-

state data.   

The resulWng frequency range of PSDs was 0–150 Hz, with a frequency resoluWon of 1/2 

Hz. This yielded a matrix of 68x300 features per parWcipant and data segment for fingerprinWng. 

Spectral features were exported to R (4.2.2) (R Core Team, 2022) for fingerprinWng analyses. 
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Fingerprin(ng and differen(ability. Our MEG spectral brain-fingerprinWng approached followed 

previous work (Amico & Goñi, 2018a; da Silva Castanheira et al., 2021; Finn et al., 2015a). Brain-

fingerprints are defined as the correlaWonal differenWability of parWcipants between data 

segments, taken from the first and second half of the resWng-state MEG recording. We compute 

the Pearson correlaWon between the spectral features of parWcipanti at the first Wme-point (i.e., 

data segment 1) and all other individuals at a second Wme-point (data segment 2). We repeat this 

procedure for all parWcipants yielding an asymmetric correlaWon matrix spanning all parWcipants 

in the cohort across data at two separate Wme-points. ParWcipanti is said to be correctly 

differenWated from the cohort if the largest correlaWon coefficient to the second Wmepoint is the 

data segment of parWcipanti at the second Wmepoint (i.e., their self-similarity is higher than their 

other-similarity to other parWcipants). The percent of parWcipants correctly differenWated from 

the cohort corresponds to the differenWaWon accuracy (i.e., the total number of correctly 

differenWated parWcipants divided by the total number of individuals in the cohort). 

We report the percent of correctly differenWated parWcipants across four subgroups of 

interest: i) a young adult cohort (N= 204; 18-45 years old), ii) an adult cohort (N= 194; 45-65 

years old), iii) an older adult cohort (N= 208; 65+ years old) and the iv) enWre cohort of 

individuals (N=606). We selected these three age groups such that each group would have an 

approximately equal number of parWcipants to fingerprint. We report the demographics of our 

sample in Supplemental Table S1. 

Shortened 30-second brain-fingerprin(ng. We similarly derived spectral brain-fingerprints using 

brief 30-second non-overlapping segments taken from the resWng state MEG recording. Here, we 

computed differenWaWon accuracy for all pairs of brain-fingerprints derived from these short 

recordings.  

Differen(ability. We compute a metric of differenWability, as per our previous work (da Silva 

Castanheira et al., 2021), to describe how easy any given parWcipant is to differenWate from a 

cohort of individuals. This measure consists of the self-similarity of the spectral brain-fingerprint 

of parWcipanti (data segment 1 to data segment 2), z-scored to the mean and standard deviaWon 

of the other-similarity of parWcipanti data segment 1 with the data segment 2 of all others in the 
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cohort (see (da Silva Castanheira et al., 2021) for details). A parWcipant with a high 

differenWability score will have a higher self-similarity relaWve to their other-similarity to others in 

the cohort, and therefore be easier to accurately idenWfy. 

Bootstrapping differen(a(on accuracy. We derived bootstrapped 95% confidence intervals for 

all of the reported differenWaWon accuracies. For each bootstrap iteraWon, we randomly selected 

a sub-sample of our desired cohort such that we fingerprinted only these individuals (i.e., for the 

enWre cohort we subsampled 485 individuals, and 175 for each age group). We repeated this 

process 1000 Wmes and computed the 2.5th and 97.5th percenWle from the resulWng distribuWon 

of differenWaWon accuracies. Note that because our confidence intervals were obtained by 

bootstrapping, they are not necessarily symmetric around the mean.  

Band-limited spectral fingerprin(ng. We replicated all fingerprinWng analyses using spectral 

features averaged over canonical frequency bands (delta: 1–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, 

beta: 13–30 Hz, gamma: 30–50 Hz, and high gamma: 50–150 Hz). 

Recording ar(facts and differen(ability. We invesWgated how common recording arWfacts affect 

our ability to fingerprint. To do so, we related individual differenWability with the average L2 norm 

of measured ocular (VEOG and HEOG electrodes), cardiac (ECG electrode), and head movement 

arWfacts (3 HLU channels) over the duraWon of the enWre recording. We correlated these 

measures with differenWability in our full-cohort. To further verify that recording arWfacts were 

not related to individual differenWaWon, we regressed these physiological arWfacts from the brain-

fingerprints of individuals, and used the residuals of this regression to differenWate the cohort 

(see Brain-fingerprints are robust against data recording artefacts in Supplemental Materials). 

 

Empty-room fingerprinWng. We verified that environmental and instrument noise on the day of 

the MEG recording could not differenWate individuals. Empty-room recordings from the day of 

each parWcipants visit were used to differenWate their resWng-state brain-fingerprints (see 

Fingerprin(ng and differen(ability). The empty-room data was pre-processed similarly to the 

parWcipant data (except physiological arWfact removal using SSPs), source imaged with the above-
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described imaging kernel, and frequency-transformed. We report the average differenWaWon 

accuracies using these empty-room brain-fingerprints, which represent baseline performance of 

the brain-fingerprinWng approach (da Silva Castanheira et al., 2021). 

Specparam modeling. We esWmated how much differenWaWon accuracy was driven by 

arrhythmic neural acWvity by parametrizing parWcipants' neurophysiological power spectra with 

ms-specparam in Brainstorm (Tadel et al., 2011). Se�ngs for ms-specparam were: frequency 

range: [1 to 40 Hz]; peak width limits: [0.5-12 Hz]; maximum number of peaks: 6; minimum peak 

amplitude: 3 a.u.; peak threshold: 2 standard deviaWons; proximity threshold: 0.75 standard 

deviaWons; aperiodic mode: fixed. ParWcipants were differenWated from the resulWng aperiodic 

fits following the described brain-fingerprinWng procedure.  

Rela(ve contribu(on of features for fingerprin(ng. We calculated intraclass correlaWons (ICC) 

to quanWfy the contribuWon of each neurophysiological (frequency * corWcal region) feature 

towards differenWaWng between individuals. ICC quanWfies the raWo of within-parWcipant variance 

and between-parWcipant variance, such that high values of ICC indicate that said 

neurophysiological feature corresponds to high within-parWcipant similarity and low between-

parWcipant similarity. Features with high ICC values therefore contribute the most to parWcipant 

differenWaWon. We computed the ICC saliency of brain fingerprint features separately within the 

i) full cohort, the ii) young adult cohort, and the iii) older adult cohort to quanWfy how the 

contents of the brain fingerprint may change with age. The brain maps presented in Figures S5 

were obtained by first averaging ICC values within each canonical frequency band, and then 

averaging across all six frequency band maps. This was done to equate the contribuWon of each 

frequency band to the broadband saliency topography, regardless of their respecWve definiWons 

(e.g., the delta bandwidth is 4Hz, while high-gamma is 100 Hz). To measure differences in the 

most salient features for parWcipant differenWaWon contents across the adult lifespan, we 

computed ΔICC brain maps by subtracWng the broadband ICC maps obtained for the young and 

older adult cohort. 
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Decoding of fluid intelligence performance. Based on previous literature in fMRI (Finn et al., 

2015a), we hypothesized that spectral neurophysiological features that differenWate individuals 

could be used to decode individuals’ fluid intelligence test performance, as measured by the 

Ca`ell test (Ca`ell, 1963, 1971; Taylor et al., 2017). To test this, we decoded individuals’ Ca`ell 

scores from their resWng-state neurophysiological features. We first applied principal component 

analysis (PCA) on the neurophysiological features to reduce the number of dimensions (reduced 

from 68*300 features down to 68 components which explained 100% of the variance). We then 

trained Support Vector Regressions (SVR) on these features in R, using default parameters, to 

disWnguish individuals’ Ca`ell scores. We trained SVR models using a random subset of 

parWcipants (i.e., 80% of the parWcipants) and tested its performance on a held-out 20% of 

parWcipants, and iterated this process 1000 Wmes before taking the average decoded Ca`ell 

score per parWcipant across iteraWons.  

Next, we aimed to assess the spaWal correspondence across corWcal ROIs between the 

saliency of the broadband brain-fingerprint features and our ability to decode Ca`ell scores. We 

trained SVR models separately on the broadband spectra of each ROI using 80% of parWcipants 

for training and held-out the remaining 20% parWcipants to test the performance of the model. 

We iterated this process 1000 Wmes per ROI to generate a topography of classificaWon 

performance across the cortex. Decoding performance was assessed by correlaWng the true 

Ca`ell scores of the held-out parWcipants to the predicted ones. We repeated these analyses for 

different cross-validaWon strategies (i.e., 70% training, 30% held-out; and 90% training, 10% held-

out) to ensure the robustness of our results. To test for spaWal concordance between the saliency 

of brain regions for fingerprinWng and their importance for decoding fluid intelligence 

performance, we correlated the Ca`ell decoding performance and the broadband ICC values 

across ROIs (Figure S6). We esWmated the p-value of this relaWonship based on spaWally 

constrained permutaWon tests (1000 autocorrelaWon-preserving permutaWon tests; Hungarian 

method) (Markello & Misic, 2021; Váša & Mišić, 2022). 

 
Correspondence of brain-fingerprint features with the func(onal hierarchy of the cortex. We 

aimed to determine whether age differences in brain-fingerprint contents related to the unimodal-

to-transmodal funcWonal gradient of brain organizaWon (Margulies et al., 2016), taken from the 
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neuromaps toolbox (Markello et al., 2022b). We used a similar approach for spaWal 

correspondence as in Decoding of fluid intelligence performance. We computed the Bayesian 

evidence (i.e., BF01) for this relaWonship using the correlaGonBF funcWon in R and corrected for the 

spaWal autocorrelaWon of the atlas data using 1000 autocorrelaWon-preserving permutaWon tests 

(Hungarian method) (Markello & Misic, 2021; Váša & Mišić, 2022). 

 

Cor(cal thinning analysis. We extracted corWcal thickness measures from the Freesurfer 

processed data made available through Cam-CAN (Taylor et al., 2017). We imported the Freesurfer 

folder for each individual and averaged corWcal thickness esWmates at each parcel of the Desikan-

Killiany atlas (Desikan et al., 2006a) using brainstorm (Tadel et al., 2011). We computed z-scored 

changes in corWcal thickness from controls for the older adult age group by subtracWng the mean 

and dividing by the standard deviaWon of the corWcal thickness of young adults. We used the 

resulWng z-scored map (Figure 5a) to measure how changes in the brain-fingerprints of older adults 

colocalize with the observed age-related corWcal thinning effects. See Correspondence of brain-

fingerprint features with the func(onal hierarchy of the cortex for details. 

 
Correspondence of brain-fingerprint features with cor(cal neurotransmiGer systems. We 

followed a similar approach, as outlined above, to test the spaWal correspondence of the age-

differences in brain-fingerprint contents normaWve neurochemical atlases. We obtained 

normaWve atlas maps of 19 receptors and transporters from 9 neurotransmi`er systems from 

neuromaps, parcellated using the 68 regions of the Desikan-Killiany atlas (Desikan et al., 2006a). 

These consisted of: dopamine (D1: 13 adults, [11C]SCH23390 PET; D2: 92, [11C]FLB-457, DAT: 

174, [123I]-FP-CIT), serotonin (5-HT1a: 36, [11C]WAY-100635; 5-HT1b: 88, [11C]P943; 5-HT2a: 

29, [11C]Cimbi-36; 5-HT4: 59, [11C]SB207145; 5-HT6: 30, [11C]GSK215083; 5-HTT: 100, 

[11C]DASB), acetylcholine (α4β2: 30, [18F]flubaWne; M1: 24, [11C]LSN3172176; VAChT: 30, 

[18F]FEOBV), GABA (GABAa: 16, [11C]flumazenil), glutamate (NMDA: 29, [18F]GE-179; mGluR5: 

123, [11C]ABP688), norepinephrine (NET: 77, [11C]MRB), histamine (H3: 8, [11 C]GSK189254), 

cannabinoid (CB1: 77, [11 C]OMAR), and opioid (MOR: 204, [11 C]carfentanil).  

We corrected for mulWple comparisons using a False Discovery Rate (FDR) as 

implemented in the R funcWon p.adjust and derived Bayes factors to quanWfy the evidence in 
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favour of the topographic relaWonship using the correlaGonBF funcWon in R. For each significant 

spaWal correspondence observed, we also esWmated p-values based on spaWally constrained 

permutaWon tests (Markello & Misic, 2021; Váša & Mišić, 2022).  

 

Data availability  

Data used in the preparaWon of this work are available through the Cam-CAN repository 

(h`ps://camcan-archive.mrc-cbu.cam.ac.uk/ ) (Niso et al., 2016b). NormaWve neurotransmi`er 

density data are available from neuromaps (h`ps://github.com/netneurolab/neuromaps) 

(Markello et al., 2022b). 

 

Code availability  

All codes for preprocessing, data analysis, and data visualizaWon can be found on the project’s 

GitHub h`ps://github.com/jasondsc/brainfingerprintsR4ever.  
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Chapter 4  
The neurophysiological brain-fingerprint 
of Parkinson’s disease 
 

Preface  

There has been limited research to date on how neurodegenerative diseases impact the unique 

brain activity of patients (i.e., brain-fingerprints). In this Chapter, I explore how 

neurodegenerative diseases like Parkinson’s disease alter inter-individual differences. We 

explore the clinical utility of the brain-fingerprinting approach. I report that the rhythmic brain-

fingerprints of Parkinson’s disease are specific to patients and decode disease staging. In 

contrast, arrhythmic brain activity is less characteristic of patients and challenges participant 

differentiation. The findings of this Chapter clarify previous negative results in the clinical brain-

fingerprinting literature. 

 

The manuscript was submitted to eBioMedicine as:  

da Silva Castanheira, J., Wiesman, A., et al. The neurophysiological brain-fingerprint of Parkinson’s 
disease. (2023). hfps://doi.org/10.1101/2023.02.03.23285441  
 

Abstract 
In this study, we invesWgate the clinical potenWal of brain-fingerprints derived from 

electrophysiological brain acWvity for diagnosWcs and progression monitoring of Parkinson’s 

disease (PD). We obtained brain-fingerprints from PD paWents and age-matched healthy controls 

using short, task-free magnetoencephalographic recordings. The rhythmic components of the 

individual brain-fingerprint disWnguished between paWents and healthy parWcipants with 

https://doi.org/10.1101/2023.02.03.23285441
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approximately 90% accuracy. The most prominent corWcal features of the Parkinson's brain-

fingerprint mapped to polyrhythmic acWvity in unimodal sensorimotor regions. Leveraging these 

features, we also show that Parkinson’s disease stages can be decoded directly from corWcal 

neurophysiological acWvity. AddiWonally, our study reveals that the corWcal topography of the 

Parkinson's brain-fingerprint aligns with that of neurotransmi`er systems affected by the disease's 

pathophysiology. We further demonstrate that the arrhythmic components of corWcal acWvity are 

more variable over short periods of Wme in paWents with Parkinson’s disease than in healthy 

controls, making individual differenWaWon between paWents based on these features more 

challenging and explaining previous negaWve published results. Overall, we outline paWent-specific 

rhythmic brain signalling features that provide insights into both the neurophysiological signature 

and clinical staging of Parkinson’s disease. For this reason, the proposed definiWon of a rhythmic 

brain-fingerprint of Parkinson’s disease may contribute to novel, refined approaches to paWent 

straWficaWon, idenWficaWon, and tesWng of therapeuWc neurosWmulaWon targets. 

 

Keywords: Movement disorders, Parkinson’s disease, neural dynamics, oscillaWons, arrhythmic 

brain acWvity, magnetoencephalography, brain-fingerprinWng. 

 

Lay summary: We propose a new method to help diagnose and monitor Parkinson's disease (PD) 

using paWents’ unique brain-fingerprint. These fingerprints are based on the brain's electrical 

acWvity, which we measured without any specific tasks, using a technique called 

magnetoencephalography. Remarkably, we found that these brain-fingerprints can differenWate 

between people with Parkinson's and those without, with about 90% accuracy. Specifically, we 

noWced that certain rhythmic pa`erns in the brain, parWcularly in areas involved in sensory and 

motor funcWons, were key indicators of Parkinson's. InteresWngly, these pa`erns also helped us 

idenWfy the different stages of the disease. 

AddiWonally, our research shows that the arrangement of these brain-fingerprints in 

Parkinson's paWents corresponds to how the neurochemistry of the brain is impacted by the 

disease. We also observed that certain irregular pa`erns in the brain's acWvity, which vary more 

from moment to moment in Parkinson's paWents, make it harder to disWnguish between 
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individuals based on these features alone. This finding shed light on why previous studies 

reported challenges with similar approaches. 

Overall, our study offers new insights into the unique brain acWvity pa`erns in Parkinson's 

disease and suggests that individual brain-fingerprints could be valuable in tailoring treatment 

plans and developing new therapies for this condiWon. 

 

Introduc:on 
The neurophysiological underpinnings of Parkinson’s disease (PD) are characterized by a spectrum 

of motor and non-motor symptoms that vary widely among paWents, and their fundamental nature 

conWnues to be a subject of extensive research (Bosboom et al., 2006; Stoffers et al., 2007, 2008b). 

This variaWon in symptoms is paralleled by PD's diverse structural alteraWons (Hanganu et al., 2014; 

Jubault et al., 2011; Pereira et al., 2014; H. Wilson et al., 2019), along with changes in 

hemodynamic and electrophysiological brain acWvity compared to healthy individuals (Olde 

Dubbelink et al., 2013; Stoffers et al., 2007; Tinkhauser et al., 2017; Torrecillos et al., 2018; 

Wiesman, Castanheira, et al., 2022; Y. Yu et al., 2021). Notably, electrophysiological changes in PD 

concern both the rhythmic and arrhythmic components of neurophysiological signals (Clark et al., 

2023; Darmani et al., 2023; Olde Dubbelink et al., 2013; Tinkhauser et al., 2017; Torrecillos et al., 

2018; Wiesman, da Silva Castanheira, et al., 2023). Brain-network characterisWcs, as highlighted in 

previous studies using funcWonal connectome analysis with funcWonal magneWc resonance 

imaging (fMRI) and other brain mapping techniques, also deviate from those in health and 

correlate with PD's hallmark motor and cogniWve impairments (Díez-Cirarda et al., 2018; Fiorenzato 

et al., 2019; J. Kim et al., 2017; Zhu et al., 2019).  

Recent methodological advances have employed fMRI connectomes to derive brain-

fingerprints, providing biometric differenWaWon based on individual neuroimaging phenotypes 

(Amico & Goñi, 2018b; Finn et al., 2015b; Greene et al., 2018b; Rosenberg et al., 2017b). This 

concept posits that the neuroimaging phenotypes of an individual remain relaWvely stable over 

Wme, forming the basis for disWncWve brain-fingerprints (Amico & Goñi, 2018b; da Silva Castanheira 

et al., 2021; Finn et al., 2015b). The brain-fingerprinWng method has enabled the exploraWon of 

the neurophysiological bases of complex traits and behaviours in healthy parWcipants (Amico & 
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Goñi, 2018b; da Silva Castanheira et al., 2021; Finn et al., 2015b; Greene et al., 2018b; Rosenberg 

et al., 2017a; Sareen et al., 2021c; SorrenWno et al., 2021b).  

However, subsequent studies have indicated an increased variability (lower self-similairty/ 

Iself ) in brain-fingerprints of clinical populaWons (Kaufmann et al., 2017b, 2018b; SorrenWno et al., 

2021b), which challenges the differenWaWon between paWents based on this neuroimaging 

phenotype. This has been reported in both neuropsychiatric condiWons as well as neurological 

diseases with motor symptoms. For example, a recent study with magnetoencephalography (MEG) 

showed that the differenWaWon accuracy between the brain-fingerprints of paWents with PD, 

derived from connectomes, declines with the severity of their motor symptoms (Troisi Lopez et al., 

2023).  This invesWgaWon focused on beta band (13-30 Hz) acWvity, yet polyrhythmic alteraWons in 

neurophysiology are reported in Parkinson’s disease. No study to date has explored whether these 

connectome effects are equally present in brain-fingerprints derived from hemodynamic signals. 

Brain acWvity is composed of both rhythmic (oscillatory) and arrhythmic (1/f) components 

which both independently relate to cogniWve task performance (Donoghue et al., 2020b; R. Gao et 

al., 2017) and are impacted by disease. DisWnguishing between rhythmic and arrhythmic effects is 

criWcal as both components of neurophysiological signals represent disWnct physiological 

mechanisms. The slope of the arrhythmic component (i.e., 1/f) is thought to reflect the local 

balance of excitatory and inhibitory currents (Donoghue et al., 2020b; R. Gao et al., 2017). 

ConflaWng one component for another negaWvely impacts the interpretability of genuine rhythmic 

signals.A comprehensive understanding of whether increased variability is driven by rhythmic or 

arrhythmic brain-fingerprints remains unexplored. 

A plausible explanaWon for the de-individualizaWon of brain acWvity and subsequent 

difficulty in differenWaWon of paWents with Parkinson’s disease may be an inherent instability in the 

brain acWvity of PD paWents over short periods. For instance, previous work has shown that 

hemodynamic signals from funcWonal near-infrared spectroscopy (fNIRS) are more variable in 

paWents with severe PD symptoms (Maidan et al., 2022). This suggests that electrophysiological 

acWvity in PD is also likely to exhibit greater temporal variability, especially in brain regions with 

strong coupling between electrophysiological and hemodynamic signals (Shafiei et al., 2022).  
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This short-term variability within paWents challenges the definiWon of a stable brain-

fingerprint profile that would accurately characterize an individual's disease stage. Further 

research is needed to determine whether this increased variability affects the enWre frequency 

spectrum of electrophysiological acWvity or is confined to specific rhythmic or arrhythmic 

components (Donoghue et al., 2020b; R. Gao et al., 2017). 

In a recent study with healthy young adult parWcipants, we showed that frequency-specific 

measures of electrophysiological acWvity across the cortex, derived from brief, task-free MEG data, 

define spectral brain-fingerprints that are specific to each individual over remarkably prolonged 

periods of Wme.  

In the present study, we extend this approach and confirm that the electrophysiological 

brain-fingerprint of paWents with PD exhibits greater variability over Wme compared to that of 

healthy controls. However, this variability is predominantly driven by the arrhythmic component 

of the neurophysiological power spectrum. In contrast, rhythmic features of the PD brain-

fingerprint remain remarkably stable, enabling effecWve differenWaWon between PD paWents and 

healthy controls, and among paWents themselves. We highlight the clinical significance of these 

stable features by relaWng them to individual disease stages, and their corWcal topography to the 

funcWonal hierarchy of the cortex (Margulies et al., 2016) and atlas maps of corWcal 

neurotransmi`er systems relevant to PD neuropathophysiology (Markello et al., 2022a). 

 

Methods 
Par(cipants: ParWcipants for this study were selected from a diverse age group (40-82 years) and 

included healthy controls as well as paWents with mild to moderate idiopathic Parkinson’s Disease 

(PD). We aggregated data from mulWple sources. We uWlized data from 79 PD paWents who were 

part of the Quebec Parkinson Network (QPN; h`ps://rpq-qpn.ca (Gan-Or et al., 2020)). These 

paWents had undergone extensive clinical, neurophysiological, and biological profiling. All enrolled 

paWents in the QPN study were on a stable dose of anWparkinsonian medicaWon and demonstrated 

saWsfactory clinical responses. They were instructed to conWnue their medicaWon regimen as 

prescribed before any data collecWon. We included data from QPN parWcipants who had complete 

https://rpq-qpn.ca/
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and usable Magnetoencephalography (MEG; 275 channels whole-head CTF; Port Coquitlam, 

BriWsh Columbia, Canada) clinical, and demographic data. 

Our main control group comprised demographically matched parWcipants from the 

PREVENT-AD (N=50) (Tremblay-Mercier et al., 2021) and OMEGA (N=4) (Niso et al., 2016b) studies, 

ensuring a comparison group that mirrors the age and demographic characterisWcs of the PD 

group. We replicated our observaWons using a second sample of healthy controls from the 

Cambridge Center for Aging Neuroscience (CamCAN) dataset (N= 370 healthy adults, 40-78 years 

old, 58.67, SD= 11.04; 185 Females) recorded on a different MEG instrument. See “Methods: 

CamCAN sample of healthy controls” and Chapter 3 for more details. 

All parWcipants underwent resWng-state eyes-open MEG recordings. These recordings were 

conducted using a 275-channel whole-head CTF system (Port Coquitlam, BriWsh Columbia, Canada) 

at a sampling rate of 2400 Hz, with a 600-Hz anWaliasing filter. We also applied systems built-in 

third-order gradient filters to the recordings. Consistency in data collecWon was maintained by 

conducWng all recordings at the same site, each lasWng a minimum of 10 minutes.  

 

Preprocessing of MEG Data: We preprocessed the MEG data using Brainstorm (Tadel et al., 2011), 

March-2021 distribuWon, on MATLAB 2019b (Mathworks, Inc., Massachuse`s, USA). We adhered 

to established good pracWce guidelines (Gross et al., 2013) and replicated the following pre-

processing steps following previously published studies applied to similar data (Wiesman, da Silva 

Castanheira, et al., 2023; Wiesman, Donhauser, et al., 2023).  

We filtered the MEG sensor signals between 1–200 Hz to minimize slow-wave driis and 

high-frequency noise. Then, we removed line noise arWfacts at 60 Hz and harmonic frequencies, 

with a notch filter bank. We corrected for cardiac and ocular arWfacts using Signal-Space Projectors 

(SSPs), derived from electro-cardiogram and electro-oculogram recordings, using an automated 

procedure in Brainstorm (Tadel et al., 2011). We segmented the MEG recordings into non-

overlapping 6-second epochs and downsampled them to 600 Hz. Lastly, we screened and excluded 

data segments with peak-to-peak signal amplitude or maximum signal gradient exceeding ±3 

absolute deviaWons from the median across all epochs.  
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MEG source mapping. We derived brain source models from each parWcipant's individual T1-

weighted MRI data. We segmented and labeled the MRI volumes using Freesurfer (Fischl, 2012). 

We coregistered the MEG data to these segmented MRIs using approximately 100 head points that 

were digiWzed on the day of the MEG sessions. For 14 PD paWents and 3 controls who lacked usable 

MRI data, we warped the default Freesurfer anatomy using Brainstorm procedures to match their 

available head digiWzaWon points and anatomical landmarks.  

We created biophysical head models for each parWcipant using the Brainstorm overlapping-

spheres model with default parameters. The MEG corWcal maps consisted of 15,000 elementary 

dipole sources, constrained to the corWcal surface, with free orientaWon. We computed source 

maps for each parWcipant and each 6-second epoch using dynamic staWsWcal parametric mapping 

(dSPM) with Brainstorm’s default parameters. To model environmental noise staWsWcally, we 

processed with the same approach the two-minute empty-room recordings collected around the 

Wme of each parWcipant's visit.  

For all epochs, we extracted individual source Wme series at each corWcal locaWon from the 

first principal component of the three elementary Wme courses of each triplet of elementary 

sources at each corWcal vertex. Finally, we clustered the resulWng 15,000 Wme series according to 

the Desikan-Killiany corWcal parcellaWon (Desikan et al., 2006b) into 68 regions of interest (ROIs), 

obtaining one representaWve Wme series per parcel from the first principal component of all source 

signals within each ROI. 

 

Deriva(on of spectral brain-fingerprints: We derived brain-fingerprints from the power spectrum 

of the ROI source Wme series. We calculated the Power Spectrum Density (PSD) for each parcel 

using Welch’s method, with a Wme window of 3 seconds and 50% overlap. This approach yielded 

PSDs in the frequency range of 0–150 Hz, at a frequency resoluWon of 1/3 Hz. 

Each individual's spectral brain-fingerprint was composed of the PSDs of all 68 corWcal 

parcels, averaged across all 6-second epochs. As detailed in Results, we derived two sets of spectral 

brain-fingerprints based on epochs from either the first or second half of the enWre MEG session 

recordings. We also produced spectral brain-fingerprints from shorter datasets comprising 30-

second non-overlapping segments. 
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The feature count in each spectral brain-fingerprint totaled 68*451. We performed 

subsequent analyses using in-house developed code in Python (version 3.7.6) and R (version 4.2.1). 

Individual differen(a(on from spectral brain-fingerprints: We replicated a previously published 

fingerprinWng approach based on the correlaWonal differenWability of parWcipants between data 

segments (as illustrated in Figure 1a-b) (da Silva Castanheira et al., 2021-; see Chapter 2). For each 

parWcipant, we calculated all Pearson’s correlaWon coefficients between their first spectral brain-

fingerprint and the second brain-fingerprint of every individual in the same cohort, including the 

parWcipant being analyzed. The fingerprinWng process per se involved a simple lookup along the 

rows or columns of the symmetrical interindividual correlaWon matrix. The highest correlaWon 

coefficient in this matrix indicated the matching parWcipant. 

We repeated this approach for all parWcipants in the cohort, resulWng in a confusion matrix 

across all parWcipants based on the two instances of their respecWve brain-fingerprints. We 

determined the overall differenWaWon accuracy of the brain-fingerprinWng procedure by calculaWng 

the percent raWo of correctly differenWated individuals.  

We addressed three types of differenWaWon challenges: i) differenWaWon among healthy 

parWcipants, ii) differenWaWon among Parkinson’s disease paWents, and iii) differenWaWon of each 

PD paWent against all healthy controls (as shown in Figure 1c). DifferenWaWng healthy parWcipants 

aimed to replicate our earlier study with younger adults (da Silva Castanheira et al., 2021) in an 

older parWcipant group, providing a benchmark differenWaWon accuracy for the paWent 

parWcipants' age group. 

We defined individual differenWability as the ability to disWnguish a parWcipant from others 

in the cohort based on their brain-fingerprint. We calculated this measure as the z-scored Pearson’s 

correlaWon between the two brain-fingerprints of a given parWcipant (self-similarity), relaWve to 

the mean and standard deviaWon of the correlaWons between this parWcipant's first brain-

fingerprint and the second brain-fingerprints of all other parWcipants (other-similarity). 

 

Bootstrapping differen(a(on accuracy scores: To establish confidence intervals for the average 

differenWaWon accuracy scores obtained from the fingerprinWng procedure, we employed a 

bootstrapping method across the tested cohorts. This involved randomly selecWng a subset of 
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parWcipants, consWtuWng 90% of the cohort, and performing brain-fingerprinWng on their data to 

obtain a differenWaWon accuracy score for that subset.  

We repeated this process 1,000 Wmes, each Wme with a different random subset of 

parWcipants from the cohort. From the empirical distribuWon of these differenWaWon accuracies, 

we derived a 95% confidence interval, using the 2.5th and 97.5th percenWles.  

 

Addressing biophysical and environmental ar(facts: We examined the potenWal impact of 

environmental noise and biophysical recording arWfacts on the differenWaWon of individual 

parWcipants. To do this, we correlated individual differenWability scores with the root-mean-

squares (RMS) of ocular, cardiac, and head movement signals that were recorded simultaneously 

with MEG. These signals included data from electrocardiogram (ECG), horizontal electrooculogram 

(HEOG), verWcal electrooculogram (VEOG), and head-coils triplet channels. 

We analyzed the correlaWons between these three measures and the individual 

differenWability of each parWcipant from the enWre cohort. AddiWonally, we included the head 

moWon RMS measure as a nuisance covariate in our regression model that explored self-similarity 

with increasing gap duraWons.  

To assess if environmental and instrument noise, which can vary daily, could have biased 

individual differenWaWon, we uWlized the empty-room recordings collected alongside each MEG 

session. From these recordings, we derived pseudo-brain fingerprints for each parWcipant, based 

on the corWcal source maps of the noise recordings. We then calculated the differenWaWon 

accuracies from these pseudo brain-fingerprints, following the same procedure as above.  

 

Arrhythmic/rhythmic spectral parametriza(on: To evaluate the contribuWon of arrhythmic and 

rhythmic spectral components to individual differenWaWon, we first idenWfied the best-fi�ng 

arrhythmic components of each individual’s brain-fingerprint spectral features in the 2-40 Hz range 

using specparam in Brainstorm. The parameters for specparam were set as follows: peak width 

limits between 0.5 and 12 Hz, a maximum of 3 peaks, a minimum peak amplitude of 3 arbitrary 

units (a.u.), a peak threshold of 2 standard deviaWons, a proximity threshold of 2 standard 

deviaWons, and a fixed aperiodic mode. 
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The specparam algorithm defines neural power spectra as the sum of arrhythmic and 

rhythmic brain acWvity, with arrythmic brain acWvty modeled as a Lorentzian funcWon: 

𝐴𝑟𝑟𝑦𝑡ℎ𝑚𝑖𝑐 = 𝑏 − log	(𝐹!) 

Where b represents the broadband offset of the neural power spectrum and ɑ represents the 

arrhythmic exponent (or slope) of the power spectrum which approximates a linear fit in log-log 

space.  

Rhythmic brain acWvity is modelled as a series of Gaussian peaks that sit atop the 

background arrhythmic brain acWvity with the following three parameters: the center frequency of 

the Gaussian peak in Hz, the standard deviaWon of the Gaussian peak (Hz) and the height of the 

gaussian peak above the background arrhythmic acWvity (arbitrary units). 

Using these arrhythmic models, we derived brain-fingerprints based solely on their 

features. Symmetrically, we removed the arrhythmic components from the original brain-

fingerprints to isolate the rhythmic residuals and assess their contribuWon to inter-individual 

differenWaWon.  

We then conducted the same brain-fingerprinWng analyses as previously described, 

applying them separately to both arrhythmic and rhythmic brain-fingerprints.  

 

Temporal variability of the PD brain-fingerprint: To invesWgate the temporal variability of PD 

brain-fingerprint, we uWlized brain-fingerprints derived from 30-second recordings of data. This 

approach builds on our previous work, which demonstrated the robustness of spectral brain-

fingerprints derived from brief recordings (Wiesman, da Silva Castanheira, et al., 2022c).  

To predict the Fisher z-transformed self-similarity (i.e., autocorrelaWon) of successive brain-

fingerprints, we employed second-order polynomial hierarchical regression models constructed 

using the lme4 package in R. 

In our modeling, we nested the slope of gap duraWon within each subject, allowing for 

second-order polynomial fits for gap duraWon between brain fingerprints.  

𝑎𝑟𝑡𝑎𝑛ℎ(𝑠𝑒𝑙𝑓 − 𝑠𝑖𝑚𝑖𝑙𝑎𝑖𝑟𝑡𝑦)	~		𝑝𝑜𝑙𝑦(𝑔𝑎𝑝	𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 2) ∗ 𝐺𝑟𝑜𝑢𝑝	(𝑃𝐷	𝑣𝑠	𝐶𝑇𝐿) + ℎ𝑒𝑎𝑑	𝑚𝑜𝑡𝑖𝑜𝑛
+ 𝑟𝑎𝑛𝑑𝑜𝑚	𝑒𝑓𝑓𝑒𝑐𝑡(1	 + 	𝑝𝑜𝑙𝑦(𝑔𝑎𝑝	𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 2)	|𝑆𝑢𝑏𝑗𝐼𝑑) 



 105 

Saliency of brain-fingerprint features: We quanWfied the contribuWon of each corWcal region to 

individual differenWaWon using intraclass correlaWons (ICC). ICC assess the agreement between two 

measures, in this context, indicaWng how consistent a parWcular brain-fingerprint feature is across 

the two brain-fingerprints of each individual compared to others in the cohort. A higher ICC for a 

given brain-fingerprint feature implies greater consistency across an individual's brain-fingerprints 

relaWve to the cohort. 

To illustrate the saliency of these features, we created ΔICC maps, as shown in Figure 3b. 

We first averaged the ΔICC values within each of the canonical frequency bands and then averaged 

these across all bands. This process involved averaging ΔICC within specified frequency ranges: 

delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–50 Hz). This 

resulted in six ΔICC maps, one for each frequency band, which were then averaged to obtain a 

broadband ΔICC map. 

The raWonale behind this method was to give equal weight to each frequency band in the 

derivaWon of the broadband ΔICC, irrespecWve of their respecWve bandwidths. For example, while 

the delta band has a bandwidth of 4 Hz, the high-gamma band encompasses 100 Hz. This approach 

ensures a balanced representaWon of all frequency bands in assessing the contribuWon of corWcal 

regions to individual differenWaWon based on brain-fingerprint features. In addiWon, this method 

allowed for a direct comparison to the CamCAN dataset whose power spectrum was computed 

using 2 second windows and therefore has a different spectral resoluWon (i.e., ½ Hz). 

 

CamCAN sample of healthy controls: For verifying the robustness of the ΔICC corWcal map, we 

uWlized an independent sample of healthy age-matched controls from the Cambridge Center for 

Aging Neuroscience (CamCAN) dataset. This data consisted of resWng-state, eye-closed MEG 

recordings using a 306-channel VectorView MEG system (Elekta Neuromag, Helsinki). We 

processed the data of 370 healthy adults, aged between 40 and 78 years, from the CamCAN 

dataset using a pipeline similar to the one described in this paper.  

The CamCAn data were preprocessed for a separate project and therefore was 

preprocessed with some differences from the other data reported herein. For this reason, and the 
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different recording technology, we do not make any direct comparisons between the CamCAN 

control sample and the PD sample on parWcipant differenWaWon accuracies or self-similarity. 

We preprocessed the CamCAN dataset in a similar fashion to the other data reported 

herein using a standardized pipeline based on24. The differences in the preprocessing include the 

notch filter (50Hz), linearly constrained beamformer in Brainstorm with default parameters to 

brain map sensor data, and Wme windows of 2 seconds with a 50% overlap for power spectrum 

esWmates of source Wme series.  

We computed PSD esWmates at each of the 68 parcels in the Desikan-Killiany atlas. We 

calculated ICC values for each specified frequency band. Using these ICC values, we constructed a 

corWcal map of broadband ΔICC, following the method outlined above in Saliency of Brain-

fingerprint Features. 

Given that the ICC approach relies on parWcipants as their own ‘rater’, the computaWon of 

salient features for parWcipant differenWaWon in the two control samples should not be biased by 

the preprocessing of the MEG datasets. Taken together, we believe that the differences in the 

preprocessing of the two control samples and MEG recording technologies are a strength of our 

approach. 

 

Computa(onal neuroanatomy analysis: We ensured that neuroanatomical features, including 

those altered by Parkinson’s disease, did not influence the differenWaWon of parWcipants based on 

their spectral brain-fingerprints. To achieve this, we measured z-scored deviaWons in corWcal 

thickness for each corWcal parcel in PD paWents. These deviaWons were calculated using 

FreeSurfer's recon-all, based on the mean and standard deviaWon of corWcal thickness observed in 

the age-matched healthy controls. 

We employed linear regression models to invesWgate two aspects: i) whether paWents who 

were most differenWable based on their brain-fingerprints also exhibited greater deviaWons in 

corWcal thickness, and ii) the relaWonship between deviaWons in regional corWcal thickness and 

regional ΔICC (as depicted in Figure 3b, lei panel). 
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Decoding disease stage from brain-fingerprints: We used individual Hoehn & Yahr scores as 

markers for disease staging in PD paWents (Goetz et al., 2004; Hoehn & Yahr, 1967). We binarized 

these scores around a value of 2, creaWng two disWnct groups to differenWate paWents with 

unilateral symptoms from those with bilateral symptoms.  

We trained a linear support vector machine (SVM) classifier in R, using default parameters 

to idenWfy each paWent’s disease stage category from their respecWve spectral brain-fingerprint 

features. 

We conducted SVM classificaWon for each corWcal parcel independently. To train the SVM 

classifier, we used data from a random sample of 80% of the paWents, and the remaining 20% of 

paWents served as a test set. We recorded the percentage of these held-out paWents for whom the 

classifier accurately idenWfied their Hoehn & Yahr category. We repeated this classificaWon process 

1,000 Wmes for each corWcal parcel, generaWng an empirical distribuWon of disease stage 

classificaWon accuracy across the cortex.  

Next, we examined the spaWal correlaWon between the corWcal topographies of disease 

stage decoding accuracy and the regional ΔICC values from the brain-fingerprints (as discussed 

above in Saliency of Brain-fingerprint Features). Specifically, we correlated the differences in ICC 

values—subtracted between the PD-cohort fingerprinWng challenge and the control-cohort 

challenge—across corWcal ROIs with the decoding accuracies obtained from Hoehn & Yahr score 

decoding.  

 

Correspondence with cor(cal func(onal hierarchy:  We examined whether the brain-fingerprints 

of individuals with Parkinson's Disease (PD) align with the corWcal topography of funcWonal 

hierarchies in the cortex (Margulies et al., 2016). To invesWgate this, we focused on the spaWal 

relaWonship between the ΔICC brain-fingerprint topography and the first gradient of the corWcal 

funcWonal hierarchy.  

We calculated Pearson’s spaWal correlaWon between the ΔICC topography of brain-

fingerprints and the atlas map of the first gradient of the corWcal funcWonal hierarchy. The 

funcWonal gradient map, obtained from (Margulies et al., 2016), we accessed from neuromaps 

(Markello et al., 2022a) and was parcellated into the 68 regions of the Desikan-Killiany atlas.  
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To staWsWcally evaluate the significance of these correlaWons, we computed Bayes factors 

using the correlaGonBF funcWon in R. AddiWonally, we esWmated p-values using permutaWon tests 

that accounted for the spaWal autocorrelaWon inherent in the data(Markello & Misic, 2021; Váša & 

Mišić, 2022). 

 

Correla(on with cor(cal neurotransmiGer systems: Using a similar approach, we assessed the 

spaWal correlaWon between the ΔICC values of brain-fingerprints and the normaWve atlas maps of 

various neurotransmi`er systems. These systems were represented by maps for 19 receptors and 

transporters across 9 neurotransmi`er systems, obtained from neuromaps. The neurotransmi`er 

systems and their corresponding receptors and transporters included: Dopamine (D1, D2, DAT); 

Serotonin (5-HT1a, 5-HT1b, 5-HT2a, 5-HT4, 5-HT6, 5-HTT); Acetylcholine (α4β2, M1, VAChT); GABA 

(GABAa); Glutamate (NMDA, mGluR5); Norepinephrine (NET); Histamine (H3); Cannabinoid (CB1) 

and Opioid (MOR). 

  Each neurotransmi`er system map was parcellated using the 68 regions of the Desikan-

Killiany atlas. We then calculated Pearson’s spaWal correlaWons between these neurochemical 

maps and the regional ΔICC values of brain-fingerprints.  

To determine staWsWcal significance, we corrected for mulWple comparisons using the False 

Discovery Rate (FDR) method implemented in R's p.adjust funcWon(R Core Team, 2022). We also 

computed Bayes factors using the correlaGonBF funcWon in R to quanWfy evidence in favor of the 

alternaWve hypothesis that a spaWal correlaWon exists. 

For each significant spaWal correspondence observed, we esWmated p-values based on 

spaWally constrained permutaWon tests (Markello & Misic, 2021; Váša & Mišić, 2022). We 

conducted 1,000 permutaWons of the neurochemical atlases using the Hungarian method. It is 

important to note that the reported effects might be stronger than what was observed in the spin 

tests from the permuted data, leading to a null pspin value.  

 

Results 
We collected at least two task-free MEG recordings, each lasWng 5 minutes with parWcipants' eyes 

open, from 79 PD paWents and 54 age-matched healthy controls (Prevent-AD sample; demographic 
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details in Table S1). We then applied source-imaging to the MEG sensor data, using individual 

corWcal surfaces derived from T1-weighted structural MRI scans (Baillet, 2017). For each 

parWcipant, we esWmated the power spectrum density (PSD) of their corWcal MEG Wme series in 

the 0-150 Hz frequency range, across the corWcal regions defined by the Desikan-Killiany atlas 

(Desikan et al., 2006b). This process generated one spectral brain-fingerprint for each parWcipant’s 

MEG recordings (see Methods). 

Our goal with brain-fingerprinWng was to quanWfy the disWncWveness of individual features 

in the brain-fingerprints of paWents and healthy controls. We therefore compared the corWcal 

spectral features from each parWcipant's MEG recordings with those of all other parWcipants in our 

sample. Subsequently, we applied the same analysis to differenWate PD paWents. Finally, we 

examined if this method could reliably disWnguish PD paWents from their age-matched healthy 

counterparts (Figure 1). For the differenWaWon accuracy scores obtained, we calculated 

bootstrapped confidence intervals (CIs), as detailed in the Methods secWon. 

 
 

 
Chapter 4 Figure 1 Brain-fingerprin@ng pipeline and study design. 

(a) From each par@cipant, the power spectrum density of MEG source @me series is computed 

for each region defined by the Desikan-Killiany atlas. This is done for two data segments (datasets 

1 and 2), each containing approximately 4 minutes of clean data. The power spectra from these 

segments form two spectral brain-fingerprints (b-fp1 and b-fp2) for each par@cipant (Desikan et 
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al., 2006b). A confusion matrix, using self- and other-similarity measures of these brain-

fingerprints across par@cipants, enables inter-individual differen@a@on assessment. (b) We 

evaluated the effec@veness of this approach in differen@a@ng individuals among three groups: i) 

healthy controls, ii) pa@ents with Parkinson's Disease (PD), and iii) each PD pa@ent compared to 

healthy controls. (c) We derived an individual differen@ability score for each par@cipant, based 

on the self-similarity of their two brain-fingerprints. This score is z-scored against the other-

similarity of their fingerprints with those of other par@cipants in the study. 

 
Brain-Fingerprin@ng Accuracy in Differen@a@ng Healthy and PD Par@cipants 

We found that healthy parWcipants can be differenWated from each other with 89.8% accuracy (CI 

[88.0, 94.0]; Figure 2a), paWents with PD from each other with 77.2% accuracy (CI [74.7, 81.7]), 

and paWents from healthy controls with 81.1% accuracy (CI [81.0, 83.5]; Figure 2a) using full 

spectral features.  

To assess the respecWve contribuWons to this inter-individual differenWaWon from 

arrhythmic versus rhythmic neurophysiology, we parametrized the regional power spectra of the 

corWcal Wme series into its background (scale-free 1/f) and oscillatory (band-limited) components 

and used these data to recompute brain-fingerprints. The accuracy of inter-individual 

differenWaWon based on arrhythmic brain-fingerprints decreased to 74.1% between healthy 

controls (CI [72.0, 78.0]), 66.5% between paWents (CI [62.9, 71.4]), and 71.5% accuracy individual 

paWents and healthy controls (CI [69.6, 75.9]; Figure S1 and Supplemental InformaWon). In contrast, 

the accuracy of inter-individual differenWaWon based on rhythmic brain-fingerprints increased to 

92.6% (CI [90.0, 96.0]) among healthy parWcipants, 86.7% (CI [82.9, 91.4]) between paWents, and 

90.5% (CI [89.9, 92.4]) between individual paWents and healthy controls (Figure 2a bar plots).  

We then sought to determine whether the present parWcipants could be similarly 

differenWated based on brief, 30-second segments, thereby replicaWng our previous observaWons 

in younger healthy parWcipants with older healthy adults and paWents (da Silva Castanheira et al., 

2021). We observed a similar pa`ern of differenWaWon accuracies: differenWaWon between healthy 

parWcipants reached 84.9% (computed 95% CI [83.1, 86.7]), 77.2% for between paWents (95% CI 

[74.4, 79.9]), and 81.2% for between paWents and healthy controls (95% CI [78.7, 83.7]) for full 

spectral features. These results demonstrate the robustness of the spectral brain-fingerprinWng 
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approach with respect to data length (sca`er plots in Figure 2a). Both brain-fingerprints of the 

arrhythmic and rhythmic components derived from brief segments of 30 seconds exhibited similar 

pa`erns, with arrhythmic brain-fingerprints differenWaWng between paWents with lower accuracy 

than healthy parWcipants. 

 

Moment-to-moment arrhythmic fluctua@ons are increased in Parkinson’s disease 

We aimed to understand why the accuracy of differenWaWng PD paWents from healthy controls 

varied so significantly, both with full spectral brain-fingerprints (77.2% vs. 89.8% accuracy) and 

arrhythmic ones (66.5% vs. 74.1% accuracy). To do this, we compared the similarity of brain-

fingerprints within each dataset (self-similarity) to the similarity with fingerprints from other 

parWcipants (other-similarity). Our analysis revealed no significant difference in other-similarity 

among healthy parWcipants and PD paWents when comparing full spectral brain-fingerprints (see 

Figure S2). However, we noted a significant reducWon in the self-similarity of the paWents' full 

spectral brain-fingerprints (t=2.24, p=0.02; permutaWon t-tests; Figure 2b). 

To be`er understand this effect, we analyzed the impact of arrhythmic versus rhythmic 

neurophysiological spectral components on self-similarity. We observed that arrhythmic brain-

fingerprints in paWents demonstrated reduced self-similarity (t=4.86, p<0.01; permutaWon t-tests), 

unlike rhythmic brain-fingerprints (t=1.77, p=0.09; permutaWon t-tests; Figure 2b). 

  Further, we invesWgated if this discrepancy could be linked to the increased moment-to-

moment variability in the brain acWvity of PD paWents within the recording session (as detailed in 

Methods under 'Temporal variability of the PD brain-fingerprint'; see Table S2-S4 and Figure 2c). 

Using the shorter 30-second data segments, we discovered that for full spectrum brain-

fingerprints, the self-similarity decreases more rapidly in paWents than in healthy controls as the 

duraWon of the gap between the data segments increases (β=-3.77, SE=1.73, 95% CI [-7.16, -0.38], 

p= 0.029; detailed in Table S2). This pa`ern was not significant for arrhythmic brain-fingerprints 

(β=-3.67, SE=2.33, 95% CI [-8.25, 0.92], p= 0.117; Table S3) but showed a similar trend. Conversely, 

rhythmic brain-fingerprints revealed a different pa`ern: for shorter Wme gaps between data 

segments, the neurophysiological acWvity in paWents with PD was more self-similar than that of 

controls, becoming comparable over longer duraWons (β=-3.33, SE=1.69, 95% CI [-6.65, -0.02], 
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p=0.049; Table S4). Together, these results suggest that the decreased differenWaWon accuracy 

observed in PD is related to an increased moment-to-moment variability of arrhythmic brain-

fingerprints in PD. 

 

 
Chapter 4 Figure 2 Differen@a@ng Pa@ents with Parkinson’s Disease from Healthy Controls Using 
Spectral Brain-Fingerprints. 
(a) Accuracy in dis@nguishing par@cipants from their brain-fingerprints derived from full, 

arrhythmic, and rhythmic neurophysiological power spectra, es@mated from 4-minute (bar plots) 
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and 30-second (scafer plots) data segments. Scafer plots indicate differen@a@on accuracy for all 

brain-fingerprint pairs derived from all possible con@guous 30-second segments derived from the 

original 4-minute recordings. Grey segments at the base of the bar plots indicate control 

differen@a@on performances based on empty-room MEG recordings collected during each 

par@cipant' visit (refer to Methods). Error bars represent bootstrapped 95% confidence intervals. 

(b) Self-similarity sta@s@cs within par@cipants for full spectral, rhythmic, and arrhythmic brain-

fingerprints. The plots show the empirical density of self-similarity sta@s@cs between two 

consecu@ve brain-fingerprints in control and PD cohorts, with the PD group showing a wider 

distribu@on, sugges@ng more variability in pa@ents for full spectral and aperiodic features. 

(c) Self-similarity of brain-fingerprints from brief (30-second) brain data segments across full 

spectral, rhythmic, and arrhythmic features. PD pa@ents show lower self-similarity with increased 

gap dura@ons between recordings (y-intercept shi_ downwards). The self-similarity of pa@ent full 

spectrum brain-fingerprints decreases more rapidly as the gap dura@on between recordings 

increases. In contrast, the self-similarity of pa@ent brain-fingerprints from rhythmic components 

was more self-similar than controls at short gap dura@ons, and became comparable at longer 

dura@ons. Shaded regions indicate the standard error on the mean. 

  
The Parkinson’s brain-fingerprint indicates disease stages 

Given the noted temporal stability of rhythmic neurophysiological features in paWents with 

Parkinson’s Disease (PD), we calculated the intraclass correlaWon (ICC) scores for each corWcal 

region to idenWfy the most consistent neurophysiological features in the rhythmic spectral brain-

fingerprints across individuals (Amico & Goñi, 2018b; Shrout & Fleiss, 1979b). We found disWncWve 

pa`erns of rhythmic neurophysiology in varying brain regions between healthy controls and PD 

paWents. The highest ICC values were in frontal and medial corWcal regions for healthy controls 

(Figure S3a), and in the right pre- and post-central regions for PD paWents (Figure 3a and Figures 

S3b). 

We replicated these findings with an external sample of healthy age-matched controls from 

the Cambridge Center for Aging Neuroscience (CamCAN) dataset(Taylor et al., 2017) (Figure 3a, 

see Methods). We computed a corWcal map of ICC values for the independent sample of healthy 

older controls and contrasted this map with the topography of paWents with PD (i.e., ΔICC map). 
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The corWcal maps of the disWncWve pa`erns of the PD brain-fingerprint obtained from using the 

two separate control samples were strongly correlated across control samples (r= 0.75, p< 0.001, 

pspin< 0.001).  

To gauge how the spaWal divergence between the rhythmic brain-fingerprints relates to 

individual differenWaWon, we created brain-fingerprints for both PD paWents and healthy controls 

using the top 10% of ICC features specific to each group (Figure 3a). UWlizing the most disWncWve 

features of the brain-fingerprints of PD paWents, we achieved a differenWaWon accuracy of 78.7% 

([76.6, 80.8] CI; Figure 2a) among healthy parWcipants, and 88.7% ([85.5, 91.8] CI; Figure 3b) 

among PD paWents. In contrast, using the features most salient in healthy control brain-

fingerprints, we differenWated healthy parWcipants with 92.7% accuracy ([90.6, 94.9] CI; Figure 3b), 

and PD paWents with only 66.9% accuracy ([62.4, 71.5] CI; Figure 3b). 

 

 
Chapter 4 Figure 3 Compara1ve Analysis of Brain-Fingerprint Differen1a1on in Parkinson’s 
Disease and Control Groups 
(a) Cor@cal maps comparing ICC scores for differen@a@ng between pa@ents and controls. Orange 

areas show regions where differen@a@on of individual pa@ents is more effec@ve than in controls. 

We replicated this finding in two independent samples of healthy controls: the Prevent-AD 

dataset (top panel) and the CamCAN dataset (bofom panel). (b) Differen@a@on accuracy from 

brain-fingerprints defined by top features for differen@a@ng pa@ents (le_, cor@cal areas shown in 

orange) and top features for differen@a@ng controls (right, cor@cal areas shown in blue). 

 

We then explored if the rhythmic brain-fingerprint of a paWent could be indicaWve of their 

clinical disease stage. For this purpose, we developed binary classifiers to decode the disease stage 

based on rhythmic spectral features at each corWcal parcel (detailed in Methods under 'Decoding 
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disease staging from brain-fingerprints'). We classified the disease stage as either “early” or 

“advanced” according to the paWents’ scores on the Hoehn & Yahr clinical scale (HY< 2 and HY≥ 2, 

respecWvely) (Goetz et al., 2004; Hoehn & Yahr, 1967).  

  The corWcal map of regional decoding accuracies revealed that it is possible to disWnguish 

early from advanced clinical stages, exceeding chance levels, through electrophysiological brain 

acWvity. The most notable brain regions enabling this decoding were the right post-central and lei 

caudal middle frontal gyri, showing decoding accuracies of 69.6% and 68.8%, respecWvely (Figure 

4a). This data-driven approach uncovered that in these specific regions, there is a suppression of 

faster brain acWvity above 15Hz and an increase in slower acWvity (6-9 Hz) in the more advanced 

disease stages (Figure 4a, right panel). 

  Moreover, we found that the corWcal map for disease-stage decoding aligns with the map 

of ICC difference scores (Figure 4b) and replicated this alignment using the CamCAN sample of 

healthy controls r= 0.36 (p< 0.01, pspin< 0.001) and r= 0.51 (p>0.001, pspin< 0.001), respecWvely. 

This consistency in findings was robust regardless of the cross-validaWon method employed for 

training the disease-stage classifiers (Figure S6). 

 

 
Chapter 4 Figure 4 Decoding Stages of Parkinson’s Disease from Brain-Fingerprints.  
(a) Cor@cal topography of decoding accuracies for Parkinson’s disease stages (based on binarized 

Hoehn & Yahr scores). On the right, power spectra of res@ng-state neurophysiological ac@vity in 

the right postcentral gyrus, the cor@cal region with the highest accuracy in disease stage 

decoding. Plots represent the average power spectrum for each group: healthy controls, early 

and advanced disease stages, with shaded areas indica@ng standard errors across groups. 
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(b) Scafer plot showing how the decoding accuracy of Parkinson’s disease stages from brain-

fingerprint features of each cor@cal parcel correlates with the saliency of each parcel, as 

determined by its ΔICC score.  

  

Aligning Parkinson's Disease Brain-Fingerprints with Cor@cal Func@onal Gradients and 

Neurotransmifer Systems 
We found that the regional dispariWes in prominent features of the rhythmic brain-fingerprint 

between Parkinson's Disease (PD) paWents and controls (indicated by ΔICC; see Figure 3a) were 

aligned with the unimodal-to-transmodal funcWonal gradient of the corWcal hierarchy (Margulies 

et al., 2016) (r=-0.49, p< 0.001, pspin<0.001; Figure 5a, with details in Methods). The most notable 

rhythmic brain-fingerprint features in healthy adults were associated with transmodal corWcal 

regions. Conversely, the disWnct features of the Parkinson rhythmic brain-fingerprint were more 

closely related to unimodal (i.e., primary sensorimotor) areas within the funcWonal hierarchy of 

the cortex. Again, we replicated this effect using the CamCAN sample of healthy controls (r=-0.53, 

tp< 0.001, pspin<0.001; Figure S7). 

We further invesWgated if the most prominent features of the Parkinson's brain-fingerprint 

were topographically related to the corWcal distribuWon of major neurotransmi`er systems. Using 

neuromaps (Markello et al., 2022a), we obtained 19 normaWve corWcal maps represenWng 9 

neurotransmi`er systems (Figure 5b bo`om) and assessed their spaWal correlaWon with the 

corWcal map of ICC difference scores (Figure 3a Prevent-AD sample; see Methods). Our analysis 

revealed significant correlaWons with several neurotransmi`er systems, including serotonin-2a (r=-

0.39, pFDR=0.006, pspin<0.001), serotonin-4 (r=-0.37, pFDR =0.008, pspin =0.008), cannabinoid-1 (r= -

0.41, pFDR =0.00045, pspin<0.001), mu-opioid (r=-0.34, pFDR =0.018, pspin =0.007) receptors, and the 

norepinephrine transporter (r=0.43, pFDR =0.0040, pspin <0.001). Notably, the cannabinoid, opioid, 

and serotonin systems, concentrated in temporal and frontal corWcal regions, and corresponded 

with the most salient rhythmic brain-fingerprint features in healthy controls (Figure 5b & Figure 

S3a). Conversely, the pronounced presence of norepinephrine transporters in the somato-motor 

corWces mirrored the significance of rhythmic neurophysiology in these areas in PD paWents (Figure 

5b & Figure 3a). 
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  This effect replicated using the CamCAN sample of healthy controls (Figure 3a). We found 

alignments with the corWcal distribuWons of serotonin-2a (r=-0.31, pFDR =0.02, pspin =0.005), 

serotonin-4 (r=-0.43, pFDR =0.002, pspin =0.002), cannabinoid-1 (r= -0.35, pFDR =0.01, pspin =0.003), 

mu-opioid (r=-0.37, pFDR =0.007, pspin =0.002) receptors, and the norepinephrine transporter 

(r=0.52, pFDR <0.001, pspin<0.001). AddiWonally, we observed correspondence with the dopamine-

1 (r=-0.31, pFDR =0.02, pspin =0.005), dopamine-2 (r=-0.28, pFDR =0.04, pspin =0.035), and serotonin 

transporter maps (r=-0.43, pFDR =0.001, pspin =0.003; Figure 5b). 

 

 
Chapter 4 Figure 5 Correla1on of Spectral Brain-Fingerprints with Cor1cal Func1onal Hierarchy 
and NeurotransmiIer Systems. 
(a) Top: Cor@cal map illustra@ng the first unimodal-to-transmodal func@onal gradient, sourced 

from neuromaps (Markello et al., 2022a). Bofom: Linear associa@on between the weights of 

cor@cal regions in this func@onal gradient (as per neuromaps) and their prominence in the PD 

brain-fingerprint (Figure 3a, top). 

(b) Top: Bayes factor analysis of the topographical alignment between PD brain-fingerprint 

features (from Figure 3a) and atlases of various cor@cal neurochemical systems, highligh@ng 

strong correla@ons par@cularly with serotonin, cannabinoid, mu-opioid, and norepinephrine 

systems. Each row represents data from different control samples. Bofom: Selected 

neurochemical cor@cal atlases, as obtained from neuromaps.  

  

Robustness of Spectral Brain-Fingerprints Against Environmental and Physiological Ar@facts 
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To ensure the reliability of spectral brain-fingerprints, we tested their robustness against 

environmental and physiological arWfacts. We first evaluated environmental factors, specifically 

those related to the recording condiWons on different days. To that effect, we used empty-room 

MEG recordings conducted around each parWcipant's visit. By processing these recordings in a 

manner similar to the parWcipant data and mapping them onto the parWcipant’s corWcal surfaces 

with the same imaging procedure used for their MEG data, we established that environmental 

factors did not significantly contribute to individual differenWaWon. Notably, the differenWaWon 

accuracy based on these empty-room recordings was substanWally lower than that achieved with 

actual spectral brain-fingerprints (<5%; see Figure 2a & Figure S1). 

Further, we evaluated the influence of common physiological arWfacts in MEG recordings, 

such as head moWon, heart-rate variability, and eye blinks, on brain-fingerprinWng. Our findings 

indicated that inter-individual differenWability was not significantly affected by cardiac or ocular 

arWfacts (r= -0.04, p= 0.71 and r= -0.08, p= 0.46, respecWvely). However, there was a modest 

associaWon with head movements in the PD cohort (r= 0.24, p= 0.04; Bayesian post-hoc analysis 

BF= 2.04; Figure S5). Consequently, we included head moWon as a nuisance covariate in all 

subsequent regression analyses (detailed in Methods). We note that there were no significant 

differences in physiological arWfact profiles between healthy controls and PD paWents (head 

moWon: t(64.34)= 0.41, p= 0.68; EOG: t(123.88)= -0.91, p=0.36; ECG: t(64.41)= -1.24, p=0.22). 

Lastly, considering previous reports of corWcal thickness abnormaliWes in PD (Hanganu et 

al., 2014; Jubault et al., 2011; Pereira et al., 2014; H. Wilson et al., 2019), we invesWgated whether 

these structural changes could partly explain the differenWability of PD paWents from healthy 

controls. We derived corWcal thickness measures from the structural MRI data of both groups, 

when available (n=134; Figure S4a). We standardized the paWents’ corWcal thickness maps using z-

score transforms based on healthy controls. Our analysis revealed no significant linear relaWonship 

between individual differenWability and the average standardized corWcal thickness in PD paWents 

(b= -0.03, SE= 0.07, 95% CI [ -0.16, 0.11], p= 0.69; Figure S4b). AddiWonally, the corWcal topography 

of the most salient Parkinson's brain-fingerprint features did not align with the corWcal thickness 

changes observed in paWents (Pearson’s correlaWon: r=0.04, t(66)=0.34, p=0.73, pspin =0.36). Thus, 

we conclude that the individual differenWability observed in PD paWents based on their spectral 
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brain-fingerprints is not significantly influenced by corWcal thickness alteraWons associated with 

the disease. 

 

Discussion 
Our study demonstrates the applicaWon and relevance of brain fingerprinWng to Parkinson’s 

disease (PD) research. We derived brain-fingerprints from task-free MEG recordings and replicated 

the prior observaWon that the brain-fingerprints of paWents with PD present increased variability 

over short periods of Wme compared to healthy controls (Maidan et al., 2022; Troisi Lopez et al., 

2023). We idenWfied that this effect is due in large part to the enhanced temporal variability of the 

arrhythmic component of the neurophysiological brain acWvity of PD paWents, making them less 

disWnguishable from one another. However, we observed that PD paWents can be accurately 

differenWated from each other and from healthy controls based on brain-fingerprints derived from 

the rhythmic components of their ongoing electrophysiological brain acWvity. We further show that 

the disWnct features of these rhythmic fingerprints correlate with disease staging and align with 

neurochemical systems impacted in PD, underscoring the potenWal for targeWng neuromodulaWon 

therapies based on rhythmic corWcal neurophysiology in PD.  

 

Altera@ons of Cor@cal Signaling in Parkinson’s Disease 

Previous studies highlighted frequency-specific signaling abnormaliWes in PD, parWcularly in motor 

and subcorWcal structures (Geraedts et al., 2018; Oswal et al., 2013). Our findings align with this 

literature (Guerra et al., 2020; Underwood & Parr-Brownlie, 2021; Y. Yu et al., 2021), showing that 

the most disWncWve brain-fingerprint features in PD paWents localize to the primary sensorimotor 

cortex (Figure 3b lei panel & Figure S3c), which correlates with their disease stages (Figure 3b). In 

parWcular, we found evidence of a link between atypical beta and theta band acWviWes in the 

postcentral gyrus and disease stages. This aligns with previous findings linking beta-bursWng in the 

motor network and sensorimotor cortex with symptom severity and treatment response to 

medicaWon (Tinkhauser et al., 2017; Y. Yu et al., 2021) and deep brain sWmulaWon of the 

subthalamic nucleus (Harmsen et al., 2018).  

The role of midline theta-band acWvity in PD (Chen et al., 2016; Parker et al., 2015; Singh 

et al., 2018a, 2021a), thought to reflect cogniWve processes (Cavanagh & Frank, 2014; Singh et al., 
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2018b) and dopaminergic signaling (Y.-C. Kim et al., 2017, p. 4; Parker et al., 2014), was also 

confirmed in our study (Figure 4a). These findings are supported by previous research on theta 

neurosWmulaWon's effecWveness in alleviaWng motor symptoms, including when targeWng the 

precentral gyrus (Chou et al., 2015; Chung & Mak, 2016; Horn et al., 2020).  

 
Func@onal Decoupling of the Default Mode Network in Parkinson’s Disease  

We observed that the most salient brain-fingerprint features of healthy controls align with regions 

of the default-mode network (DMN; Figure 5a & Figure S3a). Prior studies have noted funcWonal 

decoupling of the DMN in PD during rest and task-based recordings (Lucas-Jiménez et al., 2016; 

Ruppert et al., 2021; Tessitore et al., 2012; van Eimeren et al., 2009), oien linked to the 

dopaminergic system (Lucas-Jiménez et al., 2016; Ruppert et al., 2021; Tessitore et al., 2012; van 

Eimeren et al., 2009). Yet, our data from paWents on stable anWparkinsonian medicaWon regimens 

may have moderated the saliency of DMN regions in the paWents’ brain-fingerprints (Figure 3). 

Thus, our observaWon that the DMN, transmodal brain regions of the funcWonal hierarchy do not 

contribute substanWally to the Parkinson's brain-fingerprint (Figure 5a) may reflect a normalizaWon 

effect of medicaWons (Delaveau et al., 2010; Krajcovicova et al., 2012). These observaWons prompt 

further invesWgaWon into how responsiveness to medicaWons relates to brain-fingerprints in 

transmodal brain regions. 

 

Neurochemical correlates of the PD brain-fingerprint 

Our data suggest that monoamine neurotransmi`ers are closely associated with the brain-

fingerprint of PD (Figure 5b). Specifically, we found that the corWcal topography of serotonin 2a 

and 4 receptor densiWes is inversely related to the PD brain-fingerprint, while there is a direct 

associaWon with the norepinephrine transporter.  

This finding is in agreement with previous observaWons of the degradaWon of monoamines 

in PD (Narayanan et al., 2013). We report negaWve relaWonships between the brain-fingerprint of 

PD and dopamine systems (Figure 5b). This effect was weak and inconsistent, possibly because 

changes in dopaminergic signalling caused by PD may primarily affect subcorWcal structures 

(Poewe et al., 2017) rather than the cortex, where our analyses were restricted. Further, the 

normaWve neurochemical system maps available in neuromaps were derived from an independent 
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sample of adults, who were younger than the PD paWents and aged-matched controls of the 

present study. Future research should explore these effects across subcorWcal structures and with 

normaWve atlases of neurochemical systems in older adults. 

We also observed a negaWve alignment of the Parkinson's brain-fingerprint with the 

cannabinoid receptor-1 (CB1) system (Figure 5b), supporWng prior research that documents 

elevated CB1 receptor concentraWons in PD61, and highlighWng  CB1 as a potenWal therapeuWc 

target in PD(Brotchie, 2003). Our present results also highlight the potenWal parWcipaWon of the 

cannabinoid system in the neuropathophysiology of PD and encourage more research in this area.  

 

Enhanced Temporal Fluctua@on of Arrhythmic Brain Ac@vity in Parkinson’s Disease 

Our study revealed that the brain-fingerprints of paWents with Parkinson’s disease fluctuate more 

over short Wme spans compared to age-matched healthy individuals. This finding aligns with the 

decreased accuracy observed originally in differenWaWng individuals within the paWent group 

(Figures 2b &c).  

We anWcipated greater variability in PD brain acWvity based on previous fNIRS research, 

which suggested a correlaWon between symptom severity and hemodynamic signal variability 

(Maidan et al., 2022). AddiWonally, studies using fMRI connectome brain-fingerprinWng indicated 

reduced self-similarity in individuals at risk of or with mental health disorders (Kaufmann et al., 

2017b),(Kaufmann et al., 2018b) and in PD paWents (Troisi Lopez et al., 2023). Our data extend 

these findings to electrophysiology, poinWng at increased within-subject variability of arrhythmic 

brain acWvity in PD as a possible source of such variability. We noted that differenWaWon accuracy 

using full spectral and arrhythmic brain-fingerprints in PD paWents was lower compared to rhythmic 

brain-fingerprints, which achieved similar differenWaWon as seen in healthy controls (Figure 2a).  

Recent research has linked alteraWons in PD paWents' arrhythmic brain acWvity to symptom 

severity (Belova et al., 2021; J. Kim et al., 2022; Wiesman, da Silva Castanheira, et al., 2023). 

Preliminary studies further suggest that baseline arrhythmic acWvity in the subthalamic nucleus 

may predict responses to neuro-sWmulaWon protocols (Clark et al., 2023; Darmani et al., 2023). 

While these studies focused on group-level mean differences, our findings emphasize the 

significance of within-paWent variability of arrhythmic brain acWvity in understanding individual 
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disease manifestaWons. We hope our results promote further research into opWmizing 

personalized rhythmic sWmulaWon protocols for PD management by normalizing corWcal dynamics. 

Previous studies have also documented increased intra-individual variability in cogniWve 

task performance in PD (Burton et al., 2006a; Costa et al., 2019b; Kuntsi & Klein, 2011a), correlaWng 

with cogniWve symptom severity (Burton et al., 2006a; Costa et al., 2019b; Singh et al., 2021a). The 

biological basis of this behavioral variability increase remains poorly understood (J. D. Jones et al., 

2022). fMRI research has linked moment-to-moment brain acWvity variability with cogniWve 

performance (Garre` et al., 2010; Garre`, Kovacevic, et al., 2013; Nomi et al., 2017), and recent 

studies have related BOLD signal variability to the arrhythmic components of electrophysiology 

(Baracchini et al., 2023). Consequently, we hypothesize that the heightened variability in PD 

behavioural markers may be associated with the observed increased temporal variability in 

arrhythmic brain acWvity.  

The arrhythmic and rhythmic components of the neurophysiological spectrum indicate 

disWnct neural mechanisms (Donoghue et al., 2020b; R. Gao et al., 2017; L. E. Wilson et al., 2022). 

The arrhythmic spectrum's slope is conceived as reflecWng the balance of neuronal excitaWon 

versus inhibiWon (Donoghue et al., 2020b; R. Gao et al., 2017). Therefore, our findings tentaWvely 

suggest greater fluctuaWng dynamics in corWcal excitability in PD. This construct is in line with 

emerging insights that dynamics of spectral aperiodic components are key to understanding 

healthy aging and behaviours (L. E. Wilson et al., 2022).  

 
Poten@al Clinical Impact of Brain-Fingerprin@ng in Personalized Neuromodula@on Therapies  

The clinical uWlity of brain-fingerprinWng hinges on its capacity to refine paWent straWficaWon, reveal 

novel disease characterisWcs, and inspire new treatment strategies. 

  Our findings demonstrate that brief brain recordings can disWnguish individuals (da Silva 

Castanheira et al., 2021), including those with Parkinson’s disease. We highlight the consistent 

within-parWcipant stability of rhythmic brain-fingerprints in both paWents and healthy controls (see 

Figure 2c), offering a unique insight into individual-specific brain acWvity. This consistency aligns 

with prior research showing the stabilizaWon of spectral content in resWng-state brain acWvity 

within 30 to 120 seconds of MEG recording (Wiesman, da Silva Castanheira, et al., 2022c). This 
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rapid stabilizaWon is especially beneficial for clinical applicaWons, parWcularly for paWents with 

cogniWve or motor impairments who may find longer recording sessions challenging. 

The present study also suggests that personalized neuromodulaWon therapies should 

primarily concentrate on rhythmic neurophysiology, the most consistent electrophysiological 

characterisWc within individuals, reflecWve of each paWent and related to disease traits. Specifically, 

theta- and beta-frequency rhythms in the fronto-motor corWces emerge as potenWal prime targets 

for neurosWmulaWon protocols aimed at normalizing disease-related neurophysiological changes 

(Chase et al., 2019; Chou et al., 2015; Clark et al., 2023; Harmsen et al., 2018). Conversely, 

arrhythmic neurophysiological acWvity displayed less stability and individual specificity in 

Parkinson's disease paWents (Figure 2). This suggests that tracking the longitudinal variability of 

arrhythmic brain-fingerprints could enhance the definiWon and understanding of paWent 

trajectories, as indicated here in Figure 2c. IncorporaWng this variability into adapWve 

neurosWmulaWon therapies could potenWally enhance clinical outcomes in Parkinson’s disease by 

reducing moment-to-moment fluctuaWons of core dynamics of brain acWvity related to the disease. 

We also highlight the need to account for increased intra-individual variability of brain 

acWvity in disease states when developing staWsWcal and machine-learning models for disease 

classificaWon. This consideraWon is crucial to ensure the scalability and generalizability of paWent 

straWficaWon methods.  

The results of the present study may transfer to other exisWng electrophysiological 

techniques such as electroencephalography (EEG), which promises to be more affordable and 

accessible, and opWcally pumped magnetometers (OPMs). Future work should explore this 

possibility as it would offer researchers and clinicians the flexibility of recording paWents at the 

bedside. 

In conclusion, our study underscores the clinical significance of brain-fingerprinWng based 

on rapid neurophysiological acWvity dynamics. It sheds light on the clinical aspects of Parkinson’s 

disease, idenWfying specific brain regions and rhythms where disease impacts neurophysiological 

stability. We anWcipate these insights will catalyze further research in populaWon neuroscience and 

the development of personalized neuromodulaWon therapies for Parkinson’s disease and other 

neurodegeneraWve condiWons.  
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Data availability 
The data are available through the Clinical Biospecimen Imaging and GeneWc (C-BIG) repository 

(h`ps://www.mcgill.ca/neuro/open-science/c-big-repository)(Gan-Or et al., 2020), the PREVENT-

AD open resource (hfps://openpreventad.loris.ca/ and h`ps://registeredpreventad.loris.ca) 

(Tremblay-Mercier et al., 2021), and the OMEGA repository 

(h`ps://www.mcgill.ca/bic/resources/omega) (Niso et al., 2016b). NormaWve neurotransmi`er 

density data are available from neuromaps (h`ps://github.com/netneurolab/neuromaps) 

(Markello et al., 2022a). 

 

Code availability 
All in-house code used for data analysis and visualizaWon is available on GitHub 

h`ps://github.com/jasondsc/PDneuralfingerprinWng. 
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Chapter 5  

Heritable traits of brain electrophysiology 
for individual differen>a>on 
 
Preface  

The previous chapters explored how the spatial distribution of neurophysiological spectral signal 

power differentiates individuals across healthy and clinical populations. Yet, whether the salient 

spectral features characteristic of individuals are similarly heritable remains unexplored. In this 

Chapter, I use a combination of twin study and brain-fingerprinting methodology to explore the 

genetic and micro-scale correlates of electrophysiological brain-fingerprints. I demonstrated that 

the most salient features for participant differentiation are similarly heritable and differentiate 

monozygotic twin pairs. I further explored how differentiable electrophysiological brain activity 

covaries with ventromedial-to-dorsolateral cortical gradient of gene expression. The results 

presented within this chapter shed light on the micro-scale biological factors that underlie 

person-specific spectral brain activity. 

 

The manuscript is being prepared for submission as:  

da Silva Castanheira, J., Poli, J., et al. Heritable traits of brain electrophysiology for individual 
differenWaWon. (2023).  
 

Abstract  
The significant diversity in personality traits and behaviours is, at least in part, reflected in the 

brain acWvity of every individual. Previous research has demonstrated the ability of brain-
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fingerprints, derived from either neuroimaging or electrophysiological data, to differenWate 

individuals from one another and predict behaviours. In this study, our objecWve was to 

determine the extent to which electrophysiological brain-fingerprints are heritable and to idenWfy 

how they relate to corWcal gene expression. To achieve this, we used task-free brain acWvity data 

using magnetoencephalography from a cohort of 89 parWcipants, including 17 pairs of 

monozygoWc twins and 11 pairs of dizygoWc twins. Our findings revealed that the brain-

fingerprints of monozygoWc twins are remarkably more similar than dizygoWc twins, suggesWng 

the importance of geneWcs in shaping electrophysiological brain-fingerprints. Furthermore, our 

invesWgaWon unveiled that the most differenWable features of brain-fingerprints are heritable. We 

found that differenWable electrophysiological brain acWvity covaries with ventromedial-to-

dorsolateral corWcal gradient of gene expression enriched for ion transport genes, which is 

predominantly expressed in neurons. This signature becomes more pronounced throughout 

neurodevelopment. In sum, our results shed light on the micro-scale biological factors that 

underlie variaWons in neurophysiology among individuals. These findings pave the way for future 

research that can establish connecWons between geneWc variaWon, brain acWvity, and behaviour.  

 

Keywords:  neural oscillaWons, individual differences, magnetoencephalography, brain 

fingerprinWng, heritability, gene expression 

 
Lay summary: 

Human behavior and personality traits exhibit considerable diversity, yet the underlying biological 

causes responsible for these variaWons conWnue to be a subject of ongoing scienWfic 

invesWgaWon. Recent advancements in neuroscience have proposed that task-free brain acWvity is 

characterisWc of individuals, much like a fingerprint. However, the connecWon between these 

brain-fingerprints and geneWcs remains poorly understood. This study aimed to assess the extent 

to which geneWcs contribute to the formaWon of these brain-fingerprints. The research findings 

indicate that monozygoWc twins, who share approximately 100% of their genes, have remarkably 

similar brain-fingerprints unlike dizygoWc twins, who share only 50% of their genes. The authors 

demonstrate that the most disWncWve brain acWvity, which enables the differenWaWon of 
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individuals, is associated with a corWcal gradient of gene expression. Notably, genes associated 

with the electrical signalling between neurons play a crucial role in this gene-differenWaWon 

relaWonship. Furthermore, the idenWfied gene signature becomes more pronounced throughout 

neurodevelopment. CollecWvely, this research not only quanWfies the significance of geneWcs in 

shaping the unique brain acWvity of individuals but also introduces a novel framework for 

understanding the biological basis of behavioural variaWons among individuals. 

 

Introduc:on  
Personality traits and complex behaviours are expressed with considerable diversity between 

individuals (da Silva Castanheira et al., 2021; Dubois & Adolphs, 2016; Finn et al., 2015a; APA 

Handbook of Personality and Social Psychology, Volume 4, 2015; Van Horn et al., 2008; Waschke, 

Kloosterman, et al., 2021). IntegraWve neuroscience is acWvely engaged in the endeavour to link 

brain structure and brain acWvity with individual traits, employing increasingly sophisWcated 

methods and larger, more diverse datasets (Amico & Goñi, 2018a; da Silva Castanheira et al., 

2021; Finn et al., 2015a; Niso et al., 2016a; Taylor et al., 2017; Van Essen et al., 2012). Within this 

context, a pivotal, yet unanswered quesWon is the extent to which geneWcs contribute to inter-

individual variaWons in electrophysiological brain acWvity and how these variaWons manifest as 

diverse behaviours. 

To invesWgate the geneWc contribuWon to phenotypic variability, researchers have 

computed heritability measures of brain structure, funcWon, and behaviours (Falconer, 1965).  

Several large-scale imaging consorWa have consistently reported that brain structure is heritable 

(Lee et al., 2016; Pizzagalli et al., 2020; Posthuma et al., 2005; Schmi` et al., 2020). Moreover, 

research has shown that regional gene expression can predict the funcWonal connecWvity 

between disWnct corWcal regions (Betzel et al., 2019, 2019; Fulcher et al., 2019; Hansen et al., 

2021; Richiardi et al., 2015).  

In the realm of electrophysiology, brain rhythms have also been idenWfied as heritable 

phenotypes (De Gennaro et al., 2008; Hodgkinson et al., 2010; Malone et al., 2014; Markovic et 

al., 2018; Salmela et al., 2016; C. M. Smit et al., 2006; D. J. A. Smit et al., 2005; Zietsch et al., 

2007), with alpha power and peak frequency (8-12 Hz)  being one of the most consistently 
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reported heritable brain rhythm (Salmela et al., 2016; C. M. Smit et al., 2006; Zietsch et al., 

2007).  Concerning behaviour, cogniWve abiliWes, especially in domains such as a`enWon, reading, 

and intelligence test performance, are recognized as highly heritable traits, with geneWc factors 

accounWng for up to 50% of their variability(Bouchard & McGue, 2003; Haworth et al., 2010; 

Mollon et al., 2021; R. A. Power & Pluess, 2015; Zwir et al., 2020). 

Together this body of work demonstrates that phenotypes and individual behaviours are 

influenced by geneWcs to different degrees. However, the precise relaWonship between heritable 

brain phenotypes, and individual differences in brain acWvity remains a topic of inquiry. To what 

extent are heritable brain phenotypes characterisWc of individuals?  

A body of research has collecWvely demonstrated that features of both task-related and 

task-free brain acWvity are unique to each individual, oien described metaphorically as brain- 

fingerprints (Amico & Goñi, 2018a; da Silva Castanheira et al., 2021; Finn et al., 2015a; Sareen et 

al., 2021a). Brain-fingerprints are unique to individuals, relate to individual cogniWve abiliWes, 

including a`enWon and intelligence test performance (Finn et al., 2015a; Rosenberg et al., 2017a; 

Rosenberg, Scheinost, et al., 2020; Yamashita et al., 2018), and have been reported to be altered 

by disease (da Silva Castanheira et al., 2023; Kaufmann et al., 2017a, 2018a; SorrenWno et al., 

2021c; Troisi Lopez et al., 2023). Consequently, we aimed to invesWgate the role of geneWcs in 

shaping brain phenotypes characterisWc of individuals. 

Our hypotheses revolved around the noWons that MZ twins can be more accurately 

disWnguished from their siblings based on their brain-fingerprints than DZ twin pairs and that 

prominent features contribuWng to individual differenWaWon are associated with heritable brain 

phenotypes. 

To this end, we uWlized a combinaWon of twin-study (Mayhew & Meyre, 2017) and brain-

fingerprinWng methodologies. If a phenotype is influenced by geneWcs, the similarity between 

monozygoWc twins (MZ), who share approximately 100% of their genes, should be more 

pronounced than that of dizygoWc twins (DZ), who share only about 50% of their genes. We 

hypothesized that if geneWcs contribute to variaWon in brain-fingerprints, then MZ twins can be 

more accurately disWnguished (i.e., matched) based on their sibling’s brain-fingerprint than DZ 

twin pairs. In addiWon, we predicted that the disWncWve brain phenotype features contribuWng to 
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individual differenWaWon would similarly be heritable. In our final analysis, we sought to bridge 

macroscale inter-individual differences in neurophysiological brain acWvity with microscale neural 

gene expression gradients. Here, we characterized how differenWable neurophysiological brain 

acWvity relates to corWcal gene expression, and brain acWvaWon pa`erns of psychological-

processes. In this manner, our study triangulates corWcal gene expression, inter-individual 

differences in brain acWvity, and brain acWvaWons of psychological processes, to explore the 

biological underpinnings of inter-individual variability.  

 

Results  
We used task-free magnetoencephalography recordings available from the Human Connectome 

Project (Van Essen et al., 2012). Three approximately 6-minute recordings were used for each of 

the 89 individuals (17 pairs of monozygoWc twins, 11 pairs of dizygoWc twins, and 33 unrelated 

individuals) to derive anatomically specific brain-fingerprints. Brain-fingerprints consisted of 

frequency-specific power spectra density (PSD) esWmates within each parcel of the Schaefer 200 

7-network atlas (see Methods and Figure 1a).  

 

Brain-fingerprints differen@ate Monozygo@c twin pairs 

The brain-fingerprinWng procedure consisted of assessing the similarity between the corWcal 

spectral features derived from the three datasets from the same individual. If a parWcipant’s 

brain-fingerprint from the first dataset was most similar to their second dataset, the individual 

would be considered correctly differenWated. We bootstrapped differenWaWon accuracy to obtain 

confidence intervals (see Methods). We derived broadband (1-150Hz) and narrow-band brain-

fingerprints based on the six canonical neurophysiological bands: delta (1–4 Hz), theta (4–8 Hz), 

alpha (8–13 Hz), beta (13–30 Hz), gamma (30–50 Hz), and high gamma (50–150 Hz). Note we 

repeated this procedure for all pairs of recordings and reported the mean accuracy (see Methods 

for details). 
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Chapter 5 Figure 1 Spectral brain-fingerprin@ng pipeline and study design. 

(a) The spectral power of MEG source @me series is es@mated from each parcel of the Schaefer 

200 7-network atlas, from each recording (dataset 1,2 and 3) for all par@cipants. The resul@ng 

power spectra define the three spectral brain-fingerprints for each individual (e.g., b-fp 1 and b-

fp 2). A confusion matrix of the self- and other similarity between par@cipants’ brain-

fingerprints determines their respec@ve differen@a@on. (b) We used the resul@ng spectral brain-

fingerprints to differen@ate i) between singletons (i.e., individual differen@a@on). We similarly 

used brain-fingerprints to match ii) MZ twin pairs, and iii) DZ twin pairs. A par@cipant who is 

correctly differen@ated from the cohort has a higher self-similarity of brain-fingerprints than 

other-similarity. A correctly matched twin pair shows greater similarity to their sibling than to all 

other individuals in the cohort. 

 

The brain-fingerprint differenWaWon accuracy for all parWcipants using broadband 

neurophysiological signals was 83.4% ([73.8, 90.0] 95% CI). Individual differenWaWon accuracy 
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varied across frequency bands: differenWaWon accuracy was highest for the high gamma band 

87.4% ([80.0, 92.5] 95% CI), and lowest for the delta band 59.7% ([57.5, 73.8] 95% CI; Figure 2a).  

We assessed whether we could differenWate (i.e., match) twin pairs from their sibling’s 

brain phenotype. Here, we compared the similarity of brain-fingerprints across twins, i.e., was 

the brain-fingerprint of twin i most similar to that of twin ii, ignoring the self-similarity of 

parWcipants (see Methods and Figure 1b). We matched MZ twin pairs with 61.5% ([46.7, 76.7] 

95% CI) accuracy. In contrast, we failed to match DZ twins from their sibling’s brain-fingerprint 

(5.2% [0.0, 15.0] 95% CI; See Figure 2a). We repeated this twin differenWaWon procedure for each 

electrophysiological narrow band. 

In line with previous literature, we observed the largest decrease in twin-pair matching 

accuracy between MZ and DZ twins in the alpha (MZ 47.8% [33.3, 66.7] 95% CI; DZ 1.2% [0.0, 

5.0] 95% CI) and beta band (MZ 52.1% [33.3, 70.0] 95% CI; DZ 7.1% [0.0, 20.0] 95% CI) indicaWng 

that the brain-fingerprints derived from these bands are heritable. High gamma brain-fingerprints 

showed the smallest difference between MZ and DZ twin-pair matching (MZ 19.9% [10.0, 36.7] 

95% CI; DZ 16.4% [10.0, 25.0] 95% CI; see Figure 2a).  
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Chapter 5 Figure 2 Spectral brain-fingerprin@ng differen@ate individuals and MZ twin pairs. 

(a) Differen@a@on accuracy using broadband and narrow-band spectral brain-fingerprints 

derived from ~5-min data lengths. Purple bars represent the accuracy for differen@a@ng all 

individuals, magenta and orange bars represent the accuracy for matching MZ and DZ twins 

from their sibling’s brain fingerprint, respec@vely. The error bars show bootstrapped 95% 

confidence intervals. The grey segments at the foot of each bar plot indicate the null 

differen@a@on accuracy obtained from empty-room MEG recordings. (b) Topographic brain 

maps of the most salient features for differen@a@ng all individuals (ICC) for each of the narrow 

bands. High values for ICC represent important features for individual differen@a@on. 

 

The most salient features of the brain-fingerprint are heritable  

To idenWfy the most salient brain phenotypes for individual differenWaWon, we used intra-class 

correlaWons (ICC) (Amico & Goñi, 2018a; da Silva Castanheira et al., 2021, 2023). We 

bootstrapped individuals such that only one sibling was present in the bootstrapped sample. This 
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procedure eliminated any potenWal sibling bias: In each bootstrapped sample all individuals were 

unrelated (see Methods). We report that the alpha, theta, and beta bands were the most salient 

features for individual differenWaWon (mean ICC across cortex: alpha = 0.83, theta= 0.74, beta= 

0.74; Figure 2b). Notably, we observed the highest ICC among caudal and medial regions across 

bands, and the lowest ICC values in orbital frontal regions. 

We then computed the heritability of these brain phenotypes using Falconer’s method 

(see Methods). Heritability compares the similarity of MZ twin pairs on a phenotype to the 

similarity of DZ twin pairs—with higher values of heritability indicaWng that a variance in a 

phenotype is driven by geneWcs. We observed that neurophysiology in the alpha, theta, and beta, 

bands showed the highest heritability across the cortex (mean H2: theta= 0.85, alpha= 0.76, and 

beta= 0.77). Neurophysiology of the lateral- temporal, lateral-frontal regions, and caudal regions 

showed the highest influence of geneWcs (see Figure 3a). Indeed, the visual Yeo-Krienen network 

(Yeo et al., 2011) showed the highest overall heritability score; this contrasts with the limbic 

network which showed the lowest influence of geneWcs (Figure 3a right). 

Next, we examined the linear relaWonship between the salient brain-fingerprint features 

for individual differenWaWon and heritable brain phenotypes. We found a moderate posiWve 

correlaWon between broadband ICC brain-fingerprint features and the heritability of broadband 

neurophysiology of the region (r= 0.28, pspin= 0.026; see Figure 3b & Figure S3). We similarly 

correlated narrow-band heritability and ICC brain-fingerprint brain maps. We observed strong 

posiWve spaWal relaWonships in the alpha (r=0.62, pspin= 0.0009) and beta bands (r=0.58, pspin= 

0.0009; see Figure 3b). While heritable regions in the gamma band were also important for 

parWcipant differenWaWon (r=0.41, pspin= 0.069), this relaWonship did not survive spaWal auto-

correlaWon correcWon. Taken together, these results indicate that salient features for 

differenWaWng individuals, also tend to be heritable—this is principally true for the alpha and beta 

bands. 

Note we verified the robustness of our differenWaWon effects against common 

environmental and physiological arWfacts (see Supplemental materials) 
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Chapter 5 Figure 3 Differen@able brain-fingerprint features are heritable. 

 (a) Le_ panel: topographic brain maps of the heritability of brain-phenotypes. High values of 

heritability represent brain-phenotypes under stronger gene@c influence. Right panel: 

broadband brain-phenotype heritability scores organized by Yeo-Krienen 7 res@ng-state 

networks(Yeo et al., 2011). (b) Le_ panel: Linear rela@onship between salient features for 

par@cipant differen@a@on and their heritability across each of the narrow bands. Points 

represent the strength of the correla@on, and grey boxplots represent null rela@onship obtained 

from SPIN permuta@ons. Right panel: Scafer plot of alpha heritability-differen@a@on 

rela@onship. Each point represents a region of the Schaefer atlas. Salient features for par@cipant 

differen@a@on in the alpha band are linearly related to heritable broadband brain-phenotypes. 
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Salient brain-fingerprint features covary along a gene expression gradient 

Next, we invesWgated the relaWonship between parWcipant differenWaWon and corWcal gene 

expression using data obtained from the Allan Human Brain Atlas (ABHA) (M. J. Hawrylycz et al., 

2012) in a ParWal Least Squares (PLS) analysis. To facilitate the interpretaWon and comparison of 

our results with previous work, we focused our analyses on genes with a differenWal stability 

greater than 0.1 (see Methods) (Burt et al., 2018; Hansen et al., 2021; M. Hawrylycz et al., 2015; 

M. J. Hawrylycz et al., 2012; Markello et al., 2021).  

PLS relates the covariance between two observed matrices—e.g., salient features for 

fingerprinWng (regions by frequency bands) and gene expression (regions by genes)—using latent 

components (see Figure 4a). We observed a single staWsWcally significant latent variable relaWng 

gene expression to salient features for fingerprinWng (85.2% covariance explained, PSPIN= 0.01, 

95% CI = [73.4, 90.1]; Figure 4b lei panel).  

Each latent variable includes singular values (proporWonal to the amount of covariance 

explained), and weight pa`erns reflecWng the relaWve importance of genes and frequency bands 

for individual differenWaWon. We computed scores and loadings to describe the significant 

mulWvariate pa`ern of covariance (i.e., the first latent variable) by mulWplying the original gene 

expression matrix (regions by genes) with the gene weights of the first latent variable (genes by 

1), and vice versa for salient features for fingerprinWng. Gene and ICC brain scores indicate which 

brain regions exhibit the pa`ern of covariance described by the latent component. Brain regions 

with posiWve scores display covariance between posiWvely loaded genes and frequency bands 

(refer to the paragraph below for a descripWon of PLS loadings).   

We observed a gradient from dorsolateral to ventromedial regions in both gene and ICC 

scores.  The visual and somatomotor network exhibited the highest posiWve gene brain scores, 

covarying with broadband differenWable brain acWvity in the dorsal a`enWon and somatomotor 

networks (Figure 4b). In contrast, the limbic network had the most negaWve brain score for both 

gene expression and ICC. 
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Chapter 5 Figure 4 Gene-differen@a@on PLS analysis pipeline and latent component. 

(a) Analysis pipeline for PLS and gene ontology. Two data matrices were defined: i) one 

represen@ng the most salient features for brain-fingerprin@ng and ii) a matrix of gene 

expression across each of the defined ROIs of the Schaefer atlas(Schaefer et al., 2018). PLS 

decomposes the covariance of these two matrices to describe latent components that reflect 

modes of highest covariance between the observed datasets. We then used the top loadings of 

the significant latent component to conduct a gene ontology analysis. Gene ontology analyses 

describe if the observed genes contribu@ng to the latent component of the PLS are enriched for 

specific molecular processes. (b) Le_ panel: Latent components from the PLS analysis are 

ordered according to effect size and shown as pink points. Sta@s@cal significance of the latent 

components was computed by permu@ng the observed data (1000 permuta@ons). The first 

latent component was the only sta@s@cally significant component a_er correc@on for spa@al 

autocorrela@on. Right panel: Topography of gene and ICC scores obtained by projec@ng the first 

latent component back onto the observed data. (c) Cross-valida@on of gene-differen@ability PLS 

analysis by training the model with 75% of brain regions closest in Euclidean distance to a 
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randomly chosen source node (dark purple), and tes@ng the rela@onship between gene and ICC 

scores. The median out-of-sample rela@onship was (r= 0.64, pSPIN= 0.002). 

 

To evaluate the relaWve contribuWon of each frequency and gene to the first significant 

latent component, we computed each item’s loading (see Methods). Loadings were determined 

as the Pearson correlaWon between the brain map of gene expression and the opposite brain 

score pa`ern (e.g., correlate gene expression & ICC brain score) and vice versa. These loadings 

provided interpretable values ranging from -1 to 1, where larger absolute loadings indicate a 

higher correlaWon with the observed score pa`ern and a greater contribuWon to the observed 

latent pa`ern of covariance. 

We observed that all differenWable features across frequency bands, with the excepWon 

of theta, contributed to the observed gene-differenWaWon latent component (see Figure 5a). 

Consequently, the observed gene-differenWaWon latent component reflects the capacity to 

differenWate between individuals from a wide range of frequencies. Note, that we did not 

observe any negaWve frequency loadings. We interpret this finding as follows:  ventromedial brain 

areas, with negaWve ICC brain scores (Figure 4b middle), represent regions of poor individual 

neurophysiological differenWaWon that covary with the gene expression in the limbic network.  

To validate our PLS analysis, we conducted a cross-validaWon process by randomly dividing 

brain regions into training and test sets. We randomly selected a seed region 100 Wmes and 

picked the closest 75% of brain regions in Euclidean distance, leaving the remaining 25% out for 

validaWon. At each iteraWon, we computed Pearson’s correlaWon between gene and ICC scores. 

We assessed the significance of the out-of-sample cross-validaWon using spaWal auto-correlaWon 

correcWon (1,000 Wmes). The median out-of-sample correlaWon between gene and ICC scores 

was r=0.64 (pSPIN= 0.002). 

 

Biological correlates of gene expression signature 

We then aimed to gain insight into the geneWc contribuWon of the latent component. We 

analogously computed loadings of each gene (see Methods). In summary, we divided genes into 

those with posiWve and negaWve loadings and idenWfied the top 50% of genes within both the 
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posiWve and negaWve loading categories. This resulted in 2,272 genes contribuWng posiWvely to 

the observed latent component and 2,280 negaWvely loaded genes. 

Subsequently, we conducted a gene ontology analysis to quanWfy the biological processes 

associated with these sets of posiWvely and negaWvely loaded genes. We uWlized the ShinyGO 

analysis pipeline, which employs both the KEGG and GO biological process databases (Ge et al., 

2020) (see Methods for details and Supplemental Data for a full list of biological processes). In 

brief, gene ontology analyses reveal which biological processes are enriched within a specified list 

of genes. We conducted separate gene ontology analyses for the genes with posiWve and 

negaWve loadings. 

We present a selecWon of the significant biological processes from the gene ontology 

analyses in Figure 5b (see Supplemental Data for a complete list of biological processes). Genes 

with posiWve loadings, which covary with individual differenWaWon along the regions depicted in 

Figure 4b, were notably enriched for processes related to ion transportaWon, including potassium 

and sodium, cell signalling, and neurotransmi`er transport (see Figure 5b right). Genes with 

negaWve loadings, which covary with low individual electrophysiological differenWaWon, were 

enriched for processes related to neurogenesis, and cell morphology.  We provide the results of 

the KEGG gene ontology analyses in the supplement (see Supplemental Figure S4). 

We then invesWgated whether the idenWfied posiWve and negaWve gene lists were 

specifically expressed in certain cell types of the brain. To achieve this, we relied on gene sets 

previously idenWfied as being preferenWally expressed in seven disWnct cell types based on 

postmortem single-cell and single-nucleus RNA sequencing studies (Darmanis et al., 2015; Habib 

et al., 2017; Lake et al., 2018; M. Li et al., 2018; McKenzie et al., 2018; Zhang et al., 2016). We 

computed the raWo of posiWvely and negaWvely loaded genes in each cell-specific set including 

astrocytes, microglia, oligodendrocyte precursors (OPC), oligodendrocytes, endothelial cells, 

excitatory neurons, and inhibitory neurons (Figure 5b). The staWsWcal significance of the cell-

specific raWos was determined using permutaWon tests: We permuted genes 1,000 Wmes to 

create null distribuWons of cell-specific raWos for posiWve and negaWve loaded genes (two-tailed; 

false discovery rate corrected). The results showed that posiWvely loaded genes were 

preferenWally expressed in excitatory (pFDR = 0.002) and inhibitory neurons (pFDR = 0.006) and 
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significantly under-expressed in astrocytes (pFDR = 0.002) and OPCs (pFDR= 0.03). Conversely, 

negaWvely loaded genes were preferenWally expressed in astrocytes (pFDR = 0.002), microglia (pFDR 

= 0.004), and oligodendrocytes (pFDR = 0.002), and significant under-expressed in OPCs (pFDR = 

0.002). Taken together, these results corroborate that the idenWfied posiWve gene expression 

signature is expressed in neurons, whereas genes that negaWvely covary with differenWaWon are 

expressed in neuron support cells like astrocytes and microglia.  

 

  
Chapter 5 Figure 5 Genes enriched for ion transporters and preferen@ally expressed in neurons 

covary with broadband neurophysiological differen@a@on. 

(a) Differen@able neurophysiological features that contribute most to the latent component. 

Le_ panel: neurophysiological brain score pafern for posi@ve and nega@ve loadings. Right 

panel: frequency bands that contribute the most to the observed latent component. Brain 

scores reflect which brain regions demonstrate the observed pafern of covariance described by 
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the latent component. Loadings correspond to which variables contribute the most to the latent 

component. (b) Genes that contribute to the reported PLS latent component was assessed by 

compu@ng loadings. Le_ panel: gene brain score pafern for posi@ve and nega@ve loadings. 

Molecular processes were inferred from the genes with the top 50% of posi@ve (red) and 

nega@ve (blue) loadings using a gene enrichment analysis (see Methods). Middle panel: 

Biological processes gene ontology analysis for posi@ve and nega@ve loadings. Word size and 

colour correspond to the rela@ve importance of the term for the respec@ve loadings. Right 

panel: Cell-type deconvolu@on analyses report the ra@o of genes in each gene set (posi@ve and 

nega@ve) preferen@ally expressed in seven dis@nct cell types as defined by previous single-cell 

and single-nucleus RNA sequencing (Darmanis et al., 2015; Habib et al., 2017; Lake et al., 2018; 

M. Li et al., 2018; Seidlitz et al., 2020; Zhang et al., 2016). The significance of the ra@os was 

determined based on permuta@on tests (* p< 0.05). Points represent observed ra@os, box plots 

depict the ra@os obtained from permu@ng gene sets.  Neuron I, inhibitory neurons; Neuron E, 

excitatory neurons; Endo, endothelial cells; Oligo, oligodendrocyte; OPC, oligodendrocyte 

precursor cell; Micro, microglia; Astro, astrocyte. 

 

Gene-differen@a@on gradient correlates with psychological processes  

Having idenWfied a gradient of gene expression that covaries with differenWable 

neurophysiological brain acWvity, we sought to contextualize our results with a previously 

reported gene expression-phycological processes gradient (Hansen et al., 2021). Hansen and 

colleagues reported that corWcal gene expression covaries with brain acWvaWons related to 

specific psychological-processes (Hansen et al., 2021). They observed that brain acWvaWons 

associated with cogniWve tasks like a`enWon covary strongly with gene expression in dorsolateral 

cortexes. Previous work has argued that brain-fingerprints can predict individual differences in 

cogniWve task performance. We therefore sought to assess the similarity between gene 

signatures overlap between brain gene expression pa`erns.  

To accomplish this, we conducted a separate PLS analysis to assess the covariance 

between gene expression and probabilisWc measures of brain acWvaWon (measured using fMRI) 

associated with psychological processes (e.g., a`enWon, emoWon, sleep). We observed a single 
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significant latent component that explained 67.2% of covariance (PSPIN= 0.002, 95% CI = [54.7, 

72.2%), between gene expression and psychological processes. This component loaded 

negaWvely onto psychological processes associated with emoWons, mood, and risk; and loaded 

posiWvely onto terms associated with a`enWon, planning, and mulW-sensory processes (Figure 

6a). 

Next, we quanWfied the similarity between the idenWfied gene-differenWability and the 

gene-psychological processes latent variables. We observed a strong significant correlaWon 

between the two gene brain scores (r=0.99, p spin< 0.001; see Figure 6b), and a strong linear 

relaWonship between both gene loadings (r= 0.99, p < 0.001; see Figure 6c). Note we verified that 

differenWability covaries with the idenWfied psychological-processes signature in an independent 

PLS analysis (see Supplemental InformaWon Psychological acWvaWons and differenWaWon PLS 

analysis). In summary, these results indicate that electrophysiological signals characterisWc of 

individuals covaries with cogniWve task brain acWvaWons and gene expression in caudal brain 

regions. 

 
Chapter 5 Figure 6 Genes latent component covaries with psychological processes and 

neurophysiological differen@a@on. 
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(a) Psychological terms that contribute most to the gene-psychological processes PLS latent 

component. Brain map of psychological term brain score pafern for posi@ve and nega@ve 

loadings. Word size and colour correspond to rela@ve importance of the term for the respec@ve 

loadings. Terms with the top 25% most posi@vely (red) and nega@vely (blue) loadings form a 

cogni@ve–affec@ve gradient. (b) Correspondence between the gene-differen@a@on and gene-

psychological process PLS analyses. Middle panel: scafer plot of gene brain scores for the two 

PLS analyses depicts a strong linear rela@onship between gene brain score paferns. Le_ panel: 

scafer plot of gene loadings for the gene@c -psychological processes and -differen@a@on PLS 

analyses. Genes that loaded strongly onto the gene-behaviour PLS similarly contributed the 

most to the gene-differen@a@on PLS analysis.  

 

Gene-differen@a@on signature matures along neurodevelopment 

Next, we explored the possibility that the idenWfied gene signature is enriched for genes related 

to the corWcal expansion of higher-order cogniWve areas throughout human evoluWon (Driessens 

et al., 2023; Girskis et al., 2021; Guardiola-Ripoll & Fatjó-Vilas, 2023; Wei et al., 2019). We relied 

on human accelerated regions (HAR) of the genome to address this quesWon. First, we found a 

significant overrepresentaWon of HAR-Brain genes (Wei et al., 2019) (see Supplemental data 2 

Wei et al. 2019) in our idenWfied gene signature (p = 0.004). Second, we examined the spaWal 

relaWonship between the idenWfied gene brain score and the topography of HAR brain gene 

expression. There was a negaWve relaWonship between local HAR gene expression and the 

idenWfied gene brain score from the gene-differenWability PLS analysis (r= -0.63, pspin= 0.001; 

Figure 7a).  

Finally, we sought to quanWfy the neurodevelopmental trajectory of the idenWfied gene 

signature, with the hypothesis that it would become more pronounced with neurodevelopmental 

maturaWon akin to cogniWve abiliWes. To achieve this, we used data from BrainSpan which 

provides gene expression esWmates from 16 corWcal regions across neurodevelopment: from 8 

weeks post-concepWon to 40 years old (J. A. Miller et al., 2014). First, we computed gene 

expression of the idenWfied top 50% posiWve and negaWve loading genes across five life stages: 

fetal, infant, child, adolescent and adult (see Methods for details). We observed that posiWve 
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loading genes, covarying with parWcipant differenWaWon, increased across development, whereas 

negaWve loading genes decreased across development (Figure 7b). We compared the trajectory 

of the posiWve and negaWve gene sets to a random set of genes (gray line Figure7b; see Methods 

for details). We then derived gene scores by projecWng the BrainSpan data onto the previously 

defined gene weights from our PLS analysis for each corWcal region separately (Figure 7c). The 

geneWc signature, which covaries with parWcipant differenWaWon, becomes more pronounced 

throughout neurodevelopment. We compared the linear trajectory (i.e., slope) of the defined 

gene score to that of 1,000 null models obtained from first randomly permuWng the gene 

expression data used to compute the PLS before projecWng the BrainSpan data. All corWcal 

regions except for the hippocampus demonstrated a significant posiWve slope of gene scores (i.e., 

more pronounced with maturaWon; Figure 7c). 
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Chapter 5 Figure 7 Genes signature relates to human accelerated expansion and becomes more 

pronounced with neurodevelopment. 

(a) Le_ panel: Scafer plot of the gene score derived from the PLS analysis (Figure 4b) against 

the gene expression of evolu@onary expanded genes (HAR-brain genes). Pink points represent 

regions with posi@ve gene scores, whereas blue regions depict nega@ve gene scores. Gene 

scores are linearly nega@vely related to HAR brain gene expression. Right panel: z-score brain 

map of HAR brain gene expression across cor@cal regions. (b) Gene expression data from 

various life stages were used to compute the neurodevelopment of the iden@fied gene 

signature. Gene expression values for the top 50% of nega@vely loaded genes (blue) and 

posi@vely loaded genes (pink) across the 5 developmental periods. Dofed lines represent 

individual cor@cal regions, whereas solid lines represent the mean across regions. We computed 
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the trajectory of randomly selected genes (grey line) for comparison. (c) Le_ panel: Gene scores 

became more pronounced with matura@on across the 12 brain regions of the BrainSpan data. 

The grey line depicts the trajectory of permutated gene scores. We fit linear slopes to the 

trajectory of observed and permuted data per region. Right panel: histograms of permuted 

slopes per cor@cal region. The ver@cal line represents the observed slope of gene score across 

development (*p <0.05). 

 

Discussion  
Large neuroimaging datasets have allowed scienWsts to demonstrate that individuals can be 

differenWated from their brain acWvity, like a fingerprint (Amico & Goñi, 2018a; da Silva 

Castanheira et al., 2021; Finn et al., 2015a; Sareen et al., 2021a). But unlike a fingerprint lei by 

your hand, the brain-fingerprint contains relevant informaWon about demographics and cogniWon 

(da Silva Castanheira et al., 2021; Finn et al., 2015a; Rosenberg et al., 2017a; Rosenberg, 

Scheinost, et al., 2020), is altered by disease (da Silva Castanheira et al., 2023; SorrenWno et al., 

2021c; Troisi Lopez et al., 2023), and tracks healthy aging (see Chapter 3). Despite this growing 

body of research, li`le is known about the geneWc origins of electrophysiological brain-

fingerprints.  

 
Neurophysiological ac@vity is differen@able and heritable 

Here, we demonstrate that MZ twins have significantly similar brain-fingerprints to their siblings 

enabling the differenWaWon of a MZ twin from their sibling’s brain-fingerprint (Figure 2a). In 

contrast, DZ twins cannot be matched—these results suggest that brain-fingerprints, principally 

in the alpha and beta bands, are likely driven by geneWcs. We come to this conclusion based on 

the methodologies of twin studies: MZ twins are considerably more similar in terms of their 

genomes than DZ twins, all else being equal (e.g., the twins were raised in similar environments).  

We similarly observed that the most salient features for differenWaWng individuals were 

also heritable brain phenotypes (Figure 3). This finding was most evident in the alpha and beta 

bands, and dovetails with previous work on individual alpha peak frequency (Salmela et al., 2016; 

C. M. Smit et al., 2006), suggesWng that it is a heritable trait. Our work builds on this literature 



 158 

and suggests that posterior alpha brain rhythms similarly differenWate individuals from one 

another. While we do not explicitly explore the relaWonship between brain rhythms and 

behaviours, our work proposes that polyrhythmic brain acWvity covaries with brain transcriptome 

gradients and brain acWvaWons during cogniWve tasks (Figure 6).  

 

Genes related to ion transport relate to characteris@c brain ac@vity   

Gene expression is reportedly associated with the structural and funcWonal architecture of the 

brain, including corWcal folding (Lee et al., 2016; Pizzagalli et al., 2020; Posthuma et al., 2005; 

Schmi` et al., 2020), and pa`erns of funcWonal communicaWon between brain regions (Fornito 

et al., 2011; Fu et al., 2015; Posthuma et al., 2005). Yet, the relaWonship between gene 

transcripWon, brain acWvity, and behaviour is less clear.  

Previous work describes how brain acWvaWons for different psychological-processes relate 

to gene transcripWon (Hansen et al., 2021). Yet this prior work exclusively considered group-level 

average brain acWvity. Our results extend these findings by demonstraWng that the gene-

psychological processes gradient is associated with differenWable brain acWvity, and add to a 

growing literature demonstraWng that the molecular organizaWon of the brain may represent an 

important axis that shapes regional funcWonal specializaWon (Alexander-Bloch et al., 2020; 

Fulcher & Fornito, 2016; Hansen et al., 2021; Krienen et al., 2016; Markello et al., 2022a; Seidlitz 

et al., 2020; Whitaker et al., 2016). DeviaWons from this gene expression gradient and/or geneWc 

variaWon in the specific genes of this gradient may simultaneously lead to differenWable brain 

acWvity and variaWon in behaviour.   

Genes posiWvely related to neurophysiological differenWaWon were enriched for biological 

processes related to ion transport and neurotransmission (Figure 5). Prior work on the geneWcs 

of neural oscillaWons, has in large part focused on the geneWc variants and their relaWonship to 

alpha rhythms. This literature has idenWfied several candidate geneWc variants—including the 

catechol-O-methyltransferase (COMT) enzyme responsible for the metabolism of corWcal 

dopamine (Bodenmann et al., 2009), adenosine A2Areceptor gene (Rétey et al., 2005), adenosine 

deaminase gene, glutamatergic signaling (Salmela et al., 2016), and the GABAB receptor 

(GABABR1) (Winterer et al., 2003) which control, in part, neurochemical communicaWon in the 
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brain. Moreover, we observed that the gene signature related to parWcipant differenWaWon was 

preferenWally expressed in excitatory and inhibitory neurons (Figure 5b). These results would 

suggest that inter-individual differences in neurochemical systems that lead to variaWons in 

neuron signalling are measurable at the mesoscale level. Our findings are in line with the 

hypothesized microscale origins of MEG signals (i.e., post-synapWc potenWals of thousands of 

neurons) (Baillet, 2017; Baillet et al., 2001; Hämäläinen et al., 1993). 

These results contrast with genes responsible for the morphology of cells and 

neurogenesis in limbic regions, which negaWvely covary with individual differenWaWon (Figure 4b) 

and are preferenWally expressed in neuron support cells. Altogether, these results suggest that 

neurophysiological brain-fingerprints specifically capture differences in the neurochemical 

communicaWon of thousands of neurons independently of heritable anatomical features.  

We envision that our results will inform future research on inter-individual differences, 

offering novel biologically driven hypotheses to explain inter-individual variaWon in behaviour. For 

example, future work could link, from the bo`om-up, how variaWon among sub-sets of genes 

shape brain microstructure and neuron signalling, which in turn manifest as differenWable 

mesoscale brain acWvity, and cogniWon. 

While we demonstrate a link between gene expression and differenWable brain acWvity in 

the present study, our results do not suggest that diversity in brain acWvity is enWrely driven by 

geneWcs. The environment in which one develops plays a significant role in shaping our 

behaviours, and therefore likely shapes our so-called brain-fingerprint. A case in point is our 

ability to differenWate twin pairs. We achieve high, but not ceiling, accuracies for differenWaWng 

MZ twin pairs (Figure 2a). We anWcipate that future work can replicate the results presented 

herein to a large sample and be`er disambiguate the role of shared environmental factors on 

brain-fingerprints.  

 

Cogni@ve behaviours covary with gene expression and differen@able brain ac@vity  

We demonstrate for the first Wme that cogniWve psychological processes brain acWvaWons and 

our ability to differenWate individuals from neurophysiology covary with a corWcal geneWc 

gradient (Figure 6). This ventromedial-dorsolateral psychological-processes gradient divides brain 
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acWvaWons between those related to cogniWve processes like a`enWon from acWvaWons related to 

affect (Figure 6a). The disWncWon between cogniWve and affecWve psychological processes (i.e., 

thinking vs feeling) has long been debated: With some scholars suggesWng that the disWncWon is 

more phenomenological rather than ontological (Duncan & Barre`, 2007). While our results 

indicate that brain acWvaWons fall along a gradient, this does not suggest that the two ends of the 

psychological processes do not interact, nor does it support their ontological disWncWon.  

Our work suggests that cogniWve processes like a`enWon are more closely intertwined 

with gene expression associated with neuron communicaWon, which in turn is related to inter-

individual variaWon in neurophysiology. These results dovetail with recent reports that observed 

larger effect sizes in decoding cogniWon from brain acWvity than personality and mental health 

measures(Kong et al., 2023). Our results, despite uWlizing different neuroimaging technology, 

provide a tentaWve biological explanaWon for these findings. 

In contrast, psychological-processes more related to affect appear to be under the 

purview of genes responsible for cell morphology and expressed preferenWally in astrocytes and 

microglia, which electrophysiological brain-fingerprinWng may be ill-equipped to measure. This 

disWncWon may explain why neurophysiology is poor at disambiguaWng individuals from one 

another using these signals.  

Brain regions that scored negaWvely on the idenWfied significant latent variable include 

the anterior cingulate cortex: an area that has been disproporWonally reported as vulnerable to 

mental illness (Bush et al., 2000; Goodkind et al., 2015; Shafiei et al., 2020; TanW et al., 2022). 

Some of this work indeed suggests the important role of neuron support cells, like OPCs and 

microglia, in mental health (Salter & Stevens, 2017; TanW et al., 2022; Tay et al., 2017; Wang et 

al., 2022; Wohleb & Delpech, 2017). We also note that prior work hypothesizes that adult 

neurogenesis may play a criWcal role in mental health (Madsen et al., 2000; Sahay & Hen, 2007; 

Schoenfeld & Cameron, 2015)  which aligns with our gene ontology results. Taken together, the 

findings presented herein suggest that electrophysiological signals from regions related to 

emoWonal psychological-processes, and specifically vulnerable to mental illness, differenWate 

individuals with lower accuracy. These findings have important implicaWons for personalized 

medicine research and should be further expanded upon in future studies. 
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Neurodevelopmental trajectory of brain-fingerprints 

Previous work reports that brain-fingerprints defined from funcWonal connectomes become 

more pronounced with age, and their trajectory is stunted by mental illness (Kaufmann et al., 

2017a, 2018a). We extend these results by offering a possible biological explanaWon: The gene 

expression signature associated with differenWable brain acWvity similarly becomes more 

pronounced with neurodevelopmental maturaWon (Figure 7). In line with these findings, the 

influence of geneWcs on cogniWon appears to increase throughout neurodevelopment (Briley & 

Tucker-Drob, 2017; Haworth et al., 2010; Mollon et al., 2021). Taken together these results 

suggest that corWcal gene expression may drive both observaWons: making an individuals’ brain 

acWvity more unique and by consequence influencing cogniWon more strongly. This interpretaWon 

requires further invesWgaWon. 

Previous work in fMRI suggests that inter-individual differences in fMRI funcWonal 

connectomes relate to gene expression enriched for the development of the central nervous 

system, and related posiWvely to HAR gene expression (L. Li et al., 2021). In line with this 

observaWon, it has been reported that the most salient brain regions of the funcWonal 

connectome brain-fingerprint are within the frontoparietal network. This contrasts with 

electrophysiological differenWaWon reported herein and elsewhere which emphasizes posterior 

sensory regions (e.g., Figure 2b and Chapter 3). These opposing findings emphasize the potenWal 

differences in the biological origins of hemodynamic and electrophysiological fingerprints, with 

the la`er being potenWally driven by neuron communicaWon. Researchers can leverage these two 

salient signals for parWcipant differenWaWon to explore brain-behaviour relaWonships and their 

geneWc origins. 

The conclusions of this work should be interpreted alongside important methodological 

consideraWons. First, we esWmated heritability using the Falconer’s formula as a relaWve measure 

of the importance of geneWcs for a given phenotype. We do not, however, explore the proporWon 

of variance related to environmental factors—which would require a much larger sample of twin 

pairs. Second, the gene expression gradient is computed from a small sample of post-mortem 

brain Wssue which is biased to the lei hemisphere and imbalanced for sex. Third, the results 

reported herein are correlaWonal in nature. Experimental manipulaWons of gene expression and 
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gene variants in animal models will afford neuroscienWsts a comprehensive understanding of how 

microscale gene expression may influence mesoscale neurophysiology and behaviour. Fourth, the 

molecular-psychological signature is based on brain acWvaWon pa`erns taken from the 

Neurosynth (Yarkoni et al., 2011) meta-analyWc approach. While this method is useful for 

synthesizing data, scienWsts cannot draw strong conclusions about the neural basis of behaviours. 

In addiWon, Neurosynth assays a restricted scope of behaviours studied, the methods used to 

generate these acWvaWon maps are limited, and the acWvaWon maps lack informaWon about 

individual variaWon.  

Taken together, our study invesWgated the biological origins of inter-individual differences. 

We demonstrated using a twin-study-like approach that electrophysiological brain acWvity 

characterisWc of individuals is influenced by geneWcs. We idenWfy a ventromedial–dorsolateral 

gradient of gene expression that relates to person-specific neurophysiological brain acWvity. 

Together, our results highlight the potenWal of mulW-scale data science approaches to understand 

the biological origins of individual variaWon. 

 

Methods  
Par(cipants. Data from 89 healthy young adults (22-35 years old; mean= 28.6, SD= 3.8 years old) 

were collected from the Human connectome project (HCP)(Van Essen et al., 2012). Of these 89 

parWcipants, 34 were monozygoWc twins, 22 were dizygoWc twins. The zygosity of the parWcipants 

were confirmed with genotyping tests. All parWcipants enrolled in the study and underwent three 

approximately six-minute resWng-state eyes-open MEG recordings using a 248 magnetometers 

whole-head Magnes 3600 system (4DNeuroimaging, San Diego, CA). All scans were performed at 

the same site with a sampling rate of 2034.5 Hz (see (Van Essen et al., 2012)for detailed Methods 

of data collecWon). 

MEG data preprocessing. MEG data were preprocessed following good pracWce guidelines (Gross 

et al., 2013) using Brainstorm (Tadel et al., 2011) March 2023 distribuWon running in MATLAB 

2020b (Mathworks, Inc., Massachuse`s, USA). Our preprocessing pipeline was adapted from our 

previous work (da Silva Castanheira et al., 2021, 2023). Line noise arWfacts (60Hz) along with its 
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first 9 harmonics were removed using a notch filter. Slow-wave and DC arWfacts were a`enuated 

with a high-pass 0.3 FIR filter. To remove ocular and cardiac physiological arWfacts, we defined 

Signal-Space ProjecWons (SSPs) based on the acWvity of external electro-cardiogram and -

oculogram recordings. We addiWonally a`enuated low-frequency saccade (1-7 Hz) and high-

frequency (40-240 Hz) muscle noise components with SSPs. 

MEG source mapping. We source imaged the resWng-state MEG using the coregistered anatomy 

folder provided by HCP (Van Essen et al., 2012). We computed MEG biophysical head models for 

each parWcipant using the Brainstorm overlapping-spheres model (default parameters) applied to 

15,000 locaWons of the cortex. Source maps for each parWcipants’ recoding were computed using 

linearly-constrained minimum-variance (LCMV) beamforming (using Brainstorm default 

parameters: 2018 version). Noise staWsWcs for the respecWve day of the MEG recording were 

esWmated from empty-room recordings. ParWcipant source models were projected into the 

default anatomy of Brainstorm(Tadel et al., 2011), spaWally smoothed (3mm) and clustered into 

the 200 corWcal ROIs defined from the Schaefer 200 7-network atlas (Schaefer et al., 2018) using 

the first principal component within each ROI. Brain-fingerprints were derived from the power 

spectrum of these ROI source Wmeseries. 

Spectral brain-fingerprints. We derived power spectrum density (PSD) esWmates at each parcel 

of the Schaefer atlas using the Welch’s method (Wme window of 2 s, 50% overlap). The resulWng 

data for brain fingerprinWng consisted of a feature matrix of 301 frequencies (0-150Hz; ½ Hz 

resoluWon) per each of the 200 ROIs. We derived a brain-fingerprint for each of the three MEG 

recordings per parWcipant. We similarly defined brain-fingerprints using shorter 30-s non-

overlapping segments of data.  

Individual differen(a(on from spectral brain-fingerprints. The brain-fingerprinWng method 

followed from our previous work (Figure 1a) (da Silva Castanheira et al., 2021; Chapter 2), and is 

based on the correlaWonal similarity of parWcipants between data recordings. For each 

parWcipant in the cohort, we compute the Pearson correlaWon coefficient between the spectral 

brain-fingerprint of the first recording and the second brain-fingerprint of all parWcipants in the 
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cohort, including the probe parWcipant. ParWcipant differenWaWon, thus, consists of a lookup 

procedure along the rows or columns of the inter-individual correlaWon matrix. A parWcipant is 

said to be correctly differenWated if the largest correlaWon coefficient between the first brain-

fingerprint and the second matches the probe parWcipant. This approach is repeated for all 

parWcipants. We compute a percent raWo of the number of parWcipants correctly differenWated 

across the cohort (i.e., differenWaWon accuracy). We repeated the brain-fingerprinWng procedure 

for all possible pairs of data recordings, and report the mean differenWaWon accuracy. 

Twin pair matching from spectral brain-fingerprints. We extended parWcipant differenWaWon to 

twin pairs. Similar to individual differenWaWon, for a given MZ twin, we compute the Pearson 

correlaWon coefficient between the spectral brain-fingerprint of the first recording and the 

second brain-fingerprint of all parWcipants in the cohort. We excepWonally ignore the Pearson 

correlaWon coefficient of the probe parWcipant to their second brain-fingerprint for the twin pair 

differenWaWon procedure (i.e., self-similarity; see Figure 1a). Instead, a twin pair is said to be 

correctly matched if the largest correlaWon coefficient between the first brain-fingerprint and the 

second matches the probe twin’s sibling. We repeat the twin pair matching procedure for all twin 

pairs in the cohort and report the percent raWo of correctly matched pairs separately for MZ and 

DZ twin pairs. 

Band-limited spectral fingerprin(ng. We replicated the individual and twin pair brain-

fingerprinWng analyses using spectral features averaged over canonical frequency bands (delta: 

1–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13–30 Hz, gamma: 30–50 Hz, and high gamma: 50–

150 Hz). 

Bootstrapping of differen(a(on accuracy scores. To derive confidence intervals for the reported 

differenWaWon accuracies, we bootstrapped parWcipants. We randomly selected a subset of 

parWcipants represenWng ~90% of the tested full cohort (i.e., 30 MZ, 20 DZ, and 30 non-twins), 

derived differenWaWon accuracy score, and repeated the procedure 1000 Wmes with random 

subsamples of parWcipants. We report 95-% confidence interval from the 2.5th and 97.5th 

percenWles of the resulWng empirical distribuWon of differenWaWon accuracies. To derive 



 165 

confidence intervals for the differenWaWon of twin pairs, we randomly subsample 15 MZ twin 

pairs, and 10 DZ twin pairs for each iteraWon of the random subsampling. 

Saliency of brain-fingerprint features. We calculated intraclass correlaWons (ICC) to quanWfy the 

contribuWon of each region and frequency band towards differenWaWng between individuals 

across the enWre cohort. ICC quanWfies the raWo of within-rater variance and between-rater 

variance. We define raters as parWcipants, such that high values of ICC indicate that said brain-

fingerprint feature corresponds to high within-parWcipant similarity, and low between-parWcipant 

similarity. To avoid any potenWal bias due to twin pairs, we computed ICC across all individuals in 

the cohort and across 100 random subsamples of parWcipants such that we did not include twin 

pairs (i.e., for each subsample we would randomly select twin A or B to include in the calculaWon 

of ICC). Note that the resulWng ICC values obtained from bootstrapping were 98.6% correlated to 

those obtained from the enWre cohort. We proceeded with the ICC averaged across bootstraps 

for all analyses below. 

 

Heritability of brain phenotypes. We calculated the heritability of brain phenotypes using the 

Falconer formula (Falconer, 1965). This method esWmates the relaWve contribuWon of geneWcs 

against environmental factors in determining a phenotype. Heritability compares MZ twin pairs—

who share approximately 100% of their genome— against DZ twin pairs —who share 50% of 

their genome. If the similarity in a phenotype between MZ is greater than DZ, a trait is said to be 

heritable:  

H2 = 2(rMZ – rDZ)  

where rMZ is the intraclass correlaWon between MZ twin pairs on a given phenotype and rDZ is the 

correlaWon among DZ twin. Note that the intra-class correlaWon used for defining salient features 

for differenWaWng individuals is defined independently of heritability. Heritability reflects the 

similarity within twin pairs on a given phenotype, whereas ICC reflects the stability of a 

phenotype within a person relaWve to others in the cohort (see Saliency of brain-fingerprint 

features). 
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Correspondence of salient brain-fingerprint features and heritable brain phenotypes. We aimed 

to determine if the salient features for parWcipant differenWaWon colocalized with heritable brain 

phenotypes. We computed the Pearson’s spaWal correlaWon of ICC brain-fingerprint topographies 

with the brain maps obtained from the heritability analyses (see Heritability of brain phenotypes) 

across the 200 regions of the Schaefer atlas (Schaefer et al., 2018). We controlled for the spaWal 

autocorrelaWon of the data using spin tests (see Correc(on for spa(al autocorrela(on of brain 

maps).  

Neuroanatomy. We verified that our ability to differenWate MZ twin pairs was not driven 

predominantly by heritable anatomical features. To do so, we extracted anatomical features for 

each region of the Desikan-Killiany atlas provided by the Freesurfer segmentaWon procedure 

(Fischl, 2012). We then i) computed the heritability of these anatomical features following the 

procedure described above, and ii) computed the linear relaWonship between anatomical and 

spectral similarity for twin pairs. We report the results of the linear relaWonship separately for 

MZ, and DZ twin pairs (see Supplemental informaWon). 

Biophysical and environmental ar(facts. We invesWgated whether biophysical recording 

arWfacts might enhance our ability to differenWate individuals and twin pairs. First, we computed 

the root-mean-squares (RMS) of ocular, and cardiac signals collected simultaneously with MEG 

(ECG, HEOG, VEOG, respecWvely). Second, we linearly regressed the measured physiological 

arWfacts from the brain-fingerprints, and used the residuals of this regression to differenWate 

individuals.  

We tested whether day-to-day environmental and instrument noise biased our ability to 

differenWate individuals based on our previously published approach (da Silva Castanheira et al., 

2021). To do so, we used the empty-room recordings collected on the same day of the MEG 

session for each parWcipant to derive pseudo brain-fingerprints based on the imaging kennel of 

each parWcipant’s resWng-state data. The empty-room recordings were preprocessed using the 

same filters as the resWng-state data. We computed the differenWaWon accuracies obtained based 

on these pseudo brain-fingerprints.  
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Gene expression data. Gene expression data was obtained from the six postmortem brains 

provided by the AHBA (h`p://human.brain-map.org/) (M. J. Hawrylycz et al., 2012) using the 

abagen python package (Markello et al., 2021). Our analyses followed a similar pipeline to (Hansen 

et al., 2021). In brief, we first used microarray probes with the highest differenWal stability to 

represent gene expression for each gene (20,232 in total). Tissue samples were assigned to each 

of the 200 brain regions of the Schaefer atlas using Montreal Neurological InsWtute (MNI) 

coordinates generated via nonlinear registraWons, with a maximum distance to of up to 2 mm away. 

To reduce potenWal misassignment, sample-to-region matching was constrained by hemisphere 

and to the cortex. If a region of the Schaefer atlas was not assigned a sample, the closest sample 

in Euclidian distance to the centroid of the region was selected. Gene expression was normalized 

across Wssue samples and subjects to facilitate comparison with a robust sigmoid funcWon (Fulcher 

et al., 2013). Gene expression for each of the retained genes was obtained by averaging across 

donors. We retained 9104 genes with differenWal stability above 0.1 for all future analyses following 

good-pracWce guidelines and previous literature (Arnatkevicĭūtė et al., 2019; Hansen et al., 2021; 

M. Hawrylycz et al., 2015; Markello et al., 2021).  

 

Gene expression & differen(able neurophysiological PLS analysis. We related salient features for 

parWcipant differenWaWon to gene expression gradients using a parWal least squares analysis (PLS) 

(Krishnan et al., 2011; McIntosh et al., 1996; McIntosh & Mišić, 2013). PLS is an unsupervised 

mulWvariate analyses method that relates two data matrices based on latent components of 

maximal covariance. We z-scored the columns both data matrices: the salient fingerprinWng 

features matrix (ICC values; 6 columns represented each frequency band of interest & rows 200 

ROIs of the Schaefer atlas) and the gene expression matrix (9104 columns represented genes & 

rows 200 ROIs of the Schaefer atlas), Y and X respecWvely. We applied singular value decomposiWon 

to the covariaWon matrix of X and Y such that:  

 

(𝑌"𝑋)" = 𝑈𝑆𝑉′ 

 

http://human.brain-map.org/
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where the U 9104 by 6 matrix, and the V 6 by 6 matrix, are orthonormal matrices with each column 

represenWng a latent component. The S matrix is a diagonal matrix of the singular values, with each 

value corresponding to the amount of covariance explained by each latent component(Krishnan et 

al., 2011; McIntosh & Mišić, 2013). Values of U and V at column i represent how much genes and 

frequency bands, respecWvely, contribute to the latent component (i.e., the weights of each gene 

and frequency band respecWvely). PosiWvely weighted genes covary with posiWvely weighted 

frequency bands.  

Gene and ICC brain scores are computed for each brain region, by projecWng the original 

data matrices X and Y onto the singular vector weights. These scores represent how much a given 

region demonstrates the pa`ern of covariance described the latent component. PosiWvely scored 

brain regions exhibit covariance between the posiWvely weighted genes and the posiWvely 

weighted frequency bands for parWcipant differenWaWon.  

Loadings for genes and frequency bands were computed as the Pearson correlaWon 

between each variable’s regional spaWal distribuWon over the cortex (i.e., gene expression and ICC 

data) and the opposing brain score pa`ern (i.e., correlate gene expression & ICC brain score). Note, 

we used Pearson correlaWon as our loadings as they are easier to interpret and are bounded 

between -1 and 1. Variables with large absolute loadings are highly correlated to the observed 

score pa`ern, and relate strongly to the latent component of covariance.  

To assess the significance of the latent components, we conducted spaWal autocorrelaWon-

preserving permutaWon tests (see Correc(on for spa(al autocorrela(on of brain maps). We 

conducted 1,000 spin tests and computed a null distribuWon of singular values. P values were 

computed as the proporWon of null singular values that achieved a greater magnitude than the 

empirical singular values. Bootstrapped confidence intervals for the singular values were 

computed by randomly resampling the rows (brain regions) of both data matrices 1,000 Wmes. We 

report the 2.5th and 97.5th percenWle of the resulWng distribuWon of singular values.  

 

Gene ontology analysis. To determine the biological processes which strongly contributed to the 

set of posiWvely and negaWvely loaded genes, we ran an enrichment analysis. Gene ontology is a 

framework for categorizing gene product molecular funcWon and its associated biological process 
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by compuWng if a set of genes overrepresent specific biological funcWons relaWve to a random set 

of genes.  

For negaWve and posiWve genes, we separately selected the 50% largest loadings (e.g., 

genes with the 50% most negaWve loadings) and entered these genes into the ShinyGO V 0.77 gene 

ontology tool (Ge et al., 2020). Genes with no EnrtezIds were ignored. Fold enrichment for each 

biological process was computed by comparing the frequency of a given biological process in the 

set of posiWve genes against the number of genes in the enWre genome related to said biological 

process. P values associated with fold enrichment for all terms were FDR corrected. We conducted 

the fold-enrichment analysis using the KEGG (Kanehisa et al., 2017) and GO biological processes 

pathway databases (Thomas, 2017). See Supplemental Data for a list of all biological processes and 

their corresponding fold enrichment. 

 

Gene expression & psychological-processes PLS analysis. We repeated the above-described PLS 

analysis to relate gene expression to psychological-processes as indexed by brain acWvaWon maps 

obtained from Neurosynth (Yarkoni et al., 2011). This analysis replicated Hansen and colleagues 

(Hansen et al., 2021) using the Schaefer 200 atlas (Schaefer et al., 2018). 

Psychological-processes brain acWvaWon maps represent probabilisWc associaWon between 

a given term reported in a study (e.g., a`enWon) and brain acWvaWon observed at a that specific 

voxel. This meta-analyWc approach combines data from more than 15,000 published fMRI studies 

to create brain acWvaWon maps for each psychological term. We focused our analyses on the 123 

terms reported in Hansen and colleagues (Hansen et al., 2021), which represent the subset of 

terms that exist both within Neurosynth (Yarkoni et al., 2011) and the CogniWve Atlas (Poldrack et 

al., 2011), a public ontology of cogniWve science. Note that this big-data approach does not 

disWnguish between acWvaWons and deacWvaWons, nor does it represent the degree of acWvaWon 

of a given brain area. We parcellated the probabilisWc funcWonal associaWon maps according to the 

Schaefer atlas(Schaefer et al., 2018). 
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We assessed the overlap between the idenWfied gene latent components observed for the gene-

differenWaWon and gene-psychological processes PLS analyses by compuWng the Pearson 

correlaWon between i) the gene brain score and ii) the gene weights of between both PLS analyses. 

 

Cross-valida(on of PLS analysis. We assessed the robustness of our PLS model through cross-

validaWon of the correlaWon between the observed gene scores and ICC scores (Pearson’s 

correlaWon). We followed the same cross-validaWon procedures as Hansen and colleagues (Hansen 

et al., 2021) which creates a training and tesWng set of data by spli�ng spaWally distant brain 

regions. A random seed is used to determine the training set—75% of brain regions closest in 

Euclidian distance to the seed locaWon are used to train the PLS model. The remaining 25% of 

regions are held out, to test the PLS model by compuWng the correlaWon between predicted gene 

and ICC scores [Corr(XtestUtrain, YtestVtrain)]. This procedure was repeated 100 Wmes to produce 

a distribuWon of correlaWons. The significance of the cross-validaWon procedure was assessed 

against a null model: We computed spaWally autocorrelaWon-preserving permutaWons of the gene 

expression matrix and repeated the cross-validaWon procedure 1,000 Wmes (see Figure 4c).  

 

Cell-type deconvolu(on analyses. To determine if the idenWfied gene signature is preferenWally 

expressed in certain cell-types, we performed a cell-type deconvoluWon analysis. We aggregated 

cell-specific gene sets for 7 cell-types using five human adult postmortem single-cell and single-

nucleus RNA sequencing studies (Darmanis et al., 2015; Habib et al., 2017; Lake et al., 2018; M. Li 

et al., 2018; Seidlitz et al., 2020; Zhang et al., 2016). The 7 cell classes were previously determined 

based on hierarchical clustering which resulted in the following cell types: astrocytes, endothelial 

cells, microglia, excitatory neurons, inhibitory neurons, oligodendrocytes, and oligodendrocyte 

precursors cells (OPC). We assessed the preferenWal expression of cell-specific gene sets by i) 

compuWng the raWo of posiWvely (and negaWvely separately) loaded genes which overlapped with 

the cell-specific gene set and ii) permuWng gene sets 1,000 Wmes to assess staWsWcal significance. 

 

Development of the gene signature. We used brain gene expression data available from the 

BrainSpan (J. A. Miller et al., 2014). Gene expression levels from different developmental stages 
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ranging from 8 post-concepWon weeks to 40 years of age from 16 corWcal regions. We binned gene 

expression data into five life stages: fetal (8–37 post-concepWon weeks), infant (4 months–1 year), 

child (2–8 years), adolescent (11–19 years) and adult (21–40 years) (Werling et al., 2020). For each 

life stage, we first computed the gene expression of the top 50% of posiWve and negaWvely loaded 

genes for every corWcal region. We similarly compute gene expression at every 

neurodevelopmental stage for a random set of genes. Note that of the 16 corWcal regions with 

gene expression data, four regions only had samples for the fetal stage—we, therefore, report data 

for the 12 corWcal regions with data across all neurodevelopmental stages. We then computed 

gene scores for the 12 corWcal regions across all neurodevelopmental stages by mulWplying the 

gene expression matrix obtained from BrainSpan with the PLS-derived gene weights (columns of 

U). We fi`ed linear slopes—using the MATLAB polyfit() funcWon—to the gene scores across 

neurodevelopment for every corWcal region separately. We compared these slopes to null slope 

values obtained by first performing spaWally autocorrelaWon-preserving permutaWons, running the 

PLS analysis, and mulWplying the null gene weights with BrainSpan gene expression data. This 

resulted in a null distribuWon of slopes (1000 permutaWons). 

 

Human accelerated region analyses. We defined genes associated with human accelerated 

regions (HARs) based on Wei et al.(Wei et al., 2019).  Of the 1711 genes present in AHBA, Wei and 

colleagues reported that 415 genes were significantly more expressed in brain Wssues than other 

available body samples (see (Wei et al., 2019) Supplementary Data 2). We based our analyses on 

these 415 HAR-brain genes for all further analyses. Of these 415 genes, 313 genes were considered 

differenWal stable in our analysis (see Gene expression data). We first assessed the 

overrepresentaWon of HAR-brain genes in the idenWfied gene signature (top 50% posiWve and 

negaWve loadings) through permutaWon analyses. We then assessed the spaWal correspondence of 

gene expression of HAR-brain genes and the computed gene brain score (see Correc(on for spa(al 

autocorrela(on of brain maps). 

Visualiza(on. We plo`ed brain maps of ICC, heritability, and PLS brain scores using the 

ggSchaefer and ggseg R packages. All other plots were generated using the ggplot2 package in R 

(R Core Team, 2022). 
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Correc(on for spa(al autocorrela(on of brain maps. We corrected for spaWal autocorrelaWon of 

brain map data—where applicable—using SPIN tests. SPIN tests preserve the spaWal 

autocorrelaWon of a brain map while permuWng the indices of said map. The resulWng 

relaWonship represents a null relaWonship, controlled for autocorrelaWon. We conducted 1000 

SPIN permutaWons of our brain maps using the Hungarian method (Markello & Misic, 2021; Váša 

& Mišić, 2022).  

Data availability  
This project relied on openly available data. The data are available through the Human 

connectome Project (HCP) repository (h`ps://www.humanconnectome.org/study/hcp-young-

adult). Gene expression data are available through the Allan Human Brain atlas (ABHA; 

h`p://human.brain-map.org/). The Neurosynth database is available at h`ps://neurosynth.org/. 

Code availability  
All in-house code used for data analysis and visualizaWon is available on GitHub 

h`ps://github.com/Epideixx/Fingerprints_Twins. 
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Chapter 6  
Discussion 
 
Individuals exhibit a great diversity of personality traits and behaviors, yet the biological 

mechanisms underlying these differences remain incompletely understood. A likely contributor 

to such variability is the substanWal heterogeneity in brain structure and funcWon. How inter-

individual variaWon of the brain relates to behaviours remains an open field of inquiry. This 

quesWon is of parWcular interest as the neuroscienWfic field moves towards larger openly-

available data volumes that approach the realm of populaWon science (Niso et al., 2016a; Taylor 

et al., 2017; Van Essen et al., 2012). In this dissertaWon, I demonstrate how brain-fingerprinWng 

can expand our neuroscienWfic toolkit to be`er understand the diversity of neurophysiological 

brain acWvity across individuals and ulWmately explore the biological origins of the self.  

 
Inter-individual differences in brain ac;vity evolve across the lifespan 
Leveraging several large open datasets across four experiments, I invesWgated inter-individual 

differences in brain acWvity across populaWons and demonstrated that an individual’s brain 

acWvity is characterisWc of themselves. Much like a fingerprint lei by your hand, brain acWvity can 

differenWate a person from a large cohort. But unlike a fingerprint lei by your hand, the brain-

fingerprint can predict behaviours and traits (Amico & Goñi, 2018a; da Silva Castanheira et al., 

2021; Finn et al., 2015a; Rosenberg et al., 2017a), scales with disease progression (Chapter 4), 

and correlates to corWcal gene expression (Chapter 5) allowing scienWsts to study the biological 

origins of behavioural variaWon.  

Previous work on brain-fingerprinWng (Amico & Goñi, 2018a; Finn et al., 2015a) 

exclusively studied healthy young adults. In this dissertaWon, I expand the concept of the brain-
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fingerprint to various populaWons, demonstraWng that individuals remain disWnguishable across 

diverse groups, including older adults. The findings of Chapter 3 suggest that while individual 

differenWaWon remains accurate, the electrophysiological features that best differenWate between 

individuals evolve throughout healthy aging. Whether individuals remain equally differenWable 

across all of neurodevelopment remains an acWve area of research. 

Kauffman and colleagues’ demonstrate that funcWonal connectome brain-fingerprints, as 

measured using fMRI scans, become increasingly stable throughout neurodevelopment 

(Kaufmann et al., 2017a), and suggest that delayed stabilizaWon of the funcWonal connectome 

may be a marker of abnormal neurodevelopment (Kaufmann et al., 2017a). Given the different 

origins of BOLD and electrophysiological signals, whether these findings translate to 

electrophysiological brain-fingerprints remains to be explored.  

In Chapter 5 I demonstrate that the geneWc signature which covaries with 

electrophysiological individual differenWaWon becomes more pronounced across 

neurodevelopment. These findings dovetail with the observaWon that older adults remain 

differenWable across the adult lifespan, previous fMRI literature reporWng an increasingly stable 

brain-fingerprint with neurodevelopment, and imply that the influence of geneWcs on 

electrophysiology becomes increasingly important for inter-individual differences across 

neurodevelopment. These effects also align with the observaWons that cogniWve processes 

develop over the lifespan and that geneWcs play an increasingly important role in cogniWon as 

one ages (Mollon et al., 2021). 

In a separate project not presented in this dissertaWon, I compared the brain fingerprints 

of young children (4-12 years old) to that of adults (18+ years old). The findings reveal that the 

brain-fingerprints of children are more challenging to differenWate, showing increased similarity 

to other children’s brain acWvity, specifically for arrhythmic brain acWvity (da Silva Castanheira et 

al., in preparaWon). These results tentaWvely explain previous findings in the fMRI literature 

(Kaufmann et al., 2017a), and aligns with the results of Chapter 5, where we observed that the 

gene-differenWaWon signature becomes more pronounced across neurodevelopment. A graphical 

representaWon of this effect is depicted in Figure 1. Together, these findings suggest that brain-
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fingerprints may be stable within specific developmental periods, underscoring the importance 

of future research exploring brain-fingerprints with longitudinal data across the lifespan. 

 

 
Chapter 6 Figure 1 Individual differen@a@on across the lifespan overview. 

Summary figure of the results presented within this disserta@on. Chapter 2 established the 

differen@a@on of young adults (18-35 years old) from spectral brain-fingerprints. The accuracy 

of individual differen@a@on remains high across the adult lifespan. Diseases, such as 

neurodegenera@ve diseases may lower par@cipant self-similarity of brain-fingerprints and 

therefore lower par@cipant differen@a@on. Young children on the other hand (4-12 years old) 

are more difficult to differen@ate from one another due to higher other-similarity of brain 

ac@vity features (data not presented in thesis da Silva Castanheira et al., in prepara@on). These 

finding are in line with the results presented in Chapter 5. Across these popula@ons, the most 

differen@able brain ac@vity features (depicted in brain maps) evolve across groups.  

 
Stability of rhythmic brain ac;vity 
In our analysis of different populaWons, we observed that arrhythmic brain acWvity differenWated 

individuals with a lower accuracy than its rhythmic counterpart. While we found li`le evidence 

for the impact of age on our ability to differenWate individuals, we observed that individual 

differenWaWon using arrhythmic brain features was remarkedly worse than rhythmic features 
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across all age groups (see Chapter 3). This effect is most evident when using the enWre cohort: 

using brain-fingerprints defined from full spectral acWvity, 606 individuals were differenWated 

with 89.6% ([88.0, 91.1] 95% CI) accuracy, this dropped to 47.1% (CI [46.0, 48.0]) when using 

brain-fingerprints derived exclusively from arrhythmic brain acWvity. This effect is unsurprising as 

arrhythmic brain acWvity is derived from two spectral parameters across brain regions, reducing 

the complexity of the electrophysiological signal substanWally. 

AddiWonally, we observed that individuals with Parkinson’s disease (PD) showed a 

pronounced destabilizaWon of arrhythmic brain acWvity. Any differences in differenWaWon 

accuracy between healthy age-matched controls and paWents with PD were miWgated when 

defining brain-fingerprints from rhythmic brain acWvity (Chapter 4). The la`er findings tentaWvely 

explain why previous efforts to define brain-fingerprints of individuals with neurodegeneraWve 

diseases reported lower differenWaWon accuracies (Romano et al., 2022; SorrenWno et al., 2021c; 

Troisi Lopez et al., 2023). 

Together these findings suggest that the arrhythmic component of brain acWvity may be 

less stable within a recording session and subsequently less characterisWc of individuals, than its 

rhythmic counterpart. This finding is in line with the interpretaWon that arrhythmic brain acWvity 

may represent the local balance of excitatory and inhibitory acWvity (Chini et al., 2022; R. Gao et 

al., 2017; Waschke, Donoghue, et al., 2021) and fluctuates across different states of alertness 

including sleep stages and anestheWc-induced loss of consciousness (Colombo et al., 2019; 

Favaro et al., 2023; Lendner et al., 2020; Maschke et al., 2023). These results would tentaWvely 

suggest that arrythmic brain acWvty reflects more of a ‘state’ than a ‘trait’. Future research 

should explore how fluctuaWng states of arousal during resWng-state scans may impact brain-

fingerprinWng and be altered by diseases like neurodegeneraWon.  

 

Implica;ons for future clinical research 
The budding brain-fingerprint literature puts forward the noWon that task-free brain acWvity is 

stable within individuals and deviaWons from this stability may index disease, cogniWve decline, 

and neurodegeneraWon (Kaufmann et al., 2017a, 2018a; SorrenWno et al., 2021c; Troisi Lopez et 

al., 2023). The results of Chapter 4 elaborate on these findings and propose that arrhythmic 

brain acWvity exhibits an increase in moment-to-moment variability in PD hindering individual 
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differenWaWon. These findings challenge the noWon of a general 'fading' brain-fingerprint 

associated with neurodegeneraWve diseases and suggest that specific components of brain 

acWvity may be selecWvely affected by disease, impacWng individual differenWaWon. 

The clinical uWlity of the brain-fingerprinWng method lies in idenWfying paWent-specific 

polyrhythmic biomarkers that are both characterisWc of individuals and relate to the clinical 

presentaWon of diseases. These biomarkers may offer potenWal targets for neuromodulaWon 

therapies, providing researchers exploring such therapies with new avenues for invesWgaWon 

(Chase et al., 2019; Harmsen et al., 2018; Litvak et al., 2021; Thut & Pascual-Leone, 2010). In 

addiWon, documenWng which neurological condiWons specifically show greater within-session 

variability could aid in building more generalizable translaWonal neuroimaging models (Woo et 

al., 2017).  

In Chapter 4, I contextualize the PD brain-fingerprint with respect to normaWve atlases of 

neurochemical systems. These results open avenues for novel hypotheses and therapeuWc 

targets beyond previously reported group-level aberraWons. Exploring cellular and molecular 

correlates of increased variability in arrhythmic brain acWvity in animal models of 

neurodegeneraWve diseases could provide valuable insights. 

The influence of geneWcs on brain-fingerprints, as discussed in Chapter 5, suggests that 

future clinical work could also use animal models to understand how gene expression may alter 

mesoscale differenWable brain acWvity. This approach could contribute to a deeper understanding 

of the microscale correlates of brain variability, the relaWonship between variability and symptom 

presentaWon, and ulWmately help move the field toward the goal of personalized medicine. 

 
Exploring biological origins of unique brain ac;vity   
Novel large neuroscienWfic datasets and tools have afforded neuroscienWsts new methodologies 

to bridge across methodologies (e.g., fMRI, MEG, single-cell recordings, PET, and gene 

expression) and measurement scales (e.g., gene expression, neurochemistry, and mesoscale 

neurophysiology) (Hansen et al., 2021, 2022; Markello et al., 2022a). Inspired by these tools and 

databases, I contextualize the observed differenWable brain acWvity with the spaWal distribuWon 

of neurochemical systems and corWcal gene expression. 
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CorWcal regions enriched for norepinephrine transporter were observed to also 

differenWate older adults be`er than young adults, and paWents with PD be`er than age-

matched healthy controls. These results emphasize the importance of the noradrenergic system 

in inter-individual differences. Extant literature emphasizes the role of the noradrenergic system 

on sensory processing, alertness, and a`enWon (Borodovitsyna et al., 2017; Devilbiss et al., 2006; 

Holland et al., 2021; Vazey & Aston-Jones, 2014). I speculate that inter-individual differences in 

cogniWve funcWons may relate to the noradrenergic system, and subsequently be observed as 

inter-individual differences in electrophysiology in noradrenergic enriched regions. In line with 

this hypothesis, the cogniWve changes observed with healthy aging and in Parkinson’s disease 

may relate to norepinephrine funcWon and this may explain why electrophysiology of regions 

enriched in this neurochemical system best differenWates between older adults and between 

paWents with PD. Future work may triangulate inter-individual differences in behaviours, 

including a`enWon and sensory processing, differenWable neurophysiological acWvity, and the 

noradrenergic system.  

These are among the first results to link within-parWcipant stability of neurophysiological 

brain acWvity to neurochemistry. Despite this ambiWous goal, the method is not without its 

limitaWons. Indeed, the normaWve atlases of neurochemical distribuWon aggregated data 

exclusively from healthy young adults (Markello et al., 2022a). Future work should aim to 

replicate these effects using cross-secWonal Positron Emission Tomography scans. This data-

science approach to neuroimaging is promising, but sWll in its infancy; future databases with 

more extensive characterizaWon of the neurochemistry and microstructure of the brain across 

populaWons may expedite brain-behaviour research. 

The results presented herein put forward the construal that brain morphology may play a 

limited role in shaping electrophysiological brain-fingerprints. While we observed a significant 

spaWal alignment between age-related corWcal thinning and diverging features for parWcipant 

differenWaWon between age-groups (Chapter 3), we observed limited evidence for the role of 

corWcal thickness in shaping the brain-fingerprints of paWents with PD (Chapter 4). In addiWon, 

the anatomical similarity between monozygoWc twins did not linearly scale with their spectral 

brain-fingerprint similarity (Chapter 5). Together, these mixed results contrast with recent 
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findings reporWng that the brains geometry plays an important role in shaping its funcWon as 

measured by fMRI (Pang et al., 2023).  Future work should clarify the role anatomy plays in 

electrophysiological parWcipant differenWaWon.  

In addiWon, we reported that differenWable electrophysiological brain acWvity in healthy 

young adults covaries with gene expression enriched for ion homeostasis, and cell signalling. This 

gene signature was preferenWally expressed in excitatory and inhibitory neurons (see Chapter 5) 

and corroborates the hypothesized microscale origins of MEG signals (i.e., post-synapWc 

potenWals of thousands of neurons) (Baillet, 2017; Baillet et al., 2001; Hämäläinen et al., 1993). 

Together this dissertaWon provides evidence that inter-individual differences measurable at the 

mesoscale using electrophysiology may relate to inter-individual variaWons in neuron signaling, 

and are not a by-product of neural noise as previous work suggested (Başar, 1990; Stein et al., 

2005). 

There are well-recorded neurodevelopmental changes in the brain’s transcriptome, and 

while these alteraWons are most notable throughout the prenatal and infancy periods, a small 

percentage of genes have been documented to change in late adulthood (see Ham & Lee (Ham & 

Lee, 2020) for review). Across corWcal regions, age-dependent gene transcripWon alteraWons 

primarily reduce synapWc funcWons and increase the brain’s immune response. The results of 

Chapters 5 and 3 tentaWvely propose that transcriptomic changes in synapWc funcWon may drive 

the changes we observed in differenWable electrophysiological features of older adults.  

Previous studies reported that microglial genes like complement component 1q A (C1QA) 

are increasingly expressed with age (Cribbs et al., 2012; Erraji-Benchekroun et al., 2005; Ham & 

Lee, 2020; Norden & Godbout, 2013; Soreq et al., 2017). These results corroborate the 

inflammaWon hypothesis of aging (Cribbs et al., 2012; Malva et al., 2021) which suggests that 

neuroinflammaWon may be an important risk factor in protecWng against cogniWve decline and 

neurodegeneraWve disease. Yet, the results of this dissertaWon suggest that differenWable 

electrophysiological acWvity may not be parWcularly sensiWve to capture the macro-scale 

correlates of gene transcripWon alteraWons in neural support cells (Chapter 5). While the present 

body of work does not address this concern directly—due to limited available transcriptomic 



 194 

data—it certainly represents a novel avenue for future studies exploring the link between 

neuroinflammaWon, aging, and inter-individual differences in electrorheological acWvity. 

 
Linking within-person variability of behaviours and brain ac;vity 
Most of the extant research on brain-behaviour relaWonships has largely focused on inter-

individual variaWon in behaviours and how they relate to brain acWvity. Scant work explores how 

intra-individual variaWon in behaviours relates to intra-individual variaWon in brain acWvity. 

Indeed, preliminary work on intra-individual variability in behaviours suggests that 

increased variaWon in behavioural responses may be an important index of parWcipants' mental 

wellbeing (Burton et al., 2006b; Costa et al., 2019a; Kuntsi & Klein, 2011b; MacDonald et al., 

2006; Singh et al., 2021b). Increased behavioural intra-individual variability specifically in 

neurodegeneraWve diseases has been related to the severity of cogniWve symptoms (Burton et 

al., 2006b; Costa et al., 2019a; J. D. Jones et al., 2022; Singh et al., 2021b). Yet, the 

neurobiological foundaWons of such an effect are yet to be enWrely understood. Some preliminary 

findings in fMRI report an associaWon between the variability of brain acWvity and cogniWve 

performance (Garre` et al., 2010; Garre`, Kovacevic, et al., 2013; Nomi et al., 2017).   

Variability in neural signals, previously conceptualized as noise has recently been re-

examined as a signal that can index task performance (Baracchini et al., 2023; Nomi et al., 2017; 

Uddin, 2020, 2021). Throughout neurodevelopment, brain signal variability appears to increase 

and correlate with cogniWve task performance. BOLD variability appears to be an important signal 

related to cogniWon and several biological processes like the arrhythmic component of 

electrophysiology (Baracchini et al., 2023).  

It is for these reasons I speculate that greater intra-individual variability of the arrhythmic 

component observed in PD may relate to variability in task performance, as discussed in Chapter 

4. Note that greater intra-individual variability of brain acWvity (lower self-similarity) hinders 

parWcipant differenWaWon. Bridging the brain-fingerprinWng (Kaufmann et al., 2017a, 2018a; 

SorrenWno et al., 2021c; Troisi Lopez et al., 2023) and variability literature, the results of this 

dissertaWon tentaWvely suggest that brain-fingerprints may be a useful index of cogniWve health 

and brain signal variability. Increased variability may be an important “signal” of interest in future 

neuroscienWfic research (Garre` et al., 2010; Garre`, Kovacevic, et al., 2013). Future work should 
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clarify this hypothesis and triangulate these fields of research to link cogniWve decline to intra-

individual variability of behaviours and brain acWvity. 

 

Methodological considera;ons for studying brain-behaviour rela;onships  
Building on previous research on brain-fingerprints (Amico & Goñi, 2018a; Finn et al., 2015a; 

Rosenberg et al., 2017a), the results of this dissertaWon indicate a connecWon between inter-

individual differences in cogniWon and electrophysiological brain-fingerprints. For example, 

salient electrophysiological features for individual differenWaWon predict inter-individual 

differences in fluid intelligence (Chapter 3). In addiWon, I observed an axis of psychological task-

acWvaWons—from cogniWve tasks to self-reported affect—that covaries with gene expression, and 

differenWable brain acWvity (Chapter 5).  

The longstanding ontological debate surrounding the disWncWon between affect and 

cogniWon, rooted in ancient philosophy, persists to this day (Duncan & Barre`, 2007; Forgas, 

2008). Recent arguments propose a phenomenological rather than an ontological disWncWon—

individuals subjecWvely feel that paying a`enWon is different than experiencing an emoWon, but a 

true boundary between these brain processes may not exist (Duncan & Barre`, 2007). Following 

this perspecWve, research has documented cases where affect directly impacts cogniWve 

processes such as a`enWon (Ochsner & Gross, 2005; Veerapa et al., 2020), and cases where 

cogniWve processes, like declaraWve memories, elicit emoWonal responses (Duncan & Barre`, 

2007). Understanding the complex relaWonship between inter-individual differences in cogniWon 

and affect, and their connecWon to brain fingerprints, requires further invesWgaWon. 

It is noteworthy that salient features in fMRI that predict individual differences in 

cogniWve abiliWes overlap minimally with the salient brain regions of electrophysiological brain-

fingerprints reported herein. The diverging salient features between imaging modaliWes for 

parWcipant differenWaWon may help future research on brain-behaviour relaWonships. 

Another crucial consideraWon when studying brain-behaviour relaWonships is how 

cogniWon and affect are oien studied in the lab.  CogniWon is oien measured through tasks that 

require parWcipants to respond to sWmuli, whereas affect is oien measured through self-report 

quesWonnaires. Future work should invesWgate whether methodological consideraWons in how 

we measure behaviours in the field underlie this gradient of task-acWvaWons observed in the 
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Neurosynth data. While moderate to high test-rest reliability of personality quesWonnaires like 

the Big Five factor model suggest that parWcipants on average can introspect their behaviours, 

certain socioeconomic factors may reduce the reliability of these quesWonnaires (Gnambs, 2014, 

2016; Gurven et al., 2013; McCrae & Costa Jr., 1997). The discrepancy in how researchers 

measure cogniWon and affect may complicate interpretaWons of brain-behaviour research. 

Earlier studies on social networks and friendships suggest that two friends who are closer 

in a social network show more similar brain acWvaWon pa`erns during resWng state than two 

strangers—much like a brain -fingerprint (Baek et al., 2022; Parkinson et al., 2018). The authors 

speculate that the similarity in brain acWvity amongst friends at rest may reflect shared world 

views and beliefs that, like lenses, shape informaWon processing (Parkinson et al., 2018). The 

results of Chapter 5 expand on these findings and tentaWvely suggest that monozygoWc twin 

pairs, whose brain-fingerprints are strikingly similar, may similarly have overlapping cogniWve 

abiliWes, beliefs, and personaliWes. Future research should expand on these results and explore 

how shared personaliWes and beliefs are similarly represented in the brain with brain-

fingerprinWng of siblings and unrelated parWcipants. Taken together, this burgeoning literature 

demonstrates that novel methods inspired by brain-fingerprinWng may help us be`er understand 

brain-behaviour relaWonships. 

Brain-fingerprinWng presents itself as a complementary approach for invesWgaWng brain-

behavior relaWonships. In contrast with Brain Wide AssociaWon Studies (BWAS), the brain-

fingerprinWng approach considers both within- and between- parWcipant variance of brain 

acWvity. Expanding the neuroscienWfic toolkit for brain-behaviour relaWonships is parWcularly 

important given recent concerns about the limited reproducibility of BWAS, including small 

effect-sizes, low reproducibility (Marek et al., 2022), and limited generalizaWon across 

populaWons (Greene et al., 2022; J. Li et al., 2022). 

Expanding upon previous fMRI results, I demonstrate that the most salient features for 

individual differenWaWon similarly decode inter-individual differences in fluid intelligence.  By 

concentraWng solely on differenWable brain acWvity and its relaWonship to behaviours, the brain-

fingerprinWng approach can potenWally reduce the number of staWcal tests by reducing the 

feature space, and thereby render BWAS more amenable to smaller sample sizes. In addiWon, 
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brain-fingerprinWng will likely afford scienWsts novel hypotheses to design brain-behaviour 

models.  

 
Individuals are differen;able from brief neurophysiological segments 
One notable advantage of electrophysiological brain-fingerprints, in comparison to fMRI, is their 

relaWve stability within-individuals over brief 30-second recordings. Across mulWple cohorts 

totalling ~1,000 total parWcipants, and across various populaWon demographics (e.g., young 

adults, older adults, and individuals with Parkinson’s disease), I observed that brief 30-second 

neurophysiological recordings can differenWate between individuals based on fast brain 

dynamics. This observaWon is clinically useful and coincides with other work suggesWng that 

within-parWcipant esWmates of spectral brain acWvity stabilize over a relaWvely short period of 

Wme (i.e., less than 2 minutes for most spectral features) (Wiesman, da Silva Castanheira, et al., 

2022c).  Together, these results suggest that the brain acWvity of healthy adults is relaWvely 

stable over brief segments in Wme.  

This growing body of work, corroboraWng the stability of brief neurophysiological 

recordings, has important implicaWons for the design and collecWon of populaWon neuroscienWfic 

data. Future data-sharing efforts can benefit from these results by recording brief MEG 

recordings. Indeed, brief electrophysiological recordings from thousands of individuals will 

expedite data collecWon, and encourage the recruitment of parWcipants from populaWons that 

were previously difficult to study in scanning environments. I foresee that brief 

neurophysiological recordings may catalyze innovaWon in the neuroscience of aging, neurological 

and mental illness, and neurodevelopment. Brief neurophysiological recording may also benefit 

brain-behaviour research, as scienWsts esWmate that brain-wide associaWon studies (BWAS) 

methods may require thousands of individuals to achieve adequate staWsWcal power (Bu`on et 

al., 2013; Marek et al., 2022; Spisak et al., 2023).  

Novel wearable opWcally pumped magnetencephalography recording technology may 

further accelerate progress in naturalisWc real-world scanning environments (Boto et al., 2018; 

Brookes et al., 2022; Hill et al., 2020) allowing researchers access to previously difficult-to-

sample populaWons. Whether brief recordings of MEG brain acWvity are equally stable with 

opWcally pumped sensors remains an open quesWon.    
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Future of open neuroimaging data: longitudinal brain charts  
Recent efforts have proposed the noWon of brain-charts: PopulaWon norms of brain structure 

across neurodevelopment (Bethlehem et al., 2022). Like their pediatric growth-chart equivalents, 

the goal of brain-charts is early screening of neurological and mental health diseases based on 

age-matched norms of the brains morphology. The benefits of such an approach for funcWonal 

brain imaging have yet to be explored. In addiWon, li`le work to date has examined 

developmental norms of brain variability. Brain-fingerprinWng may complement such efforts. 

I propose that longitudinal funcWonal brain imaging data may help scienWsts in this 

screening endeavour. Beyond comparing individuals to populaWon norms, assessing the 

trajectory of individuals and the relaWve stability of brain acWvity may index health. Preliminary 

evidence—some of which is reported within this dissertaWon—suggests that neurodegeneraWve 

disorders may destabilize brain acWvity in the short term, making individuals less differenWable 

from their brain acWvity (da Silva Castanheira et al., 2023; Kaufmann et al., 2017a, 2018a; Troisi 

Lopez et al., 2023). This research could be expanded to assess the uWlity of longitudinal brain-

fingerprint assessments in pre-clinical screening of diseases. This is especially relevant for 

neurodegeneraWve diseases because older adults do not show an equivalent destabilizaWon of 

their brain-fingerprints with age (Chapter 3), thus the decreased stability (increased variability) of 

brain acWvity may be a biomarker of neurodegeneraWon.  

Beyond neurological condiWons, longitudinal brain fingerprinWng may clarify how major 

life events and stressors impact brain health. Previous work suggests that trauma, major 

stressors, and resulWng chronic acWvaWon of the HPA axis alter brain structure and funcWon 

(Bremner, 2006; Herringa, 2017; Karl et al., 2006; Shields et al., 2016). Brain-fingerprinWng may 

offer a unique opportunity to study how life stressors may impact brain funcWon and health. With 

large enough data volumes, populaWon neuroscience could study how stress affects the brain-

fingerprint, which in turn may predict the future well-being of an individual.  

Like the fingerprints lei by your hand, the brain-fingerprint is stable and differenWates 

between individuals. The brain-fingerprinWng method, presented in this dissertaWon, shows great 

potenWal in exploring quesWons concerning the biological underpinnings of the self. The findings 

of this thesis expand upon the electrophysiological origins of characterisWc brain acWvity, across 
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several populaWons, and demonstrate their uWlity in predicWng behaviours and disease 

progression. I present evidence corroboraWng that diversity in brain acWvity across individuals is 

meaningful and should be studied. I bridge data across the microscale, mesoscale, and behaviour 

to demonstrate how geneWcs and neurochemistry relate to inter-individual variability of brain 

acWvity. Taken together, I anWcipate that the results presented herein will inspire future research 

exploring the biological origins of the self, to answer the quesWon: “What makes us unique?”. 
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Appendix A: Supplemental Informa>on 
chapter 2   
 
MEG fingerprin@ng is robust against sample demographics 

The OMEGA data repository contains 158 parWcipants, with a subset (N=47) scanned at 
mulWple occasions several days apart. OMEGA consists essenWally of data from healthy controls 
with a 18-73-year age span (SD=14.7 years; Supplementary Table 1).  

One potenWal confound that could have inflated our ability to fingerprint individuals is the 
heterogeneity introduced by both healthy and clinical populaWons in the OMEGA cohort. To 
address this concern, we ran a secondary analysis where we performed the fingerprinWng 
procedures described in the manuscript with only healthy controls (N=130). The results, reported 
in Supplementary table 2, demonstrated that fingerprinWng performances were not biased by the 
paWents/controls heterogeneity of the OMEGA sample. We observed a decrease of less than 1% 
in performance relaWve to fingerprinWng from the enWre cohort. Further, there was no clear 
relaWonship between differenWability** and demographics (Supplementary Figure 1)., using 
connectome (age: r= 0.08, p = 0.2; gender: t= -0.27, p = 0.7; handedness: t= -0.51, p = 0.6; clinical 
status: t= -0.87, p = 0.3; two-tailed) and spectral fingerprinWng (age: r= 0.10, p = 0.1; gender: t= 
0.62, p = 0.5; handedness: t= 0.13, p = 0.8; clinical status: t= 0.84, p = 0.3; two-tailed). 

** Please note that differentiability may also be referred to as self-identifiability (Iself) in our 
analysis scripts. 

 
Supplementary Figure 1: DifferenWability is not associated with demographics 
The plots depict demographic variables and corresponding differen@ability scores across both 
(a) connectome and (b) spectral broadband within-session fingerprin@ng (n = 158). 
Demographic variables included age, biological sex, dominant hand, and healthy vs. pa@ent 
categories. (a) There was no clear rela@onship between age, biological sex, dominant hand, and 
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healthy vs. pa@ent categories and differen@ability for broadband within-session connectome 
fingerprin@ng. (b) There was no clear rela@onship between age, biological sex, dominant hand, 
and healthy vs. pa@ent categories and differen@ability for broadband within-session 
connectome fingerprin@ng. Differences in demographics did not drive differen@ability. The 
center of the boxplot depicts the median (Q2), the box extends from the Q1 to Q3 quar@le 
values of the data, and the whiskers extend to show the range of the data (i.e., the farthest 
datapoint within the 1.5 * IQR (IQR = Q3 -Q1) interval). Source data are provided as Source Data 
File. 
 

AcquisiWon parameters did not affect both fingerprinWng performances (Supplementary 
Figure 2). ParWcipants with longer recordings (i.e., more data) were not more differenWable 
(connectome: r= -0.02, p = 0.7; spectral: r= 0.02, p = 0.8). This observaWon is consistent with the 
shortened fingerprinWng results, which demonstrate individuals were differenWable from shorter 
30-second recordings (see below).  

Taken together, these supplemental results demonstrate that MEG fingerprinWng is robust 
against data arWfacts, heterogeneous sample demographics, and acquisiWon parameters. 

 
Supplementary table 1: OMEGA par@cipant demographics. Demographic variables summarized 
for both subsets of the OMEGA data repository. 
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Supplementary Figure 2: Recording dura@on did not affect differen@ability. Scafer plots of 
differen@ability vs. dura@on of data collec@ons, for the broadband within-session challenge. 
There was no clear rela@onship between differen@ability and the dura@on of the MEG 
recordings across par@cipants. Source data are provided as Source Data file. 
 

Supplementary table 2. Fingerprin@ng performances of healthy controls  
Differen@a@on performances of connectome and spectral broadband within-session 
fingerprin@ng obtained from for the en@re repository (healthy controls and pa@ents), and from 
healthy par@cipants only. Each column reports fingerprin@ng performances from dataset 1 to 
dataset 2 and vice-versa (see Figure 1 and Methods for details). Overall, differen@a@on accuracy 
decreased slightly by ~0.9% when comprising healthy par@cipants only. Consistent with our 
findings reported in Supplementary Figure 2, clinical status did not play a major role in the 
differen@a@on of individuals. 
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Supplementary Figure 3: Differen@a@on accuracy from within-session datasets  
Results from MEG within-session fingerprin@ng. Differen@a@on accuracy for (a) connectome and 
(b) spectral fingerprin@ng (broadband and narrowband data). The accuracy scores are reported 
for differen@a@on from dataset 1 to dataset 2 and vice-versa, as explained in Methods. Source 
data are provided as a Source Data file. 
 

 
Supplementary Figure 4: Example par@cipant correla@on matrix for fingerprin@ng 
Exemplar par@cipant correla@on matrix derived from between-session data used for 
fingerprin@ng. The study-iden@ty of par@cipants was determined by the highest correla@on 
sta@s@cs taken across rows (e.g., to differen@ate dataset-2 from dataset-1) or columns (to 
differen@ate dataset-1 from dataset-2). 
 
 
Data reduc@on from principal component analysis does not improve MEG fingerprin@ng 
substan@ally 

Amico and Goñi (1) previously reported improvements to parWcipant differenWaWon when 
using data reducWon techniques prior to fingerprinWng, using e.g., principal component analysis 
(PCA). We reproduced their approach, using PCA to reduce the dimensionality of the 
connectome and spectral feature spaces prior to fingerprinWng. Our results provided li`le 
support to PCA reconstrucWon improving differenWaWon accuracy, as shown Supplementary 
Figure 5 and in Supplementary table 3. PCA increased differenWability by less than 1.5%. Data 
reducWon had limited beneficial impact possibly because of high fingerprinWng performances at 
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baseline (without data reducWon). We also emphasize that we conducted MEG source Wme series 
extracWon via a PCA of all local Wme series within each parcel. It is therefore likely that this 
dimension reducWon procedure contributed to improve signal-to-noise raWo and limited the 
impact of subsequent PCA of features.  
 

 
Supplementary table 3: Limited contribu@on of data reduc@on from principal component 
analysis to MEG fingerprin@ng. Performances in differen@a@on accuracy for connectome and 
spectral broadband within-session fingerprin@ng, for both original and PCA-reconstructed data 
(1). PCA data reduc@on improved connectome fingerprin@ng performances only slightly (about 
2%). It had virtually no effect on spectral fingerprin@ng performances. 
 

 
Supplementary Figure 5: Limited benefit of PCA reconstruc@on to differen@a@on accuracy 
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PCA reconstruc@on as proposed by Amico and Goñi (2018) had limited effect on (a) connectome 
105 and (b) spectral within-session fingerprin@ng (n= 158). The original results (Figure 2) are 
plofed against PCA-reconstructed results. From le_ to right, plots show i) PCA components 
plofed vs. their respec@ve frac@ons of signal variance explained, ii) differen@a@on accuracy 
across PCA components, iii) average differen@ability scores across PCA components, and iv) 
violin plots of differen@ability scores before and a_er PCA reconstruc@on for both (a) 
connectome and (b) spectral fingerprin@ng. Overall, PCA reconstruc@on did not substan@ally 
improve differen@a@on accuracy. The center of the boxplot depicts the median (Q2), the box 
extends from the Q1 to Q3 quar@le values of the data, and the whiskers extend to show the 
range of the data (i.e., the farthest datapoint within the 1.5 * IQR (IQR = Q3 - Q1) interval). 
Source data are provided as a Source Data file. 
 
 
FingerprinWng with 30-second data segments  

We challenged MEG fingerprinWng using short 30-second data segments (i.e., shortened 
within-session fingerprinWng). We epoched parWcipants’ MEG recordings into three datasets of 
30 second, where the first dataset was the first 30 seconds of the recording aier having removed 
the iniWal five seconds, the second dataset was the 30 seconds immediately following the first 
dataset, and the last dataset was the last 30-second segment of the recording aier having 
removed the last ten seconds (see Figure 1). Cropping the iniWal and last few seconds from 
recordings excluded edge, filtering, and other session arWfacts. The lengths of the short datasets 
and epochs were determined from the parWcipant with the shortest available recording. This 
procedure yielded three data segments for fingerprinWng purposes via 6 possible dataset pairs 
(i.e., dataset 1 and 2; dataset 2 and 3; and dataset 1 and 3 and vice-versa). Results for all possible 
combinaWons of datasets are reported in Supplementary Figure 6. 

Connectome fingerprinWng successfully differenWated individuals across all possible 
combinaWons of datasets (Supplementary Figure 6). FingerprinWng from recordings collected 
closer in Wme (e.g., dataset-1 and dataset-2) outperformed differenWaWon from datasets 
collected further apart in Wme (e.g., between dataset-1 and dataset-3). Overall, spectral 
fingerprinWng yielded lower differenWaWon accuracy than connectome fingerprinWng, in 
parWcular from datasets further apart in Wme. 

 In a similar fashion, we challenged MEG fingerprinWng using short 30-second data 
segments from different sessions (i.e., between-session fingerprinWng). This yielded 6 epochs of 
data for fingerprinWng (i.e., three from both the first and second recording, see Figure 1a). 
FingerprinWng results averaged across all possible data pairs are reported Figure 3c. Connectome 
fingerprinWng performances were greater than those from spectral fingerprinWng. DifferenWaWon 
from slower frequency data components performed worse in comparison to higher bands – see 
main arWcle body for a discussion. 
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Supplementary Figure 6: Differen@a@on accuracy from shortened within-session datasets 
Differen@a@on results from shortened within-session datasets (30 seconds) for (a) connectome 
and (b) spectral broadband and narrowband fingerprin@ng. The accuracy scores are reported for 
differen@a@on from all possible combina@ons of datasets, (i.e., dataset 1 to predict dataset 2, 
dataset 3 to predict dataset 2, etc.; see Methods for details). Differen@a@on accuracy increased 
as datasets were proximal in @me (i.e., fingerprin@ng accuracy for dataset 1 to dataset 2 was 
greater than for dataset 1 to dataset 3). Source data are provided as a Source Data file. 
 
Fingerprin@ng across recording sessions 

We also report fingerprinWng accuracy performances from all possible pairs of datasets 
for the between-session fingerprinWng challenge in Supplementary Figure 7. Overall, spectral 
fingerprinWng outperformed connectome fingerprinWng, as discussed in the main text. 
 

 
 
Supplementary Figure 7: Between-session differen@a@on accuracy. Results from MEG between-
session fingerprin@ng. Differen@a@on accuracy for both (a) connectome and (b) spectral 
broadband and narrowband fingerprin@ng. The accuracy scores are reported for fingerprin@ng 
from dataset 1 to dataset 2 and vice-versa (see Methods). Source data are provided as a Source 
Data file. 
 



 269 

Individuals cannot be differen@ated from their respec@ve imaging kernels 
We verified that the within-session fingerprinWng of individuals was not possible from 

empty-room 
166 data (i.e., with no parWcipant under the MEG sensor array) processed through their 
respecWve imaging kernel of beamformer weights. Indeed, these la`er are defined from 
individual anatomy and head posiWon under the MEG sensor array, which may have been 
sufficient informaWon to drive differenWaWon. We therefore ran the same fingerprinWng pipeline 
on each session’s empty-room data transformed through the corresponding individual’s 
beamformer imaging kernel, which was idenWcal for each of the within-session data segments 
used. Note that for the between-session challenges, the imaging kernels were adjusted to the 
respecWve individual head posiWons measured during each session. These analyses demonstrated 
that the imaging kernel informaWon did not contribute substanWally to MEG fingerprinWng 
(overall performance was below 20% on average). 

We also ran the MEG fingerprinWng pipeline directly from the sensor data of the empty-
room recordings, without transformaWon through individual imaging kernels, to assess the floor 
level of differenWaWon performances from non-brain data only. The data confirmed substanWally 
lower levels of fingerprinWng (<5% accuracy on average; see Supplementary Figure 8). 
 

 
Supplementary Figure 8: Verifica@on of failed fingerprin@ng from non-brain data (empty-room 
recordings). Results for the empty-room sensor fingerprin@ng challenge. As expected, 
differen@a@on accuracies of connectome and spectral broadband and narrowband 
fingerprin@ng were substan@ally lower than from actual MEG data with individuals present. 
Source data are provided as a Source Data file. 
 
Fingerprin@ng from scalp data only 

We also performed MEG fingerprinWng from individual sensor data, with no MEG source 
reconstrucWon to assess the added value of source modeling. We replicated the above MEG 
fingerprinWng pipelines from the within-, within-shortened, and between- session analyses. 
DifferenWaWon performances were less than with source modeling, especially from signal 
components in higher frequency bands and for the shortened challenges (see Supplementary 
Figure 9, 10, & 11). Yet for other signal components and longer duraWons, individuals remain 
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differenWable from sensor-level data collected between sessions (>60% accuracy from broadband 
data), albeit with lower accuracy than when using MEG source transformaWons, which explicitly 
account for different head posiWons between sessions. 
Taken together with the empty-room fingerprinWng tests above, these results provide evidence 
that brain signals, not environmental condiWons, were crucial for individual differenWaWon. 
 
 

 
Supplementary Figure 9: Within-session differen@a@on from MEG sensor data (no source 
modeling). Results from MEG sensor data in the within-session fingerprin@ng challenge. The 
differen@a@on accuracy sta@s@cs are shown for both connectome and spectral broadband and 
narrowband fingerprin@ng. The average accuracy scores are reported across differen@a@on from 
dataset-1 to dataset-2 and vice-versa (see Methods). Source data are provided as a Source Data 
file. 
 
 

 
Supplementary Figure 10 Within-session differen@a@on from shortened (30-s) MEG sensor data 
(no source modeling). Results from MEG sensor data in the within-session shortened 
fingerprin@ng challenge. The differen@a@on accuracy sta@s@cs are shown for both connectome 
and spectral broadband and narrowband fingerprin@ng. The average accuracy scores are 
reported across differen@a@on from all possible pairs of datasets (see Methods). Source data 
are provided as a Source Data file.  
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Supplementary Figure 11: Between-session differen@a@on from MEG sensor data (no source 
modeling). Results from MEG sensor data in the between-session fingerprin@ng challenge. The 
differen@a@on accuracy sta@s@cs are shown for both connectome and spectral broadband and 
narrowband fingerprin@ng. The average accuracy scores are reported across differen@a@on from 
dataset-1 to dataset-2 and vice-versa (see Methods). Source data are provided as a Source Data 
file. 
 
Salient neurophysiological features for fingerprinWng 
We reported in the main manuscript intraclass correlaWons (ICC) to determine which features 
contributed to individual differenWaWon the most. We also performed two addiWonal analyses, 
deriving group consistency and differenWal power. These two metrics were proposed by Finn and 
colleagues (2) to idenWfy the features which were the most consistent across their cohort, and 
the features which were the most consistent within individuals but different across parWcipants, 
respecWvely (2). DifferenWal power measures the empirical probability that a given feature is 
more likely to have a higher edgewise product vector across individuals than within the same 
individual. Taking the sum of the natural log of this probability across subjects yields differenWal 
power (2). The higher the differenWal power, the be`er a feature discriminates between 
individuals. Results for differenWal power are plo`ed in Figures S7 and S9. We found that the 
most discriminant connectome features were the visual and limbic networks across frequency 
bands, while the most discriminant spectral features remained along midline structures for fast 
oscillatory signal components. Overall, these results confirmed the ICC analysis results, with the 
addiWon of the contribuWons of spectral power in the beta and gamma band along the 
supplementary motor, motor, and somatosensory corWces. 
 

 
Supplementary Figure 12: Differen@al power connectome fingerprin@ng 
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Differen@al Power (DP) analysis for broadband connectome fingerprin@ng of the within-session 
dataset (see Figure 1). Mean DP plofed within frequency bands and per res@ng-state network 
as 
defined by (3): Default Mode Network (DMN), Dorsal Afen@on (DA), Frontal-Parietal (FP), 
Limbic 
(L), Somato-Motor (SM), Ventral Afen@on (VA), and Visual (VIS). The higher the DP, the more 
the corresponding func@onal connec@on was essen@al for fingerprin@ng. The outstanding 
connec@ons determined by DP for fingerprin@ng were the Visual network across all frequency 
bands, and the Limbic network in the beta and gamma bands. 
 

Group consistency reflects edges that are consistent across individuals. Group consistency 
was computed from the mean edgewise product vector across all subjects (2). Large values of 
group consistency highlight features that are consistent both within parWcipants and across the 
cohort. Our analyses are shown Figures S8 and S10. The resulWng most consistent connectome 
features remained along the diagonal of the FC matrix (i.e., connecWons within the same 
networks) specifically in the Dorsal A`enWon and Fronto-Parietal networks. The most consistent 
features for spectral fingerprinWng were in the lower frequency bands, specifically in the lateral 
frontal corWces. This outcome was consistent with our ICC results (see Manuscript). 
 

 
Supplementary Figure 13: Group consistency connectome fingerprin@ng 
Group Consistency (GC) analysis for broadband connectome fingerprin@ng of the within-session 
dataset (see Figure 1). Mean GC plofed within frequency bands according to the labels from 
Default Mode Network (DMN), Dorsal Afen@on (DA), Frontal-Parietal (FP), Limbic (L), Somato- 
Motor (SM), Ventral Afen@on (VA), and Visual (VIS). The higher the GC, the more consistent was 
a func@onal connec@on within an individual and across the cohort. The most consistent 
connec@ons were those along the diagonal, specifically for the Dorsal Afen@on and Frontal- 
Parietal networks across all frequency bands. 
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Supplementary Figure 14: Differen@al power spectral fingerprin@ng 
Differen@al Power (DP) analysis for broadband spectral fingerprin@ng of the within-session 
dataset (see Figure 1). Mean DP plofed within frequency bands according to the Desikan-
Killiany atlas (4). The higher the DP, the more a given frequency band and ROI dis@nguished 
between individuals. The most characteris@c regions and frequencies were medial structures for 
the beta band, and temporal and central regions for gamma band signals. 
 

 
Supplementary Figure 15: Group consistency spectral fingerprin@ng 
Group Consistency (GC) analyses for broadband spectral fingerprin@ng of the within-session 
dataset (see Figure 1). Mean GC plofed within frequency bands according to the Desikan-
Killiany. The higher the GC, the more a given frequency band and ROI remained consistent 
within individuals and across the cohort. The most stable frequencies were the lower bands 
(delta and theta) and the most consistent regions across individuals were lateral frontal areas. 
 
Par@al Least Squares (PLS) analysis 
293 We tested whether differences in resWng-state neurophysiological signals related to 
294 meaningful demographic features using an exploratory ParWal Least Squares (PLS) analysis. 
PLS is a mulWvariate staWsWcal method that relates two data matrices based on latent variables 
(LV) that explain the highest covariance between the two datasets. Here, our two datasets consist 
of a demographic matrix (i.e., age, gender, handedness, and clinical status) and a 
neurophysiological data matrix (i.e., spectral power or funcWonal connectome). Latent variables 
(which explain the most covariance between both matrices), and their corresponding variance 
explained are plo`ed Figure 16. Significance of each latent variable was assessed via permutaWon 
tests. PermuWng the rows of the data allowed us to compute an associate p-value for each latent 
variable (see Manuscript). We chose to explore the first significant latent variable which 
explained the most variance for each neurophysiological signal feature (i.e., the first component 
for connectomes and spectral data). The resulWng weights associated to the latent neural and 
demographic components are depicted Figure 5 along with their bootstrapped raWos. These 
results corroborate how neurophysiological signals at rest, in addiWon to differenWaWng 
individuals, carry meaningful informaWon about parWcipant demographics. 
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Supplementary Figure 16: PLS latent variables 
Results for the PLS analysis conducted for both (a) connectome and (b) spectral fingerprin@ng 
features. Each plot depicts the latent components obtained for each of the PLS analyses, their 
corresponding variance explained, and permuted p-value (right axis). P-values were determined 
based on permuta@ons of the data to obtain a null distribu@on. One significant latent variable 
explained 43.1% of the variance for connectome fingerprin@ng (p = 0.021) and two latent 
variables explained 44.7% (p = 0.001) and 28.3% (p = 0.003) of the variance for spectral 
fingerprin@ng, respec@vely. We explored in the main Manuscript only the first significant 
component for each method (i.e., the circled component). Source data are provided as a Source 
Data file. 
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Appendix B: Supplemental Informa>on 
chapter 3 
Demographic characteris@cs of the par@cipant cohort 
We used the 606 individuals with both resWng state scans and sensorimotor task MEG recordings. 
This consisted of individuals spanning the enWre adult lifespan from 18 years old to 89 years old 
(mean age= 54.69; sd= 18.28). The demographic characterisWcs of all parWcipants are presented 
in Table S1. 
 
 
 Sex (f) Handedness Mmse (sd) Catell Intelligence 

performance 
All participants N=606 299 78.9 (49.2) 28.95 (1.25) 31.9 (6.76) 
Young adults (18-45) 
N=204 

103 75.3 (52.5) 29.3 (1.05) 36.7 (4.33) 

Adults (45-65) N=194 100 76.6 (53.3) 29.1 (1.07) 32.8 (4.96) 
Older adults (65+) 
N=208 

96 84.9 (40.8) 28.4 (1.38) 26.2 (6.03) 

 
Table S1. Demographics of par@cipants.  
 
Individuals are differen@able regardless of age group  
We found that individuals’ broadband brain-fingerprints derived from task-free brain acWvity 
remain differenWable across age groups. To further invesWgate this finding, we tested whether 
the self-similarity of brain-fingerprints of individuals differed across age. We observed that the 
self-similarity of brain-fingerprints does not linearly relate with age (β=-4.62, SE= 2.45, 95% CI [-
9.43, 0.20], p=0.06, BF01= 1.96, see Table S2). In addiWon, we tested whether older adults were 
easier to differenWate from the enWre cohort. Here, we defined differenWability (da Silva 
Castanheira et al., 2021), a score that represents an individual who shows a greater self-similarity 
of their brain-fingerprint features than other-similarity and is therefore easy to differenWate from 
the cohort. We observed a weakly linear relaWonship between differenWability and age (β= 6.14, 
SE= 1.12, 95% CI [3.94, 8.34], p< 0.001, BF01= 6.38 10-6, see Table S3 & Figure S1), which explains 
only 4.6% of variance. 
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  Age 

Predictors EsGmates CI p 

(Intercept) 64.67 54.16 – 75.18 <0.001 

artanh (self-similairty) -4.62 -9.43 – 0.20 0.060 

ObservaWons 606 

R2 / R2 adjusted 0.006 / 0.004 
Supplemental Table 2. The autocorrela@on of task-free broadband brain-fingerprints do not 
linearly relate to age. 
 

  Age 

Predictors EsGmates CI p 

Intercept 39.77 34.23 – 45.30 <0.001 

differenWability 6.14 3.94 – 8.34 <0.001 

ObservaWons 606 

R2 / R2 adjusted 0.047 / 0.046 
Supplemental Table 3. We report a weak linear rela@onship between the easy in which we can 
differen@ate an individual from the en@re cohort and their age.  
 
 
 

 
Figure S1: Individual differen@ability is weakly linearly related to age.  
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We preformed the fingerprinWng analysis using neurophysiological signals restricted to the 
convenWonal frequency bands of electrophysiology: delta (1-4Hz), theta (4-8Hz), alpha (8-13Hz), 
beta (13-30Hz), gamma (30-50Hz) and high gamma (50-150Hz). Across all challenges except for 
the adult cohort (45-65 years old), the highest differenWaWon accuracy was achieved by the beta 
band: 96.6% ([96.0, 97.7] CI) young adults, 95.3% ([93.7, 97.1] CI) older adults, and 95.3% ([94.4, 
96.3] CI) across all parWcipants. This result is consistent with our previous work(da Silva 
Castanheira et al., 2021). The band with the highest differenWaWon accuracy for the adult cohort 
was the gamma band (96.7% [92.0, 97.7] CI; see Figure 2a). The band exhibiWng the worst 
differenWaWon accuracy across all challenges, except for the young adult cohort (18-45 years old), 
was delta: 82.3% ([79.4, 85.7] CI) adults, 80.3% ([77.7, 82.9] CI) older adults, and 79.2% ([76.7, 
81.9] CI) across all parWcipants (See Figure S2). 
 

 
Figure S2: Individuals are differen@able from band-limited brain-fingerprints across age groups. 
Differen@a@on accuracy using broadband and band-limited spectral brain-fingerprints derived 
from ~4-min data lengths. The error bars show bootstrapped 95% confidence intervals.  
 
We then tested the relevance of arrhythmic signal components of brain activity to differentiation 
accuracy (Donoghue et al., 2020b). We parametrized the regional MEG-source power spectra 
and assessed differentiation accuracy from the resulting arrhythmic brain-fingerprints (see 
Methods).  We found that inter-individual differentiation performance for the entire cohort was 
lower when using arrhythmic brain-fingerprints in comparison to the broadband brain-
fingerprints 47.1% (CI [46.0, 48.0]), but remained well above chance. Similarly, we observed 
lower inter-individual differentiation accuracies for arrhythmic brain-fingerprints across the age-
cohorts: differentiation accuracy for young adults was 81.1% ([77.7, 84.6] CI), 77.4% ([75.4, 80.0] 
CI) for adults, and 82.2% ([79.4, 85.1] CI) for older adults. These differentiation accuracies were 
qualitatively similar to those from using the entire spectral brain-fingerprints (see Figure S3).  
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Figure S3: Par@cipants are differen@able from arrhythmic spectral brain-fingerprints. 
Differen@a@on accuracy using brain-fingerprints derived from the arrhythmic features of brain 
ac@vity as parametrized by specparam(Donoghue et al., 2020b). The error bars show 
bootstrapped 95% confidence intervals.  
 
To verify the stability of brain fingerprints across the adult lifespan we relied on approximately 8 
minutes of MEG recordings of a sensorimotor task. Here, we replicated our fingerprinWng 
approach (see Figure 1) to test if brain-fingerprints derived from resWng-state recordings 
differenWate individuals based on brain-fingerprints derived from task recordings in MEG. The 
brain-fingerprint differenWaWon accuracy for all parWcipants using broadband neurophysiological 
signals was 77.0% ([72.4, 81.4] CI). Broadband differenWaWon accuracy did not substanWally vary 
across age-cohorts: differenWaWon accuracy for young adults was 77.0% ([70.9, 82.9] CI), 81.1% 
([76.6, 85.7] CI) for adults, and 80.6% ([75.4, 86.3] CI) for older adults (Figure S4). This replicates 
our resWng-state findings (see Figure 1a).  
 
We repeated the above analyses (i.e., task to rest brain-fingerprinWng) for band-limited brain-
fingerprints. Across all challenges except for the young adults, the highest differenWaWon 
accuracy was achieved by the beta band: 96.3% ([93.1, 99.4] CI) adults, 96.6% ([94.3, 98.9] CI) 
older adults, and 93.6% ([90.7, 96.3] CI) across the enWre cohort. The band with the highest 
differenWaWon accuracy for the young adult cohort was the gamma band (94.1% [92.6, 95.4] CI; 
see Figure S4). The band exhibiWng the worst differenWaWon accuracy across all challenges, 
except for the adult cohort, was alpha: 58.0% ([53.1, 62.9] CI) young adults, 63.1% ([60.6, 65.7] 
CI) older adults, and 59.3% ([56.6, 62.1] CI) across the enWre cohort (see Figure S4). 
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Figure S4: Par@cipants can be differen@ated from task-based brain-fingerprints. 
We differen@ated par@cipants based on spectral brain-fingerprints derived from i) task-free 
brain ac@vity and ii) a sensorimotor task to verify the robustness of the spectral brain-
fingerprint. We plot the differen@a@on accuracies from this fingerprin@ng challenge based on 
broadband and band-limited spectral brain-fingerprints. The error bars show bootstrapped 95% 
confidence intervals.  
 
Brief 30-second recording can differen@ate individuals  
Our previous work demonstrated that individuals can be differenWated from brain-fingerprints 
derived from brief recordings(da Silva Castanheira et al., 2021). In line with these results, we 
aimed to differenWate the largest cohort of individuals (N= 606) to date using short 30-second 
recordings of data and tested whether brain-fingerprints become increasingly variable with age. 
We find that brain-fingerprinWng from brief recordings generalizes to a much wider age range 
than our previous work, achieving 67.0% differenWaWon accuracy (computed 95% CI [64.9, 69.0]) 
(presented in Figure 1a points).  
 
Brain-fingerprints are robust against data recording artefacts  
We verified the robustness of spectral brain-fingerprints against environmental and physiological 
artefacts. 
 
First, we found that individuals are not differenWable on the basis of environmental factors 
specific to the respecWve days of the MEG recording. We pre-processed the empty-room 
recordings of each parWcipant similarly to their resWng-state data. Using the same imaging 
projectors as those for their original MEG data, we mapped each session’s empty-room data onto 
the respecWve parWcipant’s corWcal surfaces. The accuracy of empty-room individual 
differenWaWon was considerably lower than that of the spectral brain-fingerprints (<5%; Figures 
1a & S4).  
 
Second, we tested the robustness of brain-fingerprinWng against typical physiological artefacts, 
including head moWon, heart-rate variability, and eye blinks. Individual differenWability was not 
correlated to head moWon (r=0.08, p> .05, BF01= 1.60), cardiac (r= -0.03, p= .39, BF01= 7.30) or 
ocular (r=0.00, p= .97, BF01= 10.51) artefacts. 
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Third, we then regressed out the variance associated with physiological artefacts from the 
spectral features of brain-fingerprints and replicated the fingerprinWng analysis pipeline. The 
resulWng differenWaWon accuracy was qualitaWvely similar to our broadband analysis: 89.3% 
accuracy ([87.2, 91.1] CI) for all parWcipants, 91.8% ([88.0, 94.9] CI) for young adults, 88.5% 
([85.7, 91.4] CI) for adults, and 92.2% ([89.7, 94.3] CI) for older adults (see Figure 1a). Taken 
together, these results indicate that brain-fingerprinWng is robust against environmental and 
physiological arWfacts akin to our previous results(da Silva Castanheira et al., 2021).  
 
Salient neurophysiological features for brain-fingerprin@ng 
We quanWfied the most salient neurophysiological brain-fingerprint features for differenWaWng all 
individuals using intra-class correlaWons (Amico & Goñi, 2018a; da Silva Castanheira et al., 2021). 
We found that medial brain regions were the most salient for differenWaWng all individuals (Figure 
S5): the bilateral caudal anterior cingulate showed the highest ICC for differenWaWng individuals 
(ICC= 0.88), while the right superior temporal cortex the lowest (ICC= 0.75; see Figure S5).  
 
 

 
 
Figure S5: Salient neurophysiological brain-fingerprint features for differen@a@ng individuals 
across the en@re cohort. 
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Figure S6: Decoding of Fluid intelligence test performance does not depend on cross-valida@on 
strategy. Topography of decoding performance (correla@on between observed and decoded 
fluid intelligence scores) from the spectral brain-fingerprint features of each cor@cal parcel of 
the Desikan-Killiani atlas (Desikan et al., 2006a). The observed topography of decoding 
performance remains similar regardless of the cross-valida@on method (le_: 90-10% cross-
valida@on split, right: 70-30% cross-valida@on split). The topographies of decoding performance 
remain correlated to the salient features for differen@a@ng individuals (i.e., Figure S5) regardless 
of the cross-valida@on method. 
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Appendix C: Supplemental Informa>on 
chapter 4   
 
Par@cipants 
The study parWcipants were paWents with Parkinson’s disease from the QPN data repository and 
age-matched healthy controls from the Prevent-AD data repositories (Gan-Or et al., 2020; Niso et 
al., 2016a; Tremblay-Mercier et al., 2021). Table S1 provides their demographics, which we tested 
for sample differences in terms of age and educaWon, using an unpaired t-test and gender and 
handedness with a Chi-square test. No significant differences were found. We replicated our 
analyses with a second sample of healthy controls obtained from the Cambridge enter for Aging 
Neuroscience (CamCAN) dataset (see Methods for demographics details). 
 
Table S1: Par@cipant demographics. 
 Patients Controls 

(Prevent-AD) 
Uncorrected 
p-values 

age 64.63 (8.66) 61.98 (8.89) 0.09 
gender (female) 23 24 0.13 
handedness (right) 67 48 1.0 
education 15.11 (3.11) 15.54 (3.58) 0.48 
Hoehn & Yahr score 1.97 (0.71) NA  
UPDRS III 32.55 (14.74) NA  
MoCA 24.43 (4.03) NA  

 
 

 
Figure S1: Differen@a@on accuracy from empty-room data. 
Differen@a@on accuracies from brain-fingerprints derived from empty-room recordings 
performed around the MEG visit of each par@cipant. 
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Figure S2: Empirical densi@es of other-similarity brain-fingerprint sta@s@cs. 
The empirical densi@es of inter-individual other-similarity brain-fingerprints sta@s@cs are similar 
between pa@ents with Parkinson’s disease and healthy age-matched controls. See Moment-to-
moment arrhythmic fluctua(ons are increased in Parkinson’s disease for a detailed descrip@on 
of the self-similarity sta@s@cs. 
 

 
Figure S3: Rela@ve contribu@on of rhythmic features for fingerprin@ng. 
Cor@cal maps of intra-class correla@on coefficients (ICCs) for (a) controls (Prevent-AD), and (b) PD 
pa@ents. 
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Figure S4: Cor@cal thickness altera@ons not related to pa@ent differen@a@on. 
(a) Average cor@cal thickness measured in control par@cipants and pa@ents with PD. (b) le_ panel: 
linear regression analysis showing no rela@onship between individual differen@ability and the 
average standardized cor@cal thickness of each pa@ent (averaged across ROIs) (see Methods). 
Right panel: brain maps of average standardized cor@cal thickness of pa@ents with PD.  
 
 
 
 

 
 
Figure S5: Individual differen@ability does not relate to cardiac or ocular ar@facts (middle and 
right panels). A moderate linear rela@onship exists between individual differen@ability and head 
mo@on in the pa@ent group. 
 
DifferenWability between paWents with PD was correlated to head moWon (r= 0.23, p= 0.04), but 
not to cardiac or ocular arWfacts (r= -0.04, p= 0.71; r= -0.08, p= 0.46 respecWvely). There was, 
however, li`le evidence in favour of the relaWonship between head moWon and differenWability 
(BF= 2.04; Figure S5).  
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Robustness and Replicability of Disease-Stage Decoding Using Spectral Brain-Fingerprints  
The decoding of disease stages is related to the key features of the brain's spectral fingerprint. 
Specifically, the ability to disWnguish disease stages based on regional brain-fingerprint 
characterisWcs correlates with changes in interclass correlaWon (ICC) between paWents and control 
groups, as shown in Figure 3a. 
 
To ensure that our findings were robust and not biased by our iniWal 80-20 cross-validaWon strategy, 
we conducted addiWonal tests using 90-10 and 70-30 cross-validaWon raWos (i.e., training the 
decoder with 90% and 70% of the data respecWvely, and tesWng it with the remaining 10% and 
30%). These tests yielded results consistent with our iniWal findings, as detailed in Figure S6. 
 
Further, we replicated this analysis using the control sample from the Cambridge Center for Aging 
Neuroscience (CamCAN). The results confirmed that, similar to the Prevent-AD sample of healthy 
controls, the pa`ern of disease-stage decoding aligns with the corWcal map of ICC difference 
scores. This was true for both 90-10 (correlaWon coefficient r= 0.46, p< 0.01, pspin< 0.001) and 70-
30 cross-validaWon raWos (r= 0.54, p< 0.01, pspin< 0.001).  
 
 

 
Figure S6: Stability of Disease Stage Decoding Across Various Cross-Valida@on Schemes. 
Decoding accuracies for Parkinson’s disease stages (Hoehn & Yahr stages, binarized) derived 
from the rhythmic brain-fingerprint features from each cor@cal parcels of the Desikan-Killiany 
atlas using a) 90-10 and b) 70-30 cross-valida@on ra@os. The cor@cal maps show consistency in 
the topographical distribu@on of decoding accuracies, irrespec@ve of the cross-valida@on 
protocol employed. Moreover, a correla@on persists between the decoding accuracy for 
Parkinson's disease stages at each cor@cal parcel and the prominence of the respec@ve brain-
fingerprint features within those parcels (Δ ICC; see Figure 3a), across different cross-valida@on 
strategies. These phenomena are further validated in the CamCAN cohort, as detailed in the 
preceding text. 
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Figure S7: Topographical alignment of spectral brain-fingerprints with the func@onal hierarchy: 
CamCAN sample. Top: Cor@cal map illustra@ng the first unimodal-to-transmodal func@onal 
gradient, sourced from neuromaps (Markello et al., 2022a).  Bofom: Linear associa@on between 
the weights of cor@cal regions in this func@onal gradient (as per neuromaps) and their 
prominence in the PD brain-fingerprint (Figure 3a, bofom; CamCAN sample). 
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Table S2: Short-Term Variability in Self-Similarity of Brain-Fingerprints from 30-Second Datasets in 
Pa@ents. 

  atanh(self-similarity) 

Predictors EsGmates CI p 

(Intercept) 1.19 1.13 – 1.25 <0.001 

Head moWon -0.03 -0.06 – 0.01 0.149 

Group [Parkinson] -0.02 -0.10 – 0.05 0.546 

gap duraWon [ploy 1st degree] -9.95 -12.56 – -7.34 <0.001 

gap duraWon [ploy 2nd degree] 2.76 1.68 – 3.83 <0.001 

Group [Parkinson] × 
gap duraWon [ploy 1st degree] 

-3.77 -7.16 – -0.38 0.029 

Group [Parkinson] × 
gap duraWon [ploy 2nd degree] 

-0.03 -1.43 – 1.36 0.961 

Random Effects 

σ2 0.07 

τ00 SubjId 0.05 

τ11 SubjId.poly(gap duraGon, 2)1 86.88 

τ11 SubjId.poly(gap duraGon, 2)2 7.32 

ρ01 0.27 
 

-0.40 

ICC 0.46 

N SubjId 133 

ObservaWons 10374 

Marginal R2 / CondiWonal R2 0.115 / 0.521 
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Table S3: Short-Term Variability in Self-Similarity of arrhythmic Brain-Fingerprints from 30-Second 
Datasets in Pa@ents. 

  atanh(arrhythmic  self-similarity) 

Predictors EsGmates CI	 p	

(Intercept) 1.63 1.57	–	1.70	 <0.001	

Head moWon 0.02 -0.02	–	0.05	 0.359	

Group [Parkinson] -0.02 -0.11	–	0.06	 0.608	

gap duraWon [ploy 1st degree] -15.19 -18.72	–	-11.66	 <0.001	

gap duraWon [ploy 2nd degree] 4.82 3.29	–	6.36	 <0.001	

Group [Parkinson] × 
gap duraWon [ploy 1st degree] 

-3.67 -8.25	–	0.92	 0.117	

Group [Parkinson] × 
gap duraWon [ploy 2nd degree] 

-0.47 -2.47	–	1.52	 0.641	

Random Effects 

σ2 0.10 

τ00 SubjId 0.06 

τ11 SubjId.poly(gap duraGon, 2)1 161.32 

τ11 SubjId.poly(gap duraGon, 2)2 19.28 

ρ01 0.34 
 

-0.46 

ICC 0.42 

N SubjId 133 

ObservaWons 10374 

Marginal R2 / CondiWonal R2 0.151 / 0.504 
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Table S4: Short-Term Variability in Self-Similarity of rhythmic Brain-Fingerprints from 30-Second 
Datasets in Pa@ents. 

  atanh(rhythmic self-similarity) 

Predictors EsGmates CI p 

(Intercept) 0.98 0.92 – 1.05 <0.001 

Head moWon -0.03 -0.07 – 0.01 0.147 

Group [Parkinson] 0.02 -0.07 – 0.11 0.646 

gap duraWon [ploy 1st degree] -8.67 -11.23 – -6.12 <0.001 

gap duraWon [ploy 2nd degree] 2.08 1.02 – 3.14 <0.001 

Group [Parkinson] × 
gap duraWon [ploy 1st degree] 

-3.33 -6.65 – -0.02 0.049 

Group [Parkinson] × 
gap duraWon [ploy 2nd degree] 

1.17 -0.20 – 2.55 0.095 

Random Effects 

σ2 0.05 

τ00 SubjId 0.06 

τ11 SubjId.poly(gap duraGon, 2)1 85.02 

τ11 SubjId.poly(gap duraGon, 2)2 9.14 

ρ01 0.22 
 

-0.29 

ICC 0.58 

N SubjId 133 

ObservaWons 10374 

Marginal R2 / CondiWonal R2 0.097 / 0.623 
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Appendix D: Supplemental Informa>on 
chapter 5   
 
Sensi@vity analyses   
We verified the robustness of spectral brain-fingerprints against environmental and physiological 
artefacts. 
 
First, we computed our ability to differenWate individuals on the basis of environmental factors 
respecWve to the day of the MEG recording using empty-room recordings. We pre-processed the 
empty-room recordings of each parWcipant similar to their resWng-state data and used the same 
imaging projectors as the resWng-state data to derive empty-room noise brain-fingerprints for 
each individual. The accuracy of empty-room individual differenWaWon was considerably lower 
than that of the spectral brain-fingerprints (<1.7% for broadband brain-fingerprints; Figures 2a 
grey bars & Figure S1, see Methods for details).  
 
 

 
Figure S1: Spectral brain-fingerprints differen@ate individuals and MZ twin pairs. 
Differen@a@on accuracy using broadband and narrow-band spectral brain-fingerprints derived 
from ~5-min data lengths. The error bars show bootstrapped 95% confidence intervals, while 
the grey segments at the foot of each bar plot indicate the null differen@a@on accuracy 
obtained from empty-room MEG recordings. 
 
Second, we regressed out the variance associated with physiological artefacts from the spectral 
features of brain-fingerprints and replicated the fingerprinWng analysis pipeline (see Methods). 
The resulWng differenWaWon accuracy was qualitaWvely similar to Figure 2a: The differenWaWon 
accuracy for all parWcipants was 82.7% ([75.0, 88.8] 95% CI ), 59.8% ([46.7, 76.7] 95% CI) for 
matching MZ twin pairs, and 7.0% ([0.0, 20.0] 95% CI) for matching DZ twin pairs using 
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broadband brain-phenotype features (see Figure S2). Taken together, these results suggest that 
our ability to differenWate individuals and match twin pairs is not driven by idiosyncraWc 
physiology unrelated to brain acWvity. 
 

 
Figure S2: Physiological ar@facts do not impact differen@a@on accuracy. 
Comparison of the differenWaWon accuracy scores before and aier regressing out the effects of 
arWfacts on PSDs, for singletons (top panel), MZ twin pairs (middle panel) and DZ twin pairs 
(bo`om panel). 
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Lastly, we tested whether our ability to differenWate MZ twin pairs based on their spectral brain-
fingerprints was driven by anatomical similarity (See Monozygo@c twin differen@a@on not driven 
by anatomy). 
 
Robustness of salient features for par@cipant differen@a@on 
We computed the ICC by averaging the results calculated with bootstrapped cohorts of the 
original dataset, including each Wme only one randomly chosen twin per pair (see Methods) to 
remove any effects due to the presence of twins. We evaluated the influence of including twins 
by calculaWng the ICC for the full dataset. The two ICCs are 98.6% similar when looking at all 
features. 
 
We also verified the spaWal similarity for each frequency band, to ensure the global correlaWon 
was not an effect on only one band. We computed the similarity by averaging the ICC values per 
frequency band for every region of the Schaefer atlas. We addiWonally averaged all the frequency 
bands to get a broadband heritability. The broadband spaWal correlaWon is 99.4% (p-value < 1e-
4). The similarity is above 98.1% for every band (p-value < 1e-4). 
 

Figure S3: Broadband brain maps of salient features for fingerprin@ng and heritable brain 
phenotypes. 
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Gene ontology analyses using KEGG database 

We reproduced our gene ontology analyses using the ShinyGO1 tool 
(h`p://bioinformaWcs.sdstate.edu/go/) and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database. The result of this analysis is presented in Figure S4, and in the Supplemental 
Data. 
 

 
Figure S4: Genes that contribute to the reported PLS latent component was assessed by 
compu@ng loadings. Le_ panel: gene brain score pafern for posi@ve and nega@ve loadings. 
Molecular processes were inferred from the genes with the top 50% of posi@ve (pink) and 
nega@ve (blue) loadings using a gene enrichment analysis (see Methods). Right panel: KEGG 
gene ontology analysis for the posi@ve and nega@ve gene loadings. The size of each dot 
represents the number of genes associated with the biological process; their colour represents 
the FDR-corrected p values. 
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Psychological ac@va@ons and differen@a@on PLS analysis 
We further tested whether the idenWfied psychological-processes pa`ern from our PLS analysis 
(see Manuscript) would equally covary with parWcipant differenWaWon. We anWcipate that this 
relaWonship should hold as both psychological-processes and differenWaWon covary with similar 
gene expression signatures (see Manuscript). As expected, the psychological-processes 
differenWaWon PLS had a single significant latent variable (p= 0.002) explaining 87.0% of the 
covariance between psychological-processes acWvaWons and differenWable brain acWvity (85.2% 
covariance explained, PSPIN= 0.002, 95% CI = [54.24., 87.37]; Figure 4b lei panel). The ICC 
loadings and term loadings were significantly linearly related to the loadings obtained from the 
previously reported PLS analysis (ICC loadings similarity, r=0.78; term loading similarity, r= 0.92). 
 
Monozygo@c twin differen@a@on not driven by anatomy  
We tested whether our ability to differenWate MZ twin pairs based on their spectral brain-
fingerprints was driven by anatomical similarity. We first verified that MZ twins were more similar 
in terms of their anatomical features extracted from Freesurfer2 than DZ twins, and unrelated 
subjects (see Methods). Indeed, we observed that the average correlaWon of anatomical features 
between MZ twin pairs was (r= 0.99), whereas it was significantly lower for DZ twin pairs (r= 0.93; 
see Figure 3a lei). We invesWgated which anatomical features were the most heritable and 
observed that measures of Gaussian brain curvature (h= 1.75) and thickness (h= 1.75) were the 
most heritable across the enWre cortex.  These results corroborate previous literature reporWng 
the heritability of anatomical brain features. We, therefore, assessed the extent to which 
anatomy contributes to heritable brain fingerprints.  
 
To do so, we computed the linear relaWonship between the similarity of spectral brain-
fingerprints between MZ twin pairs and their anatomical features (see Figure 3b, and Methods 
for details). We did not observe any significant linear relaWonship between spectral broadband 
similarity and anatomy for both MZ (r= 0.32, p= 0.06) and DZ (r= -0.22, p= 0.32; see Figure 3b 
right) twin pairs. We repeated the above analysis for alpha-band similarity (MZ: r= 0.31, p= 0.08; 
DZ: r= -0.17, p= 0.45) and beta band similarity (MZ: r= 0.32, p= 0.07; DZ: r= -0.15, p= 0.51). Bayes 
factor analyses corroborate this interpretaWon with minimal evidence for the alternaWve 
hypothesis (see Supplemental Table S1). Taken together, these results indicate that while brain 
curvature and corWcal thickness are highly heritable brain-phenotypes, they do not appear to 
influence our ability to differenWate individuals.  
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Figure S5: MZ twin differen@a@on not influenced by anatomical similarity.  
(a) Analysis pipeline for the rela@onship between anatomical similarity and neurophysiological 
(aka brain fingerprint similarity). We first compute the two par@cipant similarity matrixes, Fisher 
transform the similarity, and compute the linear rela@onship between anatomical and brain-
fingerprint similarity for i) DZ twin pairs and ii) MZ twin pairs. (b) Scafer plot of the linear 
rela@onship between the neurophysiological similarity between (aka brain-fingerprints) and 
anatomical similarity for DZ (right panel) and MZ (le_ panel) twin pairs.  
 
 

 Pearson’s r BF10 
 MZ DZ MZ DZ 

Relationship between anatomy and broadband 
spectral similarity 

0.32 -0.22 1.65 0.68 

Relationship between anatomy and alpha spectral 
similarity 

0.31 -0.17 1.46 0.57 

Relationship between anatomy and beta spectral 
similarity 

0.31 -0.15 1.60 0.54 

 
Table S1: Pearson’s correla@on between anatomical similarity and brain-fingerprint similarity. 
We computed the linear rela@onship between anatomical similarity and i) broadband, ii) alpha 
band, and iii) beta band similarity among twin pairs. Bayes factor evidence for the linear 
rela@onship between spectral and anatomical similarity between twin pairs was in favour of the 
null hypothesis.  A Bayes factor greater than 3 (or less than 1/3) is considered moderate 
evidence.  
 
References 
1. Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and 
plants. BioinformaWcs 36, 2628–2629 (2020). 
2. Fischl, B. FreeSurfer. NeuroImage 62, 774–781 (2012). 
 


